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Arnoryopeletar n avtiypopt|, anotixeucn xou diovoun Tng tapoloag epyastiag, €€ ohox-
Apou A TUAHATOC AUTAS, Yo EUTopixd oxomo. Emteéneton 1 avotinwon, anotfxeuon
X0l OLAVOUT] YLl GXOTO A1) XEEOOOKOTIUXO, EXTUDEUTIXAC 1) EPEUVNTIXYC QUOTE, UTO TNV
Teolnoveon Vo avapépeTal 1) TNYT TEOEAEUOTC XAl VoL BlaTneeiTon TO ToEOY UVuUaL.
Epwtrhuato mou apopoly 1 yerion T epyasias YLol XEpB0OXOTIXO OXOTO TEETEL Vo
amevdivovton oTov ouyypapéa. Ol andelg xal To CUUTEQIOUATO TOU TEPLEYOVTOL
og qUTO TO €YYEAUPO exPEAlOLY TOV CUYYEApEN Xou OEV TEENEL Vo epunveudel Ot

AVTITPOCWTELOLY Ti¢ enlonueg Véoelg Tou Edvixod Metodfiou TTohuteyvelou.



ITepiindn

Yy ouyxexpévn epyocia eeTdloupe TO TEOBANUA TNE EAXYLGTOTOINGTC TOU YEOVOU
OMNOXNAPWONG EPYAOLOY e dueces anogdoelc ("promptness") omwe autd oplotnne
oto [23]. TIio ouyxexpéva, e€etdlouye TO 0EVAPLO OTIOU OL EpYATiES PTAVOUY GTOdL-
oxd (online) xou o ahydprduoc xoheiton vor ABeL anogdoelc Yl TNV Oelpd EXTENEOTG
Toug dueca, hauBdvovtag utodn yeovixoig Teploplouols. Eunvevouévol and tny Pif3-
Moypapio Tou oyedtaopol akyopiduwy xadodnyoluevey and dedopéva (data-driven
algorithm design, [26]), entyxevipwvouacTte GTNY EMEXTACT TNG CUYXEXPUEVNC BOUAELSG
v Alon , Feldman xau Fiat e€etdlovtac To mpofBinua népay tne avdhuong yeledtepng
nepintwong. LuyXexpwéva, TEOTEVOUUE TNV LOVTEAOTOINGT ToU TEOBARUATOC KOC Eva
TEOBANU UEUINONG X THEEYOUUE EVary amodoTixd ahyoptduo Yo TNV enthucy auTtou.
Twodetohvtac pla Tpooéyyon mopduota Ye Ty gpyaoia [27], tehxd amnodewviouue
o1t 0 mpotevopevog online adyopiuog mapéyet xou éva TeoTo Eva Aocouyue to offline
TeoBAnua ue oTadepd AoYo TpocEyyiong eve o (Blog o online adyopriuog TeETUYAlVEL

otoepd c-regret.

AéEeic KAeoud

Alyoprduot, ypovodpopohdynaor, xedvoc OhOXAPWOTS, TROsEYYLoTXO! ahydpriuot,
alyoerduol pdinong



Abstract

In this work, we consider the problem of online prompt scheduling with a focus on
minimizing the total completion time (TCP). We are inspired by the idea of the
paper [23], in which they introduced a simple scheduling algorithm A(p): “Pick
the first available slot that the process fits in p" where p is a fixed pattern that
leads to a partitioning of the time horizon into a sequence (‘pattern’) of slots,
whose lengths are increasing powers of 2. Following the literature on data-driven
algorithm design [26], we raise the question: “Can we learn from data such that we
design a better performing pattern"? In order to answer this question, we combine
‘Online Learning’ with Approximation Algorithms techniques. In particular, we
adopt an approach similar to [27|. First, we present a suitable Integer Program
and prove that solving its continuous relaxation then applying a proper rounding
scheme yields a constant approximation of the for the offline regime. We then
leverage this approximation using a learning algorithm to devise a pattern that
will work better in the future input sequences.

To measure performance we use a variation of the standard notion of Regret (the

so-called c-regret). Our proposed algorithm is proven to be no c-regret.

Key Words

algorithms, scheduling, total completion time, online algorithms, competitive ratio,

online learning, regret






Euyogiotieg

Katopynyv euyopiotd ta péhn e e€eTaoTXAC EMTEOTNE Y TO YPOVO TOU OPLERLTAY Vol

a&loloyroouv auth TNy epyaocio.

LTy Ve GE W Tapdypdpo To EUYaploTe atov emBAénovta xplo Pwtdxrn. Euvyapiotd
yia tar umépoyo " Araxprtd Moadnpotind" and to onolo Eexivnoov oha. Euyaplotd yia Tig
anavtoels ota dexddec(*100) email, eldwd oty xopavtiva. Euyopiotd v 6ha tar pord-
poata oog.  BEuyoptotd yia 6hec oac Tic e€nyfioec. BEuyoplotd yia tv guxoupior mou pou
dwoote var xdvey Bimhwpotix wall coc. Niddw euyvoduwmy mou pou 860nxe 1 euxoupla va
elpon pépoc autod Tou opduatoc (Tou TovAdyioTov ViKdYw) 6TL tpeoPelel To Corelab: éva
avoxtd TERBAAAOY CLUVERYASIAS YL TNV TOEOYT| EUXNUELOY OE GAOUC GCOUC EVOLUQEROVTOL

v v Oewentixy Inpogopuny.

Emumiéov, Ya Hleha va euyaploThow WBlontépne Teelg oxoua xoinyntég: Tov xodnynt
‘Apn Hoyouetlh v ta et pou pordfuata oty IIAnpogopin) xou v mdvta GuAtxy) Tou
ouadeor oto Corelab. Tov xadnynt Iwdvvn Eulen yio Ty euxaiplor tou pou €8waoe vo xdve
yvwpelon ™y Troloyiotx 'ewpetplo xan tov xadnyntd A. IlonoBociielou yia v eloorywyy
oTnv emyelenoloxy épeuva, Tig oulnthoelg Yia TNV Behtiotonolnon xaddg xon Ti¢ cLUBoUAEQ

TOU YIO TS UETATTUYLOXES OTOUDEC.

Evyoptote) mohd nporypatind 6heg xon dhoug (“ta maudid") anéd to Corelab yio tnv bpopen
atuoopapa Tou dnutovpyrioope. [o xodévo xan xadepla oand eodc ebyopat amhdg Vo cog
elya yvwploel vopitepa. Euyoplotd yio tic yvooelg, g Wéeg, Tic oulnthoelc, Ty mopéd.
‘Ohot xou GAeC YE TOV TPOTO TOUS UTHRERY TINYT) EUTVELGOTG Xoit ONLOVEYIXOTNTS. O Yo

o0 va EavoPpetolye pelhovtind .

Euyopiotod toug avidpednoug e Toug onoloug xdvaue mogéa oTa ou@lideatpa o QuoLxd
N T Nhextpovixd, 6tav 1 mavdnuio pog anéxieloe v emoapr). Toug euyaploTd Yo OAeg
Ti¢ oUINTACELS YUC oXAONUAUXES 1) UT), TIC EPYUCIEC TOU GUVERYUOTAXOPE, To dY)YT XL To
aoteio Tou polpaoctixope. Eldixdtepa suyapiotd (oe tuyaia petddeon): Oliva, Afuntea A.,
Ytégave, Aauiavé, Nuxdha, Anurten M, Anfunten I1., AAéEavdee M., Evdiur , Kwvotavtive,
Mogpia, MAtoo. Enione guyopiotd xou 6houc touc dhhouc/dhhec mou eiya tnv toyn vo
YVoplow xou vor ahAnmdedow, aAld dev cog E€pw TOOO MOTE Vo PNV VIpan® vo yedde To

OVOUAL GO, Xoig XEOTE GTNY Wviun pou ot Yo Yoped Vo 6ag GUVAVTHCW Eavd.

Evyaplotd Tic “eEwoyolnéc" you gihec Eheva, Xpiotiva, Afuntea Kop., Indvve xa tig

pihec pou and tov Kopnoler : Notario, Iendvve xo Aduntea Koapx xow Eavd tic Ohivar xou



Afuntea A.
Euyopioted toug xodnyntéc you and tny XHMMTY xau tp XEM®E xou edixd exelvoug

TOU PE XOTO TMEOCTAUNCAY VoL Hog Tapéy oLy Wial TAfer SLdaxTixy) eunelpiol xon UE UTOUOVY
anavtobooyv anopiec. Amoteholv éunvevon yio péva.  ‘Eva euyaplotd otov podnuotind
Idpyo Pporyxouh6mouro, oL €xave Tol LAdNUATIXG TO TLO AGPUAES YoV Y po oTov Alxelo

%ot oL mloteve o€ epéva 6Tay £Y6 dev mloteva xodhou.

Euyopiotd tov ‘Adxn mov elvar “o AAkng" Baoikd.. xow Tou and TOTE TOU TOV YVHOELOA,

eumhoutilet tn xdde pou Yépa ue TOGOUC BLaPoPETIXOVE Xoll OUOPPOUS TEOTIOUG.

Euyopiotod Toug Yovelg you xou Tov adeppd Xden Hou yio TNV aydmy mou pou Edet&oy xou
Hou Belyvouv autd tor TeheuTalor ypdvia xou Tou Ye oThptEov xat Rroy unopovetxol pall pou,
otav mpaypatixd yeetdotnxe. Télog euyaplotd Ty Mapita, mov pov pidaye yia gws, dtav

TO UGYOo Tov €BA€na rjtav oKoTdol.

-Bdéa.
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Extetapévn EXAnvixn [epiindn

Y10 xe@AAA0 AUTO TAUPOUGLALOUUE GUVOTTIXG To ATOTEAECUOTA TNG TAPOVCAS OLTTAW-
wotig epyaotag. Apyxd mapouctdletan To Yepehindeg undfodpo Yo To TEOBANUA
NE ehayloTonolnoNg TOL YPovou ohoxAfpwone. Emreita, avatpéyouue oto nEdBAnua
NG EAAYLOTOTOMONS TOL YPGVOL OhOXAAEWONG UE dueoes anogdoets (“promptness")
omwe autd oplotnre oto [23]. Agol mapouctdlovde tar x0ptot AMOTENEGUOTO TOUG,
TPOTEIVOUUE TNV HOVIEAOTIONOT, TOU TROBAAUATOC e €val TEOBANUA uddnong xou
TEEYOLUE €vay amodoTixd ahyopwluo v v eniluorn autod. Ilo cuyxexpiéva,
TpoTelvouUE évay alyoprduo mou cUVBUALEL TEYVIXEC TEOGEYYLOTIXWOY aAYopiluwY
ue texvixéc udinone. o v agloddynom tou alyoplduou Yog yenoHLoToluE TNy

ueTEwr) Tou c-Regret xan amodeixviouye 6Tl cuumepLpEpeTon PEATIOTAL

ITcooeyyioTtixol AAyopLiuol

€0Tw €vo TpOPBANua Tou dev avixel otny xhdon P (A touldyotov motedoupe ot

dev avrxet). Iopdro mou dev pmopolue moté va emtiyoupe Wi BéRTiotn Ao oe
TOAVWYUULXO YEOVO, EYEL OO VOTUO VO TeooTadoUUE Vo UTOAOYIGOUUE EQUXTES AD-

oelg. O mpooeyylotixol ahyoprduol elvor gLot TEOGEYYIGT] VLo TOV UTOAOYIOUO TETOLWY
NOOEWY, EVG TORIAANAA TaPEYOLY AMOBESELYUEVES EYYUNOELS Yiar TNV emtevyVeion
BehtioTomolinoy. Luyxexpiuéva:

"Evag ahyoprduoc A ya éva mpofBinua ehayiotonoinong IT Aéyeton 6Tt elvan a-mpoceyyloTindg
av, yla omoodinote eloodo z tou mpofifuatoc, N tuh f(A(x)) e Aong mou
emoteégel o A Bploxeton evidg evde mopdyovta a gopés tng Bértiot hoone OPT (x)

vyl quT6 To instance x. Me dAha Aoy

o = max LAE)
zel OPT(%’)

7 7 7 4 .
o6mou I elvor to chvolo dAwv Twv instances.

T e TAen eloarywy) otoug TpooceyyloTxols akybderduoue, deite [22, 19).
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Xebvog OhoxAnewong

To medlo Twv aAyoprduxdy TEOBANUATHOY YeovodpoUoAdYNoNG TepAeiel Wa TG0
UEYSAN Yxduo TEoBANudTeY Tou Vo fToy adLVITO Vol To TERLYPAPOUUE ETaPX®S OE
war tétota epyaocio. o plor TAneéotepn TopouclacT) TUPATEUTIOVUE TOV OV VWG TN
oto Bihia [13, 17] eved yio ot mo ovvtoun elooywyr oto [20].

Yty ouyxexplévn epyacio Yo emyxevipwiolye oto npdfinua tne “Eloyictonoinong

Tou Yeévou ohoxAfpwonc".

[o i Biepyaoto ¢ ye ypovo enelepyacioc p; opllovue we yedvo olox-
Mpwone C; Ty yeovixh) ottyur t > p; Ty onola To cUoTNUA OhOXATe-

woe TNy enegepyaoio TN,
H amholotepn poppt| Tou npolAruatoc opiletar we eEhc:

‘Eotw obotnua enelepyaciog dlepyaotay ye pio unyavn. Aodévtog evog
oLVOLOU 1 EpyaoL®Y, UE ypdvouc eneepyaoioc p;, © € [n], Teénel va

Beovue pa petdideon I tou ouvorou {1, ..., n} ttolo HOTE VoL ENOYLOTOTOLH-

S

1€[n]

COUUE TNV TOCGOTNTA :

Eltcaywyn otny oyetixy] BiBAloypopia

Yy epyaoio auth Yo emyxevipwiolue oty elayioTonoinon Tou yedvou ohoxire-

WONE UTO TOUG THRUXATE TEPLOPLOUOUS:

o Mrn-Suaxontéuevn (non-preemptive) ypovdpouordynon: O meploplouds autog
onuolver 6TL amd TNV oTyUr| Tou pia depyaocio Yo emieyel and to clotrua Yo

ohoxhnpdoel TNy eneepyacio TS ywpelc dlaxonég

o Ioodivapec unyavéc (identical machines): Oewpolye dtL oL unyoavée Tou Sla-
VéteL To oloTNa £Y0LY LI0odVVOUT LAY TIXA LoD (UE dAAa MGyl 0 Ypdvoc

eneepyaoiog g depyaotag dev e€aptdton amd Ty pnyav mou Yo avortedel)

11



Online Xpovodpouohdynon pue ALaxonES

Y10 online miaiolo émou €youue release dates xou plor unyavy, tote LTdpEyEL Evog

BéhTioToc olybpLipoc mohuwvuuxol yedvou (Yo anddelln deite [3]):

Shortest Processing Time First (SRPT): Xe onolodrinote onueio ypdvou
xatd To onofo undpyel dPiEn BouAelds 1) 0 ETEEEPYAOTAEC TOU GUGTAUATOS Elva
xevoe, Blatddte Tig Slotéotuec Bovkelés oe piivouvoa Gelpd Tou AGYOoU % (6mou
pi €lvon o undlonog ypodvog eneepyasioc e doUAELdS ¢) xat TpoYpoppaTioTe

TN SOVAEL PE TOV UEYOAUTERO AOYO.

IToahanAéc Mnyavég (TnohoyioTixry Avoxohia):

o v mietodmeplor TV TEOBANUATOY YeoVOBROPOAOYNOTG, 1) EXBOYY| UE OlaxOTES
elvoar o edxohn and v avtiotolyn ywelc dwxonés. Qotd6c0, TO TEOBANUL NG
EAAYLOTOTONONE TOU GUVOAXOU YEOVOU OAOXANEWONG HE M > 2 UNYOVES TIOU OEV
oyetilovta petadl Toug dTay EMTEETOVTOL SlaxXoTES, €xEL anoderyVel 6Tt efvan strongly™
NP-Hard [10].

Online Xpovodpopohdynon ywelc Ataxonég

Y10 online un-Suaxontéuevo mhaicto (non-preemptive), o Hoogeveen xou Vestjens

[6] €detlav ot

Kavévag vietepuiviotinde ahyodprduog dev unopel va €yel competitive ratio

UXEOTEPO amO 2 OTO TEOBANU TNG WLOG UNYOVHG.

12



2-ntpooeyYloTiXdg aAyoprduuog Yyl To online mEoOBAnua Tng o
Y EA
To 1995 ot Phillips, Stein xou Wein [5] napousiacoy tov mpwto alyderduo otadepric

Tpocéyylong yia To online mialoto:

Kdde @opd mou @tdaver mo véa Swadixacio B 1 unyavhy elvon odpovic:
Anuoupyfote o schedule pe dioxonéc Pyl v tpéyouca elcodo I, un-
oloyloTe TOUg YPOVOUS OAOXA PWGTS CJP, xan Tpoypoppatiote TN Sladixacio ¢

ue to pixpdTepo CF (mou Bev éxer 71 eEunnpetndel) mpdTn.

Avutdc o ahyoprduog, av xou 6ev yenotuonolel Sloxonég, enl Tng ouciog LAoToLEl TOV
oaly6prdpo SRPT (Shortest Remaining Processing Time) oto online mhaioto. Eto
ot BPBhoypeagio cuyvd avagépeta “to SRPT w¢ évag 2-npoceyylotindg olyodpriuog

yio To online mpdBinua'.

Competitive Analysis

H Avtoywviotixfy Avéhvon (Competitive Analysis) exqpdlel piar petpixf mou ey-
ninTeL oTo mhaiolo g avdhuone yelpdTeEPNC Tepintwone (worst-case analysis). Yuy-
xexpwéva, oto competitive analysis évoc online ahydprduoc ALG ouyxplveton pe tov
Bértioto offline ahydprduo OPT (nou yvweiler ohdxinen v axoroudio cwtnudtey
0 €X TWV TEOTERWY Xou UTOEEl Var TNy eEUNNEETAGEL Ye eENdYL1oTO X00T0G). AeBouévng
wag axorovdiag ewwddou o, opilovpe A(o) xaw OPT(0) ta xbotn mou mpoxintouv
am6 toug ahyoplduouc ALG xou OPT, avtictouya.
‘Eotw tohpa éva mpoBinua ehaytotonoinong. Evog akyderduog ALG ovopdleton a-
competitive av undpyer uor otodepd b tétowr hote ALG(0) < a- OPT(0) 4+ b, yia
oheg g axohovdieg 0. H otodepd b mpémel va etvon ave&dptntn and v elcodo o.
IoodUvapo évac vietepuviotixde online ahyopriuoc ALG elvar a-avtorymwiotindg
otav a eivan 0 Péylotog Aoyog petalh Tou xd6ctoug tou ALG xou tou OPT, onhady:
ALG(0)

a4 =maxX ———~

o OPT(O’)

13



Y BBhoypagpio, n tocdTnTa @ ovoudletar competitive ratio. O {Blog opiopdg oy et
xa Lo TpoBAfuaTo UeYtoTonolnong, 6Tou a elvon amAne:

. OPT(o0)

a = min ————=

o ALG(0)
O optopodg enexteiveton xou oe randomized adydprdpouc, 6mou o oTdYOC Elvon va
oLyl To avopevouevo x65Tog Tou ALG Ue To avopevoUEVo xOGToC NG BEATIOTNG
Noong OPT. Aéue 611 0 ALG elvon a-competitive ov xou pévo av undpyouv a, b tétola
WOTE:

E[ALG(0)] < a-E[OPT(o)] +b, Vo

1) LoOBUVOAL av:

4 max E[ALG(0)]

o OPT(o0)

T e TAnpéotepn napoucioon TapaméUnoude Tov avayvaotn ota dedea 9, 30].

XeoVoBpOoONOYNOY] LE TERLOPLOUOVE UYLECOTNTAS

E&etdlouye wia mapohory?) Tou online mpoBAuatog ¥eovodpouoldynong UE TEpLopLo-
wolc apecdtnroc. Edm, n "agecdtnra" (promptness) avopépetan o8 Uiot CUYXEXPLIEVT
anoitnon 6mwe auth opiletoan oto [23]. Etnv ouvoia, o TEplOplOUOS PESHTNTAC UT-
ayopelEL OTL 0 AAYORIIUOC YPOVOTIROYRAUUUATIOUOV TEETEL Vol AABEL Uia ambpacT) YpOV-
0BpouordYNoNG Yo pLa Stepyooio oxelBng xotd Ty oTiyun dgpiEng tne. Autd Bev
onuaivel 6Tt 0 ahyopripog elvar Loy pEWUEVOS Vo EEUTNEETACEL TNV pyaoia auéowg
uoAg @Tdoel. 20td00, TEEnel va xadopioel Tov axeBy) yedvo xaductépnong mou Ya
utooTel 1) epyacior cUVONXA, axEIBKS TNV CTLYUN TNS APLEng TNe.

To xivnteo Yl Toug teptoptopols adecdTNTaC Yiveton eupavég dtay eeTdlouUe TEoX-
Txég eqopuoyés. PavtaoTteite To oevdplo evog oTaduol QoOpTIONS NAEXTEIXWY oY1
wdtwv. O meAdteg mouU QTAVOLY pE ddeleg umatapleg emupoly Quoxd pLo axElB3n
extiunon v To mOTE TOo OYNUA Toug Vo ebvan TAYPWS POPTICUEVO Xl ETOWO YL
N ouvéyel Tou Tadldlod Toug. O meploplouol aUECOHTNTAC EMITEETOLY TN oyedlaon

€VOG CUCTHUUTOS TROYPAUUUATIONOV TOU TapEyEL auTh TNV oxel3h) mAnpogopla. Me

14



TNV EVNUERMOT TV TEAATMV Yiot TOV axpl3| YeOVo POpTIoNG Xotd TNy dplEy| Toug,
To oUOTNUA TEOJYEL T Blopdvela xou TNV TEOBAEPUOTNTY, EVIGYDOVTOC TH GUVOALXY
IXOVOTIOINOT) TWV TEAATOV.

Ouoiwe, o mpoypaupatiouds pavteBol uyetovouxre tepldaidne mopadelyyoto Ty
okio Twv Teploptopy axpifeloc. Ou aceveic cuyvd €youv TOAUACY O TROYEAUUTA
xou exToly To va Yvopllouv axpiBoe néte Yo yivel to pavteBol toug [24]. Eva
oUCTNUA YPOVOTIPOYEAUUUATIONOU TOU TNEEL TOUS TEPLOPLOUOUS AUECOTNTOC ECUAELPEL
v afBefoudTnTa Ao EAAYLOTOTOLEL TOUG YPOVOUS OVOUOVAG, OBNYWVTUS GE WO TILO
YeTinr| eumelplar yior Toug acVeVvelc.

Y10 [23], nopovoidlouy apyixd évav dueco online ahydprduo mou yenowonotel éva

otatixd potio. Yuvodilovye ev cuvtopio e Aettovpyel:

o Kortaoxeudlouye mpooextixd éva potiBo p omd duvduelc tou 800 (1 xatooxevy

e&nyeiton TopaxdTe).

o O ahyopriuog ypovodpouohdynong: XTov me®To YUEo, Zextviue Ue éva VEo
avtiypago tou potiBou p. Kdde diepyacio Yo ypovodpopohoyniel otny mpwtn
olodéotun Véomn tou p mou ywedel. Edv dev undpyel dloadéoyun Véon yia T

Olepyaoio 7, xataoxeudloupe €va VEO avTlypopo ToU P X.AT.

Kataoxeuy| Tou potiBou To Bacixd potio xataoxeuvdleton g e€hg:

Katooxeudlouye éva (avadpouxd) potio Sy and Yéoeic twv onolwv ta uixn eivar
awovopeves Suvduels tou 2 péypl to d étol wote Vk < d to mpdieya Tou potiBou
— 2k;+1

unxoug ny — 1 va elvan to Sk, émou o Sy, oplletan we e€hc:

So=1
i (1)
Sk = Sk—1/|Sk-1/|2%, k>1

‘Oco cuveyilouv va @tdvouy Siepyaoies, Ueyahwvouue autd To Yotifo en’ dneipov.

Av yvopiCouue T0 PEYIOTO UAXOC Pmax TOTE UTOPOUUE VO YENOWOTOLACOUUE EVOY

amh6 ahyopriyo:

Xpovodpopoddynoe kdle diepyacia i mov épyetar oto ovoTnua, oTnY
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npdtn Swdéoun Oéon mov taipidlea (oe omowdrimote unydvnua). Av

dev vndpyer térowa Oéon, onuiovpynote éva véo avtiypagpo tov uotiBou.

AvopopeTind, amouteiton yio o nepimhoxn €xdoorn mou ovoudleton " Auvounde Ar-
yoprduoc Xpovodpopohdynong" odld 1 Poowxr| Wé€a mopauéver 1 (o, Autd mou oh-
N&lel elvon OTL emeld”| Bev YVWEILOUUE TO Prax ZEXWAUE PE TO UxpOTERO BuvaTd K
xa auEdvoupe To k uovo otayv elvan amopaltnTo: Tay QTAoEL Uio diepyasta ue uixog
UEYOAUTERO amd auTO Tou umopel va egunneetioet To Si. O "Auvouxdg Akyderduog
Xpovodpopohoynong" etvar ouclao TIXd Evol GOVOAD XAVOVWY Yol TNV BUVAULXT| EVIUER-
woT Tou potBou eved dratnpeel TNV avadpouixy| dour| ToU 0piGTNXE TEONYOUUEVLC.

Eite urodéoouye 61t yvopllouue 10 pmax elte o)L (dpo Ypnotpomololue Ty duvauLxr

exdoyN):

O ohydpripoc ypodpouodpopohdynone pe axoloudiec twv Eden et al. [23]
elvar O(10g Pmax)-competitive 610U pmax €lvar to péyloto uhxoc depyooiog

TNy oxoloudia eLlGOBOL.

O mpotewduevog ahyopltdog Ye0oVodoLONOY O TS

Ac¢ vnodéoouue ot ywpellouvye tnv axorovdia elcodou oe T' ylpouc. Eotw Ny To
o0VOAO TV Blepyaoldy Tou éptacay otov YOpo t. Edv oe xdde yipo t € [T] yenot-
uomoloVue Tov alyoprluo twv Eden et al., t6te éyouue évay alydpriuo ue compet-
itive ratio O(log(pmax)). Tpa, tidetar To epdtnuor Yrdpyer éva potifo (pattern)
TOL ETUTUYYAVEL WXEOTERO GUVOAIXO YEOVO OhoxAfpwaorng; Mnopgolue vo alomolr-
coupe TIg axohoutieg elcodou Tou mapaTnENINXaY 6TO TaUEEAIOY Yo Vo GYEBIACOUUE

éva uot{Bo To TEOCUPUOCUEVO GTA GUYXEXQLIEVA DEDOUEVO TTOU GUVAVTA;

2UVAETNOY ATMWAELLDYV

Kéde pattern (pot{Bo) elvon éva Sidvuopa axepaiov a € N¢ yio xdmowo d € N.
Autdg o ywpog avalhtnong elvan tepdotioc. Tlpoxewévou va feolue pla utohoyloTxd

amodoTix AUoT utovétoupue 6Tl Yvwplloupe To BEATIOTO urxog axolovdiog L xau 1o
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Pmax- AV emmiéov unodécouue 6Tt avalnrolue adiouces axoloutieg xou ywelc BAABEN
TN YEVIXOTNTAC OTL OL TYWES TWV CUVTETAYUEVWY Efvol BUVAUELS TOU 2 TOTE UTOPOUUE

var Ypdpoupe Wit amodoTixnt| avamapdoTtact) Tou dyvwotou Slaviopoto (pattern) we

a={ay,...,ay)

6mou | = [Pmax]| Axépa xou étol bpne, to va Beedel évac xhewotdg tinoc F(a) o
omolog Vo TEPLYPAPEL TOV YPOVO OROXAPWONE UL oxohoLDiag ELGHBOU YENOULOTOUDY-
Ta¢ To pattern a xau Tov greedy oAyoprduo yEOVOOROUOAOYNOTG ATODEVUETOL TOAD
amontnTind. H 1déa poc efvon vo oplooupe wa ouvdptnon C1 n omolo mpooeyy(le
TOV YPOVO OhOXApwOoNG ahAd €yl wat amhoVoTepn wopdt|. [ va to methyouue autod
UTOPOUUE VoL GXEPTOVUE OTL YiaL Lot OLlEpYasia & TOU YpovodpoUoloyHUNXE GTNY t-00TH

oaxohoudia 0 Ypovog 0AOXAHE®ONG TG BlaoTdton o 3 6POUC:
1. yedvoc ohoxhnpwong Twv t-1 axolouduwy mou tpornyolvio
2. oyetxdg ypodvog avauovic 7(i) evioc tne t-oothc axohouvdiag
3. ypodvoc enelepyaoiog p;

EZ’autdv eivar d0oxoho va mpoodlopicovye tov ypbvo 1 (i) xadne autde eloptdrar
ond Ohec Tig depyaoiec xar (TNV OELEd QUTOV) TOU TROYEOUUATIOTNXAY TpLY TNV 4
oty axoloudio uaprdpdy t. Hopdho avtd emedy| napatnpoldue 6t 0 < r(i) < L

UTOPOUUE VoL YEWPHOOUUE TNV GUVAETNOM:

Cy) =D walt = DI +> > yaps
iEN teT iEN teT
H ouvdptnon outy amoTtelel Tpo@avis Uiol UTOEXTIUNOT TOU TEoyUaTxo) Yeovou
ohoxhpwong. 261600 1 anh| poppr| tTng Vo yag emTeédel var TNV YEAETACOLYE O
Badog xan Yo anoteréoel To Baoind epyahelo Yog Yol THY avEAUGT) xo LAOTOINGT) TOU
alyoplduou yog. Xto TEYVIXG Uépog Tng epyaciog umopel xavelg vo Bpet par avahuTixy

UEAETT) TOV ILOTATOY TNE CLUVEETNONE UTOEXTIUNOTS.
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Algorithm 1 Alyéprduoc Online Prompt Scheduling

Eicodog: Ilepiodoc L, uéyiotoc ypdvoc enelepyaoiog Pmax,
xavovixorointhc U : R' > R

"E€od0¢: 'Eva npdypouya diepyootdyv (Y7, ..., y°7)

Oplote |+ 10g pmax (Y10 T SLapudpwon teploptoucy Ch)
for t € [T] do

YTroloylote (§, ;) = argmin (Z:_:ll Cr(y7) + @)
Yy,o

Ytpoyyvhonotiote 6y o€ a; = [y ]
Hpoypauuatiote Tig diepyaoieg (greedily) oto N* YEYOWOTIOLOVTAS TO

Gy
6: end for

[o var avahOooLUE auUTOV TOV OAYORLIUO AMOTEAEOUATIXG, TOUEATNEOVUE OTL TEQLA-
opfdver telo Sloxpltd ototyeio: évav ahyoprduo pdinone, évav akyoprduo ctpoyyu-
homolnomng ot €vay aAyopLluo YpovodEOUOAGYNOTC.

O alyopriuog pdinone mou yenowonoloLue oto Priwa 3 etvar eni Tng ovoioc o alyopl-
OYuoc Follow The Regularized Leader. (nopaméunouye tov avayvodotn 6Tn oyetix)

evoTNTaL TN epyaoiag).

Ytpoyyvlonoinuévn Adon

Y rodeor YTrodétoupe 6T yvwpeilouue Ty BérTiotn nepiodo L (dnhad tnv nepiodo
mou Va yenotponoovoe o Béhtotoc (offline) odydprduoc yenowonowdvtac yor oTo-

Vepth axohoudio yia va Tpoypoppatiosr 6Ohn v elcodo N).

Afppo

Eotw 61 CH(y?) ebvor pla extipnon (olpewve ue to C1()) tou cuvolxol
YeOVOU ONOXAAPWOTG XENOUWOTOLVTAC To pattern o € R4 oe o axolovdia
elo6dou N. 'Eotw oxéun 6t a = [o] elvor 1o otpoyyvhonoinuévo pattern.
Téte:

Cl(y*) <3C'(y°), Wy € {0,1}M, a=]o]
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Oewpenua 1

Edv (o,y?) elvon onowadnmote et (xhaopotixr)) ADon TOU TEOYPUUUATOS

C1, 167 Y1 To schedule y® mou Tpoxintel and 1o potiBo a = [o] wylel:
F(y*) < 3C(y*) + 2LN < 3F(y*) + 2LN

onou to y* elvon pa BEATIOTN Abo).

Meérpnon Andédoong

Oéroue Vo suyxplvoupe To Fy(y) ue 1o meorypotd BéToTo xbotoc Fy(yf ) tre
xaAUTEENE oTalept|c axohoudiag p*. Xenowonouwvtag To Oepnua 1, tpoxinTtel 6Tl
T0 Tpoypatid xéotoc Fy(yft) etvon to mohd 3CE(yft) + 2LN. T tnv afohdynon
Tou alyopiduou poag Ou yenoiwonolcouye ua tapaiiayy) Tou Regret, cuyxexpiuéva
to c-Regret 6nwc opileton oe oyetnéc epyaoiec ([29]). TNa ¢ = 1 o oplopdc avtoc
OUUTTINTEL UE TOV ¥Aaoox6 oplogd tou Regret. Muyxexpwéva oto mpdBAnua yoc,

optlouye o c-regret wc:
T T
R(T) =Y Fi(yi") —c>_ Fy)
t=1 t=1

omou To p* elvan o BéhTioTog oTadepdg avtinahog, Snhadn p* = arg min Zthl Ft(yf*).

Opilouye enlong:
T T

R(T)=>_ Clyi) = Clw)

t=1 t=1
’ * ’ ’ ’ ’ / 7
OTtOL (U*, yO' ) glvat n )\UOT] TOL XUPTOU T[POYPO(P.V.O(TOC {J.E CXVTLXELP.SVD{Y] GUVCXPTY]GY]

I;lian ST CHy7) on touc Brouc Teploplopole dTwe TELy.
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Edv R(T') etvon n petpwer) Tou c-Regret mou opileton mapandve, téte yio ¢ = 4

Loy LeL:

Yuvdptnong AnwAieiag: Lipschitzness

Mmropolue va ypdpouye:

Clw) = S5 06— DL+ piluir = (A

6mou (-, ) p elvar T0 ecwtepd Yvouevo Frobenius petall towv unteodv A €

iEN 7=1

oLy € RNtXT, Toug onoloug opilouue we:

r1 L+mpm
p2  L+p2
A= )
PNt L+ pye

L(ng —1)+p1
L(ng —1) +po

L(ng — 1) + pyt |

pdeis

Y1,1
Y2,1

| YUNt1

Y1,2

Y2,2

YNt 2

RNtXT

yl,nt—l

Y2n—1

yNt,nt—l_

I v elpoote oxpiBelc, éotew TY(t) xouw T*(t) elvar o apriude TV avtiypdpony Tou

yperdlovTon 1o va Tpoypappaticoupe Ty eloodo Nt yenotwonoidviag Tic oxohoudiec

x xou y avtiototya. Tdpa, ac oploovue ny = max{TY(t), T*(t)} o ac unodécoupe

ywelc meploplopd yevixdtnroc 6t T%(t) < TY(t). Mropolue vo ypdbouye Cf(z) =

AT 'ﬁ/ )\/ /)\ ’ ’
* Y TPOCVETOVTOC 01 Yy ETTAEOV GTANES YLoL VoL TNV ENExTE(VOUPE oTOV 0pilovTa

Ng YE UNOEVIXES EYYPAUPES.
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H ouvéptnon CE(y°) = (A, y)r eivar ||AT||F Lipschitz o¢ npoc omodrnote
vopua, 6mou || - || F elvan n Frobenius vépua, dnhad: ||AT||F émou 1o Nt eivan
1 eloodog axohoudiog otov YOpo ¢ xou t0 ny = ny(o) eivar o apriude TV
VTLYPAP®WY TOU TEOTUTOU O TOU OIAUTOUVTAL YLoL VO TPOYPUUUATICOUE THV

eloodo.

To xevtpxd anotéleoua NG €pYAUCIUG DIUTUTWMVETOL TUEAUXATE:

O mnpotewvoduevog ahyopuluog metuyaivel umoypouuxd c-Regret yia c=4 ¢

npoc to T
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Chapter 1

Introduction

1.1 Contributions

This work tackles the challenge of online learning under promptness constraints.
We introduce a novel model that captures the trade-off between learning accuracy
and timely task completion. Our objective is to design an algorithm that exhibits
optimal regret guarantees, a measure of performance loss compared to the best
possible strategy in hindsight.

Our approach rests on two key pillars:

e Approximating Offline Completion Time: We establish a method to ap-
proximate the total completion time achievable in an offline setting where
all information is available upfront, while adhering to the promptness con-
straints. This approximation is achieved by formulating an Integer Program
(IP). We then delve into solving the Linear Programming (LP) relaxation of
this IP, a continuous relaxation that provides a lower bound on the optimal
solution. Finally, we propose a rounding scheme to convert the fractional LP
solution into an integral solution suitable for the IP. This rounded solution
is provably at most a factor of a times worse than the optimal IP solution

(where a is a constant).
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e Learning Algorithm with Regret Guarantees: By leveraging the concept of
"follow the regularized leader," we construct a no-regret learning algorithm.
Here, regret is measured using a slightly stricter notion than the standard
c-regret. This algorithm operates under a regime of underestimation losses.
The final step involves bounding the true performance of our learning algo-
rithm by the regret incurred on the approximated losses (derived from the
relaxation of the IP). This connection allows us to translate the regret guar-
antee on the approximated losses into a guarantee on the actual completion

time achieved by the learning algorithm.

In essence, this work similar to [27] proposes a novel approach to online learning
for scheduling with promptness constraints. By approximating the optimal offline
completion time and employing a carefully crafted learning algorithm, we ensure
that the learning process progresses efficiently while respecting the time constraints

imposed on task execution.

1.2 Organization
The structure of this work is as follows:

e Chapter 2: This chapter provides a concise introduction to scheduling lit-
erature relevant to minimizing total completion time. It also highlights key

findings from existing research in this domain.

e Chapter 3: In this chapter, we shift our focus towards learning with prompt-
ness constraints. We delve into the work of Feldman et al. (provide a brief

overview of their work or its significance).

e Chapter 4: This chapter marks the beginning of the original research pre-
sented in this work. We introduce the central research question we aim
to address. Subsequently, we present the proposed algorithm, its technical

underpinnings, and the corresponding performance guarantees.
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Chapter 2

Introduction to online scheduling
and the minimization of total

completion time

In this section, we discuss scheduling, the combinatorial problem of interest.

2.1 General

In the field of operations research and computer science, scheduling problems in-
volve assigning a sequence of jobs to resources, such as machines or workers, in an
optimal way. Each job is characterized by a specific processing time, which repre-
sents the duration required to complete the job. The goal of scheduling is often to
optimize a particular objective, such as minimizing the total completion time, re-
ducing job tardiness, or maximizing resource utilization. Scheduling problems can
vary greatly in complexity, depending on factors like the number of available re-
sources, whether jobs can be preempted or must be executed without interruption,
and whether resources are identical or have different capabilities. These problems
are fundamental in many real-world applications, including manufacturing, project

management, and computer systems, where efficient scheduling can lead to signif-
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icant cost savings and productivity improvements.

Due to the vast diversity of scheduling problems, it is impractical to cover all vari-
ants comprehensively in this thesis.In this literature review chapter, we focus on
online scheduling with the objective of minimizing total completion time. The fol-
lowing sections delve into various aspects of this topic, including the theoretical
foundations, different algorithms proposed in the literature, and their comparative
performance.

Online scheduling problems have been studied since as early as 1960 [2]. Since
then, a rich body of literature has developed, exploring various objectives (e.g.
minimization of makespan, total completion time or flow time), machine models,
and input assumptions. However, research in this area became more in-depth
with the introduction of the competitive analysis framework. For a comprehensive

review of the results, see [18].

2.1.1 Approximation Algorithms

Consider any problem that does not lie in P (or at least we believe that it does
not). Although we can never attain an optimal solution in polynomial time, it still
makes sense to try to compute feasible solutions. Approximation algorithms are
an approach to compute such solutions while also providing provable guarantees

about the achieved optimality. In particular:

An algorithm A for a minimization problem P is said to be a-approximate
if, for any instance x of the problem, the value f(A(z)) of the solu-
tion returned by A is guaranteed to be within a factor of a times the

optimal solution OPT (x) achievable for that instance. In other words:

a = arg max 7f(¢4(a:))
— e OPT(x)

where [ is the set of all instances.

For a complete introduction to approximation algorithms, see [22, 19].
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2.1.2 Online Algorithms

The term “online algorithm" refers to algorithms that receive input sequentially
and must make irrevocable decisions based solely on the available data at each
step. In contrast, an “offline algorithm" is given the entire input stream from the
outset. Clearly, an online algorithm is always at a disadvantage compared to its
corresponding offline algorithm due to incomplete information. As a result, online
algorithms can only approximate the optimal solution. To assess their performance,
the most commonly used measure is the competitive ratio, which comes from worst-
case analysis.

A natural example of an online problem comes from operating systems. The prob-
lem of paging involves managing a disk with N pages and a faster memory (cache)
with k pages. The goal is to use the fast memory so that each new request can
be found in the fast memory. If a requested page is not in the fast memory, we
incur the cost of fetching it from the disk. This event is known as a "cache miss"
or "page fault." Requests (pages) arrive sequentially over time, and the objective
is to minimize the number of page faults while only being able to change one page

in the fast memory at a time.

2.1.3 Competitive Analysis

Competitive Analysis is a strong worst-case performance measure where an online
algorithm ALG is compared to an optimal offline algorithm OPT that knows the
entire request sequence ¢ in advance and can serve it with minimum cost. Given
a sequence o, let A(o) and OPT(o0) denote the costs incurred by ALG and OPT,
respectively.

Consider a minimization problem. Algorithm ALG is called a-competitive if there
exists a constant b such that ALG(0) < a-OPT(o) + b, for all sequences o. The
constant b must be independent of the input o.

An equivalent definition says that a deterministic online algorithm ALG is a-

competitive when ¢ is the maximum ratio between the cost of ALG and OPT,
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ie.:
ALG(0o)
a = max ————=
o OPT(o)
In the literature, this quantity a is called the competitive ratio. The same definition
holds for maximization problems as well, where a is simply:
. OPT(o0)
a =min ————=
o ALG(O’)
The definition also extends to randomized algorithms, where the goal is to compare
the expected cost of ALG with the expected cost of OPT. We say that ALG is
a-competitive if and only if Ja, b such that E[ALG(0)] < a - E[OPT(0)] +b, Vo
or equivalently if:
E[ALG(0)]
a = max

o OPT(0)

For a throughout review of online algorithms see [9, 30].

2.1.4 The objective of “Total Completion Time" (TCP)
For n processes the (unweighted) total completion time (TCP) is defined as:

TCP = En: Ci
i=1

where C; is the total completion time of process i; the absolute time step at which

process i finishes execution within the schedule.
The most general version of the scheduling problem we consider optimizes the
“Weighted Total Completion Time" (WTCP). Here, each job i has an associated

processing time p; and a weight w;. The weight reflects the relative importance of

job i. The objective function aims to minimize the following:

WTCP = Zn: w; C;
i=1
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2.1.5 The “Map" of Total Completion Time problems

Scheduling problems that appear in literature come in many different forms [17].
Here we give a basic decompositionof scheduling problems with the objective to
minimize total completion time, based on the following key features:

Online/Offline input sequence: In the offline scenario, the entire sequence of tasks

(or processes) is known upfront before the scheduling algorithm begins. This allows
the algorithm to consider all tasks simultaneously and potentially find an optimal
solution. In contrast, in the online scenario, the tasks or processes are revealed
sequentially. The algorithm must make decisions about scheduling, with limited
knowledge about future tasks.

Processes with /without release dates: Processes may all arrive at the system at the

same timestep or have varying arrival times. The latter devises a different problem
where the scheduling algorithm should respect the fact that it cannot schedule a
process before its release date. If we are in the online case, then essentially there
are release dates but if we are in the offline case we may or may not have release
dates.

Preemptive /Non-Preemptive Scheduling: Preemptive scheduling concerns schedul-

ing algorithms where interruptions are allowed. A process can be stopped and be
resumed later, while non-preemptive assumes uninterrupted processing.

Single/Multiple Machines: In the setting of multiple machines the literature refers

to :

e ‘“parallel machines": each job can be processed on any of the available ma-
chines, but it must be processed by only one machine at a time. Similarly,

each machine processes only one job at a time.
e “identical machines": the machines have identical processing powers

e ‘“unrelated machines": If we have m machines and n processes, there is no
relation between the processing times p;; i.e they are predefined, independent

of the scheduling assignment.
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Throughout this text, when we mention multiple machines, we are considering par-

allel identical machines unless specified otherwise.

In scheduling literature, it extremely common to refer to the respective problems
using the notation introduced by Graham, Lawler, Lenstra, and Rinnooy Kan [4].
The problems that we consider are special variants of the single machine schedul-

ing problem (1, P, R)|r;|, prec,(, pmtn)| > w;C; . The entry “1” in the first field
J
indicates that the scheduling environment provides only one machine,“P" indicates

parallel machines and R indicates “unrelated" machines. The second field can be
empty or contain some of the job characteristics 7; , prec, or pmtn, indicating
whether there are nontrivial release dates or precedence constraints and whether

preemption is allowed. For example, 1|r;| > w;C; refers to the single-machine,

J
with release dates to minimize weighted total completion time scheduling where

preemption is not-allowed and there are no precedence constraints.

weighted total completion

time
single multiple
machine machines
release P| ), w:C; release
1 2 w;Cj dates E 7 dates

1)5C; 1|rf|2w\fci Plrj| Y wiC
1|pmtn|2chj P|pmtn|2w]-Cj

1|r/|pmtn|2chj P|rj|pmtn|2 ZU,‘C]'

Figure 2.1: A primal classification of total completion time problems
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2.2 Warmup: Scheduling in the offline setting:

In the offline single-machine setting where preemption is not allowed and weights
are uniform for all processes (w.l.o.g assume unit weights), the optimal algorithm

for minimizing the unweighted total completion time is:

Shortest Process Time First (SPT): serve the shortest process first.

Intuitively, using the formula for total completion time, we can see that the i-th
process in our schedule contributes (n — i 4+ 1)p; to the total completion time:
Let s; be the time step at which process ¢ will start being executed by the system

and assume I = 1,2,..,n is the order we serve (schedule) the processes:

n n
ZC'i = Z(pi +si) =p1+(P1+p2)+ ...+ (1 +..+pp)
i=1 i=1

n

=np1+(n—Dpa+..+pn=>» (n—i+1)p
i=1
Therefore, the optimal solution should minimize the contribution of larger process-

ing times by scheduling them as late as possible.

In the offline single-machine setting with weights, the optimal algorithm for mini-

mizing the weighted total completion time is

Shortest Process Time First (WSPT): serve the process with the min-

imum £& first.
w;

This rule is due to Smith in 1965 [1]. Smith’s ratio rule produces an optimal
schedule for the non-preemptive problem, but as it has been proven, preemption
introduces no other benefit; therefore, it is also optimal in the non-preemptive case.

However, introducing release dates makes the problem NP-Hard :
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Minizing total completion time in the single-machine case with release dates

(1|r;| > Cj), is NP-Hard.
J

The proof uses a reduction from 3-PARTITION. In addition, there exists a PTAS

for this problem.

Multiple Machines (Hardness results):

In the offline setting with arbitrary weights and a fixed number m > 2 of identical
machines, it was shown in 1974 that the problem is NP-Hard using a reduction
from knapsack [6]. In the special case, where w; = 1, Vi € [n] and we have m
machines (specified in the input) the problem, (Pm|}_ C}) , is solvable in polyno-
mial time by using SPT to choose a process and assigning it to the first available

machine [14]. The latter is known as “list scheduling".

Summary for offline TCP problems
problem complexity algorithm
11>°C; P SPT

i=1
P> C; P SPT
i=1
i=1
Lipmtn| Y- w;C; || P WSPT
i=1
P’ Z ij'j NP-Hard
i=1
1’7”j| Z Cj NP-hard
i=1
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2.3 Online Scheduling to minimize total com-

pletion time

2.3.1 Online Scheduling with preemption

In the online regime where we have release dates and a single machine then there

is an optimal polynomial-time algorithm (for proof see [3]):

Shortest Processing Time First (SRPT): At any point of time at which
there is a job release or the system processor is empty, order the available
jobs in decreasing order of % (where p; is the remaining processing time of

job i) and schedule the job with the largest ratio.

Multiple Machines (Hardness results):

For the majority of scheduling problems, the preemptive version is not harder to
solve than its non-preemptive counterpart. However, the problem of minimizing
total completion time with m > 2 unrelated identical machines when preemption
is allowed is proved to be strongly* NP-hard [10].

*Strongly NP-hard: An optimization problem is called strongly NP-hard if it is
NP-hard even for instances in which all numbers are polynomially bounded in the

input size.

2.3.2 Online Scheduling without preemption

In the online non-preemptive setting, Hoogeveen and Vestjens [6] showed that:

No deterministic algorithm can have a competitive ratio smaller than 2 in

the single-machine problem.
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2-approximation algorithm for the online single-machine setting:
In 1995 Phillips, Stein, and Wein [5| provided the first constant approximation

algorithm for the online setting:

Every time a new process arrives or the machine is idle: Form the preemptive
schedule P on the current input I*, compute the completion times CJP , and

schedule the process i with the smallest C{” that has not been served) first.

This algorithm, although not employing preemption, effectively implements SRPT
(Shortest Remaining Processing Time) in the online setting. Due to this charac-
teristic, the literature often refers to SRPT as a 2-approximation algorithm in the

online setting.

Proof)
Assume CJN is the total completion time of job j in the non-preemptive schedule.
Now
CN="> pm+p

k:cP<cr

where w; = ) pj is the waiting time of process j.
kcP<cP
Naturally:
P
Dpj < Cj

In addition, if S is the set of processes that finished before j in the optimal pre-
emptive schedule P, S = {k: C¥ < CJP } then those are going to be served before
j also in N (by construction of the algorithm) , therefore :

cf = p

kesS

Combining all the results above we get:

N P
oN <20f O
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Lower bound on any online algorithm
When we do not restrict to deterministic algorithms it was shown, [8|, that:
Any online algorithm has competitive ratio a where

e
e—1

~ 1.58

a =

In [7] a randomized algorithm with the expected competitive ratio e/(e — 1) was
given. Their approach is based on what we call a-point scheduling (e.g [11]). Given
a preemptive schedule P and a parameter a € [0, 1], we define C]P(a) to be the time
at which an a-fraction of job j is completed. An a-schedule is a non-preemptive
schedule obtained by list scheduling jobs in order of increasing Cf (a), possibly

introducing idle time to account for release dates.

Multiple machines
For the online total completion time minimization problem without preemption,

Arjen P. A. Vestjens provided the following result in his phd thesis [§]

Any deterministic online algorithm for minimizing total completion time on
identical machines has a performance bound of at least 1.309. This lower

bound can be improved for specific values of m.

Table 2.1: Lower bounds scaling with m for minimizing ) C}
m |1 2 3 4 5 100 00
LB |2 | 1520 1414 | 1.373 | 1.364 | 1.312 | 1.309

In [5] they showed that for identical machines SRPT is a 3-approximation while in

[7] they provided a 2.85-competitive algorithm that runs in O(nlogn).
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Table 2.2: The one star * denotes randomized while the double stars **

denote deterministic algorithms. See [8] for more insights.

Approximation and hardness results for online TCP problems

problem complexity best-known lower bounds
1ry| - Cj NP-hard lte 15280
i=1 9 9
Plr;] 1:21 C; NP-Hard A
L|r;|pmtn| Y>> C; || P SRPT
i=1

3 1+¢€*

Plr;|pmtn| 1:21 C; || NP-hard oo o

2.3.3 Weighted Total Completion Time

The more general version of the problem should be treated as a problem indepen-

dently since results can vary.

Table 2.3: The one star * denotes deterministic while the double stars **

denote randomized algorithms. See [16] for the whole summary.

Approximation and hardness results for single machine

problem complexity best-known lower bounds
Lr;| 32 Cj NP-hard 1 ;;*6 1.52?50

i=1

) 1+¢ 1.5280*

Lr;] > w;C; P . o

i=1

) 14€ 1.038"

1|pmtn]| ; w;C; || NP-hard - LB

In [12] they provide a 4/3 algorithm for the minimization of the weighted total

n
completion time where preemption is allowed ,1|pmtn| > w;C}, using a-points.
i=1

As for the multiple machines, P|Y  w;C; is NP-complete. However, the weighted
version of Smith’s ratio (WSPT) is a (1 + v/2)/2 approximation.
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Chapter 3

Online prompt scheduling

without preemption

3.1 Problem description and the notion of prompt-
ness

We consider a variation of online scheduling with promptness constraints. Here,
"promptuness" refers to a specific requirement as defined in [23]. In essence, the
promptness constraint dictates that the scheduling algorithm must make a schedul-
ing decision for a job exactly at its release time. This means the algorithm is not
obligated to serve the job immediately upon arrival. However, it must determine
the exact amount of delay the job will experience at the time of its release.

The motivation for promptness constraints becomes readily apparent when we ex-
plore practical applications. Imagine the scenario of an electric vehicle charging
station. Customers arriving with depleted batteries naturally desire an accurate
estimate of when their vehicle will be fully charged and ready for their onward
journey. Promptness constraints enable the design of a scheduling system that de-
livers this very information. By informing customers of the precise charging time

upon arrival, the system fosters transparency and predictability, enhancing overall
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customer satisfaction.

Similarly, healthcare appointment scheduling exemplifies the value of promptness
constraints. Patients often navigate busy schedules and appreciate knowing exactly
when their appointment will take place [24]. A scheduling system that adheres to
promptness constraints eliminates uncertainty and minimizes waiting times, leading
to a more positive patient experience.

In essence, promptness constraints represent more than just a technical hurdle in
online scheduling algorithms. They reflect a fundamental understanding of user
needs and the desire for predictability in dynamic environments. By incorporating
promptness constraints, scheduling algorithms can evolve beyond raw efficiency

metrics and contribute to a more user-centric experience in real-world applications.

3.1.1 Static Algorithms

In [23], they first present a prompt online algorithm that uses a static pattern. We

briefly summarize how it works:

e Carefully construct a pattern p from powers of two 2 (the construction is

explained below).

e The scheduling algorithm: In the first round, start with a fresh copy of the
pattern p. Schedule each process at the first slot of p that it fits. If there is

no available slot for process i, use a fresh copy of p e.t.c
The first static algorithm that they consider is :

Algorithm A that uses pattern P made off a sequence of lengths that are increas-

ing powers of 2 so as there are exactly 2% slots of length 2°:

P={(1,...1,2...2,...,2071 2d-1 9dy

Secondly, they consider a pattern with the same slots but with a different arrange-

ment:
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Algorithm B

Constructing the pattern The basic pattern is made as such:

We build a (recursive) pattern Sy of slots whose lengths are increasing powers of
2 up to d such as Vk < d the prefix of the pattern of length nj, = 2¥t1 — 1 is S},

where S}, is defined as follows:
So=1

(3.1)
Sk = Sk—1|[Sk-1l]2%, k>1

As long as processes keep arriving, we grow this pattern infinitely.

Proposition: In Sy each power takes 2¢ time in total: 29~% copies of slots of
length 2¢, Vi € {0,..,d}.

Proof)

The proof is by induction on the maximum exponent in the pattern, namely d.

e Base: For d = 1 we have S; = Sp||So||2} =< 1,1,2 >. In S; we have
2170 = 2 glots of length 2° = 1 and 2'~! = 1 slot of length 2! = 2, so it
holds.

e Inductive hypothesis: Assume it holds for S;_;

e Inductive step: Since S; = Sg_1/|S4-1||2? and by applying the hypothesis

on each copy of Sy_; we get that for every i < d there are 2 x 2¢-17% = 2d-1

copies of slots of length 2°.

3.1.2 Lower Bounds on the static algorithms

Consider an input sequence with 242 processes with lengths equal to 2 and one

last process with length 2¢. SPT (the optimal algorithm) will schedule first the
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short processes and finally the large one and will pay:

COST(OPT) =24 (2+2) + -+ (24 --- +2) +(2¥% . 2 + 29)
/2
24/2 times

d/2
=> 2i+ (2% 2+ 2% =029
i=1
Meanwhile, the static algorithm A 3.1.1 will schedule (by construction) the length

2 processes after the 2¢ unit lengths and will pay:
COST(ALG) > 2%2 . 24 4 (24 1 29/2 . 9 1 9d) > 9d/2 . 9d

Now Pax = 2% and therefore the competitive ratio for Algorithm A is Q(v/Prax)-

In addition, in [23] they prove a lower bound for the static Algorithm B that
schedules using as a basic recursive pattern :

Assume Algorithm B uses S, as a basic pattern for some fixed n.

Now for some fixed k with k& < n they consider an input sequence that consists of

three parts:
e Large jobs: (n — k)2"~* jobs, each with size 2.

e Medium jobs: 2"~ jobs with processing time 2¢ for all values of i from 0 to
k-1.

e Small jobs: 2" jobs with processing time 1.

All the jobs arrive at time t=0 but one after another (we “see" them sequentially).

We know that the first copy of S,, will end at e(S,(0)) = i 217121 = (n + 1)2m.
Algorithm B will fit all the large and medium jobs in Sn(az)oand then it can will
create a new copy of 5, to fit all the unit jobs.

To see why: There are i 27121 = (n — k)2 slots with length > 2% to fit the

i=k
(n — k)2"7F jobs with length 2*. There are also exactly 2"~ slots of length 27 for
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every 0 < ¢ < k — 1 to fit the medium jobs.
Finally, it will create a second copy of S, Sn(e(Sn(0)) to fit all the unit jobs.
These 2" jobs all have waited for at least e(S,(0)) and therefore:

271
COST(B) > w; > 2" - n2" = n2*"
=1

Now SPT will pay Cy + Cy + C3 where Cp, Cy and Cs are the total completion
times of the small, medium and large jobs respectively. Unit length jobs have total

completion time:
27’L

Cr=>) i=2"2"+1)/2 <22
i=1

Now a medium jobs has been waiting for the unit jobs plus the shorter medium
jobs before it plus the same size jobs before it. So the j —th job of size 2! has total
completion time

i—1 ' A

Cji=2"+> 2" ™2™ 4 (j—1)2 + 2
m=0

= 2" 42" 4 j2¢

So:

k—12n—1 —12n7? '

Co = Cji=Y_ Y 2" +i2"+ ;2
i=0 j=1 i=0 j=1
k—1 an—i k—1 ; ;

. . . an—r(9gn—1 1

i=0 j=1 i=0
k—1

<Y (4222 =0 ol k(g4 3.2F - 3) <62, VE>0

s
i
=)

Large jobs, have been waiting for short and medium jobs to finish and for the
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previous jobs of the same size.

(nfk)2"_k (n71€)2”_’C
Cs=2"+ >  k2"+(i-12"+2"=(m-kr2>F4+ > 2t
i=1 =1

(n — k)2 *((n — k)27 % + 1)

= (n—k)k22 % 4 5 ok
_ 222n7k _ 2nfk
— (n _ k)k22n—k + (n k) ;— (n k) < (n _ k,)k,22n—k + (n _ k,)222n—k

=n(n — k)2%k
So by summing all over the 2" unit jobs we get:

COST(OPT) = Oy +Co+C5 < 22246.22" { p(n— k)22 = 22"[10+W}

3.1.3 Dynamic Menu Scheduling algorithm description

We introduce the following notation (as in [23]):

e An interval sequence Si(t) is a sequence of intervals whose lengths follow the
recursive structure Sy specified in 3.1 that starts at timestep ¢.

Ezample:

S2(2) = ([2,3],[3, 4]
1 1

U
k=
QCD
=
~
0
3

~
kS
—
p

—_
S
~

e AJ is a vector of length l; made off disjoint, ordered by increasing order of

starting time interval sequences A{i = Sk, (t:), i.e:
(AT J
Al = (A, A

where Ag is fixed for every ¢ < [; while Agﬂ may be subject to change.
State A7 represents every’s machine’s division (uniform for all of them).

We refer to A‘l’] as the tentative slot of state AJ.
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e For every interval sequence A; we denote with b(A4;) and with e(4;) its start

and end respectively.

e X7 is a vector that keeps track of the intervals that the first j processes

occupied.
e I(j) is the interval that process j chooses to be scheduled

e 7; is the release time of job j (basically its arrival time) and ¢; is the com-

pletion time (that is dependent on the scheduling algorithm)
If we know the maximum length ppax then we can use a simple algorithm:

Schedule every process i that comes to the system in the first slot that
fits (on any machine). If no such one exists, create a new copy of the

pattern.
Otherwise, a more sophisticated version is needed:

When the j — th process comes to the system : State vector AI~! is
presented to process j. Now process j will choose an available interval

1(j) that is either in A{jill or in A{] (further explained below).

We assume that every process will choose the first available slot (that respects the

rules). Assume process j has length 2%,

Obviously, if r; > e(A{ _711), then we fix A{ _711 and introduce a new tentative slot
J— J—

Ag] = Sk(Tj).

Else if rj < e(A]")):

- If the tentative slot A‘ZJ__I1 = S4(t;,_,) is occupied such as we cannot break it to
a Sq(t;;_,),q < d without leaving some processes without slots, then we introduce
A{J = Sk(e(Ay;_,)) (so we extend the current state by the smallest sequence that
can serve j).

- Else, find the smallest prefix Sq(tlj,l) of Al%l such that if we replace Af;ll with
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Introducing a new tentative slot

t t+2 t+4
A, [ 12

4

Figure 3.1: r; = 2, p; = 1, blue is occupied

Expanding the current tentative slot

t t42 t+4
o L
e [ ERE 1] ] 2 [

Figure 3.2: r; = 2, p; = 4, blue is occupied

S, we still serve all the processes in the current A;,_, plus process j.

These 4 cases are summarized in table 2 of [23].

; Af,'j cj<e (Af,v;ll) ri >e (A“;J:ll) Aff]_’lé ; jd(t)
1 i1 ;;11 True - -
21 1 +1 Sk(rj) False True -
31461+ 1] S (e (Ag;ll)) False False True
4 liq Sk (b (Af;;ll )) False False False

Ezxzample on how to read the table:
In row 1 there is an interval in A{;ll so that the completion time of process j is
before the end of A{J__ll and therefore we do not increase the length of the current
state (I; = [;_1) neither introduce a new tentative slot (A; = A{_ ).
. J j—1

In all the other cases, there is not a slot in A{;ll to fit process j without any

. . —1
modification ({¢; < e(A{j_l)} =False).

. . —1 . .
In row 2, process j arrives after the end of A{ | sowe introduce a new tentative
i
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slot Si(r;). In row 3 and 4 the process does arrive before the end of A{_ﬁll ({r; >
. Cli—

e(A{;II)} =False) but because in row 3 there is no way to extend Agj__ll so as to

respect the structure we need to introduce a new tentative slot while in row 4 there

Lr A{;ll was Sk(t) we can find a d > k so as Sk(t) is a

is a way to expand A{;l

prefix of Sy(t)).

Theorem: The dynamic scheduling algorithm is O(log pmax) Where pyayx is

the maximum length of any process in the input.

[ g

Note: In their analysis they compare their algorithm with SRPT which is a 2-
approximation in the single machine setting and a 3-approximation in the identical

machines ([5]).

What is interesting here is that when Ppax is known this dynamic algorithm with
the menu is equivalent to considering a static algorithm in the simple setting (where

agents have no choice) that uses Sq where d = [log Pnax | as a base-pattern.

3.1.4 Lower Bound on any prompt algorithm

Having demonstrated that the two static algorithms suffer a Q(v/Ppax) compet-
itive ratio, we now turn our attention to the dynamic algorithm, which achieves
O(log Ppax). Naturally, we wonder whether this performance is optimal. Indeed,

Fiat et al. proved the following result:

Any prompt online scheduling algorithm for processes with unit weights and
arbitrary lengths must have a competitive ratio of Q(log Pyax), even if ran-

domization is allowed.

3.1.5 Other settings for prompt scheduling

In the same work, they provide algorithms for arbitrary weights and uniform pro-

cessing times as well as the most general case with both arbitrary weights and
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processing times. A summary of results can be found in the following table:

Processing Job Menu Upper Bound Lower Bound
Time Weight Entries (Deterministic) (Randomized)
intervals
p; €LT w; =1 | (various lengths) O(log Ppax) Q(log Puax)
no prices
unit length
pj=1 wj € ZT intervals O(log Wiax (log log Wiax + log n) Q(Wiax)
with prices
intervals
pj €ZT | w; € ZT | (various lengths) O((logn + log Ppax) 10g Brax) Q(max(log Puax, 10g Bimaz))
with prices

where prax and Wiax is the maximum length and weight in the input sequence

respectively (not known apriori) and Bpax is an apriori upper-bound on Wyax.

48






Chapter 4

Learning how to schedule with

promptness

In this chapter we focus again on online non-preemptive prompt scheduling to
minimize total completion time. The algorithm from section 3.1.3, that uses a
fixed pattern is an O(log(pmax)) competitive algorithm. In this work, we challenge
the notion of a single, universally optimal pattern and explore the potential for
identifying alternative patterns that lead to a smaller total completion time for the

set of jobs.

4.1 Background on Online learning

“Online learning” is an umbrella term for problems where data points arrive over
time while an agent has to make decisions based solely on past observations. Online
learning algorithms are a type of online algorithm, but their performance is assessed
using a different metric called “Regret” (to be defined shortly after). Typically,
we study online learning under the online convex optimization setting (OCO).
Formally:

Setting:

e Learner: Makes decisions represented by actions denoted as x; at each round
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t. These actions belong to a convex and non-empty subset X in d-dimensional

Euclidean space (R?).

e FEnvironment: Chooses a convex, non-negative cost function f; that maps

elements of X to real numbers (R) at each round t.
Interaction: At each round t:
e The learner chooses an action x; from the set X.
e The learner incurs a loss fi(x;)
e The environment reveals f; to the learner.
Terminology:

e Full Feedback (or Full-Information): This framework is categorized as "full
feedback" because the learner observes the complete loss function f;, not just

the specific loss associated with its chosen action.
e Oblivious vs. Non-Oblivious Environment:

— Oblivious Environment: The environment’s choice of the loss func-
tion f; is independent of the learner’s action z;. In simpler terms, the
environment’s loss function selection doesn’t "react" to the learner’s

choices.

— Non-Oblivious Environment: The environment’s choice of the loss func-
tion f; can depend on the learner’s action x;. Here, the environment

can potentially adapt the loss function based on the learner’s behavior.

At this point, it is vital to define how optimal is defined in an online setting.

The sequential nature of the online setting allows for the possibility of generating
inputs that specifically challenge the decision-maker’s performance. To establish, a
meaningful performance metric, the online learning community adopted a concept
from game-theory, typically referred in the literature as regret. Let X be a set of

feasible choices, f; : X — R be a convex loss function and T be discrete a time
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horizon at which inputs will occur. The “Regret" of an algorithm A, is defined
as the difference between the sum of the losses fi(x;) at each timestep, where z;
is A’s choice at time ¢ € {1,..,7} and the sum of the losses incurred by the best

fixed choice over X:

T T
Regret(T') = Y _ fi(x:) — min > fil)
t=1 t=1

A good online algorithm should aim to have as small regret as possible, ideally a
‘sublinear’ one, that is Regret(T) € o(T) i.e Tlim @ = 0.

— 00
For simplicity, we assumed minimization problems. However, the very same anal-

ysis holds for maximization problems with the necessary adjustments.

4.1.1 Follow the Leader Family

Follow the Leader (FTL) refers to a family of algorithms, that make decisions based
on the best strategy.

Perhaps the best way to understand this framework is the “Experts setting". In
this setting, the learner may or may not have direct access to the action set X.
Instead of relying solely on direct access to available actions, the learner depends
on the advice of "experts." These experts are external entities that can guide the
learner.

Formally, assume that there are d experts. At each round, we need to pick an
expert j; € [d]. Let a¢(j;) denote the expert’s j; advice on round ¢ (e.g a point
x € X or a distribution over X) . After making this choice, the learner follows j;
expert advice. Let f; be a mapping from experts advice to losses on round t).
The basic version examines the suggestions of each expert on all the rounds before

t and chooses the one that performed better. This can be formally expressed as:

t—1
Ty = arg I‘Ieli[g]zft(at(j))’ vt € [T
J —
Now, a subtle proof can showcase that this algorithm may have linear regret for a
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special input sequence.
For simplicity assume that there are only two experts suggesting actions each day,
one of the actions receives a loss of zero (i.e., the “correct” suggestion) and the

other a loss of one.

Round 1 213|145 T-1|T
Loss of expert 1 [ 1/2 |0 | 1|0 |1 0 1
Loss of expert 2 | 0 170110 1 0
Leader - 2111211 2 1

After round 1, FTL incurs always cost 1 so at least T — 1 in total while the best
expert in hindsight incurs at most T/2 (if T is even) so the regret is R(T) >
T-1-T/2=T/2—1€O().

To combat this, a strongly convex function R(z) is added that serves as a sta-
bilization term. This slightly different formula is named Follow-The-Regularized
Leader(FTRL) :

t—1
xp = arg gélg(l; (ft(x) + R(x)), vt € [T

Under the assumptions |X'| < B and f; is a convex L-Lipschitz we get that FTRL

satisfies the following inequality:

R(T) <) [filwe) = fir1(z0)] + R(zr) — R(z1)

teT

Now if R is %Haj |? (an 1/27 strongly-convex function) and 7" is known in advance,
FTRL achieves a O(BLv2T) regret bound. Similar results hold even without
knowledge of T' (by using a time-varying learning rate 7).

In the same spirit, introducing randomness can make the algorithm less prone to
abrupt behavior changes. One way to do so is to append some noise established as
“The Perturbed Leader" back in 2003 ([15]).

Over the years, many other improvements were published, the majority of them
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focusing on choosing an appropriate regularizer. For a complete introduction to
online learning, optimization and the relevant algorithms we refer the reader to
[25, 28, 21].
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4.2 Problem Modeling

Assume we divide the input in 7 rounds. Let N be the set of processes that arrived
in round t. If in every round ¢ € [T'] we use the algorithm from section 3.1.3 then
we have an O(log(pmax)) competitive algorithm. Now, we raise the question: Is
there a pattern that achieves a smaller total completion time? Can we perhaps
learn from past observed input sequences to devise a pattern more tailored to the
specific data it encounters? Our goal is going to be to minimize the regret, defined

as:
T T

R(T) =) fila") = fila")
t=1

t=1
Unlike the work of [23] that involves strategic agents in the absence of knowledge of
Pmax, We assume an equivalent setting where the scheduling algorithm dictates the
execution order and informs each job of its service time. This assumption simplifies

the problem and allows us to focus on the learning aspects of scheduling.

Notation Summary

Symbol | Meaning

N the set of all inputs (processes)
T the total number of rounds

i the processing time of process i
T the arrival time of process i

P, the length of slot of type i

Defining the notion of “round"

Evaluating a pattern’s effectiveness requires the underlying algorithm to process
data for a sufficient amount of time. A natural choice is to define a round with

respect to a time window of a certain length w. Each round represents a specific



time interval with a fixed length, denoted by w.
Rounds:

e Round 1: [0,w) - Processes arriving between time 0 and w (exclusive) are

considered in this round, denoted by N'.

e Round 2: [w,2w) - Processes arriving between time w and 2w (exclusive)

belong to round 2, and so on.

e Round t: [w(t — 1),tw) - Round t consists of processes with arrival times

within the time interval |[w(t-1), tw) (exclusive).

Assuming the arrival times follow some distribution we can tune w appropriately.
Otherwise, this time-window w may not be really meaningfull: there may be rounds
with very few processes (“sparse rounds") and rounds with infinitely many processes
(“overloaded rounds"). In the first case, we cannot pay much more than wO (where
O is the optimal period). In the second case we may pay a lot more than other
(“less crowded" rounds) -especially if the pattern is bad- but these costs will cancel

out with the minimal cost of the rounds that fall into the first case.

Defining the loss function per-round

Unlike common online learning settings, here we need to be careful, because de-
pending on the choice of a' and time-window w, there is a chance that processes
from the next round ¢ + 1 arrive before finishing with the input of round ¢. To
resolve this issue we define as f;(a') the total completion time of all the processes
in Nt using as a basic pattern a plus any process from N'*! that happened to
arrive before the completion of N (due to the promptness constraint we cannot do
otherwise). This additional workload can potentially increase the cost associated
with the chosen pattern a’ for that round.On the positive side, if a’ is a “poor"
choice for Nt since the algorithm will incur significant costs on this round, it will
also learn that this sequence was not the optimal choice. In the long-run, when T

is large enough, this cost will not affect @.
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Assumptions

In our model, we will assume that:

1. Processing times take integer values in {1,2,..,2!} for some I € N (this
assumption makes the analysis easier while at the same time considering the
real job lengths adds up only a constant to the computed cost) and weights

are identical (e.g w; = 1)
2. We are looking for periodic non-decreasing sequences

Since processes’s lengths are assumed to be powers of 2 then also slot lengths are
powers of this which offers an extra benefit. It enables us to use an alternative
sequence representation and therefore reduce the search space substantially: In-
stead of looking for vectors a € NPmax where a; is the length of the i-th slot, we
are looking for vectors a € N! where | = [log pmax | where a; € [0,1] represents the
number of slots of length 2¢ in the sequence.

In other words, we are looking for a sequence P defined as
P={(p1,...p1,-- s Pty ---D1)
that can be reduced into a vector a defined as:
a=(ay,...q)
where a; represents the number of slots of length p; in P such that P = (p{*, ... ,pf” ).

4.2.1 Convex program formulation

Assume we know that the optimal period is L and that the maximum length of
any process that we will serve is Ppax then without loss of generality the optimal
sequence is made from | = [logp 7 different types/lengths of slots {1,2,...,2'},

Therefore we are looking for a sequence a € N'. Denote by r; the arrival time of
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process i.

minimize C*(y)
!

subject to Zaij <L (1)
j=1
Sy >1, Vie N (2)
r; <tL (Cl)
!
Zyitﬁzak, Viell],vteT (3)
€SI k=j
yi € [0, 1], Vie NVteT (4)
a; € [0,|L/F;]] Viell] (5)

where C!(y) is an approximation of the total completion time using a periodic

schedule y (defined in 4.2.1 in the next section).

Explaining the formulation:

Variables:

e Binary variable y;; denotes whether process ¢ was scheduled on the ¢-th

sequence.

e The variable a; € N denotes the number of slots of type j in the basic

pattern.
Constraints:

e Constraint (1) ensures that the sequence a will have a length (duration) of

at most L.

e Constraint (2) ensures that if a process i is scheduled in the ¢-th sequence,
it arrives no later than the end of this sequence. However, this constraint
does not account for processes that might have arrived after the start time

of their assigned slot, possibly underestimating their completion time. We
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account for that through an error-correcting term in the objective function

(see paragraph 4.2.1).

e Constraint (3) ensures that if S7 is the set of processes with size at most P;
(i.e., Sj={i|i€[N]:p; < Pj}), these processes cannot occupy more than
the sum of slots in a that can fit them (i.e., slots greater than or equal to
their sizes). For example, if we consider ¢ = argmax P;, then S, contains all
the input processes, and we ensure that the number of processes scheduled

in the t-th sequence does not exceed the available slots in the sequence.

Relation between the objective and the real function

If F(y) is the real total completion time (TCP) using a periodic schedule y, we
want to relate : our estimation of TCP with min F(y).

Let w] denote the real-time step at which procegs 1 begins processing according to a
solution y to C': break it into the waiting time because of the previous sequences
plus the waiting time due to the waiting time r(i) due to the relative order we

schedule i inside a copy of the sequence.

yirw; = Yie[(t — 1)L + ()]

Now let’s consider an approximation w; for the waiting time of process ¢ defined
as:
w; = (t—1)L (4.1)

This is an underestimation for two reasons:
1. We ignore the fact that the relative waiting time 7(7) may not be 0

2. We ignore the fact in our set of constraints C, we have the constraint:

> wit > 1 which assumes that process i should be scheduled on the
t:r; <tL
t — th schedule that ends at ¢L if and only if r; < tL. However, this does not

take into consideration that the process may be scheduled on a slot j that

starts earlier than ;.
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slot j

}
T

(t—1)L tL

Figure 4.1: process i arrives after its assigned slot

These two assumptions are independent. To see why, consider the case where all of
the processes we scheduled on the t-th sequence arrived exactly at its start (so we
do not need to worry about the second bullet). That still does not guarantee that
all the processes had relative waiting time r(7) = 0 (in fact that only can happen
if only one process was scheduled on the t-th sequence).

So if wj is the real waiting time of a process i that was scheduled according to the
solution y to C':

wfzwi+€1+€2

where €; = error due to release times and ey = error due to r(i)

We address them as follows:
First, we know that 0 < r(i) < L,s0o 0<ex <L

As for handling the release times we observe that in the worst-case scenario every
process i that was scheduled on ¢ arrived on the end of it, that is r; ~ [(t+1)L —¢€].
But since all these processes did fit on a copy of the sequence and had r; < (t+1)L
they can be scheduled on the (¢ 4+ 1)-th sequence, so €; < L. Finally, in the best-
case scenario, it arrived no later than its start time (that is €¢; = 0). Therefore:

0<e <L
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x Time
(t—1)L tL (t+ 1)L

So in reality
w; < w; <w;+ 2L (4.2)

Summing over all processes and rounds:

=) (Wi Fpyie =) wivi+ Y > pitae

€N teT €N teT €N teT

Name P(y) = > > yupi. Now using (2) and summing over N and t, we get :

ieN teT
> D vawi+ P(y) <D wwwit Y Y ya2l + P(y)
i€EN teT i€EN teT i€EN teT
=Y Dyt —DL+Py) < F(y) <> yalt—1)L+2LN + P(y) (2)
iEN teT iEN teT

where in the last equation we substituted w; with it’s definition and used the fact

that >> >y =N

iEN tET
Now consider the CP with objective function :

= Z Z yie[(t — 1)L] + Z Z YitDi (Objective of program C’l)

1EN teT €N teT

Now by substituting on (2), we can write:
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Lemma 4.2.1:

For any feasible solution y to program C' it holds:

Cly) < F(y) <Cly) +2LN (4)

Discussion on the LP

Minimizing function C' gives an underestimation of the total completion time.
While it considers how long a process waits before its assigned sequence starts, it
doesn’t consider any additional waiting time that might occur within the sequence
itself (also as it was explained earlier the constraints of the convex program assume
that the process release time was before the start time of the slot it was scheduled,
which is not always the case). Another way to put it is to say that the objective
function is oblivious to the troubles introduced by trying to arrange the processes
with release dates in a copy of the sequence. Essentially, this program returns an
arrangement of the processes such that they fit in terms of lengths in their assigned
copy, taking only partially into consideration their release dates ( by constraint (1)
a process will not be assigned to a sequence t that ends before the process arrives
in the system).

In addition, it is a relaxation since we consider non-preemptive scheduling and
therefore y;; € {0, 1} and also integer sequences i.e a; € N (the number of slots a;

of type j that belong to sequence a is an integer).

4.2.2 Rounding and Approximation

Approximation of the rounded solution

Assumption We know the optimal period L (that is the period the optimal (of-

fline) algorithm using a fixed sequence would use to schedule the entire input N).
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Lemma 4.2.2:

Assume C'(y?) is (an estimation according to C''() of) the total completion
time using pattern ¢ € R? on an input sequence N. Now let a = [o] be the

rounded pattern, then:

Cl(y®) <3CM(y7), Yy € {0, 1}V a = [o]

Proof)
When we round ¢ to a we do not change the schedule y° but only the length of
the period. If the initial period is L then for the new period L’ we have:

l l l
I'=% aP <) (o;+ )P <L+ P
1=1 1=1 1=1

We are going to prove that :

If a* is the optimal pattern of integers then

l
af >0 = > P <2L
=1
Proof):

n—1 n—1 ‘
ZH:Z2Z:2”—2<2”:PTL, Vn e N
=1 =1

-1
Therefore if af >0 = L*> P > > P,

=1
l -1
SRy men<a
i=1 i=1
So for the new period L' we get:
L' <3L (4.3)
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Let P = Zizl P;. The total completion time is:

T N T N
= D r =L +pilys =D [ = DL + pilyf,
=1 1=1 =1 1=
T N 1
<3Y > It = DL+ pilyg
=1 i=1
=3C"(y7)

Here we used the fact that (offline) we can schedule the input greedily using a as

well as using o (since a is only “an augmentation" of o).
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If (0,y%) is any feasible (fractional) solution of (C') then for the schedule
y® induced by a = [o] it holds:

F(y*) < 3CY(y*) + 2LN < 3F(y*) + 2LN

where y* is an optimal solution

Proof):

Let y* be the schedule that occurs from the optimal periodic scheduling.

F(y*) < C'(y*) + 2LN, using inequality (A) 4.2.1
<3CY(y°) + 2LN, using lemma 4.2.2
< 3CY(y*) + 2LN, since %7is a minimizer of C'*
<3F(y*) +2LN by definition of C'*(y)

Corollary: Assuming that our observing window w is tuned properly with

respect to the distribution of arrival times:

F(y®) < AF(y")

Imagine a partition of the time horizon of interest into intervals of lengths w. As
we said earlier we reevaluate the pattern every w units of time and we do that T’
times. Since L is optimal it may be the case that we need exactly one copy of
the pattern at each round (we can cover wT perfectly with intervals of length L).
Even in that case, the optimal prompt algorithm incurs a total completion time
F(y*) > g:(z — 1)L =N(N —1)L/2 > 2LN (assuming N > 3) units of time.
Thereforé:v{/e get:

F(y®) <AF(y")
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4.3 The online scheduling algorithm

n
Let C}(y°) = . 3 y?(7 —1)L be the cost of the "underestimation LP" (C') for
T=14{eN?
the input sequence N, using the pattern o and a schedule y° that respects o.

Note that we have two different notions of rounds in this context. First, there are
the T rounds defined by the observation windows, w, during which we reconsider
the pattern. Second, within each such round ¢, we need n = n(t) rounds/copies of

the pattern o to schedule the input N*.

Algorithm 2 Online Prompt Scheduling Algorithm

Input: Period L, maximum processing time pyax, regularizer U : R' — R
Output: A prompt schedule (y7, ..., y77)

1: Set [ < 10g pmax (for formulating C! constraints)
2: for t € [T] do
t—1
3: Compute (7, ;) = arg min ( ST CHy?) + %Cf))
L T=1
4: Round 6, to a; = [64]
5: Schedule processes (greedily) in N* using a;
6: end for

To analyze this algorithm effectively, observe that it encompasses three distinct
components: a learning algorithm, a rounding algorithm, and a scheduling algo-

rithm.

Measuring Perfomance

We want to compare Fy(y;") with the optimal real cost Fy(y;) of the best fixed
sequence o*. Using Theorem 1 () we get that the real cost Fi(yy*) is at most
4CH(y") + L. We will use an alternative measure of regret, namely ¢ — regret
as defined in relevant cases ([29], ...). For ¢ = 1 the measure coincides with the

"standard" notion of regret. In particular, we define as:
T T

R(T) = ZFt(yft) - Cth(yf )
t=1 t=1
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where p* is the optimal fixed adversary i.e p* = argmin Y F;(y

t=1

We also define:
T

T

R(T) =) CHy) —e¢d CHy)
t=1 t=1

Where (0*,4°") is the solution to the convex program with

min Z C}(y?) and the same constraints as before.
Y0 ¢—

.
i)

objective function

Lemma 4.3.1:

R(T) < 3R(T)

If R(T) is the c-regret defined above then for ¢ = 4 it holds:

Proof:
T

First observe that using Collorary 4.2.2 we have that: Y F(y?

t=1

") > 2LN where p*

is the optimal integer pattern in the hindshight. In addition since C} is a lower

T
bound for F; and o* is the minimizer of 3 C}(y°") it holds:
=1

T

T T
YN RW) =D Clw) =Y R
t=1 t=1 t=1

Now we have that :

T T T
R(T) = Z Fy(y*) — 3ZFt(yf ) — ZFt(yf )
t=1 t=1 t=1
T T T
< BCM(y) + 2LN") — Z =Y B,

[C(y*) = CHy? )] + [2LN — ZFt(yf )]

I
E’%ﬂ

~~
Il

1
(T)

IN
w
=
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The learning algorithm

In each round ¢, our proposed algorithm utilizes the well-known Follow-The-
Regularized-Leader (FTRL) algorithm (refer to the relevant bibliography for more
details) as a subroutine (step 3) to compute a fractional pattern oy. This pattern
o represents a variation of the best-fixed pattern from the previous ¢ — 1 rounds
if we had computed the losses using our underestimation o;. The reason it does
not match exactly with the best-fixed pattern from the previous ¢ — 1 rounds is
that we include an additional term U(c) in the minimization problem. This term

serves as a stabilization factor (see Section 4.1.1).

Let Ry (T') be the regret FTRL incurs against a fixed-adversary u, i.e:

T
Ry(T)=> Cly") = > CHy)

t=1 t=1

Lemma 4.3.2: The FTL-BTL Lemma

Take any v € R? and assume oy is the FTRL choice, then:

d r max U(c) —minU(0)
Ru(T) < Cly") = D Clw™) + =~ ’

t=1 t=1 N

This lemma is due to Kalai and Vempala ([15]) but because of its importance, its

proof has been rewritten many times. A standard proof can be found in section

4.4.2 of the Appendix.
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Lipschitzness of the loss function

We can write :

CHw) =SS [~ DI+ piluir = (A y)r

1EN 7=1
where (-,-)p is the Frobenius inner product between matrices A € RY "% RT
Yy € RMN" x RT defined as:
pr L+p . Lm—1)+p Yl Y12 - Yine—1
p2 L+pr .. L(—1)+po Y21 Y22 - Y21
A= ) . and y = : : :
pnt L+pne . L(ng —1) + pye | (YNt1 YNt2 - YNtp—1

To be precise, assume TY(t) and TY(t) is the number of copies needed to schedule
input N! using sequences z and y respectively. Now name n; = max{T¥(t), T*(t)}
and assume without loss of generality that T%(t) < T¥(t). We can write Cf(x)

AT .y, by adding to y, extra columns to expand it to horizon n; with zero entries.

and

Lemma 4.3.3: F

unction Cf(y7) = (A,y)p is ||AT||p Lipschitz with respect to any norm,
where || - || is the Frobenious norm, i.e:

3/2 |1 1 1 2 Nt 1 1 1 Nt
AT || = (N')Y/2Ln; \/3 ~ 2w g7 T NI 2= P (Tnt - W) + §rimE et P

where N is the input sequence on round ¢ and n; = n;(o) is the number of

copies of the pattern ¢ algorithm needed to schedule the input.

Proof):

CHW)~CH@)lp = AT =) ply < |IAT - ly—2lle| < 147 | -|ly—alr|

= |ATlIF - llly — @ll7lp
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Now using the definition of the Frobenius norm 4.4.1 we compute:

1/2

1AT || = (ﬁ:i 4,2) " = (ii(f S 1L 2L~ )L+ 1)

T=1i=1 =1 i=1

Nt Nt
= (N2 220, = 3n, + 1) + 2L (e~ L 2)'"”
= f( n® —3ng+1) + Zpi-T—i-nthi
i=1 =1

N N
11 1 2 11 1 1/2
3 2 2
NL?[= - — 4~ 4 = R G R . )
(nt 15~ 2m * o2 * VI ;:1 P (g = 52) ¥ FigE ;lez]

1 1 1

EPPVTEYSS TN F S S S I VS S B S o
N3 2m 6n?  NLE o 2w’ T NiLZey &

Observe how n; < Nt i.e we cannot need more copies than the number of processes,

so we can bound ||A||r with a function of N*, L only.

Lemma 4.3.4:

closeness Consider two functions f,g : R¥ — R that are m-strongly convex
with respect to some norm k and such that their difference h(p) = g(p)— f(p)
is an L-Lipschitz function with respect to the same norm. Then if pf =

arg min f(p) and p, = arg min g(p), it must hold that:
pERkK pERk

Py = poll <

3

Proof:

By definition of m-strong convexity we have that:

f(p) = f(py) > (Vf(p),p —py) + %Hp — psl?

But py is a minimizer of f and therefore (V f(p),p — ps) > 0 and therefore we can
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omit this term from the right-hand site:

f) = flpy) = =llp —psll”, (1)

SE

The same holds for g:

| 3

9(p) —9(pg) = = o — pgll*>,  (2)

Now :

h(ps) — h(pg) = (f(pr) — 9(py)) — (f(pg) — 9(pg)) = (f(ps) — f(pg)) + (9(pg) — 9(py))

m m
> S llps = poll* + 5 llpg = pyll* = mllps = pyl”

But h is also Lipschitz :

m|[py — pgll* < h(py) — hipg) < Llps — pyll

— o —poll < &
bf pg_m
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4.3.1 Regret analysis (Putting everything together)

Algorithm 2 has sublinear 4-regret with respect to T.

Proof):
~ t
We proved C}(0) is (M = ||a”||F -Lipschitz). Name Fy(0) = > CL(y2) +
=1

Ulo)
T] )

where y7 is the greedy schedule that occurs using o. Assume U (o) is (m strongly convex)

then since Zt: Cl(y?) is convex F} is m/n strongly convex on R¥ (the sum of a con-
vex functioTn:\}vith an m-strongly convex function is an m-strongly convex function).
In addition name 6, and 6441 the choices of FTRL for rounds ¢ and ¢ + 1 respec-
tively. Since 6; = argmin Fi(0) and 6441 = argmin Fy11(0) are the minimizers of
two strongly convex furfctions and their difference(:7 h(o) = Cl, (o) is M-Lipschitz,
we can apply lemma ?7.

61 — 11| < L - M
m

Now we are ready for the final result:

T . T N T .
e Name o* = arg min Y CHy?) and R(T) = Y. CHylt) — 2 CH(y¢™). Then
cER" t=1 t=1 t=1
by the FTL-BTL lemma 4.3:

~ T ) T N max U(c) —minU|(o)
R(T) <Y Cly") = Gy + -2 -

t=1 t=1 N

e By combining lemma ?? with the fact that C} is M-Lipschitz we get:

maxU(o) — main U(o)

RTy<T M2 4 @
m n
e Name D = maxU(c) —minU (o). By picking n = ?—LDQ, we get:
g g
- DT DT Dr
R(T) < M\|— 4+ M| — =2M/ —
m m m
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which is sublinear on T ~
R(T)
— 0
e In lemma 4.3 we show that if R(7T') is the (real) c-regret then :

R(T) < 3R(T)

4.4 Conclusions and future directions

In this work, we expanded the idea of the algorithm from [23] to an online learning
framework. We gained the insight that, unlike other classical computer science the-
ory problems, scheduling demands extra effort to achieve a meaningful formulation
as a learning problem. One main reason is that after making a single decision, its
effect on cumulative losses is not immediately clear. Our model is only a first step
in this direction. However, our work is promising for further exploration.

Scheduling problems can be further explored through the lens of learning theory.
Specifically, for our problem, there are still many questions to study. Some exam-

ples include:

e How can we attain the optimal length L?

e How does the analysis change when this optimal length is not constant over

time?

e What are the properties of inputs for which our algorithm has a constant

competitive ratio?

These questions represent avenues for further research, aiming to deepen our un-

derstanding and improve the performance of online scheduling algorithms.
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Appendix

4.4.1 Mathematical Background

Norms
Al = max Z s

The Frobenious norm Let A € R™ x R" be an m X n matrix then we define it’s

Frobenius norm ||A||r : R x R” — R as:

4l = (33 ) = (a2

Jj=11=1

4.4.2 FTRL-BTRL lemma

Let Ry (T) be the regret FTRL incurs against a fixed-adversary u, i.e:

T

Ru(T) =7 CHy") =) Clyt)
t=1

t=1

N

Lemma 4.4.1:

Take any u € R? and assume oy is the FTRL choice, then:

T T max U(c) —minU/(o)
R.(T) < Z Z C Ut+1 o o
t=1

t=1 n
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Proof):
Assume an imaginary round 0 where : Ci(y) = %mina U(o). Now the FTRL

algorithm we play can be written equivalently:

t—1 t—1

op = argmoin (Z Cl(y) + ;U(a)) = argmginz Ci(y)

=1 7=0

where y respects o;. Basically, we solve the convex program, and we find an
appropriate tuple (y, o¢).
By induction on T:
e For T=0: observe that Ci(c1) = min, C}(y) therefore Ci (o) — Cd(u) <
Cy(00) — Cg(o1)

e Inductive Hypothesis: Assume it holds for T:

T T T
Sl =Yt <>l =Yl
=0 =0 t=1 t=1
T+1
e Inductive step: Since oo = argmin >, C}(y?)
7 =0
T+1 T+1 T+1 T+1
St =D Gl <) Gl = Gl
=0 =0 =0 =0
T T
= [Z Ciy") - Z Ct (yfTH)] + Cra(yritt) — Craa(yrh )
=0 =0

T T
ind- hypoth < N Oyt = Y CHul™) + Cra(yi'') — Cra(yrh )

t=0 t=0
T+1 T+1
=> Clw) = > Clw ™)
t=0 t=0
T+1 T+1 T+1 T+1 U(u) — minU (o)
= > ClW)-> Clut) <> Gl -> Gl )+ o
t=1 t=1 t=1 t=1
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