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Me v empOian TovToOg SIXoUOUTOC.

Arnayopeleton 1 avtiypagr, amodrixeuon xau Sioavoun tne mapoloos epyociog, & OhOXAHEOU
1 TWAUOTOS QUTAG, Yia EUTOpXG oxomd. Emtpénetan 1 avatinwaor, anodixeuon xat dioavour
Yot OXOTO U1 XEPOOOAOTING, EXTUDEUTIXAC 1) EQELVITIXAC PUONE, UTO TNV TpolnodeoT va

OVOUPERETOL 1) TINYT) TROEAEUCTIG XAl VOL DLALTNPEE(TOL TO TAHEOY UHAVUUL.

O andelc xan o CUUTEPAOUATO TOU TEPLEYOVTAL GE AUTO TO €YYEAUPO eXPEAlOLY TOV CUY-
Yeagpéa xou dev mEETEL Vo epunveLdel 6Tl avTimpoownedouy Ti¢ enlonueg Véoeig Tou Edvixold

MeTod6fiou Hohuteyvelou.

Yredduvn Afiwon

BeBardve 6t elyan ouyypagéag authc TNE TTUytoaxc epyaciag, xou 6Tl xde Bordeia Ty onol-
o elya yioo TNV TEoETOWAGIA TNG EVOL TAHEWS OVOLY VWPLOUEVY] X0 AVOPERETAL TNV TTUYLAXT
epyooioa. Erniong, €yw oavagépel Tic dmoleg mnyéc and T omoleg Exoval yerorn Oedouévmy,
WV N Aewy, elte autéc avagépovtal axpBng eite mopagppacuéves. Eniong, Pefordver 6T
QUTY 1) TTUYLOXY €QYUCIN TEOETOWAGTNXE ATO EPEVA TROCKTIXG EOXEL VLol TIG ATALTYOELS TOU
TpoYedupaTog oToudwy Tou Turuatog Teyvoroyiag IIAnpogopinric xou Trohoyiotwy Tou E-

Yvixol Metodflou Ilohuteyvelou.

(Troypagn)

Avdpéac Kahafdg






HeptAngm

To npdPAnua tng ePECTC XOVTLVOTEPOU YELTOVA XAl OL TORUARAYES TOU AMUCYOAOUY TNV
ETUO TNHOVIXT XOWVOTNTA Tal TEAELTado eV vTa Yeovia. Eugavileton ot egapuoyéc Onwe ouunie-
on dedopévwy, e€6puln Bedouévwy xat unyovixy udinor. Ex twv mTolamhdy TpoTevoueveLY
ANooewv, Ayeg povo mopéyouv Yewpntinég eyyunoel, BeAtioTonowwvTtag TapdhAnio T doun
yioo Tor 8eBopéva €10680L.  AuTh 1) TEOXANOT OPEIAETAL GTO YEYOVOS OTL 1) TROCUPUOYY) NG
Sourc o€ oLYXEXPWEVO clVolo onueiwy Ty xahotd eudhwtn o xaxdfoula (adversarial)
EPWTHUOTA, ToL OTOL0L ETULOEWVDVOLY TNV ATOBOGT).

Yy nopoloa epyacta, Topouctdlouue éva VEo HovTélo yia T Abon Tou TpoBAYuaTog
TOL XTd TPOGEYYLON XOVTvoU Ye{tova (tou elvon 1 exdoyn andpaone Tou TEOBAAUITOS TOU
XOVTIVOTEPOL YEITOVA), OTOYEVOVTAC VO LOOPROTACOUUE VEWENTIXES EYYUNOELS PE TPOOUPUOOL
uoTNTa 670 GUVOLo Bedouévey. H mpocéyyiot| wog eivon va amodnxedcouue o 6OVOAO GNUelwY
€L0600U GE Lo SoUT| BLABLXOL BEVTEOU, 1) oTtola efval BEATIG TOTONUEVT] YLl GUYXEXELIEVO GOVO-
Ao Bedouévey xan xatavoun epwtnudtwy. H avalhtnon cpwtnudtov yivetou SwoyiCovtog to
0€vTpo amd TN pila mpog éva 1 meplocdTepa QUAAa. H andgoon yia to av 1 avalftnomn Yo a-
x0houdfioeL €va 1) xou Toe 000 Tandld Yiveton e Bdom Bloywelo TEC Tou BploxovTon OTIC XOPUEEC.
Emniéov, mapouctdloupe pedodoug BEATIOTNG EVPECTC QUTMV TWYV Bl OELOTOV.

H xevtpwr] 16€o Tne mpoceyylone hog Eyyertoan otn AN yehowuns TAneogoplac and to
obvolo onuelov v T Pertinon tng doung yog, oAkd oTn dlaxony Tng dladwasctag auThS
otay 1 mhnpogoplor umopet vor yivel emBhafnic, omote xan e@apuoOlOVUE ULol UTIERY OUCH TEY VXY
ue Yewpnuixéc eyyuroelg. Auth 1 oTeaTnyix)| Yog EMTEETEL Vo BEATUOCOVUE TO HOVTEAD Uag,
ATOYEUYOVTOG XUTAOTIoEL oL omoleg Vo umofiBdlav v entdoocy| tou. ‘Etol, 1 dopn pag
rapouével data-driven eved mapdAAnia Swotneel VewenTixée ey YU |oELC.

Téhog, die&dyouyue melpduota yia va det&oupe 0 duvatdTnTa Tou aAyoplduou Yog Vo Teo-
capuoleton oe €vol GUVOAO BEBOUEVLYV, EVK TIPSR Var BlaTneel TiC eYYUNOELS. JDUYXEXQL-
péva, doxdloupe To HOVTERO Yog oTo cLVoAo Bedouévewy MNIST, exteddvtog epwTruata oe
HOVTEAA ONULOURYNUEVOL TEVG OF BLapORETIXOL PEYEVOUS BElYHA, X 0XOAOUTKS CUYXEIVOUUE

TOL AMOTEAEGUOTA O UE oUTA TNG oeLptoxnc avalTnong.

Ag€Ceic KAewod

TEOCEYYIoTIXOl ahyOpLuoL, xovTVOTEROS YelToVag, xoVTvOS Yeltovag, Bouég BEDOUEVWLY,

olyprdpol xododnyoluevol and dedouéva, BEATIGTOTOMOT, UTONOYLOTIXT| YEWUETPlO






Abstract

The nearest neighbor search (NNS) problem and its variants have captivated scientists
for the past fifty years. This problem is prevalent in applications such as data compression,
data mining, and machine learning. Although numerous solutions have been proposed,
few offer theoretical guarantees while simultaneously optimizing the structure for the input
data. This challenge arises because adapting the structure for a specific dataset can expose
vulnerabilities to adversarial queries, leading to suboptimal performance.

In this thesis, we propose a new model to solve the approximate near neighbor problem
(which is the decision version of the nearest neighbor problem), aiming to balance theoret-
ical guarantees with dataset adaptability. Our approach involves storing the input point
set in a binary tree structure, optimized for performance on a fixed dataset and query
distribution. Queries are processed by traversing from the root to one or more leaves.
The decision to follow one or both child nodes is determined by separators located at the
vertices. Additionally, we present methods for identifying those separators optimally.

The core idea of our approach is to extract useful information from the point set to
enhance our structure, but to halt this extraction when it becomes potentially harmful.
When this happens, we transition to an existing technique that offers theoretical guar-
antees. This strategy allows us to leverage the efficiency of our model while avoiding
elements that could degrade performance. Thus, our structure remains data-driven while
maintaining theoretical guarantees.

Finally, we conduct experiments to demonstrate our algorithm’s adaptability to a
dataset while preserving its theoretical guarantees. Specifically, we assess our model on
the MNIST dataset, by performing queries on model instances built on different sized

samples. We then compare our results with those of linear search.

Keywords

approximation, nearest neighbor, near neighbor, data structures, data-driven algo-

rithms, optimization, computational geometry
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Euyapiotieg

Oa Hleha xatopydc vo evyaploThow Tov x. Anunten Pwtdxn, emBrénovia xodnynty tng
OLTAWUATIXAC LoV EpYOCiag, YLol TNV euxotplol TOU HOL €BWoE Vo aoyoANUo Ue TN Vewpentixt
TANPOPORIXT| X0 YL TNV EICAYWYT WOV 0TOV x60uo Tng €peuvac. Tov euyopiotd yio TnVv
UTOOTARIEY TIOU YOU TARElYE, TOV YPOVO TOU APLERWOE, TIC YVWOELS TOU HOU UETEDWOE, TIG
YVWRWIES TOU YoU TEOGEQPERE, xadwe xat TNV avtiAndm mou pou avéntuie oe Véuota Yew-
entixic TAnpogopxhc. Emmiéoyv, o fleha va euyaploThom autdv xon Toug xadnyntég xx.
"Apn Ioryovptlh xou Iwdvvn Euler, , ol omolol arotehody o uéhn tng emitponhc a&lohdYNong
e epyaotiog pou.

[Swadtepa, Yo fdeha var evyoaplotiow tov Tdvvn Wappd, ue Tov onolo GuVERYUC THXAUE
OTEVA Yl TNV OAOXAHpwon auThc TN gpyaociac. Ot eCeldBIXEUUEVES YVWOELS TOU HTAY Xa-
YoploTixéc yia ) Onovpyio Tng. Tov euyoploTd Yo TNV UTOUOVY| Xou TNV EUTOTOCOVN
ToL oL €0etle, xomg xat yior TNV oTHEEY| Tou xad’ OGN TN BLdexelo Tou TeEheLTOoL YEOVOU.
Avumopove yior Tn CUVERYAGTO OIS XL EXTOC TOVETLO THIIOU.

Oa Hlela eniong va evyaplothow Tov x. [ldvo HpaxAéoue, n xadodriynon tou onolou and
TOL YPOVLAL TOU YUUVAGTou, AToy xoroploTxr GTNY and(uct| Lo Vo axoAouvdnow oToudés oTny
[Minpogopuxr. Ou YVOGES TOU, GE GUVOUACHOS UE TNV €YVOLXL TIOU OElYVEL Yior TOUS UadnTég
Tou, Tov XahoToLY TEGTUTO XNy NTH.

Y1 ouvéyeta, Yo Hlela va euyaplotiow dha To toudld Tou corelab, yio Ty npoduuia Toug
VOLLOLRAGTOVY TLE YVWGCELS TOUS Kol VoL 0WGOLY GUUPBOVAES, ahAd xuplng Yiar T OnuLovpyia evog
pLhxoL xhipatog mou pe Borinoe vo viwow uélog pag Tohl ouopygne xowotntas. Emmiéoy,
Yo Hhehor vor eLYAPLOTAGL TOUG GUUPOLTNTES xou PLAOUC oL, EVTOC xou exXTOC corelab, yia Tic
OUOPYES GTLYUES TIOU UOU Ydploay, ol ontoleg Yo anoTeAoY avouvhcels Cwnig.

Téhog, Ya Rleha Vo euYAPLOTACL TNV OLXOYEVELS You Lot OAT TN oTHpLEN oL o Topelye,
xau xupleg Toug Yovelg wou, I'dpyo xan Kuplona. Av xau Bploxovtar oty Kimpo, xdvouv 6,1
UTOEOUV YLa VOl GLYOURELTOUY OTL dev Yo Aelel Tinota o péva xou oo ad€ppia Lou, WOTE VoL
unopolue vor (ACOUUE Ywplc avnoLyieg xon Vo YopoUUE To POLTNTIXG Lo YEOVIOL L0G oY

TOA.
Avipéac Karofdc,

Adrva, 9n Touvriou 2024
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Extetoapevn EAAnvixr Tlepiindn

To Baocixd oxéhoc tne mapovoac dimhwuatixng epyaciog elvar Ypauuévo otnv ayyAxn
YAOOOH. € aUTH TNV EVOTNTA, TOREYOUUE Wial TERIANT TOU TEQIEYOUEVOL NG, EMLXEVTRMVOV-
Tag oToug Pacxols oplopols, Tig pevodoroyleg xon tor Yewpruata, Topakeitoviog Tig won-

patxée amodellelc.

0.1 To IIpdBAnua

To npdBhnua tne avalhtnone tou xovivotepou yeitova (Nearest Neighbor Search - NNS)
elvol ouclaoTIXd 1) Snutovpylor wag doung Yo TV anodrxeuct evog cuvolou onuelwy P,
EMUTEETOVTAG TNV AMOTEAECUOTIXY avallTNOT TOU XOVTWVOTEPOL oruelou p* € P otav €lod-
yovtow apyotepa cpwthuata ¢. To mpolinua Yewpelton Yeyehddec AOYw TV SladedOPEVLY
EQUPUOYOY TOU OF OLdPopouS TOUElC, OTwe 1 ouurticon dedopévwy, ol Bdoelg dedouévmv, 1
e€OpLEN BEBOUEVWLY, T AVEXTNOT TANEOYOELLY, oL Bdoelc Bedopévewy exovag xan Bivteo, 7
unyovixn wddnon xou 1 ene€epyasio onUATLY.

H elpeomn tou axpifolc xovivdtepou yeltova anotelel tpdxinon eneldr| anontel Tnv ovalr-
TNOT OAOXANEOU TOU GUVOROU T®V ONUEIWY OTN YEWOTERT TERITTWOT 1) TN YEHON WLog dounc
OEDOUEVMY TTOU ATALTEL ONUAVTIXO Y Weo. AUTH 1) TROGEYYLON EIVAL AVATOTEAECUATIXT VIOl TOA-
Mg eapuoyég mou amantoly T 0Tepo Ypovoug avalhTnong 1 eAdyioTo yopeo arnodrixeuong.
To meoBAnuo Tou xuTd TEOGEYYIOT XOVTVOTEEOL YELTOVA ELGAYEL VA TPOCEYYIOTIXO TOEd-
yovta ¢ = 1+ € oTny andcTuoT, EMTEETOVTAS UTOYRUUUIX0UE Yeovoug avallTnong 6e ayéon
pe to péyedog Tou cuvoroL onueiny. ANhGVeEL OTL, EGV TO TANCLEGTERO oMUElo Bploxeton oe
amo6GTACT 7%, TOTE UTOPOUUE VO AVAUPECOUUE OTIOLOONTIOTE OMuElo o amdGTAcT TO TOAD cr’.

AeBouévou 0Tl T TPOBANUA TOU XATE TEOGEYYLOT TANCIEGTEPOUL YelTtova elval €va TEOBAN-
uo BeAtiotonoinong, TOAES AUGELS ETUXEVIPWVOVIOL GTO avTloTOLYO TEOBANUL amdpucnc,
YVWOTO W TO TEOBANUA TOU XoTd TEOGEYYLoN x0VTivo) Ye(TOVa, TO ontolo ONAGMVEL OTL €4V
urdipyel éva onuelo o AmOCTAGT) TO TOAU T OO TO EQWTNUML, TOTE AVAPEPE OTOLOOATOTE
onuelo oe andcTacn To oA cr. Autd xohoTtd To TEOBANUA TOU XUTE TPOGEYYLOY) XOVTLVOU
yelTova mo eVYENOTO %o TPOCLTO GE anodoTixols alyopituous. EmnAiéov, n avaywyy and
T0 TEOPANUA TOU XOVTLVOTEPOU YElTOVA 0TO TEOBANUN TOU XxoVTvol Yeltova TpocUétel udvo

€V TOAUAOYaELIUIXG TOREYOVTA GTLC EYYUY|OELS.



2 Extetauévny EAnvixr} Hepidngn

0.2 IlpoUndpyovocec Epyaciec (Previous Work)

And Tic mtohhamiég Aooelg mou €youv tpotalel, euelc avagpépoupe Tl TOAD Baoixée, xat
ulo o medogatn 1 onola BeATioTomolel plo amd TIC mponyoLUeveS axoloudovTag plo data-
driven mpocéyylon. Tuyxexpyéva napovaidlovue Tig pedodoug Bucketing, Approximate

Voronoi Diagram, xou Locality-Sensitive Hashing, yvwotr xow w¢ LSH.

To Bucketing ypnowonotelton yia voo Aboel 10 TROBANUN TOU XUTd TEOGEYYLOY) XOVTLVOU
veltova. Xyedidlovpue €va TETPAYWVIXO TAEYUO OTO YWEO, YE UNAXOC oxUAC TETOLO MOTE 1)
LEYLoTN andoTaoT ETAED 800 onueinv ot (Blo xehl va elvon er. Axoholdng, yia xdie onueio
P TOU ONUELOGUYOAOL P, OMUEWOVOUUE GE OAAL T XEALY TO OOl TEUVOVTOL UE TNV UTAAN
B(p,r) 6u 10 p elvon xotd mpocéyylon xovivoe yeltovoc. ‘Otav éplel epdtnuo ¢, amAid
unoroyilovue G To XEAL TEPTEL, ot ATAVTIPE xATOL0 OMuElo To omolo elvol xoTd TEOGEYYLoN
XOVTLVOG YE(TOVOC av UTEYEL, 0AMMS OV xdvouue Tinota. Auth 1 uédodog divel TOAD xohd
Yeovo epwthuatoc O(d), buwc anutel exdetind yohpo ot didotaon O(n) x O(1/€)%.

"Evo ntpoceyylotind dudrypopua Voronoi Aovet ameuieiog 1o mpdfAnua Tou xatd tpocéyylon
xovtvotepou yeltova. Tlpdxeitan yior wio mo mepimhoxn dour, n omolo oUCLIG TIXd GUVOLALEL
oM TAEyUata ooy oawtd tou Bucketing (pe oxtivec oe duvdpelc tou 2). Tehxd, tor xehd
Tou dlarypdypatog Voronoi (to omola dev elvon xat’avdryxn (unep)x0fot) avtiotoryolv o GuUY-
XEXPUIEVO OMUELD TOU GNUELOGUVOLOU, TO OTol0 Efval xaTd TEOGEYYLOT XOVTVOTEROS YE(TOVIC.
H Sopn ytileton oe O((n(C/e)4 1) log® n), xon anautel O((n(C/e)*1) log? n) ypo, bémov C
ulot amOALTY o TodeRd.

H pédodoc LSH Paocileton o owoyéveleg ouvopthoenmy xatoxeppotiopol (hash functions)
Yl TI¢ oToleg 600 T x0oVTd elvar 800 onuela, T6c0 o THavo Elval TO EVOEYOUEVO VoL €Y OUY
{Bloug % OOLxES xuTaxepUTIONOD. Xuviing TéToleg oixoyéveleg TNydlouy and xdmota Tuy ol
Sopépton Tou yopou (T.y. uolpaoua yopou and tuyafo LTEEETinedo). AuTtd TOL XAVOUE,
Vol VO EVOCOUUE TOUG XWOIXEC TOAATAGY TETOWWY CUVAPTACEWY XL VO YETNOUOTOLOVUE
TOV VEO GUVEVOWUEVO XMOOLXA YL VoL TOUUE oV TO €pOTNUE oG €xel xovTivo yeltova. [N
va Olopoakicoupe 6TL autéd Yiveton pe otodepr) miavoTNTA, TEEMEL VO XPATACOUUE OEXETH
avtiypapo pe dtaopetinéc ouvopthoelc. Auth n dadixaoia diver ypdvo epwthiuatoc O(nf)
xon amontel yopo O(n11P), énou 1o p < 1 e€optdron omd TIC CUVHPTHGELC XUTAXEPUATIOUOD.

Mo xhaoownt| egapuoyn Tne mapandve uevddou eivan otov yweo Hamming, 6mou to
onuela etvon cuuBolooelpéc and bits xo 1 andéotaon yetald dVo onueinv opiletar we o
aptdude and bits ota onola dupépouy. EOG ¢ GUVAIPTACELS XUTAXEPUATIONO) UTOROVUE
Vo Tdpoude Ti¢ TpoBoléc ot éva ouyxexpuyévo bit. Egopudlovtag tn yédodo malpvouue
O(nl%e) YPOVO EPWTAULATOS Xou O(nH%ﬂ) YWp0. X auThH TNV EQUPUOYT EXEL TpOoPATO
yiver Bedtioon yenowonowwvtog wo data-driven npocéyyion [1]. v apywxh uédodo, n
emhoYn Tng ouvdptnong yivetow ue Bdon tny ouoldpopen xatavour|. H Beitiwon éyyuto
OTOV UTOAOYLOUO LG XoTavoune TavoTATLY Téve OTIC ouvapThoel, hauBdvovtag unodn
TO GUVOAO OMUEIWY, XaL UETA EMAOYY TNG ouVAETNONS antd auTH TNV xatavour. Etol 1 véa
uédodog meTuyalvel XUAVTEQO ATOTEAECUATO OE GNUELOGUVORX TOU €YOUV UOp®PT TOU ELVOEL

xaAUTERES Olaeploelg.



0.3 To Movtélo Mac (Our Model) 3

0.3 To Movtéro Moag (Our Model)

H A\oon mou mpoteivoupe yio To mpdBAnua Tou xotd Tpocéyyion xovivol yeltova (to ouy-
Boiilloupe wg (€, 1)-KI'), elvon ouctaotixd éva duabind 8évtpo to onoto potpalel To oNuelocivo-
Mo og xde ecwTepXd xOPPo, L€y pt TO PEYEDOC TwV UTOCUVORWY Vo YiVeL apxetd wixpd (O(1)).
To yolpacua Tou oNUELOGUVOLOL YiveTal Bdom Blay wELo TAY, oL oTtolol TANEOVY XAmoLa XELTHEL
yior Vo Blac@aiicouy Ty anddoon g Soung.

H xotaoxeun tou dévtpou yiveton avadpouixd and t plla xou o xdde xouPo Beioxouue
Evoy xotdhAnho Sy weto T ave&dptnTa, onhadr dev AauBdvouue umodn motol HTay ol Oi-
oY WELOTEG OTAL TEONYOUUEVYL ETNEDdA, N T umopel vor wotdlouy ota emdueva. OEhovtag va
xtloouue €va 8€vtpo To omolo elvar xUTAAANAO YLt TO GNUELOGUVORO €1G600U P, aANd %o Yo
TNV XUTAVOUT| TwV EpWTNUdTLY Dg, 1 dladixacio ebpeong dlayweloth BAénel xat to P xou to

Dq. Autd gaivetan xou otov ahyodpriuo

Algorithm 1 Build Tree

1: procedure PREPROCESS(pointset P, query distribution Dg)
2 N < new Node
3 N.P=P
4 if IN.P| =0O(1) then
5: return N
6
7
8
9

N.separator <— findSeparator(N.P, Dq)
P.in, P.out < split(N.P, N.separator)
N.lchild <~ PREPROCESS(P.in, Dg)
N.rchild <~ PREPROCESS(P.out, Dg)

10: return N

H avalftnon yeiltova xdmotou epwthpatog Eexwvd amd 1 pila Tou dévtpou xou avdhoyo
HE ToV dloywelo T Yo axoroudel Eva 1) xou Tar 800 ToudLd. Autéd yiveton B16TL VENOUYE Vo BLoo-
polloovue Ty moavotnTa emituyiog vo eivon {on pe 1, dnhadn av uTdeyEl xoVTVOS YelTovag
t61€ olyoupa vo Tov Beodue. To gpwtiuata ot omolo 1 avalAtnon cuveyilel xou ota 500
TouOLd, elvor UTd oL BEloXOVTOL UEXETE XOVTA GTOV DL WELC TH oL dEat O XOVTIVOC YElTovag
unopel va Beloxeton ond v dAAn mhevpd. o va To avtwetwnicovye autd, opllouvye Toug
BLoty WELOTES 1C DLAPOEE OPOXEVTEWY UTAAGY e dtapopd axtivae 27 (loodUvaua Aéue dory TUA-
St myoug 2r). Tote, 1 avalhtnon axohouvdel xior ta 500 Toudd av TO EPWTNU TEPTEL TEVE
oTov dayweio . H diaduacta gatvetar xou otov ahyodprduo

Omnote, vy v elvon anodotr] 1 avalrtnon Yo meénet to Ldog Tou BEvTpou XaL 1) Ti-
YovdTnTar EVol EpMTNUN VoL TEPTEL AV OTOV Slaywelo T Vo ehaylotonotntolv. To Oog tou
6évtpou Vélouue va etvon péypet Tohuloyaptduxd (aAAOS Exoupe Ypdvoug (ooug ue T oelptoxh
avalTnon). Autd netuyaivetar av oL SlaymElo TEC Lotpdlouy TO ONUELOGUVONO LOOPPOTNUEVA,
Onhad xavévar amd Tar utoolvola dev elvon eEatpeTind uxpd (R yeydho). Emmiéov, n m-
YovdTnTar EVol EQM TN VoL TEPTEL TAVL GTOV Bl Wels T LloouTon Pe TN pdlo mdavoTnTog e

AATOUVOUTC TAVE GTOV dloywelo T, [lpaxtixd, apol dev €youue TEOGHRACT GTNY XATAVOUT| TWV



4 Extetauévny EAnvixr} Hepidngn

Algorithm 2 Query Search

1. procedure QUERY (query point q, starting node N)
2 if N is a leaf Node then

3 p* < null

4 for each p € N.P do

5: if ||p —q|| < (1 +¢€)r then

6 p* D

7 break

8 return p*

9 o(o,7s) < N.separator

10: if ||¢ — o]| < 7 then

11: return QUERY (g, N.lchild)

12 elseif ||¢g — o > rs + 2r then

13: return QUERY (¢, N.rchild)

14: else

15: left <+ QUERY (g, N.lchild)

16: if left # null then

17 return left

18: else

19: return QUERY (¢, N.rchild))

EPWTNUATWY, SoUAEVOUYE UE Eva Selypa amd auThv. O aprdudc Twv onuelny Tou delypatog Tou
TEQPTOLY TAVL GTOV Sl WwELO T Yag Bivel war xaAh avtiAndmn yior TNy mporydotixy| mdovotnta

xa €Tl TEOCTOUUE VoL TOV EAAYLO TOTOLACOUYE.

H elbpeom tou xahhTepou SLory wpeto T palvetan Vo elvon €var dUoxolo medBinue feitiotonolin-
one, ol BEV XUTAUPEPOPE VoL EQUPUOCOLUE XAmoL amtd TS YVwotée Yedddouc (ypouuind
Tpoypapuationd, gradient descent, local search, Suvouixd npoypappotioud). And toug Yew-
enTxd dnepoug miovols Sy welo Tég, euele Aaufdvoupe untddn uévo autols mou optlovto
a6 onueior Tou onuetocuvorou P xou Tou Selypatog tng xatavouns Sg. Amodetxviouue OTL o
XAAUTEPOC amd 6GAouC auTOUC Elval aEXETE xovTd otov BérTioto. O alyoprduocg 3] meprypdepet
N Swdixacio ebpeong Thpoug avalhTnong.

Avotuyde auth 1 pédodoc divel un peahiotinoie yedvoue (O(n)°@) xau xadiotd adivarn
oucLoTXd TNV EQopUoY Tou. Evalhoxtixd, npoteivoupe wia evplotinf uédodo (ahydprduoc
M), Pooiouévn otnv pédodo local search. Eexwvdpe apyxomolbdvtac Tuyada évar dloywplot]
(méh AaPBdvovtag unddn uévo autols mou opilovtar amd Ta onuela), xar Tpoomadolue Vo
Beolue xdnolov xaAiTepo UeTag) auT®Y Tou optlovTton amd To (dar onueior extdg evog. Autolg
Toug AEpE YELTOVIXOUG BloywploTéc. Agol @tdooupe oe éva Tomixd BEATIOTO OLoywELoTY,
ONAadT) 6GAOL OL YELTOVIXOL £Y0UV YEWOTERT Ul 1) LOOPEOTIX, aEYIXOTOLOVUE Eavd Ty lo TOV
Loy wploth xan EovafBploxoupe dAlov tomxd Béhtioto. Emavoloufdvoupe tn Swdixactia m

POpES, OOV M BT LoC TAEAUETEOS TOL ahyoplluou. M xadr Ty Yo tav m = log n.
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Algorithm 3 Find Separator - Brute Force

1: procedure SEPARATOR(pointset P, query sample Sq)

2 MIN_Mass < n

3 for each subset A of P U Sg of size d+ 1 do

4 for each possible ring separator ¢ defined by A do

5: mass < |R(p) N S|

6 if mass < min_mass and g is P — balanced then
7 MIN_Mass <— mass

8 ans <— o

9 return ans

[Mo vae utohoyicouye Ty TohumhoxdTnTa auTo ToL ahyoplduou, Beioxouue TOGO Yedvo
yeetdleton €vo Brua xon ToOo BUATH UTOPOUY Vol YIVOUY UETE amd plo apyxonoinon. Aol
doxudloupe Ghouc Toug Yertovxols, ot xde Brua doxwdlovue O(dn) dwywplotés, 6Tou
d 1 ddotaon xa n o aprdude Twy onuelwy oto P (Kéde éva and 1o O(d) mou opilouv éva
Loty weLo T, avtodidleton e 6ha to utoroina). Emmiéov, oe xdle Brua n udla Yo percrveton
T0 Ay6TEPO Xatd 1, dpor pTdvouue o€ eAdyloto To TOAD uetd and O(n) Bruate. Tehwd n

TohumhoxdtnTo Tou ahyoplduou elvan O(mnd).

Algorithm 4 Find Separator - Locality Heuristic

1: procedure SEPARATOR(pointset P, query sample Sq)

2 min_-mass < n

3 for iin [m] do

4 A < random subset of P U Sg of size d + 1

5: while true do

6 temp_mass < min_mass

7 for each possible ring separator ¢ defined by neighborhood(A) do
8 mass < |R(p) N Sg|

9 if mass < temp_mass and p is P — balanced then
10: temp_mass <— mass
11: t_ans < o
12: if temp_mass < min_mass then
13: min_mass < temp_mass
14: ans < t_.ans
15: else
16: break
17: return ans

H rnapandve pédodoc xataoxeudlel uio xadopd data-driven dour. Avotuyoe, av tnv
apioouUe €Tol, TOTE AV Vo UTEEYOLY XoXOBOUAN EpWTAUATA TOU Vo avoryxdLouv Ty

avalAtnon va xatéfBel oe dho Tor QONAL xou Gt VoL xaTaAhEeL var yiveTtan oelptoxy| avaliTnom.
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[ var avtwetonicouue autd To Qouvouevo, egapuolouvue v pédodo Bucketing otav dev
uTopolpE Théov v e€aGPUACOUNE TNV anddocT TG Boung UoC.
H w6tnta mou Yo pog yeetaotel yio va xatoddBouue note npénel vo ahhdlovue oe Buck-

eting efvan 1 apoudtnTa (sparsity) tou onuetocuvérou. Ilo auotned éyouye:

Optopéc 0.1. Eotw f n ouvdptnon pdlag mdavétnras pag katavouris D otov R, Aéue

dun D evar (o, r)-sparse av ya kide Evideida pndda B axtivas r, wxve [5 f(z)dr < a.

Ye TETOLEC XATAVOUES ATOOEXVOOUNE TNV UTOEEY BLoY WELOTWY OL OTIO(OL IXAVOTIOLOUY GUV-

V1XES 100PEOTHG XAl AEALOTNTAS. LUYXEXPWEVA EYOUUE:

Afupa 0.2. Eotw Dg 6u eivar (o, r)-sparse katavoun kai éotw f n o.u.n. Erniong, éotw
P 1o onuewotvolo otov R to orofo axodovdel tny xatavour) Dp, ue |P| = n. Té\os,
éotw ¢ n otadepd Ormlaciaopot (doubling constant) tov RY. Yrdpye onpueio p € R xar
axtiva rs mov opilovy Tov Saywpioth o(p,Ts) T.w yia to daxytuditt R = {x € R? | ||z —p|| €

[rs,Ts + 2r]} wyvea du:
L HzePlllz—pll <n} = o2y xa|{o € P o —p| = r+20} = 2
2. [nf(z)de < 20,0(1/d)
Avtds o daywprotrs Aéue ot eivar P — balanced — D¢ — sparse.

Av 1 Soun| poag yenoiponolel HOVo TETOLOUE Bl WELOTES, TOTE AMOBEXVIOUUE TO XEVTPIXO
Yewpnua Tng Topoloog epyactag mou dog divel Tig Yewpntinég eyyunoeig tne dopng. Ovouo-
oG UTopOVUE VoL TETUYOUUE (UE XATEAANAT ETAOYT TOU (r) UTOYEAUUULXS YpbVo avalhTnong
EPOTAUATOS, YRUUUIXO YWEO Kol OYEBOV TETRUYWVIXO YPOVO TROENELERYUTIAS. LNUELOVETOL
eniong, TOC N AEAUOTATA TNG XUTAVOUNG Elvan txav) cuvIXn Yior TNV OTOEEN Bl WELOTY XoL
Oy ovoryxadal, ONAADT UTOEEL VoL UTEEYOLY BLAYWELOTES TTIOU VAL LXAVOTIOLOUV TIC GUVITXES TOU

Mupotog ywelc va efvon apotéc.

Oewpnua 0.3. Eva 6évtpo nov eivar ytiopévo ya éva onuewotvoro P kar pa (a,r)-
sparse katavoun epwtnudtwy Do, ka1 ypnouonoel P—balanced—Dg —sparse 61axwpioTés,

efvar Adon ya to mpdpAnpa (e,7)-KI' ka1 tapéyer tig akérovies Jewpnrikés eyyuvrioe:
1. O avapevipevos xpévos avaltnong epwtipatos efvar O(na®/dclogn)
2. H ywpixrj modvmdokétnta eivar O(n)

3. O xpovos mpoerneLepyaoias eivar O(clogn) x F(p), émov F (o) o anartoljuevos xporos
elpeans P — balanced — Dg — sparse Sxwpioty o, 6tav F(o) etvar Q(n?).

Ebé ¢ = 299 etvar n otadepd Simdaciaoiiot tou RE.

AvtixahotdvTag Tov Yedvo Tou euptoTixol akyoplduou ue m = logn malpvouue yedvo
enelepyooioc (0o pe O(n?dc log? n).
Y1y nepintwon 6Tou Bev UTAEYEL XATAAANAOC Blay WELG THG, TOTE OEV UTOPOVUE Vol EludoTE

olyoupol ylo TNV amodocT TG SOURS, OTOTE XAVOUUE TOV xOUfo GUANO xou e@apuélouye TN
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uédodo Bucketing. Evadloxtixd, Yo UmopoLcuue Vo EQUEUOCGOUUE GANT u€Vodo PE YYUY|-
oelg, anhd 1 pédodog Bucketing qolvetan vor Aeltoupyel xoahOTEPA UE TUXVE CTUELOGUVOAQ,
Tou elvon 1) mepinTwor mou avipeTtwriCoupe. Etol unopolue va SLaTneHoouPE TIC EYYUNOE
EVO TOEAAANAAL VO EXUETAAAEUTOUUE TNV WQPEAUN TANEOQPOEI0. TOU GNUELOGUVOROU o TNG
xatovounc epwtnudtony. Katahofalvouue mwe autd divel otn dour| yag pio o0t goor, tnv
data-driven xot Twv YewpenTix®y eYYUNOEOVY.

H epyaocio eonidler xuplwg otov Euxeidio yweo, ye tnv anéotact va etvon 1 la vopua. O
TEOTOC ToL 0p{LOUUE TOUC BLoy WELOTES OUME UaS OIVEL TN BUVITOTNTO VoL ETEXTELVOLUE T BOUT)
xa o€ GANOLG PETEIXOUE Ypoug ot PeTEES. H povn wbiotnTa tou Yo mpémel vo txavomoteiton
elvan va éyouv otadepd Simhactaouo ¢ < 20(4).

Téhog, avapépouye Eva UIANOY amoncto00&0 AMOTENECUA, TTOU EYEL VAL XAVEL UE TN PEATIOTO-
TnTa Tne douric. Me tov 6po BEATIOTN Goun, evvoolue Tr dour| 1 omola eAdyloTOTOEL TOV
XeOvVo avalATNong EpOTAULATOS, HETUED OAWY TwV THAVOY SOUMY TOU UTOPOUV Vo Y TLIGTOUV
He Tétotouc draywpetotéc. Auotuyde, o Tpémoc mou ytillouue ) Soun (Yo pmopoloaue va
molpE xat GmAnoTa, Aol Sev Hoc EVOLUpEREL TL YivETOL 0T TopoXdTw Emineda) QoiveTar v
uNV umopel vo yag 8GoeL xdmoto Aoyo mpocéyylong. Autd umopel va yiver av 1 BéhTiotn
eTAOYT Loy wELOTY| € €val ETUNEDO avaryxGLEL TNV EMAOYY) XAXWY BLoYWELOTWY OTO ETOUEVA,

YELROTEPEVOVTUC XATd TOAD €TGL TN GUVORIXT) AmOB00T).

0.4 Ileipapo (Experiment)

Mo o melpopa yenowonolotue To abvolo dedopévwy MNIST, to onolo epgaviCetar cuy v
otov topéa tne Teyvnthc NonuooUvne. Amoteleiton and 70,000 aonpduavpes exdves (60,000
yioo exnaidevon xou 10,000 yia emodfdevon) mou amewxovilouv yewdypapo Pnepio.  Eueic
acyoholpaote ue ti¢ 60,000 tng exmaideuong.

Apyd mpénel vou BIopPOCOUUE TO GUVORO EWMOVKLY o aOvolo onueiwy P. Avanopio-
TOUPE TNV EXOVA 0O OLAVUCU GTOY 784-B1d0TaTo Y W0, 6Tou xdle Bldotacn avTicTolyel oTnV
Tiwn evog pixel. Axololing eqopudlouye Tov petaoynuaptopd Johnson-Lindenstrauss, yuo
VO UELOOOLUE TiC Slootdoelc oe 15, Emmiéov, dnuiovpyolue Ta epwTARATo Topdyovtog 2
Tuyaio onuela Tou elvon xovtvol yeltoveg yio xdle onuelo tou cuvorou P. Téhoc umodé-
TOUPE OTL 1) XUTAVOUY| TWV EPWTNUAT®Y elvar 1) (Bl ue auTy| Tou onuelocuvorou P, xau dpa
oUTO AmOTEREL XOohY| AVUTUEAC TAGT) TNG XATAVOUTG.

Y1 ouvéyewa, ytilouue dévtpa pe dlapopetixd YeyEl ) onuelocuvorou (Gha delyuata amd
10 P), xou ouyxpivouue To SLAQopa YopaxTNElo TG TOUG.  LUYXEXQWEVA, To UEYEDT TTou
doxydlouue etvon 1,000, 3,000, 6,000, 10,000 xou 20,000, xon tor pueyédn nou cuyxpeivouue
elva 0 YPOVOS XATAOKELUNS TV BEVIPWY, 0 HEGOS YPOVOS EPWTHUATOS YIol TA EPWTHUNTA TOU
avTLoToLY 00V 0T0 Belyuo mou yTiletal To BEVTPO, xou 0 UECOC YPOVOS EPMTHUATOC OAWY TWYV
EPWTNUATWY apol TpocUécouue ot dour| xou Tar unohoina onuelo. Télog, cuyxpivouue ta
amOTENEOUATE UG UE QUTA TNS oELptoig avallHTNoTG.

To amoTeEAEGUATA AVAYRAPOVTOL GTOV TUPUXATE TUVAXOL.
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Sample Size | Preprocessing | Sample Tree | Tree Query | Linear Search

Time (min) Query Time | Time (us) Query  Time
(us) (ks)

1,000 6 4.092 152.220 127.183

3,000 33 5.760 50.145 381.731

6,000 138 6.638 24.955 763.587

10,000 366 7.239 14.758 1272.08

20,000 1352 8.738 10.050 2543.72

30,000 - - - 3817.48

60,000 - - - 7706.68

[Topatnpolue 6TL, 0 YPOVOC xUTUOXELNC AEAVETAL T UTERA OO YRoUUIXA UE TO péyedog
ToL BelYUATOC, OTWE AVOUEVETAL AOYW TNG TOAUTAOXOTNTAC TOU. DUYXEXPWEVA, TURAUTNPOVUE
ot pe péyevog delyuatog 1.000, 1 npoenelepyaoio diapxel povo Alya Aentd. Qotdco, otay
To péyevog Tou delypatog auidveton oe 20.000, o ypdvoc mpoeneiepyaciog enexTelvETAUL OE
OEAETES WPEC, XONOTOVTOG TO U TEAXTIXO Yia HEYAAVTERA GUVORX BEDOUEVWLV.

O ypdvoc avalitnone mapouctdlel uoypopuxyy adénon oe oyéorn ye to uéyedog Tou
ouvorou onueiwy. Kadde augdveton o uéyedog, avgdveton xou to Uog Tou BEvTpou, odNynV-
Tac o Yeyohltepoug ypdvoug avalhtnone. Auth 1 cuumeplpopd efval avouevOUEYY), ETELON
€vog peyahiTepog aprtudg onueiwy odnyel ot audnuévouc ypovoug avalntnong. Evowpathvov-
TG TA UTOAOLTOL ONUElRt OTOL BEVTEA TTOU XATACHEVAOTNXAY UE OLUPORETIXG HEYEUT Oelyuo-
T0¢, 0&loAOYOUUE TNV andBOGT| TOUC GE OAOXANEO TO GUVORO GEBOUEVKV, TURUTNEWVTIS OTL
oL yeovol avalhtnone uewwvovtal paydola pe v adénon tou peyédoug tou delyuotog, uT-
008eXV)OVTIC ATOTEAECUATIXNY TROCUPUOYT) TOU BEVTPOU T8VK GTO GTUELOGUVORO.

‘Evo péyedog delypatog yoewm otic 10.000 avadeixvieTtar w¢ To xatdAAnio Yo To ytioyo
oévtpou. Ilépa and autd, o yedvog mpoenelepyaciog UEYUADOVEL UTERBOAXA, UE OPLOXES UOVO
Behtidoelg 670 ypovo avalftnong epwtnudtwy. O dimhaclooudg Tou yeyédoug Tou Belyuatog
a6 o 10.000 odnyel o wa yéorn peiwon tou yedvou avalAtnone uovo xatd 4 microseconds,
eV 0 ypodvog Tpoenedepyaotag auEdveTtal xotd TeplocdTeERo and 16 weeg.

Téhog, xadode auidveto to péyedog Tou delyuatog, ol HEGOL YPOVOL EQWOTAUNTOS Yiol TO
TAAPES GUVONO EQOTNUATWY oL YLl TO EPWTHUTO TOU AVTIOTOLYOUV GTO Oelypa, ouyxAivouy
otnv O Y. To anoteréoyatd pog UTOBNAGYOUY OTL O UECOC YPOVOS EPWTAUATOS Yo
€vol BEVTPO oL €YElL XATAOXEVAOTEL Ue Bdon oAdxhneo to cUVOAO xuuaivetan petall 8,7
microseconds ot 10,0 microseconds. Emouévwg, éva 6évtpo mou xotaoxeudleton oe 10.000
onueio elvan apxeTH Y10l VoL ETLTUYEL ATOBOTIXES EMBOCELS EPWTNUATOV YLoL OAOXATEO TO GUVOAO

OEBOUEVLV.
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Chapter 1

Introduction

The Nearest Neighbor Search (NNS) problem is basically the creation of a structure to
store a point set P, allowing for efficient searches and reporting of the nearest point p* € P
when query points ¢ are later introduced. The problem is considered fundamental due to
its prevalent applications in various fields, including data compression, databases, data
mining, information retrieval, image and video databases, machine learning, and signal
processing.

Finding the Exact Nearest Neighbor is challenging because it requires searching the
entire point set in the worst-case scenario or using a data structure that consumes signi-
ficant space. This approach is inefficient for many applications that demand faster query
times or minimal storage space. The Approximate Nearest Neighbor approach allows for
an approximation ¢ > 1 in the distance, enabling sublinear query times relative to the size
of the point set. It states that if the nearest point is at distance r*, then we can report
any point at distance at most cr*.

Since the Approximate Nearest Neighbor problem is an optimization problem, many
solutions focus on its decision version, known as the Approximate Near Neighbor problem,
which states that if there is a point at distance at most r from the query, then report
any point at distance at most c¢r. This makes the Approximate Near Neighbor problem
more tractable and amenable to efficient algorithms. Moreover, the reduction from the
Approximate Nearest Neighbor problem to the Approximate Near Neighbor problem only
incurs a polylogarithmic factor in the guarantees.

Many solutions have been proposed for the NNS problem, which has been studied
across various settings using different techniques. Research includes work in fixed dimen-
sions [2], low dimensions [3], high dimensions [4]-[6], and for growth-restricted metrics
[7]. Techniques employed include product quantization [8], embeddings [9], hyperplane-
based structures [10], and tree structures [11], [12]. Additionally, studies have explored
the space-time tradeoffs for these techniques [13], [14]. A recent survey summarizing these
advancements can be found here [15].

Generally, NNS solutions can be classified into two categories: those that come with

theoretical guarantees and those that aim to construct the optimal structure for a given

11



12 Chapter 1. Introduction

point set. Algorithms in the first category include Locality-Sensitive Hashing (|16]-[18])
and its derivatives, methods based on randomized space partitions, Bucketing ([17]), which
offers very fast query times but at the cost of increased space overhead, and Approximate
Voronoi Diagrams (|17], [19]), which directly solve the Approximate Nearest Neighbor
problem but are more sophisticated and complex to implement.

In the second category, we find methods such as PCA trees [20], which use Principal
Component Analysis for partitioning the point set, graph algorithms ([21]-[25]), which
build a graph on the dataset and perform graph exploration to reach the nearest neighbor,
and ANNOY [26], which constructs multiple hierarchical 2-means trees and was used in
Spotify’s recommendation system. Although these methods are often more efficient in
practice, they typically lack worst-case guarantees. Adapting the structure to a specific
dataset can expose vulnerabilities to adversarial queries, resulting in suboptimal perfor-
mance and potentially degrading to trivial linear search. To address this, we can establish
guarantees while exploiting potential structural properties of the point set and query dis-
tribution. This is the objective of this thesis.

1.1 Theoretical Results

The model we propose is essentially a binary tree that recursively divides the point set
into two disjoint subsets from the root downwards until the subsets are sufficiently small,
i.e. of cardinality O(1). Each division is made independently, without considering the
divisions on other levels. As we want to optimize the data structure for the given point
set P and query distribution Dy, this division is not random, but derived from the input
data.

Specifically each division is guided by a ring separator of width 2r (a set difference
of concentric balls of radii that differ by 2r). The point set is divided according to the
sphere of same center and radius equal to the mean of the inner and outer radii of the
separator; The points in the sphere constitute the inner subset, and the rest the outer.
When queries arrive, the search begins at the root and traverses down to one or more
leaves. This happens to ensure that the success probability is equal to 1. The queries that
force the search to follow both children are those that fall on the separator, and thus the
near neighbor can be in the opposite subset of the one that the search would follow.

The separators aim to minimize the probability of descending to both child nodes while
maintaining balanced subsets, thus maintaining the height of the tree logarithmic. The
structural property that our model focuses on to optimally adapt is mainly the sparsity of
the query distribution. Specifically we consider distributions that are («a,r)-sparse, which
means that for every ball of radius r, the accumulated probability is at most «. This is a
sufficient condition for the existence of a separators that ensure good performance of our
data structure.

The data-driven aspect of our data structure involves applying this method as long

as the point set at a vertex remains sufficiently sparse. When we encounter a vertex
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with a dense point set, we switch to an established solution, specifically a bucketing-based
implementation. This approach enables us to extract useful information from the point
set to enhance our structure without compromising our worst-case guarantees, ensuring
that we only apply the method when it is beneficial.

Finding good separators that yield efficient query times in our structure is another
optimization challenge we address. Due to the nature of the problem - characterized by
infinite possible solutions, continuity of solutions, and non-convexity - no known efficient
algorithmic paradigm seems applicable. To tackle this, we first propose a discretization of
the problem’s domain and prove that an exhaustive search on this discretized space yields
efficient results. Specifically, we only consider separators that are defined by d 4+ 1 points
of the point set P and query sample Sg (which is the only representation of the query
distribution that we can work with as we cannot access the distribution).

However, the computation time for this approach is prohibitively large (O(n)o(d)),
making it impractical. Therefore, we propose a heuristic algorithm inspired by the local
search technique, which is significantly faster. Firstly, we randomly pick a separator out
of all possible that are defined by points. Then we compare it with the "neighboring”
separators, which are those defined by the same points except one, and update to the best
out of those. If no "neighboring” separator is better, then we arrived in a local optimum.
We repeat this process a number of times and keep the best out of all local optimums.

By combining all of the above we build a data-driven model that can achieve the

following guarantees:
e The expected query time is O(nl_l/dclog n).
e The space complexity is O(n).
e The preprocessing time is O(n%dclog?®n).

Note that these results pertain to the purely data-driven model when the query dis-
tribution satisfies the sparsity property. The hybrid structure, which also incorporates

bucketing, requires slightly more space.

1.2 Experimental Results

For our experiments, we use the MNIST dataset and perform some preprocessing to
ensure it is suitable for our model. We then build instances of our tree, using different
sample sizes to observe the model’s adaptability to the dataset. Additionally, we compare
our results with those obtained using the trivial linear search method.

We observe that preprocessing time increases faster than linearly with sample size, as
expected due to its complexity. Specifically, we observe that with a sample size of 1,000,
the preprocessing takes only a few minutes. However, when the sample size increases to
20,000, the preprocessing time extends to several hours, making it impractical for larger

datasets.



14 Chapter 1. Introduction

The query time exhibits sublinear growth relative to the point set size. As the size
increases, the height of the tree also increases, leading to longer query times. This be-
havior is expected because a larger number of points results in increased query times. By
incorporating the remaining points into the trees constructed with different sample sizes,
we evaluate their performance on the entire dataset, noting that query times decrease
rapidly with increasing sample sizes, indicating efficient tree adaptation.

A sample size of around 10,000 emerges as the sweet spot. Beyond this point, prepro-
cessing time became excessively large, with only marginal improvements in query time.
Doubling the sample size from 10,000 results in a mean query time reduction of only 4
microseconds, while preprocessing time increases by over 16 hours.

Additionally, as sample size increases, the mean query time for the full query set and
the sample queries converges to the same value. Our results suggest that the mean query
time for a tree built on the entire dataset would likely fall between 8.7 microseconds and
10.0 microseconds. Therefore, a tree built on 10,000 points is sufficient to achieve efficient

query performance for the whole dataset.



Chapter 2
Technical Background

In this chapter, we delve into some foundational concepts and methodologies that will
be used in the research presented in this thesis. While understanding these technical e-
lements is not strictly essential, it significantly aids in comprehending the analysis and,
particularly, the rationale behind the experimental choices discussed in the subsequent
chapters. This chapter provides a brief examination of three pivotal concepts: Ball Sepa-
rators, Dimensionality Reduction, and Sampling Theorems. Each of these topics plays a
significant role in the field of computatonal geometry, which is central to this research.

Firstly, we explore Ball Separators, a geometric tool essential for the partitioning
of high-dimensional data sets. Ball separators ensure balanced partitioning and offer
guarantees regarding the number of points that lie within them. Additionally, they can be
applied to any metric space, enhancing their versatility and utility in various applications.

The second focus is on the Johnson-Lindenstrauss Lemma, a fundamental result in
dimensionality reduction, along with some of its variations. This lemma asserts that it is
possible to project a set of high-dimensional points into a much lower-dimensional space
while preserving the distances between the points with high accuracy. This property is
immensely valuable in processing and analyzing high-dimensional data, enabling more
manageable and faster computations without significant loss of information.

Finally, we delve into Sampling Theorems, which are crucial for capturing continuous
distributions from discrete data. These theorems provide guarantees about the amount of
information retained from a distribution and the accuracy of its reconstruction. Additio-
nally, they inform us of the number of samples required to preserve essential information
about the distribution. Key results include the VC dimension and the theorems that
utilize it.

In this research, ball separators will be applied to the data structure of our model to
facilitate efficient and balanced partitioning of high-dimensional data sets. The results
from dimensionality reduction, specifically those derived from the Johnson-Lindenstrauss
Lemma, will be used to decrease the number of dimensions of the experiment data without
significant loss of information. This reduction will make the data more manageable and en-

hance the performance of our computations. Additionally, sampling theorems will help us
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reduce the time complexity of our algorithms, thereby accelerating their performance and
making their implementation feasible for applications involving large datasets. Together,
these techniques will play a crucial role in the design and execution of our experiments,
ensuring robust and reliable results.

These three topics - Ball Separators, Dimensionality Reduction, and Sampling Theo-
rems - collectively provide a technical background that supports the methodologies and
analyses presented in this thesis. Each section will offer an exploration of the theoretical
foundations, and relevance of these concepts to the broader context of this research. By
understanding these technical components, readers will be better equipped to appreciate

the techniques and complexities presented in the following chapters.

2.1 Ball Separators

Here we mainly present the work of Har-Peled in [27, Chapter 16|, about the sphere
separators on a set of balls B in R?, when no point of R? belongs to more than k of those

balls. Formally, we say that B is k-ply.

Definition 2.4. The doubling constant of a metric space is the smallest number of
balls of the same radius needed to cover a ball of twice the radius (formally, we take the
mazimum such number over all possible balls to be covered). The doubling constant of RY
15 ¢ < 20(d)

In our work, we will use the idea of the proof of the following theorem, to prove the

existence of light-balanced separators that are used in our data-structure.

Theorem 2.5 (|27]). Let B be a set of n balls that is k-ply in R?. Then, there exists a
sphere S\9 that intersects 4k'/4n'=1/4 balls of B. Furthermore, the number of balls of B
that are completely inside (resp. outside) S is > n/(c+1).

Proof. Let P be the set of centers of the balls in B, and let b be the smallest ball that
contains n/(1 + ¢) points of P. We assume w.l.o.g. that this ball is centered at the origin
and has radius 1. In addition, let S be a sphere with center the origin as well, and
random radius x picked uniformly from the range [1,2].

By the definition of the doubling constant, S(* will contain at most en/(1 + ¢) points
from P, and thus there will be at least 1 —cn/(1+¢) = n/(c+1) points op P outside S,
This concludes the first part of the proof.

The second part focuses on the expected number of balls intersecting S(9. Let vgre
be the volume of a ball of radius r in R%, where v; is a constant that depends on the
dimension. We then clip the balls of B to the ball centered at the origin and has radius 2,
and then replace these clipped balls (formally lens) with a ball of the same volume. Let r;

be the radius of the ith such ball f;, for i = 1,...,n. By the k-ply property, we have that:

1 1
d_ — d) < = (p2%) < k24
;7’1 o (;wn) < vd(vd ) < k27,



2.2 Dimensionality Reduction 17

where (v42¢) is the volume of a ball of radius 2 in R

The probability of the the ith ball to intersect S(¥ is bounded by the probability that
the radius of S(9 lies in [||ps|| — 7, |pi|| + 73], where p; is the center of the ith ball. This is
equal to 27;/(2 — 1) = 2r; because the radius of S is picked uniformly from [1,2].

Let S be the set of balls of B that intersects S(¥. We have, by Holder’s inequality,
that:

n (d-1)/d / 1/d
B(S] =Y P[AnS@ £0] < S on =2 1o <2 (Z 1d/<d1>) <Z d>

i=1
< 20!~/ (k27) T

which concludes the second part of the proof.

We will adjust these separators for points and incorporate them in our structure. Also,
we will try to minimize the number of points that fall on the separator, while maintaining
the balance of it. There will be a detailed analysis in Chapter [4] - Our Model.

2.2 Dimensionality Reduction

Dimensionality reduction is the process of reducing the number of dimensions of the
space under consideration, which simplifies the computational processes involved and often
leads to more efficient algorithms. This reduction is crucial in many applications, such as
machine learning, data visualization and signal processing, where high-dimensional data
can be cumbersome and computationally expensive to work with. By mapping data to a
lower-dimensional space, we can achieve faster computations, reduce storage requirements
and often even enhance the performance of certain algorithms by mitigating the curse of
dimensionality.

In this discussion, we will primarily focus on the Johnson-Lindenstrauss Lemma [2§],
[29], a cornerstone result in the field of dimensionality reduction. The Johnson-Lindenstrauss
Lemma provides a powerful guarantee that points in high-dimensional space can be em-
bedded into a lower-dimensional space while preserving the pairwise distances between
the points within a small margin of error. This lemma has profound implications for the
efficiency of algorithms in various domains, including machine learning, optimization and
numerical linear algebra.

Additionally, we will briefly explore the contributions of Achlioptas [30] and Chazelle
[31]. Achlioptas is known for his work on randomized algorithms and their applications
to dimensionality reduction. He introduced simpler and more computationally efficient
methods for achieving the Johnson-Lindenstrauss guarantees, making these techniques

more accessible for practical applications. Chazelle’s work has also significantly impacted
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the field, particularly through his Fast— Johnson— Lindenstrauss—Trans form (FJLT),
which makes use of an idea similar to Heisenberg’s uncertainty principle.

By examining these foundational results and contributions, we will gain a deeper un-
derstanding of the principles and applications of dimensionality reduction, demonstrating

its crucial role and effectiveness in our experiment.

2.2.1 Johnson-Lindenstrauss Lemma

Lemma 2.6 (JL lemma). For any ¢ € (0,1) and any X C R? for |X| = n finite, there
exists an embedding f: X — R™ form =0 (6_2 log n) such that:

Vo,y € X, (1—e)lla —yl3 < 1f(2) = FWIE < (1 + o)z —yl3-

A typical application of the Johnson-Lindenstrauss (JL) lemma is in creating appro-
ximate algorithms for high-dimensional computational geometry problems. The concept
is that, given an input X consisting of a set of high-dimensional vectors, we can solve the
computational problem on f(X), where f is an embedding as defined by the JL lemma.
Because f(X) resides in a lower-dimensional space, the algorithm is expected to run faster.
Significantly, when the time complexity of an algorithm is exponential in the dimension
d, then the complexity is improved to linear in the number of samples n.

Proofs of the JL. lemma first prove the following ” Distributional Johnson-Lindenstrauss

lemma”:

Lemma 2.7 (DJL lemma). For any €,d € (0,1/2) and integer d > 1, there exists a
distribution D, 5 over matrices I1 € R™*4 for m = O(e~2log(1/4)) such that for any fized
z € R with ||z|2 = 1,

P (|23 - 1] > €) < 4.

~Le s

The Johnson-Lindenstrauss (JL) lemma follows as a corollary from the Distributional
Johnson-Lindenstrauss (DJL) lemma for the following reason: by setting § < 1/n? and
choosing a random II as in the DJL lemma, we can consider any = # y € X and define
Zzy = (z —y)/||z — y|l2. The DJL lemma implies that P (|||Ilz[|3 — 1| > €) < &, which
is equivalent to P (||II(z — y)||3 — |lz — y|l3] > €ellz — y||3) < é. By applying the union
bound, the probability that there exists some z # y € X such that ||[II(z — y)||3 ¢
[(1=€)llz—yll3, (1 + €)|lz — y|[3] is at most ()6 < 1. Thus there exists a II* such that
| (z—y)[13 € [(1 = €)llz — ylI3, (1 + €)||z — y[|3] forallz # y € X. We define f(z) = II*z.

Now that we understand how the lemma operates, we need to determine how to con-
struct a matrix II that satisfies the conditions of the lemma.

The originally used [32] IT is an orthogonal projection onto a random m-dimensional
subspace of R?. Thus we would like to pick a random basis of m orthonormal vectors. We
can accomplish this by picking a gaussian vector g1 ~ N(0, I;) then letting the first row
of IT be r1 := g1/||g1]|2. For 72, we pick another go ~ N(0, I;) independently and define
g5 = g2 — (92, 91)g1 then ro := g5 /[|g5ll2. That is, we first subtract its projection onto g1
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before normalizing to form go. We then continue doing this for the rest of the rows (the
“Gram-Schmidt process”). In the end, II is a dense, unstructured matrix, so computing
I1z takes O(md) time.

This method has some drawbacks: it requires a significant amount of time for the
calculations. More critically, it demands sufficient memory to preserve the accuracy of the
floating-point entries. An alternative approach proposed by Achlioptas [30], involves filling
the entries independently with —1 or 1, each with a probability of 1/2. This approach
allows us to store II in exactly md bits and enables much more efficient computation.

For our experiments, we will use the method that fills the matrix II with random and
independent entries of {—1,+1}. Using this method the computation of f(z) = Iz takes
O(md) time. For completeness we will briefly present two techniques to accelerate the JL

transforms.

2.2.2 Faster JL Transforms

While a matrix filled with {—1, +1} entries is straightforward to compute and suitable
for one-time applications, it sometimes falls short in terms of efficiency. Consequently,
faster methods are often needed. Achlioptas [30] also observed that such a matrix is dense
and proposed a technique to make it sparse, thereby enhancing its efficiency.

Specifically, Achlioptas suggested filling each entry of the matrix with 0 with a prob-
ability of 2/3, with +1 with a probability of 1/6 each, and then normalizing it by multi-
plying it with 1/ \/m This approach makes the matrix two-thirds sparser. By reducing
the number of non-zero entries, the computational cost of matrix-vector multiplications
decreases significantly, leading to faster performance while still maintaining the desired
properties for the JL transform.

In addition to improving computation time, this sparse matrix approach reduces me-
mory usage and can be more efficient for repeated applications, such as in real-time data
processing or large-scale machine learning tasks. This method strikes a balance between
simplicity and performance, making it a valuable enhancement for the JL transform.

Another significant improvement was the Fast—Johnson— Lindenstrauss—Transform
(FJTL) by Ailon and Chazelle [31]. Here the matrix is obtained as a product of three

matrices II = PF'D. The matrices P and D are random and F' is deterministic:

e P is a m x d sampling matrix with replacement (each row has a 1 in a uniformly

random location and zeroes elsewhere, and the rows are independent).

e Fis a d x d normalized discrete Fourier transform (and can be computed fast using
the FFT algorithm). In fact, the matrix only needs to be a normalized Hadamard
matrix. We utilize a Discrete Fourier Transform (DFT) matrix since it functions as

a Hadamard matrix and will facilitate our reasoning later.

e D is a d x d diagonal matrix, where each entry (in the diagonal) is drawn inde-
pendently from {—1,+41} with probability 1/2.
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We will not delve into the proof of the FJLT, but we will provide some intuition for
its construction. To begin with, the matrix P is sparse, meaning that, on average, only a
small fraction of its elements are non-zero. However, P alone cannot serve as an effective
JL transform because the variance of the estimator ||Px||2 is too high for sparse inputs =
(consider a vector z with only one non-zero coordinate). This is where the mapping F' D
comes into play. The transformation FD ensures that, with overwhelming probability,
the vector F'Dx is smoothed out. Consequently, when applying P to F Dx, the resulting
vector PF Dx exhibits good concentration properties.

To conclude, the key idea behind this transform is to achieve smooth input vectors.
When the input vector is not smooth, the Fourier transform tends to spread out with
high probability. This spreading effect is used to smooth the sparse input vector. This
concept (that a vector and its Fourier transform cannot both be sparse simultaneously)
is analogous to Heisenberg’s uncertainty principle. This principle ensures that the Fast
Johnson-Lindenstrauss Transform (FJLT) remains an efficient and reliable method for

dimensionality reduction.

2.3 VC Dimension and Sampling

The sheer volume of data and the massive size of some datasets often make it imprac-
tical for algorithms to run efficiently on the entire dataset. As a result, we frequently
rely on smaller samples to approximate and generalize the results for the entire dataset,
whether we are developing algorithms, data structures or other models. However, deter-
mining the optimal sample size for this purpose is crucial. This is where the concept of VC
dimension, or Vapnik-Chervonenkis dimension, comes into play. VC dimension provides
a measure of the capacity and complexity of a statistical model, offering insights into its
ability to capture and describe the underlying patterns in the data. By understanding the
VC dimension, we can make more informed decisions about sample sizes and improve the
generalization performance of our models. The definitions presented in this section are
taken from [33], if not cited otherwise.

There are two primary definitions of VC dimension. The first, from a geometric per-
spective, describes the capturing capability of a set family §. The second, from a machine
learning perspective, explains the capturing capability of a classification model.

In this discussion, we will focus on the geometric definition. The VC dimension, in
this context, measures the largest set of points 7" that can be shattered by the set family
S. A set of points is said to be shattered if, for every possible subset of points 7", there

exists a subset in S which when intersected with 7' equals 7”. Formally:

Definition 2.8 (VC Dimension). A set T is shattered by a set family S which consists of
a collection of subsets S1,Sa,... of [n], if for every T' C T there is some S; € S such that
TNS; =T'. The VC-dimension of S is the cardinality of the largest set T' shattered by S.

Here, we will also present an important lemma regarding the impact on the VC di-



2.3 VC Dimension and Sampling 21

mension when performing set operations on two family sets S§; and Sa, taken from |27,

Chapter 6] and adjusted to go along with our current notation.

Lemma 2.9 (Union and Intersection of family sets). Let S1 and Sy be two family sets
with VC dimension di and da respectively, where di,dy > 1. Let 8§ = {S1 U S3|S; €
S1, S92 € So} and 8, = {S1 N Se| Sy € S1, Sa € Sa}. Both family sets S and S} have VC
Dimension equal to O(dy + da).

Next we present the concept of e-samples:

Definition 2.10 (e-sample). A set W is an e-sample with respect to a collection S of
subsets S1,S2,... of [n], if for every set S; € S,

(’Si‘—e> W| < |WnSi| < (Swe) W
n n

The above definition indicates that an e-sample includes points from every subset S;,
ensuring that the proportion of these points in the sample is close to the proportion of the
size of S; to the total number of points n. The following lemma gives us a guarantee for

the size of an e-sample:

Lemma 2.11 ([33]). For some universal c, for every set system S over [n] of VC dimen-
sion d, a random set W C [n] of size

c 1 1
E—leog - + log 5

has probability at least 1 — § of being an e-sample for S.

Feige and Mahdian provide a proof sketch for the lemma, which we omit here. The
core idea of their proof involves selecting a random sample of size t. By assuming that
this sample is not an e-sample, they derive an inequality involving ¢. Therefore, ¢ must
satisfy this inequality, leading to the specific size value stated in the lemma.

Another application of known VC bounds [34] is to constrain the deviation of our

sample estimation from the true distribution.

Lemma 2.12 (VC bounds). For any subset S, and an i.i.d. drawn sample W, we have
that with probability at least 1 — 4§,

’]SDW] _@ < In(1/6)
W n| T W]
Thus from the last lemma we can now bound the error €, by € < 1n|(V1V/|6), where ¢ is

the probability of failure, and W the sample.
All the aforementioned concepts will be particularly useful later, especially during the
experiment, where we will need tools to make various decisions (such as determining the

sample size) and to quantify the total error that may result.






Chapter 3

Previous Work

The Approximate Nearest Neighbor (ANN) problem is fundamental due to its preva-
lent applications in various fields, including data compression, databases, data mining,
information retrieval, image and video databases, machine learning and signal processing.
In this chapter, we present a reduction from the approximate nearest neighbor problem to
the approximate near neighbor problem and then explore several foundational solutions
to it. Specifically, we will examine Locality-Sensitive Hashing (LSH) and its derivatives,
as well as Bucketing and Voronoi Diagrams.

Moreover, we will discuss a recent advancement by Andoni and Beaglehole [1], who
optimized the LSH solution for the Hamming metric using a data-driven approach. In
this thesis, we aim to achieve a similar optimization, albeit using different methods, and
extend the applicability to any metric space.

Formally, the Approximate Nearest Neighbor and the Approximate Near Neighbor

problems are defined below:

Definition 3.13. Let P be a set of points in metric space (X,D). The e-approrimate
nearest neighbor problem (or e-NN) is to construct a data structure that given any fired
query point q¢ € X, it reports a point p € P for which is true that Vp' € P D(q,p) <
(1+¢€)-D(q.p).

Definition 3.14. Let P be a set of points in metric space (X,D). The (e,r)-approrimate
near neighbor problem (or (e,r)-NN) is to construct a data structure that given any fized
query point ¢ € X, if Ap € P for which D(q,p) < r then it reports a point p' € P for
which is true that D(q,p’) < (1+4¢€) - r.

The methods we will analyze in this Chapter almost all address the Approximate Near
Neighbor problem. This focus is primarily because the Approximate Near Neighbor prob-
lem is fundamentally a decision problem, which simplifies certain aspects of its solution.
This makes the Approximate Near Neighbor problem more tractable and amenable to
efficient algorithms. Moreover, the reduction from the Approximate Nearest Neighbor
problem to the Approximate Near Neighbor problem only incurs a polylogarithmic factor

in the guarantees. Consequently, this justifies the extensive research and effort dedicated
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to developing robust solutions for the Approximate Near Neighbor problem, as it provides
a foundational approach that can be effectively extended to address the Approximate
Nearest Neighbor problem with minimal additional computational cost.

Another reason why solving the Approximate Near Neighbor problem is often sufficient
is that, in many practical scenarios, finding the exact nearest neighbor is not necessary.
Instead, it is acceptable to find a neighbor that is sufficiently close. For example, in
recommendation systems where items (such as movies) are embedded in a metric space, the
similarity between two items is indicated by their distance (closer items are more similar
than those further apart). In such systems, it is not imperative to recommend the exact
nearest neighbor to a query (such as a previously watched movie); rather, it is adequate to
recommend an item that is near enough to be considered similar. This approach simplifies
the problem and still meets the practical requirements of the application, making the

Approximate Near Neighbor problem a valuable and efficient alternative.

3.1 From the Approximate Nearest to Near Neighbor

By reducing the Approximate Nearest Neighbor problem to the Approximate Near
Neighbor problem, we transform an optimization problem into its decision version, which is
typically much easier to address directly. In this section, we will present a simple reduction
from the e-NN problem to the (¢, 7)-NN problem to demonstrate the main idea. However,
this basic reduction has some limitations. Therefore, we will also provide insights into a
more robust reduction that addresses the issues encountered by the simpler approach.

Let R be the ratio of the smallest and the largest inter-point distances in the point
set P. For each r € {(1+¢)°,(1+ €)%, (1+¢€)?,..., R}, we build structures for the (e,r)-
NN problem. Upon the arrival of any query point g, we binary search on the structures
for the minimal r, for which the structure returns a near neighbor p;, which we report
as an approximate nearest neighbor. This reduction yields a query time overhead factor
O(loglog R) and a space overhead factor O(log R).

The simplicity of this reduction is very useful in practice. However, the O(log R)
overhead factor can become problematic for point sets with a large, or even unbounded
R. Next, we describe some ideas used in the exact reduction, which while it addresses this
weakness, it is more sophisticated and complex.

We partition the point set P into components Pi, P»,..., P. based on a radius r,
ensuring that any point within a component P; is at most distance r from another point
in the same component P;. Then, we create a subset P’ by picking a representative p
from each component. Subsequently, we recursively repeat this procedure for the subsets
Py, Py, ..., Py, P, until their size is small enough O(1). For this technique to be optimal,
we must set the radius r, to a value such that the largest component of P, will have at
least n/2 + 1 points (more than half).

Given a query ¢, we estimate the distance to the nearest neighbor. If the estimated

distance is sufficiently small, we recursively search within the nearest component P;. If
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the estimated distance is large, we recursively search within the representative subset P’.
Otherwise, we report the point p’ identified by our structure during the estimation process.

In the end, the exact reduction achieves a query time overhead factor O(logn) and a
space overhead factor O( % -log?n), where v € (1/n,1) is a prescribed parameter. Overall,
this reduction is effective for any input point set P, without relying on any favorable

properties it may possess.

3.2 Locality-Sensitive Hashing

Locality-Sensitive Hashing (LS H) operates on the principle that data and query points
in close proximity are more likely to be assigned the same hash, thereby increasing the
likelihood of collisions, compared to points that are farther apart. Formally, we require

the following.

Definition 3.15 (locality-sensitive family). A family H = {h: X — U} is (r1,r2,p1,D2)-
sensitive for (X, D) if for any q,p € X we have

e if D(p,q) <11 then Pylh(q) = h(p)] > p1,

o if D(p,q) > o then Py[h(q) = h(p)] < p1.

In order to be useful, a locality-sensitive family must satisfy the inequalities p; > po
and 1 < ro.

Now, by using a locality-sensitive family, we can solve the (e, r)-NN problem as fol-
lows: Firstly we set 11 = r and ro = (1 4 €) - r. We then amplify the gap between the
probabilities p; and ps by concatenating several functions from H. Particularly, we de-
fine the function family G = {g : X — U*}, where k is to be specified later, such that
g(p) = (hi,(p), ..., hi,(p)), where h;, € H, for I ={iy,... i} C{1,...,|H|}, and repeti-
tions are allowed. For an integer L we choose L functions g1, ..., gr, from G independently
and uniformly at random and let I; denote the multi-set defining g;. During preproc-
cessing, we store a pointer to each p € P in the buckets g1(p),...,gr(p). Since the total
number of buckets may be large (O(L2F)), we maintain only the ones that contain points
by applying ”standard” hashing.

When a query point ¢ arrives, the procedure we follow is carrying a brute-force search
for a neighbor of ¢ in buckets ¢1(q), ..., gr(q). After inspecting the first 3L points (includ-
ing duplicates), we terminate the procedure as the total number of points in those buckets
may be large and consequently cost linear time to search them all. If there is any point p
such that D(p,q) < ro we return it, else we return null.

Before demonstrating the correctness of the procedure, it is important to first provide
some intuition behind the parameters k and L. As mentioned before, k is the number of
concatenated hash functions h which point out the bucket in one of the L instances of the
structure. We understand that when k is low, then each of the buckets correspond to a

larger area of the space, thus a larger number of points will have the same concatenated
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hash function g. This may lead to cases where significantly far points end up in the same
bucket. On the other hand, as k increases, not only the points farther apart but also
near points may end up in different buckets, because the probability of having none of
the hash functions h; different decreases. Here is where L is important. Having multiple
instances, with different g; functions, decreases the probability that this happens, as it is

fairly unlikely for 2 near points to end up in different buckets many times.

Definition 3.16 (Correctness). We choose k and L ensuring that with constant probability
the following two events hold. For any p* we define:

e Ei(q,p*) occurs iff either p* ¢ B(q,r) or g;(p*) = g;(q) for some j =1,...,L.
o FE5(q) occurs iff the total number of collisions of q with points from P — B(q,r2) is
less than 3L:

(P = B(q,m2)) Ng; ' (g;(q)| < 3L.

L
=1

J
Lets explain what these 2 events are. The first one refers to the case where ¢ has no
near neighbors (and thus the structure does not have to return anything) or it collides
with p* under g; (g;(p*) = g;(q))for some j =1,..., L. We could say that p* in this case is
either true negative or true positive respectively. The second event refers to the case where
the number of points in the same buckets as ¢ (gj_l(gj(q))) which are not approximate
near neighbors (P — B(q,r2)) is under 3L, in order for a true near neighbor to be returned.
We could call these points false positive.

We now present the main theorem:

Theorem 3.17 ([17]). Suppose there is a (r,cr,p1,p2)-sensitive family H for (X, D),
where p1,p2 € (0,1) and let p = log(1/p1)/log(1/p2). Then there exists a fully dynamic
data structure for (¢ — 1,7)-NN over a set P C X of at most n points, such that:

o The query time complexity is O(n?/p1) - [logy s, n]; O(n?/p1) distance computations

and evaluations of hash function from H, each taking [logl/p2 nl.
e The space complexity is O(n'*? /p1).

e The failure probability f has the upper bound: f < 1/3+1/e.

We do not provide the full proof, only a proof sketch and include the result values of
k and L, that the structure must have to satisfy the theorem. We only consider the case
where there exists p* € B(g,r1), for the other we have nothing to prove. We have to prove
that the events F1(q,p*) and Es(q) hold with probabilities strictly greater than half.

Firstly we set k = [log;/,, n], so that the expected number of false positives under
fixed g; is at most 1. Then the expected number of false positives under any g; is at most
L. By Markov’s inequality, as we try 3L collision points, the probability of Ea(q) is at
least 2/3. For Ei(q,p*) we set L = n”/p; in order to bound from below the probability
that a g; exists so that g;(p*) = g;(q). This value of L gives a probability of at least
1 —1/e. Lastly, by a Union bound the theorem follows.
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3.2.1 Hamming metric

In this subsection we present the application of the LSH Theorem on the Hamming
Space with binary alphabet, also called the hypercube. The Hamming Space of dimension
d is defined as the set of all 2¢ binary strings of length d (from now on referred to as
points), and the Hamming metric distance of two such points p; = (b},b%,...,b¢) and
p2 = (b3, 03, ...,b9), is the number of bits that they differ D(p1,p2) = |{i : b} # bb}|.

Proposition 3.18. Let D(p,q) be the Hamming metric for p,q € {0,1}¢. Then for any
rye > 0, the family

H o= {hi: hy(B5,0%,..., b)) =0, i=1,...,d}
is (r,rc,1 —r/d,1 —rc/d)-sensitive, where ¢ = 1 + €.
We can get a direct corollary from the theorem by applying the proposition

Corollary 3.19. For any € > 0, there exists a fully dynamic data structure for (e,r)-NN

in Hamming metric over {0,1}%, such that:

o The query time complezity is O(nY/ (19 . d/r -logn); O(nY/(+9)) distance computa-

tions and evaluations of hash functions from H, each taking O(d/r -logn).
e The space complexity is O(nl-i-l/(l-i-e)).

We will further examine the LSH technique on the Hamming metric in section 5 of this

chapter, focusing on the work of Andoni in optimizing it through a data-driven approach.

3.2.2 LSH Derivatives

We have analyzed the fundamental approach of Locality-Sensitive Hashing (LSH).
However, LSH has numerous variations, as it accepts adjustments, can be integrated with
various techniques, and applied to a wide range of problems. Here, we highlight some of
these variants.

Several studies have explored the theoretical aspects of LSH. Lower bounds for LSH
in [; space are established by [35], [36], and for Hamming and Euclidean spaces by [37],
with optimizations presented in [38]. The use of LSH for angular distance is discussed in
[39], while [6] explores its application in high-dimensional spaces. LSH is also employed
based on p-stable distributions using /,, norms as shown in [40]. Additionally, [14] discusses
time-space tradeoffs for LSH, and [41] introduces a new data structure with lower bounds
that bypass those of traditional LSH.

Various adaptive and specialized methods have also been developed. PUFFIN [42]
utilizes an adaptive approach based on an LSH forest trie data structure [43]. PM-LSH
[44] focuses on L, norms and incorporates PM-trees |45, with a query procedure similar
to the SRS approach [46]. FARGO [47] addresses the Maximum Inner Product Search
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problem (MIPS) using LSH. LSH-CO-SUBSTRING [48] introduces a more efficient index-
ing method, while LSH-APG [49] combines LSH with graph-based techniques. DB-LSH
[50] implements a dynamic bucketing scheme, and HD-INDEX [51] focuses on finding

approximate k nearest neighbors to reduce space requirements.

3.3 Bucketing

In this section we solve the (e, 1)-NN with bucketing. We set » = 1 as we can reduce
any case to this by scaling up or down our space. At first, we impose a uniform grid with
side length equal to €/v/d on R%. This way, the furthest (euclidean) distance between two
points in the same grid is at most e. Then we define the balls B; = B(p;, 1), for every
pi € P, B; to be the set of grid cells intersecting B;, and store all elements of UZE in a
hash table, along with the information about the corresponding ball(s); for each cell we
store in the table we have to remember to which points p; it corresponds to.

To answer a query ¢, we just find the cell which contains ¢, and check if it is stored in
the table. If it is stored then we return a corresponding point p;, else we return null.

We can see that for 0 < € < 1, B; = O(1/€)? (recall that vgr? is the volume of a
ball of radius r in RY, where v, is a constant that depends on the dimension). Thus for
every point p; we need O(1/¢)? space to store the cells. Finally we can write formally the

theorem.

Theorem 3.20. For any 0 < € < 1/2, there exists a fully dynamic data structure for
(€,7)-NN in ly norm over R, such that:

e The query time complexity is O(d).
e The space complexity is O(n) x O(1/¢)%.

We note that we can extend this method to any /5 norm, by setting the grid side length
to €/ d'/s. This way B is still bounded by the same number, and thus the theorem also
holds.

Bucketing will be used in our model as well. It will be the method in which we resort
when the form of the point set is not the desired and by applying the data driven method

(that will be explained later) could result in times worst than the guarantees.

3.4 Voronoi Diagram

For completeness, in this section we present the Voronoi Diagram solution of the e-
NN problem, which consists a very powerful tool and is one of the most widely used. It
can also be applied to many other problems in computational geometry such as surface
reconstruction.

Section reduces the e-NN problem to performing O(logn) searches in appropriate

instances of (e,7)-NN structures. It is natural to ask if it is possible to only have one
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structure, and obtain a natural geometric representation of the input point set, resulting
in solving directly the e-NN problem. It has been proven that it is indeed possible to do
that by adjusting the bucketing technique to get a Voronoi diagram.

Theorem 3.21. There is an absolute constant C > 0 such that given a set P of n points

d+1)

in RY and a parameter ¢ € (0,1/2), one can compute, in O((n(C/e) log®n) time, an

approzimate Voronoi diagram of P of size O((n(C/e)™1)log?n), such that

e cvery cell in this diagram is either a cube or a set difference of two cubes, and

e cvery such cell has a point of P associated with it that it is a (1 4 €)-approrimate

nearest neighbor of all the points of the cell.

We now explain how to collapse all the bucketing grids of the logn near neighbor
structure. First, we assume that the grid side lengths are powers of 2 (achieved by scaling),
and that all grids are centered at the origin. This ensures that the grids are nested, meaning
cells of finer grids are not split across different cells of coarser grids.

Let Z1,Zs, ..., Z} be the structure instances for the near neighbor. Also, let r; and
t; be the radius and the grid side length of Z; accordingly. For every Z; and every point
p, we label every grid cell intersecting the ball B(p,r;) with p. The decomposition can be
obtained by superimposing all grids onto the space R%, where any point takes the label of
the smartest grid cell containing it.

Upon the arrival of a query point ¢, we find the grid cell of the smallest side length
containing ¢q. Then we know that the label of that cell is a correct approximate nearest
neighbor for q. Regarding finding the approximate nearest neighbor, one can apply a
search algorithm in the instances, or use a compressed d-dimensional quadtree.

This concludes the description of the approximate Voronoi diagram. For a more de-

tailed description see [17].

3.5 Data-Driven LSH

In this section, we discuss recent work by Andoni and Beaglehole [1], which focuses on
optimizing the LSH method for the Hamming metric using a data-driven approach. We
present this work because it attempts to bridge the gap between the data-driven aspect
and worst-case guarantees. As stated in their paper, algorithms can be divided into two
categories: those with theoretical guarantees and those that aim to find (or learn) the best
possible space partition for a given dataset.

To provide an overview of their solution, we think of the LSH method (see section
and the procedure of a concatenated hash function g; as a tree. At the root, we
randomly select (uniformly) one of the possible hash functions h;, which corresponds to a
specific bit. Based on that bit, we split the dataset. We then repeat this process for the
subsequent levels of the tree k times, where k is the number of hash functions h; in one

concatenated function g;.
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The paper’s contribution lies in replacing the uniform random selection of hash func-
tions with a method that finds a distribution over the hash functions h; to maximize the
recall on the least performing queries. These least performing queries are defined as those
exactly at distance r from the nearest point in the point set, making them the furthest
near neighbors. To find that distribution, they solve a two-player zero-sum game, in which
one player is the hash player who chooses a distribution over the hash functions h;, and
the other is the query player who selects a query/nearest neighbor pair adversarially for
the least probability of success at the end of the tree.

For proof of concept, they demonstrate that in point sets generated from mixture mod-
els, their method achieves an improvement factor of (e:cp(Q(/@))) on the minimum
query compared to standard LSH techniques. They also conducted experiments, prima-
rily classification tasks on the ImageNet and MNIST datasets, showing significantly better
success probabilities than those achieved with uniform LSH. Additionally, they illustrated
the distribution of the hashes over the MNIST dataset images, revealing that the model
assigns higher probabilities to the hashes (pixels) in the center than to those in the corners.

Their solution successfully maintained the correctness and performance of the LSH
method while making it data-adaptive, which means the algorithm adapts to a given fixed
dataset, achieving even better success probabilities for datasets with favorable character-

istics. They also backed up their theoretical results with experiments.
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Our Model

In this chapter, we introduce the data structure we developed, and explain its dual
nature; it is a data-driven model (it adapts according to the point set) while simultaneously
upholding worst-case guarantees, a feature rarely achieved in previous work. One reason
for this could be that developing a data-driven model is inherently non-randomized and
typically involves a degree of greediness. As a result, there’s always the potential for
adversarial point sets that can cause the model to perform poorly.

The key concept of our model is to cease utilizing information from the point set to
build a data-driven model once it is no longer safe to ensure worst-case guarantees. At
that point, we switch to an established solution for the problem, namely the bucketing
technique. This approach allows us to leverage as much information from the point set as
possible without compromising worst-case guarantees.

Our model is essentially a binary tree that divides the point set into two disjoint subsets
from the root downwards, until the size of them becomes small enough (O(1)). The division
is guided by a separator with specific properties designed to ensure the model’s efficiency
and that separator is computed while taking into consideration the point set. This data-
driven method is applied as long as the point set at a vertex remains sufficiently sparse
(more details to follow). When encountering a vertex with a dense point set, we designate
it as a leaf (i.e., no further splitting occurs) and implement a preprocessing technique
inspired by bucketing.

Upon the arrival of a query point ¢, we traverse the tree starting from the root, pro-
ceeding to either one or both children based on the position of ¢ relative to the separator.
Then when we reach a leaf, we iterate through the points until we find a near neighbor. If
the leaf has undergone bucketing preprocessing, we return a point based on the bucketing
technique.

In the following sections, we will conduct an in-depth analysis of the model’s struc-
ture as well as the vertex separators. As we will see, the computation of the separators
constitutes an optimization problem in itself (and in fact a challenging one). We will also
propose two algorithms for identifying these separators and, finally, discuss the overall

optimality of the model.

31
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4.1 Structure

Before defining our structure, we need to introduce the following notation.

Definition 4.22. A ball B(o,r) is defined as B(o,r) = {x € R? | |lo — 2|2 < r} and a
ring R(o,71,19) is defined as R(o,71,1m2) = {x € R? | 11 < |jo — |2 < 2}

Definition 4.23. A ring separator o(p,rs) is a ring R(p,rs,rs+2r), where r is the search
radius of the Near Neighbour problem instance. We say that R(o(p,rs)) is the ring of the
separator o(p,rs). This separator splits the point set P into 2 subsets, P N B(p,rs + 1)
and PN B(Ts—}-r) We call these subsets inner and outer respectively.

Now we are able to define our data-driven structure.

Definition 4.24. Let RT), be a data structure that builds a binary tree as follows: Starting
with the whole point set P at the root, divide it in two according to the ring separator o € p
procedure defined later on, where p is the collection of the separators used to build the
particular tree. Repeat this on every new node, until the size of all the leaf sets is O(1).

We call this structure a Ring Tree.

The tree is such constructed that at each vertex, we must identify a suitable separator.
As we will later demonstrate, we solve this problem independently for each vertex, without

considering the outcomes at other vertices. The building algorithm can be seen below.

Algorithm 1 Build Tree
1: procedure PREPROCESS(point set P, query distribution Dg)
2 N < new Node

3 N.P=P

4 if IN.P| = O(1) then

5: return N
6

7
8
9

N.separator < findSeparator(N.P,Dg)

P.in, P.out < split(N.P, N.separator)

N.lchild <+~ PREPROCESS(P.in, Dg)

N.rchild <~PREPROCESS(P.out, Dg)
10: return N

For a query point ¢ € R, the procedure of finding a near neighbor is starting from
the root and checking where ¢ falls on the ring separator. If it is inside the ring (meaning
llo—qll2 < rs), then follow the child corresponding to the inner subset, else if ¢ is outside
the separator (meaning ||o — q|l2 > 75 + 2r), then follow the child corresponding to the
outer subset. If the query falls on the separator (meaning s < |0 — ¢|l2 < rs + 2r), then
search for a near neighbor to both children. Upon arriving to a leaf node, we check the
points in that point set, and return the first py that satisfies ||¢ — po||2 < r. This way we
can be sure that we will find a near neighbour (if it exists) with probability 1. The query

algorithm can also be seen below.
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Algorithm 2 Query Search

1: procedure QUERY (query point q, starting node N)
2 if N is a leaf Node then

3 p* < null

4 for each p € N.P do

5: if ||p — ¢|| < (1 + ¢)r then

6 P p

7 break

8 return p*

9 o0(o,rs) < N.separator

10: if ||¢ —o|| <75 then

11: return QUERY (q, N.ichild)

12: else if ||g —o|| > 5+ 2r then

13: return QUERY (q, N.rchild)

14: else

15: left < QUERY (g, N.lchild)

16: if left # null then

17: return left

18: else

19: return QUERY (¢, N.rchild))

For this model to be efficient and the query procedure to be fast, two main properties
must be satisfied. First, the tree’s height must be kept relatively small. This can be
achieved by ensuring that the point set splits at the inner vertices are balanced; otherwise,
the height could become linear on the number of points. Second, we must avoid instances
where the query point falls on the separator, necessitating traversal to both children.
This can be accomplished by minimizing the probability of a query point landing on the
separator.

The general case is that the point set P is drawn from a distribution Dp and the queries
¢; come from a distribution Dg. We notice that the balance of the separator depends only
on the point set P, and the probability of a query ¢ falling on the separator depends only
on the distribution Dg. Therefore, it is natural to ask for the separator to be balanced on
P and sparse on D,.

The following analysis does not assume that Dp and Dg distributions are identical.
However, if the they are the same, applying the same distribution will yield similar results.

Recall that in Section we needed the k — ply property for the set of balls B. As
we now are on the Euclidean space and use the lo norm, we need a similar notion for
probability distributions. This property will ensure that the probability distribution does

not have dense areas, and that is rather smoothed out.

Definition 4.25. Let f be the PDF of a distribution D over RY. We say that D is
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(o, 7)-sparse if for any Euclidean ball B of radius v, it holds [ f(z)dz < a.

We also define the P — balanced — Dg — sparse separators which will be needed for

the construction of the model.

Definition 4.26. Let Dg be an («,r)-sparse distribution and f be its PDF. In addition,
let P be a point set in R? drawn from Dp, with |P| = n. Lastly, let ¢ be the doubling
constant of RY. A ring separator o(p,rs) is called P — balanced — Dg — sparse if for the
ring R = {x € R*| ||z — p|| € [rs, 75 + 2r]} it holds

/ f(z) dz < 2a°0/D,
R

and for the inner ball B = B(p,rs+1) and the outer ball B = {x € R? | ||z —p|| > rs +7},

1t holds
n

IPNB| > and |PNB| > ——.
1 c+1

c
The existence of such separators is proven in Subsection

We are now able to show the following theorem.

Theorem 4.27. A Ring Tree Structure that is built for a point set P and an (o, 1)-sparse
query distribution Dg, by using P — balanced — D¢ — sparse separators, is a solution for

the (e,7)-NN problem and comes along with the following guarantees:

O(1/d)

1. The expected query time is O(na clogn)

2. The space complezity is O(n)

3. The preprocessing time is O(clogn) x F (o), where F(p) is the time needed to find a
P — balanced — Dg — sparse separator o. This is for the case that F(p) is Q(n?).

Here ¢ = 29D s the doubling constant of RY.

Proof. Let b be the number of nodes in the tree that the query follows both children to
search for a near neighbor. We know that the probability that a query follows both children
is equal to the probability that the query falls on the ring separator. This probability is
known and is less than 20901/,

Thus, the expected number of bad nodes is E[b] = n-2a°(1/4) because we have at most
n separators in the structure. Finally, the expected query time is less than the product
of the leaves visited (which is equal to the expected number of bad nodes plus 1) and the

height of the tree:

E[T,] < (E[b] +1)-h = (n-2a°0/D 41) . p

We have that h = logesi n = —28% = O(clogn). We have <=L as the base of the
- log % c

logarithm, as the bigger in size child has at most -5 portion of its parent points. This is

true, as we use P — balanced — Dg — sparse separators. This concludes the proof of the

first point.
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Towards proving the second point, we simply need to observe that each point is stored
in only one leaf. Consequently, the required space includes the space needed to store the
points and the space needed to store at most n inner vertices of the model along with their
separators. Thus the space needed is linear in the number of points n.

Lastly for the third point, during preprocessing we need to find O(n) P — balanced —
Dg — sparse separators, as we have O(n) inner vertices. Assuming worst possible balance
and F(p) is Q(n?) we have that for the root we need Q(n?) time. Then for the second

layer we have:
2 2.2 2
n n cn” 2 I+c¢ < n?
(c+1)2  (c+1)? (1+4c¢)?

Thus, for each subsequent layer, the time required will be less than the time needed

for the root. Consequently, the total time required to find all separators is O(h) x F (o),
where h = O(clogn) as shown before.

Also, after finding each separator, we need to split the point set on that vertex. The
splitting can be calculated as the size of the initial point set multiplied by the height of
the tree, which is O(clogn). The total preprocessing time is the sum of the times of those

two operations, but since F(p) > O(n), the final complexity is O(clogn) x F(o). O

Currently, the query time still includes the parameter a. To achieve a sublinear query
time, we can set the parameter a to be equal to n~! to obtain a desired query performance.

This can be seen in the follwing corollary.

1

Corollary 4.28. A Ring Tree Structure that is built for a point set P and an (n™",ry,)-

sparse query distribution Dg, by using P —balanced—Dg — sparse separators, is a solution

1-1/d

for the (€,1y,)-NN and has expected query time equal to O(n clogn), which is sublinear.

4.1.1 Existence of Separators

In the proof of Theorem we assumed the existence of P —balanced —Dg — sparse

separators. In this subsection, we demonstrate that these separators do indeed exist.

Lemma 4.29. Let Dg be an (a,r)-sparse distribution and let f be its PDF. In addition,
let P be a point set in R? drawn from Dp, with |P| = n. Lastly, let ¢ be the doubling
constant of RY. There is a point p € R? and a radius vy defining a ring separator o(p,rs)
such that for the ring R = {z € R? | ||z — p|| € [rs,rs + 2]} is true that:

L {wePllle—pl<rdl >y and [{z € Pllle—pll > ro+2r)] > 24

2. [ f(z) dz < 2a,0(1/d)

Proof. Let By be the Euclidean ball of minimum radius such that [B; N P| = 7 and let
B> be the concentric ball of twice the radius. Separator ¢ will be somewhere in between.
By the definition of By and the doubling constant we have [P\ Ba| > *5.

Towards proving point 2, we first scale the space so that the radius of the ball B; is

equal to 1 (and the radius of By is equal to 2). Due to the scaling, r changes to /. The
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separator will be concentric to the balls, and will have inner radius so that it is whole in
B2\ B;. Thus, we can assume that fBz\B1 f(z) dz > a©1/1089)  otherwise the statement is
trivially true. By the definition of the doubling constant, we can cover By with ¢©os(1/ )

balls of radius r’. Hence,

2001/ 1080) < / f(z) dz < UM — o < 4O0/1080) (4.)
B2\B1

A more careful and attentive analysis for Equation is provided in Section of the

. . . . . —6(1/d)
Appendix. This equation implies that there are at least “——

Bs \ Bi, having overall density at most 1. Hence one of those annulii has density at most
2a01/d), O

annulii of width 27’ in

This proof is inspired by Har-Peled’s proof for Ball Separators. Actually, the argument
about the balance is the same. Now, instead of the k — ply property, we have the («a,r)-
sparsity property for the probability distribution. This is what ensures us that the r-the
search radius of the Near Neighbor instance, as well as the separator half width- will be
under 1/2 when scaled (r' < 1/2), so that the separator lies fully in Bs \ B;.

Also, notice that the search radius r of the Near Neighbor instance, is in both the
separator and the sparsity property. This means that for every instance of the structure,
the sparsity requirement changes; for larger radii it is more strict, as the probability mass
of a larger area must be less than the same a. Because of this, it is essential to switch
to another technique, in order not to let o be very large, and thus render useless our

guarantees. The switch of technique is described in Subsection [4.1.3

4.1.2 Generalization to Other Metric Spaces

Up until now, all the proofs were for the Euclidean space and the I3 norm. However,
notice that for the proofs to hold, the only requirement for the metric space in which the
point set resides is that it has a doubling constant bounded from above by 294 Thus,

we get the following proposition.

Proposition 4.30. If the metric space (X, D) has doubling constant ¢ < 20(d) then we

can build a Ring Tree for any point set residing in that space.

With this in mind, we note that this applies to the data-driven structure. The buck-
eting method, as we know, can be applied in Euclidean space, but with any I norm.
However, this does not prevent us from using a different technique suitable for that space.
Additionally, one might choose to sacrifice the guarantees and continue finding suboptimal

separators that do not satisfy the sparsity condition.

4.1.3 Switch to Bucketing

Up to this point, we have discussed («,r)-sparse distributions. Now, we consider

distributions that may also contain dense areas. Given that the total density is 1, there
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cannot be many non-overlapping dense regions. Therefore, we can apply the bucketing

method, incorporating the extra information that we now have about the distribution.

Lemma 4.31. Let Dg be a distribution that is not (o, r)-sparse and let f be its PDF. In
addition, let P be a point set in R? drawn from Dp, with |P| = n. Lastly, let ¢ be the
doubling constant of RY. For 0 < e < 1/2, by applying the grid bucketing technique, we

can solve the (e,7)-NN problem in ly norm over R?, such that:
e The query time complexity is O(d).
e The space complexity is O(1/a) x O(1/€)%.

Proof. The only thing changed from the classic bucketing method is the space needed. As
the distribution Dy is not («a, r)-sparse, we know that there is at most % - Vg, where Vg
is the volume of a ball with radius . According to the bucketing method, we also know
that a ball with that radius intersects O(1/¢)? grid cells. Thus, the theorem follows. [

In practice, it is difficult to check whether a distribution is («, r)-sparse or not. Thus,
what we can do is try to find a P — balanced — D¢ — sparse separator anyways, since
the (a,r)-sparsity is a sufficient and not necessary condition for its existence. If the
separator satisfies the balance and sparsity conditions, then we can continue building the
tree. Otherwise, we know that the distribution must not be («, r)-sparse, and in that case

we apply the bucketing technique.

4.2 Finding a Separator

In the previous section, we proved the existence of separators that provide worst-case
guarantees. In this section, our goal is to find not just any separator that meets the
minimum conditions, but the optimal one. Given that balance and sparsity are the two
characteristics defining a separator, optimality can be defined in various ways. For our
purposes, we define optimality as minimizing sparsity while maintaining balance, where
balance only needs to meet the required threshold rather than being optimized.

Finding a separator is challenging, as it constitutes a difficult optimization problem.
Defining a separator requires specifying two components: the center o and the inner radius
rs. Therefore, d+ 1 variables are needed: d for the center and 1 for the radius. The width
of the separator is constant and is equal to 2r, the double of the search radius of the Near
Neighbor instance. So lets imagine a (d 4 1)-dimensional space, where all the separators

reside (a point in this space corresponds to a unique separator).

Definition 4.32. Let the Separator Space (Sg) be the R? x Rt space that describes all

possible separators of RY, inthe following way:
e The first d dimensions correspond to the center of the separator o.

o The last dimension corresponds to the inner radius of the separator rs.
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Figure 4.1: Illustration of the Separator Space. Here three separators pi((01,03),71),
02((01,03),72), 03((02,03),71), where 7o = 3r1, are shown in the Euclidean Space R? and
the Separator Space Sg (as Sg is 3-dimensional, we illustrate the projection plane where

the second dimension is equal to 03).

In this space, we need to define two functions that describe the balance and sparsity
of the separator. We’ll start by discussing balance. We want the separator to split the
point set in a balanced manner, ensuring that the size of each child falls within a specific
range. Therefore, we can define the balance function as the size of one of the two children

and verify that it is above a lower threshold and below an upper threshold.

Definition 4.33. Let Bl(p) : Ss — N be the balance function that returns the size of
the inner subset when the point set P in the initial space R? is split by a given separator
0 € Sg. Let o be the d-dimensional center, and rs the inner radius of p. Also let 2r be the
width of the separator. Then,

Bl(o(o,rs)) ={p e P : [[p—o| <rs+r}

We will say that the separator o(o,rs) € Sg is P — balanced if:

cn
c+1’

< Bl $)) <
s < Bl(g(om)) <

where n = |P|, and c is the doubling constant of R%.

Alternatively, we could define the balance as the size of the smaller subset of the two,
and then simply check if it is above the lower threshold. This definition is equivalent.

Now lets talk about sparsity. As it is difficult to have the PDF of the query distribution
Dg, we draw a sample from it Sg ~ Dg, and we work with that. This sample can be
the first queries that arrive (assuming that they are i.i.d), or if we know that the query
distribution is the same with the distribution of point set P, we can work with P itself.
Then the sparsity function becomes obvious, and is the number of points that lie on the
separator. For a separator to be considered sparse, the sparsity function must be below
an upper threshold, as defined in Definition With this in mind, we also aim to find

the optimal separator, which has the minimum sparsity.
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Figure 4.2: Example of separator split. The square points are the inner subset, and the
circle points the outer. Also the bold points are counted to estimate the sparsity of the

separator.

Definition 4.34. Let Sp(p) : Ss — N be the sparsity function that returns the number
of sample queries of Sq drawn from Dg that lie on the input separator o € Sg. Let o be
the d-dimensional center, and rs the inner radius of 0. Also let 2r be the width of the

separator. Then,
Sp(e(o,rs)) ={p € P : rs < |lp—o| <rs+2r}
We will say that the separator o(o,7s) € Sg is Sg — Sparse if:
Sple(o,75)) < |Sql - 201/,
where « is the parameter in the wanted (o, r)-sparsity condition.

Figure [£.2] shows en example of a separator split. We can now formally define our

optimization problem:

Problem 4.35. Given a point set P, and a query sample Sq, find the separator o*(o,rs) €
Ss, such that o*(o,rs) is P — balanced and Sp(o*(o,7s)) is minimized.

A natural approach to solving this problem would be to formulate it as a linear (or
integer) program. This could involve setting the objective function as the sparsity function
and incorporating the balance function as constraints. Unfortunately, this approach ap-
pears to be unfeasible. Observe that both the balance and sparsity functions are piecewise
constant. This means that while their domains are continuous, their codomains are dis-
crete. Both functions operate by counting points that have a particular property. However,
expressing this counting process within a linear programming framework is challenging.

An alternative approach could involve using gradient descent or local search. For these
algorithms to guarantee optimality, the objective function must be convex. However, in
our scenario, both the balance and sparsity functions are highly non-convex. This non-
convexity arises because moving a separator in the initial space R¢ causes the relative
positions of points to change in an almost random manner. Therefore, gradient descent
and local search algorithms seem not to be suitable for this problem.

Lastly, we consider the option of dynamic programming, which involves simplifying a

complex problem by breaking it down into simpler sub-problems solved recursively. This
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approach might require preprocessing to organize the data of the sub-problems for efficient
execution of the recursive formula. However, this method appears impractical for our case
due to the difficulty in simultaneously modeling all constraints.

Considering all the above, we conjecture that the problem of finding the sparsest
balanced separator is NP-hard. Therefore, in order to achieve optimality we resort to a
brute-force approach, where we extensively test many separators and select the one with
the best results.

4.2.1 Brute-Force Approach

As previously explained, brute-force appears to be the only method that can guarantee
an optimal solution for finding the sparsest separator p. However, this approach is still
challenging due to the infinite number of possible separators to consider. To address this,
we must first discretize the Separator Space Sg. Our goal is to include a sufficient number
of points to ensure the algorithm can find a good separator, while also avoiding multiple
separators that split the point set P identically.

We propose the following algorithm:

Algorithm 3 Find Separator - Brute Force

1: procedure SEPARATOR(point set P, query sample Sq)

2 MIN_Mass < n

3 for each subset A of PU Sq of size d+ 1 do

4 for each possible ring separator ¢ defined by A do

5: mass < |R(p) N Sg|

6 if mass < min_mass and g is P — balanced then
7 MiN_Mmass <— mass

8 ans < o

9: return ans

It is known that d+ 1 points in R? uniquely define a d-dimensional sphere. In a similar
manner, d + 1 points when distributed on the three different radii (rs, rs +r and rg 4 2r)
can uniquely define a separator g.

For example, lets say that we have d + 1 points p1,...,ps11 and we want to find a
separator o(o,rs) that has the first point on the inner radius, the second point on the

middle radius and all the rest on the outer radius. Formally, we want:
® [lp1 — ol = s
o [lp2—ol =rs+r
o |pi—o|l=rs+2r,Vic{3,....,d+1}

There exists only one separator p(o,7s) which satisfies all the conditions (under some
constraints as well). This separator can be found using linear algebra. For a full analysis

on how to find a separator from d + 1 points see Section from the Appendix.
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(a) Euclidean Space R? (b) Separator Space Sg

Figure 4.3: Discretization of the Separator Space. The separator that has the purple and
the green point on the inner radius, and the orange on the middle radius, corresponds
to the point "X” in the Separator Space Sg (as Sg is 3-dimensional, we illustrate the

projection plane where the three polynomials intersect).

By discretizing the Separator Space in this manner, we limit our consideration to
separators that intersect with d + 1 points. Consequently, if the optimal separator does
not intersect any points, it will not be considered by our algorithm. However, the following

theorem demonstrates that our algorithm will still identify a sufficiently good separator.

Theorem 4.36. Let o* be the optimal separator for a given point set P and a query sample

Sq. Algorithm @ will find a separator o which will satisfy the following:
|Bl(¢") — Bl(o")| + [Sp(e”) — Sp(e™)| < d +1

This means that Algorithm[3 finds the optimal separator with an additive error up to d+1.

Proof. Let’s visualize the Separator Space once more. Within this space, we draw the

following hypersurfaces for every i € [|P U Sg]:

2

= o =1

o |lpi —of* = (rs +1)?
o |lpi —of* = (rs + 2r)?

The points on these hypersurfaces represent the separators that intersect with each point
pi € P U Sg on the inner, the middle and the outer radii respectively (observe that the
three hypersurfaces of each point do not intersect, as a point cannot be at the same time
in multiple radii). Therefore, we can retrieve the relative position of p; to any separator
0(o,rs), by looking on which side of those hypersurfaces it resides. To do that, we can

look the sign of the expressions:

2

o lIpi — ol =13
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o |lpi — ol = (rs +7)?
o |lpi — ol = (rs +2r)?
Specifically, regarding balance we have:
o if ||p; — o> — (rs +7)? < 0, then p; will be in the inner subset after the split.

o if ||p;i — o||?> — (rs +7)? = 0, then p; will be on the middle radius, and thus in the

inner subset after the split.
o if [|[p; — 0|2 — (rs +7)% > 0, then p; will be in the outer subset after the split.
Similarly, regarding the sparsity we have:
o if [[p;—o0|>—(rs)? > 0 and ||p; —ol|? — (rs +27)? < 0, then p; will lay on the separator.

o if [|[p; —o||> — (rs)? =0 or ||p; — o||> — (rs +27r)? = 0, then p; will intersect the inner

or the outer radius, and thus lay on the separator.

o if ||p; — ol — (r5)? < 0 or ||p; — o||> = (rs + 2r)% > 0, then p; will not lay on the

separator.

All the hypersurfaces build a grid in the Separator Space Sg, in which there are cells,
(hyper)edges and vertices. A cell can be described as a (d+ 1)-dimensional region in Sg, in
which no expression is equal to 0, and for different points in that region, the expressions
have the same sign. A (hyper)edge can be described as a d’-dimensional region in Sg,
where d' € {1,...,d}, in which the same d — d' expression(s) are equal to 0, and for
different points in that region, the rest of the expressions have the same sign. Lastly, a
vertex can be described as a point in Sg, where d + 1 expressions are equal to 0.

The separators that we consider are represented with points in the Separator Space
that are intersections of d + 1 hypersurfaces. Specifically, these hypersurfaces correspond
to the d + 1 points, and the respective radius. This is demonstrated in Figure As we
go through all possible subsets of d + 1 points, and check all possible separators defined
by those points, we basically check all the separators that correspond to all the vertices
of the grid in Sg.

Now, we assume, without loss of generality, that the point representing the optimal
separator, ¢*, is located within a cell in Sg. This implies that all expressions for the
points in that cell are non-zero and have specific signs. As we evaluate the separators
corresponding to all vertices, we will also consider the vertices adjacent to that cell. For
these vertices, the expressions that are non-zero will share the same sign as the expressions
for the points within the cell, and consequently, the point corresponding to the optimal
separator. Consequently, except the d 4+ 1 points that define the separator, the relative

position of the rest of the points is the same with the optimal separator. ]
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L

Figure 4.4: Absurd illustration in the Separator Space Sg, where the lines represent the
hypersurfaces. The separators that are considered by the brute-force algorithm are the

circles, and the optimal separator is the 'x’.

The core idea of the proof is that every possible separator is almost equivalent to one
that touches d+ 1 points. By evaluating all possible separators defined in this way, we are

guaranteed to find a separator that is almost optimal.

A rough estimation of the algorithm’s time complexity is the number of subsets of
P U Sg of size d + 1, multiplied by the number of ways they can be distributed on the
three radii g, rs+7 and r4+2r. We assume that the size of the sample S¢ is lower than n.
Therefore, the complexity is equal to O(n)%t! x 39+ = O(n)°9(@ . Also this is multiplied
by the time it takes to solve a d-dimensional system of linear equations, but we omit it as
it is negligible.

Considering this complexity, we can say that it is highly problematic. Even having 100
points, and 10 dimensions gives us 10%° computations already. This means that technically
the algorithm cannot be applied. The main factor for this is that we have the dimension

d on the exponent. This phenomenon is known as curse of dimensionality as well.

What we could do to reduce the complexity, is sample from the point set P as well.
Specifically, it is known that a d-sphere has VC dimension equal to 6 = d + 1. Also
by Lemma [2.9] we get that the VC' dimension of a separator, as the set difference of
two concentric balls is O(2§) = O(d). Thus, we can set the sample size to be O(d).
Consequently, the complexity is reduced to O(d)o(d), which is still bad, as d is still on the

exponent.

In conclusion, while the brute-force approach offers reliable guarantees, its inefficiency
and poor running times render it impractical for real-world applications. Therefore, im-
plementing a heuristic method is the most viable option, as it will significantly improve

the efficiency of the original brute-force approach.
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4.2.2 Locality Heuristic

In this subsection, we will outline our reasoning that led to the development of a
heuristic designed to accelerate the process of identifying the sparsest separator. This
heuristic is grounded in locality arguments and is inspired by the concept of local search.
However, as is often the case with heuristics, it does not offer reliable guarantees regarding
the optimality of the resulting separator.

The algorithm with the locality heuristic is shown below:

Algorithm 4 Find Separator - Locality Heuristic

1: procedure SEPARATOR(point set P, query sample SQ)

2: min_mass < n

3 for iin [m] do

4 A < random subset of P U Sq of size d 4 1

5 while true do

6: temp_mass < min_mass

7 for each possible ring separator ¢ defined by neighborhood(A) do
8 mass < |R(p) N Sg|

9 if mass < temp_-mass and g is P — balanced then
10: temp_mass < mass

11: t.ans < o

12: if temp_mass < min_mass then

13: min_mass < temp_-mass

14: ans < t_ans

15: else

16: break

17: return ans

As neighborhood(A) we define the family of subsets of the same size as A, that have

at most 1 different point. Formally,

Definition 4.37. As neighborhood(A) we define the family:
neighborhood(A) = {A' Cc PUSg : |A'| = |A|,|A'N A] > |A| -1}

The algorithm begins by selecting a random separator (again considering only those
corresponding to vertices in the Separator Space Sg). From this starting point, we attempt
to find a better separator by exploring options defined by the same points except for one.
This process continues until we reach a local optimum, where all neighboring separators
have worse sparsity. Additionally, the parameter m in the algorithm specifies how many
times the set of points will be randomly initialized to restart the search.

To gain a better understanding of how this heuristic works, let’s revisit the Separator

Space Sg. We observe that neighboring cells differ by one in terms of sparsity or balance.
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Similarly, the vertices exhibit this smooth property, which we refer to as strict locality -
where neighboring cells or vertices change singularly in balance or sparsity.

Now, consider the vertex representing the current separator. By allowing only one
point to change, we effectively focus on a 1-dimensional edge (basically a curve in the
(d + 1)-dimensional space) out of the d + 1 that go through the vertex, and examine all
vertices on that edge. This approach enables us to check not only neighboring vertices
but also make jumps to distant vertices. This broader sense of locality prevents us from
getting stuck in local optima, which could occur if we adhered strictly to strict locality.
However, this method remains a variation of local search. While it can avoid some local
optima, it does not guarantee that the solution returned is a global optimum.

To determine the time complexity of the algorithm, we multiply the size of a subset’s
neighborhood by the number of possible steps and the number of initializations. The size
of the neighborhood is O(nd), as there are d + 1 points in the subset that can be swapped
with the n— (d+ 1) points that are not used. The number of possible steps is O(n), as the
maximum sparsity is n, and in each step we reduce it by at least 1. Lastly, by definition of
the algorithm, the number of initializations is m. Therefore the complexity is O(mn?d).
A reasonable choice for m would be logn, which gives us O(ndlogn) complexity.

Now, by substituting this result to Theorem [4.27] we get that the preprocessing time of
our model is O(n?dclog?®n). This results in a much more manageable complexity, making
it feasible for real-world applications. The algorithm is also demonstrated through the

experiment in the next chapter.

4.3 Model Optimality

In this section, we present a critical evaluation of our model. Our objective is to
determine whether our tree construction method (Algorithm [If) is optimal for the given
point set P and query distribution Dg. By optimal we mean that it yields the tree with

the minimum expected query time. Formally,

Definition 4.38. We say that RT), is the optimal for a point set P and a query distribution
Dq, if out of all possible Ring Trees it minimizes the expected query time Ep p, (1]

Unfortunately, we were unable to establish any guarantees. Additionally, we suspect
that this construction scheme may have an unbounded approximation ratio. This is likely
because we determine optimal separators independently for each vertex, without taking
into consideration the separators of other vertices. This greedy approach prevents us from
avoiding the selection of a separator that may appear optimal at a certain vertex but
proves problematic at deeper levels. In addition, the fact that we have additive error on
the balance and/or the sparsity of the separator that we find, can be really bad for optimal
separators that have 0 sparsity.

We can demonstrate this with an example. Consider a point set P and a query distri-

bution Dg, for which there exists a tree where, for all possible queries, the search always
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Figure 4.5: Example point set, where the tree we build may have bad approximation from
the optimal. If the blue separator is picked for the parent node, then the brown separator
is okay for both child nodes. However if the brown separator is picked for the parent
node, the blue does not satisfy the balance condition for the lower subset. Thus, another
separator (e.g. light-blue) must be picked, but because the points are really close together,

it cannot have 0 sparsity.

leads to a single leaf. Now, suppose that at the first split of the point set (at the root of
the tree), we do not use the specific separator of the optimal tree. Instead, we use another
separator that also has zero sparsity. This choice may result in the separators at the lower
nodes having non-zero sparsity, thereby significantly worsening the approximation ratio
for our tree. This can also be seen in figure 4.5

In conclusion, we developed a data-driven model that offers worst-case guarantees.
However, it does not provide assurances about the extent to which its performance deviates

from the optimal.
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Experiment

For our experiments, we use the MNIST dataset, which is often used for AI models.
Firstly, we perform some preprocessing to ensure it is suitable for our model. Namely
we apply the Johnson-Lindenstrauss transform to reduce the number of dimensions, and
prepare the queries so that they have one near neighbor. We then build instances of
our tree, using different sample sizes to observe the model’s adaptability to the dataset.
Additionally, we compare our results with those obtained using the trivial linear search
method. For implementation details see section from the Appendix. In the following

sections we give a thorough analysis of the process.

5.1 Dataset Preparation

The MNIST dataset is a widely recognized benchmark for training and testing Al
models. The dataset consists of grayscale 28x28 images of handwritten digits, with pixel
values ranging from 0 to 255. It contains a total of 70,000 images, with 60,000 designated
for training and the remaining 10,000 for testing.

We can interpret the pixel values of each image as coordinates in a 784-dimensional
Euclidean space, R4, By doing so, each image is represented as a point, transforming
the image dataset into a point set. This allows us to apply our algorithm to the dataset
effectively. But first, we will apply the Johnson-Lindenstrauss transform (see Section
to reduce the number of dimensions, in order to decrease the runtime.

We choose m = 15 ~ log60,000 as the number of new dimensions, and we use a
transform matrix II filled with £1 values, each with a probability of 1/2. Theoretically,
this ensures with overwhelming probability that the new distances will be less than double
the original distances.

For the queries, we first determine the minimum distance between any two points in
P, denoted as dist. We then set the search radius to r = dist/2 to ensure our distribution
is sufficiently sparse for our guarantees to hold. Next, we generate query points that are
within a distance 7’ < r from a point in the point set. We create two query points for

each point in the point set, resulting in a total of 120,000 queries.

47
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Additionally, we assume that the query distribution Dg is the same as the point set
distribution. This is a fair assumption since the queries we generate are near points in the
point set. Therefore, we do not need to sample the query distribution, as P serves as a

fair representation of it.

5.2 Benchmark

Typically, a model’s performance is mainly evaluated on its query success probability,
as seen in most previous work. However, our model is different because its success prob-
ability is always 1, making it incomparable to other probabilistic models. Therefore, we
need to evaluate our model using alternative methods.

Our approach involves constructing multiple trees with varying sample sizes and then
comparing their characteristics. Given the mixed nature of the MNIST dataset, we can
select leading points as samples (for example, for a sample size of 1000, we can use the
first 1000 data points). We anticipate differences in several characteristics across these
trees, particularly in preprocessing time and query times. Specifically, we expect that the
preprocessing time will increase quadratically on the sample size, and the mean query time
of the full query set will decrease. This comprehensive comparison will help us understand
the trade-offs involved in choosing different sample sizes and guide us in optimizing our
tree construction strategy for the desired performance.

Furthermore, we will compare the performance of our data structure against that of
a simple linear search. Since linear search guarantees a success probability of 1, it serves
as an ideal benchmark for evaluating our results. This comparison will allow us to assess
the efficiency and effectiveness of our approach relative to a straightforward and reliable
method.

5.3 Results

We constructed trees using sample sizes of 1,000, 3,000, 6,000, 10,000, and 20,000 data
points. In the following subsections, we will discuss the performance of various aspects of

these trees. Additionally, we include plots to visually represent the performance times.

5.3.1 Preprocessing Times

Firstly, we discuss the preprocessing times. As we can see from figure prepro-
cessing time increases faster than linearly as the sample size increases. This was expected
as the complexity of the preprocessing time is O(n?dc log? n). The times can be seen on
the table below.

Ring Tree Preprocessing Times
Sample Size | 1,000 3,000 6,000 10,000 20,000
Time (min) | 6 33 138 366 1352
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Figure 5.1: Preprocessing times and query times for different point set sizes.

Upon examining the numbers closely, we can deduce that the preprocessing times are
actually better than the theoretical complexity suggests. This discrepancy arises because
the proven complexity accounts for the worst possible balance and the slowest separator-
finding running time. In practice, with a large number of points, it is highly unlikely to
encounter the worst-case scenario for every separator, leading to more efficient preprocess-
ing times.

We observe that with a sample size of 1,000, the preprocessing takes only a few minutes.
However, when the sample size increases to 20,000, the preprocessing time extends to
several hours, making it impractical for larger datasets. Despite this, the query search
times show converging performance across different sample sizes (as it will be demonstrated
in the next subsections), indicating that constructing the tree on a sufficiently large sample

is adequate for maintaining efficient query times.

5.3.2 Query Times

The expected query time has a complexity of O(n'~/?clogn), which reflects the ex-
pected sublinear curve observed in Figure For each tree constructed with different
point set sizes (sampled from the original point set), we only make queries corresponding
to the points within those point sets. As the size increases, the height of the tree also in-
creases, leading to longer query times. This behavior is expected because a larger number
of points results in increased query times. In the following table we see the query times

for the corresponding trees.

Ring Tree Query Times
Pointset Size || 1,000 3,000 6,000 10,000 20,000
Time (us) 4.092 5.760 6.638 7.239 8.738
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Figure 5.2: Ring Tree query times for different sample sizes and Linear Search query times

for different point set sizes.

5.3.3 Adaptability of Our Model

Building upon the trees constructed with different sample sizes from the previous
subsection, we now incorporate the remaining points into these trees. This allows us to
perform queries on the entire dataset and evaluate the performance of each tree compre-

hensively. The query times on each tree can be seen on the table on the next page.

Ring Tree Query Times
Sample Size | 1,000 3,000 6,000 10,000 20,000
Time (us) 152.220 50.145 24.955 14.758 10.050

As the sample size increases, we expect the query time to decrease rapidly. This is
because the tree structure adapts to the underlying distribution of the dataset, resulting
in a taller tree that more effectively splits the dataset into a greater number of leaves. This
is actually the case as it can be observed in Figure We can see that for small sample
sizes the difference in query times is significantly bigger, than the difference observed at

bigger ones.

5.3.4 Comparison with Linear Search

Linear search is a straightforward method that always produces correct results. How-
ever, it has the disadvantage of being slow, making it unsuitable for applications requiring
faster query times. Figure illustrates the performance of linear search across different-
sized datasets, showing a linear relationship as expected. The corresponding query times

are also presented in the following table.
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Linear Search Query Times
Pointset Size || 1,000 3,000 6,000 10,000 | 20,000 | 30,000 | 60,000
Time (us) 127.183 | 381.731 | 763.587 | 1272.08 | 2543.72 | 3817.48 | 7706.68

We observe that even the tree built with a sample size of 1,000 significantly outperforms
the linear search. The mean query time for the tree is approximately 152 microseconds,
while the linear search has a mean query time of around 7,707 microseconds - nearly two

orders of magnitude slower.

5.3.5 Final Remarks

In this subsection, we discuss two key observations from our results. Firstly, we identify
a specific sample size that serves as a sweet spot. Beyond this size, the overhead in
preprocessing time becomes excessively large, while the query time does not improve
significantly. In our case, this optimal sample size appears to be 10,000. Doubling the
sample size results in a mean query time reduction of only about 4 microseconds, while
the preprocessing time increases by more than 16 hours. This is illustrated in Figure

The second observation is the convergence of query times. As the sample size increases,
the mean query time for the full query set converges from above to a specific value.
Simultaneously, the mean query time for the sample queries converges from below to the
same value. This is intuitive, as the sample size approaches the actual dataset size, making
the query times increasingly similar. Figure [5.3b|illustrates beautifully this observation.

As it seems from the results, the mean query time that the structure would offer if it
was built on all the point set should be between 8.7us and 10.0us (the mean query times
of sample queries and all queries respectively when sample size is 10,000). Therefore, the
tree built on 10,000 points (which gives query search time around 14.8us) is sufficient for

the whole point set.
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Figure 5.3: Evaluation of sample size and convergence of query times.






Chapter 6

Conclusion and Further Research

In this thesis, we explored the NNS problem and the challenges of designing a data-
driven data structure that also provides theoretical guarantees. In this chapter, we sum-
marize our theoretical and practical results. We then discuss our work to provide a com-
prehensive overview of the challenges, key concepts, and a critical assessment. Finally, we

outline potential directions for future research.

6.1 Contributions

Our approach to bridging the gap between a data-driven structure and theoretical
guarantees involves applying our data-driven method as long as the query distribution
D¢ remains sparse relative to the point set P. However, when the distribution is no
longer sparse and guarantees cannot be ensured, we switch to the bucketing method, a
well-known technique that provides guarantees. This strategy allows our structure to stay
data-driven while maintaining theoretical guarantees.

Since our structure is fundamentally a binary tree, we needed to determine the method
for dividing the point set at each vertex. We introduced P —balanced — D¢ — sparse sepa-
rators, which are essentially ring separators designed to uphold the theoretical guarantees.
Specifically, we prove that for (a, r)-sparse query distributions (meaning that for every ball
of radius 7, the accumulated probability is at most «), there exists a ring separator (of
width 2r) that splits the point set P into two subsets, each containing at least a 1/(c+ 1)
of the original, where ¢ is the doubling constant of the space our point set resides in.
Additionally, the accumulated probability from the query distribution on the separator is
at most 2a°(1/4),

Moreover, as we strive for a data-driven approach, we aim to find the optimal separator
from among all those that meet the aforementioned guarantees. As this is an optimization
problem and not any known efficient algorithmic paradigms seem applicable, we propose
a heuristic algorithm inspired by local search which runs in O(n?dlogn) time, where n is
the size of the point set P and d is the number of dimensions.

By incorporating these separators on our structure, we are able to provide guarantees

93



54 Chapter 6. Conclusion and Further Research

that are competitive to other solutions for low-dimensional NNS instances. Specifically, we
show an O(n'~'/4clogn) expected query time, O(n) space complexity, and O(n?dclog? n)
preprocessing time. These results pertain to the purely data-driven model when the query
distribution satisfies the sparsity property. The hybrid structure, which also incorporates
bucketing, requires slightly more space.

In our experiments with the MNIST dataset, we applied preprocessing steps and built
multiple tree instances with varying sample sizes to evaluate the model’s adaptability.
Our findings revealed that preprocessing time increased faster than linearly with sample
size, due to its inherent complexity, while query time showed sublinear growth relative to
the point set size. By integrating the remaining points into the trees constructed with
different sample sizes, we assessed their performance on the entire dataset. The results
indicated that query times decreased rapidly with increasing sample sizes, demonstrating
efficient tree adaptation.

We identified a sample size of around 10,000 as the optimal balance. Beyond this,
preprocessing time became excessively large with only marginal improvements in query
time. For instance, doubling the sample size from 10,000 resulted in a mean query time
reduction of just 4 microseconds, while preprocessing time increased by over 16 hours. As
sample size increased, the mean query time for the full query set and the sample queries
converged to the same value. Our results suggest that a tree built on 10,000 points is
sufficient to achieve efficient query performance for the entire dataset, with the mean

query time likely falling between 8.7 and 10.0 microseconds.

6.2 Discussion

In this section, we discuss key aspects of our work that are important for understanding
our model. These points highlight the model’s strengths and vulnerabilities, helping the
reader determine its suitability for specific applications.

To start, we address that the model is best suited for low-dimensional spaces. The

1-1/d

expected query time, O(n clogn), is sublinear; however, as the number of dimensions

1-1/d ypproaches n. Additionally, an exponential factor is hidden

increases, the factor n
in ¢, the doubling constant, which is ¢ < 29(4), These are worst-case guarantees, and the
model will be faster in practice, particularly if the balance is good (directly affecting the
tree height h = clogn, and thus the query time O(n'~1/?. h)). Nonetheless, this is still
insufficient to ensure the model’s efficiency in high-dimensional spaces.

Additionally, to achieve this query time, the query distribution Dg is considered to
be (1/n,r)-sparse. To visualize this, imagine that the point set and the queries follow
the same distribution, making the point set a good sample of the distribution. (1/n,r)-
sparsity means that in every ball of radius r, there is at most one point, and therefore
all points are at least 2r apart. This is a very strong assumption. However, our heuristic
algorithm does not directly rely on the sparsity of the distribution and can still find an

efficient separator even if the distribution is not (1/n,r)-sparse.
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Regarding the heuristic algorithm, it has a time complexity of O(n2dlogn), which,
while polynomial, is still impractical for large datasets. For example, a point set with a
million points in a 10-dimensional space would result in approximately 2 - 1014 operations
in the worst case, requiring even powerful computers several days to complete - and this
is only for the root vertex. However, as the size of the subsets decreases, the running time
will also decrease significantly. To mitigate this, we take a sample from the point set and
find the separator on that sample. According to theory, this approach will yield a good

approximation of an optimal separator, improving as the sample size increases.

On the other hand, our model exemplifies a hybrid structure by integrating two distinct
methods: the data-driven approach we designed and bucketing. The key advantage is the
ability to switch between these techniques, allowing us to harness the strengths of both
without incurring any penalties. This flexibility provides numerous options and enables

the creation of various variations by modifying one or both techniques.

Another significant aspect of our data-driven structure, setting it apart from other
existing solutions, is its guaranteed query success rate of 1. This means that if a query
has a near neighbor (or an approximate near neighbor), our search will definitely find
it. However, this comes at the cost of increased query time. Additionally, our data-
driven structure (the binary tree without bucketing) is constructed independently of the
approximation factor (1 4 €). This allows us to dynamically perform exact near neighbor
searches or approximation queries with different ¢ values. Despite this flexibility, the
running time remains the same, which may lead some users to prefer sticking to exact

near neighbor queries.

Regarding the experiments, we must consider whether our test conditions represented
an ideal point set and queries. For more challenging point sets and varying search radii,
the results could differ significantly. Despite this, our findings demonstrate that our model

offers a competitive solution, performing exceptionally well on appropriate point sets.

Additionally, we demonstrated that for this dataset, consisting of 60,000 points, it was
sufficient to build a tree using just one sixth of the data. For larger datasets, ranging
from hundreds of thousands to millions of points, the appropriate sample size required
to accurately capture the dataset’s structure and maintain practical preprocessing times
remains uncertain. For instance, with our current dataset, preprocessing a sample size of
10,000 took approximately 6 hours, while increasing the sample size to 20,000 and 30,000

extended preprocessing times to around 22 hours and 43 hours, respectively.

Lastly, we reflect on the fairness of comparing our model’s results with those of linear
search, as the latter is inherently slower. It might be more appropriate to compare our
preprocessing and query times with probabilistic models, even though we are likely to
be slower. Our goal would be to achieve comparable times without significantly lagging
behind. Despite this consideration, the substantial performance difference still reassures

us that our model is both effective and competitive.
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6.3 Further Research

There are many opportunities for improvement and further exploration. First, effi-
ciently extending the model to higher dimensions remains an open challenge. One ap-
proach could be to retain the tree structure but modify the separators, such as using
hyperplanes. Additionally, research could explore adapting Andoni’s method [1] from
Hamming space to Euclidean space. Andoni suggests that this adaptation is feasible if the
number of hash functions (or separators, in our case) is limited to poly(d). An interesting
direction for future work would be to identify the most suitable separators, given that our
discretization method provides a significantly larger number of potential separators

Another area for consideration is developing a different method to address the non-
sparse regions of distributions. This technique could leverage the density of the distribution
to achieve better results. By replacing the bucketing method in our model with this
new technique, we could create a fully data-driven model that still maintains theoretical
guarantees.

Finally, exploring alternative methods for discretizing the separator space or devising
a completely different approach for finding the optimal separator could be valuable. This
might involve developing a better heuristic or even finding an exact solution. If these
options are not feasible, proving the hardness of the problem would also be a significant

contribution.
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Appendix

A.1 Insights on Sparse Distributions

In our analysis of separators, we utilize («, r)-sparse query distributions. A key prop-
erty derived from these distributions is expressed in Equation[4.1] Here, we present a more
careful analysis on how this property is derived and provide insights into the underlying

intuition. We start with the inequality:

ao<$> < C@(log(%))a

By the definition of O and ©, we get:

I\ pueRT: ase < MO8() g = g —nloge
Then, by doing some manipulation we end up with:

1 (1
7‘/ < a#lOgC log ¢

The only thing left to get the desirable result is to show that <1 — 102(3) = O(1), which

is equivalent to 1026 < O(1). But since 102 -=0 (@), we are done. Thus, we proved
that for («,r’)-sparse distributions:
r < a@(l/logc)

In conclusion, this type of distribution sparsity directly provides a bound on the search
radius. Furthermore, if the bound for v’ is not applicable, we can confidently assert that

the distribution is not sparse:

P> oP0/lge) — Dg is NOT (o, r')-sparse

A.2 Finding Separators Defined by Points

In this section we show how to compute a separator o(o,7,) in R? defined by d + 1
points, distributed on 3 radii: rg, rs +r and rs + 2r. Let p1,pa,...,p4+1 be the points

that define the separator o(o,rs), and for each point p; its coordinates p},p?, . ,p;-i. In
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addition, we define the variables ¢;, one for each p;, and set them according to which radii
their corresponding point is on: 0 if it is on rg, 1 if it is on 5 + 7, 2 if it is on r5 + 2. By

the definition of the sphere:

d

Vpi, Y (] =) = (rs + eir)?

j=1
W.l.o.g. we assume that ¢; = 0. If not, then we find a point p; that has ¢; = 0, and we
swap them with the first one. In case there is no point on the inner radius rs, we find a
point p; that is on the smallest radius, we swap it with the first, set the new r, = rgs+¢;r,
and update all ¢; accordingly. Then by expanding the quadratic terms in each equation,
subtracting the equation of the first point from the rest, and doing a little manipulation,

we are lead to the following system of linear equations for the centre o:

M-o=1I1 + 1y - rg

where
(pt—p3)  I-93) ... (1Y o'
(pi—p8)  i—-93) ... (@{—p9 0?
M - . . . O - .
(pt —pi) W —p3) - () —p9.) o?
; . .
Aar? + D ie1 ((pﬁ)Q — (pé)z) car
i . :
1] &2+ >0, () — (95)?) car
I, = = M= |

it + S ((2})?(h41)?) Cd+1T
This system has a unique solution if the determinant |M| is not equal to 0. By solving
the systems M -« = II; and M - 8 = I, we can get that o = a+ - rs. We can use again
the equation of the first point to get:

d

S (0 —al - pir)’ =02

=1

which is actually just a quadratic equation:
dyr? + dors +d3 =0

where

d d
dy = [Z(ﬂi)Q - 1] , do=—2 [Z(xg - ai)ﬁi] . dy= [

i=1 i=1

d
1=

; i\ 2
-]
1
The inner radius 75 of the separator will be the bigger out of the two solutions. By
substituting rs back to the equation of the center o = o+ 3 - 75, we compute the center.

Now the separator o(o,r;) is fully defined.
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A.3 Implementation Details

Our code is available on GitHub (https://github.com/ntua-el19709/ring_tree). The
experiments were implemented in C++ and compiled using g++. For efficient matrix and
vector computations, we used the Eigen library for C++ ([52]). The experiments were
conducted on an AMD Ryzen Threadripper 3960X 24-Core Processor CPU @ 4.5 GHz,
running without parallelization. Detailed running times can be found in the results section

of the experiment.


https://github.com/ntua-el19709/ring_tree
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