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ITepiindm

Ta dedopéva oe popey| mivoxa cuvidwe avtwetoniloviar oty unyavixy wdidnorn pe ) yeron woviéhwny 8év-
Tewv 1) daowv ano@doewy. ‘Ouwg elvor YVwoToé 6Tl Tol HOVTERX OUTE EVOL OEXETE EMLEEETH GTNY expddnoT
UV UePOANPLOY TOU UTtopEl VoL TEpLEYOLY T EXdoToTE GUVoha dedouévwy. Tlpbdogata 1 dvodog Twv peydiwy
YAWGOIXWY LOVTEAY €xel avadelel TpOTOUC YehHomg Toug xou yio dedouéva popphc mivaxa péow oelplomoinong
OV Beryudtwy toug ot xelpevo. Ertol oe authv Ty gpyacia epeuvdtal 1 XavOTNTA TOV UEYSADY YAWGOLXWY
povtéhwy va Eemepvolv pepoindiec oe chvoha Bedouévmy Yop@rc Tivaxa YENoLLOTOLOVTIC TEOTERT YVOOT] TOU
ATEXTNOAY XATE TO GTADL0 EXTAUBEVGTC TOUC xS Xol TNV XATAVONOT| TNS CNUACLOAOY (S TWV THWV TWV XAUTY-
YOPNUATIXDV YOROXTNELC TIXWV TwV dedopévey. Ta anoteAéopota uTodeviouy 6Tl Ta HEYIAL YAWOOUXA HOVTEND
Tot Tpyodvouv To (8to xohd 1§ xohUtepa and Tig Ledddoug mou anotelolyv Ty Tedeutala AEN TNe tevohoylog Yio
dedopéva oe LopPl| Tivaxo UTo To XxadecTig uepohnlag.

A€&eig-xhedid —  Acdouéva oe Mopen Iivoxa, Mepohndia, Meydha I'hwoowxd Movtéha, Aévtpa
Anogdoewyv, Yeplonoinor, Ilpdtepn I'vaor, Enuacioroyia Katnywenuotixody Xapaxtnelo Tixy
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Abstract

Tabular Data are usually predicted by decision tree or decision forest models in machine learning. However
it is known that such models are quite susceptible to learning data bias potentially present in datasets.
Recently, the rise of Large Language Models has lead to discovery of ways of utilizing LLMs for tabular
data predictions by serializing data samples to text. Thus in this thesis the capability of Large Language
Models to overcome tabular data bias via utilization of prior knowledge gathered during training and via
understanding of categorical feature semantics is examined. Results indicate that LLMs can do as well as or
better than state-of-the-art methods for tabular data under bias conditions.

Keywords — Tabular Data, Bias, Large Language Models, Decision Trees, Serialization, Prior Knowledge,
Categorical Feature Semantics
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Ewayowyn

1.1.1 Mevydra 'Nwoouxd Movtéla

Evdulon ypbvo petd tnv dnpoocievon tou ChatGPT éyel undpet yeydho evdiapépov and Ghoug Toug Topelc Tng
XOWOVIOG YioL TY TEPLOYT) TNS TEYVNTAS VoMuoolvng mou éyel ovopootel eneéepyooio guoic Yhwooas. To
nVplo epyodeio authg mAéov, emnpeacpuévo and Tig mpootayés e Padidc pdldnone ol onoleg emtdocouy TV
¥efion 6ho xou PEYOADTEPWY HOVTEAGY Yo TNV adENom Twv emddcewy, elvar to ueydha YAwoowd povtéla. Ilo
CUYXEXPWEVA, EXTANXTING XUAEG ETUDWOELS TUEATNEOLYTAL UTG ToL HEYAAN YAWOOUXA LOVTERA TTOU UAOTOLOOVTOL
HE TNV DoY) TOU AEYOUEVOU KUETACYNUATIOTHY.

Ye éva apoupeTixd eninedo meplypapnc, ueTaoyNUaToTAS elvon pio cuyxexpyévn doun g teployic Tng Bathdcg
pddinone, exnaudevolun, mou déyetan we elcodo pia alknhouyla Aextixtdv povédwy (ot onoleg cuvidng elvon elte
heZeic elte ouvletind MZewv) xou PeTd amd xdmotec ahyeBpéc npdlelc Ty petaoynuatilel ot pio GAAN. Boowd
cUCTATIXO TOU elval 0 unyavioudc Tpocoy e mou Jodoalvel vor Tovilel TIC ONUUCLOAOYIXE CNUAVTIXEC AEXTIXES
povadee piog mpdTaone Mote vo yenowonondoly vy Ty mopaywyh e axohoudiog e€60ou.  Apyxd eiye
yenowonomndel yior petdgpoon [20], alhd oOvtopa anodelydnxe TOND ypfowos Y poviehonolnon yAwooog,
onAad” mpoPBredn tne enduevne Aextixrc wovddag ot ot odAAniouyio, mou elvar xou o Teémog Aettoupyiog TwV
HEYSAWY YAWOOIXGDY LOVTEAWY.

To ChatGPT ypnowornotel tov petaoynuoatioti GPT (Generative Pretraining Transformer) to évopd tou
onolov mpoépyeton amd To apyxd NS €xgpacne «I'evwntinde Ilpo-exnadevpévoc MetaoynuotiotTic» oto ay-
yAxd. Tevvnuinde (xdmolec Popéc avopépeTton oTol EAANVIXG XL ¢ TORAYWYIXOS) SNAGVEL 6TL e HovTéNo Bev
xatnyoptomotel oamhd to dedouéva el06d0u ahhd Ta Ypnotponotel yia va topdiet (yYevvrioet) dhha dedouéva. Tlpo
EXTIUDEVPEVOS, OTL EYEL EXTUDEUTEl OE TEONYOUUEVO YpOVOo, 4Tl cUVNUES Yia UeYdAo HOVTERX OOV TA XOOTH
exnaldevong etvon axpBd. OL mo xowvolpleg exdoyéc tou dmwe o GPT-4 Baduoloyoldvton avdpeca 6Tou xopu-
paioue avdpdnous yio didpopes ypantée egetdoes [17].

ITépav Tou GPT undpyouv xon GANOL UETACYNUATIOTES TIOU YENOWOTO0VTOL Yid EQpROYES dmnpLaxol Bondod
(Bing Copilot, Gemini, Claude) eve oe avtideon ye toug nponyoUUEVOUC UTEPYOUY Xl 0PXETO! TTOU TPEYOV-
Tou ¥t EEXWELOTA Yior TNV ovdmTudn eopuoydy onoloudritote tonou (Llama, Vicuna, Mistral, T0). ‘Ohlo ta
Tpoavopep¥évta LovTéRa £Y0UV LYNAEC ATAUTNOELS OE UVAUT YRUPIXDY TOU PERVEL TO XOGTOC AYOREC UTOAO-
YICTOV IXAVOV YLl TNV EXTEAECT] TOUC OF UEpXES YLAMADES evp®. EmmnAiéov, pepéc Qopéc oL UTopXTES XAPTES
YEUPXOV BEV TOREYOUY TNV OTOLTOUUEVT VAU X0 AVAYXAGTIXE TIRETEL VoL YproTnuonoindoly cuctolyieg utolo-
YIOTOV OT0C XEVTEoL DEDOUEVLIV Xl UTEPUTIONOYLOTES, YEYOVOS oL oEdvel Spoptortind Ty TohuThoxSTnTa ()ou
o x6o1n) NG drodixaciog.

Mt onuovTd WBLOTNTO TOU XATEYOLY TA YEYGAX YAWCOLXd HovTéha mépay g avtidndng @uoxic yAnoocog
elvan 1 amoxohoduevy «mpdtepn yvwon». Metd tnv exnaldeucn) Toug unopoly va anavticouvy opld ot ToAAEC
EPWTAOELS YVOOEWY Ywelc va Ypetaotel vo PpaZouy xdmou. Autd dunc dev cupfaivel mévto xou dtoy xdvouy Addog
cuvidwe N andvtnot] Toug, av dBaoctel oe puon YAwooa, dev Belyet [yvn opgiBoliouc, eved 6Tay dlogBwitolv
ané xdnotov tote ahhdlouv yvoun. o autdv tov Adyo dtav cupfaiverl autd Ayetol 6Tl «TO YAWOOS HOVTERO
€)EL ToPAULCUNCELDY.

1.1.2  Acdopéva oc poppn Ilivaxa

Ye mohhéc eqappoyéc TexVNTAC vonuoolvng Topéyeton €va oOVOAO Bedopévwy To omolo umopel Vo ex@paoTel
pe v Sour) evée mivaxar xou {ntelton vor yiver xdmota oyetinr) mpdBredn. O othkec Tou mivoxa avtioTtolyoly
o€ PETPNOELC N} TPOTACELS Yid ToL GTOLYELX TOU GUVOROU BEBOUEVMV X0l AEYOVTOL YUPUXTNELOTIXA, EVE Ol GELRES
Tou Tivaxa avtiotolyolv oe xdde otouyeio. Ou pyetprioeic ocuvhdwe ovopdlovton aprduntixd dedouéva eved ot
npotdoelc xotnyopixd. o mapddelyuo napovotdleton €vo unocUvolo Ue tela otolyelo and xdmolo unoVetind
oUvoAo dedouévwy atov mivoxa 1.1.

Ta aprduntixd dedouéva ex QLOEWS €xouv plo Bour| 1 onola TEPLEYEL XATOL ONUACLOAOYLXA YAPAXTNPLOTIXE TOU
yivovtan edxola xotavontd omd plor unyavr). Q¢ mpaypotixol aprdpol €youv dSidtaln xou emmAéov Unopolv va
oLYBLAOTOLY PE TEdEELS OTwe TEOCVEDT), TOANATAACLOCUS ARG ot TLo CUVIETESC TRAEELC WOTE VAl EXPEAGOUV
GUVOLAOUEVES TWES TOUC 1) X0l AOYIXES CUVIXES TV,

Auto Bev oylel dpwe v Tor xatnyopixd dedouéva tor omola dev Eyouv xat’avdyxny xdmoio ahyeBpiny) Soun.
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1.2. Oewpnuxd Mépog

OVOoUATEROGVLRO Kotouxio "Tdhog (k) Xedpa Motidv
AoVot Maxhéry Aoc ‘Avtlehec 1,65 xoUPpE
Kotnep Xdouvopvt Aoc Avtlehec 1,78 HOUPE
Péurept ‘Evtouty Xdouve Ao Béyxac 1,92 noupé

Table 1.1: Iopdderypo Aedwuévewy oe Ilivaxoa

‘Etol otig Yéypl npdopata undpyouces uedddoug yio TNV Yovtelonolnoy dedouévwy mivaxa, oL ohydplrduol dev
elyav v xxavotnTa va Aouv unddmy xdmotor mdovy) onpoactohoyla Twv xotnyopwy dedouévev. H uovn
onuactohoyla Tou yenonuotololoay Yo autd oTig Tpofiédeig Toug tav av dlapépouv 1 elvon oxeB3e (Bia.

1.1.3 Xprnon Meydhwyv 'woowony Moviédwy yia ITpoBAEdeic o dedopéva
ITivanea

Me Vv dvodo Twv PEYEAOY YAWOOXMV HOVTEAWY, 1 alloToinon NG ONUICIONOYING XOL TWV XOTNYOPLXMV
dedouévev yiveton mAgov e@uty|. Ewodyovtog yeydha yYAwoouxd poviéha o éva oOoTNUA TEYVNTAC YONUOoUVNG
xad{ototon TAéov Buvaty 1 exuddnot g xou CUVERKDS M yeron e Yo Tic tpoPBiédelc. Emmiéov, n enidoon
£VOC TETOLOU GUOTAUATOC EVIOYVETOL X0 OO TNV TEWTERT] YVMOT) TOU HOVTEAOU TOU UTOREl VoL TOU BWOEL ETOWES
AMAVTACELS XOL YLl TO TL ONUOLVEL XETOLOG GUVBLOCUOS TWV XATIYORIXOY DEBOUEVLV.

Auté epeuviiinxe otny neplntwor Twv dedouéva Tivaxa oe Wia oelpd and TEdCPUTES SNUOCIEVCELS. XE AUTES
TUTLXA Xd0e Yoouu TOU Tivaxa CELPLOTOLOOVTAY GE XATOLOL €(B0UC TEOTUCT XoUu BLVOTAY OTO YAWCOIXO UOVTENO
ané to onolo otn cuvéylo {nrodvtay va mopaydel xdmowa TedPredr. O epeuvntéc mapathpNoaY UTG XETOLES
ouviixeg emldoor xoAlTERN OE OYXEON UE TIC €W TOTE XANVTEPEC UEVHBOUC TEYVNTAC VONUOCUYNG YLol QUTH TO
TEOPANUa, T Bévdpa amopdoewy [14].

1.1.4 AvOextixdtnta o L UvVoAa 8edopEvwy Tou €youvy Mepoindia

‘Eva and o Yveotd tpoBAfuuate Ty HeYddwY BeVIpmY Xal BocY ano@doEwy GtV TEYYNTY VONUocLVY elval
ot elvon apxeTd emippent| oTo Vo pardoivouv pepohndlec Tou cuvdlou Bedopévwy exnaldeuong dtav autd elvan un
AVTITEOCWTEVTNG. AUTO EYEL WC UMOTENEGHA UETA TNV EXTTUEBEVGT] TOUG VoL EYOLY YauNAY| enidoon oe meaypoTixd
dedopéva xou var x&vouy ur oxpiPelc npofBiédelc i axdun xon napamhavntiée [8, 11, 6, 7, 10]. Iopd avthv v
aduvoplor Toug elyoy TapaUelveEL w¢ Wla amd TiC xoAUTERE ot enidoon uedddoug yio To dedouéva Tivona UEypetL TG
TPONYOUUEVES dNUOCLEVCELC.

H e€hc 8¢ yevvdton and to mponyolueva: A@ol ol YAWOOXE HOVTEND €YOUY TNV LXAVOTNHTA VO TEOCPEPOLY
XUTAVONON) TNG ONUACLOAOYIAS AT YORXWDY BEBOUEVGLY XATC XAl CYETIXEC TPOTEPES YVHOOELS, Vol UTopoloe éva
oLOTAPA TEYVNTAS YONUOGUYNG VoL To AELOTIOMATEL (GTE VoL UTOREGEL Vo avoxdipel oty teplntewaon mou to avolo
0edou£vev 6To omolo extoudeeTon efvol Un AVTITPOCWTEUTIXO, ONAADY TEPLEYEL AUTO TIOU GTaL Ay YAE ovoudleTon
bias (ueporndia);

Avutd elvon 10 gpdTNua Tou emuyelpeiton vor amovtniel oe auTAY TNV BimAwpatxg gpyoacia. XenonuonololvTol
HEYAAA YAWOOIXA LOVTEAD O GUVOR BEBOUEVKY WopphC Tivaxa oTa omolo €youv TpdoTeVel Sidpopa 0T HePOA-
ndlag xou cuyxplvovton ye dhha povtéha oyedaouéva Yo dedopévar mivoa.

1.2 Ocswpentixd Mégog
1.2.1 Anurovpyia MepoAndiog oc LOvoha Scdopévmy

I v npocdiurn pepoindloc ota Siodéoiuo olvola dedopévwy yenotdonotinxay tévie uédodol.

o Mepohndia etixétag (label bias). e auté o eidoc peporndioc dho ta Selyporta pe pio cuyxexpyévn
T ETRETAC aPoLEOUVTAL And TO GUVOAO BEBOUEVWLV.

e Mepohndio yapaxtneiotixot (feature bias). Ye autéd 1o eldoc peporndioc dha tor delypora pe
plot cuYXEXEEVN T YoEAXTNELCTIXO0D apateoldVTAL amd TO GUVORO BESOUEVLV.
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e Mepoindio cuvduvacuot (combined bias). e avtd 1o eldoc peporndiouc dho tar Selyporto mou
epuQavilouy EVay GUYXEXPWEVO GUVBLIOUS YOEUXTNEIOTXOU - ETXETAS aponpolvTal and to Glvoho Oe-
OOUEVWY.

e Mepohndia Zebyoue yapaxtneiotixay (fpair bias). Xe autéd o eldoc yepohndioc dha ta dely-
portor Tou egpavi{ouy éva ouyxeXpLEévo (EYOUS TIIMY O BUO CUYXEXPUIEVOL DLUPOPETIXG YAPUXTNELO TLXd
apotEoLYTOL ot To GOVOAO BEDOUEVWY.

o AwnAf wepoAndio yopaxtneiotixol (double feature bias). Autéd to eldoc yeporndiog eivou
1ood0vopo Ue TNV BImAY eqapuoyn tng pedodou yia tpocdnixn pepondlag yopeaxtneloTixou.

Ané autég Tic uepohndleg mo pealioTég Yewpolvton 1) uepohndla cuvbuacuol xou 1 uepohnia Lebyoug yopax-
TnElo TGOV xotde motedeton Tl cuvidwe oto cUvoha Sedopévwy 6tav Aeinouv otolyela, owtd Asimouvv xotd
opddec (1.y. LELYOV XOPAXTNPLOTIXOV), XEATOLES POpES (owe xou AdYw xdmolou opdluatoc otny pédodo B tov
unyoviogd cuhhoyric dedopévev. O undhoines yeporndies Tapoévouy OUWS YENOWES VLol TNV XATAVONOT| TOU
TS €va povtého cuumeplpépeton und didpopes cuvirxes wepoindioc.

1.2.2 Mnyaviopog IpoBAedewy pe Xpon Meydiouv I'hwooixod Moviélou

O unyaviopoe HEYEAOU YAWooxol HOVTEAOU TOL YeNoULoToUNXE Topouoldlel OUOLOTNTES UE TOV UNYOVIOUO
oto [14]. Ta dedopéva mivaxo oelplonololval 6 XeUEVO Xal ELGEYOVIOL OTO UEYAAO YAWOOIXO HOVTEAO TO
omnofo mopdyetr v tedPredn. Emnhéov unopel v ypnowonondel unoordnon ohivwy napaderyudtov (few-shot
prompting) ¥ va yiver exnaideuon pe Mya delyyarto (few-shot training) ¥ xou to 800 pali. H exnaidevon yiveto
e wédodo fine-tuning yio uixpd aprdud enoydv. To peydho Yhwoowxd poviého elte Bydlel we €é€odo tov aptdud
e mpoPAendUeVC xatnyopiac Tou Selyuatog (YpnowomoudvTog Ty xotnyoplonoino axoloudiog - sequence
classification e Pihodixnc huggingface [22]) eite to dvopa e ¥Adone (YENOWOTOLOVTAC TNV UETUTROTH
axohoudiog og axohovdio - sequence to sequence tou huggingface). Autéc ot Vo pédodol 6mwe avapépeton oo
ATOTEAEGUATO TOEAYOUY BLOUPORETIXEC UETEIXEC TPORO TIOU ETULTEAOUY OYeBOY TNV (Bl Srodixacia.

1.2.3 YroBonInorn Ohiywy IHopaderyudtwy xaw Exnaldcvong pe Alya Aciy-
poTo

Ioapdho mou oL dVo autée texvixés potdlouy, yapaxtnpiloviar and ty e&fc dpopd: otny unoforidnon (prompt-
ing) To yovtélo dev exmandeleton, ahAd Topartnpeitan Behtinon twy npofiédedv tou pe v adénomn tou aprduold
TopoderypdTev Tou divovtan oty elcod6 Tou 6To otddlo tne nedPrednc (inference) [2]. H exmoidevon ue Aya
delyparto onuaivel 6T To povtélo exnoudevetar o xdde delypo. ‘Otav yenoiwomoolvton xal oL dU0 TEYVIXES
Tautdypova, TOTE To Hovtého exnoudeletar ot Myo delyporo nopoucio Alywv mopaderypdtwy (Sniadnh o train-
ing xou propmting).

1.3 Ileipopotind Meépog
1.3.1 ITpaxtixy Hapaywyn Xuvorwy dedopévwy Ilivaxa pe Meporndia

Tt ta mepdotar cuYXevTeaUNXay Tor chvola dedopévmy tou yenotporoidnxay xou oto [14]. Autd anotelodv
plo toLahdpopen emAoyT| SeSoUEVKY Hop@c Tivoxa Tou XAAOTTOLY TOAAATAES TEAY HATIXES TEQLTTAOOELS YPNOELS,
OTWE LoTELXA BedoUEVa, SEBOPEVA ELGOBHUATOS ot AoLTd. Xe auTd tpoctédnuay ol uepoindieg mou Tepleypdprnxoy
oto Yewpnund pépoc.

I tov éleyyo tne nocdntac pepohndloc ota tewpduota axolovdidnxe n e€rc dadixaotia.

1. Ané xdde clvoro dedouévev xou yior xdde eldoc yepohndloc mopdydInxay déxo napouhhayéc emhéyovTag
%8s popd xdmolo Tuyofo yopaxTNELOTIXG TwV dedouévwy To omolo Yo Adfer v pepoindio (¥ Lebyoug
YOPOXTNPLOTIXOY avdhoya Tou eldouc pepoindiog).

2. Ou 8éxa moparioyéc to&vounRdnxay xatd adfovta oapidud Selypdtwy Tou TopEUelvay 6To cUVOlo Oe-
Souévwy.

3. H npddtn (pe ta Mydtepa Seiyparta) anotélece tny exdoyr Tou cuvélou dedopévmv e LPnif pepohndio
eV 1 TEUTTY) amoTEAEGE TNV EXBOYT] TOU GUVOLOL Ue UETplar pepohndla.
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4. To povtéha atohoyRdnxay xa otic dbo Eeywpltotd (xadde xon otny exdoyt ywelc uepohndia oe xdmota
TeLpduaTaL).

1.3.2 TIIpoetoipacio dedopévey yia T Meydia 'hwoowxd Moviéla

‘Onwe e&nyiinxe oto Yewpntind pépog, yio va ooy Yoy to dedopéva mivaxo oe PeYdho YAWGOIXd LoVTERA
npénel vo oelplomolniel 1 xdide ypouur| tou nivaxa oe éva xelyevo npoc tedBredr. H oeipionoinon mou emhéydnxe
elvon 1) oA oetprtonoinom npotinou xeyévou (text template) 1 onola otny [14] édwoe Ta xahbtepa anoTENESUATA.
Yuvontnd, odugwve e auTHY o TeoTog oelplonoriong axoloudel to mpdtuno «To dvopa oTnAng elvon Tiun
oTHANG.» i x&de otOAN eved Yoo Ty etétor  «H etnéta elvan: miun etikéragy mpotol evewdolv dheg ol
npotdoelc oe éva xelyevo. H i tne etixérac mopodeinetar oto cbvoro aflohdynong 6mou Yo tnv npolAiédel
TO HOVTENO xou elvor Topovoa 6To cUVOAo exnaidevone (to onola évon Eéva petadd touc). H pyédodoc auth ota
TELPAUATA EQPUPUOCTNXE OTA AYYAXE Tou elval o 1 YADCOA TV CLUVOAKY BEBOUEVLY TOU YeNoTULoTOLUnXay.
Ta ayyAxd €youv xou T0 TAsoVEXTNUA OTL Bev yeewdletar vor oAAdlel To dpdpo tne xdde oTAANG avdioya Tou
(@UNOL TOU OVOUATOS TNG.

Emniéov, ota nepdyuata tou yenowonoidnxe n teyvixi utoforiinone ohiywy napadelypatwy (few-shot prompt-
ing). Auté éyive ye Ty emhoyH tuyadwy detypdTwv ond to alvolo exmoideuong ta onolo celplomolinxay e
v Topandve PEYodo (cupmepthoapBovouévne e eTXETAC TOUC) xo Ydpnxay ety and To delyua aflohdynomne
(xopic TV etxéto Tov) oty elcodo Tou YovTEROL.

1.3.3 Movtéra

Ta poviéha mou yenonuomotinxay cUVOAXd GTa TEleduaTa HTay To eENC.

Mevydra 'hwoouxd Moviéia
e To peydho yhwoowé povtého mt0-base, To omolo elvou 570 exatopvplwy mopauétewy [16].
o To peydho yhwoowdé poviého TO 3B, to omofo elvon 3 dioexatopvpinwv napopéteny [19].

e To yeydro yAwoowxd yovtéro TOpp, to omolo eivor 11 Bioexatopvplnv napauétewy xo anotehel Beitinon
ToU YVwoTol poviélou TO [19]

And autd, wg Baoid yenonponofinxe to mt0 xadde ATay To Mo Uixpd, XETL TOU BLEUXOAUVE ONUAVTIXG TNV
extéleon tou pall ye 6ho tor ohvola dedouévwy. Iliotedeton 6T, mopadelypatoc xdeny, oTIC UTONOYLOTIXES
umodouéc o mapéyovTal omd Tov EAANVIXG unepunoloynoth ARIS yia unyovix| uddnor, to mt0-base anotehél
T0O PEYORUTEPO UTEXTO YAWGOWS UOVTEND oV Unopel va TpéEeL.

Emnnmiéov, w¢ avTimpdontol Twv SAhwy UTEpcUY Y eoveY Hedddwy Yo dedouéva Lop@rc Tivaxa yenonuoroliinxoy
Tor e€fg wovtéa:

e To povtého XGBoost, to onolo elvon éva and to xaAbtepa povTERa BEVOPWY AmoPAcEWY Yior dedopéva
nivaeat [3].

e To TabPFN, 10 onolo eivon éva mpdopato Lovtéro yia uixpd cOvoha dedouévwy Tivaxa Tou eniong Yenon-
pornotel TV Soun tou petaoynuatioth [15].

Y& 600 MERAUATA EYLVE EXTIUBEVCT] UEYEAWY YAWOOIXWOY HOVTEA®Y, Yio auThY yenonuonojdnxe n Pi3hiodmn
peft pe npocopuoyh youniic té&nc (LoRA) dote 1 exnoideuon vo elvar oamodoTins] xou Yl LOVTENS TONNGDY
TOPUUETPWV.

‘Ohat ta povtéha aloroyhdnxay we mpoc Ty axpifeia Twv tpoPAédewy Touc oty xaAUTERY ETOYY| TOUC.

1.3.4 Ilepvypagég Iepapdtwy

T apy), meprypdgpetan L éyive ota netpdpata. To anoteréopota mapovoidlovTal oty ETOPEVY EVOTNTOL.

5



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

IMTeipoyprot up to car

Ye autéd To melpopa yenonuonoiinxe to yeydho yAwoowd poviého mt0 xou ta XGBoost xou TabPEFN. Ex-
ToudelTXE Yo TaEvounon axoloudidy xar tor cUVOAa Bedopéviv Tou ypnonuormouinxay ftav ta blood, dia-
betes, heart xou car. o v extoudedon xan v npdBredn yenonuoroiinxe vroPorinon evée mopadelyuatog
(1-shot prompting) yio 15 emoyéc. Aoxydotnxay 6k ta €ldn peporndlouc xadide xon tar apyixd clvoha de-
BOUEVWV.

ITeipopo 1024

Ye autd to melpapa yenonuonoyinxe ndAl To ueydho yAwooixd uoviého mt0 xadodg xou to XGBoost xou
TabPFN. Exnoudettnxe yio ta€lvounomn axohouthddyv xal to 6OVoAa deBouévwy mou yenonuonotidnxay ftoy to
income, bank, jungle xou calhousing. I'tot Tnv exmoudeton xou v nEélAedn yenonuonodnxe unoforinon evog
nopadeiypatog (1-shot prompting) yi 15 enoyéc. Aoxpdotnnay dho ta eidn pepohndioc xodde xan ta apyixd
cUvoha Bedouévwy. e avtieon pe mpty, topa yenonponotfinxoay 1024 delyuota amd to cOvoha dedopévwy.
To TabPFN elvan oyedaouévo yio va Aettovpyel ue uéyper 1024 delyyata. Emniéov, ta ohvola dedouévenv Tou
TponyoLUevoL Telpduatog €youy Ayotepa omd 1024 Selypartoa ondte Yo EByalav to (Bla amoteréoparal.

ITeipopo Few Shot Training

Ye autd 1o melpopa yenonponoidnxe mdhL To Yeydho yAwoowxé povtého mt0 xadog xou to XGBoost xou
TabPFN. Exnoudettnxe yio Ta€lvounom axohouthdyv xal to cOVOAo SeBouévwy Tou yenonuonotidnxay ftoy to
bank, jungle, calhousing, car, heart, diabetes, blood. Tpa yenowwonouinxay 20 emoyég xon doxudoTnxay
pévo ov pepoindiec Lebyoug yapoxtnenotdy (fpair) xou cuvduoouol (combined) ov omoleg xou elvon ot o
pEALOTIXES Yo TparyarTixd dedouévar ahAd xou umhpy oy eVOELEeLs OTL TO PEYENO YAWOGLXS UOVTENO Tal TTHYOUVE
xohOtepa. Tt 6ot Tor povtéda Soxwdotnxe exmafdevon pe Alya mopadelypata (few-shot training). Ou aprduol
delyudtwy mou yenonuonoidnxay Ntav 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 xou 1024 dnwe axpBog Eyive xou
oto [14].

IMTeipapa Sequence to Sequence

Ye autd to melpopa ypnonuomoinxe to Ueydho yAwoowd Uoviélo mt0 aAAd oe Aeitoupyla peTotpoThC
oaxohoudiog oe oxohoudio (sequence to sequence). Exnoudedtnxe yio talvéunom oxohouhov xou to cOVORa
dedopévev mou yenonuormoidnxay frav to bank, jungle, calhousing, car, heart, diabetes, blood. Xenon-
ponoudnxay 20 emoyée xou Soxpdotnxay ol wepohndies Lebyous yopaxtnenotixdy (fpair) xou cuvbuacpol
(combined). Aoxwdotnxe exnaidevon pe Mya nopodeiypata (few-shot training). Ouv aprduol Serypdtwy mov
yenonuomnoudnxay Atav 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 xou 1024. O cuvirixec elvar mapoduoles e To
fst yio vo ouyxprdolv 1 petatponh axohouvdiog oe axohoudia (sequence to sequence) pe TV xatnyoptonoinom
axohovdiag Tou yenonuomooltay eypt tipo. H axpiBeta tne npdBredme yeteRinxe ehéyyovtog yio xdlde delyua
av 1 mpoPhendpevn hé€n etvon axplBdde (Bio e to dvouo e euxétac. Emmiéov, 1 yprion petotponrc axolou-
Bl oe axohoudia (sequence to sequence) divel Tnv SuvartétnTa aloddynone twv anevdelouc mpofrédewy ywpic
uroBordnon (0-shot).

ITeipopo fsp

Ye autd To nelpaya, yenonuonoiinxe téAl To Ueydho YAwooxd poviého mt0 oe Aettoupyio HETOTEOTHC AXONOU-
Yo oe axorovdia (sequence to sequence) poali pe tao TO_3B xon TOpp. ‘Ola tar povtéha exnandedTnxoy yio
Tagvounon axoloutndy xou To cOvola dedopévwy mou yenonuorolinxay tav to calhousing, car, heart, dia-
betes, blood. Xpnonuonouidnxay 20 enoyéc xau doxpdotnxay ol pepohndies Letyous yopaxtnenotndy (fpair)
xou ouvduaopol (combined). Tdpa Soxwwdotnxe utoforiinon ollywv tapaderyudtwy (few-shot prompting). Ot
aprduol deryudtwv mou yenowomowinxay frav 1, 2, 4, 8, 16 xou 32 dlott 1 vhomoinon elye vimiéc amouthoeic
pviunc. H axpiBeta tne npofredne petpidnxe eréyyovtag yio xdde delypa av 1 tpofrenduevn A& elvar oxplBog
{Blo we to dvopa g etixétag. To nelpayo autd oxonelel oty o€lonolnon TS TEOTEPNS YVOONS TWY YAWTOIXGDY
povTéAwY xadag dev €xel xadorou exmaidevon. Ta autd elvar onpavtind va Soxipactoly xat 660 To duvaTdv
HEYOADTEPA YAWCOIXE LOVTENA.




1.4. Arnoteréopata

1.4 Amnoteléoupata

1.4.1 Amnoteléopata Ileipapdtwy
ITeipoprot up to car

To anoteréopata @aivovtow otov mivoxa 4.1. Lougwva ue autd, T0 YEYIAO YAwoowd poviého mt0 elvar ToAd
XOVTE OTIC ETUBOCELS TWV GAAWY UOVTEAWY oTNY TAelodnpio Twy nepintwoewy uepoindioc. Ilo cuyxexpyiéva,
xota Yoo 6po Eemepvd xodopd Tor Gk povtéla OTIC TEPLTTWOELS UETplag depohndioc etixétag xou LdMAAC
uepoAndlac yapaxtnelotxo. Alloonueiwta, otny dimhy pepoAndla yopaxneloTixol o THYE APXETA YELPOTER
xar and T Sub AN wovtéha TOC0 GTNY WETEL 600 xau oty LPMAY mepintwon. Xtig undloines Peloxeto
ouvRdee YeTAZ) TV 800 HOVTEA®Y X0 XOVTH OTO ATOTEAECUATS TOUG.

IMTeipopo 1024

Ta amoteréopata yia To cuyxexpiévo nelpapa Peloxovtar otov mivoxa 4.2. Xougwva ye autd, tdAL To ueydho
yAwoowx6 yovtého mt0 elvar xovtd otic emdooes twv dAhwy do. Kotd péoo bpo mapouctdler onuavtixd
dapopd oty Tepintwon uPnihc peporndlac cuvduoaouot (> 6% oand To xovTvGTEPO) eV T8N To TdEL YEIPHTEPX
1600 TNy VPNAT 660 X oTNY UETELa SITAY| wepohnla Yoeax TNELETIXOU. JTIC UTONOLTES TERLTTAOGELS TO HEYEAO
YAwooux6 yovtého mdht cuvidwe Beloxeton xovtd ota dhAa 80o. Ot napatneroelc autég elvon cuvenelc xou Ue
Ti¢ TponyoLueveS, xadwe oty oucla Tpéyel oTo Tepinou To (Blo melpopa oAAd oe BlapopeTixd dedouéval.

Abyw Twv nopatneioewy Twv 800 TUPATEVK TELPUUATWY, ToL ETOUEVA TELRGUATO ETUXEVTEOUNXAY oTIC Uepohndieg
ouVdLAoUOU ot CLedYOUE YOEUXTNELOTIXOU.

IMeipopor Few Shot Training

To anotehéoyata Beloxovion otov nivoxa 4.3 xou enlong mopateidoviol Ypopixée avampaoTdoels Twy Xatd péco
6p0 eMBOCEWY TV HOVTEAWY ota Ypophuata 4.4.1, 4.4.2, 4.4.3 xou 4.4.4.

Y nepintddoelg pétplag pepohndlog ta wovtéia nopouctdlouy napduola cuuneplpopd. o cuyxexpléva, gotve-
o OTL TO PEYAAO YAWOOWXS povtého mt0 to ndel xaAltepa and Tic dAReS uedodoug yio uxed aptdud derypdtwy
exnaidevong (< 8), eved yio peyahitepo optdud derypdtwy ot 3 uédodot paivovton va cuyxhivouy oto Bio ornueio.

Y1 nepuntwoets vPniic pepoindiog TopatnEolUE SLopopeTiX CUUTERLPOEE amd Tar HOVTEN. TNV uepoindia
ouvduaopuol to XGBoost oplaxd napouctdlet fehtidon pe v adénon tou aptduod towv detyudtwy. To TabPFN
avépyetar Yeryopa, ohhd dev delyvel va Betuidveton amd éva onueio xow petd. To peydho yAwoowxd yoviého
mt0 uéypet to 4 Selypora elvon onpovtixd xahitepo and ta SAAa (mdovdy Aoy TEMTEPNS YVOONS), OTNY cUVEYLL
ouwe to Eemepvdve onuavtxd. Ipog o téhog, To mtO apy(let pio otadepr| dvodo xou Eemepvd TeAxd xon Tar dAAL
000 povtéha. Autd (owg HTav avoyevouevo yiatl ex @boews 1 pepoindia cuvduaouol ennpedlel ToAG povtéia
dévdpwyv amodoewy, xa iowe yeedleton TEdTER YVMOoN Yo vo Zenepaotel (xaldde ywplc npdtepn YVHdoT éva
povtélo mapafhénet wio mdovy) outior xotnyoplotoinone oe xdmota eTixéTaL).

Avtideta, oty v peporndla Ledyoug yapoxtnenotindy to teio wovtéha eupavilouy TopdUoles TWWES oTNY
axpiBetd Toug. Towe autd cuufaivel BioTL auTodC 0 TONOC Yepohnlag Bev emnpedlel Ti¢ ETXETEG GuETT, XL ETOL
Eyel pxpdtepn enldpoaon oTic npoBAédels.

ITeipapo Sequence to Sequence

To anotehéoyato TOU GUYXEXPLIEVOL TELpdUaTog Tagouctdlovton otov mivoxa 4.4. Alvovton oL Ypapixés napao td-
oelg TNG %At Yécou dpou axp{Belac Tou peydhou YAwooixol povtéhou Ue yehor mapaywyng axolovdog oe
axohovdia oe ohyxplon pe Tic axplPeiec twv XGBoost xow TabPFN and to mponyolpevo nelpopa (apod yia
autd ebvor o Blo mpdypa). Autéc elvan otic exdveg 4.5.1, 4.5.2, 4.5.3 xou 4.5.4.

Tt apyn, Théov €yer vompo xou 1 mpdPredm undevixol aptduol derypdtov (0-shot). Auth Suwe oe xdide
nepintwon elvon e€oUpeTind YUUNAT ot To Yeydho Yhwoowd uovtého mapdyet AéEelg ol onolec Slopépouv and
T0 6vopa e etétac (lowe avopevépevo yioth To poviého mt0 dev elvon enopxdc peydho MoTe Vo eTAVCEL TO
Topéy {fitnuar). Tapoatnpeiton BéBela Spoportind| Behtinon pe exnaidevon pévo evéde delypatog (1-shot).
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To yeydho YAwoowd YOVTEAO TEAL T THEL 60O XOAS xou T UTOAOLTOL Y€ OYEDT UE TPELY, TWEA QalveTol Vo
amodidel Alyo yeipdtepa, eidxd oe Aya delypata. Autd lowg va oy avoeVOUEVO xoig TELY EXTUdEVOTAY OTO
va Bydler anAd tov aprdud e xotnyoplog tou Selypatog, evéd thpa xahelton vo nopdéel axplBie To dvoua TNne
xatnyoploc, xdtt to onolo elvon {owe Aiyo mo dloxolo, xau lowe anoutel neplocdtepn exnaldeuoy) yio vo TeTUYEL
vdnidTepn oxpifeto.

A&oonueilwto elvon To YEYOVOC 6TL TAEOV TO UEYTAO YAWGOWXO UovTélo ota 1024 delyyata Eenepvd tar dAAa dbo
oYEBOV OE OAEC TIC TMEQINTAOELS, XATL TOL Bev cuvEBatve ely. Axduo o eu@avéc YIVETAL aUTO OTNV MEpInTWo
vdPnAfic peporndiag ouvduaouol, émou and ta 128 ng xou ta 1024 Seiyuorta Peioxeton mdve amd ta dAha d0o,
xaw oe oyéon pe 1o TabPFN, 1o 8gletpo xahltepo, neptocdtepo and 5% ota 512 xon 4% ota 1024. Eniong
Eemepvd o Tar dhha 800 povtéda ota 4 delypata. Ou hdyol mou anodidel 1660 xahd oTny Yeporndia cuvduacpod
avoamtOydnxoy Teonyoupévee, xou autd (owg elval To o EUPoVES TUPddELYUd 6TO 0ol TO PEYHAO YAWOOIXO
povtého €xel N duvatdTnTa Vo avaedper amd Ty pepoindio Twv dedouévwy teplocdTERo o oyéom UE To GAAAL
dvo.

ITeipopo fsp

Ta anoteléopato Tov TElpduatoc topouotdalovtal, otov mivaxa 4.5. T apyn to dedouéva dev elvan TATeY,
xS XUTAESTY Ad0VATO VoL TREEOLY XATOLY TELPAUOTA AOY W TEPLOPLOUMDY UVAuNG NS XdpToag Yeapuxy. Tlapdia
QWTA, T CUYXEXPUIEVA ATOTEAECUATO 0EXOUY YIoL TNV EE0Y WYY Aoy cuunepaoudtony. Onwe galvetal, 660
peyahTepo elvor T0 YAwoowxd povtého, téco xohltepr axpifeia netuyaivel utd Tic Bleg ouvifxes. ‘Onwe Aoy
avaeEVOUEVO, UTtapyel dpapatinf adnon oty TedBhedn undevinic vroPofdnorne (zero-shot prompting). Xe
YEVIXEC YPaUUES, e TNV duinom Twy napaderypdtony utoforfidnone (prompt) napatnpeiton adénomn tne enidoong.
AZoonueiwto elvon to yeyovoc 6Tl To Poviédo TV 11 doexatopupiny TUpUUETEMY O XATOLES TEPLTTMOEL
podveton vou uewdvel Ty axpifeld Tou oty yepoindla cuvduaouoy, 1660 otV VPNAY 660 xan oty péteia. Towe
auto ouuPaivel yiotl telxd ov elvon emopxde peydha, pe prompting to YeydAo YAwooixd wovtéio yivovron
emippeny| o€ pepoAndla cuvduaouol. Ilapdhautd oL EMBOCELS IXOUO XA TWV PEYUNITEPWY YAWTOIXDY HOVTENWY
uovo ue prompting dev xoTAPERVOUV VoL PTACOLY TIC TEONYOVUEVES Tou elyay exmaldeuot Aywy detypdtemv xou
udhiota Peloxovtan xou YaunAdtepa and TiC «xAacolxécy uetddoug.

1.4.2 Emnwiéov Iloplopata

Axourn xou To peydho YAwooixd poviého evdéyeton va uddel tnv pepoindla twv dedopévwv. Autd lowg elvon
AVOUEVOUEVOD.  §dC AMOTEAECUA TWV PETEHCEWY TOU AHPUNXOY UTOopOVY Vo TUEOLCIACTOUV BLAPORES YRUPIXES
TPACTICELS IOV To eTUBEVOOLY. Alo oTIC onoleg auTd Qalvetan xahd eiva ol eixdveg 4.7.1 xan 4.7.2. Kou ol 5o
TEPLTTAOCELS TPOEpyovTaL omd Tetpduata uPniic pepohndiog 6mou xau towe poivetar xoahitepa aUTO TO PAULVOUEVO.
Y& auTég TO UEYHAO YAWOOXO UOVTERD €V apyixd augdvel TNy axplBeid Tou ue Tov aptdud Twv ETOYMOY, QTAVEL
oe éva 0€0 péyloTo yia ula emoyn xou wetd 1 axpifBeld tou xotappéel elte Ypriyopa ¥y mo apyd ywelc vo uropéoel
noTé va emavérdel xodode TAéov podalvel To GUVORO exTalBeuomNS TO 0Tolo BEV EVAL AVTITPOCWTEUTIXO.

To peydho yAwoowd poviého oe hettovpyio mapaywyhc axoloudioc and axoloudia (sequence2sequence) po-
Yabver xahOtepa pe neplocdtepa delypata an’ 6,11 oe Aettoupyeia xatnyoplonoinone axoloutdiog (sequence classi-
fication) émou anod{det xahltepa pe xprion few-shot. ‘Onwe avagaipdnxe xon Tponyoupéves, autod ione ogelleton
070 OTL YLl THY 6woTH TEOBAedN Tou TNV xaTnyoploToinan yeeldleton amhd vo emAEEEL TOV opliUd TNG XATH-
yoplag eved Yo cwoth TeoPBAedn oty napaywyy) axohovdios, yeeldleton va nopdiel axpBhc owoTd To Gvou
e xotnyoplag. ‘Etol, {owg elvan mo 80oxolo to Beltepo oevdplo, uTd TNV €vvola OTL YpeldleTol TEPLOCOTERU
delyparta yioo vor tetOyet. A&loonuelwto elvon 6Tl oty Taparyw Y} axolovdiac, UTO XATOLES TEPLTTWOELS YEPOA-
nlag tor Tyolvel onuoavTied xoAUTERO OmOTL YE xoTnYyoplomoior oxohoudiog, eved Yol lxed apldud BelyudTtwy
ouvidwe 1 xotnyoplonoinor axohouvdioc to tdeL xoAUTEPA GTNY TAELOPNPELR TV TEPITTOOEWY.

H exnaidevon pe Mya napodeiypata (few-shot training) emtuyydver xohdtepa anotehéopota omd €va onuelo xou
HETd o oyéon ue Ty utoPorinot ohiywy topaaderypdtwy (few-shot prompting). H yprion xou twv 8o poli
dlvel ev téhel xahltepa anoteréopata and xadéva EeywploTd.
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1.5. Xuurepdoporo

1.5 Xvunepdopata

To yAwooxd poviého axorouldel Tic pedodoug mou anoteholy Ty teleutaio AEEN TNne Te)VohoYiag ¥y xou xdmoleg
(POpES TIg EEMEPVE, TOGO OE MEPINTWOGELS UYNANC 660 o pecalag topouaiog pepoindlac oto chvoro exmaldevong.
Avayevoyeva, oty mhetodmela twyv tepintdoeny Eenepvd to XGBoost nou Bacileton oe 8évtpa anopdoewy Aoyw
TWV YELOVEXTNUATWY TOUC ToL avapépinxay Tteonyouuéveng. Axour, to TabPFN rou eniong Baciletor otny Sour
Tou petaoynuatiot ouyvd Eenepvd To XGBoost.

Yy Sk pepohndio YapoxtnetoTinol T0 HEYEAO YAWOOIXO HOVTENO To TEEL EUPAVAS YELROTERA antd Tal SAAa
000 povTERA XaTd p€co HpO e ONAL TO TELGUATA.

To peydho YAwoouxo poviého galveton va pnopel va Eenepdoel Ty Yepondio Twv dedouévev TeplocdTtepo and
Tat GAAa B0 oTIC TEpINTOOELS pepohndlouc cuvBuacrol xou LedYOUS XoEAXTNELOTIXOU.




Chapter 1. Extetopévn Ieptindmn ota EAAnvixd
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Chapter 2. Introduction

2.1 TabLLM

In recent advancements of machine learning, the integration of large language models (LLMs) into various
domains has shown significant promise. One such domain is the processing and classification of tabular data,
which has traditionally been the realm of specific algorithms such as decision trees and gradient boosting
machines. The analysis of tabular data, which remains one of the most pervasive forms of data in both
industrial and research contexts, has traditionally relied on classical machine learning models such as decision
trees, random forests, and gradient boosting machines. These models are adept at handling structured data
with fixed schemas but often fall short in leveraging the rich representational capabilities of modern neural
architectures. The advent of transformers, particularly in the realm of natural language processing (NLP),
has revolutionized the way sequential and contextual data are processed, leading to significant performance
improvements in a variety of tasks. Extending this transformative power to tabular data is the primary
motivation behind the development of TabLLM (Tabular Large Language Model). The TabLLM framework
emerges as a pioneering method to bridge the gap between tabular data and LLMs, offering a comprehensive
solution to serialize and fine-tune these models for improved performance in few-shot learning scenarios [14].

2.1.1 Background and Motivation

Tabular data is characterized by its structured format, consisting of rows and columns, where each column
represents a distinct feature and each row an individual record. This format is ubiquitous in databases,
spreadsheets, and many other data repositories. However, the fixed schema and the often heterogeneous
nature of the data types (numerical, categorical, etc.) pose unique challenges for direct application of deep
learning models designed for unstructured data. Classical models like decision trees and gradient boosting
have been highly successful due to their simplicity and interpretability, but they lack the capacity to model
complex feature interactions without extensive feature engineering [21].

In contrast, transformers have shown remarkable capability in modeling sequential data through self-attention
mechanisms, capturing long-range dependencies and contextual relationships. This has led to their dominance
in NLP tasks, from language translation to text generation. The success of transformers in these domains
suggests potential benefits for tabular data if adapted appropriately. TabLLM aims to bridge this gap
by leveraging transformer architectures to handle the intricacies of tabular data, thus providing a unified
framework for both predictive and generative tasks [9].

2.1.2 TabLLM Key Contributions

TabLLM proposes a comprehensive framework that adapts the transformer architecture to the specific needs
of tabular data analysis. By integrating mechanisms to handle both numerical and categorical data efficiently,
it offers a versatile tool capable of tackling a wide range of tabular tasks.

The core innovation lies in the adaptation of self-attention mechanisms to capture inter-column dependencies.
Unlike classical models that treat each feature independently, TabLLM leverages self-attention to understand
and model interactions between different features, leading to potentially richer and more nuanced represen-
tations.

Inspired by the success of pre-training in NLP, TabLLM employs a two-stage training process. Initially,
the model undergoes unsupervised pre-training on a large corpus of tabular data to learn generic feature
representations. This is followed by supervised fine-tuning on specific tasks, allowing the model to specialize
and achieve higher performance on those tasks [21, 5].

Preliminary evaluations have demonstrated that TabLLM not only matches but often surpasses the perfor-
mance of traditional models and other neural network-based approaches on benchmark datasets [12, 18, 13].
Its ability to handle missing data, imbalanced classes, and varied data types makes it a robust choice for
real-world applications [14].

2.1.3 Way of Operation

The core innovation of TabLLM lies in its ability to serialize tabular data into natural language formats that
LLMs can effectively process. This involves converting table entries into coherent textual representations
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2.2. Our Work

while possibly embedding task-specific cues. The framework explores various serialization techniques, such
as text-template serialization, feature combination, and even LaTeX-based serialization. Each technique is
aimed at optimizing the LLM’s understanding and processing of tabular information.

For instance, text-template serialization, which noted the highest performance according to the researchers,
transforms table columns into descriptive sentences, creating a natural flow of information that LLMs can
easily comprehend. This method not only enhances the model’s interpretability but also respects the token
limits of LLMs, ensuring efficient data handling. Additionally, the framework incorporates feature combi-
nation techniques to reflect the interrelationships between different data features more naturally, further
improving the model’s predictive capabilities.

TabLLM also employs advanced fine-tuning methods, such as T-few, which is a parameter-efficient technique
allowing the model to adapt to varying amounts of data with minimal computational overhead. This fine-
tuning is crucial for achieving high performance across different datasets and shot levels, making TabLLM
particularly effective in few-shot learning contexts.

Experimental results have demonstrated that TabLLM significantly outperforms traditional models like XG-
Boost, especially in zero-shot and few-shot settings. For example, LaTeX serialization has shown remarkable
performance in zero-shot scenarios, highlighting the potential of structured data formats in enhancing LLM
capabilities.

The implementation code is available on GitHub.

2.2  Our Work

In this context, our research builds upon the methodologies presented in the TabLLM paper. We construct
a similar framework that utilizes text-template serialization and parameter-efficient fine-tuning. Instead of
employing T-few, we leverage Low-Rank Adaptation (LoRA), a technique known for its efficiency in fine-
tuning large language models (LLMs), which is particularly useful in environments with limited computational
resources. Our primary objective is to evaluate the impact of dataset bias and to investigate whether LLMs
can effectively mitigate this bias, in contrast to traditional methods, which are notorious for their inability
to do so.

To this end, we primarily compare the performance of LLMs with traditional (non-LLM) methods such as
XGBoost and the recent TabPFN. We mostly test smif enabled, swiping will not clamp at the neighboring
workspaces but continue to the further ones.aller LLMs to assess their capability in handling these tasks,
aiming to determine whether they can achieve comparable performance to larger models, especially in the
context of mitigating dataset bias, while benefiting from reduced computational requirements. However,
we also include tests on larger LLMs to provide a comprehensive evaluation of performance across different
model sizes.

2.3 Methods Comparing Against: TabPFN

TabPFEN is a novel machine learning method specifically designed to address small tabular classification
problems efficiently and effectively. Introduced by researchers, including those from the AutoML community,
TabPFEN leverages the power of Transformers, a neural network architecture primarily known for its success
in natural language processing, to perform rapid and accurate tabular data classification.

TabPFN is not just another machine learning model; it is a meta-learned algorithm. This means that it has
been trained to learn from a wide variety of datasets and generalize this learning to new datasets quickly.
Unlike traditional models that require extensive training on each new dataset, TabPFN performs inference
in a single forward pass, making it extremely fast.

One of the standout features of TabPFEN is its ability to approximate Bayesian inference. Bayesian meth-
ods are highly regarded for their ability to handle uncertainty and incorporate prior knowledge into the
model. TabPFN incorporates a prior that emphasizes simplicity and causal relationships, leading to more
interpretable and robust predictions.
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The training process for TabPFN is conducted offline. This involves generating millions of synthetic datasets
based on a predefined prior and training the model to predict outcomes for these datasets. This prior is based
on structural causal models (SCMs) and Bayesian neural networks (BNNs), which encode relationships and
patterns found in real-world tabular data. This extensive pre-training enables TabPFN to make accurate
predictions on new datasets without additional training [1, 4].

TabPFEN is designed to handle small datasets efficiently. It has been tested on datasets with up to 1,000
training examples, 100 features, and 10 classes. The results show that TabPFN outperforms traditional
methods like boosted trees and is competitive with state-of-the-art AutoML systems. Furthermore, it achieves
this with significant speed advantages, providing up to a 230x speedup compared to traditional methods and
even higher when utilizing GPUs [15].

A significant advantage of TabPFN is that it requires no hyperparameter tuning. This is a critical feature for
practitioners who need quick and reliable models without the overhead of extensive hyperparameter searches,
which are often computationally expensive and time-consuming [15].

2.4 Zero and Few-Shot Prompting

2.4.1 Background and Significance

In recent years, the field of natural language processing (NLP) has witnessed remarkable advancements,
primarily driven by the development of large-scale pre-trained language models such as GPT-3 by OpenAl,
BERT by Google, and T5 by Google Research. These models have demonstrated unprecedented capabilities
in understanding and generating human-like text across a multitude of tasks, ranging from text completion
and translation to question answering and summarization. Central to the performance of these models is
their ability to leverage vast amounts of textual data during the pre-training phase, enabling them to acquire
a nuanced understanding of language structure, semantics, and context.

2.4.2 The Concept of Prompting

Prompting is a technique used to guide pre-trained language models to perform specific tasks by providing
them with carefully designed input sequences or “prompts.” Unlike traditional supervised learning approaches
that require extensive task-specific labeled data for fine-tuning, prompting leverages the inherent knowledge
encoded within pre-trained models, allowing them to generate appropriate responses based on minimal or no
additional training data. This paradigm shift has profound implications for the accessibility, efficiency, and
scalability of NLP applications.

2.4.3 Zero-Shot Prompting

Zero-shot prompting refers to the capability of a language model to perform a task without any explicit
task-specific training or fine-tuning. In a zero-shot setting, the model relies entirely on the general knowledge
acquired during pre-training to interpret the prompt and generate a relevant response. For instance, a model
can be prompted with “Translate the following English sentence to French: ’Hello, how are you?”’ and
produce the correct translation despite not being explicitly trained on translation tasks. This approach is
particularly advantageous in scenarios where labeled data is scarce or unavailable, offering a versatile solution
for a wide array of applications.

The potential of zero-shot prompting lies in its ability to generalize across tasks and domains, making it
a powerful tool for addressing novel or infrequent queries. However, its effectiveness is heavily dependent
on the quality and specificity of the prompts, as well as the comprehensiveness of the pre-trained model’s
knowledge base. Researchers and practitioners are continuously exploring innovative prompting strategies to
enhance the accuracy and reliability of zero-shot responses.

2.4.4 Few-Shot Prompting

Few-shot prompting builds upon the zero-shot paradigm by providing the model with a small number of task-
specific examples within the prompt. This technique bridges the gap between zero-shot and fully supervised
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learning, offering a middle ground that leverages the strengths of both approaches. In few-shot prompting,
the model is presented with a prompt containing a handful of example input-output pairs, followed by a
query for which the model must generate a response.

For example, a few-shot prompt for a sentiment analysis task might look like this:

Review: "The movie was fantastic, I loved it."
Sentiment: Positive

Review: "The film was boring and too long."
Sentiment: Negative

Review: "The plot was engaging, but the acting was mediocre."
Sentiment:

The model, having seen the examples, is expected to infer the sentiment of the third review based on
the patterns demonstrated in the provided examples. Few-shot prompting significantly enhances the model’s
performance by giving it a clearer understanding of the task requirements and expected outputs, thus reducing
ambiguity and improving accuracy.

2.4.5 Challenges

While zero and few-shot prompting offer exciting opportunities for leveraging pre-trained language models,
they also present several challenges. Designing effective prompts is a non-trivial task that requires a deep
understanding of both the model’s capabilities and the specific nuances of the task at hand. Suboptimal
prompts can lead to poor performance, highlighting the need for systematic methods to optimize prompt
construction.

Moreover, the interpretability of model responses in zero and few-shot settings remains an area of active
research. Understanding how and why a model arrives at a particular output is crucial for building trust
and reliability in NLP systems, especially in high-stakes applications such as healthcare, finance, and legal
domains.

Zero and few-shot prompting represent transformative approaches in the realm of natural language processing,
offering innovative solutions to the challenges of task-specific training and data scarcity. By harnessing the
latent knowledge within pre-trained language models, these techniques enable the development of flexible,
efficient, and scalable NLP systems.
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Chapter 3. Proposal

3.1 Contributions

3.1.1 Intentionally Creating Bias in Datasets

In order to evaluate the effects of bias in the models under examination biased datasets are required. However,
because most datasets are created in ways that intentionally avoid bias and because it is hard to detect bias
in an existing dataset a different approach is needed if we wish to come into possession of biased datasets.
Also, perhaps most importantly, the test set would need to be unbiased so that the evaluation can show
how bias affects the model. Thus, the only way of obtaining biased datasets is to, starting with an assumed
unbiased dataset, alter it in ways that induce bias. Since the TabLLM researchers already created a good
collection of tabular datasets from various domains with various features [14], we would like to utilize it as
the original unbiased datasets to avoid having to do the same thing from the scratch. For this purpose five
kinds of bias were invented which will be explained now.

Label Bias

Label bias is the simplest form of bias, albeit the bias created is quite artificial. A dataset is altered with
label bias when all the data with exhibiting one specific value in their label are dropped. This kind of bias
is thought that it can easily confuse decision tree methods which rely entirely on observing a label to be
able to predict it. In contrast, large languge models are thought to be less affected by it because they can
statistically predict the label as text.

Feature Bias

Feature Bias is the translation of label bias to features of the dataset. This bias is believed to be very realistic
because when collecting data it often happens that an entire group of similar data points is accidentally
ignored, goes missing or simply doesn’t exist in the first place. Feature Bias is present when from a dataset
all elements exhibiting a specific value in a specific feature are dropped. That way certain common situations
can be represented, like for instance the fact that healthy people don’t do as many medical exams and the
data are skewed.

Combined Bias

Combined Bias is encountered when a specific combination of the value of a feature and a label is dropped
from the dataset. It is a combination of the above two kinds of bias and decision tree methods should be
particularly susceptible to it for similar reasons to label bias. Additionally, because it is also akin to feature
bias, it should also be more realistic than label bias, however it still remains artificial.

Fpair Bias

Fpair bias (feature pair bias) is the translation of combined bias to only concern features. It is also an
evolution of simple feature bias in which instead of only one feature deciding if a sample is to be dropped, a
pair of two features determines that instead. To be more precise, the samples dropped are the ones exhibiting
a specific pair of values in two distinct features. Naturally, less samples are usually dropped compared to
feature bias therefore making the dataset "less biased" (more on that later) and at the same time, this kind
of bias, more realistic.

Double Feature Bias

This kind of bias is equivalent to applying feature bias twice (and therefore for two distinct features). It
is also dual to Fpair bias in a way, because now instead of selecting two values from distinct features and
dropping their logical conjunction (as was the case in fpair), their logical disjunction is dropped. Viewed set-
theoretically, this means dropping the union of two sets, each containing samples with one value in a feature,
whereas in fpair the intersection of these sets were dropped. Consequently it is a stronger bias compared
to both fpair and feature bias because it drops more samples (and also because it’s literally equivalent to
applying a previous bias twice) and it might be lie more towards artificial rather than realistic.

18



3.2. Model

3.1.2 Controlling the Amount of Bias

Additionally, there is a need for a mechanism to control the amount of bias added to a dataset. For instance,
the choice of one feature value to drop might lead to few data points being dropped or many depending
on how predominant that value is among the (unbiased) dataset. It is reasonable to assume that starting
from an unbiased dataset, dropping fewer samples gives a dataset with less bias than when dropping a lot of
samples.

Accounting for the above observation, the following bias control mechanism is proposed. Starting with an
unbiased dataset and a kind of bias to add as described above, create a number of different datasets with
that kind of bias and order them by the number of samples remaining in them. Thus, a measure of bias
is created for each biased dataset according to its order and by selecting an order, one can control how
much bias is incurred in the original dataset. For our experiments 10 biased variations were generated and
the median with respect to number of samples along with the one with the least samples were selected to
represent environments with mid and high bias respectively. The high bias variant may not be practical but
it should help with giving intuition as to how models behave under bias and the mid bias can likely function
as a baseline for a substantial real bias.

To the best of our knowledge there is no work related to anything presented in the two previous subsections,
i.e. adding bias to a dataset and selecting the intensity of that bias.

3.1.3 Why Language Modeling May Be More Apt for Tabular Data Classifica-
tion

A known property of decision tree and forest methods is that while they can make use of the semantics of
numerical features of the dataset, they cannot do so for the categorical features. In fact, the only semantics
they use with regard to categorical features is whether they are the exact same or not. This is in contrast to
numerical features, from which algebraic properties are easily deduced by these methods and more complicated
predicates can be made, such as ones including the notions of larger or lesser and algebraic combinations like
products, sums, divisions, scaling, etc.

Language modeling can come into play here by offering a way to learn the algebraic properties of categorical
features, which hitherto are considered simply as strings of text and therefore their properties elude machine
learning methods. First of all, via language modeling these categorical features can be translated into an
algebraic vector space (using embeddings). Additional semantics can be discovered via the use of large
language models and in particular via use of their prior knowledge which can enhance the simple vector space
embedding. Therefore, a machine learning model for tabular data which makes use of language modeling and
even more so, large language models, is in a better position to interpret the samples and understand them
compared to simple decision trees or forests and should be able to make more accurate predictions. This was
experimentally demonstrated in some recent works like [14].

3.1.4 Why Language Modeling May Be Able to Overcome Tabular Data Bias

Similarly as above, large language models may have the ability to overcome data bias. They have been
pretrained and have managed to accumulate some knowledge about language semantics in general. If they
were pretrained on an unbiased dataset then they can utilize this knowledge to give accurate predictions even
when the tabular dataset they are inferring has bias.

3.2 Model

The model used for our experiments was inspired by the one used in the TabLLM paper [14]. It was not
possible to utilize the actual TabLLM framework as it relies on the T-few framework which has not been
updated in three years and was written in a version of python that is quite outdated by now, to the point
where its dependencies no longer work (and therefore T-few has now passed on from the world of actual
ideals to the world of ideals soon to be consigned to eternal oblivion, where it rightfully belongs alongside its
conceivers). Therefore a new, similarly functioning framework was written from scratch for the purposes of
the experiments and will be described here.
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3.2.1 Tabular Serialization

The first step of the inference process is the serialization of tabular data samples to text that can be inputted
in the large language model. To this end, the text template serialization method was used, in part because
out of all serialization methods used in the TabLLM paper, this was found to yield the highest accuracy [14].

In short, it works in the following way. A template for the dataset is used which is of the form "The column
name is column value." for columns expressing features. It is filled with the column values of the sample being
transformed for each feature column. These are concatenated into a small paragraph and are followed by a
task specific prompt like "The label is" [14]. In the case where the sample is to be used not for prediction
but rather for training, the information of the label can also be included last with a sentence like "The
label is label value". Furthermore, the last format is additionally used for few-shot prompting (which will be
mentioned later).

3.2.2 Few-Shot Prompting

Optionally, the few-shot prompting technique can be used. It works according to what was described in the
introduction chapter, that is by adding a few examples with their labels, taken from the train set, to the
sample which is being predicted from the test set. These shots are added before the text of the sample.
Few-shot prompting is known to be able to increase the accuracy of large language model predictions for
various tasks. If few-shot prompting is not used, then the model is run in zero-shot mode for each sample.

3.2.3 Few-Shot Training

Also optionally, the few-shot training technique can be used. It works by training in a few samples of the
train set instead of the whole train set before evaluating predictions across the whole test set. This was used
in the TabLLM paper [14]. Naturally, it can be used along few-shot prompting and as we will see in the
results of the experiments, using both likely gives the best results.

3.2.4 Fine-Tuning

As stated before the original TabLLM framework used T-few for fine-tunning [14]. For our model, LoRA was
used instead. In more detail, the LoRA implementation of the peft library was used with a small LoRA layer.
This might result in slightly lower prediction accuracy than T-few but it offers greatly improved training
time, and entirely avoids the troubles of setting up T-few. All training mentioned before is in fact done via
fine-tuning to reduce train time and costs.

3.2.5 LLMs

The main ingredient in our model is the actual large language model. It becomes evident with the model
description so far that the model is designed in such a way to be able to use any large language model. For
our experiments three models were used, each for different reasons. All of them are related in some way to
the T0 model which was also used by the original TabLLM [14].

The first large language model employed was mt0-base, a 570M parameters model [16]. It offers many
advantages. For one, it is the largest model that can fit in the GPUs that are offered by cloud services such
as kaggle and also in the GPUs of the supercomputer Aris. As such, it makes running experiments with it
significantly easier than with larger models and so more complicated experiments may be run.

The next large language model used was TO 3B, a 3B parameters model [19]. It is a 3B version of the T0
model and offers a balance between performance and model size.

The last large language model used was TOpp, an 11B parameters model [19]. It is an improvement of the
TOp model which itself is an improvement of the TO model. This is the largest model tested.

3.2.6 Model Output

Finally, there has to be a way to convert the output of the large language model, which is a token or a
sequence of tokens, into a prediction for the label. There were two easily implementable methods to do this
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which were both tested in specific experiments with the purpose of comparing their performance under bias.

The first one is to use a small classification head on top of the model output, which will be trained to classify
the model’s output into a number representing one of the possible labels of the tabular dataset. This method
is automatically employed by huggingface’s transformers library in its *ForSequenceClassification classes
which were used in our implementation.

The other way to convert LLM output to a label is to take the output tokens, translate them into text and
compare this text with the label. There are many ways to compare text, especially with the intention of
creating an error function, however the one used was simply to consider incorrect all output which was not
identical to the label’s text. TabLLM used a similar mechanism [14]. Thus the large language model would
have to output just the textual representation of the predicted label, a task that seems harder than outputting
something which will go through a classification head. However it may lead to the model learning the task
better or learning to use language and its semantics to make prediction better. One interesting property of
this technique is that it can be used for zero-shot predictions as there is no classification head to train. More
on all of that in the experiments section which follows.
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In this chapter the experiments run will be described and their results presented.
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4.1 General

For the purpose of testing the ability of large language models to resist data bias several experiments were
conducted. In most experiments the goal was to compare the LLM with a "traditional" method for tabular
data, like decision trees for instance, and see if the LLM performs better. To this aim, the metric chosen for
the evaluation of the models was accuracy and the models were evaluated on several biased datasets.

The biased datasets used for the experiments were produced by using the methods to add bias to a dataset
that were outlined in the previous chapter, on the datasets used in the TabLLM paper. These datasets
represent a varied choice of different real world datasets from different domains like healthcare, insurance,
banking, etc [14]. They also vary in size with approximately half of them being small (less than 2000 samples)
and the other half large (over 9000).

The non-LLM methods tested were XGBoost and TabPFN. XGBoost is the state of the art decision tree
model as of today and is a good representative of the decision tree methods [3]. TabPFN is a more recent
creation and is quite suited for the tasks of few-shot learning (without bias) as it is designed for small datasets
[15]. Furthermore, it utilizes the transformer architecture which brings it closer to LLMs as a model.

Unless otherwise stated, a huggingface sequence classification class was used for converting the LLM’s output
to a label prediction.

More details for each experiment along with presentation of its results will follow separately.

4.2 Experiment up-to-car

4.2.1 Description

The first experiment carried out, it involved testing the smaller mt0 model on the datasets blood, diabetes,
heart and car. Diligent readers may notice that these are the smaller datasets in our disposal. Of these
datasets the model was tested in all bias variations previously discussed, high and mid, as well as at their
original, non-biased versions. One-shot prompting was employed in all cases in addition to fifteen epochs of
training, among which, the best was selected to represent the large language model’s performance. Along
with mt0 the XGBoost and TabPFN models were also evaluated in the same tasks to compare how well
these methods work against biased datasets. The detailed results can be seen below in table 4.1 along with
averages on the kind of bias:
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Dataset LLM (mt0) XGBoost TabPFN
biased datasets/car no_bias/car 97.40% 99.42% 98.27%
biased datasets/car label bias/car 93.35% 96.24% 95.38%
biased datasets/car feature bias/car 91.33% 95.95% 95.66%
biased datasets/car combined bias/car 92.49% 96.24% 98.27%
biased _datasets/car _fpair_bias/car 92.20% 98.55% 97.40%
biased datasets/car doublef bias/car 91.62% 97.11% 96.82%
biased datasets/heart no_bias/heart 85.33% 86.41% 87.50%
biased datasets/heart label bias/heart 54.89% 54.89%

biased datasets/heart feature bias/heart 86.96% 86.41% 86.41%
biased _datasets/heart__combined _bias/heart 88.59% 88.59% 89.67%
biased _datasets/heart fpair bias/heart 86.96% 88.59% 89.67%
biased datasets/heart doublef bias/heart 56.52% 83.15% 84.78%
biased datasets/diabetes no_bias/diabetes 74.03% 79.87% 77.92%
biased datasets/diabetes label bias/diabetes 36.36% 1.42% 36.36%
biased datasets/diabetes feature bias/diabetes 74.68% 70.13% 80.52%
biased _datasets/diabetes _combined _bias/diabetes 74.68% 72.08% 77.27%
biased datasets/diabetes fpair bias/diabetes 75.97% 74.03% 77.92%
biased datasets/diabetes doublef bias/diabetes 62.34% 70.78% 73.38%
biased datasets/blood no_bias/blood 74.00% 75.33% 76.67%
biased datasets/blood label bias/blood 79.33% 79.33%

biased _datasets/blood _feature bias/blood 82.00% 72.67% 82.00%
biased datasets/blood combined bias/blood 78.67% 78.00% 82.67%
biased datasets/blood fpair bias/blood 78.00% 81.33% 81.33%
biased datasets/blood doublef bias/blood 71.33% 72.00% 75.33%
high-bias-datasets/car-feature-bias/car 93.06% 99.13% 85.26%
high-bias-datasets/car-combined-bias/ car 84.39% 88.15% 91.91%
high-bias-datasets/car-fpair-bias/car 90.46% 97.40% 93.93%
high-bias-datasets/car-doublef-bias/car 73.12% 80.64% 80.35%
high-bias-datasets /heart-feature-bias/heart 78.26% 75.00% 79.89%
high-bias-datasets/heart-combined-bias/heart 54.35% 55.98% 55.43%
high-bias-datasets/heart-fpair-bias/heart 85.87% 87.50% 86.41%
high-bias-datasets/heart-doublef-bias/heart 55.43% 79.35% 80.98%
high-bias-datasets/diabetes-feature-bias/diabetes 73.38% 72.73% 73.38%
high-bias-datasets/diabetes-combined-bias/diabetes 75.97% 75.97% 79.22%
high-bias-datasets/diabetes-fpair-bias/diabetes 77.92% 73.38% 77.92%
high-bias-datasets/diabetes-doublef-bias/diabetes 64.29% 72.73% 74.03%
high-bias-datasets/blood-feature-bias/blood 79.33% 76.67% 82.67%
high-bias-datasets,/blood-combined-bias/blood 80.00% 61.33% 72.67%
high-bias-datasets/blood-fpair-bias/blood 77.33% 74.00% 78.00%
high-bias-datasets,/blood-doublef-bias/blood 76.00% 62.00% 78.00%
Average no bias 82.69% 85.26% 85.09%
Average label bias 65.99% 57.97% 65.87%
Average feature bias (mid) 83.74% 81.29% 86.15%
Average combined bias (mid) 83.60% 83.73% 86.97%
Average fpair bias (mid) 83.28% 85.63% 86.58%
Average doublef bias (mid) 70.45% 80.76% 82.58%
Average feature bias (high) 81.01% 80.88% 80.30%
Average combined bias (high) 73.68% 70.36% 74.81%
Average fpair bias (high) 82.90% 83.07% 84.07%
Average doublef bias (high) 67.21% 73.68% 78.34%

Table 4.1: Model accuracy for each dataset, small datasets
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4.2.2 OQObservations

First of all, as expected on average all models perform better when no bias is present in the dataset than
when there is any kind of bias and they also perform better when the bias is in mid intensity compared to
when it is in high. Additionally label bias and doublef bias, both considered more of an artificial kind of bias
than one naturally occurring as explained previously, seem to impact all models the hardest and lower their
accuracy more than the other kinds of bias.

Remarkably, in the case of no bias and on average the large language model performs close to the other two
methods though this was to be expected because of the TabLLM paper [14]. Furthermore, in the case of
label bias, on average, the large language model surpasses both other methods although TabPFN only by
a margin. From the above two points it is evident that indeed large language models do better than other
methods when the dataset is biased. However, as stated before, since label bias is considered more of an
artificial kind of bias, excluding the next experiment which is similar to this one except it concerns the larger
datasets, focus will shift towards the other kinds of bias and in particular to combined and fpair bias.

With regards to feature bias, the large language model on average only outperforms XGBoost when the bias
is in mid intensity but in high intensity it manages to surpass both other methods. Interestingly, applying
feature bias twice (that is, using doublef bias) the large language model is shattered as it perfoms under 10%
lower than TabPFN and 5 to 10% lower than XGBoost in both mid and high bias intensity. This has not
been explained somehow.

In the more realistic kinds of bias, that is in combined bias and fpair bias, the large language model appears
to be on par with the other two methods although it performs slightly worse. If a larger model was tested,
it is likely that it would perform even better and possibly outperform the other two methods.

4.3 Experiment 1024

4.3.1 Description

This experiment is more of a continuation of the previous one with a few changes to accustom it to the larger
datasets. Most prominently, all models were trained with 1024 samples of each train set for various reasons
such as it sped up training that would have otherwise taken absurd amounts of time to just a few minutes.
The main reason this was done however has already been mentioned and observant readers may have already
picked up on it. It is that the TabPFN model is designed and only works for small datasets with up to 1024
samples. The datasets used in the previous experiment all had less than 1024 samples in their train set and
the ones used in this one have more. Thus the separation of these two experiments was due to more of a
technical reason than any other.

Excluding this important detail, all other parameters of this experiment are the same as previously. That is,
one-shot prompting was employed in all cases in addition to fifteen epochs of training for the large language
model and it was compared wit h the other two methods. The results are shown below, in table 4.2:
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Dataset LLM (mt0) XGBoost TabPFN
biased datasets/income no_bias/income 83.59% 83.89% 83.69%
biased datasets/income label bias/income 78.52% 78.52%

biased datasets/income_feature bias/income 77.54% 81.64% 82.03%
biased datasets/income combined bias/income 78.22% 78.13% 78.32%
biased _datasets/income_fpair_bias/income 84.18% 83.11% 84.18%
biased datasets/income doublef bias/income 83.01% 81.84% 82.13%
biased datasets/bank no_bias/bank 89.65% 89.16% 88.87%
biased datasets/bank label bias/bank 88.67% 88.67%

biased datasets/bank feature bias/bank 88.57% 88.96% 89.06%
biased _datasets/bank combined _bias/bank 88.67% 88.28% 89.55%
biased datasets/bank fpair bias/bank 89.84% 87.30% 88.77%
biased datasets/bank doublef bias/bank 89.16% 88.28% 89.06%
biased datasets/jungle no bias/jungle 74.61% 61.28% 82.71%
biased datasets/jungle label bias/jungle 52.25% 52.25%

biased datasets/jungle feature bias/jungle 70.80% 85.16% 84.28%
biased _datasets/jungle combined _bias/jungle 50.68% 79.98% 83.98%
biased datasets/jungle fpair bias/jungle 72.17% 84.86% 82.91%
biased datasets/jungle doublef bias/jungle 73.54% 82.62% 82.13%
biased datasets/calhousing no_bias/calhousing 78.32% 85.16% 85.74%
biased datasets/calhousing label bias/calhousing 50.29% 50.29%

biased datasets/calhousing feature bias/calhousing 75.68% 85.84% 87.11%
biased datasets/calhousing combined bias/calhousing 75.78% 85.06% 84.57%
biased datasets/calhousing fpair bias/calhousing 77.73% 85.16% 85.45%
biased datasets/calhousing doublef bias/calhousing 74.90% 84.86% 85.94%
high-bias-datasets/income-feature-bias/income 82.81% 79.39% 78.03%
high-bias-datasets/income-combined-bias/income 36.33% 33.30% 33.89%
high-bias-datasets/income-fpair-bias/income 75.20% 81.84% 83.20%

high-bias-datasets/income-doublef-bias/income
high-bias-datasets/bank-feature-bias/bank

high-bias-datasets/bank-combined-bias/bank 88.96% 48.44% 48.34%
high-bias-datasets/bank-fpair-bias/bank 85.84% 86.62% 86.72%
high-bias-datasets/bank-doublef-bias/bank

high-bias-datasets/jungle-feature-bias/jungle 77.44% 84.57% 84.77%
high-bias-datasets/jungle-combined-bias/jungle 72.56% 74.80% 75.68%
high-bias-datasets/jungle-fpair-bias/jungle 53.42% 85.74% 84.18%
high-bias-datasets/jungle-doublef-bias/jungle 76.37% 82.42% 80.66%
high-bias-datasets/calhousing-feature-bias/calhousing 76.95% 85.45% 88.28%
high-bias-datasets/calhousing-combined-bias/calhousing 73.63% 85.35% 86.43%
high-bias-datasets/calhousing-fpair-bias/calhousing 76.76% 85.84% 86.62%
high-bias-datasets/calhousing-doublef-bias/calhousing 75.88% 86.04% 86.04%
Average no bias 81.54% 79.87% 85.25%
Average label bias 67.43% 67.43%

Average feature bias (mid) 78.15% 85.40% 85.62%
Average combined bias (mid) 73.34% 82.86% 84.11%
Average fpair bias (mid) 80.98% 85.11% 85.33%
Average doublef bias (mid) 80.15% 84.40% 84.81%
Average feature bias (high) 79.07% 83.14% 83.69%
Average combined bias (high) 67.87% 60.47% 61.08%
Average fpair bias (high) 72.80% 85.01% 85.18%
Average doublef bias (high) 76.12% 84.23% 83.35%

Table 4.2: Model accuracy for each dataset, 1024 samples from large datasets
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4.3.2 Observations

The results are in line with the observations of the previous experiment for reasons that have already been
explained.

4.4 Experiment Few Shot Training

4.4.1 Description

As this experiment’s name suggests, it was aimed at investigating the effects of the number of shots in few-shot
training of the models. This was an important factor in the TabLLM paper where the LLM’s performance
was found better compared to other methods for tabular data in zero-shot and few-shot training of models
(the less shots the better) [14]. Thus this experiment should give insight into how bias affects the three kinds
of models during their training. The kinds of bias used in the datasets were combined and fpair, both in mid
and high intensity, as these are considered to be the most similar to naturally occurring bias as well as other
reasons explained before.

In more technical details, the number of shots was exponentially stepped 1, 2, ..., 1024 just like in the TabLLM
paper and this time 20 epochs were used with no prompting for the LLM. The LLM used is still mt0. The
results may be found in table 4.3 below:
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Dataset Shots LLM (mt0) XGBoost TabPFN

biased datasets/blood combined bias/blood 1 78.67% 78.67%

2 44.67% 78.67% 66.67%

4 78.67% 78.67% 72.00%

8 78.67% 78.67% 67.33%

16 78.67% 78.67% 67.33%

32 78.67% 64.00% 78.67%

64 78.67% 71.33% 78.67%

128 78.67% 71.33% 78.67%

256 78.67% 72.67% 83.33%

512 78.67% 75.33% 82.67%

1024 80.67% 78.00% 82.67%
biased datasets/blood fpair bias/blood 1 78.00% 78.00%
2 78.00% 78.00%
4 78.00% 78.00%

8 78.00% 78.00% 78.00%

16 78.00% 78.00% 78.00%

32 78.00% 78.00% 78.00%

64 78.00% 76.00% 78.00%

128 78.00% 73.33% 79.33%

256 78.00% 77.33% 79.33%

512 80.67% 78.67% 79.33%

1024 79.33% 81.33% 81.33%
biased datasets/diabetes combined bias/diabetes 1 62.99% 62.99%
2 62.99% 62.99%

4 62.99% 62.99% 64.29%

8 62.99% 62.99% 65.58%

16 62.99% 63.64% 70.78%

32 62.99% 71.43% 71.43%

64 67.53% 74.03% 70.78%

128 62.99% 70.13% 74.03%

256 68.83% 74.03% 76.62%

512 76.62% 77.27% 76.62%

1024 73.38% 72.08% 77.27%
biased datasets/diabetes fpair bias/diabetes 1 68.18% 68.18%
2 68.18% 68.18%

4 68.18% 68.18% 69.48%

8 70.13% 60.39% 61.69%

16 64.94% 53.90% 60.39%

32 65.58% 63.64% 74.68%

64 68.18% 70.78% 75.32%

128 70.78% 76.62% 79.22%

256 77.27% 72.73% 77.27%

512 74.03% 71.43% 78.57%

1024 76.62% 74.03% 77.92%
biased datasets/heart combined bias/heart 1 54.35% 54.35%

2 63.04% 45.65% 82.07%

4 85.33% 45.65% 76.09%

8 87.50% 75.54% 82.07%

16 84.78% 87.50% 85.87%

32 86.96% 88.04% 84.24%

64 87.50% 82.61% 84.24%
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128 87.50% 86.96% 90.76%
256 90.22% 87.50% 89.67%
512 90.76% 90.22% 89.67%
1024 88.04% 88.59% 89.67%
biased datasets/heart fpair bias/heart 1 59.78% 42.93%
2 57.07% 42.93% 66.30%
4 81.52% 42.93% 78.26%
8 79.89% 79.89% 78.26%
16 57.07% 73.91% 77.72%
32 80.98% T117T% 79.89%
64 83.70% T117T% 77.17%
128 88.59% 82.61% 80.43%
256 91.30% 85.87% 88.04%
512 89.13% 84.24% 86.41%
1024 90.76% 88.59% 89.67%
biased datasets/car combined bias/car 1 70.81% 70.81%
2 70.81% 70.81%
4 70.81% 70.81%
8 70.81% 70.81%
16 70.81% 70.81% 70.81%
32 70.81% 79.48% 77.75%
64 77.75% 82.37% 83.24%
128 77.75% 82.37% 87.28%
256 86.42% 87.28% 92.77%
512 93.93% 93.35% 96.24%
1024 97.69% 96.82% 95.66%
biased datasets/car fpair bias/car 1 70.23% 70.23%
2 70.23% 70.23%
4 70.23% 70.23%
8 70.23% 70.23%
16 70.23% 70.23%
32 70.23% 80.06% 75.72%
64 77.75% 76.59% 83.24%
128 78.32% 82.95% 88.15%
256 86.42% 88.44% 94.22%
512 90.46% 93.64% 95.38%
1024 97.11% 96.82% 96.82%
high-bias-datasets,/blood-combined-bias/blood 1 80.00% 80.00%
2 80.00% 80.00% 34.00%
4 78.67% 80.00% 68.00%
8 80.00% 80.00% 74.00%
16 80.00% 80.00% 80.00%
32 80.00% 80.00% 80.00%
64 80.00% 78.67% 80.00%
128 80.00% 58.00% 68.67%
256 80.00% 60.67% 73.33%
512 80.00% 61.33% 72.67%
1024 80.00% 61.33% 72.67%
high-bias-datasets/blood-fpair-bias/blood 1 77.33% 77.33%
2 77.33% 77.33%
4 77.33% 77.33%
8 77.33% 77.33% 77.33%
16 77.33% 77.33% 75.33%
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32 77.33% 79.33% 76.00%
64 77.33% 78.00% 77.33%
128 77.33% 80.67% 77.33%
256 79.33% 70.67% 76.00%
512 77.33% 73.33% 76.67%
1024 78.67% 74.00% 78.00%
high-bias-datasets/diabetes-combined-bias/diabetes 1 68.18% 68.18%
2 68.18% 68.18% 65.58%
4 68.18% 68.18% 68.18%
8 68.18% 68.18% 68.18%
16 68.18% 73.38% 72.73%
32 68.18% 74.03% 75.32%
64 68.18% 81.82% 79.22%
128 72.08% 78.57% 75.97%
256 68.18% 74.68% 77.92%
512 69.48% 74.03% 79.87%
1024 81.82% 75.97% 79.22%
high-bias-datasets/diabetes-fpair-bias/diabetes 1 62.99% 62.99%
2 62.34% 62.99% 68.18%
4 57.79% 62.99% 70.13%
8 62.99% 62.99% 54.55%
16 62.99% 67.53% 62.34%
32 62.99% 66.23% 69.48%
64 62.99% 67.53% 65.58%
128 62.99% 72.08% 78.57%
256 62.99% 75.97% 79.22%
512 74.68% 72.73% 79.22%
1024 75.97% 73.38% 77.92%
high-bias-datasets /heart-combined-bias/heart 1 53.80% 53.80%
2 76.63% 46.20% 73.91%
4 46.20% 46.20% 58.70%
8 46.20% 46.20% 75.54%
16 48.37% 46.20% 70.65%
32 46.20% 68.48% 65.76%
64 46.20% 66.85% 62.50%
128 55.43% 67.39% 60.33%
256 54.35% 53.80% 56.52%
512 56.52% 55.98% 55.43%
1024 55.43% 55.98% 55.43%
high-bias-datasets/heart-fpair-bias/heart 1 55.98% 55.98%
2 55.98% 55.98%
4 55.98% 55.98% 55.43%
8 55.98% 55.98% 64.67%
16 55.98% 71.74% 58.70%
32 83.15% 61.41% 73.37%
64 83.15% 86.41% 75.00%
128 83.70% 83.70% 82.07%
256 88.59% 87.50% 86.96%
512 88.59% 87.50% 86.41%
1024 88.59% 87.50% 86.41%
high-bias-datasets/car-combined-bias/car 1 70.52% 70.52%
2 70.52% 70.52%
4 70.52% 70.52% 69.94%
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8 70.52% 70.52% 70.52%
16 70.52% 67.63% 69.36%
32 70.52% 61.85% 74.28%
64 70.52% 74.57% 80.92%
128 70.52% 81.79% 88.44%
256 82.08% 78.61% 92.20%
512 87.57% 88.73% 92.20%
1024 88.44% 85.26% 91.33%
high-bias-datasets/car-fpair-bias/car 1 69.65% 69.65%
2 69.65% 69.65%
4 69.65% 69.65%
8 69.65% 69.65% 69.65%
16 69.65% 64.16% 72.83%
32 69.65% 68.50% 73.70%
64 69.65% 77.46% 81.50%
128 73.41% 80.64% 84.97%
256 82.66% 85.84% 88.44%
512 90.46% 89.02% 91.04%
1024 91.04% 97.11% 93.93%
high-bias-datasets/calhousing-combined-bias/calhousing 1 50.68% 50.68%
2 50.58% 49.32% 53.29%
4 49.27% 49.32% 50.05%
8 50.70% 49.32% 68.24%
16 49.32% 53.39% 59.42%
32 52.57% 72.02% 73.72%
64 53.49% 76.70% 78.75%
128 59.42% 77.93% 82.75%
256 73.43% 80.60% 83.65%
512 74.73% 84.69% 84.40%
1024 76.91% 84.62% 85.08%
high-bias-datasets/calhousing-fpair-bias/calhousing 1 48.98% 48.98%
2 48.98% 48.98%
4 48.98% 48.98% 49.98%
8 48.98% 48.98% 55.21%
16 48.98% 72.80% 75.19%
32 51.45% 70.25% 72.65%
64 54.09% 68.75% 75.36%
128 62.16% 76.33% 83.48%
256 63.52% 79.72% 83.28%
512 75.94% 83.09% 85.15%
1024 78.08% 85.05% 85.66%
high-bias-datasets/jungle-combined-bias/jungle 1 51.76% 51.76%
2 51.76% 51.76%
4 51.76% 51.76% 53.51%
8 51.76% 51.76% 54.05%
16 51.76% 61.18% 60.69%
32 51.76% 65.50% 62.49%
64 60.58% 70.09% 71.47%
128 61.79% 71.51% 65.56%
256 65.08% 69.53% 67.90%
512 67.19% 71.73% 70.34%
1024 64.85% 73.67% 73.27%
high-bias-datasets/jungle-fpair-bias/jungle 1 48.43% 48.43%
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2 48.43% 48.43%
4 48.43% 48.43% 49.44%
8 48.43% 48.43% 61.20%
16 51.94% 68.50% 67.88%
32 53.39% 67.30% 69.62%
64 56.51% 73.77% 70.93%
128 60.04% 77.49% 77.81%
256 73.28% 79.75% 78.27%
512 77.22% 81.30% 81.62%
1024 70.84% 84.05% 83.56%
high-bias-datasets/bank-combined-bias/bank 1 88.85% 88.85%
2 88.85% 88.85%
4 88.85% 88.85% 88.85%
8
16 88.85% 88.85% 80.49%
32 89.73% 82.12% 70.57%
64 89.73% 45.77% 52.39%
128 89.73% 48.83% 48.89%
256 47.77% 47.99% 49.45%
512 47.25% 47.44% 49.39%
1024 47.08% 47.56% 47.85%
high-bias-datasets/bank-fpair-bias/bank 1 88.63% 88.63%
2 88.63% 88.63%
4 88.63% 88.63% 88.61%
8
16 88.63% 88.63% 88.63%
32 88.63% 88.63% 88.60%
64 88.63% 88.63% 88.60%
128 88.88% 87.79% 89.19%
256 88.63% 89.01% 88.99%
512 88.39% 89.24% 89.16%
1024 88.85% 89.12% 89.01%
Average Combined Bias (mid) 1 66.70% 66.70%
2 60.38% 64.53% 74.37%
4 74.45% 64.53% 70.79%
8 74.99% 72.00% 71.66%
16 74.31% 75.15% 73.70%
32 74.85% 75.74% 78.02%
64 77.86% 77.58% 79.23%
128 76.72% 77.70% 82.68%
256 81.03% 80.37% 85.60%
512 85.00% 84.04% 86.30%
1024 84.94% 83.87% 86.32%
Average fpair Bias (mid) 1 69.05% 64.84%
2 68.37% 64.84% 66.30%
4 74.48% 64.84% 73.87%
8 74.56% 72.13% 72.65%
16 67.56% 69.01% 72.04%
32 73.70% 74.72% 77.07%
64 76.91% 75.14% 78.43%
128 78.92% 78.88% 81.78%
256 83.25% 81.09% 84.72%
512 83.57% 81.99% 84.92%
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1024 85.96% 85.19% 86.44%
Average Combined Bias (high) 1 68.13% 68.13%

2 73.83% 66.22% 57.83%

4 65.89% 66.22% 66.20%

8 66.22% 66.22% 72.06%

16 66.77% 66.80% 73.19%

32 66.22% 71.09% 73.84%

64 66.22% 75.47% 75.66%

128 69.51% 71.44% 73.35%

256 71.15% 66.94% 74.99%

512 73.39% 70.02% 75.04%

1024 76.42% 69.64% 74.66%
Average fpair Bias (high) 1 66.49% 66.49%

2 66.33% 66.49% 68.18%

4 65.19% 66.49% 62.78%

8 66.49% 66.49% 66.55%

16 66.49% 70.19% 67.30%

32 73.28% 68.87% 73.14%

64 73.28% 77.35% 74.86%

128 74.36% 79.27% 80.74%

256 78.39% 79.99% 82.65%

512 82.76% 80.64% 83.34%

1024 83.57% 83.00% 84.07%

Table 4.3: Model accuracy for each dataset and number of shots, few-shot training

34



4.4. Experiment Few Shot Training

4.4.2 QObservations

To help present the observations of this experiment a graph has been made for each kind of bias and intensity.
They present each models average accuracy across all datasets with the specific kind of bias and specific
intensity.
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Figure 4.4.1: Few-shot learning accuracy, combined bias (mid)

Starting with combined bias in mid intensity, as seen in figure 4.4.1, it is evident that the large language
model on average outperforms the other two methods in really few-shot situations but then closely follows
XGBoost’s performance ending with a slight advantage to it.
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fpair Bias (mid)
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Figure 4.4.2: Few-shot learning accuracy, fpair bias (mid)

In mid fpair bias, as seen in figure 4.4.2, the large language model performs even better for really few-
shots, this time outperforming the other two models in all cases were the number of shots is less than 8.
Additionally, now it performs slightly better than XGBoost for larger numbers of shots, though it is still
bettered by TabPFN.
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Combined Bias (high)
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Figure 4.4.3: Few-shot learning accuracy, combined bias (high)

In the high bias version of combined bias, as seen in figure 4.4.3, the large language model still performs better
for very few shots. However, this time XGBoost and TabPFN stop showing improvement after a number of
shots (they peak at 64) while at the same time the large language model starts showing a steady increase in
its accuracy, eventually surpassing the other two methods. This is probably due to the fact that the other
two methods in this case were thrown off because of the high bias and it hints at the large language model
being able to overcome data bias. This could be the case because combined bias affects the labels directly
and so XGBoost and TabFPN could not cope as well as a large language model which can also use its prior
knowledge.
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fpair Bias (high)
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Figure 4.4.4: Few-shot learning accuracy, fpair bias (high)

In high fpair bias, as also seen in figure 4.4.4, all tested models seem to be doing equally well with at times
either one being the best. It is possible that differences between models are not as visible here because, in
contrast to combined bias, fpair bias does not directly affect labels.
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4.5 Experiment Sequence to Sequence

4.5.1 Description

Up until now the large language model used a small trainable classification head to convert tokens into classes
as described in section 3.2.6. The purpose of this experiment then, was to investigate the alternative method
described there. A small detail is that now the model is also evaluated at zero-shot predictions. Previously,
zero-shot did not make much sense since the classification head was not pretrained, but now that it doesn’t
exist the model can run zero-shot. It is no different from the previous one in any other way and all other
experimental parameters are equal. As such, the reader will notice that on the table following shortly, the
performance scores for XGBoost and TabPFN have not been filled. That is because they are the same as
before. Their average performance was filled in to render comparisons easier. The results have been recorded
in table 4.4 below:
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Dataset Shots LLM (mt0) XGBoost TabPFN
biased datasets/blood combined bias/blood 0 0.00%
1 78.67%
2 78.67%
4 78.67%
8 78.67% same same
16 78.67% with with
32 78.67% few-shot few-shot
64 78.67% training training
128 78.67%
256 78.67%
512 78.67%
1024 78.67%
biased datasets/blood fpair bias/blood 0 0.00%
1 78.00%
2 78.00%
4 78.00%
8 78.00%
16 78.00%
32 78.00%
64 78.00%
128 78.00%
256 78.00%
512 79.33%
biased datasets/diabetes combined bias/diabetes 1024 79.33%
0 12.34%
1 67.53%
2 63.64%
4 68.18%
8 64.94%
16 64.29%
32 67.53%
64 68.83%
128 66.88%
256 70.13%
512 75.32%
1024 75.97%
biased datasets/diabetes fpair bias/diabetes 0 7.79%
1 63.64%
2 68.18%
4 62.34%
8 53.90%
16 55.19%
32 63.64%
64 70.13%
128 72.08%
256 77.27%
512 77.27%
1024 81.17%
biased datasets/heart combined bias/heart 0 0.00%
1 54.35%
2 53.80%
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4 61.96%

8 71.20%

16 75.54%
32 80.43%
64 84.78%
128 89.67%
256 89.67%
512 90.76%
1024 91.30%
biased datasets/heart fpair bias/heart 0 0.00%
1 36.41%

2 48.91%

4 52.17%

8 53.26%

16 62.50%
32 81.52%
64 82.07%
128 85.33%
256 89.67%
512 90.76%
1024 89.67%
biased datasets/car combined bias/car 0 1.16%
1 70.81%

2 70.81%

4 70.81%

8 70.81%

16 70.81%
32 70.81%
64 72.25%
128 79.19%
256 86.13%
512 94.80%
1024 98.27%
biased datasets/car fpair bias/car 0 2.31%
1 70.23%

2 70.23%

4 70.23%

8 70.23%

16 70.23%
32 70.23%
64 71.97%
128 81.21%
256 84.97%
512 91.04%
1024 97.69%
high-bias-datasets/blood-combined-bias/blood 0 0.00%
1 80.00%

2 80.00%

4 80.00%

8 80.00%

16 80.00%
32 80.00%
64 80.00%
128 80.00%
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256 80.00%
512 80.00%
1024 80.00%

high-bias-datasets/blood-fpair-bias/blood 0 0.00%
1 77.33%

2 77.33%

4 77.33%

8 77.33%

16 77.33%

32 77.33%

64 77.33%

128 77.33%

256 77.33%
512 78.00%
1024 77.33%

high-bias-datasets/diabetes-combined-bias/diabetes 0 11.04%
1 25.97%

2 32.47%

4 68.83%

8 68.18%

16 69.48%

32 68.83%

64 68.83%

128 70.13%
256 71.43%
512 80.52%
1024 81.17%

high-bias-datasets/diabetes-fpair-bias/diabetes 0 13.64%
1 41.56%

2 41.56%

4 39.61%

8 43.51%

16 59.09%

32 62.99%

64 63.64%

128 62.34%

256 70.78%

512 75.32%
1024 74.68%

high-bias-datasets/heart-combined-bias/heart 0 0.00%
1 51.09%

2 55.98%

4 52.17%

8 51.09%

16 53.26%

32 52.17%

64 67.39%

128 78.26%

256 79.35%
512 70.11%
1024 62.50%

high-bias-datasets/heart-fpair-bias/heart 0 0.00%
1 55.98%
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2 55.98%

4 55.98%

8 72.83%
16 67.39%
32 83.15%
64 86.96%
128 87.50%
256 88.59%

512 88.59%
1024 88.04%

high-bias-datasets/car-combined-bias/car 0 2.31%
1 70.52%

2 70.52%

4 70.52%

8 70.52%

16 70.52%

32 70.52%

64 70.52%

128 66.76%

256 76.59%
512 89.60%
1024 91.91%

high-bias-datasets/car-fpair-bias/car 0 2.89%
1 69.65%

2 69.65%

4 69.65%

8 69.65%

16 69.65%

32 69.65%

64 70.52%

128 76.30%

256 82.95%
512 88.15%
1024 94.80%

Average Combined Bias (mid) 0 3.37%
1 67.84% 66.70%
2 66.73% 64.53% 74.37%
4 69.90% 64.53% 70.79%
8 71.40% 72.00% 71.66%
16 72.33% 75.15% 73.70%
32 74.36% 75.74% 78.02%
64 76.13% 77.58% 79.23%
128 78.60% 77.70% 82.68%
256 81.15% 80.37% 85.60%
512 84.89% 84.04% 86.30%
1024 86.05% 83.87% 86.32%
Average fpair Bias (mid) 0 2.53%
1 62.07% 64.84%
2 66.33% 64.84% 66.30%
4 65.69% 64.84% 73.87%
8 63.85% 72.13% 72.65%
16 66.48% 69.01% 72.04%
32 73.35% 74.72% 77.07%
64 75.54% 75.14% 78.43%

43



Chapter 4. Experiments

128 79.15% 78.88% 81.78%

256 82.48% 81.09% 84.72%

512 84.60% 81.99% 84.92%

1024 86.97% 85.19% 86.44%

Average Combined Bias (high) 0 3.34%

1 56.90% 68.13%

2 59.74% 66.22% 57.83%

4 67.88% 66.22% 66.20%

8 67.45% 66.22% 72.06%

16 68.32% 66.80% 73.19%

32 67.88% 71.09% 73.84%

64 71.69% 75.47% 75.66%

128 73.79% 71.44% 73.35%

256 76.84% 66.94% 74.99%

512 80.06% 70.02% 75.04%

1024 78.89% 69.64% 74.66%

Average fpair Bias (high) 0 4.13%

1 61.13% 66.49%

2 61.13% 66.49% 68.18%

4 60.64% 66.49% 62.78%

8 65.83% 66.49% 66.55%

16 68.37% 70.19% 67.30%

32 73.28% 68.87% 73.14%

64 74.61% 77.35% 74.86%

128 75.87T% 79.27% 80.74%

256 79.91% 79.99% 82.65%

512 82.52% 80.64% 83.34%

1024 83.71% 83.00% 84.07%

Table 4.4: Model accuracy for each dataset and number of shots, using sequence-to-sequence
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4.5.2 Observations

Similarly to the previous experiment, to better illustrate the observations, a few graphs showing the models’
average performance over the number of shots have been created. As one can see in all graphs, unfortunately
zero-shot performance is incredibly low for this large language model. As will be show in the next experiment,
this is because the mt-0 model used only has 570M parameters and the larger models will demonstrate an
acceptable zero-shot performance. But this is for later

Combined Bias (mid) sequence-to-sequence

Average Accuracy

== | LM == XGBoost TabPFN
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Figure 4.5.1: Few-shot learning accuracy, combined bias (mid) sequence-to-sequence

In the case of combined bias of mid intensity the large language model performs similar as before. A minor
difference is that it performs slightly worse in really few shots like two and less but it performs slightly better
with more shots, even reaching TabPFN at 1024.
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fpair Bias (mid) sequence-to-sequence
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Figure 4.5.2: Few-shot learning accuracy, fpair bias (mid) sequence-to-sequence

In the case of fpair bias of mid intensity, the large language model initially doesn’t perform that well on
average in very few shots but as the number of shots increases it prfrorms better in comparison to the other
two methods and eventually surpasses both XGBoost and TabPFN.
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Combined Bias (high) sequence-to-sequence
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Figure 4.5.3: Few-shot learning accuracy, combined bias (high) sequence-to-sequence

In the case of high combined bias, the large language model exhibits the best performance out of all the
experiments on average compared to XGBost and TabPFN. It performs better than them both at four shots
and for each sample after 128 shots, overcoming data bias.
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fpair Bias (high) sequence-to-sequence
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Figure 4.5.4: Few-shot learning accuracy, fpair bias (high) sequence-to-sequence

Finally, in the case of high fapir bias, all models perform quite simlarly.

Overall

Overall, the large language model performs better compared to XGBoost and TabPFN in combined bias and
in the high intensity variants. This is also true for the previous experiment. This shows that large language
models can overcome these biases in datasets. Additionally, it seems to be doing slightly better when not
using a classification head but, instead, the other method described in subsection 3.2.6, especially with larger

numbers of few shots.
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4.6 Experiment Few Shot Prompting

4.6.1 Description

In this experiment, three different large language models were tested under bias, using only prompting (and
no training). These models are mt0-base (570 million parameters), TO 3B (3 billion parameters) and TOpp
(11 billion parameters). More on these models was written in a previous chapter. Again, different numbers
of shots were tested to see the effects of bias as well as to compare with the results from training. Necessarily
these models did not use a classification head which would need to be trained but the other method described
in subsection 3.2.6. The results are presented in table 4.5 below:
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Dataset Shots mt0 TO 3B TOpp

biased datasets/blood combined bias/blood 0 0.00% 78.67% 21.33%
1 7867% 78.67%  78.67%
2 21.33% 78.67% 21.33%
4 21.33% 78.67%  78.67%
8 21.33% 78.67T%
16 78.67% 21.33%
32 78.67% 21.33%

biased _datasets/blood _fpair _bias/blood 0 0.00%  78.00%  22.00%
1 78.00% 22.00% 22.00%
2 78.00% 35.33%  78.00%
4 22.00% 78.00%  22.00%
8 78.00% T72.67%
16 22.00% 22.00%
32 78.00% 78.00%

biased datasets/diabetes combined bias/diabetes 0 12.34% 37.01% 62.99%
1 62.34% 37.01% 37.01%
2 37.01% 37.01% 62.99%
4 62.34%  62.99%
8 37.66% 37.01%
16 37.01% 62.99%
32

biased datasets/diabetes fpair bias/diabetes 0 7.79%  31.82%  31.82%
1 31.82%  31.82%
2 31.82%  68.18%
4 31.82%
8 68.18%
16 31.82%
32

biased datasets/heart combined bias/heart 0 0.00% 54.35% 54.35%
1 54.35%  45.65%
2 54.35%
4 45.65%
8 54.35%
16 54.35%
32

biased datasets/heart fpair bias/heart 0 0.00% 42.93% 57.07%
1 42.93%  42.93%
2 42.93%
4 42.93%
8 57.07%
16 42.93%
32

biased datasets/creditg combined bias/creditg 0 33.00%  67.00%
1 67.00%
2 67.00%
4 32.50%
8 67.00%
16
32

biased datasets/creditg fpair bias/creditg 0 30.00%  31.50%
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31.50%
31.50%
68.50%
68.50%

L =

1.16% 3.47% 3.76%
21.97%  70.81%
3.76% 3.76%

biased datasets/car combined bias/car

3.76%
3.47%
1 3.76%
3 14.45%

4.05% 4.62%
34.39%  70.23%
70.23%  21.10%
4.05%
4.05%
8.09%
4.05%

2.31%  49.08%
50.92%
49.08%
49.08%

biased datasets/car fpair bias/car

L =

biased datasets/calhousing combined bias/calhousing

w

0.00%  20.00%  80.00%
20.00%  80.00%

20.00%  80.00%  20.00%

20.00%  20.00%  80.00%

20.00%  20.00%

72.67%  20.00%

80.00%  20.00%

0.00% 77.33%  22.67%
22.67% 77.33%  22.67%
77.33%  22.67% 77.33%
77.33%  22.67% 77.33%
22.67%  22.67%
22.67%  40.67%
22.67%  22.67%

11.04%  68.18%  31.82%
66.88%  31.82%  31.82%
68.18% 31.82%  31.82%
31.82%  31.82%
31.82%  68.18%
68.18%  68.18%

high-bias-datasets/blood-combined-bias/blood

L =

high-bias-datasets/blood-fpair-bias/blood

W =

high-bias-datasets/diabetes-combined-bias/diabetes

—_

w =
BN = OINOOOO RN OINOSODOOERERNEFE O|I N R NDNFE O NSO ERDNFOIDNSDSORENFEOINO O ERENREFEO|INOO RN

13.64%  62.99% 37.01%
49.35%  62.99%  37.01%
37.01% 62.99%  62.99%
62.99%  62.99%

high-bias-datasets/diabetes-fpair-bias/diabetes
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8 37.01% 62.99%
16 37.01% 37.01%
32
high-bias-datasets/heart-combined-bias/heart 0 0.00% 46.20% 58.15%
1 47.28% 53.80% 46.20%
2 46.20%  46.20%
4 53.80%  46.20%
8 46.20%  46.20%
16 46.20%  53.80%
32
high-bias-datasets/heart-fpair-bias/heart 0 0.00%  55.98% 44.02%
1 55.98% 48.91%  44.02%
2 55.98%  55.98%
4 55.98%  44.02%
8 55.98%  55.98%
16 55.98%  55.98%
32
high-bias-datasets/creditg-combined-bias/creditg 0 29.50%  70.50%
1 29.50%  29.50%
2 29.50%  70.50%
4 58.00% 70.50%
8 29.50%  70.50%
16
32
high-bias-datasets/creditg-fpair-bias/creditg 0 68.00%  32.00%
1 68.00% 68.00%
2 68.00%  68.00%
4 68.00%  32.00%
8 68.00% 68.00%
16
32
high-bias-datasets/car-combined-bias/car 0 231% 20.81% 70.52%
1 4.62% 20.81% 4.62%
2 4.62% 4.05% 20.81%
4 19.65% 20.81%
8 4.05% 20.81%
16 4.05%  70.52%
32 43.93%  70.52%
high-bias-datasets/car-fpair-bias/car 0 2.89% 520%  21.39%
1 5.20% 5.20% 5.20%
2 25.72% 3.76% 21.39%
4 31.79%  11.56%
8 5.20% 3.76%
16  5.20% 69.65%
32 21.39% 3.76%
high-bias-datasets/calhousing-combined-bias/calhousing 0 49.32%
1 49.32%  50.68%
2 49.32%  49.32%
4 50.68%  50.68%
8 50.63%
6

L =
[\

52



4.6. Experiment Few Shot Prompting

Average Combined Bias (mid) 0 316% 42.60% 41.89%
1 51.65%  58.04%
2 48.31%  29.36%
4 45.44%
8 48.10%
16 35.61%
32
Average fpair Bias (mid) 0 260% 37.36% 29.40%
1 32.53%  41.75%
2 42.36%  55.76%
4 45.06%
8 54.09%
16 26.21%
32
Average Combined Bias (high) 0 3.34%  39.00% 62.20%
1 39.52%  34.44%  40.66%
2 36.30% 46.98%  24.21%
4 38.99%  40.00%
8 30.36%  45.14%
16 47.77%  53.13%
32
Average fpair Bias (high) 0 4.13% 53.90% 31.42%
1 40.24%  52.49%  27.23%
2 52.81% 42.68%  53.90%
4 59.22%  34.65%
8 37.7T%  42.68%
16 30.22%  50.83%
32

Table 4.5: Model accuracy for each dataset and number of shots, few-shot prompting
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4.6.2 Observations

The first observation is that the smallest model, mt0 of 570 million parameters, has nearly 0% accuracy in
zero-shot mode, while the other two larger models perform much better. However, with just one shot, the
performance of mt0 reaches the levels of the other two larger models.

Secondly, on average, the accuracy of each model seems to increase with the number of shots as expected but
it also some times falls, particularly in combined bias for the larger models. This is undoubtedly the effect
of bias.

Lastly all performances are severely lower compared to the previous performances we had obtained when
using training instead of prompting under the same conditions. Even the larger models under promoting do
not perform as well as mt0 when trained.

4.7 Additional Observations: LLM Eventually Learning Data Bias

As expected the large language model is not actually immune to data bias. As such two graphs were produced
of the models test set performance per epoch under high intensity bias that show the model eventually learning
the bias (and lowering its performance). Not all of the datasets had the same performance curve, these are
just two examples were it was particularly noticeable. In both, the large language model reaches a peak
performance and its accuracy drops after that having learned the data bias.

LLM eventually learning data bias
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Figure 4.7.1: LLM eventually learning data bias 1

Based on these two performance curves alone, one might think that less than 10 epochs are required to get
the best the large language model can give under these conditions of bias. However, as stated before these
two are not necessarily representative of every case and there were curves where the model kept improving
later on.
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LLM eventually learning data bias
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Figure 4.7.2: LLM eventually learning data bias 2
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Chapter 5. Conclusion

5.1 Interpretations on the results

The results of the large language model’s performance indicate that LLMs can indeed overcome bias when
it is present in the dataset, for several reasons. First of all, a smaller model could perform about the same
or even at times outperform state-of-the-art methods in various bias settings. Additionally, as observed,
increasing the bias intensity, the model performs comparatively better to the other two state-of-the-art
methods. Though the LLMs performance also drops the state-of-the-art methods lose more accuracy with
the increase of bias. This shows a resistivity to bias on the part of the LLM. Lasstly, the larger the LLMs
were the better performance they demonstrated against bias, likely due to to having more prior knowledge
and better language modeling.

The reasons for the above are probably the ones initially conjectured. Firstly, prior knowledge which might
help the LLM learn in a way that rejects bias or work around the bias. But also, the ability to utilise the
semantics of a feature or label via either embedding or language modeling may play a part, especially given
that for instance, XGBoost, being a decision tree model, cannot have access to such semantics and it under
performs.

Another observation was that the large language model performed better in label bias, combined bias and
feature pair bias. The reason for that is likely that these kinds of bias affect more the way decision trees and
similar models learn the dataset than the way an LLM does. Indeed, all of them were expected to impact
decision trees as they either drop a label directly (which the decision tree has no way of knowing if it doesn’t
appear in train set), or they destroy a correlation between a feature and a label (which is something decision
trees but many other methods rely on) or on the correlation between features. This might also indicate that
large language models do not rely on learning the correlations between a feature and a label but instead they
should learn the correlation between the whole sequence of a features and the label as it normally processes
sentences. If that is true then compared to LLMs other models might act more like N-grams. In fact this
might also explain why TabPFN has such a good overall performance, many times resisting bias itself, it uses
a transformer.

On the contrary, large language models were for some reason very negatively affected by double feature bias
(i.e. applying feature bias twice) while the other methods weren’t affected as much. The reason behind this
isn’t clear. Since as already explained this kind of bias drops the most samples, it is possible that the textual
representations on the train set become too similar and so the large language model may have trouble telling
them apart when their difference is only few tokens in specific positions, especially because it was a small
LLM of only 570M parameters. As such it is possible the model learned to respond to the structure of the
input with the most common label or some similar behavior.

A last observation was that training had better results than prompting and both training and prompting had
the best results. This is likely not unique to bias conditions and seems reasonable. Training makes the large
language model more fit for a task, while prompting helps it predict more correctly. Naturally, both together
are better than one and changing the LLM’s weights for a task is stronger than simply prompting it.

5.2 Recap

In this thesis, a tabular data large language model framework was created from scratch based on the re-
cently proposed TabLLM framework. Additionally methods to artificially add bias to data were though of
and implemented along with a mechanism to adjust the amount of bias added. The large language model
framework was then tested on datasets which were augmented with various kinds of bias at mid and high
intensity. Results indicate that large language models can overcome data bias better than classical methods
under various circumstances, that larger language models can perform better showing greater resistivity to
bias, and that large language models are not immune to data bias, which they also eventually learn.

5.3 Future Work

Future work could include the experimental testing with even larger language models than what was possible
with the limited resources available to this project. Additionally, different kinds of bias could be explored,
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especially ones derived from actual biased datasets. A more mathematically rigorous theory of bias could
be devised by utilising ideas, results and operations from set theory. Finally, an investigation into why some
kinds of bias affect LLMs less while others significantly more (like in the case of double feature bias) would
be really valuable, especially for explainable Al.
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