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Abstract

Backward propagation of chaos is referring to the phenomenon where the behavior of interactive agents (or
particles), described from a system of backward stochastic differential equations (BSDESs), progressively
resembles the one as if they where independent, while the number of agents increases to infinity. This thesis
aims to study backward propagation of chaos in a setting as general as possible, and also to introduce
the notion of stability of backward propagation of chaos. Here stability is understood as the continuity
property of backward propagation of chaos with respect to the data sets.

The interaction between the different agents is expressed through their empirical measure. In order to
identify the asymptotic behaviour of the mean-field systems of BSDEs we are going to use the McKean—
Vlasov BSDE. We consider two instances of backward propagation of chaos, when we have path dependence
in the generator and when we have the usual instantaneous dependence. So, we begin by establishing the
existence and uniqueness for the solutions of the mean-field system and McKean—Vlasov BSDE, under
an appropriate framework. Next, we introduce a new way of proving backward propagation of chaos
which allows for asymmetric terminal conditions for the mean-field systems, and general square-integrable
martingales with independent increments as drivers. Furthermore, we also show that the known convergence
rates for the backward propagation of chaos extend to our general setting. Finally, we introduce the notion
of stability of backward propagation of chaos with respect to data sets, and prove its validity under a
natural setting, for the usual dependence case. First we establish the uniform convergence of the mean-field
systems to the McKean—Vlasov BSDEs with respect to the data sets, and then we naturally expand the
known stability of BSDEs to include the McKean—-Vlasov BSDEs. Their conjunction gives us the stability
result. Because our setting incorporates both continuous and discontinuous cases, it allows the development
of numerical schemes for the backward propagation of chaos under L2—type approximations.

Additionally to the treatment of backward propagation of chaos, in chapter 1 we present a new way for
proving the main section theorems of stochastic calculus. Some merits of our approach are that it requires
minimum prerequisites, avoids any direct mention of capacities and works directly with the predictable
section while measurable section is an immediate corollary, thus also avoids the double work that is hidden
in the background of the usual proofs. Last but not least, optional (resp. accessible) section follows from
an intuitive approximation argument based on the dichotomy of predictable and totally inaccessible times
that further clarifies the relationship between these concepts. The chapter closes with an interesting short

proof of a disintegration theorem about measures, provided for completeness reasons.
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Chapter 1

The section theorems and disintegration of

measures

This chapter has mainly a pedagogical purpose. First we are going to give new, short, elementary and
intuitive proofs of the basic results of the general theory of stochastic processes, i.e. the measurable,
optional and predictable section theorems. As an immediate application of them we will prove the optional
and predictable projection theorems. Finally, we will give a short and relatively elementary proof of an

important theorem about the disintegration of measures, that is going to be used many times later on.

1.1 Section theorems

In the following we prove the predictable section theorem directly. We show that all one really needs from
analytic set theory is the almost trivial Lemma 1.1.2, which connects Souslin classes with o—algebras.
Additionally, our approach allows without much trouble to avoid any mention of capacities and rely only
to the immediate properties of P*, see Theorem 1.1.3 and Theorem 1.1.5. Then, measurable projection
and section are an immediate corollary of predictable section, see Theorem 1.1.6. Our final insight is that
optional section also follows directly from predictable section, as long as a suitable approximation result of

optional sets from predictable is used, see Lemma 1.1.11.

1.1.1 Souslin operation

First we will use the Souslin operation to get very efficiently, Theorem 1.1.2, a description for the structure

of the Borel sets "from the inside".

Definition 1.1.1. Let E be an arbitrary nonempty set and ) C £ C 2F.
The Souslin operation given a Souslin scheme Ay, . .y produces the set A := Upeny Ni=1 Any,on
The collection of all these sets is denoted by S(E) and called the Souslin class of €.

Finally, a Souslin scheme Ay, . n.y is called monotone, when for every n € NY and k € N, Ani e ©

ke

An, .. n, for its initial segments.

Lemma 1.1.2. Let E be an arbitrary nonempty set and ) C € C 2F. The following are true.
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1. S(€) is closed with respect to countable unions and intersections.
it.  If for every D € EU{E} we have D¢ € §(&), then o(E) C S(E).

@ii.  Let Agn,..n,y be a monotone Souslin scheme with values in & and m* € NV, If for every k € N we

m*
define as Sy, := Up, =1 .- Un/21 Ay then N7y Sk € Uneny Mt Ana -

Proof. For i. let {A™}nen © S(E), then Up_y A™ = Upt_y Unew ey A7 e = Unent 24 Dy,
where for every [ € N\ {1} and (hy,...,ly) € N' we defined Dy, := E and Dy, _j, := AZ;M,”_I. Next,
for the intersection we will need an increasing per coordinate bijection ¥ : N x N — N.! Hence, we
can decompose N into a sequence of disjoint sets as, N = U°_, {J(k,m) : k € N}. So, N°_, A" =
me1 Unent My A7y = Unene Mt N2y A;nﬂ(l,m),...,nﬂ(k,m) = Unent NZ1 Dh,y,...ny» Where for every [ € N
and (hy, ..., h) € N! we defined Dy, _p, = A;ijﬂ:jfg{m))Mhﬁmwlamwl(m.2
For 4., if we define the class F := {D € S§(€) : D¢ € S§(€)} we can easily check with the help of . that
is a o—algebra, which contains £.
Lastly for 7., let z € N2, Sg. For every k € N and (nq, ..., ng) € NF such that ny < m?, ....,np < mj
we say that (ny,...,ng) is z-admissible if and only if it is the initial segment of infinite (countable) other
¢,- By the

definition of {Sy}ren and the finiteness of the set {1,...,mi}, we easily see that for £ = 1 we can choose an

finite sequences (n1, ..., g, Pt1..., ) With ny < mj, ..., ¢, < m3 such that © € An, oy gy,

nd € {1,...,m}} such that (n?) is z-admissible. For k = 2, again by the finiteness of {1,...,m}}, we can
choose an ny € {1,...,m3} such that (n? nY) is z-admissible. Continuing this way, by induction, we find a
sequence {nd}ren such that for every k € N the string (n?, ..., n) is z-admissible. From the above and the

monotonicity of the Souslin scheme we have z € N2, An?,_"’nz : O

Because the images of projections generally are not measurable we need to make a trivial extension of

P to the whole power set.

Theorem 1.1.3. Let (0, F,P) be a probability space. Then the set function P* : 2% — R, where
P*(A) := inf{P(E) : AC E and E € F} is an extension of P, monotone and continuous on increasing
sequences. Furthermore, P* is countable subadditive, and for all A € 2% there exists Eq € F with A C E4
and P*(A) =P(E4).

Proof. The fact that is monotone and extension is obvious, as is also obvious that for all A € 2 exists
Ej € F with AC E4 and P*(A) = P(E4). From these follows immediately the countable subadditivity
property. Now, let {4, },en € P(2) be an increasing sequence, then there exists a corresponding sequence
{E4, }nen € F such that for all n > 1 it is true that A, C E4, and P(E,,) = P*(A,). We define the
sequence { B, }n,en where B, := N>_ Fj,,, this is increasing with P(B,,) = P*(A,,) and U2, A, C U2, B,.
Hence, we have P(Ug;l Bn> — imy, o P(B,) = limy, . P*(A,) < IP’*( o An) < IP’( o Bn>. 0

(m—-12%24+m—-1+k ifk<m
(k—1)24+m ifm < k.
271 : Nx N — N with 71 (k,m) := k, 7 : N x N — N with mp(k,m) := m.

IFor example we can pick as 9¥(k,m) := {
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1.1.2 Measurable, predictable and optional section

Let (2, F) be a measurable space and PP a probability measure on F. We remind that given a filtration
{Fi}ter, (without the usual conditions) on © x R, such that Vg, F; € F, and assuming that one is
familiar with the optional (stopping) times denoted by O and their basic properties, we say that an optional
time p is predictable if and only if there exists a non decreasing sequence of optional times {p, }nen such
that p, < 00, p, < pand p, < pon {0 < p}, for all n € N, with the property p, ,* p. By abusing notation,
as we did with the optional times and the optional o—algebra, we denote the set of predictable times as
P. It will be clear from the context when P symbolizes the predictable times and when the predictable
o—algebra of 2 x R,.

Definition 1.1.4. For every S € Q x Ry the debut of S is a function Q@ — R, U {oo} which is denoted by
D[S] and is defined as
D[S|(w) :=inf{s e R: (w,s) € S},

with the convention inf ) = co. In addition, for every function 7 : Q — Ry U{oo} we denote by [7] its graph
{(w, 7(w)) : w € Qand7(w) < oo}, and for every A € F we denote by T4 the function Q@ — R U {oco}
such that 74 := 714 + ool 4e.

Observe that above the predictable times were defined without any reference to a specific probability
measure by demanding the convergence to hold for all w. The following properties of predictable times are

basic and their proofs are trivial so they are omitted.
o Forall7 € O andt e R, \ {0} we have that 7+t € P.
o For all A € Fy we have 04 € P.
o For all p1, po € P we have that p; A ps € P.
« For every sequence {p,}nen € P we have that sup,cn{pn} € P.
e For all 7 € O and p € P we have that pj,<, € P.

At this point we note that when we write [p, 7] for p,7 € O we mean [p, oo N [0, 7] but we do not
demand p < 7. Also [oo, 7] = 0, for every 7 € O.

Theorem 1.1.5 (Predictable Section). For every predictable set P in P and € > 0 there ezists a predictable
time pP¢ such that [pP<] C P and P* (1q(P)) — P ({pP’€ < oo}) <.

Proof. Let & = {Up_1[px, %] : for n € N, pp € P and 7, € O with 7, < oo} U {00}, obviously £* is closed
with respect to finite unions and intersections. For A € £* let A = U4 [ps, 7/1] according to definition, then
D[A] = minlSiSmA{pf{pngiA}} € P and mq(A) = {D[A] < oo} € F. Next, for every p € P and 7 € O we
have ([p,7])¢ = [0, p[ U ]7, 00[. Hence, by Lemma 1.1.2, because [0, p[= U2, [+, pu] U [0gp0, Ogpsoy A 1],
where {p, }nen € O such that p,  p as in the definition of a predictable time, and ]7, co[= U2, [T+ 1, n],
we get that ([p, 7])¢ € S(€*). Thus we have P := o({[r, oo[ : 7 predictable time}) = o(€*) C S(E*). So,
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because £ is closed with respect to finite intersections, there exists a monotone Souslin scheme Py, . 5,1

with values in £* such that

neNN k=1

Fix € > 0, for every k € N and (my, ..., m;,) € N¥ we define

M, my T U ﬂPm ----- N

{neNN: n1<my,...,np<my} =1

It is straightforward that if m; — oo then M,,, T P, and more generally, if my1 — oo then My, my myyy T
Mny..omy - Thus o (Mo, mgmiss) T T (M, m,,) and from Theorem 1.1.3 we can choose a sequence
m* € NN such that P*(mq(M,,

sets

m;)) > P*(mq(P)) — ¢, for every k € N. Next, we define the sequence of

*
IR

* *
my my

=1 ng=1
Because £* is closed with respect to finite unions we have {Si}reny € £*. So, D[Sk] € P and mq(Sk) =
{D[Sk] < o0} € F, for every k € N. From the monotonicity of the Souslin scheme {Si }ren is decreasing
&, for every w € 2 the sets {mr, (({w} x Ry) N Sk)}ken are compact, hence 7o (N2, Sk) = Nieq ma(Sk)
and (w, sup,en{D[Sk](w)}) € Ny Sk for every w € ma(NR2, Sk)- So, D[N, Sk] = supren{D[Sk]} € P,
D[Ny Skl € Ny Sk and (M, Sk) = {D[Npe; Sk] < oo}. Finally we have P(mo(N52, Sk)) =
limy o0 P(70(Sk)) > P*(ma(P)) — €. This leads us to define as p*¢ the debut of N2, Sy, in other words,
pPe = D[N, Si]. To finish the proof note that from Lemma 1.1.2 we have 3, Sy C P. O

By choosing to work with the filtration {F,; },cr, where F, = F for all t € R, we get that P = F@B(R,).
To see this note that for A € F and sq, so € R, the functions 71 := s11 4 + 0ol 4c and 75 := s91 4 + 001 e
are predictable times. So, A X [s1, s2) = [71, 00[\[72, o€ P.

Theorem 1.1.6 (Measurable Section and Projection). For every S € F ® B(R,) there exists an
F—measurable function 75 : Q — R, U {oco} and an A% € F such that [1s] C S, {15 < oo} C mq(S) C A
and P (AS) =P ({rs < oo}) = P* (ma(S)).

Proof. The existence of A° is immediate from the way the extension (see Theorem 1.1.3) was constructed.
Now, assuming we work under the aforementioned filtration, i.e. F; = F for every t € R, from Theorem
1.1.5 we get for every k € N a predictable time pS% such that [p*+] C S and P* (1 (S)) —P ({ps’% < oo}) <
. We define A, := Up_{p5* < co}. Then, we define as

P (w) ifwe Ay \ Apy

Ts(w) := o
00 ifwe Uy, 4,)

with the convention Ay := (). From the monotonicity of P* the proof is complete. O

Remark 1.1.7. The results of Theorem 1.1.6 generalize immediately to any Borel space X (e.g. Polish) in
place of Ry and F ® B(X) instead of F @ B(R,).
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In order to prove the optional section theorem let us return to a random filtration {F;}ier, . We will

need the next definitions.

Definition 1.1.8. An optional time T is called

1. total inaccessible if and only if for every predictable time p we have P (1 = p < 00) =0,
it.  accessible if and only if there exists a sequence of predictable times {pmy}men such that 7] C
et [pm]-

Before we continue we remind the following, their proofs are trivial and so are omitted.

« For every 7 € O and progressively measurable set S the function with graph [7] NS is an optional

time.
o Every set O € O is progressively measurable.
o For every 7 € O there exist 7! total inaccessible and 72 accessible such that [7] = [7!] U [7?].

Remark 1.1.9. From the last bullet it is straight forward that, for every T € O there exists a total

inaccessible time 7' and a sequence of predictable times {pm }men such that [7] C [7'] U (UX_1[pm]) -

Definition 1.1.10. A set S C Q2 x R, is called thin set if and only if there exists a sequence of optional
times {7, tnen such that S = U2 [1.]. Specifically, S is called total inaccessible thin set if and only if

every T, can be chosen to be total inaccessible.

Lemma 1.1.11. For every optional set O € O there exists a predictable set P € P such that O\ P is a

thin set and P\ O is a total inaccessible thin set.

Proof. For the optional o—algebra we have that O := o ({[r, oo[ : 7 optional time}). Obviously, for every
7 optional time we have [, 00[ \ |7, 00[= [7]. So, because the family {[7, co[ : 7 optional time} is closed
with respect to finite intersections, by an easy Dynkin class argument we have that exist a predictable set
P’ and a thin set S’ such that OAP"3 C 8. Because OAP’ is progressively measurable it follows that is
also a thin set. Next, let {7!},cny and {p, }men be sequences of total inaccessible and predictable times
respectively such that OAP" C (U, [7 ) U(UX_,[pm])- It is immediate that the set P := P"\ (US_;[pm])

satisfies what we want. O

Theorem 1.1.12 (Optional Section). For every optional set O € O and € > 0 there exists an optional
time 79¢ such that [79<] C O and P* (1q(0)) — P ({TO’e < oo}) <.

Proof. From Lemma 1.1.11 there exists a predictable set P such that O \ P is a thin set and P\ O is
a total inaccessible thin set. From Theorem 1.1.5 there is a predictable stopping time p™% such that

[pF2] € P and P* (mq(P)) — P ({pPé < oo}) < £. Let {7 }nen be optional times such that O\ P =

o 1 Im]. We have mq(O \ P) = Uy, {1, < o0} € F. So, we pick N € N large enough such that

30AP :=(0\P)U(P\O).
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P(mq(O\ P))—P (UnNzl {m. < oo}) < £. Next, we define as p the optional time with graph [p”2]N (P \ O)°
and 7 := minpeq1,. N {7n}. We have that P* (1q(ON P)) =P ({p < 0o}) < §, and

P* (ma(0)) < P (ma(O N P)) + P (ma(O\ P)\ ({p < 0o} N {7 < o0}))
<PH{p<oo})+P({r<oo}\{p<oo})+e=P{p<oo}U{r <oo})+e.
Hence, we can define as 79 := p A 7. ]

Remark 1.1.13. One can prove the accessible section theorem, i.e. the analog of Theorem 1.1.12 for the
accessible c—algebra, A := o ({[1,00[: T accessible time}), and the accessible times exactly the same way

as above.

1.2 Projection theorems

To define the projections we will need a regularization theorem, with respect to the continuity of the paths.
So, let (€2, F,P) be a probability space, and F := {F;};cr, a filtration on Q x R, such that V;cp, F; € F
and Fy contains all sets of F with zero probability.

Theorem 1.2.1. Let X be an adapted, with respect to F, real-valued process. If
1. X is integrable for everyt € R,

1.  for everyt € Ry
sup{‘E lZﬂAi (Xsi —Xsi_l)H nmeN0O=sy<...<s,=tA4; € }"Si_l} < 00,
i=1

then X has a version Y with left and right limits for every (w,t) € Q x R,. Moreover, there exists a
countable set C C Ry such that for every t € C¢ we have

lim Y;(w) = Yy (w),

s—tt

for every w € €.

Remark 1.2.2. Note that a real-valued function X defined on Ry has finite variation if and only if for

every t € R, we have

sup {

Hence, because the finite variation functions are the archetype of a function with left and right limits

n

> ai (X, — X,

i=1

tn e N’O: So S S Sn, It’ (CI,l,...,CLn) c {O,l}n} < Q.

everywhere, the conditions of theorem 1.2.1 can be considered natural.

Proof of Theorem 1.2.1. Let t € R, and a,b € Q with a < b. Furthermore, let S := {to, ..., tm, ...} be
a countable and dense subset of R, such that t; = 0. First we are going to show that the number of

upcrossings of X between a and b in the interval [0, ¢] with respect to S, denoted by U[i’,i] (X), is finite.
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And second, that the sequence of numbers { X (w)}sesno,q is bounded P—a.e. So, start with the first n
members of S (in respect to the ordering of its elements) and ¢, {to, ..., t,—1,t} € S U {t} and reorder it if
need be such that {to,...,t,—1,t} = {s0, ..., $n} and 0 = 5o < 81 < ... < 5, = t. Define

A= {X,, < a}and A; = (A,-l N{X,, , < b}) U (Ag_l N{X,, , < a}),z’ € {2,...n}.

Then, define

U[E(I))]’m’tn}’t (X) = Z ]IAFNWAE + ]lAnﬁ{Xt>b}-
1=2

Uag ™" (X) < U ()

and

Next, observe that

hence

1 n
E {U[g%},...,tn},t(X)} S — <E Lg; 1y, (XSZ. — Xsi1>] + |a|+E [|Xt|]> .

By the theorem assumptions and the monotone convergence theorem we get that [E [U[ 0 (X )} < 00, in
other words PP ({U[i';] (X) = oo}) = 0.
Now, let N € N and define

Bl = {XSO < N} and Bz = Bi*l U (Bic_l N {Xsi,1 > N}),Z € {2, ,n}

We get that
; ]le‘ (Xs, - Xsrl) ]l{suple{o ,,,,, n}{Xt }>N} ( N)

.....

So, by taking the expectations we have

P ({ sup {X,,}> N}) ]IV <E [an 1, (X., - X)] +E[|Xt|]> .

1€{0,...,n} i=1
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By applying the same procedure to the process —X we also get that

P ({ inf | {X.} < —N}) < ]1V <—E Lz:ngg (X, - X)] +E [IXA])

1€{0,...,

and finally from the theorem assumptions and the above that

*(Lag, 0o ==]) =0

So, we can deduce that there exists a set D € F with P(D) = 0 such that, for every w € D¢ and for every
t € R, the left and right limits

lim X;(w) and lim X (w)

s—tt s—t~

seS seSs

exist. Hence, if we define the process

X, (w) := lim X,(w) = inf sup  {Xs(w)1pe(w)}
ss—égr neN sESﬁ(tﬂH—%)
we see immediately that is right continuous with left limits.
At this point it is important to note the following obvious fact. Let S D S be an countable, dense

subset of R, and we define similarly to before

X,(w) == lim X,(w) = inf sup {Xs(cu)]lA (w)} )

+ N ~
58_6’% ne seSn(tt+1)

then we will have for every t € R, that
(% %)) =0

Now we will investigate at which points we have P ({)N(t # Xt}) > 0. Of course if for a point t € R,
the above relation is true, then there will be n; € N such that P ({‘)N(t — Xt‘ > n%}) > n% We will show
that for every n € N and t € R, we have P ({’)A(; — X,
Assume instead that there exist ng € N, 5 € R, and an increasing or decreasing sequence { s, }men C [0, ]
v/v\ith P ({‘Ysm - X, | > n—i}}) > n—lo for every m € N and s, = 540. If we define S := S U ({$, }men) and
X as above we will get that

> %}) > % only for finitely many points s € [0, t].

lim X, = lim X, = lim X, P—a.e.
m—oo oM m—oo oM m—oo  °om?

This is a contradiction, so indeed, for every n € N and ¢ € R, we have that P ({‘YS — X

> %}) > Lonly
for finitely many points s € [0,¢]. In other words, we have P ({)N(t #* Xt}) > 0 only for a countable subset of
R, let’s denote this set with {s,, }men € Ry. Hence, a final note is that the set where P ({Yt #+ Xt}> =0
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is a dense subset of Ry. To finish the proof define C := S U ({5, }men) and

Xi(w), tE€R\ {sm}men

Yi(w) =
Xi(w), t€{sm}men,

where X the process defined with respect to S := C as before. ]
Corollary 1.2.3. Let £ € LY(F). If the filtration F is right continuous, then the martingale X; := E[¢|F]

has a cadlag version.

Proof. 1t is obvious that the process X satisfies the conditions of Theorem 1.2.1. Hence, there exists a
version Y of X that has left and right limits everywhere. By hypothesis we have F;+ = F; for every t € R,

so from the dominated convergence theorem for the conditional expectation we get that
Yir = lirg Y, =E[|F+] =E[{|R] =Y, P—ae.
5—

Because from theorem 1.2.1 the set of times where Y may not be right continuous is countable the proof is

complete. O

Now we are ready to state and prove the projection theorems. For presentation reasons in the next
results we are going to assume that I is a right continuous filtration, although that is not a necessary

condition for the results to hold.

Theorem 1.2.4 (Optional projection). Let X be an F ® B(R,)—measurable process such that
]E[XT]]-{T<<>0}|JT-T} < o0, P—a.e.,

for every optional time 7. Then, there exists a unique, up to indistinguishability, optional process, denoted

by °X and referred to as the optional projection of X, such that for every optional time T we have
E[XT]I{7—<OO}’FT] = OXT]I{T<OO}, P—a.e.

Proof. The uniqueness of the optional projection is secured from Theorem 1.1.12. So, from now on we
will focus on its construction. From Doob’s optional sampling theorem we get that for every X = £, with
¢ € LY(F), we can define as °X; := E[{|F;], where we chose the cadlag version of the above martingale,
provided from Corollary 1.2.3. Next, because for every s € R, and optional time 7 we have that
{r < s} € F; we immediately get that for X := 1} 4§ we can define as °X; := 1} gE[{|F;]. The set
{[0,s] x A: s € Ry, A€ F} is a m—system which generates F ® B(R,), so from an easy Dynkin-class
argument we get that we can define the optional projection for every process X := 1g, where S € FRB(R,).
Then, from an easy monotone-class argument we can extend the set of processes X for which we can define
the projection to that of all non-negative F @ B(R,)—measurable processes. From this is obvious that if a

process X satisfies the condition of the theorem, then we can define as °X :=°X, —°X _. n

Theorem 1.2.5 (Predictable projection). Let X be a F ® B(R,)—measurable process such that

EX 1rcoy|Fro] <00, P—ace.,
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for every predictable time 7. Then, there exists a unique, up to indistinguishability, predictable process,
denoted with PX and referred to as the predictable projection of X, such that for every predictable time T

we have
E[XT]I{T<OO}|]: _] = pXT]l{T<Oo}, P—a.e.

Proof. Exactly the same with that of Theorem 1.2.4, under the appropriate modifications, with the only
exception being that we define for £ € L'(F) and X := ¢ its predictable projection as PX; := °X;_. O]

1.3 Disintegration of measures

For the proof of corollary 1.3.6 we are going to follow Cohn [13, Section 8.6].

Definition 1.3.1. Let (E,E) be a measurable space. We say that € is countably generated if and only if
there exists a countable family C C P(FE) such that € = o(C). Furthermore, we say that C separates F if
and only if for every pair x,y of distinct points of E there exists A € C such that x € A and y € A°. Then,
if there exists a family C which generates £ and seperates E we say that (E,E) is separated and countably

generated.

Remark 1.3.2. For every second countable Hausdorff space X the Borel o—algebra B(X) is separated and

countably generated.

Definition 1.3.3. Let (E',EY), (E?,£?) be two measurable spaces. A function F : E' — E? is said to be
a measurable bijection if and only if it is injective, surjective and for every (A', A%) € £ x €2 we have
(F(AY), F(A?%) € &% x E'. Moreover, if E, E* are Polish spaces and E' = B(E'),E? = B(E?), then we
say that F is a Borel-isomorphism and (E',&Y), (E? E?) are Borel-isomorphic.

We give the following elementary construction that reveals the usefulness of the above definitions.

Theorem 1.3.4. Let (E,E) be separated and countably generated. Then, there exists a subset A of {0, 1}
such that there exists a measurable bijection between (E,E) and (A, B(A)).

Proof. Let C := {C},}nen be a sequence that satisfies the properties of Definition 1.3.1 for £. We define the
function F': E — {0, 1} where for every n € N we have that,

(F(z),=0if z€C;. or (F(x)),=1ifzeC,.
By the separation property of C we have that F'is injective. Next, because for every n € N
Co=F"'({ac{0,1}":a,=1}) and F(Cp)=F(E)N{ac{0,1}":a, =1},

we define A := F(FE) and get what we want. O

Theorem 1.3.5. The measurable space ({O, 1B ({0, 1}N)) is Borel-isomorphic to ([0,1], B(]0, 1])).
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Proof. We define the function F : {0,1}" — [0, 1] with
0o a,
F(a):=>" o

n=1

Let D := U;2, {2% :m €0, ..., 2”}} Trivially we see that D, F~!(D) are countable, and the function
F' {0, 13N\ F~Y(D) — [0,1] \ D, with F’(z) = F(x), is a homeomorphism. So, the wanted result follows
by patching together F’ and F”, where F” : F~1(D) — D a bijection of our choice between the countable
sets. [l

Corollary 1.3.6. Let (E,E) be separated and countably generated. Then, there exists a measurable bijection
between (E,E) and (A, B(A)), where A is a subset of [0,1].

Remark 1.3.7. Of course B(A) = B([0,1])NA=0([0,t]NA:t € QyNI0,1]).

Definition 1.3.8. Let (2, F) and (E, &) be measurable spaces. A function p: Q x & — Ry U {oo} will

be called finite random measure if and only if the following are true:
i.  Foreveryw € Q p(w,-) is a finite measure on (E,&).
it.  For every S € & the function u(-,S) is F—measurable.

Furthermore, p will be called random measure! if and only if u = Y%, u, and u, is a finite random

measure for every n € N.
Now we are ready to prove our disintegration theorem.

Theorem 1.3.9. Let (Q, F,IP) be a probability space and (E,E) a separated and countably generated
measurable space. Additionally, let m : F @ € — Ry be a finite measure on (Q x E, F ® ). Define the
measure my : F — Ry with my(S) := m(S x E). If m;y < P, then there exists a finite random measure
w2 x & — Ry such that for every S € F ® € we have

mwyi//ng%xm@uum@@. (1.1)
oJE
Moreover, the finite random measure | is unique P—a.e.

Proof. First, from Corolarry 1.3.6 we have that there exists a measurable bijection F': (E, &) — (A, B(A))
with A C [0, 1]. So, we have that

FRE=FRF ' (BA)=0({SxF'(0,{nA): S FandteQno,1]}).

Now, for every t € [0,1] define the measures my,; : F — Ry with mq4(S) := m(S x F~([0,¢{]N A)). Then,

for every t € Q N[0, 1] define as
dm
O, F1 A)) = Lt

4This is what Kallenberg in [31, p. 30] calls s-finite kernel.



a version of the Radon-Nikodym derivative of m, , with respect to P. By definition we get that, for every
¢1,q2 € QN [0,1] with ¢; < g the set

Suwan = {0 € 2140w, PO, 0) N 4)) > 10w, F(0,0] 1 A))} € F
and also

Sleo 1= {w € Q:p’(w, F7H[0,1] N A)) = oo} eF,

with probabilities P(S,, 4,) = P(S1.00) = 0, the second equality comes from the fact that p°(-, F71([0,1]N A))
is integrable with respect to P. Let

Sp 1= ( U Sql,qQ) U 51,009

(q1,92)€Q3N[0,1]
q1<q2

obviously Sy € F and P(Sp) = 0. Hence now define
M('? F_l([oa t] A A)) = 158(') NO(W F_l([o’t] A A))?

for every t € QN [0, 1]. To expand our definition for every ¢ € [0, 1] we will use that u(-, F~1([0,1] N A)) is

integrable with respect to P, so by dominated convergence define as

P 0.0 A) = lim (-, B0, 0 A))
s€QN[0,1]
and get that
dmj,
dP
for every ¢t € [0,1]. Finally, with the usual procedure of defining measures from cadlag, non-negative,

p(, FH([0,4) N A)) =

, P—a.e.,

non-decreasing functions on [0, 1] we can define the random measure p : Q@ x &€ — R,. Note that
property ii. of definition 1.3.8 is proved with an easy Dynkin-class argument, by using the m—system
{F71([0,{] M A) : t € QN 0,1]} which generates £. Similarly (1.1) is proved by using the m—system
{Sx F71([0,t]nA): S € Fandt € QNJ0,1]} which generates F ® &.

The last claim about uniqueness follows again from an easy Dynkin-class argument, by using again the
m—system {F~1([0,¢{] N A): ¢t € QnNJ0,1]} which generates £, and noting that for every random measure
v:Q x & — R, which satisfies (1.1) we must have

B dmy

v (- F(0,4NA)) = B Poaen

for every t € QN [0, 1]. O






Chapter 2

Stochastic prerequisites and more

In this chapter, we are going to introduce the notation, as well as to give a short overview of known results,
which will be useful in the current work. Furthermore, we present the I' function, basic ingredient of our
framework. The chapter then closes with the a priori estimates and an examination of their coefficients.
Let (2,3, G, P) denote a complete stochastic basis in the sense of Jacod and Shiryaev [29, 1.1.3]. Once
there is no ambiguity about the reference filtration, we are going to conceal the dependence on G. The
letters p,n and d will denote arbitrary natural numbers. For every (m,q) € N* x N* we will denote with
R™*% the m x g—matrices with real entries. Also, we will denote with || - || the Euclidean norm on R™*,
i.e. for 2 € R™*? we have ||z||3 := Tr[272]. Note that we identify R? as R?*! in this case we will use the

notation | - | instead of || - ||2.

2.1 Martingales

Let us denote by H?(G; RP) the set of square integrable G—martingales, i.e.,

H*(G;RP) := {X 1 Q xRy — RP, X is a G—martingale with sup E[|X;|?] < oo},

tER+

equipped with its usual norm
IX 32 me = EllXool’] = E[Tr[(X)S]]

where (X)® denotes the G—predictable quadratic variation of X. In other words, (X)® is the G—predictable
compensator of the G—optional quadratic variation [X].

Let us also define a notion of orthogonality between two square integrable martingales. More precisely,
we say that X € H*(G;RP) and Y € H%(G;RY) are (mutually) orthogonal if and only if (X, Y)® = 0, and
denote this relation by X Lg Y. Moreover, for a subset X of H?*(G;RP), we denote the space of martingales

orthogonal to each component of every element of X by X1¢, i.e.,

X*e .= {Y € H3(G;R), (Y, X)® =0 for every X € X'}.
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A martingale X € H?(G;RP) will be called a purely discontinuous martingale if Xy = 0 and if each of its
components is orthogonal to all continuous martingales of H*(G;R). Using [29, Corollary 1.4.16] we can
decompose H?(G;RP) as follows

H2(G; RP) = H2¢(G; R?) & H>4(G; RP), (2.1)

where H*¢(G; RP) denotes the subspace of H?(G;RP) consisting of all continuous square-integrable mar-
tingales and H>¢(G; RP) denotes the subspace of H?(G;RP) consisting of all purely discontinuous square—
integrable martingales.

Let us also provide a classical example of the decomposition of the space of square—integrable martingales;
we will later expand this result to a more general setting. Using [29, Theorem 1.4.18], any square—integrable

G—martingale X € H?(G;RP) admits a unique (up to P—indistinguishability) decomposition
X =X+ X+ X%, (2.2)

where X§ = X§ = 0. The process X¢ € H?¢(G;RP) will be called the continuous martingale part of X,
while the process X € H?4(G;RP) will be called the purely discontinuous martingale part of X. The pair
(X¢, X4 is called the natural pair of X (under G).

2.1.1 TIto stochastic integrals

Using [29, Section II1.6.a], in order to define the stochastic integral with respect to a square-integrable
martingale X € H?(G;RP), we need to select a G—predictable, non-decreasing and right continuous process
C® with the property that

d(X)y
G __ s G

d(x)®
dce

in the set of all symmetric, non—negative definite p x p matrices. Then, we define the set of integrable

<l

where P® denotes the G—predictable c—field on  x R, ; see [29, Definition 1.2.1]. The associated stochastic
integrals will be denoted either by Z - X or by [ Z;dX,. In case we need to underline the filtration under
which the Ito stochastic integral is defined, we will write either (Z- X)® or (J Z,dX,)®. The most important

relation of the stochastic integral is the following formula for its predictable quadratic variation (see [29,
Theorem I11.6.4.c)])

where the equality is understood component-wise. That is to say, is a predictable process with values

processes to be

(G, X:RP?) = {Z . (Q x R,.P® re gREo k| [T |2, 8805 57 gom
(77 )'_ '<X+7P)—>( 7( ))7 0 rtdo(gt t
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Hence, we have the analogon of the usual Ito isometry

> d(X)§
”ZH%I?(G,X;RdXP) =E l/o Tr [Zt 16

s

ZJ] dCf’] =E|Tr[(Z- X)3]].

We will denote the space of Ito stochastic integrals of processes in H?(G, X) with respect to X by £2(G, X).
In particular, for X¢ € H?¢(G; R?) we remind the reader that, by [29, Theorem I11.4.5], Z- X¢ € H*¢(G;R?)
for every Z € H?(X¢,G), i.e., L2(X¢ G) C H?**(G;RY).

2.1.2 Integrals with respect to an integer—valued random measure

Let us now expand the space, and accordingly the predictable o—algebra, in order to construct measures

that depend also on the height of the jumps of a stochastic process, that is
(2,P°) := (@ x Ry x R", P¢ @ B(R")).

A measurable function U : (6,75@) — (Rd,B(Rd)) is called P®—measurable function and, abusing
notation, the space of these functions will also be denoted by P®. In particular, we will denote by ﬁf the
space of non-negative P®—measurable functions.!

We say that p is a random measure if p := {u (w;dt, dz)},eq is a family of non—negative measures
defined on (R; x R", B(R;) ® B(R")), satisfying identically u (w;{0} x R") = 0. Consider a function
U € P®, then we define the process

/ U(w,s,z)p(w;ds,dz), if U (w, s, ) |u(w,ds,dz) < oo,
U p.(w):=q J0]xR (0,]xR"

oo, otherwise.

Let X € H%*(G;R"), we associate to it the G—optional integer—valued random measure p* on R, x R

defined by its jumps via the formula

/LX (w; dt, dx) = Z IL{AXS(W);éO}(s(s,AXS(w)) (dt, dx), (24)

s>0

where, for any z € Ry x R", §, denotes the Dirac measure at the point z; see also [29, Proposition I1.1.16]
which verifies that uX is G—optional and P® — o—finite. Notice that u¥ (w; R, x {0}) = 0. Moreover, for

a G—predictable stopping time o we define the random variable
/ Uw, 0,2 (wi{o} x do) = U(w, 0(w), AXo () () L{AX, £0Uw.0(),AX () @)] <o) -

Since X € H?(G;R"), the G—compensator of u* under P exists, see [29, Theorem I1.1.8]. This is the

unique, up to a P—null set, G—predictable random measure (&%) on R, x R, for which

E [U * ,ugi} =E [U * Vﬁf’x)}

! Analogous notation we will adopt for any non-negative measurable function, e.g., for a o—algebra A, the set A, denotes
the set of non-negative A—measurable functions.



16 Stochastic prerequisites and more

holds for every non-negative function U € P€, where we have defined

/ Ul(w,s,z)v(w;ds,dz), if / |U (w, s, ) |v(w,ds, dz) < oo,
Uxv(w) = ¢ 70]xR" (0,]xR"
oo, otherwise.

Let U € 7553’ and consider a G—predictable time o, whose graph is denoted by [o] (see [29, Notation

1.1.22] and the comments afterwards); we define the random variable

/ Ulw, 0, 2)v'&¥) (w; {o} x dz) ::/ U(w, o (w), )1y 1% (w;ds, dz)

R+ xR™

if Jg, xrnlU(w,0(w),z)[1] v(©X)(w;ds,dr) < oo, otherwise it equals co. Using [29, Property I1.1.11], we

have

[ U@,0,2)5w; {o} x dz) = E { [ Uw,0,0%w: {0} x dx)’ gg] . (2.5)

In order to simplify the notation, let us denote for any G—predictable time o

n

JE9 () == / Uw, 0, 2)v &%) (w; {0} x da). (2.6)
In particular, for U = 1 we define

CEX () = /R V0w {o) x da). (2.7)

In order to define the stochastic integral of a function U € P® with respect to the G—compensated

G,X)
< oo}.

The elements of Go(G, ) and H?*(G;R?) can be associated, uniquely up to P—indistinguishability, via

integer—valued random measure i) := pX — v(©X) we will consider the following class

Go(G, p™) = {U (Q,P%) — (Rd,B(Rd)),E[Z U (t, AX0) x40 — Ut“*’vX)f

t>0

Go(G, X)) 3 U — U i®%) € H>4(G;RY),

see [29, Definition 11.1.27, Proposition 11.1.33.a] and He et al. [21, Theorem XI.11.21]. We call U x ii(®*) the
stochastic integral of U with respect to [i’®X). Let us point out that for an arbitrary function of G(G, u)
the two processes U * (uX — v(©X)) and U x fi®%) are not equal. We will make use of the following notation

for the space of stochastic integrals with respect to iX which are square integrable martingales
K2 (G, 1) = {U+ i®N), U € Go(G, )}
Moreover, by [29, Theorem I1.1.33] or [21, Theorem 11.21], we have

E [(U*ﬁ(G’X)>g} < oo if and only if U € Go(G, ),
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which enables us to define the following more convenient space
H*(G, X) := {U: (2.7%) — (R, B®Y), E {Tr{(U*ﬁ(G’X))?” < oo},
and we emphasize that we have the direct identification
H2(G, X) = Go(G, 1¥).

Let us finish this subsection with the following useful formulas

E[Tr(U @ ©)E ] = E lz U (t, AX) 1 ax, 0y — O ]2]

t>0

=K

2

t>0

/ U(ta) ¥ (1, da) — / U(t, ) (¢, dz)

n

|

Let us now state the decomposition results that will be used to solve the BSDEs of interest; for more

2.1.3 Orthogonal decompositions

details, we refer to Papapantoleon et al. [42, Section 2.2.1].

Let X := (X°, X*) € H?(G;RP) x H>4(G;R") with M [AX°|P€] = 0. Using this assumption, we get
that for Y1 € £2(X°,G) and Y2 € K2(4**,G) it holds that (Y, Y?2) = 0; sce e.g. Cohen and Elliott [12,
Theorem 13.3.16]. Then we define

HAXTE) = (£2(X°,6) & K2, G)) .

Subsequently, we have the following description for HZ(YLG), which is [42, Proposition 2.6].

Proposition 2.1.1. Let X := (X°, X?) € H?(G;R?) x H24(G; R") be a pair of square integrable martingales
with M. [AX°[P%] = 0. Then,

2 . 2 . d o G __ ~G1 __
HAX ) = {L € HX(G;R?), (X°, L)% =0 and M, :[AL|P®] = 0}.

Moreover, the space (’HQ(YLG), || - ”'H2(Rd)) is closed.

Summing up the previous results, we arrive at the decomposition result that is going to dictate the

structure of the BSDEs in our setting
H2<G, Rp) _ £2<XO, G) @ K2(,uXh7 G) ® H2(7LG>,

where each of the spaces appearing in the identity above is closed.

2.2 Doléans-Dade measure and disintegration

Assume that we are given a square integrable G-martingale X € H?(G;R") along with its associated
random measures uX and v(©X), In (Q, Goo @ B[R,) ® B(]R")) we can define the Doléans-Dade measures
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G,X

of X, resp. of v(©X) as follows

M, x(A) ::E[]IA*pfo},

w
resp. M ex)(A) :=E []IA * VC(E’X)} ,

for every A € Goo ® B(R;) ® B(R"). Because M,x is o-integrable with respect to P, we can define, for
every non negative G, ® B(R,) ® B(R"™)-measurable function W, its conditional expectation with respect
to PC using M,x, which we denote by M,x[W|P]. Furthermore, since v(®%) is the G—compensator of ;1
under P, by definition we have

My (W) = My (W), (2.8)

v

for every non-negative, P¢—measurable function W. Let us denote with |I| the map in R” where |I|(z) :=
|z| + Tg03(2). Then, using the facts that M,x (|1|*) < oo, M,x(Q x Ry x {0}) =0 = M,x (2 x Ry x {0})

and that |I|? is P¢—measurable, we can define the new measures |I|2uX, resp. [I|20©X) as

Mg, (A) o= Myx (1T°14),
resp. M|I|2V(G,X)(A> = MV(G,X) (’[|2]1A) s

for every A € Goo@B(R,)®B(R™). Then, for every predictable, increasing process C' such that |I|2%1(©%) <«
C P-a.s., we get from [21, Theorem 5.14] that P ® (|I|? * v(®%) <« P® C.
Consider a pair of martingales X := (X°, X%) € H?(G;RP) x H%(G;R"), and define

COX) = Tr [(X°)C] + 12  wEXY. (2.9)
(G,X)

Using the Kunita—Watanabe inequality, we can easily verify that C' possesses the property described
in (2.3). Furthermore, note that from [21, 6.23 Theorem 2)] if X% € H24(G;R") then we have

Tr {(Xh)(ﬂ = |I)? % (X0,

At this point let us make an immediate, yet crucial for the current work, remark.

Remark 2.2.1. Assuming that G is immersed in H, i.e., H is a filtration such that G, C H; for every
t € Ry and, additionally, it possesses the property that every G—martingale is an H—martingale, then

CCX) gnd CEX) gre indistinguishable. Indeed, one immediately has that
(X = (X = ((X°)% = X7 (X)) + (X7 (X°) T = (X))

is an H—martingale, H—predictable and of finite variation. Hence, since its initial value is 0, it is the zero

martingale, which proves that (X°)¢ and (X°)¥ are indistinguishable. One can arque analogously for the

H,X")

processes |I]? x VEX and |T]% % v . In other words, we are allowed to interchange the filtration symbol

in the notation of (2.9), or even omit it.
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Returning to (2.9), one notices that we can disintegrate p(©X h), i.e., we can determine kernels K ©X) .

(Q x Ry, PG) — R (R", B(R")), where R (R", B(R")) are the Radon measures on R”, such that
VX (4 dt, dz) = KEO(w, ¢, d)dC O (w). (2.10)

The kernels K (&%) are P ® C@X) —unique, as one can deduce by a straightforward Dynkin class argument.

— o\G\ 2
AGX) . & ) (2.11)
dC(GX)

Moreover, let us define

d<Xo>G
406G X)
non-negative definite p x p matrices. Using the diagonalization property of these matrices and results from

The reader may observe that is a G—predictable process with values in the set of all symmetric,

Azoff [2], one can easily show that ¢(©X) will also be a G—predictable process with values in the set of all

symmetric, non-negative definite p X p matrices.

2.3 Stochastic exponential

Let A be a finite variation process, and define the process

1+ AA;
s<-

which is called the stochastic exponential of A. Using the trivial inequalities 0 < 14z < €%, for all x > —1,
and the usual properties of the jumps of finite variation processes, we can easily see that the above process
is well defined, adapted, cadlag and locally bounded. The main functionality of the above process is that it
satisfies the SDE

E(A) =1+ /0 "£(A), dA,. (2.13)

This fact is proved using Ito’s formula, and yields that £(A) also has finite variation; see e.g. [12, Section
15.1].

In the sequel, we will need additional properties for a process expressed as a stochastic exponential,
therefore we collect them in the next lemma. In order to ease notation, we adopt the following convention:
whenever we write AA # —1, we mean that the set {AA; = —1 for some t € R, } is evanescent. Analogous
will be the understanding for AA > a, for any a € R, as well as for E(A) # 0, etc.

Lemma 2.3.1. Let A be a cadlag process of finite variation.
(i) If AA# —1, then E(A) # 0.
(it) If AA# =1, then E(A)™' =& (—Z), where A. := A — ¥, 7(ﬁ2jj),

(iii) If AA > —1, then 0 < E(A). < et

(iv) If A is non-decreasing, then E(A) is non-decreasing and if A is non-increasing, then E(A) is non-

INCreasing.
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(v) If B is another finite variation process, then we have the identity E(A)E(B) = E(A+ B + [A, B]),
where [A, B. :== Y, AASAB;.

(vi) Let A be as defined in (i), then we have the identity

_ AA
AA = ————
1+ AA.
and
1
A=A+ A 1+AASdAS

(vii) Let v,0 >0 and A as defined in (ii). Define
A= A — A — [0A,7A);

then, from (ii) and (v) it trivially holds E(SA)E(yA)~" = E(A®). Therefore,

' 1+ A(vA).
and
gé,’y = Ao + . !

——d((6 — Y A S
If A is non-decreasing, then A(ﬁ‘”’) > —1.

Proof. The above properties are fairly standard and follow from relatively simple calculations; one may
consult [12, Section 15.1] for (i)—(v). Nevertheless, we also briefly argue about them for the convenience of
the reader, since some of the arguments will be used for the proofs of (vi) and (vii).

We present some preparatory computations, which will allow us to immediately conclude the required

properties. Let us fix an arbitrary ¢ > 0. The first step is to write (2.12) in the form

1+ AA,

—aA = e TI(1 + AA,). (2.14)

s<t

E(A), =eM]]
s<t
Consider a finite variation process, then the multitude of its jumps that have magnitude greater than a

given a € Ry \ {0} is finite, in any given interval [0,¢]. Hence, if we write

[To+24)= [ (+a4) JI (1+A4A4) (2.15)

s<t {s<t:|AAs|>1} {s<t:|AAs|<1}

then the first term on the product on the right side of (2.15) is what determines the sign, because this
is a finite product, while the second term is always a non-negative number. As for the second term, we

additionally have

(1+AA,) = II  Q-1aAD) I (1+A44) (2.16)

{s<t:|AA <1} {s<t: —1<AA;<0} {s<t: 0<AA <1}
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Now, the first term on the right hand side of (2.16) is the limit of a decreasing sequence of positive numbers
and the second term is one of an increasing sequence of positive numbers. Using the classical inequality

1+ x <e” for x € R, we can extract an upper bound for the latter term, as follows:

11 (14+ AA) < II A = exp{ > AAS} < exp {Var(A)t}’

{s<t: 0<AA <1} {s<t: 0<AA <1} {s<t: 0<AA <1}

where Var(A) denotes the total variation process associated to A. We also need to find a lower bound for
the former term. We have identically (1 — |AA])(1 + |AA,|) =1 — |AA,|?, which implies that

(1= |AAN(1+ A4 > 2 for |AAS|<;

>~ w

Therefore, one gets

11 (1 -]AA]) = 11 (1 —[AAL) 11 (1—]AA)

{s<t: —1<AA<0} {s<t: -1<aA <1} {s<t: —1<aa.<o0}
3 1
> I1 (1 A4 11 CESEV)]
{sgt: 71<AAS<7%} {sgt: 71<AAS<7%} s
3
> 0 e~ Var(A), H (1 —]AA]) > 0.

{sgt; —1<AA<-1

Indeed, the term H{sgt; _1<AAS<_;}(1 — |AAg|) is a finite product. In total, (i) is proved. As for (ii), we
shall use the fact that the function  — 1 is continuous on R \ {0} as well as that [T,<,(1 + AA,) is a well

defined non-zero limit. Hence, we have that

1

(H(l + AAS)) = gm.

s<t

The reader should observe that the continuous parts of £(A)~! and £(—A) are identical. Therefore, we
only need to compare the associated jump processes. To this end, we immediately have
(AA)? (1+ AA) AA 1

1+A(_Z):1_AA+(1+AA):(1+AA)_(1+AA):(1+AAS)’

which is the desired identity. The claims in (iii) and (iv) are obvious in view of equation (2.14) and the
classical inequality 0 < 14z < e”, for x > —1. Analogously to (ii), one immediately derives (v), (vi) and
(vii) once the respective continuous and discontinuous parts are compared. Indeed, regarding (vi) we have,

on the one hand, that the continuous part of A is A¢, while AA = gﬁi)j. On the other hand,

t 1 c t 1 C C
(/0 1+AASdAS> :/0 1+AA8dA5_A“
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because the process AA is non-zero only countably many times. Moreover, when one compares the

respective jump processes for every t > 0

- Azt

0 1+AA, ), 1+AA 1+ AA, TN T+ AA,

Let us focus now on (vii). On the one hand, the continuous parts of A%” and (§ — 7)A are identical. On

the other hand, we have for their discontinuous parts

A(AP) = A(GA) — A(FA) — AGA)AGA)

_ A(vA) A(vA)

= A04) -7 A(yA) ALATT A(yA)

A4 A(R4)

1+ A(RA) 1+ A(A)

_A((6=9)4)

= Ty ARA) (2.17)

Using the fact that AA is non-zero only countably many times, we can conclude as before that

~ : 1
oy _
A= Ao+ | (fyA)sd((‘S 7)A) .

Finally, we only need to verify that A(ﬁ‘”) > —1, which is trivial in view of the following equivalences

(2.17) A<(5 - V)A)

1< AA) 1+ A(A)

—1 = A(yA) < A((0 = 7)A) & —1 < A(JA). 0

2.4 Norms and spaces

We will largely follow the notation of [42, Section 2.3] with regards to norms and spaces of stochastic
processes. However, we will need to additionally keep track of the filtration under which we are working,
given that later many filtrations will appear in our framework.

Let X := (X°, X*) € H*(G; R?) x H>)(G;R") with M s [AX°|P®] =0, and A,C : (Q x R, P®) —
(R4, B(R,)) cadlag and increasing. The following spaces will appear in the analysis throughout this work,
for > 0 and T' a G—stopping time:
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L3(Gr, AiRY) := 1€, R'valued, Gr-measurable, [[€]|2s g,z =E[£(BA)r_[¢P] < }

<ool,
<ool,

sup {£(34) 1017} < oo},

te[0,T]

H3(G, A;RY)

H%(G,A,C’; RY) 6, R%valued, G-optional,

{M € HA(G, AR, IM 3 ¢ ey = E [ /0 E(BA),_ dTr[(M)GL

T
60 6.ac0 = B || €502 aC,

SE(G, A;RY) = {gh, R? valued, G-optional, H¢H?§§(G,A;Rd) =

H3(G, A, X°; R®P) := {Z € H*(G, X°; R%*P),

T
2 L X o\G
||Z||H§((G,A,XO;Rpr)) =K [/0 E(BA)- dTr{(Z X°) L

<ool,

<ool,
<ool.

(Y, Z,U, M) € S3(G, A;RY) x HA(G, A, X°;R™?) x HA(G, A, X% RY) x H2(G, A, X% RY)

H%(G, A, X% RY) = {U € H*(G, X*;RY),

T
~xh
0165000 = B | | E54)- aml(07« ),

and

MG AT RY o= {M € W) My cie sy = E| [ £ aT0),

Moreover, for

we define

1Y, Z,U,M) | 56 ax

= HYH?S%(G,A;RCI) + HZH]%H%(G,A,XO;RWP) + HUHIQH%(G,A,Xh;Rd) + || M HHQ G.ATLC Ry

Later on, we will need to rewrite the norms associated to the spaces H%(G, A, X°; R¥P) and HZ(G, A, X% RY)
in terms of Lebesgue-Stieltjes integrals with respect to C(©X) for C(©X) as defined in (2.9); one may
consult [42, Lemma 2.13] for the details. Hence, for (Z,U) € H3(G, A, X°;R?) x H3(G, A, X% R%) and

CEX) as defined in (2.9), we have

T _ _
”Z||132H1§(G,A,X0;Rd) =E [/0 E(BA)s— || Z, LS| PACEN) (2.18)
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and

2 T (G,X) ? (G,X)
U g6 v = E | [ €84 (L. aceD], (219)
where

(s <w>)2 = [ U@.s.2) = UED @) K0 w, do)
+ (1= (0 w)) ACE N w)

,  (2.20)

)

/ Uw, s, z) K& (w, dz)

with K(©X) satisfying (2.10), i.e
VX (. dt, dr) = KEO(w, ¢, d)d0 O (w).

Finally, because of the assumption M [AX°|P€] = 0, and in conjunction with [12, Theorem 13.3.16], we

have
o _xt
1Z - X°+ U xp* ||9u2 G,ARY) = ||Z||]HI2 (G,A,X°;Rdxp) T ||U||H2 (G,A,X5;Rd)" (2.21)

Remark 2.4.1. In order to simplify the notation whenever possible, if we consider one of the aforementioned
spaces for B =0, then we will omit 0. As a result, the dependence on the process A is redundant, hence we
will also omit the process A from the notation of the respective space. As an example, L*(Gr; RY) denotes

the space L2(Gr, A;R?), which is the classical Lebesgue space, and so forth.

In case we have to deal with a system of N € N couples of martingales we will need to introduce

-----

of martingales, i.c., X : = (X%, X)) € H2(G; ]Rp) X HQd(G,R”), such that M s [AX%°|PC] = 0, for
all i € {1,..., N}. Moreover, let A" : (2 x R, P®) — (R, B(R,)) be cadlag and increasing, for every
i €{l,...,N}. Let us denote

(YN7 ZN7 UN7 MN) = (Yi7N7 Zi’Nu Ui’Nv Mi’N)iE{l ,,,,, N}-
Then, for

(YN, zV, UN MY) e
N , o o L
[1S4G, A% RY) x HE(G, A", X*° RPP) x H3(G, A, X RY) x H3(G, A, X" RY)
1=1

we define

H(YN ZN uv MN> Yz Zz U Mz)||2

N
*6,G{A }ieq1,... N> Ax }26{1 ..... - ; *8,G,A1,X

We conclude this section with the following important definitions. Let E := R, x R™ and (F, | -

l2), (G, || - ||2) two Euclidean finite-dimensional spaces.
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e Set Ey:= (Rs x {0})U ({0} x R") and E := E\ Ej.

o Let f:(F,]-|l2) — (G,] - |l2)- We will call the support of f the set supp(f) := {f # O}H'HZ, where

for a set A we denote with A' 1 the closure of it, under the metric corresponding to the norm || - [|o.
o Co(F5G):=A{f:(F,|ll2) — (G, - |l2) : f continuous with compact support}.

. Cclﬁ(E;]Rd) = {f € C.(E;RY) : supp(f) C E}.

o Dodxm C CL(R,;R¥P), is a fixed with respect to w € Q, countable set which is dense in the space
L2(Ry, B(Ry), (X°)(w)) for P — a.e.w € Q. For the existence of such set one can see [44, Lemma
A14].

.« D% C CC|E<E5Rd) is a fixed with respect to w € €2, countable set which is dense in the space
L2(E,B(E), VX (w)) for P—a.e. w € Q. For the existence of such set one can see [44, Lemma A.15.].
Also, keep in mind that X (w)(Ey) =0, P — a.e. and [ ||z]2 v EX)(w)(ds, dz) < oo, P — a.e.

2.5 The I' function

One of the key characteristics about the backward propagation of chaos is the fact that the Y —components
of the solutions of McKean—Vlasov BSDEs need to be identically distributed. Ideally we would like to work
in a setting as general as the one of [42], however this creates some difficulties. It is evident from (2.20)
that the triple bar norm depends from the driver pair X. So, to get the Lipschitz conditions of [42] while
pass on the uniqueness in law from the pairs {Yi}ieN to the {Y'},cn’s, we have to define an appropriate
map from the pair of drivers X to the generators fy. To do this we will start from a base function f, with
usual Lipschitz conditions, and compose it with a couple of functions depending from X. The first member
of the couple will be the map which corresponds to the matrix ¢(©%) (see (2.11)), and the second is the

following I' function, which in view of (2.20) and remark 2.5.2 (iii) its definition can be considered natural.

Definition 2.5.1. Let X = (X°, X) € H2(G;R?) x H2UG;R"), let CCX) be as defined in (2.9) and
K©X) that satisfies (2.10). Additionally, let © be an R—valued, P®—measurable function such that |0] < |1|,
for |I|(z) := |z| + 1goy(x). Define the process T'®XO) : H(G, X% RY) — PE(R?) such that, for every
s € Ry, holds

P(G,Y,G))(U)SW) = / (U@J, s, x) — (’js(G,Xb)(w>) (@(w, $,1) — @g@,xh)<w) KéG’Y)(W, dz)
R

Uw, s, z) K& (w, dz) / O(w, s, ) K& (w, dz).

S
n

+(1 = (I w)ACE N w) [

Remark 2.5.2. (i)  Given the square-integrability of the martingale X%, it is immediate that the process
© as defined above lies in H?(G, X*;R). Therefore, for any U € H?(G, X% RY), the process ' is
well-defined P ® CEX_g.e.
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(i)

(ii)

One would expect in I' a notational dependence on the kernel. However, for K{G’X), KSG’X) satisfying

(2.10) and U € H2(G, X% RY) we have T&XO)(U), = TEXON(U),, P® CCX)—q.e; here, implicitly,
the left hand side is defined with respect to K1 and the right hand side with respect to Ks. In that
way, we have uniqueness of the kernels that satisfy (2.10). Since in the respective computations all
the appearing equalities will be taken under P ® C'(GX), we have suppressed the notational dependence

on the kernels.

The choice of I' was based on, and inspired by, applications. The reader may recall, for example, the
connection between BSDFEs and partial integro-differential equations, and the special structure that is
required for the generator, see e.g. Barles et al. [3] or Delong [17, Section 4.2]. Moreover, one can

easily verify that T is equal to

AU * @EXD | Q x p(GXH\C
dC(G.X)

The next lemma will be useful and, essentially, justifies the definition of the process I'. In other words,

the function I' is Lipschitz in the sense described below. However, note that the inner characteristics of the

function I' play no part in what comes in the remaining sections. If one can prove that results similar to

Lemma 2.5.3 and Lemma A.2.6 hold, then the rest will remain valid, under the appropriate modifications.

Lemma 2.5.3. Let X € H2(G;RP) x H24(G;R") and © € P® be an R-valued function such that |©] < |I|.
Then, for every U', U? € H*(G, X% R?), we have

PR~ PETOU P < 2 (o) - | @) o 6T - ae

Proof. Let 6U := U' — U? then, by the Cauchy—Schwarz inequality, we get

’F(GXG)(Ul) (GX@)(UQ) ’

2

X —. — 2
< 2| [, |0 =507 o) - 80| ki)
Rn
_ o o
200 (A [ty V@] | [ 04 (O @
<2 [ |sU 5700 e 5EX| 63
<2 [ JoUie) =80, | K{FV(da) /R 0,(z) — 0N KEX (qz)
oy 2
+2(1—<§G’X”))2 (ACE) ’ [ sUe) KO H [ ufa) KO an
2
2( o) - o 7Y @) (I8N @) ) Bo e —ae,

Using [21, 11.21 Theorem, Part 3)], because |©| < |I| and X* € H>4(G;R"), we have

(% FE)E = [0+ 15X - 3 [0
s<-
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Hence, for every s,u € Q with s < u, we get

R e R e il 7 D W CHe

s<r<u
<[OF 5 vfEX) — B £ 1% = (16 1gpuq) » #EX

< (HPTaup) # &5 = 112 5 & — 12 % &5 P - ace.

‘ 2

S )

By a straightforward monotone class argument, we have
d(© * ﬁ(G’Xh))G <d (|I|2 * V(G’Xn)) , P—aee.

Therefore, using the above, we get

% 2 (O« pEXNe  d (|I|2 *U(G”Xh)) _
(Il @) = Sl <« S L <1, Be 0O e,

and the proof is thus complete. n

2.6 Wasserstein distance

Let X be a Polish space endowed with a metric p, then we denote by P(X) the space of probability measures
on (X, p). Moreover, for every real ¢ € [1,00), we define the probability measures on X with finite ¢ moment
to be

PuX) = {u : /Xp(a:o,x)q p(dr) < oo}, for some z( € X.

By the triangle inequality and the fact that we consider probability (i.e. finite) measures, it is immediate
that the space P,(X) is independent of the choice of zy. The space P(X) is equipped with the usual weak
topology,? which we denote by 7. Let us recall the form of the elements for the usual basis of 7.

Definition 2.6.1. Let f : X — R be any continuous and bounded function (i.e. f € Cy(X)), then we
denote by I' : P(X) — R the function where

PX) 5 /Xf(:c)u(dx) eR.

We can now give a description of the usual basis of T

B(T) := {ﬁ (]fi)_l (A;)) :meN, f; € Cy(X), A; open sets of R} . (2.22)

=1

2We use the term as the probabilists do, i.e., the topological dual space of the set of probability measures is the set of
continuous and bounded functions defined on X. In other words, from the point of view of functional analysis, this is the
weak*— topology.
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The weak topology is metrizable and, in fact, (P(X),7) is a Polish space; see Aliprantis and Border |1,
15.15 Theorem]. Moreover, it is well-known, see e.g. [1, 15.3 Theorem]|, that

a sequence of probability measures { iy, }men
converges weakly to a probability measure p

if and only if for every bounded and continuous function f we have

[ F@) () == [ f(@)

In view of the above remarks, we have the following result using (2.22). A generalization of this result

appears in Varadarajan [48].

Lemma 2.6.2. Let u € P(X), then there exists a sequence {ff}ren € Cy(X) such that a sequence of

probability measures {fm }men converges weakly to p if and only if

/fk ) fm (d) %/fk ), for all k € N.

m— 00

Proof. Let p, be a metric that makes (P(X),7") Polish. Then for every open ball with center p and radius
L for m € N, denoted by B, (u, ), there exists D,, € B(T) where p € Dy, € B,_(p, ). Using (2.22),

we can conclude the proof. O

On P,(X) we can define an even stronger mode of convergence, that allows for more functions to be

tested. We will simply call it weak convergence in P,(X) and this mode says that

a sequence of probability measures {fi, }men converges weakly in P (X)
to a probability measure p
if and only if for every continuous function f such that

|f(@)] < C (1+ p(xo, 2)?), where C' := C(f) € Ry,
we have / f(x) pm (dz) / f(x (2.23)

Of course, as before, it is immediate that in the above definition it does not matter which xy we choose.
Now, the topology that is induced from this stronger mode of convergence is metrizable from a metric
with nice properties; this metric is called the Wasserstein distance of order q. More precisely, given two

probability measures p, v € P,(X) we define the Wasserstein distance of order g between them to be

Wi (p,v) == inf {/XXX p(x,y)qw(dx,dy)}, (2.24)

mell(p,v)

where II(u, v) are the probability measures on X x X with marginals m; = p and 7 = v. The interested
reader may consult Villani [49, Theorem 6.9] for the fact that W, , metrizes P,(X). Moreover, P,(X) with

this mode of convergence is a Polish space, as one can see from [49, Theorem 6.18].

Remark 2.6.3. With the possibility of taking infinite values, one can see the Wasserstein distance of order
q as a non-negative function on the polish space (P(X),T) x (P(X),T). Then, from [49, Remark 6.12] we

have that W, is lower semi-continuous, hence measurable.
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A useful inequality about the Wasserstein distance of order ¢, that is going to be used multiple
times hereinafter, concerns the distance between two empirical measures on X. Given an N € N and
N o= (

X T, ), YN = (Y1, ..., yn) € XV, we have the empirical measures

1
LN(XN)Z:;[Z(SM and LN(yN)::NZ&y“

i=1 i=1
where ¢. is the Dirac measure on X. Then we have

N

We, (LN (), LV (yN)) < ;Zp(ﬂci,yi)q. (2.25)

i=1

The above inequality is immediate if in the definition of the Wasserstein distance (2.24) we choose the
probability measure
1
== Oz, 0,
™=y 2 O

where d(...y is the Dirac measure over X x X. One can immediately see that m; = L~ (x") and m, = LV (y").

Remark 2.6.4. Last but not least, note that if p is a bounded metric, then for every q € [1,00) we have
P(X) = Py(X), and every function f as in (2.23) belongs to Cy(X). Hence, we get that W, , metrizes the
weak convergence on P(X), see [49, Corollary 6.13].

2.7 Skorokhod space

Let X be a Polish space endowed with a metric p. We will denote by ID(X) := {f : [0,00) — X : f cadlag }
the space of cadlag paths with values in X. We supply D(X) with its usual J;-metric, which we denote by
Py Endowed with this metric, D(X) becomes a Polish space. We are not going to get into the specifics of

Py, as we will only need a couple of its basic properties. Firstly, for every z,y € D(X), we have

pyi(@,y) < sup ){p(l’s, ys)t AL (2.26)
se|0,00
Secondly, the Borel o—algebra that pyx generates coincides with the usual product o—algebra on X[

that the projections generate. To be more precise, we have

B,,,(D(X) = 0<Proj;1(A) LA e B(X),s €0, oo)> A D(X), (2.27)

where X020 5 g 7% z(s) € X, for every s € [0,00). Additional results on the Skorokhod space are
available in [21, Chapter 15] or [29, Chapter VI].

Using that the o—algebra on € is G, it is obvious from (2.27) that every GRB(]0, 00))—jointly measurable
cadlag process X can be seen as a function with domain {2 and taking values in D(X) such that X is
(g / Bpﬁf (]D)(X)))—measurable and vice versa: every (Q / l’)’pﬁlg (]D(X))) —measurable random variable X can

be seen as a G ® B([0, 00))—jointly measurable cadlag process.
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In the special cases where X = R™*? or X = R™ for m,q € N, we simplify notation and denote as

D™* .= D(X), D™ := D(X) and pymxa = pyx, Py o= pyz respectively.

Remark 2.7.1. Later on, when we say that a collection of cadlag processes is independent or is identically

distributed or is exchangeable, they will be understood as Q/Bde (DY) ) —measurable random variables.

Finally, for every a € (0,00) and z € D?, the initial segment x|} 4], resp. z|jpq—), will be understood as

an element of D?, using the convention

Zljoa)(s) := 2(s)Lj0,a)() + (@) Lfa,00) (5), (2.28)
resp. o,a-](s) = 2(5)Lj0,0)(5) + 2(6=) T [a,00)(5)-

For a € [0,00), we define D? := {zgq : € D!}, resp. D?_ := {z(9,] : © € D}, and we naturally have

B,,, (D) = B, (D) N DY, vesp. B, (D4 ) = B,,, (D) nDE_.

2.8 Weak convergence of filtrations

Definition 2.8.1. Let (m,q) € N x N and assume that {a*}, 5 is a sequence of <Q/Bpjqu(Dqu)> -

measurable random variables.

(i)  We say that the sequence {a*}ren converges in probability under the J{"—metric to a*, denoted by
Jy (R7¥0) P
ak (—1k——)—> a®>, if and only if, for every ¢ > 0 we have
—00

P (pJ;an(ak, a>) > 5) ﬁ 0.

i) Foreveryd € [1,00), we say that the sequence {a*}ren converges in L® —mean under the J7*1—metric
( ) Y ) ; Y q €N ) 1

J (Rqu)v]]-‘ﬂ
to a>, denoted by a* (lk——)—> a®>, if and only if, we have
—00

E [(pJTXq(ak,QOO))ﬁ] SEEN)

k—o0

Now, let {G* := (GF)ier, }ren and G™ := (G®)ier, be subfiltrations of G that satisfy the usual

conditions. Also, define G := ;g N Gge.

Definition 2.8.2. The sequence {G*}ren converges weakly to G, denoted by G* kL> G, if and only if,
—00

for every set S € G we have

k—o00

E [1s

6| 00, g (1)) .
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2.9 A priori estimates

The following Theorem will be our primary tool for making estimations. Intuitively the last term in (2.29)
on average is zero, as martingales are the stochastic analog of deterministic constant functions. So because
the norms are defined using the expectation, it should be possible to bound the norm of y with the norms
of f and &. Then would also follow that one could bound the norm of n with the norms of f and & just
by switching places in (2.29). The results expand those in [42, Section 3.4] by replacing the deterministic
exponential with the stochastic one. Also, we would like to underline that recently in Possamai and
Rodrigues [45] similar a-priori estimates have been extracted, i.e., the norms are defined by means of the
stochastic exponential. The two works are totally independent. As a last remark of the paragraph, one
should note that the discrepancy of the coefficients between proposition 2.9.2 and [45, Proposition 5.4.] is
due to the difference in the definition of the norms and the focus in [45] on the special case when & = 0.

For the current section we fix a stochastic basis (2, G, G, P) satisfying the usual conditions. Additionally,
we fix a predictable, cadlag, non-decreasing process C, a predictable, real-valued process a and define
A = [ja,dC.

Finally, in this section we ease the introduced notation for the spaces by dropping the dependence on
G, C and A. More precisely, L3(Gr, A;R?) for a stopping time T, resp. H3(G, 4, C;R?), S3(G, A;R?),
H3(G, A;R?), will be simply denoted by L3(Gr; RY), resp. HE(R?), S3(RY), HZ(R?).

Lemma 2.9.1. Assume that we are given a d-dimensional semimartingale y of the form

T T
p=¢+ [ fac,— [, (2.29)

where T is a stopping time, £ € L2(Gr;RY), f is a d-dimensional optional process, and n € H*(R?). In
addition, assume there exists some ® > 0 such that AA < &, P ® C—almost everywhere. Finally, suppose
there ezists B € (0,00) such that

f

”5”%(%;&@) + HO‘ < 00. (2.30)

HZ (R4)

Then, for any (v,8) € (0, 8]* with v # § we have

2

2(1409)
Hay“IZHI?;(]Rd) < f”f”ig(gT;Rd) + 2A70®

f

«

)
HZ, 5 (RY)

f 2

«

14+~®

HZ/HZ‘?(W) < 8H§HIQL§(QT;RCZ) + 8

2, 5(RY)

and
2

f

«

)

1
||77||3-L§(Rd) < 9(2 + 5¢))||§||]%4§(QT;R¢1) + 9( + 5A7,6,<I>)
H2,, 5 (R9)

YV o
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where

(147®)?

A’y6<1>
No =~

Putting the pieces together we have

2
2 9 /
2 2 2 )éa(b
||Oéy||H§(Rd) + HUHHE(RUZ) < (18 + 5 + (99 + 2)@) ||§||]L§(QT;Rd) + (’7 VE; + (99 + 2)A” ) > - )
YVé
035+ Il < (20 + 9500 €l + (5 50+ 2 oanrae) |4
Ylls2(ra) Mz rd) > L3 (RY) ol YV o Qg2 (Rd)
YV

and

2
H@Z/H%@(Rd) + HyH?sg(Rd) + H’?Hgﬂg(Rd) < (26 tst (90 + 2)@) HgHig(gT;Rd)
2

!

+ (8 Y S (96 + 2)/\%5@)
gl g a

Vo

2, 5(R%)

Proof. By definition we have [ n,ds = np — 5. Because y is adapted and € H?(G;R?), we have for
every t > (0

T

Qt] : (2.31)

From the above identity is evident that we need to study the following process

T
— / f.dc,. (2.32)
t

For v € R, , we have from Cauchy-Schwarz inequality that

2 Ifsl2

O < / (vA)~! dA, / -G, (2.33)
which dictates further focusing on the first factor of the right-hand side of the inequality. From Lemma
2.3.1.(ii), for A .= A — Y. 1+A2) we have

/tTS(fyA) a4, _/tTé’(—fyA)SdAs.
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For the jumps of YA from Lemma 2.3.1.(vii), we have that —1 < A(—yA) < 0, which implies that
E(—~A) > 0; see (i) and (iii) of Lemma 2.3.1. Then, from Lemma 2.3.1.(iv),

[ e, aa, =~ [ (14 AGANE(AA), dGA),

v Jt

14+~® (T . _ 14+~® T -

<2 [ e(-7A), dGA), = ——= [ &(-7A),_d(-7A),
¥ ¢ ¥ t

1 )

E(vA) Y < -

1+~ — T 1+~®
= e, =

< 14+ ~v®

E(A)!

t

E(A) L,

where the last inequality is validated by the fact that £(yA)™! is non-increasing. Finally, combining the

above results and returning to (2.33), we get

1+~ o [T | fl?
TEQAR [T EGA),

|[F(t)]* < da. (2.34)

From the assumption (2.30), for v € (0, 5] we have

E[[F(0)P] < .

Next, for § € (0, 8], we will integrate |F(¢)|? with respect to £(6A)_dA. Before we proceed, we underline
that we are going to use the fact that £(A%?) is (strictly) positive. Indeed, this is straightforward from
(i),(iii) and (vii) of Lemma 2.3.1. Now, we return to our aim and with the aid of Lemma 2.3.1.(vii),

inequality (2.34) and Tonelli’s theorem, we get

14+ ~® /s

/0 LA, PO AA, < . /0 L E5A),_E(v A /t L eha),. - dC, dA,
_ 127‘1’ /Tg o), / 177 (5)E(YA) o LSIQ dC, dA,
_ 1”@/ / oLy ()E(A)o |J;j|2dc a4,
= Hj@ /0 5(7A)s—|];f2|2 /O E(A™) gy (s) dA, dC,
_! +7'V‘1) /0 TE(yA)S_|§£2 /D T (A%, A, dC,. (2.35)

For a moment, we are going to concentrate on the term [5~ & (/Nl‘s’”)t,dAt, by considering the two cases
0>~andd <
e > ~: From Lemma 2.3.1.(vii) we derive the inequality
/ CE(AP), A = / (14 A(yA))E(AD), A
0 —vJo
< (1479

<5, E(A),_. (2.36)
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Thus, returning to (2.35), we have

T (235) 1 +~® (T 2|2
[ e6an 1FmPas, < j [ eqa. T /O £(A),_dA, dC,

a2
(2 36) (1 + pyq)) /T s |fs’2
E(y E(AY dc
S 5G-) h =
1 + 7@)2 T 1 ‘f8|2
= E(y ~E(0A dCy
" /0 TAE@A)
2 T 2
5 v) Jo
which is integrable for § < f.
e 0 <~: From Lemma 2.3.1.(vii) we deduce
s— - 1 s— ~ ~
/ E(AM);-dA; = 5— (1+ A(yA))E(A), - dA”
0 —7vJo
1 s ~5
= 5 7|/ (1+ A(yA),) d (~£(A%))
1 + 7P
2.37
=TT (237)

where in the inequality we used that £(A%7) is non-increasing; see (iv) and (vii) of Lemma 2.3.1. Thus,
returning to (2.35), we have

T (235) 1 4 ~® [T TR
2 < [t
/O EOA)-IFWPad <"~ /0 E(A),- 2, /0 £(A%),_ dA, dC,

(2.37) 2 T 2
2 <1+ﬂ>>/ ), P 4o
7|5_7| 0 as

In total, summing up the conclusions of the two cases, we have that for every (v,d) € (0, 8]* with v # 6
we can rewrite (2.35) as

v sy (La®)? (7 £
| €6A-IF@) A< | e v oA =-dc.

or, equivalently -in terms of the introduced notation- as

s

2

f

«

< AV0®

E VOTE(dA)t_\F(t)FdAt

(2.38)

B2, (RY)
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We are ready to estimate Hay||H§(Rd). Using (2.31), (2.32), Jensen’s inequality and the inequality
(a + b)? < 2(a® + b*) in conjunction with the fact that A is predictable, we have

<E|[ e0a)E e+ PP

| S

T
loulig = E | [ 6l

gt} dA,
‘2

<om| /0 'E [5<5A)t_\g|2 + E@A)|F (1)

@]dA4

= 2F /R E {5(6A)t_|§y2 - E(éA)t_‘F(t)

‘ 2

G, dAm]
=2 | [ £0A)I¢f + £(6) P dAt]

f

(07

2

[ T
ngya2/ 5@A%¢%]+2AW@
0

2
H’y\/é

2
_ 2(1+00)

- )

f

2 6,®
€123 grimey +2 475 | £

H2, 5(R%)

We move on with the estimate of [|y|szge), Once again, we will use (2.31), (2.32), (2.34), Jensen’s
inequality and (a + b)? < 2(a® + b?). Furthermore, we will need Doob’s inequality and the vector analogue

of the triangle inequality for conditional expectations. By definition
1 2
sup (5(5A)t2—|yt|> }

&
o

p (EGA-Inl)| —E

su
0<t<T

Is2ser = E|

= E[ sup (5((514)%_

0<t<T

]E[f + F(t)‘gt}

gE[sm)<a@@iEU§+F@ykg

0<t<T

< 25| sup ([y/EGA) e+ 6 FOFG] ) |
< 2E oilgT <IE (5((5A)t‘§’2 4 1 —i—ny‘I)g((SA)tE(’yA)t_l /tTg(fyA)s |J00j§|2>§ gt]>2].

At this point, we will split again our analysis into two cases:
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e 0 < v: By definition of the stochastic exponential, see (2.14), for A increasing we have 0 < £(dA);_ <
E(yA);_ or equivalently 0 < E(JA);_E(yA); ! < 1. So we get

g@A%_gcwgglngcW@&ﬂiiQdos ) (2.39)

2FE | sup (E \IS(5A)t_|§|2+ Gt

14+~®
0<t<T Y

2
1+~4® [T 2
< 2E |sup (E JSO%QTKP4—+JY/ 80w®&Jfﬂ dc;gi> ]
0<t vy 0 a?
_ I+~® (T |f5|2
< 2
< SE |E0A)- |+~ | €A o 4
1+~ |||
<8 ||€||H2,§(QT;Rd) + 8 o :
HZ (R4)

e § > ~: We will use the fact that £(6A4).E(vA) " = E(A®). is non-decreasing; see (iv) and (vii) Lemma
2.3.1. Starting at the left-hand side of (2.39), we can proceed exactly like in the previous case except that
now we transfer £(6A4),_E(yA); inside the integral and we bound it from above by £(6A),_E(yA)7%, for

s

s > t. After the simplification we have the same formulas with the difference that we have £(6A),_ in the
place of £(yA)s_ inside the Lebesgue-Stieltjes integral.

Combining the two cases we get

2

14+~® || f

«

||y|’§§(Rd) <8 ||f||12L§(gT;Rd) +38

H2, 5 (RY)

What remains is a bound for [7]|32(ga). For this we are going to use the identity JFdn, =€ —y + F(t).
So, let n = (n',...,n%). We have per coordinate i € {1,...,d} that

(7 = nrp)® = (17)* = (a)* = 200, (0 — 1)
= ((70)* = (1)7) = ((pp)® = (1 )zne) = 20pne (0 = Wirps) + ()7 — ()
Hence, because for every G—martingale M and ¢ € R, holds that E [MT‘gt] = Mz, and 7°, (n%)? — (n%)

are G—martingales, we have from the linearity property of the conditional expectation that

EllE e+ F()IG] = Ellor — nradI6) = | [ dT¥(()

gt:| . (2.40)
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Calculating with the help of (2.13) we get

[ eGA antm =5 [ [ @A) aA A, + Tl — Trlial
=5 [ [ 15 EGA) AT+ Telon) ) — Tl
= 5/ E(0A), /t ATr[(n)]s dA, + Tr[(m)]r — Tr[(m)]o

<6 ["e@a [ animlaa+ ).

Hence, we have

Iilgen = | [ €04). -]

<o | [ e [ aniol.an + BTk

For the first term in the right side of the above inequality, using the fact that A is predictable and from
(2.13), (2.31), (2.40) we have

E VOTS((SA)t /tT dTr[<n>]sdAt] —E /OTE(éA)tE /tT ATe[()].|G: | dA,

—E VOTé’((SA)t_EHg — e+ F(D)PIG] dAt]
<3| [ E@AN-BEP + lul + P61 44
<3E UOT E(6A),_|¢]? dAt] +3E [/OT E(6A)_E[|F(t)P|G] dAt]
+6E VOTé’((SA)t]EHfP +F(#)2I6] dAt]

—9E UOT E(5A),_|¢I2 dAt] +9E VOT E(6A)_E[F®)G dAt]
i 2

_ 9(1+5®) |
« H2,, 5 (RY)

- 5 ||§||i§(gT;Rd) + QA%(S’(I’

For the second term from (2.31) and (2.34) we have

E [Te[(n)]r] = E[I¢ — yo + F(0)]*] < 3E[I£[*] + 3E [|uo?] + 3 E [F(0)?]
<OE [P +9E [F(0)P

9

NEVE

f 2
<9 ||§||J2L§(QT;W) + -~

Xz (re)
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Combining the above we have

2

f

1
Il gy < 902+ 60) [1€1Z2 gy g0t + 9 ( N (W,zs,@) !

YV o

H2, 5 (RY)

Let Cs := {(v,9) € (0,5]* : v < §}. We define

M?(B):= inf {9+8(1+7‘P)+9 5 (1+7<I>)2}
0 2 PR

and

48
0 y o—7 Y

~ o {9 (1+7q>)+2+95(1+7¢)2}_

To complete our analysis we give asymptotic bounds for M2 (3) and M *(B) with respect to .
Proposition 2.9.2. For ® >0 and 3 € (0,00) we have

o [9 (147D B (1++®)
M (B) = min {5 +38 5 +9 5 S } (2.41)

6+/17 + 35

and

M®(3) = min {= +38 +
) =85\ g B=v

2./249,/2 +17+ 4435 2 2 4
_ \/5 \/55 B +<2\/5—{—9\/6+17+ﬁ+26>@.

{9 (1++®) 2+98 (1+7<I>)2} (2.42)

Hence, we get that

lim M7 (8) = lim M®(8) = (6V17 + 26) ®. (2.43)
B—r00 B—r00
Proof. Here we will present the part of the results that is needed in the main text, specifically (2.41),(2.42).
The remainder of the proof will be given in Appendix A.1.
From the defining formulas of the M®(8), M®(5) we make a couple of observations. The first one is
that we should only examine the case 6 = 3, because for every pair (v,0) € Cg we have
1 ) o (1 )2
£99) o 5 (1+9®)
gl o—v 7
1+~9) N 2490 (1+~P)?

Y 0—7 y

L9 P (1+7‘1>)27
Y -~ v
(1+~®) 2498 (1+~P)?

+ .
gl B - Y

g

g

+
0]

25
)
25
)
The second one is that

9 1+ 7@ 14 ~®)? 9 14+~® 14 ~®)?
T € 0 P AN e ) S TR ] e e 0B S A e )
=0t g B=v v =6 f g B=v v




2.9 A priori estimates 39

and

144®) 2 14 ~®)? 144®) 2 1+ ~P)2
im O 4 sLH7®) 2RISR 9 JHd) 2495 (LR
ey 7 B=v 7 =6 3 g B=v v

So, we have

MZ(f) = min {9—#8(1—’_7@)4_9 p (1—1—’7‘1))2}

ve(,8) | B v 53—~ 7
and
N . 9 (14+~®) 2495 (14_7(1))2
M® = min { =+ 8 " |
(6) = min, {5 N i






Chapter 3

Existence and uniqueness of solutions for

mean-field systems of BSDEs and
McKean—Vlasov BSDEs

We model the motions of n—particles in a closed system as the solution YV := (YoN) i<y of the following
BSDE system

t

The interaction of the solutions {Y*},<;<, appears in the last argument of the generator f as the respective
(random) empirical measure. Given the comments in the introduction of chapter 4, one expects that, by an
appropriate application of the law of large numbers, the empirical measures converge to a (deterministic)
law, rendering thus the interactions weaker and weaker. Obviously, the absence of the empirical measure
translates the above system to n non-interacting equations of the same type. In order to identify the
asymptotic, as N tends to oo, behaviour of the solution YV of the aforementioned mean-field system, we
will need the McKean—Vlasov BSDE of the form

Y, = 5+/ (5.Ys, 28D, TEXO W), £(Y,)) dCED)

; , | . (2
- / Z,dX° — / U, 7i©X9(ds, dz) — / dM,.
t t R™ t

For the well-posedness of the aforementioned BSDEs we will make use of conditions corresponding to
square-integrability of the data. One of the first works that employed coupling techniques of this kind was
Sznitman [46], some recent references can be found in Cardaliaguet et al. [10], Delarue et al. [16].

In our work, central role play the a priori estimates of Lemma 2.9.1. They are an improvement of the a
priori estimates of Papapantoleon et al. [42] to the case when the stochastic exponential is used instead of
the classical one. Not only do we use them to prove the well-posedness of the mean-field BSDE as well as

the McKean—Vlasov BSDE, but also to prove the backward propagation of chaos in the next chapter.
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Now we are going to provide general existence and uniqueness results for McKean—Vlasov and mean-field
BSDEs, in a setting where the filtrations can be stochastically discontinuous and the stochastic integrals
are defined with respect to general LL>-martingales. More specifically, we are going to consider first a
“path-dependent” version of McKean—Vlasov BSDEs and mean-field systems of BSDEs, where the generator
depends on the initial segment of the solution Y, see (3.3) and (3.9). Then, we will also provide existence
and uniqueness results for “classical” McKean—Vlasov BSDEs and systems of mean-field BSDEs that

depend only on the instantaneous value of Y, see (3.2) and (3.1), under weaker assumptions.

3.1 McKean—Vlasov BSDE

At this point we are ready to introduce our setting for the first existence and uniqueness theorem. We are

given a stochastic basis (2, G, G, P) that satisfies the usual conditions and supports the following:

(F1) A couple of martingales X := (X°, X*) € H*(G; R?) x H>*(G;R") that satisfy M [AX°|P®] =0,

where i~ * is the random measure generated by the jumps of X1

(F2) A G—stopping time T" and terminal condition & € IL%(QT, AGX.A). R%), for a B >0 and AGXD) the
one defined in (F5) below.

(F3) Functions ©,T as in Definition 2.5.1, where the data for the definition are the pair (G, X), the
process C©X) and the kernels K (©X).

(F4) A generator f: Q xR, x D?x R>P x R? x P(DY) — R? such that for any (y, 2, u, ) € D? x R&*P x
R? x P(DY), the map

(w,t) — f(w,t,y,z,u,pu) is G — progressively measurable

and satisfies the following Lipschitz condition

’f(w7t7y7 Z? u?lL[/) - f(w7t7y/7 Zl7u/7/’L/>|2

< 1w, 1) PRy, ) + P(w,t) |2 = 2P+ Pw,t) fu— o' P+ 0w, ) Wi, ()
where (r,9°, 9%, 0%) : (Q X R+,PG) — (Ri,B(Ri)).

(F5) Define o? := max{+/r,9°,9%,v/¥*}. For the G-predictable and cadlag process

ACXD — [ azac®)

' 0
there exists ® > 0 such that AAGXH <o P CEX) —ge.

(F6) For the same {3 as in (F2) there exists Aj > 0 such that £ (BA(G’Y’”)T <A P-as.

1Since the filtration G is given as well as the pair X, we will make use of C’(G’}), resp. C(G’Y), as defined in (2.9), resp.
(2.11). Moreover, we will use the kernels K (®X) as determined by (2.10).
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(F7) For the same {3 as in (F2) we have

T s ex 0,0,0,d)/? 5e
E |:/ £ (BA(G’X’f)) |f(sv ) ; ) 0)| dCéEG,X) < 00,
0 s— o?
where Jg is the Dirac measure on the domain of the last variable concentrated at 0, the neutral

element of the addition.

Remark 3.1.1. Let us provide a couple of remarks regarding the notation and description we used in the

conditions we imposed.:

(i) In (F5), at the notation of a we have suppressed the dependence on (G, f), but we have carried it on
the notation of AGX1),

(i) In (F7), and in view of (F6), the integrability condition in (FT) could be equivalently described
by ||£HH2(G c©X) gy < 00 Indeed, under (F6) every B—norm is equivalent to its 0— counterpart.
However, later we will weaken (F6), hence we prefer to write the integrability condition by means of

the stochastic exponential.

(i) In (F'T), and in view of (F4) where the probability measures are defined on the Skorokhod space, the
neutral element of the addition is the constant function which equals to 0. Later, we will deal with
generators whose last variable will be probability measures defined on the Fuclidean space R?, see
(F4') defined below. Hence, in this case 0 will denote the origin of R?.

Now, we consider the McKean—Vlasov BSDE of the form (see (2.28))
T - — _
Vi€t [ F (5o 2D, TEXOW),, £(V]p,q)) dCED
t

T T h T (3.3)
- / Z,dX° - / U, 71X (ds, dz) — / dM..
t t Rn t

Definition 3.1.2. A set of data (G,Y, T,60,T, f) that satisfies the assumptions (F1)-(FT) will be called
standard under /3 for the path dependent McKean—Viasov BSDE (3.3).

It follows the existence and uniqueness result for the solution of the McKean—Vlasov BSDE (3.3) under

the path dependence.

Theorem 3.1.3. Let (G,Y, T,£,0,T, f> be standard data underB for the path dependent McKean—Vlasov
BSDE (3.3). If

2AB R
max <2, —= » M7 () < 1,
B
then the McKean—Viasov BSDE
T _ _ _
V=t [ F (5.Y N, ZelS0 TOXOW),, £(Y ) dCEY)
t

T T G.x" T
—/ stX°—/ U, il ’X)(ds,dm)—/ dM,
t t Rn t
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admits a unique solution

(Y, Z,U, M) € S2(G;RY) x H2(G, X°; RY?) x HA(G, X% RY) x H2(G, X ¢ RY).2

Proof. Let us initially (re-)mention that assumption (F6) leads to equivalent norms. However, we will
need the 5’ —norms in order to construct the contraction, which will ultimately provide the fixed-point we
are seeking.

Regarding the notation we will use in the rest of the proof, since we have fixed the set of standard
data under B, for the convenience of the reader we will ease the notation by dropping the dependence
on G, X and f. More precisely, the objects C(&X), ¢(€X) AGX.f) R(©X) DEX0) 4nd H]—\H(G’Y) will be
simply denoted by, respectively, C, ¢, A, K, I'®, and ||-||. Additionally, we introduce the symbol J—Cg for
the product space

(G, A, X% R™P) x H3(G, A, X5 RY) x HA(G, A, X RY),

whose norm corresponds to the sum of the respective norms.
Let us begin with a quadruple (y, z,u,m) € SE(G, A;RY) x f}{%. Following the classical approach, see

e.g. [42, Theorem 3.5], for the given (y, z,u,m) we get from the representation of the martingale

Blet [ £ (o g

a unique® triple of processes (Z,U, M) € f}(%, as long as

[0,5]5 #sCs; re (w)s, E(y‘[o,s])) dCy

B

" < oo for g. := f(,ylp,, 2., T (w)., LWYlp,7))- (3.4)

H2(G,A,CRY)

Then, we define the G—semimartingale

T (C)
Y .=E [£+/ f (Say’[o,s]azscsar (u)sa‘c(yho,s})) dCs

il

where we use its cadlag version, and we obtain the identity

r ©
Y =€+/t F (5 9l0.9> 25¢5, T (W), L(ylio.4))) dCs

T T b T
. / Z,dX° — / U, i®X9(ds, da) — / dM,.
t t R™ t

2The reader may recall remark 2.4.1 and the fact that under (F5) the f—norms are equivalent to their counterparts.
30f course, we use the convention that a class is represented by its elements.
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We have postponed the verification of (3.4), whose validity we present now: by using the trivial inequality
(a + b)? < 2a? + 2b* one derives

BA)s- dCy

2
s

/Tg( - (s vl 23637Fe(u)&E(y’[O,s]))‘Q
0

2
f(S, O, 07 07 50) - f (Sa y|[0,s}a ZsCs, F@(U)sa ‘C(y|[0,s]))’

2
a;

<2 /0 e (BA)s- dc,

|f(3’ 07 07 07 60)|2

2
a;

49 /OT £(BA),_ dc,

and afterwards, from (F7) and an application of the Lipschitz property as described in (F4) one gets®

< Q.
HE(G,A,C;Rd)

Q.

H f (5 vlo, 26, TO ()., Lylo.))

So, the above computations, Lemma 2.9.1 and Proposition 2.9.2 provide that

2

||Y||‘2S§(G,A;Rd) < 8||§||12L%(QT,A;R‘1) + M?(ﬁ) a

‘f (- l0,1, 2, TO (W), L(yl.))

HZ(G,A,CRY)

Summing up the above arguments, to each quadruple (y, z,u,m) € SE(G, A;RY) x U-CE we have uniquely

associated a new one (Y, Z, U, M) lying in the same space. Hence, we can define the function

S: S3(G, A;RY) x HE — S3(G, A;RY) x 1
with
S(y, z,u,m) = (Y, Z,U, M).

A ~

We proceed to prove that under the assumption max {2, 2TB}M;I)(@ < 1 the function S is a contraction,

so that by Banach’s fixed point theorem we get the unique solution that we want. Let (y/, 27, u?, m’) €
SE(G,A; R%) x U{% for j =1,2. For t € [0,T] we define

Py = f (t,yZ\[Ovt],ztzct,Fe(u2)t,£ (y2|[o,t])) —f (t,ylho,ﬂ, zp e, TO(ul), £ (yl‘[(),t])) :

4We provide similar computations below in (3.6). Hence, for the sake of compactness, we omit at this point the detailed
computations.
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From (F4) and Lemma 2.5.3 we have®

2

< 0 2070 o) + 1 — el +2 [ —

7

+a; W3, (L(W04): L' 0.4))

5P gd
Jl

2
<af sup {lu? — i)+ 16— e +2 [l —ulf]} + o E| s {1 ~ el

In the last inequality we used the fact that

2
We,e (£WPloa): £ ) < /D dXdeJg<x,z>2w(dx,dz>=E[pjg (y2|[o,t],y1|[o,ﬂ)}

(2.26)
< E

Y

sup {[y2 — v;|*}
s€[0,t]

where we chose 7 to be the image measure on D% x D produced by the measurable function (y*|j0.4, ¥*lj0.) :
Q — D¢ x D?. Hence,

2
<o} E(BA)- sup {|y2 — v} P} + EBANI( — e’
s€[0,t] (35)
N 2 A~
+2E(BA)- ||uf —uf||| +f £(BA),E sup {1y - y;F}].

s€[0,t

A

£(pA), |2

7

Then, we integrate with respect to the measure P ® C' in order to get from (F6), (2.18) and (2.19) that

2

Y

«

< 2 HyZ - ylu?S‘?(G,A;Rd) + ||Z2 - Zl“%ﬂ%(@,A,Xo;Rdw)
H2(G,A,CRY) B s s
1 ~
+2|u? — UIH]%I%(G,A,Xh;Rd) + E ]E[g(ﬂA)T} ly* — yIH?S‘;(G,A;Rd)

— ly* — yl”?SB?(G,A;Rd) +[]2* — ZlHI%]IE(G,A,XO;RdXP) +2||u® — ul”%ﬂ%(G,A,Xﬁ;Rd)

B
(3.6)

2A 5
< max {2, Bﬂ}H(y2 - yl, 2 — Zl, u® — Ula m® — ml)”if},@A,Y'

5We use the fact that = < a?, 9° < a2, 9% < a? and z—; < a?.
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Let now S(y, 2%, u',m?) = (Y, Z, U*, M), for i = 1,2. We will apply lemma 2.9.1 for Y? — Y'!; the reader
should observe that Y2 — Y} = 0. Consequently,
||S(y27 227 u27 m2) - S(ylu 217 ula m1)||i7B7G7A7Y
= IV* =Yg ame + 127 = 25,02 = UL M? = M) a2
B b )
2
¥

< @)

H2(G,A,C;R?)

(?’j) 22A3M¢>A 2 1.2 1.2 o1 .2 12 -
> max 5 B *(5)H(y Y,z 25U u-,m mH*,/j’,G,A,X‘

Hence, we obtain the desired contraction if max {2, 225 }ME(B) < 1. ]

Remark 3.1.4. Let us provide some remarks related to specific points of the proof of Theorem 3.1.3:

(i)  Forye€ SE(G, ACXD)RY) it is easy to show from the inequality

WE, , (£0los): £0los) <E| swp (I~ pul}):

SG(tl,tQ]
for (real) numbers 0 <t < to, that L(y|,1) is a cadlag (deterministic) process.

(i) It seems that it is inevitable the imposition of the bound Ag, if we want to consider BSDEs whose
generator [ depends on the initial segment of the paths of the solution Y. Indeed, in (3.5) we need to
multiply the stochastic exponential with the (square of the) running mazimum of y*> — y*. One could
possible be able to proceed without an assumption on boundedness of the stochastic exponential, if it
was possible to extract a priori estimates for the running mazimum analogous to lemma 2.9.1. In this
case, one expects in lemma 2.9.1 an integrability condition of the form E[E(BAr_) SUPepo.7 [Ys|°] < 00
to appear, which is clearly stronger than the S>—norm we are using. Unfortunately, we were not able

to extract such an a priori estimate.

(iii) If we consider a BSDE whose generator f depends at time s on the instantaneous value of the soultion
Y, eg., Y; orY,_, and not on the initial -up to time s- segment of its paths, e.g., Y. or Yo,
then we can proceed under the assumption that S(E’A(G’va))T is integrable, forB the one determining

the standard data. However, in this case we will need to seek a solution such that
Y € SY(G, ACKRY) and oY € HE(G, AKX cCEX;RY),

instead of simply Y € SE(G, AGX.D). R,

In view of the previous remarks, we will close this subsection by considering the McKean—Vlasov BSDE
whose generator depends at each time s € [0, 7] only on the instantaneous value of Y, e.g., Y or Y;_.

To this end, we need to reformulate assumptions (F4) and (F6) as follows:
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(F4') A generator f : Q x R, x R? x R>P x R? x Py(RY) — R such that for any (y,z,u,u) €
R? x R*P x R? x Py(R?), the map

(w,t) — f(w,t,y, z,u,pu) is G — progressively measurable
and satisfies the following Lipschitz condition
[flw,ty, zu, 1) = fw,t,y, 2w, 1)
< r(wt) Iy — Y+ () | — 2 5 ) fu— 0 (w0, ) WE ()
where (r, 0%, 0%,9%) : (@ xRy, PE) — (R4, B(RY)).
(F6’) For the same 3 as in (F2) the process &£ (BA(G’Y’JC)) is integrable.
We introduce the following convenient notation, where « is the process determined in (F5):
SE(G, o, CCX.RY = [y € SE(G, ACXD R ”Oéy||HB(G,Am,?,f),o(G,Y);Rd) < oo}

with associated norm defined by

+lo- |1

H(G,AG X)), C6X) ;)" (3.7)

|| ||52 GaC(GX) Rd = || ||32 GA(GXf) Rd)

Definition 3.1.5. A set of data (G,Y, T,f,@,F,f) that satisfies the assumptions (F1)-(F3), (F4'),
(F5), (F6') and (F7) will be called standard under /3 for the McKean—Viasov BSDE (3.2).

Theorem 3.1.6. Let (G,Y, T,£,0,T, f) be standard data under B for the McKean—Viasov BSDE (3.2).
If

then the McKean—Viasov BSDE

Y, = §+/ (5. Y, Zo®X, TEXO1), £(Y,)) dOED)

, , | .6

- / Z,dX° — / U, i®X)(ds, dz) — / dM,
t t Jre t

admits a unique solution
X o -l
(Y, Z,U, M) € 83(G, a, C®Y; RY) x HE(G, X°; R™?) x HE(G, X% RY) x HE(G, X % RY).

Proof. Adopting the notation of the proof of Theorem 3.1.3, we closely follow the arguments presented and
we omit the steps that are identical or can be immediately adapted to the present case. We endow the

product space S%(G, a, C;R?) x .'HE with the norm which comes from the sum of the respective norms.
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So, we begin with a quadruple (y, z,u, m) € SE(G, a, O;RY) x J{%, for which we can prove that

< 00.
H% (G,A,C;RY)

Hf (-,y.,z.c.,F@(u).,ﬁ(y.))

Q.

Hence, for the triple (Z, U, M) obtained from the martingale representation and the associated cadlag

vesrion of the G—semimartingale Y, we have from Lemma 2.9.1 and Proposition 2.9.2 that

\|Y\|§§(G,A;Rd) + HQYH%%(G,A,C;W) +1[(Z,U, M)Hﬂ{%

2

f (-,y., z.c.,Fe(u).,E(y.))

Q.

Y

2 A N
< (2645 + 98+ 20 ) €12 6y am + T°(3)
B H2(G,A,CiRY)

where we used (2.21) to equivalently write the left-hand side of the last inequality. In other words, the

function

S SE(G,Q,C;Rd) X J—CE — S%(G,a, C;RY) x ﬂ{%
with
Sy, z,u,m) = (Y, Z,U, M)
is well-defined.

We proceed to prove that the function S is a contraction. Let (y?, 27, u?, m’) € SE(G, a, C;RY) x J{%
for j =1,2. For ¢t € [0,T] we define

U= f (t,yf,zfct,Fe(uQ)t,E (yf)) —f (t,ytl, zte, TO(uh)y, £ (%1)) .
From (F4’) and Lemma 2.5.3 we have

2/} 2

ay

E(BA)- L EBA) -y} — yi1® + EBA)-NI(=F — 2)edl?

A 2 A (3.8)
+28(BA)- [|uf —ui||, + of EBA)-Elly — ),

which is the analogous to (3.5).
Then, we integrate with respect to the measure P ® C' in order to get from (F6'), (2.18) and (2.19) that

2

Y

«

< le(y” - y1>H12HI%(G,A,C;Rd) +[]2* — leI%I%(G,A,XO;Rm)
H%(G,A,C;Rd) p B
1 ~
+2 ||U2 - UIH?HI%(G,A,Xh;Rd) + E ]E[g(ﬁA)T} ||y2 - yl||§§(G,A;Rd)

T
bI? = sy o, + 122 = 2 =t 2 — ) 3.
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Let now S(y', 2%, ut, m') = (Y, Z', U, M?), for i = 1,2. We will apply Lemma 2.9.1 for Y? — Y!; the reader
should observe that Y2 — Y} = 0. Consequently,

Y2~ Y1||§§(G,Q,C;Rd) +(2° = 2,0 = U, M? = M) |lsez
¥

(0%

2

< M*(3)

IHI% (G,A,C;R%)

BA A
< max {2 [(BT)]}M(I’(@H(’H - yla 2 — 217 u — ul,m2 - ml)Hgg(G,a,C;Rd)xﬂ{g'

Hence, we obtain the desired contraction if max {2, W}M ®(3) < 1. O

We may improve the condition under which one can prove the existence and the uniqueness of the
solution of the McKean-Vlasov BSDE (3.2) by imposing stronger properties on A©*:/) and on the time

horizon T'. For the former we introduce the following condition
(F6") The process AGX:f) is deterministic.

Remark 3.1.7. If T in (F2) is deterministic and finite, then Condition (F6) is satisfied. However, when

T = oo it does not necessarily hold. Either way, (F6) is not required in the method we are going to use .

Theorem 3.1.8. Let (G,Y, T,f,@,F,f) satisfy (F1)-(F3),(F4'),(F5),(F6") and (F7) under 3. Let,
additionally, T in (F2) being deterministic. If

2M®(B) < 1
then the McKean—Viasov BSDE
Y, = 5+/ 5, Yo, 2,85 TEXO 1) £(Y,)) dCED)

: : | . B2
- / Z,dX° — / U, i®X9 (ds, dz) — / dM,.
t t R™ t

admits a unique solution
(Y,Z,U, M) € 8%(G, a, CEX): RY) x H2(G, X°; R™?) x H%(G,X“; R%) x H%(G,Y%;Rd)

Proof. Adopting the notation and the arguments used in the proof of theorem 3.1.6 we proceed from (3.8),

i.e.,

w 2

ay

E(BA)e- L EBAY -y = yi1? + EBA) NI = 2l

+2E(BA).- |2 — |, + o2 EBA—El} - 4.
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From (F6”), by integrating with respect to P ® C' and by applying Tonelli’s theorem® in the last summand
of the right-hand side of the inequality, we obtain

2

Y

«

<2 Ha(yz - yl)HHQ-]I%(G,A,C;Rd) + H22 - ZlHIZHI%(G,A,XO;RdXP)
HZ(G,A,CiR%) .

+2|u? — u' H]%I%(G,A,Xh;Rd)
S 2||y2 - yIHS%(G,a,C;Rd) + 2“(’22 - Z17U2 - ula m2 - m1)|\§{;

Hence, by applying Lemma 2.9.1 the contraction is obtained for 2M® (3) < 1. O]

Remark 3.1.9. In Theorem 3.1.3 and Theorem 3.1.6 the mazimum is taken over the number 2 and another
quantity. The number 2 essentially appears because of the Lipschitz constant of Lemma 2.5.3. So the
conditions for these theorems can be improved, if one uses a different form of a I' function, whose Lipschitz
constant is smaller. However, this is not the case for Theorem 5.1.8, in which we have twice the same term
after the application of Tonelli. So, the number 2 in the condition of Theorem 3.1.8 can only worsen for a
different form of a I" function.

3.2 Mean-field system of BSDEs

In the current subsection we are given a stochastic basis (€2, G, G, P) that satisfies the usual conditions and

supports the following:

(G1) N couples of Enartingales {X = (X“O,X”h)}ie{lev} € (HQ(G;RP) X ’HQ’d(G;R")) that satisfy
M xis[AX°|PE] =0, fori € {1,..., N}, where X" is the random measure generated by the jumps
of X®8.7

(G2) A G stopping time 7" and terminal conditions {¢"V }ieqr, ny € T, ]L%(QT, AGXD). R%), fora 3> 0
and {A(G’T’f)}ie{lw_,N} the ones defined in (G5).

(G3) Functions {@i}ie{l,...,N}ar as in Definition 2.5.1, where for each i € {12 ..., N} the data for the
definition are the pair (G,YZ), the process C(©X) and the kernels K (©X).

(G4) A generator f: Q x Ry x D? x R>? x RY x P(D?) — R? such that for any (y, z,u, u) € D? x
R>P x R? x P(D?), the map

(w,t) — f(w,t,y,z,u,u) is G — progressively measurable

6Tt is at this point that we use the fact that T is deterministic. v _
"Since the filtration G is given as well as the pairs X, for i € {1,..., N}, we will make use of C’(G’XL), resp. C(G’XL), as
defined in (2.9), resp. (2.11). Moreover, we will use the kernels K(©X) a5 determined by (2.10).
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and satisfies the following Lipschitz condition

|f(wat7y7 Z,U,M) - f(w7t7y/7zlau,7:u,)|2

< r(w,t) piii(y, y) + 9w, t) |z — 224 9w, t) |u—u'|? + 9 (w, t) Wip]d (e, 1),
“1
where (r,9°, 9%, 0*) : (2 x Ry, PE) — (RY, B (RY)).
(G5) Define o? := max{+/r,9°, 9%, v¥*}. For the G-predictable and cadlag processes
A,EG’Yi’f) = /t a2dC(G’7)
0 S S

there exists ® > 0 such that AA%G’yz’f)(w) <P, P® CGX) _ a.e, 1€{l,...,N}.

(G6) For the same 3 as in (G2) there exists Aj > 0 such that
maX;e{1,.. N} {5(BA(G’Xi’f)> } < Aﬁ.

(GT7) For the same 3 as in (G2) we have

T

T N —i 2 —i
El/ 8<5A(G’X’f)> 1£(5:0.0.00)F X | oo ie 1, N},
0 s—

2 S
aS

where 9y is the Dirac measure on the domain of the last variable concentrated at 0, the neutral

element of the addition.
Now, we consider a mean-field system of BSDEs of the form (see (2.28))
. ) T ) ) i i ) —i
Vi = e [ (5,5, ZEN SO, TEX O, LN (Y ) a0
t
T . T , iy T
- [ zvaxie = [ [ U @) a0 s de) - [0 AMEY, i<,
¢ t Jrn t
""" ie{l,..., e

assumptions (G1)-(GT) will be called standard under B for the mean-field path dependent BSDE (3.9).

It follows the existence and uniqueness result for the solution of the mean-field system of BSDEs (3.9)
under the path dependence. Before we proceed to the statement of the announced theorem, we mention
that we adopt the following convention hereinafter: whenever we consider a (finite) Cartesian product
of normed spaces, the norm on this product will be the sum of the norms of the normed spaces used to

construct the Cartesian product and it will be simply denoted by || - ||.

the path dependent mean-field BSDE (3.9). If

max {2, 2;}3 } M2(3) <1,



3.2 Mean-field system of BSDEs 53

then the system of N—BSDEFEs
YN o ghN +/ f <57Y17N‘[0,s}7 ZIN(6X) PEX09 (i) LN<YN’[0’S})> dC©X)
t

r_. , T , ; T ,
- [ zvaxie = [ U@ EEY s de) - [ aMEY, =1,
t t n t
admits a unique N —quadruple (YN7 zN, UV, MN) as solution, such that
N i
YW= (YN YY) € T S3G, AGTRY),
i=1
N N N,N al GX' d
1 2 %,0
ZN = (ZVWN . 2N )EEHB(G,A(’ D xhe REOP),

N -1 .
UV = U, UM e ] H2(G, ACXLD X8 Rd)
i=1
and
ile

N —i _
MY = (M"Y, M) e TTHE(G, A D X RY).

=1

Proof. Not surprisingly, we will follow analogous arguments as in Theorem 3.1.3 which dealt with the
McKean—Vlasov BSDE (3.3). However, there are points which differentiate from the previous proofs. So,
for the reader’s convenience, we will present here the proof in a compact, yet sufficiently clear, way. To this

end, let us introduce the following more compact notation:
Al GX'.f 2 Al G.X'f
2 2 X0 mod o . 2 X' i0. Tpd
Siy = HSB(G,A( ). RY) H = I:IIHB(G,A( ) X0 RT*P)
2.4 il 2 (GX'f) vif. md 2,1 Al 2 ©X'.f) ¢ pd
HB:N :];IIHB(GyA ’ ’ 7X’ 7R ) and HB:NG :HIHB(((;HA ’ ’ 7X 7R )

Let (yV,z",u?¥, m") SEN X HZ‘;V X HZHN X HZ]LVG with

1,N N,N)

sut = (ut LN NNy,

and m" := (m"Y, ... m

Working per coordinate as in the proof of Theorem 3.1.3 and following analogous arguments to those
provided in the extraction of (3.12) below, it permits us to conclude that we get unique processes
(YN, 2V, UN, MY) € 82 | x HZ,’EV X HgﬁN X ngvﬁ such that for i = 1,..., N

YN = i Jr/ f <Sjyz,N‘[07s]7Z;,Nch,X ) pEX'0 )(uz,N)S’LN(yN“O’S])) dC©X)
t

TN i r i,N ~(G, X8 r i, N
- / Z0N g xie - / / U (z) G©X) (ds, dx) — / dMN,
t t n t
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’Yi) Qt] .

The reader may observe that for each i € {1,..., N} we have represented the martingale part of the

with

) T ) ) i < o0, i
N._E [SZ,N +/t f <S7yz,N’[07s]’Z;,NCgG,X ) T(EX 09 (il LN(yNhO,S])) dc(©

semimartingale Y as a sum of stochastic integrals with respect to the elements of the pair X' and an
element of the orthogonal space HE(G, AGXS ),YiLG; R?).
Hence, we define the function
SV 83 x HES x HEE x HY© — 8%\ x H35, x HE% < H3 S
with
SV(yN, 2V, u, m") .= (YN, Z"V, UN MY).

As before we want to prove that S” is a contraction, so that by Banach’s fixed point theorem we get the
unique solution that we want.
, ; ; ; ; 2,0 2, 2.1 -
For j = 1,2, let (y™9, 2z u™MJ mMN) € SéN x HZS % HB,hN X HﬁA’NG with
y¥ =y

uV o= (BN YN and mM = (mP YL m )

NN]) 7

Nij .= (zl’N’j .

PARER)

),

and let us, also, denote S™ (y™7, 2z uN7, m™7) by YNI, ZN9 UNJ MNJ. We proceed to define for every
ie{l,..,N}
W= f (uyi,N,Zl[Oi N2, (GX)’F(G,F’@)( BN2) LN( N,Q‘[M))

i, z G,Yi ,7i, i (4, ,
—f<t Y N1|0 iF o ( )7F(GX e)( M, LN( N1|[0,t})>'

In order to control the Wasserstein distance between the empirical measures we have from (2.25) and (2.26)

N
Wipjii (LN (yN’2|[07t]) LY (YN’1|[0,t]> ) ]17 z_: sup {|ym™N? — VL 2y

s€[0,t]

The reader may observe that no expectation appears on the right-hand side of the inequality, which is
something to be expected because of the nature of the left-hand side. Indeed, there we have a Wasserstein
distance of empirical measures, which depend from w. Hence, in general, there can be no deterministic

upper bound for this random variable.
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By an application of (2.18), (2.19) and Lemma 2.5.3 per coordinate we get the following estimation®
forie {1,...,N}

o
(6% HB(G A(GX ) C(GX ) :R9)
< AB H ,N,2 leH 4 Hzi,N,Q leH
- B y SQ(GA(GX f);Rd) IHI2 (GA(GX £) X0, Rdxp)
N2 N,1
+ 2 ||ul l HH2 GA(GX 1) X8R (311)
1 al (G, X N2 ,N,1 12
b SB[ 5E(BACTN)  sup (- )
m=1 T— s€[0,T]
< AB “ i,N,2 leH + ||Zi,N,2 leH
o B y 82(GA(GX f);R) IHI2 (GA(GX £), Xi:0;RdXP)
,N,2 le
+ 2 ||U ||H2(G A(GX o f) th Rd) (312)
Ay 1 N
+ Tﬁ Z HymN2 le”sQ GA(({}X f).Rd)
ﬁ m=1 ’

Then, by employing Lemma 2.9.1 per coordinate, in conjunction with the fact that YN = YN2 and by

summing over ¢ € {1,..., N}, we have (recall the notation for the norm on the Cartesian product)

2
HSN<yN,27 ZN,Z’ uN,Q’ mN,Q) _ SN(yN,I’ ZN,I’ uN,lj mN,l) H

N
i\N,2 N1
- Z ||}/z Yl HSQ(G A(G, X<t ) Rd)

i,N,2 i,N,1
+ Z ||Z Z ||H2(G A(GX ) X7,O Rdxp)

N
_I_Z“Ui,N,Q UzN1||

H2 (G A(G, X ,f) Xl g. Rd)

_i_ZHMi,N,Q M1N1H2

i=1 GA(GX bt )
(YN =y N2 N Wi 2
@
S M* (ﬁ)z D i .
=1l & 2 (G,AGX ), CEXRY)
(3.12) 2\ ; A )
@ N2 N1 _N2 __N1 . N2 N1 N2 N,1
< max ,Bﬁ M*(B)‘y’—y’,z’—z’,u’—u’,m’—m”,

which provides the desired contraction.’

Remark 3.2.3. Let us provide at this point some comments related to the proof of Theorem 3.2.2.

8This is the analogous to (3.6) in theorem 3.1.3.

9The reader may observe that in (3.12) for each fixed i € {1,..., N} there are terms which correspond to m # i, whose
coefficient is 1/N. These terms sum up their coefficients up to 1 when we sum over i € {1 N}.
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(i) Fory" e SE Ny the motation was introduced within the aforementioned proof, it is easy to show from
(2.26) that LN (y"|,)) is an adapted, cidlig process; see also the proof of lemma A.2.10 for similar

arguments.

(i)  In the derivation of (3.12) one faces the problem of multiplying the running maximum of processes
lying within SE(G, A(G’Y’f);Rd) with the stochastic exponential associated to A(G’Ym’f), for m #i.
In general, one cannot derive such estimates, except for special cases, e.g., like those described by
Condition (G6) or (G6') provided below.

(iii) In view of remark 3.1.4.(iii), we may also consider mean-field system of BSDEs whose generator
depends on the instantaneous value of the Y™ —part of the solution. However, one is not able to
prove the existence and the uniqueness of the solution under the analogous framework of Theorem
3.1.6, i.e., under a condition that involves the mean of the stochastic exponentials. This can be easily
explained. To this end, we have to recall and combine two facts. The first one is the previous remark
(7i). The second one is that in (3.5) the Wasserstein distance provides an expectation, which allows
to integrate it with respect to a stochastic exponential, thus factorizing the respective mean values.

Howewver, this is not the case in the inequality before (3.12).

In view of the previous remark, we will consider mean-field system of BSDEs whose generator depends
on the instantaneous value of the Y —part of the solution. To this end, again, we need to reformulate
assumptions (G4) and (G6) as follows:

(G4') A generator f : Q x Ry x R? x R>P x R? x Py(R?) — R? such that for any (y,z,u,pu) €
R? x RP x R? x Py(R?), the map

(w,t) — fw,t,y,z,u, 1) is G — progressively measurable
and satisfies the following Lipschitz condition
f(w, by, z,u, 1) = flw,t,y' 2l 1)
< r(w,t) [y =y + P(w,t) |2 = 2P+ P w, ) fu— o[+ 0w, 1) W (1)
where (r, 0%, 0%,9%) : (@ x Ry, P¢) — (R4, B(RY)).
(G6') For i,5 € {1,..., N} we have AN = AGX.f) 10

Theorem 3.2.4. Let (G, {T}ie{lj_“?]\;},T, {fi}ie{L.A.,N},{@i}ie{l’_“,N},F,f) satisfy (G1)-(G3), (G4'),
(G5), (G6') and (G7). If

2M* () < 1,
10The equality is understood up to evanescence. Moreover, in view of the definition of A(G’Yl*f), fori e {1,..., N}, this
condition is equivalent to CGX) = ¢GX) for i,j € {1,..., N}. We prefer to present it in the way we did, because it will

be more convenient for the justification of the computations.
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then the system of N—BSDEFEs
Vi =gy [T (0%, N TEX O i), LY (1)) ace T
t
T . ) T ) ik T )
- [ zvaxie— [ U@ EEY s de) - [ Ay, i=1,
t t R™ t
admits a unique solution (Y™, ZN, UY, M") such that
N —i
YW= (VI YY) € TT83(G, o, O RY) M
i=1
N —i .
ZN = (Z"N . 20N e TTHA(G, ACX D) X1 REP),
i=1

N 1 .
U = (U, UNY) € [THE(G, AGX D XM RY)
i=1
and

N —
MY = (MY MNY) e TTHA(G, ACK ) X RY),

=1

Proof. In view of (G6'), we will denote every A(®: Rg) , Tesp. C(G’Yi), fori € {1,..., N}, simply by A, resp.
C. Adopting the notation of the proof of Theorem 3.2.2 and following exactly the same arguments as in the

aforementioned proof, we arrive to the following inequality (which is analogous to (3.11)) fori € {1,..., N}

all

(0%

IHI% (G,A,C;R%)

S Ha<yi,N,2 o yi,N,1> N2 z NlHH2

HH2 GACRd + H’Z GAX'LORpr)

' (3.14)
+2 HUZ’N’Z utM! HH2 2(G,AX 55 Ry T N Z ”a(s(ym’N’Q - ym’N’l) HIZEHE(G,A,C;R"I)'

We underline that from (G6') for i,m € {1, ..., N} we have P—a.s. (we return to the initial notation to

demonstrate the property we used)
/T 25<BAGXi,f)> |y;n,N,2 mN1| dC(GX

7/ 2 mN1|2d8<BAGX7f)>

7/ |ymN2 y;n,N,l

:/ aig(ﬁA G,Xm,f)> |y;n,N,2 le‘QdC
0 S—

S

298 (BA“Gvavf))

S

The rest is obvious. O

HThe §2—spaces have been introduced before definition 3.1.5.
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.....

is a family whose elements are identically distributed and define deterministic C€X) processes, e.q. from
proposition 4.1.2 have independent increments. Then, from (2.9) and [21, 6.23 Theorem] we would have
fori,je{l,..,N} and t € R, that

C,t(G,Y) —-F Ct(G,Y)

— E|Te[(x)f]

+E {mz * Vt(G’Xiﬂh)}

=E :\X;?C’

2} +E (1125 ] = EUX,f’O

2} +EUX§’”

]

B[P

— E|[x7° 2} + E[’Xf’“ﬂ - IEUXg’C’

< 7
Ct(G,X )| _ Ct(G,X )

—E :Tr[(Xj’o)ﬂ

+E [|f|2 " u,fG’X”"”’} —E







Chapter 4
Backward propagation of chaos

The notion of propagation of chaos started to get a lot of attention when in a series of lectures Lasry
and Lyons [35-37] used it in order to simplify the study of mean-field games. They introduced ideas
from statistical physics into the study of Nash equilibria for stochastic differential games with symmetric
interactions along with Malhamé and Caines in [25, 26]. Generally, problems with large number of players
are notoriously difficult to control. However, as statistical physics has shown us, under the appropriate
assumptions (the most important being symmetry) one can study the asymptotic behaviour of a system
as the number of players grows to infinity much more easily. Of course there is not a single way to
mathematically express the notion that the players, or particles in statistical physics, interact with one
another, a choice must be made. In probability theory, one of the first deep theorems was the strong law
of large numbers. The law gives a set of conditions under which randomness asymptotically collapses
to determinism. This feature is ideal for studying systems with a large number of agents as it allows
for calculating simplifications. Perhaps inspired by this, the interaction that has extensively studied in
the statistical physics literature is that which emerges from the empirical measure of the states of the
particles. Hence an interaction that involves the empirical measure of the states of the participants is called
mean-field interaction.

The modern notion about propagation of chaos started in the fifties. M. Kac in the process of
investigating particle system approximations for some nonlocal partial differential equations (PDE) arising
in thermodynamics, see [30], made an important observation about a characteristic of large systems. Assume
that the behaviour of the particles is symmetric and interact in a weak way that its magnitude decreases
inversely proportional to the size of the system. Maybe due to cancellations of the contributions of different
particles. Then, if the initial positions of them are chaotic, here understood as independent and identically
distributed, this initial state of the system could be seen asymptotically to propagate (or spread) to the
other points in time, when its size grows to infinite. This idea of propagation has been used ever since to
various topics with many applications, some recent are found in Jabin and Wang [27, 28], Malrieu [39].

In this work, combining the above ideas we want to study the backward propagation of chaos for
solutions of mean-field systems of backward stochastic differential equations (BSDEs) under a general
setting. The backward propagation is understood as having chaotic behaviour on the terminal conditions,
instead of having it on the initial conditions.

Although propagation of chaos is extensively studied for (Forward) Stochastic Differential Equations
(SDEs), e.g., see the review Chaintron and Diez [11], for backward propagation of chaos only a handful



60 Backward propagation of chaos

of papers have been published so far Hu et al. [23], Briand and Hibon [8], Djehiche et al. [19], Buckdahn
et al. [9], Lauriere and Tangpi [38]. None of these papers works in a setting as general as of the work
presented here. More precisely, for the propagation of chaos property the current framework allows for
square—integrable martingales with independent increments as integrators of stochastic integrals, cadlag
predictable increasing processes as integrators of Lebesgue—Stieltjes integrals and also dependence in the
generator from the initial segments of the paths of the solution Y. In fact, the results of Chapter 3 and
Section 4.1 are also valid without change in the case where the dependence in the generator comes from
x|[o,s—] instead of x| 4; see the notation introduced in (2.28). Similarly in Section 4.2 we can replace Y
with Y,_.

For ease of the presentation the generator f assumed to be deterministic. However, if one wishes to
work in a setting where the generators are stochastic, then as it is customary, she can assume instead that
there exists a sequence of copies {f};en of a stochastic driver f! of a prototype probability space (see
Section A.2.1), and proceed with the obvious modifications in the proofs.

In Section 4.2.2 we provide rates of convergence for the usual dependence. The theorems generalize
those found in [38] for the Brownian framework. Although, in their work Lauriere and Tangpi prove also
that the requirements of the theorems, i.e. advanced integrability of the solutions, can be satisfied under
an additional specific linear growth condition for the generator. In the present work we do not study under
what conditions for the generator these integrability requirements can be achieved, but we can say that
they are trivially achieved when the generator is bounded, see Remark 4.2.11. Obviously, in the previous
results, one has to assume also advanced integrability for the terminal conditions. Alternatively, if one
wants to keep sharp square integrability conditions for the data, then needs to specialize the dependence of
f from the argument of the probability measures to a type that allows it, like in [9] or [38, Proposition
2.12.].

Finally, we want to underline that our approach allows to prove backward propagation of chaos in the
general case where the terminal conditions of the mean-field systems differ from the terminal conditions
of the McKean—Vlasov BSDEs. Moreover, in every system, the former are not required to be identically

distributed or independent.

4.1 Propagation of chaos under the path dependence

Despite the fact that we have already provided existence and uniqueness results for the respective mean-field
BSDE system (3.9) and McKean—Vlasov BSDE (3.3), there are still quite a few preparatory and auxiliary
results that will be required in order to fulfill our promise for the proof of the respective propagation of
chaos. These auxiliary results are presented, accompanied by their proofs, in Sections A.2.2, A.2.3.
Naturally, the framework we are going to use for the propagation of chaos will be based on the common
ground of the frameworks we used in the previous chapter, suitably enriched and reinforced wherever

required.

4.1.1 Setting

Let a probability space (£2,G,P) which supports the following:
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(H1) A sequence of independent and identically distributed processes {Yi}ieN such that, for every i € N,
X' = (X%, X*8) € H2(F; RP) x H>H(FR™) with M v [AX#°|PF] = 0, where F? := (F/);> is the
usual augmentation of the natural filtration of X' and wX " is the random measure generated by the

jumps of X1

(H2) A deterministic time 7" and a sequence of identically distributed terminal conditions {£'};cy and a

sequence of sets of terminal conditions {{fi’N}iE{le}}NeN such that, under a 8 > 0 it holds &%, & e

L;( :},A(Fiji’f);Rd) L2 (]: N AEXLD . RA)? regpectively for every i € N, where {A(Fiji’f)}ieN
the ones defined in (H5)

i N 112 Il N
Moreover, we assume that ||£* _52”1%(;; """ N A ra) o —— 0, for every i € N, and + >N [|&"

dk .
B

L2(Fp N AFLXS )R Nooo

(H3) Functions ©,T" as in Definition 2.5.1, where © is deterministic and for each i € N the data for the
definition are the pair (F’,Y ), the process C®"X") and the kernels K®X)_ It is underlined that
© € P, for each i € N.

(H4) A generator f: R, x D? x R x R? x P(D?) — R such that for any (y, z,u, u) € D¢ x R>P x
R? x P(D?), the map

t— f(t,y,z,u,p) is B(R;) — measurable

and satisfies the following Lipschitz condition

|f(t7ya Z,U, N) - f(ta ylv Zlyula ,u,)|2
r(t) la(y,yf) + 0°(8) |2 = 2" + () [u— P+ 97 () W5, ’ (ks 1),

where (r,0°,0%,9%) : (Ry, B(R,)) — (R%, B(R1)).
(H5) Define o? := max{+/r, 9%, 9", /9*}. For the Fi-predictable and cadlag processes

i =i t i
AFXD / a2dCE X (4.1)
0

there exists ® > 0 such that AASFi’Y -f) (W) <P, P® CEXY - a.e, for every i € N.

(H6) For the same 3 as in (H2) we have

0 .

2
s

<oo, t€N, (4.2)

1Since for every i € N the filtration F is associated to X' , we will make use of C(F LX) , resp. C(Fiyi)7 as defined in (2.9),

resp. (2.11). Moreover, we will use the kernels K (' X as determlned by (2.10).
2see Remark 4.1.1 (4)
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where 4y is the Dirac measure on the domain of the last argument concentrated at 0, the neutral

element of the addition.

(H7) There exist a non-decreasing, right continuous function @), a Borel-measurable function v and a
family {b'}ien, with b° € Pfi for every i € N, such that

£ (BAW?X’?f)) —1 +/' b dQ,, €N
. 0
and

sup{b'} <7, Q—ae.
ieN

(H8) For the same 3 as in (H2) and ~ as in (H7) there exists a Aj > 0 such that 1+ STy dQ, = Ag.
(H9) For the same 3 as in (H2) we have max {2, 32‘5} M2(3) < 1.

In the following, we collect a few observations regarding the framework (H1)-(H9). Some of these
observations provide immediate properties derived from the conditions, while other observations justify the
imposed conditions. Additionally, let us introduce the required notation used hereinafter. To this end, let
us fix N € N and assume (H1)-(H9). For each i € {1,..., N}, the McKean—Vlasov BSDE (3.3) associated
to the standard data (7i,Fi, eI I,T,E&, f) under 3 admits, by Theorem 3.1.3, a unique solution, which

will be denoted by (Y, Z!, U*, M"). For later reference, we will say that (?N, ZN, ﬁN7 1\7IN) is the solution
of the first N McKean—Vlasov BSDEs, where we define

~N

Y = (Ylg...,Yn)7 Z = (Zla---azn)vﬁN = (Ul""’Un)
and M = (M*Y,...,M"™).

We underline that the symbol (YV,Z", UY, U") is reserved for the solution of the mean-field BSDE.

Remark 4.1.1. (i) By construction, {F'};cy is a sequence of independent filtrations on (Q,G,P). More-
over, for every N € N, we define the filtration F*~ = \/"_ F™. From Wu and Gang [52, Theorem
1] we have that T4~ satisfies the usual conditions. Fori € {1,...,N} and N € N, a direct con-

sequence of the independence of filtrations is that every F'—martingale, remains martingale under

see Corollary A.2.7. Additionally, from the assumption M i [AX™|PF] =0 one can deduce that it

is also true M xi [AXZ"O|75F1 """ N] = 0; one can follow the exact same arguments as in Lemma A.2.9.

(i) Leti € N and N € N. Under F* we have defined via (2.9) and (2.11) the cddlag, F*—predictable
and increasing processes CEX) gnd c(?i’xl). Naturally, one can consider the respective processes
under the filtration F1-V | i.e., CENXY gpd E XD, Howewver, in view of the immersion of the

filtrations and of Remark 2.2.1, we have

CEX) = (E T gpg (X = (T, (43)
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(ii)

(iv)

(v)

This property allows us to drop the notational dependence from the filtration. Hence, under (H1) where
we fix the sequence {Yi}neN, we will simply denote these objects as Ct, ¢, fori e N. Additionally,
recalling the definition of AEXL 4y (4.1), we can also simplify the respective notation. Hence,
under (H1) and (H5), we denote by A the process AT X ) = AE-NX"1),

Under (H1) and (H5), let us assume that there exist a non-decreasing, right continuous function @,

a Borel-measurable function v and a family {b'}ien, with b € Pfk: for every i € N, such that

sup{a?b’} <~ and C' = / b.dQ,, for everyi € N.
0

€N

A

Then, this property obviously transfers through (4.1), (2.12) and (2.13) to the sequence {5(ﬁA’)}

ie.,

ieN’

5(314’) =1+ ; /0. S(BAZ)sf)zg b:dQ,, for everyi € N
and from (HS8)
S(BAi)T < s,

In other words, (H7) is fulfilled under the initial assumptions of this remark.

Let N e N andi € {1,...,N}. Under the Conditions (H1)-(H9) it is guaranteed that the septuple
(Fi, X', T,&,0,T, f) consists of standard data under B for the McKean-Viasov BSDE (3.3); see
Theorem 3.1.3. Hereinafter, we will denote its solution by (Y*, Z',U*, M"). Completely analogously,

..........

.....

The sequence of driving martingales associated to the McKean—Viasov equations are independent
and identically distributed, as well as the terminal random variables. Hence, for every N € N, from
Lemma A.2.9 see the solutions of the first N McKean—Viasov Y, ....YN as strong solutions under
the larger filtration FYN  and conclude the uniqueness in law. In other words, the solutions of the

McKean—Vliasov are identical distributed.

The following proposition in conjunction with (H1), as well as the comments after the proposition,

justify the assumptions imposed in Remark 4.1.1.(iii). These indicate that (H7) is by no means restrictive

for applications.

Proposition 4.1.2. Let G be a filtration on (2, G, P) that satisfies the usual conditions. For every pair
X = (X°, X?) € H?*(G;RP) x H?(G;R"™) with independent increments the processes C©X) and ¢(©X) as
defined via (2.9) and (2.11), are deterministic.

Proof. Let j € {1,...,p}, then X°7 denotes the j—element of the p—dimensional process X°. Analogously,

27 denotes the j—element of the p—dimensional vector z. From [21, Definition 6.27] we have that the dual

predictable projection of the process ¥, |AX7|? is equal with (27)% x (X% for every j € {1,...,p}.
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From Medvegyev [40, Corollary 7.87] we have that (X°)€ and v(©X") are deterministic, which completes
the proof. O

A couple of examples where (HT) is satisfied are the extended Grigelionis martingales, see Kallsen [32,
Definition 2.15], and affine martingales, see Kallsen [33], Kallsen et al. [34, Section 2], where we respectively

have

o — t
GO =N (t +2 ]13(8)) and - G = [Tbuds,
0

s<t

for some A € R, B C (0,00),b € Pf, with B at most countable and b appropriately bounded.

4.1.2 Main results

We are ready to prove the propagation of chaos between the mean-field BSDE (3.9) and the McKean—Vlasov
BSDE (3.3). The setting consists of the conditions (H1)-(H9). For fixed N € N, we introduce the following
notation for the solution (Y, Z" UY M?") associated to the mean-field BSDE (3.9):

YV = (YN YY),z = (2N 2N,
U =W, .. UMYy and MY = (MmBY MYY.

Also, for i € N, we will call the i—th McKean—Vlasov BSDE (3.3) the one that corresponds to the standard
data (Yl,]Fi, Oi I, T,¢&, f) under (. Additionally, we will call the first N McKean—Vlasov BSDEs (3.3)

those that correspond to the set of standard data {(71, Fi.0,IT,¢&, f) } LN} under B with associated

solution (?N, ZN, ﬁN, l\N/IN), see also the comments at the beginning of Section A.2.3.

Theorem 4.1.3 (Propagation of chaos for the system). Assume (H1)-(H9). For the solution of
the mean-field BSDE (3.9), den. by (Y™, Z", UN, M), and the solutions of the first N McKean—Vlasov
BSDE (3.3), den. by (AI/’N,ZN,T]N,MN), we have

N
lim — > | (YN =y ZN — 2 Ut - Ut MY - M) 17, ;=04 (4.4)

: * 57]1:1 ..... N Al ’y’
=1

Proof. For fixed N € N, we will work under the filtration F*~. For i € {1,..., N}, Lemma A.2.9 permits
us to consider the i—th McKean-Vlasov BSDE under the filtration F'" instead of under F? without
affecting the solution (Y, Z*,U’, M*). This property allows us to finally consider the N first McKean-
Vlasov equations under the filtration F~ which is also the filtration considered for the mean-field BSDE

N —system.

3See also Remark 4.1.1.(iv).
4Recall Remark 4.1.1.(ii) for the notation A, for every i € N.



4.1 Propagation of chaos under the path dependence 65

For every ¢ € {1,..., N} we subtract the solution of the i—th McKean—Vlasov BSDE from the i—th
element of the solution of the mean-field BSDE in order to derive

which finally provides a BSDE system. Hence, we can utilize Lemma 2.9.1.
Let us define ¢ := (¢, ..., ¢"), where for i € {1,..., N} we have defined

So, from the Lipschitz condition (H4), the identities (2.18) and (2.19), Lemma 2.5.3 which provides the
Lipschitz property of I" with respect to [||-||| and the combination of (H7) and (H8), which in particular
provides the bound of the respective stochastic exponential, we get for every i € {1, ..., N} that

||

(07

,,,,,

+3E [ [ (5 () £ (V09)) dg(mz)s] | (46)

At this point let us observe that, in order to proceed, we need to derive the convergence (in the sense
dictated from the last term of the right-hand side of (4.6)) of the empirical mean of the mean-field solution
to the common (in view of Remark 4.1.1.(v)) law of the solution of the McKean—Vlasov BSDEs. To this

end, we will use the triangular inequality for the Wasserstein distance as follows

Wipﬁ (LN(YN l0,51)5 E(Yiho,s]))

~N ~N | @
<2W3, (LN O i0,) LV (Y o)) +2 W3, (LY (Y Tio.)s £ (Y lo9) )
1 1

in order to reduce our initial problem into two easier ones: the convergence (in the sense dictated in (4.6))

to 0 of the right-hand summands of (4.7). The following computations serve this purpose.
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Let us, for the time being, deal with the first summand of the right-hand side of (4.7). Then, for
i € {1,...,N} and by integrating with respect to P ® £(SA?) we have by means of (2.25) and (2.26)

T —~ A
E [/ W22,de (LN(YN|[O,8])7 LN(YN“O,S]))dg(ﬁAZ)S]

<E[[15 3 s (v - vipasan)
m=1 z€[0,s]
N
m,N m
- Aﬁ N Z HY 7 - Y H?g%(]}rl ,,,,, N7Afm;]Rd)' (48)
m=1 B

Returning to the system (4.5), we utilize Lemma 2.9.1 (in conjunction with Proposition 2.9.2), which

essentially amounts to adding (4.6) over ¢ € {1,..., N}, and in conjunction with (4.7) and (4.8) we have

N
i,N i r7i,N i 178,N i i,N i
;H(Y —YL 2N = ZL U UMY = M) P e
< (26 + 93P) Z;Hg”v—é IILz(f ..... N i)
304 oA iN i r7i,N i 7ri,N i i N i
+max 12, — M2(3) ZH(Y’ —YLZN LU UMY - M) P e
2M‘1> N

DS [ (8 0). £00.0)) 423,

So, from (H9) we get

1 al i % ) () i ) i )
N; (YN =YL 2N - 2 U UMY - M)
(26+95c1>) 1 i .

< — =2 € =€ ey g

1—max{2 }Mq)(B)N: L AR

2ME(5) 1 13T, N (N i A A
o —3E NZ/ w3, (L (Y |[O,s]>,£(y\m,s])) de (A7) |.
1—max{2, 3 } (ﬁ) =170 1

In other words, from (H2), we have reduced our initial problem to the one which consists of proving that

lim B[ / W2, (LY (o), £070.0)) A3, | = 0 (19)

N—oo

In view of the above, we focus hereinafter on proving that (4.9) is indeed true. From Remark 4.1.1.(v)
we have for every 7,j € N that £ (Yi|[07s]> =L (Yj|[073]), for every s € R,. Now, from (H7) and Tonelli’s
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theorem we have
Bl 3o ) W2 (90 ) €0 o) @204
—E[ / W2, (LY 0.0). £ 0.))V Q.
—/ [szd LYY Jio.9). (Y1|[o,s}))jlvilbg] 0.,

where in the last equality we used Remark 4.1.1.(v). Then, because Ws, ,(-,-) <1, from (H8) we have
1

that the Borel-measurable function v is ()—integrable and dominates the sequence

{E[WipJ%(LN(?NI[of]) (¥ |[01>11/§: H

NeN

So, it will be enough to show that for every s € (0,7] we have

<N 1 X .
M [szp ’ (LN (Y |[o,sl> L (Y1|[0,s1)> N;bsl =

Obviously we have

N 1 N ;
I/VipJf (LN (Y |[o,s]> L (y1|[0,8})> N;b < 7,

From dominated convergence theorem our goal is reduced to show that, for every s € [0, 7]

. N
J\P—{noo Wipyli <LN (Y |[075]> ,,C <Y1|[0,8}>> = O, P — a.e.

Recalling now the comments provided in Section 2.6, more precisely the fact that the Wasserstein distance
metrizes the weak convergence of measures on D%, we are eligible to translate the desired convergence into
weak convergence of the respective measures. Fix s € (0,77, from Lemma 2.6.2 -we follow the notation of

the aforementioned lemma-~ we only need to hold that

lim f]f(yl“o’s])(ﬂf) N (?Nho,s]) (dz) = /Dd ka(Yl\[o,s])<x) r (Yl|[o,s]) (dz), P — ae,

N—oo Jpd

for all £ € N, and for a suitable sequence {fﬁ(ylllo’sl)}keN C Cy(D?Y). Fix k € N, the above equality is
equivalently written as

s m L(Yy? s
llm — Z fk Y |[0 ] (Y |[078}) — ]E |:fk (Y ‘[O ]) <Y1|[075}):| ]P)_ a.e.,

which in fact it is the strong law of large numbers for the independent and identically distributed random
variables {f,f(y o) (Ym|[oys]) } ; recall Remark 4.1.1.(v). O

meN
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Theorem 4.1.4 (Propagation of chaos). Assume (H1)-(H9) and let i < N € N. For the solution
of the mean-field BSDE (3.9), den. by (Y, ZY, U, M"), and the solution of the i—th McKean—Vlasov
BSDE (3.3), den. by (Y*, Z', U, M%), we have

im || (Yi,N . Yi’ N _ Zi’ [N Ui’ MEN Mz) ||2

N—o0

. =0. (4.10)

BFLN A X

Proof. We work for N large enough such that ¢ < N. The arguments presented in Theorem 4.1.3 can be
followed almost verbatim in order to conclude. We provide the sketch of the proof for the convenience of
the reader.

We derive (4.5) and define ¢" as in Theorem 4.1.3. The upper bound of (4.8) worsens as follows

[/ sz (LN(YN“O o) L (?NHO,S]))dE(ﬁA")S]

d

l

1 Y N
SABNZ_IHYHL Ym||52(15*1 ..... N AXT RA)

1N )
SABNZ_1||(Y7 _Y7Z’ _Z7U7 _U’M7 M)H ﬁFl ,,,,, N7A1Xi'

Then, using the a priori estimates Lemma 2.9.1 for the system (4.5) in conjunction with the comments

above, one gets for the i—element of the solution of the system

” (Yi,N B Y@', ZiN _ Zi’ [N Ui, MEN _ Mz) ”

< (26 +98)||¢"N — &2, (FL i
B b b

A . o o S
—i—maX{Q BB}M B) (YN =Y, zN — 28 USN UL MY = M) 12
QAA ME(3 1 & i,N i 7N i 77i,N i afiN ANE:
5 MEB) 5 DN (VY2 - 2L U = UMY )
=1
1 <N , A
+2M‘I’ >E [/ WQM< (Y |[O,s]>,£(yl‘[0,s])) dS(ﬁAl)S].

In view of (H9) we get

iN i 7i,N i Tri,N i i N i\ 12
| (YN =Y, 20N = 2 U = U MY = M) P
_ (26+939)3

. LN
2M¢(ﬁ) *,<I>,B 1§ 5”]13(]_—1 ..... N pigd)

*,B,FL-N Al X

Con B[ W (1 () £ (1) 0 (4) ]

+A C q)ﬂ NZ“ (YZN Y’L Z”LN ZZ UZN Uz MlN MZ) ||
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for

2M2

*

(5)

C*‘I’B:: A
o 1—max{2, A}ME(B)

‘TI» Q>

iy
Q>\ —

But the right-hand side of the last inequality vanishes as N increases to oo. Indeed, the first term goes
to zero from (H2), the second term is the conclusion of Theorem 4.1.3 and for the third term we can follow

exactly the same arguments as in the proof of Theorem 4.1.3. [

The following are the usual convergence in law results for the solutions of the mean-field systems to the
solutions of the McKean—Vlasov BSDEs in the path-dependent case.

Corollary 4.1.5. Assume (H1)-(H9) and let i < N € N. For the solution of the mean-field BSDE
(3.9), den. by (YN, Z", UY, M), and the solution of the i—th McKean—Viasov BSDE (3.3), den. by
(Y", Z', U, M"), we have

(i) Mmoo supeemiWs) (L(YSN), L(Y]))} =0,
(i) Hmy_yoo supeor{W3, , (LY |0.), LY |ps))} =0,

(ZZZ) th—)oo Supse[O,T]{Wg,ind (‘C(YLN“O,S}a ceey YLN“O,S])a £(Y1|[0,s]7 ceey YZ|[O,S]))} = 0.
1

Proof. For every s € [0,T] by definition of the Wasserstein distance of order two we have that

W§,|.|(E(3@i’N),ﬁ(32i)) < /d ] |lx — Z|27T(dm,dz) —F [|Y;N _ YZ|2:|
RexR

<E

sup (V2 VY =V VR
ﬁ b

0<s<T

where we chose 7 to be the image measure on R2? produced by the measurable function (Y;"", ¥) : Q — R
The right side of the above inequality is independent of s, hence from (4.10) we finished the proof of the
first statement.

For the second, from (2.26), similarly we have

W2, (LY o) £ 00) < [, pygl,2)n(da, dz)

<E

sup, {1V - YJV}] = [V ¥

0<s<T Sg(Fl ,,,,, NyAYi;Rd).
Finally for the last we have

2 1,N i,N 1 i
Wy (LN 0y - YN [0.0), £ 0,05 -0 Y 0,9))

i
= Did xDed Paye (x7 2)27T(dx, dZ) = /Didxn)id m=1 sz}(l)%} |iUm - Zm|27T(dJJ, dZ)’
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where we chose 7 to be the image measure produced by the measurable function A :  — D¢ with
h = (YI’N’[O’S], ceey Yi’N|[07S}, Y1|[078}, ceny Yi|[078}).

By this we have

,,,,,

from which we get again from (4.10) the uniform convergence. [

Remark 4.1.6 (Rates of convergence). Let i € {1,...,N}. From the proofs of Theorem 4.1.3 and
Theorem 4.1.4 we can conclude that in order to get convergence rates from these methods one would have to

control the quantities
T —
[E [Wip# (2 (¥V10) £ (Vo) ) 2] a2

4.2 Propagation of chaos under the usual dependence

4.2.1 Main results

In the usual cases we are interested in the asymptotic behaviour of the mean-field system of BSDEs

—/ Zy dX;"’—/ s (z) i X(ds,dz) — [ dMPY, i=1,.. N.
t t R

S
t
In other words, when the dependence in the generator is from the moment on time s and not the whole

path up to that time. Naturally, we will need the corresponding “usual“ McKean—Vlasov BSDE

T — — _
Vit [ f (5.0 280, TEXO W), £(Y,)) dCEY)
t
T T b T (3'2)
—/ ZSdXO—/ / Usﬁ(G’X)(ds,dx)—/ dM..
t t JRd t

To proceed we first need to make some reformulation of the (H1)-(H9) assumptions. (H1)-(H3) remain
the same, as are (H5) and (H6). Next, we give the modification of the rest.

(H4') A generator f: R, x R x R>P x R? x Po(R?) — R? such that for any (y, z,u, ) € R x R>P x
R? x Py(R%), the map

t— f(t,y,2z,u,p) is B(R;) — measurable
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and satisfies the following Lipschitz condition

|f<t7y7 z, U, :u) - f(ta y/7 Z/,Ul7 :U’/)|2
< () ly =y 0°0) |2 = 2P+ 05 u— P 0 () Wy (i)

where (r,0°,9%,9%) : (Ry, B(R;)) — (R%,B(RL)).

(H7) The martingale X' has independent increments.

(H8') For the same 3 as in (H2) we have 3 M®(5) < 1.

Remark 4.2.1. (i)  The independence of the increments of the martingale X' s equivalent to its

(i)

associated triplet being deterministic, see [40, Corollary 7.87] or [29, Theorem II.4.15]. As a result,
recalling the notational simplification for which we argued in Remark 4.1.1.(ii) and which we will use
hereinafter, the process A' is deterministic. Indeed, this is immediate by the way we have constructed
C; see 2.9. In view of (H1), in particular the fact that we assumed the sequence {Yi}ieN to be
identically distributed, we have that A = A" for every i > 2, see Remark 3.2.5.

Under the set of assumptions (H1)-(H3), (H4'), (H5), (H6), (H7') and (H8') we can verify
that Theorem 3.2.4 guarantees the existence of a unique solution of the mean-field BSDE (3.1).
Additionally, Theorem 3.1.8 gquarantees the existence of a unique solution of the McKean—Viasov
BSDE (3.2). We will use the same notation as in the previous section for the respective solutions, i.e.,
for fized N € N, (YN, ZV, UV, M™) denotes the solution associated to the mean-field BSDE (3.1).
Also, for i € N, we will call the i—th McKean—Viasov BSDE (3.2) the one that corresponds to the
standard data (Yi,IFi, e,IT,¢&, f) under @ Additionally, we will call the first N McKean—Vlasov

BSDEs (3.2) those that correspond to the set of standard data {(7@, Fi.O,IT,¢&, f>}'e{1 N} under

B with associated solution (T’N, ?V,T]N, j\VJN)

We are ready to proceed with the proofs of the desired properties of propagation. The method described

in Section 4.1 in order to prove the backward propagation of chaos is transferred mutatis mutandis. To this

end, we will provide the sketch of the proof as we did for Theorem 4.1.4. Before that we introduce the

following notation. For

(Y,Z,U M) € Sé(G,a,C(G’Y);Rd) x H3(G, A, X°;RPP) x H3(G, 4, X:;R?) x H%(G,A,YLG;Rd)

we define (see (3.7))

(Y, 2,U M) |?

*,6,G,a,C(©X) X

= 1Y s commy * 120 0 x0msen) T 10N .00 + 1)

2
H2(G,A,X €;Rd)’

Theorem 4.2.2 (Propagation of chaos for the system). Assume (H1)-(H3), (H4'), (H5), (H6),
(H7') and (HS8'). For the solution of the mean-field BSDE (3.1), den by (Y™, ZN, UY, M), and the
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solutions of the first N McKean—Viasov BSDE (3.2), den. by (AYN, ZN,E'N, ]T/IN), we have

lim 72 || (YlN Yi7zi,N o Zi7 Ui,N . Ui,Mi’N Mz) ||2

N—oco N

=0, (4.11)
Proof. Let N € N. The analogous to (4.5) is now written as

. (Yz TEYX O, £(v)) dc (112

_/ ZlN ) . X'L’,o + (UZ,N . U’L) *ﬁ(Fl """ N xh) + M’L',N i MZ:| 7

for i € {1,..., N}. Let us, now, define ¢ := (¢!, ..., ¢"), where for i € {1,..., N} we define

Ui f (60N 2N T e ), LN<Y£V>)

The properties of the generator, and using the triangular inequality of the Wasserstein distance, provide for
every i € {1,..., N} that

||

«

<l (YN =Y |22 @4t ciimay
HE (FL--N, 41, CHRY) ’

+ "Zi’N — ZZHI%]IZ(]FI ,,,,, N Ai X1:0;RdxP)
9 Ui,N _ Uz 2 E u Ym,N —_ym 2
+ 2 ||Hg(F1 ﬁﬁﬁﬁﬁ N Ai xibRd) T N > ||a( ) ||H%(G,Am70m;Rd)
m=1
T ~ . —~N . .
1+ 9E [ | aze(pa, wz, (LN (Ys ) L (Y)) dC;] .
0 9

From the a priori estimates Lemma 2.9.1, Lemma A.2.6 and by adding the above relations with respect to
i€{l,..., N} we have

N
Z || (Yi,N B Yiy N _ Zij [N Ui’ MEN Mz) ||

=1

1

*,B,FL-N o Ci X

+ MG Z | (Y”V Y2~ 28 U 0 Y M) |

+ 20 () ZE V o2€ (BAT) W, (LN (?N> c(y)> dCﬁ] .
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So, from (H&') we get

N
]1[2 || (YZ,N . Yi, Zi,N . Zi7 Ui,N . Ui, Mi,N MZ) ||
i=1

*,B,F L a,Ct
(26+§+(9B+2) ) i
= AT®( A N B | P
B 1—3M¢’(5) ;”5 €H]LB(JFT JA#R)
2M(1> T 1 N 2 i 2 N —~N i ;
O g[S ate (3w (17 (7)) .2 () act].

Let us now observe that we need to prove that the right-hand side of the above inequality vanishes as
N increases to co. The result for the first summand follows from Assumption (H2) The rest of the proof is
devoted to arguing about the validity of the desired claim. Essentially, we will use again the dominated
convergence theorem in conjunction with the strong law of large numbers.

Using Remark 4.1.1.(v), we have for every 7,5 € N that £(Y}) = £(Y7). Thus by Remark 4.2.1.(i) and

Tonelli’s theorem we have
o[ S () (1 (7)) ]
e[ (1 (8) £ () a (5
-5 e (0 () ()] e (),

We use once again the the triangle inequality for the Wasserstein distance as well as (2.25) and we have

i (0 () 7)) 203, (1 () ) 202, (£ 0)

X
< 25 S VIP+ 2E (Y. (4.13)

m=1

Moreover, from Remark 4.1.1.(v), for every s € [0, 7] we have

N
B |2y 3 I+ 2 (7] - e

m=1

Furthermore, again from Tonelli’'s theorem we have

TR de(par), = Bllay:

i (G,AX' ,0X' Rd)’

Hence, the Borel-measurable function |0, 7] > t — 4E [|V,}|?] is £ (BAl)—integrable and dominates the
sequence {]E {ng <LN (?f),ﬁ(Y;))} 11}07T](s)} . In order to apply the dominated convergence, we
’ NeN
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also need to show that

lim E [W;(LN(Y ). L(Yl)ﬂ —0, forall se(0,T).

N—oo

To this end, we fix s € (0,7]. Our new claim is that the sequence
{1/1/22.| <LN (?iv) L (Y;l)>} is uniformly integrable. In view of (4.13), for the above claim to hold it
’ NeN

would suffice the sequence {% SN ]Y;,’”P}NeN to be uniformly integrable. So, to make the presentation
easier, let us define the sequence of random variables {Sx} oy, Where Sy := Y _ |[Y™|2. Also, we define
the sequence of o—algebras {Gy } yen, where Gy := o (Sy, Sn41...). Arguing analogous to Remark 4.1.1.(v),

the random variables {\YSN ]2} are integrable, independent and identically distributed. From the

NeN
symmetry under permutation for the family {|Y;N ‘2}N€N we can easily show that for every N € N

G|

]E I:D/;l 2

gN} - []YSNF

By adding the terms of the above equalities, we get

1
—Sy =E|[Y1]?
NN ['8

|

N) L (Y;))} is uniformly integrable. This fact makes it
NeN

s

Hence, indeed the sequence {W22 ¥ <LN (?
enough to show that

lim W2, (LN (?N> L (Y1)> —0, for P—ae.
N—00 ’

We apply Villani [49, Definition 6.8 (7)], with o = 0, Lemma 2.6.2 and Remark 4.1.1.(v) to get from the

strong law of large numbers exactly what we want as at the end of the proof of Theorem 4.1.3. [

Theorem 4.2.3 (Propagation of chaos). Assume (H1)-(H3), (H4'), (H5), (H6), (H7") and (H8')
and let i < N € N. For the solution of the mean-field BSDE (3.1), den by (Y™, Z", UY, M), and the
solution of the i—th McKean—Vlasov BSDE (3.2), den. by (Y, Z',U*, M*), we have we have

Jim (YN =YL 2N = 2 U UMY = M) P e = O (4.14)
Proof. We will give details only for the changes in the parts of Theorem 4.1.4 that might not be clear. So,

from (2.25) we have arrived to the inequality

1 2

S |ymy _ym

m:l

a2€(BAT) Wi, (LV(YY), LV (X))) < a2e(BAT) ~

S—
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Hence, by (H7'), in particular Remark 4.2.1.(i), we get
e [ aze(o) (17 (v2). 1 (¥ M
gE[/OTaif,’(@Ai)s;]m -y ;]
_E VOTaif:(BAm) ]IV 3 Ysm’N—YS gles ]

N
< ]1] STy — v zmN g g g Y - M |2
m=1

Then, as in the proof of Theorem 4.1.4 we end up in the inequality

+ ZMCI’(B) H (YzN Yz ZzN Zi, Ui,N _ Ui,MZ’N Mz) H

Yi

*B]Fl ,,,,, N o.C
AT A 1 al m, m m m m m m m
+2M* (35 > | (YN —ym zmN — zm umN = m M = MY 2 g om
m=1

s T el 2 N (N i i
+2M*(3) E Vo oZe (BAT) W, (L <YS > L (y)> d(JS] .
So, from (H8") we get
|| (Yi,N _ Yi’ N _ Zi’ [N Ui’ MEN Mz) ||

(26 +24(95+ 2)<1>>

*,B,FL N o C8 X"

N )2
< 1_ 2]%@(3) Hg § HL%(]—‘% """ N ALRE)
2M m m m m m m m m
T@B ZH(Y Moy g = g N = U MY = M) I o
P T . P . .
+ M E / o2 (pAY) Wi (2N (Y)).c(Yi)) aci] .
L—2M2(3) o ° _— s : ‘

From (H7’) and Tonelli’s theorem our goal becomes to show that

Wi (£ (¥2).£(7))] ae (5a7) =0,

since the first term of the right-hand side goes to zero from (H2) and the second vanishes as N tends to

T
lim E

N—o00 J0

oo by Theorem 4.2.2. The desired convergence can be derived by following the exact same arguments as at
the end of the poof of Theorem 4.2.2. O

It is interesting to note that with our method the next result is a corollary of Theorem 4.2.2 while for

example in [38] is a requirement in order to prove Theorem 4.2.3.
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Corollary 4.2.4. For the solution of the mean-field BSDE (3.1), den by
(YN, ZN, UY, MY, we have for every t € [0,T] that

lim sup {E W3, (LY (YY), £07h)]} =0 (4.15)

N—=00 4e0,1]

Proof. We remind that we denote by (?N, ZN, GN, I\N/IN) the solutions of the first N McKean—Vlasov BSDE
(3.2). From the triangle inequality of the Wasserstein distance and (2.25) we have

—~N
WE (LY (), £07)) <202, (28 (v), 27 (7))
2 N (N 1
2w, (L (Ys ) LY, ))
1 I m,N m2 2 N (N 1
<2 S Y YR 2 W, (L (Yt>,£(Yt)>.
m=1
Hence, from Theorem 4.2.2, for the first summand of the right hand side of the above inequality, and from

the arguments presented in the proofs of Section 5.3.2, for the second summand, we are done. O

Now we give a version of the strong law of large numbers with respect to the .2 convergence for the
solutions of the mean-field systems. Note however that for every N € N and ¢ € [0, T] the random variables

1,N N,N : .
Y, 7, .., Y; " are neither independent nor exchangeable.

Corollary 4.2.5. For every t € [0,T] we have

1 Y N 1
NZY# — E[Y]
=1

} = 0. (4.16)

lim sup (E

N—=004ei0,1)
Proof. From the triangle inequality for the Euclidean norm we get
1N
<o

=1

i i\f: Yi,N . 1
Nm:l '

RS

We are going to use the inequality

N 2 N
( Z ai) <N Z a?,
i=1 i=1

for every set of real numbers {ay,...,ay}. So, we have

2

> (V- E})

i=1

ZY;ZN ]E

m=1

N2

< 23
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Hence, if we take expectations on the above inequality and use Remark 4.1.1(v) for the second term of its

right-hand side we get

E||L sy EY12<2ENY”V vill « 2e[S [y gy
PIRL YA | <% z\ ~Y| |+ 53 ;\t— ;]|
ZZEﬁMWN—W1+2Ewﬂ—mWW}
N &= t t N t t
2 N i, N i2 2 12
<y e vl g ()
From Theorem 4.2.2 we can conclude. OJ

4.2.2 Rates of convergence

Assume (H1)-(H3), (H4'), (H5), (H6), (H7'), (H8') and furthermore that exists a function R : N — R
with limy o R(N) = 0 such that

< R(N).

LN fi)2 _
SlupN} {||§ g ||]L?§(]:'11" ,,,,, N’A(]Fi,Xq’,f);Rd)} —

Let i € {1,..., N}. From the proofs of Theorem 4.2.2 and Theorem 4.2.3 we can see that for the solution
of the mean-field BSDE (3.1), den by (Y™, Z", UY MY"), and the solutions of the first N McKean-Vlasov
BSDE (3.2), den. by (?N, ZN,GN, l\N/IN), we have the following inequalities

1 N

N Z (Ym,N . Y*m7 Zm,N . Zm’ Um,N o U'm7 Mm,N Mm) H

(26 +2+ 98+ 2)@)
1—3M2(3)

w2, (LN (?f ) o (Yl)ﬂ de (BAY). (4.17)

< R(N)

2M®(B) 1 /TE
1—3M*(3) BJo

and

|| (Yi,N . Yi7 Zi,N B Zi7 Ui,N . Uz" Mz’,N Mz) ||2
(26 2495+ 2)@) (2 = 507%(3))
< — ———
(1 —=2M*(5))(1 —3M*(3))

+ (1 ig;f()@)) (11__3%2(%))) E/OTE W22,\.| (LN <?iv) L (Y;l))] d&é (5’141)5. (4.18)

So, in order to apply [20, Theorem 1] and get convergence rates we need to know the finiteness of the

*,B,FL N o 08 X

R(N)

following quantity.
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Definition 4.2.6. For every real number q > 2 and deterministic T € Ry U {oo}, we define
Agr _f/ (1721 " s (54" .

Remark 4.2.7. From Remark 4.1.1.(v) for all s € [0,T] we have E[|Y}|4] = E[|Y?|Y], for all i,5 € N.
= L B[V dE (BAY).

Furthermore, obviously HOzY1HH2 (©.AL,0%" Ra)

S Aq,T-

Theorem 4.2.8. If Ay v < oo for some q > 2 and deterministic T', then exists constant Cqq42 > 0 depending
on d,q,2 such that

N
]172 (Yl,N o Yi, Zi,N o Z’i’ Ui,N o Ui,Mi’N M’L) H

(26+ + (95 +2)® > (A
1— 3M2(D) R<N)+1i]\§ﬂ7<f()3) o Cda
N_5+N_T Jif d<4 and g # 4
X N—%log(l—l—N)jLN_% Jif d=4 and q # 4
N-3 N % if d > 4.

Proof. 1t is immediate from (4.17) and [20, Theorem 1]. Note that in the present setting

E [ sup {\Y;|2} < 00.

s€[0,7T

Identically, from (4.18) we also have the following.

Theorem 4.2.9. If Ay v < oo for some q > 2 and deterministic T', then exists constant Cqq42 > 0 depending
on d,q,2 such that

|| (Yi,N . Yz" N _ Zi’ N Ui’ MEN Mz) ||
(26 +24(98+ 2)@) (2 — 51%(B))
< — ———
(1 —2M*(53))(1 = 3M*(3))
2M*(B) L — M*(3)
" (1 - 2]\7¢(3)> (1 - 3]\7‘1’(3)) A Caaz

q—2

N2+ N @ Jif d <4 and q # 4
x{ N5log(1+ N)+ N™T  ifd=4 and q # 4
N34+ N T Jif d> 4.

R(N)
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The next result provides sufficient conditions for controlling the quantity of interest in (4.17) and (4.18),
and thus to derive convrgence rates for the propagation of chaos results. These conditions are immediate
to check, in contrast to the boundedness assumption of A, 7. See also Remark 4.2.11 for further discussion

in that direction.

Corollary 4.2.10. If sup,cjor {E[|Y;'|*} < oo for some ¢ > 2 and deterministic T < oo, then exists
constant Cy o > 0 depending on d, q,2 such that for every t € [0,T]

E W2, (L (YY), covh)]

(26 + 2+ (95 + 2)@)

R(N) + (W Ayr+2(E [|Ytl]‘1D3> Clios

1—3M®(j) 1—3M2(3)
N’%+N7$ Jif d <4 and q # 4

X N—%log(l—i—N)—i—N_% Jif d=4 and q # 4
N-F 4+ N Jif d > 4.

Proof. By definition, sup,co 7 {E [|Y;']]} < 00 and T' < oo implies A, < oc.

From the triangle inequality of the Wasserstein distance and (2.25) we have

2 N (N 1 2 N (vN) 7N (N
WE (LY (YY), eh) <2y (27 (vY). 28 (7))

<N
+2 W3, (LN (Yt ) L (Ytl))
| AT m|? 2 N (N 1
<2, S el o (2 (7). £02)
Hence, from Theorem 4.2.8 and [20, Theorem 1] we are done. O

Remark 4.2.11. For q > 2 and deterministic T' < oo we have from Jensen’s inequality that (note that
from (H7') C* is deterministic)
2 3
de) FH .

Hence, it seems we can satisfy the requirement Ay < oo by an appropriate bounded condition on f and

V7 < (4 C}+4)%E

T 1%l o1
e ([ | (s zics X o, e

advanced integrability for £*.






Chapter 5
Stability of backward propagation of chaos

Backward propagation of chaos states that, under appropriate conditions, the solution of a mean-field
system of backward stochastic differential equations (BSDEs) with N players (or particles) converges to the
solutions of N independent and identically distributed McKean—Vlasov BSDEs, as N goes to infinity. Of
course, every such phenomenon is associated with a set of data D that provides the basis of its mathematical
description. In the theory of BSDEs the question of, if we assume that a sequence of data {D*} ey converges
to the data D then should the corresponding solutions converge, is called the stability problem for BSDEs.
Naturally, the framework to tackle this kind of questions should determine a lot of technical details. For
example, in what sense the data converge, how we measure the distance of the solutions and so on. Some
notable works, among others, which provide such frameworks are Hu and Peng [24] in the special case of
constant filtration, Briand et al. [6, 7] for Brownian drivers and more recently Papapantoleon et al. [44]
where a very general framework is established.

At this chapter we will adopt the framework of [44] and enrich it as before to study the stability of the
backward propagation of chaos. Let us be precise in what we mean by that. To start, set N := NU {co},

then assume a sequence of standard data

{Dk - ({Xk’i}ieN,T’“, {{fk’i7N}ie{1 ..... N}}NEN A" Yiew, O, T, fk>} ;

keN
as defined in Chapter 4. For every (k, N) € N x N we have the following mean-field system of BSDEs

ki

, . Tk . . ,
YN _ ghaN +/ £ <S7}/;k7z,N7 Zj,z,Nclz?F(]Fk,(l ,,,,, N X 7®k)(Uk,z,N)S7LN(YISc,N)> dc*
t

t

Tk Tk k(L N) xksih Tk
ki, N k,i,o ki, N ~(Fk>(L-s Xkt ki, N
— /t ZEAN qxkie /t / LU () it )(ds,dz) — dMEeN,
Z’ —

=1,..,N,
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with unique solution SH : (Yk N ZkN UkN MF N) where Y&V (Y’f LY RN Y’“’NW) and
so on. Furthermore, for (k:, i) € N x N we also have the following McKeaanlasov BSDE

Tk .
kz 5'”—1—/ Iz (5 Ykz Zkzck F]F’“X ' OF) (Ukz> £(Ysk’l)) dCf
Tk

) ) Tk ) i vk )
_ / Zf,l dx ke _ / / Uf’l ﬁ(Fk Xk ,h)(ds’ d{L’) . de’Z,
t t n

t

where L£(YF?) := Law(Y*"). From Theorem 4.2.3 we know that for every (k,i) € N x N we have

ki, N ki ki N ki 7rkg,N ki g rki,N ki Il
H(Y Y™, Z —-Z7U -U™ M - M )H*B]Fk(l ..... N) ok Ok X N oo 0.

Our goal is to show that, for every ¢ € N we have

ki N r7ki N ki,o ki, N | ~Xkih k,i,N
(YREN ZRIN L ke RN X RN

—————— (Yoor, zoot . X0 4 U YT )
(k,N )= (00,00)

under some appropriate metric, which from now we will call the stability or robustness property of backward
propagation of chaos. To the best of our knowledge this will be the first result of this kind.

In order to accommodate the reader, we provide Table 5.1 which provides a roadmap for our approach.
Using this scheme we will describe the implications of the setting inherited from Chapter 4, i.e., the set of
Assumptions (J1)-(J8) presented in Section 5.1, as well as the forthcoming results we are intended to prove.
The validity, for every k € N, of the backward propagation of chaos is denoted by a solid, horizontal right
arrow in Table 5.1. The set of Assumptions (S1)-(S10), which is presented in Section 5.1 and amounts
to the convergence of the sequence of standard data, is denoted by the solid, vertical down arrow in the
first column of the table. Now, we claim that the framework we have already set allows for the validity,
on the one hand, of the stability of McKean—Vlasov BSDEs and, on the other hand, of the uniform (over
k € N) backward propagation of chaos. The former is denoted by the dashed, vertical down arrow in the
last column of the table. The latter was chosen not to be depicted in Table 5.1 in order to keep the scheme
as simple as possible. The conjunction of the two aforementioned properties yields the convergence of
the doubly indexed sequence {Sk’i’N}(kyN)eNxN to 8, for every i € N; this convergence is denoted by the
wiggly, diagonal arrow.

In order to prove the stability of backward propagation of chaos first we show in Section 5.3.2 that,
based on results from Chapter 4, the propagation of chaos property is achieved uniformly with respect
to the date D*. Next, by extending the stability results of [44] for the McKean—Vlasov BSDE we can
immediately deduce what we want. At this point it is important to note that the stability of the mean-field

systems of BSDEs was neither needed nor is implied from the stability of the propagation of chaos.
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nDl 81,@,1 Sl,z,z+1 81,1,1—}-2 . Sl,z,N ; Sl,z
@2 82,2,1 S2,'L,2+1 82,1,z+2 . 82,1,N ; 82,@
D3 | i giitl  g3idit2 .. g3iN N—o0 83
k ki kyii+1 kyii+2 ki, N N—oo ki
D ) S S S — 3
|
| N
+
0o 00,4, 00,i,i41 00,i,i+2 00,i,N N—o0 00,i
D ) S S S — 8

Table 5.1 The doubly-indexed scheme for (backward) propagation of chaos.

5.1 Setting

Let us fix for the remainder of the article a probability space (€2, G,P) and a sequence of standard data

NeN

Dk .= ({Xk’i}ieNaTka {{fk’LN}z‘e{l,‘..,N}} A Y iew, OF, T, fk> ; (5.1)

for all k¥ € N, under a universal B > (0. We remind them for the convenience of the reader. So, for every
k € N:

(J1) The sequence {Yk’i}ie;\r are independent and identically distributed processes such that, for every
i€ N, XU = (Xhie Xhif) ¢ H2(FR;RP) x H24(FF: R") with M xwis [AXEH|PFY] = 0, where
Fki .= (F")i=0 is the usual augmentation of the natural filtration of X and X" is the random

measure generated by the jumps of X*%81

(J2) A deterministic time 7% and a sequence of identically distributed terminal conditions {£%};cx

and a sequence of sets of terminal conditions {{ﬁk’i’N }ie{l""’N}}NeN such that under B it holds

. . - i kit i <k . .
ghi RN ¢ L%(}—;ﬁ, AEELXTL. R%), L%(f;i}c(l’""m, AELX ’fk);]Rd)z respectively, for every 7 € N,
i Xkt .
where {AF" XM the ones defined in (J5). Also, we have
k,i,N kyi||2 |
Hé _5 "L%(}.k,]j1 ,,,,, N) A(Fk,iyyk,iyfk).Rd) —>N%oo 0
B T b b

for every ¢ € N, and
1

=

N . . |
Z Hgk,z,N o ék,z”2 O.
i=1

'*k,.
L0 AR T 1) T

(J3) Functions ©F T'*¢ 2 pERIXTNON for every i € N as in Definition 2.5.1, with ©F deterministic.

. . . P . -k, . i xRt i ekt
ISince for every i € N the filtration F*? is associated to X Z, we will make use of CF""X ), resp. cFHX ), as defined

in (2.9), resp. (2.11). Moreover, we will use the kernels KX as determined by (2.10).
2see Remark 4.1.1 (4)
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(J4) A generator f¥: R, x RY x R™>P x RY x Py(R?) — R? such that for any (y, 2, u, ) € R x R>P x
R? x P,(R?), the map
t—s f5(t,y,z,u, p) is B(R,) — measurable
and satisfies the following Lipschitz condition
|y, 2w, ) — Ry 2l )P
< R Jy =y 0P() [z — 2P O Ju— P 0 () W ()
where (r* 9%° 985 9F) (R, B(R,)) — (Ri,B (Ri)) .
(J5) Define (af)? := max{\/r_k, ke ks \/Yk*1 For the F*ipredictable and cadlag processes
i ki t i ki
P [ -
i ok i ki
there exists ® > 0 such that AAT ¥ ’fk)(w) < ok, P O X ae, for every i € N.
(J6) We have
T A (Fki X0 sk |fk(8 0,0,0 50)|2 Fhi X7
E / 5(614( XS )) ’(’k;Z’ dCF X < 0o, for everyi € N, (5.3)
0 s— ak)?
where dy is the Dirac measure on the domain of the last argument concentrated at 0, the neutral
element of the addition.
(J7) The martingale X" has independent increments.
(J8) We have 3 M*"(f) < 1.
Remark 5.1.1. (i)  Above, we denoted with F*(N) the filtration FFL-N) .= N F&i From [52,

(i)

Theorem 1] we have that F*(N) satisfies the usual conditions. Fori € {1,...,N} and N €N, a
direct consequence of the independence of filtrations is that every F*'—martingale, remains martingale
under F¥(-N) i e the filtration F*' is immersed in the filtration F%*(N) - In particular, X* e
HEA(FRLN) R - see Corollary A.2.7. Additionally, from the assumption M xris [AX R PEM) =
one can deduce that it is also true M xcni [AX'“’Z"OWB]FR’(1 """ N>] = 0; one can follow the exact same

arguments as in Lemma A.2.9.

The independence of the increments of the martingale X" s equivalent to its associated triplet being
deterministic, see [40, Corollary 7.87] or [29, Theorem II.4.15]. As a result, recalling the notational
simplification for which we argued in Remark 4.1.1.(ii) and which we will use hereinafter, the process
ARt is deterministic. Indeed, this is immediate by the way we have constructed C*%; see 2.9. In view
of (J1), in particular the fact that we assumed the sequence {Yk’i}ieN to be identically distributed, we
have that AP = AR for every i > 2, see Remark 3.2.5. So, moving forward we drop the dependence

from i in the notation of C* AR ie. we will instead use C*, A*.
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(iii) We clarify that the stochastic processes associated to the data D will be assumed that are stopped at
time T*.

We proceed with a few remarks about the notation involving filtrations, which will help in further
simplifying the notation. In the following we assume that a set of standard data is fixed with associated
index k, for k € N. Let us start with a subtle point, namely the distinction between the use of the filtration
associated to the i—th player and of that associated to the set of the first N players; recall (J1) and
Remark 5.1.1 for the respective notation. Given the set of standard data and because of the immersion of
the aforementioned smaller filtration into the larger one, see Remark 5.1.1.(i), there is no harm in placing
ourselves under the framework of any of the two when there are no measurability conflicts, e.g., see Remark
2.2.1 and Section A.2.2. If, however, there are sound reasons for a clarification, then this will be promptly
provided. Therefore, we will omit the symbol of a filtration, e.g., the predictable quadratic covariation
will be simply denoted by (-), since the respective measurability will be easily concluded by the argument
process. Having this simplification in mind, we will denote the predictable o—algebra associated to the
filtration F* simply by P*¢, instead of PF", and analogous simplification will be used for P*¢. Moreover,
we simplify the notation associated to (integer-valued, random) measures. The integer-valued measure
ux " will be denoted by p*%, its compensator will be denoted by v®% and the compensated integer-valued
measure will be denoted by fi**.

Finally, we conclude the discussion about the notational simplifications with the comments related
to the spaces introduced in Section 2.4. Given the set of standard data D*, for £ € N, a label i of a
player and the total number of players N, the main symbol of a space will be kept and the superscripts
will be modified as follows: the indices k,7, N (if all necessary) will be affixed, succeeding the number 2
and preceding any of the symbols o, f, L, if they are required; the dimensions of the state spaces will be
omitted only when no confusion arises. For example, #3(F**, Al Xk R?) will be simply denoted by
Hé’k’i’l(Rd). The rule for the norms makes the indices k,7, N perform as subscripts which succeed the
symbols x (if any) and 3 and precede the value ¢, e.g., || - [« gk I, In the case that the considered
filtration is F*(1+N) "instead of the index which denotes the label of the player it will be used (1,...,N),
e.g., HE(FH(L-N) | Ak X0 Re) will be simply denoted by #5HN)+(R4),

Now, following [44], we are going to complement the above assumptions with the ones needed for the
convergence of the data {D*},cy and the convergence of the Lebesgue-Stieltjes integrals associated to the
generators of the BSDEs.

(S1) For every i € N, the martingale X°*° is continuous and the martingale X % is quasi-left-continuous.
(S2) For every ¢ € N, we have

ki (JIRPT™)P) <00, ki L2(Q,GPRPT)  —o0
Xt TR el gnd X0 GGERTT) e,

k—o0 k—oo

(S3) For every i € N, the pair x> possesses the > —predictable representation property.
(S4) For every i € N,

2 |

L2(Q,G,P;RY)  (k,N)—(00,00) 0-

Hgk,z’,N . gk,i
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Moreover,

N . 12 K
Z Hgk,z,N o gk,z 0.
=1

L2(Q,6,P;RY)  (k,N)—(00,00)

1
N
(S5) For every i € N, we have

L2 (Q,G.P,RY)
5

fk,i é:oo,i

k—o00

(S6) For every i € N, the sequence of random variables

/°° If’“(s,o,o,o,ao)!?dcf ,
0 (ak)? _
keN

is uniformly integrable, where ¢y is the Dirac measure on the domain of the last argument concentrated

at 0, the neutral element of the addition.

(S7) There exists A € Ry such that, the sequence of random variables {A% },  is bounded from A (see
Remark 5.1.1 (i)).

(S8) The generators { f*}, 5 posses additionally the following properties:

(i) Forevery k € N,i € Nya € D(RY|-|),Z € D> U € D, pu € D(Po(RY), Wy )3, it holds that

i ki
(4t 27T W) )) DR

teR4

(ii) Foreveryi € N, Z € D>¥P U € D% and a sequence of R?—valued stochastic processes {a*} kN
— . J1(RY,|-
such that E [supteR+ {]afPH < oo for every k € N, if a¥ D@D, a®, P — a.e., then
k—oo

i <k
(Ftab, 2, 1O @), £(ah)))
tER+
Jl(RdVH
—

b (£2(taE, 2o T T OO L)) Pae
t€R+

k—o0

Furthermore, if sup, {l|ak(w)||°°}keN < 00, P —a.e., then

sup{ | (0t 2,05 N0 00
+

keN

} < o0, P—a.e.
oo/ keN

(S9) (i)  The sequence {®*},  satisfies O* % O := 0.
—00

. 2,/249,/2417+4 435
(i) MO(f) = LG <

N

3We denote with D(P2(R?), Wy, |.|) the Skorokhod space of cadlag functions with values in (P2(RY), Wy, .)).
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(S10) The stopping time T is finite and T* kL> T=.
— 00

A couple of remarks regarding the set of Assumptions (S1)-(S10) are in order. In view of (J1), the
following are true for every i € N. In (S1) we have assumed that the process X i quasi-left-continuous.
Hence, the filtration F> is also quasi-left-continuous, as the one generated by X . Actually, X" having
independent increments renders equivalent the property of being quasi-left-continuous and the property of
having no fixed time discontinuity, see Wang [50, Section 1]. Next, the alerted reader may observe that we
do not (explicitly) mention any assumptions for the weak convergence of the filtrations {F**}, , i.e., we
do not mention the analogous to [44, Assumption (S4)]. This apparent omission can be justified because
combining (J1) and (S2) yields that

R Ty oot (5.4)
k—o0
see [14, Proposition 2].

Having justified the validity of (5.4) for every i € N, we may proceed to another apparent omission,
namely the lack of assumptions on the convergence of the sequences {C*}, 5 and {CL}, 5 , i.e., we do
not mention the analogous to [44, Assumption (S9)]. Recalling the note before Remark 2.2.1, the function
C* is defined as the trace of (X '), for every k € N. The combination of (S2) and (5.4) yields, via [41,

Corollary 12|, the convergence

<7k,l> J1 (Rp+n) <700,i>’
k—o0
which in particular implies,
K ki ] J1(RP) 00T vo0
Ch = Tr[(X™)] . Te[(X™)] = ¢,

The continuity of C'°, because of the quasi-left-continuity of X for every ¢ € N, allows the above

convergence to hold under the locally uniform convergence. In view of (S10), we have
C’oo_C’T’“m T‘X’_Coo?

because the limit time horizon T°° is finite.
At this point we present an equivalent form of Assumption (S4). More precisely, in view of (J2), (S4)
is equivalent with
sup { | = €22 g pny } <2 0
keN L2OQGERY [ N oo

and

2 Il
. — 0.
L2(Q.G,PiRY) } N—oo

1Y ki N ok
sup {43 -
=1

keN

Finally, we turn our attention to Assumption (S9).(ii); we remark that the left-hand side of the
inequality corresponds to the summand of M ‘P(B) which is independent of ®, i.e., it coincides with MD (B)
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Combining the two parts of Assumption (S9), we get that finally for all £ € N it holds
M™(5) <

In other words, (S9) strengthens (J8).

5.2 Stability properties

In this section we will present the main result of the current work, namely the stability of backward
propagation of chaos. We have already described in the introduction the approach we intend to follow,
which seemingly passes through the stability of McKean—Vlasov BSDEs. At this point, it is noteworthy to
underline that under the specific framework the stability of mean-field BSDEs cannot be derived for any
N € N and for this reason there is no down arrow appearing between 8§V and 8> in the second but
last row of the Table 5.1. The lack of the stability property in the aforementioned case is mainly because
we have not imposed any condition on the convergence of the respective terminal conditions. Once such a

condition is imposed, i.e., for N € N

ghiN L*(Q,6,P,RY) oo
k—>00
accompanied with the suitable extension of the continuity property of the generators, then the stability of
mean-field BSDEs for N players can be obtained. These conditions appear later as (S5') and (S8').
The complementation of (J1)-(J8) with the set of Assumptions (S1)-(S10) leads, in particular, to the
desired stability property of McKean—Vlasov BSDEs associated to the i—player. The next theorem serves

as the precise statement of the above.

Theorem 5.2.1 (Stability of McKean—Vlasov BSDEs). Given the sequence of data {D*}, 5 as
described in (5.1), which satisfy (J1)-(J8) for every k € N, and assuming that (S1)-(S10) are in force,

then the following are true for every i € N:

(Yk,17 Zk,z . Xk,z,o + Uk,z *ﬁk,z,u7 Mk,z) (J1,L%) (Yoo,z7 VAL Gl + oot *ﬁoom, 0)7 (56)

k—o00

([Yk,i]y [Zk:,z . Xk,i,o + Uk,i *ﬂk,i,h]’ []\414:,1’]7 D/k,i7 Xk;,ip]’ [Yk,i’ Xk,i,bL [Yk’i, Mk:,z])

' A A , , , o _ (5.7)
(il,L ) <[Yoo,7,]’ [Zoo,z . X 00580 + [ & Iaoo,z,h]’ 0’ [Yoo,z’ Xoo,z,o]’ [Yoo,z’ XOO717h]’ 0>
— 00
and
(<}//€,i>7 <Zk,i . Xk,i,o + Uk,i *ﬁk,i,h>7 <M’€,i>7 <Yk,i,Xk,i,o>7 <Yk’i, Xk,i,b>’ <}/k,i7 Mk,i>>
(J1,LY) . . . S . . . . (58)
k;oo (<Yoo,z>’ <Zoo,z B Gl + [0t *,Moo,z,h>7 O, <YOO717XOO’Z’O>, <Yoo,z7Xoo,z,h>7 0))

where in (5.6) the state space is RY3, while in the other two the state space is Rx(d+ptn)
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Proof. For notational simplicity we will treat the case i = 1. We will follow the same strategy as in [44],
which is described schematically in Table 5.2. In other words, we will apply the Moore-Osgood theorem on

the doubly-indexed sequence {Sk’l’(q)}(k JENXN of the Picard approximation scheme, where 8@ denotes
’q

the representation obtained at the g—th step of the Picard iteration under the data D*.

DL | gLLO)  gLLM)  gLLE@) ... gLl 47, gll
D2 | g2L0)  g2L,(1)  g2L(2) ... g2lLle 12, g21
D3 | g3L0) 3L g3L(2) ... gLl 47, g3l
Dk | kL) gkL() gkLE2) ... gkl 97X, gkl
|| ; ; : $
oo | §oo,L,(0)  goo,(1)  goo,L(2) ... gool(a) 97, goo,l

Table 5.2 The doubly-indexed Picard scheme for McKean—Vlasov BSDEs.

From Proposition 5.3.1 we get the uniform (over k& € N) horizontal convergence; in Table 5.2 this
corresponds to the horizontal, right arrows denoting the convergence of the Picard schemes. In order for the
Moore-Osgood theorem to be applied, it is sufficient to prove that the convergence indicated by the dashed,
vertical down arrows are indeed true for every ¢ € N. To avoid the redundant repeating of arguments and
results presented in [44] we will give the modifications only at the needed points, which are presented in
Lemma 5.3.2. [

It follows the main theorem of this chapter.

Theorem 5.2.2 (Stability for backward propagation of chaos). Given the sequence of data {D*},
as described in (5.1), which satisfy (J1)-(J8) for every k € N, and assuming that (S1)-(S10) are in force,

then the following are true for every i € N:

(Yk,z,N7 Zk,z,N . Xk,z,o + Uk,z,N *ﬁk,z,u7 Mk,z,N)

, 4 4 . , , 5.9
(Jl,H—‘ ) (Yoo,z Zoo,z . Xoo,z,o + UOOJ * ﬁoovl7h 0) ( )
(k,N)—(00,00) ’ 7
([Yk,z‘,NL [Zk,z',N . Xk,i,o + Uk,i,N *ﬁk»i,ﬂ]’ []wk,i,N]7
[Yk’i’N7Xk’i’o], [Yk’i’N,Xk’i’u], D/k,i,N7 Mk,z’,N]> (510)

(le]l‘l)

Yoo,i 7 Zoo,i X Xoo,i,o + Uoo,i * ~00,1,4 707 Yoo,i7Xoo,i,o : Yoo,i’Xoo,l,h ,O)
S [y 4,0, N |
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and

((Yk7i7N>, <Zk,i,N . Xk,i,o + Uk,i,N *ﬁk’i’h>7 <Mk’i’N>,

<Yk‘,i7N’ Xk7i70>7 <Yk'7i7N’ X’ﬁﬁh)) <Yk:,i,N7 Mk7i7N>> (511)
(l;h,lL ) ((Yoo’l% <ZOO’Z N Gty *ﬂoo’l’h>, 0’ <YOO’Z,XOO’Z’O>7 <Yoo,z’ Xoomh)’ 0)7
—00

where in (5.9) the state space is R>3, while in the other two the state space is RAx(dd+p+n)

Proof. For notational simplicity let us consider the case i = 1. The main argument will be (again) an
application of the Moore-Osgood theorem for a doubly-indexed sequence, namely {8%1 e, Nyenxn; see [22,
Chapter VI, Sections 336-338]. As it was described at an earlier point, we first need to prove the uniform
(over k) backward propagation of chaos, which is provided by Theorem 5.3.7. The existence of the iterated

limit

lim lim 8FLN = goo!
k—o00 N—oco

is guaranteed by Theorem 4.2.3 and Theorem 5.2.1. Then with the help of Corollary 5.3.8 we can conclude

with the same arguments as the ones in [44, Sections 3.3.2, 3.3.3]. O

Corollary 5.2.3. For every (k,i,N) € N x N x N let us define

griN . Law((yk,i,N’ ZRON L X0 | RN it Mkuv))
and

000,@' — Law<(Y°°’i, Zoo,i . Xoo,i,o + Uoo,i * Iaoo,i,h7 O))
Then, for every 1 € N we have
2 ki, N poo,i Il
"N 07" ) ———— 0. 12
WQvf’foif’( ’ ) (k,N) = (00,00) 0 (5.12)
Proof. For notational simplicity, we define for (k,i, N) € N x N x N
QRN = (YRON ZhiN | xhkio | rrkiN K ik MEN)
and
Qk,i = (Y'k:,i7 Zk,i . Xk,i,o + Uk,i *ﬁk,i,h7 Mk,z)

From the definition of the Wasserstein distance we have

2 ki N oo 2 2 ki, N oo
WQ,pJ?XB(G 0 )g/Ddxwmpfog(a:,z)w(dx,dz)gE[pfog(Q Q )]
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where we chose 7 to be the image measure on D? x D?*3 produced by the measurable function
(Qk,i,N’ QOO,’L) 0 — Ddx3 % ]D)d><3.

Hence the result follows from Theorem 5.2.2. O]

As it was pointed out earlier, from the previous theorem one cannot deduce the stability of mean-field
BSDE systems under the framework (S1)-(S10), for any N € N, but only the following

lim limsup ||8"5Y — 84V || 5 = 0,
N—=oo koo

which can be interpreted as asymptotically obtaining the stability of mean-field BSDE systems. We conclude
this section with a theorem which deals with the stability of the mean-field BSDE systems. To this end, let
us fix the number of players N € N until the end of this section. We need to modify (S5) and (S8) as
follows:

(S5') For every i € {1,..., N}, we have

ghiN L*(Q,6,P,RY) gooiN
k—o0 ’

(S8') The generators {f*}, g posses the following properties:

(i) Forevery keN, i€ {l,..,N},a e D(R?),Z € D>™r U € D* p € D(Py(R?), Wy ), it holds
that

ffCa, Z, TR0 N(U) ) € DRY).

(ii) For every Z € D*¥? U € D% and a sequence of RN —valued cadlag stochastic processes

{a*}, 5, where a* := (a®!, ... a"") such that E{supte& |af|2} < oo for every k € N, if
dX N

ak —>J1£R ) a*, P — a.e., then, for every i € {1,..., N}, it holds P — a.e.
— 00

J(Rd) 00 00.i 00,(1,...,N) ¥ qoo oo
A T (S WAL

Furthermore, if sup, 5 {Ha“(w)Hoo} _ < 00, P—a.e., then

keN

sup { | (£4(t, 0", 2, D50 (U),, LV (al))

keN bR+

} < o0, P—a.e.
o) keN

Remark 5.2.4. (i)  The filtration F*(N) can be seen as the usual augmentation of the natural filtration

of the square integrable martingale xP N (XkLe xRLEXkNe XENG) - Then, x )
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has independent increments with respect to F*(-N) and so from [14, Proposition 2] we get as before
that

i.e. the filtrations converge weakly.

(ii)  From (i) above, (81) and [50, Section 1] we have that for every N € N the filtrations F>(1-N) qgre

quast-left-continuous.
The next theorem provides the stability of mean-field BSDEs for N players.

Theorem 5.2.5 (Stability of mean-field systems of BSDEs). Assume (S1)-(S4),(S5'),(S6), (S7),
(S8'), (59),(S10) and fir N € N. Then, we have for everyi € {1,..., N}

ki, N r7k,i,N ki 0 ki, N | ~kj, ki, N
(Y [ ZREN L Xk L kAN gked )

(J1,12) , A A A . (5.13)
- (YOO,Z,N7 Zoo,z,N . X 00:h0 + Uoo,z,N *ﬁOOﬂ,U’ 0>7
—00
({Yk,i,N]’ [Zk,i,N . Xk,i,o + Uk,i,N *ﬁk,i,u]’ [Mk,i,N]’
[Yk,i,N7 )(k,i,o]7 [Yk,i,N7 Xk’i’h], D/k,i,]\/7 Mk,’i,N])
(5.14)
(Jl’H‘l) 00,1 00,1 00,1,0 00,1 ~00,%
e (N e e N Y
[Y'oo,z',N7 Xoo’i’o], [Yoo’i’N, Xoo’i’u], O)
and
((Yk,i,N>’ <Zk:,i,N . Xk,i,o + Uk,z',N *ﬁk,i7h>7 <Mk,i,N>’
<Yk’i’N, Xk,i,o>7 <Yk’i’N, Xk’i’h>, <Yk’i’N, Mk,i,N))
(Jl,lLl) . . . . . <5'15)
- (<Yoo,z,N>’ <Zoo,z,N . X 0010 + Uoo,'L,N *ﬁoo,z,h>, O,
—00

<Yoo,i,N7 Xoo,z',o>7 <Yoo,i,N’ Xoo,i,lq>’ 0) 7

where in (5.13) the state space is R™>3, while in the other two the state space is RT*(Ad+pin)

Proof. The approach we need to follow is completely analogous to the one followed in Theorem 5.2.1. Then,

the combination of the results presented in Section 5.3.3 complete the missing details. O



5.3 Proofs of the theorems presented in Section 5.2 93

5.3 Proofs of the theorems presented in Section 5.2

In the following subsections they will be presented the auxiliary results required for the proof of Theo-
rems 5.2.1, 5.2.2 and 5.2.5. For the convenience of the reader, each next subsection is devoted to a specific
theorem.

At this point, it is required to extend the convention we have made about the role of the indices k, i, N
by introducing another integer, namely ¢, which may also take the value 0 and whose role is to denote
the step of the Picard iteration. The newly introduced index will always succeed the other indices and
it will be placed within parentheses. For example, 8¥%:(9) denotes the Picard representation obtained
at the g—th iteration under the data DF for the i—th player participating in a game of N players. The

interpretation is obvious in the case fewer indices appear.

5.3.1 Auxiliary results for Theorem 5.2.1: Stability of McKean—Vlasov BSDes

For this subsection the framework of Theorem 5.2.1 is adopted. The next proposition is the analogous to
[7, Corollary 10] and [44, Proposition 3.2] for the McKean—Vlasov case.

Proposition 5.3.1 (Uniform a priori McKean—Vlasov BSDE estimates). Let i € N. For every
k € N we associate to the standard data D the sequence of Picard iterations {Sk’i’(q)}quu{o}, where 8F4(0)

is the zero element of 82 ko ]HI2 o IHI2 R 7—[2 FLehi  There exists kyo, independent of i, such that*

lim sup {HS’“ SI“H*BM} = 0.

Additionally, we have supysy, {”Sm”*/sm} < 0.

Proof. Let us fix i € N. From (S9).(ii) we can pick k, o such that for every k > k, o we have 4M®"(3) < 1
Then, from the triangle inequality we have for every k € N and ¢ € N that

Hsk,i,(q) . Sszzﬁ o < i 2m+1H8k,i,(m+1+q _ gk, m+q)

7B7kl

< Z 2m 1 (201 (5))" 84D — ghi©

*Bkz

= 2(281% (9))"||s* *Mzio (4027 (3))"

(207 (3))° 52
1 — 4M%* () *Bki’

4For the notation of the norm recall the convention we made on p. 85.
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The right-hand side is finite. Indeed, we have from Lemma 2.9.1

2 2

Lz,k,i(Rd)

fk('7 07 07 07 50)

+ MY (B)|

i 2 5 i
|8% ,<1)||zﬁ’k7i < (26 + E + (98 + 2)q>k) Hgk

HZ’k’i(Rd)
fk<'7 07 Oa 07 60)

ak

(7). 2

s (26 + ; + (98 + 2)<1>’“) e

2
Lé’k’i(Rd)

+ MY (D)

. Y
Hg,k,Z(Rd)

which in particular implies

sup ||8FMW12 . < o
Sup I 1% 6k

in view of (S5), (S6) and (S9). O

Notation 1. In order to simplify the notation, we define the following fori € N, t € R, U {oo}, k € N
and ¢ € NU{0}:

. t . . i ki . .
. LR ::/0 Iz (S,YSk’l’(q), 7@k pEeX @’“)(Ukm(q))sjL‘(y;k,%(q))) dc’,

. t . . "y ‘ ‘
o L= (s Y 2k DERT O (v ) dCE and
0
- fk (8, Ysk’i’(q), Z;v,i,(q)c];7 F(]F’“*Z’,X’“* 7ek)(Uk’i’(Q))s, £(Ysk,i,(q)>)
. GFO@) = / dc*,
0 (Oék)2 s

By replicating exactly the arguments presented in [44, Sections 3.3.1, 3.3.2 and 3.3.3] we arrive to the

conclusion that the convergences (5.6), (5.7) and (5.8) are equivalent to the combination of Proposition 5.3.1
and the next result.

Lemma 5.3.2. For every ¢ € NU{0} we have

(i) Lki@ BOIERD, feoig)
k—00
d 2

(i) Lk YLD, o),

k—o00

(iii) the sequence {Gk’i’(Q)}keN is uniformly integrable.

Proof. The above results are proved by induction. For the first step of the inductions we have nothing to
add to that of [44, Section 3.4] except that in the proof of [44, Lemma 3.12] when we apply the Lipschitz
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condition of the generators we would get for every k € N that the following hold P — a.e.?

I (37}/51671',(1)7 Zki0) ck pEHLXS ,@k)(Uk:,i,(l))s,E(}gk,i,(l)))’
Gl (1) :/ de
0 (Oék>2

< [T @PEOR 4 2O 4 2
0

Uk ?

k,i,s

dc*

£4(5.0,0,0,80)
(ak)Q S

+ [ @[ Op] +
0
<2 [T yR0Raal 4 2IE[ | e dA’;]
0 0

+2/0 dTr|:<Zk,i,(1) . xkio 4 Uk,i,(l)*ﬂk,i,u>8] 1 oGk (0)

2
< 4A sup ‘E[ﬁ’“ .7:51”} gy sup El/ f*(t,0,0,0,8)dCF .7'“5’“] +2Tr {(Mk’i’(o)%o}
S€R+ S€R+ S
. — . . oo . 2
+2GFHO) 4 4A El sup \E[g’“ FE| 4 sup E[ / £%(£,0,0,0, 80)dC* f’f] ]
8€R+ S€R+ S

where we have introduced the notation M*© for the martingale

AR . i) +/0 * <87Y'Sk,z,(0)7 Zhis0)  pEX ,Gk)(Uk,z,(O))S7£<Y'Sk,z,(0))) dc*

— Zk,i,(l) . X.k,i,o + Uk,i,(l) */jf“:ih

Hence, to show that {G*®1} per is uniformly integrable we will show that each of the summands in the last
inequality belongs to a uniformly integrable sequence. We begin with the sequence
A 7k,i,(0)
{Te [ O)r]
From the induction hypothesis we have

R (0) L2QGERD oo (0)
o0 k—oo 0 ’

and because for every k € N we have Y5(1) = ¢k from (S5) we get

ki (0) LHQGPRY) =0
MEAO) 22T 2 oo (0)
k—o00

Then, from [43, Theorem 2.16] we have the convergence

T [(A7R600)) ] HLOOEEY, [ gpnicon ]

k—o0

5We use the inequalities %, % < (a*)? and (19;7)02, % <1
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from which the wanted uniform integrability property follows. For the rest of the terms our main tool

would be [44, Lemma A.17]. So, from the aforementioned lemma would be enough the sequences

{ |§m |2}keN and {Gk’i’(o) }keN

to be uniformly integrable, which holds from (S5) and (S6). The last claim is true because

2
sup E[ | 446.0,0,0,60)ac f‘“]
seR4 s
o) s 2
= Sup E[/ fk(t70,0707(50)d6f ‘FskJ‘| _/ fk(t,0,0,0,éo)dCf
S€R+ 0 0
2 2
< 2 sup ]E[/ F5(£,0,0,0,6)dC* f‘f] +2 sup / F5(£,0,0,0,6,)dCH| |
seRL 0 S€R+ 0

and from Jensen’s and Cauchy-Schwarz inequalities in conjunction with (S7) we get it.

Next, we proceed with the proof that the g—th step of the induction is valid. Following [44, Sections
3.5.1, 3.5.2, 3.5.3, 3.5.4, 3.5.5] we can conclude with exactly the same line of thoughts, noting only that in
[44, Proposition 3.19] we utilize our assumption (S8). O

5.3.2 Auxiliary results for Theorem 5.2.2: Stability of backward propagation
of chaos

For this subsection the framework of Theorem 5.2.2 is adopted. We remark that the adopted framework is

identical to that imposed for Theorem 5.2.1. Hence, we can use the results presented in Section 5.3.1.

Lemma 5.3.3. Let ¢ € N. The random variables {SUPseR+ ]Ys’“’iP}keN are uniformly integrable.

Proof. Let i € N. Initially, we will show that the random variables {supseR+ ]K’C’iv(Q)\Q}keN are uniformly
integrable, for every ¢ € N. This will be achieved by induction. The first step is obvious, we remind that
from Remark 5.1.1.(iii) for every k € N we have Cff = C¥, for t € [T*, o). From Picard’s scheme we know
that for every g € Nand t € Ry

i@ _ Ekk,i . /°° 1 (S’Y-Sk,i,(q—l)’Zﬁc,i,(q—l)clsc’Fk,i(Uf,L(q—l)) L(ykiaD )) dc*
t

E]f 7/:|

_ E{fk,i _i_/0 * (S,Y;k,i,(qfl)’Zk,i,(qfl)clsc’Fk,i(Uk,i,(qfl))S’E(Ytgk,i,(qfl))) ac*

_/ fk Yk:z(q 1) Zkz(q 1) k sz(Ukz q— 1)s’£(}/;k,i,(q—l)>) dcéc
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Hence we get,

sup Y40

t€R+
< 4 sup ‘E §kz|}"f Z]
tER+
. 2
+ 4 sup E[/ fk (S’Y;k,i,(q—l)’Z;c,i,(q—l)clsc’Fk,i(Uf,zy(q—l ) [,(Yk:z q-1) )) dck ]_—tk: z] (5.16)
teR 4 0
2
+ 2 sup /t Iz (3, yhila=D) ghi(a=1)ck phi(rkile-1)) E(ysk,i,(qfl))) dc*| .
t€R+ 0

Now, from the Cauchy—Schwarz inequality, and recalling (S7), i.e., sup,cy {Aﬁo} < A € R, we have for
every t € Ry U {oo}

tfk (S,Y;k’i’(q_l), Zf,i,(Q—l)C’Sﬂ’Fk,i(Uf7i7(Q—1 ) ,C(Y]“ g—1) )) dck
0

dc*.

- ’fk s, Yk i,(g—1) Zk i,(q— l)c Fk z(Uk Ji,(g—1) ) 7£(Y'Sk,i,(q—1))> ‘2
<
/ (af)?

From Lemma 5.3.2.(iii), (S5) and [44, Lemma A.17] the right side of inequality (5.16) consists of elements
of sequences of uniformly integrable random variables. Hence, our first claim is proved.
So, for every ¢ € N and € > 0 there exists (e, ¢) > 0 such that for every S € F with P(S) < d(¢, q) we

have

supIE{ sup |V } <£
keN seRL

e~

From Proposition 5.3.1 there exists k, o such that we can choose ¢(¢) € N large enough such that

sup E[ sup |}/skviv(Q(€)) Yk z| } E
k>keo ~sER4 4
Then, we get that for every S € F with P(S) < d(c,q(c)) we have
[sup Y2 ]ls} IE{ sup [VFi — ki) 4 ykiae)) ]ls}
SER scRy
< 2B sup [} — Y] 42 [ sup YOO PL] < e,
S€R+ S€R+

for every k € N. From the above and the fact that supk@\]]E{supse]R+ |YS’“|2} < 00, recall Proposition 5.3.1,

we are done. O

Lemma 5.3.4. Let YFV be the vector of the Y -component of the solutions of the first N McKean—Vlasov
BSDEs under the data D*, for k € N and N € N. Then,

W2|<LN(Y’c M. E(Y’“))] — 0.

lim sup E
N—=00 LeN,seRy
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Proof. For every m € N define
Ma(VELm) = [ fePac(vE
(VI m) = [ e dL(YE) (@)

where B, := (—2™,2m]4\ (=2m~1 2m=1d and also By := (—1,1]%. Let ¢ € N, then for every k € N and

s € Ry we have

o0

SanOEm = [ (V) @) = [ e @) 4£(1) @)

< [P gses oy (Jof) 2 (V2 () = |

2
k1
v
|Ys s |2222(£71)

<E

sup {[Y 2}

k,1 — :
S€R+ Sups€R+ |Y9 ’ |2222(€ 1)}‘|

(5.17)

From Lemma 5.3.3, the random variables {supse]R . |YS’I“1|2}keN are uniformly integrable. Hence, using this
information on inequality (5.17), for every positive number e, we can choose ¢;(1) € N, which is universal
with respect to £ € N and s € R, such that

S MY m) <. (5.18)
=l1(e1)+1

Also, for every positive e, there exists f5(¢2) € N such that

S22 <, (5.19)
I=0l2(e2)+1

Let Ry := supkeN]E[supseR+ ]Yflﬂ < 00. Then, trivially, for every k¥ € N and s € R, we have
My(YF m) < Ry. From [20, Lemma 6 and Inequality (4) on p. 716] we get

" [Wiu <LN (V). L(Y“m < Cap go 22 2 2-2 min {2£(Y5’“’1) (Bu), 2% (jlvﬁ(y’“) (Bm)) : }

Trivially, for every k € N and s € R, we have for m =0
L(YE)(By) <1
and for m € N
L) B) = [ 1dL(yH)(@) < /B 2 DAL (YY) (@) = 272 DM (Y m). (5.20)

Let us fix, now, € > 0 and define

- . 21
33C42 (5.21)
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To the defined & it corresponds a natural number ¢;(¢1) such that (5.18) holds. Next, to

ey = c (5.22)
<6 + 24€1 (El)Ro) Cd72
we can associate a natural number f5(g2) such that (5.19) holds. Finally, we define
) 2
0C3 ,20t2(62)+2 (241@1)“51(51)7%02 + 1)
N(e) := + 1.6 (5.23)

&2

Collecting the information presented above, we can deduce that for the fixed € > 0 we have (we omit the
dependencies for the sake of a readable notation), for every N > N(e), universal with respect to k € N and
S € R+

E [Wil,, (LN (i{’”)c(ykl)ﬂ
e Ci i 27 min {2,2% N3}
=0

00 00 —2(m—1) 1
+Cn S 92m 3 9=2! nin {2—2(m—1)+1M2 (}/SkJ, m), ol (2 M, (Yk’l, m)) 3 }

m=1 =0 N ’
e} 4 5 o
< Cys {2 Yooy 2d§N—é} +11Ca2 Y. My(YE', m)
1=0>+1 3 m=~¢1+1
a °O 4 Ro\ 2
+Caz Y [87?,0 o274 2412?“(”)2]
m=1 I=fo+1 3 N
4 4 Ro\ 2
< Cd,2§2%N_% + 2C 282 + 11C 261 + 8Cy 201 Roea + Ca 2ty 52%+1+€1 <NO> i
aty 1
Od7227+1 <2e1+1£1R02 + 1>
S 11011,251 + (2 + 8517?,0) Cd72€2 + Nl
2
< &
where the last inequality is the outcome of (5.21), (5.22) and (5.23). O

Remark 5.3.5. The approach we used in the last proof was inspired by the approach used in [20]. There,
the authors used advanced inegrability assumptions in order to control the tails of the distributions and get
rates of convergence for the different cases. In our setting we had to work with sharp square integrability,
this made possible by noticing that we can bound E(Y;“)(Bm) from the quantities 272"V My (YEL m),
thus make them controllable. Then we proceeded in a similar fashion as the authors of [20] did, while

ensuring that our bounds are universal with respect to k by the virtue of Lemma 5.3.3.

6We denote with |z the integer part of the real number z.
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Theorem 5.3.6 (Uniform propagation of chaos for the system). Under the adopted framework it
holds

k,i,N ki ki, N ki 77k,i,N ki k,i,N k,i
(Y — Ykt gRAN _ gk kN ki ppkaN _pp )

2
N
8ok, (1,0, N)

Proof. From the proof of Theorem 4.2.2 we see that for every k, N € N we get that

1 N
lim sup{NZ

N—oo peN i1

1 N

N

2

(Yk,z,N o Yk,z7 Zk,z,N B Zk,zj Uk,z,N i Uk,zj Mk,z,N B Mk,z)

*:kav(l’“wN)

ke e
- (5)

O [ oo (5 ),

<

L2k (L N) R
R
L} (RY)

where we denoted by ?k’N the vector of the Y-component of the solutions of the first N McKean—Vlasov
BSDEs under the data D¥. The first summand of the right-hand side of the above inequality converges in
view of (S4) and (S9). The convergence of the second summand comes from Lemma 5.3.4 in conjunction
with (S7), which implies supjcy {S (BAk)OO} < e#A. Hence, these combined with (S4) and (S9) complete
the proof.

0

Theorem 5.3.7 (Uniform propagation of chaos). For every i € N, under the adopted framework it

holds
111’11 sup (Yk,z,N . Yk,’L7 Zk,z,N o Zk,z’ Uk:,z,N o Uk,z’ Mk:,z,N o Mk,z) — 0
N—=00 LeN *B,k,(1,....N)
Proof. Let ¢ € N. From the proof of Theorem 4.2.3 we get that
H(Yk,i,N . Yk,z‘ Zk,z‘,N . Zk,i Uk,z',N B Uk,i Mk,z’,N . Mkz) 2
’ ’ ’ *,63,k,(1,...,N)
(26 +2 495+ 2)cI>’f) -
< : 655N = €8]t
W ( L3 (Rd)
k
QM(ID (6) 7% (YkzN Yk;z ZkzN Zkz UkzN Ukz MkzN Mkz) ?
1—2M**(B) N = #,B,k, (L., N)
OM®*(B) 1 oo R
(k)/ B W3, (LY (V) £ () )] as(3a%)
L—2M*"(3) 5 Jo :
From (S4), (S9), Theorem 5.3.6 and Lemma 5.3.4 we conclude. O

Corollary 5.3.8. For every k € N and i, N € N we define

LklN _/ fk s, YklN ZkzNCk Fk( ,,,,, N)(Uk,z,N)S,LN<Y/;,N)> dC§
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Then, the following are true:”
. . 2 .
supE||[Var|LFHN — LR I, 0, (5.24)
keN o0 N—oo
where the total variation is calculated per coordinate,
?QEE[H [LFON] — (L], u o, (5.25)
. Jl(RdXd),Ll)
Lk‘,Z,N ( 9
[ ] (kyN)—(00,00) <5 6)
and
. . d . .
Zk,z,N_Xk,zo UkzN*,uk;zh_'_MkzN L2(Q,G6,P,RY) Zoo,z_Xoo,z,o+Uooz*Moozh (527)
o (k,N) = (00,00) e o0
. A . , 12
Finally, the sequence of random variables {‘Z’“’N C XEie p gk N ke MC’;;”N‘ } B is uniformly
keN,NeN
integrable.
Proof. For (5.24), we start by reminding the fact that
rk kN2 ok kN2 ok k2 A k2
(ak)QS(a)uﬁ’og(@)aﬂ’hﬁ(a) and (ak)Q—(a)

Define for every s € R,

O = 15 (s, YN, ZEN L TRURN) LY (YY) ) = 5 (5. Y, Z00e, TH UM L))
From Cauchy-Schwarz inequality, (H4) and (S7) we get for every k € N that
E{ 2} :E{ 2} gAEVOOOf;(BAk)S|5f8k’N|2d(J§]

(ak)?
S Z (Hak(yk’i’N - Yk’i)”]?_szkﬂ(lw-vl\’)(Rd) + HZk’i’N - Zk’iH]?_Hz,k,(l,m,N) o

Var|LFN — 4]

Var[ I ff’NdCf}
0

°(®ex)
i i 1 > i 2
O~ UM s 5 B[ WE (L (V) £07)ae (%) ) .

Now, in view of the previous results, we only need to take care of the convergence of the last summand of
the right-hand side of the last inequality. From the triangle inequality of the Wasserstein distance and
Tonelli’s theorem we have

E [ |7 ), £(vE)ae (BAk)S]

< 9E [ W ), L (YY) ag (B4 ]

o ol (). 052 )

"The reader may also recall 1.
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On the right-hand side of the above inequality, the convergence of the first summand is concluded from

Theorem 5.3.6 in conjunction with (S7), once we observe that by (2.25)

2 N~k Ny 7NN i al ki, N vrki|2
W (LP(YST), LYY, ) < NZIY Yo"

The convergence of the second summand is guaranteed by Lemma 5.3.4 in conjunction with (S7).
For (5.25) we argue as follows. For j € {1,...,d}, we will adjoin the upper index [j] in order to denote

the j—element of a d—dimensional vector.

Tr[[Lk,i,N Lk i } Z Z ( Lk,i,N,[g] Lk i [j] ) zd: ( Z A‘Lk’i’N’m _ Lk’i’[ﬂ ‘> 2

j=1t>0 j=1 “t>0

< ‘Var[Lk’i7N - Lk’i]oof.
Now, the pathwise identity
[LFN] L] = [LFN  [hi] g o[[RiN _ phi i)
implies for every ¢ € Ry (we understand the following elementwise)

Var([[,k,mv]t _ [Lk,i]t) _ Var([Lk:,i,N . Lkﬂ']t + Q[Lkﬂ',zv . L"“', Lk’i]t)
< Var([Lk’,i,N _ Lk’i}oo> I 2var([Lk7i,N B Lk’i,Lk’i]oo)

Then, the desired convergence (5.25) is derived by the convergence (5.24), the Kunita—Watanabe inequality,
see [21, Theorem 6.33], and the L'—boundedness of {[L*"]..}, .
The convergence (5.26) is immediate from the convergence (5.25) if the next limit holds

(Jl(RdXd),Ll)

[L5] 0.

k—o0

But this follows by following for the McKean—Vlasov case the exact same reasoning as in the analogous
results of [44, Section 3.3.2], i.e

. |loo, Lt . . Jq (RExdY L1
[Lkﬂ,(q)] (I 1) (L]  and [Lk,l,(q)] (I @)L 0.
e (k,q)—(00,00)

Now, we intend to prove convergence (5.27). To this end, we have from (S5), Lemma 5.3.2.(i) and

Proposition 5.3.1 by an application of the Moore-Osgood theorem that

. . d . B
Zhi . xR 4 UMb ik 4 Mk EOGEED, oo yoaiio | proei y oot (5.28)

k—o0

Applying again the Moore-Osgood theorem, we conclude from (5.28) and Theorem 5.3.7.

8Note that £(YF1) = £(YF?) for every s € R and k € N,i € N.
s s +
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The desired uniform integrability property is immediate from Vitalli’s theorem, see [5, Theorem 4.5.4]
which can be adapted for the L?—case. O

5.3.3 Auxiliary results for Theorem 5.2.5: Stability of mean-field BSDE

systems

For this subsection the framework of Theorem 5.2.5 is adopted.

For the convenience of the reader we present the following table which corresponds to the stability
of mean-field BSDEs with N players. The outline of the approach is exactly the same as in the case of
the stability of McKean—Vlasov BSDEs and therefore we avoid the repetition by omitting the respective

description.
Pl | gLNO) QLN gLN(@2) ... gLN(@ 92, gLN
D2 | g2N0) 2N QRN .. QZN() 170, g2N
P3| N0 N gINEQ) .. g3N(@ 920, g3N
Dk | gkN0)  ghkN(1)  ghN(2) . gkN() 920, gkN
I I I !
| ! L ' H §
Poo | N0 geeN.(1)  geeN(2) L., geeN(g) 470, gooN

Table 5.3 The doubly-indexed Picard scheme for mean-field systems of BSDEs.

Proposition 5.3.9 (Uniform a priori mean-field BSDE system estimates). For k € N and N € N
we associate to the standard data D¥ the sequence of Picard iterations {Sk’N’(q)}quu{o}, where §¥NO) s

the zero element of

N N N N
H Sg’k’(:L’:N) X H H%7k7(17"'7N)7O X H H%ak’(l»'“:N)iu X H H%:kv(lw"’N)’J—.
i=1 g i=1 ’ i=1 g i=1

There exists k, o such that

2

lim sup H,S'k’N’(q) — §hN .= 0.
qg—0 k‘zk*,o *7k7(17""N)7ﬁ
Additionally, we also have supysy, Sk’NHik LNy g < 00

Proof. As the reader can confirm, one can follow, mutatis mutandis, the same arguments as in the proof of
Proposition 5.3.1, which deals with the stability of McKean—Vlaosv BSDEs. O

To prove Theorem 5.2.5 one follows the same strategy as for the proof of Theorem 5.2.1, but working

now for the N—system of BSDEs. Hence, we need to take care of the appropriate modifications.

Notation 2. For everyi € {1,...N}, t € R U{oo}, k € N and g € NU {0} we define:
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. LRV / fk Y RN | ZhiN@ ok (L (Uk,i,N,(q)>s7LN(YI;,N,(Q)D dck,
. t A . .
. Lic,z,N ::/ fk(syx/sk,z,NjZf,z,Ncl;Fk,(l ..... N)(Uk:,z,N)stN(Yic,N)) dC’f, and
0

2
| o | £ (5, YN ZhAN )l DL ) ([N (@) LN(Y’QN’(‘I)))‘
kyi,N,(q) . _ k
. G = / dc*.
0 (ak)2

Then, as before, from [44, Sections 3.3.1, 3.3.2 and 3.3.3] we get that the convergences of Theorem 5.2.5

are equivalent to the next result.

Lemma 5.3.10. For everyi € {1,...,N} and ¢ € NU {0} we have

(i)  LEiN@ L@ R R, LN,

k—o0

Ji(R?),L2)
-

(i) DR L [N

s
k—o00

(iii) the sequence {Gk’i’N’(q)}keN is uniformly integrable.

The above result is proved by induction with exactly the same arguments as Lemma 5.3.2, but note
that in each step of the induction we treat all 7 € {1,..., N} simultaneously. As an example we will provide
the computations needed in the proof of [44, Lemma 3.12.], as we did at Lemma 5.3.2 above. So, for
i€{l,..,N}and k € N we have P — a.s.

2
fk (S,Y'Sk,z’,N,(l)’ Zj,i,N,(l)clSc?Fk,(l ,,,,, N)(Uk,i,N,(l))&LN(Y&N,(I)))‘

GkiN(l) /oo s dck
(ak)? ’
k,(1,...,N) JFoty \ 2
</ |YkzN |2+||ZkzN k||2+2<H () (F X )> dC’f
SO R |£5(5,0,0,0,0)|
k2 L kym,N,(1) |2 K
Y.
+ [y 3 R Op B !

00 . 1 N
<2/ yhiNM2 2 YkmN QdAk
R

m=1

2 [ ATy (78500 i RN ) | 4 aGRENO

ky(1,...,N) 2 44 J k,m,N | Tk,(1,...,N) 2
s 8 el

N m=15C€R+

< 4A sup {‘E [fl“N

seR4

2

E FEbom)

+ 8A sup

S€R+

+2Tr {(Mk,i,N,(O))oo} +92 Gk,i,N,(O),

/Oo fk(ta 07 07 07 (SO)dC{if€
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with M*N.(0) defined to be the martingale
yRaN.Q) 4 / Iz (S’Yjsk,i,N,(O)’ ZRNAO) kDL M) (kN O)) LN(YI;,N,(O))) dc’.
0

Hence, by the information provided from the previous step, for every i € {1,..., N}, we can conclude as

before in the McKean—Vlasov case.
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Appendix A

A.1 Remainder of the proof of Proposition 2.9.2

We define for, every v € (0, 3) the functions

9, (0+99) B (1+49)?
A R e
9 (14+4®) 2498 (1+440)2
)= g8 T

We have

() (s, (1ea)
(40

+<i+q>> <8+9(i+¢>_(é+®)>.

Note that v € (0,5) <= %—0—@6 (%-I—CD,OO). So, we let %+CI>::/\(%+<I>>,for)\€ (1,00) and we

only need to find the minimun of the function

sy 2 (L A
gl()\).—ﬁ+<ﬁ+®)<8)\+9)\_1), A€ (1,00).

Trivially, we have that

) A2 . A2
AIH% <8)‘+9>\—1> :)\lggo (8/\+9/\_1> = 0

Hence, we will calculate the critical points of the function

2

h()\) :== 8\
(A) =8 +9A_1,

A€ (1,00).
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_ A
W) =0 <= 8+95=28 =0 < 8A—12+9(N2=2)) =0 = 17(A-1)2=9 = x= 2 41

Because

3 3 3
h(\/ﬁJrl) — (8+(3+\/1_7>2>\/1—7+8 - (8+9+17+6\/1_7)ﬁ+8 = 6V17 + 26,
we can conclude that
9 1 617 + 35
M2(8) = 3t (B + c1>> (6V1T+26) = —F (6v17 +26) @. (A.1)
Similarly, we have
9. (1 (s+o)-e (1 ) (t+o)
gz(”‘6+8<v+®>+2(;+¢)_(;+@) ) e - (v a)
2

=5rs(Gre) (;+%+2+¢) (3+0)

Same as before, we let % + o=\ (% - <I>), for A € (1,00) and we only need to find the minimun of the

function
- 9 1 2 1 2
We have
~ 9 1 A2 2
and
- B 2 /\2—2)\_
g5(A) =0 <— 8+<5+9> et
= <;+17>(>\—1)2:+9
oy Vst
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Finally, we have

M®(8) = Z+ ;+c1>> ((8+ \/@+9+\/Z+17>2) (\/@)M)
;+(;+¢)( 2.n) wamw)(%)%)
SN

2,/24+9,/24+17+%+35 2 2 4
_ V5 \/57 E +<2\/ﬁ+9\/5+17+6+26><1>. (A.2)

g
A.2 Auxiliary results

A.2.1 Construction of a space satisfying (H1).

In this subsection we will show that there exists a space satisfying (H1). Since we discuss about a sequence
of independent identically distributed processes, one naturally expects to construct a countable product
space, den. by (9, G,P), based on a prototype probability space (2!, G, ). On this prototype probability
space we will construct the pair of martingales X' which satisfies the desired properties. As one may
expect, this is not a condition that is trivially satisfied. Hence, we are led to consider specific cases, which
nevertheless demonstrate the generality of the framework we are using. We remind that a Lévy processes is

square—integrable if and only if for the corresponding Lévy measure v we have up to evanescence that
[ ooy (el Pdv(@) < oc.

Example A.2.1. Let (Q', G, PY) be the probability space that supports two independent square—integrable
Lévy processes, say (X°, XY%), which are martingales with respect to their natural filtrations. We further
assume that X' is purely discontinuous. The independence of the Lévy processes implies the property of
having no common jumps; see [47, Proposition 5.3]. Hence the desired condition M,uxl,h [AX1’°\75]F1] =0 is
trivially satisfied.

For completeness, we mention that [47, Proposition 5.3/ refers to Lévy processes with no Gaussian part,

but this property remains valid to the case we describe.

Example A.2.2. Let (Q', G PY) be a probability space that supports a p-dimensional, purely discontinuous
square—integrable Lévy process X, for the construction see [4, Theorem 4.6.17]. By taking product if
necessary, we assume that our probability space supports also a sequence of independent random variables,
{P*}ren C L2(GY;R™), such that the o—algebras Vieg, o (th’o) and \[32, 0 (hk) are independent and

E[W¥]=0,Vk €N, Y E|[|h*’] < oc. (A.3)
k=1
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Furthermore, let {ty}ren C Ry be a family of deterministic times indexed in increasing order. We define

Xt (wht) Zh ]l[tkoo()

Then we have that (X1°, X4%) € H2(FY; RP) x H24(FY R™), we remind that B! is the usual augmentation
of the natural filtration of the pair. The martingale property for X1° comes from (A.3). Finally, because
Lévy processes are quasi-left-continuous, they jump only at totally inaccessible times. Hence X™° and XF

have no common jumps and again the condition Muxl,u [AX1’°|75]F1] = 0 is trivially satisfied.

Example A.2.3. Two independent random walks defined on the same grid. Then, if we denote as in
example A.2.2 by {hF}ren the jumps of X1°, {hF}ren the jumps of XV and {t;}ren C Ry the grid, by
reducing the general case to the one described from a single deterministic time we have the desired property
if the jumps are 0 on average. That is because }-tlr = (\/{meN:thk}a (hm,ﬁm» VN here N is the
o—algebra generated from the null sets under P'. Note that X% € H>I(F';R") due to the fact that has
finite variation and [21, 6.23 Theorem 3)].

In the above examples key feature was the concept of independence. We now provide an example which

illustrates that independence is not necessary.

Example A.2.4. Let (2, G PY) be a probability space that supports h' € L2(G';RP) and h? € L*(GY; R™)
such that

E[n'|o(h?)] =0 and E[|o(h!)] =0. (A.4)

The relation that is expressed through (A.4) is a generalization of independence, when the random variables

have zero expectation. Let ty,ts € Ry, we define

X1 (wht) = 0 ft<t and X (W' t) = 0 fr<ts

ht(wh), ift >t R (wh), ift > ts.

Then we have that (X1°, X58) € H2(FY; RP) x HE4(FL; R™), we remind that F* is the usual augmentation of
the natural filtration of the pair. The martingale property comes from (A.4). To see that X' € H>4(F!; R™)
note that X% has finite variation and use [21, 6.23 Theorem 3)]. Finally, from (A.4) and [12, Lemma
13.3.15 (ii)] we have MHXu,1[AX1’°|75F1] =0

In view of the presented examples, we may assume a product space Q' x R, where (Q, G}, P!) is a
probability space. Let F! be the usual augmentation of the natural filtration of a pair X' = (X1e, X8 ¢
H (5 RP) x H>U(F'; R™) (defined on the product space Q' xR.) , with M 14 [AX1e|PF'] = 0, where X'
is the random measure generated by the jumps of X%, Additionally, let a random variable &' € ]L%,(]—"r}; R%)
for a deterministic time 7', which will be assumed fixed from now on.

Then, let {(Q',G",F*,IP")},.y be copies of the stochastic base (', G, F',P!), {Yz = (X%, X)) hien
the corresponding copies of (X1°, X1¥) and {£'};en the corresponding copies of . We define the product
probability space ( 2,0 RX, G R, ]P”). We denote by F' the augmented natural filtration of the pair
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X' in the product space (]2, Q°) x R, under the probability measure P := ®°, P*. Because the pair X'
depends only on w’ we have

Fi = <IE" X

ﬁ Qm> VN, (A.5)

meN\{i}

where N is the o—algebra generated from the subsets of the null sets under the measure P. Usmg the
methods of corollary A.2.7 we get that X' € H2(F; R?) x H>4(F’; R"™). To prove that M i [AX" o|7DIFZ] =0
we work as in the end of the proof of lemma A.2.9. So, let {74 }xen be a sequence of disjoint F*—stopping
times that exhausts the jumps of X" and also satisfies the assumptions of [12, Lemma 13.3.15 (i4)]; it is
known that such a sequence always exists for every F'—adapted, cadlag process, e.g., see [29, Definition
1.1.30, Proposition 1.1.32]. Of course, the aforementioned stopping times when viewed in the product space
depend only on w’. Moreover, X*° is also an F'—martingale. Hence, AX%° will be measurable with respect
to F', for every k € N. If we denote by ]?;k_ the o—algebra of events occurring strictly before the stopping
time 73, produced under the filtration Fi and with Fik,_ the respective o—algebra under the filtration F? |
then from (A.5) we have

Fio=(Fox I )N
meN\{i}
and

(AXZ H Qm) —o(AXE QY x [ o™

Tl ’
meN\{i}

Then, because A is independent from any other sub o-algebra of ®3°, G¢, where we denoted by ®@°, G

the completion under the measure P, we get
7o Vo(axi: 1 ov)]
((]-“jk_ Volaxi o)) x ] Qm> \/N}

meN\{i}

(7L o(AXE ;) x M o

meN\{i}

(')

E” [ij;j

— E°|AXiy

=E" |AXL°

=E" |AXI°|FL _\/ o(AXE Q)

TE

=0,

where we used [51, Section 9.7, Property (k) on p. 88] in the second equality and [12, Lemma 13.3.15 (7)]
in the last equality.
Lastly, note from (A.5) that the sequence {@}ieN consists of independent filtrations of

( 2,0 R2, G IP’), where we abused notation and denoted the extended measure again with IP.
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Next, for every i € N define the bimeasurable bijections
g (T2, 9 ®F, GF) — (112, 9, @, G') by

i.e., the function ¢* switches the places of w? and w!. It is easy to check the following properties of the

sequence {g' }ien:

(i)  For every i € N, we have g' o g' = Id[= i, where Id[= o is the identity function.

(i) For every i € N and for every t € R,, we have ¢ (]?tl)_l = Fi,
(iii) For every i € N and for every A € ®:°, G', we have P(A) = P(g'(A)™1).
(iv) For every i € N, we have X =X'o (¢",Idg, ) and &' := & o ¢
Now, for every ¢« € N we have that
P =0 ({4 x (t,00) : t € Ry, A€ Fi} U Ao x {0} : Ag e Fi}).
So, from (A.5) and (iii) we have that
ZeP = Zo (9" 1dg, ) € P

and

M € H2(F;RY) <= Mo (¢, 1dg, ) € H2(FH;RY).
From the above properties one can show that
(X = (X1 0 (' 1dg,) and (11250 XD = 1240 X o (g7 1),

Hence, from (2.9) we have CEX) = o X (9", Idg, ) and b = b* o (¢', Idg, ).
Assuming (H3) — (H9), note that £ (BAX1> =¢£ (BAX1> o(g",T), from the existence and uniqueness
T
theorem 3.1.3 and theorem 3.1.8 due to symmetry we have that for all : € N

Yi=Y"o (¢ Idg,).

A.2.2 Technicalities

In this section we will present some useful technical lemmata and their proofs. To this end, let us fix G
and H be filtrations on the probability space (€2, G°, P) such that G is immersed in H and both satisfy the
usual conditions.

Remark A.2.5. Special cases of the below results are included in [18]. Although these are sufficient for

our purposes, we present here the more general results for completeness.
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Lemma A.2.6. Given U € P¢ and g € (G® B(R,)),, for every pair X := (X°, X") € H*(G;RP) x
H2(G;R"), for CBX) as defined via (2.9) and for KX as well as for KX as defined via (2.10), we
have that

(i)

(i)

(iii)
(iv)

(v)

forP® CHEX —qge (w,t) € QxR

n

/ Uw,t,2) K (w, t,dz) :/ Uw, t,2) K& (w, t,dz).

/ g(w,t) U(w, t, x) V(G’Xh)(w,dt, dz) = / g(w,t) U(w, t,x) U(H’Xh)(w, dt,dz), P — a.e.
R+XR"

R+ xR

U v ©@X) = U« vEXD yp to evanescence.
UCX" = gExH) up to evanescence; see (2.6) for their definition.

g<G7X”> = C(H’Xn), up to evanescence; see (2.7) for their definition.

Proof. Let us fix X := (X°, X*) € H?(G;RP) x H?(G;R"™). We remind the reader that the immersion of

the filtrations implies that C' ©X) = ¢ (Hj); see remark 2.2.1. Therefore, we may simplify the notation and

simply write C' for C HX) We proceed to prove our claims:

(i)

We consider { B, }men C PC o0 be a partition of €2 x R, x R" that makes MMX” o—integrable with
respect to P€. Then, we define the sequence { Ay, }men as A, := (U, Br) N{|U| < m}; of course
14, 1 for every (w,t,x). For every m € N, we have that (Uly, ) % ™ — (ULy,,) * v@X) is a
G—martingale of finite variation, while (U1 ,,,) * - (Uly,,) * vEX5) s an H—martingale of finite
variation. In view of the immersion hypothesis, i.e., every G—martingale is also an H—martingale,
(Ul y,) % &X) — (UL, ) % VXD is a predictable, H—martingale of finite variation starting at 0.

In other words, it is 0 up to indistinguishability for every m € N, which equivalently reads
(Uly,,) * p(EX7) = (Uly,) * P (X (A.6)
up to indistinguishability for every m € N. By (2.10) we get
i o) | U@ ta)ta, o, t,2) K.t dr)dC;

:/]R :[L[O,S](t) /]R” U(w,t,x)]lAm(w,t,x) K(]HLY)(("J?tvdm)dCta
+

up to evanescence, for every s € Q4 and m € N. Recalling that {[0, s]}scq, is a m-system whose
A—system produces B(R, ), by an application of Dynkin’s lemma we can replace [0, s] in the above
equality with any set D € B(R,). By the monotone convergence theorem, in respect to the sequence

{1 4,, }men, we get what we want.

Immediate from (i) and the disintegration formula (2.10).



(iii) Immediate from (A.6) by means of monotone convergence.

(iv) Immediate from (A.6) because from [21, 5.27 Theorem, 2) and 11.11 Theorem] we have by monotone

convergence

UEX) = lim A ((U]lAm) * V(G’Xh)>

m— 00

and
OEXD = lim A ((U]lAm) * V(H’Xh)) .
m—0oQ

(v)  This is a direct consequence of (iv) for U = 1.
[

Corollary A.2.7. If Z € HY(G, X°;R¥P), then (Z - X°)® = (Z - X°)¥, up to evanescence. Moreover, if
U € Go(G, uX%), then U i* = U x gE&X  up to evanescence. In particular, for R* 3 x —% z € R®
one gets X® = Id  p(&X) = 1d » gEXD.

Proof. For the Ito stochastic integral, it is immediate from the definition of the integrals, see [29, Definition
1.2.1] and the fact that C(©X) = C(EX),
For the stochastic integral with respect to the integer-valued measure “let U € Gy (G, X b). Then,

r 2
0% X sy = || 7]
L - h o
= | Uxpi©~ )||’2H2(H;Rd)

(E)KU*mGﬂgm@Q

we have

2

o™

H2 (H;RY) H2 (H;RY)
Note that we denoted with
((U « IE(G,Xh))(H:C) ’ (U . ﬁ(G,Xh))(Hd))
the unique pair of H>(H; R?) x H>?(H;R?) such that
U*ﬁmxmz(U*ﬁgﬂﬁmw+(U*ﬁG”0mm.
From [21, 6.23 Theorem| we have
U 5 A gy = B [Z NG *ﬂ“”x”)ﬂ o (CRTA R .

Hence,

2
=0,

H,c
H((T /j(G,Xh))( )
HQ(H;Rd)
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and U » 1(©X" e 124(H; RY).

Next, from lemma A.2.6.(iv)

_ ~ b
AU i) = Ulw, t, AX) L gaxesoy — O
N b
= Uw,t, AX}) T axipoy — O
_ ~(H,X"5)
- A(U s )t'

From the above, because U % fi(&X%) — U » i®X*) e #24(H; R?), again from [21, 6.23 Theorem| we conclude
that

~ b ~ b ~ b ~ By\ |2
|U % g ©X) — U « p®X )\|3{2(H;Rd) =E [Z ‘A (U*M(G’X ) — U » p®X )>t‘ ] =0,

t>0

and U * i®X) = U % g X yp to indistinguishability.

For U = Id we get the last claim. O

A.2.3 Conservation of solutions under immersion of filtrations

In this subsection we will identify the solutions of the McKean—Vlasov BSDE (3.2) when we fix all the
elements of the standard data except for the filtrations. lemma A.2.9 makes precise the previous sentence.

We remind the reader the necessary notation and terminology. Let us fix N € N and assume (H1)-
(H9). For each i € {1,...,N}, the McKean-Vlasov BSDE (3.2) associated to the standard data
(T,IFZ@,F,T, £, f) under (3 admits, by theorem 3.1.3, a unique solution, which will be denoted by

(Y, Z}, U, M*). For later reference, we will say that (?N, ZN,GN, l\N/IN) is the solution of the first N
McKean—Vlasov BSDEs, where we define

Y=y, 2V =2 20, U = . U

and M = (MY, ..., M™).

Remark A.2.8. Leti € {1,...N}. Under (H1), (H3) and for U € H3(F!, X** RY) we have from
lemma A.2.6 that

Lemma A.2.9 (Conservation of solutions). Assume (H1)-(H9) and firt N € N andi e {1,...,N}.
The unique solution of the McKean—Viasov BSDE (3.2) associated to the standard data (71, Fi,0,1,T,¢&, f)
under B, is also the unique solution of the McKean—Viasov BSDE (3.2) associated to the standard data

Proof. Let us fix N € Nand i € {1,..., N}. We denote by (Y, Z? U?, M) the solution of the McKean—
Vlasov BSDE (3.2) associated to the standard data (T,Fi, o,I,T,¢, f) under 3. From lemma A.2.6,
corollary A.2.7, remark A.2.8 and theorem 3.1.3 we deduce that it will be enough to show that M’ €



). From proposition 2.1.1 we will need to check that

(X0, MY = 0 and M s [AMPT Y] = 0. (A7)

zl i . R o~
We remind the reader that M* € H2(X' "), i.e., (X*°, M) =0 and M xis[AMY|PT] = 0.

N —martingale, since F? is

For the first requirement in (A.7), we have that X*°M" remains an F'-

For the second requirement in (A.7), we are going to use [12, Lemma 13.3.15 (4)]. The martingale X"
is adapted under the filtration F?. Let {73 }ren be a sequence of disjoint F!—stopping times that exhausts
the jumps of X and also satisfies the assumptions of [12, Lemma 13.3.15 (ii)]; it is known that such a
sequence always exists for every F'—adapted, cadlag process, e.g., see [29, Definition 1.1.30, Proposition
1.1.32]. Moreover, M is also an F'—martingale. Hence, AM! will be measurable with respect to F7, for
every k € N. If we denote by ]-"T";" the o—algebra of events occuring strictly before the stopping time 7
produced under the filtration F*" and with }—ir the respective o—algebra under the filtration F?, then

we have

serenv( v )
me{l

----- NI{d}
o(AXER) C FL.

Finally, we get

E[AM [Fy= o(AX)]

_E IE,[AMz EN( V  FVeaxis)|FpN \/O(AXi}f)]
_ mef1,...NY\{i}

=E|E|AM.|F]\/ o(AXiH)] ‘f;:’ V (AXi,f)}

:]E-M“Xi,u [AMZ 'ﬁm}(Tk,Ath) ’:’ \/U(AX;;E)}

where we used the tower property in the first equality, [51, Section 9.7, Property (k) on p. 88] in the second
equality, [12, Lemma 13.3.15 (4¢)] in the second to last equality and we concluded in view of the known
information M i [AMPF] = 0. O

Lemma A.2.10. Leti € {1,...,N}. The process W22,de (LN (Al/’]vho,.]),ﬁ(yiho,.])) is cadlag and adapted
1
to the filtration FL-N .

Proof. First of from remark 2.6.4 because p ga < 1 the Wasserstein distance of order 2 as a function
Wa,, . P(DY) x P(D?) — R, is continuous, if we supply P(D?) with the weak topology T, as it metrizes it.

Alternatlvely, more generally one can use remark 2.6.3 to claim the measurability of the Wasserstein
distance with respect to By (P(D9)).
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Then from (2.22) for the random measure LY (?Nho,s}) we have

f € Cy(DY). To see this note that

-1

(2 <?N|[O,s]>)1 (S) = (;{ i}l Y’”|[07S]> (A).

Hence, from (2.27), LY <?N|[o,s]> is an (fl """ N/BT(‘P(IDDd))) —measurable function. Because L (Yi|[078}) is

S

constant with respect to w, by composition of the functions we get that

W22,de <LN <?N|[O7S]> L (Yi|[073])) is adapted. To show that it is cadlag choose ¢ € [0, 00) and a decreasing
1

sequence {s;}jen such that s; \,t. For every j € N we have from the triangle inequality, (2.25) and (2.26)

that

N i F i
‘Wgw (LN (Y |[078j}) LY |[078j})> ~Way, (LN (Y |M> L(Y hw))’

< Wayp <LN <?N|[o,s]~1> LY <?N|[o,ﬂ)> +t W (£ (Y'low1) - £ (Y'lon))

1 N
< JN > sup {|12m—1§m!}2+JE

m=12€[t,s;]

sup {|Y? — ¥;1}2]. (A38)

z€[t,s]

-----

For the second term, because E {supze[O’T}{|Y;|}2} < 00, by dominated convergence again from the right

continuity of Y the term goes to 0. To complete the proof note that the term

\/ DI SUD.cfy,s,1/Y2" — Yi"[}? which depends from w is non-increasing with respect to time. So, the
convergence holds independent of the choice we do for the sequence {s;};en.

Similarly, for a t € (0,00) and an increasing sequence {s; }jen such that s; ¢ we can carry out the
exact same argument as above with the only difference being that in the inequalities we replace ¢ with t—
and then use the existence of left limits for the {Y™ },ncq1,.. Ny O

.....
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Detailed abstract in Greek

H omod6dpoun 8188001 Tou 80U aVaPERETAL GTO QUVOUEVO OTOU 1) CUUTERLPORE AAANAETLOQUC TIXMY TOQ0-
YOVTLVY (1 owpattdiny), Tou Teptypdpetor and Eva 600 TNUa OTLEVOBEOUMY GTOY UG TIXWY BLapopXY EELOMOE-
ov (BSDEs), HoldleL TPOOBELTXG. e aUTHY Gy VoL ATay ave€dpTNTOL, EVEM 0 apIUOg TWY TORAYOVTLY TEIVEL
drepo. H mapotoa dratpdy) otoyelel va pekethoet Ty omiod6dpoun (1 meog to miow) 8idbdoarn tou ydoug
o€ €va TEPBAAAOY 6G0 TO BUVATOV YEVIXOTERO 0L VA ELCAYdYEL TNV Evvola NG euo tdielag Tng omodo6dpoung
0Lddoong Tou ydoug. Edw 1 evotdiclo voeiton we 1 BtoTNTA CUVEYELIS TNE OTIGVAOPOUNE BLABOCTE TOU Ydoug
O€ OYEON UE TA GUVOA DEDOUEVEV.

H adinhenidpaon Uetall TV SLUPOLETIXOY TopayOVTKDY eXPEAleTal PECE TOU EUTELOIXOU TOUG PETEOU.
ot v Tpocdloplcouue TNV ACLUUTTLTIX CUUTERLPORd Twv mean-field cuctnudtwy ané BSDESs Yo yenotuo-
motfjiooupe T McKean-Vlasov BSDE. Oewpolue 6o mepimtooec avtiotpogpne diddoons tou ydoug, otay
€youpe e£dETNOT LOVOTATION GTOV YEVVATOPA Xal OTay €YOUUE TN ouvilT otiyuiado eCdptnor. 'Etot, Lextvdye
ue v xadiépwon e UTapdng xon TNG MOVABIXOTNTOS Yl TIC AUOEIC Tou cucThuatog mean-field xan tng
McKean-Vlasov BSDE, xdtw omd xotdhAnio mhaioto. 3T CUVEYELY, ELGEYOUUE EVOY VEO TEOTO AmMOOEL-
&ne e omo¥odpoung BLAdBOoTE TOU YEOUSG TOU ETULTEENEL ACUUUETEES TEPUATIXES CUVINXES YLl T GUC THUTA
UEoOUL TEBIOL o YEVIXE TETPUYWVIXY oloxAnewotda martingales pe avedpTnTec TEOCALENTELS W 0ONYO-
U¢. Emmhéov, delyvouue emlong ot ot yvwotol puduol olyxhiong v v avtiotpogn diddoon tou ydoug
enEXTEVOVTOL XaL 0TO YEVIXO Jog TepBdilov. Télog, eiodyouue v €vvola g euotdieiag tng omovodpo-
UNg dLddoone Tou ydoug oe oyYEon Ue T GOVORX BEBOUEVMY, X0l ATOBEVUOUNE TNV EYXVEOTNTA TG EVTOC
puotoloyixol Thauotou, Yo T tepinTwon g ouvidoug e€dptnone. IlpwTta xabicpdvouue TNV ouolduop®n
oUYXAoT TV cUGTNUATWY pécou mediov ue Ta BSDE McKean—Vlasov oe oyéon pe tor cOvoha Sed0UEVKDY xal
OTN CLVEYELX ETEXTEVOUUE QUGLOAOY WS TN YVKO TY| evoTdielo Twv BSDE yia vo cupmepiidfouue xaw BSDE
McKean-Vlasov. H ciUvdeon toug yag divelr to anotéiecpa euctdletag. Emnedr to mholoto pog evowua-
TOVEL 1660 GLVEYEIC GO XU ACUVEYEIC TEQIMTMOOELS, EMTEENEL TNV AVATTUEY aQLIUNTIXWY OYNUATOY VLo TNV
avtioTpopn 61dd0oT Tou Ydoug LTS TEOGEYYIoES TUTOU L2.

Emnpocieta tng épeuvag tng avtiotpogng diddoong tou ydoug, oto Kegdhato 1 mapoucidloupe évayv véo
TEOTO YO TNV ATOOELET) UEPIXWY amd Tar VeUeAmOT Vewpruata Tou 6ToyaoTixol Aoylopol. Kdnow and ta
TAEOVEXTHUOTO TNG TEOCEYYIONS oG ebvon 6Tl amontel eEAdyloteg TEOUTOVECELS, amopedYEL OTOLOATOTE GUESDT)
AVOUPORE. OE YWENTXOTNTES, EPYALETAL JUECH UE TN TEOPAEYUN TOUY| EVED 1) HETEROWUN Topn elvon évar dueco
ouumépaoua xaL €ToL amogedyETL 1) OLTAY epyaoia Tou xpUBeTon 0To TopaoxiVio 0TI cuViiElS amodelleLc.

Teleutalo adhd e&icou onuovtixd, 1 emdextixs| (avtiot. mpofAédiun) touy anoppéel amd éva dlanointixd
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emyeionua mpocéyylong mou Poacileton oTn SuyoTOUNcT TEOBAEYIUWY %o OAOXANEWTIXG ATEOGLTWY YEOVWY
TOU &ococxcpr]vilst TEPAUTEPW TN OYEDT LETOEY TV TV evvoldy. To AEPGANLO HAEIVEL UE [LoL EVOLUPEQOUCH

oOVTOUT amodEEn) eVOC VewphuaTog anocUVIESTC UETEWY, TOU TUPEYETAL Yiot AOYOUS TANEOTNTAC.

Kegpdiowo 1

To xepdhato el ToudAy YO o%0To, TeooTalel Vo XUTAGTACEL TO XUTAVONTY Tol Bactnd VewpuoTa TOUWY
¢ oToyaoTixg avdAuong. T va to metdyel autd ypnowonotel pio xawvolpta uédodo amddeling Toug Omou
yivetow yeron tng ‘Eowtepinc” TERLYpAPNC TV o-aAYEBp®y Tou divetar amd to teheoTy| Souslin. Metd
ToEoLGTaoT) TwV VEPNUETLY TOP®Y divetal pla dUEST) EQupUOYT) Toug pe To Yewpruata tpoBoiny. To xepdhaio
whebvel pe pla evolopépouoa amddelln evog yeNouoL VEmERUATOS Yia TNV anocUVIEST) TV UETPMY.

"Etot, mopaxdte arodewviouue ancudeiag to Yewprnua tng teolAédiung toufc. Actyvouue 6Tt To povo mou
TEAYHOTIXG YEELCETOL XATOLOC amd TNV avahuTixy| Vewplor cUVOAWY eivon T0 oyedOY TeTEluuévo Aguua 1.1.2, To
omofo cUVBEEL TIC Xhdoel Xouoh e Tic 0—dhyeBpec. Emniéov, n mpocéyyior| wag emtpéncel ywpelc mohd x61o
VoL OMOQPUYOUUE OTOLUOYTOTE GUETT) AVAPORE. OE YWENTXOTNTES X0l VoL BACIOTOUUE UOVO OTIC JUECES WOLOTNTES
Tou P*, BAene Treopep 1.1.3 xan Treopeu 1.1.5. X1n cuveyelo mapatneovue OTL 1) UETENOWY TEOBOAR xou
Toun ebvon dueco emoxdroudo e TeoPAédgune topnc, PAéne Tregopeu 1.1.6. H tehinn pog mopatrenon eivou
OTL 1) emAeXTIXN TOUY| €meTan emiong dueca and TNV TEoBAEYN Toun, epdoov yenowonotniel Eva xatdAANA0

AMOTENEOUA TEOGEYYLONG ETAEXTIXWY CUVOAWY omd TEofBAEGwa, Bréne Aeypo 1.1.11.

Opwopodg 1.1. Eoww E éva avlaipeto un kevd ovvolo kai 0 c&C2®.

.....

77777

Téros, éva oynua Souslin Ag,,
n e NV xa k € N.

..........

To mapoxdtw amhd Vempnua pog divel Ty “Eowtepr” TepLypan, 1 amddellr Tou eivon OYEDOV TETPUIUEVT.
Oenpnpa 1.2. Eotw E éva avlaipeto un kevd otvoro kar ) C € C 28, Ta mapaxdtew efvar aAndh.
i. HS(E) eivar khawtn ws mpos tig aptiunoues evboes kai Topés.

ii.  Av ya kd0e D € EU{E} épouvue D € S(E), tére 0(E) C S(E).

-----

iit. Eotw Agn, ... n,) éva povétovo oxnfua Souslin pe tpés oto € kanm* € NV, Av ya kd0e k € N oploovpe
m¥ mj ,
S Sk = Up,1 - Un/a Anyongs T0T€ N2y Sk C Upent Mizt Any -

To embueva etvon tar xOplar Vepmprdato Yag.

Ocwpnua 1.5 (ITpoPrediung towhc). Ia kdde mpoPAéipio odvoro P otn P kar e > 0 vrdpyer évag
tpoPAé0g Ypdvos phe tétowog dote [p] C P ka1 P* (mo(P)) — P ({,OP’E < oo}) <e.

Ocedpnua 1.6 (Metproiung Tophe xow tpoforig). e kdde ovvolo S € F @ B(R,) vndpyer uia
F—petproun ouvvdptnon 7s :  — Ry U {oc} ka1 éva olvolo A% € F térowa dote [15] C 9, {15 < 0o} C
ma(S) C AS ka P (AS) =P ({rs < o0}) = P* (mq(S)).



[ot vor 0OhoXANEOCOLUE TN TOEOUGLAoT) Hog UE To Yempnua eTAEXTIXNE TOURAC Vol YPEINCTOUUE TO ETOUEVO

AP0 TOU TEPLYAQEL T “TEOCEYYLON™ TWV ETAEXTIXGY CUVOAWY omd Tal TEOBAEYUaL.

Afppar 1.7, Ta kdle ovvolo O € O vndpye éva otvodo P € P térow dote to O\ P va elvar Aentd

otvodo kait to P\ O va eivar odokAnpwtikd un mpooPdoipo Aenté ovvolo.

Ocdpnua 1.8 (EmiextixAg TopnAg). [ kdde otvodo O € O kai € > 0 vndpyel évag emAekTikds
xpovos TO¢ térowog wote [T9€] C O ka1 P* (mq(0O)) — P ({7’07E < oo}) <e

Kietvovtag, napouctdloupe to dedpnuo amociviuong UETpwy To omolo avagéoaue mopamdve. Ilowv and

a6 efvor amopadTnToL oL TUEUXdTE OPLOUOL.

Optowoée 1.9. Eoww (E,E) évas petpriouos yadpos. Aépe on n € etvon aprduiotua taporyOUevn edv kai
Hovo edv vrdpyer pua apidunioun owoyévela C C P(E) téroa dote € = o(C). EmmAéov, Aéue éu n C
dtoywellel to B edv kai pévo edv ya kdle Ledyos x,y Owuxprtwy onueiwr tov E vrdpyer A € C éton dote
x € Axary € A°. Edv vndpyer pa oucoyéveia C mov dnuiovpyel to € kar diaywpilel to E, Aéue 6t o (E,E)
elval draywpionos kar aprdunoua Tapayouevos.

Opewopoe 1.10. Eoww (2, F) ka1 (E,E) perprioyuor ydpor. Mia ovvdptnon p: Q2 x € — Ry U {oo} Oa
ovoudletar menepacpévo Tuyalo uétpo edr kair uovo edv ta akéAovda eivar aAnin:

i. Ta kdOe w € Q o p(w,-) elvar éva nenepaopévo pézpo oo (E,E).
ii . Ta kdOe S € € n owdptnon (-, S) elvar F—petpriomun.

EmmAéov, to p Oa ovoudletar tuyaio uétpo edv kair pudvo edv po = Y07 [y, Kal TO [y, €lval Temepaouévo Ttuyaio
pétpo yia kdOe n € N.

Ocedenua 1.11. Eoww (Q, F,P) évas yopos mbavétnras kar (E,E) evag daywpionios kar apripnoua
napaydpevog petpnouos xapos. Emmiéor, éotw m : F @ E — Ry éva nenepaouévo pétpo oo (2 x E, F &
E). Optlovue to memepaouévo pégpo my : F — Ry pe my(S) := m(S x E). Edv my < P, téte vndpyer

éva menepaouévo tuyaio uétpo 1 2 x £ — Ry térowo dote ya kde odvolo S € F @ € va éyouue ot

m(S) :/Q/E]lg(w,x)u(w,dx)P(dw).

EmAéov, to memepaouévo tuyaio puétpo o eivar povadixo P—o.m.

Kegpdiowo 2

Ye autd TO XEPIAMO TAUPOLCLALOUUE TOV GUUBOAOUO TOU YENOWOTOWUUE OTN CUVEYELNL EVE XEVOUUE ULd
AVUOAOTNOT] XAACIUGDY ATOTAEOUATOVY TNE OTOYACTIXAS avdAuong, xodng eniong xou oplouéva Baoctxd otoryela
TV YeTpv Wasserstein xow tou yweou Skorokhod. Axéua eiodyouue ) ouvdptnon I', Baowd cuotatind
ToU TAaolou pac. 110 TéA0g ToL Xepahaiou Bivoupe To Bacixd yog epyaheio yia TNV exTiunon vopu®y, TIC €k
TV TPOTEPWY EKTIUNOEL.

Hapaxdtey axolouwdel o opiopds tng cuvdpetnong I' xou ) Lipschitz wiétnta tng.
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Opiopég 2.1. FEotw lebyos X = (X°, X1) € H2(G; R?) x H>4(G; R™), C©X) opopuévn nws awn oxéon
(2.9) ka K©X) nov wcavororet ) (2.10). EmnAéor, éotw © uia ﬁG—petpr’]myn ouvdpTnon ue TIUES OTO
R, térowa vdote |O] < |I|, ya |I|(x) := |z| + Lioy(x). Opilovue ) dwdikaoia r&X0) . /H2(G, X% RY) —
PE(RY) téroa cote, ya kdde s € Ry, va woyle ot

DT ) 1= [, (00002) = 000) (Bl .2) = B (w) KD de)

+(1 —CgG’Xh)(w))ACgG’Y)(w)/ Ulw,s,x) K( ( dx)/n@(w S, ) K(GX)(w dx).

IMoapathenon 2.2. H emdoyn s I' Paciotnke ka1 epnvedotnke ané g epapuoyés. O avayvdotns
pmopet va Ouunlet, yia mapdderyua, tn ovvdeon petaéd BSDE kai pepikav odokAnpo-oiagopikwy ef10woewy
ka1 Ty €01kn) Sour) mov ararteitar yia tov yevvrjtopa, PAéne n.y. Barles et al. [3] 17 Delong [17, Section 4.2].
EmnAéov, umopel kavei§ elkoda va eraAnOetoer 6t n 1" eivar ion ue

(U * @CX Q « p(GXD)G
dCG.X) '

Ahppa 2.3, Eoww ledyos X € H(G; RP) x H24(G; R") ka1 © € PC e upés oo R wérowa doe |O] < |1].
Tére, ya xdde UL, U? € H*(G, X% R?), éoupe 6t

_ — 2 _
PEFO, )~ TEXO W @) <2 (o s~ v 7 ) L B0 o
Kietvouyue, ) mepthndn tou xegahaiou 2 ue pla avapopd 6TIC €K TwY TPOTEPWY EKTIUNOE.
Aqppa 2.4. Eotw 6t pag divaetar éva d-0idotato semimartingale y tng popens
T T
yt:€+~/t fsdcs_/t dnm
érov T évag xpdvog duakorris, & € L2(Gr;RY), [ uia d-Sidotaotn emdexnxn dadikaoia, ka1 n € H*(RY).

Emnpooérws, vnoUétovpe ét1 undpyer ® > 0 téroa dote AA < &, PRC—oyeddv mavtol. Télog, unobétoupe

ot vndpyer 5 € (0,00) térola dote

1€ 1lL2 (6rire) + | - < 00.
B2 (R4)
Téte, y1a kdOe (v,0) € (0, B)? pe v # § éxovue du
2(1 + 0®) fIP
||04?J||12m§(11§d) < TH&”E?(QT;H@) + 2070 || = ,
Xllgz ;(®re)
2
14+~ || f
Hy”i‘g(md) < 8||§||12L§(QT;R<1) + 8 o

2
H2, 5 (R)



Kai
2

1 f
I3 mey < 92 + 0 €12 g, ) + 9(v5 N W,a,@) ! |
7 o H?yvé(Rd)
omou
AP . (1+79)*
710 =1

Evdvovtag ta kouudtia éyovue ot

2

2 9 f
ey Iz ay + 1011362 ey < (18 + 5+ (90 + 2)@) €01 E2(6pma) + (7 v T+ 2)A7,5,<1>) I
V3§
191220y + Il ey < (26 + 950)€]12 ) + (8 Y L 95m,5,¢) ik
2 3 5 ~ YV o e} H2,,5(RY)

Kai

2
HOZZ/”J%@(M) + ||yHi“§(Rd) + Han{?(Rd) < (26 tst (90 + 2)‘I’> ||5||12L§(gT;Rd)
2

f

«

9
+ (8 + 8D+ —— + (99 + 2)A%5@)
g YV o

2
HZ,, 4 (RY)

Eotww Cs :={(7,d) € (0,8]*: v < §}. Opiloupe

_ 9 (1+7®) 5 (1+~®)?
¢ = f <=
M;(5) (%161;1665 {6 +8 5 +9 R 5
preei)
—~ 1 P 2496 (1 )2
) = it {2 H®) 2490 (AP
(v,0)eCs | O y o—" vy

Tt vor OAOXANPMOOUUE TNV ovEAUGT) Log BIVOUPE aoUPTTWTIXG @pdrypata Yiol Toug ouvteheotéc MT () xou

M?(B) oe oyéon e ™ otodepd .

ITpbtaomn 2.5. Ia @ > 0 ka1 § € (0,00) éouue ot

M?(B) = min {9+8(1+7¢)+9 8 (1+7®)2}
v€(0,8) | B Y B—v v
_W+(6ﬁ+26)¢

Kai

o 9  (1+79) 2+9ﬁ(1+7c1>)2}
M(6>_wrel%5%>{5+8 M

2,/24+9,/2+17+5+35 2 2 4
_ A \/55 & +<2\/6+9\/5+17+6+Q6>®'
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Ero, naipvouue énr

lim M (5) = lim M®(3) = (6V1T + 26) @.

B—00

Kegpdiowo 3

Y10 xepdrono 3 mopouctdloude Ta Vewmpruata Upadng xon povadwotntag yio T McKean—Vlasov BSDE xau
7o mean-field cUotnua ané BSDEs. Ilpwv and xdie anotéheopo Vo eiodyouvue o mAaloto und to omolo To

ATOOELXVUOUUE.

McKean—Vlasov BSDE

‘Eotw 1 otoyactxy Bdon (€2, G, G, P) mou wavonotel tic ouvidec utodéoeic xan utootneilet tor oxdroudos

(1) 'Eva Ledyog martingales X := (X°, X%) € H*(G; RP) x H>4(G;R") tou ixavorolet M s [AX°|PE] =

’ h 7. 7 4 4 4 7
O, OTtOV [LX Elval TO TUYAO UETPO TIOL TAPAYETAL ATO TA O()\“CXTO( TT’]Q Xhl

(®2) 'Eva G—ypdvoc droxonric T xou tepuatiny) ouviixn & € L%(QT,A(GX’JC);]R‘I), Y xdmoo 5> 0 xa

AGX) brec opileton ot (P5) mopaxdte.

(®3) Xuvaptioec O,I" énwe opillovton Segvitiov 2.5.1, dmou ta Bedouéva Yo Tov oploud Toug ebval To

Letyoc (G, X), n Swdixacto CEX) v o TUPHVES K@X),

(®4) 'Evoc yevwhrtopoc f: Q2 x Ry x D x R™P x RY x P(D?) — R? tétotoc wote yio xdde (y, z,u, p) €
D¢ x R>P x R? x P(DY), 1 ouvdptnon

(w,t) — f(w,t,y, z,u, 1) eivor G — TPOOBELTIXG YETEPHOWN

xou eovorolel Tig oot Lipschitz cuvirxec

|f<w7ta Yy, z,u, :u) - f(('U?ta y,7 Z/,U,,,LL/)|2

< r(w,t) p%iz(lby/) + 9w, t) |z — 2 + 9w, t) Ju— /> + 9 (w, t) Wz%de (p, 1),
omou (r, 9%, 9%, 0%) : (Ax Ry, P¢) — (RY,B(RL)).
(®5) OpiCouye a? := max{y/r,9°, 9% VI }. T 10 G-mpoPfrédiun xou cadlag drodixaoio

ACXS) . / a2 dCEX)
0

urdpyet ® > 0 t€tol0 WoTE AACXD <@ P CCX — o

($6) Tio o (B0 [ dmwe ot (P2) undpeyet Ag > 0 téroo ote € (BA(GXJC))T <Ay P—oum.

L Aol 1 8u0hion G %o to Ledyoc X pog divovton, Yo *4VOUPE Yprion TNg CEX) avror. ¢©X) | brwc opileton a6 1 (2.9),
avtiot. (2.11). Emmiéov, Ya yenowwomnotfcoups 1o mupiva K (©X) énwe opiletar and tn (2.10).



(®7) T o B0 [ dmwe ot (P2) éyouye

. l/Tg (@A(GXJ)) ‘f(S,O,(),o’(;O)‘degGX) < o0,
0 o

2
ag

omou dp To pétpo Dirac cuyxevtpwpévo 6To oudétepo otolyelo 0 g mpooleonc.

Oecwpnpa 3.1. FEotw (G,Y, T, 60,1, f) standard dedopéva vné tn otalepd B yvia T McKean—Vliasov
BSDE (3.3) und v e&dptnon povonatiov. Edv

max {2, 2;}’3 } M®(5) <1,

wote ) McKean—Viasov BSDE

T — — —

Y, :§+/t f <S’Y‘[Ovs],ZngG,X)7F(G,X,G)(U%?E(Yhovs])) dCGX)

T T . T (3:3)

[ ziaxe— [ [ U a0 s de) - [ am,
t t R t

éyel povaoikn Avon

(Y, Z,U, M) € 82(G;RY) x HX(G, X°; R¥?) x H2(G, X% R%) x HA(G, X% R%) 2

[Na va Swoouye to Yedpnua Umopéng xon povadotntog yio T McKean—Vlasov BSDE uné 1 cuviin

e€dptnon yeerdletan vor avuxataotiooupe g (P4) xou ($6) pe Tic Topordte

(®4') 'Evog yevwAtopoc f: Q x Ry x RYx R>P x RY x Py(R?) — R? tétoroc dote yio %8¢ (y, 2, u, p) €
RY x RY>P x R? x Py(R?), 1 ouvdptnon

(w,t) — f(w,t,y, z,u, p) civor G — npoodevtind petpriown
xan cavorotel Tig mapoaxdtey Lipschitz cuviixeg

|f(w7t7y)zau7,u) - f wvtaylvz/aU’/)M/)F

< (@) |y — P (1) |2 — 2P 4 0w, ) fu— P9 (w0, ) WE (i),

omou (r, 0%, 0%, 0%) : (2 x Ry, P¢) — (RY,B(RL)).

(®6") H ddixaocio AGCXS) ciyan VTETEQUVIOTIXY.

2T reviuuiletan otov avoryvdhot 1 Tapathienom 2.4.1 xau to yeyovéc toc uté T (B5) or f—vépuec elvan 10odUVAES UE Tic
avtioTolyeg Toug.
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Ocedpnua 3.2. Eoww (G,Y, T,ﬁ,@,F,f) mov ikavorowoly s (P1)-(23),(®4’),(P5),(P6") kar (PT)

uné T otalepd 3. Eoto, eniong 6, o T otn (P2) elvar vrereppuvionikr). Edv
2M*(3) < 1,
wote n McKean—Viasov BSDE

T — — —
V=t [ f (.Y 2B, TEXO ), £(Y,)) dCEY)
t
T T p T (32)
_ / Z,dX° - / U, i©X)(ds, dz) — / dM,.
t t R™ t

éyel povadikn Avon

(Y,Z,U,M) € 84(G,q, CE&X).RY) x H2(G, X°;RP) x H(G, X% RY) x H%(G,YLG;Rd).

Mean-field cVotnua ané BSDEs

Tdpea, éotw wo otoyootixy Bdon (2,6, G, P) tou wavonotel g ouvideg unodéoec xan urnootneiler T

axo oV

— . . N
(I'1) N Cebyn martingales {X := (X“’,X””)}ie{l ,,,,, N} € (H2(G;Rp) x H24(G; R")) TOU LXAVOTIOLO)V

) S . 3 6, 7, ’ Z ’ 7
M i [AX®|PC] =0, yio i € {1,...,N}, 6mouv u*™ ebvon to tuyaio pétpo mou mapdyeTor amd To

ShpaTor TG X3

(I'2) Evoc G ypbdvog dxorhc T' xoun teppotinée ouvifixee {67V bicn vy € TIY, L%(QT, A(G,Yi,f); R%), yio

.....

,,,,,

(I'3) Xuvapthoeic {0 }icq,.. vy, I 0nwe opilovton o) 2.5.1, émou i € {1,..., N} to deBouévar yior Toug

.....

optopolg etvan tar Lelym (G,Yz), ol dtodxaoiec CEX) o o TURTVES K(©X),

(T'4) "Evoc yewhtopoc f: Q x Ry x D x R>P x R? x P(DY) — R? tétooc wote yio xdde (y, z,u, p) €
D¢ x R>P x R? x P(DY), 1 ouvdptnon

(w,t) — f(w,t,y, z,u, 1) eivor G — TPOOBELTING YETEPHOLUN
xou eavorolel Tig mapodtey Lipschitz cuvirxec

|f(w7t7y7 Za“?ﬂ) - f(w7t7y/7zlau/7//)‘2

< r(w,t) pgjii(y,y') + 9°(w, t) |z = 22 + 9w, 1) Ju—u'|* + 9" (w,t) Wip]d (e, 1),
“1

omou (r,0°, 9%, 07) : (2 x Ry, PE) — (R, B(RY)).

3 Aol 1 dohon G xou T Lelyn X' poc divovton, v i € {1,..., N}, da xdvouye ypfion twv C(G,Yi')7 AVTLOT. c(GXi)’ OmeC
optlovtan amd TN (2.9), avtiot. (2.11). Emniéov, Yo yenowonoioouvue toug mupfvee K©X) 6nexc opilovtan amd TN (2.10).



(T'5) Opioupe a? := max{\/r,¥°, 9%, VU*}. T tic G-rpoBrédipec xon cadlag dadiaciec

—i t —i
AT = [ a2aceX)

urmdpyet & > 0 tétolo wote AAgG’YZ’f)(w) <P, P® OGX") _ o, ie€{l,..N}.

(T'6) T 7o B0 3 6nee ot (.1"2) undpyet Ay > 0 tétolo ote
maX;e(1,.. N} {5<3A(G’Xl’f)> } <A

(T'7) T 7o (B0 B 6nwc otn (T'2) éyoupe

gy [/Tg@A(G’XiJ)) 1/(5,0,0,0,00) ) ~ex)
0 o~

2
o

T

<oo, i€e{l,..,N},

omou 0 To pétpo Dirac cuyxevtpwpévo oTo oudétepo otolyelo 0 Tng mpdoleonc.

""" ie{l,..., B

otwadepd 3 ya ) mean-field BSDE (3.9) vrné wny eédptnon povoratiov. Edv

20, .
max {2, Aﬂ}Mf(ﬁ) <1,
p
wote to ovotnua twv N—BSDEs

yiN = i +/ f (8, Y|y, Z0N e@XD PEXON (i) LN(WN‘[()’S])) dCEX)
t
r . 4 T , i T ' (3.9)
—/ z dXé"’—/ USN (2) &2 (ds, dr) —/ dMHN, i=1,..,N,
t t R™ t

éyer povadicd Avon T N—rzerpdda (Y, ZY, UY, MY), térou doe

N —i
vV .— (Yl,N7 o 7yN7N) c HSE(G” AGX ,f);Rd)7

=1
N )
ZV = (z"N,... 2" e i:Hng(G, AGXD) xbe RPP),
N —i .
U= U, UMY e i:Hng(G, ACXLD | xis R
Kai
ile

N —i _
MY = (MY MY e TTHE(G, ACXD X RY).
i=1

‘Onee ey, yia var 86)oouE To Yedpnua UTapéng xa ovadixdtnrag yio Tn mean-field cbotnuo ané BSDEs

untd ™ ouvHdn eZdptnom ypeetdleton va avtixataothooude Tic (I'4) xou (I'6) pe tic mapodte
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(T'4’) "Evoc yewhtopoc f: Q x Ry x RY x R*P x R? x Py(RY) — R? 1é1010¢ 07E Yioe x&0e (y, 2, u, p) €
RY x RP>P x R? x Py (R?), 1 ouvdptnon

(w,t) — f(w,t,y,z,u, 1) civar G — mpoodeutixd petphown

xan cavorotel Tig mapoaxdtey Lipschitz cuviixeg
|f(w7 t7 Y, z,u, M) - f(wa t7 y/7 Z,7 U,, :u,)|2
< r(w,t) ly =y P+ P(w,t) |z = 2P+ 0w, t) Ju— '] + 0 (w, ) W5 (1, 11')
omou (r, 0%, 0%, 0%) : (2 x Ry, PE) — (R, B(RL)).
(T'6’) Twi,je{1,.., N} éyouue 61 AGCX)) — ACX.f) 4
Oedpnua 3.4. Eotw (G, {Yi}ie{l,m,N}, T, {£i}i€{1’.._,N} A0V ieq,. vy T f) mov ikavorooty (I'1)-(T'3),
(T'4’), (I'5), (I'6’) ka1 (T'7). Edv
2M*(3) < 1,

tote to ovotnua twv N—BSDEs

yiN = i +/ f (S,YSZ,N’ ZiN (&X) pEX00 (17N LN(g,év)> dC©X)
t

T ‘ T . g A (3.1)
- /t 27N dX;° — /t - USN () g ©X") (ds, dz) — /t dMN, i=1,.., N,
éyer povaducr Adon (YN, ZN UY, M) wéroa dove
N —i
YV o= (YN YN e HS%(G,@,C(G’X ). R%),5
i=1
N —i .
ZN = (2" Z20N) e [THA(G, AGX D Xhe RYP),
i=1
N -1 .
UY = (U, UNY) e TTHR(G, A D XM RY)
i=1
Kai
N 1N N,N AR, GX.f) 7itC. md
MY = (MY MY e [THE(G, AB D X RY).
=1
4H wwétnto epunveeTon up to evanescence. Emnhéov, and tov opiopd twy A(G,Yi,f)7 vt € {1,..., N}, auth n ouvdsun etvou
160d0von pe Tic wétrtee CCX) = CCX) yig i j e {1,..., N}. EmhéZoye vo T Topouctdooue €10t ot oc Sleuxohivel

OTIC TPGEELS.
S0 82—y dpol Eyouy ooy el Tpy amd Tov oplopd 3.1.5.
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Kegpdiowo 4

Y10 TopeY xe@dhato Yo JEAETACOLUE TN OTIoVOOEOUT BLdBOGT) TOL YAoUC.

H évvoia tng dudidoong tou ydoug dpyioe va Teof3der Tohd TNV Teocoyy| 6Tav O Uilal OELRd BIUAEEEWY OL
Lasry xou Lyons [35-37] tn yenoyonolnoay ylo vo. amAOTOMAGOUY TN UEAETN TV oty VIOWOY U€cou Tediou.
Ewryayoav 10éeg amd T oToTioTxr| QUOIXY| 6T UEAETN TwV Wooppotuwy xatd Nash yia otoyactind dagpopixd
oy VISl Ue ouuueTeixés odniemdpdoelg poll pe tov Malhamé xou tov Caines oto [25, 26]. Tevxd, to
TEOBAAUATO UE PEYERO aptiud TouxT®Y efvan EUPaves 8Uoxoho va eheyydolv. dotdoo, 6Tng Uag et dellel
1 OTATIOTIXY QPUOIXT|, XATK AT TIC XATIAANAES LToVETELC (T] TO oNUovTLXY| ebvan 1| Guppsrpioz) unopel xovelc
VO UEAETNOEL TNV AOUUTTWTIXY CUUTERLPORE EVOC GUCTAUNTOS XS 0 0plIUOg TWY TUXTOY AUEAVETOL GTO
dmepo moAD o e0xoia. Puoitxd BeV UTdEYEL EVOG UOVO TEOTOC Yol Vo EXPEAoTEl pordnuotixd 1 WEa OTL oL
TOUXTES, 1) TO CWUATIO OTN) OTATIGTIXT PUOLXT|, IAANAETUOEOUY UETAEY TOUG, TEEMEL vou YIVEL pa ETAoYT|. XN
Yewpla mbavotAtwy, éva and ta mp@ta Badid Vewmpruata ATay 0 1oYLUedS VOUOS TwV PEYSAwY aprduny. O
vouog diver éva ahvolo cuVINXOY UTO TIC OTOLES 1) TUYLOTNTO ACUUTTWTIXG XUTUPEEEL GTOV VIETEQUIVIOUO.
Auth 1 SuvatoTnTa efvon WoVXY YLol T PEAETY CUCTNUATOY PE HEYGAO 0pidUd TEaxTORMY, Xom ETITEENEL
TOV UTIOAOYIOUO TwV amhono|oewy. Towe eCoutiog autol, N dAANAETBpoom Tou €yel ueetnlel exTeVig 0N
BBAoypapior TG OTATIOTIXAC QUOIXHAC EIVOL AUTT) TTOU TEOXVTTEL AT TO EUTELOIXO UETEO TV XUTAGTACEWY TOV
cwuatdiny. ¢ ex To0ToU, Ua AAANAETIOPACT) TOLU TEQLAUUBAVEL TO EUTEIPNO PETEO TWV XATUCTICENDY TWV
OUUUETEYOVTWY ovoudleTon arAnienidpaor mean-field.

H obyypovn avtiindn y ) Swddoon tou ydoug Eextvnoe t dexoetio Tou 50. O M. Kac otn ouodL-
xoolar DIEEUVNONG TWY TEOCEYYICEWY CUOTNUATWY CWUATIOIY VLol OPICUEVES 1) TOTUXES UEQIXEC DLAUPOPLXES
eClowoec (PDE) nou npoxintouy otn Veppoduvauxt|, BAéne [30], éxave pia onuavtixy topatienon oyett-
%3 PE EVaL YOPAXTNEIOTIXG UEYSAWY LU TNUATLY. Ag uTO¥EcOUNE OTL 1) GUUTERLPOPE TWY COLUUTIOILY Elvor
CUUUETEIXY Xl GAANAETULOROUY [E aBUVOHO TEOTIO KOOTE TO PEYEVOS TOUG Vo UELOVETOL AVTIO TROPMS AVAAOY X
ue 1o péyedog Tou cuoTAUATOS. Towg AOYW ANVEMOEWY TWY GUVELTPOPMY BLUPORETIXMOY CWHATIOIWY. X1
CUVEYELY, EAV Ol apynég VECELS TOUC Elvan Ya0TIXES, €8 VOOUVTAL ¢ AVECHPTNTES XoU LOOVOUES, QUTY 1) oYL
%) XATEOTACT) TOU GUG TARATOC Vol UTOPOUGE VO (UVEL ACUUTTOTING OTL BladideToL (n eZamh@veTal) ota dhha
omnueta Tou ypdvou, 6tay To PEYEDES Tou auidveTon 6To dmElpo. AuTi] 1) WBEX TNG BLABOCTC EYEL YENOWOTOLN-
Vel and toTe ot dudopa Véuata Ue TOMES EQUOUOYES, uepES Tpdogates Bploxovtan oto Jabin and Wang
27, 28], Malrieu [39].

Ye auth Ty epyaoia, cuVBUALOVTIC TIC TPV LOEEC VENOUUE VoL UEAETHOOUUE TNV avTioTeoYn BLddoo
TOU YGoUg Yot AOGEL CUCTNUATLY HECOU TEBIOL OTUCVOBLOUIXMY GTOYACTIXMOY DLPORIXWY EELGWOENY (BS-
DEs) xdtw ond wo yevixr pvduon. H omotdddpoun diddoon evvoeitor dTL €yel yooTixr] GUUTERLPORS GTIC
TEQUOTIXES CUVITXES, avTl var EYEL OTIC apyég GUVITXES.

Av xau 1) Buddoom Tou ydoug €yel ueAeTnel EXTEVAC Yol TIC (Epnpég) Yroyaotixéc Alpopéc ECiomoeig
(SDEs), m.y., deite v avaoxémnon Chaintron and Diez [11], v v omod6dpoun diddoon tou ydoug
€youv dnuooteudel uéypl otryunc uévo Ayec epyooiec Hu et al. [23], Briand and Hibon [8], Djehiche et al.
[19], Buckdahn et al. [9], Lauriere and Tangpi [38]. Kopio and autéc tic epyaciec dev Aettovpyel oe
éva tepIBdihov 1600 yevixd 6oo Trg epyaciog mou mapovotdletan €8¢. o cuyxexpéva, Yo T Biddoo
NG WBLOTNTAC YdoUS, TO TEEYOV TANICLO ETITEENEL TETPUYWVIXG-0hoxANewola martingales ye aveldptntee

TEOCALENCELS (G OAOXANEWTES TWV GTOYACTIXWY OAOXANEWUdTKY, cadlag mpofBiéduyiec adlovoeg dladixaocieg
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¢ ohoxAnpwTéc Twv Lebesgue-Stieltjes ohoxhnpwudtwy xadde eniong xo e€dptnon otov yevviTopa and T
QEY WG TUAOTA TOV HOVOTIOTLOY TNG AUong Y. LTny TeayHotixdTnTo, To AmOTEAECUNTH TWY CNATTER 3 XAl
oectiov 4.1 woybouy eniong ywelc ahhoryr oTNy TERITTWOT TOL 1) €EAETNOY) GTOV YEVVHTOPX TROEPYETOL AT TO
T|[o,s—] VT Yot TO g4 Oelte TN onueinwon mou ewwdyetar oto (2.28). Ouolwg oto TuAua 4.2 uropolue va
AVTIXAUTAUOTHOOUUE TO Y ue T0 Y.

o euxollor Tng mapousiaong, o yevvhtopag f unotietar 6Tl elvor VIeTEpUIVIOTIXOS, AAAS pTtopel emiong
va untotedel, 6mwg ouvniiletan, 6Tl epYalOPUcTE OE €yay YWEO YIVOUEVO amd avTlypapo EVOC GTOYAUC TIXO-
U YeEVVATOPA %ol DEBOUEVWY EVOC TEWTOTUTOU YWOEOLU THIUVOTAT®Y, UTO TIC TEOPAVELC TEPOTOTONCELS OTIC
amodeiEelc.

Y10 tufua 4.2.2 moapéyouue puduolc cUyxhione yia T cuvidn e€dptnon. Ta Yewphuota yevixebouy e-
xebva tou Peloxoviar oto [38] yior 1o Brownian-mhoicto. Av xot, otnv epyooia toug o Lauriere xou Tangpi
amoBELXVOOLY ETIONG OTL OL ATAUTACELS TV VEWENUATWY, ONAUDY| 1) TEONYHEVY OAOXANPOGCLUOTNTA TWV AVCELY,
umopoLY va txavoroinoly UTd Wia TEOGVETN WX GUVITAXY YEUUUXNAS AVETTUENG YIo TOV YEVVHTORO. TNV
TopoVoo epyacior BEV UEAETAUE UTO TOLEC CUVITIXES YIoL TOV YEVVATORA UTOEOUY VoL ETULTELY V00V QUTES OL oUTalL-
THOELC OAOXANEWOOTNTUS, UAAY UTOPOUPE VoL TOUUE OTL ETUTUY YEVOVTOL TETEWUEVA OTAY O YEVVATORAS Efval
peaypévog, PAEne topathenon 4.2.11. Ipogaveg, 6o TEOTYOUUEVA ATOTEAEOUUTA, TRETEL VO UTOVESEL Xarvelc
eniong mEoONYUEVN EVOLOUGTLON Yol TO Teppatind cuvinxec. Evohhaxtind, edv xdmotog VeleL var Satnenoel
TETPAYWVIXEC CUVITIXEC OMOXANPOGLUOTNTOS Yial To OEOOUEVA, TOTE YEELdlETon Vo CEWDIXEVCEL TNV CBPTNOM

e fomd ta uétpa mdavétntag o évay TOTo oL To EMTEETEL, 6Twe oo [9] X ato [38, Ilpdtaon 2.12.].

Omno966pouy 81ddooy) Tou Ydoug LUTO TNV EEAETNCY LOVOTLATLOV

Hpdto elodryoupe To mhaiolo yio T omoVddpoun B1dBooT Tou Ydoug UTd TNV e€3ETNoT HOVOTATION.
‘Eotew mifene ydpoc mbavotntag (€2, G, P) mou unootneilet ta axdhoudo:

(H1) Mo axohoudio and aveEdptnra xoun toévopo Lelyn {Yi}ieN ét010 Gote, yoi €N, X' = (Xbe, X0) €
H(F5RP) x H2A(FSR™) pe M i [AX|PF] =0, énou F? := (F});»0 eivon n ouviiing enéxtoon tng
OLOALOTG oL ToEdYETOL U6 1| X' na uXi’n TO TUYolO PETPO TOU TUEAYETOL ATO Tl GAUNTOL TNG Xue6

(H2) "Evac vietepuiotixdg yeovoc T xan pior axohoudio and aveldptntes, 106voues Teplatixéc auvirixeg

) ’ / ’ 7 / ’ ’ 0.IN 7 ’
{& }ien xaddc eniong pio oxohoudior cuvOLWY tspgftxwv GUVITXEY {{527 }l:ei{lv""’N}}NEN TéTol (OTE,
v xdmowo 3 > 0 v woyver £ RN € ]L%(]:r}, AFXLS) R, LE(}"%""’N, AEXLDRYT gytioTorya v
¥éde i € N, émou {AFX DY,y o opiCovtau ot (HS5).
Emmiéov, unodétoupe 6t ||€5NY — &2 1y, v xdde i € N, xon 5 S8 [N —

L2 (FL N AFX DR Nosoo
B T K b}
Il

(H3) Yuvaptroeic ©,T énwe opilovton Segtiov 2.5.1, ue © vietepumiotind xon yio xde i € N o Be-
Sopévar vl Toug optopolc efvon tar Lebym (F',X"), o didixaoiec CEX) o o TUPRVEC KEXY,

Troypouuiletan 611 © € P™ | vio xéde i € N.

6 Aot v x&de i € N n duohon F? oyetileton pe 1o Lebyog Yi, Yo xdvoupe yprion C’(W’T), AVTLOT. C(Fiyi), onwe opileton
otn (2.9), avtiot. (2.11). Emnhéov, Yo xdvouue ypron twv nuphvey KX e opilovtau otn (2.10).

"dec mapathpnorn 4.1.1 (1)
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(H4)

(H5)

(H6)

(H7)

(H8)

(H9)

Evoc yewftopag f: Ry x D% x R>P x R? x P(D?) — RY této0¢ tote yio xdde (y, z,u, 1) €
D4 x R¥>P x R? x P(D?), 1 ouvdptnon

t— f(t,y, 2,u, 1) ebvor B(Ry) — petpriown
xou eavorotel Tig mapoxdtey Lipschitz cuvirxeg

[F(ty, 20, m) = f6y, 20 1))
< () Paly, ) + (1) |2 = 2P+ () fu— ' P+ 0" WS, (i)

omou (r,0°, 9%, 9*) : (Ry, B(R,)) — (R4, B(RY)).
OplZoupe a? := max{/r,9°, 9%, VIr}. T i F'-npoPréduuec xou cadlag Soduaoiec
i t i i
ASF X / oz?dC’S(IF X (6.1)
0
umdpyet ® > 0 tétolo woTe AAgFi’YZ’f) (W) <P, P CEXY a.g, yio xdde i € N.

T 70 10 B énwc ot (H2) éyouue

- [/TE <BA(Fi7Xi’f)) ‘f(S, 07 07 07 50)‘2(1091”,?1)
0 S

5 <oo, 1€N, (6.2)
as

omou g to pé€tpo Dirac cuyxevipwuévo oto oudétepo ototyelo 0 Tng mpocveone.

Trdoyer pla un-pdivovoa, dedid cuveyrc @, uio Borel-pyetpriown cuvdptnon v xou plo oxoyévela

{b'}ien, pe b € Py xdde i € N, térowa dote

£ <BA(Fi’Xi’f)) —1 +/' bdQ, ieN
. 0
pae A
sup{t'} <7, Q—ae.
€N

T 7o 810 B émwe ot (H2) xan v 6nec otn (HT) undpyet éva Aj > 0 éroo dote 1+ 7. dQ, = Ag.

T 7o (B0 B 6Toc ot (H2) éyouye max {2, 32’3} ME(B) < L.

Ta xOplo amoteréopota eivon o axdrovda.

Ocdpnua 4.1 (Awddoon Tou ydoug yia to chotnua). Eoww du wydow o (H1)-(H9). Ia
) Abon tns mean-field BSDE (3.9), ouup. ue (YN, ZV, UY, MY), ka1 s Adoers twr mpdtwy N McKean—
Vlasov BSDE (3.3), ouup. e (AI?N, ZN,ﬁ ,]TJN), éxoupe

: 1 a i, N 1 i,N 7 i, N 7 i,N 7 2
]&LH;ON;’(Y — YL 2N = 2 U UMY = M) P e = O
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Ocedpenua 4.2 (Awddoor tov ydouvg). Eotw éu wyvovr o (H1)-(H9) kat éotw i < N € N. T'a
) Abon tns mean-field BSDE (3.9), ouup. ue (YN, ZV, UY, MY), ka ) Adon wng i—th McKean—Viasov
BSDE (3.3), ovuB. pe (Y', Z',U", M"), éxouue

im || (Yi,N . Yi’ N _ Zi’ [N Ui’ MEN Mz) Hz
N—oo
Omo966pouy 8Ldd00Y TOL YAoUG VO TY) cLuVHUM e&dptnom

e 8wooue ta xOpta amotehéoporto autol Tou TuRuatoc Yo Tpotonoicoupe optouévec and tic (H1)-(H9)

o¢ eChc

(H4') 'Evoc yewftopag f: Ry x R? x R&>P x R? x Py(R?) — R? tétoioc dote v xde (y, 2, u, p) €
R? x RY>P x R? x Py (RY), 1 cuvdptnon

t— f(t,y,2,u,p) ebvan B(Ry) — petpriown
xou avorolel Tig mapodtey Lipschitz cuvirxeg

‘f<t7y7 27u7/vb) - f(t7y/7zlauluul)‘2
r(t) ly = o'P + 0°(t) |2 = 2P+ (1) Ju— '[P+ 9°(6) W3 (s, 1)

omou (r,9°,0%,9%) : (Ry, B(R,)) — (RL, B (RY)).

(H7) To martingale X' €yEL aveZdpTNTEC TEOCAUVENOELC.

(H8') T 10 (B0 B 6nec ot (H2) éyouue 3 M®(3) < 1

Ocebpenpa 4.3 (Alddoor Tov ydoug yia To cbotnua). Eotw duwoyvouvr on (H1)-(H3), (H4'),
(H5), (H6), (H7') ka1 (H8'). I'a tn Adong tns mean-field BSDE (3.1), UU}J/S e (YN, ZV, UY, M),
ka1 g Aoeig twv npdtwv N McKean—Viasov BSDE (3.2), ouup. ue (Y Y ZN U MN), éxoupe

lim — Z UGS G A AN L AN VA M") [

N—oo [V

Ocedpnua 4.4 (Awddoor Tou ydouvg). Eoww duioydow o (H1)-(H3), (H4'), (H5), (H6), (H7')
ka1 (H8') ka1 éotw éui < N € N. Ta ) Abon s mean-field BSDE (3.1), ouup. ne (Y, 2", UV, M),
ka1 T Abon tng i—th McKean-Viasov BSDE (3.2), ouuf. ue (Y4, 2, U", M"), éyouue

lim || (Yz’,N _ Yi’ N _ Zi, N Ui7Mi,N Mz) ||

N—oo

Hapaxdtey divoupe Toug avtiotoryoug puiuois clyxhong.
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Oecwpnua 4.5. Edv Agr < 00 ya kdmoo ¢ > 2 ka1 vreteppviotiké T', tére vndpyer otalepd Cqqo > 0

4 / / /
ebaptopevn and g d, q,2 térowa wote

1 al 7 % % 7 7 % 7 7
Nz (YJV_Y?Z’N_Z’UJV_U?M’N M)H*ﬁﬁrl ,,,,, N,a,Ci,Yl

226+ + (98 +2)@ >

oA
1 —300%(}) R<N)+1i]\§z\”4’(§()3) o7 ity
N_5+N_% yav d <4 ka1 g #4

X N*%log(l—i—N)jLN_% yav d=4 ka1 q # 4
N_%+NJ%2 yav d > 4.

Ocwpnua 4.6. Edv Ay r < 0o ya kdmoo ¢ > 2 ka1 vteteppviotiké T', tére vndpyer otalepd Cqqo > 0

ebaptoduevn and g d, q,2 térowa bdote
|| (Yi,N . Yi’ N _ Zi’ [N Ui’ MEN Mz) ||

(26 +2+ (93 + 2)<I>) (2 — 5M2(3))
< —— ———
(1 —2M*(5))(1 —3M*(5))

N ( QM(I)(@) ) ( 1- ]W;(D(B) ) Aq,T Cd,q,Q

R(N)

1—2M2(5) ) \1—3M2(B)

N*%—i—N_L yav d <4 ka1 q #4
—Elog1+N)—|—N yav d=4 ku q#4
—2—|—N_7 yav d > 4.

Kegpdiowo 5

H omoiodpoun duddoor tou ydoug dnAmveL 6T, xdtw and xatdAANAee ouviiixes, 1 AOGT TOU GUOTHUNTOS
mean-field twv omododpoux®y otoyaotx®y dtagopxdy eflodoewy (BSDEs) pue N moaixteg (1 owportidio)
ouyxAbvel ot Aoelc Twv N aveldptntwy xa woovouwy McKean— Vlasov BSDEs, xadde to N mnyaivet
oto dmelpo. Puowxd, xdie tétolo pouvouevo oyetileton ue évar ohvoro dedouévwy D mou mopéyel T Bdon
e adnuatig meptypaghc Tou. Xt Vewplo twv BSDE, 1o epdtnua av utodécouue 6tL por axoroudio
OEDOUEVLYV {Dk}keN ouyxAivel oTo dedopéva D> tdTe €dv o1 avticTolyeg AUoelc cuyxAivouy, ovopdletal
TeoPANua evotddetog yio BSDE. ®uoixd, to mhaioto yio TNV avTiuetodnion autol Tou eldoug {ntnudtomy Ju
meEnel va xadoploel TOANES TeyVinéC AemtTougpeteg. o mopddelyua, ue ol Evvola cuyXhivouy to 6Edopéva,
TOC UETPAUE TNV AmO0TACT TV AICE®Y xou 0UTw xadednc. Mepixd alioonueinta épya, uetall dhhwy, Tou
nopéyouv tétola mAdiowa eivar 1o Hu and Peng [24] otnv el nepintwon ouveyoic dibhione, Briand et al.
6, 7] yio Brownian odnyoUc xou mo tpéogoto Papapantoleon et al. [44] 6mou xothepdinxe évo oAl yevixd
TAalolo .

O uodethooupe To Thaioto Tou [44] xan Vo To eumhouTicoupEe Yl Vo HEAETAOOLYE TNV euoTdlEld TNg

omotddpoung diddoong Tou ydouc. Ac eluaoTte axpiBeic o auTtod Tou evvoolue. o va Eexvioouue, opiloupe
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N:=NU {oo} xa, ot cuvéyeia, utodétoude wa oxohoudio dedouévmy

{ ({sz}zeN’Tk {{gkmN}zE{l _____ N}} 7{5k’i}ieN,@k,F,f’“>}

keN
T xdde (k, N) € N x N éyoupe 1o oxdhovdo mean-field ocvotnua ané BSDE

ki

}/;k,i,N _ é-k,i,N +/Tk fk < YkzN Zk’LN k F(]Fk o(1,,N) ,OF) (UkZN)S,LN(‘I’?N)) dCLl:
t

_/Tk ZRaN q x ki / / UkaN (g ]F’“ (Lo N) xhoiohy (d dz) / AMEN
t n

—1,..,N,

ue povadueh hoon SPY (Yk Nz URN Mk N) oTou
YRV = (Y’“’LN, ...,Y’“’“N, ...,Y’“’N’N) xon 00T xadelic. Emmhéov, v (ki) € N x N éyouue enlong tnv
axohovdn McKean—-Vlasov BSDE

) Tk ) ) p
Vi =g [ (s b PO RO @b, £y ) ack
t

T , ) T ki Xk T )
- [ zkaxtie = [0 Ul G o) - [ amt,
t t n t

omou L(YF?) ;= Law(YF). Ané o dempnua 4.4 yvopilovue 6T yia x84 (k,i) € N x N éyoupe

H (Yk:,i,N . Yk7i, Zk7i’N o Zk’i, Uk,i,N . Uk’i,Mk’i’N Mk: ’L) ” Il 0.

*ﬂ]Fk(l ,,,,, N)akckX N—oo

Y16y 0¢ Yag etvon va 6et€oupe ott, yio xdde i € N €youpe T obyxhion

. . . . ~ k’i,h .
(Yk,z,N7 Zk,z,N . Xk,z,o + Uk,z,N *MX ,Mk,z,N>

(Yoo,i’ 700 Xoo,z',o [0 4 ~X°°1 h7 0) :
(k,N)—(00,00)
#4Tw amd xdmota xUTEAANAN UETEWT, TNV oTtola and Twea Yo ovoudloupe WIoTNTa eucTdlelag 1 evpwoTiog
¢ omoYodpoung dLddoong Tou ydous. And 660 Yvmpilouue autd Yo eivon TO TEMTO ATOTEAEGUN AUTOU TOU
eldouc, deite wotdoo Del Moral and Tugaut [15].

Ipoxewévou va amodelouue TNy euctdideio TG omovddpoung Slddoone Tou Ydoug, TEMTA BELVOUUE OTL
7 OLBOCT TNG WLOTNTAUS YAOUS ETUTUYYAVETOL OUOLOUOPPA OE OYECY) UE TO OEDOUEVL DE. 21N ouveEyEL,
enexteivovtag Tor anoteléopata euotdietag tou [44] vt McKean-Vlasov BSDE unopolue apéonc v
OUUTEEAVOUNE aUTO Tou VEAoLUE. e auTtd 1o onueio elvon onuavtixd v onuewdel 6Tl 1 cucTdleld TwV
ovoTnudtwy mean-field dev ypeialdtay olte ouverdyeton and TNy evoTdleia Tne Biddoong Tou ydoug. §2-
01600, Yl TANEOTNTY, TUEEYOUUE €TioNG €VoL UOYUEOTERO TANGLO TTOU T1) TERLAAUPBAVEL, ETEXTEVOVTACS Xou TTEAL
(PUCLOAOYIXE. ToL amoTENéUATL TOU [44].

Efyoote €towol va elodyoupe T unoleoelc xdtw and Tig onoleg Yo oyaoTOUUE.

[N to undhoino Tou xegodaiov ctodeponooVue éva yweo mdavotntag (2, G, P) xou pla axohoudio de-

BOHéV@Va Dk = ({Xk7i}ieNaTk7 {{fk’i’N}z‘e{l,.A.,N}}NeN ) {gk’i}i€N7@k7r> fk) Y xdde k € N’ uTO Hfu Tt
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yxbowa otadepd 5 > 0, étor bote vy xdde k € N vo ixavorowovvtas on (H1)-(H3), (H4'), (H5), (H6),
(H7") xou (HS8').

Tdpa, axohouvddvtag to [44], Yo GUUTANEOCOUUE oTo ToPATdVe Tic UToVECELC Tou YpetdlovTon Yior T

olyrhion v dedopévev {DF} ey xardie xou yio tn olyxhion Twv Lebesgue-Stieltjes ohoxhnpwudtomy mou

oyetiCovton Ye Toug yevvitopeg Twv BSDESs.

(31)

(%2)

(3)

(34)

(35)

(%6)

(%7)

(8)

o xdde ¢ € N, n draduaoia X5 givan OLVEYAS %o 1| Xl ey EYEL GAHATOL OE VIETEQPUIVIOTIXOUC

Ypovoug (oyeddy tavtov).
[Mo xdde @ € N, €youpe

~ki (©1(RPT™)P)
e

X

—500,i ki L2(Q,6,PRPT?)  —ooi
X oo X, ————— X

o0 oo

k—o0 k—o00

T xdde i € N, 1o Léuyoc X iavorotel wn F>*—predictable representation 54tno.

Mo xéde 7 € N,

2 |

ki, N _ ki
Hé: ¢ L2(Q,6,PRY)  (k,N)—(00,00) 0
Emniéoy,
U QN (N el i
— B Rt 0.
N ;H& ¢ L2(,G,BRY)  (k,N)—(00,00)

[Mo xdde 7 € N, €youue

ghi LOGEEY, oo

k—o0

Mo xéde @ € N, 1 axohoudion mparypotindy aprdumy

/°° \f’“(s,o,0,0,50)!2dcf 7
0 (ak)2 _
keN

elvon pparypévn, émou dy to pé€tpo Dirac cuyxevipwuévo oto oudétepo ototyelo 0 tng mpocleone.

Trdpyer A € Ry této10 doe, 1 axohovdia mparypatixady aprducdy {AF}, 5 ebvor gparypévn A (deg
nopothienon 5.1.1 (i )).

Or yewvhtopec {f*}, i éouv emmhéov Tic axdhovdeg WidTnTec:

(i) TN xdde k € Nyi e Nya € D(RY, |- ), Z € D> U € D i € D(Po(RY), Wa )8, toyler 6t

i ki
(fk(t7 Gy, Zt7 F(Fk’ X ’ek)(U>t7 Mt)) S D(Rd7 | ' |)

teR4

8T upBorilovye pe D(Po(RT), Wa 1) o Skorokhod ydpo twv cadlag cuvapthoewy pe Twés oo (P2(RY), Wy |.)).
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i) Ta xéde i € N, Z € D>P U € D xou axoludior 6ToyaoTindy dlodixactdve ye tuéc oto R?
b ) X H “
{a*} e TéT010 dote E {suptE]RJr {|af|2H < oo v x4e k € N, edv af &) a®, P— o,

— 00

T67€E

i ki
(kb 2o 2SO, Lab)))
teR4

d. 00,i ¥l ooo
J1(R%])) <f°°(t, a®, 7Z,, rE=LX""e )(U)“ﬁ(“?o)))teug P—o.m.
+

k—o0

Emmiéov, €4y sup, i {Hak(w)Hoo}keN < 00, P—o.n., t61€

Sup{H fk t at7Zt7 (]Fle ek)(U)ta‘C(af))> } < 00, P—o.m.
tER keN

keN
(29) (i) H axorovdia {(Dk}keN LXAUVOTIOLEL (I>k oy oo = 0,

. 1/7+17+ +35
( )MOB é <1

(X10) O ypdvoc draxonic T eivon TenEPUOUEVOS Kol Tk

|
o~

| T°°

Mo va ohoxhnpaycouue divouue to Yewpnua tept Tng euotdletag Tng omo¥odpoung dLddoong Tou Ydoug.
Ocewpenpa 5.1 (Evctddeia tng onicYodpourng Stddoorc Tov ydoug). Ia kdle i € N éyouue
(Yk,z',N kN | xkiio 4 Uk,i,N*laX’“'v“ MlmN)

(Jl(RdX?’),]L2>

(Y'oo,i7 Zoo,i . Xoo,i ° 4 oo & i ~Xoo Vi, h’ 0) .
(k,N)—(c0,00)
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