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Abstract

This thesis presents an innovative approach to audio chord recognition, aiming to
automatically identify and classify fundamental chord structures within music pieces.
Leveraging Convolutional Neural Networks (CNNs) with Bidirectional Long Short-Term
Memory (biLSTM) layers, advanced feature engineering, and post-processing techniques
rooted in music theory, our research enhances the accuracy and robustness of chord
recognition systems. By extracting features from chord representations such as root,
bass, and triad qualities, and segmenting the problem into distinct components, our
framework creates a solid ground to enhance the accuracy of chord recognition. Ad-
ditionally, we employ transfer learning techniques to capitalize on pre-trained models,
fine-tuning them for our specific chord recognition task, thus improving generalization
and robustness. Moreover, our exploration encompasses various Fourier transforms for
feature extraction, including Short-Time Fourier Transform (STFT) and Constant Q Trans-
form (CQT), to capture essential information from audio signals and optimize chord recog-
nition performance. Through extensive experimentation and evaluation of different CNN
and biLSTM configurations, as well as post-processing techniques, our approach demon-
strates significant enhancements in several aspectes of chord recognition. Overall, this
research contributes a comprehensive framework that leverages deep learning method-
ologies, sophisticated feature engineering, and post-processing techniques, showcasing

its potential to advance music information retrieval systems.

Keywords

Audio Chord Estimation, Deep Learning, CNN, BiLSTM, R - CNN, Neural Networks,
MIREX, CQT, Transfer Learning
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Iepidnyn

H napovoa Suthopatiky epyacia mapouotddel fia KAawvotopd IPOooEyylon yid TV avay-
VOP101 oUyXopdidv amo X0, HE OTOXO TV AUTIOPAT:] TAUTOIoinorn Kdat ta§ivopnon teov
Baowav Sopmv cuyxopdiwv oe pouoikd koppdrtia. Afonowwviag Zuvedikukda Neupeovikd
Aiktua (CNNs) pe Awobidotateg Ltpwoeig MakpornipoBeopng Bpaxurnpobeopng Mvnung (bil-
STM), rpoxwpnieévn Stadikaoia e€aywyrg XapaKInploTK®OV, KAl TEXVIKEG PETA-EMesepyaciag
Baolopéveg ot pouoiky dewpla, 1 €psuva pag oupBdaletl oty PeAtioon g akpifelag rat
G AVOEKTIKOTNTAG TOV CUCTNHATOV avayveoplong ouyxopdiov. Me v e€ayoyr Xapakinpio-
TIKOV arod avarapaoctdoelg ouyxopdiov onwg n pifa, to priaco kat ot modtnteg tpladag,
KAl v Tunpatonoinon tou npoBAnpatog oe Siakpttd ouotatikd, 1o mAaiolo pag 9€tet yepa
Yepédia ya v evioyuon v akpifela g avayvoplong cuyyxopdiwv. EmmAéov, xpnot-
poroloupe TeXVIKEG petagopdg padnong (Transfer Learning) yia va exkpetadAgutoupie mmpo-
ekniatdeupéva PoviEAd, Ta oroia PooapplodoUlIe Yia T OUYKEKPIIEVI Pag £pyacia pepwv
10V ouyxopdimv, Bedtidvoviag €101 T YEVIKEUON Katl v avOektuikotnta. Ermmmpoobeta, n
é€peuvd pag egetalel Hiagopoug petaoxnuatiopoug Fourier yia v e§aywyn xapaxinplo-
KOV, ouprneptiapBavopévev twv Bpayunpobeopwv Metaoxnpatiopov Fourier (STFT) kat
tou Xuvexoug Metaoxnpatiopou Q (CQT), yia va cudddBel Paocikég mAnpodopieg amo ta
NXNTIKA onpata Kat va BeAToTonoost v anddoorn) g avayvaplong ouyxopdiov. Méoa
ano ektetapéva nepapata Kat aglodoynon dagopetikav Siapoppanoeov CNN kat biLSTM,
KAOOG KAl TEXVIKOV PETA-EMECEPYAOIAG, ] TIPOOEYYIOT] PaAg EMMBEIKVUEL ONIAVIIKA onpeia
BeAtimong otnv akpifela avayvoplong ouyxopdimv. ZUVOAIKA, autt) ] ¢peuva oupBaldAet eva
0AoKANP®UEVO TTAaiolo rou aglorotel pedodoAoyieg Pabidg padnong, mponyHevn PNXAVIKD)
XAPAKTIPIOTIKGOV KAl TEXVIKEG PETd-eregepyaoiag, avadeikvioviag 1o SUuvapiko g va rpoxor)-

0€1 Td CUCTHATA AVAKTINOoNG HOUOIK®V TIANPO(OPI®V.

A&¥erg KAe1d1a

Extipnon Zuyyopdiwv amo ‘Hyo, Badid Mdadnon, CNN, BiLSTM, R - CNN, Neupovika
Aiktua, MIREX, CQT, Metagopa MadSnong
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Chapter E

Introduction

Audio chords, as fundamental components of music, are constructed using specific
harmonic principles and are perceived as pleasing to the human ear. These chord struc-
tures serve as building blocks for musical compositions, providing harmonic stability and
emotional depth. The intricate relationships between different chord components, such
as root, bass, and triad qualities, contribute to the richness and complexity of musical

pieces.

In recent years, deep learning has emerged as a powerful tool for extracting meaningful
patterns and relationships from complex, multidimensional data. Its ability to identify
nonlinear correlations makes it particularly well-suited for tasks involving audio signal
processing and music analysis. This study aims to leverage the capabilities of deep
learning to uncover the underlying connections between audio chord structures and their

harmonic principles.

The challenge of estimating audio chords has garnered significant attention within the
MIREX (Music Information Retrieval Evaluation eXchange) community, attracting partic-
ipation from numerous researchers annually. MIREX serves as a platform for evaluating
and comparing different methods and algorithms for music information retrieval tasks,
including chord estimation. It provides specific guidelines regarding datasets, vocabular-
ies, past submissions, and evaluation metrics, all of which are essential for conducting

rigorous research in this field.

In this thesis, we employ deep learning techniques and feature extraction methods
grounded in music theory to address the challenge of audio chord estimation. We break
down the problem into multiple sub-problems based on principles of music comprehen-
sion, allowing us to focus on different aspects of chord recognition separately. Addi-
tionally, we integrate post-processing techniques inspired by music theory to refine and
improve the accuracy of our chord predictions. The results of our approach are com-
pared against other solutions and benchmarks established by MIREX, providing a com-
prehensive evaluation of our methodology’s effectiveness and performance. Through this
research, we aim to contribute to the ongoing efforts in advancing the field of music

information retrieval and enhancing our understanding of audio chord recognition.
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Chapter 1. Introduction

1.1 Structure of the thesis

The following thesis is organized in chapters:

e Chapter 7 focuses on certain concepts that serve as theoretical background.
e Chapter 8 analyses the data and the pre-processing steps followed.

e Chapter 9 focuses on experiments on various model architectures and on the anal-

ysis of the results.

e Chapter 10 presents the post-processing techniques that were implimented.

e Chapter 11 contains the evaluation of the proposed model on MIREX metrics along
with the comparison with other proposed models and the final conclusions drawn

from the experiments, along with suggestions for future work.
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Chapter g

Ewcaywyn

Ot ouyxopdieg, ®g Paocikd otoixeia TG POUOIKLG, KATAOKEUALOVIAL XPI1O1H10II0OIOVIAS
OUYKEKPLIEVEG APOVIKEG APXEG KAl aviidapBdvovial @G euxdplota aKoUopdta aro 1o av-
Ypormvo auvti. Autég ol Hopeg ouyxopdi®v AEITOUPYOUV G KOPPATIA Yld POUOIKEG OUVOE-
0€1g, TTAPEXOVTAG APHOVIKY otabfepotnta Katl ouvalofnpatiko Badog. Ot MOAUTIAOKEG OXEOELS
petadly H1aPopEtKOV CUVIOTROMV AKOPVIRV, Onwg 1 pida kat n tp1ada, cupBdddouv otnv
MAOUO1a KAl TOAUTTAOKI] (PUOT] TOV HOUOIK®OV KOPHATIWV.

Ta tedevtaia Xpovia, n epgavion g Badiag padnong éxet e€edixBel oe éva 10xUpod ep-
yalAeio yia v €§aywyr Onuaviikov mpoTtUI®V Kal OXE0E®V Ao MOAUMAOKA, rmoAudiactata
6edopéva. H kavotntd ng va avayvepilel pn ypappikeég ouoxetioelg v kabiotd 8aitepa
KAtdAAnAn yua gpyacieg rmou oxetidovial pe v enegepyacia v aKOUOTIKGMV ONPAT®OV Kat
NV avdaduon g POUCIKNG. AUTH 1 HMEAELTn OTOXEUEL OV EKPETAAAEUOT TV SUVATOTATOV
g Babiag padnong yua v avadeln twv unokeipevav Siacuvbéoswv petadu v douwmv
AKOPVI®OV KAl TOV dPHOVIK®OV TOUG apX®V.

H nipéxkAnon g eKtipnong tov ouyxopdi®v eival EUPEMS avayveOPloPEVn OtV KOotnta
tou MIREX (Music Information Retrieval Evaluation eXchange), mpoosAkuovtag i oup-
petoxr) rmoAdwv epeuvniov kade xpovo. To MIREX Asttoupyei og mlatpdppa yla ty ag-
10A0ynon Kat ouykplon Stapopetikev pedodnv kat adyopibpwv yia v avakinon mAnpo-
(POP1RV POUCIKNG, CUPIIEPIAAPBaVOIEVNG TG EKTIINONG OUYX0Pd1dv. TTapéxel CUYKERPIIEVES
0drnyieg oxetkd pe ouvola debopévav, Ae§ldoyiou, rponyoupeveg UTOBOAEG KAl PETPIKEG af-
10A0ynong, 6Aeg artapaitnteg yua ) die§aynyt auotpov epeuvev oe autd to redio.

Ze auty) ) SIMAepAtiky epyaocia, XPnotponotovpe teXvikég Babidg pddSnong kat pebo-
b0ug €§aywyng XapaKInplotK®V Bactopéveg ot 9empia tng POUCIKAG Yid TV AVIIHIEIOITOT)
g MPOKANONG NG eKTipnong ouyxopdwwv. Xwpiloupe 1o mPoPAnpa oe moAdardd ur-
orpoBAfjpiata Baciopéva o apx€g Katavonong Ing POUCIKEAG, EMMTPENOVIAS HAG VA ETTIKEV-
1peOoUE 0 H1APOPETIKEG MIUXEG AVAYVOPIONG AKOPVIRV Sexwplotd. Eruriéov, evoopatm-
VOULIE TEXVIKEG PETA-ETECEPYAOIAg EPUIVEUOHEVEG Ao T Yewpia g POUOIKNG yia TV BeAtioon
g axkpifelag tov nmpoBAéywenv pag. Ta arotedéopata tng MPOCEYYIoHS Pag ouyKpivovial
pe adAeg Avoelg rou kabiepwbnkav and o MIREX, napéxoviag pia o@aipiky agloAoynon
g arotedeopankontag Kat mg arnodoong g pebodou pag. Méow autng g épsuvag,
otoyxevoupe va oupBdloupe otig ouveyeig poomidabeleg yia v mpondnon tou nediou g
AvAKINong mMAnPEopopldv HOUCIKNG KAl T BEATI®ON tng KATavonong Ing €KTPNong ouy-
Xopdiwv.
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Chapter 2. Ewoayoyr)

2.1 Aopnq tng Epyaociag
H epyaoia arnotedeital and ta €&ng kepdAaia:

o To Ke@dAaio 7 €MKEVIPOVEIAL O OPIOPEVEG EVVOIEG TTOU AETTOUPYOUV G Je@PNTIKO

urtoadpo.

e To KepdAawo 8 avalduel ta Hedopéva kat ta Prpata mpoeregepyaciag mov akoAou-

9n6nkav.

e To Ke@dAaio 9 ermKevVIp®VETAL OTIS MEIPAATIKEG EPYACIEG 1€ HLAPOPESG APYITEKTOVIKEG

HOVIEA®V KAt otV avAAuoTt) T®V ArtoTEAEOPATOV.
e To Kepdlaio 10 avagépetatl otig TeXVIKEG Peteresepyaoiag rou akodoudrdnkav.

e To Kepdlato 11 niepldapPavet trv a§loAdynor) T0U IPOTEIVOIEVOU 1OVIEAOU OF PETPIKEG
tou MIREX, padi pe ) oUyKplon tou pe alda mpotelvopeva POoviEAd Kat ta TeAkd
OUNITEPACHATA TIOU IIPOKUTITOUV AITo TIS £pYAOieg, padl P IpotdoelS yia PeAAOVIIKEG

epyaoieg.
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Chapter E

Acedopéva & IIpoeneepyaoia

To repadailo auto arnotedel ePIANYn TOV ONPAVIIKGOV OTOlXEiOV Tou Kepadaiou 8, ota
eAANVIKA. Ze auto 1o Kepdldalo avadustal 1o ouvolo debopévav Kat ot pédodot mposeregep-

yaoiag rmou akoloubrOnkav.

3.0.1 XZuvolo Asdopévev Isophonics

To ouvoAo Sebopévwv Isophonics eivatl pia ouAdoyr) and tpayoudia, o pop@r 1xovu,
Katl petadedopévav oxedlaopévn yia €peuva otV avakinorn Houoikev rinpogpoplov (MIR).
Arotedel IOAUTIIO TIOPO Yla T PEAETN S1a@OopmV MTUX®V TS HOUOIKIG, OMNKg N Pnedwdia, n
appovia, o pudnog kat n Sopry. Ta avty ) pedét, XPNoonotr)9nKe 1o oUvolo SedopEvav
Isophonics mou napéxet 180 tpayoudia tov Beatles. Ot onpavoeig ouyxopdieov autou tou
ouvodou Sedopévav £xouv edeyxOel apkretég @opég aro tov Christopher Harte [12] kat v
kowvotnta MIR, kat propouv va xprnotpornotnouv pe ortyouptd. O1 orpavoelg ouyxopdiav
etvat apyeia .lab. Autd givat apyeia keipévou daxmwplopéva 1€ Kevd, Pe TPEIS OTNAEG TTOU
AVTIOTOX0UV OTOV XPOvo €vapdng, tov Xpovo ARENG Kat tnv euketa ouyxopdiag, aviiotoya.
‘Eva napadetypa gaivetar otov mivaka 8.1. H pop@r) 1oV KOPPATIOV 1Tav OTEPEOPROVIKA
.mp3 pe ouxvotnta derypatoAnyiag 44kHz, omote fjtav anapaitntn) MePATIEP® EMeSepyaoia.
IMa va Siaopaliotel OTL 01 ETIKETEG £lval CUYXPOVIOREVEG 1€ TOV X0, XPnotpomnou)9nKe 1o

npoypappa Audacity.

3.1 IIpoenedepyaocia Acdopivov

Ia va npostopiaoctel 1o NXNTIKO de6oPEVO yla TepAttEép® avaluor, Xpeladovial oplopéva
Bnata. H dadikaocia nipoenedepyaoiag neprtdapBavet T PETATPOLT] TOV APXEI®V 1XOU ATTO
popen MP3 oe WAV kat ano otepeodp@viko og Povoeaviko. O1 poppeg WAV kat MP3 61-
AQEPOUV 0T CUHITIEST] KAl TV TO10TNTa ToU fXou, pe 1o WAV va eival xopig ocuprtieon yia
uynArn motdnta kat 1o MP3 pe ouprtieon ya pikpotepo peyebog. To otepeodp@viko Xpnot-
porotet U0 kavddila yia Xepko BAdog, Ve T0 LOVOP®VIKO Xpnotporolel éva, 18aviko yua
P XWPIKES EQAPHOVES.

Apxikd, oxedraotnke évag alyopibpog xpnowponoloviag 1o Python module Pydub mou
OUYKEVIPpWVEL Pla Alota pe apxeia MP3 péoa oe évav kaBopilopévo katadoyo apyeiov. Lin
ouvexeld, yla Kade apxeio, xpnowporolel 11e0080Ug PETATPOIS V1A VA TO HETATPEYPEL OF

poper) WAV kat og POVOQP®OVIKO. AUTI) 1] CUCTHHATIKY IIPOCEYY10T) £§aodalilel Ot ta nXnuKa
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Chapter 3. Agdopéva & Ipoenegepyaoia

d6ebopéva eival mpoetotpacpéva o [ld TUTIOTIOUHEVE] POP@I] KATAAANAnN yia MEQATEP®D
avdduvor. 'Eva napddetypa evég petaoxnpatiopévou apxeiou prmopet va ortikortonOet otnv
ewkova 8.2.

Ma ) Swadwkaocia 10U onuatog, ypnowornonOnkav dvo petacynpatiopol Fourier, o
Short Time Fourier Transform (STFT) kat o Constant-Q Chromagram. O STFT &npioupynoe
UrtepBoAKO ap1Opo {wvev cuxvotiTeV, audavoviag tov apibiid v e100dmv yia 1o diktuo kat
bev anédwoe ta embupntd anoteAéopara.

To xpwpodypappa, amnoteAoUpevo and 12 XapaKtnplotikd, NPOoPEPEL AETTTONEPT] ava-
apdotact) IOV HOUCIKOV VOTOV TOU NXNTIKOU ONHatog, aAAd Sev mapéxel mAnpodopisg yia
1 Sravopn v votev oto @acpa ouxvotntov. H Metatporr) Constant Q (CQT) mpotipdrtat
A0ym NG AoyaplOpikng KAlpaKag GUXVOTT®V ITOU XPNOIHOIoLEl, 1] ortoia taipladel kaAutepa
He v aviAnyn g avOpoITvng aKorng.

H nipoctopacia tov euket®v ieptAapPAvet ) PETATPOIT] Ao T0 XPOVIKO 1edio oto nedio
ouyvottev, dtacpadifoviag tv eUSUYPANIOT) TOV ETIKETOV HE Ta AvVIioTolXa gaopatd. STov
nivaka 8.2, tapouotadovial o1 ETKETIEG OTOV XPOVIKO TOPEA KAl OTov mivaka 8.3, otov topéa

OUXVOTT®V.
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Chapter ﬂ

IIeipapata kat AtoteAéopata

To repaAailo auto arnotedel EPIANYN TOV OCNPAVIIKGOV OTOlXEiwV Tou Kepadaiou 9, ota
eAAnvikd. To kepdAaio auto egetddet tv avaduor], eknaibeuon Kat ouykpion Si1apopwv ap-
XITEKTOVIK®V HOVIEA®V yid TNV avayvopilon ouyxopdiov. Moviéda onwg 1o 1D CNN kat to

2D CNN rou xpnotportotouv BiLSTM Sa avaAuBouv.

4.1 Movtédo 1: AnA6 1D ZuveAkTtikO Neup@VviRO AiKTUO

H apykn) diepevvnon §exiva pe v epapiioyr) evog ardoy 1D ZuvediktikoU Neupovikou
Awktuou (CNN). Autr| 1] TPOCEYY10n AEITOUPYEL ®G ONUEio ava@opdg yia tnyv agloAdynon tev
ermbooewv TV enopevev poviedwv. Kdade ouyyopdia yiverar "embed" exwpiotd, xeopig va
Aapfdverat unioyn n Sewpia g POUCIKNG KAl Ol OXEO0EIS TOV OUYX0PdldV, YEYOVOG TToU
propel va replopioet TG TTPOPAETITIKEG IKAVOTNTEG TOU HOVIEAOU.

la auty v apXitektoviky, xpnotpornow)9nke 1o Constant-Q Chromagram wg frnua
npoernegepyaoiag, pe anotéleopa va npokuypouv 12 yapakinpiotkda. H apyitektovikn tou
povtédou meptypagetal otov rivaka 9.1 kat oto oxnua 9.1.

Katd ) diapkela g exknaideuong, 1o ouvolo debopévav xwpiotnke oe U0 UTTOOUVOAQ:
€va ouvodo exknaibeuong rmou aroteAeital anod 1o 80% tev edopévav Kat éva oUVoAo eMKUP-
®ong rou arotedeitat anod 10 20% tev dedopévav. H Sidomaon mpaypatonoinbnke ava
Koppat, Siampeviag v akepaAlotIa g HOUOoKLG doprg kade koppatiou.

To diktuo anotedeital anod diagopa erineda, Eexkivoviag pe éva 1D ouveMKTKO ertinedo
pe 32 @idtpa kat péyebog upnva 3, XP1noonoliviag ) ouvaptnorn evepyoroinong ReLU.
'Eva emntinedo péyilotng ouvykévipwong (Max Pooling) spappodetat yia va peidost 11§ Staotd-
0e1§ TV Xapaktnploukev. To eminedo flatten avadiapoppaver v €§06o amod to nponyou-
pevo eninedo o€ £évav povodiaotato mivaka, S1euKoAUvoviag 1 oupBatotna Pe 1d MANPKG
ouvbedepiéva enineba. 'Eva mAnpweg ouvbedepévo eminedo pe 128 veupaveg kat ReLU xpnot-
poroteital yia myv e§aymyrn XapaKplotikev, eve 1o emirnedo e§odou anotedeitat and 1552
povadeg pe ouvdaptnor evepyoroinong softmax.

Ia wmv eknaidsvuorn tou poviédou, xpnotponow)9nke peyedog naptidag (batch size) 32
pe pudpod expadnong 0.0001 ypnowporowwviag tov Adam optimizer kat tv evepyoroinon
ReLU. H ouvdptnon anwlelag rou xpnowporodnke eivat n Sparse Categorical Cross-
entropy. Ta arotedéopata g dadikaoiag exkmaibevong kat agloddynong @aivoviat oto

Suaypappa 9.2. H akpifeia xkupaivetal yupe oto 42% 1000 yia 10 oUvoAo eKmaideuong 000
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Chapter 4. Ileipapata kat AnoteAéopata

Kat yla 1o ouvodo agloddynong.

Ia Aoyoug oUYKPIONG, TO HMOVIEAO €KMAISEVUTNKE KAl SOKIPACINKE E£ITiONG OTNV TAU-
Tomoinon povo g pifag g ouyxopdiag. H amdromta autng g apXITEKTOVIKIG ETTPETTEL
Ha cagrn agloAoynor g anodoong T0U POVIEAOU OV AIAr) £pyacia g TauToroinong g
pifag, Asttoupyoviag g Baocikd onpeio ava@opdg yla 1) oUYKPLoL 0 OUVOETOV HOVIEAQV.
H 6iagopd otnv apXIteKTovikr) eival ot 1o erminedo e§odou tOpa arotedeital povo amo 13
VEUPWVEG, Kata avtiotolyia pe tg 13 pileg (oupriepidapBavopévng Kat tng un unapgng pifag).
Ta arotedéopata g Sadikaoiag eknaibeuong xkat a§loddynong @aivovrat oto oxnpa 9.3.
Ermteux9nke akpifela oxedov 60%.

Ztov mivaka ouyxuong rmou @aivetal oto Zxfpa 9.4, mapatneoUpe TV KATAVOHL] TV
npoPAsnopevav p®Vv Evavil TV IMPaypatikov piéev. Iapd tyv amdotnta g IpooEyylong,

10 povtédo eival 1Kavo va tautornotel pe akpifela ) owoty pifa oe Aoyko Baduo.

4.2 Movtédo 2: 1D ZuveAlkTKO NeUPWVIRO ALKTUO

Tuvexiovtag v £EepeUVNOT TOV APXITEKTOVIKGOV TOV HOVIEA®V, TO EMOEVO HOVIEAO ITOU
egetadetal eival éva 1o mnepimloko 1D ZuveAikukd Neupoviko Aiktuo (CNN). Autr i ap-
XITEKTOVIKI] OTOXEVUEL VA EKPETAAALUTEL TA 1EPAPXIKA XAPAKINPIOTIKA ToU pabaivoviatl arno
d1aboy1kd ouvedikuka ermineda yla va rataypdyet mo ouvleta npdtuna ota dedopéva.

Metd ané niepapatiopo pe 1o Constant-Q Chromagram kat to Constant Q Transform
(CQT), drarmotwOnke o1 n pédodog CQT urepePn ) pédodo Constant-Q Chromagram. H
1édodog CQT, xpnowporowwviag 192 xapaktnplotka o cUYKPlon He ta 12 XapaKiplotka
MOU XPrnotporo)d9nKav mponyouHEeveg, 0dnynos oe KaAutepeg eMmMOO0ELS, OIS avaAudnKe
oto Kegpdldawo 8. 'Etot, o autr) tv evotnta Sa xpnoponowndei 1o Constant Q Transform pe
pudno SerypatoAnyiag 44100, 192 bins (24 bins ava oxktafa) kat prjkog hop 4096.

H apyxitektovikr tou poviédou armoteAeital ano 61dgpopa oUveAIKTIKA emineda akoAou-
Yovpeva ano emineda péyiotng ouykevipoong (Max Pooling) yia peiwon tov Staoctdacemv
TV Xapaktnplotkeyv, eninedo flatten yia avadiataln twv debopévav kat éva mAnpng ouvd-
edepévo erminedo yla e§aynyr Xapakinploukoy, mpv @Ttacet oto eriredo e§0dou rmou xpnot-
portotet ) softmax yia moAukatnyoplakr) ta§ivopnon.

Ma v exknaideuorn tou J10VIEAOU, XPNotuoro|fnkav ot 610t ureprapdyerpol Pe 10
mponyoupevo poviédo: peyebog aptibag (batch size) 32, pubpog exkpabnong 0.0001 kat
ouvaptnon aneoieiag Sparse Categorical Cross-entropy. Ta anoteAéopata g Sradikaoiag
exrnaidevong kat agloddynong napouvociadoviat oto oxnua 9.7, deixvoviag pia ONHAVIIKY)
BeAtiwon otnv akpifeia oUYKPITIKA Pe To Tponyoupevo poviedo. H akpifela tou eknaideu-
TIKOU OUVOAOU £€¢taoce 10 72% KAl TOU OUVOAOU EMKUP®ONG 10 68%.

Ia v avdluon g anodoong Tou POVIEAOU oOtr tautornoinon tng pifag, To eminedo
ecobou tpororo)9nke Gote va repldapPfdavel povo 13 veupwveg, AVIUTPOORITEVOVIAG TIG
duvatég pifes. To poviedo katdgepe va ermtuxetl akpifeia 85% oty tautornoinon tng pidag.

H nipoogyytion tou 1D ZuvediktikoU Neupovikou AKTUOU Seix Vel OTL 1] XP101) 110 CUVIETOV
HOVIEAGV KA1 MEPIOCOTEP®V XAPAKTNPIOTIKWV AT TV MPOEMedepyaoia tov dedopévav propet

va BeATiwoel onpavukda myv akpipfeia g rpoPisyng.
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4.3 Movtédo 3: Awodlactato Zuvediktiko Neupwviko Aiktuo pe Entavadappfavopevo Aiktuo LSTM

To povtédo otr ouvéxela eknadeutnKe Katl agloAoyrO9nke otnv eUpeot) OARV TOV PEPWV

TOV OUYX0pd1wv, OTeg meptypda@statl avaiutikd oto KepdAato 9.

4.3 Movtédo 3: A1od1aotato ZuveAlKTIKO NEUP®OVIKO ALKTUO pe

Enavalapfavopevo Aiktuo LSTM

'Onwg meplypdgetatl oto 7, 1a oUVeAIKTIKA biktua edeidikevovial otV avupetoorn de-
dopévav TIou €xouv Xwplkeg oxéoels. Ta gaopatoypappata, Oto IIPONyoUHEVO HOVIEAO,
EPUNVEUONKAV G XPOVOOE1PEG dravuopdtev pe 192 xapakinplotikd. e autd 10 POVIEAO, Td
paopatoypappata 9a avilpetomnidovial @G EIKOVES, EKPETAAAEUOPEVA TA CUVEAIKTIKA £TTITESA
PV aro 1o avadpopiko erminedo yia ) SieukdAuvorn g e§aymyng XApaKIPIOTIKMV.

la va 10 emtuyoupe autod, Onwg avagépstal oto 8, 9a xpnotponoindel 1 TEXVIKL T0U
’‘chunking’ ©g éva Prpa nposnedepyaociag yia va mpostopiactovy ta Sedopéva yia ) Xpror
oe H1od1aotata povieda Badag padnong. Autr n dadikaoia neptdapPavet ) daipeon twv
eloayopevev dedopévev oe pKpOTepa TRNPatd, Kade éva anotedovpevo anod 100 ouvexopeva
Xpovika Brjpata (frames), ou aviiotolXouv Mepinou ot 7 deutepodemnta fxXou. AuUTog o
ap190g YewpndnNKe 0§ UTTEPTIAPAETPOG KATA TV EKITAIBEUON TV POVIEA®V KAl Kadopiotnke
petd anod Aertoug pudnioslg. H Aoyikr) mice and autnv v IIpootyylorn MPoEpXETatl amnod i
xpron evog BiLSTM layer otnv apX1TeKTOVIKI] PAG.

H xpron pkpov koppatuev §edopévav eival Kpiown yia i PeAtioon ng arotedeo-
paukotntag Kat mg arodotukommtag tou LSTM. Awaorioviag tn Xpovooeipd gicodou oe Ot-
axepiopa ahpata, 1o avadpopiko eninedo LSTM pmopel va katavorjoel KaAutepa TG
XPOVIKEG £8aPTAOELS eviog TV Hedopévav. AUt 1 ASMTOPEPEI EMMTPEIEL OTO POVIEAO va
pdaOet anoteAeopatikd potifa Kat oXEoelg o€ PIKPOTEPA XPOVIKA dlaotrpata, evoappuvovtag
mo axkpiPeig mpoBALwelg katl PeAtiwpévn anodoon.

Me v avupetornon Kade THNPATog ®S Pla PovadiKi) €1KOvVd, Ol OUVEAIKTIKOL OTp®-
OE1G PITOPOUV va £§AYOUV ONHAVIIKA XAPAKINPIOTIKA VIO AUTMV TOV PUIKPOTEPOV XPOVIKOV
TIEPIOXMV TOU KOPPATIou. A@ou £€axbouv ta XapaKtnploTtika arod autd ta TPnpata Xpnot-
POTIO10VIAG T OUVEAIKTIKEG OTPMOELG, T0 ertavalapBavopevo diktuo LSTM Sa ndapet autda ta
enedepyaopéva Xapaxnplotkda Kat 9a avaduoel 1ig akoAoubiakeg e§aptrjosig avapeoa ota
THNPATA, TTAPEXOVTAS Hld KATAVOLT) TS HOUOIKLG oUVOEoN§ 1€ TNV ITAP0d0 TOU XPOvou.

O1 OUVEAIKTIKEG OTPMOOELS 0 AUTO TO HOVIEAD €xouv oxedlaotel yla va aviiototyioouv ta
Sebopéva tou paopatoypdappatog oe £va Siavuopa e§66ou. Autd 1o Sidvuoua Xpnotorolei-
Tal ot ouvéxela oG £10060g yia 1o enavadapBavopevo erminedo LSTM. Autr) 1 apX1TEKIOVIKN
ermrpénet oto LSTM va katavorjoel anoteAeopatikd 11§ mAnpogpopieg mept mAaiciou pe v
ntapodo tou Xpovou.

Metd ta ektetapéva mepapata nou avagépoviat oto 9.2, kabopiotnke ot 1 pédodog
Constant-Q Transform (CQT) emetetyx9n KaAuteprn anodoorn o OXEON HE TNV IIPOCEYYIOT)
Constant-Q Chromagram. Me ) xprjon 192 yxapaxkinplotkev avii tov 12 mou xpnot-
porowiBnkav oto Constant-Q Chromagram, n pédodog CQT enétuxe KaAuteprn anodoor).
ZUVeEn®g, o€ auto 10 Kepadalo, Sa yxpnoworoirjooupe to Constant-Q Transform pe pubpo

detypatoAnyiag 44100 Hz, 192 bins kat prjkog hop 4096, napapétpoug rmou pubpiotnkav
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Chapter 4. Ileipapata kat AnoteAéopata

yla BéAuotn anodoorn. To péyeBog tou koppatiou pubpiotnke kat 1€9nke ota 100, mou
onpaivel 0Tt Kade KOPPATI KAAUTTIEL TIEPITIOU 7 deutepOAeta 1Xou.

H apyttektovikr) tou Moviédou 3 anotedeital and apKeTEG CUVEAIKTIKEG OTPOOELG AKOAOU-
YoUpeveg amod oTp®OeLg PEYIOTG CUNITIEDTG, Ol OITOlEG PEIMVOUV TIG XWPIKEG TOUG H1a0TACELS.
Ia v npoAnyn tou overfit, meptdapBavovial otpaoelg dropout, ot oroieg amoppirtouv
wxaia éva turua v povadwev e1066ou katd v exknaidsuon. H £€§060¢ artod 11§ CUVEAIKTIKEG
otpooelg yivetat flatten kat mepva amod 1o enavadapBavopevo eminedo BiLSTM, to ormoio
eneepyddetal mepattép® ta e€ayopeva Xapaktnplotikd mpv mepacetl TeAKA o €va TANP®S

ouvdebel1€vo TTUKVO eMinedo yla v KAtnyoplomnoinon.

4.3.1 Auaipeon Aedopévev Ernaideuong, A§lodoynong xat AORipng

To ouvolo 6ebopévav, MPOCAUENIEVO KAl IPOETTESEPYATHEVO ONKG reptypadetatl oto Ke-
@aAao 8, 6iapébnke oe 1pia Slakpitd ouvoda yla 1 H1EUKOAUVON TOV SOKIPOV Kal TG
a&loddynong tou poviédou. Ta ) Satipnon tng ocuvoxrg tov dedopévev eviog Ka9e Kop-
patwou, oxediaoinke £évag aAyopibpog yia ) Siaipeon tou ouvodou debopévav pe Baon to
xoppartt. Eidikotepa, ta koppdta amnd ta ddpnoup CD1, CD2, Help, kat Please Please Me
KpatdnKav amokA£10TiKA yia 1eAdkn doxkipr). Emmgov, 1o 15% tov urodoineov dedopévov
avatednke yla aflodoynor, eve 1o urddouto 85% avatédnke yla OKOIMoOUg eKmaideuong.
Autf) ) ipoogyyion diacpdAioe pia ouvektikr a§loddynon Satnpwviag v akepalotIa g

dopng tou ouvodou Sebopévav.

4.3.2 Katnyoplonoinong tng Pifag twv ouyxopdidv pe to Moviédo 3

Auty) 1) epyaoia epAapfavetl tnv KATyoplomnoinorn) g pifag kade akopviou ot pia and
1g 13 duvatég pileg (ouprnepdapPdavetal kat n yn Unapén votag) ot HPOUCIKY KATpAKd.
IMa v ermiteudn autoy, SOKIPNACTNKAV APKETEG APXITEKTOVIKEG, AAAd AUt MOU mapdyet ta
KaAUTepa AIoTteAéopata @Aivetal OTov IApaAKAt® rmivaka 9.8.

H an6boon tou poviéAou otnv Katnyoplornoinon 1oV piov @aivetal oto ypagnpa mou
@ativetat oto Zxnua 9.18. To poviédo eknatdeUnke yia 40 eMOXEG PETA ATIO MEIPAPATIONOUG
pe arAeg ermdoyég. Tooo 1 axkpifela ota Sedopéva exknaideuong 6co kat ota afloAoynong
otadepornoteital oe mepinou 93% kat 86% avtiotolxa, €va oAU KAAUTEPO ATIOTEAECHA OF
ouykpton pe 1o Movigdo 2.

To povtédo otr ouvexela eknaldeUTnKe Katl agloAoyr9nKe otnv eUPeot] OARV TOV PEP®V

TOV OUYX0pdlwV, ONeg meptypd@statl availutikd oto Kepddato 9.

4.4 ITOvoyn TV ANOTEASORATOV

Y& autd 1o Keparalo e§epeuvrioape TPelg S1aPOPETIKEG TIPOOEYYIOELS UPXITEKTOVIKES Yia
10 TIPOPBANHA TNG AvVayvoPlong ToV akOopvieov. To apXiko POoVIEAO XPNOHonoinoe £va ario
1D Zuvehikuxo Nevpwvikod Aiktuo (CNN) og Bdon yia a§loddynon, ErmKeVipovoviag os Pep-
ovopéva embeddings akopviov X®pig va AapBavetl vnioyrn ) dewpia g NOUOIKNG KAl TG
OXEOE1G TOV AKOPVIOV. QOTO00, AUTH| 1] IIPOCEYY10T] KITOPEL va £XE1 TTIEPIOPIOHEVEG SUVATOTNTEG

poBAeyng AOY® TG ayvonong g HOUOIKYG dempiag Katl T®V OXE0EDV T@V AKOPVIMV.
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4.4 TUvoyn 1oV Anotedeopdtov

To emdpevo POVIEAO XPNOIHOTIONOE Hld IO TTOAUTTAOKY apyttektoviky] 1D CNN ywa va
avalyoel Teplooo0Tepa TEPIMAOKA potifa eviog twv 6edopévav akopvieov. Méow melpapa-
Tiopou, kabopiotnke ot 1) Xprjon g pebodou Constant Q Transform (CQT) pe 192 xapak-
PoTIKA UTtepTePEl g npoocyylong Constant-Q Chromagram. Auto 1o poviédo neplAdap-
Bave cuvedikTikEg otpwoelg, otpwoelg Max Pooling kat otpcdoelg dropout yia v mmpoAnyn
tou overfitting. EmutAéov, epappootnkav teXVIKEG HETAPOPAS PASNoNg yia va avilpET®ri-
OOUV ATOTEAECOPATIKA £PYAOIEG OTIOG 1] avayveplon g pidag, n facikn vota, n 1p1ada Kat
01 EMEKTACELG, EVIOXUOVIAG TV anob00or ToU PoVIEAOU ot §1apopa OToXEId TG avayvoplong
AKOPVIOV.

10 1eAKO POVIEAO, XprjotpornoOnke éva 2D ZuveAiktiko Neupoviko AiKTuo pe ertavaiapl-
Bavopeva enineda Bidirectional Long Short-Term Memory (BiLSTM). Auto 1o poviédo eixe
®G €10060 Ta PACPATOYPAPHATA G EIKOVEG, HIEUKOAUVOVTAG TNV £§AYRDYT] ONHAVIIK®OV XAPAK-
TNPIOTIKOV OF PIKPOTEPA XPOVIKA HlaoTthjpata XP1olH0IoldVIaS OUVEAKTIKEG otpaoelg. H
S6iadikaoia tou "chunking", 6niwg avaduvetat oto 8, xprnotporno|fnke wg éva Prjjia mpoeret-
epyaoiag yia va xwpioet ta dedopéva e100dou os drayxepioa tphpata, PeAtiovoviag v
wKavota tou LSTM va aiypadetilet xpovikeg egaptroetg. ‘'Onwg Kat 0To IIPONYOUEVO [10V-
t¢do, 1 pedodog Constant Q Transform mpotpnBnke évavu g npoogyylong Constant-Q
Chromagram, Kat epappootnNKav IEXVIKEG PeTapopds nadnong yia va Bedtidoouv v amnod-
6o0n og H1APOPES EPYAOIEG AVAYVOPIONG AKOPVIDV.

‘OAa ta npoavadepbevia povieda eknadevutnkav, Sokpdctkav Kat aglodoyrOnkav
Xpnowornowwviag pia povada eneepyaoiag ypagkov (GPU), e1bikdtepa pia KApta ypapikmv
NVIDIA GeForce GTX 1650 SUPER pe 4 GB pviung. Adye tng Imeploplopévng Pvhung,
£PaPPO0TNKAV IIPOCAPIIO0HEVOL generators MAKEI®V avii g XP1ong TV IIPOKOOKOIo)-
pévev vdorojoewv mou eivat Siabéopeg oto maxkéto TensorFlow. Eivail evdiagépov va
onpewbouv ot xpovol exknaibeuong yia kade poviedo. Ot xpovol ekrnaideuong, petpnpévot
oe deutepoAertta, @aivoviat oto Zxnua 9.34. O xpdvog exknaidevong tou Moviédou 2 yia
g epyaoieg katnyoplornoinong Pi{ag kat Baong eivat cuykpiopog pe autdév tou Moviedou
3. Qot600, yia 11§ UTIOAOLIEG TPELS €PYaoieg, To Moviedo 3 amattel onpaviika mePlocOTEPO

XPOVO AOY® g auiniiévng MOAUMAOKOTTAG TRV EMITAEOV OTPOUATOV TOU.
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Chapter E

Meta-Encefepyaocia AOTEAEOPATROV

To kedpdAalo auto arotedel MePIANYPN TV ONUAVIIKOV OTo1XElwV Tou KepaAaiou 10, ota
eAANVIKA. 210 KePAAA10 AUTo, MPOYXMPAE O U1 EKTEVI] AVAAUOT S1aPOPROV TEXVIKWV HIETE-
MegePyaoiag rmou otoXeUoUuV OtV TEAEI0TTOIN 0 TV IPOBALPEMV OUYXO0PSIOV IOV IIPOKUITIOUV
and ta Poviéda pag. AUTEG O1 TEXVIKEG TTEPLYPAPOVIAL AETTIOPEP®S Y1d MTANPI KATAVON 0N Kat
epappoyr.

Apxikd, Eexvape pe tov ouvdlaoio v PoBALYPERV TOV EMPEPOUS OTOXEI®V TOV OUY-
Xopd1®v, ®ote va rtapoupe ta tedikd dedopéva poBleyng, kade éva amno ta oroia avriotoryel
0€ £va OUYKEKPIPEVO OUYXOPO1aKO OTo1XElo, Onwg 1 pida, To Praco, n tptada Kat ol EMeEK-
Tdoelg. AUTA 1 PEPOVOMEVA OTOLXElA OUYX®VEUOVIAL 0TI OUVEXELWD OF Jla MPoBAeyrn, tn
ouyyopbia, rmou arotedel 10 TEAKO anotédeopa.

Yt ouvéxela, §etaloupe TG TEXVIKEG Hetenedepyaoiag mou oxedidotnkay 181KkdA yia )
BeAtinon tewv mpoPAiyenv Twv ouyXopdiwv. Mia arno autég repidapfavet to @lAtpapiopa
kAa9¢e ouyyopbiag Baocet mpoxkadoplopévav Kavovav rou da doupe AeTTOPEP®S.

Erumiéov, napouoidloupie évav pnxaviopd opalornoinong oxedlaopévo yla va evioxu-
O€l 1] OUVOXI] KAl T OUVENEeld 1oV npoBAéyewv ouyxopdiwv. Auth n dabikaocia avuka-
S1otd TpEG eVvidg evog KaBoplopévou apabuUpou e TV o cuvnOIoPEV T OtV IIEPLOXT),
eCadeipovrag arotopeg Stakupavoelg kat egaopadiloviag opaAotepeg petabdoeig petadu tov
ouyxopoimv.

Emiong, mepapatdopacte pe v epappoyr] TEXVIKOV OopdAorioinong 1000 Otl§ Ouy-
X0pdieg Tou cuvapPodouv 600 Kat ota PEPovePEvVa OTolXela TV ouyxopdiwv. Iapatnprdnke
OT1 11 OPLAAOTION 01 KAYE CUYKERPIIEVOU OTOLXEIOU TG ouyXopdiag é6woe KaAUtepa AmoteAéo-
pata og OUYKPL0n HE TV OPAAOIION01] T@V CGUVOAIK®V oUuyxXopdldv. AUTH 1] MPOCEYY1on
arode1kvUETAl AMOTEAEOPATIKY, KaBwg AapBdavetl unoyrn ta §1aKkp1td XapaKInploTiKA KAt T
Suvapikr) tou kade ouyxopdiakou oroixeiou oto otadio g petenegepyaoiag.

TéAdog, egetaloupe g pebodoug @Atpapiopatog mou epappodoviat ota dedopéva ouy-
Xopbiwv petd v opaloroinon. H xkUpla eotiaon €66 eivat otoug Kavoveg TOU XP1ol-
porolouviatl yld ToV EVIOITIOHO KAl 10 @IATPAPIoPd oUyXopdidv BACEl CUYKEKPIPIEV®V KPITNpimv.
H ouvbuaopévn epappoyn v TEXVIK®OV PEENegepyaoiag anodekvuetal ¥g 10XUPTr) IIPO0EY-
Y101 TIOU €VIOYUEL ONPAVIIKA TNV anodoorn Kat v akpiffela tou ouotipatog avayvepiong

ouyxopdi®v pag.
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Chapter E

AnoteAeopata rat IIpotacelg yra MeAAovtikn ‘Epe-

uva

6.1 AnotsAéopata

To kedpdAalo auto arotedel MePIANYPN TV ONUAVIIKGOV OTO1XEI®OV Tou KepaAaiou 11, ota
eAMAnvikd. e auto 1o Kepdaldato, aflodoyoupe 10 CUCTNHA AVAYVOPIONG OUYX0opdidv pag
xpnowporowwvtag tg perpikeég tou MIREX (Music Information Retrieval Evaluation eX-
change). To MIREX rap€xel £éva Ipoturionotnpévo miaiolo yia v a§loAdynon tov ouotr-
PATOV avAKInong mAnpopopidv POUoIKNG, Kafiotoviag To éva 18aviko PEIPOo OUYKPLoNG TV
AOTEAEONATOV PAG PE autd arnd dAdeg pedéteg. EeKivoviag arto ty e§1ynor TOV PETPIKOV
a&lodoynong tou MIREX (Aerttopepeig e€nyrjoeig oto Kepddato 7) kat ) onpacia toug oty
avayveptlon ouyxopdiov, Staopadidoupe ot n a§loddynon pag sival t1ooo mAnpeng 600 Kat
ouykpioyn pe dAda Kopudaia cuotipata.

1o mAaioto g agloddynong tou MIREX, sivat eviiapépov va ouykpivoupe tr) Avon pag
pe dAda apbpa. Ot Gasser kat Strasser [13], otnv unoBoArn toug, akoAoubnoav pia napo-
pola mPooeyylon X®Pidoviag tTa aKKOPVIA 0€ OUCTATIKA Kdl Ot GUVEXELd XP1O1onoinoav
ma apxitektovikyy CNN epappoloviag Metapopd MdaSnong yia kads ouctatiko. H xupua
Slapopd eival n xprion ermnedov Bi LSTM otnv mepinioor] pag KAt Ot TEXVIKEG PETETESEP-
yaoiag.

Ot Park, Choi k.d. [14] xpnotpomnototv évav pnxaviopo auto-rpoooxng (self-attention)
Yld TV avayvoplon aKKOPVIEV MPOKEIPIEVOU va ETMIKEVIPOOOUV 08 OUYKEKPIIEVEG TIEPIOXES
1OV akkOpviov. H eknaideuon tou npotevopevou Moviédou Bi-directional Transformer yua
mVv avayvoplon akkopviov (BTC) amotedeitatl and pia povo @dor, sve gpgavidel aviay-
wviotikn arnodoor). IIpoékuye OTL TO POVIEAO PIIOPECE va S1aX®PI0El TUNPATA TOV AKKOPV-
TV XPNOPOTIOIOVIAG TO TIPOCAPHO0TIKO 1edio aAAnAemnibpaong Tou Pnxaviopou nmpoooxns.
ErumA¢ov, mapatnpndnKe o0Tt 10 POVIEAO UITOPECE AMOTEAECIATIKA VA aviiAn$Oel pakporpo-
Oeoyieg e€aptioelg, XPNOONIOIOVIAG TI§ 0UOIRdelg AN POPOPieg avefapttwg Anootaong.

Tédog, ot Jiang, Ke Chen k.d. [15] mpoteivouv €va véo HOVIEAO Yld TIPAKTIKEG €P-
yaoieg petaypadng akkopviov. H xupla évvola tou véou poviédou eival va avanapaott)-
0€l OTIO108TIOTE ETKETA AKKOPVIOU HE €va ouvodo uropovadev (6nA. pila, tpiada, Bdaon)
oupdmva pe TS Kowveg pouoikeg dopég toug. ‘Evag multitask classifier exknaibevetat ot

OUVEXELWD VA avayvepiel 0Aeg Tig uropovadeg §eboPEvNG TNG XAPAKINPIOTIKIG TIEPLYPAPNS
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Chapter 6. Anotedéopata kat ITpotaoceig yia MeAdovukn ‘Epsuva

TOU 1)X0U, KAl OT OUVEXEWA Ol EUKEIEG T®V HEPOVOUEVAOV UTIOPOVAd®V £mavacuvapiiodo-
youvidal yla va oxnpatioouv v TeAlKI) €UKETa aKKOpvIou. [Ma v KATaoKeur) Tou IOAU-
£0YQOTNPE1AKOU tagivopuntr] xprotporoteitat éva Avadpopiko ZuveMkuko Neupwviko Aiktuo
(RCNN).

Egetaloviag g petpikég otov mivaka 11.2, BAéroupe ot 1o poviédo pag Model2+S+F
napouotadet e§alpetikn anodoor) yevikd, Pe tnv akpifeia avayvopiong g é86oung votag va
eivat 181aitepa evium@olaky]. AUt 1] ONPAVIIKT] €MTEUEH UTIoypappidel v avhekukotta
TOU POVIEAOU Jag, T0 oroio e§e1dikevetal otV avayvopior TV AEITIOPEPEIWV TTOU TTEPAAL-
Bavovtatl oe autég Tig EPITAOKEG IOUOIKEG HOEG AKKOPVI®V. ‘Ol LOVO TO HOVIEAO ag eTTL-
dewkvuet e€alpetikr) ertidoon oe auto T0 CUYKEKPIIEVO TTPOPANIA, aAdd ouvexilet va epgavidet
AVIAy@VIOTIKY] anodoon Kat oe dAdeg katnyopieg agodoynong MIREX. Autr n Swamtiotwon
unootnpidetatl ano avaduoeslg oUyKplong pe adda poviéda, onwg ta KBK2, BTC+CRF kat

JLCX1, ta oroia eivat 6Aa e€alpetikd povigda.

6.2 TIIpotaocseig yia MeAAdovtikn ’Epeuva

Auti) n SumMAePAatTiky epyaocia £€xel SNOUPYOeL £va OTEPEOD £8APOG Yia OUVEXT) Katvotopia
KAl €peUva OTov Topéa g avayvoplong ouyxopdiov. IIoAAég emAoyég mpoteivoviatl yia
peAdoviiky €peuva, KAde pia ano tig onoieg unooyetatl va Sieupuvel T1g SuvaTOTnTeEG KAl TNV

axpifela tov adyopidpwnv avayvopiong ouyxopdiov.

6.2.1 Enéktaon tev IInyov Asdopévav

H nepropiopévn ipdoBaor os apyeia 1Xou A0Ym MEPLOPIOP®V TIVEUPATIKAOV SIKAIOPATOV
EPIOB10€ TNV ATTOKTN O] £VOG PEYAAUTEPOU OUVOAOU Sedopévav yia ekmaibeuon Kat SOKI|T).
Me v nipoodrkn 6edopévav amo €va eupuTEPO PACHA POUCIK®V OTUA, 10 anotédsopa Sa
HITIOPOUOE VA TIPOCPEPEL LEYAAUTEPT TIPOCAPHOOTIKOTITA KAl AKPIREIa oIV avayvoplon ouy-

X0pdiav, £1861kA 010 TTAAIO10 1§ OUYXPOVNS SUTIKLG POP HOUCIKHG.

6.2.2 Evoopatwon Apxov Otswpiag tng Mouoikig

H evoopdatewon apxov g dewpiag g HOUOIKLG otoug alyopifpoug avayveplong ouy-
Xopbiov Sa propouce va odnyroel O€ IO POUOIKA EVIHEP®UEVEG TPoBAEwels. Me tnv
a&lomoinon yvooewv yla IPOYPECOIOVIKEG OE1PEG OUYXOPO10V, APUOVIKEG AEltoupyieg Kat
Hedwdikég taoelg, 0 poviédo Sa Pmopovoe va MAPAyel ITo0 GUVAKOoAoubeg Kat atodnuka

IKAVOTIOUTIKEG ATIOTEAEoPATA.

6.2.3 Evoopdtwon Beat Tracking

H xataypaer] pudpou, av kat éva {exwptoto rpoéBAnpa tagivopnong oto MIREX, xkpufet
tepdotio Suvapiko g npocdetn €10060¢g yla ta Povieda avayvoplong ouyxopdiwv. Me v
oupniepiAnyn debopévav kataypagng pudpol wg deutepevouoa €icodo, o alyopidpog Sa
propouce va diakpivel KAAUTEPA TOV XPOVO TV aAAayov ouyxopdiwv, obnyoviag oe 1o
axp1Pr) Kat oupIepaopatikd anotedéopata. Autr) r evoopdatoorn Sa odnyrjoet oty avartuin

o SUVAPIK®V KAl pudpika £uaiodNIOV CUCTHPIATOV AvVAYVOPIoNG OUYX0Pdiov.
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6.2.4 Avayvoplon tng KAipaxag (key detection) wg Brjpa Ipo-Ene§epyaoiag

6.2.4 Avayvoplon tng KAipakag (key detection) wg Bripa IIpo-Ene§epyaociag

H evowpdtwon alyopibuwv avayvoplong tng KAipakag og éva Prpa mnpo-eneiepyaociag
9a propovoce va rpoodEpet TIOAAA o@EAn otr Pedtioon g akpifelag g avayvoplong ouy-
Xopdidv. Amoppirtoviag ouyxopdieg rmou Sev meptdapBavovial oty KAlpaka, 1o ovotpa
propet va ermkevipwOel otnv avaduon Kat ipoBAeyn ouyxopdiov mou eival apploviKA OUVEK-
TIKEG KAl POUOIKA onpaviikeég. Autn 1 mpoogyylon Sa pnopouce va G1eukoAuvel 1 Ot1-

adkaoia avayvoplong ouyxopdi®v Kat va BeEATIOoEL T CUVOAIKY TTOOTNTA TV IIPOBAEPEDV.
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Chapter

Theoretical Background

The purpose of this section is to analyze certain theoretical concepts that will be
mentioned across this work and play a major role in understanding the models or the
problems they try to solve. It is also important to analyze basic music theory concepts

that are relevant to the problem.

7.1 Basic Music Theory

In this chapter, we explore the fundamental concepts of music theory that underpin
chord recognition, providing essential insights into the harmonic structures and relation-

ships present in musical compositions.

7.1.1 Intervals

A popular harmonic representation in the audio and symbolic realms is the chord-
label. Particularly in North America, there is a long history of Roman numeral-focused

teaching that gives rise to the usage of chord labels in symbolic music (e.g., [16], [17]).

Approaches rooted in music theory and cognitive science, such as the methodologies
proposed by Krumhansl [18] and Lerdahl [19], have influenced the development of com-
putational distance metrics for chords (e.g., [20]-[21]. However, within the field of music
information retrieval, much emphasis has been placed on chord recognition due to its
straightforward translation into a classification task. Existing chord estimation metrics,
as seen in current MIREX standards (refer to Table 1), primarily focus on predicting chord
labels, with varying levels of simplification implemented to accommodate differences in

chord vocabulary size [22].

It’s essential now to analyze intervals to better grasp these concepts. Intervals are the
building blocks of scales, chords (or harmonies), and melodies. Intervals are a measure-
ment between two pitches, either vertically or horizontally. When measuring vertically,
we refer to harmonic intervals because the two notes sound simultaneously. When mea-
suring horizontally, we refer to melodic intervals because the notes occur one after the
other [1].
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measured horizontally = "melodic" interval

v }‘ !—nﬂ; ': ﬂ? re—f* il
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measured vertically = "harmonic" interval

Figure 7.1. Difference between harmonic and melodic intervals [1].

The following intervals can be found by measuring a major scale from the tonic up to

each scale degree:

perfect major major perfect perfect major major perfect
unison  second  third fourth fifth sixth  seventh octave
(P1) (M2) (M3) (P4) (P5) (M6) (M7) (PR)

Figure 7.2. A visualization of either “perfect” or “major” intervals [1].”

To summarize an interval is a certain distance between 2 notes. They are divided
in two categories: Melodic and Harmonic. In melodic intervals the notes are played one
after the other, while in harmonic they are played together. The smallest musical interval
frequently used in Western tonal music is the semitone, sometimes known as a half step
or a half tone, which is also thought to be the most dissonant when sounded harmonically.

Semitone counting alone cannot determine the names given here 7.1.

Table 7.1. Intervals and their Properties

Number of Semitones | Minor, Major, or Perfect Intervals | Augmented or Diminished Intervals
0 Perfect unison Diminished second
1 Minor second Augmented unison
2 Major second Diminished third
3 Minor third Augmented second
4 Major third Diminished fourth
5 Perfect fourth Augmented third

2*6 - Diminished fifth
- Augmented fourth
7 Perfect fifth Diminished sixth
8 Minor sixth Augmented fifth
9 Major sixth Diminished seventh
10 Minor seventh Augmented sixth
11 Major seventh Diminished octave
12 Perfect octave Augmented seventh
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7.1.2 Introduction to Chords

Chords form the backbone of music, providing harmony and depth to melodies. In
essence, a chord is a combination of three or more notes played simultaneously. These
notes are typically chosen from a specific scale and arranged in intervals, creating unique
sounds and emotions. Chords serve as the building blocks of songs across various genres.

Splitting the chord structure into major components provides a systematic approach
to understanding its composition and function. A chord can be dissected into several
elements, each contributing to its overall sound and character. The primary components

include the root, bass, triad, and extensions.

e The Root of a chord serves as its foundation, determining its fundamental pitch
and tonal center. It is the note from which the chord derives its name and provides

a sense of stability and resolution.

e The Bass note is the lowest sounding pitch in the chord. While it often corresponds
to the root note, especially in basic chord structures, it can sometimes differ, pro-

viding additional depth and color to the chord.

e The Triad forms the core structure of many chords, consisting of three notes stacked
in intervals of a third. These notes typically include the root, a third (either major

or minor), and a fifth, creating the basic harmonic framework of the chord.

The simplest example of a chord is a Triad. A class of chords known as the triad is
made up of three-note chords, or root, third, and fifth, expressed by the formula 1-3-5

[11]. They are made up of two successive thirds in this example 7.2.

Table 7.2. Kinds of Triads b represents "flat” or "lowered’, { represents "sharp” or "raised”)

[11].
Root | 3rd | 5th
Major 1 3 5
Minor 1 b3 5
Augmented 1 3 5
Diminished 1 b3 b5

7.1.3 Chord Representation

Chord representation is essential in music theory as it allows us to understand the
harmonic content of a piece of music. Chords can be represented in various ways, in-
cluding chord symbols, chord diagrams, and chord charts.

One common method of chord representation is through chord symbols, which use
letters and symbols to denote the root, quality, and extensions of a chord. For example,
the chord symbol "Cmaj7" represents a C major seventh chord, consisting of the notes C,
E, G, and B. Similarly, "Dm7" represents a D minor seventh chord, comprising the notes
D, F, A, and C.

Every chord symbol in the table below has its matching intervals and the chord’s

whole name next to it 7.3.
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Table 7.3. Basic Chords and Their Representations

Chord Symbol Intervals Full Name
C 1,3,5 C major
Cmaj7 1,3,5,7 C major seventh
Dm7 1, b3, 5, b7 D minor seventh
E7 1, 3,5, b7 E dominant seventh
Fm 1,03, 5 F minor
Gsus4 1,4,5 G suspended fourth
Am9 1,3,5,9 A minor ninth
Bm7b5 1, b3, b5, b7 | B half-diminished seventh

7.2 Machine Learning & Deep Learning

7.2.1 Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computers
to learn from data and make predictions or decisions without being explicitly programmed
[23]. Its goal is to develop algorithms and models that can automatically detect patterns
and insights in data and make predictions or decisions based on these patterns. There are
three main types of machine learning: supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning is the most common type, involving training a
model on a labeled dataset where the output variable or target is known. The model is then
tested on new, unseen data to evaluate its performance. Examples of supervised learning
include image classification, speech recognition, and natural language processing [24].

On the other hand, unsupervised learning involves training a model on an unlabeled
dataset where the output variable or target is unknown. The model is then used to identify
patterns and information in the data, such as clustering or dimensionality reduction.
Examples of unsupervised learning include anomaly detection, market segmentation,
and feature extraction.

Reinforcement learning is a type of machine learning that focuses on training models
to make decisions based on feedback or rewards. It is often used in situations where
the outcome of a decision is uncertain or the optimal decision may change over time.
Examples of reinforcement learning include robotics, games, and control systems.

Gathering and cleansing data is usually the first step in the machine learning process.
This is an important stage because the model’s performance can be greatly impacted by
the quality of the data. The data is separated into a training set and a test set once it
has been cleaned and prepared. The test set is used to assess the model’s performance,
whereas the training set is used to train the model.

Choosing an appropriate model and method for the given task is the next step. Nu-
merous models and techniques are at one’s disposal, including support vector machines,
random forests, decision trees, and neural networks. The kind of problem, the intricacy
of the data, and the resources at hand all influence the model and algorithm selection.
The model is chosen, and it is subsequently trained using the training set. Finding the

model’s optimal parameters to minimize error on the training set is the aim of training
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and it is called fine tuning. Subsequently, the model’s performance is evaluated on the
test set to make sure it doesn’t overfit the training set. Overfitting occurs when a machine
learning model captures noise in the training data rather than the underlying pattern,
resulting in poor generalization to new data [25].

The model can be used to forecast new, unseen data after it has been trained and
evaluated. This is commonly known as deployment or inference. Applications for the
model include natural language processing, speech recognition, and image classification.

Machine learning has several uses and has been implemented in a number of indus-
tries, including manufacturing, healthcare, finance, and transportation. For instance,
machine learning has been applied to the healthcare industry to create models that as-
sist in medical diagnosis, identify potential health hazards, and forecast patient outcomes.
Machine learning has been used in finance to forecast stock values, find possible invest-
ment opportunities, and detect fraudulent transactions. Supply chain optimization, traf-
fic prediction, and driverless cars are just a few of the transportation systems that have
benefited from the application of machine learning. Machine learning has been applied in
manufacturing to enhance quality control, forecast equipment breakdowns, and optimize

production processes.

7.2.2 Deep Learning

Deep learning (DL) is a sub-field of machine learning that utilizes deep neural networks
to model and solve complex problems. Originating in artificial intelligence, the idea of
deep learning has become increasingly popular in recent years because it can deliver
state-of-the-art performance on a variety of tasks, including speech recognition, image
classification, and natural language processing [26].

Deep neural networks, also known as deep learning models, consist of multiple layers
of interconnected artificial neurons, where each layer receives input from the previous
layer and produces output for the next layer. The architecture of deep neural networks
allows them to automatically learn and extract features from raw input data and per-
form highly complex nonlinear transformations. This contrasts with traditional machine
learning models, which typically require manual feature engineering [27].

Several techniques can be used, depending on the application, to train deep learning
models. The most popular technique for training deep learning models is supervised
learning, in which the model is trained using a labeled dataset with the aim of minimizing
the difference between the expected and actual outputs. Additional training techniques
include reinforcement learning, in which the model learns to make decisions in response
to rewards or feedback, and unsupervised learning, in which the model is trained on an
unlabeled dataset.

Deep learning has also been used to generate cutting-edge results in a variety of
applications, including audio recognition, image classification, and natural language pro-
cessing. For instance, deep learning models have been applied to picture classification to
automatically identify objects and scenes in photos and to reach performance that is on

par with or even better than human ability. Deep learning models have been applied to
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voice recognition in order to obtain performance that is on par with or even greater than
that of conventional methods, including automatic speech transcription. Deep learning
models have been applied to natural language processing to generate and understand
language automatically, with results that are on par with or better than those of more

conventional approaches.

Moreover, new methods and architectures are being created quickly in the rapidly
evolving discipline of deep learning. More sophisticated and potent layouts, like trans-
former, recurrent, and convolutional neural networks, have been the subject of research
in recent years. In order to enhance the performance of deep learning models on novel
tasks and domains, new methods for training them—such as domain adaptation and

transfer learning—have also been created.

In Conclusion, deep learning is a potent instrument with the ability to transform nu-
merous industries and tackle a broad variety of issues. Deep learning does, however,
have several drawbacks, much like machine learning, including the requirement for vast
amounts of high-quality data, the complexity of the models, and the computational re-
sources needed for training and refining deep learning models. Despite these difficulties,
deep learning is anticipated to maintain its prominent position in the artificial intelligence

space and to propel the creation of novel and fascinating applications.

7.3 Convolution Neural Networks (CNN)

Artificial Neural Networks (ANNs) are computational systems inspired by the biological
nervous systems, such as the human brain. They consist of interconnected computational
nodes, or neurons, which collectively learn from input data to optimize their final output
[2].

The basic structure of an ANN can be illustrated as depicted in 7.3. Input data, usually
in the form of a multidimensional vector, is fed into the input layer and propagated to the
hidden layers. These hidden layers make decisions based on the previous layer’s output,
adjusting their internal parameters to improve the final output through a process known
as learning. When multiple hidden layers are stacked upon each other, it is referred to

as deep learning.
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Input Layer Hidden Layer Output Layer

Figure 7.3. A simple three layered feedforward neural network (FNN), comprised of a
input layer, a hidden layer and an output layer. This structure is the basis of a number
of common ANN architectures, included but not limited to Feed- forward Neural Networks
(FNN), Restricted Boltzmann Machines (RBMs) and Recurrent Neural Networks (RNNs) [2].

Similar to conventional ANNs, convolutional neural networks (CNNs) are made up of
neurons that learn to optimize themselves. ANNs are based on the fact that each neuron
will continue to receive an input and carry out an operation (such a scalar product followed
by a non-linear function). The entire network will continue to express a single perceptive
score function (the weight) from the raw picture vectors that are input to the class score
that is generated at the end. The final layer will include loss functions linked to the
classes; all of the standard advice and techniques created for conventional ANNs still

holds true [2].

CNN has four layers: convolution layer, pooling layer, fully connected layer, and
nonlinearity layer [3]. Illustrations of those four layers are presented in 7.4. Further

explanations regarding the description of each layer will be shown in this chapter.
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Figure 7.4. CNN Architecture [3].
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7.3.1 Convolutional Layer

In order to determine the convolution of the input images and extract the essential
information, the convolutional layer uses a kernel filter. Compared to the input image,
the filter kernel’s dimensions are the same, but its constant parameter value is less
[28]. Filters are applied to the input data using a process known as convolution in
Convolutional Neural Networks (CNNs), where the filter moves over the input data and
the dot product between the filter and the input data is computed at each position. The
result of the convolution is a activation map, which is a representation of the input data
that is more abstract and compact than the original input data. The convolutional layer’s
general equation can be written as in 7.1. A straightforward representation of the CNN
calculation process that yields the activation map can be shown in 7.5. A convolutional
layer is characterized by its kernel size, stride length, and padding [29]. The kernel size
refers to the dimensions of the filter or the moving kernel [30]. Stride length denotes the
number of steps taken by kernels before computing product points and generating output
pixels [31]. Padding represents the dimensions of the zero-padding applied around the

input feature map [32].

cols (rows
Activation map = Input = Filter = Z Z Input(x — p, y — g)Filter(x, y) (7.1)
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Figure 7.5. Conwolutional Layer [3].

7.3.2 Pooling Layer

Pooling layers partition the input data into smaller sections known as pooling windows
or receptive fields. Within each window, an aggregation operation is performed, like
selecting the maximum or averaging the values. This process decreases the dimensions
of the feature maps, creating a condensed portrayal of the input data. In 7.7 an example

of max pooling is presented.
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15 | 29 0 9

Max-pooling
(2x2) 29 | 9

117 | 20 105 | 160\ 117 | 160

56 | 28| 5 1y

Max(105,160,5,10)=160

Figure 7.6. Max Pooling [3].

7.3.3 Fully Connected Layer

Typically, the final convolution or pooling layer’s output feature maps are flattened, or
converted into a one-dimensional array or vector of numbers [33]. After that, this array is
connected to one or more fully connected layers, also called dense layers, in which every
input and every output are coupled by a trainable weight. nce the features extracted
by the convolution layers and downsampled by the pooling layers are created, they are
mapped by a subset of fully connected layers to the final outputs of the network, such
as the probabilities for each class in classification tasks. The final fully connected layer
typically has an equal number of output nodes to classes. A nonlinear function like ReLU

comes after each completely connected layer.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution | /—A
(5;“:' ":::'el Max-Pooling {s;f:l k::."e' Max-Pooling (with
valid padding 2x2) valid padding 2x2) . droponit]

o oo
® 0:
@ 2

INPUT nlchannels nl channels n2 channels n2 channels E . 9
(28x28x1) (24 x 24 xnl) (12 x 12 x nl) (8 x8xn2) (4x4xn2) ';‘ OUTPUT
n3 units

Figure 7.7. CNN Architecture [4].

7.3.4 Nonlinearity Layer (Activation Function)

Activation functions (AFs) are pivotal components within neural networks, as they
facilitate the learning of abstract features through nonlinear transformations [34]. Several

key properties characterize AFs:

e they introduce nonlinear curvature to the optimization landscape, enhancing the
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network’s training convergence.

e they should maintain a reasonable level of computational complexity within the

model.

e they must not obstruct the gradient flow during training.

e they should preserve the distribution of data to facilitate more effective network

training.

Two commonly used examples of activation functions are ReLU (Rectified Linear Unit)

7.2 and Sigmoid Function 7.3.

x ifx>0
ReLU(x) = (7.2)
0 otherwise

1
l1+e™™

Sigmoid(x) = (7.3)

7.4 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) constitute a specific type of neural network ar-
chitecture primarily designed for recognizing patterns within sequential data. This data
can encompass various forms such as handwriting, genetic sequences, text, or numerical
time series, commonly encountered in industrial contexts like stock market data or sen-
sor readings [35]. Furthermore, RNNs can also be adapted to process images by breaking
them down into patches and treating them as sequential data . In broader applications,
RNNs are utilized in tasks such as Language Modeling, Text Generation, Speech Recog-

nition, Image Captioning, and Video Tagging [5].

What sets Recurrent Neural Networks apart from Feedforward Neural Networks, also
known as Multi-Layer Perceptrons (MLPs), is the way information flows through the net-
work. While Feedforward Networks transmit information linearly, RNNs incorporate cy-
cles, allowing information to circulate back within the network. This characteristic en-
ables RNNs to consider not only the current input but also past inputs, thus extending
the capabilities of Feedforward Networks. This distinction is illustrated at a high level in
Figure 1, where multiple hidden layers are represented by a single "Hidden Layer" block

(H), which can be expanded to accommodate multiple layers as needed.
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Figure 7.8. Visualisation of differences between Feedfoward NNs und Recurrent NNs [5].

At a high level, an RNN processes a sequence of inputs x = xj, xo, ..., Xr and produces
a sequence of outputs y = yi, yo, ..., yr. The fundamental concept of an RNN is to utilize
a hidden state vector h; to capture information from previous inputs in the sequence and
use this hidden state to compute the next output in the sequence. The hidden state is
updated at each time step based on the current input and the previous hidden state:
hs = f(x¢, h—1), where f is a non-linear function mapping the input and the previous
hidden state to a new hidden state. The output at each time step is then computed as a
function of the current hidden state: y; = g(h;), where g is a non-linear function mapping
the hidden state to the output.

We can represent the process of transferring information from the previous iteration to
the hidden layer using the mathematical notation introduced in [36]. To do so, we denote
the hidden state and the input at time step t respectively as H; € R™" and X; € R™¢,
where n is the number of samples, d is the number of inputs for each sample, and h is the
number of hidden units. Additionally, we utilize a weight matrix W3, € R®", a hidden-

R™", and a bias parameter b, € R". Finally, all

state-to-hidden-state matrix Wy, €
this information is passed through an activation function ¢, typically a logistic sigmoid
or tanh function, to prepare the gradients for use in backpropagation [5]. Combining all

these notations results in 7.4 for the hidden variable and 7.5 for the output variable:

H; = ¢(Xi Wy + Hi_y Whp, + bp) (7.4)

Since H; recursively includes H;_; and this process occurs for every time step, the
RNN incorporates traces of all hidden states that preceded H;_; as well as H,_; itself. This

process can be represented by the following equation:

Ot = ¢po(HWhpo + by) (7.5)

One of the primary advantages of RNNs is their ability to handle input sequences of
arbitrary lengths, as the hidden state captures information from all previous inputs in the
sequence. However, a significant challenge in training RNNs is the problem of vanishing
or exploding gradients, which occurs when the gradients used to update the network
parameters become either very small or very large, making it difficult to learn long-term

dependencies.
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To address this issue, various variations of RNNs have been proposed, including the
Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, which
employ specialized gating mechanisms to control the flow of information within the net-

work.

7.5 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks provide a solution to the vanishing error
problem in neural networks. They can effectively learn to bridge time lags of more than
1,000 discrete time steps. This is achieved through the use of constant error carousels
(CECs), which maintain a consistent flow of error within specialized cells [6]. Access to
these cells is regulated by multiplicative gate units, which dynamically control when to

grant access. The LSTM layout can be seen in 7.10.

outputs to
recurrent next layer

connections
- B S

e

V'iyout

output
gating

" memorising

Figure 7.9. A standard LSTM memory block consists of (at least) one cell with a recurrent
self-connection (CEC) and a weight of ’1°. The state of the cell is denoted as s.. Read and
write access is regulated by the input gate, y;,, and the output gate, yo,:- The internal cell
state is calculated by multiplying the result of the squashed input, g, by the result of the
input gate, yi,, and then adding the state of the last time step, s.(t — 1). Finally, the cell
output is calculated by multiplying the cell state, s., by the activation of the output gate,
Yout [6]
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7.5.1 Constant Error Carousel

In a simplified scenario where we have only one unit u with a self-connection, the local

error backflow of u at a time-step 7 is determined by 7.6:

du() = f'(W(zu (D) Wlw, uldyu(z + 1) (7.6)

To ensure a constant error flow through u, it is required that f’(u(z,(z)))W|[u, u] = 1.0.
By integration, it follows that f,(z,(7t)) = z,(t)W[w, u]. This implies that f;, must be
linear, and u’s activation must remain constant over time, i.e., y,(t + 1) = fy(zu(z + 1)) =
Julyu(®Wlu, u]) = yu(r). This is achieved by using the identity function f;, = id and setting
Wlu, u] = 1.0. This preservation of error is termed the constant error carousel (CEC), a

pivotal aspect of LSTM enabling short-term memory storage for extended durations [6].

7.5.2 Memory Blocks

While the CEC ensures constant backflow of error in the absence of new inputs,
within a neural network, the CEC is interconnected with other units. This necessitates
considering additional weighted inputs and outputs. LSTM addresses this by extending
the CEC with input and output gates connected to the network input layer and other

memory cells, forming a more complex unit known as a memory block.

The input gates, simple sigmoid threshold units with an activation range of [0, 1],
regulate signals from the network to the memory cell by scaling them accordingly. They
can also learn to shield stored contents from irrelevant signals. The activation of a CEC
by the input gate is termed the cell state. Output gates manage access to memory cell
contents, protecting other cells from disturbances originating from the current unit. The
multiplicative gate units essentially control access to the constant error flow through the
CEC by either permitting or denying it.

Memory blocks also feature a forget gate, which weighs the information inside the
cells. Whenever previous information becomes irrelevant for some cells, the forget gate
can reset the state of these cells, enabling continuous prediction and preventing biases.

Similar to other algorithms, LSTM requires a fixed network topology. The number
of memory blocks remains constant throughout training, limiting the overall memory
capacity of the network. Increasing the network size uniformly is unlikely to overcome
this limitation. Instead, modularization is proposed as a strategy for effective learning,

although the specifics of this process remain unclear [6].

7.6 CRNN

The Convolutional Recurrent Neural Network (CRNN) integrates convolutional layers
for feature extraction and recurrent layers, particularly Long Short-Term Memory (LSTM)

units or gated recurrent unit (GRU), for capturing temporal dependencies.
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Figure 7.10. The CRNN architecture employs a sequence of operations to process input
features, which consist of matrices representing consecutive frames of log-Mel filter banks
(64 filter banks by 96 time frames). Initially, convolutional and max-pooling operations
are applied sequentially to extract informative features from the input. Subsequently, these
features are passed through gated recurrent units (GRUSs) to capture temporal dependencies.
The network produces sigmoid scores as outputs, indicating the presence of various acoustic
events in the audio signal [7].

In CRNN, LSTM/ GRUs units play a critical role in modeling the temporal context
of acoustic events. These units maintain long-term memory and effectively handle the
vanishing gradient problem, thus allowing the model to learn long-range dependencies.
Mathematically, the LSTM units in CRNN process input sequences iteratively, retaining

information over time through the following equations:

Je = o(Wy - [he—1, x¢] + by) (7.7)
it = o(W; - [h—1,. X¢] + by) (7.8)
C; = tanh(W¢ - [hi—1, X¢] + be) (7.9)
Ci=fi0oCi1 +i;0C; (7.10)
o = o(Wy - [Ry—1, X¢] + bo) (7.11)
h; = o; © tanh(Cy) (7.12)

Here, f;, i;, and o; are the forget gate, input gate, and output gate vectors at time t
respectively. C; is the cell state, C; is the candidate cell state, and h; is the hidden state
at time t. W and b represent weight matrices and bias vectors, and o denotes the sigmoid

function.

CRNN offers effective feature learning capabilities, robustness to input variability, and
the ability to capture complex temporal dynamics in sequential data, making it well-suited

for tasks such as audio chord recognition and speech recognition.
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7.7 Transfer Learning

Transfer learning has emerged as a potent strategy within the realm of deep learning,
offering a means to significantly enhance model performance. This technique involves
the utilization of pre-trained models, which have been trained on extensive datasets,
to extract generalized feature representations. These representations encapsulate high-
level abstractions and patterns, applicable across a broad spectrum of tasks. Integrating
transfer learning into deep learning workflows brings forth several compelling advantages,

rendering it an indispensable tool in modern applications of machine learning.

K« m,lr-(!_:-
! Transier
Knowledge Knowledge
o g -
Tranaler E ( T|.|||.-.f--‘E

Figure 7.11. Intuitive examples about transfer learning [8].

A notable benefit of transfer learning lies in its capacity to tackle challenges associ-
ated with limited data availability and the arduous process of data labeling. Acquiring
labeled data for a specific task often proves to be a laborious and time-consuming en-
deavor. Transfer learning alleviates this burden by leveraging knowledge distilled from a
source task and transferring it to a target task. Through this mechanism, the pre-trained
model captures foundational features and patterns from the source domain, enabling it
to generalize effectively to the target domain, even when labeled data is scarce. This capa-
bility not only streamlines the data collection and annotation process but also conserves
valuable resources and time.

Moreover, the adoption of transfer learning expedites the model training process and
enhances convergence rates. Pre-trained models have already assimilated representations
of essential features and patterns from vast datasets. By initializing the model with
these learned representations, transfer learning facilitates a highly effective starting point
for training. This not only accelerates the training phase but also promotes quicker
convergence, resulting in improved overall efficiency.

This approach proves particularly advantageous in scenarios where the pre-trained
model and the target task exhibit shared underlying patterns or structures. Such align-
ment enables the pre-trained model to capture pertinent information, which can then be
transferred to the target task, leading to enhanced performance. The model’s adeptness
in extracting significant and discriminative features from the source domain facilitates
effective knowledge transfer, especially during fine-tuning or feature extraction stages.
Consequently, the model can adapt and specialize efficiently to the target task, leveraging
prior knowledge while accommodating task-specific intricacies.

By harnessing the potency of transfer learning, deep learning models can achieve
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heightened levels of performance, robustness, and efficiency, thereby solidifying its status

as an indispensable technique across a diverse array of applications.

7.8 Metrics

7.8.1 Accuracy

Accuracy is a common metric used to evaluate the performance of a classification
model. It measures the ratio of correctly predicted instances to the total instances in the
dataset [37]. In binary classification it is defined as:

TP + TN

Acc = (7.13)
TP + TN + FP + FN

In multiclass classification it is defined as:

correct classifications
Acc = - - (7.14)
all classifications

where:

TP - True Positives
TN - True Negatives
FP - False Positives

FN - False Negatives

It represents the proportion of correctly classified instances over the total instances.

A higher accuracy indicates better performance of the classification model.

7.8.2 Precision & Recall

Precision is a measure of the closeness of agreement between independent test results
obtained under stipulated conditions. It is often used in the context of measurement
methods and results to assess the repeatability and reproducibility of a standard mea-
surement method [37]. In domains such as pattern recognition, information retrieval,
object detection, and classification within machine learning, precision and recall stand
as crucial performance metrics applicable to data extracted from a collection, corpus, or
sample space.

Precision, often termed as positive predictive value, denotes the proportion of relevant
instances present among the retrieved instances 7.15.

Relevant retrieved isntances

Precision = (7.15)
All retrieved instances

Recall, also referred to as sensitivity, represents the fraction of relevant instances that
were successfully retrieved 7.16.
Relevant retrieved isntances

Precision = - (7.106)
All relevant instances
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In classification tasks, the terms true positives, true negatives, false positives, and
false negatives, as defined in Type I and Type II errors, are used to evaluate the per-
formance of the classifier being tested against trusted external judgments. The terms
"positive" and "negative" relate to the classifier’s predictions (also known as expectations),
while "true" and "false" indicate whether those predictions align with the external judg-

ments (also known as observations).

So using those terms, precision and recall can be expressed as following (7.17, 7.18):

TP
Precision = ———— (7.17)
TP + FP
TP
Recall = ——— (7.18)
TP + FN

7.8.3 F1 score

In the realm of statistical analysis concerning binary classification and information
retrieval systems, the F-score or F-measure is a measure of predictive performance. De-
rived from the precision and recall of a test, as we mentioned earlier, precision denotes
the ratio of true positive results to the total number of samples predicted as positive,
encompassing both correct and incorrectly identified instances. Similarly, recall signifies
the ratio of true positive results to the total number of samples that ought to have been
identified as positive. Precision, synonymous with positive predictive value, and recall,
also known as sensitivity in diagnostic binary classification, are fundamental components

of this assessment.

The F1 score, serving as the harmonic mean of precision and recall, encapsulates both

aspects in a single metric, thus providing a balanced representation 7.19.

Precision X Recall 2 X TP

Fr=2X — =
Precision + Recall 2 X TP + FP + FN

(7.19)

The F-score ranges between O and 1, where a value of 1.0 signifies perfect precision

and recall, while a value of O indicates the absence of either precision or recall.

7.8.4 Confusion Matrix

A confusion matrix presents a summary of predictions in a matrix format, detailing
the number of correct and incorrect predictions for each class. It aids in discerning which
classes the model confuses with others. The figure 7.12 illustrates a sample confusion

matrix for a binary classification problem.
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Figure 7.12. Confusion matrix..

TP denotes True Positive predictions. In a binary classification scenario, such as
identifying fraudulent transactions as "1", TP signifies the count of correctly classified
"1"s, representing the number of fraudulent transactions accurately identified. TN, or
True Negative predictions, indicate the count of correctly classified "0"s, representing non-
fraudulent transactions accurately identified. FP (False Positive) denotes the count of non-
fraudulent transactions misclassified as fraudulent, while FN (False Negative) represents

the count of fraudulent transactions misclassified as non-fraudulent.

7.8.5 MIREX Chord Estimation Metric

To assess the accuracy of an automatic transcription, it is compared to a ground
truth generated by human annotators. In the context of the Music Information Retrieval
Evaluation eXchange (MIREX), chord symbol recall (CSR) is commonly used to gauge the
alignment between predicted chords and the ground truth [38]:

CSR = total duration of segments where annotation equals estimation (7.20)
B total duration of annotated segments '

Historically, MIREX [38] has employed an approximate CSR approach, sampling both
ground truth and automatic annotations every 10 ms and calculating the ratio of correctly
annotated samples to the total number of samples. However, following the methodology
proposed by Christopher Harte (2010, §.1.2), the ground truth and estimated annotations
can be viewed as continuous audio segmentations, allowing for a more precise CSR cal-
culation. This method considers the cumulative length of correctly overlapping segments,
providing enhanced accuracy and computational efficiency by reducing the number of
segment comparisons. Additionally, to account for variations in music length, the CSR
can be weighted by the duration of each song when computing an average across a corpus,
resulting in the weighted chord symbol recall (WCSR).

Chord Vocabularies

MIREX [38] introduces a set of single chord evaluation measures for MIREX, building
upon previous iterations and incorporating evaluation metrics from the literature to offer
a comprehensive assessment of transcription quality. Inspired by Pauwels and Peeters

(2013), they proposes using CSR with five distinct chord vocabulary mappings.
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Each vocabulary mapping categorizes full chord descriptions from either estimated or

ground-truth transcriptions into predefined classes:

1. Chord root note only.
2. Major and minor chords: {N, maj, min}.
3. Seventh chords: {N, maj, min, maj7, min7, 7}.

4. Major and minor chords with inversions: {N, maj, min, maj/3, min/b3, maj/5,
min/5}.

5. Seventh chords with inversions: {N, maj, min, maj7, min7, 7, maj/3, min/b3,
maj7/3, min7/b3, 7/3, maj/5, min/5, maj7/5, min7/5, 7/5, maj7/7, min7/b7,
7/b7}.

The mapping process involves examining the root note, bass note, and relative interval
structure of chord labels. A mapping is established if both root notes and bass notes
match, and the output label structure is the largest possible subset given the vocabulary.
For instance, G:7(#9) is mapped to G:maj because the interval set of G:maj ({1,3,5})) is a
subset of G:7(#9) ({1,3,5,b7,#9}). Conversely, if a chord cannot be represented by a certain
class, e.g., mapping D:aug or F:sus4(9) to {maj, min}, it is excluded from evaluation
if present in the ground truth, or considered a mismatch if present in the estimated
annotation.

MIREX’s vocabulary recommendations are informed by chord quality frequencies in
the McGill Billboard corpus 7.4, a representative sample of American popular music
spanning several decades. Notably, major and minor chords collectively account for the
majority of chord occurrences, with other qualities such as augmented and diminished
chords being rare. This distribution guides our selection of chord vocabulary to maximize

coverage while maintaining relevance to real-world musical contexts.

Table 7.4. Most frequent chord qualities in the McGill Billboard corpus.

Quality Freq. (%) Cum. Freq (%)

maj 52 52
min 13 65
7 10 75
min7 8 83
maj7 3 86
5 2 88
1 2 90
maj(9) 1 91
maj6 1 92
sus4 1 93
sus7 1 94
sus9 1 94
7(#9) 1 95
min9 1 96
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Chord Segmentation

In addition to CSR, chord transcription evaluation encompasses metrics focusing on
the segmentation of automatic transcriptions. We propose incorporating the directional
Hamming distance, a metric utilized in the chord transcription literature. The direc-
tional Hamming distance measures the segmentation quality by finding the maximally
overlapping segment for each annotated segment in both transcriptions and summing
the differences. This yields a measure of over- or under-segmentation, which can be

combined to derive an overall quality metric:

Q=1 maximum of directional Hamming distances in either direction (7.21)
B total duration of song '

7.9 Audio Signal Processing

Audio signal processing has traditionally relied on digital signal processing (DSP) tech-
niques to extract features from audio signals, such as phonemes for understanding hu-
man speech. This approach demanded substantial domain-specific expertise to fine-tune
systems for optimal performance. However, with the rise of Deep Learning, there’s been
a notable shift. Deep Learning has emerged as a powerful tool in handling audio data,
eliminating the need for traditional DSP techniques. Instead, deep learning models can
directly process audio data, bypassing the manual feature extraction step. Interestingly,
deep learning models commonly operate on image data rather than raw audio. This
transformation is achieved by generating Spectrograms from audio signals, which con-
vert audio data into visual representations. Spectrograms provide a way to visualize the
frequency content of audio signals over time, enabling deep learning models to effectively
process audio information using standard Convolutional Neural Network (CNN) archi-
tectures. Thus, while it might sound like science fiction, converting sound into images
through Spectrograms has become a commonplace and integral part of modern audio

signal processing workflows.

7.9.1 Time & Frequency Domains

In the time domain, signals are represented as amplitude variations over time. This
representation allows for the observation of signal dynamics and temporal patterns. Time
domain analysis involves techniques such as waveform visualization, signal detection,
and time-based analysis. By examining signals in the time domain, researchers can gain
insights into how signals evolve over time and identify temporal characteristics.

Conversely, the frequency domain representation portrays signals in terms of their
frequency components. By analyzing signals in the frequency domain, researchers can
identify the spectral composition of the signal, including individual frequencies, harmon-
ics, and overtones. Frequency domain analysis is particularly useful for tasks such as

spectral analysis, filtering, and frequency-based feature extraction.
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/ frequency

Figure 7.13. Time Domain vs Frequency Domain [9].

7.9.2 Spectogram

A spectrogram provides a visual representation of the frequency spectrum of a signal
over time. Often referred to as sonographs, voiceprints, or voicegrams when applied to
audio signals, spectrograms showcase how the signal’s frequencies evolve. When repre-

sented in a 3D plot, they may be termed as waterfall displays [39].

In various fields such as music, linguistics, sonar, radar, speech processing, seismol-
ogy, and ornithology, spectrograms find extensive utility. They enable phonetic identifi-

cation of spoken words and analysis of animal vocalizations.

Generated through methods like optical spectrometers, bank of band-pass filters,
Fourier transform, or wavelet transform (also known as scaleograms or scalograms), spec-
trograms offer diverse insights into signals. They are typically visualized as heat maps,

with intensity depicted through variations in color or brightness.
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Figure 7.14. The spectrogram of this violin recording showcases the harmonics occurring
at whole-number multiples of the fundamental frequency. [10].

7.9.3 Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform (STFT) is a method used for analyzing the frequency
content of non-stationary signals over time. It operates by dividing a time-domain signal
into frames, either separate or overlapping, through multiplication with a window func-
tion, followed by application of the Fast Fourier Transform (FFT) on each frame. This
dynamic approach allows for tracking frequency changes as the window moves through
the signal [10]. Consequently, STFT finds extensive application in domains needing con-
tinuous frequency monitoring, such as radar systems and voice-signal processing. In
the realm of deep learning, STFT is employed due to its ability to provide valuable time-
frequency representations of signals, which serve as essential inputs for neural networks
engaged in tasks like speech recognition, audio classification, and environmental sound
analysis.

The STFT can be expressed as 7.22:

N-1
1 m
Xstrrlk, n] = N E x[m+ nH] - w[m] - W, (7.22)

m=0

where:

e x[m] is the input signal,

e w[m] is the window function,
e N is the length of the window,
e n is the time frame index,

e k is the frequency index,
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e H represents the hop length,
o W, is the complex exponential term.

The overlap length between adjacent frames is N — H, and the overlap ratio between
consecutive frames is % At a specific time nH, the signal x[m] is multiplied by the
window function w[m]. Therefore, 7.22 represents the FFT operation of x[m + nH]w[m].

The STFT processor measures the frequency over time by moving the window function
w[m] along the signal x[m] according to the hop length and performing the FFT operation

on samples inside the window.

Signal

Window Length
- -

- [ -
Hop Overlap

Length Length

el f.,IWJ [: Hrﬁ'lm[u.u....
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Figure 7.15. Short-time Fourier transform (STFT) overview [10].

7.9.4 Constant-@Q Transform (CQT)

The Constant-Q Transform (CQT) and its closely related Variable-Q Transform (VQT)
are pivotal tools in mathematics and signal processing, particularly tailored for the fre-
quency domain analysis of data series, with a particular focus on musical representation.
Comparable to the Fourier transform and intricately linked to the complex Morlet wavelet
transform, the CQT/VQT unveils the frequency components of a signal, especially useful
in discerning musical notes.

The foundation of the CQT lies in a series of logarithmically spaced filters, indexed by
I, each with a bandwidth 6fi, which is a multiple of the bandwidth of the previous filter:
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k
&fic = 2" oficr = (2'7)" - Ofan, (7.23)

where §fj represents the bandwidth of the k-th filter, §fy, is the bandwidth of the
lowest filter, and n signifies the number of filters per octave.
In the calculation of the CQT, the short-time Fourier transform of a data series x[n]

for a frame shifted to sample m is computed using:

N-1
X[k, m] = Z Wln — mlx[n]e2™v/N (7.24)
n=0

where X[k, m] denotes the short-time Fourier transform result, W is the windowing

function, x[n] represents the input data, j is the imaginary unit, k signifies the frequency

bin, and N denotes the number of samples.

To delve into the specifics of the transform, several key parameters are defined:
e Filter width, &fy.

e Quality factor, Q, calculated as:

_ Jie
&fic’

This factor signifies the integer number of cycles processed at a center frequency fj,

thus delineating the time complexity of the transform.

Q (7.25)

e Window length for the k-th bin:

N[k] = Lk , (7.26)

Ofic Jic
where fs represents the sampling frequency, fi stands for the center frequency of
the k-th bin, and @ is the quality factor. This equation signifies the number of
samples processed per cycle at frequency fi, with Q representing the number of

integer cycles processed at this central frequency.

After appropriate adjustments, the transformed output X[k] can be expressed as:

N[k]-1

XUkl = prg > Wik, nlx[n]e2en/NU, (7.27)
n=0

where X[k] denotes the transformed output, W represents the windowing function,
x[n] signifies the input data, j is the imaginary unit, k denotes the frequency bin, and
N[k] represents the window length for the k-th bin.
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Data & Preprocessing

In this chapter the Dataset and the preprocessing methodologies followed are anal-

ysed.

8.1 Isophonics Dataset

The Isophonics dataset is a collection of audio recordings, annotations, and meta-
data designed for music information retrieval (MIR) research. It’s a valuable resource for
studying various aspects of music, including melody, harmony, rhythm, and structure.
For this study, The Isophonics dataset was used providing 180 songs by The Beatles.
This dataset’s chord annotations have been checked several times by Christopher Harte
[12] and the MIR community, and can be used with confidence. The Chord labels are
Jab files. Those are whitespace delimited text files with three columns, corresponding to,
onset time, offset time and chord label, respectively. An example can be seen in the table
8.1 below.

Start Time | End Time Label
0.000000 2.612267 N
2.612267 | 11.459070 E
11.459070 | 12.921927 A
12.921927 | 17.443474 E
17.443474 | 20.410362 B
20.410362 | 21.908049 E
21.908049 | 23.370907 E:7/3
23.370907 | 24.856984 A
24.856984 | 26.343061 | A:min/b3
26.343061 | 27.840748 E

Table 8.1. First 10 rows of the labels for "I saw her standing there”, start and end time are
counted in seconds.

The format of the tracks found was stereo .mp3 at 44kHz sample rate so further
processing was necessary. To ensure labels are in sync with the audio, Audacity was

utilised.
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8.2 Pre-processing

In order to prepare the audio data for further analysis, some pre-processing steps
need to be completed. A high level view of the pre-processing procedure can be seen in
the figure 8.1 below.

audio
Raw Data convertion Raw Data Signal Processing
(MP3, stereo) (WAV, mano) (Fourier Transforms)
_| Data Augmentation
(Pitch Shitting + Final Dataset
Gaussian Noise)
Transpose Labels Adapt (Augment)
hord Feat
Rawlabels | © oacton . F—»{ fomtmeto  f—»! ~Labeisto Pitch
frequency domain Shifted data

Figure 8.1. Data Pre-processing flow chart.

8.2.1 Audio Conversion

The audio conversion procedure revolves around converting audio files from MP3 to
WAV format and from stereo to mono. WAV and MP3 formats differ in compression and
audio quality, with WAV uncompressed for high fidelity and MP3 lossy for smaller size.
Stereo utilizes two channels for spatial depth, while mono uses one, ideal for non-spatial
applications. WAV files, being uncompressed, retain all original audio data, preserving
high fidelity crucial for tasks like speech recognition and music generation. dditionally,
mono audio simplifies the input data by reducing the dimensionality, making it more

computationally efficient for processing and training deep neural networks.

Initially, a script was designed using Pydub Python module that gathers a list of MP3
files within a specified directory. Then, for each file, it employs conversion methods to
transform it into WAV format and to mono. This systematic approach ensures that the
audio data is prepared in a standardized format suitable for further analysis. An example

of a transformed file can be visualized as in Figure 8.2
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Figure 8.2. Waveform representation of track "I was her standing there”.

8.2.2 Signal Processing - Fourier Transforms

Convolutional neural networks (CNNs) heavily rely on their convolutional layers, which
are fundamental components responsible for applying filters to input data or feature
maps, thus convoluting the output from preceding layers. These layers are tasked with
learning the filter weights, and in intricate CNN architectures characterized by numer-
ous layers and filters, the computational burden can escalate significantly. Integrating
Fourier transform into CNNs alters the calculation approach of these layers to element-
wise products in the frequency domain, effectively conserving computational resources.
While the network’s objective remains unchanged, leveraging Fourier transform aids in
optimizing computations, often achieved through the utilization of fast Fourier transform
techniques. In essence, the operation of convolutional layers can be analogized to Fourier
transform, wherein convolution in the temporal domain corresponds to multiplication in
the frequency domain. This analogy offers insight into convolutional operations, akin to
polynomial multiplication, facilitating a deeper understanding of CNN functionality.

In this part two Fourier transforms were tested, Short time Fourier Transform and

Logarithmic frequency spectrogram (constant-Q) and the Constant-Q chromagram.

Short time Fourier Transform

The standard linear Short-Time Fourier Transform (STFT) generated an excessive
number of frequency bands, resulting in an abundance of input features for the net-
work. Consequently, this led to a substantial increase in the overall parameter count of
the network and did not yield the desired results. In the example below 8.3 the visual-
ization of the Short time Fourier Transform of "I saw her standing" there is presented.
The parameter n_fft specifies the number of samples in each FFT window, affecting the
frequency resolution of the spectrogram. A larger n_fit results in finer frequency bins
but may require more computational resources. The hop_length parameter determines
the number of samples between successive frames, influencing the time resolution of the

spectrogram. A larger hop_length reduces temporal resolution but may improve compu-
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tational efficiency.
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Figure 8.3. Short Time Fourier Transform of the track "I saw her standing there”. The STFT
parameters used are n_{fft=8192 and hop_length=4410.

Constant-@ Chromagram

The Chromagram, consisting of 12 input features, offers a detailed representation
of the musical notes present in the audio signal. However, its focus primarily revolves
around identifying the pitch classes or musical notes, rather than providing insights into
how these notes are distributed across the frequency spectrum. For instance, while the
chromagram may effectively distinguish between different pitches, such as G# and D, it
fails to capture their specific frequency locations within the audio spectrum. This lim-
itation makes it challenging to understand the spatial distribution of notes, hindering
the ability to analyze complex musical structures accurately. Moreover, detecting inver-
sions, where the notes of a chord are rearranged, becomes more difficult due to the lack
of frequency-specific information provided by the chromagram. In summary, while the
chromagram offers valuable information about musical notes, its inability to represent the
frequency distribution of t hese notes poses limitations when analyzing intricate musical
compositions.

In the example below 8.4 the visualization of the Short time Fourier Transform of "I
saw her standing" there is presented. The hop_length parameter in audio processing,
such as in the context of calculating the Pitch Class Profile (PCP) Chromagram, refers
to the number of samples between successive frames of the analysis. In other words, it
determines the spacing between the starting points of each frame as the analysis window
slides along the audio signal. A smaller hop_length results in more frames being analyzed

per unit time, providing higher temporal resolution but potentially leading to increased
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computational complexity. Conversely, a larger hop_length reduces the number of frames
analyzed per unit time, resulting in lower temporal resolution but potentially improving

computational efficiency.

M ! E e
oenr

| I |‘ il ‘ WHIH\‘ H‘\{II \} H}H H

0:00 0:50 1:40 2:30

Pitch Class melle (PCP) Chromagram

I

1.0

=

G

3

@

0.6

F#

-

! i W u

Pitch Class

m

e

=}

0.2

N

0.0

Figure 8.4. Constant-Q Chromagram of the track "I saw her standing there”. The parame-
ters used are hop_length=4410.

Constant @ Transform (CQT)

The Constant Q Transform (CQT) is preferred over other methods due to its unique
properties that make it well-suited for audio signal analysis. Unlike the traditional Short-
Time Fourier Transform (STFT), which employs a linearly spaced frequency scale, the CQT
utilizes a logarithmically spaced frequency scale. This logarithmic scaling better matches
the human auditory system’s perception of pitch, resulting in improved representation of
musical content, especially for signals with complex harmonic structures.

Additionally, the CQT offers a fixed frequency resolution across all octaves, ensuring
consistent representation of pitch classes regardless of the signal’s frequency content.
This property is particularly advantageous for tasks such as pitch estimation and music
transcription, where accurate representation of pitch is essential.

Below is a visualization of the Constant-Q transform 8.5 using a sample rate of 44100,
192 bins (24 bins per octave), and a hop length of 4096, I ensured thorough coverage of
the audio signal’s frequency spectrum, facilitating effective feature extraction. The nbins
parameter determines the number of frequency bins utilized in the spectrogram, impact-
ing the resolution of frequency representation. Similarly, bins per octave controls the
frequency resolution within each octave, influencing the trade-off between precision and
computational efficiency. Additionally, the hop length parameter dictates the temporal
resolution of the spectrogram by specifying the spacing between successive frames of

analysis.
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Constant-Q Transform (CQT) Spectrogram
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Figure 8.5. Constant-Q Fourier Transform of the track "I saw her standing there”. The
parameters used are a sample rate of 44100, 192 bins (24 bins per octave), and a hop
length of 4096.

8.2.3 Label pre-processing
Time to Frequency domain

Before proceeding, it was essential to transform the labels from the time domain to the
frequency domain. This step was crucial for aligning the labels with the corresponding
frequency bins in the spectrogram representation. By converting the labels, we ensured
that they accurately reflected the spectral characteristics of the audio signal, facilitating
further analysis and interpretation in the frequency domain. This transformation allowed

for a seamless integration of label information with the Fourier transformed data.

The transformation from time to frequency domain can be seen in the tables 8.2 and
8.3 below. This result can be achieved by the following process, first, the duration of
the audio track is determined using the end time of the last label. Next, the duration
of each time step (or frame) is computed based on the total duration of the track and
the desired number of steps. Then, a series of timestamps are generated evenly spaced
over the duration of the track. For each timestamp, the corresponding label is assigned
based on the time-based labels. If a timestamp falls within the duration of a time label,
it is assigned the corresponding label. Otherwise, it advances to the next time label and

assigns its associated label to the next timestamp.
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Start End Chord
0 0.000000 N
1 2.612267 E
2 11.459070 A
3 12.921927 E
4 17.443474 B

Table 8.2. Labels on the time domain.

Time signature of Frame Chord

0.0 N
0.0116 N
0.0232 N
0.0348 N
2.7503 E
2.7619 E
2.7735 E

Table 8.3. Labels on Frequency domain with time signature of each frame.

Feature Extraction - Chord analysis

Feature extraction (Chord analysis) is a necessary step to achieve better results when
modelling. A script was implemented for extracting essential features from chord anno-
tations in music data, such as root notes, bass notes, chord triads, and chord exten-
sions(4th, 5th note). This feature extraction process is crucial for several reasons. First,
it provides a structured representation of chord annotations, making them easier to inter-
pret and analyze. By extracting root and bass notes, it identifies the foundational elements
of each chord, providing insights into harmonic structure and progression. Additionally,
categorizing chords into triads and extensions allows for a better understanding of their

tonal characteristics and complexity.

The chord is split into 5 features. The root and bass note are two of them. The
third feature is the triad note, in this project as Triad we will be referring to the third
note (major, minor, diminished, augmented, sus2, sus4). Fourth and Fifth feature are

extension 1 and extension 4, meaning 4th and 5th note accordingly.

At this point it is essential to mention that to simplify the embedding process later,
all Sharps were translated to their Flats, for example C# was translated to Db which

represents the same exact frequency.

Each Chord was analysed to its components (shown on table 8.4 below.
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Component Values Embedding
Root N, C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B 0-12
Bass N, C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B 0-12
Triad N, Major, Minor, Diminished, Augmented, Sus 2, Sus4 0-6

Extension 1 N, dim7, hdim7, maj7, maj6, min7, 7 0-6

Extension 2 N, 9 0-1

Table 8.4. Chord representation into components and Embedding values.

An Example of this Chord representation can be seen in the table below for a number
of Chords 8.5.

Chord Root | Bass | Triad | Extension 1 | Extension 2
N N N N N N
D D D maj N N
A A A maj N N
E E E maj N N
G G G maj N N
D/b7 D C maj N N
G/3 G B maj N N
G:min(9)/b3 G Bb min min7 9
D/5 D A mayj N N
B B B maj N N
F#:min7 Gb Gb min min7 N
G#:(1) Ab Ab maj N N
Bb Bb Bb maj N N
D:min D D min N N

Table 8.5. Chord Representation Example.

8.2.4 Data Analysis

In this sections a simple data analysis will take place regarding the Chords and their

occurrence in the dataset.

Firstly, it would be helpful to see the overall Chord distribution in the dataset. A

visualization of this can be seen in the figure below 8.6.
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Figure 8.6. Chord distribution in the Dataset.

The frequent appearance of basic chords like A, G, D, and E major suggests a pref-
erence for straightforward harmony in the music dataset. These chords are common in
various genres, likely chosen for their simplicity and familiarity, especially on instruments
like the guitar. Their prevalence hints at recurring structural patterns or tonal schemes
within the music pieces, providing insights into the harmonic language and compositional

techniques used by composers or performers.

Now that we've finished analyzing the chords and understand their structure, we'’re
ready to dive deeper into examining each component of the chords. The figure 8.7 gives

information about root note distribution in the dataset.
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Figure 8.7. Root note distribution in the Dataset.

The figure 8.8 presents the distribution of the bass note in the dataset.

Distribution of bass
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Figure 8.8. Bass note distribution in the Dataset.

The distribution patterns of root and bass notes in the dataset reveal a noticeable

imbalance, which could potentially impact the performance of our deep learning mod-

els. To address this issue and ensure reliable chord recognition, we will implement data
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augmentation techniques, specifically pitch shifting. By applying pitch shifting to exist-
ing chord samples, we aim to augment the dataset, thereby creating a more balanced
representation across all chord types.

It is worth analysing the rest of the chord structure’s components 8.9. Here, we
observe a similar imbalance in the dataset, highlighting the infrequent usage of certain
triads such as sus4, aug, and sus2 across most music genres. Additionally, extension 1
and 2 notes exhibit low occurrence rates. This kind of distribution was expected from the

dataset due to the music style it represents.

Distribution of triad
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Figure 8.9. Triad, Extension 1 and Extension 2 notes distribution in the Dataset.

8.2.5 Data Augmentation with Pitch Shifting

In the realm of audio signal processing, data augmentation plays a pivotal role in en-
hancing the robustness and generalization capability of machine learning models. Aug-
mentation techniques aim to diversify the training dataset by introducing variations in
the input data without altering its inherent semantic meaning. Among various augmen-
tation methods, pitch shifting stands out as a fundamental approach to manipulate audio
signals while preserving their structural characteristics. A simple and high level example

of data augmentation can be seen in the figure 8.10 below.
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0 250 500 0 250 500

Figure 8.10. Simple example of Data Augmentation.

Pitch shifting involves altering the frequency content of an audio signal, thereby mod-
ifying its perceived pitch without affecting its temporal duration. This technique is com-
monly used in music production and audio processing to achieve desired musical effects,
such as transposing melodies or harmonizing vocal lines. In the context of data augmen-
tation, pitch shifting offers a versatile tool for generating augmented samples with varying

pitch levels while retaining the original harmonic structure of the audio.

In this project, the process of pitch shifting was implemented to manipulate the fre-
quency content of audio signals. Specifically, pitch shifting was applied to alter the
perceived pitch of the audio by shifting its spectral components either upwards or down-
wards. The extent of pitch shifting was controlled within a range of up to 5 semitones,
allowing for variations in the pitch without compromising the overall harmonic structure

of the audio.

Pitch shifting within the range of up to 5 semitones enabled us to explore a wide spec-
trum of pitch variations while maintaining the integrity of the original audio samples. By
shifting the pitch in both upward and downward directions, we could generate augmented
samples with varying pitch levels, thereby enriching the diversity of the training dataset.
This augmentation strategy is particularly beneficial for training machine learning mod-
els to recognize and classify audio signals across a broader range of pitch variations,

enhancing their robustness and adaptability in real-world scenarios.

In addition to pitch shifting, an essential aspect of the data augmentation strategy

involved the incorporation of Gaussian noise into the pitch-shifted audio data. Gaus-
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sian noise, characterized by its random distribution following a Gaussian or normal dis-
tribution, introduces stochastic variability into the audio signals, mimicking real-world
environmental conditions and enhancing the model’s robustness to noise.

By including Gaussian noise in the pitch-shifted data, we aimed to simulate the inher-
ent variability and unpredictability present in real-world audio recordings. This augmen-
tation technique helps the machine learning models learn to distinguish between signal
and noise, improving their ability to generalize to noisy environments and unseen data

by reducing over-fitting.

8.2.6 Data Chunking

To prepare the data for utilization in two-dimensional Deep Learning models, we em-
ployed a technique known as data chunking. This process involved partitioning the input
data into smaller segments, each comprising 100 consecutive time steps, equivalent to
approximately 7 seconds of audio. This number was treated as a hyper parameter when
training the models and was resulted after fine tuning. The rationale behind this approach
stems from the utilization of a bidirectional Long Short-Term Memory (LSTM) layer in our
model architecture.

The use of small data chunks is imperative for enhancing the LSTM’s learning effi-
cacy and efficiency. By breaking down the input time series into manageable segments,
the bidirectional LSTM layer can better capture and understand temporal dependen-
cies within the data. This granularity allows the model to effectively learn patterns and
relationships across shorter time intervals, facilitating more accurate predictions and
improved performance.

In essence, data chunking plays a vital role in optimizing the training process of
two-dimensional Deep Learning models, particularly those employing bidirectional LSTM
layers. By providing the model with smaller, temporally coherent segments of data, we
enable it to learn more effectively and extract meaningful features from the input audio

signals, ultimately enhancing its performance in various audio processing tasks.
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Chapter m

Experiments and Results

This chapter delves into the analysis, training, and comparison of various model
architectures for chord recognition tasks. Models such as 1D CNN and 2D CNN utilizing

LSTM and fully connected layers will be examined.

9.1 Model 1: Simple 1D Convolutional Neural Network

The initial exploration begins with the implementation of a simple 1D Convolutional
Neural Network (CNN). This approach serves as a baseline for evaluating model perfor-
mance metrics. Each chord is embedded individually without incorporating any chord
structural representations mentioned in the previous chapter, thereby disregarding music
theory and chord relations, which may limit the model’s predictive capabilities.

For this architecture, a Constant-Q Chromagram was used as a preprocessing step,
resulting in 12 features as discussed in the previous chapter 8. The architecture of the

model is outlined in the figure 9.1 and table 9.1 below.
Table 9.1. Basic 1D Convolutional Neural Network (CNN) model summary.

Layer (type) Output Shape Parameters #

convld (Conv1D) (None, 10, 32) 128

max_poolingld (MaxPooling1lD) (None, 5, 32) 0

flatten (Flatten) (None, 160) 0

dense (Dense) (None, 128) 20608

dense_1 (Dense) (None, 1552) 200208

Total params: 220944 (863.06 KB)
Trainable params: 220944 (863.06 KB)
Non-trainable params: 0 (0.00 Byte)

For the training process, the dataset underwent a split into two subsets: a training set
comprising 80% of the data and a validation set comprising 20% of the data. Notably, the

split was performed track-wise, ensuring that individual tracks remained intact rather
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than being divided into smaller segments. This approach maintains the integrity of the
musical structure within each track and provides a more accurate representation of real-

world scenarios during model training and evaluation.

convld input | input: | [(None, 12, 1)]

InputLayer output: | [(None, 12, 1)]

A
convld | input: (None, 12, 1)

Conv1D | output: | (None, 10, 32)

max_poolingld | input: | (None, 10, 32)
MaxPoolinglD | output: | (None, 5, 32)

flatten | input: | (None, 5, 32)
Flatten | output: | (None, 160)

A
dense | input: | (None, 160)

Dense | output: | (None, 128)

dense 1 | input: (None, 128)
Dense | output: | (None, 1552)

Figure 9.1. Architecture of basic 1D Convolutional Neural Network (CNN)

The network comprises several layers, beginning with a 1D Convolutional layer with
32 filters and a kernel size of 3, employing the ReLU activation function. Subsequently,
a max-pooling layer with a pool size of 2 is applied to downsample the feature maps. The
flattened layer reshapes the output from the previous layer into a one-dimensional vector,
facilitating compatibility with fully connected layers. Following this, a densely connected
layer with 128 neurons and ReLU activation is utilized for feature extraction. Finally,
the output layer consists of 1552 (all unique chords in the dataset) units with a softmax

activation function.

For training the model, the batch size used is 32 with the learning rate set to 0.0001
using the Adam optimizer and the Relu as activation function. The loss function used is
the Sparse Categorical Cross-entropy. The results of the training and evaluation process
can be seen in the graph 9.2 below. The Accuracy falls around 42 % for both training and

evaluation set.
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Figure 9.2. Training results of basic 1D Convolutional Neural Network (CNN)

For comparison purposes this model was also trained and tested on identifying the
root note only. The simplicity of this architecture allows for a clear evaluation of the
model’s performance on the basic task of root note identification, serving as a foundational
benchmark against which more complex models can be compared. By analyzing the
results from this simpler model, we can better understand the potential improvements
and challenges when using more advanced architectures. The only difference in the
architecture is the output layer that now consist of only 13 neurons, corresponding to
the 13 possible root notes. The results of the training and evaluation process can be seen
in the figure 9.3 below. An accuracy of almost 60 % was achieved. The accuracy of this
model is higher compared to the previous one because the task of identifying the root note

is significantly simpler.
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Figure 9.3. Training results of basic 1D Convolutional Neural Network (CNN) on the task
of identifying the root note.

In the confusion matrix shown in Figure 9.4, we can observe the distribution of pre-

dicted root notes versus the actual root notes. Despite being the simplest approach, this
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model is capable of accurately identifying the correct root note to a reasonable extent.

Confusion Matrix

<« -=JMply B37 1549 1048 2273 2990 1708 3725 476 1194 1842 1993 514

S - 764 LabF1787 1572 1881 554 4267 1324 3491 1913 1032 1347 631

30000
m -2040 2188:¥ELl: 1504 1268 2299 2094 4016 1457 619 1215 4340 785
8 -1060 1020 524 :ZEBW 1382 1495 1533 543 2966 2877 1554 1291 469 5000
U -2053 1274 1167 1698 Lk 1809 1303 1628 2152 2766 3769 873 603
A -4315 674 22741905 1789:ELE 1298 1663 964 1870 3087 1749 677 20000
g £ - 935 2342 970 1151 1338 724 EEEF1295 1432 1161 554 2351 334
w -3147 1285 3686 605 1686 1258 21203kl 795 1114 1319 1764 525 - 15000
& - 537 27271096 4133 1961 1096 1829 748 LpE1351 1511 2009 724
w -1766 1776 580 4736 4355 1862 1349 1170 1675:0pkR11921 827 776 - 10000
© -1663 859 1827 2783 4525 4443 923 2282 1433 1716 :LFLL 1794 639
- 5000

3 -1641 932 31701159 645 12742827 1326 1207 982 589 HPEF 426

I
A Ab B Bb C D Db E Eb F G Gb N
Predicted

Figure 9.4. Confusion matrix of the basic 1D Convolutional Neural Networlk (CNN) on the
task of identifying the root note.

9.2 Model 2: 1D Convolutional Neural Network

Continuing with the exploration of model architectures, the next model to be examined
is a deeper 1D Convolutional Neural Network (CNN). This architecture aims to leverage the
hierarchical features learned by successive convolutional layers to capture more complex
patterns in the data.

Following experimentation with both Constant-Q Chromagram and Constant Q Trans-
form (CQT), it was observed that the CQT approach outperformed the Constant-Q Chro-
magram method. The CQT method, utilizing 192 features compared to the 12 features
used previously, resulted in superior performance metrics, as detailed in Chapter 8. So in
the section the Constant Q Transform will be utilised using a sample rate of 44100, 192
bins (24 bins per octave), and a hop length of 4096 (those parameters were fine tuned).

The model architecture consists of several convolutional layers followed by max-
pooling layers to downsample the feature maps and reduce the spatial dimensions.
Dropout layers are also incorporated to prevent overfitting by randomly dropping a frac-
tion of the input units during training. After the convolutional layers, the flattened output
is passed through fully connected dense layers, which further process the extracted fea-
tures before the final classification.

The problem has been subdivided into several distinct tasks, each aimed at identifying
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different aspects of the musical chord:

o Identifying the root note.

Identifying the triad.

Identifying the bass note.

Identifying the first extension (4th note).

Identifying the second extension (5th note).

To address these tasks efficiently, transfer learning techniques were employed. Ini-

tially, experimentation was conducted to determine the optimal "core" architecture, which

would serve as the foundation for all subsequent tasks. Following this, a multi-step ap-

proach was adopted that can be seen in the figure below 9.5. More information about

Transfer Learning, can be found in the previous chapter 7.

Freezing all layers of
the pre-trained model

Removing the last two
fully connected layers

Introducing two new

Fine-tuning the model on each

fully connected layers

specific task, adapting it accordingly
o optimize performance

Figure 9.5. Flow chart of the transfer learning approach used in the Model 2.

The detailed "core" architecture of the model, after "freezing" the layers, is summarized

in Table 9.2.

Table 9.2. Model architecture summary for the "core” convolutional neural network (CNN),

after "freezing” the layers.

Layer (type) Output Shape Param #
convld (ConvlD) (None, 192, 16) 64
convld_1 (ConvlD) (None, 192, 16) 784
max_poolingld (MaxPooling1D) (None, 96, 16) 0
dropout (Dropout) (None, 96, 16) 0
convld_2 (ConvlD) (None, 96, 32) 1568
convld_3 (ConvlD) (None, 96, 32) 3104
max_poolingld_1 (MaxPoolinglD) (None, 48, 32) 0
dropout_1 (Dropout) (None, 48, 32) 0
convld_4 (ConvlD) (None, 48, 64) 6208
convld_5 (Conv1D) (None, 48, 64) 12352
max_poolingld_2 (MaxPooling1lD) (None, 24, 64) 0
dropout_2 (Dropout) (None, 24, 64) 0
convld_6 (ConvlD) (None, 24, 128) 24704
convld_7 (ConvlD) (None, 24, 128) 49280
max_poolingld_3 (MaxPooling1lD) (None, 12, 128) O
dropout_3 (Dropout) (None, 12, 128) O
flatten (Flatten) (None, 1536) 0

Total params:
Trainable params:

Non-trainable params:
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9.2.1 Training, Evaluation and Test data split

The dataset, augmented and preprocessed as described in Chapter 3, was split into
three distinct sets to facilitate the testing and evaluation of the model. To maintain the
coherence of the data within each track, an algorithm was designed to split the dataset
on a track-by-track basis. Additionally, 20% of the data was allocated for evaluation,
while the remaining 80% was designated for training purposes. This approach ensured a

comprehensive evaluation while preserving the integrity of the dataset structure.

9.2.2 Model 2: Root classification task

The first task in the chord recognition pipeline focuses on identifying the root note of
each chord. This task involves classifying the root note of each chord into one of the 13
possible root notes (included "None") in the musical scale. To accomplish this, the "core"
architecture 9.2 was used and the model was further fine tuned on identifying the root
note. Two fully connected layers were added to the model 9.3 and the model was once

again trained and evaluated.

Table 9.3. Dense layers added to the "core” architecture for the task of identifying the root
note using the Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 13) 1677

Total params: 296477 (1.13 MB)
Trainable params: 296477 (1.13 MB)
Non-trainable params: 0 (0.00 Byte)

The figure below (9.6) provides a comprehensive overview of the finalized architecture

of Model 2, specifically designed for the task of root note identification.
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' '

convld input | input: | [(None, 192, 1)] max_poolingld_1 | input: | (None, 96, 32) convld 7 | input: | (None, 24, 128)
InputLayer | output: | [(None, 192, 1)] MaxPoolinglD | output: | (None, 48, 32) ConvlD | output: | (None, 24, 128)
convld | input: | (None, 192, 1) dropout_1 | input: | (None, 48, 32) max_poolingld_3 | input: | (None, 24, 128)
ConvlD | output: | (None, 192, 16) Dropout | output: | (None, 48, 32) MaxPooling1lD | output: | (None, 12, 128)
convld 1| input: | (None, 192, 16) convld 4 | input: | (None, 48, 32) dropout 3 | input: | (None, 12, 128)
ConvlD | output: | (None, 192, 16) ConvlD | output: | (None, 48, 64) Dropout | output: | (None, 12, 128)
l - l flatt input: | (None, 12, 128
max_poolingld | input: | (None, 192, 16) convld 5 | input: [ (None, 48, 64) Flatten msu . ((;ne 1536))
atten | output: one,
MaxPooling1D | output: | (None, 96, 16) ConvlD | output: | (None, 48, 64) l
l - l dense | input: | (None, 1536)
dropout | input: | (None, 96, 16) max J)OOh‘ngldiz input: | (None, 48, 64) Dense | output: | (None, 128)
Dropout | output: | (None, 96, 16) MaxPooling1D | output: | (None, 24, 64) l
l l dense_1 | input: | (None, 128)
convld 2 | input: | (None, 96, 16) dropout_2 | input: | (None, 24, 64) Dense | output: | (None, 13)
ConvlD | output: | (None, 96, 32) Dropout output: | (None, 24, 64)
convld_3 | input: | (None, 96, 32) convld 6 | input: | (None, 24, 64)
ConvlD | output: | (None, 96, 32) ConvlD | output: | (None, 24, 128)

Figure 9.6. Architecture of the Model 2 in the task of identifying the root note.

For training the model, the batch size used is 32 with the learning rate set to 0.0001
using the Adam optimizer and the ReLU as activation function. The loss function used
is the Sparse Categorical Cross-entropy. The performance of the model in identifying
the root notes is depicted in the graph shown below (Figure 9.7). At Epoch 10, both the
training and evaluation accuracy stabilize at approximately 67%. However, beyond this
epoch, while the training accuracy marginally improves, the validation accuracy begins
to decline, suggesting overfitting. Therefore, the model’s state at Epoch 10 was chosen

for further analysis.
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Figure 9.7. Training results of Model 2 in the task of identifying the root note. Batch
size=32, Learning Rate=0.0001

The confusion matrix, as illustrated in Figure 9.8, offers a detailed insight into the
model’s performance by showcasing the distribution of predicted root notes against the
actual ones. Notably, compared to Model 1, we observed a noteworthy 7% enhancement

in accuracy on the evaluation set.
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Figure 9.8. Confusion matrix of the Model 2 on the task of identifying the root note.

9.2.3 Model 2: Bass note classification task

The second task in the chord recognition pipeline is dedicated to identifying the bass
note of each chord. Similar to the root identification task, this task involves classifying
the bass note of each chord into one of the 13 possible notes (included "None") within the
musical scale. To tackle this task, we leverage the "core" architecture outlined in Table
9.2, which served as the foundation for our Model 2. This architecture is further refined
and adapted to specialize in identifying bass notes.

In Table 9.4, we outline the additional dense layers integrated into the core architec-

ture to tailor it for bass note identification.

Table 9.4. Dense layers added to the "core” architecture for the task of identifying the bass
note using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 13) 1677

Total params: 296477 (1.13 MB)
Trainable params: 198413 (775.05 KB)
Non-trainable params: 98064 (383.06 KB)

During training, the model is fine-tuned using a batch size of 32, a learning rate of
0.0001, the Adam optimizer, and the ReLU activation function. The model was trained

for 10 epochs for the reasons discussed in the previous section. The loss function em-
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ployed is the Sparse Categorical Cross-entropy. The performance metrics of Model 2 in
identifying bass notes are visualized in Figure 9.9. The results are similar to the root note

classification task due to the similarity of those two tasks.
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Figure 9.9. Training results of Model 2 for bass note identification. Batch size=32, Learn-
ing Rate=0.0001

The confusion matrix depicted in Figure 9.10 provides a detailed breakdown of the
model’s predictions against the ground truth for bass note identification. This visual-
ization offers valuable insights into the model’s performance and its ability to accurately

classify bass notes.
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Figure 9.10. Confusion matrix of Model 2 for bass note identification.

9.2.4 Model 2: Triad classification Task

The third task in the chord recognition pipeline focuses on identifying the triad of each
chord. This task entails classifying the triad note of each chord into one of the 7 possible
triads (including "None") in the musical scale.

To accomplish this task, we leverage the "core" architecture from Model 2. We extend
this architecture by adding two additional fully connected layers tailored for triad identi-
fication. We, then, fine tune the model on the task of classifying the triad note. The extra

Dense layers added can be seen in the table 9.5 below.

Table 9.5. Dense layers added to the "core” architecture for the task of identifying the triad
using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 7) 903

Total params: 295703 (1.13 MB)
Trainable params: 197639 (772.03 KB)
Non-trainable params: 98064 (383.06 KB)

Similar to previous tasks, the model is fine-tuned using a batch size of 32, a learning
rate of 0.0001, the Adam optimizer, and the ReLU activation function. The model was
trained for 10 epochs for the reasons discussed in the previous section. The loss function

employed is the Sparse Categorical Cross-entropy. The performance metrics of Model 2
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in identifying bass notes are visualized in Figure 9.11. The model reached 80% training

and 76% evaluation accuracy.
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Figure 9.11. Training results of Model 2 for triad note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix depicted in Figure 9.12 provides a detailed breakdown of the
model’s predictions against the ground truth for triad note identification. This visual-
ization offers valuable insights into the model’s performance and its ability to accurately
classify triad notes. It is evident that the model classifies most of the chords as major
chords. This bias towards major chords could be due to the imbalanced representation of
major chords in the dataset. Consequently, the model’s performance in accurately identi-
fying other types of chords, such as minor or diminished chords, might be compromised.
Therefore, while the model demonstrates proficiency in identifying major chords, its ef-
fectiveness in classifying other chord types is limited. This highlights the need for further
investigation and potential model refinement to achieve more balanced and accurate triad

note identification.
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9.2.5 Model 2: Extension 1 classification Task
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Figure 9.12. Confusion matrix of Model 2 for triad note identification.

9.2.5 Model 2: Extension 1 classification Task

The fourth task in the chord recognition pipeline focuses on identifying the extension
1 of each chord. Extension 1 refers to the first additional note beyond the triad in a chord.
This task involves classifying the extension 1 note of each chord into one of the 6 possible
extension 1 notes (including "None") in the musical scale.

To tackle this task, we build upon the "core" architecture utilized in Model 2. We ex-
tend this architecture by adding two additional fully connected layers specifically designed
for extension 1 identification. The additional Dense layers integrated into the model are
outlined in Table 9.6 below.

Table 9.6. Dense layers added to the "core” architecture for the task of identifying extension
1 using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 7) 774

Total params: 295703 (1.13 MB)
Trainable params: 197639 (772.03 KB)
Non-trainable params: 98064 (383.06 KB)

Similar to the previous tasks, the model is fine-tuned using a batch size of 32, a
learning rate of 0.0001, the Adam optimizer, and the ReLU activation function. The

training process spans 10 epochs to balance training time and model convergence. The
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Sparse Categorical Cross-entropy is employed as the loss function.

The performance metrics of Model 2 in identifying extension 1 notes are visually repre-
sented in Figure 9.13. The model achieves a training accuracy of 85% and an evaluation

accuracy of 74%.
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Figure 9.13. Training results of Model 2 for extension 1 note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix depicted in Figure 9.14 provides a detailed breakdown of the
model’s predictions compared to the ground truth for extension 1 note identification.
This visualization offers valuable insights into the model’s performance and its ability to
accurately classify extension 1 notes. Despite the relatively high accuracy, it is evident
that the model fails completely on identifying the 4th note (extension 1). The model has

predicted "None" in the majority of its predictions.
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9.2.6 Model 2: Extension 2 classification Task
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Figure 9.14. Confusion matrix of Model 2 for extension 1 note identification.

9.2.6 Model 2: Extension 2 classification Task

The fifth task in the chord recognition pipeline focuses on identifying the extension
2 of each chord. Extension 2 refers to the second additional note beyond the triad in a
chord. This task basically involves classifying the chord as major 9 chord or not.

To address this task, we expand upon the "core" architecture utilized in Model 2. We
enhance this architecture by integrating two additional fully connected layers specifically
tailored for extension 2 identification. The additional Dense layers incorporated into the

model are detailed in Table 9.7 below.

Table 9.7. Dense layers added to the "core” architecture for the task of identifying extension
2 using Model 2.

Layer (type) Output Shape Param #

dense (Dense) (None, 128) 196736

dense_1 (Dense) (None, 2) 258

Total params: 295381 (1.13 MB)
Trainable params: 197317 (771.72 KB)
Non-trainable params: 98064 (383.06 KB)

Following the methodology employed in previous tasks, the model is fine-tuned using
a batch size of 32, a learning rate of 0.0001, the Adam optimizer, and the ReLU activation
function. The training process extends over 10 epochs to balance training time and model
convergence, with the Sparse Categorical Cross-entropy serving as the loss function.

The performance metrics of Model 2 in identifying extension 2 notes are visually de-
picted in Figure 9.15. The model achieves a training accuracy of 98% and an evaluation

accuracy of 98%.
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Figure 9.15. Training results of Model 2 for extension 2 note identification. Batch size=32,
Learning Rate=0.0001

The confusion matrix illustrated in Figure 9.16 presents a comprehensive overview of
the model’s predictions compared to the ground truth for extension 2 note identification.
This visualization provides valuable insights into the model’s performance and its ability
to accurately classify extension 2 note. Despite the very high accuracy, it is evident that
the model fails to classify the 5th note correctly. The model has only predicted as "None"
all the samples. The high imbalance of the dataset for the extension 2 has lead to the

misleading high Accuracy scores.
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9.3 Model 3: 2D Convolutional Neural Network with BiLSTM
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Figure 9.16. Confusion matrix of Model 2 for extension 2 note identification.

9.3 Model 3: 2D Convolutional Neural Network with BiLSTM

As described in 7, convolutional networks excel in handling data with a grid-like
topology that possesses spatial relationships. Spectrograms, in the previous model, were
interpreted as time series of vectors with 192 features. In this model, spectrograms will be
treated as images, leveraging convolutional layers before the recurrent layer to facilitate
feature extraction.

To achieve that, as mentioned in 8, 'chunking’ will be used as a preprocessing step
to prepare the data for utilization in two-dimensional deep learning models. This process
involves partitioning the input data into smaller segments, each comprising 100 con-
secutive time steps, equivalent to approximately 7 seconds of audio. This number was
treated as a hyperparameter when training the models and was determined after fine-
tuning. The rationale behind this approach stems from the utilization of a bidirectional
Long Short-Term Memory (LSTM) layer in our model architecture.

The use of small data chunks is imperative for enhancing the LSTM’s learning effi-
cacy and efficiency. By breaking down the input time series into manageable segments,
the bidirectional LSTM layer can better capture and understand temporal dependen-
cies within the data. This granularity allows the model to effectively learn patterns and
relationships across shorter time intervals, facilitating more accurate predictions and
improved performance.

By treating each chunk as an individual image, the convolutional layers can extract

meaningful features within these smaller regions of time within the track. This chunking
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process not only simplifies the computational complexity but also ensures that the input
data is standardized, which is crucial for consistent training performance. Once the
features are extracted from these chunks using the convolutional layers, the BiLSTM
layer will take these processed features and analyze the sequential dependencies across
chunks, providing a comprehensive understanding of the musical piece over time.

The convolutional layers in this model are designed to map the spectrogram data into
an output vector. This vector is subsequently used as the input for the bidirectional Long
Short-Term Memory (BiLSTM) layer. This architecture enables the BiLSTM to effectively
capture and interpret contextual information over time.

Following the extensive experimentation mentioned in 9.2, it was determined that
the Constant-Q Transform (CQT) method outperformed the Constant-Q Chromagram ap-
proach. By utilizing 192 features as opposed to the 12 features employed in the Constant-
Q Chromagram, the CQT method achieved superior performance metrics. Therefore, in
this chapter, we will utilize the Constant-Q Transform with a sample rate of 44100 Hz,
192 bins (24 bins per octave), and a hop length of 4096, parameters that were fine-tuned
for optimal performance. The chunk size was tuned and set to 100 meaning each chunk

covers about 7 seconds of audio.

The architecture of Model 3 consists of several convolutional layers followed by max-
pooling layers, which downsample the feature maps and reduce their spatial dimensions.
To prevent overfitting, dropout layers are incorporated, which randomly drop a fraction of
the input units during training. The output from the convolutional layers is then flattened
and passed through BiLSTM layer, which further process the extracted features before

the final passing to a fully connected dense layer for classification.

Like the previous section, the problem has been subdivided into several distinct tasks,

each aimed at identifying different aspects of the musical chord:

Identifying the root note.

Identifying the bass note.

Identifying the triad.

Identifying the first extension (4th note).

Identifying the second extension (5th note).

To address these tasks efficiently, transfer learning techniques were employed. Ini-
tially, we determined the optimal "core" architecture, for each task this time, that would
serve as the foundation. Following this, a multi-step approach was adopted, as illustrated
in Figure 9.17. This approach facilitated the sequential transfer of learned features from
one task to another, thereby enhancing the model’s performance across all tasks. More

details on transfer learning can be found in Chapter 7.
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9.3.1 Training, Evaluation and Test data split
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Figure 9.17. Flow chart of the transfer learning approach used in the Model 3.

9.3.1 Training, Evaluation and Test data split

The dataset, augmented and pre-processed as described in Chapter 3, was split into
three distinct sets to facilitate the testing and evaluation of the model. To maintain
the coherence of the data within each track, an algorithm was designed to split the
dataset on a track-by-track basis. Notably, tracks from the albums CDI1, CD2, Help,
and Please Please Me were reserved exclusively for final testing. Additionally, 15% of the
remaining data was allocated for evaluation, while the remaining 85% was designated for
training purposes. This approach ensured a comprehensive evaluation while preserving

the integrity of the dataset structure.

9.3.2 Model 3: Root classification task

As mentioned in 9.2.2, the first task in the chord recognition pipeline focuses on
identifying the root note of each chord. This task involves classifying the root note of each
chord into one of the 13 possible root notes (included "None") in the musical scale. To
accomplish this, several architectures were tried but the one yielding the best results can

be seen in the table below ?2?

Table 9.8. Model Architecture for the task of identifying the root note using the Model 3.

Layer (type) Output Shape
conv2d (Conv2D) (None, 100, 192, 32)
conv2d_1 (Conv2D) (None, 100, 192, 32)
conv2d_2 (Conv2D) (None, 100, 192, 32)
conv2d_3 (Conv2D) (None, 100, 192, 32)
batch_normalization (BatchNormalization) (None, 100, 192, 32)
max_pooling2d (MaxPooling2D) (None, 100, 96, 32)
dropout (Dropout) (None, 100, 96, 32)
conv2d_4 (Conv2D) (None, 100, 96, 64)
conv2d_5 (Conv2D) (None, 100, 96, 64)
batch_normalization_1 (BatchNormalization) (None, 100, 96, 64)
max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64)
dropout_1 (Dropout) (None, 100, 48, 64)
conv2d_6 (Conv2D) (None, 100, 48, 128)
conv2d_7 (Conv2D) (None, 100, 48, 64)
batch_normalization_2 (BatchNormalization) (None, 100, 48, 64)
max_pooling2d_2 (MaxPooling2D) (None, 100, 12, 64)
dropout_2 (Dropout) (None, 100, 12, 64)
time_distributed (TimeDistributed) (None, 100, 768)
bidirectional (Bidirectional) (None, 100, 256)
time_distributed_1 (TimeDistributed) (None, 100, 13)
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Training the Model on Root Task

For training the model, it was compiled using the Adam optimizer with the following
hyperparameters, learning rate of 0.0001, 3; set to 0.9, 35 set to 0.99, and epsilon (¢) set
to 1 x 1078, The loss function employed for training was categorical crossentropy, and
the model’s performance was evaluated using accuracy as the metric and the batch size
used is 16. The parameter 3; represents the exponential decay rate for the first moment
estimates, which essentially determines how quickly the optimizer forgets past gradients
and focuses on the current gradients. Typically, B3; is set close to 1.0. Similarly, S35
represents the exponential decay rate for the second-moment estimates, indicating how
quickly the optimizer adjusts its learning rate based on the variance of the gradients.
Like B;, B2 is also commonly set close to 1.0. Finally, € is a small constant added
to the denominator to prevent division by zero, ensuring numerical stability during the
computation of adaptive learning rates. The loss function used is the Categorical Cross-
entropy.

The performance of the model in classifying the root notes is shown in the graph shown
below (Figure 9.18). The model was trained for 40 Epochs after experimenting with other
options. Both the training and the evaluation accuracy stabilize at approximately 93%

and 86% accordingly, a much better result in comparison to Model 2.
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Figure 9.18. Training results of Model 3 in the task of identifying the root note. Batch

size=16, Learning Rate=0.0001, chunk size=100
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9.3.2 Model 3: Root classification task

The confusion matrix, as illustrated in Figure 9.19, offers a detailed insight into the
model’s performance in the evalutation set by showcasing the distribution of predicted
root notes against the actual ones. Notably, compared to Model 2, we observed an exces-

sive 19% enhancement in accuracy on the evaluation set.
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Figure 9.19. Confusion matrix of the Model 3 on the task of identifying the root note on the
evaluation set.

A classification report table 9.9 provides a detailed classification report for a multiclass
classification task, evaluating the performance of a model across various classes (N, C,
Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B) based on precision, recall, F1-score, and support

metrics.

The table reveals that the model achieves high precision, recall, and F1-score across
most classes, indicating its effectiveness in correctly identifying musical chord classes.
Overall, the model demonstrates strong performance, with an accuracy of 0.86, indicating
that it correctly predicts the majority of classes with high confidence. These metrics
provide valuable insights into the model’s performance and can guide further optimization

efforts.
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Precision Recall Fl-score Support

N 0.93 0.89 0.91 32908
C 0.87 0.88 0.87 40184
Db 0.80 0.83 0.82 34551
D 0.88 0.87 0.87 39299
Eb 0.85 0.84 0.84 39498
E 0.85 0.87 0.86 41678
F 0.86 0.88 0.87 41743
Gb 0.82 0.85 0.83 36365
G 0.89 0.88 0.88 39190
Ab 0.85 0.79 0.82 42029
A 0.86 0.85 0.86 43367
Bb 0.84 0.86 0.85 33111
B 0.86 0.85 0.85 40777
Accuracy 0.86 504700
Macro 0.86 0.86 0.86 504700

Weighted avg 0.86 0.86 0.86 504700

Table 9.9. Classification Report for Model 3 on the task of identifying the root note on the
evaluation set.

The Model’s performance on the test set mentioned in 9.3.1 can be seen on the Figure
9.20 below.
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Figure 9.20. Confusion matrix of the Model 3 on the task of identifying the root note on the
test set.

The table 9.10 below illustrates the classification report for Model 3, tasked with
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9.3.2 Model 3: Root classification task

identifying the root note on the evaluation set. It showcases precision, recall, F1-score,
and support metrics for each class, along with overall accuracy, macro-averaged metrics,
and weighted-averaged metrics. Overall, the model has about 83% Accuracy indicating a
relatively high performance on the test set, noting that the test set only consists of 108600

samples in comparison to 504700 in the evaluaton set.

Precision Recall Fl-score Support

N 0.91 0.86 0.88 8915
C 0.77 0.72 0.74 10084
Db 0.80 0.66 0.72 1845
D 0.81 0.86 0.84 14927
Eb 0.74 0.82 0.78 1890
E 0.86 0.89 0.87 14793
F 0.74 0.71 0.72 6063
Gb 0.87 0.93 0.90 4484
G 0.79 0.79 0.79 15199
Ab 0.88 0.87 0.87 1356
A 0.84 0.86 0.85 19653
Bb 0.88 0.89 0.89 3408
B 0.90 0.79 0.84 5983
Accuracy 0.83 108600
Macro 0.83 0.82 0.82 108600

Weighted avg 0.83 0.83 0.83 108600

Table 9.10. Classification Report for Model 3 on the task of identifying the root note on the
test set.

As previously noted and clearly illustrated in Tables 9.9 and 9.10, the dataset is imbal-
anced, with certain root notes occurring less frequently than others. This imbalance can
lead to a biased model that performs well on more frequent classes while underperforming
on less frequent ones. To address this issue, we experimented with setting weights for
each note based on its frequency of occurrence. By assigning higher weights to less fre-
quent notes and lower weights to more frequent ones, we aimed to balance the influence
of each class during the training process, thereby mitigating any biases introduced by the

uneven distribution of the data.

The weighted approach intended to promote a more equitable learning process, ensur-
ing that the model gives appropriate attention to the underrepresented classes. However,
as shown in Figure 9.21 , the introduction of weights did not yield the expected improve-
ment in model performance. Contrary to our objectives, it resulted in a slight decrease
of approximately 1% - 2% in accuracy for both the training and evaluation sets. This
outcome suggests that while the weighted approach addresses class imbalance, it does
not contribute in the better outcome of the task. That might be cause we have already

addressed major imbalances by data augmentation, detailed in 8.
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Figure 9.21. Training results of Model 3 in the task of identifying the root note in comparison
with same model but also using weights. Batch size=16, Learning Rate=0.0001, chunk
size=100

With this architecture in place, we will now proceed to the second task: classifying

the bass note.

9.3.3 Model 3: Bass Classification Task

With the task of the root note classification completed, we now shift our focus to the
bass note classification task. This task bears a strong resemblance to the root classifi-
cation task in terms of its fundamental objective: identifying one note from the set of all
possible notes, including the "None" category.

The architecture and approach for the bass classification task will largely build upon
the architecture used in the previous root classification task, employing transfer learning
techniques as detailed in 8. The decision on which parts of the model to reuse for transfer
learning was derived from extensive experimentation, involving various combinations to
identify the optimal configuration. The architecture that yielded the best results involved
retaining and freezing the first 11 layers, which primarily consist of convolutional layers.
To this foundation, we added 2 additional convolutional layers, a bidirectional LSTM
(BiLSTM) layer, and a final fully connected dense layer. The detailed architecture is
depicted in the following Tables 9.11 and 9.12 below.
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9.3.3 Model 3: Bass Classification Task

Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 100, 192, 32) 320
conv2d_1 (Conv2D) (None, 100, 192, 32) 9248
conv2d_2 (Conv2D) (None, 100, 192, 32) 9248
conv2d_3 (Conv2D) (None, 100, 192, 32) 9248
batch_normalization (BatchNormalization) (None, 100, 192, 32) 128
max_pooling2d (MaxPooling2D) (None, 100, 96, 32) 0
dropout (Dropout) (None, 100, 96, 32) 0
conv2d_4 (Conv2D) (None, 100, 96, 64) 18496
conv2d_5 (Conv2D) (None, 100, 96, 64) 36928
batch_normalization_1 (BatchNormalization) (None, 100, 96, 64) 256
max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64) 0
Total params 83872
Trainable params 0
Non-trainable params 83872

Table 9.11. Detailed Architecture used as ’core’ for Transfer Learning for the Bass Classi-
fication Task. Those layers are_frozen meaning the paramteters will not be trained again.

By freezing those layers, meaning those layers will not be trained again when fine-
tuning for the bass classification task, we aim to retain the learned features from the root
classification task, which are likely to be beneficial for the bass classification as well due
to the similarity of those two tasks. This approach helps in reducing the computational
cost and time required for training, as well as prevents overfitting by avoiding the need
to learn new representations for the shared features. By incorporating transfer learning
in this manner, we leverage the knowledge gained from the previous task and adapt it
to the new task, potentially improving the overall performance of the model. The final

Architecture of the model is shown in the Table 9.12 below.
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Layer (type) Output Shape Param #
conv2d (Conv2D) (None, 100, 192, 32) 320
conv2d_1 (Conv2D) (None, 100, 192, 32) 9248
conv2d_2 (Conv2D) (None, 100, 192, 32) 9248
conv2d_3 (Conv2D) (None, 100, 192, 32) 9248
batch_normalization (BatchNormalization) (None, 100, 192, 32) 128
max_pooling2d (MaxPooling2D) (None, 100, 96, 32) 0
dropout (Dropout) (None, 100, 96, 32) 0
conv2d_4 (Conv2D) (None, 100, 96, 64) 18496
conv2d_5 (Conv2D) (None, 100, 96, 64) 36928
batch_normalization_1 (BatchNormalization) (None, 100, 96, 64) 256
max_pooling2d_1 (MaxPooling2D) (None, 100, 48, 64) 0
bass_conv (Conv2D) (None, 100, 48, 64) 36928
bass_conv2 (Conv2D) (None, 100, 48, 128) 73856
BatchNorm_bass (BatchNormalization) (None, 100, 48, 128) 512
MaxPooling_bass (MaxPooling2D) (None, 100, 16, 128) 0
Dropout_bass (Dropout) (None, 100, 16, 128) 0
Flatten_bass (TimeDistributed) (None, 100, 2048) 0
LSTM_layer (Bidirectional) (None, 100, 256) 2229248
out (TimeDistributed) (None, 100, 13) 3341
Total params 2427757
Trainable params 2343629
Non-trainable params 84128

Table 9.12. Detailed Architecture for the Bass Classification Task including all layers
(frozen and added).

Training the Model on Bass Task

For training the model, as mentioned before, it was compiled using the Adam optimizer
with the following hyperparameters, learning rate of 0.0001, 3; set to 0.9, 3, set to 0.99,
and epsilon () set to 1 X 1078, The loss function employed for training was categorical
crossentropy, and the model’s performance was evaluated using accuracy as the metric
and the batch size used is 16. The performance of the model in classifying the root notes
is shown in the graph shown below (Figure 9.22). The model was trained for 30 Epochs
and the model at Epoch 20 found to be the best one due to the validation loss increase
and the decrease of training loss after that Epoch indicating overfitting. Both the training
and the evaluation accuracy stabilize at approximately 95% and 86% accordingly, a much

better result in comparison to Model 2.
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Accuracy per Epoch
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Figure 9.22. Training results of Model 3 in the task of identifying the bass note. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix, depicted in Figure 9.23, provides a detailed overview of the
model’s performance on the evaluation set, showcasing the distribution of predicted bass
notes compared to the actual ones. Impressively, in contrast to Model 2, we observed a

substantial 19% improvement in accuracy on the evaluation set.
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Confusion Matrix
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Figure 9.23. Confusion matrix of Model 3 for identifying the bass note on the evaluation
set.

A classification report table (Table 9.13) presents a comprehensive breakdown of the
model’s performance in a multiclass classification task, evaluating its accuracy across
various bass note classes (e.g., A, Bb, C, Db, D, etc.) based on precision, recall, F1-score,

and support metrics.

The table reveals that the model achieves high precision, recall, and F1-score across
most bass note classes, indicating its effectiveness in correctly identifying them. Overall,
the model demonstrates strong performance, with an accuracy of 0.86, indicating that it
correctly predicts the majority of bass note classes with high confidence. These metrics
offer valuable insights into the model’s effectiveness and can inform further optimization
efforts.
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Precision Recall Fl-score Support
N 0.91 0.89 0.90 32908
C 0.86 0.88 0.87 39350
Db 0.80 0.83 0.81 34524
D 0.89 0.87 0.88 40639
Eb 0.85 0.84 0.84 38890
E 0.85 0.84 0.85 42824
F 0.88 0.86 0.87 41155
Gb 0.84 0.83 0.84 37014
G 0.87 0.89 0.88 39206
Ab 0.82 0.81 0.82 40635
A 0.87 0.85 0.86 42679
Bb 0.84 0.84 0.84 34581
B 0.84 0.87 0.85 40295
Accuracy 0.86 504700
Macro 0.86 0.86 0.86 504700
Weighted avg 0.86 0.86 0.86 504700

Table 9.13. Classification Report for Model 3 on the task of identifying the bass note on

the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated in

Figure 9.36 below.
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Figure 9.24. Confusion matrix of Model 3 for identifying bass notes on the test set.

Table 9.14 presents the classification report for Model 3, tasked with identifying bass

notes on the evaluation set. It showcases precision, recall, F1-score, and support met-
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rics for each bass note class, along with overall accuracy, macro-averaged metrics, and
weighted-averaged metrics. Overall, the model achieves an accuracy of approximately
81%, indicating a relatively high performance on the test set, considering its size of

108,600 samples compared to the evaluation set’s 504,700 samples.

Precision Recall Fl-score Support

N 0.82 0.91 0.86 8915
C 0.78 0.72 0.75 9451
Db 0.76 0.59 0.67 1893
D 0.77 0.82 0.79 14578
Eb 0.81 0.80 0.80 1907
E 0.86 0.86 0.86 14679
F 0.71 0.71 0.71 5970
Gb 0.86 0.86 0.86 4894
G 0.75 0.81 0.78 14260
Ab 0.84 0.77 0.80 1535
A 0.86 0.85 0.85 19820
Bb 0.90 0.83 0.86 3623
B 0.85 0.69 0.76 7075
Accuracy 0.81 108600
Macro 0.81 0.79 0.80 108600
Weighted avg 0.81 0.81 0.81 108600

Table 9.14. Classification Report for Model 3 on the task of identifying the bass note on
the test set.

Now we will move forward to the task of identifying the triad note.

9.3.4 Model 3: Triad Classification Task

With the successful completion of the bass note classification task, our attention now
turns to the triad classification task. Similar to the previous classification tasks, the
primary objective here remains the identification of a single triad from the comprehensive
set of possible triads, including the "None" category. Those, as mentioned previously, are

N, maj, min, dim, aug, sus2 and sus4.

For the triad classification task, we build upon the architecture and methodology
established in the previous classification tasks, utilizing transfer learning techniques
outlined in prior work. Extensive experimentation guided our decision-making process,
where we explored various configurations to determine the most effective approach. Ul-
timately, the optimal architecture involved retaining and freezing the initial 11 layers,
as in the previous task, predominantly comprising convolutional layers. To this frame-
work, we introduced two additional convolutional layers, dropout and flattend layers, a

bidirectional LSTM (BiLSTM) layer, and a final fully connected dense layer.
The detailed architecture can be seen in the Tables 9.15 and 9.16 below.
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Layer (type) Output Shape Param #
conv2d (None, 100, 192, 32) 320
conv2d_1 (None, 100, 192, 32) 9248
conv2d_2 (None, 100, 192, 32) 9248
conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128
max_pooling2d (None, 100, 96, 32) 0
dropout (None, 100, 96, 32) 0
conv2d_4 (None, 100, 96, 64) 18496
conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0
Total params 83872

Trainable params
Non-trainable params

0 (0.00 Byte)
83872 (327.62 KB)

Table 9.15. Detailed Architecture used as ’core’ for Transfer Learning for the Triad Classi-
fication Task. Those layers are _frozen meaning the parameters will not be trained again.

Layer (type) Output Shape Param #
conv2d (None, 100, 192, 32) 320
conv2d_1 (None, 100, 192, 32) 9248
conv2d_2 (None, 100, 192, 32) 9248
conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128
max_pooling2d (None, 100, 96, 32) 0
dropout (None, 100, 96, 32) 0
conv2d_4 (None, 100, 96, 64) 18496
conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0
triad_conv (None, 100, 48, 64) 36928
triad_conv2 (None, 100, 48, 128) 73856
BatchNorm_triad (None, 100, 48, 128) 512
MaxPooling_triad (None, 100, 16, 128) O
Dropout_triad (None, 100, 16, 128) O
Flatten_Triad (None, 100, 2048) 0
LSTM_layer (Bidirectional) (None, 100, 256) 2229248
out (TimeDistributed) (None, 100, 7) 1799
Total params 2426215

Trainable params
Non-trainable params

2342087 (8.93 MB)
84128 (328.62 KB)

Table 9.16. Detailed Architecture for the Triad Classification Task including all layers
(frozen and added).

As mentioned before, by preserving the parameters of these layers, they are effectively
excluded from further training during the adaptation process for the triad classification
task. This strategy aims to preserve the learned patterns from the root classification

task, which are likely to be advantageous for the triad classification task due to the
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intrinsic similarities between the two tasks. This methodology not only streamlines the
computational burden and training time but also guards against overfitting by obviating
the necessity to relearn features already captured in the shared layers. Employing transfer
learning in this manner enables us to capitalize on the insights gleaned from prior tasks
and tailor them to the specific demands of the new task, potentially enhancing the overall
efficacy of the model. The finalized model architecture is detailed in Table 9.16.

Training the Model on Triad Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,
B setto 0.9, B set to 0.99, and epsilon (€) set to 1 X 1078, The loss function employed for
training was categorical crossentropy, and we evaluated the model’s performance using
accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.25.
The model underwent training for 30 epochs, where it demonstrated significant improve-
ment in accuracy over time. Both the training and validation accuracy stabilized at
approximately 99% and 96%, respectively, showcasing notable enhancement compared

to previous models.
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Figure 9.25. Training results of Model 3 in the task of identifying the triad note. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix in Figure 9.26 provides a detailed overview of the model’s per-
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formance on the evaluation set, illustrating the distribution of predicted triad notes com-
pared to the actual ones. Notably, we observed a substantial improvement in accuracy

on the evaluation set, achieving a significant advancement over previous models.
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Figure 9.26. Confusion matrix of Model 3 for identifying the triad note on the evaluation
set.

A classification report table (Table 9.17) can be seen in the Table 9.17

The comprehensive analysis presented in the table showcases the model’s remarkable
performance in identifying triad notes, as evidenced by high precision, recall, and F1-score
metrics across the majority of triad classes. Notably, the model exhibits an impressive
accuracy of 96%, signifying its capability to accurately predict the triad classes with a
high level of confidence. This substantial improvement from Model 2, which achieved
76% accuracy on this task, highlights the efficacy of the enhancements implemented
in Model 3. Particularly noteworthy is the model’s ability to overcome the challenge of
accurately predicting minority classes, demonstrating its robustness and reliability across

the entire spectrum of triad notes.
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Precision Recall Fl-score Support
N 0.96 0.95 0.95 32908
maj 0.96 0.99 0.97 361254
min 0.95 0.89 0.92 98927
dim 0.97 0.61 0.74 3604
aug 0.99 0.69 0.81 4463
sus2 0.92 0.69 0.79 465
sus4 0.89 0.55 0.68 3079
Accuracy 0.96 504700
Macro 0.95 0.77 0.84 504700
Weighted avg 0.96 0.96 0.95 504700

Table 9.17. Classification Report for Model 3 on the task of identifying the triad note on

the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated

in Figure 9.27. Table 9.18 presents the classification report for Model 3, tasked with

identifying triad notes on the evaluation set, providing precision, recall, F1-score, and

support metrics for each triad note class, along with overall accuracy, macro-averaged

metrics, and weighted-averaged metrics.

Overall, the model achieves an accuracy of

approximately 97%, indicating a relatively high performance on the test set, considering

its size of 108,600 samples compared to the evaluation set’s 504,700 samples.
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Figure 9.27. Confusion matrix of Model 3 for identifying triad notes on the test set.

Diploma Thesis



9.3.5 Model 3: Extension 1 Classification Task

Precision Recall Fl-score Support

N 0.94 0.97 0.95 8915
maj 0.97 0.98 0.98 79446
min 0.95 0.91 0.93 17958
dim 0.95 0.79 0.86 726
aug 0.95 0.89 0.92 426
sus2 0.92 0.82 0.87 226
sus4 0.94 0.79 0.86 903
Accuracy 0.97 108600
Macro 0.95 0.88 0.91 108600

Weighted avg ~ 0.97 0.97 0.97 108600

Table 9.18. Classification Report for Model 3 on the task of identifying the triad note on
the test set.

9.3.5 Model 3: Extension 1 Classification Task

Having successfully tackled the previous tasks, our focus now shifts to the extension 1
classification task. In this task, we aim to classify extension 1 notes into a predefined set
of categories, which include N, dim7, hdim7, maj6, maj7, and min7. As in the previous
tasks, we also have the "None" as "N" category indicating the absence of an extension 1

note.

For the extension 1 classification task, we build upon the established architecture
and methodology, leveraging transfer learning techniques honed in prior tasks. Through
extensive experimentation, we iteratively refined our approach, exploring various con-
figurations to identify the most effective strategy. Ultimately, we arrived at an optimal
architecture that builds upon the foundation of the previous tasks while incorporating
additional layers tailored to the demands of the extension 1 classification task. The
detailed architecture, delineated in Tables 9.19 and 9.20, outlines the structure of our

model.

The ’core’ architecture remains consistent for this task as well, providing a stable
foundation for model training. Similarly, the additional layers introduced in previous
tasks are retained here, as they have proven to be effective for this task as well. When we
say these layers are the same, we are referring to their architecture, indicating that they

were once again utilized and trained specifically for the extension 1 classification task.
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Layer (type) Output Shape Param #
conv2d (None, 100, 192, 32) 320
conv2d_1 (None, 100, 192, 32) 9248
conv2d_2 (None, 100, 192, 32) 9248
conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128
max_pooling2d (None, 100, 96, 32) 0
dropout (None, 100, 96, 32) 0
conv2d_4 (None, 100, 96, 64) 18496
conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0
Total params 83872

Trainable params
Non-trainable params

0 (0.00 Byte)
83872 (327.62 KB)

Table 9.19. Detailed Architecture used as ’core’ for Transfer Learning for the Extension 1
Classification Task. These layers are frozen, meaning the parameters will not be trained

again.

Layer (type) Output Shape Param #
conv2d (None, 100, 192, 32) 320
conv2d_1 (None, 100, 192, 32) 9248
conv2d_2 (None, 100, 192, 32) 9248
conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128
max_pooling2d (None, 100, 96, 32) 0
dropout (None, 100, 96, 32) 0
conv2d 4 (None, 100, 96, 64) 18496
conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0
extl_conv (None, 100, 48, 64) 36928
extl_conv2 (None, 100, 48, 128) 73856
BatchNorm_ext1 (None, 100, 48, 128) 512
MaxPooling_ext1 (None, 100, 16, 128) O
Dropout_ext1 (None, 100, 16, 128) O
Flatten_Ext1 (None, 100, 2048) 0
LSTM_layer (Bidirectional) (None, 100, 256) 2229248
out (TimeDistributed) (None, 100, 7) 1542
Total params 2369884

Trainable params
Non-trainable params

2281756 (8.70 MB)
88128 (343.12 KB)

Table 9.20. Detailed Architecture for the Extension 1 Classification Task including all
layers (frozen and added).

As with the previous tasks, by freezing the parameters of certain layers, we ensure
they are excluded from further training during the adaptation process for the extension 1

classification task. This strategy aims to preserve the learned patterns from the previous
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tasks, which can prove advantageous due to the inherent similarities between the classifi-
cation objectives. By retaining these learned features, we streamline the training process,
reduce computational overhead, and mitigate the risk of overfitting. Leveraging trans-
fer learning in this manner allows us to capitalize on insights gleaned from prior tasks
and tailor them to the specific demands of the extension 1 classification task, potentially

enhancing the model’s overall performance.

Training the Model on Extension 1 Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,
B1 set to 0.9, B, set to 0.99, and epsilon (¢) set to 1 x 1078, The loss function employed for
training was categorical crossentropy, and we evaluated the model’s performance using
accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.28.
The model underwent training for 30 epochs, where it demonstrated significant improve-
ment in accuracy over time. Both the training and validation accuracy stabilized at
approximately 99% and 96%, respectively, in comparison to 85% which was the previous

model’s accuracy on this task.
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Figure 9.28. Training results of Model 3 in the task of identifying the Extension 1. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix depicted in Figure 9.29 offers an insightful overview of how
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well the model performs on the evaluation set, delineating the distribution of predicted
Extension 1 notes against the actual ones. A significant advancement of this model over
its predecessor (Model 2) lies in its proficiency in predicting minority classes. In contrast,
when scrutinizing the confusion matrix (Figure 9.14) associated with Model 2, it becomes
apparent that the majority of samples were misclassified as the "None" class. This stark
observation underscored the previous model’s incapacity to effectively handle this task. In
contrast, the updated model showcased here exhibits the capability to accurately predict

all classes, marking a notable improvement in its predictive performance.
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Figure 9.29. Confusion matrix of Model 3 for identifying the Extension 1 on the evaluation
set.

A classification report table (Table 9.25) can be seen in the Table 9.25

The comprehensive analysis presented in the table showcases the model’s remarkable
performance in identifying triad notes, as evidenced by high precision, recall, and F1-score
metrics across the majority of triad classes. Notably, the model exhibits an impressive
accuracy of 96%, signifying its capability to accurately predict the triad classes with a
high level of confidence. As mentioned previously, the major improvement is that this

model exhibits the capability to accurately predict all classes
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Precision Recall Fl-score Support

N 0.97 0.99 0.98 428757
dim?7 0.92 0.83 0.87 1148
hdim?7 0.94 0.51 0.66 968
maj6 0.96 0.65 0.77 6299
maj7 0.97 0.51 0.67 3955
min7 0.95 0.75 0.84 10262
7 0.88 0.85 0.87 53311
Accuracy 0.96 504700
Macro 0.94 0.73 0.81 504700

Weighted avg ~ 0.96 0.96 0.96 504700

Table 9.21. Classification Report for Model 3 on the task of identifying the Extension 1 on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated
in Figure 9.30. Table 9.22 presents the classification report for Model 3, tasked with
identifying triad notes on the evaluation set, providing precision, recall, F1-score, and
support metrics for each triad note class, along with overall accuracy, macro-averaged
metrics, and weighted-averaged metrics. Overall, the model achieves an accuracy of
approximately 98%, indicating a relatively high performance on the test set, considering

its size of 108,600 samples compared to the evaluation set’s 504,700 samples.

Confusion Matrix
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Figure 9.30. Confusion matrix of Model 3 for identifying Extension 1 on the test set.
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Precision Recall Fl-score Support
N 0.99 0.99 0.99 95464
dim?7 0.84 1.00 0.91 205
hdim?7 0.92 0.90 0.91 227
maj6 0.88 0.76 0.82 419
maj7 0.99 0.71 0.82 1978
min7 0.97 0.92 0.94 1004
7 0.92 0.87 0.89 9303
Accuracy 0.97 108600
Macro 0.93 0.88 0.90 108600
Weighted avg 0.97 0.97 0.97 108600

Table 9.22. Classification Report for Model 3 on the task of identifying the Extension 1 on
the test set.

9.3.6 Model 3: Extension 2 Classification Task

The final task is the classification of the Extension 2. In this task, we aim to classify
extension 2 notes into a predefined set of categories, which include N, and 9 so it is a
binary classification problem. As in the previous tasks, we also have the "None" as "N"

category indicating the absence of an extension 2 note.

For the Extension 2, the architecture used in Extension 1 was fined to work best. The
detailed architecture, delineated in Tables 9.23 and 9.24, outlines the structure of our

model.

Layer (type) Output Shape Param #
conv2d (None, 100, 192, 32) 320
conv2d_1 (None, 100, 192, 32) 9248
conv2d_2 (None, 100, 192, 32) 9248
conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128

max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0
conv2d_4 (None, 100, 96, 64) 18496
conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0
Total params 83872

Trainable params
Non-trainable params

0 (0.00 Byte)
83872 (327.62 KB)

Table 9.23. Detailed Architecture used as ‘core’ for Transfer Learning for the Extension 2
Classification Task. These layers are frozen, meaning the parameters will not be trained

again.
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Layer (type) Output Shape Param #

conv2d (None, 100, 192, 32) 320

conv2d_1 (None, 100, 192, 32) 9248

conv2d_2 (None, 100, 192, 32) 9248

conv2d_3 (None, 100, 192, 32) 9248
batch_normalization (None, 100, 192, 32) 128
max_pooling2d (None, 100, 96, 32) 0

dropout (None, 100, 96, 32) 0

conv2d_4 (None, 100, 96, 64) 18496

conv2d_5 (None, 100, 96, 64) 36928
batch_normalization_1 (None, 100, 96, 64) 256
max_pooling2d_1 (None, 100, 48, 64) 0

ext2 _conv (None, 100, 48, 64) 36928

ext2_conv2 (None, 100, 48, 128) 73856
BatchNorm_ext2 (None, 100, 48, 128) 512
MaxPooling_ext2 (None, 100, 16, 128) O

Dropout_ext2 (None, 100, 16, 128) O

Flatten Ext2 (None, 100, 2048) 0

LSTM_layer (Bidirectional) (None, 100, 256) 2229248

out (TimeDistributed) (None, 100, 2) 1542

Total params 2424930 (9.25 MB)
Trainable params 2340802 (8.93 MB)
Non-trainable params 84128 (343.12 KB)

Table 9.24. Detailed Architecture for the Extension 2 Classification Task including all
layers (frozen and added).

Training the Model on Extension 2 Task

For training the model, we utilized the Adam optimizer with a learning rate of 0.0001,
B set to 0.9, B, set to 0.99, and epsilon (€) set to 1 X 1078. The loss function employed for
training was categorical crossentropy, and we evaluated the model’s performance using

accuracy as the metric with a batch size of 16.

The performance of the model in classifying the triad notes is shown in Figure 9.31.
The model underwent training for 30 epochs, where it demonstrated significant improve-
ment in accuracy over time. Both the training and validation accuracy stabilized at

approximately 99% and 99%, respectively.
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Figure 9.31. Training results of Model 3 in the task of identifying the Extension 2. Batch
size=16, Learning Rate=0.0001, chunk size=100

The confusion matrix depicted in Figure 9.32 offers an insightful overview of how well
the model performs on the evaluation set, delineating the distribution of predicted Ex-
tension 1 notes against the actual ones. A significant advancement of this model over
its predecessor (Model 2) lies in its proficiency in predicting minority class. In contrast,
when scrutinizing the confusion matrix (Figure 9.16) associated with Model 2, it becomes
apparent that the majority of samples were misclassified as the "None" class. The pre-
vious model did not have the ability to predict the "9" class. In contrast, the new model

showcases major improvements in this aspect of the problem.
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Confusion Matrix
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Figure 9.32. Confusion matrix of Model 3 for identifying the Extension 2 on the evaluation
set.

A classification report table (Table ??) can be seen in the Table ??

The comprehensive analysis presented in the table showcases the model’s remarkable
performance in identifying triad notes, as evidenced by high precision, recall, and F1-score
metrics across the majority of triad classes. Notably, the model exhibits an impressive
accuracy of 99%, signifying its capability to accurately predict the triad classes with a
high level of confidence. As mentioned previously, the major improvement is that this
model exhibits the capability to accurately predict all classes. The most important metric

here is the macro avg which shows a significant 94% score.

Precision Recall Fl-score Support

N 0.99 1.00 1.00 491413
9 0.98 0.80 0.88 13287
Accuracy 0.99 504700
Macro 0.99 0.90 0.94 504700

Weighted avg 0.99 0.99 0.99 504700

Table 9.25. Classification Report for Model 3 on the task of identifying the Extension 1 on
the evaluation set.

The model’s performance on the test set, mentioned in Section 9.3.1, is illustrated
in Figure 9.30. Table 9.22 presents the classification report for Model 3, tasked with
identifying triad notes on the evaluation set, providing precision, recall, F1-score, and

support metrics for each triad note class, along with overall accuracy, macro-averaged
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metrics, and weighted-averaged metrics. Overall, the model achieves an accuracy of

approximately 100% and a 95% macro average score on the test set.

Confusion Matrix

100000
= 107461 17 80000
60000
©
2
ks
- 40000
o - 180 942
- 20000

Predicted

Figure 9.33. Confusion matrix of Model 3 for identifying Extension 2 on the test set.

Precision Recall Fl-score Support

N 1.00 1.00 1.00 107478
9 0.98 0.84 0.91 1122

Accuracy 1.00 108600
Macro 0.99 0.92 0.95 108600
Weighted avg 1.00 1.00 1.00 108600

Table 9.26. Classification Report for Model 3 on the task of identifying the Extension 2 on
the test set.

9.4 Summary of the Results

In this chapter we explored three different architecture approaches for the problem of
chord recognition. The initial model employed a simple 1D Convolutional Neural Network
(CNN) as a baseline for evaluation, focusing on individual chord embeddings without
considering chord structural representations. However, this approach may have limited
predictive capabilities due to its disregard for music theory and chord relations.

The subsequent model utilized a more complex 1D CNN architecture to capture more
complex patterns within the chord data. Through experimentation, it was determined that

employing the Constant Q Transform (CQT) method with 192 features outperformed the
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Constant-Q Chromagram approach. This model incorporated convolutional layers, max-
pooling layers, and dropout layers to prevent overfitting. Additionally, transfer learning
techniques were applied to efficiently address tasks such as identifying the root note, bass
note, triad, and extensions, enhancing the model’s performance across various chord
recognition tasks.

In the final model, a 2D Convolutional Neural Network with Bidirectional Long Short-
Term Memory (BiLSTM) layers was utilized. This model treated spectrograms as images,
facilitating the extraction of meaningful features across smaller time intervals using con-
volutional layers. ‘Chunking’, as detailed in 8, was employed as a preprocessing step to
partition the input data into manageable segments, improving the LSTM’s ability to cap-
ture temporal dependencies. Similar to the previous model, the Constant Q Transform
method was favored over the Constant-Q Chromagram approach, and transfer learning
techniques were applied to enhance performance across different chord recognition tasks.

All the aforementioned models were trained, tested, and evaluated using a GPU, specif-
ically an NVIDIA GeForce GTX 1650 SUPER with 4 GB of memory. Due to the limited
memory, custom batch generators were implemented instead of using the pre-coded im-
plementations available in the TensorFlow package. It is interesting to note the training
times for each model. The training times, measured in seconds, are shown in Figure 9.34
below. Model 2’s training time for the Root and Bass classification tasks is comparable
to that of Model 3. However, for the remaining three tasks, Model 3 requires significantly

more time due to the increased complexity of its additional layers.

Training Time in Seconds for Each Model and Task

Model
B Model 3
B Model 2
I Model 1

Time (seconds)

bass triad extl ext2 Naive CNN
Task

Figure 9.34. Training time in seconds for each model and task using one NVIDIA GeForce
GTX 1650 SUPER.

As discussed in the previous sections, each model showed a significant increase in
accuracy compared to its predecessor. The accuracy for each model and task is illustrated
in Figure 9.35.
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Accuracy for Each Model and Task
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Figure 9.35. Accuracy scores for each model and each task (training & validation).

Another interesting comparison is between Model 2 and Model 3 in their ability to

classify the Extension 2 task. While this has been analyzed previously, a direct compar-

ison makes the superior performance of Model 3 clear. This is shown in Figure 9.36,

which compares the confusion matrices of the two models.
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Figure 9.36.
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Comparison between Model 2 and Model 3 on the task of classifying Extension

It is also important to analyze other metrics, such as the F1 score, as they provide

additional insights into model performance. The bar plot in Figure 9.37 illustrates these

scores for Model 3, which outperformed the other models.
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Scores for Each Task on the Evaluation set

Metric
BN Accuracy
W F1 Macro
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Score

Scores for Each Task on the Test set

Metric
B Accuracy
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Figure 9.37. Bar plot showing accuracy and macro-averaged F1-score for all five tasks for
Model 3.

As we continue, we’ll explore post-processing techniques designed to enhance model
accuracy. These methods play a crucial role in refining model performance, ensuring

optimal outcomes.
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Post Processing

In this chapter, we elaborate on several post-processing techniques aimed at refining
the chord predictions obtained from our models. These techniques, are detailed here for

comprehensive understanding.

Firstly, we undertake the task of assembling data, each pertaining to a specific chord
component such as root, bass, triad, and extensions. These individual components are

consolidated into a prediction, the chord.

Subsequently, we delve into the post-processing techniques designed specifically for
chord refinement. One such function involves filtering each chord based on predeter-

mined rules that we will see in detail.

Additionally, we introduce a smoothing mechanism designed to enhance the coherence
and consistency of the chord predictions. This function replaces values within a specified
window with the most common value in the vicinity, thereby mitigating erratic fluctuations

and ensuring smoother transitions between chords.

The comprehensive pipeline, encompassing all the steps mentioned in previous chap-

ters, can be visually depicted through the accompanying flowchart (10.1).

Audio File given as
input

Transfer Learning
& Finetuning

Bass Note
Recognition

Recognition Recognition Recognition

Assemble Data

l Post-Processing

l Final Results I

Figure 10.1. Comprehensive Pipeline of all the steps of the Chord Recognition task includ-

ing Post Processing.
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10.1 Chord Assembly

In this section, we dive into a crucial phase of our analysis, where we bring together
the different elements of musical chords into a single dataset. This step is vital as it lays
the groundwork for the subsequent stages of our processing pipeline. Here, we meticu-
lously integrate various components such as root notes, bass lines, triads, and extensions
extracted from different sources, including audio recordings and digital representations.

At the heart of this process lies the careful organization and integration of data from
diverse sources. Through meticulous handling and processing, our aim is to create a
comprehensive dataset that captures the intricate details of musical chords found within
the input audio files. This section explores the methodologies and techniques we employ
to harmonize these different chord components, setting the stage for a detailed analysis
and interpretation of musical harmonies.

The methodology involves combining predictions made for each specific task. Initially,
the algorithm identifies the files representing various chord components like root, bass,
triad, and extensions. It then systematically retrieves data from each file, ensuring that
all pertinent columns are included. This consolidation process harmonizes the disparate
data streams, facilitating a holistic view of the harmonic structures within the musical
compositions, the chords. The methodology can be visualized as in the following Figure
10.2.

Root Predictions for Bass Predictions for Triad Predictions for Ext. 1 Predictions for Ext. 2 Predictions for
given Track given Track given Track given Track given Track

S

PR

Final Predictions for
given track

—

Figure 10.2. Algorithm that assembles the predictions of each task into the final prediction,
the chord.

10.2 Smoothing

The post-processing technique we here define as ’smoothing’ aims to enhance the
coherence and consistency of chord predictions obtained from the analysis. By employ-
ing a sliding window approach, this method iteratively replaces individual chord values
with the most prevalent value within a specified window size. This process effectively
reduces abrupt fluctuations in the chord progression, resulting in a more harmonious
and continuous musical interpretation.

The smoothing algorithm operates on a the chord data we got as predictions. It iterates
over each chord value, considering a window of neighboring values to determine the most
common chord within that window. If the predominant chord occurs with sufficient
frequency within the window, it replaces the original chord value. Otherwise, the original

chord value remains unchanged, ensuring preservation of significant chord transitions.
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Utilizing this smoothing technique enhances the overall quality of chord predictions,
thereby refining the accuracy and interpretability of musical analyses. Smoothing plays
an important role in our analysis due to the nature of the data we work with. In this
project, as mentioned in the previous chapters, each frame spans approximately around
0.07 seconds, making it improbable for rapid chord changes to occur and then revert to
the same chord. Such rapid transitions are likely attributed to noise or irregularities in
the data. By implementing smoothing techniques, we effectively eliminate these outliers,
resulting in more precise and reliable chord predictions. This process enhances the
accuracy of our analysis by ensuring that the predicted chord progressions align more
closely with the inherent structure and flow of the music, ultimately providing a clearer

and more coherent interpretation of the musical composition.

We experimented with applying smoothing techniques to both assembled chords and
individual chord components. Interestingly, smoothing each component of the chord
independently resulted in superior outcomes compared to applying smoothing to the
assembled chords as a whole. This approach to smoothing yielded more effective results,
highlighting the importance of considering the distinct characteristics and dynamics of
each chord component in the post-processing stage. An example can be seen in the

following Figure 10.3.

Frame | Root | Bass Frame | Root | Bass
122 D Cc e 122 D Cc
123 D Cc 123 D Cc
124 E Cc 124 D Cc
125 | D | C ——>|ms| 0 | c
126 D G 126 D Cc
127 D Cc 127 D Cc
128 D Cc 128 D Cc

Figure 10.3. Example of Smoothing Algorithm usage.

The window size was fine-tuned and established at 5 frames, equivalent to approxi-
mately 0.35 seconds of musical data. It is interesting to evaluate this methodology based
on metrics such as the accuracy on the test set, comprising the albums CD1, CD2, Help,
and Please Please Me as detailed in 9.3.1. The Figure 10.4 below offers a visual represen-
tation of the findings. Notably, a slight increase in accuracy is observed, indicating the

efficiency of the adjusted window size.
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Figure 10.4. Accuracy comparison between data with smoothing and without smoothing
applied on the Test set.

10.3 Filtering Algorithm

In this section, we will discuss the post-processing steps applied to the chord data
after smoothing. The primary focus will be on the methods used to identify and filter
chords based on certain rules.

The chord filtering process is implemented and applies a set of rules to each row (or

frame) of the data containing the chords. The rules are as follows:
1. If the root is None, then the whole chord is set to None.
2. If the bass is None, then the bass is set to the root.
3. If the triad is None, then the triad is set to the closest value.

The Algorithm iterates over each row of the data. For each row, it checks the root,
bass, and triad values and applies the rules accordingly. The rules are implemented in a
sequential and rigid order. In the third step, if the triad is None, then a process to get the
nearest triad is initiated.

The process of identifying the closest triad to a given index is a crucial step in our post-
processing pipeline. This process is implemented and takes as input the data containing
the chords, an index (of the frame), and a direction to search for the closest triad. The
direction can be either "left" or "right" meaning before and after the given frame. If the
index is within bounds and the triad at the given index is not None, it returns the triad
and the index. If the triad at the given index is None, it recursively calls itself to find the
closest non-zero triad in the specified direction. The whole process can be visualized as

in the following Figure 10.5
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Figure 10.5. Flowchart of filtering Algorithm on the Test set.

We can observe an increase of over 1% in accuracy on most tasks when comparing the
raw predictions to the filtered results. This improvement demonstrates the effectiveness of
our filtering algorithm in enhancing the chord data. By systematically applying the rules
and accurately identifying the nearest triad, the algorithm improves the overall quality of
the chord predictions. This leads to more precise and reliable chord identifications, which
are essential for applications such as music analysis and automated transcription. The
combination of smoothing and filtering thus proves to be a robust approach, significantly

boosting the performance and accuracy of our chord recognition system.
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MIREX Results and Comparisons

In this chapter, we evaluate our chord recognition system using the MIREX (Mu-
sic Information Retrieval Evaluation eXchange) metrics. MIREX provides a standardized
framework for assessing music information retrieval systems, making it an ideal bench-
mark for comparing our results with those from other studies.

We'll start by explaining the MIREX evaluation metrics briefly (detailed explanation
is on 7) and their importance in chord recognition. Using these standardized metrics
ensures our evaluation is both thorough and comparable to other leading systems.

Finally, we’ll compare our results with those reported in other papers. This compar-
ison will put our performance in context, showing how our system measures up against
existing solutions. By examining these comparisons, we aim to highlight the effectiveness
of our approach and its contribution to the field of music information retrieval.

This thorough evaluation and comparison will help validate the effectiveness of our
chord recognition system and provide insights into its performance relative to other re-
search in the field.

11.1 Metrics

Following Pauwels and Peeters (2013) [38], we will be using the CSR with five different
chord vocabulary mappings. Detailed analysis of CSR can be found in 7.

In each of these calculations, the full chord descriptions from either the estimated
or the ground-truth transcriptions, which might include complex chord annotations, are

mapped to the following classes:

e Chord root note only;

e Major and minor: {N, maj, min};

e Seventh chords: {N, maj, min, maj7, min7, 7};

e Major and minor with inversions: {N, maj, min, maj/3, min/b3, maj/5, min/5}; or

e Seventh chords with inversions: {N, maj, min, maj7, min7, 7, maj/3, min/b3,
maj7/3, min7/b3, 7/3, maj/5, min/5, maj7/5, min7/5, 7/5, maj7/7, min7/b7,
7/b7}.
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Except for no-chords, calculating the vocabulary mapping involves examining the root
note, the bass note, and the relative interval structure of the chord labels. A mapping
exists if both the root notes and bass notes match, and the structure of the output label
is the largest possible subset of the input label given the vocabulary. For instance, in the
major and minor case, G:7(#9) is mapped to G:maj because the interval set of G:maj, {1,
3, B}, is a subset of the interval set of G:7(#9), {1, 3, 5, b7, #9}. In the seventh-chord case,
G:7(#9) is mapped to G:7 instead because the interval set of G:7 {1, 3, 5, b7} is also a
subset of G:7(#9) but is larger than G:maj. If a chord cannot be represented by a certain
class, e.g., mapping a D:aug or F:sus4(9) to {maj, min}, the chord is excluded from the
evaluation if it occurs in the ground-truth, and it is considered a mismatch if it occurs in
an estimated annotation. MIREX Accuracy requires that at least three notes of the chord

are correct.

11.2 Components Accuracy

Firstly, it will be interesting to examine how our chord split into components translates
into recognizing the parts of those components. The following table displays the accuracy
for each number of parts. For instance, "number of parts" means that for 3 parts, the
root, bass, and triad must all be correct; for 4 parts, the root, bass, triad, and extension

1 must all be correct etc. These scores are provided in the Table 11.1 below

Number of Parts‘ 1 2 3 4 5
Accuracy (%) | 85.6 81.2 79.4 769 76.8

Table 11.1. Accuracy for each number of parts

11.3 Mirex evaluation and comparison

Moving on to the MIREX evaluation metrics, it will be interesting to compare our solu-
tion with other papers. Gasser and Strasser [13], in their submission, followed a similar
approach of splitting the chord into components and then using a CNN architecture uti-
lizing Transfer Learning for each component. The key difference is the use of Bi LSTM
layers in our case and the post-processing techniques.

Park, Choi et al. [14] utilize a self-attention mechanism for chord recognition to fo-
cus on certain regions of chords. Training of the proposed Bi-directional Transformer for
chord recognition (BTC) consists of a single phase while showing competitive performance.
Through an attention map analysis, they have visualized how attention was performed.
It turns out that the model was able to divide segments of chords by utilizing the adap-
tive receptive field of the attention mechanism. Furthermore, it was observed that the
model was able to effectively capture long-term dependencies, making use of essential
information regardless of distance.

Finally, Jiang, Ke Chen et al. [15] propose a new model for practical chord tran-
scription tasks. The core concept of the new model is to represent any chord label by a

set of subparts (i.e., root, triad, bass) according to their common musical structures. A
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multitask classifier is then trained to recognize all the subparts given the audio feature,
and then labels of individual subparts are reassembled to form the final chord label. A

Recurrent Convolutional Neural Network (RCNN) is used to build the multitask classifier.

In the table below, we can observe the outcomes of each approach, including our own.
Some results are missing, likely due to variations in analysis. It’s worth noting that our
method, described in Section 9.3.1, reserved specific albums, namely CD1, CD2, Help,
and Please Please Me, exclusively for final testing. These albums were chosen due to their

comprehensive representation of chords from The Beatles’ entire discography.

In contrast, the KBK2 model underwent testing on a broad range of albums, includ-
ing those from The Beatles, Queen, Zweieck 2, Robbie Williams 3, RWC Popular 4, and
the public portion of the McGill Billboard dataset, utilizing 8-fold cross-validation. The
JLCX1 model, however, was evaluated on a subset of 1217 songs from Isophonics, Bill-
board, RWC Pop, and MARL collections, although the specific composition of this subset
remains unclear. Lastly, the BTC-CRF model was subjected to testing on various songs
by The Beatles, Carole King, Queen, Zweieck, Robbie Williams, and a subset of songs
from UsPop2002, employing 5-fold cross-validation.

Table 11.2. MIREX Metrics comparison. Model2+S+F is our proposed Model 2 including
smoothing and filtering as the post-processing steps. KBK2, BIC+CRF and JLCX1 are the
proposed models on the corresponding papers cited.

Metrics Models
Model2+S+F KBK2 [13] BTC+CRF [14] JLCXI1 [15]

Root 85.6 86.30 83.9 83.8
MajMin 85.4 86.02 83.1 83.1
Sevenths 79.9 61.12 70.7 70.1
MajMinInv 80.1 83.12 - 80.1
SeventhsInv 77.7 58.75 - 70.0
MIREX 81.6 - 81.4 -

Examining the metrics in the table, we can see that our Model2+S+F performs ex-
ceptionally well overall, with its recognition accuracy of seventh chords being especially
impressive. This important accomplishment highlights the resilience of our model, which
skillfully captures the fine details included in these intricate chord structures. Not only
does our method do exceptionally well in this particular measure, but it also continues to
perform competitively in other chord categories. This claim is supported by comparison
analyses with other models, such as KBK2, BTC+CRF, and JLCX1, which are all excellent
models but not very good in seventh chord detection. These results highlight the effec-
tiveness and versatility of our model. A visual representation in the form of a bar plot can

be seen in the Figure 11.1 below.
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MIREX Metrics Comparison

Values

Metrics

Models
Em Model2+5+F mm KBK2 s BTC+CRF W JLCX1

Figure 11.1. MIREX Metrics comparison. Model2+S+F is our proposed Model 2 including
smoothing and filtering as the post-processing steps. KBK2, BTC+CRF and JLCX]1 are the
proposed models on the corresponding papers cited.

11.4 Conclusion

Throughout this thesis, we went on a study of alternative models and architectures
to solve the complicated job of chord recognition. We started with a simple strategy of
individually embedding each chord and applying a convolutional neural network (CNN)
for modeling. However, as anticipated, this approach generated unsatisfactory results,
underscoring the need for a more advanced strategy. Subsequently, we established an
approach where the chord was divided into its constituent components, with a specific
model originally crafted for the Root component. Leveraging transfer learning, we then
fine-tuned this model for each additional component, resulting in better performance.

Building upon this foundation, we introduced a preprocessing step we called "chunk-
ing," which involved segmenting the data to generate "images" representing periods of
frames. By incorporating 2D CNN layers to extract features and integrating a bidirec-
tional long short-term memory (BiLSTM) layer before the dense fully connected layer,
we witnessed a significant enhancement in results. This approach emerged as our pro-
posed model, delivering competitive accuracy in chord recognition. Subsequent to model
training, we employed post-processing techniques to further enhance the results.

In this chapter, we evaluated our chord recognition system using the MIREX (Music
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Information Retrieval Evaluation eXchange) metrics, providing a standardized framework
for assessing music information retrieval systems and enabling a thorough comparison
of our results with those from other studies. We described the MIREX evaluation met-
rics briefly (with detailed explanations in 7) and emphasized their importance in chord
recognition. Through these standardized metrics, we ensured our evaluation was com-
prehensive and comparable to other leading systems. Finally, we compared our results
with those reported in other papers, placing our performance in context and showcas-
ing how our system measures up against existing solutions. This thorough evaluation
and comparison validated the effectiveness of our chord recognition system, providing
valuable insights into its performance relative to other research in the field.

Upon analyzing the performance of our model in contrast to others, it becomes obvious
that our technique demonstrates substantial strengths in chord recognition. While appre-
ciating the virtues of rival models, our approach distinguishes itself via its constant and
complete proficiency. Unlike some algorithms which excel in specific chord components,
our model exhibits adaptability across numerous areas of chord identification, particu-
larly in the correct detection of seventh chords. This broad competency shows the useful-
ness of our methodology, which incorporates unique preprocessing techniques, complex
neural network topologies, and enhanced post-processing methodologies. Moreover, our
model demonstrates resilience in adjusting to varied musical styles and circumstances,
indicative of its potential for practical applications. In summary, our chord identifica-
tion method represents a competitive methodology in the industry, giving a compelling

solution that achieves high performance.

11.5 Future Work

This thesis has created a solid platform for ongoing innovation and exploration in the
field of chord recognition. Several options suggest themselves for future research, each

promising to expand the capabilities and accuracy of chord identification algorithms.

11.5.1 Expansion of Data Sources

The limitation imposed by copyright restrictions on audio tracks prevented the pro-
curement of a more large dataset for training and testing. By adding data from a broader
spectrum of musical styles, the resulting model could offer greater adaptability and pre-
cision in chord detection, particularly in the context of modern Western pop music. This
larger dataset would also permit a more extensive comparison between similar models,

potentially producing more conclusive conclusions.

11.5.2 Incorporation of Music Theory Principles

Integrating principles of music theory into chord recognition algorithms could lead
to more musically informed predictions. By leveraging knowledge of chord progressions,
harmonic functions, and melodic tendencies, the model could produce more contextually

relevant and aesthetically pleasing results.
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11.5.3 Integration of Beat Tracking

Beat tracking, albeit a separate MIREX classification job, holds tremendous potential
as a supplemental input for chord identification models. By including beat tracking data
as a secondary input, the algorithm could better discern the timing of chord changes,
leading to more exact and contextually relevant predictions. This integration would lead to

the development of more dynamic and rhythmically sensitive chord identification systems.

11.5.4 Key Recognition as Pre-Processing

The incorporation of key recognition algorithms as a pre-processing step could offer
several benefits in refining chord recognition accuracy. By filtering out chords that do not
conform to the established key of a musical piece, the system can focus its resources on
analyzing and predicting chords that are harmonically coherent and musically relevant.
This approach could streamline the chord recognition process and enhance the overall
quality of predictions.

In conclusion, the future of chord recognition holds immense potential for advance-
ment and refinement. By exploring these avenues of research and development, we can
pave the way for more sophisticated and effective chord recognition systems that better

serve the needs of musicians, researchers, and music enthusiasts alike.
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List of Abbreviations

MIREX Music Information Retrieval Evaluation eXchange
CNN Convolutional neural network

BiLSTM Bidirectional Long Short-Term Memory Network
STFT Short-time Fourier transform

CcQT Constant-Q transform

WAV Waveform Audio File Format

BTC Bi-directional Transformer

CPU Central Processing Unit
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