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Abstract

In this study, we present two novel frameworks for clinical risk assessment utilizing heteroge-
neous tabular data, including numerical, categorical, and checkbox-type features. The architec-
tures developed are a non-negativemulti-layer perceptron (MLP), which enforces non-negativity
constraints on all weights during training and a network that deploys the self-attention mecha-
nism for enhanced feature interaction. This work involves training and evaluating the models
on two distinct datasets, one focused on melanoma classification and the other on a highly
imbalanced survey dataset from Behavioral Risk Factor Surveillance System (BRFSS), prepro-
cessed for heart attack/disease classification. Additionally, we integrate a privacy-preserving
pipeline, including anonymization and minimization techniques, to ensure personal data pro-
tection. The performance metrics indicate that both the non-negative MLP and the attentive
network significantly outperform Logistic Regression, which is a widely used method in clinical
risk assessment task. The attentive network, in particular, while effectively handling missing
values, mitigates overfitting and demonstrates superior robustness. Furthermore, the attention
weights generated, provide easily interpretable insights, enhancing the model’s transparency
during decision-making process.

Keywords: melanoma, heart attack/disease, BRFSS, non-negative, self-attention, binary clas-
sification, class imbalance
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Εκτενής Ελληνική Περίληψη

Στη παρούσα εργασία, πραγματοποιείται η ανάπτυξη και αξιολόγηση δύο καινοτόμων αρχιτεκτο-
νικών βαθιάς μάθησης, για την πρόωρη εκτίμηση ρίσκου σε κλινικά δεδομένα, τα οποία περιλαμ-
βάνουν αριθμητικά, κατηγοριοποιημένα και δεδομένα τύπου πολλαπλής επιλογής (“checkbox”).
Η πρώτη και απλούστερη αρχιτεκτονική που υλοποιήθηκε, είναι ένα πλήρως συνδεδεμένο δί-
κτυο, δύο επιπέδων, μη αρνητικών βαρών (non-negative MLP) (Σχήμα 4.1), το οποίο βελτιώνει
την υπάρχουσα βιβλιογραφία όσον αφορά τα δίκτυα μη αρνητικών βαρών [25] με τις εξής συμ-
βολές:

• αύξηση του βάθους και κατ’ επέκταση της πολυπλοκότητας του μοντέλου.

• τα βάρη στο επίπεδο εξόδου συνεισφέρουν στην εκπαίδευση του δικτύου, χωρίς να είναι
παγωμένα, παραμένοντας βέβαια περιορισμένα σε μη αρνητικές τιμές, ώστε κάθε χαρα-
κτηριστικό να συμβάλλει μόνο θετικά στην αύξηση του ρίσκου διάγνωσης της εκάστοτε
ασθένειας.

• κατάλληλη επιλογή και παραμετροποίηση της συνάρτησης κόστους (loss function) και των
αλγορίθμων βελτιστοποίησης με στόχο τη βελτίωση της βαθμονόμησης του ρίσκου που
εκτιμάται από τα μοντέλα.

Η δεύτερη και πιο σύνθετη αρχιτεκτονική, παρουσιάζεται στο Σχήμα 4.2 και αξιοποιεί τον μηχανι-
σμό προσοχής (self-attention). Ο πυρήνας της προτεινόμενης μεθόδου είναι ένας Transformer
Encoder (κωδικοποιητής) με ορισμένες ιδιαιτερότητες βάσει των απαιτήσεων και προκλήσεων
που εισάγουν τα κλινικά δεδομένα:

• διαχειρίζεται με επιτυχία όλα τα πιθανά είδη κλινικών δεδομένων. Τα συνεχή αριθμητικά
δεδομένα περνούν από ένα πλήρως συνδεδεμένο δίκτυο δύο επιπέδων, ενώ τα κατηγο-
ριοποιημένα και πολλαπλής επιλογής δεδομένα περνούν από προσαρμοσμένα επίπεδα
ενσωματώσεων με αποτέλεσμα, προτού τροφοδοτηθούν στον Transformer Encoder, να
βρίσκονται σε έναν κοινό χώρο χαρακτηριστικών.

• διαθέτει την ικανότητα να χειριστεί με επιτυχία την έλλειψη συγκεκριμένων χαρακτηριστι-
κών, σε οποιονδήποτε τύπο δεδομένων, χωρίς να απαιτεί την αφαίρεση τους από το σετ
εκπαίδευσης.

Περισσότερες λεπτομέρειες και τεχνικά χαρακτηριστικά των παραπάνω αρχιτεκτονικών παρου-
σιάζονται στο Κεφάλαιο 4. Τα μοντέλα αυτά συγκρίνονται με το πρότυπο μοντέλο λογιστικής
παλινδρόμησης (Logistic Regression), μια μέθοδο που χρησιμοποιείται ευρέως για την εκτίμη-
ση κλινικού κινδύνου.
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Η παρούσα μελέτη περιλαμβάνει την εκπαίδευση και αξιολόγηση των μοντέλων σε δύο διαφο-
ρετικά σετ δεδομένων (Κεφάλαιο 5.1):

1. Το πρώτο είναι επικεντρωμένο στη ταξινόμηση και την πρόωρη εκτίμηση κινδύνου εμφά-
νισης μελανώματος, με μόλις 415 εγγραφές και 29 διαθέσιμα χαρακτηριστικά μετά από
προ-επεξεργασία των αρχικών δεδομένων.

2. Το δεύτερο είναι βασισμένο στα πιο πρόσφατα διαθέσιμα δεδομένα που προέρχονται από
την ετήσια τηλεφωνική έρευνα BRFSS για το έτος 2022, με πάνω από 400.000 συμμετέ-
χοντες και 48 χαρακτηριστικά, επιλεγμένα για την ταξινόμηση καρδιακής προσβολής ή
νόσου. Η μεγαλύτερη πρόκληση που εισάγει το παρών σετ δεδομένων είναι η υψηλή
ανισορροπία των κλάσεων. Η αναλογία είναι 90%-10% των αρνητικών διαγνώσεων ένα-
ντι των θετικών, γεγονός πολύ συχνό στη περίπτωση των κλινικών δεδομένων, το οποίο
ευθύνεται για την δημιουργία μεροληπτικών μοντέλων που δεν διαθέτουν την ικανότητα
σωστής και ακριβής αναγνώρισης θετικών διαγνώσεων. Αμφότερες οι δύο προτεινόμενες
μεθοδολογίες ξεπερνούν το ζήτημα αυτό με την υλοποίηση του Focal loss ως συνάρτηση
κόστους.

Επιπλέον σεβόμενοι τους κανονισμούς και περιορισμούς περί ασφάλειας των προσωπικών δε-
δομένων, ειδικότερα στον τομέα της υγείας, ενσωματώνονται τεχνικές ανωνυμοποίησης [24] και
ελαχιστοποίησης [22], που διαδέχονται την εκπαίδευση των μοντέλων.

Τα αποτελέσματα, καταγράφουν τις μετρικές αξιολόγησης, συγκρίνοντας όλα τα προαναφερθέ-
ντα μοντέλα μεταξύ τους, σε αμφότερα τα σετ δεδομένων, αποδεικνύοντας πως οι πιο σύνθετες
αρχιτεκτονικές που προτείνονται σε αυτή την εργασία ξεπερνούν σε όλους τους τομείς την από-
δοση της λογιστικής παλινδρόμησης, με ιδιαίτερα χαμηλό υπολογιστικό κόστος. Συγκεκριμένα,
το δίκτυο που αξιοποιεί τον μηχανισμό προσοχής, παρουσιάζει ισχυρότερες ιδιότητες γενίκευ-
σης σε κάθε πιθανό σενάριο, ακόμα και με μη-ισορροπημένα σετ δεδομένων, προσαρμόζει με
επιτυχία τυχόν ελλιπή δεδομένα διατηρώντας υψηλά επίπεδα ακρίβειας στις προβλέψεις του.
Τέλος, παρέχει αποτελέσματα, εύκολα ερμηνεύσιμα μέσω των βαρών που εξάγονται από τον
μηχανισμό προσοχής, ενισχύοντας τη χρηστικότητα του μοντέλου ως βοηθητικό εργαλείο στη
διαδικασία λήψης αποφάσεων ενός κλινικού ιατρού ή οποιουδήποτε ενδιαφερόμενου, χωρίς να
χρειάζεται εξειδικευμένες γνώσεις στον τομέα της τεχνητής νοημοσύνης.
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CHAPTER 1

Problem Definition, Motivation and Challenges

In the realm of healthcare, taking into account the rapidly evolving landscape of deep learn-
ing, the need of accurate and robust risk assessment tools is significant. In domains such as
melanoma, heart disease and stroke early detection, the tools proposed in this work, aim to
provide a reliable risk score prediction, based on the available clinical data. In terms of neural
networks, the problem could be defined as a binary classification task, on tabular data, aiming
to predict the likelihood, interpreted as the probability of the target positive label, associated
with the corresponding critical health conditions.

This work is driven by several key motivations. First and foremost, the significance behind the
nature of the task itself. The capability to evaluate a risk score for various diseases with a single
global framework, is a really crucial matter, as it enables early intervention and medical treat-
ment in a personalized manner. Regarding the technical domain, we extend the typical machine
learning models and take neural network architectures like Multi-Layer Perceptron (see 2.1.3)
a step further, proposing two different architectures. The first and simpler one, was inspired
by the interpretability of non-negative networks, that aligns well with the need to understand
causality in clinical data. The second architecture, took inspiration by the potential of attention
mechanism, used in transformer-based models, leveraging its explainable property, in order to
finally explore the underlying relationships within healthcare conditions. A more detailed anal-
ysis about the proposed models is provided in Chapter 4. The two options mentioned above,
have the ability to deliver robust results with high accuracy, outperforming all machine learning
models and standard MLP baselines. Additionally they possess the property of explainability,
enabling any interested party, who are not experts in computer vision and AI domain, to make
use of and interpret the results. Besides, the ultimate purpose of this task is to support the
decision-making process of the corresponding clinician.

However, this task is not without its challenges, especially when dealing with healthcare data.
Themain limitation is the access to high-quality, meaningful andwith sufficient samples, datasets
due to privacy concerns and data regulations. Additionally, clinical datasets, even if accessed,
tend to be very imbalanced, with a disproportionately small number of positive instances rela-
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CHAPTER 1. PROBLEM DEFINITION, MOTIVATION AND CHALLENGES

tive to negative ones (a typical ratio is 10%-90% respectively). Handling class imbalance, while
maintaining high accuracy and generalizability of the models, is a very crucial aspect in deep
learning. Finally, healthcare data, most of the times exhibit a heterogeneous nature compris-
ing a combination of numerical (i.e age, height, weight etc.) and categorical features (i.e eyes,
hair, clinical check frequency etc.) or even “checkboxes”, where multiple fields within the same
category can exist simultaneously (i.e ancestry, doctors usually visited etc.). Ways to mitigate
each one of those key challenges, are described extensively during Chapters 4 and 5.
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CHAPTER 2

Introduction

2.1 Basic Theory - Notations

In this section, we will cover some of the most important concepts, both simple and complex,
that we will encounter throughout this work. These notations will aid the reader in fully under-
standing the content of this study and the logic behind each decision made in the architecture
(Chapter 4), how the training framework is defined (Section 5.2) and the meaning of the ablation
study (Section 5.4).

Machine Learning: The science that explores the design and construction of mathematical
models, which, through the use of suitable algorithms, approximate (“learn”) an unknown func-
tion/distribution directly from the provided data and make decisions, on new and unseen data,
based on the assigned goal. In their application, the human factor is limited solely to supplying
the data. The goal of machine learning is therefore to understand the structure of the data and
adapt theoretical functions/distributions to it. For this purpose, iterative approaches are usually
used, feeding data into the model, helping it adjust its parameters, based on the observed er-
rors between predicted and actual outcomes, until the algorithm “learns” a strong pattern that
adapts to the data.

Deep Learning: Deep Learning is considered a subset of Machine Learning, that consists of
more complex and deepermodels, known as “Neural Networks”, which comprisemultiple layers.
Their purpose is to learn high-level representations on input data, leading to a greater number of
trainable parameters compared to traditional machine learning algorithms. Consequently, they
require higher computational resources while training and inference times are typically longer.
It is worth mentioning that the methodology proposed in this study falls under the supervised
Deep Learning algorithms exploiting the MLP architecture which will be explained in this section
and the self-attention mechanism (see Section 2.2).

Machine learning can be broadly divided into four major categories depending on the nature
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CHAPTER 2. INTRODUCTION

and structure of the training data, or the model’s supervision during the aforementioned iterative
learning process:

• Supervised Learning: The most straight-forward category, in which the algorithm re-
ceives labeled training data, where each input is associated with a corresponding target
outcome. Its goal is to learn the function (mapping), that connects the input data with
the known target labels. Typical applications of supervised learning include classification,
regression, and prediction of future states.

• Unsupervised Learning: In this scenario, the machine receives unlabeled training data,
meaning that it does not have explicit guidance on the desired output. Its goal is to au-
tonomously learn the underlying structure and possible patterns or relationships within the
input data.

• Semi-supervised Learning: This is a combination between the two previous approaches.
Commonly, semi-supervised learning receives relatively small amount of labeled data to-
gether with a much larger amount of unlabeled data. This method is utilized when the
cost of feeding the training algorithm with a full set of labeled data is very high or time
consuming. It can be used for the same applications as supervised learning.

• Reinforcement Learning: The algorithm interacts with a dynamic environment where a
specific goal must be achieved. Through trial and error and with a reward-penalty system,
it learns which process yields the most optimal outcome, and adjust its behavior in order
to maximize the cumulative reward over time. The main domains where reinforcement
learning is mainly utilized, are robotics, gaming, and navigation.

In order to solve the task at hand, some standard steps and decisions should be considered:

a. Data Pre-processing and Splitting: The raw data collected, may need a step of pre-
processing in order to meet the requirements of the model, which will be deployed. Such
steps are normalization of values, handling missing values etc. After being processed,
the dataset is splitted into subsets for training, validation and testing. A common split ratio
is 80% for training and 20% for validation/testing, although this is not absolute and can be
modified based on the nature and the size of the dataset.

b. Model’s architecture and design: the model’s architecture should be selected based
on the task and the unique nature of input data. This step involves choosing the correct
general architecture along with its interior parameters like the number of layers, controlling
how deep the model will eventually be. Also, during this step, regularization techniques
can be integrated into the model, like Dropout or L1/L2 regularization, to avoid overfitting.

c. Loss function and Optimizer: In this step the most suitable loss function and optimiza-
tion algorithm are defined. The first, quantifies the difference between the model’s predic-

4



CHAPTER 2. INTRODUCTION

tions and the ground truth (target) label, while the latter updates the model’s parameters,
in order to minimize the loss value.

d. Iterative Training Loop: Utilizing only the training data, the model is trained for a number
of iterations (epochs). During every epoch, the model make predictions (forward pass) on
the input training data, calculates the loss value, and consequently updates its learnable
parameters (backpropagation).

e. Evaluation: Commonly, throughout the training process the model’s performance is eval-
uated on the validation set, which contains samples, unseen during the training loop. The
evaluation protocol is defined differently for each task with the appropriate metrics (accu-
racy, F1-score, PSNR, MSE, etc.). This step is extremely crucial to detect overfitting or
underfitting problems.

f. Inference: Finally, after the model is fully and properly trained, it utilizes the test dataset,
which contains new and unlabeled data, to obtain the desired prediction outputs.

In the subsequent paragraphs of this section we will briefly mention some oh the most popular
ML/DL architectures, activation functions, loss functions and optimizers, while explaining their
differences and use cases.

2.1.1 Supervised Machine Learning Algorithms

One of the simplest machine learning algorithm is k-Nearest Neighbor classifier, which mem-
orizes input training data and during inference predicts the label of a sample, by finding the
label, with majority vote, of its k closest/similar train samples, using either L1 (Manhattan) or
L2 (Euclidean) distance. This algorithm is slow during inference since it needs to take all the
training data into account. Specifically for 𝑁 examples it has a cost of 𝒪(𝑁). Support Vector
Machines (SVMs) are classifiers effective for both linear and non-linear tasks, that identify the
optimal hyperplane to distinguishably separate classes in high-dimensional space. Decision
Trees are a non-parametric supervised method used for classification and regression tasks.
The purpose is to create a model, that learns the underlying rules that characterize the input
training data features. Desicion Trees are useful, since they are very simple to implement,
are self-explained and handles both numerical and categorical data. However, due to its non-
parametric nature, they tend to be affected by outliers and sparse input data, resulting in a not
generalizable model. Finally, Logistic Regression is a widely used classifier for binary tasks,
where the goal is to predict the probability (or risk score) of an observation to belong in a par-
ticular class. It utilizes sigmoid function (Figure 2.2 [left]) to map the values between 0 and 1,
representing the probability of the positive class.

5



CHAPTER 2. INTRODUCTION

Figure 2.1: Single Layer Perceptron where 𝑖 the number of inputs and 𝜎 the non-linear activation
function.

2.1.2 Perceptron and MLPs

Perceptron is the simplest form of a neural network, working as a linear binary classifier in super-
vised deep learning tasks. It receives external input data, multiplying them with corresponding
weights and adding a bias term, so they are combined linearly. Typically these outputs pass
through an activation function, which introduces non-linearity to the network (see Figure 2.1).
Extending the concept of a perceptron, Multi-layer Perceptrons (MLPs) combine multiple layers
of neurons, also known as “Fully Connected” or “Dense”, because every neuron in a layer inter-
acts with all neurons of the subsequent layer. An MLP consists of an input layer, a number of
hidden layers, each with possibly varying number of neurons and finally an output layer. MLPs
can solve multiclass supervised tasks, where the number of neurons on the output layer equals
the number of classes on the task.

̂𝑦𝑗 = 𝜎 (
𝑛

∑
𝑖=1

𝑊𝑖𝑗𝑥𝑖 + 𝑏𝑗) (2.1)

where ̂𝑦𝑗 is the output of 𝑗-th neuron, 𝜎 the selected activation function, 𝑥𝑖 the 𝑖-th input to the
neuron, 𝑊𝑖𝑗 the weight matrix between input 𝑖 and neuron 𝑗 and 𝑏𝑗 the bias term of the neuron.

2.1.3 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks consist a class of deep learningmodels, usedwidely in computer
vision tasks such as image classification, segmentation and object detection. Their main block
is convolutional layers that use learnable filters (kernels) to apply convolutions to the input data,
typically images, in order to export meaningful representations and underlying patterns. These
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CHAPTER 2. INTRODUCTION

kernels are moving windows that slide over the input image performing convolutions in each
step. For each convolutional layer, a set of hyperparameters need to be defined:

• the filter’s size (1 × 1, 3 × 3, 5 × 5 etc.).

• the number of filters in each layer.

• stride, which defines the step by which the filter (kernel) is moved across the input image
during the convolution operation. It is typically set to 1, although for bigger stride values,
the smaller the spatial dimension of the output feature map becomes.

• padding, which refers to the amount of pixels added to the borders of the input image,
before applying convolutions. It is used to control the spatial dimension of the output
feature map and if no padding is applied then the output will be smaller than the input
image.

Typically after each convolutional operation, a non linear activation function and a pooling layer
are applied to reduce the dimenstionality of the resulting feature map, while maintaining impor-
tant information. Max pooling and average pooling are the two most commonly used pooling
layers. After the final convolutional layer of the network, an adaptive pooling (either max or
average) is applied to control the spatial resolution of the final representation. Finally the output
is flattened into a vector, that contains high level information, and subsequently pass through a
set of Fully Connected layers, since the dimensionality is greatly reduced in comparison with the
input image. All of the above describe CNNs in general, but more specifically, some of the most
popular architectures include AlexNet [5], GoogleNet [8], VGGNet [7], ResNet [9] and U-Net [6].

2.1.4 Non-linear Activation Functions

Non-linear Activation Functions are significant components of all neural networks, as they are
responsible for introducing non-linearity into the model’s architecture, allowing it to learn com-
plex patterns and relationships on the input data. They decide, whether a neuron should be
activated or not, based on a threshold set by each specific function. Without them, neural
networks would always be representing linear transformations of the input data, restricting the
model’s power and ability to generalize effectively.

• Sigmoid: It squashes the input values to range [0, 1] making it a popular choice in tasks
like binary classification, where the output needs to be interpreted as a probability. Math-
ematically it is defined as:

𝜎(𝑥) = 1
(1 + 𝑒−𝑥) (2.2)

The limitations that arise, is that sigmoid suffers from the “vanishing gradient” problem,
meaning that for very large or very small input values, the gradient becomes almost zero,
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Figure 2.2: Sigmoid and Hyperbolic Tangent activation functions.

deactivating the corresponding neuron and slowing the learning process. Additionally,
its outputs are not zero centered, which could result in a convergence issue in some
optimization algorithms.

• Hyperbolic Tangent: Commonly denoted as tanh, is very similar to the Sigmoid function,
with themain difference that its output range is [−1, +1], acquiring a useful property where
the outputs are zero centered. However, tanh does not overcome the “vanishing gradient”
problem. Mathematically it is defined as:

𝑓(𝑥) = (𝑒𝑥 − 𝑒−𝑥)
(𝑒𝑥 + 𝑒−𝑥) (2.3)

• Softmax: It is commonly used in multiclass classification tasks. Similar to the sigmoid
activation function, Softmax returns the probability of each class, as a ditribution of prob-
abilities 𝜎 ∈ [0, 1] where all sum up to 1.

𝜎(𝑧𝑖) = 𝑒𝑧𝑖

∑𝑁
𝑗=1 𝑒𝑧𝑗

(2.4)

where 𝑧𝑖 represents the input vector, 𝑧𝑗 the output vector and 𝑁 the total number of
possible classes defined in the task.

• ReLU (Rectified Linear Unit): One of the most widely used activation functions due to its
simplicity and efficiency. ReLU sets every negative input value to zero, while maintaining
the positive values unchanged. Thus, it follows the equation 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) and the
range the values it could possibly produce as outputs is [0, +∞]. ReLU, also, converges
much faster than sigmoid and tanh, which is a significant advantage in training. The main
drawback of ReLU, known as “dying ReLU” problem, is the possibility that, since all outputs
can be zero, then all neurons will become inactive, which essentially stops the learning
process.

8



CHAPTER 2. INTRODUCTION

Figure 2.3: ReLU, Leaky ReLU and GELU activation functions respectively.

• Leaky ReLU: A variation of ReLU function, that mitigates the “dying ReLU” issue, by
employing a small, positive gradient for the negative inputs. It follows the equation 𝑓(𝑥) =
𝑚𝑎𝑥(𝑎𝑥, 𝑥) where typically 𝑎 = 0.01, with range of values [−∞, +∞]. This non-zero
slope in the negative inputs prevents the neurons from being completely inactive, even if
all the inputs are negative.

• GELU (Gaussian Error Linear Unit): An activation function that has gained popularity,
mainly because of its smoothness across the full range of input values, also mitigating the
vanishing gradient problem [27]:

𝐺𝐸𝐿𝑈(𝑥) = 𝑥 × Φ(𝑥) (2.5)

whereΦ(𝑥) is the Cumulative Distribution Function (CDF) for Gaussian Distribution. GELU
is a good choice in deeper and more complex deep learning tasks such as natural lan-
guage processing (NLP), speech recognition and inmost Transformer architectures. GPT-
3 [19] and BERT [15] are some of the most popular models utilizing GELU activation func-
tion.

2.1.5 Loss Functions

As mentioned before, “loss functions” or “cost functions”, provide a method to quantify the dis-
tance between the model’s predicted output with the actual corresponding value, in order to
evaluate how well the model performs on the data. The main goal of the training process is to
minimize the loss function’s output while maintaining increasing accuracy on unseen data. The
choice of an appropriate loss function depends mainly on each specific task and the nature of
the available data.

• Mean Squared Error (MSE): Also known as L2 loss, MSE is a widely used loss func-
tion in deep learning tasks. It computes the average of the squared differences between
the predicted and true values. Due to the squaring operation MSE loss results in higher
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penalties, as deviations from the actual values grow bigger, but it is prone to outliers on
the data. Mathematically it is defined by Equation 2.6 and it is a popular choice in regres-
sion tasks.

𝑀𝑆𝐸 = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − ̂𝑦𝑖)2 (2.6)

where 𝑛 is the number of samples, 𝑦𝑖 the target value for the 𝑖-th sample and ̂𝑦𝑖 the
model’s predicted value for the 𝑖th sample.

• (Binary) Cross Entropy: Binary Cross Entropy loss (BCE) and Categorical Cross En-
tropy loss (CE) are typically used in most binary and multiclass classification problems
respectively. BCE loss (or else Log Loss) compares each predicted probability from the
model, with the actual target value, which can either be 0 or 1:

𝐵𝐶𝐸 = − 1
𝑛

𝑛
∑
𝑖=1

[𝑦𝑖 log( ̂𝑦𝑖) + (1 − 𝑦𝑖) log(1 − ̂𝑦𝑖)] (2.7)

Similarly Categorical Cross Entropy is utilized in multiclass classification problems where
the target labels are one-hot encoded (in case they are not, Sparse Categorical Cross
Entropy could be used):

𝐶𝐸 = − 1
𝑛

𝑛
∑
𝑖=1

𝑚
∑
𝑗=1

[𝑦𝑖𝑗 log( ̂𝑦𝑖𝑗)] (2.8)

where 𝑛, 𝑚 the number of samples and classes respectively, 𝑦𝑖 the target value for the
𝑖th sample and ̂𝑦𝑖 the model’s predicted value for the 𝑖-th sample. In the context of CE 𝑦𝑖𝑗
is the ground truth, one-hot encoded, probability of sample 𝑖 for class 𝑗 (could be either 0
or 1) and ̂𝑦𝑖𝑗 the model’s predicted probability that sample 𝑖 belongs to class 𝑗.

• Focal Loss: Focal loss is specifically deployed in this work as it is known to handle class
imbalance better than Binary Cross Entropy, while resulting in more calibrated models. A
more detailed explanation of Focal loss and its properties is demonstrated on Section 5.2.

2.1.6 Optimizers

Optimizers are algorithms used to adjust the trainable parameters of a neural network, by up-
dating the model’s weights in the direction that minimizes the loss function (Figure 2.4). A key
hyperparameter of optimization is learning rate “𝑙𝑟”, which determines the size of each step
taken during the parameter updating. Finding the optimal learning rate could be challenging
and depends on several factors such as the optimizer and loss function, the model architecture
and the nature of training data. Too low learning rate values lead to slow convergence and
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too high values lead to instability with the danger that the model will never achieve the global
minima and it won’t converge. Some of the most commonly used optimization algorithms are:

• Stochastic Gradient Descent (SGD): computes the gradient using 𝐵 number of mini-
batches, with common mini-batch sizes ∈ (32, 64, 128, 256, 512) and a fixed learning
rate. However SGD can produce high variations in parameter updates, leading to slow
convergences, while many variations like “Momentum SGD” have been proposed to miti-
gate these issues.

• Root Mean Square Propagation (RMSProp): it typically used in training deep and com-
plex neural networks. RMSProp mitigates the issue of “vanishing gradients” by adapting
the learning rate for each parameter. It specifically utilizes a weighted moving average of
the squared gradients for each parameter, meaning that when it encounters high variance
gradients it reduces the learning rate, in contrary with encountering low variance gradients
where it allows bigger steps by increasing learning rate. Equation 2.9, shows the moving
average calculation, while the parameters update follows Equation 2.10.

𝐸[𝑔2]𝑡 = 𝛽𝐸[𝑔2]𝑡 + (1 − 𝛽)𝑔2
𝑡 (2.9)

𝑤𝑡 = 𝑤𝑡−1 − 𝛼
√𝐸[𝑔2]𝑡 + 𝜖

𝑔𝑡 (2.10)

where 𝐸[𝑔2]𝑡 the moving average of the squared gradients during time step 𝑡, 𝑔𝑡 the
gradients at time step 𝑡 with respect to the weights 𝑤, 𝛼 the initialized learning rate, 𝛽 the
decay rate of the moving average value which typically set to 0.9 and 𝜖 a small constant
for numerical stability.

• Adam [10]: a combination of momentum SGD and RMSProp, that achieves robust and
adaptive learning rates. Utilizing two moving averages of gradients, it adapts a learning
rate for each parameter, which leads to faster and numerically stable convergence.

2.1.7 Overfitting

In previous paragraphs we referred to a term called “overfitting” - but what exactly does that
mean? The answer is simple, overfitting is a common challenge in ML/DL models and it occurs
when a model learns to capture outliers or random trends in the training data, rather than the
underlying pattern. This can happen when the model becomes overly complex or it is initially
deeper than needed, fitting to the training data extremely well, but resulting in poor generaliza-
tion abilities when presented with new, unseen data (during validation step). To mitigate this
issue, techniques such us regularization, cross validation and early stopping of the training pro-
cess, can be utilized.
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(a) Optimizers on 2D loss surface contours. (b) Optimizers on 3D saddle point case.

Figure 2.4: (a) Illustrates how different optimization algorithms converge over time on a 2D represen-
tation of a loss surface. (b) Represents the behavior of the same optimization algorithms in a saddle
point case, meaning that the gradient is zero in that point but it’s neither a minimum or maximum. By
tracking the footprints it is observed that SGD, Momentum and NAG have difficulties or they even don’t
converge at all when they reach a saddle point, while most recent techniques like Adagrad, Adadelta
and RMSProp quickly converge to the negative slope.

2.1.8 Regularization & Imbalanced Dataset Handling

Dropout is simple regularization technique commonly used in neural networks to prevent over-
fitting. With dropout, a random proportion of the neurons in the training are “killed”, meaning
that their outputs are set to zero. For each training epoch, a new random set of neurons are
selected to be deactivated, forcing the model to learn more robust representations of training
data and not rely solely on a single neuron. Of course, the convergence of the model becomes
slower, but training time per epoch becomes faster due to the smaller amount of activated neu-
rons. Dropout is a method used only in training and it is usually deactivated while making new
predictions during inference.

Batch Normalization is, also, a very commonly used technique, in neural networks, that is
typically placed after the activation function outputs and improves both training stability and
speed. This is achieved, by normalizing the activations of each layer in a mini-batch, so that
they have a mean of zero and standard deviation of one. This normalization, is applied to each
feature dimension independently. Subsequently, the normalized activations, are scaled and
shifted, using a set of learnable parameters 𝛾 and 𝛽 respectively. The mathematic equations
2.11 - 2.14 describe this process in detail.
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Figure 2.5: Batch Normalization - Layer Normalization

𝜇 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 (2.11)

𝜎2 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝜇)2 (2.12)

𝑥𝑖,𝑛𝑜𝑟𝑚 = 𝑥𝑖 − 𝜇√
𝜎2 + 𝜖

(2.13)

𝐵𝑁(𝑥𝑖) = 𝛾 ⋅ 𝑥𝑖,𝑛𝑜𝑟𝑚 + 𝛽 (2.14)

where 𝑛 represents the mini-batch size, 𝜇, 𝜎 the mean and standard deviation of the mini-batch
elements, 𝜖 a small fixed constant variable added for numerical stability and 𝛾, 𝛽 the layer’s
learnable parameters.

Layer Normalization is another technique used to normalize the activations of each layer in a
neural network. Batch normalization, normalize the values across the mini-batch dimension, on
the contrary with layer normalization which operates along the feature dimension. This means
that layer normalization computes the mean and standard deviation of the activations along the
feature dimension for each example in the mini-batch separately. Finally, its equations are iden-
tical to batch normalization, with the difference that they are computed in another axis as shown
in Figure 2.5. Layer normalization is widely used for NLP tasks in architectures like Transform-
ers (see Section 2.2), where the input data length may vary.

Cross-validation for imbalanced datasets: In Machine Learning, a common technique used
to train a robust and generalizable model, is cross-validation. It divides the dataset into multiple
subsets, where typically one of them is the validation set and the remainder consist the training
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Figure 2.6: K-Fold vs Stratified K-Fold cross-validation. Source: scikit-learn

set. This process is repeated multiple times, with different combinations of subsets to ensure a
more comprehensive evaluation of the model’s performance.

Between the different methods of cross-validation, Stratified K-Fold is an enhancement of the
traditional K-Fold, able to handle imbalanced datasets. In short, Stratified K-Fold ensures that
each fold preserves the same class distribution as the original dataset. In standard K-Fold
cross-validation, random sampling is used to split the subsets. Supposedly the original dataset
is imbalanced, there is a great risk that the output subsets won’t retain the class distribution and
certain classes will be significantly less represented than others. This problem is averted with
the stratified sampling, with the aforementioned property of preserving the class distribution in
each fold, reducing the risk of biased model evaluation.
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2.2 Transformers

Building upon our previous discussions of foundational algorithms and architectures in the field
of machine learning and deep learning, such as linear regression, desicion trees, multilayer
perceptrons (MLPs) and convolutional neural networks (CNNs), this section shifts our focus to
self-attention mechanism and the Transformer architecture. These methodologies hold partic-
ular significance for understanding and effectively modeling sequential data within the broader
context of machine learning and can be extended in various computer vision tasks such as
classification through the use of Vision Transformers (VITs), language modeling and structured
data analysis.

We begin by exploring in depth the self-attention mechanism (2.2.1), a key innovation in modern
sequence modeling. Self-attention allows the model to dynamically focus on different parts of
the input sequence, capturing complex relationships and long-range dependencies within the
data, more effectively than traditional recurrent models.

Next, we delve into the Transformer architecture (2.2.2). By incorporating self-attention layers
in conjuction with feed forward neural networks, Transformers offer an efficient and flexible ap-
proach to understanding and processing sequential data across various domains, particularly
in language modeling tasks, where it excels at understanding and generating natural language
text.

Additionally, Tansformers have been extended to computer vision through the use of Vision
Transformers (ViTs). By representing images as sequences of patches and applying self-
attention, ViTs effectively capture both local and global patterns in images. This architecture
has proven successful in a range of supervised vision tasks, including image classification, im-
age segmentation and object detection as well as self-supervised learning, where models learn
representations from unlabeled data. These are just some examples of the diverse applications
where Transformer-based models can be utilized.

Through the lens of sequencemodeling and Vision Transformers, this chapter ties these innova-
tive methods back to the domain of tabular data, illustrating the potential for Transformer-based
models to enhance tasks such as prediction and classification in structured data.
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2.2.1 Self-Attention mechanism

The self-attention mechanism operates by taking an input sequence of 𝑛 elements and returns
an output sequence of the same length 𝑛. This process allows the inputs to interact with each
other and determine which parts of the input information to focus on more and which to focus
on less, based on the context relevance. This is achieved by computing attention scores that
represent the relevance of each input element with respect to every other element in the se-
quence. The final output for each input is a weighted sum of the values, where the weights are
determined by the attention scores. Let’s take a closer look at how this mechanism operates
through several simple steps:

Scaled Dot-Product Attention

Step 1. Input Data and Weight Initialization: Assume we have an input sequence of 𝑛 ele-
ments, each of dimension 𝑑, forming a matrix 𝑋 ∈ℝ𝑛×𝑑. Consequently we initialize the weight
matrices 𝑊𝑄 ∈ℝ𝑑×𝑑𝑞 , 𝑊𝐾 ∈ℝ𝑑×𝑑𝑘 and 𝑊𝑉 ∈ℝ𝑑×𝑑𝑣 .

Step 2. Q, K, V computation: During this step, the inputs are multiplied with the corresponding
learnable weight matrices as illustrated in the equations 2.15. The resulting three sets of vectors
represent the queries (𝑄), keys (𝐾) and values (𝑉 ).

𝑄=𝑋⋅𝑊𝑄 𝐾 =𝑋⋅𝑊𝐾 𝑉 =𝑋⋅𝑊𝑉 (2.15)

where 𝑄 ∈ ℝ𝑛×𝑑𝑞 , 𝐾 ∈ ℝ𝑛×𝑑𝑘 , 𝑉 ∈ ℝ𝑛×𝑑𝑣 and 𝑑𝑞 = 𝑑𝑘. The dimension 𝑑𝑣 may differ from the
other two and always equals with the dimension of self-attention output.

Step 3. Attention Scores computation: During this step, vector 𝑞, corresponding to a single
input element, is multiplied by the vector 𝐾, which corresponds to every element of the input,
including itself. This process is known as dot product attention.

Step 4. Normalizing Attention Scores: This intermediate step, (proposed by [13]), involves
dividing the attention scores from the previous step, by the square root of the dimension 𝑑𝑘.
This process is referred to as scaled dot product attention (see Figure 2.7). Utilizing the ouputs
of Step 3, without applying this normalization, can lead to large attention scores, resulting in
very small values after applying the Softmax function during the next step. This effect is miti-
gated by considering the factor ( 1

√𝑑𝑘
).

Step 5. Applying Softmax: The Softmax function is applied on the results from the previous
step.

16



CHAPTER 2. INTRODUCTION

Figure 2.7: Scaled Dot-Product Attention.

Step 6. The outputs of the Softmax function are multiplied by the value matrix 𝑉 , resulting the
weighted values.

Step 7. Aggregated Results: This final step, involves summing up the weighted values,
element-wise, in order to obtain the final output of the attention mechanism, corresponding
to the desired input. The process from Step 3 onwards is repeated for each input element sep-
arately.

The above pipeline is summarized in Equation 2.16:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 ⋅ 𝐾𝑇

√𝑑𝑘
) ⋅ 𝑉 (2.16)

Multihead Attention

Extending the Scaled Dot Product mechanism, the multi-head self-attention method (see Figure
2.8) has been proposed by using multiple sets of weight matrices to produce different sets of
queries, keys and values. Essentially, this approach is quite similar to the previous one, ex-
cept that now multiple parallel and independent self-attention layers are utilized. The number
of heads ℎ employed in parallel each time, is not predetermined and is considered a hyperpa-
rameter of the model. Let’s summarize the multi-head operation:

Step 1. We should first determine the number of heads ℎ to be used. Then each head has its
own weight matrices, initialized as previously described.
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Figure 2.8: Multihead Attention.

Step 2. Extract vectors 𝑄, 𝐾 and 𝑉 by multiplying the inputs with the weight matrices for each
head separately. The self-attention mechanism is then applied to these vectors independently.

𝑄𝑖 =𝑋⋅𝑊 𝑄
𝑖 𝐾𝑖 =𝑋⋅𝑊 𝐾

𝑖 𝑉𝑖 =𝑋⋅𝑊 𝑉
𝑖 (2.17)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑖, 𝐾𝑖, 𝑉𝑖) (2.18)

for 𝑖 ∈ {1, … , ℎ} representing the index of the specific attention head.

Step 3. Finally, during the last step, we concatenate all the intermediate outputs from each
attention head, into a single output, which is consequently multiplied by the weight matrix 𝑊 𝑂,
in order to obtain the desired final vector as shown in Equation 2.19.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉 ) = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ) ⋅ 𝑊 𝑂 (2.19)

Themulti-head self-attention method enhances themodel’s ability to focus on different elements
and positions in the input data, and it is a part of the Tansformer architecture, as well as of the
framework proposed in this study.

2.2.2 Transformer Architecture

Both self-attention mechanism and the overall Transformer architecture were initially introduced
in 2017 [13] as a novel approach in sequence-to-sequence tasks. Originally proposed for auto-
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Figure 2.9: Transformer Architecture. Source: [13]

matic text translation, the Transformer has since been adapted for a wide range of applications
due to its flexibility and powerful performance.

In this section we will briefly review the Transformer architecture. As shown in Figure 2.9, it
employs an Encoder-Decoder framework, where both modules operate in parallel, consisting
of 𝑁 identical layers.

Encoder

Each one of the 𝑁 Encoder layers comprises two main components:

• Multi-Head Attention: As we described in detail on 2.2.1, the multi-head attention mech-
anism, allows the encoder to focus on different parts of the input sequence and by cap-
turing long-range dependencies and varying attention across the sequence, it forms a
comprehensive understanding of the input.

• Feed-Forward Neural Network: A fully connected network (as described in 2.1) with two
linear layers and a non-linear activation function (commonly ReLU) in between them.

Additionally, it incorporates residual connections around each component, which are then fol-
lowed by layer normalization. This technique helps stabilize training and mitigate the vanishing
gradient problem, allowing the utilization of deeper models. Each component has the form of:
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𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥+𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)) where 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟 could either be the multi-head attention block
or the feed forward network and 𝑥 their corresponding input. Notably, unlike RNNs, the feed
forward network accepts as inputs one attention vector at a time, and since they are indepen-
dent of one another, that makes the whole Encoder block parallelized. Finally, the Encoder’s
output, full of contextual understanding on the input sequence is now passed as input in the
Decoder module.

Decoder

The decoder module, comprises 𝑁 identical layers, similarly to the encoder module but with
some variations:

• Masked Multi-Head Attention: This block is similar to the encoder’s multi-head self-
attention block, except here it is masked in order to prevent the decoder from attending
on future (subsequent) positions in the sequence. This preserves causal dependencies
and ensures that a prediction on position 𝑖 depends only on the positions<𝑖. Themasking
is typically applied by assigning the value −∞ in the attention scores of the subsequent
tokens, before they are passed through the Softmax activation function.

• Encoder-Decoder Attention: A secondmulti-head self-attention block, in which the quer-
ies 𝑄 come from the decoder’s masked attention block, while keys 𝐾 and values 𝑉 orig-
inate from the output of the final encoder layer. This is called cross attention and allows
the decoder to gain access into relevant parts of the encoded input sequence, acquiring
global receptive field, when generating the desired output.

• Feed-Forward Neural Network: A fully connected network exactly similar with the one
consisting the encoder and applied independently to each positional element of the se-
quence.

Following the same style as the encoder, all the three decoder components (sub-layers) in-
clude a residual connection and each one is followed by a layer normalization step. Finally the
𝑁𝑡ℎ Decoder layer output is passed into another linear layer, with size equal to the number of
classes that exist in each specific task (e.g the length of vocabulary used in language modeling
for the task of translation). This linearly transformed vector is finally passed through a softmax
activation function in order to generate probabilities over the available classes.

It is important to note that the computational complexity of self-attention mechanism is typically
𝒪(𝑛2), where 𝑛 denotes the input sequence length, meaning that it depends quadratically on
the sequence elements and this can lead to prohibitively large model sizes. In order to address
this issue, several studies propose more efficient transformer variations like Axial Transformer
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[16] which uses a pair of row and column attention blocks, maintaining the global receptive field
and providing 𝒪(√𝑛) savings. A detailed survey on such techniques can be found in [26].

Embeddings

Transformers use learned embeddings in order to convert the input and output tokens into vec-
tors of dimension 𝑑𝑚𝑜𝑑𝑒𝑙. These embeddings map the discrete token values (words, symbols,
pixels, categorical features etc.) into numerical matrices, creating a representation of the se-
mantic meaning of tokens in a continuous space.

Positional Encoding

Self-attention mechanism itself does not account the order of tokens while working with se-
quential data, since it has no recurrence or convolutions. To this end, Transformers make use
of positional encodings applied to the input and output embeddings before the encoder and
decoder respectively, adding the information about each token’s position in the input sequence.
Specifically the positional encodings have the same dimension 𝑑𝑚𝑜𝑑𝑒𝑙 as the embeddings and
could be learnable or fixed. In [13] sine and cosine functions of different frequencies are used
to encode positional information:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛( 𝑝𝑜𝑠
100002𝑖/𝑑 )

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠( 𝑝𝑜𝑠
100002𝑖/𝑑 )

where 𝑖 is the dimension of the embedding and 𝑝𝑜𝑠 the corresponding position.
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2.3 Privacy in AI

As Artificial Intelligence (AI) continues to evolve rapidly each year, modernmachine learning and
deep learning frameworks often require access to and processing of vast amounts of personal
data. Many large datasets have been developed to meet these requirements, and they often
include sensitive personal information like financial data and medical history, possibly accom-
panied with corresponding images or videos. Therefore, ensuring privacy and data protection is
crucial when working with AI models to prevent data misuse and protect each individual’s rights.

In this context the European Union’s (EU) General Data Protection Regulation (GDPR) has
emerged as a key legal framework defining strict limitations on the collection and processing of
personal data. Similar laws and regulations also apply in many countries worldwide.

Recent studies, reveal that a trained machine learning model may expose private, personal de-
tails about the individuals whose data was used for its training, even if the actual training dataset
is not directly accessible. This exact vulnerability underscores the significance of safeguarding
not just data, but trained models themselves.

Some fundamental principles, outlined by GDPR and should be considered while implementing
a machine/deep learning model:

• Lawfulness and Transparrency: Data processing behind each machine learning algo-
rithm, should follow a legal basis on personal data and must fully inform individuals about
how the data will be used and for which purpose.

• Consent and Accountability: Every individual who have given consent regarding their
personal data, should as well have the right to withdraw their consent at any time. At the
same time, organizations must take responsibility for compliance with GDPR principles.

• Data Minimization: Only the required amount of data, based on the purpose of each
specific AI task, should be collected and processed.

• DataAnonymization: Anonymization is an essential technique, which enhance themodel’s
privacy by ensuring that, once personal information has been anonymized, the identity of
an individual included in the training set cannot be re-identified.

• Accuracy and storage limitation: Every personal data must be updated and maintained
accurate, but not retained longer than its compeletely necessary.

The following two subsections provide an more detailed analysis of the data anonymization [24]
and data minimization [22] pipelines integrated in this study.
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2.3.1 Data Anonymization

As aforementioned, machine learning (ML) models can inadvertently expose personal informa-
tion, so anonymized data, that comply with EU General Data Protection Regulation (GDPR)
and California Consumer Protection Act (CCPA) regulations, provide security against these at-
tacks. In order to enhance the level of safety, [24] propose a complete anonymization process
to create an anonymized model itself (as shown in Figure 2.10).

However, learning on anonymized data often results in a loss of model accuracy. The method
utilized in this study, improvesmodel accuracy by leveraging knowledge from the original trained
model and guides the anonymization process to minimize its impact on performance. This
accuracy-guided anonymization method, outperforms traditional k-anonymity methods.

K-anonymity proposed by [2], is a baseline privacy-preserving technique designed to protect
individuals’ identities in datasets. It involves generalizing or removing attributes until each record
is indistinguishable from at least 𝑘−1 others, reducing the risk of re-identification when the data
is linked with external sources. The approach targets quasi-identifiers (QI), which could lead
to re-identification if combined with other data sources. While k-anonymity minimizes identity
disclosure to 1

𝑘 , it may not fully prevent attribute disclosure if the records within a group share
similar sensitive information.

Figure 2.10: Anonymization process.

Inspired by k-anonymity, the method outlined in Figure 2.10, begins by using the model trained
on the raw data, which accuracy should be preserved, and run the evaluation process on the
training data itself. These outputs are considered as labels for training the “anonymizer” model.
The anonymizer, a decision tree model with 𝑘 minimum samples per leaf node, is designed to
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learn the original model’s “decision boundaries”. Each leaf in the resulting mapping contains a
group of records generalized to the same representative value.

Subsequently, the raw training data pass through the trained anonymizer, in order to get the final
mapping for the data points in each leaf to a representative value. The chosen approach uses
an actual data point from the cluster that falls closest to the median, based on the majority label
within the cluster. This preserves higher prediction accuracy, while satisfying the k-anonymity
requirement. Finally, the model is re-trained using the generalized data, resulting in the desired
anonymized model.

2.3.2 Data Minimization

As mentioned earlier in this subsection, one of the key principles of the GDPR is data minimiza-
tion, meaning that data collection and processing should be limited to only what is necessary
for the task at hand. This is particularly challenging in complex machine learning (ML) and deep
learning (DL) models, since many of them are considered “black-boxes”.

A study proposed by [22] introduces a novel approach to determine the minimum amount of
personal data required for developing and training a ML/DL model, by either removing or gen-
eralizing certain input features. By leveraging the inherent knowledge of the pretrained model,
the proposed method produces generalizations without significantly affecting the initial accu-
racy.

Figure 2.11: Minimization process.
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Theminimization process (as shown in Figure 2.11) begins with an already trainedML/DLmodel
paired with a dataset of samples along with the model’s outputs for them, which serve as their
corresponding labels. The minimization strategy, similarly to the anonymization process, uses
the model’s predictions to cluster similar records, guiding the generalization process. This ap-
proach aligns closely with the model’s “decision boundaries”, allowing for a targeted general-
ization that maintains accuracy, while achieving data minimization. The desired accuracy is a
hyperparameter and could either match the original model’s accuracy, meaning no degradation
is permitted, or it could be set as a deviation percentage from the initial accuracy.

This specific approach is particularly adaptable for existing models, since the original model
remains unchanged and does not require retraining. The outcome of the process is the trans-
formation of input features, some of which may be removed entirely, while others may be gen-
eralized.

Firstly, a univariate decision tree is trained and this will be the “generalizer model”. The deci-
sion tree is created with leaves containing inputs that yield the same prediction in the original
model. This guides the initial set of generalizations by merging feature split values from the
tree’s internal nodes. After applying these generalizations to the test data, the model’s relative
accuracy, representing the proportion of original predictions retained, determines whether to
continue refining the process based on the threshold set:

• In case that the achieved accuracy is greater than the threshold, then the subsequent step
is to “improve the generalization”, by iteratively merging lower level ranges into a single
range. This is applied from lower to higher nodes of the tree, reducing feature splits, until
either the root node or the desired accuracy threshold is met.

• In case that the achieved accuracy is less than the threshold, then the subsequent step
is to “improve the accuracy”. In this scenario, specific features are removed from gener-
alization and will be left unchanged.

Ultimately, the process results in a minimal dataset tailored to the model’s required accuracy.
This includes specific generalized feature ranges and representatives, also valid for future data
collection.
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Related Work

3.1 Non-negative networks

An undisputed issue of neural networks, despite their powerful capabilities, is their lack of in-
terpretability and for that reason they have been characterized as “black-boxes” in terms of
how and why each specific result has been emerged. Explainability is also a crucial matter,
especially in the development of health-related deep learning models for tasks such as image
classification, object detection and risk assessment from tabular clinical data. “Non-negative”
neural networks have emerged as a promising solution to this challenge. In this context, recent
works like [25] and [28] have utilized the properties of “non-negative” networks, demonstrating
their effectiveness on exploring various combinations of potential causes on health outcomes,
based on clinical data, or increase the interpretability on medical image analysis respectively.

In 2022, [25] proposed the “Causes of Outcome Learning” (CoOL) approach, aiming to explore
and identify combinations of exposures that increase the risk of a specific health outcome, since
most epidemiological studies focus solely on a single exposure. The CoOL roadmap, illustrated
in Figure 3.1, is divided in three different steps, the pre-computational phase, the computational
phase and the post-computational phase. During pre-computational phase a causal model,
using a directed acyclic graph (DAG) [4], is deployed, in order to identify the final set of ex-
posures that will potentially be included in the analysis. Computational phase, consists of the
non-negative model initialization and training, the decompose of risk contributions and the sub-
sequent clustering of individuals based on the computation of Manhattan distances and Ward’s
method [12] of the latter. Finally, the post-computational phase defines the final hypotheses
and validate the model’s results.

The key aspects and properties regarding the overall non-negative network architecture and
training pipeline deployed during computational phase:

• Model Simplicity and Interpretability: The non-negative network proposed in this work
(Figure 3.1e) consists of a single hidden layer, resembling a linear regression model, but
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Figure 3.1: Non-negative network as proposed in CoOL.

since it follows a fully connected architecture, each node is able to interact with combina-
tions of various exposures. Activation functions (𝑆+) apply a non-linearity to the linearly
transformed inputs of each node, to eventually be interpreted as the final risk score on an
additive scale. Diving into more technical details, Mean Square Error (MSE) is employed
as the loss function, while Stochastic Gradient Descent (SGD) is utilized as the optimiza-
tion algorithm to minimize this error. Both weights and biases were initialized using values
drawn from a gamma distribution.

• Input Data Types: This network receives as inputs continuous, binary and one-hot en-
coded data with 1 representing the existence and 0 the absence of each variable.

• Restricting Weights to Non-Negative Values: During training all the learnable weights
(connection parameters - 𝛽+) are constrained to non-negative values (≥ 0), in order to
ensure that the existence of an exposure can only increase the risk of the final outcome.

• Restricting Biases to Negative Values: During training, in contrast with the weights,
biases (intercepts -𝛼−) are constrained to negative values, acting as a threshold, that only
allows large weights to pass the activation function and subsequently affect (positively) the
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final outcome. If a person ends up having no risk contribution on any of the exposures,
meaning that the outputs across every node was 0, then it is assumed that this person
has a risk equal to a predefined baseline risk (𝑅𝑏+)

Mathematically, the network’s architecture can be described by the following equation:

𝑃(𝑌 = 1|𝑋) = ∑
𝑗

(𝑆+ (∑
𝑖

(𝑋𝑖 ⋅ 𝛽+
𝑖,𝑗) + 𝛼−

𝑗 )) (3.1)

where 𝑖, 𝑗 the exposure and node indices respectively, 𝑋𝑖 the 𝑖-th exposure value (either nu-
merical or 0 for absence and 1 for existence), 𝛽+

𝑖,𝑗 the positive weight that connects the 𝑖-th
exposure with 𝑗-th node, 𝛼−

𝑗 the negative bias of the 𝑗-th node and 𝑆+ the non-linear activation
function.

An evenmore recent work of 2024 [28] propose the utilization of non-negative neural networks in
medical image analysis (classification and segmentation), in order to increase their explainability
and interpretability. Briefly, the proposed model (as shown in Figure 3.2) consists of an Encoder
𝐸 which outputs features 𝑓 with the same spatial dimension as the input image 𝑋. Sequentially
these features pass through a monotonic network 𝑀 , with constrained non-negative weights,
to finally acquire the output logits (𝑦) of the binary classification task. Due to the monotonic
property there exists a positive value 𝛼, that classifies the monotonic outputs 𝑀(𝑓 − 𝛼) as
healthy, leading also to a segmentation result.

(a) (b)

Figure 3.2: (a) Non-negative network architecture as proposed by [28] (b) Result interpretation
strategy for classification and segmentation tasks.

3.2 Risk Assessment models on Healthcare

Through the years, numerous risk assessment models have been developed for binary classi-
fication tasks in healthcare community, subsequently providing risk scores for health condition
diagnoses, based on personal clinical data. Logistic regression is a widely used method for
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tasks such as primary melanoma classification, as demonstrated by [3] and [21]. Australia’s
Melanoma Institute provide a tool for first primarymelanoma risk calculation1 following themodel
proposed in [21]. While many studies rely on multiple individual factors, the method proposed
in this study focuses on combinations of both clinically and self-assessed risk factors to develop
a model for first primary melanoma prediction. The method employed for this purpose was an
unconditional logistic regression model, trained on the Australian Melanoma Family Study and
further validated by Leeds Melanoma Case-Control Study.

Another study [17], aims to develop and compare machine learning models for predicting type
2 diabetes risk and identifying associated risk factors using data from the 2014 Behavioral Risk
Factor Surveillance System (BRFSS) [29]. Specifically, it employs various machine learning
classifiers like Decision Trees, Polynomial/Rbf/Linear SVM, Naive Bayes, Random Forest and
Logistic Regression, as well as a neural network model. After several preprocessing steps, the
dataset comprised 138.146 participants, 20.467 of whom were diagnosed with type 2 diabetes.
Regarding the predictive accuracy, the neural network model, as expected, showcased the best
results, suggesting that deep learning models can potentially develop critical decision-making
abilities in medical tasks, to enhance prevention on various healthcare chronic conditions. Sim-
ilarly [14] employs a single hidden layer MLP network for cardiovascular disease risk prediction,
although stating its weak interpretability.

Handling imbalanced datasets is a critical challenge in machine learning, particularly in the con-
text of clinical data. Several methods have been developed to address this issue, like SMOTE
[1], a widely used technique for oversampling the minority class with new synthetic examples.
More specifically, SMOTE identifies examples that are close to each other in the feature space,
draws a line between them and then selects a new sample at a point along that line. Typi-
cally, before oversampling the minority class, a common practice is to undersample the majority
class to an extent and then apply SMOTE. A downside of this method is that generated entry
points, does not take into account the majority class distribution, resulting in many ambiguous
and overlapping samples among different classes. A more recent work, Conditional Tabular
GAN (CTGAN) [18] propose a generative adversarial network, which is designed specifically
for tabular data generation. It effectively handles class imbalance using a conditional genera-
tion mechanism and an innovative training-by-sampling method. CTGAN models tabular data
distribution and samples rows from it, ensuring that every category, even the minority ones,
are well represented in the synthetic generated samples. This conditional approach, combined
with the mode-specific normalization, in order to handle numerical, categorical data and com-
plex distributions helps to balance class distribution during both training and generation phases.
As a result, CTGAN can produce high-quality synthetic data that accurately reflects the true dis-

1First Primary Melanoma Risk Calculator available here
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tribution of the original dataset, including the minority classes.

3.3 Tabular Data Handling

In recent years, many works shifted towards leveraging Transformer architectures, originally
designed for Natural Language Processing tasks, to handle tabular data. This shift is moti-
vated through the self-attention mechanism, which provides the Transformer model with the
ability to capture complex feature interactions and dependencies. Firstly, Tab-Transformer [20]
developed a framework that is composed of several key components as shown in Figure 3.3:

Figure 3.3: Tab-Transformer architecture.

• Column Embedding layer: Each categorical feature is transformed into a set of learnable
embedding vectors.

• Transformer Encoder layer: The column embedding layer’s outputs are then passed into
a Transformer Encoder layer, applying multi-head self-attention and allowing each feature
attend to itself and every other input feature.

• MLP Head: Finally, continuous features, are combined with the contextual embeddings
from the Transformer output and subsequently passed through a multi-layer perceptron,
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in order to perform classification.

FT-Transformer [23] improves on Tab-Transformer, as they propose a Feature Tokenizer, con-
verting both categorical and numerical features into learnable embeddings. This ensures a
uniform representation that the Transformer layers can process effectively. Categorical fea-
tures are typically mapped to distinct embedding vectors, while numerical features are scaled
and then embedded. However there are limitation on these methods such as the missing val-
ues handling. In such cases, Tab-Transformer uses the average of the learned embeddings of
all classes within the corresponding column with the missing entries. This means that during
training, the model calculates the average embedding for each feature, and this average is used
to fill in the gaps where data is missing during prediction. This method, although, could lead to
misleading results, especially in healthcare domain, where available datasets usually contain
relatively small amount and sparse entry points.
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Proposed Framework

4.1 Non-negative Fully Connected Network

Inspired by [25], we propose a non-negative neural network, designed for risk assessment on
healthcare clinical data. Our proposed architecture, illustrated in Figure 4.1, features a 3-layer
MLP that consists of an input layer, two hidden layers and one output layer, all fully connected.
This design ensures that, during training, the weights are constrained to be non-negative, en-
hancing the interpretability and robustness in the domain of healthcare data analysis. In this
context, exposures could either contribute positively to the risk outcome (when 𝑤 > 0) or have
no effect (when 𝑤 = 0). Following the baseline, the biases of the two hidden layers are also
constrained to be negative, allowing only sufficiently large weights to pass through the activa-
tion function, thereby positively affecting the final outcome.

The non-negativity constraint on network’s weights, lead to a non-linear, though non-decreasing
relationship between the input features and the predicted outputs. This property can be ben-
eficial in many clinical applications where certain continuous risk factors are known to have a
monotonic relationship with the outcome. A monotonic relationship is defined between two vari-
ables where one of them either consistently increases or consistently decreases as the other
variable changes in always the same direction without switching. Potential features like age
and genomics risk ratios could be usefully maintained as continuous values, because typically
they are linearly affect the outcome. However, this monotonic non-decreasing relationship can
be problematic for certain features like weight, height and number of naevi. In example, an
underweight or an overweight patient may be associated with higher risk compared to normal
weight, although this would not be captured by the model due to monotonicity. Therefore, it
may be more appropriate for these kind of features to use bins, assigning them into distinct cat-
egories, instead of treating them as continuous variables, in order to allow the model capture
their relationship with the outcome more effectively.

Our contributions and improvements over the baseline non-negative network proposed in [25],
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are as follows:

• Increased Depth and Complexity: We utilize two hidden layers instead of one, with an
increased number of nodes per layer compared to the baseline. This grants the model
the ability to explore deeper and more complex relationships within the input clinical data.

• Unconstrained Output Bias: The bias term 𝑏3 in the output layer is left unconstrained,
providing additional flexibility in the model. Given the non-negativity of network’s weights
and the utilization of Sigmoid as the output layer’s activation function, the unconstrained
bias provides a baseline risk calculation. Considering the case where all input features
are zero, the baseline risk is computed by the sigmoid of last bias. In this case if 𝑏3 equals
zero the baseline risk is 0.5, while if 𝑏3 is either positive or negative, the baseline risk will
be greater or less than 0.5, respectively.

• Learnable Output Weights: The weight parameters connecting the second hidden layer
and the output layer 𝑊 3(+), are now learnable. Consequently, the output logit vector 𝑌 is
characterized as a weighted sum of the second hidden layer’s activation outputs, rather
than simply aggregating them.

• AdvancedOptimization Techniques: We employ focal loss and the RMSProp optimizer,
in contrast to the Mean Square Error (MSE) loss and SGD optimizer used in the baseline
model. More technical details, regarding the training pipeline, are provided in Section 5.2.

Figure 4.1: Non-negative fully connected network (MLP) architecture.

Equations 4.1 - 4.3 describe the mathematical operations behind the propose architecture. It is
worth mentioning that 𝑅𝑒𝐿𝑈 is employed as the non-linear activation function on both hidden
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layers. Additionally, the output logits 𝑌 , can be interpreted as probabilities of the positive class
outcome, with values in range [0, 1], through the application of the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function.

𝑍1
𝑗 = 𝑅𝑒𝐿𝑈 (∑

𝑖
(𝑊 1(+)

𝑖,𝑗 ⋅ 𝑋𝑖) + 𝑏1(−)
𝑗 ) (4.1)

𝑍2
𝑘 = 𝑅𝑒𝐿𝑈 (∑

𝑗
(𝑊 2(+)

𝑗,𝑘 ⋅ 𝑍1
𝑗 ) + 𝑏2(−)

𝑘 ) (4.2)

𝑌 = ∑
𝑘

(𝑊 3(+)
𝑘,1 ⋅ 𝑍2

𝑘) + 𝑏3 (4.3)

where 𝑖, 𝑗, 𝑘 the indices of the nodes in the input layer, the first hidden layer, and the second
hidden layer respectively, 𝑋{1...𝑖} the input data features, 𝑍1

{1...𝑗}, 𝑍2
{1...𝑘} the activation outputs

of each hidden layer, 𝑊, 𝑏 the learnable weight parameters and biases connecting the layers,
and superscripts (+),(−) indicate the value constraints on the corresponding matrices or vectors,
if applicable.
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4.2 Attentive Network

In this section, we introduce a novel architecture for risk assessment on clinical structured data
(Figure 4.2), as we propose a network that leverages the strengths of a Transformer Encoder
model. The choice of a Transformer Encoder as the main component, lies on its capability
to provide insights about the decision-making process of the model, thereby enhancing the
explainability of our method, while maintaining accuracy and robustness. Through attention
weights, it becomes straight-forward to identify which features contribute the most, towards a
higher risk score and consequently to a diagnosis of a health outcome. This inherent property
of the attention mechanism is particularly crucial in healthcare domain, where transparency and
justification of each decision are essential.

Figure 4.2: Attentive model architecture proposed.

The proposed architecture adeptly handles various data types encountered in clinical datasets,
namely: numerical (continuous), categorical and checkbox data. We define a global embed-
ding size 𝐸 applying for every data type, in order to finally bring all the available features in
the same feature space. For continuous data, we employ a Multi-Layer Perceptron (MLP),
consisting of two linear layers and a ReLU activation function between them, to introduce non-
linearity. The dimensions of the MLP output are (𝐵, 𝑁𝑛𝑢𝑚, 𝐸) where 𝐵 is the batch size and
𝑁𝑛𝑢𝑚 the number of numerical features available on the dataset. Regarding categorical data,
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we deploy standard categorical embeddings for each feature, ensuring their discrete nature is
maintained, while creating the embedded matrix (𝐵, 𝑁𝑐𝑎𝑡, 𝐸) where 𝑁𝑐𝑎𝑡 represents the num-
ber of categorical features available in the dataset. Additionally, we define checkbox data,
as vectors receiving values 0 or 1, with ones representing the existence of the corresponding
category and zeros its absence, but with the possibility of multiple positive categories on a sin-
gle feature, thereby making it more complex to handle than standard one-hot encoded data.
This type of data are processed with a custom embedding layer, where each checkbox fea-
ture 𝐶𝑖 𝑓𝑜𝑟 𝑖 ∈ {1, ..., 𝑁𝑐ℎ𝑒𝑐𝑘} is represented as a binary vector of size 𝑐𝑖, where 𝑐 is the
total number of possible categories within the feature. In example, if a checkbox feature 𝐶𝑖
can have 5 possible categories, the vector might look like [1, 0, 1, 0, 0], indicating the presence
of the first and third categories. Each category, treated as a binary feature, passes through a
categorical embedding, resulting in a matrix of size (𝐵, 𝑐𝑖, 𝐸). Next, an element-wise multipli-
cation is applied between the embedded matrix and the initial binary vector 𝐶𝑖, serving as a
mask, zeroing out all the embedded vectors of non-active categories. Subsequently, the active
embedded vectors are aggregated to allow all valid categories interact with each other, creating
a single vector of size 𝐸, representing the combined information within the checkbox feature.
This process is repeated 𝑁𝑐ℎ𝑒𝑐𝑘 times, resulting in the final embedding matrix (𝐵, 𝑁𝑐ℎ𝑒𝑐𝑘, 𝐸).

The concatenated embedded matrix of shape (𝐵, 𝑁𝑛𝑢𝑚 + 𝑁𝑐ℎ𝑒𝑐𝑘 + 𝑁𝑐𝑎𝑡, 𝐸) integrates all
these diverse data representations into a unified feature space, serving as the input to the
Transformer Encoder module. This module utilizes the multi-head self-attention mechanism,
allowing the model to capture complex relationships and interactions across the entirety of the
features. Finally, the MLP head is a linear transformation of the encoded features, responsible
for the risk score assessment, which subsequently can be interpreted into a binary classification
output by passing it through a Sigmoid function. The proposed model, provides enhanced inter-
pretability, through the attention weights of the Transformer Encoder, which can reveal insights
about the features that have the greatest influence on the decision-making process.

Another contribution of our proposed network is that, it effectively handles missing values. For
continuous data, we apply an element-wise weight masking on the MLP outputs, masking out
the weight vectors that correspond to missing numerical values in the input data. For categori-
cal and checkbox data, we define a padding index (equal to zero), corresponding to the missing
values, on the embeddings, effectively ignoring these entries during the embedding process.
Thus, for every missing registration, identified by a zero index within the pre-processed dataset,
the embedding layer’s output will be a “zero vector”.

The input data for the attentive network are formatted to allow the model handle various data
types efficiently. Continuous data remain numerical as the network process them directly with
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the multi-layer perceptron. Regarding categorical data, each feature is represented by a vec-
tor, where each category is assigned a distinct integer value, with zero defining missing entries.
Therefore, one-hot encoded data need to be transformed in the aforementioned format, in order
to appropriately apply the categorical embeddings. For instance, if a feature contains four cat-
egories, the vector values would range from 0, for missing data, to 1, 2, 3, 4, each representing
the corresponding category. Checkbox data can have multiple valid categories simultaneously
whichmakes it unfeasible tomerge each feature into a single vector with distinct indices. Instead
every possible category of a checkbox feature is represented as a standalone binary feature,
indicating either the presence or absence of that category. Subsequently, as described above,
these vectors pass through custom embeddings and interact with each other. For instance, if
a checkbox feature consists of four possible categories, there would be four separate binary
vectors representing the existence of each category.
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Experiments and Results

5.1 Dataset Analysis and Preprocessing

5.1.1 Melanoma Clinical Dataset

The first dataset considered in this work is dedicated for melanoma binary classification, through
the use of clinical data. It comprises a total of 415 patients, with a ratio of 68.7% who have
been diagnosed with melanoma at least once, to 31.3% who have never had melanoma. This
ratio is further broken down by sex in Figure 5.1. It is also significant to examine the age
distribution of the patients within the dataset, as well as the age stratified by the target label
variable (melanoma existence), as illustrated in Figure 5.2. An in-depth statistical analysis on
this dataset is available on Appendix A.1.
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Figure 5.1: Comparison of target label (melanoma existence) distribution across the dataset (left) and
by sex (right).

To utilize the dataset for both of our proposed architectures, it had to undergo several prepro-
cessing steps, in order to meet each model’s requirements, while maintaining its validity with
respect to the patients personal privacy. The initial raw data, in CSV format, consists of 86
total features (columns). Some of them contain unknown (NaN) values for the majority of pa-

38



CHAPTER 5. EXPERIMENTS AND RESULTS

20 30 40 50 60 70 80
Age

0

10

20

30

40

50

60

Co
un

t

20 40 60 80
Age

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
en

si
ty

Melanoma
True
False

Figure 5.2: Age distribution across the dataset (left) and by melanoma existence variable (right).

tients, while others are not relevant for the melanoma classification task. These features are
excluded from the final dataset. Additionally, the preprocessing pipeline, analyzed in detail on
Figure 5.4, includes an optional step that converts numerical features into categorical ones,
with a fixed number of bins (default is 5), mostly used for ablation analysis. Due to high sparsity
and privacy measures, the feature indicating each patient’s birthplace is removed. As depicted
in Figure 5.3, a significant proportion of patients, comprising 53% and 45.6% were residents
of Australia and Spain, respectively, during the data collection period. Conversely, only 1.4%
resided in other countries, so in order to mitigate data sparsity, these specific instances were
excluded too. Finally, rather than keeping each first and second degree relative’s history sepa-
rate, the corresponding features are truncated into two binary columns, on whether the patient
has a first/second degree relative ever diagnosed with melanoma, or not.

Australia

53.0%

Spain

45.6%

Other
1.4%

Australia
Spain
Other

Figure 5.3: Current residency distribution across the raw data (before preprocessing).
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Since the task of this study is supervised classification, the target label is derived from the
melanoma history feature, which numerically indicates the number of positive melanoma diag-
noses each subject has received. This feature is subsequently converted into a binary format:
a value of “1” is assigned if the patient has been diagnosed with one or more melanomas, and
a value of “0” if the patient has never been diagnosed with melanoma. Similarly, in the case
of multi-label classification tasks, a second target label is created by aggregating information
across three different numerical features, squamous cell carcinoma (“scc”), basal cell carci-
noma (“bcc”), and other skin cancer history. The complete list of features included in the final
dataset is presented in Table 5.1.

Figure 5.4: Age distribution across the dataset (left) and by melanoma existence variable (right).

Regarding the structure of the features considered, depending on the chosen network and the
specifications of each experiment, categorical features can either be interpreted as one-hot
encoded vectors or remain in their original form, where each unique category is assigned a
distinct integer value. During one-hot encoding process, each category is represented by a
binary vector, where value “1” indicates the presence of that category, while “0” indicates its
absence. This transformation is typically applied on the input data of the non-negative MLP
model architecture proposed in this study. Usually, on questionnaire-based datasets, features
could be obtained by “checkbox” fields, that allows multiple options of the same feature to be
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selected. In contrast with categorical data, where each feature has one valid category, checkbox
features could be interpreted like one-hot encoded data, but each vector is allowed to have
many positive values (“1s”). These features require special attention, because they cannot
be directly converted into categorical data for embedding application. Therefore, they need a
distinct methodology tailored specifically to handle them as described in Chapter 4. Finally, as
mentioned before, numerical data can either remain unchanged, or converted into categorical
values with a selected number of bins (categories).

Feature Name Description Data Type

age at baseline Age at survey time continuous
years current residence Years living in current country at survey time continuous

height Height in cm continuous
weight Weight in kg continuous

ancestry (1 to 22) Ancestry checkbox
who do you usually see for (1 to 5) Which doctor do you usually see for skin checks? checkbox

smoking history Ever been regular smoker? (smoked daily for at least 6 months) categorical
smoking history 2 Are you a regular smoker now? categorical

sex Sex (as defined at birth) categorical
current residence Country of residence at survey time categorical
marital status Marital status categorical

highest qualification Educational level categorical
employment Occupational status at survey time categorical

occupational exposure Have your occupations been mainly indoors/outdoors/both? categorical
clinical skin check Clinical skin check frequency categorical

child How many times were you sunburned badly as a child (under 18 years old)? categorical
adult How many times were you sunburned badly as an adult (under 18 years old)? categorical

sunbed use How many times have you used sunbeds/tanning beds? categorical
child sunscreen Frequency of sunscreen used during summer during childhood (up to 10 years old) categorical

adolescent sunscreen Frequency of sunscreen used during summer during adolescence (11-18 years old) categorical
adult sunscreen Frequency of sunscreen used during summer during adulthood (over 18 years old) categorical

hair Natural hair color at age 21 categorical
eye Eye color at age 21 categorical
burn Skin response to sun exposure at noon for 30 minutes without sunscreen/clothing protection categorical
tan Does your skin tan after prolonged and repeated sun exposure without sunscreen or clothing? categorical

freckless Amount of freckless categorical
naevi Naevi in childhood/adolescence (up to 18 years old) categorical

family history 1st Have any of your first-degree relatives ever been diagnosed with melanoma? categorical
family history 2nd Have any of your second-degree relatives ever been diagnosed with melanoma? categorical

Table 5.1: Complete list of the 29 features considered within the melanoma dataset, after
preprocessing/cleaning steps, along with their corresponding descriptions and data types. (some data

types may differ depending on the network architecture chosen)

5.1.2 BRFSS 2022 Survey Dataset

The BRFSS - Behavioral Risk Factor Surveillance System stands as the foremost platform
for conducting health-related telephone surveys, across the United States of America, regard-
ing health-related risk behaviors, cronic conditions and preventive service utilization among
U.S. residents on state-level analysis. Originating in 1984 with participation from 15 states, the
BRFSS has since expanded its reach to encompass 50 states, the District of Columbia, Guam,
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Puerto Rico and the US Virgin Islands. Each year, the BRFSS conducts over 400.000 inter-
views with adults ( ≥ 18 years old), solidifying its status as the largest ongoing health survey
initiative worldwide.

This study utilizes the most recent, 2022 BRFSS data [29], that includes 445.132 participants
with a total of 328 features (columns) in the raw dataset. Many possibilities arise from such a
large amount of features, as the dataset can be exploited in various classification scenarios,
depending on the target label selection. This work focuses on predicting a risk score with heart
attack or heart disease as the binary target feature. Of course many features were not related
to that task so the final training dataset consists of 48 selected features as listed in Table 5.2.

Feature Name Description Data Type
State State FIPS Code categorical
Sex Sex of Respondent categorical

GeneralHealth Personal evalution of General Health categorical
PhysicalHealthDays For how many days during the past 30 days was your physical health not good? continuous
MentalHealthDays For how many days during the past 30 days was your mental health not good? continuous

MedicalCost
Was there a time in the past 12 months when you needed to see a doctor but could
not because you could not afford it?

categorical

LastCheckupTime About how long has it been since you last visited a doctor for a routine checkup? categorical

PhysicalActivities
During the past month did you participate in any physical activities such as running,
calisthenics, golf, gardening, or walking for exercise?

categorical

SleepHours On average, how many hours of sleep do you get in a 24-hour period? continuous

RemovedTeeth
How many of your permanent teeth have been removed because of tooth decay or
gum disease?

categorical

HadStroke (Ever told) (you had) a stroke. categorical
HadAsthma (Ever told) (you had) asthma? categorical

StillHaveAsthma Do you still have asthma? categorical
HadSkinCancer (Ever told) (you had) skin cancer that is not melanoma? categorical
HadMelanoma (Ever told) (you had) melanoma or any other types of cancer? categorical

HadCOPD
(Ever told) (you had) C.O.P.D. (chronic obstructive pulmonary disease), emphy-
sema or chronic bronchitis?

categorical

HadDepressiveDisorder
(Ever told) (you had) a depressive disorder (including depression, major depres-
sion, dysthymia, or minor depression)?

categorical

HadKidneyDisease
Not including kidney stones, bladder infection or incontinence, were you ever told
you had kidney disease?

categorical

HadArthritis
(Ever told) (you had) some form of arthritis, rheumatoid arthritis, gout, lupus, or
fibromyalgia?

categorical

HadDiabetes (Ever told) (you had) diabetes? categorical
Marital Marital status categorical

Education Level of education completed categorical
Employment Employment status categorical

Income Income categories categorical
DeafOrHardOfHearing Are you deaf or do you have serious difficulty hearing? categorical
BlindOrVisionDifficulty Are you blind or do you have serious difficulty seeing, even when wearing glasses? categorical

DifficultyConcentrating
Because of a physical, mental, or emotional condition, do you have serious difficulty
concentrating, remembering, or making decisions?

categorical

DifficultyWalking Do you have serious difficulty walking or climbing stairs? categorical
Continued on next page
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Feature Name Description Data Type
DifficultyDressingBathing Do you have difficulty dressing or bathing? categorical

DifficultyErrands
Because of a physical, mental, or emotional condition, do you have difficulty doing
errands alone such as visiting a doctor´s office or shopping?

categorical

SmokerStatus Four-level smoker status categorical
ECigaretteUsage Four-level e-cigarette usage status categorical

ChestScan Have you ever had a CT or CAT scan of your chest area? categorical
RaceEthnicityCategory Five-level race/ethnicity category categorical

AgeCategory Fourteen-level age category categorical
HeightInMeters Reported height in meters continuous

WeightInKilograms Reported weight in kilograms continuous
BMI Body Mass Index (BMI) continuous

AlcoholDrinkers Adults who reported having had at least one drink of alcohol in the past 30 days. categorical
HIVTesting Adults who have ever been tested for HIV categorical

FluVaxLast12
During the past 12 months, have you had either flu vaccine that was sprayed in your
nose or flu shot injected into your arm?

categorical

PneumoVaxEver Have you ever had a pneumonia shot also known as a pneumococcal vaccine? categorical

TetanusLast10Tdap
Have you received a tetanus shot in the past 10 years? Was this Tdap, the tetanus
shot that also has pertussis or whooping cough vaccine?

categorical

HighRiskLastYear HIV high risk for the past 12 months categorical

HadCovid
Has a doctor, nurse, or other health professional ever told you that you tested pos-
itive for COVID 19?

categorical

CovidSymptoms
Did you have any symptoms lasting 3 months or longer that you did not have prior
to having coronavirus or COVID-19?

categorical

PrimaryCovidSymptom Which was the primary COVID-19 symptom that you experienced? categorical

HeavyDrinkers
Heavy drinkers (adult men having more than 14 drinks per week and adult women
having more than 7 drinks per week)

categorical

Table 5.2: Complete list of the 48 features considered within the 2022 BRFSS dataset, after
preprocessing, along with their corresponding descriptions and data types.

The main challenge behind this dataset is the significant imbalance in the binary target label.
The ratio of patients who have been diagnosed with heart attack/disease at least once, to those
who have never been diagnosed is approximately 90% to 10%, as shown in Figure 5.5. The tar-
get label imbalance pose a very common issue on healthcare datasets, as the negative samples
typically outnumber the positive samples, and if not handled correctly, ML/DL models usually
become biased towards predicting the majority (negative) class, thereby reducing the model’s
ability to generalize and be able to correctly identify the minority (positive) class. More details
about how this study manages to tackle this problem can be found in the next section, where
the training framework is explained.

The right plot on Figure 5.5 depicts that, on both diagnostic results, the amount of males and
females are balanced, preventing the models to grow biased towards a specific gender. Figures
5.6, 5.7 illustrate Body Mass Index (BMI) and smoking habits distributions, analyzed in relation
to the presence or absence of heart attack/disease. As expected we can observe that 3.5% of
the former smokers have been diagnosed with a heart attack or disease, a percentage equal to
those who never smoked, despite the fact that the total number of individuals in the latter group
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is more than twice that of the first group. A more detailed statistical analysis on this version of
the dataset, can be found in Appendix A.2.
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Figure 5.5: Binary target label distribution (Heart disease/attack history) across the dataset (left) and
sex (right).
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5.2 Training Framework and Implementation Details

During training of the non-negative MLP network, we employ Focal loss, which was initially pro-
posed by [11] in 2017. It is typically deployed in object detection tasks, instead of Cross Entropy
loss, to handle the class imbalance between the background and foreground objects. However,
it can be particularly effective for healthcare clinical datasets, where the positive class (disease
presence) is significantly outnumbered by the negative class (disease absence). Additionally, it
emphasizes on hard examples, which in our context, are the False Negatives (instances where
the model failed to detect a disease). These examples are usually harder to identify, during
clinical risk assessment, compared to False Positives (instances where the model incorrectly
identified a disease) due to class imbalance. Finally, Focal Loss provides more calibrated prob-
ability estimates, meaning that the output risk scores are distributed smoother across the range
[0, 1]. This is a crucial aspect, in order for the model to produce reliable and confident predic-
tions during decision-making processes.

Mathematically, Focal Loss is defined by Equation 5.1, incorporating the modulating factor (1−
𝑝𝑡)𝛾 on top of the cross entropy loss criterion. This factor forces the model to instantly focus
on hard examples, during training. For 𝛾 = 0 Focal loss is equivalent to Cross Entropy, but
for 𝛾 > 0 it raises the confidence and subsequently down-weights the contribution of easy
examples. In practice, we deploy 𝛼 as a weighting factor to balance the contribution from both
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Figure 5.8: Focal Loss behavior for different 𝛾 values. By the authors of [11] the default value is 𝛾 = 2.

classes, where 0 < 𝛼 < 1. Setting 𝛼 near 0 increases the influence of the negative class,
while setting it near 1 the positive class will contribute more to the final result, despite being the
minority. The latter scenario aligns perfectly with our objective on classsifying rarely observed
instances.

𝐹𝑜𝑐𝑎𝑙𝐿𝑜𝑠𝑠(𝑝𝑡) = −𝑎𝑡 ⋅ (1 − 𝑝𝑡)𝛾 ⋅ 𝑙𝑜𝑔(𝑝𝑡) (5.1)

where 𝑝𝑡 represents the probability corresponding to the true class (disease existence).

For the proposed non-negativeMLP network, we employ a 5-fold stratified k-fold cross validation
approach, to ensure that each split maintains the class distribution of the dataset. Regarding the
proposed attentive network, we consider a custom sampling pipeline, to address the significant
class imbalance. More specifically, we ensure that, during training, each batch preserves a 90%-
10% ratio of negative to positive classes respectively, to mitigate the large contribution of the
majority class that leads to overfitting. Each experiment for both architectures, follows an 80%-
20% training-validation split on the melanoma dataset and a 90%-10% ratio on the 2022 BRFSS
dataset. Additionally, unless specified otherwise, categorical data are transformed into one-hot

Model size 64
Loss function 𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠(𝛾 = 2, 𝛼 = 0.5)
Optimizer 𝑅𝑀𝑆𝑃𝑟𝑜𝑝
Momentum 0.9
Weight decay 1 ⋅ 10−3

Learning Rate 2 ⋅ 10−4

Table 5.3: Default parameters for the proposed non-negative MLP model during training.
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Model size 128
# Transformer encoder layers 1

# Attention heads 2
Transformer MLP ratio 4
Final representation 𝐺𝐴𝑃

Loss function 𝐹𝑜𝑐𝑎𝑙 𝐿𝑜𝑠𝑠(𝛾 = 2, 𝛼 = 0.5)1

Optimizer 𝐴𝑑𝑎𝑚
Learning Rate 2 ⋅ 10−4

Table 5.4: Default parameters for the proposed attentive model during training.

encoded vectors, to meet the input requirements of the non-negative MLP network. In contrast,
for the attentive network, categorical data remain in their original form, with distinct indices
assigned on each category and missing values represented by 0 across all features. Finally,
during validation and inference steps, we convert the model’s output logits to probabilities using
the sigmoid function. This transformation yields the probabilities of the positive class for each
instance. We then apply a threshold of 0.5 to perform binary classification, determining whether
each instance belongs to the positive or negative class. Further technical details regarding the
default parameters used during the training of both our models, are summarized in Tables 5.3
and 5.4.

5.3 Results & Metrics

5.3.1 Metrics

In this study, we utilize three key metrics to evaluate the performance of our trained models:
accuracy, F1-score and the confusion matrix. Accuracy is a straightforward metric, defined as
the ratio of correctly predicted examples, both true negatives and true positives, to the total
number of instances evaluated:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹𝑃 + 𝐹𝑁

where TP (True Positives) and TN (True Negatives) are the instances correctly identified as
positives and negatives respectively, while FP (False Positives) and FN (False Negatives) the
instances incorrectly predicted as positives and negatives respectively. F1-score is the har-
monic mean of the Precision and Recall metrics of the positive class. Precision calculates the

1𝛼 value might change depending on the dataset and the class imbalance ratio.
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model’s accuracy on its positive predictions, while Recall measures the model’s ability to iden-
tify every positive instance. Thus, F1-score combines both of these metrics, taking into account
both FP and FN instances, which is particularly useful for clinical risk assessment models. In
cases of imbalanced datasets such as the 2022 BRFSS dataset, we deploy the “weighted” vari-
ant of the F1-score metric, that performs separate metric calculation for each label and then
measures their weighted average. Equation 5.4 is also known in medical tasks as Sensitiv-
ity. Additionally, we track the model’s Specificity, by computing the recall of the negative class
(𝑇 𝑁/(𝑇 𝑁 + 𝐹𝑃)).

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ⋅ 𝑇 𝑃
2 ⋅ 𝑇 𝑃 + 𝐹𝑃 + 𝐹𝑁 = 2 ⋅ ( 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (5.2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 (5.3)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (5.4)

Confusion matrix (Figure 5.9) is a visualization that represents the distribution of TP, FP, TN and
FN instances during evaluation. It can provide insights about the performance of our model and
helps us understand the challenges and the nature of the errors occurred during training.

Figure 5.9: Confusion matrix showing the counts of true positives (TP), false negatives (FN), false
positives (FP), and true negatives (TN).
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5.3.2 Results

Table 5.5 provides a performance comparison between the three different models deployed for
the melanoma classification task, evaluating their effectiveness based on the aforementioned
metrics. The models compared include Logistic Regression, which is the most popular and
widely used technique for clinical risk score assessment, a Non-negative MLP and an Attentive
Network. The latter two frameworks are designed and analyzed in detail in the context of this
study. Figure 5.10 further illustrates the performance of these models through their correspond-
ing confusion matrices on the validation set.

More specifically, the Logistic Regression model achieved the lowest accuracy (85.5%) and
F1-score (0.897). Its confusion matrix (Figure 5.10a) indicates that while the model performs
reasonably well, particularly in detecting positive instances, it shows slightly lower performance
in accurately predicting negative cases, with 7 False Positives (cases wrongly classified as
melanoma). The non-negative MLP model outperforms the Logistic Regression model, achiev-
ing an accuracy of 86.8% and an F1-score of 0.903. The confusion matrix for the Non-negative
MLP (Figure 5.10b) suggests that this model is more balanced and slightly better at identify-
ing both positive and negative instances compared to Logistic Regression. Additionally, the
Sensitivity and Specificity metrics (Recall of the positive and negative classes, respectively)
confirm the balance of the resulting MLP model, in contrast with the Logistic Regression, where
the Specificity is significantly lower than the Sensitivity. The Attentive Network model, shows
the highest performance among the three, further improving accuracy (92.8%) and F1-score
(0.953). Its corresponding confusion matrix (Figure 5.10c) shows 60 true positives, 17 true
negatives and only 3 false negatives and 3 false positives instances. This model demonstrates
superior capability in both precision and recall metrics across the two classes, indicating a strong
performance in correctly identifying between melanoma-diagnosed cases and non-melanoma
cases.

Model Accuracy F1-score Precision (pos/neg) Recall (pos/neg)

Logistic Regression 85.5% 0.897 0.881/0.792 0.912/0.731

Non-negative MLP 86.8% 0.903 0.911/0.778 0.895/0.808

Attentive network 92.8% 0.953 0.954/0.852 0.954/0.850

Table 5.5: Performance comparison of different models on the melanoma classification task. Accuracy,
F1-score and Precision-Recall for both positive and negative classes are reported for Logistic

Regression, Non-negative MLP, and Attentive Network models.

Table 5.6 showcases the resulting metrics after applying the anonymization [24] and minimiza-
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(a) (b) (c)

Figure 5.10: Confusion Matrix for (a) Logistic Regression, (b) Non-negative MLP Model and (c)
Attentive Model on Melanoma Classification Task.

tion [22] toolkits on the pretrained Logistic Regression and non-negative MLP models. Both
privacy pipelines were applied across three different scenarios, with varying features selected
as Quasi Identifiers (QIs):

• Scenario 1: age, sex, current residence, years current residence, height, weight, marital
status, highest qualification, ancestry, employment, smoking history (past), smoking his-
tory (now), family histories (first and second degree relationship each summed in a single
binary feature)

• Scenario 2: age, sex, current residence, years current residence, height, weight, marital
status

• Scenario 3: all features listed in Table 5.1

During Scenario 1, the anonymized Logistic Regression model achieves accuracy of 74.7%,
indicating more than 10% of drop rate, for the same validation subset, compared to the non-
anonymized model presented in Table 5.5. This considerable drop in accuracy is also depicted
in Figure 5.11a with 10 False Positive and 11 False Negative instances. On the contrary, the
anonymized non-negative MLP model, achieved significantly higher accuracy of 84.3%, reflect-
ing an approximate 2.5% drop and restricting the False Positives and False Negatives to 7 and
6 respectively, as shown in Figure 5.13a. During minimization, a minimizer instance is trained,
based on the already anonymized model, identifying the optimal generalizations and subse-
quently transforming a subset of the validation set accordingly. The anonymized model is then
evaluated again on the generalized subset, achieving an accuracy of 82.4% on both Logistic
Regression and non-negative MLP networks.

For Scenario 2, we utilize a subset of quasi-identifiers from Scenario 1, adopting a more lenient
approach. Consequently, the accuracy achieved for the anonymized Logistic Regression model
is 77.1% with seemingly improved Specificity indicated by fewer False Negatives as shown in
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Anonymization Minimization

Model Accuracy Test Samples Accuracy Test Samples

Scenario 1

Logistic Regression 74.7% 83 82.4% 17

Non-negative MLP 83.1% 83 76.5% 17

Scenario 2

Logistic Regression 77.1% 83 76.5% 17

Non-negative MLP 84.3% 83 82.4% 17

Scenario 3

Logistic Regression 63.9% 83 70.6% 17

Non-negative MLP 78.3% 83 76.5% 17

Table 5.6: Performance comparison of Anonymization/Minimization modules for Logistic Regression
and Non-negative MLP models, across three scenarios with varying Quasi-identifiers (QIs).

(a) (b) (c)

Figure 5.11: Confusion matrices for the Logistic Regression pretrained model, after applying the
anonymization module, across three scenarios with different Quasi Identifiers (QIs).

Figure 5.11b. However, after the minimization procedure, the accuracy drops to 76.5%, which
is slightly lower than the minimization accuracy in Scenario 1. Regarding the anonymized non-
negative MLP network, maintains consistent accuracy levels, identical to those in Scenario 1,
demonstrating a more stable network architecture compared to Logistic Regression.

Scenario 3, being the “strictest” possible scenario,posed the greatest challenge for both mod-
els, as it considers all input features listed in Table 5.1, as quasi-identifiers. Both anonymized
models showed a significant decrease in accuracy, with Figures 5.11c and 5.13c highlighting
their considerable misclassification issues. The anonymized Logisitc Regression model, suf-
fers from many False Negative cases (predicted as non-melanoma but actually diagnosed as
melanoma), conversely with the anonymized non-negative MLP, which tends to overfit to the
positive class, failing to correctly predict most of the negative cases.
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(a) (b) (c)

Figure 5.12: Confusion matrices for theLogistic Regression anonymized model, after applying the
minimization module, across three scenarios with different Quasi Identifiers (QIs).

(a) (b) (c)

Figure 5.13: Confusion matrices for the non-negative MLP pretrained model, after applying the
anonymization module, across three scenarios with different Quasi Identifiers (QIs).

(a) (b) (c)

Figure 5.14: Confusion matrices for the non-negative MLP anonymized model, after applying the
minimization module, across three scenarios with different Quasi Identifiers (QIs).

Table 5.7, presents the performance metrics for the three models on a binary classification task
utilizing a publicly available clinical dataset, described in depth at Section 5.1.2. This task aims
to provide a risk score assessment for a heart attack/disease, challenging the robustness of
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Model Accuracy F1-score Precision Recall

Logistic Regression 56.1% 0.228/0.461 0.937/0.533 0.130/0.991

Non-negative MLP 76.9% 0.782/0.769 0.740/0.806 0.830/0.709

Attentive network 78.5% 0.794/0.784 0.759/0.815 0.834/0.736

Table 5.7: Performance comparison of different models on the heart disease/attack classification task,
with imbalanced target instances. Accuracy, F1-score, Precision and Recall for both positive and
negative classes are reported for Logistic Regression, Non-negative MLP, and Attentive Network

models.

each architecture, when faced with an imbalanced dataset, which exhibits a 90%-10% ratio of
negative over positive target labels. This is a very common and realistic scenario, especially
within clinical datasets, where positive instances tend to typically be the vast minority. This im-
balance, causes models to overfit on the negative class and evidently appears to happen in the
Logistic Regression model, which performs poorly on this task, with accuracy of 56.1% and a
Sensitivity (recall of the positive class) of just 0.13. The binary variant of F1-score, that does not
take class imbalance into account, achieves a score of 0.23, indicating the model’s overfitting
issue. These results were highly expected from a standard Logistic Regression model, although
we observe that more complex architectures, such as the non-negative MLP and the attentive
network, mitigate overfitting and perform significantly better, achieving accuracies of 76.9% and
78.5% respectively. Similarly to the melanoma classification task, the attentive network outper-
forms the non-negative MLPmodel, while both of them utilize Focal Loss with 𝛼 = 0.9 to handle
the class imbalance effectively.

Since the Attentive network deploys the self-attention mechanism, it offers great insights and
interpretability into the decision-making process and results, as visualized by the attention maps
in Figures 5.15 - 5.18. Specifically, Figure 5.15 demonstrates a weight distribution heatmap
across queries (rows) and keys (columns). Each cell represents how much focus (attention)
to place on each key feature when processing a single query feature, revealing underlying
relationships between pairs of features. Diagonal elements, typically represent self-attention
and high diagonal values indicate that the model is giving significant importance to individual
features. In this case we observe that crucial features, such as the type of doctor a patient
usually visits for skin checks, the clinical skin check frequency and the skin’s response to sun
exposure without sunscreen have high attention weights across the majority of the queries,
meaning that they are significantly accounted for during the decision making process. Some of
the most important relationships identified include:

• The type of doctor a patient visits with respect to the participant’s current smoking status,
place of residency, marital status, ancestry, use of sunbed and family history of melanoma
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Figure 5.15: Attention map visualization generated by the attentive network for the melanoma dataset,
depicting the relationship between queries (rows) and keys (columns).

diagnosis (either first or second degree).

• The clinical skin check frequency with respect to sex, marital status, current smoking
status, skin tanning after sun exposure without sunscreen and use of sunbed.

• The skin’s response to sun exposure with respect to the place of current residency.

Similarly, Figure 5.16 illustrates the attention scores that emerged during the heart attack/disease
classification task. Some significant relationships underlined by high attention weights include:

• The existence of kidney disease (either currently or in the past), in relation to sex, ap-
pears to be one of the most indicative relationships, exhibiting a very high attention score.
Additionally, its association with the individual’s self-evaluation of general health seems
significant as well, with a slightly lower attention score.

• Another crucial relationship, is between stroke occurence and the existence of kidney
disease. If a participant has experienced at least one stroke, it strongly influences most
of the features during the decision-making process.
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Figure 5.16: Attention map visualization generated by the attentive network for the BRFSS 2022
dataset, depicting the relationship between queries (rows) and keys (columns).

• Similarly features such as general health self-evaluation, sex, chest scan examination and
age provide high attention weights across the majority of input features, with age/race and
chest scan/smoking status being particularly considerable.

• On the contrary, features like state, Covid diagnosis and its symptoms and skin cancer,
consistently provide low attention weights across all input features.

Figure 5.17 represents the True Positive instances from the validation set, during the melanoma
classification task. This figure includes only participants who have been positively diagnosed
with melanoma and assessed with a high risk score. Its aim is to inspect the features that
predominantly influence the final positive diagnosis. More specifically, rows represent the par-
ticipants mentioned above and columns the key features considered during training. Each cell
is calculated by averaging attention weight of each key feature across all input queries. The
features “who do you usually see for” and “clinical skin check” consistently provide the high-
est attention weights across almost every participant diagnosed correctly with melanoma. The
frequency of skin checks and the type of doctor visited (e.g. a dermatologist or a general practi-
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Figure 5.17: Attention map visualization for the melanoma dataset, demonstrating the important
features among the True Positive instances from the validation set.

tioner) are indeed crucial and indicative factors, in determining whether a participant’s individual
risk of being diagnosed with melanoma is high or not. Following these, the features “burnfirst”,
representing the skin response to sun exposure without sunscreen, “adult”, representing the
number of sunburns experienced as an adult, “freckless” and “ancestry”, also receive relatively
high attention scores, although not consistently across all samples.

In the same manner, but for the heart attack/disease risk assessment task, Figure 5.18 demon-
strates 100 randomly selected samples from the validation set. The figure clearly reveals a
pattern where stroke occurence presents the highest attention scores. With similar consistency
and with relatively high weights, general health self-evaluation, sex, chest scan examination,
age and kidney disease significantly influence the risk score assessment for the majority of

56



CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.18: Attention map visualization for the BRFSS 2022 dataset, demonstrating the important
features among 100 randomly selected True Positive instances from the validation set.

individuals. Conversely, features such as marital status, diabetes, melanoma and C.O.P.D.
occasionally produce high attention scores, which can be attributed to varying underlying rela-
tionships between them and the different query features.

5.4 Ablation Analysis

In this section, we conduct an ablation study in order to evaluate the impact of various model
hyperparameters and configurations on the performance during the melanoma classification
task. The following experiments aim to provide insights into the optimal settings for achieving
high accuracy, robustness, generalization and highlight the trade-offs between various training
strategies. Through this study we investigate different model sizes, loss functions, optimizers
as well as the model’s calibration plots to justify the choice of cost functions.

Table 5.8 presents the results of the ablation study conducted with various model sizes for both
the non-negative MLP and the attentive network architectures, on the melanoma risk assess-
ment task. This table shows the model’s performance metrics (accuracy & f1-score) in relation
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Model Model Size Params Accuracy F1-score

Non-negative MLP

64 9.7K 86.8% 0.903

128 23.4K 85.5% 0.895

256 63.2K 86.8% 0.903

512 192.0K 85.5% 0.895

Attentive network

64 76.3K 89.2% 0.930

128 283.4K 92.8% 0.953

256 1.09M 89.2% 0.930

512 4.28M 88.0% 0.923

Table 5.8: Ablation on non-negative mlp and attentive model sizes based on results for the melanoma
dataset.

to the hidden size and the number of learnable parameters. For the non-negative MLP, four
different model sizes were evaluated, 64, 128, 256 and 512. It appears that the smaller model
size, with the fewer learnable parameters, is sufficient in order to achieve the maximum ac-
curacy of 86.8% and f1-score of 0.903. Further increasing the model size to 128 or even 512,
results in a decrease of performance, which is expected due to the very small size of the dataset
with just 415 samples available, indicating potential overfitting. For the attentive network, the
same four model sizes were tested, with the size 128 being the optimal configuration, achieving
an accuracy of 92.8%. It is observed that increasing the model size to 256 and 512 provides
decreased results, likely due to overfitting. However a model size of 128 outperforms the size
of 64, indicating a more robust architecture with superior generalization ability. This suggest
that, in contrast with the non-negative MLP, the attentive network, benefits from an increased
complexity up to a certain point.

Table 5.9 presents the ablation study conducted to evaluate the impact of different loss functions
and optimizer combinations, on the performance of the non-negative MLP model for both the
melanoma and BRFSS 2022 datasets. The loss functions examined include the Binary Cross
Entropy (BCE) with andwithout positional weight for the positive class, as well as Focal Loss with
varying 𝛼 values. The optimizers tested were Adam and RMSProp, which were experimentally
selected from preliminary experiments as the ones with a superior performance, as opposed
to other optimizers like SGD that totally failed to converge. For the BRFSS 2022 dataset, us-
ing a standard Binary Cross Entropy loss function with Adam resulted in a very low accuracy of
59.9% and an F1-score of 0.359. Similar results, with accuracy of 60.7% and F1-score of 0.385,
arise by utilizing Focal Loss with 𝛼 = 0.5. These results were greatly affected by the significant
imbalance within this dataset. Introducing positional weight (pos.weight=9) to the positive class
in BCE improved the performance significantly, achieving an accuracy of 76.9% and an F1-
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Dataset Loss Function Optimizer Accuracy F1-score

BRFSS 2022

BCE Adam 59.9% 0.359/0.533

BCE w\ pos.weight Adam 76.9% 0.782/0.769

Focal w\ 𝛼 = 0.5 Adam 60.7% 0.385/0.548

Focal w\ 𝛼 = 0.7 Adam 70.9% 0.641/0.698

Focal w\ 𝛼 = 0.9 Adam 76.4% 0.780/0.763

Melanoma

BCE Adam 79.5% 0.866/0.772

BCE RMSProp 85.5% 0.895/0.855

Focal w\ 𝛼 = 0.5 Adam 80.7% 0.871/0.792

Focal w\ 𝛼 = 0.5 RMSProp 86.8% 0.903/0.868

Table 5.9: Ablation on different loss functions and optimizers for both datasets.

score of 0.782. Focal Loss with alpha values of 0.7 and 0.9 also showed improved results, with
𝛼 = 0.9 yielding, among them, the best performance, achieving an accuracy of 76.4%. Greater
alpha values and positional weight, help mitigate class imbalance by letting the model to propor-
tionally focus more on the positive class which is the great minority in the dataset. Regarding the
melanoma dataset, which does not have the same class imbalance issue, Adam combined with
BCE and Focal loss (𝛼 = 0.5) achieved accuracy of 79.5% and 80.7% respectively. Switch-
ing to RMSProp, the results with both loss functions consistently improved, showcasing better
convergence. Focal loss outperformed BCE with a resulting accuracy of 86.8%. The aforemen-
tioned results highlight the importance of the optimal loss function and optimizer selection, in
order to enhance the model’s performance, depending on the dataset and its unique properties.

Figures 5.19 - 5.21 provide the calibration plots for logistic regression model and the non-
negative MLP with both Binary Cross Entropy and Focal loss utilized, on the melanoma classifi-
cation task. These plots are useful in order to assess the distribution of the output probabilities
and how well they fit in realistic scenarios. The calibration plot consists of the predicted proba-
bilities, within the range [0, 1], calculating the mean value for each bin (X-axis) and the actual
fraction of melanoma-diagnosed cases within each corresponding bin of predicted probabilities
(Y-axis). The dashed diagonal line indicate a perfectly calibrated model, while the calibration
curve (magenta line) represent the actual calibration of the model. Additionally, the histogram
plot demonstrates the distribution of the predicted probabilities in a more straight-forward way.
Figure 5.19 corresponds to the Logistic Regression model, indicating a weakly calibrated model,
as the calibration curve deviates from the diagonal line in many cases and with extreme output
values in the fraction of positives (0s and 1s). The model tends to overestimate (squared points
under the perfectly calibrated line) and underestimate (squared points above the perfectly cali-
brated line) for many of the average predicted probabilities bins considered. The histogram plot
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Figure 5.19: Calibration and Histogram Plots for Logistic Regression model on melanoma
classification task.

illustrates the model’s confidence in its predictions, with a notably high frequency of predictions
exceeding 0.8 (80% risk score) being the prime example. Although this confidence might ap-
pear robust at first glance, it does not align with realistic scenarios, since in clinical tasks like
melanoma and heart attack/disease risk assessment it is uncommon to provide such definitive
diagnoses without either a supplementary imaging from a medical examination or an expert’s
evaluation.

Figures 5.20 and 5.21 provide the calibration and histogram plots for the non-negative MLP
models, with the utilization of Binary Cross Entropy and Focal loss (with 𝛼 = 0.5) respectively.
It is notable that the non-negative architecture provides a baseline risk around 0.4 (40%) sug-
gesting a realistic uncertainty for every participant and reflecting to real clinical scenarios. We
observe that Focal loss provide more calibrated results as shown from the calibration curve
around 0.4-0.5 and 0.8 mean probabilities. Finally, BCE demonstrates two significant peaks on
the predicted probabilities, at the baseline risk and within a cluster at higher values (0.9-1.0).
Conversely, the histogram of the model utilizing Focal loss, provide a more evenly distributed
probabilities, avoiding extremely confident predictions (over 90%) while maintaining high accu-
racy.
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Figure 5.20: Calibration and Histogram Plots for Non-negative MLP model, trained with Binary Cross
Entropy (BCE) loss, on melanoma classification task.

Figure 5.21: Calibration and Histogram Plots for Non-negative MLP model, trained with Focal loss
(𝛼 = 0.5), on melanoma classification task.
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Conclusions

6.1 General Conclusions

In this work, we developed and evaluated two different frameworks for clinical risk assess-
ment, handling tabular data with heterogeneous data types, including numerical, categorical and
“checkbox”1 data. The first architecture is a non-negative multi-layer perceptron (MLP), which
constrains all weights to be non-negative (≥ 0), ensuring positive contributions from each fea-
ture and the second architecture, an attentive network, that leverages the self-attention mecha-
nism to capture complex feature interactions and provide greater explainability properties. We
compare these two approaches with a Logistic Regression model, that stands as the standard
method for such tasks in bibliography. All models were trained and evaluated for two different
datasets, one for melanoma classification task and a highly imbalanced dataset, from the annual
Behavioral Risk Factor Surveillance System (BRFSS) telephone survey for the year 2022, that
was preprocessed and utilized for heart attack/disease classification. The results demonstrate
that both the non-negative MLP and the attentive network outperform Logistic Regression in
terms of quantitative metrics like accuracy, f1-score, specificity, sensitivity etc. Among the two,
the attentive network proved to be the most robust in every configuration, effectively handling
class imbalance, heterogeneous data and successfully mitigating overfitting. These improved
results highlight the potential of deeper and more complex neural network architectures in clin-
ical risk score assessment, providing not only superior predictive performance, by interpreting
the task as a binary classification problem, but also useful insights into the underlying data
relationships. The proposed architectures, particularly the attentive network, aim to provide a
useful supportive tool for clinicians, during the decision-making process for diagnosing various
diseases. Due to the interpretability of the results, these models could also be utilized by any
interested individual who is not an expert in the field of Artificial Intelligence, making them useful
and accessible to a wide audience.

1for “checkbox” data definition see Section 5.1.1
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6.2 Technical Discussion

Both models considered in this study, have been implemented using the PyTorch framework,
and have relatively low computational costs, due to their small number of trainable parameters.
Although the attentive network has a slightly increased number of parameters compared to the
non-negative MLP, it is still very efficient within the context of tabular data. Additionally, lever-
aging GPU resources, speeds up the training of each model from scratch, even with very large
datasets. For instance, training the attentive network on the BRFSS 2022 dataset, with over
400.000 training samples, took approximately an hour with an NVIDIA RTX A5000 GPU with
24GB VRAM. Evidently, one of the biggest challenges in developing a robust framework for
clinical risk assessment, is the requirement for large amount of data points, in order to achieve
optimal levels of generalization. The difficulty of data acquisition, for various diseases, primar-
ily due to strict privacy measures in the field of healthcare, pose a significant concern while
implementing complex deep learning models. Moreover, most of the publicly available clinical
datasets, are characterized by a significant class imbalance. Typically, around 90% of the sam-
ples represent negative cases, while only about 10% represent positive instances (participants
diagnosed with the specific disease). If not handled correctly, this imbalance will possibly lead to
substantial overfitting, undermining the model’s ability to accurately predict the positive cases.
Finally, another technical challenge is the handling of missing values, which can be present in
both numerical and categorical/checkbox features, especially if the dataset originates from a
questionnaire survey like BRFSS. In this work we address this issue within the attentive frame-
work for both cases. Regarding the numerical input features, after passed through a two-layer
MLP, their weights are correspondingly masked based on data availability. For categorical and
“checkbox” feature data types, we apply a padding index to their embeddings before concate-
nating them with the masked numerical features and passing them through the Transformer
Encoder. This approach ensures that missing values are appropriately handled, without the
need of dropping the majority of samples and maximize the data utilization.

6.3 Future Work

In the field of clinical risk assessment, data privacy is crucial when training new models. Cur-
rently, only Logistic Regression and the proposed non-negativeMLPmodels support anonymiza-
tion and minimization techniques, ensuring that the resulted models, if required to be shared,
they will not leak any personal information. Implementing a uniform pipeline for anonymiza-
tion/minimization, including the attentive network, would be beneficial. Another important mat-
ter is to evaluate how each model performs across more datasets, for various diseases, in
order to note possible deviations in accuracy and determine how to make the models more
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robust depending on the properties of each dataset. Additionally, more sophisticated methods
could be explored to address class imbalance, such as generative techniques and synthetic
data creation. Finally, although the proposed methods produce standalone models, capable of
assessing an individual’s risk score for a disease based solely on tabular data, they could be
expanded to integrate multi-modal data. This includes incorporating every possible healthcare
data type like text, images and genomics providing a holistic approach for early detection of
diseases.
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Appendix

A. Dataset Statistical Analysis

A.1 Melanoma Detection Clinical Dataset
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Figure A.1: Comparison of height distribution across the dataset (left) and by sex (right).
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Figure A.2: Comparison of weight distribution across the dataset (left) and by sex (right).
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Figure A.3: Age distribution (left) and regular smokers count (right) by sex.

A.2 2022 BRFSS Survey Data (Heart Attack version)

18 to 24
25 to 29

30 to 34
35 to 39

40 to 44
45 to 49

50 to 54
55 to 59

60 to 64
65 to 69

70 to 74
75 to 79

80 or older

Age

0

2

4

6

8

10

Pe
rc

en
ta

ge
 (

%
)

Figure A.4: Fourteen-level age category distribution across the dataset.
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Figure A.5: Comparison of height distribution across the dataset (left) and by sex (right).
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Figure A.6: Comparison of weight distribution across the dataset (left) and by sex (right).
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Figure A.7: Comparison of Body Mass Index (BMI) distribution across the dataset (left) and by sex
(right).
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Figure A.8: Patients with asthma history across the dataset (left) and by Heart Disease
positive/negative history (right).
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Figure A.9: Patients with heavy drinking history across the dataset (left) and by Heart Disease
positive/negative history (right).
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Figure A.10: Patients with melanoma history across the dataset (left) and by Heart Disease
positive/negative history (right).
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Figure A.11: Patients with skin cancer history across the dataset (left) and by Heart Disease
positive/negative history (right).
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Figure A.12: Patients ever been diagnosed with diabetes across the dataset.
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Figure A.13: Patients ever been diagnosed with diabetes in relation to heart disease/attack diagnosis
result.
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