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Abstract

This thesis contributes to the modelling, simulation and attitude control of the jumping legged robot Olympus,
designed for Martian lava tube exploration. The robot is currently being developed at the Autonomous Robot Lab
(A.R.L.) at the Norwegian University of Science and Technology (N.T.N.U.).

The first step involved the detailed kinematic and dynamic modelling of the quadruped. Special attention was
given to handling the robot’s workspace constraints, as limb movements during reorientation manoeuvres are close
to its torso.

Next, a hierarchical model based attitude controller was developed for the robot. The first module, the Body
Planner, optimizes the torso trajectory to track a reference orientation based on virtual torques applied on a
single rigid body that has comparable inertia to the quadruped. The second control module, the Leg Planner,
attempts to track these virtual torques for only one leg while respecting its workspace and input constraints. To
achieve high solution speeds and online calculation of the optimal trajectories, a switching strategy is utilized to
update various controller parameters through a Finite State Machine (FSM)-based resetting approach. Finally,
an allocation strategy projects the optimized joint trajectory of the one leg to the others. This projection ensures
that collisions between legs cannot occur, cancels parasitic torques and lowers the overall computational cost of
the controller as only one optimization problem must be solved to track the virtual torques.

The performance of the controller is evaluated in a high fidelity simulation. The robot is able to stabilize 90◦

single axis orientation manoeuvres in 6 seconds for roll, 2.5 seconds for pitch, and 5.5 seconds for yaw in free
floating conditions. Additionally, a parametric study investigated the effect of increasing the paw and torso mass.
The proposed controller is deployed on the actual robot. In the first experiment the robot achieves 90◦ single axis
turns in 4s for roll and 7s for yaw. In the second test, the robot manages to track changing orientation references.

The outcome of this thesis is a high fidelity, configurable simulation framework for further development of
Olympus and an attitude controller that manages to stabilize the desired orientation while respecting the robot’s
operational constraints.
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Περίληψη

Αυτή η διπλωματική εργασία συμβάλλει στη μοντελοποίηση, τα εργαλεία προσομοίωσης και τον έλεγχο προσανα-

τολισμού του αλτικού τετράποδου ρομπότ Olympus, το οποίο έχει σχεδιαστεί για εξερεύνηση υπόγειων σπηλιών με
λάβα στον ΄Αρη. Το ρομπότ αναπτύσσεται επί του παρόντος στο Autonomous Robot Lab (A.R.L.) του Norwegian
University of Science and Technology (N.T.N.U.).
Το πρώτο βήμα περιλάμβανε τη λεπτομερή κινηματική και δυναμική μοντελοποίηση του τετράποδου ρομπότ. Ιδια-

ίτερη προσοχή δόθηκε στη διαχείριση των περιορισμών του χώρου εργασίας του ρομπότ, καθώς οι κινήσεις των άκρων

κατά τη διάρκεια των κινήσεων επαναπροσανατολισμού είναι κοντά στον κορμό του.

Στη συνέχεια, αναπτύχθηκε ένας ιεραρχικός βάσει μοντέλου ελεγκτής προσανατολισμού για το ρομπότ. Το πρώτο

υποσύστημα, ο Ελεγκτής Σώματος, βελτιστοποιεί την τροχιά του κορμού για να επιτύχει έναν επιθυμητό προσανα-

τολισμό βάσει εικονικών ροπών που εφαρμόζονται σε ένα άκαμπτο σώμα με αδράνεια παρόμοια με του τετράποδου.

Το δεύτερο υποσύστημα ελέγχου, ο Ελεγκτής Ποδιού, προσπαθεί να παράξει αυτές τις εικονικές ροπές για μόνο ένα

πόδι, σεβόμενο παράλληλα τους περιορισμούς του χώρου εργασίας και των κινητήρων του. Για να επιτευχθούν υψηλές

ταχύτητες λύσης και ο υπολογισμός των βέλτιστων τροχιών σε πραγματικό χρόνο, χρησιμοποιείται μια στρατηγική

εναλλαγής (switching strategy) για την ανανέωση διαφόρων παραμέτρων του ελεγκτή μέσω μιας στρατιγικής επαναφο-
ράς βασισμένης σε Μηχανή Πεπερασμένων Καταστάσεων (Finite State Machine). Τέλος, η βελτιστοποιημένη τροχιά
των αρθρώσεων του ενός ποδιού προβάλλεται στα υπόλοιπα με κατάλληλο τρόπο ώστε να παραχθεί μια συγχρονισμένη

και ασφαλής κίνηση. Αυτή η προβολή εξασφαλίζει ότι δεν μπορούν να συμβούν συγκρούσεις μεταξύ των ποδιών,

ακυρώνει τις παρασιτικές ροπές και μειώνει το συνολικό υπολογιστικό κόστος του ελεγκτή, καθώς μόνο ένα πρόβλημα

βελτιστοποίησης πρέπει να λυθεί για να επιτευχθούν οι εικονικές ροπές.

Η απόδοση του ελεγκτή αξιολογείται σε προσομοίωση υψηλής πιστότητας. Το ρομπότ είναι σε θέση να σταθε-

ροποιήσει περιστροφές 90◦ γύρω από έναν άξονα σε 6 δευτερόλεπτα για κλίση (roll), 2,5 δευτερόλεπτα για πρόνευση
(pitch) και 5,5 δευτερόλεπτα για εκτροπή (yaw) σε συνθήκες ελεύθερης αιώρησης. Επιπλέον, μια παραμετρική μελέτη
διερεύνησε την επίδραση της αύξησης της μάζας των ποδιών και του κορμού. Ο προτεινόμενος ελεγκτής εφαρμόστηκε

στο πραγματικό ρομπότ σε δύο πειράματα. Στο πρώτο πείραμα, το ρομπότ επιτυγχάνει περιστροφή 90◦ σε 4 δευ-
τερόλεπτα για κλίση και 7 δευτερόλεπτα για εκτροπή. Στη δεύτερη δοκιμή, το ρομπότ καταφέρνει να ακολουθήσει

μεταβαλλόμενους επιθυμητούς προσανατολισμούς.

Το αποτέλεσμα της διπλωματικής εργασίας είναι ένα υψηλής πιστότητας, παραμετροποιήσιμο εργαλείο προσομοίω-

σης για περαιτέρω ανάπτυξη του Olympus και ένας ελεγκτής προσανατολισμού που καταφέρνει να σταθεροποιήσει τον
επιθυμητό προσανατολισμό, εξασφαλίζοντας παράλληλα την ασφάλεια του ρομπότ.
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1. Introduction

1.1 Motivation

Martian lava tubes are of particular interest due to their scientific value and practical advantages. These lava
tubes provide access to pristine bedrock and potential materials, and are ideal locations for conducting seismic
investigations. They are also theorized to contain ice water. Additionally, the environment of lava tubes is stable,
characterized by minimal temperature variations, shielding from cosmic radiation, and protection from regolith
dust. These attributes make lava tubes an excellent choice for in-situ laboratories, enable larger missions, and
reduce the need for protective payloads [1].

Exploring these tubes poses a significant challenge. Their topological complexity, characterized by uneven
terrain, numerous obstacles, and collapsed sections, hinders wheeled exploration. Additionally, UAVs have limited
payload capacity and/or limited flight time to explore these large caves. On the other hand, legged systems are
an excellent choice, having the capability to traverse unstructured environments and the versatility to accomplish
complex tasks. In particular, jumping legged systems can leverage the low gravity to achieve complex traversal
capabilities, such as jumping over large obstacles, crossing gaps, or entering these caves from skylight entrances
[2].

This thesis aims to model and develop a controller for in-air stabilization of such a jumping quadruped, Olympus,
developed at the Autonomous Robot Lab (ARL) in National Technical University of Norway (NTNU).

1.2 Literature Review

Over the last decade, there have been huge leaps in the capabilities of quadrupedal robots. Commercially
available quadrupedal robots, such as ANYmal and Spot, have demonstrated promising results conducting missions
in harsh, unstructured, and difficult-to-traverse environments on Earth, such as underground complexes and mines
[3, 4]. At the same time, these systems have become more agile and capable of performing more aggressive
manoeuvres. Quadrupeds have successfully executed back-flips [5] and barrel rolls [6] by utilizing model predictive
control (MPC) based architectures to track offline generated trajectories. Additionally, reinforcement learning
techniques have further enhanced the locomotion robustness of these systems, enabling ANYmal to navigate
deformable terrain, rubble, thick vegetation, and gushing water [7]. This progress has motivated the development
of such systems for planetary exploration. Several prominent results are presented below:

• Spacebok was one of the first quadrupedal robots designed for space exploration. A four-bar parallel motion
linkage with parallel springs, enabling it to jump up to 1.3 meters. Additionally, a reaction wheel is used to
control its pitch orientation during the flight phase, with a PID controller [8]. In later iterations, Spacebok
incorporated a deep reinforcement learning-based controller to stabilize its attitude solely by moving its limbs.
It has the capability to re-orient itself safely for a safe landing after a jump and is able to stabilize its attitude
in under six seconds [9].

• Spacehopper is a three-legged, CubeSat-sized, and lightweight robot specifically designed for controlled low-
gravity locomotion. It employs a deep reinforcement learning controller to control its orientation. In simula-
tions, it can reorient itself in one second in zero-gravity, while experimental results on Earth demonstrated
a five-second settling time [10].

• Olympus is the quadrupedal robot developed at NTNU, which employs a five bar mechanism for its legs with
springs for improved jumping. A two-leg prototype could reach jump heights of 1.5 meters in Earth’s gravity
and 3.63 meters in Mars’ gravity [11]. The first iteration of Olympus employs a hierarchical controller to
control its attitude, where an MPC generates appropriate body torques and a torque allocation algorithm
determines the suitable movements for the legs. Simulation results demonstrate its ability to stabilize its
attitude on average in three seconds [12].

1.3 Contributions

Despite the significant advancements in quadrupedal robotics for planetary exploration, there are still a lot of
unexplored areas. The model based controller used in [12] does not account for operational constraints, such as
self-collision avoidance. As reorientation movements take place near the torso, this compromises the safety of the
controller. Also, it relies on a heuristic algorithm to generate the necessary body torques from the leg movements,
which does not guarantee optimal performance. While reinforcement learning can achieve high-performance re-
sults, guaranteeing its reliability, which is crucial for deploying robots in space, remains challenging. Therefore,
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there is merit in further developing model based controllers to execute dynamic and agile manoeuvres and enable
quadrupedal robots to contribute to planetary exploration.

This thesis first contributes to the development of a simulation framework for Olympus, with detailed kinematic
modelling and handling of self collisions. Also, a cascaded MPC approach is investigated. Although the proposed
controller does not surpass its predecessor in terms of performance, it successfully stabilizes the robot’s orientation
while avoiding collisions. The proposed controller is also experimentally tested to verify its performance.

In detail, the contributions are listed below:

• Forward and inverse analytical kinematic analysis of Olympus’s legs (C++ kinematics library).

• Detailed dynamic modelling of Olympus’s legs.

• Optimized collision modelling to allow the full range of motion of the legs and at the same time handle
contacts in real time in simulation.

• Mathematical description of the workspace collision constraints.

• Development of a simulation framework in Drake which interfaces with Robot Operating System (ROS) for
testing new controllers (written in C++).

• Development of a hierarchical controller that stabilizes the attitude of the robot.

• Investigation of various aspects of the architecture of the proposed controller (e.g. orientation error metric,
tuning procedure and insights, supporting modules) to aid in its further development.

• Evaluation of the proposed controller in simulation.

• Evaluation of the proposed controller in experiments.

The code from the thesis can be accessed in:

• olympus tools: https://github.com/ntnu-arl/olympus_tools. It contains the state estimation, gui and
attitude control (mpc controller) packages as well as the kinematics library.

• olympus simulation: https://github.com/ntnu-arl/olympus_simulation. It contains the simulation
code.

1.4 Olympus Overview

The quadruped Olympus is shown in figure 1.

Figure 1: Overview of robot Olympus.
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The robot’s distinctive features include a five-bar leg design with integrated springs connected by high-strength
cords. Various design parameters, including spring stiffness and body size, are optimized to enhance its reorientation
and jumping capabilities. An overview of such design parameters1 is presented in table 1. The actuators of the
system are brush-less DC motors (BLDC) with integrated encoders and planetary gearboxes. Details about the
selected motors are presented in table 2. The adduction/abduction joints utilize AK 80-9 actuators, complemented
by AK70-10 actuators in the hip joints. For computation, it employs an Nvidia OrinX onboard computer, which
communicates via four different CAN buses with each leg. The energy autonomy of the system is ensured by a
48V battery pack. Finally, it is equipped with exteroceptive sensors such as an IMU and a depth camera.

Table 1: Basic design parameters of Olympus.

Quantity Value Leg Part Mass Length
Total Height 570 mm Torso Weight 5.68 kg -
Total Width 400 mm Leg Weight 2.017 kg -
Total Length 679 mm Motor housing 1.437kg -
Total Weight 13.747 kg Hip Link 81g 175 mm
Spring Resting Length 0.175 m Shank Link 199g 300 mm
Spring Stiffness 800 N/m Paw 20 g -

Table 2: Characteristics of Olympus’s motors.

AK 80-9 AK 70-10
Internal gear ratio 9:1 10:1
Weight 485 g 521 g
Mechanical Time Constant 0.94 ms 0.74 ms
Torque (Rated/Maximum) 9 / 18 Nm 8.3 / 24.8 Nm
Rated Speed 390 rpm 310 rpm

1.5 Thesis Structure

The thesis is structured as follows:

• Chapter 2 offers a comprehensive theoretical foundation covering topics from rigid body dynamics, quater-
nions, Lagrangian dynamics, and optimal control. It also presents the primary tools employed in the thesis.

• Chapter 3 is concerned with the mathematical modelling of the system. The robot kinematics and dynamics
are presented along with the handling of self collisions. Also, important modelling implementation details
are discussed.

• Chapter 4 provides an in-depth presentation of the control design, including information on various modules
and an overview of the entire architecture.

• Chapter 5 presents the main simulation results, describes the setup of the experiment that took place and
presents the obtained data. In addition, the experimental results are compared with the simulations.

• Finally, chapter 6 concludes the thesis, discussing the strengths and weaknesses of the proposed methods and
offering recommendations for future extensions of the current work.

1The springs are not connected between fixed points, but rather pull on each other through the cord. Thus the presented values
are a linear spring approximation which is being used.

10



2. Background

This chapter provides a brief theoretical introduction to important aspects of the thesis. It begins with key
concepts of rigid body rotational dynamics, followed by an introduction to quaternions and their properties. Next,
an overview of the Euler-Lagrange formalism is presented, with a focus on constrained systems. Subsequently,
fundamental ideas from optimal control and model predictive control theory are discussed. Finally, the software
tools utilized in this thesis are presented.

Before delving into the specific topics, some notation conventions used throughout the thesis are introduced.
The position of point B as expressed in frame {A} is:

APB

Similarly, the orientation of frame {B} with respect to frame {A} is:

ARB

The relative position of point B to point C as expressed in frame {A} is:

APC
B

A skew symmetric matrix is symbolized with:

[v×] =

 0 −vz vy
vz 0 −vx
−vy vx 0


Finally, a n×m matrix filled with ones is symbolized with 1n×m.

2.1 Rigid Body Rotational Dynamics

First, the angular momentum H of a rigid body in an inertial frame is defined:

H = Iω (1)

where I is the inertial tensor of the rigid body calculated at the inertial frame and ω is the angular velocity vector
expressed in the inertial frame. It must be noted, that I is not constant and depends on the orientation of the
body.

In an inertial frame, Newton’s second law of rotation states [13]:

dH

dt

∣∣∣∣
i

= τ ext (2)

where τ ext are the external torques acting on the body. The subscript i is used because the time derivative is with
respect to axes that do not rotate with the body. The time derivative of H is:

dH

dt

∣∣∣∣
i

= İω + Iω̇ (3)

The expression above can be further simplified. If IB is the inertia tensor calculated at a body frame, II is the
inertial tensor at an inertial frame and R = IRB is the rotational matrix that represents the orientation of the
body frame in the inertial frame, then the following is true [14] :

II = RIBR
T (4)

As IB is calculated in a body frame, it is constant. So differentiating the above expression yields:

İI = ṘIBR
T +RIBṘ

T (5)

Using Ṙ = [ω]×R the above expression becomes:

İI = [ω×]RIBR
T +RIB([ω

×]R)T

İI = [ω×]II − II [ω
×]
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So, the first term in equation 3 becomes:

İω =
(
[ω×]I− I[ω×]

)
ω

As [ω×]ω = 0, the above expression simplifies to the following.

İω = [ω×]Iω = ω × Iω

Thus (3) becomes:

ω × Iω + Iω̇ = τ ext (6)

Expression (6) holds in an inertial frame as all the quantities (ω, τ ext, I) are specified in the inertial frame. To
overcome this, at each timestep, an inertial frame is created that coincides with the body frame. Equation (6)
holds in this inertial frame. Also, I = IB and τ ext =

Bτ ext.
Angular velocities between two different fixed frames are related using the expression below:

Iω = R Bω

Differentiating the above expression gives:

Iω̇ = R Bω̇ + [Iω×]R Bω

As R Bω̇ = Iω̇ and Iω ×I ω = 0 angular accelerations between two different fixed frames are related using the
expression below:

Iω̇ = R Bω̇

As at each timestep, the inertial frame is chosen to be coincident with the body frame, R is the identity matrix
and thus Iω =B ω and Iω̇ =B ω̇. So, (6) is transformed to the following:

ω × IBω + IBω̇ = Bτ ext (7)

Equation (7) is the Euler’s rotation equation for a rigid body. The inertial tensor IB is constant. Also, the
torques are expressed in the body frame, which better suits a rotating robotic system that has its actuators in
fixed places in its body. As the inertial tensor is non singular, (7) can take an explicit form:

ω̇ = I−1
B

(
Bτ ext − ω × IBω

)
(8)

2.2 Quaternion Basics

To describe the orientation of a rigid body, quaternions are a useful formalism. This representation does not
suffer from singularities like Euler angles or angle-axis pair and has only four parameters, in contrast to rotation
matrices that have 9 parameters [15]. However, quaternions are inherently more complex, and thus it is essential
to understand them and their associated algebra.

2.2.1 Quaternion Basic Properties

A quaternion q is defined as:

q = w + xi+ yj + zk (9)

where {w, x, y, z} ∈ R and {i, j, k} are imaginary numbers with the following properties:

ij = k = −ji
jk = i = −kj (10)

ki = j = −ik
i2 = j2 = k2 = ijk = −1

12



It is more useful to represent quaternion using 4-vectors, which allows matrix algebra to be used for quaternion
operations. An even more compact form, is combining the imaginary part of the quaternion to a 3 element vector,
qv.

q =


w
x
y
z

 =

[
w
qv

]
(11)

Next, some of the most important properties of the quaternions will be presented. The identity quaternion is:

qI = [1, 0, 0, 0]T (12)

The sum of quaternions is defined as:

q1 ± q2 =

[
w1 ± w2

q1 ± q2

]
(13)

The product of quaternions is denoted using the ⊗ operator, and is called the Hamilton product. It is a direct
result of using the algebra defined in (10).

q1 ⊗ q2 =

[
w1w2 − qT

v,1qv,2

w1qv,2 + w2qv,2 + qv,1 × qv,2

]
=


w1w2 − x1x2 − y1y2 − z1z2
w1x2 + w2x1 + y1z2 − y2z1
w1y2 + w2y1 − x1z2 + x2z1
w1z2 + w2z1 + x1y2 − x2y1

 (14)

The conjugate of a quaternion is defined as:

q∗ =

[
w
−qv

]
=


w
−x
−y
−z

 (15)

The following identity is true:
(q1 ⊗ q2)

∗ = q∗2 ⊗ q∗1 (16)

The norm of a quaternion is defined as:

||q|| =
√

qT q∗ =
√

w2 + x2 + y2 + z2 (17)

A quaternion is called unitary if ∥q∥ = 1. The inverse of a quaternion is defined as:

q−1 = q∗/ ∥q∥ (18)

The following is true for the inverse:
q−1 ⊗ q = q ⊗ q−1 = qI

For unitary quaternions q−1 = q∗.

2.2.2 Quaternion Geometric Meaning And Error Calculation

Apart from the quaternion properties, it is important to understand the quaternion geometric meaning. The
usefulness of quaternions comes down to the fact that they encode orientations and rotations [16]. If u is the axis
of rotation and φ is the right-hand rotation angle, a quaternion q can be written as:

q =

[
w
qv

]
=

[
cos(φ/2)
sin(φ/2)u

]
(19)

It can be proved that the product q2 ⊗ q1 has the following meanings [16]:

• It represents a new rotation that first applies the rotation associated with q1, followed by the rotation
associated with q2.

• It represents a new orientation of a frame, where the initial orientation encoded by q1 is rotated by the
rotation associated with q2
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This leads to the following remark: If the desired orientation is qD and the initial orientation is q0, then q0 needs
to be rotated by qe to reach the desired orientation:

qD = qe ⊗ q0

Thus, the orientation error is given by the following expression:

qe = qD ⊗ q−1
0 (20)

In order to use the quaternion error in penalty functions, a corresponding metric2 must be found. Also, as
quaternions double cover the SO(3), its use must always lead to the shortest path being taken [5]. A suitable
metric is obtained by calculating the following quantities [17]:

u =
qe,v

||qe,v||
(21)

θ ≜ 2φ = acos
(
2 < qd, q(t) >

2 − 1
)

(22)

Equation 22 returns an angle between [0, π]. The corresponding error metric is then:

fq = θue (23)

2.2.3 Quaternion Kinematics - Simulation of Rotating Rigid Bodies

A relation connecting the rate of change of quaternions to angular velocity is needed, to have a complete state
space representation of rotational dynamics. This is presented in (24) [18].

q̇ =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

q ≜
1

2
Ωq (24)

So, a rotating rigid body with the following state:

x =

[
q
ω

]
has the following state space dynamics:

ẋ =

[
1
2Ωq

I−1
B

(
Bτ ext − ω × IBω

)] (25)

2.3 Euler - Lagrange Dynamics

The dynamics of rigid body systems can be derived using the Euler-Lagrange method, which can be extended
to include kinematic constraints such as the loop closure constraint of the legs.

2.3.1 Unconstrained Dynamics

The Euler-Lagrange unconstrained equations of motion have the following general form [14].

M(q)q̈+C(q, q̇)q̇+G(q) +Dq̇+ Fssign(q̇) + JT (q)he = τ (26)

Explanation of the terms follows:

• q is the generalized position vector, and q̇ is the generalized velocities vector.

• inertial forces: M(q)q̈

• centrifugal and Coriolis forces: C(q, q̇)q̇

• gravity terms: G(q)

• damping forces : D q̇ = diag(D1, ..., Di, ..) · q̇
2The norm of the quaternion is not suitable, as for unit quaternions ∥q∥ = 1, no matter the value of q.
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• the coulomb friction: Fs sign(q̇) = diag(Fs,1, ..., Fs,i, ..) · sign(q̇)

• forces due to interactions with the environment: JT (q)he, where JT is the geometric Jacobian and he is the
wrench vector from the end-effector to the environment

• motor inputs: τ

However, to adequately model Olympus during attitude stabilization manoeuvres during free fall, (26) can be
simplified by making some reasonable assumptions.

Task specific assumptions

1. The legs in the flight face do not interact with the environment3, and thus JT (q)he = 0.

2. Also, during the flight phase, the robot is free falling. Since the frame of reference for the leg dynamics is
attached to the robot, the apparent gravity is effectively zero, and thus G = 0.

3. Coulomb friction is neglected. Thus Fs = 0

4. The damping force coefficients are assumed: D = 2.5e-3 · I5

Thus (26) simplifies to the following:

M(q)q̈+C(q, q̇)q̇+Dq̇ = τ (27)

2.3.2 Constrained Dynamics

Equation (27) describes the unconstrained dynamics. However, the leg is a closed kinematic chain, and thus
there is a holonomic constraint, in the form of h(q) = 0 to ensure the closure of the mechanism.

Constraints are added in (27) using the Lagrange multipliers approach [19], and the constrained dynamics
become:

M(q)q̈+C(q, q̇)q̇+Dq̇ = τ +
∂h

∂q

T

λ (28)

Defining:

τG = −C(q, q̇)q̇−Dq̇+ τ , H =
∂h

∂q

Equation (28) becomes:

Mq̈ = τG +HTλ (29)

Also, differentiating h, results in:

ḣ =Hq̇ (30)

ḧ =Hq̈+ Ḣq̇ (31)

By combining (31) and (29), λ can be calculated:

λ = −(HM−1HT )−1(HM−1τG + Ḣq) (32)

Having λ, (29) can be used to calculate q̈. The procedure above assumes that the expression (HM−1HT ) is
invertible. Due to the properties of the Euler-Lagrange equation of motions, M is non-singular [14], and thus H
must be full rank to solve for both λ and q̈ [20].

3If there is interaction, this will be considered an unknown disturbance in the model.
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2.4 Optimal Control

A general optimal control problem (OCP) can be written as [21]:

min
x,u,t0,tf

F (x,u, t0, tf ) (33)

so that

ẋ = f(x(t),u(t), t) (34a)

FNL(x(t),u(t)) ≤ 0 (34b)

FInput(u(t)) ≤ 0 (34c)

FState(x(t)) ≤ 0 (34d)

FBoundary(t0, tf ,x(t0),x(tf )) ≤ 0 (34e)

(34f)

where where x(t) is the state trajectory, u(t) is the control input, F is the objective function,FNL are general
nonlinear constraints, FInput are the input constraints, FState are the state constraints, FBoundary are the boundary
constraints and (34a) is the dynamics constraint. The optimization variables x, u are infinite-dimensional decision
variables, as they are functions.

2.4.1 Numerical Methods for Solving OCPs

The formulation of the OCP in (33,34) is very general and therefore allows one to encode a wide variety of
problems. Approaches to solve the OCP are outlined below:

1. Dynamic Programming: These methods find the optimal cost-to-go function V (t0, x0) (also called the
Value function). They do so by discretizing time and space and applying Dynamic Programming (DP). The
major benefit of these methods is that they provide a closed-loop solution. However, it is well-known that
the complexity of this strategy increases exponentially with the number of states and controls. Therefore, it
is not directly applicable to most legged robots [21].

2. Indirect Methods: Indirect methods transform the original OCP into a Boundary Value Problem by
using Pontryagin’s Maximum Principle to formulate the so-called co-state equations (“first optimize, then
discretize”). The major benefit of an indirect method, when compared to a direct method, is that an indirect
method will generally be more accurate and will have a more reliable error estimate [22]. However, these
methods are highly sensitive to initialization, require complex derivation of the necessary conditions, and
lack flexibility [21, 23].

3. Direct Methods: In direct methods, the OCP is transcribed into a finite-dimensional Nonlinear Program
(NLP), by discretizing the controls and states with respect to time (“first discretize, then optimize”). The
NLP can be solved with well-established optimization techniques, e.g. Sequential Quadratic Programming
(SQP) [21]. One of the most important advantages of direct compared to indirect methods is that they can
easily treat (nonlinear) inequality constraints [24].

2.4.2 Direct Methods

In the context of Nonlinear Model Predictive Control (NMPC), direct methods are favoured [25]. To solve the
OCP, one has to transcribe it in a NLP. In this form, the problem can be passed to a commercial solver, such
as qpOASES [26] or HPIPM [27]. Transcription greatly affects: accuracy, numerical stability and computational
complexity. A transcribed problem has the following form:

min
z∈Rn

J(z) (35a)

subject to

zmin ≤ z ≤ zmax (35b)

Az ≤ 0 (35c)

c(z) ≤ 0 (35d)

The direct methods could be further classified as sequential or simultaneous methods. Their difference is that
sequential methods parameterize only controls, while the simultaneous methods parameterize both states and
controls. The direct methods are the following:
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1. Single shooting: Only the continuous input u(t) is parameterized through a set of discrete variables, e.g.,
polynomial coefficients w. The state x(t) results from forward simulation. The solver verifies that the input
and the states satisfy the various constraints.

2. Multiple shooting: This method works by breaking up a trajectory into some number of segments and
using single shooting to solve for each segment. In this method, defect constraints are introduced; constraints
to match the end of one segment with the start of the next one. Also, there are more decision variables,
as the initial state xi for each segment is also a decision variable. Although more constraints and decision
variables are added, the optimization problem becomes easier. That is because the relationship between the
decision variables and the objective function and constraints becomes more linear [28]. Also, the problem is
sparse, and efficient algorithms can be used to solve it [23].

A schematic overview of single and multiple shooting is presented in figure 2.

Figure 2: Single Shooting vs Multiple Shooting.

3. Collocation: Both the continuous input u(t) and state x(t) are parameterized. The dynamics are enforced
as constraints at special points in the trajectory, called collocation points. The dynamics constraints can be
enforced in either integral (x =

∫
f(x,u)dt) or derivative form (ẋ = f(x,u)).

2.4.3 Nonlinear Model Predictive Control

The principle of NMPC is to repeatedly solve finite-horizon optimal control problems described by (33) and
(34), using direct numerical methods. The procedure is described in Algorithm 1 [29].

Algorithm 1 Model Predictive Control Loop.

1: Set x0 = x̂(t) ▷ where x̂(t) is the latest available estimate of the system state.
2: Solve a finite-horizon OCP.
3: Apply the first input (u∗

0) to the system.
4: The state of the system evolves based on its dynamics.
5: After Ts, repeat the procedure. ▷ TS is the sampling time of the controller.

The final time tf of the OCP is called prediction horizon Th and is usually fixed. There is also the concept
of control horizon Tc, if the control input is allowed to change until Tc < Th. As the OCP is solved using direct
methods, it must be first discretized. The continuous OCP is sampled at N + 1 points, which are called stages.
The objective function (33) is evaluated only based on the state X = [x0, x1, ..., xi, ..., xN ] and control input
U = [u0, u1, ..., ui, ..., uNC

] (with NC ≤ N − 1) at these points. To achieve higher resolution in the prediction,
the simulation steps Ns between two consecutive stages can be increased. These concepts are illustrated in figure
3.
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Figure 3: Principle of a Model Predictive Controller. The black line represents the predicted state trajectory, with
xi denoting the state values at each stage, and blue crosses indicating simulation steps. ri denotes the reference
state trajectory when MPC is used for trajectory tracking. u represents the control input at each stage within the
control horizon Tc, while the prediction horizon is denoted by Th.

2.5 Software tools

This subsection will present in short the software tools that were used in the thesis.

2.5.1 Robot Operating System - ROS

The Robot Operating System (ROS) is a software development kit (SDK) used to create robotic applications.
The fundamental concepts of ROS are nodes, messages, topics and services. A ROS node is a standalone software
module. It can communicate with other nodes via exchanging messages, which are strictly-typed data structures.
A node sends a message by publishing it to a given topic, and any node requiring this message subscribes to the
corresponding topic. Apart from this continuous and asynchronous data streaming between nodes, synchronous,
request-response communication can be achieved through the use of services [30].

ROS is designed to support multi-computer networks, employing a peer-to-peer topology for node communi-
cation. This architecture facilitates efficient data exchange and distributed processing. Additionally, Secure Shell
(SSH) protocol can be utilized to remotely connect to the robot’s computer, allowing for logging information and
remote operational control. ROS was used to create the software modules that were used by the actual robot.

2.5.2 Matlab - Simulink

Simscape is a physical modelling language using block diagrams. It is possible to create electronic and mechan-
ical systems by assembling fundamental components into a schematic. It also provides a multibody simulation
environment for 3D mechanical systems. The software includes functionality for importing CAD models, contact
scenarios and visualization. The user friendly interface makes simulink suitable for rapid prototyping of new control
architectures.

2.5.3 Drake

Drake is a C++ toolbox started by the Robot Locomotion Group at the MIT and is actively maintained by the
Toyota Research Center. It features a collection of tools for analyzing the dynamics of robots and building control
systems for them, with a heavy emphasis on optimization-based design/analysis [31]. Drake supports multibody
simulations and has advanced contact modelling capabilities [32].

The modelling philosophy of drake is similar to simulink. Each system is treated as a block with input-output
(I/O) ports and is connected with other systems. The main components of a drake simulation are presented below.

• Diagrams: It represents a combination of systems and it contains information about their connectivity.
It is essentially the top-most abstraction layer. It is considered a new system and it is created through a
DiagramBuilder.

• LeafSystem: A template class for generic static and dynamic subsystems that interact with the rest of the
Diagram through their user-declared I/O ports. Used to implement e.g. controllers, sensors and actuator
dynamics. Every user defined system inherits from LeafSystem.
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• Context: It is a class containing the state, the input and system parameters of a system4. A context is
designed to be used only with its corresponding system. Systems usually provide methods to modify their
context, such as methods to set initial conditions and retrieve the current state.

• Simulator: An object advancing the state of a continuous/discrete/hybrid dynamical system (i.e. Diagram)
forward in time. The Diagram itself only provides the Simulator with information such as state derivatives
and is otherwise unchanged. Only the Diagram’s Context gets modified by the Simulator.

• MultibodyPlant: It represents a physical system consisting of a collection of interconnected bodies. A
MultiBodyPlant may contain multiple model instances. Each model instance corresponds to a set of bodies
and their connections (joints). Usually a new model instance is added from a URDF file.

• MeshcatVisualizer: A wrapper for Meshcat5, a 3D visualizer running in its own thread spawned by
the MeshcatVisualizer. The object receives geometry changes from the SceneGraph, which handles all
the geometry based operations, and publishes them to the underlying visualizer. This object provides the
preferred method for visualizing simulations in Drake.

2.5.4 Acados Framework Details

Acados is a free and open source software package that contains solvers for fast embedded optimization intended
for fast embedded applications. It interfaces with high-level languages such as Python and Matlab for quickly
designing optimization-based control algorithms and can generate efficient C code for deployment.

Acados can handle the following6 optimization problem:

min
x,u,σ

∫ T

0

[l(x,u,p) + zs(s)] dt+m(xE ,p) + zs,E(sE) (36)

so that

f(x, ẋ,u,p) = 0 (37a)

gl ≤ Cx+Du≤gu (37b)

hl ≤ h(x,u,p)≤hu (37c)

where:

• x is the state vector,

• u is the control input vector,

• p are the model parameters,

• σ ≥ 0 is the slack variables vector,

• l(x,u,p) represents the stage cost,

• m(xE ,p) represents the terminal cost,

• zs(s) is the slack variables cost function, and zs,E(sE) represents the terminal slack variables cost.

• Equation (37a) represents the dynamics constraint

• Equations (37b,37c) are generic constraint formulations supported by acados.

Below, some more details are given for the above formulation.

• Cost: The stage and terminal cost can be formulated using linear least squares (LS), non-linear least squares
(NLS), or even a generic nonlinear function.

4A diagram is also a system, and thus it also has a corresponding diagram.
5https://github.com/meshcat-dev/meshcat
6This is not the most general description. Acados can handle DAE dynamics, which include algebraic variables. Also, input and

state box constraints and terminal constraints can be specified directly. The description in this section is used to guide the discussion.
A more detail description can be found here: https://github.com/acados/acados/blob/master/docs/problem_formulation/problem_
formulation_ocp_mex.pdf
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• Equality constraints: Acados support only inequality constraints, so all equality constraints are trans-
formed to inequalities with identical lower and upper bounds.

• Slacking constraints: Slacked constraints are formulated as follows (where f is any possible constraint):

fl − σl ≤ f(x,u) ≤ fu + σu (38)

and the following term is added in the objective function:

zs(s) =
[
σl σu 1

] Zl 0 zl
0 Zu zu
zl zu 0

σl

σu

1

 (39)

Usually Zl = Zu = Z and zl = zu = z. Selecting z > 0, enforces the constraints more strictly7.

The OCP described by (36) and (37) is discretized using multiple shooting [33]. To solve the resulting NLP,
acados interfaces several solvers; HPIPM, which uses an interior-point method [27], and qpOASES which is an
active set QP solver [26].

7The expression (39) evaluates to Zσ2 + 2zσ for a single slack variable. The minimum is found at σ∗ = −z/Z, (Z > 0). For z < 0,
the constraint is enlarged. For z > 0, as σ > 0, the slope at σ = 0 becomes more steep, which increases the rate at which the slack
variable penalizes the objective function as the constraints are violated.
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3. Modelling

This section provides a comprehensive overview of the system’s physical modeling. Initially, the kinematic
analysis of the robot takes place. Next, key points about the dynamic modeling and the verification of analyt-
ical models are presented. The workspace of the robot is then analyzed in order to extract various operational
constraints for the system. Finally, the section discusses the corresponding models in simulation software.

3.1 Leg Kinematics

Olympus’ leg is depicted in figure 4, in which the frames that will be used in the kinematic analysis are included.
{BL} is the base frame of the leg and it coincides with {MH} for qMH = 0. The axis of rotation is the z axis,
apart from the motor housing joint, which rotates about the x axis, according to the right hand rule. It must be
noted, that chain 1 always includes the leg paw. The generalized position of the leg is given by (these angles are
defined in figures 4 and 5):

q = [qMH , q11, q21, q12, q22]
T (40)

Figure 4: Kinematic Definitions and coordinate frames for Olympus’ leg. (Red: x-axis, Green: y-axis, Blue: z-axis)

There are two different configurations8.

• Configuration 1: front right (FR) and rear left (RL) legs

• Configuration 2: front left (FL) and rear right (RR) legs

In figure 5 these configurations are displayed, along with the joint zero positions. In table 3 the corresponding
angle offsets9 are presented. In table 4, the angle limits of the joints are displayed (red angles are correspond to
configuration 2).

8The front right leg can be rotated and used as is (with its corresponding frames) for the rear left one. The same is true for the
front left and rear right ones. But the front right leg cannot be rotated to be inserted in the front left one.

9Offsets (as they are extracted from the urdf) and θij are measured from the previous frame, while qij are measured from the joint
zero position.
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(a) Configuration 1. (b) Configuration 2.

Figure 5: Joint angles of the leg in each configuration.

Table 3: Joint angle offsets.

Offsets Configuration 1 Configuration 2
qMH,offset −π/2 θMH = θMH,offset + qMH θMH = θMH,offset + qMH

q11,offset 2.3095 θ11 = θ11,offset − q11 θ11 = −θ11,offset+q11
q21,offset 1.3265 θ21 = θ21,offset + q21 θ21 = θ21,offset + q21
q12,offset 0.83482 θ12 = θ12,offset − q12 θ12 = −θ12,offset+q12
q22,offset -1.3233 θ22 = θ22,offset + q22 θ22 = θ22,offset + q22

Table 4: Joint angle limits.

Lower Limit Upper Limit
qMH −π / −π/2 π/2 / π
q11 −π 1.94
q21 −2.4 1.58
q12 −1.94 π
q22 −1.51 2.4

3.1.1 Forward Kinematics

The aim of the forward kinematics is to find the end effector position in the {BL} frame of the leg, BLPEE .
Also, as the robot only reads the actuated joint values (through the servo feedback), the direct kinematics are
needed to get the full generalized position of the leg.

The kinematic analysis of each leg is done with respect to the leg frame. The kinematics are presented for
configuration 1, and indices i = 1, 2 signify the kinematic chains. The parameters that change for the second
configuration are marked with red . The procedure is described below; firstly MHPEE is calculated based on the
closed kinematics of an RR manipulator, and then the position is transformed in the {BL} frame.
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Forward Kinematics Procedure

1. Initially, θ1i is calculated based on table 3.

θ1i ← −(q1i − θoff,1i) (41)

2. Then the position of joints j21, j22 is calculated in the {MH} frame.

Pci ≜
MHPj2i =

MHPj1i + l1i

[
cos(θ1i)
sin(θ1i)

]
(42)

3. Then the end effector position MHPEE is calculated as the intersection of C1(Pc1, l21) and C2(Pc2, l22).
By defining the following:

vc = Pc2 −Pc1, d = ||vc||2, vn =
1

d
[−vc,Y , vc,X ]T

and calculating the quantities presented in figure 6b :

a =
d2 + l221 − l222

2d
, h =

√
l221 − a2

The intersection point is:
PEE,2D ≜ MHPEE = Pc1 + avc +hvn; (43)

There is always only one valid intersection point (blue point in in figure 6a ). Also, because l211+l212 < l222+l221,
it is not possible for the leg to reach the other intersection point10.

(a) Selected intersection point for the calculation of
MHPEE .

(b) Circle intersection helper quantities.

Figure 6: Circle intersection as part of the Direct Kinematics.

4. Finally, the intersection point is transformed from {MH} to {BL}:

BLPEE ← Rx(qMH) MHPEE (44)

The forward kinematics procedure is presented in algorithm 2.
The blue quantities are saved to be used in the state estimation algorithm, presented in algorithm 3. Having

found the intersection point, it is easy to calculate the joint angles of the whole leg.

Joint angle estimation

1. Calculate the vectors along link1i and link2i :

v1i = Pci − MHPj1i (45)

v2i =
MHPEE − Pci (46)

10Without resulting in a self-colliding configuration.
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Algorithm 2 Forward Kinematics Algorithm.

1: function DK(qm) ▷ qm = [qMH , q11, q12]
T

2: Call END EFFECTOR 2D(qm)
3: return END EFFECTOR BL(qMH)
4: end function
5: function END EFFECTOR 2D(qm)
6: Calculate θ1i
7: Calculate Pci

8: Calculate PEE,2D as the intersection of C1(Pc1, l21) and C2(Pc2, l22)
9: end function

10: function END EFFECTOR BL(qMH)
11: Transform intersection point from {MH} to {BL}
12: return BLPEE

13: end function

2. Calculate θ2i:

θ2i = acos

(
< v1i,v2i >

||v1i||2 ||v2i||2

)
(47)

The acos function return values in [0, π]. Thus, the possible angles for θ2i are 2. The angle that results
in a configuration of a convex quadrilateral is initially selected. That means that at first θ21 ∈ [0, π] and
θ22 ∈ [−π, 0]. This assumption is checked in the following step.

3. To find the sign of θ2i, the angle of the position of the end effector is compared with θ1i. The angles of the
end effector are found using the following expressions:

MHPj1i
EE,i =

MHPEE − MHPj1i

θEE,i = atan2(MHrPj1i
Y,EE,i,

MHr Pj1i
X,EE,i)

Then, these angles are expressed in [−π/2, 3π/2] for configuration 1 and [−3π/2, π/2] for configuration 2
before doing the comparison.

4. Finally, q2i is calculated
11 using table 3.

q2i ← θ2i − qoff,2i (48)

The state estimation algorithm is presented in Algorithm 3.

Algorithm 3 State Estimation Algorithm.

1: function STATE ESTIMATION(qm)
2: Call END EFFECTOR 2D(qm)
3: Calculate θ2i
4: Verify sign of θ2i
5: q2i ← θ2i − qoff,2i
6: return [qMH , q11, q21, q12, q22]

T

7: end function

3.1.2 Inverse Kinematics

Given a desired end effector position BLPd, the corresponding joint angles (q = [qMH , q11, q21, q12, q22]
T )

must be found. The desired position is expressed in the {BL} frame.

11Previously, the θ2i is calculated exactly as the one shown in 5. This is in contrast to the IK calculation that are presented next.
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(a) Finding qMH for configuration 1. (b) Finding qMH for configuration 2.

Figure 7: Finding qMH .

Finding qMH

Using r ≜ MHPz,j1i and figure 7, the desired end effector position in {BL} is:

Pd =

[
yd
zd

]
= r

[
cos(θ)
sin(θ)

]
+ λ

[
−sin(θ)
cos(θ)

]
By squaring both sides and adding them, we get:

λ = ±
√
y2d + z2d − r2 (49)

As the clock-wise normal vector was used (as seen in figure 7), the sign of λ in (49) can be specified for each
configuration.

• For configuration 1: λ > 0

• For configuration 2: λ < 0

The quantity inside the square root must be non-negative, and thus the first check for the feasibility of the problem
is:

y2d + z2d − r2 > 0 (50)

Knowing λ, the following system of equations is created:[
r −λ
λ r

]{
cos(θ)
sin(θ)

}
=

{
yd
zd

}

c ≜ cos(θ) =
ryd + λzd
r2 + λ2

s ≜ sin(θ) =
rzd − λyd
r2 + λ2

θ = atan2(s, c) (51)

Thus, qMH can be calculated12 using table 3:

qMH = θ + π/2 (52)

12The determinant can be skipped when calculating θ, as it doesn’t affect the result.
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(a) Expressing MHPD for configuration 1. (b) Expressing MHPD for configuration 2.

Figure 8: Expressing MHPD.

Finding q11, q21, q12, q22

Pd must be expressed in the {MH} frame.

BLRMH = Rx(qMH)

and thus
MHP = Rx(−qMH) BLP (53)

Next the distance of the end effector from each hip joint is calculated.

P∗
i =MH P∗ =MH P−MH Pj1i (54)

The inverse kinematics problem is now a RR manipulator inverse kinematics problem, with a known solu-
tion.The following is defined13:

θ∗2i =

{
−θ2i, for configuration 1

θ2i, for configuration 2
(55)

The RR inverse kinematics problem is the following:

P∗
i = l1i

[
c1
s1

]
+ l2i

[
c1+2∗

s1+2∗

]
(56)

Solving for θ2i:

θ∗2i = ±acos

(
P ∗2
i,X + P ∗2

i,Y − l21i − l22i
2l1il2i

)
(57)

The acos function is defined in [−1, 1], and thus the second feasibility test is the following:

−1 ≤
P ∗2
i,X + P ∗2

i,Y − l21i − l22i
2l1il2i

≤ 1 (58)

There are in general two solutions. Knowing θ∗2i, system 56 becomes:

13In the classic kinematic analysis of RR, all angles are measured from the previous link in the Fixed Frame (which here is
the {MH} frame, as P∗

i is the relative distance from hip joints.). See this: http://www.diag.uniroma1.it/~deluca/rob1_en/10_

InverseKinematics.pdf#page=18. It must be noted that θ1i angles match the above specification by definition (the parent frame of
{j1i} is {MH}, as seen in figure 5), but θ2i in configuration 1 have opposite positive direction
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[
l1i + l2ic2∗ −l2is2∗

l2is2∗ l1i + l2ic2∗

]{
c1
s1

}
=

[
k1 −k2
k2 k1

]{
c1
s1

}
= P∗

The determinant is det = k21 + k22 > 0, so the system always has a solution, which is:

c1 =
k1P

∗
X + k2P

∗
Y

k21 + k22

s1 =
k1P

∗
Y − k2P

∗
X

k21 + k22

θ1i = atan2(s1, c1) (59)

If the IK problem is mathematically feasible (meaning conditions (50) and (58) are true) there are two solutions
sets: {

(θ1i, θ∗2i)
(θ′1i, −θ∗2i)

}
where θ1i ∈ [−π, π] and θ∗2i ∈ [0, π]. To find the joint angles, the angle offsets must be compensated. Using (55)
and table 3 we get:

q1i =

{
−θ1i + q1i,offset, for configuration 1

θ1i + q1i,offset, for configuration 2

q2i =

{
−θ2i − q2i,offset, for configuration 1

θ2i − q2i,offset, for configuration 2

Also, the results are wrapped in [−π, π].

Checking feasibility of IK solutions

For each chain, there are two solutions sets, and thus there are 4 total combinations of the solution sets. The
mathematical feasibility of the IK does not guarantee that the solutions are feasible in the real system. The
solutions of the IK must respect the joint angle limits as well as result in non self-colliding configurations.
Thus, each pair of solution sets is checked further.

Checking whether the joint limits are satisfied is trivial, and thus it will not be presented. Checks for self
collision are presented below.

1. Shank distance: The distance of the shank joints must be adequate so that they do not collide. Using
(42), shank collision occurs when :

||Pc2 −Pc1||2 ≤ DMARGIN (60)

DMARGIN must be larger than the joint connection (0.025m) and is selected as 0.03.

2. Hip clearance: The hips14 must not intersect. Using (45) to define v1i, the intersection point of the hips
is found solving the following equation:

Pint =
MHPj11 + λv11 = MHPj12 + κv12 (61)

The following hold true:

• For λ = 1, κ = 1, the intersection point coincides with joint21 or joint22 respectively, from the definition
of v1i.

• For λ < 0, κ < 0 the intersection point is behind the hips and for λ > 1, κ > 1 it is further than the
hips.

14See figure 1.
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• For 1 > λ > 0, 1 > κ > 0 the intersection point is alongside the hip 1 or 2 respectively.

For a collision to happen the following must be true:

κ ∈ [0, 1 +DCLEARANCE ] AND λ ∈ [0, 1 +DCLEARANCE ] (62)

DCLEARANCE is a margin that handles intersections that happen further than joint2i origin but are inside
the radius of the mechanical joint. DCLEARANCE = DMARGIN/2l1i

The results of the feasibility checks are showcased in an example in figure 9. In figure 9a the shank distance
constraint is violated while in 9c the hip clearance constraint is violated. To store the feasibility information, a
boolean matrix is created where each entry corresponds to a solution pair and its value (true/false) shows if it is
feasible. The corresponding feasibility array is shown in table 5.

(a) Chain1: set 1, Chain2: set 1. (b) Chain1: set 1, Chain2: set 2.

(c) Chain1: set 2, Chain2: set 1. (d) Chain1: set 2, Chain2: set 2.

Figure 9: Example of feasible solutions generated by Inverse Kinematics without additional constraints.

Table 5: Calculated Feasibility Matrix example.

chain 2 solution set 1 chain 2 solution set 2
chain 1 solution set 1 false true
chain 1 solution set 2 false true

The complete Inverse Kinematics procedure is presented below in Algorithm 4. It is evident that the IK does
not return a specific solution and further logic must be employed to select the most appropriate solution. Two
extra criteria are used. Firstly, solutions that result in a convex quadrilateral are preferred. If there are still
multiple solutions, then the one with the smallest angle distance from the current state is used15.

15Even with this distance criterion, if IK are used to plan a whole trajectory, a waypoint that minimizes a next step distance does
not necessarily result in a Cartesian trajectory with minimum angle displacement.
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Algorithm 4 Inverse Kinematics Algorithm.

1: function IK(PD)
2: if Not feasible then ▷ Conditions (50) and (58) do not hold
3: return False
4: end if
5: Calculate qMH , q1i, q2i. ▷ Using (52), (59) and (57).
6: Store solutions for each chain in SOL ci .
7: Update feasibility matrix . ▷ Using conditions (60) and (62).
8: if feasibility matrix is all false then
9: return False

10: else
11: return True
12: end if
13: end function

3.1.3 Transformation for the Front Right Leg

The leg dynamics and body kinematics are based on an updated model of the system that uses a different frame
convention. The transformation from the kinematic frame convention to the convention employed by the robot is
the following:

Kθ = θoffset,K +DT
rθ

where Kθ is the angle in the kinematics convention, rθ is the motor angle in the actual robot, θoffset,K is the angle
of the joints in the kinematics convention to reach the motor zero position and DT is a diagonal transformation
matrix that accounts for the positive direction of the motors16.

For the front right leg, which is the one that will be used in the dynamics, the new joint limits are presented
in table 6.

Table 6: Joint angle limits for front right leg in the robot convention.

Lower Limit Upper Limit
qMH −π/2 π
q11 −1.2013 3.8803
q21 −2.7504 1.2296
q12 −1.2040 3.8776
q22 −1.2222 2.6878

3.2 Body Kinematics

A relation that connects the leg frames to the quadruped frame is needed. The relevant frames of the legs and
the torso are depicted in figure 10. Thus, a point can be transformed to the base {B} frame from a leg frame
{BL} using :

BTBL = T(p,0) (63)

where p = [DX, DY, DZ]T represents the translation vector. The values for p for each leg are presented in table
7.

Table 7: Transform data for olympus’ legs.

Configuration DX [mm] DY [mm] DZ [mm]
FR 1 143.3 −105 0
FL 2 143.3 105 0
RR 2 −143.3 −150 0
RL 1 −143.3 150 0

16Thus DT contains {1,−1} in the diagonal and DT = D−1
T .
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Figure 10: Body Transforms. Figure 11: Definition of closure constraint.

3.3 Leg Dynamics

To formulate the Model Predictive Control (MPC) of the leg planner, a closed-form representation of the
leg dynamics is essential. These dynamics are derived using the Euler-Lagrange method, as discussed in section
2.3. Initially, the unconstrained dynamics are obtained directly based on the dynamic and geometric properties
included in the URDF. Subsequently, these dynamics are extended to integrate the chain closure constraint, with
the procedure described in section 2.3.2. In this section, some details on formulating the closure constraint are
presented. Verification of the analytical dynamic model is conducted by comparing it against the Simulink and
Drake simulation models.

The holonomic constraint to ensure the closure of the mechanism is the following:

h = MHPEE,1 − MHPEE,2 = 0 (64)

where MHPEE,i is the position of the end effector expressed with the state variables of the i-th kinematic chain.
Its geometric interpretation is presented in figure 11. The constraint has the following17 form:

h =

hX

0
hZ

 = 0

as the two links have no degree of freedom in the y direction of the {MH} frame. Thus the kinematic closure
is ensured by two constraints, hX , hZ that depend on q11, q21, q12, q22. As discussed in section 2.3.2, H = ∂h

∂q

(where h = [hX , hZ ]
T ) must be full rank18. Using a 200 × 200 grid for q11 and q12, and using algorithm 3 to

calculate the full state q, it was verified that H is full rank in the whole workspace of the leg.

3.3.1 Dynamic Modelling Validation

To validate the analytical model19, simulations were compared against the Simulink and Drake multibody
models. The results of this comparison are illustrated in figure 12. It can be observed that the simulations are
very close for a long simulation horizon. The properties and solvers of the simulation are presented in table 8. The
simulation represents the response of the system,influenced solely by gravitational forces, with the following initial
conditions:

[qMH,0, q11,0, q12,0]
T = [0.5, 0.2, 0.3][rad]

[ωMH,0, ω11,0, ω12,0]
T = [0, 0, 0][rad/s]

17In the robot frame convention: R[x̂, ŷ, ẑ] = K [x̂, ẑ,−ŷ].
18Adding the third constraint hy = 0 or expressing the constraints in a different frame e.g. {MH}, results in depended constraints.

Thus their jacobian is not full rank.
19As these are the dynamics that will be deployed in the controller, terms with magnitude smaller than 1e− 3, were discarded from

the matrices of the dynamics. Their effect is indeed negligible, as seen in figure 12.
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Table 8: Validation simulation parameters.

solver Absolute Tolerance Relative Tolerance
matlab ode15s 1e-7 1e-4
simulink auto( ode15s ) 1e-7 1e-4
drake Runge-Kutta 3 (RK3) - 1e-4

Figure 12: Simulation comparison between analytical and simulink model.
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3.4 Workspace Constraints

The leg’s movement is restricted by various workspace constraints, arising from potential self-collisions and
interactions with the main torso. It is necessary to have a mathematical expression for these constraints. For that
reason the procedure outlined in figure 13 was followed.

Collision
Geometry
Modelling

Collision
Checks

Collision
Binary Map

Manual
Extraction of
constraints

Figure 13: Constraint extraction procedure.

First, a suitable collision geometry must be created for the robot. The geometry is used both in the mathematical
formulation of the constraints and in the simulation of Olympus. It should provide sufficient detail to capture all
potential collisions while ensuring it does not unnecessarily restrict the robot’s movement. At the same time,
both matlab and drake handle only convex collision checking20. Therefore, the geometry must be decomposed
into simpler convex shapes, resulting in a union of these shapes, as illustrated in Figure 14. This geometry was
generated using meshlab21.

(a) Example of decomposing the collision geometry of a
link into convex shapes. The convex hull of the whole
geometry is too coarse.

(b) Olympus Collision Geometry.

Figure 14: Details on the creation of the collision geometry.

Next, a grid search was conducted to identify the colliding configurations, represented in a binary map (0: Col-
lision Free, 1: Colliding configuration). The detailed procedure is outlined in Algorithm 5. Using the binary map,
mathematical expressions for the colliding configurations were extracted. Whenever possible, these expressions
were formulated as polytopic state constraints, which take the following form:

Cx < c (65)

If it is not possible to express the constraints using linear functions, then general non-linear constraints are used
that take the form:

G(x) < g (66)

20See https://www.mathworks.com/help/nav/ref/checkcollision.html and https://github.com/RobotLocomotion/drake/

issues/20618.
21https://www.meshlab.net/
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Algorithm 5 Leg collision checking procedure.

1: procedure legCollisionCheck
2: Set NMH , N11, N12

3: A = zeros(NMH , N11, N12)
4: for k = 0 to NMH − 1 do
5: for i = 0 to N11 − 1 do
6: for j = 0 to N12 − 1 do

7:

qMH = (1− k/(NMH − 1))qMH,l + (k/(NMH − 1))qMH,u

q11 = (1− i/(N11 − 1))q11,l + (i/(N11 − 1))q11,u

q12 = (1− j/(N12 − 1))q12,l + (j/(N12 − 1))q12,u

▷ l : lower limit, u : upper limit

8: q = state estimation ([qMH , q11, q12]
T )

9: A(k, i, j)← collisionCheck(q) ▷ collisionCheck returns true if it detects collision.
10: end for
11: end for
12: end for
13: end procedure

Below, each collision test and the corresponding constraints are presented.
Test 1: Self collisions. The resulting constraints are shown in figure 15, while their equations are presented

below:

−q11 − q12 + 3.8020 > 0 (67a)

−0.7284q11 − q12 − 0.2714 < 0 (67b)

−1.3730q11 − q12 − 0.3726 < 0 (67c)

Test 2: Collision with the main body. The resulting constraints are shown in figure 16 for selected qMH values
while their equations are presented below:

0.6708q11 − q12 − 1.9298 < 0 (68a)

F11(qMH)− q11 > 0 (68b)

F12(qMH)− q12 > 0 (68c)

where F11, F12 are smooth functions. F12 is a fifth degree polynomial and F11 is a function composed of the
following (with k1 = 49.4, x0,1 = 0.9, k2 = 30, x0,2 = 0.95):

σ(x) =
1

1 + e−k(x−x0)
, y1 = −0.475x+ 1.9, y2 = −19.4x+ 21.5

Their complete expressions are presented below:

F11(x) = σ1y1 + (1− σ2)y2

F12(x) = −0.8116x5 + 8.9615x4 − 38.6474x3 + 81.1281x2 − 83.6970x+ 36.4564

The resulting nonlinear constraints are shown in figure 17.
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Figure 15: Leg workspace constraints resulting from checking leg self collisions.

Figure 16: Leg workspace constraints resulting collisions with rest of the robot for selected qMH values.
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Figure 17: Nonlinear workspace constraints.

3.5 Modelling Implementation

There were two packages used to simulate the quadruped; simulink, used to prototype the MPC controller, and
drake, used for the final verification simulations.

Some details that are shared across both simulating frameworks are the following:

• During a jumping phase, the robot is free falling. The system is analyzed from a reference frame attached
to the robot, which is accelerating with an acceleration of g. Consequently, the limbs do not experience
acceleration relative to this body frame, and therefore, gravitational forces are not present in the reference
frame used for the analysis. As only the orientation of the quadruped is of interest, and not its position,
gravity is disabled in both simulations.

• Both frameworks do not explicitly handle close kinematic chains. A work-around is to add a virtual spring.

3.5.1 Simulink Implementation Details

The absence of gravity allows the use of a spherical joint to connect the quadruped to the simulation world.
As the global position of the robot is of no interest, this joint does not introduce unnecessary degrees of freedom.
At the same time, it encodes rotations using quaternions. So, the simulation does not suffer from gimbal lock and
provides immediate feedback in quaternions for the controlling modules. To close the kinematic chain, a planar
joint was used, as the kinematic chains move in the same plane by default. An overview of the simulation plant is
shown in figure 18.

The simulation parameters, such as solver options and virtual spring stiffness and damping, are presented in
table 9. The presence of the virtual spring, which had high stiffness to ensure the kinematic closure of the leg,
motivated the choice of this particular solver, as it is suited for stiff problems.

Table 9: Simulink simulation parameters.

Solver ode15s
Relative
Tolerance

1e-3 Kspring 9e4

Max step size 1e-3
Absolute
Tolerance

1e-6 Dspring 3e4
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Figure 18: Model of olympus in simulink.

3.5.2 Drake Implementation Details

In drake, the torso is connected via a floating joint in the world, as it is the only joint that is parameterized
using quaternions, and thus does not suffer from gimbal lock. To close the kinematic chain, a bushing joint was
used. The simulation parameters, such as solver options and virtual spring stiffness and damping are presented in
table 10. An overview of the simulation structure is shown in figure 18.

Table 10: Drake simulation parameters.

Solver Runge Kutta 3 (RK3) KX 3e4 DX 2.5e2
Max step size 1e-4 KY 0 DY 0
Relative
Tolerance

1e-4 KZ 3e4 DZ 2.5e2

An overview of the simulation structure is depicted in figure 19. The system outputs are the torso and leg states
and the actuation torques. The current implementation has integrated PID position controllers, which mimic the
robot current control interface. Finally, the simulation can be launched with revolute body joints and the testbed,
to mimic real life experiments.
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Figure 19: Structure of drake simulation
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4. Control design

The goal of the control system is to stabilize the attitude of the quadruped’s torso and reach the desired
orientation qD by moving the legs of the robot. The legs themselves are a complex dynamical system, with various
workspace constraints (linear and nonlinear). Also, the relationship between the motor torques and leg movements,
and the body-inflicted torques and the resulting rotational motion of the body, is not linear. For this reason, a
hierarchical approach is used, a conceptual overview of which is shown in figure 20.

Body
Planner

Leg Planner
Low Level
Controllers

Plant

Attitude Controller

τ∗
B

q∗

u∗
uqD

Figure 20: Control architecture conceptual overview.

Firstly, the torso trajectory is calculated, in the Body Planner module, along with the required body torques
τ∗B . At this stage, the robot is treated as a single rotating rigid body with fixed inertia22. Then, the resulting body
torques are fed to the second module, the Leg Planner, which finds the corresponding leg movements to produce
the desired body torques, while respecting the workspace limits. The full leg actuation torques u∗ and desired
joint angle trajectories q∗ are then given as references to the low level controllers of the robot.

The planning modules, are designed using non-linear model predictive controllers (NMPC), in order to incor-
porate various input, task and workspace constraints as needed. The MPC is implemented using the acados open
source framework, which was presented in section 2.5.4. To solve the Leg Planner MPC efficiently, additional
modules are wrapped around the MPC. A resetting strategy is used to enable the controller to plan periodic tra-
jectories online and a torque allocation method exploits the symmetries of the system to avoid collisions between
legs and reduce computational cost by optimizing only one leg motion.

In this section, initially the Body and Leg planner modules will be analyzed. Next, the full controller architecture
will be presented.

4.1 Body Planner

The Body Planner treats the robot as a single rotating rigid body with constant inertia (taken at the home
position), and optimizes the torques that are acted upon it to rotate it to the specified orientation. The body
planner is based on a nonlinear model predictive controller. The formulation of the MPC and the selection of
appropriate parameters is presented below.

4.1.1 MPC Formulation

The MPC for the body planner has the following formulation:

min
x,u

∫ Th

0

[
∥fq∥2Qq

+ ∥ω∥2Qω
+ ∥τB∥2R

]
dt+ ∥fq,E∥2Qq,E

+ ∥ωE∥2Qω,E︸ ︷︷ ︸
Terminal cost terms

+zs,E(sE) (69)

so that

ẋ = f(x, τB) (70a)

fq,E = 0 (70b)

x0 = x(t) (70c)

τB ∈ [τB,l, τB,u] (70d)

where:

• x = [qT , ωT ]T = [w, qx, qy, qz, ωx, ωy, ωz]
T

• τB = [τB,x, τB,y, τB,z]
T is the body torque expressed in the body frame {B}.

It was chosen not to have 4 τB , one for each leg, as with the current formulation, there would be multiple
optimal solutions as the torque in each direction would split arbitrarily between each leg.

22This is a simplification, as the inertia changes as the legs move.
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• The function fq is the error metric (23) presented in (2.2.2). Using this metric, the shortest path is selected
by the controller.

• f(x, τB) is the dynamics constraint. The dynamics of the system are given by (25)

• The lower and upper values for the body torques are: τB,i,u = 10, τB,i,l = −10 [Nm] [12].

• The (slacked) terminal constraint (TC) ensures the solution is close to the desired orientation using the metric
presented in (23). Setting the qE = qD is not a correct formulation, as the deviation would be calculated
treating quaternions as real valued vectors.

• zE(sE) is the slack penalty function for the terminal constraint, with slack weights: ZE = 0.1I3

• Qq = diag([100, 100, 100]), Qq,E = diag([1000, 1000, 1000])

• Qω = Qω,E = diag([10, 10, 100)

• R = diag([10, 10, 10])

To find the more suitable parameters, different variants of the above formulation were tested in closed loop
re-orientation scenarios in simulink. The parameters23 that were modified were: prediction horizon Th, number
of stages N , controller update rate Ts and simulation steps Ns, which are the internal simulation steps of the
nonlinear MPC. Also, some variants do not have a terminal constraint, while others do not have a terminal cost.

The tests include 100 re-orientations scenarios (returning to xref = [1, 0, 0, 0, 0, 0, 0]) from a random initial
orientation. The simulation settings are presented in table 11. The dynamic plant in simulink is a rigid body with
inertia equal to the inertia of the robot in the default configuration. The results are presented in table 12. Settling
time is the time it takes for the body to reach and stay within the specified threshold, which here was chosen as
3◦.

Table 11: Settings for comparing body planner MPC.

Relative Tolerance 1e− 3 Max step size 1e− 3 q0 r,p,y ∈ [−π, π]
Absolute Tolerance 1e− 6 ∆θ convergence 3◦ w0 0

The above formulation can be extended by is penalizing simultaneous torques at different directions (Cross
Variant). To achieve this, the following nonlinear term is added to the cost function:

fcross = (Kcτxτ y)
2 + (Kcτ yτ z)

2 + (Kcτ zτx)
2 (71)

Table 12: Comparison of body planner MPC performance with different parameters.

Settings Variant 1 Variant 2 Variant 3 TC+Cost Only TC Cross Variant
Th 5 2 2 2 2 2
N 50 20 4 4 4 4
Ts 0.1 0.1 0.5 0.5 0.5 0.5
Ns 1 1 5 5 5 5
Terminal Cost yes yes yes yes no yes
Terminal Constraint
and initialization

no no no yes yes yes

Results
AVG(solution time) [ms] 1.86 0.467 0.406 0.46 0.42 1.63
MAX(solution time) [ms] 117 7.26 5.63 2.62 3.34 25.9
Converged /100 98 100 95 100 100 100
AVG(settling time) [s] 2.09 2.0104 2.3286 2.2667 2.3458 3.4114
STD(settling time) [s] 0.52 0.41509 0.59335 0.55475 0.57844 0.7467

Variant 2 is superior than variant 1 as there are fewer decision variables, resulting in faster and more reliable
convergence. In variant 3, using a lower number of stages and a higher number of simulation steps, the same
discretization of the dynamics is achieved, but the controller accounts for a less reactive leg controller that cannot
instantaneously produce a torque in a different direction. The difference between variant 2 and 3 is showcased in
figure 21, where the body planner was used with initial condition24 q0 = [0.7011, 0.0923, 0.5610, 0.4305]T . It can

23The parameters are explained in section 2.4.3
24It is rpy = [π/2, π/3, π/4]
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be observed that the overall trend for the torque is the same, but the MPC accounts for the lack of instantaneous
torque delivery from the legs. Finally, it can be observed that variant 3 converges more reliably with the existence
of terminal constraint.

The usefulness of extending the objective with (71) comes from the architecture of the control system, which is
discussed in section 4.2.3. The performance of this formulation is showcased in table 12 and a representative result
is shown in figure 21. It can be observed that only one direction has a significant torque reference at each instance.
Also, it is a stable formulation, as all tests were successful. It should be noted that the increase in computing time
is not a significant issue, as it remains minimal and allows for deployment at a maximum rate of 500Hz. However,
the average increase in settling time by one second should be taken into account.

Figure 21: Body Planner optimized torques based on different formulations.

The results highlight that the body can be controlled to reach a desired orientation even with large sampling
intervals. However, the stabilization once close to the desired value cannot be tested with that simulation, as the
body changes its inertia when moving its legs.

4.2 Leg Planner MPC

The Leg Planner is responsible for finding the leg trajectories that generate the torques τ ∗
B from the Body

Planner. It is based on a torque tracking MPC complemented by auxiliary modules designed to make the problem
solvable in real-time. Initially, the formulation and tuning of the MPC are discussed, followed by an analysis of
the additional modules.

4.2.1 Position Tracking MPC

Firstly, to test the capabilities of an MPC based planner for the leg, the controller was tested in a simple
position tracking task. The formulation is presented below:

min
x,u

∫ Th

0

[
∥x− xref∥2Q + ∥u∥2R

]
dt+ ∥xE − xref,E∥2QE

+ zs,E(sE) (72)
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so that

ẋ = f(x,u) (73a)

x0 = x(t) (73b)

xN = xE (73c)

x ∈ [xl, xu] (73d)

u ∈ [ul, uu] (73e)

Cx ∈ [gl, gu] (73f)

h(x) ∈ [hl, hu] (73g)

(73h)

where:

• xref = [qT
ref , 0T ]T . qref is the goal configuration for the position tracking task.

• Q = diag(Qq,Qq̇), Qq = diag(50, 50, 50, 50, 50), Qq̇ = diag(5, 5, 5, 5, 5)

• QE = 0.1Q

• R = 10I3

• f(x,u) are the closed chain dynamics (28) described in section 2.3.2.

• Cx are the linear (polytopic) workspace constraints (67,68a).

• h(x) are nonlinear constraints and include the closure constraint25 (64) and the non-linear workspace con-
straints (68b, 68c).

• The terminal constraint is slacked with Zx,E = 10I10×10. The slack variable weights for all the other
constraints are presented in table 13, as they are the same with the torque tracking formulation which will
be presented in section 4.2.2.

Table 13: Slack weights for Leg Planner MPC.

State Constraint Polytopic Constraints
Zx = 200I10×10 Zp = 50I4×4

zx = 103110×1 zp = 10314×1

Closure Constraint Workspace Constraints
Zh,closure = 10I2×2 Zh,ws = 102I2×2

zh,closure = 10212×1 zh,ws = 10312×1

The only hard constraints are the dynamics (73a) and input constraints (73e). Slacking all the other constraints,
ensures the optimization problem is always feasible. Also, as discussed in section 3.3, the dynamics are well defined
across the whole workspace, and thus the optimization problem is well posed.

To find suitable parameters for the MPC that ensure its convergence, some basic tests took place. The setup is
as follows; the system is in a random initial position inside the workspace and tracks a similarly random26 setpoint.
The system starts from rest, meaning q̇ = 0. The purpose of the initial test was to evaluate the impact of the
constraints, and thus the parameters that changed were the constraints and their corresponding slack variables
and the number of stages. The horizon time is set at Th = 1s. A second test followed to tune the MPC.

The results for the initial test are shown in table 14. It is apparent that the constraints do not influence the
solution performance that much. Removing them completely makes the solution 5ms faster on average. Still, in the
unconstrained case, there are outliers with ten times the average solution time. Finally, the generated trajectories
contain many more points outside of bounds, which can result in unwanted collisions in the real system.

However, the results above highlight the difficulty of the MPC to converge for large prediction horizons in an
online setting. This observation is supported by a second set of tests, the tuning tests, where Th and N were
changed. The results are presented in table 15. It can be observed that with N = 30, when the horizon time is
lower, the average solution time slightly decreases, but it does so in a much more repeatable way. The standard
deviation of the solution time is halved. Also, with lower Th, fewer sampling points are needed, which results in
faster solution times. Thus, the key parameter that affects solution times is the prediction horizon.

25As discusses in section 2.5.4, acados does not support equality constraints directly. So the closure constraint is formulated as a
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Table 14: Comparison of leg position MPC performance with different parameters for Th = 1s.

Settings High N Low N Normal N Light slacks Unconstrained
N 50 20 30 30 30
Linear constraints yes yes yes yes no
nonlinear constraints yes yes yes lightly slacked no

Results
AVG(solution time) [ms] 85.2 41.9 54.3 50.7 44.5
STD(solution time) [ms] 35.2 37.6 35.9 39.4 30
MAX(solution time) [ms] 885 369 581 511 455
Converged /1000 999 986 998 994 997
Constraint violations 57 23 31 167 209

Table 15: Comparison of leg position MPC performance with different parameters for lower prediction horizons.

Settings
N 30 30 20 30 15
Th 1 1 1 0.75 0.5
Constraints yes no yes yes yes

Results
AVG(solution time) [ms] 49.1 44 31.3 45.5 22.6
STD(solution time) [ms] 38.4 38.4 14.8 18.3 6.48
MAX(solution time) [ms] 516 446 212 209 55.3
Converged /200 199 198 200 200 200
Constraint violations 8 54 2 13 7

The key takeaway is that the current model cannot be used to optimize large trajectories online. Therefore, the
MPC must be wrapped with additional logic to track the required torque from the body planner. This additional
logic is presented in sections 4.2.3 and 4.2.4. The MPC that is investigated for tracking the body planner torque
in the next section has a short prediction horizon for that reason.

4.2.2 Torque Tracking MPC

The formulation for the torque tracking MPC is the following:

min
x,u

∫ Th

0

[
∥τB − τ ∗

B∥
2
Wtrack

+ ∥u2,3∥2Wu
+ ∥x− xref∥Q2

]
dt+ ∥xE − xref,E∥2WE

(74)

with the same constraints as in the position control task (73), apart from a terminal constraint on state.

• The term ∥τB − τ ∗
B∥

2
Wtrack

tracks the body torque that comes from the body planner. This torque is
calculated using the following equation:

τB−>L = τB = BRMHu =

 u1

cos(qMH)(u2 − u3)
−sin(qMH)(u2 − u3)

 (75)

• The term ∥u2,3∥2Wu
penalizes torques to smoothen the output of the controller.

• The terms ∥x− xref∥Q2 and ∥xE − xref,E∥2WE
guide the controller to specific setpoints in the workspace.

Biasing the optimization with this term compromises the torque tracking capabilities but greatly helps the
solver converge. More details about the selection of these reference points will be given in section 4.2.4.

To tune this MPC, 1000 tests were done per variation. A random point inside the workspace was set as initial
condition q0. Some handpicked reference setpoints were chosen. These are the same as the ones used in the
resetting algorithm presented in section 4.2.4. After some initial converging settings were found, the maximum

two sided inequality constraint with identical bounds.
26Both the initial and final setpoints are valid setpoints which satisfy all the constraints.
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torque that can be tracked from the MPC was found. Having the maximum torque that can be tracked, random
torque values within the maximum limits were generated as the input reference. As pitch and yaw desired moments
can be contradictory, only one of these torques was requested each time. This is in accordance with the architecture
detailed in section 4.2.3. The results of the testing are presented in the following table:

The following parameters were constant throughout the testing:

• Slack weights are the ones presented in table 13.

• Wclosure = 0 and Wu = 5I2

• Wtrack = diag (max(120τ/ ∥τ∥ , [5, 5, 5])). This formulation tracks the main components of the desired
torque while penalizing unwanted torque production.

• The initialization for the MPC is the initial state of the leg for all stages xi = x0 and zero input ui = 0.

• Prediction horizon: Th = 0.1s

So the parameters that were varied in these tests are: the number of stages, the value of the Levenberg-Marquardt
parameter, the value of QE and Q.

Table 16: Comparison of leg torque tracking MPC performance with different parameters for Th = 0.1s.

Settings Variant 1 Variant 2 Variant 3 Variant 4
N 10 10 10 5
Q 0 0 D(0.1I5, 2I5) Qv3

QE D(0.01I5, 0.02I5) 0 QE,v1 QE,v1

λLevenberg−Marquadt 0.075 0.075 0.075 0.05
Results

AVG(solution time) 76.2 170 56.7 27.9
STD(solution time) 25 15.3 12.5 11.8
max weighted torque error [0.2,6,13]% [0,11.7,13]% [0.6,13.4,21.7]% [0.7,8.7,12.8]%
Converged 968/1000 40/1000 100/100 981/1000
Constraint violations 150 20 14 139

The following conclusions are drawn from the results above. First, reference setpoints are required to improve
convergence and solution time. Also, even though stage weights on state tracking compromise torque tracking, they
improve convergence and solution speed. Finally, the main factors which influence solution time are the number of
stages and the chosen Levenberg-Marquardt parameter. To investigate the performance of the prediction horizon,
the following tests were conducted:

Table 17: Comparison of leg torque tracking MPC performance with varying prediction horizon.

Settings Variant 1 Variant 2 Variant 3 Variant 4
N 5 5 6 8
Th [ms] 75 100 125 150
λLevenberg−Marquadt 0 0 0 0.015

Results
AVG(solution time) 8.78 12.2 18.6 34.1
STD(solution time) 5.69 12.5 20.2 29.2
MAX(solution time) 43.6 88.8 105 139
max weighted torque error [0.5,4.2,21.4]% [0,9,19.8]% [2.3,9.1,19,5]% [5.6,9.6,27.6]%
Converged /100 100 99 98 96

It can be seen that the Levenberg-Marquardt parameter can be ditched when the number of stages is small,
and the solution time is greatly improved. Also, increasing the prediction horizon, decreases the torque tracking
capabilities as can be observed from the latest variant with Th = 150ms.
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4.2.3 Torque Allocation

The workspace of each leg interferes with the workspace of the other legs. To implement collision avoidance
between different legs in the MPC, additional nonlinear constraints must be introduced. In fact, these constraints
would use the planned trajectories of the other legs, which are not known a priori. Therefore, at each MPC
step, an iterative approach is necessary, where each iteration uses the previously27 optimized trajectory of all legs
to formulate the constraints. This approach is costly and not suitable for online planning of trajectories. Also,
knowledge from previous MPC updates cannot be used, as the update rate of the Leg Planner MPC is equal to its
prediction horizon. Moreover, the MPC must be solved separately for each leg, further increasing the computational
cost. Finally, it cannot be guaranteed that the legs will not enter in a configuration from which escape is either
impossible or highly costly. The inability of the MPC to handle large horizons (even with simpler constraints) that
was observed in section 4.2.1, enhances this problem.

To avoid this issue, a torque allocation strategy is employed that takes advantage of the following facts:

• Each leg has a similar range of motion28; The motor housing joint has a range of around 270◦ while the hip
motors have a range of 291◦.

• Each chain has identical link lengths, as seen in table 1 and similar inertial characteristics.

• The workspace constraints are almost identical. Differences exist only in the roll direction and in the
workspace constraints that come from the collision of the front legs with the rear motor housing. Both
of them can be handled with suitable offsets.

Using the above observations, the optimal trajectory of one leg, the front right one, can be projected into the
other using simple linear transformations.

Same-side legs: The workspace of same-side legs interferes the most. Thus, to avoid same-side leg collisions,
the rear legs mimic the movements of the front ones. This allocation strategy is implemented with the following
transformation: qMH

q11
q12


RR

=

−1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

PrR

qMH

q11
q12


FR

,

qMH

q11
q12


RL

=

−1 0 0
0 0 1
0 1 0


︸ ︷︷ ︸

PrL

qMH

q11
q12


FL

(76)

(a) Rolling Allocation DOF.

(b) Pitch-Yaw Allocation DOF.

Figure 22: Allocation degrees of freedom (DOF).

Opposite-side Projection: Given the relation-
ship between same-side legs, only one transformation
must be further specified; the transformation of the
trajectories from the front right to the front left leg.
From (75), the only actuator that produces rolling
torques is the one actuating the hip. Actuating the
hip joints produces pitch and yaw moments, depend-
ing on qMH . Thus, the projection has two degrees of
freedom; whether rolling moments will cancel out (by
extending and retracting the legs of opposite sides in
unison) or not, and whether the legs will produce pitch
or yaw moments.

These degrees of freedom are shown in figure 22,
where a schematic of the robot and its legs (shown as
point masses) is depicted. The movement of the legs is
indicated along with the induced torque in the torso.

As it can be seen in figure 22a, when opposite-side
legs extend their legs outward and retract them inward
from the sagittal plane (τy plane) simultaneously, the
net rolling torque on the torso is close to zero. When
one side retracts inward and the other extends outward,
a net rolling moment in the torso is induced. In short,
the Rolling DOF is associated with the movements of opposite-side limbs in the coronal plane.

27From the previous iteration, not previous MPC update.
28Defined as the length of the interval [qi,L, qi,U ] where qi,L, qi,U are the lower and upper limit of the i-th joint. The joint ranges

can be calculated from table 3
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Producing pitch and yaw moments is more complicated as the legs must move near particular planes, as
indicated by (75); near a parasagittal plane (τy plane) for pitch and near the transverse plane (τz plane) for yaw.
Assuming that they do indeed move in the right plane for pitch and yaw torques, a particular mapping is still
required to actually achieve the desired effect. As illustrated in figure 22b, when the legs are in the τy plane
inducing a pitch moment in the torso requires synchronized movement of opposite-side legs from front to rear and
vice versa. Conversely, in the τz plane for yaw, creating a yaw moment necessitates a leg from one side moving
forward while a leg from the opposite moves backward. Therefore, the Pitch/Yaw DOF controls whether legs
move forward and backwards in unison.

The Rolling DOF transformation is described in (77) while the Pitch/Yaw DOF transformation in (78).

qMH,FL =

{
qMH,FR − 35◦, rolling mode

−qMH,FR, canceling roll
(77)

{
q11
q12

}
FL

=

[
−1 0
0 −1

]
︸ ︷︷ ︸

Prpitch

{
q11
q12

}
FR

,

{
q11
q12

}
FL

=

[
0 1
1 0

]
︸ ︷︷ ︸
Pryaw

{
q11
q12

}
FR

+

{
30◦

30◦

}
(78)

However, this projection couples all the leg movements. Depending on how this coupling is achieved, some
torques cancel out. The advantage of opposite side projection is that by correctly specifying the projection,
opposite side collisions are avoided and only one MPC is needed to produce leg reference trajectories. For these
reasons, this strategy was employed. However, the legs can produce torques in a discrete way, which results in
sub-optimal manoeuvres, as indicated by the cross variant in table 12.

So according to the selected projection settings, the controller can operate in four different modes:

1. Roll Mode: It uses the rolling mode and pitch transformations.

2. Pitch Mode: It uses the cancel roll and pitch transformations.

3. Yaw Mode: It uses the cancel roll and yaw transformations.

4. Stabilization Mode: It uses the cancel roll transformations and inherits the previous pitch or yaw projection
setting.

The operating mode is selected based on the largest term of τ ∗
B . The controller switches to stabilization mode

once the robot’s orientation is within a defined angular threshold of the target orientation.

4.2.4 Reset Algorithm

The short horizon of the leg planner MPC does not allow it to plan the whole motion on its own. When the leg
reaches the boundary of the workspace while tracking a reference torque, reaching a resetting point from which it
can efficiently resume the torque tracking, goes against its short term objective. Indeed, this resetting manoeuvre
is most likely a movement that produces torque in the opposite direction. Thus, a resetting strategy must be
wrapped around the MPC. Previous work used a similar resetting strategy, but using a heuristic way to produce
the leg trajectories, treating the leg as a pendulum [12]. The developed algorithm is inspired by that work and
takes into consideration the conclusions of section 4.2.2; the use of reference setpoints to improve the convergence
of the torque tracking MPC.

Intuitively, the movement of the legs is separated into phases. There is a phase in the trajectory that produces
the desired torque and another one where the leg goes to an advantageous position to continue tracking the
torque in the feature. These are the TORQUE and RESET phases respectively. These phases are infused by two
intermediate phases: EXTENSION and CONTRACTION. During these phases, the legs extend or contract in
length, causing the center of mass of the entire leg to move farther from or closer to the body, thereby increasing
or decreasing the induced torque on the torso from the limb’s motion.

The resulting resetting algorithm functions as a Finite State Machine (FSM), where each state/phase is linked
with a set of weights for the MPC, and a corresponding reference setpoint. These setpoints were selected manually,
through experimentation. Transitions between states occur when the leg configuration reaches the specified setpoint
within a defined accuracy, which itself is a parameter of the resetting algorithm.
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The parameters of the FSM are listed below:

• A reference setpoint for the Leg Planner qi (3 parameters 29 ).

• Weight values for the Leg Planner (12 parameters). The weight values that change are Wtrack (3 values),
Wu (1 value) and Qq, Qq,E , Qq̇, Qq̇,E (8 values, 2 values each, one for qMH and one for the rest of the
states).

• A weight matrix Wi needed for the state transition function 79 (3 parameters30).

• A threshold value Ti needed for the state transition function (1 parameter).

The state transition function is the following:

∥q(t)− qi∥Wi
≤ Ti (79)

The FSM is presented in figure 23 while its geometric interpretation is shown in figure 24.

Contraction
phase Reset Phase

Extension
Phase

Torque Phase

∥q(t)− qc∥Wc
≤ Tc

∥q(t)− qr∥Wr
≤ Tr

∥q(t)− qe∥We
≤ Te

∥q(t)− qt∥Wt
≤ Tt

Figure 23: Finite State Machine of the resetting algorithm.

Figure 24: Resetting algorithm conceptual overview. Each colour is associated with a certain phase. When the leg
is close to the phase reference setpoint within the defined accuracy, the FMS transitions to the next phase. The
contracted and extended configurations of the legs are also being shown.

Each state has 21 parameters, which results in 84 parameters for the whole FSM. Due to the allocation
algorithm, these parameters are different for each rotation mode. Thus, the whole controller has 252 parameters.
These parameters were manually tuned to get satisfactory results.

The legs have one configuration where they are fully extended and one where they are fully contracted, thus
contraction and extension phases were selected near these configurations. However, depending on the direction of
the desired body torque τB , the torque and reset setpoints are interchanged. This introduces some anisotropy in
the controller, which is observed in the simulation results presented in section 5.1.

29In reality it is 5 parameters as there are 5 joint angles. However, only 3 of them are independent. The other 2 are calculated
(offline) using the state estimation algorithm 3.

30It is usually diagonal
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It must be noted that it is crucial to detect the phase change when it happens, as some of the setpoints were
near the workspace boundaries to increase the range of motion and the torque produced. Thus, in the actual
implementation, in each control loop it is checked whether a phase change occurs.

4.3 Architecture Overview

The overall control architecture is shown in figure 25. The body planner takes the latest orientation and angular
velocity estimates of the body qB(t),ωB(t) and calculates the optimal body torques τ ∗

B . The Leg planner reads
the latest joint positions and velocities q(t), q̇(t) and latest virtual torques τ ∗

B , checks whether there is a mode or
phase change and calculates the optimal joint trajectories for the front right leg, which are then projected suitably
in all the legs, through the Allocation Module. Finally, a tracking controller is responsible for tracking the desired
joint trajectories qD and torques u. Here, a PID position controller is utilized, although more advanced tracking
controllers31 that accept state and input trajectories can also be employed.

In general, the attitude controller runs at 1kHz, in order for the phase transition checks of the FSM to take
place. The Body Planner that was used was Variant 3 with terminal constraint and cost, as described in table 12,
while the Leg Planner is based on Variant 2, presented in table 17, but utilizes different weights determined by the
resetting algorithm. The Body and Leg planner update rate is 10Hz. The allocation module updates the reference
every 20ms, as there are 5 stages in the MPC of the Leg Planner. However, if a phase change is detected, the leg
planner recalculates the trajectory based on updated parameters. Its interrupting capability is indicated by the
red colour in figure 25.

Body
Planner

Leg Planner
MPC

FSM

Allocation
Module

Tracking
Controller

Plant &
Sensors

Leg Planner

Attitude Controller

τ ∗
B

qref ,Wi

uFR(·),
qFR,D(·)

qi,D(·),ui(·)

ui(t)

q(t), q̇(t)

qB(t),
ωB(t)

qD

Figure 25: Controller Architecture.

31In the sense of a feed-forward PID: u = uPID + uMPC like the one used in [34].
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5. Results

This section is dedicated to simulation and experimental results. Initially, single axis reorientation simulations
are presented, in order to quantify the performance of the controller. Next, the effect of adding extra mass in the
paws, which is expected to increase the control authority of the system, is investigated along with the robustness
of the proposed control to the mass of the torso. Finally, experimental results are showcased and compared with
the simulation.

5.1 Simulation

To showcase the performance of the controller, it was tasked to stabilize 90◦ single axis turns. The setup of the
simulations is the following:

• The robot starts with q0 = qI .

• A desired orientation qD is given as reference to the attitude controller.

• Gravity is disabled to simulate the free falling conditions during jumping phase.

• The robot is connected with a floating joint into the world, meaning it is free to rotate in all degrees of
freedom.

• For these simulations, the update rate of the body planner and leg planner is 0.1s. Thus, the position
reference update rate, for the low level PID, is 50Hz.

• The simulation settings are listed in table 10.

• The convergence threshold was set to 5◦ as the controller generally performs wide movements and thus it is
difficult to stabilize very precisely with the current formulation. Also, even if, through suitable projections,
torques in unwanted directions are minimised, they are still present, which makes precise stabilisation even
more difficult because the total angle is taken into account to enter the stabilisation mode.

5.1.1 Roll Step Response

The response of the system for a roll reference of ±90◦ is presented in figures 26 and 27.

Figure 26: Simulation of response to +90◦ reference for roll.
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Figure 27: Simulation of response to −90◦ reference for roll.

The results of the simulation are summarized in table 18. The orientation converges within the specified
threshold in both situations. The solution time of the leg planner was well within the allowed time of 100ms
between consecutive calls of the controller. Also, it can be observed that the pitch and yaw remain relatively
unaffected, only because of the suitable projection of the optimized joint trajectories from the front right leg to
the rest.

Table 18: Roll step reference simulation results.

+90◦ −90◦ +90◦ −90◦

Steady State Error 3.9◦ 2.2◦
MPC solution time
(µ/σ/max [ms])

13/4.2/25 12/6.1/55

Settling Time 6.3s 7.2s ω̄x [◦/s] 14.9 12.8

5.1.2 Pitch Step Response

The response of the system for a pitch reference of ±90◦ is presented in figures 28 and 29. The results of the
simulation are summarized in table 19. The orientation converges within the specified threshold in both situations.
The solution time of the leg planner was well within the allowed time of 100ms between consecutive calls of the
controller. Also, it can be again observed that the roll and yaw remain relatively unaffected.

Table 19: Pitch step reference simulation results.

+90◦ −90◦ +90◦ −90◦

Steady State Error 1◦ 0.6◦
MPC solution time
(µ/σ/max [ms])

8.5/9/55 9/9/42

Settling Time 2.4s 4.4s ω̄ [◦/s] 37.5 20.5
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Figure 28: Simulation of response to +90◦ reference for pitch.

Figure 29: Simulation of response to −90◦ reference for pitch.
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5.1.3 Yaw Step Response

The response of the system for a yaw reference of ±90◦ is presented in figures 30 and 31.

Figure 30: Simulation of response to +90◦ reference for yaw.

Figure 31: Simulation of response to −90◦ reference for yaw.
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The results of the simulation are summarized in table 20. The orientation converges within the specified
threshold in both situations. The solution time of the leg planner was well within the allowed time of 100ms
between consecutive calls of the controller. Also, it can be again observed that the roll and pitch remain relatively
unaffected.

Table 20: Yaw step reference simulation results.

+90◦ −90◦ +90◦ −90◦

Steady State Error 1.5◦ 2.1◦
MPC solution time
(µ/σ/max [ms])

6.6/4/19.4 5/4.4/16.5

Settling Time 5.5s 10.4s ω̄ [◦/s] 16.1 8.5

5.2 Ablation Study

This section is dedicated to an ablation study, where the effect of extra mass in the paws is investigated. Also,
the robustness of the control method is investigated under parameter uncertainty, mainly the mass of the torso
(eg. adding a bigger and heavier battery, different actuators or extra on board sensors and tools). The effect of
these modifications on each direction is showcased in figures 32, 33 and 34.

Figure 32: Roll Ablation Study.

First, it can be observed that the controller manages to stabilize the desired setpoint in all cases, demonstrating
its robustness. Roll seems quite unaffected by changes in the mass. The roll moment of inertia is very small (one
order of magnitude smaller than other directions), so it is expected that doubling the mass of the main body
will not significantly change the turning ability of the robot. It is mainly the inertia of the legs that affects
the controller’s performance. Adding mass to the paws simultaneously increases the rolling inertia and control
authority of the robot, so the result depicted in figure 32 is reasonable and is in accordance with previous results
[12]. Pitch performance is greatly improved by adding extra mass to the paws. The main indication of improved
performance is the displacement achieved per cycle, which steadily increases until 150gr. Increasing the torso
mass has a negative effect on the turning speed of the robot, as expected. Finally, adding extra mass to the paws
increases the performance of yaw, especially in the −90◦ case.

From the simulations above, it can be observed that paws of mass 150 gr offer the biggest performance benefit,
reducing convergence by 0.7 seconds in pitch and 2 seconds in yaw in the −90◦ case. Further increase, can
destabilize the controller as the movements become too violent to converge in the desired orientation. This can be
observed in figure 34, for 200gr in the −90◦ case. Also, the controller is quite robust to body mass changes.
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Figure 33: Pitch Ablation Study.

Figure 34: Yaw Ablation Study.
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5.3 3D Reorientation

In this subsection, indicative results from arbitrary reorientations will be presented. The robot starts at an
arbitrary orientation, which is specified using the Roll-Pitch-Yaw (rpy) convention, and returns to qD = qI . The
results are showcased in figures 35, 36 and 37. To increase the control authority of the system, the mass of the
paws is increased by 100gr.

Figure 35: Reorientation simulation: rpy0 = [π/2, 0, π/2]

Figure 36: Reorientation simulation: rpy0 = [0, π/2, π/2]
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Figure 37: Reorientation simulation: rpy0 = [π/2, π/2, 0]

In all cases, it can be observed that the controller manages to stabilize the orientation within the specified
accuracy of 7.5◦. However, the settling time is very large; on average, 16.7s. The sub-optimal performance is mainly
due to the manually selected hyper-parameters. Additionally, these parameters were tuned based on single-axis
re-orientations, leading to over-fitting and thus poor generalization in 3D manoeuvres. Moreover, the separation
of reorientation modes into discrete roll, pitch, and yaw manoeuvres, as per the allocation strategy discussed in
4.2.3, further degrades performance. This is supported by the cross-variant results in table 12. Also, because of the
large range of motion of the leg manoeuvres, the controller fails to stabilize near the desired orientation, resulting
in oscillatory behavior. This is the reason for the large stabilization threshold of 7.5◦. Finally, when the controller
is switching modes, it often introduces unwanted disturbances in other directions.

5.4 Experiment

5.4.1 Experimental Setup

The experimental setup is depicted in figure 38. The robot is mounted on a testbed, which is essentially a
rotating rod that rotates together with the robot. For each rotational degree of freedom, the robot was placed
differently on the testbed, so that gravity was parallel to the axis of rotation. Orientation feedback was provided
by the laboratory motion capture system. The controller, estimation and motor controller nodes were deployed
on the on board computer, while the reference publisher and visualization were running on a different computer.
Communication was established via Wifi. The structure is depicted in figure 39.

This setup ensures that gravity does not affect the rotation of the torso directly but rather acts as a disturbance
to the system, affecting the link motions. Additionally, as the axis of the rod does not pass from the centre of
gravity32, some bending moments are induced in the bearings that affect their friction characteristics. Indeed,
bearings are not designed for handling bending moments. To achieve better performance and overcome frictional
phenomena, the experiments were conducted with extra 100 gr in the paws to provide the system with greater
control authority. Also, the leg planner update rate was increased to 20Hz and only the latest angle reference was
given in the low level controller. This reduced oscillations in the system and provided a more constant reference
for the motors to track. Finally, no pitch experiments took place, as the presence of the rod severely limited the
workspace of the leg.

For roll and yaw, 2 kinds of experiments took place. A response to a step input reference of ±90◦ and a response
to a changing reference (piecewise constant). The step responses were used to extract some quantitative results
for the controller and verify the simulation environment.

32In yaw, the axis passes through the centre of mass when the legs are in their default configuration, but not necessarily when
moving.
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(a) Experimental setup for roll. (b) Experimental setup for yaw.

Figure 38: Experimental setup.
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Figure 39: System architecture during the experiment.

The second experiment showcases the ability of the controller to track more complex manoeuvres. Also, in
both roll and yaw, the last commanded displacement is greater than 180◦, which showcases the ability of the
controller to select the shortest distance. However, in the diagrams, the last commanded angle was shifted (+360◦)
to showcase the convergence of the controller.

5.4.2 Experimental Results

The step responses for roll are depicted in figure 40, while the tracking of the changing reference is shown in
figure 41.
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Figure 40: Response to a step input reference for roll.

Figure 41: Response to a changing input reference for roll.
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From the figures, it can be observed that the steady state error is around 1.5◦, which is within the stabilization
threshold specified for roll 5◦. Also, the robot requires 5s to stabilize a 90◦ turn. In the second experiment, the
controller manages to track a changing reference and finds the shortest path from 90◦ to −150◦ (or equivalently
210◦), by continuing to turn in the positive direction, to minimize the distance metric that was introduced in
section 2.2.2.

Similarly, the same types of experiments took place for yaw. They are showcased in figures 42 and 43.

Figure 42: Response to a step input reference for yaw.

Figure 43: Response to a changing input reference for yaw.

From the figures, it can be observed that the steady state error is around 2.5◦ for the negative step reference and
almost zero for the positive reference. Also, the convergence time is different between the two turning directions,
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requiring 6.5s to stabilize +90◦ and almost 12s for the negative direction. This can be attributed to the manual
tuning of the controller, which has introduced some anisotropy in the controller, and the misalignment of the rod.
Even though tuning of the testbest had taken place before the experiments, oscillations may have disturbed its
alignment and introduced a local minima in the direction of the robot, which favoured positive motion. In the
second experiment, the controller manages to track a changing reference and finds the shortest path from 120◦ to
−120◦ (or equivalently 240◦), by continuing to turn in the positive direction.

5.4.3 Comparison with Simulation

To validate the simulation model, the reference positions generated by the attitude controller in the experiment
were replayed in a simulation that included the testbed and gravity was enabled in order to mimic the experimental
conditions. The results for roll are shown in figure 44. It can be observed that the simulation has similar behaviour
to the actual system. The playback took place for different damping coefficients for the testbed to investigate its
effect. However, the observed deviations are independent of the damping coefficient. Therefore, the differences
can be attributed to factors such as the imbalance of the rod, the presence of non-viscous friction (which is not
modelled in the simulation), and differences in motor saturation limits.

Figure 44: Experimental and simulation roll displacement using the experimental motor references.

The results for yaw are showcased in figure 45. Yaw presents a significant difference between the simulation
and the experiment, especially the positive step response. This can be attributed to the following:

• The motor models in the simulation are not accurate enough. The actual motor controllers have different
saturation for each gain term. This explains the non-smoothness of the displacement curves. Also, the motors
in simulation are ideal torque sources.

• The rod was imbalanced. This can be observed as the difference between positive and negative turning
directions is considerably greater. Imbalance in the rod can introduce an equilibrium point in the system,
which biases the angular velocity towards a certain turning direction. Before testing, the testbed was tuned
to avoid equilibrium points. But vibrations from previous tests, could re-introduce them.

• Non viscous friction moments are more prevalent in yaw, which has lower control authority than rolling
motions. Figure 46 depicts the Stribeck curve, a comprehensive model of the tribological phenomena in
lubricated contacts. It demonstrates that friction increases at low speeds, potentially hindering resetting
motions where the robot’s angular velocity is lower compared to forward movements.
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Figure 45: Experimental and simulation yaw displacement using the experimental motor references.

Figure 46: Stribeck curve.

Finally, in figures 47 and 48, experimental and simulation results are compared. In both cases, the desired ref-
erence is tracked successfully. However, the performance varies between the simulation and the experimental data,
especially for yaw. This difference can be attributed to both different frictional phenomena and the performance
sensitivity of the controller to various dynamical parameters. The controller manages to find periodic trajectories
online, but these trajectories change depending on when the phase transition occurs.

60



Figure 47: Comparison between experimental data and simulation for changing roll reference.

Figure 48: Comparison between experimental data and simulation for changing yaw reference.

61



6. Conclusions and Future Work

6.1 Conclusions

In this thesis, the modelling and attitude control of a jumping quadruped were investigated. A detailed
kinematic and dynamic analysis led to the development of analytical models for the robot. Also, analysing the
workspace led to the extraction of various operational constraints. A hierarchical model-based attitude controller
was then developed. The controller first optimizes the torso trajectory to track arbitrary orientation references
using a simplified rigid body model and virtual torques that are acted upon it. The quaternion parameterization
and suitable metric allow the top-level controller to select the shortest trajectory to the desired orientation in
less than 2 ms. The bottom module finds corresponding joint trajectories for only one leg to produce the virtual
torques that result from the body planner while respecting various workspace, state and input constraints. A
”resetting” strategy allows online computation of the joint trajectories and an allocation method projects the
optimal trajectories to the other legs. The controller was evaluated both in simulation and in experiments.

One important outcome of the present work is the simulation framework, which is easily modifiable, documented
and can be easily used to test reorientation scenarios both in free floating and experimental conditions. Also, it has
the same API as the actual robot, rendering it a useful tool that can be used for further development of Olympus.

The proposed controller manages to stabilize the robot in single axis reorientation scenarios. However, the
performance is suboptimal and worse than the state of the art [12, 10]. The proposed controller has a lot of tuning
parameters; each orientation has 56 parameters. This makes achieving a stabilizing performance, let alone an
optimal one, a challenge. In addition, while the complete dynamic model of the leg allows for accurate handling
of workspace constraints, its complexity severely limits the horizon of the optimization, which in turn limits the
optimality of the leg planner. Also, the current formulation of the leg planner is conflicted, as the optimizer
tries to jointly track a setpoint reference and a desired torque. Due to the high nonlinearity of the problem, it is
generally difficult to achieve a suitable compromise. Finally, the proposed controller struggles to stabilize arbitrary
orientations. This is mainly due to the discretization of the turning manoeuvres in roll, pitch and yaw.

The experimental results showcase that the controller is applicable to a real system, as the robot managed
to reorient itself and track changing references. At high velocities, the experimental results closely mimic the
simulation. However, in slower velocities, such as the experiments in yaw, nonlinear frictional phenomena greatly
affect the result.

6.2 Future Work

The work of this thesis showcased that model based controllers can stabilize the attitude of a jumping quadruped
avoiding self collisions. However, the performance of the proposed controller must be improved in order to stabilize
the quadruped’s attitude during jumping. One direction could be the use of a hyperparameter optimization tool,
such as Optuna33 to find optimal MPC parameters, and increase the performance of the controller. Also, it is
expected to make the tuning process easier. Additionally, the present formulation can be used to create a series of
switching controllers with different setpoints and weights to increase performance near the reference orientation.
Another direction, is to use only the adjacent leg projection described in section 4.2.3 and use two MPCs, one for
each side, to allow the controller to track multi-directional torques. This is expected to increase the performance
for arbitrary orientations, as hinted in table 12. Finally, it is worth investigating simpler models for the legs to co-
optimize the the body trajectory and leg motions, and avoid using an allocation algorithm that in turn discretizes
the reorientation motions.

Regarding the experimental aspect, the current simulation framework should be modified to model the frictional
phenomena in the rod to allow for a more detailed comparison between simulation and experimental data. Also,
more detailed motor models should be implemented [35, 36].

33https://optuna.org/
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Appendix A - Euler-Lagrange Equations of Motion Extraction

General Methodology

For the derivation of the analytical dynamical equations, the Euler-Lagrange method was used. The process is
as follows:

1. Calculate the Kinetic energy (T ) of the system.

2. Calculate the Potential energy (U) of the system.

3. Calculate the Lagrangian: L = T − U .

4. Find the following derivatives:

∂

∂t

(
∂(L)
∂q̇

)
∂(L)
∂q

where q is the vector of generalized coordinates. Here q is the joint angle vector. The equations of motion
are given by:

∂

∂t

(
∂(L)
∂q̇

)
− ∂(L)

∂q
= f (80)

where f is the generalized force. It contains:

• the coulomb friction: Fs sign(q̇) = diag{Fs,1, ..., Fs,i, ..} · sign(q̇)
• damping forces: D q̇ = diag{D1, ..., Di, ..} · q̇
• forces due to interactions with the environment: JT (q)he, where JT is the geometric Jacobian and he

is the wrench vector from the end-effector to the environment

• motor inputs: τ

Usually, these equations are more useful in a matrix form, that takes the following form:

B(q)q̈+C(q, q̇)q̇+G(q) +Dq̇+ Fssign(q̇) + JT (q)he = τ (81)

5. Collect the terms to get the matrix form of the equations.

Having the dynamics in the form of equation (81), one can easily simulate the system using equation (82).
(This form is compatible with the matlab and acados solvers):

d

dt

[
q
q̇

]
=

[
q̇

B(q)−1 · (τ −C(q, q̇)q̇−G(q)−Dq̇− Fssign(q̇)− JT (q)he)

]
(82)

Regarding the friction and damping forces, usually only the joint static and viscous friction34 is taken in
account in robotics, and thus these forces can be calculated if the matrices Fs and D are defined. Both in drake
and simscape, one can directly define these matrices. These forces will be ignored, except if stated otherwise. The
interaction force is zero as long as there are no interactions, such as when the robot is moving in free space. Thus,
initially, one has to find the B,C,G matrices.

Calculating the Lagrangian

The first step is the calculation of the Lagrangian. The following steps are needed:

• Definition of the transformation matrices i−1Ti.

• Loading of the geometric and inertial quantities of the leg, from the URDF.

34Friction forces that have to do with the end effector and the environment are modelled as an external wrench he.
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• Calculatation of the positions of the coordinate frame i with respect to the j frame35.

jPi =
jJi(1 : 3, 4) =

[
I3x3 03x1

]
jTi

[
03x1

1

]
(83)

• Calculatation of the orientation of the coordinate frame i with respect to another j frame

jRi =
jTi(1 : 3, 1 : 3) =

[
I3x3 03x1

]
jTi

[
I3x3
01x3

]
(84)

• Calculation of the positions of the center of mass of link i with respect to the 0 frame. From solidworks, we
have irc,i (the position of the center of mass of link i with respect to the coordinate frame of the link i).

0xc,i =
0Pi +

0Ri
irc,i (85)

• Calculation of the angular velocities of the coordinate frame i with respect to the 0 frame. These are the
same as the angular velocities of the center of mass of the link i with respect to the 0 frame.

0ωi =
0ωi−1 +

0Ri [0, 0, q̇i]
T (86)

• Calculation of the linear velocities of the coordinate frame i with respect to the 0 frame.

0ui =
0ui−1 +

0ui−1
i︸ ︷︷ ︸

=0

+ [0ωi−1]
x 0Ri−1

i−1Pi (87)

• Calculation of the velocities of the center of mass of link i with respect to the 0 frame.

0uc,i =
0ui +

0ui
c,i︸︷︷︸

=0

+ [0ωi]
x 0Ri

irc,i (88)

Having calculated these quantities, it is easy to write the Kinetic energy as:

T =

3∑
i=1

[
1

2
mi

0uT
c,i

0uc,i +
1

2
0ωT

i
0Ri Ii (

0RT
i )

0ωi

]
(89)

The potential energy is :

U = −
3∑

i=1

mig
T
0

0xc,i (90)

where g0 is the gravity vector expressed in the base frame of the kinematic chain.
The Lagrangian is the L = T − U

Getting the B,C,G matrices

Getting the derivatives of the Lagrangian can be done using the differentiation functions of the symbolic

package of matlab.
Each equation concerning the i-th DOF has the following form:

eqi =
∑
j

bi,j(q)q̈j +
∑
j

ci,j(q, q̇)q̇j +Gi(q) (91)

To get the matrices, the following process is followed for each degree of freedom i:

1. Get bi,j from the coefficients of q̈j in the equation of the i-th degree of freedom. This can be achieved as the
polynomial of q̈j , p(q̈j) has degree deg(p(q̈j)) ≤ 1. The latter fact can be observed from (91).

2. Update the equation:

eqnew,1
i = eqi −

∑
j

bi,j(q)q̈j

35Indexing via matrix multiplication was done because symfun objects cannot be indexed using parenthesis indexing
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3. Get ci,j from the coefficients of q̇j in the new equation of the i-th degree of freedom eqnew,1
i . The polynomial

of q̇j , p(q̇j) has degree deg(p(q̇j)) ≤ 2. This fact can be observed from (91). The polynomial is p(q̇j) =
p0 + p1q̇j + p2q̇

2
j . So ci,j is obtained by :

ci,j = p1 + p2q̇j

Generally, there are infinite36 choices for the C matrix.

4. Update the equation:

eqnew,2
i = eqnew,1

i −
∑
j

Ci,j(q, q̇)q̇j

5. The rest are the gravitational terms: Gi(q) = eqnew,2
i

Getting the coefficients is done by the coeffs command of the symbolic toolbox. Getting the coefficients of
the full polynomial for each degree of freedom is done by providing the ’All’ argument.

36Siciliano [14], section 7.2.1. For example, a term kq̇1q̇2 in the i-th equation can be distributed in the C matrix as follows:

ci,1+ = λq̇2

ci,2+ = (k − λ)q̇1

where λ ∈ R.
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