15700 , 210-7721180 , 210-7721181, fax 210-7721182

, µ 2009

μ

						2
1.						4
2.				•••••		6
3.			_			21
3.1.				• • • • • • • • • • • •		21
3.2.	μ					21
3.3.					•••••	21
3.4.	μ					23
4. STA	TIC PL	SHOVE	ER ANALYSIS			26
4.1.		μ	Static pushover analysis	•••••		26
4.2.	μ		Push-over.		•••••	27
5.		2		• • • • • • • • • • • •		29
5.1.		μ	2			29
5.2.	μ	μ	2			31
6.						35
6.1.			μ			35
7.					•••••	69
7.1.	, ,	μ		μ	μ	69
7.2				μ		80
7.3.	μ		μ		•••••	103
7.4		μ	Drifts		•••••	110
8.						134
9.		••••				135

								(pushove	er-µ	2)
		μ					• •	μ		
	•									
	μ		,	μ.			μ	μ	ч 2 µµ	2
μ		22	μ	μ	μ	μ μ ς Δ Ρ200)0 v12 0 0	μ		
		μ			μμ	SAF200	0 12.0.0	•		
	μ			μμ .			μ			
	μ		μ		μ	μ	μ	μ μ		
	μ		·	μ	μ	μ	μ μ	Pushov µ	ver analysis	8
	μ	μ μ	2, μ		μ	μ μ	2. μ	2	μ	μ
		μ			ې :	ιμ	μ μ,		μ μ	
		μ		μμ	µ Sism	oSignal.				
μ		μ	, ,	μ		μ			μ, μ	
		μ μ μ μ					μ			

ABSTRACT

The main objective of this work is to check the validity of N2 method for near-field earthquakes, and compare the results with those expected from the existing regulations.

In order to get these results we apply on an existing building 18 earthquakes which have increased demands for ductility in periods close to the building's, being studied, period. For this analysis we use the program SAP2000 v12.0.0.

The second chapter presents the characteristics of the building. It includes the data which consists the building and all the data needed to define the model.

The third chapter lists the assumptions of the analysis and presents the way that the simulation of the building is done, in order to create the model used for the analysis. Then, building's data definition is developed, including the static forces that applied to the building.

The fourth chapter is a brief description of Pushover analysis method. It presents: the procedure which is followed in order to apply the method to the model and the results of this analysis.

The fifth chapter presents the method N2. Firstly there is a brief reference at N2 method. Then the steps of N2 method are presented and finally the method is applied on the building which's being studied.

The sixth chapter presents the earthquakes which load the model. For each earthquake is shown the characteristics which are used for this study's analysis. These are: the accelogram, the elastic acceleration range and the elastic displacement range. To export these results the SismoSignal program is used.

The seventh chapter presents the results of the analysis. Firstly is shown the time history response at the top of the building for each earthquake and then compiled the results from each chapter and presented in tabular form in order to compare the results and get the final conclusions.

			(pushover-µ	2)
μ		•	. μ	
<u> </u>	1.			
μ	,	l 11 (1082)	μ	μ,
$R_{y}^{-}\mu^{-}$, $R_{y}^{-}=q_{d}$ (1960)	, ;	n (1982),	Veletsos and N	Jewmark
	$R_{y} = \frac{1}{(2\mu - 1)^{0.5}}$ μ	$\begin{array}{l} T_n \!$		(1)
Tn	,	Tc'	:	
	$T_{c} = [(2\mu - 1)^{0,5}/\mu$]·T _c		(2)
$T_{c} = 0.50 \text{ sec.}$ $\mu \mu$ (1),	$T_a, T_b = T_c \mu$	ι μ _b -	: $_{a}=0.03 \text{ sec}, _{b}=0.1$ μ $T_{c'}, Ry=(2\mu-1)^{0.2}$ $\mu \qquad \mu$ μ Σ	125 sec
μ Newmark and Hall	μ	• • •	μ γ Γ _c	
$R_{y} = \mu$.			·	
	ł	ı		
$\begin{array}{ccc} \mu & \mu \\ \cdot & Chopra and Chi \\ \mu \end{array}$	ntanapakdee (2001) μ	μ μ	μ	
Τ _c . μ	, μ μ	: _a=0.025 se _a=0.04 sec,	c, $_{b}=0.22 \text{ sec}$ $T_{c}=$ $_{b}=0.35 \text{ sec}$ $T_{c}=0.79$	a' b 0.42 sec 9 sec
μ μ		(forward di	μ irectivity).	, μ
, μ μ μ 1 sec.	μ μ Chopra and Chintana	μ , μ pakdee	μ , μ ,	T _c
u u	. u	K_{y} - μ	μ	
· · ·	· · ·	μ	·	
μ	μ μ	μ	ι μ	
μ	μ μ	μ	μ	,

:

$$\begin{array}{rcl} 1 & (T_n/T_p) < (T_n/T_p)_a \\ R_y &= (2\mu - 1)^{0.5} & (T_n/T_p)_b < (T_n/T_p) < (T_n/T_p)_{c'} \\ \mu & (T_n/T_p) > (T_n/T_p)_c \end{array}$$
(3)

:

$$(T_n/T_p)_c = (2\mu - 1)^{0,5} / \mu \cdot (T_n/T_p)_c$$
(4)

$$μ$$
 $μ$ $μ$.
 $μ$ $μ$ $μ$
 $μ$ $μ$ $μ$
Rodriquez-Marek (2000):

$$\ln T_{p} = -8.33 + 1.33_{w}$$
 (5)

0.54.

			(pus	shover-µ
μ			• •	μ
<u>.</u>	2.			
2.75n μ μ	/, n. μ μ	μ μ μ μ μ	(pilotis μ 2000 2 1	y-y 2004 2000.
μ 2000.			2.1,	μμ
, μ	,			
 μ μ : μ : c=29 GPa s=200 GPa 	u : S500 S500 C20/25			
	μ	μ	μ f _c =20 M 2000.	Ρa. μ μ
2000, μ μ	μ μ 	μ =0.0035. f = 500 N	4De	μ _{c0} =0.002 μ
$ \begin{array}{c} \mu \\ = 1.5 & \mu \\ \mu \\ = f_{c} / c = 20/1.5 = 13333 \text{ M} \\ \mu \mu & f_{yd} = f_{y} / s \\ \mu \\ \mu \end{array} $	μ (IPa) _s =1.1 =500/1.15=434	5 4782 MPa). 3.5	μμ μμ (cm.	2000
μ μ μ 	25.0 kN/n 9.0 kN/n 5.0 kN/n 2.0 kN/n 2.0 kN/r 5.0 kN/r 3.5 kN/n	n^3 n n^2 n^2 n^2 m^2		

				(pushover-µ	2)
	μ			• •	μ	_
•	:	2.1.1	2.1.20			
(m)	μ	$(m^2).$			2.4.	

DII	2,448E-03	2,912E-03
FIL.	1,527E-03	1,527E-03
,	2,448E-03	2,912E-03
•	1,527E-03	1,527E-03
J J	3,297E-03	3,376E-03
	1,884E-03	1,884E-03
3	3,297E-03	3,376E-03
•	1,884E-03	1,884E-03
[,] , .	2,669E-03	2,748E-03
	1,570E-03	1,570E-03
3	1,727E-03	1,806E-03
•	1,570E-03	1,570E-03

1: $b_{eff}/h/t_w/t_f=0.7028/0.5/0.5/0.2$

2.1.1

1

2: $b_{eff}/h/t_w/t_f=0.554/0.5/0.5/0.2$

PIL	1,256E-03	1,256E-03
	6,160E-04	6,160E-04

2.1.2

ווס	2,940E-03	2,369E-03
FIL.	1,527E-03	1,527E-03
,	2,940E-03	2,369E-03
•	1,527E-03	1,527E-03
J J	3,376E-03	3,297E-03
	1,884E-03	1,884E-03
,	3,376E-03	3,297E-03
•	1,884E-03	1,884E-03
'- ' .	2,748E-03	2,669E-03
	1,570E-03	1,570E-03
3	1,806E-03	1,727E-03
•	1,570E-03	1,570E-03

$3: b_{eff}/h/t_w/t_f=0.7028/0.5/0.5/0.2$

2.1.3

4:

3

: b_{eff}/h/t_w/t_f=0.474/0.6/0.3/0.2 : b_{eff}/h/t_w/t_f=0.648/0.6/0.3/0.2

DII	1,351E-03	1,351E-03
FIL.	8,040E-04	8,040E-04
,	1,351E-03	1,351E-03
•	8,040E-04	8,040E-04
, ,	1,860E-03	1,860E-03
	8,040E-04	8,040E-04
,	1,606E-03	1,606E-03
•	7,700E-04	7,700E-04
, ,	1,606E-03	1,606E-03
	7,700E-04	7,700E-04
,	6,945E-04	6,945E-04
•	6,160E-04	6,160E-04

2.1.4

4

•

DII	1,172E-03	9,712E-04
FIL.	7,700E-04	7,700E-04
,	1,172E-03	9,712E-04
•	7,700E-04	7,700E-04
J J	1,580E-03	8,172E-04
	6,160E-04	6,160E-04
,	1,580E-03	8,172E-04
•	6,160E-04	6,160E-04
· · ·	1,219E-03	8,172E-04
	6,160E-04	6,160E-04
3	8,172E-04	5,092E-04
•	6,160E-04	6,160E-04

7: $b_{eff}/h/t_w/t_f=0.5856/0.5/0.3/0.2$

2.1.5

7

8: b_{eff}/h/t_w/t_f=0.5856/0.5/0.3/0.2

ווס	9,712E-04	1,172E-03
FIL.	7,700E-04	7,700E-04
,	9,712E-04	1,172E-03
•	7,700E-04	7,700E-04
J J	8,172E-04	1,480E-03
	6,160E-04	6,160E-04
,	8,172E-04	1,480E-03
•	6,160E-04	6,160E-04
· · ·	8,172E-04	1,025E-03
	6,160E-04	6,160E-04
,	5,092E-04	7,166E-04
•	6,160E-04	6,160E-04

2.1.6

	1,646E-03	1,646E-03
FIL.	8,040E-04	8,040E-04
,	1,646E-03	1,646E-03
•	8,040E-04	8,040E-04
J J	2,061E-03	2,061E-03
	1,256E-03	1,256E-03
,	1,593E-03	1,593E-03
•	8,040E-04	8,040E-04
'- ' .	1,298E-03	1,298E-03
	6,160E-04	6,160E-04
,	7,417E-04	7,417E-04
•	6,160E-04	6,160E-04

9: $b_{eff}/h/t_w/t_f=0.6378/0.6/0.3/0.2$

2.1.7

9

10: $b_{eff}/h/t_w/t_f=0.4437/0.6/0.3/0.2$

DII	2,121E-03	1,806E-03
FIL.	1,018E-03	1,018E-03
9	2,121E-03	1,806E-03
·	1,018E-03	1,018E-03
, ,	2,375E-03	1,882E-03
	1,018E-03	1,018E-03
9	1,806E-03	1,373E-03
·	8,040E-04	8,040E-04
, ,	1,508E-03	1,213E-03
[6,160E-04	6,160E-04
3	6,096E-04	8,106E-04
•	6,160E-04	6,160E-04

2.1.8

DII	2,451E-03	2,451E-03
FIL.	1,005E-03	1,005E-03
,	2,451E-03	2,451E-03
•	1,005E-03	1,005E-03
, ,	2,272E-03	2,272E-03
	1,005E-03	1,005E-03
,	1,763E-03	1,763E-03
•	1,005E-03	1,005E-03
·_ · .	1,549E-03	1,549E-03
	8,040E-04	8,040E-04
, .	9,455E-04	9,455E-04
	6,160E-04	6,160E-04

11: $b_{eff}/h/t_w/t_f=0.4749/0.6/0.3/0.2$

2.1.9

11

12: b_{eff}/h/t_w/t_f=0.4437/0.6/0.3/0.2

ווס	1	,806E-03	2,121E-03
FIL.	1	,018E-03	1,018E-03
,	1	,806E-03	2,121E-03
•	1	,018E-03	1,018E-03
, ,	1	,882E-03	2,375E-03
	1	,018E-03	1,018E-03
,	1	,373E-03	1,806E-03
•	8	3,040E-04	8,040E-04
,	1	,213E-03	1,508E-03
[6	6,160E-04	6,160E-04
,	8	3,106E-04	6,096E-04
•	6	5,160E-04	6,160E-04

2.1.10

ווס	2,137E-03	2,237E-03
FIL.	1,570E-03	1,570E-03
,	2,137E-03	2,237E-03
•	1,570E-03	1,570E-03
, ,	2,613E-03	2,536E-03
	1,570E-03	1,570E-03
,	1,806E-03	1,474E-03
•	1,256E-03	1,256E-03
·_ · .	1,568E-03	1,474E-03
	1,256E-03	1,256E-03
3	1,106E-03	1,367E-03
· ·	1,011E-03	1,011E-03

13: $b_{eff}/h/t_w/t_f=0.5670/0.6/0.3/0.2$

2.1.11

13

14: $b_{eff}/h/t_w/t_f=0.5130/0.6/0.3/0.2$

DII	2,237E-03	2,193E-03
FIL.	1,273E-03	1,273E-03
,	2,237E-03	2,193E-03
•	1,273E-03	1,273E-03
, ,	2,536E-03	2,669E-03
	1,005E-03	1,005E-03
3	1,474E-03	1,523E-03
•	8,040E-04	8,040E-04
, ,	1,474E-03	1,228E-03
	7,700E-04	7,700E-04
,	 1,474E-03	6,680E-04
•	7,700E-04	7,700E-04

2.1.12

DII	2,473E-03	2,551E-03
FIL.	1,570E-03	1,570E-03
,	2,473E-03	2,551E-03
•	1,570E-03	1,570E-03
, ,	2,770E-03	2,848E-03
	1,570E-03	1,570E-03
,	2,770E-03	2,848E-03
•	1,570E-03	1,570E-03
y y	2,218E-03	2,296E-03
	1,570E-03	1,570E-03
3	1,395E-03	2,101E-03
•	1,570E-03	1,570E-03

15: $b_{eff}/h/t_w/t_f=0.7380/0.6/0.3/0.2$

2.1.13

15

: $b_{eff}/h/t_w/t_f=0.5190/0.6/0.3/0.2$

1	7	•
	1	

: b_{eff}/h/t_w/t_f=0.4095/0.6/0.3/0.2

	1,972E-03	1,815E-03
FIL.	1,018E-03	1,018E-03
3	1,972E-03	1,815E-03
•	1,018E-03	1,018E-03
, ,	1,344E-03	1,815E-03
	1,273E-03	1,273E-03
,	1,551E-03	1,394E-03
·	8,040E-04	8,040E-04
·- · ·	1,551E-03	1,394E-03
	8,040E-04	8,040E-04
,	6,693E-04	5,123E-04
·	6,160E-04	6,160E-04

2.1.14

,		7,730E-04	1,175E-03
•		6,160E-04	6,160E-04
, ,		7,730E-04	1,081E-03
		6,160E-04	6,160E-04
,		6,190E-04	1,021E-03
•		6,160E-04	6,160E-04
·_ · .		6,190E-04	8,730E-04
		6,160E-04	6,160E-04
3		4,650E-04	6,190E-04
•		6,160E-04	6,160E-04

18: b_{eff}/h/t_w/t_f=0.4440/0.6/0.3/0.2 Pilotis

18: $b_{eff}/h/t_w/t_f=0.5880/0.6/0.3/0.2 \ \mu$ Pilotis

PIL.	7,730E-04	1,175E-03
	6,160E-04	6,160E-04

2.1.15

Pilotis

2)

μ

•

19: b_{eff}/h/t_w/t_f=0.4440/0.6/0.3/0.2

7,730E-04 1,175E-03 , . 6,160E-04 6,160E-04 7,730E-04 1,081E-03 '- ' . 6,160E-04 6,160E-04 , . 6,190E-04 1,021E-03 6,160E-04 6,160E-04 6,190E-04 8,730E-04 ·- · . 6,160E-04 6,160E-04 4,650E-04 6,190E-04 , . 6,160E-04 6,160E-04

> 19: b_{eff}/h/t_w/t_f=0.5880/0.6/0.3/0.2 µ Pilotis

PIL	7,730E-04	1,175E-03
	6,160E-04	6,160E-04

2.1.16

19

2,548E-03 2,548E-03 PIL. 1,570E-03 1,570E-03 2,548E-03 2,548E-03 , . 1,570E-03 1,570E-03 3,084E-03 3,084E-03 '_ ' 1,570E-03 1,570E-03 2,770E-03 2,770E-03 , 1,570E-03 1,570E-03 2,218E-03 2,218E-03 '_ ' . 1,570E-03 1,570E-03 1,395E-03 2,023E-03 , . 1,570E-03 1,570E-03

20: b_{eff}/h/t_w/t_f=0.7380/0.6/0.3/0.2

2.1.17

: $b_{eff}/h/t_w/t_f=0.5190/0.6/0.3/0.2$

וום	1,935E-03	1,671E-03
FIL.	1,018E-03	1,018E-03
,	1,935E-03	1,671E-03
•	1,018E-03	1,018E-03
, ,	1,972E-03	1,815E-03
	1,273E-03	1,273E-03
, .	1,551E-03	1,394E-03
	8,040E-04	8,040E-04
,,	1,551E-03	1,394E-03
	8,040E-04	8,040E-04
,	6,693E-04	5,123E-04
•	6,160E-04	6,160E-04

: b_{eff}/h/t_w/t_f=0.4095/0.6/0.3/0.2

2.1.18

22:

2,137E-03 2,237E-03 PIL. 1,570E-03 1,570E-03 2,137E-03 2,237E-03 , . 1,570E-03 1,570E-03 2,061E-03 1,983E-03 ·_ , . 1,273E-03 1,273E-03 1,806E-03 1,474E-03 , . 1,256E-03 1,256E-03 1,568E-03 1,474E-03 ,___, . 1,256E-03 1,256E-03 1,395E-03 2,023E-03 , . 1,570E-03 1,570E-03

23: $b_{eff}/h/t_w/t_f=0.5670/0.6/0.3/0.2$

2.1.19

23

	- 011-	· · · · · · · · · · · · · · · · · · ·	
DII		2,237E-03	2,193E-03
FIL.		1,273E-03	1,273E-03
,		2,237E-03	2,193E-03
•		1,273E-03	1,273E-03
J J		1,983E-03	1,939E-03
		1,005E-03	1,005E-03
3		1,474E-03	1,523E-03
•		8,040E-04	8,040E-04
, ,		1,474E-03	1,228E-03
		7,700E-04	7,700E-04
,		1,395E-03	2,023E-03
•		1,570E-03	1,570E-03

24: $b_{eff}/h/t_w/t_f=0.5130/0.6/0.3/0.2$

2.1.20

24

•

2.2 2.3 μ : μ μ μ

	Pilotis	, .	, .	,	, .	, .	, .	, .
1	70x70	70x70	60x60	60x60	50x50	50x50	50x50	50x50
2	60x60	50x50						
3	60x60	50x50						
4	70x70	70x70	60x60	60x60	50x50	50x50	50x50	50x50
5	60x60	50x50						
6	60x60	50x50						
7	70x70	70x70	60x70	60x70	50x60	50x50	50x50	50x50
8	70x70	70x70	70x70	70x70	60x70	60x60	60x60	60x60
9	70x70	70x70	70x70	70x70	60x70	60x60	60x60	60x60
10	70x70	70x70	60x70	60x70	50x60	50x50	50x50	50x50
11	60x70	60x70	60x70	60x70	60x70	60x60	60x60	50x50
12	70x70	70x70	70x70	70x70	60x70	60x60	60x60	50x50
13	70x70	70x70	70x70	70x70	60x70	60x60	60x60	50x50
14	60x70	60x70	60x70	60x70	60x70	60x60	60x60	50x50

2.2

μ

	Pilo	otis	,		,		,		,		, .	, .	, .
1	32	20	24	20	24	20	24	20	12	20	10 20	10 20	10 20
2	28	20	16	20	12	20	12	20	10	20	10 20	10 20	10 20
3	28	20	16	20	12	20	12	20	10	20	10 20	10 20	10 20
4	32	20	24	20	24	20	24	20	12	20	10 20	10 20	10 20
5	22	20	16	20	12	20	12	20	8	20	4 20+ 4 16	4 20+ 4 16	4 20+ 4 16
6	22	20	16	20	12	20	12	20	8	20	4 20+ 4 16	4 20+ 4 16	4 20+ 4 16
7	28	20	22	20	18	20	18	20	12	20	8 20	8 20	8 20
8	24	20	24	20	22	20	22	20	18	20	18 20	18 20	18 20
9	24	20	24	20	22	20	22	20	18	20	18 20	18 20	18 20
10	28	20	22	20	18	20	18	20	12	20	8 20	8 20	8 20
11	22	20	16	20	12	20	12	20	12	20	4 20+ 8 18	4 20+ 8 18	10 20
12	32	20	22	20	18	20	18	20	18	20	18 20	18 20	4 20+ 8 18
13	32	20	22	20	18	20	18	20	18	20	18 20	18 20	4 20+ 8 18
14	22	20	16	20	12	20	12	20	12	20	4 20+ 8 18	4 20+ 8 18	10 20

2.3 μ

μ

20cm μ 0.15 x 1.80 2.5. : μ 10/10 (μ μ :). 2.5 μ (A' OR.) μ μ ,) μ μ (, • : , μ μ μ 18 19 , Pilotis µ , 3.2.1 3.2.2 .

2.5

,μ

μ

(A' OR.)

,

3.

3.1

•		μ	μ	μ		μ
		μ	(30°,45°,60°	μ	μ
•	μ).	μ			1G+0,3Q
(mass so	ource: from loads: 1xDE u 1G+0.30	AD+0.3xLIV D.	E)	μ (load pattern)	DEAD	-
μ		μ		: 1.0.		
·				μ	,	
•	μμ	μ		(μ)	μ.
μ	μ : 0,25 : 0,40.	μ		μμ	μ	μ

-

3.2 μ

μ μ μ μμ μμ μμ FE 2. STATIC PUSHOVER ANALYSIS). FEMA 356 μ (μ μ μ $\mu\mu$ (end length offsets: (rigid zone factor=1,0). μ (μ), automatic from connectivity) μ μ : 0,88 (property μ μ modifiers: weight: 0.88) μ μ (μ). μμ μ μ μ . $\label{eq:main_eq} \begin{array}{c} \mu \\ \text{(insertion point: centroid).} \end{array}$ μ μ

3.3

		(μ)	μ	
μ	μ		μ	μ	SAP2000.	
μ	l	μ			μ	
	3.3	3.4		μ		
	μ ().			μ	
		3.1 (μ	μ
		μ	μ).		

Х	Y	Z
0,35	0,35	0
5,19	7,65	2,55
7,11	9,25	5,3
8,91	9,5	8,05
10,82	11,3	10,8
15,67	16,35	13,55
		16,3
		19,05
		21,8

3.3

μ

μ

. .

Х	Y
0,35	16,35
7,11	16,35
8,91	16,35
15,67	16,35
5,19	11,3
10,82	11,3
0,35	9,25
15,67	9,25
5,19	7,65
10,82	7,65
0,35	0,35
5,19	0,35
10,82	0,35
15,67	0,35
	X 0,35 7,11 8,91 15,67 5,19 10,82 0,35 15,67 5,19 10,82 0,35 5,19 10,82 15,67

3.4 μ μ

μ 3.3

(μ μ μ)

μμ SAP2000.

μ 3.3 μ

LL L
 —

.

	μ		μ	
	(m)	(kN/m)	(kN/m)	(kN/m)
1, 3	6,76	6,25	26,15	7,72
2	1,8	6,25	9,82	0,24
4	5,63	4,5	23,82	6,17
7, 8	4,84	3,75	30,44	7,27
9	5,63	4,5	22,3	4,95
10, 12	4,84	4,5	29,14	11,85
11	5,63	4,5	26,72	10,17
13, 23	8,9	4,5	17,76	2,5
14, 24	7,1	4,5	16,58	2,17
15, 20	7,3	4,5	30,96	7,42
17	3,65	4,5	23,83	5,38
18, 19	5,05	4,5	21,34	3,53
22	3,65	4,5	26,95	10

3.2.1

Pilotis

	μ (m)	(kN/m)	μ (kN/m)	(kN/m)
1, 3	6,76	6,25	26,15	7,72
4	5,63	4,5	23,57	6,09
7, 8	4,84	3,75	30,44	7,27
9	5,63	4,5	22,3	4,95
10, 12	4,84	4,5	29,14	11,85
11	5,63	4,5	26,72	10,17
13, 23	8,9	4,5	17,76	2,5
14, 24	7,1	4,5	16,58	2,17
15, 20	7,3	4,5	30,96	7,42
17	3,65	4,5	23,83	5,38
18, 19	5,05	4,5	17,33	2,38
22	3,65	4,5	26,95	10

3.2.2

(Pilotis).

			1.50.			1.35G+1.	50Q μ	
	μ		(geo	metric	nonlinearity	y parameters	: P-Delta)	μ
μ				μ				
		μ	μ			μ		(load
case)		μ	MODAL	μ		μ	μμ .	
	μ			l	MODAL	μ	pushov	er
(μ		μ			μ	
	μ)		μ	μ	2.			

μ

•

4. STATIC PUSHOVER ANALYSIS

4.1 μ Static pushover analysis

Е μ μ μ μ μ μ μμ μ μ : IO (Immediate Occupancy) μ μ«.. μ μ », LS (Life Safety) μ«.. μ CP (Collapse Prevention) μ«.. » ». (hinges) μ default hinges μμ μ **FEMA-356** (μ). μ μ μ) μ μ μ у-у hinge y, μ Z x, μ μ P-M () μ μ μ μ , hinge M₃) μ). (μ μ

4.2 μ Push-over.

μ μ : 2.

. . . .2000, μ μ 1.35G+1.5Q μ μ push-over μμ μ μ 0.3 push-over μμ μ μ μ 1.00G+0.30Q μ () μ μ μμ μ μ μ μ push-over μ μ μ (μ), μ μ μ μ μ μ μ μ (μ μ μ μ μ μ .). μ μ μ . μ Pushμ μ μ μ μ over

4.2.1 µ Push-over

(load pattern) μ μ (load case) μ μ , push-over: μ μ μ (load case) μ -(non-linear μ μμ μ (geometric analysis type) μ μ nonlinearity parameters: P-Delta) μμ(

μ 4.2 μ

μ μ

0,6

0,5

0

0,1

0,2

0,3

(m)

0,4

5. 2

5.1 2 μ μ μ.μ , S, 2 Fajfar (1996, 1999) μ μ μ μ μ : , S $_{e},\,\mu$ $S = S e/R_{\mu}$ (5.1) R_{μ} (reduction factor) μ (). q_d, μ , μ , S_d, μ μ μ , S_{dy} , μ : $S_d\!\!=\!\!\mu\!\cdot\!S_{dy}$ (5.2) $: S_{e} = {}^{2} \cdot S_{de} \qquad S_{y} = {}^{2} \cdot S_{dy},$ $(5.1) \qquad (5.2)$ μ, S_y μ : $S_d = S_{de} \cdot \mu / R_{\mu}$ (5.3) μ μ µ Fajfar μ ,μ, μ μ , Rμ, μ : $R_{\mu}=(\mu-1)\cdot / 0+1$ (5.4) 0 (5.4) $R_{\mu}=\mu$ 0 $_0=0.65\cdot\mu^{0.3}\cdot$ c c (5.5) μ μ , c μ μ EC8, с ((), $T_c=T_2$ μ 0 μ μ : ,

$$T_0 = c$$
 (5.6)

μ μ.

		(pushover-µ	2)
μ	••	μ	
• μ μ, 5.2.		μ	
_ <u>μ 1:</u> μ	ιμ	(capacity curve) μ μ	
(capacity spectrum) μ ADRS. μ μ () μ μ (V)	μ	μ μ	
μμμμμμ μμμμ)., μ (S-Sd) μμμμμ	(μ	μ :	J
$S = V/(m^* \cdot)$		(5.7)
S_d = / (S_d = /(\cdot_{top}) top 1)		((5.8)
: =μ μ μ V= μ μ μ m*=μ μμμ μ		:	
$m^*=m_i$ · i			(5.9)
: mi= μ i μ i= μ i , , , μ .		μ μ	
= μμ :			
= $(m_i \cdot i)/(m_i \cdot i^2)$		(5.10)
<u>μ2:</u> , μμ μ	,	μμ μμ μ	
μ 60% μ	G	μ . μμ	
μμ , Sdy. , μμ μ μ μ	, Say	µ Fy* = m*∙Sa	, У
$\mu \qquad \qquad y = Sdy \ .$			
$\mu \qquad \qquad y = Sdy.$ $\mu \qquad \qquad$	μ	μμ	

() *	۱ 0,	: μ	μ	μ	:
*=Sd=	=S _{de}				(5.12)
(5.6).		, 0, , μ=R _μ .		(5.5)	μ
() *	< ₀ , µ (5.4),	, μ, :		μ	, R_{μ} ,
μ=(R _μ -	-1)· ₀ / *+1				(5.13)
	μ , μ μ μ μ	ο μ μ μ μ ,	(5.18 μ μ	β), μ	(5.19), :
*=Sd=	$=\mu \cdot S_{dy}$				(5.14)
μμ μ	, μ μ.	μ μ	μ	μ μ μ	
<u>μ 4:</u> μ μ (5.8)	μμ * μ), μ	μ μ μ S _d μ *.	μ, μ,	, μ	
5.2 µ	μ	2			
2,			μ 5.1.	μ	μ
<u>µ 1:</u>	μμ	()μ	, S e, μ	μ μ	
5cm (μ	μ μ 15-20cm).	μμ	μ :		
•	μ μ μ	: $2 \Rightarrow =1$: $2 \Rightarrow =1$: $2 \Rightarrow 1=0.15 \text{ sec.}, \mu$: $=5\%$	=0.16g $_{2}$ =0.60sec. $_{1}$ =3.5		
-		μ	1		

μ 5.1 μ μ 1 μ • . .

 μ $_{1}$ 1.431sec. μ , μ μ ₂ 0.448sec. μ μμ μ :

$$\mathbf{S}_{\mathrm{dmax}} = \mathbf{S}_{\mathrm{el}}/^{2} \tag{5.15}$$

 $S_{el} = e() \mu$ 5.1, μ μ , μ μ μ μ μ μ μ 5cm μ ₂=0.60sec, μ μ μ. μ , $\begin{array}{c} \mu \\ S_{dmax} \ 0.151m. \end{array} \hspace{0.5cm} \begin{array}{c} \mu \\ \mu \end{array}$ μ 2, μ μ , μ 0.20m. μ 2, μ 2, μ μ μ μ 4.2 μ 5.2 0.20m. $\mu \qquad \mu \qquad \mu \\ \mu \quad \mu \qquad \mu \qquad \mu \qquad (capacity spectrum) \quad \mu \qquad ADRS$

 $(S - S_d)$ μ 5.3.

μ 5.2 μ

μ μ 2

μ 5.3 μ μμμμ μ ADRS

μ 5.4					μ	μ	
μ	μ	μ	μ	ADRS		μμ ι	<i>ι</i> μ,
μ	μ						

2)

, ,

μ μ

μ

μ : 0.155m.

6.

1. El Centro (ELC-180) M_w =6.2-6.4

μ 6.1.1 μ μ ELC-180

μ 6.1.2 μ μ ELC-180

μ 6.1.3 μ μ μ ΕLC-180

2. El Centro (ELC-270) M_w=6.2-6.4

3. Gilroy Array 1 (GA1-230) Mw=5.6

μ 6.3.1 μ μ GA1-230

μ 6.3.3 μ μ μ GA1-230

μ

μ

4. El Centro Array 2 (E02-140) M_w=6.4-6.6

μ 6.4.1

μ

μ

E02-140

μ 6.4.2 μ μ Ε02-140

40

μ 6.4.3 μ μ μ Ε02-140

5. El Centro Array 2 (E02-230) M_w =6.4-6.6

μ 6.5.2 μ μ Ε02-230

μ 6.5.3 μ μ μ Ε02-230

6. El Centro Array 4 (E04-140) M_w =6.4-6.6

μ 6.6.2 E04-140 μ μ

μ 6.6.3 μ μ μ Ε04-140

7. El Centro Array 4 (E04-230) M_w =6.4-6.6

μ 6.7.2 μ μ Ε04-230

μ 6.7.3 μ μ μ Ε04-230

2)

8. Iverson (SITE1-280) M_w=6.7

μ

μ 6.8.1 μ μ SITE1-280

μ 6.8.2 μ μ SITE1-280

9. Gilroy Array 1 (G01-000) M_w=6.8-7.0

μ 6.9.1 μ μ G01-000

(pushover-µ 2) μ μ • • 1500 1400 1300 1200 1100 1000 Sa (cm/sec²) 900 800 700 600 500 400 300 200 100 0 -0 0,4 2 0,8 1,2 1,6 2,4 2,8 3,2 3,6 4 T (sec)

μ 6.9.2 μ μ G01-000

μ 6.9.3 μ μ μ G01-000

μ 6.10.1

μ SVG-000

μ

μ 6.10.2 μ μ SVG-000

μ SVG-000

2)

μ 6.10.3 μ μ

11. CHY024-000 M_w=7.5-7.8

 μ 6.11.1 μ μ CHY024-000

μ 6.11.2 μ μ CHY024-000

μ 6.11.3 μ μ μ CHY024-000

Ш

2)

12. CHY024-090 M_w=7.5-7.8

μ

μ

μ 6.12.1

μСН

μ 6.12.2 μ μ CHY024-090

μ 6.12.3 μ μ μ CHY024-090

13. Duzce (DZC-180) M_w=7.1

μ 6.13.1 μ μ DZC-180

2)

μ 6.13.2 μ μ DZC-180

μ 6.13.3 μ μ μ DZC-180

14. City of Lefkas (LEF1-TR) M_w =6.2-6.4

μ 6.14.1

μ 6.14.2 LEF1-TR μ μ

μ 6.14.3 μ μ μ LEF1-TR

μ 6.15.1 μ μ ALF-180-1

μ 6.15.2 μ μ ALF-180-1

57

Ш

μ

μ 6.16.1

μ

μ 6.16.3 μ μ μ ALF-270-1

μ 6.17.1 μ μ C05-085-1

2)

μ 6.17.2 μ μ C05-085-1

18. Cholame Array 5 (C05-355-1) M_w =6.4

μ 6.18.1

μ 6.18.2 C05-355-1 μ μ

μ 6.18.3 μ μ μ C05-355-1

μ 6.19.1 μ μ (KAR-090) x 0.80

μ 6.19.2

 μ (KAR-090) x 0.80

μ

μ (KAR-090) x 0.80

Ш

2)

μ

20. [Tabas (TAB-074) M_w=7.1] x 0.65

μ

(TAB-074) x 0.65

μ

μ

μ 6.20.2

μ (TAB-074) x 0.65

μ 6.21.1 μ μ (SCH-011) x 0.60

μ 6.21.2 μ

μ

(SCH-011) x 0.60 μμ μ

22. [Japanese Meteorological Ajency (KJM-090) M_w =6.8-6.9] x 0.75

μ 6.22.1

(KJM-090) x 0.75

μ

μ 6.22.2

 μ (KJM-090) x 0.75

μ 6.22.3 μ μ μ (KJM-090) x 0.75

1. ELC-180

7.

(pushover-µ 2) μ u

2. ELC-270

ELC-270

3. GA1-230

μ

4. E02-140

E02-140

5. E02-230

40,0 30,0 3 20,0

10,0

0,0 -10,0 -20,0 -30,0 -40,0

> 4,0 8,0 12,0 16,0 20,0 24,0 28,0 32,0 36,0 40,0 7.1.5 X , , μ

> > E02-230

μ

ΟK

μ
<u>(pushover-μ</u> 2) μ ... μ

6. E04-140

E04-140

7. E04-230

8. SITE1-280

SITE1-280

9. G01-000

<u>(pushover-μ</u> 2) μ ... μ

10. SVG-000

SVG-000

11. CHY024-000

μ

12. CHY024-090

13. DZC-180

<u>(pushover-μ</u>2) μ ... μ

<u>.</u> 14. LEF1-TR

LEF1-TR

15. ALF-180-1

μ

16. ALF-270-1


```
ALF-270-1
```

TIME Legend *×10 -3* 75,0] oint 124 60,0 45,0 30,0 🗄 Joint124 15,0 ųν 0,0 V V*VV -15,0 -30,0 -45,0 -60,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0 45,0 50,0 ΟK 7.1.17 X , , μ μ

17. C05-085-1

<u>(pushover-μ 2)</u> μ ... μ

18. C05-355-1

C05-355-1

19. (KAR-090) x 0.80

20. (TAB-074) x 0.65


```
(TAB-074) x 0.65
```


21. (SCH-011) x 0.60

 $(pushover-\mu 2)$

22. (KJM-090) x 0.75

μ

7.1.22 X '' μ μ μ (KJM-090) x 0.75

80

7.3.1

μ ELC-180

μ Ε02-230

μ Ε04-140

μ Ε04-230

μ SITE1-280

μ G01-000

μ SVG-000

μ CHY024-000

μ CHY024-090

μ LEF1-TR

μ ALF-180

μ C05-085

μ C05-355

7. 3.19

μ (KAR-090) x 0.80

μ (TAB-074) x 0.65

μ (SCH-011) x 0.60

 μ (KJM-090) x 0.75

7.3.1	μ)				
	7.4	,	Ļ	ı	μ	μ	,
μ • •	$S_{el}^{*} = qd = (S_{el}^{*})/(S_{y}^{*}) =$	μ			ĥ	ιμ	μ
•	$u_{max.} = \mu \qquad \mu$, $\mu\mu$	SAP2000)		μ	μ	(
μ •	$Sd_{max.}^{*} = u_{max.}^{*} = \mu_{\mu} \mu_{\mu}$ $\mu = (Sd_{max.}^{*})/(Sd_{y}^{*}) = Tp =$	μ μ μ	μ μ μ			μ	μ
0	μ : *= 1.463 sec.= Sa _y *= 147.50 cm/sec ² =		μμ	μ	μ μ	l J	μ
0	$1 = 1.32 = Sd_y*=u_y*= 8.00 \text{ cm} = \mu \mu .$	μμ		μ μ	μ	μ	
SCH-0	7.5 µµ 7.4, µµµ 11, КЈМ-090 µ	l	μμ (: 0.80, 0.6	T/Tp KAR-(55, 0.60	μ)90, TA), 0.75	µ/qd B-074,).

(pushover-µ	2)
-------------	----

μ

	Sa _{el.} (T*) (cm/sec²)	q _d	umax. (cm)	Sd _{max.} * (cm)	μ	Тр (sec)	(T*)/(Tp)	µ/qd
μ ELC-180	167.64	1.14	11.21	8.49	1.062	2.42	0.605	0.934
ELC-270	181,98	1,23	10,47	7,93	0,991	5,34	0,274	0,804
GA1-230	14,81	0,10	0,98	0,74	0,093	2,12	0,690	0,923
E02-140	180,39	1,22	11,75	8,90	1,113	2,00	0,732	0,910
E02-230	68,19	0,46	4,32	3,27	0,409	4,60	0,318	0,884
E04-140	297,38	2,02	21,90	16,59	2,074	2,06	0,710	1,029
E04-230	346,21	2,35	34,04	25,79	3,223	4,06	0,360	1,373
SITE1-280	159,78	1,08	11,44	8,67	1,083	3,43	0,427	1,000
G01-000	77,29	0,52	4,59	3,47	0,434	3,53	0,414	0,829
SVG-000	178,24	1,21	11,29	8,55	1,069	2,91	0,503	0,885
CHY024-000	232,96	1,58	16,71	12,66	1,582	5,17	0,283	1,002
CHY024-090	266,70	1,81	20,22	15,32	1,915	4,13	0,354	1,059
DZC-180	288,06	1,95	17,72	13,42	1,678	5,53	0,265	0,859
LEF1-TR	157,44	1,07	8,48	6,43	0,803	0,53	2,760	0,753
ALF-180-1	128,11	0,87	7,83	5,93	0,742	0,87	1,682	0,854
ALF-270-1	113,19	0,77	7,88	5,97	0,746	1,35	1,084	0,973
C05-085-1	83,94	0,57	6,94	5,26	0,657	2,10	0,697	1,155
C05-355-1	53,34	0,36	4,19	3,18	0,397	2,10	0,697	1,098
KAR-090 X0,8	274,29	1,86	21,10	15,98	2,00	4,1	0,357	1,074
KJM-090 X0,75	198,82	1,35	18,28	13,85	1,73	3,21	0,456	1,284
SCH-011 X0,6	332,54	2,25	26,03	19,72	2,46	3,03	0,483	1,093
TAB-074 X0,65	241,00	1,63	18,14	13,74	1,72	5,29	0,277	1,051

-

7.4

μ

•

. .

μ (

)

(pushover-µ	2)
-------------	----

μ

	Sa _{el.} (T*) (cm/sec ²)	q _d	umax. (cm)	Sd _{max.} * (cm)	μ	Тр (sec)	(T*)/(Tp)	µ/qd
ц (.) Ц								
ELC-180 x1,76	295,00	2,00	21,07	15,96	1,995	2,42	0,605	0,998
ELC-270 x1,46	265,50	1,80	14,65	11,10	1,387	5,34	0,274	0,771
GA1-230 x15,94	236,00	1,60	14,54	11,02	1,377	2,12	0,690	0,861
E02-140 x1,39	250,75	1,70	13,43	10,17	1,272	2,00	0,732	0,748
E02-230 x2,81	191,75	1,30	12,38	9,38	1,172	4,60	0,318	0,902
E04-140 x1,49	442,50	3,00	34,36	26,03	3,254	2,06	0,710	1,085
E04-230 x1,00	346,63	2,35	34,04	25,79	3,223	4,06	0,360	1,372
SITE1-280 x1,29	206,50	1,40	14,87	11,27	1,408	3,43	0,427	1,006
G01-000 x1,91	147,50	1,00	8,64	6,54	0,818	3,53	0,414	0,818
SVG-000 x1,99	354,00	2,40	21,95	16,63	2,079	2,91	0,503	0,866
CHY024-000 x1,20	280,25	1,90	20,39	15,45	1,931	5,17	0,283	1,016
CHY024-090 x1,00	266,98	1,81	20,22	15,32	1,915	4,13	0,354	1,058
DZC-180 x1,00	287,63	1,95	17,72	13,42	1,678	5,53	0,265	0,861
LEF1-TR x1,00	157,83	1,07	8,48	6,42	0,803	0,53	2,760	0,750
ALF-180-1 x1,84	236,00	1,60	12,51	9,48	1,185	0,87	1,682	0,740
ALF-270-1 x3,13	354,00	2,40	17,26	13,08	1,634	1,35	1,084	0,681
C05-085-1 x1,93	162,25	1,10	11,67	8,84	1,105	2,10	0,697	1,005
C05-355-1 x1,94	103,25	0,70	9,87	7,48	0,935	2,10	0,697	1,336
KAR-090 x0,8	274,35	1,86	21,10	15,98	1,998	4,10	0,357	1,074
KJM-090 x0,75	199,13	1,35	18,28	13,85	1,731	3,21	0,456	1,282
SCH-011 x0,6	331,88	2,25	26,03	19,72	2,465	3,03	0,483	1,096
TAB-074 x0,65	240,43	1,63	18,14	13,74	1,718	5,29	0,277	1,054

-

7.6

μ

•

. .

μ (μ

)

106

7.7

 $\mu/q_d \ \mu \quad T*/Tp$
		(pushover-µ				2)	
	μ			• •		μ	
7.3.3	<u>.</u>	μ	µ/qd µ	T/Tp	μ	μ	
	7.8		μ (μ	μ)	
1)	$\mu q_d = Sa_{el}(*)/Sa$	$\mu/qd \mu T/Tp,$ $\mu = Sd_{max.} */max$: u _y *,	Sd _{max.} *=u _{max.} /	$_{1}\mu$	u _{max}	
2)	$q_d = (2\mu - 1)^{0,5}$ Sd _{max} *= $u_{max} / 1$	0.20 <t tp<0.75<br="">μ u_{max}</t>	qd=µ	T/Tp>0.75, SAP2000.		$\mu = Sd_{max.}*/u_y*\mu$	
3)	$q_d = Sa_{el}(*)/Sa$	ι _y * μ´		μ		2:	

3) $q_d = Sa_{el}(*)/Sa_y*(q_d-1)/(\mu-1)=T/Tp.$

μ ()	(T*)/(Tp)	μ/qd 1 μ .	μ/qd 2 μ .	μ/qd 3 μ .	
ELC-180 x1,76	0,605	0,998	1,154	1,327	
ELC-270 x1,46	0,274	0,771	1,041	2,178	
GA1-230 x15,94	0,690	0,861	1,040	1,168	
E02-140 x1,39	0,732	0,748	1,024	1,151	
E02-230 x2,81	0,318	0,902	1,011	1,495	
E04-140 x1,49	0,710	1,085	1,386	1,272	
E04-230 x1,00	0,360	1,372	1,381	2,020	
SITE1-280 x1,29	0,427	1,006	1,045	1,384	
G01-000 x1,91	0,414	0,818	1,026	1,000	
SVG-000 x1,99	0,503	0,866	1,170	1,577	
CHY024-000 x1,20	0,283	1,016	1,141	2,200	
CHY024-090 x1,00	0,354	1,058	1,138	1,816	
DZC-180 x1,00	0,265	0,861	1,093	2,354	
LEF1-TR x1,00	2,760	0,750	1,000	0,958	
ALF-180-1 x1,84	1,682	0,740	1,000	0,848	
ALF-270-1 x3,13	1,084	0,681	1,000	0,955	
C05-085-1 x1,93	0,697	1,005	1,005	1,040	
C05-355-1 x1,94	0,697	1,336	1,002	0,813	
KAR-090 x0,8	0,357	1,074	1,155	1,833	
KJM-090 x0,75	0,456	1,282	1,103	1,310	
SCH-011 x0,6	0,483	1,096	1,242	1,595	
TAB-074 x0,65	0,277	1,054	1,101	2,011	

7.8

μ

$$\mu/qd$$
 (

μ

μ) 7.3.3 μ

7.4 µ Drifts

μ

μ

7.10.18

μ C05-355-1 μ=0,935 T*/Tp=0,697

7.11.4

μ E02-140 μ=1,272 T*/Tp=0,732

7.11.7 Drift μ E04-230 μ=3,223 T*/Tp=0,360

7.11.10 Drift μ SVG-000 μ=2,079 T*/Tp=0,503

7.11.16 Drift

7.11.19DriftμKAR-090 μ=1,998T*/Tp=0,357

Drift

Drift

9 _____

9 _____ 8 _____ 7 _____

8.

T/Tp, µ/qd μμ μ (7.5 μμμ μ μμμ, μμ . 105 7.7 .107), μ μ μμ μ $q_d = (2 \cdot \mu - 1)^{0.5}$ 7.9.2 2). 7.9.3 . 110 (΄μ΄μ . 109 μ μ μ μ), 2 qd μ (μ $\mu \qquad \mu \qquad 2$ $\mu \qquad qd$ $\mu \qquad E04-140 \qquad ELC-180$ $\mu \qquad , \qquad \mu/qd$ μ 'μ' μ μ μ T/Tp. μ μ μ 7.4 . 104, 7.6 . 106 7.8 . 108). μ (μ , μ μ μμ μ μ μ . μ : E02-140 ALF-270 μ μ μ . 104, 7.6 . 106 7.4 7.8 . 108). μ μ μ μ μ () μ μ μ 2. μμ μ μ 2 μ μμ μ $\begin{array}{cc} \mu & Pushover \\ \mu &). \\ \mu & : ALF-270, \end{array}$ μμ μ (μ μ μ KAR-090 TAB-074 (. 7.10.16 . 116, 7.10.19 . 117, 7.10.22 . 118). , μ μμ 2 μ μ μμ μ μ $(_2 0.448 \text{ sec.}).$ 2 μ $\mu \qquad \mu \qquad : ALF-180, ALF-270, KAR-090 (. 6.15.3 . 57, 6.16.3 . 59, 6.19.3 . 63).$ μ μ μ μ μ μ , Pushover, μ . μ μ μ μ μ : LEF1-TR ALF-180 μ Tp=0.53 sec. Tp=0.87 sec. μ (₂ 0.448 sec.). μμ 2 μ 7.10.14 μμ μ LEF1-TR (. 7.10.14 . 115 μ μ 7.10.15 . 115), μ μ μ μ LEF1-TR μ μ μ 2 μ. μ μ 2 μ μ μ μ μ μ μ (3.00 μ μ), μ

5. **Peter Fajfar** and **Peter Gaspersic**, "The N2 method for the seismic damage analysis of RC buildings".

6.		μ	"		μ	μ	μμ
	μ	•	μ	Pushover	(/)		
μ		μ	. ".				

7. FEMA 356 chapter 2

8. SAP2000 manual