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Abstract 

A new continuously variable transmission (CVT) system is proposed in this paper for the purpose of 

improving transmission efficiency in vehicles. The patented mechanical layout, considers a self-

adaptive gyroscopic, hydrostatic linear torque converter, that achieves power transmission at various 

ratios by varying the displacement angle of the centrifugally free sliding arm connecting the output 

shaft of the engine to the mechanism. The hydrostatic portion of the mechanism involves either a 

hydraulic motor or a Pelton turbine, since it delivers high power for small flow rates and high pressures, 

converting fluid power to mechanical power. Kinematic and dynamic analysis take place to validate 

the dynamic behavior of the system. An important addition to the mechanism was a spherical spring, 

to maintain oscillatory motion since torque provided at the extreme points is momentarily 0 and the 

mechanism is otherwise driven to instability. Next, an optimization procedure took place with the 

overall CVT’s dimensions taken into account, as the goal is for it to be small enough to fit inside a 

vehicle. Gearbox MQ200-6F of the Seat Ibiza Fr 2021 model was chosen as an example, since it’s a 

standard vehicle with its gearbox dimensions being roughly the same throughout the car industry for 

such cars. Optimum geometry of crucial CVT components was pinpointed, to account for 3 different 

operating points, all of which were derived from the power-torque vs rpm chart provided for the engine 

of the Seat Ibiza 2021 model, with the goal of covering a broad range of operation. The achieved 

overall efficiency of the optimal configuration resulted in 𝜂 = 0.64, while the thought maximum 

efficiency was estimated as 𝜂𝑚𝑎𝑥 = 0.72. Efficiency was constant throughout the operating points, 

whereas the spring constant increased in value with power. Its value was influenced by the oscillatory 

behavior of input torque to the mechanism as well as the non-constant fluid velocities impacting the 

Pelton turbine, resulting in a less than estimated value. This CVT invention seems very promising as 

the mechanism can operate for various loads with good enough efficiency and at a reasonable size. 

Still, further research is needed as a custom spring needs to be implemented that takes into account the 

displacement of the centrifugal free sliding arm as well as the load demanded for various points, with 

regard to also maximizing efficiency. Additionally, other hydrodynamic turbines may be found to be 

better options for efficiency and overall operation, since Pelton turbine does not directly influence the 

mechanism but needs a central processor unit (CPU) or a hydraulic system to control the nozzle area 

ratios to induce load  
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Abstract (in Greek) 

Στην παρούσα εργασία παρουσιάζεται ένα καινοτόμο σύστημα συνεχόμενης μετάδοσης κίνησης 

(CVT) με σκοπό την βελτίωση της απόδοσης μετάδοσης κίνησης σε οχήματα. Η μηχανική διάταξη 

που αναφέρεται στην εν λόγω πατέντα αφορά σε αυτοπροσδιοριζόμενο, γυροσκοπικό, υδροστατικό 

γραμμικό μετατροπέα ροπής, ο οποίος επιτυγχάνει μετάδοση ισχύος σε διάφορους λόγους μετάδοσης 

μεταβάλλοντας την γωνία μετατόπισης ενός μοχλού φυγοκεντρικά ελεύθερης ολίσθησης, ο οποίος 

συνδέει τον άξονα του κινητήρα με τον μηχανισμό. Το υδροστατικό μέρος του μηχανισμού εμπεριέχει 

τη χρήση είτε ενός υδραυλικού κινητήρα είτε μιας στροβιλομηχανής Pelton, εφόσον αυτή δύναται να 

παράγει μεγάλη ισχύ για χαμηλές παροχές ρευστού και υψηλές πιέσεις, ώστε να μετατραπεί η 

ρευστοδυναμική ενέργεια σε μηχανική. Κινηματική και δυναμική ανάλυση λαμβάνουν χώρα ώστε να 

επικυρωθεί η δυναμική συμπεριφορά του μηχανισμού. Σημαντική προσθήκη αποτέλεσε το στροφικό 

ελατήριο, με σκοπό να διατηρείται η περιοδική κίνηση του μηχανισμού καθώς η ροπή εισόδου σε 

αυτόν είναι στιγμιαία μηδενική στα νεκρά σημεία, με αποτέλεσμα, δίχως αυτό, ο μηχανισμός να 

οδηγείται σε αστάθεια. Στη συνέχεια, πραγματοποιήθηκε βελτιστοποίηση έχοντας κυρίαρχες 

παραμέτρους τις ολικές διαστάσεις του μηχανισμού, διότι θα πρέπει να είναι αρκετά μικρός ώστε να 

τοποθετείται σε επιβατικά οχήματα. Ως παράδειγμα χρησιμοποιήθηκε το κιβώτιο ταχυτήτων MQ200-

6F του Seat Ibiza Fr 2021 μοντέλου, δεδομένου ότι αποτελεί τυπικό όχημα με τις διαστάσεις του 

κιβωτίου του να είναι περίπου ίδιες με κιβώτια παρόμοιου τύπου της αγοράς. Ως αποτέλεσμα 

προσδιορίστηκαν οι διαστάσεις κύριων μερών του μηχανισμού σε 3 σημεία λειτουργίας, τα οποία 

επιλέχθηκαν με βάση το διάγραμμα ισχύος, ροπής – στροφών του κινητήρα του Seat Ibiza Fr 2021 

μοντέλου, ώστε να καλυφθεί μεγάλο μέρος της λειτουργίας του. Η απόδοση που επιτεύχθηκε άπο την 

βέλτιστη διάταξη υπολογίστηκε σε 𝜂 = 0.64, ενώ η θεωρητική μέγιστη απόδοση εκτιμήθηκε σε 

𝜂𝑚𝑎𝑥 = 0.72. Η απόδοση αυτή ήταν ίδια και στα 3 σημεία λειτουργίας που έλαβε χώρα η 

βελτιστοποίηση, ενώ η σταθερά ελατήριου παρουσίασε αύξουσα συμπεριφορά με αύξηση της ισχύς 

εισόδου. Η τιμή της επηρεάστηκε τόσο από την περιοδική συμπεριφορά της ροπής εισόδου στον 

μηχανισμό όσο και από τις μεταβαλλόμενες ταχύτητες των δεσμών ρευστού που εισέρχονταν στην 

Pelton, με αποτέλεσμα την μη βέλτιστη λειτουργία της και άρα μειωμένη απόδοση. Η παρούσα 

εφεύρεση φαίνεται αρκετά υποσχόμενη, αφού ο μηχανισμός δύναται να λειτουργήσει για διάφορες 

συνθήκες φόρτισης με σχετικά καλό βαθμό απόδοσης, σε αποδεκτό μέγεθος. Ωστόσο απαιτείται 

περαιτέρω έρευνα όσο αφορά το ελατήριο μεταβλητής σταθεράς που πρέπει να ενταχθεί στον 

μηχανισμό, το οποίο οφείλει να λαμβάνει υπόψιν την γωνία μετατόπισης του μοχλού φυγοκεντρικά 

ελεύθερης ολίσθησης, καθώς και τις συνθήκες φόρτισης, ενώ παράλληλα στόχος είναι και η 

μεγιστοποίηση της απόδοσης. Ακόμη, άλλες υδροδυναμικές μηχανές ενδέχεται να κριθούν 

περισσότερο κατάλληλες ως προς την απόδοση και την συνολική λειτουργία του μηχανισμού, διότι η 

Pelton δεν τον επηρεάζει άμεσα άλλα χρειάζεται μια ηλεκτρονική κεντρική μονάδα επεξεργασίας 

(CPU) ή υδραυλικό σύστημα ώστε να ελέγχονται οι διατομές των ακροφυσίων που οδηγούν σ’ αυτήν.  
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1. Introduction 

1.1 State of the Art 

Due to intense need for decarbonization and reduction of CO2 emissions, with guidelines for zero net 

emissions by 2050 being made [1], the transportation industry, as well as others, experience a strong 

shift and transformation from the state it’s been in the past decades [2]. Through alternative fuel usages 

[3-8], electric implementation [9-11], different materials [12-13], or energy efficiency [14-15], the 

automobile companies make a hard effort to meet the pollutant reduction goals set by regulatory 

authorizations. Energy efficiency is a sector many put their focus on, and more efficient engine 

transmission has been an interesting topic of discussion in recent years. Continuously Variable 

Transmission or CVT, has been proven to offer a great increase in efficiency as well as emission 

reduction [16-18]. 

The belt or chain type is one of the most common and researched CVT’s [19-20]. Nissan for example 

has its own variation of the patent, called Jatco, which only becomes better as time goes by, with ratio 

coverage widening and torque capacity growing [21]. Its principal function relies in two pulleys, with 

a belt or a chain clamped around them, that are able to each change their diameter according to the 

load via a hydraulic system or an ECU, achieving theoretically infinite ratios. More specifically, the 

basic configuration consists of two variable diameter pulleys kept at a fixed distance apart and 

connected by a power-transmitting device, a belt or chain. One of the sheaves on each pulley is 

movable. The belt/chain can undergo both radial and tangential motions depending on the torque 

loading conditions and the axial forces on the pulleys. This consequently causes continuous variations 

in the transmission ratio. The pulley on the engine side is called the driver pulley and the one on the 

final drive side is called the driven pulley. The basic layout of a metal V-belt CVT and a chain CVT 

are shown in Fig. 1 and 2 respectively [19]. 

 

(a)                                                                         (b) 

Figure 1: Metal V-belt CVT layout: (a) basic configuration (b) belt structure [19].  
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(a)                                                                         (b) 

Figure 2: Chain CVT layout: (a) basic configuration (b) chain structure [19]. 

Both belt and chain CVT systems fall into the category of friction-limited drives as their dynamic 

performance and torque capacity rely significantly on the friction characteristic of the contact patch 

between the belt/chain and the pulley.  

Because the compression and clamping loads are relatively high, even for small engines, the belt type 

is limited in how much torque it can transmit without failing, with the chain type being slightly better, 

but not significantly. As shown at Fig. 3a, the belt/chain suffers from high temperatures due to 

deformation and frictional forces [22], as mentioned before as well. This results in wear of the 

belt/chain and therefore tackles reliability while increasing maintenance costs. The whole arrangement 

with the casing is shown in Fig. 3b. 

  

(a)                                                                         (b) 

Figure 3: a) Temperature contour plot of pulley and belt surface. b) Cad model of the CVT casing [22]. 

The toroidal type is the next most common and researched CVT, with Nissan having certain models 

of its vehicles equipped with it [23], and Toyota contributing with their own variation in the wind 

power sector [24]. The main components are the input and output discs, that together create a toroidal   
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cavity (Fig. 4), coupled with an appropriate number of rollers. As the driving disc rotates, the rollers 

also rotate and thus create rotation at the driven disc. By changing their tilt angle, the rollers are able 

to achieve any desirable ratio, either by tilting inward or outward, and very rapidly, because of the 

geometry of the toroidal traction drive. Between the roller and the discs, the torque is transmitted by 

means of the shearing action of a special oil referred to as traction oil. The lubrication regime of such 

a system is the hard EHL with pressures up to 3 GPa. Such high pressures lead to a much higher oil 

viscosity than in the normal hydrodynamic regime, which in turn enables the transmission of high 

torque despite the very small area of contact [25]. 

 

Figure 4: The traction drive CVTs: (a) half-toroidal (b) full toroidal. [25]. 

Its complex design and necessity of detailed manufacturing are the main challenges and the reason it 

hasn’t been used in a mass scale. Further research is still required, as well as experimental data obtained 

by the current Nissan models equipped with it. 

Research on cutting-edge implementations is also underway, such as CVT based on the warping of 

twisting beams [26] and magnetic CVT [27]. 

The warping of twisting beams CVT, lies in the idea that when a beam with a high warping constant 

is loaded in torsion, the cross-sections deform in the axial direction of the beam which then propagate 

to the other side of it. This behavior results in a reverse rotation of the output of the beam compared to 

the input. This principle is used as a transmission and inversion between input and output. The 

schematic representation of the mechanism and the warping-induced displacements are shown in Fig. 

5.  



1. INTRODUCTION 
 

12 
 

 

Figure 5: The working principle of the compliant CVT based on the warping of twisting beams [26]. 

The transmission ratio of this CVT implementation is shown in Fig. 6, and is denoted as  
𝜃𝑜𝑢𝑡

𝜃𝑖𝑛
=

𝐿−𝜆

𝜆
. 

 

Figure 6: Warping of twisting beam CVT transmission showcase [26]. 

The magnetic CVT or m-CVT consists of three concentric rotors, with the inner and outer rotors being 

equipped with permanent-magnet arrays and having varying numbers of pole pairs, while the 

intermediate rotor carries a number of ferromagnetic pole pieces. In a similar manner as mechanical 

planetary gear sets, the m-CVT’s gear ratio between two rotors can be continuously varied by varying 

the speed of the remaining rotor and therefore achieving a magnetic continuously variable transmission 

(Fig. 7).  
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Figure 7: m-CVT representation a) Radial cross-sectional view, b) Axial cross-sectional view [27]. 

1.2 The current work 

The invention [28, 29] can be identified as a self-adaptive gyroscopic, hydrostatic linear torque 

converter that transmits power with a centrifugally free sliding arm that by changing its angle yields 

transition of the gyroscopic mechanism, the shaft and the ‘floating’ disc (Fig. 9), that consist a pump 

of real time variable displacement. As a result, the key function of this mechanism is the transfer of 

mechanical energy by leveraging the centrifugal force. Its superimposed connection with a hydraulic 

motor, aids the creation of a linear power transmission system that is able to deal with any variable 

load on its rotating shaft, meaning it can be easily used in a vehicle. Given that power is a direct 

function of the load and thus any desirable speed ratio can be obtained, this mechanism is thought to 

fulfill the perquisites of a CVT, with higher torque and lower speed being transmitted at smaller angles 

of displacement of the disc and higher speed and lower torque being transmitted at larger angles. The 

initial representation of the invention is shown in Fig. 8, and has been remodeled, since two input 

shafts were needed and thus the functionality as well as the overall size were compromised. 

 

 

Figure 8: Original invention configuration [28]. Figure 9: Disc in titled position, with sliding arm 

connected to engine shaft 

9  
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The input rotating shaft (yellow) is connected to a slider (green) which forms a free sliding joint with 

the Jaw Shaft (cyan). The Jaw Shaft is then connected to a disc (blue) via two ball bearings. The disc 

is mounted on a spherical join. The discussed configuration is shown in Fig. 9 and in Fig. 10 at a non-

tilted position. 

 

(a)                                                                         (b) 

Figure 10: a) Disc in horizontal position, with sliding arm connected to engine shaft and b) Disc in side view. 

In further detail, 4 piston-rods are attached to the back of the disc, placed at equal distance on its 

perimeter, as shown in Fig. 11. Their movement causes fluid to accelerate and develop a pressure 

difference, which then passes to a hydrodynamic turbine. Since a CVT is meant to be relatively small, 

to fit inside a vehicle, no significant pressure can be created from the pistons and even less significant 

flow rate can be acquired, due to the small chambers. This leads to the need of an impulse turbine, in 

the place of the hydraulic motor. More specifically, a Pelton turbine is thought to be the most suitable 

for this application. Pelton turbines exploit the kinetic energy of the incoming fluid to create torque, 

with the fluid passing through a diameter varying nozzle, as shown in Fig. 12. 

 

Figure 11: Detailed representation of the mechanism, including the 4 piston-rods attached to the back of the 

disc.  
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A detailed view of the whole mechanism, the spherical joint frame of the disc and piston-rod chambers 

is shown in Fig. 13, as well as the placement of the Pelton Turbine and two of the four nozzles attached 

to it, for simplicity and to avoid confusion. The other two nozzles go around the front and the back of 

the turbine to meet the turbine runner at the bottom and the right side. 

 

(a)                                                                         (b) 

Figure 12: a) Pelton turbine overall layout and b) wheel and water jet [source: web]. 

 

Figure 13: Detailed representation of the mechanism along with the Pelton turbine subassembly and two of 

the four nozzles. 

The decision for the hydrodynamic motor to be a Pelton turbine came as a result of the following 

statements. For low flow rate Q, under 0.1 𝑚3/𝑠 , Figure 14 shows that Pelton is the most suitable 

flow turbine, able to generate sufficient power, over 60 kW, for relatively small fluid pressure. Pelton 

turbines operate with incompressible fluids, i.e. water, so the pipes connecting to its inlet won’t take 

much space. 

Furthermore, they can be small enough, with a runner diameter of 0.1 to 0.2 m, and be able to provide 

sufficient power. For example, the CJ237-W-45/1x4.5 [30], is able to produce from 62 to 110 kW 

power, depending on the input conditions.  
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Figure 14: Best suited turbines vs flow rate Q and pressure height H [source: web]. 

Pelton turbines are generally used to exploit the height difference of a fluid, in other words its potential 

pressure, to generate power. Their shaft is then connected to a generator for the production of 

electricity.  The same principle can be used in this CVT application. By using pressurized fluid instead 

and connecting the turbine shaft to the output shaft, the fluid power can be converted to mechanical 

power and be transmitted to the wheels of a vehicle. 
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2. Dynamic Analysis of the Mechanical Layout  

2.1 Kinematics and Inverse Dynamics 

2.1.1 Transformation Matrix & Input Torque at Disc 

In order to express the kinematic behavior of the mechanism, first the movement of point A (see figure 

15) needs to be identified, which lies in the center of the joint of the disc and the upper rod. For that, 

a transition matrix R is created, to transform coordinates from the global (fixed) coordinate system 

(x,y,z), which has its origin at the center of the disc, to the local coordinate system, that follows the 

movement of the tilted disc, as shown in Fig. 15 – 16. The following direction cosines are defined in 

Eq. 2.1: 

 𝑅(𝑖, 𝑗) = cos(𝑒𝑖 ′̅̅ ̅ ,  𝑒𝑗̅̅ ̅)
̂  (2.1) 

where, 

- 𝑒�̅� , is the unitary vector of axis 𝑖 

- 𝑒𝑖 ′̅̅ ̅, is the unitary vector of axis 𝑖′ 

- (𝑖, 𝑗) = 1, 2, 3, where (1,2,3) = (𝑥, 𝑦, 𝑧) respectively  

 

 
 

Figure 15: Global coordinate system xyz with unitary vectors 𝑒1̅, 𝑒2̅ and position vector 𝑟2 of point 

A.  
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Figure 16: Local coordinate system x’y’z’ with its unitary vectors and displacement angle 𝜃. 

If θ is the angle of displacement of the disc, ω is the angular speed of the shaft and t is time, then the 

transformation matrix is defined in Eq. 2.2. 

 𝑅 =

{
 
 

 
 cos(𝜃) cos (

𝜋

2
− 𝜃 𝑐𝑜𝑠(𝜔𝑡)) cos (

𝜋

2
+ 𝜃 𝑠𝑖𝑛(𝜔𝑡))

cos (
𝜋

2
+ 𝜃 𝑐𝑜𝑠(𝜔𝑡)) cos(−𝜃 𝑐𝑜𝑠(𝜔𝑡)) 0

cos (
𝜋

2
+ 𝜃 𝑠𝑖𝑛(𝜔𝑡)) 0 cos(𝜃 𝑠𝑖𝑛(𝜔𝑡)) }

 
 

 
 

 (2.2) 

The position vector of point A on its local system is 𝑟𝐴⃗⃗  ⃗
 𝑙𝑜𝑐𝑎𝑙

= (0, 𝑟2, 0) where 𝑟2 is the radius of the 

disc minus the distance of the center of the joint of the disc and the rod from the outer ring of the disc. 

The position vector of point A on the global system is: 

 𝑟𝐴⃗⃗  ⃗ = 𝑅−1 ∗ 𝑟𝐴⃗⃗  ⃗
 𝑙𝑜𝑐𝑎𝑙

 (2.3) 

Angle 𝜃2 around global z axis can be calculated from the resulting position vector 𝑟𝐴⃗⃗  ⃗, with Eq. 2.4, 

that correctly calculates the tangent for either negative or positive 𝑟𝐴𝑦 and 𝑟𝐴𝑥 alike. 

 𝜃2 = 𝑎𝑡𝑎𝑛2 (𝑟𝐴𝑦, 𝑟𝐴𝑥) (2.4) 

The input torque to the disc, was calculated with the following steps. 

Torque 𝑀 and angular velocity 𝜔 are transferred through the shaft that create a force 𝐹  on the jaw 

shaft, as shown in Fig. 17-18, which in turn creates torque on the center of the disc.  
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Figure 17: Disc and Jaw shaft representation.  

 

 
Figure 18: Free body diagram of slider (left) and disc with jaw shaft (right). 

Neglecting the inertia of the jaw shaft: 

 𝐹 × 𝑟 = det ([

𝑖 𝑗 𝑘
0 𝐹𝑦 𝐹𝑧
0 𝑟𝑦 𝑟𝑧

]) = 𝑀 ∗ 𝑖 (2.5) 

Shaft rotates around x axis and therefore no x component is created either for 𝐹  or for 𝑟 . 

 (𝐹𝑦𝑟𝑧 − 𝐹𝑧𝑟𝑦)𝑖 = 𝑀 ∗ 𝑖 (2.6) 

For vector 𝑟 : 

 𝑟𝑦 = −𝑟𝑐 cos(𝜔𝑡) (2.7) 
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 𝑟𝑧 = −𝑟𝑐 sin(𝜔𝑡) (2.8) 

where: 

- 𝑟𝑐, is the radius from the shaft to the point where the jaw shaft meets the arc of the shaft 

The components of the vector  𝐹  are expected to have the expression shown in Eqs 2.9 – 2.10, because 

when one is at 0 value, the other is at its maximum value. 

 𝐹𝑦 = ‖𝐹 ‖𝑎(𝜔𝑡) (2.9) 

 𝐹𝑧 = ‖𝐹 ‖𝑎 (𝜔𝑡 +
𝜋

2
)  (2.10) 

where 

- 𝑎(𝜔𝑡), is the trigonometric number 

‖𝐹 ‖ =
𝑀

𝑟𝑐

𝑀 = −‖𝐹 ‖𝑎(𝜔𝑡)𝑟𝑐 sin(𝜔𝑡) + ‖𝐹 ‖𝑎 (𝜔𝑡 +
𝜋

2
) 𝑟𝑐 cos(𝜔𝑡)

} => 

 => 1 = −𝑎(𝜔𝑡) sin(𝜔𝑡) + 𝑎 (𝜔𝑡 +
𝜋

2
) cos(𝜔𝑡) (2.11) 

For the Eq. 2.11 to be true, the trigonometric number needs to be 𝑎(𝜔𝑡) = sin(𝜔𝑡), so: 

 𝐹𝑦 = ‖𝐹 ‖ sin(𝜔𝑡) (2.12) 

 𝐹𝑧 = −‖𝐹 ‖ cos(𝜔𝑡) (2.13) 

Now, for the resulting torque on the disc: 

 𝐹 × 𝑟 ′ = det ([

𝑖 𝑗 𝑘
0 𝐹𝑦 𝐹𝑧
𝑟𝑥′ 𝑟𝑦

 ′ 𝑟𝑧
 ′
]) = (𝐹𝑦𝑟𝑧

 ′ − 𝐹𝑧𝑟𝑦
 ′)𝑖 + (𝐹𝑧𝑟𝑥

 ′)𝑗 + (−𝐹𝑦𝑟𝑥
 ′)𝑘 (2.14) 

So: 

 𝑀𝑥 = 𝐹𝑦𝑟𝑧
 ′ − 𝐹𝑧𝑟𝑦

 ′ (2.15) 

 𝑀𝑦 = 𝐹𝑧𝑟𝑥
 ′ (2.16) 

 𝑀𝑧 = −𝐹𝑦𝑟𝑥
 ′ (2.17) 

For vector 𝑟′⃗⃗  ⃗: 

 𝑟𝑥
 ′ = −√𝑙7

  2 − 𝑟𝑐  2 (2.18) 

 𝑟𝑦
 ′ = −𝑟𝑐 cos(𝜔𝑡) (2.19) 

 𝑟𝑧 = −𝑟𝑐 sin(𝜔𝑡) (2.20) 
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where, 

- 𝑙7
 , is the Jaw Shaft length 

2.1.2 2D Analysis 

Since point A moves on xz plane in this simplified version, then point A’ for the next piston-rod moves 

on xy plane, since it has a phase difference of 90° from point A’s piston-rod. Therefore, the whole 

phenomenon can be separated to two identical 2D ones, with a phase difference of 𝜋/2, starting with 

a 2D analysis of the movement on xz plane, for only 1 piston-rod. 

Using the kinematic analysis mentioned in [31], first the mechanism is sketched and modelled with 

2D links (Fig. 19). Then the vector equivalent of the 2D link model is created (Fig. 19) from which the 

loop closure equation is derived (Eq. 2.21). 

 
Figure 19: 2D mechanism kinematic model and link equivalent. 

- 𝑟3, is the length of link 3 (rod) 

- 𝑟4, is the distance of the piston from the chamber end 

- 𝑟5, is the vertical distance of the piston from the disc center 

- 𝑟6, is the horizontal distance of the chamber end from the disc center 

- 𝜃3, is the link 3 angle around global z axis 

- 𝜃4 = 𝜋, is the link 4 angle around global z axis 

- 𝜃5 =
3𝜋

2
, is the link 5 angle around global z axis 

- 𝜃6 = 0, is the link 6 angle around global z axis 

Position Analysis 

The Loop Closure Equation of this mechanism model is: 

𝑟2 [
cos(𝜃2)

sin(𝜃2)
] + 𝑟3 [

cos(𝜃3)

sin(𝜃3)
] + 𝑟4 [

cos(𝜃4)

sin(𝜃4)
] + 𝑟5 [

cos(𝜃5)

sin(𝜃5)
] + 𝑟6 [

cos(𝜃6)

sin(𝜃6)
] = 0 

 => 𝑟4 [
cos(𝜃4)

sin(𝜃4)
] + 𝑟3 [

cos(𝜃3)

sin(𝜃3)
] = 𝑏 [

cos(𝑎)

sin(𝑎)
] (2.21) 
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where, 

- 𝑏 = √(r2cos(𝜃2) + r5cos(𝜃5) + r6cos(𝜃6))2 + (r2sin(𝜃2) + r5sin(𝜃5) + r6sin(𝜃6))2  

- 𝑎 = atan (
r2sin(𝜃2)+r5sin(𝜃5)+r6sin(𝜃6)

r2cos(𝜃2)+r5cos(𝜃5)+r6cos(𝜃6)
)  

The unknows here are 𝜃3 and 𝑟4, so according to Vinogradov the necessary equations are provided in 

Case 2 [31]. Therefore: 

 𝑟4 = 𝑏 ∗ cos(𝑎 − 𝜃4) − √𝑟3
 2 − 𝑏2 ∗ sin2(𝑎 − 𝜃4) (2.22) 

 sin(𝜃3 − 𝜃4) =
𝑏 ∗ sin(𝑎 − 𝜃4)

𝑟3
= 𝑐 (2.23) 

 cos(𝜃3 − 𝜃4) =
𝑏 ∗ cos(𝑎 − 𝜃4) − 𝑟4

𝑟3
= 𝑑 (2.24) 

 
𝜃3 = 𝜃4 + 𝑎𝑡𝑎𝑛2(𝑐, 𝑑) (2.25) 

Velocity Analysis 

Differentiating the LCE, the unknowns 𝜔3, which is the angular velocity of link 3, and 𝑣4, which is 

the velocity of link 4 or of the piston, are encountered. The new LCE: 

 𝑣4 [
cos(𝜃4)

sin(𝜃4)
] + 𝑟3 [

−sin(𝜃3)

cos(𝜃3)
]𝜔3 = [

𝑏�̇�
𝑏�̇�
] (2.26) 

where,  

- 𝑏�̇� = 𝑟2 sin(𝜃2)𝜔2 

- 𝑏�̇� = −𝑟2 cos(𝜃2)𝜔2 

- 𝜔2 = −𝜃
𝜋

180
sin(𝜔𝑡)𝜔 

Using the equations mentioned in Case 2, the unknowns are given by the following equations: 

 𝜔3 =
−𝑏�̇� sin(𝜃4) + 𝑏�̇� cos(𝜃4)

𝑟3 cos(𝜃3 − 𝜃4)
 (2.27) 

 𝑣4 =
𝑏�̇� cos(𝜃3) + 𝑏�̇� sin(𝜃3)

cos(𝜃3 − 𝜃4)
 (2.28) 

Acceleration Analysis 

The unknowns now are 𝑎𝑟3, the angular acceleration of link 3 and 𝑎4, the linear acceleration of link 4 

or piston. 

Directly differentiating the expressions of 𝜔3 and 𝑣4: 

 𝑎𝑟3 =
−𝑏�̈� sin(𝜃4) + 𝑏�̈� cos(𝜃4) + 𝑟3 sin(𝜃3 − 𝜃4)𝜔3

 2

𝑟3 𝑐𝑜𝑠(𝜃3 − 𝜃4)
 (2.29) 
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 𝑎4 =
(𝑏�̈� + 𝑏�̇�𝜔3) cos(𝜃3) + (𝑏�̈� − 𝑏�̇�𝜔3) sin(𝜃3) + 𝑣4𝜔3 sin(𝜃3 − 𝜃4)

𝑐𝑜𝑠(𝜃3 − 𝜃4)
 (2.30) 

where,  

- 𝑏�̈� = 𝑟2 cos(𝜃2)𝜔2
 2 + 𝑟2 sin(𝜃2) 𝑎2 

- 𝑏�̈� = 𝑟2 sin(𝜃2)𝜔2
 2 − 𝑟2 cos(𝜃2) 𝑎2 

- 𝑎2 = −𝜃
𝜋

180
𝑐𝑜𝑠(𝜔𝑡)𝜔2 

Dynamic Analysis 

For the dynamic analysis, the free body diagram for each link is made, and then d’Alembert’s principle 

is applied to create a system of equations in order to find all forces acting on the mechanism, and also 

the output force of the mechanism, piston force 𝐹4. The input on this 2D simplified model is considered 

as the torque 𝑀2 = 𝑀𝜓, acting on the center of the disc. 

A Coefficient of Mass (COM) is introduced, such that when 𝐶𝑂𝑀 = 0 , no inertia forces are included 

while the opposite holds true for 𝐶𝑂𝑀 = 1. This enables to first solve the system for  𝐶𝑂𝑀 = 0, and 

verify the propriety of the model. 

Link 2: 

 

 

 

 

 𝐹12,𝜉 + 𝑃2,𝜉 − 𝐹32𝜉 = 0 (2.31) 

 𝐹12,𝜂 + 𝑃2,𝜂 − 𝐹32𝜂 = 0 (2.32) 

 𝑀2 − 𝐹12,𝜂
𝑙2
2
− 𝐹32,𝜂

𝑙2
2
= 0 (2.33) 

 

 

 

Link 3: 

 

 

 

 𝐹23,𝜉 + 𝑃3,𝜉 − 𝐹43𝜉 = 0 (2.34) 

 𝐹23,𝜂 − 𝑃3,𝜂 − 𝐹43𝜂 = 0 (2.35) 

 𝑀3,𝐼 − 𝐹23,𝜂
𝑙3
2
− 𝐹43,𝜂

𝑙3
2
= 0 (2.36) 
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Link 4: 

 

 

 −𝐹4,𝜉 − 𝑃4,𝜉 + 𝐹34𝜉 = 0 (2.37) 

 

 𝐹34,𝜂 + 𝐹14𝜂 = 0 (2.38) 

 

 

 

Equating the forces between the links: 

𝐹23⃗⃗⃗⃗⃗⃗ = 𝐹32⃗⃗⃗⃗⃗⃗  

 
=> 𝐹23,𝜉 [

cos(𝜃3)

sin(𝜃3)
] + 𝐹23,𝜂 [

−sin(𝜃3)

cos(𝜃3)
] − 𝐹32𝜉 [

cos(𝜃2)

sin(𝜃2)
] − 𝐹32𝜂 [

−sin(𝜃2)

cos(𝜃2)
] = 0 

(2.39) 

𝐹43⃗⃗ ⃗⃗  ⃗ = 𝐹34⃗⃗⃗⃗⃗⃗  

 
=> −𝐹43,𝜉 [

cos(𝜃3)

sin(𝜃3)
] − 𝐹43,𝜂 [

−sin(𝜃3)

cos(𝜃3)
] + 𝐹34𝜉 [

cos(𝜃4)

sin(𝜃4)
] + 𝐹34𝜂 [

−sin(𝜃4)

cos(𝜃4)
] = 0 

(2.40) 

Formulating the 12 equations above a linear system stated in Eq 2.41 is created. 

 [𝐴] ∗ 𝐹 = [𝐵] (2.41) 

The inertial forces are calculated with Eq. 2.42. 

 𝑃𝑖,𝜉 [
cos(𝜃𝑖)

sin(𝜃𝑖)
]+𝑃𝑖,𝜂 [

−sin(𝜃𝑖)

cos(𝜃𝑖)
] = [

𝑃𝑖,𝑥
𝑃𝑖,𝑦

] = [
−𝐶𝑂𝑀 ∗𝑚𝑖𝑥�̈�
−𝐶𝑂𝑀 ∗ 𝑚𝑖𝑦�̈�

] (2.42) 

where, 

- 𝑚𝑖, is the mass of link i 

- 𝑥�̈�, 𝑦�̈�, are the c.g accelerations of link i in direction of global axis x and y respectively 

The x and y c.g positions: 

 𝑟𝑐𝑔,𝑥2 =
𝑟2
2
cos(𝜃2) (2.43) 

 𝑟𝑐𝑔,𝑦2 =
𝑟2
2
sin(𝜃2) (2.44) 

 𝑟𝑐𝑔,𝑥3 = 𝑟2 cos(𝜃2) +
𝑟3
2
cos(𝜃3) = 2𝑟𝑐𝑔,𝑥2 +

𝑟3
2
cos(𝜃3) (2.45) 

 𝑟𝑐𝑔,𝑦3 = 𝑟2 sin(𝜃2) +
𝑟3
2
sin(𝜃3) = 𝑟𝑐𝑔,𝑦2 +

𝑟3
2
sin(𝜃3) (2.46) 
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The c.g accelerations occur after differentiating the Eq. 2.43 – 2.46 2 times, and are shown below (Eq. 

2.47 – 2.50). 

 𝑎𝑐𝑔,𝑥2 = −
𝑟2
2
(cos(𝜃2)𝜔2

 2 + sin(𝜃2) 𝛼𝛾2) (2.47) 

 𝑎𝑐𝑔,𝑦2 =
𝑟2
2
(− sin(𝜃2)𝜔2

 2 + cos(𝜃2) 𝛼𝛾2) (2.48) 

 𝑎𝑐𝑔,𝑥3 = 2𝑎𝑐𝑔,𝑥2 −
𝑟3
2
(cos(𝜃3)𝜔3

 2 + sin(𝜃3) 𝛼𝛾3) (2.49) 

 𝑎𝑐𝑔,𝑦3 = 2𝑎𝑐𝑔,𝑦2 +
𝑟3
2
(− sin(𝜃3)𝜔3

 2 + cos(𝜃3) 𝛼𝛾3) (2.50) 

Also, the inertial torque of link 3: 

 𝑀3,𝐼 = −𝐶𝑂𝑀 ∗ 𝐼3𝛼𝛾3 (2.51) 

where, 

- 𝐼3, is the moment of inertia of link 3 

the inertial torque of link 2 is not included because its motion is rotational and therefore only either 

the linear or the rotational inertial forces or torque should be used. In this case, the linear inertial forces 

are used. 

2.1.3 3D Analysis 

For the 3-dimensional analysis,  the mechanism’s vectorized equivalent is the same as in 2D analysis, 

with the addition of the movement in the yz plane (Fig. 20). Since movement in xy plane is identical 

to that in xz, with a time difference of 𝜋/2, the kinematic behavior is analyzed only for one of the two, 

while now also movement outside of the original motion’s plane is incorporated.  

 
Figure 20: 3D Mechanism kinematic model link equivalent of yz plane motion. 

- 𝜃2,𝑦, is the link 2 angle around global y axis 

- 𝜃3,𝑦, is the link 3 angle around global y axis 
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Position Analysis 

The Loop Closure Equation of this mechanism model is: 

𝑟2 [

cos(𝜃2,𝑦) cos(𝜃2)

cos(𝜃2,𝑦) sin(𝜃2)

sin(𝜃2,𝑦)

] + 𝑟3 [

cos(𝜃3,𝑦) cos(𝜃3)

cos(𝜃3,𝑦) sin(𝜃3)

sin(𝜃3,𝑦)

] + 𝑟4 [
cos(𝜃4)

sin(𝜃4)
0

] + 𝑟5 [
cos(𝜃5)

sin(𝜃5)
0

] + 𝑟6 [
cos(𝜃6)

sin(𝜃6)
0

] = 0 

 => 𝑟4 [
cos(𝜃4)

sin(𝜃4)
0

] + 𝑟3 [

cos(𝜃3,𝑦) cos(𝜃3)

cos(𝜃3,𝑦) sin(𝜃3)

sin(𝜃3,𝑦)

] = 𝑏 [

cos(𝑎𝑦) cos(𝑎)

cos(𝑎𝑦) sin(𝑎)

sin(𝑎𝑦)

] = [

𝑏𝑥
𝑏𝑦
𝑏𝑧

] (2.52) 

where, 

- 𝑏𝑥 = −𝑟2 cos(𝜃2,𝑦) cos(𝜃2) − 𝑟5 cos(𝜃5) − 𝑟6 cos(𝜃6) 

- 𝑏𝑦 = −𝑟2 cos(𝜃2,𝑦) sin(𝜃2) − 𝑟5 sin(𝜃5) − 𝑟6 sin(𝜃6) 

- 𝑏𝑧 = −sin(𝜃2,𝑦) 

- 𝑏 = √𝑏𝑥  2 + 𝑏𝑦  2 + 𝑏𝑧  2 

- 𝑎 = 𝑎𝑡𝑎𝑛2(𝑏𝑦, 𝑏𝑥) 

- 𝑎𝑦 = 𝑎𝑡𝑎𝑛2(𝑏𝑧 , 𝑏𝑦) 

The unknows here are 𝜃3 and 𝑟4, so according to [31]  the problem is described in Case 2. Angles 𝜃2,𝑦 , 

𝜃3,𝑦 can be calculated using the global position vector of point A  to describe 𝜃3 and link 3 coordinates, 

resulting in the expressions shown in Eq. 2.53 – 2.55. Angle’s 𝜃3 expression credibility was evaluated 

using the 2D resulting one, and was found that its correct. It will only be used though to calculate  𝜃3,𝑦, 

in order to simplify the expression of the LCE. 

 𝜃3 = asin (
𝑟5 − 𝑟2 𝑠𝑖𝑛(𝜃2)

𝑟3
) (2.53) 

 𝜃2,𝑦 = atan 2 (𝑟𝐴𝑧 , 𝑟𝐴𝑦) (2.54) 

 𝜃3,𝑦 = atan 2(−𝑟𝐴𝑧, 𝑟3 cos(𝜃3)) (2.55) 

Since expressions for the 3D analysis unknowns are not included in [31], the same principle used to 

derive the expressions for the 2D analysis is followed. Eq. 2.52 is multiplied from the left with vector 

𝑣1⃗⃗⃗⃗ = [− sin(𝜃4) , cos(𝜃4) , 0], perpendicular to 𝑟4⃗⃗⃗  , such that: 

𝑟3[− sin(𝜃4) cos(𝜃4) 0] [

cos(𝜃3,𝑦) cos(𝜃3)

cos(𝜃3,𝑦) sin(𝜃3)

sin(𝜃3,𝑦)

] = 𝑏[− sin(𝜃4) cos(𝜃4) 0] [

cos(𝑎𝑦) cos(𝑎)

cos(𝑎𝑦) sin(𝑎)

sin(𝑎𝑦)

] 

 => 𝑟3 cos(𝜃3,𝑦) sin(𝜃3 − 𝜃4) = 𝑏 cos(𝑎𝑦) sin(𝑎 − 𝜃4) (2.56) 
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Then, Eq. 2.52 is multiplied from the left with vector 𝑣2⃗⃗⃗⃗ = [cos(𝜃4) , sin(𝜃4) , 0], parallel to 𝑟4⃗⃗⃗  , such 

that: 

 𝑟4 + 𝑟3 cos(𝜃3,𝑦) cos(𝜃3 − 𝜃4) = 𝑏 cos(𝑎𝑦) cos(𝑎 − 𝜃4) (2.57) 

Raising Eq. 2.56 and 2.57 to the power of 2, and adding them together results in: 

(𝑟3 cos(𝜃3,𝑦))
2
= (𝑏 cos(𝑎𝑦) sin(𝑎 − 𝜃4))

2
+ (𝑏 cos(𝑎𝑦) cos(𝑎 − 𝜃4) − 𝑟4)

2
 

 => 𝑟4 = 𝑏 cos(𝑎𝑦) cos(𝑎 − 𝜃4) ∓ √(𝑟3 cos(𝜃3,𝑦))
2
− (𝑏 cos(𝑎𝑦) sin(𝑎 − 𝜃4))

2
 (2.58) 

And for 𝜃3, solving the Rq. 2.56 and 2.57 for sin(𝜃3 − 𝜃4) and cos(𝜃3 − 𝜃4) respectively, results in: 

 𝜃3 = 𝜃4 + 𝑎𝑡𝑎𝑛2(
𝑏 cos(𝑎𝑦) sin(𝑎 − 𝜃4)

𝑟3 cos(𝜃3,𝑦)
,
𝑏 cos(𝑎𝑦) cos(𝑎 − 𝜃4) − 𝑟4

𝑟3 cos(𝜃3,𝑦)
) (2.59) 

Velocity Analysis 

Differentiating the LCE, the unknowns 𝜔3, which is the angular velocity of link 3, and 𝑣4, which is 

the velocity of link 4 or of the piston, are encountered. Also, 𝜔2𝑦 and 𝜔3𝑦, angular velocities of link 

2 and 3 around global y axis are encountered. For the latter, either expressions that match the resulting 

behavior of 𝜃2,𝑦 and 𝜃3,𝑦 need to be found, or the data obtained for these angles during Position 

Analysis to be differentiated. The second option was followed, so the new LCE: 

 𝑣4 [
cos(𝜃4)

sin(𝜃4)
0

] + 𝑟3 [

− cos(𝜃3,𝑦) sin(𝜃3)

cos(𝜃3,𝑦) cos(𝜃3)

sin(𝜃3,𝑦)

]𝜔3 + 𝑟3 [

− sin(𝜃3,𝑦) cos(𝜃3)

− sin(𝜃3,𝑦) sin(𝜃3)

cos(𝜃3,𝑦)

]𝜔3𝑦 = [

𝑏�̇�
𝑏�̇�

𝑏�̇�

] (2.60) 

where,  

- 𝑏�̇� = 𝑟2 (sin(𝜃2,𝑦) cos(𝜃2)𝜔2𝑦 + cos(𝜃2,𝑦) sin(𝜃2)𝜔2) 

- 𝑏�̇� = 𝑟2 (sin(𝜃2,𝑦) sin(𝜃2)𝜔2𝑦 − cos(𝜃2,𝑦) cos(𝜃2)𝜔2) 

- 𝑏�̇� = −cos(𝜃2,𝑦)𝜔2𝑦 

Multiplying Eq. 2.60 with 𝑣1⃗⃗⃗⃗  from the left, results in: 

 𝜔3 =
𝑟3𝜔3𝑦 sin (𝜃3𝑦) sin(𝜃3 − 𝜃4) − 𝑏�̇� sin(𝜃4) + 𝑏�̇� cos(𝜃4)

𝑟3 c𝑜s (𝜃3𝑦) cos(𝜃3 − 𝜃4)
 (2.61) 

Multiplying Eq. 2.60 with 𝑣3⃗⃗⃗⃗ = [− cos(𝜃3) , sin(𝜃3) , 0], perpendicular to 𝑟3⃗⃗  ⃗, results in: 

 𝑣4 =
𝑣3𝜔3𝑦 sin (𝜃3𝑦) + 𝑏�̇� cos(𝜃3) + 𝑏�̇� sin(𝜃3)

cos(𝜃3 − 𝜃4)
 (2.62) 
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Acceleration Analysis 

The unknowns now are 𝑎𝑟3, the angular acceleration of link 3 and 𝑎4, and the linear acceleration of 

link 4 or piston. Also, unknown is the angular accelerations of link 3 and 4, 𝑎2𝑦 and 𝑎3𝑦, around global 

y axis. To calculate them the same principle as in velocity analysis was followed, by differentiating 

the data obtained for 𝜔2𝑦 and 𝜔3𝑦.  Directly differentiating the expressions of 𝜔3 and 𝑣4, results in: 

 

𝑎𝑟3 =
1

𝑟3 c𝑜s (𝜃3𝑦) cos(𝜃3 − 𝜃4)
(𝑟3 [2𝜔3𝜔3𝑦 sin (𝜃3𝑦) c𝑜s(𝜃3 − 𝜃4)

+ c𝑜s (𝜃3𝑦) si𝑛(𝜃3 − 𝜃4) (𝜔3
  2 + 𝜔3𝑦

  2)

+ 𝑎3𝑦 sin (𝜃3𝑦) si𝑛(𝜃3 − 𝜃4)] − 𝑏�̈� sin(𝜃4) + 𝑏�̈� cos(𝜃4)) 

(2.63) 

 
𝑎4 =

1

𝑐𝑜𝑠(𝜃3 − 𝜃4)
(𝑣4𝜔3 si𝑛(𝜃3 − 𝜃4) + 𝑟3 (𝑎3𝑦 sin (𝜃3𝑦) + 𝜔3𝑦

  2 c𝑜s (𝜃3𝑦))

+ 𝑏�̈� c𝑜s(𝜃3) + 𝑏�̈� si𝑛(𝜃3) − 𝑏�̇�𝜔3 si𝑛(𝜃3) + 𝑏�̇�𝜔3 c𝑜s(𝜃3)) 

(2.64) 

where,  

- 𝑏�̈� = 𝑟2 (cos(𝜃2,𝑦) cos(𝜃2) 𝜔2𝑦
  2 + sin(𝜃2,𝑦) cos(𝜃2) 𝑎2𝑧 − 2 sin(𝜃2,𝑦) sin(𝜃2)𝜔2𝜔2𝑧 +

                     + cos(𝜃2,𝑦) cos(𝜃2)𝜔2
  2 + cos(𝜃2,𝑦) sin(𝜃2) 𝑎2) 

- 𝑏�̈� = 𝑟2 (cos(𝜃2,𝑦) sin(𝜃2)𝜔2𝑦
  2 + sin(𝜃2,𝑦) sin(𝜃2) 𝑎2𝑧 − 2 sin(𝜃2,𝑦) cos(𝜃2)𝜔2𝜔2𝑧 +

                     + cos(𝜃2,𝑦) sin(𝜃2) 𝜔2
  2 − cos(𝜃2,𝑦) cos(𝜃2) 𝑎2) 

- 𝑏�̈� = sin(𝜃2,𝑦)𝜔2𝑦
  2 − cos(𝜃2,𝑦) 𝑎2𝑦 

Dynamic Analysis 

For links 2, 3 and 4, simply 2 equations to each link’s 2D dynamic analysis were added, corresponding 

to equilibrium along ψ axis and torques around η axis. 

Link 2: 

 𝐹12,𝜓 + 𝑃2,𝜓 − 𝐹32𝜓 = 0 (2.65) 

 𝑀12,𝜂 + 𝐹12,𝜓
𝑙2
2
+ 𝐹32,𝜓

𝑙2
2
+ 𝐹12,𝜓

𝑙2
2
= 0 (2.66) 

Link 3: 

 𝐹23,𝜓 + 𝑃3,𝜓 − 𝐹43𝜓 = 0 (2.67) 

 𝐹23,𝜓
𝑙3
2
+ 𝐹43,𝜓

𝑙3
2
= 0 (2.68) 

Link 4: 

 𝐹34,𝜓 − 𝐹14𝜓 = 0 (2.69) 
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Equating the forces between the links: 

𝐹23⃗⃗⃗⃗⃗⃗ = 𝐹32⃗⃗⃗⃗⃗⃗  

 

=> 𝐹23,𝜉

[
 
 
 
 cos (𝜃3𝑦) cos(𝜃3)

cos (𝜃3𝑦) sin(𝜃3)

− sin (𝜃3𝑦) ]
 
 
 
 

+ 𝐹23,𝜂 [
−sin(𝜃3)

cos(𝜃3)
0

] + 𝐹23,𝜓

[
 
 
 
 sin (𝜃3𝑦) cos(𝜃3)

sin (𝜃3𝑦) sin(𝜃3)

𝑐𝑜𝑠 (𝜃3𝑦) ]
 
 
 
 

− 𝐹32𝜉

[
 
 
 
 cos (𝜃2𝑦) cos(𝜃2)

cos (𝜃2𝑦) sin(𝜃2)

− sin (𝜃2𝑦) ]
 
 
 
 

− 𝐹32𝜂 [
−sin(𝜃2)

cos(𝜃2)
0

]

− 𝐹32,𝜓

[
 
 
 
 sin (𝜃2𝑦) cos(𝜃2)

sin (𝜃2𝑦) sin(𝜃2)

𝑐𝑜𝑠 (𝜃2𝑦) ]
 
 
 
 

= 0 

(2.70) 

𝐹43⃗⃗ ⃗⃗  ⃗ = 𝐹34⃗⃗⃗⃗⃗⃗  

 

=> −𝐹43,𝜉

[
 
 
 
 cos (𝜃3𝑦) cos(𝜃3)

cos (𝜃3𝑦) sin(𝜃3)

− sin (𝜃3𝑦) ]
 
 
 
 

+ 𝐹43,𝜂 [
−sin(𝜃3)

cos(𝜃3)
0

] − 𝐹43,𝜓

[
 
 
 
 sin (𝜃3𝑦) cos(𝜃3)

sin (𝜃3𝑦) sin(𝜃3)

𝑐𝑜𝑠 (𝜃3𝑦) ]
 
 
 
 

+ 𝐹34𝜉 [
cos(𝜃4)

sin(𝜃4)
0

] − 𝐹34𝜂 [
−sin(𝜃4)

cos(𝜃4)
0

] + 𝐹34,𝜓 [
0
0
1
] = 0 

(2.71) 

The inertial forces acting on ψ axis as well as torques around η axis were considered negligible, as was 

evident that there is little to no movement either towards ψ axis or around η axis. 

The equations involved in the system stated in Eq. 2.41 are now 19. 

After obtaining the output force of cylinder 1, the output force for each cylinder can be calculated. just 

by time shifting the results for cylinder 1 accordingly. For cylinder 3, the shift is 180 degrees, as when 

cylinder 1 is in the far-left position, beginning to push fluid, cylinder 3 is in the far right, beginning to 

suck fluid. Cylinders 2 and 4, are shifted by 90 and 270 degrees respectively. 

The Jaw Shaft is able to vary its angle due to the centrifugal mass attached to it. To maintain its rotary 

motion at a specific angle 𝜃, sufficient centripetal force from the disc must balance the centrifugal 

force acting on the Jaw Shaft. Torque created by the centrifugal force is always opposite to the torque 

provided to the mechanism, and since the direction of this torque is always changing, its profile was 

modeled as two individual torques acting on y and z axis respectively. 

When the mechanism is at its initial position, torque from the centrifugal force is maximum around z 

axis, and after the Jaw shaft rotates 90 degrees, its maximum around y axis. This can be seen in Fig. 

21.  
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(a)                                                                         (b) 

Figure 21: a) Beginning position of the mechanism and b) Position after 180 degrees, displaying the 

centrifugal force acting on the Jaw shaft. 

The expressions of the two torques that satisfy what was previously mentioned are as follows: 

 𝑀𝑐𝑝,𝑧 = 𝑀𝑐𝑝 cos(𝜔𝑡) (2.72) 

 𝑀𝑐𝑝,𝑦 = −𝑀𝑐𝑝 sin(𝜔𝑡) (2.73) 

where,  

- 𝑀𝑐𝑝 = 𝑚𝑐𝑝𝜔
2𝑟𝑐 ∗ 𝑟𝑥

′ = 𝑚𝑐𝑝𝜔
2𝑙7
  2 sin(𝜃) cos(𝜃), is the centrifugal torque norm 

During operation, power is transmitted to the fluid only during the first half of piston movement, while 

it has positive velocity. While the piston is returning, no external force acts on it but the disc needs to 

provide sufficient torque, 𝑀𝑟, to balance the inertial forces for both returning and compressing piston-

rod. Therefore, for each couple of cylinders, this torque would need to be subtracted from the input 

torque 𝑀𝑦 or 𝑀𝑧, in order to solve for the actual torque creating the piston force. 

This is done by solving the already created system from the dynamic analysis, but changing the output 

force to 0 and considering the input torque unknown. Then, the necessary torque  𝑀𝑟 is obtained. 

The new curve for the torque that needs to be provided at either cylinder couple showed not only a 

magnitude change but also a phase change, with torque needed sooner than provided. This means that 

at zero velocity positions, far-left and far-right, the mechanism has insufficient torque to maintain 

motion and becomes unstable, even without a load, due to the additional centrifugally induced torque 

that tends to increase the displacement angle θ indefinitely. This torque can’t be substracted from the 

original torque provided as previously mentioned. What needs to be done is the following. 

For this mechanism to work, an additional element is needed to apply sufficient torque at the extreme 

positions. Best suited element for such case, is a torsion spring, since the more it gets displaced the 

higher the torque acting as a reaction. Additionally, it’s an element that doesn’t dissipate energy but 

rather stores it, and so it won’t compromise the efficiency of the CVT. 
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The resulting forces and velocities on each piston, result in pressures and flow rates at the fluid, which 

are given in Eqs. 2.74 – 2.75 respectively. 

 𝑝𝑖 =
𝐹𝑖
𝐴

 (2.74) 

 𝑄𝑖 = 𝑢𝑖 ∗ 𝐴 (2.75) 

where, 

- 𝐴 =
𝜋𝐷𝑝

  2

4
, is the piston area 

- 𝐷𝑝, is the piston diameter 

2.2 Pelton Turbine 

The functionality of a Pelton turbine is governed by Eqs. 2.76 – 2.77. 

 
Figure 22: Velocity triangles at inlet and outlet of Pelton turbine [source: web]. 

 𝑣𝑟𝑖 = 𝑣𝑛𝑖 − 𝑢 (2.76) 

where, 

- 𝑖 = (1: 4), corresponds to the cylinder number 

- 𝑣𝑛𝑖 = 𝐶1𝑖, is the fluid speed at the exit of the nozzle and the inlet of the turbine 

- 𝑢 = 𝑈, is the linear speed of the buckets due to rotation of the turbine 

- 𝑣𝑟𝑖 = 𝑤1𝑖, is the relative velocity of the fluid at the inlet of the turbine 

 𝑣𝑤𝑖 = 𝑣𝑟𝑖 cos(𝜑) − 𝑢 (2.77) 

where, 

- 𝜑, is the angle of deflection of the fluid, describing its exiting direction 

- 𝑣𝑤𝑖, is the horizontal component of fluid velocity at outlet, 𝐶2𝑖 
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From Eqs 2.76 – 2.77 and the velocity triangles in Fig. 22, it is deduced that if 𝑣𝑛𝑖 < 𝑢, then 𝑣𝑟𝑖 < 0, 

which means that the fluid can’t reach the cups of the turbine for those velocities. Therefore, the 

following condition is applied to the above in order to tackle the apparent slowing of the turbine. 

 𝑣𝑟𝑖 = {
𝑣𝑛𝑖 − 𝑢, 𝑣𝑛𝑖 > 𝑢

    0,                  𝑣𝑛𝑖 < 𝑢 
 (2.78) 

The force acting on the buckets: 

 𝐹𝑖 = 𝜌𝑄𝑖(𝑣𝑛𝑖 + 𝑣𝑤𝑖) (2.79) 

where,  

- 𝜌, is the density of the fluid 

- 𝑄𝑖, is the flow rate of the fluid 

When 𝑣𝑛𝑖 < 𝑢, the force should be zero. As a result, the nozzle velocities are converted such that: 

 𝑣𝑛𝑖 = {
𝑣𝑛𝑖, 𝑣𝑛𝑖 > 𝑢

     0,          𝑣𝑛𝑖 < 𝑢 
 (2.80) 

This way, its ensured that acting force will be zero, given that: 

 𝐹𝑖 = 𝜌𝑄𝑖(𝑣𝑛𝑖 + 𝑣𝑤𝑖) = 𝜌𝑄𝑖(𝑢 − 𝑢) = 0 (2.81) 

The torque produced at the shaft of the Pelton: 

 𝑀𝑖 = 𝐹𝑖
𝐷

2
 (2.82) 

where, 

- 𝐷, is the diameter of the Pelton turbine runner 

The total torque produced at the shaft of the Pelton: 

 𝑀𝑝𝑒𝑙𝑡𝑜𝑛 =∑𝑀𝑖

4

𝑖=1

 (2.83) 

The fluid exits the CVT and enters the Pelton turbine via 4 different nozzles, corresponding to each 

cylinder. This is necessary because as mentioned in the beginning of this chapter, Pelton is an impulse 

turbine, and therefore only exploits the kinetic energy of the entering fluid.  

The fluid however, has both kinetic and potential energy, resulting in a need to also convert the latter 

to kinetic energy. A fixed neck diameter nozzle will not work well due to the fact that the incoming 

fluid has a varying velocity and flow rate. A typical nozzle used in Pelton turbine applications is shown 

in Fig. 23. 
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Figure 23: Typical nozzle injector of Pelton turbine [source: web]. 

The spear typically controls the flow and inlet velocity according to the energy needs, the available 

pressure difference and to keep the runner at its optimal speed.  In each cycle of operation, the inlet 

velocity usually doesn’t change.  For a CVT though, the inlet velocities vary significantly, and thus 

resulting in a more demanding operation of the spear. 

Ideally, in each cycle all 4 nozzles would be able to vary their neck diameter dynamically. Since this 

is not easily possible, and it would momentarily result in a need of very small diameters, the nozzles 

are expected to maintain a certain neck diameter for the duration of a cycle of operation. Depending 

on the pressure difference, the nozzles will change the surface ratio between the neck surface and the 

piston surface, to best utilize that difference. 

The mechanism at its design points is specified such that apart from energy losses, most potential 

energy is converted to kinetic energy, with the appropriate surface ratio being enforced by the spear. 

For 1 nozzle, with constant velocity v, the optimum linear velocity for the Pelton turbine is 𝑢 = 𝑣/2. 

This comes as result of demanding the derivative of Pelton efficiency to be 0 and thus obtaining the 

value that corresponds to maximum efficiency. 

Pelton efficiency is described as: 

 𝜂𝑝 =
𝑀𝜔

𝑝𝑄
 (2.84) 

where, 

- 𝑀, is the torque produced at the shaft of the turbine 

- 𝜔, is the turbine angular velocity 

- 𝑝, is the total pressure of the fluid and 

- 𝑄, is the flow rate of the fluid 
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This expression can be simplified by substituting the expressions of each element, such that: 

𝜂𝑝 =
𝐹
𝐷
2 𝜔

𝜌
2 𝑣𝑛

  2𝑄
=
𝑢𝜌𝑄(𝑣𝑛 + 𝑣𝑤)

𝜌
2 𝑣𝑛

  2𝑄
=
𝑢(𝑣𝑛 + (𝑣𝑛 − 𝑢) cos(𝜑) − 𝑢)

1
2 𝑣𝑛

  2
 

=> 𝜂𝑝 =
(1 + cos(𝜑))𝑣𝑛

  2𝑢 − (1 + cos(𝜑))𝑢2𝑣𝑛
1
2 𝑣𝑛

  2
  

 => 𝜂𝑝 = (1 + cos(𝜑))
𝑣𝑛𝑢 − 𝑢

2

1
2 𝑣𝑛

 (2.85) 

If the optimal value for u is now substituted, then: 

 𝜂𝑝 =
(1 + cos(𝜑))

2
 (2.86) 

Meaning that maximum efficiency depends only on deflection angle. 

For 4 nozzles, the expression of the Pelton efficiency is too complicated and therefore is better to 

differentiate the output power 𝑃𝑜𝑢𝑡𝑝𝑢𝑡, since the denominator of 𝜂𝑝, doesn’t have a u term. 

𝑃𝑜𝑢𝑡𝑝𝑢𝑡 =∑𝑀𝑖

4

𝑖=1

 

 
=> 𝑃𝑜𝑢𝑡𝑝𝑢𝑡 = 𝜌𝛢𝑛(1 + cos(𝜑))∑(𝑣𝑛𝑖

  2𝑢 − 𝑢2𝑣𝑛𝑖)

4

𝑖=1

 
(2.87) 

𝑑𝑃𝑜𝑢𝑡𝑝𝑢𝑡

𝑑𝑢
= 0 

=> (𝑣𝑛1
  2 − 2𝑣𝑛1𝑢) + (𝑣𝑛2

  2 − 2𝑣𝑛2𝑢) + (𝑣𝑛3
  2 − 2𝑣𝑛3𝑢) + (𝑣𝑛4

  2 − 2𝑣𝑛4𝑢) = 0 

 => 𝑢 =
1

2

𝑣𝑛1
  2 + 𝑣𝑛2

  2 + 𝑣𝑛3
  2 + 𝑣𝑛4

  2

𝑣𝑛1 + 𝑣𝑛2 + 𝑣𝑛3 + 𝑣𝑛4
 (2.88) 

Because the inlet velocities vary during each cycle, the target linear runner speed u is: 

 𝑢 =
1

2

𝑣𝑛1
  2 + 𝑣𝑛2

  2 + 𝑣𝑛3
  2 + 𝑣𝑛4

  2

𝑣𝑛1 + 𝑣𝑛2 + 𝑣𝑛3 + 𝑣𝑛4
 (2.89) 

To calculate the necessary surface ratio 𝐿𝐴, using the Bernoulli equation, the following form is reached:  
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𝜌

2
(
𝐴𝑝,𝑖

𝐴𝑛,𝑖
𝑣𝑝,𝑖)

2

=
𝜌

2
(𝐿𝐴,𝑖𝑣𝑝,𝑖)

2
= 𝑝𝑖 (2.90) 

Since there isn’t an expression of the actual pressure, a Least Squares optimization is conducted to best 

fit the approximate pressure profile, 𝑝𝑎𝑝𝑟𝑜𝑥,𝑖, to the actual one. 

To account for energy losses due to friction, turbulence, and shock waves, a velocity coefficient 𝑐𝑣 is 

used. The nozzle velocities will then be: 

 𝑣𝑛,𝑖
      ′ = 𝑐𝑣𝑣𝑛,𝑖 (2.91) 

The values for 𝑐𝑣, are obtained using Figure 24. 

 
Figure 24: Discharge Coefficient 𝑐𝑣 vs diameter ratio d/D [32]. 

At constant engine input or load demand, the output torque from Pelton is considered to be 𝑀𝑜𝑢𝑡 =

𝑀𝑝𝑒𝑙𝑡𝑜𝑛. The torque acting on the Pelton shaft will then be 𝑀𝑡 = 𝑀𝑝𝑒𝑙𝑡𝑜𝑛 −𝑀𝑜𝑢𝑡. 

As a first step to evaluate that the turbine is able to maintain the desired rotational speed, a Fourier 

transform is used to find an expression for Mt, to use in a Laplace transform of the dynamic equation 

of the turbine, so as to calculate the time response. Dissipation coefficient is not included. 

The dynamic equation: 

𝐽�̇� = 𝛭𝑡 

=> 𝐿 < 𝐽�̇� > = 𝐿 < 𝑀𝑡 > 

=> 𝐽(𝜔(𝑠)𝑠 − 𝜔(0)) = 𝛭𝑡(𝑠) 

 => 𝜔(𝑠) =
𝑀𝑡(𝑠) + 𝐽𝜔(0)

𝐽𝑠
 (2.92) 
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The inverse Laplace transform of this expression results in the time response of Pelton’s rotational 

speed, starting with 𝑀𝑡 = 𝑀𝑝𝑒𝑙𝑡𝑜𝑛, and at 𝜔(𝑡𝑟𝑎𝑛𝑠) =
𝑢𝑜𝑝𝑡

𝐷/2 
, transitioning to  

𝑀𝑡 = 𝑀𝑝𝑒𝑙𝑡𝑜𝑛 −𝑀𝑜𝑢𝑡 . 

2.3 Direct Dynamics 

The direct dynamics analysis aims to evaluate if what is stated in kinematics and inverse dynamics is 

feasible. A local coordinate system ξηψ is introduced, such that follows the movement of the rotation 

of the Jaw shaft, as shown in Fig. 25. This leads to a differential equation for 𝜃, by expressing the 

dynamics of the system around η axis, and thus obtain its time response. 

 
Figure 25: Local coordinate system used in direct dynamics analysis. 

The differential equation for 𝜃: 

 𝐽�̈� + 𝑐�̇� + 𝑘𝜃 = 𝛭𝑖𝑛𝑝𝑢𝑡
𝜂 +𝛭𝑐𝑝

𝜂 +𝑀𝐿
𝜂 (2.93) 
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where, 

- 𝛭𝑖𝑛𝑝𝑢𝑡
𝜂, is the η component of input torque  

- 𝛭𝑐𝑝
𝜂, is the η component of torque due to centripetal force, and 

- 𝑀𝐿
𝜂, is the η component of torque due to the load applied on the pistons 

To fully express the system’s dynamics, movement around ξ and ψ axis needs to be taken into account 

as well. Since 2 ball bearings are involved between the Jaw shaft and the disc, no rotation or torque is 

exchanged between them. Energy from the Jaw shaft is converted to heat inside the bearing’s walls. 

As for ψ axis, there is no movement around it as it follows the rotation of the Jaw shaft and any 

movement would mean that it flees the slider. This is crucial to the direct dynamics analysis as the 

differential equation regarding this movement yields the torque demanded by the disc, to balance 

inertial forces and most importantly, the load.  

Since there is no movement, the differential equation around ψ axis is actually an algebraic equation 

(Eq, 2.94), from which the needed torque 𝑀𝑟 is derived, as previously mentioned, and since 𝑀𝑖 torque 

is provided by the input shaft, that means there is a differential equation at play, involving these 2 

torques, which is the differential equation of 𝜔. So 𝜔 will not be constant until these two torques are 

equal. 

 0 = 𝛭𝑖𝑛𝑝𝑢𝑡
𝜓 +𝛭𝑐𝑝

𝜓 +𝑀𝐿
𝜓 (2.94) 

To obtain the transformation matrix for this new coordinate system the same principle as in Chapter 

2.1.1 is followed. Some of the angles of the direction cosines between the global and local axis change 

plane during a cycle of operation and therefore expressing them was challenging. The resulting matrix 

is shown in Eq. 2.95, while some of its components are shown separately in Eq. 2.96 – 2.97 for 

convenience. 

 𝑅𝐷 =

{
 
 

 
 cos(𝜃) 𝑎(𝜔𝑡) 𝑎 (𝜔𝑡 −

𝜋

2
)

cos (
𝜋

2
) cos(𝜔𝑡) cos (𝜔𝑡 −

𝜋

2
)

cos (
𝜋

2
− 𝜃) 𝛽(𝜔𝑡) 𝛽 (𝜔𝑡 −

𝜋

2
) }
 
 

 
 

 (2.95) 

 𝑎(𝜔𝑡) = cos

(

 
𝜋

2
− asin

(

 −
𝑠𝑖𝑛(𝜔𝑡)

√1 +
1

𝑡𝑎𝑛2(𝜃))

 

)

  (2.96) 

 𝛽(𝜔𝑡) = cos

(

 
 
 
𝜋

2
− asin

(

 
 
 

−
𝑠𝑖𝑛(𝜔𝑡)

√1 +
1

𝑡𝑎𝑛2 (
𝜋
2 − 𝜃))

 
 
 

)

 
 
 

 (2.97) 

The local torques of 𝛭𝑖𝑛𝑝𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑀𝑐𝑝

⃗⃗ ⃗⃗ ⃗⃗  ⃗ and 𝛭𝐿
⃗⃗ ⃗⃗  ⃗ can now be calculated. For the latter, expressing it in the 

global coordinate system is needed first. To do so, the following steps are taken.  
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Step 1: 

For each piston, disc angle 𝜃2 is first calculated (Eq. 2.98), with regard that the initial position of the 

mechanism is now −𝜋/2 displaced from the one in kinematic analysis, with the Jaw shaft towards 

negative z global axis. 

 𝜃2,𝑖 =
𝜋

2
− 𝜃 sin (𝜔𝑡 −

𝜋

2
(𝑖 − 1)) (2.98) 

Step 2: 

Differentiating Eq. 2.98, the disc angular velocity for each piston-rod pair is obtained (Eq. 2.99). 

 𝜔2,𝑖 = −𝜃 cos (𝜔𝑡 −
𝜋

2
(𝑖 − 1)) (𝜔 + 𝛼𝜔𝑡) − 𝑠𝑖𝑛 (𝜔𝑡 −

𝜋

2
(𝑖 − 1)) �̇� (2.99) 

where,  

- 𝛼𝜔 = �̇� 

Step 3: 

Each rod’s angle is calculated (Eq. 2.100). 

 𝜃3,𝑖 = asin (
𝐻 − 𝑟2 𝑠𝑖𝑛(𝜃2,𝑖)

𝑙3
) (2.100) 

Step 4: 

Differentiating Eq. 2.100, the angular velocity for each rod is obtained (Eq. 2.101). 

 
𝜔3,𝑖 =

−𝑟2 cos(𝜃2,𝑖)𝜔2,𝑖/𝑙3

√1 − (
𝐻 − 𝑟2 𝑠𝑖𝑛(𝜃2,𝑖)

𝑙3
)

2
 

(2.101) 

Step 5: 

The displacement of the pistons is calculated. First, the reference angles are denoted as  𝜃2,0 =
𝜋

2
 and 

𝜃3,0 = asin (
𝐻−𝑟2 𝑠𝑖𝑛(𝜃2,0)

𝑙3
), so that displacement is measured from the neutral position of the disc. 

Then, to calculate the displacements, Eq. 2.102 is used, formulated according to Fig. 26. 

 𝑥𝑖 = {
𝑟2 cos(𝜃2,𝑖) + 𝑙3(cos(𝜃3,0) − cos(𝜃3,𝑖)) ,   𝜃2,𝑖 < 𝜋/2

−𝑟2 sin(𝜃2,𝑖) + 𝑙3(cos(𝜃3,0) − cos(𝜃3,𝑖)) ,   𝜃2,𝑖 > 𝜋/2
 (2.102) 
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Step 6: 

The velocities of each piston are calculated (Eq. 2.103). 

 𝑣𝑖 = {
−𝑟2 sin(𝜃2,𝑖)𝜔2,𝑖 − 𝑙3 sin(𝜃3,𝑖)𝜔3,𝑖  ,   𝜃2,𝑖 < 𝜋/2

−𝑟2 cos(𝜃2,𝑖)𝜔2,𝑖 − 𝑙3 sin(𝜃3,𝑖)𝜔3,𝑖  ,   𝜃2,𝑖 > 𝜋/2
 (2.103) 

Step 7: 

The gauge pressure acting on the fluid from each piston is calculated (Eq. 2.104). 

 𝑝𝑖 =
1

2
𝜌(𝐿𝐴,𝑖𝑣𝑖)

2
 (2.104) 

Step 8: 

The force acting on each piston is calculated (Eq. 2.105). 

 𝐹𝑝,𝑖 = {
0 ,   𝑣𝑖 < 0
𝑝𝑖𝐴 ,   𝑣𝑖 > 0

 (2.105) 

Step 9: 

The torque created from the load from each piston is calculated (Eq. 2.106). 

 𝑀𝑙𝑜𝑎𝑑,𝑖 = 𝑟2 cos(𝜃3,𝑖) 𝐹𝑝,𝑖 (2.106) 

Step 10: 

Finally, to calculate the total torque from the load, Eq. 2.107 and 2.108 are used. 

 𝑀𝑙𝑜𝑎𝑑
         𝑧 = 𝑀𝑙𝑜𝑎𝑑,1 −𝑀𝑙𝑜𝑎𝑑,3 (2.107) 

 𝑀𝑙𝑜𝑎𝑑
         𝑦

= 𝑀𝑙𝑜𝑎𝑑,2 −𝑀𝑙𝑜𝑎𝑑,4 (2.108) 

Therefore, the expression of the load torque in the global coordinate system, is as follows: 

 
𝑀𝑙𝑜𝑎𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = [

0
𝑀𝑙𝑜𝑎𝑑
         𝑦

𝑀𝑙𝑜𝑎𝑑
         𝑧

] 
(2.109) 
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Figure 26: a) Link representation of the disc and one of its rods, b-c) displacement due to disc rotation and d-

e) displacement due to rod rotation and movement. 

Torque 𝑀𝑐𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ is simplified in the expression shown in Eq. 2.110. 

 𝑀𝑐𝑝
⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  [

0
− cos(𝜔𝑡)

− sin(𝜔𝑡)
] (𝑚𝑐𝑝𝜔

2𝑟𝑐) (2.110) 

Torque 𝛭𝑖𝑛𝑝𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is simplified in the expression shown in Eq. 2.111. 

 𝑀𝑖𝑛𝑝𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ =  

[
 
 
 
 

𝑀𝑟

𝑀𝑟

tan(𝜃)
sin(𝜔𝑡)

−
𝑀𝑟

tan(𝜃)
cos(𝜔𝑡)

]
 
 
 
 

 (2.111) 

The input torque 𝑀𝑖 in Eq. 2.111 has been substituted with 𝑀𝑟. These two torques, govern the behavior 

of 𝜔, in the differential equation shown below. 

 𝐽1�̇� = 𝑀𝑖 −𝑀𝑟 (2.112) 

where, 

- 𝐽1, is the input shaft’s moment of inertia  
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To obtain 𝑀𝑟, Eq. 2.94 was solved symbolically, and the expression of 𝑀𝑟 was substituted inside the 

solver. Furthermore, due to the need of �̇� inside the solver, as shown in Eq. 2.99, it was introduced as 

a variable 𝑎𝜔, that needs to satisfy Equations 2.113 – 2.114. 

 �̇� = 𝛼𝜔 (2.113) 

 0 = 𝛼𝜔 −
𝑀𝑖 −𝑀𝑟

𝐽1
 

(2.114) 

The solution of the above system of differential algebraic equations (DAE) took place in MATLAB, 

with incorporation of one of MATLAB’s nonlinear differential equation solvers, ode15s.   

Ode15s function solves first degree systems of differential algebraic equations, so Eqs. 2.93, 2.113, 

2.114 were formulated to the system shown in Eq. 2.115, by substituting 𝜃 = 𝑥1,  �̇� = 𝑥2, 𝜔 = 𝑥3 and 

�̇� = 𝑥4. 

 

{
 
 
 
 

 
 
 
 

𝑑𝑥1
𝑑𝑡

= 𝑥2

𝑑𝑥2
𝑑𝑡

=
(𝛭𝑖𝑛𝑝𝑢𝑡

𝜂 +𝛭𝑐𝑝
𝜂 +𝑀𝐿

𝜂) − 𝑐𝑥2 − 𝑘𝑥1
𝐽

𝑑𝑥3
𝑑𝑡

= 𝑥4

0 = 𝑥4 −
𝑀𝑖 −𝑀𝑟

𝐽1

 (2.115) 

Due to the extremely large and unnatural input torque 𝑀𝑖 below a certain angle 𝜃𝑐𝑟𝑖𝑡, as the unbalance 

radius 𝑟𝑐 that is involved in the creation of input torque in the disc goes close to 0, at 𝜃 ≤  𝜃𝑐𝑟𝑖𝑡 = 2°, 
the Heaviside function was introduced, to keep it from reaching 0. This is shown in Eq. 2.116. 

 𝑟𝑐 = 𝑙7 sin(𝜃) ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝜃 − 𝜃𝑐𝑟𝑖𝑡) + 𝑙7 sin(𝜃𝑐𝑟𝑖𝑡) (1 − ℎ𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒(𝜃 − 𝜃𝑐𝑟𝑖𝑡)) (2.116) 

 

2.4 Optimization 

The goal is to identify the design variables of the mechanism as well as the values that lead to the best 

overall efficiency, while respecting the restrictions set by size and feasibility. 

The Design Variables where chosen to be as follows: 

- 𝑥1 = 𝑙7 [𝑚],  Jaw Shaft length 

- 𝑥2 = 𝑟2 [𝑚],  Disc radius 

- 𝑥3 = 𝑙3 [𝑚],  Rod length 

- 𝑥4 = 𝜃 [𝑑𝑒𝑔],  Angle of displacement of Disc 

- 𝑥5 = 𝑚𝑢 [𝑘𝑔],  Centrifugal Mass 

- 𝑥6 = ℎ [𝑚],  Height difference of Disc-Rod Joint from Piston Chamber 

- 𝑥7 = 𝐷𝑝 [𝑚],  Piston Diameter 
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Mechanism restrictions were based on the fact that the CVT is expected to have dimensions similar to 

those of a typical gearbox of the industry. The MQ200-6F was selected, that the Seat Ibiza Fr is 

equipped with, a relatively typical car with an engine of 105hp. The dimensions are shown in Table 1. 

Length 0.55 m 

Height 0.44 m 

Width 0.39 m 
Table 1: MQ200-6F dimensions 

The Design Points at which the optimization process took place are (𝑀,𝜔) =
(100, 100), (200, 200), (200, 300)  [𝑁𝑚, 𝑟/𝑠], since they best represent the behavior of the torque 

plot of a typical 105hp petrol engine (Fig. 27). 

 
Figure 27: Power and Torque vs shaft rotational speed for a 105hp seat Ibiza Fr engine. 

The objective function was chosen as shown below: 

 𝑚𝑖𝑛𝐹 = (1 − 𝑟)2 (2.117) 

where, 

- 𝑟 = 𝜂𝑐𝑣𝑡 ∗ 𝜂𝑝𝑒𝑙𝑡𝑜𝑛, is the overall ratio 
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From Inverse Dynamics Analysis, for various geometries, it was deduced that 𝜂𝑐𝑣𝑡
      𝑚𝑎𝑥 ≤ 0.9, due to 

the x component of torque that is lost at the bearing and the torque spent to maintain the rotary motion 

of the Jaw Shaft, and 𝜂𝑝𝑒𝑙𝑡𝑜𝑛
             𝑚𝑎𝑥 ≤ 0.8, due to the non-constant velocity of the entering fluid from the 

nozzles. Therefore, the feasible maximum overall efficiency is roughly 0.72, and so values greater than 

that are not expected. 

The constraints of each Design Variable (D.V) as well as the overall spatial constraints occurred for 

the extreme positions of the mechanism, shown in Fig. 31. 

For each design variable, the constraints were also determined based on kinematic limitations, and can 

be seen in Table 2. For instance, D.V’s 𝜃, as well as ℎ max and min values were chosen with regard 

to the otherwise occurring mechanical instability, with link velocities and accelerations having chaotic 

response, as shown in Fig. 28, and resulting forces to abruptly increase or decrease (Fig. 29). 

min D.V max 

0.1 𝑥1(𝑙7) 0.34 

0.06 𝑥2(𝑟2) 0.17 

0.03 𝑥3(𝑙3) 0.3 

2 𝑥4(𝜃) 30 

0.1 𝑥5(𝑚𝑢) 1 

-0.02 𝑥6(ℎ) 0.02 

0.03 𝑥7(𝐷𝑝) 0.07 

Table 2: Design variables constraints 

 

(a)                                                                         (b) 

Figure 28: a) velocities and b) accelerations of link 3 and 4 for h greater than its limits. 
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Figure 29: Force produced by one piston for h greater than its limits. 

The constraint for design variable 𝑚𝑢, was obtained as a logical range for it not to significantly reduce 

performance but also be able to effectively vary the displacement angle 𝜃. Design variable 𝐷𝑝, was 

also constrained in a logical space for the pipes leading to the Pelton turbine to be at an appropriate 

size. Lastly, design variables 𝑙7, 𝑙2 and 𝑙3 were constrained based on the overall spatial constraints. 

There are two spatial constraints. One for each extreme position of the mechanism (Fig. 31, 32 – 33). 

The first addresses the horizontal restrictions, and results in Eq. 2.118. 

0.05 + 𝑙7 + 𝑟2 sin(𝜃𝑚𝑎𝑥) + 𝑙3 cos (𝑎𝑠𝑖𝑛 (
(𝑟2 + ℎ) − 𝑟2 𝑐𝑜𝑠(𝜃𝑚𝑎𝑥)

𝑙3
)) < 0.55 − 𝜀 

 => 𝑥1 + 𝑥2 sin(𝜃𝑚𝑎𝑥) + 𝑥3 cos (𝑎𝑠𝑖𝑛 (
𝑥6 + 𝑥2(1 − 𝑐𝑜𝑠(𝜃𝑚𝑎𝑥))

𝑥3
)) < 0.45 (2.118) 

where, 

- 𝜀 = 0.05𝑚, is a tolerance coefficient 

The second spatial constraint addresses the vertical restrictions, and after careful consideration of all 

possible scenarios, extremes of which as shown in Fig. 32 – 33, it can be summarized as flow chart 

shown in Fig. 30. 
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Figure 30: Flow chart of vertical spatial constraint. 

 
Figure 31: Design variables of the mechanism at maximum distance horizontal configuration. 
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Figure 32: Mechanism maximum vertical configuration with chambers at maximum distance. 

 
Figure 33: Mechanism maximum vertical configuration with disc at maximum distance.  
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After finding the optimal geometries for the three design points, their credibility was evaluated using 

the direct dynamics analysis mentioned in the previous chapter. 

The algorithm used for optimization is Pattern Search, which does not require a gradient. Its main 

principle is to begin from an initial guess data set for the design variables, and then for each couple, a 

mesh to be created around it. Four neighboring points are chosen and the design variables update to 

the ones that have the smallest objective function value, as shown in Fig. 34.  

Then, the mesh is refined and the procedure repeats. After optimization goals are reached, the 

algorithm moves to a new couple of design variables and the process is repeated until optimization 

goals are met for every design variable. 

 
Figure 34: Pattern Search algorithm procedure. Axis x and y each correspond to a design variable. [source: 

web]. 
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3. Results  

3.1 Kinematics and Inverse Dynamics 

3.1.1 Mechanism Motion 

The resulting 3D form of the motion of point A is shown in Fig. 35a. For better understanding, Figures 

36b and 37 show point A path of movement on xy and xz, yz plane respectively. 

 
(a)                                                                         (b) 

Figure 35: a) Point A spatial movement and b) xy path. 

 
(a)                                                                         (b) 

Figure 36: a) Point A xz path and b) yz path.  
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It’s clear that point A, and all three other piston-rod respective points for that matter, mainly follow a 

curved path on their main movement plane. For instance, point A’s piston mainly moves on xy plane. 

While there is also movement on xz plane, its magnitude is one order smaller than the magnitude of 

xy movement, meaning that the simplified 2D analysis is indeed a good approximation of the 

phenomenon. 

For the initial position of the disc shown in 2.1.1, the angle 𝜃2 around global z axis from the Eq. 2.4 

results in the expression: 

 𝜃2 =
𝜋

2
+ 𝜃 ∗ 𝑐𝑜𝑠(𝜔𝑡) (3.1) 

meaning it oscillates from vertical position (90deg) with θ amplitude. 

3.1.2 2D System 

The operation point was chosen to be (M,ω) = (100 𝑁𝑚, 100 r/s), and the geometric elements as 

shown in Table 3a. The 2D analysis was conducted to verify the correct expression of the kinematic 

elements of the mechanism as well as the credibility of the dynamic system of equations, and therefore 

does not yet include the centrifugal mass or the spring. For the calculation of inertial forces and 

moments, the necessary elements were chosen to be as shown in Table 3b.  

 

(a)                                                                         (b) 

Table 3: a) Values of geometric elements (2D) and b) Values of link masses (2D) 

The angles of link 2 and 3 with respect to input shaft angle, are shown in Fig. 37. 

 

(a)                                                                         (b) 

Figure 37:  a) Disc angle 𝜃2 and b) Rod angle 𝜃3, (2D). 

𝑙7 0.2 m 

𝑟2 0.1 m 

𝑙3 0.05 m 

𝜃 20 deg 

ℎ 0 

 

𝑚2 4.5 kg 

𝑚3 0.03 kg 

𝑚4 0.01 kg 
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Additionally, link 2 and 3 xy movement can be seen in Fig. 38, for their two extreme points, at 0 and 

180 input shaft angle. The red line represents link 2, the green one link 3, and the blue lines are the 

vectors needed to close the loop for the kinematic equation. The black lines represent the chamber 

walls. 

 

(a)                                                                         (b) 

Figure 38:  Simplified representation of link 2 and 3 xy movement at a) 0 degrees and  b) 180 degrees input 

shaft angle. 

The velocities of the piston (link 4) and rod (link 3) are shown in Fig. 39a. It is observed that rod’s 

angular velocity oscillates with twice the period of piston’s velocity. The accelerations of piston and 

rod are shown in Fig. 39b. 

 

(a)                                                                         (b) 

Figure 39: Piston and Rod a) velocities and b) accelerations, (2D). 

The resulting piston force for 𝐶𝑂𝑀 = 0 is shown at Fig. 40a. At the mechanism’s extreme positions, 

the force is 0, and it is at its maximum value when the disc passes from its neutral position. This force 
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profile concerns the implementation of only one piston. In reality, no force is exerted during the 

returning phase of the piston, but for this simplified 2D analysis this behavior can be used to include 

power produced by the force acting on the opposite piston, that is not included. 

 

(a)                                                                         (b) 

Figure 40: a) Piston force at COM = 0 and b) Output power, disc input power and their ratio, (2D). 

In Fig. 40b, the output power as well as the disc input power and power ratio are shown. From this 

graph the correct expression of all the elements and equations used in this analysis is confirmed, with 

the disc input power being equal to the output power, and their ratio being always 1. 

 

(a)                                                                         (b) 

Figure 41: a) Output power, Overall input power and their ratio and b) Piston force at COM = 1,  (2D). 
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In Fig. 41a, the output power is now plotted together with the overall input power as well as their 

power ratio. The ratio is not always 1, which is expected since only two of the actual four pistons of 

this mechanism are utilized, and therefore only one of the two input torque components is included. 

The power ratio gets closer to 1 as more pistons are introduced. 

The piston force profile for 𝐶𝑂𝑀 = 1 is shown in Fig. 41b. It starts from negative values, meaning the 

acting force is opposite to the piston movement. Realistically, this means that there is no sufficient 

torque in the disc extreme positions to overcome the inertial forces. This result lead us to the 

incorporation of the torsion spring, mentioned in Chapter 2.1.3. 

3.1.3 3D System 

To compare results with the 2D analysis, the same operation point was chosen, (M,ω) =

(100 𝑁𝑚, 100 r/s), as well as the geometric elements, and are shown in Table 4, along with the extra 

needed parameters. 

𝑙7 0.2 m 

𝑟2 0.1 m 

𝑙3 0.05 m 

𝜃 20 deg 

𝑚𝑢 0.1 kg 

ℎ 0 

𝐷𝑝 0.07 m 

Table 4: values of geometric elements and parameters (3D). 

The masses of the links are also the same as in the 2D analysis (Table 3b). 

The angles of link 2 and 3 around global y axis with respect to input shaft angle, are shown in Fig.42a. 

For a tilted position of 20 degrees, the oscillation around global y axis is a mere 4 degrees for the disc 

and 8 degrees for the rods, proving that there is indeed little to no movement towards local ψ axis or 

around local η axis. 

 

(a)                                                                         (b) 

Figure 42: a0 Link 2 and 3 angle around global x axis and b) rod angular and piston linear velocity. 
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Piston and rod velocities are shown in Fig. 42b. The behavior is almost identical to the one from the 

2D analysis, with the piston (𝑣4) having a slight shift and distortion of its max values to the left. 

Fig. 43a shows the piston and rod accelerations. A greater difference is now observed regarding 

piston’s acceleration. At positive max values, acceleration has a flat-like behavior, stalling for some 

degrees of shaft rotations like it does at negative max values in 2D analysis. Furthermore, at negative 

max values, acceleration now has a midway jerk transition at around −100 𝑚2/𝑠, before transitioning 

back at −150 𝑚2/𝑠 and reaching its max value in a hill-like manner, like it did for positive max values 

in 2D analysis. This is a result of the minimal movement disc and rod make outside the xy plane, and 

account for the distortion and shift of piston velocity. The fact that negative and positive max behavior 

of 𝑎4 are reversed for 2D and 3D analysis poses some interest. 

 

(a)                                                                         (b) 

Figure 43: a) Piston acceleration and rod angular acceleration, b) Piston force, without spring and centrifugal 

mass [3D]. 

In Fig. 43b, piston force is shown, as it would result if there was no restriction in it being 0 during the 

its return phase, to compare with the 2D analysis results. Spring and centrifugal mass impact is not yet 

implemented as well.  

It’s observed that the profile is almost identical to the one from the 2D analysis, with the only 

difference being that the max values are slightly smaller in the 3D analysis, which accounts for the fact 

that torque 𝑀𝑥 was not taken into account before, and through the transformation from global to local 

coordinate system, its effect is now implemented in 𝑀𝜓, thus resulting in smaller max values. 

The above serve as a testament that indeed the mechanism dynamics can be approximated by two 2D 

mechanisms, one operating in xy plane and the other in xz plane, with the appropriate local torques 

𝑀𝜉 , 𝑀𝜂 , 𝑀𝜓, and then solidified with the incorporation of the slight movement outside the main 

movement’s planes. 

The actual piston force for each piston can now be calculated.  
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As discussed in Chapter 2.1.3, a spring is needed to provide sufficient torque at the extreme positions 

of the mechanism. This can be seen in Fig. 44a, where the actual (𝑀𝑥, 𝑀𝑦, 𝑀𝑧) and the overall needed 

(𝑀𝑥
∗, 𝑀𝑦

∗, 𝑀𝑧
∗) torque components are plotted. The difference may seem small, but as inertial forces 

become greater, so does the gap between needed and actual provided torque. Of course, 𝑀𝑥 or 𝑀𝜉  

torque component remains the same. 

 

(a)                                                                         (b) 

Figure 44: a) Actual and overall needed torque components, b) Needed torque and supplied torque, for xy 

motion. 

Needed torque 𝑀𝑟 for xy motion, is plotted along with 𝑀𝑧 torque component that corresponds to that 

motion (Fig. 44b). 

Additionally, spring torque 𝑀𝑠, which is equal to 𝑀𝑟, summed with 𝑀𝑧, is shown in Fig. 45a, along 

with the overall needed torque for xy motion. It’s observed that they are equal, which is the goal for 

maintaining smooth force profiles. If spring constant was smaller or larger, there would either be more 

than enough or less than enough torque to maintain the motion in either the beginning of the 

compression or in the end.  
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(a)                                                                         (b) 

Figure 45:  a) Sum of spring and supplied torque along overall needed torque, b) Actual piston force for each 

piston [3D]. 

The resulting forces at each piston are shown in Fig. 45b. Each force, as previously said, acts only 

during the positive movement of the piston-rod, and is 0 otherwise. Due to the implementation of a 

spring, and the energy loss for maintaining rotary movement of centrifugal mass 𝑚𝑢, each force 

becomes smaller. 

Power output for each piston as well as overall power output is shown in Fig. 46a.  

 

(a)                                                                         (b) 

Figure 46: a) Power output of each piston and overall power output, b) Overall power output, input power, 

power ratio.  
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In Fig. 46b, the overall power output is plotted, as well as the input power and their power ratio. It is 

observed that compared to the 2D analysis, the ratio oscillates around 0.8, and the power output 

fluctuates slightly. Therefore, there is an almost constant power output from the overall mechanism, 

which will then be used by the turbine. 

Figure 47a and 47b show static gauge pressure and flow rate for each piston. 

 

(a)                                                                         (b) 

Figure 47: a) Static gauge pressure for each piston, b) Flow rate for each piston and overall flow rate. 

3.2 Pelton Turbine 

For the operational and geometric parameters of Chapter 3.1.3 (3D analysis), the surface ratio of the 

nozzles was determined to be 𝐿𝐴 = 9.7. The approximated pressure profile resulting from this ratio, 

or the actual pressure drop utilized, is shown in Fig. 48a, along with the actual pressure profile, for 

piston 1, upper piston in xy plane that begins its pushing motion. As expected, some pressure difference 

is lost in the form of shock waves, due to the fact that the surface ratio doesn’t vary dynamically within 

each cycle of operation, as discussed in Chapter 2.2. 

The nozzle velocities, after the loss coefficient is introduced occur as shown in Fig. 48b. The resulting 

torque from each fluid stream as well as the overall torque, are shown in Fig. 49a. The overall torque 

oscillates around roughly 20 𝑁𝑚, which is the output torque, since we assumed in Chapter 2.2 that the 

output is the mean value of generated torque. 

Continuing, the resulting power produced by the Pelton turbine, the output overall power from the 

pistons and their power ratio, as displayed in Fig. 49b. The efficiency of the Pelton turbine seems to 

be small, but the configuration of the mechanism is mostly random, and hasn’t undergone optimization 

process yet. Still, this shows that good enough power can be transmitted through the whole 

configuration of the CVT and Pelton turbine, with the overall ratio being 0.425. The expected time 

response of the Pelton turbine for this torque output, as occurred from the inverse Laplace expression 

mentioned in Chapter 2.2, is shown in Fig. 50. There is a slight oscillation in the steady state speed of 
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2150 rpm, which is accounted from the generated torque at Pelton shaft which oscillates around output 

torque value. 

 

(a)                                                                         (b) 

Figure 48: a) Actual and approximated pressure profile of piston 1, b) Nozzle velocities. 

 

Figure 49: a) Fluid stream resulting torque and overall torque, at Pelton turbine shaft, b) Overall piston 

output power, Pelton output power and their power ratio. 
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Figure 50: Expected time response of Pelton turbine for 10 periods. 

3.3 Optimization 

The resulting geometry of the most efficient CVT was continuous among the Design Points. With 

small difference, the design variables leading to maximum efficiency are displayed in Table 5. 

𝑥1(𝑙7) 0.153 

𝑥2(𝑟2) 0.137 

𝑥3(𝑙3) 0.03 

𝑥4(𝜃) 17 

𝑥5(𝑚𝑢) 1 

𝑥6(ℎ) -0.02 

𝑥7(𝐷𝑝) 0.07 

Table 5: Design variables for maximum efficiency. 

What poses interest is that 𝑥3 as well as 𝑥6 both took the minimum acceptable value, meaning that the 

rods need to be as short as possible and the piston center to be below the piston-disc joint. The latter 

was expected as Pelton turbine generates power through kinetic energy, and the nozzle ratio can take 

values within a certain range, therefore leading to the need of as high velocities as possible. If 𝑥6 was 

0 then force exerted would be maximized, and if it was greater than that then the disc would have to 

be smaller. So, it becomes less than 0 while there is a tradeoff between force and velocity. 

Angle of displacement 𝜃, also remains constant throughout the optimization procedure. Only spring 

constant 𝑘 and nozzle area ratio 𝐿𝐴 change, to maintain balance between input and output. Table 6 

shows values for 𝑘 and 𝐿𝐴 as well as Pelton shaft rpm, N, for the 3 design points. 

D.P (𝛭,𝜔) 𝑘 [N/m] 𝐿𝐴 N [rpm] 

(100,100) 458  8.00 2400 

(200,200) 1832 5.72 3400 

(200,300) 4123 3.81 3700 

Table 6: 𝐿𝐴, 𝑘 and N for the 3 design points. 

It is observed that 𝑘 needs to increase with higher input power while 𝐿𝐴 needs to decrease, to keep 

efficiency at its maximum value. Higher input torque or rotational velocity means higher inertial forces 

and thus higher torque needed at dead points. Also, higher velocities are achieved and therefore less 
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acceleration is needed to bring Pelton turbine to its most efficient rotational power. In a real 

application, the load 𝐿𝐴 will be given and the mechanism will have to be able to balance it. This means 

that the spring constant will need to have a certain expression to satisfy a variety of loads while 

maintaining as high as possible efficiency. 

In the following Figures, variables of interest for the design point (100,100) and (200,300) are shown. 

For design point (100,100), within 2 cycles of operation, Figure 51a shows power output of CVT, input 

power and its efficiency, Figure 51b pressure created by each piston, Figure 52a flow rate for each 

piston as well as total flow rate, Figure 52b nozzle velocities, Figure 53a output torque regarding each 

fluid stream as well as total output torque and Figure 53b total output power, Pelton efficiency and 

total input power to it generated by the fluid. Same variables can be observed in Fig. 54 – 56 for design 

point (200,300) respectively. 

It is observed that pressure created by the pistons becomes higher as input power increases, nozzle 

velocities become higher, as expected, flow rate also becomes higher and of course torque created at 

Pelton becomes as well higher. Overall efficiency throughout all design points is 𝜂𝑡𝑜𝑡𝑎𝑙 = 0.64. Pelton 

efficiency is almost at its maximum value, since the desired input to it is set accordingly, as discussed 

in Chapter 2.3. What impacts most the overall desired efficiency of 0.72, is the CVT efficiency, which 

is greatly influenced by the oscillatory behavior of input torque through the slider and jaw shaft. 

  

(a)                                                                         (b) 

Figure 51: a) CVT output and input power, efficiency and b) pressure for each piston within 2 cycles, of 

design point (100,100). 
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(a)                                                                         (b) 

Figure 52: a) Flow rate and b) velocity for each flow stream within 2 cycles, of design point (100,100). 

 

(a)                                                                         (b) 

Figure 53: a) Flow stream torque, overall torque created and b) total input, output power and efficiency of 

Pelton within 2 cycles, of design point (100,100). 
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(a)                                                                         (b) 

Figure 54: a) CVT output and input power, efficiency and b) pressure for each piston within 2 cycles, of 

design point (200,300). 

 

(a)                                                                         (b) 

Figure 55: a) Flow rate and b) velocity for each flow stream within 2 cycles, of design point (200,300). 
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(a)                                                                         (b) 

Figure 56: a) CVT output and input power, efficiency and b) pressure for each piston within 2 cycles, of 

design point (200,300). 

3.4 Direct Dynamics 

Solving the DAE system for 𝑡 = [0,10], for the geometry that yields the best overall efficiency, the 

following results were obtained. Angle 𝜃 comes very close to the anticipated 17°, resulting in a small 

oscillatory behavior around it as shown in Fig. 57a. Achieved angular velocity 𝜔 is somewhat higher 

than the expected design point value for each design point (Fig. 57b), and therefore in order to have a 

realistic representation, we use the following expression for 𝑀𝑖: 

 𝑀𝑖 = {
𝜔, 100 ≤ 𝜔 ≤ 200 
200,     200 ≤ 𝜔 ≤ 400

 (3.2) 

Meaning that input torque varies linearly with 𝜔 and then is constant at 200 Nm.  Figure 58a shows 

𝑀𝑟 time response. This deviation from the design points could be a result of the inertial forces of the 

pistons and rods being neglected in the direct dynamics analysis, or due to the slight oscillation of 𝑀𝑖 

and 𝜃. The different operating point results in reduced Pelton efficiency, as the values for 𝑘 and 𝐿𝐴 

being put are optimal each for the discreet design point they were calculated.  
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(a)                                                                         (b) 

Figure 57: a) θ and b) ω time response for k and 𝐿𝐴 of design point (100,100). 

 

(a)                                                                         (b) 

Figure 58: a) 𝑀𝑟 and b) Power time response for k and 𝐿𝐴 of design point (100,100). 

The output power with respect to time, as well as input power, mean output power and mean CVT 

efficiency can be seen in Fig. 58b. It’s evident that CVT’s efficiency is very close to that stated in 

Inverse kinematics analysis. Figures 59a – 59b show 𝜃 and 𝜔 response and Figure 60a shows 𝑀𝑟 

response for design point (200,200). Respectively, Figures 60b -  61 display the response for design 

point (200,300). 
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(a)                                                                         (b) 

Figure 59: a) θ and b) ω time response for k and 𝐿𝐴 of design point (200,200). 

 
(a)                                                                         (b) 

Figure 60: a) 𝑀𝑟 time response for k and 𝐿𝐴 of design point (200,200) and  b) θ time response for k and 𝐿𝐴 of 

design point (200,300). 
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(a)                                                                         (b) 

Figure 61: a) ω and b) 𝑀𝑟 time response for k and 𝐿𝐴 of design point (200,300). 
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4. Experiment 

In order to validate the operability of the system, an experimental layout was partially built to produce 

specific results on the kinematics of the mechanism. The primary interest is to validate the equilibrium 

point of the jaw shaft for different flow conditions (nozzle diameter) at the end of each piston chamber. 

Each component in the test-rig was produced with 3D printing with an SLA 3D printer. The assembly 

would be set into motion via an electromagnetic servo motor, with whom the input torque or the 

angular velocity in the system can be changed. To measure the velocity and force at the pistons, a 

speed sensor and a pressure valve would be incorporated. The evaluation concerns only the CVT and 

not the hydrodynamic turbine that connects to the pistons. 

Despite the fact that every part was printed and mounted on the test-rig platform with the servo motor, 

the experiment is not finalized at this stage, as significant components of the measuring system were 

not acquired in time. This is to be finalized at a future time. 

In the following, the process from concept to manufacturing is analyzed, with analytic representations 

of each component, as well as drawings and assembly instructions. 

4.1 Cad Modelling 

The CAD modeling took place in SOLIDWORKS. Each part was designed and carefully put into the 

assembly (Fig. 62). Assembly front view with the disc, jaw shaft rail and the chambers transparent, 

can be seen in Fig. 63. Finally, a side view of the assembly is shown in Fig. 64. As it will later be 

shown, the light green jaw shaft rail cap, is a separate part from the jaw shaft rail (dark green), so that 

the jaw shaft can attach to it and then be sealed in its rails. 

 

Figure 62: Experimental setup front view.  
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Figure 63: Experimental setup front view (Transparent). 

 

Figure 64: Experimental setup side view. 

The assembling takes place as follows. 

Step 1:  

The slider is mounted on the rotating engine shaft, and fastened with an M6 hex bolt. An M5 hex 

bolt attaches to the opposing side of the missing cap, to account for the imbalance that would 

otherwise be created from the bolt fastening the cap to the slider.  
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Figure 65: Engine shaft and slider assembly. 

Step 2:  

The Jaw shaft is mounted on the slider from the side of the missing cap. 

  

Figure 66: Slider and Jaw shaft assembly. 

Step 3:  

The cap is placed on the slider and fastened with an M5 hex bolt. 

 

Figure 67: Slider and slider cap assembly. 
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Step 4: 

Support block is mounted on the building platform and fastened with 4 M8 hex bolts. 

   

Figure 68: Support block and building platform assembly. 

Step 5: 

The two supports are placed on the support block and fastened with 4 M3 hex bolts each. 

 

Figure 69: Supports and support block assembly. 

Step 6: 

The chamber support is mounted on the supports and fastened with 2 M3 hex bolts at each. 
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Figure 70: Chamber support and supports assembly. 

Step 7: 

The disc spherical joint support is placed on the side of the chamber support and fastened with 4 M4 

hex bolts. 

 

Figure 71: Disc spherical joint support and chamber support assembly. 

Step 8: 

The rods are placed in the spherical configurations of the disc, to form a spherical joint. The rod caps 

first slide on the rods and then pushed in the 4 configurations of the disc (Fig. 72), locking the rod in 

the spherical configuration. They are then fastened, each with 2 M3 hex bolts (Fig. 73). 
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Figure 72: Disc, rods and rod caps assembly. 

   

Figure 73: Detail of rod cap first sliding on the rod and then being pushed inside the disc configuration. 

Step 9: 

The disc support cap first slides on the neck of the disc spherical joint support, and then is pushed 

towards the spherical surface to lock on its biggest diameter. The disc is then pushed towards the 

support and the cap, and the cap is fastened to the disc with 2 M3 hex bolts, creating a spherical joint 

for the disc and the support. 
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Figure 74: Disc, disc spherical joint support and disc support cap assembly. 

Step 10: 

The jaw shaft subassembly is mounted on the disc subassembly, by first placing a thin steel plate in 

the back of the disc cavity configuration, so that the bearing that falls in next has support. Then, the 

smaller bearing is pressed inside, followed by the bigger outer bearing that rests on the wall 

configuration inside the cavity. The jaw shaft subassembly is then pushed inside the disc, through the 

bearings and the cap. Finally, the cap is fastened to the disc with 2 M3 hex bolts. 

   

   

Figure 75: Jaw shaft subassembly, disc subassembly, jaw shaft bearings and steel plate assembly. 

Step 11:  

The CVT subassembly is pushed through the shaft bearing holders, as its tightly locked in place. The 

bearing holders are fastened to the building platform with 4 M8 hex bolts each. 
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Figure 76: CVT subassembly and shaft bearing holders assembly. 

Step 12: 

The piston caps slide on the rods and are pushed towards the largest diameter of the free spherical 

joint. Then, the pistons are pushed towards the caps, forming a spherical joint with the rod and 

locking in place. Finally, the caps are fastened to the pistons with 2 M3 hex bolts each. 

 

 

Figure 77: Rods, piston caps and pistons assembly. 

Step 13: 

The chambers slide through the radial configurations of the chamber support, and are then fastened 

with 4 M3 hex bolts each. 
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Figure 78: Chambers and chamber support assembly.  

 4.2 3D Printing  

The chosen method of 3D printing was SLA printing, in which the material used is resin with 

appropriate properties depending on the purpose of the printed part. The procedure is shown in Fig. 

79. 

 

Figure 79: SLA 3D printing procedure.  

The pre-processing took place in a software called Chitubox, in which each part was put at an 

optimal spatial configuration to minimize the printing time as well as the necessary supports, which 

are needed in this 3D printing method. The disc along with the three rods, a chamber and four rod 

caps are shown in Fig. 80-81 respectively.  
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Figure 80: Disc pre-processing.  

    

(a)                                                                         (b) 

Figure 81: a) Pre-processing of three rods, one chamber and four rod caps, b) Disc after being printed. 

The properties of the resin that was used are shown in Table 7. The modulus of elasticity was the key 

parameter of choosing the right resin since it needs to be as high as possible to ensure that the 

components will not fail during the experimental operation. 

Density 1.14 𝑔/𝑐𝑚3 

Tensile Strength 39 𝑀𝑝𝑎 

Surface Hardness 𝐷85 

Young’s modulus 1500 𝑀𝑝𝑎 

Elongation at Break 25% 

Table 7: Resin properties. 
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5. Conclusion 

Key takeaways: 

▪ The nature of the power flow and torque creation led to the implementation of a torsion spring, 

to provide sufficient torque at dead points of the mechanism while also aiding in stability. To 

maintain good efficiency, torsion spring’s constant 𝑘, showed increasing behavior with input 

power and therefore a variable constant spring is the one needed. 

▪ A feasible geometry was achieved, with the CVT being at comparable dimensions to gearbox 

found in typical cars of the industry. A respectable overall efficiency was obtained (𝜂 = 0.64), 
which was constant for all three design points optimization took place, pointing to the fact that 

the mechanism is able to operate efficient at a broad range of input parameters as well as load 

demands. The latter due to the fact that 𝐿𝐴 decreased as input power increased, meaning 

different ratios can be achieved. 

▪ Further research is needed to showcase if the use of Pelton turbine is optimal, due to the fact 

that load applied to it doesn’t have immediate effect on the CVT but is rather transmitted 

through a CPU controlling surface ratios 𝐿𝐴 of the nozzles. Additionally, since spring constant 

𝑘 varies with input power and load, a specific spring needs to be designed that varies its 

constant with respect to both parameters and as efficient as possible.  

 

Concluding, this CVT invention seems very promising and with further research could bring new 

opportunities for the future of CVT’s.  
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