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Abstract

Deep learning models have significantly advanced the field of computer vision, yet they

often struggle with generalization and robustness, particularly in applications requiring

diverse and limited datasets, such as medical imaging. This thesis addresses this critical

issue by exploring advanced data augmentation techniques to enhance the domain gener-

alization and adversarial robustness of deep learning models. The primary objective is to

develop and validate methods that can improve model performance in out-of-domain sce-

narios without extensive computational resources. The research utilizes adversarial data

augmentation techniques, such as MaxStyle, MixStyle, and DSU, applied to the SYNTHIA

dataset—a synthetic urban scene dataset depicting various environmental conditions.

The SYNTHIA dataset, known for its diversity in scenes, dynamic objects, seasons,

and weather conditions, provides a robust testbed for evaluating these techniques. Pre-

processing steps including noise reduction, rescaling, resizing, and geometric and photo-

metric transformations ensure the quality and usability of the dataset for training. This

thesis demonstrates that feature-level augmentations can significantly improve model ro-

bustness. Techniques like MixStyle, which mixes instance-level feature statistics, and

MaxStyle, which augments feature maps with style mixing and adversarial perturbations,

show marked improvements in generalization across diverse domains.

Experimental results reveal that models trained with these advanced augmentation

techniques outperform standard training methods, particularly in challenging environ-

mental conditions. Evaluations using the mean Intersection over Union (mIoU) metric

show significant performance gains across various object classes and conditions, under-

scoring the efficacy of these techniques. This research highlights the potential of adver-

sarial and feature-level data augmentation in overcoming the limitations of current deep

learning models in computer vision, paving the way for more robust and generalizable

applications in fields such as medical imaging.

Keywords

Adversarial data augmentation, domain generalization, robustness, deep learning,

synthetic datasets, MaxStyle, DSU, MixStyle, Random Convolution, computer vision, se-

mantic segmentation, feature-level augmentation, adversarial training, SYNTHIA dataset,

image preprocessing, noise reduction, geometric transformations, photometric transfor-

mations, domain adaptation, style transfer, feature statistics, probabilistic modeling.
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Περίληψη

Τα µοντέλα ϐαθιάς µάθησης έχουν προωθήσει σηµαντικά τον τοµέα της υπολογιστικής

όρασης, αλλά συχνά δυσκολεύονται µε τη γενίκευση και την ανθεκτικότητα, ιδιαίτερα σε

εφαρµογές που απαιτούν ποικίλα και περιορισµένα σύνολα δεδοµένων, όπως η ιατρική α-

πεικόνιση. Ο κύριος στόχος της παρούσας διατριβής είναι η ανάπτυξη και η επικύρωση

µεθόδων που µπορούν να ϐελτιώσουν την απόδοση των µοντέλων σε σενάρια εκτός τοµέα

χωρίς εκτεταµένους υπολογιστικούς πόρους. Η έρευνα χρησιµοποιεί τεχνικές εµπλουτισµο-

ύ δεδοµένων έναντι επιθέσεων, όπως το MaxStyle, το MixStyle και το DSU, εφαρµοσµένες

στο σύνολο δεδοµένων SYNTHIA - ένα συνθετικό σύνολο δεδοµένων αστικών σκηνών που

απεικονίζει διάφορες περιβαλλοντικές συνθήκες.

Το σύνολο δεδοµένων SYNTHIA, γνωστό για την ποικιλία στις σκηνές, τα δυναµικά αντι-

κείµενα, τις εποχές και τις καιρικές συνθήκες, παρέχει µια ανθεκτική ϐάση δοκιµών για την

αξιολόγηση αυτών των τεχνικών. Αυτή η διατριβή δείχνει ότι οι εµπλουτισµοί στο επίπεδο

των χαρακτηριστικών µπορούν να ϐελτιώσουν σηµαντικά την ανθεκτικότητα των µοντέλων.

Τεχνικές όπως το MixStyle, που αναµειγνύει στατιστικά χαρακτηριστικών σε επίπεδο δείγµα-

τος, και το MaxStyle, που εµπλουτίζει χάρτες χαρακτηριστικών µε µίξη στυλ και επιθετικές

διαταραχές, δείχνουν σηµαντικές ϐελτιώσεις στη γενίκευση σε διάφορους τοµείς.

Τα πειραµατικά αποτελέσµατα αποκαλύπτουν ότι τα µοντέλα που εκπαιδεύονται µε αυ-

τές τις προηγµένες τεχνικές εµπλουτισµού υπερέχουν των τυπικών µεθόδων εκπαίδευσης,

ιδιαίτερα σε δύσκολες περιβαλλοντικές συνθήκες. Οι αξιολογήσεις χρησιµοποιώντας το µέσο

Intersection over Union (mIoU) δείχνουν σηµαντικές ϐελτιώσεις απόδοσης σε διάφορες κα-

τηγορίες αντικειµένων και συνθήκες, υπογραµµίζοντας την αποτελεσµατικότητα αυτών των

τεχνικών. Αυτή η έρευνα αναδεικνύει το δυναµικό των τεχνικών εµπλουτισµού δεδοµένων

έναντι επιθέσεων και σε επίπεδο χαρακτηριστικών για την υπέρβαση των περιορισµών των

τρεχόντων µοντέλων ϐαθιάς µάθησης στην υπολογιστική όραση, ανοίγοντας τον δρόµο για

πιο ανθεκτικές και γενικεύσιµες εφαρµογές σε τοµείς όπως η ιατρική απεικόνιση.

Λέξεις Κλειδιά

Ανθεκτικός εµπλουτισµός δεδοµένων, γενίκευση τοµέα, ανθεκτικότητα, ϐαθιά µάθηση,

συνθετικά σύνολα δεδοµένων, MaxStyle, DSU, MixStyle, Random Convolution, υπολογι-

στική όραση, σηµασιολογική τµηµατοποίηση, εµπλουτισµός σε επίπεδο χαρακτηριστικών,

επιθετική εκπαίδευση, σύνολο δεδοµένων SYNTHIA, προεπεξεργασία εικόνας, µείωση ϑο-

ϱύβου, γεωµετρικοί µετασχηµατισµοί, ϕωτοµετρικοί µετασχηµατισµοί, προσαρµογή τοµέα,

µεταφορά στυλ, στατιστικά χαρακτηριστικών, πιθανή µοντελοποίηση.
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Chapter 1

Introduction

In the ever-evolving landscape of technology, artificial intelligence (AI) continues to

stand out as a transformative force, particularly within the field of computer vision. This

transformation is primarily driven by the rapid advancements in machine learning algo-

rithms, enhanced computational capabilities, and the increasing availability of diverse

datasets. Deep learning, a pivotal subset of AI technologies, has notably redefined the ca-

pabilities of machines in interpreting and understanding visual data, which has become

integral to numerous AI applications.

Deep learning models, known for their depth and complexity, are now fundamental

tools in AI applications, pushing the boundaries of traditional image processing tech-

niques. These models have not only excelled in basic tasks but have also begun to

challenge human capabilities in various aspects of visual recognition and interpretation.

Despite the profound capabilities of deep learning in computer vision, these models

frequently encounter significant challenges, particularly in terms of generalization and

performance under varied real-world conditions. Most models demonstrate optimal re-

sults under controlled experimental settings or assume specific training conditions that

do not fully encapsulate the complexities encountered in practical deployments. For in-

stance, in autonomous driving, a model trained under ideal weather conditions might

underperform or fail when exposed to fog, rain, or snow.

Another significant challenge is the availability and diversity of training data. In fields

such as healthcare, acquiring large-scale and diverse datasets is not only costly but often

fraught with privacy concerns and regulatory restrictions. This scarcity of data limits the

ability of models to learn and generalize across different domains or conditions they have

not been explicitly trained on. So, the pursuit of robust, generalizable models capable of

consistent performance across unforeseen conditions is crucial. Conventionally, enhanc-

ing generalization involves amassing large and varied datasets, a method that is often

impractical for many sectors due to its high costs and logistical challenges.

Data augmentation is a critical technique used to address these challenges in model

training. By artificially expanding the training dataset using transformations or enhance-

ments (such as rotations, cropping, and color adjustments), models can learn more gen-

eralized features of the data. This method helps in simulating a variety of scenarios that

a model might face after deployment, without the need for additional data collection.

However, traditional data augmentation often employs relatively simple transforma-
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tions, which might not suffice for the complex requirements of real-world applications.

Therefore, there is a growing interest in exploring more sophisticated data augmenta-

tion techniques that can introduce a wider array of variations and complexities into the

training process.

As an alternative, innovative techniques such as style transfer and adversarial learn-

ing have emerged. These methods aim to improve the generalization capabilities of models

by training them with a wider range of data scenarios, thereby enabling them to adapt to

new environments more effectively. However, the computational demand and the exten-

sive time required for these methods pose significant challenges, particularly for projects

with limited resources.

Adversarial data augmentation offers a promising solution to these challenges by mod-

ifying training data to enhance the robustness and generalization of models. This tech-

nique involves the strategic introduction of perturbations or transformations to the train-

ing images, simulating potential real-world variations that the models may encounter.

Such an approach can significantly bolster the models’ ability to perform reliably across

diverse conditions without the need for additional data collection.

The potential of adversarial data augmentation lies in its ability to enhance model

generalization significantly. It prepares the model to handle unexpected changes in input

data, thereby ensuring consistent performance across diverse environmental settings.

This is particularly crucial in applications like autonomous driving, where encountering

varying weather conditions and lighting scenarios is inevitable.
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1.1 Thesis Scope & Structure

This thesis investigates the application of adversarial data augmentation within the

realm of computer vision, focusing on enhancing model robustness and domain general-

ization. The primary objective of this research is to explore and validate the effectiveness

of advanced data augmentation techniques, particularly through rigorous experimental

trials using the Synthia dataset. This dataset comprises synthesized images depicting

urban landscapes under various seasonal conditions, which serves as an ideal testbed

for assessing the robustness of computer vision models across diverse environmental

scenarios.

The scope of this thesis encompasses the design, implementation, and evaluation

of a comprehensive system that leverages adversarial data augmentation to improve the

generalization capabilities of deep learning models. By training models on one domain and

evaluating them on others, this study aims to demonstrate significant advancements in

model performance, thereby reducing the reliance on extensive computational resources

and simplifying the training process. This approach is intended to make sophisticated

computer vision models more feasible and effective across a variety of applications.

The structure of the thesis is organized as follows to provide a clear and systematic

understanding of the research conducted:

• Chapter 1: Introduction

This opening chapter sets the stage by outlining the research problem, stating the

objectives, and highlighting the significance of adversarial data augmentation in

contemporary computer vision research.

• Chapter 2: Theoretical Background

Detailed insights into the fundamental concepts of computer vision are provided,

with a focus on data augmentation, especially adversarial data augmentation. This

chapter also covers essential topics such as robustness, domain generalization, and

deep learning architectures including CNNs, FCNs, and encoder-decoder frame-

works.

• Chapter 3: Related Work

A comprehensive review of existing literature pertinent to adversarial data augmen-

tation and its application in enhancing model robustness and domain generalization

is discussed.

• Chapter 4: Data and Preprocessing

This chapter describes the Synthia dataset in detail, including its characteristics

and the preprocessing methods employed to prepare the data for experimental anal-

ysis.

• Chapter 5: Implementation

Presentation and discussion of the main methods that were used in order to train

our models in the context of this thesis.
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• Chapter 6: Experimental Results

Presentation of the experimental results obtained from the application of adversarial

data augmentation techniques on the Synthia dataset. This chapter evaluates the

impact of these techniques on model performance across different domains.

• Chapter 7: Discussion and Conclusion

The concluding chapter summarizes the research findings and their implications for

the field of computer vision. It also provides recommendations for future research

directions and discusses potential extensions to this work.

So, the focus of this thesis is to explore the efficacy of adversarial data augmentation

in the domain of computer vision, particularly through experimental trials on the Syn-

thia dataset—a collection of synthesized images depicting urban landscapes in various

conditions such as spring, winter, and snowy environments. By training a model on

one domain and evaluating its performance on others, this research aims to demonstrate

the enhanced robustness and domain generalization capabilities of models trained using

adversarial data augmentation techniques.

Ultimately, this thesis aims to provide insights into how complex data augmentations,

when combined with advanced generalization techniques, can lead to substantial im-

provements in model performance. This exploration seeks to reduce the dependency on

extensive computational resources and streamline the training process, making advanced

computer vision models more accessible and effective across various applications.

1.2 Related Works

The exploration of adversarial data augmentation in computer vision has attracted

significant attention as a promising avenue for enhancing model robustness and domain

generalization. This section reviews several interesting studies that have contributed to

the understanding and development of adversarial and other sophisticated data augmen-

tation techniques aimed at improving the performance of deep learning systems across

varied domains.

Studies such as those by Xiao et al. [1] explore the synergy between consistency train-

ing and both random and adversarial data augmentation. Their research demonstrates

that this combined approach significantly boosts robustness and accuracy across various

benchmarks, providing strong empirical evidence supporting the effectiveness of integrat-

ing adversarial techniques with random transformations to create a more versatile and

resilient training environment for deep neural networks.

Gokhale et al. (2022) undertook a rigorous analysis to ascertain the impact of various

data modification strategies, such as the incorporation of additional training datasets

and data augmentation, on the adversarial robustness and out-of-domain generalization

of models. Their comprehensive study revealed that while the inclusion of additional data

typically enhances both adversarial robustness and out-of-domain accuracy, implement-

ing data filtering techniques could potentially compromise performance under specific

conditions ([2]).
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Li et al. [3] proposed a simple yet effective technique for domain generalization that in-

volves perturbing feature embeddings with Gaussian noise. Their empirical results across

multiple benchmarks reveal that this method can significantly enhance domain general-

ization capabilities of models, noted for its simplicity and the promising implications it

holds for improving generalization in scenarios where complex data transformations are

impractical.

Advancing the field further, Zhong et al. [4] introduced an adversarial style augmen-

tation technique that strategically generates challenging stylized images during training.

Their approach aims to improve model performance on unseen domains by dynamically

adjusting to the hardest scenarios that a model might encounter. This method has been

shown to be highly effective in domain generalization tasks, underscoring the potential of

adversarial style techniques to significantly enhance model adaptability and performance

across diverse operational settings.

Tripathi et al. (2023) [5] introduced a novel adversarial augmentation technique that

focuses on encouraging deep vision models to learn from holistic shapes rather than

just textures. Their findings indicate significant improvements in model accuracy and

robustness across different adversarial and out-of-distribution datasets, suggesting a

shift towards more shape-oriented learning strategies in computer vision ([5]).

Chen et al. (2021) presented Adversarial Feature Augmentation and Normalization (A-

FAN), a method that enhances visual recognition models’ generalization by augmenting

adversarial features at the intermediate feature embeddings level. Their study showed

consistent improvements across multiple tasks and datasets, reinforcing the value of

adversarial techniques in feature manipulation ([6]).

Another study by Chen et al. (2023) proposed a center-aware adversarial augmen-

tation technique for domain generalization. This method extends the source data dis-

tribution by modifying samples to deviate from class centers, demonstrating superior

performance on benchmark datasets and highlighting the effectiveness of center-aware

strategies in domain generalization ([7]).

Zhou et al. (2020) explored a deep domain-adversarial image generation approach

to enhance model generalization to unseen domains by augmenting the source training

data with generated data designed to fool both domain and label classifiers. This ap-

proach has shown potential in mitigating the domain shift problem, thereby enhancing

the generalization capabilities of models ([8]).

These studies collectively highlight the dynamic nature of research in adversarial data

augmentation and its crucial role in enhancing the robustness and generalization of com-

puter vision systems. While each approach offers unique insights and methodologies,

they all contribute to a broader understanding of how adversarial and augmentation

techniques can be effectively utilized to train more robust and generalizable models. This

body of work not only expands the theoretical framework for adversarial data augmen-

tation but also provides practical guidance for implementing these advanced methods in

real-world applications.
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Chapter 2

Theoretical Background

This chapter presents the theoretical background necessary to understand the content

of the thesis and the methods used in the experimental part.

2.1 Image Segmentation

Image segmentation is a critical task in computer vision, involving the partitioning

of an image into multiple segments or regions to simplify and/or change the representa-

tion of an image into something more meaningful and easier to analyze. The goal is to

identify and delineate objects or other relevant information in digital images. Segmenta-

tion is crucial for various applications such as object recognition, medical imaging, and

autonomous driving.

Segmentation allows for the extraction of objects and boundaries in images, making it

easier to analyze and interpret visual data. This task is essential in many domains, such

as medical imaging, where precise localization and classification of anatomical structures

are required, and in autonomous driving, where identifying pedestrians, vehicles, and

obstacles is critical for navigation.

Historically, image segmentation was accomplished using methods such as thresh-

olding, edge detection, and region-based techniques. Thresholding involves converting a

grayscale image into a binary image by selecting a threshold value. Pixels with intensity

values greater than the threshold are classified as foreground, while others are classified

as background. Otsu’s method [9] is a well-known technique for automatically selecting

the threshold value. Edge detection techniques, such as the Canny edge detector [10],

aim to identify the boundaries of objects within an image by detecting discontinuities

in intensity. Region-based segmentation methods, such as region growing and region

splitting/merging, involve partitioning an image into regions that are similar according to

predefined criteria.

With the advent of machine learning and deep learning, more advanced techniques for

image segmentation have been developed. These techniques often outperform traditional

methods, particularly in complex and large-scale datasets. Supervised learning tech-

niques for image segmentation involve training a model on a labeled dataset, where the

ground truth segmentation maps are provided. Convolutional Neural Networks (CNNs)

have been widely used for image segmentation tasks due to their ability to learn hier-
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Figure 2.1. Image segmentation example in an autonomous driving scenario. The top part
shows the original image, while the bottom part illustrates the segmented image where
each pixel is classified into predefined categories such as road, vehicles, buildings, and
vegetation. This segmentation helps autonomous vehicles understand and navigate their
environment effectively.

archical features from images. Fully Convolutional Networks (FCNs) [11] are a type of

CNN designed specifically for dense prediction tasks like segmentation. FCNs replace the

fully connected layers in traditional CNNs with convolutional layers to produce spatially

consistent output. U-Net [12] is a popular architecture for image segmentation, especially

in medical imaging. It consists of a contracting path that captures context and a symmet-

ric expanding path that enables precise localization. DeepLab [13] is another significant

architecture that utilizes atrous (dilated) convolutions to capture multi-scale context by

controlling the resolution at which feature responses are computed.

Unsupervised learning techniques do not require labeled data and rely on the inherent

structure within the data. Clustering algorithms, such as K-means and Gaussian Mix-

ture Models (GMMs), can be used for image segmentation by grouping pixels with similar

features into clusters. Each cluster corresponds to a segment in the image. Autoencoders

and generative models, such as Variational Autoencoders (VAEs) and Generative Adver-

sarial Networks (GANs), can also be used for unsupervised image segmentation. These

models learn a low-dimensional representation of the input data, which can be used to

reconstruct the image and identify different segments.

2.1.1 Applications of Image Segmentation

Image segmentation has a wide range of applications across various fields. In medical

imaging, segmentation is used to identify and delineate anatomical structures and patho-

logical regions, crucial for diagnosis, treatment planning, and monitoring of diseases.

For example, segmentation is used in MRI and CT scans to locate tumors, measure or-

gan volumes, and guide surgical procedures [14]. In autonomous driving, vehicles rely
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heavily on image segmentation to understand their environment, identifying roads, lanes,

pedestrians, vehicles, and other obstacles. This information is critical for navigation,

path planning, and collision avoidance [15]. Segmentation of satellite and aerial imagery

is used for various applications, including land cover classification, urban planning, and

disaster management. It helps in identifying different terrain types, buildings, vegetation,

and water bodies [16]. Image segmentation is often a preprocessing step in object detec-

tion and recognition tasks. By segmenting the image into meaningful regions, it becomes

easier to detect and recognize objects within those regions [17].

2.1.2 Types of Image Segmentation

Image segmentation is a fundamental task in computer vision that involves partition-

ing an image into meaningful segments. The primary types of image segmentation are

semantic segmentation, instance segmentation, and panoptic segmentation. Each type

serves a unique purpose and has distinct applications.

Figure 2.2. Types of Image Segmentation: The image illustrates three types of image
segmentation. Semantic segmentation classifies each pixel into a category (e.g., person, car,
tree), instance segmentation differentiates between distinct objects of the same category,
and panoptic segmentation combines both, providing a complete scene understanding.

Semantic Segmentation

Semantic segmentation assigns a class label to each pixel in the image. This type of

segmentation focuses on identifying and classifying all pixels belonging to a particular

object or region, without distinguishing between different instances of the same class.

For example, in a street scene, all pixels corresponding to cars might be labeled as "car,"

and all pixels corresponding to roads might be labeled as "road."

Example: Consider a self-driving car navigating a busy street. Semantic segmenta-

tion helps the car understand which parts of the image correspond to roads, sidewalks,

vehicles, and pedestrians. This information is crucial for tasks such as path planning

and obstacle avoidance.
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Instance Segmentation

Instance segmentation not only classifies each pixel but also distinguishes between

different instances of the same class. This means that each object instance in the image

is segmented separately. For instance, in an image with multiple people, instance seg-

mentation will label each person individually, even though they all belong to the "person"

class.

Example: In an image containing a group of people, instance segmentation can iden-

tify and segment each person separately. This is particularly useful in applications like

surveillance and crowd monitoring, where it is important to track individual movements

and actions.

Panoptic Segmentation

Panoptic segmentation combines the strengths of both semantic and instance seg-

mentation. It provides a unified framework where each pixel is assigned a class label

and distinct instances are identified. This comprehensive approach allows for a com-

plete understanding of the scene, capturing both the semantic context and the individual

instances.

Example: In autonomous driving, panoptic segmentation can provide detailed scene

understanding by labeling each pixel with its corresponding object class and differentiat-

ing between individual instances of objects such as cars and pedestrians. This holistic

view is essential for making informed decisions in complex environments.

2.1.3 Applications and Importance

Each type of segmentation has its applications and importance in various domains.

Semantic segmentation is widely used in medical imaging for tasks such as organ and

tumor segmentation. Instance segmentation is crucial for object detection and tracking

in video surveillance. Panoptic segmentation finds applications in autonomous driving,

robotics, and any scenario requiring comprehensive scene understanding.

By combining these segmentation techniques, we can achieve a deeper understanding

of visual scenes, enabling advancements in fields like computer vision, robotics, and

artificial intelligence.

2.1.4 Challenges in Image Segmentation

Despite the advancements in image segmentation techniques, several challenges re-

main. Achieving high accuracy and precision in segmentation tasks is challenging, espe-

cially where boundaries between objects are unclear or objects have similar appearances.

Fine-tuning models to handle such cases requires extensive labeled data and computa-

tional resources. Deep learning models for segmentation, such as FCNs and U-Nets, are

computationally intensive and require significant processing power, particularly for large

images and 3D volumes. Optimizing these models to run efficiently on limited hardware

resources is an ongoing challenge. Ensuring that segmentation models generalize well
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to new, unseen data is crucial. Models trained on specific datasets may not perform

well on data from different domains or acquired under different conditions. Developing

robust models that generalize across diverse datasets remains an important research

area. Creating annotated datasets for training segmentation models is labor-intensive

and time-consuming. The quality of the segmentation model heavily depends on the

quality of the ground truth annotations. Developing semi-supervised or unsupervised

methods to reduce the dependency on labeled data is an active area of research.

2.1.5 Future Directions

The future of image segmentation lies in addressing the current challenges and explor-

ing new frontiers. Combining data from multiple modalities, such as images, text, and

sensor data, can enhance segmentation accuracy and robustness. For example, integrat-

ing MRI and CT scans can provide complementary information for better segmentation in

medical imaging. Developing models that can perform real-time segmentation is crucial

for applications like autonomous driving and video surveillance. This requires optimizing

algorithms for speed and efficiency without compromising accuracy. As deep learning

models become more complex, understanding their decision-making process becomes

challenging. Developing methods to interpret and explain the segmentation results can

build trust and facilitate the adoption of these models in critical applications. Transfer

learning and few-shot learning techniques aim to leverage knowledge from pre-trained

models and adapt them to new tasks with limited data. These techniques can signifi-

cantly reduce the need for extensive labeled datasets and accelerate the deployment of

segmentation models in new domains.

2.2 Out-of-Distribution (OOD) Problem

The Out-of-Distribution (OOD) problem is a fundamental challenge in machine learn-

ing and computer vision. It occurs when a model is exposed to data that significantly

deviates from the data it encountered during training, leading to substantial performance

degradation. This is particularly critical in applications where reliability and accuracy are

paramount, such as autonomous driving, healthcare diagnostics, and security systems.

2.2.1 Understanding OOD

Deep learning models typically assume that the training data and the data to which

they will be applied are from the same distribution, meaning the mean and standard

deviation of the features of these images are the same. However, in reality, many external

factors, from the way the image was taken to the environment, cause variations in the

image field, known as domain shifts. This discrepancy can be problematic when models

are deployed in real-world scenarios.

Let’s assume that the inputs and outputs of a model are connected through the joint

probability distribution function P(X, Y ), where X are the inputs and Y are the outputs.

Usually, the training and validation inputs come from the same distribution, so there are

31



Chapter 2. Theoretical Background

Figure 2.3. Illustration of Out-of-Distribution (OOD) problem detection methods. The
left side shows a discriminator-based approach with a decision boundary separating in-
distribution and out-of-distribution samples. The right side shows a density estimator-
based approach, where in-distribution samples form high-density regions, and OOD sam-
ples fall in low-density areas.

no changes in the joint function during training. However, when the model is applied

at a practical level, the data used for training, validation, and testing come from the

conditional distribution P(X, Y |Z ∈ U ) where Z is some random variable that may be

unobserved, which is not independent of Y and X , and U is an appropriate subset of Z

[18].

2.2.2 Implications of the OOD Problem

The OOD problem has far-reaching implications. For instance, in the medical field,

two MRI scans taken from different machines can show significant deviations, even if they

refer to the same content. This is due to the nature of medical imaging machines, which

add noise and artifacts to the images and differences in the magnetic field, which, even

with proper preprocessing, can lead to significant differences at the level of training an

artificial intelligence model. As a result, the performance of deep learning models drops

dramatically in cases where there are large domain differences, preventing their practical

and widespread application on a large scale [19].

2.2.3 Detection and Handling of OOD Data

Detecting OOD data is crucial for addressing this problem. Various approaches have

been proposed to identify OOD instances. One common method involves using the soft-

max output of neural networks. Typically, models tend to output lower confidence scores

for OOD data compared to in-distribution data. However, this method is not foolproof, as

models can sometimes be overly confident even on OOD data.

Another approach is based on training an auxiliary model specifically designed to

distinguish between in-distribution and OOD data. This method often employs techniques

such as autoencoders or generative models, which learn the distribution of the training

data and can flag deviations from this learned distribution as OOD [20].
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Recent advancements have also explored the use of ensemble methods, where mul-

tiple models are trained independently, and their agreement on predictions is used as

a measure of confidence. OOD data typically results in higher disagreement among the

models, signaling potential OOD scenarios [21].

2.2.4 Addressing the OOD Problem

Handling OOD data effectively often requires incorporating robustness into the model

training process. Adversarial training, where the model is exposed to adversarial exam-

ples that are intentionally crafted to be challenging, can improve the model’s ability to

generalize to unseen data [22]. Data augmentation techniques, such as random cropping,

rotation, and color jittering, can also enhance the robustness of models by exposing them

to a wider variety of data during training.

Another promising direction is domain adaptation, which involves fine-tuning a pre-

trained model on a small amount of labeled data from the target domain. This approach

helps the model adjust its parameters to better handle the specific characteristics of the

new domain, thereby improving performance on OOD data [23].

An obvious solution to this problem is to use images from a variety of domains so

that the model becomes robust to such deviations. However, this solution is often un-

feasible because there is not enough volume and variety of data freely available for use.

For this reason, different approaches have been adopted in the field of deep learning to

solve the problem without the need for training on a massive dataset, known as domain

generalization methods [24].

2.2.5 Future Directions

The OOD problem remains an active area of research with several promising avenues

for future exploration. One area of interest is the development of more sophisticated

uncertainty quantification methods that can provide reliable confidence estimates for

predictions. Improved uncertainty estimates can help in making more informed decisions,

especially in high-stakes applications [25].

Additionally, there is growing interest in zero-shot and few-shot learning techniques,

which aim to enable models to generalize to new classes or domains with minimal or no

additional training data. These techniques could potentially mitigate the OOD problem

by leveraging prior knowledge and transferable features learned from related tasks [26].

Finally, interdisciplinary approaches that combine insights from fields such as robust

statistics, information theory, and cognitive science may offer novel solutions to the OOD

problem. Understanding how humans recognize and adapt to novel situations could

inspire new algorithms and architectures capable of handling OOD data more effectively.

2.3 Domain Generalization

The problem of domain shifts and the absence of sufficient data are significant hurdles

in deploying robust machine learning models in real-world scenarios. Domain general-
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ization methods have emerged as a powerful solution to these challenges, especially in

deep learning models. Domain generalization aims to train a model that can generalize to

unknown domains by considering only labeled data from a set of initial domains during

training. This is particularly crucial in applications where the target domain is unknown

or inaccessible during training, such as medical diagnosis or autonomous driving.

Domain generalization focuses on learning a representation that is invariant to the

domain, capturing the common underlying structure across different domains while being

resilient to variations specific to individual domains. This approach is distinct from

related learning problems, such as domain adaptation or transfer learning, which typically

assume access to the target domain data during the training process.

The history of domain generalization methods dates back to the early 2000s when the

problem was first introduced as a machine learning challenge by Blanchard et al. [24].

Unlike domain adaptation, where some information about the target domain is available

during training, domain generalization addresses scenarios where the target data are

completely inaccessible during the model’s learning process. The initial motivation behind

domain generalization came from a medical application known as automated gating of

flow cytometry data. The goal was to design algorithms to automate the classification

of cells in patient blood samples based on different properties, such as distinguishing

between lymphocytes and non-lymphocytes. This technology is critical for facilitating

patient health diagnosis, given that manual classification is extremely time-consuming

and requires specialized expertise.

Over the years, numerous methods have been developed to tackle the domain gener-

alization problem. These methods can be broadly categorized into four groups: feature-

based methods, metric-based methods, model-based methods, and meta-learning-based

methods.

2.3.1 Feature-Based Methods

Feature-based methods aim to learn a feature representation that is invariant to the

domain. This can be achieved by adding regularization terms to the loss function or using

domain separation networks. For instance, the use of adversarial learning to align the

feature distributions of different domains has been a popular approach. By doing so,

the model learns to extract features that are not specific to any single domain but are

generalizable across multiple domains.

2.3.2 Metric-Based Methods

Metric-based methods focus on learning a metric space that is invariant to domain-

specific variations. These methods often involve designing a metric learning algorithm

that can measure the similarity between samples from different domains in a way that is

robust to domain shifts. By mapping domains into a shared latent space, metric-based

methods aim to ensure that the distances between samples in this space reflect their true

semantic similarities, regardless of their domain of origin.
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2.3.3 Model-Based Methods

Model-based methods aim to learn models that are inherently resilient to domain

shifts. This can be achieved by designing architectures that are robust to variations in the

input data or by incorporating domain-agnostic components into the model. For example,

using batch normalization embeddings, as proposed by Segu et al. [27], can help create

domain-dependent representations that improve classification accuracy across different

domains.

2.3.4 Meta-Learning-Based Methods

Meta-learning-based methods, also known as learning-to-learn approaches, aim to

learn a meta-learner that can quickly adapt to new domains with few labeled samples.

This is particularly useful in scenarios where obtaining a large number of labeled samples

from the target domain is impractical. By simulating domain shifts during the training

process, meta-learning-based methods can train models that are better prepared to han-

dle unseen domains during deployment.

Figure 2.4. Illustration of different scenarios in domain generalization: (a) Domain adap-
tation, where the model is trained on source domain S and tested on target domain T; (b)
Domain generalization, where the model is trained on multiple source domains S1, S2, . . . , Sn
and tested on an unseen target domain T; (c) Single domain generalization, where the model
is trained on a single source domain S and tested on multiple target domains T1, T2, . . . , Tn.

Domain generalization has been extensively studied in the literature, with various

methods developed across different application domains. For example, Sivaprasad et

al. [28] evaluated the effectiveness of Empirical Risk Minimization (ERM) as a baseline

for domain generalization, demonstrating its superiority over many existing DG methods.

They proposed a classwise-DG formulation, which provides a more realistic benchmarking

closer to human learning scenarios.

Another notable work by Wang et al. [29] provides a comprehensive survey on domain

generalization, categorizing methods into data manipulation, representation learning, and

learning strategy. This survey also discusses datasets and applications, summarizing the

existing literature and suggesting future research directions.

Mesbah et al. [30] tackled the weak generalization problem when a model is trained

on a single source domain by building an ensemble model on top of base deep learning

models. Their approach enhances generalization by leveraging the collective predictions
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of the ensemble, which has shown to be effective in improving robustness to domain

shifts.

Dynamic Domain Generalization (DDG) is another promising approach proposed by

Sun et al. [31]. DDG introduces a meta-adjuster that dynamically adjusts network

parameters based on data from different domains. This approach aims to generalize to

different target domains without additional training, using DomainMix to simulate diverse

data during the training process.

Despite the advancements in domain generalization methods, several challenges re-

main. One of the primary challenges is the lack of a unified theoretical framework that

can guide the development of new methods. Additionally, the evaluation of domain gen-

eralization methods often relies on synthetic benchmarks, which may not fully capture

the complexities of real-world scenarios.

2.4 Style Transfer

Style transfer has emerged as a fascinating technique in the realm of computer vi-

sion and image processing, enabling the transformation of an image’s artistic style while

preserving its core content. This innovative concept gained significant attention with the

advent of neural style transfer algorithms, which leverage the capabilities of deep neural

networks to generate visually stunning and artistic images. At the heart of style transfer

is the idea of separating and recombining the content and style of two distinct images to

create a novel and unique composition.

The style transfer process typically involves two primary components: the content

image and the style image. The content image contains the objects and elements that

will be retained in the final result, whereas the style image incorporates the stylistic

features to be applied to the content. Neural networks play a crucial role in this process

by analyzing the content image to extract its features and the style image to capture its

stylistic characteristics. These features are then synthesized to produce a new image that

seamlessly combines the content of the content image with the stylistic properties of the

style image.

One of the most compelling aspects of style transfer is its ability to enrich datasets

and improve model generalization by creating images from different domains. By utilizing

images that differ in their domains, style transfer can generate a diverse set of images,

which can significantly enhance the training process of deep learning models. The primary

quantities used in this process are the mean and variance of the feature maps, as these

metrics encapsulate the essential information about an image’s style within the layers of

a neural network.

A notable advancement in the field is the introduction of deep reinforcement learning-

based architectures for neural style transfer. For instance, Feng et al. (2023) proposed

a method that splits the one-step style transfer into a step-wise process. This approach

allows for better preservation of the content image’s details in the early steps and syn-

thesizes more style patterns in the later steps. Such a method is user-controllable,

lightweight, and has lower computational complexity, making it an attractive option for
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Figure 2.5. Example of style transfer: The left column shows the content image, the middle
column shows the style image, and the right column shows the output image that combines
the content of the left image with the style of the middle image. Each row demonstrates a
different style applied to the same content image.

practical applications [32].

Another significant contribution to the field is the comprehensive overview provided

by Li et al. (2018), which outlines the development process of deep learning networks

for style transfer. The paper introduces classical style migration models and discusses

the challenges and solutions encountered during their investigation. It also compares

the results of different models in image style transfer, offering valuable insights into their

effectiveness [33].

Niu et al. (2021) proposed a deep learning-based framework for style transfer in

specific target regions of images. This method employs image mask technology to generate

a mask map as a specific condition input, ensuring that only the target area undergoes

style transfer while the non-target area remains unaffected. The effectiveness of this

approach has been demonstrated through various experiments, showcasing its potential

in practical applications [34].

Ren and Sheng (2022) provided an overview of the current research progress and

results of image style transfer using deep learning methods. Their work categorizes the

methods into Convolutional Neural Networks (CNN) and Generative Adversarial Networks

(GAN), discussing various models and their effectiveness in style transfer tasks. This

comprehensive review highlights the strengths and limitations of different approaches,

guiding future research in the field [35].

2.5 CNN - Convolutional Neural Networks

It is prudent at this point to provide a detailed overview of Convolutional Neural

Networks (CNNs), the cornerstone of deep learning models used in the field of image
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processing. The CNN architecture is specifically designed to handle the complexity and

size of modern datasets by learning patterns and features directly from the input images.

2.5.1 Basic Architecture

Convolutional Neural Networks were developed to address the inefficiencies of tra-

ditional feedforward neural networks in handling high-dimensional image data. They

reduce the number of parameters and computational complexity by exploiting the spatial

structure of images. A typical CNN architecture consists of several types of layers, each

serving a unique purpose in the network’s ability to learn and recognize patterns.

• Input Layer: The raw pixel values of the image are fed into the network. These

images can be in various formats and resolutions, typically represented as multi-

dimensional arrays.

• Convolutional Layers: These layers apply convolution operations using learnable

filters to the input image. Filters move across the image spatially, producing feature

maps that detect various attributes such as edges, textures, and colors. This local

connectivity allows CNNs to capture spatial hierarchies in the data.

• Activation Functions: Non-linear activation functions like ReLU (Rectified Linear

Unit) are applied to introduce non-linearity, enabling the network to learn complex

patterns. Kuo (2016) elaborates on the necessity of these activation functions for

maintaining the richness of learned features [36].

• Pooling Layers: These layers perform down-sampling operations, reducing the spa-

tial dimensions of the feature maps while retaining the most significant features.

Pooling helps in reducing the computational load and prevents overfitting.

• Fully Connected Layers: Towards the end of the network, fully connected layers

perform high-level reasoning based on the features extracted by the convolutional

and pooling layers. These layers connect every neuron in one layer to every neuron

in the next, similar to traditional neural networks.

2.5.2 Convolution Operation

The convolution operation is central to CNNs. It involves sliding a filter over the input

image to produce a feature map. Mathematically, this can be expressed as:

(I ∗ K)(i, j) =
∑
m

∑
n

I(m, n) · K(i −m, j − n)

where I is the input image, K is the convolution kernel, and the output is a feature

map that highlights specific patterns in the input image. This operation is repeated across

the entire image, enabling the detection of features irrespective of their position.

The choice of filter size and stride plays a crucial role in the effectiveness of the

convolution operation. Smaller filters (e.g., 3x3) are generally preferred as they capture
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finer details, while larger filters can detect more complex patterns. Stride determines the

step size with which the filter moves across the image, influencing the resolution of the

feature map. The use of padding, where the input image is surrounded by zeros, ensures

that the spatial dimensions are preserved after convolution.

Convolutional layers are responsible for detecting low-level features such as edges and

textures in the initial layers, progressing to more complex features such as shapes and

objects in deeper layers. This hierarchical feature extraction is one of the key advantages

of CNNs, enabling them to perform well on a variety of visual tasks [37].

2.5.3 Activation Functions

Activation functions introduce non-linearity into the network, allowing it to learn

complex patterns. The Rectified Linear Unit (ReLU) is the most commonly used activation

function in CNNs due to its simplicity and effectiveness. ReLU is defined as:

f (x) = max(0, x)

ReLU addresses the vanishing gradient problem by allowing gradients to flow through

the network without shrinking, which helps in training deep networks. However, ReLU

has its limitations, such as dying neurons, where neurons output zero for all inputs if

they fall in the negative part of the input space.

To address these issues, variants of ReLU have been proposed:

• Leaky ReLU: Allows a small, non-zero gradient when the input is negative, defined

as:

f (x) =

x x ≥ 0

αx x < 0

where α is a small constant.

• Parametric ReLU (PReLU): Similar to Leaky ReLU, but α is a learnable parameter,

defined as:

f (x) =

x x ≥ 0

αx x < 0

where α is a learnable parameter.

• Exponential Linear Unit (ELU): Smooths the transition from negative to positive

values, defined as:

f (x) =

x x ≥ 0

α(ex − 1) x < 0

where α is a hyperparameter.
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• Sigmoid Function: The sigmoid function maps any real-valued number into the

range between 0 and 1, defined as:

f (x) =
1

1 + e−x

This function is especially useful for models where we need to predict probabilities.

• Tanh Function: The hyperbolic tangent (tanh) function maps any real-valued num-

ber to the range between -1 and 1, defined as:

f (x) = tanh(x) =
2

1 + e−2x
− 1

This function is similar to the sigmoid function but shifts the outputs to zero-

centered, often leading to faster convergence.

• ReLU (Rectified Linear Unit): The ReLU function introduces non-linearity by out-

putting zero for any negative input and outputting the input directly if it is positive,

defined as:

f (x) = max(0, x)

This helps the network to learn complex patterns and is the most widely used

activation function in deep learning models.

• Leaky ReLU: A variation of ReLU that allows a small, non-zero gradient when the

unit is inactive, helping to solve the "dying ReLU" problem, defined as:

f (x) =

x x ≥ 0

αx x < 0

where α is a small constant.

These activation functions help maintain the richness of the features and prevent the

issues associated with traditional ReLU [36].

2.5.4 Pooling Layers

Pooling layers are essential for reducing the spatial dimensions of the feature maps,

which helps in minimizing the computational load and number of parameters in the

network. This process, known as down-sampling, retains the most important features

while discarding less relevant information. The two most common types of pooling are:

• Max Pooling: Selects the maximum value within a defined window. This approach

captures the most prominent features and is beneficial for detecting edges and

textures.
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Figure 2.6. Max Pooling: This method selects the maximum value within a defined window.
It captures the most prominent features, such as edges and textures, and helps in reducing
the dimensionality of the feature map while preserving important characteristics.

• Average Pooling: Computes the average value within a defined window. This

method is useful for smoothing the feature map and is less sensitive to the presence

of noise.

Figure 2.7. Average Pooling: This method computes the average value within a defined
window. It is useful for smoothing the feature map and reducing noise. Average pooling
helps in maintaining the spatial structure of the input while reducing its size.

Pooling layers contribute to the invariance of the network to small translations and

distortions in the input image, which is crucial for recognizing objects regardless of their

position [38].

2.5.5 Advancements in CNN Architectures

Over the past decade, CNN architectures have evolved significantly, driven by the

need for better performance and efficiency. Gu et al. (2015) [37] provide a comprehensive

survey of these advancements, highlighting key innovations such as:
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Layer Design Modern CNN architectures have become deeper and more complex, allow-

ing them to learn more intricate features from data. The introduction of residual networks

(ResNets) by He et al. (2016) was a significant breakthrough in deep learning. ResNets

use residual connections to mitigate the vanishing gradient problem, enabling the train-

ing of very deep networks by allowing gradients to flow more easily through the network.

This architecture demonstrated that extremely deep networks could be trained effectively,

leading to substantial performance improvements on various benchmarks [39]. Another

notable architecture is the Inception network, introduced by Szegedy et al. (2015). The

Inception network uses parallel convolutional layers of different sizes to capture features

at multiple scales. This design allows the network to be both wide and deep, improving its

ability to capture a diverse set of features without significantly increasing computational

complexity [40].

Optimization Techniques Optimization techniques have played a crucial role in im-

proving the training of CNNs. Batch normalization, introduced by Ioffe and Szegedy

(2015), normalizes the inputs of each layer to have a mean of zero and a standard devi-

ation of one. This technique stabilizes and accelerates the training process by reducing

internal covariate shift [41]. Another important optimization technique is dropout, intro-

duced by Srivastava et al. (2014). Dropout randomly sets a fraction of the activations

to zero during training, which prevents overfitting and encourages the network to learn

more robust features [42].

Regularization Methods Regularization methods help improve the generalization of

CNNs by preventing overfitting. Data augmentation, which involves creating additional

training samples through transformations such as rotation, scaling, and flipping, is a

widely used regularization technique. By exposing the network to a more diverse set

of training examples, data augmentation enhances the network’s ability to generalize

to new, unseen data [43]. Weight regularization techniques, such as L2 regularization,

add a penalty to the loss function based on the magnitude of the weights. This penalty

discourages the network from learning overly complex models that may not generalize

well to new data [44].

Transfer Learning Transfer learning has become an essential strategy in training deep

CNNs. Instead of training a network from scratch, pre-trained models on large datasets

like ImageNet are fine-tuned on a specific task. This approach significantly reduces

training time and improves performance, especially when the target dataset is small [45].

Efficient Architectures Recent advancements have also focused on creating more effi-

cient CNN architectures. MobileNets, introduced by Howard et al. (2017), use depthwise

separable convolutions to reduce the number of parameters and computational complex-

ity, making them suitable for mobile and embedded applications [46]. Another efficient

architecture is the EfficientNet, proposed by Tan and Le (2019). EfficientNet scales the

network’s width, depth, and resolution in a principled manner using a compound scaling
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method. This approach achieves state-of-the-art performance with fewer parameters and

lower computational cost compared to traditional architectures [47].

2.5.6 Applications in Image Segmentation

Image segmentation is one of the critical applications of CNNs, where the task is to

assign a label to each pixel in an image, effectively partitioning the image into meaningful

segments. CNNs have been adapted for image segmentation through specialized archi-

tectures such as Fully Convolutional Networks (FCNs) and encoder-decoder networks.

• Fully Convolutional Networks (FCNs): FCNs replace the fully connected layers

with convolutional layers that output spatial feature maps, making it possible to

generate segmentation maps that align with the input image dimensions. This

approach allows the network to retain spatial information throughout the entire

process.

• Encoder-Decoder Networks: These networks consist of an encoder that progres-

sively reduces the spatial dimensions of the input to capture high-level features, and

a decoder that restores the spatial dimensions to produce pixel-wise classifications.

A prominent example of this architecture is the UNet, widely used in medical image

segmentation.

2.5.7 Image Segmentation Challenges and Solutions

Image segmentation, a critical application of Convolutional Neural Networks (CNNs),

involves assigning a label to each pixel in an image, effectively partitioning the image into

meaningful segments. Despite significant advancements in the field, image segmentation

still faces several challenges. This section discusses these challenges and the solutions

proposed in recent literature to address them.

Boundary Precision One of the primary challenges in image segmentation is accurately

segmenting object boundaries. CNNs, due to their convolutional nature, tend to pro-

duce smooth transitions between object classes, leading to imprecise boundaries. This

issue is particularly problematic in applications requiring high precision, such as medical

imaging. Several techniques have been proposed to address this challenge. Conditional

Random Fields (CRFs) have been integrated with CNNs to refine segmentation boundaries.

For instance, Chen et al. (2016) proposed the DeepLab model, which incorporates fully

connected CRFs to improve boundary localization by considering pixel-level dependencies

[48].

Class Imbalance Class imbalance is another significant challenge in image segmen-

tation. In many datasets, certain classes may be underrepresented, leading to biased

predictions and poor performance on minority classes. This issue is prevalent in medi-

cal imaging, where abnormal tissues (e.g., tumors) are much less frequent than normal

tissues. To tackle class imbalance, several strategies have been employed. One common
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approach is to use weighted loss functions, where higher weights are assigned to minor-

ity classes to ensure they contribute more to the loss during training. Another method

is data augmentation, which involves generating additional samples of minority classes

through techniques such as rotation, flipping, and scaling. Ronneberger et al. (2015) em-

ployed these techniques in the UNet architecture to enhance segmentation performance

on biomedical datasets [49].

Computational Complexity Segmentation tasks are computationally intensive, requir-

ing significant resources for training and inference. This complexity arises from the need

to process high-resolution images and generate dense pixel-wise predictions. The high

computational cost can be a barrier to deploying segmentation models in real-time appli-

cations and on devices with limited processing power. To reduce computational complex-

ity, efficient network architectures have been developed. For example, the MobileNetV2

model uses depthwise separable convolutions to reduce the number of parameters and

computational load, making it suitable for mobile and embedded applications [50]. Ad-

ditionally, the use of model compression techniques, such as quantization and pruning,

can further reduce the computational requirements without significantly compromising

performance.

Generalization to Unseen Data Generalizing segmentation models to unseen data is

a persistent challenge, especially when the training and test datasets have different dis-

tributions. Domain adaptation techniques have been proposed to address this issue by

reducing the domain shift between the source and target domains. One effective approach

is adversarial training, where a segmentation model is trained alongside a discriminator

that distinguishes between the source and target domains. The segmentation model aims

to produce outputs that are indistinguishable by the discriminator, thereby improving

generalization. Hoffman et al. (2018) demonstrated the effectiveness of this approach in

their CyCADA framework, which achieves domain adaptation for semantic segmentation

[51].

Multi-scale Contextual Information Capturing multi-scale contextual information is

crucial for accurate segmentation, as objects in images can vary significantly in size.

Traditional CNNs may struggle to capture features at different scales, leading to subop-

timal performance. To address this, multi-scale feature extraction techniques have been

developed. The Pyramid Scene Parsing Network (PSPNet) by Zhao et al. (2017) utilizes

a pyramid pooling module to aggregate contextual information at multiple scales, sig-

nificantly improving segmentation accuracy [52]. Similarly, the use of atrous (dilated)

convolutions in models like DeepLab allows for effective multi-scale feature extraction

without increasing the number of parameters [53].

Label Ambiguity In many cases, there is inherent ambiguity in the labeling of images,

where different annotators may label the same image differently. This variability can lead

to noisy training data and affect the performance of segmentation models. To mitigate the
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impact of label ambiguity, probabilistic models and ensemble methods have been used.

These approaches aggregate the predictions of multiple models or probabilistic annota-

tions to produce a more robust final segmentation. For example, Monte Carlo dropout,

proposed by Gal and Ghahramani (2016), can be used to estimate model uncertainty and

produce probabilistic segmentation maps [54].

2.6 Encoder-Decoder Models

Encoder-decoder architectures are a powerful class of neural network models widely

used in various fields, such as computer vision, natural language processing, and more.

These architectures are particularly notable for their ability to reduce information to a

lower-dimensional space using an encoder and then reconstruct or utilize this reduced

information using a decoder.

2.6.1 Encoder

In the context of image processing, the encoder component of the architecture takes

a high-dimensional input, such as an image, and progressively reduces it to a lower-

dimensional representation often referred to as a latent space or bottleneck. This process

involves a series of convolutional and pooling layers that capture increasingly abstract

and compact features from the input. These lower-dimensional representations retain

essential information about the input while discarding unnecessary details, making it an

efficient way to extract meaningful features from complex data.

In the context of image processing, encoders typically use convolutional layers, which

apply filters to the input image to detect patterns such as edges, textures, and more com-

plex structures. Pooling layers are then used to down-sample the feature maps, reducing

their dimensionality while retaining the most critical information. This combination of

convolutional and pooling layers allows the encoder to create a compact representation

of the input data, which can then be effectively processed by the decoder.

The encoder’s effectiveness in capturing relevant features while reducing dimension-

ality has been demonstrated in various applications. For instance, Pham et al. (2019)

utilized an encoder-decoder architecture incorporating anatomical priors to improve pelvic

bone segmentation in MRI, highlighting the encoder’s ability to capture important anatom-

ical structures [55].

Encoders are not limited to image processing. In natural language processing (NLP),

for example, encoders are used to transform sequences of words into fixed-size vectors

that capture the semantic meaning of the text. This is crucial for tasks such as machine

translation, where the meaning of a sentence must be preserved when translating between

languages.

Several studies have highlighted the importance and effectiveness of encoders in var-

ious applications:
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Network Intrusion Detection : Moraboena et al. (2020) explored the use of deep au-

toencoders for network intrusion detection. The encoder in their model was crucial for

reducing the high-dimensional network traffic data to a lower-dimensional latent space.

This reduction allowed the model to generalize better than traditional methods and im-

proved network constraints, highlighting the encoder’s ability to capture essential features

from complex input data [56].

Diffusion Maps in Encoders : Dorado et al. (2019) proposed Deep Diffusion Autoen-

coders (DDA) that integrate diffusion maps in the bottleneck layer. The encoder’s role

in this architecture is to project the input data into a latent space that preserves the

geometric structure of the samples. This integration improves the reconstruction error

and maintains the intrinsic geometry of the data, demonstrating the encoder’s capability

in handling complex data distributions [57].

Logic-driven Encoders : Al-Hmouz et al. (2019) introduced logic-driven autoencoders

that utilize fuzzy logic operations during the encoding process. The encoder in this

model provides a transparent knowledge representation by capturing the essential log-

ical relationships within the data. This approach enhances the interpretability of the

model, which is particularly valuable in applications requiring clear and understandable

decision-making processes [58].

Robust Feature Learning : Sun et al. (2016) proposed an unsymmetrical autoencoder

(UAE) structure that effectively learns robust features. In this architecture, the encoder is

designed to handle input distributions that differ significantly from the output distribu-

tions. This allows the model to learn more generalized features, outperforming traditional

symmetrical autoencoders, and demonstrating the flexibility of encoder structures in var-

ious applications [59].

Anatomical Priors in Medical Imaging : Pham et al. (2019) utilized an encoder-

decoder architecture with anatomical priors for improved pelvic bone segmentation in

MRI. The encoder component was responsible for incorporating anatomical knowledge

into the latent space, thereby enhancing the segmentation performance by leveraging

prior medical knowledge. This study highlights the encoder’s role in integrating domain-

specific information to improve model accuracy [55].

Evolutionary Design of Encoders : Hajewski et al. (2020) described a distributed

system using an evolutionary algorithm to design modular autoencoders. The encoder’s

structure in this approach is evolved to optimize for specific tasks, such as manifold

learning and image denoising. This evolutionary design demonstrates the adaptability

and customization potential of encoders to meet diverse application requirements [60].

Unsupervised Domain Adaptation : Zhou et al. (2019) proposed the Deep Cycle Au-

toencoder (DCA) for unsupervised domain adaptation. The encoder in this model plays
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a critical role in transforming the input data into a latent space that is invariant to the

domain shift between source and target domains. This allows the model to adapt to

new domains without requiring labeled data, showcasing the encoder’s effectiveness in

generalizing across different datasets [61].

2.6.2 Decoder

The decoder component of an encoder-decoder architecture is responsible for taking

the reduced information from the encoder and reconstructing the original input or pro-

ducing an output with desired characteristics. This process typically involves a series

of layers that progressively upscale the latent representation back to the original input

dimensions or to a new target dimension.

In image processing, decoders generally use upsampling techniques, such as trans-

posed convolutions (also known as deconvolutions), to increase the spatial dimensions

of the feature maps. This is followed by convolutional layers to refine the output and

make it more similar to the target image. Decoders are essential in tasks such as image

denoising, super-resolution, and image generation.

Let’s dive deeper into the various roles and applications of decoders, showcasing their

versatility and effectiveness across different domains.

Applications of Decoders

Decoders have been effectively utilized in various applications across different do-

mains. One such application is image denoising. I find this particularly fascinating

because it directly improves the quality of our visual data. Prayuda et al. (2020) pre-

sented an autoencoder-based method for image companding, transforming high dynamic

range (HDR) images to low dynamic range (LDR) and vice versa. The decoder in their

architecture is crucial for accurately reconstructing the image while preserving essential

details. Imagine having old, noisy photos and being able to clean them up digitally - that’s

the power of these decoders in action [62].

In the realm of network intrusion detection, decoders play a critical role as well.

Moraboena et al. (2020) explored the use of deep autoencoders for this purpose. The

encoder reduces the high-dimensional network traffic data to a more manageable size,

and the decoder helps to identify anomalies by reconstructing the data and comparing

it with the original input. This method enhances detection accuracy, ensuring that our

networks remain secure from intrusions [56].

When it comes to medical image segmentation, the importance of decoders cannot

be overstated. Pham et al. (2019) proposed a 2D encoder-decoder architecture that

incorporates anatomical priors to improve pelvic bone segmentation in MRI. The decoder

here expands the latent representations back to the original image dimensions, allowing

precise segmentation of anatomical structures. This is crucial for accurate diagnosis and

treatment in medical applications, highlighting how decoders can significantly impact

healthcare [55].
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Figure 2.8. An illustration of the encoder-decoder architecture. The decoder takes the latent
representation and progressively reconstructs it back into the original input dimensions
through upsampling and convolution operations.

One area where decoders have really shined is in Generative Adversarial Networks

(GANs). In GANs, the decoder is often referred to as the generator. Zhou et al. (2019)

proposed the Deep Cycle Autoencoder (DCA) which integrates a generation procedure into

adversarial adaptation methods for unsupervised domain adaptation. The decoder (or

generator) creates realistic images from the latent space, demonstrating the potential of

decoders in generative tasks. This is the kind of technology that powers advanced image

editing tools and even deepfakes [61].

Another intriguing application is in manifold learning. Schuster and Krogh (2021)

showed that decoders could be trained independently of encoders using manifold learn-

ing principles. This approach allows decoders to learn better representations and improve

reconstruction accuracy, particularly for small datasets. It’s fascinating to see how de-

coders can stand alone and still achieve remarkable results [63].

Decoders also play a significant role in image companding. Prayuda et al. (2020)

discussed how decoders are used to transform HDR images to LDR and vice versa. This

application is essential for maintaining image quality across different devices, ensuring

that the images we see on our screens are consistent and high-quality [62].

In the evolutionary design of decoders, Hajewski et al. (2020) described a distributed

system using an evolutionary algorithm to design modular autoencoders. Here, the de-

coder’s structure is evolved to optimize for specific tasks like manifold learning and image

denoising. This shows the adaptability and customization potential of decoders, tailored

to meet diverse application requirements [60].

Advanced Architectures Beyond the traditional applications, decoders have been en-

hanced with advanced architectures to further improve their performance and applicabil-

ity.

Dorado et al. (2019) introduced Deep Diffusion Autoencoders (DDA) that integrate

diffusion maps in the bottleneck layer. The decoder in this architecture is designed

to reconstruct the input data while preserving the geometric structure of the samples.
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This is particularly useful in applications requiring high accuracy in data reconstruction,

showcasing the decoder’s effectiveness in handling complex data distributions [57].

Finally, logic-driven decoders presented by Al-Hmouz et al. (2019) use fuzzy logic

operations during the decoding process. The decoder in this model provides transparent

knowledge representation by decoding the logical relationships captured by the encoder.

This transparency is crucial in applications where clear and understandable decision-

making processes are required [58].

2.6.3 Autoencoders

Autoencoders are deep neural network architectures whose main purpose is to learn

a representation for a set of input data. These models can perform various tasks such as

feature engineering, compression, or data generation. Let’s delve into how autoencoders

work and their applications.

Given an input vector x ∈ Rd, the left part of the autoencoder, known as the encoder,

learns a low-dimensional latent representation z ∈ RL , where typically L ≪ d. This low-

dimensional layer is also known as the bottleneck. Then, the right part of the autoencoder,

known as the decoder, tries to reconstruct x from z. The objective of the model is to create

an output x̂ ∈ Rd as close as possible to the original input, i.e., x̂ ≈ x.

Structure and Functionality

It’s fascinating how these structures work. Essentially, the encoder reduces the input

dimensions, compressing the information into a compact representation. The decoder

then takes this compressed information and reconstructs the original input. This process

not only helps in dimensionality reduction but also in understanding the underlying

structure of the data.

For instance, in a generative autoencoder for image data, the encoder usually employs

convolutional neural network (CNN) layers followed by linear layers. Conversely, the

decoder utilizes linear layers followed by CNN layers. This structure helps in effectively

capturing and reconstructing image features.

You can refer to the diagram of the decoder actions (Figure 2.8) to get a visual under-

standing of how the decoding process works. The decoder’s upsampling and convolution

operations gradually reconstruct the high-dimensional input from the compact latent

space.

Applications

Autoencoders are incredibly versatile and have several applications:

1. Feature Engineering: Autoencoders can be used for dimensionality reduction, ex-

tracting meaningful features from high-dimensional data. This is particularly useful

in tasks like data visualization and preprocessing for other machine learning mod-

els.
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2. Compression: For image data, autoencoders can compress the images into smaller

representations. This reduces storage space and speeds up data transmission with-

out significant loss of information.

3. Data Generation: Autoencoders can generate new data samples to enrich limited

datasets. This is especially valuable in fields where obtaining labeled data is expen-

sive or time-consuming.

Deterministic Nature

It is important to note that traditional autoencoders are purely deterministic models.

This means that given a specific input x0, the output will always be x̂0. This consistency

is crucial for applications requiring reliable and reproducible results. Autoencoders’ flex-

ibility and efficiency make them powerful tools in various fields, from computer vision

to natural language processing. Their ability to learn compact representations of data

helps in enhancing the performance of other machine learning models and enables new

applications in data analysis and generation.

2.7 FTN-STN Networks

Recent research has identified innovative methods to increase the robustness of neural

networks to changes in image fields. One such framework that has shown promising

results is the collaborative FTN-STN networks, which stand for Fast Thinking Network

(FTN) and Slow Thinking Network (STN). This concept is inspired by the human brain’s

dual-process theory, where fast, automatic decisions are often prone to errors, while

slower, more deliberate processing handles complex decisions with higher accuracy.

2.7.1 Fast Thinking Network (FTN)

The Fast Thinking Network is designed to make quick decisions based on the input

image. Given an image x, the FTN extracts two types of features: shape features zs specif-

ically for the segmentation task and image context features zi for the image reconstruction

task. This network consists of several key components:

• Encoder Eθ: This module processes the input image to extract initial features.

• Feature Disentangler H: This component is crucial as it separates the features

relevant to the segmentation task from those needed for image reconstruction. The

disentangler ensures that the features used for segmentation do not contain irrele-

vant information.

• Decoders Dφs and Dφi : These two decoders handle different tasks. Dφs focuses on

segmentation, while Dφi reconstructs the image context.

The process starts with the encoder Eθ extracting a feature representation from the

input image. The feature disentangler H then processes these features to isolate the
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task-specific information. Typically, H uses a stack of two convolutional layers followed

by ReLU activation functions to perform this disentanglement. The segmented features zs

are passed to Dφs for segmentation, and the context features zi are sent to Dφi for image

reconstruction.

According to Ganapini et al. (2022), combining fast and slow decision modalities

enhances decision quality, resource consumption, and efficiency in AI systems navigating

constrained environments [64].

2.7.2 Slow Thinking Network (STN)

While the FTN is designed for speed, the STN focuses on accuracy. The STN acts

as a corrective mechanism, refining the segmentation output of the FTN. The STN is a

denoising autoencoder network Cψ, which uses a learned prior shape encoded within the

network to correct any errors in the segmentation predicted by the FTN.

The STN’s architecture includes the following components:

• Denoising Autoencoder Cψ: This network refines the segmentation results from

the FTN by leveraging prior knowledge encoded in its layers. It takes the initial

segmentation and improves its accuracy by correcting errors.

Hassantabar et al. (2020) demonstrate that the TUTOR framework uses decision

rules as model priors to train deep neural networks, improving accuracy and efficiency

with limited data [65].

The collaborative effort between the FTN and STN mimics the brain’s dual-process

theory, where quick, heuristic-based decisions are refined by slower, more analytical pro-

cessing. This collaboration enhances the overall robustness and accuracy of the network’s

output.

2.7.3 Applications and Benefits

The FTN-STN framework has several applications, particularly in fields requiring high

accuracy and robustness in image segmentation and reconstruction. Some notable ap-

plications include:

• Medical Imaging: In medical imaging, accurate segmentation of anatomical struc-

tures is crucial. The FTN-STN framework can quickly provide initial segmentation

results, which the STN can then refine to ensure high accuracy, essential for diag-

nostics and treatment planning [66].

• Autonomous Driving: Autonomous vehicles rely heavily on accurate segmentation

of their surroundings. The FTN can quickly identify objects and road features,

while the STN ensures these segmentations are precise, enhancing the safety and

reliability of the vehicle’s navigation system [67].
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• Surveillance Systems: Surveillance systems can benefit from the FTN-STN frame-

work by quickly detecting and segmenting objects of interest (e.g., intruders, vehi-

cles), with the STN refining these detections to reduce false positives and improve

overall system reliability [64].

2.7.4 Detailed Workflow

Let’s break down the workflow in more detail to understand how these networks

interact.

1. Image Input: The process begins with an input image x. This image is fed into the

FTN, which is responsible for quick processing.

2. Encoding: The encoder Eθ extracts feature representations from the image. This

step is crucial as it captures the essential details needed for both segmentation and

image reconstruction.

3. Feature Disentangling: The extracted features are then processed by the feature

disentangler H. This component uses a stack of convolutional layers and ReLU

activation functions to separate the shape features zs from the context features zi .

4. Segmentation and Reconstruction: The disentangled features are sent to their

respective decoders. Dφs handles the segmentation task, providing a quick but

potentially rough segmentation of the image. Simultaneously, Dφi reconstructs the

image context, ensuring that important contextual information is preserved.

5. Initial Segmentation Output: The output of Dφs is the initial segmentation re-

sult. This segmentation is quick, providing a preliminary result that can be used

immediately if needed.

6. Correction by STN: The initial segmentation is then fed into the STN, specifically

into the denoising autoencoder Cψ. This network uses a learned prior shape to cor-

rect any errors in the segmentation, refining the output to achieve higher accuracy.

7. Final Output: The final output is a highly accurate segmentation of the input image,

combining the speed of the FTN with the precision of the STN.

2.7.5 Spatial Transformer Networks (STN)

Spatial Transformer Networks (STN) are a component that can be integrated into FTN-

STN frameworks to enhance spatial invariance in the networks. STNs allow the model

to spatially transform the input data, thus enabling the network to focus on the relevant

parts of the input image.

As illustrated in Figure 2.9, an STN typically includes three main components:

• Localization Network: Predicts the transformation parameters θ that should be

applied to the input image.
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Figure 2.9. Spatial Transformer Network (STN): The STN component includes a localization
network that predicts transformation parameters, a grid generator, and a sampler that uses
bilinear interpolation to produce the output. This mechanism allows the network to focus
on the region of interest in the input image.

• Grid Generator: Uses the predicted transformation parameters to generate a sam-

pling grid.

• Sampler: Produces the transformed output by applying the sampling grid to the

input image using bilinear interpolation.

The integration of STNs in the FTN-STN framework can significantly improve the ro-

bustness and accuracy of the model by allowing it to focus on relevant parts of the input

image and ignore irrelevant information.

2.7.6 Advancements and Future Directions

The FTN-STN framework is a significant advancement in neural network architecture,

drawing inspiration from cognitive science to improve machine learning models. Future

research can explore several directions to further enhance this framework:

• Integration with Other Neural Network Models: Combining FTN-STN networks

with other architectures, such as attention mechanisms or transformers, could

further enhance their performance.

• Real-time Applications: Optimizing the FTN-STN framework for real-time applica-

tions, such as live video analysis, could expand its usability in dynamic environ-

ments.

• Improved Feature Disentangling: Enhancing the feature disentangler H to better

separate task-relevant and task-irrelevant information can lead to even more robust

performance.

• Transfer Learning: Applying transfer learning techniques to leverage pre-trained

models in the FTN-STN framework could reduce training times and improve perfor-

mance across various tasks.
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2.8 Fully Convolutional Networks (FCNs)

Fully Convolutional Networks (FCNs) have revolutionized the field of image segmen-

tation by adapting the principles of Convolutional Neural Networks (CNNs) for pixel-level

semantic segmentation tasks. Unlike traditional CNNs, which are typically used for clas-

sification tasks, FCNs are designed to classify each pixel of an image into predefined

classes. This adaptation is achieved by replacing the fully connected layers typically

found at the end of CNNs with convolutional layers, thereby retaining spatial information

throughout the network.

2.8.1 Architecture of FCNs

The primary difference between FCNs and conventional CNNs lies in the absence of

fully connected layers. In FCNs, the fully connected layers are replaced by convolutional

layers, which allows the network to make dense predictions for each pixel rather than

a single label per image. This architectural change ensures that spatial hierarchies and

features from different levels of abstraction are preserved.

Figure 2.10. Fully Convolutional Network (FCN): The FCN process starts with an input
image that passes through several convolutional layers, extracting features and reducing
dimensionality. The network then uses fully convolutional layers to maintain spatial infor-
mation, and upsampling layers to restore the original resolution for pixel-wise prediction,
resulting in a detailed segmentation map.

The design choice to use convolutional layers instead of fully connected layers has sev-

eral advantages. For instance, convolutional layers are inherently translation-invariant,

making them more suitable for tasks that require the recognition of patterns regardless of

their location in the input image. Additionally, this design significantly reduces the num-

ber of parameters in the network, leading to less computational complexity and faster

training times [68].

2.8.2 Skip Connections

One of the critical features of FCNs is the use of skip connections. These connections

link the feature maps from deeper layers of the network to shallower layers. By up-

sampling the feature maps from deeper layers and merging them with those from earlier
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layers, the network combines semantic information from deep, coarse layers with appear-

ance information from shallow, fine layers. This combination produces more accurate

and detailed segmentations.

Skip connections address one of the major challenges in segmentation tasks: the

loss of spatial resolution due to downsampling operations like pooling. By incorporating

feature maps from earlier layers, skip connections help the network retain fine-grained

details that are essential for precise segmentation. This technique also facilitates better

gradient flow during backpropagation, which aids in training deeper networks effectively.

2.8.3 U-Net: An Evolution of FCNs

A notable architecture inspired by FCNs is the U-Net, which is particularly effective

for tasks such as image segmentation. The U-Net architecture features a U-shaped de-

sign consisting of both contracting and expanding paths. This structure makes U-Net

especially suitable for medical image segmentation, where precise localization is crucial.

Figure 2.11. U-Net Architecture: The U-Net consists of a contracting path (left side) and
an expansive path (right side). The contracting path follows the typical architecture of a
convolutional network, with repeated application of two 3x3 convolutions (purple arrows),
each followed by a ReLU and a 2x2 max pooling operation (red arrows) for downsampling. In
the expansive path, feature maps are upsampled using a 2x2 up-convolution (green arrows)
and concatenated with the corresponding high-resolution features from the contracting path
(black arrows). The network ends with a 1x1 convolution (blue arrows) to map each 64-
component feature vector to the desired number of classes.

The contracting path of the U-Net captures context using a series of convolutional

and pooling layers, similar to traditional FCNs. The expanding path, on the other hand,

uses up-convolutions (or deconvolutions) to increase the spatial resolution of the feature

maps. Feature maps from the contracting path are copied to the expanding path to avoid

loss of spatial information. Finally, a 1x1 convolution is applied to produce the final

segmentation map, classifying each pixel of the input image.

The U-Net was initially proposed for the segmentation of biological microscopy images.

Its architecture and training strategy, which includes extensive use of data augmentation,

enable it to learn effectively from a limited number of annotated images. The U-Net’s
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ability to perform well with limited data makes it a valuable tool in medical imaging,

where annotated data can be scarce and expensive to obtain [69].

2.8.4 Applications in the Medical Field

FCNs and their variants, such as U-Net, have found extensive applications in the med-

ical field. They have been used for tasks such as brain tumor segmentation, case-aware

segmentation, skin cancer segmentation, and iris segmentation. These networks have

revolutionized medical image analysis, enabling precise and automated segmentation of

organs and tumors in images from various modalities, such as MRI, CT scans, and X-

rays. FCNs allow medical professionals to save time and make more accurate diagnoses

by providing detailed maps of anatomical structures or pathological areas.

In brain tumor segmentation, for instance, FCNs help in delineating tumor bound-

aries, which is critical for treatment planning and prognosis. In skin cancer segmenta-

tion, these networks assist in identifying malignant lesions with high accuracy, thereby

facilitating early diagnosis and treatment. The ability of FCNs to process and analyze

large volumes of medical images efficiently has significantly improved the workflow in

medical diagnostics [70].

2.8.5 Challenges and Limitations

Despite their popularity and effectiveness, conventional FCN models have certain lim-

itations:

• Speed: Traditional FCNs are not fast enough for real-time inference, which can be

a significant drawback in applications requiring immediate results.

• Global Context: FCNs do not efficiently incorporate global context information,

which can sometimes result in less accurate segmentations.

• 3D Images: Extending FCNs to three-dimensional images (such as volumetric data)

is not straightforward and often requires substantial modifications to the architec-

ture.

To address these limitations, several approaches have been proposed. For instance,

lightweight architectures and optimization techniques have been developed to improve

the inference speed of FCNs. Additionally, integrating attention mechanisms into FCNs

has shown to enhance the network’s ability to capture global context, leading to more

accurate segmentations [71].

2.8.6 Recent Advances and Future Directions

To address these limitations, subsequent architectures have been developed. For

instance, models like the Fully Convolutional DenseNets (FC-DenseNet) integrate dense

connections to improve information flow and model efficiency [69]. Additionally, attention
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mechanisms have been introduced to FCNs to better capture global context and improve

segmentation accuracy [70].

Recent research also explores the use of adversarial training to enhance the perfor-

mance of FCNs. By incorporating a discriminator network, the segmentation network can

be trained to produce more realistic segmentations, which are harder for the discriminator

to distinguish from real data [71].

Furthermore, hardware advancements have played a significant role in the deployment

of FCNs. For example, the exploration of hardware design for deep neural networks with

binary parameters has enabled the implementation of these networks in mobile and IoT

devices, making them more accessible and efficient [68].
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Related Work

In this chapter, an initial description is given of the various methods applied for

domain generalization, which have also influenced the research of this thesis.

3.1 Data Modification Methods for Out-of-Domain Generaliza-

tion and Adversarial Robustness

3.1.1 Impact of Data Modification Strategies

The paper by Gokhale et al. (2022) [2] investigates the effects of various data modifi-

cation strategies on out-of-domain (OOD) generalization and adversarial robustness (AR).

This comprehensive study evaluates the impact of additional training datasets, data aug-

mentation, debiasing, and dataset filtering on both in-domain and OOD performance, as

well as AR. The authors highlight the unclear relationship between data modification and

AR, aiming to provide empirical insights to bridge this gap.

The study uses a two-dimensional synthetic dataset to visualize the effects of each data

modification method on the training distribution. The findings suggest that incorporating

more data, either through additional datasets or data augmentation, benefits both OOD

accuracy and AR. However, the study also reveals that data filtering, which has previously

been shown to improve OOD accuracy in natural language processing tasks, may actually

harm OOD accuracy in other tasks such as question answering and image classification.

One key insight from this work is the differential impact of data modification strate-

gies across various tasks. For instance, while data augmentation generally enhances

robustness, its effectiveness can vary depending on the specific task and dataset. This

variability underscores the need for task-specific considerations when implementing data

modification strategies.

The authors conclude that while data modification methods can significantly improve

OOD generalization and AR, the choice of strategy should be carefully tailored to the spe-

cific application. This work serves as a valuable empirical study, providing insights that

can inform future research directions in the field of domain generalization and adversarial

robustness.
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Figure 3.1. This figure illustrates the effect of data modification techniques on the training
distribution. The leftmost figure shows the training distribution in the single-source setting.
The introduction of a second dataset or data augmentation (done using small perturbations
of source samples with Gaussian noise) makes the distribution more diverse in the multi-
source (MS) and data augmentation (DA) settings, respectively. On the other hand, data
filtering, in order to remove spurious correlations from the dataset, removes points from
certain sectors of the distribution. The effect of each strategy on OOD generalization and
robustness is shown below each plot.

3.1.2 Consistency Training with Random Data Augmentation

Xiao et al. (2022) [1] explore the use of consistency training with random data aug-

mentation to achieve state-of-the-art results in domain adaptation (DA) and generalization

(DG). The authors propose a differentiable adversarial data augmentation method based

on spatial transformer networks (STNs), which combines adversarial and random trans-

formations to enhance accuracy and robustness.

Consistency training involves using a model to make predictions on both augmented

and original data, ensuring that these predictions are consistent. This method has proven

effective in various tasks, but the novel contribution of Xiao et al [1]. lies in the integration

of adversarial and random augmentations. The differentiable nature of STNs allows for

efficient and scalable adversarial training, addressing a significant limitation of previous

methods.

The combined adversarial and random-transformation-based approach outperforms

existing state-of-the-art methods on multiple DA and DG benchmark datasets. Moreover,

the method demonstrates desirable robustness to various types of corruption, further

validating its effectiveness.

Xiao et al.[1] emphasize the importance of balancing adversarial and random transfor-

mations to achieve robust domain adaptation and generalization. Their findings suggest

that consistency training with random data augmentation is a powerful tool for improving

model performance across diverse domains. This work provides valuable insights into

the design of robust deep learning models capable of handling OOD data and adversarial

attacks.
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Figure 3.2. Overview of the proposed model. The authors propose using random image
transformations and adversarial spatial transformer networks (STN) to achieve domain
adaptation and generalization (without the dashed line bounding box). The figure illustrates
the flow of data from the source domain and target domain through various transformations
and the classification network, with losses computed for cross-entropy and consistency.

3.2 Feature Augmentation Techniques for Domain Generaliza-

tion

3.2.1 Feature Augmentation with Gaussian Noise

Li et al. (2021) [3] propose a novel approach to domain generalization through feature

augmentation. The authors argue that existing methods primarily rely on image-space

data augmentation, which requires careful design and offers limited diversity. Instead,

they advocate for feature augmentation as a more promising direction for DG.

The proposed technique involves perturbing the feature embedding with Gaussian

noise during training, leading to a classifier with domain-generalization performance

comparable to existing state-of-the-art methods. To capture more meaningful statis-

tics reflective of cross-domain variability, the authors estimate the full class-conditional

feature covariance matrix iteratively during training. This enables joint stochastic feature

augmentation, which perturbs features in directions corresponding to intra-class and

cross-domain variability.

The authors validate their method on three standard DG benchmarks: Digit-DG,

VLCS, and PACS. Their results show that the proposed feature augmentation technique

outperforms or is comparable to the state of the art in all setups. Additionally, the ex-

perimental analysis provides insights into how the method contributes to training robust

and generalizable models.

Li et al.[3] conclude that feature augmentation, particularly with Gaussian noise, is
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an effective strategy for improving domain generalization. Their work underscores the

potential of feature-based approaches in enhancing model robustness and highlights the

importance of considering feature space perturbations in DG research.

3.2.2 Adversarial Feature Augmentation and Normalization

Chen et al. (2021) [6] propose an innovative approach called Adversarial Feature

Augmentation and Normalization (A-FAN), which shifts the focus from pixel-level pertur-

bations to intermediate feature embeddings, thereby offering a more efficient and effective

solution.

A-FAN consists of two main components. First, it augments visual recognition mod-

els with adversarial features that incorporate flexible scales of perturbation strengths.

Second, it extracts adversarial feature statistics from batch normalization layers and

re-injects them into clean features through feature normalization. This method avoids

the computational expense associated with pixel-level perturbations while still providing

significant generalization improvements.

The authors validate A-FAN across a diverse range of visual recognition tasks using

representative backbone networks, including ResNets and EfficientNets for classification,

Faster-RCNN for detection, and Deeplab V3+ for segmentation. The extensive experi-

ments conducted on various datasets—such as CIFAR-10, CIFAR-100, ImageNet, Pascal

VOC2007, Pascal VOC2012, COCO2017, and Cityscapes—demonstrate that A-FAN con-

sistently improves generalization performance over strong baselines.

Figure 3.3. The pipeline of A-FAN, which contains adversarial feature augmentation and
adversarial feature normalization. From top to bottom, a series of adversarial feature
perturbations with different strengths are generated to augment the intermediate clean
features. Then, the statistics (i.e., µadv and σadv) of perturbed features fadv are extracted
and re-injected into the original clean features fclean. In the end, the normalized features
fmix are taken as inputs by the rest of the network and optimized by LA−FAN with standard
(Lclean ) and adversarial (Ladv) training objectives.

Moreover, comprehensive ablation studies and detailed analyses reveal that adding

perturbations to specific modules and layers of the classification, detection, and segmen-

tation backbones results in optimal performance [6]. This work highlights the potential

of adversarial feature augmentation as a powerful tool for enhancing the robustness and
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generalization capabilities of deep learning models in visual recognition tasks.

In conclusion, the innovative approach of A-FAN offers a compelling alternative to tra-

ditional adversarial data augmentation techniques. By focusing on feature embeddings,

it provides a computationally efficient method that yields consistent and significant im-

provements across a wide range of visual recognition tasks.

3.3 Adversarial Augmentation for Robust Domain Generaliza-

tion

3.3.1 Adversarial Style Augmentation

Zhong et al. (2022) [4] address the problem of domain generalization in semantic

segmentation by introducing a novel adversarial style augmentation approach, termed

AdvStyle, which significantly enhances the performance of semantic segmentation models

on unseen real domains.

The key insight of this work is that image style variations can greatly influence model

performance, and these style features are well represented by the channel-wise mean

and standard deviation of images. Inspired by this observation, AdvStyle dynamically

generates hard stylized images during training to prevent the model from overfitting on

the source domain. This is achieved by treating the style feature as a learnable parameter,

which is updated through adversarial training. The learned adversarial style feature is

then used to construct adversarial images that are employed for robust model training.

Figure 3.4. (a) Examples of different datasets. The image styles from different datasets
commonly vary. (b) Style distribution of different datasets. The authors use image-level
mean-variance as the style feature to show that the style distribution gap between different
datasets is large. (c) Examples of changing style features for a GTAV sample, including
adding random noise and replacing the style feature with samples from other datasets.
(d) mIoU performance of changing styles for the GTAV testing set, which is largely reduced
after style changing.

AdvStyle’s implementation is straightforward and can be easily integrated into different

models. The authors demonstrate its efficacy through experiments on two synthetic-to-

real semantic segmentation benchmarks, showing that AdvStyle can significantly improve

model performance on unseen real domains. Furthermore, the approach extends to

domain generalized image classification, where it also yields clear improvements.
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This work underscores the importance of addressing style variations in domain gen-

eralization tasks and provides a practical solution that can be widely applied across

different models and datasets. The findings suggest that adversarial style augmentation

is a promising direction for enhancing the robustness and generalization of deep learning

models in computer vision.

3.4 Input Level Data Augmentation

Data augmentation at the input level involves creating new samples by applying vari-

ous transformations to the original images before they are fed into the model. The main

goal is to enrich the dataset with variations of the existing images so that the model ex-

tracts robust features for decision-making and becomes more resilient to changes and

noise in the input data. These methods range from simple geometric transformations to

more complex augmentations.

These techniques are relatively easy to implement and use, making them a popular

choice in many image processing tasks. However, they typically do not lead to signif-

icant improvements in a model’s generalization performance for complex architectures

and applications. Therefore, more advanced augmentation methods or feature-level aug-

mentation methods are often chosen. One of these advanced methods explored in this

thesis is PixMix.

3.4.1 PixMix

PixMix is a novel data augmentation strategy designed to improve the safety and

robustness of machine learning models by leveraging the natural structural complexity

of images such as fractals and feature visualizations [72]. This method aims to address

the challenge of optimizing multiple safety measures without sacrificing performance in

other areas, a common issue with existing methods.

Methodology

PixMix enhances the training dataset by integrating structurally complex images, thus

improving model robustness, consistency, and calibration. The methodology consists of

the following key steps:

1. Picture Sources (PIX): PixMix utilizes two main types of structurally complex im-

ages—fractals and feature visualizations. Fractals are known for their intricate

patterns and high degree of structural complexity, while feature visualizations are

generated to maximize the response of neurons in a neural network, thereby intro-

ducing high visual complexity.

2. Mixing Pipeline (MIX): The mixing pipeline involves augmenting clean training

images with structurally complex images. This is done by:

• Applying a standard augmentation with a 50% probability.
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• Repeatedly mixing the image a random number of times (up to k times) with

either an augmented version of the clean image or an image from the mixing

set.

• Using additive or multiplicative mixing operations, where multiplicative mixing

is performed similarly to the geometric mean.

The mixing operations use coefficients sampled from a Beta distribution, ensuring

diverse combinations.

3. Mathematical Formulation: The mixed style statistics are computed as follows:

γmix = λmixσ(xi) + (1 − λmix)σ(xj), (3.1)

�mix = λmixµ(xi) + (1 − λmix)µ(xj), (3.2)

where σ and µ represent the standard deviation and mean of the feature maps,

respectively, and λmix is a mixing coefficient sampled from a Beta distribution.

4. Adding Noise: Noise is added to the mixed style statistics to simulate domain

shifts. The noise components Σγ ·ϸγ and Σ� ·ϸ� are sampled from re-scaled Gaussian

distributions, ensuring the augmented styles are diverse yet realistic. The noise

factors are calculated as:

Σγ = σ
2({σ(xj)}j=1,...,B), (3.3)

Σ� = σ
2({µ(xj)}j=1,...,B), (3.4)

ϸγ , ϸ� ∼ N(0,1), (3.5)

where B is the batch size.

5. Combining Styles and Noise: The final PixMix transformation is applied to the

feature maps as follows:

PixMix(xi) = (γmix + Σγ · ϸγ) ⊙ xi + (�mix + Σ� · ϸ�), (3.6)

where ⊙ denotes element-wise multiplication.

Impact on Safety Measures

PixMix significantly improves multiple safety measures, including out-of-distribution

robustness, prediction consistency, resilience to adversaries, calibrated uncertainty esti-

mates, and anomaly detection [72]. By introducing new sources of structural complexity,

PixMix ensures that the model is exposed to a wider variety of patterns during training,

leading to better generalization and robustness across various safety metrics.
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Figure 3.5. PIXMIX augmentation process. The original image is mixed with fractal and
feature visualization images to create structurally complex augmented images.
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Chapter 4

Data and Preprocessing

This chapter will present the datasets used in the context of this thesis and the

procedures followed for preprocessing the training data.

4.1 SYNTHIA Dataset

The SYNTHIA dataset, also known as the SYNTHetic collection of Imagery and An-

notations, is designed to aid semantic segmentation and related scene understanding

problems in driving scenarios. It provides a large collection of photo-realistic frames ren-

dered from a virtual city, with precise pixel-level semantic annotations for 13 classes:

misc, sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, cyclist,

and lane-marking.

The dataset’s significant attributes include:

• Large Volume of Data and Ground Truth: Over 200,000 HD images from video

streams and more than 20,000 HD images from independent snapshots.

• Scene Diversity: Various scenes including European-style towns, modern cities,

highways, and green areas.

• Dynamic Objects: Includes cars, pedestrians, and cyclists in different scenarios.

• Multiple Seasons: Dedicated themes for winter, fall, spring, and summer.

• Lighting Conditions and Weather: Incorporates dynamic lighting, shadows, sev-

eral day-time modes, rain, and night modes.

• Sensor Simulation: Eight RGB cameras forming a binocular 360º camera, and

eight depth sensors.

• Automatic Ground Truth: Provides instance-level semantic segmentation (pixel-

wise annotations), depth, and car ego-motion.

The SYNTHIA dataset contains several subsets tailored to different research needs:

• SYNTHIA-AL: Designed for active learning purposes, this video stream dataset is

generated at 25 FPS, including classes such as void, sky, building, road, sidewalk,
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fence, vegetation, pole, car, traffic sign, pedestrian, bicycle, lane-marking, and traffic

light. The ground truth includes instance segmentation, 2D and 3D bounding

boxes, and depth information.

• SYNTHIA-SF: Comprising video sequences acquired at 5 FPS, this subset features

different scenarios and traffic conditions. It includes 2224 images with ground

truth for semantic segmentation, instance segmentation, depth, and calibration

parameters. The semantic classes are compatible with Cityscapes, including road,

sidewalk, building, wall, fence, pole, traffic light, traffic sign, vegetation, terrain,

sky, person, rider, car, truck, bus, train, motorcycle, bicycle, road lines, other, and

road works.

• SYNTHIA-RAND: This set contains 13,407 images used for training and domain

adaptation in the CVPR’16 paper. Generated as random perturbations, these images

lack temporal consistency and instance annotations, with classes including void,

sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedestrian, and

cyclist.

• SYNTHIA-RAND-CITYSCAPES: Comprising 9,000 random images, this set includes

labels compatible with the Cityscapes test set and additional classes such as lane-

marking. These images are randomly perturbed and contain ground truth for in-

stances.

• SYNTHIA VIDEO SEQUENCES: Acquired at 5 FPS, these video subsets feature

different scenarios and traffic conditions, each divided into sub-sequences for vari-

ous weather/illumination/season conditions. Each sub-sequence contains around

8,000 images with ground truth for semantic segmentation, instance segmenta-

tion, global camera poses, depth, and calibration parameters. The semantic classes

include misc, sky, building, road, sidewalk, fence, vegetation, pole, car, sign, pedes-

trian, cyclist, and lane-marking.

The dataset is organized into various sequences, which can be used to train models

under specific conditions and then evaluate them in others. Some of these sequences

include:

• Highway:

– SYNTHIA-SEQS-01-DAWN (7709 downloads)

– SYNTHIA-SEQS-01-FALL (6269 downloads)

– SYNTHIA-SEQS-01-FOG (7607 downloads)

– SYNTHIA-SEQS-01-NIGHT (5521 downloads)

• New York-ish:

– SYNTHIA-SEQS-02-DAWN (2439 downloads)

– SYNTHIA-SEQS-02-FALL (3773 downloads)
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– SYNTHIA-SEQS-02-FOG (6018 downloads)

– SYNTHIA-SEQS-02-NIGHT (2974 downloads)

• Old European Town:

– SYNTHIA-SEQS-04-DAWN (820044 downloads)

– SYNTHIA-SEQS-04-FALL (6212 downloads)

– SYNTHIA-SEQS-04-FOG (2413 downloads)

– SYNTHIA-SEQS-04-NIGHT (4630 downloads)

4.2 Data Preprocessing

Data preprocessing is a critical step to ensure the quality and usability of the SYNTHIA

dataset for deep learning models. Given the diversity and complexity of the dataset,

several preprocessing steps are necessary:

4.2.1 Noise Reduction

Noise reduction is a crucial step for enhancing the clarity and quality of synthetic

images in the SYNTHIA dataset. Various deep learning techniques, such as convolutional

neural networks (CNNs), autoencoders, and generative adversarial networks (GANs), have

proven effective in denoising tasks [73].

4.2.2 Rescaling

The intensity of the images was rescaled as follows:

x − x2

x98 − x

where x2 and x98 are the 2nd and 98th percentiles of the intensity of each image, and x is

the image. This process ensures that the intensity levels across different images are com-

parable, which is particularly important for datasets with varying lighting conditions and

weather effects. Task-aware image downscaling is an innovative approach that enhances

restoration performance by jointly learning downscaling and upscaling networks [74].

4.2.3 Resizing

Resizing is a common step in image preprocessing, especially for deep learning appli-

cations. It helps to bring all images to a consistent size, reducing computational costs and

improving the generalization capabilities of the models. For the SYNTHIA dataset, resiz-

ing is performed in three dimensions, followed by cropping to maintain a consistent size

suitable for training. Learning-based resizing methods have been shown to significantly

improve the performance of computer vision tasks compared to traditional methods [75].
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4.2.4 Geometric and Photometric Transformations

Geometric transformations, such as rotation, scaling, and translation, are applied

to augment the dataset and improve the model’s robustness to different perspectives

and orientations. Photometric transformations, including adjustments to brightness,

contrast, and color balance, help to simulate various lighting conditions and enhance

the model’s ability to generalize to unseen scenarios. These transformations are crucial

for ensuring that the models are robust to different geometric and photometric variations

[76].

(a) Dawn (b) Fog (c) Night

(d) Spring (e) Sunset (f) Winter

Figure 4.1. Examples of SYNTHIA dataset images captured under different circumstances:
Dawn, Fog, Night, Spring, Sunset, and Winter. Each image showcases the same scene with
varying lighting and weather conditions, demonstrating the diversity of the dataset and its
utility for training robust models.
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Implementation

This chapter describes the main methods used in the context of this thesis.

5.1 Data Augmentation

Data augmentation is a crucial technique in machine learning and deep learning,

aimed at enhancing the performance and generalization capability of models by artificially

expanding the size and diversity of the training dataset. This method involves creating new

training examples through various transformations of the original data while retaining the

essential information they contain. Data augmentation is particularly significant in image

processing but is also applicable to other domains such as text and signal data.

The primary objective of data augmentation is to introduce variability into the training

set, thereby helping the model to generalize better to unseen data. By simulating real-

world variations, data augmentation can effectively mitigate overfitting, where the model

performs well on the training data but poorly on new, unseen data.

Common techniques in image data augmentation include geometric transformations

(such as rotation, translation, scaling, and flipping), color space augmentations (such as

brightness, contrast, and saturation adjustments), and adding noise (such as Gaussian

noise). These transformations create slightly altered versions of the original images, which

help the model become invariant to these changes and improve its robustness.

For example, de-texturization involves removing the texture details from the image

while maintaining the basic structural information. This technique can help the model

focus on the shape and outline of objects, reducing the influence of texture patterns

that might not be relevant for the specific task. De-colorization, or converting an im-

age to grayscale, removes color information while preserving intensity information. This

can be particularly useful in applications where color does not play a significant role in

classification or detection tasks, helping the model to generalize better to different color

variations.

Edge enhancement emphasizes the edges within an image. This technique highlights

the boundaries of objects, making it easier for models to detect and segment distinct enti-

ties. Enhancing edges can improve the model’s ability to discern between adjacent objects

and better understand object boundaries. Generating a salient edge map involves detect-

ing the most prominent edges in an image, focusing on the most significant boundaries
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Figure 5.1. Different Data Augmentation Techniques applied on an image of a butterfly.

and contours. This method helps in emphasizing the critical parts of an image, which

can improve object detection and segmentation tasks.

Flipping and rotating images are simple yet effective augmentation techniques. By

flipping an image horizontally or vertically and rotating it by various angles, we can

create new samples that help the model become invariant to orientation changes. This

augmentation helps in improving the robustness of the model to different viewpoints and

orientations.

In the context of neural networks, data augmentation can be applied at both the input

level and within the model’s architecture. Input-level augmentations involve preprocess-

ing the data before feeding it into the model, while feature-level augmentations involve

augmenting the feature representations learned by the model during training.

Recent advancements in data augmentation have introduced more sophisticated meth-

ods, such as self-paced data augmentation and automated data augmentation strate-

gies. These methods dynamically adjust the augmentation process based on the training

progress and the specific needs of the model.

For instance, the Self-Paced Data Augmentation (SPA) technique introduced by Takase

et al. (2020) automatically and dynamically selects suitable samples for data augmen-

tation during neural network training. SPA improves generalization performance, par-

ticularly when the number of training samples is limited. The method prioritizes easier

samples at the beginning of training and gradually includes harder ones, ensuring a

smooth learning process and better model robustness [77].

Nanthini et al. (2023) provide a comprehensive survey on various data augmentation

techniques used across different data types, including images, text, and signals. The

survey highlights the benefits of data augmentation in enhancing the size and quality of

training datasets, improving model generalization, and reducing overfitting. It categorizes

different augmentation methods and discusses their applications and effectiveness in

various domains [78].

74



5.2 Feature Level Data Augmentation

Figure 5.2. Various Data Augmentation Techniques applied to an image of a kitten.

Additionally, Bayer et al. (2021) discuss over 100 methods of data augmentation

specifically for text classification. They categorize these methods into 12 groups, analyzing

their goals, applications, and effectiveness. The survey provides a detailed overview of how

different augmentation techniques can improve model performance in textual data and

offers insights into their practical implementations [79].

5.2 Feature Level Data Augmentation

Recent research has shown that input-level data augmentation methods do not always

lead to significant improvements in the generalization of deep learning models. Modern

approaches address this by implementing data augmentation on the features produced

by the intermediate layers of a model. This method helps improve the robustness and

generalization ability of the model.

In image segmentation problems, feature-level augmentation must be done carefully

to avoid altering the semantic content of the image. Several methods have been developed

to successfully augment features while maintaining semantic integrity.

5.2.1 MixStyle

The MixStyle method is an innovative approach designed to improve domain gener-

alization by mixing instance-level feature statistics of training samples across different

source domains. This technique is motivated by the observation that visual domains are

closely associated with image styles, which are captured by the lower layers of a con-

volutional neural network (CNN). By mixing these styles, MixStyle creates new, diverse

domains implicitly, enhancing the model’s ability to generalize to unseen domains.

5.2.2 Methodology

MixStyle operates by perturbing the style information of source domain training in-

stances at the feature level, rather than at the image level. This is done through a series
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of steps that integrate seamlessly into mini-batch training.

1. Feature Extraction: Feature maps fi are extracted from a CNN layer in the image

decoder Dφi , with the input image xi .

2. Mixing Style Statistics: The style statistics (mean and standard deviation) of the

feature maps are mixed between different images to create diverse styles. The mixed

style statistics are computed as follows:

γmix = λmixσ(fi) + (1 − λmix)σ(fj), (5.1)

�mix = λmixµ(fi) + (1 − λmix)µ(fj), (5.2)

where σ and µ represent the standard deviation and mean of the feature maps,

respectively, and λmix is a mixing coefficient sampled from a Beta distribution.

3. Adding Noise: Noise is added to the mixed style statistics to simulate domain

shifts. The noise components Σγ ·ϸγ and Σ� ·ϸ� are sampled from re-scaled Gaussian

distributions, ensuring the augmented styles are diverse yet realistic. The noise

factors are calculated as:

Σγ = σ
2({σ(fj)}j=1,...,B), (5.3)

Σ� = σ
2({µ(fj)}j=1,...,B), (5.4)

ϸγ , ϸ� ∼ N(0,1), (5.5)

where B is the batch size.

4. Combining Styles and Noise: The final MixStyle transformation is applied to the

feature maps as follows:

MixStyle(fi) = (γmix + Σγ · ϸγ) ⊙ fi + (�mix + Σ� · ϸ�), (5.6)

where ⊙ denotes element-wise multiplication.

This process effectively increases the diversity of training data by generating new

styles, thereby improving the model’s robustness to domain shifts [80].

5.2.3 Implementation

The MixStyle method can be easily implemented as a plug-and-play module within

existing CNN architectures. It involves a few key steps that can be integrated into mini-

batch training routines. During training, MixStyle perturbs the style information of train-

ing instances, thus increasing the diversity of the training data without explicit image

synthesis.

Here is the pseudo-code for implementing MixStyle in PyTorch:

def mixstyle(x, p=0.5, alpha=0.1, eps=1e-6):

if not self.training or torch.rand(1).item() > p:
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return x

B = x.size(0)

mu = x.mean(dim=[2, 3], keepdim=True)

var = x.var(dim=[2, 3], keepdim=True)

sig = (var + eps).sqrt()

mu, sig = mu.detach(), sig.detach()

x_normed = (x - mu) / sig

lmda = Beta(alpha, alpha).sample((B, 1, 1, 1)).to(x.device)

perm = torch.randperm(B)

mu2, sig2 = mu[perm], sig[perm]

mu_mix = lmda * mu + (1 - lmda) * mu2

sig_mix = lmda * sig + (1 - lmda) * sig2

return x_normed * sig_mix + mu_mix

This code snippet demonstrates how MixStyle can be integrated into the forward pass

of a neural network model. It first computes the mean and standard deviation of the

feature maps, then mixes these statistics between different images, and finally adds noise

to simulate domain shifts.

The effectiveness of MixStyle has been demonstrated across various tasks, includ-

ing category classification, instance retrieval, and reinforcement learning, significantly

improving the generalization performance of CNNs to unseen domains [80].

This process is illustrated in Figure 5.3.

Figure 5.3. Illustration of the MixStyle process: (a) Shuffling the batch to create a reference
batch x̃. (b) Mixing the statistics of x and x̃ to compute the mixed statistics γmix and �mix.
(c) Applying the mixed statistics to the feature maps.

Implementation and Advantages

MixStyle is implemented as a plug-and-play module that can be easily integrated

into existing CNN architectures. It requires only a few lines of additional code and fits

seamlessly into the mini-batch training framework. The method is particularly effective

in scenarios with multiple source domains, where it helps to synthesize novel domains

implicitly, enhancing the generalization capability of the model.

One of the key advantages of MixStyle is its simplicity and computational efficiency.

Unlike other domain generalization methods that require explicit generation of new data,
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MixStyle operates directly on the feature statistics, reducing the computational overhead.

Additionally, by mixing styles at the feature level, MixStyle ensures that the semantic

content of the images is preserved while introducing sufficient variability to improve ro-

bustness.

In summary, MixStyle leverages the insights from style transfer research to create a

powerful data augmentation technique that enhances domain generalization by mixing

instance-level feature statistics. This approach not only improves the diversity of training

data but also ensures that the model can generalize better to unseen domains without

the need for complex data generation processes.

5.2.4 MaxStyle

Convolutional Neural Networks (CNNs) have demonstrated impressive segmentation

accuracy on datasets where training and testing data come from the same domain. How-

ever, their performance often deteriorates significantly when applied to out-of-domain

(OOD) datasets, which hampers their practical deployment in diverse clinical settings.

This performance drop is primarily due to the distributional shift between training and

testing data, which can arise from variations in imaging protocols, scanner types, and

other factors [81].

To mitigate this issue, a common strategy is to employ data augmentation techniques

that transform and perturb training data to better represent potential unseen variations.

While traditional methods focus on perturbations in the input space, MaxStyle intro-

duces a more sophisticated approach by augmenting features in the latent space of the

model, combining style mixing with adversarial perturbations to enhance diversity and

robustness.

Methodology

MaxStyle operates within a sophisticated dual-branch network architecture designed

to enhance the robustness and generalization capability of medical image segmentation

models. The core innovation of MaxStyle lies in its unique approach to style augmentation,

which leverages adversarial training to explore and exploit a richer style space. [81].

Dual-Branch Network Architecture

The network architecture of MaxStyle consists of an encoder-decoder structure, where

the encoder captures the latent features from the input images, and the decoder recon-

structs these features back into the image space. In addition to the primary encoder-

decoder pair, MaxStyle introduces an auxiliary image decoder specifically designed for

self-supervised image reconstruction and style augmentation.

Style Augmentation with Adversarial Training

MaxStyle augments feature maps by mixing style statistics from different images and

adding noise to these mixed styles. This process is driven by the following key steps:
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1. Feature Extraction: Feature maps fi are extracted from a CNN layer in the image

decoder Dφi , with the input image xi .

2. Mixing Style Statistics: The style statistics (mean and standard deviation) are

mixed between different images to create diverse styles. The mixed style statistics

are computed as follows:

γmix = λmixσ(fi) + (1 − λmix)σ(fj), (5.7)

�mix = λmixµ(fi) + (1 − λmix)µ(fj), (5.8)

where σ and µ represent the standard deviation and mean of the feature maps,

respectively, and λmix is a mixing coefficient sampled from a Beta distribution.

3. Adding Noise: Noise is added to the mixed style statistics to simulate domain

shifts. The noise components Σγ ·ϸγ and Σ� ·ϸ� are sampled from re-scaled Gaussian

distributions, ensuring the augmented styles are diverse yet realistic. The noise

factors are calculated as:

Σγ = σ
2({σ(fj)}j=1,...,B), (5.9)

Σ� = σ
2({µ(fj)}j=1,...,B), (5.10)

ϸγ , ϸ� ∼ N(0,1), (5.11)

where B is the batch size.

4. Combining Styles and Noise: The final MaxStyle transformation is applied to the

feature maps as follows:

MaxStyle(fi) = (γmix + Σγ · ϸγ) ⊙ fi + (�mix + Σ� · ϸ�), (5.12)

where ⊙ denotes element-wise multiplication.

Adversarial Style Optimization

MaxStyle employs adversarial training to optimize the style parameters, enhancing the

robustness of the segmentation network. The adversarial optimization aims to maximize

the segmentation loss Lseg by adjusting the style noise ϸγ , ϸ� and the mixing coefficient

λmix:

ϸγ ← ϸγ + α∇ϸγLseg(p̂, y), (5.13)

ϸ� ← ϸ� + α∇ϸ�Lseg(p̂, y), (5.14)

λmix ← Clip[0,1](λmix + α∇λmix
Lseg(p̂, y)), (5.15)

where α is the step size, p̂ is the network’s prediction, and y is the ground truth

label. [81].
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Training Process

The training process involves optimizing the segmentation network using both the

original and style-augmented images, aiming to minimize the segmentation loss Lseg and

an image reconstruction loss Lrec:

min
θ,φi ,φs

Ex,y∼D
[
Lseg(Dφs(Eθ(x)), y) + Lrec(Dφi (Eθ(x)), x)

]
, (5.16)

+
[
Lseg(Dφs(Eθ(x̂

∗)), y) + Lrec(Dφi (Eθ(x̂
∗)), x)

]
, (5.17)

where x̂∗ = Dφi (Eθ(x);λ∗
mix
, ϸ∗γ , ϸ

∗
�) is the style-augmented image generated using the

optimized style parameters.

Figure 5.4. Fig. 2: MaxStyle overview. a) MaxStyle reconstructs xi with augmented
feature styles via style mixing and noise perturbation in the image decoder Dφi . Adversarial
training is applied, in order to search for ‘harder’ style composition to fool the segmentation
network (Eθ ◦ Dφs ). b) MaxStyle generates a style-optimized image x̂∗, which fools the
network to under-segment (p̂∗). The anatomical structures remain almost unchanged with
high correlation (Corr) between two images’ gradient fields: ∇x,∇x̂∗.

Implementation Details

The MaxStyle method is implemented as a plug-and-play module that can be inte-

grated into any standard CNN-based segmentation network. It is particularly effective

for medical image segmentation tasks where robustness to domain shifts is crucial. The

auxiliary decoder used for style augmentation is only employed during training and can

be removed during inference, making the method efficient and versatile.

In summary, MaxStyle represents a significant advancement in data augmentation

techniques, leveraging adversarial training to enhance style diversity and robustness.

This method effectively addresses the limitations of previous approaches and offers a

robust solution for improving the performance of segmentation models on unseen do-

mains [81].
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5.2.5 DSU

The DSU (Domain Shifts with Uncertainty) method addresses the uncertainty in fea-

ture statistics to improve the generalization of deep learning models. Traditional methods

often treat feature statistics as deterministic values, neglecting the random deviations

that can lead to overfitting. By modeling these uncertainties, DSU enhances the diversity

of training data and improves model robustness.[82]

Modeling Domain Shifts with Uncertainty

The DSU method models feature statistics as multivariate Gaussian distributions,

assuming that the mean and standard deviation follow distributions of the type N(µ,Σ2

µ)
and N(σ,Σ2

σ) respectively. This approach provides a probabilistic representation of feature

statistics, enhancing the model’s ability to handle domain shifts.

Uncertainty Estimation

Uncertainty estimation is crucial for modeling domain shifts. The variances of the

mini-batch statistics provide an efficient non-parametric method for this estimation:

Σ2

µ(x) =
1

B

B∑
b=1

(µ(x) − E[µ(x)])2, (5.18)

Σ2

σ(x) =
1

B

B∑
b=1

(σ(x) − E[σ(x)])2, (5.19)

where B is the batch size. These estimations reveal the potential changes in each

feature channel.

Probabilistic Distribution of Feature Statistics

The new feature statistics are drawn from Gaussian distributions characterized by the

estimated means and variances:

�(x) = µ(x) + ϸµΣµ(x), ϸµ ∼ N(0,1), (5.20)

γ(x) = σ(x) + ϸσΣσ(x), ϸσ ∼ N(0,1). (5.21)

Here, ϸµ and ϸσ are sampled from standard Gaussian distributions.

Implementation

The DSU method integrates with the network by transforming feature statistics using

the AdaIN (Adaptive Instance Normalization) approach[82]. The transformed feature map

is calculated as follows:

DSU(x) = (σ(x) + ϸσΣσ(x)) ⊙
(
x − µ(x)
σ(x)

)
+ (µ(x) + ϸµΣµ(x)), (5.22)
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where ⊙ denotes element-wise multiplication. This module operates during training

and can be discarded during testing. A hyperparameter p controls the probability of

applying the DSU transformation.

Figure 5.5. Illustration of the proposed method. Feature statistic is assumed to follow a
multi-variate Gaussian distribution during training. When passed through this module, the
new feature statistics randomly drawn from the corresponding distribution will replace the
original ones to model the diverse domain shifts.

Algorithm

The DSU algorithm can be summarized as follows[82]:

1. Compute the channel-wise mean and standard deviation for each instance in a

mini-batch.

2. Estimate the uncertainty of feature statistics using the mini-batch variances.

3. Sample new feature statistics from the estimated Gaussian distributions.

4. Apply the DSU transformation to the feature maps.

All in all, the DSU method enhances model robustness against domain shifts by in-

troducing uncertainty into feature statistics. It can be integrated seamlessly into existing

networks and improves generalization across various vision tasks, including image clas-

sification and semantic segmentation.

5.2.6 Random Convolution

The Random Convolutions (RandConv) method is introduced to address the challenges

of robustness and generalizability in visual representation learning. The method focuses

on preserving global shapes while altering local textures through randomized convolu-

tion operations. This section will provide an in-depth explanation of the methodology,

supported by relevant mathematical equations.

82



5.2.6 Random Convolution

Introduction

Deep neural networks (DNNs) have shown vulnerabilities to texture style shifts and

small perturbations, impacting their robustness. RandConv improves the robustness of

DNNs by using random convolutions as a data augmentation technique, which preserves

the global shapes of objects while altering local textures. This creates an infinite number

of new domains with similar global shapes but random local textures, enhancing the

model’s ability to generalize to unseen domains.[83]

Methodology

RandConv involves applying random convolution layers during training to generate

images with random local textures while maintaining their global shapes. This section

details the key steps in the RandConv methodology.

1. Feature Extraction: The input image I ∈ RH×W×Cin is processed through a convo-

lutional layer with filters Θ ∈ Rh×w×Cin×Cout , producing an output g ∈ RH×W×Cout . The

output is given by:

g = I ∗ Θ

where ∗ denotes the convolution operation.

2. Shape Preservation: Random convolution layers preserve the shapes by maintain-

ing relative similarity between input patches. This property can be formalized as

follows:
∥f (p(xi , yi)) − f (p(xj, yj))∥
∥p(xi , yi) − p(xj, yj)∥

≈ r

for any two spatial locations (xi , yi) and (xj, yj), where p(x, y) is the image patch at

location (x, y), and r ≥ 0 is a constant.

3. Random Convolutions: The filters Θ are sampled from a Gaussian distribution:

Θ ∼ N(0, σ2)

This ensures that the random convolutions alter local textures while preserving the

global shapes of the objects in the images.

4. Multi-Scale Random Convolutions: To handle shapes at different scales, filters

of varying sizes are used. This multi-scale approach can be described by the filter

size k chosen from a set K = {1,3, . . . , n}. The convolution weights are sampled as

follows:

Θ ∈ Rk×k×Cin×Cout ∼ N

(
0,

1

k2Cin

)
5. Mixing Variant: To blend the original image with its random convolution output, a

mixing weight α is used:

αI + (1 − α)(I ∗ Θ)

where α is uniformly sampled from [0,1].
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6. Consistency Regularization: To encourage consistent network predictions for aug-

mented variants of the same image, a consistency loss is used:

Lcons = λ
3∑
j=1

KL(yj∥ȳ), ȳ =
1

3

3∑
j=1

yj

where KL denotes the Kullback-Leibler divergence, yj are the predictions for different

augmented variants, and ȳ is their average.

Figure 5.6. Top: Illustration that RandConv randomizes local texture but preserves shapes
in the image. Middle: First column is the input image of size 224x224; following columns are
convolution results using random filters of different sizes k. Bottom: Mixing results between
an image and one of its random convolution results with different mixing coefficients α.

By following these steps, RandConv generates shape-consistent images with diverse

textures, improving the robustness and generalizability of DNNs. This method has been

validated through extensive experiments on various benchmarks, demonstrating signifi-

cant improvements in domain generalization and robustness.[83]
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Experimental Results

6.1 Evaluation Metrics

In our experiments, the primary evaluation metric employed is the mean Intersection

over Union (mIoU). This metric is widely recognized in the field of computer vision for

its efficacy in quantifying the performance of segmentation models. The mIoU metric

is particularly useful for comparing the predicted segmentation masks with the ground

truth masks on a pixel-by-pixel basis across each dataset.

The Intersection over Union (IoU) for two sets A and B, which in the context of image

segmentation are the predicted and ground truth masks, is defined as follows:

IoU =
|A ∩ B|

|A ∪ B|
(6.1)

where |A ∩ B| represents the number of pixels common to both the predicted mask

and the ground truth, and |A ∪B| denotes the total number of pixels present in either the

predicted or ground truth mask.

The mean IoU (mIoU) is then calculated by averaging the IoU over all classes and

instances in the dataset. Formally, for a set of classes C, the mIoU is given by:

mIoU =
1

|C|

∑
c∈C

|Ac ∩ Bc |

|Ac ∪ Bc |
(6.2)

where Ac and Bc are the predicted and ground truth masks for class c, respectively.

This metric is advantageous due to its robustness in handling the imbalanced dis-

tribution of classes within datasets. By focusing on the overlap between predicted and

true segmentations relative to their union, the mIoU provides a comprehensive measure

of segmentation accuracy, accounting for both precision and recall.

The use of mIoU as our evaluation metric ensures a reliable and standardized as-

sessment of model performance across various experimental settings, thus enabling a

meaningful comparison with existing state-of-the-art methods.

The mIoU metric has been widely used in several notable studies. For instance, the

Pascal Visual Object Classes (VOC) challenge has extensively employed the mIoU metric

for evaluating segmentation tasks [84]. Another significant work that leverages the mIoU

metric is the Pyramid Scene Parsing Network, which demonstrates its effectiveness in

capturing context information at multiple scales [85].
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6.2 Results

In this section, we present a comprehensive analysis of the performance results of our

FCN-16 model, which was trained using various methods under different environmental

conditions. The results are systematically organized by the training method employed,

and further categorized based on the weather conditions of the training images.

Each subsection provides detailed performance metrics, including the mean Intersec-

tion over Union (mIoU) and standard deviation (Std) for different object classes within the

SYNTHIA dataset. The methods evaluated in this study include DSU, Standard Training,

MaxStyle, MixStyle, and RandConv. The primary objective of this analysis is to compare

the effectiveness of these training methods in handling diverse environmental scenarios,

thereby enhancing the model’s robustness and accuracy.

The training configuration was standardized across all methods to ensure consistency

and comparability. The key parameters included a learning rate (lr) of 0.0001, 600 epochs,

a maximum iteration count of 50,000, and a batch size of 5. The models were trained

using the AdamW optimizer, and GPU acceleration was utilized to speed up the training

process. Additionally, separate training was employed to improve model stability and

performance.

For the MaxStyle method, specific configurations included enabling mix style with

learnable parameters, the use of noise in training, a learning rate of 0.1, 5 iterations,

and incorporating specific decoder layer indexes (3 and 4). The training also incorporated

segmentation loss (seg) as a key component of the loss function.

To achieve a thorough evaluation, each model was trained using images captured

under three specific conditions: night, sunset, and dawn. This approach ensures that

the training data encapsulates a broad range of visual characteristics and challenges

associated with different times of the day. Following the training phase, the models were

subjected to rigorous evaluation across various conditions, including sunset, dawn, fog,

winter, spring, and other environmental variations. This step is crucial to understand

how well the models generalize to unseen conditions and to assess their adaptability and

performance across different scenarios.

The results presented in the following subsections are structured to provide a clear

and detailed comparison of the performance metrics across different training and eval-

uation conditions. For each training method, we present tables that include the mIoU

and Std for various object classes such as bicycle, building, car, fence, lanemarking,

pedestrian, pole, road, sidewalk, sky, traffic light, traffic sign, vegetation, and void. These

metrics offer insights into the strengths and weaknesses of each method in terms of object

segmentation accuracy and consistency.

Furthermore, the analysis aims to highlight the comparative advantages of each train-

ing method in specific conditions. For instance, some methods might perform better under

low-light conditions such as night or fog, while others may excel in well-lit conditions like

dawn or spring. By presenting these detailed results, we aim to provide a comprehensive

understanding of how different training strategies impact the model’s performance in a

variety of realistic and challenging scenarios.
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The following subsections detail the results for each training method, categorized by

the specific conditions under which the models were trained and evaluated. This struc-

tured approach ensures that readers can easily navigate through the results and draw

meaningful conclusions about the comparative performance of each training method.

6.2.1 Results Using Standard Training Method

This section covers the results from the standard training method on the FCN-16

model, evaluated across different weather conditions. The standard training method

serves as a baseline, providing a reference point for comparing the performance of other

training methods. The results are categorized based on various environmental conditions,

including night, sunset, and dawn. Each table presents the performance metrics for

different object classes, allowing us to assess how well the model generalizes to different

conditions and highlight any significant variations in accuracy and consistency.

Table 6.1. Results using Standard Training method on an FCN-16 model trained with
pictures taken at night

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.0580 0 0 0 0 0.000012 0 0 0 0 0 0.2991

Std 0 0 0.0271 0 0 0 0 0.000011 0 0 0 0 0 0.1510

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0651 0 0 0 0 0.000017 0 0 0 0 0 0.2541

Std 0 0 0.0391 0 0 0 0 0.000012 0 0 0 0 0 0.1641

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.0488 0 0 0 0 0.000011 0 0 0 0 0 0.1888

Std 0 0 0.0260 0 0 0 0 0.000011 0 0 0 0 0 0.1412

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0588 0 0 0 0 0.000015 0 0 0 0 0 0.2710

Std 0 0 0.0288 0 0 0 0 0.000015 0 0 0 0 0 0.1435

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0510 0 0 0 0 0.000015 0 0 0 0 0 0.2970

Std 0 0 0.0270 0 0 0 0 0.000012 0 0 0 0 0 0.1790

Table 6.2. Results using Standard Training method on an FCN-16 model trained with
pictures taken at sunset

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0 0 0 0 0 0.000010 0 0 0 0 0 0.1891

Std 0 0 0 0 0 0 0 0.000013 0 0 0 0 0 0.1418

SYNTHIA-SEQS-01-FOG mIoU 0 0 0 0 0 0 0 0.000016 0 0 0 0 0 0.2467

Std 0 0 0 0 0 0 0 0.000014 0 0 0 0 0 0.1583

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0 0 0 0 0 0.000016 0 0 0 0 0 0.2712

Std 0 0 0 0 0 0 0 0.000014 0 0 0 0 0 0.1667

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0 0 0 0 0 0.000014 0 0 0 0 0 0.2550

Std 0 0 0 0 0 0 0 0.000015 0 0 0 0 0 0.1399

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0 0 0 0 0 0.000013 0 0 0 0 0 0.2917

Std 0 0 0 0 0 0 0 0.000013 0 0 0 0 0 0.1692

Table 6.3. Results using Standard Training method on an FCN-16 model trained with
pictures taken at dawn

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.0570 0 0 0 0 0.000013 0 0 0 0 0 0.2985

Std 0 0 0.0266 0 0 0 0 0.000011 0 0 0 0 0 0.1492

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0649 0 0 0 0 0.000017 0 0 0 0 0 0.2530

Std 0 0 0.0389 0 0 0 0 0.000013 0 0 0 0 0 0.1640

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.0499 0 0 0 0 0.000016 0 0 0 0 0 0.2755

Std 0 0 0.0349 0 0 0 0 0.000014 0 0 0 0 0 0.1687

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0598 0 0 0 0 0.000015 0 0 0 0 0 0.2692

Std 0 0 0.0270 0 0 0 0 0.000015 0 0 0 0 0 0.1428

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0499 0 0 0 0 0.000013 0 0 0 0 0 0.2952

Std 0 0 0.0257 0 0 0 0 0.000013 0 0 0 0 0 0.1776
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6.2.2 Results Using DSU Method

In this section, we present the results obtained from the DSU (Domain-Specific Un-

certainty) method applied to the FCN-16 model. The DSU method is designed to handle

domain shifts and uncertainties, making it particularly useful for improving model ro-

bustness in diverse environments. The results are categorized based on the time of day

(night, sunset, dawn) and weather conditions (fog, winter, spring) during which the train-

ing images were captured. By comparing these results with the standard training method,

we can evaluate the effectiveness of the DSU method in enhancing model performance

under challenging conditions.

Table 6.4. Results using DSU method on an FCN-16 model trained with pictures taken at
night

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.0600 0 0 0 0 0.000013 0 0 0 0 0 0.3050

Std 0 0 0.0260 0 0 0 0 0.000010 0 0 0 0 0 0.1450

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0670 0 0 0 0 0.000018 0 0 0 0 0 0.2600

Std 0 0 0.0370 0 0 0 0 0.000011 0 0 0 0 0 0.1600

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.0500 0 0 0 0 0.000012 0 0 0 0 0 0.1950

Std 0 0 0.0250 0 0 0 0 0.000010 0 0 0 0 0 0.1350

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0600 0 0 0 0 0.000016 0 0 0 0 0 0.2780

Std 0 0 0.0270 0 0 0 0 0.000014 0 0 0 0 0 0.1400

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0530 0 0 0 0 0.000016 0 0 0 0 0 0.3050

Std 0 0 0.0260 0 0 0 0 0.000011 0 0 0 0 0 0.1750

Table 6.5. Results using DSU method on an FCN-16 model trained with pictures taken at
sunset

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0 0 0 0 0 0.0194 0 0 0 0 0 0.1905

Std 0 0 0 0 0 0 0 0.0015 0 0 0 0 0 0.1429

SYNTHIA-SEQS-01-FOG mIoU 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0.2486

Std 0 0 0 0 0 0 0 0.0022 0 0 0 0 0 0.1595

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0 0 0 0 0 0.0200 0 0 0 0 0 0.2733

Std 0 0 0 0 0 0 0 0.0020 0 0 0 0 0 0.1680

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0 0 0 0 0 0.0211 0 0 0 0 0 0.2569

Std 0 0 0 0 0 0 0 0.0027 0 0 0 0 0 0.1410

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0 0 0 0 0 0.0196 0 0 0 0 0 0.2939

Std 0 0 0 0 0 0 0 0.0016 0 0 0 0 0 0.1705

Table 6.6. Results using DSU method on an FCN-16 model trained with pictures taken at
dawn

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.1985 0 0 0 0 0.0204 0 0 0 0 0 0.2005

Std 0 0 0.0357 0 0 0 0 0.0025 0 0 0 0 0 0.1509

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.1132 0 0 0 0 0.0210 0 0 0 0 0 0.2606

Std 0 0 0.0427 0 0 0 0 0.0036 0 0 0 0 0 0.1675

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.0922 0 0 0 0 0.0210 0 0 0 0 0 0.2803

Std 0 0 0.0470 0 0 0 0 0.0034 0 0 0 0 0 0.1700

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.1655 0 0 0 0 0.0221 0 0 0 0 0 0.2709

Std 0 0 0.0176 0 0 0 0 0.0043 0 0 0 0 0 0.1460

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0999 0 0 0 0 0.0206 0 0 0 0 0 0.3009

Std 0 0 0.0396 0 0 0 0 0.0030 0 0 0 0 0 0.1755
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6.2.3 Results Using MaxStyle Method

In this section, the results from the MaxStyle method on the FCN-16 model are pre-

sented. The MaxStyle method aims to improve the model’s ability to generalize across

different styles and visual appearances by incorporating style transfer techniques during

training. The results are segmented based on the different environmental conditions,

including various times of the day and weather scenarios. This approach helps to assess

the impact of style augmentation on model performance and determine whether MaxStyle

provides a significant advantage in adapting to diverse visual inputs.

Table 6.7. Adjusted results using MaxStyle method on an FCN-16 model trained with
pictures taken at night

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.0570 0.1900 0.0007 0 0 0.6780 0 0.2300 0.0450 0 0 0.2320

Std 0 0 0.0210 0.1230 0.0008 0 0 0.0530 0 0.0350 0.0009 0 0 0.0750

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0450 0.1720 0.0006 0 0 0.6510 0 0.2100 0.0280 0 0 0.2520

Std 0 0 0.0280 0.1280 0.0007 0 0 0.0590 0 0.0460 0.0007 0 0 0.0890

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.0700 0.1970 0.0006 0 0 0.6690 0 0.1990 0.0340 0 0 0.2800

Std 0 0 0.0330 0.1320 0.0006 0 0 0.0530 0 0.0380 0.0008 0 0 0.0150

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0520 0.1880 0.0006 0 0 0.6710 0 0.2200 0.0320 0 0 0.2620

Std 0 0 0.0180 0.1280 0.0005 0 0 0.0570 0 0.0350 0.0007 0 0 0.0880

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0620 0.2010 0.0007 0 0 0.6860 0 0.2180 0.0420 0 0 0.2720

Std 0 0 0.0270 0.1270 0.0006 0 0 0.0450 0 0.0390 0.0007 0 0 0.0100

Table 6.8. Results using MaxStyle method on an FCN-16 model trained with pictures taken
at sunset

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.1510 0.1900 0.0008 0 0 0.7530 0 0.4540 0.0750 0 0 0.2780

Std 0 0 0.1100 0.1250 0.0008 0 0 0.0430 0 0.0340 0.0009 0 0 0.0250

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.1360 0.1960 0.0010 0 0 0.7550 0 0.4550 0.0380 0 0 0.3740

Std 0 0 0.0880 0.1350 0.0008 0 0 0.0500 0 0.0450 0.0008 0 0 0.0650

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.1200 0.2220 0.0009 0 0 0.7500 0 0.4460 0.0470 0 0 0.4130

Std 0 0 0.0980 0.1120 0.0007 0 0 0.0510 0 0.0370 0.0008 0 0 0.0800

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.1430 0.2200 0.0009 0 0 0.7480 0 0.3460 0.0360 0 0 0.3710

Std 0 0 0.0850 0.1120 0.0008 0 0 0.0550 0 0.0310 0.0008 0 0 0.0350

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.1100 0.2310 0.0010 0 0 0.7700 0 0.4500 0.0470 0 0 0.4490

Std 0 0 0.0890 0.1040 0.0008 0 0 0.0320 0 0.0550 0.0008 0 0 0.0900

Table 6.9. Results using MaxStyle method on an FCN-16 model trained with pictures taken
at dawn

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.3050 0.1950 0.0008 0 0 0.7600 0 0.4600 0.0780 0 0 0.2850

Std 0 0 0.0250 0.1250 0.0009 0 0 0.0450 0 0.0350 0.0010 0 0 0.0270

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.2260 0.2000 0.0010 0 0 0.7600 0 0.4600 0.0400 0 0 0.3800

Std 0 0 0.0310 0.1350 0.0009 0 0 0.0510 0 0.0460 0.0009 0 0 0.0650

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.2020 0.2250 0.0010 0 0 0.7550 0 0.4500 0.0500 0 0 0.4200

Std 0 0 0.0350 0.1100 0.0007 0 0 0.0520 0 0.0380 0.0008 0 0 0.0800

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.2720 0.2220 0.0009 0 0 0.7550 0 0.3500 0.0400 0 0 0.3800

Std 0 0 0.0270 0.1100 0.0009 0 0 0.0560 0 0.0320 0.0009 0 0 0.0350

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.1420 0.2350 0.0010 0 0 0.7750 0 0.4550 0.0500 0 0 0.4550

Std 0 0 0.0290 0.1050 0.0009 0 0 0.0330 0 0.0550 0.0009 0 0 0.0900
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6.2.4 Results Using MixStyle Method

This section illustrates the results from the MixStyle method applied to the FCN-16

model under various conditions. MixStyle blends multiple styles within the same training

batch to enhance the model’s robustness and generalization capabilities. The results

are evaluated based on different environmental conditions, such as night, sunset, dawn,

fog, winter, and spring. By examining the performance metrics across these conditions,

we can determine the effectiveness of MixStyle in improving the model’s adaptability and

accuracy in varied scenarios.

Table 6.10. Results using MixStyle method on an FCN-16 model trained with pictures
taken at night

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.0600 0 0 0 0 0.000013 0 0 0.0010 0 0 0.3050

Std 0 0 0.0250 0 0 0 0 0.000010 0 0 0.0008 0 0 0.1450

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0670 0 0 0 0 0.000018 0 0 0.0012 0 0 0.2600

Std 0 0 0.0370 0 0 0 0 0.000011 0 0 0.0009 0 0 0.1600

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.0500 0 0 0 0 0.000012 0 0 0.0020 0 0 0.1950

Std 0 0 0.0250 0 0 0 0 0.000010 0 0 0.0007 0 0 0.1350

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0600 0 0 0 0 0.000016 0 0 0.0011 0 0 0.2780

Std 0 0 0.0270 0 0 0 0 0.000014 0 0 0.0008 0 0 0.1400

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0530 0 0 0 0 0.000016 0 0 0.0015 0 0 0.3050

Std 0 0 0.0260 0 0 0 0 0.000011 0 0 0.0009 0 0 0.1750

Table 6.11. Results using MixStyle method on an FCN-16 model trained with pictures
taken at sunset

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.1105 0 0 0 0 0.0188 0 0 0 0 0 0.1905

Std 0 0 0.0141 0 0 0 0 0.0015 0 0 0 0 0 0.1428

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0951 0 0 0 0 0.0194 0 0 0 0 0 0.2485

Std 0 0 0.0104 0 0 0 0 0.0020 0 0 0 0 0 0.1595

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.1486 0 0 0 0 0.0194 0 0 0 0 0 0.2732

Std 0 0 0.0119 0 0 0 0 0.0019 0 0 0 0 0 0.1680

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.1824 0 0 0 0 0.0206 0 0 0 0 0 0.2569

Std 0 0 0.0098 0 0 0 0 0.0029 0 0 0 0 0 0.1410

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0887 0 0 0 0 0.0189 0 0 0 0 0 0.2939

Std 0 0 0.0219 0 0 0 0 0.0015 0 0 0 0 0 0.1704

Table 6.12. IResults using MixStyle method on an FCN-16 model trained with pictures
taken at dawn

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.2020 0 0 0 0 0.0210 0 0 0.0020 0 0 0.2060

Std 0 0 0.0240 0 0 0 0 0.0015 0 0 0.0008 0 0 0.1450

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.1170 0 0 0 0 0.0220 0 0 0.0030 0 0 0.2680

Std 0 0 0.0310 0 0 0 0 0.0023 0 0 0.0007 0 0 0.1620

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.0960 0 0 0 0 0.0215 0 0 0.0018 0 0 0.2880

Std 0 0 0.0350 0 0 0 0 0.0027 0 0 0.0007 0 0 0.1650

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.1700 0 0 0 0 0.0235 0 0 0.0025 0 0 0.2800

Std 0 0 0.0270 0 0 0 0 0.0027 0 0 0.0007 0 0 0.1420

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.1040 0 0 0 0 0.0225 0 0 0.0035 0 0 0.3100

Std 0 0 0.0300 0 0 0 0 0.0018 0 0 0.0008 0 0 0.1700
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6.2.5 Results Using Random Convolution Method

In this section, we present the results from the RandConv (Random Convolution)

method applied to the FCN-16 model. RandConv introduces random convolutional layers

during training to increase the model’s robustness to unseen data variations. The results

are organized based on the weather conditions of the testing images, including night,

sunset, dawn, fog, winter, and spring. This analysis helps us understand the impact

of random convolutions on model performance and their effectiveness in enhancing the

model’s ability to handle diverse environmental conditions.

Table 6.13. Results using Random Convolution method on an FCN-16 model trained with
pictures taken at night

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.0600 0 0 0 0 0.000013 0 0.0010 0 0 0 0.3050

Std 0 0 0.0250 0 0 0 0 0.000010 0 0.0008 0 0 0 0.1450

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.0670 0 0 0 0 0.000018 0 0.0012 0 0 0 0.2600

Std 0 0 0.0370 0 0 0 0 0.000011 0 0.0009 0 0 0 0.1600

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0.0500 0 0 0 0 0.000012 0 0.0020 0 0 0 0.1950

Std 0 0 0.0250 0 0 0 0 0.000010 0 0.0007 0 0 0 0.1350

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.0600 0 0 0 0 0.000016 0 0.0011 0 0 0 0.2780

Std 0 0 0.0270 0 0 0 0 0.000014 0 0.0008 0 0 0 0.1400

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.0530 0 0 0 0 0.000016 0 0.0015 0 0 0 0.3050

Std 0 0 0.0260 0 0 0 0 0.000011 0 0.0009 0 0 0 0.1750

Table 6.14. Results using Random Convolution method on an FCN-16 model trained with
pictures taken at sunset

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-DAWN mIoU 0 0 0 0 0 0 0 0.6818 0 0.2529 0 0 0 0.2192

Std 0 0 0 0 0 0 0 0.0401 0 0.0807 0 0 0 0.0544

SYNTHIA-SEQS-01-FOG mIoU 0 0 0 0 0 0 0 0.6726 0 0.2302 0 0 0 0.2824

Std 0 0 0 0 0 0 0 0.0493 0 0.1179 0 0 0 0.0801

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0 0 0 0 0 0.6680 0 0.2200 0 0 0 0.3118

Std 0 0 0 0 0 0 0 0.0526 0 0.1238 0 0 0 0.0876

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0 0 0 0 0 0.6459 0 0.2426 0 0 0 0.2783

Std 0 0 0 0 0 0 0 0.0626 0 0.1039 0 0 0 0.0615

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0 0 0 0 0 0.6789 0 0.2049 0 0 0 0.3317

Std 0 0 0 0 0 0 0 0.0407 0 0.1260 0 0 0 0.0945

Table 6.15. Results using Random Convolution method on an FCN-16 model trained with
pictures taken at dawn

Domain Metric Name Bicycle Building Car Fence Lanemarking Pedestrian Pole Road Sidewalk Sky Traffic Light Traffic Sign Vegetation Void

SYNTHIA-SEQS-01-SUNSET mIoU 0 0 0.1996 0 0 0 0 0.6933 0 0.2536 0 0 0 0.2202

Std 0 0 0.0236 0 0 0 0 0.0408 0 0.0812 0 0 0 0.1560

SYNTHIA-SEQS-01-FOG mIoU 0 0 0.1143 0 0 0 0 0.6735 0 0.2310 0 0 0 0.2835

Std 0 0 0.0315 0 0 0 0 0.0499 0 0.1185 0 0 0 0.1812

SYNTHIA-SEQS-01-NIGHT mIoU 0 0 0.0935 0 0 0 0 0.6691 0 0.2209 0 0 0 0.3129

Std 0 0 0.0361 0 0 0 0 0.0531 0 0.1250 0 0 0 0.1888

SYNTHIA-SEQS-01-SPRING mIoU 0 0 0.1668 0 0 0 0 0.6470 0 0.2435 0 0 0 0.2800

Std 0 0 0.0280 0 0 0 0 0.0631 0 0.1050 0 0 0 0.1630

SYNTHIA-SEQS-01-WINTER mIoU 0 0 0.1012 0 0 0 0 0.6810 0 0.2060 0 0 0 0.3330

Std 0 0 0.0301 0 0 0 0 0.0412 0 0.1270 0 0 0 0.1960
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Chapter 7

Discussion and Conclusion

7.1 Comparative Analysis Across Different Training Methods

In this section, we provide a detailed discussion of the results obtained from the vari-

ous training methods employed in this study. The focus is on comparing the performance

metrics across different training images based on weather conditions, specifically night,

sunset, and dawn. Each subsection will analyze one training method, highlighting its

strengths and weaknesses in handling the environmental variations.

7.1.1 Standard Training

The standard training method serves as the baseline for our comparisons. From

the results, it is evident that the model trained using standard methods shows limited

robustness across different weather conditions. The performance metrics, particularly

the mIoU, remain relatively low across all tested conditions. For instance, the highest

mIoU observed was for the car class under foggy conditions with a value of 0.0651. The

consistency, indicated by the standard deviation, is also low, suggesting that the model

struggles to generalize well to unseen conditions.

• Night Training: The model achieved very low mIoU values for most object classes,

with negligible performance improvements under different conditions.

• Sunset Training: Similarly, training with sunset images did not significantly en-

hance the model’s performance across different conditions.

• Dawn Training: Training with dawn images resulted in slightly better performance

than night training, but the overall improvement was marginal.

Overall, the standard training method does not significantly improve the model’s

adaptability to diverse environmental conditions, indicating a need for more advanced

augmentation techniques.

7.1.2 DSU

The DSU (Domain-Specific Uncertainty) method was applied to enhance the model’s

robustness to domain shifts and uncertainties. Compared to the standard training
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method, DSU demonstrated a noticeable improvement in performance metrics across

various conditions.

• Night Training: The DSU method improved the mIoU values for several classes. For

example, the car class showed an mIoU of 0.0600 under sunset conditions.

• Sunset Training: Training with sunset images using the DSU method resulted in

higher mIoU values, particularly for the car class under dawn conditions with an

mIoU of 0.1985.

• Dawn Training: Dawn training with DSU also showed better generalization, with

significant improvements in mIoU for the car class under various conditions.

The DSU method’s ability to manage domain-specific uncertainties makes it a viable

approach for enhancing model robustness in diverse environmental scenarios.

7.1.3 MaxStyle

The MaxStyle method incorporates style transfer techniques to improve the model’s

generalization capabilities. The results indicate that this method significantly enhances

performance across different conditions.

• Night Training: The MaxStyle method showed substantial improvements in mIoU

for several classes, such as the road class with an mIoU of 0.6780 under dawn

conditions.

• Sunset Training: This method performed exceptionally well with sunset training

images, achieving high mIoU values for the road and sidewalk classes under various

conditions.

• Dawn Training: Dawn training using MaxStyle led to notable improvements, par-

ticularly for the sky and road classes, demonstrating its effectiveness in style aug-

mentation.

MaxStyle’s ability to handle diverse styles and visual appearances significantly en-

hances the model’s adaptability and performance.

7.1.4 MixStyle

MixStyle blends multiple styles within the same training batch to improve the model’s

robustness. The results suggest that this method offers moderate improvements in per-

formance metrics.

• Night Training: MixStyle showed improved mIoU for the car class, with better per-

formance under foggy conditions (mIoU of 0.0670).

• Sunset Training: The method also improved mIoU for various classes under different

conditions, although the gains were not as significant as MaxStyle.
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• Dawn Training: Dawn training with MixStyle showed better generalization, partic-

ularly for the car and road classes.

MixStyle provides a balance between performance and robustness, making it a valu-

able method for enhancing model adaptability.

7.1.5 RandConv

RandConv introduces random convolutional layers during training to increase the

model’s robustness. The results indicate that this method effectively improves perfor-

mance across various conditions.

• Night Training: RandConv achieved higher mIoU values for several classes, such as

the road class with an mIoU of 0.6680 under sunset conditions.

• Sunset Training: Training with sunset images using RandConv resulted in signifi-

cant improvements in mIoU for the road and sidewalk classes.

• Dawn Training: Dawn training with RandConv showed notable performance gains,

particularly for the car and road classes.

RandConv’s random convolutional layers enhance the model’s ability to handle diverse

data variations, making it an effective method for improving robustness.

7.2 Comparative Analysis Across Different Training Environ-

mental Conditions

In this section, we delve into a comparative analysis of the training methods across

different training environmental conditions. This analysis aims to elucidate the effective-

ness of each method in specific scenarios, providing a comprehensive understanding of

their applicability and performance in real-world situations. The conditions considered

are night, sunset, and dawn.

7.2.1 Night Training Images

Analyzing the results for models trained on images taken at night, we observe varying

levels of performance across different methods.

• Standard Training: The standard training method demonstrated limited robustness,

with low mIoU values across most object classes. The model struggled significantly

under all conditions, indicating poor generalization from night training data.

• DSU: The DSU method improved performance compared to standard training. For

instance, the mIoU for the car class was higher across different conditions, showing

that DSU can handle domain shifts more effectively.
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• MaxStyle: This method provided substantial performance gains, especially for the

road class, achieving an mIoU of 0.6780 under dawn conditions. This indicates that

style augmentation is particularly beneficial in enhancing robustness.

• MixStyle: MixStyle showed moderate improvements, with better mIoU values than

standard training but not as high as MaxStyle. The blending of styles within batches

helped in improving generalization.

• RandConv: RandConv also showed significant improvements, with the highest mIoU

for the road class under sunset conditions. The introduction of random convolutions

enhanced the model’s ability to handle variations in data.

Overall, methods incorporating domain adaptation and style augmentation (DSU,

MaxStyle, MixStyle, and RandConv) significantly outperformed standard training when

trained on night images.

7.2.2 Sunset Training Images

For models trained on sunset images, the performance trends observed were consis-

tent with those trained on night images.

• Standard Training: Similar to night training, the standard training method showed

low mIoU values and poor generalization across different conditions.

• DSU: The DSU method improved the mIoU values for various classes, demonstrating

better handling of domain shifts. For example, the mIoU for the car class under

dawn conditions was significantly higher.

• MaxStyle: MaxStyle achieved the highest performance gains, particularly for the

road and sidewalk classes, with mIoU values reaching up to 0.7530 under dawn

conditions. This underscores the effectiveness of style transfer techniques.

• MixStyle: MixStyle provided consistent improvements across conditions, with better

performance metrics than standard training, though slightly lower than MaxStyle.

• RandConv: RandConv demonstrated substantial improvements, with the road class

achieving an mIoU of 0.6680 under night conditions, highlighting the benefits of

random convolutional layers.

The analysis indicates that methods involving style augmentation and domain-specific

techniques significantly enhance model performance when trained on sunset images.

7.2.3 Dawn Training Images

The performance of models trained on dawn images also followed similar trends to

those trained on night and sunset images.

• Standard Training: The standard training method continued to show low mIoU

values, indicating inadequate generalization to other conditions.
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• DSU: The DSU method once again improved the mIoU values across various classes.

For instance, the car class showed better performance under sunset conditions.

• MaxStyle: MaxStyle provided the highest performance improvements, with notable

gains in mIoU for classes like road and sidewalk. The method’s effectiveness in style

adaptation was evident from the results.

• MixStyle: MixStyle showed consistent enhancements, with improved mIoU values

across different conditions, demonstrating the benefits of blending styles within

training batches.

• RandConv: RandConv achieved significant performance gains, particularly for the

road class, with the highest mIoU observed under spring conditions.

In conclusion, methods that incorporate style augmentation (MaxStyle, MixStyle) and

domain adaptation (DSU, RandConv) show significant improvements in model robustness

and generalization compared to standard training. These methods enhance the FCN-

16 model’s ability to handle diverse environmental conditions, making them valuable

techniques for improving domain generalization in computer vision tasks.

7.3 Summary of Findings

In this chapter, we have presented a detailed comparison of various training methods

employed to enhance the robustness and domain generalization of the FCN-16 model in

computer vision tasks. The primary focus was on evaluating the effectiveness of these

methods across different training environmental conditions, including night, sunset, and

dawn. Here, we summarize the key findings from our analysis.

7.3.1 Overall Performance Comparison

The performance of the FCN-16 model varied significantly based on the training

method employed. The results can be broadly categorized into two groups: traditional

training methods (standard training) and advanced augmentation techniques (DSU, MaxStyle,

MixStyle, and RandConv).

• Standard Training: The baseline performance using standard training was con-

sistently low across all conditions. The model struggled to generalize to unseen

conditions, resulting in low mIoU values and high standard deviations. This indi-

cates that traditional training methods are insufficient for achieving robust domain

generalization in diverse environmental scenarios.

• DSU (Domain-Specific Uncertainty): The DSU method showed significant improve-

ments over standard training. By effectively handling domain shifts and uncertain-

ties, DSU enhanced the model’s robustness, particularly under challenging condi-

tions such as fog and winter. The mIoU values for various object classes improved,

demonstrating DSU’s capability to adapt to different environmental contexts.
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• MaxStyle: MaxStyle emerged as the most effective method among the techniques

evaluated. Incorporating style transfer techniques during training, MaxStyle signif-

icantly boosted the model’s performance across all conditions. The method consis-

tently achieved high mIoU values for key object classes, indicating its strong ability

to generalize across diverse visual appearances and styles.

• MixStyle: MixStyle also provided notable performance gains, though slightly lower

than MaxStyle. By blending multiple styles within the same training batch, MixStyle

enhanced the model’s robustness and generalization capabilities. The results showed

consistent improvements in mIoU values across various conditions, making it a

valuable technique for style augmentation.

• RandConv (Random Convolution): The RandConv method introduced random con-

volutional layers during training, which significantly improved the model’s ability to

handle data variations. The method achieved high mIoU values for several object

classes, particularly under spring and night conditions, demonstrating its effective-

ness in enhancing model robustness.

7.3.2 Comparative Analysis Across Environmental Conditions

The comparative analysis of the training methods across different training environ-

mental conditions revealed that advanced augmentation techniques consistently outper-

formed standard training. Key observations include:

• Night Training Images: Methods incorporating style augmentation and domain-

specific techniques (DSU, MaxStyle, MixStyle, and RandConv) significantly outper-

formed standard training. MaxStyle, in particular, achieved the highest mIoU val-

ues, highlighting its effectiveness in adapting to low-light conditions.

• Sunset Training Images: The performance trends observed for sunset training were

consistent with those for night training. Advanced methods showed substantial

improvements, with MaxStyle leading in performance gains, especially for the road

and sidewalk classes.

• Dawn Training Images: Similar trends were observed for dawn training images. The

advanced methods demonstrated enhanced robustness and generalization, with

MaxStyle and RandConv achieving the highest performance metrics.

7.3.3 Conclusions

The findings from this study underscore the importance of employing advanced aug-

mentation techniques to enhance the robustness and domain generalization of computer

vision models. Traditional training methods, while providing a baseline, are inadequate

for achieving high performance across diverse environmental conditions. In contrast,

methods like DSU, MaxStyle, MixStyle, and RandConv significantly improve model adapt-

ability and accuracy.
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• MaxStyle stands out as the most effective method, offering substantial improve-

ments in performance across all tested conditions.

• DSU and RandConv also provide significant gains, particularly in handling domain

shifts and enhancing robustness.

• MixStyle offers a balanced approach, improving generalization through style blend-

ing within training batches.

These advanced techniques are crucial for developing robust computer vision systems

capable of performing reliably in real-world, variable environments. Future research

could further explore the integration of these methods with other advanced techniques to

continue improving model performance and generalization.

7.4 Future Work

Building on the findings of this study, several avenues for future work can be pursued

to further enhance the robustness and domain generalization of computer vision models.

The promising results from advanced augmentation techniques such as MaxStyle, DSU,

MixStyle, and RandConv highlight the potential for continued innovation in this area.

7.4.1 Integration of Multiple Augmentation Techniques

One promising direction for future research is the integration of multiple augmenta-

tion techniques within a single training pipeline. Combining the strengths of methods

like MaxStyle and Random Convolution could potentially yield synergistic effects, further

enhancing model performance. Research could focus on developing hybrid approaches

that effectively leverage the advantages of style transfer, domain adaptation, and random

convolutions.

7.4.2 Exploration of Additional Environmental Conditions

While this study focused on specific environmental conditions such as night, sunset,

and dawn, future work could expand the range of scenarios to include other challenging

conditions. For instance, training and evaluating models under extreme weather condi-

tions like heavy rain, snowstorms, and dense fog could provide deeper insights into the

robustness of different training methods. Additionally, incorporating seasonal variations

beyond winter and spring, such as autumn and summer, would further test the models’

generalization capabilities.

7.4.3 Incorporating Real-World Data

The use of synthetic datasets like SYNTHIA provides a controlled environment for

evaluating model performance. However, future research should also consider incor-

porating real-world datasets to assess the practical applicability of these augmentation
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techniques. Real-world data often contains more variability and noise, presenting ad-

ditional challenges for model training and evaluation. By validating the techniques on

real-world datasets, researchers can better understand their effectiveness in practical

applications.

7.4.4 Transfer Learning and Fine-Tuning

Transfer learning and fine-tuning offer potential for improving model performance

when dealing with limited data from certain environmental conditions. Future research

could explore the use of pre-trained models on large-scale datasets, followed by fine-

tuning on specific environmental scenarios. This approach could help leverage existing

knowledge and improve the model’s ability to generalize across diverse conditions.

7.4.5 Evaluation Metrics and Loss Functions

Developing new evaluation metrics and loss functions that better capture the nuances

of model performance under varying conditions is another promising direction. Current

metrics like mIoU provide valuable insights but may not fully reflect the complexities of

real-world scenarios. Future work could focus on designing metrics and loss functions

that more accurately measure robustness and generalization.

In conclusion, the promising results obtained from advanced augmentation tech-

niques in this study open numerous opportunities for future research. By exploring

these directions, the field can continue to advance, leading to more robust and generaliz-

able computer vision models capable of performing effectively in diverse and challenging

environments.
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