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Abstract

This thesis presents an innovative approach to audio chord recognition, aiming to

automatically identify and classify fundamental chord structures within music pieces.

Leveraging Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term

Memory (biLSTM) layers, advanced feature engineering, and post-processing techniques

rooted in music theory, our research enhances the accuracy and robustness of chord

recognition systems. By extracting features from chord representations such as root,

bass, and triad qualities, and segmenting the problem into distinct components, our

framework creates a solid ground to enhance the accuracy of chord recognition. Ad-

ditionally, we employ transfer learning techniques to capitalize on pre-trained models,

fine-tuning them for our specific chord recognition task, thus improving generalization

and robustness. Moreover, our exploration encompasses various Fourier transforms for

feature extraction, including Short-Time Fourier Transform (STFT) and Constant Q Trans-

form (CQT), to capture essential information from audio signals and optimize chord recog-

nition performance. Through extensive experimentation and evaluation of different CNN

and biLSTM configurations, as well as post-processing techniques, our approach demon-

strates significant enhancements in several aspectes of chord recognition. Overall, this

research contributes a comprehensive framework that leverages deep learning method-

ologies, sophisticated feature engineering, and post-processing techniques, showcasing

its potential to advance music information retrieval systems.

Keywords

Audio Chord Estimation, Deep Learning, CNN, BiLSTM, R – CNN, Neural Networks,

MIREX, CQT, Transfer Learning
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Πεϱίληψη

Η παϱούσα διπλωµατική εργασία παϱουσιάϹει µια καινοτόµα προσέγγιση για την αναγ-

νώριση συγχορδιών από ήχο, µε στόχο την αυτόµατη ταυτοποίηση και ταξινόµηση των

ϐασικών δοµών συγχορδιών σε µουσικά κοµµάτια. Αξιοποιώντας Συνελικτικά Νευρωνικά

∆ίκτυα (CNNs) µε ∆ισδιάστατες Στρώσεις Μακροπρόθεσµης Βραχυπρόθεσµης Μνήµης (biL-

STM), προχωρηµένη διαδικασία εξαγωγής χαρακτηριστικών, και τεχνικές µετά-επεξεϱγασίας

ϐασισµένες στη µουσική ϑεωρία, η έρευνά µας συµβάλει στην ϐελτίωση της ακϱίϐειας και

της ανθεκτικότητας των συστηµάτων αναγνώρισης συγχορδιών. Με την εξαγωγή χαρακτηρισ-

τικών από αναπαραστάσεις συγχορδιών όπως η ϱίϹα, το µπάσο και οι ποιότητες τριάδας,

και την τµηµατοποίηση του προβλήµατος σε διακριτά συστατικά, το πλαίσιο µας ϑέτει γεϱά

ϑεµέλια για την ενίσχυση την ακϱίϐεια της αναγνώρισης συγχορδιών. Επιπλέον, χρησι-

µοποιούµε τεχνικές µεταϕοϱάς µάϑησης (Transfer Learning) για να εκµεταλλευτούµε πϱο-

εκπαιδευµένα µοντέλα, τα οποία προσαρµόζουµε για τη συγκεκριµένη µας εργασία µεϱών

των συγχορδιών, ϐελτιώνοντας έτσι τη γενίκευση και την ανθεκτικότητα. Επιπρόσθετα, η

έρευνά µας εξετάζει διάφορους µετασχηµατισµούς Fourier για την εξαγωγή χαρακτηρισ-

τικών, συµπεριλαµβανοµένων των Βραχυπρόθεσµων Μετασχηµατισµών Fourier (STFT) και

του Συνεχούς Μετασχηµατισµού Q (CQT), για να συλλάβει ϐασικές πληροφορίες από τα

ηχητικά σήµατα και να ϐελτιστοποιήσει την απόδοση της αναγνώρισης συγχορδιών. Μέσα

από εκτεταµένα πειράµατα και αξιολόγηση διαφορετικών διαµορφώσεων CNN και biLSTM,

καθώς και τεχνικών µετά-επεξεϱγασίας, η προσέγγισή µας επιδεικνύει σηµαντικά σηµεία

ϐελτίωσης στην ακϱίϐεια αναγνώρισης συγχορδιών. Συνολικά, αυτή η έρευνα συµβάλλει ένα

ολοκληϱωµένο πλαίσιο που αξιοποιεί µεϑοδολογίες ϐαθιάς µάϑησης, προηγµένη µηχανική

χαρακτηριστικών και τεχνικές µετά-επεξεϱγασίας, αναδεικνύοντας το δυναµικό της να προωθή-

σει τα συστήµατα ανάκτησης µουσικών πληροφοριών.

Λέξεις κλειδιά
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∆ίκτυα, MIREX, CQT, Μεταϕοϱά Μάϑησης
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Chapter 1

Introduction

Audio chords, as fundamental components of music, are constructed using specific

harmonic principles and are perceived as pleasing to the human ear. These chord struc-

tures serve as building blocks for musical compositions, providing harmonic stability and

emotional depth. The intricate relationships between different chord components, such

as root, bass, and triad qualities, contribute to the richness and complexity of musical

pieces.

In recent years, deep learning has emerged as a powerful tool for extracting meaningful

patterns and relationships from complex, multidimensional data. Its ability to identify

nonlinear correlations makes it particularly well-suited for tasks involving audio signal

processing and music analysis. This study aims to leverage the capabilities of deep

learning to uncover the underlying connections between audio chord structures and their

harmonic principles.

The challenge of estimating audio chords has garnered significant attention within the

MIREX (Music Information Retrieval Evaluation eXchange) community, attracting partic-

ipation from numerous researchers annually. MIREX serves as a platform for evaluating

and comparing different methods and algorithms for music information retrieval tasks,

including chord estimation. It provides specific guidelines regarding datasets, vocabular-

ies, past submissions, and evaluation metrics, all of which are essential for conducting

rigorous research in this field.

In this thesis, we employ deep learning techniques and feature extraction methods

grounded in music theory to address the challenge of audio chord estimation. We break

down the problem into multiple sub-problems based on principles of music comprehen-

sion, allowing us to focus on different aspects of chord recognition separately. Addi-

tionally, we integrate post-processing techniques inspired by music theory to refine and

improve the accuracy of our chord predictions. The results of our approach are com-

pared against other solutions and benchmarks established by MIREX, providing a com-

prehensive evaluation of our methodology’s effectiveness and performance. Through this

research, we aim to contribute to the ongoing efforts in advancing the field of music

information retrieval and enhancing our understanding of audio chord recognition.
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Chapter 1. Introduction

1.1 Structure of the thesis

The following thesis is organized in chapters:

• Chapter 7 focuses on certain concepts that serve as theoretical background.

• Chapter 8 analyses the data and the pre-processing steps followed.

• Chapter 9 focuses on experiments on various model architectures and on the anal-

ysis of the results.

• Chapter 10 presents the post-processing techniques that were implimented.

• Chapter 11 contains the evaluation of the proposed model on MIREX metrics along

with the comparison with other proposed models and the final conclusions drawn

from the experiments, along with suggestions for future work.
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Chapter 2

Εισαγωγή

Οι συγχορδίες, ως ϐασικά στοιχεία της µουσικής, κατασκευάζονται χρησιµοποιώντας

συγκεκριµένες αρµονικές αρχές και αντιλαµβάνονται ως ευχάριστα ακούσµατα από το αν-

ϑρώπινο αυτί. Αυτές οι δοµές συγχορδιών λειτουργούν ως κοµµάτια για µουσικές συνθέ-

σεις, παρέχοντας αρµονική σταθερότητα και συναισθηµατικό ϐάϑος. Οι πολύπλοκες σχέσεις

µεταξύ διαφορετικών συνιστωσών ακόρντων, όπως η ϱίϹα και η τϱιάδα, συµβάλλουν στην

πλούσια και πολύπλοκη ϕύση των µουσικών κοµµατιών.

Τα τελευταία χρόνια, η εµφάνιση της ϐαθιάς µάϑησης έχει εξελιχθεί σε ένα ισχυϱό ερ-

γαλείο για την εξαγωγή σηµαντικών προτύπων και σχέσεων από πολύπλοκα, πολυδιάστατα

δεδοµένα. Η ικανότητά της να αναγνωρίζει µη γραµµικές συσχετίσεις την καθιστά ιδιαίτερα

κατάλληλη για εργασίες που σχετίζονται µε την επεξεργασία των ακουστικών σηµάτων και

την ανάλυση της µουσικής. Αυτή η µελέτη στοχεύει στην εκµετάλλευση των δυνατοτήτων

της ϐαθιάς µάϑησης για την ανάδειξη των υποκείµενων διασυνδέσεων µεταξύ των δοµών

ακόρντων και των αρµονικών τους αρχών.

Η πϱόκληση της εκτίµησης των συγχορδιών είναι ευρέως αναγνωρισµένη στην κοινότητα

του MIREX (Music Information Retrieval Evaluation eXchange), προσελκύοντας τη συµ-

µετοχή πολλών ερευνητών κάϑε χϱόνο. Το MIREX λειτουργεί ως πλατφόρµα για την αξ-

ιολόγηση και σύγκριση διαφορετικών µεϑόδων και αλγορίθµων για την ανάκτηση πληρο-

ϕοριών µουσικής, συµπεριλαµβανοµένης της εκτίµησης συγχορδιών. Παϱέχει συγκεκριµένες

οδηγίες σχετικά µε σύνολα δεδοµένων, λεξιλογίου, προηγούµενες υποβολές και µετϱικές αξ-

ιολόγησης, όλες απαϱαίτητες για τη διεξαγωγή αυστηϱών ερευνών σε αυτό το πεδίο.

Σε αυτή τη διπλωµατική εργασία, χρησιµοποιούµε τεχνικές ϐαθιάς µάϑησης και µεθό-

δους εξαγωγής χαρακτηριστικών ϐασισµένες στη ϑεωρία της µουσικής για την αντιµετώπιση

της πϱόκλησης της εκτίµησης συγχορδιών. Χωρίζουµε το πϱόϐληµα σε πολλαπλά υπ-

οπροβλήµατα ϐασισµένα σε αρχές κατανόησης της µουσικής, επιτρέποντάς µας να επικεν-

τρωθούµε σε διαφορετικές πτυχές αναγνώρισης ακόρντων ξεχωριστά. Επιπλέον, ενσωµατώ-

νουµε τεχνικές µετα-επεξεϱγασίας εµπνευσµένες από τη ϑεωρία της µουσικής για την ϐελτίωση

της ακϱίϐειας των προβλέψεών µας. Τα αποτελέσµατα της προσέγγισής µας συγκρίνονται

µε άλλες λύσεις που καθιερώθηκαν από το MIREX, παρέχοντας µια σϕαιϱική αξιολόγηση

της αποτελεσµατικότητας και της απόδοσης της µεθόδου µας. Μέσω αυτής της έρευνας,

στοχεύουµε να συµβάλουµε στις συνεχείς προσπάθειες για την πϱοώϑηση του πεδίου της

ανάκτησης πληροφοριών µουσικής και τη ϐελτίωση της κατανόησης της εκτίµησης συγ-

χορδιών.
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Chapter 2. Εισαγωγή

2.1 ∆οµή της Εϱγασίας

Η εϱγασία αποτελείται από τα εξής κεϕάλαια:

• Το Κεϕάλαιο 7 επικεντϱώνεται σε οϱισµένες έννοιες που λειτουϱγούν ως ϑεωϱητικό

υπόϐαϑϱο.

• Το Κεφάλαιο 8 αναλύει τα δεδοµένα και τα ϐήµατα προεπεξεργασίας που ακολου-

ϑήθηκαν.

• Το Κεϕάλαιο 9 επικεντϱώνεται στις πειϱαµατικές εϱγασίες µε διάϕοϱες αϱχιτεκτονικές

µοντέλων και στην ανάλυση των αποτελεσµάτων.

• Το Κεϕάλαιο 10 αναϕέϱεται στις τεχνικές µετεπεξεϱγασίας που ακολουϑήϑηκαν.

• Το Κεϕάλαιο 11 πεϱιλαµϐάνει την αξιολόγηση του πϱοτεινόµενου µοντέλου σε µετϱικές

του MIREX, µαϹί µε τη σύγκϱισή του µε άλλα πϱοτεινόµενα µοντέλα και τα τελικά

συµπεϱάσµατα που πϱοκύπτουν από τις εϱγασίες, µαϹί µε πϱοτάσεις για µελλοντικές

εϱγασίες.
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Chapter 3

∆εδοµένα & Πϱοεπεξεϱγασία

Το κεφάλαιο αυτό αποτελεί περίληψη των σηµαντικών στοιχείων του κεφαλαίου 8, στα

ελληνικά. Σε αυτό το κεφάλαιο αναλύεται το σύνολο δεδοµένων και οι µέϑοδοι προεπεξερ-

γασίας που ακολουθήθηκαν.

3.0.1 Σύνολο ∆εδοµένων Isophonics

Το σύνολο δεδοµένων Isophonics είναι µια συλλογή από τϱαγούδια, σε µοϱϕή ήχου,

και µεταδεδοµένων σχεδιασµένη για έϱευνα στην ανάκτηση µουσικών πληϱοϕοϱιών (MIR).

Αποτελεί πολύτιµο πόϱο για τη µελέτη διαϕόϱων πτυχών της µουσικής, όπως η µελωδία, η

αϱµονία, ο ϱυϑµός και η δοµή. Για αυτήν τη µελέτη, χϱησιµοποιήϑηκε το σύνολο δεδοµένων

Isophonics που παϱέχει 180 τϱαγούδια των Beatles. Οι σηµάνσεις συγχοϱδιών αυτού του

συνόλου δεδοµένων έχουν ελεγχϑεί αϱκετές ϕοϱές από τον Christopher Harte [12] και την

κοινότητα MIR, και µποϱούν να χϱησιµοποιηϑούν µε σιγουϱιά. Οι σηµάνσεις συγχοϱδιών

είναι αϱχεία .lab. Αυτά είναι αϱχεία κειµένου διαχωϱισµένα µε κενά, µε τϱεις στήλες που

αντιστοιχούν στον χϱόνο έναϱξης, τον χϱόνο λήξης και την ετικέτα συγχοϱδίας, αντίστοιχα.

΄Ενα παϱάδειγµα ϕαίνεται στον πίνακα 8.1. Η µοϱϕή των κοµµατιών ήταν στεϱεοϕωνικά

.mp3 µε συχνότητα δειγµατοληψίας 44kHz, οπότε ήταν απαϱαίτητη πεϱαιτέϱω επεξεϱγασία.

Για να διασϕαλιστεί ότι οι ετικέτες είναι συγχϱονισµένες µε τον ήχο, χϱησιµοποιήϑηκε το

πϱόγϱαµµα Audacity.

3.1 Πϱοεπεξεϱγασία ∆εδοµένων

Για να προετοιµαστεί το ηχητικό δεδοµένο για πεϱαιτέϱω ανάλυση, χρειάζονται ορισµένα

ϐήµατα. Η διαδικασία προεπεξεργασίας περιλαµβάνει τη µετατροπή των αρχείων ήχου από

µοϱϕή MP3 σε WAV και από στερεοφωνικό σε µονοϕωνικό. Οι µορφές WAV και MP3 δι-

αφέρουν στη συµπίεση και την ποιότητα του ήχου, µε το WAV να είναι χωϱίς συµπίεση για

υψηλή πιστότητα και το MP3 µε συµπίεση για µικϱότεϱο µέγεθος. Το στερεοφωνικό χρησι-

µοποιεί δύο κανάλια για χωϱικό ϐάϑος, ενώ το µονοϕωνικό χρησιµοποιεί ένα, ιδανικό για

µη χωϱικές εφαρµογές.

Αϱχικά, σχεδιάστηκε ένας αλγόριθµος χρησιµοποιώντας το Python module Pydub που

συγκεντρώνει µια λίστα µε αρχεία MP3 µέσα σε έναν καθορισµένο κατάλογο αρχείων. Στη

συνέχεια, για κάϑε αρχείο, χρησιµοποιεί µεθόδους µετατροπής για να το µετατρέψει σε

µοϱϕή WAV και σε µονοϕωνικό. Αυτή η συστηµατική προσέγγιση εξασφαλίζει ότι τα ηχητικά
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Chapter 3. ∆εδοµένα & Πϱοεπεξεϱγασία

δεδοµένα είναι προετοιµασµένα σε µια τυποποιηµένη µοϱϕή κατάλληλη για πεϱαιτέϱω

ανάλυση. ΄Ενα παϱάδειγµα ενός µετασχηµατισµένου αρχείου µποϱεί να οπτικοποιηθεί στην

εικόνα 8.2.

Για τη διαδικασία του σήµατος, χρησιµοποιήθηκαν δύο µετασχηµατισµοί Fourier, ο

Short Time Fourier Transform (STFT) και ο Constant-Q Chromagram. Ο STFT δηµιούϱγησε

υπερβολικό αριθµό Ϲωνών συχνοτήτων, αυξάνοντας τον αριθµό των εισόδων για το δίκτυο και

δεν απέδωσε τα επιθυµητά αποτελέσµατα.

Το χρωµόγραµµα, αποτελούµενο από 12 χαρακτηριστικά, προσφέρει λεπτοµερή ανα-

παράσταση των µουσικών νοτών του ηχητικού σήµατος, αλλά δεν παϱέχει πληροφορίες για

τη διανοµή των νοτών στο ϕάσµα συχνοτήτων. Η Μετατροπή Constant Q (CQT) προτιµάται

λόγω της λογαριθµικής κλίµακας συχνοτήτων που χρησιµοποιεί, η οποία ταιριάζει καλύτεϱα

µε την αντίληψη της ανθρώπινης ακοής.

Η πϱοετοιµασία των ετικετών πεϱιλαµϐάνει τη µετατϱοπή από το χϱονικό πεδίο στο πεδίο

συχνοτήτων, διασϕαλίϹοντας την ευϑυγϱάµµιση των ετικετών µε τα αντίστοιχα ϕάσµατα. Στον

πίνακα 8.2, παϱουσιάϹονται οι ετικέτες στον χϱονικό τοµέα και στον πίνακα 8.3, στον τοµέα

συχνοτήτων.

24 Diploma Thesis



Chapter 4

Πειϱάµατα και Αποτελέσµατα

Το κεφάλαιο αυτό αποτελεί περίληψη των σηµαντικών στοιχείων του κεφαλαίου 9, στα

ελληνικά. Το κεφάλαιο αυτό εξετάζει την ανάλυση, εκπαίδευση και σύγκριση διάφορων αρ-

χιτεκτονικών µοντέλων για την αναγνώριση συγχορδιών. Μοντέλα όπως το 1D CNN και το

2D CNN που χρησιµοποιούν BiLSTM ϑα αναλυθούν.

4.1 Μοντέλο 1: Απλό 1D Συνελικτικό Νευϱωνικό ∆ίκτυο

Η αϱχική διεϱεύνηση ξεκινά µε την εϕαϱµογή ενός απλού 1D Συνελικτικού Νευϱωνικού

∆ικτύου (CNN). Αυτή η πϱοσέγγιση λειτουϱγεί ως σηµείο αναϕοϱάς για την αξιολόγηση των

επιδόσεων των επόµενων µοντέλων. Κάϑε συγχοϱδία γίνεται "embed" ξεχωϱιστά, χωϱίς να

λαµϐάνεται υπόψη η ϑεωϱία της µουσικής και οι σχέσεις των συγχοϱδιών, γεγονός που

µποϱεί να πεϱιοϱίσει τις πϱοϐλεπτικές ικανότητες του µοντέλου.

Για αυτή την αϱχιτεκτονική, χϱησιµοποιήϑηκε το Constant-Q Chromagram ως ϐήµα

πϱοεπεξεϱγασίας, µε αποτέλεσµα να πϱοκύψουν 12 χαϱακτηϱιστικά. Η αϱχιτεκτονική του

µοντέλου πεϱιγϱάϕεται στον πίνακα 9.1 και στο σχήµα 9.1.

Κατά τη διάϱκεια της εκπαίδευσης, το σύνολο δεδοµένων χωϱίστηκε σε δύο υποσύνολα:

ένα σύνολο εκπαίδευσης που αποτελείται από το 80% των δεδοµένων και ένα σύνολο επικύρ-

ωσης που αποτελείται από το 20% των δεδοµένων. Η διάσπαση πραγµατοποιήθηκε ανά

κοµµάτι, διατηρώντας την ακεραιότητα της µουσικής δοµής κάϑε κοµµατιού.

Το δίκτυο αποτελείται από διάφορα επίπεδα, ξεκινώντας µε ένα 1D συνελικτικό επίπεδο

µε 32 ϕίλτρα και µέγεθος πυϱήνα 3, χρησιµοποιώντας τη συνάϱτηση ενεργοποίησης ReLU.

΄Ενα επίπεδο µέγιστης συγκέντρωσης (Max Pooling) εφαρµόζεται για να µειώσει τις διαστά-

σεις των χαρακτηριστικών. Το επίπεδο flatten αναδιαµορφώνει την έξοδο από το προηγού-

µενο επίπεδο σε έναν µονοδιάστατο πίνακα, διευκολύνοντας τη συµβατότητα µε τα πλήϱως

συνδεδεµένα επίπεδα. ΄Ενα πλήϱως συνδεδεµένο επίπεδο µε 128 νευϱώνες και ReLU χρησι-

µοποιείται για την εξαγωγή χαρακτηριστικών, ενώ το επίπεδο εξόδου αποτελείται από 1552

µονάδες µε συνάϱτηση ενεργοποίησης softmax.

Για την εκπαίδευση του µοντέλου, χϱησιµοποιήϑηκε µέγεϑος παϱτίδας (batch size) 32

µε ϱυϑµό εκµάϑησης 0.0001 χϱησιµοποιώντας τον Adam optimizer και την ενεϱγοποίηση

ReLU. Η συνάϱτηση απώλειας που χϱησιµοποιήϑηκε είναι η Sparse Categorical Cross-

entropy. Τα αποτελέσµατα της διαδικασίας εκπαίδευσης και αξιολόγησης ϕαίνονται στο

διάγϱαµµα 9.2. Η ακϱίϐεια κυµαίνεται γύϱω στο 42% τόσο για το σύνολο εκπαίδευσης όσο
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και για το σύνολο αξιολόγησης.

Για λόγους σύγκρισης, το µοντέλο εκπαιδεύτηκε και δοκιµάστηκε επίσης στην ταυ-

τοποίηση µόνο της ϱίϹας της συγχορδίας. Η απλότητα αυτής της αρχιτεκτονικής επιτϱέπει

µια σαϕή αξιολόγηση της απόδοσης του µοντέλου στην απλή εργασία της ταυτοποίησης της

ϱίϹας, λειτουργώντας ως ϐασικό σηµείο αναϕοϱάς για τη σύγκριση πιο σύνθετων µοντέλων.

Η διαφορά στην αρχιτεκτονική είναι ότι το επίπεδο εξόδου τώϱα αποτελείται µόνο από 13

νευϱώνες, κατα αντιστοιχία µε τις 13 ϱίϹες (συµπεριλαµβανοµένης και της µη ύπαϱξης ϱίϹας).

Τα αποτελέσµατα της διαδικασίας εκπαίδευσης και αξιολόγησης ϕαίνονται στο σχήµα 9.3.

Επιτεύχϑηκε ακϱίϐεια σχεδόν 60%.

Στον πίνακα σύγχυσης που ϕαίνεται στο Σχήµα 9.4, παϱατηϱούµε την κατανοµή των

πϱοϐλεπόµενων ϱιϹών έναντι των πϱαγµατικών ϱιϹών. Παϱά την απλότητα της πϱοσέγγισης,

το µοντέλο είναι ικανό να ταυτοποιεί µε ακϱίϐεια τη σωστή ϱίϹα σε λογικό ϐαϑµό.

4.2 Μοντέλο 2: 1D Συνελικτικό Νευϱωνικό ∆ίκτυο

ΣυνεχίϹοντας την εξερεύνηση των αρχιτεκτονικών των µοντέλων, το επόµενο µοντέλο που

εξετάζεται είναι ένα πιο περίπλοκο 1D Συνελικτικό Νευρωνικό ∆ίκτυο (CNN). Αυτή η αρ-

χιτεκτονική στοχεύει να εκµεταλλευτεί τα ιεραρχικά χαρακτηριστικά που µαθαίνονται από

διαδοχικά συνελικτικά επίπεδα για να καταγράψει πιο σύνθετα πρότυπα στα δεδοµένα.

Μετά από πειϱαµατισµό µε το Constant-Q Chromagram και το Constant Q Transform

(CQT), διαπιστώϑηκε ότι η µέϑοδος CQT υπεϱέϐη τη µέϑοδο Constant-Q Chromagram. Η

µέϑοδος CQT, χϱησιµοποιώντας 192 χαϱακτηϱιστικά σε σύγκϱιση µε τα 12 χαϱακτηϱιστικά

που χϱησιµοποιήϑηκαν πϱοηγουµένως, οδήγησε σε καλύτεϱες επιδόσεις, όπως αναλύϑηκε

στο Κεϕάλαιο 8. ΄Ετσι, σε αυτή την ενότητα ϑα χϱησιµοποιηϑεί το Constant Q Transform µε

ϱυϑµό δειγµατοληψίας 44100, 192 bins (24 bins ανά οκτάϐα) και µήκος hop 4096.

Η αρχιτεκτονική του µοντέλου αποτελείται από διάφορα συνελικτικά επίπεδα ακολου-

ϑούµενα από επίπεδα µέγιστης συγκέντρωσης (Max Pooling) για µείωση των διαστάσεων

των χαρακτηριστικών, επίπεδο flatten για αναδιάταξη των δεδοµένων και ένα πλήϱως συνδ-

εδεµένο επίπεδο για εξαγωγή χαρακτηριστικών, πϱιν ϕτάσει στο επίπεδο εξόδου που χρησι-

µοποιεί τη softmax για πολυκατηγοριακή ταξινόµηση.

Για την εκπαίδευση του µοντέλου, χρησιµοποιήθηκαν οι ίδιοι υπερπαράµετροι µε το

προηγούµενο µοντέλο: µέγεθος παρτίδας (batch size) 32, ϱυθµός εκµάθησης 0.0001 και η

συνάϱτηση απώλειας Sparse Categorical Cross-entropy. Τα αποτελέσµατα της διαδικασίας

εκπαίδευσης και αξιολόγησης παρουσιάζονται στο σχήµα 9.7, δείχνοντας µια σηµαντική

ϐελτίωση στην ακϱίϐεια συγκριτικά µε το προηγούµενο µοντέλο. Η ακϱίϐεια του εκπαιδευ-

τικού συνόλου έφτασε το 72% και του συνόλου επικύρωσης το 68%.

Για την ανάλυση της απόδοσης του µοντέλου στη ταυτοποίηση της ϱίϹας, το επίπεδο

εξόδου τϱοποποιήϑηκε ώστε να πεϱιλαµϐάνει µόνο 13 νευϱώνες, αντιπϱοσωπεύοντας τις

δυνατές ϱίϹες. Το µοντέλο κατάϕεϱε να επιτύχει ακϱίϐεια 85% στη ταυτοποίηση της ϱίϹας.

Η πϱοσέγγιση του 1D Συνελικτικού Νευϱωνικού ∆ικτύου δείχνει ότι η χϱήση πιο σύνϑετων

µοντέλων και πεϱισσότεϱων χαϱακτηϱιστικών από την πϱοεπεξεϱγασία των δεδοµένων µποϱεί

να ϐελτιώσει σηµαντικά την ακϱίϐεια της πϱόϐλεψης.
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4.3 Μοντέλο 3: ∆ισδιάστατο Συνελικτικό Νευϱωνικό ∆ίκτυο µε Επαναλαµϐανόµενο ∆ίκτυο LSTM

Το µοντέλο στη συνέχεια εκπαιδεύτηκε και αξιολογήϑηκε στην εύϱεση όλων των µεϱών

των συγχοϱδιών, όπως πεϱιγϱάϕεται αναλυτικά στο Κεϕάλαιο 9.

4.3 Μοντέλο 3: ∆ισδιάστατο Συνελικτικό Νευϱωνικό ∆ίκτυο µε

Επαναλαµϐανόµενο ∆ίκτυο LSTM

΄Οπως περιγράφεται στο 7, τα συνελικτικά δίκτυα εξειδικεύονται στην αντιµετώπιση δε-

δοµένων που έχουν χωϱικές σχέσεις. Τα ϕασµατογράµµατα, στο προηγούµενο µοντέλο,

ερµηνεύθηκαν ως χρονοσειρές διανυσµάτων µε 192 χαρακτηριστικά. Σε αυτό το µοντέλο, τα

ϕασµατογράµµατα ϑα αντιµετωπίζονται ως εικόνες, εκµεταλλευόµενα τα συνελικτικά επίπεδα

πϱιν από το αναδϱοµικό επίπεδο για τη διευκόλυνση της εξαγωγής χαρακτηριστικών.

Για να το επιτύχουµε αυτό, όπως αναϕέϱεται στο 8, ϑα χϱησιµοποιηϑεί η τεχνική του

’chunking’ ως ένα ϐήµα πϱοεπεξεϱγασίας για να πϱοετοιµαστούν τα δεδοµένα για τη χϱήση

σε δισδιάστατα µοντέλα ϐαϑιάς µάϑησης. Αυτή η διαδικασία πεϱιλαµϐάνει τη διαίϱεση των

εισαγόµενων δεδοµένων σε µικϱότεϱα τµήµατα, κάϑε ένα αποτελούµενο από 100 συνεχόµενα

χϱονικά ϐήµατα (frames), που αντιστοιχούν πεϱίπου σε 7 δευτεϱόλεπτα ήχου. Αυτός ο

αϱιϑµός ϑεωϱήϑηκε ως υπεϱπαϱάµετϱος κατά την εκπαίδευση των µοντέλων και καϑοϱίστηκε

µετά από λεπτούς ϱυϑµίσεις. Η λογική πίσω από αυτήν την πϱοσέγγιση πϱοέϱχεται από τη

χϱήση ενός BiLSTM layer στην αϱχιτεκτονική µας.

Η χϱήση µικϱών κοµµατιών δεδοµένων είναι κϱίσιµη για τη ϐελτίωση της αποτελεσ-

µατικότητας και της αποδοτικότητας του LSTM. ∆ιασπώντας τη χρονοσειρά εισόδου σε δι-

αχειρίσιµα τµήµατα, το αναδϱοµικό επίπεδο LSTM µποϱεί να κατανοήσει καλύτεϱα τις

χϱονικές εξαρτήσεις εντός των δεδοµένων. Αυτή η λεπτοµέρεια επιτϱέπει στο µοντέλο να

µάθει αποτελεσµατικά µοτίϐα και σχέσεις σε µικϱότεϱα χϱονικά διαστήµατα, ενθαρρύνοντας

πιο ακϱιϐείς προβλέψεις και ϐελτιωµένη απόδοση.

Με την αντιµετώπιση κάϑε τµήµατος ως µια µοναδική εικόνα, οι συνελικτικοί στρώ-

σεις µποϱούν να εξάγουν σηµαντικά χαρακτηριστικά εντός αυτών των µικϱότεϱων χϱονικών

περιοχών του κοµµατιού. Αϕού εξαχθούν τα χαρακτηριστικά από αυτά τα τµήµατα χρησι-

µοποιώντας τις συνελικτικές στρώσεις, το επαναλαµβανόµενο δίκτυο LSTM ϑα πάϱει αυτά τα

επεξεργασµένα χαρακτηριστικά και ϑα αναλύσει τις ακολουθιακές εξαρτήσεις ανάµεσα στα

τµήµατα, παρέχοντας µια κατανοµή της µουσικής σύνθεσης µε την πάϱοδο του χρόνου.

Οι συνελικτικές στρώσεις σε αυτό το µοντέλο έχουν σχεδιαστεί για να αντιστοιχίσουν τα

δεδοµένα του ϕασµατογράµµατος σε ένα διάνυσµα εξόδου. Αυτό το διάνυσµα χρησιµοποιεί-

ται στη συνέχεια ως είσοδος για το επαναλαµβανόµενο επίπεδο LSTM. Αυτή η αρχιτεκτονική

επιτϱέπει στο LSTM να κατανοήσει αποτελεσµατικά τις πληροφορίες πεϱί πλαισίου µε την

πάϱοδο του χρόνου.

Μετά τα εκτεταµένα πειράµατα που αναϕέϱονται στο 9.2, καθορίστηκε ότι η µέϑοδος

Constant-Q Transform (CQT) επετεύχϑη καλύτεϱη απόδοση σε σχέση µε την προσέγγιση

Constant-Q Chromagram. Με τη χϱήση 192 χαρακτηριστικών αντί των 12 που χρησι-

µοποιήθηκαν στο Constant-Q Chromagram, η µέϑοδος CQT επέτυχε καλύτεϱη απόδοση.

Συνεπώς, σε αυτό το κεφάλαιο, ϑα χρησιµοποιήσουµε το Constant-Q Transform µε ϱυθµό

δειγµατοληψίας 44100 Hz, 192 bins και µήκος hop 4096, παϱαµέτϱους που ϱυθµίστηκαν
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για ϐέλτιστη απόδοση. Το µέγεθος του κοµµατιού ϱυθµίστηκε και τέϑηκε στα 100, που

σηµαίνει ότι κάϑε κοµµάτι καλύπτει πεϱίπου 7 δευτεϱόλεπτα ήχου.

Η αρχιτεκτονική του Μοντέλου 3 αποτελείται από αρκετές συνελικτικές στρώσεις ακολου-

ϑούµενες από στρώσεις µέγιστης συµπίεσης, οι οποίες µειώνουν τις χωϱικές τους διαστάσεις.

Για την πρόληψη του overfit, περιλαµβάνονται στρώσεις dropout, οι οποίες απορρίπτουν

τυχαία ένα τµήµα των µονάδων εισόδου κατά την εκπαίδευση. Η έξοδος από τις συνελικτικές

στρώσεις γίνεται flatten και πεϱνά από το επαναλαµβανόµενο επίπεδο BiLSTM, το οποίο

επεξεργάζεται πεϱαιτέϱω τα εξαγόµενα χαρακτηριστικά πϱιν περάσει τελικά σε ένα πλήϱως

συνδεδεµένο πυκνό επίπεδο για την κατηγοριοποίηση.

4.3.1 ∆ιαίϱεση ∆εδοµένων Εκπαίδευσης, Αξιολόγησης και ∆οκιµής

Το σύνολο δεδοµένων, προσαυξηµένο και προεπεξεργασµένο όπως περιγράφεται στο Κε-

ϕάλαιο 8, διαιρέθηκε σε τϱία διακριτά σύνολα για τη διευκόλυνση των δοκιµών και της

αξιολόγησης του µοντέλου. Για τη διατήρηση της συνοχής των δεδοµένων εντός κάϑε κοµ-

µατιού, σχεδιάστηκε ένας αλγόριθµος για τη διαίρεση του συνόλου δεδοµένων µε ϐάση το

κοµµάτι. Ειδικότερα, τα κοµµάτια από τα άλµπουµ CD1, CD2, Help, και Please Please Me

κϱατήϑηκαν αποκλειστικά για τελική δοκιµή. Επιπλέον, το 15% των υπολοίπων δεδοµένων

ανατέϑηκε για αξιολόγηση, ενώ το υπόλοιπο 85% ανατέϑηκε για σκοπούς εκπαίδευσης.

Αυτή η προσέγγιση διασφάλισε µια συνεκτική αξιολόγηση διατηρώντας την ακεραιότητα της

δοµής του συνόλου δεδοµένων.

4.3.2 Κατηγοϱιοποίησης της ΡίϹας των συγχοϱδιών µε το Μοντέλο 3

Αυτή η εϱγασία πεϱιλαµϐάνει την κατηγοϱιοποίηση της ϱίϹας κάϑε ακόϱντου σε µία από

τις 13 δυνατές ϱίϹες (συµπεϱιλαµϐάνεται και η µη ύπαϱξη νότας) στη µουσική κλίµακα.

Για την επίτευξη αυτού, δοκιµάστηκαν αϱκετές αϱχιτεκτονικές, αλλά αυτή που παϱάγει τα

καλύτεϱα αποτελέσµατα ϕαίνεται στον παϱακάτω πίνακα 9.8.

Η απόδοση του µοντέλου στην κατηγοϱιοποίηση των ϱιϹών ϕαίνεται στο γϱάϕηµα που

ϕαίνεται στο Σχήµα 9.18. Το µοντέλο εκπαιδεύτηκε για 40 εποχές µετά από πειϱαµατισµούς

µε άλλες επιλογές. Τόσο η ακϱίϐεια στα δεδοµένα εκπαίδευσης όσο και στα αξιολόγησης

σταϑεϱοποιείται σε πεϱίπου 93% και 86% αντίστοιχα, ένα πολύ καλύτεϱο αποτέλεσµα σε

σύγκϱιση µε το Μοντέλο 2.

Το µοντέλο στη συνέχεια εκπαιδεύτηκε και αξιολογήϑηκε στην εύϱεση όλων των µεϱών

των συγχοϱδιών, όπως πεϱιγϱάϕεται αναλυτικά στο Κεϕάλαιο 9.

4.4 Σύνοψη των Αποτελεσµάτων

Σε αυτό το κεφάλαιο εξερευνήσαµε τϱεις διαφορετικές προσεγγίσεις αρχιτεκτονικής για

το πϱόϐληµα της αναγνώρισης των ακόρντων. Το αρχικό µοντέλο χρησιµοποίησε ένα απλό

1D Συνελικτικό Νευρωνικό ∆ίκτυο (CNN) ως ϐάση για αξιολόγηση, επικεντρώνοντας σε µεµ-

ονωµένα embeddings ακόρντων χωϱίς να λαµβάνει υπόψη τη ϑεωρία της µουσικής και τις

σχέσεις των ακόρντων. Ωστόσο, αυτή η προσέγγιση µποϱεί να έχει περιορισµένες δυνατότητες

πρόβλεψης λόγω της αγνόησης της µουσικής ϑεωρίας και των σχέσεων των ακόρντων.
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Το επόµενο µοντέλο χρησιµοποίησε µια πιο πολύπλοκη αρχιτεκτονική 1D CNN για να

αναλύσει περισσότερα περίπλοκα µοτίϐα εντός των δεδοµένων ακόρντων. Μέσω πειραµα-

τισµού, καθορίστηκε ότι η χϱήση της µεθόδου Constant Q Transform (CQT) µε 192 χαρακ-

τηριστικά υπερτερεί της προσέγγισης Constant-Q Chromagram. Αυτό το µοντέλο περιλάµ-

ϐανε συνελικτικές στρώσεις, στρώσεις Max Pooling και στρώσεις dropout για την πρόληψη

του overfitting. Επιπλέον, εφαρµόστηκαν τεχνικές µεταϕοϱάς µάϑησης για να αντιµετωπί-

σουν αποτελεσµατικά εργασίες όπως η αναγνώριση της ϱίϹας, η ϐασική νότα, η τϱιάδα και

οι επεκτάσεις, ενισχύοντας την απόδοση του µοντέλου σε διάφορα στοιχεία της αναγνώρισης

ακόρντων.

Στο τελικό µοντέλο, χρησιµοποιήθηκε ένα 2D Συνελικτικό Νευρωνικό ∆ίκτυο µε επαναλαµ-

ϐανόµενα επίπεδα Bidirectional Long Short-Term Memory (BiLSTM). Αυτό το µοντέλο είχε

ως είσοδο τα ϕασµατογράµµατα ως εικόνες, διευκολύνοντας την εξαγωγή σηµαντικών χαρακ-

τηριστικών σε µικϱότεϱα χϱονικά διαστήµατα χρησιµοποιώντας συνελικτικές στρώσεις. Η

διαδικασία του "chunking", όπως αναλύεται στο 8, χρησιµοποιήθηκε ως ένα ϐήµα προεπεξ-

εργασίας για να χωρίσει τα δεδοµένα εισόδου σε διαχειρίσιµα τµήµατα, ϐελτιώνοντας την

ικανότητα του LSTM να αιχµαλωτίζει χϱονικές εξαρτήσεις. ΄Οπως και στο προηγούµενο µον-

τέλο, η µέϑοδος Constant Q Transform προτιµήθηκε έναντι της προσέγγισης Constant-Q

Chromagram, και εφαρµόστηκαν τεχνικές µεταϕοϱάς µάϑησης για να ϐελτιώσουν την από-

δοση σε διάφορες εργασίες αναγνώρισης ακόρντων.

΄Ολα τα προαναφερθέντα µοντέλα εκπαιδεύτηκαν, δοκιµάστηκαν και αξιολογήθηκαν

χρησιµοποιώντας µια µονάδα επεξεργασίας γϱαϕικών (GPU), ειδικότερα µια κάϱτα γϱαϕικών

NVIDIA GeForce GTX 1650 SUPER µε 4 GB µνήµης. Λόγω της περιορισµένης µνήµης,

εφαρµόστηκαν προσαρµοσµένοι generators πακέτων αντί της χϱήσης των προκωδικοποιη-

µένων υλοποιήσεων που είναι διαθέσιµες στο πακέτο TensorFlow. Είναι ενδιαφέρον να

σηµειωθούν οι χϱόνοι εκπαίδευσης για κάϑε µοντέλο. Οι χϱόνοι εκπαίδευσης, µετϱηµένοι

σε δευτεϱόλεπτα, ϕαίνονται στο Σχήµα 9.34. Ο χϱόνος εκπαίδευσης του Μοντέλου 2 για

τις εργασίες κατηγοριοποίησης ΡίϹας και Βάσης είναι συγκρίσιµος µε αυτόν του Μοντέλου

3. Ωστόσο, για τις υπόλοιπες τϱεις εργασίες, το Μοντέλο 3 απαιτεί σηµαντικά περισσότερο

χϱόνο λόγω της αυξηµένης πολυπλοκότητας των επιπλέον στρωµάτων του.
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Chapter 5

Μετά-Επεξεϱγασία Αποτελεσµάτων

Το κεφάλαιο αυτό αποτελεί περίληψη των σηµαντικών στοιχείων του κεφαλαίου 10, στα

ελληνικά. Στο κεφάλαιο αυτό, προχωράµε σε µια εκτενή ανάλυση διαφόρων τεχνικών µετε-

πεξεργασίας που στοχεύουν στην τελειοποίηση των προβλέψεων συγχορδιών που προκύπτουν

από τα µοντέλα µας. Αυτές οι τεχνικές περιγράφονται λεπτοµερώς για πλήϱη κατανόηση και

εφαρµογή.

Αϱχικά, ξεκινάµε µε τον συνδιασµό των προβλέψεων των επιµέϱους στοιχείων των συγ-

χορδιών, ώστε να πάϱουµε τα τελικά δεδοµένα πρόβλεψης, κάϑε ένα από τα οποία αντιστοιχεί

σε ένα συγκεκριµένο συγχορδιακό στοιχείο, όπως η ϱίϹα, το µπάσο, η τϱιάδα και οι επεκ-

τάσεις. Αυτά τα µεµονωµένα στοιχεία συγχωνεύονται στη συνέχεια σε µια πρόβλεψη, τη

συγχορδία, που αποτελεί το τελικό αποτέλεσµα.

Στη συνέχεια, εξετάϹουµε τις τεχνικές µετεπεξεϱγασίας που σχεδιάστηκαν ειδικά για τη

ϐελτίωση των πϱοϐλέψεων των συγχοϱδιών. Μία από αυτές πεϱιλαµϐάνει το ϕιλτϱάϱισµα

κάϑε συγχοϱδίας ϐάσει πϱοκαϑοϱισµένων κανόνων που ϑα δούµε λεπτοµεϱώς.

Επιπλέον, παρουσιάζουµε έναν µηχανισµό οµαλοποίησης σχεδιασµένο για να ενισχύ-

σει τη συνοχή και τη συνέπεια των προβλέψεων συγχορδιών. Αυτή η διαδικασία αντικα-

ϑιστά τιµές εντός ενός καθορισµένου παραθύρου µε την πιο συνηθισµένη τιµή στην περιοχή,

εξαλείφοντας απότοµες διακυµάνσεις και εξασφαλίζοντας οµαλότερες µεταβάσεις µεταξύ των

συγχορδιών.

Επίσης, πειραµατιζόµαστε µε την εφαρµογή τεχνικών οµαλοποίησης τόσο στις συγ-

χορδίες που συναρµόζουν όσο και στα µεµονωµένα στοιχεία των συγχορδιών. Παϱατηϱήϑηκε

ότι η οµαλοποίηση κάϑε συγκεκριµένου στοιχείου της συγχορδίας έδωσε καλύτεϱα αποτελέσ-

µατα σε σύγκριση µε την οµαλοποίηση των συνολικών συγχορδιών. Αυτή η προσέγγιση

αποδεικνύεται αποτελεσµατική, καθώς λαµβάνει υπόψη τα διακριτά χαρακτηριστικά και τη

δυναµική του κάϑε συγχορδιακού στοιχείου στο στάδιο της µετεπεξεργασίας.

Τέλος, εξετάζουµε τις µεθόδους ϕιλτραρίσµατος που εφαρµόζονται στα δεδοµένα συγ-

χορδιών µετά την οµαλοποίηση. Η κύϱια εστίαση εδώ είναι στους κανόνες που χρησι-

µοποιούνται για τον εντοπισµό και το ϕιλτράρισµα συγχορδιών ϐάσει συγκεκριµένων κϱιτηϱίων.

Η συνδυασµένη εφαρµογή των τεχνικών µετεπεξεργασίας αποδεικνύεται ως ισχυϱή προσέγ-

γιση που ενισχύει σηµαντικά την απόδοση και την ακϱίϐεια του συστήµατος αναγνώρισης

συγχορδιών µας.
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Chapter 6

Αποτελέσµατα και Προτάσεις για Μελλοντική ΄Ερε-

υνα

6.1 Αποτελέσµατα

Το κεφάλαιο αυτό αποτελεί περίληψη των σηµαντικών στοιχείων του κεφαλαίου 11, στα

ελληνικά. Σε αυτό το κεφάλαιο, αξιολογούµε το σύστηµα αναγνώρισης συγχορδιών µας

χρησιµοποιώντας τις µετϱικές του MIREX (Music Information Retrieval Evaluation eX-

change). Το MIREX παϱέχει ένα προτυποποιηµένο πλαίσιο για την αξιολόγηση των συστη-

µάτων ανάκτησης πληροφοριών µουσικής, καθιστώντας το ένα ιδανικό µέτϱο σύγκρισης των

αποτελεσµάτων µας µε αυτά από άλλες µελέτες. Ξεκινώντας από την εξήγηση των µετϱικών

αξιολόγησης του MIREX (λεπτοµερείς εξηγήσεις στο Κεφάλαιο 7) και τη σηµασία τους στην

αναγνώριση συγχορδιών, διασφαλίζουµε ότι η αξιολόγηση µας είναι τόσο πλήϱης όσο και

συγκρίσιµη µε άλλα κορυφαία συστήµατα.

Στο πλαίσιο της αξιολόγησης του MIREX, είναι ενδιαφέρον να συγκρίνουµε τη λύση µας

µε άλλα άρθρα. Οι Gasser και Strasser [13], στην υποβολή τους, ακολούθησαν µια παρό-

µοια προσέγγιση χωρίζοντας τα ακκόϱντα σε συστατικά και στη συνέχεια χρησιµοποίησαν

µια αρχιτεκτονική CNN εφαρµόζοντας Μεταϕοϱά Μάϑησης για κάϑε συστατικό. Η κύϱια

διαφορά είναι η χϱήση επιπέδων Bi LSTM στην πεϱίπτωσή µας και οι τεχνικές µετεπεξερ-

γασίας.

Οι Park, Choi κ.ά. [14] χρησιµοποιούν έναν µηχανισµό αυτο-πϱοσοχής (self-attention)

για την αναγνώριση ακκόρντων προκειµένου να επικεντρωθούν σε συγκεκριµένες περιοχές

των ακκόρντων. Η εκπαίδευση του προτεινόµενου Μοντέλου Bi-directional Transformer για

την αναγνώριση ακκόρντων (BTC) αποτελείται από µια µόνο ϕάση, ενώ εµφανίζει ανταγ-

ωνιστική απόδοση. Πϱοέκυψε ότι το µοντέλο µπόϱεσε να διαχωρίσει τµήµατα των ακκόρν-

των χρησιµοποιώντας το προσαρµοστικό πεδίο αλληλεπίδρασης του µηχανισµού προσοχής.

Επιπλέον, παϱατηϱήϑηκε ότι το µοντέλο µπόϱεσε αποτελεσµατικά να αντιληφθεί µακροπρό-

ϑεσµες εξαρτήσεις, χρησιµοποιώντας τις ουσιώδεις πληροφορίες ανεξαϱτήτως απόστασης.

Τέλος, οι Jiang, Ke Chen κ.ά. [15] προτείνουν ένα νέο µοντέλο για πρακτικές ερ-

γασίες µεταγραφής ακκόρντων. Η κύϱια έννοια του νέου µοντέλου είναι να αναπαραστή-

σει οποιοδήποτε ετικέτα ακκόρντου µε ένα σύνολο υποµονάδων (δηλ. ϱίϹα, τϱιάδα, ϐάση)

σύµφωνα µε τις κοινές µουσικές δοµές τους. ΄Ενας multitask classifier εκπαιδεύεται στη

συνέχεια να αναγνωρίζει όλες τις υποµονάδες δεδοµένης της χαρακτηριστικής περιγραφής
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του ήχου, και στη συνέχεια οι ετικέτες των µεµονωµένων υποµονάδων επανασυναρµολο-

γούνται για να σχηµατίσουν την τελική ετικέτα ακκόρντου. Για την κατασκευή του πολυ-

εϱγαστηϱιακού ταξινοµητή χρησιµοποιείται ένα Αναδϱοµικό Συνελικτικό Νευρωνικό ∆ίκτυο

(RCNN).

ΕξετάϹοντας τις µετϱικές στον πίνακα 11.2, ϐλέπουµε ότι το µοντέλο µας Model2+S+F

παϱουσιάϹει εξαιρετική απόδοση γενικά, µε την ακϱίϐεια αναγνώρισης της έβδοµης νότας να

είναι ιδιαίτερα εντυπωσιακή. Αυτή η σηµαντική επίτευξη υπογραµµίζει την ανθεκτικότητα

του µοντέλου µας, το οποίο εξειδικεύεται στην αναγνώριση των λεπτοµερειών που περιλαµ-

ϐάνονται σε αυτές τις περίπλοκες µουσικές δοµές ακκόρντων. ΄Οχι µόνο το µοντέλο µας επι-

δεικνύει εξαιρετική επίδοση σε αυτό το συγκεκριµένο πϱόϐληµα, αλλά συνεχίϹει να εµφανίζει

ανταγωνιστική απόδοση και σε άλλες κατηγορίες αξιολόγησης MIREX. Αυτή η διαπίστωση

υποστηρίζεται από αναλύσεις σύγκρισης µε άλλα µοντέλα, όπως τα KBK2, BTC+CRF και

JLCX1, τα οποία είναι όλα εξαιρετικά µοντέλα.

6.2 Πϱοτάσεις για Μελλοντική ’Εϱευνα

Αυτή η διπλωµατική εϱγασία έχει δηµιουϱγήσει ένα στέϱεο έδαϕος για συνεχή καινοτοµία

και έϱευνα στον τοµέα της αναγνώϱισης συγχοϱδιών. Πολλές επιλογές πϱοτείνονται για

µελλοντική έϱευνα, κάϑε µία από τις οποίες υπόσχεται να διευϱύνει τις δυνατότητες και την

ακϱίϐεια των αλγοϱίϑµων αναγνώϱισης συγχοϱδιών.

6.2.1 Επέκταση των Πηγών ∆εδοµένων

Η περιορισµένη πρόσβαση σε αρχεία ήχου λόγω περιορισµών πνευµατικών δικαιωµάτων

εµπόδισε την απόκτηση ενός µεγαλύτεϱου συνόλου δεδοµένων για εκπαίδευση και δοκιµή.

Με την πϱοσϑήκη δεδοµένων από ένα ευρύτερο ϕάσµα µουσικών στυλ, το αποτέλεσµα ϑα

µποϱούσε να προσφέρει µεγαλύτεϱη προσαρµοστικότητα και ακϱίϐεια στην αναγνώριση συγ-

χορδιών, ειδικά στο πλαίσιο της σύγχϱονης δυτικής pop µουσικής.

6.2.2 Ενσωµάτωση Αϱχών Θεωϱίας της Μουσικής

Η ενσωµάτωση αρχών της ϑεωρίας της µουσικής στους αλγορίθµους αναγνώρισης συγ-

χορδιών ϑα µποϱούσε να οδηγήσει σε πιο µουσικά ενηµερωµένες προβλέψεις. Με την

αξιοποίηση γνώσεων για προγρεσσιονικές σειϱές συγχορδιών, αρµονικές λειτουργίες και

µελωδικές τάσεις, ο µοντέλο ϑα µποϱούσε να παϱάγει πιο συνακόλουθες και αισϑητικά

ικανοποιητικές αποτελέσµατα.

6.2.3 Ενσωµάτωση Beat Tracking

Η καταγϱαϕή ϱυϑµού, αν και ένα ξεχωϱιστό πϱόϐληµα ταξινόµησης στο MIREX, κϱύϐει

τεϱάστιο δυναµικό ως πϱόσϑετη είσοδος για τα µοντέλα αναγνώϱισης συγχοϱδιών. Με την

συµπεϱίληψη δεδοµένων καταγϱαϕής ϱυϑµού ως δευτεϱεύουσα είσοδο, ο αλγόϱιϑµος ϑα

µποϱούσε να διακϱίνει καλύτεϱα τον χϱόνο των αλλαγών συγχοϱδιών, οδηγώντας σε πιο

ακϱιϐή και συµπεϱασµατικά αποτελέσµατα. Αυτή η ενσωµάτωση ϑα οδηγήσει στην ανάπτυξη

πιο δυναµικών και ϱυϑµικά ευαίσϑητων συστηµάτων αναγνώϱισης συγχοϱδιών.
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6.2.4 Αναγνώϱιση της Κλίµακας (key detection) ως ϐήµα Πϱο-Επεξεϱγασίας

Η ενσωµάτωση αλγορίθµων αναγνώρισης της κλίµακας ως ένα ϐήµα πϱο-επεξεϱγασίας

ϑα µποϱούσε να προσφέρει πολλά οϕέλη στη ϐελτίωση της ακϱίϐειας της αναγνώρισης συγ-

χορδιών. Απορρίπτοντας συγχορδίες που δεν περιλαµβάνονται στην κλίµακα, το σύστηµα

µποϱεί να επικεντρωθεί στην ανάλυση και πρόβλεψη συγχορδιών που είναι αρµονικά συνεκ-

τικές και µουσικά σηµαντικές. Αυτή η προσέγγιση ϑα µποϱούσε να διευκολύνει τη δι-

αδικασία αναγνώρισης συγχορδιών και να ϐελτιώσει τη συνολική ποιότητα των προβλέψεων.
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Chapter 7

Theoretical Background

The purpose of this section is to analyze certain theoretical concepts that will be

mentioned across this work and play a major role in understanding the models or the

problems they try to solve. It is also important to analyze basic music theory concepts

that are relevant to the problem.

7.1 Basic Music Theory

In this chapter, we explore the fundamental concepts of music theory that underpin

chord recognition, providing essential insights into the harmonic structures and relation-

ships present in musical compositions.

7.1.1 Intervals

A popular harmonic representation in the audio and symbolic realms is the chord-

label. Particularly in North America, there is a long history of Roman numeral-focused

teaching that gives rise to the usage of chord labels in symbolic music (e.g., [16], [17]).

Approaches rooted in music theory and cognitive science, such as the methodologies

proposed by Krumhansl [18] and Lerdahl [19], have influenced the development of com-

putational distance metrics for chords (e.g., [20]-[21]. However, within the field of music

information retrieval, much emphasis has been placed on chord recognition due to its

straightforward translation into a classification task. Existing chord estimation metrics,

as seen in current MIREX standards (refer to Table 1), primarily focus on predicting chord

labels, with varying levels of simplification implemented to accommodate differences in

chord vocabulary size [22].

It’s essential now to analyze intervals to better grasp these concepts. Intervals are the

building blocks of scales, chords (or harmonies), and melodies. Intervals are a measure-

ment between two pitches, either vertically or horizontally. When measuring vertically,

we refer to harmonic intervals because the two notes sound simultaneously. When mea-

suring horizontally, we refer to melodic intervals because the notes occur one after the

other [1].
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Figure 7.1. Difference between harmonic and melodic intervals [1].

The following intervals can be found by measuring a major scale from the tonic up to

each scale degree:

Figure 7.2. A visualization of either “perfect” or “major" intervals [1].”

To summarize an interval is a certain distance between 2 notes. They are divided

in two categories: Melodic and Harmonic. In melodic intervals the notes are played one

after the other, while in harmonic they are played together. The smallest musical interval

frequently used in Western tonal music is the semitone, sometimes known as a half step

or a half tone, which is also thought to be the most dissonant when sounded harmonically.

Semitone counting alone cannot determine the names given here 7.1.

Table 7.1. Intervals and their Properties

Number of Semitones Minor, Major, or Perfect Intervals Augmented or Diminished Intervals

0 Perfect unison Diminished second

1 Minor second Augmented unison

2 Major second Diminished third

3 Minor third Augmented second

4 Major third Diminished fourth

5 Perfect fourth Augmented third

2*6 - Diminished fifth

- Augmented fourth

7 Perfect fifth Diminished sixth

8 Minor sixth Augmented fifth

9 Major sixth Diminished seventh

10 Minor seventh Augmented sixth

11 Major seventh Diminished octave

12 Perfect octave Augmented seventh
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7.1.2 Introduction to Chords

Chords form the backbone of music, providing harmony and depth to melodies. In

essence, a chord is a combination of three or more notes played simultaneously. These

notes are typically chosen from a specific scale and arranged in intervals, creating unique

sounds and emotions. Chords serve as the building blocks of songs across various genres.

Splitting the chord structure into major components provides a systematic approach

to understanding its composition and function. A chord can be dissected into several

elements, each contributing to its overall sound and character. The primary components

include the root, bass, triad, and extensions.

• The Root of a chord serves as its foundation, determining its fundamental pitch

and tonal center. It is the note from which the chord derives its name and provides

a sense of stability and resolution.

• The Bass note is the lowest sounding pitch in the chord. While it often corresponds

to the root note, especially in basic chord structures, it can sometimes differ, pro-

viding additional depth and color to the chord.

• The Triad forms the core structure of many chords, consisting of three notes stacked

in intervals of a third. These notes typically include the root, a third (either major

or minor), and a fifth, creating the basic harmonic framework of the chord.

The simplest example of a chord is a Triad. A class of chords known as the triad is

made up of three-note chords, or root, third, and fifth, expressed by the formula 1-3-5

[11]. They are made up of two successive thirds in this example 7.2.

Table 7.2. Kinds of Triads (♭ represents "flat" or "lowered", ♯ represents "sharp" or "raised")
[11].

Root 3rd 5th

Major 1 3 5

Minor 1 ♭3 5

Augmented 1 3 ♯5
Diminished 1 ♭3 ♭5

7.1.3 Chord Representation

Chord representation is essential in music theory as it allows us to understand the

harmonic content of a piece of music. Chords can be represented in various ways, in-

cluding chord symbols, chord diagrams, and chord charts.

One common method of chord representation is through chord symbols, which use

letters and symbols to denote the root, quality, and extensions of a chord. For example,

the chord symbol "Cmaj7" represents a C major seventh chord, consisting of the notes C,

E, G, and B. Similarly, "Dm7" represents a D minor seventh chord, comprising the notes

D, F, A, and C.

Every chord symbol in the table below has its matching intervals and the chord’s

whole name next to it 7.3.
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Table 7.3. Basic Chords and Their Representations

Chord Symbol Intervals Full Name

C 1, 3, 5 C major

Cmaj7 1, 3, 5, 7 C major seventh

Dm7 1, ♭3, 5, ♭7 D minor seventh

E7 1, 3, 5, ♭7 E dominant seventh

Fm 1, ♭3, 5 F minor

Gsus4 1, 4, 5 G suspended fourth

Am9 1, 3, 5, 9 A minor ninth

Bm7♭5 1, ♭3, ♭5, ♭7 B half-diminished seventh

7.2 Machine Learning & Deep Learning

7.2.1 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers

to learn from data and make predictions or decisions without being explicitly programmed

[23]. Its goal is to develop algorithms and models that can automatically detect patterns

and insights in data and make predictions or decisions based on these patterns. There are

three main types of machine learning: supervised learning, unsupervised learning, and

reinforcement learning. Supervised learning is the most common type, involving training a

model on a labeled dataset where the output variable or target is known. The model is then

tested on new, unseen data to evaluate its performance. Examples of supervised learning

include image classification, speech recognition, and natural language processing [24].

On the other hand, unsupervised learning involves training a model on an unlabeled

dataset where the output variable or target is unknown. The model is then used to identify

patterns and information in the data, such as clustering or dimensionality reduction.

Examples of unsupervised learning include anomaly detection, market segmentation,

and feature extraction.

Reinforcement learning is a type of machine learning that focuses on training models

to make decisions based on feedback or rewards. It is often used in situations where

the outcome of a decision is uncertain or the optimal decision may change over time.

Examples of reinforcement learning include robotics, games, and control systems.

Gathering and cleansing data is usually the first step in the machine learning process.

This is an important stage because the model’s performance can be greatly impacted by

the quality of the data. The data is separated into a training set and a test set once it

has been cleaned and prepared. The test set is used to assess the model’s performance,

whereas the training set is used to train the model.

Choosing an appropriate model and method for the given task is the next step. Nu-

merous models and techniques are at one’s disposal, including support vector machines,

random forests, decision trees, and neural networks. The kind of problem, the intricacy

of the data, and the resources at hand all influence the model and algorithm selection.

The model is chosen, and it is subsequently trained using the training set. Finding the

model’s optimal parameters to minimize error on the training set is the aim of training
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and it is called fine tuning. Subsequently, the model’s performance is evaluated on the

test set to make sure it doesn’t overfit the training set. Overfitting occurs when a machine

learning model captures noise in the training data rather than the underlying pattern,

resulting in poor generalization to new data [25].

The model can be used to forecast new, unseen data after it has been trained and

evaluated. This is commonly known as deployment or inference. Applications for the

model include natural language processing, speech recognition, and image classification.

Machine learning has several uses and has been implemented in a number of indus-

tries, including manufacturing, healthcare, finance, and transportation. For instance,

machine learning has been applied to the healthcare industry to create models that as-

sist in medical diagnosis, identify potential health hazards, and forecast patient outcomes.

Machine learning has been used in finance to forecast stock values, find possible invest-

ment opportunities, and detect fraudulent transactions. Supply chain optimization, traf-

fic prediction, and driverless cars are just a few of the transportation systems that have

benefited from the application of machine learning. Machine learning has been applied in

manufacturing to enhance quality control, forecast equipment breakdowns, and optimize

production processes.

7.2.2 Deep Learning

Deep learning (DL) is a sub-field of machine learning that utilizes deep neural networks

to model and solve complex problems. Originating in artificial intelligence, the idea of

deep learning has become increasingly popular in recent years because it can deliver

state-of-the-art performance on a variety of tasks, including speech recognition, image

classification, and natural language processing [26].

Deep neural networks, also known as deep learning models, consist of multiple layers

of interconnected artificial neurons, where each layer receives input from the previous

layer and produces output for the next layer. The architecture of deep neural networks

allows them to automatically learn and extract features from raw input data and per-

form highly complex nonlinear transformations. This contrasts with traditional machine

learning models, which typically require manual feature engineering [27].

Several techniques can be used, depending on the application, to train deep learning

models. The most popular technique for training deep learning models is supervised

learning, in which the model is trained using a labeled dataset with the aim of minimizing

the difference between the expected and actual outputs. Additional training techniques

include reinforcement learning, in which the model learns to make decisions in response

to rewards or feedback, and unsupervised learning, in which the model is trained on an

unlabeled dataset.

Deep learning has also been used to generate cutting-edge results in a variety of

applications, including audio recognition, image classification, and natural language pro-

cessing. For instance, deep learning models have been applied to picture classification to

automatically identify objects and scenes in photos and to reach performance that is on

par with or even better than human ability. Deep learning models have been applied to
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voice recognition in order to obtain performance that is on par with or even greater than

that of conventional methods, including automatic speech transcription. Deep learning

models have been applied to natural language processing to generate and understand

language automatically, with results that are on par with or better than those of more

conventional approaches.

Moreover, new methods and architectures are being created quickly in the rapidly

evolving discipline of deep learning. More sophisticated and potent layouts, like trans-

former, recurrent, and convolutional neural networks, have been the subject of research

in recent years. In order to enhance the performance of deep learning models on novel

tasks and domains, new methods for training them—such as domain adaptation and

transfer learning—have also been created.

In Conclusion, deep learning is a potent instrument with the ability to transform nu-

merous industries and tackle a broad variety of issues. Deep learning does, however,

have several drawbacks, much like machine learning, including the requirement for vast

amounts of high-quality data, the complexity of the models, and the computational re-

sources needed for training and refining deep learning models. Despite these difficulties,

deep learning is anticipated to maintain its prominent position in the artificial intelligence

space and to propel the creation of novel and fascinating applications.

7.3 Convolution Neural Networks (CNN)

Artificial Neural Networks (ANNs) are computational systems inspired by the biological

nervous systems, such as the human brain. They consist of interconnected computational

nodes, or neurons, which collectively learn from input data to optimize their final output

[2].

The basic structure of an ANN can be illustrated as depicted in 7.3. Input data, usually

in the form of a multidimensional vector, is fed into the input layer and propagated to the

hidden layers. These hidden layers make decisions based on the previous layer’s output,

adjusting their internal parameters to improve the final output through a process known

as learning. When multiple hidden layers are stacked upon each other, it is referred to

as deep learning.
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Figure 7.3. A simple three layered feedforward neural network (FNN), comprised of a
input layer, a hidden layer and an output layer. This structure is the basis of a number
of common ANN architectures, included but not limited to Feed- forward Neural Networks
(FNN), Restricted Boltzmann Machines (RBMs) and Recurrent Neural Networks (RNNs) [2].

Similar to conventional ANNs, convolutional neural networks (CNNs) are made up of

neurons that learn to optimize themselves. ANNs are based on the fact that each neuron

will continue to receive an input and carry out an operation (such a scalar product followed

by a non-linear function). The entire network will continue to express a single perceptive

score function (the weight) from the raw picture vectors that are input to the class score

that is generated at the end. The final layer will include loss functions linked to the

classes; all of the standard advice and techniques created for conventional ANNs still

holds true [2].

CNN has four layers: convolution layer, pooling layer, fully connected layer, and

nonlinearity layer [3]. Illustrations of those four layers are presented in 7.4. Further

explanations regarding the description of each layer will be shown in this chapter.

Figure 7.4. CNN Architecture [3].
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7.3.1 Convolutional Layer

In order to determine the convolution of the input images and extract the essential

information, the convolutional layer uses a kernel filter. Compared to the input image,

the filter kernel’s dimensions are the same, but its constant parameter value is less

[28]. Filters are applied to the input data using a process known as convolution in

Convolutional Neural Networks (CNNs), where the filter moves over the input data and

the dot product between the filter and the input data is computed at each position. The

result of the convolution is a activation map, which is a representation of the input data

that is more abstract and compact than the original input data. The convolutional layer’s

general equation can be written as in 7.1. A straightforward representation of the CNN

calculation process that yields the activation map can be shown in 7.5. A convolutional

layer is characterized by its kernel size, stride length, and padding [29]. The kernel size

refers to the dimensions of the filter or the moving kernel [30]. Stride length denotes the

number of steps taken by kernels before computing product points and generating output

pixels [31]. Padding represents the dimensions of the zero-padding applied around the

input feature map [32].

Activation map = Input ∗ Filter =

cols∑
y=0

rows∑
x=0

Input(x − p, y − q)Filter(x, y)

 (7.1)

Figure 7.5. Convolutional Layer [3].

7.3.2 Pooling Layer

Pooling layers partition the input data into smaller sections known as pooling windows

or receptive fields. Within each window, an aggregation operation is performed, like

selecting the maximum or averaging the values. This process decreases the dimensions

of the feature maps, creating a condensed portrayal of the input data. In 7.7 an example

of max pooling is presented.
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Figure 7.6. Max Pooling [3].

7.3.3 Fully Connected Layer

Typically, the final convolution or pooling layer’s output feature maps are flattened, or

converted into a one-dimensional array or vector of numbers [33]. After that, this array is

connected to one or more fully connected layers, also called dense layers, in which every

input and every output are coupled by a trainable weight. nce the features extracted

by the convolution layers and downsampled by the pooling layers are created, they are

mapped by a subset of fully connected layers to the final outputs of the network, such

as the probabilities for each class in classification tasks. The final fully connected layer

typically has an equal number of output nodes to classes. A nonlinear function like ReLU

comes after each completely connected layer.

Figure 7.7. CNN Architecture [4].

7.3.4 Nonlinearity Layer (Activation Function)

Activation functions (AFs) are pivotal components within neural networks, as they

facilitate the learning of abstract features through nonlinear transformations [34]. Several

key properties characterize AFs:

• they introduce nonlinear curvature to the optimization landscape, enhancing the
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network’s training convergence.

• they should maintain a reasonable level of computational complexity within the

model.

• they must not obstruct the gradient flow during training.

• they should preserve the distribution of data to facilitate more effective network

training.

Two commonly used examples of activation functions are ReLU (Rectified Linear Unit)

7.2 and Sigmoid Function 7.3.

ReLU(x) =

x if x > 0

0 otherwise

(7.2)

Sigmoid(x) =
1

1 + e−x
(7.3)

7.4 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) constitute a specific type of neural network ar-

chitecture primarily designed for recognizing patterns within sequential data. This data

can encompass various forms such as handwriting, genetic sequences, text, or numerical

time series, commonly encountered in industrial contexts like stock market data or sen-

sor readings [35]. Furthermore, RNNs can also be adapted to process images by breaking

them down into patches and treating them as sequential data . In broader applications,

RNNs are utilized in tasks such as Language Modeling, Text Generation, Speech Recog-

nition, Image Captioning, and Video Tagging [5].

What sets Recurrent Neural Networks apart from Feedforward Neural Networks, also

known as Multi-Layer Perceptrons (MLPs), is the way information flows through the net-

work. While Feedforward Networks transmit information linearly, RNNs incorporate cy-

cles, allowing information to circulate back within the network. This characteristic en-

ables RNNs to consider not only the current input but also past inputs, thus extending

the capabilities of Feedforward Networks. This distinction is illustrated at a high level in

Figure 1, where multiple hidden layers are represented by a single "Hidden Layer" block

(H), which can be expanded to accommodate multiple layers as needed.
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Figure 7.8. Visualisation of differences between Feedfoward NNs und Recurrent NNs [5].

At a high level, an RNN processes a sequence of inputs x = x1, x2, ..., xT and produces

a sequence of outputs y = y1, y2, ..., yT . The fundamental concept of an RNN is to utilize

a hidden state vector ht to capture information from previous inputs in the sequence and

use this hidden state to compute the next output in the sequence. The hidden state is

updated at each time step based on the current input and the previous hidden state:

ht = f (xt , ht−1), where f is a non-linear function mapping the input and the previous

hidden state to a new hidden state. The output at each time step is then computed as a

function of the current hidden state: yt = g(ht), where g is a non-linear function mapping

the hidden state to the output.

We can represent the process of transferring information from the previous iteration to

the hidden layer using the mathematical notation introduced in [36]. To do so, we denote

the hidden state and the input at time step t respectively as Ht ∈ R
n×h

and Xt ∈ R
n×d

,

where n is the number of samples, d is the number of inputs for each sample, and h is the

number of hidden units. Additionally, we utilize a weight matrix Wxh ∈ R
d×h

, a hidden-

state-to-hidden-state matrix Whh ∈ R
h×h

, and a bias parameter bh ∈ R
1×h

. Finally, all

this information is passed through an activation function φ, typically a logistic sigmoid

or tanh function, to prepare the gradients for use in backpropagation [5]. Combining all

these notations results in 7.4 for the hidden variable and 7.5 for the output variable:

Ht = φ(XtWxh + Ht−1Whh + bh) (7.4)

Since Ht recursively includes Ht−1 and this process occurs for every time step, the

RNN incorporates traces of all hidden states that preceded Ht−1 as well as Ht−1 itself. This

process can be represented by the following equation:

Ot = φo(HtWho + bo) (7.5)

One of the primary advantages of RNNs is their ability to handle input sequences of

arbitrary lengths, as the hidden state captures information from all previous inputs in the

sequence. However, a significant challenge in training RNNs is the problem of vanishing

or exploding gradients, which occurs when the gradients used to update the network

parameters become either very small or very large, making it difficult to learn long-term

dependencies.
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To address this issue, various variations of RNNs have been proposed, including the

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, which

employ specialized gating mechanisms to control the flow of information within the net-

work.

7.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks provide a solution to the vanishing error

problem in neural networks. They can effectively learn to bridge time lags of more than

1,000 discrete time steps. This is achieved through the use of constant error carousels

(CECs), which maintain a consistent flow of error within specialized cells [6]. Access to

these cells is regulated by multiplicative gate units, which dynamically control when to

grant access. The LSTM layout can be seen in 7.10.

Figure 7.9. A standard LSTM memory block consists of (at least) one cell with a recurrent
self-connection (CEC) and a weight of ’1’. The state of the cell is denoted as sc. Read and
write access is regulated by the input gate, yin, and the output gate, yout . The internal cell
state is calculated by multiplying the result of the squashed input, g, by the result of the
input gate, yin, and then adding the state of the last time step, sc(t − 1). Finally, the cell
output is calculated by multiplying the cell state, sc, by the activation of the output gate,
yout [6].
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7.5.1 Constant Error Carousel

In a simplified scenario where we have only one unit u with a self-connection, the local

error backflow of u at a time-step τ is determined by 7.6:

θu(τ) = f ′(u(zu(τ)))W [u, u]θu(τ + 1) (7.6)

To ensure a constant error flow through u, it is required that f ′(u(zu(τ)))W [u, u] = 1.0.

By integration, it follows that fu(zu(τ)) = zu(τ)W [u, u]. This implies that fu must be

linear, and u’s activation must remain constant over time, i.e., yu(τ + 1) = fu(zu(τ + 1)) =
fu(yu(τ)W [u, u]) = yu(τ). This is achieved by using the identity function fu = id and setting

W [u, u] = 1.0. This preservation of error is termed the constant error carousel (CEC), a

pivotal aspect of LSTM enabling short-term memory storage for extended durations [6].

7.5.2 Memory Blocks

While the CEC ensures constant backflow of error in the absence of new inputs,

within a neural network, the CEC is interconnected with other units. This necessitates

considering additional weighted inputs and outputs. LSTM addresses this by extending

the CEC with input and output gates connected to the network input layer and other

memory cells, forming a more complex unit known as a memory block.

The input gates, simple sigmoid threshold units with an activation range of [0, 1],
regulate signals from the network to the memory cell by scaling them accordingly. They

can also learn to shield stored contents from irrelevant signals. The activation of a CEC

by the input gate is termed the cell state. Output gates manage access to memory cell

contents, protecting other cells from disturbances originating from the current unit. The

multiplicative gate units essentially control access to the constant error flow through the

CEC by either permitting or denying it.

Memory blocks also feature a forget gate, which weighs the information inside the

cells. Whenever previous information becomes irrelevant for some cells, the forget gate

can reset the state of these cells, enabling continuous prediction and preventing biases.

Similar to other algorithms, LSTM requires a fixed network topology. The number

of memory blocks remains constant throughout training, limiting the overall memory

capacity of the network. Increasing the network size uniformly is unlikely to overcome

this limitation. Instead, modularization is proposed as a strategy for effective learning,

although the specifics of this process remain unclear [6].

7.6 CRNN

The Convolutional Recurrent Neural Network (CRNN) integrates convolutional layers

for feature extraction and recurrent layers, particularly Long Short-Term Memory (LSTM)

units or gated recurrent unit (GRU), for capturing temporal dependencies.
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Figure 7.10. The CRNN architecture employs a sequence of operations to process input
features, which consist of matrices representing consecutive frames of log-Mel filter banks
(64 filter banks by 96 time frames). Initially, convolutional and max-pooling operations
are applied sequentially to extract informative features from the input. Subsequently, these
features are passed through gated recurrent units (GRUs) to capture temporal dependencies.
The network produces sigmoid scores as outputs, indicating the presence of various acoustic
events in the audio signal [7].

In CRNN, LSTM/ GRUs units play a critical role in modeling the temporal context

of acoustic events. These units maintain long-term memory and effectively handle the

vanishing gradient problem, thus allowing the model to learn long-range dependencies.

Mathematically, the LSTM units in CRNN process input sequences iteratively, retaining

information over time through the following equations:

ft = σ(Wf · [ht−1, xt] + bf ) (7.7)

it = σ(Wi · [ht−1, xt] + bi) (7.8)

C̃t = tanh(WC · [ht−1, xt] + bC) (7.9)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (7.10)

ot = σ(Wo · [ht−1, xt] + bo) (7.11)

ht = ot ⊙ tanh(Ct) (7.12)

Here, ft , it , and ot are the forget gate, input gate, and output gate vectors at time t

respectively. Ct is the cell state, C̃t is the candidate cell state, and ht is the hidden state

at time t. W and b represent weight matrices and bias vectors, and σ denotes the sigmoid

function.

CRNN offers effective feature learning capabilities, robustness to input variability, and

the ability to capture complex temporal dynamics in sequential data, making it well-suited

for tasks such as audio chord recognition and speech recognition.
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7.7 Transfer Learning

Transfer learning has emerged as a potent strategy within the realm of deep learning,

offering a means to significantly enhance model performance. This technique involves

the utilization of pre-trained models, which have been trained on extensive datasets,

to extract generalized feature representations. These representations encapsulate high-

level abstractions and patterns, applicable across a broad spectrum of tasks. Integrating

transfer learning into deep learning workflows brings forth several compelling advantages,

rendering it an indispensable tool in modern applications of machine learning.

Figure 7.11. Intuitive examples about transfer learning [8].

A notable benefit of transfer learning lies in its capacity to tackle challenges associ-

ated with limited data availability and the arduous process of data labeling. Acquiring

labeled data for a specific task often proves to be a laborious and time-consuming en-

deavor. Transfer learning alleviates this burden by leveraging knowledge distilled from a

source task and transferring it to a target task. Through this mechanism, the pre-trained

model captures foundational features and patterns from the source domain, enabling it

to generalize effectively to the target domain, even when labeled data is scarce. This capa-

bility not only streamlines the data collection and annotation process but also conserves

valuable resources and time.

Moreover, the adoption of transfer learning expedites the model training process and

enhances convergence rates. Pre-trained models have already assimilated representations

of essential features and patterns from vast datasets. By initializing the model with

these learned representations, transfer learning facilitates a highly effective starting point

for training. This not only accelerates the training phase but also promotes quicker

convergence, resulting in improved overall efficiency.

This approach proves particularly advantageous in scenarios where the pre-trained

model and the target task exhibit shared underlying patterns or structures. Such align-

ment enables the pre-trained model to capture pertinent information, which can then be

transferred to the target task, leading to enhanced performance. The model’s adeptness

in extracting significant and discriminative features from the source domain facilitates

effective knowledge transfer, especially during fine-tuning or feature extraction stages.

Consequently, the model can adapt and specialize efficiently to the target task, leveraging

prior knowledge while accommodating task-specific intricacies.

By harnessing the potency of transfer learning, deep learning models can achieve
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heightened levels of performance, robustness, and efficiency, thereby solidifying its status

as an indispensable technique across a diverse array of applications.

7.8 Metrics

7.8.1 Accuracy

Accuracy is a common metric used to evaluate the performance of a classification

model. It measures the ratio of correctly predicted instances to the total instances in the

dataset [37]. In binary classification it is defined as:

Acc =
TP + TN

TP + TN + FP + FN
(7.13)

In multiclass classification it is defined as:

Acc =
correct classifications

all classifications
(7.14)

where:

TP - True Positives

TN - True Negatives

FP - False Positives

FN - False Negatives

It represents the proportion of correctly classified instances over the total instances.

A higher accuracy indicates better performance of the classification model.

7.8.2 Precision & Recall

Precision is a measure of the closeness of agreement between independent test results

obtained under stipulated conditions. It is often used in the context of measurement

methods and results to assess the repeatability and reproducibility of a standard mea-

surement method [37]. In domains such as pattern recognition, information retrieval,

object detection, and classification within machine learning, precision and recall stand

as crucial performance metrics applicable to data extracted from a collection, corpus, or

sample space.

Precision, often termed as positive predictive value, denotes the proportion of relevant

instances present among the retrieved instances 7.15.

Precision =
Relevant retrieved isntances

All retrieved instances
(7.15)

Recall, also referred to as sensitivity, represents the fraction of relevant instances that

were successfully retrieved 7.16.

Precision =
Relevant retrieved isntances

All relevant instances
(7.16)
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In classification tasks, the terms true positives, true negatives, false positives, and

false negatives, as defined in Type I and Type II errors, are used to evaluate the per-

formance of the classifier being tested against trusted external judgments. The terms

"positive" and "negative" relate to the classifier’s predictions (also known as expectations),

while "true" and "false" indicate whether those predictions align with the external judg-

ments (also known as observations).

So using those terms, precision and recall can be expressed as following (7.17, 7.18):

Precision =
TP

TP + FP
(7.17)

Recall =
TP

TP + FN
(7.18)

7.8.3 F1 score

In the realm of statistical analysis concerning binary classification and information

retrieval systems, the F-score or F-measure is a measure of predictive performance. De-

rived from the precision and recall of a test, as we mentioned earlier, precision denotes

the ratio of true positive results to the total number of samples predicted as positive,

encompassing both correct and incorrectly identified instances. Similarly, recall signifies

the ratio of true positive results to the total number of samples that ought to have been

identified as positive. Precision, synonymous with positive predictive value, and recall,

also known as sensitivity in diagnostic binary classification, are fundamental components

of this assessment.

The F1 score, serving as the harmonic mean of precision and recall, encapsulates both

aspects in a single metric, thus providing a balanced representation 7.19.

F1 = 2 ×
Precision × Recall

Precision + Recall
=

2 × TP

2 × TP + FP + FN
(7.19)

The F-score ranges between 0 and 1, where a value of 1.0 signifies perfect precision

and recall, while a value of 0 indicates the absence of either precision or recall.

7.8.4 Confusion Matrix

A confusion matrix presents a summary of predictions in a matrix format, detailing

the number of correct and incorrect predictions for each class. It aids in discerning which

classes the model confuses with others. The figure 7.12 illustrates a sample confusion

matrix for a binary classification problem.
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Figure 7.12. Confusion matrix..

TP denotes True Positive predictions. In a binary classification scenario, such as

identifying fraudulent transactions as "1", TP signifies the count of correctly classified

"1"s, representing the number of fraudulent transactions accurately identified. TN, or

True Negative predictions, indicate the count of correctly classified "0"s, representing non-

fraudulent transactions accurately identified. FP (False Positive) denotes the count of non-

fraudulent transactions misclassified as fraudulent, while FN (False Negative) represents

the count of fraudulent transactions misclassified as non-fraudulent.

7.8.5 MIREX Chord Estimation Metric

To assess the accuracy of an automatic transcription, it is compared to a ground

truth generated by human annotators. In the context of the Music Information Retrieval

Evaluation eXchange (MIREX), chord symbol recall (CSR) is commonly used to gauge the

alignment between predicted chords and the ground truth [38]:

CSR =
total duration of segments where annotation equals estimation

total duration of annotated segments
(7.20)

Historically, MIREX [38] has employed an approximate CSR approach, sampling both

ground truth and automatic annotations every 10 ms and calculating the ratio of correctly

annotated samples to the total number of samples. However, following the methodology

proposed by Christopher Harte (2010, §8.1.2), the ground truth and estimated annotations

can be viewed as continuous audio segmentations, allowing for a more precise CSR cal-

culation. This method considers the cumulative length of correctly overlapping segments,

providing enhanced accuracy and computational efficiency by reducing the number of

segment comparisons. Additionally, to account for variations in music length, the CSR

can be weighted by the duration of each song when computing an average across a corpus,

resulting in the weighted chord symbol recall (WCSR).

Chord Vocabularies

MIREX [38] introduces a set of single chord evaluation measures for MIREX, building

upon previous iterations and incorporating evaluation metrics from the literature to offer

a comprehensive assessment of transcription quality. Inspired by Pauwels and Peeters

(2013), they proposes using CSR with five distinct chord vocabulary mappings.
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Each vocabulary mapping categorizes full chord descriptions from either estimated or

ground-truth transcriptions into predefined classes:

1. Chord root note only.

2. Major and minor chords: {N, maj, min}.

3. Seventh chords: {N, maj, min, maj7, min7, 7}.

4. Major and minor chords with inversions: {N, maj, min, maj/3, min/b3, maj/5,

min/5}.

5. Seventh chords with inversions: {N, maj, min, maj7, min7, 7, maj/3, min/b3,

maj7/3, min7/b3, 7/3, maj/5, min/5, maj7/5, min7/5, 7/5, maj7/7, min7/b7,

7/b7}.

The mapping process involves examining the root note, bass note, and relative interval

structure of chord labels. A mapping is established if both root notes and bass notes

match, and the output label structure is the largest possible subset given the vocabulary.

For instance, G:7(#9) is mapped to G:maj because the interval set of G:maj ({1,3,5}) is a

subset of G:7(#9) ({1,3,5,b7,#9}). Conversely, if a chord cannot be represented by a certain

class, e.g., mapping D:aug or F:sus4(9) to {maj, min}, it is excluded from evaluation

if present in the ground truth, or considered a mismatch if present in the estimated

annotation.

MIREX’s vocabulary recommendations are informed by chord quality frequencies in

the McGill Billboard corpus 7.4, a representative sample of American popular music

spanning several decades. Notably, major and minor chords collectively account for the

majority of chord occurrences, with other qualities such as augmented and diminished

chords being rare. This distribution guides our selection of chord vocabulary to maximize

coverage while maintaining relevance to real-world musical contexts.

Table 7.4. Most frequent chord qualities in the McGill Billboard corpus.

Quality Freq. (%) Cum. Freq (%)

maj 52 52

min 13 65

7 10 75

min7 8 83

maj7 3 86

5 2 88

1 2 90

maj(9) 1 91

maj6 1 92

sus4 1 93

sus7 1 94

sus9 1 94

7(#9) 1 95

min9 1 96
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Chord Segmentation

In addition to CSR, chord transcription evaluation encompasses metrics focusing on

the segmentation of automatic transcriptions. We propose incorporating the directional

Hamming distance, a metric utilized in the chord transcription literature. The direc-

tional Hamming distance measures the segmentation quality by finding the maximally

overlapping segment for each annotated segment in both transcriptions and summing

the differences. This yields a measure of over- or under-segmentation, which can be

combined to derive an overall quality metric:

Q = 1 −
maximum of directional Hamming distances in either direction

total duration of song
(7.21)

7.9 Audio Signal Processing

Audio signal processing has traditionally relied on digital signal processing (DSP) tech-

niques to extract features from audio signals, such as phonemes for understanding hu-

man speech. This approach demanded substantial domain-specific expertise to fine-tune

systems for optimal performance. However, with the rise of Deep Learning, there’s been

a notable shift. Deep Learning has emerged as a powerful tool in handling audio data,

eliminating the need for traditional DSP techniques. Instead, deep learning models can

directly process audio data, bypassing the manual feature extraction step. Interestingly,

deep learning models commonly operate on image data rather than raw audio. This

transformation is achieved by generating Spectrograms from audio signals, which con-

vert audio data into visual representations. Spectrograms provide a way to visualize the

frequency content of audio signals over time, enabling deep learning models to effectively

process audio information using standard Convolutional Neural Network (CNN) archi-

tectures. Thus, while it might sound like science fiction, converting sound into images

through Spectrograms has become a commonplace and integral part of modern audio

signal processing workflows.

7.9.1 Time & Frequency Domains

In the time domain, signals are represented as amplitude variations over time. This

representation allows for the observation of signal dynamics and temporal patterns. Time

domain analysis involves techniques such as waveform visualization, signal detection,

and time-based analysis. By examining signals in the time domain, researchers can gain

insights into how signals evolve over time and identify temporal characteristics.

Conversely, the frequency domain representation portrays signals in terms of their

frequency components. By analyzing signals in the frequency domain, researchers can

identify the spectral composition of the signal, including individual frequencies, harmon-

ics, and overtones. Frequency domain analysis is particularly useful for tasks such as

spectral analysis, filtering, and frequency-based feature extraction.
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Figure 7.13. Time Domain vs Frequency Domain [9].

7.9.2 Spectogram

A spectrogram provides a visual representation of the frequency spectrum of a signal

over time. Often referred to as sonographs, voiceprints, or voicegrams when applied to

audio signals, spectrograms showcase how the signal’s frequencies evolve. When repre-

sented in a 3D plot, they may be termed as waterfall displays [39].

In various fields such as music, linguistics, sonar, radar, speech processing, seismol-

ogy, and ornithology, spectrograms find extensive utility. They enable phonetic identifi-

cation of spoken words and analysis of animal vocalizations.

Generated through methods like optical spectrometers, bank of band-pass filters,

Fourier transform, or wavelet transform (also known as scaleograms or scalograms), spec-

trograms offer diverse insights into signals. They are typically visualized as heat maps,

with intensity depicted through variations in color or brightness.
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Figure 7.14. The spectrogram of this violin recording showcases the harmonics occurring
at whole-number multiples of the fundamental frequency. [10].

7.9.3 Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform (STFT) is a method used for analyzing the frequency

content of non-stationary signals over time. It operates by dividing a time-domain signal

into frames, either separate or overlapping, through multiplication with a window func-

tion, followed by application of the Fast Fourier Transform (FFT) on each frame. This

dynamic approach allows for tracking frequency changes as the window moves through

the signal [10]. Consequently, STFT finds extensive application in domains needing con-

tinuous frequency monitoring, such as radar systems and voice-signal processing. In

the realm of deep learning, STFT is employed due to its ability to provide valuable time-

frequency representations of signals, which serve as essential inputs for neural networks

engaged in tasks like speech recognition, audio classification, and environmental sound

analysis.

The STFT can be expressed as 7.22:

XSTFT[k, n] =
1

N

N−1∑
m=0

x[m + nH] ·w[m] ·W m
k , (7.22)

where:

• x[m] is the input signal,

• w[m] is the window function,

• N is the length of the window,

• n is the time frame index,

• k is the frequency index,
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• H represents the hop length,

• Wk is the complex exponential term.

The overlap length between adjacent frames is N − H, and the overlap ratio between

consecutive frames is
N−H

N . At a specific time nH, the signal x[m] is multiplied by the

window function w[m]. Therefore, 7.22 represents the FFT operation of x[m + nH]w[m].
The STFT processor measures the frequency over time by moving the window function

w[m] along the signal x[m] according to the hop length and performing the FFT operation

on samples inside the window.

Figure 7.15. Short-time Fourier transform (STFT) overview [10].

7.9.4 Constant-Q Transform (CQT)

The Constant-Q Transform (CQT) and its closely related Variable-Q Transform (VQT)

are pivotal tools in mathematics and signal processing, particularly tailored for the fre-

quency domain analysis of data series, with a particular focus on musical representation.

Comparable to the Fourier transform and intricately linked to the complex Morlet wavelet

transform, the CQT/VQT unveils the frequency components of a signal, especially useful

in discerning musical notes.

The foundation of the CQT lies in a series of logarithmically spaced filters, indexed by

k, each with a bandwidth δfk, which is a multiple of the bandwidth of the previous filter:
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δfk = 2
1/n · δfk−1 =

(
2

1/n
)k
· δfmin, (7.23)

where δfk represents the bandwidth of the k-th filter, δfmin is the bandwidth of the

lowest filter, and n signifies the number of filters per octave.

In the calculation of the CQT, the short-time Fourier transform of a data series x[n]
for a frame shifted to sample m is computed using:

X [k, m] =
N−1∑
n=0

W [n −m]x[n]e−j2πkn/N , (7.24)

where X [k, m] denotes the short-time Fourier transform result, W is the windowing

function, x[n] represents the input data, j is the imaginary unit, k signifies the frequency

bin, and N denotes the number of samples.

To delve into the specifics of the transform, several key parameters are defined:

• Filter width, δfk.

• Quality factor, Q, calculated as:

Q =
fk
δfk

. (7.25)

This factor signifies the integer number of cycles processed at a center frequency fk,

thus delineating the time complexity of the transform.

• Window length for the k-th bin:

N[k] =
fs

δfk
=

fs
fk

Q, (7.26)

where fs represents the sampling frequency, fk stands for the center frequency of

the k-th bin, and Q is the quality factor. This equation signifies the number of

samples processed per cycle at frequency fk, with Q representing the number of

integer cycles processed at this central frequency.

After appropriate adjustments, the transformed output X [k] can be expressed as:

X [k] =
1

N[k]

N[k]−1∑
n=0

W [k, n]x[n]e−j2πQn/N[k], (7.27)

where X [k] denotes the transformed output, W represents the windowing function,

x[n] signifies the input data, j is the imaginary unit, k denotes the frequency bin, and

N[k] represents the window length for the k-th bin.
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Chapter 8

Data & Preprocessing

In this chapter the Dataset and the preprocessing methodologies followed are anal-

ysed.

8.1 Isophonics Dataset

The Isophonics dataset is a collection of audio recordings, annotations, and meta-

data designed for music information retrieval (MIR) research. It’s a valuable resource for

studying various aspects of music, including melody, harmony, rhythm, and structure.

For this study, The Isophonics dataset was used providing 180 songs by The Beatles.

This dataset’s chord annotations have been checked several times by Christopher Harte

[12] and the MIR community, and can be used with confidence. The Chord labels are

.lab files. Those are whitespace delimited text files with three columns, corresponding to,

onset time, offset time and chord label, respectively. An example can be seen in the table

8.1 below.

Start Time End Time Label

0.000000 2.612267 N

2.612267 11.459070 E

11.459070 12.921927 A

12.921927 17.443474 E

17.443474 20.410362 B

20.410362 21.908049 E

21.908049 23.370907 E:7/3

23.370907 24.856984 A

24.856984 26.343061 A:min/b3

26.343061 27.840748 E

Table 8.1. First 10 rows of the labels for "I saw her standing there", start and end time are
counted in seconds.

The format of the tracks found was stereo .mp3 at 44kHz sample rate so further

processing was necessary. To ensure labels are in sync with the audio, Audacity was

utilised.
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8.2 Pre-processing

In order to prepare the audio data for further analysis, some pre-processing steps

need to be completed. A high level view of the pre-processing procedure can be seen in

the figure 8.1 below.

Figure 8.1. Data Pre-processing flow chart.

8.2.1 Audio Conversion

The audio conversion procedure revolves around converting audio files from MP3 to

WAV format and from stereo to mono. WAV and MP3 formats differ in compression and

audio quality, with WAV uncompressed for high fidelity and MP3 lossy for smaller size.

Stereo utilizes two channels for spatial depth, while mono uses one, ideal for non-spatial

applications. WAV files, being uncompressed, retain all original audio data, preserving

high fidelity crucial for tasks like speech recognition and music generation. dditionally,

mono audio simplifies the input data by reducing the dimensionality, making it more

computationally efficient for processing and training deep neural networks.

Initially, a script was designed using Pydub Python module that gathers a list of MP3

files within a specified directory. Then, for each file, it employs conversion methods to

transform it into WAV format and to mono. This systematic approach ensures that the

audio data is prepared in a standardized format suitable for further analysis. An example

of a transformed file can be visualized as in Figure 8.2
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Figure 8.2. Waveform representation of track "I was her standing there".

8.2.2 Signal Processing - Fourier Transforms

Convolutional neural networks (CNNs) heavily rely on their convolutional layers, which

are fundamental components responsible for applying filters to input data or feature

maps, thus convoluting the output from preceding layers. These layers are tasked with

learning the filter weights, and in intricate CNN architectures characterized by numer-

ous layers and filters, the computational burden can escalate significantly. Integrating

Fourier transform into CNNs alters the calculation approach of these layers to element-

wise products in the frequency domain, effectively conserving computational resources.

While the network’s objective remains unchanged, leveraging Fourier transform aids in

optimizing computations, often achieved through the utilization of fast Fourier transform

techniques. In essence, the operation of convolutional layers can be analogized to Fourier

transform, wherein convolution in the temporal domain corresponds to multiplication in

the frequency domain. This analogy offers insight into convolutional operations, akin to

polynomial multiplication, facilitating a deeper understanding of CNN functionality.

In this part two Fourier transforms were tested, Short time Fourier Transform and

Logarithmic frequency spectrogram (constant-Q) and the Constant-Q chromagram.

Short time Fourier Transform

The standard linear Short-Time Fourier Transform (STFT) generated an excessive

number of frequency bands, resulting in an abundance of input features for the net-

work. Consequently, this led to a substantial increase in the overall parameter count of

the network and did not yield the desired results. In the example below 8.3 the visual-

ization of the Short time Fourier Transform of "I saw her standing" there is presented.

The parameter n_fft specifies the number of samples in each FFT window, affecting the

frequency resolution of the spectrogram. A larger n_fft results in finer frequency bins

but may require more computational resources. The hop_length parameter determines

the number of samples between successive frames, influencing the time resolution of the

spectrogram. A larger hop_length reduces temporal resolution but may improve compu-
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tational efficiency.

Figure 8.3. Short Time Fourier Transform of the track "I saw her standing there". The STFT
parameters used are n_fft=8192 and hop_length=4410.

Constant-Q Chromagram

The Chromagram, consisting of 12 input features, offers a detailed representation

of the musical notes present in the audio signal. However, its focus primarily revolves

around identifying the pitch classes or musical notes, rather than providing insights into

how these notes are distributed across the frequency spectrum. For instance, while the

chromagram may effectively distinguish between different pitches, such as G# and D, it

fails to capture their specific frequency locations within the audio spectrum. This lim-

itation makes it challenging to understand the spatial distribution of notes, hindering

the ability to analyze complex musical structures accurately. Moreover, detecting inver-

sions, where the notes of a chord are rearranged, becomes more difficult due to the lack

of frequency-specific information provided by the chromagram. In summary, while the

chromagram offers valuable information about musical notes, its inability to represent the

frequency distribution of t hese notes poses limitations when analyzing intricate musical

compositions.

In the example below 8.4 the visualization of the Short time Fourier Transform of "I

saw her standing" there is presented. The hop_length parameter in audio processing,

such as in the context of calculating the Pitch Class Profile (PCP) Chromagram, refers

to the number of samples between successive frames of the analysis. In other words, it

determines the spacing between the starting points of each frame as the analysis window

slides along the audio signal. A smaller hop_length results in more frames being analyzed

per unit time, providing higher temporal resolution but potentially leading to increased
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computational complexity. Conversely, a larger hop_length reduces the number of frames

analyzed per unit time, resulting in lower temporal resolution but potentially improving

computational efficiency.

Figure 8.4. Constant-Q Chromagram of the track "I saw her standing there". The parame-
ters used are hop_length=4410.

Constant Q Transform (CQT)

The Constant Q Transform (CQT) is preferred over other methods due to its unique

properties that make it well-suited for audio signal analysis. Unlike the traditional Short-

Time Fourier Transform (STFT), which employs a linearly spaced frequency scale, the CQT

utilizes a logarithmically spaced frequency scale. This logarithmic scaling better matches

the human auditory system’s perception of pitch, resulting in improved representation of

musical content, especially for signals with complex harmonic structures.

Additionally, the CQT offers a fixed frequency resolution across all octaves, ensuring

consistent representation of pitch classes regardless of the signal’s frequency content.

This property is particularly advantageous for tasks such as pitch estimation and music

transcription, where accurate representation of pitch is essential.

Below is a visualization of the Constant-Q transform 8.5 using a sample rate of 44100,

192 bins (24 bins per octave), and a hop length of 4096, I ensured thorough coverage of

the audio signal’s frequency spectrum, facilitating effective feature extraction. The nbins

parameter determines the number of frequency bins utilized in the spectrogram, impact-

ing the resolution of frequency representation. Similarly, bins per octave controls the

frequency resolution within each octave, influencing the trade-off between precision and

computational efficiency. Additionally, the hop length parameter dictates the temporal

resolution of the spectrogram by specifying the spacing between successive frames of

analysis.
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Figure 8.5. Constant-Q Fourier Transform of the track "I saw her standing there". The
parameters used are a sample rate of 44100, 192 bins (24 bins per octave), and a hop
length of 4096.

8.2.3 Label pre-processing

Time to Frequency domain

Before proceeding, it was essential to transform the labels from the time domain to the

frequency domain. This step was crucial for aligning the labels with the corresponding

frequency bins in the spectrogram representation. By converting the labels, we ensured

that they accurately reflected the spectral characteristics of the audio signal, facilitating

further analysis and interpretation in the frequency domain. This transformation allowed

for a seamless integration of label information with the Fourier transformed data.

The transformation from time to frequency domain can be seen in the tables 8.2 and

8.3 below. This result can be achieved by the following process, first, the duration of

the audio track is determined using the end time of the last label. Next, the duration

of each time step (or frame) is computed based on the total duration of the track and

the desired number of steps. Then, a series of timestamps are generated evenly spaced

over the duration of the track. For each timestamp, the corresponding label is assigned

based on the time-based labels. If a timestamp falls within the duration of a time label,

it is assigned the corresponding label. Otherwise, it advances to the next time label and

assigns its associated label to the next timestamp.
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Start End Chord

0 0.000000 N

1 2.612267 E

2 11.459070 A

3 12.921927 E

4 17.443474 B

...

Table 8.2. Labels on the time domain.

Time signature of Frame Chord

0.0 N

0.0116 N

0.0232 N

0.0348 N

...
2.7503 E

2.7619 E

2.7735 E

...

Table 8.3. Labels on Frequency domain with time signature of each frame.

Feature Extraction - Chord analysis

Feature extraction (Chord analysis) is a necessary step to achieve better results when

modelling. A script was implemented for extracting essential features from chord anno-

tations in music data, such as root notes, bass notes, chord triads, and chord exten-

sions(4th, 5th note). This feature extraction process is crucial for several reasons. First,

it provides a structured representation of chord annotations, making them easier to inter-

pret and analyze. By extracting root and bass notes, it identifies the foundational elements

of each chord, providing insights into harmonic structure and progression. Additionally,

categorizing chords into triads and extensions allows for a better understanding of their

tonal characteristics and complexity.

The chord is split into 5 features. The root and bass note are two of them. The

third feature is the triad note, in this project as Triad we will be referring to the third

note (major, minor, diminished, augmented, sus2, sus4). Fourth and Fifth feature are

extension 1 and extension 4, meaning 4th and 5th note accordingly.

At this point it is essential to mention that to simplify the embedding process later,

all Sharps were translated to their Flats, for example C# was translated to Db which

represents the same exact frequency.

Each Chord was analysed to its components (shown on table 8.4 below.
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Component Values Embedding

Root N, C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B 0 - 12

Bass N, C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B 0 - 12

Triad N, Major, Minor, Diminished, Augmented, Sus 2, Sus4 0 - 6

Extension 1 N, dim7, hdim7, maj7, maj6, min7, 7 0 - 6

Extension 2 N, 9 0 - 1

Table 8.4. Chord representation into components and Embedding values.

An Example of this Chord representation can be seen in the table below for a number

of Chords 8.5.

Chord Root Bass Triad Extension 1 Extension 2

N N N N N N

D D D maj N N

A A A maj N N

E E E maj N N

G G G maj N N

D/b7 D C maj N N

G/3 G B maj N N

G:min(9)/b3 G Bb min min7 9

D/5 D A maj N N

B B B maj N N

F#:min7 Gb Gb min min7 N

G#:(1) Ab Ab maj N N

Bb Bb Bb maj N N

D:min D D min N N

...
...

...
...

...
...

Table 8.5. Chord Representation Example.

8.2.4 Data Analysis

In this sections a simple data analysis will take place regarding the Chords and their

occurrence in the dataset.

Firstly, it would be helpful to see the overall Chord distribution in the dataset. A

visualization of this can be seen in the figure below 8.6.
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Figure 8.6. Chord distribution in the Dataset.

The frequent appearance of basic chords like A, G, D, and E major suggests a pref-

erence for straightforward harmony in the music dataset. These chords are common in

various genres, likely chosen for their simplicity and familiarity, especially on instruments

like the guitar. Their prevalence hints at recurring structural patterns or tonal schemes

within the music pieces, providing insights into the harmonic language and compositional

techniques used by composers or performers.

Now that we’ve finished analyzing the chords and understand their structure, we’re

ready to dive deeper into examining each component of the chords. The figure 8.7 gives

information about root note distribution in the dataset.
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Figure 8.7. Root note distribution in the Dataset.

The figure 8.8 presents the distribution of the bass note in the dataset.

Figure 8.8. Bass note distribution in the Dataset.

The distribution patterns of root and bass notes in the dataset reveal a noticeable

imbalance, which could potentially impact the performance of our deep learning mod-

els. To address this issue and ensure reliable chord recognition, we will implement data
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augmentation techniques, specifically pitch shifting. By applying pitch shifting to exist-

ing chord samples, we aim to augment the dataset, thereby creating a more balanced

representation across all chord types.

It is worth analysing the rest of the chord structure’s components 8.9. Here, we

observe a similar imbalance in the dataset, highlighting the infrequent usage of certain

triads such as sus4, aug, and sus2 across most music genres. Additionally, extension 1

and 2 notes exhibit low occurrence rates. This kind of distribution was expected from the

dataset due to the music style it represents.

Figure 8.9. Triad, Extension 1 and Extension 2 notes distribution in the Dataset.

8.2.5 Data Augmentation with Pitch Shifting

In the realm of audio signal processing, data augmentation plays a pivotal role in en-

hancing the robustness and generalization capability of machine learning models. Aug-

mentation techniques aim to diversify the training dataset by introducing variations in

the input data without altering its inherent semantic meaning. Among various augmen-

tation methods, pitch shifting stands out as a fundamental approach to manipulate audio

signals while preserving their structural characteristics. A simple and high level example

of data augmentation can be seen in the figure 8.10 below.
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Figure 8.10. Simple example of Data Augmentation.

Pitch shifting involves altering the frequency content of an audio signal, thereby mod-

ifying its perceived pitch without affecting its temporal duration. This technique is com-

monly used in music production and audio processing to achieve desired musical effects,

such as transposing melodies or harmonizing vocal lines. In the context of data augmen-

tation, pitch shifting offers a versatile tool for generating augmented samples with varying

pitch levels while retaining the original harmonic structure of the audio.

In this project, the process of pitch shifting was implemented to manipulate the fre-

quency content of audio signals. Specifically, pitch shifting was applied to alter the

perceived pitch of the audio by shifting its spectral components either upwards or down-

wards. The extent of pitch shifting was controlled within a range of up to 5 semitones,

allowing for variations in the pitch without compromising the overall harmonic structure

of the audio.

Pitch shifting within the range of up to 5 semitones enabled us to explore a wide spec-

trum of pitch variations while maintaining the integrity of the original audio samples. By

shifting the pitch in both upward and downward directions, we could generate augmented

samples with varying pitch levels, thereby enriching the diversity of the training dataset.

This augmentation strategy is particularly beneficial for training machine learning mod-

els to recognize and classify audio signals across a broader range of pitch variations,

enhancing their robustness and adaptability in real-world scenarios.

In addition to pitch shifting, an essential aspect of the data augmentation strategy

involved the incorporation of Gaussian noise into the pitch-shifted audio data. Gaus-
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sian noise, characterized by its random distribution following a Gaussian or normal dis-

tribution, introduces stochastic variability into the audio signals, mimicking real-world

environmental conditions and enhancing the model’s robustness to noise.

By including Gaussian noise in the pitch-shifted data, we aimed to simulate the inher-

ent variability and unpredictability present in real-world audio recordings. This augmen-

tation technique helps the machine learning models learn to distinguish between signal

and noise, improving their ability to generalize to noisy environments and unseen data

by reducing over-fitting.

8.2.6 Data Chunking

To prepare the data for utilization in two-dimensional Deep Learning models, we em-

ployed a technique known as data chunking. This process involved partitioning the input

data into smaller segments, each comprising 100 consecutive time steps, equivalent to

approximately 7 seconds of audio. This number was treated as a hyper parameter when

training the models and was resulted after fine tuning. The rationale behind this approach

stems from the utilization of a bidirectional Long Short-Term Memory (LSTM) layer in our

model architecture.

The use of small data chunks is imperative for enhancing the LSTM’s learning effi-

cacy and efficiency. By breaking down the input time series into manageable segments,

the bidirectional LSTM layer can better capture and understand temporal dependen-

cies within the data. This granularity allows the model to effectively learn patterns and

relationships across shorter time intervals, facilitating more accurate predictions and

improved performance.

In essence, data chunking plays a vital role in optimizing the training process of

two-dimensional Deep Learning models, particularly those employing bidirectional LSTM

layers. By providing the model with smaller, temporally coherent segments of data, we

enable it to learn more effectively and extract meaningful features from the input audio

signals, ultimately enhancing its performance in various audio processing tasks.
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Chapter 9

Experiments and Results

This chapter delves into the analysis, training, and comparison of various model

architectures for chord recognition tasks. Models such as 1D CNN and 2D CNN utilizing

LSTM and fully connected layers will be examined.

9.1 Model 1: Simple 1D Convolutional Neural Network

The initial exploration begins with the implementation of a simple 1D Convolutional

Neural Network (CNN). This approach serves as a baseline for evaluating model perfor-

mance metrics. Each chord is embedded individually without incorporating any chord

structural representations mentioned in the previous chapter, thereby disregarding music

theory and chord relations, which may limit the model’s predictive capabilities.

For this architecture, a Constant-Q Chromagram was used as a preprocessing step,

resulting in 12 features as discussed in the previous chapter 8. The architecture of the

model is outlined in the figure 9.1 and table 9.1 below.

Table 9.1. Basic 1D Convolutional Neural Network (CNN) model summary.

Layer (type) Output Shape Parameters #

conv1d (Conv1D) (None, 10, 32) 128

max_pooling1d (MaxPooling1D) (None, 5, 32) 0

flatten (Flatten) (None, 160) 0

dense (Dense) (None, 128) 20608

dense_1 (Dense) (None, 1552) 200208

Total params: 220944 (863.06 KB)

Trainable params: 220944 (863.06 KB)

Non-trainable params: 0 (0.00 Byte)

For the training process, the dataset underwent a split into two subsets: a training set

comprising 80% of the data and a validation set comprising 20% of the data. Notably, the

split was performed track-wise, ensuring that individual tracks remained intact rather
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than being divided into smaller segments. This approach maintains the integrity of the

musical structure within each track and provides a more accurate representation of real-

world scenarios during model training and evaluation.

Figure 9.1. Architecture of basic 1D Convolutional Neural Network (CNN)

The network comprises several layers, beginning with a 1D Convolutional layer with

32 filters and a kernel size of 3, employing the ReLU activation function. Subsequently,

a max-pooling layer with a pool size of 2 is applied to downsample the feature maps. The

flattened layer reshapes the output from the previous layer into a one-dimensional vector,

facilitating compatibility with fully connected layers. Following this, a densely connected

layer with 128 neurons and ReLU activation is utilized for feature extraction. Finally,

the output layer consists of 1552 (all unique chords in the dataset) units with a softmax

activation function.

For training the model, the batch size used is 32 with the learning rate set to 0.0001

using the Adam optimizer and the Relu as activation function. The loss function used is

the Sparse Categorical Cross-entropy. The results of the training and evaluation process

can be seen in the graph 9.2 below. The Accuracy falls around 42 % for both training and

evaluation set.
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Figure 9.2. Training results of basic 1D Convolutional Neural Network (CNN)

For comparison purposes this model was also trained and tested on identifying the

root note only. The simplicity of this architecture allows for a clear evaluation of the

model’s performance on the basic task of root note identification, serving as a foundational

benchmark against which more complex models can be compared. By analyzing the

results from this simpler model, we can better understand the potential improvements

and challenges when using more advanced architectures. The only difference in the

architecture is the output layer that now consist of only 13 neurons, corresponding to

the 13 possible root notes. The results of the training and evaluation process can be seen

in the figure 9.3 below. An accuracy of almost 60 % was achieved. The accuracy of this

model is higher compared to the previous one because the task of identifying the root note

is significantly simpler.

Figure 9.3. Training results of basic 1D Convolutional Neural Network (CNN) on the task
of identifying the root note.

In the confusion matrix shown in Figure 9.4, we can observe the distribution of pre-

dicted root notes versus the actual root notes. Despite being the simplest approach, this
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model is capable of accurately identifying the correct root note to a reasonable extent.

Figure 9.4. Confusion matrix of the basic 1D Convolutional Neural Network (CNN) on the
task of identifying the root note.

9.2 Model 2: 1D Convolutional Neural Network

Continuing with the exploration of model architectures, the next model to be examined

is a deeper 1D Convolutional Neural Network (CNN). This architecture aims to leverage the

hierarchical features learned by successive convolutional layers to capture more complex

patterns in the data.

Following experimentation with both Constant-Q Chromagram and Constant Q Trans-

form (CQT), it was observed that the CQT approach outperformed the Constant-Q Chro-

magram method. The CQT method, utilizing 192 features compared to the 12 features

used previously, resulted in superior performance metrics, as detailed in Chapter 8. So in

the section the Constant Q Transform will be utilised using a sample rate of 44100, 192

bins (24 bins per octave), and a hop length of 4096 (those parameters were fine tuned).

The model architecture consists of several convolutional layers followed by max-

pooling layers to downsample the feature maps and reduce the spatial dimensions.

Dropout layers are also incorporated to prevent overfitting by randomly dropping a frac-

tion of the input units during training. After the convolutional layers, the flattened output

is passed through fully connected dense layers, which further process the extracted fea-

tures before the final classification.

The problem has been subdivided into several distinct tasks, each aimed at identifying
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different aspects of the musical chord:

• Identifying the root note.

• Identifying the bass note.

• Identifying the triad.

• Identifying the first extension (4th note).

• Identifying the second extension (5th note).

To address these tasks efficiently, transfer learning techniques were employed. Ini-

tially, experimentation was conducted to determine the optimal "core" architecture, which

would serve as the foundation for all subsequent tasks. Following this, a multi-step ap-

proach was adopted that can be seen in the figure below 9.5. More information about

Transfer Learning, can be found in the previous chapter 7.

Figure 9.5. Flow chart of the transfer learning approach used in the Model 2.

The detailed "core" architecture of the model, after "freezing" the layers, is summarized

in Table 9.2.

Table 9.2. Model architecture summary for the "core" convolutional neural network (CNN),
after "freezing" the layers.

Layer (type) Output Shape Param #

conv1d (Conv1D) (None, 192, 16) 64

conv1d_1 (Conv1D) (None, 192, 16) 784

max_pooling1d (MaxPooling1D) (None, 96, 16) 0

dropout (Dropout) (None, 96, 16) 0

conv1d_2 (Conv1D) (None, 96, 32) 1568

conv1d_3 (Conv1D) (None, 96, 32) 3104

max_pooling1d_1 (MaxPooling1D) (None, 48, 32) 0

dropout_1 (Dropout) (None, 48, 32) 0

conv1d_4 (Conv1D) (None, 48, 64) 6208

conv1d_5 (Conv1D) (None, 48, 64) 12352

max_pooling1d_2 (MaxPooling1D) (None, 24, 64) 0

dropout_2 (Dropout) (None, 24, 64) 0

conv1d_6 (Conv1D) (None, 24, 128) 24704

conv1d_7 (Conv1D) (None, 24, 128) 49280

max_pooling1d_3 (MaxPooling1D) (None, 12, 128) 0

dropout_3 (Dropout) (None, 12, 128) 0

flatten (Flatten) (None, 1536) 0

Total params: 98064 (383.06 KB)

Trainable params: 0 (0.00 Byte)

Non-trainable params: 98064 (383.06 KB)
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9.2.1 Training, Evaluation and Test data split

The dataset, augmented and preprocessed as described in Chapter 3, was split into

three distinct sets to facilitate the testing and evaluation of the model. To maintain the

coherence of the data within each track, an algorithm was designed to split the dataset

on a track-by-track basis. Additionally, 20% of the data was allocated for evaluation,

while the remaining 80% was designated for training purposes. This approach ensured a

comprehensive evaluation while preserving the integrity of the dataset structure.

9.2.2 Model 2: Root classification task

The first task in the chord recognition pipeline focuses on identifying the root note of

each chord. This task involves classifying the root note of each chord into one of the 13

possible root notes (included "None") in the musical scale. To accomplish this, the "core"

architecture 9.2 was used and the model was further fine tuned on identifying the root

note. Two fully connected layers were added to the model 9.3 and the model was once

again trained and evaluated.

Table 9.3. Dense layers added to the "core" architecture for the task of identifying the root
note using the Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 13) 1677

Total params: 296477 (1.13 MB)

Trainable params: 296477 (1.13 MB)

Non-trainable params: 0 (0.00 Byte)

The figure below (9.6) provides a comprehensive overview of the finalized architecture

of Model 2, specifically designed for the task of root note identification.
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Figure 9.6. Architecture of the Model 2 in the task of identifying the root note.

For training the model, the batch size used is 32 with the learning rate set to 0.0001

using the Adam optimizer and the ReLU as activation function. The loss function used

is the Sparse Categorical Cross-entropy. The performance of the model in identifying

the root notes is depicted in the graph shown below (Figure 9.7). At Epoch 10, both the

training and evaluation accuracy stabilize at approximately 67%. However, beyond this

epoch, while the training accuracy marginally improves, the validation accuracy begins

to decline, suggesting overfitting. Therefore, the model’s state at Epoch 10 was chosen

for further analysis.
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Figure 9.7. Training results of Model 2 in the task of identifying the root note. Batch
size=32, Learning Rate=0.0001

The confusion matrix, as illustrated in Figure 9.8, offers a detailed insight into the

model’s performance by showcasing the distribution of predicted root notes against the

actual ones. Notably, compared to Model 1, we observed a noteworthy 7% enhancement

in accuracy on the evaluation set.
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Figure 9.8. Confusion matrix of the Model 2 on the task of identifying the root note.

9.2.3 Model 2: Bass note classification task

The second task in the chord recognition pipeline is dedicated to identifying the bass

note of each chord. Similar to the root identification task, this task involves classifying

the bass note of each chord into one of the 13 possible notes (included "None") within the

musical scale. To tackle this task, we leverage the "core" architecture outlined in Table

9.2, which served as the foundation for our Model 2. This architecture is further refined

and adapted to specialize in identifying bass notes.

In Table 9.4, we outline the additional dense layers integrated into the core architec-

ture to tailor it for bass note identification.

Table 9.4. Dense layers added to the "core" architecture for the task of identifying the bass
note using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 13) 1677

Total params: 296477 (1.13 MB)

Trainable params: 198413 (775.05 KB)

Non-trainable params: 98064 (383.06 KB)

During training, the model is fine-tuned using a batch size of 32, a learning rate of

0.0001, the Adam optimizer, and the ReLU activation function. The model was trained

for 10 epochs for the reasons discussed in the previous section. The loss function em-
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ployed is the Sparse Categorical Cross-entropy. The performance metrics of Model 2 in

identifying bass notes are visualized in Figure 9.9. The results are similar to the root note

classification task due to the similarity of those two tasks.

Figure 9.9. Training results of Model 2 for bass note identification. Batch size=32, Learn-
ing Rate=0.0001

The confusion matrix depicted in Figure 9.10 provides a detailed breakdown of the

model’s predictions against the ground truth for bass note identification. This visual-

ization offers valuable insights into the model’s performance and its ability to accurately

classify bass notes.
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Figure 9.10. Confusion matrix of Model 2 for bass note identification.

9.2.4 Model 2: Triad classification Task

The third task in the chord recognition pipeline focuses on identifying the triad of each

chord. This task entails classifying the triad note of each chord into one of the 7 possible

triads (including "None") in the musical scale.

To accomplish this task, we leverage the "core" architecture from Model 2. We extend

this architecture by adding two additional fully connected layers tailored for triad identi-

fication. We, then, fine tune the model on the task of classifying the triad note. The extra

Dense layers added can be seen in the table 9.5 below.

Table 9.5. Dense layers added to the "core" architecture for the task of identifying the triad
using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 7) 903

Total params: 295703 (1.13 MB)

Trainable params: 197639 (772.03 KB)

Non-trainable params: 98064 (383.06 KB)

Similar to previous tasks, the model is fine-tuned using a batch size of 32, a learning

rate of 0.0001, the Adam optimizer, and the ReLU activation function. The model was

trained for 10 epochs for the reasons discussed in the previous section. The loss function

employed is the Sparse Categorical Cross-entropy. The performance metrics of Model 2

Diploma Thesis 85



Chapter 9. Experiments and Results

in identifying bass notes are visualized in Figure 9.11. The model reached 80% training

and 76% evaluation accuracy.

Figure 9.11. Training results of Model 2 for triad note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix depicted in Figure 9.12 provides a detailed breakdown of the

model’s predictions against the ground truth for triad note identification. This visual-

ization offers valuable insights into the model’s performance and its ability to accurately

classify triad notes. It is evident that the model classifies most of the chords as major

chords. This bias towards major chords could be due to the imbalanced representation of

major chords in the dataset. Consequently, the model’s performance in accurately identi-

fying other types of chords, such as minor or diminished chords, might be compromised.

Therefore, while the model demonstrates proficiency in identifying major chords, its ef-

fectiveness in classifying other chord types is limited. This highlights the need for further

investigation and potential model refinement to achieve more balanced and accurate triad

note identification.
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Figure 9.12. Confusion matrix of Model 2 for triad note identification.

9.2.5 Model 2: Extension 1 classification Task

The fourth task in the chord recognition pipeline focuses on identifying the extension

1 of each chord. Extension 1 refers to the first additional note beyond the triad in a chord.

This task involves classifying the extension 1 note of each chord into one of the 6 possible

extension 1 notes (including "None") in the musical scale.

To tackle this task, we build upon the "core" architecture utilized in Model 2. We ex-

tend this architecture by adding two additional fully connected layers specifically designed

for extension 1 identification. The additional Dense layers integrated into the model are

outlined in Table 9.6 below.

Table 9.6. Dense layers added to the "core" architecture for the task of identifying extension
1 using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 7) 774

Total params: 295703 (1.13 MB)

Trainable params: 197639 (772.03 KB)

Non-trainable params: 98064 (383.06 KB)

Similar to the previous tasks, the model is fine-tuned using a batch size of 32, a

learning rate of 0.0001, the Adam optimizer, and the ReLU activation function. The

training process spans 10 epochs to balance training time and model convergence. The
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Sparse Categorical Cross-entropy is employed as the loss function.

The performance metrics of Model 2 in identifying extension 1 notes are visually repre-

sented in Figure 9.13. The model achieves a training accuracy of 85% and an evaluation

accuracy of 74%.

Figure 9.13. Training results of Model 2 for extension 1 note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix depicted in Figure 9.14 provides a detailed breakdown of the

model’s predictions compared to the ground truth for extension 1 note identification.

This visualization offers valuable insights into the model’s performance and its ability to

accurately classify extension 1 notes. Despite the relatively high accuracy, it is evident

that the model fails completely on identifying the 4th note (extension 1). The model has

predicted "None" in the majority of its predictions.
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Figure 9.14. Confusion matrix of Model 2 for extension 1 note identification.

9.2.6 Model 2: Extension 2 classification Task

The fifth task in the chord recognition pipeline focuses on identifying the extension

2 of each chord. Extension 2 refers to the second additional note beyond the triad in a

chord. This task basically involves classifying the chord as major 9 chord or not.

To address this task, we expand upon the "core" architecture utilized in Model 2. We

enhance this architecture by integrating two additional fully connected layers specifically

tailored for extension 2 identification. The additional Dense layers incorporated into the

model are detailed in Table 9.7 below.

Table 9.7. Dense layers added to the "core" architecture for the task of identifying extension
2 using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 2) 258

Total params: 295381 (1.13 MB)

Trainable params: 197317 (771.72 KB)

Non-trainable params: 98064 (383.06 KB)

Following the methodology employed in previous tasks, the model is fine-tuned using

a batch size of 32, a learning rate of 0.0001, the Adam optimizer, and the ReLU activation

function. The training process extends over 10 epochs to balance training time and model

convergence, with the Sparse Categorical Cross-entropy serving as the loss function.

The performance metrics of Model 2 in identifying extension 2 notes are visually de-

picted in Figure 9.15. The model achieves a training accuracy of 98% and an evaluation

accuracy of 98%.
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Figure 9.15. Training results of Model 2 for extension 2 note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix illustrated in Figure 9.16 presents a comprehensive overview of

the model’s predictions compared to the ground truth for extension 2 note identification.

This visualization provides valuable insights into the model’s performance and its ability

to accurately classify extension 2 note. Despite the very high accuracy, it is evident that

the model fails to classify the 5th note correctly. The model has only predicted as "None"

all the samples. The high imbalance of the dataset for the extension 2 has lead to the

misleading high Accuracy scores.

90 Diploma Thesis



9.3 Model 3: 2D Convolutional Neural Network with BiLSTM

Figure 9.16. Confusion matrix of Model 2 for extension 2 note identification.

9.3 Model 3: 2D Convolutional Neural Network with BiLSTM

As described in 7, convolutional networks excel in handling data with a grid-like

topology that possesses spatial relationships. Spectrograms, in the previous model, were

interpreted as time series of vectors with 192 features. In this model, spectrograms will be

treated as images, leveraging convolutional layers before the recurrent layer to facilitate

feature extraction.

To achieve that, as mentioned in 8, ’chunking’ will be used as a preprocessing step

to prepare the data for utilization in two-dimensional deep learning models. This process

involves partitioning the input data into smaller segments, each comprising 100 con-

secutive time steps, equivalent to approximately 7 seconds of audio. This number was

treated as a hyperparameter when training the models and was determined after fine-

tuning. The rationale behind this approach stems from the utilization of a bidirectional

Long Short-Term Memory (LSTM) layer in our model architecture.

The use of small data chunks is imperative for enhancing the LSTM’s learning effi-

cacy and efficiency. By breaking down the input time series into manageable segments,

the bidirectional LSTM layer can better capture and understand temporal dependen-

cies within the data. This granularity allows the model to effectively learn patterns and

relationships across shorter time intervals, facilitating more accurate predictions and

improved performance.

By treating each chunk as an individual image, the convolutional layers can extract

meaningful features within these smaller regions of time within the track. This chunking
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process not only simplifies the computational complexity but also ensures that the input

data is standardized, which is crucial for consistent training performance. Once the

features are extracted from these chunks using the convolutional layers, the BiLSTM

layer will take these processed features and analyze the sequential dependencies across

chunks, providing a comprehensive understanding of the musical piece over time.

The convolutional layers in this model are designed to map the spectrogram data into

an output vector. This vector is subsequently used as the input for the bidirectional Long

Short-Term Memory (BiLSTM) layer. This architecture enables the BiLSTM to effectively

capture and interpret contextual information over time.

Following the extensive experimentation mentioned in 9.2, it was determined that

the Constant-Q Transform (CQT) method outperformed the Constant-Q Chromagram ap-

proach. By utilizing 192 features as opposed to the 12 features employed in the Constant-

Q Chromagram, the CQT method achieved superior performance metrics. Therefore, in

this chapter, we will utilize the Constant-Q Transform with a sample rate of 44100 Hz,

192 bins (24 bins per octave), and a hop length of 4096, parameters that were fine-tuned

for optimal performance. The chunk size was tuned and set to 100 meaning each chunk

covers about 7 seconds of audio.

The architecture of Model 3 consists of several convolutional layers followed by max-

pooling layers, which downsample the feature maps and reduce their spatial dimensions.

To prevent overfitting, dropout layers are incorporated, which randomly drop a fraction of

the input units during training. The output from the convolutional layers is then flattened

and passed through BiLSTM layer, which further process the extracted features before

the final passing to a fully connected dense layer for classification.

Like the previous section, the problem has been subdivided into several distinct tasks,

each aimed at identifying different aspects of the musical chord:

• Identifying the root note.

• Identifying the bass note.

• Identifying the triad.

• Identifying the first extension (4th note).

• Identifying the second extension (5th note).

To address these tasks efficiently, transfer learning techniques were employed. Ini-

tially, we determined the optimal "core" architecture, for each task this time, that would

serve as the foundation. Following this, a multi-step approach was adopted, as illustrated

in Figure 9.17. This approach facilitated the sequential transfer of learned features from

one task to another, thereby enhancing the model’s performance across all tasks. More

details on transfer learning can be found in Chapter 7.
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Figure 9.17. Flow chart of the transfer learning approach used in the Model 3.

9.3.1 Training, Evaluation and Test data split

The dataset, augmented and pre-processed as described in Chapter 3, was split into

three distinct sets to facilitate the testing and evaluation of the model. To maintain

the coherence of the data within each track, an algorithm was designed to split the

dataset on a track-by-track basis. Notably, tracks from the albums CD1, CD2, Help,

and Please Please Me were reserved exclusively for final testing. Additionally, 15% of the

remaining data was allocated for evaluation, while the remaining 85% was designated for

training purposes. This approach ensured a comprehensive evaluation while preserving

the integrity of the dataset structure.

9.3.2 Model 3: Root classification task

As mentioned in 9.2.2, the first task in the chord recognition pipeline focuses on

identifying the root note of each chord. This task involves classifying the root note of each

chord into one of the 13 possible root notes (included "None") in the musical scale. To

accomplish this, several architectures were tried but the one yielding the best results can

be seen in the table below ??

Table 9.8. Model Architecture for the task of identifying the root note using the Model 3.

Layer (type) Output Shape

conv2d (Conv2D) (None, 100, 192, 32)

conv2d_1 (Conv2D) (None, 100, 192, 32)

conv2d_2 (Conv2D) (None, 100, 192, 32)

conv2d_3 (Conv2D) (None, 100, 192, 32)

batch_normalization (BatchNormalization) (None, 100, 192, 32)

max_pooling2d (MaxPooling2D) (None, 100, 96, 32)

dropout (Dropout) (None, 100, 96, 32)

conv2d_4 (Conv2D) (None, 100, 96, 64)

conv2d_5 (Conv2D) (None, 100, 96, 64)

batch_normalization_1 (BatchNormalization) (None, 100, 96, 64)

max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64)

dropout_1 (Dropout) (None, 100, 48, 64)

conv2d_6 (Conv2D) (None, 100, 48, 128)

conv2d_7 (Conv2D) (None, 100, 48, 64)

batch_normalization_2 (BatchNormalization) (None, 100, 48, 64)

max_pooling2d_2 (MaxPooling2D) (None, 100, 12, 64)

dropout_2 (Dropout) (None, 100, 12, 64)

time_distributed (TimeDistributed) (None, 100, 768)

bidirectional (Bidirectional) (None, 100, 256)

time_distributed_1 (TimeDistributed) (None, 100, 13)
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Training the Model on Root Task

For training the model, it was compiled using the Adam optimizer with the following

hyperparameters, learning rate of 0.0001, �1 set to 0.9, �2 set to 0.99, and epsilon (ϸ) set

to 1 × 10
−8

. The loss function employed for training was categorical crossentropy, and

the model’s performance was evaluated using accuracy as the metric and the batch size

used is 16. The parameter �1 represents the exponential decay rate for the first moment

estimates, which essentially determines how quickly the optimizer forgets past gradients

and focuses on the current gradients. Typically, �1 is set close to 1.0. Similarly, �2

represents the exponential decay rate for the second-moment estimates, indicating how

quickly the optimizer adjusts its learning rate based on the variance of the gradients.

Like �1, �2 is also commonly set close to 1.0. Finally, ϸ is a small constant added

to the denominator to prevent division by zero, ensuring numerical stability during the

computation of adaptive learning rates. The loss function used is the Categorical Cross-

entropy.

The performance of the model in classifying the root notes is shown in the graph shown

below (Figure 9.18). The model was trained for 40 Epochs after experimenting with other

options. Both the training and the evaluation accuracy stabilize at approximately 93%

and 86% accordingly, a much better result in comparison to Model 2.

Figure 9.18. Training results of Model 3 in the task of identifying the root note. Batch
size=16, Learning Rate=0.0001, chunk size=100
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The confusion matrix, as illustrated in Figure 9.19, offers a detailed insight into the

model’s performance in the evalutation set by showcasing the distribution of predicted

root notes against the actual ones. Notably, compared to Model 2, we observed an exces-

sive 19% enhancement in accuracy on the evaluation set.

Figure 9.19. Confusion matrix of the Model 3 on the task of identifying the root note on the
evaluation set.

A classification report table 9.9 provides a detailed classification report for a multiclass

classification task, evaluating the performance of a model across various classes (N, C,

Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B) based on precision, recall, F1-score, and support

metrics.

The table reveals that the model achieves high precision, recall, and F1-score across

most classes, indicating its effectiveness in correctly identifying musical chord classes.

Overall, the model demonstrates strong performance, with an accuracy of 0.86, indicating

that it correctly predicts the majority of classes with high confidence. These metrics

provide valuable insights into the model’s performance and can guide further optimization

efforts.
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Precision Recall F1-score Support

N 0.93 0.89 0.91 32908

C 0.87 0.88 0.87 40184

Db 0.80 0.83 0.82 34551

D 0.88 0.87 0.87 39299

Eb 0.85 0.84 0.84 39498

E 0.85 0.87 0.86 41678

F 0.86 0.88 0.87 41743

Gb 0.82 0.85 0.83 36365

G 0.89 0.88 0.88 39190

Ab 0.85 0.79 0.82 42029

A 0.86 0.85 0.86 43367

Bb 0.84 0.86 0.85 33111

B 0.86 0.85 0.85 40777

Accuracy 0.86 504700

Macro 0.86 0.86 0.86 504700

Weighted avg 0.86 0.86 0.86 504700

Table 9.9. Classification Report for Model 3 on the task of identifying the root note on the
evaluation set.

The Model’s performance on the test set mentioned in 9.3.1 can be seen on the Figure

9.20 below.

Figure 9.20. Confusion matrix of the Model 3 on the task of identifying the root note on the
test set.

The table 9.10 below illustrates the classification report for Model 3, tasked with
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identifying the root note on the evaluation set. It showcases precision, recall, F1-score,

and support metrics for each class, along with overall accuracy, macro-averaged metrics,

and weighted-averaged metrics. Overall, the model has about 83% Accuracy indicating a

relatively high performance on the test set, noting that the test set only consists of 108600

samples in comparison to 504700 in the evaluaton set.

Precision Recall F1-score Support

N 0.91 0.86 0.88 8915

C 0.77 0.72 0.74 10084

Db 0.80 0.66 0.72 1845

D 0.81 0.86 0.84 14927

Eb 0.74 0.82 0.78 1890

E 0.86 0.89 0.87 14793

F 0.74 0.71 0.72 6063

Gb 0.87 0.93 0.90 4484

G 0.79 0.79 0.79 15199

Ab 0.88 0.87 0.87 1356

A 0.84 0.86 0.85 19653

Bb 0.88 0.89 0.89 3408

B 0.90 0.79 0.84 5983

Accuracy 0.83 108600

Macro 0.83 0.82 0.82 108600

Weighted avg 0.83 0.83 0.83 108600

Table 9.10. Classification Report for Model 3 on the task of identifying the root note on the
test set.

As previously noted and clearly illustrated in Tables 9.9 and 9.10, the dataset is imbal-

anced, with certain root notes occurring less frequently than others. This imbalance can

lead to a biased model that performs well on more frequent classes while underperforming

on less frequent ones. To address this issue, we experimented with setting weights for

each note based on its frequency of occurrence. By assigning higher weights to less fre-

quent notes and lower weights to more frequent ones, we aimed to balance the influence

of each class during the training process, thereby mitigating any biases introduced by the

uneven distribution of the data.

The weighted approach intended to promote a more equitable learning process, ensur-

ing that the model gives appropriate attention to the underrepresented classes. However,

as shown in Figure 9.21 , the introduction of weights did not yield the expected improve-

ment in model performance. Contrary to our objectives, it resulted in a slight decrease

of approximately 1% - 2% in accuracy for both the training and evaluation sets. This

outcome suggests that while the weighted approach addresses class imbalance, it does

not contribute in the better outcome of the task. That might be cause we have already

addressed major imbalances by data augmentation, detailed in 8.
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Figure 9.21. Training results of Model 3 in the task of identifying the root note in comparison
with same model but also using weights. Batch size=16, Learning Rate=0.0001, chunk
size=100

With this architecture in place, we will now proceed to the second task: classifying

the bass note.

9.3.3 Model 3: Bass Classification Task

With the task of the root note classification completed, we now shift our focus to the

bass note classification task. This task bears a strong resemblance to the root classifi-

cation task in terms of its fundamental objective: identifying one note from the set of all

possible notes, including the "None" category.

The architecture and approach for the bass classification task will largely build upon

the architecture used in the previous root classification task, employing transfer learning

techniques as detailed in 8. The decision on which parts of the model to reuse for transfer

learning was derived from extensive experimentation, involving various combinations to

identify the optimal configuration. The architecture that yielded the best results involved

retaining and freezing the first 11 layers, which primarily consist of convolutional layers.

To this foundation, we added 2 additional convolutional layers, a bidirectional LSTM

(BiLSTM) layer, and a final fully connected dense layer. The detailed architecture is

depicted in the following Tables 9.11 and 9.12 below.
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Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 100, 192, 32) 320

conv2d_1 (Conv2D) (None, 100, 192, 32) 9248

conv2d_2 (Conv2D) (None, 100, 192, 32) 9248

conv2d_3 (Conv2D) (None, 100, 192, 32) 9248

batch_normalization (BatchNormalization) (None, 100, 192, 32) 128

max_pooling2d (MaxPooling2D) (None, 100, 96, 32) 0

dropout (Dropout) (None, 100, 96, 32) 0

conv2d_4 (Conv2D) (None, 100, 96, 64) 18496

conv2d_5 (Conv2D) (None, 100, 96, 64) 36928

batch_normalization_1 (BatchNormalization) (None, 100, 96, 64) 256

max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64) 0

Total params 83872

Trainable params 0

Non-trainable params 83872

Table 9.11. Detailed Architecture used as ’core’ for Transfer Learning for the Bass Classi-
fication Task. Those layers are frozen meaning the paramteters will not be trained again.

By freezing those layers, meaning those layers will not be trained again when fine-

tuning for the bass classification task, we aim to retain the learned features from the root

classification task, which are likely to be beneficial for the bass classification as well due

to the similarity of those two tasks. This approach helps in reducing the computational

cost and time required for training, as well as prevents overfitting by avoiding the need

to learn new representations for the shared features. By incorporating transfer learning

in this manner, we leverage the knowledge gained from the previous task and adapt it

to the new task, potentially improving the overall performance of the model. The final

Architecture of the model is shown in the Table 9.12 below.
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Layer (type) Output Shape Param #

conv2d (Conv2D) (None, 100, 192, 32) 320

conv2d_1 (Conv2D) (None, 100, 192, 32) 9248

conv2d_2 (Conv2D) (None, 100, 192, 32) 9248

conv2d_3 (Conv2D) (None, 100, 192, 32) 9248

batch_normalization (BatchNormalization) (None, 100, 192, 32) 128

max_pooling2d (MaxPooling2D) (None, 100, 96, 32) 0

dropout (Dropout) (None, 100, 96, 32) 0

conv2d_4 (Conv2D) (None, 100, 96, 64) 18496

conv2d_5 (Conv2D) (None, 100, 96, 64) 36928

batch_normalization_1 (BatchNormalization) (None, 100, 96, 64) 256

max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64) 0

bass_conv (Conv2D) (None, 100, 48, 64) 36928

bass_conv2 (Conv2D) (None, 100, 48, 128) 73856

BatchNorm_bass (BatchNormalization) (None, 100, 48, 128) 512

MaxPooling_bass (MaxPooling2D) (None, 100, 16, 128) 0

Dropout_bass (Dropout) (None, 100, 16, 128) 0

Flatten_bass (TimeDistributed) (None, 100, 2048) 0

LSTM_layer (Bidirectional) (None, 100, 256) 2229248

out (TimeDistributed) (None, 100, 13) 3341

Total params 2427757

Trainable params 2343629

Non-trainable params 84128

Table 9.12. Detailed Architecture for the Bass Classification Task including all layers
(frozen and added).

Training the Model on Bass Task

For training the model, as mentioned before, it was compiled using the Adam optimizer

with the following hyperparameters, learning rate of 0.0001, �1 set to 0.9, �2 set to 0.99,

and epsilon (ϸ) set to 1 × 10
−8

. The loss function employed for training was categorical

crossentropy, and the model’s performance was evaluated using accuracy as the metric

and the batch size used is 16. The performance of the model in classifying the root notes

is shown in the graph shown below (Figure 9.22). The model was trained for 30 Epochs

and the model at Epoch 20 found to be the best one due to the validation loss increase

and the decrease of training loss after that Epoch indicating overfitting. Both the training

and the evaluation accuracy stabilize at approximately 95% and 86% accordingly, a much

better result in comparison to Model 2.
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Figure 9.22. Training results of Model 3 in the task of identifying the bass note. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix, depicted in Figure 9.23, provides a detailed overview of the

model’s performance on the evaluation set, showcasing the distribution of predicted bass

notes compared to the actual ones. Impressively, in contrast to Model 2, we observed a

substantial 19% improvement in accuracy on the evaluation set.
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Figure 9.23. Confusion matrix of Model 3 for identifying the bass note on the evaluation
set.

A classification report table (Table 9.13) presents a comprehensive breakdown of the

model’s performance in a multiclass classification task, evaluating its accuracy across

various bass note classes (e.g., A, Bb, C, Db, D, etc.) based on precision, recall, F1-score,

and support metrics.

The table reveals that the model achieves high precision, recall, and F1-score across

most bass note classes, indicating its effectiveness in correctly identifying them. Overall,

the model demonstrates strong performance, with an accuracy of 0.86, indicating that it

correctly predicts the majority of bass note classes with high confidence. These metrics

offer valuable insights into the model’s effectiveness and can inform further optimization

efforts.
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Precision Recall F1-score Support

N 0.91 0.89 0.90 32908

C 0.86 0.88 0.87 39350

Db 0.80 0.83 0.81 34524

D 0.89 0.87 0.88 40639

Eb 0.85 0.84 0.84 38890

E 0.85 0.84 0.85 42824

F 0.88 0.86 0.87 41155

Gb 0.84 0.83 0.84 37014

G 0.87 0.89 0.88 39206

Ab 0.82 0.81 0.82 40635

A 0.87 0.85 0.86 42679

Bb 0.84 0.84 0.84 34581

B 0.84 0.87 0.85 40295

Accuracy 0.86 504700

Macro 0.86 0.86 0.86 504700

Weighted avg 0.86 0.86 0.86 504700

Table 9.13. Classification Report for Model 3 on the task of identifying the bass note on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated in

Figure 9.36 below.

Figure 9.24. Confusion matrix of Model 3 for identifying bass notes on the test set.

Table 9.14 presents the classification report for Model 3, tasked with identifying bass

notes on the evaluation set. It showcases precision, recall, F1-score, and support met-
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rics for each bass note class, along with overall accuracy, macro-averaged metrics, and

weighted-averaged metrics. Overall, the model achieves an accuracy of approximately

81%, indicating a relatively high performance on the test set, considering its size of

108,600 samples compared to the evaluation set’s 504,700 samples.

Precision Recall F1-score Support

N 0.82 0.91 0.86 8915

C 0.78 0.72 0.75 9451

Db 0.76 0.59 0.67 1893

D 0.77 0.82 0.79 14578

Eb 0.81 0.80 0.80 1907

E 0.86 0.86 0.86 14679

F 0.71 0.71 0.71 5970

Gb 0.86 0.86 0.86 4894

G 0.75 0.81 0.78 14260

Ab 0.84 0.77 0.80 1535

A 0.86 0.85 0.85 19820

Bb 0.90 0.83 0.86 3623

B 0.85 0.69 0.76 7075

Accuracy 0.81 108600

Macro 0.81 0.79 0.80 108600

Weighted avg 0.81 0.81 0.81 108600

Table 9.14. Classification Report for Model 3 on the task of identifying the bass note on
the test set.

Now we will move forward to the task of identifying the triad note.

9.3.4 Model 3: Triad Classification Task

With the successful completion of the bass note classification task, our attention now

turns to the triad classification task. Similar to the previous classification tasks, the

primary objective here remains the identification of a single triad from the comprehensive

set of possible triads, including the "None" category. Those, as mentioned previously, are

N, maj, min, dim, aug, sus2 and sus4.

For the triad classification task, we build upon the architecture and methodology

established in the previous classification tasks, utilizing transfer learning techniques

outlined in prior work. Extensive experimentation guided our decision-making process,

where we explored various configurations to determine the most effective approach. Ul-

timately, the optimal architecture involved retaining and freezing the initial 11 layers,

as in the previous task, predominantly comprising convolutional layers. To this frame-

work, we introduced two additional convolutional layers, dropout and flattend layers, a

bidirectional LSTM (BiLSTM) layer, and a final fully connected dense layer.

The detailed architecture can be seen in the Tables 9.15 and 9.16 below.
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Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

Total params 83872

Trainable params 0 (0.00 Byte)

Non-trainable params 83872 (327.62 KB)

Table 9.15. Detailed Architecture used as ’core’ for Transfer Learning for the Triad Classi-
fication Task. Those layers are frozen meaning the parameters will not be trained again.

Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

triad_conv (None, 100, 48, 64) 36928

triad_conv2 (None, 100, 48, 128) 73856

BatchNorm_triad (None, 100, 48, 128) 512

MaxPooling_triad (None, 100, 16, 128) 0

Dropout_triad (None, 100, 16, 128) 0

Flatten_Triad (None, 100, 2048) 0

LSTM_layer (Bidirectional) (None, 100, 256) 2229248

out (TimeDistributed) (None, 100, 7) 1799

Total params 2426215

Trainable params 2342087 (8.93 MB)

Non-trainable params 84128 (328.62 KB)

Table 9.16. Detailed Architecture for the Triad Classification Task including all layers
(frozen and added).

As mentioned before, by preserving the parameters of these layers, they are effectively

excluded from further training during the adaptation process for the triad classification

task. This strategy aims to preserve the learned patterns from the root classification

task, which are likely to be advantageous for the triad classification task due to the
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intrinsic similarities between the two tasks. This methodology not only streamlines the

computational burden and training time but also guards against overfitting by obviating

the necessity to relearn features already captured in the shared layers. Employing transfer

learning in this manner enables us to capitalize on the insights gleaned from prior tasks

and tailor them to the specific demands of the new task, potentially enhancing the overall

efficacy of the model. The finalized model architecture is detailed in Table 9.16.

Training the Model on Triad Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,

�1 set to 0.9, �2 set to 0.99, and epsilon (ϸ) set to 1×10
−8

. The loss function employed for

training was categorical crossentropy, and we evaluated the model’s performance using

accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.25.

The model underwent training for 30 epochs, where it demonstrated significant improve-

ment in accuracy over time. Both the training and validation accuracy stabilized at

approximately 99% and 96%, respectively, showcasing notable enhancement compared

to previous models.

Figure 9.25. Training results of Model 3 in the task of identifying the triad note. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix in Figure 9.26 provides a detailed overview of the model’s per-
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formance on the evaluation set, illustrating the distribution of predicted triad notes com-

pared to the actual ones. Notably, we observed a substantial improvement in accuracy

on the evaluation set, achieving a significant advancement over previous models.

Figure 9.26. Confusion matrix of Model 3 for identifying the triad note on the evaluation
set.

A classification report table (Table 9.17) can be seen in the Table 9.17

The comprehensive analysis presented in the table showcases the model’s remarkable

performance in identifying triad notes, as evidenced by high precision, recall, and F1-score

metrics across the majority of triad classes. Notably, the model exhibits an impressive

accuracy of 96%, signifying its capability to accurately predict the triad classes with a

high level of confidence. This substantial improvement from Model 2, which achieved

76% accuracy on this task, highlights the efficacy of the enhancements implemented

in Model 3. Particularly noteworthy is the model’s ability to overcome the challenge of

accurately predicting minority classes, demonstrating its robustness and reliability across

the entire spectrum of triad notes.
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Precision Recall F1-score Support

N 0.96 0.95 0.95 32908

maj 0.96 0.99 0.97 361254

min 0.95 0.89 0.92 98927

dim 0.97 0.61 0.74 3604

aug 0.99 0.69 0.81 4463

sus2 0.92 0.69 0.79 465

sus4 0.89 0.55 0.68 3079

Accuracy 0.96 504700

Macro 0.95 0.77 0.84 504700

Weighted avg 0.96 0.96 0.95 504700

Table 9.17. Classification Report for Model 3 on the task of identifying the triad note on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated

in Figure 9.27. Table 9.18 presents the classification report for Model 3, tasked with

identifying triad notes on the evaluation set, providing precision, recall, F1-score, and

support metrics for each triad note class, along with overall accuracy, macro-averaged

metrics, and weighted-averaged metrics. Overall, the model achieves an accuracy of

approximately 97%, indicating a relatively high performance on the test set, considering

its size of 108,600 samples compared to the evaluation set’s 504,700 samples.

Figure 9.27. Confusion matrix of Model 3 for identifying triad notes on the test set.
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Precision Recall F1-score Support

N 0.94 0.97 0.95 8915

maj 0.97 0.98 0.98 79446

min 0.95 0.91 0.93 17958

dim 0.95 0.79 0.86 726

aug 0.95 0.89 0.92 426

sus2 0.92 0.82 0.87 226

sus4 0.94 0.79 0.86 903

Accuracy 0.97 108600

Macro 0.95 0.88 0.91 108600

Weighted avg 0.97 0.97 0.97 108600

Table 9.18. Classification Report for Model 3 on the task of identifying the triad note on
the test set.

9.3.5 Model 3: Extension 1 Classification Task

Having successfully tackled the previous tasks, our focus now shifts to the extension 1

classification task. In this task, we aim to classify extension 1 notes into a predefined set

of categories, which include N, dim7, hdim7, maj6, maj7, and min7. As in the previous

tasks, we also have the "None" as "N" category indicating the absence of an extension 1

note.

For the extension 1 classification task, we build upon the established architecture

and methodology, leveraging transfer learning techniques honed in prior tasks. Through

extensive experimentation, we iteratively refined our approach, exploring various con-

figurations to identify the most effective strategy. Ultimately, we arrived at an optimal

architecture that builds upon the foundation of the previous tasks while incorporating

additional layers tailored to the demands of the extension 1 classification task. The

detailed architecture, delineated in Tables 9.19 and 9.20, outlines the structure of our

model.

The ’core’ architecture remains consistent for this task as well, providing a stable

foundation for model training. Similarly, the additional layers introduced in previous

tasks are retained here, as they have proven to be effective for this task as well. When we

say these layers are the same, we are referring to their architecture, indicating that they

were once again utilized and trained specifically for the extension 1 classification task.

Diploma Thesis 109



Chapter 9. Experiments and Results

Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

Total params 83872

Trainable params 0 (0.00 Byte)

Non-trainable params 83872 (327.62 KB)

Table 9.19. Detailed Architecture used as ’core’ for Transfer Learning for the Extension 1
Classification Task. These layers are frozen, meaning the parameters will not be trained
again.

Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

ext1_conv (None, 100, 48, 64) 36928

ext1_conv2 (None, 100, 48, 128) 73856

BatchNorm_ext1 (None, 100, 48, 128) 512

MaxPooling_ext1 (None, 100, 16, 128) 0

Dropout_ext1 (None, 100, 16, 128) 0

Flatten_Ext1 (None, 100, 2048) 0

LSTM_layer (Bidirectional) (None, 100, 256) 2229248

out (TimeDistributed) (None, 100, 7) 1542

Total params 2369884

Trainable params 2281756 (8.70 MB)

Non-trainable params 88128 (343.12 KB)

Table 9.20. Detailed Architecture for the Extension 1 Classification Task including all
layers (frozen and added).

As with the previous tasks, by freezing the parameters of certain layers, we ensure

they are excluded from further training during the adaptation process for the extension 1

classification task. This strategy aims to preserve the learned patterns from the previous
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tasks, which can prove advantageous due to the inherent similarities between the classifi-

cation objectives. By retaining these learned features, we streamline the training process,

reduce computational overhead, and mitigate the risk of overfitting. Leveraging trans-

fer learning in this manner allows us to capitalize on insights gleaned from prior tasks

and tailor them to the specific demands of the extension 1 classification task, potentially

enhancing the model’s overall performance.

Training the Model on Extension 1 Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,

�1 set to 0.9, �2 set to 0.99, and epsilon (ϸ) set to 1×10
−8

. The loss function employed for

training was categorical crossentropy, and we evaluated the model’s performance using

accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.28.

The model underwent training for 30 epochs, where it demonstrated significant improve-

ment in accuracy over time. Both the training and validation accuracy stabilized at

approximately 99% and 96%, respectively, in comparison to 85% which was the previous

model’s accuracy on this task.

Figure 9.28. Training results of Model 3 in the task of identifying the Extension 1. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix depicted in Figure 9.29 offers an insightful overview of how
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well the model performs on the evaluation set, delineating the distribution of predicted

Extension 1 notes against the actual ones. A significant advancement of this model over

its predecessor (Model 2) lies in its proficiency in predicting minority classes. In contrast,

when scrutinizing the confusion matrix (Figure 9.14) associated with Model 2, it becomes

apparent that the majority of samples were misclassified as the "None" class. This stark

observation underscored the previous model’s incapacity to effectively handle this task. In

contrast, the updated model showcased here exhibits the capability to accurately predict

all classes, marking a notable improvement in its predictive performance.

Figure 9.29. Confusion matrix of Model 3 for identifying the Extension 1 on the evaluation
set.

A classification report table (Table 9.25) can be seen in the Table 9.25

The comprehensive analysis presented in the table showcases the model’s remarkable

performance in identifying triad notes, as evidenced by high precision, recall, and F1-score

metrics across the majority of triad classes. Notably, the model exhibits an impressive

accuracy of 96%, signifying its capability to accurately predict the triad classes with a

high level of confidence. As mentioned previously, the major improvement is that this

model exhibits the capability to accurately predict all classes
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Precision Recall F1-score Support

N 0.97 0.99 0.98 428757

dim7 0.92 0.83 0.87 1148

hdim7 0.94 0.51 0.66 968

maj6 0.96 0.65 0.77 6299

maj7 0.97 0.51 0.67 3955

min7 0.95 0.75 0.84 10262

7 0.88 0.85 0.87 53311

Accuracy 0.96 504700

Macro 0.94 0.73 0.81 504700

Weighted avg 0.96 0.96 0.96 504700

Table 9.21. Classification Report for Model 3 on the task of identifying the Extension 1 on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated

in Figure 9.30. Table 9.22 presents the classification report for Model 3, tasked with

identifying triad notes on the evaluation set, providing precision, recall, F1-score, and

support metrics for each triad note class, along with overall accuracy, macro-averaged

metrics, and weighted-averaged metrics. Overall, the model achieves an accuracy of

approximately 98%, indicating a relatively high performance on the test set, considering

its size of 108,600 samples compared to the evaluation set’s 504,700 samples.

Figure 9.30. Confusion matrix of Model 3 for identifying Extension 1 on the test set.
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Precision Recall F1-score Support

N 0.99 0.99 0.99 95464

dim7 0.84 1.00 0.91 205

hdim7 0.92 0.90 0.91 227

maj6 0.88 0.76 0.82 419

maj7 0.99 0.71 0.82 1978

min7 0.97 0.92 0.94 1004

7 0.92 0.87 0.89 9303

Accuracy 0.97 108600

Macro 0.93 0.88 0.90 108600

Weighted avg 0.97 0.97 0.97 108600

Table 9.22. Classification Report for Model 3 on the task of identifying the Extension 1 on
the test set.

9.3.6 Model 3: Extension 2 Classification Task

The final task is the classification of the Extension 2. In this task, we aim to classify

extension 2 notes into a predefined set of categories, which include N, and 9 so it is a

binary classification problem. As in the previous tasks, we also have the "None" as "N"

category indicating the absence of an extension 2 note.

For the Extension 2, the architecture used in Extension 1 was fined to work best. The

detailed architecture, delineated in Tables 9.23 and 9.24, outlines the structure of our

model.

Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

Total params 83872

Trainable params 0 (0.00 Byte)

Non-trainable params 83872 (327.62 KB)

Table 9.23. Detailed Architecture used as ’core’ for Transfer Learning for the Extension 2
Classification Task. These layers are frozen, meaning the parameters will not be trained
again.
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Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248

batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928

batch_normalization_1 (None, 100, 96, 64) 256

max_pooling2d_1 (None, 100, 48, 64) 0

ext2_conv (None, 100, 48, 64) 36928

ext2_conv2 (None, 100, 48, 128) 73856

BatchNorm_ext2 (None, 100, 48, 128) 512

MaxPooling_ext2 (None, 100, 16, 128) 0

Dropout_ext2 (None, 100, 16, 128) 0

Flatten_Ext2 (None, 100, 2048) 0

LSTM_layer (Bidirectional) (None, 100, 256) 2229248

out (TimeDistributed) (None, 100, 2) 1542

Total params 2424930 (9.25 MB)

Trainable params 2340802 (8.93 MB)

Non-trainable params 84128 (343.12 KB)

Table 9.24. Detailed Architecture for the Extension 2 Classification Task including all
layers (frozen and added).

Training the Model on Extension 2 Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,

�1 set to 0.9, �2 set to 0.99, and epsilon (ϸ) set to 1×10
−8

. The loss function employed for

training was categorical crossentropy, and we evaluated the model’s performance using

accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.31.

The model underwent training for 30 epochs, where it demonstrated significant improve-

ment in accuracy over time. Both the training and validation accuracy stabilized at

approximately 99% and 99%, respectively.
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Figure 9.31. Training results of Model 3 in the task of identifying the Extension 2. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix depicted in Figure 9.32 offers an insightful overview of how well

the model performs on the evaluation set, delineating the distribution of predicted Ex-

tension 1 notes against the actual ones. A significant advancement of this model over

its predecessor (Model 2) lies in its proficiency in predicting minority class. In contrast,

when scrutinizing the confusion matrix (Figure 9.16) associated with Model 2, it becomes

apparent that the majority of samples were misclassified as the "None" class. The pre-

vious model did not have the ability to predict the "9" class. In contrast, the new model

showcases major improvements in this aspect of the problem.
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Figure 9.32. Confusion matrix of Model 3 for identifying the Extension 2 on the evaluation
set.

A classification report table (Table ??) can be seen in the Table ??

The comprehensive analysis presented in the table showcases the model’s remarkable

performance in identifying triad notes, as evidenced by high precision, recall, and F1-score

metrics across the majority of triad classes. Notably, the model exhibits an impressive

accuracy of 99%, signifying its capability to accurately predict the triad classes with a

high level of confidence. As mentioned previously, the major improvement is that this

model exhibits the capability to accurately predict all classes. The most important metric

here is the macro avg which shows a significant 94% score.

Precision Recall F1-score Support

N 0.99 1.00 1.00 491413

9 0.98 0.80 0.88 13287

Accuracy 0.99 504700

Macro 0.99 0.90 0.94 504700

Weighted avg 0.99 0.99 0.99 504700

Table 9.25. Classification Report for Model 3 on the task of identifying the Extension 1 on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated

in Figure 9.30. Table 9.22 presents the classification report for Model 3, tasked with

identifying triad notes on the evaluation set, providing precision, recall, F1-score, and

support metrics for each triad note class, along with overall accuracy, macro-averaged
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metrics, and weighted-averaged metrics. Overall, the model achieves an accuracy of

approximately 100% and a 95% macro average score on the test set.

Figure 9.33. Confusion matrix of Model 3 for identifying Extension 2 on the test set.

Precision Recall F1-score Support

N 1.00 1.00 1.00 107478

9 0.98 0.84 0.91 1122

Accuracy 1.00 108600

Macro 0.99 0.92 0.95 108600

Weighted avg 1.00 1.00 1.00 108600

Table 9.26. Classification Report for Model 3 on the task of identifying the Extension 2 on
the test set.

9.4 Summary of the Results

In this chapter we explored three different architecture approaches for the problem of

chord recognition. The initial model employed a simple 1D Convolutional Neural Network

(CNN) as a baseline for evaluation, focusing on individual chord embeddings without

considering chord structural representations. However, this approach may have limited

predictive capabilities due to its disregard for music theory and chord relations.

The subsequent model utilized a more complex 1D CNN architecture to capture more

complex patterns within the chord data. Through experimentation, it was determined that

employing the Constant Q Transform (CQT) method with 192 features outperformed the
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Constant-Q Chromagram approach. This model incorporated convolutional layers, max-

pooling layers, and dropout layers to prevent overfitting. Additionally, transfer learning

techniques were applied to efficiently address tasks such as identifying the root note, bass

note, triad, and extensions, enhancing the model’s performance across various chord

recognition tasks.

In the final model, a 2D Convolutional Neural Network with Bidirectional Long Short-

Term Memory (BiLSTM) layers was utilized. This model treated spectrograms as images,

facilitating the extraction of meaningful features across smaller time intervals using con-

volutional layers. ’Chunking’, as detailed in 8, was employed as a preprocessing step to

partition the input data into manageable segments, improving the LSTM’s ability to cap-

ture temporal dependencies. Similar to the previous model, the Constant Q Transform

method was favored over the Constant-Q Chromagram approach, and transfer learning

techniques were applied to enhance performance across different chord recognition tasks.

All the aforementioned models were trained, tested, and evaluated using a GPU, specif-

ically an NVIDIA GeForce GTX 1650 SUPER with 4 GB of memory. Due to the limited

memory, custom batch generators were implemented instead of using the pre-coded im-

plementations available in the TensorFlow package. It is interesting to note the training

times for each model. The training times, measured in seconds, are shown in Figure 9.34

below. Model 2’s training time for the Root and Bass classification tasks is comparable

to that of Model 3. However, for the remaining three tasks, Model 3 requires significantly

more time due to the increased complexity of its additional layers.

Figure 9.34. Training time in seconds for each model and task using one NVIDIA GeForce
GTX 1650 SUPER.

As discussed in the previous sections, each model showed a significant increase in

accuracy compared to its predecessor. The accuracy for each model and task is illustrated

in Figure 9.35.
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Figure 9.35. Accuracy scores for each model and each task (training & validation).

Another interesting comparison is between Model 2 and Model 3 in their ability to

classify the Extension 2 task. While this has been analyzed previously, a direct compar-

ison makes the superior performance of Model 3 clear. This is shown in Figure 9.36,

which compares the confusion matrices of the two models.

Figure 9.36. Comparison between Model 2 and Model 3 on the task of classifying Extension
2.

It is also important to analyze other metrics, such as the F1 score, as they provide

additional insights into model performance. The bar plot in Figure 9.37 illustrates these

scores for Model 3, which outperformed the other models.
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Figure 9.37. Bar plot showing accuracy and macro-averaged F1-score for all five tasks for
Model 3.

As we continue, we’ll explore post-processing techniques designed to enhance model

accuracy. These methods play a crucial role in refining model performance, ensuring

optimal outcomes.
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Post Processing

In this chapter, we elaborate on several post-processing techniques aimed at refining

the chord predictions obtained from our models. These techniques, are detailed here for

comprehensive understanding.

Firstly, we undertake the task of assembling data, each pertaining to a specific chord

component such as root, bass, triad, and extensions. These individual components are

consolidated into a prediction, the chord.

Subsequently, we delve into the post-processing techniques designed specifically for

chord refinement. One such function involves filtering each chord based on predeter-

mined rules that we will see in detail.

Additionally, we introduce a smoothing mechanism designed to enhance the coherence

and consistency of the chord predictions. This function replaces values within a specified

window with the most common value in the vicinity, thereby mitigating erratic fluctuations

and ensuring smoother transitions between chords.

The comprehensive pipeline, encompassing all the steps mentioned in previous chap-

ters, can be visually depicted through the accompanying flowchart (10.1).

Figure 10.1. Comprehensive Pipeline of all the steps of the Chord Recognition task includ-
ing Post Processing.
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10.1 Chord Assembly

In this section, we dive into a crucial phase of our analysis, where we bring together

the different elements of musical chords into a single dataset. This step is vital as it lays

the groundwork for the subsequent stages of our processing pipeline. Here, we meticu-

lously integrate various components such as root notes, bass lines, triads, and extensions

extracted from different sources, including audio recordings and digital representations.

At the heart of this process lies the careful organization and integration of data from

diverse sources. Through meticulous handling and processing, our aim is to create a

comprehensive dataset that captures the intricate details of musical chords found within

the input audio files. This section explores the methodologies and techniques we employ

to harmonize these different chord components, setting the stage for a detailed analysis

and interpretation of musical harmonies.

The methodology involves combining predictions made for each specific task. Initially,

the algorithm identifies the files representing various chord components like root, bass,

triad, and extensions. It then systematically retrieves data from each file, ensuring that

all pertinent columns are included. This consolidation process harmonizes the disparate

data streams, facilitating a holistic view of the harmonic structures within the musical

compositions, the chords. The methodology can be visualized as in the following Figure

10.2.

Figure 10.2. Algorithm that assembles the predictions of each task into the final prediction,
the chord.

10.2 Smoothing

The post-processing technique we here define as ’smoothing’ aims to enhance the

coherence and consistency of chord predictions obtained from the analysis. By employ-

ing a sliding window approach, this method iteratively replaces individual chord values

with the most prevalent value within a specified window size. This process effectively

reduces abrupt fluctuations in the chord progression, resulting in a more harmonious

and continuous musical interpretation.

The smoothing algorithm operates on a the chord data we got as predictions. It iterates

over each chord value, considering a window of neighboring values to determine the most

common chord within that window. If the predominant chord occurs with sufficient

frequency within the window, it replaces the original chord value. Otherwise, the original

chord value remains unchanged, ensuring preservation of significant chord transitions.
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Utilizing this smoothing technique enhances the overall quality of chord predictions,

thereby refining the accuracy and interpretability of musical analyses. Smoothing plays

an important role in our analysis due to the nature of the data we work with. In this

project, as mentioned in the previous chapters, each frame spans approximately around

0.07 seconds, making it improbable for rapid chord changes to occur and then revert to

the same chord. Such rapid transitions are likely attributed to noise or irregularities in

the data. By implementing smoothing techniques, we effectively eliminate these outliers,

resulting in more precise and reliable chord predictions. This process enhances the

accuracy of our analysis by ensuring that the predicted chord progressions align more

closely with the inherent structure and flow of the music, ultimately providing a clearer

and more coherent interpretation of the musical composition.

We experimented with applying smoothing techniques to both assembled chords and

individual chord components. Interestingly, smoothing each component of the chord

independently resulted in superior outcomes compared to applying smoothing to the

assembled chords as a whole. This approach to smoothing yielded more effective results,

highlighting the importance of considering the distinct characteristics and dynamics of

each chord component in the post-processing stage. An example can be seen in the

following Figure 10.3.

Figure 10.3. Example of Smoothing Algorithm usage.

The window size was fine-tuned and established at 5 frames, equivalent to approxi-

mately 0.35 seconds of musical data. It is interesting to evaluate this methodology based

on metrics such as the accuracy on the test set, comprising the albums CD1, CD2, Help,

and Please Please Me as detailed in 9.3.1. The Figure 10.4 below offers a visual represen-

tation of the findings. Notably, a slight increase in accuracy is observed, indicating the

efficiency of the adjusted window size.
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Figure 10.4. Accuracy comparison between data with smoothing and without smoothing
applied on the Test set.

10.3 Filtering Algorithm

In this section, we will discuss the post-processing steps applied to the chord data

after smoothing. The primary focus will be on the methods used to identify and filter

chords based on certain rules.

The chord filtering process is implemented and applies a set of rules to each row (or

frame) of the data containing the chords. The rules are as follows:

1. If the root is None, then the whole chord is set to None.

2. If the bass is None, then the bass is set to the root.

3. If the triad is None, then the triad is set to the closest value.

The Algorithm iterates over each row of the data. For each row, it checks the root,

bass, and triad values and applies the rules accordingly. The rules are implemented in a

sequential and rigid order. In the third step, if the triad is None, then a process to get the

nearest triad is initiated.

The process of identifying the closest triad to a given index is a crucial step in our post-

processing pipeline. This process is implemented and takes as input the data containing

the chords, an index (of the frame), and a direction to search for the closest triad. The

direction can be either "left" or "right" meaning before and after the given frame. If the

index is within bounds and the triad at the given index is not None, it returns the triad

and the index. If the triad at the given index is None, it recursively calls itself to find the

closest non-zero triad in the specified direction. The whole process can be visualized as

in the following Figure 10.5
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Figure 10.5. Flowchart of filtering Algorithm on the Test set.

We can observe an increase of over 1% in accuracy on most tasks when comparing the

raw predictions to the filtered results. This improvement demonstrates the effectiveness of

our filtering algorithm in enhancing the chord data. By systematically applying the rules

and accurately identifying the nearest triad, the algorithm improves the overall quality of

the chord predictions. This leads to more precise and reliable chord identifications, which

are essential for applications such as music analysis and automated transcription. The

combination of smoothing and filtering thus proves to be a robust approach, significantly

boosting the performance and accuracy of our chord recognition system.
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MIREX Results and Comparisons

In this chapter, we evaluate our chord recognition system using the MIREX (Mu-

sic Information Retrieval Evaluation eXchange) metrics. MIREX provides a standardized

framework for assessing music information retrieval systems, making it an ideal bench-

mark for comparing our results with those from other studies.

We’ll start by explaining the MIREX evaluation metrics briefly (detailed explanation

is on 7) and their importance in chord recognition. Using these standardized metrics

ensures our evaluation is both thorough and comparable to other leading systems.

Finally, we’ll compare our results with those reported in other papers. This compar-

ison will put our performance in context, showing how our system measures up against

existing solutions. By examining these comparisons, we aim to highlight the effectiveness

of our approach and its contribution to the field of music information retrieval.

This thorough evaluation and comparison will help validate the effectiveness of our

chord recognition system and provide insights into its performance relative to other re-

search in the field.

11.1 Metrics

Following Pauwels and Peeters (2013) [38], we will be using the CSR with five different

chord vocabulary mappings. Detailed analysis of CSR can be found in 7.

In each of these calculations, the full chord descriptions from either the estimated

or the ground-truth transcriptions, which might include complex chord annotations, are

mapped to the following classes:

• Chord root note only;

• Major and minor: {N, maj, min};

• Seventh chords: {N, maj, min, maj7, min7, 7};

• Major and minor with inversions: {N, maj, min, maj/3, min/b3, maj/5, min/5}; or

• Seventh chords with inversions: {N, maj, min, maj7, min7, 7, maj/3, min/b3,

maj7/3, min7/b3, 7/3, maj/5, min/5, maj7/5, min7/5, 7/5, maj7/7, min7/b7,

7/b7}.
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Except for no-chords, calculating the vocabulary mapping involves examining the root

note, the bass note, and the relative interval structure of the chord labels. A mapping

exists if both the root notes and bass notes match, and the structure of the output label

is the largest possible subset of the input label given the vocabulary. For instance, in the

major and minor case, G:7(#9) is mapped to G:maj because the interval set of G:maj, {1,

3, 5}, is a subset of the interval set of G:7(#9), {1, 3, 5, b7, #9}. In the seventh-chord case,

G:7(#9) is mapped to G:7 instead because the interval set of G:7 {1, 3, 5, b7} is also a

subset of G:7(#9) but is larger than G:maj. If a chord cannot be represented by a certain

class, e.g., mapping a D:aug or F:sus4(9) to {maj, min}, the chord is excluded from the

evaluation if it occurs in the ground-truth, and it is considered a mismatch if it occurs in

an estimated annotation. MIREX Accuracy requires that at least three notes of the chord

are correct.

11.2 Components Accuracy

Firstly, it will be interesting to examine how our chord split into components translates

into recognizing the parts of those components. The following table displays the accuracy

for each number of parts. For instance, "number of parts" means that for 3 parts, the

root, bass, and triad must all be correct; for 4 parts, the root, bass, triad, and extension

1 must all be correct etc. These scores are provided in the Table 11.1 below

Number of Parts 1 2 3 4 5

Accuracy (%) 85.6 81.2 79.4 76.9 76.8

Table 11.1. Accuracy for each number of parts

11.3 Mirex evaluation and comparison

Moving on to the MIREX evaluation metrics, it will be interesting to compare our solu-

tion with other papers. Gasser and Strasser [13], in their submission, followed a similar

approach of splitting the chord into components and then using a CNN architecture uti-

lizing Transfer Learning for each component. The key difference is the use of Bi LSTM

layers in our case and the post-processing techniques.

Park, Choi et al. [14] utilize a self-attention mechanism for chord recognition to fo-

cus on certain regions of chords. Training of the proposed Bi-directional Transformer for

chord recognition (BTC) consists of a single phase while showing competitive performance.

Through an attention map analysis, they have visualized how attention was performed.

It turns out that the model was able to divide segments of chords by utilizing the adap-

tive receptive field of the attention mechanism. Furthermore, it was observed that the

model was able to effectively capture long-term dependencies, making use of essential

information regardless of distance.

Finally, Jiang, Ke Chen et al. [15] propose a new model for practical chord tran-

scription tasks. The core concept of the new model is to represent any chord label by a

set of subparts (i.e., root, triad, bass) according to their common musical structures. A
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multitask classifier is then trained to recognize all the subparts given the audio feature,

and then labels of individual subparts are reassembled to form the final chord label. A

Recurrent Convolutional Neural Network (RCNN) is used to build the multitask classifier.

In the table below, we can observe the outcomes of each approach, including our own.

Some results are missing, likely due to variations in analysis. It’s worth noting that our

method, described in Section 9.3.1, reserved specific albums, namely CD1, CD2, Help,

and Please Please Me, exclusively for final testing. These albums were chosen due to their

comprehensive representation of chords from The Beatles’ entire discography.

In contrast, the KBK2 model underwent testing on a broad range of albums, includ-

ing those from The Beatles, Queen, Zweieck 2, Robbie Williams 3, RWC Popular 4, and

the public portion of the McGill Billboard dataset, utilizing 8-fold cross-validation. The

JLCX1 model, however, was evaluated on a subset of 1217 songs from Isophonics, Bill-

board, RWC Pop, and MARL collections, although the specific composition of this subset

remains unclear. Lastly, the BTC-CRF model was subjected to testing on various songs

by The Beatles, Carole King, Queen, Zweieck, Robbie Williams, and a subset of songs

from UsPop2002, employing 5-fold cross-validation.

Table 11.2. MIREX Metrics comparison. Model2+S+F is our proposed Model 2 including
smoothing and filtering as the post-processing steps. KBK2, BTC+CRF and JLCX1 are the
proposed models on the corresponding papers cited.

Metrics Models

Model2+S+F KBK2 [13] BTC+CRF [14] JLCX1 [15]

Root 85.6 86.30 83.9 83.8

MajMin 85.4 86.02 83.1 83.1

Sevenths 79.9 61.12 70.7 70.1

MajMinInv 80.1 83.12 - 80.1

SeventhsInv 77.7 58.75 - 70.0

MIREX 81.6 - 81.4 -

Examining the metrics in the table, we can see that our Model2+S+F performs ex-

ceptionally well overall, with its recognition accuracy of seventh chords being especially

impressive. This important accomplishment highlights the resilience of our model, which

skillfully captures the fine details included in these intricate chord structures. Not only

does our method do exceptionally well in this particular measure, but it also continues to

perform competitively in other chord categories. This claim is supported by comparison

analyses with other models, such as KBK2, BTC+CRF, and JLCX1, which are all excellent

models but not very good in seventh chord detection. These results highlight the effec-

tiveness and versatility of our model. A visual representation in the form of a bar plot can

be seen in the Figure 11.1 below.
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Figure 11.1. MIREX Metrics comparison. Model2+S+F is our proposed Model 2 including
smoothing and filtering as the post-processing steps. KBK2, BTC+CRF and JLCX1 are the
proposed models on the corresponding papers cited.

11.4 Conclusion

Throughout this thesis, we went on a study of alternative models and architectures

to solve the complicated job of chord recognition. We started with a simple strategy of

individually embedding each chord and applying a convolutional neural network (CNN)

for modeling. However, as anticipated, this approach generated unsatisfactory results,

underscoring the need for a more advanced strategy. Subsequently, we established an

approach where the chord was divided into its constituent components, with a specific

model originally crafted for the Root component. Leveraging transfer learning, we then

fine-tuned this model for each additional component, resulting in better performance.

Building upon this foundation, we introduced a preprocessing step we called "chunk-

ing," which involved segmenting the data to generate "images" representing periods of

frames. By incorporating 2D CNN layers to extract features and integrating a bidirec-

tional long short-term memory (BiLSTM) layer before the dense fully connected layer,

we witnessed a significant enhancement in results. This approach emerged as our pro-

posed model, delivering competitive accuracy in chord recognition. Subsequent to model

training, we employed post-processing techniques to further enhance the results.

In this chapter, we evaluated our chord recognition system using the MIREX (Music
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Information Retrieval Evaluation eXchange) metrics, providing a standardized framework

for assessing music information retrieval systems and enabling a thorough comparison

of our results with those from other studies. We described the MIREX evaluation met-

rics briefly (with detailed explanations in 7) and emphasized their importance in chord

recognition. Through these standardized metrics, we ensured our evaluation was com-

prehensive and comparable to other leading systems. Finally, we compared our results

with those reported in other papers, placing our performance in context and showcas-

ing how our system measures up against existing solutions. This thorough evaluation

and comparison validated the effectiveness of our chord recognition system, providing

valuable insights into its performance relative to other research in the field.

Upon analyzing the performance of our model in contrast to others, it becomes obvious

that our technique demonstrates substantial strengths in chord recognition. While appre-

ciating the virtues of rival models, our approach distinguishes itself via its constant and

complete proficiency. Unlike some algorithms which excel in specific chord components,

our model exhibits adaptability across numerous areas of chord identification, particu-

larly in the correct detection of seventh chords. This broad competency shows the useful-

ness of our methodology, which incorporates unique preprocessing techniques, complex

neural network topologies, and enhanced post-processing methodologies. Moreover, our

model demonstrates resilience in adjusting to varied musical styles and circumstances,

indicative of its potential for practical applications. In summary, our chord identifica-

tion method represents a competitive methodology in the industry, giving a compelling

solution that achieves high performance.

11.5 Future Work

This thesis has created a solid platform for ongoing innovation and exploration in the

field of chord recognition. Several options suggest themselves for future research, each

promising to expand the capabilities and accuracy of chord identification algorithms.

11.5.1 Expansion of Data Sources

The limitation imposed by copyright restrictions on audio tracks prevented the pro-

curement of a more large dataset for training and testing. By adding data from a broader

spectrum of musical styles, the resulting model could offer greater adaptability and pre-

cision in chord detection, particularly in the context of modern Western pop music. This

larger dataset would also permit a more extensive comparison between similar models,

potentially producing more conclusive conclusions.

11.5.2 Incorporation of Music Theory Principles

Integrating principles of music theory into chord recognition algorithms could lead

to more musically informed predictions. By leveraging knowledge of chord progressions,

harmonic functions, and melodic tendencies, the model could produce more contextually

relevant and aesthetically pleasing results.
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11.5.3 Integration of Beat Tracking

Beat tracking, albeit a separate MIREX classification job, holds tremendous potential

as a supplemental input for chord identification models. By including beat tracking data

as a secondary input, the algorithm could better discern the timing of chord changes,

leading to more exact and contextually relevant predictions. This integration would lead to

the development of more dynamic and rhythmically sensitive chord identification systems.

11.5.4 Key Recognition as Pre-Processing

The incorporation of key recognition algorithms as a pre-processing step could offer

several benefits in refining chord recognition accuracy. By filtering out chords that do not

conform to the established key of a musical piece, the system can focus its resources on

analyzing and predicting chords that are harmonically coherent and musically relevant.

This approach could streamline the chord recognition process and enhance the overall

quality of predictions.

In conclusion, the future of chord recognition holds immense potential for advance-

ment and refinement. By exploring these avenues of research and development, we can

pave the way for more sophisticated and effective chord recognition systems that better

serve the needs of musicians, researchers, and music enthusiasts alike.
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MIREX Music Information Retrieval Evaluation eXchange

CNN Convolutional neural network

BiLSTM Bidirectional Long Short-Term Memory Network

STFT Short-time Fourier transform

CQT Constant-Q transform

WAV Waveform Audio File Format

BTC Bi-directional Transformer

CPU Central Processing Unit
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