
 

National Technical University of Athens 

School of Mechanical Engineering 

 

 

 
 

 

 

 

Development of a voice command recognition 

model based on artificial neural networks. 

 

 
Diploma Thesis 

 

Anna Maria Iatridi 
 

 

 

 

 

 

 

 

 

 

Supervisor Professor Panorios Benardos 

 

 

 

 

Athens 2024  



Abstract 
 

In this thesis was studied the development of a voice recognition model based on artificial 

neural networks for industrial applications. More specifically, the case study is the robotic arm 

Staubli RX 90L located at the Manufacturing Technology laboratory, in National Technical 

University of Athens. The neural network is designed to recognize single-word commands and 

translate them into written text, for manipulation of the robotic arm. The development of the 

robot interface is outside of the thesis-scope, but the aim is the model to be able to collaborate 

with Staubli RX 90L in the future and therefore the commands used are relevant to the robot’s 

action. 

In the first step of the process, the vocabulary for recognition is decided based on the V+ 

language commands the robot understands. To achieve that, the foundation was to study V+ 

language and its most important and basic keywords and commands. For the audio dataset, a 

part of Google’s Speech Commands Dataset was used. This dataset contains single-word 

commands from a representative sample of human. The relevant commands are the digits from 

0 to 9 and short words, like “on”, “off”, “stop” among others. 

The pre-processing of the signals is done to be able to extract the characteristic features to 

identify the spoken word. The pre-processing, is used to remove background noise form the 

data and balance the frequency spectrum. The correct pre-processing is the one resembling 

human’s hearing ability. Pre-emphasis, windowing and Fast Fourier transform, are few of the 

key parameters for speech recognition. 

The feature extraction phase is the most vital for successful recognition. The Mel-

Frequency Cepstral Coefficients (MFCCs) method is used to “normalize” the frequencies to the 

scale that the human ear perceives them. The 12 MFCCs are characteristic of the input signal 

and include the most important information. The coefficients are used to classify the unknown 

recording to one of the known classes. 

For the classification, a pattern recognition, artificial neural network (ANN) is used. To 

select the most suitable model, the ANN parameters have been investigated, architecture, 

training function etc. The final network structure is 600x450 neurons in hidden layer one and 

two respectively. The final model recognizes in total 18 spoken commands with accuracy 82%. 

There are still improvements to be done, but the main goals of the thesis have been achieved 

and the results show that with the proper optimization ANNs are a competitive and relatively 

simple method for voice commands recognition. 

  



Περίληψη 
 

Στην παρούσα εργασία μελετάται η ανάπτυξη μοντέλου αναγνώρισης φωνητικών εντολών 

με χρήση τεχνητών νευρωνικών δικτύων, για βιομηχανικές εφαρμογές. Η βιομηχανική 

εφαρμογή είναι ο ρομποτικός βραχίονας Staubli RX 90L που βρίσκεται στο εργαστήριο του 

Τομέα Κατεργασιών στο Εθνικό Μετσόβιο Πολυτεχνείο. Το νευρωνικό δίκτυο σχεδιάστηκε για 

να αναγνωρίζει μονολεκτικές φωνητικές εντολές και να τις μετατρέπει σε γραπτό κείμενο, με 

σκοπό τον προγραμματισμό του ρομπότ. Η ανάπτυξη του μοντέλου διεπαφής υπολογιστή-

ρομπότ είναι εκτός του φάσματος της εργασίας, όμως η προοπτική συνεργασίας του μοντέλου 

με το ρομπότ καθορίζει σε μεγάλο βαθμό τις προδιαγραφές του ίδιου του μοντέλου. 

Το πρώτο στάδιο της εργασίας είναι ο καθορισμός του λεξιλογίου προς αναγνώριση, 

βασισμένο στις εντολές της προγραμματιατικής γλώσσας V+, την οποία καταλαβαίνει το 

ρομπότ. Η γλώσσα V+ αναπτύχθηκε από την εταιρεία Adept Technologies και σχεδιαστικές 

κατά κύριο λόγο για βιομηχανικές εφαρμογές ρομποτικών συστημάτων. Είναι κατάλληλη για 

τον έλεγχο ρομπότ κίνησης, για συστήματα βιομηχανικής όρασης και για διεργασίες εισόδου-

εξόδου. Όσον αφορά την εκμάθηση, είναι μία πολύ εύκολη γλώσσα, με γρήγορο self-

compilation και αποδοτική χρήση μνήμης. Κύριο χαρακτηριστικό της είναι η ευστάθεια, που 

την καθιστά ιδανική για την διαχείριση απαιτητικών ρομποτικών ενεργειών. Η V+ είναι 

απαραίτητη σε κατασκευαστικές βιομηχανίες και αυτοκινητοβιομηχανίες και προσφέρει 

δυνατότητες μοντέρνων γλωσσών προγραμματισμού. 

Το λεξιλόγιο της εφαρμογής καθορίζεται από τις εντολές της V+ και από την 

διαθεσιμότητα εντολών από το Google’s Speech Commands Dataset. Η βιβλιοθήκη εντολών, 

περιέχει διάφορες εντολές στην αγγλική γλώσσα, όπως τα αριθμητικά ψηφία από το μηδέν 

μέχρι το εννιά και άλλες μικρές και απλές λέξεις, όπως “on”, “off”, “stop” κ.α. Το λεξιλόγιο 

που χρησιμοποιήθηκε στην εργασία συμπεριλαμβάνεται στον παρακάτω πίνακα. 

 
Table 1 – Λεξιλόγια εργασίας 

Reference Number Command Function 

0 “Zero” Αριθμητική τιμή. 

1 “One” Αριθμητική τιμή. 

2 “Two” Αριθμητική τιμή. 

3 “Three” Αριθμητική τιμή. 

4 “Four” Αριθμητική τιμή. 

5 “Five” Αριθμητική τιμή. 

6 “Six” Αριθμητική τιμή. 

7 “Seven” Αριθμητική τιμή. 

8 “Eight” Αριθμητική τιμή. 

9 “Nine” Αριθμητική τιμή. 

10 “Up” Άμεσο άνοιγμα αρπάγης. 

11 “Down” Άμεσο κλείσιμο αρπάγης. 

12 “Left” Αρνητικό πρόσημο. 

13 “Right” Θετικό πρόσημο. 

14 “Stop” Ακύρωση τρέχουσας διεργασίας. 

15 “On” Αρχή προγράμματος. 

16 “Off” Τέλος προγράμματος. 

17 “Go” Παύση τρέχουσας διεργασίας. 

 

 



Για να γίνει η αναγνώριση των εντολών είναι απαραίτητη η σωστή προεπεξεργασία των 

ηχητικών σημάτων και η εξαγωγή των χαρακτηριστικών μαθηματικών παραμέτρων, των 

οποίων ο συνδυασμός οδηγεί στην αναγνώριση της εντολής. Η προετοιμασία του σήματος, 

πριν την αναγνώριση, προσομοιώνει το τρόπο πρόσληψης και ανάλυσης των ηχητικών 

σημάτων του ανθρώπινου εγκεφάλου. Η προεπεξεργασία περιέχει πρώτον και κύριον το στάδιο 

της αποθορυβοποίησης, όπου χρησιμοποιούνται φίλτρα pre-emphasis για να καθαρίσουν το 

σήματα από περιττή και άχρηστη πληροφορία. Το φίλτρο αυτό αποτελεί μία μαθηματική 

συνάρτηση υπολογισμού της διαφοράς διαδοχικών σημείων του σήματος με έναν συντελεστή. 

Η συνάρτηση αυτή μειώνει την συνολική ένταση των σημάτων, λειτουργώντας σαν ένα είδος 

κανονικοποίησης. Με αυτόν τον τρόπο τα σήματα έχουν περισσότερη ομοιογένεια. 

Την αποθορυβοποίηση διαδέχεται ο διαχωρισμός του σήματος σε επιμέρους τμήματα, πριν 

το στάδιο υπολογισμού του φάσματος. Ο λόγος για τον κατακερματισμό του σήματος είναι ότι 

ο υπολογισμός του φάσματος συχνοτήτων στο σύνολο του σήματος χάνει πληροφορία για την 

χρονική εξάρτηση της συχνότητας. Αντίθετα ο υπολογισμός του φάσματος σε μικρότερα 

τμήματα του σήματος, διασφαλίζει την χρονική εξάρτηση της συχνότητας, ως πληροφορία που 

θα συμβάλλει στην αναγνώριση των εντολών. Η διάσπαση του σήματος σε μικρότερα 

δημιουργεί ασυνέχειες, οι οποίες οδηγούν σε διαρροές φάσματος. Η διαρροή φάσματος είναι 

όταν εμφανίζονται συχνότητες, καθ όλο το εύρος, οι οποίες δεν αντιστοιχούν σε πραγματική 

πληροφορία, αλλά σε ασυνέχειες. Η απαλοιφή των ασυνεχειών έρχεται σε σύγκρουση με την 

διακριτότητα του σήματος. Η συνάρτηση Hamming window, εξασφαλίζει απουσία διαρροών 

και ταυτόχρονα καλή διακριτότητα. Τώρα το σήμα είναι έτοιμο για την εφαρμογή του 

διακριτού μετασχηματισμού Fourier (DFT). 

Η εξαγωγή των φασματικών συντελεστών της κλίματας Mel (MFCCs), αποτελεί το πιο 

καίριο βήμα για την αναγνώριση εντολών. Αρχικά, το σήμα μετασχηματίζεται από την κλίμακα 

συχνοτήτων στην κλίμακα των Mel. Η κλίμακα Mel είναι μια αντιληπτική κλίμακα συχνοτήτων 

με ισαπέχοντα διαστήματα συχνοτήτων που αντιλαμβάνονται ως ισαπέχουσες απ’ το 

ανθρώπινο αυτί. Ο άνθρωπος δεν έχει την ίδια ευαισθησία σε όλες τις συχνότητες¨στις χαμηλές 

μπορεί και αναγνωρίζει πολύ εύκολα ακόμα και πολύ μικρές μεταβολές, ενώ στις υψηλότερες 

η αντιληπτικοτητα του μειώνεται καιτ διαφορετικές συχνότητες τις αντιλαμβάνεται ως ίδιες ή 

παρεμφερείς. Για κάθε ένα από τα τμήματα, υπολογίζονται οι 12 φασματικοί συντελεστές. Οι 

φασματικοί συντελεστές λειτουργούν ως ταυτότητα των διαφορετικών φωνημάτων και 

καθιστούν δυνατή την διαφοροποίηση των ηχητικών λέξεων. Αυτοί αποτελούν την είσοδο του 

νευρωνικού δικτύου, για την κατηγοριοποίηση άγνωστων εντολές, σε γνωστές κλάσεις. 

Για την αναγνώριση των φωνητικών εντολών, γίνεται χρήση τεχνητών νευρωνικών 

δικτύων αναγνώρισης μοτίβων. Η επιλογή κατάλληλου μοντέλου μηχανικής μάθησης είναι 

καίρια για την επιτυχημένη αναγνώριση των εντολών. Κατά την εκπόνηση της διπλωματικής 

δόθηκε μεγάλη έμφαση στην εύρεσης της βέλτιστης αρχιτεκτονικής νευρωνικού δικτύου, προς 

την επίτευξη της μέγιστης απόδοσης. Το τελικό νευρωνικό δίκτυο επιλέχθηκε με 600 

κρυμμένους νευρώνες στο πρώτο επίπεδο και 450 στο δεύτερο. Η σύγκριση πολυπλοκοτερο 

αρχιτεκτονικών δεν κρίθηκε απαραίτητη, λλά θα αποτελούσε ενδιαφέρουσα διερεύνηση. Το 

τελικό μοντέλο αναγνωρίζει 18 φωνητικές εντολές με ακρίβεια 80%, υπό προϋποθέσεις. Η 

μέγιστη ακρίβεια εμφανίζεται όταν οι άγνωστες, προ αναγνώριση, λέξεις ανήκουν στο σύνολο 

Google’s Speech Commands Dataset. Οι εντολές που δίνονται από ανεξάρτητους ομιλητές 

αναγνωρίζεται με ακρίβεια κοντα στο 60%. Αυτό δείχνει σημάδια υπερ-εκπαίδευσης και 

αδυναμία γενίκευσης προβλέψεων. 

Σε κάθε περίπτωση, η χρήση τεχνητών νευρωνικών δικτύων θεωρείται ανταγωνιστική 

μέθοδος στο κομμάτι της αναγνώρισης εντολών και με μικρές διορθώσεις μπορεί να φτάσει 

καλύτερες επιδόσεις.  



Acknowledgements 
 

First of all, I would like to express my gratitude to my supervisor assistant professor 

Panorios Benardos, for the great collaboration we have and for trusting me with this interesting 

topic, which gave me the opportunity to deepen my knowledge in machine learning and 

improve my engineering mindset. His guidance and patience were vital throughout the whole 

project. 

I would also like to thank my friends and colleagues in university, Christos, Stathis and 

Anastasia for their continuous support and love since day one. Of course, a big thanks to “my 

partners in crime”, my teammates Stefania and Kostis, who made the university projects a good 

learning and a fun process. I am grateful to have shared this journey with you! 

Last but not least, I want to thank my parents and sister, for their unconditional love and 

for always pushing me beyond my limits and supporting my dreams. 

 

Anna Maria Iatridi 

Athens, July 2024 

 

  



Ευχαριστίες 
 

Αρχικά, θα ήθελα να ευχαριστήσω ιδιαίτερα τον επιβλέποντα επίκουρο καθηγητή Πανώριο 

Μπενάρδο για την εξαιρετική συνεργασία μας και που μου εμπιστεύτηκε ένα τόσο ενδιαφέρον 

θέμα, που υπήρξε η αφορμή να εμβαθύνω τις γνώσεις μου στο πεδίο της μηχανικής μάθησης 

και να βελτιώσω τον τρόπο σκέψης μου ως μηχανικός. Η καθοδήγηση και η υπομονή του 

υπήρξαν καθοριστικές, καθ’ όλη την διάρκεια της εργασίας. 

Θα ήθελα επίσης να ευχαριστήσω τους φίλους και συμφοιτητές μου Χρήστο, Στάθη και 

Αναστασία για την συνεχόμενη στήριξη και αγάπη τους απ’ την πρώτη μέρα. Φυσικά, δεν θα 

μπορούσα να παραλείψω τους «συνεργούς μου στο έγκλημα» Κωστή και Στεφανία που έκαναν 

τις εργασίες της σχολής παραγωγικές και ευχάριστες. Είμαι ευγνώμων που μοιραστήκαμε μαζί 

αυτό το ταξίδι. 

Τέλος, ένα τεράστιο ευχαριστώ στους γονείς και την αδερφή μου για την ανιδιοτελή αγάπη 

τους και που πάντα με σπρώχνουν πέρα απ’ τα όριά μου και στηρίζουν τα όνειρά μου. 

 

Άννα Μαρία Ιατρίδη 

Αθήνα, Ιούλιος 2024 

 

  



Table of Contents 
 

Abstract ..................................................................................................................................... 2 

Περίληψη ................................................................................................................................... 3 

Acknowledgements ................................................................................................................... 5 

Ευχαριστίες ................................................................................................................................ 6 

Table of Contents ....................................................................................................................... 7 

List of Figures ........................................................................................................................... 9 

List of Tables ........................................................................................................................... 10 

1. Introduction ..................................................................................................................... 11 

1.1. Thesis Scope ............................................................................................................ 11 

1.2. Main Challenges ...................................................................................................... 12 

2. Literature Review ............................................................................................................ 13 

2.1. Machine Learning .................................................................................................... 13 

2.1.1. Introduction ..................................................................................................... 13 

2.1.2. History ............................................................................................................. 13 

2.1.3. Classification models ....................................................................................... 15 

2.2. Speech recognition .................................................................................................. 17 

2.2.1. Introduction ..................................................................................................... 17 

2.2.2. History ............................................................................................................. 17 

2.3. Acoustics ................................................................................................................. 18 

3. Industrial robotic arms ..................................................................................................... 21 

3.1. Staubli RX 90L ........................................................................................................ 23 

3.2. V+ Language for industrial robot applications ......................................................... 26 

3.2.1. Robot Speed..................................................................................................... 26 

3.2.2. Basic Motion Operations ................................................................................. 27 

3.2.3. End-effector operations ................................................................................... 27 

4. Methodology Speech Recognition .................................................................................. 28 

4.1. Training Process ...................................................................................................... 29 

4.1.1. Vocabulary definition and recording ............................................................... 29 

4.1.2. Pre-processing ................................................................................................. 31 

4.1.3. Feature extraction ............................................................................................ 35 

4.1.4. Classification ................................................................................................... 37 

4.2. Testing process ........................................................................................................ 42 

4.2.1. Speech Processing ........................................................................................... 42 

4.2.2. Command Prediction ....................................................................................... 42 



5. Results and analysis ......................................................................................................... 43 

5.1. Training process ...................................................................................................... 43 

5.1.1. Vocabulary definition and recording ............................................................... 43 

5.1.2. Pre-processing ................................................................................................. 46 

5.1.3. Feature extraction ............................................................................................ 54 

5.1.4. Classification ................................................................................................... 57 

6. Conclusions ..................................................................................................................... 66 

7.2. Additional Studies ................................................................................................... 68 

8. Bibliography .................................................................................................................... 69 

9. Appendix - Scripts ........................................................................................................... 71 

9.1. Python Script – Signal Processing ........................................................................... 71 

9.2. MATLAB Script – ANN Training ........................................................................... 73 

9.3. MATLAB Scripts – Real time classification ........................................................... 75 

 

  



List of Figures 
 

Figure 1 – Thesis flow chart .................................................................................................... 11 

Figure 2– Artificial intelligence, machine learning and deep learning .................................... 13 

Figure 3– The history of machine learning ............................................................................. 14 

Figure 4– Modified National Institute of Standards and Technology (MNIST) database [9] . 15 

Figure 5– Speech recognition journey ..................................................................................... 18 

Figure 6– Absolute threshold of hearing (ATH) ...................................................................... 19 

Figure 7– Auditory masking .................................................................................................... 19 

Figure 8– Threshold in quiet and masked threshold ................................................................ 20 

Figure 9 – Industrial robotic arm types [15] ............................................................................ 21 

Figure 10 – Staubli RX 90L .................................................................................................... 23 

Figure 11 – Staubli RX 90L drawings ..................................................................................... 24 

Figure 12 – Staubli RX 90L work envelop .............................................................................. 25 

Figure 13– Speech recognition methodology [21] .................................................................. 28 

Figure 14– Application workflow ........................................................................................... 28 

Figure 15– Robot command workflow .................................................................................... 29 

Figure 16– Vocabulary transform ............................................................................................ 30 

Figure 17 – Speech recognition methodology ......................................................................... 32 

Figure 18 – Stopband attenuation ............................................................................................ 33 

Figure 19 – Different window functions in time domain ........................................................ 34 

Figure 20 – Different window functions in frequency domain ............................................... 35 

Figure 21 –Mel- and Hertz-scale relation [17] ........................................................................ 36 

Figure 22 –MFCCs pipeline [26] ............................................................................................ 37 

Figure 23 – Artificial Neural Network Architecture ................................................................ 38 

Figure 24 – k-fold Cross Validation Visualization .................................................................. 39 

Figure 25 – Variety of recording in the dataset ....................................................................... 46 

Figure 26 – Dataset table with original signals [42277x16001] .............................................. 47 

Figure 27 – Dataset table after pre-emphasis [42277x16001] ................................................. 47 

Figure 28 – Pre-emphasis filter ............................................................................................... 48 

Figure 29 – Pre-emphasis filter effect ..................................................................................... 48 

Figure 30 – Pad signal dataset ................................................................................................. 50 

Figure 31 – Framed dataset ..................................................................................................... 50 

Figure 32 – Framed signal examples ....................................................................................... 50 

Figure 33 – Window function on original and emphasized signal .......................................... 51 

Figure 34 – Window functions ................................................................................................ 52 

Figure 35 – Window functions ................................................................................................ 52 

Figure 36 – Frequency Spectrum “one” .................................................................................. 53 

Figure 37 – Frequency Spectrum “seven” ............................................................................... 53 

Figure 38 –MFCCs pipeline [26] ............................................................................................ 54 

Figure 39 – Mel-frequency Spectrum “one” ........................................................................... 54 

Figure 40 – Mel-frequency Spectrum “eight” ......................................................................... 55 

Figure 41 – From Frequency to Mel Spectrum “six” .............................................................. 55 

Figure 42 –MFCC – Cepstrum “one” ...................................................................................... 56 

Figure 43 –MFCC – Cepstrum “six” ....................................................................................... 56 

Figure 44 –Test Accuracy for different sizes of hidden layer #1 ............................................. 61 

Figure 45 – Test Accuracy for different sizes of hidden layer #2 ............................................ 61 

file:///C:/Rep_AnnaMaria/Industrial%20robot%20programming%20through%20voice%20commands/Ιατρίδη%20Άννα%20Μαρία%20-%20Διπλωματική_24_Τελικό.docx%23_Toc172357974


Figure 46 – Confusion matrix k-fold1 – 600x450 ................................................................... 62 

Figure 47 – Confusion matrix k-fold2 – 600x450 ................................................................... 62 

Figure 48 – Confusion matrix k-fold3 – 600x450 ................................................................... 63 

Figure 49 – Confusion matrix k-fold1 – 500x200 ................................................................... 64 

Figure 50 – Confusion matrix k-fold2 – 500x200 ................................................................... 64 

Figure 51 – Confusion matrix k-fold3 – 500x200 ................................................................... 65 

 

List of Tables 
 

Table 1 – Λεξιλόγια εργασίας.................................................................................................... 3 

Table 2 – Classification vs. regression problems .................................................................... 16 

Table 3 – Staubli RX 90L specifications ................................................................................. 23 

Table 4 – Staubli RX 90L work envelop ................................................................................. 24 

Table 5 – Staubli RX 90L amplitude, speed and resolution .................................................... 24 

Table 6 – Motion Control Operations [19] .............................................................................. 26 

Table 7 – Keywords for Basic Motion Operations .................................................................. 27 

Table 8 – Keywords for End-effector Operations .................................................................... 27 

Table 9 – Confusion Matrix for Binary Classification ............................................................ 41 

Table 10 – Recording parameters ............................................................................................ 43 

Table 11 – Final Vocabulary .................................................................................................... 44 

Table 12 –Vocabulary from Speech Commands Dataset ......................................................... 45 

Table 13 – Initial ANN characteristics .................................................................................... 58 

Table 14 – Speech recognition models – Only Digits ............................................................. 58 

Table 15 – Speech recognition models – Only Digits ............................................................. 58 

Table 16 – Speech recognition models – 17 Commands ......................................................... 59 

Table 17 – Speech recognition models – Final Dataset ........................................................... 59 

Table 18:ANN accuracy investigation – part 1 ....................................................................... 59 

Table 19:ANN accuracy investigation – part 2 ....................................................................... 60 

Table 20 – Test Accuracy 600x450 .......................................................................................... 62 

Table 21 – Test Accuracy 500x200 .......................................................................................... 64 

 

 

  



1. Introduction 
 

1.1. Thesis Scope 
 

In this thesis was studied the development of a voice recognition model based on artificial 

neural networks for industrial applications. The study focuses on the implementation of 

machine learning techniques for single-word speech recognition. The commands were chosen 

for an industrial robotic arm application, as the aim is that the model can be used to manipulate 

the robot to perform basic tasks, like approach an object, grab it in with the end-effector etc. 

The case study robot is Staubli RX 90L, an articulated robotic arm with six degrees of freedom 

(DoF), located at the Manufacturing Technology laboratory in National Technical University 

of Athens (NTUA). These robots are usually used for welding, surfacing and pick-and-place 

tasks in many industrial applications. The thesis workflow is described in the picture below. 

 

 
Figure 1 – Thesis flow chart 

 

The role of the voice recognition object is to translate spoken words into written text. The 

system’s input is the audio signal, recorded in real time by the user, and the system’s output the 

corresponding command. The voice commands are recorded with ordinary microphone (phone, 

computer), so no special equipment is required, and then processed through filters and functions 

to extract the Mel Frequency Cepstral Coefficients (MFCCs). MFCCs contain the most 

important information of the audio signal, and are used as input for an Artificial Neural Network 

(ANN), which will correlate the recordings with the corresponding commands. 

Briefly the methodology is: 

• Signal pre-processing: 

 Noise removal and frequency balancing 

 Signal segmentation into frames 

 Power spectrum calculation 

• Feature extraction: 

 MFCCs calculation 

• Classification: 

 Optimization of a pattern recognition ANN 

 

The acceptance criteria the development of a model with accuracy higher than 80%. 

Nowadays, the state-of-the-art speech recognition models can reach errors of 5%-10%. A 

custom model of 80% performance is a good starting point, which has still some areas of 

improvement and finetuning. 

 

  



1.2. Main Challenges 
 

During the development of the model there are many things to take into account that require 

a lot of attention. The key, for the system to work successfully, is the correct pre-processing of 

audio signals. It is important to identify and isolate the information of the voice command that 

is distinctive for this specific command, so the recognition is possible and effective. If the signal 

contains unnecessary sounds and noise or is missing specific characteristics, the accuracy of 

the machine learning model is limited. It is crucial to find which parameters are distinguishing 

the words from one another and find the mathematical portions to describe them. Only with 

right processing the investigation and development of the machine learning model is valid. It 

should be considered, also, that an audio signal contains a lot of information, for example 

regarding the speaker’s identity, the intensity of the voice, potential sentiment condition and the 

sound of the phoneme. In this application, the object of interest is the word that is pronounced 

and not any other details. Therefore, the result must be insensitive to other characteristics and 

disregard this extra information. It’s good to mention, that humans have the ability to 

understand and analyze many different characteristics when listening to others, when AI can 

generally perform one task at a time. 

A challenge of speech recognition, is the variety and non-uniformity of human a speech 

and thus of the recordings. People speak in different speeds, with different accents and voice 

characteristics. These variations require a large representative dataset, so the model will be able 

to identify the word, regardless of ither factors. In single-word voice recognition, where the 

word is pronounced within a pre-defined time frame, the audio signals can vary a lot. The word 

can be placed differently in that time framed and occupy smaller or bigger part of the total 

duration, depending on the speech speed and the moment the user starts speaking. When the 

signal is divided into frames the complexity intensifies, since the corresponding frames deviate 

a lot from one another in different examples. The network should be trained to recognize 

patterns between and within the frames to reach to the right conclusion. 

For a prediction model to work effectively, except the suitable method, it is crucial to have 

a good dataset. Good dataset consists mainly of two things: representative observations and 

sufficient amount of data. The requirement for representative observations, is obvious 

considering all the above. A poor dataset would make the final predictions very sensitive to 

details and would lose the ability for generalization. The amount of data needed, depends on 

the problem’s nature and the number of inputs. Speech recognition is a very complex problem 

and the distinction between different words relies on the speech details. Additionally, the 

network’s inputs are many, considering that, for each observation, 12 MFCCs are extracted per 

frame. It is important to secure a good dataset for the smooth and efficient operations of the 

system. 

 

  



2. Literature Review 
 

2.1. Machine Learning 
 

2.1.1. Introduction 

 

Artificial Intelligence (AI) is the ability of computers 

and machines to simulate human capabilities and 

intelligence to solve problems and perform task [1]. 

Machine Learning (ML) is the implementation of AI-

driven techniques into applications, to imitate how 

humans learn from data and produce more data. ML is 

only a part of the big spectrum that is called AI. A subset 

of ML is Deep Learning (DL). DL is the application of 

ML techniques with higher complexity used to extract 

progressively higher-level features. 

 

It’s a very common mistake to confuse the concept of these three terms, so it’s very 

important to distinguish them properly. AI is a wider term that refers to projects of developing 

systems reinforced with human intellectual abilities. Machine learning and deep learning are 

subcategories of artificial intelligence and are distinguished based on the learning method. Both 

algorithms use neural networks as a learning technique from the data set [2]. The main 

difference relies on the type of network and the training process. Neural networks consist of 

interconnected nodes that transfer information similarly to biological neurons. The artificial 

neurons are split in different layers, the input layer, the hidden layers and the output layer. Each 

neuron is connected to others and has its own threshold and weight. The threshold controls 

whether a neuron is activated or not, if it’s activated it passes the data to the next level, if not 

no data are transferring forward. In all cases the networks are trained to predict what the data 

represents. 

 Typical machine learning techniques are limited to supervised learning, meaning that 

human expertise is necessary to categorize the data and assign labels. Deep learning procedure 

is based on unsupervised training, so the objects extract features from large scale unlabeled data 

[2]. Additionally, the deep learning models consist of higher complexity of layers and 

connections. It’s very important, in order to be able to evaluate an AI technique, to be able to 

evaluate the results and understand the explanation of the output. Rule of thumb, to increase 

the accuracy, complexity increases as well and human understanding decreases. The selection 

of an AI technique is often a trade-off between accuracy and control over the results 

 

2.1.2. History 

 

The history of artificial intelligence and machine learning starts after the 1940s decade and 

continues until today, where it is more relevant than ever. The term “machine learning” was 

introduced by Arthur Samuel in 1959 in his paper “Some Studies in Machine Learning Using 

the Game of Checkers” published in IBM Journal of Research and Development [3]. He used 

the game checkers to support that computer can be programmed to improve its own 

performance by analyzing previous games. Samuel defines machine learning as the field of 

study where computers have ability to learn from past experience. His work in the field of 

computer gaming and artificial intelligence started earlier in 1952, when he created Checkers-

Playing Program”, the first self-learning program to play games [4]. He developed a program 

Figure 2– Artificial intelligence, machine 

learning and deep learning 



to calculate the winning possibility in checkers for both players and explained that a computer 

can outplay the programmer, with the right programming. 

 

 
Figure 3– The history of machine learning 

 

The first approach to machine learning was in early 40s, with the article "A logical calculus 

of the ideas immanent in nervous activity" by Walter Pitts and Warren McCulloch in 1943 [5]. 

They developed a mathematical model of neural network based on the human thought process. 

A similar study was published by Donald Hebb in 1949, "The Organization of Behavior: A 

neuropsychological Theory", introducing the Hebbian theory, focusing on machine learning 

based on human brain activity and behavior [6]. During this decade started the groundwork of 

AI and the introduction of mathematical models mimicking the brain functionalities. Later, in 

1950, Alan Turing sets the foundation of AI with his work "Computing Machinery and 

Intelligence", with the controversial question: “Can a machine think?” [7]. One year later, in 

1951, Marvin Minskey and Dean Edmonds trained the first ANN, using 3000 vacuum tubes to 

simulate a network of 40 neurons. The biggest milestone of the decade was the Dartmouth 

Summer Research Project on Artificial Intelligence, John McCarthy, Marvin Minsky, Claude 

Shannon and Nathaniel Rochester gathered some of the leading personalities in AI and 

computer science to investigate about the future steps. It was there, when the term artificial 

intelligence was firstly defined. In 1959 Arthur Samuel introduced the definition of machine 

learning [3]. In the next decade, 1960s, the usage of machine learning algorithms escalated in 

many scientific fields and problems, like solving of the Travelling Salesman Problem (TSP) 

with the nearest neighbor algorithm and the foundation of Deep Learning (DL) were set. In 

1966, the first ever chatbot, Eliza, was created, a computer program with human characteristics 

capable of engaging in conversations. Eliza kicked-off the first generation of chatbots with 

simple recognition capabilities and although they had big restrictions regarding their input data, 

they showed that AI can soon be part of real life. 

In the 70s, the progress reached a deadlock, due to limited amount of data and 

computational power.  In parallel, many governments terminated the fundings on AI projects. 

Despite the difficulties, pattern recognition models continued to evolve slowly. In the coming 

years, the study and usage of machine learning attracted the interest and engagement of an 

increasing number scientists, but yet, machine learning was not a part of the reality. This was 

soon to be changed, when LeCun with Bengio and Haffner in 1989 demonstrated how neural 

networks can be applied to real-world problems, by sharing a convolutional neural network that 

could recognize handwritten characters [8]. Ten years later, LeCun continued his work and 

released the Modified National Institute of Standards and Technology (MNIST) database, a 



huge dataset of handwritten digits, which was widely adopted as a handwriting recognition 

evaluation benchmark and as a base for image recognition. 

 

 
Figure 4– Modified National Institute of Standards and Technology (MNIST) database [9] 

 

During the early 2000s several key milestones took place. The rise of the big data enabled 

the processing of large amount of data in real-time. The key attributes of big data are volume, 

the amount of data generated and collected in petabytes and more, velocity, the real-time data 

generation and processing speed and variety, the different type of data available, like texts, 

images, etc. This change helped overcoming important obstacles and leading to evolution of 

various methods. Speech recognition and natural language processing (NLP) became more 

adept and laid the foundations for virtual assistants as Siri. The development of convolutional 

networks enabled the improvements in classification and image recognition tasks. 

Nowadays, machine learning is more relevant than ever and continues to evolve, offering 

potential across industries. Deep learning and neural networks applied for speech recognition, 

computer vision and autonomous systems are extensively used in healthcare, entertainment and 

other industries. In healthcare, deep learning improves diagnostic accuracy and provides 

personalized treatment in crucial conditions as cancer. In autonomous systems, ML thrives with 

autonomous drones and vehicles which rely on computer vision for vehicle navigation and 

pedestrian protection. Machine learning exceeds the scientific and industrial application and 

becomes one of the main means in everyday life. In household machinery, smart home devices, 

as voice assistants and thermostats, ramp up the comfort and home quality, robotic vacuum 

cleaners make the everyday tasks easier and smart ovens offer extra safety and assist in cooking 

process. Computers, smartphones and TVs have implemented AI techniques such as voice 

recognition for user identification, image recognition for face identification and object 

recognition, and all these for the overall improvement of user experience and extension of the 

device’s capabilities. At the same, chatbots, such as ChaGPT, are capable of having full human-

like conversations in real-time and have access to huge database of information and are 

gradually used more and more for professional and personal tasks. 

 

2.1.3. Classification models 

 

The machine learning prediction problems are categorized in regression and classification 

problems. A regression model predicts a quantity from dataset of continuous real values, by 

using independent inputs. The prediction must have minimum error from the target value. 

Regression analysis is a statistical method to analyze data and make predictions by 

understanding the relationships between variables and outputs. The regression can be linear and 

non-linear. The main metrics to evaluate a regression model are the accuracy, the mean squared 



error (MSE), mean absolute error (MAE) and R-squared (R2) scores. Examples of regression 

problems, across different domains, are the prediction of a disease progress in medical 

applications, the estimation of housing marketing value, weather predictions and others. In 

manufacturing and production regression models can predict material and surface quality after 

surface processing and treatment like milling, turning. 

 
Table 2 – Classification vs. regression problems 

 Classification Model Regression Model 

Target variables Discrete Continuous 

Desired output Decision boundary to separate categories Best fit trend to the dataset 

Evaluation 

metrics 

Accuracy 

Precision 

Recall 

F1 scores 

Accuracy 

Mean squared error 

Mean absolute error 

R-squared scores 

Problem type Binary/Multi-class Linear/Non-linear 

 

A classification model predicts the category/label of the data, from a dataset of discrete 

values. The model should identify a decision boundary in order to separate the data to the 

categories. In classification problems, the model should identify trends and dominant 

characteristics in each category to classify data to the corresponding label. The main metrics to 

evaluate a classification model are the accuracy, the precision, the recall and F1-scores. The 

key components for classification are: 

• Features: the input variables that the model categorizes, 

• Labels: the output variables that the model predicts, 

• Train set: the dataset used to train the model, 

• Test set: the dataset used to check the accuracy of the model. 

Image classification, speech recognition, face recognition and sentiment analysis are the 

main ML applications of classification problems. In everyday life, user identification in smart 

devices, via voice and face recognition, in healthcare, medical diagnosis based on patient’s 

history and test results and in autonomous driving, vehicle navigation. 

 

2.1.3.1. History 

 

The history of classification models follows closely the progress of ML and statistical 

analysis. In the 1950s, the first classification algorithms, Linear Discriminant Analysis (LDA) 

and Logistic Regression, were used for binary problems. Later on, in the 1960s, the first 

decision trees were developed. These models split the feature space into subsets and use a tree-

like model for decisions and their consequences, with conditional control statements. Neural 

network development dominants in the 1980s, with Multi-layer Perceptions (MLPs) and 

Backpropagation algorithms. MLP is a feedforward network of fully connected neurons and 

non-linear activation function. Backpropagation is a model using optimization algorithm, to 

train neural network. The first phase, called forward pass, the information is transferred through 

the network layers until the output layers gives the prediction. Then, the prediction is compared 

with the target value and error values and the gradients of loss are generated. The second phase, 

named backward pass, consists of transferring the loss gradients backwards through the layers 

and the weights are adjusted in the direction to reduce the loss, with the gradient descent 

optimization. In the 1990s, the decision tree algorithm is developed to improve accuracy and 

robustness, into random forest algorithm. In modern era, from 2000s till present, machine 

learning has been evolved to deep learning and the simple artificial neural networks to 

convolutional and recurrent neural networks. These networks have a significant performance 

improvement in image, speech and text classification. The main challenge in this new era is the 

lack of interpretability, due to the increasing complexity. 



 

2.2. Speech recognition 
 

2.2.1. Introduction 

 

Speech recognition is a field of computer science that develops algorithms and models for 

recognition and translation of spoken language into written text by computer machines. It 

combines knowledge and research from other scientific fields, as computer science, computer 

engineering, linguistics, acoustics and neuroscience. The automatic speech recognition (ASR) 

resembles the human understanding of natural language. The models mimic the human ear 

functionality, with filters and transform functions, and the brain activities, with neural networks. 

The inverse process, the production of human speech, is called speech synthesis. The Speech 

recognition can be used in many applications, such as virtual assistants (Apple Siri, Amazon 

Alexa and Google Assistant), voice search and speech to text services, language translation, 

gaming and education. 

Natural Language Processing (NLP) is a subfield of speech recognition, which enables 

computers to interact with humans through the natural language. With NLP computer are able 

to both understand and produce physical language and contribute in actual conversation. NLP 

simplifies everyday life with hands-free communication on smart devices and with computer 

assistance in customer services. NLP combines computational linguistics machine learning 

algorithms. Computational linguistics is a data science discipline for speech analysis. NLP is a 

lot more complicated than single word classification, since it has the additional difficulty of 

separating the words and identifying the most important words for analysis, by ignoring the 

ones like “the”, “and” etc. which don’t add meaning. 

 

2.2.2. History 

 

Historically, the speech recognition evolution follows the learning process of human 

beings, from simple single word understanding, like babies, until skillful handling of complex 

sentences and ability to answer challenging questions [10]. The first ever speech recognition 

model was AUDREY, the Automatic Digit Recognizer, in 1952. AUDREY could recognize 

digits from zero to nine with 90% accuracy, if they were given by his inventor [11]. Through 

the 1950s and 1960s many similar machines have been developed in laboratories around the 

world. One of the most important pioneers in continuous speech recognition is Raj Reddy. He 

was the first who researched the problem of continuous speech, where the users didn’t need to 

pause between different words. During this period there were two different approaches for 

speech recognition. The first one was using pre-recorded template waveforms, after morphing 

them to match the talking speeds, for comparison with the unknown signal. The second school 

was based on complex rules from linguistic knowledge, to guess the unknown signal. In 1962, 

at the Seattle World’s Fair (aka. Century 21 Exposition), IBM (International Business Machines 

Corporation) introduced to the world “Shoebox” machine, an improved version of AUDREY, 

which, additionally to the ten digits, could recognize sixteen English words [10]. In 1970s, 

speech recognition considered a lot of interest around the globe, mainly because of the fundings 

from the U.S. Department of Defense. The Speech Understanding Research (SUR) program, 

DARPA, was funding researches for five years with the goal of developing a model to recognize 

one thousand words by 1967. As part of this program, the first model was Hearsey-I, a system 

with spoken language as input and written text as output and was applied on chess tasks, due to 

the syntax structure. The winner was Harpy, a system which could understand 1011 words and 

introduced a more efficient search method called Beam Search. Both models were developed 

by Raj Reddy’s PhD students.  



In the 1980-decade, various new methods marked a milestone in speech recognition, like 

the Hidden Markov Models (HMMs). The breakthrough of the method was the consideration 

of unknown sounds as potential words, rather than just the match of sound patterns between 

existing data and new inputs. By the end of this decade, speech recognition could be used by 

not only scientists, with the Worlds of Wonder’s Julie doll, a doll which children could train to 

understand their voices. Despite the big progress, until then, all models were able to understand 

only single words, but not continuous speech, so the user should stop after each word. A second 

limitation of these models was that they understood mainly their inventor or speakers they have 

been already trained on. It was another of Reddy’s students, Kai-Fu Lee, who combined the 

beam search with HMM to create SPHINX-I, the first system with speaker independence. In 

the 1990s, computers with faster processors made speech recognition available for consumers. 

Dragon, in 1998, launches the first product “Dragon Naturally-Speaking”, which could 

understand natural speech with hundred words per minute, but needed training for an hour. 

Until the early 2000s, speech recognition has reached accuracy over 80%, but models were 

still struggling with statistical methods to guess between similar-sounding words. Speech 

recognition gets a big boost with Google Voice Action in Androids and later on Google Voice 

Search on iPhones. Google was able to use the computational power of Cloud and the large 

data volume saved there, to identify user’s speech. In 2010, Google implemented “Personalized 

Recognition”, which means the user voice search was saved to produce better results. That way 

Google could constantly enrich its database. 

 

 
Figure 5– Speech recognition journey 

 

In a nutshell, speech recognition passed through three main phases. From 1950 till 1980 is 

the era of knowledge-based AI and speech recognition relies on the matching with existing 

templates. From 1980 until 2000 is time for statistic driven AI, where statistical, probabilistic 

methods are implemented in the models to predict unknown signals as words. From 2000 and 

onwards, Deep Learning AI dominates and speech recognition is combined with deep and 

convolutional neural networks. 

 

2.3. Acoustics 
 

Psychoacoustics is the branch of acoustics and psychophysics involving the scientific study 

of sound perception and audiology—how human auditory system perceives various sounds, 

like speech and music. Based on the compression methods are used for reducing signal’s size 

without decreasing sound quality and are called psychoacoustic methods. 

The human auditory system can perceive frequencies between 2 𝐻𝑧 and 2 𝑘𝐻𝑧 and produce 

sounds of frequencies between 85 𝐻𝑧 and 155 𝐻𝑧, for male adults, and between 165 𝐻𝑧 and 

255 𝐻𝑧, for female adults. For the frequencies in the hearing spectrum the “Absolute Threshold 

of Hearing—ATH” (or “Threshold of quiet”) is defined and it refers to the minimum level of 

amplitude of a tone, that can be detected by normal hearing, assuming no other interfering 

sounds are present. [12] That way frequencies with lower amplitude cannot be distinguished 

and so can be removed from the original signal. The mathematic equation [12], which describes 

ATH is the following: 



 

𝑇𝑞(𝑓) = 3.64 ∙ (
𝑓

1000
)

−0.8

− 6.5 ∙ 𝑒
−0.6∙(

𝑓
1000⁄ −3.3)

2

+ 10−3 ∙ (
𝑓

1000
)

4

 

 

 
Figure 6– Absolute threshold of hearing (ATH) 

 

As shown in Figure 6, the threshold of quiet is affected by the age, especially in frequencies 

higher than 2 𝑘𝐻𝑧. 

Humans, for biologic and evolution reasons, are more sensible in the middle frequencies, 

the spectrum where the human speech lies. The ear can hear and recognize these frequencies 

better and distinguish them from nearby ones, even when they exist in lower amplitudes. In 

very high or very low frequencies this ability fades and, therefore, neighbor frequencies can be 

perceived as the same. That is also connected with the absolute threshold of hearing, as seen in 

Figure 6Figure 8, high (> 10 𝑘𝐻𝑧) and low frequencies (< 50 𝐻𝑧) must be in higher levels. 

Another factor that affects the perception of sounds is the “Auditory masking”, which in the 

frequency domain is called simultaneous masking, frequency masking or spectral masking and 

in the time domain is called temporal or non-simultaneous masking. This phenomenon occurs 

with the presence of multiple sound sources that affect and compromise the ear perception, and 

affects the ATH. Now, in order a frequency to be distinguished by humans the level of tone 

should be even higher. Similar to ATH, a new threshold is defined: “Masked threshold” is the 

quietest level of the signal perceived when combined with a specific masking sound. In Figure 

7Figure 8 there are two examples of auditory masking at 410 𝐻𝑧 and 100 𝐻𝑧 respectively. 

  

 
Figure 7– Auditory masking 

a. 410 Hz      b. 100 Hz 



 

The figures above show how the masking threshold changes over frequency for different 

amplitudes of the masking frequency.  The maximum level of masking occurs when the two 

sounds have same frequency and reduces when moving away. This is called on-frequency 

masking and happens because the two signals belong to the same auditory filter and are 

perceived as equals from the ear. When the level of the masking frequency increases the range 

of masked frequencies becomes wider and the masked threshold increases as well. In higher 

frequencies the curve is steeper and the maximum masking occurs at the masking frequency. In 

lower frequencies the curve is smoother and wider and the maximum value is located in 

frequencies higher than the masking one. With the decrease of the masking frequency, the curve 

becomes asymmetric and covers larger area towards higher than lower frequencies. 

 

  
Figure 8– Threshold in quiet and masked threshold 

 

 

  



3. Industrial robotic arms 
 

An industrial robot is a robot system used for manufacturing processes, it is automated, 

programmable and capable of movement on three or more axes. A commonly used type of 

industrial robots is the robotic arm, a mechanical arm with similar functions to a human arm. 

Robotic arms can be individual mechanisms or part of a more complex one. They consist of 

links connected by joints (usually 2-6) of rotational motion or linear displacement. Industrial 

robotic arms are used for several manufacturing applications such as: 

▪ Assembly and dispensing (assembly and adhesive dispensing robots) 

▪ Handing and picking (material handling, liquid handling, pick and place, and order 

picking robots) 

▪ Machining and cutting (machine tending and loading, milling, drilling, cutting etc.) 

▪ Welding and soldering 

▪ Inspection and quality control etc. [13] 

Robotic arms, are categorized based on their design, use and functions: 

 Articulated robot arm 

 Cartesian robot arm 

 Cylindrical robot arm 

 Delta robot arm 

 Polar or spherical robot arm 

 Selective Compliance Assembly Robot Arm or Selective Compliance the 

Articulated Robot Arm (SCARA) [14] 

 

In Figure 9 are the schematic representations of joint movement for each robot type. 

  

1  
Figure 9 – Industrial robotic arm types [15] 

 

Articulated robot arms 

 
1 Angular or anthropomorphic robot is same as articulated robot. 



An articulated robotic arm resembles the human arm, is the most common type of robot 

arms and it consists of a single mechanical arm attached to a base with twisting joint. They are 

considered to be one of the most versatile and flexible tools and normally they have four to six 

axes, with six to be the most commonly used. They are suitable for automating many robotic 

applications, including assembly, material handling, arc and spot welding, painting and many 

more. They are known for their extensive range of motion, high precision, linear reach and 

because of their numerous axis points they can reach virtually everywhere within their 

workspace. Their most important drawback is the limitation in performing at higher speeds. 

 

Cartesian robot arms 

Cartesian robot arms, linear or gantry robots work in three linear axes, using the Cartesian 

coordinate system (x, y and z), so they move in straight lines: up and down, in and out and side 

to side. The three joints are manipulated to spatial movements, giving extra flexibility to cover 

most of the space. Additionally, cartesian robots give to user the ability to adjust the speed, 

precision, stroke length, and size of the robot arm. One of the disadvantages is that they require 

the most space compare with all other robotic arms. Their variety of tasks, mainly in small 

applications, includes pick-and-place work, operating machine equipment, arc welding and 

assembly tasks and are often used for CNC machines and 3D printing. 

 

Cylindrical robot arms 

Cylindrical robots are designed around a single-arm base, capable to move up and down 

vertically. This type consists of a rotary shaft and an extendable arm that support sliding and 

vertical displacement. In their base there is a rotary joint (1 rotational DoF) and between the 

links a prismatic one (1 translational DoF). The combination of mechanism complexity with 

lack of significant advantages, makes them the less preferable choice. Typical applications of 

cylindrical robots are assembly, machine tending, or coating. 

 

Delta robot arms 

Delta robot arm or parallel robot arm is a type of parallel robot with a triangular base and 

interconnected arms, attached to a central end effector. Delta robots can move in all three 

dimensions, with precise movements at high speeds, and are commonly used for automation in 

manufacturing, packaging and assembly. Their unique shape allows the three arms to control 

every joint of the end effector, making them a great fit for food, pharmaceutical and electronic 

industries. 

 

Polar robot arms 

Polar robots are from the first industrial robots created. Their mechanism is a combination 

of one linear joint (1 translational DoF), at the base, with two rotary joints (1 rotary DoF each), 

leading to a spherical work envelop. Key applications are die casting, injection moulding and 

material handling. 

 

SCARA 

SCARA robots are a special type of articulated robots, that have rotational joints. They are 

mechanically compliant in x- and y-axis and rigid in z-axis. Compared to articulated robots, 

SCARAs are less flexible, since they have fewer axes and so their motion is more limited. They 

perform better than cartesian robots in lateral motions with higher speeds, which they maintain 

even with high loads. Their strongest advantage is their position repeatability. 

 

  



3.1. Staubli RX 90L 
 

The industrial robot Staubli RX 90L is an articulated robotic arm with six axes, 

manufactured by Stäubli. Each of the six joints works as an axis around which two members 

rotate. The movements of them are generated by brushless motors coupled to resolvers and are 

equipped with parking brakes. The robot consists of motors, brakes, motion transmission 

mechanisms, cables, pneumatic and electric circuits both for the user and the counterbalance 

system. The balance is maintained by an integrated spring system, a build-in spring 

counterbalance. Data for the absolute position are provided by a counting system at any time. 

The assembly id reliable and robust, flexible and able to perform various tasks. The robot is 

used mainly for surfacing in many industrial applications, such as plastic and metal engine 

parts, bikes, agricultural equipment etc. The key components, inspired by human arms, are the 

base (A), the shoulder (B), the arm (C), the elbow (D), the forearm (E) and the wrist (F), as 

shown in Figure 10.  

  
Figure 10 – Staubli RX 90L 

 

The specifications of Staubli are summarized in Table 3. All the technical characteristics 

and numerical values presented below are given by Staubli in the manual [16]. 

 
Table 3 – Staubli RX 90L specifications 

Designation: 

RX 90 B L 

Robot family RX (changed to B) 

Maximum reach between 2nd and 5th axis2 9 𝑑𝑚  

Number of active axis (≡ DoF) 0 ≡ 6 (variation with 5 axis) 

Forearm version Extended forearm (L) 

General 

characteristics 

Working temperature +5℃ to +40℃ 

Humidity 30% to 90% 

Altitude 2000 𝑚  

Weight 113 𝑘𝑔  

Performance 
Maximum speed at load center of gravity 12.6 𝑚

𝑠⁄   

Repeatability ±0.025 𝑚𝑚  

Load capacity 
At nominal speed 3.5 𝑘𝑔  

At reduced speed 6 𝑘𝑔  

 
2 That is the reach for the original - not extended – version. With the longer forearm it becomes 11 𝑑𝑚 instead of 9 𝑑𝑚. 



 

Below (Figure 11) it’s the drawing of the robotic arm, with all important dimensions. 

 

  
Figure 11 – Staubli RX 90L drawings 

 

Work envelop is defined as the workspace, where the end effector, of the robotic arm, can 

reach with any orientation, and it depends on the dimensions of the components. The parameters 

that define the workspace are: the maximum reach between the 2nd and the 5th joints, which 

controls the maximum reach the end effector in x-z plane, the minimum reach between the 2nd 

and the 5th axis,  

Table 4 contains the three parameters of the workspace and Table 5 the amplitude, the speed 

and the resolution for each axis. 

 
Table 4 – Staubli RX 90L work envelop 

Parameter Symbol Value 

Maximum reach between 2nd and 5th axis 𝑅. 𝑀. 1100 𝑚𝑚 

Minimum reach between 2nd and 5th axis 𝑅. 𝑚. 401 𝑚𝑚 

Reach between 3rd and 5th axis 𝑅. 𝑏. 650 𝑚𝑚 

 
Table 5 – Staubli RX 90L amplitude, speed and resolution 

Axis 1 2 3 4 5 6 

Amplitude (°) 320 275 285 540 225 540 

Working range (°) 
A 

± 160 

B 
± 137.5 

C 
± 142.5 

D 
± 270 

E 
+ 120
− 105 

F 
± 270 

Nominal speed (°
𝑠⁄ ) 236 200 286 401 800 1125 

Maximum speed (°
𝑠⁄ ) 356 356 296 409 800 1125 

Resolution (° ∙ 10−3) 0.87 0.87 0.72 1 1.95 2.75 

 

Figure 12 below is a schematic representation of the work envelop, with marks for the 

parameters R.M., R.m. and R.b. and axis ranges (A-F). 



  
Figure 12 – Staubli RX 90L work envelop 

 

  



3.2. V+ Language for industrial robot applications 
 

V+ is a programming language, developed by Adept Technologies, designed specifically for 

industrial robot applications. It is suitable for controlling robot motion, vision systems and 

input-output operations. V+ is known for its simplicity to learn and use, the fast (self-) 

compilation and the efficient and flexible memory management. Key characteristic is its 

robustness when managing demanding robotic tasks and integrating robotic components. As a 

real-time system, the constant calculation of orbit allows complex moves to be executed 

immediately, with efficient usage of system’s memory and with the minimum system 

complexity [17]. The V+ system produces control commands for the robot while it interacts 

with the user, allowing that way the creation and modification of programs. The precise control 

and coordination of the robots makes V+ very important in automotive and manufacturing 

industries. V+ language offers the same functionalities as the modern, high-level programming 

languages, as subroutines, control structures, multitasking environment and recursively 

program execution with re-entry. The V+ Reference Guide [18] and V+ User’s Guide [19] 

contain all information to understand and learn V+ from scratch. 

To manipulate the robot, V+ has a numerous motion key-words that correspond to different 

action. The most relevant for this study are summarized in Table 6. 

 
Table 6 – Motion Control Operations [19] 

Keyword Function 

APPRO 
Start joint-interpolated motion towards a location defined relatively to a 

specified location. 

APPROS 
Start straight-line robot motion towards a location defined relatively to a 

specified location. 

BRAKE Abort current robot motion. 

BREAK Suspend program execution until the current motion completes. 

CLOSE Close robot gripper. 

CLOSEI Close robot gripper immediately. 

DELAY Cause robot motion to stop for the specified period of time. 

DEPART Start joint-interpolated motion away from the current location. 

DEPARTS Start straight-line robot motion away from the current location. 

DRIVE Move an individual joint of the robot. 

MOVE 
Initiate a joint-interpolated robot motion to the position and orientation 

described by the given location. 

MOVES 
Initiate a straight-line robot motion to the position and orientation described by 

the given location. 

OPEN Close robot gripper. 

OPENI Close robot gripper immediately. 

#PPOINT Return a precision-point value composed from the given components. 

RELAX Limp the gripper 

RELAXI Limp the gripper immediately. 

ROBOT Enable or disable one or all robots. 

SPEED Set the nominal speed for subsequent robot motions. 

 

 

3.2.1. Robot Speed 

 

The robot motion, from one point to another, has three phases: acceleration, constant speed 

and deceleration. The acceleration phase is from the start until the maximum speed and 

deceleration is from the constant speed until the end position. The constant/maximum speed is 

specified as a percentage of the default/nominal speed of the robot. For example, “SPEED 25” 

sets the motion speed to the 25% of the default speed. 

 



3.2.2. Basic Motion Operations 

 

For the robotic arm to move from one place to another, there are two possible ways/paths: 

joint-interpolated motion and straight-line motion [19]. Joint-interpolated motion moves each 

joint simultaneously, at a constant speed and so the end-effector moves in a smooth and 

predictable path. This type of motion is ideal for precise tasks that require high accuracy, like 

assembly, welding etc. Straight-line motion moves the tool tip in a straight line, from the start 

till the end position, and so the control system calculates the corresponding motion of each joint 

to achieve this motion. This type is used in cutting processes. To distinguish between the two 

types of motion in V+ an “s” is added in case of straight-line paths, like “DEPARTS” instead of 

“DEPART”. 

 
Table 7 – Keywords for Basic Motion Operations 

Joint-interpolated motion Straight-line motion 

APPRO APPROS 

DEPART DEPARTS 

MOVE MOVES 

 

3.2.3. End-effector operations 

 

The tool tip or end effector is the part attached to the end of the robotic arm, providing 

functionalities similar to human hand [20]. End effector are of different types for the different 

industrial processes, as the same robot can be used in various number of applications. The right 

selection of the end effector is crucial for the robot to be able to carry out its tasks. The 

categories of a tool tip are gripper, processing tools and sensors. End effectors can be of one of 

the mentioned categories or even combination of them, depending on the desired output. The 

object of this study is a robotic gripper, the most common end effector type. The gripper’s 

functionality is very similar to a human hand functionality, it can be used for tasks like picking 

and placing, shorting items, assembly etc. 

The gripper can be in one of the following stages: open, closed or relax, which are defined 

by the commands OPEN/OPENI, CLOSE/CLOSEI and RELAX/RELAXI. The “I” at the end of 

the command specifies that the action will happen immediately, before the next action; 

otherwise, it is executed at the same time with the next command. 

 
Table 8 – Keywords for End-effector Operations 

Execution in parallel with next command Execution before the next command starts 

OPEN OPENI 

CLOSE CLOSEI 

RELAX RELAXI 

 

 

 

 

 

 

  



4. Methodology Speech Recognition 
 

This thesis is about the development of a speech recognition model, to understand spoken 

commands and translate them to written text. The input commands are single word recordings 

and not continuous natural speech. Since the application is intended for an industrial 

environment, is important that the features extracted are not sensitive of the environment, the 

background noise or the microphone mismatches. 

The speech recognition process includes all the steps from recording the voice signal, until 

classifying the commands based on given dataset/vocabulary. Pre-processing is the first step, 

where the signal is isolated from noise, or unnecessary information, and its size is reduced. 

Feature extraction is the stage where from the pre-processed signal are extracted specific 

parameters, indicatives for the content of the signal. These parameters are the significant 

characteristics of the audio signals and are used from the machine learning model, at the 

classification stage, to assign the recordings to the corresponding commands. The sequence of 

the steps is shown in Figure 13. 

 

 
Figure 13– Speech recognition methodology [21] 

 

Figure 13 is the workflow of the training process, it describes the process from the creation 

of the dataset until the neural network training. In a similar way, Figure 14 is the workflow of 

the final application, with input a command verbally given and output the command in written 

text. 

 

 
Figure 14– Application workflow 

 

This chapter is separated in training process methodology and testing process methodology, 

The training process includes of the steps for the development and optimization of the speech 

recognition object and the testing process refers to the final evaluation and usage of the 

developed model.  



4.1. Training Process 
 

The training process includes the sequence of steps for the development of the speech 

recognition model, the definition of the vocabulary, the implementation of signal processing 

and feature extraction methods, and the optimization of the machine learning technique. 

 

4.1.1. Vocabulary definition and recording 

 

The number one step, before starting developing the model, is to establish the application 

and, based on that, define the vocabulary that the model must recognize. As mentioned before, 

the system should be joined with a robotic arm and be able to manipulate it for different actions. 

The vocabulary is designed on the robot in a way that all the words correspond to specific 

commands in V+. 

After deciding on the vocabulary, next step is to establish the format of the commands given 

to the system. The inputs are given one by one, as the model is not capable to recognize 

continuous, natural speech, and with certain order, since the model can’t understand the 

meaning of the words. In previous chapter was given the list with the relevant commands for 

the application. They can be categorized in three main categories: the ones that specify the 

action of the end effector (open/openi and close/closei), the ones that specify the motion type 

(drive, move/moves, appro/appros and depart/departs) and the ones that specify a short stop or 

total termination of the executed action (delay, break and brake). 

 

 
Figure 15– Robot command workflow 

 

One of the difficulties in speech recognition, is the inability to distinguish between 

homophones, words with the same pronunciation and different meaning (and/or different 

spelling). Sometimes, one words with same sound and spelling can have different meaning, 

depending on the context. The humans understand this type of words based on the context of 

the sentence or of the topic. An example of homonym words is: “BREAK” and “BRAKE”, that 

even people have difficulties to distinguish. These words have the exact same pronunciation 

and the only way to identify which one is used, is by understanding the sentence around it. 

Another difficulty, is the distinction between near-homophones, words with different but 

similar sounds, like “MOVE” and “MOVES”. This specific example is not of a problem in real 

life: when referring to the noun “move”, “moves” is the plural of the same meaning and when 



referring to the verb “move”, “moves” is the third-person singular present tense. But in the case 

of V+, “MOVE” and “moves” correspond to different movement type. 

In case of natural speech recognition, where the input is whole sentences, the model is 

reinforced with this extra knowledge, to be able to understand the meaning based on the context 

or even guess word relatively to the words spoken before and after. For that, it is necessary to 

teach the neural network linguistics and grammar rules, similar to how people learn. The extra 

amount of data for training and the addition of rules, increase the complexity of the model. 

In case of single-word recognition there are several ways to solve the problem of 

homonyms or near-homophones, but all of them are artificial ones for the model and don’t 

based on human understanding. One solution is to add a follow-up command to specify which 

of the possible words is the correct. This second commands can be a number, for example if the 

word is either “BREAK” or “BRAKE” then “one” can be to “BREAK” and “two” can be 

“BRAKE”. A variation of this solution is to use, as the follow-up command, a word connected 

to the action, for example if the word is either “MOVE” or “MOVES”, the command “joint” 

corresponds to “MOVE” and “line” to “MOVES”. Another approach is to use a different word 

of a similar meaning to avoid the speech confusion, for example, instead of “BRAKE” the 

keyword could be “stop” or “abort”. In general, is not necessary that the spoken word is exactly the same 

as the corresponding V+ command and it is the computer-robot interface that will connect the ANN 

vocabulary with the V+ vocabulary. The described vocabulary transform is shown in Figure 16. 

 

 
Figure 16– Vocabulary transform 

 

For this study, it is decided the third approach, since it is simpler for the user and doesn’t 

add extra commands and steps for the model. 

 

  



4.1.2. Pre-processing 

 

Pre-processing is a sequence of steps to prepare the input signal for analysis and 

recognition. During this process, the signal compressed and cleared from background noise, 

normalized in a standard level and broken into smaller, overlapping pieces, the frames. The 

detailed steps are Pre-emphasis, Framing, Windowing and Fast Fourier Transform (FFT). 

 

4.1.2.1. Pre-emphasis 

 

Pre-emphasis is a Finite Impulse Filter (FIR) applied on the signal, in the time domain. It 

is used to remove the background noise, by improving the signal-to-noise ratio, and enhance 

the clarity of the audio signal. The term noise, in speech recognition, refers to any unwanted 

sound that occurs and interferes with the main, useful signal. The noise, in high volume, can 

cover part of the word and make it impossible to understand, even for the human ear, or adds 

extra frequencies and leads to wrong interpretation of the command. The noise can be either a 

continuous, low frequency disturbance or an instant, high frequency sound. In order to remove 

the noise from the signal, the noise characteristics should be identified and expressed in 

mathematic terms. Useful sounds, like music or human speech, have certain frequency range, 

follow predictable amplitude patterns and normally have harmonic structures. On the other 

hand, noise occurs in a larger range of frequencies and generally has irregular amplitude 

changes. 

The pre-emphasis filter has another effect; besides the noise removal, it helps in balancing 

the frequency spectrum. In physical speech, the signals experience spectral roll-off of ~6 𝑑𝐵 

per octave, which means that for each doubling of the frequency, the amplitude is reduced by 

half. Therefore, there is more energy concentrated to low frequencies, as the amplitude is 

higher, and significantly less energy is allocated in high frequencies. In that case, the neural 

network will handle the low frequencies as more significant than the higher ones and miss 

important information [22]. By applying the pre-emphasis filter, it boosts the higher frequencies 

and the overall frequency spectrum becomes more balanced. 

The mathematical expression of the filter is: 

 

𝑦(𝑛) = 𝑥(𝑛) − 𝑎 ∙ 𝑥(𝑛 − 1), 𝑛 ⊆ [1, 𝑁] 
Where, 

 𝛼 is the pre-emphasis constant, 0.9 < 𝛼 < 1, 

 𝑦 is the new signal, after pre-emphasis [𝑑𝐵], 

 𝑥 is the original signal, before pre-emphasis [𝑑𝐵], 

 𝑛 − 1 and 𝑛 are two consecutive moments [𝑠𝑒𝑐] and 

 𝑁 is the total duration/length of the signal [𝑠𝑒𝑐] 
 

The pre-emphasis constant can take different values between 0.9 and 1, but the output is 

not sensitive in this change, therefore is not need to do investigation for the alternatives, 

according to literature review. The most commonly used values are 0.95 and 0.97; for this 

application it’s assumed 𝛼 = 0.97. 

 

4.1.2.2. Framing  

 

After pre-emphasis, the next action is to break the signal into smaller parts, the frames, 

before applying the Fast Fourier Transform (FFT). Speech signals are not stationary by nature, 

but can be considered as stationary in shorter segments because of the vocal tract inertia. By 

segmenting, the non-stationary signal can be represented as short stationary time frames [23]. 



With the FFT, the signal is transformed from the time domain to the frequency domain. If the 

transform is applied on the whole signal at once, the output spectrum is time independent, when 

the signal itself is highly dependent on time. To keep the information that varies with time the 

signal is split into frames. There are two alternative methods for framing, overlapping frames 

and non-overlapping frames. With overlapping frames is more likely that all the useful 

information from the signal is used, when with non-overlapping frames the risk is to miss the 

information in the transition points between different frames. With overlapping frames, this 

problem is solved, since the end points of each frame are contained in the neighbor frames. That 

way, the discontinuities are avoided and all the signal is used in the process. 

 

  
Figure 17 – Speech recognition methodology 

 

For the framing stage, two things are needed: the frame length and the overlap length. The 

frame length typically is chosen between 15 − 25 𝑚𝑠 and overlapping length between 10 −

15 𝑚𝑠. Depending on the frame length and overlap, it is possible the same part of the signal to 

be present in three different segments. Before choosing the parameters, the sample rate should 

be taken into account, so each frame contains a sufficient amount of data. 

 

4.1.2.3. Window Function 

 

The signal segmentation into frames is essential for audio signal analysis, but can create 

problems when is not used correctly and carefully. When applying FFT in each frame, the frame 

is considered to repeat periodically. If the signal is not smooth from end-to-end, discontinuities 

occur, which with FFT are leading to spectrum leakages. Spectrum leakage is when the energy 

of the audio is spread in several frequencies, making it extra difficult for the speech recognition. 

The window functions, by leading the end-points to zero values, reduce the discontinuities and 

so, limit the spectrum leakages. The output spectrum is more representative of the frequency 

content of the audio. The window function, also, contributes to preserve the signal characteristic 

for further analysis, such as frequency formant. Lastly, window filters control the resolution of 

the spectrum. Frequency resolution is the ability to distinguish between two close frequencies 

in a signal. The window function works as a band-pass filter of different form for the different 

functions. The main lobe width and the side lobes affect the frequency resolution and it’s always 

a trade-off between frequency resolution and spectrum leakages. With narrow main lobe, the 

frequency resolution is better, but the side lobes are higher, leading to spectrum leakages. With 

wider main lobe, the results are the opposite: lower frequency resolution but less spectrum 

leakages. 



 

The general mathematic form of a window function use is: 

 

𝑦(𝑛) = 𝑥(𝑛) ∙ 𝑤(𝑛), 𝑛 ⊆ [1, 𝛮] 
Where, 

 𝑤 is the window function, 

 𝑦 is the new signal, after windowing [𝑑𝐵], 

 𝑥 is the original signal, before windowing [𝑑𝐵], 

 𝑛 is a random moment [𝑠𝑒𝑐], and 

 𝑁 is the total duration/length of the frame [𝑠𝑎𝑚𝑝𝑙𝑒𝑠] 
 

Rectangular window function: 

 

The rectangular window or Dirichlet window is the simplest form of a window function, 

impulse response, with unit response for all in-between moments and zero response at the end 

points. It’s not usually chosen because of its low stopband attenuation. [24] Stopband 

attenuation, expressed in Decibel, is the difference between the maximum gain in passband 

region and the minimum gain in stopband region, as shown in Figure 18. [25] 

 

  
Figure 18 – Stopband attenuation 

 

The rectangular window function is the following: 

 

𝑤(𝑛) = {
0, 𝑛 = 1                 
1, 𝑛 ⊆ [2, 𝛮 − 1]
0, 𝑛 = 𝑁                

 

 

Hanning window function: 

 

Compared with the rectangular window, Hanning window has a wider transition band 

between stopband and passband regions. The Hanning window function is the following: 

 

𝑤(𝑛) =
1

2
∙ [1 − cos (

2 ∙ 𝜋 ∙ 𝑛

𝑁 − 1
)] , 𝑛 ⊆ [1, 𝛮] 

 

 

 

 

 



Hamming window function: 

 

Hamming window is the most commonly evolution of Hanning window, with minimum 

stopband attenuation. [24] The response at the edges of the frame, unlike the previous filters, is 

not zero and so small-scale discontinuity is expected between frames. The Hamming window 

function is the following: 

 

𝑤(𝑛) = 0.54 − 0.46 ∙ cos (
2 ∙ 𝜋 ∙ 𝑛

𝑁 − 1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1 

 

Other methods 

 

There are more window functions like the Blackman and Kaiser, with similar logic behind 

them. The Blackman window has high stopband attenuation, which makes it suitable for many 

different applications. The Kaiser window, known as the optimal window, adds an extra 

parameter to control the width of transition region. 

 

Conclusions 

 

The representation of the above functions in the time domain are shown in Figure 19. 

Hamming window is the only function with non-zero values throughout the whole curve, 

included the end-points. 

 

  
Figure 19 – Different window functions in time domain 

 

The representation of the filters in frequency domain are in Figure 20. 



 
Figure 20 – Different window functions in frequency domain 

 

The rectangular function, which acts almost as no window at all, has the narrowest main 

lobe, but the highest side lobes, so it maintains the best frequency resolution, but the most 

spectrum leakages. The exactly opposite is achieved with the Blackman window, that has the 

widest main lobe and lowest side lobes. Hamming and Hanning window functions have a good 

balance of high frequency resolution and low spectrum leakages and are preferred in speech 

recognition applications. Hamming window, with lower side lobes, is the favorite method. 

 

4.1.2.4. Fast Fourier Transform (FFT) 

 

The final step of the pre-processing stage is the Fast Fourier Transform, which transforms 

the recording from the time domain to the frequency domain. Practically, FFT is an optimized 

algorithm to calculate the Discrete Fourier Transform (DFT). Fourier transform converts the 

time domain signal to its frequency representation, also known as frequency spectrum, and 

identifies all the different frequencies that are present in the signal. The audio signal is not a 

continuous signal, but sampled at intervals, so the transform applied is DFT. 

 

𝑋[𝑛] = ∑ 𝑥[𝑛] ∙ 𝑒−𝑗∙
2𝜋
𝑁

∙𝑘∙𝑛

𝑁−1

𝑖=0

 

 

Fast Fourier Transform is an optimized algorithm of the Discrete Fourier Transform and 

reduces the complexity from 𝑂(𝑁2) to 𝑂(𝑁 ln 𝑁). FFT is a faster and more efficient solution 

than the original DFT, which makes it suitable for real time processing application. 

 

4.1.3. Feature extraction 

 

When the pre-processing is done, the feature extraction takes place. Feature extraction is 

the calculation of the information from the signal that leads to the correct classification of the 

words. The feature extraction process mimics the way human brain perceives the different 

words. One of the most common methods for speech recognition, among the  Linear Predictive 

Coefficient (LPC) and the Hidden Markov Models (HMM), is the Mel-Frequency Cepstral 

Coefficients algorithm (MFCCs). To understand the MFCCs approach and method, the terms 

Mel scale and Cepstrum analysis should be defined. 



Mel scale, from the word melody, is a perceptual scale of pitches judged by humans to be 

equidistant from one another. These pitches are not actually equidistant in the normal frequency 

scale, but are perceived as equidistant from humans. Thus, for each tone with an actual 

frequency, f, measured in Hz, a subjective tone is measured on the Mel scale. As mentioned in 

section 2.3, the human ear doesn’t understand all the frequencies, of the hearing spectrum, in a 

same way. Humans can distinguish very good small frequency differences in low frequencies 

and a lot harder in higher frequencies. This effect starts to be noticeable after the 500 Hz. The 

mathematic relation between the Mel- and the Hertz-scale is: 

 

𝑚 = 2595 ∙ log (1 +
𝑓

700
) 

 

The Mel frequency scale is a linear frequency spacing below 1000Hz and a logarithmic 

spacing above 1000Hz, as shown in Figure 21. 

 
Figure 21 –Mel- and Hertz-scale relation [17] 

 

The term Cepstrum come from reversing the first four letters of the word Spectrum and was 

used for the first time in 1960s at MIT during the study of echoes in seismic signals. Cepstrum 

is connected also with the terms quefrency or liftering analysis, which come from reversing the 

words frequency and filtering. The Cepstrum is a representation of a signal’s spectrum in a way 

that allows the identification of different audio components, like the vocal tract and the 

excitation source, and contains information regarding the fundamental frequency of human 

speech. Cepstrum in the quefrency domain is what exactly is the spectrum in the frequency 

domain and the connection between them is shown in the following equation: 

 

𝐶(𝑥(𝑡)) = 𝐹−1 (log 𝑀𝑒𝑙 ((𝐹(𝑥(𝑡))))) 

 

Where, 

 𝑥(𝑡) is the audio signal, 

 𝐶(𝑥(𝑡)) is the cepstrum of the signal, 

 𝐹(𝑥(𝑡)) is the spectrum of the signal (Fourier Transform), and 

 𝐹−1 is the inverse Fourier transform. 



 

As the above equation shows, the steps to calculate the MFCCs, from the last step which 

was the FFT, are: 

▪ Apply the Fast Fourier Transform of the segmented signal, to calculate the frequency 

spectrum. 

▪ Convert the frequencies from Hertz scale to Mel scale. 

▪ Compute the logarithm of each frequency. 

▪ Apply the Discrete Cosine Transform (DCT), to convert cepstrum back in the time 

domain. 

 

To calculate the DCT it is used: 

𝑐𝑛 = ∑ log(𝑋[𝑛]) ∙ cos (𝑛 ∙ (𝑘 −
1

2
) ∙

𝜋

𝑘
)

𝑘

𝑛=1

 

 
Figure 22 –MFCCs pipeline [26] 

 

From research it is proven that the most important coefficients are the first 12 and that’s the 

recommended value from literature. 

 

4.1.4. Classification 

 

After extracting the MFCCs, the signal processing is ready and next step is the 

classification. Classification is the process of assigning an unknown quantity in one of the 

known categories. The classification model, in this case, is an artificial neural network for 

pattern recognition. Artificial Neural Networks (ANNs) have structure and functionalities 

inspired by the biological network of neurons [27]. The human Central Nervous System 

consists of cells, the neurons; each neuron consists of the main body – soma – the apophysis – 

dendrite – and the main axon. The axon of one neuron is connected, via synaptic gaps, with the 

dendrites of the neighbour neurons and is transferring information through them. In a similar 

way, an artificial neural network consists of artificial neurons connected with one another, 

transferring data along the model structure. Each neuron has the input signals, each one 

multiplied with a custom weight, the activation threshold, which controls whether the specific 

neuron will be activated or not, based on the summary of the input signals and their weights, 

and the output signal. In every neuron the input signals are multiplied by the weights and added 

all together. The sum is the function output of the neuron. 

The neurons are organized in layers, which are levels of information. The input layer 

consists neurons as many as the design variables. For this problem, the inputs are the MFCCs 

for all the signal frames. The output layer is the solution and in this study the label of the 

command. All the in-between layers are called hidden layers. All the neurons of a layer are 

receiving the output signals of all the neurons in the previous layer and are sending their output 

signal to all the neurons of the next layer, as shown in Figure 23. 



 

 
Figure 23 – Artificial Neural Network Architecture 

 

The aim is that the final output of the neural network corresponds to the actual labels of the 

input recordings. This is achieved after the training process, where the weights are iterated until 

the obtained values result to the correct total output. The iterations are similar to optimization 

steps with the goal to minimize the error between actual value and predicted value. In regression 

problems the output is a real number, in classification problems the output must be the category 

label. Actually, the network gives as output N real numbers (between 0 and 1), when the 

potential labels are N, and each one of them represents the possibility of the command to belong 

in the corresponding category. The recording is classified in the category with the highest 

predicted possibility. 

To develop a machine learning model the whole dataset is divided into train and tests 

subsets. The train set, as the name implies, is used to train the network, so the output is given 

to the network and the model tries to predict them. The test set is used to check the accuracy of 

the model and its generalization ability, so the output is not given together with the input, but 

is fed to the network in later stages. 

 

4.1.4.1. k-Fold Cross Validation 

 

To train a machine learning object the data are split into train and test subsets and the 

optimization and evaluation of the model is based on the accuracy in the testing predictions. 

The risk with using only one test set is that the accuracy can vary significantly depending on 

the observation in the test set. That means that, potentially, if the model is used for different 

testing sets the prediction error will have big deviations. To ensure that the accuracy is 

representative of the model at any kind of testing set, the k-fold cross validation method is used.  

The cross validation divides randomly the whole dataset into k groups, the “folds”, of the 

same roughly size. One of the folds is used as testing set and the k-1 remaining folds are used 

as the training set, as shown in Figure 24. With this setup the optimization process runs until 

the end and the accuracy of the model is calculated. This routine is repeated k times, until all 

the folds become once the test set. After this is done the average error is calculated: 

 

𝑀𝑆𝐸𝑡𝑜𝑡 =
1

𝑘
∙ ∑ 𝑀𝑆𝐸𝑖

𝑘

𝑖=1

 



 

The ANN must have a constant behavior regardless of the test set, since the real testing data 

are totally unknown. The acceptance criteria is when the average accuracy is above 80%, but 

also the individual errors are not deviating a lot. 

The iteration can be done with two different ways: the weights of the networks are 

initialized before every iteration or each iteration uses the last wight update from the previous 

iteration. With the second way, the training process converges earlier and can reach a better 

result. The first approach has the advantage of separating the testing set completely from the 

training. When the initialization is using previous values, these values contain information from 

the previous train set, part of which is now the test set. In this study, the first approach is 

selected. 

 

 
Figure 24 – k-fold Cross Validation Visualization 

 

The selection of the number of folds (k) needs careful consideration. The more folds used 

in cross validation the more representative the results are and the lower the bias is, but at the 

same time the amount of testing data are less and of training data more. The fewer folds used 

the higher the bias but the lower the variance. It is therefore a trade-off between bias and 

variance when it comes to k selection. 

 

4.1.4.2. Artificial Neural Network Parameters 

 

The artificial neural networks have many parameters, that should be chosen carefully. There 

is not always a rule of thumb for the selection, since the best combination differs from case to 

case. The key is to keep a good balance between memorization and generalization. The model 

should be fitting well on the training data, but if it overfits on them, it will lose the ability of 

generalization, the ability to predict data that are not exactly same as the ones in the train set. 

The main parameters of a neural network are the architecture, the training function and the stop 

criteria. 

The most important parameter is the network’s architecture, the selection of the number of 

hidden layers and the number of neurons in each layer. Very small networks, few layers with 

few neurons each, have a limited ability to learn when the problem has many inputs and high 

complexity. The benefit of small models is that the require less memory and need less 

computational time to be trained and used. Very big networks, many layers or many neurons in 

each layer or both, can handle better complicated datasets, but need more space and time. If the 

network is too small for a certain problem, it will have low accuracy because of poor learning 



capability. If the network is too big, it will also have reduced accuracy, due to overfitting on the 

known data and losing the skill to generalize predictions for unknown data 

Another parameter, that can differentiate the networks, is the training function, the 

algorithm that controls the learning process and the optimization of the set of weights. The steps 

of the learning process are the forward propagation, the loss calculation and the 

backpropagation. The forward propagation is the computation of the network’s output based on 

the inputs. In the first iteration the weights are initialized either randomly or by the user based 

on his existing knowledge and in any other iteration they are corrected based on the previous 

value. The loss calculation step is the calculation of the delta between the actual and the 

predicted value. The most common loss function is the Mean Squared Error (MSE) for 

regression problems and the Cross Entropy Loss for classification. Lastly, the backpropagation 

is the process of updating the weights by transferring the error value through the network, at 

the opposite direction of the forward propagation. The training algorithm defines the method 

for updating the weights. The simplest method is the Gradient Descent. The loss function is 

also a parameter for investigation, but in this study the Cross Entropy Loss function was chosen, 

based on literature review. 

The last of the parameters is the stop criteria, the condition which needs to be fulfilled for 

ending the learning process. There are several stop criteria, like the maximum number of 

epochs, convergence of loss function and training time. The idea is that all different criteria 

have a target value and the learning process will be terminated, when any of them is fulfilled. 

The best scenario is of course to fulfill the convergence of the loss function, which indicates a 

good prediction accuracy. The reason for having more that one stop criteria is because maybe 

one is never fulfilled, regardless of the iteration number, and in that case the training would 

never stop. 

 

4.1.4.3. Evaluation Metrics 

 

The evaluation metrics are indicative of the network’s quality. Based on the evaluation 

metrics the quality and efficiency of the network are established and different networks can be 

compared and ranked. For classification neural networks these metrics are accuracy, precision, 

recall and F1 scores. 

Accuracy, the most common and widely understandable parameter, is the network’s ability 

to predict correctly, the true class, and is expressed as the percentage of the correct predictions 

divided by the total predictions. The higher the accuracy is, the more are the correct predictions. 

Accuracy is the most important performance indicator in machine learning models. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 [%] 

 

The metrics precision and recall are easier to explained per class, or in a binary 

classification problem, and then raised in a multi-class level. In binary classification problems, 

the unknown portion belongs either to class A or class B, or in different words, either belongs 

to class A or not. Instead of asking the question: “In which class does the object belong?”, the 

question is rephrased to: “Does the object belong to class A?”. If the object does belong to class 

A the answer is positive and if it doesn’t the answer is negative. This type of problems exist in 

the majority of medical test, e.g. “Is the woman pregnant?”, “Is the patient ailing from this 

disease?”. The predictions that classify the unknown quantity in class A are considered positive 

predictions and the others negative. The predictions correctly classified as A are true positives 

and the ones wrongly classified as A are false positives. Similarly, the prediction correctly 



categorized as non-A are true negatives and the rest, wrongly categorized as non-A, as false 

negatives. Now that these terms are explained, is easy to define the metrics precision and recall. 

Precision is the percentage of the correct positive predictions divided by the total amount 

of positive prediction, or simpler “Out of all the positive predicted examples, how many are 

actually positive?”. The total positive predictions are the summary of the true positives and the 

false positives. High precision means that if a case is predicted positive, it is very likely that it 

actually is positive. There are some applications, where the precision is more important that the 

accuracy. An example is face identification problems, where is very important that only the 

authorized users are recognized. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 [%] 𝑜𝑟

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [%] 

 

Recall is the percentage of the correct positive predictions on the actual positive cases, or 

“Out of all positive case, how many were actually predicted as positive?”. Medical diagnosis, 

especially in high-risk disease detections, is a field where recall is very important, as the patients 

that are positive to the disease must be identified and not considered as healthy, to start the 

treatment immediately. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 [%] 𝑜𝑟

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [%] 

 

Lastly, F1-score is a combination of precision and recall. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

A good visualization of the evaluation metrics is the confusion matrix. 

 
Table 9 – Confusion Matrix for Binary Classification 

  Predicted Class 

  Positive Negative 

True Class 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

In multi-class classification problems, precision and recall are calculated for every class 

individually, in the same way as they would be calculated in a binary classification case and are 

called precision per class and recall per class. The metrics for the whole model are occur from 

averaging the precision and recall per command. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑖

𝑐𝑙𝑎𝑠𝑠 𝑁

𝑖=𝑐𝑙𝑎𝑠𝑠 𝐴

𝑁⁄  

 

𝑟𝑒𝑐𝑎𝑙𝑙 = ∑ 𝑟𝑒𝑐𝑎𝑙𝑙|𝑖

𝑐𝑙𝑎𝑠𝑠 𝑁

𝑖=𝑐𝑙𝑎𝑠𝑠 𝐴

𝑁⁄  

 

  



4.2. Testing process 
 

The training part is done, when the investigation converges to one final architecture of the 

ANN. For that network, the accuracy, the precision, the recall and the F1-scores are calculated. 

In this application, accuracy is the most significant of the evaluation metrics and precision and 

recall are of similar importance. When checking the overall error, is important to check the 

individual errors per command. It is interesting to see if the model has the same almost accuracy 

throughout the classes, if in case of wrong prediction, it confuses the words that sound similar 

to human ears and identified which commands are usually miss-predicted and which are the 

most likely predictions. 

Still this evaluation is not enough. The model should be tested in real-time recognition with 

different users, to check the performance in that case as well. Until now the evaluation was 

based on the testing subset, which belongs to the same dataset as the training set, which means 

the samples are produced from the same individuals in both sets. In order to confirm the 

calculated accuracy, the model is tested by other users. 

 

4.2.1. Speech Processing 

 

The real-time recording is directed to the same speech processing algorithm, to be prepared 

the same way as the dataset. The steps are again: 

• Signal pre-processing: 

 Noise removal and frequency balancing 

 Signal segmentation into frames 

 Power spectrum calculation 

• Feature extraction: 

 MFCCs calculation 

 

This time the processing of the audio is real-time, so it’s important the algorithm’s needs in 

time are not too big. When created the dataset, it was not that evident, how much time the script 

needs to compute the coefficients, but here it’s a good opportunity to check. 

 

4.2.2. Command Prediction 

 

The MCFFs table is given to the pre-trained ANN. All the 18 commands are tested several 

times to ensure that the model is behaving as expected. It’s good to store the real-time 

recordings and use them later on to enrich the dataset and continue the model training. It is 

possible, when obtaining new data, to combine them with the original dataset and improve the 

networks accuracy. 

 

 

  



5. Results and analysis 
 

In the previous chapter, the methodology was detailly explained and analyzed. This section 

presents the practical components of this study, including method implementation and results 

analysis. Here are discussed findings from the ANN investigation and the evaluation of the final 

network. Additionally, results from supplementary studies are included, to examine the effect 

of different pre-processing techniques. For example, is evaluated the recognition without pre-

emphasis and with different window functions. 

 

5.1. Training process 
 

5.1.1. Vocabulary definition and recording 

 

The most common formats for audio files are WAV or MP3. In the majority of the 

publications, researchers prefer the WAV files, because they include more information for the 

signal and span the full spectrum of frequencies audible to humans. On the other hand, MP3 

files are compressed and part of the information is lost, but they occupy less memory. There are 

several public datasets online, with voice commands in WAV format, but only limited ones have 

single-word recording for robotic applications. The most suitable one, for this study, is the 

Speech Commands Dataset [28], that contains a great variety of commands from many different 

speakers. In speech recognition application, the dataset should be representative, in terms of 

speakers’ masse and commands’ number, and sufficient to give the information needed. This is 

a word classification application, so the important information to be extracted is the spoken 

word. The audio signals contain a lot more information than just the word, as the speaker’s 

identity, the speaker’s sentiment etc. The model should be trained to ignore the unnecessary 

data and focus on the significant ones, e.g., the command identification has to be totally user 

independent. For that reason, is very important that the dataset is created by a variety of 

speakers that repeat each word several times. In Table 10 are summarized the most crucial 

parameters for the dataset to be representative. 

 
Table 10 – Recording parameters 

Parameter Notes 

Number of speakers  

Sex Male or female speaker 

Accent Pronunciation of the word 

Intensity How quiet or loud the command is pronounced 

Speed How fast or slow the word is given 

Starting time How long after the recording starts, the speaker gives the commands 

Background noise If there are additional, unwanted sounds included in the recording 

 

Speaker variety is a very vague requirement and must be determined better. For start, the 

number of speakers should be at least five to ten to have a good representation of different voice 

characteristics, and of course the more the merrier. Only by controlling the number of users is 

not a guarantee that the dataset is good enough, the speakers must have different characteristics. 

It is known that men and women don’t produce sounds with the same frequency spectrum; men 

normally produce lower frequencies than women. The recommendation is, therefore, to have 

the ratio between male and female speakers around 50%-50%. 

The accent of the users affects a lot the accuracy of speech recognition. Even in real life is 

hard to understand people with very strong or intense accents, even more for a machine learning 

model. To avoid extra confusion, the assumption, that only clear accents are used, is made. The 

dataset consists of well-pronounced English words and is recommended for the future users of 



the model to speak clear and in normal speed. The stalking speeds affects the clarity of the word 

and the length that occupies in the total signal. The network must recognize the commands in 

different speeds, of course within certain limits, so the dataset has a variety of talking speeds. 

The classification must be also independent of the timing the user starts and stops speaking and 

the background noise. Of course, in case of heavy noise the recording must be canceled by the 

user, but the presence of background sounds is essential for the learning process, as the robot is 

located in an industrial environment where noise will occur at any time. 

 

5.1.1.1. Keywords selection 

 

After defining the format for recording, the next step is to finalize the vocabulary. As 

mentioned in chapter 4.1.1, it is preferrable that the keywords don’t sound similar, because that 

would add extra difficulty and complexity to the model. If the model was designed to 

distinguish differences between very similar words, the vocabulary should have many more 

recordings per command and all of them very clearly pronounced. For simplicity, all the robot 

motions are considered joint-interpolated and not straight line and there is no need to specify 

that further. The keywords that specify straight-line motion (APPROS, DEPARTS and MOVES) 

are not relevant for now, but in future studies they should be included to add more functionality 

to the system. In a similar way, all the gripper’s operations are executed immediately and not 

in parallel with the next action (OPENI, CLOSEI, RELAXI). 

 
Table 11 – Final Vocabulary 

Command Type Command V+ Keyword Function 

Robot Motion 

Commands 

“Approach” APPRO Move towards a relative location. 

“Depart’ DEPART 
Move away from the current 

location. 

“Move” MOVE Move towards a specified location. 

“Joint” DRIVE Move a joint of the robot. 

“Speed” SPEED Set speed (% of the nominal). 

End Effector 

Operations 

“Up” OPENI 
Close the robot gripper 

immediately. 

“Down” CLOSEI 
Close the robot gripper 

immediately. 

“Relax” RELAXI 
Limp the robot gripper 

immediately. 

Numerical 

Commands 

“Zero” 0 Number. 

“One” 1 Number. 

“Two” 2 Number. 

“Three” 3 Number. 

“Four” 4 Number. 

“Five” 5 Number. 

“Six” 6 Number. 

“Seven” 7 Number. 

“Eight” 8 Number. 

“Nine” 9 Number. 

“Left” - Sign | negative direction. 

“Right” + Sign | positive direction. 

Other 

Commands 

“Stop”  BRAKE Abort current robot motion. 

“Break” BREAK 
Stop action until the current motion 

completes. 

“Go” DELAY Stop action for a period of time. 

Interface 

Commands 

“Robot” ROBOT Enable or disable one or all robots. 

“On”  Start of program. 

“Off”  End of program. 



Except the V+ commands, there are some additional “interface” commands needed for the 

system to work properly. The keywords “On” and “Off” for example are indicating the start and 

the end of the program. All the commands should be given between those two, in order for the 

robot to follow them. 

Unfortunately, the available dataset doesn’t contain all the needed commands. The aim is 

to build an initial model based on the available recordings, which later can be improved. The 

useful commands from the Speech Commands Dataset are summarized in Error! Reference s

ource not found.. The dataset contains around 2350 recordings per command, with some 

exceptions, like the commands “one” and “on” that have 2347 and 2330 audio files respectively. 

 
Table 12 –Vocabulary from Speech Commands Dataset 

Command 

Type 

Reference 

Number 
Command 

Number of 

Recordings 

Function 

Robot Motion 

Commands 

10 “Up” 2350 
Close the robot gripper 

immediately. 

11 “Down” 2350 
Close the robot gripper 

immediately. 

Numerical 

Commands 

0 “Zero” 2350 Number. 

1 “One” 2330 Number. 

2 “Two” 2350 Number. 

3 “Three” 2350 Number. 

4 “Four” 2350 Number. 

5 “Five” 2350 Number. 

6 “Six” 2350 Number. 

7 “Seven” 2350 Number. 

8 “Eight” 2350 Number. 

9 “Nine” 2350 Number. 

12 “Left” 2350 Sign | negative direction. 

13 “Right” 2350 Sign | positive direction. 

Other 

Commands 

14 “Stop” 2350 Abort current robot motion. 

17 “Go” 2350 
Stop action for a period of 

time. 

Interface 

Commands 

15 “On” 2347 Start of program. 

16 “Off” 2350 End of program. 

  TOTAL 42277  

 

From the recordings, the data table is created with rows to represent the different recordings 

and columns to represent the signal amplitude over time. The matrix has dimensions 

42277x16000. 

In the following figure (Figure 25) there are some examples to show the differentiation of 

the audio recordings. Unfortunately, the dataset includes also some outliers, like the figure in 

bottom right position. It’s not an easy case to ignore those outliers, but they can be avoided by 

analyzing the dataset and removing outlier points and with the proper noise cancellation 

method. Some of them might end up in the final dataset, but in that case the classifier won’t 

take them into account as they are not representative recordings. 

 



 

 

 
Figure 25 – Variety of recording in the dataset 

 

All recordings in Speech Commands Dataset have duration of one second. So, the user 

needs to give each command, also within one second. That is important to keep consistent the 

number and the size of the frames, during the processing. For duration 1 𝑠𝑒𝑐 and sample rate 

𝑓𝑠 = 16000 𝐻𝑧, each recording consists of 16000 samples. A second is not long, so the user 

should start right away to include the whole word clearly, but for these single-word commands 

it is enough. 

 

5.1.2. Pre-processing 

 

The dataset is stored in a matrix 42277x16000, where the number of rows is the total 

number of available recordings and the number of columns the resolution of the recording. An 

additional column is added in the beginning of the table, that contains the corresponding word 

to each recording. The pre-processing is done in Python. 



 
Figure 26 – Dataset table with original signals [42277x16001] 

 

5.1.2.1. Pre-emphasis 

 

Firstly, the pre-emphasis filter is applied on the dataset to improve the signal-to-noise ratio 

and balance the frequency spectrum. 

 

𝑦(𝑛) = 𝑥(𝑛) − 𝑎 ∙ 𝑥(𝑛 − 1), 𝑛 ⊆ [1, 𝑁] 
 

 
Figure 27 – Dataset table after pre-emphasis [42277x16001] 

 

Figure 28 shows some examples before and after applying the pre-emphasis filter. The 

representations of the original and emphasized signals are very similar, but the emphasized one 

is like a scaled down version of the original. Looking closer to the graphs, the emphasized 

signal’s amplitude is approximately half of the original one. 

 



 

 
Figure 28 – Pre-emphasis filter 

 

The pre-emphasis filter balances the frequency spectrum, by boosting more the higher 

frequencies and weakening the lower ones. At the same time, it removes effectively the 

background noise, especially when it’s generated by a constant source. As mentioned before, 

the amplitude of the signal after pre-emphasis is reduced approximately by half. Actually, the 

filter has effect similar to normalization, bringing the signals within the same amplitude range. 

That way the model becomes less sensitive to speech volume. If a word is pronounced louder 

in the majority of the recordings the model will connect the loudness with this word and when 

receiving high volume audios will tend to classify them as that word. Pre-emphasis filter 

reduces that risk, helping the model to focus in the right speech characteristics to classify the 

words. In Figure 29 is a zoomed in graph to understand better the effect of pre-emphasis filters. 

 

 
Figure 29 – Pre-emphasis filter effect 

 

The pre-emphasized dataset has the same table dimensions as the original one: 

42277x16000. 



 

5.1.2.2. Framing 

 

The framing parameters are the frame length and the overlapping length. The frame must 

be short enough to be considered as time stationary, but also, long enough to capture all the 

important speech characteristics. The choice of a few big frames minimizes the benefits of 

segmentation but requires less space and computational power. On the other hand, selecting 

very small frames increases the sensitivity in small sound fluctuations that might be even 

artificial and requires a lot more space. A bottle neck for the frame selection is the sampling 

ratio. The signal resolution, the amount of data points, is depended on the sampling frequency. 

It should be clear that the segmentation in shorter frames doesn’t increase the resolution of the 

audio recording. The overlapping frames reduce the information loss for splitting the signa and 

cover for the characteristics skewed or lost on the frame’s end-points. If the overlapping 

between frames is too long, then most of the sample points will be taken too many times into 

account. This probably won’t compromise the overall accuracy, but will feed the network with 

a lot unnecessary data. From literature review, the recommended values for frame length and 

overlap are between 15 − 25 𝑚𝑠 and 10 − 15 𝑚𝑠, respectively. The frame length is chosen to 

be 25 𝑚𝑠, to occupy less memory, and overlap 15 𝑚𝑠. 

 For sampling frequency 𝑓𝑠 = 16000 𝐻𝑧 the frame length and overlap are converted from 

time to samples: 

 

𝑓𝑟𝑎𝑚𝑒−𝑙𝑒𝑛𝑔𝑡ℎ = 𝑓𝑟𝑎𝑚𝑒−𝑠𝑖𝑧𝑒 ⋅ 𝑠𝑎𝑚𝑝𝑙𝑒−𝑟𝑎𝑡𝑒 ⇒ 𝑓𝑟𝑎𝑚𝑒−𝑙𝑒𝑛𝑔𝑡ℎ = 400 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

𝑓𝑟𝑎𝑚𝑒−𝑠𝑡𝑒𝑝 = 𝑓𝑟𝑎𝑚𝑒−𝑠𝑡𝑟𝑖𝑑𝑒 ⋅ 𝑠𝑎𝑚𝑝𝑙𝑒−𝑟𝑎𝑡𝑒 ⇒ 𝑓𝑟𝑎𝑚𝑒−𝑠𝑡𝑒𝑝 = 160 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

The number of frames per signal is calculated: 

 

𝑛𝑢𝑚−𝑓𝑟𝑎𝑚𝑒𝑠 = 𝑟𝑜𝑢𝑛𝑑 (
𝑠𝑖𝑔𝑛𝑎𝑙−𝑙𝑒𝑛𝑔𝑡ℎ − 𝑓𝑟𝑎𝑚𝑒−𝑙𝑒𝑛𝑔𝑡ℎ

𝑓𝑟𝑎𝑚𝑒−𝑠𝑡𝑒𝑝
) = 98 𝑓𝑟𝑎𝑚𝑒𝑠 

 

In case the sound signal cannot be divided in integer number of frames, the last frame will 

have shorter length or zero values should be added to the original signal. In order to have perfect 

integer division, the signal should have length equal to: 

 

𝑝𝑎𝑑−𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑛𝑢𝑚−𝑓𝑟𝑎𝑚𝑒𝑠 ∙ 𝑓𝑟𝑎𝑚𝑒−𝑠𝑡𝑒𝑝 + 𝑓𝑟𝑎𝑚𝑒−𝑙𝑒𝑛𝑔𝑡ℎ ⇒ 

⇒ 𝑝𝑎𝑑−𝑠𝑖𝑔𝑛𝑎𝑙 = 16080 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

80 columns with zero values are added at the end of the original signal. 

 



 
Figure 30 – Pad signal dataset 

 

The signal is split in 98 frames with 400 samples per frame. The dataset after framing is 

reshaped into a table 42277x39200. 

 

 
Figure 31 – Framed dataset 

 

The signal divided into frames looks like the ones in Figure 32, where the different colours 

represent the different frames. 

 

 
Figure 32 – Framed signal examples 



It is obvious, that for the different recordings the frames are representing different part of 

the command. As an example, frame number 30 in the left picture doesn’t include any part of 

the phoneme, when in the right picture it is located in the middle of it. 

 

5.1.2.3. Hamming Window 

 

Hamming window function is applied to each frame to improve the transition between the 

frames, reduce the spectrum leakages and improve the frequency resolution. The Hamming 

window function is the following: 

 

𝑤(𝑛) = 0.54 − 0.46 ∙ cos (
2 ∙ 𝜋 ∙ 𝑛

𝑁 − 1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1 

 

After applying the function, the main aim is to have the same value at the edges of each 

frame. That is important because is frames is handled by FFT as periodical and if the ends are 

not matching then discontinuity rises, which leads to spectrum leakages. By leading the end-

point values to zero, the information contained in this part of the signal is lost, but thanks to the 

overlapping segments it is included in the next or previous frame. In the following image 

(Figure 33) is shown the effect of window applied on a frame a. of the original and b. of the 

emphasized signal. 

 

 
Figure 33 – Window function on original and emphasized signal 

 

It is interesting to see how other window functions are modifying the audio signal. Figure 

34 shows the representation of the different functions and the final form of the signal. All of 

them, except Hamming Window, have zero amplitude at the edges of the frame and maximum 

in the middle. 

 

 

 



 
Figure 34 – Window functions 

 

Figure 35 shows the window filter applied in three consecutive frames. It is visible that the 

parts of the signal, which the amplitude is minimized in one frame, is maximized in the previous 

or next one, preserving all the necessary information for the classification. 

 

 
Figure 35 – Window functions 

 

The dataset after the window filter application has the same table dimensions as before: 

42277x39200. 

 

5.1.2.4. Fast Fourier Transform (FFT) 

 

Finally, to complete the signal pre-processing the Fast Fourier Transform is applied on each 

frame to calculate the frequency representation of the time domain signal. The recommended 

Fourier lengths are 256 or 512; here is chosen 512. 

 

𝑋[𝑛] = ∑ 𝑥[𝑛] ∙ 𝑒−𝑗∙
2𝜋
𝑁

∙𝑘∙𝑛

𝑁−1

𝑖=0

 

 

In the figures below are some examples of spectrum for different recordings. On the vertical 

axis is the Frequency [kHertz], on the horizontal is time [sec], or sample number and the color 

represent different magnitudes. The position relatively with the horizontal axis shows the 

moment in time that the word was pronounced. The pattern of the color plot shows the energy 

distribution among different frequencies. 

 



 

 
Figure 36 – Frequency Spectrum “one” 

 

 

 

 
Figure 37 – Frequency Spectrum “seven” 

 

In Figure 36, there are the spectrums for two different recordings of the command “one” 

and in Figure 37the spectrums of the command “seven”. It’s obvious that the spectrums of the 

same commands follow similar patterns. 

 

 



5.1.3. Feature extraction 

 

The process from the spectrum to the cepstrum and MFCCs generation is described below. 

 
Figure 38 –MFCCs pipeline [26] 

 

First, the frequency is converted from Hertz scale to Mel scale, then the logarithmic 

function is applied on the Mel spectrum. The logarithmic Mel Spectrum is converted to MFCCs 

cepstrum with the Discrete Cosine Transform.  

From the power spectrum and applying FFT, we have the Mel-spectrum. In the graphs 

below, is the visualization of Mel-scale spectrum. The same characteristic patterns of each 

command, are still visible. It is very interesting to see the spectrum representation to vary 

significantly for different commands and to match for the same commands. 

 

 

 
Figure 39 – Mel-frequency Spectrum “one” 



 
Figure 40 – Mel-frequency Spectrum “eight” 

 

In Figure 41 are shown the frequency spectrum and Mel spectrum for the same recording 

of the commands “six”, to look closer to the transformation from one scale to the other. 

 

 
Figure 41 – From Frequency to Mel Spectrum “six” 

 

The spectrum pattern is the same in both graphs, but in Mel spectrum plot the colors the 

magnitude is more uniform, especial at the high frequency range. As mentioned in previous 

chapters, the human ear cannot distinguish small variations in high frequencies, the way it can 

in lowers ones. So, it perceives different, but similar, high frequencies as the same frequency. 

Let’s focus on the top red, high-energy areas, between 6kHz-7kHz and the green, mid energy 



areas on top, between 7kHz-8kHz. The same are in the Mel spectrum is located above the 2.5 

Mel, but instead of having two different colors, the whole are is represented by dark red, which 

corresponds to high energy. So, the obvious difference in frequency spectrum is not noticeable 

for humans and thus is not included in the Mel spectrum. 

From the Mel-spectrum and by applying logarithmic function and DCT on top, we get the 

MFCC spectrogram, aka. the cepstrum. The previous spectrums were quite easy to identify the 

commands by the pattern and it could be a next step to try image recognition on them. When it 

comes to cepstrum representation, is not that obvious. Still there are some similarities between 

the MFCCs of the same command, but the identification is not so straightforward. 

 

 

 

 
Figure 42 –MFCC – Cepstrum “one” 

 
Figure 43 –MFCC – Cepstrum “six” 



5.1.4. Classification 

 

After the feature extraction the dataset is ready for the classification stage. Now is the 

moment of truth, as the classification results will show how good is the data preparation. With 

the right, optimal network it should be possible to achieve 80%-85% accuracy in the test subset. 

The classification part is done in MATLAB R2023b and the model is a pattern recognition 

network (patternnet). 

 

5.1.4.1. k-Fold Cross Validation 

 

As mentioned before, the k-fold cross validation method is used to obtain more 

representative accuracy of the ANN and have less bias. When a network is biased, it means that 

certain factors have high influence on it and the results are skewed towards a specific direction. 

From bibliography the recommended values are between 5 and 10 folds. There is also the 

approach of n-fold cross validation or Leave-One-Out Cross Validation (LOOCV), where the 

number of folds is equal to the number of observations. In this approach the testing set each 

time consists of only one observation and the process is repeated n times. This approach has 

the least biased results but is very demanding in computational power and very time consuming. 

It is chosen k=5, so the training set consists of 33822 observations and the testing set of 8455. 

The inputs are the 12 coefficients for each frame, for 98 frames and the classes are the 18 

different commands. 

It is important to check that the distribution of commands in both train and test subsets are 

in similar levels. If the training set includes uneven number of each word, the network will be 

obviously biased towards some class. The training subsets contains 80% of the total recordings. 

All different commands must be present in approximately same percentage, so the network is 

equally trained to recognize all commands and doesn’t tent to classify towards certain words. 

Similarly, for the test subset, that contains 20% of the total recordings, the commands should 

be equally distributed. It is expected that in training set there are 1600 recordings of each word 

and 400 in test set. 

 

5.1.4.2. Artificial Neural Network Parameters 

 

The main investigation is regarding the network’s architecture, with constant training 

function and stop criteria. The network has two hidden layers, as they are judged to be enough 

for this problem, and the number of hidden layers in each one is the object of the optimization. 

The training function used is the Scaled Conjugated Gradient algorithm (SCG). The SCG 

method is an evolution of the conjugated methods, but instead of using line search to define the 

optimal step, it calculates the interval based on a size scaling mechanism, improving the 

method’s efficiency. Additionally, it is using the Hessian matrix with second order information, 

unlike first order simple gradient method, accelerating the convergence. The maximum number 

of epochs is set to 500 to have a good balance of high accuracy and low computational time. 

The output from the feed forward network is the possibility, the observation to belong in each 

one of the 18 classes, but the desired output is the written command, so the class label. The 

transfer function “SoftMax”, does this job, by selecting the class with the highest probability. 

 

 

 

 

 

 



Table 13 – Initial ANN characteristics 

Type Pattern network 

k-fold cross validation k = 5 

Hidden layers 2 

Training function Scaled Conjugate Gradient ('trainscg') 

Train ratio 80% 

Test ratio 20% 

Transfer function SoftMax function ('softmax') 

Maximum number of epochs 500 epochs 

 

5.1.4.3. Artificial Neural Network Investigation 

 

The investigation of the network architecture is done with the brute force method; manually 

“all” of the possible architectures are examined and the one with the best accuracy is selected 

in the final model. The main criteria for the selection is the accuracy to be above 80%, but for 

the final network also the evaluation metrics are calculated, to evaluate deeper its performance. 

The concept is to start from simple, small networks and continue with larger, more complex 

ones until the desired accuracy is achieved. This way, the selected architecture will be almost 

the least complex possible. 

As first step, the different networks are trained in only ten words, the digits from 0 to 9, 

starting from small architectures with 30 neurons in each layer. 

 
Table 14 – Speech recognition models – Only Digits 

k = 5 30x30 40x40 50x50 60x60 80x80 100x100 

Fold No 1 69.5% 73.5% 75.8% 78.3% 82.0% 83.7% 

Fold No 2 61.5% 73.9% 75.4% 79.5% 80.2% 81.6% 

Fold No 3 69.2% 73.3% 76.7% 78.0% 80.8% 75.3% 

Fold No 4 69.6% 75.6% 76.9% 79.0% 80.6% 82.2% 

Fold No 5 70.6% 73.5% 76.0% 78.7% 80.1% 82.0% 

Average 68.1% 74.0% 76.1% 78.7% 80.7% 80.9% 

 

Even the 30x30 network has quite good accuracy (~70%) and by increasing the neurons to 

100x100 the accuracy exceeds the target (80%). By investigating more complicated 

architectures, 300x300 networks, the accuracy increases to almost 90%. In all cases the train 

accuracy is between 95% and 100%. 

 
Table 15 – Speech recognition models – Only Digits 

k = 5 120x120 140x140 180x180 250x250 300x300 

Fold No 1 84.3% 85.2% 86.3% 86.4% 88.7% 

Fold No 2 84.5% 84.7% 86.4% 87.9% 88.0% 

Fold No 3 83.8% 84.9% 85.2% 86.6% 86.9% 

Fold No 4 84.3% 85.8% 86.3% 87.0% 86.8% 

Fold No 5 83.8% 84.8% 85.4% 86.0% 87.2% 

Average 84.1% 85.1% 85.9% 86.8% 87.5% 

 

The next step is to add more commands for classification, expect the digits the words “Left”, 

“Right”, “Stop”, “On” and “Off” are added to the dataset, increasing the classes from 10 to 17. 

The expansions of the vocabulary – almost double the initial classes – leads to accuracy drop 

approximately 10% for the same network architectures.  

 

 



Table 16 – Speech recognition models – 17 Commands 

k = 5 80x80 100x100 120x120 140x140 180x180 250x250 

Fold No 1 67.5% 70.7% 74.2% 73.4% 77.5% 78.6% 

Fold No 2 69.3% 71.4% 73.3% 74.3% 76.4% 78.9% 

Fold No 3 68.0% 72.6% 75.2% 75.9% 76.8% 81.1% 

Fold No 4 67.8% 71.7% 74.4% 76.1% 76.6% 74.3% 

Fold No 5 67.2% 69.8% 73.4% 74.6% 77.8% 79.4% 

Average 68.0% 71.2% 74.1% 74.9% 77.0% 78.5% 

 

The command “Go” is added in the dataset, to form the final version of the vocabulary. 

With the new dataset, the networks are trained again. For the same architecture, with the 

addition of one extra command, the accuracy drops by1%-2%, but is still able to catch the target 

(80%), with the 300x300 model. 

 
Table 17 – Speech recognition models – Final Dataset 

k = 5 120x120 140x140 180x180 250x250 300x300 

Fold No 1 73.3% 74.1% 74.6% 77.8% 80.3% 

Fold No 2 70.5% 74.3% 74.5% 76.3% 81.1% 

Fold No 3 73.5% 74.5% 73.6% 74.9% 80.4% 

Fold No 4 71.0% 74.0% 76.1% 80.2% 81.0% 

Fold No 5 73.4% 74.8% 76.5% 77.0% 81.2% 

Average 72.4% 74.3% 75.1% 77.2% 80.8% 

 

The results from this initial study, set the foundations and limits for the next steps of the 

investigation. By increasing the complexity of the network structure, the improvement in the 

testing accuracy is still noticeable, which shows that the direction is correct and the absolute 

best performance hasn’t been achieved yet. Of course, in smaller architectures the benefit in 

accuracy is bigger with the same number of neurons increase, compared with the benefit in 

larger networks. It is also clear, that there is not point of using networks with less than 100 

neurons per layer, as their accuracy is less than 70%. The networks, so far, are of squared setup, 

meaning that both layers have the same number of hidden neurons. For the next step, the brute 

force method is applied for architectures between 100x100 and 850x850, with interval of 50 

neurons. 

  
Table 18:ANN accuracy investigation – part 1 

  Hidden Layer #2 

  100 150 200 250 300 350 400 450 500 Mean 

H
id

d
e
n

 L
a
y
e
r 

#
1

 

100 70.70% 71.03% 72.59% 71.78% 72.99% 71.73% 73.98% 73.40% 74.96% 72.57% 

150 72.32% 74.49% 75.03% 74.96% 75.86% 75.27% 75.76% 75.34% 76.84% 75.10% 

200 75.63% 75.81% 76.73% 77.73% 76.17% 76.00% 78.16% 76.78% 77.02% 76.67% 

250 77.29% 77.31% 77.56% 77.98% 77.93% 78.92% 78.23% 79.13% 77.12% 77.94% 

300 78.02% 77.85% 77.16% 77.53% 78.13% 77.92% 77.41% 79.39% 79.34% 78.08% 

350 78.17% 78.58% 77.76% 78.80% 78.88% 75.57% 79.13% 78.25% 79.70% 78.32% 

400 78.89% 78.83% 79.28% 80.23% 80.16% 79.60% 79.57% 79.87% 78.61% 79.45% 

450 79.17% 80.15% 78.70% 79.35% 79.26% 79.43% 80.16% 80.07% 80.60% 79.65% 

500 79.63% 79.81% 80.57% 79.37% 80.00% 79.96% 79.77% 78.06% 79.77% 79.66% 

550 79.9% 80.2% 80.2% 80.4% 78.8% 79.6% 80.5% 79.9% 80.1% 79.96% 

600 79.9% 79.7% 80.2% 79.1% 79.1% 79.1% 80.9% 79.5% 80.6% 79.79% 

650 80.2% 80.6% 80.7% 79.4% 80.2% 80.2% 80.7% 81.4% 78.0% 80.14% 

Mean 77.49% 77.86% 78.04% 78.05% 78.12% 77.77% 78.68% 78.43% 78.56%  



In Table 18 are summarized the results for different architecture combinations. The number 

of neurons in layers 1 is set as 𝑛1 and 𝑛2 is the number of neurons in second layer. The columns 

are of constant 𝑛2 and different 𝑛1, and the rows are of constant 𝑛1 and different 𝑛2. In the first 

table are the results for 𝑛1∈ [100,650] and 𝑛2∈ [100,400]. For each column and row, the average 

accuracy is calculated. The conclusions from these results are: 

▪ The minimum accuracy, 70%, occurs for architecture 100x100. 

▪ The maximum accuracy is around 80%-81% and exists for different combinations. 

▪ The increase in layer 1 size is more effective than the same increase in layer 2. By 

observing the average per row, the accuracy improves, with incremental increase 

of 𝑛1, more in the first steps (between 100 and 300 almost 2% per increment), less 

in the middle (0.5% until 500 neurons) and in the end the delta is almost zero. The 

average value per column, doesn’t follow the same trend, and is almost same 

throughout for all different sizes of layer 2 and equal to 78%. 

▪ The same change (e.g., increase layer 1 by 50 neurons) is more beneficial in smaller 

architectures, than in more complex ones. This makes sense, when reaching closer 

to the maximum performance the potentials are less. 

▪ The best accuracy can be achieved with several combinations. 

 𝑛1=400, it should be 𝑛2≥300 

 𝑛1=500 or 𝑛1=600, it should be 𝑛2≥200 

 
Table 19:ANN accuracy investigation – part 2 

  Hidden Layer #2  

  400 450 500 550 600 650 700 750 800 800 Mean 

H
id

d
e
n

 L
a

y
e
r 

#
1

 

550 80.5% 79.9% 80.1% 79.6% 81.3% 81.0% 81.2% 80.8% 80.6% 80.6% 80.65% 

600 80.9% 79.5% 80.6% 81.0% 80.5% 81.6% 80.9% 81.7% 81.3% 81.3% 80.95% 

650 80.7% 81.4% 78.0% 80.4% 80.1% 78.0% 79.9% 79.1% 78.5% 78.5% 79.65% 

700 80.7% 81.4% 78.0% 80.4% 80.1% 81.7% 79.5% 81.6% 80.0% 80.0% 80.43% 

750 80.2% 81.5% 81.2% 81.0% 79.2% 81.8% 81.6% 81.0% 81.1% 81.1% 80.79% 

800 80.3% 79.7% 81.7% 81.1% 80.4% 81.4% 81.7% 81.9% 81.7% 82.1% 81.01% 

Mean 80.30% 80.32% 79.77% 80.59% 80.26% 80.91% 80.81% 81.01% 80.32% 80.76%  

 

Table 18Table 19 includes combination the trends and findings are similar. For these, more 

complex architectures, the accuracy can reach 82%, but the improvement is not that big; for 

double size of the network (from 400x300 to 800x500) the benefit is only 2%. 

It seems that the accuracy follows a trend similar to logarithmic, from 𝑛1=100 until 𝑛1=400 

the accuracy delta is 10%, and from 𝑛1=400 until 𝑛1=800 only 2%. The model’s sensitivity to 

the size the second hidden layer, is of similar trend as with the first layer size, but scaled down, 

to smaller deltas. From the results is clear that the performance of the artificial neural networks 

is affected more by the first layer size, than the rest. That is reasonable, considering that the 

information flow is from the input layer to the first hidden layer and then to second hidden 

layer. If the first layer doesn’t have the correct structure, the performance will be limited by 

default. The following graphs show the same trend. 

 



 
Figure 44 –Test Accuracy for different sizes of hidden layer #1 

 

 
Figure 45 – Test Accuracy for different sizes of hidden layer #2 

 

 

Figure 44 demonstrates the relation between accuracy (vertical axis) and first layer’s size 

(horizontal axis). The different colours represent different numbers of neurons in layer #2. In 

Figure 45 is plotted the network’s accuracy for variant size of layer #2. Here the different 

colours stand for different size of layer #1. Comparing the two figures it’s obvious that the 

relation with the overall accuracy is very different: the second hidden layer doesn’t have the 

same influence as the first. In general, it’s reasonable to assume that the first layer’s structure 

sets the accuracy level and the increase in the number of neurons in second level does the 

finetuning. 

From the investigation, is not clear which architecture is the best, since the requirement for 

80% accuracy, can be achieved with different combinations. It is worth to examine mire that 

one options further and use the evaluation matrix to take the final decision. 

 



5.1.4.4. Evaluation Metrics – ANN 600x450 

 

Here are the classification results for the 600x450 network. The overall accuracy is 80.7%, 

which remains at the same level in all five folds. The performance is very balanced, as all the 

evaluation metrics are very close to each other. In Table 20 are all the metrics for this network. 

 
Table 20 – Test Accuracy 600x450 

 Fold No 1 Fold No 2 Fold No 3 Fold No 4 Fold No 5 Average 

Accuracy 81.4% 79.5% 80.5% 80.9% 81.1% 80.7% 

Precision 80.1% 78.5% 80.3% 81.0% 81.1% 80.7% 

Recall 79.7% 80.3% 78.5% 79.9% 79.4% 80.7% 

F1-score 79.8% 79.3% 79.4% 80.4% 81.2% 80.7% 

 

The confusion matrices for three, out of five folds, are shown in the graphs below and give 

an indication for the recognition balancing for the different commands. Their behaviour is very 

similar. 

 
Figure 46 – Confusion matrix k-fold1 – 600x450 

 
Figure 47 – Confusion matrix k-fold2 – 600x450 



 
Figure 48 – Confusion matrix k-fold3 – 600x450 

 

The individual classes have a deviation of 10% in their accuracy. The accuracies are in 

general above 75%, but in all different folds, there are three, approximately, classes that their 

accuracy is around 70%. The miss-predictions seems to be random and not follow any pattern. 

For example, it would be expected to confuse the commands “one” (No2) and “on” (No16), or 

“on” (No16) and “off” (No17), as the sound can be similar, but the model doesn’t show this 

kind of sensitivity. In all cases, the word “zero” (No1) is one of the best predicted classes, where 

“down” (No12) is one of the worst. 

The commands “two” and “three” have very good percentages, much higher than “five” or 

“down”. When the user is using the model, this difference in accuracy would rise, and in some 

words the classification performance would be lower than in others. 

 

 

  



5.1.4.5. Evaluation Metrics – ANN 500x200 

 

Here are the classification results for the 500x200 network. The overall accuracy is 79.7%. 

All the metrics, for each fold, all on the exact same level, which is a bit strange to be that close 

(within 0.2%). 

 
Table 21 – Test Accuracy 500x200 

 Fold No 1 Fold No 2 Fold No 3 Fold No 4 Fold No 5 Average 

Accuracy 80.2% 78.4% 80.1% 80.1% 79.9% 79.7% 

Precision 80.7% 78.2% 80.2% 80.1% 79.9% 79.8% 

Recall 80.8% 78.3% 80.2% 80.1% 79.9% 79.8% 

F1-score 80.7% 78.2% 80.2% 80.1% 79.9% 79.8% 

 

The confusion matrices for three, out of five folds, are shown in the graphs below and give 

an indication for the recognition balancing for the different commands. 

 

 
Figure 49 – Confusion matrix k-fold1 – 500x200 

 
Figure 50 – Confusion matrix k-fold2 – 500x200 

 



 
Figure 51 – Confusion matrix k-fold3 – 500x200 

 

The 500x200 network, follows the same trends and patterns as the 600x450, with slightly 

lower accuracy, but the difference is almost insignificant. 

  



6. Conclusions 
 

This master thesis focuses on the development of a speech command recognition model 

based on artificial neural networks and MFCCs coefficients. The main part of the thesis was 

focused on finding the right method for signal pre-processing and vocal feature extraction. The 

second part was the training of an ANN model for 18 command classification. The commands 

were chosen for an industrial robot application, as a future goal would be to implement this 

model in the laboratory to communicate with the robot. The signal processing approach is the 

filtering of the signal to remove the main noise quantity and balance the frequency spectrum, 

the segmentation of the signal in smaller frames, which can be considered stationary with time, 

and the extraction of the Mel-Frequency Cepstral Coefficients, by applying the Discrete Fourier 

Transform, converting to Mel-scale and back in time domain with the Inverse Discrete Fourier. 

For the machine learning process, the object is an artificial neural network for pattern 

recognition. The model’s architecture was the main part of investigation, to be able to learn 

from the dataset and predict with accuracy 80% the unknown commands. 

This project is a very good starting point to involve with AI development and speech 

processing. The methodology described and used covers all the fundamentals of speech 

recognition. Is both challenging and interesting to understand and analyse the hearing process 

and perception of sounds, find the equivalent mathematic parameters and function and create a 

model to mimic that from scratch. The key findings are summarized in the following list 

• Human speech contains a lot of information regarding the identity of the speaker, their 

sentiment situation and of course the words pronounced. Humans are able to 

understand and process all this information at once, when models are focusing on one 

task at a time. The right pre-processing of the signal and the calculation of the 

mathematic portions that contain the important information are key steps for speech 

recognition. 

• The splitting of the signal into smaller frames, allows to handle each part as time 

stationary. The segmentation gives the necessary focus to smaller details of the signal 

(especially time dependent ones) that they would be lost is the processing was on the 

whole signal. When separating the signal, is very beneficial to use overlapping frames 

to minimize the information lost, especially on the frame’s edges. Windowing functions 

are vital for the frames to behave properly. 

• Regarding classification methods, there are many possible options, but whichever used 

must be optimized for the specific application. When using a feed-forward neural 

network, its architecture is the number one key factor for investigation. When using 

multiple layers. The first hidden layer is the most important and defines the 

performance boundaries of the system, where the other layers are finetuning the results. 

• Using simple and small size structures leads to light models, but under-educated to the 

dataset, especially in this type of complex problems. Using big, complex structures, 

gives more flexibility to the model and broadens its accuracy. When pushing to the 

limit and using a model toο big for the case study, the model tends to overfit on training 

data and loses the ability of generalization. 

• The quality of the dataset, or how representative and rich is, can be a real bottle neck 

for achieving high performance. From literature review the rule-of-thumb is that there 

should be at least 1000 recording for complex problems and from thousands of 

speakers. The existing dataset contains 2350 recordings per commands from thousand 

speakers, with different voices, pronunciations and accents. So, it is considered 

representative. 

• The accuracy on the test subset of Google’s Speech Commands Dataset is around 80% 

and accepted according to the requirements, but it’s expected to be less for commands 



from random speakers. It is recommended to try the dataset with many different users, 

starting point can be 10 and then expand till 100, and check if the accuracy remains in 

higher levels, or drops significantly. 

  



 

7. Future Steps 
 

7.1. Improvements 
 

This study is the first approach to develop a machine leaning model for speech recognition. 

The findings and results from this study are good and promising, but there are many areas to 

improve and finetune. Regarding the dataset, the vocabulary that the network can recognize is 

not enough for manipulation of a robotic arm. It was not possible to find an existing dataset 

with all the necessary commands and on the other hand, the creation of a custom dataset would 

be very time consuming and required a big amount and variety of speakers. One recommended 

improvement would be the generation of a larger dataset with all the needed commands, most 

of them were mentioned above. For expanding the dataset, the same trained model can be used. 

As mentioned before, it is recommended to test the ANN, not only on Google’s Speech 

Commands Dataset, but with different users, to ensure that the accuracy remains stable. For the 

results to be valid, there should be tried many users, with variety in voice, accent, pronunciation 

etc. The users should be more than 10 and if possible, reach 100 or more. 

Regarding the classification network, only artificial neural networks with two layers were 

investigated. It would be interesting to see more complicated networks, of three or more hidden 

layers, especially if the classes increase to recognize more words. Also, it would be insightful 

to compare one-to-one the optimum artificial network with other classification models, like 

Naïve Bayes (NB), Random Forest (RF) and Nearest Neighbour (k-NN) models or 

convolutional neural networks (CNN). A different approach would be to use convolutional 

neural networks (CNN) for image recognition and instead of computing the MFCCs the model 

would classify the commands based on the visualization of the MFCCs or the frequency 

spectrum. 

 

7.2. Additional Studies 
 

The objective of the projects is to build a machine learning model for voice command 

recognition, to be coupled with an industrial robot arm. In the current study, the only 

consideration of the robot, was for defining the vocabulary, since the development of the 

computer-robot interface was not included in the thesis scope. It would be very interesting to 

check the recognition object “in action” and couple it with the robot interface. All the network’s 

classes should be connected with different robot’s actions, so the recognition for each command 

leads to a robot action. For this to be done there are two things needed. First one is the 

correlation between the written word (predicted class) and the V+ command. For example, the 

prediction “approach” should direct to the command “MOVE”, or even better the sequence of 

the predictions: “MOVE”, “five”, “zero”, “slash”, “two”, “zero”, “slash”, “two”, “zero”, should 

indicate the V+ command: “MOVE (50, 20, 30)”.  V+ is the language to program Staubli RX 

90L and is used in many industries, including system programming, web development, and 

game development. The main advantage is its compilation speed, which makes it as fast as C 

and suitable for real time applications. The interface code will transform the abstract single-

word commands into meaningful V+ code commands. So, the one recommended addition is the 

development of the interface and V+ codes. 

 

 

  



8. Bibliography 
 

[1]  B. Copeland, "Artificial Intelligence definition," Encyclopaedia Britannica, 2024. 

[Online].  

[2]  J. Holdsworth and M. Scapicchio, "Deep learning vs. machine learning," IBM American 

multinational technology corporation, 2017. [Online]. Available: 

https://www.ibm.com/topics/deep-learning. 

[3]  A. L. Samuel, "Some Studies in Machine Learning Using the Game of Checkers," IBM 

Journal of Research and Development, p. 21, 1959.  

[4]  R. Karjian, "History and evolution of maching learning: A timeline," TechTarget, 13 June 

2024. [Online]. Available: https://www.techtarget.com/whatis/A-Timeline-of-Machine-

Learning-History. 

[5]  W. Pitts and W. McCulloch, "A logical calculus of the ideas immanent in nervous 

activity," Bulletin of Mathematical Biology, p. 17, 1943.  

[6]  D. Hebb, The Organization of Behavior: A neuropsychological Theory, 1949.  

[7]  A. Turing, Computing Machinery and Intelligence, Mind, 1950.  

[8]  Y. LeCun , Y. Bengio and P. Haffner, Backpropagation Applied to Handwritten Zip Code 

Recognition, MIT Press, 1989.  

[9]  S. Albahli, F. Alhassan, W. Albattah and R. U. Khan, Handwritten Digit Recognition: 

Hyperparameters-Based Analysis, MDPI Applied Science, 2020.  

[10]  M. Pinola, Speech Recognition Through the Decades: How we ended up with Siri, 2011.  

[11]  D. Spicer, "AUDREY, Alexa and more: A history of automatic speech recognition," 2021. 

[Online]. Available: https://computerhistory.org/blog/audrey-alexa-hal-and-more/. 

[12]  H. Kumari, J. Biji and K. A. Navas, "A Novel Objective Audio Quality Measure," 10th 

National Conference on Technological Trends, 2009.  

[13]  UNIVERSAL ROBOTS, "Best Applications of Robotic Arms," 2022. 

[14]  UNIVERSAL ROBOTS, "Types of Robotic Arms," 2022. 

[15]  E. M. Rosales and Q. Gan, "Forward and Inverses Kinematics Models for a 5-dof Pioneer 

2 Robot Arm," University of Essex - Department of Computer Science, 2002. 

[16]  Staubli, Arm - RX series 90B family, 2008.  

[17]  P. Makrylakis, "Industrial robot programming through voice commands," National 

Technical University of Athens, Athens, 2023. 

[18]  A. Techhnology, "V+ Language Reference Guide," 1997. 

[19]  A. Technology, "V+ Language User's Guide, Ver. 12.1," 1997. 

[20]  B. Automation, "15 Robot End Effector Types and Selection Criteria," 2022. [Online]. 

Available: https://www.b2eautomation.com/insights/15-robot-end-effector-types-and-

selection-criteria. 

[21]  A. T. Ashraf, A. S. Hasanen and F. N. Mohammad, "Voice recognition system using 

machine learning techniques," Elsevier, April 2021.  

[22]  A. N. S. S. M.M. Hasan, "An approach to voice conversion using feature statistical 

mapping," Elsevier, p. 21, May 2005.  



[23]  D. Eringis and G. Tamulevičius, "Improving Speech Recognition Rate through Analysis 

Parameters," De Gruyter, 2014.  

[24]  S. K. Kumar, B. Yazdanpanah and D. G. S. N. Raju, "Performance Comparison of 

Windowing Techniques for ECG Signal Enhancement," International Journal of 

Engineering Research, p. 4, December 2014.  

[25]  M. Puckette, "Taxonomy of filters," in Theory and Techniques of Electronic Music, 

University of California, San Diego, World Scientific, 2003.  

[26]  V. Tiwari, "MFCC and its applications in speaker recognition," International Journal on 

Emerging Technologies, p. 4, February 2010.  

[27]  G.-C. Vosniakos and P. Benardos, "Artificial Neural Networks in Manufacturing 

Systems," National Technical University of Athens. 

[28]  P. Warden, "Speech Commands: A public dataset for single-word speech recognition - 

Copyright Google 2017," [Online]. Available: 

http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. [Accessed 

2017]. 

[29]  V+ Language Users Giude Version 12.1, USA, 1997.  

[30]  R. M. V. V. L. Svitlana Maksymova, "Software for Voice Control Robot: Example of 

Implementation," Open Access Library Journal, p. 12, 2017.  

[31]  L. Muda, M. Begam and I. Elamvazuthi, "Voice Recognition Algorithms using Mel 

Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques," 

p. 6, March 2010.  

[32]  S. Khawatreh, B. Ayyoub, A. Abu-Ein and Z. Alqadi, "A Novel Methodology to Extract 

Voice Signal Features," International Journal of Computer Applications, vol. 179, p. 4, 

2018.  

[33]  H. Hofling, T. Berglund and A. Vaara, "Audio Compression," Uppsala University, 

Uppsala, 2002. 

[34]  J. P. Egan and H. W. Hake, "On the masking pattern of a simple auditory stimulus," The 

Journal of the Acoustical Society of America, pp. 622-630, 1950.  

[35]  J. V. Tobias, "Low-frequency masking patterns," The Journal of the Acoustical Society of 

America, pp. 571-575, 1977.  

[36]  B. Y. D. G. S. N. R. K.Sravan Kumar, "Performance Comparison of Windowing Techniques 

for ECG Signal Enhancement," International Journal of Engineering Research, p. 4, 

December 2014.  

[37]  W. L. Hosch, "Machine Learning definition," Encyclopaedia Britannica, 2024. [Online].  

[38]  A. Bryson and Y.-C. Ho, Applied optimal control, Hemisphere Pub. Corp., 1975.  

 

 

  



9. Appendix - Scripts 

9.1. Python Script – Signal Processing 

 

Read input signal: 
sample_rate, signal = scipy.io.wavfile.read(filepath) 

time = len(signal)/sample_rate 

dt=np.arange(0,time,1/sample_rate) 

 

Pre-processing: 
Pre-emphasis 

pre_emphasis = 0.97 

emphasized_signal = np.append(signal[0], signal[1:] - pre_emphasis * signal[:-1]) 

 

Framing 

frame_size = 0.025 

frame_stride = 0.01 

 

frame_length, frame_step = frame_size * sample_rate, frame_stride * sample_rate  # Convert from 

seconds to samples 

signal_length = len(signal) 

frame_length = int(round(frame_length)) 

frame_step = int(round(frame_step)) 

num_frames = int(np.ceil(float(np.abs(signal_length - frame_length)) / frame_step))  # Make sure 

that we have at least 1 frame 

pad_signal_length = num_frames * frame_step + frame_length 

z = np.zeros((pad_signal_length - signal_length)) 

pad_signal = np.append(signal, z) # Pad Signal to make sure that all frames have equal number of 

samples without truncating any samples from the original signal 

indices = np.tile(np.arange(0, frame_length), (num_frames,1)) + np.tile(np.arange(0, num_frames * 

frame_step, frame_step), (frame_length, 1)).T 

time_indices = indices/sample_rate 

frames = pad_signal[indices.astype(np.int32, copy=False)] 

 

Hamming Window 

frames_window = frames.copy() 

frames_window *= np.hamming(frame_length) #Hamming window 

 

Fast Fourier Transform 

NFFT = 512 

mag_frames = np.absolute(np.fft.rfft(frames_window, NFFT))  # Magnitude of the FFT 

rows, cols = mag_frames.shape 

#print(f"Magnitude Frames \nNumber of frames: {rows} \nNumber of FFt points: {cols}") 

 

pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2)) # Power Spectrum 

rows, cols = pow_frames.shape 

#print(f"Power Frames \nNumber of frames: {rows} \nNumber of FFt points: {cols}") 

frequency = np.linspace(0, sample_rate/2, len(pow_frames.T)) 

 

Frequency Spectrum 

col = 5 

row = math.ceil(num_frames/col) 

Columns = np.arange(0,col) 

Rows = np.arange(0,row) 

Size = np.arange(0,num_frames) 



# Create grid 

Column = np.tile(Columns, row) 

Column = Column[:num_frames] 

Row = np.array([]) 

for r in Rows: 

    Row = np.concatenate((Row, np.tile(int(r), col)[:num_frames])) 

Row = Row.astype(int) 

Row = Row[:num_frames] 

Grid = pd.DataFrame({"Row":Row, "Column":Column}) 

 

Feature Extraction: 
Mel-scale 

nfilt = 40 

low_freq_mel = 0 

high_freq_mel = (2595 * np.log10(1 + (sample_rate / 2) / 700))  # Convert Hz to Mel 

mel_points = np.linspace(low_freq_mel, high_freq_mel, nfilt + 2)  # Equally spaced in Mel scale 

hz_points = (700 * (10**(mel_points / 2595) - 1))  # Convert Mel to Hz 

bin = np.floor((NFFT + 1) * hz_points / sample_rate) 

 

fbank = np.zeros((nfilt, int(np.floor(NFFT / 2 + 1)))) 

for m in range(1, nfilt + 1): 

    f_m_minus = int(bin[m - 1])   # left 

    f_m = int(bin[m])             # center 

    f_m_plus = int(bin[m + 1])    # right 

 

    for k in range(f_m_minus, f_m): 

        fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1]) 

    for k in range(f_m, f_m_plus): 

        fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m]) 

filter_banks = np.dot(pow_frames, fbank.T) 

filter_banks = np.where(filter_banks == 0, np.finfo(float).eps, filter_banks)  # Numerical Stability 

filter_banks = 20 * np.log10(filter_banks)  # dB 

 

MFCCs 

num_ceps = 12 

mfcc = dct(filter_banks, type=2, axis=1, norm='ortho')[:, 1 : (num_ceps + 1)] # Keep 2-13 

(nframes, ncoeff) = mfcc.shape 

n = np.arange(ncoeff) 

 

Create Excel Files with MFCCa values: 
excel_file_path = os.path.join(excel_path, f"{filename}.xlsx") 

# Create a new Excel workbook and add a worksheet 

workbook = openpyxl.Workbook() 

worksheet = workbook.active 

# Write the NumPy array to the worksheet 

for row in mfcc: 

    worksheet.append(list(row)) 

workbook.save(excel_file_path) # Save the workbook to an Excel file 

 

 

 

  



9.2. MATLAB Script – ANN Training 
 

%% This scrip uses brute force to optimize the architecture of an Artificial Neural Network 

clear all 

clc 

 

%% Load dataset 

load Commands.mat\dataset.mat 

uniqueValues = unique(dataset(:,1)); 

numRows = size(dataset,1); 

numCols = length(uniqueValues); 

randomOrder = randperm(numRows); 

datasetNew = dataset(randomOrder, :); 

 

dataIn = datasetNew(:,2:end)'; 

dataOut_ = datasetNew(:,1)';                                                % 1 x #Recordings: array that contains the 

reference number of each recording 

dataOut = zeros(numCols,numRows);                                           % #Commands x #Recordings: table 

that contains 0-1 

for i = 1:numRows 

    dataOut(dataOut_(i)+1,i) = 1; 

end 

%% Cross-Validation Sheme - Train Validation and Test 

k = 5; 

c = cvpartition(numRows,"KFold",k); 

for i = 1:k 

    trainSet(:,i) = training(c,i); 

    testSet(:,i) = test(c,i); 

end 

%% Labels 

classLabels = ["zero" "one" "two" "three" "four" "five" "six" "seven" "eight" "nine" "down" "up" "left" 

"right" "stop" "on" "off" "go"]; 

categories = categorical(classLabels); 

categories = reordercats(categories, classLabels); 

%%  

hiddenSizes = [500 200]; 

trainFcn = 'trainscg'; 

net = patternnet(hiddenSizes,trainFcn);                                     % Create a ML model 

net.divideParam.trainRatio = 1;                                             % Set data for training subset 

net.divideParam.valRatio = 0.00;                                            % Set data for validation subset 

net.divideParam.testRatio = 0.00;                                           % Set data for testing subset 

net.layers{3}.transferFcn = 'softmax'; 

 

for i = 1:k 

    trainSet_in{i} = dataIn(:,trainSet(:,i)); 

    trainSet_out{i} = dataOut(:,trainSet(:,i));                                % To use to train the network 

    trainSetout{i} = dataOut_(:,trainSet(:,i));                             % To use for confusion matrix 

    testSet_in{i} = dataIn(:,testSet(:,i)); 

    testSet_out{i} = dataOut_(:,testSet(:,i)); 

     

    trained_net = train(net,trainSet_in{i},trainSet_out{i}); 

    temp_train = sim(trained_net,trainSet_in{i}); 

    temp_test = sim(trained_net,testSet_in{i}); 

    [~, est_train{i}] = max(temp_train); 

    [~, est_test{i}] = max(temp_test); 

 

    est_train{i} = est_train{i} - ones(size(est_train{i},1),size(est_train{i},2)); 

    est_test{i} = est_test{i} - ones(size(est_test{i},1),size(est_test{i},2)); 

 

    a_train(i) = sum(trainSetout{i} == est_train{i})/size(trainSetout{i},2); 



    a_test(i) = sum(testSet_out{i} == est_test{i})/size(testSet_out{i},2); 

 

    for j = 1:length(uniqueValues) 

        s_train(i,j) = sum(trainSetout{i} == uniqueValues(j)); 

        s_test(i,j) = sum(testSet_out{i} == uniqueValues(j)); 

    end 

    %  

    % C_train{i} = confusionmat(trainSetout{i},est_train{i});  

    % C_test{i} = confusionmat(testSet_out{i},est_test{i});   

    % figure('Name',['TEST Confusion Matrix k = ', int2str(i)]) 

    % A = confusionchart(C_test{i}); 

    % A.RowSummary = 'row-normalized'; 

    % A.ColumnSummary = 'column-normalized';  

    % figure('Name',['TRAIN Confusion Matrix k = ', int2str(i)]) 

    % A = confusionchart(C_train{i}); 

    % A.RowSummary = 'row-normalized'; 

    % A.ColumnSummary = 'column-normalized'; 

 

end 

 

%% Labels 

classLabels = ["zero" "one" "two" "three" "four" "five" "six" "seven" "eight" "nine" "down" "up" "left" 

"right" "stop" "on" "off" "go"]; 

categories = categorical(classLabels); 

categories = reordercats(categories, classLabels); 

 

%% Confusion Matrix: TRAIN vs. TEST 

for i = 1:k 

    a_train(i) = sum(trainSetout{i} == est_train{i})/size(trainSetout{i},2); 

    a_test(i) = sum(testSet_out{i} == est_test{i})/size(testSet_out{i},2); 

    C_train{i} = confusionmat(trainSetout{i},est_train{i});  

    C_test{i} = confusionmat(testSet_out{i},est_test{i});   

     

    % Plot and save test confusion matrix 

    fig_test = figure('Name',['TEST Confusion Matrix k = ', int2str(i)]); 

    set(fig_test, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]); % Make figure full screen 

    A = confusionchart(C_test{i}); 

    A.RowSummary = 'row-normalized'; 

    A.ColumnSummary = 'column-normalized';  

    saveas(fig_test, ['Test_Confusion_Matrix_k_', int2str(i), '.png']); 

     

    % Plot and save train confusion matrix 

    fig_train = figure('Name',['TRAIN Confusion Matrix k = ', int2str(i)]); 

    set(fig_train, 'Units', 'normalized', 'OuterPosition', [0 0 1 1]); % Make figure full screen 

    A = confusionchart(C_train{i}); 

    A.RowSummary = 'row-normalized'; 

    A.ColumnSummary = 'column-normalized'; 

    saveas(fig_train, ['Train_Confusion_Matrix_k_', int2str(i), '.png']); 

end 

  



9.3. MATLAB Scripts – Real time classification 
 

%% Record audio file 

% file_name = 'unknown'; 

% Specify the audio recording parameters 

sample_rate = 16000; % Sample rate in Hz 

duration = 1; % Recording duration in seconds 

 

% Create an audiorecorder object 

recorder = audiorecorder(sample_rate, 16, 1); % 16-bit, 1 channel (mono) 

 

disp('Start speaking.'); 

recordblocking(recorder, duration); 

disp('End of recording.'); 

 

randomInt = randi([1, 8000]); 

% Get the recorded audio data 

signal = getaudiodata(recorder); 

% Save the recorded audio to a file 

audiowrite([folderPath2save, '\unknown (', num2str(randomInt), '.wav'], signal, sample_rate); 

signal = signal * (2^15); 

 

time = length(signal) / sample_rate; 

dt = 0:1/sample_rate:(time - 1/sample_rate); 

 

%% Pre-emphasis 

pre_emphasis = 0.97; 

emphasized_signal = [signal(1); signal(2:end) - pre_emphasis * signal(1:end-1)]; 

 

%% Frame parameters 

frame_size = 0.025; 

frame_stride = 0.01; 

frame_length = round(frame_size * sample_rate); 

frame_step = round(frame_stride * sample_rate); 

signal_length = length(emphasized_signal); 

num_frames = ceil(abs(signal_length - frame_length) / frame_step); 

pad_signal_length = num_frames * frame_step + frame_length; 

z = zeros(pad_signal_length - signal_length, 1); 

pad_signal = [emphasized_signal; z]; 

 

%% Generate frames 

indices = 1 + repmat(0:frame_length-1, num_frames, 1) + 

repmat(0:frame_step:num_frames*frame_step-1, frame_length, 1)'; 

frames = pad_signal(indices); 

 

%% Apply Hamming window 

frames = frames .* hamming(frame_length)'; 

 

%% FFT and Power Spectrum 

NFFT = 512; % Set your desired NFFT value 

mag_frames = abs(fft(frames, NFFT, 2)); 

mag_frames = mag_frames(:,1:NFFT/2+1); 

pow_frames = (1.0 / NFFT) * (mag_frames.^2); 

pow_frames_new = 10 * log10(pow_frames'); 

frequency = linspace(0, sample_rate/2, size(pow_frames, 2)); 

 

 

%% Mel filter bank 

nfilt = 40; 

low_freq_mel = 0; 



high_freq_mel = 2595 * log10(1 + (sample_rate / 2) / 700); % Convert Hz to Mel 

mel_points = linspace(low_freq_mel, high_freq_mel, nfilt + 2); % Equally spaced in Mel scale 

hz_points = 700 * (10.^(mel_points / 2595) - 1); % Convert Mel to Hz 

bin = floor((NFFT + 1) * hz_points / sample_rate); 

 

fbank = zeros(nfilt, floor(NFFT / 2) + 1); 

for m = 2:nfilt+1 

    f_m_minus = bin(m-1);   % left 

    f_m = bin(m);           % center 

    f_m_plus = bin(m+1);    % right 

 

    for k = f_m_minus:f_m-1 

        fbank(m-1, k+1) = (k - bin(m-1)) / (bin(m) - bin(m-1)); 

    end 

    for k = f_m:f_m_plus-1 

        fbank(m-1, k+1) = (bin(m+1) - k) / (bin(m+1) - bin(m)); 

    end 

end 

 

% Compute filter banks 

filter_banks = pow_frames * fbank.'; 

filter_banks = max(filter_banks, eps); % Numerical Stability 

filter_banks = 20 * log10(filter_banks); % dB 

 

%% MFCC computation 

num_ceps = 12; % Set your desired number of MFCC coefficients 

mfcc = dct(filter_banks')'; 

mfcc = mfcc(:, 2:num_ceps+1); 

 

%% Save to excel 

excelFilename = [folderPath2save, '\unknown (', num2str(randomInt), '.xlsx']; 

writematrix(mfcc, excelFilename) 

 

%% Convert matrix to input format for ANN 

data = reshape(mfcc.', 1, []); 

data = data'; 

 

%% Classification 

% load 'C:\Users\AnnaMaria\Documents\Industrial robot programming through voice 

commands\Classification\ANN_1' 

load 500x200.mat % Loads the pre-trained ANN 

 

classLabels = ["zero" "one" "two" "three" "four" "five" "six" "seven" "eight" "nine" "down" "up" "left" 

"right" "stop" "on" "off"]; 

 

guess = sim(trained_net,data); % Classification 

[~, command] = max(guess); 

 

Command = classLabels(command); 

 

disp(Command) 

 


