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Abstract

The present study experimentally tested the ability of hybrid quantum-classical machine learning to
solve the problem of Protein Folding. Protein folding is a challenging problem to be solved with classi-
cal computing, due to its complexity which increases exponentially as the size of the amino-acids chain
- that the protein consists of - is increased. Thus, since quantum computing offers a speedup in con-
vergence, we manage to solve this task by utilizing quantum gates that will search the conformational
space faster. For this, we used and compared two types of Variational Quantum Algorithms - Varia-
tional Quantum Eigensolver (VQE) and Quantum Approximate Optimization Algorithm (QAOA) -
and we present the results in this thesis. We implemented them on a quantum simulator and, addition-
ally, we implemented QAOA -who had better efficiency- on the real quantum devices of IBM. Finally,
despite of the limited accuracy that we observe, we propose a solution that will leverage the beneficial
outcomes of our implementation.
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Περίληψη

Η παρούσα μελέτη δοκίμασε πειραματικά την ικανότητα της υβριδικής κλασικής-κβαντικής μηχανι-
κής μάθησης να επιλύσει το πρόβλημα της αναδίπλωσης πρωτεϊνών. Η αναδίπλωση πρωτεϊνών είναι
ένα δύσκολο πρόβλημα για να επιλυθεί με κλασικούς υπολογιστές, λόγω της πολυπλοκότητάς του που
αυξάνεται εκθετικά καθώς το μέγεθος της αλυσίδας αμινοξέων που συνθέτουν την πρωτεΐνη αυξάνε-
ται. Έτσι, καθώς η κβαντική υπολογιστική προσφέρει επιτάχυνση στη σύγκλιση, καταφέραμε να λύ-
σουμε αυτό το έργο χρησιμοποιώντας κβαντικές πύλες που θα αναζητήσουν τον διαμορφωτικό χώρο
πιο γρήγορα. Για αυτό, χρησιμοποιήσαμε και συγκρίναμε δύο τύπους Παραμετροποιημένων Κβαντι-
κών Αλγορίθμων - Παραμετροποιημένου Κβαντικού Υπολογιστή (VQE) και της Κβαντικής Προσεγ-
γιστικής ΒελτιστοποιητικήςΜεθόδου (QAOA) - και παρουσιάζουμε τα αποτελέσματα αυτής της εργα-
σίας. Τις υλοποιήσαμε σε κβαντικό εξομοιωτή και, επιπλέον, υλοποιήσαμε την QAOA -η οποία είχε κα-
λύτερη αποδοτικότητα- στις πραγματικές κβαντικές συσκευές της IBM. Τέλος, παρά την περιορισμένη
ακρίβεια που παρατηρούμε, προτείνουμε μια λύση που θα αξιοποιήσει τα ωφέλιμα αποτελέσματα της
υλοποίησής μας.
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Chapter 1

Quantum Machine Learning

1.1 Quantum Computing and its Supremacy

Using the ideas of quantum physics, quantum computing is an evolution in computational power. Un-
like classical computers that rely on bits, quantum computers employ qubits. These qubits leverage
superposition, enabling them to exist in a state of both 0 and 1 simultaneously. Furthermore, the
entanglement of qubits allows for interconnected states, where the state of one qubit directly influ-
ences others. This interconnectedness empowers quantum computers to process and analyze complex
datasets with unparalleled efficiency, surpassing the capabilities of classical computers.

Operating on the foundational principles of quantum mechanics, which explain how matter and en-
ergy behave at the atomic and subatomic levels, quantum computing offers unprecedented computa-
tional advantages. These advantages are particularly evident in tasks like optimising complex systems,
simulating quantum systems, and factoring big numbers – all of which pose significant challenges for
classical computing.

The transformative potential of quantum computing spans numerous fields. In cryptography, quan-
tum computers hold the potential to break existing encryption algorithms, while simultaneously en-
abling the development of new, more secure cryptographic systems. In drug discovery, they could
accelerate the process by accurately simulating molecular interactions. Additionally, fields like logis-
tics and finance could benefit from quantum computing’s optimization capabilities.

However, quantum computing is not without its challenges. The development of stable, error-resistant
qubits remains a significant hurdle. Current quantum computers require extremely low operating tem-
peratures and are prone to errors caused by factors such as quantum noise and decoherence.

Despite these challenges, continuous research and development efforts are creating the foundation
for advancements in qubit technology, error correction techniques, and quantum algorithms. While
the timeline for fully realized quantum computers remains uncertain, the trajectory of progress points
towards a future where quantum mechanics will revolutionize practical applications across various
industries. Quantum computing signifies a monumental leap in computing, poised to reshape tech-
nology and information science by tackling challenges that are currently insurmountable for classical
computers.

13
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1.2 Quantum Mechanics: A Foundational Theory

Quantum mechanics is axiomatically a foundational theory of physics that describes the physical prop-
erties of matter and light at the atomic and subatomic levels. It differs from classical mechanics as it
quantizes certain physical quantities, such as energy and momentum, to have discrete spectra. Quan-
tum mechanics also attributes both particle and wave-like natures to matter and light. Due to Heisen-
berg’s Uncertainty Principle, there are limits to the accuracy of predictions. The theory is considered
fundamental, as according to the Correspondence Principle, classical mechanics is a special case of
quantum mechanics [21]. The conclusions of this theory often defy common sense, with events im-
probable in the macroscopic world holding a possibility in the microscopic realm. However, these
phenomena are represented through mathematical models that structure the theory. These models
include Schrödinger’s equation, Heisenberg’s Uncertainty Principle, entanglement, and laws of Sym-
metry and Conservation.

1.2.1 Quantum States, Hilbert Space, and Schrödinger’s Equation
Quantumstates of a systemare points in theHilbert space. Hilbert space is a complete infinite-dimensional
complex vector space equipped with the inner product operation. It is complete in terms of the com-
pleteness definition: a Cauchy sequence of vectors always converges to a well-defined limit within this
space—necessary to describe continuous quantities. It is a complex vector space because it is over the
field of complex numbers, providing ”a linear representation of the rotation group in an n-dimensional
space, with each vector having 2𝑛 components, where 𝑛 = 2𝜈 + 1 or 𝑛 = 2𝜈” [22]. Thus, in a space with
dimensions 2𝜈 or 2𝜈 +1, a complex vector can be represented as a vector of 2𝜈 complex numbers, neces-
sary for describing the quantumworld. Additionally, it contains the inner product, which is connected
to the concept of magnitude (norm) and generalizes the concept of the angle between two elements
of the vector space. This equipment makes the space measurable. For each physical system, there is
a square-integrable function 𝜓(𝑟 , 𝑡), the wave function, belonging to a Hilbert space, which contains
all the information that can be extracted about the system. The Copenhagen interpretation states that
the probability of finding a particle in space is the square of its wave function’s magnitude. The time
evolution of it, 𝜓(𝑡), is governed by the time-dependent Schrödinger equation:

𝑑
𝑑𝑡 𝜓 (𝑡) = −𝑖�̂�𝜓 (𝑡)

where �̂� is a Hermitian operator representing the system’s Hamiltonian. Generally, an appropriate
Hermitian operator �̂� is associated with every physical quantity, whose eigenvalues are real numbers
and are the only possible outcomes of a measurement. The physical quantity corresponding to the
Hamiltonian is energy.

1.3 Quantum Information and Computation

Suppose we want to communicate an idea; we could achieve this by sending a letter, a drawing, a song,
or even Morse code signals. The common element in these communication methods is the language,
each time represented differently. Therefore, we can define a scale of the quantity of information con-
tained in each communicationmethod, which corresponds to the ideaswe can share using given signals
from each method. For this reason, we define bits as the elementary unit of information responding to
”yes or no?” questions. The more independent ”yes or no?” questions a received message can answer,
the more information it contains. In the classical world where events are deterministic, the answer is
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absolute - it will be either ”yes” or ”no” with complete certainty. For this world, we use Boolean alge-
bra (mathematical system of binary logic) in computer language, where every signal, whether input or
output, is represented by 0 or 1, each holding 1 bit of information corresponding to ”yes” or ”no.”

1.3.1 Quantum World and Two-State Systems
In the world dominated by quantum phenomena, within a two-state system (yes or no, up or down...),
the answer is not absolute, and the systemdwells simultaneously in both stateswith a certain probability
to observe each aftermeasurement. Theunit of information in quantum information is the qubit, where
each state is a superposition of, mutually orthogonal states |0⟩ and |1⟩ (representing 0 and 1 states in
Boolean algebra respectively). Therefore, these states are represented as:

|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩

such that |𝛼 |2 + |𝛽|2 = 1.

These states are points on the surface of a unit sphere, known as the Bloch sphere. By analogy, and
with the notation where 𝜃 is the polar angle and 𝜙 is the azimuthal angle, we parametrize the ampli-
tude probabilities 𝛼 and 𝛽 as follows:

𝛼 = cos(𝜃/2), 𝛽 = 𝑒𝑖𝜙 sin(𝜃/2)
Thus, the state can be written as:

|𝜓 ⟩ = cos(𝜃/2) |0⟩ + 𝑒𝑖𝜙 sin(𝜃/2) |1⟩ = (cos(𝜃/2)) (𝑒𝑖𝜙 sin(𝜃/2))

Figure 1.1: The Bloch Sphere

1.3.2 Quantum Gates and Quantum Information Processing
A measurable quantity in quantum mechanics is represented by an operator - let’s denote it as𝐴. After
acting on a state, it will yield a new one. To yield another state in the vector space of the Bloch sphere, it
needs to be unitary (causing unitary transformations of states). Thus, for the transformation of one or
more qubits, we have Quantum Gates, analogous to the Logic Gates in Classical Information Theory.

Some examples of one-qubit transformations are:

• Pauli transformations: �̂� = (0 1
1 0), �̂� = (0 −𝑖

𝑖 0 ), �̂� = (1 0
0 −1) (phase rotation)
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• Hadamard gate: �̂� = 1
√2 (

1 1
1 −1)

• Phase shift gate: 𝑆(𝜃) = (1 0
0 𝑒𝑖𝜃)

• 𝜋/8 gate (or T gate): 𝑇 = (1 0
0 𝑒𝑖𝜋/4)

Some gates acting on multiple qubits include:

• Controlled-NOT (or CNOT) for 2 qubits: CNOT =
⎛
⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟
⎟
⎠

• Swap gate for 2 qubits: SWAP =
⎛
⎜
⎜
⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟
⎟
⎠

• Toffoli gate for 3 qubits: 8 × 8 matrix with 1s at the diagonal elements and zeroes the others,
everywhere except the right-hand down side where we have the elements of CNOT matrix.

One potential exponential speedup that quantum computers promise lies in executing linear algebra
computations. The inherent ability of quantum computers to execute these computations rapidly is
theoretically sound; however, practical implementations face challenges like data encoding. Quantum
devices would need efficient methods to load large matrices to perform such tasks seamlessly. Thus,
in practical use, quantum gates —interpreted mathematically as linear layers— would be beneficial for
complex transformations.

1.4 What is Quantum Machine Learning?

Quantum machine learning is the mix of quantum algorithms and machine learning programs. It ex-
tends the hardware of machine learning using the quantum computer - a new type of computer device.
This type of computers processes the information using the quantum theory, where the information
is encoded in the state of a quantum system. In order to extract this information, they use quantum
information processing techniques, performing logical operations. The basic unit of quantum infor-
mation is the qubit - just like bit is the basic unit of classical information. Both classical and quantum
information can be processed and analyzed using computers and mathematics, can be manipulated
using algorithms, can be transmitted through space and be measured using Von Neumann entropy.

While quantum computers hold the potential for sig-
nificant speedups over classical algorithms, achieving
this advantage hinges on overcoming several key chal-
lenges. One crucial aspect is managing matrix spar-
sity and conditioning, ensuring the efficient represen-
tation and manipulation of data within quantum al-
gorithms. Additionally, leveraging advanced quan-
tum hardware like Quantum Random Access Memory
(QRAM) is essential for handling and accessing data ef-
fectively.
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The realization of ”fault-tolerant QPUs,” or ideal, universal quantum computers capable of tackling
large-scale, real-world problems, necessitates millions of physical qubits to produce hundreds or thou-
sands of error-resistant ”logical qubits.” This requirement stems from the need for robust error cor-
rection methods, which rely on encoding information across multiple physical qubits to create more
stable logical qubits. This demand for vast qubit resources has led researchers to explore algorithms
tailored for the current landscape of quantum computing.

The ”noisy intermediate-scale quantum” (NISQ) era describes the present state of quantum devices,
characterized by noisy qubits lacking error correction. This limitation restricts their computational
power. NISQ devices often employ hybrid architectures, where quantum processors handle specific
tasks, while classical processors manage others. This hybrid approach, often accessible through cloud-
based services, allows for greater flexibility and resource utilization. While NISQ devices may not yet
be capable of realizing the full potential envisioned for quantum computing, ongoing research indi-
cates their suitability for specific, specialized tasks.

In their current form, quantum technologies share similarities with Application-Specific Integrated
Circuits (ASICs), designed for specific purposes, rather than general-purpose CPUs. While they cur-
rently excel at implementing a limited set of quantum algorithms, their continued development and
integration could position them as a valuable component within the broader landscape of AI hardware.

Figure 1.2: Generality of hardware platforms - retrieved from medium.com/xanaduai

https://medium.com/xanaduai/quantum-machine-learning-1-0-76a525c8cf69
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Chapter 2

Variational Quantum Algorithms

Variational QuantumAlgorithms (VQAs) represent a powerful class of hybrid quantum-classical algo-
rithms (models as shown in Figure 2.1), designed for use on both near-term and future fault-tolerant
quantum computers. These algorithms harness the principles of quantum mechanics to explore vast
computational spaces, while relying on classical optimization techniques to guide the search for opti-
mal solutions. This allowsVQAs to tackle complex problems that are intractable for classical computers
alone.

A key motivation behind VQAs is the constraint posed by current and near-term quantum computers,
which are limited in both qubit count and coherence times. VQAs address these limitations by em-
ploying relatively short quantum circuits, known as ansatz, which are less susceptible to errors caused
by noise and decoherence. These ansatz circuits are parameterized, meaning their behavior can be ad-
justed by modifying a set of control parameters.

At the heart of VQAs lies the concept of a variational quantum circuit, this parameterized quantum
circuit whose parameters can be adjusted to modify the output state. This circuit is designed to encode
a trial solution to the problem at hand. By iteratively adjusting the circuit parameters and evaluating
the resulting quantum state on a quantum computer, VQAs effectively explore a vast space of potential
solutions. A classical optimizer then uses the measurement data from the quantum computer to guide
the search for optimal parameter values.

Figure 2.1: Hybrid quantum-classical machine learning procedure

19
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2.1 Variational Quantum Eigensolver

In order to tackle optimization problems that are exponentially hard to solve on classical computers
- but also run the algorithms in the near-term devices - Variational Quantum Eigensolver (VQE) was
introduced. VQE is a member of VQAs family and uses quantum circuits to run subroutines of a larger
algorithm. It works with short-depth circuits and will approximate results when the quantum volume
1 (the power of the quantum computer) is large enough.

Figure 2.2: Variational Princi-
ple

VQE aims to find an upper bound of the lowest eigenvalue of a given
Hamiltonian. Inspired by the Variational Principle (Fig. 2.2) it
calculates approximate solutions for a given problem. Seeking to
identify an upper bound as near to the ground state energy as feasi-
ble, it minimizes the expectation value of 𝐻 . For this, it fluctuates
throughout all possible normalized states so that they’re inherently
an eigenstate of 𝐻 too. A problem though - is that varying over the
entire Hilbert space is quite complex to realize for physical calcu-
lations. In order to get a practical upper bound, ansatz solves the
problem by elegantly taking into account a suitable subset of the
Hilbert Space in order to select the state that produces the lowest
expectation value.

Since VQE belongs to the general category of VQAs, it is described by:

• Problem Initialization
• Circuit Ansatz
• Cost Function
• Training Procedure

2.1.1 Problem Initialization
Quantum computer is initialized in a default state - typically the ground state |00...0⟩. This state is then
evolved using a non-parameterized unitary operator 𝑈𝑟 and the reference state |𝑅⟩ is obtained. The
selection of 𝑈𝑟 is strategic, ensuring that |𝑅⟩ encapsulates properties relevant to the problem domain,
which for this thesis involves protein folding.

2.1.2 Circuit Ansatz
The ansatz (Fig 2.3), or the trial wavefunction for VQE, is represented by a parameterized unitary
transformation 𝑈 (𝜃). This transformation is structured as a product of 𝐿 unitary operations, 𝑈𝑖 (𝜃𝑖),
each dependent on a subset of the parameters 𝜃 . These unitaries are applied sequentially to the input
state. The decomposition of each 𝑈𝑖 (𝜃𝑖) into a combination of parameterized and fixed quantum gates
allows for the construction of a flexible and tunable model. This modular approach enables the ex-
ploration of a vast space of possible quantum states, adapting and refining the circuit architecture to
effectively address the intricacies of protein structures in our study.

1 This measure quantifies the greatest random circuit, that the computer can successfully create and that is equal in width
and depth. Large quantum volume is equivalent to a large number of qubits, their coherence and the connectivity, and is
independent of the hardware.
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Figure 2.3: The circuit-ansatz of a variational quantum circuit

2.1.3 Training Procedure
We can train parameterized quantum circuit models to perform data-driven tasks. The mathematical
expression for the task of learning any function from data is the minimization of a cost, reflecting the
performance of the quantum model in solving the targeted problem (Fig 2.4). Μore specifically, we
must assign scores to each parameter based on a set of criteria in order to compare them. The function
that assigns a score to our parameters is known as the ”cost” or ”loss” function - also known as the
objective function, with respect to the parameter vector.
Training in a VQE framework involves the iterative adjustment of the parameters 𝜃 . During each it-
eration, quantum measurements are performed, and the resulting data are used to evaluate the cost
function. The gradient or derivative of the cost with respect to the parameters 𝜃 is often computed to
direct the optimization process, enhancing the algorithm’s efficiency in identifying the optimal param-
eter set that minimizes the cost function, hence solving the problem.

Figure 2.4: The training procedure of a hybrid quantum-classical machine learning model

2.1.4 Cost Function
The cost function is tailored to reflect the specific nuances of the problem being addressed, which in
the context of this thesis involves the protein folding problem. It is designed as the expectation value
of a cost Hamiltonian 𝐻𝐶 (Fig 2.5), which encodes the protein folding landscape. This Hamiltonian is
strategically formulated to include terms that represent interactions and constraints critical to protein
folding. The optimization process seeks to find the parameter set 𝜃 that minimizes this expectation
value, thus identifying the quantum state that best represents the lowest energy state of the protein –
analogous to its most stable folded structure.
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Figure 2.5: The cost function of a hybrid quantum-classical machine learning algorithm.

2.2 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is another hybrid quantum-classical al-
gorithm from the VQAs family, designed to solve combinatorial optimization problems. Thus, as the
rest members of the family, it operates by creating a parameterized quantum state and iteratively refin-
ing these parameters tominimize a given cost function. What distinguishesQAOA fromother VQAs is
that it employs a structured ansatz inspired by adiabatic quantum computing, where a system is slowly
evolved from an initial ground state to the ground state of a Hamiltonian encoding the optimization
problem. This adiabatic evolution is approximated in QAOA by a sequence of alternating layers of two
specific types of quantum operations:

• Cost Hamiltonian Operations: These operations depend on the specific problem being solved
and are designed to encode the cost function as a quantum operator.

• MixingHamiltonianOperations: These operations are typically chosen to be problem-independent
and help to explore the solution space more effectively.

We will now go into a little more details for the mathematics of the QAOA algorithm, so that we fully
understand the VQAs in general and how we will construct such circuits.

The algorithm begins by initializing a quantum system in a superposition of all possible states - this
is typically achieved by applying a Hadamard gate to each qubit in the system, creating an equal su-
perposition of all computational basis states. The algorithm then applies a sequence of unitary trans-
formations to the system, which are determined by two sets of parameters, denoted as 𝛽 and 𝛾 . These
transformations are designed to steer the system towards the ground state of a problem Hamiltonian,
which represents the optimal solution to the optimization problem.

As we mentioned before, the unitary transformations consist of two types of operations: the mixing
operator 𝑈𝑀 (𝛽) and the problem operator 𝑈𝐶(𝛾 ). The mixing operator, typically a rotation around the
𝑋 -axis, drives transitions between different states in the superposition, thereby exploring the solution
space. The problem operator, a rotation around the 𝑍 -axis, rewards or penalizes states based on their
cost function value, guiding the system towards lower energy states.
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The parameters 𝛽 and 𝛾 are initially chosen at random and then iteratively optimized using a classical
optimization algorithm to minimize the expectation value of the cost function. This hybrid approach
leverages the quantum system’s ability to explore the solution space efficiently and the classical system’s
ability to perform robust optimization.

In essence, QAOA can be seen as a specific instance of VQE where the ansatz has a particular structure
motivated by the problem of combinatorial optimization. Both algorithms follow the paradigm of the
variational quantum algorithm, which leverages the strengths of both quantum and classical computa-
tion to solve complex problems.

The QAOA may be used to solve quadratic unconstrained binary optimization problems (QUBOs)

• Quadratic objective function
• No variable constraints
• Binary optimization variables

minimize: 𝑥𝑇𝑄𝑥 + 𝑐𝑇 𝑥

𝑥 ∈ {0, 1}𝑛 𝑄 ∈ ℝ𝑛×𝑛, 𝑐 ∈ ℝ𝑛

In the context of protein folding, the QAOA can also be combined with other terms, like counter-
diabatic (CD) driving terms, to enhance its performance. CD driving is a technique from adiabatic
quantum computation that accelerates the adiabatic evolution of a system, enabling it to reach its
ground state more quickly. In an ideal adiabatic quantum process, the system remains in its instan-
taneous ground state throughout the evolution. However, in real-world quantum systems, various
factors can cause the system to deviate from this ideal adiabatic path. These factors can include the
speed of the evolution (if it’s too fast, the system may not be able to keep up and remain in its ground
state), as well as external disturbances such as decoherence and noise. Such additional terms are added
to the system’s Hamiltonian to counteract these deviations and help maintain the adiabaticity of the
evolution.

2.2.1 QAOA circuit
The goal of the QAOA circuit is to efficiently find a quantum representation of a classical cost function
C(x) through aHamiltonian operator𝐻𝐶 . The encoding ensures that the eigenstate |𝑥⟩ has correspond-
ing eigenvalue 𝐶(𝑥) which directly represents its cost:

𝐻𝐶 |𝑥⟩ = 𝐶(𝑥) |𝑥⟩
A standard formulation in combinatorial optimization is the QUBO model, where the cost function
𝐶(𝑥) is expressed as a quadratic polynomial over binary variables:

𝐶(𝑥) =
𝑛
∑
𝑖,𝑗=1

𝑥𝑖𝑄𝑖𝑗𝑥𝑗 +
𝑛
∑
𝑖=1

𝑐𝑖𝑥𝑖

Here, 𝑥𝑖 are binary decision variables, 𝑄𝑖𝑗 represents the interaction between variables 𝑥𝑖 and 𝑥𝑗 , and 𝑐𝑖
is the linear coefficient for 𝑥𝑖.
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The corresponding Hamiltonian operator 𝐻𝐶 for the QUBO is constructed using Pauli Z matrices,
reflecting the binary nature of 𝑥𝑖:

𝐻𝐶 =
𝑛
∑
𝑖,𝑗=1

1
4𝑄𝑖𝑗𝑍𝑖𝑍𝑗 −

1
2

𝑛
∑
𝑖=1

(𝑐𝑖 +
𝑛
∑
𝑗=1

𝑄𝑖𝑗)𝑍𝑖 +
𝑛
∑
𝑖,𝑗=1

𝑄𝑖𝑗
4

𝑛
∑
𝑖,𝑗=1

𝑐𝑖
2

Preparation of equal
superposition state
|+⟩𝑛 = ∑𝑥∈{0,1}𝑛

|𝑥⟩
√2𝑛

𝑝 repetitions of alternating
cost and mixing layers

𝑈𝐶 (𝛾𝑖) = 𝑒−𝑖𝛾𝑖HC

cost layers
𝑈𝑀 (𝛽𝑖) = 𝑒−𝑖𝛽𝑖HM

mixer layers

Measurement in
computational basis

As shown in the above circuit, we started the implementation of QAOA by preparing a superposition
of all possible binary states |𝑥⟩, creating a uniform superposition |𝜓 ⟩ to allow the algorithm to explore
all computational paths simultaneously. Then, the typical QAOA algorithm involves an alternation
between applying phase shifters and mixers for 𝑝 iterations. The phase shift operation, 𝑈 (𝛾 ) = 𝑒−𝑖𝛾𝐻𝐶 ,
adjusts the phases of the components of the state |𝜓 ⟩ based on their respective costs, amplifying the
probability amplitudes of lower-cost states in the superposition:

|𝜓 (𝛾 )⟩ ≡ 𝑈 (𝛾 )|𝜓 ⟩ = ∑
𝑥

𝑒−𝑖𝛾𝐸𝑥𝜓𝑥 |𝑥⟩.

This transformation is crucial as it phases the states, biasing the system towards low-cost configura-
tions when measured.

However, maintaining a closed system ensures the conservation of the quantum system’s total energy.
When theHamiltonian𝐻𝐶 operates within this closed system, the expectation of the Hamiltonian does
not change, even under unitary transformations applied by the QAOA algorithm:

⟨𝜓 (𝛾 ) |HC| 𝜓 (𝛾 )⟩ = ⟨𝜓(𝛾 ) |𝑈 †(𝛾 )HC𝑈 (𝛾 )| 𝜓 (𝛾 )⟩ = ⟨𝜓 |HC| 𝜓 ⟩
To make it possible to change the expected value, we also add the mixed layers

𝑈𝑀 (𝛽𝑖) = 𝑒−𝑖𝛽𝑖HM ,
as is shown in the circuit. The form of 𝐻𝑀 depends on the specific optimization problem being ad-
dressed, but its main purpose is to break the symmetries in the search space and promote state manip-
ulation by introducing off-diagonal elements in the density matrix. In general, it can be written as a
linear combination of Pauli-X gates acting on the qubits in the computational basis. The coefficients of
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the linear combination are determined by the optimization problem at hand and are typically chosen
to maximize the fidelity of the algorithm.

Matrix Exponentials
The matrix exponential component 𝑒𝑀 = ∑∞

𝑘=0
𝑀𝑘
𝑘! plays a significant role in calculating the unitary

transformations. These transformations are effectively applied using exponential functions of Paulima-
trices to instantiate the mixing and cost layers within the QAOA circuit. The Pauli rotations 𝑅𝑋 (2𝜃),
𝑅𝑌 (2𝜃), and 𝑅𝑍 (2𝜃) are derived from these matrix exponentials, applied for qubit rotations conditional
on the quantum state preparation:

𝑒−𝑖𝜃𝑋 = 𝑅𝑋 (2𝜃) = ( cos(𝜃) −𝑖 sin(𝜃)
−𝑖 sin(𝜃) cos(𝜃) )

𝑒−𝑖𝜃𝑌 = 𝑅𝑌 (2𝜃) = ( cos(𝜃) − sin(𝜃)
sin(𝜃) cos(𝜃) )

𝑒−𝑖𝜃𝑍 = 𝑅𝑍 (2𝜃) = ( 𝑒−𝑖𝜃 0
0 𝑒𝑖𝜃 )

Pauli matrices

𝑋 = ( 0 1
1 0 ) , 𝑌 = ( 0 −𝑖

𝑖 0 ) , 𝑍 = ( 1 0
0 −1 )

Implementation of the repetitive layers

During the operation of the QAOA circuit, the application of cost and mixing layers are iteratively
performed, modulated by these transformations:

The Cost Layers

𝐻𝐶 =
𝑛
∑
𝑖,𝑗=1

1
4𝑄𝑖𝑗𝑍𝑖𝑍𝑗 −

1
2

𝑛
∑
𝑖=1

(𝑐𝑖 +
𝑛
∑
𝑗=1

𝑄𝑖𝑗)𝑍𝑖 +
𝑛
∑
𝑖,𝑗=1

𝑄𝑖𝑗
4

𝑛
∑
𝑖,𝑗=1

𝑐𝑖
2

Theoperation of the cost layer involves phase shifts dictated by 𝑒−𝑖𝛾𝐻𝐶 , which effectively applies a phase
rotation on the qubits based on their interactions and individual biases:

𝑒−𝑖𝛾𝐻𝐶 =
𝑛

∏
𝑖,𝑗=1

𝑅𝑍𝑖𝑍𝑗 (
1
4𝑄𝑖𝑗𝛾)

𝑛
∏
𝑖=1

𝑅𝑍𝑖 (
1
2 (𝑐𝑖 +

𝑛
∑
𝑗=1

𝑄𝑖𝑗) 𝛾)

This adjusts the amplitudes of the states in direct correlation to their associated costs in the classical
problem. The circuit then is implemented as shown in Fig 2.6:
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Figure 2.6: The Implementation of Cost Layers

The Mixing Layers

𝐻𝑀 =
𝑛
∑
𝑖=1

𝑋𝑖

and the evolution:

𝑒−𝑖𝛽𝐻𝑀 =
𝑛

∏
𝑖=1

𝑅𝑋𝑖 (2𝛽)

is implemented as shown in Fig 2.7:

Figure 2.7: The Implementation of Mixer Layers

The Trotter Suzuki Formula

In quantummechanics, the Trotter-Suzuki decomposition is a fundamental technique used to approxi-
mate the exponential of the sum of non-commuting operators. This has profound importance in quan-
tum simulations, particularly in approximating the time evolution operator. Given a Hamiltonian 𝐻
that can be decomposed into a sum of terms 𝐻 = 𝐻1 + 𝐻2, the Trotter-Suzuki formula allows for an
efficient approximation of the time evolution operator 𝑒−𝑖𝐻 𝑡 .

The approximation is represented as:

𝑒−𝑖𝑡(𝐻1+𝐻2) ≈ (𝑒−𝑖
𝐻1𝑡
𝑟 𝑒−𝑖

𝐻2𝑡
𝑟 )

𝑟

where 𝑡 is the total time, and 𝑟 is the number of time steps into which 𝑡 is divided
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Adiabatic Theorem and QAOA
The adiabatic theorem (Fig 2.8) in quantum mechanics states that if the Hamiltonian of a quantum
system in its ground state is perturbed slowly enough, the system remains in its ground state. This
principle can be connected to the Quantum Approximate Optimization Algorithm (QAOA), which
aims to find a good ansatz for a given problem Hamiltonian with high accuracy.

Figure 2.8: The Adiabatic Theorem

In the context of QAOA, by approximating the evolution operator as:

𝑒−𝑖𝑡𝐻 ≈ (𝑒−𝑖
𝐻1𝑡
𝑟 𝑒−𝑖

𝐻2𝑡
𝑟 )

𝑟
,

the algorithm can efficiently simulate the evolution under a gradually changing Hamiltonian, ensuring
that the system closely follows its instantaneous ground state. For the QAOA the 𝑟 represents the
number of alternating sets of cost and mixer layers.

2.3 Metrics to Compare Ansatzes

In order to compare different ansatzes we use two metrics; the ”Expressibility” and the ”Entangled
Capability” which try to capture the generality of the quantum hardware platforms. [26]

2.3.1 Expressibility
Expressibility within the context of parameterized quantum circuits (PQCs) is a crucial descriptor that
essentially gauges a circuit’s ability to thoroughly explore the state space associated with quantum com-
putations. Formally defined, expressibility measures a circuit’s capacity to generate a set of states that
are representative of larger, often complex, Hilbert spaces. This is particularly pertinent in the realm of
quantum computing, where the ability to span an expansive range of quantum states correlates directly
with a quantum circuit’s utility and effectiveness in performing diverse computational tasks.

Analytically, the concept of expressibility can be quantified by comparing the distribution of output
states generated from a PQC, under varied parameter settings, against the idealized uniform distri-
bution of quantum states known as the Haar measure. This comparison involves statistical methods
where one often employs theHilbert-Schmidt norm to assess the extent towhich the states produced by
a PQC deviate from an approximate uniform (Haar) distribution. The lesser the deviation, the higher
the expressibility of the circuit, indicating a greater capability of the circuit to mimic the desired Haar
distribution of states across the Hilbert space.
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2.3.2 Entanglement Capability
In contrast, entangling capability is another fundamental aspect that defines the potential of PQCs to
induce entanglement among qubits through their operational dynamics. Entanglement is a quantum
phenomenon that allows particles to become interconnected such that that, regardless of their distance
from one another, the state of one particle instantly affects the state of another. In quantum circuits, the
ability to robustly create and control entanglement is vital for leveraging quantum mechanical proper-
ties that underpin quantum computing.

Scientifically, the entangling capability of a quantum circuit can be assessed by the types and configu-
rations of two-qubit or multi-qubit gates employed within the circuit. These gates are instrumental in
manipulating the quantum states in a manner that fosters entanglement. For instance, circuits that de-
ploy sequences of controlled rotation gates might exhibit different entangling characteristics compared
to those that utilize simpler two-qubit operations. This capability is quantitatively estimated through
simulations that evaluate how effectively these gates generate and manage entanglement across the
circuit. The geometric or topological arrangement of qubits and the choice of gates significantly in-
fluence this capability, thus shaping the overall performance of the quantum circuit in computational
tasks requiring intricate and high-degree entanglement.

In sum, understanding and optimizing both expressibility and entangling capability are paramount in
designing PQCs that are not only powerful and versatile but also tailored for specific quantum com-
puting applications. These metrics collectively inform the suitability of a circuit design in achieving
the desired computational goals while adhering to operational constraints such as circuit depth and
coherence times.



Chapter 3

Classical Optimizers

This chapter delves into the intricacies of classical optimization techniques employed in hybrid quantum-
classical algorithms, with a particular focus on their applicability to the protein folding problem. By
thoroughly examining the strengths and limitations of each optimizer, particularly in the presence of
noise and complex energy landscapes, this analysis aims to identify the most suitable optimization
strategy for our specific protein folding model. The insights gained from this comparative assessment
will not only inform the optimization choices made within this work (Section 6.4), but also provide
valuable guidance for future implementations and advancements in the field of quantum-assisted pro-
tein structure prediction.

In the complex landscape of protein folding simulations, two primary classes of optimization algo-
rithms play pivotal roles in refining the prediction models: gradient-based and gradient-free optimiz-
ers. Gradient-based optimizers, such as Adam and Adagrad, leverage the gradient of the cost function
to guide the search for an optimal set of parameters. These algorithms calculate the gradient at each
iteration, which indicates the direction and magnitude of the step to take towards minimizing the
cost function. The Adam optimizer, for instance, is highly favored for its adaptive learning rate man-
agement, which adjusts the update steps for each parameter, enhancing the convergence speed and
stability.

On the other hand, gradient-free optimizers such as COBYLA (Constrained Optimization BY Lin-
ear Approximations) and Powell’s method, operate without the need for gradient information. These
algorithms are particularly useful in scenarios where the cost function does not have a well-defined gra-
dient, or when the gradient computation is computationally prohibitive. COBYLA, for example, uses
linear approximations to handle constraints, making it suitable for problems with complex landscapes
and multiple constraints. Powell’s method, focusing on a direction set-based search, circumvents the
need for gradient calculations altogether, which can be advantageous in non-smooth optimization
problems.

The objective in both approaches is to minimize the cost function 𝐶 , which serves as a measure of
the quality of a given solution or parameter set in the context of the protein folding problem. The
process begins with an initial parameter set, from which the cost function is calculated. Based on this
evaluation, parameters are adjusted according to the optimization algorithm’s strategy—either mov-
ing along the gradient or exploring the parameter space without it. This iterative adjustment continues
until the cost function reaches a satisfactorily minimized state, indicating an optimal or near-optimal
solution to the protein folding configuration.
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3.1 Gradient-Based Optimizers

3.1.1 Standard Gradient Descent
A basic optimisation technique called gradient descent modifies parameters iteratively in order to min-
imise the cost function. The cost function’s negative gradient denotes the direction of the steepest de-
scent, which is where you are supposed to be moving. Traditional gradient descent, however, can run
into problems like delayed convergence and getting trapped in local minima.

3.1.2 Momentum
Momentum incorporates the concept of inertia into gradient descent, helping to accelerate convergence
and reduce oscillations:

𝑣𝑡 = 𝛽𝑣𝑡−1 + (1 − 𝛽)∇𝐶𝑡 (3.1.1)
𝜃𝑡+1 = 𝜃𝑡 − 𝛼𝑣𝑡 (3.1.2)

Here, 𝑣𝑡 represents the velocity update, 𝛽 is themomentum factor, and 𝜃𝑡 are the parameters at iteration
𝑡 . The momentum term ensures that the algorithm maintains its direction through small oscillations,
leading to faster convergence. The momentum parameter 𝛽 typically has a value of 0.9, but can be
adjusted as long as 𝛽 ∈ [0, 1). A higher 𝛽 places greater importance on past gradients, whereas 𝛽 = 0
reverts to the standard gradient descent (SGD) method.

The incorporation of momentum can be likened to a ball rolling down a hill. The ball’s momentumwill
continuously increase as its velocity rises until air resistance halts further acceleration at terminal ve-
locity, where the ”air resistance” is represented by the parameter 𝛽 . As the gradient converges towards
a minimum, previous gradients aligned in the same direction will accumulate momentum, while gra-
dients in other directions will diminish. This results in oscillations in non-minimum directions being
dampened, and momentum propelling us more rapidly towards the minimum.

3.1.3 Adagrad
Adagrad is the first of the so called ”adaptive learning” algorithms. It adapts the learning rate for each
parameter based on historical gradient information, thus adjusting the learning rate dynamically:

𝑟𝑡 = 𝑟𝑡−1 + ∇𝐶2𝑡 (3.1.3)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
√𝑟𝑡 + 𝜖∇𝐶𝑡 (3.1.4)

𝑟𝑡 accumulates the sum of the squared gradients, and 𝜖 is a small constant for numerical stability (to
ensure we do not divide by zero). This method decays the learning rate over time, making it particu-
larly beneficial for problems involving sparse data.

The spaces over which we are optimizing are high-dimensional spaces. It is feasible to optimize in
one direction of the space while failing to optimize in another. If the learning rate only decreases over
time, such as 𝑟𝑡 = 𝑟0

√𝑡+𝜖 , we might successfully optimize a specific parameter 𝑤1 but fail to optimize
another parameter 𝑤2; the step size might become too small to continue effective minimization in the
direction of 𝑤2. Therefore, it is insufficient to merely decrease the learning rate, 𝛼 , over time. It must
also be adapted individually for each parameter. This is achieved by dividing the learning rate by the
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square root of the past gradients associated with that parameter. If the gradients for a particular pa-
rameter, 𝑤1, are consistently large, a slightly smaller learning rate is desirable (to prevent oscillations
in valleys). Conversely, if the gradients for another parameter, 𝑤2, are consistently small, dividing by
them will result in a larger learning rate, ensuring that we can move more swiftly along a shallow de-
cline.

A challenge with AdaGrad is that the accumulated squared gradients, 𝑟𝑡 , continuously increase in size,
which eventually reduces the learning rate, 𝛼 , to a very small value after numerous iterations. Con-
sequently, AdaGrad is seldom used, as there are now more advanced algorithms that have improved
upon it.

3.1.4 RMSprop
RMSprop, orRootMean Square Propagation, enhancesAdagrad by introducing a decay term to control
the growth of the denominator:

𝑟𝑡 = 𝛽𝑟𝑡−1 + (1 − 𝛽)∇𝐶2𝑡 (3.1.5)

𝜃𝑡+1 = 𝜃𝑡 − 𝛼
√𝑟𝑡 + 𝜖∇𝐶𝑡 (3.1.6)

This optimizer maintains an exponentially decaying average of past squared gradients, ensuring stabi-
lized learning rates and addressing Adagrad’s diminishing learning rate issue over time. This is done
by dividing the learning rate by the square root of an exponentially weighted moving average (EWMA)
of past squared gradients instead of an accumulating sum of gradients.

3.1.5 Adam
The Adam optimizer, short for Adaptive Moment Estimation, combines the benefits of Momentum
and RMSprop by maintaining both first (mean) and second (uncentered variance) moment estimates
of the gradients.

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∇𝐶𝑡 (3.1.7)
𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)∇𝐶2𝑡 (3.1.8)

�̂�𝑡 =
𝑚𝑡

1 − 𝛽 𝑡1
(3.1.9)

̂𝑣𝑡 =
𝑣𝑡

1 − 𝛽 𝑡2
(3.1.10)

𝜃𝑡+1 = 𝜃𝑡 −
𝛼�̂�𝑡

√ ̂𝑣𝑡 + 𝜖
(3.1.11)

Adam adaptively adjusts learning rates based on both the first moment (mean) and second moment
(variance) of the gradients. It uses bias corrections to the estimates of both terms to account for their
initialisation at the origin, i.e. 𝑚0 = 0 and 𝑣0 = 0. This adaptive adjustment significantly stabilizes
and accelerates the convergence process, making Adam a preferred choice in many machine learning
applications.

Also, note that the 𝜖 term in the denominator is placed outside the square root in this instance. Al-
though positioning it inside the square root is also feasible, practical experience has shown slightly
better performance when it is placed outside.
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3.2 Visual Comparisons

Visualizing the behavior of these optimizers reveals distinctive patterns in their convergence paths:

• Momentum smoothens and accelerates the path by incorporating a velocity term that carries
through iterations. It shows quicker descent along gradient paths.

• Adagrad modifies learning rates for each parameter based on their gradient history, ideal for
paths involving more frequent updates. It performs gradual downsizing of steps, which is ad-
vantageous for sparse features.

• RMSprop prevents gradients from exploding or vanishing through an exponential decay factor.
It effectively balances learning rates, resulting in stabilized traversal.

• Adam combines the benefits ofMomentum (inertia-based acceleration) and RMSprop (adaptive
learning rates), resulting in an efficient and stable optimization trajectory. It combines stabiliza-
tion and acceleration features, emonstrating efficient convergence patterns.

3.3 Gradient-Free Optimizers

3.3.1 Constrained Optimization by Linear Approximations (COBYLA)
Constrained Optimization by Linear Approximations (COBYLA) is a gradient-free optimization tech-
nique that employs a direct search method developed by Mike J. D. Powell. This optimizer is known
for its ability to work with constraints, making it adaptable to wide range of uses - especially in hybrid
quantum-classical machine learning.

COBYLA operates through iterative refinement of a simplex—a geometric figure formed by 𝑛 + 1
points in 𝑛-dimensional space—that is strategically adjusted to minimize the objective function. Un-
like gradient-based methods, COBYLA approximates the objective and constraint functions by linear
interpolation, whichmakes it particularly effective when the gradient information is noisy, unavailable,
or computationally expensive to obtain.

The COBYLA algorithm can be mathematically stated as follows:

||𝑥 − 𝑥𝑜 || ≤ Δ

where 𝐹(𝑥𝑜) is the minimum value found so far.
In unconstrained COBYLA, we have

𝑥 = 𝑥𝑜 − (||Δ∇𝐿||||∇𝐿|| ) ∇𝐿.

3.3.2 Powell
Mike J. D. Powell introduced an optimization technique that has become a cornerstone for gradient-
free optimization—often referred to simply as Powell’s method. This method is designed to minimize
a function without requiring the computation of gradients, employing a directional search strategy to
efficiently explore the parameter space.

Powell’s method works by moving iteratively along a set of directions, and at each step, it determines
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the optimal length to move along these directions by performing line searches. It then updates the
direction set based on the attained optimum, ensuring that it converges effectively towards the mini-
mum. The method adapts over iterations to better navigate the topography of the objective function,
making it highly effective for complex, high-dimensional, and non-convex optimization problems.

In the domain of hybrid quantum-classical machine learning, Powell’s method has proven to be highly
effective, especially for variational quantum algorithms. Benchmarking studies indicate that Powell’s
method consistently performs well across various tasks, including simulation of molecular properties.
For instance, it has shown remarkable efficiency in scenarios where the number of parameters is rel-
atively small but the parameter space is sufficiently intricate to disrupt gradient-based methods. This
makes Powell’s method a strong candidate for optimizing parameterized quantum circuits where quan-
tum noise and hardware imperfections render gradient information unreliable.

The Powell algorithm optimizes a quadratic function:

𝑓 (𝑥) = 𝑥𝑇𝐴𝑥 − 2𝑏𝑇 𝑥 + 𝑐
where 𝐴 is positive definite symmetric, 𝑏 ∈ ℝ𝑛.

The theorem states that if 𝑢1, … , 𝑢𝑚 is a set of non-zero conjugate directions, then the minimum of
𝑓 (𝑥) in the space spanned by 𝑢1, … , 𝑢𝑚 can be found at the point:

𝛽𝑖 =
𝑢𝑇𝑖 𝑏
𝑢𝑇𝑖 𝐴𝑢𝑖

The Powell algorithm can be summarized in the following steps:

1. Let 𝑥0 be the initial point and let 𝑢1, … , 𝑢𝑛 be the set of conjugate vectors.
2. For 𝑖 = 1, … , 𝑛: - Compute 𝛽𝑖 to minimize 𝑓 (𝑥𝑖−1 + 𝛽𝑖𝑢𝑖). - Define 𝑥𝑖 = 𝑥𝑖−1 + 𝛽𝑖𝑢𝑖.
3. For 𝑖 = 1, … , 𝑛 − 1: - Replace 𝑢𝑖 by 𝑢𝑖+1.
4. Replace 𝑢𝑛 by 𝑥𝑛 − 𝑥0.
5. Compute 𝛽 to minimize 𝑓 (𝑥0 + 𝛽𝑢𝑛), and replace 𝑥0 by 𝑥0 + 𝛽𝑢𝑛.
6. Repeat the process until the function value or gradient change is below a set threshold.

3.4 PerformanceofOptimizersforApplications inQuan-
tum Chemistry with VQAs

The performance of various classical optimizers for variational quantum algorithms (VQAs) was as-
sessed by simulating quantum chemistry applications for simple molecules, namely, Hydrogen (H2),
Lithium Hydride (LiH), Beryllium Hydride (BeH2), water (H2O), and Hydrogen Fluoride (HF). The
optimizers evaluated include both gradient-based and gradient-free methods. The simulations were
carried out using quantum simulators in Qiskit. [35]

A set of key performance indicators were considered for benchmarking:

• Ground state energy errors
• Dissociation energy
• Dipole moment
• Simulation convergence
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• Number of iterations to reach convergence

The simulations used the Unitary Coupled Cluster (UCC) ansatz, and the number of qubits varied
from two for the Hydrogen molecule to ten for Hydrogen Fluoride.

3.4.1 Gradient-based Optimizers
Among the gradient-based optimizers, the following performed the best:

• Conjugate Gradient (CG)
• Limited-memory Broyden-Fletcher-Goldfarb-Shanno bound (L-BFGS-B)
• Sequential Least Squares Programming (SLSQP)

These, showed minimal errors and consistent performance in molecular simulations.

3.4.2 Gradient-free Optimizers
For gradient-free methods, the most efficient optimizers identified were:

• Constrained Optimization BY Linear Approximations (COBYLA)
• Powell

These methods exhibited robust performance, particularly for molecular systems with different elec-
tron configurations, bond types, and geometries. They efficiently minimized the error in molecular
properties such as dissociation energy and dipole moment.

3.4.3 Overall Insights
From the comprehensive benchmarking, it was evident that:

• Gradient-based optimizers generally provided faster convergence with fewer iterations. In real
devices however, they can be more sensitive to noise since they involve calculating gradients,
which can be negatively impacted by the noise in NISQ devices.

• Gradient-free optimizers, while sometimes slower, displayed robustness across variedmolecular
configurations. Moreover, they may be a better option in the NISQ era, due to their robustness
and ability to handle noise in quantum circuits.

The above, establish guidelines for selecting appropriate optimizers based on the specific requirements
of quantum chemistry simulations using VQAs. Quantum hardware-specific optimizers were also in-
cluded but need further study to assess their practical effectiveness.



Chapter 4

Protein Folding

In this section, we will discuss the basics of protein folding, including the amino acid composition and
protein structure. Protein folding is the process by which a protein molecule assumes its functional 3D
structure - a process crucial for the proper functioning of the protein and, by extension, the organism
it belongs to.

4.1 Protein’s Structure

Proteins are made up of amino acids, which are linked together by peptide bonds to form long chains.
There are 20 different types of amino acids (see Appendix A) that can be found in them and each one
has a distinct side chain that controls the specific chemical characteristics. The sequence of amino acids
in a protein determines its primary structure. However, the folding process also involves interactions
with other molecules, and these - together with the amino acid sequence - will determine the ultimate
structure (there are also the secondary and higher-order structures that need to be determined). An
overview of these compounds and the kinds of structures we are attempting to anticipate, is provided
here.

4.1.1 Molecules in Protein Folding

Amino Acids

• Definition: Amino acids are the basic building blocks of proteins. Each amino acid has a central
𝛼-carbon attached to a hydrogen atom, a carboxyl group (-COOH), an amino group (-NH2), and
a unique R-group or side chain.

• Variety: There are 20 different naturally occurring amino acids, each with distinct properties
based on their side chains.

• Role in Folding: The sequence of amino acids in a polypeptide chain determines the protein’s
primary structure, which subsequently influences the formation of secondary structures.

Water Molecules

• Role: Water molecules are crucial in the folding process due to hydrophilic (water-attracting)
and hydrophobic (water-repelling) interactions. Hydrophobic side chains tend to cluster away
from water, promoting specific folding patterns that contribute to secondary and tertiary struc-
tures.

• Hydrogen Bonding: Water can form hydrogen bonds with amino acid side chains, stabilizing
the protein structure.

35
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Ions and Metal Cofactors

• Examples: Ions such as calcium (Ca2+), magnesium (Mg2+), andmetal ions like iron (Fe2+) and
zinc (Zn2+) often play roles in stabilizing protein structures or participating in catalytic activity.

• Coordination: Metal ions can coordinate with amino acid side chains, influencing the folding
and stability of proteins.

Chaperone Proteins

• Function: Chaperone proteins assist in the correct folding of other proteins, preventingmisfold-
ing and aggregation that could lead to malfunction or disease.

• Types: Examples include heat shock proteins (HSPs) and chaperonins.

4.1.2 Four Types of Structures

Primary Structure

The primary structure of a protein is simply the arrangement of amino acids that form the protein
chain. The sequence is determined by the genetic code, which specifies the order of amino acids in a
protein.

Secondary Structure

The secondary structure of a protein refers to the protein chain’s local foldings, which are stabilized by
hydrogen bonds between the amino acid residues. There are two main types of secondary structure:
alpha helices (tightly coiled structures) and beta sheets (flat, extended structures).

Tertiary Structure

The tertiary structure of a protein refers to the overall 3D shape of the protein (reffering to an entire
polypeptide chain). It is determined by a combination of hydrophobic interactions, hydrogen bonds,
disulfide bonds, and other non-covalent interactions.

Quaternary Structure

Some proteins are made up of multiple subunits, each with its own tertiary structure. The way these
subunits (in a multisubunit protein) come together to form a functional protein is referred to as the
quaternary structure. The quaternary structure is stabilized by a combination of non-covalent interac-
tions and sometimes covalent bonds.

4.2 Folding Pathways

The understanding of protein folding pathways has evolved significantly over time, transitioning from
a classicalmodel of discrete intermediates to amodern perspective characterized by amultipath energy
landscape.

4.2.1 Historical Perspective
Understanding protein folding and structure has significantly benefitted from the pioneering work of
several scientists throughout the past century. Notable among these contributors is Linus Pauling,
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whose groundbreaking research laid the foundation for much of our current knowledge about protein
chemistry.

Pauling’s primary contributions focused on the stabilization of protein structures through hydrogen
bonds and the overall arrangement of polypeptide chains. He proposed the alpha-helix and beta-sheet
as fundamental elements of protein secondary structure, highlighting the importance of hydrogen
bonding in maintaining these structures. His work emphasized the geometric and chemical princi-
ples that lead to stable protein conformations, contributing immensely to the understanding of how
protein folding occurs on a fundamental level.

Pauling was among the first to use concepts of structural chemistry to explain the stability and forma-
tion of complex biopolymers like proteins. One of his major contributions to protein chemistry was his
identification and characterization of hydrogen bonds. Alongwith his colleagueAlfredMirsky, posited
that hydrogen bonds are critical for maintaining the stability of protein structures. They demonstrated
that hydrogen bonds, in addition to peptide bonds between amino acids, play a fundamental role in
stabilizing the intricate configurations of protein molecules.

Expanding his research to functional proteins, he hypothesized that the distinct structural features of
haemoglobin are essential prerequisites for its oxygen-binding capabilities. His work underscored the
relationship between a protein’s structure and its biological function, a concept that remains a central
tenet in molecular biology.

4.2.2 The Classical View
Early assumptions about protein folding were largely influenced by the concept of distinct intermediate
states. Researchers envisioned proteins folding in a manner analogous to classical biochemical path-
ways, where a series of well-defined steps guided the polypeptide chain from an unfolded state to its na-
tive conformation. This idea was epitomized in the pioneering work by Anfinsen, who demonstrated
that proteins could spontaneously attain their native structure without external assistance, implying
that the folding information is encoded within the amino acid sequence itself.

Also, Levinthal’s paradox posed a significant challenge to the understanding of protein folding. Given
the astronomical number of possible conformations, a purely random search for the native state would
take an impractically long time. Levinthal proposed that proteins, therefore, must fold through prede-
termined, distinct pathways, leading to their native structure via specific intermediates.

• Key Contributions:

– Levinthal’s arguments highlighted the implausibility of random folding.
– Experimentalists sought to identify and characterize these intermediates through various

biochemical techniques.

• Limitations:

– While this view provided a straightforward conceptual framework, it struggled to account
for the diversity and complexity observed in protein folding behaviors.

4.2.3 The New View
The modern understanding of protein folding has transcended the simplistic view of a linear, sequen-
tial process dictated solely by the amino acid sequence. While the intrinsic properties encoded in the
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primary structure remain crucial, we now recognize that protein folding is a dynamic interplay be-
tween these inherent factors and the extrinsic environment in which it occurs. This new perspective
emphasizes the cellular context as a key player in shaping the folding landscape and influencing the
fate of a protein.

Early studies, while groundbreaking in establishing the importance of the primary sequence, often
studied proteins in isolation, neglecting the crowded and complex environment of the cell. This reduc-
tionist approach, though valuable in elucidating fundamental principles, failed to capture the intricate
dance between a nascent polypeptide chain and its surroundings.

The new view recognizes protein folding as a carefully orchestrated process, fine-tuned by a network
of interactions within the cellular milieu. These interactions, far from being passive bystanders, ac-
tively participate in guiding the folding pathway, stabilizing intermediates, and ensuring the efficient
production of functional proteins.

Intrinsic Factors

• Primary Structure: The unique sequence of amino acids in a protein encodes information cru-
cial for forming secondary, tertiary, and quaternary structures. The folding process is largely
driven by interactions such as hydrophobic packing, hydrogen bonding, van der Waals forces,
and electrostatic interactions.

• Hydrophobic Interactions: The distribution of hydrophobic and polar residues guides the fold-
ing pathway, indicating that proteins with conserved hydrophobic contents but different se-
quences can still fold into their native structures.

Extrinsic Factors

• Chaperones and Cofactors: Proteins often require assistance to fold correctly in the crowded
cellular environment. Molecular chaperones, such as the heat shock proteins, assist in folding
by preventing aggregation and facilitating the formation of intermediate states. Chaperones can
also help in refolding misfolded proteins and targeting irreversibly misfolded proteins for degra-
dation.

• Solution Properties and Environmental Conditions: Factors such as pH, ionic strength, tem-
perature, and the presence of co-factors or ligands can significantly influence protein folding.
Cooperative binding of cofactors can stabilize specific conformations or facilitate the transition
through folding intermediates.

• Ribosome and Co-translational Folding: As proteins are synthesized on the ribosome, they
start folding co-translationally. The rate of translation and the vectorial nature of folding can
affect the folding pathway and the formation of intermediate states, which tend to fold correctly
if they have higher rates of codon translation.

Themodern view of protein folding refines the classicalmodel, proposing amultipath energy landscape
approach to describe the process.

Energy Landscape Theory

• Themodern understanding conceptualizes protein folding as a journey through a rugged, funnel-
shaped energy landscape, introduced by Bryngelson, Onuchic, Socci, and Wolynes. This model
posits that proteins fold through a multiplicity of pathways, rather than a single, defined route.
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Key Features

• Funnel Shape: The energy landscape narrows as the protein approaches its native state, indicat-
ing an overall decrease in free energy and a reduction in conformational entropy.

• Ruggedness: The landscape is populated with various kinetic traps and energy barriers that
transiently capture the folding protein, adding a statistical dimension to the folding process.

• Frustration and Traps: Configurational frustration can lead to intermediate states that are ener-
getically favorable but not optimal, representing local minima that the protein must overcome.

Experimental approaches have evolved to provide insights into the dynamics of protein folding, despite
significant challenges. Classical techniques such as crystallography and NMR spectroscopy offer de-
tailed structural information but are limited by their inability to capture rapid, transient intermediate
states. Instead, spectroscopic methods like fluorescence, circular dichroism (CD), and infrared (IR)
spectroscopy have been employed for real-time kinetic studies, although they lack detailed structural
resolution.

Case Studies

• Thermodynamic Studies: Work by Anfinsen and others solidified the concept that the native
state is determined by the overall free-energy minimum.

• Kinetic Intermediates: Baldwin’s investigations highlighted that folding intermediates could
form asynchronously, supporting the multipathway model.

Computational Models

• Advances in computational power have facilitated simulations of the protein folding process.
These models allow exploration of the energy landscape and prediction of folding pathways, al-
beit with challenges in capturing the full complexity of residue-level interactions and dynamics.

4.3 As a Physical Problem

Understanding the thermodynamic principles underlying protein folding is crucial in determining
how proteins transition to their functional three-dimensional forms. The folding process is inherently
linked to the principles of entropy and enthalpy, governed by the Boltzmann equation and the concept
of Gibbs free energy. The Boltzmann entropy equation, given by:

𝑆 = 𝑘 lnΩ
where 𝑆 is the entropy, 𝑘 is the Boltzmann constant, and Ω represents the number of microstates, is
fundamental in describing the statistical spread of molecular configurations. For protein folding, this
suggests a move towards a state with minimized entropy under biologically favorable conditions.

The change in entropy (Δ𝑆) during protein folding can be calculated from the heat exchanged (Δ𝑄)
over the temperature (𝑇 ) of the system, following the equation:

Δ𝑆 = ∫
Δ𝑄
𝑇

Protein folding is also a process driven by changes in enthalpy (Δ𝐻 ), whichmeasures the heat absorbed
or released under constant pressure, crucial in describing the energy landscape that proteins navigate
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during folding. The relationship between these thermodynamic quantities dictates the spontaneity of
folding; wherein higher temperatures (𝑇Δ𝑆 > Δ𝐻 ), folding is spontaneous (Δ𝐺 < 0), indicating a
decrease in Gibbs free energy.

Anfinsen’s dogma holds that the amino acid sequence of a protein determines its 3D structure. This
means that all the information necessary for folding the peptide chain into its native structure is en-
coded in its primary structure, and implies that the entropy of the system decreases guided by its amino
acid sequence - as it folds into a stable conformation.

Protein folding is characterized by a significant reduction in entropy, as the flexibility of the amino
acid chain becomes constrained upon adopting a specific structure. This reduction is often compen-
sated for by enthalpic contributions, particularly favorable interactions like hydrogen bonding and van
der Waals forces, which are guided by the protein’s amino acid sequence. Anfinsen’s dogma, stating
that the amino acid sequence determines the 3D structure, underscores this principle. The sequence
guides the protein towards lower entropy by dictating these interactions, driving the folding towards
its native state in a thermodynamically favorable process (Δ𝐺 < 0, where Δ𝐺 is the change in Gibbs
free energy).

Furthermore, the folding process is influenced by the primary structure of proteins, where the sequence
of amino acids dictates the complex folding pathways leading to functionally active structures. This
complexity is furthermodulated by secondary structures like alpha helices and beta sheets, stabilized by
hydrogen bonds, which contribute significantly to the decrease in system’s total entropy during folding.
Understanding these interactions and thermodynamic incentives provides a profound insight into the
molecular mechanics of life and the pivotal role of entropy and enthalpy in biological self-organization.

4.4 Biological Significance

The functioning of biological systems relies heavily on the correct folding of proteins. Functional pro-
teins perform a myriad of roles, including enzymatic catalysis, signal transduction, structural support,
and immune responses. Misfolding or aggregation of proteins can lead to diseases such as Alzheimer’s
and Parkinson’s. This underscores the necessity for a clear understanding of the protein folding process
to develop therapeutic strategies for these conditions.

Research into protein folding not only advances our understanding of fundamental biological pro-
cesses but also has significant implications for drug discovery and design. The ability to predict protein
structures accurately can facilitate the development of drugs that specifically target certain proteins or
protein-protein interactions. Moreover, understanding protein folding pathways can aid in the de-
velopment of interventions to prevent or correct misfolding, contributing to treatments for protein
misfolding diseases.



Chapter 5

Related Work

5.1 Simulations

5.1.1 Dynamic Simulations on Molecular Level (MD)
Molecular Dynamic Simulations provide a microscopic view of molecule interactions over time, piv-
otal for understanding complex biochemical processes. These simulations involve computationally in-
tense methods where atoms and molecules follow the laws of physics, allowing researchers to observe
the folding pathways of proteins in a dynamic and time-dependent manner. However, the applications
are limited by substantial computational resource requirements. Furthermore, they fall short in terms
of sampling efficacy due to long relaxation times.

To tackle these, enhanced sampling strategies and integration withmachine learningmethods are used
to improve their efficiency. Also, technologies like GPU acceleration and multi-processor computing
have further pushed the boundaries, enabling the study of longer timescale events and more complex
systems which were previously unattainable. This computational evolution brings us closer to more
accurate, real-time simulations of protein dynamics, revealing essential mechanisms that underpin
biological functions and disease mechanisms.

Nature of Method Deterministic (Deterministic algebraic equa-
tions)

Properties Studied Static and dynamic
Time Evolution Provides detailed time evolution information

Sampling Efficacy Less effective than MC simulations due to long
relaxation times

Challenges Computationally intensive, sensitive to long
simulation times

Table 5.1.1: Features of Molecular Dynamics Simulations

5.1.2 Monte Carlo Simulations (MC)
Monte Carlo stochastic method helps in exploring various conformational states of proteins but re-
quires nuanced expertise to achieve high accuracy, striking a balance between computation cost and
simulation reliability. It employs randomized trials to explore the vast conformational space of pro-
teins, offering insights into stable structures under various conditions. Through iterative refinement
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and the ability to bypass local minima in energy landscapes, Monte Carlo simulations enhance our
predictive accuracy and speed, essential for engineering robust proteins and understanding disease
mechanisms linked to protein misfolding.

This predictive prowess was particularly highlighted in the study of Dihydrofolate Reductase muta-
tions, showcasing its utility in practical, biomedical applications. As this technique continues to be
honed, its integration with experimental methods promises a more comprehensive elucidation of pro-
tein behaviors.

MC simulations utilize stochastic elements based on finite Markov chains to navigate the conforma-
tional space of proteins. These simulations are renowned for their heuristic nature and iterative re-
finement processes, which help avoid local minima, thereby enhancing predictive accuracy. They are
generally faster than MD simulations but are limited to static properties and do not provide time evo-
lution information.

They are highly effective in sampling configurational space, making them suitable for exploring numer-
ous conformations. Although they typically lack the sophisticated time-dependent dynamics provided
by MD simulations, they are valuable in providing insights into the static configurational landscape of
proteins.

Nature of Method Stochastic (Stochastic elements based on finite Markov chains)
Properties Studied Static only
Time Evolution Does not provide time evolution

Sampling Efficacy Highly effective in sampling configurational space
Challenges Limited to static properties, no kinematic or dynamic information

Table 5.1.2: Features of Monte Carlo Simulations

5.2 Other Conventional Computational Techniques

5.2.1 Template-Based Modeling (TBM)
Template-Based methods rely on established structural databases to model protein structures using
approaches like threading and homology:

• Threading/Fold Recognition: This method is used to model proteins that have the same fold as
proteins of known structures, but do not necessarily have high sequence similarity to any known
structures.

• Homology Modeling: This approach predicts the structure of a protein by using homologous
proteins with known structures, relying on significant sequence similarity to identify structurally
conserved regions.

Threading, particularly, matches unknown protein sequences with known structures, enhancing pre-
diction reliability. Its foundational premise is that proteins with similar structures can be identified
even without high sequence similarity. Homology (or comparative) modeling employs the structural
data already available in databases such as the Protein Data Bank (PDB) to model unknown protein
structures. Essentially, it begins by identifying a parent structure close to the sequence of interest, onto
which the target sequence is mapped. This initial model is then refined through a series of steps that
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adjust the backbone, optimize side chain packing, and model loops to enhance the accuracy of the
prediction.

Challenges arise mainly from achieving a reliable sequence alignment that correctly maps the 1D pro-
tein sequence onto the 3D structure of the template and from refining this initial model to resemble
the native structure more closely. Misalignments, even if minor, can significantly skew the model away
from its true form, underscoring the critical need for precise alignment and effective refinement strate-
gies to approach the native conformation more closely.

TBM is particularly useful when suitable templates are available, allowing for relatively accurate pre-
dictions. The main limitation of TBM is its dependency on existing protein structures, which might
not be available for all proteins.

Feature Description
Dependency Relies on existing structural databases

Approach Types Threading/Fold Recognition and Homology
Modeling

Accuracy Relatively accurate when suitable templates are
available

Limitations Limited by the availability and quality of known
templates

Table 5.2.1: Features of Template-Based Modeling

5.2.2 Free Modeling

In computational protein structure prediction, free modeling methods are crucial as they do not rely
on known templates, making them ideal for novel protein fold predictions. Notable among these ap-
proaches are Ab Initio methods, which predict structures from scratch using physical principles, and
Fragment-Based Sampling, which uses short protein fragments from the Protein Data Bank (PDB)
to construct the full protein structure.

Ab Initio

Ab Initio technique is employed when no suitable template exists, relying purely on the first principles
to predict protein structures, usually applied to smaller proteins due to high computational demands.
It represents a pivotal strategy, particularly valuable for proteins lacking homologous structures in ex-
isting databases. This method relies on the principle that a protein in its native state attains the lowest
free energy conformation.

This method typically employ advanced optimization processes that can vary in the representation
of proteins, the level of detail in sidechains, and the positions of carbon alpha atoms. Techniques such
asMolecular Dynamics andMonte Carlo simulations are commonly used, helping simulate the folding
process and explore the vast conformational space despite the astronomical number of possible protein
folds.

A significant obstacle presented by ab initio technique in protein structure prediction is its demanding
computation requirements. These method necessitate substantial computational resources, making
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them less accessible for widespread use. Additionally, ab initio model face inherent difficulties in repli-
cating the rapid folding processes of proteins, a phenomenon highlighted by the Levinthal paradox,
which posits that a protein does not randomly sample all possible configurations to achieve its native
structure due to the astronomical number of possibilities. Instead, proteins fold quickly into their
functional forms, a process that current ab initio techniques struggle to simulate both efficiently and
accurately.

Feature Description
Thermodynamic Hypothesis Based on the principle that the native protein

structure presents the lowest free energy possi-
ble

Template Free Approach Breaks protein sequence into amino acid frag-
ments, united using Monte Carlo simulations
with force fields and energy terms

Computational Complexity Computationally intensive due to large number
of conformational possibilities

Advantages Capable of predicting novel and unknown pro-
tein folds

Table 5.2.2: Features of Ab Initio Methods

Fragment-Based Methods

Fragment-based sampling operates by leveraging small protein fragments, typically derived fromknown
protein structures in the Protein Data Bank (PDB), to construct the entire protein structure. These
fragments represent common structural motifs and local conformations, key components in the hier-
archical assembly of protein structures. Fragment-Basedmethods help reduce the vast conformational
space that proteins can adopt, thus enablingmore efficient and accurate folding predictions. They have
demonstrated substantial success in protein structure prediction over the past decade.

Using the pre-existing structural motifs, fragment-based methods incrementally build up the protein
structure by assembling fragments in a manner consistent with the target sequence’s constraints. This
approach drastically narrows down the number of potential conformations that need to be explored,
significantly lowering computational complexity compared to ab initio methods. Although, despite
the evident computational efficiency, these methods have the limitation of possibly missing entirely
novel folds, as they rely heavily on existing structural data. However, for many practical applications,
the trade-off is acceptable due to the higher prediction accuracy and the ability to predict larger protein
structures compared to purely ab initio methods. Advanced techniques like Rosetta 1 utilize fragment-
based approaches combined with energyminimization and refinement steps to achieve highly accurate
models.

One of the strengths of fragment-based methods lies in their ability to blend with other computa-
tional techniques, such as Molecular Dynamics or enhanced sampling methods, to refine and validate
the predicted structures. This integrative approach can improve the robustness and reliability of the
predictions made by fragment-based sampling.

1 Rosetta assembles fragments from known protein structures via a Monte Carlo procedure, evaluating the models with
a scoring function. In the fragment assembly phase, local energy minimization is performed that helps in refining the
placement of fragments to create plausible initial models.
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5.3 Machine Learning

Machine learning (ML) models are transforming protein folding prediction by leveraging vast datasets
to infer complex patterns in protein structures. The quality of the training data is crucial for their
efficacy, enabling significant refinement and improvement in predictive accuracy.

Categories

AlphaFold-Based Methods: Utilize the AlphaFold Protein Structure Database (AlphaFold DB), fea-
turing extensive entries of protein structures.
Protein Language Models: Adapt natural language processing (NLP) techniques to analyze amino
acid sequences, capturing evolutionary and structural patterns for predicting key structural features.
Machine/Deep Learning Techniques: Employ advanced neural networks, including Graph Neural
Networks (GNNs), Convolutional Neural Networks (CNNs), and Artificial Neural Networks (ANNs),
trained on vast datasets like those from the Protein Data Bank (PDB) to predict distances and torsion
angles accurately.
Integration with Molecular Simulations: Integrate machine learning models with molecular dynam-
ics (MD) simulations, enhancing protein trajectory and interaction analysis throughmachine learning-
adapted force fields, improving timescales and precision.

Key Features

Data-Driven Approach: Extract information from large and representative datasets; the quality of
these datasets is pivotal for accurate predictions.
Accuracy and Efficiency: ML-based protein folding methods are highly accurate, used for designing
new drugs and understanding protein structures and functions. They benefit from improved real-time
adaptive force fields, enhancing prediction speed and accuracy.
Challenges: Machine learning models often act as ’black boxes,’ providing limited insight into the un-
derlying biophysical mechanisms they simulate, which presents an ongoing interpretability challenge.

5.4 AlphaFold

Developed by DeepMind, AlphaFold utilized machine learning for predicting protein structures from
amino acid sequences. While AlphaFold 1 showcased potential at the CASP competition, it did not
exhibit the precision necessary for extensive scientific application. Subsequent optimizations over the
following years have resulted in remarkable accuracy.

Feature AlphaFold 1 (2018) AlphaFold 2 (2020) AlphaFold 3 (2024)
Architecture Initial Deep Learning Model Introduction of the Evoformer Advanced Evoformer and Diffusion Network

Main Components Typical neural networks Evoformer, MSA Transformer Enhanced Evoformer, Diffusion Network
Accuracy Moderate Near-experimental accuracy Significantly improved accuracy
Speed Slower predictions Fast predictions Optimized for speed
Input Protein sequence, MSA stats Protein sequence, MSA, pairwise features Includes interactions with DNA, RNA, small molecules
Output Distograms End-to-end 3D structure Joint 3D structures of multiple molecules

Optimization CNN on PDB, Gradient Descent Iterative SE(3)-Transformer Improved Evoformer, diffusion from atoms

Table 5.4.1: Features of AlphaFold Models
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5.4.1 AlphaFold 1 (2018)
The initial version of AlphaFold was introduced in 2018, marking a substantial step forward in protein
structure prediction. It utilized a deep learning model trained on data primarily from the Protein Data
Bank (PDB), employing supervised learning techniques. While AlphaFold 1 demonstrated potential
by performing competitively at the Critical Assessment of protein Structure Prediction (CASP) com-
petitions, it was limited by its precision, restricting its widespread adoption in scientific applications.

5.4.2 AlphaFold 2 (2020)
The advent of AlphaFold 2 in 2020 marked a revolutionary improvement in both the accuracy and
speed of protein structure prediction. This version introduced the Evoformer, an architecture incorpo-
rating attention-basedmechanisms adept at capturing long-range interactions between amino acids by
focusing on multiple sequence alignments (MSA) and pairwise representations. AlphaFold 2 achieved
near-experimental accuracy, as evidenced by its remarkable performance at CASP competitions, pro-
viding predictions withinminutes and including confidence ratings to enhance usability and reliability.

5.4.3 AlphaFold 3 (2024)
AlphaFold 3, launched in 2024, builds upon and extends the capabilities of its predecessor. It not only
predicts protein structures but also interactions among a broad spectrum of biomolecules, including
proteins, DNA, RNA, and ligands. AlphaFold 3 exhibits significant improvements, achieving double
the prediction accuracy in specific types of interactions and a 50% enhancement over prior methods
for predicting biomolecular interactions. This is enabled by an advanced Evoformer coupled with a
Diffusion Network, refining a cloud of atoms into a precisely defined molecular structure.

5.5 HybridQuantum-ClassicalMachineLearningModels

5.5.1 Resource-Efficient Quantum Algorithm
The paper [11] introduces a quantum algorithm designed to address the protein folding problem on a
tetrahedral lattice using a coarse-grained model. The central component of the algorithm is the Hamil-
tonian 𝐻(𝑞), which encodes the conformational energy landscape of the protein. The Hamiltonian is
represented as a sum of Pauli strings:

𝐻(𝑞) =
𝑁
∑
𝑖=1

ℎ𝑖𝑞𝑖,

where ℎ𝑖 are real coefficients, and 𝑞𝑖 = 1−𝑧𝑖
2 , with 𝑧𝑖 being Pauli-𝑍 matrices for each qubit 𝑖, and 𝑁𝑡

being the total number of terms. The scaling is governed by the number of terms (Pauli strings) in the
Hamiltonian corresponding to the qubit Hamiltonian, which scales quadratically with the number of
amino acids 𝑁 :

𝑁𝑡 = 𝑂(𝑁 4).
Theoptimizationprocess utilizes theConditionalValue-at-RiskVariationalQuantumEigensolver (CVaR-
VQE) algorithm, which is more resilient to noise. This method focuses on optimizing diagonal Hamil-
tonians and provides a drastic speed-up compared to conventional VQE. The key feature involves
defining an objective function based on the average over the tail of a distribution, which enhances
the optimization process. The classical part of the optimization is facilitated by a differential evolution
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optimizer. During optimization, the wavefunctions |𝜓 (𝑝)⟩ of different individuals 𝑝 are measured, col-
lapsing them into binary strings uniquely corresponding to specific configurations and energies.

For practical implementation, the authors applied the algorithm to the folding of the 10 amino acid
peptide Angiotensin. Initially, this required 35 qubits using a coarse-grained model on the tetrahedral
lattice. However, a more efficient encoding was introduced as explained below, requiring only 2 qubits
per turn:

𝑡𝑖 = 𝑞2𝑖−1𝑞2𝑖,
reducing the total qubit count to 22. Consequently, this led to the generation of 5-local terms in the
qubit Hamiltonian instead of 3-local, whilemaintaining the number of Pauli strings withinmanageable
limits for small instances.

Tetrahedral Lattice

The tetrahedral lattice is a geometrical arrangement where each bead has four possible neighboring
positions. This structure is ideal for modeling the three-dimensional conformation of polymers, as
it allows modeling turns and interactions efficiently. In this lattice, the spatial distance between two
beads is a function of the number of turns separating them along the main chain.

Turn Encoding

Researchers introduce an indicator for the axis chosen at turn 𝑡𝑖. This function, 𝑓𝑎(𝑞2𝑖−1, 𝑞2𝑖) = 𝑓𝑎(𝑖),
returns 1 if the axis 𝑎 ∈ {0, 1, 2, 3} is chosen at turn 𝑡𝑖. For the denser encoding, this function is given
by:

𝑓0(𝑖) = (1 − 𝑞2𝑖−1)(1 − 𝑞2𝑖) (5.5.1)
𝑓1(𝑖) = 𝑞2𝑖(𝑞2𝑖 − 𝑞2𝑖−1) (5.5.2)
𝑓2(𝑖) = 𝑞2𝑖−1(𝑞2𝑖−1 − 𝑞2𝑖) (5.5.3)
𝑓3(𝑖) = 𝑞2𝑖−1𝑞2𝑖 (5.5.4)

For the sparser encoding, the expression of 𝑓𝑎(𝑖) is straightforward:

𝑓0(𝑖) = 𝑞4𝑖−3 (5.5.5)
𝑓1(𝑖) = 𝑞4𝑖−2 (5.5.6)
𝑓2(𝑖) = 𝑞4𝑖−1 (5.5.7)
𝑓3(𝑖) = 𝑞4𝑖 (5.5.8)

Alternate Lattices A and B

To enforce correct chirality and interaction dynamics, researchers use two alternating sub-lattices, A
and B. The polymer starts with a bead on sub-lattice B. Due to the alternation of these sub-lattices, all
sites of sub-lattice A (denoted by even integers) and sub-lattice B (denoted by odd integers) follow a
consistent pattern.

This alternation ensures that the beads’ positions reflect their parity. Parity 𝑔𝑖 is defined as:

𝑔𝑖 = 1 − (−1)𝑖
2
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Each turn’s directionality is captured in the turn parameter 𝑡𝑖, with a specific constraint table ensuring
that the turns comply with the chirality. This table guarantees that every turn aligns appropriately with
the directionality imposed by the alternating lattices.

In the implementations on this thesis, we use the same geometric constraints and interaction terms
(Miyazawa & Jernigan terms), to construct the Hamiltonian, and the same tetrahedral lattice and qubit
encoding methods to represent amino acid positions and directions. We will use Quantum Approxi-
mate Optimization Algorithm (QAOA) to solve the problem.

5.5.2 Digitized-Counterdiabatic Quantum Algorithm

The Theory

For the Counterdiabatic Quantum Algorithm (CDQA) for protein folding [1], the key idea is to con-
struct an ansatz inspired by counterdiabatic (CD) terms and utilize gradient-based optimization to
minimize a cost function.

Shortcuts to adiabaticity are used to speed up the adiabatic process in quantum computing. The adia-
batic theorem states that a quantum system remains in its ground state if a given perturbation is slow
enough. However, this process can be quite slow, which is not ideal for quantum computing applica-
tions. If the Hamiltonian changes quickly, the system may transition to a different eigenstate, known
as a non-adiabatic transition.

The concept of Counter-Diabatic (CD) driving was introduced to overcome this limitation. The idea is
to add an extra term to the Hamiltonian (the CD field) that cancels out the non-adiabatic transitions,
effectively driving the system through its evolution faster while still maintaining the system in its in-
stantaneous ground state. We will call such a field the counter-diabatic field, 𝐻CD.

If 𝐻𝑆 is the isolated system Hamiltonian and 𝐻𝑆𝐹 is the system-field interaction, then it follows that:

𝐻(𝑡) = 𝐻𝑆 + 𝐻𝑆𝐹 (𝑡) + 𝐻CD(𝑡)

Considering that 𝑈𝐻𝑈 † –where 𝑈 is a time-dependent unitary transformation – is diagonal forHamil-
tonians that generate adiabatic transfer between states, it follows that:

𝐻CD(𝑡) = 𝑖ℏ (𝜕𝑈
†(𝑡)
𝜕𝑡 ) 𝑈 (𝑡)

The Hamiltonian changes slowly with time, and the function 𝜆(𝑡) controls this rate of change.

With the CD term, the condition on 𝜆(𝑡) is relaxed, as the CD term can suppress non-adiabatic transi-
tions; the Hamiltonian can change more quickly while keeping the system in its instantaneous eigen-
state.

The researchers use the adiabatic gauge potentials (related to the rate of change of the Hamiltonian)
to obtain approximate Counter-Diabatic (CD) terms, and the Nested Commutator (NC) method to
calculate these. The NC method involves calculating a series of commutators of the Hamiltonian and
its derivatives with respect to the parameter 𝜆(𝑡). The CD term is then given by a sum over these com-
mutators, weighted by the rate of change of 𝜆(𝑡).
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Since this sum is difficult to implement directly in a quantum circuit, we digitize the CD terms (ap-
proximate them using a finite number 𝑙 of terms). Therefore, we use the series expansion:

𝐴𝑙
𝜆 = 𝑖

𝑙
∑
𝑘=1

𝑎𝑘(𝑡)[𝐻𝑎, [𝐻𝑎, … , [𝐻𝑎, 𝜕𝜆𝐻𝑎]]]

So, the quantum adiabatic evolution with counter-diabatic protocol Hamiltonian is:

𝐻(𝑡) = (1 − 𝜆(𝑡))𝐻mixer + 𝜆(𝑡)𝐻 + �̇�(𝑡)𝐴𝑙
𝜆

The CD-inspired ansatz is then given by the evolution:

𝑈cd(𝜃𝑝)𝑈𝑏(𝛽𝑝)𝑈𝑐(𝛾𝑝)𝑈cd(𝜃𝑝−1)𝑈𝑏(𝛽𝑝−1)𝑈𝑐(𝛾𝑝−1) × ⋯ × 𝑈cd(𝜃1)𝑈𝑏(𝛽1)𝑈𝑐(𝛾1)
However, since the CD term can play a dominant role in the evolution of the system, instead of trying
to implement the full evolution of the system using all three terms (𝑈𝑐 , 𝑈𝑏 , and 𝑈cd), the researchers
focus only on the contributions from the CD term:

𝑈cd(𝜃) = 𝑒−𝑖𝜃𝐴

Cost Function and Ansatz

The cost function 𝐶 used in the optimization is given by:

𝐶 = ⟨𝜓(𝜃)|𝐻 |𝜓 (𝜃)⟩, (5.5.9)

where 𝐻 is the problem Hamiltonian and |𝜓 (𝜃)⟩ is the parameterized quantum state.

For the CD-inspired ansatz, we employ parameterized Y-rotations followed by YZ-rotations. Specifi-
cally, the ansatz can be parameterized as follows:

𝑌 (𝜃) = exp(−𝑖
𝑁
∑
𝑚=1

𝜃𝑚𝑌𝑚) , (5.5.10)

𝑌𝑍(𝜃) = exp(−𝑖
𝑁
∑
𝑖,𝑗=1

𝐽𝑖𝑗𝜃𝑖𝑗𝑌𝑖𝑍𝑗) , (5.5.11)

where 𝑌𝑚 and 𝑌𝑖𝑍𝑗 are the Pauli operators, and 𝜃 represents the set of parameters to be optimized.

Quantum Adiabatic Evolution

We consider the quantum adiabatic evolution with the counterdiabatic protocol Hamiltonian 𝐻𝑐𝑑 :

𝐻𝑐𝑑(𝑡) = (1 − 𝜆(𝑡))𝐻mixer + 𝜆(𝑡)𝐻 + 𝛾(𝑡)𝐴𝑙 , (5.5.12)

where𝐻mixer is a Hamiltonian whose ground state is easy to prepare, 𝜆(𝑡) and 𝛾 (𝑡) are scheduling func-
tions, and 𝐴𝑙 represents the approximate CD term of order 𝑙.

The scheduling functions satisfy the boundary conditions:

𝜆(0) = 0, 𝜆(𝑇 ) = 1, (5.5.13)
𝛾 (0) = 0, 𝛾 (𝑇 ) = 0, (5.5.14)

where 𝑇 is the total evolution time.
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Digitized Counterdiabatic Evolution

In the digitized counterdiabatic approach, the continuous scheduling functions are replaced with dis-
crete time steps. The Hamiltonian for digitized counterdiabatic quantum approximate optimization
algorithm (DC-QAOA) is then:

𝐻𝑑𝑐𝑞(𝑘) = 𝐻mixer + Δ𝑡𝑘 (𝐻 + 𝐴𝑙) , (5.5.15)

where Δ𝑡𝑘 represents the time step, and 𝑘 indexes the time step in the digitized evolution.



Chapter 6

Understanding the Code

6.1 Qiskit’s Libraries

In the field of protein folding, hybrid quantum-classical machine learning approaches have demon-
strated significant potential. Qiskit, a framework developed by IBM, stands at the forefront, facilitating
the integration of classical and quantum computing techniques. This section delves into the various
Qiskit libraries pertinent to protein folding: qiskit, qiskit_research, qiskit.algorithms, and
qiskit_nature. The last three libraries had been used for the implementations in chapter 7, but since
now the corresponding files have been deleted, I will also provide their key functions and features that
encoded the problem (Sec. 6.3).

6.1.1 Qiskit
Qiskit serves as the foundational library providing the tools necessary for quantum computing. It
supports the creation, manipulation, and execution of quantum circuits on both simulators and real
quantum hardware. This library is crucial for setting up the basic elements of quantum computations
that are used in larger algorithms and applications, including those in protein folding.

6.1.2 Qiskit Research
The qiskit_research repository, particularly the protein_folding module, introduces special-
ized tools for simulating and analyzing protein structures using quantum computing.
For instance, in qiskit_research/protein_folding/peptide/beads/base_bead.py, the pro-
tein’s 3D Tetrahedral Lattice Model and turn encoding mechanisms are established. This involves
encoding peptide chain turns as quantum states within a tetrahedral lattice, using Pauli operators to
represent turn directions, thereby allowing for a quantum representation of the protein’s 3D structure.

6.1.3 Qiskit Algorithms
The qiskit.algorithms library includes advanced quantum algorithms that are pivotal in protein
folding studies. This includes Variational Quantum Eigensolver (VQE) and Quantum Approximate
Optimization Algorithm (QAOA), both of which are employed to find the ground state of the Hamilto-
nian representing the protein’s folded state. These algorithms leverage quantummechanics to optimize
the protein configuration more efficiently than classical-only approaches.

51
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6.1.4 Qiskit Nature
qiskit_nature deals directly with applications of quantum computing in the natural sciences, in-
cluding chemistry and biology. This library interacts seamlessly with qiskit_research to model
molecular and biomolecular data. In the context of protein folding, it interprets and processes the bio-
chemical properties of amino acid chains, facilitating the translation of biological data into quantum
operations that can be used by qiskit.algorithms.

6.2 The Implementation of the Hybrid Algorithms

In this section, I am attaching the general outline for the implementation of hybrid quantum-classical
machine learning algorithms. The code used in Chapter 8 is based on that.

1. Classical Representation of the Protein Folding Problem:

• Interaction Energy Dictionary: A dictionary interaction_energy stores the pairwise inter-
action energies between different amino acids. This dictionary captures the energetic favorability
or unfavorability of different amino acid pairs being in proximity.

• Protein Sequence Encoding: The input protein sequence is provided as a string (e.g., ”APG-
GPR”).

• Pyomo Model: The protein folding problem is formulated as a classical optimization problem
using the Pyomo library. The folding_hamiltonian function constructs a Pyomo model that
encapsulates:

– Variables: Binary variables (model.f, model.interaction) represent the folding config-
uration and amino acid interactions.

– Constraints: Geometric constraints prevent unrealistic protein folds (e.g., consecutive
amino acids folding back on themselves).

– Objective Function: The objective function (model.obj) represents the total energy of
the protein conformation, combining terms for geometric constraints and amino acid in-
teractions.

2. Transformation to a Quantum Representation:

• Objective Function Extraction: The classical objective function, expressed in terms of binary
variables, is extracted from the Pyomo model.

• Conversion to Quantum Hamiltonian: The classical objective function is transformed into a
quantum Hamiltonian. This involves:

– Replacing binary variables with Pauli-Z operators.
– Constructing a SparsePauliOp object that represents the Hamiltonian in terms of Pauli

operators and their corresponding coefficients.

3. Quantum Optimization using QAOA:

• QAOA Ansatz: A parameterized quantum circuit (qaoa_ansatz) is created to represent the
QAOA ansatz. This circuit consists of alternating layers of:

– Cost Hamiltonian: Derived from the protein folding problem’s objective function, this
Hamiltonian favors low-energy protein configurations.

– Mixer Hamiltonian: Enables exploration of the solution space by introducing transitions
between different configurations.
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• Parameter Initialization: Initial values for theQAOAparameters (gamma_values, beta_values)
are randomly generated.

• Quantum Simulation: The QAOA circuit is executed on a quantum simulator or real quantum
hardware. This involves:

– Transpilation: The circuit is transpiled to match the topology and gate set of the chosen
backend.

– Execution: The transpiled circuit is executed, and the results are collected.
• Measurement andEnergyCalculation: Themeasurement results from the quantum simulation

are used to estimate the average energy of the protein configurations.

4. Hybrid Optimization Loop:

• Classical Optimization: A classical optimizer (e.g., COBYLA) is employed to find the optimal
QAOA parameters that minimize the average energy of the protein.

• Iterative Process: The classical optimizer iteratively updates the QAOA parameters, and the
quantum simulation is repeated with the new parameters until convergence or a stopping crite-
rion is met.

5. Results Interpretation:

• Optimal Parameters: The optimization process yields the best set of QAOA parameters found.
• Minimum Energy: The average energy corresponding to the optimal parameters represents an

approximation of the ground state energy of the protein folding problem.
• Protein Conformation: By analyzing the measurement results from the quantum simulation,

the most probable protein configurations, corresponding to low-energy solutions, can be identi-
fied.

6.3 Encoding the Problem with Qiskit’s Libraries & MJ
model

6.3.1 Creating the Hamiltonian
In the qiskit_research library, the handling of bead contacts and distance mapping is particularly
noteworthy. For example, contact_map_builder.py implements a method to define contacts be-
tween beads (representing amino acids) using parity checks that ensure beads fall into alternating lat-
tice types in the tetrahedral model. This aids in mapping the protein’s folding pattern onto quantum
systems.

The Hamiltonian construction in qiskit_research uses these mapped positions and interactions.
The distance map and contact data are synthesized into a Hamiltonian, whose minimization (achieved
using the VQE or QAOA) guides the protein to fold into its energetically favorable conformation. This
includes penalty terms enforcing biological and chemical plausibility, such as correct chirality and
avoidance of unphysical overlaps between amino acids.

6.3.2 3D Tetrahedral Lattice Model with Turn Encoding and Miyazawa-
Jernigan (MJ) Interactions

In the model I am using, each point in the lattice can be connected to four other points, corresponding
to the four vertices of a tetrahedron. Therefore, at each point, an amino acid can turn in one of four
directions. This is why two qubits are used to encode each turn—four different states (00, 01, 10, 11).
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MJ Interactions

The Miyazawa-Jernigan (MJ) interaction model is utilized to estimate contact energies within protein
structures. A fundamental part of this model is the Bethe approximation, also known as the quasi-
chemical approximation. This approximation achieves an exact solution for the Bethe lattice and treats
the formation of contact pairs as a chemical reaction. The equilibrium relationship under this approx-
imation can be expressed as:

𝑒−𝑒𝑖𝑗 = 𝑛𝑖𝑗𝑛00
𝑛𝑖0𝑛𝑗0

(6.3.1)

In this equation, 𝑒𝑖𝑗 represents the contact energy between residues 𝑖 and 𝑗, and 𝑛𝑖𝑗 denotes the statis-
tical average number of contacts between these residues. The contact energies are dimensionless and
measured in units of 𝑅𝑇 . While this relationship traditionally derives 𝑛𝑖𝑗 from known 𝑒𝑖𝑗 values, it can
also invert to estimate contact energies from observed contact numbers in protein structures.

Theparameter 𝑛00, which represents the number of contacts between effective solventmolecules, proves
challenging to estimate directly. However, the relative differences in contact energies can be more re-
liably estimated than their absolute values as they do not depend on 𝑛00:

𝑒−Δ𝑒𝑘𝑙𝑖𝑗 = 𝑛𝑖𝑗𝑛𝑘0𝑛𝑙0
𝑛𝑖0𝑛𝑗0𝑛𝑘𝑙

(6.3.2)

Each protein’s effective number of solvent molecules is estimated based on their expected contact num-
bers under hypothetical hard-sphere interaction conditions with 𝑒𝑖𝑗 = 0. Assumptions are made that
effective solvent molecules possess the same volume as average residues.

Contact numbers, 𝑛𝑖𝑗 , are tallied for each protein structure, and the sums 𝑁𝑖𝑗 over all protein samples
are computed. For proteins, contacts with solvent molecules, 𝑛𝑖0, are estimated through the volume of
each amino acid type and the average volume of its surrounding residues, thereby filling incomplete
coordination spheres with solvent molecules.

This modeling aligns with the structural consistency principle, initially proposed by Go (1983) and
revisited by Bryngelson and Wolynes (1987) in the context of the minimal frustration principle in
protein energy landscapes. According to this principle, the inherent contact interactions should be
consistent with the high stability of native protein structures.

Here are some key points highlighting its aspects:

1. Statistical Averaging: The model determines statistical average numbers of contacts (𝑛𝑖𝑗) be-
tween various residues, making use of extensive data from known protein structures.

2. Pseudo-Potentials: The contact energies in the MJ model are derived from pseudo-potentials,
which are empirical potentials based on observed statistical features in protein structures.

3. SampleWeighting: A sampling weight is used for each protein based on sequence homology to
ensure an unbiased sampling from the Protein Data Bank (PDB).

4. Bethe Approximation: The model employs the Bethe lattice in estimating attractive contact
energies, which is a statistical mechanics approach.

5. Empirical Contact Potentials: The terms used in calculating energies (side chain packing, hy-
dration, hydrogen bonding, and local conformational potentials) are derived from empirical
observations and statistical features among a significant number of protein structures.
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3D Tetrahedral Lattice Model and Turn Encoding

Qubits are used to represent the turns taken by an arbitrary protein in 3D. The lattice consists of two
sets, P and Q, which are exactly inverse to each other. The turns taken by the amino acids can be in one
of four directions. Two qubits are devoted to encode each turn. At every turn, P and Q are alternated
so that even turns are represented by P and odd turns by Q.

An ”even-numbered position” refers to its place in the sequence of turns taken by the protein. If you list
all the turns taken by the protein in order, the first turn is at position 1, the second turn at position 2,
the third turn at position 3, and so on. Turns at positions 2, 4, 6, etc. (the ”even-numbered” positions)
are represented by the set P, while turns at positions 1, 3, 5, etc. (the ”odd-numbered” positions) are
represented by the set Q.

Figure 6.1: The tetrahedral lattice structure of the P lattice and its inverted lattice Q - Photo retrieved
from [1]

In Qiskit, the presence of turn indicator functions (Figure 6.2) suggests encoding within a tetrahedral
lattice structure. The peptide chain’s turns are encoded as quantum states, with each turn correspond-
ing to a direction in the lattice.

Figure 6.2: Turn Encoding with Qiskit Research (base_bead.py)

The turn_qubits parameter is a tuple of two Pauli operators, used to encode the direction of the turn
that the peptide chain takes after the current bead. This allows the quantum simulation to represent
the 3D structure of the peptide.

Alternating Lattices

The model alternates between two lattice types (P and inverted) at each turn to represent the protein’s
structure. The following function (Figure 6.3) checks whether two beads belong to different sets by
checking if the difference in their IDs is odd:



Quantum Machine Learning56

Figure 6.3: Alternating Lattices with Qiskit Research (contact_map_builder.py)

If the IDs of the two beads differ by an odd number, they are in different sets, which correspond to the
different sub-lattices in a tetrahedral lattice model. This simple parity check is a common method to
alternate elements in a sequence.

6.4 Choosing the Classical Optimizer -
A Baseline Optimizer

In the course of my research involving the application of VQE and QAOA methodologies to elucidate
the 3D structures of peptides, the choice of an effective optimizer emerged as a pivotal consideration.
The COBYLA optimizer was selected based on its robust performance detailed in relevant quantum
computing literature [32] [35], including demonstrated applications in quantum chemistry simula-
tions.

COBYLA is an optimization algorithm that does not require gradient information, which makes it
admirably suited for quantum computations where such gradients can be computationally expensive
or unreliable due to quantum noise. This attribute aligns well with scenarios in quantum chemistry,
where the evaluation of gradients may introduce significant computational overhead.

Moreover, the documented utilizations of COBYLA in quantum simulation tasks highlight its efficacy
in managing system noise — a frequent challenge in practical quantum computing applications. Ac-
cording to the research findings, COBYLA demonstrates a commendable robustness in maintaining
the accuracy of the solution even when simulations are performed on noisy quantum processors. This
capability is critical inmy study as it entails executing algorithms on real quantum devices, where noise
is an unavoidable factor.

Furthermore, the decision to implement COBYLA was also reinforced by its performance in reducing
the number of iterations needed to achieve convergence in quantum circuit optimization, as observed
in the reviewed studies. This efficiency in convergence not only saves computational resources but also
enhances the feasibility of conducting more extensive simulations within practical time frames.

Finally, based on [35] and the given robustness and efficiency across different noise levels and opti-
mization surface characteristics, COBYLA is recommended as a baseline optimizer for several reasons:

• It consistently delivers high performance with minimal requirement for parameter tuning.
• It adapts well to different problem landscapes, making it a versatile choice for hybrid quantum-

classical algorithms.
• Its reliable performance in presence of noise aligns well with the demands of NISQ devices, en-

suring that it remains a solid choice for practical applications.

Given these considerations — absence of gradient requirement, robustness against noise, and efficient
convergence — COBYLA was deemed the optimal choice for the optimizer in my thesis work aimed
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at using quantum algorithms to predict peptide structures, ensuring both accuracy and practicality in
the quantum computing landscape.

6.5 Choosing the Ansatz for the VQE’s Simulations

For Quantum Machine Learning (QML), the choice of ansatz is crucial in determining the efficiency
and accuracy of the models, especially when dealing with the inherent noise present in quantum hard-
ware. For the experiments conducted in this thesis, the RealAmplitudes ansatz was employed as the
ansatz for the VQE, due to its demonstrable robustness in noisy environments.

Rotation Gates

The RealAmplitudes circuit utilizes rotation gates, specifically𝑅𝑌 gates, which rotate the qubits about
the Y-axis. These rotations are parameterized by real-valued angles.

|RY(𝜃[𝑖])| where 𝜃[𝑖] is a real number

Entanglement

The circuit alternates layers of these rotation gates with entangling gates, typically 𝐶𝑋 (CNOT) gates,
which create entanglement between pairs of qubits.

Real-Valued Parameters

Thereal-valued parameters in the𝑅𝑌 gates ensure that the prepared quantum states have real amplitude
components only. The mathematical form of an 𝑅𝑌 gate acting on a qubit does not introduce any
imaginary components.

Applications

This characteristic is particularly useful in certain quantum computing applications, such as variational
quantum algorithms for chemistry and machine learning, where it might be beneficial to work within
the realm of real numbers due to either simplicity or problem constraints.

Except of the highlight fromqiskit’s documentation that the RealAmplitudes is suitable for chemistry,
the decision to use it was guided by comprehensive evaluations reported in a study. In particular, [20]
conducted an extensive analysis comparing different ansatzes, including RealAmplitudes, TwoLocal,
and PauliTwoDesign, across various datasets and quantum conditions. Their research revealed that
RealAmplitudes consistently yielded favorable results on noisy quantum computers.

Specifically, the study found that:

• RealAmplitudes performed significantly better in noisy settings for the KDD Cup and Rice
datasets, while showing no performance degradation for theGlass Identification andCover Type
datasets in noise-affected environments.

• The stability of RealAmplitudes in terms ofmean and standard deviation across different noise
conditions was noted, making it a reliable choice for noisy quantum computations.

By integrating the RealAmplitudes ansatz, this thesis leverages a well-substantiated approach to en-
hance the performance of QMLmodels under realistic quantum computing conditions. For this, I also
chose L = 1 entangling layers.
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6.6 Measuring the Capabilities of QuantumAnsatzes Us-
ing Density Matrices

This section describes the implementation details of a Python code designed to measure the expressive
capabilities of quantum ansatzes. The code leverages Qiskit and other numerical libraries to perform
these evaluations.

Overview

The goal of the code is to quantitatively assess the capabilities of quantum ansatzes by calculating their
density matrices and comparing them to random unitary operations. The primary functions imple-
mented include:

1. Generating random unitary matrices.
2. Calculating the Haar integral.
3. Evaluating parameterized quantum circuits (PQC).
4. Combining these elements to analyze the expressive capabilities of quantum ansatzes.

Generating Random Unitary Matrices

The random_unitary function creates Haar-distributed random unitary matrices that are uniformly
distributed, making them ideal for generating random unitary operations.

1 def random_unitary(N):
2 Z = np.random.randn(N, N) + 1.0j * np.random.randn(N, N)
3 [Q, R] = sp.linalg.qr(Z)
4 D = np.diag(np.diagonal(R) / np.abs(np.diagonal(R)))
5 return np.dot(Q, D)

Code Snippet 6.1: The random_unitary function

Calculating Haar Integral

The haar_integral function calculates theHaar integral for a specified number of qubits and samples.
It iterates through the samples, computes the tensor product (Kronecker product) of the generated
states and their conjugates, and averages them to form the density matrix representation.

1 def haar_integral(num_qubits , samples):
2 N = 2**num_qubits
3 randunit_density = np.zeros((N, N), dtype=complex)
4 zero_state = np.zeros(N, dtype=complex)
5 zero_state[0] = 1
6

7 for _ in range(samples):
8 A = np.matmul(zero_state , random_unitary(N)).reshape(-1,1)
9 randunit_density += np.kron(A, A.conj().T)

10

11 randunit_density /= samples
12 return randunit_density

Code Snippet 6.2: The haar_integral function
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Evaluating Parameterized Quantum Circuits (PQC)

The pqc_integral function evaluates the PQC by assigning random parameters, running the circuit
on a statevector simulator, and computing the resultant density matrix. It averages over multiple sam-
ples to obtain a representative density matrix of the circuit’s expressive capability.

1 def pqc_integral(num_qubits , ansatze, size, samples):
2 N = num_qubits
3 randunit_density = np.zeros((2**N, 2**N), dtype=complex)
4

5 for _ in range(samples):
6 params = np.random.uniform(-np.pi, np.pi, size)
7 ansatz = ansatze.assign_parameters(params)
8

9 result = qiskit.execute(ansatz, backend=Aer.get_backend('
statevector_simulator')).result()

10 U = result.get_statevector(ansatz)
11 U = U.reshape(-1,1)
12

13 randunit_density += np.kron(U, U.conj().T)
14

15 return randunit_density / samples

Code Snippet 6.3: The pqc_integral function

Execution and Combining the Results

The overall procedure involves loading the ansatz, calculating both the Haar integral and the PQC
density matrix, and then comparing these matrices to assess the ansatz’s capabilities.

1 ansatz = load_ansatz("ansatz.qasm")
2 print(ansatz)
3

4 # Example usage
5 num_qubits = ansatz.num_qubits
6 samples = 100
7 size = len(ansatz.parameters)
8

9 haar_density = haar_integral(num_qubits , samples)
10 pqc_density = pqc_integral(num_qubits , ansatz, size, samples)

Code Snippet 6.4: The random_unitary function
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Chapter 7

VQE vs QAOA (p=1) - Implementation’s
Results

7.1 Peptide YGGFM

Figure 7.1 provides a visual representation of the 3D structure of the YGGFM peptide as determined
by Nuclear Magnetic Resonance (NMR) spectroscopy in solution [5]. The two panels display the
peptide from different angles, highlighting the spatial arrangement of its five amino acid residues: Ty-
rosine (TYR), Glycine (GLY), Phenylalanine (PHE), and Methionine (MET) - see Appendix A for the
1-letter symbolization. The figure emphasizes the peptide’s non-linear conformation, showcasing how
the amino acid chain folds in a specific manner.

Figure 7.1: NMR solution structure of peptide YGGFM

We now have what we obtained from the hybrid quantum-classical machine learning implementations.
The following figures (Fig. 7.2 and 7.3) present two perspectives of the predicted 3D structure of the
YGGFM peptide obtained using the VQE algorithm and QAOA respectively. The blue spheres rep-
resent the peptide’s main chain, highlighting the spatial arrangement of the amino acid backbone as
determined by the calculations.

• VQE Implementation Using VQE we got the structures:

61
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Figure 7.2: 3D structure of peptide YGGFM using VQE

• QAOA Implementation Using QAOA we got the structures:

Figure 7.3: 3D structure of peptide YGGFM using QAOA

QAOA with 10 layers of alternating unitary operators

Using QAOA with 𝑝 = 5 we got the structures:

Figure 7.4: 3D structure of peptide YGGFM using simulator
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• Comparison of the Two Methods

The angles shown in (Fig. 7.5), between the planes of the NMR solution , correspond to the
dihedral angles between adjacent amino acids in the peptide chain of YGGFM. The also figure
highlights the angles formed between the surfaces defined by triplets of consecutive amino acids,
providing insights into the peptide’s local curvature and folding patterns.

Figure 7.5: 3D solution of peptide YGGFM using NMR - angles between amino acids (left-hand side)
and between planes (right-hand side)

Table 7.1.1 shows all the calculations from the implementations of the models, to compare the
results.
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Table 7.1.1: Comparison of 3D Structure Predictions for peptide YGGFM using VQE and QAOA

Parameter VQE QAOA NMR solution

Evals 37 31

penalties (15, 400, 40) (10, 100, 1000)

Expressibility 0.133 0.135

Overlap with ground state 0.129 0.134

XYZ Structure

Y: (0.0, 0.0, 0.0)
G: (0.58, 0.58, -0.58)
G: (1.16, 0.0, -1.16)
F: (1.73, 0.58, -1.73)
M: (2.31, 0.0, -2.31)

Y: (0.0, 0.0, 0.0)
G: (0.58, 0.58, -0.58)
G: (1.15, 0.0, -1.15)
F: (1.73, -0.58, -0.58)
M: (1.16, -1.16, 0.0)

Angles in Structure 109.5, 109.5,
109.5

109.5, 109.5,
109.5

96.3, 105.8
94.5

Angles between planes 0.0, 0.0 60.0, 60.0 83.2, 72.29

Based on the provided comparison data for the 3D structure predictions of oxytocin using the
VariationalQuantumEigensolver (VQE),QuantumApproximateOptimizationAlgorithm (QAOA),
and experimentally obtained NMR solution structure, we can evaluate their performance in sev-
eral aspects. Below is a detailed review considering the outcomes, algorithmic efficiency, and
structural accuracy:

Evaluation Criteria:

– Number of Evaluations (Evals):
- VQE: 37
- QAOA: 31
Fewer evaluations indicate a more efficient optimization process. QAOA required consid-
erably fewer evaluations compared to VQE, suggesting higher efficiency.

– Penalty Parameters:
- Penalties for VQE didn’t play important role - we had this same output for many different
values.
- However, the penalty that penalize local overlap between beads (penalty_1) in QAOA
needs to be higher than the other two, potentially indicating stricter constraint enforcement
in QAOA which could impact the quality of the solution. Otherwise, we have overlaps for
some of the amino-acids.

Structural Outcome Analysis:

– Angles in Structure:
- Both VQE and QAOA maintained standard tetrahedral angles (109.5 degrees) which is
typical in many molecular structures showing good basic geometric handling.
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- The NMR solution structure shows a variety of angles (96.3, 105.8, 94.5 degrees), indicat-
ing a more complex structure which neither quantum method replicated accurately.

– Angles between Planes:
- VQE and QAOA maintained consistent angles of 0 degree and 60 degrees respectively,
reflecting simplicity in their structural predictions.
-TheNMR solution demonstrates varied angles (83.2, 72.29 degrees), again signalingmore
intricatemolecular interactions that quantumpredictions failed to capture. QAOA is closer
to this curved structure than VQE (which provided a structure placed on a plane).
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7.2 Peptide KLVFFA

Fig. 7.6 shows the NMR solution as obtained from [5] for KLVFFA peptide:

Figure 7.6: NMR solution structure of peptide KLVFFA

The following figures (Fig. 7.7 and 7.3) present two perspectives of the predicted 3D structure of the
KLVFFA peptide obtained using the VQE algorithm and QAOA respectively.

• VQE Implementation Using VQE we got the structures:

Figure 7.7: 3D structure of peptide KLVFFA using VQE

• QAOA Implementation Using QAOA we got the structures:
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Figure 7.8: 3D structure of peptide KLVFFA using QAOA

QAOA with 10 layers of alternating unitary operators

Using QAOA with 𝑝 = 5 we got the structures:

Figure 7.9: 3D structure of peptide KLVFFA using simulator

• Comparison of the Two Methods

The angles shown between the following planes of the NMR solution (Fig. 7.10), correspond
to the dihedral angles between adjacent amino acids in the peptide chain of KLVFFA. As in
the previous example, the figure highlights the angles formed between the surfaces defined by
triplets of consecutive amino acids, providing insights into the peptide’s local curvature and fold-
ing patterns.
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Figure 7.10: 3D solution of peptide KLVFFA using NMR - angles

Table 7.2.1 shows all the calculations from the implementations of the models, in order to com-
pare them.
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Table 7.2.1: Comparison of 3D Structure Predictions for peptide KLVFFA using VQE and QAOA

Parameter VQE QAOA NMR solution

Evals 84 29

penalties (10, 100, 400) (10, 100, 1000)

Expressibility 0.143 0.138

Overlap with ground state 0.025 0.011

XYZ Structure

K: (0.0, 0.0, 0.0)
L: (0.58, 0.58, -0.58)
V: (1.16, 0.0, -1.16)
F: (1.73, 0.58, -1.73)
F: (1.16, 1.16, -2.31)
A: (0.58, 1.73, -1.73)

K: (0.0, 0.0, 0.0)
L: (0.58, 0.58, -0.58)
V: (1.15, 0.0, -1.15)
F: (1.73, -0.58, -0.58)
F: (2.31, -1.15, -1.15)
A: (2.88, -1.73, -0.58)

Angles in Structure 109.5, 109.5,
109.5, 109.5

109.5, 70.5,
70.5, 70.5

76.4, 80.6,
70.2, 65.9

Angles between planes 60.0, 60.0,
0.0

60.0, 0.0,
0.0

40.1, 38.6,
38.6

Evaluation Criteria:

– Number of Evaluations (Evals):
- VQE: 84
- QAOA: 29
Fewer evaluations indicate a more efficient optimization process. QAOA required consid-
erably fewer evaluations compared to VQE, suggesting higher efficiency.

– Penalty Parameters:
- Penalties for backbone (penalty_back) and chiral constraints (penalty_chiral) are the same
for both VQE and QAOA (10 and 100 respectively). For KLVFFA the values of penalties
gave 2 different structures - the one showing here and onewith overlap (when penalty_back
and penalty_1 were of the same order of magnitude).
- The penalty for additional constraints (penalty_1) is higher in QAOA (1000) compared
to VQE (400). KLVFFA had a variety of outputs when run with QAOA. The angles in the
structure were always 109.5 degrees and the penalty_1 had to be at least 5 times bigger than
the other two so that we won’t have overlaps. A case - 𝑝𝑒𝑛𝑎𝑙𝑡 𝑖𝑒𝑠 = (2, 4, 20) - gave the same
output with VQE, and the other cases had a curvature that does not match the image we
have for the peptide

Structural Outcome Analysis:

– Angles in Structure:
- VQE and QAOA maintained again standard tetrahedral angles (109.5 degrees), while the
NMR solution structure shows a variety of angles (76.4, 80.6, 70.2, 65.9 degrees).

– Angles between Planes:
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- VQE andQAOAmaintained consistent angles of 60 degrees and 0 degree, while the NMR
solution demonstrates angles (40.1, 38.6, 38.6 degrees). - QAOA was closer to the zig-zag
structure that the peptide has.
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7.3 Peptide CYIQNCPLG

We have the following NMR solution (Fig. 7.11) as obtained from [5] for CYIQNCPLG peptide:

Figure 7.11: NMR solution structure of peptide CYIQNCPLG

The following figures (Fig. 7.12 and 7.13) present two perspectives of the predicted 3D structure of the
CYIQNCPLG peptide obtained using the VQE algorithm and QAOA respectively.

• VQE Implementation Using VQE we got the structures:

Figure 7.12: 3D structure of peptide CYIQNCPLG using VQE

• QAOA Implementation Using QAOA we got the structures:
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Figure 7.13: 3D structure of peptide CYIQNCPLG using QAOA

• Comparison of the Two Methods

The angles shown between the following planes of the NMR solution (Fig. 7.14), correspond
to the dihedral angles between adjacent amino acids in the peptide chain. Additionally, the fig-
ure highlights the angles formed between the surfaces defined by triplets of consecutive amino
acids, providing insights into the peptide’s local curvature and folding patterns.

Figure 7.14: 3D solution of peptide CYIQNCPLG using NMR - angles between amino acids (left-hand
side) and between planes (right-hand side)

Table 7.3.1 shows all the calculations from the implementations of the models, to compare the
results.
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Table 7.3.1: Comparison of 3D Structure Predictions for Oxytocin using VQE and QAOA

Parameter VQE QAOA NMR solution

Evals 100 (maxiter) 29

penalties (10, 8, 100) (20, 40, 200)

Expressibility ArrayMemoryError ArrayMemoryError

Overlap with ground state ArrayMemoryError ArrayMemoryError

XYZ Structure

C: (0.0, 0.0, 0.0)
Y: (0.58, 0.58, -0.58)
I: (1.16, 0.0, -1.16)

Q: (1.73, 0.58, -1.73)
N: (1.16, 1.16, -2.31)
C: (0.58, 1.73, -1.73)
P: (0.0, 1,16, -1.154)
L: (-0.58, -0.58, -1.73)
G: (-1.16, 0.0, -1.16)

C: (0.0, 0.0, 0.0)
Y: (0.58, 0.58, -0.58)
I: (1.15, 0.0, -1.16)

Q: (1.73, 0.58, -1.73)
N: (1.16, 1.16, -2.31)
C: (0.58, 0.58, -2.89)
P: (1.15, 0.0, -3.46)

L: (0.58, -0.58, -4.04)
G: (0.0, 0.0, -4.62)

Angles in Structure
109.52, 109.52, 109.49,
109.52, 109.52, 109.4,

109.42

109.64, 109.37, 109.55,
109.44, 109.43, 109.43,

109.86

99.9, 64.6, 90.4
112.7, 89.6, 65.7,

62.5

Angles between planes 0.0, 60.0, 60.0
60.0, 60.0, 0.0

0.0, 60.0, 60.0
60.0, 0.0, 60.0

34.2, 61.1, 13.4
13.6, 48.6, 9.14

Evaluation Criteria:

– Number of Evaluations (Evals):
- VQE: 100 (maxiter)
- QAOA: 29
QAOA’s few evaluations suggest high efficiency, while VQE couldn’t converge.

– Penalty Parameters:
- Penalties for VQE and QAOA are of the same order of magnitude.

Structural Outcome Analysis:

– Angles in Structure:
- Both VQE and QAOA maintained standard tetrahedral angles (109.5 degrees) which is
typical in many molecular structures showing good basic geometric handling.
- The NMR solution structure shows a variety of angles (99.9, 64.6, 90.4, 112.7, 89.6, 65.7,
62.5 degrees), indicating a more complex structure which neither quantum method repli-
cated accurately.

– Angles between Planes:
- VQE and QAOA maintained consistent angles of 60 degrees and a 0 degree, reflecting
simplicity in their structural predictions.
- The NMR solution demonstrates varied angles (34.2, 61.1, 13.4, 13.6, 48.6, 9.14 degrees),
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again signaling more intricate molecular interactions that quantum predictions failed to
capture.

7.4 Comments on the Results

7.4.1 General Comments

Algorithm Efficiency

Across all three peptides, QAOA demonstrated higher optimization efficiency, requiring fewer evalu-
ations compared to VQE.

Optimization Challenges

VQE faced challenges in converging, particularly for more complex peptides like CYIQNCPLG. And,
in general, we can observe that as size of the amino-acid chain increases, so does the difference in the
number of iterations it took for the two methods to converge - with VQE continually needing more.

Accuracy Trade-offs

While both quantum methods can approximate molecular structures, their predictions lack the finer
details and complexity captured by NMR techniques, particularly in terms of angle diversity.

7.4.2 Geometric Limitations

Lattice Contraints and Restrictions

The geometric constraints inherent in the tetrahedral lattice model present notable implications for
the accuracy and representation of protein structures. The model’s fixed bond angles and discrete
movement directions fundamentally limit the range of possible conformations the protein can assume,
consequently impacting the model’s ability to accurately simulate real protein behavior.

Tetrahedral Geometry and Its Effects in Simulation

Within the tetrahedral lattice model, each point, representing an amino acid, connects to four neigh-
boring points, forming a tetrahedral shape with bond angles at 109.5°. Moreover, this configuration
inherently restricts the possible spatial orientations, particularly the planes formed by sequential triads
of amino acids. As a result, the angles between these planes are confined primarily to 0° and 60°, which
directly stems from the fixed bond angles in tetrahedral geometry. This primary constraint results in
the inability of the simulation to capture the continuous range of angles.

7.5 Anticipated Outcomes and Expectations

Despite attempts to enhance the model by alternating lattice sets 𝑃 and 𝑄, which aimed to prevent
spatial overlaps and broaden the conformational space, the expected improvement in the variety of
movement pathways and folding patterns has not been realized effectively. The following outlines the
key areas where the model falls short:
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• Limited Conformational Diversity: The alternation between lattice sets 𝑃 and 𝑄, while theoret-
ically increasing flexibility, still does not offer sufficient variety to accurately reflect the dynamic
nature of protein folding. The rigid geometric constraints imposed by the tetrahedral angles
significantly inhibit the model’s adaptability, failing to represent the nuanced angular variations
observed in actual protein molecules.

• Model Realism: Themodel struggles tomirror realistic folding patterns, often resulting in repet-
itive or physically unrealistic conformations that do not correspond well with empirical protein
structures. While the model may achieve computational efficiency, the trade-off is notably evi-
dent in the accuracy and realism of the simulation outcomes, which remain inadequate.

The model’s limitations in capturing the complex, continuous nature of protein folding suggest the
need for further refinement or alternative modeling strategies to achieve more realistic and accurate
simulations.

7.6 Potential for Future Refinement

From what I observed, the predicted output maintains with high accuracy the sign of the concavity.
This constraint could be applied to train machine learning model to predict feasible conformations
for each amino acid sequence. The hybrid model will help identify folding patterns that are consistent
with the constraints imposed by the tetrahedral geometry and maintain the correct sign of concavity,
thereby excluding unfeasible conformations.

Additionally, the thing that VQE and QAOA have similar expressibility and entanglement capability
but QAOA converges faster, suggests that the QAOA ansatz is better suited for the specific problem.
This is because the QAOA ansatz is designed to naturally explore the solution space of combinato-
rial optimization problems. Thus, the QAOA seems to be better choice for the prediction of the 3D
structure of the proteins.
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Chapter 8

QAOA (p=5) - Simulators vs QPUs

The research presented in this chapter focuses on solving the 3D folding structure of proteins using the
QAOA and the tetrahedral encoding with MJ interaction model. In contrast to leveraging pre-built
functions from theQiskit framework, I have taken a distinctive approach for educational purposes, and
because the previous used libraries have been deleted: crafting all essential components from scratch.
This methodology allowed me to gain a profound and nuanced understanding of the underlying quan-
tum mechanics and computational processes involved.

To achieve this, I manually developed the Hamiltonian necessary for the optimization problem us-
ing pyomo. Subsequently, I constructed the quantum circuits for the QAOA implementation as are
needed by the Qiskit framework. Furthermore, I progressed to the stage of creating and dispatching
computational jobs to execute these circuits on real IBM’s quantum devices.

8.1 The Code

Based on the general outline for hybrid algorithms (as we saw in Sec. 6.2) the code that implements
these, using tetrahedral lattice, turn encoding and MJ interaction model (as discussed in 5.5.1) is:

1 import numpy as np
2 import pyomo.core as pyo
3

4 # Example interaction energy dictionary and protein sequence
5 interaction_energy = {
6 'A': {'A': -2.72, 'P': 0.13, 'G': 0.18, 'R': 0.11},
7 'P': {'A': 0.13, 'P': -1.75, 'G': 0.20, 'R': 0.23},
8 'G': {'A': 0.18, 'P': 0.20, 'G': -2.24, 'R': 0.30},
9 'R': {'A': 0.11, 'P': 0.23, 'G': 0.30, 'R': -1.55}

10 }
11

12 def folding_hamiltonian(main_chain: str) -> pyo.ConcreteModel:
13 model = pyo.ConcreteModel("protein_folding")
14 N = len(main_chain)
15

16 Ninteraction = int((N - 5) * (N - 4) / 2) if N > 5 else 0
17

18 model.f = pyo.Var(range(2 * (N - 3)), domain=pyo.Binary) # 2 qubits to
encode each amino acid

19 model.interaction = pyo.Var(range(Ninteraction), domain=pyo.Binary)
20 f_array = np.array(list(model.f.values()))
21 interaction_array = np.array(list(model.interaction.values()))
22
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23 a = np.array([1, 0, 0, 1])
24 full_f_array = np.append(a, f_array)
25

26 T = lambda i, j: (1 - (full_f_array[2* i] - full_f_array[2 * j]) ** 2) * (
27 1 - (full_f_array[2 * i + 1] - full_f_array[2 * j + 1]) ** 2
28 )
29 L = 50
30 model.Hgc = sum(L * T(i, i + 1) for i in range(N - 2)) # Hydrophobicity term

, summing over all pairs of adjacent amino acids in the chain and calculating
the hydrophobicity term

31

32 # Convert {0,1}^2 to 4 functions , each giving 1 for one vector and 0 for the
others:

33 fun0 = lambda i, j: (1 - full_f_array[i]) * (1 - full_f_array[j])
34 fun1 = lambda i, j: full_f_array[i] * (1 - full_f_array[j])
35 fun2 = lambda i, j: full_f_array[j] * (1 - full_f_array[i])
36 fun3 = lambda i, j: full_f_array[i] * full_f_array[j]
37

38 # Calculate distance between i, j amino acids:
39 d_units_0 = lambda i, j: sum(
40 [((-1) ** k) * fun0(2 * k, 2 * k + 1) for k in range(i, j)]
41 )
42 d_units_1 = lambda i, j: sum(
43 [((-1) ** k) * fun1(2 * k, 2 * k + 1) for k in range(i, j)]
44 )
45 d_units_2 = lambda i, j: sum(
46 [((-1) ** k) * fun2(2 * k, 2 * k + 1) for k in range(i, j)]
47 )
48 d_units_3 = lambda i, j: sum(
49 [((-1) ** k) * fun3(2 * k, 2 * k + 1) for k in range(i, j)]
50 )
51 d = lambda i, j: (
52 (d_units_0(i, j)) ** 2
53 + (d_units_1(i, j)) ** 2
54 + (d_units_2(i, j)) ** 2
55 + (d_units_3(i, j)) ** 2
56 )
57

58 def h(i, j):
59 L1, L2 = 5, 3 # Penalty factors
60 penalty = L1*(d(i, j) - 1) ** 2 + L2*(
61 (2 - d(j - 1, i)) ** 2
62 + (2 - d(j + 1, i)) ** 2
63 + (2 - d(i - 1, j)) ** 2
64 + (2 - d(i + 1, j)) ** 2
65 )
66 amino_i = main_chain[i]
67 amino_j = main_chain[j]
68 interaction_strength = interaction_energy.get((amino_i, amino_j),

interaction_energy.get((amino_j, amino_i), 0))
69 interaction_idx = sum([N - 5 - k for k in range(0, i + 1)]) - (N - j)
70 interaction_term = interaction_array[interaction_idx] *

interaction_strength +penalty # Use interaction strength directly
71 return interaction_term
72

73 model.Hint = sum(h(i, j) for i in range(N - 5) for j in range(i + 5, N))
74

75 # Objective function combining Hgc and Hint
76 model.obj = pyo.Objective(expr=model.Hgc + model.Hint, sense=pyo.minimize)
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77

78 return model
79

80 # Define your protein sequence
81 my_protein = "APGPR"
82 protein_model = folding_hamiltonian(my_protein)
83

84 protein_model.pprint()
85

86 # Extract and print the objective function
87 objective_func = protein_model.obj.expr
88 print("\nObjective Function Expression:\n")
89 print(objective_func)
90

91 import numpy as np
92

93 # Define the energy computation as per the objective function
94 def compute_energy(f):
95 term1 = 50 * (1 - (-f[0])**2) * (1 - (1 - f[1])**2)
96 term2 = 50 * (1 - (f[0] - f[2])**2) * (1 - (f[1] - f[3])**2)
97 return term1 + term2
98

99 # Convert a binary string (measured state) to a list of integers
100 def bitstring_to_list(bitstring):
101 return [int(bit) for bit in bitstring]
102

103 # Compute the average energy based on the measurement counts
104 def average_energy(measurement_counts):
105 total_energy = 0
106 total_counts = sum(measurement_counts.values())
107

108 for bitstring , count in measurement_counts.items():
109 # Convert the bitstring to f variables
110 f = bitstring_to_list(bitstring)
111

112 # Compute energy for this configuration
113 energy = compute_energy(f)
114

115 # Weight the energy by the count
116 total_energy += energy * count
117

118 # Compute the average energy
119 average_energy = total_energy / total_counts
120 return average_energy
121

122 def avg(quasi):
123 total_energy = 0.0
124 num_quasi_distributions = len(quasi[0])
125 quasi_dist = quasi[0]
126

127 for key, value in quasi_dist.items():
128 print(f"Key: {key}, Value: {value}")
129

130 # Convert integer key to a binary string representation
131 # The format specifier `#0{n}b` ensures that we get the binary

string representation with leading zeros.
132 # The length of the bitstring is chosen by considering the maximum

key value's bit length
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133 #max_bits = max(len(bin(k)) - 2 for k in quasi_dist.keys()) #
Determine the maximum bits required

134 bitstring = format(key, f'04b')
135 f = bitstring_to_list(bitstring)
136 # Calculate the parity contribution: +1 if even number of '1's, -1

if odd number of '1's
137 energy = compute_energy(f)
138 # Contribution to the total energy
139 total_energy += energy*value
140

141 # Average energy calculation
142 average_energy = total_energy if num_quasi_distributions > 0 else 0.0
143 print(f"Average Energy: {average_energy}")
144 return average_energy
145

146 import re
147 import sympy as sp
148 from qiskit.quantum_info import Pauli, SparsePauliOp
149

150 def binary_to_pauli_z(index):
151 """Converts a binary variable f to a Pauli-Z operator term."""
152 return (1 - sp.Symbol(f'Z{index}')) / 2
153

154 def classical_to_quantum_hamiltonian(objective_function):
155 terms = re.split(r'\s*\+\s*', objective_function.strip())
156 pauli_list = []
157 coeff_list = []
158

159 for term in terms:
160 coeff_term_match = re.match(r'(\d+)\s*\*\s*\((.*)\)', term)
161 if coeff_term_match:
162 coeff, expr = coeff_term_match.groups()
163 coeff = float(coeff)
164

165 # Replace f[i] with corresponding Pauli-Z expressions using
formatted strings

166 for i in range(4): # Assuming binary variables f[0] to f[3]
167 expr = expr.replace(f'f[{i}]', f'({binary_to_pauli_z(i)})')
168

169 try:
170 # Convert expression using sympy with proper formatting
171 expression = sp.sympify(expr, evaluate=False)
172 pauli_coeff = sympy_to_pauli_op(expression , coeff)
173 pauli_list.extend(pauli_coeff["paulis"])
174 coeff_list.extend(pauli_coeff["coeffs"])
175 except Exception as e:
176 print(f"Failed to parse expression correctly: {expr}")
177 else:
178 print(f"Failed to parse term correctly: {term}")
179

180 hamiltonian = SparsePauliOp(pauli_list , coeff_list)
181 return hamiltonian
182

183

184 def sympy_to_pauli_op(expression , coeff):
185 """Convert a sympy expression to a Qiskit SparsePauliOp."""
186 symbols = sorted(expression.free_symbols , key=lambda x: str(x))
187 pauli_labels = []
188
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189 for symbol in symbols:
190 if 'Z' in str(symbol):
191 z_index = int(re.findall(r'\d+', str(symbol))[0])
192 pauli_label = f'{"I"*z_index}Z{"I"*(3-z_index)}' # Assuming 4

qubits total
193 pauli_labels.append(pauli_label)
194

195 pauli_coeff = {"paulis": [], "coeffs": []}
196

197 for label in pauli_labels:
198 pauli = Pauli(label)
199 pauli_coeff["paulis"].append(pauli)
200 pauli_coeff["coeffs"].append(coeff)
201

202 return pauli_coeff
203

204 # objective function
205 objective_function = "50*((1 - (- f[0])**2)*(1 - (1 - f[1])**2)) + 50*((1 - (f

[0] - f[2])**2)*(1 - (f[1] - f[3])**2))" # as retrieved from the Pyomo model
206 cost_function = classical_to_quantum_hamiltonian(objective_function)
207 print(cost_function)
208

209 from qiskit_ibm_runtime import QiskitRuntimeService , Sampler
210

211 QiskitRuntimeService.save_account(channel="ibm_quantum", token="your_token_here"
,

212 instance="ibm-q/open/main",overwrite=True)
213

214 service = QiskitRuntimeService()
215 print("Service account saved.")
216

217 job_name = "APGPR"
218

219 # Holds job references for each backend
220 jobs = []
221

222 p = 5
223 num_qubits = 4
224 mixer_hamiltonian = sum(SparsePauliOp.from_list([(X, 1.0)]) for X in ['IIIX', '

IIXI', 'IXII', 'XIII'])
225

226 # import the COBYLA optimizer
227 from qiskit_algorithms.optimizers import COBYLA
228 optimizer = COBYLA(maxiter=100)
229

230 from qiskit import QuantumCircuit
231 from qiskit.circuit import Parameter
232 from qiskit.quantum_info import SparsePauliOp
233 from qiskit.circuit.library import PauliEvolutionGate
234 import matplotlib.pyplot as plt
235

236 def apply_pauli_terms(qc, term, angle):
237 evolved_op = PauliEvolutionGate(term, time= angle)
238 qc.append(evolved_op , qc.qubits)
239

240

241 def qaoa_ansatz(num_qubits , p, cost_hamiltonian , mixer_hamiltonian):
242 # Define parameters for gamma (cost) and beta (mixer) angles
243 gammas = [Parameter(f'�_{i}') for i in range(p)]
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244 betas = [Parameter(f'�_{i}') for i in range(p)]
245

246 # Initialize quantum circuit with all qubits in superposition state
247 qc = QuantumCircuit(num_qubits)
248 qc.h(range(num_qubits))
249

250 # Apply p layers of cost and mixer Hamiltonians
251 for i in range(p):
252 # Apply cost Hamiltonian layer
253 apply_pauli_terms(qc, cost_hamiltonian , gammas[i])
254

255 # Apply mixer Hamiltonian layer
256 apply_pauli_terms(qc, mixer_hamiltonian , betas[i])
257 qc.measure_all()
258 return qc, gammas, betas
259

260 from qiskit_ibm_runtime import Session
261 from qiskit.circuit import Parameter
262 from qiskit import transpile
263

264 qaoa, gamma_params , beta_params = qaoa_ansatz(num_qubits , p, cost_function ,
mixer_hamiltonian)

265 gamma_values = [np.random.uniform(0, np.pi) for _ in range(p)]
266 beta_values = [np.random.uniform(0, np.pi) for _ in range(p)]
267 i_params = np.array(gamma_values + beta_values)
268

269 def objective_f(params):
270 #backend = service.get_backend('ibm_brisbane')
271 backend = service.least_busy(operational=True, simulator=False)
272 # create a new circuit and initialize the qubits in superposition
273 qc = QuantumCircuit(num_qubits)
274 qc.h(range(num_qubits))
275

276 bound_qaoa_circuit = qaoa.assign_parameters(params)
277 qc.compose(bound_qaoa_circuit , inplace=True)
278 # draw the circuit
279 qc.draw('mpl')
280 # print the circuit
281 print(qc)
282 transpiled_qc = transpile(qc, backend=backend)
283 inputs = {
284 'circuits': transpiled_qc ,
285 }
286 program_id = 'circuit-runner'
287

288 with Session(service= service, backend = backend) as session:
289 job = session.run(program_id = program_id , inputs = inputs)
290 print(f"Wainting for job to finish...")
291 job.wait_for_final_state()
292 result = job.result()
293 counts = result.get_counts()
294 print(f"Counts:", counts)
295 energy = average_energy(counts)
296 print(f"Real device energy: {energy}")
297

298 return energy
299 # optimize the QAOA circuit with simulator
300

301 # optimize the QAOA circuit with Cobyla
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302 optimizer = COBYLA(maxiter=10)
303 # use minimize method to find the optimal parameters
304 result = optimizer.minimize(fun=objective_f , x0=i_params)
305 print(result)

Code Snippet 8.1: The Implementation of QAOA using tetrahedral lattice, turn encoding and MJ
interaction model

Folding Hamiltonian Function

The primary function, folding_hamiltonian(main_chain), initializes the Pyomo model to rep-
resent the protein folding problem.

• model.f: Defines binary variables representing qubits encoding directions for each amino acid
(two qubits per amino acid, excluding the first three acids which are arbitrarily set).

• model.interaction: Defines binary variables for non-trivial amino acid interactions.

Ninteraction = (𝑁 − 5) ∗ (𝑁 − 4)
2 if 𝑁 > 5 else 0

• model.Hgc: Calculates the geometrical constraints term by summing the penalties for adjacent
amino acids folding back.

• model.Hint: Computes the interaction terms for the Hamiltonian, integrating penalty factors
for distances between non-trivial interacting amino acids.

• model.obj: Defines the objective function, combining Hgc and Hint, set to minimize the fold-
ing energy.

The function returns a Pyomo concrete model representing the folding problem:

model.Hgc = ∑𝐿 ⋅ 𝑇 (𝑖, 𝑖 + 1) for 𝑖 in range(𝑁 − 2) (8.1.1)

model.obj = minimize(𝑚𝑜𝑑𝑒𝑙.𝐻𝑔𝑐 + 𝑚𝑜𝑑𝑒𝑙.𝐻 𝑖𝑛𝑡) (8.1.2)

Evaluation of Energy Function

The evaluation functions compute the energy based on the objective function. Auxiliary functions
convert measured binary states into energy values.

• compute_energy(f): Evaluates the energy given a binary state representation.
• average_energy(measurement_counts): Computes average energy frommeasurement counts

on real devices.
• avg(quasi): Determines the average energy based on quasi-distributions from simulation re-

sults.

Classical to Quantum Hamiltonian Conversion

The script includes functions to convert classical Hamiltonian representation into quantum Pauli op-
erators.

• binary_to_pauli_z(index): Converts a binary variable to a Pauli-Z operator term.
• classical_to_quantum_hamiltonian(objective_function): Parses the objective func-

tion and generates a quantum Hamiltonian representation.
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Hamiltonian = ∑Pauli Terms +∑Coefficients (8.1.3)

QAOA Ansatz and Circuits

The QAOA ansatz is constructed to solve the optimization problem using a parametrized quantum
circuit.

• apply_pauli_terms: Applies Pauli terms to the quantum circuit.
• qaoa_ansatz: Builds the QAOA ansatz by applying the cost and mixer Hamiltonians in layered

rounds.

QAOA Ansatz = 𝑈 (𝛾 , 𝛽) |+⟩⊗𝑛 (8.1.4)

QAOA Loop and Optimization

The script uses the Qiskit Runtime and IBM Quantum backends to execute and optimize the QAOA
ansatz.

• optimizer.minimize: Runs the QAOA optimization loop over multiple iterations, adjusting
parameters to minimize the objective function.

• objective_f: Objective function for optimizing QAOA parameters using the COBYLA opti-
mizer.

Optimal Parameters = argmin
𝛾 ,𝛽

⟨𝜓 (𝛾 , 𝛽)|ℋ |𝜓 (𝛾 , 𝛽)⟩ (8.1.5)

The script can evaluate the Hamiltonian using both real quantum devices and simulated environments,
optimizing the QAOA parameters to achieve the minimum energy configuration.

8.2 IBM Devices Setup

The implementation employs quantum computing resources provided by IBMQ. Specifically, three
backends are utilized to ensure efficient computation and result verification.

Backend Name EPLG Median Redout Error Median ECR Error Median SX Error T1 (µs) T2 (µs)
ibm_kyoto 3.9% 1.660e-2 9.892e-3 3.215e-4 209.51 104.58
ibm_osaka 3.3% 2.100e-2 9.31e-3 2.85e-4 279.17 163.45

ibm_brisbane 2.2% 1.340e-2 7.42e-3 2.51e-4 231.12 145.97

Table 8.2.1: IBM devices setup for executing the quantum protein folding simulation.

EPLG (Error Per Layered Gate): A measure of the overall error rate for a quantum computation run
on the device. It represents the average error incurred per layered gate operation. Lower EPLG
values indicate higher fidelity computations.

Median Readout Error: This refers to the median error rate during the measurement or ”readout” of
qubit states. Qubits, after computation, are measured to determine their final state (0 or 1), and
this metric reflects the typical error in that measurement process. A lower median readout error
means more accurate qubit measurements.
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Median ECR Error: It is the average gate fidelity, which is the average over all possible input states
of the fidelity between the state produced by the actual operation and the state produced by the
ideal operation.

Median SX Error: The ”SX” refers to a square-root of X gate. It represents the median error rate
when implementing this particular type of gate on the device. duration of a measurement in
nanoseconds (ns). One of the primary constraints on existing quantum technology is that these
periods are frequently much longer than the T2.

T1 (µs): This is the ”relaxation time” or ”amplitude damping time” of a qubit, measured in microsec-
onds (µs). It quantifies how long a qubit can maintain its excited state (representing a ’1’) before
decaying back to its ground state (representing a ’0’) due to energy loss to the environment.
Longer T1 times are desirable for preserving qubit coherence and performing longer computa-
tions.

T2 (µs): Known as the ”coherence time” or ”dephasing time,” T2 (also in µs)measures how long a qubit
can maintain a specific superposition state (a combination of 0 and 1) before losing its phase
information due to interactions with the environment. Like T1, a longer T2 time is crucial for
maintaining the delicate quantum states needed for computations.

8.3 A Look Into the Quantum Circuit

Figure 8.1: The quantum part of the hybrid machine learning model
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Figure 8.2: The initialization (left) and each of the repetitive layers of the qaoa-ansatz (right)

Figure 8.3: The cost-layer (left) using the Trotter Suzuki Formula, and each of the mixed-layer (right)

8.4 Peptide YGGFM

We implement now the previous mentioned hybrid quantum-classical machine learning model, for
the YGGFM peptide. We remind that its NMR solution is given in Fig. 8.4. The table that our code
uses to calculate the Hamiltonian according to the MJ model for the interactions between amino acids,
looks like the Fig. 8.5 for this peptide. However, because the peptide YGGFM has small number of
amino acids, this table is not used here as we stated at 8.1, but we provide it the sake of completeness.
Implemetation of such algorithm in larger peptides requires access to bigger quantum computers.
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Figure 8.4: NMR solution structure of peptide
YGGFM

Y G F M
Y -4.17 0.20 0.05 -0.10
G 0.20 -2.24 0.62 0.46
F 0.05 0.62 -7.26 -0.20
M -0.10 0.46 -0.20 -5.46

Figure 8.5: Interaction energies between amino
acids according to theMJmodel for YGGFMpep-
tide.

• Simulation Using QAOA Resource-Efficient Algorithm we got the structures:

Figure 8.6: 3D structure of peptide YGGFM using simulator

• IBM’s Real Devices
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ibm_kyoto

Figure 8.7: 3D structure of peptide YGGFM using ibm_kyoto

ibm_osaka

Figure 8.8: 3D structure of peptide YGGFM using ibm_osaka
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ibm_brisbane

Figure 8.9: 3D structure of peptide YGGFM using ibm_brisbane

It’s clear that just the structure of ibm_brisbane perfectly replicate the simulator’s result. This high-
lights the impact of noise and errors present in real quantum devices.
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Chapter 9

Conclusion

In order to tackle the complex problem of protein folding, my study investigated the fascinating field
where quantum and classical computing collide. This thesis shows that quantum computers can navi-
gate the large conformational space of proteins by mapping the problem onto a simpler lattice model
and using variational quantum algorithms, such as QAOA and VQE.

Although there are still difficulties due to the noise in modern quantum devices and the lattice model’s
intrinsic constraints, this research has provided insightful information. The effectiveness of QAOA in
examining the energy landscape and the findings of differences between the outcomes of simulated
and real-device experiments, demonstrate the potential and difficulties of this emerging discipline.

Building upon these findings, this work proposes a hybrid quantum-classical machine learning model
as a pathway for future research: but this time using both a hybrid model and an additional classi-
cal model. This approach leverages the strengths of both computational paradigms: QAOA’s speed
in traversing vast search spaces to identify promising low-energy regions, followed by a classical ML
model’s (such as LLMs) ability to refine these conformations to high accuracy.

By training the classical models on the extensive AlphaFold DB and feeding the QAOA output on
the sign of the concavity as constraint, this hybrid model has the potential to achieve not only faster
convergence but also higher accuracy compared to existing methods. Rigorous evaluation using met-
rics such as amino acid distances, backbone angles, and bending angles, will be essential to benchmark
its performance against established techniques.

The implications of this research extend beyond the realm of structural biology. The successful de-
velopment of a robust and efficient hybrid model for protein folding could revolutionize drug discov-
ery, materials science, and any field where understanding and predicting 3D structures is paramount.
This work represents a significant step towards unlocking the full potential of quantum computation
for tackling complex scientific challenges, paving the way for a future where the boundaries between
classical and quantum blur, and scientific discovery accelerates at an unprecedented pace.
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Appendix A

Standard Amino Acids’ Notations

Table A.0.1: Amino Acids

Amino Acid 3-Letter Code 1-Letter Code

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartate Asp D
Cysteine Cys C
Glutamine Gln Q
Glutamate Glu E
Glycine Gly G
Histidine His H
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Valine Val V
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