
AI-enhanced multiscale finite element
methods for forward and inverse

uncertainty quantification problems in
structural mechanics

By
Stefanos Christos Pyrialakos

School of Civil Engineering
Institute of Structural Analysis and Antiseismic Research

National Technical University of Athens

Supervisor: Professor Vissarion Papadopoulos

A thesis submitted for the degree of
Doctor of Philosophy



June, 2024

2





APPROVAL
PhD THESIS EXAMINATION COMMITTEE:

Professor Vissarion Papadopoulos
(Supervisor and Principal Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering

Professor Konstantinos Spiliopoulos
(Member Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering

Professor Nikolaos Lagaros
(Member Advisor of the Committee)

National Technical University of Athens
School of Civil Engineering





Professor Christos Zeris
(Member of the Examination Committee)
National Technical University of Athens

School of Civil Engineering

Professor Costas Charitidis
(Member of the Examination Committee)
National Technical University of Athens

School of Chemical Engineering

Associate Professor Michalis Fragiadakis
(Member of the Examination Committee)
National Technical University of Athens

School of Civil Engineering

Associate Professor Savvas Triantafyllou
(Member of the Examination Committee)
National Technical University of Athens

School of Civil Engineering



©2024 – Stefanos Christos Pyrialakos
all rights reserved.



To my parents and my brother.

i



ii



Acknowledgments

Undertaking this PhD has profoundly transformed my life, and I owe immense gratitude
to the many individuals who supported and guided me along the way.

First and foremost, I extend my heartfelt appreciation to my parents and my brother
for their unwavering belief in me and relentless encouragement to pursue my aspirations.
Their boundless support and unconditional love have been the cornerstone of my journey,
for which I am profoundly thankful.

The completion of this thesis owes much to the invaluable guidance, support, and
motivation provided by my supervisor, Professor Vissarion Papadopoulos. I am deeply
grateful for his patience, unwavering faith in my abilities, and his generosity in sharing
his time and wisdom. Above all, I am indebted to him for the exemplary leadership that
he has demonstrated over the years.

Beyond my supervisor, I extend my gratitude to the members of my thesis committee
for their insightful feedback and encouragement. I am particularly grateful to Emeritus
Professor Konstantinos Spiliopoulos and Professor Nikolaos Lagaros for their contribu-
tions to my supervision committee and their readiness to provide guidance whenever
needed.

My sincere thanks also go to my colleague, Dr. Ioannis Kalogeris, whose encouragement
and mentorship were instrumental during the journey of pursuing my doctoral degree.
Our conversations were always a wellspring of inspiration for me. I am also appreciative
of my esteemed colleagues of the MGroup research group for all the enriching discussions
and the fruitful collaborations, that provided me with valuable knowledge in a wide
spectrum of computational mechanics topics and expanded my way of thinking.

I gratefully acknowledge the funding received towards my Ph.D from the European
High Performance Computing Joint Undertaking, through the project Data driven compu-
tational mechanics at exascale (DCoMEX), under the call H2020-JTI, EuroHPC-2019-1,
Budget: 3.000.000 Euros, project’s duration 36 months and from the European Regional
Development Fund and Greek national Funds, through the project MATERIALIZE: an
integrated cloud platform for the simulation and standardization of high performance
materials and products, under the call Research-Create-Innovate, Budget: 762.955 Euros,
project’s duration 27 months.

iii



iv



AI-enhanced multiscale finite element methods for forward
and inverse uncertainty quantification problems in structural

mechanics

Abstract

Over recent decades, there has been growing interest in high-performance materials
tailored for complex engineering applications. By modifying material structures at fine
scales, exceptional properties such as enhanced mechanical strength, improved thermal
conductivity, and novel optical features can be achieved. To address the time-consuming
and costly experimentation on these materials, several computational techniques have
been developed. Among them, the multiscale computational homogenization method
via the well-established 𝐹𝐸2 algorithm has gained significant attention. Despite its
computational intensity, this algorithm is favored for its ability to reliably predict
the complex macroscopic behavior of multiscale material systems due to non-linear
phenomena at finer scales. However, identifying the parameters that characterize
material behavior at fine scales still remains a nontrivial undertaking. This thesis
presents a cost-efficient framework using machine learning strategies for implementing the
computational homogenization modeling approach on multi-query analyses investgating
fine-scale parameters. Novel computational methodologies are proposed for accurate and
efficient forward and inverse uncertainty quantification analyses on multiscale material
systems and are validated through real-world case studies.

First, this thesis presents a strategy for performing Bayesian inference on microscale
material properties using experimental observations from the visible structure. To
tackle the computational load of repeated 𝐹𝐸2 analyses, a feed-forward neural network
(FFNN) is used to emulate material behavior affected by microstructural parameters.
This is achieved by training the FFNN on a dataset from offline representative volume
element (RVE) solutions. Next, the thesis generalizes the 𝐹𝐸2 algorithm by employing
a sequence of FFNNs to represent different scales in the multiscale system, with each
FFNN learning the constitutive law of its corresponding length scale. This results in
a FFNN that emulates macroscopic behavior by incorporating mechanisms from each
finer scale. Based on this scheme, the thesis, subsequently, proposes a methodology to
identify optimal typologies of nanocomposite materials for desirable structural responses
under uncertain conditions. Finally, a hierarchical Bayesian framework is introduced
to utilize disjoint experimental measurements in multiscale material systems for joint
parameter inference. This framework integrates experimental data from different scales
and material compositions to yield informed parameters for future model predictions.

v



ΠΕΡΙΛΗΨΗ ΤΗΣ
ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ

με τίτλο

‘Μέθοδοι πεπερασμένων στοιχείων σε πολλαπλές κλίμακες

ενισχυμένες με ΑΙ για ευθέα και αντίστροφα προβλήματα

ποσοτικοποίησης αβεβαιότητας στη δομική μηχανική’
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΄Ενα μεγάλο πλήθος υλικών που χρησιμοποιούνται στην επιστήμη του μηχανικού αλλά

και γενικότερα στην καθημερινή ζωή είναι σύνθετα. Ως σύνθετα χαρακτηρίζονται τα υλικά

που συντίθενται από δύο ή περισσότερες φάσεις συστατικών υλικών τα οποία λόγω της

ισχυρής σύνδεσης μεταξύ τους σχηματίζουν ένα ενιαίο σώμα. Σύνθετα υλικά συναντώνται

είτε αυτούσια στη φύση όπως το ξύλο και τα οστά είτε κατασκευάζονται από τον άνθρωπο

όπως το σκυρόδεμα. Οι συνεχώς αυξανόμενες απαιτήσεις για υλικά υψηλών αποδόσεων

με εξειδικευμένες μηχανικές, θερμικές, ηλεκτρικές κ.α. ιδιότητες έχει αποτελέσει ισχυρό

κίνητρο για την εξερεύνηση και δημιουργία νέων σύνθετων υλικών τόσο στην έρευνα αλλά

και στην βιομηχανία. Ως απόρροια αυτής της στοχευμένης προσπάθειας, ένα μεγάλο πλήθος

υποσχόμενων υλικών έχει αναδειχθεί τις τελευταίες δεκαετίες, συμπεριλαμβανομένων των

ενισχυμένων υλικών με παράγωγα γραφίτη όπως νανοσωλήνες άνθρακα, ανθρακόνημα και

γραφένιο.

Ο χαρακτηρισμός των ιδιοτήτων των σύνθετων υλικών είναι συνήθως μια επίπονη διαδικα-

σία. Αυτό αποδίδεται στο γεγονός του ότι θα πρέπει να ληφθούν υπόψη τόσο τα επιμέρους

χαρακτηριστικά και οι ιδιότητες των συστατικών υλικών των σύνθετων καθώς και το απο-

τέλεσμα της αλληλεπίδρασης τους. Λόγω αυτού, ο σχηματισμός του μηχανικού αλλά και

γενικότερα του μαθηματικού προβλήματος είναι ένα δύσκολο έργο το οποίο μελετάται ήδη

περισσότερο από έναν αιώνα. Οι πρώτες προσπάθειες για την εύρεση της ενιαίας μηχανικής

μακροσκοπικής συμπεριφοράς των συνθέτων υλικών έγιναν τον 18ο αιώνα με τις κομβικές

εργασίες των Voigt [132] και Reuss [109]. Μέσα από τις εργασίες αυτές συντίθεται ο
κανόνας των μιγμάτων (rule of mixtures), όπου είτε κάνοντας την υπόθεση του σταθερού
πεδίου παραμόρφωσης στην πρώτη περίπτωση, είτε του σταθερού πεδίου τάσης στη δεύτερη

περίπτωση, μπορούν να υπολογιστούν ενιαίες υλικές ιδιότητες. Οι παραδοχές της σταθερής

παραμόρφωσης και αντίστοιχα της σταθερής τάσης, παρ΄ όλα αυτά, δεν ανταποκρίνονται σε

ρεαλιστικά σενάρια και συνεπώς τα μοντέλα αυτά δε μπορούν να κάνουν καλή πρόβλεψη των

ομογενοποιημένων χαρακτηριστικών σε περίπλοκα σύνθετα συστήματα. Στην προσπάθεια

βελτίωσης των πρώτων αυτών αποπειρών, προτάθηκαν διάφορες μέθοδοι οι οποίες βασίστη-

καν στην λογική του ελλειψοειδούς εγκλείσματος Eshelby [32]. Με βάση τις τεχνικές

αυτές μπορούν να προκύψουν προσεγγιστικές λύσεις του ενιαίου προβλήματος, μέσω της

θεώρησης ότι υπάρχει πλήρης απουσία ή ασθενής αλληλεπίδραση μεταξύ των εγκλεισμάτων.

Βελτιώσεις αυτής της τεχνικής, με στόχο την αντιμετώπιση των ανακριβειών που δημιουργεί

η παραδοχής της μη αλληλεπίδρασης, προτάθηκαν από τον Hill [56] και Budiansky [14] με
την εισαγωγή των ”Self Consistent” μεθόδων, αλλά και της ”Generalized Self-Consistent”
μεθόδου [20] από τον Christensen.
΄Ολες οι προαναφερθείσες μέθοδοι βασίζονται σε κάποιες προσεγγίσεις και σε φαινομε-

νολογικές θεωρήσεις για το ετερογενές πρόβλημα. Παρόλο που μέσω τέτοιων παραδοχών

επιτυγχάνεται η επίλυση του προβλήματος με μικρό υπολογιστικό κόστος μέσω αναλυτικών

ή ημι-αναλυτικών εκφράσεων, οι προβλέψεις τους σε πολλές περιπτώσεις απέχουν αξιο-

σημείωτα από την πραγματικότητα. Μέσα από την ραγδαία αύξηση των υπολογιστικών

δυνατοτήτων, έχει κατοχυρωθεί τα τελευταία χρόνια πως ο πιο αξιόπιστος τρόπος για την

εύρεση των ομογενοποίημενων χαρακτηριστικών οποιουδήποτε σύνθετου υλικού συστήμα-
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τος είναι μέσω της επίλυσης ενός προβλήματος οριακής τιμής (boundary value problem)
στην μικροκλίμακα. Αυτή η μεθοδολογία έχει καθιερωθεί στην βιβλιογραφία ως υπολο-

γιστική ομογενοποίηση (computational homogenization). Οι πρώτες απόπειρες για την
επίλυση του μικροσκοπικού γραμμικού αριθμητικού προβλήματος με την μέθοδο των πεπε-

ρασμένων στοιχείων έγιναν το 1987 από τον Suquet [123]. Η επέκταση της υπολογιστικής
ομογενοποίησης σε μη γραμμικά συστήματα πολλαπλών κλιμάκων έχει γίνει πιο πρόσφατα

συμβαδίζοντας με την πολύ ισχυρή σύγχρονη υπολογιστική ισχύ. Οι μέθοδοι πολλαπλών

κλιμάκων (multiscale methods) ή πολλαπλών επιπέδων (multilevel methods) όπως έχουν
καθιερωθεί, έχουν την δυνατότητα να επιλύουν πολύπλοκα μη-γραμμικά προβλήματα που

περιγράφουν εκλεπτυσμένα σύνθετα υλικά. Συγκεκριμένα, οι μέθοδοι μη γραμμικής υπο-

λογιστικής ομογενοποίησης χρησιμοποιούν ένα εμφωλευμένο σχήμα σύμφωνα με το οποίο

δημιουργείται μια σταθερή επικοινωνία μεταξύ των διαφορετικών κλιμάκων κατά τη διάρκεια

της επίλυσης. Μια από τα πιο αξιοσημείωτες μεθόδους που εφαρμόζουν τη λογική της

εμφώλευσης είναι ο αλγόριθμος 𝐹𝐸2
, όπως έχει κατοχυρωθεί από τον Feyel [35], ο οποίος

έχει ως βάση την ταυτόχρονη ανάλυση πεπερασμένων στοιχείων και στις δύο κλίμακες του

συζευγμένου συστήματος. Η μεγάλη ακρίβεια που προσφέρουν αυτές οι μέθοδοι έχουν οδη-

γήσει στην επέκταση της χρήσης τους πέρα από μηχανικά προβλήματα και στην διερεύνηση

άλλων φυσικών φαινομένων (π.χ. θερμότητας και ηλεκτρισμού) καθώς και πολυ-φυσικών

προβλημάτων (π.χ. πιεζοηλεκτρικότητας). Οι εμφωλευμένες προσεγγίσεις θεωρούνται ως

οι πιο ακριβείς για την πρόβλεψη της εξέλιξης ενός σύνθετου υλικού, ωστόσο, ένα σημα-

ντικό μειονέκτημα που τους αποδίδεται είναι οι τεράστιες υπολογιστικές απαιτήσεις τους,

οι οποίες σε πολλές περιπτώσεις μπορεί να είναι και απαγορευτικές. Με βάση τα παραπάνω,

ένας βασικός προσανατολισμός της παρούσας διατριβής είναι η αξιοποίηση της ισχυρής προ-

γνωστικής ικανότητας των εμφωλευμένων σχημάτων στις αναλύσεις πολλαπλών κλιμάκων.

Στη συνέχεια περιγράφεται συνοπτικά το μηχανικό πρόβλημα πολλαπλών κλιμάκων:

Η ισχυρή διατύπωση της εξίσωσης στατικής ισορροπίας ενός ελαστικού σώματος 𝑀 το

οποίο τοποθετείται στη μακροσκοπική δομική κλίμακα και ορίζεται σε έναν πεδίο Ω𝑀 ⊂ 𝑅3

έχει τη μορφή:

∇𝑀 · 𝜎𝑀 = 𝑏𝑀 𝜎𝜏𝑜 Ω𝑀 (1)

Η καταστατική σχέση για το μακροσκοπικό πρόβλημα εκφράζεται μέσω της γενικής

μορφής:

𝜎𝑀 (𝑡) = 𝜎𝑀{𝜖𝑀 (𝑡),𝜃𝑀 (𝑡), 𝑡 ∈ [0, 𝑡]} (2)

όπου το 𝑡 δηλώνει τον ψευδοχρόνο στην περίπτωση μιας ψευδοστατικής ανάλυσης και το
𝑡 την ιστορική εξάρτηση της συμπεριφοράς του υλικού. Επιπλέον, το 𝜃𝑀 χρησιμοποιείται
για να δηλώσει ένα σύνολο εσωτερικών μεταβλητών που χαρακτηρίζουν την κατάσταση του

υλικού (π.χ. πλαστικότητα, θραύση) και παραμέτρους του υλικού μοντέλου. Στο πλαίσιο

της ανάλυσης πολλαπλών κλιμάκων όπως ορίζεται από την υπολογιστική ομογενοποίηση,

η εξ. (2) δεν έχει ρητή συναρτησιακή μορφή. Αντίθετα, αυτή η σχέση προκύπτει μέσω
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της επίλυσης ενός προβλήματος οριακής τιμής που επιβάλλεται από ένα αντιπροσωπευτικό

στοιχείο όγκου (Representative Volume Element - RVE) , το οποίο περιγράφει τη δομή
της λεπτής κλίμακας, όπως παρουσιάζεται στο σχήμα 1.

Η λεπτή κλίμακα μπορεί να αντιπροσωπεύει διαφορετικές κλίμακες μήκους, ωστόσο η

διαμόρφωση της γενικεύεται συνήθως ως πρόβλημα μικροκλίμακας. Η ισχυρή διατύπωση

της εξίσωσης στατικής ισορροπίας απουσία ογκομετρικών δυνάμεων εκφράζεται ως:

∇𝜇𝜎𝜇 = 0 𝜎𝜏𝑜 Ω𝜇 (3)

Η καταστατική σχέση για το πρόβλημα της μικροκλίμακας γράφεται ως:

𝜎𝜇(𝑡) = 𝜎𝜇{𝜖𝜇(𝑡),𝜃𝜇(𝑡), 𝑡 ∈ [0, 𝑡]} (4)

όπου το 𝜃𝜇 συμπεριλαμβάνει υλικές παραμέτρους της μικροκλίμακας.

BVP
solution

Μ

Μ

ε ,  α
   

Μ

Μ

σ   ,  C

MΩ

M
ΓD

MΓN

mΩ

mΩ

Σχήμα 1: Μετάβαση μεταξύ των κλιμάκων όπως ορίζεται από την υπολογιστική

ομογενοποίηση

Σύμφωνα με την αρχή του διαχωρισμού των κλιμάκων, η θεωρία της ομογενοποίησης

μπορεί να εφαρμοστεί αποτελεσματικά εάν ισχύει η ακόλουθη σχέση:

𝜆𝜇 ≪ 𝜆𝑅𝑉 𝐸 ≪ 𝜆𝑀 (5)

όπου 𝜆𝜇, 𝜆𝑅𝑉 𝐸 , 𝜆𝑀 είναι οι κλίμακες μήκους των διακυμάνσεων του μικροσκοπικού πεδίου,
του μεγέθους RVE και των διακυμάνσεων του μακροσκοπικού πεδίου, αντίστοιχα.
Για την σύνδεση του συστήματος που ορίζεται από τις δύο κλίμακες, στη μικροκλίμακα

πρέπει να δοθούν οριακές συνθήκες που είναι συνεπείς με την απόκριση της μακροδομής.

Για το σκοπό αυτό, το πεδίο μετατόπισης 𝑢𝜇(𝑥) συσχετίζεται με την παραμόρφωση 𝜖𝑀

ενός σημείου μακροσκοπικού υλικού μέσω της σχέσης:
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𝑢𝜇 = 𝜖𝑀 · 𝑥𝜇 + �̃�𝜇 (6)

όπου �̃�𝜇 είναι το πεδίο διακύμανσης μετατόπισης που αποδίδεται στην ετερογένεια της μι-
κροδομής. Μία επιλογή που πληροί αυτήν την απαίτηση και χρησιμοποιήθηκε στην παρούσα

διατριβή είναι ο περιορισμός του �̃�𝜇 στο όριο του RVE, δίνοντας στην εξ. (6) την τελική
μορφή:

𝑢𝜇 = 𝜖𝑀𝑥𝜇 𝜎𝜏𝛼 𝑥𝜇 ∈ Γ𝜇 (7)

Στην υπολογιστική ομογενοποίηση, η τοπική μεταβολή του μακροσκοπικού έργου συν-

δέεται με τη μεταβολή του μικροσκοπικού έργου ανά μονάδα όγκου μέσω της σχέσης ενερ-

γειακής συνέπειας Hill-Mandell.

𝜎𝑀 : 𝛿𝜖𝑀 =
1

‖Ω𝜇‖

∫︁
Ω𝜇
𝜎𝜇 : 𝛿𝜖𝜇𝑑Ω𝜇 (8)

Με βάση την εξ. (8) και μετά από την εκτέλεση κάποιων αλγεβρικών πράξεων προκύπτει

η σχέση που ορίζει τον κανόνα ομογενοποίησης, δηλαδή την μετάβαση από την μικροκλίμακα

στην μακροκλίμακα, ως:

𝜎𝑀 =
1

‖Ω𝜇‖

∫︁
Γ𝜇
𝜏𝜇 ⊗ 𝑥𝜇𝑑Γ𝜇 =

1

‖Ω𝜇‖

∫︁
Ω𝜇
𝜎𝜇𝑑Ω𝜇 (9)

όπου το πεδίο τάσεων 𝜎𝜇 μπορεί να αποκτηθεί μετά την επίλυση του προβλήματος της
οριακής τιμής (BVP) που επιβάλλεται στο RVE σύμφωνα με τον κανόνα τοπικοποίησης
(localization), που περιγράφεται από την εξ. (7) .
Επιπλέον, το εφαπτομενικό μητρώο που ορίζει τον καταστατικό νόμο στην εξ. (2) για

το εκάστοτε μακροσκοπικό σημείο υλικού ορίζεται ως:

𝐶𝑀 =
1

‖Ω𝜇‖
𝜕𝜖𝑀

∫︁
Ω𝜇
𝜎𝜇𝑑Ω𝜇 (10)

Με βάση τη σύνδεση μεταξύ της μικροκλίμακας και της μακροκλίμακας όπως ορίζεται από

την υπολογιστική ομογενοποίηση, ο αλγόριθμος 𝐹𝐸2
[35] χρησιμοποιείται για τη συνεχή

αλληλεπίδραση μεταξύ των δύο κλιμάκων κατά την επίλυση ενός μακροσκοπικού σύνθετου

συστήματος. Σύμφωνα με αυτόν τον αλγόριθμο, για κάθε αύξηση του φορτίου της μα-

κροδομής, η μακροσκοπική τάση 𝜖𝑀 υπολογίζεται σε κάθε σημείο ολοκλήρωσης όλων των
πεπερασμένων στοιχείων, όπου ορίζεται ένα μοναδικό RVE. Στην συνέχεια, εφαρμόζεται
το σχήμα ομογενοποίησης που περιγράφηκε προηγουμένως, όπου επιλύεται το RVE και
αποκτάται η μακροσκοπική τάση 𝜎𝑀 και το εφαπτομενικό μητρώο 𝐶𝑀

στο εκάστοτε ση-

μείο ολοκλήρωσης. Μέσω αυτών τον ποσοτήτων, μπορεί να υπολογιστεί το μακροσκοπικό

διάνυσμα εσωτερικής δύναμης 𝐹𝑀
𝑖𝑛𝑡(𝜎

𝑀 ) και ο πίνακας εφαπτομενικής ακαμψίας𝐾𝑀 (𝐶𝑀 ).
Αυτή η διαδικασία επαναλαμβάνεται έως ότου η εσωτερική δύναμη γίνει ισοδύναμη με την

εξωτερική δύναμη 𝐹𝑀
𝑒𝑥 σε όλο τον μακροσκοπικό φορέα.
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Οι μέθοδοι μη γραμμικής υπολογιστικής ομογενοποίησης παρότι είναι αδιαμφισβήτητα

οι πλέον ιδανικές για την πρόβλεψη οποιασδήποτε υλικής συμπεριφοράς, δεν έχουν υιοθε-

τηθεί ακόμη πλήρως από την επιστημονική κοινότητα. Αυτό οφείλεται στο γεγονός ότι

το υπολογιστικό κόστος που απαιτεί μια ανάλυση κάνοντας χρήση τους είναι υπέρογκο,

στην πλειονότητα των περιπτώσεων. Στην προσπάθεια εύρεσης απαντήσεων σε αυτήν την

τροχοπέδη, έχουν γίνει εκτεταμένες διερευνήσεις σχετικά με την χρήση υποκατάστατης

μοντελοποίησης (surrogate modeling) για την πρόβλεψη της μακροσκοπικής υλικής συμπε-
ριφοράς. Η υιοθέτηση υποκατάστατων μοντέλων σε αυτήν την περιοχή της έρευνας, έχει

ως στόχο την σημαντική μείωση ή ακόμη και αντικατάσταση της πολύ δαπανηρής επίλυσης

της εξίσωσης της ομογενοποίησης όπως αυτή ορίζεται από την υπολογιστική ομογενοπο-

ίηση. Διαφορετικές μέθοδοι έχουν χρησιμοποιηθεί στην βιβλιογραφία προς επίτευξη αυτού

του στόχου, όπως τεχνικές μείωσης τάξης μοντέλου (model order reduction) π.χ.proper
orthogonal decomposition και autoencoders αλλά και εξομοιωτές εξισώσεων πχ. feed
forward neural networks και Gaussian process regression. Στην παρούσα διατριβή γίνεται
αξιοποίηση τεχνικών μηχανικής μάθησης για τη δημιουργία υποκατάστατης μοντελοποίησης

με στόχο την αποδοτική επίλυση των εξαιρετικά απαιτητικών προβλημάτων που μελετώνται.

Εκτός από τον υπολογιστικό σχεδιασμό νανοσύνθετων υλικών, αυτά τα υλικά συχνά

έχουν πολλές αβεβαιότητες που εντοπίζονται στη μικροδομή τους, όπως η μορφολογία, οι

μηχανικές ιδιότητες των επιμέρους υλικών καθώς και οι ιδιότητες αλληλεπίδρασής τους.

Ο πειραματικός μικροδομικός χαρακτηρισμός των υλικών αυτών είναι ένα πολύ δύσκολο

και κοστοβόρο έργο καθώς απαιτείται εκλεπτυσμένος εργαστηριακός εξοπλισμός. Από

την άλλη, υπάρχουν εξειδικευμένες υπολογιστικές τεχνικές για την επίλυση αντίστροφων

προβλημάτων, δηλαδή την παραμετρική ταυτοποίηση μοντέλων μέσω πραγματικών μετρήσε-

ων. Μια από τις πιο διαδεδομένες μεθόδους είναι η Μπεϋζιανή επικαιροποίηση (Bayesian
Update) σύμφωνα με την οποία οι παράμετροι του μοντέλου μοντελοποιούνται ως τυχα-
ίες μεταβλητές και μέσω της εφαρμογής του κανόνα Bayes οι εκ των υστέρων κατανομές
τους μπορούν να προσδιοριστούν με βάση τα διαθέσιμα δεδομένα. Πέρα από τον χαρα-

κτηρισμό τέτοιων υλικών, μια εξίσου σημαντική πρόκληση είναι και η εύρεση βέλτιστων

τυπολογιών, ως προς την διάταξη των εγκλεισμάτων, που να μπορούν να προσδώσουν σε

μία κατασκευή στοχευμένες μηχανικές ιδιότητες, ιδιαίτερα υπό το πρίσμα αβεβαιοτήτων π.χ.

στο υλικό ή στην εξωτερική φόρτιση. Μια περαιτέρω κατεύθυνση της παρούσας διατριβής

είναι η ανάπτυξη υπολογιστικών μεθοδολογιών που θα μπορούν να απαντήσουν στα ανω-

τέρω ερωτήματα με μεγάλη ακρίβεια αλλά και με μικρό υπολογιστικό φόρτο. Συγκεκριμένα,

μέσα από την διερεύνηση των μηχανικών ιδιοτήτων ενός συγκεκριμένου τύπου νανοσύνθε-

του υλικού δηλαδή τα υλικά ενισχυμένα με νανοσωλήνες άνθρακα, φιλοδοξία της διατριβής

είναι η ανάπτυξη γενικευμένων αριθμητικών σχημάτων που θα μπορούν να εφαρμοστούν

σε αναλύσεις ποσοτικοποίησης αβεβαιότητας σε οποιαδήποτε υλικό, αλλά και στην μελέτη

διαφορετικών φυσικών φαινομένων.

Στο πρώτο στάδιο της διατριβής προτείνεται μια νέα μέθοδος βασισμένη στην Μπεϋζια-

νή επικαιροποίηση για παραμετρική διερεύνηση νανοσύνθετων υλικών. Συγκεκριμένα το

ενδιαφέρον εστιάζεται στην εκμάθηση των παραμέτρων που χαρακτηρίζουν τη διεπαφή
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CNT/πολυμερούς στη μικροκλίμακα με δεδομένα διαθέσιμα από τις ανώτερες κλίμακες.
Αυτές οι παράμετροι συνδέονται με μεγάλες αβεβαιότητες και ο χαρακτηρισμός τους ε-

ίναι δύσκολο έργο, καθώς οι μετρήσεις στη μικροκλίμακα είναι δαπανηρές και δύσκολο να

ληφθούν. Για να ξεπεραστεί αυτό, η παρούσα μελέτη εισάγει ένα υπολογιστικό πλαίσιο

για την ενημέρωση των προηγούμενων πεποιθήσεων σχετικά με τις τιμές αυτών των παρα-

μέτρων, χρησιμοποιώντας μετρήσεις μετατοπίσεων που λαμβάνουν χώρα στην μέση και/ή

στην μακροκλίμακα που χαρακτηρίζουν το εξεταζόμενο σύνθετο υλικό. ΄Οσον αφορά τη

μοντελοποίηση, η διεπαφή CNT/πολυμερούς διαμορφώνεται χρησιμοποιώντας ένα μοντέλο
συνεκτικής ζώνης και έναν διγραμμικό καταστατικό νόμο δεσμού-ολίσθησης. Στη συνέχεια,

η μέθοδος 𝐹𝐸2
χρησιμοποιείται για την πρόβλεψη της απόκρισης των κατασκευών. ΄Οπως

έχει αναφερθεί, παρά την ακρίβειά της, αυτή η μέθοδος συνδέεται με τεράστιες υπολογιστι-

κές απαιτήσεις όταν εφαρμόζεται σε μεγάλα προβλήματα. Επομένως, η εφαρμογή της στα

πλαίσια της Μπεϋζιανής επικαιροποίησης η οποία απαιτεί πολλαπλές αξιολογήσεις μοντέλων

είναι απαγορευτική. Για να μετριαστεί αυτό το τεράστιο κόστος, αναπτύχθηκε μια τεχνι-

κή υποκατάστατης μοντελοποίησης που χρησιμοποιεί τεχνητά νευρωνικά δίκτυα, τα οποία

εκπαιδεύονται στο να προβλέπουν τη μη γραμμική σχέση τάσης-παραμόρφωσης όπως προ-

κύπτει από την ανάλυση στοιχείων αντιπροσωπευτικού όγκου της μικροδομής. Το σύνολο

δεδομένων στο οποίο εκπαιδεύεται το νευρωνικό δίκτυο, λαμβάνεται με την ανάλυση ενός

περιορισμένου αριθμού διαφορετικών διαμορφώσεων RVE χρησιμοποιώντας λεπτομερείς α-
ναλύσεις πεπερασμένων στοιχείων.

Συγκεκριμένα, οι τρεις παράμετροι που περιγράφουν τη διεπιφανειακή σχέση μεταξύ των

CNT και της μήτρας πολυμερούς επιλέγονται ως τυχαίες παράμετροι προς ενημέρωση. Αυ-
τές είναι η διεπιφανειακή διατμητική αντοχή 𝜏1,𝑠, η ελαστική κλίση 𝐷𝑒𝑙 πριν από την ολίσθη-

ση και η πλαστική κλίση 𝐷𝑝𝑙 εφόσον έχει ξεπεραστεί η 𝜏1,𝑠, δηλαδή, 𝜃 = (𝜏1,𝑠, 𝐷𝑒𝑙, 𝐷𝑝𝑙).
Ο νόμος διεπαφής απεικονίζεται στο σχήμα 2. Επιπλέον, τα μηχανικά μοντέλα που διε-

ρευνώνται είναι σύνθετες κατασκευές ενισχυμένες με CNT και οι προβλέψεις μοντέλων
M(𝜃) για δεδομένες πραγματοποιήσεις του 𝜃 λαμβάνονται με την επίλυση του προβλήματος
πολλαπλών κλιμάκων με FEM. Επίσης, τα δεδομένα 𝐷 που συλλέγονται περιλαμβάνουν
μετρήσεις μετατοπίσεων σε καθορισμένες θέσεις της μακροδομής.

Σύμφωνα με την Μπεϋζιανή επικαιροποίηση το αντίστροφο πρόβλημα διατυπώνεται μέσω

ενός πιθανοτικού πλαισίου. Ακολουθώντας την πιο κοινή προσέγγιση του προσθετικού

σφάλματος, η σχέση μεταξύ των μετρούμενων δεδομένων και των προβλέψεων του μοντέλου

ποσοτικοποιείται μέσω της έκφρασης:

𝑦𝑖(𝜃) =𝑚𝑖(𝜃) + 𝜖𝑖 𝑖 = 1, ...,𝐾 (11)

όπου κάθε 𝜖𝑖 υποδηλώνει τον όρο σφάλματος που εκφράζεται συνήθως ως τυχαία με-
ταβλητή με μια κανονική συνάρτηση πυκνότητας πιθανότητας ∼ N(0,Σ𝑖). Ο πίνακας δια-
κύμανσης Σ𝑖

ενσωματώνει το μέγεθος του σφάλματος πρόβλεψης του μοντέλου 𝑀 𝑖
και τα

σφάλματα των πειραματικών παρατηρήσεων 𝐷𝑖
. Ο όρος 𝑦𝑖 αντιπροσωπεύει την έξοδο του

στοχαστικού ευθέου μοντέλου 𝑌 𝑖
από όπου παράγονται τα δεδομένα 𝐷𝑖

.
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Σχήμα 2: Διγραμμικός καταστατικός νόμος της ολίσθησης μεταξύ CNT και μήτρας

Συγκεκριμένα το πρόβλημα της Μπεϋζιανής επικαιροποίησης ορίζεται ως η αναζήτηση

μιας εκ των υστέρων κατανομής (posterior distribution) 𝑃 (𝜃|𝐷) μέσω της σχέσης:

𝑃 (𝜃|𝐷) =
𝑃 (𝐷|𝜃)𝑃 (𝜃)

𝑃 (𝐷)
=

𝜋(𝐷|𝜃)𝑃 (𝜃)∫︀∞
−∞

∫︀∞
−∞ ...

∫︀∞
−∞ 𝜋(𝐷|𝜃)𝑃 (𝜃)𝑑𝜃1𝑑𝜃2...𝑑𝜃𝑛

(12)

όπου το 𝑃 (𝜃) είναι η εκ των προτέρων κατανομή (prior distribution), δηλαδή οι προηγο-
ύμενες πεποιθήσεις σχετικά με την πιθανολογική φύση των παραμέτρων. Στην περίπτωση

που δεν μπορούν να γίνουν εκ των προτέρων υποθέσεις, συνήθως εφαρμόζονται μη ενη-

μερωτικές κατανομές, όπως η ομοιόμορφη κατανομή. Ο όρος 𝑃 (𝐷) ονομάζεται απόδειξη
(evidence) και είναι ουσιαστικά ένα πολυδιάστατο ολοκλήρωμα, αφού περιλαμβάνει τον υ-
πολογισμό της περιθωριοποίημένης εκ των υστέρων κατανομής ως προς τον παραμετρικό

χώρο. Ο όρος 𝜋(𝐷|𝜃) υποδηλώνει την πιθανοφάνεια (likelihood) του 𝐷 για δεδομένες
τιμές 𝜃 και ποσοτικοποιεί την ομοιότητα μεταξύ των δεδομένων και των προβλέψεων του
μοντέλου με στοχαστικό τρόπο. Στην εξ. (12), ο αναλυτικός υπολογισμός του 𝑛-διάστατου
ολοκληρώματος στον παρονομαστή δεν είναι εφικτός στη γενική περίπτωση.

Προκειμένου να αντληθούν δείγματα αποτελεσματικά από την εκ των υστέρων κατανομή,

χρησιμοποιείται η τεχνική Markov Chain Monte Carlo (MCMC), σύμφωνα με την οποία
παρακάμπτεται ο υπολογισμός του παρανομαστή της εξ. (12) και γίνεται δειγματοληψία μόνο

από τον αριθμητή. Συγκεκριμένα, ο αλγόριθμος Metropolis-Hastings (MH) επιλέχθηκε σε
αυτή τη μελέτη, ωστόσο, μπορεί στη θέση αυτού να εφαρμοστεί οποιοσδήποτε άλλοςMCMC
αλγόριθμος. Η σχηματική αναπαράσταση των αλγοριθμικών βημάτων του προτεινόμενου

σχήματος Μπεϋζιανής επικαιροποίησης σε συστήματα πολλαπλών κλιμάκων απεικονίζεται

στο σχήμα 3.

Ο υπολογισμός της συνάρτησης πιθανοφάνειας 𝜋(𝐷|𝜃′) απαιτεί την επίλυση του μο-
ντέλου M για τις προτεινόμενες τιμές παραμέτρων 𝜃′ σε κάθε επανάληψη του MH αλγο-
ρίθμου. Στα προβλήματα που μελετήθηκαν σε αυτή την εργασία, οι επιλύσεις μοντέλων
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Calculate likelihood 
function π(ω|θ’)

Draw candidate 
sample θ’ from g(θ’|θ)

Accept(θ’    θ)
Reject(θ    θ)

θ

θ’

M(θ’)

π(ω|θ’)

θ = θ0

Initialize

θ’ Μ(θ’)

Solve Macroscale Model

Σχήμα 3: Μπεϋζιανή επικαιροποίηση σε συστήματα πολλαπλών κλιμάκων χρησιμοποιώντας

τον αλγόριθμο Metropolis-Hastings

είναι ιδιαίτερα χρονοβόρες και η άμεση εφαρμογή του αλγορίθμου MH θα ήταν ανέφικτη.
Για την αντιμετώπιση αυτού του ζητήματος, προτείνεται να δημιουργηθεί ένα υποκατάστατο

μοντέλο που θα αναπαράγει τη σχέση τάσης-παραμόρφωσης όπως ορίζεται από το RVE με
χαμηλό κόστος. Με αυτό το τρόπο επιτυγχάνεται δραστική επιτάχυνση των επιλύσεων του

μοντέλου για τις εκάστοτε τιμές παραμέτρων 𝜃′ .
Συγκεκριμένα, αναπτύσσεται ένα FFNN του οποίου ο στόχος είναι να μάθει τη μη γραμ-

μική εξίσωση στο σχήμα ομογενοποίησης του RVE, για διαφορετικές παραμέτρους της
διεπαφής CNT/μήτρας. Οι νευρώνες εισόδου του αποτελούνται από το μακροσκοπικό δι-
άνυσμα παραμόρφωσης 𝜖 μαζί με τις τρεις παραμέτρους διεπαφής 𝜃 = (𝜏1,𝑠, 𝐷𝑒𝑙, 𝐷𝑝𝑙), ενώ
οι νευρώνες εξόδου είναι οι τιμές του διανύσματος μακροσκοπικής τάσης 𝜎. Λόγω της συμ-
μετρίας των τανυστών 𝜖 και 𝜎, ο κάθε ένας χαρακτηρίζεται από 3 άγνωστες μεταβλητές
για 2D προβλήματα και 6 μεταβλητές για 3D προβλήματα.
Προκειμένου να συλλεχθούν τα απαραίτητα δείγματα για την εκπαίδευση του FFNN, επι-

λύεται ένα πλήθος από RVE για διάφορες τιμές εισόδου 𝜖 και 𝜃. Αυτές οι τιμές επιλέγονται
με ψευδοτυχαίο τρόπο, χρησιμοποιώντας την τεχνική Latin Hypercube Sampling (LHS).
Τα δειγματικά εύρη επιλέγονται προσεκτικά, καθώς μικρά εύρη μπορεί να οδηγήσουν σε ανε-

παρκείς πληροφορίες κατά την επίλυση του Μπεϋζιανού συστήματος πολλαπλών κλιμάκων,

xiv



ενώ μεγάλα εύρη απαιτούν την επίλυση ενός παράλογα μεγάλο αριθμού RVE για την ακρι-
βή εκπαίδευση του FFNN. Δεδομένου ότι η υπολογιστική ομογενοποίηση απαιτεί χρήση
αυξητικού-επαναληπτικού επιλύτη για μη γραμμικές εξισώσεις (π.χ. Newton-Raphson), για
κάθε 𝜃, οι συγκλίνουσες τιμές του 𝜎 για όλες ενδιάμεσες προσαυξήσεις του 𝜖, συμπεριλαμ-
βάνονται στα δεδομένα εκπαίδευσης.

Επιπλέον, το μακροσκοπικό εφαπτομενικό καταστατικό μητρώο 𝐶 μπορεί να εξαχθεί από
το υποκατάστατο μοντέλο. Αυτό μπορεί να γίνει άμεσα μετά την εκπαίδευση του FFNN
χρησιμοποιώντας την μέθοδο Αυτόματης Διαφοροποίησης (Automatic Differentiation -
AD). Η AD επιτρέπει υπολογισμούς παραγώγων των στοιχείων εξόδου 𝜎 σε σχέση με τα
στοιχεία εισόδου 𝜖 εφαρμόζοντας τον κανόνα της αλυσίδας. ΄Ετσι, οι συντελεστές 𝑐𝑖𝑗 του
μακροσκοπικού εφαπτομενικού πίνακα 𝐶 = [𝑐𝑖𝑗 ] μπορούν να υπολογιστούν ως:

𝑐𝑖𝑗 =
𝜕𝜎𝑖𝑗
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖𝑖𝑗

(13)

όπου ℎ𝑘 είναι η έξοδος στο αντίστοιχο κρυφό επίπεδο 𝑘𝑡ℎ του FFNN για είσοδο 𝜖𝑖𝑗 .

Η όλη διαδικασία συνοψίζεται στα ακόλουθα βήματα:

1. Δημιουργία Ν τυχαίων δειγμάτων εισόδου 𝑞𝑖 = [𝜖𝑖,𝜃𝑖], 𝑖 = 1, 2, .., 𝑁 εντός ορι-
σμένων δειγματικών περιοχών.

2. Λύση της μη γραμμικής εξίσωσης ομογενοποίησης του RVE για κάθε διάνυσμα ει-
σόδου 𝑞𝑖 και λήψη του αντίστοιχου διανύσματος εξόδου 𝑦𝑖 = [𝜎𝑖] για όλες τις
ενδιάμεσες επαυξητικές λύσεις 𝑛𝑖𝑛𝑐𝑟

3. Επιλογή της αρχιτεκτονικής FFNN και εκπαίδευση του χρησιμοποιώντας τα ζεύγη
εισόδου-εξόδου 𝑁 × 𝑛𝑖𝑛𝑐𝑟

4. Υπολογισμός του εφαπτομενικού μητρώου 𝐶 μέσω της μεθόδου AD στο FFNN.

TRAIN
FFNN

Σχήμα 4: Διαδικασία εκπαίδευσης του FFNN
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Σχήμα 5: Μπεϋζιανή επικαιροποίηση σε μοντέλα πολλαπλών κλιμάκων, επιταχυνόμενα με

FFNN

Σε αρκετές περιπτώσεις δύο κλίμακες δεν επαρκούν για να περιγράψουν με ακρίβεια την

συμπεριφορά κάποιων περίπλοκων υλικών. Η μοντελοποίηση των υλικών αυτών απαιτεί

τον σχηματισμό περισσότερων από δύο κλιμάκων μήκους. Παρόμοια με την διαδικασία

υπολογιστικής ομογενοποίησης που περιγράφηκε προηγουμένως, πρέπει να δημιουργηθεί

μια σύνδεση μεταξύ αυτών των κλιμάκων κατά τη διάρκεια της λύσης. Αυτό μπορεί να

επιτευχθεί διαδοχικά μεταξύ κάθε ζεύγους διαδοχικών κλιμάκων. ΄Οπως στην εξ. (7) ο

κανόνας τοπικοποίησης εφαρμόζεται αρχικά για κάθε ζεύγος ως:

𝜖2(𝑥2) =
1

‖Ω1‖

∫︁
Ω1

𝜖1(𝑥1;𝑥2)𝑑Ω1 , · · · , 𝜖𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁
𝜖𝑁 (𝑥𝑁 ;𝑥𝑀 )𝑑Ω𝑁

(14)

Προς διευκρίνιση του παραπάνω συμβολισμού, η μεταβλητή μετά το ερωτηματικό, για πα-

ράδειγμα η 𝑥2
στο 𝜖1(𝑥1;𝑥2), υποδηλώνει ότι το πεδίο παραμόρφωσης 𝜖1 μέσα στο ολο-

κλήρωμα είναι αυτό που αναπτύχθηκε από το RVE που σχετίζεται με το υλικό σημείο 𝑥2

της ανώτερης κλίμακας.

Στη συνέχεια, συνδυάζοντας όλα τα διαδοχικά βήματα τοπικοποίησης, μπορεί να αποκτη-

θεί μια σχέση που περιγράφει ολόκληρη την αλληλεπίδραση του συστήματος ως:

𝜖𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜖1(𝑥1;𝑥2)𝑑Ω1⏟  ⏞  
𝜖2(𝑥2;𝑥3)

..

⏟  ⏞  
.
.
.

.

⏟  ⏞  
𝜖𝑁 (𝑥𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (15)

Ξεκινώντας από την πιο λεπτή κλίμακα, η λύση των RVE μπορεί να επιτευχθεί εφαρμόζο-
ντας το βήμα ομογενοποίησης της εξ. (9) για κάθε ζεύγος ως:
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𝜎2(𝑥2) =
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝛼1;𝑥2)𝑑Ω1 , · · · , 𝜎𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁
𝜎𝑁 (𝑥𝑁 ,𝛼𝑁 ;𝑥𝑀 )𝑑Ω𝑁

(16)

όπου 𝛼𝑠 είναι οι εσωτερικές μεταβλητές της 𝑠 κλίμακας. Η σύνδεση των διαδοχικών σταδίων
ομογενοποίησης δίνει στη συνέχεια:

𝜎𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝛼1;𝑥2)𝑑Ω1⏟  ⏞  
𝜎2(𝑥2,𝛼2;𝑥3)

..

⏟  ⏞  
.
.
.

.

⏟  ⏞  
𝜎𝑁 (𝑥𝑁 ,𝛼𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (17)

Συνεπώς, ο εφαπτομενικός καταστατικός πίνακας διαμορφώνεται ως εξής:

𝐶𝑀 (𝑥𝑀 ) = 𝜕𝜖𝑀
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝛼1;𝑥2)𝑑Ω1⏟  ⏞  
𝜎2(𝑥2,𝛼2;𝑥3)

..

⏟  ⏞  
.
.
.

.

⏟  ⏞  
𝜎𝑁 (𝑥𝑁 ,𝛼𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (18)

Εφαρμόζοντας την έννοια της μη γραμμικής υπολογιστικής ομογενοποίησης δύο κλι-

μάκων και επεκτείνοντάς την σε εμφωλευμένα συστήματα πολλαπλών κλιμάκων, μπορεί

να επιτευχθεί μια εκτίμηση των συνολικών λύσεων RVE που απαιτούνται. Σε αυτήν την
περίπτωση, η απαίτηση για επαναλαμβανόμενες λύσεις μεταξύ οποιουδήποτε τοπικού συ-

στήματος δύο κλιμάκων πρέπει να προστεθεί πάνω στην την απαίτηση για επαναλαμβανόμε-

νες λύσεις μεταξύ κάθε διαδοχικού ζεύγους κλιμάκων που βρίσκονται ψηλότερα από το

τρέχον ζεύγος. Ο συνολικός αριθμός λύσεων προβλημάτων οριακής τιμής που απαιτούνται

για μια πλήρη λύση ολόκληρου του συστήματος δίνεται από:

𝐾𝑅𝑉 𝐸 = 𝑘𝑀 + 𝑘𝑀 × 𝑘𝑁 + · · ·+ 𝑘𝑀 × 𝑘𝑁 × · · · × 𝑘2 (19)

όπου για κάθε κλίμακα 𝑠, το 𝑘𝑠 ορίζεται ως:

𝑘𝑠 = 𝑛𝑠𝑖𝑛𝑡 × 𝑛𝑠𝑖𝑡𝑒𝑟 × 𝑛𝑠𝑖𝑛𝑐𝑟 (20)

με 𝑛𝑠𝑖𝑛𝑡 να είναι ο αριθμός των σημείων ολοκλήρωσης στο διακριτοποιημένο σύστημα, 𝑛
𝑠
𝑖𝑡𝑒𝑟

ο αριθμός των επαναλήψεων της διαδικασίας Newton και 𝑛𝑠𝑖𝑛𝑐𝑟 ο αριθμός των επαυξήσεων
της ανάλυσης.
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Είναι εμφανές από την εξ. (19) ότι για να εκτελεστεί η πλήρης λύση της μακροδομής,

η ποσότητα των προβλημάτων που πρέπει να λυθούν εξαρτάται άμεσα από τη συνολική πο-

σότητα των RVE που περιγράφουν το σύστημα πολλαπλών κλιμάκων και ξεφεύγει εκτός
διαχειρίσιμων πλαισίων πολύ γρήγορα για αυξανόμενο αριθμό κλιμάκων. Κατά συνέπεια,

αυτή η διαδικασία καθίσταται υπολογιστικά δυσεπίλυτη ακόμη και για μοντέλα μακροκλίμα-

κας χαμηλής ακρίβειας και, ως εκ τούτου, η εύρεση ενός τρόπου παράκαμψης αυτού του

τεράστιου υπολογιστικού κόστους είναι ζωτικής σημασίας.

Με βάση τα ανωτέρω, στη συνέχεια της διατριβής προτείνεται μια μη παρεμβατική στρα-

τηγική υποκατάστασης μοντελοποίησης, αφιερωμένη σε προσεγγίσεις υπολογιστικής ομο-

γενοποίησης 𝐹𝐸𝑁 σε συστήματα με πολλές κλίμακες (𝑁 > 2). Η ιδέα είναι να χρησι-
μοποιηθεί μια ακολουθία βαθέων νευρωνικών δικτύων (Deep Neural Networks - DNN)
που αντιπροσωπεύουν την ιεραρχία των διαφορετικών κλιμάκων στο πρόβλημα πολλαπλών

κλιμάκων. Κάθε νευρωνικό δίκτυο υποβάλλεται στην εκμάθηση του φυσικού νόμου στην

αντίστοιχη κλίμακα μήκους του προβλήματος. Παρόμοια με το αρχικό πρόβλημα όπου κάθε

λεπτότερη κλίμακα περιέχεται σε μια πιο αδρή κλίμακα, τα DNN που αντιπροσωπεύουν λε-
πτές κλίμακες περιέχονται στα DNN που αντιπροσωπεύουν πιο αδρές κλίμακες. Στο τέλος
της διαδικασίας εκπαίδευσης, προκύπτει ένα ενιαίο DNN που μιμείται τη μακροσκοπική συ-
μπεριφορά ενσωματώνοντας όλους τους φυσικούς μηχανισμούς που εντοπίζονται σε κάθε

μία από τις λεπτότερες κλίμακες του προβλήματος. Αυτή η προσέγγιση εκμεταλλεύεται

πλήρως την ακρίβεια και τις δυνατότητες μοντελοποίησης που παρέχουν τα σχήματα 𝐹𝐸𝑁 ,
ενώ ταυτόχρονα ξεπερνά τις τεράστιες υπολογιστικές τους απαιτήσεις. Συγκεκριμένα, τα

DNN είναι επιφορτισμένα με την εκμάθηση παραμετροποιημένων εκδόσεων του καταστατι-
κού νόμου σε κάθε κλίμακα, κάτι που επιτρέπει την μοντελοποίηση ενός ευρέος φάσματος

πιθανών συμπεριφορών υλικού. Αυτό επιτυγχάνεται με την επαύξηση του επιπέδου εισόδου

των DNN με το σύνολο των αβέβαιων παραμέτρων υλικού. Με αυτήν την προσέγγιση, κάθε
DNN ενσωματώνει την αβέβαιη συμπεριφορά που προέρχεται από όλες τις προηγούμενες
κλίμακες και τελικά μια μακροσκοπική καταστατική απόκριση που ενσωματώνει όλες αυ-

τές τις πληροφορίες λαμβάνεται μέσω του τελικού DNN. Με τη σειρά του, αυτό το DNN
μπορεί να εφαρμοστεί ως υποκατάστατο μοντέλο του υλικού σε οποιοδήποτε μακροδομικό

σύστημα και για διάφορα προβλήματα πολλαπλών επιλύσεων (π.χ. ανάλυση ευαισθησίας,

βελτιστοποίηση, Μπεϋζιανή επικαιροποίηση).

Συγκεκριμένα, τα βήματα για την κατασκευή του εμφωλευμένου σχήματος 𝑁 κλιμάκων
με τη βοήθεια των DNN είναι τα ακόλουθα:

� Εφαρμόζεται η διαδικασία διαδοχικής ομογενοποίησης σύμφωνα με την εξ. (7) και
(9) σε κάθε ζεύγος διαδοχικών κλιμάκων ξεκινώντας από την λεπτότερη, δηλαδή την

1η κλίμακα

� Ορίζεται ένα σύνολο παραμέτρων/μεταβλητών που καθορίζουν την είσοδο και την
έξοδο του αντίστοιχου DNN. Η είσοδος περιλαμβάνει τα στοιχεία του διανύσματος
παραμόρφωσης στην ανώτερη κλίμακα 𝜖(2), ενώ η έξοδος είναι το αντίστοιχο διάνυσμα
τάσης 𝜎(2)

που προκύπτει από την διαδικασία ομογενοποίησης. Εάν υποθέσουμε
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περαιτέρω ότι η λύση του συστήματος επηρεάζεται από ένα διάνυσμα παραμέτρων

𝛼(1)
που χαρακτηρίζουν τον καταστατικό νόμο του υλικού στην λεπτότερη κλίμακα,

τότε αυτές οι παράμετροι θεωρούνται επίσης ως είσοδοι στο DNN.

� Το εφαπτομενικό καταστατικό μητρώο 𝐶(2)
για μια συγκεκριμένη κατάσταση πα-

ραμόρφωσης 𝜖(2), που απαιτείται στις επαναλήψεις Newton-Raphson, υπολογίζεται
άμεσα χρησιμοποιώντας την μέθοδο Automatic Differentiation (AD). Μέσω αυτής
επιτυγχάνεται ο υπολογισμός των παραγώγων της εξόδου 𝜎(2)

σε σχέση με την είσο-

δο 𝜖(2) εφαρμόζοντας τον κανόνα της αλυσίδας στο DNN και, επομένως, τα στοιχεία

𝑐
(2)
𝑖𝑗 του μακροσκοπικού εφαπτομενικού πίνακα 𝐶

(2) = [𝑐
(2)
𝑖𝑗 ] λαμβάνονται ως:

𝑐
(2)
𝑖𝑗 =

𝜕𝜎
(2)
𝑖𝑗

𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖

(2)
𝑖𝑗

(21)

όπου ℎ𝑘 είναι η έξοδος του κρυφού επιπέδου 𝑘𝑡ℎ του DNN για την είσοδο 𝜖
(2)
𝑖𝑗 .

� Μετά την επιτυχή εκπαίδευση και επαλήθευση, η λεπτότερη κλίμακα DNN (κλίμακα 1)
μπορεί να εφαρμοστεί άμεσα για να αναπαραστήσει την καταστατική σχέση του υλικού

μήτρας στην επόμενη κλίμακα (κλίμακα 2). Η διαδικασία επαναλαμβάνεται για αυτήν

την κλίμακα όπου δημιουργείται ένα δεύτερο DNN χρησιμοποιώντας το διάνυσμα(︀
𝜖(3),𝛼(2),𝛼(1)

)︀
ως είσοδο και το διάνυσμα 𝜎(3)

ως έξοδο. Για απλοποίηση της

σημειογραφίας, η είσοδος
(︀
𝜖(3),𝛼(2),𝛼(1)

)︀
γράφεται ως

(︀
𝜖(3), �̂�(3)

)︀
, όπου, στη γενική

περίπτωση, �̂�(𝑠+1) =
(︀
𝛼(𝑠), · · · ,𝛼(1)

)︀
είναι το επαυξημένο παραμετρικό διάνυσμα.

΄Ομοια, ο εφαπτομενικός πίνακας 𝐶(3)
είναι άμεσα διαθέσιμος μέσω της AD. Είναι

σημαντικό να σημειωθεί εδώ ότι το DNN της δεύτερης κλίμακας περιλαμβάνει επίσης
τις παραμέτρους υλικού 𝛼(1)

της προηγούμενης κλίμακας ως είσοδο, καθώς αυτό θα

του επιτρέψει να καταγράψει τη συνολική συμπεριφορά του υλικού, έως το σημείο

αυτό, η οποία επηρεάζεται τόσο από την πρώτη όσο και από την δεύτερη κλίμακα.

� Αυτή η διαδικασία επαναλαμβάνεται για όλες τις κλίμακες μέχρι τη μακροκλίμακα,
όπου τελικά καταλήγει σε ένα μόνο τελικό DNN που ενσωματώνει όλες τις πλη-
ροφορίες από τις χαμηλότερες κλίμακες και αποτελεί το υποκατάστατο μοντέλο της

μακροσκοπικής συμπεριφοράς του σύνθετου υλικού.

Ως επαλήθευση του προτεινόμενου σχήματος υποκατάστασης μοντελοποίησης, μελετάται

ένα 4-κλιμάκων μοντέλο σκυροδέματος οπλισμένο με CNT. Αρχικά, το 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜
εκπαι-

δεύεται με σκοπό την αντικατάσταση του RVE της μικροκλίμακας, που αποτελείται από
τσιμεντόπαστα και CNT, χρησιμοποιώντας τα

(︀
𝜖𝑓𝑚,𝛼𝜇

)︀
ως είσοδο και τα 𝜎𝑓𝑚 ως έξοδο.

Στη συνέχεια, το 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑓𝑖𝑛𝑒
που αντιπροσωπεύει το RVE της λεπτή μεσοκλίμακας, δη-

λαδή την τσιμεντοκονία, εκπαιδεύεται σε ζεύγη
(︀
𝜖𝑐𝑚,𝛼𝑓𝑚,𝛼𝜇

)︀
, όπου τώρα το 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜

θεωρείται ως το υλικό μήτρας μαζί με τα λεπτά αδρανή ως εγκλείσματα. Η διαδικασία

επαναλαμβάνεται άλλη μια φορά για το 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒
του RVE της αδρής μεσοκλίμακας,
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fm fm[ε  , α ](1) (1)

microDNN
TRAIN

fm fm[σ  , C ](1) (1)

fm fmε , α fm fmσ , C

microDNN mf fm,αε

mff mσ ,C

fm fm[ε  , α ](K) (K)

fm fm[σ  , C ](K) (K)

cm cm[ε  , α ](1) (1)

TRAIN
fine,meso

DNN

cm cm[σ  , C ](1) (1)

cm cmε , α cm cm
σ , C

fine,mesoDNN m cc mα,ε

mcσ cm
,C

cm cm[ε  , α ](K) (K)

cm cm[σ  , C ](K) (K)

M M[ε  , α ](1) (1)

coarse,meso
DNN

TRAIN

M M[σ  , C ](1) (1)

M Mε , α M Mσ , C

coarse,mesoDNN M Mα,ε

MMσ C,

M M[ε  , α ](K) (K)

M M[σ  , C ](K) (K)

Σχήμα 6: Διαδικασία εκπαίδευσης σύμφωνα με την προτεινόμενη στρατηγική. Ξεκινώντας

από τη μικροκλίμακα, ένα νευρωνικό δίκτυο, με όνομα 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜
εκπαιδεύεται να μιμείται τη

συμπεριφορά τάσης-παραμόρφωσης του RVE της μικροκλίμακας. Το 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜

χρησιμοποιείται ως καταστατικός νόμος του υλικού της μήτρας στη λεπτή μεσοκλίμακα και,

στη συνέχεια, το 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜
εκπαιδεύεται για να μιμείται τη συμπεριφορά

τάσης-παραμόρφωσης του RVE της λεπτής μεσοκλίμακας. Η διαδικασία επαναλαμβάνεται
άλλη μια φορά για την αδρή μεσοκλίμακα όπου διαμορφώνεται το τελικό δίκτυο

𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜
που ενσωματώνει με επιτυχία τη συνολική συμπεριφορά του σύνθετου υλικού.
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meso,coarseDNN
meso,fineDNNmicroDNN

(αʹ)

meso,coarseDNN

(βʹ)

Σχήμα 7: (α) Ιεραρχική κατασκευή των υποκατάστατων μοντέλων DNN και (β) Επικοινωνία
των κλιμάκων χρησιμοποιώντας το τελικό 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒

ως τον καταστατικό νόμο της

μακροκλίμακας

το οποίο είναι το τελικό DNN που ενσωματώνει όλα τα προηγούμενα DNN και αντιπροσω-
πεύει την καταστατική σχέση για το πρόβλημα μακροκλίμακας. Η διαδικασία εκπαίδευσης

απεικονίζεται στο σχήμα 6 και το τελικό αποτέλεσμα της διαδικασίας στα σχήματα 7αʹ και

7βʹ.

Για την περαιτέρω ανάδειξη των δυνατοτήτων της προτεινόμενης μεθόδου εκτελείται μια

ανάλυση ευαισθησίας (Sentitivity Analysis - SA) και ειδικότερα μια καθολική ανάλυση
ευαισθησίας με βάση την διακύμανση στο εξεταζόμενο μοντέλο. Συγκεκριμένα η SA εφαρ-
μόζεται για εκτίμηση της ευαισθησίας των κατασκευών που αποτελούνται από σκυρόδεμα

οπλισμένο με CNT όσων αφορά τις παραμέτρους υλικού στη μικροδομή. Εδώ, η SA εκτε-
λείται στις παραμέτρους του μοντέλου πλαστικότητας Drucker-Prager, δηλαδή, τον συντε-
λεστή τριβής 𝜑, τον συντελεστή διαστολής 𝜓, την αρχική συνοχή 𝑐0 και τον συντελεστή
σκλήρυνσης 𝐻, σε σκυρόδεμα οπλισμένο με CNT. Οι παράμετροι του μοντέλου συμβολίζο-

xxi



νται συλλογικά ως �̂�𝑀 = (𝜑, 𝜓, 𝑐0, 𝐻). Στη συνέχεια, η SA αποδίδει μια εκτίμηση για το
πώς η αβεβαιότητα διαδίδεται στις διάφορες κλίμακες του μοντέλου και επηρεάζει τη μακρο-

σκοπική απόκριση. Σε αυτήν τη ρύθμιση, το μοντέλοM := 𝑓(𝜑, 𝜓, 𝑐0, 𝐻) := 𝑓(�̂�𝑀 ) μπορεί
να αντιπροσωπεύει την ποσότητα ενδιαφέροντος, π.χ. μια μετατόπιση σε μια δεδομένη θέση

της μακροσκοπικής κατασκευής, η οποία λαμβάνεται μετά την επίλυση του κατασκευαστικού

προβλήματος με το σχήμα FE4
. Ο στόχος είναι να αξιολογηθούν οι δείκτες ευαισθησίας 𝑆𝑖

και οι συνολικοί δείκτες 𝑆𝑇𝑖 για 𝑖 = 1, 2, 3, 4 που αντιστοιχούν στις τέσσερις παραμέτρους
του μοντέλου 𝜑, 𝜓, 𝑐0, 𝐻, αντίστοιχα. Για να γίνει αυτό, πρέπει να παραχθούν 𝐾 · (𝑑+ 2)

δειγματοληψίες από το παραμετρικό διάνυσμα {�̂�𝑀𝑖 }
𝐾(𝑑+2)
𝑖=1 σύμφωνα με μια προκαθορισμένη

κατανομή πιθανότητας, όπου το 𝐾 είναι συνήθως της τάξης των 103 ÷ 105 ούτως ώστε να
παραχθούν αξιόπιστες εκτιμήσεις των δεικτών ευαισθησίας και 𝑑 = 𝑑𝑖𝑚(�̂�𝑀 ) = 4. Για
καθεμία από αυτές τις περιπτώσεις, το πρόβλημα μακροκλίμακας λύνεται προκειμένου να λη-

φθούν οι αποκρίσεις {M𝑖}𝐾·(𝑑+2)
𝑖=1 και να υπολογιστούν τα 𝑓(𝑅(𝑗)), 𝑓(𝑄(𝑗)) και 𝑓(𝑄

(𝑖)
𝑅,(𝑗)),

όπου 𝑅, 𝑄 και 𝑄𝑅 είναι οι δειγματικοί πίνακες.
Λαμβάνοντας υπόψη την πολυπλοκότητα του μοντέλου, γίνεται προφανές ότι αυτός ο

τύπος ανάλυσης θα ήταν υπολογιστικά μη πραγματοποιήσιμος με μια άμεση εφαρμογή του

σχήματος 𝐹𝐸4
. Ωστόσο, το προτεινόμενο υποκατάστατο σχήμα μοντελοποίησης μπορεί

να χρησιμοποιηθεί για να επιταχύνει τις επαναλαμβανόμενες επιλύσεις μοντέλων για διάφο-

ρες περιπτώσεις των παραμέτρων 𝜑, 𝜓, 𝑐0, 𝐻. Μια σχηματική αναπαράσταση της διαδικασίας
SA σε μια γενική ανάλυση πολλαπλών κλιμάκων υποβοηθούμενη από τα DNN απεικονίζεται
στο σχήμα 8. Σύμφωνα με αυτό, 𝐾 · (𝑑 + 2) δειγματοληψίες του παραμετρικού διανύσμα-

τος {�̂�𝑀𝑖 }
𝐾·(𝑑+2)
𝑖=1 δημιουργούνται μετά από μια καθορισμένη πιθανοτική κατανομή και για

καθεμία από αυτές τις περιπτώσεις το πρόβλημα μακροκλίμακας επιλύεται για να ληφθούν

οι αποκρίσεις {M𝑖}𝐾(𝑑+2)
𝑖=1 . Οι επιλύσεις μοντέλων 𝐾 · (𝑑+ 2) που είναι απαραίτητες για τη

σύγκλιση της SA αναμένεται να εκτελεστούν σε προσιτό υπολογιστικό χρόνο, καθώς το τε-
λικό DNN, δηλαδή το 𝐷𝑁𝑁𝑁

, έχει αντικαταστήσει το ακριβό 𝐹𝐸𝑁 υπολογιστικό σχημα.
Αφού συλλεχθούν τα δείγματα και πραγματοποιηθεί η SA, μπορούν να εξαχθούν κρίσιμα
συμπεράσματα για τις παραμέτρους του μοντέλου πολλαπλών κλιμάκων παρατηρώντας πώς

επηρεάζουν την έξοδο του μοντέλου.
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Σχήμα 8: Ανάλυση ευαισθησίας σε σύστημα πολλαπλών κλιμάκων επιταχυνόμενη από το

προτεινόμενο υποκατάστατο μοντέλο. Το πρόβλημα μακροκλίμακας επιλύεται για περιπτώσεις

𝐾 · (𝑑+ 2) του διανύσματος παραμέτρων �̂�𝑀
. Η αντίστοιχη έξοδος μοντέλου {M𝑖}𝐾(𝑑+2)

𝑖=1

μπορεί να υπολογιστεί αποτελεσματικά βάσει της προτεινόμενης εναλλακτικής στρατηγικής

μοντελοποίησης. Στη συνέχεια, οι δείκτες ευαισθησίας των παραμέτρων του υλικού μπορούν

να υπολογιστούν εύκολα μέσω στατιστικής μετα-επεξεργασίας.

Στην επόμενη φάση της διατριβής παρουσιάζεται ένα καινοτόμο πλαίσιο βελτιστοποίη-

σης για τον εντοπισμό βέλτιστων τυπολογιών υλικού με στόχο τη βελτίωση της δομικής

απόκρισης υπό την παρουσία αβεβαιοτήτων. Συγκεκριμένα, εξετάζεται ο βέλτιστος προσα-

νατολισμός των CNT σε μοντέλα σκυροδέματος ενισχυμένα με CNT. Συνεπώς, οι χωρικές
γωνίες των CNT έχουν τον ρόλο των μεταβλητών σχεδιασμού στο συγκεκριμένα πρόβλημα
βελτιστοποίησης. Αυτή η συγκεκριμένη παράμετρος έχει αποδειχθεί ότι παίζει κρίσιμο ρόλο

στην απόδοση του σύνθετου υλικού. Προς επίτευξης μιας τέτοια διερεύνησης, ως μέθοδος

βελτιστοποίησης χρησιμοποιείται η μέθοδος Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES), η οποία καθώς δεν βασίζεται σε παραγώγους καθίσταται ικανή να
χειριστεί μη κυρτά προβλήματα συνεχούς βελτιστοποίησης και είναι κατάλληλη για υπολο-

γιστικά ακριβά αριθμητικά μοντέλα. Με αυτή τη μεθοδολογία γίνεται δυνατή η εξερεύνηση

βέλτιστων προσανατολισμών CNT σε κάθε θέση της μακροκλίμακας των εξεταζόμενων μο-
ντέλων με στόχο την ελαχιστοποίηση της δυνατής συνολικής μετατόπισης. Προχωρώντας

ένα βήμα παραπέρα, στην προσπάθεια παροχής μιας πιο ορθολογικής και στιβαρής προσέγ-

γισης, λαμβάνεται επίσης υπόψη η τυχαιότητα στην εξωτερική φόρτιση της υπό διερεύνηση
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κατασκευής και επαναδιατυπώνεται το πρόβλημα στο πλαίσιο της στοχαστικής βελτιστοπο-

ίησης. Χάρη στον υπολογιστικό μηχανισμό της αλληλουχίας DNN που αναπτύχθηκε στην
προηγούμενη μελέτη, γίνεται εφικτή η βελτιστοποίηση του υλικού με γνώμονα την απόδοση

της κατασκευής που χαρακτηρίζεται από σκυρόδεμα οπλισμένο με CNT. Πιο συγκεκριμένα
αναπτύσσεται ένα μοντέλο 3 κλιμάκων για να αναπαραστήσει το εξεταζόμενο υλικό και η

επίλυση του επιτυγχάνεται μέσω της ανάπτυξης του κατάλληλου ιεραρχικού σχήματος από

DNN με στόχο την παράκαμψη της εκτέλεσης της μη γραμμικής υπολογιστικής ομογενο-
ποίησης.

΄Εστω U το μαθηματικό μοντέλο του υπό διερεύνηση δομικού συστήματος. Δεδομένου

ότι στις περισσότερες περιπτώσεις πρακτικού ενδιαφέροντος το μαθηματικό μοντέλο δεν

μπορεί να εξαχθεί αναλυτικά, η πιο κοινή προσέγγιση είναι η αντικατάστασή του με ένα

αριθμητικό μοντέλο 𝑈 , που συνήθως λαμβάνεται με FEM. Από αυτή την άποψη, το 𝑈 ∈ R𝑑
είναι ένα διάνυσμα διαστάσεων 𝑑 που αντιστοιχεί στους 𝑑 βαθμούς ελευθερίας της FEM
διακριτοποίησης. Επιπλέον, εάν η κατασκευή υπόκειται σε συνθήκες τυχαίας φόρτωσης,

που εκφράζονται μέσω του 𝑟-διάστατου τυχαίου διανύσματος 𝑞, με το 𝑟 να είναι ο αριθμός
των τυχαίων μεταβλητών, τότε 𝑈 := 𝑈(𝑞). Επιπλέον, η δομική απόκριση επηρεάζεται από
το διαμόρφωση του υλικού στην μικροκλίμακα, του οποίου οι ιδιότητες παραμετροποιούνται

σύμφωνα με τον προσανατολισμό των CNT, 𝜃 := 𝜃𝜇 = (𝜃𝑝, 𝜃𝑎) με 𝜃𝑝 ∈ [0 𝑝𝑖] την πολική
γωνία και 𝜃𝑎 ∈ [0 2𝜋) το αζιμούθιο, όπως φαίνεται στο σχήμα 9. Επομένως, το τελικό
μοντέλο μπορεί να εκφραστεί ως 𝑈 := 𝑈(𝑞,𝜃).

Σχήμα 9: Πολική γωνία 𝜃𝑝 και αζιμούθιο 𝜃𝑎, που χαρακτηρίζουν τον προσανατολισμό ενός
CNT στον τρισδιάστατο χώρο

Για να δημιουργηθεί μια βάση αναφοράς, εξετάζεται αρχικά η περίπτωση πλήρους απου-

σίας CNT στην τσιμεντοκονία. Αυτό συμβαίνει επειδή στόχος είναι η αξιολόγηση της
συμπεριφοράς του συμβατικού σκυροδέματος σε σύγκριση με το οπλισμένο με CNT. Ε-
πομένως, πραγματοποιείται ένας μεγάλος αριθμός, 𝑁𝑟𝑒𝑓 , δειγματοληψιών 𝑞1, ..., 𝑞𝑁𝑟𝑒𝑓 και
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εκτελούνται οι αντίστοιχες προσομοιώσεις μοντέλων 𝑈 𝑖
𝑟𝑒𝑓 = 𝑈(𝑞) για 𝑖 = 1, ..., 𝑁𝑟𝑒𝑓 . Στη

συνέχεια, υπολογίζεται ο μέσος όρος και η τυπική απόκλιση από αυτό το στατιστικό δείγμα

ως:

E[𝑈𝑟𝑒𝑓 ] =
1

𝑁𝑟𝑒𝑓

𝑁𝑟𝑒𝑓∑︁
𝑖=1

𝑈𝑖 (22)

𝑆𝑡𝑑[𝑈𝑟𝑒𝑓 ] =

⎯⎸⎸⎷𝑁𝑟𝑒𝑓∑︁
𝑖=1

(𝑈𝑖 − E[𝑈𝑟𝑒𝑓 ])⊙ (𝑈𝑖 − E[𝑈𝑟𝑒𝑓 ])
𝑁𝑟𝑒𝑓 − 1

(23)

όπου το ⊙ υποδηλώνει το γινόμενο Hadamard. Υπολογίζεται η μέση συνολική παραμόρ-
φωση της κατασκευής, M, και η τυπική απόκλιση, S, με τον κανόνα 𝐿2 των παραπάνω

διανυσμάτων, δηλαδή,

M= ‖E[𝑈𝑟𝑒𝑓 ]‖2 (24)

S= ‖[𝑆𝑡𝑑[𝑈𝑟𝑒𝑓 ]‖2 (25)

Το πρόβλημα στοχαστικής βελτιστοποίησης ορίζεται στη συνέχεια ως εξής: Για ένα

δεδομένο κλάσμα βάρους CNTs στο κονίαμα, αναζητούνται οι τιμές του διανύσματος σχε-
διασμού 𝜃 = (𝜃𝑝, 𝜃𝑎) που ελαχιστοποιούν το σταθμισμένο άθροισμα του μέσου όρου και
της τυπικής απόκλισης της συνολικής παραμόρφωσης, κανονικοποιημένης από τις αντίστοι-

χες τιμές αναφοράς που δίνονται από τις εξ. (24) και (25). Αυτό μπορεί να εκφραστεί

μαθηματικά ως εξής:

𝜃⋆ = (𝜃⋆𝑝, 𝜃
⋆
𝑎) = argmin 2𝜃𝑝∈[0 𝜋],𝜃𝑎∈[0 2𝜋]𝑤1

E[𝑈 ]

𝑀
+ 𝑤2

𝑆𝑡𝑑[𝑈 ]

𝑆
= argmin 2𝜃𝑝∈[0 𝜋],𝜃𝑎∈[0 2𝜋]L(𝜃) (26)

με L(𝜃) = 𝑤1
E[𝑈 ]
𝑀 + 𝑤2

𝑆𝑡𝑑[𝑈 ]
𝑆 που δηλώνει τη συνάρτηση απώλειας (loss function).

Στο τελευταίο στάδιο της διατριβής προτείνεται μια νέα μέθοδος για τον προσδιορισμό

των ιδιοτήτων των υλικών σε συστήματα πολλαπλών κλιμάκων μέσω δεδομένων που προ-

έρχονται από ετερογενή πειραματικά σενάρια. Το παρουσιαζόμενο υπολογιστικό σχήμα

έχει την δυνατότητα να συγχωνεύσει δεδομένα που αποκτήθηκαν από πειράματα τα οποία

πραγματοποιήθηκαν σε υλικά διαφορετικής σύνθεσης και μπορεί να συμπεριλάβει μετρήσεις

που έγιναν σε διάφορες κλίμακες μήκους, επιτρέποντας τη συστηματική ενσωμάτωση πολ-

λαπλών πειραματικών πηγών δεδομένων σε ένα ενοποιημένο υπολογιστικό πλαίσιο. Για να

επιτευχθεί αυτό, χρησιμοποιείται η μέθοδος Transitional Markov Chain Monte Carlo (TM-
CMC) για δειγματοληψία από τις περιθωριοποιημένες εκ των υστέρων κατανομές τόσο των
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παραμέτρων του μοντέλου πολλαπλών κλιμάκων όσο και των ιεραρχικών υπερπαραμέτρων.

Αυτές οι υπερπαράμετροι χρησιμοποιούνται στη συνέχεια για την εξαγωγή ενημερωμένων

φυσικών παραμέτρων, οι οποίες μπορούν να χρησιμοποιηθούν για μελλοντικές προβλέψεις

μοντέλων.

΄Εστω ένα σύνολο δεδομένων 𝐷 = [𝐷1, ...,𝐷𝐾 ], με 𝐷𝑖 = [𝑑𝑖,1, ..., 𝑑𝑖,𝑁𝑖 ], που περιλαμ-
βάνει μετρήσεις (δηλαδή μηχανικές αποκρίσεις) που λαμβάνονται από έναν αριθμό 𝐾 ανε-
ξάρτητων πειραμάτων. Κάθε 𝑖 πείραμα ορίζεται σε ένα πεδίο Ω𝑖 και περιγράφεται από έναν
συγκεκριμένο συνδυασμό συνοριακών συνθηκών 𝜕Ω𝑖 και σύνθεσης υλικού. Στο πλαίσιο της
ανάλυσης σύνθετων υλικών, αυτά τα πειραματικά σενάρια μπορούν να προσομοιωθούν από

τα αντίστοιχα υπολογιστικά μοντέλα πολλαπλών κλιμάκων M1, ...,M𝐾
που χρησιμοποιο-

ύνται για την πρόβλεψη δομικών αποκρίσεων𝑚1, ...,𝑚𝐾
σύμφωνα με τα πειραματικά δεδο-

μένα. Κάθε μοντέλο M𝑖
χαρακτηρίζεται από μια μοναδική σύνθεση υλικού, για παράδειγμα

με διαφορετικό αριθμό κλιμάκων μήκους, ανόμοια σύνθεση σε όλες ή ένα υποσύνολο των

κλιμάκων μήκους, κ.λπ. Κατά συνέπεια, η παραμετροποίηση αυτών των μοντέλων γίνεται

μέσω ενός διακριτού συνόλου 𝜃𝑖, ως 𝜃𝑖 = [𝜃𝑖1, ...,𝜃
𝑖
𝑆𝑖
], που περιλαμβάνει μια σειρά φυσικών,

τοπολογικών ή καταστατικών χαρακτηριστικών για κάθε κλίμακα μήκους 𝑠 = 1, ..., 𝑆𝑖 του
αντίστοιχου συστήματος. Σε πολλές περιπτώσεις, ένα υποσύνολο αυτών των παραμέτρων
𝑐𝜃𝑖 ⊆ 𝜃𝑖, με 𝑐𝜃𝑖 = [𝑐𝜃𝑖1, ...,

𝑐𝜃𝑖𝑆𝑖 ], υπάρχει σε όλα τα υλικά μοντέλα πολλαπλών κλιμάκων

που διερευνώνται, πράγμα που σημαίνει ότι 𝜃1 ∩ ... ∩ 𝜃𝐾 ≡ 𝑐𝜃1 ≡ ... ≡ 𝑐𝜃𝐾 ≡ 𝑐𝜃.
Ως γραφική αναπαράσταση του συνολικού προβλήματος το σχήμα 10 απεικονίζει ένα

σενάριο τριών μοντέλων όπου πρέπει να διερευνηθούν οι παράμετροι μιας συγκεκριμένης

κλίμακας. Η ιεραρχική στρατηγική Bayes, που συμπληρώνεται από τις υπερπαράμετρους 𝜓,
επιτρέπει την αναγνώριση νέων φυσικών παραμέτρων

𝑐𝜃𝑛𝑒𝑤 με αξιόπιστο τρόπο. Με τη σειρά
του, τα

𝑐𝜃𝑛𝑒𝑤 μπορούν να διευκολύνουν τεκμηριωμένες προβλέψεις 𝑦𝑛𝑒𝑤 σε καινούργια
συστήματα πολλαπλών κλιμάκων. Είναι σημαντικό να τονιστεί ότι οι πηγές δεδομένων

έχουν τη δυνατότητα να περιλαμβάνουν ένα ευρύ φάσμα πειραμάτων που διεξάγονται σε

διάφορες κλίμακες μήκους. Αυτά τα πειράματα, για παράδειγμα, μπορεί να περιλαμβάνουν

μετρήσεις μετατόπισης στη μακροκλίμακα, χαρακτηρισμό τοπολογίας στη μεσοκλίμακα μέσω

εικόνων που προέρχονται μέσω της μεθόδου Scanning Electron Microscopy (SEM) ή
εξαγωγή πεδίου παραμόρφωσης στην μικροκλίμακα χρησιμοποιώντας την τεχνική Digital
Image Correlation (DIG).
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Σχήμα 10: Προτεινόμενο πλαίσιο για την επικαιροποίηση παραμέτρων και τη διάδοση της

αβεβαιότητας των κοινών ιδιοτήτων
𝑐𝜃 που εντοπίζονται σε μια σειρά από ποικίλες

πειραματικές διαμορφώσεις, όπως ένα μοντέλο M1
δοκιμής κάμψης σε ενισχυμένη δοκό

κατασκευασμένη από σύνθετο υλικό, μοντέλο M2
ψηφιακής εικόνας μικροδομής ενός άλλου

σύνθετου υλικού και μοντέλο M3
δείγματος ράβδου ενός διαφορετικού σύνθετου.

Σε τέτοιες περιπτώσεις, η κλασσική Μπεϋζιανή επικαιροποίηση υποτιμά τη συνολική με-

ταβλητότητα. Αυτό οφείλεται στο ότι τείνει να αντιπροσωπεύει μόνο την «αβεβαιότητα

εκτίμησης παραμέτρων» και δεν είναι σε θέση να υπολογίσει την εξωτερική μεταβλητότη-

τα μεταξύ των συνόλων δεδομένων. Αυτή η μεταβλητότητα υποδηλώνει την αβεβαιότητα

που δεν μπορεί να ποσοτικοποιηθεί ρητά στη διατύπωση του προβλήματος λόγω έλλειψης

γνώσης σχετικά με τις συγκεκριμένες συνθήκες του πειράματος. Λαμβάνοντας υπόψη αυτά

τα ευρήματα, γίνεται η επιλογή μιας ιεραρχικής Μπεϋζιανής προσέγγισης για τη διαμόρφωση

της προτεινόμενης στρατηγικής.

Με βάση το ιεραρχικό παράδειγμα Bayes, κάθε σύνολο δεδομένων 𝐷𝑖
που λαμβάνεται

από μια μοναδική πειραματική ρύθμιση εξετάζεται ξεχωριστά. Για κάθε μία από αυτές, οι

κοινές παράμετροι 𝜃 έχουν έναν ξεχωριστό ορισμό ως 𝜃𝑖. Αυτή η διάκριση είναι απαρα-
ίτητη αφού αυτές οι παράμετροι, αν και έχουν την ίδια φυσική σημασία μεταξύ όλων των

συνόλων δεδομένων, μπορούν τελικά να αντιπροσωπεύονται από διαφορετικές τιμές λόγω

της εξωτερικής μεταβλητότητας. Θεωρείται περαιτέρω ότι κάθε 𝜃𝑖 εξαρτάται από μια σειρά
υπερπαραμέτρων 𝜓, που συμβολίζονται ως 𝑃 (𝜃𝑖|𝜓). Αυτές οι παράμετροι χρησιμοποιο-
ύνται για να παρέχουν στο μαθηματικό πλαίσιο την αίσθηση συγγένειας μεταξύ των 𝜃𝑖 για
𝑖 = 1, ..,𝐾 και για να λάβουν ρητά υπόψη τις διαφοροποιήσεις του μοντέλου στα αντίστοιχα
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σύνολα δεδομένων. Οι υπερπαράμετροι αντιπροσωπεύουν γενικά στατιστικές παραμέτρους

μιας προκαθορισμένης οικογένειας κατανομών. Το κλασικό Μπεϋζιανό πρόβλημα που τίθε-

ται στην εξ. (11) αναδιατυπώνεται στην ιεραρχική παραλλαγή ως:

𝑦𝑖(𝜃𝑖|𝜓) =𝑚𝑖(𝜃𝑖|𝜓) + 𝜖𝑖 𝑖 = 1, ...,𝐾 (27)

Αντίστοιχα, η από κοινού εκ των υστέρων κατανομή εκφράζεται μέσω του θεωρήματος

Bayes ως:

𝑃 (𝜃,𝜓|𝐷) =
𝑃 (𝐷|𝜃)𝑃 (𝜃|𝜓)𝑃 (𝜓)

𝑃 (𝐷)
=

𝐾∏︁
𝑖=1

[︁ 𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)

]︁ 𝑃 (𝜓)
𝑃 (𝐷)

(28)

όπου 𝑃 (𝜓) είναι η εκ των προτέρων κατανομή των υπερπαραμέτρων.
Για να αποφευχθεί το ασύμφορο υπολογιστικό κόστος της απευθείας δειγματοληψίας από

την από κοινού κατανομή της εξ. (28), προτείνεται ένας εναλλακτικός τρόπος διαδοχικής

δειγματοληψίας.

Το πρώτο βήμα είναι η δειγματοληψία από την περιθωριοποιημένη εκ των υστέρων κατα-

νομή των υπερπαραμέτρων του μοντέλου, η οποία ορίζεται ως:

𝑃 (𝜓|𝐷) =

∫︁
Ω𝜃

𝑃 (𝐷|𝜃)𝑃 (𝜃|𝜓)𝑑𝜃 𝑃 (𝜓)
𝑃 (𝐷)

=
𝐾∏︁
𝑖=1

[︂ ∫︁
Ω𝜃𝑖

𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)𝑑𝜃𝑖

]︂
𝑃 (𝜓)

𝑃 (𝐷)

(29)

όπου στην παραπάνω εξίσωση χρησιμοποιήθηκε το γεγονός ότι η συνάρτηση πιθανοφάνειας

𝑃 (𝐷|𝜓) παίρνει τη μορφή:

𝑃 (𝐷|𝜓) =
𝐾∏︁
𝑖=1

[︂ ∫︁
Ω𝜃𝑖

𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)𝑑𝜃𝑖

]︂
(30)

Το ολοκλήρωμα της εξ. (29) μπορεί να υπολογιστεί κατά προσέγγιση μέσω δειγματοληψίας

Monte Carlo:

𝑃 (𝜓|𝐷) ≃
𝐾∏︁
𝑖=1

[︂
1

𝑁𝜃𝑖

𝑁𝜃𝑖∑︁
𝑘=1

𝑃 (𝜃𝑖𝑘|𝜓)
]︂
𝑃 (𝜓)

𝑃 (𝐷)
(31)

Για να πραγματοποιηθεί αυτή η ολοκλήρωση, πρέπει πρώτα να συλλεχθούν δείγματα

από κάθε συνάρτηση πιθανοφάνειας 𝑃 (𝐷𝑖|𝜃𝑖) που σχετίζεται με το μοντέλο 𝑀 𝑖
. ΄Οταν η

TMCMC χρησιμοποιείται ως μέθοδος δειγματοληψίας για μία εκ των υστέρων κατανομή,

το αρχικό βήμα είναι να συλλεχθεί μια ποσότητα δειγμάτων από την εκ των προτέρων

κατανομή. Εφόσον στην παρούσα περίπτωσή η δειγματοληψία γίνεται απευθείας από την

xxviii



𝑃 (𝐷𝑖|𝜃𝑖), ένας εύκολος τρόπος για να αναπαραχθεί η τυπική αλγοριθμική διαδικασία της
TMCMC είναι να χρησιμοποιηθούν βοηθητικές ομοιόμορφες εκ των προτέρων κατανομές

𝑃 (𝜃𝑖) για την αρχική δειγματοληψία από την κάθε κατανομή 𝑃 (𝐷𝑖|𝜃𝑖). Για να αποφευχθεί
η εισαγωγή οποιασδήποτε μεροληψίας στη διαδικασία, θα πρέπει να επιλεγεί το κατώτερο

όριο 𝑢𝑙 και το ανώτερο όριο 𝑢𝑢 των προηγούμενων U𝜃𝑖(𝑢𝑙, 𝑢𝑢) αρκετά ευρύ για να καλύψει
το δείγμα του χώρου κάθε 𝜃𝑖 που ορίζεται από την 𝑃 (𝐷𝑖|𝜃𝑖).
Η περιθωριοποιημένη κατανομή των ενημερωμένων παραμέτρων των μοντέλων πολλα-

πλών κλιμάκων 𝜃𝑛𝑒𝑤 που λαμβάνουν υπόψη όλα τα σύνολα δεδομένων και μπορούν να
εφαρμοστούν σε μελλοντικές προβλέψεις εκφράζεται ως:

𝑃 (𝜃𝑛𝑒𝑤|𝐷) =

∫︁
Ω𝜓

𝑃 (𝜃𝑛𝑒𝑤|𝜓)𝑃 (𝜓|𝐷)𝑑𝜓 (32)

Η προσεγγιστική λύση της εξ. (32) γίνεται με τη δημιουργία μιας ποσότητας δειγμάτων

𝜓 μέσω της εμπειρικής κατανομής 𝑃 (𝜓|𝐷) που λαμβάνεται από την εξ. (31), ως εξής:

𝑃 (𝜃𝑛𝑒𝑤|𝐷) ≃
𝑁𝜓∑︁
𝑘=1

𝑃 (𝜃𝑛𝑒𝑤|𝜓𝑘) (33)

Για την παραγωγή δειγμάτων από την εξ. (32), χρησιμοποιείται ξανά ο αλγόριθμος TM-
CMC, όπου στην περίπτωση αυτή η αρχική δειγματοληψία εκτελείται στην εκ των προτέρων
κατανομή των υπερπαραμέτρων 𝑃 (𝜓). Αντίθετα με τη δειγματοληψία από την 𝑃 (𝐷𝑖|𝜃𝑖),
η εξ. (33) αντιπροσωπεύει μια φθηνή υπολογιστική διαδικασία, καθώς δεν χρειάζονται

αναλύσεις μοντέλων πολλαπλών κλιμάκων.

Αφού ληφθεί η εκ των υστέρων πιθανολογική μορφή του 𝜃𝑛𝑒𝑤 σύμφωνα με το ιεραρχικό
σχήμα Bayes , αυτές οι παράμετροι μπορούν στη συνέχεια να χρησιμοποιηθούν για οποια-
δήποτε ανάλυση διάδοσης αβεβαιότητας σε μελλοντικές προσομοιώσεις 𝑌 𝑛𝑒𝑤

όπως φαίνεται

στο σχήμα 11. Αυτές οι δοκιμές θα μπορούσαν να πραγματοποιηθούν σε καινούργια υλικά

συστήματα που περιγράφονται εν μέρει από τις επικαιροποιημένες παραμέτρους. Η ποσότητα

ενδιαφέροντος (π.χ. μια δομική απόκριση) 𝑦𝑛𝑒𝑤 υπολογίζεται ως:

𝑃 (𝑦𝑛𝑒𝑤|𝐷) =

∫︁
Ω𝜃𝑛𝑒𝑤

𝑃 (𝑦𝑛𝑒𝑤|𝜃𝑛𝑒𝑤)𝑃 (𝜃𝑛𝑒𝑤|𝐷)𝑑𝜃𝑛𝑒𝑤 (34)
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Σχήμα 11: DAG του ιεραρχικού προβλήματος Bayes

Το προτεινόμενο πλαισίο εφαρμόστηκε στην διερευνήση των μηχανικών ιδιοτήτων της

διεπαφής των CNTs, σύμφωνα με τον καταστατικό νόμο που έχει οριστεί στο σχήμα 2,
σε διαμορφώσεις τσιμεντοειδών υλικών. Για να πραγματοποιηθεί η ταυτοποίηση των πα-

ραμέτρων του υλικού που ερευνήθηκαν, ελήφθησαν τα αποτελέσματα από διαφορετικά πει-

ράματα που ανακτήθηκαν από τη βιβλιογραφία. Αυτά περιλαμβάνουν ένα πείραμα κάμψης

3 σημείων ενός δείγματος τσιμεντόπαστας ενισχυμένης με CNT, ένα πείραμα εφελκυσμού
που πραγματοποιήθηκε σε ράβδους τσιμεντοκονίας ενισχυμένων με ῝ΝΤ και ένα πείραμα

κάμψης 4 σημείων σε μια δοκό σκυροδέματος ενισχυμένη με CNT. Για την προσομοίωση
των πειραμάτων αναπτύχθηκαν τα κατάλληλα μοντέλα πολλαπλών κλιμάκων και για την

επίλυση χρησιμοποιήθηκε η τεχνική της εμφώλευσης στα πλαίσια της υπολογιστικής ομο-

γενοποίησης. Η τεχνική υποκατάστατης μοντελοποίησης μέσω της ανάπτυξης αλληλουχίας

νευρωνικών που προτάθηκε σε προηγούμενη μελέτη αποδείχθηκε απαραίτητη για την δρα-

στική μείωση του υπολογιστικού κόστους. Τα βήματα της αλγοριθμικής διαδικασίας της

προτεινόμενης μεθόδου παρουσιάζονται παρακάτω.
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Input : Σύνολο δειγμάτων εκπαίδευσης 𝑛, συνολικές προσαυξήσεις 𝑡 και
υπερπαράμετροι FFNN. Παραμετροποιημένα υλικά μοντέλα πολλαπλών
κλιμάκων 𝑀 𝑖(𝜃𝑖), προηγούμενες κατανομές 𝑃 (𝜓) και 𝑃 (𝜃𝑖). Σύνολο

δειγμάτων 𝑁𝜃𝑖
και παραμέτρων TMCMC 𝑘𝑖 και 𝛽𝑖. Σύνολο δειγμάτων

𝑁𝜓
και παραμέτρων TMCMC 𝑘𝑛𝑒𝑤 και 𝛽𝑛𝑒𝑤.

Output : ενημερωμένη κατανομή των παραμέτρων 𝑃 (𝜃𝑛𝑒𝑤|𝐷), ενημερωμένη
κατανομή των ποσοτήτων ενδιαφέροντος 𝑃 (𝑦𝑛𝑒𝑤|𝐷)

Offline Stage:
for 𝑖← 1 to 𝐾 do

for 𝑗 ← 1 to 𝑆𝑖 do

Δημιουργία και αποθήκευση δειγμάτων εκπαίδευσης {{𝜖𝑗+1}1:𝑡,𝜃𝑖𝑗}1:𝑛·
Επίλυση του προβλήματος οριακής τιμής της κλίμακας 𝑗·
Αποθήκευση των τάσεων από την επίλυση {{𝜎𝑗+1}1:𝑡}1:𝑛·
Εκπαίδευση του FFNN 𝑓𝑁𝑁,𝑖𝑗 ·

Αποθήκευση του FFNN 𝑓𝑁𝑁,𝑖𝑗 ;

end

end
Online Stage:
for 𝑖← 1 to 𝐾 do
Δημιουργία δειγμάτων από την 𝑃𝑁𝑁,𝑖(𝐷𝑖|𝜃𝑖) ως
{𝜃𝑖}

1:𝑁𝜃𝑖
← 𝑇𝑀𝐶𝑀𝐶(𝑝(𝜃𝑖), 𝑃𝑁𝑁,𝑖(𝐷𝑖|𝜃𝑖), 𝑁 𝑖, 𝑘𝑖, 𝛽𝑖)·

Αποθήκευση δειγμάτων {𝜃𝑖}
1:𝑁𝜃𝑖

και δεδομένα συνάρτησης πιθανοφάνειας

𝑃𝑁𝑁,𝑖(𝐷𝑖|{𝜃𝑖}
1:𝑁𝜃𝑖

)

end
Εκτίμηση 𝑃 (𝜓|𝐷)·
Δημιουργία δειγμάτων από την 𝑃 (𝜓|𝐷) ως
{𝜓}1:𝑁𝜓 ← 𝑇𝑀𝐶𝑀𝐶(𝑃 (𝜓), 𝑃 (𝐷|𝜓), 𝑁𝜓, 𝑘𝜓, 𝛽𝜓)·
Εκτίμηση 𝑃 (𝜃𝑛𝑒𝑤|𝐷)·
Διάδωση της εκ των υστέρων αβεβαιότητας 𝑃 (𝑦𝑛𝑒𝑤|𝐷);

Algorithm 1: Αλγόριθμος της προτεινόμενης μεθοδολογίας για παραμετρι-
κή διερεύνηση ετερογενών υλικών μοντέλων πολλαπλών κλίμακων κάνοντας

χρήση υποκατάστατης μοντελοποίησης
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0
Introduction

The need for advanced high-performance materials is undoubtedly one of the main drivers

of today’s innovation in industry and research. Over the past decades, several new

technologies have emerged for the development of materials with enhanced properties

(mechanical, thermal, electrical) based on appropriate modifications of their composition

in finer scales. For instance, carbon nanotubes (CNTs) have been extensively used to

improve the mechanical properties of polymers [127, 43] and cementitious materials

[67, 68, 142], graphene oxide to enhance the electrical conductivity in polymers [78] and

graphite nanoplatelets to enhance the thermal conductivity on epoxy-based composites

[143]. Even though the addition of appropriate fillers provides the means to create high

performance materials with targeted properties, yet, the resources required to study their

behavior experimentally greatly slow down the progress in this field. In this regard, a

promising approach towards replacing the experimental procedure is given by simulation-

based material design that could drastically reduce the time and cost required for the

characterization of these elaborate materials. On the downside, accurately modeling

their behavior is a remarkably challenging computational mechanics problem due to

the complexity of the physical phenomena spanning across multiple scales, such as the

nanoscale, microscale and mesoscale, as well as the uncertainties associated with the

individual material parameters and microstructural geometry.

To tackle the intrinsic limitations that characterize experimental procedures, several
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computational techniques have been developed capable of accurately modeling complex

composite materials. The most notable are arguably the multiscale methods [85],

according to which the system is decomposed and defined in a number of distinct length

scales. Each of these scales has its own material ‘genome’, i.e. individual topological,

geometrical and physical properties, such as the different material phases, the interaction

between them, their concentrations, spatial distributions, dimensions etc. The material

‘genomes’ can vary significantly between scales and, in this respect, dissimilar and

scale dependent physical phenomena can emerge. The concept of multiscale mechanics

consists of identifying appropriate relationships to bridge the various length scales and

quantifying these dependencies. This is done either straightforwardly by defining all the

scales on a single system and introducing ‘handshake’ regions between them or with

the introduction of a representative volume element (RVE), which is a system that is

decoupled from the main model and constitutes a statistically representative realization

of a specific scale. Linking the scales in a hierarchical manner i.e from the finest scale

and upwards, the so-called homogenization takes place, which is an averaging over the

field variables of the RVE of a specific scale.

Early homogenization-based multiscale approaches provided approximations of the

effective constitutive behavior of multi-phase materials via analytical or semi-analytical

relations [33, 89, 21, 53]. Although these could provide a sufficient representation of

the material in the linear regime, they tend to behave poorly on non-linear materials

that construe complex physical phenomena. More recent research approaches were

based on solving a boundary value problem posed at the RVE configuration. In this

context, resulting methodologies can either correspond to algorithmically sequential or

semi-concurrent procedures. In sequential procedures, the constitutive responses are

predetermined from offline RVE solutions [114], while in the semi-concurrent procedures

a nested scheme is used to establish a constant communication between the different

scales during the solution. One of the most notable frameworks that implement a nested

scheme is the 𝐹𝐸2 algorithm, which is based on performing finite element analysis on

both scales of a two-scale system [118, 71, 35, 70]. The nested approaches are considered

to be most accurate for predicting the evolution of a system through different stages,

however, a major downside is their immense computational requirements, which in many

cases can be prohibitive.

Despite the tremendous advancements in computational power nowadays, the applica-

tion of nested computational homogenization schemes on multiscale material systems

2



remains a computationally challenging and, in many cases, intractable problem. An

efficient way to combat this issue is via the development of surrogate models which are

simpler mathematical constructs that aim to replicate the input-output relation of the

original equations through a training procedure. In the context of computational material

mechanics, surrogate models have been extensively used to learn non-linear constitutive

relations such as hyperelastic laws [60] or more complex history dependent relations

such as plastic or viscoplastic laws [79, 1, 81]. Beyond the purely data-driven surrogate

models for material laws, attempts have been made recently on the development of

mechanistically consistent and physics-informed models. In an effort to develop NN-based

material models that can provide accurate results with less training data, while also

preserving physical consistency, several works have proposed methodologies that take

into account physical information either through specialized NN architectures [141, 84] or

by augmenting the loss function with additional terms to ensure physical consistency[2].

In a multiscale setting, several techniques have been proposed to alleviate the enormous

computational demands of nested schemes. For instance, reduced order models (ROMs)

have been applied in the governing equations of the lower scale either with linear [146, 36]

or manifold-based methods [10]. Additionally, non-intrusive approaches such as response

surfaces [125], Gaussian Processes [110, 37], deep feedforward neural networks (DNNs)

[60, 82, 9] and recurrent neural networks (RNNs) [136, 41, 139, 13] have also been

successfully employed. In these data-driven schemes, the objective is to uncover the

macroscopic stress-strain or strain-strain energy relations from experimental data and/or

synthetic data.

Besides computational material design of nanocomposites, these materials often have

many uncertainties located at their fine structure, such as the morphology, the volume

fraction, the mechanical properties of the individual materials and their interaction

properties. The challenging task of identifying phenomenological material parameters,

which cannot be directly measured through experiments, has been extensively explored

in numerous studies within the literature. The objective of inferring the parameter values

that provide the maximum likelihood estimation, has led to a wide adoption of several

optimization strategies. Representative instances of such approaches include employing

the least squares method for the calibration of statistical constitutive parameters of

rocks [25] or of strain rate sensitivity parameters of metals [15] and the utilization of a

genetic algorithm towards microstructural parameter inference for a visco-plastic-damage

model for hardened cement [48]. Nevertheless, the reliability of single-point estimations
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is not consistent, mainly because inverse problems are often ill-posed, especially in the

context of multiscale material systems, where highly nonlinear phenomena are at play.

In response to this limitation, the Bayesian paradigm [6, 12] has more recently gained

traction as a means of material parameter investigation. This paradigm re-contextualizes

the inverse problem within a stochastic framework. Bayesian parameter inference has

been applied to empirical constitutive laws in various scenarios, including heterogeneous

mediums [69], a visco-elastic model [105], a crystal plasticity-damage model [96] and a

thermo-visco-plastic model [144]. In the area of materials with multiscale properties,

randomness in these parameters is introduced to the numerical model via appropriate

probabilistic descriptions, either using random variables or random fields. For instance,

in [116] the volume fraction of CNTs in representative volume elements (RVEs) of the

composite material is modeled as a random variable. A similar approach can be found in

[134] concerning the length of the CNTs, their waviness, the agglomeration parameters

and the effective Young’s modulus. Also, in [115] random fields were used to describe the

waviness of CNTs in the polymer matrix. However, accurately selecting the parameters

of these probabilistic models is not straightforward, as they depend on the manufacturing

process. This fact suggests that their calibration would require microscale measurements,

which are hard to obtain.

This is particularly true for the estimation of the interaction properties between the

CNTs and the polymer matrix, because these are not directly observable quantities and

require sophisticated experimental setups [121, 102, 26]. In this dissertation a Bayesian

analysis framework is proposed in [104] to address this issue, with the aim of updating

the prior beliefs on the mechanical properties of carbon based nanocomposites. The

focus is placed on learning the parameters that characterize the CNT/polymer interface

in the microscale with data available from upper scales. As mentioned, these parameters

are associated with great uncertainties and their characterization is a difficult task, since

microscale measurements are costly and hard to obtain. To overcome this, the present

study introduces a computational framework for updating the prior beliefs on the values

of these parameters, by using deformation measurements on meso- and/or macro-scale

structures composed of the composite. In terms of modeling, the CNT/polymer interface

is formulated using a cohesive zone model and a bilinear bond-slip constitutive law. The

FE2 method is then employed for predicting the response of the composite structures, but

despite its accuracy, this method is associated with tremendous computational demands

for large-scale problems. Therefore, its application to the Bayesian setting that requires
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multiple model evaluations is prohibitive. To alleviate this enormous cost, a surrogate

modeling technique is developed which utilizes artificial neural networks, trained to

predict the nonlinear stress-strain relationship of representative volume elements of the

microstructure. The data set over which the neural network is trained, is obtained

by analyzing a limited number of different RVE configurations using a detailed finite

element analysis. The elaborated methodology is first validated through a numerical

example from 2D elasticity, which demonstrated its high accuracy and its significant

cost reduction capabilities. It is then applied to a more challenging large-scale problem

from 3D elasticity. Even though this research focuses on the characterization of the

mechanical properties of composite materials, the proposed numerical procedure is

generic and can be straightforwardly applied to other physically analogous phenomena

related to nano-composite modeling, such as parameter identification in heat transfer or

electrical conduction.

Undoubtedly, concrete is the most common construction material world-wide, with

its uses ranging from house construction to bridges and dams. Due to the critical role

it plays in people’s lives and their general well-being, vast research has been devoted

to better understanding and improving its properties. In the last decades, several new

technologies have emerged, aiming to improve its strength [129, 108], durability [111, 98]

and fatigue resistance [45, 73], just to mention a few. The focus in previous attempts

has mostly been in enhancing the performance of cementitious materials by adding

appropriate fillers to the mix such as glass fibers [106, 124] and steel fibers [122] or

chemical reagents such as metakaolin [3]. A different approach, however, which has

attracted a major interest in the scientific community, opening new research fields

within concrete technology, is that of reinforcing concrete at the nanoscale level using

nanomaterials as fillers. There are numerous applications of nanomaterials as concrete

reinforcement, including nano silica [11, 64], nano titanium [77], nano alumina [80],

nano clay[16, 62], and carbon based nanomaterials such as graphene sheets and carbon

nanotubes (CNTs) [76, 97, 142], which are considered to be among the most promising

ones. The huge interest of researchers from diverse fields towards carbon nanomaterials

and especially CNTs is due to their extraordinary mechanical [130], thermal [8] and

electrical properties [29]. As an example, CNTs, which may consist of a single or multiple

rolled graphene sheets, have an estimated Young’s modulus of 1TPa and their tensile

strength is 100 times larger than that of the strongest steel [128]. For this reason,

they have been extensively investigated in numerous experimental works and have been
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shown to significantly improve the mechanical properties of any host material, including

concrete [90, 94].

As mentioned previously, nonlinear computational homogenization analyses, albeit

being very accurate, they are associated with an enormous computational cost. This is

especially true for multiscale material systems, such as CNT-reinforced concrete, that

are defined by more than two distinct length scales. In such cases, nested computational

homogenization schemes are prohibited even for trivial applications. This dissertation

proposes a surrogate modeling strategy, in [103], dedicated to 𝐹𝐸𝑁 computational

homogenization approaches on systems with many scales (𝑁 > 2). The idea is to

employ a sequence of neural networks that represent the hierarchy of the separate

scales in the multiscale problem. Each neural network is being trained to learn the

physical law at a corresponding length scale of the problem. In a similar manner

to the original problem where each finer scale is contained in a coarser scale, neural

networks representing fine scales are contained in the DNNs that represent coarser

scales. At the end of the training process, a single deep network which emulates the

macroscopic behavior by incorporating all physical mechanisms arising at each of the

problem’s finer scales is derived. This approach takes full advantage of the accuracy and

modeling capabilities that 𝐹𝐸𝑁 schemes provide, while at the same time overcomes their

immense computational requirements. Specifically, the DNNs are tasked with learning

parameterized versions of the constitutive law in each scale, which allows the modeling

of a wide range of possible material behaviors. This is accomplished by augmenting

the input layer of the DNNs with the set of the uncertain material parameters. With

this approach, each DNN incorporates the uncertain behavior that comes from all the

previous scales and ultimately a macroscopic constitutive response that encapsulates all

this information is obtained through the final DNN. In turn, this DNN can be applied

as a surrogate of the material in any macrostructural system and for various multi-query

problems (e.g. sensitivity analysis, optimization, Bayesian inference).

The elaborated methodology is demonstrated on the analysis of a large-scale building

made of CNT-reinforced concrete. This particular structural system is modeled as a

four-scale problem consisting of (i) carbon nanotube-reinforced cement paste at the

microscale, (ii) reinforced cement mortar at a fine mesoscale level, (iii) reinforced concrete

at a coarse mesoscale level and (iv) the macroscopic structural system. The composite

material is characterized by different nonlinear constitutive laws at each scale. The

solution of the full multiscale problem is attained by using a 𝐹𝐸4 scheme at a reasonable
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computational time by virtue of the elaborated surrogate modeling setup. In turn, this

enables laborious sensitivity analyses in order to assess the uncertainty in the microscopic

material parameters and its propagation to the macroscopic structural response.

Next, in the present thesis, a novel computational framework is developed in [65], for

identifying optimal material typologies to improve structural performance under the

presence of uncertainties. Specifically, the focus in this work is on carbon nanotube(CNT)-

reinforced concrete with the optimization problem consisting in finding the optimal CNT

orientation in the host material so as to minimize the total deformation of structures

made up from the composite. A computational model for CNT-reinforced concrete is

proposed which utilizes a 3-level hierarchical approach for material characterization. In

particular, cement mortar enhanced with carbon nanotubes is studied at a microscale

level, while the reinforced cement paste along with concrete aggregates is studied at a

mesoscale level using a continuum micromechanics model. This, in turn, enables the

study of realistic structural problems made of the composite and the assessment of their

performance. The material optimization analysis is facilitated by means of the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES) [51, 49] optimization algorithm, which

is derivative-free method for handling non-convex continuous optimization problems and

is suited for computationally expensive numerical models. With this methodology the

optimal CNT orientations can be obtained at every location of the macroscale structure

that will lead to a reduced overall deformation. Going one step further, in the effort to

provide a more rational and robust approach, the randomness in the external loading of

the structure under investigation is considered and therefore the problem is reformulated

in the context of stochastic optimization. To alleviate the vast computational burden

associated with this endeavor, the aforementioned surrogate modeling technique for

𝐹𝐸𝑁 material systems is employed for the macroscopic material prediction the studied

3-scale system. With this approach, a drastic cost reduction is achieved per structural

analysis which allows the efficient execution of the stochastic structural optimization

problem.

The ability to combine diverse datasets for parameter identification can provide

significant benefits in computational material modeling. The motivation to do that is not

exclusive to materials, given the current era of “big data”. It has been recognized that in

such situations, the conventional Bayesian method falls short in addressing the external

variability due to the inability to explicitly quantify it within the model’s structure.

This variability stems from contradictory environmental, operational, and experimental
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conditions across distinct datasets. With respect to material modeling, additional

variability can be present due to dissimilar material composition among the experimental

cases. All of these disparities lead to the underestimation of the overall uncertainty. To

address the complex challenge, hierarchical Bayesian approaches have been proposed

[22] in several scientific disciples such as structural dynamics [7], biomechanics [30]

and machine learning [42]. This approach introduces an additional layer of parameters

into the probabilistic model, referred to as hyperparameters, which act as statistical

parameters, assuming the role of hyper-priors within the Bayesian framework. They

effectively capture the external variability, leading to robust outcomes concerning the

prediction of the posterior uncertainty. Regarding materials, hierarchical Bayesian

strategies have been utilized to ascertain parameters that characterize macroscopic

phenomenological material laws [92, 99], while in [126], a hierarchical Bayesian paradigm

has been employed for microstructural parameter calibration via testing on tensile

coupons with the same material layout.

This thesis, lastly, proposes a novel method for determining material properties within

multiscale material systems through a range of experimental scenarios. The presented

framework holds the promise of merging data acquired from experiments conducted on

materials of different compositions and encompassing measurements taken at various

length scales, allowing the systematic integration of multiple experimental data sources

into a unified computational framework. To achieve this, the Transitional Markov

Chain Monte Carlo (TMCMC) method is utilized for sampling from the marginalized

posterior distributions of both multiscale model parameters and hierarchical hyperpa-

rameters. These hyperparameters are subsequently employed to derive informed physical

parameters, which can be used for future model predictions. Crucially, feedforward

neural networks (FFNNs) play a key role in reducing the computational complexity of

implementing hierarchical Bayesian analysis on top of nonlinear computational homoge-

nization. Their primary aim is to learn and accurately predict the nonlinear constitutive

law across various scales. To evaluate the efficacy of the proposed approach, a study is

carried out on the parameters that define the interfacial mechanical behavior of carbon

nanotubes (CNTs) in CNT-reinforced cementitious material configurations. For this

task, data have been collected from conventional experiments conducted on diverse ma-

terial configurations defined at multiple length scales, each associated and characterized

through a 𝐹𝐸2 based hierarchical multiscale computational model.

The first chapter familiarizes the reader with the concept of multiscale finite element
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analysis in non-linear systems. The boundary value problems that define the macroscale

and the microscale are posed followed by the scale transition process. Then the boundary

valued coupled system is reformulated to systems with more than two scales. Focusing

on the finite element method, the numerical solution of the microscale problem, the

two-scale system and the N-scale system are detailed.

The second chapter introduces the modeling techniques that are applied towards

the simulation of the tackled material systems. The common characteristic of all the

composites studied in this dissertation is that they are reinforced with CNTs. The

transition from molecular dynamics to structural mechanics for the CNT representation

is first explained and then the fully bonded and cohesive formulations of the CNT/matrix

composite systems are provided.

The third chapter is dedicated on the scientific fields of uncertainty quantification and

optimization. Starting with a brief introduction in probability theory, several types of

parametric analyses are then presented. The inverse problem by means of the single-level

Bayesian Update method is formulated followed by the hierarchical Bayesian Update

extension in cases of multiple datasets. Next, the global sensitivity concept is presented

with a main focus on variance-based strategies. Lastly, the machinery that entails a

stochastic optimization procedure is laid out.

The fourth chapter illustrates the concept of surrogate modeling in engineering

application. Specifically, it focuses on machine learning based surrogate models, where

concepts such as neural networks and automatic differentiation are reviewed. Then, ways

to utilize machine learning techniques towards material modeling are outlined.

The fifth chapter presents a Bayesian framework for determining the mechanical

properties of carbon based nanocomposites. In particular, Bayesian parameter inference

is applied to learn the parameters that characterize the CNT/polymer interface in the

microscale. The prior beliefs on the values of these parameters are updated, by using

measurements on large-scale structures made of the composite. To alleviate the cost

that multiple FE2 analyses entail, a surrogate modeling technique is developed which

utilizes DNNs. The DNN is trained to predict the nonlinear stress-strain relationship of

representative volume elements of the microstructure. The elaborated methodology is

validated through numerical examples on 2D and 3D elasticity.

The sixth chapter introduces a novel surrogate framework designed to accelerate the

solution procedure of hierarchically formulated multiscale problems. The idea is to

employ a sequence of deep neural networks (DNNs) that represent the hierarchy of the
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separate scales in the multiscale problem. Each DNN is trained to learn the constitutive

law of a corresponding length scale of the problem and ultimately, DNNs representing

fine scales are contained in the DNNs that represent coarser scales. At the end of the

training process, a single deep network is produced which emulates the parameterized

macroscopic behavior. Based on this strategy, a global sensitivity analysis is performed

on a four-scale CNT-reinforced concrete structural system described by a 𝐹𝐸4 model at

reasonable computational times

The seventh chapter presents a numerical framework for the stochastic material

optimization of structures made up of CNT-reinforced structures. Specifically, the

focus lies in finding the optimal CNT orientation at different members of structural

systems based on a minimization of the sum of the mean and standard deviation of

the overall structural deformation. This methodology is demonstrated on a three-scale

CNT-reinforced concrete structural system described by a 𝐹𝐸3 computational model.

The eighth chapter introduces a hierarchical Bayesian framework to infer the material

properties of multiscale material systems through a variety of experimental data acquired

from different length scales and/or different material compositions. An informed set of

physical parameters that encapsulates the information from all the different experiments

is produced and is used for making predictions in future material models. This framework

is demonstrated on a case study of CNT-reinforced cementitious material configurations

through the investigation of the CNT interfacial mechanical behavior, by utilizing

experimental data on dissimilar material compositions.

The tenth chapter discusses the conclusions drawn from this research and presents a

summary of the contributions.
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1
Non-linear multiscale finite element

analysis

1.1 Macroscale boundary value problem

Consider an elastic body 𝑀 placed on the macroscopic structural scale and defined

on a domain Ω𝑀 ⊂ 𝑅3 with a Lipschitz-continuous boundary Γ𝑀 . According to the

infinitesimal strain theory, the Green-Lagrangian strain tensor 𝜖𝑀 is expressed as:

𝜖𝑀 =
1

2

(︁
∇𝑀𝑢𝑀 +

(︀
∇𝑀𝑢𝑀

)︀⊺)︁
(1.1)

The strong formulation of the static equilibrium equation has the form:

∇𝑀 · 𝜎𝑀 = 𝑏𝑀 𝑜𝑛 Ω𝑀 (1.2)

and the boundary conditions are:

𝑢𝑀 = �̂�𝑀 𝑜𝑛 Γ𝑀𝐷 (1.3a)

𝜎𝑀 · 𝑛 = 𝜏𝑀 𝑜𝑛 Γ𝑀𝑁 (1.3b)

Γ𝑀 ≡ Γ𝑀𝐷 ∪ Γ𝑀𝑁 , Γ𝑀𝐷 ∩ Γ𝑀𝑁 ≡ ∅ (1.3c)
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where 𝑏𝑀 are the volumetric forces, 𝜎𝑀 is the Cauchy stress tensor, 𝑛 is the outward

unit normal vector, �̂�𝑀 and 𝜏𝑀 are the prescribed displacements and forces on the

boundaries, while Γ𝑀𝐷 and Γ𝑀𝑁 are the subsets of Γ𝑀 with Dirichlet and Neumann

conditions respectively.

Moreover, a constitutive relation for the macro-problem is established through the

general form:

𝜎𝑀 (𝑡) = 𝜎𝑀{𝜖𝑀 (𝑡),𝜃𝑀 (𝑡), 𝑡 ∈ [0, 𝑡]} (1.4)

with 𝑡 denoting the pseudo-time in the case of a quasi-static analysis and 𝑡 the history-

dependence of the material’s behavior. Additionally, 𝜃𝑀 is used to declare a set of

internal variables that characterize the state of the material (e.g. plasticity, damage) and

physical or constitutive parameters of the material model. In the context of multiscale

analysis as defined by computational homogenization, eq. (1.4) does not have an explicit

functional form. Instead this relation is obtained through the solution of a boundary

value problem imposed by a representative volume element (RVE) that characterizes the

fine-scale structure.

1.2 Microscale boundary value problem

The fine scale can represent several possible length scales, however, without loss of

generality, the fine scale formulation will be presented here in terms of a microscale

problem. As shown in fig. 1.1, the elastic body 𝜇, which embodies the RVE, is defined

on a domain Ω𝜇 ⊂ 𝑅3 with a Lipschitz-continuous boundary Γ𝜇. The infinitesimal strain

theory is also applied here:

𝜖𝜇 =
1

2
(∇𝜇𝑢𝜇 + (∇𝜇𝑢𝜇)⊺) (1.5)

The strong formulation of the static equilibrium equation in the absense of volumetric

forces is expressed as:

∇𝜇𝜎𝜇 = 0 𝑜𝑛 Ω𝜇 (1.6)

while the boundary conditions are:

𝑢𝜇 = �̂�𝜇 𝑜𝑛 Γ𝑚𝐷 ≡ Γ𝜇 (1.7a)
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where 𝜎𝜇 is the Cauchy stress tensor of the microscale and �̂�𝜇 the prescribed displace-

ments on the Dirichlet boundary Γ𝑚𝐷 .

The constitutive relation for the microscale problem is written as:

𝜎𝜇(𝑡) = 𝜎𝜇{𝜖𝜇(𝑡),𝜃𝜇(𝑡), 𝑡 ∈ [0, 𝑡]} (1.8)

with 𝜃𝜇 including the microscale internal variables and material parameters.

BVP
solution
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Figure 1.1: Scale transition during computational homogenization

1.3 Transition between the length scales

According to the principle of separation of scales, homogenization theory can be applied

effectively if the following relation holds:

𝜆𝜇 ≪ 𝜆𝑅𝑉 𝐸 ≪ 𝜆𝑀 (1.9)

where 𝜆𝜇, 𝜆𝑅𝑉 𝐸 , 𝜆𝑀 are the length scales of the microscopic field fluctuations, of the

RVE size and of the macroscopic field fluctuations, respectively.

To link the system defined by the two scales, boundary conditions that are consistent

with the response of the macrostructure have to be assigned on the microscale. To this

purpose, the displacement field 𝑢𝜇(𝑥) is associated to the strain 𝜖𝑀 of a macroscopic

material point through the relation:
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𝑢𝜇 = 𝜖𝑀 · 𝑥𝜇 + �̃�𝜇 (1.10)

where �̃�𝜇 is the displacement fluctuation field attributed to the heterogeneity of the

microstructure.

Alternatively eq. (1.10) can be expressed as:

𝜖𝜇 = 𝜖𝑀 +∇𝜇�̃�𝜇 (1.11)

Ultimately, the scale transition is established by utilizing averaging relations for the

field variables of the two scale system. For the strain tensors this relation is written as:

𝜖𝑀 =
1

‖Ω𝜇‖

∫︁
Ω𝜇
𝜖𝜇𝑑Ω𝜇 (1.12)

Inserting eq. (1.11) into eq. (1.12) and after some algebraic manipulations yields:

1

‖Ω𝜇‖

∫︁
Γ𝜇
�̃�𝜇 ⊗ 𝑛𝜇𝑑Γ𝜇 = 0 (1.13)

For the relation (1.13) to hold, appropriate boundary conditions have to be assigned

on the fluctuation field �̃�𝜇. A choice that fulfills this requirement and was used in the

present thesis is to restrain �̃�𝜇 on the boundary of the RVE as:

�̃�𝜇 = 0 𝑜𝑛 𝑥𝜇 ∈ Γ𝜇 (1.14)

Applying eq. (1.14) into eq. (1.10) produces the final form of the localization i.e. the

macro-to-micro scale transition:

𝑢𝜇 = 𝜖𝑀𝑥𝜇 𝑜𝑛 𝑥𝜇 ∈ Γ𝜇 (1.15)

It is evident that the above relation assigns a linear deformation on Γ𝜇 of the RVE.

Other types of boundaries can be chosen, as well, such as uniform tractions or periodic

boundary conditions [88].

In computational homogenization, the local variation of the macroscopic work is linked

to the variation of the microscopic work per unit volume through the Hill-Mandell energy

consistency relation [55]:
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𝜎𝑀 : 𝛿𝜖𝑀 =
1

‖Ω𝜇‖

∫︁
Ω𝜇
𝜎𝜇 : 𝛿𝜖𝜇𝑑Ω𝜇 (1.16)

Taking into account the microscopic equilibrium and then using the divergence theorem,

eq. (1.16) can be restated as:

𝜎𝑀 : 𝛿𝜖𝑀 =
1

‖Ω𝜇‖

∫︁
Ω𝜇
∇𝜇 · (𝜎𝜇 · 𝛿𝑢𝜇)𝑑Ω𝜇 =

1

‖Ω𝜇‖

∫︁
Γ𝜇
𝜏𝜇 · 𝛿𝑢𝜇𝑑Γ𝜇 (1.17)

where 𝜏𝜇 is the traction vector acting on the boundary Γ𝜇.

Inserting eq. (1.10) into eq. (1.17) yields:

𝜎𝑀 : 𝑑𝜖𝑀 =
1

‖Ω𝜇‖

(︂∫︁
Γ𝜇
𝜏𝜇 ⊗ 𝑥𝜇𝑑Γ𝜇

)︂
: 𝛿𝜖𝑀 +

1

‖Ω𝜇‖

∫︁
Γ𝜇
𝜏𝜇 · 𝛿�̃�𝜇𝑑Γ𝜇 (1.18)

Based on eq. (1.18) and after applying the divergence theorem one more time leads

to the micro-to-macro relation:

𝜎𝑀 =
1

‖Ω𝜇‖

∫︁
Γ𝜇
𝜏𝜇 ⊗ 𝑥𝜇𝑑Γ𝜇 =

1

‖Ω𝜇‖

∫︁
Ω𝜇
𝜎𝜇𝑑Ω𝜇 (1.19)

where the stress field 𝜎𝜇 can be acquired after the solution of the boundary value problem

(BVP) imposed by the localization rule of eq. (1.15) on the RVE.

Additionally, the tangent modulus that defines the constitutive law in eq. (1.4) at the

particular macroscopic material point is:

𝐶𝑀 =
1

‖Ω𝜇‖
𝜕𝜖𝑀

∫︁
Ω𝜇
𝜎𝜇𝑑Ω𝜇 (1.20)

The interaction of the macroscale and the microscale of the coupled two-scale system is

illustrated in fig. 1.1.

1.4 𝑁-scale boundary value problem

Consider a system defined by a macroscopic scale 𝑀 as introduced in section 1.1

and a set of 𝑁 successively finer length scales 𝑠 = 1, .., 𝑁 (e.g. 𝑠 = 1 →nanoscale,

𝑠 = 2→microscale, 𝑠 = 3→mesoscale). Similarly to section 1.2 each of the finer scales 𝑠

is placed on a domain Ω𝑠 where, by omitting the body forces, the balance equation is

stated as:
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∇ · 𝜎𝑠 = 0 𝑜𝑛 Ω𝑠 (1.21)

and the boundary conditions are as follows:

𝑢𝑠 = �̂�𝑠 𝑜𝑛 Γ𝑠𝐷 ≡ Γ𝑠 (1.22)

In a similar manner to section 1.3, a link between these scales has to be established

during the solution. This can be achieved sequentially between each pair of consecutive

scales. As in eq. (1.15) the localization rule is initially applied for each pair as:

𝜖2(𝑥2) =
1

‖Ω1‖

∫︁
Ω1

𝜖1(𝑥1;𝑥2)𝑑Ω1 , · · · , 𝜖𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁
𝜖𝑁 (𝑥𝑁 ;𝑥𝑀 )𝑑Ω𝑁

(1.23)

To clarify the above notation, the variable after the semicolon, for instance 𝑥2 in

𝜖1(𝑥1;𝑥2), denotes that the strain field 𝜖1 inside the integral is the one developed from

the RVE that is associated to the material point 𝑥2 of the upper scale.

Then, combining all the successive localization steps, a relation that describes the

whole system interaction can be acquired as:

𝜖𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜖1(𝑥1;𝑥2)𝑑Ω1⏟  ⏞  
𝜖2(𝑥2;𝑥3)

..

⏟  ⏞  
...

.

⏟  ⏞  
𝜖𝑁 (𝑥𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (1.24)

Next, starting from the finest scale, the solution of the RVEs can be obtained by

applying the homogenization step of eq. (1.19) for each pair as:

𝜎2(𝑥2) =
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝜃1;𝑥2)𝑑Ω1 , · · · , 𝜎𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁
𝜎𝑁 (𝑥𝑁 ,𝜃𝑁 ;𝑥𝑀 )𝑑Ω𝑁

(1.25)

where 𝜃𝑠 are the 𝑠𝑡ℎ scale internal variables and material parameters. The connection of

the subsequent homogenization steps then gives:
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𝜎𝑀 (𝑥𝑀 ) =
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝜃1;𝑥2)𝑑Ω1⏟  ⏞  
𝜎2(𝑥2,𝜃2;𝑥3)

..

⏟  ⏞  
...

.

⏟  ⏞  
𝜎𝑁 (𝑥𝑁 ,𝜃𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (1.26)

Accordingly, the tangent constitutive matrix is formulated as:

𝐶𝑀 (𝑥𝑀 ) = 𝜕𝜖𝑀
1

‖Ω𝑁‖

∫︁
Ω𝑁

. ..
1

‖Ω1‖

∫︁
Ω1

𝜎1(𝑥1,𝜃1;𝑥2)𝑑Ω1⏟  ⏞  
𝜎2(𝑥2,𝜃2;𝑥3)

..

⏟  ⏞  
...

.

⏟  ⏞  
𝜎𝑁 (𝑥𝑁 ,𝜃𝑁 ;𝑥𝑀 )

𝑑Ω𝑁 (1.27)

1.5 Finite element solution of the microscopic boundary value

problem

The discrete version of the microscopic BVP problem can be obtained through the

utilization of a numerical discretization technique such as the Finite Element Method

(FEM), the Finite Difference Method (FDM), the Discrete Element Method (DEM) and

others. In the context of FEM, which was applied in this thesis, the above equations can

be recast in matrix form as follows. After discretizing the RVE, linear displacements are

imposed on the boundary nodes according to the macroscopic strain 𝜖 (localization rule)

with the following relation:

𝑢𝑛 =𝐷𝑛𝜖
𝑀 (1.28)

where 𝑢𝑛 is the nodal displacement vector of node 𝑛 and 𝐷𝑛 is a nodal coordinate

dependent matrix written in the 3D case as:

𝐷𝑛 =
1

2

⎡⎢⎣2𝑥1 0 0 𝑥2 𝑥3 0

0 2𝑥2 0 𝑥1 0 𝑥3

0 0 2𝑥3 0 𝑥1 𝑥2

⎤⎥⎦
𝑛

(1.29)
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with 𝑥1, 𝑥2, 𝑥3 being the nodal coordinates of node 𝑛. Then, the global set of equations

for the problem becomes:

𝑢𝑏 =𝐷𝜖
𝑀 (1.30)

where the subscript 𝑏 refers to the nodes on the boundary and 𝐷 = [𝐷1,𝐷2, ...,𝐷𝑀 ] is

the global coordinate matrix for all 𝑀 nodes lying on the boundary.

The equilibrium of the RVE is imposed using Lagrange multipliers and the system of

equations assumes the form:

𝑢𝑏 =𝐷𝜖
𝑀 (1.31a)

𝑓𝑏 = 𝜆 (1.31b)

𝑓𝛼 = 0 (1.31c)

where 𝑓 denotes the internal force vector, while the indices 𝛼 and 𝑏 stand for the nodes

at the interior of the RVE and the boundary, respectively. Additionally, the Lagrange

multipliers 𝜆 express the external forces on the system’s nodes. In incremental form and

using matrix notation eqs. (1.31) can be restated as:[︃
𝐾𝛼𝛼 𝐾𝛼𝑏

𝐾𝑏𝛼 𝐾𝑏𝑏

]︃{︃
Δ𝑢𝛼

Δ𝑢𝑏

}︃
+

{︃
𝑓𝛼

𝑓𝑏

}︃
=

{︃
0

𝜆+Δ𝜆

}︃
(1.32)

with 𝐾 being the tangential stiffness matrix of the RVE.

The procedure to solve the nonlinear equation with a standard Newton-Raphson

method is:

� For the first iteration of each increment where the microscopic equilibrium is

satisfied, a displacement increment Δ𝑢𝑏 is imposed as Δ𝑢𝑏 =𝐷Δ𝜖𝑀 resulting in

a Δ𝑢𝛼 =𝐾−1
𝛼𝛼𝐾𝛼𝑏Δ𝑢𝑏

� For the following iterations where Δ𝑢𝑏 = 0 the internal deformations are updated

as Δ𝑢𝛼 = −𝐾−1
𝛼𝛼𝑓𝛼 until convergence has been achieved in the sense that ‖𝑓𝛼‖ = 0

� If convergence has been reached the macroscopic stress and the macroscopic

tangent modulus are calculated as:

𝜎𝑀 = 1
‖Ω𝜇‖𝐷𝑓𝑏 , 𝐶

𝑀 = 1
‖Ω𝜇‖𝐷

𝑇 �̃�𝑏𝑏𝐷 , where �̃�𝑏𝑏 =𝐾𝑏𝑏 −𝐾𝑏𝛼𝐾
−1
𝛼𝛼𝐾𝛼𝑏
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1.6 Finite element solution of the two-scale system (𝐹𝐸2 scheme)

So far the homogenization procedure has been presented in terms of a single macroscopic

material point. The generalization of this procedure on a nested finite element scheme

can be achieved by the well-established 𝐹𝐸2 algorithm. The main steps of this algorithm

for a complete multiscale solution are summarized next:

1. Initialize macroscopic state variables (𝐹𝑀
𝑒𝑥𝑡 = 0,𝐹𝑀

𝑖𝑛𝑡 = 0,𝑢𝑀 = 0,Δ𝑢𝑀 = 0).

2. For each macroscopic incremental step

3. Apply macroscopic load increment Δ𝐹𝑀
𝑒𝑥𝑡.

4. For each macroscopic integration point placed on 𝑥𝑀 :

� Define a unique discretized RVE on Ω𝜇.

� Assign boundary conditions on the RVE according to the localization rule of

eq. (1.15)

� Solve the microstructural problem and obtain 𝑢𝜇 and 𝜎𝜇.

� Apply the homogenization rule to acquire the homogenized stress 𝜎𝑀 from

eq. (1.19) and homogenized tangent modulus 𝐶𝑀 from eq. (1.20).

5. Calculate the macroscopic internal force vector 𝐹𝑀
𝑖𝑛𝑡(𝜎

𝑀 ) and the tangent stiffness

operator 𝐾𝑀 (𝐶𝑀 ).

6. Solve the macrostructural problem and get Δ𝑢𝑀 .

7. Check the condition ‖𝐹𝑀
𝑒𝑥𝑡 − 𝐹𝑀

𝑖𝑛𝑡‖ ≤ 𝜖 (𝜖=prescribed tolerance):

� If condition is met, then if it is the final macroscopic load increment Δ𝐹𝑀
𝑒𝑥𝑡

exit, else return to 2.

� If condition is not met return to 4.

The nonlinear computational homogenization solution procedure, as implemented

by the 𝐹𝐸2 algorithm provided above has the ability to yield very reliable predictions

even for complex composite materials with multiple phases and strong non-linearities.

Nevertheless, the computational demands of such a framework render it prohibitive for

non-trivial applications.
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1.7 Finite element solution of the 𝑁-scale system (𝐹𝐸𝑁 scheme)

Based on the concept of nonlinear computational homogenization in the context of a

two-scale system as presented in section 1.6, for each integration point of the macroscale,

a complete model solution of the micro scale has to be obtained and this has to be

repeated for all the iterations of the nonlinear analysis [145]. In theory, this concept can

be extended into a system of 𝑁 length scales as a 𝐹𝐸𝑁 scheme, where the coarse scale of

an initial 𝐹𝐸2 scheme represents the fine scale on the following 𝐹𝐸2. By applying this

reasoning, an estimation of the total RVE solutions in the context of multiple nested scale

systems can be acquired. In this case, the requirement for repeated solutions between any

local two-scale system has to be added on top of the requirement for repeated solutions

between each consecutive pair of scales that are located higher to the current pair. The

total number of BVP solutions required for a complete solution of the whole system is

then given by:

𝐾𝑅𝑉 𝐸 = 𝑘𝑀 + 𝑘𝑀 × 𝑘𝑁 + · · ·+ 𝑘𝑀 × 𝑘𝑁 × · · · × 𝑘2 (1.33)

where for each scale 𝑠, 𝑘𝑠 is defined as:

𝑘𝑠 = 𝑛𝑠𝑖𝑛𝑡 × 𝑛𝑠𝑖𝑡𝑒𝑟 × 𝑛𝑠𝑖𝑛𝑐𝑟 (1.34)

with 𝑛𝑠𝑖𝑛𝑡 being the number of integration points on the discretized system, 𝑛𝑠𝑖𝑡𝑒𝑟 the

number of iterations of the Newton procedure and 𝑛𝑠𝑖𝑛𝑐𝑟 the number of increments of

the analysis.

It is evident from eq. (1.33) that in order to perform the full solution of the macrostruc-

ture, the amount of BVPs that have to be solved is related to the total amount of RVEs

that describe the multiscale system and it quickly blows up for increasing number of

scales. As a consequence, this procedure becomes computationally intractable even for

low-fidelity multiscale models.
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2
Modeling of CNT-reinforced composite

systems

2.1 Carbon nanotube finite element representation

A single-walled carbon nanotube (SWCNT) can be conceptualized as a rolled-up graphene

sheet, forming a hollow tube. On the other hand, a multi-walled carbon nanotube

(MWCNT) consists of concentric cylinders made of graphitic layers with sealed ends,

featuring a layer spacing of approximately 0.34 nm. Graphite takes the shape of a two-

dimensional sheet with carbon atoms arranged in a hexagonal pattern, each connected

to three nearest neighbors. Nanotubes possess an atomic arrangement characterized by

their chirality, or helical nature, determined by parameters such as the chiral vector 𝐶ℎ

and the chiral angle 𝐶𝜃. The concept of slicing a graphite sheet along dotted lines and

then rolling the resulting strip so that the chiral vector’s tip meets its tail is illustrated

in fig. 2.1. This chiral vector, alternatively termed the roll-up vector, is mathematically

represented by the following equation:

𝐶ℎ = 𝑛𝑎1 +𝑚𝑎2 (2.1)

where the integers (n, m) represent the count of steps along the zigzag carbon bonds of
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the hexagonal lattice, while 𝑎1 and 𝑎2 denote unit vectors. The chiral angle signifies the

degree of twist in the tube. For the extremes known as zigzag and armchair, the chiral

angles are 0 and 30 degrees, respectively. The zigzag nanotube is represented by the

roll-up vector (n, 0), while the armchair nanotube is denoted by (n, n). Additionally,

the roll-up vector of the nanotube determines its diameter.

Figure 2.1: Derivation of a CNT from an initial graphene sheet

In light of the molecular structural mechanics approach (MSM) [75], CNTs can be

viewed as space frames where the carbon atoms represent the nodes and the C-C bonds

the structural elements (i.e. beams) that connect them. The force field developed in

a CNT is attributed to the covalent bonds developed between the carbon atoms (C-C

bond) and is expressed through a steric potential energy. The form of this energy, which

is solely affected by the relative positions of the atoms, is expressed as a combination of

energies arising due to the C-C bonding with the following equation:

𝑈 =
∑︁

𝑈𝑟 +
∑︁

𝑈𝜃 +
∑︁

𝑈𝜑 (2.2)

where 𝑈𝑟, 𝑈𝜃, 𝑈𝜑, are the bond stretch, the bond bending and torsional bending

energies that are developed between each pair of carbon atoms. Each of these energy

types is defined by the following forms:
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𝑈𝑟 =
1

2
𝜅𝑟Δ𝑟

2 , 𝑤𝑖𝑡ℎ Δ𝑟2 = (𝑟 − 𝑟0)2 (2.3a)

𝑈𝜃 =
1

2
𝜅𝜔Δ𝜔

2 , 𝑤𝑖𝑡ℎ Δ𝜔2 = (𝜔 − 𝜔0)
2 (2.3b)

𝑈𝜑 =
1

2
𝜅𝜏Δ𝜏

2 , 𝑤𝑖𝑡ℎ Δ𝜏2 = (𝜏 − 𝜏0)2 (2.3c)

In this context, 𝑘𝑟, 𝑘𝜔, and 𝑘𝜏 denote the force constants for bond stretching, bond

angle bending, and torsional resistance, respectively. Additionally, Δ𝑟, Δ𝜔,, and Δ𝜏 ,

represent the increments in bond stretching, changes in bond angle, and alterations in

bond twisting angle, respectively.

On the other hand, according to the theory of classical structural mechanics, the

strain energies of a uniform beam of length L and double symmetric cross-section that is

subjected to pure axial force, pure bending and pure torsion respectively, assume the

following forms:

𝑈𝑎 =
𝐸𝐴

2𝐿𝐵
Δ𝐿2 , 𝑤𝑖𝑡ℎ Δ𝐿2 = (𝐿𝐵 − 𝐿𝐵0 )2 (2.4a)

𝑈𝑚 =
2𝐸𝐼

𝐿𝐵
Δ𝛼2 , 𝑤𝑖𝑡ℎ Δ𝛼2 = (𝛼− 𝛼0)

2 (2.4b)

𝑈𝑡 =
𝐺𝐽

2𝐿𝐵
Δ𝛽2 , 𝑤𝑖𝑡ℎ Δ𝛽2 = (𝛽 − 𝛽0)2 (2.4c)

with 𝐸 being the elastic modulus, 𝐿𝐵 is the beam length, while 𝐴, 𝐼 and 𝐽 being the

cross-section area, bending moment of inertia and torsional moment of inertia respectively.

The terms Δ𝐿, Δ𝛼 and Δ𝛽 declare the axial stretching deformation, the bending angle

shift and the torsional angle difference.

The relation between the potential energy of the force field of C-C bonds and the

mechanical properties of the equivalent structural beam element can then be derived

from the equations:

(𝐸𝐴)𝑒𝑞 = 𝜅𝑟𝐿
𝐵 (2.5a)

(𝐸𝐼)𝑒𝑞 = 𝜅𝜔𝐿
𝐵 (2.5b)

(𝐺𝐽)𝑒𝑞 = 𝜅𝜏𝐿
𝐵 (2.5c)
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Although this structural representation is a straightforward and accurate transition

from the molecular mechanics, the complexity of the system persists, since each space

frame that simulates a CNT is inherently defined by an enormous amount of Degrees Of

Freedom (DOFs). To be able to efficiently incorporate the CNTs in the microstructure

modelling, a further simplification is necessitated. This is performed in a similar manner

to the MSM approach, as shown in fig. 2.2, with the projection of each space frame

structure onto an equivalent beam element(EBE) [100] with the relations:

(𝐸𝐴)𝐸𝐵𝐸𝑒𝑞 =
𝐹𝑥𝐿

𝑆𝐹

𝑢𝑥
(2.6a)

(𝐸𝐼)𝐸𝐵𝐸𝑒𝑞 =
𝐹𝑦(𝐿

𝑆𝐹 )3

3𝑢𝑦
(2.6b)

(𝐺𝐽)𝐸𝐵𝐸𝑒𝑞 =
𝑇𝐿𝑆𝐹

𝜙
(2.6c)

where the axial stiffness (𝐸𝐴)𝐸𝐵𝐸𝑒𝑞 , the bending rigidity (𝐸𝐼)𝐸𝐵𝐸𝑒𝑞 and the torsional

rigidity (𝐺𝐽)𝐸𝐵𝐸𝑒𝑞 of the EBE, are obtained by measuring the horizontal displacement 𝑢𝑥,

the vertical displacement 𝑢𝑦 and the angle of rotation 𝜙 that emerge from the imposed

loads on the space frame of length 𝐿𝑆𝐹 .

ux
uy

φ

Fx Fy T

Figure 2.2: CNT as space frame subjected to three deformation cases

2.2 Fully-bonded formulation of the CNT/matrix interface

To simulate the interaction between the CNTs and the surrounding matrix, the embedding

finite element technique is employed. With this approach at each of the EBEs (3-D

beam finite elements) nodes 𝑘 the respective DOFs 𝑣𝑘 = [𝑣𝑘1 , ..., 𝑣
𝑘
6 ] are embedded in

the DOFs 𝑢𝑠 = [𝑢𝑠1, ..., 𝑢
𝑠
24] of the surrounding solid element 𝑠 (3-D hexahedral finite

element) with the relation:
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𝑣𝑘 = 𝑇 𝑘,𝑠𝑢𝑠 (2.7)

where the [6x24] transformation matrix 𝑇 𝑘,𝑠 is formulated as:

𝑇 𝑘,𝑠 =
[︁
𝑇 𝑘,𝑠1 ... 𝑇 𝑘,𝑠8

]︁
(2.8)

with:

𝑇 𝑘,𝑠𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 𝑠
𝑖 (𝑥

𝑘) 0 0

0 𝑁 𝑠
𝑖 (𝑥

𝑘) 0

0 0 𝑁 𝑠
𝑖 (𝑥

𝑘)

0 −1
2𝑁

𝑠
𝑖,𝑧(𝑥

𝑘) 1
2𝑁

𝑠
𝑖,𝑦(𝑥

𝑘)
1
2𝑁

𝑠
𝑖,𝑧(𝑥

𝑘) 0 −1
2𝑁

𝑠
𝑖,𝑥(𝑥

𝑘)

−1
2𝑁

𝑠
𝑖,𝑦(𝑥

𝑘) 1
2𝑁

𝑠
𝑖,𝑥(𝑥

𝑘) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.9)

where 𝑁 𝑠
𝑖 , 𝑁

𝑠
𝑖,𝑥, 𝑁

𝑠
𝑖,𝑦, 𝑁

𝑠
𝑖,𝑧 are the shape functions and their derivatives on 𝑥, 𝑦, 𝑧 of the

node 𝑖 of each solid element 𝑠 , while 𝑥𝑘 are the local coordinates of the EBE node 𝑘

indicating its relevant position with respect to the host solid element. In the case of a

two-node EBE (𝑘 = 1, 2), eq. (2.7) can be written as:

𝑣 =

{︃
𝑣1

𝑣2

}︃
=

[︃
𝑇 1,𝑠1 0

0 𝑇 2,𝑠2

]︃{︃
𝑢𝑠1

𝑢𝑠2

}︃
= 𝑇𝑢 (2.10)

where 𝑠1 and 𝑠2 are the solid elements in which the respective EBE node 𝑘 lies.

After applying the transformation 𝑇 , the beam’s stiffness matrix is expressed as:

𝐾
′
𝑏 = 𝑇

𝑇𝐾𝑏𝑇 (2.11)

The complete stiffness matrix of the whole system’s interaction is:

𝐾 =𝐾𝑠 +

𝑁∑︁
𝑖=1

𝐾
′
𝑏𝑖

(2.12)

where 𝐾𝑠 is the solid stiffness matrix, while 𝐾
′
𝑏𝑖
is the stiffness matrix of the 𝑖𝑡ℎ EBE

for a system of 𝑁 total EBEs.
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2.3 Cohesive formulation of the CNT/matrix interface

For every EBE it is assumed that an auxiliary cohesive beam element (CBE) exists that

is parallel and attached to the first, as shown in fig. 2.3. This element is characterized

in terms of the host matrix DOFs with an embedding technique. The two elements are

linked together with a cohesive zone formulation [4, 28]. The methodology with the

FEM approach for the 3D case is described in detail below.

CBE

EBEA

A ‘

B ‘
B

ξ
η

ζ

Figure 2.3: EBE with its respective CBE in the global coordinate system

The cohesive zone model relates the DOFs of the lower surface of a predetermined

discontinuity with its upper surface. Here, the lower part is the EBE, while the upper

one is the CBE. The cohesive stiffness matrix represents the stiffness of the interaction

between these two parts and in isoparametric formulation can be expressed as:

𝐾𝑐𝑜ℎ =

[︃ ∫︀ 1
−1𝑀𝑑𝜉 −

∫︀ 1
−1𝑀𝑑𝜉

−
∫︀ 1
−1𝑀𝑑𝜉

∫︀ 1
−1𝑀𝑑𝜉

]︃
(2.13)

where 𝜉 indicates the longitudinal direction of the EBE/CBE pair, while 𝑀 is a [12x12]

matrix given as:

𝑀 =

⎡⎢⎢⎢⎢⎣
𝑀𝑎𝑎 0 𝑀𝑎𝑏 0

0 𝑀𝑟 0 0

𝑀𝑏𝑎 0 𝑀𝑏𝑏 0

0 0 0 𝑀𝑟

⎤⎥⎥⎥⎥⎦ (2.14)

The [3x3] matrices 𝑀𝑎𝑎, 𝑀𝑎𝑏, 𝑀𝑏𝑎, 𝑀𝑏𝑏 describe the translational DOFs and are parts

of a matrix 𝑀𝑡 formulated as:
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𝑀𝑡 =

[︃
𝑀𝑎𝑎 𝑀𝑎𝑏

𝑀𝑏𝑎 𝑀𝑏𝑏

]︃
=𝑁𝑇

𝑏 𝑅𝑚𝐷𝑡𝑎𝑛𝑅
𝑇
𝑚𝑁𝑏 (2.15)

where 𝑁𝑏 is a [3x9] matrix that contains the beam element shape functions:

𝑁𝑏 =

⎡⎢⎣𝑁
𝑏
1 0 0 𝑁 𝑏

2 0 0 𝑁 𝑏
3 0 0

0 𝑁 𝑏
1 0 0 𝑁 𝑏

2 0 0 𝑁 𝑏
3 0

0 0 𝑁 𝑏
1 0 0 𝑁 𝑏

2 0 0 𝑁 𝑏
3

⎤⎥⎦ (2.16)

while 𝑅𝑚 is the [3x3] rotation matrix from the local to the global coordinate system

and 𝐷𝑡𝑎𝑛 is the constitutive matrix of the interfacial law. On the other hand, the [3x3]

matrix 𝑀𝑟 defines the rotational DOFs of the beam and its expressed as:

𝑀𝑟 = 𝑅
𝑇
𝑚𝐶𝑟𝑅𝑚 (2.17)

where 𝐶𝑟 describes, in terms of a penalty stiffness factor, the relation of the rotational

DOFs of the EBE with those of the CBE and is written as:

𝐶𝑟 =

⎡⎢⎣𝑐1 0 0

0 𝑐2 0

0 0 𝑐3

⎤⎥⎦ (2.18)

with each diagonal element taking values on the range 0 ≤ 𝑐𝑖 ≤ 1, in agreement with the

rotational dependence of the two elements.

After applying numerical integration, eq. (2.13) can be rewritten as:

𝐾𝑐𝑜ℎ =
𝐿

2

𝑛∑︁
𝑖=1

𝑤𝑖

[︃
𝑀(𝜉𝑖) −𝑀(𝜉𝑖)

−𝑀(𝜉𝑖) 𝑀(𝜉𝑖)

]︃
=

[︃
𝐾11
𝑐𝑜ℎ 𝐾12

𝑐𝑜ℎ

𝐾21
𝑐𝑜ℎ 𝐾22

𝑐𝑜ℎ

]︃
(2.19)

where 𝐿 is the length of the EBE, while 𝜉𝑖 and 𝑤𝑖 are the points and weights according

to the integration scheme.

Accordingly, the internal force vector of the cohesive zone is:

𝑓𝑐𝑜ℎ =

[︃ ∫︀ 1
−1 𝑓CBE𝑑𝜉

−
∫︀ 1
−1 𝑓EBE𝑑𝜉

]︃
=

𝑛∑︁
𝑖=1

[︃
𝑤𝑖𝑁

𝑇
𝑏 (𝜉𝑖)𝑅𝑚𝜏

−𝑤𝑖𝑁𝑇
𝑏 (𝜉𝑖)𝑅𝑚𝜏

]︃
=

[︃
𝑓1
𝑐𝑜ℎ

𝑓2
𝑐𝑜ℎ

]︃
(2.20)

where 𝜏 is the interfacial stress corresponding to the relative displacement between the

EBE and CBE.
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Having described the cohesive zone FEM equations, next the DOFs 𝑣𝑘
′
= [𝑣𝑘

′
1 , ..., 𝑣

𝑘′
6 ]

of each node 𝑘′ of the CBE, which correspond to the DOFs 𝑣𝑘 = [𝑣𝑘1 , ..., 𝑣
𝑘
6 ] of their

respective EBE, are embedded in the DOFs 𝑢𝑠 = [𝑢𝑠1, ..., 𝑢
𝑠
24] of the surrounding solid

element 𝑠 with the relation:

𝑣𝑘
′
= 𝑇 𝑘

′,𝑠𝑢𝑠 (2.21)

where the [6x24] transformation matrix 𝑇 𝑘
′,𝑠 is formulated as:

𝑇 𝑘
′,𝑠 =

[︁
𝑇 𝑘

′,𝑠
1 ... 𝑇 𝑘

′,𝑠
8

]︁
(2.22)

with:

𝑇 𝑘
′,𝑠

𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 𝑠
𝑖 (𝑥

𝑘′) 0 0

0 𝑁 𝑠
𝑖 (𝑥

𝑘′) 0

0 0 𝑁 𝑠
𝑖 (𝑥

𝑘′)

0 −1
2𝑁

𝑠
𝑖,𝑧(𝑥

𝑘′) 1
2𝑁

𝑠
𝑖,𝑦(𝑥

𝑘′)
1
2𝑁

𝑠
𝑖,𝑧(𝑥

𝑘′) 0 −1
2𝑁

𝑠
𝑖,𝑥(𝑥

𝑘′)

−1
2𝑁

𝑠
𝑖,𝑦(𝑥

𝑘′) 1
2𝑁

𝑠
𝑖,𝑥(𝑥

𝑘′) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.23)

where 𝑁 𝑠
𝑖 , 𝑁

𝑠
𝑖,𝑥, 𝑁

𝑠
𝑖,𝑦, 𝑁

𝑠
𝑖,𝑧 are the shape functions and their derivatives on 𝑥, 𝑦, 𝑧 of the

node 𝑖 of each solid element 𝑠 , while 𝑥𝑘
′
are the local coordinates of the CBE node 𝑘′

indicating its relevant position with respect to the host solid element. In the case of a

two-nodded CBE, eq. (2.21) can be written as:

𝑣′ =

{︃
𝑣𝐴

′

𝑣𝐵
′

}︃
=

[︃
𝑇𝐴

′,𝑆𝐴 0

0 𝑇𝐵
′,𝑆𝐵

]︃{︃
𝑢𝑆𝐴

𝑢𝑆𝐵

}︃
= 𝑇𝑢 (2.24)

where 𝑣𝐴
′
, 𝑣𝐵

′
and 𝑇𝐴

′,𝑆𝐴 , 𝑇𝐵
′,𝑆𝐵 are the 𝑣𝑘

′
and 𝑇 𝑘

′,𝑠 of the starting and ending node

of the CBE, while 𝑢𝑆𝐴 and 𝑢𝑆𝐵 are the displacements 𝑢𝑠 of the corresponding solid

element in which each CBE node lies. The above formulation is illustrated in fig. 2.4 for

the starting node 𝐴 of an EBE/CBE pair, while for the ending node 𝐵 the formulation

is similar.

Applying the matrix 𝑇 in eq. (2.19) the stiffness matrix takes the final form:

𝐾*
𝑐𝑜ℎ =

[︃
𝑇 𝑇 0

0 𝐼

]︃[︃
𝐾11
𝑐𝑜ℎ 𝐾12

𝑐𝑜ℎ

𝐾21
𝑐𝑜ℎ 𝐾22

𝑐𝑜ℎ

]︃[︃
𝑇 0

0 𝐼

]︃
=

[︃
𝐾*11
𝑐𝑜ℎ 𝐾*12

𝑐𝑜ℎ

𝐾*21
𝑐𝑜ℎ 𝐾*22

𝑐𝑜ℎ

]︃
(2.25)
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The complete stiffness matrix of the whole system’s interaction is:

𝐾 =

[︃
𝐾𝑠 +𝐾

*11
𝑐𝑜ℎ 𝐾*12

𝑐𝑜ℎ

𝐾*21
𝑐𝑜ℎ 𝐾𝑏 +𝐾

*22
𝑐𝑜ℎ

]︃
(2.26)

where 𝐾𝑠 and 𝐾𝑏 are the solid and EBE stiffness matrices respectively.

In a similar way, the internal force vector in eq. (2.20) can be expressed as:

𝑓 =

[︃
𝑓𝑠 + 𝑇

𝑇𝑓1
𝑐𝑜ℎ

𝑓𝑏 + 𝑓
2
𝑐𝑜ℎ

]︃
(2.27)
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Figure 2.4: Embedding of a beam element into the host solids

The definition of the interfacial constitutive equations between each EBE and the

surrounding matrix is usually done through the choice of specialized constitutive laws

such as bond-slip or traction-separation relations.
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3
Uncertainty quantification and

optimization

3.1 Probability theory

Consider an experiment where the outcome is uncertain. The set of possible outcomes

that can emerge each time the experiment is executed is called sample space Ω. As

a structural mechanics example consider a concrete specimen where the compressive

yield stress is not constant each time a uniaxial compression test is performed due to

randomness in the material properties. In this case Ω contains all the possible values of

the yield stress that can emerge after the completion of the test. The set of all measurable

subsets included in Ω constitutes the 𝜎-algebra F. For each subset in Fwe can assign

a measure according to a function 𝜇 : F→ R. In probability theory this measure

declares the probability 𝑃 of each event happening and is defined as 𝑃 : F→ [0, 1]. The

probability of the union of all possible outcomes, namely the sample space Ω, equals

always unity i.e. 𝑃Ω = 1. Going back to the concrete example, for each possible yield

stress value a probability can be assigned based on experimental results or computer

simulations. The triplet of (Ω,F, 𝑃 ) is called a probability space and can be used to

model non-deterministic features in real-world applications.

A random variable is a mapping from a sample space Ω, which defined over a probability
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space (Ω,F, 𝑃 ), to a measurable space, most commonly the R space. It is expressed as:

𝑋 : Ω→ R (3.1)

Depending on whether the image of a random variable is countable or continuous it

is called discrete or continuous random variable respectively. For a continuous random

variable, the probability that it will take values between a lower bound 𝑥𝑙 and an upper

bound 𝑥𝑢 is expressed though the probability density function (PDF). This is defined as:

𝑃 (𝑥𝑙 ≤ 𝑋 ≤ 𝑥𝑢) =
∫︁ 𝑥𝑢

𝑥𝑙

𝑓(𝑥)𝑑𝑥 , 𝑤ℎ𝑒𝑟𝑒

∫︁ ∞

−∞
𝑓(𝑥)𝑑𝑥 = 1 (3.2)

The probability that a random variable will be equal or less to an upper value 𝑥𝑢 is

described by the cumulative distribution function (CDF), postulated as:

𝐹 (𝑥) =

∫︁ 𝑥𝑢

−∞
𝑓(𝑥)𝑑𝑥 (3.3)

A collection of random variables𝑋1, ..., 𝑋𝑑 is called a random vector𝑋 = [𝑋1, ..., 𝑋𝑑] ∈
R𝑑. The expressions for the CDF and PDF are straightforwardly generalized in the

random vector case. The joint PDF for a lower bound vector 𝑥𝑙 = [𝑥𝑙,1, ..., 𝑥𝑙,𝑑] and an

upper bound vector 𝑥𝑢 = [𝑥𝑢,1, ..., 𝑥𝑢,𝑑] has the form:

𝑃 (𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢) =
∫︁ 𝑥𝑢

𝑥𝑙

𝑓(𝑥)𝑑𝑥 , 𝑤ℎ𝑒𝑟𝑒

∫︁ ∞

−∞
𝑓(𝑥)𝑑𝑥 = 1 (3.4)

with 𝑥 = [𝑥1, ..., 𝑥𝑑]. The respective joint CDF for an upper vector 𝑥𝑢 = [𝑥𝑢,1, ..., 𝑥𝑢,𝑑]

is:

𝐹 (𝑥) =

∫︁ 𝑥𝑢

−∞
𝑓(𝑥)𝑑𝑥 (3.5)

When the interest lies on a subset of the random vector 𝑋𝑠 ⊆ 𝑋, the rest random

variables 𝑋∼𝑠 can be integrated out. This is called the marginalization operation and

the marginal PDF is obtained as:

𝑓𝑠(𝑥𝑠) =

∫︁
𝑥∼𝑠

𝑓(𝑥)𝑑𝑥 (3.6)

The conditional probability of a random variable 𝑋𝑖, 𝑖 ∈ [1, ..., 𝑑] given the other

random variables 𝑋∼𝑖 is defined as:
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𝑃 (𝑋𝑖|𝑋∼𝑖) =
𝑃 (𝑋𝑖,𝑋∼𝑖)

𝑃 (𝑋∼𝑖)
(3.7)

When the random variables of a random vector are conditionally independent, meaning

that the knowledge of one’s value does not provide any knowledge about the values of

the other random variables, the joint PDF can be rewritten as:

𝑓(𝑥) = 𝑓(𝑥1, ..., 𝑥𝑑) = 𝑓𝑋1(𝑥1)...𝑓𝑋𝑑((𝑥𝑑) (3.8)

For each random variable we can define several metrics that quantify different aspects

of its probabilistic form. These metrics are expressed as linear operators applied on the

PDF of the random variable 𝑋. The most common metrics are the expectation or mean

value 𝜇 which is the first order moment and the variance 𝜎2 which is the second order

central moment. These are expressed as:

𝐸[𝑋] = 𝜇 =

∫︁ ∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 𝑎𝑛𝑑 𝐸[(𝑋 − 𝜇)2] = 𝜎2 =

∫︁ ∞

−∞
(𝑥− 𝜇)2𝑓(𝑥)𝑑𝑥 (3.9)

Moments and central moments of different order can be defined accordingly as:

𝐸[𝑋𝑛] =

∫︁ ∞

−∞
𝑥𝑛𝑓(𝑥)𝑑𝑥 𝑎𝑛𝑑 𝐸[(𝑋 − 𝜇)𝑛] =

∫︁ ∞

−∞
(𝑥− 𝜇)𝑛𝑓(𝑥)𝑑𝑥 , 𝑛 = 1, ... (3.10)

An additional useful metric is the coefficient of variation which is postulated as:

𝐶𝑜𝑉 =
𝜎

𝜇
(3.11)

where the term 𝜎, namely the squared root of the variance, is called standard deviation.

The joint variability between two random variables 𝑋1 and 𝑋2 is quantified through

the covariance as:

𝐸[𝑋1, 𝑋2] = 𝐸[𝑋1𝑋2]− 𝐸[𝑋1]𝐸[𝑋2] =

∫︁ ∞

−∞
(𝑥− 𝜇1)(𝑥− 𝜇2)𝑓(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2 (3.12)
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3.2 Single-level Bayesian Inference

An effective technique for combining newly emerged observations with preexisting models

is based on the Bayes theorem and it is called Bayesian Update or Bayesian Inference.

With this technique, prior probabilistic information about the uncertain parameters are

updated according to previously unseen data of the mechanical system’s response. In

view of the Bayesian paradigm the problem is formulated in a probabilistic framework.

The relation between the measured data and the model predictions can be quantified

through different approaches.

Consider a model M(𝜃) that is described by a series of parameters 𝜃 = [𝜃1, ..., 𝜃𝑁 ]

which are assumed to be random variables. For instance the model M could be a

computational model of a structural assembly, while the parameters 𝜃 could define

a series of material or geometric properties of M. Additionally, consider a series of

experimental measurements or observations 𝐷, with 𝐷 = [𝑑1, ..., 𝑑𝑚], that have been

acquired from experiments on the physical replica of the computational model M.

The most used approach to relate the model predictions with the data is formulated

with the introduction of an additive error:

𝑦(𝜃) =𝑚(𝜃) + 𝜖 (3.13)

where 𝜖 denotes the error term most commonly expressed as a random variable with

a Gaussian probability density function (PDF) ∼N(0,Σ). The autocovariance tensor

Σ encapsulates the magnitude of the M model prediction error and errors of the

experimental observations 𝐷. The term 𝑦𝑖 represents the output of the stochastic

forward model Y according to which the data 𝐷 are realized.

After relating the data with the model predictions through 𝑃 (𝐷|𝜃), the Bayes’ theorem
can be readily applied to update the probabilistic form of the investigated parameters,

as:

𝑃 (𝜃|𝐷) =
𝑃 (𝐷|𝜃)𝑃 (𝜃)

𝑃 (𝐷)
=

𝜋(𝐷|𝜃)𝑃 (𝜃)∫︀∞
−∞

∫︀∞
−∞ ...

∫︀∞
−∞ 𝜋(𝐷|𝜃)𝑃 (𝜃)𝑑𝜃1𝑑𝜃2...𝑑𝜃𝑛

(3.14)

where 𝑃 (𝜃) is the prior distribution i.e. the previous beliefs regarding the probabilistic

nature of the parameters. In the case that no prior assumptions can be made, non-

informative priors, such as the uniform distribution are most commonly applied. The
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term 𝑃 (𝐷) is called evidence and it is essentially a multidimensional integral, since

it involves the marginalization operation over the parametric space, resulting in an

analytically intractable solution in most cases. The term 𝜋(𝐷|𝜃) denotes the likelihood

of 𝐷 for given values of 𝜃, which essentially quantifies the similarity between the data

and the model predictions in a stochastic manner. In eq. (3.14), direct evaluation of the

𝑛-fold integral in the denominator is not feasible in the general case.

The typical assumption that the data 𝐷 are uncorrelated is made in most practical

applications. Under this condition, eq. (3.14) is restated as:

𝑃 (𝜃|𝐷) =

∏︀𝐾
𝑖=1

∏︀𝑁𝑖
𝑗=1[𝑃 (𝑑

𝑖,𝑗 |𝜃)]𝑃 (𝜃)
𝑃 (𝐷)

(3.15)

where 𝜋(𝐷|𝜃) denotes the likelihood of 𝐷 for given values of 𝜃. In this equation, direct

evaluation of the 𝑛-fold integral in the denominator is not feasible in the general case.

This fact has motivated the use of Markov Chain Monte Carlo (MCMC) sampling

techniques, which allow direct sampling from the posterior distribution without the need

to solve the high-dimensional integral in (3.14), based on the fact that:

𝑃 (𝜃|𝐷) ∝ 𝑃 𝑢𝑛𝑠(𝜃|𝐷) (3.16)

with 𝑃 𝑢𝑛𝑠(𝜃|𝐷) = 𝜋(𝐷|𝜃)𝑃 (𝜃) being the unscaled probabilistic model after taking into

consideration the new data. Representative algorithms based on the MCMC paradigm

are the Metropolis-Hastings algorithm and the Transitional Markov Chain Monte Carlo

(TMCMC) algorithm.

The Metropolis-Hastings (MH) algorithm [54], while being one of the oldest, it is the

most well-established algorithm in the realm of MCMC methods. The implementation

steps of the MH algorithm are summarized below:

1. Start with an initial value of parameters 𝜃0

2. Select an arbitrary candidate density function 𝑔(·|·). The purpose of this function

is to propose the next candidate sample at each MCMC step. In this notation,

the first placeholder refers to the variables of the density function and the second

to its parameters. A typical choice is a Gaussian distribution with the previously

accepted sample as mean value and a pre-selected standard deviation.

3. Select a burn-in period 𝑁𝑏𝑢𝑟𝑛. During this period the samples acquired from the
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MH algorithm are discarded. This is important in order to ensure that the Markov

Chain has converged to its stationary distribution, meaning that the samples are

drawn from the posterior distribution.

4. Set i=1

5. While 𝑖 ≤ 𝑁𝑏𝑢𝑟𝑛 +𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 being the required number of samples)

(a) Generate a candidate sample 𝜃′ from 𝑔(𝜃′|𝜃𝑖−1)

(b) Evaluate the model response 𝑀(𝜃′) and calculate the likelihood 𝜋(𝜔|𝜃′)

(c) Calculate the acceptance probability 𝛼(𝜃𝑖−1,𝜃
′) = 𝑚𝑖𝑛

[︁
1,

𝜋𝑢𝑛𝑠𝑝𝑜𝑠𝑡(𝜃
′|𝜔)𝑔(𝜃′|𝜃𝑖−1)

𝜋𝑢𝑛𝑠𝑝𝑜𝑠𝑡(𝜃𝑖−1|𝜔)𝑔(𝜃𝑖−1|𝜃′)

]︁
(d) Draw 𝑣 from the uniform distribution U(0, 1)

(e) If 𝑣 < 𝛼(𝜃𝑖−1,𝜃
′) then let 𝜃𝑖 = 𝜃

′ and set 𝑖 = 𝑖+ 1, else let 𝜃𝑖 = 𝜃𝑖−1

6. Discard the first 𝑁𝑏𝑢𝑟𝑛 samples.

An alternative sampling method is the TMCMC algorithm, which aims at tackling the

difficulties that arise during sampling with the Metropolis-Hastings algorithm from more

complicated posterior distributions 𝑃 (𝜃|𝐷) (e.g. multimodal, very peaked, very flat).

The TMCMC algorithm introduced in [18] proposes the construction and the sequential

sampling from a number of intermediate PDFs of the form:

𝑃𝑗(𝜃) ≃ 𝑃 (𝐷|𝜃)𝑞𝑗𝑃 (𝜃) , 𝑗 = 0, ...,𝑚 𝑤𝑖𝑡ℎ 0 = 𝑞0 < 𝑞1 < ... < 𝑞𝑚 = 1 (3.17)

The main steps of the algorithmic procedure are:

TMCMC parameters: prior distribution 𝑃 (𝜃), likelihood function 𝑃 (𝐷|𝜃), 𝑁𝑠 =

number of samples at each level, 𝑘 = coefficient of variation for 𝑤𝑗 = 𝑃 (𝐷|𝜃𝑗−1)
𝑞𝑗−𝑞𝑗−1 ,

𝛽 = scaling factor of the proposal distribution

For 𝑗 = 0, 𝑁𝑠 samples 𝜃0,1, ...,𝜃0,𝑁𝑠 are drawn from the prior distribution 𝑃 (𝜃).

Subsequently, for all 𝑗 > 0 :

1. Find 𝑞𝑗 by solving 𝑞𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞(|𝐶𝑜𝑉𝑗(𝑞) − 𝑘|), where 𝐶𝑜𝑉𝑗(𝑞) is the sample

coefficient of variation of the set {𝑃 (𝐷|𝜃𝑗−1,𝑘)
𝑞𝑗−𝑞𝑗−1}𝑁𝑠𝑘=1.
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2. Calculate the weighting coefficients 𝑤𝑗,𝑘 = 𝑃 (𝐷|𝜃𝑗−1,𝑘)
𝑞𝑗−𝑞𝑗−1 .

3. Compute the covariance matrix of the proposal distributionΣ𝑗 = 𝛽2
∑︀𝑁𝑠

𝑘=1

[︁
𝑤𝑗,𝑘(𝜃𝑗−1,𝑘−∑︀𝑁𝑠

𝑙=1 𝑤𝑗,𝑙𝜃𝑗−1,𝑙∑︀𝑁𝑠
𝑙=1 𝑤𝑗,𝑙

) (𝜃𝑗−1,𝑘 −
∑︀𝑁𝑠
𝑙=1 𝑤𝑗,𝑙𝜃𝑗−1,𝑙∑︀𝑁𝑠

𝑙=1 𝑤𝑗,𝑙
)𝑇
]︁
.

4. For each 𝑙 in 1, ..., 𝑁𝑠 set 𝜃𝑐𝑗,𝑙 = 𝜃𝑗−1,𝑙 , where the superscript 𝑐 denotes the

candidate sample. For 𝑘 = 1, ..., 𝑁𝑠, do the following:

� Select index 𝑙 from the set 1, ..., 𝑁𝑠 with probability
𝑤𝑗,𝑙∑︀𝑁𝑠
𝑛=1 𝑤𝑗,𝑛

.

� Propose sample 𝜃𝑐 from the normal distribution N(𝜃𝑐𝑗,𝑙,Σ𝑗).

� Generate sample 𝑢 from the uniform distribution U(0, 1).

� If 𝑢 ≤ 𝑃𝑗(𝜃
𝑐)

𝑃𝑗(𝜃𝑐𝑗,𝑙)
, set 𝜃𝑗,𝑘 = 𝜃

𝑐 and 𝜃𝑐𝑗,𝑙 = 𝜃
𝑐; else set 𝜃𝑗,𝑘 = 𝜃

𝑐
𝑗,𝑙.

5. If 𝑞𝑗 = 1 terminate the iterations, else continue with 𝑗 = 𝑗 + 1.

3.3 Hierarchical (Multi-level) Bayesian Inference

Let a series of models M𝑖(𝜃𝑖), with 𝑖 = 1, ...,𝐾, where each one is characterized by a

series of parameters 𝜃𝑖 = [𝜃𝑖1, ..., 𝜃
𝑖
𝑁 ] considered as random variables. For instance the

model M could be a computational model of a structural assembly, while the parameters

𝜃 could define a series of material or geometric properties of M. Additionally, consider a

series of experimental measurements or observations 𝐷, with 𝐷 = [𝑑1, ..., 𝑑𝑚], that have

been acquired from experiments on the physical asset simulated by the computational

model M.

Based on the hierarchical Bayesian paradigm, each dataset 𝐷𝑖 obtained from a

unique experimental setup is considered separately. For each one of them, the common

parameters 𝜃 have a distinct definition as 𝜃𝑖. This distinction is necessary since these

parameters, albeit having the same physical meaning amongst all datasets, they can

ultimately be represented by different values due to the external variability. It is further

assumed that each 𝜃𝑖 is conditioned on a series of hyperparameters 𝜓, denoted as

𝑃 (𝜃𝑖|𝜓). These parameters are used to provide in the mathematical framework the sense

of affinity amongst 𝜃𝑖 for 𝑖 = 1, ..,𝐾 and to explicitly account for the model variations

across the respective datasets. The hyperparameters generally represent statistical

parameters of a pre-specified family of distributions. The classical Bayesian problem

posed in eq. (3.14) is reformulated in the hierarchical variation as:
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𝑦𝑖(𝜃𝑖|𝜓) =𝑚𝑖(𝜃𝑖|𝜓) + 𝜖𝑖 𝑖 = 1, ...,𝐾 (3.18)

Each error term 𝜖𝑖 in eq. (3.18) can be considered as a random variable with a

predetermined PDF. Alternatively, the statistical parameters of this PDF could also be

considered as unknown parameters to be inferred. The joint posterior distribution is

expressed through Bayes theorem as:

𝑃 (𝜃,𝜓|𝐷) =
𝑃 (𝐷|𝜃)𝑃 (𝜃|𝜓)𝑃 (𝜓)

𝑃 (𝐷)
=

𝐾∏︁
𝑖=1

[︁ 𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)

]︁ 𝑃 (𝜓)
𝑃 (𝐷)

(3.19)

where 𝑃 (𝜓) is the prior distribution of the hyperparameters.

The form of both the conditional prior PDFs of 𝜃𝑖 and the prior PDF of 𝜓 have to be

determined. As in eq. (3.14), in situations where there is absence of prior information

regarding the investigated parameters, uniform distributions are generally preferred for

both PDFs. Alternatively, conjugate priors has been used for 𝜓 in [19], however that

was done mainly for alleviating the computational demands, since a closed form solution

can be retrieved for the posterior.

3.4 Global Sensitivity Analysis

Sensitivity Analysis (SA) is the study of how different sources of uncertainty in the

model’s input space can impact the uncertainty of the model output. SA is in close

relation with uncertainty analysis, with SA going a step further and instead of simply

aiming at the investigation of the uncertainty in the system output, it can also quantify

how this uncertainty is affected by each of the input factors. SA can serve a number of

valuable objectives in the economy of modelling, as it can uncover technical modelling

errors, identify critical regions in the input space, establish priorities for research and

simplify models. To overcome the limitations of derivative-driven SA methods, the

so-called global methods have gained significant traction. These methods consider the

input factors as uncertain and investigate simultaneously a handful of data points in the

input space. The global methods can outperform significantly the local ones, especially

in uncertain and nonlinear models. Here the variance-based (global) sensitivity analysis

(VBSA) will be reviewed, since it has been applied in the present thesis, but for a more
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thorough study of SA the reader is referred to [113].

Let M be a (scalar) model of the form M = 𝑓(𝑋), where 𝑋 = (𝑋1, ..., 𝑋𝑑) ∈
[0, 1]𝑑 ⊂ R𝑑 is the input vector of random variables, with 𝑋𝑖 being the 𝑖-factor and

𝑓(𝑋) ∈ L(R𝑑), a square-integrable function. By applying a functional decomposition,

known as Hoeffding decomposition [57], 𝑓 can be written in terms of elementary functions

as:

𝑓(𝑋) = 𝑓0 +
𝑑∑︁
𝑖=1

𝑓𝑖(𝑋𝑖) +
𝑑∑︁
𝑖

𝑑∑︁
𝑗>𝑖

𝑓𝑖𝑗(𝑋𝑖, 𝑋𝑗) + ...+ 𝑓1...𝑑(𝑋1, ..., 𝑋𝑑) (3.20)

The functions 𝑓𝑖1,𝑖2,...,𝑖𝑘 are uniquely given by the equations:

𝑓0 = E(M) (3.21)

𝑓𝑖 = E𝑋∼𝑖(M|𝑋𝑖)− E(M) (3.22)

𝑓𝑖𝑗 = E𝑋∼𝑖𝑗 (M|𝑋𝑖, 𝑋𝑗)− 𝑓𝑖 − 𝑓𝑗 − E(M) (3.23)

(similarly for higher order terms)

which satisfy the condition [120]

∫︁ 1

0
· · ·
∫︁ 1

0
𝑓𝑖𝑖···𝑘(𝑥𝑖1 , . . . , 𝑥𝑖𝑘)𝑑𝑥𝑖1 · · · 𝑑𝑥𝑖𝑘 = 0 , {𝑖𝑖, ..., 𝑖𝑘} ⊆ {𝑖1, .., 𝑖𝑑} (3.24)

In the above, the notation E𝑋∼𝑖(M|𝑋𝑖) refers to the mean of M, taken over all possible

values of 𝑋∼𝑖, while keeping 𝑋𝑖 fixed.

In a similar fashion to eq. (3.20), a functional decomposition for the model variance

termed as ANOVA [31] is defined as:

𝑉 (M) =

𝑑∑︁
𝑖=1

𝑉 (𝑓𝑖) +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗>𝑖

𝑉 (𝑓𝑖𝑗) + ...+ 𝑉 (𝑓12..𝑑) (3.25)

where 𝑉 (·) is the variance of the respective term.

The variance of each function of the ANOVA series can be written in terms of partial

variances as:

38



𝑉 (𝑓𝑖) = 𝑉 (E𝑋∼𝑖(M|𝑋𝑖)) , 𝑉 (𝑓𝑖𝑗) = 𝑉
(︀
E𝑋∼𝑖𝑗 (M|𝑋𝑖, 𝑋𝑗)

)︀
−𝑉 (𝑓𝑖)−𝑉 (𝑓𝑗) , ... (3.26)

and so on for higher order interactions.

If the expansion in eq. (3.25) is normalized i.e. divided by the total variance 𝑉 (M) of

the model then it takes the form:

𝑑∑︁
𝑖=1

𝑆(𝑓𝑖) +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗>𝑖

𝑆(𝑓𝑖𝑗) + ...+ 𝑆(𝑓12..𝑑) :=
𝑑∑︁
𝑖=1

𝑆𝑖 +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗>𝑖

𝑆𝑖𝑗 + ...+ 𝑆1..𝑑 = 1 (3.27)

with 𝑆𝑖, 𝑆𝑖𝑗 , . . . , 𝑆1..𝑑 denoting the sensitivity indices or Sobol indices of the respective

order. These indices, whose values reside in the domain [0, 1], essentially provide

percentages of how the information of the model output is affected by each input factor

or by the synergy of them. For practical purposes, the most useful indices are that of

the first and second order, since generally these are the most dominant terms of the

expansion.

An additional metric was introduced in [58] with the so-called total effect indices. In

this case, for an input factor 𝑋𝑖, in the normalized expansion of eq. (3.27) all the terms

that do not contain 𝑋𝑖 are left out. Thus, the expansion for a certain 𝑋𝑖 is expressed as:

𝑆𝑇 𝑖 = 𝑆𝑖 +
𝑑∑︁
𝑗 ̸=𝑖

𝑆𝑖𝑗 +
𝑑∑︁

𝑗 ̸=𝑖,𝑘 ̸=𝑖,𝑘>𝑗
𝑆𝑖𝑗𝑘 + ...+ 𝑆1..𝑑 = 1− 𝑆𝐶𝑖 (3.28)

where 𝑆𝑇 𝑖 is the total effect index of 𝑋𝑖 and 𝑆𝐶𝑖 is the sum of the additional terms of

the expansion that do not involve 𝑋𝑖. Essentially by employing these indices, the higher

order terms that include 𝑋𝑖 are also taken into consideration.

An efficient way to compute 𝑆𝑖 and 𝑆𝑇 𝑖 was presented in [112] by using Monte Carlo

sampling or for better exploration of the input space via a pseudo-random procedure.

The general concept is that from two independent sampling matrices 𝑄 and 𝑅 one can

create a series of additional matrices 𝑄
(𝑖)
𝑅 , where all the columns are taken from 𝑄

except for the column 𝑖 which is taken from 𝑅 and the same procedure holds for the

generation of 𝑅
(𝑖)
𝑄 . The rows and columns of these matrices represent the samples and

input factors accordingly. Next, the estimators for the various indices can be computed.

A commonly applied estimator for the calculation of 𝑆𝑖 [112] is:
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𝑆𝑖 ≃
1

𝐾

1

𝑉 *(M)

𝐾∑︁
𝑗=1

𝑓(𝑄(𝑗))(𝑓(𝑅
(𝑖)
𝑄,(𝑗))− 𝑓(𝑅(𝑗))) (3.29)

and accordingly the estimator for 𝑆𝑇 𝑖 is:

𝑆𝑇 𝑖 ≃
1

2𝐾

1

𝑉 *(M)

𝐾∑︁
𝑗=1

(𝑓(𝑄(𝑗))− 𝑓(𝑄
(𝑖)
𝑅,(𝑗)))

2 (3.30)

where the subscript 𝑗 denotes the row of the respective matrix, while 𝐾 is the sample

size and 𝑉 *(M) is the unbiased estimator of the unconditional model variance.

An effective way to reduce the required evaluations is to restate eq. (3.29) as:

𝑆𝑖 ≃
1

𝐾

1

𝑉 *(M)

𝐾∑︁
𝑗=1

𝑓(𝑅(𝑗))(𝑓(𝑄
(𝑖)
𝑅,(𝑗))− 𝑓(𝑄(𝑗))) (3.31)

leading to 𝐾(𝑑+ 2) model solutions.

The estimator of the variance is then given by:

𝑉 *(M) =
1

𝐾(𝑑+ 2)− 1

𝐾∑︁
𝑗=1

𝑑+2∑︁
𝜇=1

⃒⃒⃒⃒
𝐹𝑗,𝜇 −

1

𝐾(𝑑+ 2)

𝐾∑︁
𝑗=1

𝑑+2∑︁
𝜇=1

𝐹𝑗,𝜇

⃒⃒⃒⃒2
(3.32)

where 𝐹𝑗,𝜇 are the components of a matrix 𝐹 that includes the model output for each

row 𝑗 of the respective sampling matrix 𝜇 and is expressed as:

𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑓(𝑄(1)) 𝑓(𝑅(1)) 𝑓(𝑄
(1)
𝑅,(1)) ... 𝑓(𝑄

(𝑑)
𝑅,(1))

...
...

...
...

𝑓(𝑄(𝑗)) 𝑓(𝑅(𝑗)) 𝑓(𝑄
(1)
𝑅,(𝑗)) ... 𝑓(𝑄

(𝑑)
𝑅,(𝑗))

...
...

...
...

𝑓(𝑄(𝐾)) 𝑓(𝑅(𝐾)) 𝑓(𝑄
(1)
𝑅,(𝐾)) ... 𝑓(𝑄

(𝑑)
𝑅,(𝐾))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.33)

3.5 Stochastic Optimization

One fundamental aspect of optimization problems encountered in engineering lies in the

uncertainty surrounding the parameters involved. For instance, material parameters

such as yield stresses, along with external loading, manufacturing errors, numerical
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approximation errors, are not known a priori. Instead, they must be regarded as random

variables with specific probability distributions. Therefore, the optimization aims at

finding the optimal solution in a stochastic problem, which translates to finding the

optimal probability density functions that best describe the parameter values that

maximize or minimize a stochastic objective function.

Let’s think about a model, denoted as M(𝜃,X), characterized by a set of parameters

𝜃 = [𝜃1, ..., 𝜃𝑁 ], termed as design variables. For example, M might represent a com-

putational model of a structural assembly, with 𝜃 specifying various loading, material

or geometric attributes of M. Also, let a set of input variables X= [X1, ...,X𝐾 ] that

directly affect the outcome of M and are assumed to be random variables. Additionally,

let an objective (cost) function 𝑓 , dependent on 𝜃 and on statistics of the outcome of M

(e.g 𝐸[𝑚], 𝐸[𝑚2]). The minimization of 𝑓 provides optimal targeted actions via selecting

the most appropriate 𝜃. For example, this could be the choice of the optimal material

or geometry of a structure towards minimization of the expected displacement under

random loading conditions that constitute X.

A well-established algorithm to solve stochastic optimization problems is called Co-

variance Matrix Adaptation - Evolution Strategy (CMA-ES) [49]. This algorithm seeks

to find the minimum of the objective function 𝑓 by sampling 𝜆 points {𝜃𝑖}𝜆𝑖=1 from a

Gaussian distribution N(𝜇,Σ) with the mean 𝜇 and covariance Σ being updated at each

iteration (generation) of the algorithm. At each iteration the samples are evaluated and

sorted based on their corresponding function values. Then, 𝜇 and Σ are adapted based

on the 𝑘 best samples in order to increase the probability of sampling future individuals

in the direction of favorable samples. The implementation steps of the algorithm are

outlined in algorithm 1.

� Initialize model parameters: 𝜎0,𝜇0,𝐶0,𝑝0𝑐 ,𝑝
0
𝜎, 𝑘𝑒𝑓𝑓 , 𝑐𝑐, 𝑐𝜎, 𝑐1, 𝑐𝑘, 𝑑𝜎

� While termination criteria not met

1. Draw new candidate samples

𝜃𝑔+1
𝑖 = 𝜇𝑔 + 𝜎𝑔𝐿𝑔𝑧𝑖, with 𝑧𝑖 ∼N(0, 𝐼) (3.34)

where 𝜎𝑔 > 0 is the step size at the 𝑔-th generation and 𝐿𝑔 is the lower
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triangular matrix obtained from the Cholesky decomposition of

Σ = 𝜎2𝐶 = 𝜎2𝐿𝐿𝑇 (3.35)

2. Evaluate objective function 𝑓 at the obtained samples 𝜃𝑔+1
𝑖 and sort them

according to their fitness

𝑓(𝜃1:𝜆) ≤ 𝑓(𝜃2:𝜆) ≤ · · · ≤ 𝑓(𝜃𝜆:𝜆) (3.36)

with 𝜃𝑖:𝜆 denoting the 𝑖-th fittest sample.

3. Choose the 𝑘 first samples that produce the smallest function values and

update the mean as:

𝜇𝑔+1 =
1

𝑘

𝑘∑︁
𝑖=1

𝜃𝑔+1
𝑖:𝜆 (3.37)

4. Update the covariance matrix in order to increase the probability of selecting

favorable samples

𝑝𝑔+1
𝑐 = (1− 𝑐𝑐)𝑝𝑔𝑐 +

√︁
𝑐𝑐(2− 𝑐𝑐)𝑘𝑒𝑓𝑓

𝜇𝑔+1 − 𝜇𝑔

𝜎𝑔
(3.38)

𝑝𝑔+1
𝜎 = (1− 𝑐𝜎)𝑝𝑔𝜎 +

√︁
𝑐𝜎(2− 𝑐𝜎)𝑘𝑒𝑓𝑓 (𝐶𝑔)−

1
2
𝜇𝑔+1 − 𝜇𝑔

𝜎𝑔
(3.39)

𝜎𝑔+1 = 𝜎𝑔𝑒𝑥𝑝

(︃
𝑐𝜎
𝑑𝜎

(︃
‖𝑝𝑔+1

𝜎 ‖
E [N(0, 𝐼]

− 1

)︃)︃
(3.40)

𝐶𝑔+1 = (1− 𝑐1 − 𝑐𝑘)𝐶𝑔 + 𝑐1𝑝
𝑔+1
𝑐

(︀
𝑝𝑔+1
𝑐

)︀𝑇
+ 𝑐𝑘

𝑘∑︁
𝑖=1

𝑤𝑖𝜃
𝑔+1
𝑖:𝜆

(︁
𝜃𝑔+1
𝑖:𝜆

)︁𝑇
,

(3.41)

with 𝜃𝑔+1
𝑖:𝜆 =

𝜃𝑔+1
𝑖:𝜆 − 𝜇

𝑔

𝜎𝑔

5. Proceed to the next generation: 𝑔 ← 𝑔 + 1

� Return solution
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4
Machine learning and surrogate modeling

4.1 Machine learning-based surrogate models

In the past two decades, significant strides in computational technology have facilitated

the utilization of sophisticated, physics-based mathematical models to characterize com-

plex physical phenomena encountered across various domains of engineering and science.

These intricate models offer enhanced accuracy in portraying the fundamental physics of

a given problem, thereby yielding precise depictions of system behavior. However, de-

spite their efficacy, computational expenses remain a considerable challenge, particularly

in scenarios involving nonlinear or dynamic systems with high-dimensionalities. This

challenge becomes especially pronounced in parametrized systems, common in fields such

as stochastic analysis, sensitivity analysis, or optimization, where conducting numerous

simulations becomes imperative. To address this issue, surrogate models emerge as a

viable solution, enabling the substitution of the original model with a function that

replicates the complex system’s behavior at significantly reduced computational costs

per evaluation.

To describe the problem in a more concrete setting, let as consider a computational

model M, which takes M-dimensional vectors x as inputs and maps them to R𝑁 :

M : x ∈ D⊂ R𝑀 ↦→ y ∈ R𝑁 (4.1)
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A surrogate model M̃ can then be defined as:

M̃ : x ∈ D⊂ R𝑀 ↦→ y ∈ R𝑁 (4.2)

such that

M̃ ≈M (4.3)

The surrogate model’s construction may rely on an assumed functional form of M
and/or partial data gathered from restricted executions of the original model. Addi-

tionally, M is treated as a black box, where the internal workings remain unknown, and

only the output y = M(x) is observable. For instance, a finite element model serves as

a surrogate, approximating the solution to the system’s governing equations that lack

analytical solutions.

In recent decades, various methodologies have emerged for the development of surrogate

models. Noteworthy among these are polynomial chaos expansions, Gaussian process

regression, support vector machines, radial basis functions, principal component analysis,

and artificial neural networks. Next, the focus is on neural networks (NNs) and especially

on feed-forward neural networks (FFNNs) which have been extensively employed in this

thesis.

NNs are information-processing mathematical models inspired by the biological neural

networks that constitute the human brain. As its original counterpart, they are able to

learn from observational data, that is, by considering examples without being programmed

with any task-specific rules. The basic component of an NN is the artificial neuron.

An artificial neuron, denoted with 𝑗 is a processing unit which performs the following

operations:

1. It receives an input signal 𝑥𝑖 from the synapse 𝑖

2. It multiplies the signal by the synaptic weight 𝑤𝑗𝑖

3. It sums all input signals 𝑥𝑖 with their respective weights 𝑤𝑗𝑖, for all the synapses

𝑖 = 1, ..., 𝑛 and adds a bias term 𝑏𝑗 .

4. It processes the sum of the input signals through an activation function 𝜙(·), for
example the sigmoid or the hyperbolic tangent function, and outputs the result 𝑦𝑗 .

In mathematical terms, the neuron 𝑗 can be described by the equation:

44



𝑦𝑘 = 𝜙(
𝑛∑︁
𝑖=1

𝑤𝑗𝑖 + 𝑏𝑗) (4.4)

Figure 4.1: Nonlinear model of a neuron, labeled 𝑗

A schematic representation of the computational model of a nonlinear neuron is depicted

in fig. 4.1.

In this context, an NN is an oriented graph with neurons being the nodes of the graph

and the synapses being the oriented edges. The synaptic weights are calibrated through

a training process based on observational data. Depending on the interconnection of

neurons, different types of neural networks arise. Amongst them, the most popular

and widely applied type is the feed-forward neural network (FFNN), also known as

perceptron. In terms of the architecture, an FFNN consists of the input layer, the hidden

layer(s) and the output layer. NNs with more than one hidden layer are referred to as

deep neural networks or multi-layer perceptrons. In terms of connectivity, in FFNN

neurons from a layer can only be connected with neurons from the next layer towards

the output layer. This means that the information moves in only one direction, forward,

from the input nodes, through the hidden nodes (if they exist) and to the output nodes.

An example of an FFNN network architecture is given in figure 4.2.
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Figure 4.2: Example of a generic feedforward neural network

For a specific choice of network architecture, to train the network a set of 𝑁𝑡𝑟 labeled

data {𝑥,𝑦)}1≤𝑘≤𝑁𝑡𝑟 is first provided. Next, a loss function is specified, such as the mean

square error, which is given by the expression:

𝑀𝑆𝐸 =

𝑁𝑡𝑟∑︁
𝑘=1

‖𝑦𝑘 − 𝑦𝑘‖22 ∈ R (4.5)

where, 𝑦𝑘 is the target output for the input 𝑥𝑘 and 𝑦𝑘 is the respective network’s output.

Then, the training of the network consists in finding the optimal weights 𝑤 = (𝑤𝑖𝑗)

that minimize 𝑀𝑆𝐸 = 𝑀𝑆𝐸(𝑤). Some commonly preferred algorithms to solve this

(non-convex) optimization problem are the stochastic gradient descent algorithm, the

Levenberg-Marquardt algorithm [47] and Adam [66].

Based on the above, FFNNs essentially establish a non-linear map from the space of

the input data to the space of the output data. Their powerful approximation properties

are well-established from numerous applications, but, also, from a theoretical standpoint,

from the universal function approximation theorem which states that:A FFNN with one

hidden layer, that contains a finite number of neurons and has non-constant, bounded

and continuous activation functions, can approximate any continuous function defined

on a compact subset of R𝑚. Or, equivalently, the Cybenko’s theorems with respect to

one-hidden layer [24] and two-hidden layer networks [23].

Training an NN involves optimizing its set of weights, which can be approached using

various methods ranging from evolutionary algorithms to gradient-based techniques like

BFGS, with stochastic gradient descent and its many variants being the most common.
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In gradient-based methods, which are the most popular for NN training, evaluating

the gradient of a function 𝑓 can be done using numerical differentiation, symbolic

differentiation, or automatic differentiation. Numerical differentiation approximates

derivatives using finite differences from the function’s values at sample points, but it has

several drawbacks. It requires 𝑂(𝑛) evaluations of 𝑓 for a gradient in nn dimensions and is

prone to being ill-conditioned and unstable. On the other hand, automatic differentiation

involves automatically manipulating expressions to obtain derivative expressions by

applying differentiation rules. While symbolic derivatives can produce exact analytical

expressions, they are not suitable for efficient runtime calculation as they can become

exponentially larger than the original expression.

Automatic Differentiation (AD) performs a unique interpretation of a computer

program by adjusting the domain of variables to include derivative values and redefining

operator semantics to propagate derivatives according to the chain rule of differential

calculus. As a technical term, AD refers to a set of techniques that compute derivatives by

accumulating values during code execution, resulting in numerical derivative evaluations

instead of symbolic derivative expressions. This approach allows for precise derivative

evaluation at machine precision, with minimal overhead and optimal asymptotic efficiency.

Unlike the complexity of reformatting code into closed-form expressions required by

symbolic differentiation, AD can be applied to standard code with minimal modifications,

accommodating branching, loops, and recursion.

In machine learning, the backpropagation algorithm, a specialized form of Automatic

Differentiation (AD), is essential for training neural networks. Essentially, backpropaga-

tion represents learning as gradient descent within the neural network’s weight space,

aiming to find the minima of an objective function. The necessary gradient is determined

by propagating the sensitivity of the objective value backward from the output, using

the chain rule to calculate the partial derivatives of the objective function with respect

to each weight.

A function 𝑓 : 𝑅𝑛 → 𝑅𝑚 is constructed using intermediate variables 𝑣𝑖 such that:

� variables 𝑣𝑖−𝑛 = 𝑥𝑖 , 𝑖 = 1, ..., 𝑛 are the input variables,

� variables 𝑣𝑖 , 𝑖 = 1, ..., 𝑙 are the working (intermediate) variables, and

� variables 𝑦𝑚−𝑖 = 𝑣𝑙−𝑖 , 𝑖 = 𝑚− 1, ..., 0 are the output variables.

AD in the reverse accumulation mode corresponds to a generalized backpropagation
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algorithm, in that it propagates derivatives backward from a given output. This is done

by complementing each intermediate variable 𝑣𝑖 with an adjoint:

𝑣𝑖 =
𝜕𝑦𝑗
𝜕𝑣𝑖

(4.6)

which represents the sensitivity of a given output 𝑦𝑗 with respect to changes in 𝑣𝑖. In

the context of backpropagation i.e. the training procedure, 𝑦 corresponds to the scalar

error 𝐸. Additionally, AD has the ability to calculate the Jacobian 𝐽 of the NN model,

i.e. the derivative matrix of the 𝑚-dimensional vector valued NN output with respect to

the 𝑛-dimensional vector valued NN input, expressed as:

𝐽 =

⎡⎢⎢⎣
𝜕𝑦1
𝜕𝑥1

· · · 𝜕𝑦𝑚
𝜕𝑥1

...
. . .

...
𝜕𝑦1
𝜕𝑥𝑛

· · · 𝜕𝑦𝑚
𝜕𝑥𝑛

⎤⎥⎥⎦ (4.7)

Reverse mode AD involves a two-phase process for computing derivatives. Initially,

during the first phase, the original function code is executed forward, generating in-

termediate variables 𝑣𝑖 and logging dependencies in a computational graph through a

bookkeeping procedure. Subsequently, in the second phase, derivatives are determined

by backpropagating adjoints 𝑣𝑖 from the outputs to the inputs.

4.2 Machine learning-based material modeling

The idea to harness the exceptional predictive capabilities of machine learning algorithms

and especially NNs for the development of material models, based on experiments, has

already been explored more than 30 years ago [40]. The motivation for that is that if

the experimental results contain the relevant information about the material behavior,

then the trained NN would contain sufficient information about the material behavior to

qualify as a material model. Such a trained NN not only would be able to reproduce

the experimental results it was trained on, but through its generalization capability it

should be able to approximate the results of other experiments.

There are several ways to create an appropriate functional form for the material

behavior, e.g. based on the choice of a strain-based or stress based formulation or

whether the material is path-dependent or not. A NN can be trained on the results of

several proportional and non-proportional strain or stress paths and then can simulate
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the test results for other proportional and non-proportional strain or stress paths. The

degree of accuracy in this generalization depends on how comprehensive the training set

is. For instance, for a strain-controlled problem with no path-dependency, training means

to present the network with the experimental data and have it self-organize, or modify

its weights, such that it correctly reproduces the total stress state when presented with

the total strain state as shown in fig. 4.3 for a 2D material. Alternatively, when there is

path dependency, the current stress and strain states along with the strain increment

can be used as the input of the NN towards the prediction of the stress increment output

as illustrated in fig. 4.4 for a 2D material. By using the appropriate strain and stress

components, the extension to 3D materials is straightforward.

εxx

εyy

εxy

σxx

σyy

σxy

wi,1

wi,2

wi,n-1

wi,n

Figure 4.3: Strain-based NN for 2D non-path dependent material behavior
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Figure 4.4: Strain-based NN for 2D path dependent material behavior

A significant benefit of NN material models is that the tangent material stiffness

matrix can be straightforwardly be extracted through differentiation on the trained NN

[52]. The most efficient way to do this is through Automatic Differentiation as explained
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in section 4.1. The tangent matrix of a material model is expressed as:

𝐶 =
𝜕𝜎

𝜕𝜖
=

⎡⎢⎢⎣
𝜕𝜎1
𝜕𝜖1

· · · 𝜕𝜎𝑚
𝜕𝜖1

...
. . .

...
𝜕𝜎1
𝜕𝜖𝑛

· · · 𝜕𝜎𝑚
𝜕𝜖𝑛

⎤⎥⎥⎦ (4.8)

Observing eq. (4.8), it can be realized that it corresponds to a standard case of a

Jacobian computation. Therefore, by applying the chain rule on the output layer, i.e.

the stress vector with respect to the input layer, i.e. the strain vector, one can directly

extract the components of the tangent matrix as:

𝐶𝑖𝑗 =
𝜕𝜎𝑖𝑗
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖𝑖𝑗

(4.9)

where ℎ are the hidden layers of the NN.

When experimental observations are absent, instead microstructural simulations can be

utilized to create the necessary dataset for the NN training. This idea has been proposed

more recently (e.g. [74] for 2D RVE simulations and [72] for 3D RVE simulations) where

computational homogenization is applied towards the extraction of effective strain-stress

or strain-strain energy data pairs. In that sense the NN that is tasked with emulating

the behavior of a composite material system through RVE simulations can be considered

as a surrogate model. That is because when a multiscale computational homogenization

analysis takes place (section 1.6), the NN completely bypasses the need to perform

elaborate FE analyses each time the algorithmic procedure enters an integration point.

This surrogate modeling technique is an integral part of the present thesis and the

concept is expanded in more detail during the presentation of the original works (see

chapters 5-8).

51



5
A neural network-aided Bayesian

identification framework for multiscale

modeling of nanocomposites

5.1 Introduction

This chapter proposes a framework for learning the parameters that characterize the

CNT/polymer interface in the microscale with data available from upper scales. These

parameters are associated with great uncertainties and their characterization is a difficult

task, since microscale measurements are costly and hard to obtain. To overcome this,

the present study introduces a computational framework for updating the prior beliefs

on the values of these parameters, by using deformation measurements on meso- and/or

macro-scale composite structures. In terms of modeling, the CNT/polymer interface is

formulated using a cohesive zone model and a bilinear bond-slip constitutive law. The

FE2 method is then employed for predicting the response of the composite structures,

but despite its accuracy, this method is associated with immense computational demands

for large-scale problems. Therefore, its application to the Bayesian setting that requires

multiple model evaluations is prohibitive. To alleviate this enormous cost, a surrogate

modeling technique is developed which utilizes artificial neural networks, trained to
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predict the nonlinear stress-strain relationship of representative volume elements of the

microstructure. The data set over which the neural network is trained, is obtained

by analyzing a limited number of different RVE configurations using a detailed finite

element analysis. The elaborated methodology is first validated through a numerical

example from 2D elasticity, which demonstrated its high accuracy and its significant

cost reduction capabilities. It is then applied to a more challenging large-scale problem

from 3D elasticity. Even though this research focuses on the characterization of the

mechanical properties of composite materials, the proposed numerical procedure is

generic and can be straightforwardly applied to other physically analogous phenomena

related to nano-composite modeling, such as parameter identification in heat transfer or

electrical conduction.

The remaining of this chapter is organized as follows. In section 5.2 the formulation of

the multiscale problem and the modeling of the CNT/polymer interface with the cohesive

zone model are presented. Section 5.3 introduces the proposed Bayesian framework for

multiscale systems. In section 5.4 the usage of the neural network as a surrogate model

is illustrated. Lastly, section 5.5 provides numerical applications to test the efficiency of

the surrogate model compared to the full-scale system solution, in terms of precision

and computational cost reduction.

5.2 Multiscale model and solution procedure

For the accurate description of the composite material, a multiscale model with three

stages is implemented in this work. The atomic scale is linked with the microscopic scale

with a hierarchical approach, while the microscopic is linked with the macroscopic scale

with a semi-concurrent approach.

At the atomic scale each pair of carbon’s C-C covalent bonds are modeled with the

molecular structural mechanics (MSM) method [17]. According to this approach, the

lattice is simulated as a space frame structure, where every bond between adjacent carbon

atoms is modeled as a continuous circular beam. A more thorough description of MSM

is given in section 2.1. Despite this being a fairly accurate representation of the atomic

structure it leads to excessive computational cost for each CNT. Hence, before proceeding

to the next scale each space frame is projected to an equivalent beam element (EBE),

which reduces the total degrees of freedom of the structure to a reasonable amount. As

detailed in section 2.1, the structural properties of the EBEs are calculated by subjecting
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a cantilever beam to an axial 𝐹𝑥, a transverse 𝐹𝑦 and a torsional 𝑇 load. Subsequently,

the axial stiffness (𝐸𝐴)𝑒𝑞, the bending rigidity (𝐸𝐼)𝑒𝑞 and the torsional rigidity (𝐺𝐼)𝑒𝑞

are obtained, via eq. (2.6), by measuring the horizontal displacement 𝑢𝑥, the vertical

displacement 𝑢𝑦 and the angle of rotation 𝜙 corresponding to the aforementioned loads .

At the microscopic scale a representative volume element (RVE) is chosen for the

formulation of the surrounding polymer matrix. A number of EBEs are then added as

inclusions of the matrix in order to achieve a specific volume fraction of CNT/polymer.

The addition of these elements is usually done with a random positioning generator. In

terms of the finite element modeling of the CNT/polymer composite system, the cohesive

formulation, provided in section 2.3, is used for simulating the interaction between the

two phases.

The non-linearity in the interface is given in the form of a bond-slip law expressed as:

𝜏 = 𝑓(Δ𝑢) (5.1)

A linearization of eq. (5.1) yields the tangential relation between increments of the

traction 𝑑𝜏 and the relative displacement 𝑑Δ𝑢 in terms of a tangent constitutive matrix

𝐷𝑡𝑎𝑛. Thus, eq. (5.1) is restated in incremental form as:

𝜏 =𝐷𝑡𝑎𝑛Δ𝑣
𝑙 (5.2)

where Δ𝑣𝑙 is the relative displacement of the CBE with its corresponding EBE in local

coordinates and can be calculated as:

Δ𝑣𝑙 = 𝑅𝑇
𝑚𝑁𝑏(𝑣

′ − 𝑣) (5.3)

In the case that there is no coupling between the displacements in the three local

directions, 𝐷𝑡𝑎𝑛 is written as:

𝐷𝑡𝑎𝑛 =

⎡⎢⎣𝐷11 0 0

0 𝐷22 0

0 0 𝐷33

⎤⎥⎦ (5.4)

where 𝐷11 is the slip component, while 𝐷22 and 𝐷33 are the normal components. It is

assumed that perfect bonding exists between the solid and the EBE for the two normal

components, thus having linear behavior. On the contrary, for the slip component a
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bi-linear approach is selected, as depicted in fig. 5.1 and is formulated as:

𝐷11 =

{︃
𝐷𝑒𝑙, 𝜏1 ≤ 𝜏1,𝑠

𝐷𝑝𝑙 = 𝑝𝐷𝑒𝑙, 𝜏1 > 𝜏1,𝑠
(5.5)

where 𝐷𝑒𝑙 is the elastic slope and 𝐷𝑝𝑙 is the plastic slope of the bi-linear diagram, while

𝜏1,𝑠 is the interfacial shear strength i.e the shear stress at which the interface is leaving

the elastic region. Also, 𝑝 ∈ [0, 1) represents the percentage of the hardening in the

plastic region.

τ (GPa)1

lΔu (nm)1

Dpl

Del

τ1,s

Figure 5.1: Bi-linear constitutive law of the slippage

This particular bi-linear law is straightforwardly parametrizable by the parameters

𝜏1,𝑠, 𝐷𝑒𝑙, 𝐷𝑝𝑙 and will allow us to demonstrate the application of the proposed Bayesian

methodology for updating our initial beliefs on these parameters based on available data.

However, other more involved constitutive laws could be used as well, such as bi-linear

relations with softening, tri-linear [131], or exponential [95].

Before advancing to the macroscopic scale, a homogenization scheme [88] must be

implemented towards a connection with the microstructure. This scheme is applied to

the microscopic model of an RVE of polymer matrix and linear EBEs representing the

CNT reinforced inside the matrix. According to it, for a given macroscopic strain 𝜖 a

linear displacement function is applied to the boundary of the RVE as:

𝑢(𝑥) = 𝜖𝑥 at 𝑥 ∈ 𝜕V (5.6)

where 𝑥 is the position vector of a point on the boundary 𝜕V of the RVE. This relation
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provides the boundary conditions that are applied to the RVE with respect to the

macroscopic variable and is referred to as the localization rule.

The solution of the aforementioned boundary value problem will produce the macro-

scopic stress 𝜎 = [𝜎11, 𝜎22, 𝜏12]
𝑇 , calculated by the volume average of the microscopic

stress field 𝜎(𝑥) via the relation:

𝜎 =
1

‖V‖

∫︁
V

𝜎𝑑𝑥 (5.7)

with ‖V‖ denoting the volume of the RVE. This equation expresses the homogenization

rule, which yields the macroscopic state variables as a function of the microscopic

stress state. The transition from the microscopic level to macroscopic and vice versa is

schematically presented in fig. 5.2.

σ , C

ε

H noo im to ag ze in

izl ata ic oo nL

Figure 5.2: Transition between scales during 𝐹𝐸2

Lastly, the macroscopic tangent (effective) modulus 𝐶 is calculated as the derivative

of the macroscopic stress 𝜎 with respect to the macroscopic strain 𝜖, that is:

𝐶 = 𝜕𝜖𝜎 (5.8)

A more detailed description regarding the transition between two-scale material systems

is given in section 1.3.

The semi-concurrent 𝐹𝐸2 algorithm [35] is used for the online transition between

the two scales during the solution of the macroscopic composite system. According to

this algorithm, for each load increment of the macrostructure, the macroscopic strain

𝜖 is calculated on every integration point of each finite element, where it is assumed

that an RVE exists. After that, the previously described homogenization scheme is
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implemented, from which the macroscopic stress 𝜎 and tangent modulus 𝐶 are acquired

for each Gauss point. With these, the macroscopic internal force vector 𝐹 𝑖𝑛𝑡(𝜎) and

tangential stiffness matrix 𝐾(𝐶) can be calculated. This procedure is repeated until

the internal force vector is equivalent to the external one, namely 𝐹 𝑒𝑥. The interaction

of the two scales during the solution of the algorithm was illustrated in fig. 5.2. The

algorithmic steps of 𝐹𝐸2 are presented in section 1.6.

5.3 Bayesian update of the interface properties

The three previously introduced parameters that describe the interfacial relation between

the CNTs and the polymer matrix are selected as random parameters to be updated.

These are the interfacial shear strength 𝜏1,𝑠, the elastic slope 𝐷𝑒𝑙 before the slippage

and the plastic slope 𝐷𝑝𝑙 after 𝜏1,𝑠 has been surpassed, namely, 𝜃 = (𝜏1,𝑠, 𝐷𝑒𝑙, 𝐷𝑝𝑙). In

addition, the mechanical models to be investigated are CNT reinforced composite struc-

tures and the model predictions 𝑀𝑖(𝜃) for given realizations of 𝜃 are obtained by solving

the multiscale problem with FEM. Also, the collected data 𝑑𝑖 involve measurements of

deformations at specific locations of the macrostructure.

The inverse problem as postulated by the Bayesian paradigm is provided in eq. (3.14).

The interfacial parameters are assumed to be independent to each other, therefore the

Bayesian update formulation of eq. (3.15) is adopted here. The discrepancy between the

data 𝐷 and the model predictions is quantified by means of the additive error approach

of eq. (3.13). In order to efficiently draw samples from the posterior distribution

the Markov Chain Monte Carlo (MCMC) technique is employed based on equation

(3.16). Specifically, the Metropolis-Hastings (MH) algorithm [54] is selected in this study,

however, more sophisticated versions can also be applied such as the adaptive MH [46]

or the transitional MH [18], when challenging posteriors are to be anticipated. The

algorithmic procedure of MH is provided in section 3.2. A schematic representation of

the algorithmic steps of the MH algorithm for Bayesian update on multiscale systems is

depicted in fig. 5.3.

Evidently, the evaluation of the likelihood function 𝜋(𝐷|𝜃′) in the expression of

𝜋𝑢𝑛𝑠𝑝𝑜𝑠𝑡(𝜃
′|𝐷) requires the model 𝑀 to be evaluated at the new parameter values 𝜃′ each

time. In the problems studied in this work, model evaluations are particularly time

consuming and a direct application of the MH algorithm would be unfeasible. To address

this issue, it is proposed in this work to build a surrogate model that will output the
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relation between the strain/interfacial parameters and the stresses as defined by RVE

simulations, which will drastically accelerate the model evaluations at new parameter

values 𝜃′.

As a general remark, selecting a candidate density 𝑔(𝜃′|𝜃) close to the target density

𝜋𝑝𝑜𝑠𝑡(𝜃|𝐷) will lead to more candidates being accepted in the MH algorithm. However,

this choice is problem dependent and cannot be determined a priori, since we do not

know 𝜋𝑝𝑜𝑠𝑡(𝜃|𝐷). Again, the utilization of the aforementioned surrogate will minimize

the negative impact a poor choice of candidate density will have on the MH efficiency.

The procedure to build the proposed surrogate will be illustrated in the following section.

Calculate likelihood 
function π(ω|θ’)

Draw candidate 
sample θ’ from g(θ’|θ)

Accept(θ’    θ)
Reject(θ    θ)

θ

θ’

M(θ’)

π(ω|θ’)

θ = θ0

Initialize

θ’ Μ(θ’)

Solve Macroscale Model

Figure 5.3: Bayesian update on multiscale systems using the Metropolis-Hastings algorithm

5.4 Surrogate modeling of the RVE using deep neural networks

and Automatic Differentiation

Needless to say, the previously described procedure to update the parameters that lie in

the microscale during a 𝐹𝐸2 algorithm, requires an immense computational effort. To

reduce this cost and make the problem computationally tractable, a surrogate modeling
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scheme is developed in this section. Specifically, a feed-forward neural network, or

FFNN for short (see 4.1), is deployed that will emulate the nonlinear equation in the

RVE’s homogenization scheme, for different parameters of the CNT/matrix interface. Its

input neurons consist of the macroscopic strain vector 𝜖 along with the three interfacial

parameters 𝜃 = (𝜏1,𝑠, 𝐷𝑒𝑙, 𝐷𝑝𝑙), while the output neurons are the values of macroscopic

stress vector 𝜎. Due to the symmetry of the 𝜖 and 𝜎 tensors, they involve 3 unknown

variables for 2D problems and 6 variables for 3D problems.

In order to collect the necessary samples for the FFNN training, a number of RVEs

have to be solved for various input values 𝜖 and 𝜃. Usually these values are chosen in a

pseudo-random manner, by using sampling techniques such as Latin Hypercube Sampling

(LHS) [87], within some specified ranges. These have to be carefully selected, as small

ranges may lead to insufficient information during the solution of the bayesian multiscale

system, while large ones may require the evaluation of an unreasonable amount of RVEs

in order to accurately train the FFNN. Therefore, some intuition on the mechanical

system’s behavior from beforehand is required. Also, since the homogenization requires

an incremental-iterative algorithm, for each 𝜃, the converged values of 𝜖 at each increment

are considered as input samples.

Additionally, the macroscopic tangent modulus 𝐶 needs to be derived from the surro-

gate. This can be straightforwardly implemented after the training of the FFNN using

Automatic Differentiation (AD) [5]. In essence, AD is a set of techniques developed

to numerically evaluate the gradient of a function specified by a computer program.

It exploits the fact that every operation performed by the program, no matter how

complicated, executes a sequence of elementary arithmetic operations (addition, subtrac-

tion, multiplication, division, etc.) and elementary functions (𝑒𝑥𝑝, 𝑙𝑜𝑔, 𝑠𝑖𝑛, 𝑐𝑜𝑠, etc.).

By applying the chain rule to these operations, derivatives of arbitrary order can be

computed to working precision. In the frame of this work, AD allows us to compute the

derivatives of the output 𝜎 with respect to the input 𝜖. Thus, the elements 𝑐𝑖𝑗 of the

macroscopic tangent matrix 𝐶 = [𝑐𝑖𝑗 ] can be obtained as

𝑐𝑖𝑗 =
𝜕𝜎𝑖𝑗
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖𝑖𝑗

(5.9)

where ℎ𝑘 is the output at the 𝑘𝑡ℎ hidden layer of the FFNN for input 𝜖𝑖𝑗 .

The whole procedure is summarized in the following steps:
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1. Generate N random input samples 𝑞𝑖 = [𝜖𝑖,𝜃𝑖], 𝑖 = 1, 2, .., 𝑁 within some specified

ranges.

2. Solve the nonlinear equation of the RVE for each input vector 𝑞𝑖 and get the

respective output 𝑦𝑖 = [𝜎𝑖], while keeping all the intermediate increment solutions

𝑛𝑖𝑛𝑐𝑟

3. Choose the FFNN architecture and train it using the𝑁×𝑛𝑖𝑛𝑐𝑟 pairs of input-output

4. Calculate 𝐶 using AD on the FFNN.

TRAIN
FFNN

Figure 5.4: Offline (training) procedure

ε , θ

σ , C

Figure 5.5: Multiscale Bayesian Update, accelerated with surrogate modeling

5.5 Numerical Applications

5.5.1 Example 1.

For the first application, the fixed composite panel depicted in fig. 5.6 is considered,

which is subjected to a bending test. It is made of a polyether-ether-ketone (PEEK)
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polymer reinforced with straight CNTs(8,8) as inclusions. The polymer is assumed to be

linear elastic with Young’s modulus 𝐸 = 4𝐺𝑃𝑎 and Poisson’s ratio 𝑣 = 0.4. Each CNT of

length 𝐿0 = 50𝑛𝑚 is projected to an EBE as described in section 2.1 and after applying

eq. (2.6) the axial, bending and torsional stiffness are found to be 𝐸𝐴𝑒𝑞 = 694.77𝑛𝑁

𝐸𝐼𝑒𝑞 = 100.18𝑛𝑁 · 𝑛𝑚2 and 𝐺𝐽𝑒𝑞 = 68.77𝐺𝑃𝑎 · 𝑛𝑚/𝑟𝑎𝑑 respectively. The total number

of CNTs is chosen so as to achieve a volume fraction of 3%.

P

A108 cm

6
0
 cm

Figure 5.6: Fixed composite panel

The microstructure is characterized by an 100× 100× 20 (𝑛𝑚) RVE as the one shown

in fig. 5.7, in which the CNTs were placed with a random position and orientation

generator. The dimensions of the RVE were selected in order to eliminate the stochastic

effects of the geometry, thus, making a single realization representative of the response of

the microstructure. Following a similar procedure to the one described in [9] for verifying

this condition, 50 realizations of volume elements with the same interfacial parameters

and 3%vf, but with different dispersions of CNTs, were generated and solved for the

same loading conditions in order to evaluate the corresponding stress vectors. Next, the

coefficients of variation (CoV) for each component of the stress vectors were computed.

The max value of the CoV of all stress components was found to be 5.78% which was

considered low enough to justify the use of a single RVE instead of multiple Stochastic

Volume Elements (SVEs).

Subsequently, the RVE is discretized with 100 quadrilateral plane stress (2D) finite

elements. In the macroscopic scale, the model is discretized with the same finite element

type and for each integration point of the 44 elements, an RVE is assigned.
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Figure 5.7: Representation of a 2D RVE for volume fraction 3%

The stochastic parameters𝐷𝑒𝑙, 𝐷𝑝𝑙 and 𝜏1,𝑠 in this example are modeled as independent

random variables, each having a normal probability density function (PDF) as its prior

distribution. It is initially assumed that the parameters follow Gaussian distributions,

N(𝜇, 𝜎) with 𝜇 being the mean and 𝜎 the standard deviation. Specifically, the assigned

prior distributions are 𝐷𝑒𝑙 ∼ N(10, 2) (𝐺𝑃𝑎/𝑛𝑚), 𝐷𝑝𝑙 ∼ N(1, 0.2) (𝐺𝑃𝑎/𝑛𝑚) and

𝜏1,𝑠 ∼ N(0.1, 0.02) (𝐺𝑃𝑎). In the macrostructure, a measurement of the vertical

displacement in point A was recorded as 𝑢𝐴 = 4.2𝑐𝑚 with an approximate error of

𝜖𝐴 = 0.1𝑐𝑚 for the vertical load 𝑃 = 100𝑘𝑁 . Thus the likelihood function is defined as a

Gaussian distribution with mean value equal to the measurement 𝑢𝐴 and with standard

deviation equal to 𝜖𝐴. To ensure that samples with negative values will not be proposed,

the selected candidate distribution for each parameter is a trivariate truncated Gaussian

on the domain [0,+∞)× [0,+∞)× [0,+∞). It is given by the following equation:

𝑔(𝜃′|𝜃𝑖−1) =
𝑔N(𝜃

′|𝜃𝑖−1)

Φ(𝜃𝑖−1)
(5.10)

where 𝑔N(𝜃
′|𝜃𝑖−1) is a trivariate Gaussian distribution with mean vector 𝜃𝑖−1 and a

diagonal covariance matrix Σ with entries:

Σ =

⎡⎢⎣𝜎
2
𝜏1,𝑠 = 0.0042 0 0

0 𝜎2𝐷𝑒𝑙 = 0.42 0

0 0 𝜎2𝐷𝑝𝑙 = 0.042

⎤⎥⎦ (5.11)
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while Φ is the cumulative distribution function of a Gaussian distribution centered at

zero with the same covariance matrix Σ.

To construct the FFNN surrogate, a set of macroscopic stress-strain pairs are used as

training data. These are obtained from solving 𝑁 = 300 RVEs using the computational

homogenization scheme. Also, 𝑛𝑖𝑛𝑐𝑟 = 10 increments were chosen for each nonlinear

solution, resulting in a total amount of 3000 pairs of input-output. The adopted strategy

in order to select the appropriate ranges for the training samples is described next. For

the interfacial parameters 𝜃 the selection is straightforward by establishing a sufficiently

broad range around the mean value of each prior distribution. On the other hand for the

strain vector 𝜖 the intention is to gain first some knowledge of the macroscopic model’s

behavior. To achieve this, a plain parent material i.e. without any CNTs, is solved for

this specific model configuration. The computational cost for this analysis is negligible in

comparison to the multiscale 𝐹𝐸2 setting. From this solution, the extreme macroscopic

strains are obtained and placed as the sampling minimum and maximum limits for 𝜖.

This is due to the fact that any analogous model with the addition of CNTs would only

mitigate the extreme strain values, that is, they would be inside of the proposed sample

limits. The ranges over which the FFNN was ultimately trained are depicted in table

5.1. The first component of the stress-strain relation for several values of the interfacial

parameters 𝜃 is displayed in fig. 5.8, where the RVE was subjected to loading in 𝜖11

and studied for the cases of a bulk matrix, a composite with fully bonded interfacial

behavior and composites with intermediate values of 𝜃.
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Figure 5.8: Stress-Strain relation for several material cases

Regarding the FFNN architecture, 3 hidden layers of 20 neurons each were considered

with the hyperbolic tangent as the activation function. The optimization algorithm used

to train the FFNN was the Levenberg-Marquardt algorithm. For the training process

the data were split in three subsets, namely the train, test and validation subset with

ratios 0.7, 0.15 and 0.15 respectively. The progression of the training is shown in fig.

5.9, which required approximately 300 epochs to reach acceptable levels of accuracy.

Due to the relatively low complexity of the RVE model and the macroscale structure

in this particular application, it is feasible to perform BU on both the full and the

surrogate model. The comparison between the results obtained from the two models will

serve as validation for the accuracy of the surrogate. To this end, a number of 15000

samples are drawn from both model solutions using the MH algorithm and the posterior

distribution of each stochastic parameter along with the respective prior is presented in

fig. 5.10. As evidenced by these results, the two models are in close agreement. It should

be mentioned that in order to obtain 15000 acceptable samples, the samples rejected

from the MH algorithm were approximately 8000. Additionally, the initial 500 samples

were considered to be burn-in steps and so they were discarded.

To quantify the speed-up achieved by the surrogate modeling approach, table 5.2

presents the computational costs required by both models. BU on the the full scale

model took up 189ℎ, which was attributed to the computationally demanding nature

of the 𝐹𝐸2 algorithm. Specifically, for the calculation of the likelihood function of a
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candidate sample 𝜃′, a complete multiscale 𝐹𝐸2 model evaluation had to be performed,

resulting in as many RVE solutions as the total integration points of the macroscopic

system multiplied by the number of iterations for the nonlinear procedure. Hence, this

framework inevitably requires millions of RVE solutions even for simple problems such

as the one studied here. On the other hand, the surrogate model bypasses the RVE

homogenization process and thus requires only 0.8ℎ in total. These include the offline

cost of collecting the 3000 initial training samples (300 realizations of 𝜃 × 10 increments

each) and training the network, as well as the online cost of running the MH algorithm.

These results indicate a remarkable speedup, as the surrogate can reduce the cost by

two orders of magnitude, while maintaining high accuracy levels.
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Figure 5.9: Progression of the FFNN training process

𝜖11

[−]
𝜖12

[−]
𝜖22

[−]
𝐷𝑒𝑙

[GPa/nm]

𝐷𝑝𝑙

[GPa/nm]

𝜏1,𝑠

[GPa]

𝑚𝑖𝑛 -0.1 -0.1 -0.1 1 0.1 0.01

𝑚𝑎𝑥 0.1 0.1 0.1 20 2 0.2

Table 5.1: Input sample ranges for the FFNN training
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Figure 5.10: Comparison of the posterior PDFs of each parameter obtained by performing BU on
the full scale model and the surrogate model
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Computational time (sec)
Offline Online Total

Model FFNN
sam-
pling

FFNN
train-
ing

RVE
solution

FFNN
call/
𝐶

𝐹𝐸2 MCMC

Full
scale

- - 0.022 - 30.5 680850 680850
(189hours)

Surrogate 174 31 - 8e-5 0.115 2588 2793
(0.8hours)

Table 5.2: Computational time of each stage of the algorithm for both models

5.5.2 Example 2.

For the second application, a wrench as the one displayed in fig. 5.11 is studied. The

structure is fixed at the inner part of the head (blue area) and it is subjected to a uniform

pressure at the top side of the tail (purple area). The material properties of both the

polymer and the CNTs are the same as in example 1. The number of CNTs is selected

so as to attain a weight fraction of 4.5%. The representation of the microscopic scale is

done with a 100× 100× 100 (𝑛𝑚) RVE as depicted in fig. 5.12, where the CNTs are

randomly scattered inside the parent material. The discretization of the macro-structure

consists of approximately 50000 tetrahedral elements, while that of the micro-structure

of 1000 hexahedral elements. It becomes obvious that the complexity of this model does

not permit a direct application of the BU framework and a surrogate modeling approach

is the only viable option.

Initially an investigation had to be performed to verify that the selected RVE is in

fact representative of the response of the microstructure. The same strategy as in the

first example was employed and 50 different solutions from volume elements with varying

morphology in the microstructure were acquired. The maximum CoV of the components

of the stress vectors in this case was found to be 3.13%, which suggests that a single

realization of the selected RVE is sufficient for continuing to the rest of the process.
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Figure 5.11: Composite Wrench
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Figure 5.12: Representation of a 3D RVE for volume fraction 4.5%

Similarly to example 1, the normal PDFs 𝐷𝑒𝑙 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(10, 2) (𝐺𝑃𝑎/𝑛𝑚), 𝐷𝑝𝑙 ∼
𝑁𝑜𝑟𝑚𝑎𝑙(1, 0.2) (𝐺𝑃𝑎/𝑛𝑚) and 𝜏1,𝑠 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0.1, 0.02) (𝐺𝑃𝑎) were chosen as priors for

the (independent) uncertain parameters. The vertical displacements of the structure were

measured at the points 𝐵 = [𝐵1, ..., 𝐵5] along its torso for two pressure loads, namely,

𝐿1 = 150𝐾𝑃𝑎 and 𝐿2 = 300𝐾𝑃𝑎, which are uniformly distributed over the purple area
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shown in fig. 5.11, resulting in 10 observations in total. Thus, the vector of the measured

responses is written as 𝐷 = [𝑑1,𝑑2], where 𝐷1 = [𝑑11, ..., 𝑑
5
1] and 𝑑2 = [𝑑12, ..., 𝑑

5
2] are the

responses for 𝐿1 and 𝐿2, as shown in table 5.3.

Although the measurements 𝑑1 and 𝑑2 are assumed to be independent, a statistical

dependence is taken into account between the points in 𝐵 per loading. The auto-

covariance matrix that determines this dependency is the 5×5 matrix𝐾 = (𝑘𝑖𝑗) with 𝑘𝑖𝑗

given by the autocovariance function 𝐾(𝑠) = 𝜖2𝑒𝑥𝑝 (−|𝑠|)
𝛼 , where 𝑠 is the distance between

the locations 𝐵𝑖 and 𝐵𝑗 , 𝜖 = 0.02 𝑐𝑚 is the approximate error for each measurement and

𝛼 = 1 𝑐𝑚 is the correlation length. Obviously, 𝐾 is the same for both measurements 𝑑1

and 𝑑2. Therefore, the likelihood function can be written as:

𝜋(𝐷|𝜃) =
2∏︁
𝑖=1

(︂
(2𝜋)−

5
2𝑑𝑒𝑡(𝐾)−

1
2 𝑒𝑥𝑝

(︂
−1

2
(𝑀𝑖(𝜃)− 𝑑𝑖)𝑇𝐾−1(𝑀𝑖(𝜃)− 𝑑𝑖)

)︂)︂
(5.12)

with 𝑀𝑖(𝜃) being the model predictions for the respective loading case. The candidate

density selected in this example is the same trivariate truncated Gaussian used in the

previous example.

The initial training data set of the FFNN consists of the macroscopic stress-strain

pairs obtained after solving 𝑁 = 300 RVEs for different 𝜃 and considering 𝑛𝑖𝑛𝑐𝑟 = 10

increments for each nonlinear solution. In this 3𝐷 case, the input vector consists of the

strain 𝜖 = [𝜖11, 𝜖12, 𝜖13, 𝜖22, 𝜖23, 𝜖33] and the parameters 𝜃, while the output vector of the

stress 𝜎 = [𝜎11, 𝜎12, 𝜎13, 𝜎22, 𝜎23, 𝜎33]. For the FFNN architecture, 3 hidden layers with

20 neurons each and a hyperbolic tangent activation function were chosen. The FFNN

was trained with the Levenberg-Marquardt algorithm and for the training process the

data were split in ratios 0.7 for the train, 0.15 for the test and 0.15 for the validation

subset. The best performance was obtained in epoch 470 with 10−6 mean squared error.

The ranges over which the FFNN was trained and the progression of the training are

shown in table 5.4 and fig. 5.13 respectively. Additionally, fig. 5.14 illustrates how

the first component of the stress-strain relation is varied for composite materials with

different properties when the RVE is subjected to 𝜖11 increments.
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Loading

case

Measurement(mm)

𝐵1 𝐵2 𝐵3 𝐵4 𝐵5

𝐿1 -0.15 -6.50 -5.31 -4.35 -5.23

𝐿2 -0.31 -13.51 -11.03 -9.04 -10.88

Table 5.3: Displacement measurements

0 50 100 150 200 250 300 350 400 450

Epoch

10-6

10-4

10-2

100

M
S

E

Train

Test

Validation

Data Subset

Figure 5.13: Progression of the FFNN training process

𝜖11

[−]
𝜖12

[−]
𝜖13

[−]
𝜖22

[−]
𝜖23

[−]
𝜖33

[−]
𝐷𝑒𝑙

[GPa

/nm]

𝐷𝑝𝑙

[GPa

/nm]

𝜏1,𝑠

[GPa]

𝑚𝑖𝑛 -0.08 -0.04 -0.04 -0.08 -0.04 -0.04 0.1 0.01 0.001

𝑚𝑎𝑥 0.08 0.04 0.04 0.08 0.04 0.04 20 2 0.2

Table 5.4: Input sample ranges for the FFNN training
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Figure 5.14: Stress-Strain relation for several material cases

Due to the complexity of the model, BU was carried out only on the surrogate

model, since the implementation on the full scale model was computationally infeasible.

Nevertheless, to confirm the accuracy of the surrogate in this example before proceeding

with the BU, the following strategy was adopted. A set of 1000 new input samples

{(𝜖𝑗 ,𝜃𝑗)}1000𝑗=1 were randomly generated and the surrogate’s accuracy was measured by

the errors:

𝑒𝑟𝑟𝐶 =

∑︀1000
𝑗=1

⃦⃦⃦
𝐶
𝑠𝑢𝑟 −𝐶𝐹𝐸𝑀

⃦⃦⃦
2∑︀1000

𝑗=1

⃦⃦⃦
𝐶
𝐹𝐸𝑀

⃦⃦⃦
2

(5.13)

and

𝑒𝑟𝑟𝜎 =

∑︀1000
𝑗=1

⃦⃦
𝜎𝑠𝑢𝑟 − 𝜎𝐹𝐸𝑀

⃦⃦
2∑︀1000

𝑗=1

⃦⃦
𝜎𝐹𝐸𝑀

⃦⃦
2

(5.14)

where (·)𝑠𝑢𝑟 refers to the macroscopic quantities predicted by the surrogate, (·)𝐹𝐸𝑀 to

the FEM solutions of the homogenization and ‖·‖2 denotes the standard 2-norm. These

errors were found to be 𝑒𝑟𝑟𝐶 = 1.76% and 𝑒𝑟𝑟𝜎 = 0.80%, which demonstrated the high

accuracy achieved by the surrogate.

Having verified the surrogate’s accuracy, the posterior distribution of each component

of 𝜃 is obtained using 15000 samples. The acceptance rate was around 60%, resulting in
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the calculation of approximately 25000 likelihood functions, while the burn-in period

was 500 samples. The results are presented in fig. 5.15. These figs. indicate that the

initial assumptions on the interface parameters change significantly due to the new

measurements in the macrostructure. This is particularly noticeable in the pdf of the

shear stress 𝜏1,𝑠, which is found to have smaller mean and less variance than those

initially assumed. This outcome is of great importance to material design applications,

since 𝜏1,𝑠 is one of the most dominant parameters in the microstructure with regards to

its impact on the macroscopic behavior of the structure.

Moreover, in table 5.5 the computational time is illustrated for the surrogate model,

while for the full scale model the respective time is estimated with an approximate

prediction of the total RVE evaluations. This estimate is based on the fact that a single

𝐹𝐸2 solution on the full scale model required almost 106 RVE solutions. Therefore,

performing BU on the full scale model would have taken up 105812 years, while the

surrogate required 359.9 ℎ𝑟𝑠, or seven orders of magnitude lower cost. Comparing this

finding with that of example 1 it leads to the conclusion that the computational acceler-

ation achieved by the surrogate scales accordingly to the RVE’s and the macroscopic

model’s complexity.

Computational time (hours)

Offline Online Total

FFNN

sam-

pling

FFNN

train-

ing

RVE

solution

FFNN

call/

𝐶

𝐹𝐸2 MCMC

Full

scale

(Predic-

tion)

- - 0.033 - 37076 926909667 926909667

(105812

years)

Surro-

gate

9.83 0.07 - 2.2e-8 0.014 350 359.9

(15days)

Table 5.5: Computational time of each stage of the algorithm for both models
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Figure 5.15: Prior and posterior PDFs of each parameter
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5.6 Conclusions

In this work, a methodology for updating the beliefs of the uncertain parameters

that lie in the microscale of nanocomposite systems has been proposed. In particular,

the bayesian framework with the MCMC technique has been employed on the FE2

algorithm to learn the parameters of the CNT/polymer interface. The elaborated

methodology utilized measurements from the macroscale structure to update the prior

beliefs on the nonlinear parameters, rather than expensive and hard-to-obtain microscale

measurements. In addition, to tackle the immense computational effort of performing

bayesian update on this type of problem, a neural network surrogate was developed in

order to replace the nonlinear relation of the homogenization scheme. This surrogate

model displayed a high level of accuracy compared to the full scale system solution as

well as a remarkable cost reduction. This allowed us to perform BU on complex large-

scale problems, which would otherwise be infeasible. The proposed methodology was

demonstrated on mechanical problems, where the uncertain parameters were successfully

updated in a reasonable computational time. However, this framework can be extended

to a diversity of nanocomposite-based applications, such as electrical conductivity or

heat transfer.
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6
Multiscale analysis of nonlinear systems

using a hierarchy of deep neural networks

6.1 Introduction

This chapter proposes a non-intrusive surrogate modelling strategy, dedicated to 𝐹𝐸𝑁

computational homogenization approaches on systems with many scales (𝑁 > 2). The

idea is to employ a sequence of neural networks that represent the hierarchy of the

separate scales in the multiscale problem. Each neural network is being trained to learn

the physical law at a corresponding length scale of the problem. In a similar manner

to the original problem where each finer scale is contained in a coarser scale, neural

networks representing fine scales are contained in the DNNs that represent coarser

scales. At the end of the training process, a single deep network which emulates the

macroscopic behavior by incorporating all physical mechanisms arising at each of the

problem’s finer scales is derived. This approach takes full advantage of the accuracy and

modelling capabilities that 𝐹𝐸𝑁 schemes provide, while at the same time overcomes

their immense computational requirements. Specifically, the DNNs are tasked with

learning parameterized versions of the constitutive law in each scale, which allows us to

model a wide range of possible material behaviors. This is accomplished by augmenting

the input layer of the DNNs with the set of the uncertain material parameters. With
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this approach, each DNN incorporates the uncertain behavior that comes from all the

previous scales and ultimately a macroscopic constitutive response that encapsulates all

this information is obtained through the final DNN. In turn, this DNN can be applied

as a surrogate of the material in any macrostructural system and for various multi-query

problems (e.g. sensitivity analysis, optimization, Bayesian inference).

The elaborated methodology is demonstrated on the analysis of a large-scale building

made of CNT-reinforced concrete. This particular structural system is modeled as a

four-scale problem consisting of (i) carbon nanotube-reinforced cement paste at the

microscale, (ii) reinforced cement mortar at a fine mesoscale level, (iii) reinforced concrete

at a coarse mesoscale level and (iv) the macroscopic structural system. The composite

material is characterized by different nonlinear constitutive laws at each scale. The

solution of the full multiscale problem is attained by using a 𝐹𝐸4 scheme at a reasonable

computational time by virtue of the elaborated surrogate modelling setup. In turn, this

allows us to perform laborious sensitivity analyses in order to assess the uncertainty in

the material parameters and its propagation to the macroscopic structural response.

The rest of this chapter is organized as follows. Section 6.2 provides the constituents

of the CNT-reinforced concrete multiscale model developed in this work and the solution

framework based on a 𝐹𝐸4 algorithm. In Section 6.3 the reinstatement of the nested

solution scheme with the utilization of neural networks as surrogate modelling technique

is illustrated. Section 6.4 presents the application of global sensitivity analysis in the

context of nested multiscale analyses. Section 6.5 demonstrates a numerical example to

test the efficiency of the aforementioned methodology.

6.2 Multiscale model and solution procedure

This section illustrates a composite material modelling paradigm, which requires per-

forming computational homogenization on multiple scales. In particular, a multiscale

model of CNT-reinforced concrete is presented that consists of cement paste, CNTs

and aggregate particles. Each of these constituents and their interactions are defined

on appropriate length scales, as depicted in fig. 6.1. This approach will enable us to

accurately model the interaction of each constituent with the cement paste and eventually

study the macroscopic behavior of real-life structures composed of the composite. The

details on the implementation aspects of this approach are presented next.
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6.2.1 Cement paste material model

The cement paste is assumed to be fully hydrated and it is represented by a homogeneous

material. For the cement material a phenomenological relation is adopted. Specifically,

the transition into the inelastic regime is defined by the Drucker-Prager plasticity model

[27]. The yield function that describes this transition is of the following form:

Φ = 𝐽2(𝜎) + 𝜂𝑝(𝜎)− 𝜉𝑐 (6.1)
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Figure 6.1: Multiscale model of the CNT-reinforced concrete material: (a) the nanoscale represents
each individual CNT, (b) the microscale represents the cement paste reinforced with CNTs, (c) the
fine mesoscale with the addition of sand particles represents the CNT-reinforced mortar, (d) the

coarse mesoscale with the addition of high volume aggregates e.g. gravel represents the
CNT-reinforced concrete.

where 𝐽2 is the second deviatoric invariant of the stress tensor 𝜎, 𝑝 is the hydrostatic

pressure, 𝑐 is the cohesion, while 𝜂 and 𝜉 are constants that are chosen in a way to

approximate an equivalent Mohr-Coulomb yield surface. Here these constants are used

for the approximation of the outer edges of the Mohr-Coulomb criterion by the DP

surface and have the form:

𝜂 =
6 sin𝜑√

3(3− sin𝜑)
& 𝜉 =

6 cos𝜑√
3(3− sin𝜑)

(6.2)

with 𝜑 being the friction angle.

The classical strain rate decomposition is applied:

�̇� = �̇�𝑒 + �̇�𝑝 (6.3)
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with initial conditions:

𝜖(𝑡0) = 𝜖𝑒(𝑡0) + 𝜖𝑝(𝑡0), (6.4)

where the decomposition of the strain tensor into the elastic component 𝜖𝑒 and the

plastic component 𝜖𝑝 is performed.

According to the plastic flow rule, the rate of the plastic strain is postulated as:

�̇�𝑝 = �̇�
𝜕Ψ

𝜕𝜎
(6.5)

where 𝜆 is the plastic multiplier and Ψ is the plastic flow potential. Here, non-associative

plastic flow is assumed, hence the plastic potential function takes a different form than

the yield function (Φ ̸= Ψ). The potential function that was chosen here is:

Ψ = 𝐽2(𝜎) + 𝜂𝑝(𝜎) (6.6)

where 𝜂 has a similar meaning with the approximation constants of Φ and is given by:

𝜂 =
6 sin𝜓√

3(3− sin𝜓)
(6.7)

with 𝜓 being the dilatancy angle.

Furthermore, an isotropic linear hardening model is considered, hence 𝑐(𝜖𝑝) is expressed

as:

𝑐(𝜖𝑝) = 𝑐0 +𝐻𝜖𝑝 (6.8)

where 𝑐0 is the initial cohesion, i.e. the initial yield stress and 𝐻 is the hardening

modulus.

Additionally, the rates of the plastic strain and the equivalent plastic strain are given

by:

�̇�𝑝 =

(︂
1

2
√︀
𝐽2(𝜎)

(𝜎 − 1

3
𝑡𝑟𝑎𝑐𝑒(𝜎)𝐼) + 𝜂

)︂
�̇� & �̇�𝑝 = 𝜉�̇� (6.9)

The preceding equations form an optimization problem that is completed with the

addition of the Kuhn-Tucker loading/unloading conditions:

78



Φ ≤ 0, �̇� ≥ 0, Φ�̇� = 0 (6.10)

6.2.2 Microstructural representation of CNT-reinforced cement

paste

Every CNT is described as an assembly of covalent bonds developed between the carbon

atoms (C-C bond) in hexagonal shapes. The molecular structural mechanics approach

(MSM), which is detailed in section 2.1, transforms the molecular structure of CNTs to

continuum structural models in the form of space frames. This transition is achieved with

the relations in eq. (2.5). While the structural representation offers a clear and precise

transition from molecular mechanics, the system’s complexity remains a challenge due

to the multitude of Degrees Of Freedom (DOFs) inherent in each space frame simulating

a CNT. To streamline the integration of CNTs into microstructure modeling, further

simplification is necessary. This simplification mirrors the approach of the MSM method,

whereby each space frame structure is projected onto an equivalent beam element (EBE)

using the relationships outlined in eq. (2.6).

To simulate the interaction between the CNTs and the cement paste, the embedding

finite element technique via the fully bonded formulation of section 2.2 is implemented.

A number of EBEs are scattered inside the microstructure RVE with random position

and orientation as depicted in fig. 6.1 until a prescribed weight fraction for the CNTs is

achieved. Since EBEs are 2-D elements there is no issue of overlapping with each other

and additional checks for their valid placement are not required. The dimensions of the

cement paste RVE are (500𝜇𝜇)3.

6.2.3 Mesostructural representations of reinforced mortar and

concrete

A Fuller grading curve is applied in order to determine the size distribution of the

aggregate particles in the mesoscale, as follows:

𝑃 (𝑑) = (
𝑑

𝑑𝑚𝑎𝑥
)𝑛 , 0 ⩽ 𝑃 (𝑑) ⩽ 1 (6.11)

where 𝑑 is the aperture diameter of a specific sieve, 𝑑𝑚𝑎𝑥 is the maximum diameter of

the coarse aggregates and 𝑃 (𝑑) is the cumulative percentage of the aggregates that pass
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through 𝑑, while 𝑛 is a constant that defines the shape of the curve.

The volume fraction of the aggregates within each of the segments [𝑑𝑠, 𝑑𝑠+1] is then

estimated as:

𝑉 [𝑑𝑠,𝑑𝑠+1]
𝑎 =

𝑃 (𝑑𝑠)− 𝑃 (𝑑𝑠−1)

𝑃 (𝑑𝑚𝑎𝑥)− 𝑃 (𝑑𝑚𝑖𝑛)
𝑉 𝑡𝑜𝑡
𝑎 (6.12)

where 𝑉 𝑡𝑜𝑡
𝑎 is the total volume fraction of the aggregates inside the specimen.

An algorithm is implemented for the placing of the aggregates inside the RVEs by

utilizing eq. 6.12. For simplicity, all the inclusions are modeled as spheres. Other

options, however, such as polygonal shapes are also applicable in a straightforward

manner. Each newly added inclusion has to satisfy the condition of non-overlapping with

the already existing particles. Nevertheless, the inclusions are allowed to intersect with

the boundaries of the RVE since periodic topology is adopted here. For more details on

the placing algorithm the reader is referred to [138]. Since the mesoscale is described by

two separate scales, the diameter bounds 𝑑𝑚𝑎𝑥 and 𝑑𝑚𝑖𝑛 are assigned independently for

each one of them.

In the fine mesoscale, the aggregates which are essentially sand particles have a

minimum diameter 𝑑𝑓𝑚𝑚𝑖𝑛 = 0.1𝑚𝑚 and a maximum diameter 𝑑𝑓𝑚𝑚𝑎𝑥 = 2𝑚𝑚. The

particles are assumed to behave linearly elastic with a Young’s modulus 𝐸 = 30𝐺𝑃𝑎 and

Poisson ratio 𝜈 = 0.22 and their volume fraction inside the mortar is taken as 20%. The

interaction between the two phases of the material is direct i.e. without an Interfacial

Transition Zone (ITZ). The dimensions of the mortar RVE are (10𝑚𝑚)3. A sample of

the fine mesoscale representation of the mortar is included in fig. 6.1.

The coarse mesoscale model represents the reinforced concrete material. In this

representation, the range of the diameters of the coarse aggregates are 𝑑𝑐𝑚𝑚𝑖𝑛 = 2𝑚𝑚

and 𝑑𝑐𝑚𝑚𝑎𝑥 = 20𝑚𝑚. Similarly to the sand particles, the coarse aggregates are taken as

linearly elastic and no ITZ between the different phases exist. For these aggregates the

Young’s Modulus is 𝐸 = 45𝐺𝑃𝑎 and the Poisson ratio is 𝜈 = 0.22. The volume fraction

of the aggregates in this scale is chosen as 40%. The dimensions of the concrete RVE

are (200𝑚𝑚)3. A coarse mesoscale specimen is depicted as part of the multiscale model

in fig. 6.1.
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6.2.4 Computational homogenization scheme for the CNT-reinforced

concrete

The macroscopic system is described by a homogeneous material with a constitutive

relation formulated by the coupling of all the finer scales as these are described in sections

6.2.2 and 6.2.3. This coupling is achieved with a standard computational homogenization

scheme as the one described in section 1.3. The information is initially propagated

through the localization rule. Starting from a macroscopic integration point, strain

driven boundary conditions are assigned on the RVE of the following scale. The resulted

strains on the integration points of the matrix material are then used to apply the

localization step onto the RVE that describes the next scale. This procedure continues

step-wise between each pair of consecutive scales until the finest scale RVE has been

reached, which is the microscale in the present model. Then, beginning from the finest

scale, the microscale RVE is solved for the boundary conditions that resulted from the

previous procedure and the homogenization step is applied to propagate the homogenized

stresses and tangent moduli onto the coarser scale. The homogenization step is repeated

between successive scale RVEs until the process has returned to the macroscale. It is

important to note here that this procedure is performed in the frame of a nonlinear

analysis, requiring internal iterations until the whole multiscale system is in a converged

state.

The nested multiscale scheme of CNT-reinforced concrete is visualized in fig. 6.2. The

connection of the four scales and the solution of the system is done according to the

procedure described in sections 1.6 and 1.7.

MICROSCALE FINE MESOSCALE COARSE MESOSCALE

MACROSCALE

zail tia oc noL
zail tia oc noL

azil tia oc noL

Figure 6.2: Hierarchical scale coupling scheme. The material behavior at an integration point in the
macroscale is obtained from the analysis of a coarse mesoscale RVE. However, this requires the

analysis of a fine mesoscale RVE at each integration point in the coarse mesoscale, which, in turn,
requires the analysis of a microscale RVE at each of the corresponding integration points.
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As pointed out in the previous sections, the task of performing this 𝐹𝐸4 scheme is

directly associated to a prohibitive computational cost. This problem is tackled with

the use of hierarchical surrogate models, as described in the following section.

6.3 Surrogate modelling of the 𝐹𝐸𝑁 scheme utilizing a hierarchy

of neural networks

6.3.1 Main concept

The powerful approximation capabilities of DNNs have been validated from numerous

applications, but also, from the mathematical viewpoint, though the universal approx-

imation theorem [23, 24, 59]. Therefore, DNNs are considered capable of capturing

complex material behavior. In this framework, a dedicated surrogate modelling strategy

is presented herein for mitigating the cost of 𝐹𝐸N solution schemes in the context

of computational homogenization. The key idea is to use DNNs [44, 39], to learn the

parametrized non-linear homogenized response of the RVEs on each scale in a hierarchical

manner, starting from the finest scale and progressively substituting each RVE with a

DNN that encapsulates the material behavior at all previous scales.

The steps for constructing the DNN-aided 𝑁 -scale nested scheme are the following:

� A sequential homogenization procedure is implemented according to eqs. (1.23)

and (1.25) on each pair of consecutive scales starting from the finest one, the 1st

scale.

� A set of parameters/variables that define the input and output of the corresponding

DNN are defined. The input involves the components of the strain vector at the

upper scale 𝜖(2), while the the output is the stress vector 𝜎(2) at the end of the

homogenization procedure. If we further assume that the solution of the system is

affected by a vector of parameters 𝛼(1) that characterize the material’s constitutive

law at the finest scale, then these parameters are also regarded as input to the

DNN.

� The tangent constitutive matrix 𝐶(2) at a certain strain state 𝜖(2), required for the

Newton-Raphson iterations, is effortlessly computed using Automatic Differentia-

tion (AD) [5]. By using differentiable activation functions in the DNN, such as the

logistic or hyperbolic tangent function, the DNN becomes a differentiable function.
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This technique allows for the computation of the derivatives of the output 𝜎(2)

with respect to the input 𝜖(2) by applying the chain rule on the DNN and, thus,

the elements 𝑐
(2)
𝑖𝑗 of the macroscopic tangent matrix 𝐶(2) = [𝑐

(2)
𝑖𝑗 ] are obtained as:

𝑐
(2)
𝑖𝑗 =

𝜕𝜎
(2)
𝑖𝑗

𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖

(2)
𝑖𝑗

(6.13)

where ℎ𝑘 is the output at the 𝑘𝑡ℎ hidden layer of the DNN for input 𝜖
(2)
𝑖𝑗 .

� After the successful training and validation, the finest scale DNN (scale 1) can

be straightforwardly applied to represent the constitutive relation of the matrix

material at the next scale (scale 2). The process is iterated for this scale and

a second DNN is built using
(︀
𝜖(3),𝛼(2),𝛼(1)

)︀
as input and 𝜎(3) as output. To

simplify notation we write the input
(︀
𝜖(3),𝛼(2),𝛼(1)

)︀
as
(︀
𝜖(3), �̂�(3)

)︀
, where, in the

general case, �̂�(𝑠+1) =
(︀
𝛼(𝑠), · · · ,𝛼(1)

)︀
is the augmented parametric vector. Again,

the tangent matrix 𝐶(3) is readily available through AD. It is important to note

here that the DNN of the second scale also involves the material parameters 𝛼(1)

of the previous scale as input, since this will allow it to capture the behavior of

the material at both the first and the second scale.

� This procedure is repeated for all scales up to the macroscale, where it ultimately

results in a single final DNN that incorporates all the information from the lower

scales and constitutes the surrogate model of the composite material’s behavior.

All aforementioned steps are summarized in the following algorithm:
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Output :The trained 𝐷𝑁𝑁𝑁 that emulates the composite material’s behavior

𝜎(𝑀)(𝜖(𝑀), �̂�(𝑀))

for scale 𝑠 = 1 to 𝑁 do

if 𝑠 = 1 then
Assign the matrix material of 𝑅𝑉 𝐸𝑠 as the original matrix material of the

composite;

else

Assign the matrix material of 𝑅𝑉 𝐸𝑠 as the previously trained 𝐷𝑁𝑁 𝑠−1;

end

Choose the samples ranges in the input space [𝜖(𝑠+1), �̂�(𝑠+1)] , where �̂�(𝑠+1) is

the augmented parametric vector �̂�(𝑠+1) = [𝛼(𝑠), ...,𝛼(1)];

end

for sample 𝑗 = 1 to 𝐾 do

Generate a sample [𝜖
(𝑠+1)
𝑗 , �̂�

(𝑠+1)
𝑗 ] using the preferred sampling technique;

Solve the 𝑅𝑉 𝐸𝑠 and obtain the relation [𝜖
(𝑠+1)
𝑗 , �̂�

(𝑠+1)
𝑗 ]− [𝜎

(𝑠+1)
𝑗 ];

Select the architecture and train 𝐷𝑁𝑁 𝑠 with the acquired RVE solutions;

end

Algorithm 2: Offline DNN training
To better illustrate the proposed surrogate modelling strategy let us focus on the 4-

scale example of CNT-reinforced concrete presented in section 6.2. First, the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜

is trained to substitute the RVE of the microscale, which consists of cement paste and

CNTs, using
(︀
𝜖𝑓𝑚,𝛼𝜇

)︀
as input and 𝜎𝑓𝑚 as output. Next, the 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑓𝑖𝑛𝑒 which

represents the fine mesoscale RVE (cement mortar) is trained on pairs
(︀
𝜖𝑐𝑚,𝛼𝑓𝑚,𝛼𝜇

)︀
,

where now 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 is considered as the matrix material along with the fine aggregates

as the inclusions. The process is repeated one more time for the 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒 of the

coarse mesoscale RVE, which is the final DNN that encapsulates all previous DNNs and

represents the constitutive relation for the macroscale problem. The training procedure

is illustrated in fig. 6.3 and the final outcome of the process in figs. 6.4a-6.4b.
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Figure 6.3: Training procedure according to the proposed strategy. Staring from the microscale, a
neural network, 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 is trained to emulate the stress-strain behavior of the microscale RVE.

This 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 is used in exchange of the host material in the fine mesoscale and, next,
𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 is trained to emulate the stress-strain behavior of the fine mesoscale RVE. The

process is repeated one more time for the coarse mesoscale until the final network 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜

successfully encapsulates the overall composite material’s behavior.
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Figure 6.4: (a) Hierarchical construction of the surrogate DNN model and (b) Scale coupling using
the final 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒 as constitutive model

6.3.2 Implementation aspects

Regarding the implementation aspects of the surrogate modelling strategy, there are a few

key points that require further elaboration: To obtain the data for each DNN training, a

series of RVEs need to be solved for various combinations of strains and parameter values.

Starting from the finest (first) scale, a number of detailed FE simulations are required

for the preparation of the training data set. These calculations do not involve any direct

FE2 simulations, since they are performed at the lowest scale. However, moving a step

up to the 2nd scale, the training of the 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑓𝑖𝑛𝑒 requires a FE2 analysis between

the first and second scale. Based on the premise that the first 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 is well-trained

and proven capable of accurately capturing the material behavior at the finest scale,
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the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 is employed in lieu of the costly FE analyses. Then, this procedure

iterates one more time in order to establish 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒, which will represent the

constitutive behavior of the composite material. With this approach, the hierarchical

training of the successive DNNs at each scale is performed in a computationally efficient

and tractable manner.

Furthermore, the problems studied here all assume small deformations and consider

materials with isotropic behavior on every scale. Thus, the strain and stress tensors

are symmetric and can be described with six independent variables, while the size of 𝛼

may vary on each scale. The accumulation of parameters 𝛼𝑐𝑚,𝛼𝑓𝑚,𝛼𝜇 as the training

procedure progresses might lead to high dimensional input spaces for the DNNs that

will impede an accurate training. Therefore, the sampling technique used for generating

the input data plays a critical role in the procedure and sampling with simple Monte

Carlo methods tend to not give representative results in the high dimensional space.

More efficient choices include space filling techniques such as Latin Hypercube Sampling

(LHS) [87] or quasi-Monte Carlo methods [119]. Additionally, attention must be paid on

the range of the sampling in order for the DNN to be able to predict the full response

of a system during every possible solution, while also avoid over-training the DNN for

extreme values with infinitesimal chance to be reproduced in the online solution and

increase unnecessarily the offline computational time.

As it is generally the case for all the data-driven material models, it should be

highlighted that with the proposed data-driven material modelling strategy, the DNNs

that learn to imitate the constitutive law of each scale are ultimately limited by the

level of detail that has been applied to describe the original materials’ behavior. These

may include the material formulation for each separate phase of the composite or the

interaction mechanisms between them. Nevertheless, this is merely a choice that has to

be made based on the desired material accuracy in exchange of computational complexity

and time. The core of the proposed scheme is invariant to different preferences for the

material formulations.

6.4 Variance-based sensitivity analysis on composite structures

In this section, the variance-based SA framework, presented in section 3.4, is applied

in order to assess how sensitive are the structures made up of CNT-reinforced concrete

with respect to material parameters in the microstructure. Herein, SA is performed
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on the Drucker-Prager plasticity model parameters, namely, the friction 𝜑, the dilation

𝜓, the initial cohesion 𝑐0 and the hardening modulus 𝐻, in a CNT-reinforced concrete

building. The model parameters are collectively denoted as �̂�𝑀 = (𝜑, 𝜓, 𝑐0, 𝐻). Then,

SA will give us a measure of how uncertainty propagates across the various scales of

the model and affects the macroscopic response. In this setting, we can consider our

model M := 𝑓(𝜑, 𝜓, 𝑐0, 𝐻) := 𝑓(�̂�𝑀 ) to be a quantity of interest of the structure in the

macroscale, such as a displacement at a given location, which is obtained after solving the

structural problem with the FE4 scheme. The aim is to evaluate the sensitivity indices

𝑆𝑖 and total indices 𝑆𝑇𝑖 for 𝑖 = 1, 2, 3, 4 corresponding to the four model parameters

𝜑, 𝜓, 𝑐0, 𝐻, respectively. To do this, we need to generate 𝐾 · (𝑑 + 2) instances of the

parameter vector {�̂�𝑀𝑖 }
𝐾(𝑑+2)
𝑖=1 according to a specified probability distribution, with 𝐾

typically being of the order of 103 ÷ 105 to produce reliable estimates of the sensitivity

indices and 𝑑 = 𝑑𝑖𝑚(�̂�𝑀 ) = 4. For each of these instances, the macroscale problem is

solved to obtain the responses {M𝑖}𝐾·(𝑑+2)
𝑖=1 and compute 𝑓(𝑅(𝑗)), 𝑓(𝑄(𝑗)) and 𝑓(𝑄

(𝑖)
𝑅,(𝑗)),

according to equations (3.30) and (3.31).

Taking into account the complexity of the model, it becomes apparent that this

type of analysis would be computationally unrealizable with a direct application of

the FE4 solution scheme. However, the surrogate modelling scheme developed in the

previous section can be employed to accelerate the repeated model evaluations for various

instances of the microscopic model parameters 𝜑, 𝜓, 𝑐0, 𝐻. A schematic representation

of the SA procedure in a general DNN enhanced multiscale analysis is depicted in fig.

6.5. According to this, 𝐾 · (𝑑+ 2) instances of the parameter vector {�̂�𝑀𝑖 }
𝐾·(𝑑+2)
𝑖=1 are

generated following a specified probability distribution and for each of these instances

the macroscale problem is solved to obtain the responses {M𝑖}𝐾(𝑑+2)
𝑖=1 . The 𝐾 · (𝑑+ 2)

model evaluations necessary for the convergence of the SA are expected to require

affordable computational time since the final DNN, namely the 𝐷𝑁𝑁𝑁 , has replaced

the costly direct 𝐹𝐸𝑁 scheme. After the samples have been collected and the SA has

been performed, critical deductions of the multiscale model parameters can be done by

observing how they affect the model output.
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Figure 6.5: Sensitivity analysis on a multiscale system accelerated by the proposed surrogate model.
The macroscale problem is solved for 𝐾 · (𝑑+ 2) instances of the parameter vector �̂�𝑀 . The

corresponding model output {M𝑖}𝐾(𝑑+2)
𝑖=1 can be efficiently computed by virtue of the proposed

surrogate modelling strategy. Then, the sensitivity indices of the material parameters can be
straightforwardly computed via statistical post-processing.

6.5 Numerical Application

In this section we showcase the potential of the proposed framework in a CNT-reinforced

concrete structural model as the one presented in section 6.2. The structure to be

analyzed in the macroscale is a two-storey CNT-reinforced concrete building as depicted

in fig. 6.6. Each story has a height of 2.80𝑚, while both slabs have dimensions of

2.50𝑚 × 2.50𝑚 × 0.30𝑚. Both the columns and the beams have a rectangular cross-

section with dimensions 0.30𝑚 × 0.30𝑚. The four columns are fixed on the ground.

At the edge of each storey, a lateral line load with magnitude 𝑃𝐿 = −5.28𝑘𝑁/𝑐𝑚 is

applied on the z-direction while a dead pressure load of magnitude 𝑃𝐷 = −0.16𝑘𝑁/𝑐𝑚2

is assigned on each slab. The macroscale model is discretized with 2308 hexahedral

elements, which in turn results in 12276 DOFs.
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Figure 6.6: Multiscale model of a CNT-reinforced structure. Each Gauss point of the macroscale is
associated with a constitutive law delivered by the DNN hierarchy

6.5.1 Offline procedure

The initial cement paste matrix material is formed according to the Drucker-Prager(DP)

plasticity model presented in section 6.2.1. A series of parameters are selected, based

on which the SA of the macrostuctural response will be performed. As mentioned

previously, these parameters are the ones that characterize the cement paste mate-

rial, namely the friction angle 𝜑, the dilation angle 𝜓, the initial cohesion 𝑐0 and

the hardening modulus 𝐻. To propagate the influence of these parameters on the

macroscale behavior, a ten parameter input vector for the 𝐷𝑁𝑁 𝑖 of each scale 𝑖 defined

in section 6.3.1 is used, containing the strains 𝜖𝑖 = [𝜖𝑖𝑥𝑥, 𝜖
𝑖
𝑦𝑦, 𝜖

𝑖
𝑧𝑧, 𝜖

𝑖
𝑥𝑦, 𝜖

𝑖
𝑥𝑧, 𝜖

𝑖
𝑦𝑧] and the

parametric vector 𝛼 = [𝜑, 𝜓, 𝑐0, 𝐻]. The output vectors are the six stress components

𝜎𝑖 = [𝜎𝑖𝑥𝑥, 𝜎
𝑖
𝑦𝑦, 𝜎

𝑖
𝑧𝑧, 𝜎

𝑖
𝑥𝑦, 𝜎

𝑖
𝑥𝑧, 𝜎

𝑖
𝑦𝑧] resulting from the homogenization equations given by

eq. 1.25.

As stated in the implementation aspects section, the choice of the input sample

ranges play a crucial role on the efficiency of the proposed approach. For the material

parameters 𝛼 this choice is straightforward, as their statistical properties are known
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from their specifications. However, in order to set up reasonable and functional upper

and lower bounds for the strain vectors 𝜖𝑖, even though the offline procedure is decoupled

from the macrostructure, a proper choice requires some prior information about the

macromodel’s behavior under certain conditions e.g. loading, boundaries.

A strategy is proposed here in order to pre-select the strain input ranges efficiently as

follows: An inverse hierarchical procedure is implemented starting from the macroscale

and then moving to the finer scales. A DP model is assigned as the material of the

macro-model, where the parametric vector 𝛼 of the material is chosen in a way that

would yield the most critical response, i.e. the largest displacements on any point of the

structure under the loading conditions specified by the model configuration. To achieve

that, in the examined problem all the components of 𝛼 are given their lowest values

based on the material specifications as imposed by the problem. After the solution of

the macroscale problem is completed, a pair of strain vectors is formed, namely the 𝜖𝑀𝑚𝑎𝑥
and 𝜖𝑀𝑚𝑖𝑛. Each of these strains contain respectively the maximum and minimum values

of each component of the strain vector that resulted from the analysis. Since the loading

of the following scale, i.e. the coarse mesoscale, is defined by the macroscopic strains via

the localization rule, the 𝜖𝑀𝑚𝑎𝑥 and 𝜖𝑀𝑚𝑖𝑛 vectors represent the extreme candidate loading

conditions. Therefore these vectors are used to define the maximum and minimum strain

sampling ranges for the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜 training. In a similar manner, by solving the

coarse mesoscale model with two loading cases imposed by the 𝜖𝑀𝑚𝑎𝑥 and 𝜖𝑀𝑚𝑖𝑛 we can

track the maximum and minimum strains that resulted from the corresponding analysis.

These extreme strain vectors are used to form the 𝜖𝑐𝑚𝑚𝑎𝑥 and 𝜖𝑐𝑚𝑚𝑖𝑛 respectively and can

be readily applied as the strain sampling ranges for the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 training. This

procedure is repeated one last time in order to determine the 𝜖𝑓𝑚𝑚𝑎𝑥 and 𝜖𝑓𝑚𝑚𝑎𝑥 that will

represent the strain bounds for the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 training. As there is no involvement of

any multiscale analysis during this process, the computational cost for this pre-selection

step involves minimal FE solutions at each scale, hence the additional computational

time is insignificant.

It has to be highlighted that the produced DNN from each step of the offline procedure

i.e. the training of the respective scale, represents a sub-multiscale system. The number

of scales that define this sub-multiscale system depends on all the preceding scales which

have already been used to train the previous DNNs. The optimal way to validate the

training quality of each of these intermediate DNNs is to compare them with direct

solutions of detailed sub-multiscale systems. However, for subsystems with more than 2
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scales, this is computationally intractable. Hence, a different strategy has to be employed

for the cases where a ≥ 𝐹𝐸3 analysis is required for the direct simulation. Since the

validation of the first and the second scale require 𝐹𝐸 and 𝐹𝐸2 analyses respectively,

these can be performed straightforwardly and without any further adjustments. For

validating each higher scale 𝑠 (with 𝑠 > 2) instead of solving 𝐹𝐸𝑠 systems, the already

trained 𝐷𝑁𝑁 𝑠−2 can be used as the matrix material of the 𝑠 − 1 scale. This enables

the verification of all the higher DNNs by performing 𝐹𝐸2 analyses within a reasonable

time. Obviously this approach is based on the premise that the preceding DNNs are

accurately trained and therefore extensive testing is performed to verify the accuracy of

each DNN starting from the finest scale.

The number of RVE simulations in order to collect the training data for each scale

was determined by a concise trial and error procedure. For the number of samples that

were ultimately selected, we took into account both the factors of the total computation

burden for the RVE solutions and the achieved level of accuracy of the NNs.

Microscale

The first scale to be analyzed is the microscale described by the CNT-reinforced cement

paste as presented in section 6.2.2. The bounds of the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 input parameters

are given in table 6.1, where for the strain vector these bounds were chosen based

on the aforementioned sampling strategy . For the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 training, 500 RVEs

were solved and the non-linear solution for each of them included 20 increments, thus

ultimately collecting a total of 10000 solutions. The 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 architecture was selected

after a trial-and-error process and consisted of 3 hidden layers with 20 neurons each.

The weights and biases were initialized with the Nguyen-Widrow algorithm, while the

optimization of the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 during the back-propagation was done by means of the

Levenberg–Marquardt algorithm. For the training process, the data were split in three

subsets, namely the train, test and validation subset with ratios 0.7, 0.15 and 0.15

respectively. A maximum limit of 3000 epochs were appointed. The total CPU time

required for the collection of the data and the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 training where 28.4 hours and

5.8 hours, respectively. The progression of the training and the training error histogram

of the fully trained 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 are shown in fig. 6.7.
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𝜖𝑐𝑚𝑥𝑥
[−]

𝜖𝑐𝑚𝑦𝑦
[−]

𝜖𝑐𝑚𝑧𝑧
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𝜑
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Table 6.1: Input sample ranges for the DNN of the microscale
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Figure 6.7: (a). Progression of mean squared error during the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 training (b). Training
error histogram of 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 on fully trained stage

To further assess the quality of the trained DNNs the normalized 𝐿2 norm of the

discrepancy between 50 direct numerical solutions and surrogate solutions is employed.

Specifically, the norm is computed for the differences of both the homogenized stress

vectors and the tangent modulus matrices as:

𝑒𝑟𝑟𝐶(𝑖) =

∑︀50
𝑗=1

⃦⃦⃦
𝐶

(𝑖)
𝐹𝐸𝑀,𝑗 −𝐶

(𝑖)
𝐷𝑁𝑁,𝑗

⃦⃦⃦
2∑︀50

𝑗=1

⃦⃦⃦
𝐶

(𝑖)
𝐹𝐸𝑀,𝑗

⃦⃦⃦
2

(6.14)

and
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𝑒𝑟𝑟𝜎(𝑖) =

∑︀50
𝑗=1

⃦⃦⃦
𝜎
(𝑖)
𝐹𝐸𝑀,𝑗 − 𝜎

(𝑖)
𝐷𝑁𝑁,𝑗

⃦⃦⃦
2∑︀50

𝑗=1

⃦⃦⃦
𝜎
(𝑖)
𝐹𝐸𝑀,𝑗

⃦⃦⃦
2

(6.15)

where (·)𝐷𝑁𝑁 refers to the macroscopic quantities predicted by the surrogate, (·)𝐹𝐸𝑀
to the FEM solutions of the homogenization and ‖·‖2 denotes the standard 𝐿2 norm.

The superscript (𝑖) denotes the scale, hence (𝑖) = 𝑓𝑚 in the present case. These errors

were found to be 𝑒𝑟𝑟𝐶𝑓𝑚 = 3.28% and 𝑒𝑟𝑟𝜎𝑓𝑚 = 2.16%, which demonstrated the high

accuracy achieved by the surrogate.

A comparison between the stress-strain relations for the two analyses was per-

formed next. Specifically two randomly selected loading cases were produced from

the strain space of 𝜖𝑓𝑚 that was used for the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 training. These cases are used

as tests for validating the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 predictions against the corresponding detailed

FEM analyses. Figs. 6.8a and 6.8b present the comparison of the stress-strain rela-

tion obtained with FEM and the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 surrogate for the strain vectors 𝜖𝑓𝑚1 =

[2.21,−4.99,−1.98,−3.53,−4.08,−3.14]·10−3 and 𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76]·
10−3 respectively, while also these cases were tested for three different sets of parametric

vectors 𝛼, namely 𝛼1=[𝜑 = 10∘, 𝜓 = 10∘, 𝑐0 = 0.01𝐺𝑃𝑎, 𝐻 = 1𝐺𝑃𝑎], 𝛼2=[𝜑 = 25∘,

𝜓 = 25∘, 𝑐0 = 0.03𝐺𝑃𝑎, 𝐻 = 3𝐺𝑃𝑎], 𝛼3=[𝜑 = 40∘, 𝜓 = 40∘, 𝑐0 = 0.05𝐺𝑃𝑎, 𝐻 = 5𝐺𝑃𝑎].

As can be seen from figs. 6.8a and 6.8b the curves are in good agreement for all cases.
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α₁=[φ=10, ψ=10, c₀=0.01, H=1] α₂=[φ=25, ψ=25, c₀=0.03, H=3] α₃=[φ=40, ψ=40, c₀=0.05, H=5]
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Figure 6.8: Comparison of 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 and 𝐹𝐸𝑀 produced strain-stress curves for the two
randomly sampled loading cases (a) 𝜖𝑓𝑚1 = [2.21,−4.99,−1.98,−3.53,−4.08,−3.14] · 10−3 and (b)

𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76] · 10−3.95



Fine mesoscale

Once the homogenized response of the microscale has been learned accurately by the

𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜, the transition on the following scale can be done. This scale describes the

fine mesoscale of the reinforced mortar as mentioned in section 6.2.3. Similarly to the

preceding scale, the data obtained from 500 RVE solutions, with 20 time steps each,

were used for the training of the second DNN, namely the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜. The choice

of the hyperparameters and the general architecture of the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 is identical

to the previous one. For the collection of the training data the computational cost was

25.2 hours, while for the DNN training 4.2 hours. The performance of the training and

the error histogram are illustrated in fig. 6.9. Also the 𝐿2 norm of the discrepancy

of the stresses and tangent moduli between direct 𝐹𝐸2 fine mesoscale analyses and

𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 predictions, for 50 RVE resolutions were found to be 𝑒𝑟𝑟𝐶𝑐𝑚 = 2.64%

and 𝑒𝑟𝑟𝜎𝑐𝑚 = 1.89%.
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Table 6.2: Input sample ranges for the DNN of the microscale

96



0 500 1000 1500 2000

Epoch

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

M
S

E

Train

Validation

Test

Data subset

(a) (b)

Figure 6.9: (a). Progression of mean squared error during the 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑓𝑖𝑛𝑒 training (b).
Training error histogram of 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑓𝑖𝑛𝑒 on fully trained stage

Next, the stress-strain curves of direct 𝐹𝐸2 solutions in the fine mesoscale were

compared with the predictions of the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜. These tests were performed for

the same strain vectors 𝜖𝑐𝑚1 = 𝜖𝑓𝑚1 = [2.21,−4.99,−1.98,−3.53,−4.08,−3.14] · 10−3

and 𝜖𝑐𝑚2 = 𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76] · 10−3 as in the microscale and are

shown in figs. 6.10a and 6.10b. Given the closeness of the results, we can confidently

deduce that the quality of the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 is highly satisfactory.
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Figure 6.10: Comparison of 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 and 𝐹𝐸𝑀 produced strain-stress curves for the two
randomly sampled loading cases (a) 𝜖𝑓𝑚1 = [2.21,−4.99,−1.98,−3.53,−4.08,−3.14] · 10−3 and (b)

𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76] · 10−3.98



Coarse mesoscale

Lastly, the procedure is repeated for the coarse mesoscale of reinforced concrete which is

described in section 6.2.3. The 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜, which has the same formulation with

the previously constructed DNNs, is trained with the 10000 samples acquired from the

RVE solutions, by following the same sampling strategy. Approximately 23.4 hours were

employed for the collection of the samples and 1.5 hours for the training of the DNN. The

progression of the training and the error histogram are reported in fig. 6.11. Since the

direct 𝐹𝐸𝑀 analyses in this case require 𝐹𝐸3 system solutions, these are computationally

intractable and the strategy described in section 6.2.4 is employed. To be able to perform

comparisons between direct simulations and the respective 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜 predictions

we replace the microscale with the accurately trained 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜. With this, direct 𝐹𝐸𝑀

solutions are enabled by solving 𝐹𝐸2 systems on the coarse mesoscale. By means of that,

the 𝐿2 norm of the homogenized variables between 𝐹𝐸2 analyses and 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜

predictions were estimated as 𝑒𝑟𝑟𝐶𝑀 = 2.23% and 𝑒𝑟𝑟𝜎𝑀 = 1.58%.
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𝐻

[GPa]

𝑚𝑖𝑛 -

0.0056

-

0.0171

-

0.0052

-

0.0163

-

0.0089

-

0.0153

10 10 0.01 1

𝑚𝑎𝑥 0.0113 0.0135 0.0077 0.0163 0.0089 0.0135 40 40 0.05 5

Table 6.3: Input sample ranges for the DNN of the microscale
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Figure 6.11: (a). Progression of mean squared error during the 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒 training (b).
Training error histogram of 𝐷𝑁𝑁𝑚𝑒𝑠𝑜,𝑐𝑜𝑎𝑟𝑠𝑒 on fully trained stage

The loading modes defined by the strain vectors 𝜖𝑀1 = 𝜖𝑓𝑚1 = [2.21,−4.99,−1.98,−3.53,−4.08,−3.14]·
10−3 and 𝜖𝑀2 = 𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76] · 10−3 are again utilized in

the direction of validating the performance of the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜. The comparison of

the strain-stress curves between the detailed 𝐹𝐸2 resolutions and the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜

predictions is depicted in figs. 6.12a and 6.12b. Based on these figs., the excellent

predictive capabilities of the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜 are evident.
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PARAMETRIC 
CASE

DIRECT FEM 
ANALYSIS

DNN 
PREDICTION

α₁=[φ=10, ψ=10, c₀=0.01, H=1] α₂=[φ=25, ψ=25, c₀=0.03, H=3] α₃=[φ=40, ψ=40, c₀=0.05, H=5]

(a)

(b)

Figure 6.12: Comparison of 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜 and 𝐹𝐸𝑀 produced strain-stress curves for the two
randomly sampled loading cases (a) 𝜖𝑓𝑚1 = [2.21,−4.99,−1.98,−3.53,−4.08,−3.14] · 10−3 and (b)

𝜖𝑓𝑚2 = [0.47, 4.73, 2.15, 1.98,−2.84,−4.76] · 10−3.101



6.5.2 Sensitivity analysis on the macrostructure

A sensitivity analysis, as described in section 3.4, is performed, based on the lateral

displacement at the z-direction of node A, i.e. the monitored node, whose location can

be seen in fig. 6.6. For the purpose of this analysis, a stochastic parametric variability is

introduced to the model parameters. Thus, the friction angle 𝜑, the dilation angle 𝜓,

the initial cohesion 𝑐0 and the hardening modulus 𝐻 are assumed to follow independent

normal Gaussian distributions with properties listed in table 6.4. The propagation of the

uncertainty from the parameter space to the solution is investigated by extracting the

probability density function of |𝑢𝐴𝑧 | from 48000 simulations and the results are shown in

fig. 6.13.

Subsequently, SA is performed for the calculation of the sensitivity indices. Figs. 6.14a

and 6.14b present the convergence behavior of the first order indices 𝑆 and the total

effect indices 𝑆𝑡, respectively, while fig. 6.15 illustrates both the first-order and total

indices. As can be seen in these figs., approximately 40000 simulations were necessary for

the first order sensitivity indices to converge. It is evident that for this type of analysis

a direct computational homogenization procedure would be impossible. Instead, by

utilizing the proposed surrogate model, the total analyses required for the collection of

all the samples were performed at reasonable and affordable computational times. Also,

from fig. 6.15 it is apparent that the initial cohesion 𝑐0 is the most dominant parameter,

in the sense that it has the largest impact on the investigated model. Moreover, from

the 𝑆𝑡 indices it can be concluded that the interactions between the parameters also

have a noteworthy effect on the model’s response.

N(𝜇, 𝜎) friction 𝜑

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

dilation 𝜓

(𝑑𝑒𝑔𝑟𝑒𝑒𝑠)

initial

cohesion 𝑐0

(𝐺𝑃𝑎)

hardening

modulus 𝐻

(𝐺𝑃𝑎)

𝜇 25 25 0.03 3

𝜎 5 5 0.004 0.6

Table 6.4: Probability distributions of the Drucker-Prager model uncertain parameters
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Figure 6.13: Probability Density Function of the horizontal displacement on the monitored node 𝐴.
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Figure 6.14: Convergence investigation of (a): first order indices 𝑆(𝑖) and (b): total effect indices
𝑆𝑡(𝑖)
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Figure 6.15: Sensitivity indices of the investigated parameters

To further assess the way each parameter affects the response of the model, scatter

plots were produced in fig. 6.16. These plots depict the response 𝑢𝐴𝑧 for various parameter

instances. Based on these results we can confirm that the initial cohesion has indeed a

strong correlation with the monitored response of the macrostructure. On the contrary,

for the rest of the investigated parameters, the macroscopic response is more or less

unaffected by their variability.
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Figure 6.16: Scatter Plots of the investigated parameters against the response. The cohesion has
the most notable influence in the macroscopic z-direction displacement of node A, while the friction,

dilation and hardening modulus do not impact considerably this response.

In addition to the scatter plots, a series of force-displacement curves are plotted in

fig. 6.17. Fig. 6.17a presents the evolution of the monitored response, if we assume

that the constitutive law that defines the material macroscopically is described by each

of the previously trained DNNs, namely the 𝐷𝑁𝑁𝑚𝑖𝑐𝑟𝑜, the 𝐷𝑁𝑁𝑓𝑖𝑛𝑒,𝑚𝑒𝑠𝑜 and the

𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜, corresponding to the reinforced cement paste, reinforced mortar and

reinforced concrete materials, respectively. The aim of this fig. is to provide us with

the information on how the material law progresses with the addition of each scale

and how the macromodel’s behavior is ultimately determined, for a fixed parametric

vector 𝛼. In this case this investigation was carried out for the parametric vector

𝛼2=[𝜑 = 25∘, 𝜓 = 25∘, 𝑐0 = 0.03𝐺𝑃𝑎] and it can be observed that each added scale

increases structural stiffness. Moreover, fig. 6.17b illustrates the evolution of the

displacement, with regards to different combinations of the studied parameters. Here,

this evolution was examined for the cases of the parametric vectors 𝛼1=[𝜑 = 10∘, 𝜓 = 10∘,
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𝑐0 = 0.01𝐺𝑃𝑎 (case A), 𝐻 = 1𝐺𝑃𝑎], 𝛼2=[𝜑 = 25∘, 𝜓 = 25∘, 𝑐0 = 0.03𝐺𝑃𝑎 (case B),

𝐻 = 3𝐺𝑃𝑎] and 𝛼3=[𝜑 = 40∘, 𝜓 = 40∘, 𝑐0 = 0.05𝐺𝑃𝑎, 𝐻 = 5𝐺𝑃𝑎] (case C). These

analyses were performed on the basis that the macroscopic material is the reinforced

concrete, described by the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜.
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Figure 6.17: (a) Monitored response on the macrostructure by assigning each trained DNN as the
macroscopic material. (b) Monitored response on the macrostructure for various combinations of the

investigated parameters.

6.5.3 Computational cost aspects

A rough estimation of the computational time of the direct solution can be performed

with the help of eq. (1.33). Taking into account that the number of integration points are

16356, 15932 and 12276 for the fine mesoscale, the coarse mesoscale and the macroscale

respectively, while assuming that 10 incremental steps are assigned for the solution of

each scale with each of them requiring 3 newton iterations to converge, then the total

RVE evaluations for each macroscopic material point can be estimated as:

𝐾𝑅𝑉 𝐸 ≃ 𝑘𝑀 + 𝑘𝑀 × 𝑘𝑐𝑚 + 𝑘𝑀 × 𝑘𝑐𝑚 × 𝑘𝑓𝑚

= (12276× 3× 10) + (12276× 3× 10)× (15932× 3× 10)+

+ (12276× 3× 10)× (15932× 3× 10)× (16356× 3× 10)

= 8.64 * 1016

(6.16)

The enormous amount of RVE solutions required for performing a complete analysis

of the macrostructure is evident from eq. (6.16). This amount is of several orders of
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magnitude higher if we take into account the repetitive model evaluations enforced by

the SA. In table 6.5 a comparison of the computational effort required for the direct

numerical simulation and the surrogate model is carried out. For the surrogate model, the

offline computations include the collection of the training data and the network training

for the DNNs of all scales. During the system solution, instead of solving BVPs dictated

by all the RVEs of the finer scales, minimal cost DNN computations take place. These

computations include the evaluation of the 𝐷𝑁𝑁 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑒𝑠𝑜 output and its jacobian,

in order to acquire the macroscopic stresses and tangent moduli respectively. For the

full scale model, since the solution is computationally intractable, only a prediction

of the computational time is attempted here. This was done based on the total RVE

resolutions estimated by eq. (6.16) and by taking into account the 40000 repetitive

model solutions needed for the SA convergence. Note that all the computational effort

has been documented in terms of serial programming procedures.

Computational time (hours)

Offline Online Total

DNN

sam-

pling

DNN

train-

ing

RVE

solution

DNN

calculations

𝐹𝐸4 SA

Full

scale

(Predic-

tion)

- - 0.0513 - 4.435e15 1.774e20 1.774e20

Surro-

gate

77 11.5 - 7.34e-9 0.0027 108 196.5

Table 6.5: Computational time of each stage of the solution for the full scale and the surrogate
model

As can be seen from table 6.5, carrying out the SA on the full scale model would have

taken up to 1.77𝑒20 ℎ𝑟𝑠, while the surrogate required only 196.5 ℎ𝑟𝑠, which is 18 orders

of magnitude lower. As a result, the otherwise unapproachable task of performing SA

on the four scale system, is implemented in a reasonable computational time.
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6.6 Conclusions

In this work a novel accurate and computationally efficient surrogate modelling strategy

is proposed for performing computational homogenization on nonlinear and parametrized

multiscale systems that involve more than two scales. A DNN hierarchy has been

employed as a surrogate model of the material behavior, where each DNN has been

assigned to learn the constitutive law at the respective length scale of the problem. In

contrast to the direct computational homogenization, which is inherently coupled, the

proposed approach enables the decoupling of the whole procedure and it results in a

dramatic decrease in computational cost. The proposed material modelling framework is

demonstrated on the analysis of a large-scale structure made of CNT-reinforced concrete,

where a sensitivity analysis has been performed to assess the influence of the constitutive

parameters on the macroscopic response. This otherwise unreachable problem, in terms

of computational effort, was solved in a reasonable time, by virtue of the elaborated

surrogate modelling strategy. Future extensions of this work include the application of

the proposed methodology to more complex analyses, such as post-fracture investigation

and crack propagation of concrete as well as enhancing the presented surrogate strategy

to work efficiently under non-monotonic loading paths. For the latter, several works

already exist in the literature in the direction of capturing arbitrary loading conditions of

complex path dependent materials. For that, different techniques can be utilized, such as

mechanistically informed neural networks [81] recurrent neural networks [139, 91] or the

enrichment of the neural network’s input layer with internal variables that characterize

the material’s nonlinear progression [137].
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7
Stochastic optimization of carbon

nanotube reinforced concrete for enhanced

structural performance

7.1 Introduction

In this chapter, a novel computational method is proposed for performing material

optimization towards improved structural performance. In this regard, we consider the

orientation of CNTs as the design variables to our optimization problem. This particular

parameter is shown to play a critical role in the composite’s performance [135]. Next, we

utilize an optimization method called Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [51, 49], which is derivative-free method for handling non-convex continuous

optimization problems and is suited for computationally expensive numerical models.

With this methodology we can obtain the optimal CNT orientations at every location of

the macroscale structure that will lead to a reduced overall deformation. Going one step

further, in the effort to provide a more rational and robust approach, we also take into

account the randomness in the external loading of the structure under investigation and

reformulate the problem in the context of stochastic optimization.

Stochastic structural optimization, as a procedure, entails a cumbersome computational
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effort and the task of performing it on the 𝐹𝐸3 multiscale model that is developed

to simulate the CNT-concrete structural system is very challenging. To alleviate the

immense computational burden associated with this endeavour, we employ a surrogate

modeling technique to simulate the composite material’s behavior. Specifically, the

methodology presented in the previous chapter is utilized and an appropriate sequence

of FFNNs is developed to represent the material of the 𝐹𝐸3 model. With this approach,

we achieve a drastic cost reduction per structural analysis that allows us to combat

efficiently the stochastic structural optimization problem.

The remaining of this chapter is organized as follows: In section 7.2, we present the

multiscale model for the analysis of structures made up of the reinforced concrete. Next,

in section 7.3 the surrogate modeling strategy is proposed, which will enable us to train

a highly efficient neural network to emulate the complex material’s behavior. In section

7.4 we describe the problem of stochastic material optimization and elaborate on the

numerical tools used in this work to tackle it. In section 7.5 numerical examples are

provided that demonstrate the application of the proposed methodology to structural

engineering applications.

7.2 Multiscale model and solution procedure

CNT-reinforced concrete is regarded as a 3-phase material in this work with its con-

stituents being a) CNTs, b) cement mortar, that is cement paste and fine aggregates (e.g.

sand) and c) large aggregates (e.g. gravel). This section presents the numerical models

used to describe each of the constituents, as well as the final model of the composite.

7.2.1 Carbon nanotubes

CNTs are initially modeled as space frame structural models according to the Molecular

Structural Mechanics (MSM) approach. Subsequently, these space frames are projected

to Equivalent Beam Elements, aiming at systems with manageable DOFs. A more

detailed description about the complete transition process from the molecular mechanics

to the EBE representation is given in section 2.1.
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7.2.2 Cement mortar

The cement mortar, which consists of fully hydrated cement paste and fine aggregates,

is modeled as an isotropic homogeneous material, which obeys a non-linear constitutive

relation and exhibits elastoplastic behavior. We employed a Drucker-Prager type yield

function [34] to indicate the transition from the elastic to the inelastic regime, which

has the form:

Φ(𝜎) =

√︁
(1− 𝛼)𝑐02 + 𝐽2(𝜎)

2 + 𝜂𝑝(𝜎)− 𝜉
√︁
(1− 𝛼)𝑐02 + 𝑐2 (7.1)

with 𝐽2 being the second deviatoric invariant of the stress tensor 𝜎, 𝑝 the hydrostatic

pressure, 𝑐0 the cohesion, 𝜂 and 𝜉 are constants that are usually chosen in a way to

approximate an equivalent Mohr-Coulomb yield surface, while 𝛼 is a material dependent

constant that indicates the ratio between its tension and compression strength. The

approximation constants are chosen as:

𝜂 = tan𝜑/
√
3 & 𝜉 = (3 + tan𝜑)/3

√
3 (7.2)

with 𝜑 being the friction angle.

The classical strain rate decomposition is applied:

�̇� = �̇�𝑒 + �̇�𝑝 (7.3)

with initial conditions:

𝜖(𝑡0) = 𝜖𝑒(𝑡0) + 𝜖𝑝(𝑡0), (7.4)

at a pseudotime 𝑡0, with 𝜖𝑒 and 𝜖𝑝 the elastic and plastic part of the strain tensor.

According to the plastic flow rule, the rate of the plastic strain is:

�̇�𝑝 = �̇�
𝜕Ψ

𝜕𝜎
(7.5)

where 𝜆 is the plastic multiplier and Ψ is the flow potential function. Here, non-associative

plastic flow is assumed, hence the flow potential function takes a different form than the

yield function (Φ ̸= Ψ). The potential function that was chosen here is:

Ψ(𝜎) =

√︁
(1− 𝛼)𝑐02 + 𝐽2(𝜎)

2 + 𝜂𝑝(𝜎) (7.6)
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where 𝜂 has a similar meaning with the approximation constants of Φ and is given by:

𝜂 = tan𝜓/
√
3 (7.7)

with 𝜓 being the dilatancy angle.

The evolution of the hardening function 𝑐(𝜖𝑝) is defined by an isotropic linear softening

model and the rate of the equivalent plastic strain is given by:

�̇�𝑝 = �̇� (7.8)

In the above equations the Kuhn-Tucker conditions have to hold:

Φ ≤ 0, �̇� ≥ 0, Φ�̇� = 0 (7.9)

The mechanical properties and Druger-Prager model parameters considered in this

work are given in table 7.1.

Mortar

Young’s modulus 20𝐺𝑃𝑎
Poisson ratio 0.2
𝛼 (eq. (7.1)) 0.1
𝑐0 (eq. (7.1)) 0.05

Table 7.1: Mechanical properties of mortar

7.2.3 CNT-reinforced mortar

For practical applications, we are interested in generating a representative volume element

(RVE) of the reinforced mortar that will allow us to study the material’s behavior. This

RVE will consist of the mortar matrix and a specified number of EBEs, added as

inclusions to the matrix, so as to achieve a specific volume or weight fraction. The

contribution of each EBE to the overall stiffness is taken into account using the embedded

FE technique of equation presented in section 2.2. The addition of these elements is

usually done with a random positioning generator and figure 7.1 illustrates a RVE of the

microstructure for 0.5% weight fraction. The geometrical and mechanical properties of

the CNTs considered in this work are given in table 7.2.
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CNT

Young’s modulus 1.051𝑇𝑃𝑎

Poisson ratio 0.35

length 100𝑛𝑚

diameter 1.063𝑛𝑚

Table 7.2: Geometrical and mechanical properties of CNTs

Figure 7.1: A RVE of the CNT reinforced mortar at the microscale. Its dimensions are
0.5 𝜇𝑚× 0.5 𝜇𝑚× 0.5 𝜇𝑚

7.2.4 CNT-reinforced concrete

CNT-reinforced concrete is studied at the mesoscale, represented by a computational

model of a two-phase composite consisting of the reinforced mortar matrix along with

coarse aggregates. The aggregates are considered to be linear elastic, while the nonlinear

behavior of the composite originates from its microstructure. For the coarse aggregates,

the following distribution is considered according to standard AB16 [133].
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Cement Matrix Fine Aggregates Coarse Aggregates

Size [mm] - 0.063 0.125 0.25 0.5 1 2 2.8 4 5.6 8 11.2 16

Vol. fraction [%] 29.26 1.50 1.62 1.76 1.76 3.63 12.17 5.063 5.15 6.74 16.61 2.90 11.83

Total [%] 29.26 22.44 48.30

Total [%] 29.26 70.74

Table 7.3: Concrete compositions according to standard AB16

Knowing the composition of the coarse aggregates in the matrix, we can generate

a mesoscale RVE using a random geometry generator, as shown in figure 7.2. The

Young’s Modulus and Poisson ratio of the aggregates are taken to be 60 GPa and 0.22,

respectively.

Figure 7.2: A RVE of the CNT reinforced concrete at the mesoscale. Its dimensions are
150 𝑚𝑚× 150 𝑚𝑚× 150 𝑚𝑚

This section presents the numerical framework employed in order to investigate the

behavior of structures at the macroscale, which are made up of the composite. Since

the proposed material modeling approach involves separate model descriptions at the

microscale and mesoscale, an interaction between them is required in order to pass

information from one scale to the other. The interaction among scales is realised through

(successive) homogenisation and localisation procedures [88, 38].

7.2.5 𝐹𝐸3 solution scheme

Having fully established the connections between the micro-, the meso- and the macroscale,

a variation of the semi-concurrent 𝐹𝐸2 algorithm [35], termed 𝐹𝐸3 herein, is used for the
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online transition between the three scales during the solution of the macroscopic compos-

ite system. According to this algorithm, for each load increment of the macrostructure,

the macroscopic strain 𝜖𝑀 is calculated on every integration point of each finite element,

where it is assumed that a mesoscale RVE exists. The next step it to convert the

mesoscopic strain at each integration point of the mesoscale RVE to a displacement field

on a microscale RVE through a further localisation. Then, performing homogenisation

on the microscale RVE will return the mesoscale stresses 𝜎𝑚 and tangent moduli 𝐶
𝑚

at

all integration points of the mesoscale RVE. Lastly, the homogenization scheme is applied

again at the mesoscale RVE, from which the macroscopic stress 𝜎𝑀 and tangent modulus

𝐶
𝑀

are acquired for each integration point. With these, the macroscopic internal force

vector 𝐹
𝑀
𝑖𝑛𝑡(𝜎

𝑀 ) and tangential stiffness matrix 𝐾
𝑀
(𝐶

𝑀
) can be calculated. This

procedure is repeated until the internal force vector is equivalent to the external one,

namely 𝐹
𝑀
𝑒𝑥. However, the nested nature of this scheme further implies that for each

macroscopic iteration an additional set of mesoscopic iterations are required so that

𝐹
𝑚
𝑖𝑛𝑡(𝜎

𝑚) = 𝐹
𝑚
𝑒𝑥. The interaction of the three scales during the solution of the algorithm

is illustrated in fig. 7.3.

Figure 7.3: Transition between scales during the 𝐹𝐸3 solution algorithm

The advantage of this approach is the fact that we can model the composite material

at multiple resolutions and take into account the physical mechanisms at each scale

in a decoupled manner. This gives tremendous expressive capabilities to the proposed

material modeling paradigm, however, the number of RVE evaluations needed, even for

small problems in the macroscale, renders this approach computationally intractable.

This issue will be remedied using a dedicated surrogate modeling technique, which is the

focus of the next section.
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7.3 Surrogate model of the 𝐹𝐸3 scheme

A neural network-based surrogate model is implemented in order to mitigate the computa-

tional cost of 𝐹𝐸3 analysis and allow the macroscale problem to be solved at a reasonable

time. The aim is to use deep neural networks (DNN) to discover the parametrized

non-linear homogenized response of the RVEs on each scale. Ultimately, this will enable

us to effectively substitute both the micro- and the mesoscale RVE, with a single DNN

that captures the mesoscale’s behavior. The steps to construct this surrogate are as

follows:

Step 1: Surrogate of the microscale RVE

Starting from the microscale, a set of input and output variables need to be defined,

upon which the DNN will be trained in order to learn the nonlinear constitutive law

of the microscale RVE. The equations that describe the micro-to-meso homogenization

procedure as presented in section 1.3 relate the strain vector 𝜖𝑚 of the mesoscale with

the respective stress vector 𝜎𝑚 after a solution of a boundary value problem on the

microscale. We can further assume that the solution of that system is also affected by

a vector 𝜃𝜇, containing microscale parameters. In this regard, the input neurons of

the DNN can be represented by a vector that contains both the strain vector 𝜖𝑚 and

the parameters 𝜃𝜇, thus assuming the form [𝜖𝑚,𝜃𝜇]. Additionally, the output neurons

produce the stress vector 𝜎𝑚 for a given input vector.

To incorporate DNNs in the context of newton type iterative solutions, the output

of the tangent modulus is also required by the DNN. In problems where the purpose

of the surrogate is the simulation of a constitutive law, a great flexibility is provided

by DNNs though the Automatic Differentiation (AD) technique [5]. AD allows for a

straightforward computation of the tangent constitutive matrix 𝐶
𝑚

at a certain strain

state 𝜖𝑚, using the chain rule to effortlessly compute the derivatives of the output 𝜎𝑚

with respect to the input 𝜖𝑚. Thus, the elements 𝑐𝑚𝑖𝑗 of the mesoscopic tangent matrix

𝐶
𝑚

= [𝑐𝑚𝑖𝑗 ] can be obtained as

𝑐𝑚𝑖𝑗 =
𝜕𝜎𝑚𝑖𝑗
𝜕ℎ𝑘

𝜕ℎ𝑘
𝜕ℎ𝑘−1

· · · 𝜕ℎ1
𝜕𝜖𝑚𝑖𝑗

(7.10)

where ℎ𝑘 is the output at the 𝑘𝑡ℎ hidden layer of the DNN for input 𝜖𝑖𝑗 .

For the training of the DNN, a series of microscale RVEs are solved for various strain
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combinations and parameter 𝜃𝜇 realisations, leading to a training data set consisting

of pairs {[𝜖𝑚𝑖 ,𝜃
𝜇
𝑖 ] − 𝜎𝑚𝑖 }

𝑁𝑚
𝑡𝑟

𝑖=1 , with 𝑁
𝑚
𝑡𝑟 being the number of training samples used for

training the microscale’s surrogate. Figures 7.4 and 7.5 illustrate the training procedure

of the elaborated surrogate and its function, respectively.

Figure 7.4: Training of the microscale DNN surrogate

Figure 7.5: Replacement of the microscale RVE with its DNN surrogate

Step 2: Surrogate of the mesoscale RVE

From the previous step, we have established a ’cheap-to-evaluate’ function that gives

us the nonlinear constitutive law of the material at the microscale. Based on this, it is

now possible to solve multiple mesoscale RVEs at a reasonable time, that will allow us

to train the mesoscale DNN surrogate. Similarly to the procedure in Step 1, various

strain combinations and parameter 𝜃𝑚 realisations are generated, where in this case
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the parameters 𝜃𝑚 refer the mesoscale RVE. Solving the mesoscale RVE for each of

these combinations, we can construct the training data set {[𝜖𝑀𝑖 ,𝜃𝑚𝑖 ,𝜃
𝜇
𝑖 ] − 𝜎𝑀𝑖 }

𝑁𝑀
𝑡𝑟

𝑖=1 ,

with 𝑁𝑀
𝑡𝑟 being the number of training samples used. It is instrumental to include in

the training process of the mesoscale surrogate, the microscale parameters 𝜃𝜇, defined

in the previous step, since with this approach we can indeed take into account the

composite material’s behavior at multiple scales. The training process of the surrogate

is schematically depicted in fig. 7.6. Furthermore, figure 7.7 demonstrates how the

surrogate can be used to replace the both the meso- and microscale RVE and return the

homogenised stress and tangent modulus at each integration point of the macroscale

problem at negligible cost.

Figure 7.6: Training of the mesoscale DNN surrogate

Figure 7.7: Replacement of the mesoscale RVE with its DNN surrogate

General remarks
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� The problems studied herein assume small deformations and consider materials

with isotropic behavior on every scale, thus the tensors 𝜖𝑚, 𝜖𝑀 and 𝜎𝑚,𝜎𝑀 are

symmetric and can be outlined with six independent variables, while the sizes of

𝜃𝜇,𝜃𝑚 may vary on each scale, according to the individual choices.

� An important factor to the accuracy of the surrogate is the sampling technique

used for generating the set of input training vectors. Sampling with simple Monte

Carlo methods can be inefficient as it might fail to give representative results in

high dimensional spaces with low samples. A more efficient alternative would be to

draw samples from the space spanned by the DNN input vector using space-filling

algorithms or variance reduction techniques. In this work, the input samples are

obtained using the Latin Hypercube Sampling (LHS) algorithm [87].

� Lastly, attention must be paid on the range of the sampling in order for the DNN

to be able to predict the full response of a system during every possible solution

and at same time avoid over-training for extreme values with infinitesimal chance

to be reproduced in the online solution, thus unnecessarily increasing the offline

computational time.

7.4 Stochastic material optimization

7.4.1 Problem setting

Owing to the computational machinery developed in the previous sections, we are now

able to optimize our material based on the performance of structures constituted by

CNT-reinforced concrete. Let U be the mathematical model of the structural system

under investigation. Since in most cases of practical interest the mathematical model

cannot be derived analytically, the most common approach is to substitute it with a

numerical model 𝑈 , typically obtained by the FE method. In this regard, 𝑈 ∈ R𝑑 is a

𝑑-dimensional vector corresponding to the 𝑑 dofs of the FE discretization. Further, if the

structure is subjected to random loading conditions, expressed through the 𝑟-dimensional

random vector 𝑞, with 𝑟 being the number of random variables, then 𝑈 := 𝑈(𝑞). In

addition, the structural response is affected by the material at the microscale, whose

properties we chose to parametrize in this work according to the CNT orientation,

𝜃 := 𝜃𝜇 = (𝜃𝑝, 𝜃𝑎) with 𝜃𝑝 ∈ [0 𝜋] the polar angle and 𝜃𝑎 ∈ [0 2𝜋) the azimuthal, as

shown in figure 7.8. Therefore, we can express our final numerical model as 𝑈 := 𝑈(𝑞,𝜃).
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Figure 7.8: Polar angle 𝜃𝑝 and azimuthal 𝜃𝑎, characterising the CNT’s orientation in 3d space

To establish a basis of reference, we initially consider the absence of CNTs in the

cement mortar. This is because we want to assess how conventional concrete behaves

compared to the CNT-reinforced one. Therefore, we generate a large number, 𝑁𝑟𝑒𝑓 , of

realizations 𝑞1, ..., 𝑞𝑁𝑟𝑒𝑓 and perform the corresponding model simulations 𝑈 𝑖
𝑟𝑒𝑓 = 𝑈(𝑞)

for 𝑖 = 1, ..., 𝑁𝑟𝑒𝑓 . Subsequently, we calculate the mean and standard deviation from

this statistical sample as:

E[𝑈𝑟𝑒𝑓 ] =
1

𝑁𝑟𝑒𝑓

𝑁𝑟𝑒𝑓∑︁
𝑖=1

𝑈𝑖 (7.11)

𝑆𝑡𝑑[𝑈𝑟𝑒𝑓 ] =

⎯⎸⎸⎷𝑁𝑟𝑒𝑓∑︁
𝑖=1

(𝑈𝑖 − E[𝑈𝑟𝑒𝑓 ])⊙ (𝑈𝑖 − E[𝑈𝑟𝑒𝑓 ])
𝑁𝑟𝑒𝑓 − 1

(7.12)

where ⊙ denotes the Hadamard product (elementwise multiplication). We compute the

structure’s mean total deformation, M, and standard deviation, S, by the 𝐿2-norm of

the above vectors, that is,

M= ‖E[𝑈𝑟𝑒𝑓 ]‖2 (7.13)

S= ‖[𝑆𝑡𝑑[𝑈𝑟𝑒𝑓 ]‖2 (7.14)

The stochastic optimization problem is then defined as: For a given a weight fraction
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of CNTs in the mortar, find the values of the design vector 𝜃 = (𝜃𝑝, 𝜃𝑎) that minimize the

weighted sum of the mean and standard deviation of the total deformation, normalized

by the respective reference values given by eqs. (7.13) and (7.14). This statement can

be mathematically expressed as:

𝜃⋆ = (𝜃⋆𝑝, 𝜃
⋆
𝑎) = argmin

𝜃𝑝∈[0 𝜋],𝜃𝑎∈[0 2𝜋]
𝑤1

E[𝑈 ]

𝑀
+ 𝑤2

𝑆𝑡𝑑[𝑈 ]

𝑆

= argmin
𝜃𝑝∈[0 𝜋],𝜃𝑎∈[0 2𝜋]

L(𝜃) (7.15)

with L(𝜃) = 𝑤1
E[𝑈 ]
𝑀 + 𝑤2

𝑆𝑡𝑑[𝑈 ]
𝑆 denoting the loss function. Also, the weight factors

𝑤1, 𝑤2 in eq. (7.15) are chosen as 0.6 and 0.4, respectively, so as to put more emphasis

on the minimization of the mean value.

It is straightforward to extend the presented formulation to include separate CNT

orientation for each structural member or specific regions of the structure. Evidently,

the resulting structural designs after the optimization process will not be realisable

with current manufacturing capabilities. Nevertheless, performing stochastic material

optimisation based on structural performance can be regarded as one of the most

challenging problems in computational mechanics and, hopefully, the outcomes of this

investigation will indicate if material optimization is a research direction worth pursuing

in the effort to design stronger and safer structures.

To solve the minimization problem posed in eq. (7.15) we will employ the Covariance

Matrix Adaptation Evolution Strategy (CMA-ES)[50]. The algorithmic procedure of

CMA-ES is given in section 3.5. In the problems studied in this work, the sample points

{𝑥𝑖}𝜆𝑖=1 in the CMA-ES algorithm refer to the design variables {𝜃𝑖}𝜆𝑖=1 and the objective

function 𝑓 is replaced by L of eq. (7.15). However, the application of the CMA-ES

algorithm for minimizing L requires some modifications, since each evaluation of L

involves the estimation of the mean and standard deviation of the structural responses

due to the random loading conditions. This is achieved by performing 𝑁𝑀𝐶 Monte Carlo

simulations for various loading conditions {𝑞𝑗}𝑁𝑀𝐶
𝑗=1 at each evaluation L(𝜃𝑖). Therefore,

the number of FE analyses required to solve the stochastic optimization problem becomes

𝜆×𝑁𝑀𝐶 ×𝑁𝑔𝑒𝑛, with 𝑁𝑀𝐶 and 𝜆 chosen to be 1000 and 300, respectively, while 𝑁𝑔𝑒𝑛

is the number of generations required for the algorithm to converge. Evidently, this

problem would be computationally unattainable without the surrogate modeling strategy

121



put forth in section 7.3.

7.5 Numerical applications

In this section, we investigate two numerical examples to demonstrate the applicability of

the proposed methodology to structural problems and assess the improvement achieved

in structural performance.

7.5.1 Test case 1: 3d beam fixed at both ends

The first test case involves an illustrative example of a 3d beam, fixed at both ends,

which is subdivided into two smaller beams, 𝐴 and 𝐵, that meet in the middle. The

beam is made up of CNT-reinforced concrete with 0.5% weight fraction of CNTs. The

structure is subjected to a uniform load 𝑞 as shown in fig. 7.9, which follows a truncated

Gaussian distribution with mean 10𝑀𝑁/𝑚2, standard deviation 2𝑀𝑁/𝑚2 and its values

are restricted within the interval [2, 18] (𝑀𝑁/𝑚2). Further, we assume that the CNTs

on each of the two beams can have different orientations, therefore, the vector of design

variables for this problems becomes 𝜃 =
(︀
𝜃𝐴𝑎 , 𝜃

𝐴
𝑝 , 𝜃

𝐵
𝑎 , 𝜃

𝐵
𝑝

)︀
. The beam is discretized into

48 hexahedral elements, leading to 297 (free) dofs and 384 integration points.

Figure 7.9: 3d beam, fixed at both ends

The first step to apply the algorithmic framework developed in the previous sections,

is to establish the DNN surrogate for the microscale RVE. The input variables and

their ranges are shown in table 7.4. The DNN’s architecture consists of 2 hidden

layers with 40 nodes each using the hyperbolic tangent activation function and the

Levenberg-Marquardt optimization algorithm [83]. For the training, 5000 initial training
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samples (500 realizations of [(𝜖𝑚, 𝜃𝑝, 𝜃𝑎)] × 10 increments each for the nonlinear solution

algorithm) were used. The data were split in three subsets, namely the train,test and

validation subset with ratios 0.7,0.15 and 0.15, respectively. The progression of the

training is shown in fig. 7.10a, which required approximately 800 epochs to reach

acceptable levels of accuracy. The training of the mesoscale DNN is performed following

the same procedure as the microscale DNN, with its training progression given in fig.

7.10b.

𝜖11 𝜖22 𝜖33 𝜖12 𝜖13 𝜖23 𝜃𝑝 𝜃𝑎

𝑚𝑖𝑛 -0.04 -0.04 -0.04 -0.04 -0.04 -0.04 0 0

𝑚𝑎𝑥 0.04 0.04 0.04 0.04 0.04 0.04 𝜋 2𝜋

Table 7.4: Input sample ranges for training the microscale DNN surrogate
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(b) Progression of the mesoscale DNN training
process

The optimal values of the design variables are obtained after applying the (100,300)-

CMA-ES algorithm. These are presented in table 7.5, while figure 7.11 provides a

schematic illustration of them. The reduction of the loss function L as a function of

the objective function evaluations is shown in fig. 7.12,from which we observe that the

loss function converges after 341×𝐷 objective function evaluations, where 𝐷 = 4 is the

number of design variables in this example, to the value of L= 0.81. Lastly, we repeat

this procedure from the beginning five more times in order to investigate the effect that

different CNT contents in the mortar have on the structural performance. The results for
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𝑤𝑡% = 0.25−1.50 are displayed in figure 7.13. Additionally, the corresponding results that

we could obtain by adding randomly oriented CNTs (without any preferred orientation,

or alignment) are also included in this figure for the purposes of comparison. Upon

inspection of this figure it becomes evident that CNTs are highly promising candidates

for the development of high-performance concrete. Moreover, perfectly aligned CNTs

that are optimally oriented with respect to the structure’s loading conditions can give a

significant additional improvement in mitigating structural deformations.

Beam A Beam B

𝜃𝑝 (𝑑𝑒𝑔) 90.47∘ 89.51∘

𝜃𝑎 (𝑑𝑒𝑔) 0.02∘ 0.01∘

Table 7.5: Optimal angles of CNTs in each structural member

Figure 7.11: Schematic depiction of optimal CNT angles
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Figure 7.12: Optimization algorithm convergence of the loss function L vs objective function
evaluations for CNT weight fraction equal to 0.5%
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Figure 7.13: Comparison in the minimization of the loss L for randomly oriented CNTs and CNTs
aligned with the chosen orientation, as a function of the CNT weight fraction in the mortar

7.5.2 Test case: 3d frame

For our our second test case we examine the 3d frame of fig. 7.14. This structure

is subjected to a random lateral load 𝑞1, which follows a truncated Gaussian distri-

bution with mean 2𝑀𝑁/𝑚2, standard deviation 0.15𝑀𝑁/𝑚2, restricted within the

interval [1, 3] (𝑀𝑁/𝑚2), and a vertical load 𝑞2 that also follows a truncated Gaussian

with mean 5𝑀𝑁/𝑚2, standard deviation 0.25𝑀𝑁/𝑚2, restricted within the interval

[2, 8] (𝑀𝑁/𝑚2). The frame is subdivided into the three structural members, columns

A,C and beam B, with each member having its separate CNT orientation. As a result,
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the stochastic optimization problem in this example involves 𝐷 = 6 design variables

𝜃 = (𝜃𝐴𝑝 , 𝜃
𝐴
𝑎 , 𝜃

𝐵
𝑝 , 𝜃

𝐵
𝑎 , 𝜃

𝐶
𝑝 , 𝜃

𝐶
𝑎 ). Regarding the computational mesh, the structure is discre-

tised into 260 hexahedral finite elements, resulting in 2080 integration points.

Figure 7.14: 3d frame

In this example, we also assume that the CNT content in the mortar is 0.5%. This

enables us to use the already trained mesoscale DNN of the previous example. With

this tool available, we proceed with finding the optimal CNT orientation angles of each

structural member. These results are collectively presented in table 7.6 and a schematic

depiction is provided in fig. 7.15. The minimization of the loss function with respect to

the number of function evaluations is displayed in fig. 7.16, which converges ultimately

to the value of 0.755 after 503×𝐷 evaluations. Finally, we repeat the process for various

CNT contents in the RVE of the microstructure to assess the structural performance

improvement. The results of this investigation are depicted in fig. 7.17, where also a

comparison with respect to the case of randomly aligned CNT is included. An interesting

conclusion is drawn after juxtaposing figs. 7.15 and 7.17 with the corresponding figs.

7.11 and 7.13 of example 1. Specifically, it can be observed that in the second example

we attained better improvement in structural performance by selecting the appropriate

CNT orientation angles. This leads us to speculate that in more complex problems, with
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more structural members involved, even better results can be expected.

Column A Beam B Column C

𝜃𝑝 (𝑑𝑒𝑔) 1.03∘ 89.20∘ 0.72∘

𝜃𝑎 (𝑑𝑒𝑔) 0.01∘ 0.01∘ 0.02∘

Table 7.6: Optimal angles of CNTs in each structural member

Figure 7.15: Optimal angles of CNTs in each structural member
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Figure 7.16: Optimization algorithm convergence of the loss function L vs objective function
evaluations for CNT weight fraction equal to 0.5%
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Figure 7.17: Comparison in the minimization of the loss L for randomly oriented CNTs and CNTs
aligned with the chosen orientation, as a function of the CNT weight fraction in the mortar

7.6 Conclusions

In this work a novel numerical framework has been developed for the analysis of structures

made up of CNT-reinforced structures. In particular, a two-level hierarchical material

model has been proposed based on continuum micromechanics to characterize CNT-

reinforced concrete. An extension of the FE2 method, called FE3 has been employed

to assess structural performance, where the excessive computational demands of the

method are effectively bypassed by using a neural network based surrogate as a substitute

for the composite material. With this implementation, we perform stochastic material

optimization, aiming to find the optimal CNT orientation at different members of the

macroscale structural systems that minimize the sum of the mean and standard deviation

of the overall structural deformation. The results of this investigation indicate that the

reinforcement of concrete with CNTs can lead to significant enhancement in structural

performance. In addition, the extension of the current manufacturing capabilities to

the design of structural members with appropriately aligned and oriented CNTs can

revolutionise structural design, leading to stronger, safer and more elegant structures.

The elaborated methodology is demonstrated on structural problems, nevertheless it can

be applied in a straightforward manner to other problems of engineering interest such as

heat transfer and electrical conduction.
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8
An efficient hierarchical Bayesian

framework for multiscale material

modeling

8.1 Introduction

The present chapter proposes an innovative method for determining material properties

within multiscale material systems through a range of experimental scenarios. The

presented framework holds the promise of merging data acquired from experiments

conducted on materials of different compositions and encompassing measurements taken

at various length scales, allowing the systematic integration of multiple experimental

data sources into a unified computational framework. To achieve this, we utilize the Tran-

sitional Markov Chain Monte Carlo (TMCMC) method to sample from the marginalized

posterior distributions of both multiscale model parameters and hierarchical hyperpa-

rameters. These hyperparameters are subsequently employed to derive informed physical

parameters, which can be used for future model predictions. Crucially, feedforward

neural networks (FFNNs) play a key role in reducing the computational complexity of

implementing hierarchical Bayesian analysis on top of nonlinear computational homoge-

nization. Their primary aim is to learn and accurately predict the nonlinear constitutive
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law across various scales. To evaluate the efficacy of the proposed approach, a study is

carried out on the parameters that define the interfacial mechanical behavior of carbon

nanotubes (CNTs) in CNT-reinforced cementitious material configurations. For this

task, we collected data from conventional experiments conducted on diverse material con-

figurations defined at multiple length scales, each associated and characterized through

a 𝐹𝐸2 based hierarchical multiscale computational model.

The rest of this chapter is structured as follows: Section 8.2 presents the general

problem of multiscale material parameter identification tackled in this study and details

the proposed hierarchical Bayesian framework. Section 8.3 revisits the theoretical

background of computational homogenization and the application of neural networks

toward the mitigation of its computational cost. Section 8.4 demonstrates an illustrative

example for the calibration of the interfacial mechanical properties in CNT-reinforced

cementitious materials. Lastly, Section 8.5 summarizes the key points and results of this

work and discusses possible extensions to the proposed strategy.

8.2 Bayesian inference on multiscale material systems.

8.2.1 Problem definition

Consider a set of data 𝐷 = [𝐷1, ...,𝐷𝐾 ], with 𝐷𝑖 = [𝑑𝑖,1, ..., 𝑑𝑖,𝑁𝑖 ], that encompasses

measurements (i.e. mechanical responses) obtained from a number of 𝐾 independently

performed experiments. Each 𝑖-th experiment is defined on a domain Ω𝑖 and described

by a particular combination of boundary conditions 𝜕Ω𝑖 and material composition.

In the context of material analysis, these experimental scenarios can be simulated by

the respective multiscale computational models M1, ...,M𝐾 that are used to predict

structural responses 𝑚1, ...,𝑚𝐾 in line with the experimental datasets. Each model M𝑖

is characterized by a unique material formulation, for instance with a different number

of length scales, a dissimilar composition in all or a subset of the length scales, etc.

Consequently, the parameterization of these models is done through a distinct set 𝜃𝑖, as

𝜃𝑖 = [𝜃𝑖1, ...,𝜃
𝑖
𝑆𝑖
], which includes a series of physical, topological or constitutive attributes

for each length scale 𝑠 = 1, ..., 𝑆𝑖 of the respective system. In many cases, a subset of

these parameters 𝑐𝜃𝑖 ⊆ 𝜃𝑖, with 𝑐𝜃𝑖 = [𝑐𝜃𝑖1, ...,
𝑐𝜃𝑖𝑆𝑖 ], is present in all the investigated

multiscale material models, meaning that 𝜃1 ∩ ... ∩ 𝜃𝐾 ≡ 𝑐𝜃1 ≡ ... ≡ 𝑐𝜃𝐾 ≡ 𝑐𝜃.

In the present study, the focus is on the investigation of these common characteristics
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𝑐𝜃 by properly incorporating the knowledge from all the 𝐾 experimental instances.

Towards this goal, we propose a hierarchical Bayesian framework tailored to tackle

this intricate task. As a graphical representation of the overall problem at hand and

without loss of generality, fig. 8.1 depicts a three-model scenario where common material

parameters are to be investigated. The hierarchical Bayesian strategy, complemented by

the hyperparameters 𝜓, enables the identification of new physical parameters 𝑐𝜃𝑛𝑒𝑤 in a

reliable manner. In turn, 𝑐𝜃𝑛𝑒𝑤 can facilitate informed predictions 𝑦𝑛𝑒𝑤 on unobserved

multiscale material systems. It is important to emphasize that the data sources have the

potential to encompass a wide range of experiments conducted across various length scales.

These experiments, for example, may include macroscale displacement measurements,

mesoscale topology characterization through Scanning Electron Microscope (SEM) images

[107], or microscale strain field extraction using the Digital Image Correlation (DIG)

technique [86]. Since we are only concerned with the inference of the common parameters
𝑐𝜃, for the sake of brevity, these will be plainly denoted as parameters 𝜃 for the remainder

of the chapter.
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Figure 8.1: Parameter identification of the common properties 𝑐𝜃 found in a series of diverse
experimental cases such as a model M1 of a bending test on reinforced beam made of a composite
material, a model M2 of a digital image of a composite material’s microstructure and a model M3 of

a rod specimen of the composite.
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8.2.2 Overview of the hierarchical Bayesian framework

In this study we explore the integration of data from diverse independent sources

with focus on parameter identification in multiscale material model analysis. Such

cases can occur, for example, from experiments that took place in non-communicating

laboratories, experiments from a single laboratory but for varying material compositions,

environmental conditions etc. It has been showcased from a series of previous works,

mainly in the field of structural dynamics, that in such cases the single-level Bayes

underestimates the total variability [117, 63]. That is because it tends to only represent

the “parameter estimation uncertainty” and is unable to account for the external

variability amongst the datasets. This variability denotes the aleatoric uncertainty that

cannot be explicitly quantified within the problem formulation due to lack of knowledge

regarding the experiment specific conditions [7]. Taking these findings into consideration

we opt for a hierarchical Bayesian approach for the formulation of the proposed strategy.

Several techniques have been proposed in the literature for the solution of eq. (3.19).

The most straightforward way is to directly sample from the joint distribution of eq.

(3.19) [93]. Despite this being a reliable approach, the high dimensionality of the

parameter space leads to enormous computational costs and cannot be effectively applied

in realistic scenarios. An alternative is to decouple the process for the solution of eq.

(3.19), by sequentially sampling from the marginalized posterior distributions of the

physical parameters and the hierarchical hyperparameters respectively [140].

Here we will implement the latter approach of the sequential sampling. In cases where

many data points are available, to alleviate the computational demands, in [117], it was

assumed that the form of the posterior is close to that of a Gaussian and analytical

expressions through Laplace’s approximation where derived. In this work we deal with

sparse data and potentially strong nonlinear phenomena that could unpredictably alter

the form of the target distributions. Therefore, to acquire the precise expression of

the posterior PDFs we opt for the utilization of the Transitional Markov Chain Monte

Carlo (TMCMC) [18] for drawing samples from both marginal distributions [140, 101].

A different technique will be used for the reduction of the computational cost and this

will be presented in the following section.

The first step is to sample from the marginal posterior distribution of the model

hyperparameters, which is postulated as:
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𝑃 (𝜓|𝐷) =

∫︁
Ω𝜃

𝑃 (𝐷|𝜃)𝑃 (𝜃|𝜓)𝑑𝜃 𝑃 (𝜓)
𝑃 (𝐷)

=

𝐾∏︁
𝑖=1

[︂ ∫︁
Ω𝜃𝑖

𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)𝑑𝜃𝑖

]︂
𝑃 (𝜓)

𝑃 (𝐷)

(8.1)

where in the above equation we have used the fact that the likelihood function 𝑃 (𝐷|𝜓)
assumes the form:

𝑃 (𝐷|𝜓) =
𝐾∏︁
𝑖=1

[︂ ∫︁
Ω𝜃𝑖

𝑁𝑖∏︁
𝑗=1

[︀
𝑃 (𝑑𝑖,𝑗 |𝜃𝑖)

]︀
𝑃 (𝜃𝑖|𝜓)𝑑𝜃𝑖

]︂
(8.2)

The integral of eq. (8.1) can be approximated via Monte Carlo sampling:

𝑃 (𝜓|𝐷) ≃
𝐾∏︁
𝑖=1

[︂
1

𝑁𝜃𝑖

𝑁𝜃𝑖∑︁
𝑘=1

𝑃 (𝜃𝑖𝑘|𝜓)
]︂
𝑃 (𝜓)

𝑃 (𝐷)
(8.3)

To perform this integration, samples from each likelihood 𝑃 (𝐷𝑖|𝜃𝑖) associated with

the model 𝑀 𝑖, have to first be collected. This is achieved efficiently by employing the

TMCMC algorithm [18] (see section 3.2). When TMCMC is used as a sampler for a

posterior PDF, the initial step is to gather an amount of samples from the prior PDF.

Since in our case we want to sample directly from 𝑃 (𝐷𝑖|𝜃𝑖) an easy way to replicate the

standard algorithmic procedure of TMCMC is to assume auxiliary uniform prior PDFs

𝑃 (𝜃𝑖) for the initial sampling from each likelihood. To avoid introducing any bias in

the process, the lower limit 𝑢𝑙 and upper limit 𝑢𝑢 of the priors U𝜃𝑖(𝑢𝑙, 𝑢𝑢) should be

selected broad enough to cover the sample space of each 𝜃𝑖 postulated by 𝑃 (𝐷𝑖|𝜃𝑖).
The marginal distribution of the updated multiscale model parameters 𝜃𝑛𝑒𝑤 that take

into account all datasets and can be applied in future predictions is expressed as:

𝑃 (𝜃𝑛𝑒𝑤|𝐷) =

∫︁
Ω𝜓

𝑃 (𝜃𝑛𝑒𝑤|𝜓)𝑃 (𝜓|𝐷)𝑑𝜓 (8.4)

The approximate solution of eq. (8.4) is done by generating an amount of samples for

𝜓 through the empirical distribution of 𝑃 (𝜓|𝐷) obtained from eq. (8.3), as follows:

𝑃 (𝜃𝑛𝑒𝑤|𝐷) ≃
𝑁𝜓∑︁
𝑘=1

𝑃 (𝜃𝑛𝑒𝑤|𝜓𝑘) (8.5)
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For the production of samples from eq. (8.4), the TMCMC algorithm is again used,

where in this case the initial sampling is performed on the hyperparameter prior 𝑃 (𝜓).

On the contrary to sampling from 𝑃 (𝐷𝑖|𝜃𝑖), eq. (8.5) represents a cheap-to-evaluate

procedure, since no multiscale model resolutions are needed.

The assumption of globally identifiable parameters in the form of 𝜃𝑛𝑒𝑤 is valid when

the hyperparameters 𝜓 can account for the model variations across different datasets,

thus rendering the principle of total probability valid [117]. Since the material models

that involve common characteristics are similar by nature, this assumption can be

confidently made in the present context. After the posterior probabilistic form of 𝜃𝑛𝑒𝑤

has been obtained following the hierarchical Bayesian scheme, these parameters can then

be used towards any uncertainty propagation analysis on future simulations 𝑌 𝑛𝑒𝑤 as

shown in fig. 8.2. These tests could be conducted on unseen material systems that are

partially described by the inferred parameters. The quantity of interest (e.g. a structural

response) 𝑦𝑛𝑒𝑤 is calculated as:

𝑃 (𝑦𝑛𝑒𝑤|𝐷) =

∫︁
Ω𝜃𝑛𝑒𝑤

𝑃 (𝑦𝑛𝑒𝑤|𝜃𝑛𝑒𝑤)𝑃 (𝜃𝑛𝑒𝑤|𝐷)𝑑𝜃𝑛𝑒𝑤 (8.6)
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Figure 8.2: Directed Acyclic Graph (DAG) of the general hierarchical problem
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Input :Parameterized multiscale material models 𝑀 𝑖(𝜃𝑖), prior distributions

𝑃 (𝜓) and 𝑃 (𝜃𝑖). Total samples 𝑁𝜃𝑖 and TMCMC input parameters 𝑘𝑖

and 𝛽𝑖. Total samples 𝑁𝜓 and TMCMC input parameters 𝑘𝑛𝑒𝑤 and

𝛽𝑛𝑒𝑤

Output : parameter updated distribution 𝑃 (𝜃𝑛𝑒𝑤|𝐷), quantity of interest

updated distribution 𝑃 (𝑦𝑛𝑒𝑤|𝐷)

for 𝑖← 1 to 𝐾 do

Generate from 𝑃 (𝐷𝑖|𝜃𝑖) samples

{𝜃𝑖}
1:𝑁𝜃𝑖

← 𝑇𝑀𝐶𝑀𝐶(𝑃 (𝜃𝑖), 𝑃 (𝐷𝑖|𝜃𝑖), 𝑁 𝑖, 𝑘𝑖, 𝛽𝑖);

Store samples {𝜃𝑖}
1:𝑁𝜃𝑖

and likelihood function data 𝑃 (𝐷𝑖|{𝜃𝑖}
1:𝑁𝜃𝑖

)

end

Estimate 𝑃 (𝜓|𝐷);

Generate from 𝑃 (𝜓|𝐷) samples

{𝜓𝑖}1:𝑁𝜓 ← 𝑇𝑀𝐶𝑀𝐶(𝑃 (𝜓), 𝑃 (𝐷|𝜓), 𝑁𝜓, 𝑘𝜓, 𝛽𝜓);

Estimate 𝑃 (𝜃𝑛𝑒𝑤|𝐷);

Propagate posterior uncertainty 𝑃 (𝑦𝑛𝑒𝑤|𝐷);

Algorithm 3: Algorithm for hierarchical Bayesian inference and uncertainty

propagation of heterogeneous multiscale material models

The proposed strategy is invariant to the technique that will be used for performing

the multiscale material analysis. For instance, approaches such as rule of mixtures [132]

or mean field homogenization [89] could be applied. Here we opt for a computational

homogenization procedure to bridge the scales of the system, since it can provide the

most accurate results in material cases with a notable non-linear behavior [145].

8.3 Efficient computational homogenization at multiple scales

through neural network approximations

The key concept is to employ feed forward neural networks (FFNNs) towards the

replacement of the costly RVE solutions that are repeatedly required during the 𝐹𝐸𝑁

analysis. This is accomplished by assigning the FFNNs to learn the stain-stress relation

imposed by the homogenization equation for each scale. For each multiscale model 𝑀 𝑖

this relation is expressed per scale 𝑗 as:
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𝜎𝑗+1(𝑡) = 𝑓𝑁𝑁,𝑖𝑗

(︀
𝜖𝑗+1(𝑡),𝜃

𝑖
𝑗

)︀
(8.7)

where 𝜃𝑖𝑗 contains all the static parameters from the finest scale up to the 𝑗 scale and the

superscript 𝑖 corresponds to the model M𝑖. The expression in eq. (8.7) describes a plain

strain-stress relation without the need to take into account the strain history or other

internal variables. In this study, the knowledge of eq. (8.7) by the FFNNs is sufficient,

since the database of experimental results includes solely monotonic loading scenarios.

As a result, there will be a one-to-one correspondence for the strain-stress pairs and for

that reason no further information in the form of internal variables is required.

Starting from the finest scale, namely the scale 1, a number 𝑛 of RVE solutions for

different cases of strain vector 𝜖2 and parameter vector 𝜃𝑖1 tuples are performed. By re-

taining the converged states of all the solutions, a total amount of {{𝜖2}1:𝑡, {𝜎2}1:𝑡,𝜃𝑖1}1:𝑛
of parametrized strain/stress pairs is ultimately collected, where 𝑡 is the number of the

increments of each solution. After choosing the architecture of the candidate neural

network 𝑓𝑁𝑁1 , the components {{𝜖2}1:𝑡,𝜃𝑖1}1:𝑛 and {{𝜎2}1:𝑡}1:𝑛 are then used for the

training as the input and output data respectively. The newly developed 𝑓𝑁𝑁1 can be

considered as a computationally cheap phenomenological relation determined by a series

of non-physical parameters i.e. the optimized weights and biases of the network. It can

be readily applied as the material law of the scale 2 towards the development of the

next FFNN, namely the 𝑓𝑁𝑁2 . Following the same concept as in the first scale, a dataset

{{𝜖3}1:𝑡, {𝜎3}1:𝑡,𝜃𝑖2}1:𝑛 is obtained through a series of solutions of the 𝑅𝑉 𝐸 representing

the scale 2. The consistent constitutive matrix of the material represented by 𝑓𝑁𝑁,𝑖1 can

be effortlessly retrieved through Automatic Differentiation [5]. By sequentially applying

the aforementioned procedure for each pair of scales until the macroscale, FFNNs that

emulate the material law of each scale are ultimately retrieved. Additionally, all produced

FFNNs inherit the knowledge of how the constitutive relation is affected by a number

of parameters that characterize the finer structure. Therefore, they can be effectively

utilized in the hierarchical Bayesian framework of multiscale material systems presented

in section 8.2.2. By that, each likelihood function 𝑃 (𝐷𝑖|𝜃𝑖) is replaced by an inexpensive

to calculate counterpart which we will denote as 𝑃𝑁𝑁,𝑖(𝐷𝑖|𝜃𝑖).
Further details and implementation aspects for the development of the FFNN sequence

can be found in chapter 6. The algorithmic procedure presented in alg. 4 constitutes

the specialized version of the general algorithm 3, when surrogate models are employed
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for the replacement of the finer scales of each multiscale model 𝑀 𝑖.

Input :Total training samples 𝑛, total increments 𝑡 and FFNN hyperparameters.

Parameterized multiscale material models 𝑀 𝑖(𝜃𝑖), prior distributions

𝑃 (𝜓) and 𝑃 (𝜃𝑖). Total samples 𝑁𝜃𝑖 and TMCMC parameters 𝑘𝑖 and

𝛽𝑖. Total samples 𝑁𝜓 and TMCMC parameters 𝑘𝑛𝑒𝑤 and 𝛽𝑛𝑒𝑤.

Output : parameter updated distribution 𝑃 (𝜃𝑛𝑒𝑤|𝐷), quantity of interest

updated distribution 𝑃 (𝑦𝑛𝑒𝑤|𝐷)

Offline Stage:

for 𝑖← 1 to 𝐾 do

for 𝑗 ← 1 to 𝑆𝑖 do

Generate and store training samples {{𝜖𝑗+1}1:𝑡,𝜃𝑖𝑗}1:𝑛;
Solve the BVP of scale 𝑗;

Store solution stresses {{𝜎𝑗+1}1:𝑡}1:𝑛;
Train the FFNN 𝑓𝑁𝑁,𝑖𝑗 ;

Store FFNN 𝑓𝑁𝑁,𝑖𝑗 ;

end

end

Online Stage:

for 𝑖← 1 to 𝐾 do

Generate from 𝑃𝑁𝑁,𝑖(𝐷𝑖|𝜃𝑖) samples

{𝜃𝑖}
1:𝑁𝜃𝑖

← 𝑇𝑀𝐶𝑀𝐶(𝑝(𝜃𝑖), 𝑃𝑁𝑁,𝑖(𝐷𝑖|𝜃𝑖), 𝑁 𝑖, 𝑘𝑖, 𝛽𝑖);

Store samples {𝜃𝑖}
1:𝑁𝜃𝑖

and likelihood function data 𝑃𝑁𝑁,𝑖(𝐷𝑖|{𝜃𝑖}
1:𝑁𝜃𝑖

)

end

Estimate 𝑃 (𝜓|𝐷);

Generate from 𝑃 (𝜓|𝐷) samples

{𝜓}1:𝑁𝜓 ← 𝑇𝑀𝐶𝑀𝐶(𝑃 (𝜓), 𝑃 (𝐷|𝜓), 𝑁𝜓, 𝑘𝜓, 𝛽𝜓);

Estimate 𝑃 (𝜃𝑛𝑒𝑤|𝐷);

Propagate posterior uncertainty 𝑃 (𝑦𝑛𝑒𝑤|𝐷);

Algorithm 4: Algorithm of the proposed methodology for hierarchical

Bayesian inference and uncertainty propagation of heterogeneous multiscale

material models using surrogate modeling
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8.4 Numerical application

8.4.1 Overview of experimental layouts and the respective multi-

scale material models

As a means to illustrate the presented framework, the interfacial mechanical properties

of CNTs in cementitious material configurations has been explored. To perform the

calibration of the investigated material parameters, the results from thee separate tests

were obtained from the literature. These include a 3-point bending test of a CNT-

reinforced cement specimen [147], a tension test performed on CNT-reinforced mortar

rods [61] and a 4-point bending experiment on a CNT-reinforced concrete beam [94].

Next, the details for each experimental case will be presented along with the multiscale

model that reproduces the material’s scales as well as the overall structural and material

behavior.

CNT-reinforced cement paste experimental setup and multiscale

model

The first dataset was obtained from a 3-point bending test on a fully hydrated (28 days)

cement paste coupon enhanced with a 0.3% weight fraction of CNTs. The testing beam

specimen had dimensions 160𝑚𝑚 × 40𝑚𝑚 × 40𝑚𝑚, while for its support two rollers,

100𝑚𝑚 apart, were used. A single gradual point load was applied on the center of the

upper part via a third roller. The diameter of the CNTs varied between 10𝑛𝑚 and

20𝑛𝑚 and their length between 10𝜇𝑚 and 20𝜇𝑚. The experimental setting and the

measurements that relate the flexural strain with the respective stress based on the

experimental findings are depicted in fig. 8.3. To integrate the CNTs into the FE analysis

the Molecular Structural Mechanics (MSM) technique [75] was used for their simulation.

Following the MSM method, the covalent bonds that are developed between the carbon

atoms are reproduced by structural space frame elements with tailored mechanical

properties to replicate the effect of the force field constants of the carbon-carbon bonds

[75]. To reach the desired weight fraction, a significant amount of CNTs need to be

inserted into the RVE. To this purpose the high degree-of-freedom (DOF) space frame

CNT molecular models were projected into Equivalent Beam Elements (EBE) [100]

by mapping several structural responses of the space frame to equivalent mechanical

properties of the EBE. Subsequently, a series of EBEs were positioned randomly inside
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the volume of the RVE until the weight fraction requirement is achieved. A visual

representation of the CNT/cement paste RVE and the macroscopic model are given

in fig. 8.4. The Drucker-Prager (DP) plasticity material law [27] was used for the

modelling of the constitutive behavior of the cement paste matrix. The CNTs were

assumed to have an elastic behavior, while their interaction with the surrounding cement

paste was modeled through a bond-slip bi-linear constitutive law. As shown in fig.

8.5 this interfacial law is constituted of three parameters, namely the interfacial shear

strength 𝜏𝑦,1𝑖𝑛𝑡 , the elastic stiffness 𝑘𝑒𝑙,1𝑖𝑛𝑡 before the slippage and the inelastic stiffness

𝑘𝑝𝑙,1𝑖𝑛𝑡 after the slippage. Therefore, the parametric vector 𝜃1 comprises these three

microscale parameters 𝜃1 =
[︀
𝜏𝑦,1𝑖𝑛𝑡 , 𝑘

𝑒𝑙,1
𝑖𝑛𝑡 , 𝑘

𝑝𝑙,1
𝑖𝑛𝑡

]︀
. In the context of the finite element analysis,

to integrate the CNTs in the composite material system the cohesive zone method [4]

was used in combination with an embedding technique. A more detailed description of

the finite element formulation of the CNT/matrix interaction is given in 2.3.

(a) Experimental setup [147]
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(b) Flexural strain-stress data [147]

Figure 8.3: CNT-reinforced cement specimen
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CEMENT SCALE

εM θ 1,

σM

Figure 8.4: CNT-reinforced cement multiscale model

Figure 8.5: Constitutive law that defines the interaction between the CNTs and the matrix material

CNT-reinforced mortar experimental setup and multiscale model

The second experimental data source is a tension test conducted on a cylindrical rod

made of mortar with a 0.5% weight fraction of CNTs inserted as fillers. The specifications

of the rod coupon were 500𝑚𝑚 for the length and 30𝑚𝑚 for the diameter. The rod was

fixed at the end, while at the other one a gradually increasing tension load was applied.

In this laboratory study the CNTs had diameters between 10𝑛𝑚 and 30𝑛𝑚, while

the length fluctuated between 1𝜇𝑚 and 2𝜇𝑚 Characteristic specimens and the tensile

strain-stress dataset for the multi-walled CNT enhanced mortar bar are provided in fig.

8.6. The finest length scale of the material, which is the cement paste reinforced with

the CNTs was formed according to the previously presented model of the cement scale
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as shown in fig. 8.7. For constructing the model of the mortal scale a mesoscale RVE

was developed, which includes the sand particles inclusions that construe the mortar,

an additional length scale was added. These aggregates were modeled as spherical

inclusions with varying diameters. To replicate as realistically as possible the diameter

distribution of the inclusions a Fuller grading curve, as explained in [138], was enforced.

The minimum diameter of the candidate spheres were taken as 𝑑𝑚𝑖𝑛 = 0.1𝑚𝑚, while

the maximum diameter as 𝑑𝑚𝑎𝑥 = 2𝑚𝑚. Their positional placement was again done

randomly with a special caution that non-overlapping conditions between the inclusions

are satisfied. Perfectly elastic conditions were assigned on the inclusions. The two-

scale material configuration that characterize the macroscopic behavior and the FE

macromodel used to replicate the test are illustrated in fig. 8.7. Likewise to the previous

CNT-reinforced cement material model, the material constitutive behavior is affected by

the parameters that specify the CNT/matrix interfacial behavior in fig. 8.5. According

to the hierarchical Bayesian scheme presented in section 3.3, these parameters assume a

separate formulation for model M2 as 𝜃2 =
[︀
𝜏𝑦,2𝑖𝑛𝑡 , 𝑘

𝑒𝑙,2
𝑖𝑛𝑡 , 𝑘

𝑝𝑙,2
𝑖𝑛𝑡

]︀
.

(a) Experimental setup [61]
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(b) Tensile strain-stress data [61]

Figure 8.6: CNT-reinforced mortar specimen
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Figure 8.7: CNT-reinforced mortar multiscale model

CNT-reinforced concrete experimental setup and multiscale model

The third dataset comes from a 4-point bending test on a concrete beam reinforced with

steel rebar and further strengthened with CNTs of 1% weight fraction. The length of the

beam was 2100𝑚𝑚 and the cross-section 150𝑚𝑚× 250𝑚𝑚, while supports were used,

2000𝑚 apart, at its lower part. The CNTs had diameters of 3− 15𝑛𝑚 and lengths of

15− 330𝜇𝑚. For the flexural test, two gradual point loads were applied on the upper

part of the beam. The specifications of this experiment and the corresponding flexural

displacement-load observations are presented in fig. 8.8. In this scenario the material

is represented by a cement, mortal and concrete three-scale model as shown in fig. 8.9

linked hierarchically to the macroscopic FE model of the beam. The first two scales were

formulated in accordance with the procedure described in sections 8.4.1 and 8.4.1, while

the final scale models the coarse aggregates at the mesoscale of the concrete specimen.

For this simulation a Fuller grading curve was once more applied for the generation of

inclusions of various sizes inside the RVE. The minimum and maximum diameters in

this case are 𝑑𝑚𝑖𝑛 = 2𝑚𝑚 and 𝑑𝑚𝑎𝑥 = 20𝑚𝑚 respectively. The coarse aggregates were

assumed to behave linearly elastic. Again, following the hierarchical Bayesian concept,

the parametric vector of the constitutive law 8.5 that describes the interaction between

the CNTs and the matrix in this model M3 is explicitly defined as 𝜃3 =
[︀
𝜏𝑦,3𝑖𝑛𝑡 , 𝑘

𝑒𝑙,3
𝑖𝑛𝑡 , 𝑘

𝑝𝑙,3
𝑖𝑛𝑡

]︀
.
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(a) Experimental setup[94]
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(b) Flexural Displacement-Load data
[94]

Figure 8.8: CNT-reinforced concrete specimen

CEMENT SCALE MORTAR SCALE CONCRETE SCALE

ε2 θ 1,

σ2
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σ3
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(a)

(b)

Figure 8.9: (a) CNT-reinforced concrete multiscale model (b) geometric configuration of concrete
beam with rebar and stirrup reinforcement
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8.4.2 Numerical Results

In what follows, the results from the procedure outlined in algorithm 4 will be presented.

These include the offline stage of the FFNN sequence development for each multiscale

model described in section 8.3 and the online stage of performing the hierarchical

Bayesian analysis.

Surrogate model training

The material of the first model presented in fig. 8.4 is defined through the single scale of

the CNT/cement paste mixture. Therefore, according to the strategy summarized in

section 8.3 only one FFNN - 𝑓𝑁𝑁,11 is sufficient for the reproduction of the macroscopic

constitutive response. To acquire the dataset needed for the training of 𝑓𝑁𝑁,11 , 1000

unique parametrized strain sequences with 20 incremental steps each were generated.

To avoid unrealistic strain cases and parameter values, lower and upper bounds were set

for the sampling as presented in table 8.1. After the solution of the 1000 microstructure

BVPs of the RVE model of the microscale, the data pairs {{𝜖𝑀}1:20,𝜃11}1:1000 and

{{𝜎𝑀}1:20}1:1000 were used as input and output pairs for the training and testing of

𝑓𝑁𝑁,11 . The Adam optimizer [66] with a learning rate of 𝜂 = 0.001 and a batch size of 128

was chosen for the calibration of the 𝑓𝑁𝑁,11 parameters. The Mean Squared Error (MSE)

among the directly simulated stresses {{𝜎𝑀}1:20}1:1000 and the respective predicted

stresses from 𝑓𝑁𝑁,11 was used as the loss metric. To ensure a more reliable training, a

Min-Max normalization was applied to both the input and output data. Regarding the

𝑓𝑁𝑁,11 architecture, 3 hidden dense layers with 30 neurons and a hyperbolic tangent

activation function for each one were selected. To prevent excessive computational

times, a limit of 2000 epochs was set for the training. For the training process, the

data were split in three subsets, namely the train, test and validation subset with ratios

70%, 15% and 15% respectively. The training curves and the predictions provided in

fig. 8.10 demonstrate great performance. The training progress tracks the MSE loss for

each optimization iteration (epoch), while the prediction accuracy was calculated by

employing the L2 norm of each stress component in the test dataset and comparing it to

the prediction of the 𝑓𝑁𝑁,11 .
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Bounds 𝜖11
[−]

𝜖12
[−]

𝜖22
[−]

𝑘𝑒𝑙𝑖𝑛𝑡
[GPa/nm]

𝑘𝑝𝑙𝑖𝑛𝑡
[GPa/nm]

𝜏 𝑦𝑖𝑛𝑡
[GPa]

Lower -0.03 -0.03 -0.03 0 0 0
Upper 0.03 0.03 0.03 30 3 0.3

Table 8.1: Input sample ranges for the FFNN training
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Figure 8.10: FFNN training results for the CNT-reinforced cement specimen - Cement scale

The second model of the CNT/mortar rod specimen is represented by the two-scale

material model of fig. 8.7. The training process was repeated again for this material model

starting from the microscale. In this scenario, the differences in the material properties,

compared to the first model described in sec. 8.4.1, necessitate the training to start

from the formulation of the FFNN - 𝑓𝑁𝑁,21 which learns the CNT/cement homogenized

behavior. The next step is the development of the FFNN - 𝑓𝑁𝑁,22 which gives the total

macroscopic behavior. A set of data pairs {{𝜖2}1:20,𝜃21}1:1000 and {{𝜎2}1:20}1:1000 were

initially obtained by 1000 CNT/cement RVE solutions. These were then used for the

training and testing of 𝑓𝑁𝑁,21 , which was subsequently used as the matrix material

of the CNT/mortar scale. The next step was to gather data {{𝜖𝑀}1:20,𝜃22}1:1000 and

{{𝜎𝑀}1:20}1:1000 via 1000 solutions of the CNT/mortar RVE and then used them to

train and test 𝑓𝑁𝑁,22 . For both 𝑓𝑁𝑁,21 and 𝑓𝑁𝑁,22 the same choices as the previous

model were made regarding the FFNN architecture, the preprocessing and the training

hyperparameters. The high accuracy of both FFNNs is captured in figs. 8.11 and 8.12,

where the progression of the MSE metric during the training and the quality of the

145



predictions are visualised, respectively.
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Figure 8.11: FFNN training results for the CNT-reinforced mortar specimen - Cement scale
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Figure 8.12: FFNN training results for the CNT-reinforced mortar specimen - Mortar scale

For the final model of the CNT/concrete beam specimen in fig. 8.9, a sequence of

three FFNNs, namely the 𝑓𝑁𝑁,31 , the 𝑓𝑁𝑁,32 and the 𝑓𝑁𝑁,33 were constructed. Following

the same concept as in the previous models, we started from the finest scale which is

the CNT/cement scale by solving the BVP imposed by the homogenization equation

for 1000 different strain sequence/parameter cases {{𝜖2}1:20,𝜃31}1:1000 and retrieving the

respective stress outputs {{𝜎2}1:20}1:1000. With these data we were able to train and test

the first FFNN - 𝑓𝑁𝑁,31 which was then used towards the realization of the CNT/mortar
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data i.e. {{𝜖3}1:20,𝜃32}1:1000 and {{𝜎3}1:20}1:1000. After training and testing the second

FFNN - 𝑓𝑁𝑁,32 through the utilization of the CNT/mortar dataset, the last step was to

generate the CNT/concrete data pairs {{𝜖𝑀}1:20,𝜃33}1:1000 and {{𝜎𝑀}1:20}1:1000 and use

them to train and test the third FFNN - 𝑓𝑁𝑁,33 . All the choices regarding the formulation

and training aspects of the FFNNs were made likewise to the two previous models. The

results concerning the training process and the prediction accuracy based on the stress

L2 norms which are given in figs. 8.13, 8.14 and 8.15 for the three scales respectively,

demonstrate once more the high quality of the FFNN predictions.
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Figure 8.13: FFNN training results for the CNT-reinforced concrete specimen - Cement scale
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Figure 8.14: FFNN training results for the CNT-reinforced concrete specimen - Mortar scale
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Figure 8.15: FFNN training results for the CNT-reinforced concrete specimen - Concrete scale

Parameter identification of the CNT-cement paste interfacial prop-

erties

After the parametrized constitutive response of the three investigated models has been

learned by the FFNN surrogates, we are ready to move to the online procedure of

the proposed hierarchical Bayesian strategy as presented in algorithm 4. The data via

which the investigated parameters will be updated were obtained from the figs. 8.3b,

8.6b and 8.8b for the three models respectively. From each of the three curves, five

equally spaced points were retrieved and used towards the uncertainty quantification.

The initial step was to perform an independent TMCMC sampling from the likelihood

function 𝑃 (𝐷𝑖|𝜃𝑖) of each model M𝑖, 𝑖 = 1, 2, 3. Since the solution process at this stage

is decoupled, the posterior sampling for all models was enforced in a computationally

parallel manner. This is an important feature as it partially counters the drawback of the

MCMC algorithms which are serial by default and enables the option to employ a high

number of models in the hierarchical Bayesian framework. As explained in section 3.3, to

sample from each 𝑃 (𝐷𝑖|𝜃𝑖), first the prior distributions 𝑃 (𝜃𝑖) need to be defined. These

were chosen as uniform distributions with their upper and lower bounds selected based

on the parameter training bounds of the FFNNs. Therefore, for each model the priors

were defined as 𝑃 (𝑘𝑒𝑙,𝑖𝑖𝑛𝑡 ) ∼ U(0, 30), 𝑃 (𝑘𝑝𝑙,𝑖𝑖𝑛𝑡 ) ∼ U(0, 3) and 𝑃 (𝑡𝑦,𝑖𝑖𝑛𝑡) ∼ U(0, 0.3). For the

error terms in eq. 3.18, the standard deviation was calculated based on a coefficient of

variation of 0.02. For the hyperparameters of the TMCMC algorithm, we followed the

suggested values by the authors [18] i.e. 𝑘𝑖 = 1.0 and 𝛽𝑖 = 0.2, while the number of the
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samples was chosen as 𝑁 𝑖 = 10000. The posterior form of each 𝜃𝑖 is illustrated in figs.

8.16, 8.17 and 8.18.

Figure 8.16: Results of the Bayesian analysis on the CNT/cement interfacial parameters of model
M1. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle
- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each

parameter pair
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Figure 8.17: Results of the Bayesian analysis on the CNT/mortar interfacial parameters of model
M2. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle
- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each

parameter pair
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Figure 8.18: Results of the Bayesian analysis on the CNT/concrete interfacial parameters of model
M3. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle
- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each

parameter pair

After all the necessary samples {𝜃𝑖}
1:𝑁𝜃𝑖 have been collected, the next step is to

formulate the hyperparameter posterior PDF as postulated in eq. (8.3). Again, following

the process of algorithm 4 we used the TMCMC to sample from the empirical distribution

𝑃 (𝜓|𝐷). The selection of the hyperparameter priors 𝑃 (𝜓) and the parameter priors

𝑃 (𝜃𝑖|𝜓) is given in table 8.2. At this stage, the TMCMC ran for 𝑁𝜓=50000 samples

and the hyperparameters were again appointed as 𝑘𝑛𝑒𝑤 = 1.0 and 𝛽𝑛𝑒𝑤 = 0.2. The

hyperparameter posterior PDFs are given in fig. 8.19. The last step of algorithm 4 is to

construct the probabilistic form of the new parameters 𝜃𝑛𝑒𝑤 by utilizing the posterior

samples {𝜓}1:𝑁𝜓 . Since each sample in {𝜓}1:𝑁𝜓 defines a uniform distribution with

certain bounds, a discrete mixture distribution could be formed by considering all these

uniform PDFs 𝑃 (𝜃𝑛𝑒𝑤|{𝜓}1:𝑁𝜓). By doing so, eq. (8.5) is expressed as:

𝑃 (𝜃𝑛𝑒𝑤|𝐷) =

𝑁𝜓∑︁
𝑖=1

𝑤𝑖U({𝜓1}𝑖, {𝜓1}𝑖 + {𝜓2}𝑖) , 𝑤𝑖𝑡ℎ 𝑤𝑖 =
1

𝑁𝜓
, 𝑖 = 1, ..., 𝑁𝜓 (8.8)
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Sampling from such an empirical mixture PDF was straightforward. The resulting

distributions 𝑃 (𝜃𝑛𝑒𝑤|𝐷) are presented in fig. 8.20.

Hyperparameter 𝜓1
𝑘𝑒𝑙𝑖𝑛𝑡

𝜓2
𝑘𝑒𝑙𝑖𝑛𝑡

𝜓1

𝑘𝑝𝑙𝑖𝑛𝑡
𝜓2

𝑘𝑝𝑙𝑖𝑛𝑡
𝜓1
𝜏𝑦𝑖𝑛𝑡

𝜓2
𝜏𝑦𝑖𝑛𝑡

Prior PDF U(0, 20) U(0, 10) U(0, 2) U(0, 1) U(0, 0.2) U(0, 0.1)

Parameter (i=1,2,3) 𝑘𝑒𝑙,𝑖𝑖𝑛𝑡 𝑘𝑝𝑙,𝑖𝑖𝑛𝑡 𝜏 𝑦,𝑖𝑖𝑛𝑡
Prior PDF U(𝜓1

𝑘𝑒𝑙𝑖𝑛𝑡
, 𝜓1

𝑘𝑒𝑙𝑖𝑛𝑡
+ 𝜓2

𝑘𝑒𝑙𝑖𝑛𝑡
) U(𝜓1

𝑘𝑝𝑙𝑖𝑛𝑡
, 𝜓1

𝑘𝑝𝑙𝑖𝑛𝑡
+ 𝜓2

𝑘𝑝𝑙𝑖𝑛𝑡
) U(𝜓1

𝜏𝑦𝑖𝑛𝑡
, 𝜓1

𝜏𝑦𝑖𝑛𝑡
+ 𝜓2

𝜏𝑦𝑖𝑛𝑡
)

Table 8.2: Prior distributions of the hyperparameters and the parameters of the tackled hierarchical
Bayesian problem

Figure 8.19: Results of the hierarchical Bayesian analysis on the hyperparameters. Diagonal -
Marginal probability density functions of the hyperparameters. Upper triangle - Scatter plots for each
hyperparameter pair. Lower triangle - Joint probability density functions for each hyperparameter pair
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Figure 8.20: Results the of hierarchical Bayesian analysis on the newly formulated CNT/matrix
interfacial parameters. Diagonal - Marginal probability density functions of the new parameters.

Upper triangle - Scatter plots for each new parameter pair. Lower triangle - Joint probability density
functions for each new parameter pair

Finally, we performed an uncertainty propagation analysis on how the informed

parameters 𝜃𝑛𝑒𝑤 = [𝑘𝑒𝑙,𝑛𝑒𝑤𝑖𝑛𝑡 , 𝑘𝑝𝑙,𝑛𝑒𝑤𝑖𝑛𝑡 , 𝑡𝑦,𝑛𝑒𝑤𝑖𝑛𝑡 ] impact the mechanical behavior of the

respective material for each model M𝑖, 𝑤 𝑖 = 1, 2, 3. For that, we investigated the

influence of the CNT/matrix cohesive properties 𝜃𝑛𝑒𝑤 on the macroscopic elastic stiffness

matrix 𝐶𝑖
𝑀 . Essentially, we aim for the solution of the problem postulated by eq. (8.6),

where the quantity of interest 𝑦𝑛𝑒𝑤 is the stiffness increase due the CNT reinforcement

by considering the parameters 𝜃𝑛𝑒𝑤. A standard Monte Carlo analysis was conducted

on the full material composition of each model, which is described by the single scale

model of fig. 8.4 for the CNT/cement specimen, the two-scale model of fig. 8.7 for

the CNT/mortar specimen and the three-scale model of fig. 8.9 for the CNT/concrete

specimen. The objective is to find the distributions for the axial and shear components

of the stiffness tensor. To ensure that the plasticity conditions are not met, we applied a

relatively small strain value and subsequently solved the homogenization problem. The

inexpensive emulators in the form of the FFNNs enabled us to perform these analyses

in negligible computational time since the homogenized strain-stress relation can be

instantly extracted from each FFNN, while the constitutive matrix can then be easily
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obtained using Automatic Differentiation. The material in all cases is isotropic due the

random orientation of the CNTs, therefore both the axial and shear stiffness is identical

in all directions. The components (𝐶/𝐶0)𝑎𝑥𝑖𝑎𝑙 and (𝐶/𝐶0)𝑠ℎ𝑒𝑎𝑟 of the elasticity tensor,

where 𝐶0 is the respective stiffness value of the plain material, are presented in fig. 8.21.

On average, the stiffness ratio for both axial and shear components is higher in model

M1, while the lowest ratio is observed in model M3. The results are consistent with

the expected outcome, since compared to the cement model M1 the addition of fine

aggregates in model M2 and fine and coarse aggregates in model M2 leads to stiffer

materials and reduces the impact of the CNT reinforcement on that aspect.

(a) Cement material of M1 (b) Mortar material of M2

(c) Concrete material of M3

Figure 8.21: Posterior distribution of the stiffness improvement due to the CNT reinforcement in
the axial and shear components for each material model by considering the informed PDF

𝑃 (𝜃𝑛𝑒𝑤|𝐷) of the interfacial parameters.

154



8.5 Conclusions

A hierarchical Bayesian strategy has been put forth in this work towards parameter

identification of multiscale material systems. The suggested framework has the potential

to integrate data that have been obtained from experiments performed on specimens

with dissimilar material composition and incorporate measurements that take place in

various length scales. To account for inherent model uncertainties due to environmental,

operational and material discrepancies across the tests, the physical parameters were

assigned to have a distinct definition for each dataset. This enabled a joint inference,

where we utilized the posterior form of the hyperparameters to construct a new prob-

abilistic representation of the physical parameters for future model predictions. To

acquire precise forms of the posterior distributions from both the hyperparameters and

the physical parameters, we employed the TMCMC method. To facilitate multiscale

analyses, we opted for a computational homogenization approach due to its reliability,

particularly in complex materials. The immerse computational demands were tackled

through the employment of FFNNs that were tasked with predicting the constitutive

response across multiple scales.

This study delved into the interfacial mechanical properties of CNTs within cementi-

tious material configurations. Our approach involves calibrating the parameters that

define a bond-slip cohesive law, utilizing experimental measurements from the literature.

These experiments were conducted on different material compositions, specifically a

CNT-reinforced cement paste specimen, a CNT-reinforced mortar coupon, and a CNT-

reinforced concrete large-scale test. The initial step of our computational procedure

focused on training surrogate models for each scale. These models were trained using

a series of strain-stress responses derived from offline RVE solutions. The exceptional

predictive accuracy achieved during the training phase enabled us to conduct the hierar-

chical Bayesian analysis in a cost-effective manner without compromising the precision

of the results. The analysis yielded the posterior distributions of the studied interfacial

parameters, which were then used for the investigation of the mechanical behavior of

the three CNT-reinforced materials.

The computational framework put forth herein can be straightforwardly applied

towards parameter inference to other multiscale material models and enables the efficient

study of multiphysics problems such as the joint investigation of mechanical, thermal

and electrical material attributes. The proposed strategy can also be generalized to
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problems where data are derived from measurements across various length scales such as,

for example, measurements recorded at the microscale and/or the mesoscale using the

Digital Image Correlation technique. These directions remain in the scope of a future

work.
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9
Summary

This thesis presented cost-efficient and accurate computational frameworks for con-

temporary composite material design, characterization and discovery. The exceptional

predictive capabilities of nested computational homogenization schemes were harnessed

herein. Surrogate modeling strategies based on machine learning were utilized to dramati-

cally reduce the prohibitive computational requirements of nested schemes on multi-query

analyses. Based on this, a series of methodologies were proposed for forward and inverse

uncertainty quantification problems in material engineering. Although, all the introduced

methodologies were presented through the lens of a specific nanocomposite material,

namely CNT-reinforced composites, they can be straightforwardly generalized to other

composite materials.

9.1 Innovation of thesis

First, a methodology for updating the beliefs of the uncertain parameters that lie in

the microscale of nanocomposite systems was proposed. In particular, the Bayesian

framework by means of the MCMC technique was employed on top of 𝐹𝐸2 analyses to

learn the parameters of the CNT/polymer interface. The elaborated methodology utilized

measurements from the macroscale structure to update the prior beliefs on the nonlinear

parameters, rather than expensive and hard-to-obtain microscale measurements. In
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addition, to tackle the immense computational effort of performing Bayesian update on

this type of problem, a neural network surrogate was developed in order to replace the

nonlinear relation of the homogenization scheme. This surrogate model displayed a high

level of accuracy compared to the full scale system solution as well as a remarkable cost

reduction. This allowed to perform BU on complex large-scale problems, which would

otherwise be unfeasible. The proposed methodology was demonstrated on mechanical

problems, where the uncertain parameters were successfully updated in a reasonable

computational time.

Furthermore, a novel accurate and computationally efficient surrogate modeling

strategy was proposed, in this thesis, for performing computational homogenization

on nonlinear and parametrized multiscale systems that involve more than two length

scales. A DNN hierarchy was employed as a surrogate model of the material behavior,

where each DNN was assigned to learn the constitutive law at the respective scale of the

problem. In contrast to the direct computational homogenization, which is inherently

coupled, the proposed approach enables the decoupling of the whole procedure and it

results in a dramatic decrease in computational cost. The proposed material modeling

framework was demonstrated on the analysis of a large-scale structure comprised of

CNT-reinforced concrete, modeled as a 4-scale system, where a sensitivity analysis was

performed to assess the influence of the constitutive parameters on the macroscopic

response. This otherwise unreachable problem, in terms of computational effort, was

solved in a reasonable time, by virtue of the elaborated surrogate modelling strategy.

In addition, a novel numerical framework was developed for the analysis of structures

made up of CNT-reinforced structures. In particular, a two-level hierarchical material

model was proposed based on continuum micromechanics to characterize CNT-reinforced

concrete. An extension of the FE2 method, called FE3 was employed to assess structural

performance, where the excessive computational demands of the method were effectively

bypassed by using a DNN sequence based surrogate as a substitute for the composite

material. With this implementation, stochastic material optimization was performed,

aiming at finding the optimal CNT orientation at different members of the macroscale

structural systems that minimize the sum of the mean and standard deviation of the

overall structural deformation. The results of this investigation indicated that the

reinforcement of concrete with CNTs can lead to significant enhancement in structural

performance. In addition, the extension of the current manufacturing capabilities to

the design of structural members with appropriately aligned and oriented CNTs can
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revolutionize structural design, leading to stronger, safer and more elegant structures.

Lastly, a hierarchical Bayesian strategy was put forth in this thesis towards parameter

identification of multiscale material systems. The suggested framework has the potential

to integrate data that have been obtained from experiments performed on specimens

with dissimilar material composition and incorporate measurements that take place in

various length scales. To account for inherent model uncertainties due to environmental,

operational and material discrepancies across the tests, the physical parameters were as-

signed to have a distinct definition for each dataset. This enabled a joint inference, where

the posterior form of the hyperparameters was utilized to construct a new probabilistic

representation of the physical parameters for future model predictions. To acquire precise

forms of the posterior distributions from both the hyperparameters and the physical

parameters the TMCMC method was employed. To facilitate multiscale analyses, a

computational homogenization approach was preferred due to its reliability, particularly

in complex materials. The intense computational demands were tackled through the

employment of DNNs that were tasked with predicting the constitutive response across

multiple scales. This study delved into the interfacial mechanical properties of CNTs

within cementitious material configurations. This approach involves calibrating the pa-

rameters that define a bond-slip cohesive law, utilizing experimental measurements from

the literature. These experiments were conducted on different material compositions,

specifically a CNT-reinforced cement paste specimen, a CNT-reinforced mortar coupon,

and a CNT-reinforced concrete large-scale test.

9.2 Limitations and assumptions

In any PhD thesis, acknowledging the limitations and assumptions is crucial for provid-

ing a transparent and comprehensive understanding of the research conducted. This

section elucidates the key limitations of the research, such as constraints in data avail-

ability, methodological constraints, or external factors that may have influenced the

outcomes. Simultaneously, it outlines the assumptions made during the study, including

the theoretical, methodological, or empirical premises accepted as true for the purpose

of analysis.

Throughout this thesis, various surrogate modeling strategies were presented, all

utilizing feed-forward neural networks (FFNNs). FFNNs are the most popular type

of neural networks, favored for their simplicity and exceptional predictive capabilities.
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They are particularly well-suited for predicting one-to-one strain-stress relationships,

which were a central focus of the analyses conducted in this research. However, when

addressing non-monotonic analyses, such as cyclic loading cases, it becomes essential

to account for the path dependency inherent in complex materials like those exhibiting

plasticity or damage. Predicting the behavior of these materials poses a significantly

more intricate challenge for machine learning models. This complexity arises due to the

extreme dimensionality of the data, which introduces numerous bottlenecks, including

increased computational demands and the potential for overfitting.

In this thesis, a simplification was made in the finite element modeling of the studied

applications. Specifically, low-fidelity models were formulated across all length scales of

the multiscale models, resulting in a coarse finite element discretization. This choice

was deliberate to maintain focus on the core objectives of each proposed numerical

framework without unnecessary complexity. However, to achieve exceptional accuracy in

finite element simulations, higher-fidelity models should be considered. These models,

while providing greater precision, come with the inevitable drawback of significantly

increased computational costs.

Several simplifications were made concerning the material behavior in the studied

multiscale material models. For instance, simple constitutive responses were selected

for the matrix materials, with linear elastic behavior assumed for polymers and plastic

behavior for concrete. Additionally, in formulating the Representative Volume Elements

(RVEs), several assumptions were made. These included ignoring carbon nanotube (CNT)

functionalization and curvature, and assuming perfect bonding between aggregates and

cement. These choices were deliberate, reflecting the specific objectives and directions of

this thesis. While more elaborate constitutive models for the matrix materials, along

with the inclusion of additional micro- and meso-structural phenomena, could provide a

more detailed understanding, they would also introduce an additional layer of complexity.

The applications studied in this thesis, which illustrate the proposed inverse uncertainty

quantification frameworks, rely on experimental data. It is important to note that all

measurements used in this thesis are either artificially generated or sourced from external

literature. This decision was necessitated by the lack of both the necessary expertise

and access to laboratory equipment to conduct in-situ experiments. Consequently, the

effective implementation of the proposed model updating computational frameworks

depended heavily on a key assumption: the reliability of the sourced data. This

assumption is based on the expectation that standard procedures and guidelines were
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followed during the experiments referenced in the external sources. While the frameworks

account for moderate uncertainties through their probabilistic approach to parameter

identification, they are not equipped to address cases involving fundamentally erroneous

data.

9.3 Future research directions

Building on the limitations and assumptions discussed in the previous section, several

promising avenues for future research emerge. These directions are proposed to address

the constraints identified in this thesis and to further explore the unresolved aspects

of the study. By investigating these areas, future research can build upon the current

findings, refine the theoretical framework, and potentially offer new insights into the

topic.

The application of more sophisticated neural network architectures beyond feed-forward

neural networks (FFNNs), such as recurrent neural networks (RNNs), long short-term

memory networks (LSTMs), or transformers, should be investigated. These advanced

architectures may be better suited to address the path dependency and sequential nature

of non-monotonic analyses, such as cyclic loading cases, and might enhance predictive

accuracy for complex material behaviors. Additionally, hybrid models that combine

FFNNs with other machine learning techniques or traditional computational methods

should be developed and tested. For instance, integrating FFNNs with convolutional

neural networks (CNNs) could capture both spatial and temporal dependencies in

material behavior, potentially alleviating challenges associated with high-dimensional

data. Methods for augmenting training datasets or generating synthetic data to improve

the robustness and generalizability of machine learning models should also be explored.

Techniques such as Generative Adversarial Networks (GANs) could be employed to create

diverse and comprehensive datasets that better represent the complexities of material

behavior under non-monotonic loading conditions. Furthermore, research should focus on

enhancing the scalability and computational efficiency of surrogate modeling strategies,

which could involve optimizing neural network architectures for faster training and

inference e.g. by using Bayesian optimization for optimal neural network hyperparameter

selection.

Future research could focus on the development and application of high-fidelity finite

element models that offer greater accuracy compared to the low-fidelity models utilized
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in this thesis. Future works could investigate advanced techniques and methodologies to

balance the trade-off between accuracy and computational cost in high-fidelity models.

This may include the use of adaptive mesh refinement techniques, or reduced-order

modeling approaches to improve computational efficiency while maintaining accuracy.

Linear techniques such as Principal Component Analysis (PCA), or nonlinear methods

that uncover the data manifold such as kernel PCA or autoencoders may be employed

to reduce computational demands and mitigate the risk of overfitting while preserving

essential features of material behavior. Additionally, exploring innovative computa-

tional strategies and technologies to manage the increased computational demands of

high-fidelity models would be valuable. Research could encompass parallel computing,

high-performance computing (HPC) frameworks, or cloud-based solutions to improve

scalability and reduce simulation time.

Future research could focus on developing and incorporating more sophisticated

constitutive models for matrix materials. Investigating thermoviscoelastic, or thermovis-

coplastic behaviors in polymers and employing phase field damage modeling in concrete

will lead to more accurate simulations and predictions of material performance under

various conditions. Additionally, further studies could explore the effects of carbon

nanotube (CNT) functionalization and curvature on the mechanical properties of com-

posite materials. Such research could offer insights into how these factors influence

material behavior and performance at different scales. The development of more refined

Representative Volume Elements (RVEs) that account for real-world complexities, such

as imperfect bonding between aggregates and cement, is also warranted. This could

involve creating models that incorporate interface properties and potential degradation

effects to better simulate actual material behavior. Furthermore, future investigations

might integrate additional stochastic micro-, meso- and macro- structural phenomena

into multiscale models, including the effects of random topological features of the mi-

crostructure, or uncertain environmental and operational factors, to provide a more

comprehensive understanding of material performance.

Vital further research could arise from conducting in-situ experiments to generate em-

pirical data. This is essential for validating and refining the proposed inverse uncertainty

quantification frameworks. This approach will help to confidently assess the effectiveness

of the frameworks when applied to fully accounted experimental measurements, and

counter the high uncertainty that comes with literature-sourced data. Additionally,

expanding the range of datasets from various sources and experimental conditions will

162



facilitate the generalizability and adaptability across different scenarios. This could

achieved through the utilization of data acquired from different material length scales,

such as via Digital Image Correlation measurements on the micro- or meso- structure.

Lastly, developing hybrid frameworks that integrate experimental data with simulated

data can further enhance model accuracy and reliability. The combination of real data

with high-quality simulated data, can mitigate the impact of data deficiencies and

improve the overall performance of the proposed models.
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