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[eptAngm

H nopodoa Simhwpatiny yehetd to multi-armed bandit npdPAnuo ye ctoyooTixég
avtapolBéc, 6mou évac learner mailel éva oetptaxd mouyvidl pe éva mepiBdiiov yior T
yOpoug. Xe xdde yUpo, o learner Swohéyet éva omo ta K "yépia" plag unyavng slot xon
AofBdver pla avtopol3n tou npoépyetal and xdmola otoyacTixy xatavour. O otdyog
tou learner eivon va naier 600 xohd Yo énoule 1 xahOtepn otpotnyx (Snhadi 7
Béntiotn yvwpllovtog 6hec Tig xatavoués péypel Tov Teéyovta Yipo). O Béhtotol
ahyopriuol eyyudvTtow Twe To regret tou learner etvon @poaypévo amd O(KT), 1o
omolo elvon T0 XxAAUTEPO duVATO QEdypa cUUpwva Ye TN Vewplo mAnpogopiag. Ol
Joseph et al. [1] emBdrhovy évav emmiéov neploplond Sxanocivng otov learner, tou
Bev tou emtEénel vo euvoroel éva "yépl" évavtl evog dhhou extoc edv elvan olyoupog
yioe T oyetr) toug oUyxeton. H epyacio poc mpotetvel plo e-yoldpwaon Tou oplouol
Toug xa évary dixono ohyoprduo mou meTuyalVEL O(\/g\/KT) regret. Ou e@apuoyég
6oL €yEL VoMU auToS 0 Teptoplodde (6mwe tar recommendation systems) efvou eu-
alodnree oe avtoywnotxée emdéoelc (m.y., PedTines xpitnéc), Y autdy Tov AdYo
TOEOUGIALOUME TG CUUTERLPEPOVTAL YVWOTOL oAY6prduol 6 aUTé TO HOVTEAO Xou
PLh0B0Z0VUE Vo XUTUAGBOUUE TN OYEoT avdueoa oToug dixonoug ahyoptdpous xaL oe
auTolg oL efval AVEXTIXOl OTIC TOPATAVL eMYETELS.

AéZeig xAewdid:  dueon pdinon, regret, multi-armed bandits, Sixawocivn,
strategic manipulation, adversarial corruption.






Abstract

This thesis studies the stochastic multi-armed problem, where a learner plays a
sequential game with an environment for 7" rounds. In each round the learner
chooses one of the K available arms to pull and receives a stochastically generated
reward. The goal of the learner is to perform as the best policy in hindsight. Optimal
algorithms can guarantee that the learner’s regret is bounded by O(v KT'), which
matches the lower bound obtained by information theory. Joseph et al. [1] imposed
a fairness constraint on the learner’s actions, that restricts her from favoring an
arm (i.e., pull it with higher probability) unless the arm is of greater merit. Our
work proposes an e-relaxation of their fairness definition and a fair algorithm

that achieves 6(\/g VKT) regret. Applications where fairness is sought after (like

recommendation systems) are vulnerable to adversarial attacks (e.g., fake reviews)
thus we present the behaviour of known algorithms in the mixed model and aspire
to connect fair algorithms with robustness to adversarial corruption.

Key words: online learning, regret, multi-armed bandits, fairness, strategic
manipulation, adversarial corruption.






Euyaplotieg

Oloxhnpwvovtag auth| T BtAwpatixy) Yo Hleha va eLYAELETHOW TOV ETBAENOVTE LOU
x0plo Anuiten Pwtdxn mou you €dwoe TNy euxonplar vor aoyoANnGe Ye évar mporyuaTind
EVOLPEPOV Xall ETUXAUEO TEOBANUAL, YIol TIC GUMBOUAES TOU Xol YLOL TNV EUTLGTOGVVT] TOV,
1 omola ye Tider ethxpivd. Oo el var e euyaplote otny xvpla Xapd Iodnuatd
xon otov xVplo Kwvotavtivo Kagopavn yia Tig Opeg mou aglépmoay SoulebovTag yio
To project xou yio TN Sddeon va you pou deilouv e Aertoupyel pio gpeuvnT
oudda. EHeywplotéd euyaptotd otov Anootoln ToopBavtlh mou ftav dimha pou and
™y TewTn oty xou pe Pondoloe oe 6,TL duoxohla elya, TOMAES QOpEC mELY Xov
neohdfBw va to {nthow 1 (Bla.

Ye npocwnixd enlnedo, To xAya mou ytlotnxe OAn 1N yeowd oto CoReLab Arav
TOAD PLAGEEVO oL Yalpouat TOAD TOL YVOELoN GAA T ATOUN TTOU GUVTEAECAY GE oUTO.
Khielvovtog, n otiplen twv @Awy gou ot e oixoYEVeLds pou Htay xooploTixy) ot
OOl TOL YPOVIAL TGV GTOUBKY OV X0l TOUS EVYAPLOTE EVAY TRPOS £VAV.



Contents

IMepirndmn
Abstract

Evyapiotieg

1 Exztetopévn EAAnvixr Ilepiindn
1.1 To Ytoyootixé Multi-Armed Bandit ITpéBhnuor . . . . . . . ... ..
11T MoOVtEAO . . . . o o o
1.1.2  Khlaowol Bandit Ahyoprduor . . . . . ..o oo
1.2 Alxawor Ahybprdpor oto MAB TlpéfBhnuar . . . . oo o oo o 0oL
1.3 (e,0)-Fairness . . . . . .. ...
1.4 Avtoyoviotnxée Embdéoeic oe Ytoyaouxd Bandits . . . . . .. L.

2 Introduction
2.1 Motivation

2.2 Previous Work . . . . . ... .
2.3 Contribution . . . . . . . ..

3 The Stochastic Multi-Armed Bandit Problem

3.1 Model . .

3.2 Non-Adaptive Exploration . . . . . .. .. .. ... ... ... ...
3.3 Adaptive Exploration. . . . . . . .. ... ... .. .
3.3.1 Successive Elimination Algorithm . . . . . ... ... ... ..
3.3.2  Upper Confidence Bound Algorithm (UCB) . . ... ... ..
3.4 Unknown time horizon T . . . . . . . . ... .. .. ... ...,
3.5 Lower Bound . . ... ... ... ... ... ..

4 Fairness notions in Stochastic MAB

4.1 Definitions

of Fairness . . . . . . . . . ... ...

4.1.1 Fairness of Exposure . . . . . . .. .. ... ... .. ... ..
4.1.2  Fairness through maximizing Nash social welfare . . . . . ..
4.1.3 Fairness through a minimum pulling rate . . . .. ... ...
4.14 Related work . . . . ... oL L

4.2  o-Fairness

5 (g,0)-Fairness

10

12
12
13
13
15
16
18

20
20
21
21

23
24
25
27
27
28
31
31

35
36
36
37
38
39
40

44



51 FT Algorithm . . . . . ... ... o
51.1 Regret Analysis . . . . . . .. ... o

6 Adversarial Attacks on Stochastic Bandits

6.1 Strategic Manipulation Model
6.2 Adversarial Corruptions Model

6.2.1 Adversarial attacks on UCB
6.2.2  Algorithms robust to adversarial corruptions

Bibliography

A Supplementary Material

A.1 Concentration Inequalities . . . . . . .. .. ... L L.
A2 Omitted proofs . . . . . . . . . . ... .

11

51
ol
52
53
56

61



Chapter 1

Extetauevn EAAnvIxN
ITepiAndn

Y10 mapdv xe@dhono axohouvlel ulo extatopévr eAAnvixy TopouciooT Tou TERLE)O-
pevou authg e dtmdwpotixic. To vroxepdiona €youvv v (Bl dour| e auth NG
Ay YAMC EXBOYNC oL O oVOY VOO TNG TORUTEUTETOL OTA avTioTolya onpeio Tne yia
oplopéveg anodeifelg mou €youv mapahn@iet.

1.1 To Xtoyactixd Multi-Armed Bandit IIpoBAnua

To Multi-Armed Bandit (MAB) HpéPBAnua eivon éva anhé epyohelo poviehonoinong
evoe Bladoyxol mauyvidlol avdueoo oe évav learner xa éva mepiBdANov, mou
cupPaivel wg xdmolov xpovixd opifovta. Ilpv mpoyweroouue otov oploud Twv
TEATAVG EVVOLMY, Fo TOPOUCLAGOUUE OPLOUEVES EPUOUOYEC TTOU TO UOVTEAO QUTO
unogel vo gavel yerowuo.

o Koalfivo Evac tloyaddpoc mailovtag Sopopetixés pnyavée slot einiler vo
MEYLOTOTIOLAOEL TO XE€PBOC TOU UECH TNE EXUAVTNOTE XATOLAS O TATIO TIXE TATIPO-
poplag Yo Tig avtapolBée xdie unyavic. O pnyavég slot xaholvton one-armed
bandits xon omd exel mpoépyeton TO GVOUL TOU TREOBAAUATOC.

o Yuothpata Ilpotdoewv 'Eva clotnua tpotdoewy (recommendation sys-
tem) povtehonoteiton pe évav learner mou emdupel vo pdder Tic npoTwoele
TV Ypnotov oo mapatneel Ty odAnienidpact| Toug (m.y. whixe 1 likes) ye
BLaPOPETIXEC TPOTACELS.

o Apoporoynor Miua egoappoyn mhorynong emduuel va uddel T ouvtoudteen
dladpopr Yeta€d dV0 xOuPwy avdueoa oe éva exdetind Yeydho clvolo omd
oLVBUUCUOUE BEOUWY UEcw NG avddpaone mou AauBdver dtav €vag yenotng
ETAEYEL VO XAVEL piot CUYXEXEIIEVT DLadpOoU.

Y1 mapomdve epopuoyég epgoviletar To SiAnuua avdueca otny eEEpEUVNOT ETLAOY DY

ToL Bev QalvovTon BEATIOTEG XU OTNY EXUETIAAEUCT] TWV TEEXOVTIWY BEATIOTOV ETi-
hoyodv. H omdvinon oto napandve eivon 1 xdtohhnin emhoyr) yopwv e€epebivnong
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®ote o learner va unopel e (oyetxn) Befoudtntar vor expeTOMAEUTEL TG TIRAY OITIXG.
BéhTioTeC emAOYEC.

Y yevued epintowon to mouyvidt nadleton oe T yOpoue. Xe xdde yipo t, évog ohydet-
Ypoc ALG (learner) emhéyer pla evépyeiar Ay and éva oployévo olvoho JuVaT@Y V-
gpyeldv A xou To nepiBdAloy amoxahinTtel Ty aviagoln r4,. H emdoyh Ay e€aptdton
and Ti¢ emAoyég Tou learner otoug TEonyYolUEVOUS YORPOUC Xou Amd TLC VTEY TOLYES V-
TopoBéc mou éhofe. H avtiotolynon e wotoplac Hi—1 = ((A1,71), ..., (Ar—1,7¢—1))
oy emhoy Ay ovoudletan moRLTIXY Tou learner xou cupfolileton mt¢ : Hyoq —
A. Yy nepintwon nou o learner pmopel vo Sahé€et petadd K SlaQopeTnv ev-
epvedv/ "yeptdov". To povtého MAB eiofjydnxe ano tov Thompson [2] v yprion oe
latpég Soxég xou €xtote €yel uehetnidel oe didpopec Yoppéc Tou. Meydho uépog
NS €pEUVaC TaVL 0To TedBANUA uropel va Beedel ota cuyyedupata twv Bubeck and
Cesa-Bianchi [3], Lattimore and Szepesvari [4], Slivkins [5]. Avdhoya pe tnv exdo-
TOTE EQUPUOYT TO TEOBANUA peketdtan ye mhren, uepxd 1 bandit avédpoon (tinpo-
popla Tou amoxaAOTTTETOL and TO TEPUBEANOY) Xau UE OVTOHOLBES TTOU TPOXVTITOUY antd
OTOYAUCTIXES XATOVOUES ) and xdmolov avtaywvioty (adversary).

1.1.1 Movzéro

To povtého mou peletdtar oty mapolon Bimhwpatixy eivoaw to otoyactxd MAB
(SMAB) pe bandit avddpaor. e xéde yipo t € [T] o learner diahéyel pio evépyela
A; € [K] xou napotnpel avtopolBh) ra, ~ Da,, 6mou Dy, eivar 1 xatovour| mov
axoloutdolv ol avtapolBéc tne evépyetag Ay Xwele BAEBN g yevixdtnag, utodé-
ToupEe Qpaypéves avtopolBéc 1., € [0, 1] yio dheg Tic evEpYELES Xou GROUS TOUS YOPOUG
tel[T).

Yy avéluon do yenowonotolue tov ouuBolouéd p; = E[D;] vyt péon i e
xotovoprc D;. Opiloupe tnv evépyeta pe T uéylotn uéomn avtopol3 u* = max;e(k) i
0¢ T BéNTIoTN evépyela xou oupfoliloupe iF = arg max;e(x) pi- Emimiéov, Yo ypeioo-
ToUPE ToV cUPPBOALIOUOD A; = u* — p1; > 0 pe v o6t vor Loy Vel Hovo yia ¢ = ¢¥.

INo va petprioovye tnv anddoor evdg learner ypnolonoloVUe TNy €vvola Tou regret,
Onhadt) Tng andotachc NG ouvohxrc aviauoBrc tou learner and tn Béhtiotn avto-
polB ex twv votépny (Yvwpllovtac tic xatavopée D;). Etol €youvue Ty nopoxdte
€xppaon yio To regret.

T T
(

T
R(T) = Elryg] = Y Elra =) (1" —pa) =) Aa,.

t=1 t=1 t=1

YupPohrifoupe ye n; ¢ T0 SLVOAO TWV PORWOVY Tou Ta&aue TV evépyew 4. Tédte To
regret ypopetol we:

K
R(T) = Zni7T . A,L
i=1

1.1.2 KAaowxoi Bandit AAyopidpor

H Yewpla mAnpogopiog pag divel o e€hc xdTw Qedyuo

13



Oewpenua 1.1.1. Eotw T évas xpovikés opilovtas kar K o apiduds twv mbavdy
evepyeiwy. Ia omoovdrrote bandit adydépiduo vrdpyer éva otryndtuno tétolo dote

E[R(T)] > QVEKT).

H anédeln Baciletan oe emyepfpatoa mou yenowonotolyv tny Kullback-Leibler (KL)
andxhion (H oyetnh eviponio) YETOED TOV XATAVOUNOY B0 DIUPOPETIV EVERYELNDY
xat utohoyilouv tov ehdyloto apldud doxumyv hote va unopolue pe Befoudtnta vo
Eeywploovye Tig xatavopég wetalld toug. Ot Bacinég WwBiotnteg g andxhiong KL nou
yeetdalovran yia v om6delEn Beloxovton oto A.1.4 xou 1 mAfene amddeln oto 3.5.1.

Y BBhoypagpia €youy mpotadel ahydprduol Tou Tetuyaivouy regret Tou cuunintel ue
0 dveldev @pdypa. Oo mapoucidcoupe otov akyderduo Successive Elimination
(SAE) twv Even-Dar et al. [6]. AvAxel otnv xatnyoplo T6V TPOCUPUOCTIXGY ah-
yopiduwy, ol onolol tposuppdélouy Tic emhoyéc Toug petd and x&de yipo (# opdda
YOpwv) e&epetivionge. Tupaxdte €yovue Ty exBoyy| Tou akyopiduou tou napovoldle-
tou 670 [5]. Katd vy extéhest| tou, o ahydprduoc avoavedvel Blao THUATO EUTIO-
TOGUVNG YIoL T [t TNG LOop@HS [Li ¢, Ui ¢] Yiat x&de emhoy @ xan xdde yipo t emhéyovtog

XU tAANAY oxtiva epmiotoolvne rady (i) = \/2log T'/n, . Tuyxexpéva,
Uit = [l + Tad(i),

Lt = Wit — rady(i),

6mou ﬁi,t elvan 0 y€oog dpog Twv avtaolBdy and Ty emAoYN ¢ we Tov Yipo t.

Algorithm 1: Successive Elimination
Eicodoc: K, T
/* Apyikomoinon active set x/
S+ [K]
while t < T do
/* Moi&e k&Oe active arm pia popd */
for i € S do
ITod€e arm ¢
Avavéwoe u;, l;
/* TloALTLkY) €€dAeLdmc x/
for i € S do
if 3j € S téroio wote l; > u; then
| S+ S\i

Ocewpnua 1.1.2. O adydpifuog Successive Elimination metuyaivel regret

E[R(+)] < O(v/Ktlog T),

yia kdOe yvpot < T.
H an6deiln Peloxetar oto 3.3.1.

Yuveyiloupe xdvovtac avapopd otov ahybplduo Upper Confidence Bound (UCB),
évav xoudo xan amodotxd ohyodpuduo mou metuyaivel BéATioto regret. H opynn
exdoyy| Tou elvar auth Tou UCB1 and to Auer et al. [7].

14



Algorithm 2: UCB

Eicobdoc: K, T,
for t € [T] do
‘ Ay < argmaxe(g)(wie) // wir = i + rad(i)

O UCB axoroudel v opyn "Arcrlodoia und ABeBondtnta”, Sniady euniotele-
Tol TWAVTA TNV TWo alolodo&rn mpofBiedn xotd Ty emhoyy| Tou.

Ocdenua 1.1.3. O akydémbuog UCB metuyaiver regret

E[R(t)] < O(\/Ktlog T),

yia kdOe yvpot < T.

H anédeiln Beloxetar oto 3.3.2.

1.2 Aixowor Ahyoprdupolr oto MAB I1pbBAnpa

IIM8og epopuoyey alyoptduxne Mgng ano@doenmy amattody Ty THENoY TEPLOPLo-
MOV Tou eyyuwvTon Ty "Oikaia” amdact evog alyopliuou, OTKS 1 TEOCKTOTON-
HEVT BlapUNoT), Ol LUTEXES BOoXUES, oL Bladxaoiec Tpdahndng 1 Savelouol xot TOANES
Shhec. Topadétoupe evdeixtind tn oepd epyaotdyv [8, 9, 10] érnou avarbovton tepio-
TaTixd 6mou ahydpduol Adme anogdoewy avanapdyouy biases. Puoixd, o oplouds g
Bixoung amdgpacrg dev elvon mpopavic YL’ autd To Adyo €youv tpotadel dudpopol oplo-
pol duxonoclvng yiot To UTG PEAETN HoVTELD. Oa ecTidoouue 6Tov oploud d-fairness
twv Joseph et al. [1].

Opiopodc 1.2.1. Evag akydpifuog elvar §-fair av yia dAes tig axodovdies and avza-
HOPBES T A, T Ayy - - -, T4, KAl OAES T1S KaTavoués Dy, ..., D pe mavdtnta tovddyio-
tov 1 — 0 ndvew otny wtople h, ya kdle yipo t € [T] kar 6Aa ta {edyn emroydy
J,J" € K],

m(jh) > m(5'|h) only if p; > pyr.

O mapamdve oplopog e€aoporilel nwg évag learner dev pmopel vo euvoroet éva arm
EVOVTL EVOC GANOU av TO TpdTOo Oev €xel udmAdTepn péon aviauoBr. Ou cuyypagpelq
npotelvouv tov ahyopwluo FairBandits o omolog elvou pla d-fair mopodioy?) tou
Successive Elimination xou netuyoiver O(\/K3T InTK/é) regret. To anotéheoya
elvon tight ue to avtioTolyo xdtw Qedyua mou vnoloyilouv. XNy neplypupr| TOU dA-
yopiduou yenowwonoteiton 1 diwephic oxéon e olvdeone (link), mou avagépeton o
arms Tewv omolwyv To Blao THUATA EUTLOTOCUYNE ETUXAAOTTOVTOL XoU 1) DIUERTC OYEaN TNS
ahvaidag (chain) mou ouoyetilel arms mou Peioxovton oty Bio xhdom g petaBatinds
xheloToOTNTOG TNE oyéong obvdeorg.
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Algorithm 3: FairBandits
Eicobdog: K, 6.

/* Apyikomoinon active set kol SLACTNUATOV EUTLOTOOVVNG */
So + {1,,K}
for i € [K] do
‘ ZZ@O — 1/2,ui70 — l,li,o — O,ni,o ~0
for t € [T] do
if < argmaxies, , Uiz
St < {j|j chains to i},j € S;_1}
Iofge arm j € S; opolduoppa
Topotrpnoe avtagol3y| ;¢
/* AVOVE®OE TLC OTATLOTLKEG MANPOYOPLEC yLa To arm j */
Njt < Njt—1 +1

~ 1/~
Hje 4= s (g1 -1+ 750)

. In((7- 2)/368
cad () <. |/ EOEEET

1,6, wje] = [j,e — rads(4), fij,e + rad(j)]
for i € S;,i # j do

‘ Mt = it—1, Ui e < Ust—1,0a < lig—1, M < Ny g1

1.3 (g,6)-Fairness

Y10 nopdv unoxepdioto Beloxeton 1) Bacixr CUVELTQOEH QUTAC TNS SITAWHATIXAG. LUY-
AEXPLUEVA, TPOTEIVOUUE TNV TAUEUXATL £-YoAdpwor Tou d-fair oplouoo.

Optopodg 1.3.1. Evag adydpifog eivar (g,0)-fair av ya 6Aes tig axokovdies and
avTapolBéS T A, T Ay, - - -, T A, KAl OAES TIS KaTavoués Dy, ..., D ue mavétnta tovddyio-
tov 1 — § ndvew otnr wtopia h, yia kdde yipo t € [T] kar da ta {edyn emroydy
J.J" € K],

mi(jlh) > me(5'|h) + € only if pj > pyr.

H Buwpopd twv 800 oplopmv Eyxertan 0To Tt Yewpoly we "delyvw edvola" anévavtl
og éva arm. Xto mhaiolo Tou (g,d)-fairness, Yewpeitan nwe o learner euvoel €vo
arm €vavtl evog dAlou av to mollel pe mUAVOTNTES TOU AMEYOUV TOUAAYLIOTOV €.
Avut 1 yakdpwor emitpénel otov learner va "omdel" yenyopdtepa Tic oducideg xau
vo mailel e yeyalbteern mdavotnTa To arms e xaAUTERO U€co 6po avtopoBny. Ia
e =0, ot 800 oplopol Tavtilovtar, eved Yo € = 1 0 Teploploude elvar TG0 EAACTINGS
nou plo mapahhay) Tou Successive Elimination Yo opxoloe yia tnv enthuon tou
npoPifuartog.  Ilopaxdtw mopouvoidletar o ahydprduog FairTruthful (FT) xou 7
uno-poutiva Grouping mouv yenowonolelton and tov FT.
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Algorithm 4: Fair algorithm for Truthful agents (FT)
Eicodoc: K, ¢, §.

/* Apyikomoinon active set kol SLAOTNUATOV €UTLOTOOOVNG */
So + {1,...,K}.
for i € [K] do
‘ ﬁ@o — 1/2,’[@70 — 1,17;70 — 0,711:,0 +~0
for t € [T] do
/* UTOAOYLOE TNV KOUTAVOUY 7y TEVe® oTo active arms. x/
7 < Grouping(S;_1,¢) (13)
Iofle arm j ~ 7.
IMopathpnoe avtadol3| 7; ;.
/* AVOVE®OE TLC OTATLOTLKEC TANPOYPOPIiec yLo To arm j x/
Njt < Njt—1 +1

10

11

12
13
14
15
16

iy Byt mja +750)
In((m-(t+1))2)/36

rad:(j) <+ ST
[L,6>uje] < [lj,e —rads(4), iy, + rads(j)]
iy < argmaXjes, , Uit

St {i]¢ chains to i} }

for i e S;,i# j do

w

© o N o s

| it 4 i1, Uie = i1, lig = lig—1,mip < N1

Algorithm 5: Grouping

Eicodoc: Active set Sy, €.
/* Apxikomoinoe Tov aplBUd TwV groups Kol TO OGUVOAO TV arm mou dev

gxovv Tomofetnleil akdua */
M <0
NA «+ St
/* XépLoe Ta active arms o€ groups x/
while NA # () do

Avavéwoe group counter M: M < M +1

Pivot arm vy to group M: j* < argmax;cna Ui ¢

M: GM,t — {’L e NA : Ujt > lj*,t or U ¢ > lkﬂg, ke GM—l,t}-

NA + NA \Gars.
Aboe to mapaxdtew LP: // TmOAdYLOE TNV KOTAVOUY

peylotonolnoe ¢
M

subject to E |G| =1,
i=1

ﬁ-i,tgﬁ-i-‘rl,t—i_ga t=1,...,
Fip >0 i=1,...

Erwotpogn: Katavoud mp: {m ¢ < 7j s.t. i € Gy, V5 € [M]}

H miene anddeln tou dve gedypatoc tou regret touv FT umopel va Peedel oto 5.
Iopaxdte mapovoldlovpe Tor Baoind AMAUHATO X0t TO CYETIXO VEMENUAL.

AAppo 1.3.1. Ta kdOe yipo t € [T, o apiduds twv group pe pn pndevikn mi-
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Javétnra 7., efvar dvew gpaypévos ané m = O(min{y/1/e, K}.
Afupe 1.3.2. Eoto éva {edyos arms i,j téroo dote p; > p; kar yopos t € [T.
Td‘L'E, E[m,t] Z ]E[nj,t],

Oedenua 1.3.1. O alydpbuos FT tetuyaiver regret

R(T)=0 (min (\/Z,K) KTlog IZT> .

1.4 Avtaywvictxég Emdéosic oe XtoyaoTind
Bandits

To televtalo xepdiono mpoyUoteleTUl TO cLVOLAOTIXG HovTélo oToyacTxol MAB
pe avtayoviotixés (adversarial) adhoLOGELS 0TI avTopolBES, TOU ELodYETOL and TOUG
Lykouris et al. [11]. To govtého auté eivon yp oo o€ eQopUoYES GTOU 1) AvTHUOlRY
plog evépyetag pnopel va napamoindel and xdmolov avtaywviot Ue 1 }welc xdmotov
oot oTEUTNYXS 0TdY0, Omwe Ta fake reviews, to click-fraud x.d. To mpwTéx0ANO
uetal learner xan nepBddhovtog €yel wg e&ng:

1. O learner emAéyet dnpdota piot XATUVOUN Tt

2. To nepiBdilov Bétel TN oToyaoTIN avTadoBT] 15 ¢ yia xdde evépyela 1.

3. O avtaywviotig mopatneel T 6ToYAoTXES avTadolBés, TNy loToplo i1 Xou
TNV XOTOVOUY) T X0l ETLOTEEPEL TLC TAURATONUEVES avTopOBES (T¢)ic[K]
4. O learner nailel plo evépyela cOUPOVAL UE TNV TUYAOTOMNON TNG XATAVOUNS TOU

X0 TOEOTNEEL TNV TOEATOLNUEVY TNS AVTOUOLBY).

H ahhotwyéves avtopolBéc Exouy 0 Wop®H Tat = Tat + Cat, OTOU TO Cq ¢ ETAEYETAL
and tov avtaywvoth. Xapaxtnellouvue évav avtaywwiot C-corrupted av

ngx [Tat — ra] < C.
t

Evahhaxtind, ou Gupta et al. [12] opiCouv to eninedo arhoiwone C g

=3 |&-r
!

te[T

Ot xhaowxol bandit alyoprduol mou eldaye oto nponyolLuevo xepdhoo dev elvon robust
anévavtl oe TéToleg aAhowoels. 2oT600, elvol evOlaPEROY OTL AV O AVTAYWVLOTAS
umopel UOVO Vo TopATOIRoEL TNV avTAot) MOTE Ty > 144, ToTE 0 ohybprdpoc UCB
dratneel To regret tou anévavtt o O(V KT)-corrupted avtaywvioti. To nhpeg
Vewdpnua oaxoroudel.
BOepnua 1.4.1. Yo ovvdvaotiké povtélo pec. . > 0, o akydpiduos UCB metuyaivel
regret
16logT
R(t)=0 | Z | [3A1—+Ai} +4KC |,
i€[K], i

o€ kd0e yipo t.
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1
2

[

[}

© o N o

10
11

O 6poc Tou adpolopatog elvan to instance-dependent regret tou UCB o6to anhé oto-

yaotixo MAB.

O Lykouris et al. [11] npoteivouv tov ohyoptdpo Multi-layer Active Arm Elimination
Race (14) mou metuyoaivel regret eZoptduevo nolhaniactaotxd and v twh C. O
olyoprdpoc BARBAR twv Gupta et al. [12] piyver tnv e€dptnom ot ypouuixh oL Tov
TAPOUCLELOVUE TOPUXETE.

Algorithm 6: BARBAR
IMopdpetpor: euniotooivy 6 € (0,1), T
Initialize Tp = 0 and A?Y = 1 yia xéde i € [K].
©éoe A = 1024 1n(3 log, T').
form=1,2,... do
Set n* = AM(A" )72 yio x4de i € [K].
©éoce N,, = Zfil n* wou Ty = Thpe1 + Ny
fort=T,_1+1 toT,, do
| TaiZe o arm i pe mdavoTnTo nf" /Ny,
©¢oe " = S;/n* bnou S; elvan 1 suvolu avtopoB) and to arm i oty
gnoyh m.
©¢oe 1™ = max; {r" — LA}
©éoe A" = max{2~™,r" — "}

Oeswpnua 1.4.2. Me mavétnta tovddyiotor 1 — 4§, to regret tov Algorithm 15
elvar ppayuévo and

ofkc+y loiT log (IE logT>
i g
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Chapter 2

Introduction

2.1 Motivation

Reinforcement learning (RL) is a computational framework to model a goal-
oriented learning procedure between a learner and an environment. What differen-
tiates RL from other types of learning is that learning stems from the interaction
between a decision-making agent and an environment without any supervision or
exemplary data. That is to say, a numerical reward function that maps a learner’s
actions to rewards is sufficient learning feedback. The goal in RL applications is
not to uncover a hidden structure behind the environment but rather to find the
decision-making policy that maximizes the cumulative reward.

The non-associative setting, where the learner only needs to make one type of decision
is modeled with multi-armed bandits (MAB). In this model, in each round ¢
the learner is faced with K arms of a multi-armed slot machine and must decide
which one to pull. The rewards may be generated stochastically or adversarially
depending on the application. The main metric to evaluate a learner’s performance
is regret, i.e., the difference between the cumulative reward of the learner’s policy
and the cumulative reward of the optimal policy in hindsight. Our work focuses on
stochastic MAB and the metric used is pseudo-regret, i.e., the expectation of the
difference above.

In this context, the Exploration-Exploitation trade-off arises. The learner must
choose whether she will explore more options to get more information upon their
merit or whether she should commit to the best performing option so far. Such
dilemmas dominate most decision-making procedures and have been studied by
a plethora of disciplines such as mathematics and behavioral science. Chapter 3
formally presents the model and some of the standard algorithms used in balancing
exploration-exploitation.

Many algorithmic decision-making applications have been found to replicate biases,
against their designers’ will. Such behavior emerges from historical biases or poor
representation of a certain population in a training dataset, decisions based on
protected attributes, a platform’s reward maximization objective among other
reasons. Thus, a line of work has studied different fairness notions, which wish
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to guarantee that such phenomena are eliminated. Algorithmic Fairness can
be divided into group fairness, that ensures that demographic parity/ equality
of odds/equality of opportunities are respected among populations with different
protected attributes (be it race, gender, age); and individual fairness, that can be
interpreted as "Similar individuals are treated similarly". Chapter 4 includes a brief
presentation of works uncovering biases in algorithmic decision-making and some
insightful fairness definitions.

However, fairness may not be guaranteed in settings where an action’s reward
is manipulated. Multiple applications are vulnerable to external agents that
distort observed rewards, either serving an individual objective or adversarially.
A motivating example is the case of Goodreads, a platform that suffers from
fake reviews, a type of adversarial attack that aims at fooling the algorithm into
recommending books with poor performance by corrupting the rewards (i.e., review
score) of better performing books [13]. The work of Lykouris et al. [11] models the
aforementioned case through a mixed stochastic and adversarial setting and studies
algorithms robust to such corruptions. Chapter 6 thoroughly presents results on
the mixed model.

2.2 Previous Work

Multi-Armed Bandits have been introduced as a framework by Thompson [2], and
taken their name from the work of Bush and Mosteller [14]. The MAB problem is
extensively documented in the works of Bubeck and Cesa-Bianchi [3], Lattimore
and Szepesvari [4], Slivkins [5]. The work of Auer et al. [15] shows that any bandit
algorithm is forced to suffer Q(v KT) regret, using tools from information theory.
Algorithms that match the lower bound (up to a polylogarithmic factor) include
the Successive Elimination Algorithm (8) proposed in Even-Dar et al. [6] and
the Upper Confidence Bound Algorithm (9) from Auer et al. [7].

Different fairness notions have been introduced in [16, 17, 18, 19, 20]. This thesis
focuses on the definition of §-fairness proposed by Joseph et al. [1], a meritocratic
notion that restricts a learner from favoring a sub-optimal arm. The authors propose
a d-fair algorithm, called FairBandits (11), that achieves O(V K3T) regret after T'
rounds.

When it comes to the mixed model of Lykouris et al. [11], the work of Gupta et al.
[12] proposes algorithm BARBAR that achieves regret with an additive dependence
on the corruption level C. The literature on agents with strategic behavior includes
the work of Feng et al. [21], who study a model where arms behave as strategic
agents who wish to maximize the number of times they get pulled by overvaluing
their own reward up to a budget. Similarly, Braverman et al. [22] consider a setting
where agents/arms present a lower reward, keeping the difference from the realized
one as a utility for themselves. A combination of the above is studied in Esmaeili
et al. [23].

2.3 Contribution

Our contribution is an e-relaxation of the J-fair definition from Joseph et al.
[1]. In our definition, a learner favors an arm over another if she is playing them
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with probabilities more than € away from each other. Through this relaxation, we
introduce FairTruthful (FT) Algorithm (12), that achieves a gracefully optimized
regret of 9] (min («/1 / a) VKT ), where parameter € can be tuned to cater to each

application. The regret analysis of FT can be found in Chapter 5. In Chapter 6 we
also provide an analysis of the performance of UCB in the adversarial corruption
setting. The link between fair and robust algorithms is an open question.
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Chapter 3

The Stochastic Multi-Armed
Bandit Problem

The Multi-Armed Bandit Problem is a simple framework to model a sequential
game between a learner and an environment taking place over a time horizon.
Before formally defining the terms above, let us present some applications where
this model may be of use.

e Casino A gambler playing with multiple slot machines aims at maximizing
her revenue through learning some (maybe statistical) information on the
rewards of each machine. Slot machines are also called one-armed bandits
and that is how the name Multi-Armed Bandit problem occurred.

e Recommendation Systems A recommendation system (learner) wishes to
learn users’ preferences while observing their interaction (i.e., clicks or likes)
with different recommendations.

e Network Routing A navigation application opts to find the shortest path
between two nodes among a combinatorially large set of available paths
through feedback provided each time a path is chosen.

In the general case the game is played over a horizon of T rounds. In each round
t a bandit algorithm (learner) chooses an action A; from a fixed set of actions A
and the environment reveals the action’s reward r4,. Naturally, a learner’s choice
in round ¢ can only depend on the rewards she has observed and not on future
rewards. The mapping of history Hy;—1 = ((A1,74,), (A2,74,),- .., (Ai—1,74,_,))
to the action A; is called the learner’s policy. The Multi-Armed Bandit Problem
(MAB) is often referred to as the K-armed Bandit Problem, where K denotes the
number of possible actions/arms. For the rest of the analysis we will be using the
terms action and arm interchangeably.

The MAB Problem was introduced in Thompson [1933] as an attempt to efficiently
conduct medical trials. Since then, a line of work (Bubeck and Cesa-Bianchi [2012],
Lattimore and Szepesvari [2020], Slivkins [2022]) has thoroughly contributed in
enriching and collecting most of the main results on the field. Given this general
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setup, multiple variants of the MAB problem have been studied to cater to each
application. Depending on the information provided by the environment after
choosing an action, we divide bandit problems into three main classes: (i) bandit
feedback, when the learner is only informed about the reward of the arm she chose;
(ii) full feedback, when the learner is informed about the rewards of all possible
actions and (iii) partial feedback, when the information provided lies between the
two former cases.

Another major classification stems from the way rewards are generated. The two
main categories are stochastic rewards, when rewards are i.i.d. samples drawn from
a fixed distribution D over the arms and adversarial rewards, when we assume the
existence of an adversary that sets an action’s reward arbitrarily or subject to some
constraints.

The main question that arises from this setup is how to evaluate a learner given a
specific environment. To answer this question, the notion of regret was introduced.
Regret is defined with respect to a policy m and accounts for the difference between
the cumulative reward collected by policy 7 and the cumulative reward collected
by the learner. Generalizing this notion, one can compute regret with respect to a
family of policies I as the maximum regret w.r.t. any policy 7 in II. The regret of
an algorithm A in a MAB problem can be expressed as:

T T
R(T) = max (; ,uitmr) - ; My g -

The above is often called pseudo-regret in literature because the difference is com-
puted with respect to the mean values and not the realized rewards.

The choice of IT differs depending on the variant of MAB being studied. The present
work focuses on stochastic MAB problem and therefore the regret computed is
relative to the policy 7* that chooses the arm with the highest mean reward.

Applications

We hereby reference some indicative works on bandit applications in a plethora of
different domains. Bouneffouf and Rish [24] thoroughly present bandit literature on
real-life applications in the fields of healthcare [25, 26, 27], finance [28, 29], dynamic
pricing [30, 31], anomaly detection [32, 33] and more. Recommendation systems
applications can be found in [34, 35, 36, 37|, while the respective literature has been
enriched with works upon users’ interaction with a bandit algorithm [38, 39, 40].
Bandit applications to Internet routing and congestion control and communications
are presented in [41, 42, 43].

3.1 Model

In this section we formally define the model studied throughout this thesis. Our
model falls into the category of stochastic MAB with bandit feedback.

In each round ¢ in [T'] learner picks an arm A; among K available arms and observes
reward r4,+ ~ Da,, where Dy, is the distribution associated with arm a. We
assume bounded rewards such that r.; € [0, 1] for all arms and all rounds ¢ € [T7].
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The mean value of D; will be of utmost importance in our analysis, so we will use
w; = E[D;] for simplicity in notation. We define the best arm * to be the arm with
the highest mean reward p*, namely:

1" = arg max(u;).
gie[[g](u)

Without loss of generality we assume that only one arm satisfies the above property.
We further define A; = p;+ — p; as the reward gap for arm 4. It is clear from the
definition of the best arm that A; > 0 for all arms, with the equality holding only
for i = 7*.

Computing the pseudo-regret relative to the policy 7* which picks arm ¢* with
probability 1 we get the following expression:

T T

T
RT) =T -p" = i, =Y (0" =) =D A, (3.1)
t=1

t=1 t=1

Let n;: be the total number of pulls of arm ¢ until round ¢. Then the above
expression can be written as:

K K
R(T) = Zni:T = ) = Zni,T A (3.2)
i=1 i=1

In the following sections, we present the basic algorithms proposed for the Stochastic
MAB problem and their regret analysis.

3.2 Non-Adaptive Exploration

We begin with briefly presenting algorithms that follow non-adaptive exploration.
Non-adaptive exploration refers to algorithms that neglect the history of observed
rewards in some exploration rounds. A round t is characterized as an exploration
round if the observed tuple (A, r;,) is used by the algorithm in a future round.
For a deterministic algorithm to be considered non-adaptive, it should define the
exploration rounds as well as the choice of arms in all of them before the first round.
For a randomized algorithm, the criterion is altered to satisfying the above property
for any realization of its random seed.

Although not having optimal performance in terms of regret, a brief analysis of
non-adaptive algorithms may be beneficiary to the reader’s understanding of the
model.

A simple such algorithm is uniformly exploring all available actions and then
committing to the empirically best one. This is the case of Explore-First Algorithm
in Slivkins [5] (also appearing under the name of Explore-Then-Commit (ETC)
Algorithm in Lattimore and Szepesvari [4]), one of the first bandit algorithms
introduced in Robbins [1952], Anscombe [1963]. Inserting randomness into the

Explore-First Algorithm we get the e-Greedy Algorithm, both achieving 6(T2/3)
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regret’. The performance of the latter is thoroughly documented in Sutton and
Barto [46]. We present the algorithm below.

Algorithm 7: e-Greedy

Input: number of arms K, horizon T, €.
for t € [T] do
Toss a coin with heads probability ¢;
if heads then
‘ Explore an arm uniformly at random
else
‘ Exploit arm with highest empirical mean

We can see that rounds in e-Greedy are clearly divided into exploration and ex-
ploitation rounds, depending on the outcome of the coin flip. Before proceeding
with computing the regret, we define the terms clean and bad event that appear in
most of the following proofs.

The empirical mean reward fi; ¢ of arm 7 until round ¢ can be expressed as:

S

~ o t'=1"1t

Wit = —.
Nt

The distance |f;+ — i;| can be bound using the Hoeffding Inequality (A.1.1):

P [|fiie — pa| > rad(i)] < 2 exp(—2rady(i)? - n;4),

where rad;(7) is usually referred to as the confidence radius of ;. Using the
confidence radius we can define conf;(i) = [l — rad.(4), ;¢ + rad.(7)] as the
confidence interval of p; and for simplicity we will denote the upper/lower confidence
bounds of conf, () either as UCB; /LCB; ; or w; /l; 4.

We define the clean event as the event & := {Vi € [K|Vt € [T : |fls;s — 5| < rads(i)}
in which all mean values u; belong to their respective confidence intervals. Its com-
plementary £€ is called the bad event. The above terms are defined with respect
to the value rad;(7), which may differ depending on the algorithm. In the case of

e-Greedy we set rad;(i) = ,/2;?{71, which yields P Hﬁzt — ,ui‘ > rady(i)] < 2/T*
Thus, taking a union bound over all arms ¢ € [K] and all rounds ¢ € [T], the
probability of the bad event is:

P[EC] < 2K/T® < 2/T2. (3.3)

Combining the above with the probability P [fi;« ; > max;.;- [l;¢] that is bounded
2
by exp (— f’f}g ) through a similar argument we can prove the following theorem.

Theorem 3.2.1. Algorithm €-Greedy with ¢, = t_1/3(10g Kt)2/3 meurs regret
E[R(t)] = t*30(K logt)'/3.

"The O symbolism, eliminates poly-logarithmic dependencies.
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3.3 Adaptive Exploration

The T?/% dependence we observed in the regret of non-adaptive algorithms can
be improved through adaptive exploration. In this section, we will present two
fundamental adaptive exploration algorithms: Successive Elimination and UCB,
that achieve regret O(v/T).

3.3.1 Successive Elimination Algorithm

Successive Elimination Algorithm improves exploration through eliminating
arms that are proven to be worse than others, depending on their confidence
intervals. The correctness of said elimination lies upon the definition of the clean
event. The version described below can be found in Slivkins [5] and it is a variant
of the algorithm proposed in Even-Dar et al. [2002], which eliminated one arm at a
time - the one with the minimum empirical mean reward. The active set technique
is also used in a similar manner in Auer and Ortner [2010].

For the Successive Elimination Algorithm, we will be using the same confidence

radius as in e-Greedy, namely rad;(i) = \/2logT/n; ;.

Algorithm 8: Successive Elimination
Input: K, T

/* Initialize active set to [K] */
2 S« [K]
while ¢t < 7T do
/* Play every active arm once */
for i € S do
Pull arm 4
Update u;,;
/* Deactivation policy */
for i € S do
if 35 € S such that l; > u; then
| S+ S\i

Algorithm 8 operates in phases: in each phase there is exactly one pull of all active
arms. The algorithm keeps track of arms’ confidence intervals and as soon as a
phase terminates and the intervals of a pair of arms cease to overlap, the arm with
the lower fi gets eliminated. Assuming that the clean event holds, the elimination
rule never eliminates the optimal arm.

Theorem 3.3.1. Successive Elimination Algorithm incurs regret

E[R(t)] = O(v/Ktlog T),

in each round t < T.

Proof. Consider the clean event. We begin with a simple observation. If an arm
i is active until round ¢, then u;; > l;« +; otherwise putting j = ¢* in line 7 of
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Algorithm 8, arm ¢ would have been eliminated. Thus, using:

lisqn = Q=g —rad(i*) > p* —2rady(i*)
Uiy = i+ radi) < py+2rady(i)

we acquire the following bound on A; < 2(rad:(i) + rad:(i*)) < 4rad:(i*). Let ¢ be
the last round of the last phase in which arm i is active, then n; ; = n;- ;. Hence:

2logT

Nyt

0 ( /%gT) .
n;T

Using the regret expression of Equation (3.2) we get:

Z nzTA < Z nzT( 210gT>

n
i1€[K] T

A; < 4rads(i) <4 (nir =mnig +1)

ViegT) >~ nir. (3.4)

1€[K]

Applying Jensen’s Inequality (A.1.3) on Zie[K] /1T, using the concavity of the
function f(z) = \/x we obtain the following bound:

ZZE[K n’LT ’LG[K] nZT [t

Thus, Equation (3.4) yields R(t) < O (VKtlogT). O

3.3.2 Upper Confidence Bound Algorithm (UCB)

The most common phrase that collocates with Upper Confidence Bound Algorithm
(UCB) is "Optimism under Uncertainty". The invariant behind UCB is to always
pick the arm with the highest upper confidence bound, trusting that the optimistic
bound (as it is higher than the empirical mean) is indicative of the arm’s true mean
reward. Intuitively, this measure lets the exploration-exploitation trade-off balance
itself out by evaluating the sum of

UCBi’t = ,Ei7t + rad; (Z)
exploitation factor  exploration factor
Thus, both arms having a high exploitation factor (high empirical mean) and arms
having a high exploration factor (large confidence bounds due to fewer number
of pulls) contest for the learner’s choice. The optimism notion was introduced by
Lai and Robbins [1985]. After this, a line of work ([49], [50], [51], [7], [3]) studied
multiple variants of algorithms following the optimism principle, with the main

difference being the choice of the confidence radius. The algorithm presented below
is very similar to UCB1 introduced by Auer et al. [2002a] and is gracefully simple (we

will be referring to UCB1 as UCB). The confidence radius is rad;(i) = /2log %/ni’t,
where § = f(t). When computing regret we will set § = 1/T2.
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Algorithm 9: UCB

Input: number of arms K, time horizon T, §
for t € [T] do
‘ Ay < argmaxe(g)(wie) // wir = i + rad(i)

The regret analysis of UCB can be expressed very similarly to that of Theorem 3.3.1,
with a more careful argument to compare n;; with n;- ;. For completeness, we
provide below a different, yet widely used, analysis that bounds E[n, ;] instead of
A; to achieve the same result.

Theorem 3.3.2. UCB Algorithm incurs regret

E[R(t)] = O(v/KtlogT),

in each round t < T.

Proof. We begin with defining a slightly different clean event w.r.t. an arm i, so as
to bound the probability of the algorithm choosing a sub-optimal arm.

2log(1/0) _ .

& = {‘u* < min Ui*,t} N ﬁi,N&, + N;

te[T]

Under the clean event we know that the optimal arm is not underestimated in
any round ¢ and arm’s ¢ upper confidence bound is below p* (which is below ;- ;)
after N; rounds. The value of N; will be determined after computation to achieve
the desired bounds. In the same time, it is obvious that arm ¢ cannot be played
more than N; times, since assuming the opposite would mean that there exists a
round ¢ > N; such that n;; = N;. Then:

~ 2log(1/6
Ui = it + %
it
. 21og(1/0)
= HiN, T i = Ni
1ii N N, (1i,0 )
<P < U g, (definition of &;)

which contradicts the assumption.

Using the law of total probability we can express E[n; ;] as:

Eln] = E [ni:|&] + E [ni:|E7]
< N; +T-PEC]. (3.5)
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Now the probability of the bad event can be bounded by:

2log(1/9) -

P [(‘:ZC] =P {/14* > min Ui*,t} U ﬁini + N =
[

te(T)

2log(1/9) -

N, > , (3.6)

<Pp* > min wp | +P | i N, +
te[T] ’ T

P
1 >

where P, < td through a Hoeffding inequality (A.1.1) application and a union bound.

Bounding P» requires a choice of N; that caters to the desired result. Assume that

N; is chosen so that:

21log(1/9)
N;

where ¢ € (0,1) is a constant to be tuned. Then P, can be written as:

Ai - Z CAZ', (37)

2log(1
P2 =P /-/Zi,Ni — M4 Z Ai - w (deﬁnition of Az)
S P[ﬁi,Nl — Mg 2 CA,L'] (Equation (37))
N;c?A?
< exp (— ZC2 : ) . (Hoeffding inequality (A.1.1))

Using these bounds, Equation (3.6) incurs:

N;c?A2
P [EC] < 6+ exp (—02) : (3.8)
The last thing to get our result is setting the value of N; and c¢. Plugging

N; = [210;;;(1/5)"7 (the minimum value of NV; that satisfies 3.7) and ¢ = 1/2 into

(1-0)2A7
Equation (3.8), and using the result in Equation (3.5), we obtain:
16logT
E[ni7t] S 3 + AZg .

Using the regret expression of 3.2 we end up with the following bound on regret:

E[R(t)] < > EniA,
1€[K]

< Y EmdoA+ Y aa, 4 20ke

A;
i€[K]:A; <A 1€[K]: A >A
16logT
ST'A+_Z sz 3A,;
i€[K] i€[K]
<8/KTlogT+3 Y A, (A = /16K logT/T)
i€[K]
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3.4 Unknown time horizon 7T

In all algorithms presented in sections 3.2, 3.3 we assumed that the time horizon T’
is a known parameter to the learner. Algorithms that do not take the time horizon
as a parameter are called anytime algorithms. The work of Besson and Kaufmann
[52] provides a theoretical guarantee to why such an assumption does not alter the
results in the case of unknown 7" but up to a constant factor.

The authors formally define the Doubling Trick, a meta-algorithm that takes as
in input an algorithm 4 and a time sequence (T;);en and runs memory-less copies
of it in epochs of (increasing) length Tepocn i = T3 — T;—1. This technique was first
introduced by Auer et al. [53]. The Doubling Trick is presented below as it was
defined in [52].

Algorithm 10: Doubling Trick
Input: algorithm A, doubling sequence (T});en
Let i <+ 0, and initialize algorithm A(®) <+ Az,
fort € [T —1] do
if t > T; then
/* Full restart */
t+—1+1
'A(l) — ATi_Ti—l
/* Play algorithm A() */
At — A(z) (t — Tz)

Theorem 3.4.1. If an algorithm A satisfies Rp(Ar) < ¢T7(logT)? + f(T), for
0 <v<1,6 >0 and for ¢ > 0, and an increasing function f(t) = o (t”(log t)‘s)
(at t — o0), then the anytime version A’ := DT(A, (T;);en) with the geometric
sequence (T;);en of parameters Ty € N*, b > 1 (i.e., T; = |Tob'|) with the condition
To(b—1) > 1 if 6 > 0, satisfies,

Rr(A') < £(y,6,To,0)cT" (log T)° + ¢(T),
with an increasing function g(t) = o (t”(log t)‘s) , and a constant loss £(y, 0, Ty, b) > 1,

~ (log(To(b—1)+1)°\ _ b7(b—1)7
100 Tor) "( los(To(b 1) )Xlﬂ—l

The reader is referred to the work [52] for the proof of the theorem above. The
authors provide similar results for an upper bound on DT with exponential horizons
and tight lower bounds for both cases. For fixed v, d, algorithm A’ suffers constant
regret with respect to Ar.

3.5 Lower Bound

In this section we present the lower bound on the regret of any bandit algorithm.
The proof is from Auer et al. [15] and the version below is from Slivkins [5].
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Theorem 3.5.1. Fix time horizon T and the number of arms K. For any bandit
algorithm, there exists a problem instance such that E[R(T)] > Q(VKT).

KL-divergence

Before proceeding with the proof, we give a brief overview of the Kullback-Leibler
or KL-divergence, a tool from information theory that is particularly useful in
our proof. It is defined as

B PR 1C0 B 51

e q(x)

where p, g are probability distributions defined on the sample space 2. KL divergence
is used to compute the statistical distance between the distributions p, ¢ and is also
referred to as relative entropy, denoted Dy (p||q).

Applying the standard properties of KL-divergence (Theorem A.1.4) we obtain the
following result.

Lemma 3.5.2. Consider sample space Q = {0,1}"™ and two distributions on §,
p = RC? and ¢ = RCY, for some e € (0,1/2). Then |p(A) — q(A)| < ey/n for any
event A C €.

Another preliminary for the following proof is the definition of best-arm iden-
tification. Best-arm identification is a variant of the MAB problem where the
algorithm makes a prediction on the best arm y; after each round ¢. In this setting
the objective is not to minimize a regret function but to maximize the probability
Ply; = i*], where ¢* is the arm with the actual highest mean reward.

The family of instances we will be using for the lower bound is described by Bernoulli
distributions D;,i € [K] with expected mean given by the following rule.

o m=12+4¢2 ifi=j
J i =1/2 ifi#jorj=0.

In instance Z all arms ¢ behave like fair coins RC{; in the rest of the instances Z;,
arm j is chosen to be the best arm with a distribution of a biased coin RC? while
the distribution of arm i # j is RC}. The difference of the mean values is A; = ¢/2
for all arms 7 # j. On a higher level, what this proof aims to show is that playing

each arm 14 IOAg_T times is necessary to achieve optimal regret.
k2

Lemma 3.5.3. Consider a best-arm identification problem with T < %{ for a small
enough absolute constant ¢ > 0. Fiz any deterministic algorithm for this problem.
Then there exists at least [K/3] arms a such that for problem instances I, we have

Plyr = a|Z,] < 3/4.

Proof. We define the tuple (r¢(a) : a € [K],t € [T']) where r;(a) is the observed
reward for the ¢-th time the algorithm chooses arm a. The tuple (r;(a)),¢[,; belongs
in the sample space Y, = {0,1}*. The complete sample space for the algorithm is
the product Q = Hae[ K] Q. Conditioning on an instance Z; we define the following
distribution on :

P;(A) =P[A | Z;] for eachA C Q. (3.9)
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The above describes the probabilities of different realizations of rewards, given an
instance Z;.

Assuming that instance Zy holds and using simple contradiction arguments, we can
make the following observations:

1. There are more than 2K/3 arms j such that Eo[n; ] < 3T/K,
2. There are more than 2K/3 arms j such that Polyr = j] < 3/K.

The first observation is upon the total number of pulls of certain arms and the second
upon their chances to be predicted as best arms. Applying a Markov Inequality
(A.1.5) on the first observation we obtain P[n;p < 24T /K] > 7/8.

As the number of arms cannot extend K, there are at least K /3 arms for which
both observations hold. We will prove that for an arm j that satisfies the above

Pilyr =j] <1/2.
As P[njr < 24T /K] > 7/8 we restrict the sample space to
*x _ Om T
o =qrx ]l
aj

where m = min(7, 247/ K), thus in Q* arm j is pulled 247/ K times. We define P}
on Q% in the same way that we defined P; on Q. Using Lemma 3.5.2 we obtain

2|P5(A) — P (A)] < ev/m.

J

(219

Plugging T' < 612{ above and tuning constant ¢ the bound becomes

|Py(A) — P/ (A)] < 1/8,for all events A € Q*. (3.10)

As event {yr = j} may not be a subset of Q* (due to the need of more pulls of arm
7), we define two slightly differentiated events:

A=A{yr=jand njr <m}and A" = {n;r > m}.

From Equation (3.10) we have

* 1 *
Pj(A)§§+P0(A)
1 " )
§§+Po[yT:]]
< % (Pilyr = j] <3T/K and T < cK/€?.)

Similarly we can prove that P;(A’) < 1/4. Combining the above we obtain that
P;[yr = j] < 1/2 which concludes the proof. O

The following corollary is proven trivially using Lemma 3.5.3
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Corollary 3.5.4. Assume T as in Lemma 3.5.3.Fiz any algorithm for best-arm
identification. Choose an arm a uniformly at random, and run the algorithm on
instance I,. Then Plyr # a] > 1/12, where the probability is over the choice of arm
a, the randommness in rewards and the algorithm.

Proof. [Theorem 3.5.1] Fix the parameter ¢ > 0 and consider a random instance Z,.
Assume that T < Ce—é(, as in Lemma 3.5.3.

Given a round t we can apply the results on best-arm identification, through
considering the algorithm’s prediction y; to be the arm A; pulled in round ¢. Using
Corollary 3.5.4 we obtain that Ply; # a] > 1/12. Taking expectation on Ay, -
namely computing how much regret is accumulated in each round in expectation -
we get that

E[AA,]=Plys #a] - A+Ply: =a]-0

v

(A=A;=5 forallic [K])

v
RlnSl=
vl o

The expected regret can be expressed as

T

el
E[R(T)] = E[A4 ] > —.
LEOEDIRIVRES
Tuning € = ./%; i.e. the largest value for which T' < %( yields the result. O
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Chapter 4

Fairness notions in Stochastic
MAB

The Multi-Armed Bandit framework is used in many algorithmic decision-making
applications. Thus, there are natural constraints stemming from the environment of
each application. One such constraint is the fairness constraint that is the main
subject of this thesis. Applications that ask for fairness guarantees involve targeted
advertising, clinical trials, admission/lending processes, decisions about bail and /or
sentencing and many more.

Recent work (Ferrara [8]) has uncovered biases in decisions made by learning
algorithms that are caused by the machine learning pipeline and not the designer’s
will. Such biases include:

e Sampling/Representation Bias Bias that occurs when the population to
be modeled is not accurately represented in the data provided. This can lead
to poor performance on underrepresented individuals or groups.

e Algorithmic Bias Bias that occurs when an algorithm makes a decision
prioritizing protected attributes such as gender, age, economic status and
more.

e Confirmation Bias Bias that occurs when decisions are made based on
previous ones made by humans and thus reflect biases present in the decision
makers’ behaviour.

Examples of the above have been documented in various works. Angwin et al. [9]
investigated the accuracy of the recidivism algorithm used by Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS), a system to predict
the risk of recidivism among defendants. Among other results, they showed that
black defendants were more likely to be labeled as higher risk compared to their
white counterparts conditioning on defendants that did not recidivate over a two-
year period, whereas white defendants were more likely to be labeled as low risk
compared to their black counterparts, conditioned on defendants that re-offended
within the next two years. In the targeted advertising field, Lambrecht and Tucker
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[10] did an empirical-quantitative field test among 191 countries showing that STEM
job advertisements were more likely to be displayed to male audience by multiple
platforms, due to cost-effectiveness. Kochling and Wehner [54] provided in depth
analysis of decision-making in the context of HR recruitment and Obermeyer et al.
[55] study algorithmic bias appearing in health classification algorithms that result
in racial bias against Black patients.

Moreover, applying fairness constraints on decision-making algorithms improves the
users’ trust on the platform. Results from Claure et al. [18] studying a resource
distribution application with fairness constraints in human-robot teams show that
even though the constraint imposed that teammates with better performance scores
were chosen less often, the median score of the team was improved. The work of
Jaillet et al. [56] links a fairness constraint on a revenue management application
with higher user satisfaction of the platform.

Multiple definitions of fairness have been proposed and they can be classified in the
following main categories:

e Individual Fairness Notions of this group follow the principle "Similar
individuals should be treated similarly" (Dwork et al. [57]) and are defined
with respect to a closeness criterion.

e Group Fairness Such notions ensure that different groups are treated equally
or proportionally. Sub-classes of group fairness include demographic parity,
equality of opportunities and equality of odds, and groups are usually defined
with respect to one or more protected attributes such as age, race, gender.
Group fairness does not guarantee individual fairness inside a specific group.

4.1 Definitions of Fairness

4.1.1 Fairness of Exposure

The definition of Fairness of Exposure from Wang et al. [16] is a very natural
meritocratic notion of fairness. They borrow ideas from [58] and generalize their
results to arms with arbitrary reward distributions and merit functions. Wang
et al. [16] propose a policy 7* under which the amount of exposure given to each
arm is proportional to its merit, quantified through an application-dependent merit
function f(-) > 0.

* * /

(@) _ @) v, o e K],

flpa) — fpar)

As policy 7* can only be learned through exploration, no algorithm without prior
information can follow 7* in early rounds. Thus, this definition of fairness is not
in the form of a fairness constraint that should be satisfied in any round t € [T].
To quantify an algorithm’s fairness of exposure, the fairness regret FR(T) is
introduced, using policy 7* as a benchmark.

FR(T)=Y_ Y |r*(a) = m(a)|.

te[T] a€[K]
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In the same time, the reward regret is also computed relatively to 7*.

=2 2 m@pa= ), ) mla)

te[T] a€[K] te[T] a€[K]

In their work, Wang et al. [16] develop two algorithms: FairX-UCB, FairX-TS
variants of the UCB algorithm (3.3.2) and Thompson Sampling (TS) algorithm ([59])
and study their fairness and reward regret, given the FairX setting that imposes
certain conditions on the merit functions'. With careful tuning of the FairX-UCB
parameters, they show that with probability at least 1 — ¢

L\/KT>
5 , and

FRpairx_ves(T) =0 <

RRpairx—ven(T) =0 (@) .

4.1.2 Fairness through maximizing Nash social welfare

The model studied in Hossain et al. [60] is an extension of the standard MAB, where
in each round ¢, N agents express their individual reward of arm I;. The motivation
behind the model is that, making an algorithmic social choice which affects groups
in a different manner is prone to develop the tyranny of the majority dynamic [61].

Fix a round ¢. Let p = (p;);e[x] be the learner’s policy and p; ; be the expected
reward of arm ¢ for agent ¢ € [N]. The expected utility of policy p for agent i
is ) ;Pj - 1 ;- Maximizing Nash social welfare asks for the maximization of the
product of the utilities of all agents. In formal form:

Hl;lXNSW(p, max H Z Dj My

i€[N] \JEIK]

As in the case of fairness of exposure, the learner is asked to compete with an
optimal policy p* and not with the best fixed arm. Thus, the form of regret is
defined with respect to the NSW of the optimal policy.

E[R"] = Y maxNSW(p, ) — Y NSW(p',p"),
te(T] P te[T]

where p! is the learner’s policy in round ¢.

In their work, they propose slightly different variations of Explore-First, e-Greedy,
UCB algorithms that achieve sub-linear NSW regret. We briefly present the respective
bounds.

!The first condition needs f(u.) > v > 0 for all a € [K] and the second one asks for
the merit function f to be L-Lipschitz continuous for some constant L > 0.
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Algorithm Regret Parameters
Explore-First O(N3KsT3 L=0(N3K T3
O (NsK3TS L=0(NsK 5T
e-Greedy O(N3KsT3 e =06 NiK3ts
O(N3K5T3 =0 (N3sK3t 3
UCB 0 (NKT% 1og(NKT)> a =N
0 (N%K%T% 1og%(NKT)) a; = /12NK log(NK?)

Table 4.1: Regret bounds for NSW fair algorithms. For more details on the
parameters L, a; the reader is referred to [60].

4.1.3 Fairness through a minimum pulling rate

The concept of achieving fairness through guaranteeing a minimum pulling rate to
each arm has been studied in recent works. The work of Li et al. [17] suggests such
a constraint in the Combinatorial Sleeping bandit setting”, Claure et al. [18] and
Chen et al. [19] study resource/task allocation problems through the model of classic
and contextual MAB imposing similar constraints and Patil et al. [20] introduce the
Fair-MAB Problem and a meta-algorithm called Fair-Learn as a framework of the
class of Fair-MAB algorithms. Part of the work of [20] will be presented below.

A Fair-MAB instance is described with a tuple <T, (KT, (1) ie[k]s (ri)ie[K]>, where
T is the time horizon, [K] is the set of arms, p; € [0, 1] is the mean reward of arm
i, and r; € [0,1/K) is the minimum pulling rate associated with arm . Naturally
it should be that ZiE[K] r; < 1. The bound 1/K is selected because the authors
consider guaranteeing a rate larger than the proportional one to be unfair®. The
reward distributions D; are Bernoulli(p;) with the mean value p; being unknown
to the algorithm (learner). Let n;; be the total pulls of arm ¢ until round ¢. Given
the model above, they define fairness as follows.

Definition 4.1.1. Given an unfairness tolerance a > 0, a Fair-MAB algorithm A is
said to be a-fair if |r;t —n; ] < a for all t < T and for all arms i € [K].

The expression |r;t —n; .| is the difference between the minimum required pulls
of arm ¢ and its realized number of pulls and we will be referring to it as pulling
difference. Setting a = 0 and taking expectation on the pulling difference per-round
we get the asymptotic fairness definition from [17].

Given the a-relaxation, any Fair-MAB optimal algorithm should satisfy the following;:

If |7 T| —a >0 then n;y = [rT| — a; else n; , = 0, for all arms ¢ # ",

2This model is a mixture of combinatorial bandits, where multiple arms can be pulled
together and form a super-arm (see [62], [63]); and sleeping bandits, where certain arms
may be unavailable in a number of rounds (see [64]).

3This assumption is not made in other works imposing such constraints, while [18],[19)
study the case where a uniform minimum pulling rate v is achieved.
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Hence, a fairness-aware r-Regret with respect to the above optimal property is
introduced.

Z A; - (E[ng ¢ — max(0, |[rT] — a)).

i€[K]

The main contribution of Patil et al. [20] is the Fair-MAB algorithm Fair-Learn.
The input of Fair-Learn is the unfairness tolerance a and a learning algorithm
Learn (-). In each round ¢, the algorithm maintains a set A(¢) of arms whose fairness
constraint is not satisfied and pulls the arm with the largest pulling difference unless
A(t) is empty, in which case algorithm Learn picks the next arm.

They prove that Fair-Learn is a-fair irrespective of the learning algorithm Learn
provided as input and conclude their work with some computational results on the
r-Regret R"(T) and the pseudo regret R(T) (w.r.t. the policy selecting arm ¢* in
each round t) of the Fair-Learn when UCB is given as a learning algorithm. The
aforementioned results are the following.

Rpair—ves(T) < ( ) Z A+ Z Ai- (SIHT (TiT—a’)>a

i€[K] 1€[K]
[E2.
81nT
Rrair—ves(T Z A-(riT —a)+ A ( ) > A
i€S(T ic[K] ' i€[K]
A"

where S(T) = {i|riT —a < SlnT} It is obvious that if S(T') # (), then the
pseudo-regret of Fair-UCB is linear in 7.

4.1.4 Related work

Another approach to the minimum pulling rate constraint is penalized regret, in-
troduced by Fang et al. [65]. Let 7, > 0,k € [K] be the minimum pulling rate
associated with arm k with Zke[ KTk < 1. They define the following penalized
reward

K
Spen,w(T) = Sﬂ"(T) - Z Ak (TkT — Nk-,ﬂ'(T))Jr s
k=1

where S, (T) is the total reward collected following policy 7 until round 7', Ay is a
non-negative penalty rate associated with arm &k and Ny (7T') is the total number
of pulls of arm k& until round T following policy w. The pseudo-regret accumulated
with respect to the policy 7* that chooses the arm with the highest mean reward

*

©* in every round t is
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Contrary to strict non-asymptotic fairness guarantees proposed by other works, in
this setting the learner is able to choose whether she cares to fulfill the minimum
pulling rate of an arm depending on the respective penalty she receives.

Lastly, we make a brief reference to the work of Killian et al. [66] on Equitable
Restless MAB (ERMAB). The RMAB framework is used for decision making where
a central entity should decide on an optimal allocation of a limited number of
resources (rewards) to a fixed number of arms. It is widely used in public health,
treatment scheduling and other sensitive decision making applications. Given the
nature of these applications, some type of equity should be established as to ensure
optimal social welfare. They study a definition of group fairness that wishes to be
optimal over two objectives: maximin reward and maximum Nash welfare. Given a
grouping on the K arms the maximin reward (MMR) maximizes a group’s minimum
expected total reward and guarantees equality of outcomes. Optimizing Nash welfare
through the maximization of the product of groups’ rewards ensures a balanced
allocation. Their work aims to solve the offline problem, where arm models are
known.

4.2 $-Fairness

The definition of §-fairness proposed by Joseph et al. [1] was thoroughly studied for
this thesis. Their fairness constraint is related to the notion of individual fairness,
they apply it to the classic stochastic MAB model (3.1) and generalize their results
to the contextual bandit setting. For the purposes of this thesis, we present the
results on the classic stochastic MAB problem.

Using the same notation as in Chapter 3. Let h be the history H;—1 = ((41,71), ..., (Ai—1,7¢-1))
and m¢(j|h) be the probability that an algorithm A chooses arm j in round ¢ given
a history h.

Definition 4.2.1. [6-Fairness| An algorithm A is J-fair if, for all sequences of
rewards r4,,...,74, and all payoff distributions Dy, ..., Dy with probability at least
1 — 4 over the realization of the history h, for all rounds ¢ € [T'] and all pairs of arms
J,j" € K],

me(jlh) > me(5'|h) only if y1; > .

For simplicity we will be using the notation ;; instead of m;(j|h). At a higher level,
oO-fairness suggests that an algorithm cannot favor arm j over arm j’ (i.e., pull arm
j with higher probability than arm ;') until it has gathered enough information to
be sure that arm j has a higher mean reward; expect with probability at most 4.

Their work focuses on the pseudo-regret achieved by J-fair algorithms with respect
to the policy n* that chooses the arm with the highest expected reward. The
expression of said reward has been computed in Section 3.1.

T T T
R(T)=T- p" - Z/JAt = Z (W —pa,) = ZAAt' (Equation (3.1))
=1 =1

t=1

Joseph et al. prove a lower bound on the rounds T in which any dé-fair algorithm
experiences constant per-round regret. Their result is the following theorem.
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Theorem 4.2.2. There is a distribution P over K-arm instances of the stochastic
multi-armed bandit problem such that any fair algorithm run on P experiences
constant per-round regret for at least

1
T=0Q(K3n=

rounds.

They propose the FairBandits Algorithm that matches the dependence on K
computed in the lower bound. FairBandits is a randomized elimination algorithm,
similar to the Successive Elimination Algorithm (8) with a different elimination
rule. Throughout the analysis we will be using the term linked for arms whose
confidence intervals overlap and the term chained for arms who belong in the
same component of the transitive closure of the linked relation. In each round ¢
FairBandits keeps track of a set S; of active arms; i.e., arms that are chained to
arm ¢*, and pulls an arm from S; uniformly at random. Any arm not contained in .Sy
gets eliminated, never to be pulled again. Thus, the cardinality of S; is decreasing
with respect to t. The algorithm is presented below.

Algorithm 11: FairBandits

Input: number of arms K, §.
/* Initialize active set and statistical information x/
So + {1,7K}
for i € [K] do

‘ //;i,O — 1/2,ui70 — l,li70 — 0,7’7@70 +~0
for round t € [T] do
i  argmax;es, | Uiy
St < {jlj chains to i},j € S;_1}
Pull arm j € Sy uniformly at random
Observe reward 7; ¢
/* Update statistical information for arm j x/
Njt < Njt—1 +1
It < ﬁ(ﬁj,t—l “Mjt—1+ 7))
In((m-(t41))?) /38

njt

[Lj65uge) < [0 — rade(f), [y, + rads(j)]
for i € S¢,i # j do

‘ ﬁi,t — ﬁi,tflaui,t S U1, b < lip—1, M < Mg p—1

rad:(j) «

From the choice of the confidence radius we can easily prove the following lemma.

Lemma 4.2.3. With probability at least 1 — 9, for every arm i and round t l;; <
M < U

The proof follows from a standard Hoeffding Inequality (A.1.1) application and a
union bound on all arms ¢ € [K] and all rounds ¢ € [T]. Using Lemma 4.2.3, we are
able to show that Algorithm 11 is d-fair. We refer the reader to Theorem 1 of [1],
where she can find the respective proof.

41



Theorem 4.2.4. If § < 1/v/T, then FairBandits has regret

R(T) =0 <W/K3Tln Tf) .

Before proceeding with the main proof, Joseph et al. prove a lower bound on the
total number of pulls of an active arm 4 until round ¢ by applying an additive
Chernoff bound on n;; = )", ., Xy, where X/ is an indicator random variable of
whether arm i was pulled in round t’. The following result is achieved using the
fact that P[Xy] = ﬁ > % for all ¢/ < t.

Lemma 4.2.5. With probability at least 1 — %
S t tl 2K t2
Nit = — — —n s
TEK 2 5

The bound on the total regret is computed below.

for all i € S;.

Proof. [Theorem 4.2.4] The regret expression we will be using is
R(T)= Y A, (4.1)
i€[T]

where A; is the arm pulled by the algorithm in round ¢. It suffices to bound Ay, to
get our result.

Fix an arm 7 and a round ¢ in which ¢ € S;. Then

2radt(i):2\/ln(7r~(t+1))2/35<2 In(m - (t+1))2 /36 Cn®. (42)

Qni,t 2(;{ /éln(2[§t2)>

Arm i € Sy, so it is chained to i*. Let C C [K] be the chain of arms between (4,4*).
Applying the definition of the linked relation in every link of the chain we end up
with the following

li > upe — Z 2rady(j)

jeC

> Ui — Z n(t) (Equation (4.2))
jec

> e — K -n(t) (Ic] < K)

Using Lemma 4.2.3 we get that A; < K - n(¢).

We define the clean event as

= =

. . t 2K t2
E={Vie KVt € [T]: p; € [lig,uit]}N{ Vi€ [KIVt € [T] : nyy > — — 5111
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From Lemma 4.2.3, and a union bound on all rounds ¢ € [T] on Lemma 4.2.5 we
get that

Pl < (1+5)0 (4.3)
Hence, Equation (4.1) yields
E[R(T)] = E[R(T)|€] - P[€] + E[R(T)|E“] - P[E]
< E[R(T)|€] + (1 + 3) oT, (Equation (4.3))
T 2
where
R=Y" Ay
te(T)
< Z min(1, K -n(t)) < K Z min(1, n(t))
te([T] te(T]
o In(t/8)
=Ko 2 ——«/tlntK/é > !

te[T] s.t. t/k>24/tIn(tK/6)

</ In{ t/é + K21 (K/(S))

<K3/2\/2T 1n—+K31 ?)
=0 <K3/21/Tan5T+K3>.

Plugging the derivation of R and § < \/; into E[R(T)] we get

E[R(T)] = O <K3/21/T1nKZ + K3> .

€[T] s.t. t/k<2+/tIn(tK/§)
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Chapter 5

(e,0)-Fairness

This chapter contains the main contribution of this thesis. Motivated by the
0-fairness definition in Joseph et al. [1], we propose the following relaxed definition:

Definition 5.0.1. [(g,0)-Fairness| An algorithm A is (e, §)-fair if, for all sequences
of rewards r4,,...,74, and all payoff distributions D;, ..., D with probability at
least 1 — ¢ over the realization of the history h, for ¢ > 0, for all rounds ¢ € [T] and
all pairs of arms j, 5’ € [k],

m(jh) > m(5'|h) + € only if p; > 4

where 7;(j]h) is the probability that algorithm .4 chooses arm j in round ¢ given a
history h. For simplicity we will be using the notation ;; for the aforementioned
probability.

At a high level, this definition has the same intuition as that of J-fairness; i.e., a
fair algorithm cannot favor any arm j over arm j' unless arm j is has a higher
mean value than j’, with probability greater than 1 — §. The relaxation appears
in the way favoring an arm is defined. In the (e, d)-fairness setting, favoring an
arm over another is defined as playing them with probabilities that are more than &
away from each other. It is obvious that when ¢ is set to 0, the two definitions are
identical, thus any (0, §)-fair algorithm is also J-fair. The case where £ = 1 allows
the learner to choose her policy without any fairness constraint.

5.1 FT Algorithm

We proceed with presenting Fair-Truthful (FT) Algorithm, a simple (e, §)-fair,
no-regret generalization of the FairBandits(d) algorithm (11). Using the notion of
two arms being linked or chained from Section 4.2, together with the e relaxation,
FT Algorithm incurs a gracefully optimized regret, replacing the v K3 dependence
on K with min {1 / %, vV K3}, that significantly affects the result for e > 1/K?2. The

role of ¢ is captured in Figure 5.1.
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Figure 5.1: Regret plot for instance with K = 15, T = K*.

Algorithm 12: Fair algorithm for Truthful agents (FT)

1 Input: number of arms K, ¢, d.

/* Initialize active set and statistical information

2 So(*{].,,K}
s for i € [K] do

4
5

10

11

12
13
14
15
16

‘ //L\i’o — 1/2,ui,0 — 1,1@0 — 0,71,‘70 +~0
for round t € [T] do

/* compute the probability distribution 7; over active arms.

7t < Grouping(S;_1,¢) (13)
Sample an arm j ~ 7.
Observe the reward 7; ;.
/* Update statistical information for arm j
Njt < Njt—1+ 1
e < %(ﬁj,tfl M1+ Tt
In((m-(¢41))%)/35
2nj.¢
(1,0 uj.t] <= [fj.0 — rads(5), fije + rads(f)]
iy < argmaxies, , Ui
Sy < {i|i chains to }}
for i € S¢,i # j do
‘ Pt = Hie—1, Wip <= Wig—1,lip = Lig—1, M0 4 M1

rad:(j) <

*/

*/

*/
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The novelty of our work relies on the Grouping sub-procedure described below.
Groups are formed sequentially using a descending order on the arms’ upper confi-
dence bounds. Each group has a pivot arm, that is the arm with the highest UCB
of the arms not yet assigned to a group. If an arm is placed in a group it must be
linked to either the group’s pivot arm or any arm in the last group formed.

Algorithm 13: Grouping

Input: Set of active arms Sy, €.

/* Initialize number of groups and set of non-assigned arms */
M <0
NA «+ St
/* Divide active arms into groups. */
while NA # () do

Update group counter M: M <+ M + 1

Pivot arm for group M: j* < arg max;ena Ui¢-

Assign arms linked to j* to group M:

GM,t — {Z € NA : Uj ¢ > lj*ﬁt Or Uj ¢ > lk,t,k c GMfl,t}~
Update set of active arms: NA < NA \Gr;.
Solve the following LP: // Compute the distribution

maximize i,
M

subject to E |Gii|7ie =1,
i=1

Tip < Tig14+e, t=1,...,.M—1
e > 0 i=1,...,.M

Return: Distribution over arms m;: {m; ; < 7 s.t. ¢ € G4, Vj € [M]}

For the rest of the analysis we will be referring to the parameter n of group G, ; as
the rank of group G, ;. Some natural observations on the Grouping sub-procedure
are that:

e Given a round ¢, there exists only one group of each rank.

e The arm with the highest upper confidence bound is always placed in group
of rank 1.

e An empty group cannot exist.

e Given a round ¢ the lower the rank of group G, +, the greater the probability
7t of its arms being pulled due to the constraints of the LP.

Since the confidence radius is defined in the same way as in Algorithm 11, Lemma 4.2.3
follows in the same way as in Section 4.2.

Theorem 5.1.1. FT Algorithm is (g, 0)-fair.

Lemma 5.1.2. Fiz a round ¢t and an arm i in group Gri. Arm i is un-linked from
all arms in groups with rank r < I — 1.

Proof. Assume there exists an arm j in group G ;; with J < I — 1 that is linked to
arm 4. This yields u; s > 1;;. So, in the (J + 1)-th iteration of Algorithm 13 arm i
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is still in NA and it would be assigned to group of rank J + 1 # I which contradicts
the assumption. O

Proof. [Theorem 5.1.1] Fix a pair of arms ¢, j such that 7;; > 7, + . Then for
the groups Gy, G j; containing arms ¢, j respectively, it must be I < J — 1; if not
the corresponding LP constraint would be violated. Then, from Lemma 5.1.2 arms
1,j are un-linked from each other.

Lemma 4.2.3 states that with probability greater that 1 — §, for every arm ¢ and
every round t: l;; < py < u;e. Thus for arms 4, 5: p; > Ly > uje > py with
probability at least 1 — 4. O

5.1.1 Regret Analysis

In this section we compute the regret achieved by Algorithm 12.

Theorem 5.1.3. Algorithm 12 incurs regret:

R(T)=0 <min (ﬁ K) KT]og(KT/(S)) (5.1)

Before we proceed with the main proof we prove four auxiliary lemmas. Lemma 5.1.4
upper bounds the maximum number of groups with non-zero probability, Lemma 5.1.7
upper bounds the number of pulls of a sub-optimal arm and Lemmas 5.1.5, 5.1.6
support the proof of the latter.

Lemma 5.1.4. For any round t € [T, the number of groups with non-zero probability
7.1 s upper bounded by m = O(min{+/1/¢, K}).

Proof. Fix a round ¢ € [T] and assume that the active arms are divided into M > 0
groups. Our goal is to find the maximum number of groups with 7; ; > 0, where
i € [M]. Let G+ be the last group with non-zero probability (i.e., Vj € [M]s.t., j >
m+1:7;; =0). Note that any optimal solution of the LP in Grouping can be
expressed as following distribution:

Vie[m]: Ty =Tme+ (m—1i)e (5.2)
Assume that there exists €’ < ¢ such that:
ﬁ'i,t = ﬁm/,t + (m’ - 1)8/ > 7~1'th + (m — 1)6 > 7~T17t. (53)

In other words, we are assuming that maximizing 7 ; can be achieved with a number
m’ > m of groups having non-zero probability, that have less “distance” between
them. Then, summing up all arms’ probabilities we get that:

Z |Git| i = Z |Git|Tie = 1.
]

i€[m)] i€[m’
Since m’ > m we have:

Z |G
]

i€[m

. ’
1=m

(i —710) = Z |Gl >0,

1=m-+1
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where the last inequality is due to our assumption that groups in [m, m'] get non-zero
probability. So, there exists j € [m] such that ﬁé’t < 7. Hence:

Ty =T+ (m =D’ =a,, , + (m' = D'+ (m = j)e’ = (m' — j)e’

=T+ (5 — 1€
<Tii+ (-1 <@+ (G —1De="71, (' <e¢)
which contradicts Equation (5.3). Hence, there is no €’ to achieve higher 7 ¢ with

m’ > m groups. Now, using that 71 ; gets maximized with Equation (5.2) we can
continue with the analysis on m. From the LP constraint we get:

m(m — 1)

Em

1= |Gidlfie > Y Fiz= Y Fme+(m—ie> > (m—ilk>e 5
i€[m] i€[m]

i€[m)] i€[m]

As a result, m < /2/e. Finally, since the number of groups m cannot exceed the
number of arms, we get the result that m = O(min{/1/e, K}). O

Lemma 5.1.5. Fiz a pair of arms i,j in groups G, G+ respectively. If arm i
is placed in a group of a lower rank, then it has a higher upper confidence bound
Uit > Ujt-

Proof. Since arm i got placed in group I, from the 4*" line of Algorithm 13, it must
be

u;¢ > L where L = min(lz, , keI(I?lfiI_ll,,,(lk’t))'

Assuming u;; > u; ¢, we would get that w;, > L which results in arm j being in a
group of rank J < I. Thus, our assumption is contradicted. O

Lemma 5.1.6. Fiz a pair of arms i,j such that p; > p; and a round t € [T]. Let
arms 1, j be in groups Gpy, G s respectively. If I > J then E[n; ] > E[n;,].

Proof. Since I > J Lemma 5.1.5 yields u;; < u;;. Thus, in expectation:
pi + Elrad(i)] < p; + Efrad(j)]. (Eli ] = pa)

Given p1; > p; we get E[rad,(i)] < E[rad,(j)], which provides our result. O

Lemma 5.1.7. Fiz a pair of arms i,j such that p; > p; and a round t € [T]. Then
Elni.] = Elngy].

Proof. Let I, J; be ranks of arms i, j respective groups in round ¢. If I; > J; then the
result follows trivially from Lemma 5.1.6. Else if I; < J;, then there can be two cases
either (i) Iy < Jy for all rounds ¢’ € [t], which trivially results to E[n; ] > E[n; ],
or (ii) there exists a set of rounds 7 C [¢] such that I, > Jy,Vt' € T.

Assuming the second case, let tg = maxye7(t). Then, from Lemma 5.1.6:

E[ni,to] > ]E[nj,to]' (1)
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From the definition of ¢q, we get that I;; < Jy for all rounds ¢’ € (¢o, ¢]. Thus, using
the same argument as in case (i) we trivially get:

Enit0:¢) > E[n0:¢)s (2)

where n; 4, .+, is the number of pulls of arm ¢ between rounds ¢; and t;. Summing
up (1), (2) we get our result. O

Proof. [Theorem 5.1.3] The regret in any stochastic-MAB problem can be written

as:
R(T) = Z ni,TAia
1€[K]
where n; v is the number of rounds arm ¢ is played until time horizon 7', and
A; = |pi» — p;i]. Let m be the bound from Lemma 5.1.4. We will argue that:

E[R(T)] = O(m\/KT log(KT/3)).

First, we bound A; using the number of groups with non-zero probability in the
active set as well as the size of the confidence intervals of the arms in said groups.

Let p;+ be the pivot arm of group G; ;. Arm p; ; must be linked to another arm a
in group G;; with j < ¢ (in order to be in the active set), but line 4 of algorithm 13
states that it cannot be linked to any arm in groups where j < ¢ — 1. Thus, arm a
must be in group G;_1;. Using a similar argument, arm a must be linked to either
arm p;_; ¢ or to some arm in group G;_»;. Without loss of generality we assume
the former case '. For simplicity in notation we will be using w,,, ¢,1,, + instead of
Up,, +t5lp, +.t, in the equations below. So:

Up; t > lat = Uqr — 2rads(a) (Arms p; 1, a are linked.)
> lp; 1.t — 2rad(a) (Arms a,p;_1, are linked.)
= Up, ¢+ — 2rads(pi—1,) — 2rads(a)
= Up, ¢t — 2(rade(pi—1,¢) + radi(a)) .

Applying the above consecutively for the pivot arm p,, ; of group Gy, +, we have the
following bound:

Up, ¢ > U — 2 Z {radi(p;—1,) + rad(a;)} (5.4)
j€[n—1]

where arm a; is the arm chaining p;j11, to p;; (see arm a above).

Fix arm ¢ in group G,,; and let ¢ be the last round arm i is pulled before it gets
eliminated from the active set. In order for arm i to be placed in group G, ., it
must be linked to either p,, ; or some arm a in group G,_1 ;. Again, without loss of
generality we assume the former case. After careful analysis (found in Appendix A.2),
we obtain the following bound on A;:

log(KT/¥)

Yi - Elng 4]

!Assuming the latter case would only decrease the "length" of the chain to wi+ in
Equation 5.4 which makes no difference to our conclusion.
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Now, we can compute the expected regret of Algorithm 12:

E[R(T)] = ) Elnir]A;
i€[K]
log(KT/$)

< 4m Eln;
h Z i) 7 - Elng 7]

1€[K]

=0 (min <\/§, K) \/KTlog(KT/6)> .
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Chapter 6

Adversarial Attacks on
Stochastic Bandits

What happens when an arm’s reward is not representative of its quality? In the
models described below an arm (or an adversary) may manipulate its reward (or
the whole reward vector) to fool the learner. The goal of the learner is to be robust
to such manipulation; i.e. maintain its regret bounds up to a factor dependent on
the disruption observed. Real world behaviours that can be modeled as adversarial
attacks on stochastic bandits include click fraud, fake reviews, spam emails and
have been studied both from an algorithmic and from an economic aspect. In these
settings the corruption of the rewards is considered to be adversarial without serving
any strategic objective. This model is thoroughly presented in Section 6.2. Strategic
manipulation is more suitable to describe behavior where arms/agents wish to fulfil
a specific objective. The objective studied below is the maximization of the total
number of pulls they get, which is a natural goal in the context of recommendation
systems, where an arm wishes to maximize the times it gets recommended. In order
for this objective to be fulfilled, an arm should appear to have a higher mean reward
value. Feng et al. [21] use the example of a restaurant in a recommendation platform,
that may lower its prices through user specific discounts so as to increase its click-
through rate/rating score and thus its observed overall mean value. These actions
are usually subject to a budget, since it is costly for an agent to provide unlimited
discounts. The formal description of the latter model follows in Section 6.1.

6.1 Strategic Manipulation Model

The work of Braverman et al. [22] is the first to consider strategic reward manipula-
tion. In their model, agents/arms present a lower reward, keeping the difference
from the realized one as a utility for themselves. The opposite behavior, i.e., offering
a higher reward (w.r.t. a budget) is studied in Feng et al. [21]. A combination of
the above, where reward may be manipulated to appear both higher and lower is
the case in Esmaeili et al. [23].

The model to describe strategic manipulation introduced by Feng et al. [21] consists of
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the classic stochastic MAB model (see Section 3.1) enriched with (B;);c|x) denoting
an arm’s manipulation budget. The sum of all budgets (B;);c[x] is denoted with B.
In this setting, arm ¢ has a budget B; > 0 that can be spent throughout all rounds
t € [T] in order for the arm to appear to have a greater mean reward in the eyes of the
learner. We will use the notation r; ; for the true/stochastic reward of arm ¢ in round
t and 7;, for the manipulated reward. The manipulated reward can be expressed
as ;¢ = Tyt + @i, where a; ¢ is the budget spent by arm ¢ in round ¢. The budget
constraint states that for all arms ¢ € [K]: 0 < Zte[T] a; = Zte[T] Tix— 1t < Bj.
The history h; ¢ = {Ay, v, ai’t}t/e[t] € H;, observed by arm ¢ until round ¢ contains
information of the algorithm’s choices until round ¢ and the manipulation added
by arm i so far. The adaptive manipulation strategy S(*) of arm i is defined as a
function S : Hi x [K] — R that maps the arm’s observed history until round ¢
and the algorithm’s pick A; to a manipulation a; . It is called an adaptive strategy
because the arm is informed of the algorithm’s choice A; before setting the value of
A t-

Strategizing arises because arms are also equipped with an objective to maximize
the expected number of pulls they get. For the rest of the analysis we will be
using the terms arms and agents interchangeably to refer to arms with such an
objective. Given this objective, arm ¢ has no incentive to spend budget in rounds
when A; # i, thus S(i)(hiyt_l, A;) =0, if A; # 4. In this model, we are interested in
the robustness of an algorithm; i.e. the ability of the algorithm to maintain its
regret bound irrespective of the manipulation received.

Feng et al. [21] focus on studying the robustness of known algorithms used in the
stochastic MAB setting. They prove that UCB (3.3.2), e-Greedy (3.2) and Thompson
Sampling ([59]) are intrinsically robust to strategic manipulation. Their result on
the case of UCB! is the following.

Theorem 6.1.1. For any manipulation strategy S of the strategic arms, the regret
of the UCB principal is bounded by

102InT
ER(T)] < Y [max{:aBi,T}HlmAi)]
i€[K] ¢

The proof of the theorem can be found in Feng et al. [21]. It is important to
observe that the above theorem holds for all manipulation strategies, even those not
satisfying the arms’ objective.

Feng et al. [21] show that their result is tight through equilibrium arguments on
LIS (Lump Sum Investing) manipulation strategy, in which arm ¢ spends all of its
remaining budget on its first pull.

6.2 Adversarial Corruptions Model

We present a mixed adversarial and stochastic MAB model, where arms’ stochastic
rewards may be corrupted by an adversary. Before proceeding with the mixed

!The version of UCB they study is («,))-UCB from Bubeck and Cesa-Bianchi [3]. The
distribution D of the arms’ stochastic rewards is assumed to be o-sub-Gaussian.
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model we briefly describe the adversarial MAB setting to give a better intuition
to the reader. The difference between the stochastic and the adversarial model is
that rewards are not generated by a distribution D but they are arbitrarily chosen
by an adversary. There are works in the adversarial bandit literature that study
different types of adversaries (oblivious, adaptive) depending on the information
they have about the learner’s policy. The reader is referred to Auer et al. [53] for a
deeper analysis of adversarial bandit problems. In the mixed model introduced by
Lykouris et al. [11], arms’ rewards are divided into a stochastic part (generated by a
distribution D) and an adversarial part (chosen by an adaptive adversary). We will
use the notation r; ; for the true/stochastic reward of arm 4 in round ¢ and 7, for
the corrupted reward. The corrupted reward can be expressed as 7y = 74 + ¢; ¢,
where ¢;; is the corruption added by the adversary. Let Ry = (1)iex] € [0, 1],
R, = (Tit)iex) € [0, 1]% be the true and corrupted reward vectors, respectively
and hy = ((Al, El), ooy (A, }A%t)) the realized history. Fix a round ¢, the protocol

between the learner and the adversary is described below.

1. The learner chooses a distribution m; over arms [K].
2. The environment sets the stochastic reward for each arm a: r,+ ~ D,.

3. The adversary observes the realization of R; as well as the history h; 1 and
returns a corrupted reward vector R;.

4. The learner pulls arm A; according to her policy and observes reward 74, +.
The mixed model can be viewed as a generalization of the strategic manipulation
model where arm’s ¢ budget B; does not need to be positive and arms are free from
the pull maximization objective. Moreover, arms are informed about all the true

rewards but are only aware of the distribution 7; on arms and not the algorithm’s
choice A;, before manipulating their reward?.

We present the two metrics proposed to measure the total corruption. Lykouris
et al. [11] call an instance C-corrupted if for all realizations of the random variables:

E max |?a,t - ra,t| S C.
a
t

Gupta et al. [12] define the level of corruption C' as:

C=> IR~ Ril.

1€[T)

The changes between these metrics are negligible.

6.2.1 Adversarial attacks on UCB

The adversarial setting negates some of the previous results on standard stochastic
MAB algorithms, like UCB. UCB is a deterministic algorithm, thus the distribution p;
published to the adversary trivially yields the algorithm’s choice A;.

2The distinction between 7; and A; is only substantial if the learner is not following a
deterministic policy.
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Theorem 6.2.1. Given a time horizon T', UCB ceases to be robust when run against

a C-corrupted adversary with C = Q(logT) with probability greater than 1 — %

Proof. Assume an instance of two arms where p1 = 1, us = 1/2 and an adversary
with the following policy:

c1t = —r14 if Ay =1; else 0,

Cot = 0.
Using the above policy, the adversary achieves fi; ; = 0,Vt € [T]. Assume that there
exists a round ¢ < T" where A; =1 and n;+ > 8log7'. Then,

Uy = f1,¢ + confy (i) < 1/2 = po.

From a standard application of the Hoeffding Inequality Theorem A.1.1 we get
that lo; < po < ug: with probability greater that 1 — 1/\/? Putting the second
inequality together with the bound on u; 2 we obtain

Ut < U2 ¢,

which contradicts our assumption that A; = 1. Hence, arm 1 will be pulled in at
most 8logT rounds. Computing the corruption level needed for this we get

C=> |-ru <> 1<8logT.
]

te[T te([T]
A=1 A=1

The regret accumulated is:

R(T)= >

te(T)
Ap=2

> (T—810gT)% =QT).

N

We showed that corruptions of level C' = Q(log T') make UCB suffer linear regret. [J

However, restricting ¢; ; > 0 for all arms ¢ € [K] and all rounds ¢ € [T] yields the
following result.

Theorem 6.2.2. In a mized model with C-level corruption, UCB incurs regret

16logT

)

Blre) =0 | Y [sa

] +4KC |,
i€[K),ii*

in each round t.

Proof. In the mixed model the empirical mean of arm ¢ until round ¢ can be expressed
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as

~ ZtE[T] and Ay=i Tt
Hit =

Nt
. EtE[T] and A,=i it + Ciyt
Nt

s ’I“it
< EtE[T] and A=t + C

Nt Nt

~ C
= it + ‘t7 (61)
2

where fi; + is the empirical mean of the stochastic part of the arm’s reward. The
proof is similar to the one from the classic stochastic model, found in Theorem 3.3.2,
until Equation (3.6). We now choose N; so that

[210g(1/8) ©
A, — 2800 5 A, 2
: N; N, = o (6.2)

where ¢ € (0,1). Then P, can be written as

R 2log(1/6
P =P | tin, — i > A — %
- C 2log(1/4
<P |minN, + N i > Ay — % (Equation (6.1))
< Pl n, — pi > A (Equation (6.2))
< N,LCQA3>
<exp|— 5 .

The above yields Equation (3.8). Following the same steps as in Theorem 3.3.2,

with N; = ﬁfﬁ%ﬁ@ + (1fSAi—‘ and ¢ = 1/2, we obtain

16logT 8C

The regret accumulated is

ERM®] = > EniJA,

i€[K),ii*

161
< ¥ [3A,;+ 62?; }+4KO.
i€ [K],ii* ¢

The restriction ¢;; > 0 is crucial in order to bound

P =P {,u* > min Ui*,t:| < té.
te[T]
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We know from Theorem 3.3.2 that 3, . [SAi + MIA%T} yields the O(vKT) bound,
thus for C = O(,/T/K) UCB is robust in the mixed setting.

6.2.2 Algorithms robust to adversarial corruptions

Lykouris et al. [11] proposed the Multi-layer Active Arm Elimination Race
algorithm, which achieves regret

C - Klog(KT/6)+1logT
o> A;

log(KT/3) | .
iti*

with high probability. Multi-layer Active Arm Elimination Race hasdegrading
regret performance, linearly to the corruption injected and it suffers linear regret for
C =Q(\/T/K). Gupta et al. [12] introduced the BARBAR (Bandit Algorithm with
Robustness: Bad Arms get Recourse) algorithm, whose regret is bound by

log T K
o) Kc+; A ~log(5logT> ,

with high probability. This algorithm retrieves the standard + KT regret up to
a logarithmic factor, when C' = 0, and maintains it for ¢ = O(/T/K). Both
algorithms achieve the regret bounds while being agnostic to the amount of
corruption injected. We present them below and provide a deeper analysis of the
intuition behind BARBAR.

Multi-layer Active Arm Elimination Race

The idea behind Multi-layer Active Arm Elimination Race is to simultaneously
run multiple instances of the Successive Elimination Algorithm, which we will
be calling layers. In each round, the learner samples a layer ¢ ~ £ to update and
the key notion to make a layer tolerate corruption is sub-sampling, through the
distribution £. For simplicity, assume that we keep 2 layers of SE and that C' is
known to the learner. Then, if the learner updates the first layer with probability
1 —1/C and the second one with probability 1/C, the second instance observes
O(1) corruptions in expectation. Using a concentration inequality, the second layer
observes O(log T') corruptions, with high probability. Thus, enlarging the confidence
radius of the second layer by log T/ nfﬂf makes it robust to corruption C. Since the
second layer is corruption-tolerant, we know that it will not eliminate the best arm
(with high probability). Thus, the scheme of global eliminations is proposed,
which "broadcasts" eliminations made from a more trustworthy layer to less tolerant
ones.

In order to extend the above to the case where C is unknown, Lykouris et al. [11]
propose keeping [logT| layers of SE and using a distribution £ = (27l)le[logT]3~
Sub-sampling with £, implies that layers ¢ > log C' observe O(logT) corruption

3In order for the sum of probabilities to be equal to 1, P[{ = 1] = 1/2 +

(1-xfemia).

56



with high probability. Through the adequate enlargement in the confidence radius,

which is set to wd = O IZ%T + IZ%T), these layers become robust to corruption,
i,t i,t

while staying agnostic to its actual amount. In this case, an elimination happening
in layer [ is broadcast to all layers I’ < [, that are deemed to be less tolerant.

The term race in the algorithm’s name should now be more clear to the reader, as
multiple layers race to find the optimal arm, while being corrected by eliminations
made by layers more robust to corruption. The algorithm is presented below.

Algorithm 14: Multi-layer Active Arm Elimination Race

1 Initialize n‘(a) = 0, i*(a) = 0,Z¢ = for all a € [K] and ¢ € [log T

10

for Roundst=1..T do

Sample layer ¢ € [log T'| with probability 27¢. With remaining probability
sample £ =1

if [K]\ Z* # () then

Play arm a' < arg min,e(x)\z¢ nt(a)

Update p‘(a’) < [nf(a)p(a’) +r'(a")] / [n*(a) + 1] and
n‘(a) < nf(a) +1

while ezists arms a,a’ € [K]|\ Z with i*(a) — i’ (a’) > wd’(a) + wd’(a’)
do
‘ Eliminate ' by adding it to Z¢ for all ¢/ < ¢

else

Find minimum ¢ such that [K]\ Z¢ # () and play an arbitrary arm in
that set

Their main result is the following.

Theorem 6.2.3. Algorithm 1/ which is agnostic to the corruption level C, when

run with widths wd’ = 4K71;§g/ D 4 4Ki§§g/ 9 has regret:

- Klog(KT logT
0 ZC og(KT/) +logT

A, log(KT/9)

i

The regret expression is the sum of the regret accumulated by corruption-tolerant

layers; i.e. layers £ > log C, and the regret accumulated by lower rank layers. The
log T
A

former incur the standard O ) In order to bound the regret of corrupted

layers, Lykouris et al. [11] bound the amount of rounds it takes for arm i # i* to be

eliminated by a layer £* > log C' and thus get eliminated in all lower levels. The
reader is referred to [11] for a more detailed analysis.

Their work also provides a lower bound on the regret of any MAB algorithm with
standard pseudo-regret.

Theorem 6.2.4. Consider a multi-armed bandits algorithm that has the property
that for any stochastic input in the two arm setting, it has pseudo-regret bounded by
ClngT where A = |y — pa|. For any e,e’ € (0,1), there is a corruption level C' with

T < C <T¢ and a C-corrupted instance such that with constant probability the
regret is Q(C).

o7
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BARBAR Algorithm

BARBAR algorithm runs in epochs, with exponentially increasing number of rounds;
i.e. the m*™ epoch lasts for roughly N,, = 22™ rounds. The intuition behind the
algorithm is that corruption happening in epoch m can only affect the algorithm’s
choices in epoch m + 1, thus an exponentially increasing amount of corruption C,, is
needed to keep manipulating the learner’s observations. This is implemented through
constructing a distribution over arms taking into consideration an estimation over

A;, computed as A" = max{2~"™,r* — "}, where 7" is the observed mean reward

of arm 4 in epoch m and 7" = max;{r/* — TlﬁA;"_l} is a lower confidence bound
for the observed mean reward of the best arm in epoch m using information of the

arm’s rewards from epoch m — 1.

Algorithm 15: BARBAR

Parameters: confidence § € (0,1), time horizon T.
Initialize Ty = 0 and AY = 1 for all i € [K].
Set A = 1024 In(3X log, T').
for epochs m =1,2,... do
Set n* = A(AT"H=2 for all i € [K].
Set Ny, = X% 7 and Ty, = Ty + Ny
fort=1T,,_1+1 to T, do
‘ Choose an arm 4 with probability n)*/N,, and pull it.
Set 7" = S;/n}* where S; is the total reward from the pulls of arm ¢ in this
epoch.
Set " = max; {r" — %A;n_l}
Set A" = max{2™™,r]* —r"}

Theorem 6.2.5. With probability at least 1 — &, the regret of Algorithm 15 is

bounded by
logT K
1 —logT

O|KC+Y
i#i*

Before proceeding with the main part of the proof, Gupta et al. [12] prove the

following crucial inequalities.

e An upper and lower bound on the length N, of epoch m is given by
A22m=1) < N < gA22(m=D) (6.3)

(Lemma 2 from [12])

e Let (), be the random variable denoting the sum of the corruptions in epoch
m. Let n]" be the random variable denoting the actual number of pulls of
arm ¢ in epoch m. Then, event £ is defined as:

2C,, Ar!

= 'I mo_ i<7
& {Vm,z [ri — ] < N, + 16

and 7] < 2n;“} .

Using a multiplicative Chernoff-Hoeffding bound (A.1.2) on the second condi-
tion of £ and a Freedman-type concentration inequality for martingales for
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the first one, they prove that

P[€] > 14 (6.4)

(Lemma 3 from [12])

e The sum p,, := > 00, 8m2_(’:SNS is defined as the discounted corruption rate and

appears to be very useful to the analysis of the last inequality. Conditioning
on &, then for all epochs m and arms 7 it holds that

1 3
AT > A, —3p, — S27™, 6.5
iz pm= 7 (6.5)

(Lemma 7 from [12])

Proof. Under event &, the regret of Algorithm 15 can be expressed as

M M K
R=D D AAr<2Y Y Aml" (6.6)
=1

m=1 i=1 m=1 1
The proof focuses on bounding R = A;n!" in the following three cases: (i)
0<A; < o (i) Ay > o and pro1 < 555 and (i) A; > o5 and p_1 > 55

Case (i) Using n7* < A\220"=1 from lines 5,11 of the Algorithm 15 we obtain
4
R < —.
A— Az

Case (ii) Given the bounds on p,,—1,4A; and 6.5 we have the following bound on

m—1
Ai

syt B oo (3 0 La

o . . 2
The definition of nJ* incurs n}* = —245 < 322

= Am-12 = AT Thus, we obtain
i i

3220
m <
R < A,

Case (iii) Using nJ* < A220™~1) as in case (i) together with A; < 32p,,_1 we get

R:n < 8/\pm, 1 22m

Summing up the bounds of all three cases, Equation (6.6) can be written as

log T d
R<SPAY = 80D D pa2,

i#i* ¢ i#i* m=1
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Using the definition of p,,_1 the second term is bounded by

M M m—1 20
2 2 s
me_12 "< 22 " Z {m—1—s N
m=1 m=1 s=1 s
M M 92m
= 22 Cs Z gm—1-s N_
s=1 m=s

M gm—1-=s

M
16 2(s—1
§2;CST'ZW (Ns > X227 from 6.3)

m=s

IN

392 M oo )
T2 022
s=1 j=1

32C
Cs == T

IN

M=

32
A

Il
_

S

The desired bound on R follows trivially.

The authors also provide better regret bounds under some special assumptions. The
cases of known corruption level, corruption on an unknown prefix C' (the adversary
only corrupts the rewards of the firsy C rounds) and known maximal mean reward
©* remove the K from the KC' dependence in the first regret term. The case of
fixed (unknown) corruption rate 1 € (0,1) switches the dependence on KC to nT

. . Y . . 3 KX
and knowning the minimal gap A = min;»;« A; incurs regret O (C’ + T) .
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Appendix A

Supplementary Material

A.1 Concentration Inequalities

Theorem A.1.1 (Hoeffding’s Inequality). Let Xi,...,X; be independent [0, 1]-
valued random variables and let X = Zie[t] X;. Then for all e > 0

P[X — E[X] > ¢] < exp(—2¢%t)

and

P[X — E[X] < —¢] < exp(—2¢%t).

Theorem A.1.2 (Multiplicative Chernoff Bound). Let X1,...,X; be independent
[0, 1]-valued random variables and let X =3 ;. Xi. Then for any € > 0

P HX - IE[X}‘ < eE[X]] > 2exp (-iu«:[x]) .

Theorem A.1.3 (Jensen’s Inequality). Let g be a concave function and let X be a

random variable. Then
g(E[X]) > E[g(X)].

Theorem A.1.4. KL-divergence satisfies the following properties:

1. KL(p,q) > 0 for any two distributions p,q with the equality holding if and
only if p=q.
(Gibbs’ Inequality)

2. Let the sample space be a product Q@ = Q1 X -+ x Q,. Let p,q be two

distributions on € such that p = p1 X---Xpy, and ¢ = q1 X - - - X gn, where p;, g;
are distributions on Q;, for each j € [n]. Then KL(p,q) = Z;‘L:1 KL(pj,qj)-

(Chain rule)

3. For any event A C Q it holds that 2 (p(A) — q(4))* < KL(p, q).
(Pinsker’s Inequality)
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4. Let p,q be the probability distributions of two random coins with expected mean
1/2,(1 + €)/2 respectively. We use the notation p = RCy,q = RC.. Then
KL(RC,, RCy) < 2¢*> and KL(RCy, RC,) < €* for all e € (0,1/2).

Theorem A.1.5 (Markov’s Inequality). If X' is a non-negative random variable
and a > 0, then
E[X]

pt

PX >a] <

A.2 Omitted proofs

Proof. (Missing derivation of bound on A; in Theorem 5.1.3)

it > up, + — 2(rads(p,) + rad.(i))
>u- —2 Y (rady(p;) + radi(a;)) — 2 (rads(pn) + rady(i))

jE[n—1]
(Equation (5.4).)
> —2 ) (rady(p;) + rady(ay)). (an =1.)
jeln]

Replacing rad;(i) with \/ln”(TH) 36 — \/—f we get:

2ni,¢

L
WUix — lz : <2
Jez[n] (\/ 21,0t \/2naj7t>
L
<2 N
jE%;l] <\/27pj*‘ ’ E[npj,ut} \/Q’Yaj : naw )

(Setting v; = 1 — ,/31°]Eg[(§KT ) in A1.2)

(Lemma 5.1.7.)

<2Z2

J€[n]

< 2v2n

[”z‘,t}

L
Yi* E[nzt]

Lemma 5.1.7 applies to arms that are proven to be "better" than (i.e., got un-linked
from) arm ¢, but the sum in the last inequality contains arms p,, ¢, a,,—1 which are
not yet un-linked from arm i. So the above is missing an argument about arm 4
being un-linked from group n after round ¢. The only reason why this may not be
true is that arm ¢ might be eliminated because the chain broke in a point closer to
arm 7* and not because arm ¢ itself got unchained from all other arms (and thus
got deactivated). However, it is obvious that regret gets maximized if arms get
eliminated one at a time, thus the above does not alter our result.

We upper bound the last term above using the fact that round ¢ is the last round in
which arm ¢ gets pulled, which means that probability m; ; is non-zero. Thus, using
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Lemma 5.1.4, n cannot exceed the maximum number m of groups with non-zero
probability.

Finally, since arm i is active in round ¢, it is still chained to i*. So with probability
at least 1 — 6:

Az’ = i — Hs Suz*t

< 2vm \/m T+71l 2/36) n < m)

t

Proof. (Missing derivation of E[R(T)] in Theorem 5.1.3)

E[RD) = Y Enirld; <2v2m Y E[ni,T}\/ln(”(TjL D2/30) L o (5 + 1) T

ie[K] ie[K] vi - Elnir] T

< 2/3m > E[ni,T]\/an(W(T+1)2/35)+ S Bl 1 +O(ﬁ)

i€[K]s.t.yi>1/2 i€[K]s.t.y;<1/2
(0=

%":

< 4m ( S/ Blns ) n(x(T + 1)2/36) + 12K log(2KT2)) 1o (\/:F)
1€[K]
(If 4; < 1/2 then Eln; 7] < 12log(2KT?).)

< 4m (VETIn(x(T +1)2/39) + 12K 10og(2KT?)) + O (VT)

(Jensen’s Inequality.)

= O (my/KTn(n(T+1)2/36) + 12K 1og 2KT?)) + O (VT)

0] (min (\/Z, K) KTln(KT/5)> . (Lemma 5.1.4.)

O
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