'
£
ig?

/%*
NPOMHBOEY $
Sl

M VP $OPOS

EeNIKO MET>0BIO IIOAYTEXNEIO
2XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YIIOAOTISTON
ToMEAS TEXNOAOTIAS IIAHPO®OPIKHS KAI YIIOAOTISTON
ErrastHPIO AOIIKHS KAI EIISTHMHS YIIOAOITSTON

Movtéda Toxaiag Avdtagng kat Ilpoentn yia Apeca
EravEnowya Axépoara Ilpoypappota

AIIIAQMATIKH EPTAYIA

AAEEANAPOY KOYPIAAKHX

EmBArénwv : Anpntprog Potding
KoaOnyntig E.M.IL

ABnva, IovAlog 2024

EBvikcd Metoofio ITodvteyvelo

>xoAn HAextpoldywv Mnyovikov kot Mnyavikodv YToAoylotov
Topéag Texyvoroyiog [TAnpogopiknig kot YToAoylotodv
Epyaotipro Aoyikng ko Emiotripng Yroloyiotodv

Random Order and Prophet Models for Online Augmentable
Integer Programmes

AIIIAQMATIKH EPTAXIA

AAEZANAPOY KOYPIAAKHX

Emiprénwv : Anpitprog dwtdng
Kabnyntng E.M.IL.

EyxpiOnie amd tnv tpein e€etaotikn emtponn tnv 111 IovAiov 2024.

Anprntprog Pwtakng Apioteidng [Mayovptlng Xpnotog Tldapog
KaOnyntg E.M.IL Kabnyntng E.M.IL. Av. Kabnyntng E.K.ILA.

ABnva, IovAlog 2024

AAEEavdpog Kovuprdakng
Autdwpatovyog Hhektpoddyog Mnyoavikog kor Mnyovikog Yrohoyiotodv E.M.IL

Copyright © AAéEavdpog Kovpiddkng 2024.
Me empOAa€n mavtog dikouwdpartog. All rights reserved.

Amayopeveton 1 avtiypaer], amobrjkevon kot diavopr] tng mopovong epyaciog, €€ olo-
KA POL 1} THAHATOG VTG, Yo EPTTopLkd okomd. Emtpéneton n avatdnwon, arobrjkevon
KoL SLOVOpT YL OKOTO 1) KEPOOGKOTLKO, EKTTALOEVTIKNG 1] EPEVVNTIKNG YVONG, LITO TNV
npoimobecn va avapépetal 1) TNyT| TPoEAELONG Kol va dlatnpeitol To Tapov pnvopa. E-
POTARATA TTOL AUPOPOVV T1 XPNOT) TNG EPYATLOG Lo KEPOOGKOTLKO GKOTTO TTPETTEL VAL OUTTEL-
Bvvovtal Tpog Tov cLYYpaPEQ.

Ot oo Yelg Ko T CUPTEPACHATA TTOL TEPLEXOVTAL G AVTO TO EYYPOPO eKPPALOUV TOV
ovyypagéa ko dev Tpémel va eppnvevBel OTL avTiTpocwtebovy TIg enionpeg Oéoelg Tov
EBvikod Metoofiov IToAvteyveiov.

[TepiAnyn

v Topovoo SUTAWRATIKT peAeTdple TPOPATIHATA TNG OLKOYEVELNS TwV Apecwv Emov€n-
opwv Aképaiwv Ipoypappdtov (Online Augmentable Integer Programmes, AIPs) oto po-
vtéda Toyaiog Awdtagng kot IIpognn. Ta d0o avtd povtéda eival Atydtepo amalslodota
Qo TNV KAXGOLKT) aVAALGT) XELPOTEPNG TLEPLTTMOTNG, TAPAPEVOVTAS TTAPA TALT LOLXLTE-
poL EAKLOTIKG aTto BewpPNTIKNG OKOTLAG, He amoTédeopa TANO0G TpoPfANpdTOVY va éxel -
voAvBel VLo To Tplopa Tovg. Eekivape eEeTAlOVTAG dLAPOPK CNHAVTIKAE TPOPANpHATA TTOV
éxovv peretnBet oe kabéva amod ta do povtéda, divovtag diaitepn éppaot ota OepeAtoddn
Secretary Problem (oto povtélo Tuyaiog Awdta&ng) kot Prophet Inequality Problem (oto
ormoio ogeilel To Gvopd tov to povtédo Ilpoenn), kabng ko oTig emektdoelg Tovg. T
k&Be TPOPANHa oL e€eTALOVE, TOPOVGLALOVHE Kol VAADOVE YVWOOTOVG, ATAOVG aAyo-
piBpovg mov Tap’ O avTd elvar BEATIOTOL G KATTOLES TTEPUTTHOCELG Kot oXedOV PEATIOTOL
otig vtoloureg. Emiong avagpépovpe ta TpéxovTa KaAbTepa dvw Kot KATW QPAypHata yio
K&Oe TpoPAnpa.

‘Eneita, eotialovpe otnv kAdon twv AlPs, n onoia meptlapPdver dipopo evdiapé-
povta poPAfpata, petafd Twv omoiwv ta Apeco Kddvppa Zvvorwv (Online Set Cover),
Apeca Axépoua Ilpoypappata Kalovyng (Online Covering Integer Programmes), Apeon
Metpikn ko Mn-Metpikn Xwpobétnon Ynnpeoiov (Online Metric and Non-Metric Facility
Location) kot Apeco Aévtpo Steiner (Online Steiner Tree). e 6Aa avT& T TPOPATIHAT
ANV TOV TEAELTALOV, TPOCPATA ATOTEAEGHATA £XOLV 001 YiGEL o€ ahyopiBpoug yia To po-
vtélo Tuyaiag Aldta€ng, Twv omolwv oL AdOYoL avTay®VIeTIKOTNTOG elval onpovTikd PeA-
TLOHEVOL GUYKPLTIKA e TOUG KXADTEPOUG EPLKTOVG GTO TTATPWG AVTAYWVIGTIKO HOVTENO.
EmutAéov, pio tpocpata amodedetypévn avaywyn delyvel mwg n vOmapn evog ovtoywvi-
otikol alyopiBpov yio éva AIP oto povtédo Tuyaiag Adta€ng cvvendyetor tnv Dropén
eVOG VTAy®VLOTIKOL alyopiBuov oto povtédo IIpognn. Hapovosidlovpe Tovg adyopib-
HOUG KOlL TOL ATOTEAECHATA VT AETTTOpEPWG, eEeTdlovTag oe Babog tn BewpnTikt avaiv-
o1 toug kot T draicOnon otnv omoia Pacilovrar. Télog, kavoupe Wiaxitepn avapopd 6To
Apeco Aévtpo Steiner, yia To 0moio eival Yvwotd OTL, TapOTL Eivo EDKOAO VO CVTLHETWITL-
otel 6to povtédo Ilpogritn, evrovtolg oo povtédo Tuyaiog Audtakng dev eiva evkoAdTepo
artd OTL GTO TANPOS AVTAYWOVIGTIKO HOVTENO.

Aé€erg Kherdrx

Apeco Kdhvppa Zovorwv, Apeon Xwpobétnon Ynnpeowdv, Apeco Aévtpo Steiner, Movté-
Ao Tuyaiog Avdtagng, Movtého Ilpognn, Apecor AAydpiBpol

Abstract

In this diploma thesis we study problems in the class of Online Augmentable Integer Pro-
grammes (AIPS, introduced in [1]) under the Random-Order and Prophet models. Both of
those models allow us to tackle problems in rich settings that are less pessimistic than the
classical fully-adversarial context, thus they have been applied to a number of problems and
led to intriguing theoretical results. We begin by examining various prominent problems
that have been studied in each of the two models, giving particular emphasis to the funda-
mental Secretary Problem (in the Random-Order model) and Prophet Inequality Problem
(from which the Prophet model takes its name), as well as their extensions. For each prob-
lem we study, we present and analyse well-known, simple algorithms that are nonetheless
optimal in a few cases and nearly-optimal in the rest. We also mention the current best
known upper and lower bounds for each problem.

Afterwards, we focus on the class of AIPs, which contains a number of interesting prob-
lems, particularly Online Set Cover, Online Covering Integer Programmes, Online Metric
and Non-Metric Facility Location, as well as Online Steiner Tree. For all but the last prob-
lem, recent developments have led to algorithms in the Random-Order model, whose com-
petitive ratios significantly improve upon the best possible for the fully-adversarial set-
ting. Additionally, a recently proven reduction shows how the existence of a competitive
algorithm for an AIP in the Random-Order model implies the existence of a competitive
algorithm for the Prophet model. We present those algorithms and results in detail, closely
examining their analyses and the intuition behind them. Finally, we make special note of
the Online Steiner Tree problem, for which it is known that, while it is easy to tackle in
the Prophet case, the Random-Order model is in fact not easier than the fully-adversarial
setting.

Keywords

Online Set Cover, Online Facility Location, Online Steiner Tree, Beyond-Worst-Case Anal-
ysis, Random Order Models, Prophet Models, Online Algorithms

Evyapiotieg

[Ipota amd 6Aa, B NBeda va evyaploTiow Tov emPAémovTa TNG SUTAOHATIKNG HOV ep-
yooiag, Tov kOpto Anpntpn Pwtdk, apylcd emeldn péca amd tnv eEopetikn didackaiio
TOL YATTNOO TO AVTIKELPLEVO TOV XAYOPIBp®Y Kot eédeax va aoxoAnBo pe avtod. Kopiwg
OHwG emeldr), Tov TeAevTALO EVAULOT) XPOVO, POV EXEL TPOCPEPEL AVEKTIUNTY LITOCTNPLEN,
Bonbovtag pe va yvwpicw tov kocpo g Oewpntikng IIAnpogopiknc, vo avakoadOyw Tig
TPOLYHOTLKEG HOL KALGELG KO, ONHOVTLIKOTEPO 0TO OACL, VO toPacicw oo BEA W va eivor
TO eMOpEVO PeYaAo Prpa ot {wn POV KAl Vo TO Tpaypatomotiow. Xwpig tnv kaboploti-
K1 emidpact) TOL Ko TNV EUMLGTOOVVN TTOL Hov €delEe, aiyovpa dev Ba el pTdoel oTO
onpeio 6mov Ppiokopot TOPA, Kot yior avtd tov evxaplotd Pabitata. Emeita, 0éAw va
evyoplotiow Ta e€atpetikd péAn tov CoRelab mov eiya tn xopd va yvopicw avtd kot To
TPONYoLpeVo akadnpaiko étog. O efdopadiaieg pog cvvavnoelg 6to Thaiclo tov study
group pe £kavay va atcBavopat 0Tt aviike oe pio {ovtovh akadnpaikn KowvoTnTa, YEHATn
HE XOPLOHATIKA ATONCL, HE TO OTTOLOL LITOPOVCQ TTAVTA VO KAV EVILAPEPOVGES GLLNTHOELS,
EMLOTNHOVIKOV 1] pn) eptexopévou. Idaitepa BéAw va evyaploTrow Tor ATopo ekelva pe T
orolo 1) emagn pov emekTabnke ko mépa omd T TAaiola Tov study group, ta omoia Oewp®
@iAeg KaL @iAoLG pov.

[Teplocotepo amd omolovdnToTe, OPWG, OéAw va evyaplotow tn NikoOA, 1) omola eivan
SimAa pov ad TV apyxn TNG POLTNTIKNG HOL GTASLOOPOpING HEXPL KL OTpepaL, elval TO
otabepd onpelo otn {wn pov 6TOL PIToP® TAVTA va PAcLoT®, polpdletal TIG XapEg PO
KoL pe Voot pilel aveAMITOG 0TI SVOKOAES GTLYHES Hov, pe Ponbdael va elpon Tavta 1)
KOAOTEPT) €KO0XT) TOL EAVTOV HOV KOL YEVIKOG HOU delyvel pe kdbe TpOTO TNV EUTPOKTN
YOIt TNG. Ze AUTHV APLEPOV® TNV TOPODCA SUTAWHATIKT).

ANéEavdpog Kovprdakng,
ABnva, 111 IovAiov 2024

Ileprexopeva

Hepidnyn

Abstract

Evxapiotieg

ITepreyopeva

Extetopévn EAAnvkn Iepidnyn
Ewayoyn
Movtéda Toxalog ALATaENG o o
Movtéla [Ipoprtn . .
Enavénopa Axéparo IIpOypopHOTOr . o o v v v v

0.1
0.2
0.3
0.4

Keipevo ota AyyAikd

1 Introduction

1.1

Preliminaries and Definitions

1.1.1
1.1.2
1.1.3
1.14
1.1.5

Notation

Random-Order Models

Prophet Models

Covering Integer Programmes
Augmentable Integer Programmes

2 Random-Order Models
Secretary Problems . .

2.1

2.2

2.11
2.1.2
2.1.3

2.2.1
2.2.2

Single-Secretary Problem
Multiple-Secretary Problem
Matroid Secretary Problem
Online Matching Problems
Maximum Weight Matching
Minimum Augmentation Matching

3 Prophet Models
Prophet Inequalities . .

31

3.1.1
3.1.2
3.1.3

Single-Choice Setting L.
Multiple-Choice Setting

Matroid Setting

23
24
24
25
25
27
27

29
29
29
31
34
38
38
40

43
43
43
45
48

11

Random Order and Prophet AIPs

Matching Problems
Connections with Random-Order Models

Random Order Set Cover .
Exponential-Time Algorithm
Polynomial-Time Algorithm
Random Order Facility Location
Metric Facility Location
Non-Metric Facility Location

Random Order Covering IPs

Covering Integer Programmes

Set Multicover . . .

ATPs in the Prophet Setting
Steiner Tree
Failure in the Random-Order Setting

3.2
33
4
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.4
4.5
4.5.1
4.5.2
Bibliography

The Prophet Setting

A Mathematical Tools

12

55
55
56
57
63
63
65
69
69
70
72
74
74
76

79

83

Extetapévn EAAnvikn IepiAnyn

0.1 Ewayoyn

Mia Baoikr) TpOKANGT TOL AVAKOTTEL G JLAPOPES KATAOTAGELS ANYNG ATTOPACEWDV €l-
vou 1) dwaeyeipion g afefodtnToag yio to péAlov. e kabnpepivr) Pdon kol oe motkido
neplPaAlovTa (7T.Y. oTNV eTOYYEAHATIKT], OLKOVOULKT 1} TTPOCWITLKT] Hag dpaotnplotnTa),
KOAOVHOGTE VO ETAEEOVE Ll EVEPYELA YLAL TNV OVTLHETOTLOT €VOG TTPOPANHATOC, SlYMGC
VO EXOVHE TIATPT) ETLYVOOT] TWV ATTOTEAECHATWV QUTNHG TNG evépyelag oe P&bog xpovou.
To emotnpovikd medio TV duecwv alyopibpuwy aoyoleiton pe tpofAnpata g Oewpnrti-
kg Emotung YmoAoylotodv ot 0moiot KOAOVHAGTE VO AVTIHETWITIGOVE CLLUTHV ok PLB®G
v ofefordtnTa. Xe éva tétolo TpOPANp, 1) el00d0G aroTeAeiTOL QIO N AVTIKELLEVO TOL
oTTolot PAVEPOVOVTOL GELPLAKE, G YOPOULG. Katd tnv aeien evog avTikelévou KA AOVHAGTE
v AaPovpe apécmg pior apeTAKANT amo@act). Xe TpoPANHATa HEYLIGTOTOINGNG, QUTY 1
amopacn apopd 6to e&v Ba Busldcovpe TOPOLS TPOKEHEVOL var kKaprtwBolpe tnv afic
TOL GVTLKELHEVOL, EVQ G€ TTPOPANHATO EAAYLOTOTOINONG 1] AWTOPACT) XPOPA GTO TAOG OB
LKOLVOTIOL)COVE TOVG TTEPLOPLOHOVG TOL TPOPANHATOC OV emPAAAOVTOL QIO TO AVTLKEL-
pevo — ovvnBwg emwpLlopevol k&molo k66tog. H tedkn pag enidoon cvykpivetot pe tnv
enidoomn evog PéATiaTou offline alyopiBpov o omoiog yvwpilel ek TV TPOTEPWV OAOKAN PN
v eloodo. Eav to képdog (avt. k6oTOG) £vOG Apecov adyopiBpov eivar to ToAD v popég
peyalbtepo (avt. pikpdtepo) amd to k6cTog Tov offline BéATioTov i omoiadtjmore axolov-
Bia e10060v, TOTE KAAOVHE TOV XAYOPLOHO aLTOV a-avTarywvioTikd (a-competitive), kot To
a kaeital o Adyos avrayvwiotikétyrag (competitive ratio).

To medio Twv apecwv alyopiBpwy éxel yvopicel onpoviky avOion. Evdeiktikd, opt-
opéva onpovTikd tpofAnpata tov £xouvv pehetnOei eivan to KaAvppo Zuvorwv (Set Cover,
[2]-[4]), n Xwpobétnon Ynnpeowdv (Facility Location, [5]-[8]), To Aévtpo Steiner (Steiner
Tree, [9]), To TpoPAnpa twv k E€umnpetntdv (k-Server Problem [10]-[13]) ko Tat MeTpik&
Yvotpata Epyociov (Metrical Task Systems, [14]-[16]). Zvv0wg, évag dpesog alyopio-
HOG avOADETAL GTO TAPWS AVTAYWVIOTIKG POVTELO, OTTOV EVOG OVTITOAOG KATAOKELALEL
oAOKAN PN TNV akoAovBia eleddov, kar afloloyovpe Tov adlyopibpo Paoel tng emidoot|g
TOUL TN XELPOTEPT duvaTh €l60d0 TOL PITopel Vo KATaoKeLAoeL 0 avtimtahog. [lopdtt avtd
TO HOVTEAO Sivel LoXLPES BewpPNTIKEG EYYUNOELG, EVTOVTOLG Vol opKeTd ataloLddo&o, LTTO
NV évvola OTL 1) emtidoon evog adlyopiBpov oty mpa&n pmopel vor elval GHOVTLIKA KOADTE-
p1 amd OTL TPOPAETEL 1) AVAAVGT) TOV GTO TANPWOG AVTAYWVIGTIKO povtéAdo. T'ia Tov Adyo
avtov, éxouvv tpotabel Sidpopa Lo EAXCTIKA PHOVTEAX aELOAOYN oG GpecwV adyopiBpwy,
0TOX0G TWV OTOLWV elval va avTIKATOTTPLlovV KaAUTepa TNV emidoot) evog alyopibpov oe
PEAALOTIKA GEVAPLAL, T} VO EVEWUATOVOUV DITAPYOLOX YVMOOT] YLt TS akoAovbieg eloddov
€VOG TTPOPANHOATOG TTOL AVOHEVOUE VO OLVTLHETOTTLGOVHE TNV TPAED.

Ot 8Yo kartnyopieg povtédwv mov B pog amacyoinicouvv eivar ta Movréda Tuyaiog
Awdraéns (Random-Order Models) ko too Movréda ITpogprity (Prophet Models). Xtnv mtpo-
TN TepInTeo, 0 avtimalog emAéyel Ta avtikeipeva ov Bo amoteAécovy TV akolovbic

13

€L60d0V, AAA 1) GELPA ELPAVIOTIG TOVG ELVal OOLOHOPPX TUX AL OVAHEGH GE OAEG TLG TTL-
Bavég SratdEelg avt®OV TV avtikelpévov. Ta éva dedopévo chivolo avtikelpévwv eLlcddwv,
eVOLOPEPOLOOTE YO TNV avapevopevn emidoact) evog alyopiBpov mtdvw oe OAeg TIg mBavES
dratdelg eloodov, eved Kot TAAL cuykplvopacte pe tn PéAtiotn offline Adon yio avtd To
ovvolo avtikepévov. Ocov apopd Tao Movtéha Ipoeritn, 8o o avtinalog emhéyel ek
TOV TPOTEPWV Jict koAOLOIX KATAVOUWOV AV oTa Tova avTikeipeva .6Od0V, KoL Kot
T TNV ekTéAEDT) TOUL arhyopiBpov k&Be avtikeipevo ov eppaviletal eival Tpafrnypévo amd
TNV KATAVOUN 7oL ToL avtioTolyel. IIaAL evilapepOpacTe yior TNV avapevopevn emidoon
oL aAyopiBpov pog TAve oe OAeC TIG duvaTéG LAOTTOLNOELS TG akoAoLBiag eLaOdov, AL
TAEOV GUYKPLVOHAOTE pe TNV avapuevopevy BéATioTn offline Ao () omoia eivan aveEdptnn
amo tnv vAomopévn akolovbia elcodov).

0.2 Movtéda Tuoyaiag Ardtagng

Towg to Mo KAaooikd TpdPANpa mov éxel peletnOei oto povrédo Tuxaing Avbtabng ei-
vou to Secretary Problem, pia iotopikn avadpopr tov omoiov mapatifetor oto [17]. e
avTO TO TPOPANHA dlvovTol N AVTIKEEVE KoL VoG OVTITOAOG eTAEYEL pPiot UN-aLPVTLKT
npoypoatikn ofio yioo kaBéva €€ avtdv. Ta avtikeipeva TapovotdlovTol oeplakd 6e TL-
yoio Suata€n. Otav eppovifeton évo avtikeipevo, Tpénel apécws eite v To aoppiovpe
QPETAKANTO €iTE VA TO eTAEEOV E, KOl PITOPOVHE VO eTIAEEOVIE PHOVO EVOL OVTLKELPNEVO G-
voAké. Emibupodpe va peylotomojcouvpe tnv afiot TOL QVTIKEYEVOD TOV ETTLAEYOUHE, KoL
OLYKPLVOHOOTE e TN HEYLOTT o€l OVAEC K GE ONCL TO AVTLKELHEVQL.

[acvtod To TPOPANHa, Yvwpilovpe Evav amtAd alyoplOpo Tov, yia HeYRAEG TIHES TOV 1,
emIAEYEL TO QVTIKElpEVO PéyLoTng oEiog pe mOavoTNTA TOLAKXIGTOV <, &par eiva TOLAGYL-
oToV I—ocvrocywwosmég.p OY oc)xg()gptegpoé ivrég ocpxl?«'x omoppii(tru T ;t’po'froc o ocvruce'tps)\(/oc

e e
Ko Oétel éva ppaypa T ioo pe tn péylotn akio avtikelpévouv mov antéppuje. Emeita, eke-
Tael évo-éva TaL LITOAOLTAL OLVTLKELHEVA KOL ETTLAEYEL TO TTPOTO TTOL Ot eppavioTel pe oo
peyodvtepn and 7. Ovolootikd, o alydpBpog “Buoialel” éva pépog tng akolovdiog ei-
0680v mpokeévou var “‘péBel” piar kaAn Ty (6xt ToAD vYNAY 0Te TOAD YopUNAT]) Yot TO
epaypa 7. Etvon edkolo va dei€ovpe 6TL avtdG 0 tAdg adyopiBpog eivat ko o BEATIOTOG
dvvatog yix to Secretary Problem.

To mpoPAnpa avtod emdéxeton didpopeg evilapépovoeg yevikevoelg. H mo aAn eivon
10 k-Secretary Problem, oto omoio 1 povn Stapopd pe mponyovpévag eivor OTL emitpémeTat
vo dtahé€ovpe péxpL k droupopeTikd avTikeipeva ylo kamolo yvooto k > 1, kol cuykpl-
VOO TE e TO oVVOAD TV k avTikelévov péylotng afiac. T to mpoPAnpa avto, pia
(QUGLOAOYLKT] ETTEKTOOT] TOV TAPATTAV®D OXAYOPIOHOL ayvoel Taw TPDTA dn aVTIKEIPEVOL ple

_ log k . / , , , , ,
0 = O (373) xou Béter To @paypa 7 mepinov ico pe to k-00Td LYNAOTEPO AVTIKEipEVO.

Avti) 1 Tpocéyylon mepLyphpetal 6Tov AAyopiOpo 2.2, o omolog emLtuy)dvel Adyo avto-

, log k , , , , , ,
yovietikomtag 1 — O | 177). To arotéhecpa avtd propet va Bedtiobdel onpovrikd, eav

oKePTOVpE emuTAéov OTL dev YpeldleTan vor Slatnpovpe To LdLo Yphypo e OAN TNV eKTE-
Aeomn Tov alyopiBpov, aAAd prropovpe va To pocappolovpe Suvottkd kabhg PAémovpe
neplocotepa ototxeio. Avtr 1 éx 0dnyel otov AAyopiBpo 2.3 mov eworxOn oto [18]. O
aAyopiBpog avtdg Aettovpyel oe phoelg exBetikd avEavopevou prjkovg, oe kobepia ek TV
OTOlWV XPNOLHOTOLEL OAC TOL AVTLKELPEVOL TTOV €XEL D€L OTLG TTPOTYOOHEVES PACELS TTPOKEL-
HEVOL Vo opicel KaTGAANAa TO Pplypa T P&cel Tov omoiov emiAéyel avtikeipeva. O Adyog

AVTAYWVIOTIKOTN TG TOL eivar 1 — O %22). Téhog, elvou eQLTd var TeTOXOLpE piiar Tre-

14

poutépw PeATioT pécw apKeTd o GOVOETOV LOEDV, XPNOIHOTOLOVTAS TOV AVOOPOHLKO

AlyopiBpo 2.4 Tov [19]. Avtdg emituyxdvel Aoyo avtaywvioTikotnTog ioo pe 1 — O ﬁ) ,

0 omolog eivar ko PEATIGTOG.

Mia Wwitepa peletnpévn eméktaoct tov Secretary Problem, 1 omola yevikevel onpo-
VTIKG Ta TponyoUpeva, eivor To Matroid Secretary Problem. To matroids eivort ponporticé
avtikeipeva VYA BewpnTiko eviiLaPépovtog, kabmg yevikevouv Paotkéc évvoleg e did-
popa media, Otwg 1 Oewpia Ipapnuatwv, n Zvvdvactikr BeAtiotomoinon kot n Ipoppikn
A)lyeBpa. Baoikol opiopoi yio matroids apartifevral oto Mopaptnue (Definition A.0.1).

>to Matroid Secretary Problem, ta avtikeipeva g etc6dov amoteAodv TAEOV GTOL-
xela evog matroid, kot T0 GOVOAO TV EMAEYHEVOV QVTIKEWHEVOV HOG TPETEL AV TACK
oTLYHr) va atotelel aveEaptnto 6OVoAo Tov matroid. XvykpvopacTe pe TNV VYNAOTEPNG
aklag Paon tov matroid. To mpoPAnpa avtd e€etotnke apykd oto [20], 6mov §6Onke
0 AlyopiBpog 2.5. Omwg ko Tponyoupévag, o alyopibpog avtdg “Buoialel” éva pépog
TWV OTOLXELWV DOTE VO 0pioel KATAAANA éva @pdypa 7. Emerta, emhéyel k&Oe endpevo

otolyeio pe aioe TOLAGYLOTOV T, VIO TNV TPODTOOECT] TWG TO GUVOAO TWV EMIAEYHEVWV

otolyelwv mapopével aveEaptnto. O AOYog avtaywvioTikOTnTAg Tou eivar O (@) OTOoV
r elvan o Padpog tov matroid. Enpavtiko eivor 0tL 0 adyopLlOpog Aettovpyet yiow omoLodi)-
mote matroid. Metd amd v elcaywyr) tov TpoPAnpatog éxovv mpotobel didpopol dAAoL
alyopiOpot pe PeATiopévn emidooT), e TOV KOADTEPO YVWOTO AOYO XVTOYWVIGTIKOTNTOG
1
loglogr

va etvor O , OTTwg atodetkvoetal ota [21], [22]. A&loonpelwto elva To yeyovog

OTL TO KaAUTEPO KATW QGPAYHA TOL YVWPLlovpe Yo To TPOPANpa eivon otAadg To % 7OV
npokvmTeL otd to Single-Secretary Problem.

Mia Sitxgpopetikr) Tpooéyyion yia to Matroid Secretary Problem eivou v pnv tpoomo-
Bnoovpe va avorttOEovpe adyopiBpouvg ov Aettovpyoivv yio omolodrjote matroid, acAA&
VoL E0TIACOVE 08 GLYKEKPLHEVES Kot yopleg matroids ko va oxedidoovpe alyopiBpovg
OV ekpeTOAAeDOVTOL TIG LOLOTNTEG TOVG. [t Topddetypa, yioo matroids Stopépiong, po-
povpe amA®g va Tpé€ovpe Tov alyoplOpo yix to Single-Secretary Problem ce kaBéva amd
TOL TUHHOTO TNG OLOPEPLOTIG KOl VAL ELPAOTE %—avraywvwrmoi. EmutAéov, oto [23] amodet-
KVOETOL TTWG 1) TTEPUTTWOT] TOV YPAPLKOV matroids avayeton otny mepintwon twv matroids
dlopéplong, omdte TPOKOTTEL EVag oTAOG i—ocvrocycowcrucég oAryopBpog. To tehevtal-
0 amotéleopa Pedtidveton oto [24], émov Sivetou évag o oOVOETOG %-ocvrocywwcmcég
alyoplOpog yio ypoupikd matroids.

[Tépav Twv Secretary Problems, vrapyovv kot Al evdiogpépovta TpoPfAnpata mov
éyouv pedetnOei oto povtédo Tuyaiag Atdtatng. Eotidlovpe oe dvo mpofAipata Apecov
Toupiéopatog. To mpdTo TPOPANpa oL pedetdype eivon to Apeco Taipouopa Meyiotov
Bépovg. Ze avtd to mpdPAnpa Siveton éva Sipepéc yphonpa G = (L, R; E) pe n xopueég
oto aploTtepd pépog L ko m oto dekld pépog R. O akpég éxouv pn-apvntika Paprn. Ot
KOpLPEG TOL R SivovTa €€ apyNG, KoL OL KOPLPEG TOL L pavepmdvovTal Gelplokd oe TuXaia
dwatakn. Otav gavepdvetal pioe KOPLPT], PAVEPHOVOVTOL KL OL 0tKPEG TTOV TTPOCTITTOVY
o€ QUTHV, KoL PITopolpe emLtonov va emhéouvpe pia €€ avtwv, VIO TOV TEPLOPLOPO OTL
OL aKPEG TTOL €XOUHE eMAEEEL TPETTEL AV TTAOO GTLYUY Vo atoTeAoV Taiplacpa oto G
(dnAadn dev pmopel va vitdpyel KopvEN yLa TV omoio £YOupe eTLAEEEL TEPLOGOTEPES ALTTO
piot TPOOTUMTOVGEG OKHEG). ZUYKPLVOUAGTE HE TO TAIPLOGHA PEYIGTOL BAPOUG TOL TEALKOD
yponpatog. apatnpoipe mwg to mpdPAnpa avtd yevikevel to Matroid Secretary yuo tnv
nepintwon twv transversal matroids.

I to Apeco Taipiaopo Meyiotov Bépoug, oto [25] pedetrOnke o AAydpiBpog 2.6, o
o7olog emLTUYYXAVEL TOV BEATIOTO AOYO OLVTAYWOVIGTIKOTNTOG % O alyopiBpog awtodg éxel

15

e€oupeTiké oTAY) TEPLYPOLPT: oty VOEL TIG TPAOTEG 2 KOPLPEG Kaut Emtertar, OTav @T&veL pio vé-
a Kopuer, vrroloyilel éva taiplacpa peyiotov P&poug oTo Ypa@npa mov xel povepwOet
péxpL oTiypng. Edv n akpn avtod Tou TopldcHATOg TTOL avTioTolyel oTnv veoaplyOei-
oo KopuPn propel vo tpoctedel 6TO GUVOAO TV NON ETAEYHEVOV AKUOV, OOTE OVTO VoL
eEaxolovOnoel va elval Talplaopa, TOTe eMAEYETAL AITO TOV XAYOpLOpO.

To devtepo mpoPAnpa ov pedetdyie o€ avThv TNV Kaetnyopia eivo to Apeco Taiproopo
Eloyiotwv EtavEnoewv. Opoiwg pe mpwv, diveton éva Sipepéc ypaonpa G = (L, R; E) pe
|L| = |R| = n. Oukopugég tov R divovtar €€ apyng, kot oL kopugég tov L eppavifovron
oelplakd oe Toyaio SLataln. Xe kdbe yOpo mpémel vor eAEYOUHE EVaL HEYLOTO TOLPLOCLOL
He TIC KOPLPEC TOoL L mov €xouv 1dn eH@avicTel, KoL HTTOPOVHE VO VALPOUHE ETLAOYEC
7oL Kavoype 6to mopeAov. Kabe popd mov emdéyovpe pio okpr) wov dev eiyope emdégel
OTOV QPECKG TTPOTYOUHEVO YUPO, XPEWVORXOTE piat Hovada KOGTOUG, Ko emLOVLHODE VO
e\ LOTOTTOGOVHE TO GUVOALKO KOGTOG pag. [to mpdPAnpa avtd, oo [26] Siveton o
AAydpBpog 2.7 pe avapevopevo Anfog enav€ioewv O(nlogn), To omoio astodetkvieTon
OTL elvon PéATIoTO.

0.3 Movtéda Ilpopnn

To amAobotepo ko TAEoV KAooolkd TpoPAnpa mov éxel avalvBel oto povrého Ilpoen-
N elvo aovadoyo tou Secretary Problem, ko ovopdleton to mpofAnpa tng AvicotnTog
[Ipogntn (Prophet Inequality), antd T0 omoio AapPavel To 6Gvopd tov kot to idlo To po-
vtého. Evag avtimalog emhéyel n aveEdptnteg kartavopég DU ... DM méve otovg
HN-apVNTIKOUG TTPOYHTLKOG aptBpong. Xe k&Be yOpo 2, eppaviletol Eva aVTIKEHEVO TOV
omoiov 1 aEia akohovBei TV katavopr; D), ko epeic propovye eite va To amoppilov-
e opeTaKANTA eite va To emAéEovpe. Mopoipe vou eTTLAEEOVE PHOVO EVaL ALVTLKELHLEVO, KOl
O¢Aovle VOl HEYLOTOTTOLGOVE TNV AVOHEVOUEVT) 0Elo HOG. ZUYKPLVOHAGTE HE TNV CVOUEVO-
pevn T g pEYLoTNG oo X pax AVOHECH GE OO TAL AVTIKEIHEVD. OEWPOVE TWG EXOVYLE
TATPY YVOOT OAWV TOV KATAVOHOV Yl TOV oXedLacpd Tov adyopifpov. Aiomoimdvrog
QUTH TN YVOOT)], LTTOPOVHE KoL TTAAL VO OPLOOUHE Ve KATAAANAO Qpaypa Ko va eAEEOL-
€ TO TTPOTO avTikeipevo pe aio peyodvtepn tov gpaypatoc. Ewdikdtepa, pmopolpe vo
oploovpe To paypa ico eite pe 1 ddpeco T ToU Xy, ELTE HE TO PLGO TNG AVOEVOLLE-
VNG TIHAG TOU Xpax. Kot o1 800 emiloyég pog 8ivovy Adyo avTaywvieTIkOTNTaS (60 pe 2,
KoL elvart e0KOAO va dovpe TG aLTOG eivat o PéATIOTOG dLVATOC.

Eav dev diabétovpe AP YVAOOT TOV KATOVOR®V, 0ANG pog diveton mpocPaot oe
delypatd Toug, eivor TAAL QLKTO var eMLTUYOVHE TOV BEATIOTO AOYO OVTUYWVIGTIKOTNTOG e
éva pOALG Selypar ard kdBe karTarvopr, xprotporoldvTag tov amAd AAydpiBpo 3.1 tov [27].
O adyopiBpog avtog tpaPaet apyicd éva detypa amd k&be katavopn, Oétel éva @poypa T
100 pe TO PEYLoTO Selypar, Kol €melTa eMAEYEL TO TPOTO AVTIKeipeVo pe aio 7.

Onwg kot ota Secretary Problems, 1 amtAovotepn enéktaon tov Single-Choice Prophet
Inequality eivon to k-Choice Prophet Inequality, 67tov n povn daxpopd pe Tponyovpéveg
elvort OTL emiTpémeTat var SLaAéEOVpE G Kol b atVTIKELHEVX KL GUYKPLVOLOGTE e TNV -
vopevopevn oio twv k vymAotepwv ototxeiwv. Kal oe avtiv tnv mepintworn, edv €xovpe
TANPT YVOOT TOWV KATOVOR®OV, HITOPOVHE VO OPLOOVHE €V KATAAANAO QPAYHO T HE O-

tAd TpOTO OKELNEVOD VA eTLTOYOVHE AOYO avTaywvioTikdOtnTog 1 — O gk) - Avo
TPOTTO, TP p XOuvp Y Toy mTag Pk

TPOTIOL € TOVG OTOLOVG HITOPOVHE VL OPIGOVHE TO PPAYHX ALTO Paivovtal 6Tovg AAyo-
pibpovg 3.2 kot 3.3 tv [28], [29] avtioctorya. To amotéheopa avtd popet va Pedtindet,
koS oo [30] divetan évag apketd o oOVOeTOg aAyOpLONOG pe AOYO AVTOYWVIGTIKOTY-

16

tag1—0 (\/LE) , IOV elvat 0 BEATIoTO SuVaTd OIS atodetkvvetot oto [28]. MaAloTa, 6TO0
[31] Seixvetat, peta€d dAAWV, TG VTOG 0 PEATIOTOG AOYOS VTAYWVIGTIKOTNTOG PItopet
KoL TaAL vo emitevyBel edv SraBétovpe éva pOALG delypa amd k&Be KaTarvopr.

Sovexilovtog, HTOPOVHE KT oVaAOYLO HE TTPOTYOUHEVW™S VO HEAETT)COVE TO TTPOPAN-
po Matroid Prophet Inequality, 0mov ko méAt oo avtikeipeva eivon TAéov otolyeia evog
matroid ko opeilovpe avd T&oo GTLYHN va Exoupe emAéEeL évar aveEAPTNTO GOVOAO TOV
matroid. To mpofAnpo avtd peretriOnke apyikd oto [32], 6mov 60nke o AAyopiBpog 3.4,
0 omoiog eivo %—owrocycowctmég aAlyopiBpog yio omorodrjmrore matroid. Kot oqcvtdg 0 adyo-
pOpoc Paciletal oe Vo KATAAANAX OPLOPEVO YPAYHA, TO OTTOLO QLUTH) TH) YOPR TTPOCAPHO-
Ceton Suvaikd oe kabe yopo. Epdcov to Matroid Prophet Inequality eivan yevikevon tov
amAo0 Single-Choice Prophet Inequality, to k&tw @pdypo % eEakolovBel va Loy veL, dpa o
alyoplOpog avtog eivar BéATIoTOC.

[T¢pav twv Prophet Inequality mpoPAnpudtwv, propovpe kot 3¢ vo cu{nTHCOLHE Y
poPAnpata Tapldopatog 6To povtédo Ilpognn, ota omola vITdpyeL Evo LITOKELpEVO YPAL-
onpo G = (V, E) pe pn-apvntikd Pépn otig akpés. ESO, propodpe va Bewpricovpe mog,
oe kaBe YOpo, eite pavepoVveTal pio Ao TIG aKPES TOL Ypopnpotog (apielg akpv), eite
pioe kopuen pe OAeg TIg Tpookeipeveg akpég tng (apifelg kopvpwv). Ko otig dvo mept-
TTOOELG, OTOY PAVEPDOVETL it ALKT] HITOPOVHE £LTE VOL TNV ATTOPPLYOLE PETAKAN T elTe
vou TNV eMAEEOVLE, KOl TTPETTEL AV TTAG O OTLYHN OL EMLAEYHEVEG OKIES PG VO LTTOTEAODY
taiploacopo oto G. ZUYKPLVOPKGTE HE TNV AVOHEVOREVT] OElal TOV HEYLOTOV TULPLACHATOG
OTO TEAKO YPAPNHOL. TNV TEPINTOAT TOL TO YPAPNUA HOG elvor SIHePES KL EXOVHE ot
piterg kopugv, o AAYdpBpog 3.5 Tov [30] eivon 3-avtoywvioTikdg (kan &po BEATIOTOG).
Opoiwg pe Tponyoupévwg, avtdg 0 alyoplBpog Paciletol 6TOV LITOAOYLOUO KATAAANAOL
QPAYHOTOG T, EVOG Yia kO kopven u € R, Pdoel Tov omoiov amopaciletal av 1) Kopuet
u B ovvdeDel pe kduolov yeitova tng 6Ty avepwBet (ko av vau, pe owov). T yevikd
ypognpata, oto [33] Sivetan évag copdg o cOvOeTog %-ocvrocycovwrucég alyopiOpog ya
a@ifelg kopvPwv, kabng kot évag 0.337-avTaywvioTikog adyoplOpog yio apifelg akpov.

0.4 Enmavénowpa Axépotoa Ilpoypappato

O opiopdg twv Enavéoywv Aképaiwy Ipoypopudrov (Augmentable Integer Programmes,
AIPs) 366nke oto [1]. Eotw éva aképoto ypappkd mpoypappo pe Stvoopor petoafBAn-
TOV 2, SIAVLOHA KOGTOVG € kKot cOVolo meploptopadv V. T omoladrimote vtocHvoAa Te-
propiopdy W, V' C V', edv 10 2 ikawvomotel toug eplopiopote tov V', cupfolilovpe pe
Auc(W | z, V') 1o kéorog eratbénons tov z dote va tkavorotel To W, dnhadn to ehdyt-
0TO KOOTOG TTOL WITOPOVHE VO TANPOCOVHE OGTE VoL AVENGOUVHE TIG PeTOPANTEG TOV 2 Yio
va LKaevortotovy, stépav Tov V', ko Toug meplopiopotg tov W. Me avtdv tov cupfoiiopd,
éva Eravénoo Axépono Ipoypoppa xapaktnpiletal oamd Tnv WOLOTNTO TOV HOVOTOVWV KO-
oT®OV enavénong, vid v évvolrx 6T yia orowadimote V! C V" C Vo xan 2/ < 27, edv 1o
2" wavorotei to V' kan to 2" 1o V7, t6te Aug(W | 27, V") < Auc(W | 2/, V') yux k&be
W CV.

O Adyog mov 1) kAdon Twv AlPs éxel eviiopépov elvat, apXLKd, OTL EPTEPLEYEL TNV KAA-
on twv Axepainv IIpoypoappatewv Kalvyng (Covering Integer Programmes, CIPs), evtog
g omoiag Pplokovton To Oeperiddeg mpofAnpa tov Kaddppatog Zovorwv (ko oL vtome-
puttooelg Tov, To Kalvppa Kopvpov kot to Kalvppa Akpcv). EmutAéov, Opwg, n kAdon
twv AlPs epmepiéyet kan eviiagpépovta tpofAnpata wov dev eivon CIPs, cuykekpipéva tnv
Xwpobétnon Ynnpeowov (Facility Location) ko to Aévtpo Steiner (Steiner Tree). Eidiko-

17

TEPQL, LG EVOLOPEPOLY XAYOPLOpOL VI TIG Gpeaeg EKOOYES TV TTPOPANHATOV XLTOV, OTA
povtéda Tuyaiog Ardtagng kot IIpo@nTn oL TAPOLCLAGAE TPOTYOUHEVOG.

>to mpdPAnpa tov Apesov Kahdppatog Zuvorwv, pog divetal évo GOUTAY arvTLKELE-
VoV, pla GLANOYH M GLVOAWV AVTIKEWEVOV TOL COUTAVTOG KAl £€va KOGTOG Cg Ylo kabe
ovvolo S. Evag avtintodog emléyel n avtikeipeve and to oOpmav. Xto povtélo Tuyai-
og Awata€ng, Ta n avtd otolyela mapovoldlovtal oe Tuxaio oelpd. MOALG pavepdveTon
évae otolyelo, eqv dev €xouvpe 1dN emAéEel éva 6OVOAO TOL TO KAAVTTEL, elpacTe LITOYPE-
WHEVOL VO TO KAVOULE ETTLTOTTOV, KOL XPEOVOUAGTE TO KOGTOG TOL GUVOAOL TTOL eTAEEQYLE.
SUYKPLVOHXGTE HE TN GVAAOYT CLVOAWV EAAYIGTOL KOGTOVG TTOL KAAVTITEL OAX Tl I GTOL-
xeio. T vt 10 TPOPANUE, Tpdopata d6Onke oto [34] évag O(log mn)-avtaywvioTikog
alyopiBpog, o omolog Satnpetl éva eldog katavopng mbavotntag x Tévew 6To GOVOA, 1)
oroia prropei emiong va eldwBel wg (un e@uktr)) kKAaopatikh Adon yia to TpofAnpe. Kabobg
QovePOVETOL £va oTOLYELO, 0 AYOpLOpOG detypatoAnmtel cOvola PBdoel Tov x, avavedvel
ToAAaTAAGLOTIKG TO Papog =g k&Be cuvoALov S mov Tepiéxel To apLyDév oToLyelo, kau é-
TELTX KAADTTTEL LVTO TO oTOLYELD e TO GUVOAO eAarXioTOL KOGTOVG. ZUPPOALLOVE HE Kyt TO
oOvolo elayicTov KOGTOUG pe TO 0moio popolpe v kadbovpe To otolxeio vh. Emiong,
Bewpoipe Twg yvwpilovpe éva epaypo 3 TovAdyloTov ico pe To k66ToG TG PEATIOTNG
Abong kat To oAV oo pe To SmAdoio avtol (avth 1 vToBecT) edKOAX ApeTaL e KOGTOG
EVOLV ETILITAEOV TTXPAYOVTA 2 GTOV AOYO OVTRYWVIGTIKOTNTAG). Me autdv TOV SUHPOALGHO,
0 aAyopiBpog tov [34] elvor o €€njg

Algorithm 0.1: LEARNORCOVER

1 Let m/ < [{S : cg < G}

2 Initialise 2% « % for all sets S
3 fort € [n]| do

4 v! < t'" element in random order

5 if v’ uncovered then

6 For each set S, pick S with probability min (s, - /3, 1)

7 if Zsavt acg_l < 1 then

8 For every set S, update 2% + 2% ' - exp{1{s5ut} - Fut/Cs}
9 Let Z' = (c,2") /8 and normalise z* < x'/Z"

10 else

11 ‘ xt ¢ gt

12 Pick the cheapest set containing v’

AworioOntikd, o alyopiBpog oawtodg Aettovpyet yoti eEaopaiilel mtwg, oe kdbe yOpo, eite
Oo kA OYeL peydrho moc0oTO GTOLXElWV TTOL deV ExOuV PavepwOel akopn, eite To Sidvuopa
x mov dratnpei Ba “mAnoidoel” moAb tpog TNV PéATioTn KAaopatikr AboT kdoToug 5 yio
10 TPOPANpa (SnAadny o ahydpiBpog khvel tpododo eite otn “pabnon” eite otnv “k&Avyn’).
AEileL va onpelwBel mwg, yio To id1o TPOPANHA GTO TANPOS AVTOYOVLETLKO HOVTEAO, GTO
[2] 86Onxke évag O(log mlogn)-aviaywvioTikdg alydpiBuog, o omoiog deixbnke oto [35]
ot eivan BéATiotoc. Enopévwg, avarvovtag to tpofAnpa oto povrého Tuyaiag Avdtakng,
QATTOSVVOHOVOUHE ETAPKOG TOV VTUTAAO OGTE VO EMLTOXOVHE CTHAVTIKE PEATINEVO AO-
YO QVTOY®VLIOTIKOTNTOG, KAADTEPO atd TOV PEATLOTO EPLKTO OTO TANPWS AVTAYWOVLIGTLKO
HOVTEAO.

To emdpevo AIP mouv peletdye eivor o mpoPAnpa tng Apeong Xwpobétnong Ymnpe-
olwV. Xe avTo T0 TPOPANHA, pog divetal éva cUVOAO TBaV®VY VIINPeCLOV, kabepio oo TIg
omoieg éxelL éva k066 TOG avoiypatog cy. Evag avtimadog emdéyel n meldteg, kabévag amd
TOVLG omoiovg propel vo oLVeDel pe TNV vrnpecia f pe K66TOG Cfyy. XTO poOVTEAO TUXOU-

18

ag Aweta€ng, ot eAdteg eppavilovtal pe Tuxaio oelpd. MOALG eppavioTel évag TeAXTNG,
HITOPOVHE var arvoil€ovpe omoleadnmoTe LINPecieg (TANPOVOVTAS TO KOGTOG AXVOLYHATOG)
KoL OQELAOVE VAL GLVOECOVHE TOV TTEAATT G Pt AVOLKTH LTI Pecio (TANPOVOVTAS TO KO-
otog o0vdeoncq). Towg 1 meplocdTepo pedetnpévn ekdoyn Tov TpoPARpatog eivar n Apeon
Metpikn XwpoBétnon Ynnpeoidv, GTnv ool oL LINPEGLES KOl OL TEAXTEG AVTLGTOLYOVV GE€
onpelo oe EVay HETPLKO XWOPO (OTTOL OL ATTOGTAGELG LKOLVOTTOLODV TNV TPLYWVLKT OVIGOTNTA),
KOl TO KOGTOG Cfyy LGOVTAL HE TNV AITOGTACT) TNG LINpesiag f ko Tov eAdTn v.

To mpoPAnpa g Apeong Metpukng Xwpobétnong Yanpeoidv oto povrédo Tuyaiog
Avdto€ng peretrinke apycd oo [5], 6rrov d60nke o arhdg AAyopLBpog 4.3, o omoiog eivat
8-aVTOY®VIOTIKOG YIX TNV TEPITTWOT) OTTOL OAEG OL LT PETieg £XOLV TO 1dL0 KOG TOG AVOLY-
potog. Ou 1déeg Tov adyopiBpov emexTeivovTon Kol 6TV TEPLTTOOT OOV €XOLHE dLoPo-
PETIKA KOOTN avolypatog, omote AapPdvovpe évav 33-avTaywvioTiko adyoptOpo. AEilet

logn
loglogn

vo onpetwdel Tog o alyopLBpog avtdg emituyxdvel Aoyo avtaywviotikotntoag O

OTO TANPWG OVTUYWVLIGTIKO HOVELO, 0 omolog arodetkvietot 0Tt eivon BéATIoTOG GTO [6].
Eniong avagépouvpe mwg, yix o povtédo Tuyaiog AQEng, o mapamdve alydptbpog Tov
[5] dev eivon BéATIoTOC, KOOGS 6TO [36] Sivetaon évag 3-avTay®VIoTIKOG OAYOpLOpOG Kot
divetou éva KATw Ppaypa ico pe 2.

T to poPAnpa tng Apeong Mn-Metpikric Xwpobétnong Ynnpeoumv, Théov ot vmn-
peoieg Ko oL meAdTeg dev aToTEAODV OTHELX OE EVOV HETPLKO XDOPO, ETOPEVWOS T KOGTN
obvdeong ¢y, pmopolv va eivar avbaipeta. Evkoda PAETOVHE TWG, GTNV TEPIMTWOT) TOL
o6\ ta koot obvdeong eivon 0 1§ 0o, avaktovpe o Apeco Kalvppo Zuvorwv wg edik
TEPINTTWOT), ETOHEVWS OEV HITOPODHE VO €XOVHE AOYO QVTAYWVIGTIKOTNTAG KAADTEPO aTTd
10 kK&t Ppaypa O(logmlogn) mov avagpépape tapamve yio avtd To TpoOPANpe 61O
TANPWG avTaywvioTikd povtého. Ipdaypatt, oto [37] diveton évag alydpibpog mov ermt-
TUYXAVEL ALTOV akpLPOS Tov Adyo avtaywviotikotntag. IIpdceata, oto [1] peetrOnke
70 1d1o0 pOPAnpa oto povrého Tuyaiag Avdto€nc. Exel 660nie o AAyopiBpog 4.4, o omoiog
enekteivel TG 18éeg Tov AlyopiBpov 0.1, avtipetwrilovtag Tig LINPesieg wg “‘cvvola” Kot
TOUG TEAATEG WG “oToLxela” mov aviikovv oe avtd. H Paocikn diapopd eivon mtwg to 60-
VOAO TEATAOV TTov “kahbmtel” kdOe vinpeoeia dev eivan otabepd pe Tov xpovo (Onwg oto
KéAvppa Zovorwv), odld petafdileton oe kdbe yOpo, emopévwg mpootibetal emmAéov
TOALTTAOKOTN T GTOV aAyOplOpo Ko 6Ty avaAvet] tov. O AOYOG aVTOYWVIGTIKOTNTOG
ToL ahyopibpov eivar O(logmn), omdte OpOIWG e TPONYOUHEVKOG EXOVHE GTHOVTLKTY PeA-
TIWOT) GUYKPLTIKA HE TO TANPOG AVTXYWOVLETIKO HOVTENO.

Mia onpovtikn Widtnta g owoyévelag twv Apecwv EravEiopwy Axepaiov Ilpo-
YPOHHATWV elvat OTL, €AV Yia Karoto TpoPAnpa TG otkoyévelag Stabétovpe Evav alyopid-
po A yia to povtédo Toyaiog Avbtaéng, prropolpe vo ek Teivoupe pe TOAD otAd TpdITo TOV
aAYOpLOHO oUTOV YL VO OVTIHETWITIoOVHE TO 1810 TPOPAN A 6TO povtélo IIpogrntrn. Zuyke-
KPLHEVQL, €AV Tt 1 avTikeipeva NG eloddov (.. ototyeio oto Kdhvppo Zvvorov, meldrteg
o1t Xwpobétnomn Ymnpeoiodv) mpokimtouy amd Tig aveEdptnreg katavopég DY ... DM,
TOTE PITOPOVHE VAL AVTAT|GOUE €var POALG Selypor ot k&be KaTavopr) Ko vor eEKTEAEGOVLE
tov A pe eiloodo pio opordpopea tuyaio Stétan avtov twv detypdtwv. Eneita, prropodpe
va “ayopdoovpe” doa ocvvola/vnnpecieg aydpace ko o A mpiv apyicovpe v fAémovpe
NV Tpaypotikn) akolovbio ei.codov. TéNog, OTav ep@avileTon Vo VTLKELIEVO TNG TPALY-
HOTIKNG akoAovBiog, ev dev To €xovpe NON KAADYEL, TOTE TO KAADITTOVHE ETMLTOTOL e
TO HLIKPOTEPO duvaTd KOGTOG (emAéyovTag TO KatdAAnAo cbvolo/vmnpeosia). Xto [1] a-
TOELKVOETUL TTWG, HE CLUTHV TNV OITAY TTPOCEYYLoT, edv yix k&towo Apeco Emav€noyio
Axéparo IIpoypoppa éxovpe évav A-avtaywviotikd oadyopiBpo A oto povrédo Tuyaiog
Avdta€ng, tote dnpovpyvpe évav 2A-avtaywviotikd alyoplOpo yio to povtélo Ilpogn-

19

. Emopévwg, Phoel dowv avagpépape Tponyoupévag, tpokortovy anevbeiag O(log mn)-
avtaywviotikoi alydpiBpotl oto povtého Ipogntn yia to Apeco Kahvppo Zuvodwv kot
v Apeon Mn-Metpikr] Xwpobétnon Yanpeoidv, kabog kat évag 6-ovtayovioTikdg ol-
yopOpog yia tnv Apeon Metpikr) Xopobétnon Yanpeoiov.

To televtaio mpoPAnpa tng otkoyévelag twv Apecwv EnavEnopwv Axepaiov Ilpo-
YPOPHAT®V oL peletape eivon o Apeco Aévtpo Steiner. Xto mwpdPAnpa arvtd pag diveton
EVOG HETPLKOG XWPOS k onpeiwv, o omolog propetl va eldwbel wg éva TApeg ypaonpo k
KOpLE®OV. 210 povtédo Tuoxaiog Adtagng, évag avtinmadog emAéyel éva LTOGVVOAO N KO-
pPLE®V, oL omoieg eppavilovtal e Tuyaia oelpd. Xto povtého Ilpogntn, évag avtimarog
ETMAEYEL M KOTAVOHEG TTAV® OTLS KOPLPES TOV YPUPNHATOG, kKol oe k&be yOpo 1 kopuen
OV epPVICeTaL TPOKOTTEL ATO TNV avticTolyn katavopr. Kot otig dbo mepuntmoelg, po-
MG eppaviotel pio kopuen (outd tn devtepn Ko EmeLtar) elaoTE LITOYPEWMHEVOL VAL ALYOPXL-
OOUHE OKPEG TTPOKELHEVOL VO TH) GUVOEGOULLE e Pio ATTO TG KOPLPES TTOL £XOUV ERPAVIOTEL
TPOTYOUHEV®G, KoL O GTOXOG HOG ELVOL VO EAXXLOTOTOLI)COVHE TO GUVOALKO KOGTOG HOG.
STNHELOVOLHE TTOGC, €AV T PAPT TOL YPOPNHATOS HAG SEV LKAVOTTOLOOV TNV TPLYWVLIKT O-
VIGOTNTA, HITOPOVHE ATTANDG VX EPYAGTOVHE HE TNV HETPLKT) KAELGTOTNTA TOV YPAPNHATOG,
apa Sev vitdpyel AOYOS vor HEAETT)GOVE T1 PUN-HETPLKT TTepinTtwoTn tov Aévtpov Steiner.

310 TAPWS AVTOY®VIOTIKO PHOVTELO Y TO Apeco Aévtpo Steiner, eivar yvwotd 6TL 0
TPOPOVHG ATTANGTOG AAYOPLOHOG TTOL GUVSEEL KGO KOpLYT) e TOV PTNVOTEPO SUVATO TPO-
nto eivon O(log n) avtoywviotikdg, kot avtd eivon édtioto. H evdiapépovoa Stopopd tov
Apecov Aévtpov Steiner oe 6xéoT pe TX TPOYOUHEVA TIPOPATIHATH TTOL HEAETHOOYE Elvo
oty emParrovrtag Toyaia Awdtagn, dev amodvvapdvoupe kaBOAov tov avtimolo kot mo-
papéver to idto kdtw epdypa O(logn) otov Adyo avtaywviotikotntag. To Bedpnpo avtd
amodeixOnke oto [38], péow evog avtimapadelypatog mov Paciletol 0TV KATAGKELY TWV
Aeyopevwv diamond graphs. H xatackevn avtn Eekivael ammd To avTioToL o avTLmopadeLy-
RO YLOL TO TTAN PG AVTAYWVLIGTLKO HOVTEAO TOL TPOPAT|HATOG Kot STjptovpyel TOAAK avTity-
no k@Be xopuerig oTtnv akolovBia etcddov. Epodcov, yia kdBe kopuen, pHovo 1 TpdTn eped-
vion) TnG oTtnv akohovBia e.c0dov éxel onpacic, SLotloBNTIKA, AV AVOKATEYOLE TUX LR TV
TpokLITTOVCA arkoAovBic Kot dlTNPCOVHE HOVO TO TTPOTO AVTITLTTO k&Be KopLYNC, dev
OLVOHEVOUE TO QTTOTEAEGHO VO TOKALVEL GTJHOVTLKA OITO TO OPYLKO HOG OVTLITAPAELYHA.
Avti n) Topatpnon 6 GLVILAGHO pe pio KPLGLN OLOTNTA VTOD TOL AVTLTAPAELYHATOG
KaBLoTd TNV Kot keLt) e@ikr. Amo tnv GAAnN TAevpd, 6To povtédo Ilpoprtn pmopooype pe
antAd TPOTTO Vo oY eSLAGOVHE Evary 4-avTaywVIeTIKO adyOpLBpo, 61twg arodetkvieTton Eava
oto [38]. Apxwa, tpaPdye éva detypo amd kdbe katavopr), ko ayopalovpe to EAdyioto
SuvdeTikd Aévtpo ave ota delypota wov TpaPnéaye, mpiv SoOpe TNV TPAYHOTIKT] OKO-
Aovbia eloddov. ‘Emeita, otav epgavileton pia kKopuer Tng mpayHatikng akolovbiog, n
OUVOEOUVHE pE TIG AKPEG TTOV EXOUHE 1101 yopAaseL pe Tov 9TNVOTEPO duvartd tpomo. Emo-
Hévwg, To Apeco Aévtpo Steiner eivan éva Wdiaitepo mapdderypa evog AIP 6mov i Stapopd
otn dvokoAia avapesa oto povtédo Tuyalog Adtagng ko oto povtédo Ilpoentn eivor
dpopatik.

20

Keipevo ota AyyAika

Chapter 1

Introduction

The challenge of making decisions with imperfect information is one that naturally arises in
a number of contexts. For instance, consider the scenario where an individual wishes to sell
an item at the highest possible price, through an online platform. That person might receive
offers from various potential sellers and, upon receiving one such offer, must either accept
or reject it. Both of those options entail risk, due to the fundamental issue of uncertainty
about the future; the seller might reject an offer without knowing it is the best one they
will ever receive, or they might accept an offer only to find out they would have received a
much better one the next day.

The field of online algorithms attempts to capture precisely this challenge of decision-
making under uncertainty. In this setting, the input to an online algorithm is not fully
revealed at once, but is given incrementally. Concretely, in a given problem, the input
might consist of a sequence of items [= (x1,z9,...,z,) revealed over n rounds to the
algorithm, where item z; is revealed on the i-th round. Upon receiving z;, the algorithm
must immediately make some irrevocable decision to satisfy the constraints of the problem,
without having knowledge of the future, i.e. of the items x; 11, ..., x,.

In order to measure the performance of an online algorithm in this setting, the concept
of competitive analysis was introduced in [39]. Given an online algorithm A, we compare
it with the optimal offline algorithm which knows the entire input sequence in advance.
Thus, for an optimisation problem and an input sequence / to that problem, we define
A(I) to be the value of the solution of \A when given I as input and Opt(/) to be the
value of the optimal offline solution. In practically all problems of interest, we cannot hope
to develop an online algorithm that matches the performance of the offline optimal. An
online algorithm A is called a-competitive for a problem if, for any input sequence [to that
problem we have

A(I) > o-OpT(I) — f for a maximization problem
A(I) <a-Opr(l)+ [for a minimization problem

where « is called the competitive ratio and S > 0 is a constant. In the case where 5 = 0,
the algorithm A is called strictly a-competitive.

This field of research has grown significantly over the past few decades and a substantial
volume of interesting results has been produced in it. Many well-known (offline) combina-
torial optimisation problems have been analysed in the online setting with great success,
including Set Cover ([2]-[4]), Facility Location ([5]-[8]), Steiner Tree ([9]) and Bipartite
Matching ([40]-[42]) among others. On the other hand, a large number of inherently on-
line problems have been proposed and have attracted considerable interest, for example

23

Online Paging ([43]), the k-Server Problem ([10]-[13]), Metrical Task Systems ([14]-[16]),
Bipartite Matching Maintenance ([44]-[46]) and Multistage Matroid Maintenance ([47]).
This rapid growth of the field of online algorithms can likely be attributed, in part, to the
fact that many of the problems studied in the area are not only highly intriguing from a
theoretical point of view, but also find applications in various real-life contexts.

One of the major limitations, however, of the study of online algorithms is that, for the
most part, it is concerned with the worst-case analysis for each algorithm. That is, by the
definition of competitive ratio given above, an algorithm is a-competitive only if it is at most
« times worse than the offline optimal for any possible input sequence. Of course, worst-
case analysis is undoubtedly useful; not only has it led to a plethora of interesting results
and a deep understanding of many problems, but moreover, establishing good worst-case
guarantees for an algorithm certifies, in a strong sense, its utility and its robustness against
any type of input. Nonetheless, it is often the case that worst-case analysis can be too
pessimistic about the performance of an algorithm, and might not accurately express the
algorithm’s usefulness in the real world. In other words, it may be the case that, although
an algorithm performs adequately well on all “typical” inputs of interest encountered in
practice, it fails in some very specific or artificially created inputs, thus its theoretical worst-
case guarantees do not reflect its actual applicability.

Due to this limitation of worst-case analysis, over the years researchers have consid-
ered a number of different models of algorithm analysis. In broad terms, those models do
not consider the performance of an algorithm under all possible inputs generated by an
adversary, but rather restrict the adversary’s power in some way. For example, they might
constrain the space of possible inputs from which the adversary can choose, or introduce
randomness to the input which cannot be controlled by the adversary. The benefit of using
such a model is that, ideally, it can encompass the prior knowledge we may have about the
problem instances we are interested in, thus we can develop practically useful algorithms
and provide theoretical guarantees for them, outside of the limiting scope of worst-case
analysis. This study of going “beyond the worst-case analysis” of algorithms has been
gaining in popularity in the past few years, and a recent survey of various approaches that
have been used can be found in [48].

In this thesis, we will concern ourselves with two of the more popular models for going
“beyond the worst-case” in online algorithms; namely, random-order models and prophet
models. Our ultimate goal is to examine recent developments in applying those models to
a class of problems named Augmentable Integer Programmes (AlIPs), formally defined in [1].
First, we will give basic definitions for the above models and for the class of AIPs.

1.1 Preliminaries and Definitions

1.1.1 Notation

In the remainder of the thesis, we denote by by Z~, R>(the sets of nonnegative integer
and real numbers respectively. We denote by [n] = {1,...,n} the set of positive integer
less than or equal to n. The probability of an event A is denoted P[A], and the expectation
of a random variable X is denoted E[X]. Given two vectors a, b of n elements, the regular
dot product is denoted (a,b) := > | a;b;. All logarithms are base e.

24

1.1.2 Random-Order Models

Consider, again, an arbitrary online problem in which the input consists of a sequence of
items [= (x1,%9,...,,) revealed over n rounds to the algorithm, where the items x;
belong in some domain &X'. In classical worst-case analysis, the adversary chooses both
which n items from X" will be presented to the algorithm and the order in which they will
appear. In contrast, in a random-order model, the adversary again chooses the set of n items
{z1,...,2,}, x; € X, that will be presented to the algorithm, but the actual order in which
they appear is uniformly random over all possible permutations of the set {z1, ..., x, } (that
is, each possible ordering of the n items is equally likely). In this setting, an online algorithm
A is called a-competitive in the random-order model if, for any input set [= {z1,...,x,}
we have

E[A(I?)] > a-Opt(I) — § for a maximization problem

E[A(I?)] < a-Opt(l/)+ / for a minimization problem

Above, by 17 we denote the sequence produced by ordering I according to permutation
o : [n] — [n]. The expectation is taken over all (equiprobable) permutations ¢ and, if A is
randomised, over the internal randomness of A. As before, « is called the competitive ratio
and 5 > 0 is a constant.

The random-order model was introduced in [49], where it was applied to the Online Bin
Packing problem. In that paper, it was shown that the Best-Fit algorithm of [50] achieves
a better competitive ratio in the random-order model than in the worst-case model. In-
deed, the competitive ratio that Best-Fit achieves in the random-order model is better than
any competitive ratio achievable for this problem in the worst-case model. This observa-
tion holds in many problems which have been successfully analysed in the random-order
model (as we shall examine in Chapter 2); indeed, imposing a random order of arrival is
often enough to significantly reduce the power of the adversary and can lead to theoreti-
cal guarantees that not only are better than existing worst-case ones, but may also break
worst-case lower bounds.

Perhaps the most well-known problem (and indeed one of the oldest ones) studied in
the random-order model is actually a classical problem from optimal stopping theory; the
so-called Secretary Problem. In this problem, the input consists of a set of n items, each
with a value z; € R>y. The items are presented one-by-one to the algorithm and, upon
seeing an item, the algorithm must immediately decide to either keep the item or forever
discard it. The algorithm can only choose to keep one item, and the goal is to maximise the
value of the item kept. It is easy to see that, in the worst-case model where both the item
values and their order is chosen by an adversary, no algorithm can perform particularly
well. However, in the random-order model, no matter what values are chosen from the
adversary, a simple algorithm guarantees that, with probability at least é we will pick the
maximum value among all items. We will use the Secretary Problem as our first stepping
stone in order to survey various important results in random-order models in Chapter 2.

1.1.3 Prophet Models

As before, consider an arbitrary online problem in which the input consists of a sequence
of items [= (1,3, ...,x,) revealed over n rounds to the algorithm, where the items z;
belong in some domain X'. In the prophet setting, the adversary chooses a collection of n dis-
tributions over X’ and an ordering of those distributions. Let this ordering be (D, ..., D").
Afterwards, on round 4, an item is drawn from distribution D’ - independently of all others

25

- and is presented to the algorithm. That is, the input sequence is generated according to
(z1,...,2,) ~ D' x ... x D"

In this setting, we consider that our algorithm is given some information about the
underlying distributions D!, ..., D" before the input items start arriving; for instance, we
might be given each distribution in closed form, or — more realistically — we may be granted
sample access to the distributions (in which case it is desirable to draw as few samples from
each distribution as possible). An online algorithm A is called a.-competitive in the prophet
model if, for any set of n distributions over X’ and any ordering (D!, ..., D") of those
distributions we have

a - E[OpT(I)] — 6 for a maximization problem

=
P
~
[\

a - E[OpT(I)] + 8 for a minimization problem

—N—
=
=
=
AV

Here, both expectations are over the random input sequence I ~ D! x ... x D". If A is
randomised, the first expectation is also over the internal randomness of .A. Notice that
the quality against which we are compared, i.e. the expected optimal value E[Opt([])], is
independent of the actually realised instance /; what we want to achieve in this setting is to
be on expectation at most o times worse than the expected offline optimum, even if there
exist specific realisations / on which we may be significantly worse than the realised offline
optimum.

Arguably the most well-known and fundamental problem in the prophet setting is sim-
ilar in concept to the Secretary Problem mentioned above. An adversary chooses an order-
ing of n distributions (D, ..., D"), each over the set R>(.We are given full knowledge of
each distribution. An input sequence (xy,...,z,) ~ D! x ... x D" is drawn, and each
value is presented to the algorithm in order. Again, upon seeing an value, the algorithm
must either keep it or forever discard it, and we can only pick a single value. Here, a simple
thresholding rule guarantees that we will, on expectation, obtain a value equal to at least
% of the expected offline optimal. This has come to be known as the “Prophet Inequality”
problem, and a historical survey of related problems can be found in [51]. In Chapter 3,
we will start from this simple problem to examine various other problems in the prophet
setting.

It is worth noting that prophet models have attracted significant attention in recent
years, in part due to the application of prophet inequalities in mechanism design. Indeed,
the simple thresholding rule suggested by the solution to the classical Prophet Inequality
problem indicates a pricing scheme for the following problem: we wish to sell an item at
the highest possible price, and there are n potential buyers, each with a private valuation
z; drawn from some distribution D’. We wish to set a single price for this item, so that
the buyers can arrive one at a time in order, and upon arrival choose whether to buy the
item or not (based on if their valuation for the item is higher than our price). This simple
posted-price mechanism offers a number of advantages, as explained in the seminal paper
[28] that established the connection between prophet inequalities and mechanism design.

26

1.1.4 Covering Integer Programmes

Consider a linear programme in normal form:

min Z C;
i=1
s.t. Zajixi > b; Vj € [n]
i=1
xz; >0 Vi € [m]

If all coefficients of this LP are nonnegative, i.e. aj;, b;,¢; > 0 forall € [n] and j € [m],
then the above is called a covering linear programme. If additionally the variables z; are only
allowed to take values in some subset of Z~, then we have a covering integer programme
(CIP).

Arguably the most prominent combinatorial opmtimisation problem that can be viewed
as a CIP is the (weighted) Set Cover problem (and its special cases, i.e. Vertex Cover and Edge
Cover). Indeed, given an instance of Set Cover with m sets { Sy, ..., Sy, }, nitems {1,...,n}
and a vector ¢ = (cq,...,¢y,) of set costs, the natural integer programme formulation is
the following:

m
min E C;T;
i=1

s.t. Zml >1 Vj € [n]

Si>j

T; € {0, 1} Vi € [m]

Here, each coefficient aj; of the general CIP formulation is equal to aj; = 1yjeg,}-

In the online setting, the algorithm is not given the n items of the Set Cover instance
up front, but they are revealed one at a time over n rounds. Whenever an item arrives,
if it is not already covered by the sets already picked by the algorithm, we must pick at
least one new set to cover it. In the more general case of a CIP, the n covering constraints
are presented over n rounds and, whenever a constraint arrives, if it is not satisfied by
the current assignment of variables maintained by the algorithm, we must increment some
variables in order to satisfy it (note that variables cannot be decreased at any point). In
both cases, the goal is to minimise the total cost incurred, and we are compared against an
offline optimum that sees all items/constrains in advance.

1.1.5 Augmentable Integer Programmes

Consider an instance of Set Cover, and let S', S” C {5, ..., S, } be two collections of sets,
such that &’ C §”. Suppose that we are given either S’ or §”, alongside a collection of
elements W C [n], each of which may or may not be covered by the collection we were
given. We wish to pick additional sets (that is, to augment the collection of sets we were
given) in the least expensive way, so as to cover all elements in . A crucial property of
Set Cover is that, since S’ C §”, the minimum cost of augmenting S” to cover the elements
of W will never be larger than the corresponding minimum cost of augmenting S’. That is
to say, the marginal cost of augmenting a solution of Set Cover so that it covers additional
elements is monotonically non-increasing.

27

This property of Set Cover and CIPs in general does not fully define them, as there are
problems which satisfy this monotonicity property but are not covering problems. In order
to study such problems, the class of Augmentable Integer Programmes (AIPs) was defined in
[1]. Formally, consider an integer programme defined by a vector of variables z € Z™, a
cost vector ¢ € R™ and a set of constrains V' (each of the form (a;, z) > b;). For any subset
V' C V of constraints, let SoLs(V’) C Z™ be the subset of solutions that are feasible to
V' (that is, the set of values of z that satisfy all constraints in V”’). Also, for any subset of
constraints V' C V, any solution z € Sors(V”’) and any other subset of constrains W C V/,
define the augmentation cost

AuG(W | 2,V') := min{{c,w) : w + z € Sors(V' U W)}

or oo if no such w exists. In words, this is the minimum cost of augmenting 2z (which
already satisfies the constraints of ') so that it also satisfies the constraints of . Using
this definition, the class of AIPs is defined as follows:

Definition 1.1.1 (AIPs). An augmentable integer programme (AIP) is one in which the aug-
mentation costs are monotone, i.e. for any V' C V” C V and any 2’ < 2" such that
2" € Sors(V') and z” € Sors(V"), we have Aug(W | 2", V") < Auc(W | 2/, V') for any
constraint set W C V.

As we mentioned, all CIPs satisfy this monotonicity property, thus the class of AIPs is
a generalisation of CIPs. The fundamental reason we are concerned with this class is be-
cause it contains three major combinatorial optimisation problems of interest, namely the
Set Cover, Facility Location and Steiner Tree problems. Particularly in the former two prob-
lems, recent advances in the random-order and prophet models ([1], [34]) have introduced
novel analysis techniques and have paved the way for intriguing new research directions.
In Chapter 4 we will delve deeper into the field of random-order and prophet models for
AlPs.

28

Chapter 2

Random-Order Models

2.1 Secretary Problems

2.1.1 Single-Secretary Problem

As we stated in Chapter 1, the (Single-)Secretary Problem can be described as follows. An
adversary selects n nonnegative values vy, ...,v, € R, and they are presented to our
algorithm one by one in a random order. Whenever an element arrives, our algorithm
can either pick it or forever discard it, and we can only pick one item in total. If v is
the maximum among all presented elements, we wish to minimise our competitive ratio,
that is, the ratio of v,y over our expected value. Tracing where the problem was initially
stated and who initially proposed this algorithm is not as simple as it sounds, see [17] for a
historical survey.

Before we present a solution to this problem, we will first examine why we need random
order - in other words, why it is impossible to be competitive in the fully adversarial setting.
If we use a deterministic algorithm, it is easy to see how our value can be arbitrarily smaller
than & .y, even for n = 2. Consider two input sequences, (1, M) and (1, 5;), where M >> 1.
Since our algorithm is deterministic, upon seeing the value x; = 1, it must always decide
to either pick it or discard it. If the algorithm picks x4, it attains a competitive ratio of % in
the first sequence, while if it discards x; it attains the same competitive ratio in the second
sequence. Thus, for any deterministic algorithm, there exists an input sequence on which
it suffers an arbitrarily bad competitive ratio 7 for any M.

Using a randomised algorithm helps only a little; we cannot do better than selecting a
uniformly random position i € [n] a priori and picking the i-th value when it arrives. In this
strategy, since we pick each value with probability %, our expected valueis)

Lmax

z
w€enln — n?
so our competitive ratio is % We can show that this is the best any randomise[d] algorithm
can do. Indeed, one strategy the adversary can use is to pick a large M > 1, uniformly at
random pick an index j € [n], and present the sequence (1, M, M? ... M7=10,...,0).
In order for any algorithm to be competitive, it must pick the last element in the ascending
chain upon picking it with good probability, but this is tantamount to guessing j. Indeed,

the following lemma can be proven by using Yao’s Principle.

Lemma 2.1.1. No randomised algorithm can achieve a competitive ratio better than %for the
Single-Secretary Problem in the fully adversarial setting.

The above discussion sheds some light into the reason why the Secretary Problem is
hard in the fully adversarial setting. Since the presented values can be arbitrary nonneg-
ative real numbers, and because we have given the adversary full power in choosing their

29

order, the values we have encountered in previous rounds contain no information that can
help us make better decisions, that is, we cannot infer what a “large” or “small” value is for
a given input until we have seen the entire input. Thus, in order to weaken the adversary,
we consider the problem in the random-order.

It turns out that this reduction in power is enough to make the problem significantly
less challenging. Indeed, taking advantage of the random order, we can use part of the
input sequence to obtain an sort of “estimate” of the range of values in that sequence. That
is, we consider the following algorithm:

Algorithm 2.1: Single-Secretary Problem

1 Reject the first © elements
2 Set threshold 7 +— maximum among rejected elements
3 Pick the first value after that which is larger than 7

We will call an algorithm wait-and-pick if it rejects the first m elements and then picks
the first value that is larger than all before it. Clearly, Algorithm 2.1 is a wait-and-pick
algorithm with m = Z. Because % ~ 37%, this algorithm is known as the 37%-rule. Why
m = % is the correct choice for a wait-and-pick algorithm will become clear in the analysis
of the algorithm.

Theorem 2.1.2. Asn — oo, Algorithm 2.1 picks the maximum value with probability at least
%, thus it is %—competitive.

Proof. Consider any wait-and-pick algorithm A that rejects the first m elements of the

sequence. The probability that A picks the maximum value is:

n

[P[A picks max| = Z IP[A picks max | v; is max] - P[v, is max]

t=m+1
= Z P[max among {vy, ..., v;_ 1} falls in m first positions] - P[v; is max]
t=m+1
B & m 1 m (H Ho)
t—1 n n—1 m—1
t=m+1

where in the second-to-last equality we used the random order of arrivals and Hy, = Zle %

is the k-th harmonic number. Using the approximation H} ~ logk + 0.57 for £ — oo, the
above probability is approximately equal to * log Z;j for large m, n. This quantity attains

maximum value 1 by setting m = 2. [
e e

Thus, by exploiting the random order of arrivals, we get a very simple wait-and-pick
strategy that is constant-competitive in expectation. This is in stark contrast with the %
competitive ratio we managed to achieve in the fully adversarial setting. Wait-and-pick
strategies seem like a natural way to approach this problem, as it is difficult to imagine
a reasonable algorithm taking any other form. Indeed, the following theorem from [52]
formalises this intuition.

Theorem 2.1.3. The strategy that maximises the probability of picking the highest number
can be assumed to be a wait-and-pick strategy.

30

We omit the proof for brevity. We note only that the two previous theorems imply that,
for n — o0, no algorithm can guarantee that it picks the maximum value with probability
more than % Crucially, this implies that no algorithm can guarantee a competitive ratio
larger than % for the Secretary Problem.

2.1.2 Multiple-Secretary Problem

A natural question to consider after studying the Single-Secretary problem is whether we
can extend the insights we obtained in the case where we are not forced to pick only one
value, but instead can continue picking elements as long as we do not violate a given con-
straint. The simplest such constraint is if we are allowed to pick % items in total, for a known
k > 1. As before, we wish to maximise the expected total value we obtain on a given set of
elements, and we are compared against the offline optimal that picks the k£ highest values
in the set. This problem was first examined in [19]. In all that follows, we will denote by
S* the set chosen by the offline optimal algorithm and by V* the corresponding optimal
value.

The first algorithm we will examine draws direct inspiration from the Single-Secretary
case; we will ignore (on expectation) the first on values for some appropriately chosen
d € (0,1), then set a threshold 7 and pick the first k values larger than 7.

Algorithm 2.2: k-Secretary

1 Sete = o =0 (1%5)

2 Draw m ~ Binomial(n, ¢)
3 Ignore the first m elements

4 Set threshold 7 < (1 — &)k highest ignored value
5 Pick the next first £ elements greater than 7

The reason for setting ¢ as above will become clear in the analysis. Since E[m| =
on, we are indeed ignoring the first dn elements on expectation, thus we will ignore %
elements from S* on expectation. Hence it would make sense to set the threshold equal
to the 9k'" highest ignored value, to try and match the lowest ignored value from S*, but
we actually set it a bit higher to account for the variance in how many elements of S*
we ignore. The final point to discuss before analysing the algorithm’s performance is the
reason why we do not simply ignore the first)n elements outright, but instead ignore the
first m ~ Binomial(n,d) elements. This is done to ensure that each element is ignored
with the same probability §, independently of others (simply ignoring the first on elements
introduces correlations. i.e. if an element is ignored then each other is slightly less likely
to do so). The reason we want this independence to hold is so that we may use Chernoff
bounds in our analysis (Theorem A.0.2).

We have now established all we need to prove our competitive ratio:

Theorem 2.1.4. Algorithm 2.2 achieves a competitive ratio of 1 — O(0), where § = O (%)

Proof. Let v’ := min,cg~ v be the lowest value in S* and v be the (1 — 2¢)k'" highest value
in S*. Intuitively, we want to set our threshold 7 neither too low (because we might pick up
too many low values) nor too high (because we might reject many high values). We consider
the “bad” events L = {7 < v’} (corresponding to 7 being too low) and H = {r > v"}
(corresponding to 7 being too high). We will show that both of those events happen rarely.

31

Let 7" be the set of ignored elements, i.e. the set of elements that fall in the first m
positions of the input. Recall that we set 7 equal to the (1 — £)Jk!" highest value in T'.

« For event L to hold, less than (1 —)0k elements from S* appear in T'. Since the
expected number of values from S* that appear in 7" is dk, by a Chernoff bound we
have that L holds with probability at most exp(—&?dk/2).

« Similarly, for H to hold, more than (1 —)0k elements above v must appear in 7.
By definition of v”, the expected number of elements above v” that appear in 7" is
(1 — 2¢)0k, so by a Chernoff bound we have that H holds with probability at most
exp(—e20k/3).

Thus, by settinge = = O (%) , we have that both L and H happen with probability at
most O(0) = m, and by a union bound we have that, with probability at least 1 — O(J),
the event L N H holds.

Notice that if 7 > v/, we will never run out of budget k. Also note, by the analysis of
event H, that if H holds, then no more than (1 —)0k elements above v” appear in T, so at
least (1 —2c — (1 —¢)d)k = (1 —O(6))k elements of S* appear in the last n — m positions.
Thus, if L N H holds, we will only pick values in S* (because 7 > v') and in fact we will
pick all but O(0k) such values. Due to symmetry, each of those values is equally likely not
to be picked, thus we will lose value O(dV™*) on expectation. Overall, with probability at
least 1 — O(6) we obtain an expected value of V*(1 — O(9)) (and with probability at most
O(d) we might as well earn zero value), so our overall expected value is V*(1 — O(9)) and

the claim follows. OJ

Algorithm 2.2 provides a natural way to extend our strategy from the Single-Secretary
setting to the k-Secretary one; indeed, we again ignore a fraction of the elements, use them
to estimate a threshold between the top & values and the rest, and then simply accept any
values we find that are above this threshold. The clever bit is that, instead of ignoring a
constant fraction of values, the fraction of ignored elements is a function of &, and indeed
0 — 0 as k — oo. This is quite natural, as the more values we can pick the less selective
we need to be in order to remain competitive, thus we can be less careful when setting 7
and we can use fewer “samples” to “learn” a good threshold.

However, the above idea can be significantly improved, by realising that there is no rea-
son to use the same threshold for the entirety of the input sequence. Indeed, it is reasonable
to assume that, the more elements of the input we see, the better able we are to estimate
a good threshold, so we should try and adapt 7 as the algorithm goes on. This is the basic
idea behind Algorithm 2.3, due to [18].

Algorithm 2.3 runs in phases of exponentially increasing length. At the beginning of
each phase, a threshold is calculated based on all values seen in the previous phases. At
the beginning of phase j, on expectation k; = 270k elements from S* will have appeared
in the previous phases, so as in the previous algorithm we aim for the £;-th largest of those
values and we set 7; as the (1 —¢;)k;-th largest such value, so as not to fall below the desired
k;-th largest value. In contrast with our previous algorithm, however, we take advantage
of the fact that, the more values we have seen in previous phases, the less variance there is
in the number of elements of S* that have appeared in those phases, thus we can be more
confident and decrease ¢, as phases go on.

The following theorem shows the competitive ratio of our improved algorithm, and
its proof uses the same tools as the previous theorem’s. Note that since n; is the sum of
independent binomial variables, it is itself a random variable Binomial(n, 279).

32

Algorithm 2.3: k-Secretary, Adaptive Threshold

. log k
Set(S.:O(i)

2 Draw mg ~ Binomial(n, §) and m; ~ Binomial(n, 27~16) for j € [log 5]
Denote n; := ;. m; for j € [log 2]

[y

w

'S

Ignore the first ny = on items
Let W; == (nj, nj41] be the window in which phase j runs
for j € [O log %] do

A o«

9
Y]

8 Set threshold 7; to be the (1 — ¢;)k;-th largest value among the first n; items
Choose any value in window W; above 7; (until budget k is exhausted)

7 Set k; nj and ¢; ==

=)

Theorem 2.1.5. Algorithm 2.3 has competitive ratio (1 -0 (1°§k>)

Proof. Fix a phase j € [0, log %], and let 7); be the set of the first n; values (i.e. the values
seen in the previous phases). As in the proof of Theorem 2.1.4, let v := min,cg+ v be
the lowest value in S* and v} be the (1 — 2¢;)k!" highest value in S*. Since the expected
number of elements above v’ in T} is k; = 2’0k and the expected number of elements above
v in Tj is (1 25])]6 by a Chrenoff bound we have that P[Tj < V'] < exp(—etk;/2) =
exp(— 5k/2) (and P[7; > vf] < exp(—€3k;/3) = poly(k)

Taking a union bound over all j € [0, log 3] we have that the event G = {V; € [log }] :

v < 7; < v} } holds with probability at least 1 — log(l(/ 9 Condition on this “good” event G.

In this case, since 7; > v’ for all j, we only pick items in S* and never run out of budget.

Additionally, by the definition of U” and ¢;, we have that vj > v{ > ... > Ul” gl = v,
5

Hence, any element hlgher than v will be picked iff it is not in 7, and for all j > 1,

any element in [v],v] ;) will be plcked iff it is not in 7). Each element falls in 7 with

probability 27§ (1ndependently of each other), thus we get an expected value of:

log 4 3
Sul=0)+> " Y w(1-29)
v>vf Jj=1 v <v<wi

log%
=V*— Zvé—z Z 027§
v>vf Jj=1 U;/§v<v;/71

log & 3

>V — (1= 2e0)0)l6 — Z (gj-1 — &;)kv275

log & 3

> V(1= 6) = 2(V2 = 1)5*k Y " vf2/?

where the first inequality follows from the fact that, if v; > vo > ... > v are the top k
items, the elements v such that vj < v < v7 , are precisely the elements in {v; : (1 —
2¢;_1)k <1 < (1—2¢;)k— 1}, thus their cardinality is 2(¢;_; — €;)k. Under the constraint

vy > vy > >) . the sum in the last term is maximised when all elements have value
5

33

2

V* /k (so as to maximise the value Vlog

, which has the largest coefficient), thus the negative
B

term becomes O(V*§?). Hence, conditioned on the good event GG we obtain value V*(1 —
O(6)), and because G happens with probability at least 1 — O(0) the claim follows. O

By utilising the idea of adaptive thresholds, Algorithm 2.3 achieves significantly im-
proved performance compared to Algorithm 2.2, and in fact its competitive ratio is nearly
optimal, as shown by the following theorem due to [19].

Theorem 2.1.6. No algorithm can achieve a competitive ratio better than 1 — O (ﬁ) for the
k-Secretary Problem.

It is possible to actually reach this optimal 1 — O (VLE) competitive ratio by a more

involved recursive algorithm, again due to [19].

Algorithm 2.4: k-Secretary Problem, Recursive

1 Function REc (K, (v1,...,v,)):

2 if £ =1 then

3 ‘ Run Algorithm 2.1

4 else

5 Draw m ~ Binomial(m, 1/2)

6 0 |k/2]

7 Run REC(/, (v1,...,Um))

8 Lety; > yo > ... > yp, be the first £ samples ordered

9 After the m-th sample, pick every element that exceeds y, (until budget & is
exhausted)

Theorem 2.1.7. Algorithm 2.4 is (1 — \%) -competitive.

We omit the proofs of the last two theorems, as they are rather involved and not central
to the thesis. Note that the bound guaranteed by the last algorithm, though theoretically
optimal and tending to zero as & — oo, is vacuous for small values of k. In [53] two simple
algorithms are proposed and it is shown that they are é-competitive for all k. This result
is improved upon in [54], where a natural algorithm is proposed with competitive ratio
strictly grater than % for small k£ > 2, and it is specifically shown that its competitive ratio
increases from 0.41 for £ = 2 to 0.75 for & = 100.

2.1.3 Matroid Secretary Problem

In the previous section, we considered how the Single-Secretary problem would change if,
instead of being allowed to pick only one item, we were allowed to pick items so long as we
did not violate some sort of constraint. We saw that the simplest kind of such constraint
is that we may be allowed to pick no more than £ elements. However, we can generalise
and consider a significantly more rich class of constraints, called matroid constraints. Ma-
troids are mathematical objects of major theoretical interest, as they elegantly generalise
and abstract concepts in many fields, including graph theory, combinatorial optimisation,
linear algebra, geometry and topology. Basic definitions on matroids can be found in the
appendix (Definition A.0.1).

34

In the Matroid Secretary problem, an adversary constructs a matroid M = (U,Z) and
assigns a value v : U — R to each element in the ground set. We are presented each
element of I/ in arandom order. Upon receiving one element, we can either pick it or forever
discard it, and we cannot drop previously selected elements. Our aim is to maximise the
total value of the elements we pick. However, the set of items we have picked must always
be an independent set of the matroid; that is, we cannot pick an element if adding it to the
ones we have already picked would create a dependent set. This problem was introduced
in [20]. Observe that the k-Secretary problem we considered in the previous section is a
special case of the Matroid Secretary problem, where the underlying matroid is k-uniform.

The first algorithm introduced for the Matroid Secretary problem was Algorithm 2.5
due to [20]. In what follows, M = (U,Z) is the underlying matroid, r is its rank and

= |U|. We denote by ey,...,e, the elements of the matroid and by vy, ..., v, their
respective values.

Algorithm 2.5: Matroid-Secretary, Threshold Pricing

Ignore the first s = [n/2] elements and let © be their highest value
Select a uniformly random j € {0,...,logn}
Set threshold 7 = ©/27
Initialise the set of selected elements B < ()
fort € {[n/2]+1,...,n}do
if v; > 7 and BU {e;} € T then
| B+ BU{e}

NN R W N =

Theorem 2.1.8. Algorithm 2.5 is m -competitive for any matroid of rank r.

32 [1

Proof. Let B* denote the max-weight basis of the matroid, consisting of elements ey, .. ., e,
with values v; > vy > ... > v, respectively, and let V* = Zie[r] v; be the value of B*. Let
q € [r] be the maximum index such that v, > vy /7, so either ¢ = 7 or v,1 < v;/r. By this
definition, 3/, v <wvi,s0 35 v < V*/2and hence >, v > V*/2.

For any set A C U, let n;(A) = |[{e € A : v, > v;}| be the number of elements of A
with value at least v; and let m;(A) = [{e € A : v, > v;/2}| be the number of elements of

A with value at least v;/2. The sum of the ¢ largest values of elements in B* is

—

o
vgng(B*) + > (vi — viy1)ni(B¥)
1

<.
Il

where by definition n;(B*) = i. By our above argument, this sum is at least equal to V* /2.
Let B be the independent set output by our algorithm. By the definition of m,, the value of
B is at least

1 1
5%mg(B) + 3 ;(Ui — Vip1)mi(B)

Combining the above, in order to show that B obtains value at least 3 V* it suffices to

show E[m;(B)] > 810grnz(B*) foralli € [q].

The case @ = 1 is a special case. Let T" be the set of ignored elements. With probability
1/4,e; ¢ T and e; € T. Conditional on this event, with probability 1/logr we pick j = 0
in our algorithm and thus set 7 = vy, so we will pick e; as it is the only element with value

35

more than vy. Thus we pick e; with probability at least @, so E[m,(B)] > =, while

4logr>
TL1<B*) =1.

Now fix some i € {2,...,q}. Consider the event E that e; € T and additionally we
pick j in our algorithm such that 5727 > v; > ;. Since 7 < g, by the definition of ¢ we
have v; > vy /r, thus such a j € {0,...,logr} always exists. Because ¢ is the maximum
valued element in the matroid, under event £ we will set the threshold equal to v,/ 27 for
the above j. Since e; € T with probability 1/2, we have P[E] = ZI;gr'

Condition on event F. Then there is an independent set A of size at least ¢ each of whose
values exceeds 7 (namely, {ey, ..., e;}). Let A" C A be the set of elements of A that appear
in the second half of the input, thus E[|A’| | E] > 5! > i/4. By the hereditary property,
A’ is also an independent set. Our set B will contain at least | A’| elements; otherwise, if
|B| < |A’], then by the exchange property there exists an ¢ € A’ \ B such that B U {e}
is independent, but because e € A we have v, > 7 and we should have picked e in B.
Therefore, we have that E[|B| | E] > i/4, and because each element of B has value at
least 7 > v;/2, we have m;(B) = |B|, so E[m;(B) | E] > i/4 = n;(B*)/4. Removing the
conditioning on F and recalling that P[E] we obtain that E[m;(B)] > @ni (B*)
and the claim follows.]

_ 1
— 2logk?

The above algorithm is rather elegant and, much like the previous ones we considered,
relies on the idea of ignoring a fraction of the elements and using them to learn a good
threshold. Its simplicity and the fact that it works for general matroids make it appealing;

however, its competitive ratio can be exponentially improved from O <$> to O (10g fogr>

using more sophisticated techniques. The first algorithm achieving this competitive ratio
was presented in [21]. Afterwards, in [22], a different algorithm with the same asymptotic
guarantees was proposed, which is considerably simpler and greatly improves on the con-
stants hidden by the asymptotic notation. We will not present those algorithms or their
analyses, as they are rather involved. A survey of the work leading up to these results can
be found in [55]. On the negative side, the only known lower bound for general matroids is
the factor of % from the Single-Secretary case. Closing this gap is a highly interesting open
problem.

Instead of trying to design an algorithm that performs well on any matroid, a natural
approach is to limit ourselves to specific matroid structures of interest and see whether

we can take advantage of their additional properties in order to go below the O <1Og110gr>

barrier. In fact, we have already done this in the k-Secretary Problem (which corresponds
to k-uniform matroids) to obtain a significantly better 1 — O (ﬁ) competitive ratio. We

will examine the cases of partition, graphic and degree-d transversal matroids, and we will
show the following theorem which combines the results of [56] and [23].

Theorem 2.1.9. The Matroid Secretary problem admits a %-competitive algorithm for partition
matroids, a Q—Ie—competitive algorithm for graphic matroids and a X -competitive algorithm for

ed
degree-d transversal matroids.

First, note that the case of partition matroids is trivial, since we can simply run the %—
competitive Algorithm 2.1 on each part of the partition to pick a signle element from each
part. Since the maximum value base of a partition matroid consists simply of the maximum
value element from each part of the partition, and because the element we select in each
part of the partition has expected value at least equal to % of the maximum element of that
part, the claim directly follows. For the other two cases, we will reduce the problem to the
case of partition matroids.

36

For a matroid M and a value function w : Y — R>(, we denote by OpT(M, w) the
maximim value basis of M. We will make use of the following property of graphic and
transversal matroids.

Definition 2.1.1. A matroid M = (U, Z) has the a-partition property if we can randomly
construct a partition matroid M’ = (U’,Z") withUd’ C U, such that for every value function
w.

« E[OpT(M’,w)] > L - OpT(M, w)
«I'CT

If a matroid M has the a-partition property, then we can randomly construct the
partition matroid M’ guaranteed by this property and then run the ——compet1t1ve algo-
rlthm described above to obtain an independent set of value at least 1 c E[OpT(M',v)] >

- OpT(M,v). Since Z' C Z, the independent set returned by this algorlthm remains
independent in the original matroid M. This implies the following lemma.

. .. . 1 .
Lemma 2.1.10. If a matroid M has the a-partition property, there exists a _--competitive
algorithm for it

All that remains now is to demonstrate that graphic matroids and degree-d transversal
matroids have the a-partition property for some «.

Lemma 2.1.11. Transversal matroids with maximum degree d have the d-partition property.

Proof. Given a bipartite graph G = (U, V'; E') where the vertices in U are the elements of
a transversal matroid M, we form a partition matroid M’ by creating one bin P, of the
partition for each vertex in v € V/, and then assigning each element of U to the bin of one
of its neighbours in V' uniformly at random. Clearly, any independent set U’ in M’ is also
independent in M, since if u € U’ belongs to bin P, in M’ then we can match u to v in M.
Additionally, for each element u in the optimal base B* for M, if u gets matched to v in B*,
let X, be equal to 1 if u belongs to bin P, in M’ and 0 otherwise. Clearly P[.X,, = 1] = 1/d,
and if we only pick the u € U such that X,, = 1 in M’ we create an independent set of M’
whose expected value is at least Y, p. w(u) P[X, = 1] = % - OpT(M, w). The optimal
independent set has expected value at least that large, thus the claim follows. O

Lemma 2.1.12. Graphic matroids have the 2-partition property.

Proof. Let G = (V, E) be the graph defining the graphic matroid M. Arbitrarily order the
vertices v1, Uy, . . ., v, of V. With probability 1/2 orient each edge of G from the vertex with
the smaller index to that with the larger index, otherwise orient each edge in the opposite
direction. Clearly, this leaves us with no directed cycles, as the vertex indices along any
directed path must be either strictly increasing or strictly decreasing. Consider the partition
matroid M’ formed by creating one bin for each vertex v € V and adding each edge e to the
bin corresponding to its tail. Since we do not have any directed cycles, any undirected cycle
needs to contain at least two edges with the same tail, thus by picking at most one outgoing
edge for each vertex we create no undirected cycles. In other words, any independent set
in M’ is also independent in M.

To analyse the value of OpT(M’, w), consider the optimal basis of the original matroid
M which corresponds to a forest F' in GG. Root each tree of F' at an arbitrary vertex. For
each e € F, let X, be equal to 1 if e is oriented towards the root of the tree in which it

37

belongs in F' and 0 otherwise. Clearly P[X. = 1] = 1/2, and an independent set of M’
can be formed by picking only the edges with X, = 1, in which case the expected value is
at least) w(e) P[X, = 1] = OpT(M, w). The optimal independent set has expected
value at least that large, thus the claim follows. O]

From the last three lemmas and the above discussion, Theorem 2.1.9 follows. Thus we
have designed O(1)-competitive algorithms for the interesting special cases of partition
and graphic matroids, as well as a O(%l)—competitive algorithm for degree-d transversal
matroids. While those algorithms are notable for their simplicity, they are not optimal.
Indeed, in [24] a %-competitive algorithm for graphic matroids is presented, while in [25] a
é-competitive algorithm is given for the random-order weighted bipartite matching prob-
lem, which generalises the transversal matroid secretary problem. We will not present the
former algorithm for brevity, while we will examine the latter one in Section 2.2.

2.2 Online Matching Problems

2.2.1 Maximum Weight Matching

Consider a bipartite graph G = (L, R; E') with n vertices in L and m vertices in R. We can
think of the vertices in L as representing agents and of the vertices in R as representing
items the agents wish to obtain. Each agent i € [n] has a value v;; € Rx for item j € [m)].
In the online setting, we are given all m items up front and the n agents arrive in sequence.
Upon arrival, each agent i reveals their valuations v;; for each item, and we may irrevocably
assign up to one of the remaining items to ¢ to obtain value v;;. Our objective is to maximise
the total value obtained, and we again examine the random-order case. Note that if each
agent 7 has the exact same valuation v; for each item, then we recover the Matroid Secretary
problem for transversal matroids discussed in Section 2.1.3.

The algorithm we will examine, due to [25], is remarkably simple, yet achieves the
optimal competitive ratio.

Algorithm 2.6: Random-Order Max-Weight Matching

1 Let L' be the first |n/e| vertices; ignore those vertices
2 M+)

s for ¢ € {[n/e],...,n} do

4 L'+ L'u{l}

5 Compute a max-value matching M) for (L', R)
6 If ¢ is matched to 7 in M, let e¥) = (¢, 1)

7 if M U {e®} is a matching then

8 | M+ MU{e®}

Theorem 2.2.1. Algorithm 2.6 is %-competitive.

Proof. Let M be the matching returned by the algorithm. Define OPT to be the weight of
the optimal offline matching and w (M) to be the weight of matching M (). For each
¢ € L, define a random variable A, equal to the weight of the edge assigned to ¢ in M (so
Ay = 0if £ is not matched in M). We will show the following, from which the theorem will
directly follow:

38

n/e] O

E[A,] > 2.1

[Ad = (-1 n @1)
Whenever vertex k arrives, we can model the choice of the random permutation of

the vertices (1, ..., k) that have arrived so far as a sequence of the following independent

random experiments: first choose a uniformly random set of size k£ from L, then determine
the order of those k vertices by iteratively selecting a vertex at random and removing it.
We will utilise this interpretation to first argue about the expected weight of an edge e
considered by the algorithm, and then argue about the probability that this edge will be
included in M.

Fix a step ¢ € [n], so that |L’| = . To begin with, since the current vertex ¢ can be
viewed as being selected uniformly at random from the set L', and because e”) is the edge

w(M®
assigned to ¢ in the matching M, we have E[w (e(f))] > (]\Z) Also, since L' can be

viewed as being selected uniformly at random from set L, we have E [w (M (K))] > %OPT.
Combining the above we have:

0)] > 22X
E [w (e)} > - (2.2)
Notice that, up to this point, we have used the random choice of the set L’ from L and the
random choice of vertex ¢ from L/, but we have not utilised the random choice of vertices
{1,...,¢ — 1}. This is precisely what we will need to argue about the probability that e
will be included in M.

The edge) = (¢,7) € M® will be added to M iff r has not already been picked in
an earlier step, that is, iff 7 ¢ ¢ for all previous steps k € {[n/e],...,¢ — 1}. For any
such step, since the vertex k is viewed as being picked uniformly at random from the set of
vertices revealed up to that point, we have that P [7’ ¢ e(’“‘)} >1-— % As before, the order
of the vertices that arrived before k is irrelevant for the event {r & ¢}, so the respective
events {r ¢ ¢*)} for k' < k can be regarded as independent. Thus, by applying the same
reasoning inductively from k = ¢/ — 1 down to [n/e| we obtain:

Pl N treey|= T prgez [T (1-1) =

k=[n/e] k=[n/e] k=[n/e]

Thus, the probability that r has not been picked up to step ¢ is at least M/ e}
this with (2.2) and recalling the definition of A,, we obtain (2.1).
Having shown (2.1), we can now lower bound the expected weight of the obtained

matching M by summing over all variables A,:

_E Zn:Ae Z Ln/e Ot

n/e‘\

Ln/eJ — 1_ /1 1
— L7, . N .
- OrT E 7 OrpT

l=[n/e]

. Combining

where in the last inequality we used the fact that % > 1 — L and also Zg;ﬁn /el % >
log (ﬁ) > 1. O

39

o
S

Since the Single-Secretary problem is the special case of the Random-Order Max-Weight
Matching problem (in the case where there is only one item), the lower bound of % from the
Single-Secretary case holds in this setting, thus Algorithm 2.6 indeed achieves the optimal
competitive ratio.

2.2.2 Minimum Augmentation Matching

We will now consider a matching problem of significantly different flavour than Max-
Weight Matching and the other secretary-like problems we have examined. First of all,
it will be a minimisation problem, where we will be able to “undo” past choices as the input
sequence is revealed. However, instead of being concerned with the quality of the solution
we obtain, we will instead focus on maintaining a feasible solution throughout the execu-
tion of the algorithm, while performing as few “undos” as possible (in other words, we are
concerned not with the quality but with the stability of our solutions).

Concretely, consider a bipartite graph G = (U, V'; E)) with |U| = |V'| = n. For simplic-
ity, assume that GG has a perfect matching. We can think of the vertices in U as representing
clients and the vertices in V' as representing (unit-capacity) servers, in which case the per-
fect matching in G represents a way to assign each client to a server. We are given the
servers in V' up front, while the clients in U arrive sequentially, in random order. When a
client u; € U arrives, all edges adjacent to it (i.e. all servers to which it can be connected)
are revealed to us. We must, at every timestep, output a maximum matching between the
revealed clients and the servers (i.e. we must serve each client), and we are allowed to drop
edges chosen at a previous timesteps or to pick edges previously dropped. At each time,
we pay the switching cost between our current matching and the previous one, that is, if
M1 and M® are the matchings outputted by our algorithm at timesteps ¢ — 1 and ¢, the
cost we incur is M DAM®,

Suppose we have a matching M =1 at the end of timestep ¢ — 1, and that client w,
arrives at timestep ¢ (and is therefore unmatched). We define an augmenting path for u, in
M1 to be a path starting from v, that alternates between edges not in M~V and edges
in M~1) and terminates in an (unmatched) server in V. Clearly, such a path always exists.
We will say that we augment a matching M along an augmenting path P if we update M
to be equal to M A P. We will examine the following simple algorithm due to [26].

Algorithm 2.7: Random Order Minimum Augmentation Matching

M+ 0

fort € [n] do
Compute a shortest augmenting path P for u, and M
Augment M along P

W N =

Theorem 2.2.2. Algorithm 2.7 has expected switching cost O(nlogn).

Proof. Fix a perfect offline matching AM* and a round n — k. If the remaining £ clients were
to arrive all at once, then it is easy to see how M*AM forms k disjoint augmenting paths.
Indeed, if u is one of those clients, starting from u we can follow the unique edge (u, v;) €
M*, then if v; is unmatched in M we are done, otherwise follow the edges (vy,u1) € M
and (u;,v9) € M* and repeat. The paths are disjoint because M and M* are matchings, so
each vertex in M x AM has degree at most 1. Therefore, we can augment M along those

40

k paths to obtain a perfect matching, and in doing so each client switches servers at most
once, so our total augmenting cost is at most 2n.

Now, since the next client is chosen uniformly at random among the k remaining, its
corresponding augmenting path in the above collection has expected length at most 2n /k.
Since we pick the shortest augmenting path for the arrived client, we pay an expected
switching cost of at most that much at round n — k. Thus our total expected switching cost
is at most) ;_, 2% = 2nH, = O(nlogn). O

It is worth noting that, in the same paper ([26]), two other interesting results were
shown. First, a more sophisticated analysis of Algorithm 2.7 shows that it not only achieves
an expected switching cost of O(nlogn) on expectation, but it actually suffers cost at most
that much with high probability 1 — n=2. Secondly, it is shown that any online algorithm
must suffer expected switching cost at least Q(nlogn). Thus, Algorithm 2.7 is in fact an
optimal algorithm for the problem of Random-Order Min-Augmentation Matching.

It is also worthwhile to discuss the known upper and lower bounds for this problem in
the fully adversarial setting and compare them with those we presented above. The best
known algorithm for this case is, in fact, the same Algorithm 2.7 that works in the random-
order setting. Through a considerably more complicated analysis, it can be shown that this
algorithm suffers a switching cost of at most O(n log® n) in the worst case - see [45], [46].
On the negative side, the best lower bound is the same {2(n log n) that we mentioned above.
Thus, we obtain another example where enforcing random-order weakens the adversary
enough to significantly simplify the analysis and lead to better performance guarantees
compared to the worst case.

41

Chapter 3

Prophet Models

3.1 Prophet Inequalities

We will now turn our attention to the prophet setting as described in Chapter 1, and we
will begin our examination from the simplest problem we can consider in this model, which
is analogous to the Secretary one. There are n random variables X, ..., X, taking values
in R>o. The distribution of each X; is chosen by an adversary to be D, and then the
realised values are revealed in order from 1 to n. Whenever a value is revealed, we may
either pick the value or forever discard it, and our goal is to maximise the total reward
obtained. Similarly to the way we proceeded in Section 2.1, we will analyse this problem
in various settings, which differ as to the constrains imposed on the elements we can pick.
Before we continue, it is useful to recall that, in the prophet setting, we compare our al-
gorithm’s expected reward E[ALG] with the expected offline optimal reward E[OpT], where

both expectations are under the product distribution [], el DO,

3.1.1 Single-Choice Setting

In the simplest setting of the Prophet Inequality problem, we are only allowed to pick a
single element from the input. Defining X,,.x = max{Xj, ..., X, }, our expected reward
is compared against E[X ,,,,]. In this setting, it is easy to see that we cannot hope to obtain
a competitive ratio better than 2. Indeed, consider the case with two random variables X,
and X,, where P[X; = 1] =1, IP’[XQ = %] =cand P[X, = 0] = 1 —¢ for some e < 1. Any
algorithm picks value 1 with some probability p, so its expected reward is p + (1 — p) = 1,
whereas the expected offline optimal value is 1 with probability 1 —e and % with probability
£,80 E[X] =2 — €.

What may be surprising is that this example encompasses the worst case for the prob-
lem. Indeed, in [57] an algorithm was proposed with expected reward at least %E[Xmax].
Later, it was shown in [58] that this guarantee can be obtained by a simple thresholding
rule, which we will now examine.

We consider that we are given full knowledge of the distributions D™, ... D™ be-
forehand. The thresholding rule we will analyse is simple: compute the median 7 of the
distribution of Xy, i.e. P[X . > 7] = 1/2, and pick the first X; that exceeds 7.

Theorem 3.1.1. The median rule is %-competitive for the Single-Choice Prophet Inequality
problem.

Proof. We denote ()™ = max{xz,0} and let p, = P[3X; > 7] for some 7 € Rs(. For
simplicity, assume that there is no point mass at 7 (the proof can be extended easily to

43

discrete distributions). Consider an algorithm ArG, that picks the first value higher than
7. Then the probability that AL, picks some item is p,, so its expected reward is:

ElAve,] =Y P[Vj <i:X; <7|P[X; > r|E[X; | X; > 7]

=1

:T-Xn:]P)[{Vj<i:Xj<T}ﬁ{XiZT}]

i=1

+) PVj <i: X; < 7] E[lx,on (X — 7))

=1

>7-pr+(1—p;) ZE[(Xz —-7)7]

where in the last line we used the fact that {Vj < i : X; <7} D {Vj € [n] : X; < 7}
Now, observing that E[X .| < 74+ E[(Xpax —7) 7] < 74+ E [Zie[n} (X; — T)+i| , we obtain:

E[ALGT] 2 T Pr + (1 - pT) (E[Xmax] - T)
Hence, setting 7 such that p, = P[X,.x > 7] = 1/2 proves the claim. O

From the last inequality of the proof, it can be seen directly that if 7 is instead cho-
sen to be equal to half the expected value of the maximum value, i.e. 7 = %]E[Xmax}, then
the exact same guarantee holds. Thus, we have shown that two very natural and simple
thresholding rules obtain expected reward equal to at least half the expected offline opti-
mal. However, the drawback of those strategies is that they require full knowledge of the
underlying distributions D(l), o ,D(”) in order to calculate 7 (or, at least, they demand a
large number of samples from each distribution so that we can estimate the true value of
7 with high confidence). To address this issue, in [27] a remarkably simple single-sample
algorithm was analysed and shown to be optimal.

Algorithm 3.1: Single-Choice Prophet Inequality, Single-Sample

1 Draw one sample X; ~ D from each distribution

2 Set threshold 7 := max{X;,..., X,}
3 Pick the first value value above 7

Theorem 3.1.2. Algorithm 3.1 is %-competitive.

Proof. For simplicity, we assume that each distribution is continuous, but the proof'is easily
extended in the case of discrete random variables. The analysis will rely on the principle of

deferred decisions. We can consider that the n samples X1,..., X, and the n realised values
Xi,..., X, are not drawn one after the other, but instead are generated via the following
process:

1. Draw 2 samples (Y;, Z;) from each distribution D¥) to obtain 2n independently drawn
samples total.

2. Without loss of generality, relabel the samples so that Y; > Z;

44

3. Independently ﬂip~n fair coins. If coin 7 is heads, set X; := Y; and XZ- = Z;, otherwise
set X; = Z;and X; =Y.

Fix the drawn samples Y3, ...,Y,,, Z1, ..., Z,, sort them in descending order and relabel
them as Wy > Wy > ... > W, If W, corresponds to Y; or Z;, we denote index(W;) = i.
Define the pivotal index j* as the index of the first Z random variable in the above order,
that is, there are exactly j* — 1 random variables of type Y exceeding the largest Z random
variable.

For each Wy,..., Wj«_y, let C; denote the outcome of the coin flip for index(WV;). For
any i,j < j* with i # j we have that index(W;) # index (W), hence the random variables
C1,...,Cj+_1 are independent. Also, C} is deterministic conditioned on C,...,Cj_1,
since it is the exact same coin flip as one of the earlier indices (by definition of j*). These
two observations will be critical in our analysis.

Having established the above, we will first analyse the expected offline optimal reward,
which is equal to max;{X;}. For each j < j*, we have that IV; is equal to max;{ X} iff C;
is heads and C is tails for each ¢ < j, which happens with probability precisely 1/27. For
J*, we have that W;- is equal to max;{X;} iff Cy is tails for each ¢ < j* , which happens
with probability 1/27° L. Since either there will be at least one heads among the first j* — 1
coins or all of them will be tails, the expected offline optimal is equal to:
=W W

27 - 2l
=1

Continuing, we will analyse the algorithm’s expected reward. If C] is tails, then we
obtain no reward because the threshold is higher than all revealed elements. For j < j*—1,
ifall Cy,...,C; are heads and C}; is tails, we set the threshold equal to W, and obtain
value at least W;. This occurs with probability 1/2/*1. Otherwise, if C; is heads for all
J < j%, then C}+ will be tails and we will set the threshold equal to 1¥/;«, obtaining value at
least W;«_;. This happens with probability 1/27" 1. Thus the expected value we obtain is
at least equal to:

=2 -1
Z W; Wix_1 - W; W_]
9j+1 9 -1 = 9j+1 2j*
j=1 j=1
LW Wy
o\ T
j=1
Combining the above, the claim follows. OJ

3.1.2 Multiple-Choice Setting

Clearly, the most natural generalisation of the Single-Choice setting for prophet inequalities
arises when we are not constrained to picking only one element, but can instead pick up
to k values for some £ > 1 known in advance. Here, we wish to be competitive against
the expected total value of the % largest elements. We again consider that we are given full
knowledge of the distributions D), ... D™ beforehand.

This problem was first examined in [28]. The algorithm presented is again threshold-
based like the previous ones we discussed. In what follows, let S, be the set of values that
are above some threshold 7 in a given realisation of the random variables.

45

Algorithm 3.2: Multiple-Choice Prophet, Single Threshold
Set 0 = O(\/klogk)
Set 7 such that E[|S,|| =k —¢
fori € [n] do
‘ Pick X; if X; > 7 (until budget £ is exhausted)

N

Theorem 3.1.3. Algorithm 3.2 is (1 -0 (1°§k>) -competitive.

Proof. Fix some realisations of the random variables X1, ..., X,,. Since the random vari-
ables are independent and because E[|S; || = k& — J, by a Chernoff bound we have:

Pk —26 < |S,| <kl <>

Thus we have that k£ — 2§ < |S,| < k with high probability. Condition on this event. Then
the reward we obtain is:

S Xi=1-18]+ > (X k—20)-7+ Y (X

€S, €S, €S,

If S* is the set of the k largest values, then the offline optimal reward is:

OPT—ZX—kT—l—Z i =T </{ZT+Z

i€eS* 1€S* 1€S*

Since |S;| < k, by the definition of S, we accepted each value that exceeded T, thus:

k— 20
Y (Xi—71)=) (X;—7)" > 0T —kr > (OpT — kT)
i€S, ies*
2
= (1 - ;) Ort — (k —20)7
Combining the above, we obtain:
20
ZXi > (1 — ?> OrT
i€Sr
and by substituting § = O(/k log k) we obtain the result. O

We will now examine another threshold-based algorithm which, however, uses a differ-
ent threshold for each random variable X; instead of a single threshold for all of them. The
algorithm is essentially a simple modification of the %-Competitive one proposed in [29],
which allows us to obtain the same competitive ratio as before.

Algorithm 3.3 requires knowledge of the probability p; that X; is among the maximum
k elements and of the p;-th percentile for X}, in order to set the thresholds 7;. In order not
to pick items too eagerly, the algorithm maintains some probability of outright rejecting an
item without even examining it.

Theorem 3.1.4. Algorithm 3.3 is (1 -0 (1°§k>) -competitive

46

Algorithm 3.3: Multiple-Choice Prophet, Multiple-Threshold

Let p; == P[X; is among k max| for each i € [n]
Let 7; be such that P[X; > 7;] = p; for each i € [n]

log k
Set5=0< ,E)

fori € [n] do
With probability 4, reject X;
Otherwise, pick X; if X; > 7; (until budget k is exhausted)

N =

w

(S

Proof. Let S* be the k largest elements. We will make use of the following bound on the
expected optimal value:

>

1€S*

LieS*

<E Z(Xz —7)"

LicS*

E +E

51|
1€S*
Z Til{ies*}]
i=1

Li=1 i=1

= ZE[Xl -7 | Xi > n]PIX; > 7] + ZTz‘pi
i—1

=1

+E

n

= ZE[Xz | Xi > 7lps
i=1

Continuing, we will bound the expected reward obtained by the algorithm. Since we
discard each item with probability at least J, the expected number of elements we select is at
most (1—3)k. Thus, by a Hoeffding bound (Theorem A.0.1) we have that with probability at
least 1 —exp(d%k) = 1— % we pick less than k elements in total. Conditioned on this event,
we will never run out of budget, so we will see all elements and will pick an element X iff
we do not outright reject it (which happens with probability 1 — ¢§) and also X; > 7; (which
happens with probability p;). Thus, conditioned on this event, our expected reward is at
least (1 —0) 3,1,y i E[Xi | X; > 7], and combining the above we obtain the claim. [

It is worth noting that the above algorithm, as it was originally stated, maintains two
variables r;, ¢; during its execution, initialised at r; = 1 and ¢; = 1/2 and updated as
riv1 = 1i(1 — pig;) and g;11 = ﬁ Instead of outright rejecting each element with the
same probability, it instead rejects element X; with probability ¢;. It is easy to see, with
mostly the same analysis as before, that this gives us a %-competitive algorithm.

Thus, we have shown two different algorithms with the same asymptotic guarantees,
each of which requires different statistical information about the underlying distributions

DWW, .. D™, Importantly, their competitive ratios approach 1 as k — co. In [28], a lower
bound of 1 - O (ﬁ) was also shown for the Multiple-Choice Prophet problem. This lower

bound was subsequently achieved in [30], where a much more sophisticated (1 — @) -

competitive algorithm was presented. For £ = 1, this competitive ratio nicely matches the
simple % for the Single-Choice setting.

47

A natural question to ask is whether this optimal competitive ratio can be achieved
using only a limited number of samples from each distribution (i.e. without full knowledge
of each). This is indeed possible, and we will discuss it briefly in Section 3.3.

3.1.3 Matroid Setting

As in the Secretary setting, the natural extension of the Single-Choice and Multiple-Choice
Prophet Inequality problems is the case where each random variable X, is associated with
an element ¢ of a matroid M = (U, Z), and we are allowed to pick elements so long as they
do not form a dependent set of the matroid. This problem was initially studied in [32], where
a %—competitive algorithm was presented. The algorithm maintains an adaptive threshold
7; at each timestep i € [n], and picks element i iff picking it does not form a dependent
set with the previously selected elements and additionally X; > 7;. As the analysis of the
algorithm is rather involved, we will only present part of it.

First, we require some definitions. Consider a sequence of values w}, ..., w! drawn
from the distributions DM, ... D™ and let the maximum-weight basis of the matroid
for those realised values be B. For an independent set A of the matroid, we define the
remainder R(A) of A to be the maximum-weight subset of B such that AU R(A) € Z, and
we define the cost C(A) := B\ R(A) of A to be the remaining elements of B. We also
denote w'(R(A)) and w'(C(A)) the corresponding values of those sets.

By the exchange property of matroids, it is easy to see that A U R(A) is a basis of the
matroid, and indeed it is the maximum-weight basis that contains A. In fact, AU R(A) can
be constructed by greedily adding to A the maximum-weight element of B that does not
cause A to become dependent.

Definition 3.1.1. For a parameter o > 0, a threshold-based algorithm for the Matroid
Prophet Inequality problem has a-balanced thresholds if it has the following property. For
any input sequence, if A is the set of elements the algorithm outputs, B is a set disjoint
from A such that AU B € Z and 7y, .. ., 7, are the thresholds set by the algorithm at each
timestep i € [n], the following holds:

S > - El/(C(A)) (5.)
;€A
> < (1-5) Ewa) 62)

where the expectation is over w' ~ ;.. DO,

The algorithm relies crucially on the following theorem:
Theorem 3.1.5. If an algorithm has c-balanced thresholds, then it is c-competitive.
Proof. In what follows, we denote by w the actual realisation of weights seen by the al-
gorithm, w’ any realisation of weights drawn from [], cln] DU, and A the set of elements
chosen by the algorithm. We have that:

OrT = E[w'(C(A)) + w'(R(A))]

48

since, by definition, C'(A) U R(A) is a maximum-weight basis with respect to w’, and w’
has the same distribution as w. We will derive the following three inequalities:

E %T > éE[w’(C(A))] (33)
E|Y (w—m) | ZE| Y (w—7)" (3.4)
T €A i z,ER(A)
El Y (w—n)" zlE[w'(R(A))] (3.5)
x,€ER(A) | o

Summing (3.3), (3.4), (3.5) and using the fact that if z; was picked by the algorithm then
w; > 7, thus 7; + (w; — 1)t = w; for all z; € A, we obtain:

Elw(4)] > ~ Efw/(C(4))] + ~ Elu'(R(4))]

and the claim follows.

(3.3) follows directly from (3.1) in the definition of a-balanced thresholds. (3.4) is de-
rived as follows. First, since the algorithm selects every ¢ such that w; > 7;, we have
that 3, s (w; — 7)™ = > i y(wi — 7). Second, since the threshold 7; depends only
on (xy,wq),. .., (x;_1,w;_1), the random variables w;, w,, 7; are independent, and because
w;, w, are L.id. it follows that:

n

Z(wi — i)

=1

n

Z(Ué —7)"

i=1

E —E >E|) (wj-7)"

z;€R(A)

and (3.4) is established. Finally, by using (3.2) in the definition of a-balanced thresholds
and setting B = R(A), we obtain:

E Z wi| <E Z 7| +E Z (w) —7)"
z,€ER(A) 2, €ER(A) | z,€ER(A)
1
g(l——)E Z w;| +E Z (w; —7;)*
o _L;ER(A) z,€R(A)

where in the first inequality we used the fact that w; < 7; + (w] + 7;) . Rearranging, (3.5)
follows and the proof is complete. [

Having established that a-balanced thresholds are sufficient for é-competitiveness, it
suffices to devise an algorithm that achieves 2-balanced thresholds. The algorithm pre-
sented in [32] is Algorithm 3.4.

For Algorithm 2.5, Eq. (3.1) in the definition of a-balanced thresholds follows from a

49

Algorithm 3.4: Matroid Prophet, Balanced Thresholds

1 Initialise Ay == ()

2 fori € [n] do

3 Receive element z;

4 Set threshold 7; = 1 E[w/(C(A4;-1 U {;})) — w'(C(A;i-1))]
5 if A,y U{z;} €7 and w(x;) > 7, then
6

7

8

else
‘ A=A

telescoping sum.

> 5= 5 3 S EW (O U) — w(CA)

T, €A ;€A
— % %E[w’(C(Ai_l U{z;})) — w'(C(A;21))]
_ %E[w’(O(An)) — w/(C(Ay))] = = E[w/(C(A))]

The proof of Eq. (3.2) requires more work, and we will not present it here. The ultimate
result is the following:

Theorem 3.1.6. Algorithm 3.4 has 2-balanced thresholds and is therefore 5-competitive.

As we have established, we cannot hope to obtain a competitive ratio better that 5 even
for 1-uniform matroids, so the above result is in fact optimal for general matroids. Notice
that this is the first point in this thesis where known results in random-order and prophet

settings deviate significantly. Indeed, we have constant-competitive algorithms for both

Single-Secretary and Single-Choice Prophet, and we also have <1 -0 <\/LE>) -competitive

algorithms for both k-Secretary and k-Choice Prophet. However, while we have an optimal
constant-competitive algorithm for Matroid Prophet, the best known algorithm for Matroid
Secretary is w-competitive, where 7 is the rank of the matroid. This discrepancy is
indicative of the fact that, in general terms, the prophet version of a problem is “easier”

than the random-order one. We will examine this connection more in Section 3.3.

3.2 Matching Problems

As we did in our discussion of Random-Order models, we now turn our attention to match-
ing problems in graphs in the Prophet setting. In this setting, an adversary forms a graph
G = (V, E) and, for each edge e € E, chooses a distribution D.. Now, there are two differ-
ent versions of the problem we can consider, based on whether the elements of the graph
that arrive on each round are the graph’s vertices or its edges. In the first case, the adver-
sary chooses the order in which the vertices will arrive and, whenever a vertex arrives, all
of its incident edges are revealed and their weights are drawn from their corresponding
distributions. In the second case, the adversary chooses the order in which the edges will
arrive and, whenever an edge e arrives, its weight w, is drawn from D,. In both cases, we

50

can pick an edge only on the timestep it is revealed, the set of edges we pick must be a
matching in the graph, and our goal is to maximise the expected weight of our matching.

We will begin by examining the simplest problem in the above setting, in which the
underlying graph is bipartite and we have vertex arrivals. Thus, there is a graph G =
(L, R; E) where the vertices in L corresponds to agents and those in R correspond to items.
The agents in L arrive sequentially, revealing their incident edges as they do. We assume
that we are given full knowledge of the graph structure and of the distributions D,.. The
algorithm we will examine for this setting is due to [59]. In what follows, we denote by
w(v, u) the weight of edge (v, u) under the weight function w, and we denote by N (v) the
set of neighbours of v € L that are available when v arrives. Also, for any item v € R,
we denote by p (u) € L the agent to which u is matched in the optimal offline matching
under the weight function w.

Algorithm 3.5: Prophet Bipartite Matching, Vertex Arrival
1 Set thresholds 7, = 1 Efw(u},(u), u)] forallu € R

2 forv € L do
3 if 3u € N(v) such that w(v,u) — 7, > 0 then
4 ‘ Match v to arg max,, ¢y, {w(v, u) — 7}

Theorem 3.2.1. Algorithm 3.5 is %-competitive.

Proof. Fix an agent v € L. For any u € R, denote by A,, the event that u is available when
v arrives and by M,, the event that u = arg max, .y, {w(v, u) — 7.} when v arrives. Our
expected reward due to v is:

Z E [w(v,)14, Liwwu)y>r) 1{MW}]

uER
=D 7 PlA] - E[Lwewsng Lon.a] + D Bl(w(v,u) = 7)" - Ly - L)
u€ER u€ER

By the definition of M, and linearity of expectation, the only surviving term in the second
sum is the one corresponding to the u € N(v) that maximises w(v,u) — 7,. Therefore, if
we denote by 7, the event that v is matched to u in the optimal offline matching, we have
that:

Z]E[(w(v,u) — 7’u)Jr . 1{Aw} . I{MW}] > ZE[(UJ(U, u) — 7'u)+ . 1{,41)“} . 1{Tw}]

uER ueER

- ZP[AW] 'E[(w<va u) — TU)+) 1{Tw}}

Combining the above and summing over all v € L, we have that our total expected reward
is at least:

D o Y PlAW B[l upwsri Lona] + D PlAw] - E[(w(v,u) =)" - Ly,

ueER veL ueER veL

We will examine each of the two terms separately. For the first term, notice that the sum
> ver PlAvu] - E[1{w(w,u)>r.1 1{,.}] is precisely the probability that item u will be matched

51

during the execution of the algorithm. Denoting this probability by ¢,, we have that the
first term equals), . 7, - ¢,. For the second term, notice that if u is not matched at all
then A,, holds, thus P[A,,] > 1 — q,, and we can therefore lower bound the second term

by:

> (1 —a) Y Ef(ww,u) = 7)" L]

> (1=q)) E[w(,u) Lpy] = mu- (1-q.)
uER veL ueR

= (1 - qu) Elw(,(w),w)] = > 7 (1 - q4)

=S 0-q)2n - l-a) = n 1-q)

where in the last line we used the definition of 7,. Combining the above, we get that
our expected reward is at least) 7,, which by the definition of 7, is at least equal to

s E[Opr]. O

Thus, we have arrived at an optimal algorithm for the Prophet Bipartite Matching prob-
lem in the case of vertex arrivals. In the case where there is only one item, i.e. in the
Single-Choice Prophet setting, the algorithm nicely reduces to the median rule. What is
interesting in the prophet setting is that we have strong results not only for the bipartite
case, but for matchings in general graphs as well, both in the vertex arrival and in the edge
arrival setting. Indeed, we have the following theorem due to [33]

Theorem 3.2.2. For the Prophet Matching problem in general (non-bipartite) graphs, there
exista %—competitive algorithm for the vertex arrival setting and a 0.337-competitive algorithm
for the edge arrival setting.

The ideas behind those algorithms are rather complex (they rely on the concept of On-
line Contention Resolution Schemes), so we will not present them. However, for the sim-
ple special case where each edge e has weight w. = x. with probability p. and w, = 0
otherwise, in the edge arrival setting, the above algorithm takes on a rather simple form.
Consider the following linear programme

s.t. Zyegl YueV
0 <y <pe Vec I

We say that an edge e is available upon arrival if it can be added to our current matching,
i.e. if its endpoints are both unmatched. Then the algorithm for this special case can be
stated as follows.

For this special case and the above algorithm, it is easy to show a competitive ratio
slightly worse than the best known 0.337.

Theorem 3.2.3. Algorithm 3.6 is %-competitive

52

Algorithm 3.6: Prophet Matching, Edge Arrival, Special Case

1 Solve the above LP to obtain solution y

2 fore € E do

3 Set a. := PPle is available upon arrival]
4 if w. = z. and e is available then

5 ‘ Pick e with probability -

3aepe

Proof. First, note that if y is the optimal solution to the LP, then the offline optimal matching
M* has value OpT at most) __ y.x.. Indeed, setting y. equal to the probability that e belongs
to the M ™ is a feasible solution to the LP (since e can only belong to that matching if w, > 0,
which happens with probability p.), with objective value equal to OPT.
Now, the probability that e is picked upon arrival is:
Ye Ye Ye

Ple i ilabl ival| - Plw, = x| - = Qe Pe — 3
e is available upon arrival] - Plw. =] 30epe terh 3acpe 3

For the algorithm to be well defined, we need to show that 3(3:]36 < 1. Since y. < pe

by the LP constraints, it suffices to show o, > % Recalling the definition of ., by a union
bound we have that, if e = (u, v):

a > 1 — Plu is already matched] — P[v is already matched|

Note that:

P[u is already matched] = Z P[e is picked] = Z

e'<eu€e’ e'<ewu€e’

w|&

<

W

where we used the LP constraints. Thus we indeed have o, > %
Therefore, since each edge is picked with probability y./3, our expected reward is

Ye . 1
¢ % " Te 2 50PT. O]

3.3 Connections with Random-Order Models

We mentioned in passing previously that, in broad terms, the Random-Order version of a
problem is more “difficult” than its Prophet version. This intuition is expanded upon in
[31], where it is shown that, for a wide class of problems, if we are given an algorithm for a
Random-Order problem that satisfies a simple property, we can use the same algorithm to
solve the Prophet version of the problem by drawing only a single sample from the under-
lying distributions. Formally, we say that an algorithm .A for a Random-Order problem is
order-oblivious if, for any input sequence / = (21, ..., x,), it has the following two-phase
structure:

1. In the first phase, A sets a number k and is given a uniformly random subset J C [/
with |J| = k. The algorithm cannot pick any items during this phase (it can only use
this information in the second phase).

2. In the second phase, the remaining n — k items from I \ .J are presented to the A.
The algorithm must maintain its competitive ratio even if those items are presented
in an adversarial order.

53

Note that the first property pertains to the algorithm’s operation, while the second
one concerns its analysis. The following simple theorem shows how an order-oblivious
algorithm for a Secretary problem can be used to tackle the Prophet problem as well:

Theorem 3.3.1. If A is an a-competitive order-oblivious algorithm for the Matroid Secretary
problem, then there exists a single-sample a.-competitive algorithm P 4 for the Matroid Prophet
problem.

Proof. Algorithm P 4 draws a sample s ~ [| i) DU, shuffles it into a random permutation
(Sjys---,8j,), takes the first k elements of the permutation s;,, ..., s;, and passes them to
the order-oblivious algorithm A for its first phase. After that, as the actual input sequence
(x1,...,2,) is revealed, any z; with ¢ € {j1,...,ji} is discarded, while all other z; are
presented to A for its second phase (in an arbitrary order). Since A is order oblivious
and {ji, ..., jr} were chosen uniformly at random among the n indices, A outputs a set
of expected weight at least « - OpT(z), where OpT(x) is the optimal set under realised
values 1, . .., z,. Since this holds for any realisation of the input values =z, it also holds in
expectation over [[, D, thus the expected reward of P 4 is at least o - E[OpT]. O

Thus, the single-sample Matroid Prophet problem reduces to the order-oblivious Ma-
troid Secretary problem. As is explained in [31], this implies the existence of single-sample
constant-competitive algorithms for the Matroid Prophet problem for graphic, transversal

and laminar matroids, as well as for general matroids with i.i.d. weights. Additionally, in

the same paper, a (1 -0 (ﬁ))—competitive order-oblivious algorithm is presented for

the k-Secretary problem and a %—competitive order-oblivious algorithm is given for the

constant-degree Random-Order Bipartite Matching problem. Those algorithms imply the
existence of single-sample algorithms for those problems in the Prophet setting, with the
same competitive ratio guarantees.

In Section 4.4, we will see how essentially the same idea can be applied to use an al-
gorithm for the Random-Order version of an Online Augmentable Integer Programme in
order to be competitive in the Prophet version of that problem.

54

Chapter 4

Random Order and Prophet AIPs

At this point, we have surveyed a number of fundamental results and interesting ideas for
online problems in the Random-Order and Secretary models. We have mostly considered
maximisation problems, where we were presented a sequence of elements and wanted to
pick a maximum-value subset of them, while being in some way constrained in how many
elements we can pick. We will now examine some recent results in the Random-Order and
Secretary settings concerning a wide class of minimisation problems, namely, the class of
Augmentable Integer Programmes (AIPs) we described in Section 1.1.5. Specifically, we will
focus on the Set Cover, Facility Location and Steiner Tree problems, which fall under the
category of AIPs, and we will examine how lower bounds for the fully adversarial model
can be circumvented under the Random-Order and Prophet settings.

4.1 Random Order Set Cover

The Set Cover problem is one of the most prominent and widely studied combinatorial op-
timisation problems. In the classical offline version of the problem, we are given a universe
U of N items, a collection S of m subsets of ¢/ and a cost function ¢ : § — R>;. We
are also given a subset of n items U C U. We are tasked with finding a minimum-cost
collection of sets in S, such that the union of the chosen sets contains all elements in U.
It is well known that this problem is NP-hard, that a simple greedy algorithm achieves an
approximation ratio of O(logn), and that this is the best approximation possible unless P
= NP. A natural LP relaxation for this problem is the following:

Ses

s.t. ZJ:S >1 Veec U (LP-SC)
S>e
xg >0 VS eS

In the Online Set Cover problem, we are again given a set system (U, S), however the
(adversarially chosen) elements of U are revealed one-by-one in an online fashion. When-
ever an element e arrives, if we have not picked a set containing e in a previous round,
we must immediately pick such a set and incur its cost. In terms of the above LP, we can
analogously think that, whenever an element e arrives, its corresponding LP constraint
> g5 Ts = 1 becomes known to us, and we must satisfy it. We are not allowed to drop sets
we have previously picked (analogously, we can only increase the values of the LP vari-

55

ables zg), and our goal is again to incur as low a cost as possible. This problem was initially
studied in [2], where an O(log m log n)-competitive algorithm was given. This result was
later shown to be tight in [35]. The algorithm maintains a feasible fractional solution to
the LP at all timesteps, and uses randomised rounding in an online fashion to form integral
solutions. Essentially the same algorithm was examined in [3], this time from a primal-dual
perspective.

Recently, in [34], the problem was examined in the Random-Order setting, Here, after
the adversary chooses U, the elements of U are presented in a uniformly random order to
our algorithm. It turns out that this weakening of the adversary’s power is enough to allow
us to obtain a significantly improved competitive ratio of O(log mn). The main idea behind
the algorithm is that we can exploit the randomness in the arrival order in order to learn
about the underlying set system (recall how we also used the random arrival order in the
Secretary problems to “learn” good thresholds).

In all that follows, we will assume that we know a bound [to the cost of the optimal
solution, such that ¢(OpT) < 5 < 2 ¢(OpT). We can argue that we know such a bound by
using a “guess-and-double” procedure. Concretely, we can initially guess / = minges =g,
and then run our algorithm using this bound for the cost of the optimal solution. If our guess
is correct, the cost of our algorithm will always be O(log mn). Thus, if during the run of
our algorithm the total cost we have incurred exceeds O(log mn), we can “forget” about
all sets chosen so far, update the value of 5 by doubling it and continue on. By “forgetting”
we mean that we may “buy” again a set we have previously bought. Therefore, the last time
we double our bound and set it equal to 3, the total cost we will have paid up to that point
is (g + g +...+1) - O(logmn) = O(Blogmn), and our algorithm guarantees that we
will pay an additional O(flog mn) from that point on. Hence, we can use this approach
to obtain a 3 such that ¢(OpT) < 5 < 2 - ¢(OpPT), at the cost of an additional factor of 2,
which is hidden in the asymptotic notation.

4.1.1 Exponential-Time Algorithm

In order to build intuition, first an exponential-time algorithm is presented for the case
where all set costs are equal to one. In what follows, we assume that we know a number
k € [c(Opt), 2 - ¢(OPT)] by “guess-and-double”. We denote by (‘Z) ={TCS:|T| =k}
the collection of all k-tuples of sets in S.

Algorithm 4.1: LEARNORCOVERSIMPLE
1 Initialise T° < () and C° + (

2 fort € [n] do

3 v! < t'" element in random order
4 if v’ uncovered then
5

6

7

Choose 7" ~ T'~! uniformly at random

Choose T' ~ T uniformly at random

Add C! < C=1 U {S, T} for any set S containing v’
8 Update Tt < {T € T : vt € Uper T}

In essence, Algorithm 4.1 maintains a list T of candidate solutions of k sets (initially
containing all possible k-tuples). On each round, it randomly samples a set from those
candidates and afterwards eliminates all candidates that cannot be a solution to the problem
instance. As we will see in the proof, the reason this algorithm works is that, intuitively, on

56

each round it either makes progress learning (i.e. it eliminates many candidates) or covering
(i.e. it covers many unseen elements).

Theorem 4.1.1. For Random-Order Set Cover with unit set costs, Algorithm 4.1 is O(log mn)-
competitive.

Proof. Denote by U’ the set of elements that are uncovered at the end of timestep ¢t € [n].
Fix any timestep ¢ where the element v' is uncovered on arrival. Before the algorithm takes
action, there are two cases:

Case 1 (Cover Step): At least half the tuples in T cover at least half of the as-of-yet-
uncovered elements U'~!. In this case, we pick one of those tuples with probability at least

5, s0if T is the picked tuple we have E[|(Upe7T) N U] > @, and because we pick a

set T € T uniformly at random we have E[|T N U] > %;1'. That is, we cover at least
ﬁ of the uncovered elements on expectation.

Case 2 (Learn Step): At least half of the tuples in ¥ cover less than half of the uncovered
elements U*"!. Due to the random order of arrivals, for each of those tuples, the probability
that an element not covered by the tuple arrives on round ¢ (thus the tuple is removed from
%) is at least % Thus we eliminate at least ; of the remaining candidates on expectation.

Since the total number of elements is n, and we cover at least ﬁ of uncovered elements
on expectation on each Cover Step, it follows that after 10k log n Cover Steps there will be
at most n (1 — ﬁ 1018 1 uncovered elements left on expectation, so we will not buy
another set. Also, since initially |’ZO| = (T]Z) < mP* and we eliminate at least i of candidates
on expectation on each Learn Step, it follows that after 10k log m Learn Steps there will be

at most m* (2) 10k logm

1 < 1 candidates left. That is, we will have only the optimal solution
remaining and we will buy at most k£ more sets. Overall, after 10k log m + 10k log n rounds
where uncovered elements arrived, we will have bought at most 20k log mn sets and we
will have performed either 10k log m Cover Steps or 10k log n Learn Steps, so we will need
to buy at most £ additional sets on expectation. Thus, our total expected cost is O(k log mn)

and the claim follows by the definition of k. O

Of course, we still need to present an algorithm that runs in polynomial time and that
works for general set costs. However, the intuition behind Algorithm 4.1 will be very useful
in understanding the analysis of the next algorithm.

4.1.2 Polynomial-Time Algorithm

In order to obtain an efficient algorithm for our problem, we will no longer maintain a set of
all possible candidate solutions. Instead, we will maintain a form of probability distribution
x over the m sets, from which we will sample at each round. This can be viewed as a form
of dimensionality reduction when compared to Algorithm 4.1. The “learning” part of our
algorithm will thus not be performed by eliminating candidate solutions, but instead by
updating x on each round based on the arrived element. These updates will be implemented
using a multiplicative weights scheme.

In what follows, we assume that, by “guess-and-double”, we know a bound [such that
LPopr < 8 < 2-LPopr, where LPopr denotes the cost of the optimal LP solution to the final
unknown instance. We also define £, := min{cs : S © v} to be the cost of the cheapest set
covering element v.

The above algorithm maintains a fractional vector which is a guess for the LP solution
of cost (3 to the set cover instance. Two crucial differences from the algorithm of [2] for

57

Algorithm 4.2: LEARNORCOVER

1 Let m/ < [{S : cg < B}

2 Initialise 2% « % for all sets S
3 fort € [n] do

4 | o'« t'" element in random order

5 if v' uncovered then

6 For each set S, pick S with probability min(r,: - 5 /3,1)

7 if > ¢ 75 " < 1then

8 For every set S, update 2% + 2% " - exp{1{s5ut} - Kot /Cs}
9 Let Z' = (c,2") /3 and normalise z* < x'/Z"

10 else

11 ‘ R
12 Pick the cheapest set containing v*

non-random-order Online Set Cover is that, here, the fractional vector maintained always
has the same cost 3, and additionally it is not required that this fractional vector be a feasible
solution to the LP. This vector x is used to sample sets on each round, and whenever an
uncovered element v arrives we increase the value xg of all S 3 v! and renormalise, so
that (¢, x) = (5. That is, the algorithm maintains the following invariant:

Invariant 1. For all rounds ¢, it holds that (¢, z*) = §.

The last line of the algorithm greedily buys a backup set to ensure that the revealed
element is covered. Note that Algorithm 4.2 scales its sampling and learning rates with &,
each round. This is done to ensure that the expected cost of the sets bought by sampling
is the same as the cost of the backup set, and that those costs are offset by the change in a
potential function which we will shortly define and which will be crucial for the analysis.

We will start defining some notation. We will need the following weighted generalisa-
tion of the KL divergence.

n

T
KL.(x || y) = Zci {xz log o T + Y
i=1 '

For any x,y we have that KL.(x || y) > 0. This follows directly from the above definition
by using the inequality logx > 1 — %

We denote by z* the optimal LP solution to the final, unknown set cover instance. We
also denote by X! = ", % the “fractional coverage” provided to element v by our
current solution 2!, and by U the set of elements remaining uncovered at the end of round
t (so UY is the set of all elements). Lastly, we denote by p' := > _ . K, the sum of the
minimum coverage costs for all uncovered elements at round ¢.

We are now ready to define potential function which will measure the progress we make
either learning or covering at each round, and which will be the main tool for our analysis.
First, we define the learning and covering potential functions as follows:

Oy (t) = KLc(2* || 2)

Oo(t) =06- log%

58

Then our overall potential function is defined as:
(I)(Zf) = Cl : (I)L(t) + CQ : q)c(t)

where (1, (5 are constants to be defined later. Intuitively, we can think that the learning
potential measures the distance of our current solution z' from the optimal solution z*,
while the covering potential measures (the logarithm of) how many uncovered elements
are remaining. Thus, we can think of the first term decreasing as the algorithm making
progress in learning and of the second term decreasing as the algorithm making progress
in covering. What we will show is that, on each round when an uncovered element arrives,
either the first or the second part of the potential decreases noticeably; that is, the algorithm
makes progress either learning or covering. This is precisely the intuition we have obtained
from the exponential-time Algorithm 4.1.

More formally, define the event Y := {v' € U'"'} that the element v’ is uncovered on
arrival. Note that when Y* does not hold the algorithm does not take any action and the
potential does not change. For rounds when T* holds, denote by R’ the sets sampled by
the algorithm (in line 6). We will show the following two lemmas.

Lemma 4.1.2 (Learning Potential). For rounds t when Y holds, the expected change in the
learning potential is bounded by:

H%z [®p(t) —Pr(t—1) |21, UL Y] < E [(e— 1)k, min(X " 1) — £y
vt /R o Ut—1
Lemma 4.1.3 (Covering Potential). For rounds t when T* holds, the expected change in the
covering potential is bounded by:

E [®c(t) — Pt —1) |27 U Y] < -1 —e)- E [k, -min(X: 1 1)]

vt R u~Ut—1

By v ~ U'"! we mean that v is drawn uniformly at random among the uncovered
elements U'~!. On a high level, the above lemmas tell us that if B, ¢-1 [, - min(X ™! 1)]
is “large” (intuitively, if most uncovered elements have high fractional coverage from z*)
then the covering potential will decrease “noticably”, otherwise the learning potential will
do so. Again we see the usefulness of the intuition from Algorithm 4.1; in that algorithm, the
case of the “Learn Step” (where most candidate solutions cover most uncovered elements)
can be thought of as corresponding to the case where the learning potential decreases in
our algorithm (where our current solution gives high fractional coverage to most uncovered
elements). Similarly the “Cover Step” can be thought of as corresponding to the case where
the covering potential decreases.

We will defer the proof of the above lemmas for a bit later. We will first show how those
lemmas can be combined to show the competitiveness of Algorithm 4.2. To do so, we will
need an additional lemma showing the value of the initial potential:

Lemma 4.1.4 (Initial Potential). The initial potential is bounded as ®(0) = O(5log mn).
Using the above three lemmas, we can prove the following main theorem:
Theorem 4.1.5. Algorithm 4.2 is O(log mn)-competitive for Random-Order Set Cover.

Proof. In every round ¢ in which T* holds, the expected cost of the sampled sets R' is
Kyt - {c, 2871 /B = Ky by Invariant 1. The algorithm pays an additional x,: to greedily
cover the v' at the last step of round ¢, so its total expected cost per round is 2 - K.

59

Combining Lemmas 4.1.2 and 4.1.3 and setting the constants C'} = 2 and (5 = 2e in ,
we have that the expected decrease in potential each round is at least:

t]]%[q)(t) —dt—1) |0 .. LR R Y

<— E [2-kp|v . 0 LR R Y
vt RY
which offsets the expected change in the algorithm’s cost. Since neither the potential ¢ nor
the total cost of the algorithm change during rounds in which T* does not hold, we have
the inequality:
tI[ﬂ;;zt[q)(t) — ®(t — 1)+ c(Arc(t)) — c(ALc(t — 1)) [o', ..., oL R . R <0
Let t* be the last round in which ®(¢*) > 0. By repeatedly applying the above inequality
for all t € [1,t*] we obtain:
E [®(t") — ®(0) + ¢(ALc(t")) — ¢(ArLc(0))] <0

vt Rt
Since ¢(ALG(0)) = 0 and ®(t*) > 0, this gives us:

vtl[%t [c(ALg(t"))] < ®(0) < O(Blogmn)
where we used Lemma 4.1.4.

It remains to bound the expected cost paid by the algorithm after round ¢*. Since the KL
divergence is nonnegative, ® is negative only if p* < 3. Since the algorithm pays O (k) in
expectation only during rounds ¢ where v € U'"! and pays 0 otherwise, its expected cost
after t* is at most) ;i ky = p = O(B). O

We will now prove the three lemmas that lead to the above theorem. We start by show-
ing the bound on the initial potential.

Proof of Lemma 4.1.4. First, we will show that there exists an optimal fractional solution to
the LP corresponding to the final Set Cover instance which is supported only on sets with
cost at most 3. Suppose otherwise and let * be an optimal LP solution. Let 7" be a set with
cost ¢y > [and z7, > 0. Clearly % < 1, otherwise the cost of * would exceed /3, which
contradicts the definition of 3. Define a new vector x by:

0 itS="T

*

Trs = xs

" otherwise

For any element e:

1 1
ZISZ 1— a* (sz_ﬁT‘l{TaeJ - q(l_ﬁ"l{ﬁe}) =1

xXr
S3e T S3e

where the first inequality uses the feasibility of 2* and the second uses 7. < 1. Thus z is
a feasible solution to the LP. The cost of z is:

(¢, x*) — cpah _ (c,x*) —crc, ™)

e x) = 1—x% 1— %

60

where we used ¢y > [> (c,2*). Thus z is a feasible solution with cost lower than z*,
which contradicts the optimality of x*.

Having shown the above, we may assume w.l.o.g. that the optimal solution z* in the
potential is only supported on sets with cost at most 3, thus support(z*) C support(z?).
Recalling the initialisation of 2, we can bound the initial learning potential by:

®.(0) = KL.(z* || 2°) Z csxslog< % Sﬁm)—l—%—x’ggﬁ(logm—i—l)
S:cs<pB
where we used (¢, z*) < [and that m’ < m is the number of sets with cost at most .
As for the initial covering potential, we have that 5log(p°/8) = Blog(>_,cro ko/B) <
Blog |U°| = Blogn, since the cheapest cost to cover each element e is at most 3. Since C
and C are constants, the claim follows. O]

We continue by proving the bound on the change of the learning potential.

Proof of Lemma 4.1.2. If X!™! > 1, Algorithm 4.2 sets ' = x'"!, so the change in the
learning potential is 0, thus:

tﬂ%t[q)[/@) — (I)L<t — 1) | .T}til, Util, Tt,X,Z,Tl < 1]

< E [(e—1) k, -min(X" 1) =k, | X7 > 1] (4.1)

UNUt—l

We therefore focus on the case X!™! < 1.

Notice that the expected change in the learning potential depends only on the arriving
uncovered element v!. Also note that, due to the random arrival order, that element is
chosen uniformly at random from U". Thus, expanding definitions we have that

E [©p(t) — @r(t—1) |« U T X0 < 1]

vt Rt
I —

:vNIUEtA ch.xs.logg X, <1

L S
= UNIUEtA (c,x*) -log Z" — Z cs - % - loge™/es | X7t < 1]

L S>v
< EH g - log(Z . ”“/Cs—f-z >—/{v-fo§ Xf)t_l<1]

oy S50 s P 530

where in the last step we expanded the definition of Z' and used (¢, z*) < (. Since z*
is a feasible solution to the LP, we have that) . x5 > 1. By using this, along with the
inequality e < 1+ (e — 1) -y forall y € [0, 1], we can bound the above by:

5log<2g g 6—12 :)—mu

S3v

<

’UNUt 1

Xt < 1]

Finally, using Invariant 1 along with the inequality log(1+y) < y, we can bound the above

by:
< E [(e—=1) k- X =k | X5 < 1]
o~Ut—1
oyl t—1
< UNIUE;H[(G — 1)Ky -min(X; 1) — Ky | X7 < 1] (4.2)
Combining (4.1), (4.2) and using the law of total expectation, we obtain the claim.]

61

Lastly, we will show the bound on the change of the covering potential.

Proof of Lemma 4.1.3. Conditioned on v = v for any fixed element v, the expected change
in the covering potential depends only on the set R of sampled elements at round ¢. Hence

tﬂ%t[q)c(t) - (I)C(t - 1) | xt_1> Ut_la Tt]
= E[B(logp —logp™") | &1, U1 0", v = o]

g1 pt -
:715|:610g (1—7) 'Ut 1,Ut:’l):|

/6 t—1 4 t—1 .t
<o Bl - U =
where in the last line we used the inequality log(1 — y) < —y. Expanding the definition of
p' we can bound the above by:

p
< _FRt Z '%ul{ueUi Ut}

ueUt—1

Ut 1,vt :v]

= ZKL“ €Ut’u€Ut1 t:v}

uGUt !
1
<—(1—-et) =k methl
P ueUt—1
t—1
(=) |pt_1 |, CE, mmin(X; 1) 43)

The last inequality holds due to the way that R is formed. That is, each set is sampled
independently with probability min(x,2% ' /3, 1), so the probability that any given element
u € U™ is covered is:

1—H<1—min(/€v gl 1)) >1—ex {—min(@Xt_1 1>}
Sou 5 ’ a P B t

> (1—e ') - min (%Xﬁl, 1)
>(1—el)- %min (X411)

where we used the inequalities 1 —¢™¥ > (1—e~!)y and min(ab, 1) > a-min(b, 1) fora < 1
(recall that ,, /3 < 1 by the definitions of , and (). Therefore, by taking the expectation
of (4.3) over v' ~ U'"! and using the fact that E, ;-1 [k,] = p'~1/|U"!|, we obtain that
the expected change in the covering potential is bounded by

tIE;?,t[(I)C(t) — Pt —1) |27 U< (1 —e) - E[u ~ Uk, min(X1 1)

as desired. n

Thus, we have completed the proof of the competitive ratio of Algorithm 4.2. It is worth
mentioning that this O(log mn) competitive ratio is nearly tight; indeed, in the same paper

([34]) two lower bounds of Q(logn) and < logmm> are shown for the Random-Order

loglog
Online Set Cover problem. That is, if m = poly(n) then indeed the algorithm’s competitive
ratio is optimal, while if m is exponential in n then there is a gap of # between the
glogm
algorithm’s competitive ratio and the above lower bound.

62

4.2 Random Order Facility Location

Another classical combinatorial optimisation problem is the Facility Location problem. In
the offline version of the problem, we are given a set of n clients and m facilities. Each
facility f has an opening cost ¢, while each facility-client pair (f, v) has a connection cost
cfv. We can choose to open any number of facilities (paying the opening cost for each),
and we must connect each client to exactly one open facility (paying the corresponding
connection cost). We wish to minimise our total cost. A natural LP relaxation for this
problem is the following

min ZCfZIZ’f + Zcfvyfv
f Jv

s.t. Zyﬁ, >1 Yo (LP-FL)
f
Yo S Xy Vf,v
Tr,Yfo Z 0 Vf,U

This problem has received significant attention in the important special case of Metric
Facility Location. In this setting, we are given a metric space (M, d) where M is a set of
points and d : M x M — R is a distance function that satisfies the triangle inequality.
Each of the clients is a point in M, and we can open a facility at any point in M. The
connection cost for a facility-client (f, v) pair is ¢, = d(f,v). For the offline version of
the problem, various constant-competitive algorithms are known, see for example [60], and
there exists a small gap between the optimal known algorithm and the best known lower
bound.

In the online version of Metric Facility Location, the clients arrive in sequence and must
be immediately and irrevocably assigned to a facility upon arrival. A client can only be

assigned to an open facility, and a facility cannot be closed once it has been opened. For
logn
loglogn

the adversarial version of this problem, an O (>-competitive algorithm was given

in [6], and it was shown that this competitive ratio is tight. The situation is dramatically
different in the random-order setting, as we will now examine.

4.2.1 Metric Facility Location

The Random-Order Metric Facility Location problem was first examined in [5]. There,

a simple algorithm was given that is constant-competitive in the random order. This is
logn
loglogn

a drastic improvement over the © () competitive ratio for the adversarial case, and

once again demonstrates how imposing random-order can significantly reduce the difficulty
of a problem. For simplicity, we will only examine the algorithm given in that paper for the
case where the opening cost for each facility is the same, equal to f.

Theorem 4.2.1. Algorithm 4.3 is 8-competitive.

Proof. Suppose the optimal solution opens k facilities cj, . . ., ¢j. Let d; := min;cp) d(v, ¢})
for each client v. Define by C;} the set of clients connected to facility ¢; in the optimum.
Also define A} := 3" . d; and af = A} /|CY|.

Let y, be the cost incurred by our algorithm when client v arrives, and denote by 9,
the distance from v to the closest facility we have opened when v arrives. It follows that

63

Algorithm 4.3: Random-Order Metric Facility Location
1 fort € [n] do

2 | o' < t'" client in the random order

3 d < distance from v" to the closest open facility
4 With probability min(%, 1) open a facility at v*

5 Connect v* to the closest open facility

Ely, | 6] = %” - f+ <1 — 57“) 0, < 20, thus:

E[v,] < 2E[d,] (4.4)

Thus we only need to bound J,, for each client. Fix a cluster C;*. We will call a client in C}
“good” if it is among the |C}|/2 closest ones to ¢} in C}, and we will call it “bad” otherwise.
We will analyse the cost for good and bad clients separately.

Lemma 4.2.2. The total expected cost of good clients g € C is bounded by E[Zg Vg) <
2f +2A; + 2% d7, regardless of the order in which the clients arrive.

Proof. We discern two cases. First, suppose there exists an open facility within distance
2a; from c}. Then, by the triangle inequality, for any good client g we have ¢, < 2a; + d;,
thus E[y,] < 2(2a; + dj) by (4.4). Summing over the good clients, we have E[} v,] <
247 + 23 dy, since there are [C}[/2 good clients.

Now, suppose that such a facility does not exist. Whenever a good client g arrives, it
opens a facility with probability d,/f, and the connection cost paid if it does not open a
facility is d,. This implies that the expected cost before opening a facility is f. By Markov’s
inequality, all good clients are within distance 2a; of ¢;. Hence, we will pay expected cost f
before opening a facility, then we will pay an additional f to open a facility within distance
2af of ¢}, and then we will pay an expected 2A7 + 2> , @y by the analysis of the ﬁrsDt
case.

We now turn our attention to the “bad” clients. Since the above lemma holds regardless
of the order of arrival of clients, we can consider that we first create an arbitrary ordering
of the good clients and then randomly inject bad clients in that ordering. We will use this
viewpoint to bound the cost for the bad clients.

Lemma 4.2.3. The expected cost of any bad client b € C is bounded by E[y] < 2d; +
27+ 5, (Bl +202)].

2
i
all good clients, in which case we pay a cost of at most f for this client. Otherwise, condition
on the event that when a bad client b arrives, the most recent good client was g. By the

above viewpoint, each good client has equal probability % to be this client g. Suppose

Proof. By the above viewpoint, with probability at most the bad client b arrives before

that when b arrives, the nearest facility to ¢ that we have opened is at distance x from c].
By the triangle inequality we have &, < = + dj, thus by (4.4) we have E[y] < 2(z + d}).
Furthermore, when ¢ arrived, the nearest facility to ¢; was at distance at least x from ¢,
thus E[y,] > 2(z — dj). Hence, E[y,] < E[y,] + 2d;; + 2d;. The lemma follows by simple
calculations.]

64

Now we can use the above two lemmas and simply sum over the expected costs of all
good and bad clients in each cluster. This gives us the following bound

Bf+AAT +4) di+2) dy =5f+6A7+2) dy
g b g

where we used the definition of A7 = 3 gy + >, d;. Since the good clients are exactly
the |C7[/2 closest ones to ¢}, we have that 3 d; < LAz, thus our expected cost for cluster
C} is amost 5f 4+ 8A?. The offline optimal pays f + A; for each cluster, thus we indeed
obtain a competitive ratio of 8. [

While Algorithm 4.3 only works for uniform opening costs, it was shown in the same
paper ([5]) that the ideas from this algorithm and its analysis can be used to design a simi-
lar, simple algorithm that is 33-competitive in the random-order case for arbitrary opening
costs. A remarkable fact about Algorithm 4.3 is that it also attains the optimal competitive

ratio of O (lolgolgo Zn> for the fully adversarial setting. Lastly, it should be pointed out that,
while Algorithm 4.3 was the first one to tackle the uniform-cost random-order online Facil-
ity Location problem, it has since been improved upon, with the algorithm of [36] achieving
3-competitiveness. In this last paper, it is also shown that no algorithm can achieve a com-

petitive ratio better than 2 for this problem.

4.2.2 Non-Metric Facility Location

In the non-metric version of Facility Location, the facilities and clients are no longer points
in a metric space, and the costs ¢y, to connect a client v to a facility f can be arbitrary. This
problem is significantly harder than the metric case. To begin with, in the offline setting,
non-metric Facility Location is equivalent to Set Cover with respect to approximation, in
the following sense. An instance of Facility Location can be formulated as an instance of
Set Cover and the standard greedy algorithm for Set Cover can be used to obtain a O(logn)
approximation. Also, Set Cover is a special case of Facility Location (when ¢, € {0, 00}),
thus the lower bound of Q2(log n) for Set Cover also holds for Facility Location. Thus, offline
non-metric Facility Location is ©(log n)-approximable, while the metric case is constant-
approximable.

Moving to the online setting, the fully-adversarial case was analysed in [37], where an
O(log m log n)-competitive algorithm was given (m is the number of potential facilities we
can open and n is the number of clients). Since Online Set Cover is a special case of Online
Facility Location, and because of the Q2(log m logn) lower bound on the competitive ratio
of the former, it follows that the above result is tight. Similarly to the Online Set Cover
algorithm of [2], the algorithm of [37] maintains a feasible fractional solution to (LP-FL) at
each timestep and performs randomised rounding online.

The random-order setting for the Online Non-Metric Facility Location problem was
only recently examined in [1]. This paper builds upon Algorithm 4.2 of [34] to present
an O(log mn)-competitive algorithm for this problem, again improving significantly over
the adversarial case.

Before presenting the algorithm, we will need some definitions. Denote by C* the facili-
ties we have opened by the end of round ¢. Similarly to how we did in Section 4.1.2, for any
client v we denote by ! the cheapest cost of connecting that client to a facility at round
t, which may include opening a facility. We also define f*(v) to be exactly this facility to
which we can connect client v in the cheapest way possible at round ¢. Formally:

65

Kkl = mfin(l{fgct} “cf + Cpy)

fiv) = arg;nin(l{fgct} cCf+Cpy)

We now need a notion of coverage, that is, we need to view facilities as corresponding
to sets in an instance of Set Cover, and we need to decide which clients each facility covers.
To do so, we first define the following for each client v:

T'(v) = {f 1 cpo < 1,/2}

In words, I'*(v) is the set of facilities that, if opened, would reduce the marginal cost of
connecting v by a factor of at least 2. We will now say that a facility f covers a client v
at time ¢ if f € T''(v). Intuitively, an unopened facility f covers a client v if f is within
“distance” at most ! /2 of v. Thus, we can view our approach as modifying Algorithm 4.2
for a dynamically changing set system, where on each timestep the facilities are the sets,
the clients are the elements and coverage is determined as we just described.

As we did before, by “guess-and-double” we assume that we know a bound J such that
LPopr < B < 2-LPopr, where LPopr denotes the cost of the optimal LP solution to the final
unknown instance (LP-FL). We are now ready to present Algorithm 4.4.

Algorithm 4.4: LEARNORCOVERNMFL

1 Let F/' « {f : B/m < ¢; < B} and m’ « | F|
ORT 0 B ,

2 Initialise 27 < =51 sy

3 fort € [n] do

4 v* + t-th element in random order

5 if /ff;l > [/t then

6 For each facility f, open f with probability min(x, ' - :c'}’l /5,1)
7 if 3 cpii(n @y - < 1then

8 For every facility f, update ' x}_l cexp{1{eri-1(py - K fer}
9 Let Z' = (¢, z") /8 and normalise z* < x'/Z"

10 else

11 ‘ xt ot
12 else

13 | ot a2t
14 | Open fi"!(v') and connect v* to f'~1(v?)

Notice how, if we adopt the dynamically-changing set system viewpoint described
above, Algorithm 4.4 is very similar to Algorithm 4.2. Indeed, all the intuition behind Al-
gorithm 4.2 also holds for Algorithm 4.4, while also the analysis for the latter is similar to
that of the former. For this reason, we will not again go into as much detail in the proofs,
and we will only sketch the main points.

First, we need some more notation, similar to Section 4.1.2. We denote by (z*, y*) the
optimal fractional solution to (LP-FL). Let U' = {v'™! ... v"} be the clients that have
not yet been connected at the end of round ¢. Define X*(v) = D fert-1(v) x'}_l to be the
“fractional coverage” offered by x to client v at round ¢ — 1 (recall that a facility f “covers”
aclient v if f € I'""!(v)). Lastly, define p' := " &l.

66

As in Section 4.1.2, the central componenent of our analysis will be a potential function
O(t) = C1-Pr(t)+Cy- P (t), consisting of the following learning and covering components

Op(t) = KLo(a" | a) +2- 33 er -y,
veUt f
t

De(t) =3 - log (% + %)

The only major difference from the potential function used in the analysis of Algo-
rithm 4.2 is the inclusion of an additional term in the learning component. This term is
necessary in the analysis precisely because our set system is no longer static, but changes
each round. We will examine this a bit more carefully later. For now, we will present the
three lemmas that, as in the case of Algorithm 4.2, bound the initial potential and the change
in each component of the potential, guaranteeing that either the learning or the covering
component will decrease noticeably. Denote by =! the event that lif;l > (/t, thus the bulk
of Algorithm 4.4 is executed.

Lemma 4.2.4 (Bounds on ®). The initial potential is bounded as ®(0) = O(Blogmn), and
®(t) > —Plogn forallt.

Lemma 4.2.5 (Learning Potential). For rounds t when =" holds, the expected change in the
learning potential is bounded by
t—1 prt—1 =t et =1, . t -1
t]%t[CDL(t) —Q(t—-1) |2 U E < I[[%i1 5 f min(X*(v),1) — &,
When =" does not hold:
Op(t)—Pr(t—1)<0

Lemma 4.2.6 (Covering Potential). For rounds t when Z' holds, the expected change in the
covering potential is bounded by

1—et

E [@c(t) — Belt—1) [+, 02 < <22 B min(X(w), 1)
When =t does not hold:
Bo(t) — Bo(t —1) <0

The proofs of all three lemmas are rather similar to those of the corresponding lemmas
for Algorithm 4.2, so we will omit them. We will only examine the impact of the new term
in the learning potential. Using analogous techniques as in Algorithm 4.2, we can show
that the expected change in the KL divergence part of the learning potential when =" holds
and A" = {X*(v") < 1} holds is bounded by:

62

—1
E | ——&" min(X"(v),1) — s Z oy | 2 A

v~ Ut—1 2 v
feriy)

In the proof of Algorithm 4.2 when our set system was static, we used the fact that) . x5 >
1 due to the constraints of (LP-SC), however no such claim can be made here for) fert-1() Tf-
This is where the change of the second term of the learning potential comes into play. On

67

round ¢, this change is equal to —2 - 3" ¢y - Y},0> thus the change in the total learning
potential is bounded by

e —1

v~ U1 2

st min(X @), 1) = (W7 D 420D e | |EA
fert=i(v) f

Here is where the definition of I'" is useful. We have that2-3 - cry -y, > 23 papi-1(y) Cro

Yo = 22 pare-1y) %71 *Y},- Hence, we can finally bound the change in learning potential
by

e2—1

R RN (PR oA IEX
fert—1(v) fert—1(
e?—1 .,
< E |——xTmin(X*(v),1) — &1 2L A
v~Ut—1 2

where the last line follows from the constraints of (LP-FL), specifically from 1 <) FYf =
2 pert-1w) Yo F 2o pari-i() Yo < Doper-1() TF T 20 pgre-1w) Yo

Equipped with the above lemmas, we may now show the competitiveness of our algo-
rithm, similarly to how we did for Algorithm 4.2.

Theorem 4.2.7. Algorithm 4.4 is O(log mn)-competitive.

Proof. Let ¢(ALG(t)) be the cost paid by our algorithm up to and including round ¢. We
break this in two components, letting ¢/(ALG(t)) be the cost for rounds when =* holds and

¢”"(ALG(t)) the cost for the other rounds. When =" does not hold, we simply connect the
client in the cheapest way possible and incur cost &', ! < B/t, so we have the following
simple bound:

"(ALG(n Zc” (Ag(t)) — "(Ag(t — 1)) < Z b _ O(5 -logn)

We now consider ¢/ (ALg(n)). When = holds, the expected cost of the randomly opened
facilities is /-ff;l e, 2B =k ! and we pay an additional ", ot ! to greedily connect the
client in the last line of the algorlthm thus our expected total cost is at most 2 - x'; .

By combining lemmas Lemmas 4.2.5 and 4.2.6 and setting the constants €} = 2 and
Cy = 4e(e + 1) we have that the expected change in potential is:

t]%[@(t) — Pt —1) 0. . LR RS EY

1 t—1 1 t—1 =t
<— E [2:-Kp|v,. ;07 Ry, ,RTE
ot R

which cancels the expected change in ¢’ each round. Thus, using the fact that both ¢, and
®+ do not increase when =! does not hold, we have that:

E [(t) = D(t — 1)+ ¢(Ara(t)) — (Ats(t — 1) [v',. .. 0" LR LR <0

By repeatedly applying this inequality forall ¢ = 1, ..., n we obtain:

Utlglzt[tb(n) — ®(0) + ¢ (Arg(n)) — (ALc(0))] <0

68

Since ¢/(ALG(0)) = 0 and, by Lemma 4.2.4, ®(0) = O(f - logmn) and ®(n) > —f - logn,
this gives us:
E [(ALc(n))] < O(B - logmn)

vt Rt

Thus, combining the above we have:

vt@zt [c(ALG(n))] = Utl}%t[cl(ALG(n))] + Utl%‘,zt [(Arc(n))] < O(8 - log mn)

4.3 Random Order Covering IPs

In the last section, we saw how Algorithm 4.2 for Random-Order Set cover can be extended
into Algorithm 4.2 for Random-Order Non-Metric Facility Location. It turns out that this
approach can also be used to tackle two different types of Random-Order Online Integer
Programmes, which significantly generalise Set Cover.

4.3.1 Covering Integer Programmes

As we mentioned in Chapter 1, a Covering Integer Programme (CIP) is defined as follows

min (¢, z)
st. Az>1 (CIP)
z € 1%,

where A € RT;" is a matrix and 1 is a vector of n ones. If the constraints are given in the
form Az > b for some b € RZ,, w.l.o.g. we divide the i-th row of A by b; and consider that
b = 1. Also, since z € Z,, we may assume w.l.o.g. that a;; € [0, 1] forany i € [n],j € [m)].

In the random-order version of this problem, the n constraints of (CIP) are revealed
sequentially, in a random order. Whenever a constraint is revealed, if it is not satisfied, we
must increase some variables of z in order to satisfy it, and we are not allowed to decrease
variables. It is easy to see how, in the special case where a;; € {0, 1}, we recover the Set
Cover problem.

This problem was examined in [34] along with Random-Order Set Cover. The algorithm
presented is again very similar to Algorithm 4.2. We again assume we know, by “guess-and-
double”, a bound 3 such that LPopr < 8 < 2-LPopr. If 2! is the integer solution held by our
algorithm at the end of round ¢, we define d} := max(0, 1 — (a;, 2*)) to be the undercoverage
of constraint i at the end of round ¢. We also define ! = d/™" - mingepy <= to be the
minimum fractional cost of covering the current undercoverage of constraint i. Finally, for
a vector y, denote the fractional remainder by § .=y — |y|.

Algorithm 4.5 outputs a solution such that Az > 1 — ~ for a constant v = ﬁ This
is done for technical reasons, and we can easily just buy [(1 — v)~!] = 3 copies of each
column the algorithm buys to truly satisfy the constraints, incurring an additional factor of
3 in the cost.

Notice how, barring a couple of technical differences in lines 5 and 6, Algorithm 4.5 is
the same as Algorithm 4.2 in the case where a;; € {0,1} and z € {0,1}"™. The analysis
of this algorithm is also very similar. We denote by U* := {i : d! > ~} the elements not
covered to extent at least 1 —~ by the end of round ¢, and we let X! = (a;, 2'). We define the

69

Algorithm 4.5: LEARNORCOVERCIP

1 Letm/ « [{j : ¢; < B}

2 Initialise 9 < % 1ge,<py and 20 < 0
3 fort € [n] do

4 i <— t-th constraint in random order

5 if d'' > ~ then

6 Let y = } - 2'~"/f5. For each column j, update 2 z;_l + |y;] + Ber(y;)
7 if (a;,77!) < d'"! then

8 For every j, update 2 < 27" - exp{x! - a;;/c;}

9 Let Z' = (¢, 2") /3 and normalise z* < 2!/ Z"

10 else

11 ‘ R

12 Let £* = argmin, ;* and update 2 — 2h + HZ:-‘

potential () = Cy - 1 (t) + Cy - P (t) exactly as we did in the analysis of Algorithm 4.2,
and we similarly define the event YT that for the constraint ' arriving in round ¢ we have
d:~' > 7. Then we can similarly prove the following lemmas for the initial potential and
the change in the learning and covering components.

Lemma 4.3.1. The initial potential is bounded as ®(0) = O(S - logmn).

Lemma 4.3.2. For rounds t when Y holds, the expected change in the learning potential is
bounded by

E [@4() ~ @u(t— 1) U T) < (e~ Datmin(X/ d) — i
it Rt i~ t—1

Lemma 4.3.3. For rounds t when Y holds, the expected change in the covering potential is
bounded by

E [@c(t) — et — 1) |2 U0 < —a- B [x - min(X,™, d)

it R i ~Ut—1 ?
where « is a fixed constant.
As before, the three above lemmas imply the main theorem.

Theorem 4.3.4. Algorithm 4.5 is O(log mn)-competitive for Random-Order CIP.

4.3.2 Set Multicover

Another type of online Integer Programme we will consider is the following one, which we
will call Set Multicover

min (1, 2)
st Az>b (LP-SMC)
z e {0,1}™

This IP essentially corresponds to the Set Cover problem, where we impose the additional
constraint that the i-th element must be covered at least b; times. The random-order version

70

of this problem was studied in [1], where again the ideas from Algorithm 4.2 were extended
to design Algorithm 4.6. Let 2! be the algorithm’s solution at the end of round ¢. We define
T ={j: z;-*l = 0,a;; = 1} to be the unbought sets at the beginning of round ¢ that
cover element i. We also define X!™' =" jeTt xj-_l to be the fractional coverage provided
to element ¢ by those unbought sets at the start of round ¢. As in the CIP case, we denote
by d! := b; — (a;, 2! 1) the integral undercoverage of element i at the beginning of round ¢.

Algorithm 4.6: LEARNORCOVERSMC

Initialise a:? < [/m for every j, and set z;) «~0

[y

2 fort € [n] do

3 1 < t-th constraint in random order

4 if 7 not covered on arrival then

5 For each set j, sample 2! <— Ber(d! - 27"/ 3)

6 if X!™' < d then

7 For each j € T}, ifxz»_l > 1/e, set z;- —1

8 For each j, update 2! +— 27" - exp{1ery}
9 Let Z' := (1,2") /b and normalise z* + z'/Z"
10 if ¢ still uncovered then

11 2t 2t and 2t « 21

12 For di-many arbitrary sets j € T}/, set 2} < 1
13 else
14 b« 2! and 2t « 2!

Again, notice how Algorithm 4.6 is very similar to Algorithm 4.2, with the interesting
difference that the former deterministically buys any sets j that cover the arrived element
and have a high enough z; value. Also note that this algorithm samples more “aggressively”
when it needs to buy more sets in order to satisfy a constraint, that is, when d! is larger. The
analysis of this algorithm is again similar to what we have encountered thus far, relying on
the potential function ®(t) = C - @1 (t) + C5 - P(¢) and the following lemmas.

Lemma 4.3.5. The initial potential is bounded as ®(0) = O(5logmn), and ®(t) > —Flogn
forallt.

Lemma 4.3.6. For rounds t when i’ arrives uncovered, the expected change in the learning
potential is bounded by

E [®,(t)— ®,(t—1) |2 U dl > 0] < (1%_1[(@ — 1) -min(X!7!, db) — di]

it Rt
When i* is covered on arrival, ®,(t) — @, (t — 1) < 0.

Lemma 4.3.7. For rounds t when i’ arrives uncovered, the expected change in the covering
potential is bounded by

E [®c(t) — Pc(t—1) |2, U di >0 < —a- E [min(X/™' d})]

it Rt i~Ut—1
where « is a fixed constant. When i* is covered on arrival, ®c(t) — ®o(t — 1) < 0.
As before, the above three lemmas directly lead to the main theorem.

Theorem 4.3.8. Algorithm 4.6 is O(log mn)-competitive for Random-Order Set Multicover.

71

4.4 AlPs in the Prophet Setting

So far, we have examined how a number of different Online Augmentable Integer Pro-
grammes (AIPs) can be tackled in the random-order setting, and how imposing random
order is enough to allow for significantly improved guarantees compared to the fully ad-
versarial setting. We will now see how these algorithms for the random-order setting can
be used as black-boxes in order to design algorithms for the prophet setting, similarly to
how we did in Section 3.3. First, we will need to recall the definition of AIPs, which we
presented in Chapter 1.

Consider an integer programme defined by a vector of variables z € Z™, a cost vector
¢ € R™ and a set of constrains V' (each of the form (a;, z) > b;). For any subset V' C V'
of constraints, let SoLs(V’) C Z™ be the subset of solutions that are feasible to V’. Also,
for any subset of constraints V' C V, any solution z € Sors(V’) and any other subset of
constrains W C V, define the augmentation cost:

Auc(W | 2, V') := min{{c,w) : w + z € Sors(V' U W)}

or 0o if no such w exists. Also let BAckup(W | z, V) be the minimiser of the above when
it exists. The class of AIPs is defined as follows.

Definition 4.4.1 (AIPs). An augmentable integer programme (AIP) is one in which the aug-
mentation costs are monotone, ie. for any V! C V” C V and any 2/ < Zz” such that
2" € Sors(V') and 2" € Sors(V"), we have Auc(W | 2", V") < Aug(W | 2/, V") for any
constraint set IV C V.

In the online setting, the constraints of an AIP are revealed sequentially, we must cover
each constraint upon arrival and we are only allowed to increase our variables z. Looking
at the IP formulations of the problems we have considered so far ((LP-SC), (LP-FL), (CIP),
(LP-SMC)), it is easy to verify that they are all contained within the family of AIPs.

In the prophet setting, there is a universe of constraints U for the AIP, and a set of
independent distributions D), ... D™ over U. On each round ¢ € [n], a constraint is
sampled according to D) and presented to the algorithm. This means that we will not
necessarily see the entire universe U. In the simple case of Set Cover, for example, each
constraint corresponds to an element in the universe.

We will now present a result of [1], where it was demonstrated how, given an al-
gorithm for the random-order version of an AIP and sample access to the distributions
DWW, ..., D™ we can obtain an algorithm for the prophet version of the problem. Specif-
ically, we have the following theorem.

Theorem 4.4.1. Let P be a problem in the family of AIPs. If algorithm A is a A-competitive
algorithm for the random-order version of ‘P, then there is a single-sample 2A-competitive
algorithm A’ for the prophet version of P.

The reduction described in the theorem is presented in Algorithm 4.7. Simply put, we
simulate the random-order algorithm on one sample from each distribution, and we buy
any “sets” that algorithm buys a priori (before the actual input sequence). Then, during the
actual input sequence, we simply greedily cover any requests that are not satisfied upon
arrival.

72

Algorithm 4.7: AIP PROPHET TO AIP RANDOM-ORDER

1 Let MockRUN = {#',..., 9"} be one sample each from D) ... DM
2 Pass a uniformly random permutation of MockRUN as input to A
3 Let Z be the output of A

4 Initialise 2z < 2
5 fort € [n] do

6 | Draw constraint v’ ~ D®
7 if v' not satisfied by 2z then
8 | Update z < z + Backup(v' | z, MockRuN U {v, ..., v'7'})

Proof. Let A be a A-competitive random-order algorithm. Define A’ to be Algorithm 4.7.
Clearly, A’ is single-sample. The two sets of samples v',...,v"™ and 9',..., 9" are identi-
cally distributed, so

Ort := Elc(OpT(v?, ... ,v"))] = E[c(OpT(2', ..., 0"))]

Thus the expected cost of the solution Z bought by A is at most A - OpT by the guarantee
of A. It remains to bound the cost of the backup purchases in the last line of A’

Consider a pair of requests v, o' ~ D®, where v is part of the actual input sequence
and 0 is part of MockRUN. We w111 argue that the expected augmentation cost of v* is no
more than the expected augmentation cost of ©° during the simulation of A. Let z(v") be
the state of z at the beginning of round ¢ when v" arrives, and let Z(¢") be the state of the
solution of algorithm .4 at the beginning of the round when ¢" arrives in the random order.
Finally, let MOCKRUN_;: be the set of requests of MockRuUN that arrive before ¢' in the
random order. We have that:

E[Auc(v' | z(v')MockRun U {v', ... ,v'"'})] < E[Auc(v'
= E[Aug(d’

2(9"), MOCKRUN <4+ |
2(9"), MOCKRUN .4+ |

The inequality holds by the monotonicity of augmentation property in the definition of
AlPs, since z(v') > 2(0"). The equality holds because v' and ¢ are identically distributed.
Now, notice that when 97 arrives during the simulation of 4, that algorithm must pay at
least Aug(0” | 2(07), MOCKRUN ;-) (recall that this is the cheapest way the solution 2(07)
can be augmented to cover v7). Hence, summing the above inequality over ¢ we obtain:

Z]E [Auc(v' | z(v")MockRun U {v', ... 0" '})]

< ZE [Auc (2" | 2(2"), MockRUN)| < E[c(2)] < A - Opt
t=1

where we again used the competitiveness guarantee of 4. In total, we have that A’ will pay
at most A - OpT on expectation when buying the solution of .4 and an additional A - OpT
to perform all augmentations, thus its total expected cost is at most 2A - OpT. [

Therefore, the O(log mn)-competitive algorithms that we have seen for the random-
order versions of Set Cover, Metric and Non-Metric Facility Location, Covering Integer Pro-
grammes and Set Multicover can all be used as black-boxes in order to design O(log mn)-
competitive algorithms for the prophet versions of those problems as well. This reduction
once again demonstrates how, in general terms, the prophet version of a problem is easier
than the random order version.

73

4.5 Steiner Tree

Another classical combinatorial optimisation problem is the Steiner Tree problem. Here,
we are given a metric space (V, d), which can be thought of as a complete graph with edge
weights d(u, v). We are also given a set R C V' of n vertices in that graph, and our goal is
to pick a minimum-weight subset of edges in (‘2/), such that all vertices in R are connected.
Note that, if we are given a complete graph whose edge weights do not induce a metric,
we can simply take the metric closure of that graph and work with that instead. Any
solution in this metric closure directly translates to a solution in the original, non-metric
instance with the same approximation guarantees. Hence, there is no reason to consider
the non-metric variant of Steiner Tree. It can easily be shown that simply outputting the
minimum spanning tree over the vertices in R is a 2-approximation for the offline Steiner
Tree problem, while better approximation guarantees are also possible.

In the online setting, the n requests in R are revealed one at a time. After the first
request has arrived, whenever each subsequent request arrives, we must immediately buy
a subset of edges in (‘2/) to connect it with the previous requests. In the fully adversarial
setting, a simple greedy algorithm that connects each request to the previous ones in the
cheapest way possible is O(logn) competitive.

It is easy to verify that Steiner Tree is indeed an AIP. However, unlike the AIPs we
have discussed so far, imposing random order of arrivals does not significantly weaken the
adversary compared to the fully-adversarial setting. In fact, there is an 2(logn) lower
bound on the competitiveness of Steiner Tree not only for the fully adversarial case, but
also for the random-order setting.

4.5.1 Failure in the Random-Order Setting

We will present a theorem due to [38] demonstrates how we can construct an instance
of online Steiner Tree such that, even if the instance is presented in a random order, the
Q(logn) lower bound of the fully adversarial setting still holds.

This construction uses two crucial properties of Steiner Tree. The first one is that dupli-
cating requests does not change the cost of the optimal solution, but making many copies
of a request makes it more likely that one of those copies will appear early in the random-
order sequence. Hence, if we have a request sequence o that is the worst-case for the fully
adversarial setting, we can duplicate the i-th request C™~* times. Then, if we apply a uni-
formly random permutation and remove all but the first copy of each unique request, the
result will look close to the initial o with high probability, so we will effectively recover
the adversarial worst-case. Of course, this would increase the sequence length from n to
~ C", so the lower bound would be doubly logarithmic in the sequence length.

The second property of online Steiner Tree is that the worst-case example in the fully-
adversarial setting consists of a sequence of logn batches of requests, where each batch
contains ~ 2 requests, and the relative order of the requests within a batch does not mat-
ter. Thus, we can instead duplicate each request in the i-th batch C°8"~% times, and this
will indeed give us the logarithmic lower bound we have claimed. Let us now present the
argument formally.

Theorem 4.5.1. No (randomised or deterministic) algorithm can attain an o(logn) competi-
tive ratio for Random-Order Online Steiner Tree.

Proof. Without loss of generality, we will assume that the algorithm is lazy, in the sense
that, whenever a request arrives, the algorithm buys edges along a simple path that contains

74

no requests other than at its endpoints (removing any further edges that the algorithm may
choose will only decrease its cost).

We will construct an instance based on the so-called diamond graphs. The diamond
graph D; of level j is defined recursively as follows: D is simply one edge with two end-
points, and for j > 0 the graph D;,, is constructed from D; by first creating an edge
parallel to each edge in D; and then subdividing each edge into two new edges by creating
a new vertex for each. This is illustrated in the following figure.

D Do Dijiq

Another way to view the above construction is that D, is constructed by connecting
4 copies of D; in a square shape. When we refer to a path in a diamond graph D, we will
exclusively refer to simple paths that connect the leftmost to the rightmost vertex in D;.
Notice that each of those paths has length 27. Also note that, for any of those paths, there
are exactly two choices for its middle vertex (e.g. in the above figure, for graph D,, any
path must cross one of the two middle green vertices). We will call those two vertices top
and bottom central vertices for D;. If a path in D, crosses the top central vertex we will call
it a top path in D;, otherwise we will call it a bottom path.

We will define a graph and a sequence of requests of length at most n in this graph. It
suffices to consider the case where n is a power of 16. Let { = log, n, which is an integer.
The graph we will consider for the rest of this construction is D,, and we will consider
unit-cost edges.

As we mentioned, D; is constructed by connecting 4 copies of D;_;. Thus, D, can be
seen as consisting of 4 subgraphs D,_1, or of 16 subgraphs D, 5 and so forth. Notice that
each vertex in Dy is a central vertex for some subgraph D; of D, for some j < ¢. We will
call this j the level of the vertex. Thus, D, contains 2 vertices of level /, 8 vertices of level
¢ — 1 and, in general, 2 - 4' vertices of level £ — .

We will now define the request sequence that we will use to show the lower bound.
We first draw one path P in D, uniformly at random. Notice that P crosses 2 subgraphs
D,_; for each i € [{], thus it also crosses 2° vertices of level £ — i for i € [¢ — 1]. Each
node of level £ — i in P will appear 4‘~% times in our request sequence. Note that the
offline optimum is precisely this path P. By the above, the length of our request sequence
is Y2 4T =4 g2 <24 =0

Having defined our problem instance, let us now analyse the performance of any al-
gorithm on it. Since our problem instance is randomised, by Yao’s Principle it suffices to
consider a deterministic algorithm. Let v,; be the b-th level-j vertex that appears on P
from left to right. Also let X be the cost that the algorithm incurs to connect this vertex.
We will show the following lemma.

Lemma 4.5.2. E[X,;] > 2772 forall j and b.

Proof. By definition, v;; is a central node of a subgraph D;, where path P connects the
leftmost and rightmost vertices of D;. As we explained above, in this subgraph D; path
P crosses 2 vertices of level j — i for i € [j — 1]. Since there are 47~ copies of each

75

vertex of level 7 — i in the request sequence, due to the uniformly random arrival order, the
probability that a copy of v;;, will appear before any other vertex in this subgraph D is

49 1 1

=L oigj—i 2S5 L9
D img 2'4 >ty

When this event holds, no requests will have appeared in this subgraph D; before v,
appears. Conditioned on this event, we have two cases:

« If the algorithm has not picked any edges in D, when v, ; arrives it will have to pay
at least the cost of connecting v; to either the leftmost or the rightmost vertex of
D;. This cost is 2771

« If the (lazy, deterministic) algorithm has picked any edges in D, it will have done so
to connect a request outside D, so it will have picked only a single path in D}, either
the top or the bottom path. Since P is chosen uniformly at random, with probability
1/2 we will have that v,; will not be connected by the algorithm when it appears
(that is, v;; will be a top central vertex when the algorithm has chosen the bottom
path in D, or vice versa). In this case, the algorithm will again need to connect v;,
to either the leftmost or the rightmost vertex of D; and pay 27~ 1.

Thus, combining all the above, we have that with probability at least % . % the algorithm

will need to pay 27! when v;, arrives, so indeed we have E[X;,] > 1-5-2/71 =273, [

Having shown the above lemma, we can now bound the total expected cost of the al-
gorithm as follows

¢ 20— ¢ 2t ¢
o /¢
EID D X =) D EX;) > 2P = 2
J=1 b=1 j=1 b=1 j=1

As we mentioned, the offline optimum is simply the path P, which costs 2¢. Thus, we con-
clude that any algorithm will have to pay at least (2(¢) -Opt = (log n) - OPT in expectation
for the problem instance we have constructed. [

4.5.2 The Prophet Setting

We have seen how we cannot take advantage of the random arrival order in the Steiner Tree
problem. However, it is significantly easier to tackle the problem in the prophet setting.
Here, there are n independent distributions D), ..., D™ over the set V of vertices, and
the request v’ at round ¢ is drawn from D). The following simple algorithm, due to [38],
uses just one sample from each distribution in order to output an a priori spanning tree,
and then greedily augments it when the actual requests arrive. This is the same logic we
used in Algorithm 4.7 of the previous section.

Theorem 4.5.3. Algorithm 4.8 is 4-competitive.

3

. Si 0%, 0%, ..., 0 RN) i i istributed, we hav
Proof. Since the sets v!, 92,93, ..., 0" andv!,v?, ..., 0" are identically distributed, we have

Opt = E[c(OpT(v?,...,v"))] = Elc(OpT(v', 0%, ... ,9"))]

76

Algorithm 4.8: Prophet Steiner Tree
1 Let ©2,7°, ..., 0" be one sample each from D@ DO . DM
2 Let v; be the first actual request, and let S = {v;} U {92, ..., 0"}

3 Find a minimum spanning tree 7" connecting all vertices in S

+ Initialise T < T

5 fort =2,....,ndo

¢ | Draw vt ~ D®

7 Add to T the cheapest edge to connect v* to S U {v?,... v~}

We know that the minimum spanning tree on S is a 2-approximation for the optimal Steiner
Tree on S, thus]E[c(f)} < 2-0prt. It remains to bound the cost of the greedy augmentations
performed in the last line of the algorithm.

Consider that the tree T is rooted at 1. Let w(07) be the weight of the first edge of T
from vertex 07 to the root v'. Clearly, c (T) = > w(v"). Now, the expected augmentation
cost paid to connect vt to S U {v? ..., v""'} is at most the expected cost to connect v’
to S\ {0'}. Since v' and ¢" are identically distributed, this is equal to the expected cost
to connect ¢ to S\ {Ut} which is equal to the expected distance of v from its closest
neighbour in T (since T is an MST, it contains the min- weight edge from ¢' to S\ {0}).
This is at most E[w(?")]. Thus, reusing the notation for AIPs, if T'(v") is the solution of our
algorithm at the beginning of the round when v arrives, we have shown that

E[Auvc(v' | T(v"), SU{v?,0 1})] < E[w(d")]

Hence, summing over all ¢, we bound the total expected augmentation cost by Y, w(v') =
¢(T) < 2 - Opr, so our overall expected cost is indeed at most 4 - OpT. O

77

Bibliography

[1]

(6]

[7]

[11]

[12]

A. Gupta, G. Kehne, and R. Levin, “Set covering with our eyes wide shut”, in Proceed-
ings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2024,
pp. 4530-4553.

N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and]J. Naor, “The online set cover
problem”, SIAM Journal on Computing, vol. 39, no. 2, pp. 361-370, 2009.

N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering and packing”,
Mathematics of Operations Research, vol. 34, no. 2, pp. 270-286, 2009.

N. Buchbinder, A. Gupta, M. Molinaro, and J. Naor, “k-servers with a smile: Online
algorithms via projections”, in Proceedings of the 2019 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 98—-116.

A. Meyerson, “Online facility location”, in Proceedings of the 42nd IEEE Symposium
on Foundations of Computer Science (FOCS), 2001, pp. 426-431.

D. Fotakis, “On the competitive ratio for online facility location”, Algorithmica, vol. 50,
no. 1, pp. 1-57, 2008.

A. Anagnostopoulos, R. Bent, E. Upfal, and P. V. Hentenryck, “A simple and determin-
istic competitive algorithm for online facility location”, Information and Computation,
vol. 194, no. 2, pp- 175-202, 2004.

D. Fotakis, “A primal-dual algorithm for online non-uniform facility location”, Jour-
nal of Discrete Algorithms, vol. 5, no. 1, pp. 141-148, 2007.

M. Imase and B. M. Waxman, “Dynamic steiner tree problem”, SIAM Journal on Dis-
crete Mathematics, vol. 4, no. 3, pp. 369-384, 1991.

M. Manasse, L. McGeoch, and D. Sleator, “Competitive algorithms for on-line prob-
lems”, in Proceedings of the Twentieth Annual ACM Symposium on Theory of Comput-
ing, 1988, pp. 322-333.

E. Koutsoupias and C. H. Papadimitriou, “On the k-server conjecture”, Journal of the
ACM, vol. 42, no. 5, pp. 971-983, 1995.

N. Bansal, N. Buchbinder, A. Madry, and J. Naor, “A polylogarithmic-competitive
algorithm for the k-server problem”, Journal of the ACM, vol. 62, no. 5, pp. 1-49,
2015.

S. Bubeck, C. Coester, and Y. Rabani, “The randomized k-server conjecture is false!”,
in Proceedings of the 55th Annual ACM Symposium on Theory of Computing (STOC),
2023, pp. 581-594.

A.Borodin, N. Linial, and M. E. Saks, “An optimal on-line algorithm for metrical task
system”, Journal of the ACM, vol. 39, no. 4, pp. 745-763, 1992.

79

[26]

[27]

30

A. Fiat and M. Mendel, “Better algorithms for unfair metrical task systems and ap-
plications”, SIAM Journal on Computing, vol. 32, no. 6, pp. 1403-1422, 2003.

S. Bubeck, M. B. Cohen, J. R. Lee, and Y. T. Lee, “Metrical task systems on trees via
mirror descent and unfair gluing”, SIAM Journal on Computing, vol. 50, no. 3, pp. 909—
923, 2021.

T. S. Ferguson, “Who solved the secretary problem?”, Statistical Science, vol. 4, no. 3,
pp. 282-289, 1989.

S. Agrawal, Z. Wang, and Y. Ye, “A dynamic near-optimal algorithm for online linear
programming”, Operations Research, vol. 62, no. 4, pp. 876-890, 2014.

R. Kleinberg, “A multiple-choice secretary algorithm with applications to online auc-
tions”, in Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), 2005, pp. 630-631.

M. Babaioff, N. Immorlica, and R. Kleinberg, “Matroids, secretary problems, and on-
line mechanisms”, in Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2007, pp. 434-443.

O. Lachish, “O(log log rank) competitive ratio for the matroid secretary problem”,
in IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), 2014,
pp. 326-335.

M. Feldman, O. Svensson, and R. Zenklusen, “A simple o(log log(rank))-competitive
algorithm for the matroid secretary problem”, in Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2015, pp. 1189-1201.

N. Korula and M. Pal, “Algorithms for secretary problems on graphs and hyper-
graphs”, in 36th Internatilonal Colloquium on Automata, Languages and Programming
(ICALP), 2009, pp. 508-520.

J. A. Soto, A. Turkieltaub, and V. Verdugo, “Strong algorithms for the ordinal matroid
secretary problem”, in Proceedings of the Twenty-Ninth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2018, pp. 715-734.

T. Kesselheim, K. Radke, A. Tonnis, and B. Vocking, “An optimal online algorithm
for weighted bipartite matching and extensions to combinatorial auctions”, in ESA,
2013, pp. 589-600.

K. Chaudhuri, C. Daskalakis, R. Kleinberg, and H. Lin, “Online bipartite perfect match-
ing with augmentations”, 2009, pp. 1044-1052.

A. Rubinstein, J. Z. Wang, and S. M. Weinberg, “Optimal single-choice prophet in-
equalities from samples”, in 11th Innovations in Theoretical Computer Science Confer-
ence (ITCS), vol. 151, 2020, 60:1-60:10.

M. T. Hajiaghayi, R. Kleinberg, and T. Sandholm, “Automated online mechanism de-
sign and prophet inequalities”, in Proceedings of the 22nd National Conference on Ar-
tificial Intelligence - Volume 1, 2007, pp. 58-65.

S. Chawla, J. D. Hartline, D. L. Malec, and B. Sivan, “Multi-parameter mechanism
design and sequential posted pricing”, in Proceedings of the Forty-Second ACM Sym-
posium on Theory of Computing (STOC), 2010, pp. 311-320.

S. Alaei, M. Hajiaghayi, and V. Liaghat, “Online prophet-inequality matching with
applications to ad allocation”, in Proceedings of the 13th ACM Conference on Electronic
Commerce (EC), 2012, pp. 18-35.

[31]

[32]

[33]

[37]

[45]

[46]

P. D. Azar, R. Kleinberg, and S. M. Weinberg, “Prophet inequalities with limited in-
formation”, in Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pp. 1358-1377.

R. Kleinberg and S. M. Weinberg, “Matroid prophet inequalities”, in Proceedings of the
Forty-Fourth Annual ACM Symposium on Theory of Computing (STOC), 2012, pp. 123~
136.

T.Ezra, M. Feldman, N. Gravin, and Z. G. Tang, “Online stochastic max-weight match-
ing: Prophet inequality for vertex and edge arrival models”, in Proceedings of the 21st
ACM Conference on Economics and Computation (EC), 2020, pp. 769-787.

A. Gupta, G. Kehne, and R. Levin, “Random order online set cover is as easy as offline”,
in Proceedings of the 62nd IEEE Symposium on Foundations of Computer Science (FOCS),
2022, pp. 1253-1264.

S. Korman, “On the use of randomization in the online set cover problem”, Master’s
Thesis, 2004.

H. Kaplan, D. Naori, and D. Raz, “Almost tight bounds for online facility location
in the random-order model”, in Proceedings of the 2023 ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2023, pp. 1523-1544.

N. Alon, B. Awerbuch, Y. Azar, N. Buchbinder, and J. Naor, “A general approach to
online network optimization problems”, ACM Transactions on Algorithms, vol. 2, no. 4,
pp. 640660, 2006

N. Garg, A. Gupta, S. Leonardi, and P. Sankowski, “Stochastic analyses for online
combinatorial optimization problems”, 2008, pp. 942-951.

D.D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging rules”,
Commun. ACM, vol. 28, no. 2, pp. 202-208, 1985.

R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm for on-line bi-
partite matching”, in Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing (STOC), 1990, pp. 352-358.

G. Aggarwal, G. Goel, C. Karande, and A. Mehta, “Online vertex-weighted bipar-
tite matching and single-bid budgeted allocations”, in Proceedings of the 2011 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011, pp. 1253-1264.

N. R. Devanur, K. Jain, and R. D. Kleinberg, “Randomized primal-dual analysis of
ranking for online bipartite matching”, in Proceedings of the 2013 Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 2013, pp. 101-107.

A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and N. E. Young, “Com-
petitive paging algorithms”, Journal of Algorithms, vol. 12, no. 4, pp. 685-699, 1991.

E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter, “Online perfect matching and
mobile computing”, in Algorithms and Data Structures, 1995, pp. 194-205.

A. Bernstein, J. Holm, and E. Rotenberg, “Online bipartite matching with amortized
O(log®n) replacements”, Journal of the ACM, vol. 66, no. 5, pp. 1-23, 2019.

N. Buchbinder, A. Gupta, D. Hathcock, A. R. Karlin, and S. Sarkar, “Maintaining ma-
troid intersections online”, in Proceedings of the 2024 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2024, pp. 4283-4304.

81

[47]

82

A. Gupta, K. Talwar, and U. Wieder, “Changing bases: Multistage optimization for
matroids and matchings”, in Automata, Languages, and Programming, 2014, pp. 563
575.

Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, 2021.

C.Kenyon, “Best-fit bin-packing with random order”, in Proceedings of the 7th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 1996, pp. 359-364.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham, “Worst-case
performance bounds for simple one-dimensional packing algorithms”, SIAM Journal
on Computing, vol. 3, no. 4, pp- 299-325, 1974.

T. Hill and R. Kertz, “A survey of prophet inequalities in optimal stopping theory”,
Contemporary Mathematics, vol. 125, no. 1, pp. 191-207, 1992.

J. P. Gilbert and F. Mosteller, “Recognizing the maximum of a sequence”, Journal of
the American Statistical Association, vol. 61, no. 313, pp. 35-73, 1966.

M. Babaioff, N. Immorlica, D. Kempe, and R. Kleinberg, “A knapsack secretary prob-
lem with applications”, in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, Jan. 2007, pp. 16-28.

S. Albers and L. Ladewig, “New results for the k-secretary problem”, Theoretical Com-
puter Science, vol. 863, pp. 102-119, 2021.

M. Dinitz, “Recent advances on the matroid secretary problem”, SIGACT News, vol. 44,
no. 2, pp. 126-142,

M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and K. Talwar, “Secretary problems:
Weights and discounts”, in Symposium on Discrete Algorithms (SODA), 2009, pp. 1245~
1254.

U. Krengel and L. Sucheston, “On semiamarts, amarts, and processes with finite
value”, Advances in Probability Related Topics, vol. 4, pp. 197-266, 1978.

E. Samuel-Cahn, “Comparison of threshold stop rules and maximum for independent
nonnegative random variables”, The Annals of Probability, vol. 12, no. 4, pp. 1213-
1216, 1984.

M. Feldman, N. Gravin, and B. Lucier, “Combinatorial auctions via posted prices”, in
Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp- 123-135.

M. Mahdian, Y. Ye, and]J. Zhang, “Approximation algorithms for metric facility loca-
tion problems”, SIAM Journal on Computing, vol. 36, no. 2, pp. 411-432, 2006.

Appendix A

Mathematical Tools

Theorem A.0.1 (Hoeftding’s Inequality). Let X1,...,X,, be independent random variables
such that Pla; < X; < b;] = 1 foralli € [n]. Consider the sum of these random variables
Sp = ZZ.GM X;. For allt > 0, the following bounds hold

P[S, — E[Sn] >] < exp (‘ Z@_l(Qbi - az-)Q)

PlIS, —E[Su]| > 1] < 2exp (‘ Zﬂlfbi - az-)Q)

Theorem A.0.2 (Chernoff Bounds for independent Bernoulli random variables). Suppose
that X, ..., X,, are independent random variables taking values in {0,1}. Let X denote
their sum and yn = E[X|. Then the following bounds hold

2

P[Xz(1+5)u]§exp<— 5“) V6 >0

249
2

PX < (1-96)u] <exp (—57'“) V6 € 0,1)

2

PILX — | > 4] < 2exp (—%’”‘) Vs e [0,1)

Definition A.0.1 (Matroids). A finite matroid M = (U,T) is constructed from a finite
ground set U # () and a family Z # () of subsets of U called the independent sets of U, such
that the following two properties hold

« If BC ACUand A € Z, then B € 7. This is called the hereditary or downward-
closed property.

« If A,B € 7 and |A| > |B|, then there exists some element x € B\ A such that
AU {z} € 7. This is called the exchange property.

A maximal independent set of a matroid (that is, an independent set that becomes de-
pendent upon adding any element to it), is called a basis of the matroid. The bases of a ma-
troid completely characterise it. That is, we can equivalently define a matroid M = (U, B)
to be constructed by a ground set I/ and a set of bases B # () of the matroid, such that the
following holds

33

84

« If A, B € B and there exists an element a € A \ B, then there exists an element

be B\ Asuchthat (A\ {a})U{b} € B. This is called the basis exchange property.

Any two bases of a matroid have the same number of elements. This number is called
the rank of the matroid.
Some examples of interesting matroids include the following:

1.

Consider a set of items I/ and an integer k. We can construct a matroid M by letting
U be the ground set and defining a subset of I/ to be independent iff it contains at
most k£ elements. The bases of this matroid are all subsets of exactly £ elements of /.
This is called a k-uniform matroid.

. Consider a set of items U/ and a collection of sets Uy, ..., Uy that partition U, i.e.

UU;=Uand U; NU; = B for all i # j. We can construct a matroid by letting I/ be
the ground set and defining S C U to be independent iff |S N U;| < 1 for all i € [k].
The bases of this matroid are sets containing exactly one element from each U,. This
is called a partition matroid.

. Consider a graph G(V, E), where V is the vertex set and E the edge set. We can

construct a matroid by letting £ be the ground set and defining a subset of edges to
be independent iff it contains no cycles. The bases of this matroid are all spanning
forests of GG. This is called a graphic matroid.

Consider a graph G(V, E'), and let U, W C V be two distinct vertex sets (UNWW = ().
We can construct a matroid by letting U be the ground set and defining a subset
S C U to be independent iff there exist |.S| vertex-disjoint paths from W to U. This
matroid is called a gammoid.

. Consider a bipartite graph G = (U, V'; E'). We can construct a matroid M by letting

U be the ground set and defining a subset S C U to be independent iff there is a
bipartite matching between V' and S. The bases of this matroid each correspond to a
maximal matching in G. This is called a transversal matroid, and is a special case of
a gammoid.

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Μοντέλα Τυχαίας Διάταξης
	Μοντέλα Προφήτη
	Επαυξήσιμα Ακέραια Προγράμματα

	Κείμενο στα Αγγλικά
	Introduction
	Preliminaries and Definitions
	Notation
	Random-Order Models
	Prophet Models
	Covering Integer Programmes
	Augmentable Integer Programmes

	Random-Order Models
	Secretary Problems
	Single-Secretary Problem
	Multiple-Secretary Problem
	Matroid Secretary Problem

	Online Matching Problems
	Maximum Weight Matching
	Minimum Augmentation Matching

	Prophet Models
	Prophet Inequalities
	Single-Choice Setting
	Multiple-Choice Setting
	Matroid Setting

	Matching Problems
	Connections with Random-Order Models

	Random Order and Prophet AIPs
	Random Order Set Cover
	Exponential-Time Algorithm
	Polynomial-Time Algorithm

	Random Order Facility Location
	Metric Facility Location
	Non-Metric Facility Location

	Random Order Covering IPs
	Covering Integer Programmes
	Set Multicover

	AIPs in the Prophet Setting
	Steiner Tree
	Failure in the Random-Order Setting
	The Prophet Setting

	Bibliography
	Mathematical Tools

