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Abstract

This Master’s thesis explores the application of deep learning techniques for
reaction-diffusion partial differential equations (PDEs) modeling an avascular
growing tumor, specifically utilizing physics-informed neural networks (PINNs).
PINNs are an innovative and effective approach for solving partial differential
equations (PDEs) and conducting parameter inference. The study focuses on
a diffusion-reaction model that simulates the interaction between a cancerous
tumor and the nutrient oxygen. To enhance the convergence and effectiveness of
the neural network, a novel method known as dynamic weights was employed.
More specifically a weight was assigned in each term of the loss function which
includes the PDEs, the initial conditions and the boundary conditions. This
technique adjusts the weights of each term in the loss function to address po-
tential gradient imbalances during training. Additionally, parameter inference
was performed for diffusion coefficients, which vary between patients due to the
personalized nature of these values. The results were highly satisfactory, indi-
cating the potential for extending this approach to higher dimensions and more
complex geometries, which are common challenges in numerical methods.
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1 Introduction

Numerical methods, such as finite difference, finite element, and finite volume
methods, are essential tools for solving partial differential equations (PDEs)
that arise in various scientific and engineering applications. These methods
discretize the continuous domain into a finite set of points or elements, trans-
forming the PDEs into a system of algebraic equations that can be solved using
computational algorithms. By approximating the solutions over discrete points,
numerical methods enable the analysis of complex systems that are analytically
intractable. However, despite their robustness, these methods can be computa-
tionally intensive and may struggle with high-dimensional or highly nonlinear
problems.

Artificial Intelligence (AI) has rapidly evolved from its early conceptual stages
to becoming integral to modern technology. Initially conceived in the mid-20th
century, AI has grown through various phases, including rule-based systems,
machine learning, and the current era of deep learning. The progression from
simple algorithms to complex neural networks has been driven by advancements
in computational power, the availability of large datasets, and innovative algo-
rithmic designs. In the realm of scientific computing, AI has shown significant
potential to revolutionize engineering problems. By leveraging machine learning
and deep learning techniques, AI can handle complex computations, optimize
designs, and predict outcomes with high accuracy.
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2 Artificial Neural Networks

2.1 Artificial Intelligence and Machine Learning

An entity engages in learning when it enhances its performance through obser-
vations of the environment. In the case of a computer acting as the learning
agent, this process is termed machine learning. The computer observes data,
constructs a model based on that data, and utilizes the model as both a hypoth-
esis about the world and a functional software component capable of problem-
solving. Enhancements to any segment of an agent’s program can be achieved
through machine learning. The specific improvements and the methodologies
employed are contingent on several factors, including the targeted component
for enhancement, the existing knowledge influencing the model construction by
the agent, and the availability of data and feedback for further refinement. [1]

A machine learning algorithm takes data as input and generates an output.
The input may be a factor representation, such as a vector containing attribute
values. Alternatively, the input can be diverse data structures encompassing
atomic and relational formats. [1] More specifically, machine learning methods
allow us to (a) understand the cyber processes that created the data we are ex-
amining, (b) derive a model that reflects the core principles of these underlying
processes, (c) project future trends or values based on this model, and (d) spot
unusual or out-of-the-ordinary behavior in the data. [2] Machine learning finds
applications in visual perception, speech recognition, gaming, expert systems,
decision-making, healthcare, aviation, and language translation. [3]

If the output falls within a finite set of possibilities, such as true or false, the
learning task is referred to as classification. On the other hand, when the
outcome is a numerical value, such as temperature, which can be expressed as
an integer or a real number, the learning problem is termed regression. [1]

There are three main types of machine learning:

• Supervised Learning: The agent observes pairs of input and output
to acquire knowledge of a function that establishes a mapping from in-
put to output. Supervised learning involves using various algorithms for
classification and regression tasks to create models that can predict out-
comes. These algorithms encompass linear and logistic regression and
neural networks and extend to Support Vector Machines (SVM), random
forests, naive Bayes, and k-nearest neighbors. [4] This thesis focuses on
deep learning methods for solving partial differential equations, which are
considered supervised learning.

• Unsupervised Learning: The agent discerns patterns within the input
data without relying on explicit feedback. The primary task in unsuper-
vised learning often involves clustering, where the objective is to identify
potentially meaningful groups or clusters among input examples. Cluster
analysis has various applications, such as gene sequence analysis, mar-
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ket research, and object recognition. Popular algorithms for unsupervised
learning encompass clustering, anomaly detection, neural networks, and
techniques for learning latent variable models. [5]

• Reinforcement Learning: The agent acquires knowledge through a
reinforcement sequence comprising rewards and penalties. The agent is
responsible for determining which of the preceding actions led to the re-
ceived reinforcement, subsequently adjusting its behavior to optimize for
increased rewards in future interactions. [1] Reinforcement learning has
been instrumental in several significant breakthroughs in machine learn-
ing, such as autonomous vehicles, gaming, and data center management.
[6]

Machine learning technology has now become a conventional element in software
engineering. Whenever a software system is developed, various components
within the system can benefit from the integration of machine learning. For
instance, a machine-learned model accelerated the analysis of images depicting
galaxies under gravitational lensing by a factor of 10 million [7], and another
machine-learned model led to a 40% reduction in energy consumption for cooling
data centers. [8][1]

2.1.1 Inspiration from biological neural networks

The human brain comprises a substantial number, approximately 1011, of in-
terconnected elements known as neurons, each having around 104 connections
per element. These neurons, as pictured in Figure 1, comprise three essential
components: dendrites, the cell body, and the axon. Dendrites form tree-like
receptive networks of nerve fibers responsible for carrying electrical signals into
the cell body. The cell body performs the crucial functions of summing and
thresholding these incoming signals. Meanwhile, the axon serves as a single,
elongated fiber transmitting the signal from the cell body to other neurons.
The point where an axon connects with a dendrite is termed a synapse. The
overall function of the neural network is determined by the arrangement of neu-
rons and the strengths of individual synapses, which are influenced by a complex
chemical process. [9] . These networks are integral to cognitive functions like
learning, memory, perception, and decision-making.[10]

An action potential—often called a ”spike”—is a primary activation mecha-
nism in biological neurons. When the total input to a neuron exceeds a certain
threshold, the neuron sends an output signal through its axon, allowing the pro-
cess to continue throughout the network. In this setting, ”training” describes
the process of altering synaptic connections, either reinforcing or diminishing
them. External stimuli and experiences influence these changes in synaptic
strength.[10]

Artificial neural networks fall short of replicating the intricate complexity of
the human brain. Nevertheless, they share two fundamental similarities with
biological neural networks. Firstly, both networks are constructed from basic
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Figure 1: Illustration of a biological neuron [11]

computational units (though artificial neurons are notably simpler than their
biological counterparts) that exhibit extensive interconnections. Secondly, the
functionality of these networks is contingent upon the connections between neu-
rons. [9]

Notably, while biological neurons exhibit a considerably slower speed (10−3 sec
compared to 10−10 sec) when compared to electrical circuits, the brain can ex-
ecute tasks at a pace surpassing that of traditional computers. This capability
is attributed, in part, to the extensively parallel structure of biological neu-
ronal networks, where all neurons function simultaneously. Although artificial
neural networks are presently deployed on conventional digital computers, their
inherently parallel structure makes them well-suited for implementation using
Very-Large-Scale Integration (VLSI), optical devices, and parallel processors.
[9]

2.1.2 Linear Regression

Central to each solution lies a model elucidating the transformation of features
into an estimated target. The presumption of linearity posits that the antici-
pated value of the target can be represented as a weighted sum of the features.
In machine learning, engaging with datasets characterized by high dimensions
is customary. Compact linear algebra notation proves to be more convenient in
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such cases. [12][13] In scenarios where our inputs encompass d features, each
feature can be assigned an index ranging from 1 to d, allowing us to articulate
our prediction ŷ as

ŷ = w1x1 + ...+ wdxd + b, (2.1)

where w1...wd are called weights and b bias. If the equation provided above is
written in vector format, where x ∈ Rd is the feature vector and w ∈ Rd the
weights vector then

ŷ = w⊤x+ b. (2.2)

Certainly, aligning our model with the data necessitates a consensus on a fitness
metric. Loss functions serve to measure the discrepancy between actual and
predicted target values. Typically, the loss is a non-negative numerical value,
with smaller values signifying better alignment and perfect predictions incurring
a loss of 0. In the context of regression problems, the squared error stands out as
the most prevalent loss function. [12] When our prediction for a given example
i is denoted as ŷ(i), and the corresponding true label is y(i), the squared error
is calculated as

l(i)(w, b) =
1

2
(ŷ(i) − y(i))2. (2.3)

Including the constant 1
2 is inconsequential but serves a notational convenience

as it cancels out during the derivative calculation of the loss. As the training
dataset is provided and beyond our control, the empirical error solely functions
as a variable dependent on the model parameters. [12] For an entire dataset
consisting of n examples, the loss function is

L(w, b) =
1

n

n∑
i=1

l(i)(w, b) =
1

n

n∑
i=1

1

2
(w⊤x+ b− y(i))2. (2.4)

2.1.3 Gradient Based Optimization

Many deep learning algorithms typically entail the process of optimization. Op-
timization involves the endeavor to adjust the variable x in order to either
minimize or maximize a given function f(x). [14]

Consider a function y = f(x) where both x and y are real numbers. The
derivative of this function is represented as f ′(x) or dy

dx . The derivative f ′(x)
signifies the slope of f(x) at the point x, indicating how a small change in the
input relates to a corresponding change in the output, expressed as f(x+ ϵ) =
f(x) + ϵf ′(x). This derivative proves instrumental in function minimization as
it guides adjustments to x for incremental improvements in y. Thus, to di-
minish f(x), we iteratively adjust x in small increments opposite to the sign
of the derivative. For instance, in the provided illustration (Figure 2) where
x > 0, f ′(x) > 0, suggesting a leftward movement to decrease f , while for
x < 0, f ′(x) < 0, indicating a rightward shift for minimizing f . [14]

In instances where f ′(x) = 0, the derivative fails to offer guidance on the di-
rection to proceed. Such points, labeled as critical points or stationary points,
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Figure 2: Simple example of gradient descent [14]

denote positions where f ′(x) = 0. A local minimum occurs when f(x) is lower
than its adjacent points, rendering it impossible to further decrease f(x) through
infinitesimal steps. Certain critical points do not represent maxima or minima;
these are termed saddle points. These three cases can be seen in Figure 3 [14]

Figure 3: Depiction of minimum, maximum and saddle points of a function [14]

A point achieving the lowest possible value of f(x) is termed a global minimum.
In the realm of deep learning, optimizing functions often encounter numerous
suboptimal local minima alongside saddle points bordered by extensively flat
regions. These complexities render optimization challenging, particularly when
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dealing with multidimensional input. Consequently, the typical approach in-
volves aiming to identify a value of f that is significantly low, albeit not nec-
essarily meeting formal minimal criteria. An example of approximate function
minimization can be seen in Figure 4. [14]

Gradient-based techniques frequently result in reaching a local optimum. On
the other hand, non-gradient methods tend to converge to a global optimum,
but they usually involve a high number of function evaluations. For large-scale
tasks, as often seen in engineering design, non-gradient approaches are generally
less efficient. Gradient-based algorithms need both gradient or sensitivity infor-
mation and function evaluations to establish the best directions for searching,
helping to refine designs during optimization. [15]

In the case of functions with multiple inputs, the concept of partial derivatives

becomes essential. The partial derivative, denoted by the partial symbol ∂f(x)
∂xi

,
quantifies how f alters as only the variable xi increases at point x. The gradi-
ent extends the idea of derivative to scenarios where the derivative pertains to
a vector. [14]

Figure 4: Approximate minimization [14]

The directional derivative along the unit vector u signifies the rate of change of
function f in the direction of u. Put differently, it represents the derivative of
the function f(x+ au) with respect to a, assessed at a = 0. By employing the

chain rule, we observe that ∂f(x+au)
∂a evaluates to u⊤∇xf(x) when a = 0. To

minimize f , our aim is to identify the direction that results in the most rapid
decrease of f .

minu,u⊤u=1u
⊤∇xf(x) = minu,u⊤u=1||u||2||∇xf(x)||2cosθ, (2.5)
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where θ is the angle between u and the gradient. If we choose to ignore the
factors that are not dependent on u and consider ||u||2 = 1, then the equation
provided above is simplified to minu||∇xf(x)||2cosθ. This is minimized when u
points in the opposite direction of the gradient. In simpler terms, the gradient
indicates the steepest ascent, while the negative gradient indicates the steepest
descent. Moving in the direction of the negative gradient allows us to decrease
f . [14]

This approach is commonly known as steepest descent or gradient descent.
Steepest descent suggests updating the point

x′ = x− ϵ∇xf(x), (2.6)

where ϵ represents the learning rate, a positive scalar determining the step
size. There are various ways to select ϵ. One popular method is to assign
ϵ a small constant value. Alternatively, we may solve for the step size that
nullifies the directional derivative. Another approach involves evaluating f(x′ =
x− ϵ∇xf(x)) for multiple ϵ values and selecting the one that yields the smallest
objective function value. This latter strategy is referred to as a line search. [14]

Steepest descent converges when each element of the gradient approaches zero
(or is very close to zero in practical terms). While gradient descent is typically
applied to optimization in continuous spaces, the fundamental idea of iteratively
making incremental moves toward improved configurations can be extended to
discrete spaces. [14]

2.1.4 Jacobian and Hessian Matrices

Occasionally, there arises a necessity to compute the partial derivatives of a
function that takes vector inputs and yields vector outputs. The compilation
of these partial derivatives forms what is termed a Jacobian matrix. More
precisely, for a function f : Rm → Rn, the Jacobian matrix is defined as

Ji,j =
∂

∂xj
f(xi). (2.7)

The Jacobian matrix can be a vital tool in mathematical analysis. By lineariz-
ing a nonlinear system at a particular point, it allows the use of linear system
methods to simplify and better understand the nonlinear system. [16]

At times, we may also be concerned with the derivative of a derivative, com-
monly referred to as a second derivative. For instance, the second derivative of
a function f with respect to xj is denoted as

∂2

∂xi∂xj
f. (2.8)

For a single dimension, it can be denoted as

f ′′ =
∂2

∂x2
f. (2.9)
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The secondary derivative provides insight into how alterations in the input affect
the variation of the first derivative. This holds significance as it elucidates
whether a gradient step will yield the anticipated enhancement solely based on
the gradient. Conceptually, the second derivative gauges curvature. Consider a
quadratic function; when its second derivative is zero, it indicates the absence
of curvature, rendering it a completely flat line whose value can be determined
solely through the gradient. The types of curvature of a function can be seen
at Figure 5. [14]

Figure 5: Types of Curvature [14]

When dealing with functions in multiple dimensions, the existence of numerous
second derivatives becomes apparent. These derivatives can be consolidated
into a matrix known as the Hessian matrix. [17] The Hessian matrix, denoted
as H(f)(x), is defined as

H(f)(x)i,j =
∂2

∂xi∂xj
f(x). (2.10)

As the Hessian matrix is both real and symmetric, we decompose it into a set
of eigenvalues and an orthogonal basis comprising eigenvectors. The second
derivative in a particular direction, represented by a unit vector d, is expressed
as

d⊤Hd. (2.11)

When d represents an eigenvector of H, the corresponding eigenvalue governs
the second derivative in that direction. The maximum eigenvalue signifies the
maximum second derivative, while the minimum eigenvalue denotes the mini-
mum second derivative. [14]
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The directional second derivative provides insight into the efficacy of a gradient
descent’s performance. We can employ a second-order Taylor series approxima-
tion to the function f(x) around the current point x(0):

f(x) = f(x(0)) + (x− x(0))⊤g+
1

2
(x− x(0))⊤H(x− x(0)), (2.12)

where g is the gradient and H is the Hessian at x(0). If we utilize a learning
rate of ϵ, then the new point x will be given by x(0)− ϵg. Substituting this into
our approximation, we obtain:

f(x(0) − ϵg) = f(x(0))− ϵg⊤g+
1

2
ϵ2g⊤Hg. (2.13)

This expression comprises three terms: the original value of the function, the
anticipated enhancement attributable to the slope of the function, and the ad-
justment needed to accommodate the curvature of the function. [14]

2.1.5 Second order gradient methods - Newton’s method

Unlike first-order methods, second-order methods leverage second derivatives to
enhance optimization. Among these, Newton’s Method stands out as the most
widely utilized second-order method. [14]

Newton’s method involves an optimization approach that employs a second-
order Taylor series expansion to estimate the loss function L in the vicinity of
a point θ0, while disregarding higher-order derivatives.

L(θ) = L(θ0) + (θ − θ0)
⊤∇θL(θ0) +

1

2
(θ − θ0)

⊤H(θ − θ0), (2.14)

where H is the Hessian of the loss function L with respect to θ and evaluated at
θ0. Upon determining the critical point of this function, we derive the Newton
parameter update rule

θ∗ = θ0 −H−1∇θL(θ0). (2.15)

Hence, for a locally quadratic function (with a positive definite H), by adjusting
the gradient with H−1, Newton’s method directly converges to the minimum.
This updating process can be iterated if the objective function is convex but not
strictly quadratic (involving higher-order terms). The algorithm can be seen in
Figure 6.

In addition to grappling with challenges arising from particular characteristics
of the objective function, such as saddle points, the practical application of
Newton’s method in training large neural networks is hampered by its con-
siderable computational demands. Given that the size of the Hessian matrix
scales quadratically with the number of parameters, even modestly sized neu-
ral networks with millions of parameters (denoted as m) would necessitate the
inversion of a mXm matrix, incurring a computational complexity of O(m3).
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Figure 6: Algorithm for Newton’s Method

Moreover, since the parameters undergo alterations with each update, the in-
verse Hessian must be recomputed at every iteration of training. Consequently,
Newton’s method is only feasible for training networks with a very limited num-
ber of parameters. [14]

2.1.6 BFGS/LBFGS method

The Broyden - Fletcher - Goldfarb - Shanno (BFGS) algorithm aims to incorpo-
rate some of the benefits of Newton’s Method while mitigating its computational
demands. Quasi-Newton methods like the BFGS method pursue an approach
where they approximate the inverse matrix H−1 with a matrix Mt, which is
progressively refined through low-rank updates to enhance its approximation
accuracy. [14][18][19]

To take the quasi-Newton step, minimizing ∆θ is equivalent to approximating
H ∼= M−1

t . The matrix update follows the well-known secant equation::

Ht+1 = ∇L(θt+1)−∇L(θt). (2.16)

If we set
st = θt+1 − θt, (2.17)
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and
yt = ∇L(θt+1)−∇L(θt). (2.18)

Then (2.16) becomes:

Ht+1st = yt ⇒ Mt+1yt
∼= st. (2.19)

The conditions that Mt+1 be symmetric and positive definite are necessary but
not sufficient to uniquely determine Mt+1. To uniquely determine it, we also
require:

Mt+1 = argmin||M−Mt||. (2.20)

Thus, Mt+1 must be the closest symmetric positive definite matrix to Mt that
satisfies the given constraints. In the BFGS method the update formula is:

MBFGS
t+1 = (I− ρtst(yt)

⊤)Mt(I− ρtyt(st)
⊤) + ρtst(st)

⊤, (2.21)

where
ρt = ((yt)

⊤st)
−1. (2.22)

This requires only one multiplication mXm because:

Mt(I− ρtyt(st)
⊤) = Mt − ρ(Mtyt)(st)

⊤. (2.23)

Nevertheless, the BFGS algorithm necessitates storing the inverse Hessian ma-
trix Mt, which demands O(m2) memory. This constraint renders BFGS im-
practical for the majority of contemporary deep-learning techniques, which com-
monly involve millions of parameters. [14]

The memory requirements of the BFGS algorithm can be substantially reduced
by circumventing the need to store the entire inverse Hessian approximationMt.
The L-BFGS algorithm computes this approximation using a similar approach
as BFGS. However, it starts with the assumption that Mt is the identity matrix
instead of storing the approximation from one iteration to the next. Extending
this idea, the L-BFGS approach without storage can be expanded to incorpo-
rate additional information about the Hessian by retaining some of the vectors
employed to update Mt at each iteration.[14][20]

More specifically if Mt(init) is the identity matrix then let’s assume:

rt(init) = Mt(init)∇L(θt(init)), (2.24)

and let’s assume:

γt = ((st−1)
⊤(yt−1))((yt−1)

⊤yj−1)
−1, (2.25)

q = γt∇L(θt). (2.26)

For the first n iterations

for i = 1 : n− 1

ai = ρi(si)
⊤qi

qi = qi − ayi

end,

(2.27)
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and for the rest of m equations:

for i = n : m

βi = ρi(yi)
⊤ri

ri = ri + si(ai − βi)

end.

(2.28)

If n << m, then this incurs only O(n) memory per step making it a suitable
optimization option which takes into account the curvature of the loss function.
[21]
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2.2 Training of Artificial Neural Networks

2.2.1 Deep Feedforward Networks

Deep feedforward networks, also known as feedforward neural networks or mul-
tilayer perceptrons (MLPs), represent the cornerstone of deep learning models.
Their primary objective is to approximate a function f . Given an input x, a
feedforward network establishes a mapping y = f(x, θ) and subsequently learns
the parameter values θ in order to approximate the desired function. [14]

These models earn the designation ”feedforward” due to the unidirectional flow
of information from the input, x, through intermediate computations defin-
ing f , and ultimately to the output, y. Unlike recurrent neural networks, which
incorporate feedback connections allowing outputs to influence subsequent com-
putations within the model, feedforward networks strictly adhere to this unidi-
rectional flow. [14]

Feedforward neural networks derive their name from their structure, which in-
volves the composition of multiple distinct functions. For instance, when three
functions—f (1), f (2), and f (3)—are linked sequentially to construct f(x), it
takes the form f(x) = f (3)(f (2)(f (1)(x))). These sequential configurations rep-
resent the prevailing architecture in neural networks. Here, f (1) assumes the
role of the initial layer, designated as the first layer, followed by f (2) as the
second layer, and so forth. The cumulative length of these interconnected layers
defines the model’s depth, hence coining the term ”deep learning.” The ulti-
mate layer in a feedforward network is referred to as the output layer, with the
intermediary layers termed hidden layers. [14][22][23]

In order to gain a better understanding of the architecture of neural networks,
it is worth studying a single input neuron as shown in Figure 7:
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Figure 7: Single Input Neuron

So the output of the single input neuron in Figure 7 is calculated from the
equation

y = a(wx+ b). (2.29)

The scalar input x undergoes multiplication with a scalar weight w, resulting in
wx, constituting one of the terms transmitted to the summation process. The
other input involves the bias b. The summation process then passes through an
activation function, denoted as a, yielding a scalar output y for the neuron. [9]

It’s important to recognize that both w and b represent adjustable scalar pa-
rameters of the neuron. Ordinarily, the designer selects the activation function,
while the parameters w and b are modified according to a learning rule, ensuring
that the neuron’s input/output relationship aligns with a predefined objective.
[9]
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In Figure 8 the case of multiple input and multiple output single layer neural
network is depicted.

Figure 8: Multiple Input and Multiple Output Single Layer Neuron

The outputs are evaluated:

o1 = x1w11 + x2w12 + x3w13 + b1, (2.30)

o2 = x1w21 + x2w22 + x3w23 + b2. (2.31)

In pursuit of enhanced computational efficiency, it is important to opt for vec-
torized computations. Consider a scenario where we have a matrix X ∈ Rnxd

representing n examples with each example possessing a dimensionality (number
of outputs) of d. Additionally, let’s suppose there are q categories in the output.
The corresponding weight matrix is W ∈ Rdxq and bias vector b ∈ R1xq, the
output is [12]

O = XW + b, (2.32)

and taking into account the activation function a [12]

Y = a(O). (2.33)
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2.2.2 Activation functions

An activation function can take the form of either a linear or non-linear function.
A specific activation function is selected to fulfill certain specifications inherent
to the problem that the neuron aims to address. The most popular activation
functions used in deep learning are presented below:

Hard limit activation function
The hard limit activation function assigns a neuron’s output to 0 when the
function’s argument is below zero, and to 1 if the argument is zero or higher.[9]

Sigmoid activation function
The log-sigmoid activation function processes the input, which could range from
negative to positive infinity, and compresses the output within a specified range,
as dictated by the expression:

a =
1

1 + e−x
. (2.34)

The sigmoid function is frequently employed in multilayer networks trained with
the backpropagation algorithm, primarily due to its differentiability.[9][24][25]

With the focus turning towards gradient-based learning, the sigmoid function
emerged as a logical selection due to its smooth, differentiable approximation
to a thresholding unit. Sigmoids remain prevalent as activation functions on
output units, particularly when interpreting outputs as probabilities in binary
classification tasks. However, a drawback of the sigmoid function lies in opti-
mization challenges, as its gradient diminishes significantly for large positive and
negative arguments, potentially resulting in difficult-to-overcome plateaus.[12]

Hyperbolic tangent function
Similar to the sigmoid function, the hyperbolic tangent function (tanh) com-
presses its inputs, converting them into values within the range of -1 to 1: [26]
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a = tanh(x) =
1− e−2x

1 + e−2x
. (2.35)

While the tanh function shares a similar shape with the sigmoid function, it
demonstrates point symmetry around the origin of the coordinate system.[12]

ReLU function
The rectified linear unit (ReLU), proposed by Nair and Hinton in 2010 [27],
stands out as the preferred option for its straightforward implementation and
effective performance across various predictive tasks. ReLU offers a straight-
forward non-linear transformation, defined as the maximum value between an
element x and 0:

a = ReLU(x) = max(x, 0). (2.36)

In simple terms, the ReLU function keeps only positive elements, disregarding
negative ones by assigning their activations to 0. For negative inputs, ReLU
has a derivative of 0, while for positive inputs, its derivative is 1.[12][28] The
mentioned activation functions are depicted in Figure 9:

Figure 9: (a) Hard Limit activation function, (b) Sigmoid activation function,
(c) Hyperbolic Tangent function, (d) ReLU activation function
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2.2.3 Forward Propagation

Forward propagation, also known as the forward pass, involves computing and
storing intermediate variables, including outputs, for a neural network from
the input layer to the output layer. [29] Let’s now proceed step by step to
understand the mechanics of a neural network with a single hidden layer shown
in Figure 10.

Figure 10: Neural network with a single hidden layer (Forward Propagation)

To simplify matters, let’s assume that the input example is denoted as x ∈ RdX1,
and our hidden layer does not incorporate a bias term. In this scenario, the
intermediate variable is

o = W(1)x, (2.37)

where W(1) ∈ RhXd is the weight parameter of the hidden layer. Following
the processing of the intermediate variable through the activation function, we
derive our hidden activation vector, which has a length of h:

y1 = a(o). (2.38)

The hidden layer y1 ∈ RhX1 serves as another intermediate variable. If we
assume that the parameters of the output layers consist solely of a weight,
denoted as W(2) ∈ RqXh, we can generate an output layer with a vector of
length q [12]

y2 = W(2)y1. (2.39)

2.2.4 Backpropagation

Backpropagation involves computing the gradients of neural network parame-
ters. This process entails traversing the network in reverse, from the output to
the input layer, applying the chain rule from calculus. [30] Intermediate vari-
ables (partial derivatives) necessary for gradient computation are stored during
this algorithm. For instance, considering functions Y = f(X) and Z = g(Y),
where X, Y, and Z represent tensors of varying shapes, we can calculate the
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derivative of Z concerning X using the chain rule [12]

∂Z

∂X
= prod

(
∂Z

∂Y
,
∂Y

∂X

)
. (2.40)

In this context, the prod operator is utilized to multiply its arguments following
operations like transposition and input position swapping. For vectors, this
process is straightforward, akin to matrix-matrix multiplication. With higher-
dimensional tensors, we employ the corresponding operation accordingly. The
prod operator simplifies the notation, concealing any complexities. Considering
the parameters of a simple network (weights and biases are zero for simplicity)
with one hidden layer like the one that was used in forward propagation in
Figure 10, represented by W (1) and W (2), shows the aim of backpropagation
is to compute the gradients ∂L

∂W (1) and ∂L
∂W (2) . The chain rule is employed to

achieve this, sequentially calculating the gradient of each intermediate variable
and parameter. Notably, the order of computation is reversed compared to
forward propagation; they start from the output of the computational graph
and proceed toward the parameters. So below is the process of backpropagation
for the neural network in Figure 10:

∂L

∂W(2)
= prod

(
∂L

∂y2
,

∂y2

∂W(2)

)
=

∂L

∂y2
y⊤
1 , (2.41)

∂L

∂y1
= prod

(
∂L

∂y2
,
∂y2

∂y1

)
= W(2)⊤ ∂L

∂y2
, (2.42)

∂L

∂o
= prod

(
∂L

∂y1
,
∂y1

∂o

)
=

∂L

∂y1
⊙ a

′
(o), (2.43)

∂L

∂W(1)
= prod

(
∂L

∂o
,

∂o

∂W(1)

)
=

∂L

∂o
x⊤, (2.44)

⊙ is the elementwise multiplication operator because the activation function is
applied elementwise. This process is depicted in Figure 11.

During the training process of neural networks, forward and backward propa-
gation are interdependent processes. During forward propagation, we navigate
the computational graph following dependencies and calculate all variables along
the path. These calculated variables are then utilized in backpropagation, where
the computation order on the graph is reversed. [12]

Hence, during neural network training, after initializing model parameters, we
alternate between forward and backward propagation, updating model param-
eters using gradients derived from backpropagation. Notably, backpropaga-
tion optimizes memory usage by reusing stored intermediate values from for-
ward propagation, thus preventing redundant computations. However, this also
means that intermediate values must be retained until backpropagation con-
cludes, contributing to the increased memory demands during training com-
pared to prediction tasks. Additionally, the size of these intermediate values is
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roughly proportional to the network’s depth and the batch size. Consequently,
training deeper networks with larger batch sizes can more easily lead to out-of-
memory errors. [12]

Figure 11: Neural network with a single hidden layer (Backpropagation)
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3 Physics Informed Neural Networks

3.1 Scientific Machine Learning

The rapid expansion of accessible data and computing resources has led to
significant advancements in machine learning and data analytics, resulting in
transformative breakthroughs across various scientific domains such as image
recognition [31], cognitive science [32], and genomics [33]. In the field of com-
putational fluid dynamics (CFD), deep learning has been used to solve the
Navier-Stokes equations [34] and flows with turbulence. [35] More specifically,
in one study, it was discovered that higher Reynolds numbers did not affect
the computational cost when deep learning was utilized instead of traditional
numerical methods. [36]

Frequently, when analyzing intricate physical, biological, or engineering sys-
tems, the expense of acquiring data becomes a barrier, leading us to confront
the task of drawing conclusions and making decisions with incomplete informa-
tion. In such scenarios with limited data, the majority of advanced machine
learning methods, including deep, convolutional, or recurrent neural networks,
often lack robustness and do not ensure convergence. [37]

In the realm of scientific machine learning, nonlinear problems can be directly
addressed without the necessity of committing to any prior assumptions, lin-
earization, or local time stepping. Recent advancements in automatic differen-
tiation, a highly valuable yet often underutilized technique in scientific machine
computing, enable the differentiation of neural networks concerning their input
coordinates and model parameters. This facilitates the development of physics-
informed neural networks capable of respecting symmetries, invariances, or
conservation principles derived from the physical laws governing observed data,
as characterized by general time-dependent and nonlinear partial differential
equations. This straightforward yet potent approach enables tackling a broad
spectrum of problems in computational science, introducing potentially trans-
formative technology that fosters the creation of new data-efficient and physics-
informed learning machines, novel classes of numerical solvers for partial dif-
ferential equations, and innovative data-driven approaches for model inversion
and systems identification. [37] This thesis explores two primary categories of
physics-informed neural networks: data-driven solutions for partial differential
equations (PDEs) and parameter inference while solving a PDE.

3.1.1 Data-driven solutions of PDEs

A general form of a PDE is:

ut +N [u] = 0, (3.1)

where u(t, x) is the hidden solution of the PDE, x ∈ Ω and t ∈ [0, T ],N [·] is
defined as a non-linear differential operator and Ω is a subset of R. Now let’s
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consider f(t, x) as the left hand side of the equation

f := ut +N [u]. (3.2)

A physics-informed neural network is obtained based on this assumption and
the equation presented earlier. This network is derived by employing the chain
rule for differentiating compositions of functions using automatic differentiation.
The parameters within the neural network u(t, x) and f(t, x) can be trained by
minimizing the mean squared loss:

MSE = MSEu +MSEf , (3.3)

where

MSEu =
1

Nu

Nu∑
i=1

|u(tiu, xi
u)− ui|2, (3.4)

and

MSEf =
1

Nf

Nf∑
i=1

|f(tif , xi
f )|2, (3.5)

where:

• (tiu, x
i
u, u

i)Nu
i=1 are the initial and boundary data on u(t, x),

• (tif , x
i
f )

Nf

i=1 are the collocation points in which the equation f = 0 is solved.

The loss functionMSEu accounts for the consistency with the initial and bound-
ary data, while MSEf ensures adherence to the structural constraints imposed
by the equation at specific collocation points in a finite set.

In physics-informed neural networks, an understanding and appreciation of the
pivotal role of automatic differentiation in deep learning opens up new avenues.
Automatic differentiation, particularly through the back-propagation algorithm
[38], is the predominant method for training deep models by computing their
derivatives concerning parameters such as weights and biases. Here, the very
same techniques of automatic differentiation are harnessed to inform neural
networks about physics by computing derivatives concerning their input coor-
dinates (i.e., space and time), where the physics is delineated by partial dif-
ferential equations. Raissi et al.[37] empirically observed that this structured
approach introduces a regularization mechanism, enabling the utilization of rel-
atively compact feed-forward networks. Consequently, these neural networks
can be trained effectively even with limited data. This master’s thesis delves
into the examination of continuous-time models within this framework.

In Figure 15, the example from the subsections explaining forward propagation
(1.2.3,1.2.4) is revisited, this time showing that during the process of backpropa-
gation in a physics-informed neural network, the derivatives of the loss function
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L are calculated with respect to the inputs. If the inputs are the points re-
garding space x and points regarding time t, then the extra gradients to be
computed are

∂L

∂x
, (3.6)

∂L

∂t
. (3.7)

Figure 12: Physics Informed Neural network with a single hidden layer (Back-
propagation)

3.1.2 Parameter Inference

If equation (3.2) had an unknown parameter then its general form would be

f := ut +N [u;λ]. (3.8)

The physics-informed neural network can conduct parameter inference for λ
during training by providing a small amount of data other than the initial and
boundary conditions. In order to gain a better insight the example of Burger’s
equation is used for both cases.
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3.2 Example: Burger’s Equation

3.2.1 MATLAB: Deep Learning Toolbox

To utilize Machine Learning and, more specifically, Deep Learning in MATLAB,
it is necessary to download the Deep Learning Toolbox. This toolbox provides
various methods, ranging from a user-friendly graphical interface (as seen in
Figure 13) to constructing networks through coding (which is the approach uti-
lized in this thesis).

Figure 13: User-friendly apps from Deep Learning Toolbox MATLAB

Leveraging MATLAB’s Deep Learning Toolbox, users can compute gradients
effortlessly through automatic differentiation.

Typically, the most straightforward approach to tailoring deep learning training
involves constructing a dlnetwork. This entails assembling the desired layers
within the network structure, followed by executing training within a custom
loop employing an optimizer (Gradient Descent, Adam, the LBFGS, etc.).

In Figure 14 is a code snippet for the neural network used for solving Burger’s
Equation (see subsection 3.2.2). The neural network is built (choosing colloca-
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tion points, types and number of layers and neurons, number of epochs) and
then passed through the function dlnetwork to be utilized by the Deep Learn-
ing Toolbox with the chosen optimizer LBFGS. Additionally, the data used for
training needs to be converted dlarray to be understood by the Toolbox, facili-
tating data structure management and enabling evaluation tracing.

Figure 14: Code snippet showing the functions dlnetwork and dlarray

To harness automatic differentiation capabilities, it’s essential to employ dlgra-
dient within a function and conduct function evaluation using dlfeval.

In the following example for Burger’s equation, within themodeloss function, dl-
gradient is employed to compute first and second-order spatial gradients (Ux,Uxx),
along with the temporal gradient (Ut). The code snippet in Figure 15 illustrates
the computation of these derivatives throughout the training phase:
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Figure 15: Code snippet from Matlab for computing the gradients with auto-
matic differentiation utilized by the PINN

As discussed in earlier chapters, the network learnables encompass the weights
and biases. These parameters are recalculated utilizing the dlgradient and dl-
eval pair as depicted in Figure 16. However, it’s important to note that while
the neural network employs these gradients for optimization, the gradients men-
tioned in Figure 15 are derived through backpropagation to compute the gradi-
ents present in the equation.

Figure 16: Code snippet from Matlab for computing the gradients with auto-
matic differentiation for optimization
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3.2.2 Solution of Burger’s Equation

Demonstrated herein is the application of deep learning techniques to address
Burger’s equation, a partial differential equation (PDE) prevalent across various
domains of applied mathematics. Its relevance spans disciplines such as fluid
mechanics, nonlinear acoustics, gas dynamics, and traffic flow analysis.

The Burger’s equation is:

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0. (3.9)

The boundary conditions are:
for x = −1:

u(x = −1, t) = 0, (3.10)

for x = 1:
u(x = 1, t) = 0, (3.11)

and the initial conditions are

u(x, t = 0) = −sin(πx). (3.12)

This approach uses neural networks to eliminate the need for grid generation,
making it a meshless method. Instead, a set of collocation points is employed to
solve equations within the spatiotemporal domain. These collocation points are
also strategically utilized to enforce both the boundary and initial conditions,
ensuring their respective values during the training process.

For instance, for x = −1 and x = 1, 25 equally spaced collocation points each
are utilized, while 50 equally spaced collocation points are employed for en-
forcing the initial conditions. In total, Burger’s equation is solved using 10,000
collocation points that entail both time and space directions. No additional
data is required, as the neural network demonstrates satisfactory performance
with the aforementioned dataset.

The neural network architecture consists of 9 layers, each containing 20 neurons.
Training is conducted over 1500 epochs using the LBFGS optimizer. The loss
function is formulated by incorporating a function referred to as the modelloss
function, which comprises two terms derived from equations (3.4) and (3.5).
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The reduction of the loss function during the training progress is seen in Figure
17:

Figure 17: Reduction of loss function during the training process
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The solution from the PINN was compared with the solution exported from
Comsol simulation software, which utilizes the finite element method to solve
the equation numerically. For this specific example, the linear solver MUMPS
was chosen, along with the Damped Newton Non-Linear Method and BDF time
stepping. Additionally, quadratic basic functions were chosen along with 10000
domain elements. A tolerance factor of 0.1 was chosen. The solution was com-
pared for four different time profiles: 0.25 sec, 0.5 sec, 0.75 sec, and 1 sec, which
are shown in Figure 18. It is evident that the neural network was able to solve
the equation successfully, like the finite element method.

Figure 18: Results for Burger’s Equation using a PINN for specific boundary
conditions(3.10,3.11) and initial conditions (3.12)
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3.2.3 Parameter Inference in the Burger’s Equation

The preceding section demonstrated solving Burger’s equation [39] through the
provision of initial and boundary conditions and the specific points for solving
the equation. One notable advantage of physics-informed neural networks lies
in their capacity to deduce unknown parameters within equations. For instance,
let’s consider the scenario where the parameter D in the following equation is
unknown

∂u

∂t
+ u

∂u

∂x
−D

∂2u

∂x2
= 0, (3.13)

and the real value of D is

Dreal = 0.01/π = 0.00318. (3.14)

The data provided was the value of u at 0.1, 0.25, 0.5, 0.75, and 0.85 sec for the
entire spatial domain. In this case, D is a learnable parameter along with the
weights and biases. That means that in the Matlab environment, the parameter
D needs to be converted into a structured array and inserted into the network,
and its corresponding gradient will be calculated along with the weight and bias
gradients. In Figure 19 is the main code snippet, demonstrating the process of
converting the parameter that we want to infer into a structured dlarray.

Figure 19: MATLAB code snippet for parameter inference

The process of inference is seen in Figure 20. The initial value was D = 1.
It must be noted that 5000 epochs were used to ensure the best results. It is
evident that after a few epochs, the value drops below 0.1:
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Figure 20: Parameter inference during training for the Burger’s Equation

The final value of D from inference is

DPINN = 0.003751. (3.15)

The relative error is

ErrorD =
∣∣∣DPINN −Dreal

Dreal

∣∣∣ = 0.1784. (3.16)

During parameter inference the equation is solved as well and the results can
be in Figure 21:

Figure 21: Results for Burger’s equation using a PINN with parameter inference
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3.3 The advantages and disadvantages of PINNs compared
to classical numerical methods

Neural network-based regression techniques have emerged as effective and straight-
forward solutions. Physics-informed learning (PINN) seamlessly merges prin-
ciples from physics with machine learning, facilitating the integration of infor-
mation from both physics laws and scattered noisy data, even under imperfect
conditions. A recent study has showcased the ability of PINN to derive meaning-
ful solutions, even in scenarios where the problem lacks perfect, well-posedness
due to inherent smoothness or regularity in its formulation. [40]

Furthermore, unlike conventional numerical approaches, physics-informed learn-
ing stands out as mesh-free, eliminating the need for computationally intensive
mesh generation. This characteristic empowers it to effectively address irregu-
lar and moving-domain problems. [41] While deep learning typically requires
abundant training data, obtaining such data with high accuracy remains chal-
lenging for many physical problems. In such cases, physics-informed learning
offers a distinct advantage by demonstrating robust generalization capabilities
in scenarios with limited data. [42]

By integrating or embedding physics principles into deep learning models, physics-
informed learning effectively restricts the models to a lower-dimensional man-
ifold, enabling training with small datasets. Additionally, physics-informed
learning extends its capabilities beyond mere interpolation to encompass ex-
trapolation, facilitating spatial extrapolation in boundary-value problems. [43]

Additionally, the practical limits of numerical computation often stem from the
high dimensionality of problems. Termed the curse of dimensionality, this
phenomenon signifies that the minimal computational cost of approximating a
solution increases exponentially with the problem’s dimensionality. [44] Con-
sequently, many numerical problems characterized by high dimensions become
practically insurmountable.

However, deep learning has demonstrated remarkable success in addressing
high-dimensional problems, such as fine-resolution image classification, language
modeling, and tackling high-dimensional PDEs. [42] One contributing factor to
this success lies in the ability of deep neural networks to mitigate the curse of
dimensionality, provided that the loss function exhibits a hierarchical composi-
tion of local functions. [45] [46]

Nevertheless, the realm of PINNs encounters several obstacles. Firstly, there
remains a lack of clarity regarding the precision and convergence concerning
adjustable parameters. Furthermore, the optimization strategies necessary to
equate PINNs with other computational tools in efficiency remain elusive. [47]
One study [48] noted a deficit in PINN accuracy attributable to the absence
of established activation functions and specialized architectures, both of which
significantly impact final model accuracy. Nonetheless, PINNs demonstrate ac-
curacy in parameter inference. Conversely, another study [49] shed light on the

38



potential limitations of PINNs in solving PDEs characterized by strong non-
linearity or high-frequency solutions. To mitigate this, pre-training techniques
were suggested to enhance efficiency. Specifically, pre-training involves training
a neural network on smaller subdomains to provide initialization and additional
supervised learning data for larger subdomains or entire temporal domains, thus
enhancing overall performance.
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4 Application for Reaction-Diffusion PDEs mod-
eling an avascular growing tumor

4.1 Physical Model

The physical model that was chosen for the application was a reaction-diffusion
problem. A simple system was selected that simulated the evolution of cancer
cells in a growing tumor at its first stages of evolution, so it is still considered
avascular. Vasculature is vital in malignant tumors, as blood vessels formed
through angiogenesis induced by tumor cells are a precursor to metastasis. [50]
There are two independent variables, space x and time t, and two dependent
variables, cancer cells concentration z and oxygen concentration c. Cancer cells
consume oxygen for proliferation; therefore, these two variables are intercon-
nected with a system of equations that can be seen in equations 4.1 and 4.2. It
must be noted that the growing tumor is spherically symmetrical.

∂z

∂t
− dz

1

r2
∂2z

∂r2
= k1z

c

c+ cp
− k2z

c+ cc1
c+ cc2

, (4.1)

−dc
1

r2
∂2c

∂r2
= −kszc− kmz

c

c+ cp
. (4.2)

These non-dimensional equations were derived from the work of Lampropoulos
et al. [50][51]. On the left-hand side of these equations are terms regarding the
transport phenomena, and on the right-hand side are the source terms. In the
scope of this thesis, the transport phenomena were limited to diffusion.

The source terms in equation (4.1) for the cancer cells are:

• k1z
c

c+cp
: Michaelis-Menten kinetics for the production (mitosis) of cancer

cells. The cancer cell population consumes the substrate, which, in this
case, is oxygen. cp is a constant and has a value which is half of the
maximum value of c.

• k2z
c+cc1
c+cc2

: This term regards cellular death, and it represents the pro-
grammed death of a cell from natural causes. It must be noted that
cc1 > cc2 to ensure that the cellular death rate is increased when c be-
comes scarce.

The source terms in equation (4.2) for oxygen are:

• kszc: This term represents sustenance, and it is a second-order reaction
between the cancer cells and oxygen.

• kmz c
c+cp

: Oxygen that is consumed from the production (mitosis) of cells.
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The values for the constants are provided in Table 1:

Table 1: Parameter names and values

Parameter Value Description
dz 0.01 Cancer cells diffusion coefficient
dc 1 Oxygen diffusion coefficient
k1 0.5 Cancer cell mitosis rate
k2 0.15 Cancer cell death rate
cc1 0.3 Oxygen concentration regulating cellu-

lar death rate
cc2 0.2 Threshold oxygen concentration for cel-

lular death rate
cp 0.5 Threshold oxygen concentration for mi-

tosis
ks 0.1 Consumption rate constant for suste-

nance of cancer cells
km 0.1 Consumption rate constant of oxygen

used for mitosis of healthy cells

The oxygen has no temporal gradient in equation (4.2) since it is considered a
quasi-steady state equation because time scales of chemical species are signifi-
cantly shorter compared to cellular processes. Finally, it must be remarked that
this system of equations is based on spherical coordinates.

The chosen radial domain r is
r ∈ [0, 8], (4.3)

and the chosen time t interval is

t ∈ [0, 20]. (4.4)

The boundary conditions for the cancer cells are:

for r = 0 zero flux, Neumann conditions are chosen, meaning that there is no
diffusion of cancer cells:

∂z

∂x

∣∣∣
r=0

= 0, (4.5)

for r = 8 Dirichlet conditions are chosen that correspond to the boundary of a
tissue within a cancerous tumor grows:

z
∣∣∣
r=8

= 0. (4.6)

The boundary conditions for oxygen are:
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for r = 0 zero flux, Neumann conditions are chosen, meaning that there is no
diffusion of oxygen:

∂c

∂x

∣∣∣
r=0

= 0, (4.7)

for r = 8 Dirichlet conditions are chosen that correspond to the boundary of a
tissue within a cancer grows and oxygen is in abundance:

c
∣∣∣
r=8

= 1, (4.8)

and the initial conditions for the cancer cells (for r < 5):

zinitial =
(
cos(

πr

10
)
)2

. (4.9)

The initial conditions for c are calculated from equation (4.2). Both initial con-
ditions are depicted in Figure 22:

Figure 22: Initial conditions for cancer cells and oxygen
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4.2 Loss Function and Dynamic Weights

The loss function for the system of PDEs is

L = MSEz0+MSEc0+MSEfc+MSEfz+MSEzD+MSEcD+MSEzN+MSEzN ,
(4.10)

the mean squared error for the initial conditions of z with Nz0 points which
solves the initial condition constraint:

MSEz0 =
1

Nz0

Nz0∑
i=1

|zPINN(i)
0 − zi0|2, (4.11)

the mean squared error for the initial conditions of c with Nc0 points which
solves the initial condition constraint:

MSEc0 =
1

Nc0

Nc0∑
i=1

|cPINN(i)
0 − ci0|2, (4.12)

the mean squared error for the equation regarding the cancer cells, which solves
the PDE fz

fz =
∂z

∂t
− dz

1

r2
∂2z

∂r2
− k1z

c

c+ cp
+ k2z

c+ cc1
c+ cc2

, (4.13)

is (the number of collocation points is Ncol)

MSEfz =
1

Ncol

Ncol∑
i=1

|f i
z|2, (4.14)

the mean squared error for the equation regarding oxygen, which solves the
PDE fc

fc = −dc
1

r2
∂2c

∂r2
+ kszc+ kmz

c

c+ cp
, (4.15)

is (the number of collocation points is Ncol)

MSEfc =
1

Ncol

Ncol∑
i=1

|f i
c|2, (4.16)

the mean squared error for the Dirichlet boundary condition of z with NzD

points which solves the boundary condition constraint:

MSEzD =
1

NzD

NzD∑
i=1

|zPINN(i)
D − ziD|2, (4.17)

the mean squared error for the Dirichlet boundary condition of c with NcD

points which solves the boundary condition constraint:

MSEcD =
1

NcD

NcD∑
i=1

|cPINN(i)
D − ciD|2, (4.18)
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the mean squared error for the Neumann boundary condition of z with NzN

points which solves the boundary condition constraint:

MSEzN =
1

NzN

NzN∑
i=1

|zPINN(i)
N − ziN |2, (4.19)

the mean squared error for the Neumann boundary condition of c with NcN

points which solves the boundary condition constraint:

MSEcN =
1

NcN

NcN∑
i=1

|cPINN(i)
N − ciN |2. (4.20)

This is the traditional approach for the loss function of a PINN. However, during
the training of PINNs, an imbalance in the gradients within the loss function
can occur. This imbalance can hinder the performance of PINNs. A study
[52] introduced a new technique for dynamically adjusting the weights of loss
terms, allowing for balanced gradients in each term during training. The neural
network identifies the training data that are harder to learn and shifts its focus
to them before moving to the next training step. It recalibrates the weights
for challenging data to enhance the objective function. These dynamic weights
increase steadily and reach a steady point during training. This technique ac-
celerates loss convergence, reduces generalization errors, and enhances compu-
tational efficiency.

So, the loss function with the dynamic weights is

L =wd
1MSEz0 + wd

2MSEc0 + wd
3MSEfc + wd

4MSEfz

+ wd
5MSEzD + wd

6MSEcD + wd
7MSEzN + wd

8MSEzN .
(4.21)

The dynamic weights are calculated with the stochastic gradient ascent. They
are initialized with a small non-negative value and increased at each iteration
until the ideal values are reached:

w
d(new)
1 = w

d(old)
1 + ηd

∂L

∂w
d(old)
1

, (4.22)

w
d(new)
2 = w

d(old)
2 + ηd

∂L

∂w
d(old)
2

, (4.23)

w
d(new)
3 = w

d(old)
3 + ηd

∂L

∂w
d(old)
3

, (4.24)

w
d(new)
4 = w

d(old)
4 + ηd

∂L

∂w
d(old)
4

, (4.25)

w
d(new)
5 = w

d(old)
5 + ηd

∂L

∂w
d(old)
5

, (4.26)
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w
d(new)
6 = w

d(old)
6 + ηd

∂L

∂w
d(old)
6

, (4.27)

w
d(new)
7 = w

d(old)
7 + ηd

∂L

∂w
d(old)
7

, (4.28)

w
d(new)
8 = w

d(old)
8 + ηd

∂L

∂w
d(old)
8

. (4.29)

In this thesis, every weight is initialized at 0.1 and the learning rate is the same
in each epoch ηd = 1.

4.3 Neural Network Architecture

The neural network for solving this system of equations had these characteristics:

• number of layers: 10

• number of neurons in each layer: 20

• number of internal collocation points: 500 (logarithmically spaced)

• number of points for initial conditions: 51

• number of points for boundary conditions for z and c (Neumann): 25

• number of points for boundary conditions for z and c (Dirichlet): 25

• number of epochs: 6500.

• optimizer: LBFGS

The chosen neural network was based on the network from Burger’s equation
example in section 3.2. The main objective was to minimize the number of
collocation points while maintaining a simple architecture. Consequently, the
parameters were continually adjusted to find the optimal balance between sat-
isfactory results and a straightforward neural network with a minimal number
of layers and neurons.
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4.4 Results: PDE system solution

4.4.1 PINN solution of the system of PDEs

First, the solution of the system of equations is presented. The data provided
are the dependent variables z and c at the initial and boundary conditions and
the system of equations (Equations 4.1 and 4.2). Apart from that, no other data
is required (for example, at another time step). The results are examined at
t = 0, 10, and 20 to evaluate the neural network’s performance. Furthermore,
the results are compared with the results of the same problem exported from
COMSOL, which uses the finite element method to solve the system of PDEs.
In COMSOL the linear solver MUMPS was chosen, along with the Damped
Newton Non-Linear Method and BDF time stepping. Additionally, quadratic
basic functions were chosen along with 500 domain elements. A tolerance factor
of 1 was chosen.

Figure 23: Comparison of initial conditions of the PINN and COMSOL solution

As expected, the neural network was able to fit the data remarkably well when
predicting the initial conditions (depicted in Figure 23). The relative errors can
be seen in Table 2:

Table 2: Initial Conditions at t = 0 for the entire spatial domain

Independent Variable Relative Error

z 0.00197
c 0.0001
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The solution for the system of PDEs at t = 10 (Figure 24 and 25):

Figure 24: Comparison of cancer cells at t = 10 of the PINN and COMSOL
solution

Figure 25: Comparison of oxygen at t = 10 of the PINN and COMSOL solution

and the relative errors can be seen in Table 3:

Table 3: z and c at t = 10 for the entire spatial domain

Independent Variable Relative Error

z 0.01233
c 0.00276
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The solution for the system of PDEs at t = 20 (Figure 26 and 27):

Figure 26: Comparison of cancer cells at t = 20 of the PINN and COMSOL
solution

Figure 27: Comparison of oxygen at t = 20 of the PINN and COMSOL solution

and the relative errors can be seen in Table 4:

Table 4: z and c at t = 20 for the entire spatial domain

Independent Variable Relative Error

z 0.01725
c 0.00326

Compared to the t = 10 results, the relative error seems to be slightly bigger
at t = 20. However, the PINN seems to accurately predict the area in which
cellular death is observed (r between 0 and 2).
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The temporal gradients for t = 10 and t = 20 are shown in Figures 28 and 29:

Figure 28: Temporal Gradient at t = 10

Figure 29: Temporal Gradient at t = 20

It is evident that the network can calculate the gradient zt effectively.

49



Figure 30 depicts the spatiotemporal evolution of cancer cells concentration, z:

Figure 30: Contour graph of cancer cells dimensionless concentration. The black
circles are the initial and boundary conditions, and the yellow circles are the
collocation points at which the equations are solved.

It is evident from Figure 30 that the chosen collocation points are much more
dense at the beginning of the phenomenon and become sparse towards the end
at t = 20. This is important because it was observed that more collocation
points were needed in the beginning to compute the gradient zt. Figure 31
shows the corresponding spatiotemporal evolution of oxygen, c:

Figure 31: Contour graph of oxygen dimensionless concentration. The black
circles are the initial and boundary conditions, and the yellow circles are the
collocation points at which the equations are solved.

50



4.4.2 Extrapolation

It was mentioned that the PINN was trained within a certain spatial domain
(r ∈ [0, 8]) and time interval (t ∈ [0, 20]). An extrapolation was done to examine
if the PINN can predict evolution at larger times and if it can produce more
reasonable results than other neural networks that might predict unphysical
values. The neural network was tested at the extrapolated time of t = 30, and
the results are provided in Figures 32 and 33:

Figure 32: Comparison of cancer cells at t = 30 of the extrapolated PINN and
COMSOL solution

Figure 33: Comparison of oxygen at t = 30 of the extrapolated PINN and
COMSOL solution
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Table 5: Extrapolated z and c at t = 30 for the entire spatial domain

Independent Variable Relative Error

z 0.07021
c 0.01694

The results (as seen in Table 5 from the relative errors) seem to be lacking when
compared to the numerical results provided by COMSOL. It must be noted
that the COMSOL data at t = 30 was not used during training, and Figures
32 and 33 are merely underlining the discrepancy in the results by comparing
them. At t = 30 cellular death is observed in the range r ∈ [0, 3.5] as seen in
Figure 32. This is the area that the PINN mostly failed to predict compared
to the numerical solution provided by COMSOL. However, this allows leeway
for optimizing the neural network architecture with hyperparameter tuning or
with a different neural network altogether.

52



4.5 Parameter Inference

For parameter inference, different cases were examined. These parameters are
of great importance because they are usually patient-specific and are diffu-
sion coefficients, which determine the transport properties. Unfortunately, they
are usually unavailable, and we want to test PINNs’ capability to predict their
values using only a limited amount of data.

The PINN architecture remained the same; however, new terms had to be in-
serted in the loss function. These terms were the mean squared errors (MSE)
that enforced the constraint of the extra provided data in the spatiotemporal
domain during training. Moreover, the method of dynamic weights was imple-
mented during inference as well, adding new dynamic weights for every new
term in the loss function.

4.5.1 Case 1: Cancer cell and oxygen diffusion coefficient inference
using cancer cell and oxygen data measurements

The initial and boundary conditions for z and c were provided in this first case.
Additionally, the data from t = 5 for both dependent values (z and c) were
provided in the entire spatial domain, and the parameters dz and dc were in-
ferred. The spatiotemporal evolution of cancer cells and oxygen concentrations
are depicted in Figures 34 and 35:

Figure 34: Contour graph of cancer cells dimensionless concentration. The black
circles are the initial and boundary conditions and the distribution of z at t = 5.
The yellow circles are the collocation points at which the equations are solved.
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Figure 35: Contour graph of dimensionless oxygen concentration. The black
circles are the initial and boundary conditions and the distribution of c at t
= 5. The yellow circles are the collocation points at which the equations are
solved.

Table 6: Parameter Inference for Case 1

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0207 1.0740
dc 1 1.0444 0.0444

It is evident from Table 6 that the relative value for dc is satisfactory, whereas
the relative value of dz can be minimized further. This might be achieved by
increasing the collocation points since they are relatively small and by increasing
the epochs as well. In addition, the contribution of dz in the L2− loss function
is smaller because it’s two orders of magnitude smaller compared to dc.

Table 7: z and c at t = 20 for Case 1 for the entire spatial domain

Independent Variable Relative Error

z 0.1672
c 0.059

The relative error for z (as depicted in Table 7) seems to be higher than the
PINN solution of the system in section 4.4.1. Figure 34 and Figure 35 also show
that, in this case, the necrosis of the cancer cells was not predicted. On the
other hand, the error of c is low, but this is due to the fact that the inferred
value of dc is closer to its corresponding actual value.
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4.5.2 Case 2: Cancer cell diffusion coefficient inference using cancer
cell measurements

In the second case, a more realistic scenario is examined. Usually, in an exper-
imental setup, collecting data for the cancer cells is much easier than it is for
oxygen. Therefore, in this case study only the boundary conditions are known
for oxygen (c), whereas for the cancer cells (z) the available data are the initial
and boundary conditions and the distribution at t = 5. First, dz is considered
unknown and is the only parameter inferred in this case. In case 3, dc will
be inferred as well. The spatiotemporal evolution of cancer cells and oxygen
concentrations are depicted in Figures 36 and 37

Figure 36: Contour graph of cancer cell dimensionless concentration. The black
circles are the initial and boundary conditions and the distribution of z at t = 5.
The yellow circles are the collocation points at which the equations are solved.
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Figure 37: Contour graph of oxygen dimensionless concentration. The black
circles are the boundary conditions for the dependent variable c. The yellow
circles are the collocation points at which the equations are solved.

The relative error for the parameter inference after training is depicted in Table
8:

Table 8: Parameter Inference (Case 2)

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0141 0.4107

Compared to Case 1, the relative error of the inferred dz is lower. However,
this is due to the fact that only one parameter was inferred. In Table 9 are the
relative errors at t = 20 for Case 2, which are lower than Case 1:

Table 9: z and c at t = 20 for Case 2 for the entire spatial domain

Independent Variable Relative Error

z 0.05889
c 0.02363
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4.5.3 Case 3: Cancer cell and oxygen diffusion coefficient inference
using cancer cell measurements

Case 3a)
Similar to case 2, only the boundary conditions were provided for oxygen, and
for the cancer cells (z), the available data are the initial and boundary condi-
tions and the distribution at t = 5. In this case, however, both dz and dc were
inferred. The spatiotemporal evolution of cancer cells and oxygen concentra-
tions is depicted in Figure 38

Figure 38: Contour graphs of cancer cells and oxygen dimensionless concentra-
tions. The black circles are the initial and boundary conditions for z and the
boundary conditions for c, as well as the distribution of z at t = 5. The yellow
circles are the collocation points at which the equations are solved.
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Table 10: Parameter Inference (Case 3a), z at t=5)

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0199 0.99
dc 1 1.0202 0.0202

Table 11: z and c at t = 20 for Case 3a) for the entire spatial domain

Independent Variable Relative Error

z 0.10272
c 0.05617

In Table 10 are the relative errors for the parameter inference and in Table 11
are the relative errors for the dimensionless concentrations of cancer cells and
oxygen at t=20 for the entire spatial domain. The results are similar to that
of Case 1, which means that additional data for oxygen concentration might be
unnecessary. Again, the area of necrosis was not predicted, and more data is
needed.
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Case 3b)
The distribution of the cancer cells dimensionless concentration at t=16 was
added, which at a later stage of the tumor growth evolution compared to t=5.
The spatiotemporal evolution of cancer cells and oxygen concentrations is de-
picted in Figure 39. The respective relative errors are shown Tables 12 and 13:

Figure 39: Contour graphs of cancer cells and oxygen dimensionless concentra-
tions. The black circles are the initial and boundary conditions for z and the
boundary conditions for c, as well as the distributions of z at t = 5,16 sec. The
yellow circles are the collocation points at which the equations are solved.

Table 12: Parameter Inference (Case 3b), z at t=5,16)

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0102 0.02
dc 1 0.9718 0.0282
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Table 13: z and c at t = 20 for Case 3b) for the entire spatial domain

Independent Variable Relative Error

z 0.05859
c 0.02858
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Case 3c)
Finally, the distribution of cancer cells at t = 10 was added as the final step of
the parametric analysis, which is in the middle of the temporal domain. The
spatiotemporal evolution of cancer cells and oxygen concentrations is depicted
in Figure 40:

Figure 40: Contour graphs of cancer cells and oxygen. The black circles are
the initial and boundary conditions for z and the boundary conditions for c,
as well as the distributions of z at t = 5,10 and 16. The yellow circles are the
collocation points at which the equations are solved.

and the errors are depicted in Table 14 and Table 15:

Table 14: Parameter Inference (Case 3c), z at t=5,10,16

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0089 0.1236
dc 1 0.9850 0.015
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Table 15: z and c at t = 20 for Case 3c) for the entire spatial domain

Independent Variable Relative Error

z 0.01542
c 0.00552

The trend of the relative error from the parametric analysis is:

Figure 41: Parametric analysis for the relative error of Case 3

As was expected, adding more data for the cancer cells during training decreases
the relative error in both dependent variables. However, in all cases, the error of
dc remained stagnant, whereas the error dz showed a sharp decrease from Case
3a) to 3b) and a slight increase from 3b) to 3c). All of this should be considered,
and one must prioritize their end goal and the available data at hand. If it is
parameter inference, adding more data does not affect the error drastically. On
the other hand, with a closer look at the contour graphs, the death of cancer
cells is more accurately depicted in Case 3c) and overlooked in Case 3a), and
this should be considered if one wants to accurately depict the solution in the
spatio-temporal domain.
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4.5.4 Case 4: Parameter inference with noisy data

Finally, for the final case, noisy data was introduced for case 3a). Usually, in
real-case scenarios, experimental data tends to be noisy rather than smooth.
More specifically, a noise ±5% of the initial conditions and the distribution at
t = 5 of cancer cells z were inserted into the training data of case 3a) (shown
in Figure 42).

Figure 42: Noisy data of Case 4

The results are provided in Table 16 and 17:

Table 16: Parameter Inference (Case 4), z at t=5)

Parameter Actual Value Inferred Value Relative Error

dz 0.01 0.0339 2.3899
dc 1 1.1956 0.1956

Table 17: z and c at t = 20 for Case 4 for the entire spatial domain

Independent Variable Relative Error

z 0.2227
c 0.09106

Even though the results do seem to provide a good estimate of the solution, the
error for both dependent variables at t=20 and for the parameters dz and dc
are higher than in the previous cases. This could be fixed by prioritizing the
most important end goal: the correct predicted solution or a better estimate of
parameters with the available data.
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5 Conclusions and Future Considerations

In this thesis, physics-informed neural networks (PINNs) were utilized to ad-
dress a system of partial differential equations (PDEs) that simulate the growth
of an avascular tumor. Specifically, the focus was on modeling the growth of a
cancerous tumor from a nutrient source, oxygen. PINNs, characterized by their
ability to function effectively with minimal data, employed automatic differen-
tiation to compute spatial and temporal gradients inherent in the equations,
thereby facilitating the solution process.

The study comprised two main components. Initially, a neural network was
employed to tackle the system of partial differential equations (PDEs), where
both initial and boundary conditions were provided as input data for the two de-
pendent variables: cancer cells and oxygen. Additionally, an extrapolation case
study was conducted. The second segment concentrated on parameter inference,
incorporating various case studies with diverse sets of available data. To enhance
accuracy, a novel approach involving dynamic weights was implemented. This
method addresses the imbalance of gradients within the loss function terms by
adjusting weights for each loss term during training. This facilitated the adop-
tion of a relatively straightforward feedforward method consisting of 10 layers,
each comprising 20 neurons and employing 500 logarithmically spaced internal
collocation points within the spatiotemporal domain.

The evaluation of the system of PDEs involved analyzing the relative error across
three time steps: t=0, 10, and 20. For cancer cells, the relative error ranged
from 0.00197 to 0.01725, while for oxygen, it ranged from 0.0001 to 0.00326.
Notably, at t=20, the depiction of cellular death was precise. Furthermore, an
extrapolation to t=30 was conducted, revealing relative errors of 0.07021 for
cancer cells and 0.01694 for oxygen, which were deemed satisfactory. However,
when compared to the numerical results provided by COMSOL, the prediction
accuracy for the area of cellular death was not optimal.

Parameter inference involved examining various cases, some solely focusing on
the diffusion coefficient (dz) of cancer cells, while others considered both dz
and dc (the diffusion coefficient of oxygen), with different datasets provided for
each case. The third case, which embraced a more realistic approach, solely
provided distributions for cancer cells at different time steps, while for oxygen,
only boundary conditions were available. The most promising results in the
cases of inference were obtained in a scenario where three different distributions
for cancer cells were given (at t=5, 10, and 16), yielding relative errors of 0.1236
for dz and 0.015 for dc. In this case, the relative error for the cancer cells was
0.01542, and for the oxygen, 0.00552 at t = 20 for the entire spatial domain.
Additionally, it was noted that augmenting the training data led to a decrease
in the relative error of the solution, as anticipated, albeit without guaranteeing
more accurate parameter inference. Furthermore, a case involving noisy input
data was examined to demonstrate the neural network’s capability to deliver
satisfactory results even when the provided data is not smooth.
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The contribution presented in this thesis lays a solid groundwork for future ad-
vancements. For instance, extending the problem to higher dimensions poses a
challenge for numerical methods due to the increased computational costs asso-
ciated with the curse of dimensionality. However, this relatively straightforward
problem addressed in the thesis can serve as a pre-trained network for more com-
plex problems, such as those in 2D and 3D, providing a valuable starting point
for training by initializing the weights and biases of the neural network. More-
over, exploring the implementation of the problem in more intricate geometries
holds promise. The meshless nature of the PINN method circumvents issues
related to grid generation in spatial domains with complex configurations.

Furthermore, parameter inference in the context of cancerous tumor growth is
of paramount importance, considering that many parameters, such as diffusion
coefficients, are patient-specific and vary from individual to individual. Conse-
quently, this study’s findings underscore the effectiveness of employing neural
networks for parameter inference, yielding highly satisfactory results.

In conclusion, it is essential to recognize that artificial intelligence in scientific
computing is not intended to supplant classical numerical methods, which have
been established over many years. Rather, it serves as a complementary tool,
augmenting these methods to tackle challenging physical phenomena encoun-
tered in engineering applications.
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