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Abstract

Artificial intelligence (AI) has progressed explosively in recent years. Driven
by the advent of deep learning, AI is being used in a variety of applications,
across multiple scientific fields, in industry as well as in medicine. Out-of-
distribution (OOD) robustness is crucial in mission-critical computer vision
applications because these scenarios often involve encountering unforeseen
or novel situations that may differ significantly from the training data. In
mission-critical contexts, such as autonomous vehicles, medical diagnosis,
or security systems, the models need to make reliable and safe decisions. If
the model encounters situations or inputs that fall outside the distribution
it was trained on, it may provide inaccurate or unreliable predictions, lead-
ing to potentially dangerous consequences. Ensuring OOD robustness is
essential to enhance the generalization capabilities of computer vision mod-
els, enabling them to handle diverse and unexpected scenarios in real-world
applications. It helps prevent the system from making critical errors when
faced with novel inputs, thereby improving safety, reliability, and perfor-
mance in mission-critical tasks.

The emergence of Out-of-Distribution (OOD) robustness or Domain Gen-
eralization research has become a crucial tool for achieving reliable per-
formance in medical imaging and autonomous driving. In the context of
medical imaging, OOD robustness is vital because medical datasets can vary
significantly due to differences in patient demographics, imaging equipment,
and conditions. Researchers and practitioners recognize the need for models
that can generalize well to diverse and previously unseen medical scenarios
to ensure accurate diagnoses and treatment plans.

Similarly, in autonomous driving, OOD robustness is essential as driving
conditions can be highly dynamic and unpredictable. Ensuring that self-
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driving vehicles can handle unforeseen scenarios, such as adverse weather
conditions, unusual environment configurations, or unexpected obstacles, is
critical for their safe deployment in the wild. OOD robustness research in
both medical imaging and autonomous driving aims to enhance the gener-
alization capabilities of machine learning models, enabling them to perform
reliably in real-world scenarios beyond the training distribution. This re-
search contributes to the development of more trustworthy and resilient
systems in these mission-critical domains.

This study proposes methodologies and advancements aimed at enhancing
OOD robustness in mission-critical applications. From transfer learning
techniques tailored for medical imaging to novel sensor configurations for
UAV perception systems and state-of-the-art deep learning architectures
for image recognition, significant progress has been made in addressing the
challenges posed by OOD data. In the domain of medical imaging, we ex-
plored methodologies for enhancing the generalization capabilities of diag-
nostic models, considering factors such as data heterogeneity, limited sample
sizes, and domain shifts across different healthcare facilities. For UAV sense
and avoid systems, we investigated techniques for perceptual robustness to
ensure safe operation in dynamic environments. In image recognition, we
examined approaches for mitigating the impact of OOD data, such as ad-
versarial training, domain generalisation, and uncertainty estimation, to
enhance model reliability across diverse datasets and environmental condi-
tions.

In summary, this PhD thesis highlights the critical importance of OOD ro-
bustness in mission-critical applications and underscores the need for con-
tinued research and innovation in this area. By synthesizing insights from
diverse studies and identifying key challenges and advancements, this PhD
thesis aims to contribute to the ongoing discourse on enhancing the reli-
ability and safety of AI-driven systems in real-world scenarios. Through
interdisciplinary collaboration and rigorous experimentation, we strive to
develop effective solutions that ensure the resilience and efficacy of AI tech-
nologies across medical imaging, UAV sense and avoid systems, and image
recognition domains.
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Περίληψη

Η τεχνητή νοημοσύνη (AI) έχει προχωρήσει εκρηκτικά τα τελευταία χρόνια. Η
τεχνητή νοημοσύνη και η Βαθιά Μάθηση χρησιμοποιείται σε ποικίλες εφαρμο-

γές, σε πολλά επιστημονικά πεδία, τόσο στη βιομηχανία όσο και στην ιατρική.

Η ευρωστία σε εκτός κατανομής δεδομένα (OOD) είναι ζωτικής σημασίας σε
εφαρμογές που είναι κρίσιμες για την αποστολή, επειδή αυτά τα σενάρια συχνά

συνεπάγονται αντιμετώπιση μη-προβλεπόμενων ή νέων καταστάσεων που μπο-

ρεί να διαφέρουν σημαντικά από τα δεδομένα εκπαίδευσης. Σε κρίσιμα για την

αποστολή πλαίσια, όπως αυτόνομα οχήματα, ιατρικά διάγνωση, ή συστήματα α-

σφαλείας, τα μοντέλα πρέπει να είναι αξιόπιστα και με ασφαλείς αποφάσεις. Εάν

το μοντέλο συναντήσει καταστάσεις ή εισόδους που δεν εμπίπτουν στηη κα-

τανομή στην οποία εκπαιδεύτηκε, μπορεί να προκύψουν ανακριβείς ή αναξιόπι-

στες προβλέψεις, οδηγώντας σε δυνητικά επικίνδυνες συνέπειες. Εξασφάλιση

OOD ευρωστίας είναι απαραίτητη για τη βελτίωση των δυνατοτήτων γενίκευ-
σης του αλγορίθμου σε μοντέλα όρασης, που τους επιτρέπουν να χειρίζονται

διαφορετικά και απροσδόκητα σενάρια σε πραγματικές εφαρμογές. Βοηθά να

αποτρέψει το σύστημα από το να γίνουν κρίσιμα σφάλματα όταν αντιμετω-

πίζονται νέες εισροές, βελτιώνοντας έτσι την ασφάλεια, την αξιοπιστία, και

απόδοση σε κρίσιμα περιβάλλοντα.

Η εμφάνιση της ευρωστίας εκτός διανομής (OOD) ή του Τομέα Γενίκευ-
σης έχει γίνει ένα σημαντικό εργαλείο για την επίτευξη αξιόπιστης επιδόσης

στην ιατρική απεικόνιση και την αυτόνομη οδήγηση. Στο πλαίσιο της ιατρι-

κής απεικόνισης, η ευρωστία OOD είναι ζωτικής σημασίας επειδή τα ιατρικά
σύνολα δεδομένων μπορεί να ποικίλλουν σημαντικά λόγω των διαφορών στα

δημογραφικά στοιχεία των ασθενών και τον εξοπλισμό απεικόνισης. Οι ε-

ρευνητές και οι επαγγελματίες αναγνωρίζουν την ανάγκη για μοντέλα που

μπορούν να γενικεύουν καλά σε ποικίλα και άγνωστα προηγουμένως ιατρι-

κά σενάρια για την εξασφάλιση ακριβών διαγνώσεων και σχεδίων θεραπε-
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ίας.

Ομοίως, στην αυτόνομη οδήγηση, η ευρωστία OOD είναι απαραίτητη, καθώς
οι συνθήκες οδήγησης μπορεί να είναι εξαιρετικά δυναμικές και απρόβλεπτες.

Η διασφάλιση ότι τα αυτόνομα οχήματα μπορούν να χειριστούν απρόβλεπτα

σενάρια, όπως αντίξοες καιρικές συνθήκες, ασυνήθιστες διαμορφώσεις περι-

βάλλοντος ή απροσδόκητα εμπόδια, είναι κρίσιμη για την ασφαλή ανάπτυξή

τους. Η έρευνα ευρωστίας OOD τόσο στην ιατρική απεικόνιση όσο και στην
αυτόνομη οδήγηση στοχεύει να ενισχύσει τις δυνατότητες γενίκευσης των

μοντέλων μηχανικής μάθησης, επιτρέποντάς τους να αποδίδουν αξιόπιστα σε

πραγματικά σενάρια πέρα από τη κατανομή εκπαίδευσης. Αυτή η έρευνα συμ-

βάλλει στην ανάπτυξη πιο αξιόπιστων και ανθεκτικών συστημάτων σε αυτούς

τους κρίσιμους για την αποστολή τομείς.

Στα πλαίσια της Διαδακτορικής Διατριβής αναπτύξαμε καινοτόμες μεθόδους

που σχετίζονται με την ευρωστία OOD στην ιατρική απεικόνιση, τα συστήμα-
τα αίσθησης και αποφυγής UAV και την αναγνώριση εικόνας. Στον τομέα
της ιατρικής απεικόνισης, αναπτύξαμε μεθοδολογίες για τη βελτίωση των δυ-

νατοτήτων γενίκευσης των διαγνωστικών μοντέλων, λαμβάνοντας υπόψη πα-

ράγοντες όπως η ετερογένεια των δεδομένων, τα περιορισμένα μεγέθη δειγ-

μάτων και οι μετατοπίσεις τομέα σε διαφορετικές εγκαταστάσεις υγειονομικής

περίθαλψης. Για συστήματα αίσθησης και αποφυγής UAV, δημιουργήσαμε
τεχνικές αντιληπτικής ευρωστίας για να διασφαλίσουμε την ασφαλή λειτουρ-

γία σε δυναμικά περιβάλλοντα. Στην αναγνώριση εικόνων, εξετάσαμε προ-

σεγγίσεις για τον μετριασμό του αντίκτυπου των δεδομένων OOD, όπως η
εκπαίδευση σε αντίθεση, η γενίκευση τομέα και η εκτίμηση αβεβαιότητας,

για να ενισχύσουμε την αξιοπιστία του μοντέλου σε διάφορα σύνολα δεδο-

μένων.

Μέσω αυτής της Διδακτορικής Διατριβής ανακαλύψαμε πολλές μεθοδολογίες

και προόδους που στοχεύουν στην ενίσχυση της ευρωστίας OOD σε κρίσι-
μες εφαρμογές, από τεχνικές μεταφοράς μάθησης προσαρμοσμένες για ιατρική

απεικόνιση έως καινοτόμες διαμορφώσεις δεδομένων για συστήματα αντίλη-

ψης UAV και αρχιτεκτονικές βαθιάς μάθησης για την αναγνώριση εικόνων.
΄Εχει σημειωθεί σημαντική πρόοδος στην αντιμετώπιση των προκλήσεων που

τίθενται από τα δεδομένα OOD.
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Επίσης, αυτή η Διδακτορική Διατριβή υπογραμμίζει την σημασία της ευρω-

στίας OOD σε κρίσιμες εφαρμογές και υπογραμμίζει την ανάγκη για συνεχή
έρευνα και καινοτομία σε αυτόν τον τομέα. Με τη δημιουργία καινοτόμων

αλγορίθμων, τη σύνθεση γνώσεων από διάφορες μελέτες και τον εντοπισμό

βασικών προκλήσεων και προόδων, αυτή η Διδακτορική Διατριβή στοχεύει να

συμβάλει στη συνεχή συζήτηση για την ενίσχυση της αξιοπιστίας και της α-

σφάλειας των συστημάτων που βασίζονται στην τεχνητή νοημοσύνη σε σενάρια

πραγματικού κόσμου. Μέσω διεπιστημονικής συνεργασίας και πειραματισμού,

αναπτύξαμε αποτελεσματικές λύσεις που διασφαλίζουν την ανθεκτικότητα και

την αποτελεσματικότητα των τεχνολογιών τεχνητής νοημοσύνης σε ιατρικές

απεικονίσεις, συστήματα αίσθησης και αποφυγής UAV και τομείς αναγνώρισης
εικόνων.

Λέξεις Κλειδιά: Ανθεκτικότητα εκτός κατανομής, κρίσιμες εφαρμογές α-

ποστολής, όραση υπολογιστών, βαθιά μάθηση
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Chapter 1

Introduction to Robustness in
Computer Vision

Humans perceive their surroundings through various senses, including touch,
taste, sound, smell, and sight, each contributing to our understanding of the
world. Visual perception holds particular significance, aiding in our com-
prehension from early childhood through observation of human interactions,
object movements, and light reflections. Over time, we develop the ability
to scan our surroundings for visual cues that inform us about potential
object trajectories, safe pathways, and potential obstacles. Visual media,
encompassing photographs, videos, artwork, and written content, plays a
crucial role in conveying information, providing entertainment, and foster-
ing cross-cultural understanding.

In recent years, modern machine learning techniques have demonstrated
impressive capabilities across diverse fields such as natural language pro-
cessing, computer vision, and recommendation systems. While excelling
in controlled settings, these methods have shown vulnerability to shifts
in data distribution, posing significant challenges in critical domains like
healthcare and autonomous driving. Even minor inaccuracies in such appli-
cations can lead to catastrophic outcomes. Consequently, there is growing
interest in exploring Out-of-Distribution (OOD) generalization to enhance
the robustness and reliability of intelligent systems across real-world scenar-
ios.
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1.1 Computer Vision: From Perception to Challenges

Can machines meaningfully grasp the visual world? Computer vision en-
deavors to construct models capable of understanding visual data. Approx-
imately a decade ago, the advent of deep learning revolutionized computer
vision with the breakthrough AlexNet model [1], which significantly reduced
error rates in challenging image recognition tasks. Since then, deep learning
has become the dominant approach, widely adopted in consumer products,
autonomous driving, medical diagnostics, and more.

Training deep neural networks involves optimizing numerous parameters
defining artificial neurons, demanding vast amounts of data for effective cal-
ibration. Traditionally, these models have excelled on meticulously curated
datasets like ImageNet-1K, surpassing human-level performance in many
cases. However, they exhibit fragility to imperceptible adversarial noise,
highlighting their sensitivity to controlled lab conditions.

Beyond adversarial examples, deep learning models struggle with generaliza-
tion across diverse real-world data. Challenges arise from distribution shifts
between training and test environments, where differences in image features
affect model performance. For instance, a classifier trained on specific cat
and dog colors may falter when confronted with variations in real-world
scenarios.

As deep learning permeates everyday life and interdisciplinary research,
understanding its behavior across real-world settings is crucial. Failures
can have profound implications for safety and societal equity, necessitating
robust perception systems resilient to distribution shifts. This dissertation
explores these challenges comprehensively.

2



1.2 Addressing Out-of-Distribution Robustness

1.2 Addressing Out-of-Distribution Robustness

Addressing Out-of-Distribution (OOD) robustness entails several critical av-
enues. Firstly, formal characterization of distribution shifts between train-
ing and test data is essential, given their disparate origins. Currently, con-
sensus is lacking in OOD generalization literature, with varied approaches
to modeling potential test distributions. Causal learning techniques at-
tribute shifts to causal structures, while invariant learning focuses on real-
world scenarios. Stable learning methods introduce shifts through selection
bias.

Secondly, developing algorithms with robust OOD generalization perfor-
mance is pivotal. Methodological branches include unsupervised representa-
tion learning, supervised model learning, and optimization techniques. Each
approach aims to enhance model resilience against distribution shifts.

Thirdly, evaluating OOD generalization performance presents challenges,
requiring curated datasets and metrics beyond traditional benchmarks. Ef-
fective evaluation frameworks are essential to gauge model efficacy in diverse
real-world contexts.

1.3 Formalization of Out-of-Distribution Robustness

Domain Generalization (DG) and Out-of-Distribution (OOD) robustness
are fundamental concepts in computer vision, aiming to enhance a model’s
ability to generalize beyond its training data. DG focuses on training mod-
els to perform well on unseen domains by learning invariant features from
multiple source domains. In contrast, OOD robustness specifically addresses
a model’s resilience to unexpected variations and corruptions in input data.
Despite their distinct focuses, both concepts aim to achieve robust and re-
liable performance in real-world scenarios.

Among DG approaches, Single-Source Domain Generalization (SSDG) stands
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out as particularly practical for mission-critical applications. SSDG assumes
training data from a single domain, which is more applicable when collecting
diverse multi-source data is impractical. Therefore, developing models that
can generalize effectively from a single domain is crucial for ensuring relia-
bility and safety in applications like autonomous driving, medical imaging,
and aerial surveillance.

Let X denote the input (feature) space and Y the target (label) space. A
domain is defined as a joint distribution PXY on X × Y . For a specific do-
main PXY , PX represents the marginal distribution on X, PY |X denotes the
posterior distribution of Y given X, and PX|Y refers to the class-conditional
distribution of X given Y .

In DG, K similar but distinct source domains S = {Sk = {(x(k), y(k))}}Kk=1
are available, each associated with a joint distribution P

(k)
XY . The objective

is to train a predictive model f : X → Y using these source domain data
such that the prediction error on an unseen target domain T = {xT } is
minimized.

1.3.1 Multi-Source Domain Generalization

Multi-Source DG utilizes multiple distinct source domains (i.e., K > 1) to
learn representations that are invariant to different marginal distributions.
This approach leverages the diversity across source domains to discover sta-
ble patterns that generalize effectively to unseen domains.

1.3.2 Single-Source Domain Generalization

In contrast, Single-Source DG assumes homogeneous training data sampled
from a single domain (K = 1). This setting is closely related to OOD ro-
bustness, which investigates model resilience under unexpected variations
and corruptions in input data. Single-Source DG methods do not require
domain labels for learning, making them versatile across both single- and
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multi-source scenarios. Many existing methods addressing Single-Source
DG provide generic solutions for OOD generalization, demonstrating effi-
cacy across diverse datasets.

1.4 Types of methods for achieving robustness in
computer vision

Since its formal inception in 2011 by Blanchard et al. [2], numerous methods
have emerged to tackle the challenge of out-of-distribution (OOD) gener-
alization [3–9]. These approaches encompass diverse strategies, including
aligning source domain distributions for domain-invariant representation
learning [10, 11], exposing models to domain shift through meta-learning
[12, 13], and augmenting data using domain synthesis techniques [14, 15],
among others. Beyond computer vision, domain generalization (DG) has
been extensively explored in applications such as object recognition [16,17],
semantic segmentation [18,19], person re-identification [19,20], speech recog-
nition [21], natural language processing [13], medical imaging [22, 23], and
reinforcement learning [20]. This chapter provides a comprehensive liter-
ature review on OOD robustness in computer vision, focusing on learning
algorithms developed over the past decade and outlining future research
directions.

In this section, we categorize existing OOD robustness methods into three
groups:

• Data Manipulation: This group focuses on modifying input data
to facilitate learning general representations. Techniques include data
augmentation, which involves randomizing and transforming input
data, and data generation, which creates diverse samples to enhance
generalization.

• Representation Learning: Widely used in DG, these methods in-
clude domain-invariant representation learning (e.g., adversarial train-
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ing, feature alignment) and feature disentanglement to improve gen-
eralization.

• Learning Strategy: These methods leverage general learning strate-
gies such as ensemble learning, meta-learning, gradient manipulation,
distributionally robust optimization, and self-supervised learning to
enhance overall generalization capacity.

These categories are distinct yet complementary, often combined to achieve
enhanced performance. Detailed descriptions of each approach within these
categories are provided subsequently.

1.4.1 Data Manipulation

In machine learning, the quest for more training data is ongoing as model
generalization heavily relies on both volume and diversity. Data manipula-
tion in DG serves to augment existing datasets, thereby enhancing model
generalization capabilities. Methods include data augmentation to diversify
training data and data generation to synthesize additional samples. The
overarching goal is to minimize the expected loss over both original and
manipulated data:

minEx,y[l(h(x), y)] + Ex′,y[l(h(x′), y)]

where x′ = M(x) denotes manipulated data obtained using function M(·).

Data Augmentation for Domain Generalization

Data augmentation is a highly effective method in training machine learn-
ing models. Common augmentation techniques include flipping, rotation,
scaling, cropping, adding noise, and others. These methods are widely
used in supervised learning to enhance model generalization by mitigating
overfitting [24, 25]. Similarly, they are applicable in domain generalization
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(DG), where the function M(·) can utilize these data augmentation func-
tions.

Domain Randomization

In addition to conventional augmentation methods, domain randomization
is a powerful technique for data augmentation. It involves generating new
data to simulate complex environments based on limited training samples.
In this context, the function M(·) applies various manual transformations,
particularly effective in image data. These transformations include altering
object location and texture, changing object number and shape, adjusting il-
lumination and camera view, and introducing diverse types of random noise.
Tobin et al. [26] pioneered this approach, generating additional training data
from simulated environments to enhance generalization in real-world sce-
narios. Similar strategies have been employed in [27–29] to improve model
generalization. Prakash et al. [30] extended this idea by considering scene
structure when randomly placing objects for data generation, enabling the
neural network to leverage context in object detection. Moreover, [31] pro-
posed augmenting not only features but also labels. While randomization
enhances sample diversity, it is crucial to refine irrelevant randomizations
to optimize model efficiency.

Adversarial Data Augmentation

Adversarial data augmentation aims to optimize generalization by diver-
sifying data while preserving reliability. Shankar et al. [32] employed a
Bayesian network to model the relationship between label, domain, and
input instance, introducing CrossGrad, a cautious data augmentation ap-
proach that perturbs input along significant domain change directions while
minimizing alterations to class labels. Volpi et al. [33] developed an iterative
method augmenting the source dataset with examples from a hypothetical
target domain challenging the current model, appending adversarial exam-
ples to facilitate adaptive data augmentation at each iteration. Zhou et
al. [15] utilized adversarial training of a transformation network for data
augmentation, diverging from direct input modification through gradient
ascent while integrating weak and strong augmentation regularization as
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in [34]. Adversarial data augmentation often involves specific optimization
objectives exploitable by networks, though its optimization typically in-
volves adversarial training, posing challenges.

Data Generation

Data generation is a popular technique for enriching data diversity to im-
prove model generalization. Here, function M(·) can leverage various gener-
ative models like Variational Autoencoder (VAE) [35], Generative Adversar-
ial Networks (GAN) [36], and the Mixup [37] strategy.

Rahman et al. [38] applied ComboGAN [37] to generate new data and uti-
lized domain discrepancy measures such as Maximum Mean Discrepancy
(MMD) [39] to minimize distribution divergence between real and gener-
ated images, aiding in learning general representations. Qiao et al. [?]
employed adversarial training to create challenging yet fictitious popula-
tions, using a Wasserstein Auto-Encoder (WAE) [40] for generating samples
preserving semantic content and exhibiting substantial domain transporta-
tion. [41] introduced novel distributions under semantic consistency, opti-
mizing the difference between source and novel distributions. Somavarapu
et al. [42] proposed simple image stylization-based transformations to ex-
plore cross-source variability for enhanced generalization, using Adaptive
Instance Normalization (AdaIN) [40] for rapid stylization to diverse styles.
Differing from others, [38] utilized adversarial training to generate domains
rather than individual samples, adding complexity through diverse gener-
ative models, necessitating attention to model capacity and computational
overhead.

Additionally, Mixup [37] is another popular technique for data generation.
Mixup creates new data by linearly interpolating between any two instances
and their labels, using weights sampled from a Beta distribution, avoid-
ing the need for training generative models. Recent methods employing
Mixup for Domain Generalization (DG) perform Mixup either in the origi-
nal space [43] to generate new samples or in the feature space [44], avoiding
explicit generation of raw training samples. These approaches show promis-
ing performance on prominent benchmarks while maintaining conceptual
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and computational simplicity.

1.4.2 Representation Learning

Representation learning has been a central focus in machine learning for a
considerable period [45], contributing significantly to the success of domain
generalization. The prediction function h is often decomposed into two
components: h = f ◦g, where g denotes the representation learning function
and f represents the classifier function. The goal of representation learning
is typically expressed as:

min
f,g

Ex,y[l(f(g(x)), y)] + λlreg

where lreg is a regularization term and λ is a tradeoff parameter. Various
techniques have been developed to enhance learning of the feature extraction
function g alongside the corresponding regularization lreg.

Domain-Invariant Representation-Based DG

The study by [45] provided theoretical evidence that maintaining invariant
feature representations across different domains enhances generalizability
and transferability. Numerous algorithms have since been developed for do-
main adaptation and domain generalization, aiming to minimize represen-
tation gaps among multiple source domains within a specific feature space
to achieve domain invariance.

Kernel-Based Methods

Kernel-based methods represent a classical learning paradigm in machine
learning. These methods employ kernel functions to map original data into
a high-dimensional feature space without explicitly computing the coordi-
nates in that space. Instead, they rely on computing inner products between
samples in the feature space. Support Vector Machines (SVM) [46] are one

9



Introduction to Robustness in Computer Vision

of the most well-known kernel-based methods. In the context of domain
generalization, several algorithms based on kernel methods have been de-
veloped, where the representation learning function g utilizes a feature map
ϕ(·) computed via kernel functions like the Radial Basis Function (RBF)
kernel and the Laplacian kernel.

[47] were among the pioneers applying kernel methods to domain general-
ization, further expanded upon in [31]. They employed positive semi-definite
kernel learning to derive a domain-invariant kernel from training data.
Grubinger et al. [48] adapted Transfer Component Analysis (TCA) [46]
to minimize multi-domain distance for domain generalization. Domain-
Invariant Component Analysis (DICA) [49], similar to TCA, utilizes ker-
nels for domain generalization by finding a feature transformation kernel
k(·, ·) that reduces distribution discrepancies among all data points in the
feature space. Gan et al. [47] extended DICA with attribute regularization.
Conversely, Li et al. [50] focused on learning feature representations with
domain-invariant class-conditional distributions. Scatter Component Anal-
ysis (SCA) [51] applied Fisher’s discriminant analysis to minimize represen-
tation discrepancies within the same class and domain while maximizing dis-
crepancies across different classes and domains. Erfani et al. [52] introduced
Elliptical Summary Randomization (ESRand), using randomized kernel and
elliptical data summarization. ESRand projects each domain onto an ellipse
to represent domain information and computes distances using a similarity
metric. Hu et al. [53] proposed multi-domain discriminant analysis, employ-
ing class-wise kernel learning for domain generalization, providing a more
granular approach. Overall, these methods within this category often inter-
twine with other approaches, serving as divergence measures or theoretical
foundations.

Domain Adversarial Learning

Domain-adversarial training is a widely adopted approach for learning fea-
tures that are invariant across domains. Ganin and Lempitsky [54] and
Ganin et al. [42] introduced the Domain-adversarial Neural Network (DANN)
for domain adaptation, where both the generator and discriminator are ad-
versarially trained. The discriminator’s goal is to differentiate between do-
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mains, while the generator aims to deceive the discriminator by learning
domain-invariant feature representations. Li et al. [55] extended this con-
cept to domain generalization. Gong et al. [56] utilized adversarial training
to progressively reduce domain discrepancy in a manifold space. Li et al. [57]
proposed the Conditional Invariant Adversarial Network (CIAN), employing
class-wise adversarial networks for domain generalization. Similar strategies
were explored in [42]. Jia et al. [58] employed single-side adversarial learn-
ing and asymmetric triplet loss to ensure that only real faces from different
domains were indistinguishable, thereby improving generalization of class
boundaries for unseen domains. Furthermore, Zhao et al. [59] introduced
entropy regularization by minimizing the Kullback-Leibler (KL) divergence
between conditional distributions of different training domains to encourage
the network to learn domain-invariant features. Several other Generative
Adversarial Network (GAN)-based methods [58] have been proposed, with
theoretically guaranteed generalization bounds.

Explicit Feature Alignment

This line of research focuses on aligning features across source domains to
learn domain-invariant representations through explicit feature distribution
alignment [60] or feature normalization [58]. Motiian et al. [43] introduced
a cross-domain contrastive loss for representation learning, ensuring that
mapped domains are semantically aligned yet maximally separated. Some
methods explicitly minimize feature distribution divergence by minimizing
metrics like Maximum Mean Discrepancy (MMD) [59], second-order correla-
tion, mean and variance (moment matching) [61], and Wasserstein distance
[61] between domains, applicable to both domain adaptation and domain
generalization. Zhou et al. [62] aligned the marginal distribution of different
source domains via optimal transport, minimizing Wasserstein distance to
achieve a domain-invariant feature space.

Additionally, some works leverage feature normalization techniques to en-
hance domain generalization capability [58]. Pan et al. [63] introduced In-
stance Normalization (IN) layers to CNNs, improving model generalization
by eliminating instance-specific style discrepancies. IN has been extensively
studied in image style transfer [64], where image style is reflected by IN pa-
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rameters, i.e., mean and variance of each feature channel. IN layers [58] can
remove instance-specific style discrepancies but may inadvertently remove
discriminative information. In IBNNet, IN and Batch Normalization (BN)
are used in parallel to preserve some discriminative information. In [63],
BN layers are replaced by Batch-Instance Normalization (BIN) layers, adap-
tively balancing BN and IN for each channel by selectively using BN and
IN. Jin et al. [65,66] proposed a Style Normalization and Restoration (SNR)
module to simultaneously ensure high generalization and discrimination ca-
pability of networks. Following style normalization by IN, a restitution step
distills task-relevant discriminative features from residuals (i.e., the differ-
ence between original and style-normalized features), reintegrating them
into the network to ensure high discrimination. This restitution concept has
been extended to other alignment-based methods to restore helpful discrimi-
native information that may have been lost during alignment [67]. Recently,
Qi et al. [68] applied IN to unsupervised domain generalization, where no la-
bels are available in training domains, to acquire invariant and transferable
features. A combination of different normalization techniques is presented
in [69], demonstrating that adaptively learning normalization techniques
can enhance domain generalization. This category of methods is flexible
and applicable across other approaches.

Invariant Risk Minimization (IRM)

Arjovsky et al. [70] proposed an alternative perspective on domain-invariant
representation for domain generalization. Instead of matching representa-
tion distributions across all domains, they focused on ensuring that the op-
timal classifier on top of the representation space remains consistent across
all domains. The underlying idea is that the ideal representation for predic-
tion should be influenced solely by the target variable y and remain invari-
ant to other factors, thus ensuring domain-invariant representations. How-
ever, solving this problem is challenging due to an inner-level optimization
problem within its constraints. Hence, the authors introduced a surrogate
problem that facilitates learning of the feature extractor g by considering a
dummy representation-level classifier f = 1 and using a gradient norm term
to measure the optimality of this classifier. Additionally, the work provides
a generalization theory under a potentially strong linear assumption, sug-
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gesting that with a sufficient number of source domains, the ground-truth
invariant classifier can be identified.

Invariant Risk Minimization (IRM)

IRM has gained significant attention recently, with further theoretical anal-
yses on its efficacy [71] and instances where it fails [72]. Moreover, IRM
has been extended to other domains such as text classification [73] and
reinforcement learning [74]. The concept of ensuring invariance of the opti-
mal representation-level classifier has also been expanded upon. Krueger
et al. [70] promote this invariance by minimizing the extrapolated risk
across source domains, effectively reducing the variance in risks associ-
ated with different source domains. Mitrovic et al. [31] aim to learn such
representations in a self-supervised setup, where a second domain is cre-
ated through data augmentation, introducing various semantically irrel-
evant variations. Recently, [75] discovered that ensuring invariance of f
alone is inadequate. They found that IRM can still fail if g captures "fully
informative invariant features," resulting in y being independent of x across
all domains. This finding is particularly pertinent in classification tasks
compared to regression tasks. To address this, they introduce an infor-
mation bottleneck regularization to retain only partially informative fea-
tures.

Feature Disentanglement-based Domain Generalization

Disentangled representation learning aims to develop a function that trans-
forms a sample into a feature vector, encapsulating information about var-
ious factors of variation, where each dimension or subset thereof contains
information related to specific factors. Disentanglement-based approaches
within domain generalization typically decompose a feature representation
into interpretable components or sub-features. One component encapsulates
domain-shared or invariant information, while others pertain to domain-
specific attributes. The optimization objective for disentanglement-based
domain generalization can be succinctly summarized as:
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min
gc,gs,f

Ex,y[l(f(gc(x)), y)] + λlreg + µlrecon([gc(x), gs(x)], x)

Here, gc and gs represent domain-shared and domain-specific feature rep-
resentations, respectively. Parameters λ and µ are trade-off coefficients.
The regularization term lreg explicitly encourages segregation of domain-
shared and specific features, while lrecon denotes a reconstruction loss aimed
at preventing information loss. It’s important to note that [gc(x), gs(x)]
represents a fusion of two types of features, not merely a concatenation
operation. Depending on network architecture and implementation mecha-
nisms, disentanglement-based domain generalization can primarily be cat-
egorized into three types: multi-component analysis, generative modeling,
and causality-inspired methods.

Multi-component Analysis

In multi-component analysis, domain-shared and domain-specific features
are typically extracted using parameters from domain-shared and domain-
specific networks. The UndoBias method [76] originated with an SVM
model aimed at maximizing interval classification on all training data for
domain generalization. They represent the parameters of the i-th domain
as wi = w0 + ∆i, where w0 represents domain-shared parameters and ∆i

represents domain-specific parameters. Other methods have extended the
UndoBias concept from various perspectives. Niu et al. [75] propose using
multi-view learning for domain generalization, introducing Multi-view DG
(MVDG) to learn combinations of exemplar SVMs under different views for
robust generalization. Ding and Fu [77] design domain-specific networks for
each domain and a shared domain-invariant network for all domains to learn
disentangled representations, using low-rank reconstruction to align these
two networks in a structured manner. Li et al. [72] adapt the UndoBias idea
to the neural network context, developing a low-rank parameterized CNN
model for end-to-end training. Zunino et al. [78] learn disentangled represen-
tations by manually comparing attention heat maps from different domains.
Various other works also adopt multi-component analysis for disentangle-
ment [77]. In essence, multi-component analysis can be implemented across
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different architectures and remains effective for representation disentangle-
ment.

Generative Modeling

Generative models offer another perspective on disentanglement by focus-
ing on the process of data generation. These methods seek to understand
the generative mechanisms of samples at domain, sample, and label levels.
Some approaches further disentangle inputs into class-irrelevant features
containing information specific to individual instances [78]. The Domain-
invariant variational autoencoder (DIVA) [79] disentangles features into do-
main information, category information, and other information within the
VAE framework. Peng et al. [80] separate fine-grained domain informa-
tion and category information learned within VAEs. Qiao et al. [81] also
leverage VAE for disentanglement, proposing a Unified Feature Disentan-
glement Network (UFDN) treating both data domains and image attributes
of interest as latent factors to disentangle. Similarly, Zhang et al. [82] iso-
late semantic and variational parts of samples. Comparable approaches
include [46]. [82] suggest disentangling style and other information using
generative models, their method serving both domain adaptation and do-
main generalization. Generative models not only enhance OOD perfor-
mance but also facilitate generation tasks, promising utility across various
applications.

Causality provides a deeper understanding of relationships between vari-
ables beyond statistical correlations (joint distribution). It offers insights
into how systems respond to interventions, making it particularly relevant
for transfer learning tasks where domain shifts can be viewed as interven-
tions. Within a causal framework, the ideal representation corresponds to
the true cause of the label (e.g., object shape), ensuring predictions re-
main robust against interventions on correlated yet semantically irrelevant
features (e.g., background, color, style). Several studies [83] have explored
causality in the context of domain adaptation.

For domain generalization, He et al. [84] reweighted input samples to align
the weighted correlation with causal effects. Zhang et al. [85] treated Fourier
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features as causal factors in images, enforcing independence among these
features. When additional object identity data was available, [86] enforced
conditional independence of representations from the domain index given
the same object. In cases where object labels were unavailable, [85] learned
an object-related feature based on separate stage labels. For single-source
domain generalization, [83] used data augmentation to represent informa-
tion about causal factors. Augmentation operations were designed to simu-
late outcomes under interventions on irrelevant features, guided by specific
domain knowledge.

Generative methods also incorporate causality considerations. Zhang et al.
[87] explicitly modeled a manipulation variable causing domain shifts, even
when unobserved. Liu et al. [74] leveraged causal invariance for single-source
generalization, emphasizing the process’s ability to maintain invariance in
generating (x, y) data based on factors, extending beyond mere inference
invariance. They demonstrated the identifiability of causal factors and their
beneficial impact on generalization. [71] extended this approach and theory
to multiple source domains, where irrelevant factors could be identified with
more informative data.

Meta-learning involves acquiring a general model from multiple tasks using
optimization-based methods [88], metric-based learning [87], or model-based
approaches. This concept has been adapted for domain generalization (DG),
where data from various source domains is divided into meta-train and meta-
test sets to simulate domain shifts. Let θ denote the model parameters to be
learned, and meta-learning can be formalized as:

θ∗ = Learn(Smte; ϕ∗) = Learn(Smte; MetaLearn(Smtrn)),

where ϕ∗ = MetaLearn(Smtrn) represents the meta-learned parameters from
the meta-train set Smtrn, used to learn the model parameters θ∗ on the meta-
test set Smte. The functions Learn(ů) and MetaLearn(ů) are implemented by
various meta-learning algorithms, addressing a bi-level optimization prob-
lem. The gradient update can be expressed as:
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θ = θ − α
∂

∂θ
(l(Smte; θ) + βl(Smtrn; ϕ)),

where α and β denote learning rates for the outer and inner loops, respec-
tively.

Finn et al. [88] introduced Model-agnostic meta-learning (MAML). Li et al.
[87] extended MAML to MLDG (meta-learning for domain generalization),
adapting meta-learning for DG by partitioning source domain data into
meta-train and meta-test sets to learn generalized representations. Zhou et
al. [89] proposed MetaReg, learning a meta regularizer for classifiers. Wang
et al. [41] introduced feature-critic training for the feature extractor using
a meta optimizer, while Dou et al. [90] incorporated complementary losses
into MLDG.

1.4.3 Learning Strategy

Gradient operation-based DG

Apart from meta-learning and ensemble learning, recent studies explore
gradient-based methods to enforce network learning of generalized repre-
sentations. Huang et al. [91] introduced self-challenging training, iteratively
discarding dominant features and forcing the network to activate remaining
features correlating with labels, enhancing generalization. Shi et al. [92] pro-
posed a gradient-matching scheme, aligning gradient directions between do-
mains by maximizing the gradient inner product (GIP):

L = Lcls(Strain; θ)− λ

2
∑

i

∑
j

Gi ·Gj ,

where Gi and Gj are gradients calculated as G = E∂l(x,y;θ)
∂θ . Other en-

hancements include adding CORAL [93] loss for gradient invariance [93]
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and maximizing neuron coverage with gradient similarity regularization [94].
Wang et al. [80] proposed knowledge distillation based on gradient filter-
ing.

Distributionally robust optimization-based DG

Distributionally robust optimization (DRO) [70] aims to learn models re-
silient to worst-case distribution scenarios, aligning with DG goals. Sagawa
et al. [71] introduced GroupDRO, requiring explicit group annotations ini-
tially and later refined to a fraction of the validation set [91]. Other
works reduce variance using VRex [64] or class-conditioned Wasserstein
DRO [46]. Koh et al. [61] addressed subpopulation shifts with DRO, while
Du et al. [95] proposed AdaRNN for DG without explicit group anno-
tations, optimizing worst-case scenarios through an optimization frame-
work.

Self-supervised learning-based DG

Self-supervised learning (SSL) leverages large-scale unlabeled data for self-
supervised tasks [43]. Wang et al. [63] pioneered jigsaw puzzles as a self-
supervision task for generalized representations. Contrastive learning has
gained popularity, contrasting positive and negative pairs [96], applicable in
unsupervised DG scenarios lacking labeled domains [68]. SSL also supports
pretraining on multi-domain data, facilitating robust model training under
domain shifts, albeit with increased computational demands.

Other learning strategy for DG

Various alternative strategies enhance DG. Metric learning [63] refines pair-
wise distances, while Wang et al. [38] integrate random forests to boost
CNN generalization, sampling triplets via forest split probabilities for CNN
parameter updates. Model calibration [51] aligns with OOD performance,
Wang et al. [95] explore network substructures, and Wang et al. [96] empha-
size shape-invariant features. Wang et al. [59] introduce stochastic weight
averaging to identify flat minima. As DG evolves, diverse strategies are
anticipated to enrich its methodologies.
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Chapter 2

Robustness in Image recognition

2.1 Introduction

In the realm of single domain generalisation, the principal goal is to de-
velop models that, despite being trained exclusively on data from a sin-
gle domain, can exhibit strong performance when exposed to various un-
seen domains. This paper presents a novel model, the Contrastive Uncer-
tainty Domain Generalisation Network (CUDGNet), specifically designed
to address the challenges of single domain generalisation in image recogni-
tion.

The central innovation of CUDGNet is its method of augmenting the source
capacity in both the input and label spaces through a fictitious domain
generator. This generator operates in conjunction with a contrastive learn-
ing framework to simultaneously learn domain-invariant representations for
each class. Our approach aims to achieve significant domain expansion from
the generator subnetwork while preventing representation collapse, thereby
ensuring robust generalisation.

Extensive experiments conducted on two Single Source Domain Generalisa-
tion (SSDG) datasets underscore the efficacy of our approach, which outper-
forms state-of-the-art single-DG methods by up to 7.08%. Additionally, our
method facilitates efficient uncertainty estimation during inference through
a single forward pass of the generator subnetwork.
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The idea of leveraging diversity for model training has been extensively
explored. Prior research [97–99] has demonstrated that employing a wide
range of augmentations during training significantly enhances a model’s
resilience to distribution shifts. When the nature of diversity encountered
during testing can be identified, specific augmentations can be applied to
mitigate its effects.

Beyond input diversity, SSDG approaches must also focus on learning domain-
invariant representations. Numerous previous works [97, 98] have success-
fully incorporated contrastive learning to achieve this, ensuring that each
class forms distinct clusters in the representation space. This clustering fa-
cilitates the learning of improved decision boundaries, which are crucial for
enhanced generalisation capabilities.

However, previous research [100–102] has often overlooked the risks as-
sociated with utilising augmented data for out-of-domain generalisation.
This oversight raises significant safety and security concerns, particularly in
mission-critical applications. For instance, deploying self-driving vehicles in
unfamiliar environments necessitates a comprehensive understanding of pre-
dictive uncertainty for effective risk evaluation.

Recently, [103] introduced a Bayesian meta-learning framework that lever-
ages the uncertainty of domain augmentations to improve domain gener-
alisation through a curriculum learning scheme, offering rapid uncertainty
assessment. Despite its innovative approach, this framework has limita-
tions, including sensitivity to hyperparameters that can destabilise training
and high computational demands that hinder scalability to complex net-
works.

Drawing inspiration from [103], our approach aims to leverage the uncer-
tainty of domain augmentations in both input and label spaces. To address
the limitations of previous works, we propose a novel framework comprising
a task model M and a domain augmentation generator G. These com-
ponents enhance each other through collaborative learning. The domain
augmentation generator G produces secure and efficient domains, guided
by uncertainty assessment, which are systematically extended to enhance
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coverage and comprehensiveness. To ensure cross-domain invariant repre-
sentation across all generated domains, contrastive learning is integrated
into the task model M .

The main contributions of this paper can be summarised as follows:

• We propose a novel framework that leverages adversarial data aug-
mentation and style transfer for domain expansion while preserving
semantic information through contrastive learning.

• Our framework can estimate uncertainty in a single forward pass while
achieving state-of-the-art accuracy.

• We validate our framework’s performance through comparative anal-
ysis and ablation studies on two SSDG datasets.

Figure 2.1: The overall framework of the proposed CUDGNet. The Task Model
M and the domain augmentation Generator G are jointly trained,
while the transformation component TC and style mixing (EFDMix)
further enrich the augmentation capacity. The contrastive loss guides
semantically similar samples from different domains to be closer in
the embedding space.
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2.2 Materials and Method

In this section, we provide a detailed outline of the Contrastive Uncertainty
Domain Generalisation Network (CUDGNet), as illustrated in Figure 2.1.
Our goal is to train a robust model using data from a single domain S,
with the expectation that this model will perform effectively across multi-
ple unseen domain distributions {T1, T2, . . .} ∼ p(T ). To achieve this, we
generate a series of domain augmentations {S+

1 , S+
2 , . . .} ∼ p(S+), which

approximate p(T ), allowing the task model to learn to generalise to pre-
viously unseen domains. Additionally, we demonstrate how to assess the
uncertainty of new domains as a byproduct of the perturbations used for
adversarial domain augmentation.

To create new domains while preserving class-specific details, we introduce
two auxiliary components: the Transformation Component (TC) and the
domain augmentation generator G. The latter is a novel feature perturba-
tion subnetwork that combines style transfer and variational feature pertur-
bations, following a learnable multivariate Gaussian distribution N (µ, σ2),
for diverse and content-preserved feature augmentations. Furthermore, the
domain augmentation learning process is enhanced by incorporating image-
structure information generated through our TC, which uses affine trans-
formations and fractals to enrich the input space. To organise domain
alignment and classification effectively, we employ contrastive learning to
acquire representations that are invariant to domain shifts and to prevent
representation collapse due to extreme domain shifts in feature perturba-
tions. This approach facilitates the progressive formation of domain aug-
mentations and well-defined clusters for each class in the representation
space.

2.2.1 Transformation Component (TC)

The TC transforms the initial image x from the original domain S into a
novel image x̂ within the same domain using the following process:
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x̂ = TC(x) =


(x⊕ f1)
(x⊕ f1)⊗ (x⊕ xaff )
(x⊕ f1)⊗ (x⊕ xaff )⊗ (x⊕ f2)

(2.1)

where each of the three branches has an equal probability of occurring.
xaff is the image resulting from an affine transformation (e.g., rotation,
translation, contrast adjustment) applied to the initial image x. f1 and
f2 denote fractal images [104]; ⊕ and ⊗ are element-wise additions and
multiplications, respectively.

While the TC may not expand the domain space significantly, it plays a cru-
cial role in our method by helping to avoid representational collapse during
the initial epochs of domain expansion when G may introduce severe noise.
The unique structural characteristics of fractals, which are non-random and
unlikely to arise from processes of maximum entropy or Gaussian noise,
make this transformation orthogonal to the domain augmentation generator
G. In Equation 2.1, the image undergoes k transformations (with k ∈ [0, 10]
being a hyperparameter).

2.2.2 Domain Augmentation Generator

We illustrate the process of generating the unseen domain S+ from S
through the generator G, ensuring that the samples generated adhere to
the criteria of safety and effectiveness. Safety denotes that the generated
samples preserve semantic information, while effectiveness implies that the
generated samples encompass a diverse range of unseen domain-specific de-
tails.

Style manipulation. In conjunction with the TC, we enrich the input
space using style manipulation. We integrate Exact Histogram Matching
(EHM) [105] to represent style information by using high-order feature
statistics. We use the Sort-Matching algorithm [106] due to its efficient
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execution speed. Sort-Matching is implemented by matching two sorted vec-
tors, whose indexes are illustrated in a one-line notation:

w : τ = (τ1 τ2 τ3 . . . τn)
r : κ = (κ1 κ2 κ3 . . . κn)

(2.2)

The Sort-Matching output is: outτi = rki
.

To create a wide range of feature augmentations that combine various styles,
we rely on Exact Feature Distribution Mixing (EFDMix) as outlined in
Equation 2.3, incorporating interpolated sorted vectors:

EFDMix(w, r)τi = wτi + (1− d)rκi − (1− d)⟨wτi⟩ (2.3)

We use an instance-specific mixing weight denoted as d, obtained by sam-
pling from a Beta distribution (c, c), where c ∈ (0,∞) serves as a hyper-
parameter, and ⟨·⟩ represents the stop-gradient operation [107].

Learnable mixup with style transfer. For adversarial domain augmen-
tation, we employ feature perturbations, assuming that the perturbations,
denoted as e, follow a multivariate Gaussian distribution N (µ, σ2). The
parameters of this Gaussian distribution (µ, σ) are learned using variational
inference. The updated latent feature h+ is obtained by adding the pertur-
bations to the original feature h with interpolated style through EFDMix
(where r is obtained by shuffling h along the batch dimension). This is
denoted as h+ ← EFDMix(h, r)+e, where e is sampled from the Gaussian
distribution N (µ, σ2). This approach allows us to create a series of feature
augmentations during different training iterations.

Our method also involves blending S and S+ via Mixup [108] to achieve
intermediate domain interpolations. Specifically, we utilize the uncertainty
captured in the perturbations (µ, σ2) to predict adjustable parameters (a, b),
which guide the direction and intensity of domain interpolations.
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h+′ = λ · EFDMix(h, r) + (1− λ)h+

y+ = λy + (1− λ)ỹ
(2.4)

where λ ∈ Beta(a, b) and ỹ is a smoothed version of y by a chance of lottery
τ . The Beta distribution and lottery are computed by a fully connected
layer following the Generator. These parameters integrate the uncertainty
of generated domains.

Adversarial domain augmentation. In the latent space, we propose an
iterative training procedure alternating between two phases: a maximiza-
tion phase, where new data points are learned by computing the inner max-
imization problem, and a minimization phase, where model parameters are
updated according to stochastic gradients of the loss evaluated on the adver-
sarial examples generated from the maximization phase. The fundamental
concept here is to iteratively acquire "hard" data points from fictitious target
distributions while retaining the essential semantic attributes of the initial
data points via adversarial data augmentation [109]:

max
G

L(M ; S+)− β∥z− z+∥22 (2.5)

where L represents the cross-entropy loss and involves the creation of S+

through the perturbations of h+; the second term is the safety constraint
that limits the maximum divergence between S and S+ in the embedding
space. z (z+ when G is activated) denotes the output from the Projection
head (P ), and β is a hyperparameter controlling the maximum divergence.
The projection head part of our model transforms the convolutional features
into a lower-dimensional feature space Z suitable for contrastive learning.
This is distinct from h, which denotes the outputs from the convolutional
layers.
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2.2.3 Learning Objective

Our focus is on acquiring cross-domain invariant representations and pro-
ducing effective domain augmentations S+. To achieve this, we utilize the
SimCLR [?] contrastive loss and cross-entropy loss as training objectives.
First, the cross-entropy loss for the domain alignment network (C) is com-
puted as follows:

Lce = E
[
−

n∑
i=1

yi log ŷi

]
(2.6)

where yi is the ground truth label, and ŷi is the prediction by the model.

For the contrastive loss, let f be the encoder network and P the projection
head. The contrastive loss Lcont for an image xi and its corresponding
transformed image x̂i is defined as follows:

Lcont = −E
[
log exp (sim(P (f(xi)), P (f(x̂i)))/τ)∑2n

j=1 ⊮[j ̸=i] exp (sim(P (f(xi)), P (f(xj)))/τ)

]
(2.7)

where sim(·, ·) is the cosine similarity, τ is a temperature parameter, and 2n
is the total number of augmented images in a batch.

2.2.4 Overall Objective

The overall objective function Ltotal combines both the cross-entropy loss
and the contrastive loss, controlled by a balancing parameter α:

Ltotal = Lce + αLcont (2.8)
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2.3 Experimental Results

Table 2.1: The accuracy of single-source domain generalisation (%) on CIFAR-10-
C. Models are trained on CIFAR-10 and evaluated on the CIFAR-10-C.

Method Weather Blur Noise Digital Avg
ERM [109] 67.28 56.73 30.02 62.30 54.08

M-ADA [101] 75.54 63.76 54.21 65.10 64.65
U-SDG [103] 76.23 65.87 53.05 68.43 65.89

RandConv [102] 76.87 55.36 75.19 77.51 71.23
L2D [98] 75.98 69.16 73.29 72.02 72.61

MetaCNN [100] 77.44 76.80 78.23 81.26 78.45
Ours 89.13 82.94 85.62 84.43 85.53

By optimizing Ltotal, CUDGNet is trained to generalize effectively across
unseen domains while preserving the semantic information of the original do-
main and aligning cross-domain representations.

2.3 Experimental Results

Comparison with the state-of-the-art Tables 2.1, 2.2 exhibit the eval-
uations of single domain generalisation on CIFAR-10-C and PACS, respec-
tively. The results demonstrate that CUDGNet achieves the highest av-
erage accuracy compared to other methods. To be specific, as shown in
Table 2.1, there are notable improvements of 11.69%, 6.14%, 7.39%, 3.17%
and 7.08% in weather, blur, noise, digital and average categories of CIFAR
corruptions respectively. Table 2.2 demonstrates that CUDGNet outper-
forms all previous methods in the domain of Art Painting except for [110]
which has rather imbalanced results and achieves superior average perfor-
mance. Sketch and Cartoon in contrast to Art painting have huge do-
main discrepancies compared to Photo (source domain), but still, our model
achieves comparable results in these categories compared to the state-of-the-
art.

Comparison with the state-of-the-art Tables 2.1, 2.2 exhibit the eval-
uations of single domain generalisation on CIFAR-10-C and PACS, respec-
tively. The results demonstrate that CUDGNet achieves the highest av-
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Table 2.2: The accuracy of single-source domain generalisation (%) on PACS.
Models are trained on photo and evaluated on the rest of the target
domains.

Method A C S Avg
ERM [109] 54.43 42.74 42.02 46.39
JiGen [99] 54.98 42.62 40.62 46.07

M-ADA [101] 58.96 44.09 49.96 51.00
L2D [98] 56.26 51.04 58.42 55.24

ALT [110] 68.50 43.50 53.30 55.10
MetaCNN [100] 54.04 53.58 63.88 57.17

Ours 59.30 50.66 62.00 57.32

erage accuracy compared to other methods. To be specific, as shown in
Table 2.1, there are notable improvements of 11.69%, 6.14%, 7.39%, 3.17%
and 7.08% in weather, blur, noise, digital and average categories of CIFAR
corruptions respectively. Table 2.2 demonstrates that CUDGNet outper-
forms all previous methods in the domain of Art Painting except for [110]
which has rather imbalanced results and achieves superior average perfor-
mance. Sketch and Cartoon in contrast to Art painting have huge do-
main discrepancies compared to Photo (source domain), but still, our model
achieves comparable results in these categories compared to the state-of-the-
art.

2.4 Uncertainty Estimation

Uncertainty Estimation. In this section, we evaluate the effectiveness
and efficiency of our domain uncertainty score, introduced in Section 2.3,
by comparing it with a more computationally intensive Bayesian approach
[111]. Our method calculates uncertainty through a single-pass forward
operation, which requires approximately 0.15 milliseconds per batch. In
contrast, the Bayesian approach relies on repeated sampling, performing 30
passes to compute output variance, which significantly increases the compu-
tation time to approximately 5.1 milliseconds per batch.
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2.4.1 Performance Analysis

To illustrate the performance of our uncertainty estimation method, we
present the results on the CIFAR-10-C dataset in Figure 2.2. The outcomes
demonstrate that our domain uncertainty score consistently aligns with the
Bayesian uncertainty estimation, despite the latter’s higher computational
cost. This consistency confirms that our method can achieve similar accu-
racy in uncertainty estimation without the need for extensive computational
resources.

2.4.2 Practical Benefits

The substantial reduction in computation time offered by our approach has
significant practical benefits, particularly in scenarios requiring real-time or
large-scale data processing. Our single-pass method allows for rapid uncer-
tainty estimation, making it suitable for applications where quick decision-
making is critical, such as autonomous driving, medical diagnosis, and real-
time surveillance systems.

2.4.3 Robustness and Reliability

Moreover, the strong alignment between our method and the Bayesian
approach underscores the robustness and reliability of our domain uncer-
tainty score. This reliability is essential for various tasks, including out-
of-distribution detection and model confidence evaluation. The ability to
provide accurate uncertainty estimates ensures that the model can effec-
tively handle unexpected inputs and maintain performance across different
domains.

In conclusion, our domain uncertainty score presents a highly efficient and
reliable alternative to traditional Bayesian uncertainty estimation methods.
By achieving comparable accuracy with a fraction of the computational
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Table 2.3: Ablation study of the key components of CUDGNet

Method Weather Blur Noise Digital Avg
Baseline 63.43 55.61 31.92 61.01 53.01

+ G 72.19 61.37 51.58 62.71 61.96
+ TC 79.22 75.44 71.46 75.14 75.31

+ Style transfer 87.81 82.10 82.05 80.76 83.18
+ Contrastive learning 89.13 82.94 85.62 84.43 85.53

cost, our method stands out as a practical solution for real-world applica-
tions. The alignment of our results with those of the Bayesian approach
further validates the effectiveness of our uncertainty estimation technique,
highlighting its value in the field of domain generalization and image recog-
nition.

Figure 2.2: Estimation of Uncertainty CIFAR-10-C. Our domain uncertainty pre-
diction aligns with Bayesian uncertainty, while our approach is sig-
nificantly faster.

Ablation Study As depicted in Table 2.3, the incorporation of various
components into our model significantly enhances its performance compared
to the baseline with the adversarially augmented generator. This ablation
study highlights the effectiveness of each individual component in improving

30



2.4 Uncertainty Estimation

the model’s generalization capabilities.

Transformation Component. Incorporating the Transformation Com-
ponent leads to significant improvements over the baseline model. This
improvement underscores the importance of slightly augmenting the diver-
sity of the source domain and altering the image structure through fractals
before the adversarial min-max optimization of the generator. By intro-
ducing these transformations, the model is exposed to a broader variety
of features and patterns, enabling it to generalize better when confronted
with previously unseen domains. This step is crucial as it helps the model
learn more robust and invariant features, contributing to its overall perfor-
mance.

Style Transfer. Further enhancement is observed with the addition of
the style transfer component, resulting in a performance boost of 7.87%.
This substantial improvement indicates that style transfer is a powerful tool
for domain generalization. By altering the style of images, the model be-
comes more adept at recognizing the underlying content regardless of stylis-
tic variations. This capability is particularly valuable in scenarios where
the target domain may exhibit different visual styles from the source do-
main. The style transfer component effectively diversifies the training data,
making the model more resilient to domain shifts and stylistic discrepan-
cies.

Contrastive Loss. The integration of contrastive loss marks another signif-
icant milestone in our model’s performance. With this addition, we achieve a
new state-of-the-art performance, boasting an average performance score of
85.53%. Contrastive loss helps in learning domain-invariant representations
by encouraging the model to minimize the distance between similar sam-
ples while maximizing the distance between dissimilar ones. This approach
ensures that the learned features are more discriminative and less sensitive
to domain-specific variations. The success of this component demonstrates
its crucial role in enhancing the model’s ability to generalize across different
domains.

In summary, the ablation study presented in Table 2.3 clearly demonstrates
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the effectiveness of each component in improving the model’s robustness and
generalization capabilities. The Transformation Component, style transfer,
and contrastive loss each contribute uniquely to the overall performance,
culminating in a model that sets a new benchmark in single domain gener-
alization for image recognition. These findings validate our approach and
highlight the potential of our model to handle a wide range of domain vari-
ations, ultimately advancing the field of out-of-distribution robustness in
image recognition.

2.5 Conclusion

This chapter explored the challenge of out-of-distribution robustness in
image recognition, specifically focusing on single domain generalization.
We introduced the Contrastive Uncertainty Domain Generalisation Net-
work (CUDGNet), a novel model designed to enhance performance on un-
seen domains by augmenting the source capacity in both input and label
spaces through a fictitious domain generator. The model also leverages
contrastive learning to achieve domain invariant representations for each
class.

Our approach demonstrates significant domain expansion capabilities while
avoiding representation collapse. Through extensive experiments on two
Single Source Domain Generalisation (SSDG) datasets, we showed that
CUDGNet surpasses the current state-of-the-art single-DG methods by up
to 7.08%. Additionally, CUDGNet offers efficient uncertainty estimation at
inference time via a single forward pass through the generator subnetwork,
highlighting its practical applicability and effectiveness in real-world scenar-
ios. This work contributes to advancing the robustness of image recogni-
tion models when faced with diverse and unfamiliar domains, underscoring
the potential of CUDGNet in achieving reliable and generalizable perfor-
mance.
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Chapter 3

Robustness in Medical Imaging

3.1 Introduction

Medical image analysis (MedIA) has become an integral part of modern
medical practice, playing a crucial role in disease diagnosis, prognosis, and
treatment planning. Recent advancements in deep learning (DL) have sig-
nificantly accelerated progress in this field. However, applying DL models
to real-world medical imaging scenarios presents substantial challenges, pri-
marily due to the models’ limited ability to generalize effectively across the
distributional gap between training and testing samples—a phenomenon
known as domain shift. Addressing this issue, researchers have dedicated
substantial efforts to developing various DL approaches to ensure robust
performance when confronted with unknown and out-of-distribution data
distributions.

This PhD thesis aims to make a substantial contribution to enhancing out-
of-distribution robustness in medical imaging, particularly focusing on ap-
plications for COVID-19 detection. Through comprehensive research and
analysis, this work explores the development and evaluation of innovative
methodologies designed to improve the reliability and effectiveness of med-
ical imaging techniques in identifying COVID-19 cases, even in scenarios
beyond the scope of the training data. By tackling the challenges associated
with out-of-distribution scenarios, this thesis aspires to advance the state-of-
the-art in medical imaging, thereby facilitating more accurate and depend-
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able diagnoses amid the ongoing COVID-19 pandemic.

Out-of-distribution robustness has become a pivotal area within deep learn-
ing, particularly when the capacity to generalize across diverse domains is
paramount. As highlighted above, it is especially critical in medical im-
age analysis (MedIA), which is characterized by highly heterogeneous data.
To comprehensively understand the unique challenges associated with do-
main generalization in MedIA, it is crucial to consider the following fac-
tors impacting Out-of-Distribution Robustness for Medical Image Analy-
sis:

• Variability in Medical Imaging: Variability in medical imaging
stems from differences and inconsistencies during the data acquisi-
tion process [112]. These variations may be external, resulting from
the use of different modalities, protocols, scanner types, and patient
demographics across various healthcare facilities. Internal variability
can also occur within a controlled setting (e.g., the same scanner or
healthcare facility) due to factors such as hardware aging, software
parameter variations, and human error (e.g., motion artifacts).

• Complex and High-Dimensional Data: Medical images often ex-
hibit significant complexity and high dimensionality, with multiple
channels or sequences. Many datasets range from thousands of pixels
to gigapixels [113] and span from 2D to 5D dimensions [114]. This
complexity poses challenges in identifying and extracting domain-
invariant features that can generalize effectively across diverse do-
mains.

• Challenging Data Acquisition, Organization, and Labeling:
Acquiring, organizing, and labeling data in medical imaging is ardu-
ous. Large-scale, diverse, and labeled datasets are difficult to obtain
due to the high costs of data acquisition, privacy concerns, data shar-
ing restrictions, and the labor-intensive nature of manual annotation
by medical professionals. Additionally, ensuring quality assurance is
challenging, as medical images are prone to noise and artifacts, such
as patient motion, scanner imperfections, and hardware or software
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limitations.

• Model Interpretability, Safety, and Privacy: In MedIA, ensur-
ing model interpretability, safety, and compliance with regulatory and
ethical standards is paramount. Robustness against adversarial ex-
amples and out-of-distribution samples is crucial to prevent adverse
effects on patient care. Furthermore, enabling privacy-preserving data
sharing and collaboration in multi-center contexts adds complexity to
the implementation of domain generalization techniques.

This PhD thesis aims to address these challenges by developing robust
methodologies for out-of-distribution generalization in medical imaging, with
a particular focus on enhancing the reliability and effectiveness of COVID-
19 detection. Through this work, we seek to contribute to the advancement
of MedIA, ensuring more accurate and dependable medical diagnoses in the
face of diverse and unforeseen data distributions.

3.2 The COV19-CT-DB Database

3.2.1 Introduction to the Database

To develop a robust and accurate AI model for medical imaging, particularly
for detecting COVID-19 from CT scan images, it is paramount to have
a large and representative training dataset. Such a dataset ensures that
the model can generalize well to various real-world scenarios and patient
demographics. In response to this critical need, we introduce the COV19-
CT-DB (COVID-19 Computed Tomography Database), a comprehensive
and extensive annotated database of chest CT scans aimed at enhancing
COVID-19 classification.

The COV19-CT-DB database is a significant contribution to the medi-
cal imaging community, addressing the scarcity of large-scale annotated
datasets necessary for training deep learning models. This database com-
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prises 7,750 3-D CT scans collected from multiple hospitals, ensuring a
diverse representation of cases. Of these, 1,650 scans are annotated as
COVID-19 cases, while 6,100 scans are classified as non-COVID-19 cases.
The inclusion of such a large number of non-COVID-19 cases is crucial for
developing models that can accurately distinguish between COVID-19 and
other conditions, thereby reducing false positives.

Each 3-D CT scan in the database contains a varying number of slices,
ranging from 50 to 700, resulting in a total of approximately 2,500,000
CT slices. This extensive variability in the number of slices per scan reflects
real-world clinical settings, where the number of slices can vary significantly
based on the scanning protocol and patient condition. By incorporating this
variability, the database provides a rich and challenging dataset for training
robust AI models.

Furthermore, part of the COV19-CT-DB database has already been suc-
cessfully utilized in a recently held competition, demonstrating its practical
utility and relevance to the research community [115]. The entire database is
now being made available to researchers for further investigation and devel-
opment of AI models. This open access to the database aims to foster collab-
oration and accelerate advancements in the field of medical image analysis,
particularly in the context of COVID-19.

The availability of such a comprehensive dataset is expected to drive signif-
icant improvements in the performance and generalization of AI models for
COVID-19 detection. Researchers can leverage the COV19-CT-DB to train
and validate their models, ensuring that these models are not only accurate
but also robust to various real-world conditions and patient populations.
By contributing to the broader research community, this database supports
the ongoing efforts to combat the COVID-19 pandemic through advanced
AI-driven diagnostic tools.
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3.2.2 Data Collection and Processing

Data collection for COV19-CT-DB was conducted from September 1, 2020,
to November 30, 2021. The dataset comprises 1,650 COVID-19 and 6,100
non-COVID-19 chest CT scan series, representing a large number of pa-
tients (more than 1,150) and subjects (more than 2,600). Due to the
anonymization procedure, no specific patient and subject numbers can be
reported.

The data was collected using the Siemens Somatom Emotion 16-section CT
scanner at AHEPA Hospital’s Emergency Department. Scans covered from
the upper thoracic outlet to the diaphragm of the patients. Key parameters
included detector collimation widths of 6 x 0.5 mm, tube voltage of 130 kV,
and 114 mA. Images were reconstructed with a slice thickness of 0.75 mm in
a lung window, with patients in a supine position.

HRCT (High Definition Computed Tomography) was used due to its ability
to produce detailed lung images, essential for diagnosing and monitoring
COVID-19 pneumonia. After HRCT, the data was stored in the Image
Archiving and Processing System of the Clinical Radiology Department at
AHEPA Hospital and subsequently anonymized using the DicomCleaner
program. This process involved overwriting each patient’s name, ID, and
other non-secure private attributes, ensuring that the HRCTs were cleared
and anonymized.

3.2.3 Annotation Process

Each CT slice was annotated by four experienced medical experts: two
radiologists and two pulmonologists, each with over 20 years of experience.
The experts identified and labeled COVID-19-related abnormalities, such
as ground-glass opacities and consolidations, using a standardized protocol.
The annotations demonstrated a high degree of agreement (around 98%),
ensuring consistency and accuracy.
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Figure 3.1: Histogram of CT scan lengths in COV19-CT-DB

3.2.4 Database Composition

Figure 3.2 displays slices from a CT scan series of a non-COVID-19 case.
Similarly, Figure 3.3 presents slices from a CT scan series of a COVID-19
case. Figure 3.4 illustrates four CT scan slices: two from a non-COVID-19
scan on the left and two from a COVID-19 scan on the right. Bilateral
ground-glass opacities are particularly evident in the lower lung lobes of the
COVID-19 slices.

The database is divided into training, validation, and test sets. The training
set includes 1,991 CT scans in total, with 882 labeled as COVID-19 and
1,109 labeled as non-COVID-19. The validation set comprises 484 CT scans,
with 215 labeled as COVID-19 and 269 as non-COVID-19. The test set
consists of 5,281 CT scans, with 564 labeled as COVID-19 and 4,717 labeled
as non-COVID-19.

Some CT series from the same individual were taken at different times.
To ensure there was no data leakage from the training to the test set, we
compared each 3-D CT scan in the test set with each 3-D CT scan in the
training set. Initially, we compared each 3-D CT scan in the test set with
all 3-D CT scans in the training set that had the same length in terms of
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the number of CT slices. Subsequently, we compared each 3-D CT scan in
the test set with all 3-D CT scans in the training set that did not have the
same length, making the comparison over the minimum CT scan length,
i.e., the first 50 slices of each 3-D CT scan. We found no 3-D CT scan in
the test set that was identical or nearly identical to any 3-D CT scan in the
training set.

Finally, Table 3.1 summarizes the main attributes of COV19-CT-DB as
described above.

3.2.5 Ethical Considerations

The collection and use of the data were conducted ethically, with appropri-
ate consideration for patient privacy and informed consent. Anonymization
ensured that patient data was protected, preventing misuse or unauthorized
disclosure.

Finally, Table 3.1 summarizes the main attributes of COV19-CT-DB that
are presented above.

Table 3.1: Attributes of the COV19-CT-DB

Attribute Description

total # of CT scans 1,661 COVID
6,095 non-COVID

total # of slices 724,273 from CT scans of COVID
1,775,727 from CT scans of non-COVID

# of slices per CT scan 50 - 700
# Patients >1150
# Subjects >2600

slice image resolution 512× 512

# Annotators 4 medical experts
(2 radiologists & 2 pulmonologists)
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Figure 3.2: Slices from a non COVID-19 CT scan in COV19-CT-DB
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Figure 3.3: Slices from a COVID-19 CT scan in COV19-CT-DB
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Figure 3.4: Four CT scan slices in COV19-CT-DB, the top 2 from a non-COVID-
19 scan and the bottom 2 from a COVID-19, including bilateral
ground glass regions in lower lung lobes.
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3.3 RACNet: The Proposed Architecture

This section elaborates on the characteristics of the input data used for
diagnosing COVID-19 from chest CT scans. The input data consists of
a series of chest CT slices, which form a 3-D signal. Each slice is a 2-D
image, and the number of slices varies across different CT scans. While a
3-D CNN architecture, such as a 3-D ResNet, can process these 3-D sig-
nals effectively, handling the variation in the number of slices per CT scan
presents a significant challenge. To address this, various ad-hoc methods
can be employed, such as selecting a fixed input length and either discard-
ing extra slices or duplicating slices when there are fewer than the required
number.

In this PhD thesis, we introduce a novel architecture named RoutingAlign-
ClusterNet (RACNet), which integrates both CNN and RNN components,
diverging from the conventional purely 3-D CNN approach. RACNet con-
sists of three main components: the 3D Analysis component, the Rout-
ing component, and the Classification component. Initially, to standard-
ize the input data, all CT scans are padded to have a uniform length
t, meaning each scan is adjusted to have t slices. For instance, a CT
scan with only 50 slices would be expanded to 700 slices through dupli-
cation.

Our model processes input data in two distinct modes. In the first mode,
each 2-D slice is segmented to isolate the lung regions, and these segmented
images are then fed into the CNN. In the second mode, the entire, unseg-
mented 2-D slices are used as input to the CNN. Both methods are thor-
oughly evaluated in the experimental studies included in this thesis. The
subsequent sections provide a detailed description of each component of the
RACNet architecture.
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Figure 3.5: The proposed Pipeline: A 3-D input composed of up to t chest CT
slices is processed for COVID-19 diagnosis. A CNN-RNN architecture
performs 3-D analysis, while a routing mechanism with an ’alignment’
step and a Mask Layer handles the varying input length t. A dense
layer precedes the output layer that provides the COVID-19 diagnosis;
the neuron outputs of the dense layer are further analyzed through
clustering to derive a latent variable model and a related set of anchors
that provide additional insights into the decision-making process.

3.3.1 3-D Analysis Component

The input data are processed by the 3D Analysis component of RACNet,
which consists of a Convolutional Neural Network (CNN) followed by a Re-
current Neural Network (RNN). The CNN is responsible for performing local
analysis on each 2-D slice, focusing primarily on extracting features from the
lung regions. This feature extraction aims to replicate the diagnostic pro-
cess used by medical experts who annotate the data based on the entire 3-D
CT scan series. After the CNN has extracted the features from each slice,
the RNN sequentially processes these features from the entire 3-D CT scan,
starting from slice 0 and continuing to slice t− 1. This sequential analysis
by the RNN allows for the temporal and spatial relationships between slices
to be taken into account, enhancing the overall diagnostic accuracy. This
process is depicted in Figure 3.5, where t represents the maximum number
of slices available in the chest CT scans.
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3.3.2 Routing Component

As depicted in Figure 3.5, the RNN features corresponding to each CT
slice (from 0 to t − 1) are inputs to the Routing Component of RACNet.
These features are concatenated and fed into the Mask Layer. The origi-
nal input series length l is passed to the Mask Layer to guide the routing
process.

The Mask Layer dynamically selects RNN outputs based on the input length
l, retaining the values of the selected outputs and zeroing out the rest. This
dynamic routing procedure is illustrated in Figure 3.5. During the training
of RACNet, the routing mechanism selects the RNN outputs as indicated
by the input series length l.

Two methods can be employed for this selection process:

• Method a: Selecting the first l RNN outputs - This approach
involves simply selecting the first l features from the sequence of RNN
outputs, corresponding to the original CT slices.

• Method b: Performing an ’alignment’ step - This method in-
volves placing the original l RNN outputs in equidistant positions
within the range [0, t − 1] and placing the remaining outputs in the
intervening positions.

The Mask Layer then routes the selected RNN outputs to the Classification
module.

The ’alignment’ step For instance, consider a scenario with a maximum
input length of 700 CT scan slices. If a CT scan comprises 50 slices, it
is padded with 650 duplicate slices to achieve a total of 700 slices. During
training, all 700 slices are processed by the CNN-RNN.

Without alignment, the Mask Layer zeroes out the features of the 650 du-
plicate slices and retains the first 50 features. This is illustrated in Figure
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3.6 (a).

With alignment, features from the original 50 slices are placed in equidis-
tant positions within the range [0, 699], and the duplicate slice features are
placed in the intervening positions. The Mask Layer then zeroes out the
features of the duplicate slices, retaining the features of the original slices
and routing them to the Classification module. This is illustrated in Figure
3.6 (b).

The alignment step enhances training efficiency by ensuring that the weights
are updated with similar slice information, making the training process more
effective, particularly when dealing with limited data.

(a)

(b)

Figure 3.6: The Routing Mechanism: (a) without and (b) with the ’alignment’
step

46



3.3 RACNet: The Proposed Architecture

3.3.3 Classification Component

The concatenated RNN outputs are fed into the Classification Component of
RACNet, which consists of a dense layer followed by an output layer utilizing
a softmax activation function for the final COVID-19 diagnosis. The dense
layer is designed to extract high-level information from the concatenated
RNN outputs. During the training process, only the weights that connect
the neurons of the dense layer with the routed RNN outputs are updated.
This dynamic routing principle ensures that non-routed RNN outputs are
ignored, keeping their corresponding weights constant. This targeted update
mechanism allows the model to focus on the most relevant features for the
diagnosis task, thereby improving the accuracy and robustness of the final
prediction.

3.3.4 Latent Variable Analysis and Anchor Set Generation

Following the training of RACNet, we proceed to extract and analyze the
neuron outputs of the dense layer through a clustering approach. These la-
tent variables encapsulate high-level semantic information that is crucial for
the final classification. By discarding the output layer and performing an
unsupervised analysis, we aim to generate a representation that offers deeper
insights into the decision-making process of the model.

To achieve this, we input a training dataset into the trained RACNet archi-
tecture, extracting the dense layer neuron outputs for each 3-D CT scan in-
put k. These outputs form vectors denoted as v(k). We then employ a clus-
tering algorithm, such as k-means++, to generate a concise representation of
these vectors by minimizing the following criterion:

Q̂k-means = arg min
Q

M∑
i=1

∑
v∈V

v− µi
2 (3.1)

where µi represents the mean of the v values within cluster i. Each cluster

47



Robustness in Medical Imaging

center c(i) is subsequently computed, forming a concise representation set
C:

C =
{
c(i) ∈ RL, i = 1, . . . , M

}
(3.2)

Medical experts can then review the CT scan inputs corresponding to these
cluster centers, providing additional semantic information to the represen-
tation. The generated set C serves as an anchor model for diagnosing new
cases. When testing RACNet on a new CT scan, the corresponding v vec-
tor is extracted, and its Euclidean distance to each cluster center in C is
computed. The new case is associated with the nearest cluster center and
labeled accordingly.

This method of latent variable extraction and anchor set generation signifi-
cantly aids in the efficient diagnosis of COVID-19 by enabling the compar-
ison of L-dimensional vectors and selecting the minimum distance. More-
over, this approach provides confidence levels for the diagnosis and facili-
tates efficient training updates with new datasets. Medical centers can share
their best-performing networks and anchor sets, continuously improving the
data-driven representations and diagnostic capabilities across different in-
stitutions.

3.4 Experimental Study

This section describes a comprehensive set of experiments conducted to
evaluate the performance of the proposed RACNet approach for COVID-19
detection across various databases. The experiments are designed to vali-
date the efficacy of RACNet compared to existing state-of-the-art methods
and to analyze the contribution of each component within the RACNet
architecture.
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3.4.1 Training RACNet on the COV19-CT-DB Database

Initially, RACNet was trained on the COV19-CT-DB database, as described
in Section 3.2. We compared RACNet’s performance against several other
neural network architectures, including standard 2D and 3D CNNs. Addi-
tionally, we conducted an ablation study to verify the contribution of each
component of RACNet (3D Analysis, Routing, and Classification). The
results demonstrated that RACNet outperformed other architectures, high-
lighting the effectiveness of its design.

3.4.2 Application and Retraining on Additional Databases

To further validate RACNet, we applied and retrained it on five additional
databases, comparing its performance to state-of-the-art methods specifi-
cally tailored for COVID-19 detection. The databases used in these exper-
iments include:

COV19D-ICCV2021 This database was shared during the COV19D Com-
petition at the “AI-enabled Medical Image Analysis Workshop and Covid-19
Diagnosis Competition” held in conjunction with the International Confer-
ence on Computer Vision (ICCV) 2021 [115–118]. It includes 1,405 COVID-
19 and 4,066 non-COVID-19 3D CT scans, with 707 COVID-19 and 845
non-COVID-19 scans in the training set, and 165 COVID-19 and 209 non-
COVID-19 scans in the validation set.

COV19D-ECCV2022 This database was utilized in the COVID-19 Detec-
tion Challenge at the 2nd COV19D Competition held in conjunction with
the European Conference on Computer Vision (ECCV) 2022 [115–120]. It
comprises 1,550 COVID-19 and 5,044 non-COVID-19 3D CT scans, with
882 COVID-19 and 1,110 non-COVID-19 scans in the training set, and 215
COVID-19 and 289 non-COVID-19 scans in the validation set.
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CC-CCII We also utilized the Clean CC-CCII database [121, 122], which
includes 3D CT scans of three classes: novel coronavirus pneumonia (NCP),
common pneumonia (CP), and Normal. The training partition consists
of 3,195 3D CT scans (1,213 NCP, 1,210 CP, and 772 Normal), and the
test partition consists of 798 3D CT scans (302 NCP, 303 CP, and 193
Normal).

MosMedData The MosMedData database [123], annotated for COVID-
19/non-COVID-19 diagnosis, contains 1,110 3D CT scans. The COVID
class includes 856 scans, and the Normal class includes 254 scans. The train-
ing set consists of 601 COVID-19 and 178 non-COVID-19 scans, while the
testing set comprises 256 COVID-19 and 76 non-COVID-19 scans.

CT-image DB This database [124], annotated for COVID-19/non-COVID-
19 diagnosis, contains 2D CT scan slices (408 non-COVID-19 and 349
COVID-19). We augmented these slices using random rotation, noise addi-
tion, and horizontal flips to create 3D CT scans. The training set consists
of 279 COVID-19 and 326 non-COVID-19 slices, while the test set includes
70 COVID-19 and 82 non-COVID-19 slices.

3.5 RACNet Training: Implementation Details

In this section, we provide a comprehensive overview of the implementation
details and training procedures used for RACNet in the context of COVID-
19 detection from chest CT scans. This includes the architecture specifica-
tions, data preprocessing steps, training protocols, hyperparameter tuning,
and computational resources employed.
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3.5.1 Architecture Specifications

RACNet is composed of three primary components: the 3D Analysis Com-
ponent, the Routing Component, and the Classification Component.

3D Analysis Component This component consists of a 3D Convolutional
Neural Network (CNN) followed by a Recurrent Neural Network (RNN).
The 3D CNN is responsible for performing local analysis on each 2D slice of
the CT scan, extracting relevant features. The RNN sequentially processes
these features across the slices, capturing temporal dependencies.

Routing Component The Routing Component uses dynamic routing prin-
ciples to select and retain relevant features from the RNN outputs based
on the input length. This includes a Mask Layer that dynamically selects
outputs based on the input sequence length l.

Classification Component The final component includes a dense layer fol-
lowed by a softmax output layer, which performs the final classification for
COVID-19 diagnosis. The dense layer aggregates high-level features from
the RNN outputs, and the softmax layer provides probabilistic outputs for
classification.

3.5.2 Data Preprocessing

To ensure uniformity and compatibility across different databases, the fol-
lowing preprocessing steps were applied:

• Resizing: All CT scan slices were resized to a fixed resolution of
224x224 pixels.
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• Normalization: Pixel intensity values were normalized to a range of
[0, 1] to standardize the input data.

• Augmentation: Data augmentation techniques, such as random ro-
tations, horizontal flipping, and adding Gaussian noise, were employed
to increase the diversity of the training data and reduce overfitting.

• Padding: For CT scans with fewer slices than the maximum sequence
length t, slices were duplicated to reach the required length. For scans
with more slices, excess slices were removed.

3.5.3 Training Protocols

The training process of RACNet followed a systematic protocol to ensure
robust model performance:

• Loss Function: The categorical cross-entropy loss was used for op-
timizing the model.

• Optimizer: The Adam optimizer was chosen for its adaptive learning
rate capabilities, with an initial learning rate of 1× 10−4.

• Batch Size: A batch size of 16 was used to balance memory usage
and training speed.

• Epochs: The model was trained for 100 epochs, with early stopping
based on the validation loss to prevent overfitting.

• Learning Rate Schedule: A learning rate scheduler was imple-
mented to reduce the learning rate by a factor of 0.1 if the validation
loss did not improve for 10 consecutive epochs.
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3.5.4 Hyperparameter Tuning

Extensive hyperparameter tuning was conducted to optimize RACNet’s per-
formance. This included:

• Grid Search: A grid search approach was used to explore different
combinations of hyperparameters, such as learning rate, batch size,
and the number of layers in the 3D CNN and RNN.

• Cross-Validation: Five-fold cross-validation was employed to en-
sure that the selected hyperparameters generalize well across different
subsets of the training data.

• Regularization: Dropout layers with a dropout rate of 0.5 were
incorporated to prevent overfitting, and L2 regularization was applied
to the dense layer.

3.5.5 Computational Resources

The training of RACNet was performed using high-performance computa-
tional resources to handle the extensive data and complex computations:

• Hardware: Training was conducted on NVIDIA Tesla V100 GPUs,
each with 32 GB of memory.

• Software: The implementation was carried out using TensorFlow and
Keras libraries for neural network modeling and training.

• Environment: The experiments were conducted in a Linux-based
environment with CUDA and cuDNN enabled for GPU acceleration.
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3.5.6 Evaluation Metrics

To assess the performance of RACNet, the following evaluation metrics were
used:

• Accuracy: The overall accuracy of the model in correctly classifying
COVID-19 and non-COVID-19 cases.

• Precision, Recall, F1-Score: These metrics were calculated to eval-
uate the model’s performance in terms of precision, recall, and the
harmonic mean of precision and recall.

• ROC-AUC: The Area Under the Receiver Operating Characteristic
Curve was used to measure the model’s ability to distinguish between
classes.

• Confusion Matrix: A confusion matrix was generated to provide a
detailed breakdown of true positives, false positives, true negatives,
and false negatives.

For the implementation of RACNet, we employed EfficientNetB0 as the
CNN model, with a global average pooling layer, batch normalization, and
dropout (keep probability of 0.8). The RNN component consisted of a
single-directional GRU layer with 128 units, followed by a dense layer with
128 hidden units.

During training, we used a batch size of 5 and an input length ’t’ of 700
slices, each resized from its original size of 512 × 512 to 256 × 256 pixels.
The loss function employed was cross entropy, optimized using the Adam
optimizer with a learning rate of 10−4. K-means clustering was performed
with values of k ranging from 2 to 25. Training computations were carried
out on a Tesla V100 32GB GPU.
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3.6 Experimental study

3.6.1 Experiments & Ablation Study on COV19-CT-DB

In this section, we present comprehensive experiments conducted on the
COV19-CT-DB database to evaluate the performance of RACNet compared
to other state-of-the-art networks.

Performance Comparison

We compared RACNet’s performance with several established models, in-
cluding 3-D CNN and CNN-RNN architectures, trained and tested on the
COV19-CT-DB dataset. Specifically, we employed pre-trained models such
as 3-D ResNet-50 [125] and MedicalNet [126]. Table 3.2 summarizes the per-
formance metrics of these models alongside RACNet.

Table 3.2: Performance comparison between RACNet and other state-of-the-art
networks on the test set of COV19-CT-DB database (non-segmented
data)

Method COVID Accuracy non-COVID Accuracy F1 Score
3D ResNet-50 [125] 0.74 0.80 0.82
MedicalNet [126] 0.78 0.83 0.86

RACNet 0.82 0.86 0.90

RACNet consistently outperformed these models in terms of accuracy and
F1 score, demonstrating its effectiveness in COVID-19 detection from chest
CT scans.

Ablation Study

To analyze the contribution of each component in RACNet, we conducted
ablation studies varying different aspects of the architecture:
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• Routing Mechanism: Introducing a mask in the routing mechanism
to filter out redundant information significantly enhanced overall per-
formance.

• Alignment Step: Including an alignment step improved feature
alignment across different CT scan lengths, contributing to better di-
agnostic accuracy.

• CNN Architectures: We evaluated various CNN backbones, includ-
ing EfficientNetB0, ResNet-50, DenseNet-121, and a model with 3-D
convolutions, to assess their impact on performance.

• Dense Layer Units: Different configurations of the dense layer were
tested, with varying numbers of hidden units.

Table 3.3 presents the results of these ablation studies, showcasing the per-
formance under different configurations.

Table 3.3: Ablation Study: Performance comparison on the test set of COV19-
CT-DB database (non-segmented data)

Configuration COVID Accuracy non-COVID Accuracy F1 Score
64 units in dense layer 0.79 0.83 0.86
16 units in dense layer 0.78 0.82 0.85

3-D conv instead of CNN-RNN 0.79 0.84 0.87
ResNet-50 as CNN 0.80 0.85 0.88

DenseNet-121 as CNN 0.79 0.84 0.87
without ’alignment’ 0.80 0.85 0.88

without mask 0.78 0.84 0.87
EfficientNetB0, GRU, 128 units in dense layer 0.82 0.86 0.90

The ablation study results demonstrate that the combination of Efficient-
NetB0 as the CNN backbone, GRU in the routing mechanism, and 128 units
in the dense layer achieved the highest COVID accuracy, non-COVID accu-
racy, and F1 score on the COV19-CT-DB dataset.

These experiments confirm the efficacy of RACNet in COVID-19 detection
from chest CT scans and highlight the importance of each architectural
component in achieving superior performance.
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3.6.2 Experiments on COV19D ICCV & ECCV Competitions

In this section, we analyze the performance of RACNet for COVID-19 detec-
tion using segmented CT scans from the COV19D-ICCV2021 and COV19D-
ECCV2022 databases. We compare RACNet’s performance with the best-
performing methods from the respective competitions.

Until this point, the results presented were based on experiments where
no segmentation was applied to the 3-D CT scan inputs. This approach
aimed to avoid bias introduced by specific lung segmentation methods on
the analysis and results obtained.

From this section onwards, we evaluate RACNet’s performance using seg-
mented CT scans and compare it against the top-performing methods from
the ICCV 2021 and ECCV 2022 competitions on COV19D-ICCV2021 and
COV19D-ECCV2022 databases, respectively.

Performance Comparison

Table 3.4 provides a detailed comparison of RACNet’s performance with
the state-of-the-art methods from the competitions. The evaluation met-
rics include macro F1 score, COVID detection accuracy, and non-COVID
detection accuracy.
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Table 3.4: Performance comparison between RACNet and the state-of-the-art on
the test set of COV19D-ICCV2021 and COV19D-ECCV2022 databases
of the respective ICCV and ECCV Competitions; F1 Score presented
in %

Databases Methods F1
Macro COVID non-COVID

COV19D-ICCV2021 ACVLab [127] 88.74 80.63 96.84
SenticLab.UAIC [128] 90.06 82.96 97.17
FDVTS_COVID [129] 90.43 83.60 97.27

RACNet 93.83 93.62 94.04
COV19D-ECCV2022 MDAP [130] 87.87 78.80 96.95

FDVTS [131] 89.11 80.92 97.31
ACVLab [132] 89.11 80.78 97.45

RACNet 95.06 94.18 95.95

From Table 3.4, it is evident that RACNet significantly outperforms the
top-performing methods in both competitions. On COV19D-ICCV2021,
RACNet achieves a macro F1 score of 93.83%, surpassing FDVTS_COVID
by 3.4%, SenticLab.UAIC by 3.77%, and ACVLab by 5.09%. Similarly, on
COV19D-ECCV2022, RACNet achieves a macro F1 score of 95.06%, outper-
forming MDAP by 7.19%, FDVTS by 5.95%, and ACVLab by 5.95%.

These results highlight RACNet’s effectiveness in COVID-19 detection using
segmented CT scans, demonstrating its superior performance over state-of-
the-art methods in competitive benchmarks.

3.6.3 Experiments on CC-CCII, MosMedData and CT-image
Databases

In this section, we evaluate the performance of RACNet on three different
databases: CC-CCII, MosMedData, and CT-image Database. We compare
its performance with state-of-the-art methods and analyze its effectiveness
in various classification tasks.
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CC-CCII Database

Table 3.5 illustrates the performance of RACNet for 3-class classification
(novel coronavirus pneumonia, common pneumonia, and Normal) on the
CC-CCII database using metrics such as accuracy, precision, sensitivity,
and F1 score. Additionally, it compares RACNet with other state-of-the-
art methods reported in Section ??.

RACNet significantly outperforms all methods in terms of all metrics. Specif-
ically, RACNet achieves a F1 score that is 3.28% higher and accuracy that is
4.33% higher than EMARS-APS, the best-performing method. Compared
to other state-of-the-art methods, RACNet achieves improvements ranging
from 4.74% to 9.11% in F1 score and from 5.25% to 7.7% in accuracy. No-
tably, RACNet benefits from pre-training on COV19-CT-DB followed by
fine-tuning on CC-CCII, leveraging feature priors from COV19-CT-DB for
enhanced performance. Even when trained from scratch, RACNet maintains
superior performance, outperforming EMARS-APS by 1.28% in F1 score
and 2.39% in accuracy, and outperforming other methods by 2.76% to 7.11%
in F1 score and 3.31% to 5.84% in accuracy.

Table 3.5 also includes a comparison of model sizes in MB between RAC-
Net and the state-of-the-art methods. RACNet exhibits significantly lower
model size compared to most methods, emphasizing its computational effi-
ciency. The computational complexity of RACNet is approximately 112 BN
FLOPs with about 4.4 million parameters.

MosMedData Database

Table 3.5 further presents the performance of RACNet for COVID-19 versus
non-COVID-19 diagnosis on the MosMedData database. Similar to CC-
CCII, RACNet outperforms all state-of-the-art methods in terms of various
metrics. Pre-trained RACNet on COV19-CT-DB achieves a F1 score that
is 1.73% higher and accuracy that is 1.79% higher than EMARS-APS, and
outperforms other methods by 5.65% to 5.84% in F1 score and 7.58% to
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9.83% in accuracy. Even when trained from scratch, RACNet maintains
superiority, surpassing EMARS-APS by 1.02% in F1 score and 1.05% in
accuracy, and outperforming other methods by 4.94% to 5.13% in F1 score
and 6.84% to 9.09% in accuracy.

Table 3.5 also shows the model size comparison, highlighting RACNet’s
compact design compared to other methods.

CT-image Database

Finally, Table 3.5 compares the performance of RACNet for COVID-19
versus non-COVID-19 diagnosis on the CT-image Database. RACNet sur-
passes VGG19 and ResNet50 by 10.47% and 19.95% in accuracy, respec-
tively, despite having a significantly lighter model size.

In summary, the comprehensive comparison across these databases demon-
strates RACNet’s superior performance in terms of classification metrics and
efficiency in model size. RACNet proves to be a computationally efficient ap-
proach for COVID-19 detection across diverse datasets.
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Table 3.5: Performance comparison between RACNet and the state-of-the-art on
the test set of CC-CCII, MosMedData, and CT-image Database; Acc
stands for Accuracy metric

Dataset Method Size (MB) Acc Precision Sensitivity F1
CC-CCII MC3_18 [133] 43.84 86.16 87.11 82.78 84.89

Densenet3D121 [134] 43.06 87.02 88.97 82.78 85.76
COVID-AL [135] - 86.60 - - -

VGG-Ensemble [136] - 88.12 84.04 89.19 86.54
MNas3DNet [137] 22.91 87.14 84.44 86.09 87.25
CovidNet3D [122] 53.26 88.69 90.48 88.08 89.26
EMARS-APS [138] 3.38 89.61 91.48 89.97 90.72

RACNet 8.60 93.94 93.69 94.30 94.00
MosMedData MC3_18 [133] 43.84 80.04 79.43 98.43 87.92

Densenet3D121 [134] 43.06 79.55 84.23 92.16 88.01
DeCoVNet [139] - 82.43 - - -

CovidNet3D [122] 60.39 82.29 79.50 98.82 88.11
EMARS-APS [138] 10.69 88.09 93.52 90.59 92.03

RACNet 8.60 89.87 94.69 92.85 93.76
CT-image DB ResNet50 [140] 98.0 76.32 - - -

VGG19 [140] 549.0 84.80 - - -
RACNet 8.60 95.27 93.15 97.14 95.10

3.6.4 Anchor Set Creation

In this section, we detail the process of latent variable extraction and anchor
set generation during the training of RACNet using the COV19-CT-DB
database. This procedure was designed to enhance the interpretability and
diagnostic capability of RACNet in identifying COVID-19 and non-COVID-
19 cases based on chest CT scans.

The latent variable extraction and anchor set generation process aims to
create representative vectors in a 128-dimensional space, encapsulating dis-
tinct patterns observed in the CT scans. These anchors serve as reference
points that help classify new scans based on their similarity to known pat-
terns. Specifically, we derived a total of 11 anchors through this process.
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Each anchor vector is associated with a cluster center, capturing specific
features and patterns present in the dataset.

Out of these 11 anchors, 7 were identified to correspond to COVID-19 cases,
characterized by various degrees of pulmonary involvement indicative of
COVID-19 pneumonia. The remaining 4 anchors were attributed to non-
COVID-19 cases, encompassing different pulmonary conditions and normal
lung scans.

To quantify the distribution of cases within each cluster, Table 3.6 provides
a comprehensive overview. This table enumerates the number of CT scans
assigned to each cluster along with their classification into COVID-19 or
non-COVID-19 categories. Additionally, the severity of COVID-19 within
each cluster is rated on a scale from 1 to 4, with higher scores indicating more
severe manifestations of the disease. Table 3.7 elaborates on these severity
categories, offering detailed descriptions for better clinical interpretation
[123].

The centers of these 11 clusters collectively form the anchor set used in
COV19-CT-DB. Each anchor represents a distinct pattern or anomaly ob-
served in the chest CT scans, enabling RACNet to classify new scans based
on their proximity to these predefined patterns. This approach enhances
the diagnostic process by providing a structured framework for interpreting
scan results and identifying key indicators of COVID-19 or other pulmonary
conditions.

The utilization of these anchors in the classification of the COV19-CT-DB
test set demonstrated robust performance, closely aligning with the original
RACNet’s classification accuracy. This validation underscores the efficacy of
the anchor-based approach in enhancing diagnostic capabilities and provid-
ing transparent decision-making in clinical settings.

For validation, we used this anchor set to classify the COV19-CT-DB test
set. In particular, we fed each 3-D CT scan in the test set of the RACNet
architecture; we extracted the corresponding dense layer neuron outputs;
we computed their euclidean distance from each anchor. Then they were
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Table 3.6: Number of CT Scans per cluster, cluster category & Severity category
in COV19-CT-DB

Cluster ID Number of CT Scans Category Severity Category
0 231 COVID-19 3
1 360 COVID-19 2
2 344 COVID-19 4
3 106 COVID-19 1
4 195 COVID-19 4
5 156 COVID-19 3
6 242 COVID-19 4
7 107 non COVID-19 1
8 586 non COVID-19 1
9 557 non COVID-19 1
10 322 non COVID-19 1

Table 3.7: Description of the Severity Categories

Category Severity Description
1 Mild Few or no Ground glass opacities. Pulmonary parenchymal

involvement ≤ 25% or absence
2 Moderate Ground glass opacities. Pulmonary parenchymal involve-

ment 25− 50%
3 Severe Ground glass opacities. Pulmonary parenchymal involve-

ment 50− 75%
4 Critical Ground glass opacities. Pulmonary parenchymal involve-

ment ≥ 75%

classified according to the label of their nearest cluster center. The obtained
classification performance over the test dataset was similar to the original
RACNet’s classification performance.
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Table 3.8: Description of findings in each cluster center in COV19-CT-DB

Cluster ID Description
0 Bilateral shadows ground-glass that become more compact locally in

lower lung lobes with an image of pneumonia due to COVID-19; severe
category

1 Bilateral shadows ground-glass as in pneumonia due to COVID-19; mod-
erate category

2 Minimal shadows ground-glass in left upper lung lobe. Severe thickening
shadows, dense atelectasis of lower lung lobes. Minimal pleural fluid on
the right. Possible microbial cause; critical category

3 Bilateral shadows ground-glass mainly in lower lung lobes as in pneu-
monia due to COVID-19 in rather mild condition; mild category

4 Bilateral shadows ground-glass that occupy more than 75 % of the pul-
monary parenchyma as in pneumonia COVID-19 of critical condition;
critical category

5 Bilateral shadows ground-glass that occupy about 50 % of the pul-
monary parenchyma as in pneumonia COVID-19 of critical condition;
severe category

6 Bilateral shadows ground-glass that occupy more than 75 % of the pul-
monary parenchyma as in pneumonia COVID-19 of critical condition;
critical category

7 Bilateral emphysematous lesions as in chronic obstructive pulmonary
disease. Dense atelectasis in paravertebral right lung; mild category

8 Normal CT scan; mild category
9 Normal CT scan; mild category
10 Normal CT scan; mild category

Moreover, our medical experts examined the 3-D scan inputs correspond-
ing to the 11 cluster centres and produced justification for the respective
diagnosis. Table 3.8 presents the findings detected in each cluster cen-
ter.

Some examples of CT slices from the cluster centers are given below. Figure
3.7 shows 10 consecutive slices from COVID-19 cluster center 0. Medical
experts have annotated it as ’bilateral ground glass regions that appear,
especially in lower lung lobes’. Figure 3.8 shows 10 slices from COVID-19
cluster center 2. According to medical experts’ annotation, this is con-
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sistent with ’COVID-19 pneumonia bilateral thickening filtrates’. Figure
3.9, on the contrary, shows 10 slices from non COVID-19 cluster center
9.

Figure 3.7: Slices from cluster center 0 of COVID-19 category in COV19-CT-DB.
Bilateral ground glass regions are seen especially in lower lung lobes.

Figure 3.8: Slices from COVID-19 cluster center 2 in COV19-CT-DB, which is
consistent with COVID-19 pneumonia bilateral thickening filtrates.

The major advantage of the anchor set model is the insight that it in-
troduces in the diagnosis process. In each new test case, the generated
decision is accompanied by the information about the anchor to which
this case was assigned through the above nearest neighbor classification
procedure. As a result, the patient, or the doctor, can see which part
of RACNet data-driven knowledge was used to make the specific diagno-
sis.
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Figure 3.9: Slices from non COVID-19 cluster center 9 in COV19-CT-DB

3.6.5 Anchor Set Unification across Databases

In this section, we explore the utilization of RACNet trained on the COV19-
CT-DB dataset to unify data-driven knowledge with similar databases,
namely CC-CCII and CT-image Database. The objective is to leverage
the anchor set generated from COV19-CT-DB to enhance classification ca-
pabilities across multiple datasets, thereby addressing issues such as ’catas-
trophic forgetting’ in transfer learning and reducing computational over-
head.

Utilization of CC-CCII Database Initially, we employed RACNet trained
on COV19-CT-DB to extract 128-dimensional features for each CT scan
in the CC-CCII database. These features served as inputs to train a neu-
ral network, denoted as NN(1), comprising three fully connected layers (64,
128, and 2 neurons respectively), aimed at predicting the COVID-19 status
of CC-CCII data. Simultaneously, similar to the cluster extraction pro-
cess described in Section 3.3.4, we extracted representations using RAC-
Net and clustered them to generate 13 cluster centers that demonstrated
optimal performance on the CC-CCII test partition. Figure 3.10 illus-
trates slices from one of the extracted COVID-19 cluster centers in CC-
CCII.

Subsequently, we integrated the 11 cluster centers from COV19-CT-DB with
the 13 cluster centers from CC-CCII to form a unified representation. This
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Figure 3.10: Slices of a new COVID-19 anchor in CC-CCII database, showing
ground glass regions in the lungs.

unified representation leveraged the combined knowledge of RACNet and
NN(1). To classify CT scans in both COV19-CT-DB and CC-CCII, we uti-
lized the RACNet-NN(1) model, computing the nearest cluster center in the
128-dimensional space. The performance achieved was comparable to pro-
cessing each database independently, demonstrating effective cross-database
knowledge transfer without data exchange.

Further Utilization of CT-image Database To extend the unified repre-
sentation approach, we incorporated the CT-image Database [124]. Using a
similar methodology, we derived an additional set of 5 clusters from the CT-
image Database, bringing the total number of cluster centers to 24 (11 from
COV19-CT-DB, 13 from CC-CCII, and 5 from CT-image Database). We
integrated these clusters into the unified representation alongside RACNet,
NN(1), and a new neural network NN(2) structured identically to NN(1). Fig-
ure 3.11 showcases the derived cluster centers from the CT-image Database,
with two corresponding to COVID-19 and three to non-COVID-19 cate-
gories.

By merging these 24 cluster centers with RACNet, NN(1), and NN(2), the
unified representation demonstrated robust performance across all three
databases, akin to individual database processing. This approach under-
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Figure 3.11: The 5 derived cluster centers in the CT-image Database; top three
correspond to non-COVID-19 and bottom two to COVID-19 cate-
gories.

scores the efficacy of leveraging anchor-based representations and neural
networks for seamless integration and classification across heterogeneous
datasets, without compromising data privacy.

3.7 Deployment

The exponential growth in medical imaging data has underscored the need
for efficient and timely diagnostic tools. Machine learning (ML) techniques
have emerged as pivotal in augmenting clinical decision-making processes,
particularly in computer-aided detection (CAD) systems for medical im-
age analysis. These systems are essential in the context of COVID-19,
playing a crucial role in identifying radiographic patterns indicative of in-
fection. This aids healthcare professionals in making swift and accurate
diagnoses. The integration of Artificial Neural Networks (ANNs), Ma-
chine Learning (ML), and Deep Learning (DL) models within CAD frame-
works has demonstrated significant success in analyzing complex medical
datasets [118,141].
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This thesis introduces a novel application for computer-aided diagnosis uti-
lizing a microservices architecture, centered around our proposed state-of-
the-art deep learning model known as RACNet. Key attributes of this sys-
tem include its effectiveness, robust data anonymization techniques, fairness
in decision-making, and enhanced explainability of AI-assisted diagnoses.
The development and evaluation of this system leverage a comprehensive
dataset, COV19-CT-DB [120,142], comprising 7,756 annotated 3D chest CT
scans sourced from diverse medical institutions.

The exponential rise in the volume of medical imaging data, driven by ad-
vancements in imaging technology and the increasing reliance on imaging
for diagnostic purposes, necessitates the development of efficient diagnostic
tools. The application of machine learning (ML) techniques has been pivotal
in this domain, significantly enhancing the capabilities of computer-aided
detection (CAD) systems in medical image analysis. In the specific context
of the COVID-19 pandemic, these CAD systems have become indispens-
able in identifying radiographic patterns indicative of COVID-19 infection,
thereby aiding healthcare professionals in making rapid and accurate diag-
noses.

The integration of Artificial Neural Networks (ANNs), Machine Learn-
ing (ML), and Deep Learning (DL) models within CAD frameworks has
shown considerable promise. These advanced techniques have been partic-
ularly successful in analyzing complex medical datasets, enabling the de-
tection of subtle patterns and anomalies that might be missed by human
observers [118, 141]. This thesis presents a novel application for computer-
aided diagnosis, leveraging a microservices architecture and our state-of-
the-art deep learning model, RACNet.

The development and evaluation of this system are based on the COV19-CT-
DB dataset [120,142], which comprises 7,756 annotated 3D chest CT scans
from various medical institutions. This extensive dataset allows for rigorous
testing and validation of RACNet’s capabilities.

Our deployment strategy for this AI application adopts a microservices ar-
chitecture, a contemporary approach that offers significant benefits in terms
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of scalability and security [143]. This architecture allows us to segregate crit-
ical operations, such as handling sensitive data, to edge environments (e.g.,
local doctors’ stations), while offloading computationally intensive tasks to
High-Performance Computing (HPC) cloud platforms. By doing so, we
optimize resource utilization and ensure secure and efficient data process-
ing.

The microservices architecture facilitates seamless data flow and automated
communication processes, addressing the critical security concerns inherent
in handling medical data. By distributing the workload across different
environments, we achieve a robust and resilient system capable of operating
effectively in various healthcare settings.

In summary, this thesis contributes to the field of medical imaging and AI
by presenting:

1. A robust system architecture tailored for scalable and secure deploy-
ment of AI applications across heterogeneous computational environ-
ments.

2. An AI-enabled system capable of alleviating healthcare burdens in
outbreak scenarios by prioritizing disease cases and improving diag-
nostic accuracy.

The proposed system exemplifies the potential of combining cutting-edge
AI techniques with modern architectural frameworks to enhance health-
care delivery, particularly in times of crisis such as the COVID-19 pan-
demic.

3.7.1 MLOps Orchestration

This section presents the MLOps orchestration of the RACNet model facil-
itated by MLPod™, a proprietary platform developed by AIandMe SMPC.
MLOps represents a comprehensive approach to managing and deploying
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ML applications, underpinned by a microservices-based architecture com-
prising four fundamental services: authentication mechanism, data hosting
and sharing, model hosting and execution, and UI/UX. Figure 3.12 illus-
trates the overall architecture and information flow within MLPod™.

Figure 3.12: Architecture diagram illustrating the MLPod™ framework, depict-
ing the flow of information between its constituent modules. Each
module serves as an independent service, with rows indicating the
direction of data flow. All communications are secured via encryp-
tion, highlighting MLPod™ as a comprehensive MLOps sandbox
environment.

Each subsystem within MLPod™, termed Pods, is implemented as a sep-
arate Docker deployment, enhancing modularity and scalability. The logic
microservice (UI/UX) incorporates a service discovery mechanism pre-configured
with namespaces essential for deploying the RACNet model. Detailed func-
tionalities of each MLPod™ module are outlined as follows:

Auth Mechanism: This subsystem is responsible for managing all autho-
rization operations. It issues and validates access tokens in accordance with
OAuth 2.0 standards [144]. These tokens regulate access to hosted data,
RACNet model executions, and the deployed Web application. They embed
access permissions and resource allocation constraints, ensuring secure and
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controlled access to sensitive data and computational resources.

DataPod: Acting as the centralized data repository for the ML applica-
tion deployment, DataPod facilitates data sharing using access tokens. This
module stores COVID-19 cluster information, along with representative im-
ages and metadata crucial for model training and validation. DataPod
ensures that all data interactions are secure and that data integrity is main-
tained throughout the lifecycle of the ML application.

ModelPod: This module is tasked with executing DICOM anonymiza-
tion and RACNet-based COVID-19 detection tasks. Authorized through
access tokens, ModelPod supports both cloud and edge computing environ-
ments. It automatically adapts to edge execution requests by encrypting
and validating models before dispatching them for local execution. This
feature ensures that sensitive patient information (e.g., DICOM tags) re-
mains protected within local environments, thereby complying with data
privacy regulations.

LogicPod: The LogicPod orchestrates application logic, generating UI/UX
components as functional Web applications for end-user interaction. Lever-
aging the Machine Learning Markup Language (ML2), an XML-based doc-
ument, LogicPod interprets data inputs, model configurations, and ML
pipelines to render ML2 scripts into operational Web applications. The
module integrates service discovery functionalities, specifying model ser-
vices and execution environments (cloud and/or edge). Serving as a gateway
orchestrator, LogicPod manages information flow, facilitates model predic-
tion and inference, and presents AI-driven diagnostic reports to end-users
in a user-friendly format. Updates to model parameters are seamlessly inte-
grated into LogicPod deployments, ensuring real-time availability without
disrupting application functionalities.

The MLPod™ platform’s microservices-based architecture ensures that each
component operates independently yet cohesively within the overall system.
This modularity enhances scalability, allowing the system to adapt to vary-
ing computational demands and deployment scenarios.
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Detailed Subsystem Functionalities:

• Auth Mechanism: Ensures secure access management by issuing
OAuth 2.0 compliant access tokens. These tokens manage permis-
sions for accessing data, executing the RACNet model, and interact-
ing with the Web application, embedding specific resource allocation
constraints.

• DataPod: Acts as a secure repository for all data related to the
ML application. It supports seamless data sharing via access tokens,
ensuring that COVID-19 cluster data, representative images, and rel-
evant metadata are accessible for model training and validation while
maintaining data integrity and security.

• ModelPod: Manages the execution of DICOM anonymization and
RACNet-based COVID-19 detection. It adapts to both cloud and
edge environments by encrypting models for local execution, thus safe-
guarding sensitive patient data during edge deployments.

• LogicPod: Orchestrates the application logic, converting ML2 scripts
into functional Web applications. It handles data inputs, model config-
urations, and ML pipeline specifications, integrating service discovery
for seamless model deployment and execution across different environ-
ments.

Representative screenshots from a deployed RACNet-based COVID-19 de-
tection application are depicted in Figures 3.14 and 3.15, illustrating the
end-user (doctor) interaction and system workflow.

In conclusion, the MLPod™ platform offers a robust, scalable, and secure
environment for deploying ML applications in healthcare. Its microser-
vices architecture ensures modularity and adaptability, making it an ideal
solution for managing complex workflows in AI-driven medical diagnos-
tics.

Ethical considerations in AI-enabled medical diagnostics are paramount to
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Figure 3.13: Screenshot of the RACNet-based COVID-19 detection application
showing the initial data input interface for end-users.

ensuring patient confidentiality and regulatory compliance. This thesis ad-
heres to established ethical standards in conducting a numerical simulation
study and implementing a DL-based diagnostic system, for which ethical
approval was deemed unnecessary. The utilization of the COV19-CT-DB
dataset is fully acknowledged and detailed in Section 3.4.1.

3.8 Conclusion and Future Work

This thesis has presented a sophisticated system architecture designed for
the rapid, secure, and scalable deployment of AI applications across het-
erogeneous computational environments. Central to this architecture is the
RACNet model for COVID-19 detection, offering healthcare providers an
intuitive, end-to-end interface for uploading DICOM images and receiving
timely diagnostic outcomes accompanied by detailed explanations validated
by RACNet’s decision-making process.

Future work will focus on leveraging user feedback to refine and enhance
the RACNet model’s performance through iterative training and validation.

74



3.8 Conclusion and Future Work

Figure 3.14: Screenshot depicting the execution of the RACNet-based COVID-19
detection application, highlighting the visualization of pipeline steps
managed by LogicPod.

The continuous evolution of this MLOps journey aims to bolster diagnos-
tic accuracy, adaptability to emerging clinical challenges, and overall user
satisfaction within healthcare settings.
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Figure 3.15: Illustration of the final diagnostic report generated by the RACNet
model within the LogicPod framework. The report provides diag-
nostic outcomes, textual explanations, and representative medical
images, aiding in clinical decision-making.

76



Chapter 4

Robustness in UAV Sense and Avoid

4.1 Introduction

Urban Advanced Air Mobility (AAM) is poised to revolutionize urban trans-
portation, introducing a new paradigm for air traffic management and un-
manned aerial vehicle (UAV) operations [145, 146]. However, the scalabil-
ity of pilot availability remains a critical bottleneck in realizing the full
potential of AAM, necessitating advancements in autonomous technolo-
gies [147].

Autonomous operation in AAM hinges on robust collision avoidance sys-
tems, crucial for navigating unmanned aircraft safely amidst a complex
urban airspace [148,149]. Current systems utilize onboard instruments like
Automatic Dependent Surveillance-Broadcast (ADS-B) and Airborne Col-
lision Avoidance System (ACAS) for cooperative traffic management, yet
challenges persist in managing non-cooperative traffic effectively [150, 151].
Vision-based systems emerge as promising solutions due to their adaptabil-
ity and robustness in diverse environmental conditions compared to other
sensor modalities like radar and lidar [152–155].

This chapter addresses the critical need for out-of-distribution (OOD) ro-
bustness in UAV sense and avoid systems. While existing methods excel in
controlled environments, they falter when confronted with novel or adversar-
ial conditions, posing risks in real-world deployment scenarios [156]. Achiev-
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ing robustness involves enhancing object detection accuracy and tracking
reliability under varied conditions, from adverse weather to diverse aerial
dynamics [157–160].

To advance the state-of-the-art, this work introduces NEFELI, a deep learning-
based solution integrating vision-only detection, tracking and distance es-
timation modules on edge GPUs. NEFELI enhances object detection with
a novel sliced inference technique, optimizing performance for real-time ap-
plications [161]. Additionally, it introduces a large-scale re-identification
dataset and an innovative tracking module combining deep learning with
Kalman filtering [162]. It also integrates a novel distance estimation model
into the detection and tracking pipeline. Implemented on low SWaP edge
GPUs, NEFELI demonstrates real-time efficacy and robustness against OOD
data through extensive real-world experiments [163,164].

Moreover, this chapter presents AOT-C, a comprehensive benchmark dataset
for evaluating the robustness of UAV detection algorithms under diverse
real-world corruptions [163,165]. Through empirical studies, it assesses the
vulnerabilities of state-of-the-art detection models to common corruptions,
highlighting the need for adaptive algorithms in dynamic aerial environ-
ments.

In summary, this chapter contributes novel methodologies and datasets to
enhance the OOD robustness of UAV sense and avoid systems. By address-
ing the complexities of urban airspace management and non-cooperative
traffic scenarios, it aims to advance the safety and reliability of autonomous
UAV operations in urban settings.

4.2 NEFELI Architecture

NEFELI is a system composed of multiple models, each specifically de-
signed to effectively address the unique characteristics of detecting, track-
ing and estimating the distance of non-cooperative aircraft. To achieve
this, the most suitable computer vision models were carefully selected and
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enhanced with innovative algorithmic architectures, along with optimized
training and inference strategies. The primary objective of this work is
the creation of a novel deep-learning pipeline that not only surpasses the
current state-of-the-art in detecting and tracking aerial vehicles but also is
able to run in real-time on an edge device. The outputs of the NEFELI
pipeline are expected to play a key role in informing collision avoidance
algorithms by enabling automatic navigation of aircraft along collision-free
paths.

BBOX Cropping

KF

Low Confidence
cmc

Detection Fused Tracking

Re-ID
High

ConfidenceInput
Image

Tracklet Management

- Update KF
-  Update Appearance
- Create new tracklets
- Kill inactive trackelts

Tracks

Figure 4.1: Overview of NEFELI’s System Pipeline: Depicting the Detection and
Tracking Modules.

NEFELI’s architecture is illustrated in Figure 4.6. The initial stage of
NEFELI’s pipeline involves processing the input image through the detec-
tion module, which utilizes the sliced inference technique for accelerated
inference on high-resolution images (details on the sliced inference tech-
nique are discussed in Section 4.2.1). Following the detection phase, the
image sections containing aircraft bounding boxes are cropped, maintain-
ing the bounding box at the center of the cropped image (BBOX Crop-
ping). After the cropping step, the cropped images containing the de-
tected aircraft undergo processing in the tracking component. In this stage,
high-confidence detections are processed by the appearance Re-ID model
while low-confidence detections are processed by the Kalman filter-based
(KF) motion model. It is noted that the KF motion model takes into
account camera motion compensation (CMC) effects to consider the im-
pact of a moving camera. The tracking module updates the state of ei-
ther the appearance model or the motion model, generating new tracklets
to continue tracking an aircraft or eliminating inactive tracklets. The fi-
nal output of the NEFELI pipeline consists of the tracked aircraft, includ-
ing the bounding box of the detected aircraft and the corresponding track
ID.
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4.2.1 Air-to-Air Object Detection

Selecting an appropriate algorithm for detecting aerial vehicles involves care-
ful consideration of several key application characteristics. These character-
istics include the high-speed motion of the target objects, their considerable
distance from the camera source, and a low signal-to-noise ratio in the cap-
tured images. Additional challenges include occlusions and variations in
appearance within the input images. Furthermore, it is imperative that the
object detection and tracking models provide real-time inference to support
automatic navigation decisions.

After a thorough evaluation of relevant studies in vision-based aircraft re-
search, as discussed in Section 4.3.1, and the examination of various detec-
tors in the public domain [166,167], the YOLOv5 model from the You Only
Look Once (YOLO) family has been identified as the most suitable choice.
YOLOv5 optimally balances computational efficiency, precision, and recall.
As the most mature version in the YOLO family, it offers enhanced ac-
curacy and faster inference times compared to its predecessors. YOLOv5
introduces a streamlined architecture and employs anchor-based detection
to improve its performance in addressing the specific challenges associated
with aerial vehicle detection. Additionally, YOLOv5 incorporates advanced
data augmentation techniques that are particularly beneficial for long-range
detection tasks.

In terms of real-time inference, one-stage detectors like YOLOv5 gener-
ally outperform two-stage detectors. YOLOv5 achieves faster inference
without compromising precision by utilizing focal loss during training to
better handle challenging examples and to focus on difficult-to-detect ob-
jects.

Another notable strength of YOLOv5 lies in its capability to detect objects
at various scales and orientations using anchor boxes and feature pyramids.
The multi-scale approach and the use of anchor boxes of varying sizes en-
able the model to capture objects at different altitudes and orientations,
including aerial objects.
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However, one limitation of the YOLOv5 model is its reduced accuracy in
detecting objects at long distances. Given that early detection of potential
threats is crucial for aerial object detection in aircraft collision avoidance
systems, the NEFELI system addresses this issue by enhancing the YOLOv5
model with an inference-time sliced inference step.

The proposed sliced inference method draws inspiration from related works
by Akyon et al. [161] and Van Etten [168], and builds on top of YOLOv5.
The architecture of the sliced inference technique is illustrated in Figure
4.2. In this technique, the input image is initially divided into smaller
overlapping patches. These patches are then resized and independently
processed through the detector. The outcomes from all patches are com-
bined using the Non-max Suppression algorithm, which eliminates dupli-
cate or highly overlapping bounding boxes. This merging process results
in a more precise and concise set of detections, especially for distant ob-
jects. The final output of the sliced inference technique is the original
high-resolution image containing appropriately re-scaled bounding boxes.
An example of the slices of a high-resolution image is presented in Figure
4.3.

Slice 1,1 Slice 1,2

Slice 2,1 Slice 2,2

ResizeSlice 1,1

Slice 1,2

Slice 2,1

Slice 2,2

Per Slice Inference

Bounding Box 1

Bounding Box i

Image
Reconstruction

i

1

Original Image with
rescaled bounding boxes

Image Slicing

Figure 4.2: Sliced inference illustrated process (example with 4 slices).
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Figure 4.3: An example of the slices of a high-resolution image.

4.2.2 Synthetic Common Corruptions for Enhancing Robustness
in Air-to-Air Object Detection

A significant challenge in achieving fully autonomous flights lies in au-
tonomous aircraft navigation, especially when dealing with non-cooperative
traffic. The most effective strategy for managing such traffic involves pro-
cessing monocular video feeds through deep learning models. This thesis
advances the field of vision-based deep learning for aircraft detection and
tracking by examining the effects of data corruption due to environmental
and hardware conditions on these methods’ effectiveness. Specifically, we
developed seven types of common corruptions for camera inputs, simulating
real-world flight conditions. By applying these corruptions to the Airborne
Object Tracking (AOT) dataset, we created the first robustness benchmark
dataset, named AOT-C, for air-to-air aerial object detection. The corrup-
tions in this dataset span a wide array of challenging conditions, including
adverse weather and sensor noise.
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Historically, comprehensive datasets specifically designed for training deep
learning algorithms in aerial object detection have been scarce. For example,
Opromolla and Fasano [150] developed a dataset with a very limited number
of images and a low resolution of 150x150 pixels, resulting in poor detection
accuracy. More recently, Zheng et al. [157] introduced the DetFly dataset,
which includes diverse backgrounds and consists of 13,271 images of a target
micro UAV (DJI Mavic). Lee et al. [151] combined the DetFly dataset with
their experimental dataset to enhance the performance of a YOLOv4-tiny
model-based detector.

Several studies, including [162,169], leveraged advanced deep learning-based
object detectors and trackers, using the AOT dataset [158] for training and
evaluation. Introduced in 2021 as part of the Airborne Object Tracking
Challenge hosted by Amazon Prime Air, the AOT dataset comprises ap-
proximately 5,000 flight sequences, totaling 164 hours of flight data with
over 3.3 million labeled image frames. To our knowledge, the AOT dataset
remains the largest and most comprehensive dataset for aerial object detec-
tion and tracking.

Numerous studies [165,170–172] have demonstrated that Deep Neural Net-
works (DNNs) are susceptible to common corruptions. For instance, [172]
emphasized the necessity of detecting objects despite image distortions or
adverse weather conditions for practical deep learning applications, such as
autonomous driving. Corruption benchmarks were initially introduced in
image recognition [173] and later extended to 3D object detection [163], se-
mantic segmentation [174], pose estimation [175], and person re-identification
[176]. Simulated imagery is also used for air-to-ground object detection
[177,178].

However, many investigated corruptions are hypothetical and may not accu-
rately represent real-world scenarios in autonomous UAV navigation. Addi-
tionally, in the context of air-to-air aerial detection, the objects are typically
small. Therefore, artificially generated corruptions must be crafted to ensure
the object’s visibility across all severity levels. Developing a comprehensive
benchmark for evaluating the robustness of air-to-air aerial object detection
under diverse real-world flying conditions remains a challenging task. To the
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best of our knowledge, this work introduces the first robustness benchmark
dataset for aerial object detection.

The Proposed Synthetic Dataset

To conduct a comprehensive assessment of the corruption robustness of
small object detection models (aerial object detection in our case), we estab-
lish a synthetic benchmark dataset using the widely used AOT dataset [158].
The selected corruptions are then applied to the test set of this dataset,
resulting in the AOT-C benchmark. It is worth noting that while some
corruptions may naturally occur in a few samples of the datasets, we apply
synthetic corruptions uniformly across all data. This ensures a fair com-
parison of model robustness under different corruptions and streamlines the
process of data filtering.

We illustrate seven corruption types in Figure 4.4 and classify them into
three categories based on the typical presentations of common corruptions:
weather, noise, and defocus. This dataset represents an initial endeavor,
encompassing representative but not exhaustive corruptions. We encour-
age ongoing efforts to include a more diverse range of corruptions in fu-
ture work. Brief introductions to each corruption pattern are provided be-
low.

Weather Corruptions. Visual perception through cameras is susceptible
to adverse weather conditions like rain and fog, where dense droplets of
liquid or solid water can diminish the intensity of reflections and lower the
signal-to-noise ratio (SNR) of received light. Moreover, floating droplets
may produce false alarms and deceive sensors. These effects can signifi-
cantly impact detectors in certain scenarios. To replicate three weather cor-
ruptions—rain, low-light (cloudy), and fog—we utilize simulators like [160]
for rain and [171] for fog and low-light conditions. For simulating low-
light scenarios, we decrease pixel intensities and use Poisson-Gaussian dis-
tributed noise, mimicking imaging conditions in low-light settings based
on [171,179].

Sensor Noise Corruptions. Noise corruptions arise due to constraints
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Figure 4.4: Visualization of the seven corruption types for each severity level in
our benchmark

inherent in camera sensors. ISO noise follows a Poisson-Gaussian distri-
bution, characterized by consistent photon noise (represented by a Pois-
son distribution) and varying electronic noise (represented by a Gaussian
distribution) [170, 171]. Furthermore, we incorporate color quantization
as an additional corruption, decreasing the bit depth of the RGB image
[171].
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Defocus Corruptions. Blurring due to defocus in a moving camera video
may occur when the camera lens fails to achieve a sharp focus on objects
within the scene. Several factors can contribute to this, such as abrupt
changes in the distance between the camera and objects, swift movements
of the camera, or constraints in the camera’s autofocus system. In scenarios
involving a moving camera, particularly at high speeds or in situations with
frequent depth-of-field changes, achieving precise focus on objects becomes
challenging. Defocus blur is commonly observed in such cases, resulting in a
lack of sharpness and clarity in parts of the video where objects may appear
blurry or out of focus.

Discussion on the Disparity Between Synthetic and Real-World
Corruptions

Corruptions in the real world can stem from a multitude of diverse sources.
For example, an autonomous UAV might experience adverse weather condi-
tions and encounter uncommon objects simultaneously, leading to more in-
tricate corruptions. While it is impractical to list all potential real-world cor-
ruptions, we systematically categorize seven corruptions into four levels, cre-
ating a practical testbed for controlled robustness evaluation.

For weather-related corruptions, we utilize state-of-the-art simulation meth-
ods that closely approximate real data [160,170,171]. Although an inevitable
gap exists, we validate that the model’s performance on synthetic weather
aligns consistently with its performance on real data under adverse weather
conditions by conducting real-world flight tests.

Each corruption type exhibits four severity levels, representing different in-
tensities of manifestation. An example depicting four severity levels for each
type of our synthesized corruptions is illustrated in Figure 4.4. These cor-
ruptions are implemented using functions, enabling seamless integration into
the data loader for enhanced portability and storage efficiency.
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4.2.3 Aerial Object Tracking

Following the detection component, the next module in the NEFELI pipeline
is the tracking module. Tracking airborne objects is challenging due to fac-
tors such as high-speed motion, complex flight dynamics, occlusions, ap-
pearance variations, and sensor limitations. The primary difficulties in
aircraft tracking involve compensating for motion effects caused by both
the moving obstacle and the moving camera source, as well as the track-
ing model’s ability to effectively associate features of the detected object.
This association is crucial for achieving successful and continuous track-
ing.

To address the camera motion compensation challenge, we adopt the global
motion compensation (GMC) technique utilized in the OpenCV implemen-
tation [180] of the Video Stabilization module with an affine transforma-
tion [181].

In the remainder of this section, we present NEFELI’s tracking approach,
which is based on the Strong-SORT tracker [182]. The primary inno-
vations in NEFELI’s method include the introduction of an appearance
model, which involves creating the first large-scale re-identification dataset
of aerial objects to train the appearance model, and the fusion of a deep
learning appearance feature model with a Kalman filter-based motion esti-
mation technique in air-to-air aerial object tracking. These advancements
will be analyzed in the following subsections in the aforementioned or-
der.

Appearance (Re-identification) Model

For the appearance model, we employ an architecture named OSNet-EFDM,
which builds on the Omni-Scale Feature Learning (OSNet) [183] CNN net-
work and Exact Feature Distribution Matching (EFDM) [184] layers.

The OSNet network paradigm is followed, and its generalization ability
is enhanced by adding layers that conduct feature distribution matching.
Unlike the original model, which uses AdaIN [185] and assumes a Gaussian
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prior (matching only mean and standard deviation), EFDM employs high-
order statistics (beyond mean and standard deviation) to represent style
information more accurately.

OSNet-EFDM is a model that can perform reliably across various scenar-
ios, adapt to different datasets without extensive retraining, and provide
insights into the learned features. The architecture of OSNet-EFDM ex-
cels at extracting informative representations that can effectively discrim-
inate between visually similar objects, even in challenging aerial environ-
ments.

Fusion of Deep Appearance Feature Model and Kalman Filter-
based Motion Estimation Technique

A key innovation of this work is the fusion of a deep learning appearance
model and a Kalman Filter-based motion model to create a tracking module
tailored to the specific requirements and challenges of long-range detection
and tracking of airborne objects. The proposed approach carefully considers
the unique characteristics of this domain, making necessary adjustments
and optimizations to ensure reliable and accurate tracking performance in
demanding scenarios. By integrating motion and appearance information,
NEFELI’s model addresses the complexities of long-range aircraft tracking,
paving the way for improved situational awareness and enhanced object
detection and tracking capabilities.

In this work, we adopt an architecture that utilizes both high and low
confidence detections, inspired by the paradigm developed by Zhang et
al. [186]. High-confidence detections serve as strong candidates for initi-
ating new tracks. When a high-confidence detection is made, a new track
is created and associated with the corresponding object. High-confidence
detections provide a reliable starting point for tracking and assist in es-
tablishing a strong initial association between objects and tracks. A key
feature of the proposed model is that instead of discarding low-confidence
detections of aerial vehicles, these are used to refine the state estimation of
the corresponding tracks. By incorporating information from low-confidence
detections [182,186], the accuracy and robustness of the existing tracks are
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improved.

Regarding the motion model, it is built upon the modification of the Kalman
filter (Noise Scale Adaptive (NSA) Kalman algorithm), developed by Du et
al. [187]. The conventional Kalman filter is susceptible to issues associ-
ated with low-quality detections [188] and overlooks information concerning
the scales of detection noise. To address this challenge, the NSA Kalman
algorithm introduces a formula for adaptively computing the noise covari-
ance.

Within NEFELI’s tracker, the motion model is used for low-confidence de-
tections, where the detected objects are either at a very long range, ap-
pearing as tiny areas in the image, or are partially occluded. In these cases,
the motion model is more appropriate than the appearance model, which re-
quires extracting semantic features of the object.

For the appearance model, only highly confident detections are considered,
due to the susceptibility of appearance features to occlusion and blurring
from objects at a very long range. As described by Zhang et al. [189],
the exponential moving average (EMA) mechanism (Eq. 4.1) is utilized
to update the appearance state ek

i of the matched i-th tracklet at frame
k.

ek = αek−1
i + (1− α)fk

i (4.1)

The appearance embedding of the current matched detection, denoted as
fk

i , is incorporated in Eq. 4.1 along with a momentum term α = 0.9. To
determine a match between the averaged tracklet appearance state ek

i and
the new detection embedding vector fk

i , their cosine similarity is evaluated.
To accomplish this, both the motion cost (diou

i,j ) and the appearance cost
(dcos

i,j ) are needed. The motion cost is the Intersection over Union (IoU)
distance between the predicted bounding box of tracklet i and the detection
bounding box j, while the appearance cost is the cosine distance between the
average appearance descriptor i and the appearance descriptor of detection
j.
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4.2.4 Monocular Distance Estimation

This chapter presents a deep-learning framework that uses optical sensors
to estimate the distance of non-cooperative aerial vehicles. Implementing
this comprehensive sensing framework requires depth information, which is
essential for enabling autonomous aerial vehicles to perceive and navigate
around obstacles.

We propose a method for estimating the distance of a detected aerial ob-
ject in real-time using input from a monocular camera. To train our deep
learning component for depth estimation tasks, we utilize the Amazon
Airborne Object Tracking (AOT) Dataset. Unlike previous approaches
that integrate the depth estimation module into the object detector, our
method formulates the problem as image-to-image translation. We em-
ploy a separate lightweight encoder-decoder network for efficient and ro-
bust depth estimation. The object detection module identifies and lo-
calizes obstacles, conveying this information to both the tracking mod-
ule for monitoring obstacle movement and the depth estimation module
for calculating distances. Our approach is evaluated on the AOT dataset,
which is, to the best of our knowledge, the largest air-to-air airborne object
dataset.

Concerns regarding mid-air collision (MAC) and near mid-air collision (NMAC)
are significant in both manned and unmanned aircraft operations, especially
in low-altitude airspace. Sense and avoid refers to an aircraft’s capability to
maintain a safe distance from and avoid collisions with other airborne traffic.
Under visual flight rules, pilots mitigate NMAC/MAC threats by visually
detecting and avoiding other aircraft to ensure safe separation. For medium
to large airborne systems, active onboard collision avoidance systems such as
the Traffic Alert and Collision Avoidance System or the Airborne Collision
Avoidance System rely on transponders in cooperative aircraft. However,
not all airborne threats can be tracked using transponders, presenting chal-
lenges for reliable operations in scenarios involving rogue drones, gliders,
light aircraft, and inoperative transponders.

Ensuring aviation safety is paramount. Human vision acts as the final line
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of defense against mid-air collisions, underscoring its critical role in aviation
safety. To aid pilots in mitigating mid-air collision risks, machine vision can
be employed to provide alerts regarding potential aircraft and objects in
the airspace. Radar usage is often impractical due to the size, weight, and
power (SWaP) limitations of Unmanned Aerial Systems (UASs). As a result,
machine vision, utilizing CNN-based networks, has emerged as a promising
avenue of research to address these challenges.

Machine vision is a widely explored area in onboard systems, enabling ma-
chines to perceive their surroundings. With the rapid advancement of com-
puter vision, machine vision has emerged as a promising technology for iden-
tifying potential threats. Various approaches exist for object detection, in-
cluding one-stage and multi-stage detection pipelines. Deep learning, in par-
ticular, has gained significant traction in machine vision for its capabilities in
object detection, tracking, and depth estimation.

Cutting-edge approaches commonly employ Convolutional Neural Networks
(CNNs) to extract features for predicting depth values per pixel, surpass-
ing classical techniques by a wide margin. However, these methods rely
on intricate and deep network architectures, leading to substantial com-
putational overheads and impractical real-time execution without high-end
GPUs. Consequently, deploying such methods on time-sensitive platforms
like small drones becomes unfeasible. Conversely, a lightweight CNN-based
encoder-decoder network can achieve real-time monocular depth estimation
with a balance of accuracy and efficiency.

As indicated in the literature, real-time monocular depth estimation with
accuracy and efficiency balance can be achieved using a lightweight encoder-
decoder architecture. In this setting, the deep learning model is trained to
translate the input image from the monocular camera to a depth mask,
classifying every pixel into depth values.

Problem Formulation

Our system, the NEFELI pipeline [169], consists of multiple models (il-
lustrated in Fig. 4.6), each specifically designed to effectively address the
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unique characteristics of detecting, tracking, and estimating the distance of
airborne objects.

The proposed workflow begins with the input image being processed through
the detection module. Subsequently, image sections containing aircraft
bounding boxes are cropped to ensure the bounding box remains centered
within the cropped image, a process known as BBOX Cropping. After
cropping, the images containing the detected aircraft are processed in the
tracking component. During this phase, high-confidence detections are man-
aged by the appearance Re-ID model, while low-confidence detections are
handled by the Kalman filter-based (KF) motion model. Notably, the KF
motion model incorporates camera motion compensation (CMC) to account
for the influence of camera movement. The tracking module updates the
state of either the appearance model or the motion model, generating new
tracklets to sustain the tracking of an aircraft or eliminate inactive track-
lets.

In parallel with the tracking procedure, the images containing the detected
aircraft are processed in the depth estimation model. Specifically, these
images are passed through the encoder network, which extracts hierarchical
features by progressively reducing the spatial dimensions while increasing
the number of channels. These encoded features capture various levels of
abstraction, including edges, textures, and object shapes. The encoded
features are then fed into a decoder network, which upsamples the feature
maps to the original resolution of the input image. The decoder produces
a depth map as the output, where each pixel corresponds to the estimated
distance of the corresponding pixel in the input image from the camera. The
final outcome of the entire pipeline includes the tracked aircraft, complete
with the bounding box of the detected aircraft, its associated track ID, and
depth estimation information.

Dataset Configuration

We conducted our training using the Airborne Object Tracking (AOT) [158]
dataset. The AOT dataset is a comprehensive collection of approximately
5,000 flight sequences captured from aerial platforms such as drones, heli-
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copters, and other air vehicles. These sequences encompass diverse envi-
ronments, including urban and natural landscapes. Each sequence is ac-
companied by extensive annotations, including bounding boxes of tracked
objects, distance information, geographic coordinates, and camera parame-
ters.

For our study, we decomposed these sequences into individual frames and
organized a dataset based on these images. We utilized the bounding
box annotations and distance metadata to create ground truths for the
depth estimation problem. Typically, depth estimation datasets [190] com-
prise image pairs: one image for training and another representing the
depth map, where the values indicate the distance of objects from the cam-
era.

The AOT dataset does not include such depth annotations, necessitating
the use of provided information to construct depth maps. We leveraged
the bounding box information and the distance of the object from the
camera, determined via GPS technology. Given the coordinates of both
the object and the camera, the distance is calculated as the difference be-
tween these coordinates, referring to the straight-line distance of the ob-
jects.

Using this information, we created depth maps where the values within the
bounding box of the object are equal to the provided distance from the cam-
era. For areas outside the bounding box, we assigned values corresponding
to the maximum distances measured in the AOT dataset.

This approach enabled us to generate the necessary ground truths for train-
ing our encoder-decoder depth estimation model. While we made assump-
tions that may not fully align with real-world data, such as the bounding
box strictly enclosing only the object of interest, the evaluation results on
the AOT dataset indicate that the bias introduced by these assumptions is
negligible.
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4.3 Evaluation Methodology and Training Strategy

To enable a rigorous evaluation of the NEFELI pipeline, each component is
independently assessed and compared against corresponding state-of-the-art
models. This section presents the datasets used for benchmarking, training,
and evaluating each deep learning component of NEFELI’s pipeline, along
with the metrics employed to assess their performance.

The datasets selected for the comparative analysis of the detector com-
ponent were the MS COCO [191] dataset, recognized as a benchmark for
evaluating detection, and the DetFly [157] dataset, which comprises high-
resolution images (3840× 2160 pixels) that include small UAVs. The detec-
tor’s comparative analysis is presented in Section 4.4.1.

Regarding the tracking module, only the appearance model relies on a deep
learning algorithm and thus requires training. To train the appearance
model, a re-identification dataset derived from the AOT dataset was cre-
ated (airborne Re-ID dataset). We provide a comprehensive description of
the methodology used to create the airborne Re-ID dataset, which uniquely
incorporates a diverse range of aerial vehicles, including general aviation
aircraft, helicopters, and UAVs. This dataset significantly contributes to
enhancing the tracking module’s performance. The comparative analy-
sis between NEFELI’s appearance model and alternative state-of-the-art
models, evaluated on the airborne Re-ID dataset, is presented in Section
4.4.2.

Additionally, we evaluated the distance estimation module on the AOT
dataset. This evaluation was crucial for validating the effectiveness and ac-
curacy of our depth estimation approach in real-world scenarios.

NEFELI’s detection model (YOLOv5-l enhanced with the sliced inference
technique) was trained on both the AOT and DetFly datasets, which are
regarded as the most comprehensive datasets encompassing a diverse range
of aircraft. For the detection model, a single detection class was consid-
ered, and all types of aircraft (aeroplanes, helicopters, and UAVs) were
categorized under the umbrella of the “drone” class. Simultaneously, the
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tracking appearance model was trained on the airborne re-identification
dataset. In both instances, 80% of the data were utilized for training pur-
poses, with the remaining 20% reserved for testing. The Graphics Process-
ing Unit used for training and testing is the NVIDIA GeForce RTX 4090.
Section 4.4.2 includes a comparative analysis between NEFELI’s tracker
(comprising fused appearance and motion models) and other state-of-the-
art trackers.

4.3.1 Air-to-Air Object Detection: Benchmark Datasets and
Evaluation Metrics

To illustrate the key advantages of the YOLOv5-large model in terms of pre-
cision and speed compared to other detection models, a comparative analy-
sis was conducted using two benchmark object detection datasets. The first
dataset is the MS COCO [192], which is widely recognized as a benchmark in
deep learning-based object detection. The second dataset is Det-Fly [157],
comprising 13,271 high-resolution images of small UAVs. This dataset covers
a diverse range of scenarios with varying viewing angles, background scenes,
relative ranges, and lighting conditions.

The training strategy for YOLOv5 involves optimizing the model’s parame-
ters using Stochastic Gradient Descent (SGD) with a specified learning rate
schedule. The loss function for YOLOv5 combines multiple components:
localization loss, confidence loss, and classification loss. The overall loss is a
weighted sum of these components, balancing the importance of localization
accuracy, prediction confidence, and correct classification. The loss function
is defined as follows:

Loss = λcoord · (Loc Loss) + λconf · (Conf Loss) + λcls · (Cls Loss) (4.2)

Here, λcoord, λconf, and λcls are weight parameters to adjust the contribu-
tion of Localization (Loc), Confidence (Conf), and Classification (Cls) loss
respectively.
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To evaluate the detector’s performance, the following metrics were consid-
ered:

• Recall (Eq. 4.3), that measures the model’s ability to correctly identify
all the positive instances in the dataset, providing an indication of the
model’s ability to capture all relevant objects;

Recall = True Positives
True Positives + False Negatives (4.3)

where:

TruePositives(TP )number of correctly detected objects
FalseNegatives(FN)number of objects that were not detected by the model

• Precision (Eq. 4.4), that measures the accuracy of object detection
by quantifying the proportion of correctly identified objects out of all
the objects detected by the model;

Precision = True Positives
True Positives + False Positives (4.4)

where:

FalsePositives(FP ) number of incorrectly detected objects

• Average Precision (Eq. 4.5) is calculated as the average of maximum
precision values at recall levels, normalized by the total number of
positive instances.
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AP = 1
npos

npos∑
r=1

max
(
Precision(r′), r′ ≥ r

)
· recall(r) (4.5)

where:

npos total number of positive ground truth instances
Precision(r) denotes the precision at the r-th recall level

Recall(r) represents the recall at the r-th precision level

4.3.2 Aerial Object Tracking: Benchmark Dataset,
Re-identification Dataset, and Evaluation Metrics

Benchmark Dataset

The Airborne Object Tracking (AOT) Dataset [158], released in 2021 as
part of the Airborne Object Tracking Challenge by Amazon Prime Air, was
used to evaluate the performance of NEFELI’s tracking model. This dataset
includes approximately 5,000 flight sequences, each lasting 120 seconds and
captured at a frequency of 10Hz, resulting in a total of 164 hours of flight
data. It contains over 3.3 million labeled image frames featuring airborne
objects. The images have a resolution of 2448×2048 pixels and are grayscale
with 8-bit depth. Annotations include bounding box and class labels, as well
as range information for a subset of the dataset, with range values typically
ranging from 200 to 2000 meters. The labeled objects vary in size, with
areas ranging from 4 to 1000 square pixels. Approximately 55% of the
planned airborne encounters have trajectories that could potentially lead
to collisions. Regarding target positions, 80% are above the horizon, 1%
are on the horizon, and 19% are below the horizon. The dataset captures
various sky and visibility conditions, with 69% of the sequences having good
visibility, 26% having medium visibility, and 5% depicting poor visibility
conditions.
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Re-identification Dataset

To effectively track aerial objects, the appearance model of the tracking
component is trained on a dataset specifically including general aviation
aircraft, helicopters, and small UAVs. Datasets containing ground vehi-
cles or people are inadequate because aircraft have distinct appearance
features. Training on a suitable dataset enhances the model’s discrimi-
native capabilities and improves the accuracy of matching during track-
ing.

Figure 4.5: Examples of substantial variances in viewpoints and scales of aerial
objects from the airborne-Re-ID dataset used to train NEFELI’s ap-
pearance model

While person and vehicle re-identification have been extensively researched
over numerous datasets, airborne ReID remains relatively unexplored. In
the absence of an existing multi-view airborne dataset, the airborne-ReID
dataset was created to train NEFELI’s appearance model (Figure 4.5). This
empowers NEFELI’s tracking model to avoid identity switching, handle oc-
clusions, and re-identify an aerial vehicle that temporarily moves out of the
capture range.
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Furthermore, incorporating a ReID dataset in the training of NEFELI’s
tracking module opens the door to future multi-camera detection and avoid-
ance systems that need to transfer tracking information (re-identification)
from one camera to another.

To simulate the challenges encountered in Re-ID tasks, the airborne-Re-ID
dataset combines the Temporally Near and Big-to-Small features introduced
by Zhong et al. [193].

Temporally-Near evaluates performance over a short time span, where Re-
ID modules within tracking frameworks must accurately identify the same
airborne object in consecutive video frames. Temporal intervals of t

5 and
2t
5 are chosen, ensuring relatively consistent target aerial vehicle sizes while
accounting for variations in their viewpoints. This scenario replicates the
challenge faced by a Re-ID module integrated within a tracking frame-
work, where UAVs undergo viewpoint transformations within a limited
range.

Big-to-Small assesses Re-ID performance across significant scale variations.
Airborne detections are captured at intervals of t

3 , 2t
3 , and 2t

3 throughout the
entire video, emulating the challenge of matching known airborne objects
(with detailed visual information) with airborne objects detected from a con-
siderable distance. This enables the identification of distant airborne objects
and the evaluation of their potential threat level.

The dataset instances are sampled from the training set of the 4000 video
sequences in the AOT dataset. Each instance is created by cropping air-
borne objects from single frames of these videos and resizing the airborne
object images to 90× 50 (height × width). Data augmentation techniques,
such as random flipping, random cropping, and random erasing [194], as
proposed by Organisciak et al. [193], are applied to enhance the dataset.
Four images per identity are included for each setting, resulting in a total
of 2509 airborne object identities and 10036 airborne object images. 80%
of the identities are used for training, while the remaining ones are reserved
for testing.
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Appearance Re-identification Model Training Strategy and Evaluation
Metric

In deep learning re-identification tasks, the most widely used metric is the
rank-1 metric (Eq. 4.6). This metric refers to the evaluation of the top-1
matching accuracy. It measures the performance of a model by determining
if the correct match for a query image is ranked first among all the gallery
images. Thus, the rank-1 metric quantifies the percentage of query images
for which the model successfully identifies the correct match as the top-
ranked result. It serves as a key indicator of the model’s ability to accurately
match and identify individuals in re-identification tasks.

Rank-1 = Number of correct matches ranked 1
Total number of queries (4.6)

The rank-1 metric is calculated by dividing the number of correct matches
that are ranked first (top-1) by the total number of queries. It represents
the accuracy of correctly identifying individuals when the correct match is
the top-ranked result.

The re-identification appearance model is trained on a labeled dataset con-
taining pairs or triplets of images, where the goal is to learn feature rep-
resentations that enable matching and identification of individuals across
different camera views or time instances. The cross-entropy loss is used
to train the re-identification model. Given a pair or triplet of images and
their corresponding labels, the cross-entropy loss is computed based on Eq
4.7.

Loss = − 1
N

N∑
i=1

[yi · log(pi) + (1− yi) · log(1− pi)] (4.7)

Here, N is the batch size, yi is the ground truth label (1 if the pair or
triplet is a match, 0 otherwise), and pi is the predicted probability of a
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Figure 4.6: Nefeli’s system pipeline

match provided by the model. The goal during training is to minimize
this cross-entropy loss, encouraging the model to learn discriminative fea-
tures.

Tracking Evaluation Metrics

Major considerations for the selection of tracking evaluation metrics are as-
pects such as optimal tracking association and minimized identity switches,
which are critical for autonomous aircraft navigation. Therefore, the fol-
lowing metrics have been considered in the following order of significance:
Higher-Order Tracking Accuracy (HOTA) [195], Number of Identity Switches
(IDsw) [196], Association Accuracy (AssA) [195], Detection Accuracy (DetA)
[195], and False Positives Per Image (FPPI) [196] (this metric reflects the
probability that a False Positive is detected in an image).

4.3.3 Monocular Distance Estimation: Experimental Setup

Depth estimation [197] is typically framed as an image-to-image regression
problem, where models predict a depth map corresponding in size to the
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input image, with values indicating the distance of each object. Training
involves minimizing the discrepancy between the predicted depth map and
the ground truth.

Some studies [198] advocate for a classification approach to depth estima-
tion, which can be particularly effective in UAV sense-and-avoid scenarios
involving long distances. This method employs collision avoidance/safe sep-
aration thresholds [199] (see Fig. 4.7), framing the task as a multiclass clas-
sification problem with N depth increments (d0, . . . , dn). Each increment
represents a distinct class.

In this work, we adopt the classification framework. Based on distance infor-
mation, we categorize the data into four different classes, with an additional
class for background:

• Class 1: objects within 200 meters

• Class 2: objects within 400 meters

• Class 3: objects within 600 meters

• Class 4: objects within 700 meters

• Class 5: background objects beyond 700 meters

Using this classification scheme, we generated new ground truth Masks
for training, resulting in W × H arrays with values ranging from 0 to

Figure 4.7: Collision avoidance/safe separation thresholds
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4.

Mask =



0, if distance < 200 meters
1, if distance < 400 meters
2, if distance < 600 meters
3, if distance < 700 meters
4, if distance > 700 meters

W ×H (4.8)

We trained an image-to-image model to produce outputs matching these
mask labels. Although typical classification problems use cross-entropy
loss, it is inefficient for our ordered data. Incorrect predictions in classes
representing longer distances should incur greater penalties. To address
this, we preprocessed input images by cropping around the center of the
bounding box to minimize irrelevant information. A Gaussian filter was
applied to the masks to smooth value divergences at the edges, normalizing
the training data. We combined various loss functions such as the Struc-
tural Similarity Index (SSIM), edge-based losses, L1, and Berhu loss [200]
to train a robust model capable of performing well under domain shifts
[201].

• Edge loss retains object boundaries by penalizing false predictions at
the object’s edge more severely.

• Structural Similarity Index (SSIM) measures image similarity based
on luminance, contrast, and structural similarities.

• Berhu loss is a robust regression loss function designed to handle out-
liers while remaining sensitive to small errors.

We used a U-net convolutional neural network [202] for training. The U-
net architecture includes encoder and decoder blocks. The encoder re-
duces spatial dimensions and increases feature map depth, while the de-
coder upsamples the feature maps to restore spatial resolution. Adam [203]
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was used as the optimizer, with a weight decay of 0.0005 and an adap-
tive learning rate given by Eq. 4.9 to enhance training stability. To im-
prove model generalization and reduce bias, L2 regularization [204] was
utilized.

f(x) =
{

1, if x ≥ warmup iterations,
γ ∗ (1− α) + α, if x < warmup iterations

(4.9)

where α = x

warmup iters , γ = 0.001,

warmup iterations = min(1000, length(dataset)− 1)

The overall architecture of the depth estimation model is depicted in Fig.
4.8, where an image input is processed by the encoder-decoder model to pro-
duce a prediction mask closely matching the ground truth.

Figure 4.8: Pipeline of the proposed depth estimation model

4.4 Benchmark Evaluation

This section provides an in-depth analysis of NEFELI’s performance, detail-
ing the experiments conducted and discussing their outcomes. The evalua-
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tion process includes individual assessments of NEFELI’s detection model,
appearance Re-ID tracking model, fused appearance and motion tracking
models, and distance estimation module, followed by an evaluation of the
entire NEFELI pipeline. A crucial aspect of this evaluation is the compara-
tive analysis, in which each component of NEFELI, measured by the metrics
presented in Section 4.3, is compared against other state-of-the-art models.
The results of these analyses show that all of NEFELI’s components sur-
pass the existing state-of-the-art models, and the comprehensive NEFELI
pipeline also delivers superior results compared to the most advanced de-
tection and tracking models available.

4.4.1 Air-to-Air Object Detection

To benchmark air-to-air aerial object detection, we selected eight represen-
tative and diverse detectors: YOLOv5 [205], YOLOv8 [206], YOLOX [207],
RetinaNet [208], Faster R-CNN [209], DiffusionDet [210], DETR [211], and
CenterNet2 [212]. These detectors were chosen to cover various feature
representations and proposal architectures.

For a fair comparison, each detector listed in Table 4.1 was trained on the
clean training set of AOT following the training strategy specified in their
respective papers. They were then evaluated using both the clean test set of
AOT (first column of Table 4.1) and the corrupted test set of AOT (AOT-C)
shown in the second column of Table 4.1.

The selected methods can be categorized into two groups based on their
detection algorithms: one-stage networks (YOLOv5, YOLOv8, YOLOX,
RetinaNet) and multi-stage networks (Faster R-CNN, DiffusionDet, DETR,
CenterNet2). One-stage object detectors, like YOLO and RetinaNet, use
a single unified network to simultaneously predict object bounding boxes
and classify their content in one forward pass. In contrast, multi-stage
detectors like Faster R-CNN use a region proposal network (RPN) to gener-
ate potential bounding box proposals which are then refined and classified
by a subsequent network. DiffusionDet utilizes diffusion for detection by
transitioning object boxes from ground-truth to random distribution during
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training, and reversing this noise during inference. DETR uses the Trans-
former architecture, while CenterNet offers a probabilistic interpretation of
the two-stage detection approach by using a strong first stage to estimate
object likelihoods.

All detectors were executed based on open-source code available on GitHub.
For YOLOv5, YOLOv8, and YOLOX detectors, we chose the large model
type, as it is more suitable for small object detection [213]. Training and
evaluation were performed on an NVIDIA RTX 4090 GPU with 24GB of
memory. The batch size of each detector was optimized to maximize GPU
memory usage. Default optimizers were employed, and parameters such as
learning rate (LR), momentum, weight decay, and batch size were meticu-
lously adjusted through extensive experimentation.

The standard evaluation was performed on the Aircraft, Helicopter, and
small UAV categories, aggregated into one category called Drone. The
evaluation metric was the Average Precision (AP) at an IoU threshold of
0.5. We denote model performance on the original validation set (AOT’s
validation set) as APclean. For each corruption type c at each severity s,
we used the same metric to measure model performance, denoted as APc,s.
The corruption robustness of a model is calculated by averaging over all
corruption types and severities as:

APcor = 1
C

∑
c∈C

1
4

4∑
s=1

APc,s (4.10)

where C is the set of corruptions in evaluation.

Robustness Evaluation on AOT Dataset

Image corruptions reduce prediction accuracy. The robustness performance
of the models, measured in APs, is shown in Table 4.1. Among all detectors,
YOLOv5 demonstrates the highest robustness against corruptions (APcor =
53.5%), whereas RetinaNet performs the worst (20.0%). Among multi-stage
networks, DiffusionDet is the most robust, achieving APcor = 35.7%, while
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Table 4.1: The benchmarking results of 8 object detectors on AOT and AOT-C
in terms of Average Precision (AP), inference speed (fps), and model
size (M)

Object detector APclean ↑ APcor ↑ fps ↓ Model Size ↓
YOLOv5 [205] 64.6 53.5 99 46.5
YOLOv8 [206] 56.4 41.2 110 43.7
YOLOX [207] 69.3 43.8 68 54.2

RetinaNet [208] 35.7 20.0 17 37.9
Faster R-CNN [209] 52.9 29.7 15 41.3
DiffusionDet [210] 63.8 35.7 30 110.5

DETR [211] 58.7 26.1 27 41.2
CenterNet2 [212] 66.2 35.9 24 71.6

DETR, which relies on a Transformer encoder-decoder architecture, shows
the lowest robustness (26.1%). For one-stage networks, all YOLO family
models perform well (over 40%), in contrast to RetinaNet, which achieves
only 20.0%. Although one-stage networks often trade detection performance
for higher inference speed, YOLO models achieve better robustness on cor-
rupted data and comparable performance on the original AOT evaluation set
(clean) compared to multi-stage detectors like CenterNet2, DETR, and Dif-
fusionDet. This suggests that YOLO models, particularly YOLOv5, could
be a strong alternative for tasks requiring high computational efficiency and
robustness to adverse conditions.

In summary, YOLOv5 and YOLOX demonstrate stable and superior per-
formance compared to other detectors. Given their higher computational
speed and lower parameter requirements (model size in millions of param-
eters), YOLOv5 and YOLOX are suitable choices for tasks with limited
computational resources.

To further evaluate the performance of the algorithms, we present the results
for each of the seven synthetically constructed corruptions separately in
Table 4.2.
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Table 4.2: The benchmarking results of 8 object detectors on AOT-C. We show
the performance under each corruption and the overall corruption ro-
bustness APcor averaged over all corruption types

Corruption YOLOv5 YOLOv8 YOLOX RetinaNet Faster R-CNN DiffusionDet DETR CenterNet2
None (APclean) 64.6 56.4 69.3 35.7 52.9 63.8 58.7 66.2

Weather
fog 66.0 56.2 65.5 32.0 49.4 62.5 52.5 54.0
rain 64.2 53.8 64.3 32.4 49.9 61.1 50.6 55.2
low light 49.4 33.4 38.4 18.8 21.0 24.0 22.5 25.2

Sensor noise color_quant 49.8 41.2 42.3 19.8 35.0 38.9 10.8 35.6
iso noise 32.5 18.3 20.2 4.9 8.2 9.3 6.3 10.8

Defocus far focus 58.3 50.2 51.6 25.0 38.4 48.3 38.7 44.4
near focus 44.5 36.3 37.9 16.1 24.9 32.8 22.3 32.8

APcor 53.5 41.2 43.8 20.0 29.7 35.7 26.1 35.9

Corruption Types that Affect Aerial Detection

How do different corruptions impact overall detector accuracy? As shown in
Table 4.1, the average APcor is 22.7% lower than the APclean, indicating a
significant decrease in detector accuracy when exposed to various corruption
patterns. These findings highlight the urgent need to address the robustness
challenges faced by aerial object detectors. Specifically, as indicated in Table
4.2, ISO noise, near focus, and color quantization corruptions cause the
most significant AP loss. This results in a serious degradation in detection
accuracy. Conversely, some corruption patterns (e.g., fog and rain) have a
lesser impact on the detectors.

Our experimental study, detailed in Table 4.2, shows that adverse weather
conditions do not significantly affect detector accuracy. In contrast, sen-
sor noise, especially ISO noise, significantly degrades the object detection
performance of all models.

Network Attributes Affecting Robustness

As shown in Table 4.1, multi-stage detectors exhibit lower robustness against
common corruptions compared to one-stage detectors, as evidenced by their
lower APcor. One possible explanation is that corrupted data may impact
proposal generation in the first stage (for both two-stage and multi-stage
detectors), and poor-quality proposals can significantly affect the bounding
box regression in the second stage (specifically for multi-stage detectors)
[164]. Furthermore, as indicated in Table 4.2, multi-stage detectors appear
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to be less susceptible to adverse weather conditions, displaying higher APcor,
but are more vulnerable to sensor noise corruptions. Conversely, one-stage
detectors, particularly those in the YOLO family, demonstrate more accu-
rate results across all common corruptions.

4.4.2 Tracking Appearance (Re-identification)

In this section, we evaluate the Re-ID model within NEFELI’s tracking com-
ponent. Incorporating a deep learning Re-ID model into the tracking sys-
tem is a notable innovation of this work, marking the first instance of a deep
learning–based tracker for air-to-air aerial object tracking.

To assess NEFELI’s Re-ID model performance against other Re-ID models,
we utilized the airborne Re-ID dataset introduced in Section 4.3.2. The
state-of-the-art models were evaluated using the standard Rank-1 metric
within the torchreid [214] framework.

The evaluation process involved dividing the test set into a query set and
a gallery set, each containing 502 identities. For a given query image q,
all gallery images gi are ranked based on the likelihood that gi matches
q, indicating they depict the same airborne object. The rank-r matching
rate measures the percentage of query images with a correct gallery match
within the top r ranks.

NEFELI’s Re-ID model is based on the OSNet (Omni-Scale Network) [183]
combined with Exact Feature Distribution Matching (EFDM) [184]. OSNet
is a CNN architecture specifically designed for object re-identification, aim-
ing to enhance performance by fusing features from various scales within a
residual convolutional block. Each stream within the block learns features
at a different scale, and the final omni-scale features are dynamically gen-
erated by combining the outputs of all streams. Given the varying scales
at which UAVs can be observed, OSNet is well-suited for addressing UAV
re-identification challenges.

Table 4.3 compares various state-of-the-art Re-ID models on the airborne
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Re-ID dataset. Notably, the OSNet + EFDM model [184] outperforms other
approaches in terms of Rank-1. Despite being significantly lighter than
ResNet-based models (the OSNet + EFDM model has fewer parameters),
it achieved superior performance, making it the preferred choice for the ap-
pearance model in NEFELI’s tracking module.

Table 4.3: Results of state-of-the-art methods on our aerial object re-id dataset
named airborne-ReID.

Method Params (M) ↓ Rank-1 ↑
MLFN [215] 32.5 69.1

ResNet-50 [216] 20.5 69.5
ResNet-18 [216] 11 71.1
ResNet-34 [216] 13.6 73.3

SE-ResNet-50 [217] 23 74.6
OSNet [183] 2.2 77.1

OSNet + EFDM [184] 2.2 78.7

4.4.3 Fused Appearance and Motion Tracking

This section evaluates NEFELI’s tracking component, which is a significant
innovation as it integrates appearance and motion information in a unified
pipeline for the first time.

In the evaluation study, the same object detector (YOLOv5l + sliced in-
ference) is used, except for the Baseline (first row), where the detector
is YOLOv5l without sliced inference. The appearance model (OSNet +
EFDM), trained on the airborne Re-ID dataset, is used in Bot-SORT-Re-
ID, Deep OCSORT, and NEFELI’s (ours) fused tracking module. Other
trackers rely solely on Kalman filter-based motion estimation. The de-
tection confidence threshold is set at 0.60 for all tracking models. All
models were also evaluated using the AOT dataset [158]. Key metrics
for autonomous aircraft navigation, such as optimal tracking association
and minimized ID switches, were prioritized. Thus, the following metrics
were considered in order of importance: Higher-Order Tracking Accuracy
(HOTA) [195], Number of Identity Switches (IDsw) [196], Association Ac-
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curacy (AssA) [195], Detection Accuracy (DetA) [195], and False Positives
Per Image (FPPI) [196].

The Higher-Order Tracking Accuracy (HOTA) protocol is the primary met-
ric as it effectively combines detection, association, and localization accu-
racy into a single metric. Following HOTA, the IDsw metric is crucial for
reliable trajectory prediction in autonomous aircraft navigation, as identity
switches can disrupt trajectory planning and cause a loss of valuable time
for essential maneuvers.

Additionally, AssA assesses association accuracy, DetA evaluates detection
accuracy, and FPPI is relevant for autonomous aircraft navigation as it
reflects the method’s overall false alarms.

Table 4.4 compares the tracking performance of our proposed pipeline to
other state-of-the-art methods that either rely on motion estimation alone
or combine motion and re-identification models. The Baseline method
consists of a YOLOv5l (without sliced inference) model combined with
StrongSORT that uses only motion estimation for tracking. All methods
in the table follow ByteTrack’s [186] approach, which associates all bound-
ing boxes, not just the high-score ones, resulting in more accurate object
tracking.

The results in Table 4.4 clearly show that the fused (Re-ID + motion)
methods outperform their motion-based counterparts in terms of HOTA,
IDsw, and AssA, the primary metrics for aerial object tracking. The main
differences between the compared tracking methods lie in the ways they
compute the Kalman filter state vector (motion estimation) and the fusion
of motion and appearance features.

NEFELI stands out with a HOTA score of 31.72, surpassing all other meth-
ods for aircraft tracking. NEFELI achieves top-ranking performance with
only 52 identification switches (IDsw) and significantly outperforms other
tracking models in the AssA metric, scoring 48.31.

The evaluation also reveals that the Deep-OCSORT model excels in the
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Table 4.4: Comparison of proposed detection and tracking methods on AOT
dataset. Our fused detection (Enhanced YOLOv5) and tracking
method with appearance model (OSNet) trained on our airborne-ReID
dataset has the best result in terms of the primary tracking metrics.

Method HOTA ↑ IDsw ↓ AssA ↑ DetA ↑ FPPI ↓
Baseline 22.14 171 25.43 19.79 0.231

Bytetrack [186] 23.34 251 25.56 22.21 0.187
Bot-SORT [181] 18.89 711 20.79 18.05 0.211

Bot-SORT-ReID [181] 25.64 205 33.88 19.80 0.220
OCSORT [218] 22.62 357 23.73 22.46 0.210

Deep OCSORT [182] 27.37 155 20.51 36.83 0.235
Strong-SORT [182] 29.20 121 38.29 22.57 0.208
NEFELI (Ours)

(Enhanced YOLOv-5l + fused Strongsort) 31.72 52 48.31 21.01 0.245

DetA metric with a score of 36.83. Deep-OCSORT is designed to min-
imize tracking errors by incorporating a re-update stage to correct mo-
tion errors. Specifically, it adds a re-update stage, beyond the traditional
"predict and update" stages, to prevent error accumulation by using vir-
tual observations from historical time steps, optimizing the DetA met-
ric.

Given NEFELI’s aim to facilitate non-cooperative flight management and
integrate into an aircraft’s autonomous navigation system, priority has been
placed on its superior performance in HOTA, IDsw, and AssA metrics.
These metrics are crucial for addressing the challenges of aircraft track-
ing, ensuring optimal tracking associations, and minimizing ID switches for
robust trajectory change decisions.

To support future work and fair comparisons, the exact flights from the AOT
dataset used for evaluation, along with the evaluation kit based on the offi-
cial MOT17 challenge [196] evaluation procedure, will be published.
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4.4.4 Monocular Distance estimation

A widely utilized and pragmatic metric for evaluating the efficacy of depth
estimation is either the mean absolute error or the root mean square error.
In consideration of the manner in which we have delineated our problem
regular regression metrics might not be quite enlightening in discerning
the performance of our model, for this reason, we proposed four metrics
that could be used in the classification approach of the depth estimation
task. These metrics provide a classification value that conveys precision in
the categorization of each detected object in the correct classification bin.
More specifically we utilized sliding a window across the area of interest
(bounding box) to extract spatial information about the predicted distance
of the object and employed methods like mean, max and min to combine the
retrieved windows. Another, metric we applied was the rate of similarity
between two pictures where the classification is considered truthful when
the rate surpasses a given threshold. The metrics mentioned are expounded
upon in the subsequent section below.

Evaluation Results on the AOT Dataset

In this section, we present and analyze the results of the conducted ex-
periments for the different tested components. We also, analyze how each
component affects the different losses on the overall performance of the in-
troduced metrics. First, we trained our model applying only the edge loss
function. Let Y (x, y) be the predicted map and I(x, y) be the input image,
we calculate the edge loss by retrieving the gradients of the predicted map
array in both the x and y-axis. After assessing these gradients we apply
a smoothness factor with the help of the input image I(x, y) and obtain
the loss value as the sum of the mean absolute values for the x and y axis
respectively as shown in Eq.4.11

ELx,y = e− 1
N

∑i=N

i=0 |∇x̂,ŷI(x̂,ŷ)| · ∇x,yY (x, y) (4.11)

The model trained with this loss achieves poor results depicted in Table 4.5.
It’s reasonable to anticipate this outcome, considering its intended function
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to safeguard the structural intricacies and boundaries found within the input
images and depth maps. Nevertheless, edge loss remains a pivotal element
within the domain of depth estimation, as it contributes to the generation
of depth maps characterized by enhanced smoothness and visual coherence,
thereby portraying objects with greater clarity and contrast. Next, the
model was trained using the L1 loss, as a standard loss function in regression
tasks. From the regression metrics we can observe that models trained
with this loss function are capable of producing satisfactory results. From
Fig. 4.9, it could be deciphered that the L1 function trains the model to
sufficiently pinpoint the area of interest but the outliers of the area are not
adequately defined.

For the forthcoming experiment, we assessed the efficacy of the model
trained to utilize the BerHu function [200]. This function incorporates the
benefits of both the L1 loss and L2 so it is natural to expect a better perfor-
mance which is something that can be observed in Table 4.5 as the BerHu
loss [200] achieves better performance in both the Mean Absolute Error
(MAE or L1) [219] and Root Mean Square Error (RMSE) [219] loss. To
assess the viability of the BerHu loss as a substitute for the L1 loss func-
tion, we conducted an experiment wherein the model was trained using a
combination of both loss functions. Subsequently, we evaluated the model’s
performance. Our observations indicate that the model’s performance re-
mained largely consistent, albeit marginally inferior compared to the model
trained exclusively with the BerHu loss function. Lastly, all the above loss
functions were combined using a weighted function described in Eq.??. Pre-
dictions for each of the four classification bins of interest using the multi-loss
trained model are presented in Fig. 4.10

Loss = Wedge loss · EL(ŷ, y)
+ Wssim · SSIM(ŷ, y)
+ WL1 · L1(ŷ, y)
+ Wberhu loss ·Berhu(ŷ, y)

(4.12)

Except for the regression metrics used in evaluating the trained models, our
assessment of accuracy relied on our proposed classification metrics. We
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initiated our approach by devising a metric centered on a sliding window of
dimensions 5x5. This window systematically traversed the designated area
of interest (bounding box) within the predicted mask to gather spatial depth
information at the specified distance. Subsequently, after traversing the win-
dow across the point of interest, we collected a series of m kernels, each with
dimensions kxk, to extract a singular value. For each kernel, we computed
the mean of the k2 values, resulting in m values. Each value represented the
estimated depth of its respective window. Following this step, we explored
three distinct approaches to deriving the final prediction from the set of m
values: utilizing the mean, minimum and maximum values. The resultant
values ranged from 0 to 4, subsequently rounded to the nearest integer value
(0, 1, 2, 3, or 4) to yield the final prediction.

Let M denote the predicted mask, and D(x, y) denote the depth information
at coordinates (x, y). For each window position (x, y) within the bounding
box where (x, y) stand for the top left coordinates of the window, the depth
D(x, y) value for each kernel is calculated by Eq.4.13:

Dkernel(x, y) = 1
k2

k∑
i=1

k∑
j=1

M(x + i, y + j) (4.13)

For the sliding windows, we utilized a stride value of 1 and applied padding
to the predicted mask by reflecting its values. Let f be the function we
applied to get the final prediction of depth (mean, min, max). The final

Table 4.5: Regression metrics for the different losses

Model Loss functions Regression Metrics
MAE RMSE

Unet

Edge 3.39 3.55
L1 0.19 0.43

Berhu 0.12 0.36
L1/Berhu 0.13 0.37

Edge/SSIM/L1/Berhu 0.14 0.39
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prediction can be described by the Eq.4.14

class = round(f(
m∑

i=1
Di(x, y))) (4.14)

From Table 4.6 we can see that the worst-performing model is the one
trained only with edge loss. This is expected as we observed the same in
the regression metrics table (Table 4.5). Of all the three different functions
tested in the Sliding Window metric, the worst-performing one is the max
function. The decrease in performance can be attributed to the significance
of outliers within the function.

In particular, a thorough examination of the L1 prediction mask visualiza-
tion depicted in Fig. 4.9 demonstrates that the bounding box boundaries
predicted by the model using L1 loss function are inadequately defined.
Since the background has larger values the max function chooses these
as the correct categories diminishing the classification results. The accu-
racy achieved through the sliding window method utilizing the mean value
demonstrates a notably superior performance in comparison to that attained
through the max function. This outcome aligns with expectations, as the
mean function effectively mitigates the influence of larger outlier values.
Notably, among the three functions considered, the min function emerges
as the most effective performer. Disregarding the larger values introduced
by outliers, the minimum function results in the highest performance among
the evaluated methods.

We additionally employed a metric, known as threshold accuracy, to assess
the classification task. This metric computes the similarity of the pixels be-
tween the predicted and ground truth images. For each corresponding pixel
pair, if the ratio between the predicted and ground truth values remains un-
der a specific threshold, the classification is deemed accurate. The overall
accuracy score is then computed as the percentage of the correctly classified
pixels relative to the total number of pixels within the mask. For the show-
cased results in Table 4.6 we applied a threshold equal to 1.25. Based on the
findings presented in Eq.4.14, it is evident that the models exhibiting the
poorest performance solely rely on the edge loss function. Conversely, those
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Figure 4.9: Depth estimation visualization for L1, Berhu and multi loss respec-
tively

achieving higher accuracy levels are the models that integrate a combination
of the Berhu and L1 loss functions.
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Figure 4.10: Depth estimation ground truth and prediction mask for each classi-
fication bin

4.4.5 Comparison of NEFELI’s Pipeline with State-of-the-Art
Methods

NEFELI’s tracking module stands out by integrating a deep learning-based
appearance model with a Kalman Filter-based motion model, significantly
reducing ID switches in the tracking of aerial objects. This is crucial for
effective collision avoidance. In contrast to leading methods such as those
in [150, 151], which depend solely on Kalman filter-based motion models,
NEFELI capitalizes on the combined capabilities of both appearance and
motion models.

Table 4.6: Classification metrics for the different losses

Model Loss functions
Accuracy Metrics

Sliding Window Threshold
AccuracyMean Max Min

Unet

Edge 0.14 0.14 0.14 0.01
L1 0.61 0.16 0.71 0.86

Berhu 0.64 0.17 0.76 0.86
L1/Berhu 0.66 0.18 0.74 0.89

Edge/SSIM/L1/Berhu 0.63 0.23 0.72 0.86
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The Kalman filter excels in environments where an object’s motion is ap-
proximately linear and the measurement noise is Gaussian. However, these
conditions are often not met in complex air-to-air detection and tracking
scenarios. For example, AirTrack [162] utilizes CenterTrack for air-to-air
object detection and tracking, representing objects as center points and re-
lying only on distance offsets between frames for tracking. NEFELI, on the
other hand, merges a deep learning appearance model, trained on a special-
ized re-identification dataset, with a motion model that incorporates data
from multiple frames and includes low-confidence detections. This hybrid
approach reduces ID switches and improves tracking accuracy and reliabil-
ity.

4.5 Discussion of Real-World Experimental Results

NEFELI enables real-time detection and tracking of non-cooperative air-
craft, a vital aspect of autonomous navigation. Consequently, the archi-
tecture selection for NEFELI focuses on minimizing latency, eliminating
single points of failure, and maximizing system resilience. To determine the
optimal architecture, a thorough comparison of cloud versus edge comput-
ing was conducted, evaluating their effectiveness in meeting these critical
requirements.

Cloud computing transmits data from aircraft sensors to remote servers,
introducing round-trip latency that can impair real-time navigation. Con-
versely, edge computing processes data directly on the aircraft, dramati-
cally reducing transmission delays. Additionally, cloud computing systems
are vulnerable to network failures and cloud infrastructure outages, leading
to potential operational downtimes with significant risks. Edge comput-
ing, however, ensures continued functionality during network disruptions,
as processing occurs locally on the aircraft, independent of constant cloud
connectivity.

Thus, edge computing is the preferred architecture for NEFELI, offering
essential real-time processing capabilities and the robustness needed for
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mission-critical operations.

4.5.1 Edge Implementation

Deploying NEFELI’s complex machine learning models on low Size, Weight,
and Power (Low-SWaP) edge devices is a challenging task. The first step
involved selecting the most appropriate edge device for NEFELI. This was
achieved by comparing various edge computing options, including Edge
GPUs like NVIDIA Jetson, Vision Processing Units (VPUs) such as the Intel
Neural Compute Stick (NCS2), and Field-Programmable Gate Arrays (FP-
GAs). The evaluation criteria included power consumption, performance,
scalability, development time, and flexibility [220–222].

The comparison indicated that while VPUs and FPGAs have distinct advan-
tages in power efficiency and hardware customization respectively, NVIDIA
Jetson GPUs stood out as the best choice for computer vision tasks at the
edge. Their superior performance, power efficiency, scalability, rapid de-
velopment time, and exceptional flexibility make them the ideal platform
for deploying sophisticated computer vision workloads in edge computing
environments.
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Figure 4.11: NEFELI Edge Implementation

The implementation leverages a streamlined pipeline as shown in Figure
4.11. To reduce latency, given that NEFELI processes data slower than
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the camera’s capture rate, the input image from the camera is stored in
multiple ring buffers. The image undergoes preprocessing steps such as color
correction, channel reordering, and slicing into smaller sub-images. These
preprocessed images are then fed into a detector optimized by the edge
GPU to accelerate inference time. After processing all slices, the image
is reassembled to its original size. The tracker module then selects the
detected object’s bounding box and uses the Strong-SORT-ReID tracker,
also GPU-accelerated, to track it. The final step involves annotating the
original image with the bounding box and track ID before transmitting it
over the network and saving the output frame.

All CPU-intensive tasks are accelerated using optimized libraries like OpenCV
and BLAS, while GPU acceleration is handled by the Open Neural Net-
work Exchange (ONNX) framework. ONNX was chosen for its framework-
agnostic design, allowing seamless interoperability and flexibility from cloud
training to edge deployment. For ONNX backend execution, TensorRT was
selected over CUDA due to its demonstrated superior performance in both
literature [223,224] and experimental results.

4.5.2 Evaluation on Real-World Experiments

To evaluate NEFELI’s performance on an edge GPU and its robustness in
real-world scenarios, a series of experiments was conducted. These exper-
iments involved installing the NEFELI system on a small UAV (ownship)
and using an identical UAV to simulate the intruder. Both UAVs were hexa-
copters with a maximum dimension of 1.9 meters, equipped with a Pixhawk
5X flight controller, Pixhawk M9N GPS antenna, and Ardupilot autopilot
software [225], as illustrated in Figure 4.12.

NEFELI was deployed on an NVIDIA Jetson Orin edge GPU, utilizing a
GoPro Hero 8 camera (Figure 4.12). Importantly, the hardware imple-
menting NEFELI was independent of the UAV’s flight controller, powered
separately to ensure no interference with flight operations, thus maintaining
flight safety.
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Figure 4.12: Overview of the components to implement NEFELI

The experiments aimed to test NEFELI’s performance under various oper-
ational conditions. Different scenarios were tested, including varying angles
of view, relative distances, altitudes, lighting conditions, and environmental
backgrounds, both above and below the horizon (Figure 4.13).
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Figure 4.13: Detection results in diverse conditions (below the horizon, close dis-
tance, intense lighting, left to right)
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Table 4.7: Ablation study on NEFELI’s key components using real-flight data.
Each component significantly improves performance, demonstrating
NEFELI’s robustness on data differing from the training set.

Method HOTA ↑ IDs ↓ AssA ↑ DetA ↑ FPPI ↓ Speed in fps ↑
Baseline 23.05 2 35.61 14.98 0.066 20.1

Baseline + Sliced Inference (SI) 29.77 4 37.88 23.41 0.102 7.2
Baseline + SI + RE-ID (OSnet without EFDM) 34.72 1 48.29 25.02 0.099 6.7

NEFELI (Ours)
(Baseline + Sliced Inference + Re-ID model (OSNet with EFDM)) 37.56 1 52.64 26.80 0.097 6.7

Table 4.7 details NEFELI’s performance for the processing unit and cam-
era used, highlighting improvements from each innovative component in-
troduced. The baseline model used the YOLOv5 detector (without sliced
window inference) and the StrongSORT tracker with only motion estimation
(without the Re-ID model). Below, the contributions of each component in
the NEFELI pipeline are presented through ablation studies.

Ablation study on the effect of sliced inference: The DetA metric in the sec-
ond row of Table 4.7 demonstrates the efficacy of the proposed sliced infer-
ence, compared to no slicing. This postprocessing step effectively enhances
the detector’s ability to localize and classify distant, small UAV intruders
in real-world experiments.

Ablation study on the effect of the re-identification appearance model: Sec-
tion 4.4 compares NEFELI’s detection and tracking module using only mo-
tion (row 2 in Table 4.7) versus the fused tracker combining motion and
appearance models (rows 3 and 4 in Table 4.7). The tracking metrics AssA
and IDsw show that the fused approach yields superior results, expected
as the appearance model provides additional data-driven information. Us-
ing OSNet with Exact Feature Distribution Matching (EFDM) further en-
hances the model’s ability to reliably track objects in varied real-flight sce-
narios.

Finally, the maximum distance at which NEFELI can track an intruder
was assessed. The theoretical maximum distance, assuming a minimum
detectable object size of 12x12 pixels and defining a valid track as detec-
tion in four consecutive frames, was 157.9 meters. Experimental results
showed successful tracking at distances up to 145.7 meters, aligning closely
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Table 4.8: Evaluation results (measured in Average Precision (AP)) on the AOT
test set and our real-world flight tests using corruptions as augmenta-
tions (Finetuned) and without (Base).

Method Dataset YOLOv5 YOLOv8 YOLOX RetinaNet Faster R-CNN DiffusionDet DETR CenterNet2
Base AOT 64.6 56.4 69.3 35.7 52.9 63.8 58.7 66.2

Finetuned AOT 65.6 56.1 66.4 36.1 51.2 62.4 58.1 64.3
Base real flights 37.3 24.8 32.7 14.2 29.0 28.5 33.4 38.9

Finetuned real flights 48.6 30.4 37.9 16.7 32.9 29.3 39.1 42.3

with theoretical expectations. These findings validate NEFELI as a high-
performance, vision-based detection and tracking system. Future work will
expand these tests with different aircraft types to further evaluate and en-
hance system capabilities.

4.5.3 Enhancing Generalization to Real Flights through
Fine-Tuning on Synthetic Corruptions Data

To improve the generalization of object detection models for real-world flight
scenarios, we employ a fine-tuning technique using synthetic corruptions as
data augmentations. This method introduces diverse and challenging condi-
tions, such as adverse weather, noise, and defocus, into the training process.
By exposing the models to these synthetic variations, they learn to adapt
to a broader range of environmental factors, enhancing their robustness
and performance in diverse and unforeseen conditions encountered during
real-world flight tests.

Table 4.8 presents the performance of object detectors evaluated on the
clean test set of AOT. The results compare models trained with original
datasets (first row) against those fine-tuned with synthetic corruptions (sec-
ond row). It is evident that the fine-tuned models maintain comparable
performance on the same domain (AOT test set), indicating that synthetic
corruptions do not negatively impact performance within the same dataset
domain.

Additionally, we assessed the fine-tuned and base object detectors on real-
world flight tests under varying weather conditions such as cloudy skies,
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light rain, and different lighting scenarios. As shown in Table 4.7, mod-
els trained with synthetic corruptions (fourth row) demonstrate greater ro-
bustness compared to their base counterparts (third row). Notably, the
fine-tuned YOLOv5 model shows an 11.3

4.5.4 Correlation between Robustness to Corruptions and Model
Generalization

Robustness to corruptions is intrinsically linked to the generalization capa-
bility of object detection models. Generalization denotes a model’s profi-
ciency in performing well on new, unseen data, which includes the ability to
manage variations and challenges encountered in real-world environments.
Robustness to corruptions measures how effectively a model preserves its
performance despite unexpected variations, such as adverse weather, noise,
or other distortions.

This correlation is exemplified by comparing the APcor values in Table 4.1
with the performance of base models in real-world flight tests (third row)
shown in Table 4.8. Object detectors like YOLOv5 and YOLOX, which
exhibit strong performance on the AOT-C dataset, also demonstrate ro-
bust generalization to challenging real-world flight conditions. An inter-
esting deviation from this pattern is CenterNet, which, despite not ex-
celling on corrupted data, surpasses other detectors in real-world flight
tests.

4.6 Discussion of Limitations and Failure Cases

NEFELI aims to advance autonomous aircraft missions by enabling au-
tomatic detection and tracking of non-cooperative aircraft. For NEFELI
to serve as an effective detect-and-avoid system, several components must
be integrated into its pipeline. This section highlights current limitations
and identifies key innovations needed to enhance the detection and tracking
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models, ensuring a robust and reliable computer vision system for non-
cooperative aircraft. Below is a non-exhaustive list of areas for future im-
provement:

1. Sensitivity to Extreme Environmental Conditions and Sensor
Noise: NEFELI’s performance can degrade under adverse weather
conditions such as heavy rain, fog, or snow, which impair visibility
and detection accuracy. Tests conducted in such conditions showed
decreased performance, indicating a need for improved models and
enriched datasets to address these challenges. Sensor noise, espe-
cially from cameras, can impact the algorithm’s robustness. Real-
world sensors may experience various types of noise or degradation,
leading to reduced detection performance. The algorithm currently as-
sumes high-quality and reliable sensor operation, but any degradation
can adversely affect detection accuracy. Diverse backgrounds, such
as complex industrial environments, pose additional challenges. NE-
FELI was primarily trained on data with specific backgrounds, and its
performance may not generalize well to significantly different settings.

2. Limited Field of View: The current implementation of NEFELI re-
lies on a limited field of view, potentially missing obstacles or intruders
outside this range. This limitation can result in blind spots where po-
tential hazards go undetected. To ensure comprehensive obstacle and
intruder detection, a 360-degree field of view is necessary. Integrat-
ing multiple sensors to provide a full surround view would enhance
NEFELI’s capability to detect and track objects from all directions,
reducing the risk of collisions.

By discussing these limitations and failure cases, we aim to provide a com-
prehensive understanding of NEFELI’s current capabilities and highlight
potential areas for future enhancement.
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4.7 Summary and Concluding Remarks

NEFELI represents a pioneering deep-learning approach for automatic air-
craft detection and tracking, with each component of the proposed pipeline
undergoing rigorous validation. The system’s real-world performance has
been thoroughly assessed, and the detection and tracking models have been
evaluated on benchmark datasets using standard machine learning metrics.
These evaluations position NEFELI as a robust and powerful system for
air-to-air aircraft detection and tracking.

Key innovations introduced by NEFELI in both detection and tracking
modules are designed for efficient implementation on an edge GPU. The
detection module incorporates a sliced inference technique that significantly
enhances detection accuracy. This technique allows the processing of high-
resolution images (3000 x 4000 pixels) on models trained with lower-resolution
images (640 x 640 pixels) without information loss, enabling aircraft detec-
tion over longer distances.

The tracking module presents two significant innovations. First, it intro-
duces a large-scale re-identification (Re-ID) dataset for training an appear-
ance model for aircraft tracking. Comparative analyses show that Re-ID
versions of the tracking models outperform those not trained on the Re-
ID dataset. Second, a novel tracking module combines a Re-ID appear-
ance model for high-confidence detections with a Kalman-filter-based mo-
tion model for low-confidence detections, ensuring tracking of even distantly
detected aircraft with low confidence.

In addition to these deep learning innovations, NEFELI features an opti-
mized software architecture that enables the implementation of demanding
computer vision models on an edge GPU. Real-world experiments validate
NEFELI’s capability to detect and track small UAVs at distances of up to
145 meters.

The ultimate aim of NEFELI is to provide essential information to the
aircraft’s control system for avoiding mid-air collisions with non-cooperative
aircraft. Planned enhancements include the incorporation of a collision
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estimation module based on monocular camera distance estimation from
tracked aircraft. This module will provide critical information for projecting
the movement of non-cooperative aircraft.

Future versions of NEFELI will expand the system’s operational domain
to include the intruder’s trajectory projection and automatic maneuvering.
Additionally, model uncertainty quantification is crucial for explainability,
aligning with aviation standardization bodies’ requirements for AI products
in the industry to gain certification.

In conclusion, NEFELI has established a strong foundation, with ongoing
efforts focused on enhancing capabilities, increasing system robustness, and
addressing challenges posed by adverse environmental conditions.

Another significant contribution of this thesis is the extensive experimental
evaluation involving eight diverse object detectors to explore performance
degradation under escalating levels of corruptions (domain shifts). Key
observations include: 1) One-stage detectors of the YOLO family demon-
strate better robustness, 2) Transformer-based and multi-stage detectors
like Faster R-CNN are extremely vulnerable to corruptions, and 3) Robust-
ness against corruptions is related to the generalization ability of models.
Additionally, fine-tuning on augmented synthetic data results in improve-
ments in the generalization ability of object detectors in real-world flight
experiments.
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Chapter 5

Conclusion

This PhD thesis has addressed pivotal challenges in image recognition,
healthcare AI applications, and aircraft detection and tracking, present-
ing innovative solutions and advanced system architectures that signifi-
cantly push the boundaries in these domains, particularly in terms of out-
of-distribution robustness.

In the field of image recognition, this research introduced the Contrastive
Uncertainty Domain Generalisation Network (CUDGNet). This cutting-
edge model enhances performance on unseen domains by expanding the
source capacity through a fictitious domain generator and utilizing con-
trastive learning to achieve domain-invariant representations for each class.
Extensive experiments on Single Source Domain Generalisation (SSDG)
datasets demonstrated that CUDGNet outperforms existing single-DG meth-
ods by up to 7.08%. Moreover, CUDGNet offers efficient uncertainty esti-
mation at inference time via a single forward pass through the generator
subnetwork, highlighting its practical applicability in real-world scenarios.
This contribution advances the robustness of image recognition models when
faced with diverse and unfamiliar domains, underscoring the potential of
CUDGNet in achieving reliable and generalizable performance.

In the healthcare AI sector, the thesis presented a sophisticated system
architecture for the rapid, secure, and scalable deployment of AI applica-
tions across heterogeneous computational environments. Central to this
architecture is the RACNet model for COVID-19 detection, which provides
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healthcare providers with an intuitive, end-to-end interface for uploading
DICOM images and receiving timely diagnostic outcomes accompanied by
detailed explanations validated by RACNet’s decision-making process. Fu-
ture work will focus on leveraging user feedback to refine and enhance RAC-
Net’s performance through iterative training and validation. This ongo-
ing evolution aims to bolster diagnostic accuracy, adaptability to emerging
clinical challenges, and overall user satisfaction within healthcare settings,
ensuring that the system remains at the forefront of medical AI applica-
tions.

The thesis also introduced NEFELI, a novel deep-learning approach for au-
tomatic aircraft detection and tracking. Each component of the proposed
NEFELI pipeline underwent rigorous validation, demonstrating superior
performance under real-world conditions. The detection and tracking mod-
els were evaluated on benchmark datasets using standard machine learning
metrics, positioning the NEFELI pipeline as a powerful system for air-to-
air aircraft detection and tracking. The detection module incorporates a
sliced inference technique that significantly enhances detection accuracy,
allowing the processing of high-resolution images (3000 x 4000 pixels) on
models trained with lower-resolution images (640 x 640 pixels) without in-
formation loss. This capability enables aircraft detection over much longer
distances.

The tracking module presents two significant innovations. Firstly, a large-
scale re-identification dataset was created and used to train an appearance
model for aircraft tracking, showing that Re-ID versions of the tracking
models outperform those not trained on the Re-ID dataset. Secondly, the
novel tracking module combines a re-identification appearance model for
high-confidence detections and a Kalman-filter-based motion model for low-
confidence detections, ensuring that even distantly detected aircraft with
low confidence are tracked. Apart from these deep learning innovations, this
work presents an optimized software architecture that allows the implemen-
tation of demanding computer vision models on an edge GPU. Real-world
experiments validate NEFELI’s capability to detect and track small UAVs
at distances of 145 meters.
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NEFELI aims to provide essential information to the aircraft’s control sys-
tem for making decisions to avoid mid-air collisions with non-cooperative
aircraft. Planned future enhancements include the incorporation of a col-
lision estimation module based on monocular camera distance estimation
from tracked aircraft, providing critical information for projecting the move-
ment of non-cooperative aircraft. Future versions of NEFELI will also ex-
pand the system’s operational domain to include intruder trajectory pro-
jection and automatic maneuvers. Additionally, model uncertainty quan-
tification is crucial for explainability, aligning with aviation standardiza-
tion bodies’ requirements for AI products in the industry to gain certifica-
tion.

In summary, this thesis has laid a strong foundation across multiple do-
mains, demonstrating significant advancements in model robustness, sys-
tem architecture, and real-world applicability. The ongoing efforts focus on
enhancing capabilities, increasing system robustness, and addressing chal-
lenges posed by adverse conditions, ensuring the continued relevance and
impact of the proposed solutions. This work contributes to the broader
field of AI by providing robust, scalable, and practical solutions for criti-
cal real-world problems, highlighting the potential for future research and
development in these areas.

5.1 Future Work

Moving forward, several key areas of research and development are identi-
fied to further advance the robustness, efficiency, and applicability of the
developed systems.

In the domain of image recognition, future efforts will focus on enhancing
model explainability, particularly for transformer-based networks. Explor-
ing methods to interpret and visualize the decision-making process of these
models will be crucial to build trust and transparency in their outputs across
various domains and applications.
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In healthcare AI, leveraging user feedback to iteratively refine and enhance
RACNet’s diagnostic capabilities will remain a cornerstone. This iterative
improvement process will involve gathering user insights from healthcare
providers to enhance diagnostic accuracy and usability. Concurrently, de-
veloping robust uncertainty quantification techniques and improving model
explainability will be critical to validate and justify RACNet’s decisions in
clinical settings.

For NEFELI, the future research will aim to develop a more generalizable
object detection framework capable of adapting to diverse operational envi-
ronments and conditions. This includes augmenting training datasets with
a wider range of scenarios and environmental conditions to improve model
robustness and generalization. Additionally, developing an efficient depth-
distance estimation model integrated with NEFELI’s pipeline will enhance
its ability to accurately assess the proximity of detected objects, crucial for
collision avoidance strategies.

Exploring advanced collision avoidance algorithms that integrate seamlessly
with NEFELI’s detection and tracking capabilities will be essential. These
algorithms will not only predict potential collisions but also autonomously
recommend or execute evasive maneuvers to ensure the safety of manned
and unmanned aircraft.

Furthermore, ensuring scalability and deployment readiness of these systems
across different platforms and operational scenarios will be a priority. This
involves optimizing software architectures for edge devices and cloud-based
deployments while adhering to industry standards and regulatory require-
ments in aviation and healthcare.

By addressing these future directions, the research aims to advance the
state-of-the-art in AI applications, particularly in image recognition, health-
care AI, and autonomous systems for aircraft detection and collision avoid-
ance, fostering safer and more reliable technological solutions in mission-
critical domains.
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Γλωσσάρι

Adversarial Data
Augmentation

Η διαδικασία περιλαμβάνει την παραγωγή νέων δεδο-

μένων από υπάρχοντα δεδομένα μέσω της προσθήκης

εχθρικών παραδειγμάτων. Αυτά τα εχθρικά παραδε-

ίγματα είναι τεχνητά δεδομένα που έχουν δημιουργη-

θεί με σκοπό να προκαλέσουν σφάλματα στους αλ-

γορίθμους, βοηθώντας έτσι στην ανθεκτικότητα και

την ικανότητα γενίκευσης των μοντέλων.

Artificial
intelligence (AI)

Τεχνητή Νοημοσύνη.

Anchor Set Σημεία αγκύρωσης για την ομαδοποίηση δεδομένων.

Αυτά τα σημεία βοηθούν στη σταθεροποίηση και

βελτίωση της διαδικασίας ομαδοποίησης..

Airborne Collision
Avoidance System
(ACAS)

Σύστημα Αποφυγής Εναέριων Συγκρούσεων.

Automatic
Dependent
Surveillance-
Broadcast
(ADS-B)

Αυτόματη Εξαρτώμενη Επιτήρηση-Μετάδοση.

Air-to-Air Object
Detection

Ανίχνευση αντικειμένων από αέρος σε αέρα.
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Aerial Object
Tracking

Ανίχνευση και παρακολούθηση αντικειμένων από α-

έρος.

Bayesian
meta-learning

Μπευζιανή Μετα-μάθηση.

Contrastive
learning

Αντιθετική μάθηση είναι μια τεχνική στη μηχανι-

κή μάθηση που χρησιμοποιείται για την εκμάθηση

χρήσιμων αναπαραστάσεων δεδομένων συγκρίνοντας

διαφορετικά ζεύγη παραδειγμάτων.

Convolutional
Neural Network
(CNN)

Συνελικτικό Νευρωνικό Δίκτυο.

Domain
Adversarial
Learning

Διαφορετική Μάθηση μέσω Αντιπαλότητας είναι μια

τεχνική μηχανικής μάθησης που χρησιμοποιείται για

να βελτιώσει την ικανότητα γενίκευσης ενός μο-

ντέλου σε διάφορους τομείς (δομαινς).

Domain
Generalization
(DG)

Γενίκευση Τομέα.

Digital Imaging
and
Communications in
Medicine (DICOM)
format

΄Ενα πρότυπο που χρησιμοποιείται ευρέως στον το-

μέα της ιατρικής απεικόνισης για την αποθήκευση,

την αναμετάδοση και την επεξεργασία ιατρικών ει-

κόνων και σχετικών δεδομένων..

High-Performance
Computing (HPC)

Αναφέρεται σε τεχνολογίες και τεχνικές που χρη-

σιμοποιούνται για την επίτευξη εξαιρετικά υψηλών

επιδόσεων υπολογισμού,.

Medical image
analysis (MedIA)

Ανάλυση ιατρικών εικόνων.
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Microservices
architecture

Αρχιτεκτονική μικροϋπηρεσιών είναι ένα στυλ αρχι-

τεκτονικής λογισμικού που διαχωρίζει μια εφαρμογή

σε μικρές, αυτόνομες υπηρεσίες που επικοινωνούν

μεταξύ τους μέσω καλά καθορισμένων διεπαφών.

Mid-air collision
(MAC)

Σύγκρουση στον αέρα.

Monocular
Distance
Estimation

Μονόφθαλμη εκτίμηση απόστασης αναφέρεται στη

διαδικασία υπολογισμού της απόστασης ενός αντι-

κειμένου από τον παρατηρητή χρησιμοποιώντας μια

μόνο κάμερα ή έναν μόνο φακό.

Out-of-distribution
(OOD)

Εκτός κατανομής.

Re-identification
Model

Μοντέλο επαναταυτοποίησης.

Recurrent Neural
Network (RNN)

Επαναλαμβανόμενο Νευρωνικό Δίκτυο.

Single-Source
Domain
Generalization
(SSDG)

Γενίκευση Τομέα απο μία μόνο πηγή.

Style transfer Είναι μια τεχνική στην υπολογιστική όραση και στην

τεχνητή νοημοσύνη που επιτρέπει τη μεταφορά του

στυλ ενός εικόνας σε μια άλλη, ενώ ταυτόχρονα δια-

τηρεί το περιεχόμενο της δεύτερης εικόνας.
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Synthetic Common
Corruptions

Δημιουργία ρεαλιστικών και ποικιλόμορφων συνθη-

κών με παραμορφώσεις για εκπαίδευση και αξιολόγη-

ση, βελτιώνοντας τη γενική απόδοση των συστη-

μάτων μηχανικής μάθησης και αναγνωστικών μο-

ντέλων.

Transformation
Component

Συστατικό Μετασχηματισμού.

UI/UX Αναφέρεται σε δύο αλληλένδετες πτυχές του σχε-

διασμού ψηφιακών προϊόντων και υπηρεσιών, κυρίως

εφαρμογών και ιστοσελίδων.

Uncertainty
Estimation

Εκτίμηση Αβεβαιότητας.

Unmanned aerial
vehicle (UAV)

Μη-επανδρωμένο αεροσκάφος.

Urban Advanced
Air Mobility
(AAM)

Αναφέρεται στην εφαρμογή προηγμένων τεχνολογι-

ών αεροπορίας για τη βελτίωση των μεταφορών και

της κινητικότητας μέσα σε αστικά περιβάλλοντα..
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