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Abstract 

 

In this thesis a direct method for modeling weather ship routing with regards to energy effi-

ciency is presented, in the case of ships traveling with constant speed. Except of weather da-

ta and ship added resistance, also bathymetry and coastline are considered. The ship route is 

represented by Fourier (sine) series in the geographical coordinate system (Mercator’s pro-

jection) on the surface of the earth, permitting the reformulation of the optimization problem 

with respect to the series coefficients. The optimization algorithm is validated in specific test 

problems from physics. Subsequently, the present method is implemented as a Matlab GUI, 

and, as a first application, the software tool is demonstrated for specific ships, in conjunction 

with hindcast weather (wave and wind) data in the Mediterranean Sea region. Numerical re-

sults illustrate the performance of the present method concerning robustness, accuracy of re-

sults and speed of computations.  

 
 
 
Περίληψη 

 

Σηα πιαίζηα ασηής ηες δηπιφκαηηθής εργαζίας αλαπηύζζεηαη κηα κέζοδος γηα ηο πρόβιεκα 

ηες βέιηηζηες φς προς ηελ θαηαλάιφζε θασζίκφλ, δηαδροκής ηοσ πιοίοσ ζε πραγκαηηθές 

ζσλζήθες σπερεζίας. Σηοητεία ποσ ιακβάλοληαη σπ’ ουηλ είλαη κεηεφροιογηθά δεδοκέλα 

(άλεκος θαη θύκα), ε βαζσκεηρία, ε αθηογρακκή, ε αληίζηαζε ηοσ πιοίοσ ζε ήρεκο λερό θαη 

ε πρόζζεηε αληίζηαζε ζε θσκαηηζκούς. Η δηαδροκή ηοσ πιοίοσ αλαπαρίζηαηαη ζαλ 

εκηηοληθή ζεηρά Fourier ζηο γεφγραθηθό ζύζηεκα ζσληεηαγκέλφλ πάλφ ζηελ επηθάλεηα ηες 

γες. Η επηιογή ασηή επηηρέπεη ηελ αλαγφγή ηοσ προβιήκαηος ζε έλα πρόβιεκα 

βειηηζηοποίεζες φς προς ηοσς ζσληειεζηές ηες προεγούκελες αλαπαράζηαζες. Η 

εγθσρόηεηα ηοσ αιγόρηζκοσ βειηηζηοποίεζες θαηαδεηθλύεηαη θαη ειέγτεηαη κε τρήζε 

επηιεγκέλφλ παραδεηγκάηφλ ποσ προέρτοληαη από ηε θσκαηηθή θαη καζεκαηηθή θσζηθή. 

Αθοιούζφς, παροσζηάδεηαη έλα εργαιείο ιογηζκηθού (GUI) ποσ αλαπηύτζεθε ζε 

περηβάιιολ ζε Matlab®  θαη παροσζηάδοληαη παραδείγκαηα εθαρκογής  γηα ζσγθεθρηκέλα 

πιοία ζε ζσλδσαζκό κε πραγκαηηθά δεδοκέλα θαηρού ζηε περηοτή ηες Μεζογείοσ 

ζαιάζζες. Τα αρηζκεηηθά αποηειέζκαηα θαηάδσθλείοσλ ηελ απόδοζε ηες κεζόδοσ όζολ 

αθορά ηελ ζηηβαρόηεηα ηοσ αιγορίζκοσ, ηελ αθρίβεηα ηφλ αποηειεζκάηφλ θαη ηελ 

ηατύηεηα ηφλ σποιογηζκώλ.  
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C h a p t e r   1  

I N T R O D U C T I O N  

 
 

 

 
 
 
 
 

No one can dispute the necessity and size of the shipping industry. Around  90% of the 

world trade is carried away by ships, while consuming 4 million barrels of oil per day. In ad-

dition, we are entering an era of greening of transportation, where energy efficiency is of 

outmost importance. With the use of ship routing optimization algorithms, energy and time 

can be significantly saved, as well as increase in safety at sea and travel comfort. Thus, envi-

ronmentally friendly technical solutions with reduction of exhaust gases are requested, in-

cluding methods for ship weather routing, taking into account hydrodynamic responses of 

specific ship, and its propulsion system characteristics for a particular voyage. To this aim, 

except of ship responses, also added resistance in waves and other factors are examined.  

 

The optimal route can be considered in regards to safety and comfort (Maki, Akimoto et al 

2011, Kosmas et al 2012), maximum energy efficiency (Calvert et al 1991, Dewit et al 

1990), minimum voyage time (Zhong et all 1992, Lunnon  et al 1992) or the combinations of 

these factors (Padhy et al 2008, Hinnenthal et al 2010) under the encountered weather cir-

cumstances.  Various mehods have been developed, as e.g., calculus of variations and the 

modified isochrone method (Hagiwara et al 1987 & 1989), the isopone method (Spaans  

1995, Klompstra et al 1992). In addition to above algorithms, many other approaches have 

also been employed, such as the iterative dynamic programming (Avgouleas 2008),  aug-

mented Lagrange multiplier (Tsujimoto et al 2006)   and genetic algorithms (Bekker et al 
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2006, Vettor et al 2016). In the present work a ship weather routing method is developed and 

tested through numerical simulations based on hindcast weather data in the Mediterranean 

Sea. The method is based on minimization of fuel consumption taking into account the in-

fluence of wave added resistance, in conjunction with the effects of vertical stern motion of 

the ship in waves on the overall propulsion system efficiency; see Belibassakis et al (2013). 

Also, seakeeping criteria are implemented as additional operability constraints.Finding the 

optimal route however, is not an easy task. An analytical solution under the framework of 

the rigorous mathematical approach (Calculus of Variations) is not possible in practice, due 

to the complexity of the problem and the sparseness of the data. Below we give a small anal-

ysis of the aforementioned methods. 

 

Calculus of Variations 

Calculus of variations (see, e.g., Gelfand & Fomin 2000) aims to minimize or maximize 

functionals often expressed as integrals, in order to find extremals, thus to find the arc con-

necting start and destination in a manner leading to minimum voyage time. This approach is 

equivalent to solving the Euler-Lagrange equations numerically. A time-independent ap-

proach (Hamilton, 1961) is based on the variation of the ship's course by assuming that the 

environmental field is static and the ship's speed is time-independent. The calculation of a 

ship's least-time track is approached by Bijlsma (1975) using calculus of variations, or the 

special case of optimal control. An absolute minimum, thus an extremal, though, requires the 

consideration of time fronts consisting of a set of points reachable within a certain time step 

given by wave data being available every 12 hours or interpolated every 6 hours. The points 

reachable within one time step, hence, defines a grid. Besides wave and current data at the 

grid points, further data that is assigned initially includes departure time and location, arrival 

location and the ship's data including speed reduction in waves. For each time step, the 

points reachable along the extremals but also along the great circle route and rhumb line are 

computed. Due to boundaries, such as land, the destination might not be reachable along any 

extremal from the start. A suitable new point may be introduced as intermediate starting 

point for a new extremal. The method can be applied to minimize fuel consumption by con-

sidering speed and heading as control variables. The speed is constrained by a minimum and 

a maximum. However, the fuel function is often derived from empirical data. Thus, due to 

inhomogeneity of equations to be solved, Bijlsma (1975) considers the application of ap-



 

6 

proximations to be more accurate in practical cases than application of the same numerical 

method as for the least-time track. 

 

3D Dynamic Programming 

In the context of weather routing, Dynamic Programming in a two-dimensional approach has 

been originally applied by de Wit (1990) and Calvert et al. (1991). The discrete optimization 

problem aims to minimize fuel consumption, while engine power and propeller revolutions 

are assumed constant throughout the voyage. As only the route is optimized, the focus will 

be on the three-dimensional approach in the following. 3D Dynamic Programming describes 

a Forward Dynamic Programming method where both, the ship's power settings and its 

heading, are considered to minimize fuel consumption (Shao, Zhou, & Thong, 2012). The 

resulting discrete optimization problem with one objective function and several constraints is 

solved deterministically. In general, Forward Dynamic Programming is based on Bellman's 

principle of optimality (Bellman, 1952) and therefore on the idea that a path is optimal if and 

only if the choice of the previous path is optimal for any intermediate stage. A stage de-

scribes a small part of the original problem defined by the common value of a stage variable. 

The settings of the control variables (in this case engine power and ship's heading) are as-

sumed constant between two consecutive stages. Therefore, the final solution consists of the 

optimal choice of settings for the control variables at every stage in total resulting in the op-

timal path. Every stage is composed of many states, while a state is defined by a location 

(grid point) and a discretized time. The optimization procedure starts with the calculation of 

the ship's heading from the initial state to each grid point on the second stage, while any 

headings violating constraints are neglected. For each heading, the fuel consumption upon 

arrival at the next stage as well as the time travelled between the two stages is calculated for 

each possible discretized calm water ship speed; calculations for speeds violating constraints 

are abandoned. In order to enable the comparison of fuel consumed on various routes leading 

to the same grid point within a certain time interval, all times at a state are defined by the 

closest smaller discretized arrival time. The fuel consumptions of all routes leading to a cer-

tain state (same location and arrival within a predefined time interval) are compared and on-

ly the route corresponding to the minimal fuel consumption of each state is saved for future 

reference. Then the ship's headings from each of the grid points on the second stage to each 

of the grid points on the third stage are determined and the whole procedure is repeated. 

Since the optimal route to reach any state is saved for all states of any stage, the final optimal 
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route may be reconstructed easily once the optimal route from the second-last stage to the fi-

nal state has been determined. 

 

Iterative Dynamic Programming 

Avgouleas (2008) defines weather routing as an optimal control problem with the objective 

to solve a deterministic nonlinear fuel minimization problem under consideration of safety 

constraints. A solution is obtained through the development of a MATLAB program em-

ploying an Iterative Dynamic Programming (IDP) algorithm (Luus, 2000) based on Bell-

man's principle of optimality (Bellman, 1952). Using conventional dynamic programming a 

fine grid is required to ensure convergence to a global optimum increasing computation 

time. IDP, therefore, does not take into account a complete grid of feasible states but a single 

grid point. An initial guess for optimal control of the whole sequence provides the basis for 

an iterative procedure of piecewise constant control. Both, number of controls and increment 

can be defined. The number of control settings, thus the number of allowed speeds and head-

ings, allows influencing computation time. Avgouleas considers accurate modeling of the 

ship's hydrodynamic behavior as important as mathematical modeling and the development 

of an efficient optimization algorithm. Thus, great attention is paid towards the ship hydro-

dynamics and wave modeling when aiming “to find the optimal combination of speed and 

heading to minimize fuel consumption. 

 

Isopone Method 

The isopone method defines planes of equal fuel consumption (energy fronts) instead of time 

fronts. As a result, the isopones are not two- but three-dimensional, because they are not only 

defined by location but also by time . Non-uniform weather conditions will not result in bar-

rel-shaped energy fronts but the procedure is similar. The first isopone is determined by cal-

culating the outer boundary of points reachable from the initial point with a fixed amount of 

fuel when heading roughly along the great circle. Then, all points on the first isopone are re-

garded as initial points and for each of them, an outer boundary of points reachable with an 

amount of fuel equivalent to the one considered in the first iteration is calculated. The se-

cond isopone is described by the envelope of the resulting energy fronts. Before the third 

isopone is calculated, several subsectors are defined by parabolic planes. In each subsector, 

the point of the boundary, which is closest to the destination, is chosen as an initial point for 
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the next iteration. This procedure is repeated until an isopone reaches the destination, after 

which the minimum fuel path may be reconstructed by tracing back the headings and speeds 

used to reach the point on the isopone tangent to the destination. If the final isopone surpass-

es the destination, it should be recalculated considering a smaller amount of fuel. In the case 

where the last isopone is plane, that is when the estimated time of arrival coincides with the 

time needed to travel along the minimum fuel path, the resulting path is not only fuel opti-

mal but time optimal as well. 

 

Original Isochrone Method 

The isochrone method proposed by James (1957) is a practical deterministic method for 

finding the minimum time route obtained through varying ship headings while assuming 

constant engine power. The first isochrone or time front is formed by a line connecting 

points on the map that a ship departing from the starting port may reach at a specified time 

by traveling straight ahead in various directions and at constant engine power. Similarly, the 

next isochrone is calculated as a line connecting points, which may be reached at a specified 

time by a ship starting from the first isochrone and traveling straight ahead at constant en-

gine power and in a direction perpendicular to the first isochrone. This process may be re-

peated until an isochrone coincides with the destination and the optimal route can be recon-

structed. Implementation of this method for computer applications is problematic since so-

called isochrone loops may occur. 

 

Modified Isochrone Method 

Hagiwara (1989) presents a modified isochrone method suitable for computerized calcula-

tion since it deterministically solves a discretized optimization problem containing a single-

objective function and various constraints regarding time, position (latitude and longitude), 

control (heading and propeller revolutions) and ship motion (probabilities of slamming, 

shipping green water, propeller racing, etc). For this method, the great circle route between 

departure and destination as well as several great circle routes departing from the initial port 

at slightly different angles are used as reference. After the points forming the first isochrone 

have been calculated as in the basic isochrone method, these points are treated as initial 

points for the second iteration. Therefore, the points forming the second isochrone are not 

simply calculated by considering only paths departing perpendicularly with respect to the 
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first isochrone. Instead, all pathways along the great circle route leading to the point under 

consideration of the first isochrone as well as pathways departing at slightly varying angles 

are considered. In order to maintain a reasonable number of points forming each isochrone, 

the area around the great circle route coinciding with the destination is divided into subsec-

tors defined by the previously described reference routes. The number of subsections may 

vary depending on the chosen number of reference routes and the subsector width, which in 

turn determine the accuracy of the result. Within each subsector, the point furthest along the 

great circle route connecting the departure point and the point under consideration is chosen 

to be part of the next isochrone. The selected points are then treated as initial points for the 

next iteration and the same procedure is repeated until the first point on an isochrone coin-

cides with the destination. The optimal path may be found by tracing it back. In addition, an 

iterative procedure for finding not only a minimum time route but also a minimum fuel or 

minimum total cost route for a given estimated time of arrival is introduced. As the proce-

dure, though, is based on the assumption of constant engine power, the resulting route does 

not actually minimize the fuel consumption. The reduced consumption results from the op-

timal path being the least fuel-consuming path for constant engine power providing on-time 

arrival. Similarly, a suboptimal minimum total cost route may be found by a cost comparison 

of the fastest routes found for various values of constant engine power. 

 

3D Modified Isochrone Method 

According to Lin et al. (2013) this method utilizes a so-called recursive forward technique 

with a floating grid system, which achieves a route meeting the estimated time of arrival 

“with minimum fuel consumption and minimum passage time based on the constraints of 

safety and land avoidance. Variables are the ship's speed and heading angle. It is “formulated 

as a multi-stage discrete process subjected to stochastic and dynamic condition”. Thus, the 

floating grid system accounts for the dynamically changing environmental conditions. The 

stages are defined as the segments between two isochrones and are determined through the 

ship's speed in calm water. This also leads to an estimation of the arrival time considering 

speed and engine power constraints. Each stage consists of several states as also indicated by 

Hagiwara (1989). The states are defined by their location taking into account weather condi-

tions, corresponding ship responses and speed as well as passage time and the diversion of 

the course angle from the great circle route, which is chosen as reference route, thus classify-

ing the method as local search one. The speed in this case is influenced by the weather con-
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ditions and is subject to voluntary and involuntary speed reduction. Considering the reduced 

speed, the actual position can be determined recursively. Moreover, the speed is discretized 

leading to a discrete optimization problem. A set of states at a certain time forms an iso-

chrone. At each isochrone, computation time is reduced by choosing the state with the short-

est distance along the great cirlce as new departure point. Consequently, optimal voyage 

progress and a weight are derived at each stage. The method allows determining routes of 

minimum time, minimum fuel consumption or minimum ship motions. Fang and Lin (2015) 

have developed two routing strategies to further improve the optimization of minimum time 

routes and minimum fuel routes, ETA (Estimated Time of Arrival) and FUEL. 

 

Dijkstra's Algorithm 

Dijkstra's algorithm for finding the shortest path between two given nodes in a graph with 

positive edge weights and with more edges than nodes provides a deterministic method for 

solving a discrete optimization problem consisting of one objective, e.g. minimum distance 

or time, and only implicitly defined constraints. In weather routing, Sen and Padhy (2015) 

apply Dijkstra's algorithm for finding the minimum time route in the North-Indian Ocean 

and Takashima et al. (2009) for determining the minimum fuel route considering variable 

heading in coastal shipping. Sen and Padhy (2015) assume a grid covering the region under 

consideration and define the present environmental conditions at each point, and thus in each 

square, of the grid based on a wave model. The grid provides a reference for a directed 

graph, which is composed of edges connecting the nodes defined by the midpoints of each 

square of the grid. For the weather routing problem, Sen and Padhy (2015) define the 

weights assigned to the edges as the time needed to travel along each edge. The required 

time is the distance between two nodes divided by the reduced speed. The reduced speed re-

sults from the ship's calm water speed for constant engine power as well as involuntary 

and/or voluntary speed reductions due to the present weather conditions or intentionally de-

creased speed to avoid potentially dangerous excessive motions. Natural geographical con-

straints are implicitly defined through the assignment of very large weights. Similarly, high 

wind velocities or wave heights imply large weights. Engine limits are not considered, be-

cause engine power is assumed constant (unless voluntary speed reduction occurs). As to 

Sen and Padhy (2015), the main disadvantage of the application of Dijkstra's algorithm is 

that the resulting path is not smooth. Takashima et al. (2009) address the minimum fuel con-

sumption route problem for coastal merchant ships operating in confined waters by assuming 
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a constant number of propeller revolutions for each optimization run, while varying the 

heading. The speed is calculated depending on the heading and the weather conditions by 

applying speed reduction curves. Computing the ship's resistance and the required propeller 

thrust the fuel consumption can be derived. The number of propeller revolutions is gradually 

adjusted in each optimization run in order to meet the required time of arrival. The grid is 

defined by nodes with a spacing of two miles located on lines perpendicular to a defined 

standard route. Although this method leads to fuel savings particularly due to avoidance of 

strong opposite currents in the region of Japan as well as in the case of updated weather 

forecasts and subsequent rerouting, the obtained route is only a sub-optimal route and not a 

global optimum. Moreover, Takashima et al. (2009) as well as Sen and Padhy (2015) only 

deal with single-objective optimization problems .  

 

Evolutionary Algorithms 

Evolutionary algorithms may provide good approximate solutions of problems that cannot be 

solved easily by other methods. As stochastic local search methods, evolutionary algorithms 

are based on a randomly created initial population and further generations created by muta-

tion, selection or reproduction mechanisms. Each population consists of individuals repre-

senting candidate solutions to the problem. A fitness parameter is assigned to every individ-

ual describing the quality of the specific solution. Individuals with the highest quality are 

selected as parents for a new generation. The process of producing generations is terminated 

when a satisfactory solution has been found. The level of satisfaction that the found solution 

achieves is highly dependent on the starting population and mutation function. Applied in 

weather routing methods the algorithm aims to solve multi-objective optimization problems, 

thus optimizing speed and course of the ship throughout its voyage. 

 

In this thesis the problem of weather ship routing, formulated with regards to energy saving 

criteria, with the aid of a specific representation of the route based on Fourier sine series, is 

reduced to a finite variable optimization problem. The innovation of the present work is the 

efficient representation of every possible path (which is highly accurate, robust and quickly 

calculated), in conjunction with a Matlab-GUI implementation supporting the consideration 

of combined hindcast weather and geographical data, as well as ship responses to calculate 

the optimal route. 
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Chapter 2 is mainly concerned with hydrodynamics. The various components of ship re-

sistance and their connection with propulsion system and propeller characteristics are dis-

cussed. Ideal flow hydrodynamics is briefly described as it serves as the standard method to 

derive numerical results concerning added resistance in waves. 

 

Chapter 3 deals with the statistics and modeling of ocean waves. The energy spectrum defi-

nition is provided and the relation between the spectrum of the ship responses (included 

added wave resistance) and the input (sea condition) is presented, based on linear system 

analysis. 

 

 Chapter 4 provides some basic definitions about terminology and explanations on the ship 

routing problem, as treated in the present work. After that, the algorithm developed in this 

thesis is described in more detail. 

 

Chapter 5 presents a numerical example/demonstration of the GUI tool developed for the 

ship routing problem in the case of  a particular AFRAMAX ship and routes in Mediterrane-

an Sea region. 

 

The present thesis contains three Appendices. In Appendix  A, the properties of the minimi-

zation method, in conjunction with the specific representation, are presented and discussed 

for specific problems from waves and mathematical  physics, illustrating the performance of 

the present method in comparison with other numerical methods of solution. In particular the 

initial and  boundary value problems  of ray theory are considered, which present similarities 

with the studied problem. Also, variational formulation of Sturm-Liouville problems in the 

form of quotient minimization are considered and their solution by the present method  is 

demonstrated and discussed in Appendix B. Finally, Appendix C is a small tutorial and ex-

planation for the GUI software tool,  containing  also a description of the form of the input 

data.
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                                                                                                               C h a p t e r   2  

S H I P  H Y D R O D Y N A M I C S  

 
 

2.1 Calm Water Resistance 

This term contains the steady components of the resistance of a ship and its main parts are: 

viscous resistance including frictional resistance and form drag and wave resistance (Lewis 

1989). As it will be presented in more detail below, the first components are estimated by 

means of experimental methods and can be calculated by means of modern CFD methods, 

while the latter is still today treated by ideal flow methods, usually BEM. Also resistance in 

calm water is calculated from standard statistical methods (e.g., Holtrop 1984, FORMDATA 

series 60,..), which however provide only a rough estimation appropriate for preliminary ship 

design studies. 

 

2.1.1 Frictional Resistance 

Frictional resistance is the net forces upon the ship due to tangential shear stresses due to the 

viscosity of the fluid. Frictional resistance together with form drag (described below) ac-

counts for large part of total resistance in slow-speed ships as in the case of oil tankers and 

as much as 50% in high-speed ships as in the case of container vessels and fast ferries. It is 

usually estimated as a function of Reynolds number  

Re
UL

v
                                   (2.1) 

where, U  is the ship speed and L  is the ship length, and v  is the kinematic viscosity of the 

fluid. 

There exist many formulations for the calculation of the frictional drag. One commonly used 

is the ITTC 1957 model ship correction line,  

 
2

10

0.075

log Re 2
FC 


  ,                                                                                (2.2)

          

from which  we obtain 



 

14 

21

2
FR SU   ,                                                                                                       (2.3)

                             

where  is the fluid density and S is the wetted surface of the ship’s hull. 

 

2.1.2 Form Drag 

In an ideal flow around a solid body the total kinetic energy of the fluid is converted to po-

tential energy (in the form of high pressure) at the forward stagnation point. As the fluid 

moves around the body it gradually acquires kinetic energy at the expense of its potential en-

ergy. As it overcomes the maximum lateral dimension of the solid, the fluid is now moving 

around the back of it. In this part of the flow the motion is decelerated as a result of an ad-

verse pressure gradient and potential energy (and pressure) starts building up again. In the 

absence of any loss mechanism the potential energy is fully recovered at the rear stagnation 

point where the fluid is at rest. Unlike an inviscid fluid, a real fluid would experience energy 

losses due to viscous dissipation. As a result, the fluid cannot fully regain its potential energy 

upon reaching the rear stagnation point. Instead, the flow separates earlier leaving turbulent 

wake, in which the average pressure is on the same order as the far field pressure. 

This imbalance of pressure, namely high stagnation pressure at the front end and lower pres-

sure on the back, manifests itself through an additional drag component called pressure drag 

or eddy resistance. Due to its strong dependence on the body geometry it is often called form 

drag. The calculation of pressure drag is an extremely difficult process. In most cases its de-

pendence on Reynolds number is neglected and is lumped together with the wave resistance 

(Gillmer and Johnson, 1982). The calculation of both components (in the form of residuary 

resistance) can be achieved via model testing. An estimate is possible through statistical 

analysis of the model data (Holtrop and Mennen, 1982). 

 

2.1.3 Wave Resistance 

The ship as it travels, due to existence of the free surface, creates a flow disturbance. The re-

sistance of the wave born this way is the wave resistance. This component, same as with 

2.1.1 and 2.1.2, is also referring to the steady problem of ship traveling at constant speed U, 

so no ambient wave is implied.  
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The common way to calculate wave resistance is through model experiments. The respective 

combined drag coefficient RC  is assumed to depend only on the Froude number 

U
Fn

gL
                                  (2.4) 

The Froude hypothesis claims that the total resistance coefficient can be calculated as the 

sum of the frictional and residuary drag coefficients, as seen below 

 Re, (Re) (Fn)T F RC Fn C C                               (2.5) 

This approximation neglects correlation effects between viscosity and wave making re-

sistance, yet it is invaluable in the estimation of total resistance in a towing tank.  

 

Another possibility in common practice today is the calculation of wave resistance through 

the application of BEM and the calculation of the ship wave pattern. In this context the calm 

water resistance is mainly composed of wave-making and frictional resistance. For a given 

ship speed, frictional resistance is in proportion to the wetted surface area. However, wetted 

surface does not vary greatly for a given ship displacement, thus the decrease of frictional re-

sistance is limited. However, for a given Froude number, wave-making resistance is ex-

tremely sensitive to the shape of the ship hull. Modification of the hull shape can obviously 

decrease wavemaking resistance, thus the calculation of wave-making resistance by numeri-

cal simulation is meaningful. The main difficulty is the nonlinearity of the boundary condi-

tions. First, the shape of ship hull surface is nonlinear; second, the free surface boundary 

condition contains nonlinear terms; third, the free surface boundary is satisfied on exact free 

surface, which is not necessarily linear. The free surface can only be gotten after solving La-

place’s equation, which makes the whole solution iterative. There is not a close form analyt-

ic solution to this highly nonlinear problem. The first stage of research is linear theory, 

which solves the problem on linearized ship hull and free surface boundary conditions, for 

example, Michell’s thin ship theory. In linear theory, the Kelvin source is only distributed on 

flat plane. However, Linear ship theory is only effective under assumption that the ship form 

is linear and the free surface boundary condition is also linear. For realistic hull forms, these 

assumptions are violated, thus the linear theory can not give satisfactory result. After the lin-

ear theory, the Neumann-Kelvin method appeared. The Neumann-Kelvin method satisfies 

the hull surface boundary on the accurate hull surface but only satisfies the linearized free 

surface boundary condition on the calm water surface. In the Neumann-Kelvin method, the 
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point sources are distributed on the accurate ship hull surface, Havelock and Peters gave the 

analytic expressions for these point source. Noblesse analyzed these expressions and fitted 

them into a uniform form, which was the sum of three parts. The first part is the Rankine 

source component, it denotes the influence of point source in an infinite fluid domain, Hess 

and Smith gave the potential  generated by such source distributed on flat panel. The second 

part is a double integral part, which represents the near-field influence of the point source in 

fluid domain with the free surface. Newman (1987) derived the result of near-field disturb-

ance by a sum of Chebyshev series and a term for the singularity; Ponizy and Noblesse 

(1994) gave the result of the double integral by numerical interpolation. The third part is the 

single integral part, which represents the far-field influence. The highly oscillatory behavior 

of the integral brings difficulties in cultivations (JJM Baar et al. 1986/1988) One way to cal-

culate this single integral is by the Chebyshev series. The other way is by numerical integral. 

One numerical method is adaptive integration (Milton Abramowitz and Irene A Stegun 

1964). Oleg (2014) developed two efficient methods for this highly oscillatory integral. As 

the research of wave-making resistance develops, the totally nonlinear method came to be-

ing, which is called the Rankine source method. The Rankine source method satisfies the 

ship hull surface boundary condition on an accurate ship hull surface; and satisfies the non-

linear free surface boundary condition on the exact free surface. Since the free surface 

boundary condition is satisfied on the exact free surface, the process of calculation is itera-

tive. The Rankine source methods requires the distribution of Rankine source both on ship 

hull surface and on exact free surface. Dawson (1977) calculated wave-making resistance by 

the Rankine source, however, he used linear free surface boundary condition. Raven (1996) 

and Janson (1997) developed the method of totally nonlinear approach by the Rankine 

source method. Hess used higher order panels in his research. The prevailing numerical 

methods of wave-making resistance are the Neumann-Kelvin method and the Rankine 

source method. Since the Rankine source method considers the nonlinear free surface 

boundary condition, theoretically it is more accurate than the Neumann-Kelvin method. 

However, the Neumann-Kelvin method only requires meshing on the ship hull surface. The 

Rankine source method needs meshing both on the ship hull and free surface. Both the hull 

surface and free surface need to be remeshed in every iteration. This brings difficulties in 

modeling and calculation. On the other side, Neumann-Kelvin method can work with other 

Kelvin source method to solve wave-current coupling problems. So there are pros and cons 

for these two methods, thus it is meaningful to test the limitations of these two methods. The 

published results about these two methods are limited. 
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2.1.4 Other Components 

Besides the ones described above, other components of resistance are  

1. Added Resistance in waves 

2. Wind Resistance 

3. Appendage Resistance 

4. Resistance due to trim effects 

5. Shallow water effects 

 

Of the above components (1) and (2)  are  very connected with the ship in a seaway and also 

are found to be  crucial in connection  to the ship routing problem. For this purpose added 

wave resistance and wind resistance  and are going to be described separately in sections 

2.4,2.5 respectively.  An additional effect which  can be considered is the propeller perfor-

mance in waves due to the vertical stern motion of the ship. An analysis concerning the ef-

fect of waves  on the propeller performance is provided in Belibassakis et al (2013) where 

this issue is discussed  in more detail .  

 

2.2 Propulsion 

The propulsion system is fundamentally related to the ship routing formulation since it af-

fects the total resistance and the fuel consumption. Therefore in this section the mathemati-

cal description of the propeller action will be provided and its relation with the propulsion 

plant. 

2.2.1 Propeller 

Out of all the mechanisms that exist nowadays for ship propulsion, the propeller is by far the 

most commonly used. In order to study and characterize the geometry and performance of a 

propeller, we categorize them in methodical series (ex Wageningen B-Series), that contain 

charts of dimensionless quantities that define a propeller. Some of the most important are 

described below. 

 Torque coefficient: 
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2 5Q

Q
K

n D
                                 (2.6) 

where Q  is the propeller torque ,   the density of the water , D   the diameter of the propel-

ler disk, n  the rotational speed. 

 Thrust coefficient: 

2 4T

T
K

n D
                                (2.7) 

where T is the propeller thrust. 

 Advance ratio coefficient: 

AU
J

nD
                                   (2.8) 

where AU  is the speed of advance, which denotes the forward speed of the propeller relative 

to the water. The speed of advance is not equal to the speed of the ship. That is because as 

the ship moves, it drags the water around it. Therefore, the speed of advance is lower.  

 Wake fraction: 

AU U
w

U


                                 (2.9) 

 Open water efficiency coefficient: 

2

T A

o o

P U

P nQ





                                (2.10) 

where oQ  is the propeller toque as measured in the open water test and ,T oP P  are described 

in the section below. 

 Thrust deduction factor: 

p

d

p

k T R
t

k T


                                 (2.11) 

where pk  is the number of propellers, T the thrust of each propeller and R the towing re-

sistance of the ship. The reason that t is not equal to one, is because the operation of the pro-

peller causes a drop of the pressure at the stern and modifies the tangent strain, increasing 

the resistance. 
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Figure 2.1 Example of a propeller chart (Wageningen B-series, 4-bladed EAR=70%). 

 

 Expanded Area ratio: 

E

o

A
EAR

A
                                 (2.12) 

where EA  is the expanded area of the blades and 
2 / 4oA D  the area of the propeller disk. 

 Pitch Ratio: 

P
PR

D
                                  (2.13) 

where P   is the propeller pitch. 

 

2.2.2 Propulsion Plant 

In this section the typical propulsion system of a ship with one main engine as a prime mov-

er will be described. 
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The effective power of an engine is the power required to tow the ship at speed V. 

EP EHP R U                                 (2.14) 

where R is the towing resistance of the ship. 

For a shelf-propelled ship the thrust power delivered by the propeller is equal to 

T AP T U                                  (2.15) 

For reasons mentioned before, the powers EP  and TP  are not equal due to the present of the 

wake and the increase οf resistance (thrust deduction). Thus, the hull efficiency coefficient is 

defined by 

1

1

E d
H

T A

P R U t

P T U w


 
  

 
                          (2.16) 

In (2.10) the definition of open water coefficient was given. Its meaning is that in order to 

get power TP  out of a propeller in open water operating at a nominal efficiency  , one has 

to rotate it in the water at speed n  ,while applying a torque oQ , satisfying the   ratio 

2

T A

o o

P U

P nQ





                                (2.10) 

However, due to the existence of the hull the required torque for propulsion is higher than 

oQ   and is denoted as PM  . The input power to the propeller is not the open water oP , but 

the propeller power defined as: 

2P PP nM                                 (2.17) 

The efficiency that results from this is called relative rotative efficiency 

o o
R

P P

P Q
n

P M
                                 (2.18) 

 

The energy losses due to frictions in struts, bearings and stern tubes can be expressed with 

the use of the shaft efficiency   

P
s

S

P

P
                                    (2.19) 

where SP  or shaft power is PP  plus the aforementioned losses and is the energy required 

from the shaft in order for the propeller to provide power PP . Also for the SP  we have 
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2S SP SHP nM                               (2.20) 

Another coefficient that will appear in our formulation is the specific fuel consumption (sfc) 

and is associated with the conversion of the fuel’s chemical energy into mechanical work. It 

is provided by the engine manufacturer usually in 
g

kWh
 and corresponds to how much fuel 

is consumed in one hour for every unit of engine power in kW. For a diesel engine this pa-

rameter is roughly constant for different service conditions and in this work it is considered 

constant.  

 

 2.3 Ship Dynamics in Waves 

2.3.1 Harmonic waves 

Potential flow theory provides the framework for the mathematical formulation of water 

waves. Assume an earth fixed coordinate system Oxyz  , where 0z   corresponds to the free 

surface at rest. 

In the ideal flow the water is incompressible and has zero viscocity. If we also assume irro-

tanionality  

0 v                                  (2.12) 

Then, by Helmholtz decomposition, there exists a potential function ( , , )x y z  , such as  

v                                   (2.13) 

Using irrotationality assumption, the condition of conservation of mass  

 v 0                                     (2.14) 

becomes the Laplace equation 

 
2 0                                    (2.15) 

The conservation of momentum is as follows: 

1
( ) p

t 


      



v
v v g                             (2.16) 

where  is the water density, g  the gravitational (vector) acceleration and p  is the fluid 

pressure field. 

Inserting (2.13) to (2.16) and using vector calculus yields the Bernoulli equation: 
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21
.

2

p
gz const

t 


    


                        (2.17) 

Let (x, y)  be the wave elevation of the free surface. Every particle of the free surface must 

stay there at all times. In mathematical formulation this means that the total derivative of 

z   must be equal to 0 . This is known as the free surface kinematic boundary condition. 

( ) 0
D

z
Dt

       on z                            (2.18) 

The dynamic boundary condition on the free surface equalizes the fluid pressure on the free 

surface and the atmospheric pressure. 

atmz
p p


    21

2
atm

z

gz p
t






 
     

 
                (2.19) 

The equation (2.15) with the boundary conditions (2.18) and (2.19) formulate the nonlinear 

wave boundary value problem for deep water.  

Assuming small wave slopes and linearizing the free surface conditions around 0z   , the 

BVP system becomes: 

2 0,            0z    

0,g
t




 


   0z                             (2.20) 

,
t z

 


 
        0z    

0,           z   

The solution to the aforementioned  (2.20) deep water BVP (Newman 1977) is: 

 cos sin
( , , , ) A

kz i k x b y b tig
x y z t e





     
   

 
Re                  (2.21) 

and 

 cos kx t                                (2.22) 

Where   is an arbitrary wave angular frequency, b  is the wave propagation angle with re-

spect to x’ axis and k is the wavenumber. 
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Figure 2.2 Ship’s degrees of freedom (from Athanassoulis & Belibassakis 2012) 

The dynamic and kinematic conditions can be combined into a single free surface condition  

2

2
0,g

zt

  
 


  0z                            (2.23) 

From which the dispersion relation is derived  

2 gk                                   (2.24) 

The dispersion relation is used in order to find the corresponding wave numbers for different 

  .  Also, we denote by 
2

k


   as the wavelength . 

2.3.2 Linear Wave-Body Interaction 

Within linear theory the ship can be modeled as a linear time-invariant hydromechanical os-

cillator with six degrees of freedom as shown in figure below. We start by considering the 

more simple case of the dynamics of a floating object with zero mean speed and the effect of 

forward speed in the case of a ship traveling in waves will be examined below in Sec.2.3.3. 

In analogy to the simple mass-string-dashpot dynamical system the ship is subjected to: 

 Inertial forces acting on the solid mass and hydrodynamic added mass 

 Damping forces arising from the energy dissipation during wave making. 

 Hydrostatic restoring forces 

 Extrernal excitation forces 
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The general time domain equations of motion can be written as 

 
6 2

2

1

( ) ( )
( ) ( )

j j

ij ij ij ij j i

j

d t d t
M A B C t F t

dtdt

 




 
    
  
       1,2,...,6i   ,                       (2.25) 

where j  are the generalized modes of freedom, ijM  and ijA  are the mass and added mass 

matrixes respectively, ijB  is the damping matrix, ijC  is the hydrostatic stiffness matrix and 

iF  the generalized excitation forces (Athanassoulis & Belibassakis 2012). The term general-

ized modes of freedom means that j  can be both displacements and rotations and iF  are 

the corresponding generalized forces (forces and moments). 

Although (2.25) holds for harmonic i  , it is possible within linear theory to superimpose 

harmonic responses in order to obtain a general function of time. Also, a harmonic input in a 

linear time invariant system will result in a harmonic output with a phase shift.  

The exciting forces consist of three components: one due to the incident wave impacting the 

ship called Froude-Krylov force, another one  due to the wave diffraction forces and the one 

due to radiation forces. 

The Froude–Krylov force , denoted as FK
jF  can be calculated by direct integration of the 

pressure around the mean wetted surface of the body (
B

D ): 

B

FK
j I j

D

F p n dS



                                      (2.24) 

where jn   is the thj  component of the generalized unit vector normal with regards the ship’s 

wetted surface. 

,j jn n  1,2,3j                               (2.25a) 

3
,j j

n


 x n    4,5,6j                                (2.25b) 

and  

Ip
t

 
 


                               (2.26) 

where   is the incidence wave potential given by  (2.21). 

The force is considered harmonic and can be expressed as follows 
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 ( )eFK FK i t
j jF X Re                           (2.27) 

Similar relations also hold for the diffraction force, denoted as D
jF  : 

B

D
j D j

D

F p n dS



                               (2.28) 

And the linearized Bernoulli is used for expressing the dynamic pressure 

D
Dp

t



 


                              (2.29) 

D  can be acquired by solving the following BVP problem: 

2 0,D       0z                             (2.30a) 

,D I   n n    on BD                          (2.30b) 

2

2
0,Dg

zt

  
   

 
 on 0z                          (2.30a) 

As in (2.27) the diffraction forces can be written as: 

 ( )eD D i t
j jF X Re                            (2.31) 

The radiational potential formulation is a little more complicated than the previous ones. Let 

the ship oscillate at a given angular frequency   and amplitude over of the an not excited by 

other means water. After some time, when only steady phenomena are left, the water, due to 

linearity, will also oscillate at the same frequency  . The total radiation potential is denoted 

R . We assume the following linear decomposition of R : 

6

1

  ( )R k

k





   x                               (2.32) 

where k  unknown functions. 

The radiation potential must satisfy the “no slip” condition : 

6

1

R k k

k

n



 n                               (2.33) 

By inserting  (2.32) into  (2.33) we get 

R kn n     1,2,...,6k     (2.34) 
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Therefore, the radiation potential can be found by solving the following BVP for 

1,2,...,6k  : 

2 0k       0z                              (2.45a) 

k kn n    on BD                                (2.45b) 

2

2
0,kg

zt

  
   

 
  on 0z                          (2.45c) 

In addition to the above eq (2.45)  the diffraction potential must also satisfy the Sommefeld 

radiation condition at infinity (see, e.g., Athanassoulis & Belibassakis 2012). 

The total exciting force, denoted as jF   will be the sum: 

   ( )e ( ) ( ) e
j j

i t FK D i t
j jF X X X      

 
Re Re               (2.46) 

By considering harmonic representation for the responses: 

 ( )ei t
j j

  Re                             (2.47) 

where ( )j   are the corresponding complex amplitudes of the responses, and usingthe 

complex forms of (2.48) and (2.50), the equation of motion (2.25) becomes: 

 
6

2

1

( ) ( ) ( ) ( )kj kj kj kj j k

j

A i B C X     



       
       1,...,6k        (2.49) 

where the hydrodynamic coefficients ,kj kjA B  are computed by solving the radiation BVP. 

 

2.3.3 Ship Seakeeping 

Assume a ship-fixed coordinate system Oxyz. The plane z = 0 coincides with the water sur-

face and, together with the ship, the coordinate system is translating with forward speed U in 

the x-direction. Harmonic wave of absolute frequency   propagates in a direction b  rela-

tive to the x-axis. The moving reference frame is related to the earth-fixed OXYZ via the 

Galilean transformation (Sclavounos, 2007) 

 

x Ut    , Y y  ,  Z z                                                                                         (2.50) 
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Substituting (2.52) in (2.21) the wave potential is expressed in the moving frame 

 

      cos sin cos

0

,  ,  ,  
kz ik x b y b i kU b tAg

x y z t ie 



   
  Re                (2.51) 

Equation (2.48) assumes the exact same form as (2.35). The difference lies in the frequency 

of the time harmonic term. It is no longer the absolute wave frequency 0 , but the encounter 

frequency  defined as   

0 coskU b                                 (2.52) 

It follows that the wave elevation can now be expressed relative to the moving frame as 

 cos sin

0

(x, y, t)
ik x b y b i tig

A e





  


 
 
 

Re                     (2.53) 

The total velocity potential can be decomposed as: 

( , ) ( ) ( , )t t  x x x                            (2.54) 

The first term on the right-hand side represents the steady flow potential. It can be further 

decomposed into a basis flow    and a disturbance flow   : 

( ) ( ) ( , )t   x x x                             (2.55) 

The decomposition facilitates the linearization of the nonlinear steady flow around the basis 

flow, assuming that    is small compared to    (Nakos and Sclavounos, 1990). It is noted 

here that if the parallel flow is used as basis flow ( ) Ux  x   and  0  , the problem re-

duced to Neumann-Kelvin formulation. Together with the free surface condition, the field 

equation and the radiation condition the formulated BVP can be numerically solved. The so-

lution    represents the potential of a steady, outgoing wave pattern known as the Kelvin 

wake.  

The second term on the right-hand side of (2.54) is a time-dependent potential associated 

with the wave excitation, and is expressed as: 

 ( , ) ( ) i tt e  x xRe                  

where   is the frequency of encounter. This expression is the cornerstone of the frequency 

domain formulation of the linear seakeeping problem. It is assumed that under the incidence 

of monochromatic plane waves of frequency   , the ship undergoes small oscillations at 
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frequency  . The complex potential    is a superposition of the incident wave potential I  , 

the diffraction potential D  and the radiation potentials ,j  1,2,...,6j   for all modes of 

motion  

6

1

I D j

j

   



                               (2.56) 

Upon solving the relevant BVP's for all the (complex) potentials in (2.56), pressure can be 

calculated from Bernoulli equation. Then, by integration over the hull mean wetted surface 

BD  , the forces can be obtained. An outline of the procedure is as presented below. Using 

the appropriate version of the Bernoulli equation in the ship-fixed frame of reference travel-

ling at constant speed U , we obtain the pressure associated with the incident and the diffrac-

tion potenrial 

 I Dp i U
dx

   
 

    
 

  (2.57) 

and the calculation of the exciting forces (Froude-Krylov and diffraction components) is ob-

tained by pressure integration of the wetted surface of the hull, 

B

j j

D

X pn dS



     (2.58) 

These forces are balanced by inertial, damping and hydrostatic restoring forces by virtue of 

Newton's law. The equations of motion are  

   
6

2

1

( ) ( ) ( ) ( )kj kj kj ij kj j k

j

M A i B UN C     



        
   1,...,6k             (2.59a) 

from which the corresponding Response Amplitude Operators are calculated as follows 

   , 1,2,3, , 4,5,6
j j

j jRAO j RAO j
A kA

 
 

                                                 (2.59b) 

In this case, however, φ  stands for the encounter frequency, not the absolute frequency of 

the ambient wave. In the examined case, the added mass and damping coefficients kjA , and 

kjB   are computed by solving the corresponding radiation BVPs. Once the radiation poten-

tials are known, the complex amplitudes of the respective forces are calculated: 
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ˆ ˆ

B B B

k j j j k j j k

D D D

F pn dS p n dS p n dS

  

 
     
 
 

     (2.60) 

where 

ˆˆ
j jp i U

dx
  

 
   

 
  (2.61) 

and 

ˆ
j j j     (2.62) 

where, in the case of ship hulls of relatively slim form ˆ j  are approximately obtained as the 

solution of the Laplace equation(s) 2 ˆ 0k  , with boundary condition 

2

1 3

ˆ 0kj U g
x x

 
   

    
    

,  on the free surface, and 
ˆ

, 1,2,3,4k
kn k

n


 


, 

5
5 3

ˆ U
n n

n j






 


  and         6

6 2

ˆ U
n n

n j






 


,  on the wetted surface of the ship hull, 

in conjunction with appropriate radiation conditions. Finally, added mass and damping com-

ponents are obtained by pressure integration on the ship’s hull 

 2ˆ ( )

B

k j kj kj

D

p n dS i B    



    (2.63) 

 

2.4 Added Wave Resistance 

We will now deal with the calculation of the ship’s added resistance due to waves and the 

resulting oscillation. During travel in wavy seas the propulsion system has to overcome the 

calm water resistance and the added wave resistance. The added resistance plays a major role 

in the ship routing with minimum fuel consumption. We shall consider the case of incident 

waves with 180ob   . 

 

 Many different formulations and methods been proposed to calculate the added wave re-

sistance (see Arribas 2007). From previous experience it has been shown that the following 

energy method, due to Gerritsma & Beukelman (1972), despite being simple it gives very 

satisfactory results with good accuracy. 
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According to the aforementioned formulation, in the case of front incident waves, the energy 

( )AW AW m AWE R U c T R                             (2.64) 

associated with the added resistance AWR  in monochromatic harmonic waves , during one 

time period mT , corresponds to the wave energy radiated far away from the ship due to the 

vertical speed oscillations with regards to the free surface elevation oscillation of the inci-

dent wave.  

 

The vertical speed of every transverse section along the length of the ship is given: 

 

( , ),R
R

d
V x t

dt


  

 where 3 5( , ) ( x ( , t)e )i t
R x t x         

3, 5   is the heave and pitch respectively, and 0(k x t)
( , )

i
x t e

 
   the free surface elevation 

due to the incident wave. We remind that 0 0k U    is the encounter frequency and 

0

2

0k
g


  the wavenumber.  The radiated energy during one time period due to the vertical 

oscillations of the ship is: 

2
33 1 1( ) ,R

L

E b x V dx



    (2.65) 

where 33 1( )b x  the damping coefficient of every transverse section in vertical oscillation and 

2
RV the mean square value of the relative speed. From (2.66) and (2.67) we get the following 

expression for the calculation of the added resistance: 

  2
33 1 1,AW R

L

R b x V dx



    (2.66) 

where 
0

2
k

   . 

 

It is noted that in high magnitude waves the added resistance is comparable to the calm wa-

ter resistance. This shows the importance of well posing and calculating of the added re-

sistance, especially when it comes to the ship routing problem where the fitting function it-

self depends on AWR  . An example of calculation is presented in Figs.  2.3 and 2.4. 
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Figure 2.3 Tranverse section of a ship (from Arribas 2007) 

 
Figure 2.4 Comparison of added wave resistance calculations for the ship of Fig 2.3  with  

experimental data for different values of the dimensional frequency  and for two values of 

Froude number  0.20,Fn   (from Arribas 2007 ). 

 

 

2.5 Wind Resistance 

A ship sailing on a smooth sea and still air experiences a resistance due to the movement of 

the above –water hull through air. This resistance depends on the ship’s speed and on the ar-

ea and shape of the upper works. In the case of blowing wind the resistance also depends on 

the wind speed and its relative direction according to the ship. 

 

In this work we are going to use a heuristic approximation of the wind resistance (PNA 

Vol.II, p.31) due to Hughes, (Lewis 1989) and it is as follows (see also Figs.2.5 and 2.6):
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    
 

2 2 2( ) sin cos

cos

a R LK U A
F

a

  



 



                   (2.67) 

where F  is the wind resistance, a  is the air density, ,RU   is the value and angle (with re-

spect to the ship) relative wind speed, a  is the true wind angle, TA  is the transverse project-

ed area and LA  is the longitudinal projected area of the ship. The constant K  takes values 

between for 0.5-0.65 for normal designs and in this work we take 0.6K  . 

 

 Figure 2.5 Definitions of ,T LA A  (from PNA vol. II, Lewis 1989) 

 

Figure 2.6 Resistance coefficients for relative wind ahead or astern  

(from PNA vol.II, Lewis 1989).
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                             C h a p t e r   3  

O C E A N  W A V E S  M O D E L I N G  

 

In this section we will define the sea wave spectrum, its statistical properties and characteris-

tics. We will also define the parameters required to model the sea state (important wave 

height and time period) and describe how it is applied to the ship optimal routing. 

 

 

3.1 Statistical Representation of Ocean Waves 

 
Assuming a fix point on the surface of the sea (deep water) denoted as x , stochastic  repre-

sentation of the elevation of that point can be achieved by the following random-phase mod-

el: 

 ( ; ) cos ( )n n n

n

t A t    x                       (3.1) 

where n nk g   are deterministic quantities that are paying the role of the frequencies of 

each wave, nA  are also deterministic and quantify the magnitudes of each harmonic wave 

and  n   are random variables that affect the various phases of each term and are consid-

ered to be: 

 Independent. 

 All  n  have the same distribution. 

 Each  n   is uniformly distributed on [0,2 ]  . 

For the sake of completeness in the presentation we give below the following definitions: 

1. Mean value of a stochastic process ( , )x t   as in (3.1) and is denoted as ( )
x

m t  or 

 ( , )xE t         

 ( ) ( , ) ( )
x x tm t E t xf x dx

  





                           (3.2) 

where ( )tf x  is the probability density function of the random variable ( , )x t  , .t const   
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2. Variance of a stochastic process ( , )x t   

   
2 2

2 ( , ) ( ) ( ) ( )
x xx

x tt m t x m t f x dx



   





     
                 (3.3) 

3. Correlation of a stochastic process ( , )x t   

   
1 2

2

1 2 1 2 1 2 1 2, ( , ) ( , ) ( , x )
x x

x x t t

R

R t t E t t x x f x d
 

       x             (3.4) 

where 
1 2 1 2( , x )t tf x  is the joint probability density function of 1 2( , ), ( , )x xt t    . 

4. Covariance of a stochastic process ( , )x t   

    1 2 1 1 2 2, ( , ) m ( ) ( , ) m ( )
x xx x

x xC t t E t t t t
 


        

 
 

  
1 2

2

1 1 2 2 1 2m ( ) m ( ) ( , x )
x x t t

R

x t x t f x d    x                    (3.5)

  

Random sea waves are assumed an ergodic process, which allows the extraction of statistics 

not from the ensemble (as should be formally done) but from a single realization by time av-

erages (Ochi, 1998). If all the statistics of a process are time invariant then the process is sta-

tionary. Ocean waves are only weakly stationary as the first two moments (namely the mean 

and the covariance) are time invariant. Also the Central Limit Theorem guarantees that the 

sum of many identically distributed, independent random variables (or processes) is itself a 

Gaussian random variable (or process) with mean and variance which are the sums of the 

means and variances of the individual constituent variables. In this sense, the process de-

fined in (3.1) can be treated as normally distributed with zero mean. Therefore, for the ran-

dom phase model we have: 

 

( ) 0
x

m t                                    (3.6) 

 1 1, ( )
x x x x

R t t R
   

                              (3.7) 

   1 1 1 1, , ( )
x x x x x x

C t t R t t R
     

                          (3.8) 

 

We can now define the spectrum of the water wave free surface elevation by means of the 

cosine Fourier transform of the correlation function ( )
x x

C
 

 of the stationary stochastic pro-

cess ( ; )t x .   The spectral density function of ( )
x x

C
 

  is denoted simply as ( )
x x

S
 

  .  
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By the Wiener-Khinchin theorem (Ochi, 1998) we have that for the random phase waves the 

autocorrelation and spectral density are Fourier transform pairs, namely: 

 
0

2
( ) ( )cos

x x x x

S C d
   

   




                         (3.9) 

 
0

2
( ) ( )cos

x x x x

C S d
   

   




                        (3.10) 

 

The thn  spectral moment is defined as: 

0

( )d
x x

n
nm S

 

  



                              (3.11) 

 

From this definition two useful spectral characteristics are extracted, which are later used ex-

tensively in the routing problem. Their definitions are provided below (Massel, 1996). 

 

Significant Wave Height: 

04sH m                                 (3.12) 

where 0

0

( )d
x x

m S
 

 



   as seen in (3.11). 

Mean Frequency: 

1

o

m

m
                                    (3.14) 

Modal frequency/Period ( ,p pT  ) : 

It is defined as the frequency for which  
x x

S
 

  becomes maximum. If  
x x

S
 

  is differ-

entiable then it can be found as the solution of  

0x x

dS

d

 


   

and keeping only the solutions that correspond to local minimum. Also, the modal time peri-

od is defined as 
2

p

p

T



  . 
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3.2 System theory and output spectrum  

In this subsection we shall provide the response of a linear oscillator, denoted ( ; )Y t   , ex-

cited by a random force ( ; )X t   . This is written in the form: 

 

( ; ) ( ; ) ( ; ) ( ; )mY t bY t cY t X t                          (3.15) 

 

Assuming that ( ; )X t   is expressed by a random phase model we have: 

 ( ; ) cos ( )n n n

n

X t A t                          (3.16) 

Due to the linearity of (3.9) , if ( ; )nY t   is the solution of  

 ( ; ) ( ; ) ( ; ) cos ( )n n n n nmY t bY t cY t t                       (3.17) 

 

Then the solution of (3.9) is given by: 

( ; ) ( ; )n n

n

Y t A Y t                             (3.18) 

 

The solution of (3.11) is known is equal to: 

 

    cosn n n n nY R t e                            (3.19) 

 

where  
   

2 22

1
n

n n

R

m c b



 



 

 and 
2

arctan n
n

n

b
e

m c





 
  

 
  

 

Therefore according to the above the (3.12) becomes: 

 

    ( ; ) cosn n n n n

n

Y t A R t e                        (3.20) 

By the Wiener-Khinchin theorem we have that the spectrum of the response  ;Y t    of the 

oscillator is: 

 
0

2
( ) ( )cosYYS C d   





                         (3.21) 

 

However it is easy to derive by simple algebra that: 
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     1 2( ) cos cosYY n n n n n nC t e t e              

               
1

cos
2

n n n

n

A R                                            (3.22) 

and from the above it follows finally that: 
 

2( ) ( ) ( )YYS R S                 (3.23)  

 

Therefore, if the sea spectrum is given, the spectrums of the ship’s modes of freedom are 

known by (3.23) and then the mean added resistance can be calculated. 

 

The above method, in conjunction with strip theory for treating the ship hydrodynamic prob-

lem, is used in the present thesis as the tool for calculating the wave added resistance of spe-

cific ships in a seaway, as discussed in detail in Sec.5.2 for an AFRAMAX tanker, which is 

then examined in optimizing weather ship routing in the Mediterranean Sea region.  

 

Based on the above, the response scpectra concerning ship motions are  derived using the 

RAOs defined by  Eqs. (2.59) as follows 

 

2( ) ( ) ( )
k k x xkS RAO S                                                                                              (3.24) 

 

and similarly for the other physical quantities of interest. 



 

38 

C h a p t e r   4  

S H I P  R O U T I N G  O P T I M I Z A T I O N  

 

In this chapter the foundation for the solution of the problem of interest, which is minimum-

fuel navigation is posed and discussed. Section 4.1 describes the coordinate system and gives 

various useful definitions. In 4.2 the cost function is defined and in 4.3 the description of the 

method used to solve the optimal ship routing.    

 

4.1 Coordinate system and map projections 

 

The mathematical model is chosen to refer to a 2D Cartesian coordinate system. In such a 

coordinate system the minimum distance between two points is the straight line that con-

nects them. However, the surface of the earth is not planar. In order for the optimization 

scheme to be meaningful, the curvilinear coordinate system of longitude    and latitude    

used to identify true position on the spherical globe needs to be mapped to a plane through 

appropriate transformation. A number of such transformations exist, known as projections. 

A brief discussion about projections follows, but it is useful to be preceded by two basic 

navigational definitions: 

 

Loxodrome 

It is the projection of a curve intersecting the meridians at a constant angle. It is also called a 

rhumb line and is essentially the path of constant heading navigation. The loxodrome is the 

most common route followed by the ships because it is plotted on Mercator maps as a 

straight line. Therefore, the ships need only maintain a steady course along this route.The 

differential distance between positions  ,   and  ,d d     in spherical coordinates, if 

measured along the rhumb line (loxodrome) connecting the two locations, is given by: 

 

  2 2 2( ) ( ) cos ( ) ( )earthdS U t dt R d t t d t                                       (4.1) 
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where the spherical coordinates in the above equations are the latitude ,
2 2

 


 
  
 

 , meas-

ured from the equator (positive north), and the longitude  0,2   measured from the 

Greenwich meridian (increasing eastbound). earthR  is the mean radius of the earth. 

 

 

Orthodrome 

It is the projection of the shortest curve between two points on a sphere. The shortest con-

nection between two points is part of a great circle. The orthodrome is the projection of a 

great circle segment into the plane. Although it represents the shortest distance curve it is not 

a straight line in spherical coordinates. Since navigational routes are commonly plotted on 

Mercator maps, a ship would have to constantly change course to follow the great circle 

path. This is a serious practical shortfall which has rendered the use of great circle naviga-

tion very limited. The great circle distance between points  2 2,  and  2 2,   is: 

 

 1

1 2 1 2 2 1cos sin( )sin( ) cos( )cos( )cos( )earthS R                                  (4.2) 

 

In the present work, the Mercator projection is adopted as it is compatible with Μaltab map-

show commands and the output of the swan data (more on that below). The transformation 

equations are as follows: 

 

ln tan
4 2

earthX R
   

   
  

                           (4.3)

  

earthR                                    (4.4) 

 

4.2 Calculation of fuel consumption in waves 

The thrust required for a ship to move with constant speed derived by the propulsion system 

is equal to the total resistance corrected using the appropriate efficiencies. 

 

( , ; )
1

calm AW wind

d

R R R
T t

t

 



x x                          (4.5) 
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where dt  is the thrust deduction factor. Also, x  is the vector showing the position of the 

ship in longitude and latitude and /d dtx x  is the time derivative of x . Due to the presence 

of waves and wind, the thrust becomes also a function of the coordinates of the ship, as well 

as the direction the ship, actually the difference between the heading of the ship and the inci-

dence angle of the waves. Substituting (2.7), (2.8) and (2.9) into (4.5) we obtain the load 

curve  

 
2

2 2(1 ) 1

calm AW wind
T

d

R R R
K J

t w U

 


 
                         (4.6) 

 

where ,TK J  are the trust and advance coefficients of the propeller, respectively. The load 

curve together with the  TK J  curve of the corresponding propeller series define a nonline-

ar  2x2 system with unknowns the values of ,TK J . This system is solved numerically and 

the operating point of the propeller is yielded. Using the estimated J  in conjunction with the 

torque coefficient ( )QK J  of the propeller, the torque is calculated. The open water efficien-

cy at that particular operating point is then obtained by  

0
2

T

Q

K J

K



                                 (4.7) 

Subsequently, the rate of fuel mass flow in the engine is given by : 

Bq sfc P                                   (4.8) 

where sfc  is the specific fuel consumption and BP  the engine Shaft Horse Power (SHP). 

From equations (2.14)-(2.20) the latter is expressed as follows: 

total
B

D TRM

R U
P

 
                                (4.9) 

where  

total calm AW windR R R R                             (4.10) 

D R O H                                   (4.11) 

TRM S GB                                  (4.12) 

 

Fuel rate is finally  expressed by the following formula: 

( , ; )
( , ; )

( , ; )

total

R o H S GB

R t
q t sfc

t    


x x
x x

x x
                      (4.13) 
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Now, if     ,t t y  is a curve in parametric form in the earth coordinates, then the total 

fuel consumption is the line integral along (any) path y  is calculated by: 

0

( ; )
[ ]

( ; )

ft y

tot

R H S GB o Wt

UR t
J sfc dt

n n n n n t n

y
y

y
                     (4.14) 

where 0t  is the departure time and ft  the arrival time.  The latter ft is of course unknown 

and is dependent on y . As we can see the total fuel consumption is dependent on the path 

(ship route) y  and so it defines a real functional  1 2[ ] : C ( )J IR IRy  . 

 

 

 

4.3 Description of method  

 

The purpose of this section  is to find the shiproute y  such as the total fuel consumption 

(4.14) is minimum. Therefore, we seek a minimum of the functional [ ]J y  . This problem is 

well formulated within the context  of calculus of variations (see, e.g., Gelfand & Fomin 

2000) leading to Euler-Lagrange equation.  An extensive description of the framework is  

presented in Appendix A.  However, it is stressed here that the formulation  based on Euler-

Lagrange equations, fails to provide accurate results due to various reasons  (see Bijlsma 

(1975)). In this work we are going to apply a direct method based on the reformulation of the 

problem in a standard optimization setting. 

 

Let 
1 1( , )A    and 

2 2( , )B    the coordinates of the departure and arrival point. Consid-

er the loxodrome AB and an  auxiliary orthogonal curvilinear coordinate system with x-axis 

along the loxodrome and y-axis in the normal direction, parametrized with respect to the 

physical distance. Using this coordinate system we consider the following representation of 

paths (simple non self intersecting curves ending at points A and B)  

1

( ) sin( )
n N

n

n

n x
y x a


       0,x AB  ,                        (4.15) 

where AB  is the length of the loxodrome path joining the points A and  B on the surface 

of the earth. 

The pair  0, (0)y  on the auxiliary coordinate system corresponds to the departure point and 

 , ( )AB y AB  on the arrival one. 
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Figure 4.2 Coordinate systems on Mercator projection 

 

 

 

What we gain with  a function representation as in (4.15)  is that the dimension of the 

optimization problem is reduced by half. This comes at the cost of the loss of the ability to 

express self intercecting solutions or backtracking ones. Such cases howerer, are extreme 

situations (storms, tornados) where the ship is probably not permitted to travel through.  

 

Also, the choice of test functions sin( )
n x

 1,2,...,n    and 0,x AB  is a most 

appropriate one, since it is well know that it constructs  a basis on 2(0, )L AB  (square 

integrable) function space. 

 

 

By inserting (4.15) into (4.14) the total fuel consumption is now only depended on the 

coeffiecients na  of the sine-series representation: 

 

 

 
0

( ; )

( ; )

f nt a

tot n
n

R H S GB o n W
t

UR t a
J y sfc dt J a

n n n n n t a n
                   (4.16) 

Therefore, the infinite dimensional optimisation problem is reduced from finding the 

minimum of the functional [ ]J y , into finding the N  dimensional minimum  of the function  

 1,..., NJ a a  . The method developed in the present thesis in order to solve the optimization 

problem is based on Downhill simplex (see Appendix A for more). The general algorithm 

used is described below: 

 

 Step 1: The starting time, as well as departure and arrival points are defined. Then, the ge-

ographical data and the weather data are loaded. 

  

  
x  

y  

loxodrome 

orthodrome ship route 

A 

B 
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 Step 2: Every possible path is approximated on the auxiliary orthogonal curvilinear system 

as a Fourier sine series of N terms as in Eq.(1). The fuel energy functional is now 

dependent on N variables 
na . With the use of downhill simplex method, the 

na  

1,2,3,..,n N  terms that minimize (2) are found. 

 Step 3: Printing of results/plotting route in real time.  

 

Such a method however does not perform well for large N  as stated before, both with re-

gards to time and robustness. Therefore, for cases that high accuracy is needed, we imple-

ment the following alternative algorithm. 

 

 Step 2a: Let 
1N N  be a small initial truncation of (1) (in this work 

1 4N ).With the 

use of downhill simplex find 
11,...,ia i N  that minimize (2). 

 

 Step 2b: Further minimise error by K iterations of L<N1 terms of sine series.      

   

 

What is gained from the above altrnative is computational time since high dimensional op-

timisation is extremely unrobust and slow (complexity of the algorithm is exponential with 

regards to the dimension). On the other hand, breaking the optimization in smaller dimen-

sions allows one to achieve as much required accuracy of the solution, as needed, very 

quickly. 

 

 

 



 

44 

C h a p t e r   5  

M A T L A B - G U I  I M P L E M E N T A T I O N  

&  N U M E R I C A L  R E S U L T S  

 

For the purpose of this thesis, the algorithms that were developed are combined into a 

Graphical User Interface (GUI)  in Matlab®  that integrates all of them into one software 

tool and could, with a little more elaboration, become a real product that could compete with 

the state of the art programs that nowadays ship companies use. The GUI itself supports a 

database of ships and weather forecast data and it has an island avoidance and multiple way-

points travel features. In this chapter we will describe the ship used in the numerical exam-

ples and its resistance calculation. Finally, we are going to discuss the island avoidance fea-

ture and the multiple waypoint travel. 

 

5.1 AFRAMAX tanker 

As an example we are going to use an AFRAMAX tanker 105000 tn DWT whose specs are 

as follows: 

 

Length between Perpendiculars   : 234BPL m   

Total Length            : 238.5L m   

Breadth             : 42B m   

Draft              : 14.9T m   

Displacement           : 122770tn    

Deadweight              : DWT=105000tn 

Displacement Volume           : 
3119775V m   

Hull Coefficient                 : 0.818bC    

Vertical Buoyancy Center          : 7.76KB m   

Longitudinal Buoyancy  Center     : 6.8LCB m  (fore of middle section) 

 

On full load condition the ship has: 

Vertical Center of Gravity                                : 12KG m   

Longitudinal Center of Gravity          : 6.8LCG m   
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Metacentric Height               : 5.6GM m   

Inertia moment with respect to longitudinal axis    : 12xxR m   

Inertia moment with respect to longitudinal axis    : 63yyR m   

 

On ballast condition the ship has: 

Draft                : 7.2balastT m   

Displacement                   : 55000tn    

Displacement Volume           : 354000V m  

 Vertical Buoyancy Center         : 3.8KB m   

Longitudinal Buoyancy  Center     : 8.9LCB m  (fore of middle section) 

 

According to the above and details taken from the general arrangement plan (see Fig. 5.1) a 

3D model was constructed in RHINO to do the hydrostatic analysis and stability calculations 

of the ship. The ship is equipped with a Diesel engine (6S60MC type, MCR 15400 BHP @ 

97RPM) joined directly with the propeller. The engine is able to move the ship, in clean hull 

condition, with a max speed of 14kn in calm water and full load condition ( 14.9T   m) and 

power margin of 15% for increase due to real sea state conditions. For this ship the clean 

hull resistance in calm water that corresponds to drafts 7.2T m  and 14.9T m  is displayed 

in Figure 5.2. Also the drawing of the ship’s propeller , with pitch ratio 0.695
P

D
  , is dis-

played in Figure 4.3. The characteristic coefficients of the propeller in open water is shown 

in Figure 5.4(a) . The distribution of axial component wake is displayed on Figure 5.4(b) and 

its mean value is  1 0.645w   . Furthermore, the values of the hull-propeller hydrodynamic 

interaction coefficients are: 

Thrust deduction factor: 1 0.77dt    

Relative rotative efficiency: 1.037R   . 

From the above it follows that the hull efficiency coefficient is: 

1
1.19

1

d
H

t

w



 


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Figure 5.1 The general arrangement plan 

 

Figure 5.2 The calm water resistance for full load condition ( 14.9T m  ) and ballast 

condition ( 7.2T m  ); from Belibassakis et al (2013). 
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Figure 5.3  Drawing if the 4- propeller : z=4, 0.5EA   , 0.7r
R
  , 7.2D m  , 

tip skew=18.75o  , no rake 

 

 
 

Figure 5.4  (a)Hydrodynamic characteristics of propeller. (b) Axial wake distribution; from 

Belibassakis et al (2013). 
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Figure 5.5 Performance of propulsion system on ballast (dashes) and full load condition 

(continuous line); see also Belibassakis et al (2013). . 

 

 

5.2 Added Resistance Calculation 

On the present work in order to derive the added resistance due to waves we used the energy 

method described in 2.4 (Loukakis & Sklavounos 1978) for side incident waves, for the cal-

culation of the added resistance and the vertical motion of the ship at the area above the pro-

peller; for more details see Belibassakis et al (2013). For the calculation of the of the added 

mass and dumping tensors, Froude-Krylov and diffraction forces strip theory (Salvensen et 

al 1970, Lewis  1988) was used. This method is based on the thinness of the shape of the 

hull, which generally are satisfied for normal ships (that satisfy 5.5< 9
L

B
 , 2 4

B

T
   ) . 

Some special types of ships are of course excluded (example?). According to strip theory the 

surface integrals over the hull that define the hydrodynamic coefficients and excitation forc-

es can be approximated by multiple integrals over the length of the hull and the wetter cir-

cumference of every section (see Figure 5.6) and are calculated from equivalent quantities 

that are defined by a hydrodynamic problem on every transverse section. 
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Figure 5.6 Strip Theory. The transverse sections are oscillating due to incident waves, while 

moving with constant speed U . 

 

The numerical results for the added resistance of this AFRAMAX tanker are presented in 

Table 5.1, for different ship speeds on the interval 11.5 15.5sV U kn    . Sea state can be 

described through Beaufort scale , which is commonly used to define sea state in conjunction 

to wind speed. The relation between BF scale, wind speed ( )wU  and the wave significant 

height and modal periods is given on the four first rows of Table 5.1.  

 

For calculation purposes the spectral model JONSWAP was used. The latter biparametric 

model is given as 

 

4
2

5

5
( , ,T ) exp

4
j s p

p

ag
S H 

 


  
        
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Table 5.1 Added resistance of the example ship in heading incident waves for different sea 

states ( % of the calm water resistance at the same speed). 

 

 

Figure 5.7 Effect of direction of the incident waves on the added wave resistance (b=
0180  is 

heading waves, b= 0o
 for following – stern waves); from Belibassakis et al (2013). 

 

where p  is the modal frequency, a  is the Phillips constant, 
 

 

2

2

0

exp

2

p

p

 


 

 
  

 
 
 

 , and 

3.3   (see Massel 1996).  By using the analysis done in sections 3.2 and 4.4 the mean add-

ed resistance for different sea states can be calculated. 
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Figure 5.8 Response Amplitude Operator (RAO) for the relative vertical  speed on the aft 

area of the ship; from Belibassakis et al (2013).. 

 

It is evident now that the added resistance in this formulation is a function of sH , pT  and  

the direction of the waves relevant to the ship.  

 

5.3 Travel path control points and land avoidance features 

The following algorithm can handle more complex routes in the form of user given way-

points. If n  points are given, the algorithm is run 1n  times for each subsequent pair. The 

optimal route and the time until arrival ( ft ) is calculated and then ft is added to the depar-

ture date. Although this sounds trivial it is far from not, because all dates in the program are 

in ISO format (ex. 20160101.030000) while ft  is just a real number. Both quantities have to 

be converted into a ISO date-number, added,  revert the result into ISO date format and then 

floor to the nearest SWAN data available . This gives at worst a rounding error of 1.5hs  for 

every pair of waypoints, since SWAN data output come with a time resolution of 3 hours.  

 

 

 



 

52 

 

The following algorithm is also guaranteed to not give solutions that crash on land and is-

lands. This is done by setting the added resistance to infinite in case it passes over land. If 

bathymetry in any point is less than 10 then it is considered land. This could not be done 

without the use of the downhill simplex algorithm, since only simplex (and possibly Genetic 

Algorithms) can handle discontinuities in the cost function. Validation of the said feature is 

given in Appendix A, section A.5. 

 

5.4 Geographical and Weather Data 

With regards to the geographical data, the database General Bathymetric Chart of the Oceans  

(GEBCO, www.gebco.net) is used  for coastline data. The database GEBCO is a high quality 

bathymetry database that covers the whole planet with resolution 30’’. The offshore wave 

simulations utilize a 3-level SWAN (Booij et al., 1999) based scheme, which was developed 

in the framework of Thales project CCSEAWAVS which aimed to estimate the effects of 

climate change on sea level and wave climate of the Greek seas, the coastal vulnerability and 

the safety of coastal and marine structures (see Makris et al 2016). This simulation scheme 

uses past and future projections climatic wind fields (also produced in the context of 

CCSEAWAVS) for the estimation of wave characteristics with resolution 0.2 degrees in the 

Mediterranean basin (Level 1). These data provide bound- ary information for repeating the 

simulation using a finer mesh 0.05 degrees inside an Eastern Mediterranean subsection 

(Level 2). Details of the methodology are also described in Athanassoulis et al (2015). 

 

The initial scope of SWAN was to compute random, short-crested wind-generated waves in 

coastal regions and inland water. The model was later extended to allow simulation of waves 

in deep waters as well. As for the wind data, those were taken using the ICTP RegCM3 

model. The dataset extends over the entire Mediterranean Sea, with spatial resolution of 

25x25km and temporal resolution of 6 hours. 

 

5.5 Numerical results 

In this section the numerical results concerning the aforementioned AFRAMAX are present-

ed and discussed. A first example is presented in Fig.5.9 for a trip from Port-Said Egypt to 

Sardenia. A second trip shown in Fig.5.10 is a more complex route beginning at Israel, then 

passing in sequence to Libya(tripolis), Sicily and Majorca (Spain) as seen in figure 5.11. The 

ship departs on 1st  of November 2016 , 12 am, which was an interesting test case since at 
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this time we see intense weather on the Mediterranean basin. The optimal routes had a 3% 

better fuel consumption with regards to the loxodrome which is the standart route in ship 

routing and 5% better than the orthodrome which is the route with smallest distance between 

waypoints. This is an appropriate result considering the small distances in Mediterranean and 

that intense weather conditions are rare and small compared to Atlantic or Pacific ocean. 

 

Figure 5.9 The multi point travel from Port Said to Sardenia as shown in the GUI. 

 

Figure 5.10 Example of a multiple waypoint route from Israel to Spain using the developed 

software tool. The bathymetry is indicated by using a colorplot. 
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Figure 5.11 The optimal ship route between multiple points.  First part of the route from  

Israel to Libya (Tripolis). 
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Figure 5.11 The optimal ship route between multiple points. First two subplots: part of the 

route from  Israel to Libya (Tripolis) and last subplot from Libya (Tripolis) to Sicily 
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Figure 5.11 The optimal ship route between multiple points. Part of the route from  

Sicily to Spain 
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Conclusions and proposal for future work 

 

In this work a method for the weather ship routing problem with regards to energy efficiency 

is presented. The accuracy of the optimization algorithm  is validated against similar 

problems with analytical solutions as presented in detail in Appendices A & B.  

The algorithm is implemented in conjunction with geographical and simulated weather data 

as a Matlab GUI showing good numerical performance  concerning energy consumption 

reduction. Future extension will include the consideration of operability and other criteria as 

additional constraints of the optimization problem, and the extension of the tool worldwide. 

Another thing that has to be implemented is access to the GUI with a network of real 

weather data forcast instead of artificial ones.  

 

One thing that most ship routing algorithms lack is a way to  compare or validate their 

results. Although the optimization/dynamic algorithms are guaranteed to converge to a local 

minimum, the final ship routing results are rarely compared. This makes important to 

construct a setting, in which we can bechmark the solutions of the aforementioned 

programms on real conditions. 
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A p p e n d i x  A  

S o l u t i o n  o f  c e r t a i n  p r o b l e m s  o f  c a l c u l u s  

o f  v a r i a t i o n s  r e f o r m u l a t e d  a s  m u l t i d i -

m e n s i o n a l  o p t i m i z a t i o n  p r o b l e m s  

 

 

1. Introduction 

 

The ship routing problem is to find the route of the ship which minimizes the integral of fuel 

consumption. Such problems can be generally tackled with the use of calculus of variations, 

which reduces the aforementioned problem to the solution of a system of differential equa-

tions.  In this appendix, those equations will be derived and it will be shown why they are 

not suitable for solving real life problems. So, in order to solve this, an algorithm (of Ray-

leigh-Ritz type) is proposed. One key point of the proposed algorithm is the ability of solv-

ing constrained ship routing problems. In order to check its performance and accuracy, we 

need to compare it with problems that are similar to the ship routing problem and that have 

known exact solutions. Ray theory, provides the perfect test case. We will use the analytical 

and numerical solutions of ray theory as benchmark cases and validate our algorithms ability 

to solve obstacle problems with the use of calculus of variations. 

 

2.1 General variation of a functional 

In this chapter we shall first recall the basic results concerning the variation of functionals of 

specific integral form defined  by the following form (see, e.g., Gelfand & Fomin,…….) 

 
1

0

1 1 1 1( ,.., , ,.., ) ( ,.., , ,.., ; )

t

n n n n

t

y y y y y y y y t dt    J L      ,                                         (1)                           

where    , 1,2,....,ny t n   are continuously differentiable functions and 

 
 

, 1,2,....,n

n

dy t
y t n

dt
    denote the corresponding derivatives. Moreover, 
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1 1( ,.., , ,.., ; )n ny y y y t L  is the Lagrangian density. The form of the Lagrangian density is con-

sidered to be dependent on  the functions   , 1,2,....,ny t n   and their derivatives 

  , 1,2,....,ny t n   as well as on the independent variable of integration  (denoted here by t) .  

Clearly, if the density 
1 1( ,.., , ,.., )n ny y y y L is real, the functional defined by Eq.(1) is a map 

of the function space  1

0 1,C t t  to real numbers IR . 

In the most simple case n=1 the above Eq.(1)  becomes 

 
1

1 1( , ; )

o

t

t

y y y t dt J L   .                                                                              (2)                                        

All curves  corresponding to the admissible function   0 1,y t t t t   are considered  to be of 

the class C
1
 and we also assume that the end points of these curves can vary in an arbitrary 

way on the plane.  Next, we define the distance between two curves  y t  

in theinterval 0 1t t t  , and  * ,y t  in theinterval
* *

0 1t t t  ,  shown in Figure A.1,  as 

follows 

*
* * * *

0 0 1 1( , ) max max -
dy dy

y y y y P P PP
dt dt

                               (3) 

where   0 0 0,P t y t ,   * *

0 0 0,P t y t    are the left-endpoints of the functions  

   *and ,y t y t    1 1 1,P t y t ,   * *

1 1 1,P t y t     are the right-endpoints,  respectively. 

Since    *and ,y t y t   are defined on different intervals we have to extend the support of 

these functions into a common interval.  This is done by using Taylor extrapolation and 

keeping terms up to first-order (see also Fig.A.1). 
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Figure A.1. Functions  y t  in theinterval 0 1t t t  , and  * ,y t  

in theinterval
* *

0 1t t t  . 

 

To proceed let now    y t and   * ,y t  be two neighboring curves, in the sense of metric (3)  

in the common interval. We define the difference of the functions by  

*( ) ( ) ( )h t y t y t  . 

Let 
0, 0( ),oP t y  

1 1 1( , )P t y  and *

0 0 0 0( , y ),oP t t y     *

1 1 1 1 1( , y ),P t t y     

The variation  J  of the functional is defined as the expression which is linear in 

0 1 0, , , ,h h t t y     and differs from  ( ) ( )y h y J J  by a higher order quantity, relative to 

*( , )y y . Thus, 

 

1 1 1

0 0 0

0 01 1 1

0 1 0

( ) ( ) ( , ; ) ( , ; )

( , ; ) ( , ; ) ( , ; ) ( , ; )

t t t

t t t

t tt t t

t t t

y h y y h y h t dt y y t dt

y h y h t y y t dt y h y h t dt y h y h t dt













        

               

 

  

J J L L

L L L L
 

   (4) 
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The quantity ( , , ' ')t y h y h L  can be re-written by the use of Taylor’s theorem around the 

point ( , ( ), ( ))t y t y t   

2 2
( , ; ) ( , ; ) ' ( , ' )

'
y h y h t y y t y y O y y

y y
   

 
       

 

L L
L L      ,                     (5)                  

where 
2 2

( , ' )O y y   denote terms of higher (second) order with respect to the remaining 

ones. Integrating Eq.(5) with regards to t , the only term that remains linear with regards to   

0 1 0, , , ,h h t t y    is 
0 0( , '; ) |t ty y t tL .  Thus, we have 

 

1 1 1 1

1

1 1

2 2
( , ' '; ) ( , '; ) ' ( , ' )

'

t t t t

t t

t t

y h y h t dt y y t y y O y y dt
y y

 

   

 



  
       

  
 

L L
L L         

      
1

2 2

1 1( , '; ) | ( , ' )t ty y t t O y y t    L ,                                                          (6)                       

and likewise , 

0 0

0

0

2 2

0 0( , ' '; ) ( , '; ) | ( , ' )

t t

t t

t

y h y h t dt y y t t O y y t



   



    L L  .                          (7)                  

Again by expanding L  using  Taylor’s theorem and keeping terms up to first-order we get , 

  
1 1

0 0

2 2
( , ' '; ) (y, y'; )dt ( , ' )

t t

t t

y h y h t t y y O y y dt
y y
   

  
        

 
L L

L L     (8)                

Then by integrating by parts, the term y
y







L
becomes 

1

0

1

1

0 0

1

1

0 0

2 2

2 2

2 2

( ) ( , ' ) dt
'

( ) ( , ' ) dt
' '

( ) ( , ' ) dt
'

t

t

t
t t

t t t

t
t t

t t t

d
y y O y y

y y dt

d
y y y O y y

y y dt y

L L d L
h h h O y y

y y dt y

   

    

 









 
  

 

  
    
  

  
   

  







L L

L L L
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So from (6), (7),(8) it finally follows that the general variation (4) can be written as ( by def-

inition the nonlinear terms are eliminated, since the variation is linear with regards to 

,y y  ) 

1

1

0 1

0 0

0 1( ) ( ) ( , '; t) | ( , '; ) |
' '

t
t t

t t t t

t t t

d d
h h t dt y y t y y t t

y y dt y
  



 



  
     
   


L L L

J L L       (9) 

We shall denote    as equality except for terms of order higher than 1 relative to 

 , .y y h    Furthermore, it is clear that  

1 1 1

( ) y '( )

( ) y '( )

o o oh t y t

h t y t





 

 
 

1

1 1

0

0

1 1

0 0

( ) | ( ') |

| ( ') |
o

t

t t t t

t

t t t t

d
h t dt y y t

y dt y y y

y y t
y y

  

 

 

 

    
      

      

 
  

  


L L L L

J L

L L
L

                    (10) 
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2.2 Generalization for n functions and fixed end-points 

Here is described the variation of a functional of the form 

 
1

0

1 1 1 1( ,.., , ,.., ) ( ,.., , ,.., ; )

t

n n n n

t

y y y y y y y y t dt    J L  

It follows from Eq.(10) that the stationarity of
 

J  for fixed endpoints 

1( ) , ( ), 1,2,... ,i o iy t y t i n
   

 is equivalent to  

0 1,2,...,
i i

d
i n

y dt y

L L
                           (11) 

 

Equations (11) are called the Euler-Lagrange equations with boundary conditions 

0 0 1 1( ) , ( )i iy t P y t P  ,    where   
0 1,P P  are given points in n  . 

 

The aforementioned problem is a two point boundary value problem , whose solution is a 

curve that starts from 
0P  , ends at 

1P  and J  is stationary in the neighborhood of it. In 

boundary value problems , we often have the non uniqueness of the solution. Combined with 

the non linearity of the Euler-Lagrange equations and one has a very complex setting-

problem , where analytical  solutions are rarely possible. 

 

2.3 Obstacle problem 

2.3.1 Variation in the case where end points lie on given curves. 

Here we shall describe some equations that will be needed for the analytical obstacle prob-

lem formulation. 

If  y   is an extremum of J   it must be a solution of the Euler’s equation. Thus, the integral 

in (10) becomes 0 and then  
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FigA2.  The case where end points lie in curves. 

1 1 01 1 0 0| ( ') | | ( ') |
ot t t t t t t ty y t y y t

y y y y
       

   
     

      

L L L L
J L L  ,     (11) 

Which must also vanish in order for y  to be an extremum.  

If 
0P  and 

1P  lie on two given curves 
0 1( ), ( )g t g t  respectively, then 

0 0 0 0 0( ( ) )y g t e t    , 1 1 1 1( ( ) )y g t e t     

Where  

0 1, 0e e   as 
0 1, 0t t    respectively as in fig A2.  

The condition (11) becomes 

1 0

1 1 0 0( ) ( ) 0
t t t t

g y t g y t
y y y y

  
 

           
      

L L L L
J L L                 (12) 

 

Since
0t  , 

1t   are independent (12), we can vary 
0t  (so 

0 0t  ), while having 
1t  fixed 

(
1 0t  ) and then do the opposite , this implies the following boundary conditions  
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0

1

1

( ' ) 0

( ' ) 0

o

t t

t t

g y
y

g y
y





 
    

 
    

L
L

L
L

                                (13) 

 

Equations (13) are called transversality conditions. 

 

2.3.2 The Weierstrass-Erdmann Conditions 

Let ( )y t  be C
1
  * *

0 1, ,t t t t 
 , thus there exists a derivative discontinuity on *t  .Also, let y 

satisfy the boundary conditions 

   0 0 1 1,  y t y y t y   as before. 

In order for y to be a minimum of (2) it must satisfy the Euler’s equation on each interval 

*

0 ,t t    and *

1,t t   . 

We write ( )yJ   as follows  

1 1*

*

( ) ( , y; )dt ( , y ; )dt ( , y ; )dt

o o

t tt

t t t

y y t y t y t     J L L L                  (14) 

We calculate the variation of each functional separately. The end points 
0t  and 

1t   are fixed. 

The point *t t  can move arbitrarily, but the two pieces of ( )y t most join continuously 

there. Using (10) , (14) becomes 

* *

* *

* *

* *

1 1 1 1

1 1

' ( y' ) ' ( y' )

( ' | ' | ) (( y' ) ( y' ) ) 0

t t t t

t t t t

t t t t

t t t t

y y t y y t
y y

y y y t
y y

    

 

 

 

 

 

 

 

 

 

 
      

  

 
      

  

L L
J L L L L

L L
L L L L

  

Where * *,t t   are the left and right limits around *t respectively. 

Since 
1 1,t y   are arbitrary, by keeping one of two fixed while varying the other , it follows 

that, 
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* *

* *
| |

( y' ) | ( y' ) |

t t t t

t t t t

y y

y y

 

 

 

 

 


  

 
  

  

L L

L L
L L

                            (15) 

Equations (15) are called the the Weierstrass-Erdmann Conditions and they hold at the point 

*t   where the extremal has a corner. 

 

2.3.4 Minimization with inequality constraint 

In this subchapter we study a very important problem for the ship optimal routing. It is quite 

common in ship routing problems, for the unbounded optimal solution to  pass though land-

mass / islands, which of course must be avoided. The mathematical formulation for ship 

routes that avoid obstacles-islands is as follows. 

Minimize 
1

[y] ( , y ; t)dt

o

t

t

y  J , under the additional constraint  ( ) ( )y t g t .  

It is clear now that our boundary is now a closed one. That implicates our formulation since 

Euler –Lagrange is derived on open sets(i.e.  y t  is an extremal y eh  for h  every in the 

admissible function space must also belong in the admissible function space, however that is 

not the case on the boundary  of closed sets).In order to bypass this difficulty let us make the 

following change of variables. 

2( ) ( ) ( ) 0z t y t g t                                      (16) 

No restriction has been imposed on z and z=0 corresponds to the boundary y=g. 

Thus, the functional 

2

1

2( ) ( , 2 ' '; t)

t

t

z z g zz g dtJ L   

must satisfy Euler –Lagrange with regards to z  . 

0
d

z dt z

L L
                               (17) 

But, 
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'
2 2 ',

'

y y
z z

z y z y z y y

L L L L L
  

and, 

'
0 2

' ' '

y y
z

y y z y z y

L L L L
  

2 ' 2 .
d d

z z
dt z y dt y

L L L
   

Hence, (17) becomes ( ) 0
d

z
y dt y

L L
                    (18) 

(18) implies that that the extremum of J  may be achieved only on curves composed of the 

solutions of the Euler-Lagrange equation ( 0 1,2,..., n
i i

d
i

y dt y

L L
) or pieces of the 

boundary 0z  . 

Let the extremum be achieved on a composite curve, where the passage from the extremum 

to the boundary y g  occurs at a point *t . 

*
1 1

*

( ) ( , ; t)dt ( , ; )dt ( , ; )dt

o o

t tt

t t t

y y y y y t g g t      J L L L              (19) 

The variation of (19) becomes 

*

2

(y' g') ( , '; ) 0

t t

y y t
y y

L
                         (20) 

Thus, if 
*

( , '; )
0

t t

y y t

y y

L
 

* *'( ) '( )y t g t   

Equation (20) follows from the second Weierstrass-Erdmann Condition and the mean value 

theorem. 
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3.1  Ray theory applications 

It is well known from Fermat’s principle that rays of light travel in paths of stationary time 

and this statement remains  valid also  for waves in inhomogeneous media where the index 

of refraction is a variable quantity; see e.g., Brekhovskii & Lysanov, Frisk, Jensen et al. To 

illustrate the above principle let   be an arbitrary curve-path between two points 

   0 0 1 1, ,i iM x M x    (possibly corresponding to a source and receiver point) inside 

the propagation medium; see Figure A.3.  Furthermore let ( )ic x  be the propagation speed of 

the wave, which is assumed to be known everywhere. 

Denoting here by  d  the differential  length of curve (ray) γ,, with parametric equations 

 i ix x   and parameter σ  the physical length (i.e. / 1idx d  ) , the corresponding time 

it takes the wave  to travel d  is obviously / ( )idt d c x  .  Thus, the functional of  total 

time the wave needs to travel from point M0 to M1  along  ray    is  

1

0

0 0 1 1[ ] , ( ), ( )
( ) ( ( ))

i i

i i

d d
M x M x

c x c x



 

 
   


 ,                (21) 

and Fermat’s principle states that the curve    (  i ix x  ) will be a stationary point of the 

functional [ ( )]   , i.e.  [ ] 0.   

 

 

 

 

 

 

 

 

  Figure A.3 Rays joining points M0 and M1. 

 

ds  

0M  

0s
 

1M  

2  

1
 

s  
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The Euler-Lagrange equations for the ray function   
|| |||| / ||

,
( ) ( )

ii
i i

i i

xdx d
x x

c x c x


L  be-

comes the following  nonlinear system of second-order equations 

( ) 1
0

( ( )) ( )

i

i i i

d x

d c x x c x



 

    
    
   

,     321 ,,i .                             (22) 

 

The above system can be also equivalently written as a system of first-order equations by defining 

the generalized ray tangent vector (at each point σ along the ray)  

 
 1 i

i

dx

c d


 


      .                                  (23) 

 

Using the above equation, the system (22) is  put in the form 

 

 
   i

i i

dx
c x

d


 


                              (23a) 

 
  2 2i

i

d c
c c c

d x

 



 
    


                           (23b) 

from which the solution  ix   can be calculated. The most usual problem in ray applica-

tions  is the initial value problem, where the coordinates of the source point 
0 0( )ix M  are 

given and the system of rays emanating from the source are constructed as a solution to the 

system (23) corresponding to specific directions at the source (specifying the grazing angle) 

0ix given . In this case, the solution  ix  , for 
0 1     is calculated in straight-

forward way by integration  of the system (23). 

 

Let  is 
 be a discritisation of  0 1,   , with 

0 0 1 2 1... Ns s s s         
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For an arbitrary 
ks  we have 

1
1

1

1
1

1

( ) ( )
( )

( ) ( )
( )

i k i k
i k

k k

i k i k
i k

k k

x s x s
x s

s s

s s
s

s s

 












 
   


  

 

 
1 1 1 (23)

1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i k i k k k i k

i k i k k k i k

x s x s s s x s

s s s s s  

  

  

   


   
  

   

   

1 1 1 1

2

1 1 1 1

( ) ( ) ( ) (s )

( ) ( ) ( ) x ( ) x ( )

i k i k k k i k i k

i k i k k k i k i k

x s x s s s c x s

s s s s c s c s



 

   



   

  

    
  

 

0 0( )ix s M  given and it follows from (23) that 

1

0 0 0( ) x ( )i i is c s x s , where 0ix s given . 

Iterating this procedure for 1,2,..., 1i N   yield all the (s ), (s )i k i kx   

As an example it is shown in FigA4  a source emitting rays at angles ( 30,30)  on a medium 

with  propagation speed 
1 2( ( ))( ) c cosh c y dc   x  , where 

1 1510c   , (

2

4)6 10c   and 

300d     

 

 

Figure A.4 Rays in the case of an environment with index of refraction . 
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3.2 BVP problem: Ray from source to receiver point 

 

Now let us consider a similar problem of ray equations which is however more connected  to 

the weather ship routing problem examined in the present work, and thus it helps us to illus-

trate the effectiveness and performance of the simplex minimization procedure developed 

for the solution. In this case, given the distribution of propagation speed ( )ic x , we seek the 

path of a transmitted ray from a source point 
0 0( )iM x   that reaches a given receiver 

point  with coordinates 
1 1( )iM x  .  The system of Eqs (23) in conjunction with the above 

data constitutes a nonlinear boundary value problem. 

  

 

One way to solve this problem is by the use of iterative methods like the shooting method. 

In numerical analysis, the shooting method is a method for solving a boundary value prob-

lem by reducing it to the solution of many initial value problems. Roughly speaking, we 

'shoot' out ray trajectories emanating from the source point 
0 0( )iM x    in different direc-

tions  specified by the initial tangent vector 0ix  ,  until we find two rays enclosing the 

desired boundary value 
1 1( )iM x  .  Then the above prediction is refined by appropriate 

successive iterations. 

Let us illustrate the above procedure in the case of two-dimensional ray problem concerning 

the studied boundary value problem on the plane. More specifically, we consider  the n-

sequence of solutions  ; n

i ix a   of the initial value problem consisted of Eqs. (23)  and  the 

boundary data 
0 0( )ix M   and  0

n

i ix a ,  

1 1n n   ,   such that   1 1 1n N     

where   1

2 1tan /a a   is the grazing angle. The above sequence covers a sector - opening 

angle 1N a   at the point of the source 
0 0( )iM x  .  Let now   

   1 1 1 1 1; ( ) ;i m i i mx M x x            , for some value n=m of the index n. The 

new values of initial directions (values of the tangent vector of the ray at the source) for 

solving the boundary value problem are  estimated by 
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Fig.A5 The BVP solved with iterations of the IVP. 

11n m m mn    . 

This procedure is iterated until convergence, which results in the grazing angles focusing 

around the end boundary point. 

Below, Fig.A5  we see an example of the said algorithm with source and receiver point and 

with the same  

1 2( ( ))( ) c cosh c y dc   x   , as in the IVP example. 

 

3.3 Ray propagation with obstacle 

In the preliminaries chapter we have derived the appropriate condition that holds on the 

point of interception of the boundary of the object and the path of the ray, which is the eq 

(20). We denote as (t), (t)x g  the parametric representations of the path of the ray and the ob-

ject respectively. 

Eq 20 means ( in our formulation of ray propagation ) that  

* *

2 22

* *
1 1 1

/ /

/ /

dx d dg t t dtdx

dx dx d dg t t dt

  

  
     

A good example where this can been seen is in FigAxx. 
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Where 
*  and 

*t  are the parameter values for the curves ( ) & ( )tx g   at the interception 

point. 

 

4.1 Treatment of the ray problem using downhill simplex algorithm 

In real problems, like the ship routing, however, the mathematical rigorous approach does 

not perform very well. The sparseness of the data do not allow for accurate calculations of 

the derivatives of the ship fuel consumption which are needed and the time performance of  

the calculus of variations method would be the same or even worse than the direct method 

we are presenting below. 

Considering again the familiar problem  

Minimize 
1

[y] ( , y ; t)dt

o

t

t

y  J L     with boundary conditions 
1

( ) 0

( ) 0

oy t

y t
  ,           (22) 

If we make the assumption, that 
2 1[ , ]oy L t t  , then a basis of 

2 1[ , ]oL t t satisfying the above 

boundary conditions is 
1

k ( )
sin o

o k

t t

t t


 and then for a finite N  , y  admits the follow-

ing truncation  

1 1

( )
sin

k N

o
k

k o

k t t
y a

t t


                                       (23) 

By inserting (23) into (22) , [ ]yJ  becomes 
1 2( , ,..., )ka aJ , 1,2,...,i N   reducing the 

minimization of (22) to an optimization of a function of N variables 
ka  . This is called the 

Rayleigh-Ritz method. 
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4.2 Optimization algorithms and downhill simplex 

Downhill Simplex  

The downhill simplex method is due to Nelder and Mead (1965); see e.g., Press et al 

(1997,Chap.10)..The method requires only function evaluations, not derivatives. It is not 

very efficient in terms of the number of function evaluations that it requires. However, the 

downhill simplex method may frequently be the best method to use if the figure of merit is 

“get something working quickly” for a problem whose computational burden is small. A 

simplex is the geometrical figure consisting, in N dimensions, of N + 1 points (or vertices) 

and all their interconnecting line segments, polygonal faces, etc. In two dimensions, a sim-

plex is a triangle. In three it is a tetrahedron, not necessarily the regular tetrahedron. Given 

the simplex’s starting points, the algorithm moves the points of the simplex where our func-

tion has smaller values, using reflections, expansions and contractions of our starting shape-

simplex converging to the local minimum. 

 

 

Figure A6. Application of downhill simplex algorithm to the minimization of function 

2 2( , )f x y x y . First 7 iterations, with first iteration being the left green triangle and the 

7
th

 the right one. 
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Conjugate Directions 

If we minimize a function along some direction u, then the gradient of the function must be 

perpendicular to u at the line minimum; if not, then there would still be a nonzero directional 

derivative along u. Take some particular point P  in the coordinate system with coordinates 

x. Then any function f can be approximated by its Taylor series around P . 

2

,

1
( ) ( ) ...

2
i i j

i jii i j

f f
f f x x x

x xx
x P

c - bx + Ax

  

Where ( )c f P     |f Pb       
2

ij

i j

f

x x
P

A   

Through the Taylor approximation, the gradient of f is easily calculated as 

   ·   f A x b                                (24) 

This implies that the gradient will vanish at a value of x obtained by solving   A · x b  . 

We have that 

   ·( )  f A x
                             

(25) 

Suppose that we have moved along some direction u to a minimum and now purpose to 

move along some new direction v. The condition that motion along v not spoil our minimi-

zation along u is just that the gradient stay perpendicular to u, i.e., that the change in the gra-

dient to be perpendicular to u. By equation (25) this is just 

( )0   ·    ·  · f Au u v                           (26) 

When (26) holds for two vectors u and v, they are said to be conjugate. When the relation 

holds pairwise for all members of a set of vectors, they are said to be a conjugate set. If you 

do successive line minimization of a function along a conjugate set of directions, then you 

don’t need to redo any of those directions. A triumph for a direction set method is to come 

up with a set of N linearly independent, mutually conjugate directions. Then, one pass of N 

line minimizations will find the exact minimum of a quadratic form. For functions f that are 

not exactly quadratic forms, it won’t be exactly at the minimum; but repeated cycles of N 

line minimizations will in due course converge quadratically to the minimum. 
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Powell’s Quadratically Convergent Method 

Powell first discovered a direction set method that does produce N mutually conjugate direc-

tions. In steps: 

 Initialize the set of directions iu  to the basis vectors, 

=    1,...,i iu e i N  (10.5.6) 

Now repeat the following sequence of steps until the function stops decreasing: 

• Save your starting position as 0P . 

• For  i = 1,...,N, move 1iP  to the minimum along direction iu  and name this point iP  . 

• For i = 1,...,N − 1, set 1  i iu u . 

• Set  0  N Nu P P . 

• Move NP  to the minimum along direction u N and call this point 0P  . 

Powell, in 1964, showed that, for a quadratic form like (10.5.1), k iterations of the above 

basic procedure produce a set of directions iu  whose last k members are mutually conjugate. 

Therefore, N iterations of the basic procedure, amounting to N(N + 1) line minimizations in 

all, will exactly minimize a quadratic form. Unfortunately, there is a problem with Powell’s 

quadratically convergent algorithm. The procedure of throwing away, at each stage, 1u  in fa-

vor of 0NP P  tends to produce sets of directions that are linearly dependent. Once this hap-

pens, then the procedure finds the minimum of the function if only over a subspace of the 

full N-dimensional case. There are a number of ways to fix up the problem of linear depend-

ence in Powell’s algorithm, among them:  

1. Reinitialization the set of directions iu  to the basis vectors ie  after every N or N + 1 itera-

tions of the basic procedure.  

2. The set of directions can equally well be reset to the columns of any orthogonal matrix. 

Rather than throw away the information on conjugate directions already built up, reset the 

direction set to calculated principal directions of the matrix A . 
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3. You can give up the property of quadratic convergence in favor of a more heuristic 

scheme (due to Powell), which tries to find a few good directions along narrow valleys in-

stead of N necessarily conjugate directions.  

 

Genetic algorithms 

The genetic algorithm is a method for solving both constrained and unconstrained optimiza-

tion problems that is based on natural selection, the process that drives biological evolution. 

The genetic algorithm repeatedly modifies a population of individual solutions. At each step, 

the genetic algorithm selects individuals at random from the current population to be parents 

and uses them to produce the children for the next generation. Over successive generations, 

the population "evolves" toward an optimal solution. You can apply the genetic algorithm to 

solve a variety of optimization problems that are not well suited for standard optimization 

algorithms, including problems in which the objective function is discontinuous, non-

differentiable , stochastic, or highly nonlinear. The genetic algorithm can address problems 

of mixed integer programming, where some components are restricted to be integer-valued. 

The genetic algorithm uses three main types of rules at each step to create the next genera-

tion from the current population: 

1.Selection rules select the individuals, called parents, that contribute to the population at the 

next generation. 

2.Crossover rules combine two parents to form children for the next generation. 

3.Mutation rules apply random changes to individual parents to form children. 

Method Comparisons 

The downhill simplex is the most robust out of all the aforementioned methods , can handle 

discontinuities which are important in our formulation, it is much faster than the genetic al-

gorithm. The alternative simplex algorithm that we propose can handle very high dimension-

al optimization with very good computational performance.  
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5. Validation in the case of rays 

We will now proceed with the comparisons between the simplex and the analytical 

/numerical solutions. We will use as examples one test case with variable index of refraction 

and one case with fixed (homogenous medium). For each of those cases we will also solve 

the obstacle problem with the simplex direct method, to verify its ability to by-pass islands 

and landmass when applied to the Mediterranean.   

Example 1a. Unbounded setting  

For the case of source and receiver point with  0 0, 700x  
 
 ,  1 2000, 600x  

 
 , 

1 2( ( ))( ) c cosh c y dc   x , where 
1 1510c    ,

3.6
2 610c     and   700d     

For the IVP with shooting angle   we have the analytical solution  

 2

2

1
Z=-d+ asinh tan(ζ)sin(c (t))

c
  

Both the analytical (green color) and the IVP numerical solution (blue color) is compared 

with the solution via simplex (red color) in Fig.A7. 

 

Figure.A7 Simplex vs IVP vs analytical. 
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Fig.A8 The case with cosh  profile, but with an obstacle on the path of the unbounded opti-

mal solution(blue IVP/green analytical) vs the simplex (red). 

Example 1b. The obstacle case. 

In this case, we put an obstacle in the shape of a circle, with parametric equations 

 250 cos(t)+1000,250 sin(t)-1000 (0,2 )t     , in the path of the unbounded optimal solu-

tion and we observe that the simplex solution verifies the two analytical results we have de-

rived from the previous subchapters. First, it is tangent to the obstacle at the point of the in-

tersection and  the end point. Second, at each interval before and after the intersection the 

solution satisfies the Euler Lagrange equation. 

 

Example 2a. Unbounded homogeneous medium  

In the case of the homogenous medium the analytical solution is obviously a straight line 

joining the boundary points. The simplex solution gives us exactly that. 
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Figure.A9 Analytical solution for homogenous medium (blue) vs Simplex(red). 

Example 2a. Homogenous medium with obstacle 

This test case is more interesting than the last. We have put an obstacle in the shape of a cir-

cle with parametric equations    1200 cos(t)+2000,1200 sin(t)-300 0, 2t     on the line 

that joins the boundary points. The solution satisfies the analytical results derived in previ-

ous subchapters equations  (20& 23) and the analytical solution derived by Petrov (1968, p. 

120). 

 

Figure.A10 Simplex solution to the obstacle problem on the homogenous case. 
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A p p e n d i x  B  

V a l i d a t i o n  o f  a l g o r i t h m  t h r o u g h  t h e  

S t u r m  L i o u v i l l e  p r o b l e m   

 

Another very interesting test case for our algorithm is the Sturm-Liouville (or S-L) problem. 

We are going to describe the variational approach and derive the first eigenfunctions and ei-

genvalues using the Rayleigh–Ritz method and the downhill simplex as the optimization al-

gorithm. 

Sturm Liouville systems 

The S-L theory, is the theory of the real second-order linear differential equation of the form 

( ) ( ) (x)
d du

p x q x u r u
dx dx


 

   
 

 , 
1 2[ , ]x x x                       (24) 

It can also be seen as an eigenvalue problem with regards to u   

Lu = ιu   

Where 
1

( ) ( )
(x)

d du
Lu p x q x u

r dx dx

  
    

  
  

 

( ), ( ), ( )r x p x q x  are given and the functions ( )p x  and ( )r x   are required to be everywhere 

positive and bounded away from zero. 

The S-L problem can be reformulated as a variational problem as follows. We are consider-

ing the simple case where the boundary values are 
1( ) 0u x    , 

2( ) 0u x  . 

It can be shown (see Gelfand and Fomin 1963) that the eq (24) is the Euler-Langrange equa-

tion of the following variational problem and both eq (24) and the boundary values can be 

obtained by solving: 

Minimise the functional  [ ]uJ  defined as follows: 
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2

1

2

1

2 2

2

( ) ( ) ( ) ( )

[ ]

( ) ( )

x

x

x

x

p x u x q x u x dx

u

r x u x dx

  







J                        (25) 

Where the eigenvalue   is equal to  

  

2

1

2

1

2 2

2

( ) ( ) ( ) ( )

( ) ( )

x

x

x

x

p x u x q x u x dx

r x u x dx



  







 .                      (26) 

By using the Rayleigh–Ritz method we calculate the eigenfunction and eigenvalue 
1( )u x  and 

1  (which is the lowest non–trivial eigenvalue for this equation and boundary conditions) re-

spectively. The next eigenfunction/eigenvalue can be obtained by minimizing  

2

1

2 2[u] ( ) ( ) ( ) ( )

x

x

Q p x u x q x u x dx      under the additional constaint 
2

1

1( ) ( ) ( ) 0

x

x

r x u x u x dx  . 

 

Thus, the ith eigenfunction/eigenvalue can be found by minimizing [u]Q  under the additional 

constraints 
2

1

1( ) ( ) ( ) 0

x

x

r x u x u x dx  ,
2

1

2( ) ( ) ( ) 0

x

x

r x u x u x dx  ,…,
2

1

1( ) ( ) ( ) 0

x

i

x

r x u x u x dx  . 

The additional constraint’s meaning, is that we seek a function that minimizes [ ]Q u , that is 

also orthogonal to the previous functions found, with respect to the inner product  

     
2

1

,

x

r

x

f g r x f x g x dx   

 

The first Eigenfunction and eigenvalue of the S-L problem using Rayleigh–Ritz meth-

od and downhill simplex 

Let us consider the hydro-acoustics waveguide confined between two horizontal soft bound-

aries (zero dirichlet boundary conditions) at positions 0,z z h    .  
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The Helmholtz equation in 2 dimensions for a line source in plane geometry, with sound 

speed and density depending only on depth z is, 

2 2

02 2

1
( ) ( ) ( )

( ) ( )
s

p p
z p x z z

x z z z c z


  



   
     

   
     (27) 

Where   is the angular frequency of the source, p  is the pressure. The line source is paral-

lel to the x axis and intercepts the z axis at 
0z . 

Using separation of variables, we seek a solution in the form ( , ) ( ) ( )p x z z x  . After sub-

stituting and dividing by ( ) ( )z x   we get, 

2 2

2 2

1 1 1
( ) 0

( ) ( )

d d d
z

dx dz z dz c z






     
     

      
  

In each bracket the contents are functions of ,x z  respectively. Therefore, the only way the 

equation can be satisfied is if each component is equal to a constant, let us denote it 
xmk  . 

We obtain the following modal equation, 

2
2

2

( )1
( ) ( ) 0

( ) ( )

m
xm m

d zd
z k z

dz z dz c z






  
     

   
                (28) 

With (0) 0m   , ( ) 0m h   .  

This is an S-L problem and below we solve it using the variational method, in order to vali-

date our algorithm. 

As an example we consider  ( ) 1500 , (z) constant, 2 100,h 500m
m

c z
s

        . This 

classical S-L system has the analytical solution a sin
k z

h

 
 
 

, 1,2,...k   , 0 z h   . The 

corresponding eigenvalues are 

2
k

h

 
 
 

 . The first eigenfucntion 
1  is calculated using sim-

plex using the variational principle described by eq. (25) and is plotted in the figure below 

with blue straight line. The analytical solution is also plotted using dots. 
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Figure B1. Left, graph of ( )c z  . Right, first eigenfunction derivation using simplex. 

 

As a second example, we consider the case of an inhomogeneous vertical soundspeed profile  

( )c z  charadcterized by a minimum (summer profile) as plotted in Fig.B2. The first eigen-

fucntion 
1  is calculated again by using simplex using the variational principle described by 

eq. (25). The analytical solution for this problem does not exist so in order to validate the so-

lution we solve the corresponding differential equation (28) using finite differences; see e.g., 

Jensen et al (1994). The solution of the first eigenfunction obtained numerical by the finite 

difference method using N=500 points is plotted in Fig.B2 using cyan line.  

Something that has to be remarked in this example is that the solution is an extreme case in 

the sense that it requires a lot of sine series terms to be approximated. The downhill simplex 

algorithm blows up for a merit function of more than 12 variables, therefore it is necessary to 

use the alternative algorithm developed in the present thesis,  which is described in section 

4.3. The solution using simplex for 11 sine terms is compared against the alternative algo-

rithm using 50 terms and are plotted below. 
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Figure B2. Left, graph of ( )c z , which represents a typical summer sound speed profile. 

Right, first eigenfunction derivation using finite differences (cyan straight) vs solution with 

downhill simplex with 11 terms of sine series . 

 

Figure B3. First eigenfunction derivation using the alternative algorithm with 50 terms of si-

ne series. 
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A p p e n d i x  C  

M a t l a b ®  a n d  G U I  i m p l e m e n t a t i o n   

 

 

In this chapter we are going to describe in detail the Matlab® GUI created in the present the-

sis.  The Graphical User Interfaces) provide point-and-click control of software applications, 

eliminating the need to learn a language or type commands in order to run the application. 

GUIDE (GUI development environment) provides tools to design user interfaces for custom 

apps. Using the GUIDE Layout Editor, one can graphically design their UI. GUIDE then au-

tomatically generates the MATLAB code for constructing the UI, which can be modified, to 

program the behavior of their application. 

GUI Showcase 

First, we are going to explain what everything on the GUI does and how to use it. When run-

ning the shipopt_v1.m, a window opens that contains the following: 

 

In the middle of the window, upon loading, the Mediterranean coast line and bathymetry are 

loaded and plotted in the figure. The user here can click on the map to insert waypoints. The 

first waypoint is the departure point, the last is the arrival point. If more than one points are 

given, let them be n number of points, then the ship optimal route is found 1n  times for 
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each of the waypoint pairs in the order they were given. For each pair the travel time is cal-

culated and then added to the departure date, which becomes the departure date for the next 

pair. 

 Here, the date of the departure is inserted in ISO 

format. For instance, 21 of January 2013 7:43 pm corresponds to 20130121.194300 . 

 Here, the name of the ship is typed by the user. This 

is needed, because, we have created a database with different ships and it requires the name 

of the ship in order to load its data (engine load characteristics, resistance tables, etc). 

 This box displays the coordinates (longitude and lati-

tude) of the last input point given by the user, so that they can edit it with exact precision. 

Pressing Accept Changes button saves the changes 

made by the user in the longitude-latitude box, while Delete changes removes the last point 

given from the memory. 

 Pressing this button initializes the algorithm for finding the optimal 

route between the n  waypoints given. 

Geographical data 

Coastline Data 

The coastline data consists of two arrays 1x70715  , one for the longitude and one for the lat-

itude. The order of the points of the coastline can be arbitrary, as long as every element of 

the arrays with the same index corresponds to the coordinates of the same point. This format 

is compatible with the Matlab command mapshow(lon,lat), which we use to plot the coast-

line in this work. 



 

91 

Bathymetry Data 

The bathymetry data consists of a Matlab object, that contains 2 arrays: lon02(1x209), 

lat02(81x1), and one matrix: bath02 (81x209). At each point with coordinates lon02,lat02 

corresponds a water depth of bath02. Any point that corresponds to land, has a bathymetry of 

NAN (not a number). This is of very big importance in our obstacle-land avoiding feature, 

since any path crossing that point, will make the fuel consumption integral infinite.   

 

Table C1. Example of bathymetry data array bath02. 

Weather Data Structure 

The weather data is composed by the wind and the wave data. The wave data are taken using 

swan and the wind ones from RegCM3.  The wave data consist of three objects Hsig, Dir, that 

contain the value of the important wave height and its direction respectively and Tp that con-

tains the modal periods. The direction is measured in degrees with respect to the equator. 

Each, contains matrixes with name Hsig_<iso date>, (or Dir_<iso date>) and Tp-

_<iso_date>,  from January of 2015 up until December of 2016, with an interval of three 

hours between each data. 
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Table C2. Example of Hsig_ construct componenents. 
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Table C3. Example of Hsig_20150103_030000 matrix. 

 

Same holds for the wind data, but instead of having measure and direction, the data consists 

of two objects called  U and V, that are the horizontal and vertical component respectively of 

the wind vector on the earths curvilinear coordinates. 

Ship Data Structure 

The ship data is a structure with the name of the ship, containing the following attributes: 

B  : Width. 

D  : Depth. 

CB: Cb coefficient. 

L  : Length. 

Disp: Displacement 

U  : Service speed 

Kk: Wind resistance coefficient  

rwind: Wind density 
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tt: An array with the polynomial interpolation coefficients of TK  . 

qq: An array with the polynomial interpolation coefficients of   QK   

wake: Wake fraction 

thrd: Thrust reduction factor 

relrot: Relative rotative coefficient 

rho: Water density. 

Vw: The different service speeds that correspond to the calculated added resistance. 

Hs: The different important wave heights that correspond to the calculated added resistance. 

Rw: The added resistane for different service speeds and sea states. 

bspcons: The engine specific fuel consumption in 
g

kWh
. 

  

Finally the central  GUI flowchart is shown in Fig.C1, where also the names of the basic m-

files are listed. 



 

95 

 

Figure C1 GUI flowchart. 

 

 

 


