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Euxapioticg

H niapouoa 18axktopikr) SiatpiBr) ekmovr)Onke otov Topcga duoikng g ZxoAng Epappoopévav
Mabnpatukov kat duokev Emommpev tou ESvikou MetooBiou [ToAutexveiou uno v emiBAeyn
tou Opotpou Kabnynm k. EAeuBéprou [Nanaviovonoudou, Tov oroio guxaploted deppd ya tmyv
gQIuotoouvn 1ou pou édeie, v uropovr) tou, Vv Kabodrynon tou Katl v ouvepyaocia tou.
Euxaplote pe tv og1pd T0Ug Ta UToAora PEAL g TP1eAoUg ermIpornt|g, ov K. 'empyto Kout-
couprna Kat tov K. Nikodao ‘Hpye yia ) otpidr] 1oug Katl 11§ £MmOoUpAavoelg t1oug 6Aa autd ta
xpovia. Erurdéov, suxaptoted ta urodourna PéAn g entapledoug eEeTA0TIKNAG EMMTPOIING Yid TOV
Xpovo ou 81é6soav otnv agloddynorn tng rapovoag diatpiBrg Kat ta moAvutipa oX0Ald toug.

®a n9eda va euxap1oton 6A0UG TOUG OUVEPYATEG POV Kat dlattépwg toug ABavaoio Kapakaorn,
818aktopiko gountn tou Topéa Puoikng g LxoAng Epappoopéveov Mabnpatkov kat PUoikov
Emotnpaev tou ESvikou MetooBiou IToAuteyxveiou kat k. Cristian Erices, kaBnyntr tou [Tavermotn-
piou Central tng X1Ang, yia Tig MOAUTIHES KAl TTOAU®PEG OULNTIOELS KAt TV NH1KY CUNIIAPACTAOoT)
TTOU 110U TIPOCEPEPAV.

Ex@pale 11 eyKAPO1EG £UXAPIOTIEG POU OV OLKOYEVELID POU KAl TOUG (PIAOUG POoU yla TV
N91Kr KAl OIKOVOUIKY] UTOOTPEr mou Hou mapeixav kadoAn ) d1dpkrela g eKmnovnong g
d16aktopikng pou datpPrg.
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IepiAnyn

Zwnv napouoa d18axktopikn 61atpiBr), EpeUVOUPE TO PAIVOPEVO TG Badpotonoinong pedaveov
orwv og Pabpotavuotikég tporonoinpéveg dempieg Papuintag. ApXIKA, PEAETAPE QOPTIOPEVES
Babpotonounpéveg pedaveg ornég ota miaiowa g dewpiag Papuintag Einstein-scalar-Gauss-
Bonnet (EsGB). Ta arnotedéopata tg HeAEG ArOKAAUITIOUV TNV Umapsn onpeiov SiarkAdadbe-
ong, OIou @opTioREvol Badbpotononpévol KAadot Aucewv pedavev onov StakAadovovial amo Tov
KAAGdo Auocenv g 'evikng Bewpiag Lxetkotntag (M'OX) tou Einstein, rou niepiypadet tnv pedavn
o] Reissner-Nordstrom, mapéxoviag eviiadEépouoeg MANPOPOPIieg WG MPOG TG ATIOKAIOEIS TRV
600 JewplOV KAl WG TIPOG TNV OUUIEPIPOPA TRV VE®V AUCE®V. XUYKPIVOUPE TNV €VIPOITid ITOU
nieptypagel 11§ fabpotonoupéveg Auoelg pedavav ongv, arodeikvuoviag Ott o depediddng KAa-
80g 1N teEPIPPEVEV AUoenv eival Sepoduvapika POTINTEOS O OXEOT] 1€ TOV KAAd0 AUoewv tng
Reissner-Nordstrom kat toug aAAoug Babpotonomnpévoug kKAadoug. Xt ouvexela, PEAETAIE 1O
@awopevo g Babportonoinong ng pedavrg onng Reissner-Nordstrom ota maiola g Sewpiag
Bapuntag Einstein-Maxwell-scalar (EMs) oupnieptdap8avopévey 1 YPapKeV 0pavV NAEKTPO-
payvnuopou. Ot kAadot tov Babpotonompévev pedavev onov dtakAadovoviat aro Tov KAado
AUoswv g pedavng omng RN, teppartidoviag pe pa Baputikr 16opopgia. Ot Babpotoron-
Héveg AUOELG PITOPOUV VA XAPAKTINPIOTOUV UTIEPPOPTICHEVEG, HE TV £vvold OTL LITOPOUV va PEPOUV
PEYaAUTEPO NAEKTIPIKO QOPTIo 0 oXeon pe 1) pada toug. EmutAéov, epgavidouv peyaAutepn ev-
1portia oe oxéon pe ) pedavn orr) RN kat dAAeg BaBpotonounpéveg peAaveg oreg ypappikeov Sew-
POV NAEKTPOPAYVITIOROU, Tpoteivoviag t deppoduvapikr) toug npotipnon. Tédog, egetaloupe
10 @awopevo g fabpotomnoinong odoypadikd ota rmiaiowa g dewpiag EsGB, pe v napouocia
APVNTIKAG KOOPOAOYIKNG otafepdg. e autd 10 Oneio, arodelkvuoupe tnyv umapdn ouvbeong
petady tou pnxaviopou g Padpotomnoinong pedavov onav tng M'OY kat pilag petafaong @aong
g UANG o pa ouppopgn Sewpia iediou. Epappoloviag tnv oAoypadikr) apxr], CUCKETICOUHE TO
@awopevo g Pfabpotonoinong rnou AapBavel xopa evidg OUVOPOU HE Tr) SNoUPYia CUPITUKV®-
Hatog UANG 0To oUVOPO, XMPIG TO OTTIACTH0 KATTO1AG OUHHETPIAG, KAl UTTOAOYICOUE TNV OXETI{OHEVT
oAoypa@ikr) eviportia gprmAokng. Emudéov, e§etaloupe 1o gawvopevo g Babportoroinong oAo-
YPAPIKA TIAPOUCIA €VOG NAEKTIPOUAYVNTIKOU Tediou, Kal epgeuvoule Pabpotonoupéveg pelaveg
orieg. Yrodoyioupe 10 fabpeto cuprukvepd, Vv ay@ylpotnia Kal IV UIEPPEUOT] ITUKVOTNTA
UTIEPAY®YTH0U UAKOU P€om g aviiototyiag AdS/CFT kat meptypdpoupe 10 @atvopevo g fabpo-
TOTI01N0NG WG Pla PeTafaoct) @Acng £vog UATKOU AIlo Pid KAVOVIKY] O€ Pld UTIEPAY®Y1HI KATAoTtaoT),
o€ pa kpiown Seppokpaocia.






Abstract

In this Ph.D. dissertation, we investigate the phenomenon of black hole scalarization in
Modified Theories of Gravity. Initially, we study charged scalarized black hole solutions within
the Einstein-scalar-Gauss-Bonnet (EsGB) gravity framework. Our findings reveal the pres-
ence of bifurcation points, where charged scalarized branches bifurcate from the Reissner-
Nordstrém solution, providing insights into their behavior and deviations from General Rel-
ativity (GR). We compute the entropy of the scalarized black hole solutions, demonstrating
that the fundamental branch is thermodynamically favorable over the Reissner-Nordstrém
solution and other branches. Subsequently, we discuss spontaneous scalarization of the
Reissner-Nordstrom black hole in Einstein-Maxwell-scalar (EMs) gravity in the presence of
higher derivative gauge field corrections. Scalarized black hole branches of solutions bifurcate
from the Reissner-Nordstrém branch of solutions, terminating with a curvature singularity.
The black holes can be overcharged in the sense that they may carry a larger electric charge
in comparison to their mass. Additionally, they exhibit greater entropy than the Reissner-
Nordstrém black hole and other scalarized black holes in EMs theory without higher-order
derivative gauge field terms, suggesting their thermodynamic preference. Finally, we explore
scalarization within EsGB gravity with a negative cosmological constant. Here, we establish a
connection between instability in Schwarzschild-AdS black hole with the planar horizon and
holographic scalarization. By applying the holographic principle, we correlate bulk scalariza-
tion with a boundary description of the scalar hair condensation without breaking any symme-
try, and we compute the associated holographic entanglement entropy. Moreover, we explore
the holographic scalarization in the presence of an electromagnetic field and investigate the
phase transition to a holographic superconductor. We compute the scalar condensation, the
optical conductivity, and the superfluid density, describing scalarization as a mechanism for
the holographic superconducting phase transition.






Extevng I[IepidAnyn ota EAAnvika

Tov tedeutaio aikva, moAudpiBpua nelpapatikda Kat mapatnpnolaka 6edopéva £xouv kablepm-
oel 1 I'evikn) Bewpia Zxetomag (FOX) wg v 1o erutuxnpévn dewpia g Puolkng ya v
nieptypadr) g Paputikig addenibpaong. H I'OX eivar pia yeoperpikn) Sempia mou neprypadet
Baputikég aAAnAermidpdoeilg PEO® TNG KAPMUAOTNTAG TOU X®poxpovou. Ot §Uo akpoymviaiot Aot
g M'OX eival n apxr tou Mach kai n apxr g wcoduvapiag. H tpoxida ororoudrmote pikpou
doxpaoukou owpatudiou oe éva Bapuukod medio eival ave§aptn amno ) ovotacn Kat t pada
tou oepatdiou. Autd onuaivel 0t 6Aa ta avikeipeva, avefaptneg tng palag n g ouveong
toug, 9a smtayxuvOouv pe tov 1610 pubpo otav unoBaAdovial os Baputikn duvaprn. H apyr auvtr
fitav kaboplotiky otnv avarrtudn g 'O, kabwg 0drynoes otnv 18¢a 6t 1 Paputnta uropet va
Yewpnbel ®G KAPMUA®ON TOU X®POXPOVOU.

Ia v Sepediowon g 'OZ, o Einstein ékave tn Paocikr urobeon OT1 0 X®POXPOVOG avda-
napiotatal arno pa terpadidotatn, opadr), ouvexr), Aopeviflavn terpadiaotatn moAdarAdtnta.
O1 61a0tdoelg auteg: TPEIS XWPIKEG KAl P XPOVIKY, ouvdudalovial o€ pia eviaia oviotnia Iou
ovopadetal X@poxpovog. Tig armootdoelg Kal 1§ YWVIEG 010 X®POXPOoVo TG Teptypadet pia padn-
HATIKY OVIOINTd, YVOOT ®©§ HEIPIKOG tavuoths. H mapouoia palag kat evépyelag PoKaAet v
KAUITUA®OT) TOU X®@POXPOVoU, TV oroia eptypadel 0 TavUOoT§ KapnuAotntag tou Riemann, rou
TIPOKUITIEL ATO TOV PETPIKO tavuotr). O Babuodg kat n poper) g Kaprulotntag egaptdatatl arod v
Katavour) g padag xat mg evépyelag oto ouprnav. To Sepediwdeg ouvodo e€lodoewv ot MO,
ITOU OUVOEEL TI) VEMHETPIA TOU X®POXPOVOU (HEC® TOU HPETPIKOU TAVUOTH KAl TOV MAPAYOY®V TOU)
e v Katavopn g UAng Kat g evépyelag, eivat ot e§lonoeig riediou tou Einstein.

O1 rup1otepeg ermtuyieg g 'L eptdapBdavouv v KapmUA®or) ToU eatog 1o 1919 anod tov
Arthur Eddington xatd ) Sidpkela pag ékdenyng nAiou. Ot napatnprosig £6eav Ot 10 QoG
TOV AOTEP®V TTOU TIEPVOUCE KOVIA ATIO TOV A0 KAPITUA®VOTAV e 10 IpoBAeriopevo ano 1 Sewpia
noo6. H T'OL e&rynoe v avopaldia oty tpoxid tou Epur, n onoia 6ev propovoe va e§nynOet
MANPRGS anod v KAAoKr pnxaviki tou Nevtova. H Sewpia mpogBAewe owotd v emmpoodetn
PoX®PNo1 tou nepindiou tou Eppr), mou eivatl epinou 43 deutepodemnta g poipag ava aiova.
Erurmiéov, n I'OX mpoBAémel 1o gawvopevo Lense-Thirring, omou 6tav éva paflkd oopa, Omnwg
évag mlavning 1 éva aotépl, MEPLOTPEPETAL, 1] MEPLOTPOPI] TOU EMNPEALEL TOV XDPOXPOVO YUP®
tou. To @awodpevo auto £xetl emBeBai®bdel melpPaAPATIKA PE PETIPNOELS ATtO S0PUEPOPOUS OTIOG TO
Gravity Probe B. H I'GZ mipoBA¢riet o011 10 @wg 10U dradeuyel aro €va 1oxupd Baputiko nedio Sa
epubpopctatoriotel, dnAadn Sa xdoestl evépyela kat n ouyxvotntd tou Sa pelwbel. Auto 10 @awvo-
pevo €xel emBeBainbel o Hradopa mepdpata KAl mapatnpHoelg, Oneg autd pe 1) Ponbela tou
dopupopou Gravity Probe A. To 2015, n avakdaAuyn 1oV BApUTIKOV KUPAT®V AIlo T ouvepyaoia
LIGO emogppayioe pia dAAn onpavukr) poBisyn tng 'GX. Autd ta kupata eivat Siatapaxeg otov
X®POXPOVO IOU TPOKAAOUVIAL AITO EIMTAXUVOHEVEG NAleg, OM®G I CUYX®WVEUOI HEAAVOV OTI®OV
1] aotépav verpoviov. H TOL mpoBAéret trv UIapgn HeEAAVGOV OM@V, AVIIKEIPEVA PE TOOO0 10XUPO
Baputiko nedio rmou ovte 10 Pag Sev propet va draduyet. Ot TapATPOELS TOV ACTPOPUCIKOV QALV-
OPEVRV, OTIKG Ta @Atvopeva g aktivoBoAiag X aro ta akpd IOV PEAAVOV OV, KAl 1] IIPOodatn
arteubeiag ewkova piag pedavrg omnrg and to Event Horizon Telescope to 2019, emBeBaiodvouv
aUTEG TIG TIPOBAEWELS. AUTEG 01 eTTUYiEG KAtadeikvuouv ) duvaprn kat v akpifeia tng F'OL otnv
nepypadr] 1@V PaputiKoOV QAatvopévayv, Kadlotoviag Ty pia amd Tig Mo ermtuxnpéveg Sempieg
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otV 10Topia g PUOIKIG.

H I'OZ ¢xe1 emPefaimdel kuping oe TOAAAmAEG mepUTI®Oelg Onou ta Paputika nedia eivat
OXETKA ao9evr), OTI®G OT0 NALAKO pag ouotnpa. Qotooo, 1 i6ta dev €xel edeyxdel enmapkwg oe
ouVvIrKeg 10XUPOU Baputikoy ediou, OMWG AUTEG TOU ETUKPATOUV KOVIA O PNEAAVEG OTIEG 1) AOTEPES
VETPOVI®V. AUTO 10 ave§epeuvnto Kadeotng aprnvel reptdwpto yia mdavég véeg Quolkeg Jewpieg
rou Sa puropovocav va CUUIANP®OOUV 1) va erekteivouv ) MO,

e KOOPoAOYIKY KAlpaka, n M'OX atvipetomnifel £miong onpavilkeég ITPOKANOELS KAl EpOTHIATA
OTI®G T0 MPOPANHA g KOOPoAOY1KNG otadepdg, n €viaon tng otadepdg Hubble, kadSwg n @uon
TG OKOTEWING UANG KAl OKOTEWVHG €vEpyelag. AUTA Ta avandvinia epetpata deixvouv ot 1)
Katavonor pag yua ) Bapunia Kat 1o cUpnav ivat akopa atedng. YIAPXEL 1] AVAYKI) Yid VEEG
Yewpieg mou Sa propovoav va enekteivouv ) I'OL Katl va mpoo@EéPouv €§nyroeilg yla autd ta
@awopeva. Ot pomonomuéves Jewpieg Baputnrag (TOB) kat aAdeg mpooeyylioelg otnv KPavikn
Baputnta ouvexifouv va €peuvouv aUTOUG TOUG TOHEIS PE OTOXO VA YEQUPOOOUV Td UTIdp)Xovid
Keva otn yvoon pag. ITapodo mou £xouv mpotadei modAég Sewpieg kKPavukng Papuintag, 0Asg
napapévouv atedeig, kKadwg avipet®ifouv onpaviika evvololoyika rmpofAnpata mou kadotouv
Vv AR P avartudn Kat arnodoxr] toug S5UokoAr. Ot rpotevopeveg Yempieg anattouv véeg PUOIKEG
dlaotaocelg kat dopég mou dev £xouv mapatnpndet pexptl ouypng. EmmAéov, ta mepdapata mou
Sa prnopouvcav va tg enaAndeUoouV AMAltoUV €VEPYELEG TIOU £ival AIPOOIIEG HE TV TPEXOUOA
texvodoyia. Eve, ot padnpatukég 6opég tov Sewplov autwv eival e§apetikd MOAUITAOKEG KAt
OAAEG @opEg 0dnyouv Oe ampoodloplota 1 P QUOLKA arotedéopard, OT®G AIElPeg TIHEG Yid
(PUOTKEG TIOOOTITEG.

Fevikd, o1 TOB prnopouv va Sewpnbolv wg pia arotedeopatikn dewpia nmediou plag vnokei-
pevng Sepediwdoug Sewpiag. 'Etol, autég ot Sewpieg mpoteivouv ott 1 I'OX amoktda emirAgov
Babpoug sAeubepiag mépa anod autoug g peIpkig. Ebikotepa, ot Baduotavuotikes Jewpieg, wg
1 o andn kamyopia TOB, enekteivouv 1 'OL péow g e10aywyng srmmiéov Babpotov nediov.
AuUTég £€XOUV TIPOCEAKUOEL TO EVOIAPEPOV TG ETTIOTNHOVIKLG KOWOTNTAG AOY® TRV £GAPHOYROV TOUG
OtV KOOPOoAoyia yia va €§nyroouv T OKOTEWVI] EVEPYELA KAl TV EIMITAXUVOT TS S1a0T0ArG Tou
ouprnaviog. To Babpwtod nedio propet va rpoopépet pia duvapiky) €§1ynon yid v KOoH0AOY1Kn
otaBepa. ITapaAAnda, n ermukeipevn aotpovopia Baputike@v KUPAT®V KaO10Td ta CUPMAyT] avikei-
Heva, OTIOG 01 PeAAVEG OTTEG KAl 01 AOTEPES VETPOVIDY, ®¢ Ta 18avikd cuotpata yid v HeAétn oV
Babpotavuotikav Yenpiwv oe KabBeotwta 10XUpoU PBaputikou rnebiou.

H yevikotepn poper) Babpotavuotikev Ssmpiov eivat ot 9ewpieg Horndeski. Ot Sewpieg Horn-
deski propouv va meptypadouv anod pia dpdaocr rnou rneplAapBavel €vav PEIPIKO TAVUOTL) KAt £va
Babpwtd medio, kat £xouv wg otdxo va draopadicouv ot o1 e€1000e1g Kivnong eivatl deutépag tag-
€®G, ®ote va ano@euxdouv aoctdbeieg Ostrogradsky kat avermbupnta @avopeva, onwg rnapovoia
@avraopatev. Ot Sswpieg Horndeski sivatl e§aipetikd yevikeég kat rieptdapBavouv roAdég adAeg
Sewpieg wg e181kEg mepunoelg, onwg ) Yewpia Brans-Dicke, ) Sewpia Gauss-Bonnet kat tig
Yewpieg Galileon. Metd v mapaipnon oV BAapUTiKEOV KUPATOV aro ta nepdapata LIGO kat
Virgo, ur)pde avaveopévo evbapépov yua tg dewpieg Horndeski. Ot mapatnprjoslg twv Bapu-
TIKOV KUPAT®V PIopouv va 9€00UV auotnpoug TEPIOPIo0US O auteg Tig Jewpieg, €161KA OXETIKA
He TV TaxUInIa 10V Baputike@v KUPAT®V, 1 oroia cupgava pe mn I'OX mpénet va eivat ion pe myv
TaxutnIa 10U QOIOS.

Ot pedavég onég wg Auocelg g I'OX ocuvodsvovial arno dewprjpata povadikotntag Kat 1o
Sewpnua eEaAnwng 1xvaov, o oroio dev eivatl tirmota AAAo aro P 0e1pd AMOTEAECPAT®Y, TA Oroid
dlatunidvouv ot o1 pedaveg oneg kabopidovial MANP®S Ao PEPIKES PAOCIKEG TTAPAPETPOUS OTIMG 1)
pala M, to ndektpiko @optio ) kat i orpogoppr] J. Ot AUcelg propouv va erektabouv yia va
ePAABOUV KAl HAyVNTIKO QOPTI0. LUVETI®G, Ot Pledaveg orég e H1abétouv daAda "ixvn" 1 "paddd”,
ATAOIIOIWVIAG TNV TIEPTYPAPT] TOUG KAl ETTTPETIOVTIAS TNV KATIYOP10II0inon T0Ug ®G:

e Melavr) ortr) Schwarzschild: Mn niepiotpe@dpevr kat xepig goprtio (J = 0,Q = 0).

e Mehavr) orr) Reissner-Nordstrém: Mn mepiotpe@dpevn adrd gopuiopévn (J = 0, Q # 0).
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e Mehavr) orr) Kerr: Tepiotpe@opevn kat xopig goptio (J # 0, Q = 0).
e Mehavr) orir) Kerr-Newman: Iepiotpepdpevn kat goptiopévn (J #£ 0, Q # 0).

O1 pedavég OrEG PIIoPOoUV va OXNHIATIOTOUV PE0® H1apoprVv §1a61KA01V, OTIOG PECK PAPUTIKASG
KATAPPEUONG PEYAAOU AOTEPA VETPOVIOV 1] OTING PNECK CUYX®VEUOTG U0 ACTEPOV VETPOVIOV 1 §U0
HKPOTEP®V PEAAVOV OOV, OTRG £Xel apatnpndel péow Paputikov kupatev. Ot TOB kat ot
Badpotavuotikég Sewpieg e€etalouv kat arodekvyouv tr) duvatotnta Uraping PeEAavVOV orwv He
erurAéov "paddid", napaBirafovrag to Sedpnpa e§ddepng xvov. Mia véa mapdapetpog epeaviletat
va TEPyPAQEL Hd PeAavr) oIy, €KT0g TG Padag, ToU NAEKTIPIKOU QOPTIOU KAl NG OTPOQOPUNG.
Zug BaSpotavuotikeg Sewpieg, N véa autt) mapapetpog oxetietal pe 1o fadpwto nedio, eMOPEVRg,
kaAeitat Baduwid eoptio D. To Baduwtod goptio xapaxktnpiletal og npaotevov 1) Seutepevov, av,
avtiotolxa, dev oxetifetal pe 11g rmpoavaeepdeiosg PaociKEG TAPAPETPOUG 1] AV OXETI(ETAL PE AUTEG.

Y& auto 1o mAaiolo, £xetl mpoogata anoderyxdel o1t o1 Badpotavuotikég Sewpieg PIopouv va
npoPAéwouy tn Suvatdtnta UIapgng 1 TEIPIPPEVEOV HEAAVAOV OMOV HE0® £VOG UNXAVIOHOU TTOU
MEPTYPAPEL J11a PETABAOT PAoNG Pag TETPIIPEVNG PEAAVHG OTG OF Pid P1-TEIPIHIHPEVE], YVOOTOU
®g avIopuntn Baduorornoinon. Ot véeg AUoelg ep@avifouv peydadeg d1a@opég oe 0XE0n HPe aUTEG
g 'O oe meP10XEG UPNANG KAPTTUAGTITAG TOU X@POXPOVOU, EVE Ol H1a(QOPEG AUTEG TIAPAIEVOUV
oxedov buobiakpiteg o€ TIEP10XEG aodevoug Paputntag.

To @awvopevo g Pabpotonoinong propet va Aafet xopa otav 10 Babpwto nedio eivail un-
eldyiota kat "katdAAnAa" oueuypévo pe TV KapmUuA®or) T0U X®PoXPOvou. Auto To oroio kadiotd
10 @awvopevo g Pabpotoroinong tooo evdiapépov kat 18aitepo Bpioketat otn Aggn "katadAnia".
[Tiow amo aut)v v ALEn BpioKetal KPUPHEVOG 0 UNXaviopog piag duvapikrg petaBaong @dong
Hlag TEPIPEVNG PEAAVG OING O Pla Pn-TeTptppév). O pnXaviopog autog S1akpivel 1o patvo-
pevo g Pabpotonoinong anod adda poviéda, ta oroia meptypdgouv 1 Snpioupyila pn TeETpip-
Hévev pedavav ontwv. I'autdv tov Adyo, o 6pog "Baduotoromusvn pedavn onn” xprnotponoteitat
yla va meptypayetl "padAiapég” pedaveg omeg, mou £X0UvV oXNIAatiotel PEom TOU PIXaviopou tng
BaBpotomnoinong.

H napouoa 618aktopiky) épeuva oupBaldet oty avdaAuon Tou @atvopevou g fabpotornoinong
pedavev onov oe Babpotavuotikeg dewpieg Paputntag, sotddoviag diaitepa oto POAO ToU nAek-
TPopayvnuUKoU Iediou Kat oty egepelivnon 0AOYpaPikOV MuXov. Lto kepdiaw [1] yivetar pa
ewoayoyn ot I'OX kat t1ig Avoelg pedavov onwv mou meptypadet. Alvovial ta Kivhrpa yla v
TPOTIOTOIN 0T NG, KaB®g Kat karola rnapadeiypata pn tEIpppevev Auoe@v pedavov onov oe 3ab-
potavuotikeg dewpieg rou rapabidlouv ta Sewprpata e§aAeyng 1xvov. L1o 1€Aog 10U Kedpadaiou
€10aydayetal 1o @awvopevo g Babpotornoinong peAavov onov.

H npotn pedétn BadSpotonounpévav Auoemv pedavav onov £ywve otnv Sewpia Einstein-scalar-
Gauss-Bonnet (EsGB), tng owkoyévelag tov dewpiov Horndeski. H Sewpia EsGB neptdapfavet,
erItAéov, eva Baduato nedio P’ évav Kavoviko KIviTiKO 0p0 Kat €vav 0po 1n-eAdxiotng ouleudng
10U Badpetou niediou pe tov avaddoiwto 0po g Paputntag Gauss-Bonnet. H Sswpia avtr 6&xetat
®G Auon Vv tetptppévn pedavn o) Schwarzschild g I'OL, 1’ éva tetpippévo nedio. H Avon
auty) kaAeitatr g Avon v kevou ¢ Jewpiag. To pn-edayiota ouleuypévo Padpeto mnedio pe
tov avaldoiwto 6po g Paputntag Gauss-Bonnet kadiotatal tayuoviko mépa aro £va KAatd@At
pddag otig mePloXEG 10XUPHS Kaprudotntag. Tote, n Avon Tou Kevou g Sempiag urmoeépstl ano
TAXUOVIKEG AOTAIELEG, Ol OIMOIEG TTEPLYPAPOVIAL ATTO TNV ITAPOUoia £€vOg apvNTIKOU dUVAlIKOU He
Vv poper| ryadiov e§o amo tov opi{ovia YEYOvOT®Y TG PeAAVHS OITG.

H napouoia taxuovikev actabeiov eppnvevetal og éva onpuadt Uraping 1 tEIptipevev AUoemv
pedavov onmv. ‘Otav 1o apvnuko rnyadt Suvapikou yivel apketd Pady kat propei va urnootnpiget
Hla déopa katdotaon, 10te éva onueio Staxiadwong epgavidetal otov KAAd0 TV TEIPIPPIEVOV
Atoewv g T'OZ. 'Oco n adAnAemnidpaocn tou Babpwtou mediou pe ) Papunta yivetat 6Ao Kat
o 10XUp1), TO0 apvnuikoe mnyddt duvapikou oAoéva kat Pabaivel kat o apdpog v déopiwv
KATaotdoe®V mou uriopei va urootnpidet avavetat. T'a k&9 pia 6éopia katdotaor mou npooti-
Yevtat oto @dopa, €va véo onpeio SrakAddwong sppavidetat.
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Kade onpeio Siakdadwong opilet evav oAoKkAnpo véo KAGS0 pn Terpippévev AUos®v pedavov
OI®V, OUVOSeUOIEVO e éva Jr) Tetptippévo Baduwto goptio D. O npwtog kKAGdog Avocewv Kaleitat
Jepeiodng, 1011 neprypdpetatl and Vv npotn depediddn déopia Katdotaorn tou TEPTPPEVOU
Badpwtou mebiou. O epedwdng kKAGSog Auocewv mepiypdgetal and Padpnta nedia ta omoia
elval opadd kovtda otov opifovia yeyovot@v KAl AOUNITIOTIKA TETPIPHEVA O€ PEYAAEG ATIOOTACELS
X®pig Torkd akpotata. O deutepog kKAAd0g Aucewv meptypagetal and Padpnta nedia pe éva
aKpOTato, o tpitog kKAAdog aro nedia pe dUo akpdotata K.0.K.. LNHPEIOVOUHE OTL MEAETEG NG
duvapikng euotadeiag Badpotoronpévav AUcemv arodelkvUeL TV €uotadela POvVo TV AUCERDV TOU
Yepedindoug kAGSoU, eve o1 uTtdAoirol KAAdot xapaxtnpifovial og aotadeig KATH Ao YoapIKeg
dratapaxéeg.

ZUVETIOG, TO @AVOPEVO TG Pabpotomnoinong meptypddet pia duvapikn petafacn @aong rou
npaypatoroteitat oe pia KatdAAnAn Babpotavuotikin Sewpia, pe amotédeopa pia TeETpippévn
peAavr) or) va "vtuvetal" pe éva Pabuwto nedio. H véa un tetpiapévn Babpotoromnpévn Avon
nieptypagetat aro v pafa M xat 1o Babuwtd goptio D. H véa napaperpog D yapakinpiletat
g deutepevov "paAdi”’, epooov egaptatat and v pala M g pedavrg orrjg. Ot véeg Babpo-
TOTIONEVEG AUOELS ATTOKAAUTITIOUV VEA PUOLKT) TiEpav g 'O kat evdéxetatl va odnynoouv os veeg
AvVaKaAUWELS OXETIKA HE T UOoT TS Paputntag Kat ) §ojir) 10U X@poXpovou.

o kepafaw [2 enexteivoupe v apxikn pedétn Pabpotornoinong pedavov onav, woayd-
yoviag €va nAeKtpopayvntiko redio, enopéveg peAstdpe 1o @awvopevo g Pfadpotomnoinong g
Reissner-Nordstréom enayopevo ano v aAAnlAenidpaorn evog fabpwtou nediou pie tov avadAoimto
opo Paputntag Gauss-Bonnet. O avaAloiwtog 0pog g Baputntag Gauss-Bonnet, iépav tou ot
gnpavidetal ot yevikeupévn Sewmpia Horndeski, avarapiotd mpong tagng 10p0éoetg tou R2, ot
bpaorn tou Einstein otn dexkadiaotatn stepotikn) Sewpia xopdodv. Mia aAAnAenidpaon evog Babpw-
10U niebiou e tov 0po Gauss-Bonnet reptypdgel kataotdoelg otig ornoieg 1a Baputikd gawvopeva
evioyuovtal oe eKelveg TIG TIEPLOXESG 1O0XUPNS Paputntag.

H 6pdaon mou nieptypdpet ) Sewpia EsGB pe v napouoia evog nAekipopayvnuikou nediou
elvat

1

S = Tor / d'z/=g [R— 2V ,0V" ¢+ N f(¢)REp + Fu ™ (1)

orou ¢ eivat 1o Babuwtd medio rmou eloayayoupis, Kat eivatl pun-eAdxiota oudeuyHEVo He ToV aval-
Aoiwto 6po Gauss-Bonnet RQG B= R?— 4R, R*" + R, p0 R'YP?, néow miag ouvaptnong oueudng
f(@) xat puag otabepdg ouleugng A. To nAektpopayvnuko nedio A* opiletar péow tou tavuorr)
Faraday wg F'* = VFAY — VY AH.

H Avon tou kevou g Sewpiag authg eival i pedavr] ort] Reissner-Nordstrom twng 'O, yia
ouvVaptroelg OUGEUENG Ot oroieg Kavoroowy v oxéon f/(¢)|p=0 = 0. otav 1o Badnwd nedio
etvat tetpippévo. H Avon auth) epgavifel taxuovikeg aotdadeieg KAT aro PKPEG datapayeg. Zinv
napouoa dewpia, ot dratapayég neprypdpoviat arod v e§ionon tov Padpetov dtatapaxov:

(0 PRI OREs ) b =0, @

10U 0 6pog NAgag g PadpeTg Satapaxng K2 1= —%/\2 " (®)RE |s=0. etvar apvnukdg yia
OUVapPTAOelg OULEUENG O1 OIOiEg 1KAVOTIO0UY TV ermriAéov oxéon f” (@)|g=0 > 0. Ze avtiv myv
nepinworn, éva apvnuko rnydadt Suvapikou o arod tov opifovia g Reissner-Nordstrom eivat
duvato va unootnpi§el 6éopieg Kataotaoelg, pe arotédeopa my ep@avion dakdadwoewv otov
TETPIPPEVO KAABO0 TV AUCE®V TOU Kevou g dewpiag pag. Egodoov, n duvapiky avdaduon tng
euotadeiag twv Badpotormonpévey Auoswv g Schwarzschild mpoteivel 6t pévo o Sepediddng
KAAS0G TV PN TEIPIPPEVEOV AUcEwV eival euotadrg, otnv gpyaocia autr, svdiagepdopaote yua tmyv
EH1@AVIOT] TOU PEToU onpeiou StakAdadwong tou kKAadou tng Reissner-Nordstrom. Mia e§alpetika
XPNo1Hn oUVINK yid TV €UPECT AUTOU, TTOU MEPLYPAPEL VA apVTIKO Iyadt Suvapikou to oroio
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Jropei va urootnpigetl toudayiotov pia déopta kataotaon Siverat akoAouSng:

+00 “+o0o r
3 U(T*)dr*:/ f((r))

orou 7, etval n ouvietaypévn "xedovag" kat U(r) eival to duvapikd. H ouvdrkn auty Givet to
€AAX10T0 OP10 TG TIPNAG TTOU UIopet va AdPet n otadepd ouleuing A, eSaopadiloviag v epeavion
g npotng depediwdoug déopiag kataotaong. Ia Tpég KAT® autou tou elaxiotou opiou, 1
pedavr) orf] Reissner-Nordstrom sivat euotadng kate anod pikpég Badpeteg Statapaxég. Ta tipég
ave autou tou opiou, 10 Badpwtd nedio yiverat taxuoviko, n Reissner-Nordstrém mnapouoiadet
Tayuovikeg aotadeieg kat "petafaivel” oe pia véa Padpotomoupévn P TETPIRHEVI] QOPTIOHEVT)
peAavr) o).

O pnxaviopdg mg padpotonoinong AapBavel xmpa dtav ikavornotovviat ot ouvonkes /() lp=0 =
0, f/ ’(¢)|¢:0 > 0. Zuv napovoa gpyacia ermdéyovial Tpelg d1apopeTikeég oUVAPTOELS Teptypd-
Qovtag TPelg S1aPopetikeg mepmtioelg Pabpotornoinong g Reissner-Nordstréom, pe okomd va
peAenBei n evalobnoia Tou pnxaviopou.

Avvoupe ap9pnukd tg S1apopikég e€1000e1g eSOV 0’Evav OTATIKA KAl 0QAIPIKA CUPHETPIKO
X®POXPOVO:

dr <0, 3)

ds? = —e**qt2 4 220 qr2 4 12(d0% + sin? 0dy?). 4)

To mpoPANPA APXIKOV TIHEV IOV IIPOKUITTEL eriAuvetal pe ) pédodo g BoAng. Ot ouvoplakég
OUVONKEG TTOU TIEPTYPAPOUV TO TIPOPANHa oplakav Tipev kKabopilovial and v anaitnon ot ot
Babpotonounpéveg Auoelg da IPEmel va €lval ACURITIOTIKA EIHESEG O ATIEIPA PAKPIVEG ATTO0-
1aoelg ano ) Paputikin mnyr, npooeyyidoviag tov eminedo xwpoxpovo Minkowski. ErmmumAéov,
KOVvtd otov opidovia yeyovotev ot fadpotononpéveg Avoelg Sa mpérnet va eivat opaldég, urtobetov-
1ag Vv urapsn tou opilovia yeyovotwv. H ouvOrkn yla opaddtnia g npoing rnapayoyou g
ouvaptnong tou Padbpwtou rnediou divel Evav mePOPIopo yia v £Upeor oV Badpotornopévey
AUoswv:
7'}{ (Q2 + @17“?{)2

8Py (2Q2 + 3®17%;)’

orou o deiking 1 dnAdvel mapaydyion &g 1pog TV AKIIVIKT OUVIOTOOA KAl UTTOAOY1IOHO MTAVE OTOV
opifovia yeyovotev. O meploplopidg autdg evvolodoyiKa e§ao@alilel oto cuotnpa Vv eAdxiotn
evépyela rmou 9a mPEMe va £XE1, TPOKEEVOU VA TIPAYIATOIIO e Piia Suvapikn petapaocr @daong.

H emdoyr) g ouvaptnong ouleuing @aivetat va pnv ennpealet myv déon v depedindov
onpeiov dakAddwong tng Reissner-Nordstrom. Ot véeg pn tetpippéveg Pabpotonoumpéveg Au-
0€1S POPTIONEVE PEAAVOV OV yla Kade erudoyn) g ouvdaptnong ouleuing akodoubouv v ibla
TO10TIKI] OUNIEP1Popd, Kat H1adpEpouv PovVo @G P0G TV ArokAlon anod ) 'OX. Autr n dtapopa
OP®G, TIEPIYPAPETAL EMTAPKAOG AT TV otabepd ouleudng A tng Sewpiag pag. Tuvenog, anopaivo-
Haote 0Tl To Paivopevo g Babpotoroinong dev mapouolddetl kamowa 181aitepn eualcbnoia wg rpPog
Vv €AoYy NG oUvAptnong ouleudng, epooov 1 tedeutaia kavorotel 11§ ouvlnkeg ou opilet o
unxaviopog g Babpotoroinong.

Ao v dAAn pepld, n napouocia Tou nAskrpopayvnukou rediou otn Yewpia @aiveral va
ennpeadel toug Babpotononpévoug KAASG0oUg AUoe®V ToloTIKA aAAd Katl rmocotikd. ITapatnpoupe
0Tl 600 T0 NAEKTPIKO @opTtio () aufdveratl, ta orpela 51akAAd®ONG Tou tetpipévou KAGSou AUoswv
petatortidovial oAoéva Kat oe peyadutepeg pageg M. Erong, ot Babpotoroinuévotl kAadot yivov-
1Al OTEVOTEPOL € TV AUiNon TOU NAEKTPIKOU @optiou (), tepuartidoviag eite oe pia pn-axkpaia
@optiopévn Babpotonoinpévry AUon pelavng ormrg, €ite o |la TEIPIPPEV AUOT PeAavig Orng
Reissner-Nordstréom, mpoteivovtag évav pnxaviopo aro-paduortoroinong. ErmumAéov, n avdnon
TOU NAEKIPIKOU @opTiou @aivetat va obnyel oe PikpOtepeg amorkAioelg anod ) 'O, epdcov 10
mAAT0G TV Babpotononpéveav AUoemv PIKpaivet.

To péyedog mmou mepiypd@et 11§ anokAioelg g dewpiag pag amo ) 'O eival 1o Badpwto
@optio D. TapadAnla, n otadepd ouleuing aroteldel 10 Peyedog ImOU MePLypa@Pet 10 [OCO 10XUPH

F2(9) (S — 4Q% f}(9)) <

(5)
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etvat n aAAnAenibpaong tou Padpwtou mediou pe tov avadloioto 6po PBapuintag, CUVENRNG TO
000 10XUPO £ival 10 Baputiko redio oTov X®PoxXPpovo. XTiG MEPLoXES Tou to redio ival 1oXupo ot
arntokAioelg g Sewpiag pag ano ) I'OL eival cageig, eve otig reployxeg aocdevoug Paputntag 1
Yewpia pag eivat oxedov duodiakpiy anod ) I'x.

TéAog, yvopifoviag ot o1 pedaveg oreg Propouv va dewpndouv og Seppoduvapika ocopatd,
pedetape g Seppoduvapikég 1810tteg v Padpotonounpévev KAAdwV g dswpiag pag, onwg
n deppokpacia kat n eviportia. H eppoxpacia tng opapikd cuppetpikng Padpotonoumpévng
HeAavig OMHG MEPIYPAPETAL ATTO TNV EIMPAVEIAKT BapUtnta MAve otov opifovia yeyovotwv wg

aroAoudwg:
ki 1 1
T=—=—|— . (6)
2m dm < V |gttgrr| >7‘H

'EAeyxog rmoAdav BadSpotornoinpévev kAadwv Aucenv smBefaimvel v aduvapia tng dewpiag pag
va Seyxtel Avoelg akpainv Badpotononpévev NAEKTIPIKA QOPTIoHEVOV PEAAVEV OTIOV, 0€ aviideor
pe tov kKAado Avocewv g I'OX, omou n Reissner-Nordstrém pmopet va eivat akpaia, pe v évvola

dgu
dr

OTL propet va €xel NAEKTIPIKO QopTtio ico pe v pada .

H evrportia oe TOB, ot oroieg nepltdapfdavouv 6poug vwnddtepng Tagng oty Kapmulotna
TOU X®POXPOVoU, 6ev akoAoudel Tov VOO erm@avelag ocUp@ava Pe tov 20 deppoduvapiko voplo,
aAAd meptypdpetal ano ermrnpocdeteg Siopdmoelg. ZUpgpava pe tov tuno tou Wald n eviportia tov
BadSpotornoinpéve rAGS®V tov Auocenv g Jewpiag pag urodoyifetal wg akoAoudng:

1
Sy = ZAH + 47N\ f (). (7)

Eivat a§loonpeioto ot 0Aeg ot Babpotornoinpéveg AUOEIS POPTIOREVOV PEAAVAOV OreV epdaviouv
peyalduteprn eviportia amno tig aviiotoixeg Auoelg g 'OL. Auto unobndovel Seppoduvapikr gu-
otabela evavit Seppikov S1akupAvoenV, KaBlotdvTag Ti1§ véeg Auoelg Seploduvapika PoTIpnTaieg
ano autég g I'ex.

Zto kepdiaw [3, peletape 10 gawvopevo g Babuotonoinong cupreptdapbavoviag myv £10-
ayeyn €vog pn-eAddayiota ouleuypévou Babpwmtou mediou pe éva medio UAng. Autou tou eidoug
1 oUdeudn MePlyPAPel KATAOTAOELS OTIG OT0ieg Pia TETPIPPEvVE Pedavr) oty aAAnAerudpa pe v
niep1BaAdouoa UAn NG Katl P0G TOU PNXaviopoU Ing Badpotornoinong petafaivet o€ jia i teTpip-
Pévn pelavr) orn.

Bewpoupe 1 Paputiky dswpia Pn YPAPPIKOU NAEKIPOUAYVNTIOHOU, 1] OIold IEPLYPAPETAl
ano wmyv &g Spaon:

1

587r

R 1 1
/ d*x V=g [2 - §V“¢Vu<b - 573 — f(9) (73 - a732) ) (8)
orou 1) roootnta P oupBolilet tov avaddointo opo Maxwell kat i Setikr) moodtnta @ > 0 oup-
BoAilet pia otaBepd ouleuing, n oroia oxetidetal pe tyv otabepd Aemng vEnG.
H Avon tou kevou autng g dewpiag arotedel kat dAt r Reissner-Nordstrom:

1
dr® 4+ r?d6* 4+ r’sin® 0de?, N(r)=1-"— 4+ % 9)

2 _ _ 2
ds® = —N(r)dt +N(r) " 2

He éva tetpippévo Badpetd nedio kat ) ouvdaptnon ouleudng va 1Kavorolel v ouvOnKn f (¢ =
0) = 0. Mikpég dlatapaxég g Avong autig meptypdgoviat and v egiowon v Badpwtov
dlatapaxav:

(O~ 1) [ 4_g00 =0, (10)

OTI0U 0 0pog palag divetal amod v oxéon:

ur = f() (P = aP?) | (1

$=0
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Bewpoviag nAekIplkd nedia, o 0pog autog g padag propesi va yivel apKeTd apviuikog otav
1 OUVAPTNOL CUEUENG 1KAVOIIOlEl TV OUVINKI f (¢ = 0) > 0, pe arotédeopa va MPOKAAEoeL
TaXUOVIKEG aotadeleg otnv AUon g TEIPIPPEvNG pedavrg omrg. EmAéyoupe v 1eTpayovike
ouvapmon f(¢) = B%2¢%. 'Eva apketd Bady apvnuko mnyddt Suvapikol spgaviletal 56 anod
1ov opifovta yeyovotav g Reissner-Nordstrom pe arotédeopa va @iAodevel 6£0j11eg KATAOTACE,
yla kade pia anod 11g oroieg €éva véo onpeio SiarkAddwong va epgavifetal otov TETPIPPEVO KAAdo
AUosmv.
Ot aktvikeg e§l000elg TV Padpntov datapayxov eptypd@ovial g eEng:

207 (20Q% + 1) f”(O)) w(r) =0,

70

(12)

(’I"QN(’I“)UI(T)), — (l(l +1)

H e§lowon autn eivat 6UokoAo va Anbei pe kowvég pebodoug, ermopévwg avalnroupe g deopieg
KATaotdoelg ol oroieg ogBovial TNV o@alplkl] OUPHETPIA TOU X®POXPOVOU, £ival opalég Kovid
otov optdovta yeyovotwv tg Reissner-Nordstrom kat €ival aCUPITIOTIKA €TUNESEG O€ PAKPIVEG
arnootdoelg ano v nnyr Papvtnrag. 'a kaSe debopévn tipn twv otabepov g Sewpiag pag,
avadnieviag S¢opieg KAtaotdaoelg, CUAAEYOUHE €va S1aKP1td GUVOAO Ao TETPIPIPEVEG PEAAVES OTTEG
oU Yapaktnpifoviat aro évav KaBopltopévo AGY0 ToU NAEKTPIKOU OPTIOU 1Pog Tty pdada tng Toug.
Autdg o Adyog opilet ta onpeia H1akAAd®oNg oTov MAPAPEIPIKO XOPo 1S dewpiag pag. To mpwto
oUvodo Aucewv Teptypadel TiG depedindelg §éopnieg kataotaoelg g Padbpwtng dratapayxng kat
apa, xapakinpidel 1o poto onpeio SiakAdadwong tou tetpippévou depediwdoug kAadou Pabpo-
TOMONPEVEV AUCE®V PEAAVOV OGOV, K.0.K.. Efetdloviag 81apopeg Tipég tov nmapapérpov 6lot ot
AOYO1 NAEKTIPIKOU QOPTIOU ®G ITPOG T PAda mapapévouv PIKpotepol tng povadag, oeBopevor tn
pn-axkpaia ouvlnkn g Reissner-Nordstrém.

Zinv ouvéxela, OTovV MAPAPEIPIKO X®po omou 1 Reissner-Nordstrom mapouotddel taxuovikeg
aotdbeieg, epguvolpe yla véeg Babpotoroinpéveg Avoelg pedavev onwv. To diadopikd ocvotnpa
TV 81000V Tediou meptypadetal arno £va mpoBAnpa apX1KoOv TPV, T0 Oroio AUVOUNE e TV
1€9060 g BoArig. Me dedopévn v opadotta 1@V AUcEmV Kovid otov opilovia yeyovotev, avaln-
ToUpE AUOELG PE AUPITIOTIKA ertinedn oupnepipopd oto ATEIPO, 0’€va OTATIKA KAl OQAlPIKA GU-
HETPIKA X®POXPOVO:

dr? 2
412402 + 2 sin? 0de®, N(r)=1— m(r)

2 _ _—28(r) 2
ds e N(r)dt* + N "

(13)

Ot véeg Babpotomounéveg AUOELS POPTIOPEVOV PEAAVOV oMV oXnuatilouv kKAadoug mou Slak-
Aabwvovtatl and tov kKAado tng Reissner-Nordstrom xkat exteivoviatl o€ AUCELS "UTTEPPOPTITPEVROV"
peAavev om@v, PE Vv évvola OTL 01 AUCELS 1KAVOITO0UVIAL Yl TIHEG TOU AOYOU TOU NAEKTIPIKOU
@opTiou ®g Tpog I pada peyaldutepeg g povadag, mapaBiadoviag v pn-akpaia ouvonkr).
[TA¢ov, o1 popTiopéveg Babpotonoinpéveg PeAAVEG OTIEG PITOPOUV va "KoUuBAAr)ocouv" TIEP1000TEPO
NAEKTIPIKO POPTIO O OXEOT He v pada toug.

Ot BaBpotoroinuévol kKAadotr Avoswv teppatifouv oe pa yupvr) dopopdia. Auto ermbeBaicve-
Tat anod Tov anelplopo g Padbpwtng moocotntag g Paputntag Kretschmann kovta otov opidovia
YEYOVOT®V, TMOU onpaivel ot 1 rapoucia tou opifovia yeyovotmv mou urobéoajpie Auvoviag 1o
npoPAnpa apxikev Tpav dev umdpyel A0V, KAt 1 yupvr dopopdia spgavidetat. Autd 1o
arntotedeopa ermBeBaildveral pe v PEALT TV Ieppoduvapikov 1810t tev tov Badpotonotnpévay
pedavev orwv. To gpBadov g ermpavelag tou opidovia yeyovov pndevidetal yla 6Aoug toug
Babpotonoinpévoug kKAASoug, oto 10XUPO KAOWS Kat, oto aoBeveég Baputiko nedio.

H evtportia epgavifetat augnpévn otig meputtaoelg 1oV Padpotononpéveov HeAavov ooV o
oxéon pe autv g Reissner-Nordstrom, ocUpgova pe 10V Em@avelako vopo, Kadotwviag Tig VEEG
Atoeig Seppoduvapika mpotpntaieg. H 9eppokpaocia tov fadpotonomnpévev pedavov onov eivat
otadepd UYPnASGTEPN O OXEOT HE TIG AVIIOTOIXEG TETPTHHEVES PEAAVEG OTIEG, OTOV MAPAHETPIKO XOPO
PN povadikotntag v AUCE®V, KATL TTOU TS XapaKinpifel wg Seppotepes.
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Y10 1€A0G, TIPAYHATOITOIOUE £vaVv €AEYX0 TOV EVEPYEIAK®V oUVINKOV, smfefat®voviag o1l o
X®POXPOVOG g dewplag Pag UTIAKOUEL 08 AUTEG.

1o kepdfao[d egetaloupe o pawvépevo g Padpotonoinong odoypa@ikd. TUpgeva pe vy
oloypa@ikn apxt] Kat v avuotolxia tou Maldacena, pia ouppopen Sewpia nediou 1ooduvayiet
pe ma AdS Baputikn dewpia nediou. Tote, pia pedavr) omr) eivat oAdoypa@ikd ooduvapn pe pa
kadopiopévy katdotaon UAng. Emopévag, priopovpe va Sewpricoupe Ot pia TEIPIPPEVE Kal pid
Hn-TeETPPPEVH pedavr) o1 100duvapel 0g Pld KAVOVIKY] KATaotdor Kal pld ay®yin 11 akopa
Kai, UTIEPAY®YIHI KATAoTaon g UANG. XT10 KEQAAAIO AUTO, €PEUVOUHE Tl £180UG KATAOTAOELS
UAnNg neprypd@ouv ot Badpotoroinuéveg pedaveg onég. a v emiteudn autou, unodétoupe o
dlagpopetikeg mepuTiOoelg, 1 Padpotavuotikn dewpia AAS EsGB pe kat xopig v napouocia
niAektpopayvnukou nediou.

Zmv npot) rnepintwor), dewpoupe ot n dpdorn g Fewpiag pag rieprypagpetat wg e§Hg:

1 6
S= oy | 4V (R gz~ VuoVie —m'e f(qs)R%;B) , 19

OTI0U 0 6p0g padag Tou Babpwtov nediou e10ayAyeTal MOTE, KOVIA OTIV OUVOPLAKI] ETPAVELL TOU
X®POXPOVoU g pedavng orrg, 1o Badpwtd nedio va méptel g duvaprn g AKIVIKIG OUVETAY-
Pévng.

Tupgeva pe myv ouvdnkn f/(0) = 0, n eninedn pedavr) o) Schwarzschild-AdS arotedet
AUon v nedlakev pag e§lonoeav yia eva tetpipévo Badpntod nedio:

1
ds? = — g(r)dt? + ——dr? + r?(dz® + dy?
()i + ot 1% )
r2 M
g(r) =z (15)

H AuUorn 1ou Kevou g Sewpiag pag, otav r ouvaptnorn ouleudng IKAvortotel v ermurpdodetn ouv-
9nkn f”(0) > 0, mapouoidlet taxuovikég aotabeieg, dnwg @aivetatl and v £§ionon v Babpetov
dlatapayadv akoAoudwg:

<D B <m2 B ;f”(qs)RéB)) ‘¢:05¢ =0. (16)

[Ipooeyyifoviag aptdunukd ) Avor g ediowong tov Badpetov Siatapaxov, Bpiokoue ot répa
arno pa kpion upn g otadepdg ouleudng, apvnukd ninyadia evepyou duvapikou spgavifoviat
€80 Ao Tov opifovia Yeyovot®v tng Ttetptupévng pedavnig orig. [épa anod v ida kpiowan iy, ot
Baduwtég aktivikeg Slatapayxeg PEYAA@VOUV e TV ITAP0do TOU XPOVoU, KAaIoTHVIAG T0 XDPOXPOVO
g Schwarzschild-AdS aotadn.

AvUvovtag aplOpnukd o ovotpa v e§lonoswv rediou g dewpiag pag PBpiokoupe Avoeig
Babpwerornoinpévev PeEAAVOV OTIOV IMOU 0f ACUHRITIOTIKA HPEYAAEG ATIOOTACELS ATIO TNV MNYI NG
Bapuntag, ripooeyyiouv tov xepoxpovo Schwarzschild-AdS eve, oe Kovivég anootdaoelg eppavi-
Jovtal oageig amoxkAioslg aro autdv. Xt Paputiky dewpia AdS, n rmapoucia Pn-teIpPpEvVeV
Babpotov nediov neprypdget 11g fadbpotoroinpéveg AUOEIG PEAAVAOV OTIOV. LIV OUPHoPQT] dem-
pla nediou, napatpeitat paydaia avgnon g MPooboKMEVNS TIHLG TOU TEAEOTH] MEPA ATIO €va
KAtO@Al tng otabepdg ouleuing. Autd 1o arotédeopa dnAwvel, Vv eldpAVION CURITUKVAOONS NG
UANG o€ €va UAIKO, J1€ €vav PnXaviopo Iapojolo Pe autov g fabpotomnoinong, 0mou £€Xoupe tyv
epgavion "paddev' oe pia tetplppevn pelavr) orry. Emopéveg, n fabpotoroinon oe pia oup-
popon Seswpia mediou meptypddet pia dakpit] petafacn @Aaong £vog UAIKOU, AITO A KAVOVIKY)
KATAotaot) UAnNG HPe TETPIPIHEVE TIPOCOOKMOPEVT TIHI] TOU TEAEOT], 0 P1a S1aPOopPETIKY] KATAOTAON
OUNITUKVOEVIG UANG € Pd PIN-TETPIPIHPEVE] IIPOCOOKOUEVT] TIHL]. ZNHEDOVOUNE OTL, 1] arouocia
oraopou ouppetpiag U(1) o Baputiky Sewpia, unodnieovetl pia xBavukoy tUrou petdBaong
(aong os pa kabopiopévr Sepporpaocia.
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EmumAéov, 0e authv Vv MEPIMIOON PEAETAPE TNV 0AOYPAPIKY] EVIPOTia €UIMAOKNAG, 1 oroia
aroteAel pla aro TG M0 ONHAVIIKEG XAPAKINPIOTIKEG TIO0OTNTEG OtV oUPHopdn Sewpia Badpi-
6ag. H moootnta autr) Asttoupyel g perpo tov Babpav eAeubepiag evog cuotrpatog. H elcayoyr
tou Pabpwetou nebiou aufavel toug Pabpoug edeubepiag eropévmg, 1 eviporia, rapatPOUNE
va augdvetal Petd 10 @awvopevo tng Babpotoroinong. Aut 1 ouprepipopa £pXETal o MALEN
avtiBeon pe autnv mou mapatnpeital o€ OAOYyPadIKEG KATAOTAoElS urepayoymyv. Turkd, pa
UTIEPAY WY KATAOTAOT UANG €Xel XAPNAOTEPT EVIPOTTIA OE OXEOT HE TNV KAVOVIKI] TS KATAO-
taon. H Sewpia twv Bardeen-Cooper-Schrieffer mepiypdgn v akaplaia dnpioupyia {euyapiov
Cooper otV Urepayoyin Kataotaot), 1 onoia eAAatmvel 1oug Babpioug eAeubepiag tou cuotrpa-
106. Emopéveg, pnopoupe va aropavioupe OTL 10 gaivopevo g Babpotonoinong dev propet va
MEPTYPAYWEL [11d OAOYPAPIKI] PETAPacn @Aong O la UTEPAYOY N KATAoTtaon UAnG.

T Sevtepn mepimworn, swoayoupe éva nAektpopayvnuko nedio A, = (A4(r),0,0,0) owyv
Yewpia EsGB eve, 10 Babuwtd nedio sivat @optiopévo mAéov. H Spdon mou neprypddet 10 Sew-
PNTIKO poviEAo eivat:

6 1

_ 1 2 -~ = wy BNk 2 2 2
§= 167TGN/ da N<R+ 72— g LwE" = Dud(D"¢)" —m7g| +f(¢)RGB>, (17)

orou n noodtnta D, = V,, — igA, anotedet tv ouvaddoiot napayeoyo Badpidag. Kat oe avtiv
v nepinwon ot Yo ouvdrkeg yia v cuvaptnor oueugng f/(0) = 0 xat f”(0) = 0 xadiotouv v
AUon tou kevou g dewpiag pag aoctadr). H efionon wov Badpetodv diatapaxov unodeikvuet v
napouocia pag evepyou padag rmou prtopei va HexXTel 1IKavomoinTKA apvnTIKEG TIHEG, TIEPTYPAPOVIAG
éva apvnuko Badu mnyadt duvapikou pe v rnapoucia §E0pl@V KATAoTAoE®V, OMOG @aivetat
aroAoudwg:

¢CA(r)? N
g(r) 2

[Tépa am’to kat®@Al, art’ 1o oroio 1 pedavr) orry Reissner-Nordstrom-AdS yivetat actafrg Aoy

1
(D — (m?* + A, A) + 2f”(¢)R§;B> 5¢ =0, mZ;; =m? — R%p.  (18)

g Urnapdng tou nAekrpopayvnukou rnediov katl tng arAndemidpaong tou Pabpwtou nediou pe
Tov avadAoiwto 6po PBapuintag Gauss-Bonnet, AUvoupe aplOuntikd Kat ACUPITIOTIKA TO TTAHPES
oUOUHA TRV MESIAKOV €§10W0e®V Yewphviag tnv Urapdn evog opidovia yeyovotwv. To ouvotnua
avayetatl oe poPAnpa apXlKoV TIHOV PE AUCEIS TTOU IKAVOITOI0UV €KEIVEG TIG OUVOPLIAKEG OUV-
OrKkeg, €101 @WOTE va TEPLYPAPOVIAl A0 OPAAEG OUVAPTIOEIS KOVIA OToV 0pidovia YEYOVOT®YV,
Kadl 0 X@pOxXpovog 1ou da meplypdeetal amo 11§ veeg Babpotornoinpéveg P1eEAAVES OTIEG va Teivel
QOUHITI®OTIKA OToV XOPOoXpovo AdS os Pakpiveég arootdoelg.

O1 véeg BaBpotoroinpéveg AUoelg pedavev oM@V mapouctalouv €va oUPIUKvepad tou Pa-
duetov nediou oe pia kpiown deppoxkpaocia. Kabwg n tur g otabepag ouleuing A audave-
1at, mapatnEoupe pa apudpn avinon tng Kpiowung Seppokpaciag. ‘Otav n otabepd Adfet pa
Kplown Ty, tote n Kpiown Seppokpaocia epgaviong toU CUPITUKVONATOS arelpidetat paydaia.
[Tépa ar’autd 10 KataElt, dswpoupe ot n Baputikn aAAnAenibpaon €ival 1600 10XUPT), WOTE pia
petafaon eAong aro pia IEPIPIPEVH PeAavn o) 08 Pia Pn-teIptppévn eivat aduvarn.

TV nepineorn auvty), yid PIKPOTEPES TIHEG TG Kpioung otabepdg ouleuing, mapatnpouie Tov
OXNPATIONO OUHRITUKVOLLATOG, O OTI010g eAATI®VETAl 600 1] Baputiki) aAAnAenibpaocn tou Pabp®tou
niediou yivetat odoéva kat 1o wyxupr). Me Bdaon v avuotorxia AdS/CFT, Sempouiie 10 apandave
arnotédeopa 10oduvapo pe pla petdfaocn gAaong o plid UNEPAYOYIIT Katdotaon UAng, pe 1o Pa-
Spwtd cuprnukvepa 10U Babpwtou rnediou va 1ooduvapel pe v IPOCOOKOEVT) T EVOG TEAEOTH
Kataotpodr|g euywv Cooper.

It ouvéyxela, umoAoyiloupe v ayeylpotta g UAng otnv dewpia mediou, wg ouvapinon
g oUXVOTNTAg TOU APHOVIKOU KUHATOG ITOU TEPLypadel v Avong tng esiowong Maxwell. Ka-
9wg, n otabepa ouleudng audavetatl, n ayeypotnta yivetat acbevéotepn KAl 10 oUotpa teivet
va 1ooduvapel pe éva pétaddo oe kabopiopévn deppokpaoia. TéAog, uroAoyidoupe v urep-
PEUOTH ITUKVOTITA TOU UIEPAY®YIHIOU UAKOU, 11 ortoia @aiveral va pndevidetal ypappikeg, 000
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1 deppokpaoia teivel oy Kpiopn Seppokpacia. H peiowon auty) tng Unméppeuotng ITUKVOTNTAG
eubuypappidetal pe v pelwon g napouciag CUPITUKVOIIATOG, 000 1 Baputiky aAAnAenidpaon
YlveETal 10XUpOTEPn. ZUVETIROG, TO PAlVOpEVo tng Badpotonoinong rnapoucia nAeKIipopayvnIiikou
@opTiou, PIopel va epunveutel OAOYPAPIKA, ©OG H1ld PETAPBaAoT) PAOCNG EVOG UAKOU Ao Jild KAavov-
1K1 O€ PJ1d UTIEPAYRDYHI KATAoTaor), o pla Kpiowin Seppokpaocia.

Zto kepaaio [5 mapouoidloupe ta arotedéopata g rnapovoag S18AKIOPKAG épeuvag, 1)
pedétn g oroiag avadeikvuel tov podo tng un-eAaxiomg alAnAenibpaong petadu Babuwtov
niediov, nAekrpopayvnukov riediov kat faputikav 610p000e®v ot Snpoupyia vEmv Pn-TeTptppévev
AUoerV PEAAVOV OTIOV, ATIOKAAUITIOVIAS VEA QUOIKA @AVOHEVA TIEPA ATIO AUTA TTOU TIEPTypAdovTal
ot 'OZ. Ta anoteAéopata autd evioyUouv TV KAtavonorn pag 0oov a@opd 10 @atvopevo g Ba-
Spotoroinong, napéyxoviag rmoAUTIHES YVOOELS Yia peddoviiky] épeuva o TOB kat otnv avarntun
SempnuK®V POVIEA@V Yia TV TEPyPadr) TV PEAQVOV OOV Iou rpdypat "ta§idevouv" oto oup-
nav.

18



Chapter 1

Introduction

1.1 General Theory of Relativity

1.1.1 Gravity as Geometry

Einstein’s General Theory of Relativity (GR) has established itself as an extraordinarily suc-
cessful geometrical theory that describes gravitational interactions through the curvature of
spacetime [6]. The two cornerstones of GR are Mach’s and the Equivalence principles. The
Austrian physicist and philosopher Ernst Mach stated in 1883 [7] that "mass there influences
inertial here," suggesting that an object’s inertial is influenced not only by its mass but also by
the gravitational influence of all other matter in the universe. "Inertial" describes the trajecto-
ries of unaccelerated particles (freely falling). In 1907, the German physicist Albert Einstein
demonstrated the Equivalence Principle [8], which states that "locally a free-falling observer
and an inertial observer are indistinguishable,"” meaning that inertial mass and gravitational
mass are equal to each other. The second law of Newton expresses the force F acting on an
object as the mass m; of that object multiplied by its acceleration a:

F=m;-a. (1.1)

On the other hand, Newton’s law of gravitation expresses the gravitational force FG exerted on
an object as the gravitational mass mg multiplied by the gravitational potential V®:

Fo=—-mgVo. (1.2)

The Equivalence principle states the equality m; = mg, implying that the acceleration due to
gravity d equals the strength of the gravitational field —V ® itself.

a=—-Vao. (1.3)

In the case of the electric force, the result is different. Einstein realized there was something
special about the gravitational force, linking it with a strange property arising from Hamilton’s
principle of stationary action in classical mechanics. The action is the integral of the Lagrangian
with respect to time. Hamilton’s principle asserts that the trajectory that a particle will follow
makes its action stationary. This principle provides a powerful framework for deriving the
equations of motion of physical systems, such as the famous Euler-Lagrange equations, which
describe how the system evolves over time. Einstein noticed that when solving the Euler-
Lagrange equations for a free particle, under the influence of no external forces, which is bound
to a surface by the corresponding constraint forces, the trajectory that makes action stationary
coincides exactly with a geodesic of that surface. The intriguing observation that mass can
be eliminated from the Euler-Lagrangian equations without affecting the particle’s trajectory
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inspired Einstein to propose the idea that 'there exists a geometry of space in which the motion
of a free particle is indistinguishable from the motion of a particle under the influence of gravity.
In 1915, Einstein developed how energy and momentum distort spacetime, and particles in the
vicinity move along trajectories determined by spacetime geometry.

1.1.2 The Geometrical Framework

To establish the geometrical framework of GR, Einstein made the foundational assumption
that spacetime is represented by a four-dimensional, smooth, connected, Lorentzian manifold
(M*, 9uv). Where M?* denotes the manifold’s dimensionality and guv denotes the metric tensor.

Each event is characterized by a point p on a coordinate basis of spacetime, z* = (ct, ),
where ¢ represents the speed of light and ¢, Z represents the time and the spatial coordinates.
It’s important to note that GR is a coordinate-independent theory, meaning that the physical
laws it describes remain invariant under infinitesimal changes in coordinates. Mathematically,
this means that an infinitesimal change of coordinates:

ot — o't = gh (1.4)

preserves the fundamental structure of spacetime.

Lorentzian manifold is assumed to be smooth and connected, meaning it is possible to
travel smoothly and continuously from any point to any other point within the manifold without
encountering any gaps, boundaries, or abrupt changes. Given that there is always a possibility
to zoom into a curved space to the point where the space is flat. Afterward, at each point p of the
manifold M, the tangent space T, M is defined as the vector space of all tangent vectors at that
point. A tangent vector at p represents the direction and the rate of change of curves passing
through p on the manifold. The basis vectors of the tangent space are defined as 0, = 9/0z".
Similarly, a cotangent space 77 M is defined as the dual vector space to the tangent space with
the basis 0" = dz*. With the basis elements of 7, M and 7;; M, any tensor field with arbitrary
covariant and contravariant indices can be defined.

The geometry of the manifold is constructed through a three-step process. Firstly, the
metric tensor g, is defined for the spacetime, enabling the measurement of distances, |9]. This
tensor assigns a scalar product to each point in the tangent space, allowing us to quantify the
length between two infinitesimally separated points in space and the rates at which time flows
within a region of space. It is described by the scalar invariant "measure" in four-dimensional
spacetime, known as the infinitesimal line element:

ds® = Guvdatdz” (1.5)

where dz* is an infinitesimal spacetime interval, a vector whose components are infinitesimal
time and distances, respectively. Metric signature (—, +, +, +) is used, reflecting the fact that
the spatial components have the opposite sign compared to the time component, which is
responsible for phenomena like time dilation. The metric is non-degenerate, mathematically,
meaning that the determinant g = | gw,| doesn’t vanish, allowing the definition of the inverse
metric g"":

9" Guo = Grog™ = 34 (1.6)

where 6/ is the Kronecker delta symbol.

Secondly, the connection of the manifold is defined to ensure that the transported vec-
tors remain parallel to itself with respect to the manifold’s curvature. For each Lorentzian
manifold, there exists a unique Levi-Civita connection V (covariant derivative), characterized
by the Christoffel symbols F;\w. This connection allows for the differentiation of vector fields
along curves on the manifold. Hence, the term ’connection’ describes a unique relationship be-
tween vectors in tangent spaces. Levi-Civita connection V satisfies 1 linearity, the Leibniz Rule,
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commutativity with contractions, torsion-freeness, and metric compatibility. The Christoffel
symbols Fl’)y encapsulate the curvature of the manifold and are defined by:

1
P;);u = ig)\a (augua + 3ugau - (%g,w) . (1.7)

Therefore, the covariant derivative of a vector field A" is defined as:

VA =0, AV + TV, A, (1.8)
Vudy, =0, A, — T, Ay (1.9)

Similarly, the covariant derivative of a second rank tensor field A" is given by:

VAAMY =y AW £ TH A 4 TV Ak, (1.10)
V)\Aul, :8)\_4;“, - FIC;)\AO[V - FS}\AMQ, [1 1 1)

and it can be generalized for tensors with more indices ARLH "v1..vs as follows:

VAAR by At

1 Vi...Us
M1 paug...pir .. Hr A1 fr—1C
+ Fou\A 7”1---’/5 + + Foz)\A " V1...Vs
T AL e T ABL-p
LA oy e DoAA e iae (1.12)

Once the covariant derivative is defined, then a geodesic can be determined. Given a manifold
equipped with a metric connection, the geodesic equation can be derived from the condition
that the tangent vector to a path, dz*/d\, remains parallel transported to the connection,
mathematically, meaning the following condition:

ax " dx

This leads to a second-order differential equation known as the geodesic equation:

=0. (1.13)

d?zH dzP dx°
+ w7
d\2 PTdX\ dA

=0. (1.14)

Finally, the Riemannian curvature tensor 2/, ouv is determined through the parallel vector trans-
port concept. This tensor provides valuable insights into how the components of a vector change
when it is parallel transported along a small closed curve. Specifically, it reveals how the di-
rectional derivative of a vector field fails to commute, indicating the curvature in the space. As
Sean Carroll notes, "Everything we want to know about the curvature of a manifold is given to
us by the Riemann tensor; it will vanish if and only if the metric is perfectly flat." [10], which is
given by:

R, = 0uly — 0,10, + 10, T0, —T0, T, (1.15)

The components of the Riemann tensor are defined in terms of the Christoffel symbols F;\W. For
the Christoffel connection, the only independent contraction of the Riemann tensor forms the
Ricci tensor:

Ry =Ry, (1.16)

The trace of the Ricci tensor is the Ricci scalar or curvature scalar:
R = R“M = g“”RW (1.17)

In GR, two essential properties concern the specific connection, described by the Christoffel
symbol (|1.7), of a manifold: metric compatibility and torsion-free. A metric-compatible con-
nection ensures that the notion of distance and angle defined by the metric tensor remains
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1.1. GENERAL THEORY OF RELATIVITY

consistent under parallel transport, mathematically this implies that the covariant derivative
of the metric tensor vanishes: V,g,, = 0 and vA guvr = 0. A torsion-free connection ensures
the consistency of parallel transport of vectors in curved spacetime; mathematically, this im-
plies that the Christoffel symbols are symmetric under the change of the two lower indices:
F;\W =T) .. Therefore, the symmetries of the Riemann tensor that arise are: it is antisymmetric
in its first two indices and its two last indices, and it is invariant under the interchange of the
first pair of indices with the second:

Rpa;u/ = _Rap;un Rpauu = _Rpm/;m Rpauy = R;U/pa‘ (1.18)

Using the aforementioned symmetries, it is straightforward to see that the Ricci tensor is
symmetric R, = R,,. Moreover, another property of the Riemann tensor is described by the
Bianchi identity:

v)\RpO',uZ/ + vaa)\uu + VUR)\p;w =0. (1.19)

A very useful form of the Bianchi identity arises from contracting twice on:
gygg,u)\ (v)\RpUuV + vacr)\/.w + VURAp;w) =0=
1
VIG,, =0, (1.20)

where G, = Ry, — % 9w I is the Einstein tensor, which describes the geometry of spacetime.
Consequently, gravitation is an effect of the curvature of the manifold M*.

1.1.3 Electrodynamics in General Relativity

In the context of GR, electromagnetism is typically described by the classical theory of elec-
tromagnetism within the framework of curved spacetime. Maxwell’s equations, which govern
classical electromagnetism, describe how electric E and magnetic B fields are generated and
interact with charges p, currents j and changes of the fields In flat spacetime, these equations
take the form:

v.E=L (1.21)
€0
V-B=0, (1.22)
. 9B
E=-"= 1.23
_ - OE
V x B = upJ + poeo—, (1.24)

ot

where ¢g is the vacuum permittivity and p is the vacuum permeability, which quantities satisfy

the relation: 1
2= . (1.25)
Ho€0

A charged particle perceives Lorentz force due to the electromagnetic fields as follows:

F =q(E + 7 x B). (1.26)

Liv.J=0. (1.27)
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In the vector potential formulation of electromagnetism, the electric E and magnetic B fields
are related to an electric scalar potential ® and the magnetic vector potential A as follows:

, 0A
E=-Ve-—, (1.28)
B =V x A. (1.29)

Substituting the above equations into the Maxwell equations, one can derive the simple homo-
geneous formulation as:

0 - P
24— (V- A)= -1 1.30
v Jrat(v ) 60’ ( )
o» 1024 . 100 =

The scalar potential ¢ and the vector potential A are auxiliary quantities introduced to sim-
plify the mathematical description of electromagnetic phenomena. Therefore, Lorentz gauge
transformation can be applied to both two potentials, ensuring that they will not affect the
electromagnetic fields and they satisfy the following condition:

109

V-A—!—sza—(). (1.32)

Furthermore, introducing the d’Alembertian operator as:

1 0
O=Vv?- 5=, 1.33
c2 Ot? (1.33)
the Maxwell equations take the simplest form:
06 = -2, (1.34)
€0
OA = —poJ. (1.35)

Maxwell’s equations within the framework of curved spacetime can be written using tensors
and changing all partial derivatives with covariant derivatives. The tensors that are defined are
the electromagnetic potential A#, the Faraday tensor F),,, and the current j* as follows:

A = <‘I’7g> , (1.36)
C

FH = VHAY — WY AR, (1.37)

= (cp, f) . (1.38)

The electromagnetic potential A* can be defined in a curved spacetime as a vector field whose
components transform under Lorentz transformations V,A* = 0, and also under general coor-
dinate transformations. The time component represents the electrostatic potential ®, and the
spatial components represent the magnetic vector potential A. The Faraday tensor F),, is an
antisymmetric tensor that combines both electric and magnetic fields into a single mathemati-
cal object, and it provides a covariant description of electromagnetism. The components of the
Faraday tensor are given by:

0 El/c EQ/C E3/C
o —El/C 0 —Bg BQ
F’uy - —EQ/C Bg 0 —Bl (1'39)

*E3/C *BQ Bl 0
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Therefore, the Maxwell’s equations can be written as:

va'LW = _MOjuv (1.40)
Vb +VuFy, +V,F\=0, (1.41)

where the first one corresponds to Eq. (1.21),(1.24) and the second one is equivalent to
Eq. (1.22),(1.23). The current j* represents the density p and the flow of electric charge in
space J. Note that the equation for charge conservation, V,j# = 0, is given from the same

Eq. (1.27).

1.1.4 Lagrangian Formulation

A mathematical description of the dynamics of gravity of a physical system can be obtained
from the Lagrangian formulation of GR. In 1915, Einstein formulated the action as part of
his development of the theory of GR, where he realized that the dynamics of gravity could be
described in terms of the curvature of spacetime, leading him to propose the Einstein-Hilbert
action as the basis for his field equations. Just a few days after Einstein’s achievement,
David Hilbert, a prominent mathematician, also independently arrived at the same action. The
dynamical variable is the metric tensor g,,, and the Einstein-Hilbert action reads as:

SEH = / d:ZZ4 vV —gR, [1.42)

where da* \/— g represents the element of 4-volume, and Ricci scalar R is the only independent
scalar that can be constructed from the Riemann curvature tensor, involving second derivatives
of the metric. Therefore, based on the action principle |11], the vacuum Einstein field equations
can be derived by the variation of the action with respect to the metric as follows:

0SEH
dgtv

1
0SEH = ogh = / dx* \/—g (RW — gu,,R> ogh. (1.43)

2
Extremizing the action leads to the following vacuum field equations:

1
R,uu - ig;wR =0, (1.44)

where the Einstein tensor G, is recovered. The non-vacuum field equations arise by adding

terms for matter fields in Lagrangian density. A matter field is described by a kinetic term, a
potential, and terms of possible interactions. Hence, the action reads as:

1
S = -—5S8gu + Su, (1.45)
2K
where Sy is the matter term and x? = 87G/c*. The full Einstein field equations are:
Gm/ = Ksz,um (1.46)

where T}, represents the energy-momentum tensor of the minimally coupled matter field,
defined as:

2 0Sm
TyW=——F——. 1.47
Vg agn (47
The divergence-free nature of the Einstein tensor, V#G,, = 0, implies that the energy-

momentum tensor is also divergence free, V#T),,, = 0. This property is necessary for geodesic
motion, and it guarantees the validity of the weak equivalence principle [12], [13].
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1.1.5 Black Hole Solutions

The Schwarzschild Solution

The Schwarzschild solution is a fundamental solution to Einstein’s field equations in GR
that describes the spacetime geometry outside a static, spherically symmetric, non-rotating,
and uncharged massive object such as black holes, stars, and planets. It was first discovered
by Karl Schwarzschild in 1916, only a few weeks after Einstein formulated his theory of GR [14].
The Schwarzschild solution can be derived by solving Einstein’s field equations, applying the
Lagrangian formulation of GR, and neglecting the presence of matter. This solution arises from
the Einstein-Hilbert action . In polar coordinates {¢,r, 0, ¢}, the line element ds® of a
static and spherically symmetric spacetime is given by:

ds? = =240 g2 4 2B gp? 4 2024902, (1.48)

where d)? is the line element on a unit two-sphere d2?> = d6? + sin? fdyp?. The choice of the
exponential functions ensures the correct signature of the metric. Defining a new coordinate:

F=e'Or dif = " Mdr 4 " rdl (r) = <1 + rd];lY)) "M, (1.49)
then the line element becomes:
ds? = —e2A g2 + <1 + rdl;ir) > - B2 g2 4 72402, (1.50)
Relabeling the following:
s (1 N rdf‘dir) ) - 2B(N)=20(r) _y 2B(r). (1.51)
the line element takes the simplest form:
ds? = —2AN g2 4 2B gp? 4 12402, (1.52)

The two unknown functions A(r) and B(r) are determined by solving the Einstein field equa-
tions (1.44). There are three non-trivial independent field equations:

1 2B 2B/(r)

—— + + =0, (1.53)

72 72 r

1 2B(r) 24’
Lm0 (1.54)

r T r
r2 A" (r) — 2 A'(r)B'(r) + r?A'(r)? + rA'(r) — rB'(r) =0,. (1.55)

Adding the first two equations (1.53) and (1.54) results in the equation:

A'(r)==B'(r) = A(r) = =B(r) +c, (1.56)

where c denotes an integration constant, which can be absorbed by rescaling the time coordi-
nate, t — e “t, and setting the constant to zero. Therefore, substituting B’(r) = —A’(r) into
the Eq. yields the second order differential equation of the unknown function A(r), the
analytical solution of which is:

log(r)
2

A(r) = %log (2 crr) — +eo (1.57)
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Here, the constants c; and ¢y represent the two integration constants, and they must be related
by the equation ¢; = —e~2¢ for the function A(r) to satisfy all the field equations. Hence, the
obtained metric function is ggg = —e2Aln) = (1 + @) To determine the last constant

c2, it is sufficient to compare this result with the description of the Newtonian limit in GR,
goo = —(142®), where the gravitational potential is = —% [10]. Finally, the Schwarzschild
solution can be described by the following line element:

—1
ds? = — (1 - 2GM> dt® + (1 - 2GM> dr? + r2dQ>2. (1.58)

T r

Note here that the spacetime becomes flat as the Newtonian mass M — (. Also, the line
element is asymptotically flat as » — oo.

A problematic aspect when describing the behavior of matter and energy using GR is the
existence of curvature singularities. Curvature singularities represent breakdowns in the clas-
sical description of spacetime and highlight the limitations of GR, especially in extreme condi-
tions where quantum effects may become significant. To check for curvature singularities, it
is sufficient to determine if any curvature scalar quantity diverges. The simplest such scalar
is the Ricci scalar, while a quadratic scalar is the Kretschmann scalar K = RF'?? R, ,;. The
Kretschmann for the Schwarzschild solution is given by:

48G% M*>

K =
7‘6

(1.59)
This expression ensures that » = 0 is a curvature singularity.

Geodesics in the Schwarzschild metric describes the paths that particles, photons, or test
masses follow as they move through the spacetime surrounding a spherically symmetric, non-
rotating mass (such as a black hole or a massive object). These trajectories can describe
phenomena such as the motion of planets around a massive star, with a specific example of
Mercury’s motion around the Sun, which is known for verifying its perihelion advance.

Beyond the curvature singularity at 7 = 0 in spherical coordinates, a coordinate singularity
exists at r = 2G'M, where the metric component ¢;; diverges. A coordinate singularity indi-
cates an inadequacy in the chosen coordinates to describe the spacetime geometry accurately
at that point. However, employing a different coordinate system can overcome this limitation
and provide a well-behaved description of the entire spacetime manifold, excluding the cur-
vature singularity. Martin Kruskal and George Szekeres addressed this issue by introducing
Kruskal-Szekeres coordinates {7, R, 0, ¢} [15], which incorporate a new timelike coordinate,
T, and a new spacelike coordinate, R. These coordinates comprehensively represent the maxi-
mally extended Schwarzschild solution and ensure smooth behavior throughout the spacetime,
except at the curvature singularity. For » > 2G M, Kruskal-Szekeres coordinates read as:

1/2 t
T = ( 4 1) e /AGM in G

2GM GM’
r 1/2 t
_ _ r/AGM
R (2G 1) e cosh G (1.60)

while for » < 2GM they read as:

T 1/2 t
T — (1 _ ) r/AGM Gnh 7
aGM) € S GM
R (1 " )1/2 r/AGM ooy L (1.61)
=(1-— e cosh ——. .
2GM A4GM
Therefore, the Schwarzschild line element becomes:
32G3 M3
ds® = e 2OM (T 4 dR?) + r2d02. (1.62)

r
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This line element represents a maximally extended spacetime in the sense that any geodesic can
be determined everywhere except at the curvature singularity. A Kruskal diagram in Fig.
is cited from [16], representing the Schwarzschild geometry in the 7' — R plane.

Singularity (r =)

T
=2M
r = constant < 2M
B ‘ r = constant = 2M
- 2 v

r = constant > 2/ \
r=2M-—"

11y X

111

F=2M— ] (A
AN _—
4 |
K ; . |
Singularity (r = () \ r = constant < 2M

t = constant

Figure 1.1: The Schwarzschild solution in Kruskal coordinates [?].

In Fig. , the thin lines represent geodesics. Spacelike paths appear as hyperbolas,
along which particles travel faster than the speed of light and do not experience time ordering
with respect to the event. Timelike paths are depicted as thin, straight lines passing through
the origin. Particles following timelike paths move slower than the speed of light and experience
time continuously. The two thick lines passing through the origin represent null geodesics,
which are trajectories followed by light or other massless particles. The two remaining thick
hyperbolas represent curvature singularities.

The Kruskal diagram divides spacetime into four regions, with the Schwarzschild solution
depicted in region I. The coordinate singularity at » = 2GM is represented by the thick,
straight lines passing through the origin. Consequently, according to the geodesics, once a
particle crosses from region [ to region /I, it can never return. Region /I describes a black
hole, where the coordinate singularity is defined as the event horizon area where gravity is so
strong that nothing, not even light, can escape. Also, particles can traverse from region [ to
regions 111 and I'V along past-directed null and spacelike geodesics, respectively. Region 1]
represents the time-reverse of the region /1, known as a white hole, while region /V is a mirror
image of the region I connected by a wormhole.

American physicist George David Birkhoff proved in 1923 that any spherically symmetric
vacuum solution of Einstein’s field equations—meaning the equations without matter or en-
ergy density—must be static and asymptotically flat. In simpler terms, the spacetime geometry
of any non-rotating spherically symmetric distribution of mass or energy without matter out-
side is described by the Schwarzschild metric outside the mass distribution, highlighting the
uniqueness of this solution.
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The Reissner-Nordstrom Solution

The Reissner-Nordstrom solution is an extension of the previous solution of GR that de-
scribes the gravitational field outside a charged, non-rotating, spherically symmetric compact
object. The solution was independently discovered by Hans Reissner and Gunnar Nordstréom
in 1916 [17], [18]. In the context of the Reissner-Nordstréom solution, the compact object is
charged, leading to both gravitational and electromagnetic fields. Consequently, the action gov-
erning the dynamics of this system consists of two terms: the Einstein-Hilbert action, which
accounts for the gravitational field via the Ricci curvature, and the electromagnetic action,
representing the kinetic energy of the electromagnetic field in the absence of matter. The
Einstein-Maxwell action can be expressed as follows:

1 1
S= [ds*y/—g| —=R—- —F,F" 1.63
/ X g <2/€2 4110 uv > ) ( )
and it leads to the Einstein field equations as:
K 1 o
R, —guwR= lT FupFl,p — ng,Fpan . (1.64)
0

The line element ds® of a static and spherically symmetric spacetime is given by the same
simplest ansatz as in the Schwarzschild case:

ds? = —e2AM) g2 | 2B 2 4 12402, (1.65)

Assuming that the object is just electrically charged, the four-potential A* admits an ansatz
as follows:

AR = (&(r),0,0,0), (1.66)

which respects the symmetries of staticity and sphericity. Hence, from Eq. (1.64), the indepen-
dent Einstein field equations read as:

6—2A(T)(I)/(T)2 B,(T) eQB(r) 1

- — = 1.67
4119 + K27 + 2k2r2  2K2r2 0 (1.67)
4.4 72A(r)q)l 2 ) 2B(r) 2
r) ¢ (r)” 2 0, (1.68)
K27 140 K272 K22
24 9 K2r®' (r)?
2240 (r A" (r) —r A'(r)B'(r) + 7 A'(r)2 + A'(r) — B'(r)) — - —0. (1.69)
0
The source-free Maxwell equation follows as:
V F' =0 =
rA'(r)V'(r) +rB'(r)V'(r) — rV"(r) — 29/ (r) =0. (1.70)
The algebraic combination of and results in:
A'(r) = =B'(r) = A(r) = =B(r) + ¢, (1.71)

where, as in the previous section, the integration constant c is absorbed by the time coordinate
rescaling, t — e~°t, and is typically set to zero. Consequently, Maxwell equation (1.70) yields
a second-order differential equation of the electric potential ®(r), with an analytical solution
given by:
c
D(r) = ——= + co. (1.72)
T
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The integration constants ¢; = —%, and c3 = 0 can be determined by applying Gauss’s law.

Hence, the electric potential is given by:

Q

d(r) = .
(r) dmegr

(1.73)

Substituting Eq. (1.71) and (1.73) into Eq. (1.69), a second-order differential equation for the
metric function A(r) emerges:

22
21?4 A" (1) 4 47?40 A (r)? + 4e240) A (1) — LQ =0. (1.74)
16m2por3e;
Then, the metric tensor component reads as:
2c k2Q?

— _2Al) — _ (9 i c___
= —e = c3 + + . 1.75
g00 ( S T 3ar2pgr2el (1.75)
The last two constants ¢ = 1/2,¢4 = —GM are determined considering the limit to the

Schwarzschild metric (1.58), whereas () — 0 the metric component gop must approach 1 —

2G M /r. Finally, normalizing the constant k = 47360 = 1 and substituting pg = % we end up
with the line element of the Reissner-Nordstrém solution as:
2GM  GQ? 2GM  GQ*\
ds® = — <1 — + ? )dt2 + (1 - + 622 > dr® 4 1r2dQ>. (1.76)
r r r r

Note that in this derivation, magnetic monopoles are not included due to the lack of experimen-
tal evidence for their existence. However, there are no theoretical arguments supporting their
absence. Therefore, a more comprehensive static and spherically symmetric charged solution
would involve adding a radial magnetic potential component B(r). This modification can be
achieved by replacing Q? with Q? + P? in natural units, where P represents the magnetic
charge of the solution.

Like the Schwarzschild case, the Reissner-Nordstrom solution seems to exhibit singulari-
ties. Kretschmann scalar determines a curvature singularity at » = 0:

4 (12G2M?*r? — 24G*MQ*r + 14G*Q*)

K — g , (1.77)
.

The geodesics in the Reissner-Nordstriom metric exhibit intriguing behaviors due to
the curvature of spacetime induced by the presence of mass and electric charge. These
geodesics are influenced by both the gravitational attraction stemming from the mass
M and the repulsive force arising from the electric charge (). Specifically, the study of
geodesics in the Reissner-Nordstrom metric is essential for understanding phenomena
such as gravitational time dilation and redshift, the behavior of particles falling into
the black hole, among others.

The Reissner-Nordstrom solution also provides a black hole interpretation. As
previously mentioned, the event horizon serves as the boundary beyond which events,
including light, cannot escape the gravitational pull of the black hole following radial
null geodesics. As in the Schwarzschild case, a satisfied condition indicates that
horizons will be located at ¢g'! = 0:

2GM  GQ*
208, GO

T T
re = GM + \/G2M? — GQ2. (1.78)

=0=




The presence of electric charge modifies the configuration of the event horizons, which
depends on the sign of the expression under the square root, G*M? — GQ>.

In cases where G?M? — GQ? < 0, curvature singularities are absent, and the metric
remains entirely regular in the spherical coordinates, except at the point » = 0 where a
curvature singularity exists. Consequently, in such cases, there are no event horizons;
instead, a naked singularity exists. These solutions are generally deemed unphysical
due to the cosmic censorship hypothesis [19], which states that nature abhors naked
singularities.

In cases where G2M? — GQ? > 0, the line element exhibits two distinct coordinate
singularities at ., which can be remedied through a more suitable choice of coordi-
nates. In the region far away from the black hole to just outside the outer event horizon
at large distances r, = GM + /G?M? — GQ?, gravitational effects are significant but
not overwhelming. Particles and light can still escape the gravitational pull of the
black hole with sufficient energy and velocity. Observers in this region can witness the
gravitational effects of the black hole, such as gravitational lensing and time dilation,
without being pulled into the black hole themselves. However, as particles or light ap-
proach this event horizon, their gravitational redshift increases dramatically, making
them appear fainter and redder to distant observers. After crossing the outer event
horizon, particles or light enter an intermediate region bounded by the outer event
horizon r; and the inner event horizon r_ = GM — \/G?M? — GQ)?, where escape is
impossible. All massive particles and photons necessarily move towards decreasing r
until reaching the region inside the inner event horizon r_. From there, the object may
either proceed towards the curvature singularity at » = 0 or move toward increasing r
back into the intermediate region.

Lastly, the two horizons coincide in cases where G*M? — GQ? = 0, resulting in the
extremal Reissner-Nordstréom solution. This solution represents a specific configura-
tion of a charged black hole where the electric charge () reaches its maximum value
while maintaining the black hole’s stability. As the black hole approaches the extremal
limit, its properties become more exotic. For instance, the area of the event horizon
vanishes, and the black hole’s characteristics approach those of a naked singularity;
therefore, this solution is considered unstable.

The German theoretical physicist Werner Israel, in 1968, stated the uniqueness
theorem of the Reissner-Nordstrém solution [20]. He demonstrated the uniqueness of
the Reissner{Nordstrom solution amongst all asymptotically flat, static electro-vacuum
black hole configurations with nondegenerate horizons [21].

The Kerr Solution

Here, we provide a brief overview of the Kerr solution in GR, omitting the derivation
process and discussions on maximally extended spacetimes. The Kerr solution was
first derived by the New Zealand mathematician Roy Kerr in 1963 [22]. It describes
the geometry of empty spacetime around a rotating, uncharged, axially symmetric
compact object. Specifically, it rotates about the angular momentum axis, and it is
characterized by only two parameters: the mass M and the angular momentum .J.
The line element that describes the Kerr solution reads in Boyer-Lindquist coordinates

{t,r,0,p} as:

5 A
ds® = Zdr® — = (dt — asin® dy)” + 26> +

sin’ @ (
A z

(r? + ®)dp — adt)®,  (1.79)



where

a:M, A=7r>—2GMr+ao? ¥ =1r*>+a%cos’h. (1.80)
The Kerr geometry is asymptotically flat at large distances r — oo and reduces to
the Schwarzs-child solution when the rotational parameter a vanishes. Two curvature
singularities at » = 0 and # = 7/2 can disappear with a change to a different coordinate
system. The event horizon determining the Kerr black hole is located at g'! = A /3 = 0.
Solving A = 0 two horizons, one inner and one outer, arise as:

ro=GM £ VG2M? — a2, (1.81)

where the outer horizon represents the physical boundary that nothing can escape. The
Kerr metric is essential for understanding the spacetime around rotating black holes
and finds numerous astrophysical applications [23]. Kerr black holes, also known as
astrophysical black holes, are supported by both theoretical and observational evidence
[24] suggesting that black holes in nature possess non-zero angular momentum and
thus rotate. A natural extension of the Kerr metric, considering the presence of an
electromagnetic field, results in the Kerr-Newman metric [25], which describes the
most general spacetime geometry outside a charged, rotating, spherically symmetric
mass.

The uniqueness theorems of both the Kerr and Kerr-Newman metrics [26-28] have
led to the conjecture known as the No-hair conjecture [29]. This conjecture suggests
that black holes are characterized by only three externally observable properties: mass
(M), electric charge (()), and angular momentum (J), with no other physical quantities
retained, implying that all other information about the collapsed matter that formed
the black hole is lost behind the event horizon.

1.1.6 Black Hole Thermodynamics

Bekenstein [30] and Hawking [31] were among the pioneers who laid the foun-
dation for understanding black holes as thermodynamic objects which can possess
thermodynamic parameters such as area A, entropy S, and temperature 7. Black
hole thermodynamics is the study of black holes using the laws of thermodynamics.
The analogy between black holes and thermodynamic systems arises from the observa-
tion that black holes have properties that closely resemble thermodynamic quantities.
Four laws of black hole mechanics were formulated [32], resembling the thermody-
namic laws of a conventional thermodynamic system. This relation is illuminated in
the following Table (1.I).

The zeroth law states that the surface gravity « of a black hole is constant over the

’ Law H Thermodynamic System Black Hole Mechanics ‘
Zeroth T constant throughout body Kk constant over horizon
in thermal equilibrium. of a stationary black hole.
First || dE =TdS + pdV + work terms. | dM = Z5dA + QpdJ + ®dQ.
Second 65 > 0. 0A > 0.
Third Impossible to achieve 7" = 0. Impossible to achieve xk = 0.

Table 1.1: Thermodynamic systems and black hole mechanics.



event horizon. Note that surface gravity can be interpreted as the gravitational accel-
eration needed to keep an object at the event horizon, as measured at infinity. In black
hole thermodynamics, the surface gravity is analogous to the temperature of a thermo-
dynamic system in equilibrium. The famous Hawking temperature 7 of a black hole
is directly proportional to its surface gravity:

K

Ty = —.
H 21

(1.82)
The Hawking temperature is the temperature at which black holes emit radiation due to
quantum effects near the event horizon, a phenomenon known as Hawking radiation.

The first law of black hole mechanics relates changes in the mass of the black hole
M to changes in the area A, angular momentum .J, and electric charge (), as follows:

AM = " dA + QpdJ + dQ, (1.83)
8r
where (1 is the angular velocity and ¢ is the electrostatic potential at the event horizon.
On the other hand, the first thermodynamic law reads as:

dE =TdS + pdV + work terms, (1.84)

where FE is the energy, T is the temperature, S is the entropy, p is the pressure,
and V is the volume of a thermodynamic system. Therefore, the correspondence of
the black hole conserved quantities with the thermodynamic quantities appears to be
straightforward:
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The terms QydJ and ®d() represent the thermodynamic work term pdV of the first
law.

The second law is described by the area theorem, proposed by Hawking, which
states that the total area of the event horizons of black holes can never decrease,
analogous to the second law of thermodynamics where the entropy of a closed system
never decreases:

dA > 0, (1.86)

The third law states that it is impossible to reduce the surface gravity of a black
hole to zero through any physical process. This is similar to the third law of thermo-
dynamics, which states that the entropy of a system approaches a constant minimum
as temperature approaches absolute zero.

1.1.7 Testing Einstein’s Legacy

GR stood as a self-contained and successful gravitational theory for many decades,
explaining experimental and observational results [33].

The Weak Equivalence Principle has been confirmed through experiments demon-
strating that all freely falling test particles fall at the same rate, irrespective of their
internal composition [34,/35].



Additionally, two predictions concerning the geometry of GR - the Local Lorentz
Invariance Principle and the Local Position Invariance Principle - have been confirmed
by observations, showing that non-gravitational physical laws are independent of ve-
locity [36,37] and the spacetime position of the freely falling frame in which they are
described [38,/39], respectively.

Moreover, Einstein first predicted the gravitational deflection of light in 1911 using
field equations. According to GR, massive objects such as stars and galaxies curve the
surrounding spacetime. When light travels through this curved spacetime, its path
is bent as if it were following the curved geometry of space. This effect causes the
apparent position of a distant object, such as a star, to be shifted when its light passes
near a massive object, such as the Sun. This prediction was later confirmed during
the solar eclipse of 1919 when astronomers observed stars near the Sun during a total
solar eclipse and found that their apparent positions were shifted slightly from their
expected positions [40]. Since then, numerous observations of gravitational lensing,
where the gravitational fields of foreground objects bend the light from distant objects,
have provided further evidence [4 1], [42].

In Newtonian mechanics, the gravitational force between two objects decreases
with distance according to the inverse square law. However, this simple description
fails to fully account for the perihelion precession of Mercury, which exhibits a small
additional shift beyond what can be explained by the gravitational influence of other
planets and known sources of mass in the Solar System. Einstein predicted that the
gravitational field of the Sun causes Mercury’s orbit to rotate slightly over time, leading
to a slow but measurable shift in the position of its perihelion [43]. The predicted
rate of precession from GR, approximately 43 arcseconds per century, matched the
observed rate, thus providing strong evidence in support of Einstein’s revolutionary
new theory of gravity [44].

The Lense-Thirring effect is a prediction of GR that describes how the rotation of
a massive body can "drag" the surrounding spacetime, affecting the motion of nearby
objects and inertial frames. Specifically, the Lense-Thirring effect states that a rotating
massive body, such as a planet or a star, will cause the inertial frames of reference
around it to undergo a slight precession along the direction of its rotation. This effect
arises due to the curvature of spacetime caused by the rotation-induced gravitational
field of the massive object. The Lense-Thirring effect has been observed indirectly
through experiments such as the Gravity Probe B mission [45], which measured the
precession of gyroscopes placed in Earth’s orbit. The observed precession of the gy-
roscopes’ spin axes matched the predictions of GR, providing strong evidence for the
existence of frame-dragging effects caused by rotating massive bodies.

The gravitational redshift, predicted by GR, describes the phenomenon where light
emitted from a massive object, such as a star or a planet, is observed to be redshifted
when measured by an observer located at a greater distance from the massive object
compared to an observer closer to the object’s surface. According to GR, the gravi-
tational field of a massive object causes the curvature of spacetime around it. As a
result, light traveling through this curved spacetime experiences a change in frequency,
known as gravitational redshift, due to the gravitational potential of the massive object.
Specifically, when light travels away from a massive object, it loses energy as it climbs
out of the gravitational field. This energy loss corresponds to a decrease in frequency,
causing the light to be redshifted when observed by a distant observer. The gravita-
tional redshift effect has been observed and confirmed through various experiments



and astronomical observations [46], [47]. For example, the redshift of light emitted by
stars near the center of our galaxy has been measured and found to be consistent with
the predictions of GR [48].

According to the theory of GR, mass distributions with time-varying quadrupole
moments, such as binary systems of compact objects (e.g., neutron stars or black
holes) orbiting each other, will emit gravitational waves as they lose orbital energy.
This phenomenon is a prediction of GR, known as the emission of gravitational waves.
Gravitational waves are ripples in the curved spacetime caused by the acceleration of
massive objects. When two massive objects orbit each other, their motion generates
variations in the gravitational fields propagating through spacetime as gravitational
waves. The emission of gravitational waves carries energy away from the orbiting
system, causing the orbit to decay gradually. As a result, the two objects spiral inward
toward each other over time, eventually merging into a single, more massive object.
This prediction was made by Einstein in 1916 as a consequence of his theory of GR.
However, it wasn’t until 2015 that the first direct detection of gravitational waves
was made by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [49-52],
confirming one of the most elusive predictions of Einstein’s theory and opening a new
era in astrophysics.

A cornerstone prediction of GR concerns the existence of black holes and their defin-
ing features, notably event horizons. According to GR, when a massive object collapses
under its gravity, it can reach a point where the gravitational pull becomes so intense
that even light cannot escape. This boundary, known as the event horizon, marks the
limit beyond which no information or signal can reach an external observer. Inside
the event horizon lies a central region of spacetime known as the singularity, where
gravitational forces become infinitely strong. The existence of black holes and their
event horizons is a profound consequence of GR, illustrating the extreme curvature of
spacetime in regions of intense gravity. Observations across the cosmos provide com-
pelling evidence for their ubiquity, including gravitational effects on nearby stars and
gas and the detection of gravitational waves emitted during black hole mergers. No-
tably, the direct imaging of the central black hole in the neighboring galaxy M87 by the
Event Horizon Telescope represents a groundbreaking achievement [53-58], shedding
light on one of the most enigmatic and awe-inspiring phenomena in the universe. This
discovery holds profound implications for our understanding of gravity, spacetime, and
the nature of the cosmos.

1.2 Modified Theories of Gravity

1.2.1 Motivations of Modified Theories of Gravity

While GR is a highly successful theory in accurately describing gravity on large
scales, it is acknowledged that GR is not a complete theory of gravity. There are both
phenomenological and theoretical reasons for considering modifications to GR.

One of the major challenges facing GR is its compatibility with quantum mechanics.
As we probe smaller length scales, quantum effects become increasingly significant.
Attempts to quantize gravity within the framework of quantum field theory encounter
infinities that are difficult to resolve, rendering GR a non-renormalizable theory. The
term "renormalizable" refers to a crucial property that ensures consistent calculations
without encountering infinite results [59]; however, GR fails to meet this criterion [60].



Various approaches modifying GR, such as string theory [61], emergent gravity [62],
asymptotic safety [63] and loop quantum gravity [64], have been developed in attempts
to address this fundamental problem.

One of the challenges confronting GR is the existence of spacetime singularities,
such as those found at the centers of black holes and the inception of the universe,
the Big Bang. For instance, a black hole forms when a massive star exhausts its
nuclear fuel and undergoes gravitational collapse. As the star’s density increases,
reaching a critical point, a trapped surface emerges, separating the dense matter from
the surrounding spacetime. The collapse continues inward until it culminates in a
singularity [65]. At this point, the density and spacetime curvature become infinitely
large. Singularities, or infinities, are regarded as pathologies in a theory, signifying
regions where the theory breaks down and loses its predictive power.

Moreover, the problem of late-time acceleration in the universe presents a signifi-
cant challenge to GR. Observations of distant supernovae in the late 1990s provided
compelling evidence that the expansion of the universe is accelerating, contrary to pre-
vious expectations [66H68]. This phenomenon was unexpected within the framework
of GR, which only accounted for ordinary matter and radiation. To address this dis-
crepancy, physicists have proposed the existence of "dark energy," a mysterious form
of energy that pervades space and exerts negative pressure, leading to the acceleration
of cosmic expansion. Dark energy represents a departure from conventional physics
as GR does not directly predict it. It may manifest as a cosmological constant, origi-
nally introduced by Einstein. Still, later discarded [69], or conceived as dynamic fields
such as quintessence [70], or modifications of gravity on cosmological scales [71]. The
pursuit of understanding late-time acceleration has motivated cosmologists to explore
alternative models beyond GR.

1.2.2 A Guide to Modified Theories of Gravity

The limitations of classical GR become apparent when confronted with certain phys-
ical situations, such as the arguments mentioned above, necessitating its modification.
The breakdown of classical GR in these scenarios suggests that additional terms or
modifications beyond the standard Einstein-Hilbert action may be necessary to accu-
rately describe nature at both low and high-energy regimes. British physicist David
Lovelock highlighted a significant result in theoretical physics offering a guiding prin-
ciple for the structure of gravitational theories [72], [73]. In 1971, he proved that the
Einstein field equations are the only second-order local equations of motion for a met-
ric derivable from the Einstein-Hilbert action in four dimensions. Lovelock’s theorem
holds under specific assumptions, including both the Weak and Strong Equivalence
Principles, Lorentz symmetry, massless gravitons, the absence of extra fields, and
second-order equations of motion. Consequently, deviating from these assumptions,
which render GR unique, could give rise to various classes of modified theories of
gravity (MToG), as illustrated in the mind map in Fig. (1.2).

Numerous modified theories of gravity (MToG) have been proposed in the literature.
Theories with extra spatial dimensions suggest that the universe may possess addi-
tional compactified dimensions beyond the observable four. Examples of such theories
include the Kaluza-Klein theory [74], the Lovelock theory [73], and string theory [75].
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Figure 1.2: Classification of modified gravitational theories. This diagram is inspired from [76],
[77]

Additionally, braneworld scenarios propose that our observable universe is a four-
dimensional hypersurface (brane) embedded in a higher-dimensional spacetime (bulk).
In these scenarios, gravity is confined to the brane, while other forces may propagate
in the bulk. One typical example of braneworld models is the DGP model [78], [79].
GR can be modified by breaking Lorentz invariance, leading to theories such as Horava
gravity [80] and Einstein-Aether [81]. A preferred time direction emerges in these
theories, spontaneously breaking Lorentz symmetry. Additionally, modifications can
be introduced by including inverse powers of the Laplacian operator, as Rf(CJ"!'R)
in [82], [83], or R’S—jR in [84], resulting in non-local theories. Giving mass to the



graviton GR is extended to Massive Gravitational Theories [85], [86]. In recent years,
we have also seen a lot of interest in Torsion theories [87], where gravity is described
by torsion instead of curvature.

Another way to extend GR is by introducing additional fields beyond the metric
tensor, namely tensors, vectors, or scalars. Tensor theories emerge by an interaction
of two or more metric tensors, resulting in Bigravity [88] and Multi-Gravity [89], re-
spectively. The simplest vector theory is the Proca theory [90] with a kinetic term of
an electromagnetic field and a mass term. At the same time, there are the Generalized
Proca theory [91] and the Beyond Generalized Proca [92] with second and higher-order
equations of motion, respectively.

Among MToG theories, scalar theories have received more attention than others.
Although scalar fields are theoretical constructs, they find a natural place in various
fundamental theories in physics. In the Standard Model of particle physics, scalar
fields are present as the Higgs field. Also, scalar fields are essential in unified field
theories, such as Kaluza-Klein and string theories. In Kaluza-Klein’s theory, the extra
dimensions are often associated with scalar fields, and in string theory, scalar fields
arise as the vibrational modes of fundamental strings [93]. Therefore, while scalar
fields may be hypothetical in the context of gravity theories, their existence is moti-
vated by their presence in well-established frameworks of particle physics and unified
theories. The major subclass of scalar theories is Horndeski [94] theory. It was first
introduced by Gregory Horndeski in 1974 as a systematic framework for construct-
ing viable theories of gravity with additional scalar fields. Allowing a scalar field to
couple nonminimally to the curvature of spacetime introduces modifications to the
gravitational interaction. Horndeski’s theory is expressed by the action:
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where the Lagrangian densities in the sum are described as follows:

Ga(¢, X), (1.88)

53 (6, XV, (1.89)
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where G; are functions of ¢ and X, X = %V“gbvugb and G; x = 0G;/0X. Horndeski’s
theory includes various terms in the Lagrangian that can be chosen to produce specific
gravitational effects, such as modifying the behavior of gravity. Hence, it encompasses
several specific cases, including GR (with G4 = 1,G, = G35 = G5 = 0), as well as the
Brans-Dicke and f(R) theories (with Gy = —wX /¢ — V(¢),Gy = ¢,G3 = G5 = 0) [95],
among numerous other scalar-tensor theories. Theories beyond Horndeski have higher
order equations of motion without including additional degrees of freedom [96]. These
MToG offer different perspectives on the nature of gravitational interactions and can
lead to predictions that differ from GR’s. They are actively studied in theoretical physics
as potential extensions to GR, and they are subject to experimental and observational
tests to assess their validity [97].



1.2.3 Black Holes Beyond General Relativity

No-Scalar-Hair Theorems

Black holes are a fascinating subject in the realm of MToG. They provide a unique
testing ground for these alternative theories because they enable the exploration of
the strong field regime, where deviations from Einstein’s GR might become apparent.
The No-Scalar-Hair Theorem in the context of scalar theories of gravity, proposed by
physicist Jacob Bekenstein in 1972 [29], is an extension of the uniqueness theorems in
black hole physics, mentioned earlier. It suggests that a stationary black hole solution
with non-trivial scalar field configurations following gravitational collapse cannot exist
in a classical scalar field theory coupled to gravity. According to this theorem, only
three conserved quantities- mass, electric charge, and angular momentum- can fully
describe a black hole solution. Any additional quantity would resemble "hair" on the
black hole, with "hair" referring to any property beyond mass, charge, and angular
momentum. Using natural units where ¢ = G = 1 simplifies the framework.

Bekenstein considered a rotating, stationary, axisymmetric, asymptotically flat
spacetime. He assumed three hypotheses, and evading one of these could lead to
fundamentally different properties for black holes [98]. Firstly, he considered a canon-
ical and minimally coupled scalar field ¢ to Einstein’s gravity:
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The Klein-Gordon (K-G) equation, governed by the scalar fields, reads as:
V,.Vte —V'(¢) = 0. (1.93)

Secondly, Bekenstein assumed that the scalar field inherits the spacetime symmetries.
In a spherical coordinate system, {¢,r,0, ¢}, stationary and axisymmetric spacetime
admits two independent Killing vectors. A timelike k* = 0,, associated with time
translations, and a spacelike n* = 0, associated with rotations with respect to the
axis of symmetry. Therefore, the scalar field obeys the following:

Multiplying the K-G equation by ¢ and integrating over the black hole exterior space-
time results in:

[ dov=g(69,7"0 - ov(0) =0 (1.95)

Integrating the first term by parts:

[ V=g (9,09 - ovi0) + [ daonte9,6 =0, (1.96)
H

where H denotes the boundary at horizon. Note that the boundary term at infinity
vanishes since the scalar field has to guarantee the asymptotic flatness of spacetime.
Note that the normal vector n* at the horizon is a linear combination of the Killing vec-
tors; hence, taking into account the Eq. (1.94), it yields the vanishing of the boundary
term at the horizon. Thus,

[ =g (9,09 0+ o) =0 (1.97)



Because of the spacetime symmetries, the gradient of the scalar field is orthogonal to
both Killing vectors, implying that it is spacelike or zero, meaning that the first term of
the above integral is non-negative V,¢pV*#¢ > 0. Then, the third assumption concerns
the behavior of the potential V' (¢), which has to obey the inequality:

oV'(¢) > 0. (1.98)

The last assumption establishes the No-Scalar-Hair theorem. Both terms in (1.97) are
non-negative; consequently, the equality holds if ¢ = 0, leading to trivial black hole
solutions.

Additional No-Scalar-Hair theorems have been developed to study black holes within
the framework of MToG. Violating one of the assumptions of Bekenstein’s No-Scalar-
Hair conjecture, one could expect that hairy black hole solutions would be generated. A
brief review of No-Scalar-Hair theorems, in subclasses of Horndeski’s theory of gravity,
follows.

In 1961, Robert H. Dicke and Carl H. Brans violated the first hypothesis, assuming
a scalar field nonminimally coupled to the geometry [95]. The Brans-Dicke theory can
be described by the action:

S = F d%\/_( OR — EVM(;SV“QS V(gb)) (1.99)

where w is the Brans-Dicke coupling constant, which determines the coupling strength
between the scalar field and matter. The nonminimal coupling can be absorbed, per-
forming a conformal transformation of the metric g,, = ¢g,,, and redefining the scalar

field as d® = % % [99]. This yields the Brans-Dicke action in a frame where the

scalar field is minimally coupled to the conformally transformed metric:

S— L d*z\/—§ (R - 1@,@@“@ - U((I))) . (1.100)
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It is straightforward to notice that the field equations from this frame action reduce

to those of GR for a trivial scalar field, thus this frame is called the Einstein frame.

Hawking established the No-Scalar-Theorem for Scalar-Tensor gravity [100], showing

that regular black hole solutions in Brans-Dicke theory are indistinguishable from

those of GR, for a vanishing scalar field.

Then Sotiriou and Faraoni generalized the No-Scalar-Hair theorem to f(R) theories
of gravity [101], which under an appropriate conformal transformation can be reduced
to an equivalent Brans-Dicke theory. More No-Scalar-Hair theorems developed cover-
ing scalar-tensor theories with nonminimal coupling [102-104].

Horndeski showed that Galileon theories [105], [106] can be described by the action
(1.87). Considering shift symmetry, i.e., invariance under ® — ® + ¢, implies the
existence of a Noether current J*. Due to the conserved currents, the scalar field
equation yields V,J# = 0. A static and spherically symmetric spacetime is described
by the line element:

1
ds* = —f(r)dt* + mer + 7(R)d?. (1.101)
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The scalar field inherits all the spacetime symmetries; hence, it can be written only
with radial dependence ® = ®(r), hence current results in:
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A black hole solution supports an event horizon, where f(r) = 0. Therefore, the quan-
tity described in (1.102) is well behaved at horizon only for a vanishing J!. Integrating
the scalar field equation results:

V,J'=0=r(R)?*J' =, (1.103)

where the areal radius r(R) is finite and the current J' = 0 at horizon. Consequently,
J! = 0 everywhere, implying that the scalar field is non-dynamical ® = ¢ [107].

Bekenstein, considering all these theories and the fact that some physical poten-
tials, such as the Higgs potential, could potentially violate the third hypothesis regard-
ing the behavior of the scalar potential V' (¢) [108|, proposed a novel No-Scalar-Hair
theorem by analyzing the energy-momentum tensor 7% instead of the potential [109].
Assuming the validity of the first two hypotheses, he also considered the Weak Energy
Condition, where the energy density is non-negative everywhere:

p=1T,U0"U0" >0, (1.104)
where at rest frame the timelike component of the velocity U* satisfies the normaliza-
tion condition g, U*U" = —1. The energy momentum tensor 7}, is given by:
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A static and spherically symmetric spacetime bequeaths its symmetries to the scalar
field, which depends only on radial coordinate ¢ = ¢(r). Therefore, Bekenstein no-
ticed that only the time component of the energy-momentum tensor contributes to the
hypothesis (1.104), examining the sign of both 7" and its first derivative (7})". He
computed the energy-momentum tensor using two equivalent methods: first, employ-
ing the conservation equation, and second, utilizing the field equations. This led to a
contradiction, which can be resolved with a trivial scalar field.

The novel No-Scalar-Hair theorem extended to higher dimensions [110] and was
modified concerning different energy conditions [111H113]. Over the years, more No-
Scalar-Hair theorems have developed, reevaluating the hypothesis regarding the inher-
ent symmetries of the scalar field [114], [115], which is a natural hypothesis, but not
mandatory at all.

Hairy Black Hole Solutions

The most straightforward approach to acquiring black hole solutions, as a dynam-
ical endpoint of gravitational collapse, with scalar hair is evading the No-Scalar-Hair
theorem by violating Bekenstein’s first and third hypotheses. In the literature, many
of MToG admit a solution described by a stationary, spherically symmetric, asymp-
totically flat black hole with mass M, electric charge (), angular momentum L, and a
scalar charge D, which is not associated with the Gauss Law. These solutions exhibit
two types of "hair": primary and secondary. Primary hair refers to the existence of
an independent scalar charge D # D(M, @, L), while secondary hair corresponds to
a non-independent scalar charge D = D(M,Q, L) from the standard global charges,
which are associated with the Gauss Law. Focusing on four dimensions, hairy black
hole solutions are generated.

Scalar-tensor theories described by the action admit hairy black hole so-
lutions with a negative potential V' (¢). This kind of potential provides an additional



repulsive force, allowing the scalar field to create a hairy configuration at the would-
be-horizon. For example, in [116], a hairy black hole solution emerges with a scalar
potential:
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Assuming the metric ansatz for a stationary and spherically symmetric spacetime in
spherical coordinates as:
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the solution reads as follows:
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Note that the constant \ serves as a parameter of the theory, describing the interaction
strength between the scalar field and gravity. The black hole solution is characterized
by two parameters: the mass M and the scalar charge D of the secondary type.
Particularly, the non-independent scalar charge is determined first from the theory by
the coupling constant A and then by the black hole mass that can support "hair."

This example emphasizes the possibility of generating hairy black holes by con-
structing exotic negative potentials, such as the one described in (I1.106). There are sev-
eral other similar examples, like the one mentioned above, where hairy black holes are
constructed with both analytical methods [117-122], and numerical ones [123-126].

Under certain conditions that violate the first assumption of the no-hair conjec-
ture, one can expect the emergence of hairy black hole solutions. One of the earliest
examples of a hairy black hole solution in an asymptotically flat spacetime was ob-
tained in [127], where the scalar field ¢ is nonminimally coupled to the Ricci scalar
R, through the term R¢? in the action principle. In this context, it is also possible to
circumvent the no-hair theorem by nonminimally coupling the scalar field to quadratic
curvature terms. This has been done recently in a subsector of Horndeski’s theory by
considering a nonminimal coupling to the Gauss-Bonnet invariant [128]. The action
reads as follows:

1 R 1
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where 72%; g = R?— 4R, R*" + R, " denotes the Gauss-Bonnet invariant. Hairy
black holes can be formed with a minimum size determined by the coupling constant
a, resulting in slight deviations from GR.



Hence, various hairy black holes can emerge through different nonminimal cou-
plings between the scalar field and gravity. By substituting the term a¢R%y; by
aePPR%y in (1.112), the Einstein-Gauss-Bonnet-dilaton (EGBd) model arises, lead-
ing to the formation of hairy black holes [129-131]. Stationary, axisymmetric hairy
black holes were found in EGBd in both slow-rotation [132] and high-rotation approx-
imations [133]. A Plethora of hairy black hole solutions can be found in [77]. The
production of hairy black holes thus continues without end.

Conceptually, in such theories, the scalar field can become trapped in bound states,
determined by a negative effective potential, at the would-be event horizon, thereby
forming a hairy black hole.

1.3 Scalarization Phenomenon

1.3.1 The Scalarization Mechanism

In scalar-tensor theories of gravity, a different mechanism for the formation of
hairy solutions was first proposed by Damour and Esposito-Farése in 1993, in sys-
tems involving neutron stars [134], and later extended to systems involving black
holes [135], [136]. This mechanism, known as spontaneous scalarization, describes a
natural process by which compact objects are endowed with scalar hair. Under cer-
tain conditions that violate the No-hair theorems, these objects can undergo a phase
transition where the scalar field becomes dynamically significant, resulting in the ob-
ject being "dressed" with scalar hair. This mechanism distinguishes scalarization from
other models that generate hairy black holes, which is why the term "scalarized black
hole" is used for a black hole that has emerged through the scalarization mechanism.

Specifically, consider the first model of a scalar-tensor theory, inspired by [137],
with a canonical and nonminimally coupled scalar field to the curvature of gravity as:
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where Z)/(g,,) is the Lagrangian that includes curvature terms, such as Ricci scalar
or Gauss-Bonnet scalar. Then, the equation of motion of the scalar can be written as:

0¢ — f'(¢)Zn(guw) =0, (1.114)

where the prime denotes differentiation with respect to the scalar field ¢. Obviously,
for a vanishing scalar field and if f'(¢)|,—0 = 0, the theory admits the Schwarzschild
metric (1.58), which is referred to as the vacuum solution of the theory. Hence, the
|s=0 will denote the vacuum geometry. Stability analysis of the vacuum solution can
be done by performing small perturbations around the vacuum solution. The metric
perturbations dg,, are decoupled from the scalar perturbations ¢, leading to the same
metric perturbations as those in the pure GR. Hence, one can only focus on scalar
perturbations. Small scalar perturbations d¢, around the vacuum solution ¢ = 0, are
governed by the following equation:

(O — pls) lg=0d = 0, (1.115)

where the effective mass squared is described as 2y = f”(4)Z(g, ). In curved space-
times, if the effective mass squared becomes negative enough for long enough, the



mass term may become imaginary when squared. This implies that the perturbation
oscillates with an exponentially growing or decaying amplitude. A perturbation that
grows over time indicates instability, referred to as tachyonic instability. This instabil-
ity arises when the curvature becomes strong enough to require an additional degree
of freedom for description. Tachyonic instability is quenched by a dynamical phase
transition, giving rise to scalarized black hole configurations.

The unstable quasinormal modes correspond to the bound states associated with
the negative minimum of the effective potential governing the linear perturbations of
the scalar field [138]. In the first panel of Fig. , we see that when the effective
mass squared ,uzﬁ is positive, the effective potential well admits a stable ground state
(the minimum of the potential well) where the trivial scalar field resides. In the second
panel of Fig. , we see that as p2; decreases below zero, the effective potential
changes shape, taking the form of a Mexican hat, which results in the generation of
additional ground states. Tachyonic instability then drives the scalar field away from
the unstable local maximum of the potential toward a stable minimum [137].

Figure 1.3: Effective potential well.

The tachyonic instability indicates the existence of new scalarized black hole so-
lutions with nontrivial scalar hair, which bifurcate from the trivial solution at critical
parameters [138]. A broad spectrum of new non-unique solutions can be found, con-
sidering that the number of nontrivial black hole solutions corresponds one-to-one
with the number of bound states of the scalar effective potential.
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Figure 1.4: Curvature induced scalarization of the Schwarzschild black hole, [135].

In Fig. (1.4), we present the curvature-induced scalarization of the Schwarzschild
black hole, [135]. In the first panel of Fig. , the scalar charge D is shown as a
function of the black hole mass M. The Schwarzschild black hole solutions lie along
the horizontal axis, where the scalar charge is trivial (D = 0). At a critical mass
M, the effective potential becomes sufficiently negative to support one bound state,
and a bifurcation point appears. As the interaction between the scalar field and the
curvature of gravity becomes stronger, the effective potential deepens, the number of
bound states increases, and with each additional bound state in the spectrum, a new
bifurcation point appears. In the first panel of Fig. (1.4), we see three bifurcation points
corresponding to the first three bound states, which describe the first three unstable
modes.

Each bifurcation point defines a branch of scalarized solutions with nontrivial scalar
hair (D # (). Therefore, the onset of the instability and the generation of scalarized
black hole branches are controlled by curvature coupling constants. Each branch of
solutions is characterized by a scalar field profile related to the unstable quasinormal
modes of the vacuum solution. Since the scalar perturbations are perturbative solu-
tions of the field equations describing static and spherically symmetric trivial black
holes near the bifurcation points, we expect that the scalar field of the scalarized black
hole solutions originating at the bifurcation point should have the same behavior as
the corresponding unstable mode [138].

In the second and third panels of Fig. (I.4), we present three different profiles of the
scalar field. The number of zeros in each profile is associated with a specific unstable
mode. The monotonic profiles, which asymptotically vanish, correspond to the first
scalarized branch of solutions. The asymptotically vanishing profile with one zero



corresponds to the second scalarized branch of solutions, and this pattern continues
for subsequent branches.

Stability analysis of the scalarized black hole solutions indicates that only the first
branch is stable, corresponding to the fundamental unstable quasinormal mode, [139].
Consequently, the first branch of scalarized solutions is called the fundamental branch.

Scalarized black holes are described as hairy black holes with an additional pa-
rameter, the scalar charge D, generated through the scalarization mechanism. These
solutions bifurcate from their GR counterparts when tachyonic instabilities emerge
beyond a threshold, resulting in significant deviations in the strong-field regime while
remaining indistinguishable from GR in the weak-field regime.

1.3.2 Types of Scalarization

The black hole scalarization mechanism has been extensively explored by the sci-
entific community in recent decades, including within the scope of this PhD thesis.

By modifying the action described above (1.113), one can introduce nonminimally
coupled scalar fields to matter, such as linear and nonlinear electrodynamics. These
additional terms contribute to the effective mass squared, acting as sources for tachy-
onic instabilities beyond a certain threshold. This threshold is no longer controlled by
the nonminimal coupling to gravity but by the nonminimal coupling to electromagnetic
gauge fields. Moreover, it has been found that spin can itself induce a scalarization
mechanism when a scalar field is suitably coupled with gravity. Another way to extend
this mechanism is to consider different fields, such as vectors or tensors, which can un-
dergo a dynamical phase transition from a trivial to a non-trivial configuration, thereby
broadening the scope of scalarization phenomena. Consequently, various types of this
phenomenon can occur depending on the onset of scalarization, as illustrated in the

mind map in Fig. (1.5).

Curvature Induced Scalarization

The prototypical MToG that exhibits black hole scalarization is the EsGB theory,
which allows solutions of GR [135], [136]. In this theory, the term f(¢)R%y in the
action contributes to small linear scalar perturbations, leading to the condition of the
effective mass squared p2;, such as f”(¢)RZg|s—0 > 0 for the presence of tachyonic
unstable modes. Consequently, the curvature in spacetime can induce scalarization
effects, a phenomenon referred to as curvature-induced scalarization. New scalarized
black hole solutions emerge as branches bifurcating from the Schwarzschild black
hole branch once the black hole mass surpasses a certain threshold. These solutions
exhibit notable deviations from GR in the strong-field regime and minor deviations in
the weak-field regime.

In the EsGB theory, two choices of the coupling function f(¢) were under consid-
eration, described respectively by a Gaussian model and a quadratic model as follows:

f(®) -5 (1 — e‘6¢2> , (1.116)
f(®) ngbQ, (1.117)

where ), 7 denote the coupling constants. Both choices converge in the limit of a small
scalar field ¢, thus yielding the same prediction for the scalarization threshold.
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Figure 1.5: Classification of scalarization phenomenon. This diagram is inspired from [137].

However, differences arise in the properties of scalarized black hole solutions. The
expansion of the Gaussian model involves nonlinear interactions that become
significant as the scalar field grows. These higher-order interactions determine the
endpoint of each scalarized black hole branch. Consequently, as anticipated theoreti-
cally, the domain of existence of scalarized solutions in the Gaussian model is

larger compared to that of the quadratic model (1.117).

A natural extension of the EsGB theory involves considering the presence of an elec-
tromagnetic field and examining the scalarization phenomenon in Reissner-Nordstrém

Quadratic
model



black holes. This case is described analytically in Chapter 2| utilizing a Gaussian
model [1].

In the context of quantum field theory in curved spacetime, an often used non-
minimal coupling between a scalar field and curvature takes the form £¢?R, [140].
This type of interaction arises from a suitable scalar field redefinition of the initially
proposed interaction by Damour and Esposito-Farése in their study of neutron star
scalarization, which is commonly referred to as the Damour-Esposito-Far’ese (DEF)
model. Herdeiro and Radu explored the scalarization phenomenon of Schwarzschild
black holes within the framework of the DEF model, where (quantum-corrected) black
holes branch off into an effective field theory triggered by the interaction £¢%R [141].

Andreou et al. in [142] extended the study of scalarization by identifying all the
terms in the Horndeski action that contribute to the linearized equations of mo-
tion and exhibit tachyonic instabilities thereby triggering the mechanism. The minimal
action reads as follows:

1

S=—
167

v (R — 20+ (1 + 2R)X + 1R VH V"

5 (1.118)

2 42 2 2752
m50° — ap*R — R
g By L),
where o, 3,71, 72 and mi can be expressed in terms of G; functions and their derivatives
evaluated at the specific vacuum under consideration. This result has attracted the
interest within the scientific community in the scalarization phenomenon involving
Gauss-Bonnet and Ricci scalar couplings [143], [144], [145].

Matter Induced Scalarization

The effective mass squared p2; doesn'’t solely arise from terms representing non-
minimal couplings between the scalar field and gravity. Still, it may also include
couplings between the scalar field and other matter fields. This interpretation is based
on the concept that black holes interact with surrounding matter, such as accretion
disks or galaxies, potentially leading to scalarization. This phenomenon, known as
matter-induced scalarization, describes the dynamical process by which black holes
are scalarized due to their interaction with surrounding matter. This scalarization
mechanism involves a scalar field coupled to non-linear electrodynamics, which is
described by the general action:

S = 16%/ d'zy/=g (R = 2V,,0V"¢ + Af4($)Tu (X, Y)) (1.119)

where Z),(X,Y) represents the matter Lagrangian of the electromagnetic field, which
interacts with the scalar field ¢ through the coupling function f(¢) and the quantities

X,Y reads as:
/(0) 10)
4 4

X = F P Y = (R F ) (1.120)

where ” x 7 stands for the Hodge dual. For a trivial scalar field, this theory admits the
Schwarzschild black hole as a solution when f'(¢)_¢ = 0. Small scalar perturbations
in the background exhibit tachyonic instability when the following condition is met:

—4f3(8) (Tn(X,Y) — XOxTu(X,Y) — YOy Iu(X,Y)) <0 (1.121)



In the literature, various choices of the matter Lagrangian within models featuring
different coupling functions have pointed to a threshold beyond which new scalarized
charged black holes emerge.

The first scalarized charged black hole solutions have been studied with a cou-
ple to Born-Infeld nonlinear electrodynamics [146], [147], described by the following

Lagrangian:
2
Lo =2 ( HE_Y_). 1122

Nonlinear electrodynamics was initially introduced by Born and Infeld with the as-
sumption of an upper limit on the field strength b [148]. The electric-magnetic du-
ality in this theory enables the study of magnetically charged black holes (Y = 0),
thereby simplifying the analysis. New scalarized branches of solutions bifurcate from
a Schwarzschild-like black hole beyond a certain mass threshold. These branches
extend in different ways with variations in a coupling parameter [ (which is included
in the coupling function f(¢)). When 5 > [, two branches coexist in the domain
of existence of the new solutions: the background branch and the scalarized branch,
with the latter appearing to be thermodynamically favored. Conversely, when 3 < By,
three branches coexist. The first branch is always trivial, followed by the emergence of
the second branch, known as the middle branch, through scalarization. At a particu-
lar turning point, the third branch, known as the outer branch, emerges and changes
direction. Thermodynamic analysis indicates the stability of the outer branch, which
terminates as a configuration with a zero event horizon radius and a finite mass value,
leading to a naked singularity.

A variety of scalarization models have been studied in the simplest Einstein-scalar-
Maxwell theories, where the matter Lagrangian is described by:

X
Tow =~ (1.123)

Assuming the scalarization conditions such as f'(¢)|s=0 = 0 and f"(¢)F., F'"|4=o, the
Reissner -Nordstro black hole beyond a threshold of its charge () to its mass M ratio ¢ =
()/M is tachyonically unstable. All scalarized black hole solutions bifurcate from the
background and can be considered overcharged in the sense that they may carry more
electric charge compared to their mass [149H153]. Numerical studies have examined
electrically charged black holes, magnetically charged ones, or dyons possessing both
types of charges. These studies have revealed that extremal scalarized black holes
only form in the presence of a magnetic charge, while in its absence, the scalarized
branches terminate as naked singularities [149]. The investigation of various forms of
coupling functions results in similar behaviors in the properties of scalarized solutions,
with quantitative differences emerging that are primarily controlled by the strength of
the coupling constant, which governs the interaction [151].

By adding higher-order derivative gauge field corrections into the Einstein-scalar-
Maxwell theory, we anticipate a more accurate classical approximation of quantum
electrodynamics theory [154], [155]. This case is analytically described in Chapter
[8l where new electrically charged scalarized black hole solutions emerge and exhibit
thermodynamic preferability compared to existing literature [3].



Spin Induced Scalarization

A different mechanism of the scalarization phenomenon arises for non-static black
holes, where spin itself can induce a tachyonic instability, resulting in spin-induced
scalarization. While our research has not extensively delved into spin-induced scalar-
ization, we will briefly overview the topic as part of this thesis.

This type of scalarization involves a scalar field coupled to the Gauss-Bonnet in-
variant Ré p» Which exhibits non-monotonic behavior in a stationary and axisymmetric
background (Kerr solution). Consequently, the effective mass squared /@f 7 of small
scalar perturbations indicates two possible instabilities stemming from RQGB rather
than the nature of the coupling. The first instability is the tachyonic one, while the
second arises from superradiance, resulting from the extraction of rotational energy
from the black hole by the field due to wave-particle interactions [156]. Extensive stud-
ies on small linear perturbations have demonstrated that the dominant instability is
the tachyonic one, leading to spin-induced scalarization [157-159]. Analytical and nu-
merical results from both Gaussian and quadratic models indicate that spin-induced
scalarized black hole solutions emerge with a minimal necessary spin value and may
violate the Kerr bound on black hole spins [160H162].

Moreover, charged spin-induced scalarized black holes, as studied in [163], ex-
hibit resistance to the dynamical phase transition in the presence of a magnetic field,
necessitating a larger minimal required spin.

Regarding spin-induced scalarization, extensions have also focused on investigating
the effects of a Ricci coupling in EsGB theories within a stationary and axisymmetric
spacetime [164].

Beyond Scalarization

In black hole physics, the scalarization phenomenon has been extended beyond
scalar fields, as the mechanism is independent of the nature of the field. This concept
briefly suggests that other fields, such as vectors or tensors coupled to gravity or mat-
ter, may develop nontrivial configurations around a black hole solution of GR through
mechanisms termed vectorization and tensorization, respectively. The key difference
lies in the types of instabilities: instead of tachyonic instabilities, these theories are
susceptible to ghost and gradient instabilities, potentially triggering dynamical phase
transitions. For instance, Oliveira et al. [165] investigated spontaneous vectorized
charged black hole solutions, wherein a vector field B, couples with the electromag-
netic field A, through an exponential coupling function. The vectorized branches of
solutions bifurcate from the Reissner-Nordstrom black hole branch, triggered by ghost
instabilities, reaching a critical undercharged black hole solution rather than an ex-
tremal black hole or a naked singularity. This paragraph serves as a quick reference
on this topic as we explore black hole scalarization in this thesis.

1.4 Thesis Outline

The main goal of this thesis is to analyze black hole scalarization in scalar-tensor
theories of gravity, focusing on the role of the electromagnetic field and the explo-
ration of holographic aspects. The structure of this thesis is organized as follows.
Chapter [2| extends the pioneering work on the scalarization of Schwarzschild black



holes by incorporating an electromagnetic field, thereby studying the scalarization of
Reissner-Nordstréom black holes induced by the interaction of a scalar field with the
Gauss-Bonnet curvature invariant. Chapter [3| examines the scalarization of Reissner-
Nordstréom black holes driven by the interaction of a scalar field with matter, partic-
ularly through the nonminimal coupling of the scalar field with the Maxwell invariant
and higher derivative gauge field corrections. Chapter[4]investigates curvature-induced
scalarization using a holographic approach. According to the AdAS/CFT correspon-
dence, a black hole in gravity is holographically dual to a specific state in the dual
theory. Thus, we assume that trivial and scalarized black holes correspond to different
states in the conformal field theory, and we explore the resulting phase transition at
the boundary. The final Chapter [5|presents the conclusions derived from this research.



Chapter 2

Charged Gauss-Bonnet black holes
with curvature induced scalarization
in the extended scalar-tensor theories

2.1 Introduction

Black hole scalarization was first studied in Einstein-scalar-Gauss-Bonnet (EsGB)
gravitational theories [135]. EsGB gravity is an extension of GR that includes additional
scalar fields and higher-order curvature terms. The Gauss-Bonnet (GB) term is a
particular combination of curvature invariants, whose curvature tensor is quadratic in
its ordinary contractions and arises naturally in higher-dimensional Horndeski theory
[94] and string theory [166]. In particular, the Gauss-Bonnet invariant represents the
O(c’) R? correction to the Einstein action in ten-dimensional heterotic string theory,
disregarding matter gauge fields [167]. In four dimensions, it is given by:

Rép = R? — 4R, R"™ + R, 0 R 2.1)

The GB term is topological in four dimensions, meaning it does not directly contribute
to the field equations unless coupled to a scalar field. The action for EsGB gravity
includes the standard Einstein-Hilbert term, a canonical kinetic term for the scalar
field, and a coupling between the scalar field and the GB term:

S 1 d*z/—g (R =2V ,.0V*0 + f(0)Rep) (2.2)

16w
where f(¢) is a function of the scalar field ¢ that dictates the coupling strength between
the scalar field and the GB term.

EsGB gravity allows for new black hole solutions that evade the No-hair theorems,
exhibiting distinct properties compared to those in GR. Numerous hairy, spherically
symmetric, and asymptotically flat black hole solutions have been found [168-175].
This theory is considered a good approximation in strong gravity regimes where the
curvature is large, and the GB term significantly contributes to the system dynamics,
making EsGB theory eagerly anticipated to be tested through astrophysical observa-
tions.

Within this framework, it was shown that beyond a certain mass threshold, the
Schwarzschild black hole solution of GR becomes unstable due to tachyonic instabili-
ties, triggering the scalarization mechanism. New hairy black hole branches bifurcate
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from the Schwarzschild solution, characterized by a secondary hair, and the scalar
charge D. Each branch comprises a discrete family of solutions labeled by the number
of zeros (nodes) of the scalar field. Investigation of the linear stability of radial per-
turbations revealed that the fundamental branch (with a scalar field with no nodes)
is stable for certain choices of the coupling function, while the higher-order branches
(with scalar fields having one, two, or more nodes) are always unstable [139].

A natural extension of this theory is to add an electromagnetic field and investigate
the scalarization mechanism of the Reissner-Nordstrom black hole. New scalarized
black hole branches are anticipated to bifurcate from their GR counterparts, but only
the fundamental one is expected to be stable. Therefore, this chapter focuses solely on
presenting the fundamental branch of solutions.

The chapter is organized as follows: Firstly, we describe the specific theoretical
framework under investigation and study the linear stability of the Reissner-Nordstrém
black hole solution. Then, we present the newly obtained hairy black hole solutions
through the scalarization mechanism and analyze their thermodynamic properties.
Finally, the chapter concludes with a summary of our results.

2.2 The Theoretical Framework

We study the scalarization phenomenon in EsGB gravity theories with an electro-
magnetic field being present [1]. The action reads as:

S = w%r d'z/—g [R =2V, 0V 0 + N f(¢) R + Fu FM] (2.3)
where ¢ denotes a neutral scalar field, F},, denotes the Faraday tensor, and RQGB is
the Gauss-Bonnet invariant. The coupling function f(¢) depends only on the scalar
field ¢, determining how the scalar field is coupled with the spacetime curvature. The
coupling constant A\ has a dimension of length and shows how strong the coupling of
the scalar field to the spacetime curvature is.

Varying the action by all the dynamical fields of our theory, the metric tensor g"”,
the scalar field ¢ and the electromagnetic potential A*, which is defined through the
Faraday tensor as F*” = VF¥A” — V¥ A*, leads to the following field equations:

1 « « 1 (e}
Ry = SR + Ty = 2V,6V,06 = g0 VadV 6 + 2 (FWFZ, — ~GuFusF ﬁ) ,

4
o N df(9) s
Vo Ve = _ZWRGBa
vV, F" =0,
V[MFag] =0, (2.4)

where the I',, is defined by:

1
I'n=—R(V,¥Y,+V,¥,) -4V, (RW — §Rg,w> +4R,, VU, + 4R, VY,

— 49, RV W +4RP, | VU, (2.5)
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v, = AQWV,@. (2.6)



As we are interested in black hole solutions, we assume a static and spherically
symmetric spacetime with metric ansatz as follows:

d82 _ _62<I>(T)dt2 + 62A(T)d7“2 + T2<d02 + sin2 HdQOQ) (2.7)

The scalar field and the electromagnetic potential inherit the spacetime symmetries;
thus, they depend only on the radial coordinate. Moreover, we consider a Coulomb-
like electric potential without considering any magnetic charges. Hence, the aforemen-
tioned fields read as: 0

o =o(r), A'= <?,0,0,0> , (2.8)

where () is the electric charge. Then, the independent nontrivial field equations reduce
to the form:

2 2 A A1 4 U 2 2
- (1 + ;(1 - 36_2A)\I/r> A + < - =(1- 6_2A)& — (@) — e‘mQ— =0,

dr r2 r2 dr dr r4
(2.9)
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_\2IN\T)
U, =\ dgb e (2.13)

2.3 Tachyonic Instabilities

The scalarization phenomenon describes the black hole solution of GR, undergo-
ing a dynamical phase transition triggered by tachyonic instabilities. For a vanishing
scalar field ¢ = 0, the field equations reduce to the Einstein field equations in
the vacuum with a present electric field if the coupling function satisfies the condi-
tion f'(¢)|s=o = 0. Then, the theory admits the Reissner-Nordstr'om solution as a
background solution:

dr?

f(r)

f)=1- =54 @214

ds* = — f(r)dt* + + 72(d6* + sin? Odyp?),



Instabilities arise under small perturbations of all the dynamical fields. The equation
of the scalar perturbation d¢ decouples from the equations of metric dg,, and electro-
magnetic ) A, perturbations, which coincide with those of Einstein-Maxwell theory. As
a result, instabilities are determined through the scalar perturbation equation, which
reads as:

1
(D + Z/\Qf"(gb)RéB) |g=00 = 0, (2.15)

where |,—¢ denotes the Reissner-Nordstr’om geometry. The presence of a negative effec-
tive mass squared indicates tachyonic instabilities. Here, 1i2;; = —3A*f"(0)REp/s=0
resulting to the scalarization condition f”(¢)|s—o > 0. The second derivative of the
coupling function f(¢) with respect to the scalar field is a constant quantity, which
can always be normalized to unity, rescaling the coupling constant A. Then, the scalar
perturbation equation takes the form:

1

Since this form indicates tachyonic instability, we examine this equation more, search-
ing for a sufficient condition that provides the threshold of scalarization.

In a static and spherically symmetric spacetime, the scalar perturbation can be de-
composed in the standard way ¢ = @e‘i“t}/}m(& ¢), where Y,,,(0, ¢) are the spherical
harmonic functions. Substituting into (2.16), a Schrédinger-like equation arises as:

d*u

where U(r) denotes an effective potential as:

oM 2Q° LD (5@4 12MQ° . 6M2>) |

r3 r4 r2 r8 r7 76

(2.18)

i) = 100

Note that, r, denotes the tortoise coordinate defined as dr, = %, mapping the region

outside the outer event horizon r € (M + \/M? — Q? +0o0) to the hole space r, €
(—00, +00). The one-dimensional potential supports at least one bound state
when it develops a negative well outside the Reissner-Nordstrom black hole horizon
[176]. Mathematically, this condition reads as:

/_+<><> U(ry)dr, = /+OO (J{((:)) dr < 0. (2.19)

Assuming only the zero mode for [ = 0, because of spherical symmetry and normalizing,
for convenience, the charge () and the coupling constant \ to the black hole mass M

as: 0 \
) = — 5\ = —
Q M ) M Y
the condition leads to the following inequality:

(HQ\/?QZ) <1+M>3—%X2 <(2+5\/1—7(22)2—7> <0. (2.21)

(2.20)



Note that the first term is positively defined. Therefore, for the inequality to be satisfied,
a new necessary condition arises as follows:

2
. 1
(24—5\/1—@2) —7>0:>%<g\/14—|—4\/?%0.9916, (2.22)

which ensures that the electric charge does not dominate the gravitational effects of the
black hole, guaranteeing that the background solution is described by the Reissner-
Nordstrém black hole. Consequently, the latter becomes unstable under scalar per-
turbations if the normalized coupling parameter )\ exceeds a certain threshold, as
described by the following relation:

o (12i@) (@)
C eni@) -

The qualitative behavior of this relation is presented in Fig. (2.1), showing the lower
threshold value of the dimensionless coupling parameter )\, which is sufficient to en-
sure tachyonic instability for a particular charge to mass ratio () /M. We observe that
as the ratio )/M increases, the threshold value of X decreases. This means that the
Reissner-Nordstrém black hole becomes more susceptible to tachyonic instability when
it carries a sufficiently large electric charge () compared to its mass M. The repulsive
electromagnetic force becomes comparable to the attractive gravitational force, result-
ing in scalar perturbations becoming trapped in a potential well outside the event hori-
zon, destabilizing the spacetime. As the Reissner-Nordstréom black hole approaches its
near-extremal limit, the behavior of the coupling parameter ) is reversed. The back-
ground solution experiences a balance between the two aforementioned forces, making
it difficult for tachyonic instabilities to appear.
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Figure 2.1: Lower threshold of the existence of scalarized solutions in EsGB theory with an
electromagnetic field.

2.4 Scalarized Charged Black Hole Solutions

As the onset of the instability is controlled by the coupling parameter A, defin-
ing the interaction between the scalar field and the curvature invariant, we expect



curvature-induced scalarization to occur. The scalarization mechanism implies that
the Reissner-Nordstrém solution may undergo a phase transition to a stable hairy
black hole configuration.

To investigate new scalarized charged black hole solutions, we solve the system of
the field equations numerically (2.9)-(2.11) with a shooting procedure in the Wolfram
Mathematica software. We are interested in asymptotically flat and regular on the black
hole horizon 7y solutions. Asymptotic flatness implies that the geometry approaches
flat Minkowski spacetime as you move infinitely far away from the gravitational source.
Consequently, the boundary conditions at spacetime infinity, » — 400, are imposed
as follows:

Dl oo = 0, Albsoo = 0, Plroo — 0. (2.24)

On the other hand, the behavior of the metric functions ®, A in the near-horizon region
can be imposed in such a way as to ensure the presence of a horizon while adhering
to the following relations:

€2<I>|

ey — 0, e, — 0. (2.25)

The regularity of the scalar field at the black hole horizon also suggests the regularity
of its first and second derivatives, leading to the boundary conditions as:

Qb‘r—wH - ¢H7

d_gb = - 1 2 3 (S — 2 2
(dT>HTH 40172 f1() (15, — 4Q2 f2(0)) [(Q + @ury) (ry — 8Q° f1(9))

j:T}QﬁI\/T%(QQ + O173)2 — 8Dy f2(0)(2Q% + 3173, (18 — 4Q%f3(9)) |
(2.26)

where ¢y is a non-zero constant value and we use the notations ¢; = (de2<I> / dr)r_w
H

and f; = (df(¢)/dr),_,,. . We notice that only the plus sign recovers the Reissner-
Nordstrém black hole for a trivial scalar field, hence we reject the condition with the
minus sign.

Furthermore, the expression under the square root in equation must be
positive, considering a regular scalar field. This imposes a constraint that all values of
the fields at the horizon must adhere to. This constraint can be expressed as follows:

rf (Q* + @113’
8@1 (2@2 + 3@17"?{) '

[1(9) (rly — 4Qf1(9)) < (2.27)

We investigate the scalarization phenomenon in three different cases, each governed
by a different coupling function f(¢). These functions adhere to conditions conducive
to scalarization, namely f'(¢)|s—0 = 0 and f”(¢)s—0 > 0. The first coupling function
corresponds to Case I, and it is given by:

1 2
= 1—e*ﬂ¢), 2.28
£(6) =55 ( 229
where [ is a constant. This coupling function is described as a Gaussian model,
inspired by studies on the scalarization phenomenon in Schwarzschild black holes
within EsGB gravity theories, [135], and the subsequent demonstration of the stability



of scalarized black holes, as shown in [139]. Two additional study cases are considered
to explore the sensitivity of the dynamic process to each particular model. The Case II
is described by the following coupling function:

1 1
f(¢) = kB (1 - m) ; (2.29)

while the Case III is described by:

2
f(o) = 5 ¢ (2.30)

1+ 56
To summarize, the system of field equations (2.9)-(2.12) can be simplified to two
independent second-order equations for both the functions ®(r) and ¢(r), as in [177].
The scale of our theory is the horizon ry, which is set to ry = 1. We solve by integrat-
ing numerically the system for the function ®(r) and ¢(r). In contrast, a dependent
equation involving the aforementioned two functions defines the function A(r). Then,
we employ a shooting procedure, imposing the boundary conditions at infinity as de-
scribed in (2.24), while searching for solutions that meet the boundary conditions at
the horizon, as outlined in and (2.26), and ensuring satisfaction of the constraint
(2.27).

The obtained scalarized black hole solutions are characterized by three parameters
associated with the conserved mass M, electric charge (), and the scalar charge D of
the black hole. The electric charge () is defined by the electric potential (2.8). The mass
M and the scalar charge D are defined by the asymptotic expansions of the metric and
scalar functions at infinity, as follows:

M 1 D 1

r2

As mentioned earlier, scalarized uncharged solutions in the EsGB theory were ex-
tensively studied in [135]. Each family of solutions forms a branch characterized by
the number of nodes in the scalar field. Specifically, solutions without zeros in the
scalar field constitute the fundamental branch, while those with one zero form the sec-
ond branch, and so on. The fundamental branch bifurcates at a particular mass, with
additional scalarized branches bifurcating at progressively smaller masses. Stability
analysis under linear perturbations [139] demonstrated that only the fundamental
branch is stable, while the others are unstable. Therefore, although we expect similar
behavior for scalarized charged solutions, only the fundamental branches of solutions
are viable, as the additional ones violate the constraint (2.27).

We present the scalarized charged black hole solutions in Fig. (2.2), showing how
the scalar charge D varies with the black hole mass M across different electric charge
values (). Normalizing all the quantities to the parameter )\, the parameter [ repre-
sents the coupling constant of the theory. For each study case, we investigate two
regimes: the strong-field regime, represented by the value § = 6, and the weak-field
regime, represented by the value = 12. Note that the choice of the value § = 6 was
motivated by the numerical results, as this value yielded "nice" branches of solutions
that extended to the mass limit M/ = 0, which we will analyze later.
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Figure 2.2: The scalar charge D of the black hole as a function of its mass M. Figures for all
three cases are shown (Case I, II, and III) for 8 = 6 and 5 = 12. In each figure three black hole
charge Q/A =0,Q/\ = 0.2 and @/ = 0.4 are shown.

The horizontal axis represents the GR black hole solution as the background solu-
tion for a trivial scalar field, where D = 0. It is evident that in all three cases and both
regimes, the fundamental branch of solutions bifurcates from the trivial solution at the
same specific mass for both uncharged and charged black hole solutions, represented
by the black dotted line and the red and blue dotted lines, respectively. This occurs
because the bifurcation point depends solely on the constant A and is independent of
the particular coupling function /3, as demonstrated in the effective potential (2.18).

As the electric charge increases, the bifurcation point shifts to higher masses.
Moreover, the branches of the scalarized black hole solutions become shorter and
narrower in both strong and weak gravity regimes, regardless of the choice of the
coupling function.

Near the bifurcation points, the new scalarized solutions exhibit slight deviations
from their GR counterparts. As the branches extend to lower masses, these deviations
become more pronounced. Specifically, the deviations in the strong-field regime (5 = 6)
are greater than those observed in the weak-field regime (5 = 12). These deviations
are reflected in the scalar charge D. As the parameter [ decreases, indicating stronger
gravitational interaction, the scalar charge D of the black hole increases. This behavior
holds in all three cases, and what differs is only the magnitude of the scalar charge,
which is controlled by the value of the coupling constant 5. Note that these deviations
are consistent with the expected minor departure from GR in the weak-field regime



through the scalarization mechanism.

As observed, the scalarized charged branches of solutions may either terminate at a
scalarized charged black hole configuration, where D # 0, or they converge back to the
Reissner-Nordstréom black hole where D = 0. This outcome is determined solely by the
constraint for the charged branches. In contrast, for the uncharged branches, it
is determined either by the constraint or by a limiting configuration with M = 0.

Before reaching its endpoint, the scalar charge D peaks at an intermediate-mass
along the scalarized branch. This peak signifies the greatest deviation from the GR
solution, as the scalar charge D decreases with decreasing masses thereafter. This
behavior is consistent across all three cases, while the maximal absolute value of the
scalar charge increases as gravity becomes stronger.

Furthermore, for a fixed charge (), the branches of solutions shorten as gravity
strengthens, with a decreasing coupling constant 5. Consequently, as gravitational in-
teraction strengthens, we anticipate the branches of solutions to progressively shorten.
Stability analysis in [139] under the limit of = 0 and () = 0 demonstrated that the
fundamental branch is exceedingly short and unstable, motivating the choice § = 6.

2.5 Thermodynamic Properties

We further discuss the thermodynamic properties of the obtained scalarized black
hole solutions, including the horizon area, entropy, and temperature. Examining these
properties not only offers indications about the stability of the new solutions but also
provides a deeper understanding of gravitational theories beyond GR while simultane-
ously serving as indicators of deviation from GR.

The area of the black hole horizon, Ay = 47r%, is illustrated in Fig. . In the
three different cases, solid lines denote the GR solutions, while dotted lines represent
the scalarized ones, with parameter choices matching those in Fig.(2.2). We observe
that in all cases, both at strong and weak field regimes, the new scalarized charged
black hole solutions are smaller than their GR counterparts. The largest deviation from
the Reissner-Nordstrém black holes occurs at a specific intermediate mass, consistent
with the findings depicted in Fig. (2.2). This relationship is evident from the observation
that as the horizon area increases, the quantity of ’hair’l or the deviation from the GR
solution | decreases. Non-negligible deviations emerge for sufficiently small values of
the parameter (.
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Figure 2.3: The horizon area of the scalarized charged black hole solutions.

The study of entropy can illuminate the thermodynamic behavior of scalarized black
holes. In EsGB gravitational theories, entropy is not solely determined by the horizon
area; instead, it incorporates contributions from the interaction term of the scalar
field with the Gauss-Bonnet invariant. Following the method outlined by Wald and
Iyer in [178], [179], the quantity playing the role of black hole entropy is 27 times the
integral over the horizon surface // of the Noether charge associated with the horizon
Killing field (i.e., the Killing field which vanishes on /), normalized to have unit surface
gravity, which leads to the expression:

oL
Sy = 277/ ——— €08 (2.32)
. H aR,uya,B g g

The Wald entropy results in the analytic formula:

1
SH = ZAH + 47?)\2f(¢H), (233)

and it is illustrated as a function of the black hole mass M in Fig. (2.4). The notations
are kept the same. Remarkably, all scalarized charged black hole solutions exhibit
greater entropy than their GR counterparts. This suggests thermodynamic stability
against thermal fluctuations, making the new solutions thermodynamically favored
over the GR solutions. Near the bifurcation point, deviations from GR are slight, but
as the solutions extend to lower masses, these deviations become more pronounced



without reaching a maximum or minimum. Only the fundamental branches of the
scalarized solutions appear here, as other branches are forbidden due to the con-
straint violation. However, we examined the uncharged case for consistency,
where this constraint is invalid, leading to the emergence of additional branches. Sim-
ilarly to the entropy behavior of scalarized Schwarzschild black hole branches, the
fundamental branch exhibits the highest entropy, suggesting potential instability in
the other branches.
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Figure 2.4: The Wald entropy of the scalarized charged black hole solutions.

The temperature of the spherical symmetric scalarized charged black holes is de-
rived from the surface gravity ky at the event horizon as in [180], [181]:

ke 1 1 dgss
T="_—- [~ __ |Z% ) (2.34)
2 47 (, /1Gt:Grr | dr .

The behavior of the temperature of scalarized solutions compared to their GR coun-
terparts is depicted in Fig. (2.5). While Reissner-Nordstrém black hole branches may
reach an extremal configuration with 7" = 0, ceasing to radiate, scalarized black hole
branches typically fail to reach this limit. This failure can be attributed to the vi-
olation of constraint or to the scalar field becoming trivial, causing the hairy
configuration to merge with the Reissner-Nordstrém black hole. Despite conducting a
numerical study involving a large number of cases with varying electric charges and
coupling parameters, we did not find extremal scalarized solutions.
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Figure 2.5: The temperature of the scalarized charged black hole solutions.

2.6 Discussion

In this chapter, we extended previous studies within the scientific community on
the phenomenon of scalarization in EsGB gravitational theories by adding an electro-
magnetic field.

The Reissner-Nordstrém black hole of GR, as a background solution of our theory,
experienced tachyonic instabilities under small linear perturbations. These instabili-
ties led to a dynamical phase transition, resulting in the formation of a hairy charged
black hole. Numerically, we obtained spherically symmetric and asymptotically flat
scalarized black holes characterized by mass M, electric charge (), and scalar charge
D in three different cases, each characterized by a different coupling function. These
solutions are also examined in both the strong and weak field regimes, where the
coupling parameter § assumes small and large values, respectively.

New scalarized black hole branches bifurcate from the Reissner-Nordstrém black
hole and may or may not merge with it again at smaller masses, reaching a peak at
intermediate mass values. The amplitude of the scalar charge D shows deviations
from GR. Thus, in all cases, we investigated that, these deviations become significant
in strong field regimes, while they become almost imperceptible in weak field regimes.

The study of certain thermodynamic properties has unveiled intriguing features of
the new scalarized black hole solutions. Firstly, the horizon area of these scalarized
solutions is smaller compared to their GR counterparts. This implies that for the



same mass M, scalarized black holes possess a smaller horizon surface, consistent
with the behavior of the scalar charge D. Secondly, the higher black hole entropy
exhibited by the new solutions suggests their thermodynamic stability. Finally, the
temperature of the scalarized solutions is higher compared to Reissner-Nordstrém
black holes, indicating that they emit more radiation. This behavior suggests that
the scalarized branches terminate in non-extremal scalarized black hole solutions, a
conclusion supported by a large number of study cases.

The key point to note is that new hairy charged black hole solutions are gener-
ated through the scalarization mechanism, triggered by tachyonic instabilities. The
presence of a non-trivial scalar field solution introduces a second type of "hair" to the
black hole solution, meaning its dependence on both the black hole mass and electric
charge.






Chapter 3

Scalarization of the
Reissner-Nordstrom black hole with
higher derivative gauge field
corrections

3.1 Introduction

So far, we have explored the scalarization mechanism due to tachyonic instability
involving a nonminimally coupled scalar field with gravity. The scalar field experiences
an effective potential that changes shape beyond the instability threshold, causing it to
acquire dynamic behavior. The nonminimal coupling to gravity describes a situation
where the gravitational effects are enhanced in the strong gravity regime, necessitating
an extra degree of freedom to accurately describe the black hole solution, resulting in
curvature-induced scalarization.

An interesting extension of the scalarization mechanism involves introducing a
nonminimally coupled scalar field with matter fields. As Chapter |1| mentions, this
interaction term describes a situation where the surrounding matter could scalarize a
black hole, leading to matter-induced scalarization. The simplest case of this kind of
interaction is described by a nonminimally coupled scalar field with the electromagnetic
field, in the well-known Einstein-Maxwell-scalar (EMs) theory described by the action:

1 R 1
s= i [ v (5 - 19,096 - @)L - v<¢>) s

where f(¢) is the coupling function, F),, = V,A, — V, A, is the Maxwell invariant
and V' (¢) is a scalar potential. The scalarization of the Reissner-Nordstrém black hole
results in charged, nontrivial black hole solutions that reveal new physics beyond GR.

In models with different forms of the coupling function, the scalarization phe-
nomenon has been studied, resulting in scalarized electrically charged black holes
beyond a threshold of a sufficiently large charge-to-mass ratio, ¢ = (/M. EMs theories
have provided deeper insights into the spontaneous scalarization of black holes [150].
The results indicate that scalarized black hole branches are thermodynamically favored
compared to Reissner-Nordstrém black holes, with each branch terminating at a crit-
ical, singular configuration. Scalarized charged black holes may also be overcharged,
meaning they may carry more electric charge relative to their mass. Both electric
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and magnetic charges were considered in [149], leading to new scalarized black holes.
A notable result was that scalarized dyonic black hole solutions can have a smooth
extremal limit, unlike purely electric or magnetic ones.

In this Chapter, we extend the EMs theory with higher-order derivative gauge field
corrections, described by the following action:

S=1o= [ 4ov7a (5 - 5TV~ GEu N~ OFWE + af O FuF ).

(3.2)
where the (F),, F*")? term arises as O(c’) order correction, just like the Gauss-Bonnet
invariant in the ten-dimensional heterotic string theory [167]. Note here that the scalar
FF /BaFf’ F_7 arises also as O(«) order correction. Still, we neglect it since it provides
a contribution similar to the (F wl’ “”)2 scalar for pure electric fields [182], [183].

The chapter is organized as follows: Firstly, we describe the specific theoretical
framework under investigation and study the linear stability against scalar perturba-
tions of the Reissner-Nordstrém black hole solution. Then, we present the hairy black
hole solutions obtained through the scalarization mechanism and analyze their char-
acteristics and thermodynamic properties. Finally, we discuss their energy conditions,
and the chapter concludes with a summary of our results.

3.2 The Theoretical Framework

We study the scalarization phenomenon in nonlinear EMs gravity theories, where a
scalar field is nonminimally coupled to higher order derivative gauge field corrections
[3]. The action reads as:

s=L [y E VRV P f(6) (P—aP?)| . 63)

T 8
where we use the following notation:
P=F,F" =-2E*-B?, (3.4)

and F), = 0, A, —0,A, is the Faraday tensor, A, is the electromagnetic gauge potential
while the quantities E and B are the electric and magnetic fields, respectively.

Varying the action with respect to the dynamical fields ¢, A* and ¢g"” we can obtain
the following field equations:

V. Vi — f(¢) (P —aP?) =0, (3.5)
V, (2F"™ + f(¢)F™ — 2af (9)PF™) =0, (3.6)
G = Tl + T + TN (3.7)

where 75¢, TUM, TINT are the energy-momentum tensors of the scalar field, the

Maxwell invariant and the interaction term, and are given by

1
7;15;0 = vu¢vu¢ - §guuvn¢vﬁ¢ )

1
EM __ K
7;” _QF# FVK_EQIU/P s

TN = f(¢) (AF,"F, — g P — 8aF,"F,.P 4 g P?) .



3.3 Tachyonic Instabilities

For a trivial scalar field ¢ = 0, coupled with a function such that its first derivative
vanishes, f(0) = f(0) = 0, the field equations of motion admit the Reissner-Nordstrém
solution as the vacuum solutions of our theory:

1 2M 2
dr® +r?df* + r?sin® 0dp*, N(r)=1— "— + @ (3.8)

2 _ 2
ds* = —N(r)dt +N(7“) . o

Performing small perturbations around the vacuum solution ¢ — 0 + d¢, the equation
of the scalar motion becomes:

(O~ 1) |00 =0, (3.9)
where the effective mass squared uzﬁ of the perturbation reads as:

ey = f(o) (P —aP?) ‘ (3.10)

6=0

Tachyonic instabilities arise when the effective mass squared is negative, indicating
that the mass term becomes imaginary when squared. As we have discussed, this
implies that the perturbation may oscillate and grow over time, indicating the presence
of tachyons. Therefore, observing the terms, we find that P is always negative for pure
electric fields (and therefore P2 > 0), and « is related to the fine structure constant
and is positive. Consequently, the necessary but not sufficient condition for tachyonic
instabilities, f (0) ‘ 6=0 = 0, is required to scalarize the Reissner-Nordstrém black hole.

We consider a quadratic model for the coupling function, which is given by:

HOENRS (3.11)

where [ is a dimensionless coupling constant, which shows the strength of the inter-
action.

To determine the threshold of instability, there are two possible ways: one is a
dynamical (time-dependent) spherically symmetric perturbation, and the other is a
static (local) spherically symmetric perturbation, as in [184]. Because of the level of
complexity, we choose the second one. Performing a static (real) decomposition of
the scalar field with the same symmetries of the RN background, namely d¢(r, 0, @) =
u(r)Y;m (0, »), where Y,,,(6,p) are the spherical harmonic functions of degree [ and
order m, the Eq. is reduced to the equation

202 (20Q* + 1) £"(0)

76

(PN () () (z<z+ - ) W) =0. (312

We are interested in the spherically symmetric [ = 0 solutions, which are regular on
and outside the horizon ry and vanish at infinity. When these unstable modes appear,
the RN solution becomes unstable, and new scalarized solutions with nontrivial scalar
fields bifurcate from it.
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Figure 3.1: (Left) The value u, as a function of the charge to mass ratio ¢ of RN black hole.
(Right) The radial profiles of perturbation u(r) with a different number of nodes.

So, to determine the regions of the parameter space where the RN solution is un-
stable, we solve numerically Eq. (3.12), and we study the value of the perturbation at
infinity u.., as in [149]. In Fig. (left) we plot the u., as a function of the charge to

mass ratio ¢ = — of the RN black hole for different values of the coupling constants

«, 3. The zeros of this function give us the unstable modes, which are characterized
by a parameter n = 0,1, 2,3, ..., which is associated with the number of nodes of u(r),
Fig. (right). We explore the fundamental mode (zero mode, n = (), the first and
the second mode (n = 1,n = 2 respectively) of the perturbations, [184], [138]. We call
the existence value ¢, gexst s the smallest value of ¢ that onsets the instability of the
RN solution.
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Figure 3.2: Lower threshold of the domain of existence of scalarized BHs, (left) for different
values of the parameter o of the fundamental modes and (right) for three different modes with
the same parameter o = 20

In Fig. , we demonstrate scalarized black hole (SBH) branches of solutions,
and we can see the lower threshold value ¢.y of the domain of existence of scalarized
black hole solutions for different values of the constant a. So, the dotted lines separate
the region where the RN black hole is stable (under the dotted line), and the RN is
unstable, and the scalarized solutions appear and bifurcate from the RN (above the
dotted line). As we can notice from Fig. (left), sufficiently large values of constant
« can increase the domain of existence of scalarized solutions. As it was expected from
Fig. , [138], the fundamental mode (n = 0) is described by smaller values of Geyist



and therefore the rest of the modes are less interesting.

3.4 Scalarized charged black hole solutions

In this section, we numerically solve the system of field equations. We highlight the
primary findings, specifically focusing on the impact of the coupling of the scalar field
to higher-order derivative gauge field corrections on the domains of existence and the
profiles of radial functions of scalarized black hole solutions.

To investigate scalarized charged black hole solutions, we consider the following
static and spherically symmetric ansatz for the metric

dr? 2
P e 42 sin?0det, Ny =1— ) 5

d 2 _ —2§(T)N dt2
s e (r)dt” + NG "

where m(r) is the Misner-Sharp mass function and the gauge potential A,
A, = (A(r),0,0,0) , (3.14)

while the scalar field only depends on the radial coordinate, ¢ = ¢(r).
A linear combination of the Eq. (3.5).(3.7), using the integral of the Eq. reads

eOr? (142 e 3¢
A =— 2(‘61/3‘2(@) + 2 P [(3) (3.15)
20" +1¢? =0, (3.16)
ArA”e® f(¢) (20 A% +1) —r (N" + N (=25" + 267 + ¢%))
+ N'(r) (3rd’ —2) + 2 (N& +rA%*) =0, (8.17)

N¢" + (N’ + M) ¢+ 20 f(P) A% (1 + 22 A =0,  (3.18)

where C = C(r) reads as

€ = (VBa™*rte® /(6)"*/6 (00 Q% +77) J(0) + 4r [0 (2] (0) + 3) + 7

+18a2Qre® £(¢)2) " (3.19)

where () is the integration constant, which is interpreted as the electric charge. Note
that the primes denote derivatives with respect to the radial coordinate.

To evaluate possible singular behaviors, it’s noteworthy that the expressions for the
Ricci and Kretschmann scalars, considering the line-element (3.13), are as follows:

R = %(37«5’ —4) + % (1+ N (r’¢" — (1 =rd")?)) = N", (3.20)
4

r4

K=—(1-N)>+ % (N 4 (N' = 2N§')?) + (N" = 30'N' + 2N (5 — §")){3.21)

We construct scalarized charged black hole solutions by integrating numerically the
ordinary differential equations (3.15—3.18)) using a shooting method. At the black hole



horizon r = 7y, the solutions are asymptotically flat and regular

(r) = S+ () =) + - .

3

o(r)=08(rg)+ 0 (rg)(r—ryg) +.
o(r)=olrg) + &' (rg)(r —ry) + ...
A(r) = A(ra) + A'(ru)(r —ra) + ... (3.22)
where
m/(rg) = %626(TH)T%IA/(TH) (1+2f(o(ru)) (1 + 604626(TH)A/(7“H)2)) , (3.23)
5 () = 2e20ra) 3 A (rpr )t ( (ru)) (1 + 2()4625(’"H)A’(7’H)2) 3.24)
" (=14 e20mr2 A'(rg)?2 (1 +2f(¢(rg)) (1 + 60&625(TH)A’(7’H)2)))2\ .
, 2620 #)  f(p(r)) A (1 )? (1 - 2()5626(TH)A/(T’H)2)
¢ (TH) —1 + 2e20(ru)y2 A/(TH) (1 +f( ( )) (1 +6Oz€25(TH)A’(7’H)2)) ,  (3.25)
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The undetermined parameters §(ry), ¢(ry), and A(ry) are determined from the ap-
proximate behavior of the solutions at large distances via the shooting method.
At spatial infinity, the asymptotic solutions are

2+ D> MD*

m(r) =M — ym 2 (3.27)
5()—D—2+2MD2+ (3.28)
T) = 47’2 37’3 - .

D MD
p(r)=—+—75+... (3.29)
T T
A(r) = @ T (3.30)
T

where the parameters M, (), D denote, respectively, the ADM (Arnowitt, Deser, Misner)
mass, the BH electric charge, and the scalar charge at infinity. The Ricci scalar R
(3.20) approaches zero as r approaches ry, whereas the Kretschmann scalar K
is expressed as follows:

12 — 24e°0m) (14 2f(d(ry))) A'(ry)?
7
AN (503, 1 A7 (D) (e + 518, + 513 f(8(r) A )’
7
+3520e™0) f(¢(r)) (1+ 2f(d(r))) A'(r)°
+1600a%e ) f(p(rg))2A (1) + O(r — rg) . (3.31)

K =

where the A'(ry) is given by the Eq. (3.26).

The analysis of the linear stability has shown that the RN black hole has a tachyonic
instability in a certain region of the parameter space, where we obtain numerically
scalarized solutions bifurcating from it, as we can see in Fig. (3.3). Notice that each
dot in the plot denotes a black hole solution. Each solution is found numerically by



solving the system of equations (3.15)-(3.18) with a shooting procedure in the Wolfram
Mathematica software. The parameter that determines each solution is 7y = 1 and
there are three shooting parameters, namely, the value of the scalar field ¢(ry), the
metric function 6(ry) and the electric potential A(ry) at the horizon. The shooting
method determines the aforementioned horizon quantities by the asymptotic solutions
of ¢,0, A at infinity, (3.28)-(3.30). In Fig. (3.3), the thick black line denotes the trivial
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Figure 3.3: The scalar charge D as a function of the charge to mass ratio ¢, (left) for different
values of the parameters o, 5 of the fundamental modes and (right) for three different modes
for the same parameters «, 8

branch of the Reissner-Nordstrém solution. Specifically, in Fig. (left), the blue and
gray dotted lines denote the nontrivial branches of scalarized black hole solutions for
fundamental modes, and in Fig. (right) we demonstrate the first three nontrivial
branches of the fundamental, the first and the second mode, respectively. As we can
notice from the domain of existence of scalarized black holes (Fig. ), the nontrivial
branches bifurcate from the trivial branch, and they can reach a charge-to-mass ratio
q greater than the unity. So scalarized black hole solutions can be overcharged, as they
may have more electric charge than mass, while the black hole scalar charge increases
to a critical value when the branch ends. The same happens for all the first three
branches of nontrivial scalarized black hole solutions. Note also that the branch of the
fundamental mode is bigger and tends to have a greater charge-to-mass ratio than the
other branches of the first and second modes. The scalar charge D is, obviously, not
independent from the black hole mass M, as the black hole charge (), even if an explicit
function that relates these quantities can not be found analytically. Hence, the hair is
of a secondary kind. The endpoint of each branch exhibits a singularity, and numerical
calculations indicate a divergence of the Kretschmann scalar at the horizon, as we can
notice in Fig. (left). So we call the critical value of charge to mass ratio ¢, gt as
the value from which the Kretschmann scalar diverges. In Fig. (right), we show
the critical lines that serve as upper bounds for the domain of existence of scalarized
BHs. The last one together with the Fig. confirms that as the parameters «,
are increasing the domain of existence of scalarized black holes also is increasing. In
Table. , we show the existence and critical values of charge to mass ratio, Qexist, Gerit
respectively, for some branches of scalarized solutions.



1000

: : SBH =1 .
[ : : ] SUF ——a=03
800 : : —  SBH =2

600 T SBHp=4

%

. SBH p=6 q

400} ] L5k

Scalarized BH

2001

b4 i |
o ~rr 2 3 4 5 6 0 1

q B

S}
~

Figure 3.4: (Left) The Kretschmann scalar at the horizon K,,. The dotted lines describe
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critical point, K, , diverges. (Right) The upper threshold of the domain of existence of scalarized
BHs.

’ a p ‘ exist Gerit ‘
0.3 2 ]0.54079 1.68719
20 21047737 1.70369
0.3 4]0.29235 2.58449
20 4] 0.27943 2.58737

Table 3.1: Threshold values of charge to mass ratio, Gexist, erit» for different branches.

We can notice from the threshold values, Gexist, ¢crit, that the effect of the coupling
constant [ is more significant than the effect of the constant «, in the sense that
small value changes of § will result in configurations with bigger deviations when
compared to RN. In Fig. we show such configurations for « = 0.3, ¢ = 0.99
and f = 1,2,4. As we can see, the scalar field configurations are characterized by the
absence of zeros. All the configurations deviate from each one as the coupling constant
f increases both qualitatively and quantitatively. The value of the scalar field at the
horizon is decreasing while the value at infinity approaches its asymptotic value at
a slower rate, as [ is increasing. The components of the metric g, g, of scalarized
solutions, as well as the electric potential A(r), demonstrate significant deviation from
the Reissner-Nordstrom one, Fig. (right), (down). In Fig. (3.6), we depict three
scalar field configurations ¢(r) for the first three modes, where we can notice the zeros
of each mode. The fundamental mode does not develop any root, while the first and
the second modes do develop one and two roots, respectively.

3.5 Thermodynamic Properties and Smarr Relation

Let us now discuss the thermodynamics of the solution obtained. We are dealing
with a stationary, asymptotically flat spacetime, which therefore admits an asymp-
totically timelike vector field K* = (1,0,0,0), which satisfies the Killing equation
V,K, +V,K, = 0. As a result, we can define the conserved mass of the black
hole as [185]

M= -2 tim dS.sVOK? (3.32)
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Figure 3.5: The scalar field ¢(r), the metric gy, g and the electric potential A(r) as a function

0.6} — et
0.5} — p=2
0.4f p=4
¢ 03} ]
0.2} ]
0.1} ¥
0.0} —]
510 50 100
.
6
0.0f

-0.2¢
-04r
A(r)
-0.61

-0.8f

50 100 1
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Figure 3.6: The scalar field ¢(r) as a function of the radial coordinate r for the first three
modes. We set a = 20,q = 1.1.

where dS,3 = —2t|,75v/0dfdyp is the surface element with /o being the induced metric
on the ¢ = r = const surface: /o = r*sinf. Here ¢, is a time-like covariant vector field,
normalized to unity ¢, = (—Ve~2°N,0,0,0) and r, is a space-like covariant vector field
normalized to satisfy r, = (0, N(r)~*/2,0,0). Expanding the term dS,sV*K” we have

dSas VK" = —2t1,r5 VO KP\/adfdp =(—t,rsV* K’ + 51,V K?)\/odidy

= — 2,73V KP\/adfdyp . (3.33)
Evaluating the above relation for our line element, we have that
2,175 VOK? = 2t T, K* ~ —2Mr? | (3.34)

where we have used the asymptotic form of the solution given in equations (3.28)- (3.30)
and kept only the highest order term since the integral is evaluated at a 2—sphere at



infinity. Finally evaluating the integral (3.32) we obtain

1
M = _8_7r( 8cM) =M, (3.35)

which ensures that indeed M is the ADM mass as measured by a far-away observer.
Now, since the Killing equation is antisymmetric, it satisfies the following identity:

7{ VOKPdS,z =2 / VsVeKAdy,, (3.36)
()3 by
which might be re-written as
VK dS,s =2 / R%KPdS, (3.37)
ox %

if one uses the antisymmetric nature of the Killing equation and the equation LJK* =
—R% K" The left-hand side of (3.36) contains two contributions from the cross-section
defined by ¢t = r = const, one at the event horizon of the black hole and another one
at infinity. As a result, we can break this term into two pieces

f VKPdS,; = f{ VOKPdS,5 + 7{ VOKPdS,z (3.38)
) H 00

and we have already calculated the term at infinity, which will give —87 M. Evaluating
the integral at the horizon, we have

j{ V“KﬁdSaﬁ = drrle ° N’ (3.39)
H TH
As a result, one may now write
1
—87M +4mre’N'| = 2/ GRPAT, = M = Sr2e "N — —/ G KPdY,
TH »
(3.40)
The area of the event horizon of the black hole is given by [185]
2m T
Alry) = / dgp/ r3 sinf = 4mrs; (3.41)
0 0

The temperature of the black hole at the event horizon is Ty = N’ e o /Am [185]. Now
T
we can rewrite (3.40) as "

1 1
M= -AT — — « KBdy,, . 42
2-’4 4 /E ﬂ [ (3 )

™

Moreover, the ¢ = const hypersurface element reads
d¥e = —t Vh , (3.43)

where h = r?sinf/1/N is the induced metric on the spacelike hypersurface. Now, by
using Einstein’s equation, we may rewrite the above equation as

2m
:—AT—l——/ dfr/ sm&dﬁ/ dgp{ Ve 20N \/7

(—625 (A")? (f(¢) <4ae (A)? + 2) + 1))} (3.44)



where we have used the trace of the energy-momentum tensor
T = —16ae® (AN f(¢) —r (¢)° . (3.45)

Notice here the absence of any A’(r)? term because Maxwell’s theory is traceless in
four dimensions. Now reads

M = %AT + /00 dr (667“2 (A’)2 (2f(¢) + 1) + dae®r? (A’)4 f(¢)) , (3.46)

TH

and this is the Smarr relation that our solution satisfies. For the free scalar field theory
where ¢ = f(¢) = 0 = 0 one can see that

1
M = §AT + OrNQ (3.47)

where @y = @QQ/ry is the electrostatic potential of the RN black hole, and hence one
obtains the usual Smarr formula.

The charge of the scalar field might also be computed by using the relation of the
dilaton charge, mostly used in string theory [131}|186]

__i 2y
D= 47r/d by quﬁ, (3.48)

where the integral is evaluated over a two-sphere with infinite radius and —1/4r is a
normalization constant. It might not be clear from this expression; however, the scalar
field dresses the black hole with a secondary scalar hair since the scalar charge is
not independent of the mass of the black hole or the electric charge, as we mentioned
above, and as can be seen in Fig. (3.3).

Moreover, as is well known, the entropy will be related to the area of the black
hole solution [30]. It has also been proven that the entropy will be associated with
the gravitational theory under consideration through Wald’s formula [178]. In this
work, we considered the framework of GR to describe gravitation, and consequently,
the entropy will be given by

(3.49)

since we have set Newton’s constant to unity. As a result, examining the area of the
black hole is the same as examining the entropy.

We introduce the dimensionless standard reduced quantities

An

ag

In Fig. (3.7), we plot the reduced temperature and the area of the RN black hole solution
as well as of some scalarized branches of solutions.
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Figure 3.7: (Left) Reduced temperature ¢ty as a function of the charge to mass ratio g. (Right)
Reduced area ay as a function of the charge to mass ratio q.

As we discussed above, we can notice in Fig. that for a given set of constants
« and (3, nontrivial scalarized black holes emerge through bifurcation from the corre-
sponding Reissner-Nordstréom black hole with a specific charge to mass ratio gest. The
branches of solutions have a finite range and end up at a critical configuration with
a different ratio ¢.;. The resulting solution features a singular horizon, evidenced by
the evaluation of the Kretschmann scalar (Fig. (left)). As the critical solution is
approached, the horizon area tends to zero, and the temperature remains finite and
decreases as long as the coupling gets stronger. It is essential to mention that there
are BHs that are hot, as indicated by the peaks in the reduced temperature plot. In the
parameter space region where both scalarized and RN black holes coexist for the same
charge ¢, it is consistently observed that scalarized solutions are entropically favored
over RN black holes, as evident in Fig. (right). In Fig. (3.8), we can notice the
same behavior of the reduced temperature and area of all of the first three nontrivial
branches. The fundamental mode exhibits higher entropy than the other modes, so
the non-fundamental modes are not thermodynamically preferred.
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Figure 3.8: (Left) Reduced temperature ¢ty as a function of the charge to mass ratio ¢ for the
first three nontrivial branches. (Right) Reduced area ay as a function of the charge to mass
ratio g. for the first three nontrivial branches.

3.6 Energy Conditions

This section will discuss the nature of the energy-momentum tensor threading the
black hole spacetime by analyzing the energy conditions [187]. By considering the



proper reference frame where an observer will remain at rest for constant r, 6, ¢ [188],
we may identify the energy density and the principal pressures as follows

p= T = (A) (2/(6) (60 (A) +1) +1) + %N (¢)", 351
pe =Ty =GN (@) = (40 (2£(6) (60 (4 +1) 1) ©652)

Po=pp=Th= e (A) ( (o) (4an5 (A)? + 2) + 1) — %N (#)? . (3.53)

Without referring to the exact form of the solutions, the energy density of the black
hole spacetime is always positive by construction in the exterior region of the black hole
r > ry where N > 0, since to have scalarized solutions we assumed that f(¢) > 0 for
a positive a. As a result, the Weak Energy Condition, which implies the non-negativity
of the energy density, is respected. Moreover, the Null Energy Condition (NEC) states
that the sum of the energy density with the radial pressure is non-negative. For our
scenario, we have

p+p-=N¢?, (3.54)

which is positive in the causal region of spacetime, and the NEC again holds by con-
struction since we used a regular scalar field to construct hairy black hole solutions and
not a phantom one (with a negative kinetic energy term in the Lagrangian). The Strong
Energy Condition (SEC) states that the sum of the energy density and the principal
pressures is non-negative, which, in our case, reads

p+pr+po+ pp = 2% (A)? (f(¢) (4a625 (A")? + 2) + 1) : (3.55)

which is also non-negative for our system. Hence, the WEC, NEC, and SEC are all
satisfied in the causal region of spacetime for our solution since the pressure of the
matter threading the black hole spacetime is tangential dominated [189]. In Fig. (3.9),
we plot the components of the energy-momentum tensor of our theory. All components
are finite at the event horizon of the black hole, while at infinity, they tend to zero,
following asymptotic flatness.
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Figure 3.9: The components of the energy-momentum tensor for scalarized BHs for different
scenarios. (Left) We set o = 0.3, 8 = 2 (Right) We set ¢ = 0.99.

In Fig. (left), we set a = 0.3 and 3 = 2 so we plot the components 7% for some
scalarized BH solutions with different charge to mass ratio ¢q. We can notice that as
the BHs get overcharged, the magnitude of all components increases at the horizon
while it reaches its asymptotic value at a slower rate. In the right column, we set
a = 0.3,q = 0.99 while we increase the strength of the interaction of the scalar field
with the electromagnetism. As the coupling constant [ is increasing, the magnitude of
all the components is decreasing.

3.7 Conclusions

In this work, we considered the EMs model with higher derivative gauge field correc-
tions, a scenario that arises in string theory setups, as well as dimensionally reduced
Lovelock theories. We investigated the conditions under which the background solu-
tion of our theory (the RN black hole) develops a tachyonic instability, indicating in this
way the spontaneous dressing of the RN black hole with the scalar field of the theory.
Then, we numerically solved the system of the field equations, and we found scalarized
black hole solutions that carry a non-trivial scalar field. The branches of our black hole
solutions end with a curvature singularity and not with an extremal black hole, which



is in agreement with [1]. We investigated the thermodynamics of our system, derived
the Smarr relation of our black hole spacetime, and defined the mass and the scalar
charge of our solution through hypersurface integrals. By examining the temperature
of the black hole, we found that there is a critical value of the electric charge-to-mass
ratio for which the black holes are hot. The area of the scalarized black hole solutions
is bigger when compared to the area of the RN black hole, as well as, to the area of the
EMs scalarized black holes without the higher derivative gauge field corrections. This
result indicates that our solutions are thermodynamically preferred when compared to
the existing literature.






Chapter 4

Spontaneous Holographic
Scalarization of Black Holes in
Einstein-Scalar-Gauss-Bonnet
Theories

4.1 Introduction

4.1.1 The Holographic principle and the AdS/CFT correspodence

The holographic principle is a revolutionary idea in theoretical physics suggest-
ing that all the information contained within a volume of space can be represented
as a "hologram" -a theory located on the boundary of that space [190H192]. Black
holes have an entropy that scales with their surface area, which arises from a precise
equivalence between seemingly very different concepts. Specifically, certain theories
of quantum gravity in D dimensions (possibly more than four) are exactly equivalent
to ordinary gauge field theories, conformal field theory (CFT) in D — 1 dimensions.
This means that curved spacetimes undergoing quantum mechanical fluctuations are
exactly equivalent to ordinary particle theories without any gravity but in one lower
number of dimensions. The first example of holographic duality was proposed by Mal-
dacena in 1997 [193]. He formulated the conjecture that an N =4SU (N ) Yang-Mills
theory in B3 Minkowski spacetime with 4 supersymmetries is dual to a type IIB su-
pergravity theory in a five-dimensional Anti-de Sitter Ad.S5; spacetime, whose boundary
coincides with the R**! Minkowski spacetime. In this correspondence, the two theories
are inversely related: the strongly coupled CFT is dual to a weakly coupled quantum
gravity theory. The holographic correspondence represents a highly effective approach
for addressing strongly interacting systems in condensed matter physics [194-198].

States of the dual theories must be in a 1 — 1 correspondence. Note that the iden-
tification between operators and gravitational fields is done at r — 00; consequently,
the CFT is referred to as the boundary theory, with the asymptotically AdS spacetime
considered the bulk. A field that scales as z® near the AdS boundary maps to a gauge
invariant operator of dimension A. Thus, the CFT operators are related to the bulk
field as:

O(x) = Cy lir% 2 R¢(x, 2), (4.1)
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where (y is a normalization factor.
To verify that the operator has dimension A, let us study a scalar bulk field. Since
the field is scalar, rescaling the coordinates by ¢ implies ¢(x, z) — ¢((z,(z). Thus:

O(z) — Cy lim 22(Cr, C2) = CPCy lim 272¢(x, 2) = (CO(x), 4.2)

which is precisely the scale transformation of an operator of dimension A.
Specifically, in AdS,, 1, the mass of the field is related to its dimension as follows:

m?L* = A(A — d), (4.3)

therefore, there are two possible dimensions for each given mass. These dimensions
are related to the boundary conditions of the bulk field at z — 0 as:

p(z,2) = 25 (¢a, (2) + O(2%) + 2% (da_(z) + O(2?)), (4.4)

where

Ay = % (d L VE 4m2L2> . (4.5)

The field ¢a_ is a non-normalizable term and represents the coupling of external
sources to the gravitational theory, whereas the field ¢ is a normalizable term and
is related to the expectation value of the operator O.

Notice that in AdS, the mass term m? may be negative and still correspond to real
dimensions A for a scalar, meaning that the scalar field solutions are normalizable as
long as the following inequality holds:

d2
m2L? > - (4.6)

which is the Breitenlohner-Freedman bound [199|. This bound is a consequence of
the AdS geometry, giving the possibility for the existence of tachyonic scalar fields.
Regarding a gauge field with a time component as A; = ¢(z), the asymptotic behav-
ior (z — 0) is obtained as:
o(2) = p+p272 4 ..., 4.7)

where the asymptotic coefficients ;1 and p are identified holographically with the chem-
ical potential and the charge density, respectively.

4.1.2 Black Holes in Holography

One useful application of hairy black holes in holography is the study of problematic
systems, such as high-temperature superconductors, using holographic techniques.
High-temperature superconductors are materials that exhibit superconductivity at rel-
atively high temperatures (30K and higher) compared to traditional superconductors
and involve strongly correlated electrons. In these systems, the interactions between
electrons are so significant that they cannot be described by conventional theories of
metals, such as Fermi liquid theory.

The BCS (Bardeen-Cooper-Schrieffer) theory is a microscopic theory of supercon-
ductivity based on the concept of quasi-particle fermionic interaction. It predicts the
creation of electron pairs, known as Cooper pairs, which are bound together in such a
way that they do not scatter by the lattice. This causes the electrical resistance to drop



abruptly to zero below a critical temperature 7.. The Cooper pairs form a "particle" with
different properties from the individual electron. Finally, all Cooper pairs condense into
a single macroscopic quantum state, described by a coherent wave function.

In s-wave superconductors (conventional materials) such as lead, tin, and mercury,
the electron pairs have a spherically symmetric wavefunction, as they are made of one
electron with spin up and one with spin down, resulting in no net angular momentum.
In p-wave superconductors, the pairs have an angular momentum of one, and the
electrons pair with parallel spins, leading to an asymmetrical wavefunction. In d-
wave superconductors, the Cooper pairs have an angular momentum of two, and the
electrons pair with antiparallel spins, resulting in a more complex, cloverleaf-shaped
wavefunction. The strong electron-electron interactions in these materials lead to
complex behavior that is difficult to model and predict.

Holographic superconductors use the AdS/CFT duality and can provide a natural
theoretical definition of superconductivity in the strong-coupling regime [200]. The
first holographic superconductor with quite similar behavior to real superconductors
was obtained in GR theory minimally coupled to a Maxwell field and a charged complex
scalar with a potential term in AdS spacetime [201], [202]. Below a critical tempera-
ture, 7., the charged black hole solutions undergo a phase transition through classical
instability, developing non-trivial hair. In terms of the dual field theory, a U(1) symme-
try breaks through thermal fluctuations, and a holographic phase transition appears
below 7 at a finite charged density due to the condensation of a charged scalar. There-
fore, the superconductivity is characterized by the condensation of a charged operator
O for low temperatures 7' < T.. This model inherently manifests s-wave superconduc-
tors.

For completeness, we refer to the investigation of p-wave superconductors explored
in references [203], [204], while d-wave superconductors have been examined in [205}
207].

Despite the success of holographic superconductors, there remains a need to inves-
tigate more generalized nonminimal holographic superconductors. This exploration is
essential to incorporate additional features of superconductors found in real physical
systems and potentially uncover the dual description of real superconductors.

4.1.3 Holographic Scalarization

Holographic phase transitions are often characterized by changes in the dual grav-
itational theory, exemplified by phenomena such as the formation of hairy black
holes, as discussed previously. In AdS spacetime, a black hole on the gravitational
side is holographically dual to a specific state in the dual CFT, implying that the
Schwarzschild-AdS black hole and the hairy AdS black hole correspond to different
states in the boundary CFT.

Similarly, spontaneous scalarization involves alterations in the gravitational field
surrounding compact objects due to the amplification of scalar fields. While one might
initially consider spontaneous scalarization as a holographic phase transition, it’s im-
portant to note that traditional holographic phase transitions are typically accompa-
nied by symmetry breaking. The mechanism of scalarization, however, leads to a phase
transition unrelated to symmetry breaking. As a result, it likely describes a specific
quantum phase transition occurring at absolute zero temperature.

In this chapter, we explore the phenomenon of holographic scalarization through



two distinct analyses. Firstly, we examine holographic scalarization in AdS EsGB
theory with a neutral scalar field coupled to the Gauss-Bonnet invariant. Our goal is
to study the resulting phase transition from both the bulk gravity and boundary CFT
perspectives without invoking any symmetry breaking. Since this model lacks U(1)
symmetry breaking, we anticipate that the dual theory will not exhibit superconducting
behavior but rather undergo condensation O4. Secondly, we investigate holographic
scalarization in AdS EsGB theory in the presence of an electromagnetic field and a
charged scalar field. This allows us to examine the combined effects of two different
phase transition mechanisms, potentially leading to a wider and deeper effective mass
and hastening the formation of hairy black holes. In this case, the presence of U(1)
symmetry breaking results in a holographic superconducting condensation when the
temperature drops below a critical value.

4.2 Scalarization analysis and holography in Einstein-
scalar-Gauss-Bonnet theory

4.2.1 The Theoretical Framework

The EsGB theory is described by the following action:

1
167Gy

/ d*z/—g <R + % — V, 0V p — m*¢* + f(¢)RéB) , (4.8)

where Gy is the Newton’s constant, L is the curvature radius of AdS spacetime, ¢ =
¢(r) is a neutral real scalar field with mass m, and f(¢) is the coupling function of the
scalar field and the Gauss-Bonnet invariant term.

Varying the action with respect to all dynamical fields yields the following field
equations:

1 3 1 o, 1
Ry = 5 R0 = 7539 + D = V0V = 50,0 VadV 0 — Sy,

1
VAR (m2 - 5f’<¢>RéB) =0, (4.9)
where

1
Puu =—R (quju + Vu‘lju) - 4Va\11a (Rw - §R9ul/> + 4Ruava\111/ + 4Rvavaqju

— 49, RV U5 + AR5, VU, (4.10)
with
df (9)

\I/# - Wvu(b (411)
As highlighted by Witten [208], in the limit of a large Schwarzschild-AdS black hole,
the topology transitions from S' x S?! to S! x R%"!, where a Schwarzschild black
hole is approximated by a planar black hole with a translationally invariant horizon.
Hence, we can conclude that the planar Schwarzschild-AdS black hole emerges as an



admissible solution of our theory if f'(0) = 0, where the field equations reduce to the
Einstein field equations for a trivial scalar field, which we set to zero (¢ = 0):

1
ds? = — g(r)dt* + ——dr?® + r2(dz® + dy?
o 4 sdr® e+ dy?)
="M (4.12)
g _L2 r 9 .

where M is the black hole mass. We expect tachyonic instabilities to arise if the cou-
pling function also satisfies the condition f”(0) > 0, as discussed in [135]. Therefore,
we choose:

A2 2
_ 1—e—5¢>7 4.13
19) =33 ( (4.13)
Here, ) represents the coupling constant of our theory, while 3 serves as a parameter
that has a minor impact on our analysis; thus, we set 5 = 1 for the subsequent study.

4.2.2 (In)stability analysis for a neutral scalar field

We are interested in studying the possible instabilities of the background solutions
in our theory. As in the previous chapter, these instabilities manifest through the
scalar perturbation equation:

1
O (m? = S/ (@OR%s ) )| _s6=0, (4.14)
2 $=0
where [ is the d’Alambert operator and the Gauss-Bonnet invariant is calculated with

the planar Schwarzschild-AdS metric as:

24 12M?
- §+ 70

4
Rep = — (9'(r)° +9(r)g"(r)) - (4.15)
As we expected, the effective mass term may become sufficiently negative, resulting in
tachyonic instabilities, due to the presence of a negative term, as follows:

A more analytical approach involves a dynamical analysis of the Schwarzschild AdS
black hole, we consider the time-dependent radial perturbation given by ¢ = e@.
Consequently, the Klein-Gordon equation, expressed under the tortoise coordinate

r. = [ g~'dr, is as follows:

B O?P(r,t) N D?P(r, t)

ot2 37’3 - V(T‘)(b('r’, t) =0, 4.17)
where the effective potential reads as:
! 22
Viry=g (97 +m? — 7(9’2 + gg”)) : (4.18)

We present the profile of the effective potential in the left panel of Fig. (4.1). As ex-
pected, the potential may form well outside the horizon radius 7, which, when deep



enough, results in tachyonic instabilities. As the coupling constant A increases, the
interaction between the scalar field and gravity strengthens, destabilizing the back-
ground spacetime. The critical coupling is approximately A ~ 0.6. Note that in the
right panel of Fig. (4.1), we present the effective potential for the flat Schwarzschild
AdS case, i.e., L — 00. This clearly shows smaller and shallower potential wells, im-
plying that instabilities arise more easily for planar Schwarzschild black holes in AdS
spacetime compared to flat spacetime.
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Figure 4.1: (Left) The behavior of the effective potential for the AdS black hole as the function
of the radial coordinate. Right: The effective potential for the flat case with L — oo with the
same value of parameters. Here we have set r, = 1 and m?L? — 122—2 = —2 without loss of
generalization, while the mass M is the root of the metric function g(r).

In Fig. (4.2), we present the time domain profile of the scalar field. Below a critical
value of the coupling, the scalar field decays over time, indicating stability. However,
when the coupling constant A exceeds the critical value of approximately A\ ~ 0.678,
the scalar field grows over time. This behavior aligns with the analysis of the effective
potential.

| = A0 - A=03 -- A=05
| — A=0678 — A=069 — A=0.7

0 50 100 150 200 250
t

Figure 4.2: The time domain profile of the scalar field at fixed radial coordinate r» = 1000.

4.2.3 Signal of scalarization in the probe limit

The analysis in the preceding section was conducted from the gravity side, involving
a dynamical analysis of scalar perturbations within the background geometry. This
analysis revealed the onset of tachyonic instability beyond a critical coupling threshold,
approximately A ~ (0.678. Consequently, it is anticipated that the scalar field will
condense on the boundary on the gauge side.



The Klein-Gordon equation governing a radial scalar field ¢ = ¢(r) under the planar
AdS Schwarzschild background is given by:

2 g0\ m? N e df(9)
¢ (r +(—+ ¢ (r) — o(r) + R =0, (4.19)
D) O T 2w e as
which, near the black hole horizon, reduces to:
1 2

¢ -3 (—3 —m? —18)2e ¢ ) 6= 0. (4.20)

At the AdS boundary, r — oo, the scalar field behavior reads as:

- | 94

¢(7”) = K + E? (4.21)

where AL = Sy ordme ”?W and m? = m?L?* — 122—2. According to the gauge/gravity duality,
a condensate will form in the boundary theory if m? holds the Breitenlohner-Freedman
(BF) bound, i.e., if m? < m%, [199], [209]. For (3 + 1) dimensional asymptotically
flat AdS spacetime with AdS radius L = —%, the BF bound is m%, = —% = —%.
Therefore, it sets a lower limit on the effective mass squared of a scalar field to ensure
stability:

m? > (4.22)
‘ 412 ’
Hence, for simplicity, we set m? = —2, resulting in the values A_ =1 and A, = 2. We

then solve Eq. numerically, imposing the following boundary conditions:
¢+ =0, and ¢_ = (Oy) (4.23)

In the probe limit, the behavior of ¢_ as a function of the coupling constant A is
presented in Fig. (4.3). The dual CFT suggests a strong indication of spontaneous
scalarization beyond a critical coupling constant value of approximately A\, ~ 0.64,
where the condensate of the scalar field emerges rapidly.
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Figure 4.3: The boundary condensate parameter ¢_ as a function of the Gauss-Bonnet coupling
constant A.

Moreover, in Fig. (4.4), we present the scalar field profiles for different coupling
constants that exceed the threshold, A\ > A.. This figure confirms the presence of
nontrivial scalar fields triggered by tachyonic instabilities.
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Figure 4.4: The profile of the scalar field as the function of the coordinate z = %" here we set
the horizon r, = 1. We see that the scalar field condensates near the horizon, contributing to
the black hole hair for some intermediate .

4.2.4 Scalarized hairy black hole solution

Considering the backreaction of the scalar field on the background geometry, we
solve the field equations in this section using the following ansatz for the planar
metric:

1

~2

ds® =

(—(1 — 2)p(2)U(2)dt* + dz* +V(2)dz* + V(z)dyQ) , (4.24)

(1= 2)p(z)U(z)

where z = r,/r, p(z) = 1 + z + 2%, so the horizon is now located at z = 1 and the
asymptotic boundary at z — 0. The functions U(z) and V' (z) are the metric functions.
The Klein-Gordon equation takes the following form:

oo+ (L8 T T 222 o

p(z)  U(2) (2)  z2(z—-1)
1 2 N df(¢) L )
T (0 7 g Res) =0 )
and the nontrivial field equations read as:
U/ 22(2—1) V2 I de(¢) _ 2 I 12
pV= (VI =2V) + A e UM| +Ul(z — 1)2*V (2pVV' — pV"?)
—4z(z — D)V3) 4+ 2pV3(—6 + 42 + (2 — 1)2%¢"?) — 22pV3((3z — 4)V' — 2z(z — 1)V")]
+)\2—df<¢> U? []iM +4(z — )2V (V" = V7?) +82(2 — 1)p*VEN

do p
+2(2 = 1)2°p*VV(N + 4(2 — 1)¢') — 8(2 — 1)2*p*V3(22(2 — 1)¢'V" + NV')]
+2V3(6 — m*¢*[4.26)

2
V72 (2 —1)2*pU + ZZX + VV'[2(z = 1)22(Up + pU’) — 22(32 — 4)pU — 2X]

+V2[12 = 2m*¢* — 4z(2 — 1)(Up' + pU') + X — 2pU(6 — 4z + (= — 1)2°¢")] , (4.27)



V'[—2(z — 1)2*pU + 2@5')\2%5)(2(2 —1)(z — 2)2%%U% — (2 — 1)%2*(p*U?))]
+7/2[(z —1)2*pU + %X} + V'[22(z = 2)pU — 2(z — 1)2%pU" — 2Y] + V[-12 + 2m?*¢*
+2pU(2(3 — 2) — (2 — 1)22¢"?) + 42(2 — 2)Up +2(z — 1)22(2p'U’ + Up")

F25p(2(z — U — 2(= — 1)U") + §Y14.28)
where

M = 6(z—1)*p*V¢ (4V? —42VV' 4 22V?) |
N = (z+42)¢ +2(z —1)z¢",

X = 12¢'/\2%[(z —1)222(p*U?) — 22(2 — 1)(z — 2)p*U?]
— )\2%{[(2 _ 1)224¢’(U2p2)/]’ . 2(2’ o 1)z4¢'(U2p2)’ . Q} ,
Q = 22p*U%(2* —2)¢' + 2(2* — 32+ 2)¢"] . (4.29)

We verify that when U(z) = V(z) = 1 and ¢ = 0, the Schwarzschild-AdS geometry
becomes a solution to the above system. Therefore, we impose the following boundary
conditions (1 — oo, z — 0):

Uz 0 =V(Eos0 =1, 620 =¢ 2 7 42 7 (430

By setting the model parameters to those of the probe limit, we numerically solve the
nontrivial field equations for values of the coupling parameter close to the critical value
found in the previous analyses. The profiles of the metric functions U(z) and V(z),
along with the nonvanishing scalar field ¢(z), are illustrated in Fig. (4.5). Near the
critical value, the metric functions U(z) and V(z) approach unity, and the scalar field
begins to manifest as hair. As )\ surpasses the critical value, new scalarized black hole
solutions emerge, causing the metric functions to deviate from unity and the scalar
field from zero.
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Figure 4.5: The profiles of the metric function U, V and the scalar function ¢ of the hairy black
hole as the function of the coordinate z = .

According to the AdS/CFT correspondence, the scalar field ¢ expressed in is
dual to a scalar operator O, in the boundary theory. As before, we set the boundary
conditions ¢, = 0 and ¢_ represents the vacuum expectation value (VEV) in the dual
theory. In Fig. (4.6), we present the VEV as a function of the coupling parameter.
Similar to the probe limit, ¢_ becomes nonzero around 0.64 and sharply increases,
indicating the condensation of hair. It’s worth noting that after reaching a maximum
VEV, the behavior changes, suggesting that the scalar field may face difficulty in form-
ing a stable configuration of a scalarized black holdﬂ

0.4

0.3F

0.1}

0.0 n . . ]
0.0 0.5 1.0 1.5 2.0

Figure 4.6: The boundary condensate parameter ¢_ as a function of the coupling parameter \.
The condensate merges around A, ~ 0.64, which are the same as the results in the probe limit.

To discuss these results briefly, we aim to clarify the two dual descriptions of the
phase transition occurrence. On the bulk gravity side, we observe the formation of

!The presence of nonlinear terms leads to numerical breakdown for large coupling



scalarized black hole solutions triggered by tachyonic instability resulting from the
interaction of the scalar field with higher-order curvature terms. This occurs even if
the effective mass of the scalar field does not violate the BF bound. In the boundary
field theory, a black hole on the gravity side is holographically dual to a thermal state.
Conversely, there is a distinct phase transition from a normal state with a vanish-
ing VEV to a condensed matter state with a nonvanishing VEV. The absence of U(1)
symmetry breaking results in the phase transition in the CFT not being a holographic
phase transition but rather a quantum phase transition at a finite temperature.

4.2.5 Holographic entanglement entropy as a probe

In this subsection, we will investigate the scalarization mechanism by calculating
the dual theory’s holographic entanglement entropy (HEE). As previously mentioned,
HEE is one of the boundary theory’s most important characteristic scales. We antici-
pate that HEE will serve as a useful probe of scalarization, enabling us to characterize
the phase transition in the dual boundary theory.

In the case of Lovelock gravity, the correct holographic entanglement entropy does
not be described by Wald’s formula. The appropriate function for describing holo-
graphic entanglement entropy is the one introduced in [210]. We will utilize the Ryu-
Takayanagi proposal [211] to compute the sector’s holographic entanglement entropy
(HEE). For this purpose, we focus on subsystem A, which has a straight strip geom-
etry defined by % <x < %, 0 <y < L, where [ is the size of A and L serves as a
regulator, which can be set to infinity. Ryu and Takayanagi proposed that the HEE S4
is determined by the radial minimal extended surface 74 bounded by the A as:

Area(ya)

G, —
A 4(;A7 )

(4.31)

in Einstein’s gravity. A general expression for HEE in higher derivative gravity is given
by [212]:

SA = —27T/d2$\/_

€€ po + Anomaly term

}%uupa
0?L 2K K
= _27T/ de\/_ glu,ngO' - Z ( AlﬂlO’l >‘2p202
8R“p”a o aRHlplvwlaRmem a Ga+1
ArA ALA
X[(n/““?n'jl’@ - €M1M25V1V2)n 4+ (nu1u2€u1u2 + 5#1#2”1/11/2)5 ! 2]) ) (4.32)

The first term represents the Wald entropy [178], [179], while the second term is the
anomaly term of HEE, representing the corrections involving extrinsic curvature. g,
denotes "anomaly coefficients," L is the Lagrangian density, and h denotes the determi-
nant of the induced metric on the extended surface =, which minimizes the functional
S4. Our theory yields the HEE for the dual theory, evaluated as:

1 1 g
Sa=7 / dz*Vh [1 — f(o) (23 — 4(R* — 5KaK“) + 2(R® Ry, — Kaina”)ﬂ , (4.33)
where K,;; is the extrinsic curvature tensor and K, is defined as K, = Kaijhij .
We explain the notations used in the two formulas as follows: The Greek letters
w, v, ... serve as indices for the four-dimensional bulk geometry, while ¢, j,... are



indices for the two-dimensional extended surface =. The Latin letters a,b,... are
indices for the two-dimensional space orthogonal to =. In terms of two orthogonal
unit vectors nﬁfb), we define n,, = n,(f)n(yb)Gab, which projects onto the induced two-
dimensional metric G, in the 2 directions. Then, the tensor €,, can be constructed
as € = nfla)n,(,b) €ab» Where &4, is the usual Levi-Civita tensor and ¢, is the Levi-Civita

tensor in the two orthogonal directions with all other components vanishing.

We denote the HEE of the Schwarzschild-AdS black hole as S 4, which is a constant
since it is independent of the coupling constant A\. Thus, S, represents the HEE
entropy of the scalarized black hole. In Fig. (4.7), we present the relation between
the difference AS = Sy — Sa9, which encapsulates the information arising from the
interaction between the scalar field and the GB invariant, and the coupling constant .
Aligned with the previous results, when the coupling constant is less than the critical
value ). ~ (.64, the background solution is the physically favorable one. However, as
the coupling constant exceeds the critical value, the HEE increases rapidly, and new
scalarized black holes become physically favorable, possessing larger HEE.

Figure 4.7: The difference of holographic entanglement entropy AS = 5S4 — S40 as a function
of the GB coupling.

As the HEE serves as a measure of the degree of freedom within a system, intro-
ducing the scalar field should augment the degree of freedom in the boundary theory
corresponding to the hairy black hole, thereby increasing HEE after scalarization. It’s
noteworthy to highlight that this behavior of HEE contrasts significantly with that ob-
served in holographic superconductors. In such systems, the hairy superconducting
state typically exhibits lower HEE than the normal state. This discrepancy arises be-
cause the emergence of Cooper pairs in the superconducting state reduces the degree
of freedom of the system. For further insights, refer to [?, ?, ?], and references therein.

Moreover, scalarization implies the formation of a halo of matter at small distances
r < 1. This is a dynamic process driven solely by gravitational force. Fig. illus-
trates that the HEE initially increases from \. and then decreases until it stabilizes.
This behavior indicates that the black hole acquires hair, with the scalar field pene-
trating the black hole horizon until stabilization is achieved. As this process occurs
on a small scale, the corresponding dual boundary theory can only be described as
a quantum physics effect. From this perspective, we can argue that the scalarization
discussed may correspond to a certain quantum phase transition; however, further
investigation is required to delve deeper into the underlying physics.



4.3 Holography phase transition in Einstein-scalar-Gauss-
Bonnet theory in the presence of an electromag-
netic field

4.3.1 The Theoretical Framework

In this section, we investigate the holographic phase transition in EsGB theory in
the presence of an electromagnetic field A, = (A;(r), 0,0, 0) and a massive charged real
scalar field ¢, which is described by the following action:

1 6 1 , .
" 167Gy / da"v/=g (R + 73 = g P F" = Dud(D"0)" = m?|6]" + f(#)Re¢

(4.34)
where D, =V, —iqA,, F,, = V,A, — V, A, is the Maxwell invariant, L = —% is the
AdS radius and m, g denote the mass and the charge of the scalar field. The modified
Einstein field equations of all the dynamical fields g,,, A, and ¢ read as:

1 3 N
Ry = 5 R = 50w + D = VbV — gw VoV

1 1 .
- (_m2guu + §q2AaA Guv — qu,uAu> ¢2

2
1 1
—_ poeov aK
+ 2 (F Fa 4FomF g;w) )
Vo P = 2¢° AP,
V.V — (m* + ¢°A A“)¢+ Ly (O)Rep = (4.35)

where I',, is defined as in (4.10). As in the previous section, choosing the coupling
function f(¢) = % (1 — ¢#9") with 8 = 1 and the condition f'(0) = 0 results in the

Reissner-Nordstrom-AdS solution as the vacuum solution of this theory, as follows:

1
——dr? +r? (d2® + dy?) ,
g(r) ( )
2 2M  Q?
—_ - — 4.36
9(r) = L? r T 472 ( )

ds* = — g(r)dt* +

4.3.2 (In)stability analysis for a charged scalar field

Moreover, this coupling function form satisfies the spontaneous scalarization con-
dition. Specifically, small linear perturbations around the background solution are
governed by the Klein-Gordon equation:

1
(D — (m* + A, A") + 3 f/’(gb)RgB) §¢ =0, (4.37)
where the effective mass squared takes the form as follows:



where A;(r) denotes the electric potential. If the m? ¢ remains sufficiently negative for
a long enough period, it may become tachyonic, breaking the U(1) symmetry. Conse-
quently, we expect the scalarization mechanism to mimic a holographic superconduct-
ing phase transition at a certain critical temperature of the black hole [200], [202]. The
Hawking temperature of the Reissner-Nordstréom-AdS black hole is given by:

g(n)

T =
47

(4.39)

We avoid analyzing the stability behavior of the background metric and proceed di-
rectly to investigating scalarization in the probe limit. This approach is justified by
the expectation that similar to the neutral case without the electromagnetic field, the
dynamical analysis of the background solution aligns with the condensation analysis
in the probe limit.

4.3.3 Holographic superconducting condensation

The equations governing the scalar and electromagnetic fields are depicted as:

"(p 2 gl(r) r 2At(r)2 _ ng(T) r M R2GB —
o ( ) 90+ T e+ SR <0 wao
Al(r) + A’( ) — 2ng5§;) Ay(r) = (4.41)

We are interested in asymptotically AdS solutions, which are regular on the horizon.
Therefore, the boundary conditions near the horizon are given by:

L? 18)\2e~04(n)*
A (T’h) = 0 gb (T’h) 3 - <m2 — 6L—4> ¢(Th), (4.42)

while the boundary conditions at infinity are given by:

Ay =2 o= G+ G

(4.43)

The asymptotic coefficients p and p are holographically associated with the charge

3+4/9+4m2

density and the chemical potential, respectively, and AL = 5 with m2 = m? —
12)2, We fix L = M = ¢ = 1, m?L = —2, and then solve the system of equations
numerically using the specified boundary conditions.

The scalar field condensates at the critical temperature 7, triggered by tachy-
onic instabilities due to interactions between the scalar field and both the gauge field
and gravity. In the left panel of Fig. (4.8), we present the phase diagram A\ — 7T,
This result is consistent with findings from [213+H215], and [216], which indicate that
in the presence of strong curvature effects outside the horizon of a five-dimensional
Gauss-Bonnet-AdS black hole, the effectiveness of the holographic superconducting
mechanism diminishes as the GB coupling increases. The critical temperature 7. of
the holographic superconducting phase transition is the particular temperature above
which the trivial black hole is physically stable. In contrast, below it, the black hole is
stabilized in a superconducting state with non-vanishing ¢_. This figure shows that
the critical temperature first slightly increases as the GB coupling ) increases. When



the coupling goes to a critical value .. ~ 0.6339, T increases dramatically and then
becomes divergent, it implies that the holographic superconducting phase transition
only can occur when A < A\, and when A\ < ). a hairy black hole does not form in
the gravity sector while on the boundary there is no any holographic superconducting
phase.

This result indicates that as the GB coupling A becomes larger than a critical
value, the gravitational attraction from the GB high curvature term becomes stronger,
and the formation of the scalarized black hole is not possible. A similar effect was
observed in [213] as well as [214-216] and therein. It was found that with the strong
curvature effects outside the horizon of a five-dimensional Gauss-Bonnet-AdS black
hole, the holographic superconducting mechanism is less effective as the GB coupling
is increased.

Note also that in the limit A = 0, the dynamics of the scalar field and its interactions
mimic the behavior of an s-wave superconductor [200].

In the right panel of Fig. (4.8), we present the phase diagram ¢ — 7, which shows
that the critical temperature increases as the scalar charge increases.
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Figure 4.8: (Left) The phase diagram \ — 7. (Right) The phase diagram q — 7.

We display the scalar condensation in Fig. (4.9). For values smaller than the critical
coupling constant \.., we observe a suppression in the condensation gap, indicating a
reduction in Cooper pairs within the dual boundary theory. We confirm these results
by examining the conductivity in the following subsection.

<01>

Te

Figure 4.9: The condensation of scalar field as the function of the temperature 7'/7, with
different couplings.



4.3.4 Optical conductivity

The conductivity of the dual superconductor is calculated through linear perturba-
tions of the electromagnetic potential A;(r) = A.(r)e”*! in the probe limit:

g 22PN
gr) ) (g<r>2 o) ) A:(r) =0

The boundary condition at the horizon is described by an ingoing wave, given by:

Al(r) + (4.44)

Ag(r) oc g(r) =@ (4.45)
T—Th
while the asymptotic behavior at infinity is described as:
ALY
A, = AL 4 + ..., (4.46)
r
where A§,,°> = A, represents the dual source in the boundary theory that couples to
a current operator and AW = (J.) the expectation value for the current due to this
coupling. Then, the conductivity obeys Ohm’s Law, resulting to:
ial!

Therefore, to determine the electric conductivity, numerical calculations are necessary
to obtain the values of Aéo) and AQ) on hairy black hole backgrounds with varying
temperatures for different values of . In Fig. (4.10), we observe the expected behavior
of the conductivity, specifically the real part of 0. As the coupling of the scalar field with
the GB invariant strengthens, it increases to unity, indicating a weaker conductivity.
Ultimately, the system mimics the behavior of a metal at a fixed temperature.

T=04T,

— A=0
A=0.2

— A=04

— A=0.6
A=0.63

— A=0.6339

0 20

—le &8¢

60

80

T=0.7T,

— A=0
A=0.2
— A=04

— A=0.6
A=0.63
— A=0.6339

20

—-lge &8¢

60

80

Figure 4.10: The real part of optical conductivity, Re(c), as the function of % at the temperature
0.47. and 0.77,, respectively.

We can also examine the conductivity’s behavior at extremely low frequencies.
When 7' < T, the real part of the conductivity exhibits a delta function at zero fre-
quency, while the imaginary part displays a pole. These features can be attributed to
the Kramers-Kronig relations:

Im(o(w)) = —%77 /_OO de’.

, (4.48)
W —w



In more detail, as w approaches zero, the imaginary part behaves as Im(c) ~ n;/w. Ac-
cording to the Kramers-Kronig relations, the real part takes the form Re(o) ~ mnd(w).
Here, the coefficient n, of the delta function is defined as the superfluid density. By fit-
ting data near the critical temperature, we observe that the superfluid density exhibits
the following behavior with various couplings:

ng ~ C1T.(1 — T/T.), (4.49)

meaning that the ng vanishes linearly as 1" approaches 7.. The different values of the
coefficient C; are presented in Table (4.1). C; decreases significantly, resulting in the
suppression of the superfluid density as the coupling increases. This trend aligns with
the condensation depicted in Fig. (4.9), where a stronger coupling corresponds to a
reduced condensation gap.

A 0] 02 | 04 | 0.6 | 0.63 | 0.633 | 0.6339
Ch | 16.92 | 10.95 | 4.04 | 0.46 | 0.09 | 0.04 0.01

Table 4.1: The coefficient C'; of the superfluid density near the critical temperature for
different coupling.

4.4 Conclusions

In this chapter, we conducted a holographic investigation of the scalarization mech-
anism in two EsGB theories featuring a negative cosmological constant. When the
scalar field is neutral, increasing the coupling constant A sufficiently triggers tachy-
onic instabilities, leading to the formation of a hairy black hole. We numerically con-
structed this scalarized solution in the bulk theory. According to gauge/gravity duality,
the emergence of a hairy black hole in the bulk corresponds to non-zero condensa-
tion, resembling a certain holographic phase transition in the dual boundary theory,
despite occurring without any symmetry breaking. Subsequently, we explored this
phase transition by computing the A—dependent vacuum expectation value of the dual
scalar operator and the entanglement entropy in the boundary theory. The observed
properties indicate a quantum-type phase transition.

In the other case, we investigated an EsGB theory featuring an electromagnetic
field and a real charged scalar field. Holographic scalarization was observed below a
critical temperature. We analyzed the scalar condensation and the optical conductivity.
The results also revealed a critical value of the coupling constant beyond which the
background solution remains stable under small linear perturbations, implying the
absence of a holographic superconducting phase transition on the boundary. This
phenomenon can be attributed to the strengthening gravitational attraction from the
Gauss-Bonnet high curvature term above \.., rendering the formation of a scalarized
black hole unfeasible.

In conclusion, the stability analysis indicates that the combined effect of two dif-
ferent scalarization mechanisms (interaction between the scalar field and the Gauss-
Bonnet curvature correction and interaction between the scalar and the U(1) elec-
tromagnetic field) accommodates a broader and deeper effective mass, expediting the
formation of hairy black holes. Correspondingly, in the boundary theory, we demon-
strated that above a certain critical temperature, only a specific phase transition in-
duced by a sufficiently large coupling constant could occur, resulting in the formation



of scalar hair. However, when the temperature drops below a critical value, holographic
superconducting condensation comes into play, exerting combined stronger effects on
the formation of hairy black holes.



Chapter 5

Conclusions

Experimental and observational data have established GR as the most successful
framework for describing gravitational interaction during the last century. However,
this overwhelming evidence falls in its vast majority under the weak gravitational field
regime, leaving an unexplored gap in the strong field regime. Similarly, at large scales,
there are still some unanswered questions, such as the cosmological constant problem,
the Hubble tension, and the nature of dark matter and dark energy, which strongly
suggest the existence of a more fundamental theory. Although there are already many
proposed quantum gravity theories, they are incomplete. They still need to overcome
major conceptual problems and be tested at scales whose realization is not promising.
Such theories suggest that GR acquires additional degrees of freedom besides the
metric ones at the low-energy limit.

Following these clues and given the lack of a complete theory of quantum gravity,
MToG emerges as a modest response to face the current challenges of gravitational
physics. In general, an MToG can be seen as an effective field theory of an underlying
fundamental theory. In particular, scalar-tensor theories have attracted much atten-
tion regarding their applications to issues in cosmology. On the other hand, given
the imminent gravitational wave astronomy, compact objects are suitable for exploring
scalar-tensor theories in strong-field regimes.

In this context, it has been recently shown that scalar-tensor theories can predict
strong gravity phase transitions, commonly called spontaneous scalarization. Scalar-
tensor theories usually admit black hole or star solutions that are different from the
corresponding vacuum solution. When the effective mass for the scalar mode is tachy-
onic, the vacuum solution becomes unstable in regions of strong curvature, while the
stable black hole or star acquires scalar hair.

This research has contributed to the exploration of black hole scalarization in
scalar-tensor theories of gravity, particularly focusing on the role of the electromagnetic
field and the exploration of holographic aspects.

In Chapter [2| of this research, we extended existing investigations on black hole
scalarization induced by curvature by incorporating an electromagnetic field. A non-
minimally coupled scalar field with the Gauss-Bonnet invariant led to the discovery
of tachyonic instabilities under small linear perturbations, causing a phase transition
from Reissner-Nordstrom black holes to scalarized charged black holes. These scalar-
ized black holes, characterized by mass M, electric charge (), and scalar charge D,
displayed significant deviations from GR in strong field regimes while remaining almost
indistinguishable in weak field regimes.
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The presence of the electromagnetic field shifted the bifurcation point of the scalar-
ized branches of black hole solutions to larger masses while the branches themselves
became shorter and narrower. In some cases, there are two bifurcation points. The
second bifurcation point of the scalarized charged branches may be located at the
trivial branch of solutions, meaning that a scalarized charged black hole may merge
with the Reissner-Nordstrom black hole again, indicating a phase transition through
a mechanism of de-scalarization.

The thermodynamic analysis revealed that scalarized black holes have a smaller
horizon area, higher entropy, and higher temperature than their GR counterparts,
indicating their thermodynamic preferability and enhanced radiation emission.

In Chapter (3, we analyzed matter-induced scalarization in the EMs model with
higher derivative gauge field corrections. The interaction between the scalar field and
the electromagnetic field describes a scenario in which black holes interact with sur-
rounding matter, leading to tachyonic instabilities that trigger the formation of scalar-
ized black hole solutions. As this interaction becomes stronger, the domain of existence
for scalarized solutions expands, introducing new physics beyond GR.

The new scalarized branches of charged black hole solutions bifurcate from the
trivial one at a specific electric charge to mass ratio gest < 1 and extend to over-
charged configurations. This implies that scalarized charged black holes may carry
more electric charge than their mass, violating the extremality condition. The diver-
gence of the Kretschmann scalar at the horizon indicates that the endpoint of each
scalarized branch exhibits a naked singularity at a particular electric charge to mass
ratio qoqy > 1.

We investigated the thermodynamic properties of the obtained scalarized charged
black holes. By examining their temperature, we found a critical value of the electric
charge-to-mass ratio at which the scalarized black holes reach a maximum temper-
ature. The area of the nontrivial solutions is larger compared to the area of the RN
black hole, as well as the area of the scalarized charged black holes without the higher
derivative gauge field corrections. This indicates thermodynamic preferability over the
solutions in the existing literature.

In Chapter 4, we conducted a holographic investigation of scalarization in EsGB
theories with a negative cosmological constant, where a scalar field is nonminimally
coupled with the Gauss-Bonnet invariant. According to gauge/gravity duality, a black
hole in AdS spacetime on the gravity side is holographically dual to a particular state
in the dual CFT. Thus, a trivial black hole without a scalar charge and a scalarized
black hole can be assumed to correspond to different states in the boundary CFT. We
performed this analysis in two separate cases: in the first case, we considered the
absence of an electromagnetic field and the presence of a neutral scalar field; in the
second case, we considered the presence of an electromagnetic field and an electrically
charged scalar field.

In the first case, the planar Schwarzschild-AdS black hole was the vacuum solution
of the theory under consideration. By increasing the coupling constant A sufficiently
beyond a critical value, the effective potential of the nonminimally coupled neutral
scalar field became deep enough for the scalar field to grow over time, resulting in
tachyonic instabilities, which indicated the formation of scalarized black holes in the
bulk theory. This corresponded to a quantum-type phase transition in the dual bound-
ary theory, as indicated by the sharp increase in the vacuum expectation value of the
dual scalar operator, showing the condensation of hair.



Moreover, we explored the entanglement entropy, which increased rapidly when
the coupling constant exceeded a critical value )\.. Entanglement entropy serves as a
measure of the degrees of freedom within a system. The introduction of the scalar field
increased the degrees of freedom, thereby increasing the entropy after scalarization.
This behavior contrasted significantly with that observed in holographic superconduc-
tors, where the hairy superconducting state typically exhibited lower entropy than the
normal state because the emergence of Cooper pairs in the superconducting state re-
duced the degrees of freedom of the system. Therefore, the scalarization mechanism
could not be interpreted as a superconducting phase transition holographically.

In the second case, when considering an EsGB theory with an electromagnetic
field and a charged scalar field, scalarization was observed below a critical tempera-
ture, revealing a phase transition akin to holographic superconductivity. Our findings
demonstrate that the interaction between the scalar field and both the Gauss-Bonnet
curvature correction and the U(1) electromagnetic field accommodates a wider and
deeper effective potential, triggering the formation of hairy black holes. Correspond-
ingly, in the boundary theory, we showed that when the temperature drops below
a critical value, the holographic superconducting condensation participates, and the
combined effects of the couplings are stronger on the formation of hairy black holes.
When the coupling constant exceeds a critical value, the divergence of the critical tem-
perature implies that a hairy black hole can not form. At the same time, in the CFT,
there is no holographic superconducting phase. The optical conductivity and the su-
perfluid density were calculated, showing that as the coupling constant exceeds the
corresponding critical value at the gravity theory, then the system is dual to a metal at
a fixed temperature.

This research reveals new physics beyond GR by highlighting the role of the intricate
interaction between scalar fields, electromagnetic fields, and curvature corrections in
generating new nontrivial black hole solutions. These results enhance our understand-
ing of the scalarization mechanisms, providing valuable insights for future research in
modified theories of gravity and developing theoretical models that can describe astro-
physical black holes.
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