

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Μεταπτυχιακή Διπλωματική Εργασία *Χρυσάιδου Χρήστου*

ΜΕΛΕΤΗ ΚΑΙ ΣΧΕΔΙΑΣΗ ΤΑΧΥΠΛΟΟΥ ΣΚΑΦΟΥΣ ΕΙΔΙΚΩΝ ΑΠΟΣΤΟΛΩΝ

ΝΟΕΜΒΡΙΟΣ 2011

Επιβλέπων: Α.Δ.Παπανικολάου, Καθ. ΕΜΠ

Copyright © Χρυσάιδος Χρήστος 2011 Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσης εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να υποβάλλονται προς τον συγγραφέα.

Ευχαριστίες

Θα ήθελα να ευχαριστήσω τον Δρ κ. Μπουλουγούρη Ε. για την υπομονή, την διάθεση προσωπικού χρόνου και πλούσιου βιβλιογραφικού υλικού, τις υποδείξεις και τις παρεμβάσεις του ώστε να είναι όσο το δυνατόν πιο ολοκληρωμένη και σωστή αυτή η εργασία.Επίσης θα ήθελα να ευχαριστήσω τον αδελφό μου Χρυσάιδο Γεώργιο για την βοήθειά του σε θέματα υποστήριξης χρήσιμου λογισμικού την περίοδο προετοιμασίας της εργασίας.Τέλος θα ήθελα να ευχαριστήσω το Πολεμικό Ναυτικό που μου έδωσε αυτήν την πολύτιμη ευκαιρία επιμόρφωσης.

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΕΡΙΛΗΨΗ

ΕΙΣΑΓΩΓΗ

- 1. ΚΑΘΟΡΙΣΜΟΣ ΓΕΝΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΣΚΑΦΟΥΣ
- 1.1 Επιχειρησιακό προφίλ-απαιτήσεις σχεδίασης
- 1.2 Παρουσίαση όμοιων πλοίων

1.3 Καθορισμός γενικών χαρακτηριστικών σκάφους με βάση τα όμοια πλοία και τις απαιτήσεις σχεδιασμού

2. ΕΠΙΛΟΓΗ ΚΥΡΙΩΝ ΔΙΑΣΤΑΣΕΩΝ

- 2.1 Αρχική εκτίμηση κυρίων διαστάσεων συντελεστών μορφής σκάφους
- 2.2 Σύντομη περιγραφή μεθόδου Grubisic για την εκτίμηση βαρών
- 2.3 Έλεγχος καταλληλότητας μεθόδου Grubisic
- 2.4 Προεκτίμηση απαιτούμενης ισχύος πρόωσης
 - 2.4.1 Παρουσίαση μεθόδου Savitsky
 - 2.4.2 Εφαρμογή μεθόδου Savitsky στο πατρικό πλοίο
 - 2.4.3 Εφαρμογή μεθόδου Savitsky στο υπό μελέτη πλοίο
 - 2.4.4 Εφαρμογή μεθόδου Grubisic στουπό μελέτη πλοίο

3. ΕΚΠΟΝΗΣΗ ΠΡΟΚΑΤΑΡΚΤΙΚΟΥ ΣΧΕΔΙΟΥ ΝΑΥΠΗΓΙΚΩΝ ΓΡΑΜΜΩΝ

- 3.1 Σχεδίαση μορφής σκάφους
- 3.2 Έλεγχος ομαλότητας περιβλήματος επιφάνειας σκάφους
- 3.3 Επιπλέον χαρακτηριστικά σχεδιασμένου σκάφους

4. ΥΔΡΟΣΤΑΤΙΚΗ ΜΕΛΕΤΗ-ΜΕΛΕΤΗ ΕΥΣΤΑΘΕΙΑΣ

- 4.1 Γενικά βήματα υδροστατικής μελέτης
- 4.2 Περαιτέρω διαμόρφωση μοντέλου υπό μελέτη σκάφους
- 4.2.1 Διαμερισματοποίηση μοντέλου
- 4.2.2 Καθορισμός καταστάσεων φορτώσεως

- 4.2.3 Καθορισμός Κρίσιμων Σημείων
- 4.2.4 Καθορισμός Γραμμής Ορίου Βυθίσεως
- 4.2.5 Επιλογή κριτηρίων ευστάθειας άθικτης κατάστασης
- 4.3 Επιλογή κριτηρίων ευστάθειας βεβλαμένης κατάστασης
- 4.3.1 Καθορισμός καταστάσεων βλάβης
- 4.3.2 Κριτήρια ευστάθειας μετά από βλάβη
- 4.4 Μελέτη ευστάθειας άθικτης κατάστασης
 - 4.4.1 Υδροστατικό διάγραμμα
 - 4.4.2 Διάγραμμα παραμετρικών καμπυλών ευστάθειας-Αρχικός έλεγχος ευστάθειας

4.4.3 Διάγραμμα καμπύλης μοχλοβραχίονα επαναφοράς- Έλεγχος ευστάθειας μεγάλων κλίσεων

- 4.4.4 Μελέτη ισορροπίας
- 4.4.5 Υπολογισμός κατακλύσιμων μηκών
- 4.5 Μελέτη ευστάθειας κατόπιν βλάβης

5. ΥΠΟΛΟΓΙΣΜΟΣ ΑΝΤΙΣΤΑΣΗΣ ΚΑΙ ΕΠΙΛΟΓΗ ΠΡΟΩΣΤΗΡΙΑΣ ΕΓΚΑΤΑΣΤΑΣΗΣ

- 6. ΜΕΛΕΤΗ ΑΝΤΟΧΗΣ ΠΛΟΙΟΥ
- 7. ΕΚΠΟΝΗΣΗ ΣΧΕΔΙΩΝ ΓΕΝΙΚΗΣ ΔΙΑΤΑΞΗΣ
- 8. ΣΥΝΟΨΗ-ΣΥΜΠΕΡΑΣΜΑΤΑ-ΠΡΟΤΑΣΕΙΣ ΓΙΑ ΠΕΡΑΙΤΕΡΩ ΜΕΛΕΤΗ

ΠΑΡΑΡΤΗΜΑ Α

α.Σχέδιο Ναυπηγικών γραμμών

β.Κατασκευαστικό σχέδιο Μέσης Τομής

γ.Σχέδιο Γενικής Διάταξης

ΒΙΒΛΙΟΓΡΑΦΙΑ

Περίληψη:

Στην εργασία αυτή θα σχεδιαστεί-παρουσιαστεί ένα ταχύπλοο σκάφος άμεσης επέμβασης, κατάλληλο να συνδράμει στην αποτελεσματικότερη επίτευξη του ρόλου ομάδων ειδικών αποστολών, αφού θα προσφέρει στα πληρώματά του υψηλές επιχειρησιακές δυνατότητες, ασφάλεια μετακίνησης και γρήγορη μεταφορά στα περιβάλλοντα όπου καλούνται να αναπτύξουν τις επιχειρησιακές τους δραστηριότητες, όπως για παράδειγμα φύλαξη φιλίων στόχων από εχθρικές δυνάμεις ή εφαρμογή ανορθόδοξων τεχνικών επίθεσης.

Πρόκειται για ένα σκάφος τύπου ολισθάκατος (planing hull) με ακμή (hard chine) περιορισμένων σχετικά διαστάσεων, εκτοπίσματος γύρω στους 50 tn, μέγιστης ταχύτητας 60 κόμβων περίπου, με χαρακτηριστικά χαμηλής ανιχνευσιμότητας ώστε να αποτελεί μια υποσχόμενη θαλάσσια πλατφόρμα, επιχειρησιακά αυτοτελή και αξιόπιστη για την εκτέλεση των ειδικού τύπου αποστολών της.

Ουσιαστικά στα πλαίσια της παρούσας εργασίας θα γίνει παρουσίαση της Προκαταρτικής Μελέτης και Σχεδίασης του ανωτέρω πλοίου. Συγκεκριμένα θα διεξαχθούν οι κάτωθι εργασίες που αφορούν το συγκεκριμένο σκάφος:

- 1.Επιλογή Κυρίων Διαστάσεων
- 2.Σχεδίαση Ναυπηγικών Γραμμών
- 3. Μελέτη Ευστάθειας
- 4.Υπολογισμός Αντίστασης
- 5.Επιλογή Προωστήριας Εγκατάστασης
- 6. Εκπόνηση Σχεδίων Μέσης Τομής (οπτικά-κατασκευαστικά)
- 7. Εκπόνηση Σχεδίων Γενικής Διάταξης

Εισαγωγή

Η συγκεκριμμένη Διπλωματική Εργασία πραγματοποιήθηκε στα πλαίσια του Διατμηματικού Μεταπτυχιακού Προγράμματος «Ναυτική και Θαλάσσια Τεχνολογία και Επιστήμη».

Το υπό μελέτη πλοίο θα πρέπει να είναι σε θέση να επιχειρεί στη θαλάσσια περιοχή του Αιγαίου Πελάγους και του Ιονίου με μέγιστη ταχύτητα περίπου 60 κόμβους και ακτίνα ενεργείας 450 ναυτικά μίλια σε υπηρεσιακή ταχύτητα. Με σημείο αναφοράς τα ανωτέρω στοιχεία και με περαιτέρω απαιτήσεις την επίτευξη χαμηλής παρατηρησιμότητας, ικανότητας μεταφοράς τριών ομάδων αντρών ειδικών αποστολών (έξι άτομα ανά ομάδα) και διαθεσιμότητας επαρκών επιχειρησιακών συστημάτων θα διαμορφωθούν οι διάφορες συνιστώσες σχεδίασης του νέου σκάφους.

Αρχικά θα προεκτιμηθούν οι κύριες διαστάσεις του σκάφους. Με τη μέθοδο του Δρ. Grubisic θα γίνει προεκτίμηση του βάρους άφορτου σκάφους με βάση τις προεπιλεγμένες κύριες διαστάσεις. Απαραίτητη γ α την εφαρμογή της εν λόγω μεθόδου είναι η προεκτίμηση της απαιτούμενης ισχύος. Η τελευταία θα υπολογιστεί με χρήση της σύντομης μεθόδου Savitsky. Ακόμη θα καθοριστούν τα επιχειρησιακά συστήματα και μέσα που θα φέρει η κατασκευή, ώστε αθροιστικά με το βάρος άφορτου σκάφους να υπολογιστεί το συνολικό βάρος του πλοίου (Δβ). Από την βασική απαίτηση το γεωμετρικό εκτόπισμα (Δγ) να ισούται κατά προσέγγιση με το συνολικό βάρος του πλοίου, θα προκύψει η τελική επιλογή των κυρίων διαστάσεων.

Θα ακολουθήσει η τρισδιάτατη σχεδίαση της γενικής μορφής του πλοίου σε περιβάλλον ειδικού λογισμικού ναυπηγικής σχεδίασης, με τη βοήθεια του οποίου θα πραγματοποιηθούν οι ακόλουθες εργασίες: εκπόνηση σχεδίου ναυπηγικών γραμμών του σκάφους, υπολογισμοί υδροστατικών μεγεθών, υπολογισμός κατακλύσιμων μηκών και η μελέτη της ευστάθειας του εκπονημένου πλέον σκάφους, ενώ θα προσδιοριστούν εκ νέου και ακριβέστερα η αντίσταση και η απαιτούμενη μέγιστη εγκαταστημένη ισχύς για το σκάφος. Ακολούθως θα γίνει η επιλογή της αντίστοιχης προωστήριας εγκατάστασης.

Στη συνέχεια θα γίνει η μελέτη αντοχής του πλοίου με την επιλογή των κατάλληλων κατασκευαστικών στοιχείων μέσης τομής, με χρήση του προγράμματος Lloyd's Register SSC V3, το οποίο στηρίζεται στους σχετικούς κανονισμούς του Βρετανικού Νηογνώμονα. Με το ίδιο πρόγραμμα θα γίνει και η σχεδίαση της Μέσης Τομής του σκάφους.

Η εργασία θα ολοκληρωθεί με εκπόνηση των Σχεδίων Γενικής Διάταξης του πλοίου με χρήση του προγράμματος AUTOCAD.

Κεφάλαιο 1ο Καθορισμός γενικών χαρακτηριστικών σκάφους

1.1 Επιχειρησιακό προφίλ-απαιτήσεις σχεδίασης

Ένα ταχέο σκάφος που ανήκει στους λόχους των πλωτών των ομάδων ειδικών αποστολών (μονάδες υποβρυχίων καταστροφών, καταδρομείς, τμήματα εθνοφυλακής) πρέπει καταρχάς να παρέχει στις εν λόγω ομάδες την δυνατότητα ταχείας επέμβασης στο επικείμενο στόχο τόσο κατά τον πρώτο χρόνο, για την υπεράσπιση της εδαφικής ακεραιότητας, όσο και κατά δεύτερο χρόνο, σε περίπτωση που απαιτηθεί ανακατάληψη. Στην πρώτη περίπτωση τα πληρώματα των ομάδων πρέπει να μεταφερθούν με ταχύτητα και ασφάλεια πριν προλάβει ο εχθρός να αποβιβάσει τις δικές του δυνάμεις. Στην δεύτερη περίπτωση, η ίδια μεταφορά πρέπει να γίνει πριν ο εχθρός προλάβει να δημιουργήσει ένα ισχυρό προγεφύρωμα-κλοίο δυνάμεων με σκοπό την παρεμπόδιση οποιασδήποτε αντεπίθεσης.

Στην χώρα μας λόγω της ύπαρξης πολλών νησιών, τέτοιοι πιθανοί στόχοι είναι πάρα πολλοί.Οι ομάδες των ειδικών αποστολών χρησιμοποιούν για τις μεταφορές τους είτε ταχύπλοα φουσκωτά σκάφη είτε πιο εξελιγμένα ταχύπλοα σκάφη άκαμπτης γάστρας τύπου RIB. Πρόκειται για μικρά σκάφη που καλύπτουν τις απαιτήσεις υψηλής ταχύτητας αφού επιτυγχάνουν μέγιστη ταχύτητα πλεύσης μεταξύ 50 και 60 κόμβων, ανάλογα με τις καιρικές συνθήκες. Επίσης οι ικανότητες των σκαφών αυτών επαρκούν για τις ανάγκες αποστολών διείσδυσης και εν συνεχεία απαγκίστρωσης, και γενικότερα αποστολών με χαρακτήρα ανορθόδοξου πολέμου. Παρόλο όμως που ενδεχομένως μπορούν να χρησιμοποιηθούν και ως σκάφη υποστήριξης, όπως σε περιπτώσεις ανακατάληψης βραχονησίδας, οι ικανότητες τους δεν επαρκούν για την διεξαγωγή συγκρούσεων υψηλής έντασης, οι οποίες είναι πολύ πιθανόν να συμβούν απέναντι σε υπέρτερες γειτονικές εχθρικές δυνάμεις, οι οποίες θα υποστηρίζονται πιθανότατα και από κεντρικές δυνάμεις φίλιων ακτών τους ή και από αεροναυτικές δυνάμεις. Στην τελευταία περίπτωση, οι εχθρικές δυνάμεις πρέπει να καμφθούν άμεσα, χωρίς χρονοτριβές και κυρίως χωρίς σοβαρές απώλειες των τμημάτων ειδικών αποστολών της χώρας. Κάτι τέτοιο με τα υπάρχοντα σκάφη είναι ιδιαίτερα δύσκολο αν όχι αδύνατο, λόγω της ανύπαρκτης θωράκισης τους και του στοιχειώδους οπλισμού (κάποια πυροβόλα) που φέρουν.

Μέσα από αυτό το πρίσμα αναγκών διαφαίνονται οι επιχειρησιακές απαιτήσεις για το υπό μελέτη σκάφος, οι οποίες αποτελούν και τις απαιτήσεις-οδηγούς για αυτή την προκαταρκτική

μελέτη.

1) Όσον αφορά τις προδιαγραφές ασφάλειας μεταφοράς προσωπικού

Το νέο σκάφος πρέπει να διαθέτει επαρκή θωράκιση και δυνατότητα δύσκολου ηλεκτρομαγνητικού εντοπισμού του, άρα θα πρόκειται για μια ολοκληρωμένη θαλάσσια μεταλλική πλατφόρμα, με εξωτερική διαμόρφωση και ακουστική υπογραφή κατάλληλες για την επίτευξη χαμηλής παρατηρησιμότητας.

2) Όσον αφορά τις μαχητικές ικανότητες

Το σκάφος καθορίζεται γενικά να διαθέτει οπλισμό αποτελούμενο από πολυβόλα και βλήματα, τα οποία να μπορούν να πλήξουν στόχους επιφανείας και αέρος. Ειδικότερα απαιτείται το σκάφος να έχει την δυνατότητα μεταφοράς τριών ομάδων κρούσης ειδικών αποστολών (έξι άτομα ανά ομάδα κ ρούσης) κα των αν ίστοιχων τριών ταχύπλ σων λ έμβων άκ αμπτης γάστρας τύπου zodiac, στις οποίες θα μπορούν να επιβούν οι ομάδες κρούσης προκειμένου να επιχειρήσουν αποσμασματικά και συνδυαστικά, ανάλογα με τις ιδιαίτερες απαιτήσεις της κάθε αποστολής.

3) Όσον αφορά την ταχύτητα μεταφοράς

Καθορίζεται ως στόχος η επίτευξη μέγιστης ταχύτητας πλεύσης των 60 κόμβων, υπηρεσιακής ταχύτητας 30 κόμβων και αυτονομίας σε υπηρεσιακή ταχύτητα των 450 ναυτικών μιλίων (η τελευταία κρίνεται επαρκής για τα γεωγραφικά δεδομένα του Αιγαίου και Ιονίου Πελάγους, τα οποία αποτελούν την ευρύτερη περιοχή όπου θα επιχειρεί το σκάφος).

1.2 Παρουσίαση όμοιων πλοίων

Θα παρουσιαστούν συνοπτικά κάποια αντιπροσωπευτικά δείγματα από τον διεθνή χώρο ταχέων σκαφών ειδικών επιχειρήσεων, πάνω στα οποία στηρίχθηκε και η μελέτη σχεδίασης του νέου σκάφους.

Το πρώτο από αυτά είναι το **Ultra Fast Attack Craft Colombo** που χρησιμοποιεί το Ναυτικό της Σρι-Λάνκα. Κινείται από δύο MTU κύριες μηχανές των 1630 KW η καθεμία και δύο Kamewa waterjets που το βοηθούν να φτάσει σε ταχύτητα 45 κόμβων, έχοντας ακτίνα

ενέργειας περίπου 500 ναυτικών μιλίων. Παρατίθεται πίνακας με τα βασικά χαρακτηριστικά του σκάφους:

Τύπος:	Ultra Fast Attack Craft
Εκτόπισμα:	52 tons
Μήκος:	24.30 m
Πλάτος:	3 m
Βύθισμα:	5.70 m
Πρόωση:	2x MTU 12V 396 TE 94 (1630kW
	each) με 2 Kamewa water jets
	ή
	2x DEUTZ TBD 620 V16 main engines
	(4570 hp each) και 2 Arneson ASD-16
Ταχύτητα:	45.0 knots
Ακτίνα	
Ενέργειας:	500 - 600 n.m.
Πλήρωμα:	10-12 άτομα
Οπλισμός:	1 x Typhoon stabilized system με
	M242 Bushmaster/Oerlikon 20 mm
	πυροβόλο και επιπλέον μικρότερα
	πυροβόλα

εικόνα 1:ταχύπλοο ΄΄Colombo΄΄ του Ναυτικού της Σρι-Λάνκα

Το δεύτερο μοντέλο είναι το Combat Boat 90 (CB90), κατασκευασμένο αρχικά για το

Σουηδικό Ναυτικό από τα ναυπηγεία της **Dockstavarvet**, πλέον όμως έχει υιοθετηθεί και από άλλα ναυτικά (και από το Ελληνικό Λιμενικό Σώμα). Πρόκειται για ένα σκάφος μικρού βυθίσματος, κατάλληλου για προσγειαλώσεις και συνεπώς αποβάσεις, ιδιαίτερα ελαφρύ και προχωρημένων ελικτικών ικανοτήτων λόγω των μερικώς βυθισμένων water jets. Βασικά χαρακτηριστικά του:

Εκτόπισμα:	20,5 tons	
Μήκος:	15.9 m	
Πλάτος:	3.8 m	
Βύθισμα:	0.8 m	
Πρόωση:	2 x 625 bhp Scania DSI14 V8 Diesel	
	με 2 Kamewa FF water jets	
Ταχύτητα:	40 knots	
Ακτίνα:	240 nmi στους 20 knots	
Πλήρωμα:	μα: 3 (2 αξιωματικοί και ένας μηχανικός),	
	μέχρι 21 καταδρομείς με πλήρη	
	εξοπλισμό	
Οπλισμός:	3 × Browning M2HB πυροβόλα	
	1 × ΜΚ 19 εκτοξευτήρα ρουκετών	
	4 νάρκες ή 6 depth charges	

εικόνα 2: ΄΄Combat Boat 90΄΄ του Σουηδικού Ναυτικού

Το τρίτο μοντέλο είναι το Mark V Special Operations Craft που χρησιμοποιεί το Αμερικάνικο Ναυτικό, ένα μικρό και πάρα πολύ γρήγορο σκάφος, ικανό να μεταφέρει δεκαέξι πλήρως

εξοπλισμένους άντρες. Αναλυτικά τα χαρακτηριστικά του:

Εκτόπισμα:	57+ tons
Μήκος:	25 m
Πλάτος:	5,33 m
Κοίλο:	5,33 m
	Βύθισμα: 1,524 m
Πρωτεύων Οπλισμός:	7.62mm πυροβόλα
Δευτερεύων Οπλισμός:	.50 πυροβόλα
Πρόωση:	2 × 2285 HP MTU 12V396 TE94 diesels
Payload capacity:	2.948 kg
Fuel capacity:	9,8 m^3
Ακτίνα:	500+ n.m.
Ταχύτητα:	65+ knots

εικόνα 3: 'Mark V Special Operations Craft' του Αμερικανικού Ναυτικού

Τα τέταρτο μοντέλο είναι το νεοεισαχθέν στη διεθνή αγορά σκάφος **XSR** της βρετανικής εταιρείας **XSMG WorldLtd. Division**. Δεν διατίθεται ακόμη ευρέως πίνακας με τα πλήρη στοιχεία του σκάφους. Πρόκειται πάντως για ιδιαίτερα προηγμένης τεχνολογίας ναυπήγημα,

κατασκευασμένο από υλικά αεροπορικών προδιαγραφών. Το μικρό του βάρος σε συνδυασμό με το χαμηλό κέντρο βάρους και τον υδροδυναμικό σχεδιασμό της γάστρας επιτρέπει την επίτευξη πολύ υψηλών ταχυτήτων, μέχρι και 70 κόμβων, ενώ διαθέτει αυτονομία 1000 ναυτικών μιλίων με ταχύτητα 30 κόμβων. Αναλόγως του τύπου (19 ή 25 μέτρων μήκους) δύναται να μεταφέρει 20 με 24 καταδρομείς. Διαθέτει βαρύ οπλισμό: sonar Flash Thales, κατευθυνόμενα βλήματα Rafael Spike ή Raython Javelin, πυροβόλα .50 και .20.

Το εν λόγω μοντέλο θα μπορούσε ενδεχομένως να καλύψει το μεγαλύτερο μέρος των επιχειρησιακών απαιτήσεων των μονάδων ειδικών αποστολών, ειδικά ως προς την απαίτηση ταχείας και ασφαλούς επέμβασης. Μοναδικό μειονέκτημά του είναι ότι δεν διαθέτει δυνατότητα μεταφοράς λέμβων τύπου zodiac, κάτι που μειώνει τις δυνατότητες εφαρμογής τεχνικών ανορθόδοξου πολέμου.

εικόνα 4: XSR Special Projects Interceptor

1.3 Καθορισμός γενικών χαρακτηριστικών στοιχείων υπό μελέτη σκάφους με βάση τα όμοια πλοία και τις απαιτήσεις σχεδιασμού

Καταρχήν με βάση τα στοιχεία των παρόμοιων πλοίων και τις με τις προααφερθέντες απαιτήσεις για το υπό μελέτη σκάφος, εκτιμάται ότι το εκτόπισμά του θα είναι γύρω στους 50 τόνους, χωρίς αυτό βέβαια να είναι σε καμμιά περίπτωση άκαμπτη απαίτηση για την σχεδίαση του σκάφους.

Επιπλέον, βασικά στοιχεία των περισσοτέρων από τα ανωτέρω μοντέλα πλοίων είναι η χρήση του αλουμινίου ως υλικό της φέρουσας κατασκευής, και όσον αφορά την προωστήρια εγκατάσταση, η τοποθέτηση ταχύστροφων μηχανών diesel με waterjets, αρχές που υιοθετούνται και στον σχεδιασμό του νέου σκάφους.

Για το υλικό κατασκευής μεν, η απαίτηση πολύ υψηλών ταχυτήτων σε συνδυασμό με συγκεκριμένες απαιτήσεις μεταφορικής ικανότητας επιβάλλουν την ελαχιστοποίηση του βάρους του άφορτου σκάφους, κάτι που επιτυγχάνεται κυρίως με τον περιορισμό του βάρους της μεταλλικής κατασκευής. Έτσι το αλουμίνιο αποτελεί την πιο διαδεδομένη επιλογή αφού είναι και το πιο συμφέρον οικονομικά από τα υλικά αυξημένων μηχανικών ιδιοτήτων (αυξημένος λόγος αντοχής προς βάρος) [1]. Επιπλέον βάσει της έρευνας ανάμεσα στις υπάρχουσες ολισθακάτους γενικά διαφαίνεται ότι η επιλογή των φορτίων σχεδιάσεως και των υλικών κατασκευής συσχετίζεται με το εκτόπισμα και την ταχύτητα του σκάφους. Το παρακάτω σχήμα 1 παρέχει κάποια εμπειρικά όρια [2]. Για την ΄΄περιοχή΄΄ που μας ενδιαφέρει για αυτό το σκάφος, δηλαδή εκτόπισμα πάνω από 40 τόνους και ταχύτητα γύρω στους 60 κόμβους, ως υλικό κατασκευής δίδεται το αλουμίνιο.

Για τα μέσα δε πρόωσης, τα waterjets γενικά χρησιμοποιούνται ευρέως χάρις: α) στην ικανότητά τους να αναπτύσσουν μεγάλη ώση, με συνολικό βαθμό απόδοσης συγκρίσιμο πλέον ή καλύτερο από αυτό των ελίκων στο σύνολο του φάσματος ταχυτήτων (σχήμα 2) και β) στον περιορισμό των προβλημάτων σπηλαίωσης και των ταλαντώσεων της κατασκευής λόγω διέγερσής της από το σύστημα πρόωσης (φαινόμενο που παρατηρείται στην περίπτωση των ελίκων και επιτείνεται από την ελαφρά κατασκευή και την μεγάλη ισχύ πρόωσης των ταχύπλοων σκαφών) [1]. Επιπλέον τα waterjets δεν θα μπορούσαν παρά να είναι η καλύτερη

επιλογή για τις ιδιαίτερα προχωρημένες ελικτικές απαιτήσεις ενός σκάφους ειδικών αποστολών, αφού σημαντικά πλεονεκτήματά τους σε σχέση με εγκαταστάσεις ελίκωνπηδαλίων είναι η ικανότητα ΄΄ευέλικτης΄΄ πηδαλιουχίας, ακόμη και σε πολύ μικρές ταχύτητες, καθώς και η χαμηλότερη υπογραφή υποθαλάσσιου θορύβου [3], σημαντικός παράγοντας για την απαίτηση χαμηλής παρατηρησιμότητας του σκάφους. Εξάλλου η απαλλαγή από την ανάγκη τοποθέτησης πηδαλίων απλοποιεί την κατασκευή και εξοικονομεί κόστος [1]. Γενικά για σκάφη που επιχειρούν σε μεγάλες ταχύτητες, όπου η αντίσταση παρελκομένων αποτελεί σημαντικό ποσοστό της συνολικής αντίστασης, η αφαίρεση των παρελκομένων που συνεπάγεται η χρήση waterjets (πηδάλιο, έδρανα άξονα) είναι ευνοική για την μείωση της συνολικής αντίστασης, άρα και την περαιτέρω εξοικονόμηση κόστους.

Γενικά η διάταξη της προωστήριας εγκατάστασης που επιλέγεται είναι 2 κύριες μηχανές diesel/2 waterjets (**twin engine/twin zet configuration**), η οποία αποτελεί τον καλύτερο συνδυασμό για την επίτευξη μεγάλης διαθέσιμης ισχύος και παράλληλα ευελιξίας στους ναυτιλιακούς χειρισμούς (σχήματα 3 και 4) [3].

Σχήμα 1:συσχετισμός εκτοπίσματος-ταχύτητας-υλικού κατασκευής ταχέων σκαφών

Σχήμα 2:διάγραμμα βαθμού απόδοσης προωστήριων μέσων σε σχέση με την ταχύτητα

Σχήμα 3:απεικόνιση twin zet configuration

Σχήμα 4:απεικόνιση twin engine/twin zet configuration

Όσον αφορά την γενική μορφή του σκάφους, αυτή καθορίζεται εξαρχής ως ολισθάκατος σκληρής ακμής, με μονοεδρική πρισματική γάστρα μορφής βαθιού V (Hard Chine Planning Hull – Monoedron Prismatic Deep V Hull). Παρακάτω φαίνονται διάφορες διατάξεις-όψεις για τέτοιας μορφής γάστρες. Όπως φαίνεται στα ανωτέρω σκαριφήματα, βασικά χαρακτηριστικά αυτής είναι οι ευθύγραμμοι νομείς από πρύμα μέχρι και λίγο μετά την μέση τομή του σκάφους, η σταθερή τιμής ανύψωσης πυθμένα και οι ευθείες διαμήκεις τομές στην ίδια περιοχή, όπου και η γραμμή της ακμής είναι παράλληλη με την γραμμή της τρόπιδας. Η διαμόρφωση αυτή ευνοεί την αποκόλληση της ροής του ύδατος, στοιχείο που αποτελεί βασική επιδίωξη κατά τον σχεδιασμό της γάστρας των ολισθακάτων[1]. Επιπλέον με την μορφή αυτή παρέχεται αυξημένο πλάτος μεταξύ των ακμών, ικανό τόσο για αύξηση της επιφάνειας – και συνεπώς και ικανότητας – ολίσθησης του πλοίου όσο και για την επαρκή κάλυψη των αναγκών εσωτερικού όγκου της κατασκευής. Συνήθως η διαμήκης θέση του κέντρου βάρους LCG πλοίων αυτής της μορφής βρίσκεται σε ποσοστό 40% του μήκους ισάλου του πλοίου. Τέλος, το εύρος τιμών ανύψωσης πυθμένα, που αντιστοιχεί σε αυτής της μορφής σκάφη που διαθέτουν waterjets, είναι 8°-25° [3].

SWL Static waterline LOA Overall length of the boat LWL Waterline length at the static waterline LCG Longitudinal center of gravity CB2 Center of buoyancy when planning

DWL Dynamic waterline BOA Overall beam or width of the boat BWL Waterline beam at the static waterline CB1 Center of buoyancy at static waterline θ Deadrise angle

Σχήμα 5: εγκάρσια τομή και πλάγια όψη πρισματικής γάστρας

Σχήμα 6: Σκαριφηματική κάτοψη πρισματικής γάστρας

Ένα βασικό πλεονέκτημα αυτής της μορφής είναι ότι, σύμφωνα με μελέτες, αποτελεί την καταλληλότερη μορφή για σκάφη υψηλών ταχυτήτων που έχουν ως μέσο πρόωσης waterjets. Πιο συγκεκριμένα παρατίθεται το παρακάτω διάγραμμα, όπου φαίνονται κάποιες τυπικές καμπύλες μεταβολής της αντίστασης σε σχέση με την αύξηση της ταχύτητας για τεσσάρων

τύπων γαστρών [3]. Παρατηρείται ότι για την περιοχή ταχυτήτων 256 0 κόμβους, που θα επιχειρεί το υπό σχεδίαση σκάφος, η μορφή της καμπύλης αντίστασης για την μονοεδρική γάστρα δίνει την μικρότερη αύξηση και επιπλέον οι άλλης μορφής γάστρες δεν αγγίζουν καν τα ύψη ταχυτήτων που απαιτούνται στην προκειμένη περίπτωση.

Σχήμα 7: Συσχετισμός Αντίστασης-Ταχύτητας

Τέλος, όσον αφορά τα γενικά χαρακτηριστικά, αναφέρεται ότι το υπό μελέτη πλοίο θα ονομαστεί **ΈΡΜΗΣ΄΄ (΄΄HERMES΄΄)**.

Κεφάλαιο 2ο Επιλογή Κυρίων Διαστάσεων

2.1 Αρχική εκτίμηση κυρίων διαστάσεων-συνελεστών μορφής σκάφους

Αρχικά θα επιλεχθούν κάποιες κύριες διαστάσεις του πλοίου με γνώμονα τα στοιχεία και τις απαιτήσεις που προαναφέρθηκαν. Συγκεκριμένα οι διαστάσεις της σχεδιασθείσας πλατφόρμας πρέπει να επαρκούν για να φιλοξενηθούν σε αυτήν τα εξής:

- <u>στο κύριο κατάστρωμα</u>

α) τρεις λέμβοι τύπου zodiac που θα μπορούν να χρησιμοποιήσουν τρεις ξεχωριστές ομάδες των έξι ατόμων η καθεμιά. Το μήκος της καθεμιάς εξ αυτών ανέρχεται στα 4,7 μέτρα, προσαυξημένο ελαφρώς και από τις αντίστοιχες εξωλέμβιες μηχανές τους, τύπου MERCURY. Το πλάτος της λέμβου ισούται με 1,9 μέτρα. Οι λέμβοι θα είναι τοποθετημένοι κατά μήκος του πρυμναίου και μεσαίου τμήματος του καταστρώματος, με παρεχόμενη δυνατότητα καθέλκυσης από την πρυμνιό τμήμα. Για το λογο αυτό το τελευταίο θα έχει κεκλιμένη διαμόρφωση στο πρυμναίο τμήμα του (ράμπα), για ποσοστό του συνολικού του πλάτους λίγο μεγαλύτερο από το πλάτος μιας λέμβου, γύρω από τον διαμήκη άξονα συμμετρίας του σκάφους. Με αυτόν τον τρόπο δεν θα υφίσταται και η αναγκαιότητα τοποθέτησης αντίστοιχου γερανού για την καθέλκυση και ανέλκυση των λεμβών (βλέπε σκαριφήματα 1 και 3).

β) μια υπερκατασκευή, που θα αποτελεί το πιλοτήριο του σκάφους για πλήρωμα τεσσάρων ατόμων, με ιδιαίτερα κεκλιμένη κατασκευαστική διαμόρφωση πλαινών ορίων για λόγους χαμηλής παρατηρησιμότητας (βλέπε σκαριφήμα 1). Επιπλέον στην υπερκατασκευή θα προβλεφτεί και χώρος αποθήκευσης δύο επιπλέον αμοιβών εξωλέμβιων μηχανών. Έτσι το συνολικό της μήκος της εκτιμάται πάνω από πέντε μέτρα.

γ) Διάφορα οπλικά συστήματα και συγκεκριμένα: ένα τηλεχειριζόμενο σταθμό τύπου Mini Typhoon που θα κατευθύνει πυροβόλο τύπου BARRET M82A2 20 mm στο πλωριό τμήμα, τουλάχιστον τρία μέτρα μπροστά από την υπερκατασκευή, τέσσερα απλά μικρότερα πυροβόλα επίσης τύπου BARRET στο πρυμναίο και μεσαίο τμήμα, για περιφερειακή κάλυψη του σκάφους, και τέλος μία τηλεχειριζόμενη μονάδα τύπου SIMBAD RC εκτόξευσης κατευθυνόμενων βλημάτων τύπου MISTRAL στο πρυμναίο τμήμα, επαρκώς μακριά από την υπερκατασκευή ώστε να επιτευχθεί ο ελάχιστος δυνατός νεκρός τομέας εκτόξευσης.

- <u>στο μηχανοστάσιο</u>

α) Δύο κύριες μηχανές μεγάλης ιπποδύναμης λόγω της απαιτούμενης υψηλής ταχύτητας, άρα
 και μεγάλου όγκου.

β) Παρομοίως δύο αγωγούς δύο waterjets.

γ) Δεξαμενές χρήσεως καυσίμων και ελαίου.

- στο ενδιάμεσο κατάστρωμα (με διάταξη από πρύμα προς τα πλώρα)

α) χώρος εναπόθεσης του εξοπλισμού των αντρών ειδικών αποστολών (καταδυτικές στολές, αναπνευστικές συσκευές, ατομικός οπλισμός) στο μεσαίο τμήμα του καταστρώματος.

β) χώρος αποθήκευσης εφοδίων (ξηρά τροφή, πόσιμο ύδωρ, κυτία με φαρμακευτικό υλικό πρώτων βοηθειών)

γ) μία κλίνη ανάγκης (τραυματία), όσο πιο κοντά γίνεται στην διαμήκη θέση του κέντρου βάρους του σκάφους για μείωση της επιβάρυνσης του τραυματία, όσον αφορά την καταπόνηση από τον προνευταυσμό του σκάφους.

δ) δεκαοχτώ καθίσματα για την μεταφορά των αντρών ομάδων ειδικών αποστολών

ε) μία τουαλέτα και μία αποθήκη πυρομαχικών

Λαμβάνοντας υπόψην όλα τα ανωτέρω προεπιλέγονται οι κάτωθι κύριες δαστάσεις για το υπό μελέτη πλοίο:

Μήκος Ολικό Loa=23,087 μέτρα για την δημιουργία επαρκούς επιφάνειας καταστρώματος. Επειδή οι απαιτήσεις σε μήκος για το μηχανοστάσιο και το ενδιάμεσο κατάστρωμα εκτιμούνται πιο μέτριες, επιλέγεται η διαμήκης μορφή του σκάφους που φαίνεται στο σκαρίφημα 1, με πρόβολο στο πρυμναίο άνω τμήμα της γάστρας, η

οποία επιτρέπει την επιλογή αρκετά μικρότερου Μήκους Ισάλου (ώστε να μειωθεί και το βάρος WLs). Συγκεκριμένα επιλέγεται Μήκους Ισάλου LwL =18,659 μέτρα.

Σημειώνεται ότι οι αγωγοί εξαγωγής αέρα των κυρίων μηχανών προορίζονται να καταλήγουν στα πλαϊνά του σκάφους, μέσα στο νερό. Η επιλογή αυτή γίνεται για τους εξής λόγους:

α) Εξοικονόμηση διαθέσιμης επιφάνειας κυρίου καταστρώματος για την τοποθέτηση των προαναφερθέντων συστημάτων.

β) Ενίσχυση του χαρακτήρα χαμηλής παρατηρησιμότητας του σκάφους.

γ) Εξασφάλιση καλύτερων ατμοσφαιρικών συνθηκών (υγιεινής και ορατότητας) στην επιφάνεια του κύριου καταστρώματος όπου θα μετακινούνται οι καταδρομείς προκειμένου να χειριστούν τις λέμβους και τα πυροβόλα. Αυτές οι συνθήκες θα μπορούσαν βέβαια να πραγματωθούν και με μια ανύψωση των αγωγών αρκετά ψηλότερα από το επίπεδο του κυρίου καταστρώματος, κάτι τέτοιο όμως θα ζημίωνε πολύ το ζητούμενο προφίλ χαμηλής παρατηρησιμότητας του σκάφους.

- Κοίλο D=3,14 μέτρα, ικανό για την δημιουργία επαρκούς ύψους για τις ενδιαιτήσεις που θα τοποθετηθούν στο ενδιάμεσο κατάστρωμα αλλά και επαρκούς ύψους διπύθμενου όπου θα τοποθετηθεί η δεξαμενή καυσίμου. Διευκρινίζεται ότι επαρκές ύψος διπύθμενου θα μειώσει τις απαιτήσεις διαμήκους επέκτασης της δεξαμενής καυσίμου προκειμένου να προκύψει ο απαραίτητο όγκος για τον απαιτούμενο φόρτο καυσίμων, ο οποίος βάσει της επιθυμητής ταχύτητας προβλέπεται να είναι μεγάλος. Με την σειρά του, μειωμένο μήκος δεξαμενής θα βοηθήσει στην διατήρηση του κέντρου βάρους του πλοίου σε πιο πρυμναίο σημείο, προκειμένου να εξασφαλιστεί η δυνατότητα ικανοποιητικής ολίσθησης αυτού.
- Μέγιστο Πλάτος B_M =5,396 μέτρα, που φθίνει σταδιακά προς το άνω μέρος της πλευρικής κατασκευής, η οποία σε εκείνη την περιοχή και μέχρι το κύριο κατάστρωμα παρουσιάζει αντίθετη κλίση για λόγους χαμηλής παρατηρησιμότητας του σκάφους (βλέπε σκαρίφημα 3). Ανωτέρω τιμή μεγίστου πλάτους επιτρέπει επαρκές πλάτος κυρίου καταστρώματος 4,8 μέτρα. Το ενδιάμεσο κατάστρωμα επιλέγεται να είναι στο ύψος της ακμής γιατί σε χαμηλότερη θέση μειώνεται αισθητά το διαθέσιμο πλάτος ενώ

σε υψηλότερη θέση μειώνεται πολύ το διαθέσιμο ύψος για την τοποθέτηση των ενδιαιτήσεων. Προκειμένου να εξασφαλιστεί επαρκές πλάτος για την τοποθέτηση του μεγάλου όγκου κυρίων μηχανών αλλά και των ενδιαιτήσεων που θα εκτείνονται μέχρι και το πλωραίο τμήμα του ενδιάμεσου καταστρώματος (το οποίο αναγκαστικά θα μειώνεται προς τα πρώρα), επιλέγεται μέγιστο πλάτος μεταξύ των ακμών **Bpx=5** μέτρα. Σημειώνεται ότι για τους ανωτέρω χωροταξικούς λόγους, επιλέγεται η ανωτέρω απόσταση να διατηρείται σταθερή από πρύμα μέχρι και λίγο μετά την μέση τομή του πλοίου, από όπου και θα μειώνεται βαθμιαία προς τα πρώρα βάσει της επιλεγμένης πρισματικής μορφής γάστρας (βλέπε σκαρίφημα 2).

- Με βάση τις τιμές των ανωτέρω διαστάσεων επιλέγεται ανύψωση πυθμένα β=20 μοίρες. Έτσι προκύπτει ύψος ακμής, άρα και ενδιάμεσου καταστρώματος, 0,871 μέτρα (βλέπε σκαρίφημα 3).
- Βύθισμα T=1,09 μέτρα. Έτσι και με βάση τα ανωτέρω στοιχεία προκύπτει Πλάτος
 Ισάλου BwL=5,047 μέτρα (βλέπε σκαρίφημα 3).
- Συντελεστής γάστρας CB=0,483. Επιλέγεται λίγο μεγαλύτερος του αντίστοιχου του πατρικού πλοίου προκειμένου να προκύψει μια γάστρα πιο ΄΄πλήρης΄΄, που θα αποδώσει στο σκάφος μεγαλύτερο γεωμετρικό εκτόπισμα. Το τελευταίο δε, προκύπτει Δγ= CB x Cr x LwL x BwL x T ≅ 50,7 tons

Όσον αφορά την διαμερισματοποίηση του πλοίου, αρχική εκτίμηση είναι ότι θα υπάρχουν τέσσερις υδατοστεγανές φρακτές: μία ανάμεσα στο μηχανοστάσιο και τις ενδιαιτήσεις, μία ανάμεσα στις ενδιαιτήσεις και τον χώρο της αποθήκης πυρομαχικών-τουαλέτας, μία ανάμεσα στον τελευταίο χώρο και το πλωριό στεγανό συγκρούσεως και μια διαμήκη που θα αποτελεί δεξιό διάμηκες όριο της αποθήκης πυρομαχικών (βλέπε σκαρίφημα 2).

Σκαρίφημα 1: πρόχειρη πλάγια όψη υπό μελέτη σκάφους

Σκαρίφημα 2: πρόχειρη κάτοψη υπό μελέτη σκάφους

Σκαρίφημα 3:εγκάρσια όψη υπό μελέτη πλοίου κοιτώντας από πρύμα προς πρώρα

2.2 Σύντομη περιγραφή της μεθόδου Grubisic

Προκειμένου να ελεγθεί η καταλληλότητα των ανωτέρω προεπιλεγμένων διαστάσεων είναι απαραίτητη η χρήση μεθόδων υπολογισμού-προεκτίμησης των διαφόρων ομάδων βαρών του πλοίου, ώστε να υπάρξει μια αρχική τιμή για το συνολικό βάρος του πλοίου και στη συνέχεια αυτή να συγκριθεί με το βάρος του εκτοπίσματος της προσχεδιασμένης γάστρας του σκάφους, συνεπώς να διαφανεί η καταλληλότητα των προεπιλεγμένων κυρίων διαστάσεων.

Γενικά, όσον αφορά τα βάρη του πλοίου, ισχύει η σχέση:

$\Delta = W_{LS} + DWT \qquad (1)$

όπου Δ το συνολικό βάρος του πλοίου,W⊾s το βάρος του άφορτου σκάφους και DWT το πρόσθετο βάρος του πλοίου. Επομένως για τον προσδιορισμό του συνολικού βάρους αρκεί να υπολογιστούν όλες οι επιμέρους συνιστώσες του βάρους άφορτου σκάφους και το πρόσθετο βάρος.

Η μέθοδος που χρησιμοποιήθηκε για τον υπολογισμό του WLs στην παρούσα μελέτη είναι η μέθοδος του **Δρ. Izvor Grubisic**, καθηγητή του Πανεπιστημίου του Ζάγκρεμπ της Κροατίας [4]. Πρόκειται για μια μεθοδολογία που προέκυψε από την στατιστική ανάλυση στοιχείων πολλών μικρών ταχύπλοων σκαφών, διαφόρων τύπων, αποστολών και υλικών κατασκευής, συμπεριλαμβανομένων πολεμικών σκαφών. Συγκεκριμένα: α) <u>ως προς την αποστολή τους</u> τα πλοία αυτά είναι: πλοία καταπολέμησης πυρκαιάς, ρυμουλκά, πλοία πολεμικών ναυτικών, μηχανοκίνητα γιωτ, περιπολικά, επιβατικά και ferries, πλοία έρευνας και διάσωσης β) <u>ως προς το υλικό κατασκευής</u> είναι χάλυβας χαμηλής και υψηλής αντοχής, FRP, αλουμίνιο. Όλα τα ανωτέρω πλοία είναι είτε πλοία ημιεκτοπίσματος είτε πλήρους ολίσθησης και όλα διαθέτουν πρύμνη άβακος (καθρέπτη) σαν ολισθάκατο, όπως βέβαια και το υπό μελέτη πλοίο.

Ανεξάρτητα από κάποιες διαφοροποιήσεις ανάμεσα στα υφιστάμενα συστήματα υποδιαίρεσης του βάρους (weight breakdown systems) των ανωτέρω πλ άων, ένα βασικ ό κ α συνάμα αντιπροσωπευτικό τέτοιο σύστημα για το βάρος του άφορτου σκάφους πολεμικών πλοίων σύμφωνα με την μέθοδο είναι το παρακάτω, που παρουσιάζεται με τη σχέση (2) κ α το διάγραμμα 2. Σημειώνεται ότι η παρακάτω εξίσωση που υιοθετεί η μέθοδος στηρίζεται κατά βάση στο σύστημα υποδιαίρεσης βάρους πολεμικού πλοίου του Αμερικάνικου Πολεμικού Ναυτικού (Expanded Ship Work Breakdown Structure – ESWBS [5]):

 $W_{LS} = W_{100} + W_{200} + W_{300} + W_{400} + W_{500} + W_{600} + W_{700}$ (2)

Σχήμα 8: Basic Weight Breakdown System

Πίνακας Βαρών ESWBS

ΚΑΤΗΓΟΡΙΑ	ΠΕΡΙΓΡΑΦΗ	DESCRIPTION
1	ΜΕΤΑΛΛΙΚΗ ΚΑΤΑΣΚΕΥΗ	HULL STRUCTURE
2	ΠΡΟΩΣΤΗΡΙΑ ΕΓΚΑΤΑΣΤΑΣΗ	PROPULSION PLANT
3	ΗΛΕΚΤΡΙΚΗ ΕΓΚΑΤΑΣΤΑΣΗ	ELECTRIC PLANT
4	ΔΙΟΙΚΗΣΕΩΣ ΚΑΙ ΕΛΕΓΧΟΥ	COMMAND & SURVEILLANCE
5	ΒΟΗΘΗΤΙΚΑ ΣΥΣΤΗΜΑΤΑ	AUXILIARY SYSTEMS
6	ΕΞΑΡΤΗΣΗ ΚΑΙ ΕΞΟΠΛΙΣΜΟΣ	OUTFIT & FURNISHINGS
7	ΟΠΛΙΣΜΟΣ	ARMAMENT
М	ΠΕΡΙΘΩΡΙΟ ΑΣΦΑΛΕΙΑΣ	MARGINS, ACQUISITION
F	ΠΛΗΡΕΣ ΦΟΡΤΙΟ ΑΝΑΧΩΡΗΣΗΣ	LOADS, DEPARTURE FULL

Ουσιαστικά η μέθοδος καθορίζει προσεγγιστικούς τύπους υπολογισμού-προεκτίμησης της κάθε επιμέρους ομάδος βαρών του άφορτου σκάφους, οι οποίοι περιλαμβάνουν γνωστούςεπιλεγμένους κατά την προμελέτη παραμέτρους του σκάφους, όπως κάποιες βασικές διαστάσεις του πλοίου, είτε παραμέτρους που προκύπτουν από τις εν λόγω προεπιλογές, όπως για παράδειγμα ο όγκος εκτοπίσματος ∇ . Υπάρχει μέριμνα ώστε οι παράμετροι που υπεισέρχονται σε κάθε τύπο να ΄΄συσχετίζονται φυσικά΄΄ με το μέγεθος της εκάστοτε μεταβλητής που υπολογίζει ο κάθε τύπος (π.χ. απαιτούμενη ισχύς με βάρος της μηχανής). Ειδικά για τον υπολογισμό του βάρους της μεταλλικής κατασκευής του σκάφους (Structural Weight), η μέθοδος ακολουθεί την λογική των προγενέστερων Watson και Gilfillan, σύμφωνα με την οποία η πρόβλεψη του εν λόγω βάρους βασίζεται στον καθορισμό αριθμητικών συντελεστών, οι οποίοι αντιπροσωπεύουν τμήματα επιφανειών της κατασκευής.

2.3 Έλεγχος καταλληλότητας της μεθόδου Grubisic

Όσον αφορά το υπό μελέτη σκάφος, υφίσταται ένα πατρικό πλοίο επίσης μονοεδρικής πρισματικής μορφής γάστρας, με τα εξής χαρακτηριστικά (τα οποία χρησιμοποιούνται στην εφαρμογή της μεθόδου Grubisic):

Εκτόπισμα (Full Load Displacement	18 tons	
Δfl)		
Βάρος Άφορτου Σκάφους (W∟s)	13 tons	
Μήκος Ισάλου (Lw∟)	13,13 m	
Μήκος μεταξύ καθέτων (L)	14,90 m	
Πλάτος Μέγιστο (Βゕ)	3,8 m	
Βύθισμα (Τ)	0,83 m	
Κοίλο (D)	2,15 m	
Εγκατεστημένη Ισχύς (Ρ _Β)	920 KW	
Μέγιστη Ταχύτητα (V _{max})	40 Knots	
αριθμός στεγανών φρακτών (ΝωτΒ).	3	
Πρόωση με 2 κύριες μηχανές SCANIA και 2 waterjets KAMEWA <u>χωρίς</u>		
μειωτήρα		

Προκειμένου να ελεγχθεί η καταλληλότητα χρήσης της μεθόδου Grubisic για το νέο σκάφος, έγινε αρχικά χρήση αυτής για τον υπολογισμό του βάρους άφορτου σκάφους για το πατρικό πλοίο, ώστε να συγκριθούν τα αντίστοιχα αποτελέσματα με το ήδη γνωστό WLs του εν λόγω πλοίου.

Παρατίθενται αναλυτικά οι σχετικοί υπολογισμοί:

1. Υπολογισμός του βάρους μεταλλικής κατασκευής (Structural Weight) W100

- επιμέρους επιφάνειες

 Bottom:
 S1=2,825 x (ΔFL x LwL)^1/2 =43,423 m^2

 Sides:
 S2=1,09 x (2 x LoA + BM) x (D - T) =48,344 m^2

 Deck:
 S3=0,823 x (LoA + LwL)/2 x BM m^2

 Bulk:
 S4=0,6 x NwTB x BM x D=14,706 m^2

- συνολική επιφάνεια, Sr = S1 + 0,735S2 +0,69S3 + 0,65S4 = 118,516 m^2
- συντελεστής γάστρας, $C_B = \Delta_{FL} / (C_{\Gamma} x L_{WL} x B_M x T) = 0.42$ (όπου ελήφθη $C_{\Gamma}=1.025$)
- βυθισμένος όγκος πλοίου, V= Cb x Lwl x Bm x T=17,393 m^3
- διορθωτικός συντελεστής εκτοπίσματος (Displacement Correction factor) F_{dis} , $F_{dis} = 0, 7 + (2,4 \times \nabla)/(LwL^2 - 15,8) = 0,966$
- διορθωτικός συντελεστής λόγου T/D, Ct/d=1,144 x (T/D)^0,244=0,907
- ενεργή επιφάνεια (Effective Surface Area), Es= Fdis x CT/D x SR=103,839 m²
 - W100=K₀ x Es¹,33=5,38 tons (όπου K₀=0,0112)

2. Υπολογισμός του βάρους προωστήριας εγκατάστασης (Propulsion Weight) W200

 Αν θεωρήσουμε τις κύριες μηχανές προεπιλεγμένες, από τον δικτυακό τόπο της κατασκευάστριας εταιρείας και με βάση την γνωστή εγκατεστημένη ισχύ του σκάφους, βρίσκουμε βάρος κενών μηχανών Wdry=2,3 tons. Σύμφωνα με τη μέθοδο, ισχύει για το βάρος των πληρωμένων μηχανών Wwet=1,066 x Wdry =2,45 tons. Ομοίως για το βάρος του κάθε waterjet ισχύει Wwjw =(PB^1,286)/8771=0,303 tons, άρα και για τα δύο waterjets Wwjw =0,606 tons. Συνολικά, W200=3,056 tons

- Αν θεωρήσω ότι οι μηχανές δεν είναι προεπιλεγμένες, ισχύει ο τύπος W200=(L x BM x D x Σ PB)^0,45/31,45=5,95 tons
- 3. Υπολογισμός βάρους ηλεκτρικής εγκατάστασης (Electrical Power Weight) W300
 - W₃₀₀=(L x B_M x D)^1,24 / 592 = 0,651 tons
- 4. Υπολογισμός βάρους ηλεκτρονικού εξοπλισμού (Electronic Equipment Weight) W400
 - W400=0,0365 + 0,0015 x L x BM x D =0,2195 tons
- 5. Υπολογισμός βάρους βοηθητικών μηχανημάτων (Auxiliary Machinery Weight) W500
 - W₅₀₀=0,000772 x (L x B_M)^1,784 =1,035 tons
- 6. <u>Υπολογισμός βάρους εξοπλισμού (Outfit Weight)</u> W600
 - W₆₀₀=0,0097 x L^2,132=3,076 tons
- 7. Υπολογισμός βάρους ειδικών συστημάτων (Special Systems Weight) W700
 - W700=0,000333 x (L x BM x D)^1,422 =0,308 tons
- 8. Υπολογισμός βάρους περιθωρίου σφάλματος υπολογισμών (Remaining Weight) Wu
 - Wu=0,036 x $\Delta_{FL} = 0,648$ tons

Σημειώνεται ότι στις παραπάνω σχέσεις L είναι το μήκος ισάλου και Β το μέγιστο πλάτος.

Στο ανωτέρω βάρος πρέπει να προστεθεί και το βάρος της υπερκατασκευής W₁₅₀. Από υπάρχοντα σχέδια του πατρικού πλοίου υπολογίζεται προσεγγιστικά τα εμβαδόν της επιφάνειας την υπερκατασκευής περίπου 6 m². Στα εν λόγω σχέδια δίνεται πάχος ελάσματος υπερκατασκευής 4 mm. Θεωρώ ειδικό βάρος αλουμινίου 2,9 Kg/m²/mm (αρχικά 2,7 Kg/m²/mm, αλλά προστίθεται τελικά μια μικρή προσαύξηση για να συνυπολογιστεί το βάρος των κολλήσεων), και 10% προσαύξηση για τα ενισχυτικά, οπότε προκύπτει W150=76,56 Kg=0,0766 tons.

Σύμφωνα με τη σχέση (2), αθροίζοντας όλα τα επιμέρους βάρη προκύπτει:

(α)W_{LS}=14,373 tons, έχοντας θεωρήσει προεπιλεγμένες τις μηχανές,συνεπώς ο διορθωτικός συντελεστής λ= W_{πραγματικό} / W_{υπολογιζόμενο} ≅ 0,9

(β)WLs=17,267 tons, χωρίς προεπιλογή των μηχανών, συνεπώς ο διορθωτικός συντελεστής λ= Wπραγματικό / Wυπολογιζόμενο=0,752

Στην περίπτωση (β) παρατηρείται μια υπερεκτίμηση του βάρους της προωστήριας εγκατάστασης που οδηγεί με τη σειρά του και σε μια μεγάλη, μη ανεκτή αύξηση στην εκτίμηση του WLs. Στην περίπτωση (α) αντίθετα φαίνεται μια ικανοποιητική προσέγγιση του WLs., ιδιαίτερα αν συνυπολογίσει κανείς και την μέση απόκλιση της μεθόδου (13%). Συμπερασματικά η μέθοδος Grubisic, με την μέθοδο προεπιλογής των κυρίων μηχανών, κρίνεται κατάλληλη για εφαρμογή στο υπό μελέτη πλοίο, λαμβάνοντας υπόψη και το **διορθωτικό συντελεστή λ=0,9**.

2.4 Προεκτίμηση της απαιτούμενης ισχύος για το υπό μελέτη πλοίο

2.4.1 Παρουσίαση μεθόδου Savitsky

Όπως διαφάνηκε παραπάνω, προκειμένου να υπολογιστεί το βάρος της μηχανολογικής εγκατάστασης W₂₀₀, είναι απαραίτητη προυπόθεση να προεκτιμηθεί με κάποια μέθοδο η απαιτούμενη ισχύς για το υπό μελέτη πλοίο. Στην προκειμένη περίπτωση επιλέγεται η **σύντομη μέθοδος Savitsky**, κατά την οποία θεωρείται ότι το σημείο εφαρμογής της συνισταμένης των υδροστατικών πιέσεων (**N**) που ασκούνται στον πυθμένα του σκάφους συμπίπτει με το κέντρο βάρους του (βλέπε σχήμα 10) [1], [2], [6].

Παρακάτω παρατίθενται τα απαιτούμενα στοιχεία κάθε σκάφους κάθως και κάποιες σταθερές, τα οποία υπεισέρχονται στους διάφορους υπολογισμούς της μεθόδου:

- κινηματική συνεκτικότητα θαλασσίου ύδατος $V = 1,19 \times 10^{-6} \text{ m}^2/\text{sec}$

- πυκνότητα θαλασσίου ύδατος ρ = 104.61 kp x sec²/m⁴ = 1,025 mt/m³

- επιτάχυνση της βαρύτητας $g = 9,80665 \text{ m/sec}^2$
- Μέγιστη ταχύτητα πλοίου V [m/sec]
- Βάρος- Εκτόπισμα πλοίου Displ (W) [kp]
- Πλάτος ολισθαίνουσας επιφάνειας (βρεχόμενο πλάτος στην ακμή) B_{px} [m]
- Διάμηκες κέντρο βάρους πλοίου LCG [m]

- Διάμηκες κέντρο υδροστατικών πιέσεων πλοίου Lp [m] (Στην σύντομη μέθοδο Savitsky θεωρείται ότι το Lp συμπίπτει με το LCG)

- Γωνία ανύψωσης πυθμένα πλοίου β [deg]

Παρακάτω παρατίθενται τα διαδοχικά βήματα της μεθόδου:

- <u>Βήμα 1^ο</u>: Υπολογισμός Αριθμού Froude με βάση το πλάτος, $Fn_b = V/ (g \times B)^{0,5}$

- <u>Βήμα 2^ο</u>: Υπολογισμός Συντελεστή Άνωσης πρισματικού σκάφους, **CIβ = W/0,5ρ x** $V^2 x B^2$

 <u>Βήμα 3^ο</u>: Υπολογισμός Συντελεστή Άνωσης επίπεδης πλάκας, CLO, από το σχήμα 7 ή από την εξίσωση CIβ = $C_{LO} - 0,0065 \times \beta \times C_{LO}^{0,6}$

Σχήμα 9: Συσχετισμός CIβ - C_{LO}

- <u>Βήμα 4</u>⁰: Υπολογισμός συντελεστή α = Lp/Β

-<u>Βήμα 5^ο</u>: Υπολογισμός λόγου μέσου βρεχόμενου μήκους προς πλάτος, **λ**, από το παρακάτω νομογράφημα ή από την επαναληπτική σχέση $\lambda^{(v+1)} = \alpha / [0,75 - 1/(5,21 \times Fn_b^2 / \lambda^{(v)2} + 2,39)]$ με $\lambda^{(1)} = \alpha / 0,75$

- <u>Βήμα 8</u>^ο : Υπολογισμός συντελεστή δυναμικής άνωσης,

CLd = 0,0120 x $\lambda^{0,5}$ x $\tau^{1,1}$ – 0,0065 x β x (0,0120 x $\lambda^{0,5}$ x $\tau^{1,1}$)^{0,6}

- <u>Βήμα 9</u>^⁰: Υπολογισμός Μέσης Ταχύτητας Πυθμένα, **Vm** = **V** x [1- CLd / (λ x cos τ)]^{0,5}

- <u>Βήμα 10^ο</u> : Υπολογισμός διόρθωσης λόγου βρεχόμενου μήκους λόγω αφρού, Δλ, όπως

προκύπτει από το παρακάτω σχήμα ή **0** για **τ** ≤ **4 deg**

Σχήμα 11: Διάγραμμα υπολογισμού διόρθωσης λόγω αφρού Δλ

- <u>Βήμα 11^ο</u>: Υπολογισμός λόγου βρεχόμενου μήκους τριβής προς το πλάτος,

$\lambda_{\mathsf{F}} = \lambda + \Delta \lambda$

- <u>Βήμα 12^Ω</u>: Υπολογισμός αριθμού Re με τη βοήθεια του $λ_F$ και του πλάτους,
Re = Vm x (Bpx x λ_F) / v

- <u>Βήμα 13^ο</u>: Υπολογισμός συντελεστή αντίστασης τριβής Cf = 0,075 / $(logRe 2)^2$
- <u>Βήμα 14^ο</u>: Υπολογισμός βρεχόμενης επιφάνειας τριβής, **Sf** = $\lambda_F \ge B^2 / \cos \beta$
- <u>Βήμα 15^o</u>: Υπολογισμός αντίστασης τριβής, **Df =0,5 x ρ x V²m x Sf x (Cf +ΔCf),** όπου **ΔCf**
- =0,0004 (συντελεστής συσχέτισης)
- <u>Βήμα 16^o</u>: Υπολογισμός αντίστασης σκάφους, $R_T = W x tant + Df / cost$
- <u>Βήμα 17[°]</u>: Υπολογισμός ισχύος ρυμούλκησης σκάφους,
- $EHP = V [m/sec] x R_T [kp] / 75 [PS]$

Σχήμα 12: Απεικόνιση βασικής υπόθεσης σύντομης μεθόδου Savitsky

2.4.2 Εφαρμογή μεθόδου Sαvitsky στο πατρικό πλοίο

Αρχικά ελέγχεται η καταλληλότητα της μεθόδου με εφαρμογή της στο πατρικό πλοίο. Τα

απαιτούμενα στοιχεία του σκάφους είναι τα παρακάτω:

- Μέγιστη ταχύτητα πλοίου V =40 knots

- Βάρος- Εκτόπισμα πλοίου Displ (W) = 18 mt

- Πλάτος ολισθαίνουσας επιφάνειας (βρεχόμενο πλάτος στην ακμή) \mathbf{B}_{px} = 3,24 m

- Διάμηκες κέντρο βάρους πλοίου LCG =5,96 m= Lp . Λαμβάνεται ίσο με 40% του Loa= 14,90 m

Γωνία ανύψωσης πυθμένα πλοίου β = 20 deg

Οι σχετικοί υπολογισμοί έγιναν στο πρόγραμμα EXCEL και τα αποτελέσματα αυτών παρουσιάζονται συνοπτικά παρακάτω:

μέγιστη ταχύτητα μέγιστη ταχύτητα γάνος στην ακμή Displ 18 mt ν = 1.19Ε-06 sq.m./sec kls sq.m./sec p= sq.m./sec kls sq.m./sec p= sq.m./sec kls sq.m./sec kls sq.m./sec p= sq.m./sec kls sq.m./sec p= sq.m./sec kls sq.m./sec kls							
μέγιστη ταχύτητα V 40 kts ρ= 104.61 kp.sec^2/m^4/getere βρεχ όμενο πλάτος στην ακμή Bpx 3.24 m γ= 1.025 mt/cbm ανύψωση πυθμένα β 20 deg ge 9.80665 m/sec^2 ανύψωση πυθμένα β 20 deg ge 9.80665 m/sec^2 Συντελεστής άνωσης πρισματικού σκάφους Clβ 0.077 CLO 0.111941 0.077 Συντελεστής άνωσης επίπεδης πλάκας Lp/B 1.62		Displ	18	mt	v =	1.19E-06	sq.m./sec
βρεχ όμενο πλάτος στην ακμή Bpx 3.24 m γ= 1.025 mt/cbm ανύψωση πυθμένα β 20 deg 9.80665 m/sec ^2 ανύψωση πυθμένα β 20 deg state state Συντελεστής άνωσης πρισματικού σκάφους Clβ 0.077 state	μέγιστη ταχύτητα	V	40	kts	ρ=	104.61	kp.sec^2/m^4
ανύψωση πυθμέναLCG5.252mg=9.80665m/sec^2ανύψωση πυθμέναβ20degdegΣυντελεστής άνωσης πρισματικού σκάφους Συντελεστής άνωσης επίπεδης πλάκας λόγος μέσου βρεχόμενου μήκους προς πλάτοςCLO0.01119410.077iΚέντρο πίσεων προς πλάτος λόγος μέσου βρεχόμενου μήκους προς πλάτοςA(1)2.16iiiΛόγος μέσου βρεχόμενου μήκους προς πλάτοςΛ(γ)2.3756iiiiΛόγος μέσου βρεχόμενου μήκους προς πλάτος(V/1)2.37563605iiiiδύος μέσου βρεχόμενου μήκους προς πλάτοςCLO/11.10.0021iii	βρεχόμενο πλάτος στην ακμή	Врх	3.24	m	γ=	1.025	mt/cbm
ανύψωση πυθμέναβ20degΣυντελεστής άνωσης πρισματικού σκάφους Συντελεστής άνωσης επίπεδης πλάκας Κέντρο πιέσεων προς πλάτος Λόγος μέσου βρεχόμενου μήκους προς πλάτοςCL00.111941Λόγος μέσου βρεχόμενου μήκους προς πλάτοςλ(1)2.16Λόγος μέσου βρεχόμενου μήκους προς πλάτοςλ(1)2.3756356Λόγος μέσου βρεχόμενου μήκους προς πλάτοςN(ν+1)2.3756356Λόγος μέσου βρεχόμενου μήκους προς πλάτοςN(ν+1)2.3756356Λόγος μέσου βρεχόμενου μήκους προς πλάτοςCL0/T1.10.0221συναμική διαγωγήCLd0.09367συντ. δυναμικής άνωσης φορού λόγος βρεχόμενου μήκους τριβής προς το πλάτοςCLd0.0325Λάγος βρεχόμενου μήκους τριβής προς το πλάτοςΛf2.7006356δίορθωση λόγου βρεχόμενου μήκους τριβής προς το πλάτοςNf2.7006356δίορθωση λόγου βρεχόμενου μήκους τριβής προς το πλάτοςNf2.7006350βρεχόμενη επιφάνεια τριβής αντίσταση τριβήςSf3.0169644φρού αντίσταση τριβής τουςSf3.0169644βρεχόμενοις μίση τριβής αντίσταση τριβήςSf3.0169644μίση στα μη σκάφους αντίσταση τριβής αντίσταση τριβήςSf3.0169646μέψη8019219.9666kp		LCG	5.252	m	g=	9.80665	m/sec^2
Συντελεστής άνωσης πρισματικού σκάφους Fnb 3.65 Συντελεστής άνωσης επίπεδης πλάκας Cl0 0.077 Κέντρο πιέσεων προς πλάτος Lp/B 1.62 λόγος μέσου βρεχόμενου μήκους προς Λ(1) 2.16 Λόγος μέσου βρεχόμενου μήκους προς Λ(ν) 2.3756 3.56E- Λόγος μέσου βρεχόμενου μήκους προς Λ(ν+1) 2.375635 05 Δύναμική διαγωγή T 4.37 2.375635 05 συντ. δυναμικής άνωσης Cld 0.09367 3.56E- Λόγος βρεχόμενου μήκους προς T 4.37 3.56E- σύναμική διαγωγή T 4.37 3.56E- σύναμικής άνωσης Cld 0.09367 3.56E- μειωμένος συντελεστής επίπεδης πλάκας Cld 0.09367 3.56E- δίορθωση λόγου βρεχόμενου μήκους λόγω K 3.56E- 3.56E- μείωμένος συντελεστής έπίπεδης πλάκας Cld 0.09367 5 δίορθωση λόγου βρεχόμενου μήκους λόγω K 3.56E- 5 μέση ταχύτητα πυθμένα δύσι δ 5 <th>ανύψωση πυθμένα</th> <th>β</th> <th>20</th> <th>deg</th> <th></th> <th></th> <th></th>	ανύψωση πυθμένα	β	20	deg			
Fnb 3.65 Συντελεστής άνωσης πρισματικού σκάφους Clβ 0.077 Συντελεστής άνωσης επίπεδης πλάκας CLØ 0.111941 0.077 Κέντρο πίδσων προς πλάτος Lp/B 1.62 λόγος μέσου βρεχόμενου μήκους προς Κ/1 2.16 πλάτος Λ(1) 2.16 λόγος μέσου βρεχόμενου μήκους προς πλάτος Λ(γ) 2.3756356 05 μειωμένος συντελεστής επίπεδης πλάκας CLol 0.0221 δύναμικής διαγωγή CLol 0.09367 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα Λ(ν 2.3756356 05 διόρθωση λόγου βρεχόμενου μήκους τρος Μ πλάτος CLd 0.09367 σύορθωση λόγου βρεχόμενου μήκους τριβής προς το Μ πλάτος Λf 2.7006356 8.750059 βρεχόμενη επιφάνεια τριβής Gf 3.016964							
Συντελεστής άνωσης πρισματικού σκάφους Clβ 0.077 Συντελεστής άνωσης επίπεδης πλάκας Lp/B 0.077 Κέντρο πίσσεων προς πλάτος Lp/B 0.077 κάνος μέσου βρεχόμενου μήκους προς τ τ πλάτος λ(1) 2.16 . λόγος μέσου βρεχόμενου μήκους προς 3.56E- . πλάτος λ(ν+1) 2.3756356 05 μειωμένος συντελεστής επίπεδης πλάκας CL0/T1.1 0.0221 . συναμική διαγωγή τ 4.37 . συντ. δυναμικής άνωσης Vm 2.035 . μέση ταχύτητα πυθμένα Cld 0.062 . δύορθωση λόγου βρεχόμενου μήκους λόγως Ym 2.03 m/sec λόγος βρεχόμενου μήκους τριβής προς το Δ . . πλάτος Δ 0.225 . . λόγος βρεχόμενου μήκους τριβής προς το Δ . . . μέση ταχύτητα πυθμένα Δ . . . δήογος βρεχόμενου μήκους τριβής Γ		Fnb	3.65				
Συντελεστής άνωσης επίπεδης πλάκας CL0 0.111941 0.077 Κέντρο πιέσεων προς πλάτος Lp/B 1.62 λόγος μέσου βρεχόμενου μήκους προς λ(1) 2.16 λόγος μέσου βρεχόμενου μήκους προς λ(γ) 2.37563 πλάτος λ(γ) 2.3756356 05 πλάτος λ(γ) 2.3756356 05 μειωμένος συντελεστής επίπεδης πλάκας CL0/T1.1 0.0221 συναμική διαγωγή τ 4.37 συναμικής άνωσης CLd 0.062 μέση ταχύτητα πυθμένα Vm 20.3 m/sec διόρθωση λόγου βρεχόμενου μήκους λόγω ΔΛ 0.325 τ<4 λόγος βρεχόμενου μήκους τριβής προς το Λf 2.7006356 8.750059 καφρού ΔΛ 0.325 τ<4 λόγος βρεχόμενου μήκους τριβής προς το Δf 2.7006356 8.750059 Re 1.49E+08 6 0.0019681 ΔCf 0.0004 2019.9666 kp αντίστασ	Συντελεστής άνωσης πρισματικού σκάφους	ϹͿβ	0.077				
Κέντρο πιέσεων προς πλάτος Lp/B 1.62 λόγος μέσου βρεχόμενου μήκους προς λ(1) 2.16 λόγος μέσου βρεχόμενου μήκους προς λ(V) 2.3756 πλάτος λ(V) 2.3756356 λόγος μέσου βρεχόμενου μήκους προς 3.56E- πλάτος λ(V1) 2.3756356 πλάτος Λ(V1) 0.0221 συναμική διαγωγή τ 4.37 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα Λόγος βρεχόμενου μήκους τριβής προς το M πλάτος ΔΛ 0.325 τ<4 λόγος βρεχόμενου μήκους τριβής προς το Λf 2.7006356 8.750059 Re 1.49E+08 Γ 0.0014681 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση σκάφους	Συντελεστής άνωσης επίπεδης πλάκας	CL0	0.111941	0.077			
λόγος μέσου βρεχόμενου μήκους προς πλάτοςλ(1)2.16λόγος μέσου βρεχόμενου μήκους προς πλάτοςλ(v)2.3756πλάτοςλ(v)2.375635605πλάτοςλ(v+1)2.375635605μειωμένος συντελεστής επίπεδης πλάκας δυναμική διαγωγήCL0/r1.10.0221συντ. δυναμική δάνωσης μέση ταχύτητα πυθμένα διόρθωση λόγου βρεχόμενου μήκους λόγω αφρούCL0/r1.10.09367συντ. δυναμικής άνωσης μέση ταχύτητα πυθμένα διόρθωση λόγου βρεχόμενου μήκους λόγω βρεχόμενου μήκους τριβής προς το πλάτοςM0.0325τ	Κέντρο πιέσεων προς πλάτος	Lp/B	1.62				
πλάτος λ(1) 2.16 λόγος μέσου βρεχόμενου μήκους προς	λόγος μέσου βρεχόμενου μήκους προς	-					
λόγος μέσου βρεχόμενου μήκους προς πλάτοςλ(v)2.37563.56E-λόγος μέσου βρεχόμενου μήκους προς3.56E-πλάτοςλ(v+1)2.3763505μειωμένος συντελεστής επίπεδης πλάκαςCL0/r1.10.0221δυναμική διαγωγήτ4.37συντ. δυναμικής άνωσηςCLd0.09367φέση ταχύτητα πυθμέναCLd0.0062μέση ταχύτητα πυθμέναVm2.03δύγος βρεχόμενου μήκους λόγωπ/secαφρούΔλ0.325λόγος βρεχόμενου μήκους τριβής προς το πλάτοςΛ2.7006356δύγος βρεχόμενου μήκους τριβής προς το πλάτοςΛ2.7006356δουCf0.0019681βρεχόμενη επιφάνεια τριβήςSf30.169644αντίσταση τριβήςDf1539.9323κριτίσταση σκάφουςD2919.9666μειμ801PS	πλάτος	λ(1)	2.16				
πλάτος λ(v) 2.3756 λόγος μέσου βρεχόμενου μήκους προς 3.56E- πλάτος λ(v+1) 2.375635 μειωμένος συντελεστής επίπεδης πλάκας CL0/r1.1 0.0221 δυναμική διαγωγή τ 4.37 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα CLd 0.062 σύρθωση λόγου βρεχόμενου μήκους λόγω ΔΛ 0.325 αφρού ΔΛ 0.325 λόγος βρεχόμενου μήκους τριβής προς το τ 4.37 πλάτος Λf 2.706356 8.750059 βρεχόμενοι μήκους τριβής προς το Λf 0.0019681 ζ Ο.0019681 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp EHP 801 PS	λόγος μέσου βρεχόμενου μήκους προς						
λόγος μέσου βρεχόμενου μήκους προς 3.56E- πλάτος λ(ν+1) 2.3756356 05 μειωμένος συντελεστής επίπεδης πλάκας CL0/r1.1 0.0221 δυναμική διαγωγή τ 4.37 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα CLd 0.062 σύρθωση λόγου βρεχόμενου μήκους λόγω Vm 2.03 αφρού Δλ 0.325 πλάτος Λf 2.706356 πλάτος Af 2.7006356 δόγος βρεχόμενου μήκους τριβής προς το Λf 2.7006356 πλάτος Af 0.0019681 Δος Ο.0019681 βρεχόμενη επιφάνεια τριβής Sf 30.169644 αντίσταση τριβής Df 1539.9323 αντίσταση σκάφους D 2919.9666 EHP 801 PS	πλάτος	λ(v)	2.3756				
πλατος λ(ν+1) 2.3/56356 05 μειωμένος συντελεστής επίπεδης πλάκας CL0/t1.1 0.0221 δυναμική διαγωγή τ 4.37 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα Vm 20.3 m/sec διόρθωση λόγου βρεχόμενου μήκους λόγω ΔΛ 0.325 τ<4	λόγος μέσου βρεχόμενου μήκους προς			3.56E-			
μειωμένος συντελεστής επίπεδής πλάκας δυναμική διαγωγήCL0/τ1.10.0221δυναμική διαγωγήτ4.37Cdl-10.09367συντ. δυναμικής άνωσης μέση ταχύτητα πυθμέναCLd0.062μέση ταχύτητα πυθμένα αφρούVm20.3m/secδίορθωση λόγου βρεχόμενου μήκους λόγω αφρούΔλ0.325τ<4λόγος βρεχόμενου μήκους τριβής προς το πλάτοςΛf2.70063568.750059βρεχόμενη επιφάνεια τριβήςCf0.0019681αντίσταση τριβήςDf1539.9323kpαντίσταση σκάφουςD2919.9666kpEHP801PS	πλατος	Λ(v+1)	2.3756356	05			
δυναμική διαγωγή τ 4.37 Cdl-1 0.09367 συντ. δυναμικής άνωσης CLd 0.09367 μέση ταχύτητα πυθμένα Vm 20.3 m/sec διόρθωση λόγου βρεχόμενου μήκους λόγω Δλ 0.325 τ<4	μειωμένος συντελεστής επίπεδης πλάκας	СL0/т1.1	0.0221				
Cdl-1 0.09367 συντ. δυναμικής άνωσης CLd 0.062 μέση ταχύτητα πυθμένα Vm 20.3 m/sec διόρθωση λόγου βρεχόμενου μήκους λόγω Δλ 0.325 τ<4	δυναμική διαγωγή	т	4.37				
συντ. δυναμικής άνωσης CLd 0.062 μέση ταχύτητα πυθμένα Vm 20.3 m/sec διόρθωση λόγου βρεχόμενου μήκους λόγω Δλ 0.325 τ<4		Cdl-1	0.09367				
μέση ταχύτητα πυθμέναVm20.3m/secδιόρθωση λόγου βρεχόμενου μήκους λόγω αφρούΔλ0.325τ<4λόγος βρεχόμενου μήκους τριβής προς το8.750059πλάτοςΛf2.70063568.750059βεςCf0.0019681ΔCf0.0004βρεχόμενη επιφάνεια τριβήςSf30.169644sqαντίσταση τριβήςDf1539.9323kpαντίσταση σκάφουςD2919.9666kpΕΗΡ801PS	συντ. δυναμικής άνωσης	CLd	0.062				
διόρθωση λόγου βρεχόμενου μήκους λόγω Δλ 0.325 τ<4	μέση ταχύτητα πυθμένα	Vm	20.3	m/sec			
αφρού Δλ 0.325 τ<4	διόρθωση λόγου βρεχόμενου μήκους λόγω						
Λογος βρεχομενού μηκούς τριβης προς το πλάτος λf 2.7006356 8.750059 Re 1.49E+08 Cf 0.0019681 ΔCf 0.0004 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS	αφρού	Δλ	0.325	т<4			
πλάτος λτ 2.7006356 8.750059 Re 1.49E+08 Cf 0.0019681 ΔCf 0.0004 ΔCf 0.0004 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp Δτίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS	λογος βρεχομενου μηκους τριβης προς το	\ <i>E</i>	0 7000050		0 750050		
Re 1.49E+08 Cf 0.0019681 ΔCf 0.0004 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS	πλατος	AT D	2.7006356		8.750059		
Cf 0.0019681 ΔCf 0.0004 βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS		Re	1.49E+08				
βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS		Cf	0.0019681				
βρεχόμενη επιφάνεια τριβής Sf 30.169644 sq αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS		ΔCf	0.0004				
αντίσταση τριβής Df 1539.9323 kp αντίσταση σκάφους D 2919.9666 kp ΕΗΡ 801 PS	βρεχόμενη επιφάνεια τριβής	Sf	30.169644	sq			
αντίσταση σκάφους D 2919.9666 kp EHP 801 PS	αντίσταση τριβής	Df	1539.9323	kp			
EHP 801 PS	αντίσταση σκάφους	D	2919.9666	kp			
		EHP	801	PS			

Αποτελέσματα μεθόδου Savitsky για το πατρικό πλοίο

Η εγκατεστημένη ισχύς του σκάφους είναι P_B = 920 KW = 1251,2 PS. Θεωρώ ένα μέσο εκτιμώμενο βαθμό απόδοσης της προωστήριας εγκατάστασης, η οποία είναι με waterjets, ίσο

33

με 0,67 όπως προκύπτει από το σχήμα 1 για ταχύτητα 40 κόμβους, όση δηλαδή η μέγιστη ταχύτητα του πατρικού σκάφους. Έτσι προκύπτει ισχύς ρυμούλκησης **EHP 838,501 PS**, τιμή κοντινή με την τιμή που βρέθηκε με την σύντομη μέθοδο Savitsky (801 PS). Συνεπώς η εν λόγω μέθοδος κρίνεται κατάλληλη για εφαρμογή και στο υπό μελέτη πλοίο.

2.4.3 Εφαρμογή μεθόδου Savitsky στο υπό μελέτη πλοίο

Τα απαιτούμενα στοιχεία του σκάφους είναι τα παρακάτω:

- Μέγιστη ταχύτητα πλοίου V =60 knots
- Βάρος- Εκτόπισμα πλοίου Displ (W) = 50,82 mt
- Πλάτος ολισθαίνουσας επιφάνειας (βρεχόμενο πλάτος στην ακμή) ${\bf B}_{px}{=}~{\bf 5}~{m}$
- Διάμηκες κέντρο βάρους πλοίου LCG =7,464 m= 40%Lp
- Γωνία ανύψωσης πυθμένα πλοίου β = 20 deg

Τα αποτελέσματα των σχετικών υπολογισμών παρουσιάζονται συνοπτικά παρακάτω:

Αποτελέσματα μεθόδου Savitsky για το υπό μελέτη πλοίο

Εκτόπισμα	Displ	50.82	mt	v	1.19E06	sq.m./sec
μέγιστη ταχύτητα	Vs	60	kts	ρ	104.61	kp.sec^2/m^4
βρεχόμενο πλάτος στην ακμή	Врх	5	m	Ŷ	1.025	mt/cbm
	LCG	7.464	m	g	9.80665	m/sec^2
ανύψωση πυθμένα	β	20	deg	•		
	-		-			
αριθμός Froude με βάση το πλάτος	Fnb	4.408				
Συντελεστής άνωσης πρισματικού σκάφους	ϹͿβ	0.041				
Συντελεστής άνωσης επίπεδης πλάκας	CL0	0.066584	0.041			
Κέντρο πιέσεων προς πλάτος	Lp/B	1.49				
λόγος μέσου βρεχόμενου μήκους προς						
πλάτος	λ(1)	1.98666667				
λόγος μέσου βρεχόμενου μήκους προς						
πλάτος	λ(ν)	2.0966				
λόγος μέσου βρεχόμενου μήκους προς			4.09E-			
πλατος	Λ(v+1)	2.09664093	05			
μειωμένος συντελεστής επίπεδης πλάκας	CL0/т1.1	0.0192				
δυναμική διαγωγή	т	3.1				
	Cdl-1	0.0603172				
συντ. δυναμικής άνωσης	CLd	0.036				
μέση ταχύτητα πυθμένα	Vm	30.6	m/sec			
διόρθωση λόγου βρεχόμενου μήκους λόγω						
αφρού	Δλ	0	т<4			
λόγος βρεχόμενου μήκους τριβής προς το						
πλάτος	λf	2.09664093		10.4832		
αριθμός Reynolds	Re	2.70E+08				
συντελεστής αντίστασης τριβής	Cf	0.00181324				
συντελεστής συσχετίσεως	∆Cf	0.0004				
βρεχόμενη επιφάνεια τριβής	Sf	55.7799669	sq			
αντίσταση τριβής	Df	6046.34157	kp			
αντίσταση σκάφους	D	8807.51514	kp			
ισχύς ρυμουλκήσεως	EHP	3624	PS			

Σύμφωνα με το σχήμα 1 και για ταχύτητα 60 κόβους, λαμβάνοντας ένα εκτιμώμενο ικανοποιητικό - πάνω από το μέσο όρο- βαθμό απόδοσης της προωστήριας εγκατάστασης, ίσο με 0,71 προκύπτει εγκατεστημένη ισχύς P_B =5033,33 PS = 5244,303 BHP = 3700,978 KW. Διαιρώντας την τελευταία τιμή με 0,97 για να συνυπολογιστεί και ο βαθμός απόδοσης της εγκατάστασης μειωτήρα [3], που εκτιμάται ότι θα χρειαστεί, θεωρώ χονδρικά για το υπό μελέτη πλοίο P_B =3776,508 \cong 3777 KW.

2.4.4 Εφαρμογή της μεθόδου Grubisic στο υπό μελέτη πλοίο

Το υπό μελέτη σκάφος έχει τα εξής χαρακτηριστικά (τα οποία χρησιμοποιούνται στην εφαρμογή της μεθόδου Grubisic) :

Εκτόπισμα (Full Load Displacement	50,82
Δfl)	tons
Μήκος Ισάλου (Lw∟)	18,659 m
Μήκος Ολικό (Loa)	23,087 m
Πλάτος Μέγιστο (Βм)	5,396 m
Πλάτος Ισάλου (Bw∟)	5,047 m
Βύθισμα (Τ)	1,09 m
Κοίλο (D)	3,14 m
Απαιτούμενη Εγκατεστημένη Ισχύς	3853 KW
(Рв)	
Μέγιστη Ταχύτητα (Vmax)	50 Knots
αριθμός στεγανών φρακτών (ΝωτΒ).	4

Παρατίθενται αναλυτικά οι σχετικοί υπολογισμοί εφαρμογής της μεθόδου:

1. Υπολογισμός του βάρους μεταλλικής κατασκευής (Structural Weight) Wκ

- επιμέρους επιφάνειες

Bottom: S1=2,825 x (ΔFL x LWL)^1/2 =86,99 m^2

Sides: S2=1,09 x (2 x LOA + BM) x (D - T) =126 m²

Deck: $S_3=0,823 \text{ x} (LOA + LWL)/2 \text{ x} BM = 92,7 \text{ m}^2$

Bulk: S4=0,6 x NWTB x BM x D=40,664 m^2

- συνολική επιφάνεια, SR= S1 + 0,735S2 +0,69 S3 + 0,65 S4=269,994 m^2
- συντελεστής γάστρας, CB= Δ_{FL} / (Cr x Lwl x Bwl x T)=0,483 (όπου ελήφθη Cr=1,025)
- βυθισμένος όγκος πλοίου, V= CB x Lwl x Bwl x T=49,261 m^3
- διορθωτικός συντελεστής εκτοπίσματος (Displacement Correction factor) F_{dis} , $F_{dis}=0,7 + (2,4 \text{ x } \nabla)/(L_{WL}^2 - 15,8)=1,055$
- διορθωτικός συντελεστής λόγου T/D, Ct/d=1,144 x (T/D)^0,244=0,883
- ενεργή επιφάνεια (Effective Surface Area), Es= Fdis x CT/D x SR=251,517 m²
 - W100=0,9 x Ko x Es^1,33=15,71 tons (όπου Ko=0,0112)

Στο ανωτέρω βάρος πρέπει να προστεθεί και το βάρος της υπερκατασκευής W₁₅₀. Από τα σκαριφήματα 1 και 3 υπολογίζονται προσεγγιστικά τα εμβαδά των εμφανιζόμενων σχημάτων που αποτελούν την επιφάνεια την υπερκατασκευής (θεωρούνται τραπέζια), τα οποία αθροιζόμενα δίνουν μια επιφάνεια περίπου 50 m². Θεωρώντας πάχος ελάσματος υπερκατασκευής 4 mm (όμοιο με του πατρικού πλοίου) και ειδικό βάρος αλουμινίου 2,9 Kg/m²/mm και 10% προσαύξηση για τα ενισχυτικά, προκύπτει W150=159,5 Kg=0,159 tons.

Άρα συνολικά **Wκ=15,869 tons**

2. Υπολογισμός του βάρους προωστήριας εγκατάστασης (Propulsion Weight) W200

Προεπιλέγονται οι κύριες μηχανές σύμφωνα με τις προεκτιμημένες απαιτήσεις εγκατεστημένης ισχύος του σκάφους. Συγκεκριμένα, από τον δικτυακό χώρο εταιρείας MAN επιλέγεται η μηχανή τύπου **16V 2000 M94 ισχύος 1939 KW (2600 BHP)**, οπότε έχουμε βάρος κενών μηχανών WDRY=8,02 tons. Σύμφωνα με τη μέθοδο, ισχύει για το βάρος των πληρωμένων μηχανών Wwet=1,066 x WDRY =8,55 tons. Ομοίως από τον δικτυακό χώρο εταιρείας KAMEWA, με βάση την προεκτιμημένη ισχύ επιλέγεται το κατάλληλο waterjet τύπου **50 A3**. Έτσι το βάρος του κάθε waterjet προκύπτει Wwjw =3,696 tons και συνολικά W200=**11,72 tons**.

Waterjet	Max power		Dimensions (mm)							Entrained water
size	[kW]	A	в	c	D	ш	F	G	dry unit [kg]	inside transom [liters]
40A3	1320	850	951	2370	90°	440	1275	1472	850	186
45A3	1670	940	1050	2703	90°	495	1433	1637	1130	258
50A3	2060	1050	1170	2980	90°	550	1591	1809	1500	348
56A3	2580	1150	1290	3330	90°	616	1773	2017	1920	493

Σχήμα 13: Επιλογή κατάλληλου waterjet

Engine Model	16V 2000 M91	16V2000M92	12V 396 TE94	16V 2000 M93	16V 2000 M94
Rated Power ICFN kW (bhp)	1492 (2000)	1630 (2185)	1680 (2255)	1790 (2400)	1939 (2600)
Speed rpm	2350	24 50	2000	2450	2450
Exhaust Optimization	IMO 2 compl./	IMO 2 compl./	IMO ⁽⁰⁾	IMO 2 compl./	IMO 2 compl./
	EPA 2/EU ⁴⁾	EPA 2/EU IIA (10)		EPA 2/EUIIIA ^{S(6)}	EPA 2/EU II A ⁷⁾
Fuel Consumption					
at Rated Power g/kWh	219	210	218	209	216 ***
l/h (gal/h)	393.7 (104)	412.4 (109.0)	441.3 (116.6)	450.7 (119.1)	504.6 (133.3)
Dimensions and Masses - Engine					
Length (L) mm (in)	2255 (88.8)	2285 (90.0)	2275 (89.6)	2285 (90.0)	2315 (91.1)
Width (W) mm (in)	1400 (55.1)	1295 (51.0)	1530 (60.2)	1295 (51.0)	1295 (51.0)
Height (H) mm (in)	1290 (50.8)	1390 (54.7)	1600 (63.0)	1390 (54.7)	1410 (55.5)
Mass, dry kg (lbs)	3275 (7220)	3380 (7452)	4830 (10648)	3380 (7452)	3380 (7452)
Dimensions and Masses -					
with Gearbox					
Gearbox Model, Standard	ZF 3060	ZF 3060	ZF 4640	ZF 3060	ZF 3070
Gearbox Model, Alternative	on request	on request	on request	on request	on request
Length (L 1) mm (in)	3075 (121.1)	3105 (122.2)	3040 (119.7)	3105 (122.2)	2950 (116.1)
Width (W) mm (in)	1400 (55.1)	1295 (51.0)	1530 (60.2)	1295 (51.0)	1295 (51.0)
Height (H 1) mm (in)	1290 (50.8)	1390 (54.7)	1690 (66.5)	1390 (54.7)	1400 (55.1)
Mass, dry kg (lbs)	3920 (8642)	4010 (8840)	5640 (12434)	4010 (8840)	4010 (8840)
Engine Main Data					
No. of Cylinders	16	16	12	16	16
Bore / Stroke mm (in)	130/150	135/156	165/185	135/156	135/156
	(5.1/5.9)	(5.3/ 6.1)	(6.5/7.3)	(5.3/6.1)	(5.3/6.1)
Displacement, total I (ou in)	31.8 (1943)	35.7 (2179)	47.5 (2900)	35.7 (2179)	35.7 (2179)

**) Fuel Consumption for Cruising speed with 70% power at 1900 rpm: 16V 2000 M94 = 206 g/kWh 1) IMO certification on request

3) including Recreational Crafts EU 94/25 EC

Σχήμα 14 Επιλογή κατάλληλης κύριας μηχανής

- 3. Υπολογισμός βάρους ηλεκτρικής εγκατάστασης (Electrical Power Weight) W₃₀₀
 - W₃₀₀=0,9 x (L x B x D)¹,24 / 592 = 1,91 tons
- 4. Υπολογισμός βάρους ηλεκτρονικού εξοπλισμού (Electronic Equipment Weight) W400
 - **W**₄₀₀=0,9 x (0,0365 + 0,0015 x L x B x D) =**0,46 tons**
- 5. Υπολογισμός βάρους βοηθητικών μηχανημάτων (Auxiliary Machinery Weight) W500
 - **W**₅₀₀=0,9 x [0,000772 x (L x B)^1,784] =**2,6 tons**
- 6. Υπολογισμός βάρους εξοπλισμού ενδιαίτησης (Outfit Weight) W600

- W600=0,9 x 0,0097 x L^2,132=4,47 tons
- 7. Υπολογισμός βάρους περιθωρίου σφάλματος υπολογισμών (Remaining Weight) Wu
 - W∪=0,9 x 0,036 x ΔFL = 0,65 tons

8. Υπολογισμός βάρους ειδικών συστημάτων (Special Systems Weight) W700

 Δεν θα γίνει υπολογισμός αυτής της κατηγορίας με χρήση του προπαρατεθέντος τύπου της μεθόδου. Στην προκειμένη περίπτωση θα υπολογιστεί το συνολικό βάρος των επιχειρησιακών συστημάτων που θα φέρει πάνω του το υπό μελέτη σκάφος, τα οποία αντιπροσωπεύουν για ένα πολεμικό πλοίο αυτή την κατηγορία βαρών της μεθόδου και ταυτόχρονα αντιστοιχούν σε τρεις συγκεκριμένες ομάδες TOU συστήματος ESWBS:Command and Surveillance (4th Group), (5th Group) ка Armament Loads, Departure Full (F Group), όπως αυτές φαίνονται και στο σχήμα 2. Σημειώνεται ότι στα εν λόγω βάρη δεν λαμβάνονται υπόψη επιχειρησιακά συστήματα πλοίου, τα οποία ενσωματώνονται από την φύση τους στις κατηγορίες βαρών που υπολογίστηκαν μέχρι τώρα (π.χ. οι πυξίδες και τα ραντάρ ενσωματώνονται στο βάρος ηλεκτρονικού εξοπλισμού (Electronic Equipment Weight) W400).

Έτσι λοιπόν, από τα στοιχεία που λαμβάνουμε από αντίστοιχους διαδικτυακούς τόπους, έχουμε αναλυτικά:

 <u>Μία τηλεχειριζόμενη μονάδα τύπου SIMBAD RC</u> εκτόξευσης δύο κατευθυνόμενων βλημάτων τύπου MISTRAL (εικόνα 4),συνολικού βάρους 388 Kg

2) Ένα τηλεχειριζόμενο σταθμό τύπου Mini Typhoon (εικόνα 5), που θα κατευθύνει πυροβόλο τύπου BARRET M82A2 0.2 mm, συνολικού βάρους 150 Kg

3) <u>Τέσσερα απλά χειροκίνητα πυροβόλα τύπου BARRET</u> συνολικού βάρους 88 Kg Σύμφωνα με τη σχέση (2), αθροίζοντας όλα τα μέχρι τώρα υπολογισμένα βάρη προκύπτει:

WLS=37,655 tons

4) Τρεις λέμβοι τύπου zodiac συνολικού βάρους 438 Kg

- 5) Πέντε εξωλέμβιες μηχανές μάρκας MERCURY συνολικού βάρους 560 Kg
- 6) Εξοπλισμός των αντρών ειδικών αποστολών (καταδυτικές στολές, αναπνευστικές

συσκευές,ατομικός οπλισμός). Σύμφωνα με οδηγίες αξιωματικών των ομάδων ειδικών αποστολών, ο ανωτέρω εξοπλισμός για ένα άτομο ανέρχεται προσεγγιστικά μέχρι και τα 60 Kg. Συνεπώς για **18 άτομα** θεωρείται συνολικό βάρος **1080 Kg**.

7) <u>Φόρτος πυρομαχικών</u>. Το βάρος κάθε σφαίρας πυροβόλων BARRET M82A2 είναι 400 gr, ενώ το βάρος κάθε πυραύλου MISTRAL είναι περίπου 20 kg. Για σύνολο **2000 τεμαχίων σφαιρών και 4 πυραύλων** προκύπτει συνολικό βάρος **880 Kg**.

8) <u>Βάρος πληρώματος</u>. Το πλήρωμα θα αποτελείται από **4 άτομα**: κυβερνήτης, δύο χειριστές για την πλεύση και ένας χειριστής οπλικών συστημάτων. Θεωρώντας βάρος ατόμου 75 kg, προκύπτει συνολικό βάρος **300 Kg**.

9)**Βάρος καταδρομών**. Για τρεις ομάδες κρούσης των 6 ατόμων προκύπτει αριθμός καταδρομών 18. Θεωρώντας βάρος ατόμου 75 kg, προκύπτει συνολικό βάρος 1350 Kg.

10) Εφόδια (φορητό πόσιμο νερό, φαρμακευτικό υλικό, συσκευασμένη τροφή). Τα πλοία αυτής της κατηγορίας επιχειρούν για κάποιες ώρες. Επομένως λαμβάνεται υπόψη μια ποσότητα φορητού ποσίμου ύδατος και κάποια ξηρά τροφή, τα οποία απαιτούνται το πολύ για ένα εικοσιτετράωρο. Συνολικά λαμβάνεται βάρος εφοδίων **150 kg**.

11) **Βάρος καυσίμων.** Πρέπει να εκτιμηθεί για την υπηρεσιακή ταχύτητα Vs=30 κόμβων η αντίστοιχη απαιτούμενη ισχύς ρυμούλκησης με την σύντομη μέθοδο Savitsky. Παρατίθενται παρακάτω οι σχετικοί υπολογισμοί του προγράμματος EXCEL, όπου προκύπτει απαιτούμενη ισχύς EHP=1474 PS=1083,823 KW. Από το σχήμα 2 προκύπτει ότι για ταχύτητα 30 κόμβους, ο βαθμός απόδοσης των waterjets ισούται με 0,62. Έτσι προκύπτει απαιτούμενη εγκατεστημένη ισχύς ίση με 1802,166 KW. Έτσι τελικά λαμβάνω ως εγκατεστημένη ισχύ αυτονομίας κύριων μηχανών PB την τιμή 1802 KW. Στα στοιχεία που ευρέθησαν για τον τύπο της προεπιλεγμένης κύριας μηχανής, δηλώνεται ως μέγιστη ειδική κατανάλωση καυσίμου της μηχανής η τιμή 216 gr/KWxh, με λειτουργία στην μέγιστη ισχύ, και ειδική κατανάλωση καυσίμου για λειτουργία σε ποσοστό 70% της μέγιστης εγκατεστημένης ισχύος, δηλαδή 2714,6 KW, η τιμή 206 gr/KWxh. Είναι προφανές ότι η απαιτούμενη ισχύς αυτονομίας αντιστοιχεί σε ποσοστό της μέγιστης ισχύος αισθητά μικρότερο του 70%. Επειδή δεν διατίθενται τα ακριβή στοιχεία της κατανάλωσης στο συγκεκριμένο σημείο λειτουργίας της κύριας μηχανής, λαμβάνεται προσεγγιστικά ως ειδική κατανάλωση καυσίμου η τιμή b=205 gr/KWxh. Με δεδομένη ακτίνα ενεργείας R=450 n.m., έχουμε: $W_{FUEL} = P_B \times R/V \times b/10^6 = 5,541$ tons. Συνυπολογίζοντας και 10% εφεδρεία καυσίμων προκύπτει τελικά W_{FUEL}= 6,095 tons.

41

Αποτελέσματα μεθόδου Savitsky για υπολογισμό ισχύος ρυμουλκήσεως αυτονομίας

Εκτόπισμα	Displ	50.82	mt	v	1.19E06	sq.m./sec
μέγιστη ταχύτητα	Vs	30	kts	ρ	104.61	kp.sec^2/m^4
βρεχόμενο πλάτος στην ακμή	Врх	5	m	Ŷ	1.025	mt /cbm
διαμήκης θέση κέντρου βάρους	LCG	7.464	m	g	9.80665	m/sec^2
ανύψωση πυθμένα	β	20	deg			
αριθμός Froude με βάση το πλάτος	Fnb	2.204				
Συντελεστής άνωσης πρισματικού σκάφους	ϹͿβ	0.163				
Συντελεστής άνωσης επίπεδης πλάκας	CL0	0.214638	0.163			
Κέντρο πιέσεων προς πλάτος	Lp/B	1.49				
λόγος μέσου βρεχόμενου μήκους προς						
πλάτος	λ(1)	1.98666667				
λόγος μέσου βρεχόμενου μήκους προς						
πλάτος	λ(ν)	2.5081				
λόγος μέσου βρεχόμενου μήκους προς		0 50044557	1.56E-			
πλατος	Λ(V+1)	2.50811557	05			
μειωμένος συντελεστης επιπεόης πλακας	CL0/T1.1	0.0303				
δυναμική διαγωγή	т	5.93				
	Cdl-1	0.13465274				
συντ. δυναμικής άνωσης	CLd	0.096				
μέση ταχύτητα πυθμένα	Vm	15.13	m/sec			
διόρθωση λόγου βρεχόμενου μήκους λόγω						
αφρού	Δλ	0	т<4			
λογος βρεχομενου μηκους τριβης προς το		0 50044557		40 54050		
πλατος	AT D	2.50811557		12.54058		
αριθμος Reynolds	Re	1.60E+08				
συντελεστης αντιστασης τριβης	Ct	0.0019485				
συντελεστής συσχετίσεως	ΔCf	0.0004				
βρεχόμενη επιφάνεια τριβής	Sf	66.727021	sq			
αντίσταση τριβής	Df	1876.3496	kp			
αντίσταση σκάφους	D	7165.07527	kp			
ισχύς ρυμουλκήσεως	EHP	1474	PS			

12)<u>Βάρος λιπαντικών</u>. Το λαμβάνω λίγο μεγαλύτερο του ποσοστού 4% W_{FUEL}=0,245 tons. Το θεωρώ **W**_{LO} = 0,3 tons.

Σύμφωνα με τη σχέση (1), θεωρώντας σαν DWT όλα τα βάρη που υπολογίστηκαν μετά τον καθορισμό του WLs, προκύπτει: Δ_B=50,458 tons

και **(Δ_Γ- Δ_Β)/ Δ_Γ=0,242=0,47% Δ_Γ** < 0,5% αποδεκτό √ **ΟΚ**

Άρα οι προεπιλεγμένες διαστάσεις του υπό μελέτη πλοίου κρίνονται σωστές.

Κεφάλαιο 3ο Εκπόνηση Προκαταρκτικού Σχεδίου Ναυπηγικών Γραμμών

3.1 Σχεδίαση Μορφής Σκάφους

Έχοντας υπόψη τις προεπιλεγμένες διαστάσεις του υπό μελέτη πλοίου καθώς και την προαναφερθείσα μορφή του, παράχθηκε η τρισδιάτατη απεικόνιση και εκπονήθηκαν οι ναυπηγικές γραμμές αυτού του με χρήση ειδικού λογισμικού ναυπηγικού σχεδιασμού. Ο εν προκειμένω σχεδιασμός στηρίχθηκε στην παραγωγή διαφόρων επιφανειών μέσα από την διαμόρφωση αντίστοιχων καμπυλών. Στο πρόγραμμα αυτό η διαμόρφωση αυτή γίνεται με χρήση (μετακίνηση-τοποθέτηση) διαφόρων σημείου ελέγχου, των οποίων ο αριθμός για κάθε επιφάνεια διαφοροποιείται σύμφωνα με τις εκάστοτε ανάγκες σχεδίασης. Σε κάθε δηλαδή σημείο ελέγχου προσδίδονται συγκεκριμένες συντεταγμένες ως προς το σύστημα αξόνων του τρισδιάτατου περιβάλλοντος σχεδίασης του προγράμματος και κατά συνέπεια προκύπτουν τα σχήματα των επιφανειών. Για ευκολία του χρήστη η σχεδίαση γίνεται και σε δισδιάστατα περιβάλλοντα, όπου δημιουργούνται οι διάφορες δισδιάστατες όψεις του πλοίου: κάτοψη (plan view), πλάγια όψη (profile view), εγκάρσια όψη με θέα από πρύμα προς τα πλώρα (body plan).

Συνοπτικά αναφέρεται ότι η συνολική επιφάνεια του σκάφους προέκυψε από την συνένωση των κάτωθι οχτώ ξεχωριστών επιφανειών, οι οποίες εμφανίζονται ενδεικτικά σε πλάγια όψη, με διαφορετικό χρωματισμό η καθεμία στο σχήμα:

- 1) Πλευρική Επιφάνεια-**TOPSIDES**
- 2) Επιφάνεια Ακμής-**CHINE**
- 3) Επιφάνεια Πυθμένα-**ΒΟΤΤΟΜ**
- 4) Επιφάνεια Πλώρης-**BOWCONE**
- 5) Επιφάνεια Κατώτερης Πρύμνης-LOWER TRANSOM
- 6) Επιφάνεια Ανώτερης Πρύμνης-**UPPER TRANSOM**
- 7) Επιφάνεια Κύριου Καταστρώματος-MAIN DECK
- 8) Επιφάνεια Υπερκατασκευής-SUPERSTRUCTURE

	MAIN DECK	SUPERS	
UPPER TRANSOM			
	TOPSIDES		
LOWER TRANSOM	[CHINE
	BE		

Σχήμα 15: Επιφάνειες σχεδίασης υπό μελέτη σκάφους σε πλάγια όψη

Επίσης με χρήση του λογισμικού εκπονούνται τα σχέδια ναυπηγικών γραμμών του σκάφους, τα οποία παρατίθενται στο παράρτημα Α. Σημειώνεται ότι για τον σχεδιασμό τους χρησιμοποιήθηκαν 24 εγκάρσιοι νομείς (από 0 εώς 23) με ισαπόσταση 1 μέτρου, 8 παρίσαλοι (Ι εώς VIII) με ισαπόσταση 0,392 μέτρα και 8 διαμήκεις τομές (Α εώς Η) με ισαπόσταση 0,3

Σαν πρώτη είκονα για τον αναγνώστη παρατίθενται οι διάφορες όψεις του σχεδιασθέντος σκάφους, όπως εμφανίζονται στο περιβάλλον του προγράμματος.

VIEWS

Σχήμα 16: Profile View

Σχήμα 17: Plan View

Σχήμα 18: Body Plan

3D ILLUSTRATIONS

Εικόνα 7: τρισδιάτατες απεικονίσεις υπό μελέτη πλοίου για διάφορες τιμές pitch,roll και heave

3D ILLUSTRATIONS

Εικόνα 8: τρισδιάτατες απεικονίσεις υπό μελέτη πλοίου για διάφορες τιμές pitch,roll και heave

3.2 Έλεγχος Ομαλότητας Περιβλήματος Επιφάνειας Σκάφους

Η σχεδιασθείσα γάστρα του πλοίου θα πρέπει να είναι όσο το δυνατόν πιο ΄΄στρωτή΄΄ όσον αφορά την καμπύλη διαμόρφωσή της, να συνιστά δηλαδή μια ομαλή καμπύλη επιφάνεια χωρίς εμφάνιση σημείων ή περιοχών απότομων αλλαγών - αυξομειώσεων της τιμής της καμπυλότητάς της. Το λογισμικό επιτρέπει την επιθεώρηση της τρισδιάτατης όψης του σκάφους όσον αφορά το παραπάνω ζήτημα, απεικονίζοντας με διαφορετικό χρώμα τις διάφορες περιοχές της ολικής επιφάνειας του σκάφους. Συγκεκριμένα, οι κυρτές περιοχές εμφανίζονται με μπλε χρώμα, οι κοίλες με κόκκινο και οι επίπεδες με πράσινο. Όσο πιο έντονα κυρτή ή κοίλη είναι μια περιοχή, τόσο πιο έντονα μπλε ή κόκκινο χρώμα έχει. Οι ενδιάμεσες καταστάσεις απεικονίζονται με πιο απαλούς τόνους των δύο αυτών χρωμάτων,οι οποίοι αναμειγνύονται με τόνους πράσινου. Γενικά εκείνο που μας ενδιαφέρει, είναι σε όλη την επιφάνεια του σκάφους να παρουσιάζονται ομαλές μεταβάσεις ανάμεσα στις μπλε και κόκκινες περιοχές με παράθεση ενδιάμεσων (χωροταξικά και χρωματικά) περιοχών. Έτσι για παράδειγμα η εμφάνιση ενός έντονα κόκκινου τμήματος ανάμεσα σε μια μπλε περιοχή είναι δείγμα απότομης κοιλότητας της επιφάνειας, κάτι που χρήζει διορθώσεως.

Στο πρόγραμμα γίνεται έλεγχος για τις τριών ειδών καμπυλότητες:

- 1. Διαμήκης Καμπυλότητα (Longitudinal Curvature) Εικόνα 9
- 2. Εγκάρσια Καμπυλότητα (Transverse Curvature) Εικόνα 10
- Γκαουσιανή Καμπυλότητα (Gaussian Curvature), η οποία είναι το γινόμενο των δύο προηγούμενων - Εικόνα 11

Σε όλες τις απεικονίσεις παρατηρείται ομαλή καμπυλότητα σε ιδιαίτερα ικανοποιητικό βαθμό. Γενικά το σκάφος διαφαίνεται ΄΄πιστό΄΄ στην προεπιλεγμένη μορφή της μονοεδρικής πρισματικής γάστρας βαθιού V, αφού στην περιοχή από πρύμα μέχρι λίγο μετά την μέση τομή του έχει εξολοκλήρου επίπεδα πλευρικά ελάσματα, τα οποία επιπλέον σχηματίζουν δύο διαρκώς ισαπέχουσες κατά το εγκάρσιο ακμές, παράλληλες με την τρόπιδα. Σε αυτό το εύρος μήκους σημειώνεται σαφώς σταθερή ανύψωση πυθμένα, η οποία αυξάνει από εκεί και πέρα βαθμιαία προς τα πλώρα.

Εικόνα 10: Longitudinal Curvature

Εικόνα 11: Transverse Curvature

Εικόνα 12: Gaussian Curvature

3.3 Επιπλέον χαρακτηριστικά σχεδιασμένου σκάφους

-Το εκπονημένο σκάφος έχει σαφώς τις προεπιλεγμένες κύριες διαστάσεις, δηλαδή L_{OA}=23,087 m, B_{max}= 5,396 m, B_{WL}=5,047 m, B_{px}=5 m,D=3,14 m, T=1,09 m.

-Το λογισμικό υπολογίζει επίσης τα εμβαδά και τις γεωμετρικές ιδιότητες (θέση κέντρου βάρους, ροπές αδράνειας ως προς τους τρεις άξονες συμμετρίας του σκάφους) των διαφόρων επιφανειών του σκάφους καθώς και των αντίστοιχων προβολών τους κατά τα τρία επίπεδα του χώρου. Επίσης παρέχει την δυνατότητα διαχωρισμού αυτών των επιφανειών πάνω και κάτω από την ίσαλο γραμμή. Παρατίθενται οι σχετικοί πίνακες αποτελεσμάτων.

Surface	Area	LCG	VCG	TCG	I - roll	l - pitch	l - yaw
Units	m^2	m	m	m	m^4	m^4	m^4
TOPSIDES	90.224	9.641	2.091	0	557.449	2952.301	3439.27
воттом	90.955	9.079	0.533	0	162.465	2581.451	2723.393
BOW CONE	0.192	20.791	2.441	0	0.008	0.015	0.009
CHINE	4.641	9.257	0.982	0	24.517	135.012	159.125
SUPERSTRUCTURE	48.728	11.052	4.346	0	133.705	168.34	252.693
DECK	87.06	9.186	3.094	0	150.844	2567.898	2717.325
UPPER TRANSOM	24.977	-0.953	2.325	0	82.015	15.533	82.417
LOWER TRANSOM	6.615	0	1.091	0	12.928	1.166	11.762
Total	353.392	8.651	2.232	0	1686.961	12224.47	12625.72

Πίνακας συνολικών επιφανειών σκάφους

Surface	Area	LCG	VCG	TCG	I - roll	l - pitch	l - yaw
Units	m^2	m	m	m	m^4	m^4	m^4
TOPSIDES	84.231	9.841	2.17	0	512	2799.155	3256.406
BOTTOM	5.618	17.958	1.351	0	5.562	5.868	11.109
BOW CONE	0.192	20.791	2.441	0	0.008	0.015	0.009
CHINE	0.884	16.922	1.371	0	2.363	1.292	3.597
SUPERSTRUCTURE	48.728	11.052	4.346	0	133.705	168.34	252.693
DECK	87.06	9.186	3.094	0	150.844	2567.898	2717.325
UPPER TRANSOM	24.977	-0.953	2.325	0	82.015	15.533	82.417
LOWER TRANSOM	3.457	0	1.43	0	7.661	0.131	7.529
Total Above DWL	255.147	8.87	2.885	0	1075.562	9290.264	9881.712

Πίνακας επιφανειών σκάφους πάνω από την ίσαλο

Surface	Area	LCG	VCG	TCG	I - roll	l - pitch	l - yaw
Units	m^2	m	m	m	m^4	m^4	m^4
TOPSIDES	5.992	6.834	0.985	0	37.6	94.78	132.348
воттом	85.337	8.494	0.479	0	152.945	2099.874	2240.571
BOW CONE	0	12.554	2.398	0	0	0	0
CHINE	3.758	7.454	0.89	0	21.989	69.444	91.417
SUPERSTRUCTURE	0	12.554	2.398	0	0	0	0
DECK	0	12.554	2.398	0	0	0	0
UPPER TRANSOM	0	12.554	2.398	0	0	0	0
LOWER TRANSOM	3.158	0	0.72	0	4.438	0.205	4.233
Total Below DWL	98.245	8.08	0.533	0	219.034	2497.917	2700.122

Πίνακας επιφανειών σκάφους κάτω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	41.372	9.298	2.044	0
BOTTOM	17.044	9.723	0.56	0
BOW CONE	0	20.396	2.072	0
CHINE	0.008	14.99	1.363	0
SUPERSTRUCTURE	9.951	11.216	4.093	0
DECK	0	17.595	2.898	0
UPPER TRANSOM	3.106	-0.995	2.494	0
LOWER TRANSOM	0	12.554	2.398	0
Total	71.481	9.22	1.995	0

Πίνακας συνολικών πλαγίων προβολών επιφανειών σκάφους

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	38.395	9.49	2.126	0
воттом	1.415	17.999	1.354	0
BOW CONE	0	20.396	2.072	0
CHINE	0.006	17.71	1.49	0
SUPERSTRUCTURE	9.951	11.216	4.093	0
DECK	0	17.605	2.897	0
UPPER TRANSOM	3.106	-0.995	2.494	0
LOWER TRANSOM	0	12.554	2.398	0
Total Above DWL	52.873	9.428	2.497	0

Πίνακας πλαγίων προβολών επιφανειών σκάφους πάνω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	2.977	6.828	0.985	0
BOTTOM	15.629	8.974	0.489	0
BOW CONE	0	12.554	2.398	0
CHINE	0.002	5.021	0.896	0
SUPERSTRUCTURE	0	12.554	2.398	0
DECK	0	12.554	2.398	0
UPPER TRANSOM	0	12.554	2.398	0
LOWER TRANSOM	0	12.554	2.398	0
Total Below DWL	18.608	8.63	0.568	0

Πίνακας πλαγίων προβολών επιφανειών σκάφους κάτω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	7.234	0	2.158	0
воттом	4.961	0	0.967	0
BOW CONE	0.133	0	2.443	0
CHINE	0.179	0	1.26	0
SUPERSTRUCTURE	16.845	0	4.102	0
DECK	1.292	0	2.982	0
UPPER TRANSOM	1.855	0	2.783	0
LOWER TRANSOM	6.615	0	1.091	0
Total	39.113	0	2.717	0

Πίνακας συνολικών μετωπικών προβολών επιφανειών σκάφους

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	7.177	0	2.167	0
воттом	1.918	0	1.373	0
BOW CONE	0.133	0	2.443	0
CHINE	0.124	0	1.384	0
SUPERSTRUCTURE	16.845	0	4.102	0
DECK	1.292	0	2.982	0
UPPER TRANSOM	1.855	0	2.783	0
LOWER TRANSOM	3.457	0	1.43	0
Total Above DWL	32.802	0	3.101	0

Πίνακας μετωπικών προβολών επιφανειών σκάφους πάνω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	0.056	0	1.025	0
воттом	3.042	0	0.711	0
BOW CONE	0	12.554	2.398	0
CHINE	0.055	0	0.98	0
SUPERSTRUCTURE	0	12.554	2.398	0
DECK	0	12.554	2.398	0
UPPER TRANSOM	0	12.554	2.398	0
LOWER TRANSOM	3.158	0	0.72	0
Total Below DWL	6.311	0	0.721	0

Πίνακας μετωπικών προβολών επιφανειών σκάφους κάτω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	23.307	11.169	0	0
воттом	83.356	8.88	0	0
BOW CONE	0.14	20.789	0	0
CHINE	4.63	9.24	0	0
SUPERSTRUCTURE	26.522	11.298	0	0
DECK	87.026	9.184	0	0
UPPER TRANSOM	19.476	-0.936	0	0
LOWER TRANSOM	0	12.554	2.398	0
Total	244.457	8.7	0	0

Πίνακας συνολικών οριζοντίων προβολών επιφανειών σκάφους

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	22.657	11.288	0	0
BOTTOM	4.43	17.909	0	0
BOW CONE	0.14	20.789	0	0
CHINE	0.875	16.92	0	0
SUPERSTRUCTURE	26.522	11.298	0	0
DECK	87.026	9.184	0	0
UPPER TRANSOM	19.476	-0.936	0	0
LOWER TRANSOM	0	12.554	2.398	0
Total Above DWL	161.126	8.896	0	0

Πίνακας οριζοντίων προβολών επιφανειών σκάφους πάνω από την ίσαλο

Surface	Area	LCG	VCG	TCG
Units	m^2	m	m	m
TOPSIDES	0.65	6.994	0	0
BOTTOM	78.926	8.374	0	0
BOW CONE	0	12.554	2.398	0
CHINE	3.756	7.451	0	0
SUPERSTRUCTURE	0	12.554	2.398	0
DECK	0	12.554	2.398	0
UPPER TRANSOM	0	12.554	2.398	0
LOWER TRANSOM	0	12.554	2.398	0
Total Below DWL	83.331	8.321	0	0

Πίνακας οριζοντίων προβολών επιφανειών σκάφους κάτω από την ίσαλο

− Επιπλέον αναφέρεται η τιμή του προβεβλημένου μήκους ακμής (Projected Chine Length) L_{CP} = 20,208 m, το οποίο απεικονίζεται στο παρακάτω σχήμα και είναι σημαντική παράμετρος, γιατί μαζί με το πλάτος μεταξύ των ακμών B_{PX} καθορίζουν την προβεβλημένη επιφάνεια ολίσθησης του πυθμένα A_p (Projected Planing Bottom Area), αφού A_p = L_{CP} x B_{PX}. Σε αντίθεση με τα πλοία καμπύλου πυθμένα (round-bilge crafts), όπου κύρια παράμετρος εξάρτησης της αντίστασης τους είναι ένας παράγοντας – ο συντελεστής λυγηρότητας L / $\nabla^{0,333}$ (∇ ο βυθισμένος όγκος του πλοίου) - , στις ολισθακάτους η αντίσταση εξαρτάται από μια πληθώρα παραγόντων. Στην τελευταία συμπεριλαμβάνεται και η αναλογία μεγέθους – βάρους που εκφράζεται με τον συντελεστή A_p / $\nabla^{0,666}$, ο οποίος δίνει ένα μέτρο της ικανότητας παραγωγής δυναμικής άνωσης μιας ολισθακάτου [6]. Στις διάφορες συστηματικές σειρές σχεδιασμού ολισθακάτων η τιμή του ανωτέρω συντελεστή λαμβάνει τιμές από 4 έως 8,5. Όσο πιο μεγάλη είναι η τιμή, τόσο πιο ΄΄ελαφρύ΄΄ είναι το σχεδιασμένο σκάφος.

-Τέλος παρατίθεται πίνακας με τα διάφορα υδροστατικά χαρακτηριστικά του σκάφους, όπως αυτά προκύπτουν από υπολογισμούς του προγράμματος.

Measurement	Value	Units
Displacement	50.492	tonne
Volume	49.261	m^3
Draft to Baseline	1.09	m
Immersed depth	1.083	m
Lwl	18.659	m
Beam wl	5.047	m
WSA	98.245	m^2
Max cross sect area	3.148	m^2
Waterplane area	83.321	m^2
Ср	0.839	
Cb	0.483	
Cm	0.576	
Сwp	0.885	
LCB from zero pt	7.915	m
LCF from zero pt	8.324	m
КВ	0.729	m
KG	1.727	m
BMt	3.31	m
BMI	40.18	m
GMt	2.312	m
GMI	39.182	m
KMt	4.039	m
КМІ	40.909	m
Immersion (TPc)	0.854	tonne/cm
МТс	1.06	tonne.m
RM at 1deg = GMt.Disp.sin(1)	2.037	tonne.m
Precision	Medium	50 stations

Στα εν λόγω στοιχεία, έχουμε επέμβει μόνο στην κατακόρυφη θέση του κέντρου βάρους, εκτιμώντας αρχικά ότι αυτή θα απέχει από την τρόπιδα – από όπου έχει ληφθεί να διέρχεται η οριζόντια γραμμή βάσεως του πλοίου (Baseline) – σε ποσοστό **55% D**, οπότε και τέθηκε **KG** = **1,727 m**. Όλα τα υπόλοιπα προκύπτουν από υπολογισμούς του προγράμματος. Σχολιάζοντας τα ανωτέρω χαρακτηριστικά του σχεδιασμένου σκάφους παρατηρούνται τα εξής:

- Επιθεωρώντας τα υδροστατικά στοιχεία, καταρχάς διαπιστώνεται η επαλήθευση του προεπιλεγμένου συντελεστή γάστρας (Cb= 0,483), συνεπώς και του προεπιλεγμένου εκτοπίσματος (Displacement 50.492 tons). Επιπλέον, με βάση την προαναφερθείσα προσέγγιση του KG, διαφαίνεται η προοπτική της επίτευξης ικανοποιητική εγκάρσιας ευστάθειας του σκάφους (GMt = 2.312 m), κάτι που αποτελεί ιδιαίτερα ενθαρρυντικό παράγοντα για την διακρίβωση της ορθότητας της επιτευχθείσας σχεδίασης. Σημειώνεται ότι η πλήρης εικόνα των υδροστατικών στοιχείων του σκάφους θα διαμορφωθεί αργότερα με χρήση του κατάλληλου λογισμικού, όπου θα καθοριστούν αναλυτικά τα βάρη σε κάθε κατάσταση φορτώσεως του πλοίου.

– Για το εκπονημένο σκάφος ιχύει A_p = L_{CP} x B_{PX} = 101,04 m² και V =49,261 m³, άρα A_p / V^{0,666} = 7,69. Η τιμή αυτή βρίσκεται στο άνω όριο του εύρους τιμών των διαφόρων συστηματικών σειρών, άρα το σχεδιασμένο σκάφος είναι ένα ΄΄ελαφρύ΄΄ σκάφος, με αυξημένη δυνατότητα παραγωγής δυναμικής άντωσης.

Κεφάλαιο 4ο Υδροστατική Μελέτη-Μελέτη Ευστάθειας πλοίου

4.1 Γενικά βήματα υδροστατικής μελέτης

Η σχετική μελέτη θα γίνει με χρήση του ειδικού λογισμικού υδροστατικών αναλύσεων. Συγκεκριμένα, το συγκεκριμένο πρόγραμμα παρέχει αρχικά επιπλέον πληροφορίες για το σχεδιασμένο μοντέλο, π.χ. διαμερίσματα και κρίσιμα σημεία (σημεία προοδευτικής κατάκλυσης και γραμμή φορτώσεως), προκειμένου να επιτελέσει το βασικό του έργο, δηλαδή την εκτέλεση μιας ευρείας γκάμας αναλύσεων-μελετών υδροστατικών χαρακτηριστικών και ευστάθειας του μοντέλου.

Η πορεία για την διεκπεραίωση των εκάστοτε αναλύσεων για ένα σχεδιασμένο μοντέλο είναι γενικά η ακόλουθη:

1)<u>Περαιτέρω Διαμόρφωση Μοντέλου.</u> Το μοντέλο διαμορφώνεται εσωτερικά. Γίνεται διαμερισματοποίηση του σκάφους, δηλαδή καθορισμός των διαφορετικών χώρων του πλοίου που έχουν υδατοστεγανά όρια, συμπεριλαμβανομένων και των οποιοδήποτε δεξαμενών του. Επιπλέον δημιουργούνται οι διάφορες καταστάσεις φορτώσεως του πλοίου με καθορισμό των στερεών φορτίων και των εκάστοτε ποσοστών πληρώσεως των δεξαμενών. Ακόμη καθορίζονται οι διάφορες καταστάσεις βλάβης (**Damage Cases**). Τέλος, καθορίζεται η Γραμμή Ορίου Βυθίσεως (**Margin Line**) του σκάφους καθώς και διάφορα κρίσιμα σημεία σκάφους, παράγοντες που παίζουν σημαντικό ρόλο στα αποτελέσματα των αναλύσεων ευστάθειας που πραγματοποιεί το πρόγραμμα.

2) Επιλογή είδους ανάλυσης (π.χ. υδροστατικά στοιχεία, ευστάθεια μεγάλων κλίσεων κ.λ.π.)

3) <u>Επιλογή των κατάλληλων Ρυθμίσεων για κάθε ανάλυση</u>. Οι ρυθμίσεις περιγράφουν την κατάσταση του σκάφους το οποίο εξετάζεται, π.χ. στην περίπτωση των υδροστατικών στοιχείων ένα εύρος βυθισμάτων. Οι διαθέσιμες ρυθμίσεις είναι οι εξής: Κλίση (heel), Διαγωγή (trim), Βύθισμα (draft), Εκτόπισμα (displacement), Διαχωρητότητα (permeability).

4) <u>Επιλογή των Περιβαλλοντικών Συνθηκών</u>.Οι συνθήκες αυτές αποτελούν τροποποιητές που εφαρμόζονται στο σχεδιασμένο μοντέλο ή στο περιβάλλον του και επηρεάζουν τα αποτελέσματα των υδροστατικών αναλύσεων. Ανάλογα και με την εκάστοτε επιλεγμένη

ανάλυση, τέτοιες συνθήκες είναι οι ακόλουθες: Είδος υγρού προσομοίωσης, Πυκνότητα υγρού, Μορφές κυμάτων, Καθίζηση, Εφελκυσμός και Θλίψη. Για όλες τις αναλύσεις του υπό μελέτη σκάφους επιλέγονται είδος υγρού θαλασσινό νερό, πυκνότητα αυτού 1,026 tn/m³, μορφή κύματος ήρεμο νερό.

5) <u>Επιλογή Κριτηρίων Ευσταθείας</u>. Από το πρόγραμμα παρέχεται μια ευρεία γκάμα κριτηρίων ευστάθειας, που ανήκουν σε διάφορους διεθνώς αναγνωρισμένους οργανισμούς, προκειμένου να ελεγθεί η συμμόρφωση του σχεδιασμένου μοντέλου ως προς αυτά. Για το υπό μελέτη σκάφος επιλέγονται τα **κριτήρια ISO 12217-1**, τα οποία αφορούν ταχύπλοα σκάφη μήκους άνω των 6 και κάτω των 25 μέτρων.

6) Εκτέλεση των σχετικών αναλύσεων. Οι μορφές των αποτελεσμάτων των αναλύσεων είναι:
α) όψεις του σκάφους με εμφανείς τις βυθισμένες εγκάρσιες τομές του και τις αντίστοιχες ισάλους.β) πίνακες και γ) γραφικές παραστάσεις.

4.2 Περαιτέρω Διαμόρφωση Μοντέλου υπό μελέτη σκάφους

4.2.1 Διαμερισματοποίηση

Η διαμερισματοποίηση του σκάφους γίνεται σύμφωνα με τις βασικές σκέψεις που εκτέθηκαν στο κεφάλαιο 1. Επιπροσθέτως τώρα δημιουργούνται 5 δεξαμενές. Δύο από αυτές, οι δεξαμενές χρήσεως καυσίμου και ελαίου (fuel daily tank και oil tank), τοποθετούνται υπερυψωμένες στο πλωραίο άκρο του μηχανοστασίου, ενώ οι άλλες τρεις τοποθετούνται στα διπύθμενα του σκάφους, δηλαδή η δεξαμενή αποθηκεύσεως καυσίμου (fuel tank) ακριβώς πλώρα του μηχανοστασίου και ακολούθως δύο κενές δεξαμενές (dry tanks) προς τα πλώρα. Οι διαστάσεις των δεξαμενών επιλέγονται έτσι ώστε ο συνολικός τους όγκος να χωράει την απαραίτητη ποσότητα καυσίμου και ελαίου, όπως αυτές υπολογίστηκαν στο κεφάλαιο 2. Σημειώνεται ότι η διαμήκης θέση των δεξαμενών καυσίμων και λιπαντικού επιλέχθηκε κοντά στο προβλεπόμενο LCG=7,464 m, προκειμένου η δυναμική διαγωγή του σκάφους να μην

Αναλυτικά, ορίζονται σε μορφή πίνακα τα διαμερίσματα του πλοίου με τα ονόματά τους, το είδος τους και τις συντεταγμένες των ακραίων ορίων τους κατά τους τρεις άξονες.

Name	Туре	Intact	Damaged	Relative	Fluid	Aft	Fore	F Port	F Starb.	F Тор	F Bott.
		Perm.	Perm. %	Density	Туре	m	m	m	m	m	m
Diesel Oil Tank	Tank	100	95	0.84	Diesel	7	10.4	-2.5	2.5	0.871	0
Engine Room	Compartr	85	85			-2	7	-2.698	2.698	3.139	0
Accomodation Area	Compartr	95	95			7	14.5	-2.698	2.698	3.139	0.871
Toilet Area	Compartr	95	95			14.5	17	0	2.698	3.139	0.871
Forepeak	Compartr	95	95			17	21.087	-2.698	2.698	3.139	0.871
Dry Tank 1	Compartr	95	95			10.4	14.5	-2.698	2.698	0.871	0
Ammunition Store	Compartr	100	100			14.5	17	-2.698	0	3.139	0.871
Dry Tank 2	Compartr	95	95			14.5	17	-2.698	2.698	0.871	0
Fuel Daily T ank	Tank	100	95	0.84	Diesel	6.5	7	0.7	1.7	2.153	1.2

Πίνακας 1:Διαμερίσματα υπό μελέτη σκάφους

Σημειώνεται ότι οι συντεταγμένες δίνονται σε μέτρα και ότι το σημείο αρχής των αξόνων, που έχει μηδενικές συντεταγμένες ως προς όλους τους άξονες, έχει καθοριστεί κι εδώ, όπως και στο προηγούμενο πρόγραμμα, στο πρυμναίο άκρο του μηχανοστασίου και επί του διαμήκους άξονα συμμετρίας του σκάφους. Οι συντμήσεις F και A σημαίνουν Forward και Aft αντίστοιχα, δηλαδή τα δύο άκρα ενός διαμερίσματος. Στον εν λόγω πίνακα εμφανίζονται και οι τιμές της διαπερατότητας (μ) που επιλέχθηκαν για κάθε διαμέρισμα. Κατά τα γνωστά για το μηχανοστάσιο επιλέχθηκε μ=0,85 και για τις δεξαμενές και τα λοιπά διαμερίσματα μ=0,95. Η τιμή αυτή για τις δεξαμενές διαφοροποιείται από το πρόγραμμα γ α την άθικ η κ α την βεβλαμένη κατάσταση, ενώ για τα άλλα διαμερίσματα παραμένει η ίδια. Επιπλέον εμφανίζεται το είδος του υγρού της κάθε δεξαμενής μαζί με το ειδικό βάρος του. Τα ανωτέρω στοιχεία απαιτούνται για τον αυτόματο καθορισμό των βαρών των δεξαμενών σύμφωνα με το ποσοστό πληρώσεώς τους, κατά την μετέπειτα φάση προσδιορισμού των καταστάσεων φορτώσεως του πλοίου.

Στη συνέχεια καθορίζονται οι θέσεις των εξαεριστικών των δημιουργημένων δεξαμενών. Τα εξαεριστικά των δεξαμενών χρήσεως πετρελαίου και ελαίου τίθενται στην οροφή τους, μέσα στο χώρο του μηχανοστασίου, καθότι πρόκειται για μικρές δεξαμενές. Το εξαεριστικό όμως της δεξαμενής αποθηκεύσεως καυσίμου, λόγω του μεγάλου όγκου της δεξαμενής και για λόγους ασφαλείας, τοποθετείται στο επίπεδο του κυρίου καταστρώματος. Οπτικά η εικόνα των διαμερισμάτων του σκάφους στο περιβάλλον του προγράμματος είναι η παρακάτω:

εικόνα 13: πλάγια απεικόνιση διαμερισμάτων υπό μελέτη σκάφους

εικόνα 14:τρισδιάτατη απεικόνιση διαμερισμάτων υπό μελέτη σκάφους

Με κίτρινο απεικονίζονται τα όρια των διαμερισμάτων, με γαλάζιο τα όρια των τοιχωμάτων των δεξαμενών, ενώ οι κίτρινοι ΄΄ράβδοι΄΄ που εμφανίζονται στις περιοχές των δεξαμενών παριστάνουν τα καταμετρικά τους, τα οποία τίθενται αυτόματα από το πρόγραμμα σε αυτές τις θέσεις. Σαφώς σε κάποιες περιοχές τα όρια των διαμερισμάτων συμπίπτουν με τα όρια των τοιχωμάτων του σκάφους.

4.2.2 Καθορισμός Καταστάσεων Φορτώσεως

Θα καθοριστούν τρεις συνολικά καταστάσεις φορτώσεως:

-FULL LOAD DEPARTURE, όπου το σκάφος είναι φορτωμένο με πλήρη φόρτο καυσίμων, λιπαντικών και πυρομαχικών, έτοιμο για αναχώρηση-έναρξη της αποστολής του.

-FULL LOAD ARRIVAL, όπου το σκάφος επιστρέφει από την αποστολή του και θεωρείται φορτωμένο με 10% φόρτο καυσίμων, λιπαντικών και προμηθειών και πλήρη φόρτο πυρομαχικών.

-MINIMUM OPERATING CONDITION, όπου το σκάφος επιστρέφει από την αποστολή του φορτωμένο με 10% φόρτο καυσίμων, λιπαντικών, προμηθειών και πυρομαχικών.

Παρακάτω παρατίθενται αναλυτικοί πίνακες με τα βάρη του πλοίου για κάθε κατάσταση φορτώσεως,όπως εμφανίζονται στο περιβάλλον του προγράμματος. Όλα τα βάρη, πλην των δεξαμενών, έχουν ληφθεί σαν στατικά φορτία που εφαρμόζονται στο κέντρο βάρους της περιοχής που καλύπτει χωροταξικά το κάθε βάρος. Αυτό το κέντρο βάρους εκτιμάται προσεγγιστικά, σύμφωνα με την διάταξη των βαρών στα πλαίσια της προεπιλεχθείσας σχεδίασης αλλά και με γενικά αποδεκτές παραδοχές κατά την φάση της προμελέτης. Για παράδειγμα τα κέντρα βάρους των κυρίων μηχανών και των βοηθητικών μηχανημάτων ελήφθησαν στο κέντρο του μηχανοστασίου, ενώ το κέντρο βάρους των λέμβων ελήφθη σύμφωνα με την αποφασισμένη θέση τους στο πλοίο – μία στην πρύμνη κ αδύο αμέσως πλώρα της πρώτης. Στους πίνακες συμπληρώνονται τα βάρη με τις ονομασίες τους, το βάρους κάθε μονάδας, η ποσότητα των μονάδων και οι συντεταγμένες του κέντρου κάθε βάρους ως προς τους τρεις άξονες (σε μέτρα). Στις δεξαμενές συμπληρώνεται αυτόματα από το πρόγραμμα. Στους πίνακες παραλογίζονται αυτόματα από το πρόγραμμα.

64

των καυσίμων και λιπαντικών σε σχέση με αυτά που υπολογίστηκαν στο κεφάλαιο 1, γιατί τώρα το βάρος αυτό προκύπτει από τον σχεδιασμό των δύο δεξαμενών καυσίμου, αποθηκεύσεως (fuel tank) και χρήσεως (daily fuel tank) καθώς και της δεξαμενής ελαίου (oil tank), με συνυπολογισμό του σχεδιασμένου όγκου και ειδικού βάρους κάθε υγρού από το ίδιο το πρόγραμμα. Στην τελευταία στήλη συμπληρώνεται το είδος της ροπής ελεύθερης επιφάνειας που θα εφαρμοστεί σε κάθε δεξαμενή (FSM Type), για την περίπτωση που οι αναλύσεις εκτελεστούν αργότερα με την μέθοδο διορθωμένου VCG. Στην προκειμένη περίπτωση επιλέγεται FSM Type Maximum, δηλαδή η μέγιστη ροπή ελεύθερης επιφάνειας.

Όσον αφορά τις τιμές των βαρών του πλοίου, σημειώνεται ότι αυτές έχουν ήδη προεκτιμηθεί στο κεφάλαιο 1. Σε αυτήν την φάση όμως θα μοιραστεί εξίσου το βάρος περιθωρίου σφάλματος (Remaining Weight) στις άλλες πέντε κατηγορίες βαρών της μεθόδου Grubisic – εξαιρείται το βάρος της προωστηρίου εγκατάστασης που καθορίστηκε πλήρως με προεπιλογή-, προκειμένου έτσι να εξασφαλιστεί ο συνυπολογισμός αυτού του επιπλέον βάρους και στο καθορισμό της θέσης του συνολικού κέντρου βάρους του σκάφους. Συνεπώς όλα τα βάρη αυξάνουν κατά Wu/5=0,33 tons. Έτσι προκύπτουν οι νέες τιμές των ομάδων βαρών ως εξής:

GROUP	WEIGHT (tons)
Steel Structure W100	16.04
Macinery W200	11.72
Electrical Plant W300	2.24
Electronic W400	0.79
Auxiliary W500	2.93
Outfit W600	4.8

Επιπλέον το βάρος της υπερκατασκευής του σχεδιασμένου σκάφους θα υπολογιστεί εκ νέου και με περισσότερη ακρίβεια, καθότι το σχετικό λογισμικό έχει την δυνατότητα αυτόματου υπολογισμού του εμβαδού κάθε επιφάνειας. Έτσι το πρόγραμμα δίνει Εμβαδόν Επιφάνειας Υπερκατασκευής=48,728 m². Με ειδικό βάρος αλουμινίου ίδιο με του κεφαλαίου 1 και ληφθείσα προσαύξηση 10% για τα ενισχυτικά, προκύπει W150=155,442 Kg=0,155 tons.

65

Τελικά το πρόγραμμα υπολογίζει το συνολικό βάρος του πλοίου (**Δ**_B) −το οποίο, σαν συνέπεια όλων των ανωτέρω, συμπίπτει με το βάρος που υπολογίστηκε στο κεφάλαιο 2−, καθώς και τις συντεταγμένες του κέντρου βάρους του πλοίου για κάθε κατάσταση φορτώσεως. Σε πρώτη φάση παρατηρούνται για τις καταστάσεις φορτώσεως τα ακόλουθα:

Στην **FULL LOAD DEPARTURE**, ως προς την κατακόρυφη θέση του κέντρου βάρους (**VCG=1,724 m**) παρατηρούμε ελάχιστη διαφοροποίηση ως προς αυτό που θεωρήσαμε στο κεφάλαιο 1 (VCG=1,727 m), προς το καλύτερο, αφού η χαμηλότερη θέση του κέντρου βάρους θα έχει σίγουρα θετική επίδραση στην εγκάρσια ευστάθεια του σκάφους. Ως προς την διαμήκη θέση του κέντρου βάρους **(LCG=7,470 m)** παρατηρούμε ελάχιστη διαφοροποίηση ως προς αυτό που θεωρήσαμε στο κεφάλαιο 1 (LCG=7,464 m). Αυτό κρίνεται πολύ θετικό γιατί σημαίνει ότι η διαμήκης θέση του κέντρου βάρους βρίσκεται πράγματι πολύ κοντά στο 40% του μήκους ισάλου, όπως προελέχθη ότι συνήθως ισχύει για αυτό το είδος σκάφους. Τέλος, ως προς την εγκάρσια θέση του κέντρου βάρους **TCG**, παρατηρούμε ότι βρίσκεται πάνω στην ευθεία του διαμήκους άξονα συμμετρίας, όπως είναι και το ζητούμενο, προκειμένου το πλοίο να έχει μηδενική κλίση στην άθικτη κατάσταση.

Στην FULL LOAD ARRIVAL και MINIMUM OPERATING CONDITION παρατηρούμε μικρή μετατόπιση του LCG προς τα πρύμα, αποδεκτή και μέσα σε φυσιολογικά πλαίσια μάλλον, ώστε να μην προκαλέσει μεγάλη έμπρυμη διαγωγή στο πλοίο.

FULL LOAD DEPARTURE CONDITION

Weight Name	Quantity	Weight Tons	Long. Arm	Vert. Arm	Trans. Arm	FSM Type
Steel Structure W100	1	16.04	8.918	1.902	0	0
Macinery W200	1	11.72	3.5	1.4	0	0
Electrical Plant W300	1	2.24	6	1.7	0	0
Electronic W400	1	0.79	11.5	4.24	0	0
Auxiliary W500	1	2.93	3.5	0.95	0	0
Outfit W600	1	4.8	10.75	2.64	0	0
Superstructure	1	0.155	11.02	4.2	0	0
Simbad RC Launcher	1	0.388	3.1	3.79	-1.8	0
Mini-Typhoon	1	0.15	18	3.79	0	0
Barret sb front	1	0.022	6	3.6	2	0
Barret bb front	1	0.022	6	3.6	-2	0
Barret sbt rear	1	0.022	0.5	3.6	2	0
Barret bb rear	1	0.022	0.5	3.6	-2	0
Zodiacs	2	0.146	5	3.84	0	0
Zodiac	1	0.146	0.1	3.17	0	0
Outboard engine	1	0.112	-2	2.36	0	0
Outboard engines	2	0.112	2.5	3.64	0	0
Outboard engines	2	0.112	9.1	3.64	1	0
Seals Equipement	1	1.08	8.5	1.5	1.8	0
Provisions	1	0.15	8.5	1.3	-1.8	0
seals troops	18	0.075	12.2	1.37	0	0
Crew	4	0.075	12	3.74	0	0
Ammunition	1	0.88	15.75	2	-1.25	0
Diesel Oil Tank	98%	5.723	8.7	0.578	0	0
Fuel Daily T ank	98%	0.3923	6.75	1.667	1.2	0
Lub Oil T ank	98%	0.3029	6.79	1.592	-1.9	0
	Total Weight=	50.48	LCG=7.470	VCG=1.724	TCG=0.000	0

Πίνακας 2:Κατάσταση Φορτώσεως FULL LOAD DEPARTURE
FULL LOAD ARRIVAL CONDITION

Weight	Quantity	Weight Tons	Long. Arm	Vert. Arm	FS Mom	FSM Type
Diesel Oil Tank	10%	0.5841	8.701	0.19	0.025	Maximum
Fuel Daily T ank	10%	0.04	6.75	1.248	0.035	Maximum
Lub Oil T ank	10%	0.0309	6.79	1.24	0.032	Maximum
Steel Structure W1	1	16.04	8.918	1.902	0	
Macinery W200	1	11.72	3.5	1.4	0	
Electrical Plant W30	1	2.24	6	1.7	0	
Electronic W400	1	0.79	11.5	4.24	0	
Auxiliary W500	1	2.93	3.5	0.95	0	
Outfit W600	1	4.8	10.75	2.64	0	
Superstructure	1	0.155	11.02	4.2	0	
Simbad RC Launche	1	0.388	3.1	3.79	0	
Mini-Typhoon	1	0.15	18	3.79	0	
Barret sb front	1	0.022	6	3.6	0	
Barret bb front	1	0.022	6	3.6	0	
Barret sbt rear	1	0.022	0.5	3.6	0	
Barret bb rear	1	0.022	0.5	3.6	0	
Zodiacs	2	0.146	5	3.84	0	
Zodiac	1	0.146	0.1	3.17	0	
Outboard engine	1	0.112	-2	2.36	0	
Outboard engines	2	0.112	2.5	3.64	0	
Outboard engines	2	0.112	9.1	3.64	0	
Seals Equipement	1	1.08	8.5	1.5	0	
Provisions	1	0.015	8.5	1.3	0	
seals troops	18	0.075	12.2	1.47	0	
Crew	4	0.075	12	3.74	0	
Ammunition	1	0.88	15.75	2	0	
	Total Weight=	44.58	LCG=7.335	VCG=1.856	0.093	
				FS corr.=0.002		
				VCG fluid=1.858		

Πίνακας 3:Κατάσταση Φορτώσεως FULL LOAD ARRIVAL

MINIMUM OPERATING CONDITION

Weight	Quantity	Weight Tons	Long. Arm	Vert. Arm	FS Mom	FSM Type
Diesel Oil Tank	10%	0.5841	8.701	0.19	0.025	Maximum
Fuel Daily T ank	10%	0.04	6.75	1.248	0.035	Maximum
Lub Oil T ank	10%	0.0309	6.79	1.24	0.032	Maximum
Steel Structure W1	1	16.04	8.918	1.902	0	
Macinery W200	1	11.72	3.5	1.4	0	
Electrical Plant W30	1	2.24	6	1.7	0	
Electronic W400	1	0.79	11.5	4.24	0	
Auxiliary W500	1	2.93	3.5	0.95	0	
Outfit W600	1	4.8	10.75	2.64	0	
Superstructure	1	0.155	11.02	4.2	0	
Simbad RC Launche	1	0.388	3.1	3.79	0	
Mini-Typhoon	1	0.15	18	3.79	0	
Barret sb front	1	0.022	6	3.6	0	
Barret bb front	1	0.022	6	3.6	0	
Barret sbt rear	1	0.022	0.5	3.6	0	
Barret bb rear	1	0.022	0.5	3.6	0	
Zodiacs	2	0.146	5	3.84	0	
Zodiac	1	0.146	0.1	3.17	0	
Outboard engine	1	0.112	-2	2.36	0	
Outboard engines	2	0.112	2.5	3.64	0	
Outboard engines	2	0.112	9.1	3.64	0	
Seals Equipement	1	1.08	8.5	1.5	0	
Provisions	1	0.015	8.5	1.3	0	
seals troops	18	0.075	12.2	1.47	0	
Crew	4	0.075	12	3.74	0	
Ammunition	1	0.088	15.75	2	0	
	Total Weight=	43.79	LCG=7.183	VCG=1.853	0.093	
				FS corr.=0.002	2	

Πίνακας 4:Κατάσταση Φορτώσεως ΜΙΝΙΜUM OPERATING CONDITION

4.2.3 Καθορισμός Κρίσιμων Σημείων

Παρατίθεται πίνακας με τα διάφορα του σκάφους κρίσιμα σημεία-ανοίγματα του σκάφους, από όπου δύναται να εισέλθει νερό στο πλοίο και να λάβει χώρα η προοδευτική κατάκλυση αυτού με νερό. Τα εξαεριστικά δεξαμενών και τα ανοίγματα δικτύων αερισμού που υπάρχουν στο κύριο κατάστρωμα θεωρούνται κρίσιμα σημεία κατακλύσεως, ενώ οι καταπακτές του κυρίου καταστρώματος και τα ανοίγματα πληρώσεως δεξαμενών θεωρούνται εν δυνάμει κρίσιμα σημεία κατακλύσεως, ενώ οι καταπακτές του κυρίου καταστρώματος και τα ανοίγματα πληρώσεως δεξαμενών θεωρούνται εν δυνάμει κρίσιμα σημεία κατακλύσεως, το πρόγραμμα λαμβάνει υπόψην του μόνο τα πρώτα, προκειμένου να καθορίσει την γωνία κλίσης κατακλύσεως του πλοίου (downfooding angle). Στην τελευταία στήλη δηλώνεται το διαμέρισμα με το οποίο συνδέεται φυσικά το κάθε άνοιγμα. Οι συντεταγμένες των σημείων δίνονται σε μέτρα και καθορίζονται με την εξής συλλογιστική:

α)<u>για όλων των ειδών τα ανοίγματα ως</u> ύψος καθορίζεται το ύψος του κυρίου καταστρώματος.

<u>α)για τις καταπακτές</u> επιλέγεται ως διαμηκής θέση αυτή που προσδιορίζει την μικρότερη απόσταση από οποιοδήποτε από τα δύο διαμήκη άκρα του πλοίου (πρωραίο ή πρυμναίο). Ως εγκάρσια θέση επιλέγεται αυτή που προσδιορίζει επίσης την μικρότερη απόσταση από οποιοδήποτε από τα δύο εγκάρσια άκρα του πλοίου (Αριστερό ή Δεξιό).

<u>β)για τα ανοίγματα αερισμού</u>η διαμηκής θέση επιλέγεται κατά τον ίδιο τρόπο, ενώ η εγκάρσια λαμβάνεται επί της διαμήκους ευθείας που καθορίζεται από το εσωτερικό διάμηκες άκρο του κυτίου αερισμού, όπου βρίσκεται και η οπή αερισμού. Λέγοντας εσωτερικό εννοείται αυτό που βρίσκεται εγγύτερα προς τον διαμήκη άξονα συμμετρίας του σκάφους.

<u>γ)τα εξαεριστικά και πληρωτικά των δεξαμενών</u> μπορούν να θεωρηθούν σημειακά λόγω της μικρής σχετικά επιφάνειας ανοίγματός τους.

Name	Long. Pos.	Offset	Height	Туре	Linked to
Diesel Oill Tank Vent	8.3	-2.2	3.14	σημείο κατάκλυσης	Diesel Oil Tank
Engine Room Vent SB	1.71	1.35	3.14	σημείο κατάκλυσης	Engine Room
Engine Room Vent BB	1.71	-1.35	3.14	σημείο κατάκλυσης	Engine Room
Accomodation Area Vent BB	7.07	1.36	3.14	σημείο κατάκλυσης	Accomodation Area
Diesel Oil Tank Filler Cup	7.3	1	3.14	σημείο κατάκλυσης	N/A
Lub Oil Tank Filler Cup	6.8	-2.2	3.14	κρίσιμο σημείο	N/A
Accomodation Area Hatch	7.21	-2.12	3.14	εν δυνάμει κρίσιμο σημείο	N/A
Forepeak Hatch	19.3	0.41	2.83	εν δυνάμει κρίσιμο σημείο	N/A
E.R. Emergency Hatch SB	4.1	2.2	3.14	εν δυνάμει κρίσιμο σημείο	N/A
E.R. Emergency Hatch BB	4.1	-2.2	3.14	εν δυνάμει κρίσιμο σημείο	N/A

Πίνακας 5: Κρίσιμα Ανοίγματα πλοίου

Παρακάτω παρουσιάζεται σε κάτοψη και πλάγια όψη η διάταξη των Κρίσιμων Ανοιγμάτων, με κόκκινο χρώμα τα σημεία κατακλύσεως και με μπλε τα εν δυνάμει σημεία κατακλύσεως.

Εικόνα 15:Κρίσιμα σημεία

4.2.4 Καθορισμός Γραμμής Ορίου Βυθίσεως

Το πρόγραμμα θέτει κανονικά από μόνο του την Γραμμή Ορίου Βυθίσεως 76 mm κάτω από την ακμή του κυρίου καταστρώματος σύμφωνα με τους διεθνείς κανονισμούς. Επειδή όμως το σχεδιασμένο μοντέλο παρουσιάζει καθοδική κλίση στο πρόστεγό του σε σχέση με το επίπεδο του υπόλοιπου κυρίως καταστρώματος και επιπλέον στο πρόστεγο υφίσταται κρίσιμο άνοιγμα - η καταπακτή του πλωραίου στεγανού συγκρούσεως (forepeak hatch) - , τα σημεία της γραμμής βυθίσεως τίθενται σε ύψος 76 mm κάτω από το ύψος που εμφανίζεται στο χαμηλότερο άκρο του προστέγου. Ύψος εν λόγω άκρου από την baseline του σκάφους έχουμε στα 2,724 m, άρα η γραμμή βυθίσεως τίθεται στα 2,648 m και παρουσιάζεται βυσσινί χρώμα στην παρακάτω εικόνα. Η γαλάζια γραμμή αντιστοιχεί σε ύψος 2,724 m.

4.2.5 Επιλογή Κριτηρίων Ευστάθειας Άθικτης Κατάστασης

Επιλέγονται τα κριτήρια ISO/FDIS 12217-1, τα οποία αφορούν μικρά ταχύπλοα σκάφη μήκους μεγαλύτερου ή ίσου των 6 μέτρων (ISO 12217-1.Small Craft-Stability and Buoyancy assessment and categorization, Part 1:Non-Sailing boats of hull length greater than or equal to 6 m) [7]. Τα κριτήρια αυτά αφορούν μόνο την ευστάθεια άθικτης κατάστασης.

Καταρχήν γίνεται η κατηγοριοποίηση του υπό μελέτη σκάφους σύμφωνα με τον παρακάτω πίνακα των ανωτέρων κριτηρίων. Για τις συνθήκες που επικρατούν στις θάλασσες που προορίζεται να επιχειρεί το σκάφος (Αιγαίο και Ιόνιο Πέλαγος), καθορίζεται αυτό να ανήκει στην **κατηγορία B**.

Design category	Α	В	С	D
Wave height up to	approx. 7 m significant	4 m significant	2 m significant	0,5 m significant
Typical Beaufort wind force	up to 10	up to 10	up to 10	up to 10
Calculation wind speed	28	21	17	13

Πίνακας 6:Κατηγοριοποίηση σκάφους

Επίσης το σκάφος θεωρείται σύμφωνα με τις ορολογίες των κριτηρίων **fully decked**, δηλαδή σκάφος στο οποίο η οριζόντια προβολή της περιοχής που περικλείει ο ζωστήρας (sheer line) εμπεριέχει οποιοδήποτε ποσοστό υδατοστεγανών καταστρωμάτων, υπερκατασκευών και στερεών καλυμάτων, σε αντίθεση με την κατηγορία partially decked στην οποία το αντίστοιχο ποσοστό είναι υποχρεωτικά τουλάχιστον τα 2/3 του συνολικού μήκους της προαναφερθείσας περιοχής. Στον παρακάτω πίνακα φαίνονται τα διάφορα **κριτήρια ISO/FDIS 12217-1**, σύμφωνα με τα οποία πρέπει να συμμορφώνονται τα πλοία αναλόγως της κατηγορίας όπου ανήκουν.

Option	1	2	3	4	5	6
Categories possible	A and B	C and D	В	C and D	C and D	C and D
Decking or covering	Fully decked ^a	Fully decked ^a	Any amount	Any amount	Partially decked ^b	Any amount
Downflooding openings	6.1.1	6.1.1	6.1.1	6.1.1	6.1.1	6.1.1
Downflooding-height test	6.1.2	6.1.2	6.1.2	6.1.2 [¢]	6.1.2	6.1.2
Downflooding angle	6.1.3	6.1.3	6.1.3	6.1.3 ^c	ge e e y name y e y an daar daar daar aan di bili da di biy se de se se se se	
Offset-load test	6.2	6.2	6.2	6.2	6.2	6.2
Resistance to waves + wind	6.3	u <u>Bahar An</u> Aprophysics and an an annihite 47.446.44	6.3			
Heel due to wind action	activesteitterten mitterrovermethelerisseitette fahren	6.4 ^d		6.4 ^d	6.4 ^d	6.4 ^d
Flotation requirements	egygenişet çöpate işananın mitti sızıkında ministri berdir.		6.5	6.5		
Flotation material	ykenynykenetskerkentskanten at steraanseranter fertikke	elahanytesta sida ana ana ang sa ang si ang sa a Ing sa ang sa Ing sa ang sa Ing sa ang sa	Annex F	Annex F		

^a This term is defined in 3.1.6.

^b This term is defined in 3.1.7.

^c This test is not required for boats assessed using option 4 if, during the swamped load test in normative annex E, the boat has been shown to support an equivalent dry mass of 133 % of the maximum total load.

d The application of 6.4 is only required for boats where $A_{\rm LV} \gg L_{\rm H} B_{\rm H}$.

Πίνακας 7:Κριτήρια συμμόρφωσης σύμφωνα με την κατηγορία του σκάφους

Με βάση τον ανωτέρω πίνακα επιλέγονται και τα αντίστοιχα κριτήρια από τις διατιθέμενες επιλογές του προγράμματος. Κάποια από αυτά τα κριτήρια έχουν σταθερές τιμές παραμέτρων σύγκρισης, ενώ σε κάποια άλλα θα πρέπει να καθοριστούν οι τιμές των παραμέτρων σύγκρισης του σύμφωνα με τα ιδιαίτερα χαρακτηριστικά του κάθε πλοίου. Έτσι έχουμε αναλυτικά:

1) <u>Kpitńpio 6.1.1-Downflooding Openings</u>

Καταρχάς ορίζεται ότι για τα πλοία κατηγορίας Α και Β, οποιοδήποτε κρίσιμο για εισροή ύδατος άνοιγμα (Downflooding Opening) που δεν έχει μηχανισμό σφραγίσεως, επιτρέπεται να υπάρχει μόνο όταν είναι σημαντικό για χρήση αερισμού ή καύσης μηχανών. Γενικά, βασικός κανόνας είναι να μην τίθεται κανένα άνοιγμα σε απόσταση μικρότερη από 0,2 m πάνω από την έμφορτη ίσαλο LWL. Όλα αυτά ισχύουν για τα ανοίγματα του σχεδιασμένου σκάφους που προαναφέρθηκαν.

74

2) <u>Kpitńpio 6.1.2-Downflooding Height Test</u>

Ουσιαστικά το κριτήριο καθορίζει το ελάχιστο απαιτούμενο ύψος εξάλων. Επιλέγεται η μέθοδος χρήσης του κατωτέρω διαγράμματος για τον καθορισμό του Ύψους Κατακλύσεως (Downflooding Height), η οποία βασίζεται στο μήκος του σκάφους.

Σχήμα 20: Διάγραμμα καθορισμού Ύψους για Σχεδιαστικές Κατηγορίες Α και Β

Από το εν λόγω διάγραμμα,για hull length=21 m που ισχύει για το υπό μελέτη πλοίο, προκύπτει Required Height=1,2 m.

3) Koitńoio 6.2-Offset Load Test-Heel at Equilibrium

Το κριτήριο καθορίζει την μέγιστη επιτρεπόμενη γωνία εγκάρσιας κλίσης του πλοίου Φ_ο στην έμφορτη κατάσταση, όταν μαζευτούν όλοι οι επιβάτες στην μία πλευρά αυτού. Για όλες τις κατηγορίες πλοίων, αυτή η γωνία δεν πρέπει να είναι μεγαλύτερη από την τιμή που καθορίζεται με την παράτω σχέση και τον παρακάτω πίνακα.

$$\Phi_{O(R)} = 10 + (24 - L_H)^3 / 600$$
(3)

Lн (m)	6	7	8	9	10	12	15	18	21	24
Φo(r) (°)	19,7	18,2	16,8	15,6	14,6	12,9	11,2	10,4	10	10

Πίνακας 8:Μέγιστες επιτρεπτές γωνίες κλίσης σε σχέση με το μήκος γάστρας

Είναι φανερό ότι για το υπό μελέτη σκάφος μέγιστη Φ₀=10 μοίρες

4) Koithono 6.2-Offset Load Test-Equilibrium with Heel Arm

Το κριτήριο καθορίζει την μέγιστη επιτρεπόμενη γωνία ισορροπίας (εγκάρσιας κλίσης) του πλοίου, όταν εφαρμόζεται σε αυτόν ένα γενικός μοχλοβραχίονας κλίσεως που εκφράζεται με την γενική σχέση Heeling Arm=A x cosⁿ(Φ). Γωνία ισορροπίας είναι η μικρότερη θετική γωνία όπου τέμνονται οι καμπύλες μοχλοβραχιόνων κλίσεως και επαναφοράς GZ και η τελευταία έχει θετική κλίση. Στο σχήμα 17 φαίνεται αυτό το σημείο με την μπλε ένδειξη ´´equilibrium angle with heeling arm´´.

Στην προκειμένη περίπτωση - δηλαδή εμφάνιση μοχλοβραχίονα κλίσεως λόγω εγκάρσιας μετακίνησης φορτίου - , σύμφωνα με τις οδηγίες των κανονισμών ισχύει n=1. Θα προσδιοριστεί και το πλάτος Α του μοχλοβραχίονα βάσει ιδίων οδηγιών (ANNEX B of ISO 12217-1). Για τον σκοπό αυτό υιοθετείται η μέθοδος Β.3.2 του σχετικού παραρτήματος, η οποία αφορά πλοία τουλάχιστον 2 καταστρώματα. Καταρχήν που έχουν συμβατικά ως αντιπροσωπευτικότερη, ως προς την συχνότητα εμφανίσεως της, και επαρκώς δυσμενής ταυτόχρονα κατανομή του πληρώματος του πλοίου την εξής: με δεδομένο ότι μέγιστος αριθμός επιβατών CL=22 (Crew Limit), θεωρούμε αριθμό ατόμων που κινούνται στο κύριο κατάστρωμα Ν1=10, δηλαδή 4 από αυτούς πλήρωμα ναυτιλιακού χειρισμού και μία ομάδα κρούσης των αντρών ειδικών αποστολών (6 άτομα),είτε για επιβίβαση σε μια λέμβο, είτε για λόγους χειρισμού οπλικών συστημάτων σε περίπτωση σύρραξης. Από το λογισμικό προκύπτει Εμβαδόν κυρίου καταστρώματος=87,060 m².Από αυτό αφαιρούνται προσεγγιστικά γύρω στα 17 m² προκειμένου να εξαιρεθεί το εμβαδό καταστρώματος που καταλαμβάνουν οι λέμβοι, τα οπλικά συστήματα, οι καταπακτές και ο πίνακας ναυσιπλοίας εντός υπερκατασκευής, δηλαδή επιφάνειες που δεν δύναται να κυκλοφορήσουν οι επιβάτες. Έτσι προκύπτει για το κύριο κατάστρωμα A_{C1} = 70 m². Αντίστοιχα με την ίδια λογική, για το ενδιάμεσο κατάστρωμα έχουμε N2=12 (N2= CL – N1) και για την επιφάνεια αυτού που περιλαμβάνεται μεταξύ των νομέων 7 ως 17, όπου ενδιαιτούνται οι καταδρομείς, έχουμε προσεγγιστικά $A_{C1} = 39 m^2$. Όσον αφορά το μέγιστο πλάτος B_c καθεμιάς από τις προαναφερθείσες επιφάνειες καταστρωμάτων, ισχύει αντίστοιχα $B_{C1}=4,8$ m και $B_{C2}=5$ m.

Έτσι προκύπτουν οι παρακάτω συντελεστές:

CD1=N1/(4 x A_{C1})=0,029 \leq 0,5 kai CD2=N2/(4 x A_{C2})=0,076 \leq 0,5

άρα για τις συνεπαγόμενες επιμέρους ροπές κλίσεως ισχύει ο τύπος

$$M_C = 314 \times CL \times Bc \times (1-CD)$$

άρα έχουμε MC1=32196,81 Nm και MC2=31914,96 Nm

Συνεπώς η συνολική ροπή κλίσεως είναι **MC= MC₁+ MC₂=64111,77 Nm**

άρα **A= MC/Displacement=64,11177 KNm / 51,49 x 9,81 KN= 0,127 m** το πλάτος του μοχλοβραχίονα κλίσης.

Σχήμα 21: Διάγραμμα καμπυλών κλίσης και επαναφοράς με τα χαρακτηριστικά τους

σημεία

5) Kpitńpio 6.2-Offset Load Test-Required Freeboard at equilibrium

Ιχύουν τα ίδια με το κριτήριο 2

6) <u>Κριτήριο 6.1.3- Dowflooding Angle</u>

Εξασφαλίζει ότι θα υπάρχει επαρκές περιθώριο για την εγκάρσια γωνία κλίσης μέχρι να εισέλθουν σημαντικές ποσότητες νερού στο εσωτερικό του πλοίου, καθορίζοντας την ελάχιστη απαιτούμενη γωνία που πρέπει να συμβαίνει αυτό. Για το υπό μελέτη πλοίο, σύμφωνα με τον παρακάτω πίνακα, η γωνία αυτή ισούται με 25°.

		-
	Minimum downfloo	ding angle (degrees)
Design category	Options 1 to 5 ^a , use w	hichever is the greater
A	φ ₀ + 25	30
B	¢ ₀ + 15	25
C	\$0 + 5	20
	¢0	anturgen berigt ein beiteten der der Bergen der Beiteten beiteten berten der Bergener geschen der Bergener ant

Πίνακας 9:Πίνακας απαιτήσεων γωνιών κατακλύσεως

7) <u>Κριτήριο 6.3.1- General</u>

Ισχύει για τα εκτοπίσματα στην έμφορτη κατάσταση και την κατάσταση minimum operating condition (m_{LDC} και m_{MOC} αντίστοιχα), m_{LDC} / m_{MOC} = 50,49 tons / 42,45 tons =1,187 ≥ 1,15. Άρα συμφώνως κανονισμών τα παρακάτω κριτήρια πρέπει να εξεταστούν και στις δύο ανωτέρω καταστάσεις φορτώσεως.

8) <u>Κριτήριο 6.3.2-Rolling in Beam Waves and Wind</u>

Εξασφαλίζει την ικανοποιητική ευστάθεια του πλοίου σε κατάσταση πλαγίου κυματισμού και ανέμου που δημιουργούν βραχίονες ανατροπής στο πλοίο. Οι καμπύλες ευστάθειας και ανατροπής πλοτάρονται μαζί στο ίδιο διάγραμμα που φαίνεται στο σχήμα 18.

Πιο συγκεκριμένα, η τιμή της ροπής ανατροπής εξαιτίας του ανέμου θεωρείται σταθερή σε όλες τις γωνίες κλίσεως του πλοίου Φ και υπολογίζεται σύμφωνα με τους κανονισμούς από την παρακάτω σχέση

$M_{W} = 0.3 \times A_{LV} \times (A_{LV} / L_{WL} + T_{M}) \times V_{W}^{2}$

όπου T_M είναι το μέσο βύθισμα σε μέτρα (για το υπό μελέτη σκάφος ισχύει T_M =1,09 m)

V_w =21 m/sec=40,86 knots για πλοία κατηγορίας Β και

 A_{LV} είναι η προβολή της επιφάνειας των εξάλων πάνω στο επίπεδο συμμετρίας του πλοίου σε τετραγωνικά μέτρα. Η τιμή της A_{LV} δεν πρέπει να λαμβάνεται ποτέ μικρότερη της τιμής 0,55 x L_H x B_H, όπου L_H το μήκος της γάστρας και B_H το μέγιστο πλάτος της γάστρας. Για το υπό μελέτη σκάφος ισχύει **0,55 x L_H x B_H =62,582 m²**. Το λογισμικό υπολογίζει αυτή την επιφάνεια **52,873 m²**, άρα λαμβάνεται A_{LV} =62,582 m².

Το πρόγραμμα υπολογίζει την προαναφερθείσα ροπή από την γενική σχέση

$M_W = a x V_w^2 x A_{LV} x$ (h-H) / (g x Displacement) x cosⁿ(Φ)

όπου **h** είναι είναι το **ύψος του κέντρου της A**_{LV} και H=T_M/2=0,545 m. Επειδή οι κανονισμοί θεωρούν την M_W σταθερή, τίθεται στο πρόγραμμα n=0. Ακόμη σύμφωνα με τους υπολογισμούς του προγράμματος, h=2,497 m και a είναι μια σταθερά του προγράμματος που εκφράζει την πυκνότητα του ατμοσφαιρικού αέρα και έχει την τιμή a=0,00061 tons/m³. Τέλος, το Εκτόπισμα (Displacement), καθορίζεται αυτόματα από το πρόγραμμα ανάλογα με την κατάσταση φορτώσεως που θα επιλέγεται κατά την εκάστοτε ανάλυση.

Η υποτιθέμενη γωνία εγκάρσιας κλίσης (**assumed roll angle**) **Φ**_R υπολογίζεται για πλοία κατηγορίας Β σύμφωνα με τους κανονισμούς, σε μοίρες, από την παρακάτω σχέση

Φ_R=20+20/V_D

όπου **V**_D ο όγκος εκτοπίσματος. Άρα τίθενται στους σχετικούς πίνακες δεδομένων του προγράμματος:

-για την κατάσταση FULL LOAD DEPARTURE, V_D=49,261 m³ και $Φ_R$ =20,406°

-για την κατάσταση MINIMUM OPERATING CONDITION, V_D=42,55/1,025=41,512 m³ και $Φ_R$ =20,406°

Η καμπύλη ευσταθείας ολοκληρώνεται μέχρι την **Φ**_D ή την γωνία απώλειας ευστάθειας **Φ**_v ή μέχρι τις **50°(specified heel angle**), όποια από αυτές είναι μικρότερη.

Τελικά σύμφωνα με τους κανονισμούς πρέπει να ισχύει για τα εμβαδά των γραμμοσκιασμένων επιφάνειων Α₁ και Α₂, **Α₂ > Α₁**

Σχήμα 22: Ευστάθεια πλοίου με επίδραση ανέμου και κυματισμού

9) <u>Kpitńpio 6.3.3-Resistance to Waves</u>

Επιπρόσθετα με τις απαιτήσεις του προηγούμενου κριτηρίου, η καμπύλη ευστάθειας του πλοίου, μέχρι τις γωνίες που προαναφέρθηκαν στο προηγούμενο κριτήριο, πρέπει να ικανοποιεί τις παρακάτω απαιτήσεις:

α) όταν η μέγιστη ροπή επαναφοράς σημειώνεται σε γωνία κλίσεως **Φ μεγαλύτερη ή ίση των 30°**, η ροπή επαναφοράς στις 30° δεν πρέπει να είναι μικρότερη της τιμής **7 KNm** για πλοία κατηγορίας Β. Επιπλέον ο μέγιστος μοχλοβραχίονας επαναφοράς **GZ** δεν πρέπει να είναι μικρότερος των **0,2 m**.

β) όταν η μέγιστη ροπή επαναφοράς σημειώνεται σε γωνία κλίσεως **Φ μικρότερη των 30°**, η μέγιστη ροπή επαναφοράς δεν πρέπει να είναι μικρότερη της τιμής **210/Φ_{GZmax} KNm** για πλοία κατηγορίας B, όπου **Φ_{GZmax}** είναι η γωνία κλίσης που σημειώνεται ο μέγιστος μοχλοβραχίονας επαναφοράς **GZ**. Επιπλέον ο τελευταίος δεν πρέπει να είναι μικρότερος της τιμής **6/ Φ_{GZmax}**.

Στους πίνακες δεδομένων του προγράμματος που αντιστοιχούν στο ανωτέρω κριτήριο τοποθετούνται οι τιμές των **30°** για την παράμετρο **''heel angle at which required RM is constant''** και των **0,2 m** για την παράμετρο **''required value of GZ''**. Τα υπόλοιπα λαμβάνονται υπόψην από το ίδιο το πρόγραμμα κατά την εκτέλεση των αναλύσεων που πραγματοποιεί.

4.3 Επιλογή Κριτηρίων Ευστάθειας Βεβλαμένης Κατάστασης

4.3.1 Καθορισμός Καταστάσεων Βλάβης

Η ομάδα των προαναφερθέντων κριτηρίων ευστάθειας δεν περιλαμβάνει κριτήρια που να αφορούν την περίπτωση που ένα ή περισσότερα διαδοχικά διαμερίσματα του πλοίου βρίσκονται σε ελεύθερη επικοινωνία με την θάλασσα λόγω ρήγματος σε κάποιο σημείο της γάστρας του σκάφους (βεβλαμένη κατάσταση). Για την μελέτη της ευστάθειας πλοίου επιλέγονται τα κριτήρια του **Κώδικα Ταχέων Σκαφών (High Speed Craft Code – HSC Code, Criteria for residual stability after damage) [8]**. Κανονικά από αυτά τα κριτήρια εξαιρούνται τα πολεμικά σκάφη, όμως στην προκειμένη περίπτωση επιλέγονται προκειμένου να δοθεί μια προσεγγιστική εικόνα της συμπεριφοράς του σκάφους όσον αφορά την ευστάθεια του κατά τις διάφορες καθορισμένες καταστάσεις βλαβών. Σημειώνεται ότι δεν υπάρχει διαθέσιμη άλλη καταλληλότερη ομάδα κριτηρίων, αφού όσες ομάδες περιλαμβάνουν σχετικά κριτήρια είναι εφαρμόσιμες σε πολεμικά πλοία μεγαλύτερου μεγέθους.

Σύμφωνα με τον κώδικα η <u>έκταση του πλαϊνού ρήγματος</u> που θα πρέπει να θεωρηθεί για την εξέταση της βλάβης είναι:

α) κατά το διάμηκες, το μικρότερο από τα παρακάτω μήκη

1) 0,75 $\nabla^{0,333}$ m, 2) 3 + 0,225 $\nabla^{0,333}$ m και 3) 11 m

Στην προκειμένη περίπτωση 0,75 ∇^{0,333} = 2,746 m και 3 + 0,225 ∇^{0,333} = 3,824 m, άρα επιλέγεται η τιμή **2,746 m**.

β) κατά το εγκάρσιο 0,732 m

γ) κατά το κατακόρυφο, το πλήρες ύψος των κατακεκλυσμένων διαμερισμάτων.

Ακόμη, επιπλέον και ιδιαίτερα για την <u>έκταση του ρήγματος στην ΄΄κρίσιμη περιοχή΄΄ του</u> <u>πυθμένα</u> πρέπει να θεωρηθούν δύο περιπτώσεις:

1) ένα τμήμα μήκους ίσου με 55% L_{WL} = 9,329 m, μετρούμενο από το πρωραίο άκρο τις ισάλου προς τα πρύμα και

2) ένα τμήμα ίσο με (L_{WL} /2 + 10% L_{WL}) = 11,195 m, οπουδήποτε καθόλου του μήκους ισάλου.

Ως κρίσιμη περιοχή του πυθμένα θεωρείται αυτή που οριοθετείται κατά το κατακόρυφο μεταξύ των επιπέδων των παρισάλων που βρίσκονται σε ύψη 0 και 0,3T από την τρόπιδα, όπου T το βύθισμα σχεδίασης. Στην προκειμένη περίπτωση **άνω όριο της περιοχής** είναι τα 1,09–0,3 x 1,09=**0,763 m**.

Η εισχώρηση του ρήγματος στον πυθμένα πρέπει να λαμβάνεται ίση με 0,04∇^{0,333} = 0,146 m ή 0,5 m, το μικρότερο από τα δυο, άρα λαμβάνεται 0,146 m. Επιπλέον η περίμετρος του ρήγματος επί της εγκάρσιας τομής της γάστρας πρέπει να λαμβάνεται ίση με 0,1∇^{0,333} = 0,366 m και σε καμμιά περίπτωση δεν πρέπει αυτή να εκτείνεται πάνω από το άνω όριο της κρίσιμης περιοχής του πυθμένα.

Τα ανωτέρω λαμβάνονται υπόψην στον καθορισμό των καταστάσεων βλάβης που θεωρούνται για το υπό μελέτη σκάφος, προκειμένου αυτές να καλύπτουν τις ανωτέρω προδιαγραφές. Έτσι

82

προκύπτουν 11 καταστάσεις-σενάρια βλάβης που παρατίθενται στον παρακάτω πίνακα. Συγκεκριμένα οι καταστάσεις 1-6 και 11 αφορούν πλαϊνή ρωγμή και οι υπόλοιπες αφορούν ρωγμή στον πυθμένα του σκάφους. Η σύντμηση ΄΄C΄΄ σημαίνει Case. Με το σύμβολο √ συμβολίζονται τα εκάστοτε κατακεκλύμενα διαμερίσματα.

Compartment	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11
Diesel Oil Tank				٧	٧	V	V	٧	V	v	
Engine Room						V		V	V	٧	V
Accomodation Area		٧	V	V	V	V		V			
Toilet Area	V	٧									
Forepeak	V	٧					V	٧			
Dry Tank 1			V		٧		٧	٧	٧		
Ammunition Store	V	٧									
Dury Tauly 2							.,	.,		1	

Πίνακας 10: Καταστάσεις Βλαβών πλοίου

4.3.2 Κριτήρια Ευστάθειας μετά από Βλάβη

1) Κριτήριο 2.1.1-Range of positive stability

Το εύρος γ ωιών κλ σής, μεταξύ των γ ωιών ισορροπίας σκ φους κ α της γωνίας κατακλύσεως, για το οποίο ο μοχλοβραχίονας επαναφοράς λαμβάνει θετικές τιμές, πρέπει να είναι μεγαλύτερο ή ίσο των 15°.

2) Κριτήριο 2.1.2-Area under GZ curve

Το εμβαδόν της επιφάνειας κάτω από την καμπύλη του μοχλοβραχίονα επαναφοράς, από το σημείο της γωνίας ισορροπίας μέχρι το σημείο της γωνίας κατακλύσεως, πρέπει να είναι μεγαλύτερο ή ίσο των 0,015 mrad = 0,859m deg.

<u>3) Κριτήριο 2.1.3-Area under GZ curve</u>

Η μέγιστη τιμή του μοχλοβραχίονα επαναφοράς, για το εύρος γωνιών κλότης από το σημείο της γωνίας ισορροπίας μέχρι το σημείο της γωνίας κατακλύσεως, πρέπει να είναι μεγαλύτερη ή ίση του 0,1 m.

4) Κριτήριο 2.2.1-Value of max. GZ in intermediate stages

Η μέγιστη τιμή του μοχλοβραχίονα επαναφοράς, για το εύρος γωνιών κλίσης από το σημείο της γωνίας ισορροπίας μέχρι το σημείο της γωνίας κατακλύσεως, πρέπει να είναι μεγαλύτερη ή ίση του 0,05 m.

5) Κριτήριο 2.2.2-Range of positive stability in intermediate stages

Το εύρος γ ωιών κλ σής, μεταξύ των γ ωιών ισορροπίας σκ φους κ α της γωνίας κατακλύσεως, για το οποίο ο μοχλοβραχίονας επαναφοράς λαμβάνει θετικές τιμές, πρέπει να είναι μεγαλύτερο ή ίσο των 7°.

6) Κριτήριο 2.6.11.1-Min. freeboard at damaged equilibrium

Είναι απαραίτητο κατά την ισορροπία του σκάφους μετά το πέρας της κατάκλυσης, το προκύπτον ύψος εξάλων μεταξύ κρίσιμων σημείων προοδευτικής κατάκλυσης σκάφους και ισάλου βλάβης να είναι μεγαλύτερο ή ίσο του 50% του σημαντικού ύψους κύματος για την κατηγορία του σκάφους, στην δυσμενέστερη περίπτωση. Για την εξέταση της άθικτης ευστάθειας το πλοίο καθορίστηκε κατηγορίας Β,όπου εν σημαντικό ύψος κύματος στη δυσμενέστερη περίπτωση= 4 μέτρα. Εν λόγω τιμή κρίνεται ότι θα επιφέρει υπερβολικά αυστηρή απαίτηση για το εν λόγω σκάφος, οπότε για την εξέταση της ευστάθειας βλάβης Κατηγορίας C, όπου αντίστοιχη τιμή=2 μέτρα, οπότε για 50% αυτής, έχω 1 μέτρο.

7) Κριτήριο 2.6.11.3-Min. freeboard at damaged equilibrium

Είναι απαραίτητο να υφίσταται θετικό ύψος εξάλων μεταξύ σημείων επιβιβάσεως σε σωστικά μέσα του σκάφους και ισάλου βλάβης.

4.4 Μελέτη Ευστάθειας Άθικτης Κατάστασης

4.4.1 Υδροστατικό Διάγραμμα-Αρχικός Έλεγχος Εγκάρσιας Ευστάθειας

Μετά την ολοκλήρωση της περαιτέρω διαμόρφωσης του μοντέλου του οπό μελέτη σκάφους, προβαίνουμε στην εκτέλεση των διαφόρων αναλύσεων. Σύμφωνα με τις διατιθέμενες επιλογές του προγράμματος επιλέγουμε **αριθμό νομέων 50**, που είναι οι νομείς που θα λάβει υπόψην του το πρόγραμμα προκειμένου να ΄΄διαβάσει΄΄ το σχεδιασμένο μοντέλο, να κάνει δηλαδή τις απαραίτητες ολοκληρώσεις των εμβαδών των εγκαρσίων τομών και να εκτελέσει τους υπολογισμούς. Οι νομείς αυτοί φαίνται στην εικόνα 11, όπως απεικονίζονται στο τρισδιάτατο περιβάλλον του προγράμματος.

Εικόνα 21: Απεικόνιση νομέων μοντέλου υπό μελέτη σκάφους

Αρχικά εκπονείται το υδροστατικό διάγραμμα του πλοίου. Επιλέγεται στο πρόγραμμα ένα εύρος δώδεκα βυθισμάτων στο μέσο του πλοίου, με αρχικό βύθισμα τα 0,9 μέτρα και τελικό βύθισμα τα 1,09 μέτρα, το οποίο είναι και το υπολογισμένο βύθισμα της έμφορτου κατάστασης του πλοίου. Έτσι προκύπτει ο πίνακας υδροστατικών στοιχείων και το αντίστοιχο υδροστατικό διάγραμμα για το υπό μελέτη πλοίο, όταν αυτό είναι ισοβύθιστο.

Γενικά παρατηρείται ότι το πλοίο διαθέτει την απαραίτητη εγκάρσια ευστάθεια για όλα τα βυθίσματά του, συνεπώς και για τις τρεις καταστάσεις φορτώσεως του. Ειδικά για αυτές

παρατηρείται για παράδειγμα, όσον αφορά την εγκάρσια ευστάθεια του σκάφους, ότι για τα εκτοπίσματα που αντιστοιχούν ή έιναι πάρα πολύ κοντά στα αντίστοιχα των καταστάσεων φορτώσεως, οι τιμές του GMt είναι ιδιαίτερα ικανοποιητικές. Συγκεκριμένα:

-για την FULL LOAD DEPARTURE, όπου T_M =1,09 m, προκύπτει GMt = 2,309 m. Σημειώνεται ότι η τιμή αυτή είναι πολύ κοντά στην αντίστοιχη που είχε υπολογιστεί από το πρόγραμμα MAXSURF (GMt = 2,312 m) με βάση την προεκτίμηση του KG στο κεφάλαιο 3. - για την FULL LOAD ARRIVAL, για εκτόπισμα 44,58 tons, που είναι πολύ κοντά στο εκτόπισμα της εν λόγω καταστάσεως, και T_M =1,021 m, προκύπτει GMt = 2,604 m. - για την MINIMUM OPERATING CONDITION, για εκτόπισμα 43,21 tons, που είναι πολύ κοντά στο εκτόπισμα της εν λόγω καταστάσεως, και T_M =1,004 m, προκύπτει GMt = 2,694 m.

Για τις δύο τελευταίες καταστάσεις είναι σίγουρο συμπέρασμα ότι με γραμμική παρεμβολή θα προκύψουν ικανοποιητικές τιμές του GMt, πολύ κοντά στις μόλις προαναφερθείσες.

ΥΔΡΟΣΤΑΤΙΚΟ ΔΙΑΓΡΑΜΜΑ ΠΛΟΙΟΥ ΈΡΜΗΣ

ΥΔΡΟΣΤΑΤΙΚΟΣ ΠΙΝΑΚΑΣ ΠΛΟΙΟΥ ΈΡΜΗΣ

Draft Amidsh. m	0.9	0.92	0.94	0.96	0.98	1	1.02	1.04	1.06	1.07	1.08	1.09
Displacement tonne	34.66	36.07	37.48	38.9	40.33	41.76	43.21	44.65	46.11	47.57	49.04	50.51
Heel to Starboard degrees	0	0	0	0	0	0	0	0	0	0	0	0
Draft at FP m	0.9	0.917	0.935	0.952	0.969	0.986	1.004	1.021	1.038	1.055	1.073	1.09
Draft at AP m	0.9	0.917	0.935	0.952	0.969	0.986	1.004	1.021	1.038	1.055	1.073	1.09
Draft at LCF m	0.9	0.917	0.935	0.952	0.969	0.986	1.004	1.021	1.038	1.055	1.073	1.09
Trim (+ve by stern) m	0	0	0	0	0	0	0	0	0	0	0	0
WL Length m	18.25	18.287	18.324	18.362	18.399	18.436	18.473	18.51	18.548	18.585	18.622	18.659
WL Beam m	5.007	5.01	5.014	5.018	5.021	5.025	5.029	5.032	5.036	5.04	5.043	5.047
Wetted Area m ²	87.411	88.364	89.319	90.424	91.343	92.265	93.324	94.213	95.105	96.142	97.007	97.875
Waterpl. Area m^2	78.942	79.365	79.79	80.352	80.723	81.097	81.593	81.917	82.243	82.706	82.991	83.278
Prismatic Coeff.	0.827	0.827	0.828	0.829	0.83	0.832	0.833	0.834	0.835	0.836	0.838	0.839
Block Coeff.	0.405	0.413	0.421	0.429	0.436	0.444	0.451	0.458	0.464	0.471	0.477	0.483
Midship Area Coeff.	0.49	0.5	0.509	0.517	0.526	0.534	0.541	0.549	0.556	0.563	0.569	0.576
Waterpl. Area Coeff.	0.845	0.849	0.853	0.858	0.862	0.865	0.87	0.872	0.875	0.88	0.882	0.884
LCB from Amidsh. (+ve fwd) m	-1.531	-1.524	-1.516	-1.506	-1.496	-1.486	-1.475	-1.464	-1.453	-1.442	-1.431	-1.419
LCF from Amidsh. (+ve fwd) m	-1.35	-1.317	-1.284	-1.243	-1.214	-1.185	-1.147	-1.122	-1.097	-1.061	-1.039	-1.017
KB m	0.607	0.619	0.631	0.642	0.653	0.664	0.675	0.686	0.697	0.708	0.719	0.729
KG m	1.724	1.724	1.724	1.724	1.724	1.724	1.724	1.724	1.724	1.724	1.724	1.724
BMt m	4.403	4.269	4.144	4.05	3.934	3.827	3.742	3.642	3.548	3.475	3.387	3.304
BML m	51.765	50.362	49.054	47.922	46.737	45.627	44.674	43.65	42.687	41.893	40.996	40.149
GMt m	3.286	3.164	3.051	2.968	2.864	2.767	2.694	2.604	2.521	2.459	2.381	2.309
GML m	50.649	49.257	47.961	46.841	45.666	44.567	43.626	42.612	41.66	40.877	39.99	39.154
KMt m	5.01	4.888	4.775	4.692	4.588	4.491	4.418	4.328	4.245	4.183	4.105	4.033
KML m	52.373	50.981	49.685	48.565	47.39	46.291	45.35	44.336	43.384	42.601	41.714	40.878
Immersion (TPc) tonne/cm	0.809	0.813	0.818	0.824	0.827	0.831	0.836	0.84	0.843	0.848	0.851	0.854
MTc tonne.m	0.941	0.952	0.963	0.976	0.987	0.997	1.01	1.02	1.029	1.042	1.051	1.06
RM at 1deg = GMt.Disp.sin(1) ton	1.988	1.991	1.996	2.015	2.015	2.017	2.031	2.03	2.029	2.041	2.038	2.036

4.4.2 Διάγραμμα Παραμετρικών Καμπυλών Ευστάθειας

Το Διάγραμμα Παραμετρικών Καμπυλών Ευστάθειας παριστάνει την μεταβολή του μοχλοβραχίονα επαναφοράς του πλοίου σε σχέση με το εκτόπισμά του για διάφορες γωνίες εγκάρσιας κλίσεως αυτού και για υποθετική κατακόρυφη θέση του κέντρου βάρους επί της τρόπιδας, οπότε ουσιαστικά οι καμπύλες δίνουν την μεταβολή του μήκους KN. Εφόσον είναι γνωστή η πραγματική κατακόρυφη θέση του κέντρου βάρους του πλοίου KG, ο υπολογισμός του μοχλοβραχίονα επαναφοράς δύναται να υπολογιστεί από την σχέση

GZ=KN-KGsinφ

Στο μενού του προγράμματος επιλέγεται εύρος γωνιών εγκάρσιας κλίσης από 0°-180°,σταθερή μηδενική διαγωγή και εύρος Εκτοπισμάτων από 30 tons - 50,55 tons. Παρατίθεται το διάγραμμα που προκύπτει.

ΔΙΑΓΡΑΜΜΑ ΠΑΡΑΜΕΤΡΙΚΩΝ ΚΑΜΠΥΛΩΝ ΕΥΣΤΑΘΕΙΑΣ ΠΛΟΙΟΥ ΈΡΜΗΣ

4.3.3 Διαγράμματα Καμπύλης Ευστάθειας – Έλεγχος Ευστάθειας μεγάλων

κλίσεων

Τα διαγράμματα καμπυλών ευστάθειας (GZ - φ) εκπονούνται για όλες τις καταστάσεις φορτώσεως για εύρος γωνιών εγκάρσιας κλίσης από -30°-180° (όπου θετικές θεωρούνται οι δεξιές κλίσεις). Η τιμή -30° επιλέγεται προκειμένου το πρόγραμμα να μπορέσει να εκτιμήσει σωστά κα το κρτήριο διατοιχισμού σε κυματισμό και άνεμο, όπου είχε τεθεί roll back angle=25°. Τα κριτήρια που θα λάβει υπόψην του το πρόγραμμα είναι τα προαναφερθέντα.

Στα εν λόγω διάγραμματα η κίτρινη γραμμή παριστάνει την καμπύλη ευστάθειας του σκάφους, η οποία αποτελεί και το μέτρο της ευστάθειας του για μεγάλες κλίσεις. Οι καμπύλες διαφορετικού χρώματος που εμφανίζονται αφορούν τις διάφορες μορφές καμπυλών μοχλοβραχιόνων ανατροπής που διαμορφώνονται από το πρόγραμμα, σύμφωνα με τα καθορισμένα δεδομένα του κάθε συνεκτιμώμενου κριτηρίου ευστάθειας Η κατακόρυφος χρώματος μπλε ευθεία επισημαίνει την γωνία κατακλύσεως (downflooding angle).

Από τις μορφές των καμπυλών παρατηρούμε ικανοποιητική ευστάθεια στο σχεδιασμένο πλοίο, γιατί σύμφωνα με τους υπολογισμούς του προγράμματος το πλοίο συμμορφώνεται με όλα τα κριτήρια ευστάθειας ISO που έχουν επιλεγεί και για τα οποία παρατίθεται αναλυτικοί πίνακες. Στους εν λόγω πίνακες τα κριτήρια που ικανοποιούνται επισημαίνονται με την λέξη **''pass''**. Σημειώνεται ότι για την κατάσταση **FULL LOAD ARRIVAL** δεν παρατίθεται πίνακας κριτηρίων ευσταθείας, αφού τα επιλεγμένα κριτήρια δεν αφορούν την προκειμένη κατάσταση. Ακόμη στον αντίστοιχο πίνακα της κατάστασης **MINIMUM OPERATING CONDITION** παρατίθενται τα αποτελέσματα μόνο για την συγκεκριμένη κατάσταση φορτώσεως.

Στα πλαίσια της ίδιας ανάλυσης, το πρόγραμμα παρέχει και την δυνατότητα καθορισμού των υδροστατικών παραμέτρων της γάστρας του σκάφους στο προαναφερθέν εύρος τιμών γωνιών κλίσης.

ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για FULL LOAD DEPARTURE

Heel to Starboard degrees	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	40	50
Displacement tonne	50.48	50.48	50.48	50.47	50.48	50.48	50.48	50.5	50.5	50.47	50.47	50.48	50.48	50.48	50.5
Draft at FP m	0.684	0.762	0.827	0.879	0.929	0.961	0.97	0.96	0.93	0.88	0.827	0.763	0.684	0.456	0.08
Draft at AP m	0.894	1.005	1.091	1.151	1.177	1.185	1.184	1.19	1.18	1.151	1.09	1.005	0.894	0.582	0.13
WL Length m	19.806	19.974	20.11	20.22	18.32	18.39	18.41	18.4	18.3	20.22	20.11	19.98	19.81	19.97	20.1
Immersed Depth m	1.27	1.178	1.061	1.105	1.152	1.173	1.177	1.17	1.15	1.104	1.061	1.178	1.27	1.386	1.44
WL Beam m	4.166	4.244	4.376	4.568	4.819	5.087	5.067	5.09	4.82	4.568	4.375	4.244	4.166	4.074	3.95
Wetted Area m^2	87.501	87.412	87.07	87.27	92.41	96.06	96.99	96.1	92.4	87.27	87.06	87.41	87.51	88.73	88.7
Waterpl. Area m^2	70.568	70.941	71.43	72.85	75.76	80.83	81.84	80.8	75.7	72.85	71.43	70.94	70.57	71.37	69.6
Prismatic Coeff.	0.771	0.752	0.736	0.724	0.726	0.727	0.729	0.73	0.73	0.725	0.736	0.752	0.771	0.812	0.85
Block Coeff.	0.499	0.528	0.568	0.523	0.475	0.442	0.443	0.44	0.48	0.523	0.569	0.528	0.499	0.468	0.47
LCB from Amidsh. (+ve fwd) m	-1.872	-1.875	-1.875	-1.88	-1.87	-1.87	-1.87	-1.87	-1.9	-1.88	-1.87	-1.87	-1.87	-1.87	-1.9
VCB from DWL m	-0.424	-0.418	-0.411	-0.4	-0.39	-0.375	-0.37	-0.38	-0.4	-0.4	-0.41	-0.42	-0.42	-0.43	-0.5
GZ m	-0.692	-0.631	-0.558	-0.47	-0.35	-0.194	0	0.2	0.35	0.466	0.558	0.632	0.692	0.795	0.86
LCF from Amidsh. (+ve fwd) m	-1.329	-1.288	-1.306	-1.23	-1.18	-1.236	-1.17	-1.24	-1.2	-1.23	-1.31	-1.29	-1.33	-1.31	-1.3
TCF to zero pt. m	-1.484	-1.278	-1.051	-0.79	-0.5	-0.187	0	0.19	0.5	0.79	1.051	1.278	1.484	1.832	2
Max deck inclination deg	30	25	20	15	10	5	0.7	5	10	15	20	25	30	40	50
Trim angle (+ve by stern) deg	0.6	0.7	0.8	0.8	0.8	0.7	0.7	0.7	0.8	0.8	0.8	0.7	0.6	0.4	0.1

1° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΄ΈΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για FULL LOAD DEPARTURE

Heel to Starboard degrees	60	70	80	90	105	120	135	150	165	180
Displacement tonne	50.48	50.48	50.47	50.47	50.47	50.47	50.47	50.5	50.5	50.48
Draft at FP m	-0.579	-1.985	-6.338	N/A	-8.56	-5.57	-4.66	-4.32	-4.1	-4.01
Draft at AP m	-0.604	-2.017	-6.147	N/A	-7.24	-4.404	-3.37	-2.83	-2.6	-2.51
WL Length m	20.051	19.956	20.1	20.2	20.19	20.06	19.55	18	16	16.08
Immersed Depth m	1.435	1.368	1.243	1.291	1.473	1.559	1.592	1.54	1.26	1.963
WL Beam m	3.709	3.732	4.05	4.69	4.689	5.045	5.339	5.11	5.19	5.387
Wetted Area m^2	88.764	90.797	93.03	95.65	96.81	97.84	97.18	95.8	95.4	91.73
Waterpl. Area m^2	62.201	57.126	54.86	55	53.83	56	56.81	56.8	64.3	75.59
Prismatic Coeff.	0.868	0.848	0.803	0.721	0.604	0.517	0.443	0.38	0.36	0.345
Block Coeff.	0.496	0.517	0.524	0.436	0.382	0.336	0.311	0.34	0.4	0.25
LCB from Amidsh. (+ve fwd) m	-1.858	-1.859	-1.863	-1.87	-1.9	-1.924	-1.96	-2	-2	-2.02
VCB from DWL m	-0.483	-0.506	-0.517	-0.51	-0.51	-0.532	-0.57	-0.58	-0.6	-0.58
GZ m	0.85	0.739	0.587	0.441	0.224	0.023	-0.11	-0.19	-0.2	0
LCF from Amidsh. (+ve fwd) m	-1.246	-1.114	-1.043	-0.94	-1.03	-1.264	-1.8	-2.47	-3.8	-4.16
TCF to zero pt. m	2.179	2.261	2.28	2.257	1.896	1.418	1.047	0.61	0.23	0
Max deck inclination deg	60	70	80	90	105	120	134.9	150	164	175.4
Trim angle (+ve by stern) deg	-0.1	-0.1	0.6	90	4	3.6	4	4.6	4.8	4.6

2° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΄΄ΕΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

ΔΙΑΓΡΑΜΜΑ ΚΑΜΠΥΛΗΣ ΕΥΣΤΑΘΕΙΑΣ για FULL LOAD DEPARTURE

Διάγραμμα Καμπύλης Ευσταθείας πλοίου ΈΡΜΗΣ΄

ΠΙΝΑΚΑΣ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ για FULL LOAD DEPARTURE

Code	Criteria	Value	Units	Actual	Status
ISO 12217-1:2002(E)	Copy of 6.1.3 Downflooding angle				Pass
	shall be greater than (>)	25	deg	94.2	Pass
ISO 12217-1:2002(E)	Copy of 6.2 Offset load test - equilibrium with heel arm				Pass
	Heeling arm = A cos^n(phi)				
	A =	0.127	m		
	n =	1			
	shall not be greater than (<=)	10	deg	3.3	Pass
ISO 12217-1:2002(E)	Copy of 6.3.2 Rolling in beam waves and wind				Pass
	Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)				
	constant: a (0.5 rho_air Cd) =	0.00061	tonne/m^3		
	wind velocity: v =	40.86	kts		
	area centroid height: h =	2.497	m		
	total area: A =	62.582	m^2		
	H = mean draught / 2	0.538	m		
	cosine power: n =	0			
	gust ratio	1			
	Area2 integrated to the lesser of				
	roll back angle from equilibrium (with heel arm)	20.4 (-18.7)	deg	-18.7	
	Area 1 upper integration range, to the lesser of:				
	spec. heel angle	50	deg	50	
	first downflooding angle	94.2	deg		
	angle of vanishing stability (with heel arm)	116.7	deg		
	Angle for GZ(max) in GZ ratio, the lesser of:				
	spec. heel angle	50	deg		
	angle of max. GZ	50	deg	50	

Πίνακας κριτηρίων ευστάθειας Μέρος 1°

Code	Criteria	Value	Units	Actual	Status
	spec. heel angle	50	deg		
	angle of max. GZ	50	deg	50	
	first downflooding angle	94.2	deg		
	Select required angle for angle of steady heel ratio:	DeckEdgeImmers	ionAngle		
	Criteria:				Pass
	Area1 / Area2 shall be greater than (>)	100	%	357.67	Pass
	Intermediate values				
	Heel arm amplitude		m	0.067	
	Equilibrium angle with heel arm		deg	1.7	
	Area1 (under GZ), from 1.7 to 50.0 deg.		m.deg	28.407	
	Area1 (under HA), from 1.7 to 50.0 deg.		m.deg	3.222	
	Area1, from 1.7 to 50.0 deg.		m.deg	25.185	
	Area2 (under GZ), from -18.7 to 1.7 deg.		m.deg	-5.68	
	Area2 (under HA), from -18.7 to 1.7 deg.		m.deg	1.361	
	Area2, from -18.7 to 1.7 deg.		m.deg	7.041	
ISO 12217-1:2002(E)	Copy of 6.3.3 Resistance to waves (Value of RM)				Pass
	heel angle at which required RM is constant	30	deg		
	required value of RM at this angle is	7	kN.m		
	limited by first downflooding angle	94.2	deg		
	shall not be less than (>=)	7	kN.m	342.71	Pass
	Intermediate values				
	angle at which max. GZ occurs		deg	50	
ISO 12217-1:2002(E)	Copy of 6.3.3 Resistance to waves (Value of GZ)				Pass
	heel angle at which required GZ is constant	30	deg		
	required value of GZ at this angle is	0.2	m		
	limited by first downflooding angle	94.2	deg		
	shall be greater than (>)	0.2	m	0.692	Pass
	Intermediate values				
	angle at which max. GZ occurs		deg	50	

Πίνακας κριτηρίων ευστάθειας Μέρος 2°

ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για FULL LOAD ARRIVAL

0.813	0.928	1.017	1.079	1.11	1.124	1.124	1.125	1.11	1.079	1.017
19.562	19.744	19.892	20.017	18.129	18.204	18.231	18.203	18.128	20.02	19.893
1.2	1.108	0.992	1.035	1.086	1.113	1.116	1.113	1.086	1.035	0.992
4.056	4.132	4.259	4.442	4.685	5.074	5.054	5.074	4.685	4.442	4.258
82.321	82.144	82.101	82.172	87.47	90.856	93.036	90.852	87.469	82.17	82.102
67.078	67.35	68.09	69.323	72.526	77.478	80.104	77.474	72.524	69.32	68.091
0.743	0.725	0.709	0.7	0.702	0.701	0.703	0.701	0.702	0.7	0.71
0.479	0.509	0.552	0.507	0.458	0.413	0.413	0.413	0.458	0.507	0.552
-2.009	-2.013	-2.014	-2.014	-2.012	-2.01	-2.01	-2.01	-2.013	-2.02	-2.013
-0.392	-0.386	-0.379	-0.371	-0.359	-0.348	-0.341	-0.348	-0.359	-0.37	-0.379
-0.647	-0.598	-0.536	-0.458	-0.357	-0.212	-0.012	0.187	0.332	0.434	0.513
-1.446	-1.402	-1.355	-1.249	-1.276	-1.366	-1.311	-1.366	-1.277	-1.25	-1.355
-1.484	-1.287	-1.067	-0.812	-0.548	-0.24	0	0.24	0.548	0.812	1.067
30	25	20	15	10	5.1	0.7	5.1	10	15	20
0.8	0.9	0.9	0.9	0.8	0.8	0.7	0.8	0.8	0.9	0.9
	0.813 19.562 1.2 4.056 82.321 67.078 0.743 0.479 -2.009 -0.392 -0.647 -1.446 -1.484 30 0.8	0.813 0.928 19.562 19.744 1.2 1.108 4.056 4.132 82.321 82.144 67.078 67.35 0.743 0.725 0.479 0.509 -2.009 -2.013 -0.392 -0.386 -0.647 -0.598 -1.446 -1.402 -1.484 -1.287 30 25 0.8 0.9	0.813 0.928 1.017 19.562 19.744 19.892 1.2 1.108 0.992 4.056 4.132 4.259 82.321 82.144 82.101 67.078 67.35 68.09 0.743 0.725 0.709 0.479 0.509 0.552 -2.009 -2.013 -2.014 -0.392 -0.386 -0.379 -0.647 -0.598 -0.536 -1.446 -1.402 -1.355 -1.484 -1.287 -1.067 30 25 20 0.8 0.9 0.9	0.8130.9281.0171.07919.56219.74419.89220.0171.21.1080.9921.0354.0564.1324.2594.44282.32182.14482.10182.17267.07867.3568.0969.3230.7430.7250.7090.70.4790.5090.5520.507-2.009-2.013-2.014-2.014-0.392-0.386-0.379-0.371-0.647-0.598-0.536-0.458-1.446-1.402-1.355-1.249-1.484-1.287-1.067-0.812302520150.80.90.90.9	0.813 0.928 1.017 1.079 1.11 19.562 19.744 19.892 20.017 18.129 1.2 1.108 0.992 1.035 1.086 4.056 4.132 4.259 4.442 4.685 82.321 82.144 82.101 82.172 87.47 67.078 67.35 68.09 69.323 72.526 0.743 0.725 0.709 0.7 0.702 0.479 0.509 0.552 0.507 0.458 -2.009 -2.013 -2.014 -2.014 -2.012 -0.392 -0.386 -0.379 -0.371 -0.359 -0.647 -0.598 -0.536 -0.458 -0.357 -1.446 -1.402 -1.355 -1.249 -1.276 -1.444 -1.287 -1.067 -0.812 -0.548 30 25 20 15 10 0.8 0.9 0.9 0.9 0.8	0.8130.9281.0171.0791.111.12419.56219.74419.89220.01718.12918.2041.21.1080.9921.0351.0861.1134.0564.1324.2594.4424.6855.07482.32182.14482.10182.17287.4790.85667.07867.3568.0969.32372.52677.4780.7430.7250.7090.70.7020.7010.4790.5090.5520.5070.4580.413-2.009-2.013-2.014-2.014-2.012-2.01-0.392-0.386-0.379-0.371-0.359-0.348-0.647-0.598-0.536-0.458-0.357-0.212-1.446-1.402-1.355-1.249-1.276-1.366-1.484-1.287-1.067-0.812-0.548-0.2430252015105.10.80.90.90.90.90.80.8	0.8130.9281.0171.0791.111.1241.12419.56219.74419.89220.01718.12918.20418.2311.21.1080.9921.0351.0861.1131.1164.0564.1324.2594.4424.6855.0745.05482.32182.14482.10182.17287.4790.85693.03667.07867.3568.0969.32372.52677.47880.1040.7430.7250.7090.70.7020.7010.7030.4790.5090.5520.5070.4580.4130.413-2.009-2.013-2.014-2.014-2.012-2.01-2.01-0.392-0.386-0.379-0.371-0.359-0.348-0.341-0.647-0.598-0.536-0.458-0.357-0.212-0.012-1.446-1.402-1.355-1.249-1.276-1.366-1.311-1.484-1.287-1.067-0.812-0.548-0.24030252015105.10.70.80.90.90.90.80.80.7	0.8130.9281.0171.0791.111.1241.1241.12519.56219.74419.89220.01718.12918.20418.23118.2031.21.1080.9921.0351.0861.1131.1161.1134.0564.1324.2594.4424.6855.0745.0545.07482.32182.14482.10182.17287.4790.85693.03690.85267.07867.3568.0969.32372.52677.47880.10477.4740.7430.7250.7090.70.7020.7010.7030.7010.4790.5090.5520.5070.4580.4130.4130.413-2.009-2.013-2.014-2.014-2.012-2.01-2.01-2.01-0.392-0.386-0.379-0.371-0.359-0.348-0.341-0.348-0.647-0.598-0.536-0.458-0.357-0.212-0.0120.187-1.446-1.402-1.355-1.249-1.276-1.366-1.311-1.366-1.484-1.287-1.067-0.812-0.548-0.2400.2430252015105.10.75.10.80.90.90.90.80.80.70.8	0.8130.9281.0171.0791.111.1241.1241.1251.1119.56219.74419.89220.01718.12918.20418.23118.20318.1281.21.1080.9921.0351.0861.1131.1161.1131.0864.0564.1324.2594.4424.6855.0745.0545.0744.68582.32182.14482.10182.17287.4790.85693.03690.85287.46967.07867.3568.0969.32372.52677.47880.10477.47472.5240.7430.7250.7090.70.7020.7010.7030.7010.7020.4790.5090.5520.5070.4580.4130.4130.4130.458-2.009-2.013-2.014-2.014-2.012-2.01-2.01-2.01-2.01-0.392-0.386-0.379-0.371-0.359-0.348-0.341-0.348-0.359-0.647-0.598-0.536-0.458-0.357-0.212-0.0120.1870.332-1.446-1.402-1.355-1.249-1.276-1.366-1.311-1.366-1.277-1.484-1.287-1.067-0.812-0.548-0.2400.240.54830252015105.10.75.1100.80.90.90.80.80.80.70.80.8 <th>0.8130.9281.0171.0791.111.1241.1241.1251.111.07919.56219.74419.89220.01718.12918.20418.23118.20318.12820.021.21.1080.9921.0351.0861.1131.1161.1131.0861.0354.0564.1324.2594.4424.6855.0745.0545.0744.6854.44282.32182.14482.10182.17287.4790.85693.03690.85287.46982.1767.07867.3568.0969.32372.52677.47880.10477.47472.52469.320.7430.7250.7090.70.7020.7010.7030.7010.7020.70.4790.5090.5520.5070.4580.4130.4130.4130.4580.507-2.009-2.013-2.014-2.014-2.012-2.01-2.01-2.013-2.02-0.392-0.386-0.379-0.371-0.359-0.348-0.341-0.348-0.359-0.37-0.647-0.598-0.536-0.458-0.357-0.212-0.0120.1870.3220.434-1.446-1.402-1.355-1.249-1.276-1.366-1.311-1.366-1.277-1.25-1.484-1.287-1.067-0.812-0.548-0.2400.240.5480.81230252015105.1<!--</th--></th>	0.8130.9281.0171.0791.111.1241.1241.1251.111.07919.56219.74419.89220.01718.12918.20418.23118.20318.12820.021.21.1080.9921.0351.0861.1131.1161.1131.0861.0354.0564.1324.2594.4424.6855.0745.0545.0744.6854.44282.32182.14482.10182.17287.4790.85693.03690.85287.46982.1767.07867.3568.0969.32372.52677.47880.10477.47472.52469.320.7430.7250.7090.70.7020.7010.7030.7010.7020.70.4790.5090.5520.5070.4580.4130.4130.4130.4580.507-2.009-2.013-2.014-2.014-2.012-2.01-2.01-2.013-2.02-0.392-0.386-0.379-0.371-0.359-0.348-0.341-0.348-0.359-0.37-0.647-0.598-0.536-0.458-0.357-0.212-0.0120.1870.3220.434-1.446-1.402-1.355-1.249-1.276-1.366-1.311-1.366-1.277-1.25-1.484-1.287-1.067-0.812-0.548-0.2400.240.5480.81230252015105.1 </th

1° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΄΄ΕΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

Heel to Starboard degrees	25	30	40	50	60	70	80	90	105	120	135	150	165	180
Displacement tonne	44.12	44.12	44.12	44.12	44.12	44.13	44.12	44.12	44.12	44.12	44.12	44.12	44.1	44.1
Draft at FP m	0.701	0.618	0.382	-0.006	-0.7	-2.165	-6.67	N/A	-8.742	-5.669	-4.75	-4.43	-4.29	-4.16
Draft at AP m	0.877	0.761	0.436	-0.054	-0.87	-2.452	-7.069	N/A	-7.903	-4.724	-3.572	-2.98	-2.64	-2.57
WL Length m	19.839	19.659	19.852	19.945	19.94	19.845	19.968	20.09	20.081	19.932	19.28	17.59	15.9	16
Immersed Depth m	1.062	1.155	1.274	1.339	1.345	1.271	1.124	1.111	1.289	1.387	1.441	1.411	1.19	1.86
WL Beam m	4.058	3.986	3.982	3.858	3.533	3.544	3.826	4.572	4.651	5.038	5.151	5.083	4.97	5.39
Wetted Area m^2	81.797	82.366	83.88	83.83	81.92	83.993	86.528	89.254	90.384	91.126	89.44	86.89	83.5	82.6
Waterpl. Area m^2	67.18	67.294	68.899	67.256	60.09	55.22	53.364	53.724	52.898	54.657	53.41	53.51	59	68.4
Prismatic Coeff.	0.762	0.78	0.825	0.849	0.85	0.836	0.8	0.729	0.597	0.503	0.426	0.364	0.34	0.32
Block Coeff.	0.535	0.501	0.455	0.447	0.486	0.513	0.537	0.454	0.385	0.33	0.311	0.322	0.39	0.23
LCB from Amidsh. (+ve fwd) m	-1.824	-1.821	-1.812	-1.805	-1.8	-1.797	-1.801	-1.81	-1.83	-1.854	-1.883	-1.91	-1.93	-1.92
VCB from DWL m	-0.38	-0.387	-0.398	-0.419	-0.44	-0.457	-0.464	-0.459	-0.453	-0.485	-0.528	-0.55	-0.56	-0.56
GZ m	0.353	0.359	0.363	0.362	0.275	0.109	-0.084	-0.251	-0.429	-0.545	-0.573	-0.51	-0.4	-0
LCF from Amidsh. (+ve fwd) m	-1.285	-1.287	-1.363	-1.352	-1.33	-1.184	-1.054	-0.972	-1.063	-1.321	-1.801	-2.49	-3.92	-4.46
TCF to zero pt. m	1.283	1.479	1.834	2.026	2.248	2.303	2.292	2.264	1.887	1.387	1.043	0.588	0.16	0
Max deck inclination deg	25	30	40	50	60	70	80	90	105	120	134.9	149.8	164	175

<u>ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για FULL LOAD ARRIVAL</u>

2° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΈΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

ΔΙΑΓΡΑΜΜΑ ΚΑΜΠΥΛΗΣ ΕΥΣΤΑΘΕΙΑΣ για FULL LOAD ARRIVAL

Heel to Starboard degrees	-30	-25	-20	-15	-10	-5	0	5	10	15	20
Displacement tonne	43.78	43.78	43.78	43.79	43.79	43.79	43.79	43.78	43.78	43.78	43.78
Draft at FP m	0.506	0.594	0.666	0.727	0.784	0.823	0.838	0.823	0.783	0.727	0.666
Draft at AP m	0.834	0.948	1.036	1.099	1.129	1.143	1.142	1.143	1.129	1.099	1.036
WL Length m	19.421	19.635	19.786	19.913	18.028	18.108	18.137	18.107	18.027	19.913	19.787
Immersed Depth m	1.218	1.126	1.01	1.054	1.105	1.131	1.134	1.131	1.105	1.054	1.01
WL Beam m	4.084	4.16	4.289	4.477	4.723	5.078	5.058	5.078	4.724	4.476	4.289
Wetted Area m ²	81.975	81.512	81.403	81.496	86.588	90	92.044	89.992	86.58	81.491	81.404
Waterpl. Area m^2	66.922	66.918	67.6	68.84	71.787	76.704	79.231	76.698	71.78	68.836	67.601
Prismatic Coeff.	0.713	0.696	0.681	0.67	0.672	0.67	0.672	0.67	0.671	0.67	0.681
Block Coeff.	0.46	0.489	0.528	0.485	0.439	0.399	0.399	0.399	0.439	0.485	0.529
LCB from Amidsh. (+ve fwd) m	-2.167	-2.17	-2.171	-2.172	-2.168	-2.166	-2.166	-2.167	-2.17	-2.171	-2.17
VCB from DWL m	-0.39	-0.384	-0.377	-0.369	-0.358	-0.347	-0.34	-0.347	-0.358	-0.369	-0.377
GZ m	-0.673	-0.624	-0.562	-0.482	-0.38	-0.234	-0.035	0.164	0.311	0.414	0.496
LCF from Amidsh. (+ve fwd) m	-1.485	-1.483	-1.45	-1.354	-1.361	-1.442	-1.39	-1.442	-1.362	-1.354	-1.45
TCF to zero pt. m	-1.487	-1.292	-1.073	-0.819	-0.551	-0.245	0	0.245	0.551	0.819	1.073
Max deck inclination deg	30	25	20	15	10.1	5.1	0.9	5.1	10.1	15	20
Trim angle (+ve by stern) deg	1	1.1	1.1	1.1	1.1	1	0.9	1	1.1	1.1	1.1

ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για ΜΙΝΙΜUM OPERATING CONDITION

1° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΄ΈΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

Heel to Starboard degrees	25	30	40	50	60	70	80	90	105	120	135	150	165	180
Displacement tonne	43.79	43.79	43.78	43.78	43.78	43.78	43.78	43.78	43.78	43.78	43.78	43.78	43.78	43.79
Draft at FP m	0.594	0.505	0.259	-0.157	-0.918	-2.509	-7.38	N/A	-9.267	-5.956	-4.97	-4.63	-4.464	-4.336
Draft at AP m	0.948	0.834	0.515	0.043	-0.727	-2.221	-6.577	N/A	-7.529	-4.53	-3.43	-2.87	-2.572	-2.508
WL Length m	19.635	19.419	19.68	19.781	19.765	19.662	19.728	19.847	19.821	19.644	18.8	17.11	15.81	15.9
Immersed Depth m	1.126	1.218	1.334	1.383	1.366	1.292	1.169	1.225	1.411	1.51	1.555	1.525	1.61	1.795
WL Beam m	4.16	4.085	4.04	3.912	3.479	3.487	3.775	4.512	4.643	4.987	5.091	5.07	5.192	5.395
Wetted Area m ²	81.516	81.979	83.179	83.007	80.847	82.921	85.389	88.327	89.636	90.006	88.4	85.14	82.649	80.63
Waterpl. Area m^2	66.92	66.923	68.057	66.27	58.992	54.228	52.367	52.928	52.154	53.444	52.71	52.38	60.193	65.9
Prismatic Coeff.	0.696	0.713	0.754	0.793	0.823	0.845	0.817	0.746	0.609	0.514	0.436	0.375	0.347	0.333
Block Coeff.	0.489	0.46	0.425	0.423	0.482	0.508	0.519	0.414	0.35	0.304	0.289	0.296	0.275	0.236
LCB from Amidsh. (+ve fwd) m	-2.17	-2.169	-2.161	-2.157	-2.156	-2.157	-2.162	-2.172	-2.196	-2.225	-2.27	-2.31	-2.335	-2.33
VCB from DWL m	-0.384	-0.39	-0.401	-0.422	-0.445	-0.462	-0.471	-0.467	-0.462	-0.492	-0.53	-0.54	-0.536	-0.534
GZ m	0.56	0.612	0.7	0.767	0.739	0.614	0.448	0.289	0.099	-0.067	-0.19	-0.24	-0.234	0.035
LCF from Amidsh. (+ve fwd) m	-1.484	-1.486	-1.558	-1.565	-1.502	-1.356	-1.23	-1.113	-1.202	-1.532	-2.06	-2.82	-3.999	-4.621
TCF to zero pt. m	1.292	1.487	1.837	2.036	2.244	2.296	2.283	2.25	1.887	1.401	1.042	0.622	0.216	0
Max deck inclination deg	25	30	40	50	60	70	80	90	105	120	134.9	149.7	164	174.4
Trim angle (+ve by stern) deg	1.1	1	0.8	0.6	0.6	0.9	2.5	90	5.3	4.4	4.7	5.4	5.8	5.6

ΠΙΝΑΚΑΣ ΥΔΡΟΣΤΑΤΙΚΩΝ ΣΤΟΙΧΕΙΩΝ για ΜΙΝΙΜUM OPERATING CONDITION

2° Μέρος Πίνακα υδροστατικών στοιχείων πλοίου ΄΄ΕΡΜΗΣ΄΄ για διάφορες γωνίες εγκάρσιας κλίσης

ΔΙΑΓΡΑΜΜΑ ΚΑΜΠΥΛΗΣ ΕΥΣΤΑΘΕΙΑΣ για MINIMUM OPERATING CONDITION

Code	Criteria	Value	Units	Actual	Status
ISO 12217-1:2002(E)	Copy of 6.3.2 Rolling in beam waves and wind				Pass
	Wind arm: a v^2 A (h - H) / (g disp.) cos^n(phi)				
	constant: a (0.5 rho_air Cd) =	0.00061	tonne/m^3	}	
	wind velocity: v =	40.86	kts		
	area centroid height: h =	2.497	m		
	total area: A =	62.582	m^2		
	H = mean draught / 2	0.495	m		
	cosine power: n =	0			
	gust ratio	1			
	Area2 integrated to the lesser of				
	roll back angle from equilibrium (with heel arm)	20.4 (-17.5)	deg	-17.5	
	Area 1 upper integration range, to the lesser of:				
	spec. heel angle	50	deg	50	
	first downflooding angle	98.6	deg		
	angle of vanishing stability (with heel arm)	106.8	deg		
	Angle for GZ(max) in GZ ratio, the lesser of:				
	spec. heel angle	50	deg		
	angle of max. GZ	50	deg	50	
	first downflooding angle	98.6	deg		
	Select required angle for angle of steady heel ratio:	DeckEdgeImmersio	onAngle		
	Criteria:				Pass
	Area1 / Area2 shall be greater than (>)	100	%	296.133	Pass
	Intermediate values				
	Heel arm amplitude		m	0.079	
	Equilibrium angle with heel arm		deg	2.9	

ΠΙΝΑΚΑΣ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ για MINIMUM OPERATING CONDITION

_Πίνακας κριτηρίων ευστάθειας Μέρος 1
ΠΙΝΑΚΑΣ ΚΡΙΤΗΡΙΩΝ ΕΥΣΤΑΘΕΙΑΣ για MINIMUM OPERATING CONDITION

Code	Criteria	Value	Units	Actual	Status
	Area1 (under GZ), from 3.8 to 50.0 deg.		m.deg	25.004	
	Area1 (under HA), from 3.8 to 50.0 deg.		m.deg	3.708	
	Area1, from 3.8 to 50.0 deg.		m.deg	21.296	
	Area2 (under GZ), from -16.6 to 3.8 deg.		m.deg	-5.587	
	Area2 (under HA), from -16.6 to 3.8 deg.		m.deg	1.604	
	Area2, from -16.6 to 3.8 deg.		m.deg	7.191	
ISO 12217-1:2002(E)	Copy of 6.3.3 Resistance to waves (Value of RM)				Pass
	heel angle at which required RM is constant	30	deg		
	required value of RM at this angle is	7	kN.m		
	limited by first downflooding angle	98.6	deg		
	shall not be less than (>=)	7	kN.m	262.785	Pass
	Intermediate values				
	angle at which max. GZ occurs		deg	50	
ISO 12217-1:2002(E)	Copy of 6.3.3 Resistance to waves (Value of GZ)				Pass
	heel angle at which required GZ is constant	30	deg		
	required value of GZ at this angle is	0.2	m		
	limited by first downflooding angle	98.6	deg		
	shall be greater than (>)	0.2	m	0.612	Pass
	Intermediate values				
	angle at which max. GZ occurs		deg	50	

Πίνακας κριτηρίων ευστάθειας Μέρος 2

4.4.4 Μελέτη Ισορροπίας πλοίου

Η μελέτη ισορροπίας (Equilibrium Analysis) του πλοίου καθορίζει το βύθισμα, την κλίση και την διαγωγή του πλοίου ως αποτέλεσμα της κατανομής των φορτίων στις διάφορες καταστάσεις φορτώσεως αυτού. Ως αποτελέσματα της ανάλυσης παρατίθεται πίνακας των υδροστατικών στοιχείων για την κάθε κατάσταση.

Παρατηρείται σε όλες τις καταστάσεις φορτώσεως μια σχετικά αυξημένη αλλά όχι και απαγορευτική τιμή έμπρυμης διαγωγής του σκάφους, δεδομένου ότι στα μικρά σκάφη ισχύει προσεγγιστικά ο εμπειρικός κανόνας: **Trim ≤ 1% L_{wL}(0,186 m** για αυτό το πλ άο). Εφόσον προκύψει αργότερα, κατά το πειραματικό στάδιο της μελέτης του πλοίου, πρόβλημα μεγάλης έμπρυμης διαγωγής κατά την ολίσθηση του σκάφους, αυτό θα μπορεί να επιλυθεί με τοποθέτηση στηλογνωμόνων (**trim tabs**) ή διατάξεων μείωσης διαγωγής (**interceptors**) στο πρυμναίο τμήμα της γάστρας (βλέπε εικόνα 22). Ουσιαστικά πρόκειται για πτερύγια, στην επιφάνεια των οποίων ασκούνται ανωστικές δυνάμεις κατά την ολίσθηση του σκάφους. Έτσι προκαλείται ανύψωση της πρύμνης του σκάφους και άρα μείωση της πρυμναίας διαγωγής. Η ρύθμιση της επιθυμητής κάθε φοράς επιπλέον υδροδυναμικής άνωσης επιτυγχάνεται στην πρώτη περίπτωση με υδραυλικό έλεγχο της γωνίας κλίσης των πτερυγίων και στην δεύτερη περίπτωση με αυξομείωση της αποκαλυπτούμενης από την γάστρα επιφάνειας διαμέσου ηλεκτρονικού συστήματος εντολών.

Γενικά το σύστημα των interceptors πλεονεκτεί έναντι των trim tabs γιατί:

α) είναι μικρότερων διαστάσεων και πολύ ελαφρύ, οπότε δεν θα μεταβάλλει αισθητά το υπολογισθέν εκτόπισμα του εκπονημένου σκάφους

β) δεν προεξέχει μόνιμα από την γάστρα αλλά και έτσι είναι λιγότερο ευάλωτο σε ζημία

γ) Η απουσία του υδραυλικού συτήματος ελέγχου κινήσεων καθιστά πιο εύκολη την συντήρησή του

<u>trim tabs</u>

interceptors

Εικόνα 22: διατάξεις μείωσης διαγωγής με προκύπτουσες κατανομές πιέσεων

Εικόνα 23: Ηλεκτρονικό σύστημα ελέγχου interceptors

HYDROSTATICS AT EQUILIBRIUM ANGLE-FULL LOAD DEPARTURE

Draft Amidsh. m	1.077
Displacement tonne	50.47
Heel to Starboard degrees	0
Draft at FP m	0.97
Draft at AP m	1.184
Draft at LCF m	1.09
Trim (+ve by stern) m	0.214
WL Length m	18.408
WL Beam m	5.067
Wetted Area m ²	96.991
Waterpl. Area m^2	81.843
Prismatic Coeff.	0.729
Block Coeff.	0.443
Midship Area Coeff.	0.607
Waterpl. Area Coeff.	0.866
LCB from Amidsh. (+ve fwd) m	-1.871
LCF from Amidsh. (+ve fwd) m	-1.171
KB m	0.731
KG fluid m	1.724
BMt m	3.247
BML m	38.221
GMt corrected m	2.254
GML corrected m	37.229
KMt m	3.978
KML m	38.953
Immersion (TPc) tonne/cm	0.839
MTc tonne.m	1.007
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.986
Max deck inclination deg	0.7
Trim angle (+ve by stern) deg	0.7

HYDROSTATICS AT EQUILIBRIUM ANGLE-FULL LOAD ARRIVAL

Draft Amidsh. m	1.004
Displacement tonne	44.58
Heel to Starboard degrees	0.3
Draft at FP m	0.885
Draft at AP m	1.123
Draft at LCF m	1.021
Trim (+ve by stern) m	0.238
WL Length m	18.232
WL Beam m	5.054
Wetted Area m ²	93.037
Waterpl. Area m^2	80.11
Prismatic Coeff.	0.703
Block Coeff.	0.413
Midship Area Coeff.	0.588
Waterpl. Area Coeff.	0.849
LCB from Amidsh. (+ve fwd) m	-2.008
LCF from Amidsh. (+ve fwd) m	-1.311
KB m	0.689
KG fluid m	1.858
BMt m	3.555
BML m	41.12
GMt corrected m	2.387
GML corrected m	39.951
KMt m	4.244
KML m	41.809
Immersion (TPc) tonne/cm	0.821
MTc tonne.m	0.954
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.857
Max deck inclination deg	0.8
Trim angle (+ve by stern) deg	0.7

HYDROSTATICS AT EQUILIBRIUM ANGLE-MINIMUM OPERATING CONDITION

Draft Amidsh. m	0.99
Displacement tonne	43.78
Heel to Starboard degrees	0.8
Draft at FP m	0.838
Draft at AP m	1.141
Draft at LCF m	1.012
Trim (+ve by stern) m	0.303
WL Length m	18.138
WL Beam m	5.058
Wetted Area m ²	92.117
Waterpl. Area m^2	79.306
Prismatic Coeff.	0.672
Block Coeff.	0.399
Midship Area Coeff.	0.594
Waterpl. Area Coeff.	0.84
LCB from Amidsh. (+ve fwd) m	-2.164
LCF from Amidsh. (+ve fwd) m	-1.386
KB m	0.685
KG fluid m	1.855
BMt m	3.567
BML m	40.832
GMt corrected m	2.398
GML corrected m	39.662
KMt m	4.252
KML m	41.517
Immersion (TPc) tonne/cm	0.813
MTc tonne.m	0.931
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.832
Max deck inclination deg	1.3
Trim angle (+ve by stern) deg	0.9

4.4.5 Υπολογισμός Κατακλύσιμων Μηκών

Η εξέταση των Κατακλύσιμων Μηκών υπολογίζει την διαμήκη κατανομή του θεωρητικού μέγιστου μήκους των διαμερισμάτων που δύναται να κατακλυστούν, χωρίς να προκαλείται βύθιση του πλοίου σε κάποια ίσαλο που θα εφάπτεται στην Γραμμή Ορίου Βυθίσεως (Margin Line).

Γίνεται ο ανωτέρω υπολογισμός για κάθε κατάσταση φορτώσεως του πλοίου. Στο μενού του προγράμματος τοποθετείται η τιμή της κατακόρυφης θέσης του κέντρου βάρους του πλοίου για κάθε κατάσταση, το αντίστοιχο εκτόπισμα και καθορίζονται οι τρεις τιμές διαχωρητότητας μ : 0,70, 0,85 και 0,95 οι οποίες εφαρμόζονται ξεχωριστά η καθεμία καθόλο το μήκος του σκάφους, κατά την εκτέλεση της ανάλυσης από το πρόγραμμα. Ο καθορισμός ύψους εξάλων ρυθμίζεται βάσει της Γραμμής Ορίου Βυθίσεως. Οι μορφές των διαγραμμάτων που προκύπτουν από το λογισμικό παρατίθενται παρακάτω. Επειδή οι κλίμακες των αξόνων εν λόγω διαγραμμάτων δεν είναι ίδιες, παράγονται στη συνέχεια νέα διαγράμματα με άξονες που φέρουν την ίδια κλίμακα με χρήση προγράμματος ΑUTOCAD, βάσει των ζευγών τιμών των αρχικών διαγραμμάτων, τα οποία παρατίθενται σε πίνακες κάτω από τα διαγράμματα του λογισμικού. Έτσι προκύπτουν τα κανονικά σχέδια κατακλύσιμων μηκών για όλες τις καταστάσεις φορτώσεως. Σε αυτά φέρονται οι ευθείες που αντιστοιχούν στα άκρα των εγκάρσιων στεγανών φρακτών και σχηματίζουν γωνία με την οριζόντιο 63° 26, προκειμένου να διαπιστωθεί στη συνέχεια σε ποια στεγανά διαμερίσματα ή σε ποιους συνδυασμούς στεγανών διαμερισμάτων είναι δυνατή η κατάκλυση, χωρίς να επιφέρεται βύθιση του πλοίου σε σημείο που να πλησιάζει το κατάστρωμα στεγανής υποδιαιρέσεως (κύριο κατάστρωμα).

Από την μορφή των εκπονούμενων σχεδίων συμπεραίνονται τα ακόλουθα για όλες τις καταστάσεις φορτώσεως, εφαρμόζοντας τον κανόνα ισοσκελούς τριγώνου:

Το πλοίο δεν βυθίζεται με κατάκλυση ενός οποιουδήποτε διαμερίσματος, πλην του μηχανοστασίου. Παρατηρείται ότι αν τοποθετηθεί μια ακόμη εγκάρσια υδατοστεγανή φρακτή στο πρυμναίο τμήμα του μηχανοστασίου, επί του νομέως που βρίσκεται απαρχής της ισάλου γραμμής, πιθανότατα το πλοίο δεν θα βυθίζεται ούτε με κατάκλυση του μηχανοστασίου, (εκτιμάται ότι εν λόγω φρακτή δεν θα αυξήσει σημαντικά το βάρος της μεταλλικής κατασκευής λόγω της μισής σχεδόν επιφάνειας που θα έχει σε σχέση με τις άλλες). Επίσης το πλοίο δεν

βυθίζεται με κατάκλυση των δύο πρωραίων διαμερισμάτων. Αντίθετα βυθίζεται με κατάκλυση των δύο μεσαίων διαμερισμάτων.

ΔΙΑΓΡΑΜΜΑ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (FULL LOAD DEPARTURE) ΛΟΓΙΣΜΙΚΟΥ

ΠΙΝΑΚΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (FULL LOAD DEPARTURE)

Όνομα	Διαμήκης Θέση	Κατακλ. Μήκος	Κατακλ. Μήκος	Κατακλ. Μήκος
	m	m	m	m
Εκτόπισμα		50.51	50.51	50.51
Διαχωρητότητα %		95	85	70
st 1	0	-	-	-
st 2	1	5.99	-	-
st 3	2	6.19	7.27	-
st 4	3	6.39	7.77	-
st 5	4	7.41	8.38	11.73
st 6	5	8.72	9.72	13.64
st 7	6	10.32	11.45	15.72
st 8	7	11.94	13.18	17.8
st 9	8	13.32	14.91	19.88
st 10	9	13.45	15.8	21.96
st 11	10	11.57	13.82	-
st 12	11	10.05	11.85	-
st 13	12	8.62	9.96	-
st 14	13	7.61	8.82	-
st 15	14	7.02	8.3	-
st 16	15	7	8.45	-
st 17	16	7.94	9.6	-
st 18	17	-	-	-
st 19	18	-	-	-
st 20	19	-	-	-
st 21	20	-	-	-
st 22	21	-	-	-
st 0/1	-1	-	-	-
st 0	-1.7	-	-	-

ΣΧΕΔΙΟ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (FULL LOAD DEPARTURE) ΠΛΟΙΟΥ ΈΡΜΗΣ΄

ΔΙΑΓΡΑΜΜΑ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (FULL LOAD ARRIVAL) ΛΟΓΙΣΜΙΚΟΥ

ΠΙΝΑΚΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (FULL LOAD ARRIVAL)

Όνομα	Διαμήκης Θέση	Διαμήκης Θέση	Διαμήκης Θέση	Διαμήκης Θέση
	m	m	m	m
Εκτόπισμα		44.58	44.58	44.58
Διαχωρητότητα%		95	85	70
st 1	0	-	-	-
st 2	1	-	-	-
st 3	2	6.52	7.64	-
st 4	3	6.87	8.3	-
st 5	4	7.68	9.13	-
st 6	5	9.15	10.08	-
st 7	6	10.64	11.66	-
st 8	7	12.29	13.34	-
st 9	8	13.94	15.02	-
st 10	9	14.18	16.7	-
st 11	10	12.41	14.79	-
st 12	11	10.64	12.86	-
st 13	12	9.1	10.93	-
st 14	13	8.12	9.46	-
st 15	14	7.46	9.07	-
st 16	15	7.49	9.26	-
st 17	16	8.36	-	-
st 18	17	-	-	-
st 19	18	-	-	-
st 20	19	-	-	-
st 21	20	-	-	-
st 22	21	-	-	-
st 0/1	-1	-	-	-
st 0	-1.7	-	-	-

ΘΕΜΑ ΜΕΛΕΤΗΣ ΤΑΧΥΠΛΟΟΥ ΣΚΑΦΟΥΣ ΕΙΔΙΚΩΝ ΑΠΟΣΤΟΛΩΝ-ΧΡΥΣΑΪΔΟΣ ΧΡΗΣΤΟΣ

ΠΙΝΑΚΑΣ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (MINIMUM OPERATING CONDITION)

Όνομα	Διαμήκης Θέση	Διαμήκης Θέση	Διαμήκης Θέση	Διαμήκης Θέση
	m	m	m	m
Εκτόπισμα		43.79	43.79	43.79
Διαχωρητότητα %		95	85	70
st 1	0	-	-	-
st 2	1	-	-	-
st 3	2	6.57	7.7	-
st 4	3	6.94	8.37	-
st 5	4	7.73	9.24	-
st 6	5	9.22	10.2	-
st 7	6	10.71	11.72	-
st 8	7	12.33	13.38	-
st 9	8	13.96	15.05	-
st 10	9	14.27	16.71	-
st 11	10	12.47	14.89	-
st 12	11	10.67	12.92	-
st 13	12	9.17	10.95	-
st 14	13	8.2	9.55	-
st 15	14	7.53	9	-
st 16	15	7.56	9.33	-
st 17	16	8.42	-	-
st 18	17	-	-	-
st 19	18	-	-	-
st 20	19	-	-	-
st 21	20	-	-	-
st 22	21	-	-	-
st 0/1	-1	-	-	-
st 0	-1.7	-	-	-

ΣΧΕΔΙΟ ΚΑΤΑΚΛΥΣΙΜΩΝ ΜΗΚΩΝ (MINIMUM OPERATION CONDITION) ΠΛΟΙΟΥ "ΕΡΜΗΣ"

4.5 Μελέτη Ευστάθειας κατόπιν Βλάβης

Ακολουθεί μελέτη της ευστάθειας του πλοίου όταν αυτό βρίσκεται σε κατάσταση βλάβης, δηλαδή όταν ένα ή περισσότερα διαδοχικά του διαμερίσματα βρίσκονται σε ελεύθερη επικοινωνία με την θάλασσα κατόπιν διάνοιξης σχισμής στην γάστρα του. Οι διάφορες καταστάσεις βλάβεις έχουν καθοριστεί στο πρόγραμμα, κατά την διαδικασία της περαιτέρω διαμόρφωσης του σχεδιασμένου μοντέλου. Γίνονται οι σχετικές αναλύσεις με εξέταση συμμόρφωσης στα προαναφερθέντα κριτήρια ξεχωριστά για κάθε μία κατάσταση βλάβης, και ξεχωριστά για τις τεις καταστάσεις φορτώσεως του πλοίου, προκειμένου να προκύψουν οι επικίνδυνες για την ασφάλεια του πλοίου καταστάσεις. Για κάθε ανάλυση παρατίθενται διάγραμμα μοχλοβραχίονα επαναφοράς, πίνακας αποτελεσμάτων κριτηρίων ευστάθειας, σε συνοπτική πλέον μορφή, και πίνακας υδροστατικών χαρακτηριστικών κατά την ισορροπία του πλοίου.

FULL LOAD DEPARTURE CONDITION

Damage Case 1															
Draft at FP m		1.169													
Draft at AP m		50.48													
Draft at LCF m		0													
Trim (+ve by stern) m		1.268													
WL Length m		1.069													
WL Beam m		1.147													
Wetted Area m^2		-0.199													
Waterpl. Area m^2		19.053													
Prismatic Coeff.		5.067													
Block Coeff.		102.073		'T											
Midship Area Coeff.		73.331						m et 60 deg							
Waterpl. Area Coeff.		0.722	0.7	5					<u> </u>						
LCB from Amidsh. (+ve fwo	l) m	0.431													
LCF from Amidsh. (+ve fwo	l) m	0.608					/								
KB m		0.776								Accom	odation Area	s Vent 88 = 94.11 de	9.		
KG fluid m		-1.848													
BMt m		-2.065	02: E	5		7					~~~				
BML m		0.758	29	Copy of 6.2. Offset Copy of 6.3.2 Rolin	t bad tes) - e ig in beard w										
GMt corrected m		1.724		,											7
GML corrected m		3.134			- / -										
KMt m		26.405	-0.2	,										<u> </u>	
KML m		2.168		/	/										
Immersion (TPc) tonne/cm		25.44													
MTc tonne.m		3.892	.02												
RM at 1deg = GMt.Disp.sin	(1) ton	27.163													
Max deck inclination deg		0.752	-0.75	51	ġ			40	8 Heel to Starboard	0 I deg.	-	120		160	-
Trim angle (+ve by stern) d	eg	0.688	62= 0	.001 m Heelto) Starboard =	0.000 deg.	Area (from	zeroheel) = 0.01451 m.	ı. deg.						1
HSC 2000 Annex 8	2.1.1	Range of p	osit	ive stab	oility										Pass
	shall	be greater	thar	า (>)							15	deg		94.1	Pass
HSC 2000 Annex 8	2.1.2	Area unde	r GZ	curve											Pass
	shall	be greater	thar	า (>)						0.8	359	m.deg		10.68	Pass
		-													
HSC 2000 Annex 8	2.2 V	alue of ma	x. GZ	z in inte	erme	diate	e stage	es							Pass
	shall	he greater	thar) (>)						0	05	m		0.836	Pass
		and Bi curci	ui	· (* /										2.000	
HSC 2000 Annov 9	2 2 0	ango of no	-i+iv-	a ctabili	i+v i~	int-	rmad	into star	00						Dace
	Z.Z Ki	ange of pos		= S(d)	ity If	inite	meu	ale Slag	<u>es</u>		_	dog		04.1	rdss Dace
	snall		ınal								/	ueg		94.1	Pass
HSC 2000 Annex 8	2.1.3	value of m	ax.	6Z							_				Pass
	Ishall	be greater	thar	ו (>)							0.1	m		0.836	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Draft at FP m	4.679								
Draft at AP m	0.427								
Draft at LCF m	1.773								
Trim (+ve by stern) m	-4.252								
WL Length m	14.399								
WL Beam m	5.371								
Wetted Area m ²	126.476								
Waterpl. Area m^2	43.73								
Prismatic Coeff.	0.18								
Block Coeff.	0.159								
Midship Area Coeff.	10.463								
Waterpl. Area Coeff.	0.436								
LCB from Amidsh. (+ve fwd) m	-1.701								
LCF from Amidsh. (+ve fwd) m	-3.423					52 = 077 m at 60 day			
KB m	1.026						Englie Room Ven	68 = 99.69 deg.	
KG fluid m	1.724	0.6			/	·	 		+
BMt m	1 717								
DMI we	1.7 17							· · · · · · · · · · · · · · · · · · ·	
BIVIL M	15.857	0.4					 		+
GMt corrected m	15.857 1.002	0,4			/		 		
GMt corrected m GML corrected m	15.857 1.002 15.141	0.4 E N 02					 		
GMt corrected m GML corrected m KMt m	15.857 1.002 15.141 2.743	0.4 E N 02 Capro10	<u>20ffset bad ksz-eg</u>	Bran will beetam			 		
GML m GMt corrected m GML corrected m KMt m KML m	15.857 1.002 15.141 2.743 16.883	D.4 E N 02 Coy of 0 Dy of 0.3	20 fixet laad his c- ega 2 Roley baad his c- ega 2 Roley is beaut y dar	Brime it befam sande tel Und Heing					
GML m GMt corrected m GML corrected m KMt m KML m Immersion (TPc) tonne/cm	15.857 1.002 15.141 2.743 16.883 0.448	E N 02- Coy of 5	20 floet bad his c-equ 2 Boles is been in the	trim v B kulam sandu kil Mid Helig					
GMt corrected m GML corrected m KMt m KML m Immersion (TPc) tonne/cm MTc tonne.m	15.857 1.002 15.141 2.743 16.883 0.448 0.41	E D2 Copy of 6 Copy of 6	20fbet tod tsj- eg 2 Bilig i bern v de	Enter of LiveTam sandwid Michield					
GML m GMt corrected m GML corrected m KMt m KML m Immersion (TPc) tonne/cm MTc tonne.m RM at 1deg = GMt.Disp.sin(1) ton	15.857 1.002 15.141 2.743 16.883 0.448 0.41 0.882		20 fluet last 1 - eng 2 filtes 1 - eng 2 filtes 1 - eng	There is became					
GML m GMt corrected m GML corrected m KMt m KML m Immersion (TPc) tonne/cm MTc tonne.m RM at 1deg = GMt.Disp.sin(1) ton Max deck inclination deg	15.857 1.002 15.141 2.743 16.883 0.448 0.41 0.882 12.9		20 for the tay seg 26 for a second	Line e la bestan cande-ad Med Hecky					

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	lingPoints		
	shall be greater than (>)	1	m	0.772	Fail
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	99.7	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.772	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	5.709	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.873	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	99.7	Pass

Hazardous condition X

Draft Amidsh. m	1.436
Displacement tonne	50.47
Heel to Starboard degrees	0
Draft at FP m	1.667
Draft at AP m	1.206
Draft at LCF m	1.395
Trim (+ve by stern) m	-0.461
WL Length m	19.828
WL Beam m	5.129
Wetted Area m ²	115.337
Waterpl. Area m^2	53.652
Prismatic Coeff.	0.508
Block Coeff.	0.334
Midship Area Coeff.	0.68
Waterpl. Area Coeff.	0.561
LCB from Amidsh. (+ve fwd) m	-1.838
LCF from Amidsh. (+ve fwd) m	-1.688
KB m	0.88
KG fluid m	1.724
BMt m	2.039
BML m	41.969
GMt corrected m	1.194
GML corrected m	41.125
KMt m	2.918
KML m	42.849
Immersion (TPc) tonne/cm	0.55
MTc tonne.m	1.112
RM at 1deg = GMt.Disp.sin(1) ton	1.052
Max deck inclination deg	1.4
Trim angle (+ve by stern) deg	-1.4

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	1.728	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	84.6	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.705	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	7.109	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.705	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	84.6	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Draft Amidsh. m	1.28
Displacement tonne	44.76
Heel to Starboard degrees	0
Draft at FP m	1.336
Draft at AP m	1.223
Draft at LCF m	1.266
Trim (+ve by stern) m	-0.113
WL Length m	19.183
WL Beam m	5.089
Wetted Area m^2	107.583
Waterpl. Area m^2	50.936
Prismatic Coeff.	0.562
Block Coeff.	0.354
Midship Area Coeff.	0.636
Waterpl. Area Coeff.	0.536
LCB from Amidsh. (+ve fwd) m	-2.011
LCF from Amidsh. (+ve fwd) m	-2.219
KB m	0.797
KG fluid m	1.87
BMt m	2.206
BML m	40.442
GMt corrected m	1.132
GML corrected m	39.369
KMt m	3.002
KML m	41.239
Immersion (TPc) tonne/cm	0.522
MTc tonne.m	0.944
RM at 1deg = GMt.Disp.sin(1) ton	0.884
Max deck inclination deg	0.3
Trim angle (+ve by stern) deg	-0.3

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	lingPoints		
	shall be greater than (>)		m	1.866	Pass
ISC 2000 Annex 8 2.1.1 Range of positive stability					Pass
shall be greater than (>)		15	deg	89.9	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
shall be greater than (>)		0.1	m	0.58	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	6.337	Pass
HSC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages					Pass
shall be greater than (>)		0.05	m	0.58	Pass
HSC 2000 Annex 8 2.2 Range of positive stability in intermediate stages					Pass
	shall not be less than (>=)	7	deg	89.9	Pass

Condition complies with the regulations $\boldsymbol{\mathcal{V}}$

Draft Amidsh. m	1.456
Displacement tonne	44.75
Heel to Starboard degrees	0
Draft at FP m	1.692
Draft at AP m	1.221
Draft at LCF m	1.414
Trim (+ve by stern) m	-0.471
WL Length m	19.878
WL Beam m	5.134
Wetted Area m ²	116.3
Waterpl. Area m^2	53.843
Prismatic Coeff.	0.441
Block Coeff.	0.291
Midship Area Coeff.	0.684
Waterpl. Area Coeff.	0.562
LCB from Amidsh. (+ve fwd) m	-1.992
LCF from Amidsh. (+ve fwd) m	-1.658
KB m	0.937
KG fluid m	1.87
BMt m	2.308
BML m	47.79
GMt corrected m	1.375
GML corrected m	46.856
KMt m	3.245
KML m	48.727
Immersion (TPc) tonne/cm	0.552
MTc tonne.m	1.124
RM at 1deg = GMt.Disp.sin(1) ton	1.074
Max deck inclination deg	1.4
Trim angle (+ve by stern) deg	-1.4

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)		m	1.708	Pass
ISC 2000 Annex 8 2.1.1 Range of positive stability					Pass
shall be greater than (>)		15	deg	89.6	Pass
HSC 2000 Annex 8 Mono 2.1.3 Value of max. GZ					Pass
shall be greater than (>)		0.1	m	0.675	Pass
HSC 2000 Annex 8 2.1.2 Area under GZ curve					Pass
	shall be greater than (>)	0.859	m.deg	8.043	Pass
HSC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages					Pass
shall be greater than (>)		0.05	m	0.675	Pass
HSC 2000 Annex 8	HSC 2000 Annex 8 2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	89.6	Pass

Condition complies with the regulations $\boldsymbol{\vee}$

Draft Amidsh. m	5.307
Displacement tonne	44.75
Heel to Starboard degrees	0
Draft at FP m	-3.086
Draft at AP m	13.699
Draft at LCF m	3.203
Trim (+ve by stern) m	16.785
WL Length m	7.746
WL Beam m	5.338
Wetted Area m^2	84.583
Waterpl. Area m^2	21.75
Prismatic Coeff.	0.108
Block Coeff.	0.14
Midship Area Coeff.	3.412
Waterpl. Area Coeff.	0.218
LCB from Amidsh. (+ve fwd) m	-1.617
LCF from Amidsh. (+ve fwd) m	2.338
KB m	2.314
KG fluid m	1.87
BMt m	0.764
BML m	1.687
GMt corrected m	1.362
GML corrected m	2.284
KMt m	3.078
KML m	4.001
Immersion (TPc) tonne/cm	0.223
MTc tonne.m	0.055
RM at 1deg = GMt.Disp.sin(1) ton	1.063
Max deck inclination deg	42
Trim angle (+ve by stern) deg	42

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft				Fail	
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	-6.707	Fail

Draft Amidsh. m	1.239
Displacement tonne	44.76
Heel to Starboard degrees	0
Draft at FP m	1.383
Draft at AP m	1.095
Draft at LCF m	1.223
Trim (+ve by stern) m	-0.288
WL Length m	19.28
WL Beam m	5.084
Wetted Area m^2	105.629
Waterpl. Area m^2	83.517
Prismatic Coeff.	0.575
Block Coeff.	0.354
Midship Area Coeff.	0.631
Waterpl. Area Coeff.	0.88
LCB from Amidsh. (+ve fwd) m	-2.002
LCF from Amidsh. (+ve fwd) m	-1.056
KB m	0.891
KG fluid m	1.87
BMt m	3.89
BML m	44.245
GMt corrected m	2.911
GML corrected m	43.266
KMt m	4.781
KML m	45.136
Immersion (TPc) tonne/cm	0.856
MTc tonne.m	1.038
RM at 1deg = GMt.Disp.sin(1) ton	2.274
Max deck inclination deg	0.9
Trim angle (+ve by stern) deg	-0.9

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	1.916	Pass
HSC 2000 Annex 8 2.1.1 Range of positive stability					Pass
shall be greater than (>)		15	deg	98.9	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
shall be greater than (>)		0.1	m	0.91	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
shall be greater than (>)		0.859	m.deg	14.243	Pass
HSC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages					Pass
	shall be greater than (>)	0.05	m	0.91	Pass
HSC 2000 Annex 8	HSC 2000 Annex 8 2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	98.9	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Draft Amidsh. m5.273Displacement tonne44.76Heel to Starboard degrees0Draft at FP m-0.868Draft at AP m11.415Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.108Block Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m3.167KB m2.652KG fluid m1.87BMt m0.91BML m3.562KMt m3.562KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4		
Displacement tonne44.76Heel to Starboard degrees0Draft at FP m-0.868Draft at AP m11.415Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.108Block Coeff.0.1041Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m3.562KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Draft Amidsh. m	5.273
Heel to Starboard degrees0Draft at FP m-0.868Draft at AP m11.415Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m3.562KMt m5.611Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Displacement tonne	44.76
Draft at FP m-0.868Draft at AP m11.415Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m3.167KB m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Heel to Starboard degrees	0
Draft at AP m11.415Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.877BMt m0.911BML m2.957GMt corrected m3.894KMt m3.562KML m5.611Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Draft at FP m	-0.868
Draft at LCF m3.189Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m3.562KMt m5.61Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Draft at AP m	11.415
Trim (+ve by stern) m12.283WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.87BML m2.957GMt corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Draft at LCF m	3.189
WL Length m8.863WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Trim (+ve by stern) m	12.283
WL Beam m5.313Wetted Area m^2105.932Waterpl. Area m^226.155Prismatic Coeff.0.108Block Coeff.0.141Midship Area Coeff.3.403Waterpl. Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m3.167KB m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m5.61Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	WL Length m	8.863
Wetted Area m^2 105.932 Waterpl. Area m^2 26.155 Prismatic Coeff. 0.108 Block Coeff. 0.141 Midship Area Coeff. 3.403 Waterpl. Area Coeff. 0.264 LCB from Amidsh. (+ve fwd) m -1.501 LCF from Amidsh. (+ve fwd) m 2.652 KG fluid m 1.87 BMt m 0.91 BML m 2.957 GMt corrected m 3.894 KMt m 3.562 KML m 5.61 Immersion (TPc) tonne/cm 0.268 MTc tonne.m 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4	WL Beam m	5.313
Waterpl. Area m^2 26.155 Prismatic Coeff. 0.108 Block Coeff. 0.141 Midship Area Coeff. 0.264 LCB from Amidsh. (+ve fwd) m -1.501 LCF from Amidsh. (+ve fwd) m 2.652 KG fluid m 1.87 BML m 2.957 GML corrected m 1.847 GML corrected m 3.562 KMt m 5.61 Immersion (TPc) tonne/cm 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4 Trim angle (+ve by stern) deg 33.4	Wetted Area m^2	105.932
Prismatic Coeff. 0.108 Block Coeff. 0.141 Midship Area Coeff. 0.264 LCB from Amidsh. (+ve fwd) m -1.501 LCF from Amidsh. (+ve fwd) m 3.167 KB m 2.652 KG fluid m 1.87 BMt m 0.91 BML m 2.957 GMt corrected m 3.894 KMt m 3.562 KML m 5.61 Immersion (TPc) tonne/cm 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4 Trim angle (+ve by stern) deg 33.4	Waterpl. Area m^2	26.155
Block Coeff. 0.141 Midship Area Coeff. 3.403 Waterpl. Area Coeff. 0.264 LCB from Amidsh. (+ve fwd) m -1.501 LCF from Amidsh. (+ve fwd) m 3.167 KB m 2.652 KG fluid m 1.87 BMt m 0.91 BML m 2.957 GMt corrected m 3.894 KMt m 3.562 KML m 5.61 Immersion (TPc) tonne/cm 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4 Trim angle (+ve by stern) deg 33.4	Prismatic Coeff.	0.108
Midship Area Coeff.3.403Waterpl. Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m3.167KB m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Block Coeff.	0.141
Waterpl. Area Coeff.0.264LCB from Amidsh. (+ve fwd) m-1.501LCF from Amidsh. (+ve fwd) m3.167KB m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Midship Area Coeff.	3.403
LCB from Amidsh. (+ve fwd) m -1.501 LCF from Amidsh. (+ve fwd) m 3.167 KB m 2.652 KG fluid m 1.87 BMt m 0.91 BML m 2.957 GMt corrected m 1.847 GML corrected m 3.894 KMt m 3.562 KML m 5.61 Immersion (TPc) tonne/cm 0.268 MTc tonne.m 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4 Trim angle (+ve by stern) deg 33.4	Waterpl. Area Coeff.	0.264
LCF from Amidsh. (+ve fwd) m 3.167 KB m 2.652 KG fluid m 1.87 BMt m 0.91 BML m 2.957 GMt corrected m 1.847 GML corrected m 3.894 KMt m 3.562 KML m 5.61 Immersion (TPc) tonne/cm 0.093 RM at 1deg = GMt.Disp.sin(1) ton 1.443 Max deck inclination deg 33.4 Trim angle (+ve by stern) deg 33.4	LCB from Amidsh. (+ve fwd) m	-1.501
KB m2.652KG fluid m1.87BMt m0.91BML m2.957GMt corrected m1.847GML corrected m3.894KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	LCF from Amidsh. (+ve fwd) m	3.167
KG fluid m1.87BMt m0.91BML m2.957GMt corrected m1.847GML corrected m3.894KMt m3.562KMt m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	KB m	2.652
BMt m0.91BML m2.957GMt corrected m1.847GML corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	KG fluid m	1.87
BML m2.957GMt corrected m1.847GML corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	BMt m	0.91
GMt corrected m1.847GML corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	BML m	2.957
GML corrected m3.894KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	GMt corrected m	1.847
KMt m3.562KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	GML corrected m	3.894
KML m5.61Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	KMt m	3.562
Immersion (TPc) tonne/cm0.268MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	KML m	5.61
MTc tonne.m0.093RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	Immersion (TPc) tonne/cm	0.268
RM at 1deg = GMt.Disp.sin(1) ton1.443Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	MTc tonne.m	0.093
Max deck inclination deg33.4Trim angle (+ve by stern) deg33.4	RM at 1deg = GMt.Disp.sin(1) ton	1.443
Trim angle (+ve by stern) deg 33.4	Max deck inclination deg	33.4
	Trim angle (+ve by stern) deg	33.4

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft				Fail	
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-5.972	Fail

		_							
Draft Amidsh. m	1.864								
Displacement tonne	44.75								
Heel to Starboard degrees	0								
Draft at FP m	0.154								
Draft at AP m	3.575								
Draft at LCF m	1.73								
Trim (+ve by stern) m	3.421								
WL Length m	14.952								
WL Beam m	5.394								
Wetted Area m^2	101.471								
Waterpl. Area m^2	44.228								
Prismatic Coeff.	0.17								
Block Coeff.	0.139	0.8							
Midship Area Coeff.	0								
Waterpl. Area Coeff.	0.439	80	Accornolation Nys	a 44 st-88 28 7 6 4	7				
LCB from Amidsh. (+ve fwd) m	-2.087								
LCF from Amidsh. (+ve fwd) m	0.734	0.4	·····						
KB m	1.481								
KG fluid m	1.87	0.2			-				
BMt m	2.168								
BML m	9.86	2.9							
GMt corrected m	1.773		/t						
GML corrected m	9.465	02							
KMt m	3.649								
KML m	11.341	.0.6							
Immersion (TPc) tonne/cm	0.453	. /	·						
MTc tonne.m	0.227								
RM at 1deg = GMt.Disp.sin(1) ton	1.385								
Max deck inclination deg	10.4	40	ò			li Haal to Obriture	80 11 dec	120	160
Trim angle (+ve by stern) deg	10.4	G2 = 0.000 m	Hee Ito Starboar	d= 0.000 deg.	Area (from a	neer al Sialitica ero keel) = 0.001356 m. deg.	n wy.		

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)		m	-5.971	Fail

<u>Damage Case 10</u>								
Draft Amidsh. m	1.738							
Displacement tonne	44.75							
Heel to Starboard degrees	0							
Draft at FP m	-0.687							
Draft at AP m	4.163							
Draft at LCF m	1.584							
Trim (+ve by stern) m	4.85							
WL Length m	12.009							
WL Beam m	5.37							
Wetted Area m ²	80.823							
Waterpl. Area m^2	39.939							
Prismatic Coeff.	0.17							
Block Coeff.	0.139	a0						1
Midship Area Coeff.	0							
Waterpl. Area Coeff.	0.399		Accomodator Area Vertas = 2					
LCB from Amidsh. (+ve fwd) m	-2.138	0.4	/					
LCF from Amidsh. (+ve fwd) m	0.593		· · /					
KB m	1.398	02						
KG fluid m	1.87		· · · / · ·					
BMt m	1.829	_	· · · /					
BML m	6.991	6 Z L						
GMt corrected m	1.341		/					
GML corrected m	6.504		/					
KMt m	3.226	.02	/					
KML m	8.389							
Immersion (TPc) tonne/cm	0.409		<u>.</u>					
MTc tonne.m	0.156	. /						
RM at 1deg = GMt.Disp.sin(1) ton	1.047							
Max deck inclination deg	14.6	au	0		0 1	00 11 dec	20 1	60
Trim angle (+ve by stern) deg	14.6	GZ= 0.000 m	Hee hb Statioard = 0.000 deg.	Area (from ze	nee i to 51800081 ro heel) = 0.001304 m. deg.	u vey.		

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-0.56	Fail

Damage Case II			
Draft Amidsh. m	1.707	7	
Displacement tonne	50.48	8	
Heel to Starboard degrees	0	0	
Draft at FP m	-0.665	5	
Draft at AP m	4.079	'9	
Draft at LCF m	1.568	8	
Trim (+ve by stern) m	4.745	15	
WL Length m	12.254	<u>i4</u>	
WL Beam m	5.386	16 05m-100 05m-100 000 000 000 000 000 000 000 000 000	
Wetted Area m^2	80.03	13 Arromotion uses VertiBB= 97.19 den	
Waterpl. Area m^2	40.033	1 <u>3</u> 0.4	
Prismatic Coeff.	0.191	<u>n</u> / /	
Block Coeff.	0.156	<u>.6</u> ⁰³	
Midship Area Coeff.	0	<u>o</u> / / .	
Waterpl. Area Coeff.	0.398	18 02	
LCB from Amidsh. (+ve fwd) m	-1.971	<u>1</u> / / /	
LCF from Amidsh. (+ve fwd) m	0.546	16 at	
KB m	1.279	<u>'9</u> _E	
KG fluid m	1.724	<u>4</u> 20 0	
BMt m	1.623	3	
BML m	6.439	<u>9</u> •••	
GMt corrected m	1.165	<u>15</u> /	
GML corrected m	5.981	<u>1</u> ····	
KMt m	2.902	12 /	
KML m	7.718	8 03	
Immersion (TPc) tonne/cm	0.41	<u>1</u> /	
MTc tonne.m	0.162	<u>12</u> ••• ⁴	
RM at 1deg = GMt.Disp.sin(1) ton	1.026	<u>.6</u>	
Max deck inclination deg	14.3	3 ^{-UD} 0 40 80 120 180 Heelto Statioard deg	
Trim angle (+ve by stern) deg	14.3	3 GZ = 0.000 m Heel to Starboard = 0.000 deg. Area (from zero hee) = 0 m deg.	

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-0.489	Fail

FULL LOAD ARRIVAL CONDITION

Damage Case 1

Draft Amidsh. m	1.078
Displacement tonne	44.58
Heel to Starboard degrees	0.3
Draft at FP m	1.124
Draft at AP m	1.032
Draft at LCF m	1.068
Trim (+ve by stern) m	-0.092
WL Length m	18.734
WL Beam m	5.046
Wetted Area m^2	97.384
Waterpl. Area m^2	73.029
Prismatic Coeff.	0.745
Block Coeff.	0.423
Midship Area Coeff.	0.573
Waterpl. Area Coeff.	0.776
LCB from Amidsh. (+ve fwd) m	-1.988
LCF from Amidsh. (+ve fwd) m	-2.076
KB m	0.711
KG fluid m	1.858
BMt m	3.511
BML m	29.675
GMt corrected m	2.364
GML corrected m	28.528
KMt m	4.222
KML m	30.385
Immersion (TPc) tonne/cm	0.749
MTc tonne.m	0.682
RM at 1deg = GMt.Disp.sin(1) ton	1.84
Max deck inclination deg	0.4
Trim angle (+ve by stern) deg	-0.3

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	2.066	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	101.6	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.752	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	9.9	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.752	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	101.6	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Draft Amidsh. m	2.266
Displacement tonne	44.51
Heel to Starboard degrees	-0.1
Draft at FP m	4.078
Draft at AP m	0.455
Draft at LCF m	1.426
Trim (+ve by stern) m	-3.624
WL Length m	14.65
WL Beam m	5.381
Wetted Area m ²	106.132
Waterpl. Area m^2	37.802
Prismatic Coeff.	0.18
Block Coeff.	0.144
Midship Area Coeff.	79.801
Waterpl. Area Coeff.	0.376
LCB from Amidsh. (+ve fwd) m	-1.805
LCF from Amidsh. (+ve fwd) m	-4.33
KB m	0.864
KG fluid m	1.858
BMt m	1.674
BML m	11.936
GMt corrected m	0.663
GML corrected m	10.924
KMt m	2.539
KML m	12.8
Immersion (TPc) tonne/cm	0.387
MTc tonne.m	0.261
RM at 1deg = GMt.Disp.sin(1) ton	0.515
Max deck inclination deg	11
Trim angle (+ve by stern) deg	-11

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	1.048	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	103.5	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.638	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	3.429	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.638	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	103.5	Pass

Hazardous condition X

Draft Amidsh. m	1.265
Displacement tonne	44
Heel to Starboard degrees	0.6
Draft at FP m	1.322
Draft at AP m	1.208
Draft at LCF m	1.251
Trim (+ve by stern) m	-0.113
WL Length m	19.157
WL Beam m	5.087
Wetted Area m^2	106.888
Waterpl. Area m^2	50.791
Prismatic Coeff.	0.563
Block Coeff.	0.352
Midship Area Coeff.	0.632
Waterpl. Area Coeff.	0.535
LCB from Amidsh. (+ve fwd) m	-2.007
LCF from Amidsh. (+ve fwd) m	-2.243
KB m	0.788
KG fluid m	1.879
BMt m	2.237
BML m	40.809
GMt corrected m	1.146
GML corrected m	39.718
KMt m	3.025
KML m	41.597
Immersion (TPc) tonne/cm	0.521
MTc tonne.m	0.937
RM at 1deg = GMt.Disp.sin(1) ton	0.88
Max deck inclination deg	0.7
Trim angle (+ve by stern) deg	-0.3

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	1.851	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	90.6	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.605	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	6.263	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.605	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	90.6	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Draft Amidsh. m	1.008	
Displacement tonne	44.57	
Heel to Starboard degrees	0.2	
Draft at FP m	0.897	
Draft at AP m	1.119	
Draft at LCF m	1.028	
Trim (+ve by stern) m	0.221	
WL Length m	18.256	
WL Beam m	5.053	
Wetted Area m^2	93.241	
Waterpl. Area m^2	76.761	
Prismatic Coeff.	0.708	
Block Coeff.	0.415	
Midship Area Coeff.	0.586	
Waterpl. Area Coeff.	0.814	
LCB from Amidsh. (+ve fwd) m	-2.007	
LCF from Amidsh. (+ve fwd) m	-1.64	
KB m	0.689	
KG fluid m	1.858	
BMt m	3.499	
BML m	36.503	ţ
GMt corrected m	2.331	
GML corrected m	35.335	
KMt m	4.188	
KML m	37.193	
Immersion (TPc) tonne/cm	0.787	
MTc tonne.m	0.844	
RM at 1deg = GMt.Disp.sin(1) ton	1.813	
Max deck inclination deg	0.7	
Trim angle (+ve by stern) deg	0.7	

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	2.037	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	90.5	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.569	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	5.99	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.569	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	90.5	Pass

Condition complies with the regulations $\boldsymbol{\vee}$

Draft Amidsh. m	1.443
Displacement tonne	43.99
Heel to Starboard degrees	0.5
Draft at FP m	1.68
Draft at AP m	1.206
Draft at LCF m	1.4
Trim (+ve by stern) m	-0.474
WL Length m	19.856
WL Beam m	5.131
Wetted Area m^2	115.656
Waterpl. Area m^2	53.748
Prismatic Coeff.	0.439
Block Coeff.	0.289
Midship Area Coeff.	0.682
Waterpl. Area Coeff.	0.561
LCB from Amidsh. (+ve fwd) m	-1.988
LCF from Amidsh. (+ve fwd) m	-1.671
KB m	0.929
KG fluid m	1.879
BMt m	2.342
BML m	48.402
GMt corrected m	1.392
GML corrected m	47.452
KMt m	3.272
KML m	49.332
Immersion (TPc) tonne/cm	0.551
MTc tonne.m	1.119
RM at 1deg = GMt.Disp.sin(1) ton	1.069
Max deck inclination deg	1.5
Trim angle (+ve by stern) deg	-1.5

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	1.741	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	90.3	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.664	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	7.716	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.664	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	90.3	Pass

Condition complies with the regulations $\boldsymbol{\mathcal{V}}$

Draft Amidsh. m	5.197
Displacement tonne	44
Heel to Starboard degrees	0.9
Draft at FP m	-2.966
Draft at AP m	13.361
Draft at LCF m	3.204
Trim (+ve by stern) m	16.328
WL Length m	7.895
WL Beam m	5.331
Wetted Area m^2	77.316
Waterpl. Area m^2	21.512
Prismatic Coeff.	0.108
Block Coeff.	0.136
Midship Area Coeff.	3.392
Waterpl. Area Coeff.	0.216
LCB from Amidsh. (+ve fwd) m	-1.662
LCF from Amidsh. (+ve fwd) m	2.278
KB m	2.279
KG fluid m	1.879
BMt m	0.787
BML m	1.695
GMt corrected m	1.319
GML corrected m	2.227
KMt m	3.066
KML m	3.974
Immersion (TPc) tonne/cm	0.22
MTc tonne.m	0.053
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.013
Max deck inclination deg	41.2
Trim angle (+ve by stern) deg	41.2

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-6.581	Fail

Draft Amidsh. m	1.231	
Displacement tonne	44	
Heel to Starboard degrees	0.2	
Draft at FP m	1.379	
Draft at AP m	1.082	
Draft at LCF m	1.214	
Trim (+ve by stern) m	-0.297	
WL Length m	19.273	
WL Beam m	5.083	
Wetted Area m^2	105.23	
Waterpl. Area m^2	83.475	
Prismatic Coeff.	0.57	(1
Block Coeff.	0.35	
Midship Area Coeff.	0.63	ar
Waterpl. Area Coeff.	0.88	0.15
LCB from Amidsh. (+ve fwd) m	-1.997	
LCF from Amidsh. (+ve fwd) m	-1.056	0.5
KB m	0.886	
KG fluid m	1.879	0.25 Copy of 6.2 Offset in
BMt m	3.952	E
BML m	44.975	67
GMt corrected m	2.959	
GML corrected m	43.981	-0.25
KMt m	4.838	/
KML m	45.86	-0.5
Immersion (TPc) tonne/cm	0.856	
MTc tonne.m	1.037	-0.75
RM at 1deg = GMt.Disp.sin(1) tonne.m	2.272	
Max deck inclination deg	0.9	-1
Trim angle (+ve by stern) deg	-0.9	GZ=-0.012 m Heelbo Sta

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	1.934	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	99.9	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.895	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	9.923	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.895	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	99.9	Pass

Condition complies with the regulations $\boldsymbol{\vee}$
Draft Amidsh. m	5.18
Displacement tonne	43.99
Heel to Starboard degrees	0.5
Draft at FP m	-0.786
Draft at AP m	11.147
Draft at LCF m	3.178
Trim (+ve by stern) m	11.933
WL Length m	9.048
WL Beam m	5.343
Wetted Area m^2	105.62
Waterpl. Area m^2	25.948
Prismatic Coeff.	0.107
Block Coeff.	0.136
Midship Area Coeff.	3.401
Waterpl. Area Coeff.	0.26
LCB from Amidsh. (+ve fwd) m	-1.54
LCF from Amidsh. (+ve fwd) m	3.13
KB m	2.616
KG fluid m	1.879
BMt m	0.917
BML m	3.049
GMt corrected m	1.792
GML corrected m	3.924
KMt m	3.533
KML m	5.665
Immersion (TPc) tonne/cm	0.266
MTc tonne.m	0.093
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.376
Max deck inclination deg	32.6
Trim angle (+ve by stern) deg	32.6

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-5.834	Fail

Draft Amidsh. m	1.841								
Displacement tonne	44								
Heel to Starboard degrees	0.4								
Draft at FP m	0.195								
Draft at AP m	3.487								
Draft at LCF m	1.724								
Trim (+ve by stern) m	3.292								
WL Length m	15.514								
WL Beam m	5.383								
Wetted Area m^2	106.52								
Waterpl. Area m^2	44.645								
Prismatic Coeff.	0.167								
Block Coeff.	0.136								
Midship Area Coeff.	0	0.8	Ι]	
Waterpl. Area Coeff.	0.444		Accoundation	(mag.) fact 88 - 29.08	* 0	Max 6Z=0.619 mai 40 deg.			
LCB from Amidsh. (+ve fwd) m	-2.085	0.6		/	1				
LCF from Amidsh. (+ve fwd) m	0.66			- /					
KB m	1.468	0.4		/					
KG fluid m	1.879	10		/					
BMt m	2.224	0.2		1/					
BML m	10.867	E D		<u>/</u>					
GMt corrected m	1.807	9	· /	Ī					
GML corrected m	10.449	-0.2	<mark>/</mark>	· 					
KMt m	3.692		/						
KML m	12.335	-0.4	·····	ļ					
Immersion (TPc) tonne/cm	0.458								
MTc tonne.m	0.246	-0.6	, <i>.</i>						
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.387								
Max deck inclination deg	10	-0.8		ł	4	0	ab 1	20 11	a)
Trim angle (+ve by stern) deg	10	GZ= -0	0.012 m Heel to Starbo	oard = 0.000 deg.	Area (fromz	Heel to Starboa eroheel) = -0.1244 m. deg.	rd deg.		

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	-0.054	Fail

Draft Amidsh. m	1.711						
Displacement tonne	43.99						
Heel to Starboard degrees	0.5						
Draft at FP m	-0.621						
Draft at AP m	4.043						
Draft at LCF m	1.573						
Trim (+ve by stern) m	4.664						
WL Length m	12.5						
WL Beam m	5.379						
Wetted Area m ²	80.352						
Waterpl. Area m^2	40.462						
Prismatic Coeff.	0.167						
Block Coeff.	0.136						
Midship Area Coeff.	0						
Waterpl. Area Coeff.	0.403						
LCB from Amidsh. (+ve fwd) m	-2.136	0.8					
LCF from Amidsh. (+ve fwd) m	0.551		Max 62-4	64 mar 60 deg			
KB m	1.382	0.0	/		Fining Room Vant SB = 0	12 das	
KG fluid m	1.879						
BMt m	1.878	0.4					
BML m	7.746	0.2	/				
GMt corrected m	1.366	E Copy of 62 Offset load test - equil	riun with heel arm				
GML corrected m	7.234	°			_		
KMt m	3.26						
KML m	9.128	-0.2					<u></u>
Immersion (TPc) tonne/cm	0.415						
MTc tonne.m	0.171	-0.4					
RM at 1deg = GMt.Disp.sin(1) tonne.m	1.049						
Max deck inclination deg	14	-0.6	40	80		120 1	60
Trim angle (+ve by stern) deg	14	GZ = -0.012 m Heel to Starboard = 0.1	000 deg. Area (from zer	Heelto Starboard o heel) = 0 m.deg.	deg.		

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-0.473	Fail

Draft Amidsh. m	1.535	
Displacement tonne	44.58	
Heel to Starboard degrees	0.6	
Draft at FP m	-0.538	
Draft at AP m	3.608	
Draft at LCF m	1.488	
Trim (+ve by stern) m	4.146	
WL Length m	13.983	
WL Beam m	5.375	
Wetted Area m^2	92.881	
Waterpl. Area m^2	40.405	
Prismatic Coeff.	0.169	
Block Coeff.	0.137	
Midship Area Coeff.	0	
Waterpl. Area Coeff.	0.403	
LCB from Amidsh. (+ve fwd) m	-2.139	05 100 (72.0.80 mm) (70.0.
LCF from Amidsh. (+ve fwd) m	0.209	
KB m	1.212	
KG fluid m	1.858	
BMt m	1.804	02
BML m	9.379	10
GMt corrected m	1.142	
GML corrected m	8.718	
KMt m	3.016	01
KML m	10.591	42
Immersion (TPc) tonne/cm	0.414	
MTc tonne.m	0.208	
RM at 1deg = GMt.Disp.sin(1) tonne.m	0.889	86
Max deck inclination deg	12.5	0 4 4 0 80 120 mn
Trim angle (+ve by stern) deg	12.5	Heal to Stanboard deg. CZ = -0.012 m Heal to Stanboard = 0.000 deg. Area (from zero hea) = 0 m deg.

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	-0.099	Fail

MINIMUM OPERATING CONDITION

<u>.</u>													
Draft Amidsh. m		1.056											
Displacement tonne		43.78											
Heel to Starboard degrees		0.8											
Draft at FP m		1.053											
Draft at AP m		1.06											
Draft at LCF m		1.057											
Trim (+ve by stern) m		0.007											
WL Length m		18.579											
WL Beam m		5.041											
Wetted Area m^2		96.091	07	£									
Waterpl. Area m^2		72.904	0.7	5	Max 6Z -	-0.747 m #5							
Prismatic Coeff.		0.764											
Block Coeff.		0.431		r				\mathbf{X}					
Midship Area Coeff.		0.564	U.	5				\ \					
Waterpl. Area Coeff.		0.775			/								
LCB from Amidsh. (+ve fwd	l) m	-2.147			· /								
LCF from Amidsh. (+ve fwd) m	-2.092	02	5					, Gi	gine Room Veat S	B = 101.44 deg		
KB m		0.704		Copy of 6.2 Offs et load t	test- equilibrium with heel arm	elma			\uparrow				
KG fluid m		1.855	E	oopy of electroning in co									,
BMt m		3.562	6 Z	0	•								
BML m		30.053			/								
GMt corrected m		2.411											
GML corrected m		28.902	-0.2	5									
KMt m		4.266		/									
KML m		30.756			1								
Immersion (TPc) tonne/cm		0.747	-0.	5	-J								
MTc tonne.m		0.678											
RM at 1deg = GMt.Disp.sin	(1) ton	1.843											
Max deck inclination deg		0.8	-0.7	5	0	40	Heelto	80 Starboard	den	120		160	
Trim angle (+ve by stern) d	eg	0	GZ= -	0.035 m Heel to Starbo	oard = 0.000 deg. Are	a (fromzero l	heel) = +0.3447 m deg.	clubbard	ang.				
Code	Criter	ia						Valu	ue	Units		Actual	
HSC2000 Ch2. All craft	2.6.11	L.1 Min. fre	ebo	ard at dan	naged equi	ilibriu	ım						Pass
	the m	in. freeboa	ard o	of the				Dov	vnflood	ingPoi	nts		
	shall b	be greater t	than	(>)					1	m		2.062	Pass
HSC 2000 Annex 8	2.1.1	Range of p	ositi	ve stabilit	v								Pass
	shall b	pe greater t	than	(>)	,				15	deg		100.6	Pass
HSC 2000 Annex 8 Mono	213	Value of m	ax (<u>,</u> 77						0			Pass
	shall k	ne greater t	than	(>)					0.1	m		0 747	Pass
USC 2000 Appay 8	212	1 2 Area under G7 curve				0.1			0.747	Dace			
HJC 2000 AIMEX O			UZ than						0.050	mdaa		0 5	r ass Dace
		hall be greater than (>)				0.859	m.ueg		9.5	Pass			
HSC 2000 Annex 8	2.2 Va	alue of max	(. GZ	. in interm	ediate stag	ges							Pass
	shall k	be greater t	than	(>)					0.05	m		0.747	Pass
HSC 2000 Annex 8	2.2 Ra	ange of pos	itive	e stability i	n intermed	diate	stages						Pass
	shall r	not be less	thar	า (>=)					7	deg		100.6	Pass

Condition complies with the regulations $\boldsymbol{\sqrt{}}$

Damage Case 1

Draft Amidsh. m	2.016
Displacement tonne	43.79
Heel to Starboard degrees	1.9
Draft at FP m	3.417
Draft at AP m	0.616
Draft at LCF m	1.283
Trim (+ve by stern) m	-2.801
WL Length m	16.308
WL Beam m	5.34
Wetted Area m^2	114.728
Waterpl. Area m^2	36.874
Prismatic Coeff.	0.213
Block Coeff.	0.151
Midship Area Coeff.	0.76
Waterpl. Area Coeff.	0.37
LCB from Amidsh. (+ve fwd) m	-1.99
LCF from Amidsh. (+ve fwd) m	-4.886
KB m	0.815
KG fluid m	1.855
BMt m	1.74
BML m	9.538
GMt corrected m	0.69
GML corrected m	8.488
KMt m	2.556
KML m	10.353
Immersion (TPc) tonne/cm	0.378
MTc tonne.m	0.199
RM at 1deg = GMt.Disp.sin(1) ton	0.528
Max deck inclination deg	8.7
Trim angle (+ve by stern) deg	-8.5

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	lingPoints		
	shall be greater than (>)	1	m	1.334	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	100.3	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.631	Pass
HSC 2000 Annex 8	2.1.2 Area under GZ curve				Pass
	shall be greater than (>)	0.859	m.deg	2.681	Pass
HSC 2000 Annex 8	2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.631	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	100.3	Pass

Draft Amidsh. m	1.302
Displacement tonne	43.79
Heel to Starboard degrees	1.6
Draft at FP m	1.474
Draft at AP m	1.129
Draft at LCF m	1.265
Trim (+ve by stern) m	-0.345
WL Length m	19.452
WL Beam m	5.101
Wetted Area m^2	108.794
Waterpl. Area m^2	52.081
Prismatic Coeff.	0.517
Block Coeff.	0.326
Midship Area Coeff.	0.649
Waterpl. Area Coeff.	0.547
LCB from Amidsh. (+ve fwd) m	-2.127
LCF from Amidsh. (+ve fwd) m	-1.965
KB m	0.804
KG fluid m	1.855
BMt m	2.286
BML m	44.463
GMt corrected m	1.236
GML corrected m	43.412
KMt m	3.09
KML m	45.266
Immersion (TPc) tonne/cm	0.534
MTc tonne.m	1.019
RM at 1deg = GMt.Disp.sin(1) ton	0.944
Max deck inclination deg	1.9
Trim angle (+ve by stern) deg	-1.1

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft 2.6.11.1 Min. freeboard at damaged equilibrium					Pass
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	1.841	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)		deg	89	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.601	Pass
HSC 2000 Annex 8 2.1.2 Area under GZ curve					Pass
shall be greater than (>)		0.859	m.deg	11.758	Pass
HSC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages					Pass
shall be greater than (>)		0.05	m	0.601	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	89	Pass

Draft Amidsh. m	1.24
Displacement tonne	43.21
Heel to Starboard degrees	1.8
Draft at FP m	1.259
Draft at AP m	1.221
Draft at LCF m	1.235
Trim (+ve by stern) m	-0.038
WL Length m	19.024
WL Beam m	5.082
Wetted Area m ²	105.563
Waterpl. Area m^2	50.121
Prismatic Coeff.	0.576
Block Coeff.	0.358
Midship Area Coeff.	0.625
Waterpl. Area Coeff.	0.529
LCB from Amidsh. (+ve fwd) m	-2.165
LCF from Amidsh. (+ve fwd) m	-2.385
KB m	0.779
KG fluid m	1.877
BMt m	2.249
BML m	39.858
GMt corrected m	1.152
GML corrected m	38.761
KMt m	3.028
KML m	40.636
Immersion (TPc) tonne/cm	0.514
MTc tonne.m	0.898
RM at 1deg = GMt.Disp.sin(1) ton	0.869
Max deck inclination deg	1.8
Trim angle (+ve by stern) deg	-0.1

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft 2.6.11.1 Min. freeboard at damaged equilibrium					Pass
	the min. freeboard of the	rd of the DownfloodingPoints			
	shall be greater than (>)	1	m	1.861	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)		deg	88.8	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.566	Pass
HSC 2000 Annex 8 2.1.2 Area under GZ curve					Pass
shall be greater than (>)		0.859	m.deg	5.521	Pass
HSC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages					Pass
	shall be greater than (>)		m	0.566	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	88.8	Pass

Draft Amidsh. m 1.423 Displacement tonne 43.2 Heel to Starboard degrees 1.4 Draft at FP m 1.631 Draft at AP m 1.215 Draft at LCF m 1.384 Trim (+ve by stern) m -0.416 WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.677 Waterpl. Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BML m 48.407 GML corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 <th></th> <th></th>		
Displacement tonne43.2Heel to Starboard degrees1.4Draft at FP m1.631Draft at AP m1.215Draft at LCF m1.384Trim (+ve by stern) m-0.416WL Length m19.751WL Beam m5.127Wetted Area m^2114.699Waterpl. Area m^253.442Prismatic Coeff.0.443Block Coeff.0.291Midship Area Coeff.0.677Waterpl. Area Coeff.0.559LCB from Amidsh. (+ve fwd) m-2.145LCF from Amidsh. (+ve fwd) m1.737KB m0.917KG fluid m1.877BMt m2.378BML m48.407GMt corrected m1.419GML corrected m47.448KMt m3.295KML m49.324Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	Draft Amidsh. m	1.423
Heel to Starboard degrees1.4Draft at FP m1.631Draft at AP m1.215Draft at LCF m1.384Trim (+ve by stern) m-0.416WL Length m19.751WL Beam m5.127Wetted Area m^2114.699Waterpl. Area m^253.442Prismatic Coeff.0.443Block Coeff.0.291Midship Area Coeff.0.677Waterpl. Area Coeff.0.559LCB from Amidsh. (+ve fwd) m-2.145LCF from Amidsh. (+ve fwd) m1.737KB m0.917KG fluid m1.877BMt m2.378BML m48.407GMt corrected m1.419GML corrected m47.448KMt m3.295KML m49.324Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	Displacement tonne	43.2
Draft at FP m 1.631 Draft at AP m 1.215 Draft at LCF m 1.384 Trim (+ve by stern) m -0.416 WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BML m 48.407 GML corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Heel to Starboard degrees	1.4
Draft at AP m 1.215 Draft at LCF m 1.384 Trim (+ve by stern) m -0.416 WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.413 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BML m 48.407 GML corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Draft at FP m	1.631
Draft at LCF m 1.384 Trim (+ve by stern) m -0.416 WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BML m 2.378 BML m 48.407 GML corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Draft at AP m	1.215
Trim (+ve by stern) m -0.416 WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m 1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Draft at LCF m	1.384
WL Length m 19.751 WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Trim (+ve by stern) m	-0.416
WL Beam m 5.127 Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	WL Length m	19.751
Wetted Area m^2 114.699 Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	WL Beam m	5.127
Waterpl. Area m^2 53.442 Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m 0.917 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Wetted Area m ²	114.699
Prismatic Coeff. 0.443 Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Waterpl. Area m^2	53.442
Block Coeff. 0.291 Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Prismatic Coeff.	0.443
Midship Area Coeff. 0.677 Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Block Coeff.	0.291
Waterpl. Area Coeff. 0.559 LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GML corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Midship Area Coeff.	0.677
LCB from Amidsh. (+ve fwd) m -2.145 LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	Waterpl. Area Coeff.	0.559
LCF from Amidsh. (+ve fwd) m -1.737 KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	LCB from Amidsh. (+ve fwd) m	-2.145
KB m 0.917 KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	LCF from Amidsh. (+ve fwd) m	-1.737
KG fluid m 1.877 BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	KB m	0.917
BMt m 2.378 BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	KG fluid m	1.877
BML m 48.407 GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	BMt m	2.378
GMt corrected m 1.419 GML corrected m 47.448 KMt m 3.295 KML m 49.324 Immersion (TPc) tonne/cm 0.548 MTc tonne.m 1.099 RM at 1deg = GMt.Disp.sin(1) ton 1.07 Max deck inclination deg 1.9 Trim angle (+ve by stern) deg -1.3	BML m	48.407
GML corrected m47.448KMt m3.295KML m49.324Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	GMt corrected m	1.419
KMt m3.295KML m49.324Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	GML corrected m	47.448
KML m49.324Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	KMt m	3.295
Immersion (TPc) tonne/cm0.548MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	KML m	49.324
MTc tonne.m1.099RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	Immersion (TPc) tonne/cm	0.548
RM at 1deg = GMt.Disp.sin(1) ton1.07Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	MTc tonne.m	1.099
Max deck inclination deg1.9Trim angle (+ve by stern) deg-1.3	RM at 1deg = GMt.Disp.sin(1) ton	1.07
Trim angle (+ve by stern) deg -1.3	Max deck inclination deg	1.9
	Trim angle (+ve by stern) deg	-1.3

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	1.732	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	7.233	Pass
HSC 2000 Annex 8 Mono	2.1.3 Value of max. GZ				Pass
	shall be greater than (>)	0.1	m	0.658	Pass
HSC 2000 Annex 8 2.1.2 Area under GZ curve					Pass
shall be greater than (>)		0.859	m.deg	9.061	Pass
HSC 2000 Annex 8	SC 2000 Annex 8 2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)		m	0.658	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	88.9	Pass

Draft Amidsh. m	5.247	17
Displacement tonne	43.2	.2
Heel to Starboard degrees	2.8	.8
Draft at FP m	-3.541	41
Draft at AP m	14.035	35
Draft at LCF m	3.236	36
Trim (+ve by stern) m	17.576	76
WL Length m	7.694	94
WL Beam m	5.299	9
Wetted Area m^2	74.813	.3
Waterpl. Area m^2	21.016	.6
Prismatic Coeff.	0.106)6
Block Coeff.	0.131	31
Midship Area Coeff.	3.24	24
Waterpl. Area Coeff.	0.213	.3
LCB from Amidsh. (+ve fwd) m	-1.772	/2 077
LCF from Amidsh. (+ve fwd) m	2.135	<u>با الجامعة الجامعة المالية الم</u>
KB m	2.294)4 ⁰⁰
KG fluid m	1.877	7
BMt m	0.822	·2 020
BML m	1.492	2 Copy of 8.2 Offset load targ - equilibrium # Ih heel arm
GMt corrected m	1.399	
GML corrected m	2.068	8
KMt m	3.116	.6
KML m	3.786	36 -020
Immersion (TPc) tonne/cm	0.215	.5 / /
MTc tonne.m	0.048	18
RM at 1deg = GMt.Disp.sin(1) ton	1.055	j5 🖌 -
Max deck inclination deg	43.3	
Trim angle (+ve by stern) deg	43.3	.3 GZ = -0.038 m Hielto Starboard = 0.000 deg. Area (tromzero heel) = 0 m deg.

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	. All craft 2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-6.802	Fail

Draft Amidsh. m	1.218
Displacement tonne	43.21
Heel to Starboard degrees	0.7
Draft at FP m	1.338
Draft at AP m	1.098
Draft at LCF m	1.205
Trim (+ve by stern) m	-0.24
WL Length m	19.194
WL Beam m	5.079
Wetted Area m^2	104.623
Waterpl. Area m^2	83.374
Prismatic Coeff.	0.574
Block Coeff.	0.351
Midship Area Coeff.	0.624
Waterpl. Area Coeff.	0.88
LCB from Amidsh. (+ve fwd) m	-2.155
LCF from Amidsh. (+ve fwd) m	-1.067
KB m	0.878
KG fluid m	1.877
BMt m	4.017
BML m	45.658
GMt corrected m	3.018
GML corrected m	44.659
KMt m	4.894
KML m	46.536
Immersion (TPc) tonne/cm	0.855
MTc tonne.m	1.034
RM at 1deg = GMt.Disp.sin(1) ton	2.275
Max deck inclination deg	1
Trim angle (+ve by stern) deg	-0.7

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Pass
	the min. freeboard of the	Downflood	DownfloodingPoints		
	shall be greater than (>)	1	m	1.934	Pass
HSC 2000 Annex 8	2.1.1 Range of positive stability				Pass
	shall be greater than (>)	15	deg	98.3	Pass
HSC 2000 Annex 8 Mono 2.1.3 Value of max. GZ					Pass
	shall be greater than (>)	0.1	m	0.881	Pass
HSC 2000 Annex 8	00 Annex 8 2.1.2 Area under GZ curve				Pass
	shall be greater than (>)		m.deg	13.476	Pass
HSC 2000 Annex 8	D Annex 8 2.2 Value of max. GZ in intermediate stages				Pass
	shall be greater than (>)	0.05	m	0.881	Pass
HSC 2000 Annex 8	2.2 Range of positive stability in intermediate stages				Pass
	shall not be less than (>=)	7	deg	98.3	Pass

Draft Amidsh. m	5.205	15	
Displacement tonne	43.2	.2	
Heel to Starboard degrees	1.4	4	
Draft at FP m	-0.954	4	
Draft at AP m	11.363	3	
Draft at LCF m	3.17	7	
Trim (+ve by stern) m	12.317	7	
WL Length m	8.957	7	
WL Beam m	5.339	9	
Wetted Area m^2	101.828	8 125	
Waterpl. Area m^2	26.2	2 Jan (2 195 na 195 ng	
Prismatic Coeff.	0.105	15 t	
Block Coeff.	0.133	3	
Midship Area Coeff.	3.328	8	
Waterpl. Area Coeff.	0.263	3	
LCB from Amidsh. (+ve fwd) m	-1.668	8	
LCF from Amidsh. (+ve fwd) m	3.083	3 05	
KB m	2.633	3	
KG fluid m	1.877	¹ 7 [€] _{№ 025}	
BMt m	0.967	i7 °	
BML m	2.98	8	
GMt corrected m	1.873	3	
GML corrected m	3.887	3 7 / /	
KMt m	3.6	<u>6</u> 025	
KML m	5.613	3	
Immersion (TPc) tonne/cm	0.269	i9	
MTc tonne.m	0.09	9 🦷 🦯 🔤	
RM at 1deg = GMt.Disp.sin(1) ton	1.413	3	
Max deck inclination deg	33.4	.4 075 0 40 80 120 160	_
Trim angle (+ve by stern) deg	33.4	.4 GZ= -0.006 m Heal to Starboard = 0.000 deg. Area (from zero heel) = -0.3557 m deg.	

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	DownfloodingPoints			
	shall be greater than (>)	1	m	-5.947	Fail

Damaye Case 3		_		
Draft Amidsh. m	1.834			
Displacement tonne	43.2			
Heel to Starboard degrees	1.1			
Draft at FP m	0.06			
Draft at AP m	3.608			
Draft at LCF m	1.732			
Trim (+ve by stern) m	3.548			
WL Length m	14.945			
WL Beam m	5.37			
Wetted Area m ²	99.937	0.61	Accompdation Area Vent BB = 27.11 deg	
Waterpl. Area m^2	42.899			
Prismatic Coeff.	0.164	0.4-		
Block Coeff.	0.132		· / /	
Midship Area Coeff.	0			
Waterpl. Area Coeff.	0.428	0.2		
LCB from Amidsh. (+ve fwd) m	-2.241			
LCF from Amidsh. (+ve fwd) m	0.537		•/	
KB m	1.482	0		
KG fluid m	1.877	ш Z 5	/	
BMt m	2.186	Ŭ,	/ <u> </u>	
BML m	9.851	-02	/	
GMt corrected m	1.786			

GML corrected m

MTc tonne.m

Immersion (TPc) tonne/cm

Max deck inclination deg

Trim angle (+ve by stern) deg

RM at 1deg = GMt.Disp.sin(1) ton

KMt m

KML m

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	lingPoints		
	shall be greater than (>)	1	m	-0.167	Fail

<u>Damage Case 10</u>										
Draft Amidsh. m	1.706									
Displacement tonne	43.2									
Heel to Starboard degrees	1.6									
Draft at FP m	-0.825									
Draft at AP m	4.237									
Draft at LCF m	1.572									
Trim (+ve by stern) m	5.061									
WL Length m	11.929									
WL Beam m	5.373	0.0					1	[1
Wetted Area m^2	80.97						Max GZ = 0.502 mat 40 deg.			
Waterpl. Area m^2	38.593			Accomodation A	vea Vent BB= 26.36 (eq.				
Prismatic Coeff.	0.164	0.4	4		\	<u> </u>				
Block Coeff.	0.131				• /					
Midship Area Coeff.	0				/					
Waterpl. Area Coeff.	0.385				/					
LCB from Amidsh. (+ve fwd) m	-2.295	0.2	1		/					
LCF from Amidsh. (+ve fwd) m	0.494				/					
KB m	1.407	E			۱/					
KG fluid m	1.877	29 2			1					
BMt m	1.825				1					
BML m	6.573									
GMt corrected m	1.339	-0.2	2+		•					
GML corrected m	6.087									
KMt m	3.232									
KML m	7.98	-0.4		<u> </u>						
Immersion (TPc) tonne/cm	0.396									
MTc tonne.m	0.141		/		1					
RM at 1deg = GMt.Disp.sin(1) ton	1.01									
Max deck inclination deg	15.3	-0.6			ó		40 Heel to Starboa	80 rd deg.	120	160
Trim angle (+ve by stern) deg	15.2	GZ= ·	0.036 m	Heel to Starbo	oard = 0.000 deg.	Area(from	zero heel) = +0.3564 m deg.	-		

Code	Criteria	Value	Units	Actual	
HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	lingPoints		
	shall be greater than (>)	1	m	-0.646	Fail

<u> Damage Case 11</u>										
Draft Amidsh. m	1.523	1								
Displacement tonne	43.78									
Heel to Starboard degrees	1.9									
Draft at FP m	-0.726									
Draft at AP m	3.772									
Draft at LCF m	1.492									
Trim (+ve by stern) m	4.498									
WL Length m	13.381									
WL Beam m	5.369									
Wetted Area m^2	86.628									
Waterpl. Area m^2	38.596	05000								
Prismatic Coeff.	0.166	0.5		1						
Block Coeff.	0.133	0.4	Accent	d a tion - Area - Vent -	00-=63£4deg ¥		= 0 401 m at 40 deg			
Midship Area Coeff.	0			1						
Waterpl. Area Coeff.	0.385	0.3+								
LCB from Amidsh. (+ve fwd) m	-2.297			1 /						
LCF from Amidsh. (+ve fwd) m	0.129	02		1 /						
KB m	1.233	0 1		. <u></u>						
KG fluid m	1.855			+/						
BMt m	1.75	E 2 0		- <u> /</u>						
BML m	8.163			/						
GMt corrected m	1.111	-0.1	/	·)						
GML corrected m	7.524									
KMt m	2.983	-02	/							
KML m	9.396	-03		.)						
Immersion (TPc) tonne/cm	0.396									
MTc tonne.m	0.177	-0.4	<u> </u>							
RM at 1deg = GMt.Disp.sin(1) ton	0.849			1						
Max deck inclination deg	13.7	·0.5		Ó		40	80 Hoolto Starboard	don 1	20	160
Trim angle (+ve by stern) deg	13.6	GZ= -0.035	m Heel to Start	ooard = 0.000 deg	. Area (from	zero heel)	= 0 m.deg.	uey.		

HSC2000 Ch2. All craft	2.6.11.1 Min. freeboard at damaged equilibrium				Fail
	the min. freeboard of the	Downflood	ingPoints		
	shall be greater than (>)	1	m	-0.256	Fail

Κεφάλαιο 5ο Υπολογισμός Αντίστασης και Επιλογή Προωστήριας Εγκατάστασης

Ο ακριβής υπολογισμός της αντίστασης ρυμούλκησης του σχεδιασμένου πλοίου γίνεται με χρήση εξειδικευμένου για αυτό λογισμικού.

Στο μενού του προγράμματος επιλέγεται η μέθοδος επίλυσης Savitsky (Savitsky planning), με εύρος ταχυτήτων 25-60 knots. Παρατίθεται πίνακας με κάποια χαρακτηριστικά του σκάφους που αναγνωρίζει το λογισμικό προκειμένου να εκτελέσει την σχετική ανάλυσή του.

Characteristic	Value	Units
LWL	18.659	m
Beam	5.047	m
Draft	1.083	m
Displaced volume	49.289	m^3
Wetted area	97.939	m^2
Prismatic coeff.	0.839	
Waterplane area coeff.	0.885	
1/2 angle of entrance	31.22	deg.
LCG from midships(+ve for'd)	-1.419	m
Transom area	3.148	m^2
Transom wl beam	5.047	m
Transom draft	1.083	m
Max sectional area	3.148	m^2
Bulb transverse area	0	m^2
Bulb height from keel	0	m
Draft at FP	1.09	m
Deadrise at 50% LWL	19.99	deg.
Hard chine or Round bilge	Hard chine	

Τα αποτελέσματα του προγράμματος είναι οι τιμές της προκύπτουσας αντίστασης και της απαιτούμενης ισχύος ρυμούλκησης ΕΗΡ για κάθε ταχύτητα πλεύσης του πλοίου και δίνονται σε μορφή πίνακα και σε μορφή διαγράμματος, τα οποία παρατίθενται παρακάτω.

Speed	Savitsky planing	Savitsky planing			
(kts)	Resist. (kN)	Power (kW)			
25					
25.88	62.03	825.68			
26.75	63.06	867.79			
27.63	63.95	908.83			
28.5	64.71	948.81			
29.38	65.37	987.8			
30.25	65.93	1025.92			
31.13	66.41	1063.32			
32	66.83	1100.15			
32.88	67.2	1136.59			
33.75	67.55	1172.82			
34.63	67.87	1209			
35.5	68.19	1245.31			
36.38	68.5	1281.9			
37.25	68.83	1318.9			
38.13	69.16	1356.47			
39	69.52	1394.72			
39.88	69.89	1433.77			
40.75	70.3	1473.74			
41.63	70.74	1514.71			
42.5	71.2	1556.78			
43.38	71.71	1600.04			
44.25	72.24	1644.57			
45.12	72.82	1690.44			
46	73.43	1737.72			
46.88	74.08	1786.48			
47.75	74.77	1836.78			
48.62	75.5	1888.67			
49.5	76.27	1942.2			
50.38	77.08	1997.44			
51.25	77.92	2054.43			
52.13	78.81	2113.22			
53	79.73	2173.85			
53.88	80.69	2236.36			
54.75	81.69	2300.81			
55.63	82.72	2367.22			
56.5	83.8	2435.63			
57.37	84.91	2506.09			
58.25	86.05	2578.64			
59.13	87.23	2653.3			
60	88.45	2730.11			

ΔΙΑΓΡΑΜΜΑ ΙΣΧΥΟΣ ΕΗΡ - ΤΑΧΥΤΗΤΑΣ V ΠΛΟΙΟΥ ΈΡΜΗΣ

ΘΕΜΑ ΜΕΛΕΤΗΣ ΤΑΧΥΠΛΟΟΥ ΣΚΑΦΟΥΣ ΕΙΔΙΚΩΝ ΑΠΟΣΤΟΛΩΝ-ΧΡΥΣΑΪΔΟΣ ΧΡΗΣΤΟΣ

Με βάση τα ανωτέρω αποτελέσματα παρατηρούμε ότι το σκάφος αρχίζει να ολισθαίνει στην ταχύτητα των 25,88 κόμβων που αντιστοιχεί σε αριθμό Froude μεταξύ 0,95 και 1. Οι τιμές των απαιτούμενων ισχύων που προκύπτουν για κάθε ταχύτητα υποδεικνύουν ουσιαστικά την εγκατεστημένη ισχύ που θα πρέπει να έχει κάθε κύρια μηχανή του πλοίου, με το δεδομένο ότι ο συνολικός βαθμός απόδοσης της προωστηρίου εγκατάστασης είναι γύρω στο 0,6984 (72% απόδοση waterjet και 97% απόδοση ενδιάμεσου μειωτήρα). Συνολική απαιτούμενη ισχύς ρυμούλκησης για ταχύτητα 60 κόμβους προκύπτει 2730,11 KW=3712,95 PS, συνεπώς αντίστοιχη εγκατεστημένη ισχύς 3909,092 KW, λίγο μεγαλύτερη από αυτήν που υπολογίστηκε με την σύνομη μέθοδο Savitsky στο κεφάλαιο 2.

Όπως έχει καθοριστεί, οι κύριες μηχανές του πλοίου θα είναι δύο. Από τους ιστότοπους διαφόρων τύπων μηχανών προκύπτει ότι το μέγεθος κ α το βάρος των αντίστοιχων απαιτούμενων μηχανών είναι πολύ μεγάλα και δεν δύνανται να εξυπηρετήσουν τον υπάρχοντα σχεδιασμό του σκάφους. Έτσι καθορίζεται τελικά ως μέγιστη ταχύτητα για το σχεδιασμένο σκάφος αυτή των 59 κόμβων. Βάσει αυτής προκύπτει από τα ανωτέρω στοιχεία Αντίσταση Ρυμουλκήσεως Σκάφους=87,23 KN και αντίστοιχη εγκατεστημένη ισχύς κάθε κύριας μηχανής= 1899,556 KW. Συνέπεια όλων των ανωτέρω είναι να διατηρείται σαν επιλογή η μηχανή τύπου 16V 2000 M94 ισχύος 1939 KW (2600 BHP) εταιρείας MTU. Ίδια παραμένει και η επιλογή των waterjets.

Κεφάλαιο 6ο Μελέτη Αντοχής πλοίου

Το σχεδιασμένο σκάφος είναι μικρού μήκους ταχύπλοο. Η κατηγορία αυτή των πλοίων εξετάζεται σε θέματα τοπικής αντοχής, καθότι τα κρουστικά φορτία που δέχονται τα διάφορα σημεία της γάστρας κατά την σφυρόκρουση του πυθμένα στην πλώρη είναι πολύ πιο έντονα και κρίσιμα για την αντοχή της κατασκευής σε σχέση με την συνολική κάμψη της γάστρας ως δοκού κατά το διάμηκες.

Στο στάδιο της προμελέτης αυτού του πλοίου, η μελέτη της αντοχής του έγγυται στην επιλογή των επαρκών σε υλικό κατασκευαστικών στοιχείων μέσης τομής. Αυτή η επιλογή γίνεται με χρήση του προγράμματος Lloyd's Register SSC V3, το οποίο στηρίζεται στους κανονισμούς του Βρετανικού Νηογνώμονα [10]. Με το ίδιο πρόγραμμα θα γίνει και η σχεδίαση της Μέσης Τομής του σκάφους. Ακολουθούν αναλυτικά τα βήματα κατά την σχετική ανάλυση του προγράμματος.

<u>Βήμα 1º Καθορισμός Στοιχείων Σκάφους</u>

Στην στήλη με την ένδειξη 'entered' στον παρακάτω πίνακα τίθενται οι τιμές των βασικών παραμέτρων του πλοίου προκειμένου να γίνει από το πρόγραμμα η κατηγοριοποίησή του σύμφωνα με τους κανονισμούς του Νηογνώμονα. Στην στήλη με την ένδειξη 'derived' προκύπτουν οι τιμές από υπολογισμούς του προγράμματος. Ο δεξιός πίνακας αφορά την κατηγοριοποίηση του σκάφους.

Property	Units	Entered	Derived
Length Perpendiculars	m	18.659	
Breadth	m	5.396	
Depth	m	3.14	
Rule Length	m	18.099	
Load Line Length	m	22.111	
Length Overall	m	23.087	
Support Girth	m	5.288	
Craft with Chines		Yes	
Maximum Speed	knots	30	
Max Displacement Mass	tonnes	50.51	
Max Displacement Volume	m3	0	49.278
Water Density	kg/m3	1025	
Breadth of Hull between Chines	m	4.748	
Number of Hulls		1	
Waterline Length	m	18.659	

Property	Entered
Craft Type	Mono
Service Area	G3
Service Type	Patrol
HSC Compliant	Yes
LDC Compliant	No
Project Title	HERMES
Hull Material	Aluminium
Superstructure Material	Aluminium

ΘΕΜΑ ΜΕΛΕΤΗΣ ΤΑΧΥΠΛΟΟΥ ΣΚΑΦΟΥΣ ΕΙΔΙΚΩΝ ΑΠΟΣΤΟΛΩΝ-ΧΡΥΣΑΪΔΟΣ ΧΡΗΣΤΟΣ

Στα ανωτέρω στοιχεία σημειώνεται ότι:

-Rule Length=0,969 x Lw

- Load Line Length είναι το μήκος ισάλου που αντιστοιχεί σε βύθισμα 0,85 x D και

-Support Gitrh Gs είναι η εγκάρσια περιμετρική απόσταση στον πυθμένα του σκάφους μεταξύ των ακμών του.

Επίσης ως **μέγιστη τιμή της ταχύτητας** τίθεται **30 κόμβοι** και όχι 60 κόμβοι. Αυτό γίνεται γιατί η διαστατοποίηση των κατασκευαστικών στοιχείων του υπό μελέτη σκάφους θα γίνει με βάση την υπηρεσιακή ταχύτητά του κα μια μέτρια τιμή σημαντικού ύψους κύματος, κατά τα πρότυπα της αντίστοιχης διατιθέμενης μελέτης του πατρικού σκάφους, όπου οι σχετικές τιμές αναφοράς ήταν οι 20 κόμβοι και 1,5 μέτρα. Τίθενται περιοχή επιχειρήσεων **G3**, που αφορά σκάφη με Ακτίνα Ενέργειας μέχρι πιθανό καταφύγιο (**Range of Refuge**) ≤ **150 ναυτικά μίλια**. Ανωτέρω ρυθμίσεις καλύπτουν πλήρως το περιβάλλον επιχειρήσεων του πλοίου, δηλαδή Αιγαίο και Ιόνιο Πέλαγος. Το σκάφος με **μέγιστη ταχύτητα** ≥ **7,19 x** ∇^{1/6} **knots** όπως ορίζεται στους κανονισμούς του Βρετανικού Νηογνώμονα.

<u>Βήμα 2º Καθορισμός Στοιχείων Φορτίσεων Σκάφους (Loadings)</u>

Τίθενται κάποια επιπλέον στοιχεία προκειμένου να υπολογιστούν από το πρόγραμμα κάποιοι παράμετροι που υπεισέρχονται στους υπολογισμούς των παχών των ελασμάτων. Σημειώνεται για αυτά ότι:

-Η τιμή της διαγωγής (running trim angle) λαμβάνεται από την σύντομη μέθοδο Savitsky για ταχύτητα 30 κόμβων, η οποία έγινε σε προηγούμενο κεφάλαιο

-Maximum Breadth of Hull=B_{WL}=5,047m

-Maximum Wave Height = 1,667 x Significant Wave Height

-Taylor's Quotient = Γ =V/ (L_{WL})^{0,5}

-Significant Wave Height και Surviving Wave Height υπολογίζονται από το πρόγραμμα βάσει της επιλεγμένης περιοχής υπηρεσίας G3

-Vertical Acceleration at LCG $\alpha_v = 1.5 \times (\text{trim}) \times L_1 \times (H_1+0.084) \times [5-0.1x(\text{deadrise angle})] \times \Gamma^2 \times 10^{-3}$

όπου $L_1 = L_{WL} \times (B_{PX})^3 / (B_{WL} \times Displ.)$ και $H_1 = Significant Wave Height / B_{WL}$

Property	Units	Entered	Derived
Running Trim Angle	deg	3.1	
Max Breadth of Hull at LCG		5.047	
Draught	m	1.09	
Waterline Length	m	18.659	
Long Centre Gravity	m	7.47	
Significant Wave Height	m		2
Displacement Mass	tonnes	50.51	
Allowable Speed	knots	30	
Froude Number			1.141
Maximum Wave Height	m		3.334
Taylor's Quotient			6.945
Deadrise Angle	deg		
Surviving Wave Height	m		2.58
Displacement Volume	m3		49.278
Vertical Acceleration at LCG	g		2.532
Volumetric Speed Number			13.767
Density	kg/m3	1025	
In Contact With Water		Yes	
Operational Height	m	n/a	
Girth Distance	m	n/a	
Waterline Offset from AP		0	
Hull Type		Partially Su	bmerged
Relative Vertical Speed	knots	0	5.704
Operating Mode		Planing	

<u>Βήμα 3[°] Καθορισμός Ιδιοτήτων Υλικού Κατασκευής (Materials)</u>

Καθορίζονται οι μηχανικές ιδιότητες του Αλουμινίου – συγκεκριμένα του **τύπου 5083 Ο/Η111** που επιλέγεται –, όπως δίδονται στους αντίστοιχους πίνακες των κανονισμών του Βρετανικού Νηογνώμονα.

Property	Units	Entered	Derived
0.2% Proof Stress (Unwelded)	N/mm2	125	
0.2% Proof Stress (Welded)	N/mm2	125	
UTS (Unwelded)	N/mm2	275	
UTS (Welded)	N/mm2	275	
Sigma a	N/mm2	0	125
Modulus of Elasticity	N/mm2	69000	

<u>Βήμα 4^⁰ Επιλογή μορφής διατομής μέσης τομής</u>

Επιλέγεται η μορφή της αντίστοιχης διατομής του πατρικού σκάφους. Αυτό σημαίνει ότι σε κάθε θέση επιλέγονται ενισχυτικά στοιχεία ίδιας μορφής με τα αντίστοιχα του πατρικού σκάφους στην ίδια θέση, λαμβάνοντας υπόψην την διαφοροποίηση των διαστάσεων τους στο υπό μελέτη σκάφος, αλλά διατηρώντας τις ίδιες αναλογίες των αποστάσεων μεταξύ των διαφόρων ενισχυτικών στοιχείων (π.χ. ισαποστάσεις διαμήκων ενισχυτικών). Παρατίθεται παρακάτω ένα σκαρίφημα της μέσης τομής του υπό μελέτη σκάφους, όπου φαίνονται τα προεπιλεγμένα ενισχυτικά στοιχεία και οι τιμές των διαφόρων αποστάσεων μεταξύ τους, τα οποία επιλέγονται βάσει των προλεχθέντων και χρησιμεύουν στο συγκεκριμένο λογισμικό των ενισχυτικών στοιχείων.

Πριν να ακολουθήσει ο ανωτέρω υπολογισμός σημειώνονται κάποιες γενικές παρατητηρήσεις σχετικά με την μορφή της διατομής:

-<u>Ως προς τα εγκάρσια ενισχυτικά</u> η διατομή αποτελείται από το ζυγό καταστρώματος, από δύο νομείς που υποστηρίζουν τα πλευρικά ελάσματα επίσης τύπου L και από μία έδρα διπύθμενου. Επειδή η συγκεκριμένη διατομή βρίσκεται εντός ορίων δεξαμενής καυσίμου, η έδρα διαθέτει οπές επικοινωνίας.

-<u>Ως προς τα διαμήκη ενισχυτικά</u>η διατομή αποτελείται από την τρόπιδα, την κεντρική σταθμίδα, τρείς πλευρικές σταθμίδες, τα διαμήκη ενισχυτικά πυθμένα τύπου Τ, τα διαμήκη ενισχυτικά πλευρικών ελασμάτων τύπου L και τις διαδοκίδες κυρίου καταστρώματος τύπου T.

-<u>Ως προς τα ελάσματα</u> η διατομή αποτελείται από το έλασμα του κυρίου καταστρώματος, το πλευρικό έλασμα, το έλασμα οροφής του διπύθμενου, το έλασμα της τρόπιδας και το έλασμα του πυθμένα. Σύμφωνα με τους ακολουθούμενους κανονισμούς το πάχος του ελάσματος του πυθμένα διατηρείται μέχρι και την ακμή του σκάφους ή μέχρι και 150 mm πάνω από ίσαλο φορτώσεως, όποιο από τα δύο είναι μεγαλύτερο. Στην προκειμένη περίπτωση είναι μεγαλύτερη η δεύτερη απόσταση που ισούται με 1,09 +0,150 = 1,24. Επίσης θα ληφθεί αργότερα υπόψην ότι το πάχος του ελάσματος της ακμής πρέπει να ισούται με το πάχος του ελάσματος του ελάσματος της τρόπιδας δεν πρέπει να είναι ποτέ μικρότερο του πάχους του ελάσματος πυθμένα.

<u>Βήμα 5º Επεξήγηση άμεσων-ανεξάρτητων παραμέτρων εισόδου του προγράμματος</u>

Ως προς τις σημαντικές αποστάσεις-παραμέτρους υπολογισμών, οι οποίες τίθενται σαν δεδομένα στους πίνακες υπολογισμών που θα ακολουθήσουν, διακρίνονται τα ακόλουθα:

1) ισαπόσταση διαμηκών ενισχυτικών (stiffener spacing) S, η οποία φαίνεται στο παρακάτω σκαρίφημα της μέσης τομής για τα ελάσματα του πυθμένα, της πλευράς και του κυρίου καταστρώματος.

2) κυρτότητα (curvature) C_u, η οποία λαμβάνεται μηδενική για όλα τα ελάσματα και τα ενισχυτικά της εν λόγω διατομής.

3) ανυποστήρικτο μήκος ενισχυτικού (stiffener spacing) l_u. Για τα διαμήκη στοιχεία λαμβάνεται ίσο με την απόσταση μεταξύ των κύριων νομέων, δηλαδή 1 μέτρο στην προκειμένη περίπτωση. Για τα εγκάρσια στοιχεία παρατίθεται το παρακάτω σχέδιο σαν περαιτέρω επεξήγηση για το πώς λαμβάνεται η τιμή του.

Σχήμα 24: ανυποστήρικτο μήκος εγκάρσιου ενισχυτικού (lu)

4) Ύψος από την τρόπιδα h (Height Above Base). Λαμβάνεται η κατακόρυφη απόσταση του χαμηλότερου άκρου κάθε στοιχείου από την γραμμή βάσεως (baseline), καθότι αυτή αποτελεί την χειρότερη περίπτωση για τον υπολογισμό από το πρόγραμμα της εκάστοτε εφαρμοζόμενης πίεσης σχεδιάσεως (design pressure), προκειμένου να εξαχθεί το ελάχιστο απαιτούμενο πάχος κάθε στοιχείου. Σημειώνεται ότι εν λόγω απόσταση δεν μπορεί ποτέ να

τεθεί μεγαλύτερη από το βύθισμα του σκάφους, δηλαδή 1,09 μέτρα στην προκειμένη περίπτωση.

5) Απόσταση διατομής από πρυμναία κάθετο (distance fwd of AP). Λαμβάνεται ίση με 8 μέτρα, όσο δηλαδή απέχει η συγκεκριμένη διατομή από την πρυμναία κάθετο.

<u>Βήμα 6^⁰ Επεξήγηση ενδιάμεσων-εξαρτημένων παραμέτρων εισόδου του προγράμματος</u>

Αναφέρονται κάποιοι ενδιάμεσοι παράμετροι οι οποίοι καθορίζονται από το πρόγραμμα, βάσει των μέχρι τώρα εισαγμένων δεδομένων και σύμφωνα με τους ακολουθούμενους κανονισμούς. Αυτοί οι παράμετροι λαμβάνονται υπόψην από το πρόγραμμα κατά την εκτέλεση των διαφόρων υπολογισμών του.

- Διορθωτικός συντελεστής τύπου υπηρεσίας πλοίου ω = 1 για πλοία PATROL, όπως το υπό μελέτη

- σ_A = 0.2% Proof Stress (Unwelded)= **125 N/mm**²
- σ_{U} = ultimate tensile stress UTS= 275 N/mm²
- συντελεστής k_m = 385/(σ_A + σ_U)= 385 = 0,9625
- σ_{α} (sigma a)= 125 N/mm²
- − συντελεστής υλικού **kα = 125/σ_α=1**
- τάση ${\bf T}_{\alpha}$ = ${\bf \sigma}_{\alpha}$ / 3^{0,5}
- απόσταση από το πρωραίο άκρο της ισάλου σχεδιάσεως x=10,659 m
- συντελεστής μορφής γάστρας ∇_{w} = 1,5 επειδή x > 0,45 L_{WL}
- Πίεση Pe =1 +[∇_w (x / L_{WL} -0,45)²] e^{-0,0044L_{WL}} (kN/m²)
- Υδροδυναμική Πίεση ασκούμενη στον πυθμένα $Pw = 0,78L_{wL}(h/2T + 0,5)$ Pe (kN/m²)

- Πίεση λόγω προνευτασμού ασκούμενη στον πυθμένα $P_p = 11 (2x/ L_{wL} -1)(L_{wL})^{0.5}$ (kN/m²)

συντελεστής Φ. Λαμβάνει τιμή 1 στο 0,5L_{WL} και τιμή 0,5 στο πρυμναίο άκρο της ισάλου σχεδίασης. Το πρόγραμμα του προσδίδει μια τιμή κάνοντας γραμμική παρεμβολή, καθότι η υπό εξέταση διατομή βρίσκεται στο 0,429 L_{WL}= 8 m

- Κρουστική Πίεση ασκούμενη στον πυθμένα P_{dl} = [54 Displ. Φ (1+ α_v)]/ L_{wL} Gs (kN/m²)

- Κρουστική Πίεση ασκούμενη στο πρωραίο τμήμα $P_f = Pw$ επειδή $x < 0,75 L_{wL}$ (kN/m²)

- Πίεση P_{hl} = 10(T-h) (kN/m²)

- Συντελεστής χαρακτηρισμού γάστρας H_f = 1 για HSC σκάφη, όπως το υπό μελέτη
- Συντελεστής χαρακτηρισμού περιοχής υπηρεσίας **G**_f = 1 για περιοχή υπηρεσίας **G3**
- Συντελεστής χαρακτηρισμού τύπου υπηρεσίας S_f = 1,2 για σκάφος PATROL
- Συντελεστής χαρακτηρισμού τύπου σκάφους C_f = 1 για μονόγαστρο σκάφος

- Συντελεστής τύπου ενισχυτικού δ_{f.} Λαμβάνει τιμή 0,5 για πρωτεύοντα ενισχυτικά και τιμή
 0,8 για δευτερεύοντα ενισχυτικά και εγκάρσιους δοκούς

- Πίεση Σχεδίασης (Design Pressure) του πυθμένα **Ρ**_{B.} Λαμβάνεται ως η **μεγαλύτερη από**:

- (α) Hf Sf Pw + Phl
- (β) Hf Sf Pp + Phl
- (γ) Hf Sf Cf Pdl
- (δ) Hf Gf Sf Cf Pf

Πίεση Σχεδίασης (Design Pressure) του πυθμένα για τα ενισχυτικά P_{BF.} Λαμβάνεται ως η μεγαλύτερη από:

(α) δ f (Hf Sf Pw + Phl) (β) δ f (Hf Sf Pp + Phl) (γ) δ f (Hf Sf Cf Pfb)

- Συντελεστής ροπής αντίστασης Φ_z , συντελεστής επιφάνειας στελέχους ενισχυτικού Φ_A και συντελεστής ροπής αδράνειας Φ_I , εξαρτώμενοι από τον τύπο φόρτισης (load model) και το είδος ενισχυτικού, που λαμβάνονται από τον παρακάτω πίνακα.

Load model	1	Position 2	3	Position	Web area coefficient Φ _A	Section modulus coefficient Φ _Z	Inertia coefficient Φ _I	Application
(a)				1 2 3	1/2 1/2	1/12 1/24 1/12	1/384	Primary and other members where the end fixity is considered encastre
(b)				1 2 3	1/2 1/2	1/10 1/10 1/10	1/288	Local, secondary and other members where the end fixity is considered to be partial
(c)				1 2 3	6/8 - 3/8	1/8 9/128 _	- 1/185 -	Various
(d)			4390/33c	1 2 3	1 - -	1/2 - -	- 1/8	Various
(0)	t			1 2 3	1/2 - 1/2	1/8 -	5/384 _	Hatch covers, glazing and other members where the ends are simply supported

-Αναλογία διαστάσεων ελάσματος (panel aspect ratio) A_R = panel length / panel breadth

-Συντελεστής ροπής κάμψης \mathbf{f}_{σ} και συντελεστής διατμητικής δύναμης \mathbf{f}_{τ} που λαμβάνονται σύμφωνα με τον παρακάτω πίνακα.

	Limiting stress coefficient			
ltem	Bending fo	Shear / _T	Equivalent fe	
Shell envelope: (a) Bottom shell plating: • elsewhere	0,85 0,75	-	-	
(b) Side shell plating: stamming zone elsewhere	0,85 0,75	-	-	
(c) Keel	0,75	-	-	
Bottom structure: (a) Secondary stiffening: • slamming zone • elsewhere	0,75 0,85	0,75 0,65	-	
(b) Primary girders and web frames	0,65	0,65	0,75	
(c) Engine girders	0,55	0,55	0,75	
Side structure: (a) Secondary stiffening: • elsewhere	0,75 0,65	0,75 0,65	-	
(b) Primary girders and web frames	0,65	0,65	0,75	
Bow doors: (a) Plating	0,65	-	-	
(b) Secondary stiffening	0,51	0,433	-	
(c) Primary stiffening	0,51	0,34	0,64	
Main/strength deck plating and stiffeners: (a) Plating	0,75	-	-	
(b) Secondary stiffening	0,65	0,65	-	
(c) Primary girders and web frame	0,65	0,65	0,75	
(d) Hatch covers	0,55	0,55	0,64	
Superstructures/deckhouses: (a) Deckhouse front, 1st tier:	0,65 0,60	0.60	Ξ	
(b) Deckhouse front, upper tiers:	0,75 0,85	0,65	-	
(c) Deckhouse aft and sides:	0,75 0,75	0.75	-	
(d) Coachroof:	0,65 0,65	0,65	-	
(e) House top: plating stiffening	0,75 0,75	0.75	-	
(f) Lower/inner decks and house top, subject to personnel loading:	0,75 0,60	0,60	-	

- Συντελεστής διάχυσης ενισχυτικού \mathbf{f}_{δ} σύμφωνα με τον παρακάτω πίνακα.

	Item	Deflection ratio, f ₈
Bottom structure:	 secondary stiffening primary girders and web frames 	475 625
Side structure:	 secondary stiffening primary girders and web frames 	475 625
Main/strength deci	 structures: secondary stiffening primary girders and web frames hatch covers 	625 775 775
Superstructures/de	ockhouses stilleners:	
(a) Generally:	secondaryprimary	400 475
(b) Coachroof:	secondaryprimary	475 625
(c) House top:	secondaryprimary	400 400
Lower/inner decks personnel loading:	 and house top, subject to secondary members primary members 	475 625
Deep tank structure	es:	
(a) Stiffeners:	 secondary members primary members 	625 775
Watertight bulkhea	d structures:	
(a) Stiffeners:	 secondary members primary members 	400 475
Multi-hull cross-de	ck structures:	
(a) Stiffeners:	 secondary members primary members 	475 625
Vehicle deck struct	ures:	
(a) Stiffeners:	 secondary members primary members 	625 775
Helicopter/flight de	oks:	
(a) Stiffeners:	secondary membersprimary members	625 775
NOTE Where significant of breadth of the part	urvature exists over the span of the allowable deflections	f the stiffener or will be specially

<u>Βήμα 7^⁰ Επεξήγηση των αποτελεσμάτων του προγράμματος</u>

Οι ανωτέρω παράμετροι υπεισέρχονται στους διάφορους τύπους υπολογισμού του ελάχιστου απαιτούμενου πάχους ενισχυτικού κάθε ελάσματος και των απαιτούμενων ροπών αντίστασης και αδράνειας εκάστοτε ενισχυτικού. Παρακάτω παρατίθενται συγκεντρωτικά οι εν λόγω τύποι για κάθε περίπτωση.

Born	Minimum thickness (mm)						
item	Mono-hull	Hydrofoil	Rigid inflatable boat (RIB)				
Shell envelope Bottom shell plating	$\omega \sqrt{k_{m}} (0.7 \sqrt{L_{R}} + 1.0) \ge 4.0 \omega$	$\omega\sqrt{k_{\rm m}}(0.7\sqrt{L_{\rm R}}+1.0)\geq4.0~\omega$	$\omega \sqrt{k_{m}} (0.7 \sqrt{L_{R}} + 1.0) \ge 4.0 \omega$				
Side shell plating	$\infty \sqrt{k_{\rm m}} \left(0.5 \sqrt{L_{\rm H}} + 1.4 \right) \ge 3.5 \infty$	$_{\infty}\sqrt{k_{m}}\left(0.5\sqrt{L_{R}}+1.4\right)\geq3.5\;\infty$	$\scriptstyle \scriptstyle $				
Single bottom structure Centre girder web	$\omega \sqrt{k_{m}} (1, 1\sqrt{L_{R}} + 1, 4) \ge 5.0 \omega$	$\omega \sqrt{k_{m}} (1.1\sqrt{L_{R}} + 1.4) \ge 5.0 \omega$	$\omega \sqrt{k_{m}} (1, 1\sqrt{L_{R}} + 1, 4) \ge 5.0 \omega$				
Floor webs	$\omega \sqrt{k_{\rm III}} (0.8 \sqrt{L_{\rm R}} + 1.1) \ge 4.0 \omega$	$\omega \sqrt{k_{\rm m}} (0.8 \sqrt{L_{\rm R}} + 1.1) \ge 4.0 \omega$	$\infty \sqrt{k_{m}} (0.8\sqrt{L_{R}} + 1.1) \ge 4.0 \infty$				
Side girder webs	$\omega \sqrt{k_{\rm m}} (0.8 \sqrt{L_{\rm R}} + 1.1) \ge 4.0 \omega$	$\omega \sqrt{k_{\text{m}}} (0.8\sqrt{L_{\text{R}}} + 1.1) \ge 4.0 \omega$	$\omega \sqrt{k_{m}} (0.8\sqrt{L_{R}} + 1.1) \ge 4.0 \omega$				
Double bottom structure Centre girder							
(1) Within 0,4L _R amidships	$\omega \sqrt{k_{\rm m}} (1.1 \sqrt{L_{\rm H}} + 1.4) \ge 5.0 \omega$	$_{\infty}\sqrt{k_{m}}\left(1,1\sqrt{L_{R}}+1,4\right)\geq5,0\;\omega$	$\omega\sqrt{k_{m}}\left(1,1\sqrt{L_{R}}+1,4\right)\geq5.0\omega$				
(2) Outside 0,4L _R amidships	$\omega \sqrt{k_{m}} (0.95 \sqrt{L_{R}} + 1.4) \ge 5.0 \omega$	$\omega\sqrt{k_{m}}(0.95\sqrt{L_{R}}+1.4) \ge 5.0 \omega$	$\omega\sqrt{k_{m}}\left(0.95\sqrt{L_{R}}+1.4\right)\geq5.0~\omega$				
Floors and side girders	$\omega \sqrt{k_{m}} (0.8\sqrt{L_{R}} + 1.1) \ge 4.0 \omega$	$\omega \sqrt{k_{m}} (0.8\sqrt{L_{R}} + 1.1) \ge 4.0 \omega$	$\infty \sqrt{k_{m}} (0.8\sqrt{L_{R}} + 1.1) \ge 4.0 \infty$				
Inner bottom plating	$\omega \gamma \overline{k_{m}} (0.7 \sqrt{L_{R}} + 1.3) \ge 3.5 \omega$	$\omega\sqrt{k_{m}}\left(0.7\sqrt{L_{R}}+1.3\right)\geq3.5\;\omega$	$\omega \sqrt{k_{m}} (0.7\sqrt{L_{B}} + 1.3) \ge 3.5 \omega$				
Bulkheads Watertight bulkhead plating	$\omega \sqrt{k_m} (0.43 \sqrt{L_R} + 1.2) \ge 3.0 \omega$	$\omega \sqrt{k_{m}} (0.43 \sqrt{L_{R}} + 1.2) \ge 3.0 \omega$	$\omega\sqrt{k_{m}}(0.43\sqrt{L_{R}}+1.2) \ge 3.0 \omega$				
Deep tank bulkhead plating	$\omega \sqrt{k_{m}} (0.5\sqrt{L_{R}} + 1.4) \ge 3.5 \omega$	$\omega\sqrt{k_{m}}\left(0.5\sqrt{L_{R}}+1.4\right)\geq3.5\omega$	$\omega\sqrt{k_{m}}\left(0.5\sqrt{L_{R}}+1.4\right)\geq3.5\;\omega$				
Deck plating and stiffeners Strength/Main deck plating	$_{\infty}\sqrt{k_{m}}\left(0.5\sqrt{L_{B}}+1.4\right)\geq3.5~\infty$	$\omega\sqrt{k_{m}}(0.5\sqrt{L_{R}}+1.4) \ge 3.5 \omega$	$_{\infty}\sqrt{k_{m}}(0.5\sqrt{L_{R}}+1.4) \ge 3.5 \infty$				
Lower deck/Inside deckhouse	$\omega \sqrt{k_{\rm m}} (0.3\sqrt{L_{\rm R}} + 1.3) \ge 3.0 \omega$	$\infty\sqrt{k_{m}}(0,3\sqrt{L_{R}}+1,3) \ge 3.0 \infty$	$_{\infty}\sqrt{k_{m}}\left(0,3\sqrt{L_{R}}+1,3\right)\geq3,0\infty$				

Απαιτήσεις ελάχιστου πάχους ελασμάτων

Απαιτήσεις ενισχυτικών για:

α) Ροπή αντίστασης Ζ

 $Z = \Phi_Z P_B S (I_u)^2 / f_\sigma \sigma_\alpha cm^3$

β) Ροπή Αδράνειας Ι

 $I = [\Phi_1 f_{\delta} P_B S (I_{\mu})^3 / E] \times 100 \text{ cm}^4$

γ) Επιφάνεια διάτμησης λαιμού ενισχυτικού Aw

 $A_w = \Phi_A P_B S I_u / 100 f_T T_\alpha cm^2$

Βήμα 8^⁰ Καθορισμός κατασκευαστικών στοιχείων διατομής

Παρατίθενται οι πίνακες υπολογισμών στοιχείων των κατασκευαστικών μερών της διατομής, όπως προκύπτουν στο περιβάλλον του λογισμικού. Εν λόγω στοιχεία διαμορφώθηκαν σύμφωνα με όλα τα προαναφερθέντα. Τα πάχη των ελασμάτων που επιλέγονται σημειώνονται με κόκκινο χρώμα. Για τα ελάσματα υφίσταται ένας πίνακς υπολογισμού, ενώ για ενισχυτικά δύο πίνακες, από τους οποίους ο δεύτερος στη σειρά δείχνει αναλυτικά όλες τις διαστάσεις και τα προκύπτοντα στοιχεία της διατομής κάθε ενισχυτικού (profile panel).

- <u>έλασμα πυθμένα</u>	(bottom shell plate)

Property	Units	Entered	Derived	Required
Curvature	mm	0		
Panel Breadth	mm		315	
Panel Length	m	1		
Panel Aspect Ratio			3.175	
Stiffener Spacing	mm	315		
Thickness	mm	8		7.14
Alloy		Aluminium Material		
Slamming Zone		Yes		
Below Tangential Point		Yes		
Height above Base	m	0		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		108.809	

Διαμήκη ενισχυτικά πυθμένα (Bottom Long Pr. Stif.)

Property	Units	Entered	Derived	Required
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	mm	315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm	0	315	
Profile		Built T (Al)Bottom Long Pr. Stif.		
Section Modulus	cm3		18.218	17.577
Inertia			105.085	40.425
Web Area	cm2		2.2	1.827
Angle of Web to Plate	deg	90		
Below Tangential Point		Yes		
Height above Base	m	0.139		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	

PROFILE PANEL

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		3.754	
Inertia X-X	cm4		16.295	
Web Area	cm2		2.2	
Inertia Y-Y	cm4		3.229	
Section Modulus Y-Y	cm3		1.615	
Web Depth	mm	55		
Web Thickness	mm	4		3
Total Area	cm2		4.6	
Product Moment of Area	cm4		0	
Flange Thickness	mm	6		
Flange Breadth	mm	40		
Flange Area	cm2		2.4	

−<u>έλασμα τρόπιδας (plate keel).</u>

Παρόλο που όπως φαίνεται στον πίνακα δύναται να επιλεχθεί μικρότερο, επιλέγεται πάχος 8 mm γιατί σύμφωνα με τους κανονισμούς δεν επιτρέπεται να είναι μικρότερο από το πάχος του ελάσματος πυθμένα.

Property	Units	Entered	Required	
Alloy		Aluminium Material		
Breadth	mm	480	466.693	
Thickness	mm	8	6.81	

-έλασμα ακμής (chine plate)

Σύμφωνα με τους κανονισμούς το πάχοε του ελάσματοε της ακμής πρέπει να ισούται με το αντίστοιχο απαιτούμενου του πυθμένα, προσαυξημένο κατά 20% ή κατά 6 mm, όποιο από τα δύο είναι μεγαλύτερο. Στην προκειμένη περίπτωση, με ελάχιστο απαιτούμενο πάχος ελάσματος πυθμένα 7,14 mm, προκύπτει προσαύξηση κατά 20% = 1,6 mm. Άρα επιλέγεται η προσαύξηση των 6 mm, οπότε προκύπτει απαιτούμενο πάχος ελάσματος ακμής = 13,14 mm. Τελικά επιλέγεται πάχος **14 mm**.

- δοκός τρόπιδας (bar keel)

Property	Units	Entered	R	equired	
Alloy		Aluminium N	Aluminium Material		
Area	cm2	3	6	35.483	
Thickness	mm	2	21	20.919	

κεντρική σταθμίδα (center girder)

Property	Units	Entered	Derived	Required
Web Depth	mm		857	630
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	m	0.315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		315	
Profile		Built T (Al) Center Girder		
Section Modulus	cm3		2750.797	17.577
Inertia			128683.9	40.425
Web Area	cm2		154.26	1.827
Angle of Web to Plate	deg	70		
Below Tangential Point		Yes		
Height above Base	m	0		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	
Web Thickness	mm		18	6.534

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		2321.789	
Inertia X-X	cm4		102168.7	
Web Area	cm2		154.26	
Inertia Y-Y	cm4		44.8	
Section Modulus Y-Y	cm3		29.867	
Web Depth	mm	857		
Web Thickness	mm	18		17.14
Total Area	cm2		158.46	
Product Moment of Area	cm4		0	
Flange Thickness	mm	14		
Flange Breadth	mm	30		
Flange Area	cm2		4.2	

PROFILE PANEL

- πλευρική σταθμίδα No 1(side girder No 1)

Property	Units	Entered	Derived	Required
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	m	0.315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		315	
Profile		Built T (Al) Side Girder No 1		
Section Modulus	cm3		1366.361	17.577
Inertia			52371.55	40.425
Web Area	cm2		91.84	1.827
Angle of Web to Plate	deg	70		
Below Tangential Point		Yes		
Height above Base	m	0.217		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	
Property	Units	Entered	Derived	Required
------------------------	-------	---------	----------	----------
Section Modulus X-X	cm3		1060.602	
Inertia X-X	cm4		35764.47	
Web Area	cm2		91.84	
Inertia Y-Y	cm4		15.867	
Section Modulus Y-Y	cm3		15.867	
Web Depth	mm	656		
Web Thickness	mm	14		13.12
Total Area	cm2		94.44	
Product Moment of Area	cm4		0	
Flange Thickness	mm	13		
Flange Breadth	mm	20		
Flange Area	cm2		2.6	

- πλευρική σταθμίδα No 2 (side girder No 2)

Property	Units	Entered	Derived	Required
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	m	0.315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		315	
Profile		Built T (Al) Side Girder No 2		
Section Modulus	cm3		472.735	17.577
Inertia			13544.09	40.425
Web Area	cm2		38.43	1.827
Angle of Web to Plate	deg	70		
Below Tangential Point		Yes		
Height above Base	m	0.434		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		305.992	
Inertia X-X	cm4		6927.731	
Web Area	cm2		38.43	
Inertia Y-Y	cm4		3.394	
Section Modulus Y-Y	cm3		3.394	
Web Depth	mm	427		
Web Thickness	mm	9		8.54
Total Area	cm2		40.83	
Product Moment of Area	cm4		0	
Flange Thickness	mm	12		
Flange Breadth	mm	20		
Flange Area	cm2		2.4	

- πλευρική σταθμίδα No 3 (side girder No 3)

Property	Units	Entered	Derived	Required
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	m	0.315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		315	
Profile		Built T (Al) Side Girder No 3		
Section Modulus	cm3		90.966	17.577
Inertia			1657.882	40.425
Web Area	cm2		10.95	1.827
Angle of Web to Plate	deg	70		
Below Tangential Point		Yes		
Height above Base	m	0.651		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		47.803	
Inertia X-X	cm4		577.027	
Web Area	cm2		10.95	
Inertia Y-Y	cm4		0.453	
Section Modulus Y-Y	cm3		0.604	
Web Depth	mm	219		
Web Thickness	mm	5		4.38
Total Area	cm2		12.15	
Product Moment of Area	cm4		0	
Flange Thickness	mm	8		
Flange Breadth	mm	15		
Flange Area	cm2		1.2	

−<u>έλασμα οροφής διπύθμενου-εσωτερικού καταστρώματος (inner bottom plate)</u>

Property	Units	Entered	Derived	Required
Curvature	mm	0		
Panel Breadth	mm		591	
Panel Length	m	1		
Panel Aspect Ratio			1.692	
Stiffener Spacing	mm	591		
Thickness	mm	6		5.45
Alloy		Aluminium Material		
Height above Base	m	0.871		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		16.672	

−<u>έλασμα</u> <u>έδρας (floor plate)</u>

Property	Units	Entered	Derived	Required
Alloy		Aluminium Material		
Effective Span	m	1.3		
Stiffener Spacing	mm	315		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		315	
Profile		Built T (Al) Plate Floor DB		
Section Modulus	cm3		2956.096	29.705
Inertia			145313.6	88.813
Web Area	cm2		154.08	2.375
Angle of Web to Plate	deg	90		
Below Tangential Point		Yes		
Height above Base	m	0		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		54.405	
Web Thickness	mm		18	6.017

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		2324.85	
Inertia X-X	cm4		102376.7	
Web Area	cm2		154.08	
Inertia Y-Y	cm4		44.977	
Section Modulus Y-Y	cm3		29.984	
Web Depth	mm	856		
Web Thickness	mm	18		17.12
Total Area	cm2		158.58	
Product Moment of Area	cm4		0	
Flange Thickness	mm	15		
Flange Breadth	mm	30		
Flange Area	cm2		4.5	

-έλασμα κυρίου καταστρώματος (weather deck plate)

Property	Units	Entered	Derived	Required
Curvature	mm	0		
Panel Breadth	mm		441	
Panel Length	m	1		
Panel Aspect Ratio			2.268	
Stiffener Spacing	mm	441		
Thickness	mm	5		4.002
Alloy		Aluminium Material		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		15.386	

-διαμήκη ενισχυτικά κυρίου καταστρώματος (Weather Deck pri. Stif.)

Property	Units	Entered	Derived	Required
Distance FWD of AP	m	8		
Design Pressure	kN/m2		7.693	
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	mm	441		
Thickness of Attached Plate	mm	5		
Width of Attached Plate	mm		441	
Profile		Built T (Al) W Deck Pr. Stif.		
Section Modulus	cm3		4.002	3.48
Inertia			15.747	9.923
Web Area	cm2		1.4	0.362
Angle of Web to Plate	deg	90		

Property	Units	Entered	Derived	Required
Section Modulus X-X	cm3		1.299	
Inertia X-X	cm4		3.034	
Web Area	cm2		1.4	
Inertia Y-Y	cm4		0.131	
Section Modulus Y-Y	cm3		0.175	
Web Depth	mm	35		
Web Thickness	mm	4		3
Total Area	cm2		2	
Product Moment of Area	cm4		0	
Flange Thickness	mm	4		
Flange Breadth	mm	15		
Flange Area	cm2		0.6	

- διαδοκίδα κυρίου καταστρώματος (W Deck Transverse W-Frm)

Property	Units	Entered	Derived	Required
Height of Chine	m	0.871		
Height above Base	m	1.09		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		50.729	
Alloy		Aluminium Material		
Effective Span	m	4.8		
Stiffener Spacing	mm	441		
Thickness of Attached Plate	mm	5		
Width of Attached Plate	mm		441	
Profile		Built L (Al)W Deck Transverse W-Frm		
Section Modulus	cm3		530.337	528.654
Inertia			6369.883	5836.024
Web Area	cm2		25.8	11.446
Angle of Web to Plate	deg	90		

Property	Units	Entered	Derived	Required
Flange Offset	mm		6	
Section Modulus X-X	cm3		157.024	
Inertia X-X	cm4		2487.726	
Web Area	cm2		25.8	
Inertia Y-Y	cm4		1308.002	
Section Modulus Y-Y	cm3		98.77	
Web Depth	mm	215		
Web Thickness	mm	12		4.3
Total Area	cm2		46.8	
Product Moment of Area	cm4		1070.894	
Flange Thickness	mm	12		
Flange Breadth	mm	175		
Flange Area	cm2		21	

-έλασμα πλευράς (side shell plate)

Property	Units	Entered	Derived	Required
Curvature	mm			
Panel Breadth	mm		331	
Panel Length	m	1		
Panel Aspect Ratio			3.021	
Stiffener Spacing	mm	331		
Thickness	mm	8		7.245
Alloy		Aluminium Material		
Height of Chine	m	0.871		
Height above Base	m	1.09		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		101.458	
Slamming Zone		Yes		

Σημειώνεται ότι σύμφωνα με τους κανονισμούς, το πάχος του ελάσματος του πυθμένα επεκτείνεται μέχρι και το επίπεδο των ακμών ή μέχρι και 150 mm πάνω από την έμφορτη ίσαλο, όποια από τα δύο είναι μεγαλύτερο. Επειδή όμως το πάχος του ελάσματος πλευράς προκύπτει, όπως φαίνεται στον παραπάνω πίνακα, ίδιο με αυτό του ελάσματος πυθμένα (8 mm), δεν υπάρχει κάποια περαιτέρω διαφοροποίηση σύμφωνα με τον ανωτέρω κανονισμό.

-Διαμήκη ενισχυτικά πλευράς (Side Long. Pri. Stif.)

Property	Units	Entered	Derived	Required
Height of Chine	m	0.871		
Height above Base	m	1.09		
Distance FWD of AP	m	8		
Design Pressure	kN/m2		50.729	
Alloy		Aluminium Material		
Effective Span	m	1		
Stiffener Spacing	mm	331		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm		331	
Profile		Built L (Al) Side Long. Pr.Stif.		
Section Modulus	cm3		17.798	17.222
Inertia			119.003	39.608
Web Area	cm2		2.6	1.79
Angle of Web to Plate	deg	90		

ΘΕΜΑ ΜΕΛΕΤΗΣ ΤΑΧΥΠΛΟΟΥ ΣΚΑΦΟΥΣ ΕΙΔΙΚΩΝ ΑΠΟΣΤΟΛΩΝ-ΧΡΥΣΑΪΔΟΣ ΧΡΗΣΤΟΣ

<u>FROFILE FANEL</u>						
Property	Units	Entered	Derived	Required		
Flange Offset	mm		2			
Section Modulus X-X	cm3		4.724			
Inertia X-X	cm4		22.004			
Web Area	cm2		2.6			
Inertia Y-Y	cm4		4.334			
Section Modulus Y-Y	cm3		1.619			
Web Depth	mm	65				
Web Thickness	mm	4		3		
Total Area	cm2		4.35			
Product Moment of Area	cm4		5.674			
Flange Thickness	mm	5				
Flange Breadth	mm	35				
Flange Area	cm2		1.75			

- χαμηλό τμήμα εγκάρσιου πλευρικού νομέα (Side Trans W-Frm Lower)

Property	Units	Entered	Derived	Required
Height of Chine	m	0.871		
Height above Base	m	0.871		
Distance FWD of AP	m	8		
Design Pressure	kN/m2	0	54.405	
Alloy		Aluminium Material		
Effective Span	m	1.603		
Stiffener Spacing	mm	331		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm	0	331	
Profile		Built T (Al) #7 Side Trans W-Frm Lower		
Section Modulus	cm3	0	95.151	47.454
Inertia		0	1115.202	174.937
Web Area	cm2	0	8.4	3.077
Angle of Web to Plate	deg	90		

Property	Units	Entered	Derived	Required			
Section Modulus X-X	cm3	0	30.271				
Inertia X-X	cm4	0	285.627				
Web Area	cm2	0	8.4				
Inertia Y-Y	cm4	0	25.841				
Section Modulus Y-Y	cm3	0	6.08				
Web Depth	mm	140					
Web Thickness	mm	6		3			
Total Area	cm2	0	12.65				
Product Moment of Area	cm4	0	0				
Flange Thickness	mm	5					
Flange Breadth	mm	85					
Flange Area	cm2	0	4.25				

- ανώτερο τμήμα εγκάρσιου πλευρικού νομέα (Side Trans.W-Frm Upper)

Property	Units	Entered	Derived	Required
Height of Chine	m	0.871		
Height above Base	m	0.871		
Distance FWD of AP	m	8		
Design Pressure	kN/m2	0	54.405	
Alloy		Aluminium Material		
Effective Span	m	1.603		
Stiffener Spacing	mm	331		
Thickness of Attached Plate	mm	8		
Width of Attached Plate	mm	0	331	
Profile		Built T (Al) #7 Side Trans W-Frm Lower		
Section Modulus	cm3	0	95.151	47.454
Inertia		0	1115.202	174.937
Web Area	cm2	0	8.4	3.077
Angle of Web to Plate	deg	90		

Property	Units	Entered	Derived	Required
Flange Offset	mm	0	30.271	
Section Modulus X-X	cm3	0	285.627	
Inertia X-X	cm4	0	8.4	
Web Area	cm2	0	25.841	
Inertia Y-Y	cm4	0	6.08	
Section Modulus Y-Y	cm3	140		
Web Depth	mm	6		3
Web Thickness	mm	0	12.65	
Total Area	cm2	0	0	
Product Moment of Area	cm4	5		
Flange Thickness	mm	85		
Flange Breadth	mm	0	4.25	

<u>Βήμα 9⁰ Εκπόνηση κατασκευαστικού σχεδίου Μέσης Τομής</u>

Με βάση τα παραπάνω στοιχεία που υπολογίστηκαν εκπονείται το κατασκευαστικό σχέδιο Μέσης Τομής του υπό μελέτη σκάφους, το οποίο παρατίθεται στο παράρτημα Α.

Κεφάλαιο 7ο Εκπόνηση Σχεδίων Γενικής Διάταξης

Με χρήση του προγράμματος AYTOCAD εκπονούνται τα Σχέδια Γενικής Διάταξης του σκάφους, τα οποία παρατίθενται στο παράρτημα Α.

Κεφάλαιο 8ο Σύνοψη- Συμπεράσματα - Προτάσεις για περαιτέρω μελέτη

Το σκάφος ΈΡΜΗΣ΄ ανήκει στην κατηγορία των ταχύπλοων σκαφών νέας τεχνολογίας, των οποίων η μελέτη παρουσιάζει παραδοσιακά δυσκολίες λόγω της έλλειψης συσσωρευμένης εμπειρίας προγενέστερων κατασκευών, καθώς και της έλλειψης μεθοδολογιών εκτίμησης ομάδων βαρών του πλοίου (πίνακες, παραμετρικοί τύποι που να έχουν προκύψει από την στατιστική ανάλυση δεδομένων) [1]. Στην συγκεκριμένη περίπτωση η υιοθέτηση της μεθόδου Grubisic προσέφερε τα μέγιστα στο να ξεπεραστεί η δυσκολία στην προεκτίμηση του βάρους της μεταλλικής κατασκευής του σκάφους, ενώ η κατοχή των κατασκευαστικό καθορισμό της μορφής της μέσης τομής του εκπονημένου σκάφους.

Όσον αφορά την χρήση συστηματικών σειρών για τον υπολογισμό της αντίστασης του σκάφους, οι περισσότερες διαθέσιμες σειρές ολισθακάτων (π.χ. Σειρά 62, Ολλανδική Σειρά 62, Σειρά 65Α, Σειρά ΒΚ, Σειρά ΜΒΚ, Σειρά Delft) δεν εξυπηρετούσαν τον επιλεχθέντα σχεδιασμό λόγω στενέματος των γραμμών στην πρύμνη τους, κάτι που περιόριζε σημαντικά τον διαθέσιμο όγκο μηχανοστασίου καθιστώντας τον ανεπαρκή για την φιλοξενία κυρίων μηχανών μεγάλου μεγέθους, που υπαγόρευαν οι απαιτήσεις επίτευξης μεγάλης ταχύτητας. Θα μπορούσε να πει κανείς ότι η σχεδιασθείσα μορφή του σκάφους προσεγγίζει αρκετά την συστηματική σειρά 65Β, η οποία χαρακτηρίζεται από φαρδύ σταθερού πλάτους πρυμναίο τμήμα γάστρας (σχήμα 23). Το εύρος τιμών γωνιών ανύψωσης πυθμένα όμως της εν λόγω

MODELS 5188, 5184, 5167

MODELS 5237, 5240, 5239

Επιπλέον των ανωτέρω σημειώνεται ότι οι τιμές των διαστάσεων και της γωνίας ανύψωσης πυθμένα του υπό μελέτη σκάφους επιλέχθηκαν αυστηρά μέσα από μία συλλογιστική συνδυασμού αφενός ικανοποίησης των χωροταξικών απαιτήσεων του σκάφους και αφετέρου ελαχιστοποίησης του βάρους μεταλλικής κατασκευής του, προκειμένου να επιτευχθεί η μέγιστη δυνατή ταχύτητα, η οποία ήταν ιδιαίτερα υψηλή σαν αρχική και βασική απαίτηση σχεδιάσεως του σκάφους. Οι τιμές των λόγων των διαστάσεων που προέκ ψαν (π.χ. L_p/B_{px}), και οι οποίοι χρησιμοποιούνται γενικά σαν παράμετροι εισόδου για την πρόβλεψη της ισχύος διαφόρων μοντέλων των συστηματικών σειρών, δεν συμπίπτουν με καμμία τιμή των υπαρχόντων μοντέλων που εξετάζονται στα πλαίσια της Σειράς 65-Β. Έτσι τελικά η λογική υποστηρίξεως της σχεδίασης με χρήση κάποιας συστηματικής σειράς εγκαταλείφθηκε και σαν "οδηγοί" σχεδίασης απλά υιοθετήθηκαν οι γενικές αρχές της επιλεχθείσας μονοεδρικής πρισματικής γάστρας μορφής βαθιού V καθώς και οι μορφές γάστρας των όμοιων πλοίων. Σαν εργαλείο δε προεκτίμησης της απαιτούμενης ισχύος χρησιμοποιήθηκε η ευρέως διαδεδομένη μέθοδος Savitsky.

Όσον αφορά την συμπεριφορά σε κυματισμούς, παραδοσιακά τα πλοία νέας τεχνολογίας παρουσιάζουν γενικά προβληματική συμπεριφορά λόγω της μεγάλης ταχύτητας υπηρεσίας τους και του μικρού τους εκτοπίσματος (σε σχέση με τις εξωτερικές διαστάσεις τους). Ιδιαίτερα στις ολισθάκατους η ανύψωση της γάστρας πάνω από την ελεύθερη επιφάνεια επιδεινώνει τα προβλήματα συμπεριφοράς σε κυματισμούς, καθώς στην περιοχή της ελεύθερης επιφάνειας η επίδραση των κυματισμών είναι ισχυρότερη [1]. Άλλωστε η ανωστική δύναμη που υποστηρίζει σε μεγάλο βαθμό το βάρος του πλοίου είναι ανάλογη του τετραγώνου της ταχύτητας και βέβαια της βρεχόμενης επιφάνειας του σκάφους. Λόγω της υψηλής αναπτυσσόμενης ταχύτητας η δύναμη είναι πολύ μεγάλη και οδηγεί στην ολίσθηση και την ανύψωση του σκάφους πάνω από την επιφάνεια της θάλασσας. Σε συνθήκες σημαντικών κυματισμού η τιμή αυτής της δύναμης μεταβάλλεται συνεχώς λόγω της συνεχούς αλλαγής της βρεχόμενης επιφάνειας συνεπεία των κινήσεων του σκάφους (πέραν της μεταβολής της ταχύτητας του σκάφους) με αποτέλεσμα την συνεχώς μεταβαλλόμενη και κατά επέκταση ασταθή συμπεριφορά του σκάφους σε κυματισμούς.

Σε επίπεδο αρχικής προεκτίμησης, η εξαγωγή κάποιων προσεγγιστικών συμπερασμάτων μπορεί να γίνει γενικά με βάση την γωνία ανύψωσης πυθμένα **β** και το πλάτος **B** του σκάφους.

Γενικά μεγάλες τιμές γωνίας ανύψωσης πυθμένα βοηθούν την καλή συμπεριφορά σε κυματισμούς [2]. Στην προκειμένη περίπτωση, το σχεδιασθέν σκάφος έχει μια μέση τιμή από το σύνολο του εύρους τιμών υπαρχόντων γωνιών ανύψωσης πυθμένα. Συνεπώς δεν δύναται εξαχθεί κάποιο τελικό συμπέρασμα για την επίδραση του β στην συμπεριφορά σε κυματισμούς. Από την άλλη παρατηρείται ότι το πλάτος του σχεδιασθέντος πλοίου είναι αρκετά μεγάλο σε σχέση με το μήκος του, αρκετά αυξημένο σε σχέση με αυτό των όμοιων πλοίων. Λογικά αυτό θα έχει μάλλον θετική επίδραση στην ευστάθεια του σκάφους, αφού τα KB και KG δεν εξαρτώνται άμεσα από το πλάτος, ενώ $BM=I_T/\nabla$, όπου η ροπή αδρανείας της ισάλω επιφανείας $I_T \cong \kappa_T LB^3$ (κ_T συντελεστής ιδιομορφίας ισάλου) [11]. Συνεπώς μεγάλο B αυξάνει το BM, άρα και το μετακεντρικό ύψος GM, βάσει της σχέσης GM=KB+BM-KG. Άλλωστε το ίδιο το GM προέκυψε υψηλό – πάνω από 2 μέτρα για όλες τις καταστάσεις φορτώσεως, κάτι που συνηγορεί υπέρ της αρχικής ευστάθειας του πλοίου. Από την άλλη, μεγάλο πλάτος και υψηλό GM συνεπάγονται μικρή ιδιοπερίοδο διατοιχισμού. Με τη σειρά της χαμηλή περίοδος διατοιχισμού προκαλεί υψηλές εγκάρσιες επιταχύνσεις της κατασκευής [11], κάτι που θα είναι αρνητικό για τους επιβάτες του πλοίου. Γενικά όμως για ένα ταχύπλοο σκάφος- όπου λόγω της μεγάλης αναπτυσσόμενης ταχύτητας και της κίνησης μεγάλου μέρους της γάστρας εκτός νερού αυξάνονται οι πιθανότητες ανατροπής συνεπεία της μειωμένης βρεχόμενης ισάλου επιφάνειας, προέχει η εξασφάλιση συνθηκών ασφαλούς πλεύσης κατάλληλων για την μη ανατροπή του σκάφους, έναντι της άνεσης των επιβαινόντων. Έτσι η γρήγορη επαναφορά του σκάφους, η οποία υπαγορεύεται από την χαμηλή περίοδο διατοιχισμού του, κρίνεται ως θετικό στοιχείο για το σχεδιασθέν σκάφος.

Η ακριβής ανάλυση της συμπεριφοράς σε κυματισμούς του σχεδιασθέντος μοντέλου με χρήση κατάλληλου λογισμικού θα μπορούσε να αποτελέσει βασικό μελλοντικό αντικείμενο κατά την περαιτέρω μελέτη του σκάφους. Εφόσον διαπιστωθεί μια μη ικανοποιητική συμπεριφορά, θα μπορεί να εξεταστεί σαν ενδεχόμενο η χρήση πιο σύγχρονων σύνθετων υλικών για την κατασκευή του σκάφους, προκειμένου να μειωθεί το βάρος της μεταλλικής κατασκευής του και έτσι να εξοικονομηθεί επιπλέον ΄΄διαθέσιμο΄΄ περιθώριο βάρους, το οποίο θα αφιερωθεί σε τοποθέτηση συστημάτων ελέγχου κινήσεων σε θαλασσοταραχή (ride control systems). Τα συστήματα αυτά συνήθως αποτελούνται από πτερύγια που κινούνται με την βοήθεια

υδραυλικών κινητήρων, ελέγχονται από ηλεκτρονικούς υπολογιστές και αποδεικνύονται ιδιαίτερα αποτελεσματικά στην βελτίωση της συμπεριφοράς σε κυματισμούς [1].

Η μείωση του βάρους της μεταλλικής κατασκευής ενδεχομένως να επιτρέψει και την δυνατότητα ενσωμάτωσης περισσότερων οπλικών συστημάτων επί του εκπονημένου σκάφους (π.χ. σύστημα εναπόθεσης ναρκών). Επιπλέον θα βοηθήσει και στην μείωση του ίχνους του σκάφους στα πλαίσια μίας ανασχεδίασης της υπερκατασκευής για την κάλυψη απαιτήσεων χαμηλής ανιχνευσιμότητας αυτού. Έτσι προσδοκάται ότι το τελικά σχεδιασθέν σκάφος θα αποτελέσει μια πληρέστερη και αποτελεσματικότερη αμυντική θαλάσσια πλατφόρμα για της ανάγκες της Εθνικής μας Άμυνας.

ΠΑΡΑΡΤΗΜΑ Α

- α. Σχέδιο Ναυπηγικών γραμμών
- β.Κατασκευαστικό σχέδιο Μέσης Τομής
- γ.Σχέδιο Γενικής Διάταξης

ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] ΖΑΡΑΦΩΝΙΤΗΣ, ΄΄Μελέτη και σχεδίαση πλοίων νέας τεχνολογίας΄΄, Ε.Μ.Π

[2] DANIEL SAVITSKY, 'Planing Craft', Naval Engineers Journal, February 1985

[3] Graham Scott, *``*A guide to the Applications of Marine Jet Drives*``*,Ultra Dynamic. Inc., Columbus, Ohio USA, June 2002

[4] IZVOR GRUBISIC, 'Reliability of Weight Prediction on the small craft compact design', University of Zagreb, Croatia

[5] Ε.Κ. ΜΠΟΥΛΟΥΓΟΥΡΗΣ, Α.Δ.ΠΑΠΑΝΙΚΟΛΑΟΥ, ΄Μελέτη και Σχεδίαση πλοίων ειδικού τύπου΄΄, Αθήνα 2008

[6] EDWARD V. LEWIS, "Principles of Naval Architecture Second Revision, Volume II: Resistance, Propulsion and Vibration", The Society of Naval Architects and Marine Engineers

[7] INTERNATIONAL STANDARD ISO/FDIS 12217-1:2001 (E), 'Small craft-Stability and Buoyancy assessment and Categorization-Part 1:Non-sailing boats of hull length greater or equal to 6 m'

[8] INTERNATIONAL MARITIME ORGANIZATION (IMO), MSC 73/21/Add.1, Annex 5: Resolution MSC.97(73) – Adoption of the International Code of Safety for High-Speed Craft, 2000 (2000 HSC CODE), 14 December 2000

[9] DANIEL SAVITSKY & D.WARD BROWN, "Procedures for Hydrodynamics Evaluation of Planing Hulls in Smooth and Rough Water", Marine Technology, Vol. 13, Oct 1976

[10] LLOYD'S REGISTER of SHIPPING (LR), 'Rules and Regulations for the Classification of Special Service Craft'

[11] ΠΑΠΑΝΙΚΟΛΑΟΥ, ΄΄Μελέτη Πλοίου, Μεθοδολογίες Προμελέτης, Τεύχος 1΄΄, Ε.Μ.Π.