42
&

MPOMHOEV }
=

nvpPeopos

National Technical University of Athens
School of Mechanical Engineering

N

Development of a voice command recognition
model based on artificial neural networks.

Diploma Thesis

Anna Maria latridi

Supervisor Professor Panorios Benardos

Athens 2024

Abstract

In this thesis was studied the development of a voice recognition model based on artificial
neural networks for industrial applications. More specifically, the case study is the robotic arm
Staubli RX 90L located at the Manufacturing Technology laboratory, in National Technical
University of Athens. The neural network is designed to recognize single-word commands and
translate them into written text, for manipulation of the robotic arm. The development of the
robot interface is outside of the thesis-scope, but the aim is the model to be able to collaborate
with Staubli RX 90L in the future and therefore the commands used are relevant to the robot’s
action.

In the first step of the process, the vocabulary for recognition is decided based on the V*
language commands the robot understands. To achieve that, the foundation was to study V*
language and its most important and basic keywords and commands. For the audio dataset, a
part of Google’s Speech Commands Dataset was used. This dataset contains single-word
commands from a representative sample of human. The relevant commands are the digits from
0 to 9 and short words, like “on”, “off”, “stop” among others.

The pre-processing of the signals is done to be able to extract the characteristic features to
identify the spoken word. The pre-processing, is used to remove background noise form the
data and balance the frequency spectrum. The correct pre-processing is the one resembling
human’s hearing ability. Pre-emphasis, windowing and Fast Fourier transform, are few of the
key parameters for speech recognition.

The feature extraction phase is the most vital for successful recognition. The Mel-
Frequency Cepstral Coefficients (MFCCs) method is used to “normalize” the frequencies to the
scale that the human ear perceives them. The 12 MFCCs are characteristic of the input signal
and include the most important information. The coefficients are used to classify the unknown
recording to one of the known classes.

For the classification, a pattern recognition, artificial neural network (ANN) is used. To
select the most suitable model, the ANN parameters have been investigated, architecture,
training function etc. The final network structure is 600x450 neurons in hidden layer one and
two respectively. The final model recognizes in total 18 spoken commands with accuracy 82%.
There are still improvements to be done, but the main goals of the thesis have been achieved
and the results show that with the proper optimization ANNSs are a competitive and relatively
simple method for voice commands recognition.

HepiAnym

2tV mapovoa EpY0cio LEAETATOL 1] AVATTLEN LOVTELOL AVAYVOPICTIG POVITIKOV EVIOADV
LE XPNOTM TEYVNTOV VELPOVIKOV OIKTO®V, Yo Propmyavikés epapuoyés. H Propmyoviky
epappoy” etvar o poumotikdg Ppayiovag Staubli RX 90L mov Ppioketon 610 gpyactiplo Tov
Topéa Katepyacimv oto EOviké Metadpio ITolvteyveio. To vevpmvikd diktvo oyedldotnKe yio
Vo avoyvopilel LOVOAEKTIKEG PMVNTIKEG EVTOAEG KO VO TIG LETATPETEL GE YPOTTO KEIUEVO, UE
OKOTO TOV TPOYPOUUATIGUO TOL poumot. H avantuén tov poviélov Siemapng vToloyloth-
POUTIOT €lval EKTOC TOV PAGHOTOC TNG EPYOCING, OUMS 1) TPOOTTIKT] GLVEPYAGIOG TOV LOVTELOL
pe 1o pounot kabopilel o peydro Pabud T mpodiaypapés Tov i310V TOL HOVTEAOL.

To mpdto 0T14d10 NG epyaciag ivor o kabopiouds tov Aehoyiov mpog avayvdpion,
Baciopévo ot EVIOAES TNG TPOYPOUUOTIOTIKNG YA®Gcas V+, v onoia Kotohafaivel to
poundt. H yhdooa V+ avartoydnke and v etorpeio Adept Technologies kot oyediaotikég
KOTO KOPLo AOYO Y1, PLOUNYOVIKES EPOPUOYEG POUTOTIKOV GLGTNUATOV. Eival KatdAAnAn Yo
TOV €AEYYX0 POUTOT KIVNONC, Y10 GUGTAUATO, BLOUNYAVIKAG OPAOT|G KOl Yo SlEPYCieg E1G60S0V-
€€ooov. Ocov agopd v ekuddnon, eivor pio. moAd €bdkoAn yAmoco, pe ypnyopo self-
compilation kot omodotikn ypnon uvniune. Kopio yapaxtnpiotikd g givar) evotddeia, mov
Vv KoOeTA 100VIKY Yo, TNV Ol0EIPIoN OmOITNTIKOV POUTOTIK®V evepyelwv. H V+ eivat
OTOPOITNTN G KOTOOKELOOTIKEG Plopmyovieg Kol ovtokvnTofropnyovies Kot TpoceEPEL
SUVATOTNTEG LOVIEPVOV YAOCCHV TPOYPOULOTIGHOD.

To Ae&dyio g epappoyng kabopileton amd T1c eviorés g V+ kot omd v
dwbeoipdtra eviohdv amd 1o Google’s Speech Commands Dataset. H fifAio6nkn eviodov,
TEPIEYEL SLAPOPEC EVIOLEG OTNV OYYAIKT YADGGO, OTMC TO, ApOUNTIKA ynoio omd To Unoév
UEYPL TO EVVIA Ko GAAEG HIKPEG Kol OmAEG AEEELS, Ommg “on”, “off”, “stop” k.a. To Ae&loyio
OV YPNCLOTOONKE GTNV £PYAGI0 CLUTEPIAAUPAVETAL GTOV TOPUKAT® TIVOKA.

Table 1 — Aeidoyio epyoaiog

Reference Number Command Function
0 “Zero” ApOuntikn tiun.
1 “One” Ap1Opmticy T,
2 “Two” ApOuntikn tiun.
3 “Three” ApOuntikng Tin.
4 “Four” ApOpntikn Tpn.
5 “Five” ApOpntikn Tpn.
6 “Six”’ ApOpntikn Tn.
7 “Seven” ApOpntikn Tn.
8 “Eight” ApOpntikn Tpn.
9 “Nine” ApOuntkn .
10 “Up” Apeco dvorypo apméyng.
11 “Down” Apeoco KAgiopo apmdyng.
12 “Left” Apvntikod mpdonplo.
13 “Right” OeTkd TPOGTLLO.
14 “Stop”’ Axbpwon Tpéyovoag depyaciog.
15 “On” Apyn mpoypappatoc.
16 “off” Téhog mpoypaupaTog.
17 “Go” [avon tpéyovoag depyasiog.

Mo va yiver n avayvopion Tov EVIOA®V givol amapaitntn N 0ot TPOENEEEPYASIN TMV
NMNTIKOV oNUATOV Kot 1 €aymy] TOV YOPOKTNPIOTIKOY UAOMUOTIKOV TOPOUETPOV, TOV
0molMV 0 GUVOLACUOG 0ONYEL OTNV avayvdpilon ¢ evioinc. H mpostoacio tov onpatog,
TPW TNV OVOyVAOPLOT, TPOGOUOUDVEL TO TPOMO TPACANYNG KOl OVAALGNG TOV MYNTIKOV
onpdrtov tov avlpomvov eykepdiov. H npoenelepyacia mepiéyel mpdTov Kot KHPLov To 6Tdd10
¢ amobopuvPomoinong, 6mov ypnotponoodvtor eidtpa pre-emphasis yio va kabapicovv 10
onupata and meplrty kol aypnotn minpoeopia. To ¢iktpo avtd amoterel pio podnpotikn
GULVAPTNOT] VTTOAOYIGLOD TNG SLPOPAG SIAO0YIKDV CNUEIDV TOV GTLOTOC UE EVOV CUVTEAEGTY].
H cuvaptnon avt LEIOVEL TV GUVOMKT EVTAGT TOV CTUATOV, AEITOVPYDOVTAG OAV £V0L 100G
Kavovikoroinong. Mg autov tov Tpdmo ol GTLOTO EYOVV TEPIGGOTEPT] OLLOLOYEVELL.

Tnv amoBopvPonoinomn dtodéyetar 0 SLaY®PIoUOS TOL CTLOTOC GE EMUEPOVG TUNLLOTA, TPLV
T0 GTAA0 VIOAOYIGHOV TOV PAGHATOC. O AdYOG Y10 TOV KOTAKEPUATICUO TOV GYLATOS Eivan OTL
0 VTOAOYIGHLOG TOV PAGULATOS GUYVOTHTMV GTO GUVOAO TOL GLLATOG YAVEL TANpoQopia Yo TNV
YPOVIKY| €Edptnon tng ocuyvoTnToc. AvtiBeTa 0 VIOAOYIGHOS TOL QACLOTOS G LIKPOTEPO
TUAHOTO TOV GTHATOG, SIGQAAMEEL TNV XPpOoVIKT eEAPTNON TG GLYVOTNTAS, WS TANPOPOPia TOV
0o coppdider oy avayvoplon TV gvtoldv. H didomacn Tov oNUaTog og HKPOTEPO
dNuUIoVpYEl AGVVEYEIEG, O OTTOIEG 001 YOVV GE d1apPosg pacuatog. H dtappor| pdopatog eivat
otav epupavifovtarl cuyvoTnTEG, Kob OAO TO EDPOC, Ol OTOIEG OEV OVTIGTOLYOVV GE TTPOYIOTIKN
TAnpoeopioa, aALd o acvvéyeles. H amalolpn ToV acuveEEIDV EPYETOL GE GUYKPOVOT| UE TNV
dwakprrétnTa Tov onpatos. H cuvdptnon Hamming window, eEocpolilel amovoio dtappomdv
Kot Tontdxpova KoAr Swkprronta. Topa to ofpa glvor €100 Yoo TV €QAPUOYT TOL
dtokplTov petacynuoticpod Fourier (DFT).

H eoyoyn tov pacpatikdv cvvieleotov g kKhpatag Mel (MFCCs), anotelel T0 mo
Koiplo fripa yio TNV avayvmploT) EVIOADV. ApyiKd, TO ONUo LETacYNMATICETOL ad TV KAk
ouyvoTNT®V otV KAlpoaka tov Mel. H kiipaxe Mel eivat pio avtiinmrikn kKAlpaxe cuyvotntomv
UE 160mTEYOVTO OLUGTAUOTO GUYVOTHTOV 7OV OVTIAAUPAVOVTOL ©OC 1G0TEXOVCEG On’ TO
avBpamvo avti. O dvBpmmog dev £yl TNV 1610 eacONGio € OAEG TIG GLYVOTNTES GTIG YAUNAES
umopel Ko avayvopilel ToAd 0KoAo 0KOUO Kot TOAD HKPES LETAPOAES, EVA OTIC VYNADTEPES
1 OVTIANTTIKOTNTO TOL UELDVETOL KOIT OLUPOPETIKEG GUYVOTNTEG TIG AVTIAMOUPAVETOL MG 101eg N
napepeepels. I kabe éva and To Tppata, vroroyilovrar ot 12 pacpotikol cuvteheotés. Ot
(QOCUOTIKOL CUVTELECTEG AEITOLPYOLV O TALTOTNTO TMOV OLUPOPETIKAOV QOVNUATOV Kot
Kka016TOOV SUVOTN TNV JLOPOPOTOINGT TOV NYNTIKOV AéEemV. AVTol 0mOTELODV TNV €16000 TOL
VEVPOVIKOD JIKTVOV, Y10, TV KOTNYOPLOTOINGT AYVOGTOV EVIOAEC, GE YVMGTEG KAAGELG.

Mo ™mv avayvopion Tov eoVNTIKGOV EVIOAMV, YIVETOL ¥PNOT TEXVNTOV VELPOVIKMOV
SkTOV avayvoplong potifov. H emhoyn katdAAniov povtédov unyovikng pdbnong eivor
Koipla yio TNV EMTUYNUEVT] AVAYVOPIOT) TOV EVIOA®DV. Katd v ekmdvnon g SUTA®UATIKNAG
000nKe peydin éupacn oty 0PESNC TNG PEATIOTNG OPYLTEKTOVIKTG VEVPOVIKOD SIKTHOV, TPOG
v emitevén g péylomg amoddoons. To tedkd vevpwvikd diktvo emiéybnke pe 600
KPLUPEVOLS VEVPMOVEG GTO TPAOTO enimedo Kat 450 oto devtepo. H ouykpion moivmlokotepo
OPYLTEKTOVIKAV dgv Kpidnke amapaitnt, AAG o amotelovoe evdlapépovoa. diepedvnon. To
TeMKO povtédo avayvopilel 18 povntikéc eviodéc pe okpifeto 80%, vmd mpovmobécec. H
uéytom axpifeta eugaviCetor 6tav o1 AyVOGOTEC, TPO AVAYVMPLOT), AEEELS AVIIKOVY GTO GUVOAO
Google’s Speech Commands Dataset. Ot evtodég mov divovtal amd aveEdptnToug OUIANTEG
avayvopiletar pe akpifelo kovia oto 60%. Avtd dgiyvel onuadio VIEP-EKTAIOELONG KoL
advvapio yevikeoong TpoPAéyemy.

Ye KGbe mepimT®ON, M YPNON TEYVNTOV VELPOVIKOV SIKTO®V OBe®peital ovioyovioTIKn
nEB0S0G 0TO KOUUATL TNG AVOYVOPLONG EVIOAMY Kol UE HKPEG OlopBdoElg Umopel v QTacel
KaAOTEPES EMOOCELS.

Acknowledgements

First of all, I would like to express my gratitude to my supervisor assistant professor
Panorios Benardos, for the great collaboration we have and for trusting me with this interesting
topic, which gave me the opportunity to deepen my knowledge in machine learning and
improve my engineering mindset. His guidance and patience were vital throughout the whole
project.

I would also like to thank my friends and colleagues in university, Christos, Stathis and
Anastasia for their continuous support and love since day one. Of course, a big thanks to “my
partners in crime”, my teammates Stefania and Kostis, who made the university projects a good
learning and a fun process. I am grateful to have shared this journey with you!

Last but not least, I want to thank my parents and sister, for their unconditional love and
for always pushing me beyond my limits and supporting my dreams.

Anna Maria latridi
Athens, July 2024

Evyaprotiec

Apywcd, 8o nBela va evyaplotiom Waitepa Ttov enPAémovta enikovpo kadnyntr Havopo
Mnevapdo yio TNV eE0PETIKN GLUVEPYATTO [LOG KOL TTOV LoV EUTMIGTEVTNKE £V TOGO EVILAPEPOV
0épa, mov vnpée N apopun va epPabive TIg YVOGCELS LoV 6TO TTESIO TNG UNYOVIKNG Labnong
Kol v BEATIOOM TOV TPOTO OKEYNG LoV ®G unyovikog. H kabodnynomn kot 1 vrwopovi tov
vmp&av KaboploTtég, kad’ OAn TV ddpKelo TNE EPYOCING.

®a NBela emiong va gVYOPIGTACH TOVS GIAOLG Kol GLUEOITNTEG Lov XpnoTo, XTabn Kot
Avootacio Yo TNV cuveyouevn otypi&n Kot aydmn Toug on’ Ty Tpatn puépa. Ducikd, dev Oa
Uropohoo Vo TUPUAEIY® TOVG «GLVEPYOVS oL 610 EykAn oy Koot kot Xtepavia mov Ekavoy
T1G £PYOGIES TNG OYOANG TOpAY®YIKES Kot evydplotec. Eipon svyvodpmy mov potpacstikope poli
avtd 10 Tasiot.

Télog, £va TepAoTIO EVYOPLETO GTOVG YOVELS KOt TNV AdEPPT] LLOV Y10l TV OVIOIOTEAN QLY(TY|
TOLG KOl TTOV TTAVTOL [LE CTPOYVOLY TEPQ o’ To, Op1d Lov Kot otnpilovv ta Gvelpd Lov.

Avva Mapia lotpion
AbnMva, lodAtog 2024

Table of Contents

F N o1 5 2 T PO SPPRPR 2
L EC oY1 4 OO RPPPRTPPRRRO 3
ACKNOWIEAZEIMENES ...ttt sttt st st sb e saee s sare e 5
B0 PIOTIEG ettt et et r e b sae e st 6
TADLE OF CONLENLS.....eiuiiiieeiieitierie ettt ettt st sttt et e bt e s bt e saee et e e beesbeesaeesaeesane 7
LSt OF FIGUIES ..ttt n e s 9
LSt OF TaADIES ..ottt ettt st st 10
L. INEPOAUCHION c.oeeiitieiieeee ettt et ettt sttt e e b e sbeesaeesaneenneens 11
L1, THESIS SCOPE.c.verveeuterrieitentinieetesteste st st e e st ettt s et b et e st sbeebesbeeae e b e sbe e e e sbeeanenees 11
1.2, Main Challengescceevteruiruieienieniesie sttt ettt sttt sttt sttt sb e et e b seeeee b sanenees 12

2. LIterature REVIEW ..cc.eecuiiriiiiiiieeie ettt st ettt ettt st e st esbe e sat e satesabesbeenaeesaeas 13
2.1, Maching Learning........cccecueeueeiieenienienie ettt sttt et st be e 13
2.1.1. INEPOAUCTION ..ttt st 13
2,120 HISEOTY ittt sttt s b et e e s 13
2.1.3. Classification MOAEIS........cocveeriiriiniiiieeieereesee et eee e 15

2.2, SPEECh TECOZNILION ...eeuveiiiiiiiiiiiesiee ettt st 17
2.2.1. INEPOAUCTION ..ttt st 17
2.2.2. HISEOTY teetiiitiiete ettt ettt ettt st ettt b e b e b e st e eteere e 17

2.3 ACOUSLICS ueeteruieieeteetent ettt et et sb et b ettt a et s bt e b e s bt ebt e bt sbe et e s b e et e sbeentebesaeeneeane 18

3. Industrial TODOLIC QIS ..c..eeiirierieeienieetete ettt ettt sttt sb e bt sre b ene s 21
3.1, Staubli RX Q0L .ottt ettt st et st s 23
3.2. V' Language for industrial robot appliCations.........ccevververeeeeeresenierenieseereeeeennens 26
32,1, RODOE SPEEU..c.uiiiiiiiiiiieiierte ettt sttt sre et 26
3.2.2. Basic Motion OPErationsScecvereverrveerieereeseessesssesssessseesseeseesesssesssesssessseens 27
3.2.3. End-effector OPerationscccceeeverrieereenieenieniesieesieesreesieesseeseeeseessesnsessseens 27

4. Methodology Speech RECOZNITIONccceevvirviiiiniiiiiinicreee e 28
4.1, Training PrOCESS ..cceevirierieriieierienr ettt s 29
4.1.1. Vocabulary definition and reCOrdingccecvervverreerieerieerveenvuessreesreesieeseesees 29
4.1.2. PIE-PIrOCESSING c.veevveereereerieriieiiesteesieeseeseeseeesseesseesseessessssesssssssesssesssesssesssees 31
4.1.3. Feature eXIraCtiOonccceerereerierienientesieetesieete ettt sbeeaee b st eseesbessesbesbeennens 35
4.14. ClaSSTTICATION ..ttt ettt st sttt sbe e bt e st e e eee e 37

4.2, TESHNZ PIOCESS weuverveerirreeeerrireesresreeresreeeesre st esaesreeeesresseesresre e e e sresanesresmeenresreeneeane 42
4.2.1. SPEECH PrOCESSING ..vvvvviriiiiiierieeiiiesierie st esieesieesteeseeseeesseeeeeesseesseesreessnesssesnns 42

4.2.2. CommMANd PrediCtiONccovveeuvverieeieeiiiiireieeeeeeeeseiirre e e e e e ssseareereeeesssssssareeeeesesens 42

5. ReSults and analysSiS......cccercuereuieriiesieenieseereeseesee e e e e sree st e eeeebe e e sre e e e seesreeereenreens 43

5.1 TTAINING PTOCESS .veeveerreruiereertierteesteesteesitesstesteesteesbeesseesaeesabesseeaseesseesneesmeesnseenseens 43
5.1.1. Vocabulary definition and recCordingcecceverervererieeneneerenineeseseeeee 43
5.1.2. PrO-PrOCESSINE ...eeverrerueenierieeienieetentesieetesrtsee st sre e e sressee s sreesee b sneesesresaeennes 46
5.1.3. Feature eXtraCtioncccoireeviiniiieniinicrinii et 54
5.14. ClasSIfICAtIONeeveriiicie i 57

6. CONCIUSIONSeiiiiiieeie ettt ettt ettt sttt et e sbe e sat e st e sabe e beesbeesbeesaeesatesateenteens 66

7.2, Additional StUAIEScc.eeriiriiiieeseeee ettt 68

8. BIDHOZIAPNY . .eeiiieieieieee e e 69
L BN o] 153016 1 0. QR o) 01] 1 S USSP 71
9.1. Python Script — Signal ProCesSINg........ccevueriiriiiriienienienie ettt 71
9.2. MATLAB Script — ANN TTaiNiNgcceevverrereerienieeienieneeseseesieseeeesreseeeeesseesesees 73

9.3. MATLAB Scripts — Real time classificationcc.ccevvuereuirsiirneeneeneenieneeeieeiens 75

List of Figures

Figure 1 — Thesis flow Chart........cccoiiieieiinieneneeese et 11
Figure 2— Artificial intelligence, machine learning and deep learning...........ccoceevveevieeneennen. 13
Figure 3— The history of maching [€arningcccceveereerireeneninsenineee e 14
Figure 4— Modified National Institute of Standards and Technology (MNIST) database [9]. 15
Figure 5— Speech recognition JOUIMEYcccuerieriiriieiieeiiereente ettt 18
Figure 6— Absolute threshold of hearing (ATH).......cccoeveevirieieninieneneseeeeeee e 19
Figure 7— Auditory Masking........cccooueiiiiriienienieiie ettt st s 19
Figure 8— Threshold in quiet and masked threshold.............ccecceririinineiininceee, 20
Figure 9 — Industrial robotic arm types [15].....ccoveeverireerinieenieereseee et 21
Figure 10 — Staubli RX Q0Lcoiuiiiiiiiieieieee ettt s s 23
Figure 11 — Staubli RX 90L drawingsccccevereerenineenineenieneeeesiesieere et 24
Figure 12 — Staubli RX 90L WOrk envelop........ccocuieiieieiiiiniiiiinieeieeee et 25
Figure 13— Speech recognition methodology [21]cocveeieeneiniiniiiieeeeeeeceeeeeee e 28
Figure 14— Application WOTKFIOWccceiuiriiiiniiinecteeeeee et 28
Figure 15— Robot command WOrkfloW..........ccocuiiiiiiiiiiiiiieniieeeeeee e 29
Figure 16— Vocabulary transformccceoeeeereneerenieieneseeie et 30
Figure 17 — Speech recognition methodologycccoeeeerinieieninienieneeeseeeee e 32
Figure 18 — Stopband attenNUation..........ccceereerieriiriiieeeeesee ettt 33
Figure 19 — Different window functions in time domainc..cecevereereneeieenineeneneneeee 34
Figure 20 — Different window functions in frequency domaincocceeveevienicnsenieeneennen. 35
Figure 21 —Mel- and Hertz-scale relation [17]ccccceeveeiieneiniiniieeeseesee e 36
Figure 22 -MFCCS PIPEINE [26] ..cvevveereerririenienieeienieetenie sttt st st sre s eeesne e e 37
Figure 23 — Artificial Neural Network ArChiteCture........cceereereeriiniieeneesee e 38
Figure 24 — k-fold Cross Validation ViSualiZationccceceereeriveriieinieeneeniesiesressieeseeneens 39
Figure 25 — Variety of recording in the datasetecveeveereiniiniieiieeneeneesee e 46
Figure 26 — Dataset table with original signals [42277X16001]......ccccerveenieniiiniinieeieeneenn. 47
Figure 27 — Dataset table after pre-emphasis [42277X16001].....cccceeeveerieeriierieercrennreeneeneennnes 47
Figure 28 — Pre-emphasis fIlEercoiiiiiiiiiiiieiieeeeeee e 48
Figure 29 — Pre-emphasis filter €ffectccceeiiiiiiiiiiieee e 48
Figure 30 — Pad Signal datasel.........ceevveerieereerieniiiieeieenieeseesee e sreesteesaeesanesssesssessseenseessens 50
Figure 31 — Framed dataselccceeiueeiieenieenieiienie ettt ettt st s et 50
Figure 32 — Framed signal €XampleS........cevieriiriirsiienieenieneenie e e eseesieesenesenessesseesseeneees 50
Figure 33 — Window function on original and emphasized signalcccceveverevirererneeneennen. 51
Figure 34 — WIndow fUNCHONSeeiiiriiiiieeniieiieeie ettt ettt st 52
Figure 35 — WINdOW fUNCHIONS ..e..eevviiiiirieeniienie sttt steesteesreesaeesaeesabesseenseeneees 52
Figure 36 — Frequency SPectrim “OME”ccevereererereenineereeseeeesee e eeesre e 53
Figure 37 — Frequency SPectrum “SEVENccoeeverereeririenerrieeesre e eeesresreeseesnesnennes 53
Figure 38 -MFCCS PIPEINE [26] ..vvvvverveerieerieiriiiiieieesieesieeseeseeseeesseesseesseeseessssssssesssesssessses 54
Figure 39 — Mel-frequency SPectrtum “ONE™ccccevereerireenenirseeneseeesre e s 54
Figure 40 — Mel-frequency Spectrum “@IgNt™cccvveeerieerieerieeriienieeseeseeseesreeseesseeseeseees 55
Figure 41 — From Frequency to Mel SPectrum “SiX™ccverveereerrieeieeneeseesiessnesssessseesesneens 55
Figure 42 -MFCC — CePStIUmM “ONE™......ccvrveerrerreenirreeeenrineeneesresee s sreesse s eseesre e eseesresanennes 56
Figure 43 -MFCC — CePSIIUM “SIX .iecveireereereerreesreesieeseeseeseesssessseesessessssssssssesssesssesssees 56
Figure 44 —Test Accuracy for different sizes of hidden layer #1........cocceeeveeveninieninencene. 61

Figure 45 — Test Accuracy for different sizes of hidden layer #2..........cccccevvvveiinieninencenne. 61

file:///C:/Rep_AnnaMaria/Industrial%20robot%20programming%20through%20voice%20commands/Ιατρίδη%20Άννα%20Μαρία%20-%20Διπλωματική_24_Τελικό.docx%23_Toc172357974

Figure 46 — Confusion matrix k-foldl — 600X450.....c.ccccevviirriiiiiniiinieeieeeniee e enreesiee e 62

Figure 47 — Confusion matrix K-fold2 — 600X450.......ccccevirieneririeeneneeeneeeeeseeee e 62
Figure 48 — Confusion matrix k-fold3 — 600X450.......ccccevveeniiniiniiniieeeneesee e 63
Figure 49 — Confusion matrix k-fold1 — 500X200........cccccceereimiiriiniienienienieeeeeeeeeeeeen 64
Figure 50 — Confusion matrix k-fold2 — 500X200........cccccerierierirneeneneeseneeeereseeeesreeeeees 64
Figure 51 — Confusion matrix k-fold3 — 500X200........c.ccccveeriiniiniiniienienieneceeeeeeeeeeeen 65
List of Tables
Table 1 — ACEIAOTIOL EPYOGTOG: . eeveereerieerteeteetee st ee et st eiee et et e e bt e sbeesae e e e et e e sbeesbeesaeesaneeane 3
Table 2 — Classification vs. regression problemsccecveereereeriienieeneenieneese e 16
Table 3 — Staubli RX 90L SPECIfICAtIONS ...eveeuvirreeeeriirieniesieeiesteeeesie et sreeseene s 23
Table 4 — Staubli RX 90L WOrk €nvelop ...ccceivciiiriiiiiieiieccecce et 24
Table 5 — Staubli RX 90L amplitude, speed and resolutioncccovereeveenerieenenenseneneennens 24
Table 6 — Motion Control Operations [19]ccocierieriierieinienienie sttt 26
Table 7 — Keywords for Basic Motion Operationsc.ceeeereereeniierneeneeseeseesreesveesveesnens 27
Table 8 — Keywords for End-effector Operations...........cocceeeverereeneneenieneneenieneeesieseenens 27
Table 9 — Confusion Matrix for Binary Classificationcceceevvierieinieenieniienicnieeeeeeeen 41
Table 10 — Recording Parametersceveereerieriersieerieesieeniee st st ete et e sie e st e st s e beesneeseeas 43
Table 11 — Final VOCabUIATYccoiiiiiiiiieieiieieesee ettt s 44
Table 12 —Vocabulary from Speech Commands Dataset.........cc.cceevuerieeerieeneenienienieeseeseeeen 45
Table 13 — Initial ANN CharaCteriStiCsccervireerreririierereesieseeeenie st eeesreseestesreeeeseesreenens 58
Table 14 — Speech recognition models — Only Digitsccccecererieerireeneniniereseeeseseeiens 58
Table 15 — Speech recognition models — Only Digitscccoeeriiriiiiieinieenienieceeeeeeeeen 58
Table 16 — Speech recognition models — 17 Commands........coceeveerveeriieeneenieeneeneeneesieesneeens 59
Table 17 — Speech recognition models — Final Dataset.........ccccoeveerinienineneenineeeneneee, 59
Table 18: ANN accuracy investigation — Part 1cccceceeieeneenieniinieenee et 59
Table 19:ANN accuracy investigation — PArt 2ccveeveereereereerieesneenieeseeseeseesssessseesseessees 60
Table 20 — Test Accuracy 600XA50........euiierierieeieete ettt ettt st sbe e e sbeeneeas 62

Table 21 — Test Accuracy S00X200........eerierieriieriirieerieeneereesee e esreeseeseesaeesssessessseensessses 64

1. Introduction

1.1. Thesis Scope

In this thesis was studied the development of a voice recognition model based on artificial
neural networks for industrial applications. The study focuses on the implementation of
machine learning techniques for single-word speech recognition. The commands were chosen
for an industrial robotic arm application, as the aim is that the model can be used to manipulate
the robot to perform basic tasks, like approach an object, grab it in with the end-effector etc.
The case study robot is Staubli RX 90L, an articulated robotic arm with six degrees of freedom
(DoF), located at the Manufacturing Technology laboratory in National Technical University
of Athens (NTUA). These robots are usually used for welding, surfacing and pick-and-place
tasks in many industrial applications. The thesis workflow is described in the picture below.

Thesis scope Future studies
TTTTTTTTTTT T F5 P ~
Speech recognition i Computer-Robot interface \
1 |

. 5 H H |
> Pre-processing # Feature exiraction (lasmﬁ_c_atlon ‘I‘:"‘ " :
= (Pattern recognition network) JAR \
i

Figure I — Thesis flow chart

The role of the voice recognition object is to translate spoken words into written text. The
system’s input is the audio signal, recorded in real time by the user, and the system’s output the
corresponding command. The voice commands are recorded with ordinary microphone (phone,
computer), so no special equipment is required, and then processed through filters and functions
to extract the Mel Frequency Cepstral Coefficients (MFCCs). MFCCs contain the most
important information of the audio signal, and are used as input for an Artificial Neural Network
(ANN), which will correlate the recordings with the corresponding commands.

Briefly the methodology is:

e Signal pre-processing:
Noise removal and frequency balancing
Signal segmentation into frames
Power spectrum calculation
e Feature extraction:
MFCCs calculation
e (lassification:
Optimization of a pattern recognition ANN

The acceptance criteria the development of a model with accuracy higher than 80%.
Nowadays, the state-of-the-art speech recognition models can reach errors of 5%-10%. A
custom model of 80% performance is a good starting point, which has still some areas of
improvement and finetuning.

1.2. Main Challenges

During the development of the model there are many things to take into account that require
a lot of attention. The key, for the system to work successfully, is the correct pre-processing of
audio signals. It is important to identify and isolate the information of the voice command that
is distinctive for this specific command, so the recognition is possible and effective. If the signal
contains unnecessary sounds and noise or is missing specific characteristics, the accuracy of
the machine learning model is limited. It is crucial to find which parameters are distinguishing
the words from one another and find the mathematical portions to describe them. Only with
right processing the investigation and development of the machine learning model is valid. It
should be considered, also, that an audio signal contains a lot of information, for example
regarding the speaker’s identity, the intensity of the voice, potential sentiment condition and the
sound of the phoneme. In this application, the object of interest is the word that is pronounced
and not any other details. Therefore, the result must be insensitive to other characteristics and
disregard this extra information. It’s good to mention, that humans have the ability to
understand and analyze many different characteristics when listening to others, when Al can
generally perform one task at a time.

A challenge of speech recognition, is the variety and non-uniformity of human a speech
and thus of the recordings. People speak in different speeds, with different accents and voice
characteristics. These variations require a large representative dataset, so the model will be able
to identify the word, regardless of ither factors. In single-word voice recognition, where the
word is pronounced within a pre-defined time frame, the audio signals can vary a lot. The word
can be placed differently in that time framed and occupy smaller or bigger part of the total
duration, depending on the speech speed and the moment the user starts speaking. When the
signal is divided into frames the complexity intensifies, since the corresponding frames deviate
a lot from one another in different examples. The network should be trained to recognize
patterns between and within the frames to reach to the right conclusion.

For a prediction model to work effectively, except the suitable method, it is crucial to have
a good dataset. Good dataset consists mainly of two things: representative observations and
sufficient amount of data. The requirement for representative observations, is obvious
considering all the above. A poor dataset would make the final predictions very sensitive to
details and would lose the ability for generalization. The amount of data needed, depends on
the problem’s nature and the number of inputs. Speech recognition is a very complex problem
and the distinction between different words relies on the speech details. Additionally, the
network’s inputs are many, considering that, for each observation, 12 MFCCs are extracted per
frame. It is important to secure a good dataset for the smooth and efficient operations of the
system.

2. Literature Review
2.1. Machine Learning

2.1.1. Introduction

Artificial Intelligence (Al) is the ability of computers
and machines to simulate human capabilities and
intelligence to solve problems and perform task [1].
Machine Learning (ML) is the implementation of Al-
driven techniques into applications, to imitate how
humans learn from data and produce more data. ML is
only a part of the big spectrum that is called Al. A subset
of ML is Deep Learning (DL). DL is the application of
ML techniques with higher complexity used to extract

progressively higher-level features. Figure 2— Artificial intelligence, machine
learning and deep learning

It’s a very common mistake to confuse the concept of these three terms, so it’s very
important to distinguish them properly. Al is a wider term that refers to projects of developing
systems reinforced with human intellectual abilities. Machine learning and deep learning are
subcategories of artificial intelligence and are distinguished based on the learning method. Both
algorithms use neural networks as a learning technique from the data set [2]. The main
difference relies on the type of network and the training process. Neural networks consist of
interconnected nodes that transfer information similarly to biological neurons. The artificial
neurons are split in different layers, the input layer, the hidden layers and the output layer. Each
neuron is connected to others and has its own threshold and weight. The threshold controls
whether a neuron is activated or not, if it’s activated it passes the data to the next level, if not
no data are transferring forward. In all cases the networks are trained to predict what the data
represents.

Typical machine learning techniques are limited to supervised learning, meaning that
human expertise is necessary to categorize the data and assign labels. Deep learning procedure
is based on unsupervised training, so the objects extract features from large scale unlabeled data
[2]. Additionally, the deep learning models consist of higher complexity of layers and
connections. It’s very important, in order to be able to evaluate an Al technique, to be able to
evaluate the results and understand the explanation of the output. Rule of thumb, to increase
the accuracy, complexity increases as well and human understanding decreases. The selection
of an Al technique is often a trade-off between accuracy and control over the results

2.1.2. History

The history of artificial intelligence and machine learning starts after the 1940s decade and
continues until today, where it is more relevant than ever. The term “machine learning” was
introduced by Arthur Samuel in 1959 in his paper “Some Studies in Machine Learning Using
the Game of Checkers” published in IBM Journal of Research and Development [3]. He used
the game checkers to support that computer can be programmed to improve its own
performance by analyzing previous games. Samuel defines machine learning as the field of
study where computers have ability to learn from past experience. His work in the field of
computer gaming and artificial intelligence started earlier in 1952, when he created Checkers-
Playing Program”, the first self-learning program to play games [4]. He developed a program

to calculate the winning possibility in checkers for both players and explained that a computer
can outplay the programmer, with the right programming.

Development of’ Implementation of’
mathematical models learning algorithms to
based on neuroscience solve the Travelling
and human brain Salesman Problem Al in real-life Introduction of Deep
functionalities. (TSB) and problems. Learning.
Groundwork for A1 introduction of deep
and ML. learning.

| | |
e

1940 1950 ‘ 1960 1970 4 1980 1990 4 2000 2010 4 Today
Introduction of the terms Al progress reached a MNIST database of Expansion of machine
“Artificial Intelligence” deadlock. handwritten digits for learning models in all
and “Machine Learning” image recognition. aspects of life:
and formation of the first households,
computational models. healtheare,

manufacturing.

Figure 3— The history of machine learning

The first approach to machine learning was in early 40s, with the article "A logical calculus
of the ideas immanent in nervous activity" by Walter Pitts and Warren McCulloch in 1943 [5].
They developed a mathematical model of neural network based on the human thought process.
A similar study was published by Donald Hebb in 1949, "The Organization of Behavior: A
neuropsychological Theory", introducing the Hebbian theory, focusing on machine learning
based on human brain activity and behavior [6]. During this decade started the groundwork of
Al and the introduction of mathematical models mimicking the brain functionalities. Later, in
1950, Alan Turing sets the foundation of AI with his work "Computing Machinery and
Intelligence", with the controversial question: “Can a machine think?”” [7]. One year later, in
1951, Marvin Minskey and Dean Edmonds trained the first ANN, using 3000 vacuum tubes to
simulate a network of 40 neurons. The biggest milestone of the decade was the Dartmouth
Summer Research Project on Artificial Intelligence, John McCarthy, Marvin Minsky, Claude
Shannon and Nathaniel Rochester gathered some of the leading personalities in Al and
computer science to investigate about the future steps. It was there, when the term artificial
intelligence was firstly defined. In 1959 Arthur Samuel introduced the definition of machine
learning [3]. In the next decade, 1960s, the usage of machine learning algorithms escalated in
many scientific fields and problems, like solving of the Travelling Salesman Problem (TSP)
with the nearest neighbor algorithm and the foundation of Deep Learning (DL) were set. In
1966, the first ever chatbot, Eliza, was created, a computer program with human characteristics
capable of engaging in conversations. Eliza kicked-off the first generation of chatbots with
simple recognition capabilities and although they had big restrictions regarding their input data,
they showed that Al can soon be part of real life.

In the 70s, the progress reached a deadlock, due to limited amount of data and
computational power. In parallel, many governments terminated the fundings on Al projects.
Despite the difficulties, pattern recognition models continued to evolve slowly. In the coming
years, the study and usage of machine learning attracted the interest and engagement of an
increasing number scientists, but yet, machine learning was not a part of the reality. This was
soon to be changed, when LeCun with Bengio and Haffner in 1989 demonstrated how neural
networks can be applied to real-world problems, by sharing a convolutional neural network that
could recognize handwritten characters [8]. Ten years later, LeCun continued his work and
released the Modified National Institute of Standards and Technology (MNIST) database, a

huge dataset of handwritten digits, which was widely adopted as a handwriting recognition
evaluation benchmark and as a base for image recognition.

/AN O O T O

NGghHho@e
Noomtw
= &V LW
N0 £)
NEWLo
HNerrwy
Jean<wp
W ek R
N e oy
R AR RN
W~ NN cWwW~O
s NNLwP—0O
R oW —0

IZSS S XL REE
\7997992779999394924

Figure 4— Modified National Institute of Standards and Technology (MNIST) database [9]

During the early 2000s several key milestones took place. The rise of the big data enabled
the processing of large amount of data in real-time. The key attributes of big data are volume,
the amount of data generated and collected in petabytes and more, velocity, the real-time data
generation and processing speed and variety, the different type of data available, like texts,
images, etc. This change helped overcoming important obstacles and leading to evolution of
various methods. Speech recognition and natural language processing (NLP) became more
adept and laid the foundations for virtual assistants as Siri. The development of convolutional
networks enabled the improvements in classification and image recognition tasks.

Nowadays, machine learning is more relevant than ever and continues to evolve, offering
potential across industries. Deep learning and neural networks applied for speech recognition,
computer vision and autonomous systems are extensively used in healthcare, entertainment and
other industries. In healthcare, deep learning improves diagnostic accuracy and provides
personalized treatment in crucial conditions as cancer. In autonomous systems, ML thrives with
autonomous drones and vehicles which rely on computer vision for vehicle navigation and
pedestrian protection. Machine learning exceeds the scientific and industrial application and
becomes one of the main means in everyday life. In household machinery, smart home devices,
as voice assistants and thermostats, ramp up the comfort and home quality, robotic vacuum
cleaners make the everyday tasks easier and smart ovens offer extra safety and assist in cooking
process. Computers, smartphones and TVs have implemented Al techniques such as voice
recognition for user identification, image recognition for face identification and object
recognition, and all these for the overall improvement of user experience and extension of the
device’s capabilities. At the same, chatbots, such as ChaGPT, are capable of having full human-
like conversations in real-time and have access to huge database of information and are
gradually used more and more for professional and personal tasks.

2.1.3. Classification models

The machine learning prediction problems are categorized in regression and classification
problems. A regression model predicts a quantity from dataset of continuous real values, by
using independent inputs. The prediction must have minimum error from the target value.
Regression analysis is a statistical method to analyze data and make predictions by
understanding the relationships between variables and outputs. The regression can be linear and
non-linear. The main metrics to evaluate a regression model are the accuracy, the mean squared

error (MSE), mean absolute error (MAE) and R-squared (R?) scores. Examples of regression
problems, across different domains, are the prediction of a disease progress in medical
applications, the estimation of housing marketing value, weather predictions and others. In
manufacturing and production regression models can predict material and surface quality after
surface processing and treatment like milling, turning.

Table 2 — Classification vs. regression problems

Classification Model Regression Model
Target variables Discrete Continuous
Desired output | Decision boundary to separate categories Best fit trend to the dataset
Accuracy Accuracy
Evaluation Precision Mean squared error
metrics Recall Mean absolute error
F1 scores R-squared scores
Problem type Binary/Multi-class Linear/Non-linear

A classification model predicts the category/label of the data, from a dataset of discrete
values. The model should identify a decision boundary in order to separate the data to the
categories. In classification problems, the model should identify trends and dominant
characteristics in each category to classify data to the corresponding label. The main metrics to
evaluate a classification model are the accuracy, the precision, the recall and F1-scores. The
key components for classification are:

o Features: the input variables that the model categorizes,

e Labels: the output variables that the model predicts,

e Train set: the dataset used to train the model,

o Test set: the dataset used to check the accuracy of the model.

Image classification, speech recognition, face recognition and sentiment analysis are the
main ML applications of classification problems. In everyday life, user identification in smart
devices, via voice and face recognition, in healthcare, medical diagnosis based on patient’s
history and test results and in autonomous driving, vehicle navigation.

2.1.3.1. History

The history of classification models follows closely the progress of ML and statistical
analysis. In the 1950s, the first classification algorithms, Linear Discriminant Analysis (LDA)
and Logistic Regression, were used for binary problems. Later on, in the 1960s, the first
decision trees were developed. These models split the feature space into subsets and use a tree-
like model for decisions and their consequences, with conditional control statements. Neural
network development dominants in the 1980s, with Multi-layer Perceptions (MLPs) and
Backpropagation algorithms. MLP is a feedforward network of fully connected neurons and
non-linear activation function. Backpropagation is a model using optimization algorithm, to
train neural network. The first phase, called forward pass, the information is transferred through
the network layers until the output layers gives the prediction. Then, the prediction is compared
with the target value and error values and the gradients of loss are generated. The second phase,
named backward pass, consists of transferring the loss gradients backwards through the layers
and the weights are adjusted in the direction to reduce the loss, with the gradient descent
optimization. In the 1990s, the decision tree algorithm is developed to improve accuracy and
robustness, into random forest algorithm. In modern era, from 2000s till present, machine
learning has been evolved to deep learning and the simple artificial neural networks to
convolutional and recurrent neural networks. These networks have a significant performance
improvement in image, speech and text classification. The main challenge in this new era is the
lack of interpretability, due to the increasing complexity.

2.2. Speech recognition
2.2.1. Introduction

Speech recognition is a field of computer science that develops algorithms and models for
recognition and translation of spoken language into written text by computer machines. It
combines knowledge and research from other scientific fields, as computer science, computer
engineering, linguistics, acoustics and neuroscience. The automatic speech recognition (ASR)
resembles the human understanding of natural language. The models mimic the human ear
functionality, with filters and transform functions, and the brain activities, with neural networks.
The inverse process, the production of human speech, is called speech synthesis. The Speech
recognition can be used in many applications, such as virtual assistants (Apple Siri, Amazon
Alexa and Google Assistant), voice search and speech to text services, language translation,
gaming and education.

Natural Language Processing (NLP) is a subfield of speech recognition, which enables
computers to interact with humans through the natural language. With NLP computer are able
to both understand and produce physical language and contribute in actual conversation. NLP
simplifies everyday life with hands-free communication on smart devices and with computer
assistance in customer services. NLP combines computational linguistics machine learning
algorithms. Computational linguistics is a data science discipline for speech analysis. NLP is a
lot more complicated than single word classification, since it has the additional difficulty of
separating the words and identifying the most important words for analysis, by ignoring the

LT

ones like “the”, “and” etc. which don’t add meaning.
2.2.2. History

Historically, the speech recognition evolution follows the learning process of human
beings, from simple single word understanding, like babies, until skillful handling of complex
sentences and ability to answer challenging questions [10]. The first ever speech recognition
model was AUDREY, the Automatic Digit Recognizer, in 1952. AUDREY could recognize
digits from zero to nine with 90% accuracy, if they were given by his inventor [11]. Through
the 1950s and 1960s many similar machines have been developed in laboratories around the
world. One of the most important pioneers in continuous speech recognition is Raj Reddy. He
was the first who researched the problem of continuous speech, where the users didn’t need to
pause between different words. During this period there were two different approaches for
speech recognition. The first one was using pre-recorded template waveforms, after morphing
them to match the talking speeds, for comparison with the unknown signal. The second school
was based on complex rules from linguistic knowledge, to guess the unknown signal. In 1962,
at the Seattle World’s Fair (aka. Century 21 Exposition), IBM (International Business Machines
Corporation) introduced to the world “Shoebox machine, an improved version of AUDREY,
which, additionally to the ten digits, could recognize sixteen English words [10]. In 1970s,
speech recognition considered a lot of interest around the globe, mainly because of the fundings
from the U.S. Department of Defense. The Speech Understanding Research (SUR) program,
DARPA, was funding researches for five years with the goal of developing a model to recognize
one thousand words by 1967. As part of this program, the first model was Hearsey-I, a system
with spoken language as input and written text as output and was applied on chess tasks, due to
the syntax structure. The winner was Harpy, a system which could understand 1011 words and
introduced a more efficient search method called Beam Search. Both models were developed
by Raj Reddy’s PhD students.

In the 1980-decade, various new methods marked a milestone in speech recognition, like
the Hidden Markov Models (HMMs). The breakthrough of the method was the consideration
of unknown sounds as potential words, rather than just the match of sound patterns between
existing data and new inputs. By the end of this decade, speech recognition could be used by
not only scientists, with the Worlds of Wonder’s Julie doll, a doll which children could train to
understand their voices. Despite the big progress, until then, all models were able to understand
only single words, but not continuous speech, so the user should stop after each word. A second
limitation of these models was that they understood mainly their inventor or speakers they have
been already trained on. It was another of Reddy’s students, Kai-Fu Lee, who combined the
beam search with HMM to create SPHINX-I, the first system with speaker independence. In
the 1990s, computers with faster processors made speech recognition available for consumers.
Dragon, in 1998, launches the first product “Dragon Naturally-Speaking”, which could
understand natural speech with hundred words per minute, but needed training for an hour.

Until the early 2000s, speech recognition has reached accuracy over 80%, but models were
still struggling with statistical methods to guess between similar-sounding words. Speech
recognition gets a big boost with Google Voice Action in Androids and later on Google Voice
Search on iPhones. Google was able to use the computational power of Cloud and the large
data volume saved there, to identify user’s speech. In 2010, Google implemented “Personalized
Recognition”, which means the user voice search was saved to produce better results. That way
Google could constantly enrich its database.

9
N\ \ 1980-2000 \ 2000-present
D Statistic-driven Al Deep Learning Al

Probabilities/Prediction Neural Networks

Figure 5— Speech recognition journey

In a nutshell, speech recognition passed through three main phases. From 1950 till 1980 is
the era of knowledge-based Al and speech recognition relies on the matching with existing
templates. From 1980 until 2000 is time for statistic driven Al, where statistical, probabilistic
methods are implemented in the models to predict unknown signals as words. From 2000 and
onwards, Deep Learning Al dominates and speech recognition is combined with deep and
convolutional neural networks.

2.3. Acoustics

Psychoacoustics is the branch of acoustics and psychophysics involving the scientific study
of sound perception and audiology—how human auditory system perceives various sounds,
like speech and music. Based on the compression methods are used for reducing signal’s size
without decreasing sound quality and are called psychoacoustic methods.

The human auditory system can perceive frequencies between 2 Hz and 2 kHz and produce
sounds of frequencies between 85 Hz and 155 Hz, for male adults, and between 165 Hz and
255 Hz, for female adults. For the frequencies in the hearing spectrum the “Absolute Threshold
of Hearing—ATH?” (or “Threshold of quiet”) is defined and it refers to the minimum level of
amplitude of a tone, that can be detected by normal hearing, assuming no other interfering
sounds are present. [12] That way frequencies with lower amplitude cannot be distinguished
and so can be removed from the original signal. The mathematic equation [12], which describes
ATH is the following:

4

-0.8 2
T,(f) = 3.64- (ﬁ) - 6.5 e-°-6'(f /1000~3-3) +1073- (ﬁ)

80] I I I i

60

a0 |

20

level of test tone (dB)

-20 L 1 1 L 1 1 1 1
0.02 005 01 02 05 1 2 5 10 20

frequency of test tone (kHz)
Figure 6— Absolute threshold of hearing (ATH)

As shown in Figure 6, the threshold of quiet is affected by the age, especially in frequencies
higher than 2 kHz.

Humans, for biologic and evolution reasons, are more sensible in the middle frequencies,
the spectrum where the human speech lies. The ear can hear and recognize these frequencies
better and distinguish them from nearby ones, even when they exist in lower amplitudes. In
very high or very low frequencies this ability fades and, therefore, neighbor frequencies can be
perceived as the same. That is also connected with the absolute threshold of hearing, as seen in
Figure 6Figure 8, high (> 10 kHz) and low frequencies (< 50 Hz) must be in higher levels.
Another factor that affects the perception of sounds is the “Auditory masking”, which in the
frequency domain is called simultaneous masking, frequency masking or spectral masking and
in the time domain is called temporal or non-simultaneous masking. This phenomenon occurs
with the presence of multiple sound sources that affect and compromise the ear perception, and
affects the ATH. Now, in order a frequency to be distinguished by humans the level of tone
should be even higher. Similar to ATH, a new threshold is defined: “Masked threshold” is the
quietest level of the signal perceived when combined with a specific masking sound. In Figure
7Figure 8 there are two examples of auditory masking at 410 Hz and 100 Hz respectively.

60
50
40

30

Masking (dB)
Masking (dB)

100 200 300 500 700 1k 2k 3k S5k 10k 100 200 500 1k 2k 3k 10k
Frequency (Hz) Frequency (Hz)

Figure 7— Auditory masking
a. 410 Hz b. 100 Hz

The figures above show how the masking threshold changes over frequency for different
amplitudes of the masking frequency. The maximum level of masking occurs when the two
sounds have same frequency and reduces when moving away. This is called on-frequency
masking and happens because the two signals belong to the same auditory filter and are
perceived as equals from the ear. When the level of the masking frequency increases the range
of masked frequencies becomes wider and the masked threshold increases as well. In higher
frequencies the curve is steeper and the maximum masking occurs at the masking frequency. In
lower frequencies the curve is smoother and wider and the maximum value is located in
frequencies higher than the masking one. With the decrease of the masking frequency, the curve
becomes asymmetric and covers larger area towards higher than lower frequencies.

100 T T T T T T T T
db lewel of masking sound 100

80

level of test tone

002 005 oA 0.2 05 1 2 5 10 il
frequency of test tone kHz

Figure 8— Threshold in quiet and masked threshold

3. Industrial robotic arms

An industrial robot is a robot system used for manufacturing processes, it is automated,
programmable and capable of movement on three or more axes. A commonly used type of
industrial robots is the robotic arm, a mechanical arm with similar functions to a human arm.
Robotic arms can be individual mechanisms or part of a more complex one. They consist of
links connected by joints (usually 2-6) of rotational motion or linear displacement. Industrial
robotic arms are used for several manufacturing applications such as:

= Assembly and dispensing (assembly and adhesive dispensing robots)
» Handing and picking (material handling, liquid handling, pick and place, and order
picking robots)
= Machining and cutting (machine tending and loading, milling, drilling, cutting etc.)
= Welding and soldering
= Inspection and quality control etc. [13]
Robotic arms, are categorized based on their design, use and functions:
Articulated robot arm
Cartesian robot arm
Cylindrical robot arm
Delta robot arm
Polar or spherical robot arm
Selective Compliance Assembly Robot Arm or Selective Compliance the
Articulated Robot Arm (SCARA) [14]

In Figure 9 are the schematic representations of joint movement for each robot type.

Cartesian Robot Cylindric Robot Polar or spherical Robot

> C?%_DC
D 7 =

SCARA Angular or anthropomorphic Robot 1

Figure 9 — Industrial robotic arm types [15]

Articulated robot arms

Y Angular or anthropomorphic robot is same as articulated robot.

An articulated robotic arm resembles the human arm, is the most common type of robot
arms and it consists of a single mechanical arm attached to a base with twisting joint. They are
considered to be one of the most versatile and flexible tools and normally they have four to six
axes, with six to be the most commonly used. They are suitable for automating many robotic
applications, including assembly, material handling, arc and spot welding, painting and many
more. They are known for their extensive range of motion, high precision, linear reach and
because of their numerous axis points they can reach virtually everywhere within their
workspace. Their most important drawback is the limitation in performing at higher speeds.

Cartesian robot arms

Cartesian robot arms, linear or gantry robots work in three linear axes, using the Cartesian
coordinate system (X, y and z), so they move in straight lines: up and down, in and out and side
to side. The three joints are manipulated to spatial movements, giving extra flexibility to cover
most of the space. Additionally, cartesian robots give to user the ability to adjust the speed,
precision, stroke length, and size of the robot arm. One of the disadvantages is that they require
the most space compare with all other robotic arms. Their variety of tasks, mainly in small
applications, includes pick-and-place work, operating machine equipment, arc welding and
assembly tasks and are often used for CNC machines and 3D printing.

Cylindrical robot arms

Cylindrical robots are designed around a single-arm base, capable to move up and down
vertically. This type consists of a rotary shaft and an extendable arm that support sliding and
vertical displacement. In their base there is a rotary joint (1 rotational DoF) and between the
links a prismatic one (1 translational DoF). The combination of mechanism complexity with
lack of significant advantages, makes them the less preferable choice. Typical applications of
cylindrical robots are assembly, machine tending, or coating.

Delta robot arms

Delta robot arm or parallel robot arm is a type of parallel robot with a triangular base and
interconnected arms, attached to a central end effector. Delta robots can move in all three
dimensions, with precise movements at high speeds, and are commonly used for automation in
manufacturing, packaging and assembly. Their unique shape allows the three arms to control
every joint of the end effector, making them a great fit for food, pharmaceutical and electronic
industries.

Polar robot arms

Polar robots are from the first industrial robots created. Their mechanism is a combination
of one linear joint (1 translational DoF), at the base, with two rotary joints (1 rotary DoF each),
leading to a spherical work envelop. Key applications are die casting, injection moulding and
material handling.

SCARA

SCARA robots are a special type of articulated robots, that have rotational joints. They are
mechanically compliant in x- and y-axis and rigid in z-axis. Compared to articulated robots,
SCARAs are less flexible, since they have fewer axes and so their motion is more limited. They
perform better than cartesian robots in lateral motions with higher speeds, which they maintain
even with high loads. Their strongest advantage is their position repeatability.

3.1. Staubli RX 90L

The industrial robot Staubli RX 90L is an articulated robotic arm with six axes,
manufactured by Stdubli. Each of the six joints works as an axis around which two members
rotate. The movements of them are generated by brushless motors coupled to resolvers and are
equipped with parking brakes. The robot consists of motors, brakes, motion transmission
mechanisms, cables, pneumatic and electric circuits both for the user and the counterbalance
system. The balance is maintained by an integrated spring system, a build-in spring
counterbalance. Data for the absolute position are provided by a counting system at any time.
The assembly id reliable and robust, flexible and able to perform various tasks. The robot is
used mainly for surfacing in many industrial applications, such as plastic and metal engine
parts, bikes, agricultural equipment etc. The key components, inspired by human arms, are the
base (A), the shoulder (B), the arm (C), the elbow (D), the forearm (E) and the wrist (F), as
shown in Figure 10.

Figure 10— Staubli RX 90L

The specifications of Staubli are summarized in Table 3. All the technical characteristics
and numerical values presented below are given by Staubli in the manual [16].

Table 3 — Staubli RX 90L specifications

Robot family RX (changed to B)
Designation: Maximum reach between 2" and 5 axis? 9dm
RX90BL Number of active axis (= DoF) 0 = 6 (variation with 5 axis)
Forearm version Extended forearm (L)
Working temperature +5°C to +40°C
General Humidity 30% to 90%
characteristics Altitude 2000 m
Weight 113 kg
Maximum speed at load center of gravity 12.6 M/,
e Repeatability +0.025 mm
. At nominal speed 35k
Load capacity At reduced speed 6kg §

2 That is the reach for the original - not extended — version. With the longer forearm it becomes 11 dm instead of 9 dm.

Below (Figure 11) it’s the drawing of the robotic arm, with all important dimensions.

88

)

1214
081y ‘b&

34

ver
¥5e

| 7

{1605) s
170
88
/ B
Ve &
[+)]
420 650 . 85
I |
N = i
= |

611

051

Work envelop is defined as the workspace, where the end effector, of the robotic arm, can
reach with any orientation, and it depends on the dimensions of the components. The parameters
that define the workspace are: the maximum reach between the 2™ and the 5™ joints, which
controls the maximum reach the end effector in x-z plane, the minimum reach between the 2™

and the 5™ axis,

Table 4 contains the three parameters of the workspace and Table 5 the amplitude, the speed

171_1125

! 52LI)G
>t

-

Figure 11 — Staubli RX 90L drawings

and the resolution for each axis.

Table 4 — Staubli RX 90L work envelop

= A

O

-&}:*<¥‘_~
i

801

Parameter Symbol Value

Maximum reach between 2™ and 5™ axis R.M. 1100 mm

Minimum reach between 2" and 5™ axis R.m. 401 mm

Reach between 3™ and 5™ axis R.b 650 mm

Table 5 — Staubli RX 90L amplitude, speed and resolution

Axis 1 2 3 4 5 6

Amplitude (°) 320 275 285 540 225 540
A B C D E F

Working range (°) + 160 +137.5 + 1425 +270 +120 + 270

— 105

Nominal speed (/) 236 200 286 401 800 1125

Maximum speed (/) 356 356 296 409 800 1125

Resolution (° - 1072) 0.87 0.87 0.72 1 1.95 2.75

Figure 12 below is a schematic representation of the work envelop, with marks for the

parameters R.M., R.m. and R.b. and axis ranges (A-F).

Figure 12 — Staubli RX 90L work envelop

3.2. V' Language for industrial robot applications

V*is a programming language, developed by Adept Technologies, designed specifically for
industrial robot applications. It is suitable for controlling robot motion, vision systems and
input-output operations. V" is known for its simplicity to learn and use, the fast (self-)
compilation and the efficient and flexible memory management. Key characteristic is its
robustness when managing demanding robotic tasks and integrating robotic components. As a
real-time system, the constant calculation of orbit allows complex moves to be executed
immediately, with efficient usage of system’s memory and with the minimum system
complexity [17]. The V* system produces control commands for the robot while it interacts
with the user, allowing that way the creation and modification of programs. The precise control
and coordination of the robots makes V* very important in automotive and manufacturing
industries. V' language offers the same functionalities as the modern, high-level programming
languages, as subroutines, control structures, multitasking environment and recursively
program execution with re-entry. The V* Reference Guide [18] and V' User’s Guide [19]
contain all information to understand and learn V" from scratch.

To manipulate the robot, V' has a numerous motion key-words that correspond to different
action. The most relevant for this study are summarized in Table 6.

Table 6 — Motion Control Operations [19]

Keyword Function
Start joint-interpolated motion towards a location defined relatively to a
APPRO . .
specified location.
APPROS Start. stralght-h.ne robot motion towards a location defined relatively to a
specified location.
BRAKE Abort current robot motion.
BREAK Suspend program execution until the current motion completes.
CLOSE Close robot gripper.
CLOSEI Close robot gripper immediately.
DELAY Cause robot motion to stop for the specified period of time.
DEPART Start joint-interpolated motion away from the current location.
DEPARTS Start straight-line robot motion away from the current location.
DRIVE Move an individual joint of the robot.
Initiate a joint-interpolated robot motion to the position and orientation
MOVE . . .
described by the given location.
Initiate a straight-line robot motion to the position and orientation described by
MOVES . g
the given location.
OPEN Close robot gripper.
OPENI Close robot gripper immediately.
#PPOINT Return a precision-point value composed from the given components.
RELAX Limp the gripper
RELAXI Limp the gripper immediately.
ROBOT Enable or disable one or all robots.
SPEED Set the nominal speed for subsequent robot motions.

3.2.1. Robot Speed

The robot motion, from one point to another, has three phases: acceleration, constant speed
and deceleration. The acceleration phase is from the start until the maximum speed and
deceleration is from the constant speed until the end position. The constant/maximum speed is
specified as a percentage of the default/nominal speed of the robot. For example, “SPEED 25”
sets the motion speed to the 25% of the default speed.

3.2.2. Basic Motion Operations

For the robotic arm to move from one place to another, there are two possible ways/paths:
joint-interpolated motion and straight-line motion [19]. Joint-interpolated motion moves each
joint simultaneously, at a constant speed and so the end-effector moves in a smooth and
predictable path. This type of motion is ideal for precise tasks that require high accuracy, like
assembly, welding etc. Straight-line motion moves the tool tip in a straight line, from the start
till the end position, and so the control system calculates the corresponding motion of each joint
to achieve this motion. This type is used in cutting processes. To distinguish between the two
types of motion in V* an “s” is added in case of straight-line paths, like “DEPARTS” instead of
“DEPART”.

Table 7 — Keywords for Basic Motion Operations

Joint-interpolated motion Straight-line motion
APPRO APPROS
DEPART DEPARTS
MOVE MOVES

3.2.3. End-effector operations

The tool tip or end effector is the part attached to the end of the robotic arm, providing
functionalities similar to human hand [20]. End effector are of different types for the different
industrial processes, as the same robot can be used in various number of applications. The right
selection of the end effector is crucial for the robot to be able to carry out its tasks. The
categories of a tool tip are gripper, processing tools and sensors. End effectors can be of one of
the mentioned categories or even combination of them, depending on the desired output. The
object of this study is a robotic gripper, the most common end effector type. The gripper’s
functionality is very similar to a human hand functionality, it can be used for tasks like picking
and placing, shorting items, assembly etc.

The gripper can be in one of the following stages: open, closed or relax, which are defined
by the commands OPEN/OPENI, CLOSE/CLOSEI and RELAX/RELAXI. The “I”’ at the end of
the command specifies that the action will happen immediately, before the next action;
otherwise, it is executed at the same time with the next command.

Table 8 — Keywords for End-effector Operations

Execution in parallel with next command

Execution before the next command starts

OPEN OPENI
CLOSE CLOSEI
RELAX RELAXI

4. Methodology Speech Recognition

This thesis is about the development of a speech recognition model, to understand spoken
commands and translate them to written text. The input commands are single word recordings
and not continuous natural speech. Since the application is intended for an industrial
environment, is important that the features extracted are not sensitive of the environment, the
background noise or the microphone mismatches.

The speech recognition process includes all the steps from recording the voice signal, until
classifying the commands based on given dataset/vocabulary. Pre-processing is the first step,
where the signal is isolated from noise, or unnecessary information, and its size is reduced.
Feature extraction is the stage where from the pre-processed signal are extracted specific
parameters, indicatives for the content of the signal. These parameters are the significant
characteristics of the audio signals and are used from the machine learning model, at the
classification stage, to assign the recordings to the corresponding commands. The sequence of
the steps is shown in Figure 13.

{ Dataset }

Pre-emphasis
'
Framing

Hamming window
I
Fast Fourier Transform

[

. [
Pre-processing {
[

[Machine Learning Model }

{ Prediction }‘—

Figure 13— Speech recognition methodology [21]

Figure 13 is the workflow of the training process, it describes the process from the creation
of the dataset until the neural network training. In a similar way, Figure 14 is the workflow of
the final application, with input a command verbally given and output the command in written
text.

Input: Quiput:
Spoken command Written command

— Pre-processing — Feature extraction — Classification -

Figure 14— Application workflow

This chapter is separated in training process methodology and testing process methodology,
The training process includes of the steps for the development and optimization of the speech
recognition object and the testing process refers to the final evaluation and usage of the
developed model.

4.1. Training Process

The training process includes the sequence of steps for the development of the speech
recognition model, the definition of the vocabulary, the implementation of signal processing
and feature extraction methods, and the optimization of the machine learning technique.

4.1.1. Vocabulary definition and recording

The number one step, before starting developing the model, is to establish the application
and, based on that, define the vocabulary that the model must recognize. As mentioned before,
the system should be joined with a robotic arm and be able to manipulate it for different actions.
The vocabulary is designed on the robot in a way that all the words correspond to specific
commands in V*.

After deciding on the vocabulary, next step is to establish the format of the commands given
to the system. The inputs are given one by one, as the model is not capable to recognize
continuous, natural speech, and with certain order, since the model can’t understand the
meaning of the words. In previous chapter was given the list with the relevant commands for
the application. They can be categorized in three main categories: the ones that specify the
action of the end effector (open/openi and close/closei), the ones that specify the motion type
(drive, move/moves, appro/appros and depart/departs) and the ones that specify a short stop or
total termination of the executed action (delay, break and brake).

‘ New command... |
[

h 4 Y ‘ . 4

OPEN/OPENI Lxdne APPRO/APPROS DELAY
or or

CLOSE/CLOSEI | TR T DEPART/DEPARTS

Specify end-effector |
action

Specify motion type Specify stop or termination

g N

Joint mumber P{ Position
|
Offser

Rotation angle —
Specify location @
Speed
Specify spee

L]

...Next command <

Figure 15— Robot command workflow

One of the difficulties in speech recognition, is the inability to distinguish between
homophones, words with the same pronunciation and different meaning (and/or different
spelling). Sometimes, one words with same sound and spelling can have different meaning,
depending on the context. The humans understand this type of words based on the context of
the sentence or of the topic. An example of homonym words is: “BREAK” and “BRAKE”, that
even people have difficulties to distinguish. These words have the exact same pronunciation
and the only way to identify which one is used, is by understanding the sentence around it.

Another difficulty, is the distinction between near-homophones, words with different but
similar sounds, like “MOVE” and “MOVES”. This specific example is not of a problem in real

L INY3

life: when referring to the noun “move”, “moves” is the plural of the same meaning and when

9

referring to the verb “move”, “moves” is the third-person singular present tense. But in the case
of V¥, “MOVE” and “moves” correspond to different movement type.

In case of natural speech recognition, where the input is whole sentences, the model is
reinforced with this extra knowledge, to be able to understand the meaning based on the context
or even guess word relatively to the words spoken before and after. For that, it is necessary to
teach the neural network linguistics and grammar rules, similar to how people learn. The extra
amount of data for training and the addition of rules, increase the complexity of the model.

In case of single-word recognition there are several ways to solve the problem of
homonyms or near-homophones, but all of them are artificial ones for the model and don’t
based on human understanding. One solution is to add a follow-up command to specify which
of the possible words is the correct. This second commands can be a number, for example if the
word is either “BREAK” or “BRAKE” then “one” can be to “BREAK” and “two” can be
“BRAKE”. A variation of this solution is to use, as the follow-up command, a word connected
to the action, for example if the word is either “MOVE” or “MOVES”, the command “joint”
corresponds to “MOVE” and “line” to “MOVES”. Another approach is to use a different word
of a similar meaning to avoid the speech confusion, for example, instead of “BRAKE™ the
keyword could be “stop” or “abort”. In general, is not necessary that the spoken word is exactly the same
as the corresponding V* command and it is the computer-robot interface that will connect the ANN
vocabulary with the V* vocabulary. The described vocabulary transform is shown in Figure 16.

Spoken command

For this study, it is decided the third approach, since it is simpler for the user and doesn’t

ANN Vocabulary

—

Written command

V* Vocabulary

Computer-
Robot
Interface

Figure 16— Vocabulary transform

add extra commands and steps for the model.

V* command

4.1.2. Pre-processing

Pre-processing is a sequence of steps to prepare the input signal for analysis and
recognition. During this process, the signal compressed and cleared from background noise,
normalized in a standard level and broken into smaller, overlapping pieces, the frames. The
detailed steps are Pre-emphasis, Framing, Windowing and Fast Fourier Transform (FFT).

4.1.2.1. Pre-emphasis

Pre-emphasis is a Finite Impulse Filter (FIR) applied on the signal, in the time domain. It
is used to remove the background noise, by improving the signal-to-noise ratio, and enhance
the clarity of the audio signal. The term noise, in speech recognition, refers to any unwanted
sound that occurs and interferes with the main, useful signal. The noise, in high volume, can
cover part of the word and make it impossible to understand, even for the human ear, or adds
extra frequencies and leads to wrong interpretation of the command. The noise can be either a
continuous, low frequency disturbance or an instant, high frequency sound. In order to remove
the noise from the signal, the noise characteristics should be identified and expressed in
mathematic terms. Useful sounds, like music or human speech, have certain frequency range,
follow predictable amplitude patterns and normally have harmonic structures. On the other
hand, noise occurs in a larger range of frequencies and generally has irregular amplitude
changes.

The pre-emphasis filter has another effect; besides the noise removal, it helps in balancing
the frequency spectrum. In physical speech, the signals experience spectral roll-off of ~6 dB
per octave, which means that for each doubling of the frequency, the amplitude is reduced by
half. Therefore, there is more energy concentrated to low frequencies, as the amplitude is
higher, and significantly less energy is allocated in high frequencies. In that case, the neural
network will handle the low frequencies as more significant than the higher ones and miss
important information [22]. By applying the pre-emphasis filter, it boosts the higher frequencies
and the overall frequency spectrum becomes more balanced.

The mathematical expression of the filter is:

y(n) =x(n) —a-x(n—1), n € [1,N]
Where,
« is the pre-emphasis constant, 0.9 < a < 1,
vy is the new signal, after pre-emphasis [dB],
x is the original signal, before pre-emphasis [dB],
n — 1 and n are two consecutive moments [sec] and
N is the total duration/length of the signal [sec]

The pre-emphasis constant can take different values between 0.9 and 1, but the output is
not sensitive in this change, therefore is not need to do investigation for the alternatives,
according to literature review. The most commonly used values are 0.95 and 0.97; for this
application it’s assumed a = 0.97.

4.1.2.2. Framing

After pre-emphasis, the next action is to break the signal into smaller parts, the frames,
before applying the Fast Fourier Transform (FFT). Speech signals are not stationary by nature,
but can be considered as stationary in shorter segments because of the vocal tract inertia. By
segmenting, the non-stationary signal can be represented as short stationary time frames [23].

With the FFT, the signal is transformed from the time domain to the frequency domain. If the
transform is applied on the whole signal at once, the output spectrum is time independent, when
the signal itself is highly dependent on time. To keep the information that varies with time the
signal is split into frames. There are two alternative methods for framing, overlapping frames
and non-overlapping frames. With overlapping frames is more likely that all the useful
information from the signal is used, when with non-overlapping frames the risk is to miss the
information in the transition points between different frames. With overlapping frames, this
problem is solved, since the end points of each frame are contained in the neighbor frames. That
way, the discontinuities are avoided and all the signal is used in the process.

o. with overlaping
1] Il 1] |

i T | L T T) “
! e i \
! Frame Length | I
! i \
! —_—— i \
[{ Original signal } i \
[\
- (Pad signal

. without overlaping

I [! 1 ! 1 ! Il ' |
T T T T T T T T

}

| |

| | Y
—_—
Overlap Length Frame n-1

I : N
\ Original signal |
(Pad signal |

Figure 17 — Speech recognition methodology

For the framing stage, two things are needed: the frame length and the overlap length. The
frame length typically is chosen between 15 — 25 ms and overlapping length between 10 —
15 ms. Depending on the frame length and overlap, it is possible the same part of the signal to
be present in three different segments. Before choosing the parameters, the sample rate should
be taken into account, so each frame contains a sufficient amount of data.

4.1.2.3. Window Function

The signal segmentation into frames is essential for audio signal analysis, but can create
problems when is not used correctly and carefully. When applying FFT in each frame, the frame
is considered to repeat periodically. If the signal is not smooth from end-to-end, discontinuities
occur, which with FFT are leading to spectrum leakages. Spectrum leakage is when the energy
of the audio is spread in several frequencies, making it extra difficult for the speech recognition.
The window functions, by leading the end-points to zero values, reduce the discontinuities and
so, limit the spectrum leakages. The output spectrum is more representative of the frequency
content of the audio. The window function, also, contributes to preserve the signal characteristic
for further analysis, such as frequency formant. Lastly, window filters control the resolution of
the spectrum. Frequency resolution is the ability to distinguish between two close frequencies
in a signal. The window function works as a band-pass filter of different form for the different
functions. The main lobe width and the side lobes affect the frequency resolution and it’s always
a trade-off between frequency resolution and spectrum leakages. With narrow main lobe, the
frequency resolution is better, but the side lobes are higher, leading to spectrum leakages. With
wider main lobe, the results are the opposite: lower frequency resolution but less spectrum
leakages.

The general mathematic form of a window function use is:

y(n) =x(m)-wm), nc[LN]
Where,
w is the window function,
y is the new signal, after windowing [dB],
x is the original signal, before windowing [dB],
n is a random moment [sec], and
N is the total duration/length of the frame [samples]

Rectangular window function:

The rectangular window or Dirichlet window is the simplest form of a window function,
impulse response, with unit response for all in-between moments and zero response at the end
points. It’s not usually chosen because of its low stopband attenuation. [24] Stopband
attenuation, expressed in Decibel, is the difference between the maximum gain in passband
region and the minimum gain in stopband region, as shown in Figure 18. [25]

stopband

attenuation

passband T stopband

transition band

Figure 18 — Stopband attenuation

The rectangular window function is the following:

0, n=1
w(n) = {1, nc[2,N—-1]
0,0 n=N

Hanning window function:

Compared with the rectangular window, Hanning window has a wider transition band
between stopband and passband regions. The Hanning window function is the following:

w(n) = % [1 — cos (ZNL_lnﬂ, n C [1,N]

Hamming window function:

Hamming window is the most commonly evolution of Hanning window, with minimum
stopband attenuation. [24] The response at the edges of the frame, unlike the previous filters, is
not zero and so small-scale discontinuity is expected between frames. The Hamming window
function is the following:

2'm'n
w(n) = 0.54 — 0.46 - cos(

£ -) o<n<N-1
N—l) n

Other methods

There are more window functions like the Blackman and Kaiser, with similar logic behind
them. The Blackman window has high stopband attenuation, which makes it suitable for many
different applications. The Kaiser window, known as the optimal window, adds an extra
parameter to control the width of transition region.

Conclusions
The representation of the above functions in the time domain are shown in Figure 19.
Hamming window is the only function with non-zero values throughout the whole curve,

included the end-points.

Windowing Methods

—— Rectangular
Hanning

—— Hamming

—— Blackman

10

08

06

04

02

00

00 02 04 06 038 10

Figure 19 — Different window functions in time domain

The representation of the filters in frequency domain are in Figure 20.

Magnitude (dB)

—-80

-100 A

—— Rectangular
~120 4 Hamming
— Hanning

— Blackman

~140 -

0.0 0.5 1.0 15 2.0 2.5 3.0
Frequency (Hz)

Figure 20 — Different window functions in frequency domain

The rectangular function, which acts almost as no window at all, has the narrowest main
lobe, but the highest side lobes, so it maintains the best frequency resolution, but the most
spectrum leakages. The exactly opposite is achieved with the Blackman window, that has the
widest main lobe and lowest side lobes. Hamming and Hanning window functions have a good
balance of high frequency resolution and low spectrum leakages and are preferred in speech
recognition applications. Hamming window, with lower side lobes, is the favorite method.

4.1.2.4. Fast Fourier Transform (FFT)

The final step of the pre-processing stage is the Fast Fourier Transform, which transforms
the recording from the time domain to the frequency domain. Practically, FFT is an optimized
algorithm to calculate the Discrete Fourier Transform (DFT). Fourier transform converts the
time domain signal to its frequency representation, also known as frequency spectrum, and
identifies all the different frequencies that are present in the signal. The audio signal is not a
continuous signal, but sampled at intervals, so the transform applied is DFT.

N-1

X[n] = Z x[n] - e_j'ZWn'k'n

i=
Fast Fourier Transform is an optimized algorithm of the Discrete Fourier Transform and
reduces the complexity from O(N?) to O(N InN). FFT is a faster and more efficient solution
than the original DFT, which makes it suitable for real time processing application.

4.1.3. Feature extraction

When the pre-processing is done, the feature extraction takes place. Feature extraction is
the calculation of the information from the signal that leads to the correct classification of the
words. The feature extraction process mimics the way human brain perceives the different
words. One of the most common methods for speech recognition, among the Linear Predictive
Coefficient (LPC) and the Hidden Markov Models (HMM), is the Mel-Frequency Cepstral
Coefficients algorithm (MFCCs). To understand the MFCCs approach and method, the terms
Mel scale and Cepstrum analysis should be defined.

Mel scale, from the word melody, is a perceptual scale of pitches judged by humans to be
equidistant from one another. These pitches are not actually equidistant in the normal frequency
scale, but are perceived as equidistant from humans. Thus, for each tone with an actual
frequency, f, measured in Hz, a subjective tone is measured on the Mel scale. As mentioned in
section 2.3, the human ear doesn’t understand all the frequencies, of the hearing spectrum, in a
same way. Humans can distinguish very good small frequency differences in low frequencies
and a lot harder in higher frequencies. This effect starts to be noticeable after the 500 Hz. The
mathematic relation between the Mel- and the Hertz-scale is:

_ f)
m = 2595 log(1+700

The Mel frequency scale is a linear frequency spacing below 1000Hz and a logarithmic
spacing above 1000Hz, as shown in Figure 21.

3000

-
%]
o
o

1000

Mel scale

500

0 L 1 L L A ' 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz) ——>

Figure 21 —Mel- and Hertz-scale relation [17]

The term Cepstrum come from reversing the first four letters of the word Spectrum and was
used for the first time in 1960s at MIT during the study of echoes in seismic signals. Cepstrum
is connected also with the terms quefrency or liftering analysis, which come from reversing the
words frequency and filtering. The Cepstrum is a representation of a signal’s spectrum in a way
that allows the identification of different audio components, like the vocal tract and the
excitation source, and contains information regarding the fundamental frequency of human
speech. Cepstrum in the quefrency domain is what exactly is the spectrum in the frequency
domain and the connection between them is shown in the following equation:

Cx@®)=F" (logMel ((F(X(t)))))

Where,
x(t) is the audio signal,
C (x(t)) is the cepstrum of the signal,
F (x(t)) is the spectrum of the signal (Fourier Transform), and
F~1 is the inverse Fourier transform.

As the above equation shows, the steps to calculate the MFCCs, from the last step which
was the FFT, are:

= Apply the Fast Fourier Transform of the segmented signal, to calculate the frequency
spectrum.

= Convert the frequencies from Hertz scale to Mel scale.

= Compute the logarithm of each frequency.

* Apply the Discrete Cosine Transform (DCT), to convert cepstrum back in the time
domain.

To calculate the DCT it is used:

¢, = Zlog(X[n]) " cos (”' (k B %) %)

Input:
Spoken command Frequency
Pre-processing Spectrum
I:> * Pre-emphasis _ Discrete Fourier
* Framing "| Transform (DFT/FFT)]
Windowing
OQutput: Convert Mel-Frequency
MFCCs
<:| Discrete Cosine _ log |4 |
Transform/Inverse DFT |~ N
form/ logMel-scale Mel-scale
Spectrum Spectrum

Figure 22 —-MFCCs pipeline [26]

From research it is proven that the most important coefficients are the first 12 and that’s the
recommended value from literature.

4.1.4. Classification

After extracting the MFCCs, the signal processing is ready and next step is the
classification. Classification is the process of assigning an unknown quantity in one of the
known categories. The classification model, in this case, is an artificial neural network for
pattern recognition. Artificial Neural Networks (ANNs) have structure and functionalities
inspired by the biological network of neurons [27]. The human Central Nervous System
consists of cells, the neurons; each neuron consists of the main body — soma — the apophysis —
dendrite — and the main axon. The axon of one neuron is connected, via synaptic gaps, with the
dendrites of the neighbour neurons and is transferring information through them. In a similar
way, an artificial neural network consists of artificial neurons connected with one another,
transferring data along the model structure. Each neuron has the input signals, each one
multiplied with a custom weight, the activation threshold, which controls whether the specific
neuron will be activated or not, based on the summary of the input signals and their weights,
and the output signal. In every neuron the input signals are multiplied by the weights and added
all together. The sum is the function output of the neuron.

The neurons are organized in layers, which are levels of information. The input layer
consists neurons as many as the design variables. For this problem, the inputs are the MFCCs
for all the signal frames. The output layer is the solution and in this study the label of the
command. All the in-between layers are called hidden layers. All the neurons of a layer are
receiving the output signals of all the neurons in the previous layer and are sending their output
signal to all the neurons of the next layer, as shown in Figure 23.

Input Layer Hidden Layers Output Layer

) .
Wo .o ‘ ¥,
Wyt Y1 N ‘

Figure 23 — Artificial Neural Network Architecture

The aim is that the final output of the neural network corresponds to the actual labels of the
input recordings. This is achieved after the training process, where the weights are iterated until
the obtained values result to the correct total output. The iterations are similar to optimization
steps with the goal to minimize the error between actual value and predicted value. In regression
problems the output is a real number, in classification problems the output must be the category
label. Actually, the network gives as output N real numbers (between 0 and 1), when the
potential labels are N, and each one of them represents the possibility of the command to belong
in the corresponding category. The recording is classified in the category with the highest
predicted possibility.

To develop a machine learning model the whole dataset is divided into train and tests
subsets. The train set, as the name implies, is used to train the network, so the output is given
to the network and the model tries to predict them. The test set is used to check the accuracy of
the model and its generalization ability, so the output is not given together with the input, but
is fed to the network in later stages.

4.1.4.1. k-Fold Cross Validation

To train a machine learning object the data are split into train and test subsets and the
optimization and evaluation of the model is based on the accuracy in the testing predictions.
The risk with using only one test set is that the accuracy can vary significantly depending on
the observation in the test set. That means that, potentially, if the model is used for different
testing sets the prediction error will have big deviations. To ensure that the accuracy is
representative of the model at any kind of testing set, the k-fold cross validation method is used.

The cross validation divides randomly the whole dataset into k groups, the “folds”, of the
same roughly size. One of the folds is used as testing set and the k-1 remaining folds are used
as the training set, as shown in Figure 24. With this setup the optimization process runs until
the end and the accuracy of the model is calculated. This routine is repeated k times, until all
the folds become once the test set. After this is done the average error is calculated:

k
1
MSEtOt = E * z MSEL

i=1

The ANN must have a constant behavior regardless of the test set, since the real testing data
are totally unknown. The acceptance criteria is when the average accuracy is above 80%, but
also the individual errors are not deviating a lot.

The iteration can be done with two different ways: the weights of the networks are
initialized before every iteration or each iteration uses the last wight update from the previous
iteration. With the second way, the training process converges earlier and can reach a better
result. The first approach has the advantage of separating the testing set completely from the
training. When the initialization is using previous values, these values contain information from
the previous train set, part of which is now the test set. In this study, the first approach is
selected.

| Dataset |

| | [L (k]] e] L] L] [

oo [5] [) EE [E [E (E O
Second iteration: lk,‘ ‘kz‘ |k3| ‘k;‘ |k5| ’| “ ‘| " ‘... |kk|
v EEEEEDEEDEEB

Figure 24 — k-fold Cross Validation Visualization

The selection of the number of folds (k) needs careful consideration. The more folds used
in cross validation the more representative the results are and the lower the bias is, but at the
same time the amount of testing data are less and of training data more. The fewer folds used
the higher the bias but the lower the variance. It is therefore a trade-off between bias and
variance when it comes to k selection.

4.1.4.2. Artificial Neural Network Parameters

The artificial neural networks have many parameters, that should be chosen carefully. There
is not always a rule of thumb for the selection, since the best combination differs from case to
case. The key is to keep a good balance between memorization and generalization. The model
should be fitting well on the training data, but if it overfits on them, it will lose the ability of
generalization, the ability to predict data that are not exactly same as the ones in the train set.
The main parameters of a neural network are the architecture, the training function and the stop
criteria.

The most important parameter is the network’s architecture, the selection of the number of
hidden layers and the number of neurons in each layer. Very small networks, few layers with
few neurons each, have a limited ability to learn when the problem has many inputs and high
complexity. The benefit of small models is that the require less memory and need less
computational time to be trained and used. Very big networks, many layers or many neurons in
each layer or both, can handle better complicated datasets, but need more space and time. If the
network is too small for a certain problem, it will have low accuracy because of poor learning

capability. If the network is too big, it will also have reduced accuracy, due to overfitting on the
known data and losing the skill to generalize predictions for unknown data

Another parameter, that can differentiate the networks, is the training function, the
algorithm that controls the learning process and the optimization of the set of weights. The steps
of the learning process are the forward propagation, the loss calculation and the
backpropagation. The forward propagation is the computation of the network’s output based on
the inputs. In the first iteration the weights are initialized either randomly or by the user based
on his existing knowledge and in any other iteration they are corrected based on the previous
value. The loss calculation step is the calculation of the delta between the actual and the
predicted value. The most common loss function is the Mean Squared Error (MSE) for
regression problems and the Cross Entropy Loss for classification. Lastly, the backpropagation
is the process of updating the weights by transferring the error value through the network, at
the opposite direction of the forward propagation. The training algorithm defines the method
for updating the weights. The simplest method is the Gradient Descent. The loss function is
also a parameter for investigation, but in this study the Cross Entropy Loss function was chosen,
based on literature review.

The last of the parameters is the stop criteria, the condition which needs to be fulfilled for
ending the learning process. There are several stop criteria, like the maximum number of
epochs, convergence of loss function and training time. The idea is that all different criteria
have a target value and the learning process will be terminated, when any of them is fulfilled.
The best scenario is of course to fulfill the convergence of the loss function, which indicates a
good prediction accuracy. The reason for having more that one stop criteria is because maybe
one is never fulfilled, regardless of the iteration number, and in that case the training would
never stop.

4.1.4.3. Evaluation Metrics

The evaluation metrics are indicative of the network’s quality. Based on the evaluation
metrics the quality and efficiency of the network are established and different networks can be
compared and ranked. For classification neural networks these metrics are accuracy, precision,
recall and F1 scores.

Accuracy, the most common and widely understandable parameter, is the network’s ability
to predict correctly, the true class, and is expressed as the percentage of the correct predictions
divided by the total predictions. The higher the accuracy is, the more are the correct predictions.
Accuracy is the most important performance indicator in machine learning models.

correct predictions
Accuracy = — %]
total predictions

The metrics precision and recall are easier to explained per class, or in a binary
classification problem, and then raised in a multi-class level. In binary classification problems,
the unknown portion belongs either to class A or class B, or in different words, either belongs
to class A or not. Instead of asking the question: “In which class does the object belong?”, the
question is rephrased to: “Does the object belong to class A?”. If the object does belong to class
A the answer is positive and if it doesn’t the answer is negative. This type of problems exist in
the majority of medical test, e.g. “Is the woman pregnant?”, “Is the patient ailing from this
disease?”. The predictions that classify the unknown quantity in class A are considered positive
predictions and the others negative. The predictions correctly classified as A are true positives
and the ones wrongly classified as A are false positives. Similarly, the prediction correctly

categorized as non-A are true negatives and the rest, wrongly categorized as non-A, as false
negatives. Now that these terms are explained, is easy to define the metrics precision and recall.

Precision is the percentage of the correct positive predictions divided by the total amount
of positive prediction, or simpler “Out of all the positive predicted examples, how many are
actually positive?”. The total positive predictions are the summary of the true positives and the
false positives. High precision means that if a case is predicted positive, it is very likely that it
actually is positive. There are some applications, where the precision is more important that the
accuracy. An example is face identification problems, where is very important that only the
authorized users are recognized.

L true positive predictions
Precision = — — %] or ———
total positive predictions TP+ FP

[%]

Recall is the percentage of the correct positive predictions on the actual positive cases, or
“Out of all positive case, how many were actually predicted as positive?”. Medical diagnosis,
especially in high-risk disease detections, is a field where recall is very important, as the patients
that are positive to the disease must be identified and not considered as healthy, to start the
treatment immediately.

Recall = true positive predictions (%]
ecatt = total actual positives olor TP +FN

[%]

Lastly, F1-score is a combination of precision and recall.

2 - precision - recall

F1 — score = —
precision + recall

A good visualization of the evaluation metrics is the confusion matrix.

Table 9 — Confusion Matrix for Binary Classification

Predicted Class
Positive Negative
Positive True Positive (TP) False Negative (FN)
True Class
Negative False Positive (FP) True Negative (TN)

In multi-class classification problems, precision and recall are calculated for every class
individually, in the same way as they would be calculated in a binary classification case and are
called precision per class and recall per class. The metrics for the whole model are occur from
averaging the precision and recall per command.

class N
precision = Z precisionli/N
i=class A
class N
recall = Z recallli/N

i=class A

4.2. Testing process

The training part is done, when the investigation converges to one final architecture of the
ANN. For that network, the accuracy, the precision, the recall and the F1-scores are calculated.
In this application, accuracy is the most significant of the evaluation metrics and precision and
recall are of similar importance. When checking the overall error, is important to check the
individual errors per command. It is interesting to see if the model has the same almost accuracy
throughout the classes, if in case of wrong prediction, it confuses the words that sound similar
to human ears and identified which commands are usually miss-predicted and which are the
most likely predictions.

Still this evaluation is not enough. The model should be tested in real-time recognition with
different users, to check the performance in that case as well. Until now the evaluation was
based on the testing subset, which belongs to the same dataset as the training set, which means
the samples are produced from the same individuals in both sets. In order to confirm the
calculated accuracy, the model is tested by other users.

4.2.1. Speech Processing

The real-time recording is directed to the same speech processing algorithm, to be prepared
the same way as the dataset. The steps are again:

e Signal pre-processing:
Noise removal and frequency balancing
Signal segmentation into frames
Power spectrum calculation

e Feature extraction:
MFCCs calculation

This time the processing of the audio is real-time, so it’s important the algorithm’s needs in
time are not too big. When created the dataset, it was not that evident, how much time the script
needs to compute the coefficients, but here it’s a good opportunity to check.

4.2.2. Command Prediction

The MCFFs table is given to the pre-trained ANN. All the 18 commands are tested several
times to ensure that the model is behaving as expected. It’s good to store the real-time
recordings and use them later on to enrich the dataset and continue the model training. It is
possible, when obtaining new data, to combine them with the original dataset and improve the
networks accuracy.

5. Results and analysis

In the previous chapter, the methodology was detailly explained and analyzed. This section
presents the practical components of this study, including method implementation and results
analysis. Here are discussed findings from the ANN investigation and the evaluation of the final
network. Additionally, results from supplementary studies are included, to examine the effect
of different pre-processing techniques. For example, is evaluated the recognition without pre-
emphasis and with different window functions.

5.1. Training process

5.1.1. Vocabulary definition and recording

The most common formats for audio files are WAV or MP3. In the majority of the
publications, researchers prefer the WAV files, because they include more information for the
signal and span the full spectrum of frequencies audible to humans. On the other hand, MP3
files are compressed and part of the information is lost, but they occupy less memory. There are
several public datasets online, with voice commands in WAV format, but only limited ones have
single-word recording for robotic applications. The most suitable one, for this study, is the
Speech Commands Dataset [28], that contains a great variety of commands from many different
speakers. In speech recognition application, the dataset should be representative, in terms of
speakers’ masse and commands’ number, and sufficient to give the information needed. This is
a word classification application, so the important information to be extracted is the spoken
word. The audio signals contain a lot more information than just the word, as the speaker’s
identity, the speaker’s sentiment etc. The model should be trained to ignore the unnecessary
data and focus on the significant ones, e.g., the command identification has to be totally user
independent. For that reason, is very important that the dataset is created by a variety of
speakers that repeat each word several times. In Table 10 are summarized the most crucial
parameters for the dataset to be representative.

Table 10 — Recording parameters

Parameter Notes

Number of speakers

Sex Male or female speaker

Accent Pronunciation of the word

Intensity How quiet or loud the command is pronounced

Speed How fast or slow the word is given

Starting time How long after the recording starts, the speaker gives the commands
Background noise If there are additional, unwanted sounds included in the recording

Speaker variety is a very vague requirement and must be determined better. For start, the
number of speakers should be at least five to ten to have a good representation of different voice
characteristics, and of course the more the merrier. Only by controlling the number of users is
not a guarantee that the dataset is good enough, the speakers must have different characteristics.
It is known that men and women don’t produce sounds with the same frequency spectrum; men
normally produce lower frequencies than women. The recommendation is, therefore, to have
the ratio between male and female speakers around 50%-50%.

The accent of the users affects a lot the accuracy of speech recognition. Even in real life is
hard to understand people with very strong or intense accents, even more for a machine learning
model. To avoid extra confusion, the assumption, that only clear accents are used, is made. The
dataset consists of well-pronounced English words and is recommended for the future users of

the model to speak clear and in normal speed. The stalking speeds affects the clarity of the word
and the length that occupies in the total signal. The network must recognize the commands in
different speeds, of course within certain limits, so the dataset has a variety of talking speeds.
The classification must be also independent of the timing the user starts and stops speaking and
the background noise. Of course, in case of heavy noise the recording must be canceled by the
user, but the presence of background sounds is essential for the learning process, as the robot is
located in an industrial environment where noise will occur at any time.

S5.1.1.1. Keywords selection

After defining the format for recording, the next step is to finalize the vocabulary. As
mentioned in chapter 4.1.1, it is preferrable that the keywords don’t sound similar, because that
would add extra difficulty and complexity to the model. If the model was designed to
distinguish differences between very similar words, the vocabulary should have many more
recordings per command and all of them very clearly pronounced. For simplicity, all the robot
motions are considered joint-interpolated and not straight line and there is no need to specify
that further. The keywords that specify straight-line motion (4PPROS, DEPARTS and MOVES)
are not relevant for now, but in future studies they should be included to add more functionality
to the system. In a similar way, all the gripper’s operations are executed immediately and not
in parallel with the next action (OPENI, CLOSEI, RELAXI).

Table 11 — Final Vocabulary

Command Type Command V* Keyword Function
“Approach” APPRO Move towards a relative location.
“ , Move away from the current
Robot Motion Depart DEPART location. g
Commands “Move” MOVE Move towards a specified location.
“Joint” DRIVE Move a joint of the robot.
“Speed”’ SPEED Set speed (% of the nominal).
“Up” OPENI Close the robot gripper
immediately.
End Eﬁ’?ctor “Down” CLOSEI Close the robot gripper
Operations immediately.
“Relax” RELAXT lep the robot gripper
immediately.
“Zero” 0 Number.
“One” 1 Number.
“Two” 2 Number.
“Three” 3 Number.
“Four” 4 Number.
Numerical “Five” 5 Number.
Commands “Six” 6 Number.
“Seven” 7 Number.
“Fight” 8 Number.
“Nine” 9 Number.
“Left” - Sign | negative direction.
“Right” + Sign | positive direction.
“Stop” BRAKE Abort current robot motion.
Other “Break” BREAK Stop action until the current motion
Commands completes.
“Go” DELAY Stop action for a period of time.
“Robot” ROBOT Enable or disable one or all robots.
C{Z;f;ﬁlfl;s “On” Start of program.
"o End of program.

Except the V' commands, there are some additional “interface” commands needed for the
system to work properly. The keywords “Or” and “Off” for example are indicating the start and
the end of the program. All the commands should be given between those two, in order for the
robot to follow them.

Unfortunately, the available dataset doesn’t contain all the needed commands. The aim is
to build an initial model based on the available recordings, which later can be improved. The
useful commands from the Speech Commands Dataset are summarized in Error! Reference s
ource not found.. The dataset contains around 2350 recordings per command, with some
exceptions, like the commands “one” and “on” that have 2347 and 2330 audio files respectively.

Table 12 —Vocabulary from Speech Commands Dataset

Command Reference Command N umbe.r of Function
Type Number Recordings
10 “Up” 2350 Close the robot gripper
Robot Motion immediately.
Commands 11 “Down”’ 2350 5111(1)22(;?;;1(; I?Ot grpper
0 “Zero” 2350 Number.
1 “One” 2330 Number.
2 “Two” 2350 Number.
3 “Three” 2350 Number.
4 “Four” 2350 Number.
Numerical 5 “Five” 2350 Number.
Commands 6 “Six 2350 Number.
7 “Seven” 2350 Number.
8 “Eight” 2350 Number.
9 “Nine” 2350 Number.
12 “Left” 2350 Sign | negative direction.
13 “Right” 2350 Sign | positive direction.
Other 14 “Stop” 2350 Abort current robot motion.
Commands 17 “Go” 2350 Stop action for a period of
time.
Interface 15 “On” 2347 Start of program.
Commands 16 “off” 2350 End of program.
TOTAL 42277

From the recordings, the data table is created with rows to represent the different recordings
and columns to represent the signal amplitude over time. The matrix has dimensions
42277x16000.

In the following figure (Figure 25) there are some examples to show the differentiation of
the audio recordings. Unfortunately, the dataset includes also some outliers, like the figure in
bottom right position. It’s not an easy case to ignore those outliers, but they can be avoided by
analyzing the dataset and removing outlier points and with the proper noise cancellation
method. Some of them might end up in the final dataset, but in that case the classifier won’t
take them into account as they are not representative recordings.

aaaaa

77777

Ampliude 48]

§

mgiruce]

e

.....

nnnnn

o
e 5]

Figure 25 — Variety of recording in the dataset

nnnnnn

All recordings in Speech Commands Dataset have duration of one second. So, the user
needs to give each command, also within one second. That is important to keep consistent the
number and the size of the frames, during the processing. For duration 1 sec and sample rate
fs = 16000 Hz, each recording consists of 16000 samples. A second is not long, so the user
should start right away to include the whole word clearly, but for these single-word commands
it is enough.

5.1.2. Pre-processing

The dataset is stored in a matrix 42277x16000, where the number of rows is the total
number of available recordings and the number of columns the resolution of the recording. An
additional column is added in the beginning of the table, that contains the corresponding word
to each recording. The pre-processing is done in Python.

x(1) x(2) x(3) x(4) x(5) x(6) x(15997) x(15998) x(15999)x(16000) x(16001)

VR T I (| TR R R

. ” . Sample Sample Sample Sample Sample

Command Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 #15996 #15097 #1598 #15099 416000
Rec #1 “zero”
Rec #2 “zero”
Rec #3 “zero”
Rec #4 “zero”
Rec #5 “zero”

Rec #42274 | “off”
Rec #42275 | “off”
Rec #42276 | “off”
Rec #42277 | “off?

Figure 26 — Dataset table with original signals [42277x16001]
5.1.2.1. Pre-emphasis

Firstly, the pre-emphasis filter is applied on the dataset to improve the signal-to-noise ratio
and balance the frequency spectrum.

yn)=x(n)—a-x(n—1), n € [1,N]

x(2) xi(4)-a-x(3) X(6)—a - x(5) X(15997) —a - x(15996) X(15999) - a - x(15998) X(16001) - a - x(16000)

x(1) H x(3)-a-x(2) ﬂ x(5)-a-x(4) ﬂ ﬂxusm; a- x(15997) ﬂxumom a- x(15999) ﬂ

Sample Sample Sample Sample Sample

Command Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 415096 #15997 #1998 #15999 #16000
Rec #1 “zero”
Rec #2 “zero”
Rec #3 “zero”
Rec #4 “zero”
Rec #5 “zero”

Rec #42274 | “off”
Rec #42275 | “off”
Rec #42276 | “off”
Rec #42277 | “off”

Figure 27 — Dataset table after pre-emphasis [42277x16001]

Figure 28 shows some examples before and after applying the pre-emphasis filter. The
representations of the original and emphasized signals are very similar, but the emphasized one
is like a scaled down version of the original. Looking closer to the graphs, the emphasized
signal’s amplitude is approximately half of the original one.

Figure 28 — Pre-emphasis filter

The pre-emphasis filter balances the frequency spectrum, by boosting more the higher
frequencies and weakening the lower ones. At the same time, it removes effectively the
background noise, especially when it’s generated by a constant source. As mentioned before,
the amplitude of the signal after pre-emphasis is reduced approximately by half. Actually, the
filter has effect similar to normalization, bringing the signals within the same amplitude range.
That way the model becomes less sensitive to speech volume. If a word is pronounced louder
in the majority of the recordings the model will connect the loudness with this word and when
receiving high volume audios will tend to classify them as that word. Pre-emphasis filter
reduces that risk, helping the model to focus in the right speech characteristics to classify the
words. In Figure 29 is a zoomed in graph to understand better the effect of pre-emphasis filters.

—— original signal
—— emphasized signal

10000

5000

Amplitude [dB]
o
—

-5000

-10000

050 052 054 056 058 060 062
Time [s]

Figure 29 — Pre-emphasis filter effect

The pre-emphasized dataset has the same table dimensions as the original one:
42277x16000.

5.1.2.2. Framing

The framing parameters are the frame length and the overlapping length. The frame must
be short enough to be considered as time stationary, but also, long enough to capture all the
important speech characteristics. The choice of a few big frames minimizes the benefits of
segmentation but requires less space and computational power. On the other hand, selecting
very small frames increases the sensitivity in small sound fluctuations that might be even
artificial and requires a lot more space. A bottle neck for the frame selection is the sampling
ratio. The signal resolution, the amount of data points, is depended on the sampling frequency.
It should be clear that the segmentation in shorter frames doesn’t increase the resolution of the
audio recording. The overlapping frames reduce the information loss for splitting the signa and
cover for the characteristics skewed or lost on the frame’s end-points. If the overlapping
between frames is too long, then most of the sample points will be taken too many times into
account. This probably won’t compromise the overall accuracy, but will feed the network with
a lot unnecessary data. From literature review, the recommended values for frame length and
overlap are between 15 — 25 ms and 10 — 15 ms, respectively. The frame length is chosen to
be 25 ms, to occupy less memory, and overlap 15 ms.

For sampling frequency f; = 16000 Hz the frame length and overlap are converted from
time to samples:

frame_length = frame_size - sample_rate = frame_length = 400 samples
frame_step = frame_stride - sample_rate = frame_step = 160 samples
The number of frames per signal is calculated:

signal_length — frame_length
frame_step

num_frames = round() = 98 frames

In case the sound signal cannot be divided in integer number of frames, the last frame will
have shorter length or zero values should be added to the original signal. In order to have perfect
integer division, the signal should have length equal to:

pad_signal = num_frames - frame_step + frame_length =
= pad_signal = 16080 samples

80 columns with zero values are added at the end of the original signal.

x(1)

x(2) X(15999)—a - x(15998) X(16001)—a - x(16000) X(16002) x(16003) x(16009)

x(3)-a-x(2) ﬂ X(16000) - a - X(15999) ﬂ

Sample Sample Sample

Command Sample #1 Sample #2 #15998 #15999 #16000 < Zeros -
Rec #1 “zero”
Rec #2 “zero”
Rec #3 “zero”
Rec #4 “zero”
Rec #5 “zero”

Rec #42274 | “oft”

Rec #42275 | “off”

Rec #42276 | “off”

Rec #42277 | “off”

Figure 30 — Pad signal dataset

The signal is split in 98 frames with 400 samples per frame. The dataset after framing is
reshaped into a table 42277x39200.

Frame #1 Frame #98
A \
Command Sample #1 Sample #2 Sample #400 Sample #15910 Sample #16008
Rec #1 “zero”
Rec #2 “zero”
Rec #3 “zero”
Rec #4 “zero”
Rec #5 “zero”
Rec #42274 | “off”
Rec #42275 | “off”
Rec #42276 | “off”
Rec #42277 | “off”

Figure 31 — Framed dataset

The signal divided into frames looks like the ones in Figure 32, where the different colours
represent the different frames.

0000

Amplitude [dB]
g

2000

4000

—e0o0

as 0 10

Figure 32 — Framed signal examples

It is obvious, that for the different recordings the frames are representing different part of
the command. As an example, frame number 30 in the left picture doesn’t include any part of
the phoneme, when in the right picture it is located in the middle of it.

5.1.2.3. Hamming Window

Hamming window function is applied to each frame to improve the transition between the

frames, reduce the spectrum leakages and improve the frequency resolution. The Hamming
window function is the following:

2'm'n
W(n)=0.54—0.46-cos(m),0SnSN—1

After applying the function, the main aim is to have the same value at the edges of each
frame. That is important because is frames is handled by FFT as periodical and if the ends are
not matching then discontinuity rises, which leads to spectrum leakages. By leading the end-
point values to zero, the information contained in this part of the signal is lost, but thanks to the
overlapping segments it is included in the next or previous frame. In the following image

(Figure 33) is shown the effect of window applied on a frame a. of the original and b. of the
emphasized signal.

Original Signal

—— Original signal
P /AN === Hamming window
2000

Amplitude [dB]

0.500 0.505 0510 0515 0520 0525
Time [s]

Emphasized Signal

600 A Emphasized signal

L&A Hamming window
A
W
| N Y
.
200 [- "
eud Wi ¥ J [g==
i Y d
o e
~ \/:7
s f
%

0500 0505 0510 0515 0520 0525
Time [s]

Amplitude [dB]

| |

& om
= &
= o

Figure 33 — Window function on original and emphasized signal

It is interesting to see how other window functions are modifying the audio signal. Figure
34 shows the representation of the different functions and the final form of the signal. All of

them, except Hamming Window, have zero amplitude at the edges of the frame and maximum
in the middle.

1000 | e e e e e e = e —— Rectangular
- —— Hanning

Hamming

0 —— Blackman

500

250

Amplitude [dB]
°

=250

-500

=750

-1000 --== S

12500 12350 12600 12650 12700 12750 12800 12850
Samples [1

Figure 34 — Window functions

Figure 35 shows the window filter applied in three consecutive frames. It is visible that the
parts of the signal, which the amplitude is minimized in one frame, is maximized in the previous
or next one, preserving all the necessary information for the classification.

1000 ¢ - - - —— Original Signal
1 g P % . -~ Rectangular
-~ Hanning
- Hamming
-=-- Blackman

750

500

230

Amplitude [dB]
°

-250

-500

~750

-1000

12300 12400 12500 12600 12700 12800 12900 13000
Samples []

Figure 35 — Window functions

The dataset after the window filter application has the same table dimensions as before:
42277x39200.

5.1.2.4. Fast Fourier Transform (FFT)

Finally, to complete the signal pre-processing the Fast Fourier Transform is applied on each
frame to calculate the frequency representation of the time domain signal. The recommended
Fourier lengths are 256 or 512; here is chosen 512.

N-1

X[n] — Z x[n] . e_j.zwn.k.n

i=

In the figures below are some examples of spectrum for different recordings. On the vertical
axis is the Frequency [kHertz], on the horizontal is time [sec], or sample number and the color
represent different magnitudes. The position relatively with the horizontal axis shows the
moment in time that the word was pronounced. The pattern of the color plot shows the energy
distribution among different frequencies.

. Spectrogram

60
BN 0,
Ta |
g3 WF
20
10
0
Time (s)
Spectrogram
8 80
7
=8 60
Is S
=]
£ w0%E
: H
T3
H
2 20
1
0
80
0
60
N
E Py
N
> $
g o
g g
-3 =
g B
20
1 = 10
o = 0
00 02 04 06 08 10
Time (s)
Figure 36 — Frequency Spectrum “one
Spectrogram
8 = — 80
7
—_6 60
M
Zs £
fol 2
g4 ©E
] g
g’ £
2 20
1
0
8
n 80
= 6
Zs e
Ta 2
§ 405
g ®
£
2 20
1
0
8
I 70
7
60
= 6
is Vs
> bao 2
é 4 40 g
E, 20
1 10

Figure 37 — Frequency Spectrum “seven”

In Figure 36, there are the spectrums for two different recordings of the command “one”

and in Figure 37the spectrums of the command “seven”. It’s obvious that the spectrums of the
same commands follow similar patterns.

5.1.3. Feature extraction

The process from the spectrum to the cepstrum and MFCCs generation is described below.

Input:
Spoken command

I

Output:
MFCCs

C—

Pre-processing
* Pre-emphasis
* Framing
¢« Windowing

Discrete Cosine

Transform/Inverse DFT |

Figure 38 —-MFCCs pipeline [26]

Frequency
Spectrum
Discrete Fourier
Transform (DFT/FFT) ¥
Convert Mel-Frequency

Log [¢ I
logMel-scale Mel-scale
Spectrum Spectrum

First, the frequency is converted from Hertz scale to Mel scale, then the logarithmic
function is applied on the Mel spectrum. The logarithmic Mel Spectrum is converted to MFCCs
cepstrum with the Discrete Cosine Transform.

From the power spectrum and applying FFT, we have the Mel-spectrum. In the graphs
below, is the visualization of Mel-scale spectrum. The same characteristic patterns of each
command, are still visible. It is very interesting to see the spectrum representation to vary

significantly for different commands and to match for the same commands.

Spectrogram

Mel-Frequency [kMel]
=
&

02 04

Time (s)

Spectrogram

Mel-Frequency [kMel]
= = [ad
o U b

o
o)

|-q:l|=.: __llrl_pw'- e T

—
n
4

0.4

Mel-Frequency [kMel]

0.2

0.6

Spectrogram

Time (s)

Figure 39 — Mel-frequency Spectrum “one”

Magnitude

Magnitude

Magnitude

Spectrogram

= e — T‘ = = L N z
25
= - - - - — a4
U
£ 20 i
- Lo
-~ b=
215 B3
u £
2 18 o
10 £
£ by
a
=05 %
0.0 T T T T T T T =
0.0 01 02 03 04 05 06 07
Tima el
Spectrogram
25 20
3 18
é 2.0
> 16 3
é 13 14 £
g
$ 10 2=
L 10
Z 05
8
0.0 4
Spectrogram
e 22
254
= 20
[7)
2 2.0 18
:
2151 16 2
H
g 14 g
210 =
5 12
® 039 10
-
0.0 2 8

T T
0.0 0.2 0.4 0.6 0.8 10

Figure 40 — Mel—j;eq'u\ency Spectrum “eight”

In Figure 41 are shown the frequency spectrum and Mel spectrum for the same recording
of the commands “six”, to look closer to the transformation from one scale to the other.

Spectrogram

-3
o

Magnitude

Frequency [kHz]
=N W e Vo N
8

Spectrogram
3]

Mel-Frequency [kMel]
Magnitude

0.0 0.2 0.4 0.6 0.8

Figure 41 — From Fi:equle‘ncy to Mel Spectrum “six”

The spectrum pattern is the same in both graphs, but in Mel spectrum plot the colors the
magnitude is more uniform, especial at the high frequency range. As mentioned in previous
chapters, the human ear cannot distinguish small variations in high frequencies, the way it can
in lowers ones. So, it perceives different, but similar, high frequencies as the same frequency.
Let’s focus on the top red, high-energy areas, between 6kHz-7kHz and the green, mid energy

areas on top, between 7kHz-8kHz. The same are in the Mel spectrum is located above the 2.5
Mel, but instead of having two different colors, the whole are is represented by dark red, which
corresponds to high energy. So, the obvious difference in frequency spectrum is not noticeable
for humans and thus is not included in the Mel spectrum.

From the Mel-spectrum and by applying logarithmic function and DCT on top, we get the
MFCC spectrogram, aka. the cepstrum. The previous spectrums were quite easy to identify the
commands by the pattern and it could be a next step to try image recognition on them. When it
comes to cepstrum representation, is not that obvious. Still there are some similarities between
the MFCCs of the same command, but the identification is not so straightforward.

Spectrogram

MFCC Coefficients
Magnitude

Spectrogram

n
u .1 .
1
LB 11 mE a %
g’ n 1 1 h II-F m s,
£ 3
g 2
) 50
| .
o
00 02 oa 06 o8 10
Time (s)
2 Spectrogram
10
10
50
2
& ° 2
o g
g . -s0 =
mm 1
) i |
mi Imi m
0 -150

00 02 3 06 08 10
Time (s)

Figure 42 -MFCC — Cepstrum “one”

Spectrogram

12
10 [[| B | I 50

MFCC Coefficients
Magnitude

MFCC Coefficients
Magnitude

Spectrogram

MFCC Coefficients
l
&
3
Magnitude

Figure 43 ~MFCC - Cepstrum “six”’

5.1.4. Classification

After the feature extraction the dataset is ready for the classification stage. Now is the
moment of truth, as the classification results will show how good is the data preparation. With
the right, optimal network it should be possible to achieve 80%-85% accuracy in the test subset.
The classification part is done in MATLAB R2023b and the model is a pattern recognition
network (patternnet).

5.14.1. k-Fold Cross Validation

As mentioned before, the k-fold cross validation method is used to obtain more
representative accuracy of the ANN and have less bias. When a network is biased, it means that
certain factors have high influence on it and the results are skewed towards a specific direction.
From bibliography the recommended values are between 5 and 10 folds. There is also the
approach of n-fold cross validation or Leave-One-Out Cross Validation (LOOCYV), where the
number of folds is equal to the number of observations. In this approach the testing set each
time consists of only one observation and the process is repeated n times. This approach has
the least biased results but is very demanding in computational power and very time consuming.
It is chosen k=5, so the training set consists of 33822 observations and the testing set of 8455.
The inputs are the 12 coefficients for each frame, for 98 frames and the classes are the 18
different commands.

It is important to check that the distribution of commands in both train and test subsets are
in similar levels. If the training set includes uneven number of each word, the network will be
obviously biased towards some class. The training subsets contains 80% of the total recordings.
All different commands must be present in approximately same percentage, so the network is
equally trained to recognize all commands and doesn’t tent to classify towards certain words.
Similarly, for the test subset, that contains 20% of the total recordings, the commands should
be equally distributed. It is expected that in training set there are 1600 recordings of each word
and 400 in test set.

5.1.4.2. Artificial Neural Network Parameters

The main investigation is regarding the network’s architecture, with constant training
function and stop criteria. The network has two hidden layers, as they are judged to be enough
for this problem, and the number of hidden layers in each one is the object of the optimization.
The training function used is the Scaled Conjugated Gradient algorithm (SCG). The SCG
method is an evolution of the conjugated methods, but instead of using line search to define the
optimal step, it calculates the interval based on a size scaling mechanism, improving the
method’s efficiency. Additionally, it is using the Hessian matrix with second order information,
unlike first order simple gradient method, accelerating the convergence. The maximum number
of epochs is set to 500 to have a good balance of high accuracy and low computational time.
The output from the feed forward network is the possibility, the observation to belong in each
one of the 18 classes, but the desired output is the written command, so the class label. The
transfer function “SoftMax”, does this job, by selecting the class with the highest probability.

Table 13 — Initial ANN characteristics

Type Pattern network
k-fold cross validation k=5
Hidden layers 2
Training function Scaled Conjugate Gradient ('trainscg’)
Train ratio 80%
Test ratio 20%
Transfer function SoftMax function ('softmax')
Maximum number of epochs 500 epochs

5.1.4.3. Artificial Neural Network Investigation

The investigation of the network architecture is done with the brute force method; manually
“all” of the possible architectures are examined and the one with the best accuracy is selected
in the final model. The main criteria for the selection is the accuracy to be above 80%, but for
the final network also the evaluation metrics are calculated, to evaluate deeper its performance.
The concept is to start from simple, small networks and continue with larger, more complex
ones until the desired accuracy is achieved. This way, the selected architecture will be almost
the least complex possible.

As first step, the different networks are trained in only ten words, the digits from O to 9,
starting from small architectures with 30 neurons in each layer.

Table 14 — Speech recognition models — Only Digits

k=5 30x30 40x40 50x50 60x60 80x80 100x100
Fold No 1 69.5% 73.5% 75.8% 78.3% 82.0% 83.7%
Fold No 2 61.5% 73.9% 75.4% 79.5% 80.2% 81.6%
Fold No 3 69.2% 73.3% 76.7% 78.0% 80.8% 75.3%
Fold No 4 69.6% 75.6% 76.9% 79.0% 80.6% 82.2%
Fold No 5 70.6% 73.5% 76.0% 78.7% 80.1% 82.0%
Average 68.1% 74.0% 76.1% 78.7% 80.7% 80.9%

Even the 30x30 network has quite good accuracy (~70%) and by increasing the neurons to
100x100 the accuracy exceeds the target (80%). By investigating more complicated
architectures, 300x300 networks, the accuracy increases to almost 90%. In all cases the train
accuracy is between 95% and 100%.

Table 15 — Speech recognition models — Only Digits

k=5 120x120 140x140 180x180 250x250 300x300
Fold No 1 84.3% 85.2% 86.3% 86.4% 88.7%
Fold No 2 84.5% 84.7% 86.4% 87.9% 88.0%
Fold No 3 83.8% 84.9% 85.2% 86.6% 86.9%
Fold No 4 84.3% 85.8% 86.3% 87.0% 86.8%
Fold No 5 83.8% 84.8% 85.4% 86.0% 87.2%
Average 84.1% 85.1% 85.9% 86.8% 87.5%

The next step is to add more commands for classification, expect the digits the words “Lefi”,
“Right”, “Stop”, “On” and “Off” are added to the dataset, increasing the classes from 10 to 17.
The expansions of the vocabulary — almost double the initial classes — leads to accuracy drop
approximately 10% for the same network architectures.

Table 16 — Speech recognition models — 17 Commands

k=5 80x80 100x100 | 120x120 | 140x140 | 180x180 250x250
Fold No 1 67.5% 70.7% 74.2% 73.4% 77.5% 78.6%
Fold No 2 69.3% 71.4% 73.3% 74.3% 76.4% 78.9%
Fold No 3 68.0% 72.6% 75.2% 75.9% 76.8% 81.1%
Fold No 4 67.8% 71.7% 74.4% 76.1% 76.6% 74.3%
Fold No 5 67.2% 69.8% 73.4% 74.6% 77.8% 79.4%
Average 68.0% 71.2% 74.1% 74.9% 77.0% 78.5%

The command “Go” is added in the dataset, to form the final version of the vocabulary.
With the new dataset, the networks are trained again. For the same architecture, with the
addition of one extra command, the accuracy drops by1%-2%, but is still able to catch the target
(80%), with the 300x300 model.

Table 17 — Speech recognition models — Final Dataset

k=5 120x120 140x140 180x180 250x250 300x300
Fold No 1 73.3% 74.1% 74.6% 77.8% 80.3%
Fold No 2 70.5% 74.3% 74.5% 76.3% 81.1%
Fold No 3 73.5% 74.5% 73.6% 74.9% 80.4%
Fold No 4 71.0% 74.0% 76.1% 80.2% 81.0%
Fold No 5 73.4% 74.8% 76.5% 77.0% 81.2%
Average 72.4% 74.3% 75.1% 77.2% 80.8%

The results from this initial study, set the foundations and limits for the next steps of the
investigation. By increasing the complexity of the network structure, the improvement in the
testing accuracy is still noticeable, which shows that the direction is correct and the absolute
best performance hasn’t been achieved yet. Of course, in smaller architectures the benefit in
accuracy is bigger with the same number of neurons increase, compared with the benefit in
larger networks. It is also clear, that there is not point of using networks with less than 100
neurons per layer, as their accuracy is less than 70%. The networks, so far, are of squared setup,
meaning that both layers have the same number of hidden neurons. For the next step, the brute
force method is applied for architectures between 100x100 and 850x850, with interval of 50
neurons.

Table 18:ANN accuracy investigation — part 1
Hidden Layer #2

100 150 200 250 300 350 400 450 500 Mean

100 70.70% 71.03% 72.59% 71.78% 72.99% 71.73% 73.98% 73.40% 74.96% 72.57%

150 72.32% 74.49% 75.03% 74.96% 75.86% 75.27% 75.76% 75.34% 76.84% 75.10%

200 75.63% 75.81% 76.73% 77.73% 76.17% 76.00% 78.16% 76.78% 77.02% 76.67%

250 77.29% 77.31% 77.56% 77.98% 77.93% 78.92% 78.23% 79.13% 77.12% 77.94%

300 78.02% 77.85% 77.16% 77.53% 78.13% 77.92% 77.41% 79.39% 79.34% 78.08%

§> 350 | 78.17% | 7858% | 77.76% | 78.80% | 78.88% | 75.57% | 79.13% | 78.25% | 79.70% | 78.32%
E 400 | 78.89% | 78.83% | 79.28% | 80.23% | 80.16% | 79.60% | 79.57% | 79.87% | 78.61% | 79.45%
E | a0 | 7017 | so1sw | 7870% | 79.35% | 79.26% | 79.43% | 8016% | 80.07% | 80.60% | 79.65%
* 500 | 79.63% | 79.81% | 8057% | 79.37% | 80.00% | 79.96% | 79779 | 780804 | 97T | 79669
550 79.9% 80.2% 80.2% 80.4% 78.8% 79.6% 80.5% 79.9% 80.1% || 79.96%
600 79.9% 79.7% 80.2% 79.1% 79.1% 79.1% 80.9% 79.5% 80.6% || 79.79%
650 80.2% 80.6% 80.7% 79.4% 80.2% 80.2% 80.7% 81.4% 78.0% || 80.14%

Mean 77.49% 77.86% 78.04% 78.05% 78.12% 77.77% 78.68% 78.43% 78.56%

In Table 18 are summarized the results for different architecture combinations. The number
of neurons in layers 1 is set as n; and n, is the number of neurons in second layer. The columns
are of constant n, and different n,, and the rows are of constant n, and different n,. In the first
table are the results for n, € [100,650] and n, € [100,400]. For each column and row, the average
accuracy is calculated. The conclusions from these results are:

» The minimum accuracy, 70%, occurs for architecture 100x100.

* The maximum accuracy is around 80%-81% and exists for different combinations.

= The increase in layer 1 size is more effective than the same increase in layer 2. By
observing the average per row, the accuracy improves, with incremental increase
of n,, more in the first steps (between 100 and 300 almost 2% per increment), less
in the middle (0.5% until 500 neurons) and in the end the delta is almost zero. The
average value per column, doesn’t follow the same trend, and is almost same
throughout for all different sizes of layer 2 and equal to 78%.

» The same change (e.g., increase layer 1 by 50 neurons) is more beneficial in smaller
architectures, than in more complex ones. This makes sense, when reaching closer
to the maximum performance the potentials are less.

= The best accuracy can be achieved with several combinations.

n,=400, it should be n,>300
n,=500 or n,=600, it should be n,>200

Table 19:ANN accuracy investigation — part 2
Hidden Layer #2

400 450 500 550 600 650 700 750 800 800 Mean

550 || 80.5% | 79.9% | 80.1% || 7%6% | 813% | 81.0% | 81.2% | 80.8% | 80.6% | 80.6% | 80.65%

600 80.9% 79.5% 80.6% 81.0% 80.5% 81.6% 80.9% 81.7% 81.3% 81.3% 80.95%

650 80.7% 81.4% 78.0% 80.4% 80.1% 78.0% 79.9% 79.1% 78.5% 78.5% 79.65%

700 80.7% 81.4% 78.0% 80.4% 80.1% 81.7% 79.5% 81.6% 80.0% 80.0% 80.43%

Hidden Layer #1

750 80.2% 81.5% 81.2% 81.0% 79.2% 81.8% 81.6% 81.0% 81.1% 81.1% 80.79%

800 80.3% 79.7% 81.7% 81.1% 80.4% 81.4% 81.7% 81.9% 81.7% 82.1% 81.01%

Mean | 80.30% | 80.32% | 79.77% | 80.59% | 80.26% | 80.91% | 80.81% | 81.01% | 80.32% | 80.76%

Table 18Table 19 includes combination the trends and findings are similar. For these, more
complex architectures, the accuracy can reach 82%, but the improvement is not that big; for
double size of the network (from 400x300 to 800x500) the benefit is only 2%.

It seems that the accuracy follows a trend similar to logarithmic, from n,;=100 until n,=400
the accuracy delta is 10%, and from 1,=400 until n;=800 only 2%. The model’s sensitivity to
the size the second hidden layer, is of similar trend as with the first layer size, but scaled down,
to smaller deltas. From the results is clear that the performance of the artificial neural networks
is affected more by the first layer size, than the rest. That is reasonable, considering that the
information flow is from the input layer to the first hidden layer and then to second hidden
layer. If the first layer doesn’t have the correct structure, the performance will be limited by
default. The following graphs show the same trend.

84.0%

82.0% L
. 1 [] v l :
® R ;] °
o ° °
80.0% .ol"!l 3 3
® v
5 : $ s °
S 78.0% ¢ 3 ° e o
o L
g o 8 °
7 76.0%
& s ¢ .
®
°
74.0% ®
®
®
72.0% .
70.0%
0 100 200 300 400 500 600 700 800 900
Hidden Layer #1
@100 ®150 ®200 250 @300 ®350 @400 @450 @500 @550 @G00 @G50 @700 ®750 ®R00 =850
Figure 44 —Test Accuracy for different sizes of hidden layer #1
84.0%
82.0%
L [] | : v [} ’
e 8§ 1 o o o °* ¥ e e
80.0% $ ¢ 0 s 2 3 °) °
- ®
3 M A | $ 2 .
5 g o ® Ps
£ 78.0% ¢ o+ . e & o °
3 s]
] ®
(1: v
% 76.0% s ®
= [S ' ® o
°
74.0% .
. ®
[]
72.0% L4
r&.U%o o .
e °
70.0%
0 100 200 300 400 500 600 700 800 200
Hidden Layer #2
@100 ®150 ®200 ©250 @300 ®350 @400 @450 @500 @550 @600 @650 ®700 ®750 ®800 © 850

Figure 45 — Test Accuracy for different sizes of hidden layer #2

Figure 44 demonstrates the relation between accuracy (vertical axis) and first layer’s size
(horizontal axis). The different colours represent different numbers of neurons in layer #2. In
Figure 45 is plotted the network’s accuracy for variant size of layer #2. Here the different
colours stand for different size of layer #1. Comparing the two figures it’s obvious that the
relation with the overall accuracy is very different: the second hidden layer doesn’t have the
same influence as the first. In general, it’s reasonable to assume that the first layer’s structure
sets the accuracy level and the increase in the number of neurons in second level does the
finetuning.

From the investigation, is not clear which architecture is the best, since the requirement for
80% accuracy, can be achieved with different combinations. It is worth to examine mire that
one options further and use the evaluation matrix to take the final decision.

5.1.44.

Evaluation Metrics — ANN 600x450

Here are the classification results for the 600x450 network. The overall accuracy is 80.7%,
which remains at the same level in all five folds. The performance is very balanced, as all the
evaluation metrics are very close to each other. In Table 20 are all the metrics for this network.

Table 20 — Test Accuracy 600x450

Fold No 1 Fold No 2 Fold No 3 Fold No 4 Fold No 5 Average
Accuracy 81.4% 79.5% 80.5% 80.9% 81.1% 80.7%
Precision 80.1% 78.5% 80.3% 81.0% 81.1% 80.7%
Recall 79.7% 80.3% 78.5% 79.9% 79.4% 80.7%
Fl-score 79.8% 79.3% 79.4% 80.4% 81.2% 80.7%

The confusion matrices for three, out of five folds, are shown in the graphs below and give
an indication for the recognition balancing for the different commands. Their behaviour is very

similar.

True Class

252% | 10.6% | 14.4% | 14.5% 15.2% | 21.6% | 25.3% 20.1%

234% 21.1% | 13.8% 20.1% | 15.5% | 25.2% | 20.2% | 23.9%
1 2 3 4 5 B 7 8 9 10 " 12 13 14 156 16 17 18
Predicted Class
Figure 46 — Confusion matrix k-fold1 — 600x450
1 20 2 1 2 4 3 4 1 1 16
2 4 2 15 6 [2 18 2 4 10 3 16 3 3
3| 13 4 8 1 4 4 4 10 5 1 3 1 17
4 4 1 | 3 | 1
5 2 16 6
6 2 3
7 3 1
8 2 3
9 2 2
ﬁ 0 14
9| s 8
g1z 3
13 5 14
14 3 3
15 2 1
16 1 25
17 2 3
18 11 10

77.9% 79.9%

221% | 201%

171% | 162% | 257% | 10.7%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Predicted Class

Figure 47 — Confusion matrix k-fold2 — 600x450

83.3%
78.2%

81.0%

75.6%

12.1%
19.0%
2 19.6%
16.4%
16.7%
26.6%
10.0%
14.8%
14.3%
19.5%
28.8%
35.6%
20.8%
23.4%
16.6%
26.7%
221%
28.68%

89.6%

85.7%

84.2%

82.7%

True Class

1 2 3 4 5 6 7 8 9 10 m" 12 13 14 15 16 17 18
Predicted Class

Figure 48 — Confusion matrix k-fold3 — 600x450

The individual classes have a deviation of 10% in their accuracy. The accuracies are in
general above 75%, but in all different folds, there are three, approximately, classes that their
accuracy is around 70%. The miss-predictions seems to be random and not follow any pattern.
For example, it would be expected to confuse the commands “one” (No2) and “on” (No16), or
“on” (Nol6) and “off” (Nol17), as the sound can be similar, but the model doesn’t show this
kind of sensitivity. In all cases, the word “zero” (No1) is one of the best predicted classes, where
“down” (No12) is one of the worst.

The commands “two” and “three” have very good percentages, much higher than “five” or
“down”. When the user is using the model, this difference in accuracy would rise, and in some
words the classification performance would be lower than in others.

5.1.4.5. Evaluation Metrics — ANN 500x200

Here are the classification results for the 500x200 network. The overall accuracy is 79.7%.
All the metrics, for each fold, all on the exact same level, which is a bit strange to be that close

(within 0.2%).

Table 21 — Test Accuracy 500x200

Fold No 1 Fold No 2 Fold No 3 Fold No 4 Fold No 5 Average
Accuracy 80.2% 78.4% 80.1% 80.1% 79.9% 79.7%
Precision 80.7% 78.2% 80.2% 80.1% 79.9% 79.8%
Recall 80.8% 78.3% 80.2% 80.1% 79.9% 79.8%
F1-score 80.7% 78.2% 80.2% 80.1% 79.9% 79.8%

The confusion matrices for three, out of five folds, are shown in the graphs below and give
an indication for the recognition balancing for the different commands.

True Class

% 81.7% B84.7% 86.4% 84.4% 79.8% 78.0% 84.7% 81.9%
11.4% | 20. 22.0% | 18.3% | 15.3% | 22.3% | 11.4% | 13.6% 156% | 20.2% | 22.0% [31.1% | 15.3% | 18.1% | 14.6% | 27.9% | 23.0% | 24.3%

1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 17 18
Predicted Class

Figure 49 — Confusion matrix k-fold1 — 500x200

True Class

83.4% 2% % 857% 759% 77.4%

87.4% T783% B815% B851% 83.7% 88.8%

12.6% | 21.7% | 18.5% | 14.9% | 16.3% | 27.7% | 11.2% 16.6% | 16.8% | 21.7% | 23.1% |35.7% | 17.6% | 17.2% | 14.3% | 24.1% | 22.6% | 25.7%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 16 17 18
Predicted Class

Figure 50 — Confusion matrix k-fold2 — 500x200

True Class

S ©® @ N e ;A o N

11
12
13
14

12.0% | 22.5%

17.9% | 15.2%

3

4

10 11 12
Predicted Class

13

14

15

16

17

18

12.2%
23.0%
18.4%
13.3%
17.2%
24.4%
11.9%
14.2%
13.5%
17.5%
246%
38.8%
22.0%
21.9%
18.5%
24.0%
18.3%
274%

Figure 51 — Confusion matrix k-fold3 — 500x200

The 500x200 network, follows the same trends and patterns as the 600x450, with slightly
lower accuracy, but the difference is almost insignificant.

6. Conclusions

This master thesis focuses on the development of a speech command recognition model
based on artificial neural networks and MFCCs coefficients. The main part of the thesis was
focused on finding the right method for signal pre-processing and vocal feature extraction. The
second part was the training of an ANN model for 18 command classification. The commands
were chosen for an industrial robot application, as a future goal would be to implement this
model in the laboratory to communicate with the robot. The signal processing approach is the
filtering of the signal to remove the main noise quantity and balance the frequency spectrum,
the segmentation of the signal in smaller frames, which can be considered stationary with time,
and the extraction of the Mel-Frequency Cepstral Coefficients, by applying the Discrete Fourier
Transform, converting to Mel-scale and back in time domain with the Inverse Discrete Fourier.
For the machine learning process, the object is an artificial neural network for pattern
recognition. The model’s architecture was the main part of investigation, to be able to learn
from the dataset and predict with accuracy 80% the unknown commands.

This project is a very good starting point to involve with Al development and speech
processing. The methodology described and used covers all the fundamentals of speech
recognition. Is both challenging and interesting to understand and analyse the hearing process
and perception of sounds, find the equivalent mathematic parameters and function and create a
model to mimic that from scratch. The key findings are summarized in the following list

e Human speech contains a lot of information regarding the identity of the speaker, their
sentiment situation and of course the words pronounced. Humans are able to
understand and process all this information at once, when models are focusing on one
task at a time. The right pre-processing of the signal and the calculation of the
mathematic portions that contain the important information are key steps for speech
recognition.

e The splitting of the signal into smaller frames, allows to handle each part as time
stationary. The segmentation gives the necessary focus to smaller details of the signal
(especially time dependent ones) that they would be lost is the processing was on the
whole signal. When separating the signal, is very beneficial to use overlapping frames
to minimize the information lost, especially on the frame’s edges. Windowing functions
are vital for the frames to behave properly.

e Regarding classification methods, there are many possible options, but whichever used
must be optimized for the specific application. When using a feed-forward neural
network, its architecture is the number one key factor for investigation. When using
multiple layers. The first hidden layer is the most important and defines the
performance boundaries of the system, where the other layers are finetuning the results.

e Using simple and small size structures leads to light models, but under-educated to the
dataset, especially in this type of complex problems. Using big, complex structures,
gives more flexibility to the model and broadens its accuracy. When pushing to the
limit and using a model too big for the case study, the model tends to overfit on training
data and loses the ability of generalization.

e The quality of the dataset, or how representative and rich is, can be a real bottle neck
for achieving high performance. From literature review the rule-of-thumb is that there
should be at least 1000 recording for complex problems and from thousands of
speakers. The existing dataset contains 2350 recordings per commands from thousand
speakers, with different voices, pronunciations and accents. So, it is considered
representative.

e The accuracy on the test subset of Google’s Speech Commands Dataset is around 80%
and accepted according to the requirements, but it’s expected to be less for commands

from random speakers. It is recommended to try the dataset with many different users,
starting point can be 10 and then expand till 100, and check if the accuracy remains in
higher levels, or drops significantly.

7. Future Steps

7.1. Improvements

This study is the first approach to develop a machine leaning model for speech recognition.
The findings and results from this study are good and promising, but there are many areas to
improve and finetune. Regarding the dataset, the vocabulary that the network can recognize is
not enough for manipulation of a robotic arm. It was not possible to find an existing dataset
with all the necessary commands and on the other hand, the creation of a custom dataset would
be very time consuming and required a big amount and variety of speakers. One recommended
improvement would be the generation of a larger dataset with all the needed commands, most
of them were mentioned above. For expanding the dataset, the same trained model can be used.

As mentioned before, it is recommended to test the ANN, not only on Google’s Speech
Commands Dataset, but with different users, to ensure that the accuracy remains stable. For the
results to be valid, there should be tried many users, with variety in voice, accent, pronunciation
etc. The users should be more than 10 and if possible, reach 100 or more.

Regarding the classification network, only artificial neural networks with two layers were
investigated. It would be interesting to see more complicated networks, of three or more hidden
layers, especially if the classes increase to recognize more words. Also, it would be insightful
to compare one-to-one the optimum artificial network with other classification models, like
Naive Bayes (NB), Random Forest (RF) and Nearest Neighbour (k-NN) models or
convolutional neural networks (CNN). A different approach would be to use convolutional
neural networks (CNN) for image recognition and instead of computing the MFCCs the model
would classify the commands based on the visualization of the MFCCs or the frequency
spectrum.

7.2. Additional Studies

The objective of the projects is to build a machine learning model for voice command
recognition, to be coupled with an industrial robot arm. In the current study, the only
consideration of the robot, was for defining the vocabulary, since the development of the
computer-robot interface was not included in the thesis scope. It would be very interesting to
check the recognition object “in action” and couple it with the robot interface. All the network’s
classes should be connected with different robot’s actions, so the recognition for each command
leads to a robot action. For this to be done there are two things needed. First one is the
correlation between the written word (predicted class) and the V' command. For example, the
prediction “approach’ should direct to the command “MOVE”, or even better the sequence of
the predictions: “MOVE”, “five”, “zero”, “slash”, “two”, “zero”, “slash”, “two”, “zero”, should
indicate the V' command: “MOVE (50, 20, 30)”. V" is the language to program Staubli RX
90L and is used in many industries, including system programming, web development, and
game development. The main advantage is its compilation speed, which makes it as fast as C
and suitable for real time applications. The interface code will transform the abstract single-
word commands into meaningful V* code commands. So, the one recommended addition is the
development of the interface and V* codes.

8. Bibliography

[1] B. Copeland, "Artificial Intelligence definition," Encyclopaedia Britannica, 2024.
[Online].

[2] J. Holdsworth and M. Scapicchio, "Deep learning vs. machine learning," IBM American
multinational technology corporation, 2017. [Online]. Available:
https://www.ibm.com/topics/deep-learning.

[3] A.L.Samuel, "Some Studies in Machine Learning Using the Game of Checkers," IBM
Journal of Research and Development, p. 21, 1959.

[4] R. Karjian, "History and evolution of maching learning: A timeline," TechTarget, 13 June
2024. [Online]. Available: https://www.techtarget.com/whatis/A-Timeline-of-Machine-
Learning-History.

[5] W. Pitts and W. McCulloch, "A logical calculus of the ideas immanent in nervous
activity," Bulletin of Mathematical Biology, p. 17, 1943.

[6] D.Hebb, The Organization of Behavior: A neuropsychological Theory, 1949.
[7]1 A. Turing, Computing Machinery and Intelligence, Mind, 1950.

[8] Y.LeCun, Y. Bengio and P. Haffner, Backpropagation Applied to Handwritten Zip Code
Recognition, MIT Press, 1989.

[9] S. Albahli, F. Alhassan, W. Albattah and R. U. Khan, Handwritten Digit Recognition:
Hyperparameters-Based Analysis, MDPI Applied Science, 2020.

[10] M. Pinola, Speech Recognition Through the Decades: How we ended up with Siri, 2011.

[11] D. Spicer, "AUDREY, Alexa and more: A history of automatic speech recognition," 2021.
[Online]. Available: https://computerhistory.org/blog/audrey-alexa-hal-and-more/.

[12] H. Kumari, J. Biji and K. A. Navas, "A Novel Objective Audio Quality Measure," 10th
National Conference on Technological Trends, 2009.

[13] UNIVERSAL ROBOTS, "Best Applications of Robotic Arms," 2022.
[14] UNIVERSAL ROBOTS, "Types of Robotic Arms," 2022.

[15] E. M. Rosales and Q. Gan, "Forward and Inverses Kinematics Models for a 5-dof Pioneer
2 Robot Arm," University of Essex - Department of Computer Science, 2002.

[16] Staubli, Arm - RX series 90B family, 2008.

[17] P. Makrylakis, "Industrial robot programming through voice commands," National
Technical University of Athens, Athens, 2023.

[18] A. Techhnology, "V+ Language Reference Guide," 1997.

[19] A. Technology, "V+ Language User's Guide, Ver. 12.1," 1997.

[20] B. Automation, "15 Robot End Effector Types and Selection Criteria," 2022. [Online].
Available: https://www.b2eautomation.com/insights/15-robot-end-effector-types-and-
selection-criteria.

[21] A. T. Ashraf, A. S. Hasanen and F. N. Mohammad, "Voice recognition system using
machine learning techniques," Elsevier, April 2021.

[22] A. N. S. S. M.M. Hasan, "An approach to voice conversion using feature statistical
mapping," Elsevier, p. 21, May 2005.

[23] D. Eringis and G. Tamulevicius, "Improving Speech Recognition Rate through Analysis
Parameters," De Gruyter, 2014.

[24] S. K. Kumar, B. Yazdanpanah and D. G. S. N. Raju, "Performance Comparison of
Windowing Techniques for ECG Signal Enhancement," International Journal of
Engineering Research, p. 4, December 2014.

[25] M. Puckette, "Taxonomy of filters," in Theory and Techniques of Electronic Music,
University of California, San Diego, World Scientific, 2003.

[26] V. Tiwari, "MFCC and its applications in speaker recognition," International Journal on
Emerging Technologies, p. 4, February 2010.

[27] G.-C. Vosniakos and P. Benardos, "Artificial Neural Networks in Manufacturing
Systems," National Technical University of Athens.

[28] P. Warden, "Speech Commands: A public dataset for single-word speech recognition -
Copyright Google 2017," [Online]. Available:
http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz. [Accessed
2017].

[29] V+ Language Users Giude Version 12.1, USA, 1997.

[30] R. M. V. V. L. Svitlana Maksymova, "Software for Voice Control Robot: Example of
Implementation," Open Access Library Journal, p. 12, 2017.

[31] L. Muda, M. Begam and |. Elamvazuthi, "Voice Recognition Algorithms using Mel
Frequency Cepstral Coefficient (MFCC) and Dynamic Time Warping (DTW) Techniques,"
p. 6, March 2010.

[32] S. Khawatreh, B. Ayyoub, A. Abu-Ein and Z. Algadi, "A Novel Methodology to Extract
Voice Signal Features," International Journal of Computer Applications, vol. 179, p. 4,
2018.

[33] H. Hofling, T. Berglund and A. Vaara, "Audio Compression," Uppsala University,
Uppsala, 2002.

[34] J. P. Egan and H. W. Hake, "On the masking pattern of a simple auditory stimulus," The
Journal of the Acoustical Society of America, pp. 622-630, 1950.

[35] J. V. Tobias, "Low-frequency masking patterns," The Journal of the Acoustical Society of
America, pp. 571-575, 1977.

[36] B. Y. D. G. S. N. R. K.Sravan Kumar, "Performance Comparison of Windowing Techniques
for ECG Signal Enhancement," International Journal of Engineering Research, p. 4,
December 2014.

[37] W. L. Hosch, "Machine Learning definition," Encyclopaedia Britannica, 2024. [Online].

[38] A. Bryson and Y.-C. Ho, Applied optimal control, Hemisphere Pub. Corp., 1975.

9. Appendix - Scripts
9.1. Python Script — Signal Processing

Read input signal:

sample rate, signal = scipy.io.wavfile.read(filepath)
time = len(signal)/sample rate
dt=np.arange(0,time, 1 /sample_rate)

Pre-processing:

Pre-emphasis

pre_emphasis = 0.97

emphasized_signal = np.append(signal[0], signal[1:] - pre_emphasis * signal[:-1])

Framing
frame size = 0.025
frame_stride = 0.01

frame length, frame step = frame size * sample rate, frame stride * sample rate

signal length = len(signal)

frame_length = int(round(frame_length))

frame_step = int(round(frame_step))

num_frames = int(np.ceil(float(np.abs(signal length - frame length)) / frame step))

pad_signal length =num_frames * frame_step + frame length
z = np.zeros((pad_signal length - signal length))
pad_signal = np.append(signal, z)

indices = np.tile(np.arange(0, frame length), (num_frames, 1)) + np.tile(np.arange(0, num_frames *
frame_step, frame_step), (frame_length, 1)).T

time_indices = indices/sample_rate

frames = pad_signal[indices.astype(np.int32, copy=False)]

Hamming Window
frames_window = frames.copy()
frames_window *= np.hamming(frame length) #Hamming window

Fast Fourier Transform

NFFT =512

mag_frames = np.absolute(np.fit.rfft(frames_window, NFFT))
rows, cols = mag_frames.shape

pow_frames = ((1.0 / NFFT) * ((mag_frames) ** 2))

rows, cols = pow_frames.shape

#print(f"Power Frames \nNumber of frames: {rows} \nNumber of FFt points: {cols}")
frequency = np.linspace(0, sample rate/2, len(pow_frames.T))

Frequency Spectrum

col=5

row = math.ceil(num_frames/col)
Columns = np.arange(0,col)
Rows = np.arange(0,row)

Size = np.arange(0,num_frames)

Column = np.tile(Columns, row)
Column = Column[:num_frames]
Row = np.array([])
for r in Rows:
Row = np.concatenate((Row, np.tile(int(r), col)[:num_frames]))
Row = Row.astype(int)
Row = Row[:num_frames]
Grid = pd.DataFrame({"Row":Row, "Column":Column})

Feature Extraction:

Mel-scale

nfilt = 40

low_freq mel =0

high _freq_mel = (2595 * np.log10(1 + (sample rate / 2) / 700)) # Convert Hz to Mel

mel points = np.linspace(low_freq mel, high freq mel, nfilt + 2) # Equally spaced in Mel scale
hz_points = (700 * (10**(mel points / 2595) - 1)) # Convert Mel to Hz

bin = np.floor((NFFT + 1) * hz_points / sample rate)

fbank = np.zeros((nfilt, int(np.floor(NFFT / 2 + 1))))
for m in range(1, nfilt + 1):

f m minus = int(bin[m - 1]) # left

f m = int(bin[m]) # center

f m_plus =int(bin[m + 1]) # right

for k in range(f m_minus, f m):
fbank[m - 1, k] = (k - bin[m - 1]) / (bin[m] - bin[m - 1])
for k in range(f m, f m_plus):
fbank[m - 1, k] = (bin[m + 1] - k) / (bin[m + 1] - bin[m])
filter banks = np.dot(pow_frames, fbank.T)
filter_banks = np.where(filter banks == 0, np.finfo(float).eps, filter banks)
filter_banks =20 * np.log10(filter_banks) # dB

MFCCs

num_ceps = 12

mfcc = det(filter banks, type=2, axis=1, norm='ortho")[:, 1 : (num_ceps + 1)] # Keep 2-13
(nframes, ncoeff) = mfcc.shape

n = np.arange(ncoeff)

Create Excel Files with MFCCa values:
excel file path = os.path.join(excel path, f" {filename}.xlsx")

workbook = openpyxl. Workbook()
worksheet = workbook.active

for row in mfcc:
worksheet.append(list(row))
workbook.save(excel file path)

9.2. MATLAB Script — ANN Training

%% This scrip uses brute force to optimize the architecture of an Artificial Neural Network
clear all
clc

%% Load dataset

load Commands.mat\dataset.mat
uniqueValues = unique(dataset(:,1));
numRows = size(dataset,1);

numCols = length(uniqueValues);
randomOrder = randperm(numRows);
datasetNew = dataset(randomOrder, :);

dataln = datasetNew(:,2:end)";

dataOut_ = datasetNew(:,1)"; % 1 x #Recordings: array that contains the
reference number of each recording
dataOut = zeros(humCols,numRows); % #Commands x #Recordings: table

that contains 0-1

for i = 1:numRows
dataOut(dataOut_(i)+1,i) = 1;

end

%% Cross-Validation Sheme - Train Validation and Test

k=5;

¢ = cvpartition(hnumRows,"KFold" k);

fori=1k
trainSet(:,i) = training(c,i);
testSet(:,i) = test(c,i);

end

%% Labels

classLabels = ["zero™ "one" "two" "three" "four" "five" "six™ "seven" "eight" "nine" "down" "up" "left"
"right” "stop"” "on" "off" "go"];
categories = categorical(classLabels);
categories = reordercats(categories, classLabels);
%%
hiddenSizes = [500 200];
trainFcn = "trainscg’;
net = patternnet(hiddenSizes,trainFcn); % Create a ML model
net.divideParam.trainRatio = 1; % Set data for training subset
net.divideParam.valRatio = 0.00; % Set data for validation subset
net.divideParam.testRatio = 0.00; % Set data for testing subset
net.layers{3}.transferFcn = 'softmax’;
fori=1k
trainSet_in{i} = dataln(:,trainSet(:,i));
trainSet_out{i} = dataOut(:,trainSet(:,i)); % To use to train the network
trainSetout{i} = dataOut_(: trainSet(:,i)); % To use for confusion matrix

testSet_in{i} = dataln(:,testSet(:,i));
testSet_out{i} = dataOut_(:,testSet(:,i));

trained_net = train(net,trainSet_in{i},trainSet_out{i});
temp_train = sim(trained_net,trainSet_in{i});
temp_test = sim(trained_net,testSet_in{i});

[~, est_train{i}] = max(temp_train);

[~, est_test{i}] = max(temp_test);

est_train{i} = est_train{i} - ones(size(est_train{i},1),size(est_train{i},2));
est test{i} = est_test{i} - ones(size(est_test{i},1),size(est_test{i},2));

a_train(i) = sum(trainSetout{i} == est_train{i})/size(trainSetout{i},2);

a_test(i) = sum(testSet_out{i} == est_test{i})/size(testSet_out{i},2);

for j = 1:length(uniqueValues)
s_train(i,j) = sum(trainSetout{i} == uniqueValues(j));
s_test(i,j) = sum(testSet_out{i} == uniqueValues(j));
end
%
% C_train{i} = confusionmat(trainSetout{i},est_train{i});
% C_test{i} = confusionmat(testSet_out{i},est test{i});
% figure('Name',[TEST Confusion Matrix k =", int2str(i)])
% A = confusionchart(C_test{i});
% A.RowSummary = row-normalized’;
% A.ColumnSummary = ‘column-normalized’,
% figure('Name',[TRAIN Confusion Matrix k =", int2str(i)])
% A = confusionchart(C_train{i});
% A.RowSummary = ‘row-normalized’;
% A.ColumnSummary = 'column-normalized’;

end

%% Labels

classLabels = ["zero" "one" "two
"I’ight" "StOp" llonll lloffll llgoll];
categories = categorical(classLabels);

categories = reordercats(categories, classLabels);

non non "o "o [T non "o "o non

three" "four" "five" "six" "seven" "eight" "nine" "down" "up" "left"

%% Confusion Matrix: TRAIN vs. TEST

fori=1k
a_train(i) = sum(trainSetout{i} == est_train{i})/size(trainSetout{i},2);
a_test(i) = sum(testSet_out{i} == est_test{i})/size(testSet_out{i},2);
C_train{i} = confusionmat(trainSetout{i}est_train{i});
C_test{i} = confusionmat(testSet_out{i}est_test{i});

% Plot and save test confusion matrix

fig_test = figure('Name',[TEST Confusion Matrix k =", int2str(i)]);

set(fig_test, 'Units', 'normalized', 'OuterPosition’, [0 0 1 1]); % Make figure full screen
A = confusionchart(C_test{i});

A.RowSummary = 'row-normalized’

A.ColumnSummary = 'column-normalized’;

saveas(fig_test, [Test_Confusion_Matrix_k ', int2str(i), .png']);

% Plot and save train confusion matrix
fig_train = figure('Name',[TRAIN Confusion Matrix k =", int2str(i)]);
set(fig_train, 'Units', 'normalized’, 'OuterPosition’, [0 0 1 1]); % Make figure full screen
A = confusionchart(C_train{i});
A.RowSummary = 'row-normalized’;
A.ColumnSummary = ‘column-normalized",
saveas(fig_train, ['Train_Confusion_Matrix_k_"', int2str(i), .png']);
end

9.3. MATLAB Scripts — Real time classification

%% Record audio file

% file_name = 'unknown’;

% Specify the audio recording parameters
sample_rate = 16000; % Sample rate in Hz
duration = 1; % Recording duration in seconds

% Create an audiorecorder object
recorder = audiorecorder(sample_rate, 16, 1); % 16-bit, 1 channel (mono)

disp('Start speaking.");
recordblocking(recorder, duration);
disp('End of recording.");

randomInt = randi([1, 8000]);

% Get the recorded audio data

signal = getaudiodata(recorder);

% Save the recorded audio to a file

audiowrite([folderPath2save, \unknown (', num2str(randomint), ".wav'], signal, sample_rate);
signal = signal * (2*15);

time = length(signal) / sample_rate;
dt = 0:1/sample_rate:(time - 1/sample_rate);

%% Pre-emphasis
pre_emphasis = 0.97;
emphasized_signal = [signal(1); signal(2:end) - pre_emphasis * signal(1:end-1)];

%% Frame parameters

frame_size = 0.025;

frame_stride = 0.01;

frame_length = round(frame_size * sample_rate);

frame_step = round(frame_stride * sample_rate);

signal_length = length(emphasized_signal);

num_frames = ceil(abs(signal_length - frame_length) / frame_step);
pad_signal_length = num_frames * frame_step + frame_length;

z = zeros(pad_signal_length - signal_length, 1);

pad_signal = [emphasized_signal; z];

%% Generate frames

indices = 1 + repmat(0:frame_length-1, num_frames, 1) +
repmat(0:frame_step:num_frames*frame_step-1, frame_length, 1)';
frames = pad_signal(indices);

%% Apply Hamming window
frames = frames .* hamming(frame_length)';

%% FFT and Power Spectrum

NFFT =512; % Set your desired NFFT value

mag_frames = abs(fft(frames, NFFT, 2));

mag_frames = mag_frames(:,1:NFFT/2+1);

pow_frames = (1.0 / NFFT) * (mag_frames."2);
pow_frames_new = 10 * log10(pow_frames");

frequency = linspace(0, sample_rate/2, size(pow_frames, 2));

%% Mel filter bank
nfilt = 40;
low_freq_mel = 0;

high_freq_mel = 2595 * log10(1 + (sample_rate / 2) / 700); % Convert Hz to Mel

mel_points = linspace(low_freq_mel, high_freq_mel, nfilt + 2); % Equally spaced in Mel scale
hz_points = 700 * (10.”(mel_points / 2595) - 1); % Convert Mel to Hz

bin = floor((NFFT + 1) * hz_points / sample_rate);

fbank = zeros(nfilt, floor(NFFT / 2) + 1);
for m = 2:nfilt+1
f_m_minus = bin(m-1); % left
f_m = bin(m); % center
f_m_plus = bin(m+1); % right

for k =f_m_minus:f_m-1
fbank(m-1, k+1) = (k - bin(m-1)) / (bin(m) - bin(m-1));
end
fork =f_m:f m_plus-1
fbank(m-1, k+1) = (bin(m+1) - k) / (bin(m+1) - bin(m));
end
end

% Compute filter banks

filter_banks = pow_frames * fbank.";

filter_banks = max(filter_banks, eps); % Numerical Stability
filter_banks = 20 * log10(filter_banks); % dB

%% MFCC computation

num_ceps = 12; % Set your desired number of MFCC coefficients
mfcc = dct(filter_banks')’;

mfcc = mfcc(;, 2:num_ceps+1);

%% Save to excel
excelFilename = [folderPath2save, \unknown (', num2str(randomint), ".xIsx7;
writematrix(mfcc, excelFilename)

%% Convert matrix to input format for ANN
data = reshape(mfcc.’, 1, [1);
data = data’;

%% Classification

% load 'C:\Users\AnnaMaria\Documents\Industrial robot programming through voice
commands\Classification\ANN_1'

load 500x200.mat % Loads the pre-trained ANN

classLabels = ["zero" "one

"right" "stop" "on" "off"];

nn non "o "o "o nn "o "o "o

two" "three" "four" "five" "six" "seven" "eight" "nine" "down" "up" "left"

guess = sim(trained_net,data); % Classification
[~, command] = max(guess);
Command = classLabels(command);

disp(Command)

