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Al-enhanced multiscale finite element methods for forward
and inverse uncertainty quantification problems in structural

mechanics

ABSTRACT

Over recent decades, there has been growing interest in high-performance materials
tailored for complex engineering applications. By modifying material structures at fine
scales, exceptional properties such as enhanced mechanical strength, improved thermal
conductivity, and novel optical features can be achieved. To address the time-consuming
and costly experimentation on these materials, several computational techniques have
been developed. Among them, the multiscale computational homogenization method
via the well-established FE? algorithm has gained significant attention. Despite its
computational intensity, this algorithm is favored for its ability to reliably predict
the complex macroscopic behavior of multiscale material systems due to non-linear
phenomena at finer scales. However, identifying the parameters that characterize
material behavior at fine scales still remains a nontrivial undertaking. This thesis
presents a cost-efficient framework using machine learning strategies for implementing the
computational homogenization modeling approach on multi-query analyses investgating
fine-scale parameters. Novel computational methodologies are proposed for accurate and
efficient forward and inverse uncertainty quantification analyses on multiscale material
systems and are validated through real-world case studies.

First, this thesis presents a strategy for performing Bayesian inference on microscale
material properties using experimental observations from the visible structure. To
tackle the computational load of repeated FE? analyses, a feed-forward neural network
(FFNN) is used to emulate material behavior affected by microstructural parameters.
This is achieved by training the FFNN on a dataset from offline representative volume
element (RVE) solutions. Next, the thesis generalizes the F'E? algorithm by employing
a sequence of FFNNs to represent different scales in the multiscale system, with each
FEFNN learning the constitutive law of its corresponding length scale. This results in
a FFNN that emulates macroscopic behavior by incorporating mechanisms from each
finer scale. Based on this scheme, the thesis, subsequently, proposes a methodology to
identify optimal typologies of nanocomposite materials for desirable structural responses
under uncertain conditions. Finally, a hierarchical Bayesian framework is introduced
to utilize disjoint experimental measurements in multiscale material systems for joint
parameter inference. This framework integrates experimental data from different scales
and material compositions to yield informed parameters for future model predictions.
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‘Eval yeydho mAidog UMXGOY TOU YeNOWOTOW0VTUL TNV ETOTAUN TOU UNYAVIXOU OARd
xou yevixotepa otny xodnuepv {or elvon odvieta. ¢ odvieta yapoxtneilovton tor LALXS
mou cuvtilevtar and dV0 1| TEQIGOOTERES PACELS CUOTUTIXWY UAXWVY To ontola AoYw TNg
loyvenc ouvdeong petadd Toug oynuatilouy éva eviodo oo, LOVIETO VAXE CUVIVTEOVTOL
elte autolowa 6N PUoT OTwS To EVAO o Ta 00T €lte XaTaoxeLAlovToL amd ToV AvipwTo
OTWS TO oxVEOdEU. Ot CLUVEXHOS AVEAVOUEVES AMALTACELS Yiol UAXE LPMAMY amodocenmY
pe e&etdneupéveg unyovixée, Yepunéc, NAEXTEES X.0. OLOTNTES EYEL UMOTEAEGEL oY UEO
xtvnteo Yoo Ty e€epelivnom xat dnutovpyia VEWY cUVIETWY LAXWY TOGO GTNV EEEUVO AAAY
xan oty Brounyavio. Q¢ amdppola aUTAS TNG CTOYEVUEVNE TROOTIAVELIS, EVal UEYSAO TAHUOC
UTOGYOUEVOY LAXWY €xel avadetyVel Ti¢ Teheutaleg dexaeTiec, CUUTEQLAUBAVOUEVLY TRV
EVIOYUHEVWY UMXOY UE TORAY WY YRop{Tn 0w Vavoowhiveg dvlpaxa, avipoxdvnuo xou
YPUPEVIO.

O yopoxTneEIopog ToVY WLOTHTOY Twv cOVIETOY LAXGY eivar cuVATwLS Pl ETiTovr Sodtxa-
ola. Autod amodideTton 6T0 YEYOVOS Tou 6Tl Yo Teénel var Angioly unddn 1660 Tor EMPEPOUC
YOEUXTNELG TXE X0 OL WOLOTNTES TWV CUC TATIXMY LAX®Y TV oUVIETLY Xxadde XoL 10 ano-
TENEoUA NG OAANAETBpaonG Toug. AbdYw aUTOU, 0 CYNUATIOUOS TOU UMy ovixoD ohhd xou
YEVIXOTERA TOU HordnuaTieo) TeofAfuatog elvar éva 8Uox0ho €070 To omolo peAeTtdrtar 1o
TEPLOCOTERO Ao Evay anva. Ol TEMTES TEOOTAVEIES Yiar TNV EVRECT) TNG EVIOLAS UNYOVIXHG
HOXEOCHOTUXAC CUUTERLPORAS TwV SLVIETWY LAXWY Eytvay Tov 180 anwvo e TiC xoulixég
epyaoiec v Voigt [132] xau Reuss [109]. Méoa and tc epyaoiec autéc ouvtiveta o
xovévoe v rypdtey (rule of mixtures), énou eite xdvovtog v unddeon tou otadepod
TEdloU TAPAULOPPKCTG GTNY TEWTH Tep(TTwoT, eite Tou oTadepol Tedlou Tdong oTn deltepen
TepinTwOoT, unopoly Vo UTOAOYLOTOLY eviaieg UAXES 18LoTNTES. O Tapadoyéc tTne otoepr|c
TEUUOPPWONG xat avTioTolya TNG oTadephc TAOTNS, TR O AUTE, OEV AVTATOXEVOVTAL OF
PEAALO TIXG. GEVAELOL X0 CUVETIAC TA MOVTEAA AUTE OE UTOPOVY VoL XAVOLY XA TEOBAEDT Tev
OUOYEVOTIOUNUEVWY YAURAUXTNELO TIXWY OE Tep{mhoxa oOvieTa UG TAUNTA. LTNY TEOoTdVEL
BeATiwong TV TEOTWY QUTWY ATOTELRMY, TEOTAUTNXAY OLdpopes uédodol ol omoieg PacioTn-
xov otV hoywr| Tou elerpoedole eyxhelopatoc Eshelby [32]. Me Bdon tic teyvixée
QUTEC UmopoLY v TeoxuouY TEoCEYYIoTIXEC ADoES Tou eviadou TROBARUATOS, UECw TNS
Yewpnong 0Tl undpyet TAYeng amouaio 1 ac¥evic IANAETIOPACT HETAEY TWV EYXAELOUETWY.
Behltioeig autrg TG TEYVIXAC, HE OTOYO TNV AVTYETOTLOT TOV AVIXPUSELDY TOU SNULOUEYEL
1 mopadoyic T un alknhenidpoone, tpotddnxay and tov Hill [56] xou Budiansky [14] pe
Vv ewoaywyr) twv ”Self Consistent” puedoéowv, aAld xou e ” Generalized Self-Consistent”
ped6dou [20] and tov Christensen.

‘Okeg o mpoavagepeioeg uédodor Pacilovion o XAMOIES TEOCEYYIOES X0 GE (POUUVOUE-
vohoyixég Yewpnoelc yio To eTepoyevée Tpoanua. Ilapdro mou yéow tétolwy Tapadoy Yy
eMTUY Y &veToL 1) ETEAUGT) TOU TEOPAAUATOS UE UXPO UTOAOYIO TIXO XOGTOG HEGE OVORUTIXGY
1) NU-0VOALTIXOY EXPRAcEWY, oL TEoPAEeC Toug oe TOAAEC TeplnTdoelc anéyouy oflo-
onuelwta and Y mpoydaTxotnTo.  Méoo amd v paydola adinon TwV UTOAOYLC TIXGDY
BUVITOTATWY, €yel xaToyuenmel Tar TEAEUTA YEOVIA TTwE O To aEIOTIGTOS TEOTOS Yiol TNY
€0PECT) TWV OUOYEVOTOIMUEVLY YURUXTNRLO TIXWY OTOLOUBHTOTE cUVIETOU UAXO) GUCTHUO-
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To¢ elvan péow e enfhuong evoc mpoPifuatoc optaxic tuhc (boundary value problem)
otV uixpoxiipaxa. Autrh n pedodoroyia €xer xatcpwiel oty BiBMoypapla we utolo-
Yo T opoyevonoinon (computational homogenization). Ot npdtec andnelpes yioo Ty
enthuon Tou PEOGKOTIXO YEUUUIX0U ELiuNTIX0U TEOPBAAuATOS ue TNV uéV0D0 TKV TETE-
paopévey ototyelwy Eywvay to 1987 and tov Suquet [123]. H enéxtaom tng unohoylotixhc
OUOYEVOTOINGNG OE U1 YRUUUIXE GUOTALNTA TOMATAGY XAUAXOY €YEL YIVEL IO TEOCHUTA
ocuuPodiCovtoc ye Ty oD oyuer obyypeovr urtohoyio Tt toyd. Ot uédodol ToAATAGOY
x\dxwv (multiscale methods) # toAamiov emnédwy (multilevel methods) énwc €youv
xadepwiel, €youv TNV BUVITOTNTA Vo EMADOUY TOANOTAOXA UT-YRUUUIXS TROBAAUNTA TOU
TEPLYPAPOLY EXAETTUGUEVA GOVIETO LALXEL. Luyxexpwéva, ol uédodol un Yeouuxic uto-
AOYIOTIXTIC OUOYEVOTOINONG YENOULOTOLOUY EVOL EUPWAEVUEVO Oy Ud CUUPWVIL UE TO oTtolo
onulovpyettar plor otadepr| emxovwvia LETAZ) TV BLAPORETINWDY XAUAXWY XUTA T1) didpXELa
g emthvong. Mo and To mo o€loonuelnteg uedodoug mou eqopudlouy TN hoyixh TNng
enpdIeuonc ebvan o ahydpripoc FE?, dnec éyel xatoyupwiel and tov Feyel [35], o omolog
EYEL WS BAoT TNV TAUTOYEOVY] AVIAUGCT] TETEPACUEVLY GTOLYEIWY %ot 0TI 800 XA{UoxES TOU
ouleuypévou ouotiatoc. H yeydin axpBela tou tpocgépouy autég ol yédodol €youv odrn-
YHOEL GTNY EMEXTACT TNS YENONG TOUS TERX OO UNyoVIXd TEOBAAUTA XaL GTNY BIERELYNOT
SANDV QUOIXMY POUVOUEVLDV (T.y. VepUOTNTAC Xat NAEXTEIOUOV) XADDS Xt TONU-(QUOLXADY
TeoPAnudTov (m.y. melonhextpixdtntoc). Ot gpupuievuévec npooeyyioec Yewpolvia we
ol mo oxpifelc yioo Ty TedPBAedn e e€EMENG evog clvieTou UAIXOU, wo 1600, Eva onuo-
VTIXO UELOVEXTTUA TTOU TOUG omod{deTal efvan oL TEQACTIEC UTOAOYICTIXES AMAUTAOELS TOUG,
oL oTtoleg o€ TOANEG TEQLTTAOOELS UTOPEL var efvor xon amoryopeutixés. Me Bdor ta mopomdve,
évag Boaoinde TpocavaTohlolos TN Topoloug dlateBng elvon 1 aglonolnon Tne Loy ueng Teo-
YVWOOTIXAG IXAVOTNTAS TWV EUPOAEUUEVOY OYNUATOY TG AVOADGELS TOMATAMY XAYLIXWY.
Y11 CUVEYELXL TEQLYPAPETAL CUVOTITIXA TO UNYAUVIXO TEOBANUO TOANATAGY XAUAXWYV:

H woyver dlatinwon tng eglowong otatixfc 1ooppotiag evég ehactixol couatog M To
onolo TonodeTteiton 0T PoxpooxoTXA Sou xhipaa xon opileton ot évav medio QM C R3

EYEL TN LopPT):

VM. oM =bM G570 OM (1)

H xotactotin oyéon v 10 Uaxpooxomxd npoBinua expedletol U€ow TS YEVIXAC
popepric:

oM(t) = oMM (1), 0M (T),T € [0, 1]} 2)

6mou To t dnAwvel Tov PeudoyEdVo TNV TERIMTWON UL PeLBOCTATIXAC AVIAUOTG Xl TO
t TV 10Topxh €E4pTNON TNS CUUTEPLPORAC Tou LAxol. Emmiéov, to 8 yonowonoleitor
YLoL Vo SNAGOGEL Eval GUVORO ECWTERIXWY PETABANTOY ToL YopaxTnellouy TNV xatdcTacT Tou
VAol (m.y. mhaoTtixétnTe, Ypadon) xat TopauéTeous Tou UAXOU povtéhov. Xto mhaioto
NG AVIAUONG TOANATAGY XAMUAXKY OTwe optletal amd TNV UTOAOYLOTIXT OHOYEVOTOING,
n €. (2) dev éyer pnu| ouvaptnoloxy popey. Avtileta, auth 1 oyéon npoxintel Yéow
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e enthuong evoc TEolARUATOC 0ploxC TWNE Tou ETPBAAAETOL Amd EVOL AVTITPOCWTEVTIXO
otoyeto éyxou (Representative Volume Element - RVE) , 1o onolo neprypdger tn doun
TN AemTrg xAfwaxag, Onwe tapouctdleton 6To oy 1.

H Aemty| xhipoxor umopel vor avTimpoomelel SlapopeTiXEC XAUUXES Urxoug, WoTOGO 1)
Olaoppeon tTNg yevixeletoaw cuVAlwe we TEOBANua wxpoxhipaxac. H woyver dwtinwon
N e€lowong oTATXAC L10OPEOTLAG ATOUGO OYXOUETEIXWY SUVAHEWY EXPEALETAUL WS:

Vet =0 orto QF (3)
H xotaotatind oyéon yio 10 TeoBANUa TNG IXEOXAUOXOS YRAPETI WS:

ot (t) = o*{e"(t),0"(t),t € [0,t]} (4)

omou o 0% cuumep opfBdvel VAXES TopauETEOUS TNG UixeOoXA{poxag.

. s Q"
o-'.
@2

. ) 0

BVP
solution

Tyfqpo 1: MetdPoon petadd twv kAdkwv 6Twe opiletal amd TNV UTTOAOYLOTIKT
opoYevoTIOiNoT

Lopgpova Je TV o)1) Tou Sy wELoUol TwV xAWdxwy, 1 Yewplo g opoyevomoinong
UTOREL VoL EPUPUOCTEL ATOTEAECUATIXG EQY LOYVEL 1) axdhovlT) oo

M g NBVE « \M (5)

omou A, AEVE XM eiyan o1 xliponcec pfpnoug Tov BLaupdvoemy ToU tixpooxomixol wedlou,
Tou peyédoug RVE xou tov Sloxupdvoewmy tTou poxpooxomixol tedlou, avtioTtolya.

[Mo v obvdeon tou cuoThuatog mou oplleTon amd TS HVO XAUUXES, TN UXEOXALLIXA
TEETEL Vo 60000V oplaxég cuVIXES TOU elvol GUVETEIC UE TNV AmOXQLoT| TNG UUXEOOOUNC.
I 10 oxomd auth, 0 Tedlo yetatémone ul(x) ouoyetileton pe v Topapdppwon eV
evog onuelou HoxpooxoTxol LAXO) UECK NG oYEong:

X



ut =M.t 4 at (6)

omou w* elvon To TESIO BloaUUAVONC HETATOTIONG OV AmOdIBETOL GTNY ETEPOYEVELN TNG Wi
xpodouric. Mio emAoyy| mou mhneol authv TNV amaltnon xa yenoylonot|dnxe otny tapoLoa
dratpBn) elvon o meploploude Tou Ut oto bpo tou RVE, Sivovtac oty €€, (6) v el
uopr:

u = Mzt ora xt e TH (7)

XNV UTOAOYIGTIXT] OUOYEVOTIOINGT), 1) TOTULXY) UETAHBOAY TOU HAXPOCKHOTUXOU €QYOU GUV-
OEETOL UE TN UETAUBOAY| TOU XPOCXOTIXOV £0YOU avE LOVADA OYXOU UECHL TNG OYECTS EVER-
yewxric ouvénetag Hill-Mandell.

oM . 5eM = L ot oetdO (8)
192 S
Me Bdon v €&, (8) xou Yetd omd TNV eXTEAEOT XATOLWY ONYEBEXMOV TEdEEWY TPOXVTTEL
1 oy€on mou opllEl TOV xavOVaL OUOYEVOTOINOTS, ONAAST) TNV UETHBacT amd TNV Uixpoxhipoxa
OTNV UAXEOXNOXA, G
oM=L @ ahdlh = ot (9)
1] Jpw 124 e
omou 1o medlo Tdoewy ot umopel va amoxtniel yetd v enlluon Tou mpofBiruatog TNng
optoxfic Twhc (BVP) mou emPddietoan oto RVE olugwva e tov xavéva tomxonoinong
(localization), mou neprypdypeton and v €. (7) .
Emniéov, 1o eqantopevind unteno mou opilel tov xatactatixd vopo otny €. (2) v
TO EXACTOTE POXEOOXOTIXO GTElo UAXOU oplleTanl we:

1
cM— _— 9, 1 gQH 10
1] /Q" (10)

Me Bdion tn o0vdeoT YeTadh TNS IXEOXAUOXOS X0k TNS LoXPOXAlUoxas OTwe oplleTtat and
TNV UTOAOYIO TN opoYevoToinon, o ohybpriuoc FE? [35] yenowonoelton vyl T cuveyh
oaAANAeTBpaon YETAEY TV BUO0 XAUEXWY xUTd TNV ETUALOT EVOC UaxpooxoTX0) cUVHETOU
CUCTAUOTOS.  DUUPWVOL UE auTdV Tov ahyopriuo, yio xdde adinom tou goptiou Tng po-
xpodoyufic, N woxpooxomixh) won €M uroloyileton oe xdie onpeio ohoxhhpwonc GAwY Twv
TEMEQAUOUEVWY G ToLYElWY, dmou opileton €va povadixdé RVE. Ytnv cuvéyeia, epapudleton
TO oYU OUOYEVOTOINONC TOU TEPLYRAPNUE TEONYOLUEVKS, OTou emAleTon T0 RVE %o
amoxtérTon 1 poxpooxomxh or oM xau 1o epantopevind pntedo CM oto exdotote on-
ueto ohoxAfipwong. Mécw autmY ToV TOGOTHTWY, UTOREL VO UTOAOYIGTEL TO UOXEOOXOTIXO
didvuopa ecwtepinic duvaunc FL(oM) xou o miveac epomtopevinic axopudioc KM (CM).
Autr 1 Swodixaota enavahauBaveton €we OTOU 1 ECWTERIXY) BUVAUT YIVEL LGOBUVOUT UE TNV
eEwtepudt dOvapn FM oe dho tov poxpooxomind popéa.



Ov pédodot un yeauuxnc UTOAOYIOTIXAC OUOYEVOTOINoNG TapoTL efval adtoupLoBrTnTa
oL TAEoV WOavxéS Yo TNV TeOBAEdY OTOLGOATOTE VALXTG CUUTERLPORAS, OEV €youv LloUe-
Ul oaxdun TAeWS amd TNV EMCTNUOVIXY xovoTnTa. Autd ogelleTon GTO YEYOVOS OTL
TO UTIOAOYIGTIXO XOOTOG TOU amoutel Uior aVIAUGT] XAvOVTaS Yehor Toug elvar UTEpoyxo,
TNV TASIOVOTNTA TWV TEQLTTWOEWY. LTV TEOCTAUEL EVPECTC AMAVTINCEWY OE AUTHY TNV
TEOYOTEDT), EYOLV YIVEL EXTETUUEVES OLEPELVIOEL OYETIXY UE TNV YENOT LTOXATACTATNG
povtehonoinone (surrogate modeling) yio v npdBiedn e paxpooxomixic VXS cuuTE-
ctpopdc. H uio¥é€tnon unoxatdotatwy YOVIEAWY GE QUTAY TNV TEPLOYY) TG EQEUVICS, EYEL
WS OTOYO TNV ONHAVTIXT PElWoT 1 axduT xaL avTIXATdoTaoT TNG TOAD damavnehc entAuong
e e&lowong tng opoyevomoinong 6nwe auth oplletal omd TNV UTOAOYLOTIXY| OUOYEVOTO-
inomn. Awgpopetinéc uédodot £youv yenotwonomdel otny Biloypagio tpog eniteudn auvtod
0L 0ToY0U, OTWS TEXVIXEC pelwong T8Ene povtéhou (model order reduction) m.y.proper
orthogonal decomposition xou autoencoders oAl xou e€opontéc eiothoeny ty. feed
forward neural networks xou Gaussian process regression. Xtnv nopoboo dSwotelfn yiveto
a&lomolnoT TEYVIXGY unyovixig wdinong yio T dnuovpyia uToxaTdc TATNE HovTE OTOINONG
ME OTOYO TNV amodoTIXY ETAUCT] TwV EUEETIXA ATOUTNTIXWY TEOBANUATWY TOU UEAETOVTAL.

Extoc and tov umohoyloTnd oyedlaoud VovooUVIET®wY UAXGY, auTd Ta UAMXE cuyvd
€youv TOAEC afefondtnTeg oL evtonilovTon OTN UXEOBOUY| TOUS, OTWS 1) HORYOAOY(X, Ol
UNYOVIXES WBLOTNTES TWV ETUPEPOUSC UAXADY Xad®e xat oL WBLOTNTES ahANAETidpaoric Toug.
O TEUUATINOS UXEODOUIXOS YARUXTNEWOUOEC TWV UAIXWY oUT®V elvar €va ToA) 60ox0oAo
XL X060 TOPRORO €0Y0 XIS AMALTELTAL EXAETTUCUEVOC EQYAOTNELOXOS eEOTAloUOS. Ao
TNV GAAY, UTEEYOLY EEEBIXEUUEVES UTOAOYLIO TIXES TEYVIXEC Yiol TNV ETLAUCT, avTio TPO(POY
TEOBANUAT®Y, BNAADT TNV TOEUUETEIXT| THUTOTOINCT) LOVTEAWY PECWL TEAYUATIXOY UETEHOE-
ov. Mo and tic mo diadedopéves pedddoug eivar n Mrebliavr emxatpornoinor (Bayesian
Update) olugpovo pe tny onolo oL TOEdUETEOL TOU LOVTENOU LOVIEAOTOOUVTOL WS TUYO-
lec peTafBAnTéS xou YEow TNG EQuEUOYHC Tou xavova Bayes ol ex TV UoTEPWY XATUVOUES
TOUC UToPoUV Vo TpoadloploToly Ue Bdorn To Siodéoiuo dedopéva. IIépa and tov yopo-
XTNEWOUO TETOLWY LAY, Wwa e&loou onuavtixd medxknon eivon xau 1 edpeor BEATIOTOY
TUTOAOYL®Y, OC TEOS TNV DUTOEN TWV EYUAEICUAT®WY, TOU VoL UTOROUV VO TEOGOWOOLY OE
ot xoTaoxeLY|) GTOYEVUEVES UNyYOVIXES LBLOTNTES, Wiaitepa UTO To Tplopa afefotoTAtwy T.y.
070 VA6 1) oty e€wtepiny) @popTion. Mo nepantépw xotebduvorn tne mopoloog dlateBhc
elvon 1 avdmTUEN LTOAOYICTIXOY UEYOBONOYLDY TIoLU Vol UTORPOUY VoL AAVTCOUY GTA Ve~
TEQW EQOTAUATO UE UEYIAT) oxp{BeLo aANS xak PE Uil UTONOYIOTIXO PORTO. LUYHEXQUIEVA,
HECQ OO TNV BLEPELYNOT TWYV UNYAVIXDY IBLOTATOVY EVOS GUYXEXPWEVOU TUTOU VOVOCsUVUE-
TOU LUAXOU BNAadY| Tot UAXE EVIOYUPEVOL UE VOYOoWATiveg avdpoxa, @uiodolio tng datpBhc
elvon 1) avAmTUEY YEVIXEUPEVWY apLIUNTIX®Y OYNUATOY Tou Yo UTOPOUY VoL EQUOUOCTOVY
og avoADoE TocoTxoToinong ABeBoudTNToC OE OTOWBNTOTE UAXO, AR XaL TNV UEAET
OLUPOPETIXWY (PUOLXWY PULVOUEVKV.

Y10 TMpKdTO 0TAd0 TG BateBnc mpotelvetan Wi Véo uévodog Booiouévn otny Mrebhlio-
V1| ETXOUEOTIOMNGT| YIal TUEUUETELXY) DIERELUVNOT] VOVOGUVUIETMDY UAMXOY.  MUYXEXPWEVA TO
evilapépov eoTIAlETo OTNY EXPAUINOY TwV TapaUéTewy Tou Yapuxtnellouv Tn Slemag
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CNT /noluyepoic ot uxpoxhipoxa pe dedouéva Stodéoiua and TiC avOTEPES XMUoXEC.
Autég oL mopdueTeol cUVOEOVTOL PE HEYAAES BEBAUOTNTEC XAl O YUPUXTNELOUOSC TOUC &-
tva BUox0hO €pYo, xS Ol PETPNOEIC OTY UtxEOoXAlUoxa efval Samavneég ot BUGKONO Vo
Angdolyv. Ta vo Eemepaotel autd, 1 mopoloo PEAETN ELOdYEL €Vol UTOAOYIOTIXO TAIGLO
YioL TNV EVIUEPWOT] TOV TEONYOVUEVKDY TENOWINOEWY OYETXE UE TIC TWES AUTMY TOV ToR0-
HETPOV, YPNOLOTOLOVTOS YETPHOELS UETUTOTUOEWY Tou AopBdvouy ywea oTtny uéomn xa/1
otV paxpoxAiaxo mou yopoxtneilouv to efetalouevo civieto Lhxd. ‘Ocov agopd TN
povtehonoinon, n Sienopr) CNT /mohuuepolc SLopop@®VETOL YENOWOTOWOVTIS EVA LOVTENO
ouvexTiXg LOVNG Xak EVary SLYROUIXO XATAC TATIXG VOO decuol-ohic¥none. 2tn cuvéyela,
1 uédodoc FE? yenowonoteltor yio Ty mpdBredn e andxplong 1wy xotaoxeumy. ‘Otwe
€yer avagepiel, Topd TV axp{Beld e, auth N uEYodog CUVDOEETIL UE TEPACTIEG UTONOYLO T
%€ AMAUTHOELS OTAV EQopUOLEToL O UeYdAa TpofBAAuata. Emouévwe, 1 epapuoyy tne ota
mhadota Tne Mreblioavic emixatpomoinong 1 onola anawtel TOMATAES 0&LOAOYNOES HOVTEAWY
elvon amoryopeutixr. Tiot v petploctel autd TO TEPAOTIO XOGTOC, AVUTTUYINXE ULl TEYVI-
%) UTOXATAC TUTNG HOVIEAOTIOMNONG TOL Y ENOUWOTOLEL TEYYNTA VEUPMVIXA BixTud, Tot oTtola
EXTOUOEVOVTAL OTO VoL TROPBAETOUY TN U1 YRUUUXT OYEOT TAOTC-TORUUORPWONS OTWS TEO-
A0OTTEL OO TNV AVIAUCT] GTOLYELWY avTITPOCHTEUTIXOD &YX0oU NG Uixpodourc. To clvoro
OEBOUEVKY OTO OTO0 EXTIUOEVETOL TO VEUPOVIXO OiXTUO, AaufBdveTal Ue TNV avaAuoT EVOC
TepLoptopévou apltiuol SlapopeTixdy dlapoppnoewy RVE ypnowonowwvtag Aentopepelc o-
VOADOELS TEMEQUOUEVOY GTOLYEIWY.

LUYAEXQUIEVQL, Ol TEELS TORGUETEOL TOU TEPLYPAPOLY TN DLETLPAVELNXY) OYEOT UETAEY TWV
CNT xou tng uhteog ToAUUEROUS ETAEYOVTOL WG TUYOIES TUPAUETEOL TEOC EVNUECWOT. Au-
TEC elvan 1) BIETLPAVELAXT| BLTUNTIXT OVTOYT| T, 1) EAXCTIXTH Xhiom Dg; mpLv a6 Ty ohloVn-
on xou N Ao T xhion Dy epocov €xel Eenepactel 0 Ty 5, ONAadH, O = (71,5, Der, Dpr)-
O vouoc dienagric anewxoviletoan 6to oo 2. Emmniéov, ta unyovixd poviéha mou Ole-
eeuvavTal ebvan obvieteg xataoxevég evioyuuéveg ue CNT xou ou mpofBrédeic povtéhny
M (0) yio dedoyévee mpaypatonotioels Tou O hopfdvovton ge Ty eTAUoT ToU TEOPAAUATOS
Tolamh@V xhudxwy e FEM. Erniong, to 6edopéva D mou culiéyovton mepthau3dvouy
HETENOELC UeTaTOTioEWY OE XoroploUéveg VETELC TNG UUXPOBOUTC.

Eopgwva pe tnv Mrebliavy| emxonpomoinom o avtioTpogo TeoBAnus SLUTUTOVETOL UECK
evog mavotxol mhauciou.  Axolouddviag TNV To Xowr TEOCEYYIoT Tou TEoc¥ETIX00
CPINIATOC, 1) OYECT) HETOEY TWV UETEOVUEVKY BEBOUEVMY XL TMV TEOBAEPEWY TOU LOVTEAOU
TOCOTIXOTOLE(TOL PEGL TNG EXPEAUCTIC:

y'(8) = m'(0) + € i=1,..,K (11)

6mou xde € LTOdNAGVEL TV bp0 GYEAUUTOC TOL expEdlEToL CLUVAYWS WS TuYa e-
TBANTA pe o xovovid) cuvdpTnon TuxvoTTag miavotag ~ N (0, 9. O mivocag dio-
xOpavone B¢ evowuatavel 1o péyedoc Tou OpdAUoTOq npoﬁ)\aapnq Tou poviéhou M* o T
OQAMIOTAL TOV TELUUATIXGDY TURATHENOEWY Di. O époc y' AVTLTRPOCWTEVEL TNV EC000 TOU
oToyac ol eudéou povtéhou Y and dnou mupdyovtar to dedouéva DY
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>
Autl (nm)

TR 2: Aypoplitkdc KOTooTaTikdg VORog TG oAloBnong petod CNT ko piTpog

Suyxexpyéva to tedBinua e Mrebliavic emxanponoinong oplleton wg 1 avalrtnon
Hoc €x TV LoTépwy xotavouric (posterior distribution) P(@|D) yéow tne oyéone:

P(D|0)P(6) ©(D|6)P(8)

POID) = =505y~ = T [ T x(D|8)P(6)d6,d0y...d6,

(12)

6mou to P(0) elvon 1 ex tov Tpotépnv xatavour] (prior distribution), dniody ot tponyo-
Opeveg memordnoele oyeTixd pe Ty mavohoyixny) QUoT TwV TUPAUETEWY. LNV TepinTtnon
ToL BV UnopolV Vo Yivouy ex Twv TpoTépwy unodéaelc, cuvitwg epopudlovTol Un eV
HEPOTIXES XATAVOPES, OTWS 1) opoldpopen xatavour. O bpoc P(D) ovopdleton anddelln
(evidence) xou eivon ouctaoTixd €va TOAUBLEGTUTO OhOXAAPLUA, POl TEpLhaUBdveL ToV L-
TOAOYLOUO TNC TMEQLIWPLOTOMUEVNE EX TV UCTERMY XATAVOUNG OC TEOS TOV TOROUETELXO
yweo. O ébpoc m(D|O) vnodnhdver Ty mdavogdveta (likelihood) tou D yio dedoyéveg
Tiée @ xou TOCOTIXOTOLEl TNV OUOLOTNT PETAEY TWV OEBOPEVWY Xal TwV TEOBAEPEWY TOU
povtéhou pe otoyaoTnd teoémo. Ltny €. (12), o avalutindg UToAOYLoPOS TOL N-BtdcToTou
ONOXATPOUATOC GTOV TOPOVOUACTY| BEV efval EQIXTOC OTN YEVIXY| TERITTWON).

[Tpoxewévou va avtAndoly delyuato amOTEAECUATIXG UTO TNV EX TWV UGTERWY XATAVOUY),
yenotponoteitar 1 teyvixr Markov Chain Monte Carlo (MCMC), oclugwva e ty onola
TOPAUXYUTITETAL O UTOAOYLOPOE ToL Ttopavopaoth tTne €. (12) xou yivetan devyporodndio uévo
and tov aprdunth. Luyxexpiuéva, o ahyoéprduoc Metropolis-Hastings (MH) endéydnxe oe
aUTH TN UEAETT, wOTOG0, Utopel ot Y€an auTtol va egaplocTel onotoadnrote ko MCMC
ahyopriuoc. H oynuoatind avamapdotacy Twv oahyoptduix®y BRudtwy Tou TEOTEWVOUEVOU
oyfotoc Mrebllovic emxotpomoinone o8 CUCTAUATE TOAATADY XAUSXWY anexovileTon
670 oY 3.

O vnohoylopde e ouvdptnone mdavogdvewac m(D]O") onawtel v enihuon Tou yo-
viéhou Ml yior Tic Tpotevoueves Tiuée mapauétewy @' o xdde emavdhndn tou MH akyo-
eldpou. XMto mpoAfuato Tou PeAETAUNXAY OE aUTH TNV epyacia, ot eMAVCELS UOVTEAWY
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Initialize
0=0,

A 4

Draw candidate
sample 6’ from g(6’|0)

A

A 4

Solve Macroscale Model

M(@’)

Y

Calculate likelihood
function (w|0’)

m(w|6’)

\ 4

0 Accept(6'—0)
Reject(6—86)

Tyfpee 3: MrebQiov eTkapoToinom oe GUCTAATA TIOANXTAGDY KALLAK®WY XPTOLULOTIOLOVTOG
Tov alydpBuo Metropolis-Hastings

elvon 1dwiktepa ypovoPopeg xau 1 dueon epopuoyr) Tou aiyopituov MH Vo Htov avépuen.
[o v avtetoniorn autol Tou {nthuatog, teotelvetal vo dnutovpyniel éva utoxatdo ToTo
HOVTELO TOL Yor aVaToRdYEL T1 OYE0T) TAOTC-ToRUOpPwaTns Onwe opiletar and to RVE ye
YOUNAO x60T0¢. Me autd T0 TEOTO EMTUY YAVETOL SpUC TIXT ETULTEYLVOT) TMV ETAVCEWY TOU
HOVTENOL Yl TIC EXAOTOTE TWEC Tapouétewy 6 .

Yuyxexpéva, avortiooetar éva FENN tou omolou o otéyog elvon var yddel tn un ypou-
ur elowon oto oyfua oyoyevonomong tou RVE, vy Swpopetinée mopouétooue tng
denapric CNT /ufitpac. O veupdivee elo680u ToL amoTEAOUVTAL and TO LAXPOOXOTIXG Ot
dvuoa Topopdepwong € poll ue Tig Teelg mopauétpoug diemapnc @ = (71,5, Der, Dpr), eV
OL VEUPWVES €600 £lvo oL TYES TOL BLaYOOUATOS HoXeooXoTix ¢ Tdong . Adyw Tng ouy-
pETElG TV TAVUCTOY € xaL T, 0 xdde évag yapaxtnelleton and 3 dyvenoTeg HeToBANTES
yioe 2D mpofAfuorta xan 6 petoBAntéc yia 3D npoPfAfuara.

[Tpoxewévou va culiey oy To amapaitnTo delypota yior Ty exnaldeuorn tou FENN, emi-
Aoetan éva TAfdoc and RVE yua Sudpopec tiuéc e1o680ou € xau 8. Autég ol Tipég emAéyovton
e gevdotuyaio tpdTo, yenowonowdvac Ty teyvix Latin Hypercube Sampling (LHS).
Ta Serypatind e0pn ETAEYOVTOUL TEOCEXTXG, X MG Uixed €DPT) UTOREL VoL 001 YOOLY GE Olve-
Tapxelc TAnpogopieg xotd TNy enthuon Tou Mrebliavol GUCTAUATOC TOANATAWY HAYLEXWY,
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EVG UeYAa VET) amantoLy TNy enthuoT evog mapdhoya peydho aprduot RVE yio v axpl-
B1 exmaldevon tou FENN. Aedouévou OTL 1 UTOAOYIGTIXT| OUOYEVOTOINGCY) AMOLTEL YeHoN
awEnuxov-emavanTixoy emhiTn yio pn yeouuxée eClomoels (m.y. Newton-Raphson), yio
xdde 6, oL cLYXAVOUCES TWES TOU T Yiot OAES EVOIIUETES TTROCUUENTELC TOU €, GUUTERLAOY-
Bdvovtan oTo Sedouéva EXTOUBEVOTC.

Emimhéov, 10 poxpooxomixd epontopevind xataotatxd unteno C uropet va e€auydel omd
TO UTOXATAOTOTO YovTéNO. Autd umopel va yivel dueca yetd tnv exmaideuon tou FFNN
yenowomowvtag Ty uédodo Autéuatne Awgpoponoinone (Automatic Differentiation -
AD). H AD emtpénet UnohOYIoUOUS Tapay@Ywy Twy ototyelwy e£600v & oe oyéon e Ta
oTouyelo 106U € epopuolovTag Tov xavova Tng alucidag. 'Etol, ol cuvtekeotéc ¢;; Tou
HoxPOOXOTIXOL EpamTopeviol Tivoxa C = [;j] pmopolv var UTONOYLETOUY WC:

G — 8@7 Ohy, Ohy
K Ohy, Ohp_1 831'3'

omou hy, elvon 1 é€080¢ oTo avtioTolyo xpupod eminedo ki, Tou FENN yia elcodo &;;.

(13)

H 6hn Swadwasta cuvodileton otar oxdhoutor Bridortas

1. Anuoupyia N tuyciov deryydtwy ewwddov ¢; = [€;,0;], i = 1,2,..,N evtdc opl-
OUEVLV BELYUOTIXWY TEEQLOY V.

2. Ao g un yeoupwnc eglowong opoyevornoinone tou RVE yua xdde Sudvuoua ei-
o6dou @; xou Mg tou avtiotoryou dtaviopatoc e€6dou Y = [65] Yo Ohec TiC
evoldueoeg enauENTnég ANIGES Niner

3. Emdoyn e apyitextoviniic FFNN xou exnaldevon tou yenowonowwvtog o Lebyn
€10600U-e£600L N X Njper

4. Trohoytopdc Tou egantouevixol pntpmou C péow tre uedédou AD oto FFNN.

[e1,01] = A8 = [5,]

TRAIN
FFNN

[;, 6;]= it =[G )]

[en, On]=> KL = [5,]

Txqpor 4: Awadikaoio ekmoidevong tov FFNN
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Tyfpo 5: Mmedliovd eTukoupotoinon oe LovtéAa TOAATAGDY KAUEKWY, ETULTOULXUVOLEVOL |LE
FFNN

Y& apxeTég MEQINTWOOELS 800 XAUaxeg BeV eMapxoLY Yo Vo TepLypddouy ue oxplfBeta Tnv
CUUTERLPOPA. XAmolwY TEpimhoXwY LA®Y. H yovtelomoinon twv uAxOY auTtey omatel
TOV OYNUATIONO TEQLOGGOTERHY amd 0LO XAdxwy urxous. llapduola pe tnv dradixacia
UTIOAOYLOTIXT|C OUOYEVOTIOINOTG TOU TEPLYPAPNXE TEONYOUREVWLS, TEETEL VoL dnuLoupy el
plat oUVOEST YETAE) QUTOY TWV XAWAXWY XaTd TN Sdpxela g Abong. Autd pmopel va
emteuydel Srodoyxd petald xde Ledyoug Saboyxdy xhwdxwy. ‘Onwe otnv €. (7) o
xavovog Tomxonoinong eqopudleton apyixd yia xde {evyog we:

1

1
eX(x?) = ot et(xt;xbat , -, MM eN (N xM)daN
0l

1N Jan
(14)

ITpoc dieuxpivion Tou TaEATdVL GUUBOAIGUOV, 1 UETABANTY| UETA TO EQWTNUATIXG, YOl TO-
edderypa n 2 oto €zl x?), uvnodnidver éTL o TEdlo TupaudpPwoTc €l péoa 6To oho-
yhhpwpa evor auté Tou avamtlydnxe and o RVE mou oyetileton pe 10 uhixd ornueio x?
NG AVOTEPNS HALUIXOG.

X1 ouvéyela, ouvoudlovtag OAa Tor Sladoyxd Bruoata Tomxonoinong, UTopel Vo amoxTr-

Vel o oyéon mou mepLypdpel OAOXANEN TNV OAANAETOPACT) TOU CUC TAUATOS WC:

1 1

M (.M 1,1 2.2\ 101 N

= ;)dQ ... dS2 15
=) JQN] Jan = (1921 QlE(m’m) 1)

e2(x?;x3)

ZexvovTag omd TV o AT xAlpoxa, 1 Abon twv RVE unopel va emtevydel eqopudlo-
vtog 1o Bro opoyevoroinong e €€. (9) yio xdde Lebyog we:
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1

1
= o ol(z!, at;x®)dt, -, oM(xM) oV (N, o ; Myaaly
0l

1N Jan
(16)

omou a® elvon oL ecwTEPXEC UETOPBANTES TNE s xAipaxac. H odvdeon twv dlaboy oy otadieny
ouoyevomoinong divel 6T GUVEYELL:

o?(x?)

1 1
M/ M 1.1 1.2 1 N
= o x?)dQ ... dQ 17
o’ (x™) 19N Jon ™ U] Qlo'(:c, ;) (17)

o?(x?, % a?)

~~

¥
o (@, a;2M)

LUVETAOC, 0 EQPATTOUEVIXOSG XATACTATIXOG TVOXOG BLOOPPOVETOL (¢ EENG:

1 1
cMM)y =9

1 1 1 2 1 N
M o (x',a ;x%)dQ ...dS2 18
1T Jo = T S 7 ¢ ) (18)

~
N( N’ N. 1\4)

Egapuélovtag v évvola TN Un Yeouuxig UTOAOYIOTIXHC OUOYEVOTONoNg 800 Xhl-
MOXWY %o EMEXTEVOVTAC TNV OE EUPWAELUEVO UG TAUATO TOAAATADY XAUGXWY, UTOPEL
vo emiteuy Vel o extiunomn twv cuvolixwy Aooewv RVE mou anoutolvtan. e authv tny
nepintwon, 1 anoltnomn yia enovolopBavoueveg AUCES HETOED OTOLOLUBNTOTE TOTXOU CU-
CTAUATOS BV XAUIXOY TRETEL VoL Teoo TeVel TV oTNY TNV amolTnom yia enovaiauBavoue-
veg Aooelg petall xde dadoyixol Lebyoug xAwdnwy nou Beloxoviar midtepa and To
TeEyov Lelyos. O ouvohxde apldudc Acewv TROBANUAT®Y OplaxAC TWNE TOU amatTouVToL
yioo e Then AVoT OAOXANEOU TOU GUCTAUATOS BlveTon amo:

Krvp = kM + EM x BN 4 M kN o k2 (19)

omou Yo xde xhlyaxa s, o k* oplletan we:

s __ .8 s s
k* = Nint X Niger X Niner (20)
s

iter
0 opELIUOC TV ENAVEHCEWY

uE nf,; Vo elvon 0 apriuog TwV oNUElwY OAOXANPWGCNE GTO BLUXELITOTONUEVO GUCTNUA, 7
0 apriudc TV enavolfeny tng diadxacioc Newton xou nj, ..
N avdhuong.
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Eivou epgavéc and ty €. (19) du yio va exteheotel n thiene Aon tne uaxpodounic,
1 TOGOTNTA TV TEOBANUATWY Tou TEEnel Vo Autolv e€opTdtal dusoa and T GUVOALXY To-
cotnta Twv RVE mou neptypdgouy 1o olotnua TOAATAGY XAUdxwy xan CEQPEVYEL EXTOC
drayetplownv mhatciov oA yeryopa yior auavouevo aptdud xhudxwy. Katd cuvéneua,
auTH) 1 Btadxaoior xord o ToTon UTOAOYIG TIXE BUCETIAUTY 0XOUT] XAl VLol LOVTEAD UOXPOXAUO-
xog Youniig oxplBetag xon, g ex To0Tou, 1 €dpean VoS TEOTOU TaEdxaudng auTol Tou
TEPAO TIOU UTIOAOYLO 00 x0GTouG elvan {oTixhc onuactog.

Me Bdon o avwtépn, oTn cLVEYEL TNS SLoTELPBrC TpoTelveTon ol U TopeuBatixn oTea-
TNYXY UTOXATAG TUONG LOVIEAOTIOINONG, APLERWUEVT] GE TROCEYYIOELS UTOAOYLO TIXHC OUO-
yevonoinone FEN oe cuothpata pe todéc hipaxee (N > 2). H déa ebvon vo ypnot-
pomotndel piar oxohoudior Bodéwv veupwvixwv dixtiwy (Deep Neural Networks - DNN)
TIOU AVTITPOCWTEVOLY TNV LEROEY LN TWV SLUPORETIXDY XAAXWY GTO TEOBANUA TOMNAATAGDY
xhpdxov. Kdie vevpwvind dixtuo urodiieton otny exudinom tou Quoo) VOUOU GTNY
avtiotouyn xiipaxo urxoug Tou tpofifuatog. Iopduota ye to apyxd TEOBANUL dTou xdie
AemtoTERN MM TEpLEYETOL OE Uit Tito adeY| xAipaxa, T DNN mou avtitpocwnebouy Ae-
mtég xhfpaxeg mepiéyovian oto DNN nou avtinpoownedouy mo adpég xhipaxes. Yto téhog
e Sadixactag exmaldeuong, tpoxinTel €va eviado DNN mou pwpeiton tn paxpooxomixt| cu-
UTEPLPORE EVOWUATMVOVTIC OAOUS TOUS (PUGLXOUS Unyavionols mou evtonilovial oe xdie
plor amd Tic AemtoTEPES MAlHoxeS TOU TEOoPAfuaToc. AUty 1 TEOGEYYIOT EXUETUAAEDETOL
ThApLC TNV axpifela xau Tic duvatdTnTeC LoviehoTolnong Tou topéyouy to oyfuate FEY,
EVO TAUTOYEOVA EETEPVE TIC TEPAOTIEC UTOMOYLOTIXEC TOUG OMOULTHOELS. MUYXEXPUEVA, T
DNN eivan empopTiouéva Ue TNV expdinocT TUpUUETROTONUEVKY EXOOCEMY TOU XATUC TOTL-
%00 VOUoU o€ xdie xhlpoxa, XATL TOU ETUTEENEL TNV HOVIEAOTIONOT| EVOC EVPEDS PACUATOC
TV GUUTERLPORMY LAX0D. AUTO ETITUYYAVETOL UE TNV ETANENCT TOU EMITEGOL ELGOBOU
Twv DNN pe 1o oOvoho twv afféBonmv napauéteny hixol. Me authv tnv mpocéyyior, xdie
DNN evoouoatover tnv oféBoin ocuuneptpopd mou TeogpyeTon amd OAES TIC TEOTYOUUEVES
YAPOXES X TEAXGL LAl JOXPOOXOTIXY| XATUC TUTLXY) OTOXELOT) TOU EVOWUATWVEL OAEC OlU-
Téc TIc TAnpogopie AauPdveton uéow tou teAxol DNN. Me 1 oeipd tou, autd to DNN
UTOREL VO EQUQUOCTEL (W UTOXATAC TATO UOVTENO TOU UAIXOU GE OTIOLOBHTOTE HAXPOOOUIXO
oo TN xou Yior dtdpopa TEOPAA WAt TOAMATAGY eTtAloewY (T.y. avdhuorn guoncinoiog,
Behtiotonoinon, Mrebliovy emxatponoinon).

BUYAEXQUIEVL, TOL BHUOTA YLOL TNV XATAOXEVY) TOU EUPWAEVUEVOL oY NUATOC N XAUEXWY
ue ) Pordewa twv DNN eivon o axdroudo

e Egapudletan 1 Swdwacio Swdoyixrc opoyevomoinone olugpove ye v €. (7) xou
(9) o€ xdde Lebyog BLadoy Iy X MUIX®Y EEXVOVTAC od TNV AETTOTERT), dNAUdH TNV
1n xhiponco

e Opileton éva alvoho mopauétpmy/uetaAntedy tou xadopilouv Ty elcodo xou v
¢€odo tou avtiotoryou DNN. H eicodog mepihoyfdver ta ototyeio Tou dlaviouatog
Topa6EEHeNC TNy avéteen xhitoxa €2 evd 1 é€0doc eivan o avtioTolyo didvuoua
whone o nou mpoxinter and Ty diodixacia opoyevoroinone. Edv unotéooupe
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TEpATEPW OTL 1) AUGT| TOU GUOTAUITOS EMNEEACETAL Ad €VoL BLAVUCHUO TOUROUETEMWY
o) 1oy yapoxtneilouv Tov x0TaoTATING VOO TOL UMXOU GTNY AeTTETERT XX,
TOTE QUTESC OL TOPAUETEOL Yewpolvtan entione w¢ elcodol oto DNN.

e To cgantouevixé xotactatnd pnredo CP) yio wa ouyxexpyévn xatdotoon mo-
POHOPPWOTG 6(2), mou amouteiton oTic enavorfperc Newton-Raphson, urohoy(leton
dueoa yenotponotvtog Ty wévodo Automatic Differentiation (AD). Méow authc
EMTUYYGVETOL 0 UTOAOYLOUOC TV Topaydywy Tne eZ6dou o) oe ayéon ue tny eico-
S0 €?) equpudlovrac Tov xavéva tne shuciBoc oto DNN xai, enopévee, o oTotyela

(2) ’ ’ / 2) (2) 7 .
¢;;’ TOU HAXQOOXOTUXOU EPAUTTOUEVIXOU Vo c® = [c;;"] haBdvovton o

2
A2 6‘71(3‘) Ohy, Ohy

T Oy, ahk_l'”aeg)

(21)

omou hy, elvon 1 €€080¢ Tou xpLUPoL emESOL ki, Tou DNN yio tnv elcodo 65]2-).

e Metd tny emtuyn exnoideuon xou emoddevon, nhentdtepn xhipoxo DNN (xhiponco 1)
UTOREL VoL EQUPUOCTEL GUEGAL VLA VOL AVATUPACTAOEL TNV XU TACTATIXY OYECT) TOU UALXOU
unTeos oty enduevn xhipaxa (xAipoxo 2). H Swducooio emovohauBdvetar yior authv
v xApoxa 6mou dnuovpyeitar éva dedtepo DNN ypnowonowwvtag 1o Sidvucuo
(6(3),04(2),(1(1)) w¢ eloodo xau To dLdvuoua o) wc ¢Z0d0. Tw amhomoinom tng
onuetoypapiog, 1 elcodog (6(3), al?, a(l)) YEAUPETAL G (6(3), 64(3)), OTOU, 0T YEVIXT
nepintwon, G+ = (a(s), e ,a(l)) elvor 10 eMULENUEVO TORAUUETEIXO DLAVUGUAL.
‘Ouota, o epantopevixde tivaxae CB) eivan dueca ddéooc péow e AD. Eiva
onuoyTXd vo onuewwdel €50 6T To DNN tne dedtepne xiuaxag teptloufdver eniong
TIC TPAUETEOUS LUALXOU o) TNE TEOMNYOUUEVNE XAl we €l00d0, xadng autd Ju
TOU ETUTEEPEL VO XUTAYEAPEL T1 GUVORXT) CUUTERLPOEE TOou UAXOU, €ng To oruelo
auTO, 1) onola enneEedleTal TOCO A6 TNV TEWTY 6GO ot and TNV BedTERT XAipoxa.

o Auty n Sodwocta emavahauBdveTon YLor OAEC TIC XAUOXES UEYEL TN LOXEOXAUoXAL,
Omou TEAMXA xaTaAYEL o€ €va wovo TeAxd DNN mou evowuoatdver Oheg Tig TAN-
copopleg amd TIC YUUNAOTERES XAUOXES Xl ATOTEAEL TO UTOXATAC TUTO HOVTEAO TNG
HOXEOCKOTUX G CUUTERLPORAS ToU GUVIETOU UAXOU.

Q¢ emahHleuoT) TOL TEOTEWVOUEVOU CYUATOS UTOXITAC TAUOTC LOVTIEAOTOINON G, UEAETATON
éval 4-0uudxev povtého oxupodépatoc omhiopévo ue CNT. Apyixd, To DN N™CT gymon-
oedeTon pe oxomd TNV avtixatdotacn tou RVE tne wixpoxhipoxag, mou anoteAelton omod
towevtonacta xar CNT, yenowornowvrac o (€/™, at) we eloodo xou o o/™ we é20do.
Yt ouvéyela, To DN N™e:Sie oy avtimpoownelel to RVE tne henth pecoxhipoxac, dn-
hod TV TowevToxovia, exmudeteton ot Lebyn (€7, af™, at), émou hpa o DN N™CTO
Yewpeitow wg T0 LVAXO ufTeas pall ue Tor AemTd adpav) ¢ eyxhelopato.  H Siaduacta
enavahopfdveTon GAAT Lol opd yiar To DN Ne80:c0arse 1oy RVE tne adprc UecoxAoxag,
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TRAIN
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Tyxqpor 6: Awadikaoior ekmodevong oORPWVL e TNV TPOTEWOIEVT OTPATNYLKY. =EKWOVTOG

aTd TN HkpokAlpoka, éval veupwvikéd Siktuvo, pe dvopo DN

N™ero exmoudedeton vor pupeitol ™)

oUPTIEPLYPOP& T&OoMNC-Tiapadppwaone Tou RVE tne pikpokAipokac. To DN N™icre

XPMOLLOTIOLEITOU WG KATALOTATIKOG VOLOE TOU VALKOU TNG WATPLG oTn AETTTY) LECOKAILOLKOL KOLL,

otn ovvéxela, o DN NFmemeso exnondedeton yiow v pLpelton Tn cupmepLpopd

Tdone-rapapdppwone tou RVE tng Aemtrc pecokAipakog. H diadikaoion eavadapBdveton

GANT o @opdl yiow TNV adph ecokAlpLoka OTTOU SLoYLopPOVETAL TO TEALKS dikTuo

DN N€oarse;meso oy evoWUATOVEL e ETUTUXIOL TN OUVOMKT oUUTEpLPopd Tou oivBeTou VALKOY.
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Tyxfdpoe 7: (o) lepapyikh katoeokevn Twv vrtokatdototwy povtéhwv DNN ko (B) Emkowwvio
TWV KALAK®WV XPNOLULOTIOLOVTAG TO TEALkS DN NE80:€00TSE (e 1oy KATLOTATLKO VOO TNG
MoK POKALLOLKOLG

10 ornolo elvon T0 TEAXSG DNN 1ou evowpatdvel oha to tponyoluevae DNN xou avtimpoow-
TeVEL TNV XATAoToTIN oYéan Yiol To TEOBANua poxpoxAipoxag. H Swduacio exnaideuong
amexovi{eton 6To oy 6 xor To TeEAXO amoTéeoua TG Sladxaciog oTa oy fuoTa 7o o
(°8

Tot Ty tepoutépn avddelln twv BUVATOTATOY TNE TEOTEWOUEVNS Uetddou exteleltan Uiat
avéhuor evaoinoiac (Sentitivity Analysis - SA) xou eldixdtepor pia xadohxry avéiuon
evatonoiog ye Bdon Ty Stocduavor oto e€etalduevo ovtého. Luyxexpyéva 1 SA epap-
poleton yior extiunon TN evotcUNoiog TV XATACXEUDY TOU ATOTEAOUVTAL TG OXUEOBEU
omhiouévo pe CNT 60wy agopd Tic TopadéTeoug LALXOL oTn wixpodour. Ed®, n SA exte-
Aelton oTIC ToEoPETEOUS TOL HovTERoL ThaoTixdtntag Drucker-Prager, dnhadn, tov cuvte-
Aeo T TEBHC @, TOV CUVTEAEG T BLUGTOANG 1, TNV aEyix) GUVOYT Co XAl TOV GUVTEAECTH
oxhfpuvang H, o oxupddeya onhiopévo pe CNT. O mopduetpot tou povtéhou cuuBoiilo-
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vion oMY we &M = (¢, 1), co, H). Tt ouvéyela, n SA amodidel o extiunon yio to
¢ N of3eBandtnTo BrodideTon GTIC BLdPOPES XAUOKES TOU UOVTENOUL Xoi EMNEEALEL T1) LOXEO-
oxomxh ombxplon. Y& authv T p0dpon, o wovtéro M = f(¢p, v, co, H) = f(&™M) unopel
VoL AVTLTPOCWTEVEL TNV TOCOTNTA EVOLUPEQOVTOG, T.Y. WL HETATOTLON OF i OedopEvn Véon
TNG HOXPOOXOTIXNE XATAOKEVNS, 1) oTtolar AoquBAveTon UETA TNV EMLAUGT) TOU XUTACHEVIG TIXOU
npofMparoc pe o oyfua FEL. O otédyoc etvon vo aZoroynidoiy ot deixtec evaoinoioc S;
xat oL ouvolxol detxtec ST, v i = 1,2, 3,4 mou avTioToly o0V GTIC TECOEPLS TUPAUUETEOUC
TOL POVTENOL @, 1, co, H, avtiotoyo. T var yiver oautd, mpénet va mopaydolv K - (d + 2)
derypartohnbicc and to Taupapetpixd didvuoua {&M fi(ld +2) CUUPOVOL UE Ui TRoXooplouéVN
xatavour| mdavotntog, 6mou to K eivon cuviieng tng TEng Ty 103 = 10° oltwe hote vo
ooy dolv 0EIOTIGTES EXTWAOEC TwY detxtdy suacdnoiac xu d = dim(&M) = 4. Tw
xadepla amd QUTES TIG TEQLTTAOOELS, TO TROBANUN LoXEOXAUoXAS AVVETAL TOOXEWEVOL VoL AT

pdolv ol amoxploeic {./ﬂi}iK:'EdJFQ) xon vo umohoyotolv T f(Rj), f(Q(j5)) xou f(Q%)(j)),
ormou R, Q xaw Qr cvan ot derypotixol mivaxec. ’

AopBdvovtog unodn TNV mtoAuTAoxoTNTA TOL povTEAOL, Yivetal TEogavée OTL aUTHC O
TUTOC avdAuomng Vo oy UTOAOYIOTIXG. U] TEAYUATOTOW|CWOS UE (Lol HUEST] EQOQUOYT] TOU
oyfuotoc FEY Qo1600, 10 TpOTEWbUEVO UTOXOTEOTATO OYud LOVTEAOTOMONC UTopEl
va. yenotponoinlel yior vo emitary OveL Tig enavaioufBavoueveg eMADOELS LOVTEAWY Yol BLdpo-
PEC TMEQLTTOOELS TWV TUEUUETEWY ¢, 1, co, H. Mo oynuatins avamapdo toor Tng dadtxactiog
SA oe wa yevixr avdhuon ToAATAOY xAudxwy vofondoluevn and ta DNN areixoviCeton
oto oyfua 8. Xiugpova ye autd, K - (d 4 2) derypatoindiec tou mopaueteixol dioaviouo-
toc {&M }£§d+2) OnuLovEYoLVTOL UETH amd Lol XodoPLOPEVT] TWIOVOTIXT XOTAVOUT] Xol YLot
xadepla amd QUTEG TIC TEQITTWOELS TO TEOBANUA paxpoxhipoxag emthdeTon Yior var Angdoly
oL anoxploelc {J%i}fi(ldJrZ). O em\boeic povtéhwy K - (d+ 2) mou eivon amopaitntes yio )
LYo TNS SA oVOUEVETOL VoL EXTEAEGTOVY GE TROGLTO UTOAOYLO TIXO YpOVO, xad®e To Te-
Jxé DNN, 8rhadh 1o DNNY | éyel avtixataothost 1o oxp3é FEN unohoyiotind oynua.
Aol culkeydoiv ta delypoarta xou mpayuatonondel n SA, uropolv va oy doly xploiua
CUUTERUOUOT VLo TIC TUPUUETEOUS TOU OVTEAOU TOANATAMY XAYIXWY TURATNOOVTOS TG
enneedlouv TNV €000 TOU HOVTENOU.
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Iyfpee 8: Avddvon svauoOnoiog oe oOoTNUE TOMATADY KAUAK®OV ETUTOYUVOUEVT alTtd TO

TLPOTEWOIEVO UTLOKATAOTATO WOVTEND. To TPOPANUAL okpOKALLOKOLG ETLAVETOL YLOL TLEPLTITAOELG
K - (d + 2) tov Stawvbopatog mapapétpwv &M . H avtiotowyn é€08oc povtélov {./l/ti}fi(fl+2)

pTtopetl vau utohoyiotel amoteAeopatikd PAosl TNG TPOTEWOUEVNC EVOANKTIKNAC OTPATNYLKNC

povtelomoinong. Xtn cuvéxewa, oL Seikteg evaoBnoiog Twv Tapapétpwy Tov VALko) puropoiv

VO UTLOAOYLOTOUV £0KOAX ECW OTAUTLOTIKYC LeTo-eTieEepyaLoiog.

Yy emouevn @don tng dlatefrc mapouctdletar €va xouvoTouo Thalolo Behtic tomoln-
ONC YL TOV EVIOTIOUO BEATIOCTOV TUTOAOYLOY LA Ue oToy0 TN Beltiworn tng douxrc
anoxpelong UTo TNV Tapoucia oeBatoThTwy. Yuyxexpyéva, eéetdleton 0 BEATIOTOC TEOCO-
vatohopog Twv CNT oe povtéha oxupodéuatog evioyuuéva ue CNT. Yuvenoe, ot yweixég
yovieg Twv CNT €youv Tov pOho TV UETABANTOV GYEBLIGUOV OTO CUYXEXPWEVA TEOBATUL
Behtiotonoinong. Auth 1 ouyxexpiuévn tapdueteog Exel anodeyVel 6Tt tallel xplowo poho
oTnV an6door) tou ohvietou UAoL. Tlpog eniteuéng wag tétola diepedvnong, we pédodog
Behtiotonoinong yenowonoteltan 1 uédodoc Covariance Matrix Adaptation - Evolution
Strategy (CMA-ES), n omola xode dev Pacileton oe mopaydhyous xadiototon teovy| vo
YetploTel un xupTd TeoPAruata cuveyolg BeEATIoTOTOMONE Xou Eivol XATHAANAT] Yiot UTOAO-
Yo T axp3d apriuntixd povtéia. Me autr tn pedodohoyia yiveton duvatr n eepedvnon
Bértiotov npocavatolouoy CNT oe xdie Véon tne paxpoxhipaxog twv eEeTalOUEVLY Uo-
VIEAWY UE OTOYO TNV ehayloTononon TN duvathc cLVoAhc petatomong. [poywedvtag
éva Brua Topamépa, TNV TEOCTAVEL ToEOY NS ULoC Lo 0pYoAOYIXAC Xt O TYBUEHC TEOCEY-
yiong, Aopfdvetan eniong unddn 1 TuyOTNTA OTNV EEWTERIXY POPTION TNE LTO BlEpeEbYNON
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XATUGHEVHC O ETOVOBLATUTIOVETOL TO TEOBANUA 0TO TANUGLO TNE OTOY Ao TXHC PEATIoTOTO-
inong. Xden otov utohoyloTid unyoviopd e aAinhouyiog DNN mou avartiydnxe otny
TEONYOUUEVT HEAETY), YIVETOL EQXTY| 1) BEATIO TOTIOINGT) TOU UAXOU UE YVOUOVA TNV ambd00T
NG xaTtaoxeunc mou yopaxtnelleton and oxupddeua onhiouévo ue CNT. ITio cuyxexpiuéva
OVATTOGOETAL EVOL LOVTERO 3 XAYGXWY YL VOL AVATORAC THOEL TO EEETALOUEVO UALXO ol 1)
eniAuom Tou emTUYYAVETAUL UECW TNG OVATTUENS TOU XATIAANAOU LERUPYIXOU GYAUATOS oo
DNN pe ot6y0 Vv mopdxoudn tng eEXTEAEONS TNS U1 YROUUXAC UTONOYIG TIXAS OHOYEVO-
nolnorg.

‘Eotw U 1o yadnuatixd goviého tou und dlepebvnon douxol cuotiuatos. Acdouévou
OTL OTIC TEPLOCOTEPES TEPLTTWOELS TEOXTIXOU EVOIAPEQOVTOS TO HAONUATING UOVTEAO OEV
umopel vo e€ay el avolUTIXG, 1) O XOWT| TROGEYYLON EVOL 1) AVTIXATACTAUCT TOU UE éva
aprdunTxd poviého U, mou ouvidoc hauBéveton ue FEM. Ané autd tnv dnodn, To U € RY
elvon évar SLdvuoua dlaotdoewy d mou avtioTtotyel otoug d Poduolg eheudeplog tng FEM
olaxpitonoinone. Emmiéov, edv n xataoxeur| umdxertow oe cuvirxec Tuyaiog QoETWOTNC,
ToL exPEAloVToL UEGL TOU T-BLAGTATOU TUY oL BlavOCUUTOS g, UE TO T Vo eivon o aprdudg
v Tuyainv yeToBAntoy, tote U = U(q). Emniéov, n Souxn andxpion ennpedleton omd
TO OLUOPPWCT) TOU LALXOU GTNY UixeOoXA{Uoxa, ToU 0Tolou OL LOLOTNTES TUPUUETEOTOLOVY T
olugova pe tov tpocavatoloud twv CNT, 0 := 6 = (6,,0,) pe 0, € [0 pi] v nohxy
yovia xa 0, € [0 27) 1o alwolvdo, 6nwe gaiveton oto oyfiue 9. Enopévwe, to tehixd
povtého umopet va exppactel we U = U(q, 0).

v

Txfpree 9: Mohkh yovia 6, ko alipoibio 6, Tov xapaktnpilouv Tov TPOCAUVATOAOUS EVOG
CNT otov tplodidotato xopo

It vo Smutovpyniel puo Bdon avagpopds, e€etdleton apyxd 1 TEptTwor TARPOUS amou-
olag CNT otnv towwevtoxovia. Autd cupfaiver eneldy| otdyoc elvar 1 allohdynon tng
CUUTERLPORAS TOU GLUPUTIXOU OXLEOOEUATOC o8 GOYXplon Ue To omAiloyévo pe CNT. E-
TOUEVWC, TRAYUATOTOLEITOL €VaC PEYAAOC aprduog, Nyef, DELYUATOAMPLOV G, ...\ GN,,, X0
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eEXTEAODVTOL OL AVTIG TOLYES TTROCOUOLCELS LOVTEAWY U= U(qg) yiwi=1,...,Npes. X1
ouvéyela, utohoyiletal 0 p€oog GEog xal 1) TUTLXY ATOXALCT OO AUTO TO GTATIOTIXO delyua

we:

N’ref
1
E[Uref] = U; (22)
Nref ;
ref
(UZ - E[Ure ]) © (UZ - E[Ure ])
StdUyes] = | D o ! (23)
i=1 re

6mou 10 ® uTodNAWVEL To Ywvouevo Hadamard. Yrohoyiletan 1 uéon cuvoliny| mapauoe-
puon NG xatooxeunc, A, xou N TUTX améxMor, S, ue Tov xavova Lo TV mopandve
OLVUOUATOY, ONADY),

A = |[E[Uyef]|l2 (24)
S = ||[Std[Uref]H2 (25)

To mpéfBinua ctoyacTxrc Behtiotonoinone opileton otn ocuvéyela wg e€hg: Ta éva
oedouévo xhdopa Bdpoug CNTs oo xoviowa, avalntodvtal ot TiwéS Tou BlavOoUATOS Oy E-
dloopol 8 = (6,,60,) Tou ehayloTonoy 10 cToduouévo dipotoua Tou PEcou Hpou Xl
NG TUTLXNG AMOXALONG TNS CUVORLXNC TURAUULORPOOTS, XAVOVIXOTIOUNUEVNS OO TIC AVTIoTOL-
YEC TS avopopdc mou divovton amd Tic €€, (24) xou (25). Autd umopel vo exgpaoc el
pordnuoTind wg e€ng:

E[U] ,  Std[U]

M S
)

6" = (9;, 92) = arg min 29176[0 7],0,€[0 Qﬂwl

= arg min 29,,6[0 7],04€[0 277}3(9 (26)

ue £(0) = wl% + wg%[m Tou dnhovel T cuvdptnon anwiews (loss function).

Y70 televTalo oTAd0 TNG OtaTEdC TeoTelveTon plar VEo u€Podog Ylol TOV TPOGOLOPLOUO
TWV IBOTATOY TWV UMXOV GE GUC TAUATE TOAATAGOY XAUIXOY HEGEW BEBOUEVKDY TTOU TEO-
€pyovIaL oMo ETEPOYEVY| TELROPOTIXG oevdpia. To mopouctlalOUEVO UTOAOYICTIXO OY U
EYEL TNV BUVITOTNTA VAL CUYYWVELCEL BEGOUEV TIOU amoxTHINXAY amd TELRGUATO ToL OTtolaL
Tparypotomotinxay oe UAxE dlapopeTinfic cOvieong xan umopel vor GUUTERLASPBEL UETEY|OELS
TOU €YV OE OLAPORES XAUUXES UNXOUC, EMITEETOVTAS T1) CUC TNUATIXT EVOWOUNTWOT] TOA-
ANAUTAWY TELUUATIXWY TYOV OEDOUEVLY OE VAL EVOTIOINUEVO UTOAOYLOTIXO TAxloto. Tl var
emteuydel autd, yenowonoteiton n pédodog Transitional Markov Chain Monte Carlo (TM-
CMC) o derypoatorndio omd tic TeptimPLOTONUEVES EX TWV UG TERMY XATUVOUES TOGO THV
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TUEUUETEWY TOU UOVTENOU TOAATAGY XAWAXWY OGO Xl TV IEQUOYIXWY UTEQTIOROUETEWY.
AuTtég oL UTEPTUPAUETEOL YENOLWOTOOUVTAL OTY CUVEYEL Yidl TNV EEXYWYT] EVIUEROUEVHDY
QUOIXWY TIUPUUETEWY, OL OTIOlEC UTopoLY Vo Yenowonoindoly yia ueAhovtixég npoPBAédeic
HOVTERWY.

"Eotw éva oivoro dedopévev D = [DY ..., DX] ye D' = [d"!, ..., d"Ni], mou neploy-
Bdver petprioels (Bnhadn pnyavixéc amoxploelc) mou AouBdvovton amd évay oprdud K ave-
Edptnrwy mepapdtwy. Kdde i nefpopa oplleton oe éva medlo QF xou meprypdpeton amd évav
CUYXEXQEVO GUYBUOPS GLVORLIXGY GUVITXEGY D xan civieong UAXOU. Y70 Thaioto Tne
aVAAUOTG GUVIETWY VAXMY, QUTE To TEWRAUUUTIXG GEVAQLA UTOPOUY Vo TEOGOUOWW YO0V amd
oL avTioTOLY Ol UTOAOYIOTIXG OVTENA TOAATAGY xhudwy MY, ..., MK oy yenowwonoto-
OvTon 1o Ty TedPBAEdT Souxdv amoxploewy ml, ..., mE chugeva e o tepapating Sedo-
péve. Kéde poviého JM* yopoxtnplleton amd wio povadin oOvieon UAxoD, Yo Topdderyuo
HE O PORETNG oG XAYIXWY UxoUE, avouold oOVIEST 6 OAES 1| €VaL UTOGOVORO TGV
YAV uixous, x.AT. Katd cuvErela, 1 TapaueTEOTOiNoT QUTWY TWV UOVTEAWY YiveTo
péow evée dlaxprtol cuvdhou B, we B° = (61, ..., Hgi], TOL TEPLAOUPBAVEL Lol GELRS PUOIXAY,
TOTOAOYIXOV 1] XATAC TATIXDV YUQUXTNEIC TGV Yia xdde xAfpaxa uhxoug s = 1,...,.5; Tou
avTioToL 0LV CUCTAUNTOS. XE TOMEG TEQITTWOELS, VA UTOGUYOAD QUTMV TWYV TUQUUETOMY
€9' C 0, uc ‘0' = [0, ..., CBiSi], UTLAEYEL OE OAOL Tl UNXAL LOVTERA TOMNAAUTIALY XALLEX WY
ToU BlepEUVAOVTOL, TEdYH Tou onuaivel 6t BT N ... N K =9t = ... = ‘6K = 0.

Q¢ ypapun avanapdotacy Tou cuvokxol TeoPAfuatoc To oyfua 10 amewovilel éva
GEVAQLO TELOY UOVTEAWY OTOU TEETEL Vo OLepeLYNIOLY Ol TUPAUETEOL WA CUYXEXQULEVNS
xhipoxoc. H iepapyin) otpatnyin) Bayes, mou cuymhnp@veton and Tic UTEPTAURAUETEOUS 1P,
ETUTEETEL TNV OVOLY VORLOT VEWY QUOIXWY TapaéTeny ‘0™ ue aiomioto Teomo. Me 1 oelpd
ToU, Ta @™ umopolv va Sleuxohivouy Texunelwuéves TpofBrédelc Y™ oe xawvolpyia
CUGTALOTA TOAATAGY xAudxwy.  Elvor onuavtixd vo toviotel 6Tt oL TNy OedoUEVKY
€YOLV TN BUVITOTNTA Vo TEPLAoPBAvoLY €var EupD PACUO TEWAUUATWY TOU OLlegdyovTo OF
OLdpopeg wAuaxeg uixoug. AuTd To TELHUOTA, VLo TOEAOELYUd, UTopel Vo TtepthauBdvouy
UETENOELS UETATOTIONG OTT) LOXEOXAUOXAL, YopaxXTNEIOUO ToToAoYiag 0T uEGOXAiaxo UEGH
EXOVWY TIOL TpogpyovTon pEow tne edddou Scanning Electron Microscopy (SEM) A
e€aywy1| TedlOV TUPAUOPPWONS GTNY UXEOXA{HoXA yenowonoldvtag Ty Tteyvixy| Digital
Image Correlation (DIG).
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Tyfpee 10: Mpotewdpevo mAaiolo yia TV emikoupoToinon Tapopétpwy ko Tn Siddoon tng
afeBoudtnroc Twv Kowdv WoTHTwy ‘0 Tou evtomilovtal ot P oelpd oTd Tolkiec
TELPUPATIKES BLALOPPOTELS, OTIWE éva MovTého M Sokiyuic kK&uPne ae evioxupévn Sokd
KOTOLOKEUALOMEVT aTtd oOVOeTO UALKS, povtédo J2 Pnplokiic etkdvag pikpoSopnc evéc dAlou
oOvBeTOU LALKOY Kot povtédo JM3 Selypotoc pdBdou evdc SlapopeTikol oivOeTovL.

Ye TéToleg MEQINTOOELS, 1) ¥Aacoixy) Mrebliavn emxonponoinon ot Tn GUVOAXT| Ue-
T3AntéTnTa. Autd ogelletan oTo OTL TelvEl Vo avTiTpooKTEYEL UOVo TNV «afBefoudtnTa
extiunong mopopéTewyy xou Oev elvon oc Véom va utohoyioel TNV eEwTepX UETABANTOTN
ToL UETOEY TWY GUVOAGY BEB0UEVLDY. ATy 1 LETABANTOTNTA LUTOBNAGOVEL TNV afefondTnTa
mou dev umopel va tocotxonoinlel pntd oTn BlatiTWoY Tou TEOBAAUNTOS AdYw ENkeLdNg
YVOONG OYETIXA UE TIC CUYXEXPLWEVES GUVITIXES Tou Telpduotoc. Aaufdvovtag unddn autd
Toe upnpoTa, Yiveton n emhoyT wiog tepopy e Mrebllioviic mpocéyyiong yior Tn SLopde(pnaon
NG TEOTEWOUEVNS CTEATNYIXNG.

Me Béon 1o epopyind mapdderype Bayes, x&de oivoho dedouévav D mou hopufdvertor
and plor povodr) metpouatixy) pliuon eletdletan Eeywpeiotd. o xdde pla amd autée, ol
xowée Tapdpeteol 8 éyouv évay Eeywploté oplopd e B, Auth 1 Bidxplon elvor amopo-
ftnTn ol aUTEC oL TOEAUETEOL, oV Xat EYouv TNV (Bl YuoLxY| onuacia YETAL) OAWY TwV
GUVOAGY OEBOUEVWLY, UTOPOUY TEMXY VO AVTITROCKWTEVOVTOL O DLUPORETINES TWES AOYW
e efwtepiniic uetohntéTnTeg. Oewpeiton tepoutépw 6L xde O efoptdton amd wia oelpd
UTEPTAPAPETEWY 1P, Tou cuuPolilovtar we P(O%1h). Autéc oL mopdueTpol Yenotuonoto-
DvTon Yo VoL Toipéyouv 610 padnuatind mhaioto Ty aiodnon ouyyévelag uetell twy 0% v
i =1,.., K xou yia va AdBouv pntd umodm Tic SlapopoTOLCELS TOU LOVTEAOL GTaL avTloTOLY A
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coUVOAa 6EBOPEVLY. Ol UTERPTUPAUETEOL OVTITPOCWTEVOUY YEVIXA O TUTIO TIXES TUPUUETEOUC
o mpoxadoplopévng oxoyEvelag xatavopdy. To xhaowd Mrebliovéd npdBinua tou tide-
tou oty €€, (11) avoblaTuTMVETOL OTNY LEpoEYIXY| ToEahhay ) ¢G:

Y (O'lyp) =m'(@'lp) +€e  i=1,..K (27)

AvtioToya, n and xowol ex Twv LOTEPWY xaTavoUY| EXPEAlETAL UECK TOU VewphUaTOg
Bayes w¢:

K N;
0.910) = PPOEEREE [ T] [Pl pee) gy 29
=1 j=1

6mou P(1h) elvon 1 ex TV TROTEPWY XOTOVOUT| TWY UTECTUROUETOWY.

[N va amogeuy el To aclugpopo uTohoyloTixd x6cTog g ancuieiog Seryyotoindiog and
™y and xowvol xotavour tne €€. (28), mpoteivetan évag evolhoxTtixds TedTOC Slaboyinhc
oerypatoinlog.

To npwto Prua etvon 1 derypotohndlo amd Ty TepLiWELOTOINUEVN EX TWY UCTEQWY XATO-
VoY) TWV UTERTOEUUETEWY TOU HOVTEAOL, 1) omtolo opileTon w¢:

K
— 1,71t 7 7 (¢)
P(y|D) = QeP(D|0) CI% d0 1;[1[/9]1'[1 (d7|6")] P(8°|) de] (D)
(29)

OTOU OTNY TRV EE(CWOT Yenotponotinxe To YEYOoVOS OTL 1) cLVAETNOY TavoPdavELIS

P(D|y) noipver tn poppt:

P(D|y) = ﬁl[/ I (P

91]1

0] 91|¢)d9@] (30)

To ohoxhfpwua g €€. (29) pmopel vo utoloyioTel xotd Teocéyyion péow derypotolndiog
Monte Carlo:

K Ngi
PD) ~ ] [Nle ZP(e,im)} ]f((;?) (31)
=1 k=1

[No voo mporypoatomoindel auty| 1 oAoxApwor), TEETel TeMTa Vo cUAAEYoUV delyuota
and %x&de ouvdptnon mdavopdvelae P(D6?) tou oyetileton ye o poviého M:. ‘Otav n
TMCMC yenowomoteiton wg puédodog derypatondiog yio plo €x Twv UoTEPWY XATAVOUT),
To opyx6 Brua elvar vor cuMeylel wa TooOTNTA BELYUSTWY Omd TNV EX TWV TEOTEQWY
xatavour). Egocov otnyv moapoloo meplntwor| n derypatondio yivetow ameuvdelog and tny
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P(D'6"), évac elxohoc tpdmoc Yior Vo avamapay Vel 1 Tumer| ahyoptduxd diodixacto tne
TMCMC eivan va yenoytorotndoiy Bondntinés oUolONOPPES EX TWV TEOTERWY XATAVOUES
P(6°) vty opyixh derypotornbio ond Ty xdde xotavour P(D0). Tio vo amopeuydet
1 €loaywyt| onolconnote uepoinioc otn ddactia, Yo meénel va emheyel To %xATWOTERO
OPLO Uy KO TO AVADTERO OPLO Uy TV TRONYOVUEVLY WUgi (Ur, Uy ) AEXETE €UPL Yiar VoL XoAUPEL
70 detypo Tou Ywpou x&de B Tou opiletor amd v P(D'6%).

H meprdoplomotnuévn xotavour| ToV EVNUELOUEVDY TUPUUETOWY TWV UOVTEAOY TOAAA-
TAGY XApdxwy ™Y mou Aopfdvouv unddn Gha ot GOVOAA BEBOUEVWV XL UTOPOUV Va.
eQapuocTolV ot YeMoVTIXES TpofBhéelc exppdleTta wa:

PO"D) = [ P(O""4)P(|D)dv (32)
2
H npooeyyiotixh Moon e €€. (32) yivetan ye ) dnuiovpyio o tocétntog Serypdtwy
P péow g eunetpixrc xotavophic P(1p| D) nou hoyPdveton and v €€. (31), we e&hc:

Ny
P(""|D) =)  P(6""|4,) (33)
k=1

Ity naporywyn deryudtov oand my €. (32), yenowonoteiton Eavd o ahydprduoc TM-
CMC, 6mou otny neplntworn auty| N apyxt| detypatoAndla exteheiton 0TNY € TV TEOTERWY
xatovour TV uTepTapapétewy P(1). Aviideta pe ) derypotohndic and v P(DY6Y),
n €. (33) avuinpoownevel wa @UNvA utoloyloTxy| dradixaota, xadoe dev ypetdlovton
AVOAOGELS LOVTEAWY TOMAATAGY XALUIX Y.

Aol ngiel n ex v voTépwy Tlavoroy| pop®h Tou 8™Y GUUPKVL UE TO LEROEYIXO
oo Bayes , autéc ol nopduetpol unopolv ot GLVEYELX Vo YenotdoTolniody Yo OToLo-
0fjmoTe avdhuo Blddoone aBEfouldTnTaC OF UEANOVTIXES TPOCOUOWOELS Y Y dTwg pabveTon
oto oo 11. Autéc ot doxuég Vo umopoloay vo Tpayatonotdody GE xavoURYLo DALY
GUG TAUATO TOU TEPLYEAPOVTAL EV UEEEL ATd TIC ETUXAUEOTOMNUEVES TapauéTeous. H mocodtnta
evdLopépovtoc (T.y. uior dopxy| amdxpton) Yy vrnohoyiletou we:

Qgnew
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'\I) Q unknown variable —p variable dependency
(inference)

D observed variable >variable dependency
(propagation)
‘ ‘
i
D,i=1,...K
y —Y

Tyfwo 11: DAG tou Lepopyikol tpoPAfuatoc Bayes

To mpotewoduevo TAUGIO EQPUPUOCTNXE GTNY BIEPELVACT] TWV UNYAVIXOV WOLOTATLY NG
oemapric Twv CNTSs, cluponva ye Tov xotaoTatixd vOUo mou €yel oploTel oTo oyfud 2,
o€ SLOPOPPWOELS TOWEVTOEWOWY LAXwY. [ vo mpaypatonomdel n tavutonolnon twv mo-
PUETEMY TOU UAXOU Tou epeuviinxay, eAf@inooy To amoTEAECUAT AO OLPOPETIXS. TEL-
edpotar Tou avax TNy and TN BiBAoypapio. Autd tepioufdvouy éva Telpouo xdudng
3 onuelwv evog delypatog toevtonactag evioyuuévng ue CNT, éva melpoua eperxucuon
Tou Tpaypatonotfinxe o pdfdoug totuevtoxoviag evioyuuévey pe NT xau évo melpoyua
xdudng 4 onueionv oe wa doxd oxvpodéuatog evioyupévn ye CNT. T tnv tpocopoinon
TWV TERAUATWY avamTOYOnxay Tar xATEAANAAL LOVTEAN TOAAATALY XAYGXWY XOL Yiol TNV
eniAuom yenowonotfinxe 1 TEYVIXH TS EUPWAEUCTC GToL TAXLCLAL TNG UTOAOYLO TIXNS OUO-
yevomoinong. H teyvixn urtoxatdo tatng poviehononong uéow tne avdntuing ahhnhouylog
VEUPWVIXWY TIOU TEOTAUNXE O TEONYOUHEYN UEAETY amodelyUnxe amapaitnTn yior TNV dpo-
oTN PElwoT Tou utoAoylloTixo) xocToug. To Bruota tng adyopriuxrg dradxacias Tng
TEOTEWOUEVNC HEVOB0U TopouctdlovTon TopoXdTe.
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Input : X0volo Seryudtov exnaldeuong n, cuVoMxEC TEOCUVENTELS T Xau
unepnopdueteol FENN. Topouetponomuévo VAIXE HoVTEAR TOAAATAGDY
Oy M), tponyoluevee xatavopée P(1h) xou P(0%). Sivoro
derypdrwv N9 xou tapapétpwv TMCMC k% xon 8. Y0voho detypdrov
NY xou mapapétooy TMCMC k"% you f7e,

Output : evnuepwpévn xatavour] 1wy Topauéteny P(0"Y|D), evnuepwuévn
xatavour] Twv Tocothtwy evilapépovtog P(y""|D)

Offline Stage:

for i <~ 1 to K do

for j + 1 to S; do

Anuovpyio xou amodixevon Serypdtwy exnaidevone {{€;+1}1:, é;}ln

Enfhuorn tou mpofiruatog oplaxhc TWAS TNG xhlponog 5

Anodfxeuon twy tdoewy and tny enihuon {{o 41}t

Exnaidevon tou FFNN fJN N,

Arnodxevon tou FENN f]NN’i;

end

end
Online Stage:
for i <~ 1 to K do
Anuoupyia Serypdtwv and tny PYN(D0Y) o
{67}, yoi < TMCMC(p(6"), PNN4(D'0"), N*, k*, B7):
Anodfxeuon derypdtwv {0'} e xou dedopéva cuvdptnone miavopdvelog
PNN,z(DzHOZ}l:Nm)
end
Exzlunon P(4|D):
Anuovpyia deryudtwy and tnv P(9P|D) oc
[$howe & TMCMC(P(), P(DJ), N¥, k¥, %)
Extiunon P(6""|D)-
Addwon e ex twy votépwy afefaudtntac P(y"e"|D);

Algorithm 1: Alyébpwluoc tng mpotevouevne yedodoloyiog YL ToUQoUETEL-
%1} OLEEEOVNOT ETEPOYEVY UMDY HOVTEAWY TOMATAGY XALUax®Y xdvovTog
YEY|07) UTOXATAC TUTNG HOVTEAOTIOMNONG
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Introduction

The need for advanced high-performance materials is undoubtedly one of the main drivers
of today’s innovation in industry and research. Over the past decades, several new
technologies have emerged for the development of materials with enhanced properties
(mechanical, thermal, electrical) based on appropriate modifications of their composition
in finer scales. For instance, carbon nanotubes (CNTs) have been extensively used to
improve the mechanical properties of polymers [127, 43] and cementitious materials
[67, 68, 142], graphene oxide to enhance the electrical conductivity in polymers [78] and
graphite nanoplatelets to enhance the thermal conductivity on epoxy-based composites
[143]. Even though the addition of appropriate fillers provides the means to create high
performance materials with targeted properties, yet, the resources required to study their
behavior experimentally greatly slow down the progress in this field. In this regard, a
promising approach towards replacing the experimental procedure is given by simulation-
based material design that could drastically reduce the time and cost required for the
characterization of these elaborate materials. On the downside, accurately modeling
their behavior is a remarkably challenging computational mechanics problem due to
the complexity of the physical phenomena spanning across multiple scales, such as the
nanoscale, microscale and mesoscale, as well as the uncertainties associated with the
individual material parameters and microstructural geometry.

To tackle the intrinsic limitations that characterize experimental procedures, several



computational techniques have been developed capable of accurately modeling complex
composite materials. The most notable are arguably the multiscale methods [85],
according to which the system is decomposed and defined in a number of distinct length
scales. Each of these scales has its own material ‘genome’, i.e. individual topological,
geometrical and physical properties, such as the different material phases, the interaction
between them, their concentrations, spatial distributions, dimensions etc. The material
‘genomes’ can vary significantly between scales and, in this respect, dissimilar and
scale dependent physical phenomena can emerge. The concept of multiscale mechanics
consists of identifying appropriate relationships to bridge the various length scales and
quantifying these dependencies. This is done either straightforwardly by defining all the
scales on a single system and introducing ‘handshake’ regions between them or with
the introduction of a representative volume element (RVE), which is a system that is
decoupled from the main model and constitutes a statistically representative realization
of a specific scale. Linking the scales in a hierarchical manner i.e from the finest scale
and upwards, the so-called homogenization takes place, which is an averaging over the
field variables of the RVE of a specific scale.

Early homogenization-based multiscale approaches provided approximations of the
effective constitutive behavior of multi-phase materials via analytical or semi-analytical
relations [33, 89, 21, 53]. Although these could provide a sufficient representation of
the material in the linear regime, they tend to behave poorly on non-linear materials
that construe complex physical phenomena. More recent research approaches were
based on solving a boundary value problem posed at the RVE configuration. In this
context, resulting methodologies can either correspond to algorithmically sequential or
semi-concurrent procedures. In sequential procedures, the constitutive responses are
predetermined from offline RVE solutions [114], while in the semi-concurrent procedures
a nested scheme is used to establish a constant communication between the different
scales during the solution. One of the most notable frameworks that implement a nested
scheme is the F'E? algorithm, which is based on performing finite element analysis on
both scales of a two-scale system [118, 71, 35, 70]. The nested approaches are considered
to be most accurate for predicting the evolution of a system through different stages,
however, a major downside is their immense computational requirements, which in many
cases can be prohibitive.

Despite the tremendous advancements in computational power nowadays, the applica-

tion of nested computational homogenization schemes on multiscale material systems



remains a computationally challenging and, in many cases, intractable problem. An
efficient way to combat this issue is via the development of surrogate models which are
simpler mathematical constructs that aim to replicate the input-output relation of the
original equations through a training procedure. In the context of computational material
mechanics, surrogate models have been extensively used to learn non-linear constitutive
relations such as hyperelastic laws [60] or more complex history dependent relations
such as plastic or viscoplastic laws [79, 1, 81]. Beyond the purely data-driven surrogate
models for material laws, attempts have been made recently on the development of
mechanistically consistent and physics-informed models. In an effort to develop NN-based
material models that can provide accurate results with less training data, while also
preserving physical consistency, several works have proposed methodologies that take
into account physical information either through specialized NN architectures [141, 84| or
by augmenting the loss function with additional terms to ensure physical consistency|[2].
In a multiscale setting, several techniques have been proposed to alleviate the enormous
computational demands of nested schemes. For instance, reduced order models (ROMs)
have been applied in the governing equations of the lower scale either with linear [146, 36]
or manifold-based methods [10]. Additionally, non-intrusive approaches such as response
surfaces [125], Gaussian Processes [110, 37], deep feedforward neural networks (DNNs)
[60, 82, 9] and recurrent neural networks (RNNs) [136, 41, 139, 13] have also been
successfully employed. In these data-driven schemes, the objective is to uncover the
macroscopic stress-strain or strain-strain energy relations from experimental data and/or
synthetic data.

Besides computational material design of nanocomposites, these materials often have
many uncertainties located at their fine structure, such as the morphology, the volume
fraction, the mechanical properties of the individual materials and their interaction
properties. The challenging task of identifying phenomenological material parameters,
which cannot be directly measured through experiments, has been extensively explored
in numerous studies within the literature. The objective of inferring the parameter values
that provide the maximum likelihood estimation, has led to a wide adoption of several
optimization strategies. Representative instances of such approaches include employing
the least squares method for the calibration of statistical constitutive parameters of
rocks [25] or of strain rate sensitivity parameters of metals [15] and the utilization of a
genetic algorithm towards microstructural parameter inference for a visco-plastic-damage

model for hardened cement [48]. Nevertheless, the reliability of single-point estimations



is not consistent, mainly because inverse problems are often ill-posed, especially in the
context of multiscale material systems, where highly nonlinear phenomena are at play.
In response to this limitation, the Bayesian paradigm [6, 12] has more recently gained
traction as a means of material parameter investigation. This paradigm re-contextualizes
the inverse problem within a stochastic framework. Bayesian parameter inference has
been applied to empirical constitutive laws in various scenarios, including heterogeneous
mediums [69], a visco-elastic model [105], a crystal plasticity-damage model [96] and a
thermo-visco-plastic model [144]. In the area of materials with multiscale properties,
randomness in these parameters is introduced to the numerical model via appropriate
probabilistic descriptions, either using random variables or random fields. For instance,
in [116] the volume fraction of CNTs in representative volume elements (RVEs) of the
composite material is modeled as a random variable. A similar approach can be found in
[134] concerning the length of the CNTs, their waviness, the agglomeration parameters
and the effective Young’s modulus. Also, in [115] random fields were used to describe the
waviness of CN'Ts in the polymer matrix. However, accurately selecting the parameters
of these probabilistic models is not straightforward, as they depend on the manufacturing
process. This fact suggests that their calibration would require microscale measurements,
which are hard to obtain.

This is particularly true for the estimation of the interaction properties between the
CNTs and the polymer matrix, because these are not directly observable quantities and
require sophisticated experimental setups [121, 102, 26]. In this dissertation a Bayesian
analysis framework is proposed in [104] to address this issue, with the aim of updating
the prior beliefs on the mechanical properties of carbon based nanocomposites. The
focus is placed on learning the parameters that characterize the CNT /polymer interface
in the microscale with data available from upper scales. As mentioned, these parameters
are associated with great uncertainties and their characterization is a difficult task, since
microscale measurements are costly and hard to obtain. To overcome this, the present
study introduces a computational framework for updating the prior beliefs on the values
of these parameters, by using deformation measurements on meso- and/or macro-scale
structures composed of the composite. In terms of modeling, the CNT /polymer interface
is formulated using a cohesive zone model and a bilinear bond-slip constitutive law. The
FF? method is then employed for predicting the response of the composite structures, but
despite its accuracy, this method is associated with tremendous computational demands

for large-scale problems. Therefore, its application to the Bayesian setting that requires



multiple model evaluations is prohibitive. To alleviate this enormous cost, a surrogate
modeling technique is developed which utilizes artificial neural networks, trained to
predict the nonlinear stress-strain relationship of representative volume elements of the
microstructure. The data set over which the neural network is trained, is obtained
by analyzing a limited number of different RVE configurations using a detailed finite
element analysis. The elaborated methodology is first validated through a numerical
example from 2D elasticity, which demonstrated its high accuracy and its significant
cost reduction capabilities. It is then applied to a more challenging large-scale problem
from 3D elasticity. Even though this research focuses on the characterization of the
mechanical properties of composite materials, the proposed numerical procedure is
generic and can be straightforwardly applied to other physically analogous phenomena
related to nano-composite modeling, such as parameter identification in heat transfer or
electrical conduction.

Undoubtedly, concrete is the most common construction material world-wide, with
its uses ranging from house construction to bridges and dams. Due to the critical role
it plays in people’s lives and their general well-being, vast research has been devoted
to better understanding and improving its properties. In the last decades, several new
technologies have emerged, aiming to improve its strength [129, 108], durability [111, 98]
and fatigue resistance [45, 73], just to mention a few. The focus in previous attempts
has mostly been in enhancing the performance of cementitious materials by adding
appropriate fillers to the mix such as glass fibers [106, 124] and steel fibers [122] or
chemical reagents such as metakaolin [3]. A different approach, however, which has
attracted a major interest in the scientific community, opening new research fields
within concrete technology, is that of reinforcing concrete at the nanoscale level using
nanomaterials as fillers. There are numerous applications of nanomaterials as concrete
reinforcement, including nano silica [11, 64], nano titanium [77], nano alumina [80],
nano clay[16, 62], and carbon based nanomaterials such as graphene sheets and carbon
nanotubes (CNTs) [76, 97, 142], which are considered to be among the most promising
ones. The huge interest of researchers from diverse fields towards carbon nanomaterials
and especially CNT's is due to their extraordinary mechanical [130], thermal [8] and
electrical properties [29]. As an example, CNTs, which may consist of a single or multiple
rolled graphene sheets, have an estimated Young’s modulus of 1TPa and their tensile
strength is 100 times larger than that of the strongest steel [128]. For this reason,

they have been extensively investigated in numerous experimental works and have been



shown to significantly improve the mechanical properties of any host material, including
concrete [90, 94].

As mentioned previously, nonlinear computational homogenization analyses, albeit
being very accurate, they are associated with an enormous computational cost. This is
especially true for multiscale material systems, such as CNT-reinforced concrete, that
are defined by more than two distinct length scales. In such cases, nested computational
homogenization schemes are prohibited even for trivial applications. This dissertation
proposes a surrogate modeling strategy, in [103], dedicated to FEN computational
homogenization approaches on systems with many scales (N > 2). The idea is to
employ a sequence of neural networks that represent the hierarchy of the separate
scales in the multiscale problem. Each neural network is being trained to learn the
physical law at a corresponding length scale of the problem. In a similar manner
to the original problem where each finer scale is contained in a coarser scale, neural
networks representing fine scales are contained in the DNNs that represent coarser
scales. At the end of the training process, a single deep network which emulates the
macroscopic behavior by incorporating all physical mechanisms arising at each of the
problem’s finer scales is derived. This approach takes full advantage of the accuracy and
modeling capabilities that FEN schemes provide, while at the same time overcomes their
immense computational requirements. Specifically, the DNNs are tasked with learning
parameterized versions of the constitutive law in each scale, which allows the modeling
of a wide range of possible material behaviors. This is accomplished by augmenting
the input layer of the DNNs with the set of the uncertain material parameters. With
this approach, each DNN incorporates the uncertain behavior that comes from all the
previous scales and ultimately a macroscopic constitutive response that encapsulates all
this information is obtained through the final DNN. In turn, this DNN can be applied
as a surrogate of the material in any macrostructural system and for various multi-query
problems (e.g. sensitivity analysis, optimization, Bayesian inference).

The elaborated methodology is demonstrated on the analysis of a large-scale building
made of CNT-reinforced concrete. This particular structural system is modeled as a
four-scale problem consisting of (i) carbon nanotube-reinforced cement paste at the
microscale, (ii) reinforced cement mortar at a fine mesoscale level, (iii) reinforced concrete
at a coarse mesoscale level and (iv) the macroscopic structural system. The composite
material is characterized by different nonlinear constitutive laws at each scale. The

solution of the full multiscale problem is attained by using a F'E* scheme at a reasonable



computational time by virtue of the elaborated surrogate modeling setup. In turn, this
enables laborious sensitivity analyses in order to assess the uncertainty in the microscopic
material parameters and its propagation to the macroscopic structural response.

Next, in the present thesis, a novel computational framework is developed in [65], for
identifying optimal material typologies to improve structural performance under the
presence of uncertainties. Specifically, the focus in this work is on carbon nanotube(CNT)-
reinforced concrete with the optimization problem consisting in finding the optimal CNT
orientation in the host material so as to minimize the total deformation of structures
made up from the composite. A computational model for CNT-reinforced concrete is
proposed which utilizes a 3-level hierarchical approach for material characterization. In
particular, cement mortar enhanced with carbon nanotubes is studied at a microscale
level, while the reinforced cement paste along with concrete aggregates is studied at a
mesoscale level using a continuum micromechanics model. This, in turn, enables the
study of realistic structural problems made of the composite and the assessment of their
performance. The material optimization analysis is facilitated by means of the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [51, 49] optimization algorithm, which
is derivative-free method for handling non-convex continuous optimization problems and
is suited for computationally expensive numerical models. With this methodology the
optimal CNT orientations can be obtained at every location of the macroscale structure
that will lead to a reduced overall deformation. Going one step further, in the effort to
provide a more rational and robust approach, the randomness in the external loading of
the structure under investigation is considered and therefore the problem is reformulated
in the context of stochastic optimization. To alleviate the vast computational burden
associated with this endeavor, the aforementioned surrogate modeling technique for
FEY material systems is employed for the macroscopic material prediction the studied
3-scale system. With this approach, a drastic cost reduction is achieved per structural
analysis which allows the efficient execution of the stochastic structural optimization
problem.

The ability to combine diverse datasets for parameter identification can provide
significant benefits in computational material modeling. The motivation to do that is not
exclusive to materials, given the current era of “big data”. It has been recognized that in
such situations, the conventional Bayesian method falls short in addressing the external
variability due to the inability to explicitly quantify it within the model’s structure.

This variability stems from contradictory environmental, operational, and experimental



conditions across distinct datasets. With respect to material modeling, additional
variability can be present due to dissimilar material composition among the experimental
cases. All of these disparities lead to the underestimation of the overall uncertainty. To
address the complex challenge, hierarchical Bayesian approaches have been proposed
[22] in several scientific disciples such as structural dynamics [7], biomechanics [30]
and machine learning [42]. This approach introduces an additional layer of parameters
into the probabilistic model, referred to as hyperparameters, which act as statistical
parameters, assuming the role of hyper-priors within the Bayesian framework. They
effectively capture the external variability, leading to robust outcomes concerning the
prediction of the posterior uncertainty. Regarding materials, hierarchical Bayesian
strategies have been utilized to ascertain parameters that characterize macroscopic
phenomenological material laws [92, 99], while in [126], a hierarchical Bayesian paradigm
has been employed for microstructural parameter calibration via testing on tensile
coupons with the same material layout.

This thesis, lastly, proposes a novel method for determining material properties within
multiscale material systems through a range of experimental scenarios. The presented
framework holds the promise of merging data acquired from experiments conducted on
materials of different compositions and encompassing measurements taken at various
length scales, allowing the systematic integration of multiple experimental data sources
into a unified computational framework. To achieve this, the Transitional Markov
Chain Monte Carlo (TMCMC) method is utilized for sampling from the marginalized
posterior distributions of both multiscale model parameters and hierarchical hyperpa-
rameters. These hyperparameters are subsequently employed to derive informed physical
parameters, which can be used for future model predictions. Crucially, feedforward
neural networks (FFNNs) play a key role in reducing the computational complexity of
implementing hierarchical Bayesian analysis on top of nonlinear computational homoge-
nization. Their primary aim is to learn and accurately predict the nonlinear constitutive
law across various scales. To evaluate the efficacy of the proposed approach, a study is
carried out on the parameters that define the interfacial mechanical behavior of carbon
nanotubes (CNTs) in CNT-reinforced cementitious material configurations. For this
task, data have been collected from conventional experiments conducted on diverse ma-
terial configurations defined at multiple length scales, each associated and characterized
through a FE? based hierarchical multiscale computational model.

The first chapter familiarizes the reader with the concept of multiscale finite element



analysis in non-linear systems. The boundary value problems that define the macroscale
and the microscale are posed followed by the scale transition process. Then the boundary
valued coupled system is reformulated to systems with more than two scales. Focusing
on the finite element method, the numerical solution of the microscale problem, the
two-scale system and the N-scale system are detailed.

The second chapter introduces the modeling techniques that are applied towards
the simulation of the tackled material systems. The common characteristic of all the
composites studied in this dissertation is that they are reinforced with CNTs. The
transition from molecular dynamics to structural mechanics for the CNT representation
is first explained and then the fully bonded and cohesive formulations of the CNT /matrix
composite systems are provided.

The third chapter is dedicated on the scientific fields of uncertainty quantification and
optimization. Starting with a brief introduction in probability theory, several types of
parametric analyses are then presented. The inverse problem by means of the single-level
Bayesian Update method is formulated followed by the hierarchical Bayesian Update
extension in cases of multiple datasets. Next, the global sensitivity concept is presented
with a main focus on variance-based strategies. Lastly, the machinery that entails a
stochastic optimization procedure is laid out.

The fourth chapter illustrates the concept of surrogate modeling in engineering
application. Specifically, it focuses on machine learning based surrogate models, where
concepts such as neural networks and automatic differentiation are reviewed. Then, ways
to utilize machine learning techniques towards material modeling are outlined.

The fifth chapter presents a Bayesian framework for determining the mechanical
properties of carbon based nanocomposites. In particular, Bayesian parameter inference
is applied to learn the parameters that characterize the CNT /polymer interface in the
microscale. The prior beliefs on the values of these parameters are updated, by using
measurements on large-scale structures made of the composite. To alleviate the cost
that multiple FE? analyses entail, a surrogate modeling technique is developed which
utilizes DNNs. The DNN is trained to predict the nonlinear stress-strain relationship of
representative volume elements of the microstructure. The elaborated methodology is
validated through numerical examples on 2D and 3D elasticity.

The sixth chapter introduces a novel surrogate framework designed to accelerate the
solution procedure of hierarchically formulated multiscale problems. The idea is to

employ a sequence of deep neural networks (DNNs) that represent the hierarchy of the



separate scales in the multiscale problem. Each DNN is trained to learn the constitutive
law of a corresponding length scale of the problem and ultimately, DNNs representing
fine scales are contained in the DNNs that represent coarser scales. At the end of the
training process, a single deep network is produced which emulates the parameterized
macroscopic behavior. Based on this strategy, a global sensitivity analysis is performed
on a four-scale CNT-reinforced concrete structural system described by a FE* model at
reasonable computational times

The seventh chapter presents a numerical framework for the stochastic material
optimization of structures made up of CNT-reinforced structures. Specifically, the
focus lies in finding the optimal CNT orientation at different members of structural
systems based on a minimization of the sum of the mean and standard deviation of
the overall structural deformation. This methodology is demonstrated on a three-scale
CNT-reinforced concrete structural system described by a FE? computational model.

The eighth chapter introduces a hierarchical Bayesian framework to infer the material
properties of multiscale material systems through a variety of experimental data acquired
from different length scales and/or different material compositions. An informed set of
physical parameters that encapsulates the information from all the different experiments
is produced and is used for making predictions in future material models. This framework
is demonstrated on a case study of CNT-reinforced cementitious material configurations
through the investigation of the CNT interfacial mechanical behavior, by utilizing
experimental data on dissimilar material compositions.

The tenth chapter discusses the conclusions drawn from this research and presents a

summary of the contributions.
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Non-linear multiscale finite element

analysis

1.1 MACROSCALE BOUNDARY VALUE PROBLEM

Consider an elastic body M placed on the macroscopic structural scale and defined

on a domain QM C R? with a Lipschitz-continuous boundary I'™. According to the

infinitesimal strain theory, the Green-Lagrangian strain tensor € is expressed as:
1
M = 5 (VMuM + (VMUM)T> (1.1)

The strong formulation of the static equilibrium equation has the form:

vM. oM =pM on QM (1.2)

and the boundary conditions are:

uM =aM on TY (1.3a)
oM. n=#" on TV (1.3b)
M=r¥ur¥ , ¥ =90 (1.3c)
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M

where bM are the volumetric forces, o™ is the Cauchy stress tensor, n is the outward

M and #M are the prescribed displacements and forces on the

unit normal vector, @
boundaries, while F]\D4 and F]\N/[ are the subsets of I'M with Dirichlet and Neumann
conditions respectively.

Moreover, a constitutive relation for the macro-problem is established through the

general form:

oM(t) = oMM (1), 0M (1), T € [0, 4]} (1.4)

with ¢ denoting the pseudo-time in the case of a quasi-static analysis and ¢ the history-
dependence of the material’s behavior. Additionally, 8 is used to declare a set of
internal variables that characterize the state of the material (e.g. plasticity, damage) and
physical or constitutive parameters of the material model. In the context of multiscale
analysis as defined by computational homogenization, eq. (1.4) does not have an explicit
functional form. Instead this relation is obtained through the solution of a boundary
value problem imposed by a representative volume element (RVE) that characterizes the

fine-scale structure.

1.2 MICROSCALE BOUNDARY VALUE PROBLEM

The fine scale can represent several possible length scales, however, without loss of
generality, the fine scale formulation will be presented here in terms of a microscale
problem. As shown in fig. 1.1, the elastic body p, which embodies the RVE, is defined
on a domain Q* C R? with a Lipschitz-continuous boundary I'*. The infinitesimal strain

theory is also applied here:

e — %(V“u“ +(VFub)T) (1.5)

The strong formulation of the static equilibrium equation in the absense of volumetric

forces is expressed as:

Viel =0 on QF (1.6)

while the boundary conditions are:
u =a" on I'p=TH (1.7a)

12



where o is the Cauchy stress tensor of the microscale and @* the prescribed displace-
ments on the Dirichlet boundary I';.

The constitutive relation for the microscale problem is written as:

o (t) = o {e"(t), 0" (1), T € [0,1]} (1.8)

with * including the microscale internal variables and material parameters.

e @
@ o 0/
o

Figure 1.1: Scale transition during computational homogenization

1.3 TRANSITION BETWEEN THE LENGTH SCALES

According to the principle of separation of scales, homogenization theory can be applied

effectively if the following relation holds:

M g NBVE « \M (1.9)

where M, MTVE AM gre the length scales of the microscopic field fluctuations, of the
RVE size and of the macroscopic field fluctuations, respectively.

To link the system defined by the two scales, boundary conditions that are consistent
with the response of the macrostructure have to be assigned on the microscale. To this
purpose, the displacement field u*(x) is associated to the strain €M of a macroscopic

material point through the relation:
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ut =€ev -t +at (1.10)

where u” is the displacement fluctuation field attributed to the heterogeneity of the
microstructure.

Alternatively eq. (1.10) can be expressed as:

e =M vra! (1.11)

Ultimately, the scale transition is established by utilizing averaging relations for the

field variables of the two scale system. For the strain tensors this relation is written as:

1
M n 1%
e’ = e"dQ? 1.12
1924 Jau (1-12)

Inserting eq. (1.11) into eq. (1.12) and after some algebraic manipulations yields:

! Qntdl* =0 1.13
1 S (1.13)

For the relation (1.13) to hold, appropriate boundary conditions have to be assigned
on the fluctuation field @*. A choice that fulfills this requirement and was used in the

present thesis is to restrain u# on the boundary of the RVE as:

u’ =0 on xM el (1.14)
Applying eq. (1.14) into eq. (1.10) produces the final form of the localization i.e. the
macro-to-micro scale transition:

ut = Mgt on xt eTH (1.15)

It is evident that the above relation assigns a linear deformation on I'* of the RVE.
Other types of boundaries can be chosen, as well, such as uniform tractions or periodic
boundary conditions [88].

In computational homogenization, the local variation of the macroscopic work is linked
to the variation of the microscopic work per unit volume through the Hill-Mandell energy

consistency relation [55]:
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M M

oV e = ot : detdOH 1.16
1924 J o (1.16)

Taking into account the microscopic equilibrium and then using the divergence theorem,

eq. (1.16) can be restated as:

1 1

oM 5eM = V- (k- dut)dr = - SutdTH (1.17)

19240 Jen 192#]] Jpw
where 7" is the traction vector acting on the boundary I'*.
Inserting eq. (1.10) into eq. (1.17) yields:

1

M M ~ M N ~

o’ 1 de” = / TH® x“dF“) c0€er + 7H - outdl* (1.18)
J1€2¢] < rH 124} Jpw

Based on eq. (1.18) and after applying the divergence theorem one more time leads

to the micro-to-macro relation:

1 1
M _ =L HATH —
o = Tt @ xtdl'" =
1924]] Jru Q-] S

ohdQt (1.19)
where the stress field o# can be acquired after the solution of the boundary value problem
(BVP) imposed by the localization rule of eq. (1.15) on the RVE.

Additionally, the tangent modulus that defines the constitutive law in eq. (1.4) at the

particular macroscopic material point is:

1
cM—__—_ PAQH 1.2
HQ’*IIaeM/mU ( 0)

The interaction of the macroscale and the microscale of the coupled two-scale system is
illustrated in fig. 1.1.

1.4 N-SCALE BOUNDARY VALUE PROBLEM

Consider a system defined by a macroscopic scale M as introduced in section 1.1
and a set of N successively finer length scales s = 1,..,N (e.g. s = 1 —nanoscale,
s = 2 —microscale, s = 3 —mesoscale). Similarly to section 1.2 each of the finer scales s
is placed on a domain 2° where, by omitting the body forces, the balance equation is

stated as:
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V-o*=0 on Q° (1.21)
and the boundary conditions are as follows:

u'=4° on T'p

re (1.22)

In a similar manner to section 1.3, a link between these scales has to be established
during the solution. This can be achieved sequentially between each pair of consecutive

scales. As in eq. (1.15) the localization rule is initially applied for each pair as:

1

1
eX(x?) = o ezttt , -, MM eN (N M)V
Ol

1N Jax
(1.23)

To clarify the above notation, the variable after the semicolon, for instance x? in

el (x!; x?), denotes that the strain field €! inside the integral is the one developed from
the RVE that is associated to the material point =2 of the upper scale.
Then, combining all the successive localization steps, a relation that describes the

whole system interaction can be acquired as:

1 1
M M 1 1 2 1 N
- : dQ) ...dS2 1.24
@) =T Jor T S € 5 (1.24)
€2(w2;w3)
eN(wN;w]M)

Next, starting from the finest scale, the solution of the RVEs can be obtained by
applying the homogenization step of eq. (1.19) for each pair as:

1 1
20,2 1.1 pl. .2y 301 M M N( N gN._M\ioN
oL 20 . ... o o 0" ds}
o (x) 0T 910 (x,0 ;%) , , (™) TN Jon (x,07 ;™)
(1.25)

where @° are the st scale internal variables and material parameters. The connection of

the subsequent homogenization steps then gives:
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1 1
M/ M 1.1 pl. .2\ 101 N
o - o 0" :x°)dQ" ... dQ 1.26
(") QN Jov ™ 1] Jon (@, 652%) ( )

o?(x?,0%; )

UN(:BN,HN;Q}IM)

Accordingly, the tangent constitutive matrix is formulated as:

5. 1 1
NN Jax T [1921] Jar

~—
o?(x?,0%; x3)

cMxM) = ol(x!, 0% 2?)d0t ... a0l (1.27)

crN(mN,‘;N;mM)
1.5 FINITE ELEMENT SOLUTION OF THE MICROSCOPIC BOUNDARY VALUE
PROBLEM

The discrete version of the microscopic BVP problem can be obtained through the
utilization of a numerical discretization technique such as the Finite Element Method
(FEM), the Finite Difference Method (FDM), the Discrete Element Method (DEM) and
others. In the context of FEM, which was applied in this thesis, the above equations can
be recast in matrix form as follows. After discretizing the RVE, linear displacements are
imposed on the boundary nodes according to the macroscopic strain € (localization rule)

with the following relation:

u, = D,eM (1.28)

where u,, is the nodal displacement vector of node n and D,, is a nodal coordinate

dependent matrix written in the 3D case as:

23)1 0 0 Tro I3 0
0 2%2 0 I 0 T3 (1.29)
0 0 2x3 0 x1 2 N

D, =
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with x1, x9, z3 being the nodal coordinates of node n. Then, the global set of equations
for the problem becomes:
up = DeM (1.30)

where the subscript b refers to the nodes on the boundary and D = [Dy, Da, ..., D] is
the global coordinate matrix for all M nodes lying on the boundary.
The equilibrium of the RVE is imposed using Lagrange multipliers and the system of

equations assumes the form:

up = DeM (1.31a)
Fo=A (1.31b)
fa=0 (1.31c)

where f denotes the internal force vector, while the indices o and b stand for the nodes
at the interior of the RVE and the boundary, respectively. Additionally, the Lagrange
multipliers A express the external forces on the system’s nodes. In incremental form and

using matrix notation egs. (1.31) can be restated as:

JANTN fa . 0
{Aub}+{fb} B {)\+A)\} (1.82)

with K being the tangential stiffness matrix of the RVE.

The procedure to solve the nonlinear equation with a standard Newton-Raphson

Kaa Kab
K, Ky

method is:

e For the first iteration of each increment where the microscopic equilibrium is
satisfied, a displacement increment Awuy is imposed as Au, = DA€eM resulting in
a Au, = K;;KabAub

e For the following iterations where Auy = 0 the internal deformations are updated

as Au, = —K_! f, until convergence has been achieved in the sense that || f,|| = 0

e If convergence has been reached the macroscopic stress and the macroscopic
tangent modulus are calculated as:

oM = g Dfy . CM = (g DT Ky D , where Ky = Ky — Kpo Ko Kap
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1.6

FINITE ELEMENT SOLUTION OF THE TWO-SCALE SYSTEM (F E? SCHEME)

So far the homogenization procedure has been presented in terms of a single macroscopic

material point. The generalization of this procedure on a nested finite element scheme

can be achieved by the well-established FE? algorithm. The main steps of this algorithm

for a complete multiscale solution are summarized next:

1.

2.

Initialize macroscopic state variables (FY, =0, FM = 0,u =0, Au™ = 0).

For each macroscopic incremental step

Apply macroscopic load increment AFM,.

. For each macroscopic integration point placed on x;:

o Define a unique discretized RVE on Q.

e Assign boundary conditions on the RVE according to the localization rule of
eq. (1.15)

e Solve the microstructural problem and obtain w* and o*.

e Apply the homogenization rule to acquire the homogenized stress o™ from

eq. (1.19) and homogenized tangent modulus C™ from eq. (1.20).

Calculate the macroscopic internal force vector FX (o) and the tangent stiffness
operator KM (CM).

Solve the macrostructural problem and get Au?.

Check the condition ||FY, — FM|| <€ (e=prescribed tolerance):

e If condition is met, then if it is the final macroscopic load increment AF,

exit, else return to 2.

e If condition is not met return to 4.

The nonlinear computational homogenization solution procedure, as implemented

by the FE? algorithm provided above has the ability to yield very reliable predictions

even for complex composite materials with multiple phases and strong non-linearities.

Nevertheless, the computational demands of such a framework render it prohibitive for

non-trivial applications.
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1.7 FINITE ELEMENT SOLUTION OF THE N-SCALE SYSTEM (FEY SCHEME)

Based on the concept of nonlinear computational homogenization in the context of a
two-scale system as presented in section 1.6, for each integration point of the macroscale,
a complete model solution of the micro scale has to be obtained and this has to be
repeated for all the iterations of the nonlinear analysis [145]. In theory, this concept can
be extended into a system of N length scales as a F'E” scheme, where the coarse scale of
an initial FE? scheme represents the fine scale on the following FE?. By applying this
reasoning, an estimation of the total RVE solutions in the context of multiple nested scale
systems can be acquired. In this case, the requirement for repeated solutions between any
local two-scale system has to be added on top of the requirement for repeated solutions
between each consecutive pair of scales that are located higher to the current pair. The
total number of BVP solutions required for a complete solution of the whole system is

then given by:

Kpve =M + M x kN 4+ 4 M < BNV x - x K2 (1.33)

where for each scale s, k£° is defined as:

s
X Winer

ks = nfnt X nfter (134>

with n , being the number of integration points on the discretized system, nj,.,. the

S

s o the number of increments of

number of iterations of the Newton procedure and n
the analysis.

It is evident from eq. (1.33) that in order to perform the full solution of the macrostruc-
ture, the amount of BVPs that have to be solved is related to the total amount of RVEs
that describe the multiscale system and it quickly blows up for increasing number of
scales. As a consequence, this procedure becomes computationally intractable even for

low-fidelity multiscale models.
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Modeling of CNT-reinforced composite

systems

2.1 CARBON NANOTUBE FINITE ELEMENT REPRESENTATION

A single-walled carbon nanotube (SWCNT) can be conceptualized as a rolled-up graphene
sheet, forming a hollow tube. On the other hand, a multi-walled carbon nanotube
(MWCNT) consists of concentric cylinders made of graphitic layers with sealed ends,
featuring a layer spacing of approximately 0.34 nm. Graphite takes the shape of a two-
dimensional sheet with carbon atoms arranged in a hexagonal pattern, each connected
to three nearest neighbors. Nanotubes possess an atomic arrangement characterized by
their chirality, or helical nature, determined by parameters such as the chiral vector Cj
and the chiral angle Cy. The concept of slicing a graphite sheet along dotted lines and
then rolling the resulting strip so that the chiral vector’s tip meets its tail is illustrated
in fig. 2.1. This chiral vector, alternatively termed the roll-up vector, is mathematically

represented by the following equation:

Ch =na; + mas (2.1)

where the integers (n, m) represent the count of steps along the zigzag carbon bonds of
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the hexagonal lattice, while a; and a9 denote unit vectors. The chiral angle signifies the
degree of twist in the tube. For the extremes known as zigzag and armchair, the chiral
angles are 0 and 30 degrees, respectively. The zigzag nanotube is represented by the
roll-up vector (n, 0), while the armchair nanotube is denoted by (n, n). Additionally,

the roll-up vector of the nanotube determines its diameter.

\ ; . \ | 4
N N
\ Armchair N ‘
N A
v M
3 ‘ N

Figure 2.1: Derivation of a CNT from an initial graphene sheet

In light of the molecular structural mechanics approach (MSM) [75], CNTs can be
viewed as space frames where the carbon atoms represent the nodes and the C-C bonds
the structural elements (i.e. beams) that connect them. The force field developed in
a CNT is attributed to the covalent bonds developed between the carbon atoms (C-C
bond) and is expressed through a steric potential energy. The form of this energy, which
is solely affected by the relative positions of the atoms, is expressed as a combination of

energies arising due to the C-C bonding with the following equation:

U=> U+> Up+ > Uy (2.2)

where U, Uy, Uy, are the bond stretch, the bond bending and torsional bending
energies that are developed between each pair of carbon atoms. Each of these energy

types is defined by the following forms:
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1
U, =~k A% with Ar? = (r —rg)? (2.3a)

2
1
Up = iﬁwAwQ , with Aw?® = (w — wp)? (2.3b)
1
Uy = imTATQ , with AT* = (1 — 19)? (2.3¢)

In this context, k., k,, and k; denote the force constants for bond stretching, bond
angle bending, and torsional resistance, respectively. Additionally, Ar, Aw,, and AT,
represent the increments in bond stretching, changes in bond angle, and alterations in
bond twisting angle, respectively.

On the other hand, according to the theory of classical structural mechanics, the
strain energies of a uniform beam of length L and double symmetric cross-section that is
subjected to pure axial force, pure bending and pure torsion respectively, assume the

following forms:

EA

U, = %—BAH , with AL* = (LB — LE)? (2.4a)
2FI
Up = L—BAaQ . with Aa? = (a — ag)? (2.4b)
GJ 2 . 2 2
Ut = 5758, with AB" = (8~ ho) (2.4¢)

with E being the elastic modulus, L? is the beam length, while A, I and J being the
cross-section area, bending moment of inertia and torsional moment of inertia respectively.
The terms AL, Aa and AS declare the axial stretching deformation, the bending angle
shift and the torsional angle difference.

The relation between the potential energy of the force field of C-C bonds and the
mechanical properties of the equivalent structural beam element can then be derived

from the equations:

(EA)ey = r,LP (2.5a)
(ED)eq = kL (2.5b)
(GJ)eq = K LP (2.5¢)
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Although this structural representation is a straightforward and accurate transition
from the molecular mechanics, the complexity of the system persists, since each space
frame that simulates a CN'T is inherently defined by an enormous amount of Degrees Of
Freedom (DOFs). To be able to efficiently incorporate the CNTs in the microstructure
modelling, a further simplification is necessitated. This is performed in a similar manner
to the MSM approach, as shown in fig. 2.2, with the projection of each space frame

structure onto an equivalent beam element(EBE) [100] with the relations:

F LSF
EBE T
(EA)eq = T (2.6a)
F (LSF)S
ENEBE = "V =~ 2.6b
(EDEPE =20 (2.6)
TLSF
EBE __
(@IEPE == (2.6¢)

where the axial stiffness (EA)quE , the bending rigidity (ET )EJBE and the torsional
rigidity (GJ )EIBE of the EBE, are obtained by measuring the horizontal displacement u,,
the vertical displacement u, and the angle of rotation ¢ that emerge from the imposed

loads on the space frame of length L5F.

|
(-
Sy
et
A
/
e

P 2 o
Figure 2.2: CNT as space frame subjected to three deformation cases

2.2 FULLY-BONDED FORMULATION OF THE CNT /MATRIX INTERFACE

To simulate the interaction between the CNTs and the surrounding matrix, the embedding
finite element technique is employed. With this approach at each of the EBEs (3-D
beam finite elements) nodes k the respective DOFs v¥ = [vf, ..., vf] are embedded in
the DOFs u® = [uf, ..., u3,] of the surrounding solid element s (3-D hexahedral finite

element) with the relation:
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ok = Thsu? (2.7)

where the [6x24] transformation matrix T%* is formulated as:

T = |Tf* . T (2.8)
with:
[ NP () 0 ]
0 N§(z%) 0
k. 0 0 N#(zF)
T = 0 LS (gk 1]\;3 k (2.9)
2 z,z(m) 2 z‘,y(w)
3 Ng, (b)) gNG () T

where N7, N7, N}y, N}, are the shape functions and their derivatives on x, y, z of the

node i of each solid element s , while z* are the local coordinates of the EBE node k
indicating its relevant position with respect to the host solid element. In the case of a
two-node EBE (k = 1,2), eq. (2.7) can be written as:

vl 151 0 us!
v = 2 0 72| u =Tu (2.10)

where s1 and s9 are the solid elements in which the respective EBE node k lies.

After applying the transformation T', the beam’s stiffness matrix is expressed as:
K,=T"K,T (2.11)
The complete stiffness matrix of the whole system’s interaction is:

N
K=K,+)> K, (2.12)
=1

where K is the solid stiffness matrix, while K (;1_ is the stiffness matrix of the it" EBE
for a system of N total EBEs.
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2.3 COHESIVE FORMULATION OF THE CNT /MATRIX INTERFACE

For every EBE it is assumed that an auxiliary cohesive beam element (CBE) exists that
is parallel and attached to the first, as shown in fig. 2.3. This element is characterized
in terms of the host matrix DOFs with an embedding technique. The two elements are
linked together with a cohesive zone formulation [4, 28]. The methodology with the
FEM approach for the 3D case is described in detail below.

Figure 2.3: EBE with its respective CBE in the global coordinate system

The cohesive zone model relates the DOFs of the lower surface of a predetermined
discontinuity with its upper surface. Here, the lower part is the EBE, while the upper
one is the CBE. The cohesive stiffness matrix represents the stiffness of the interaction

between these two parts and in isoparametric formulation can be expressed as:

[ Mde  — ' Mde

Kco —
"ot Mde [ Mdg

(2.13)
where £ indicates the longitudinal direction of the EBE/CBE pair, while M is a [12x12]

matrix given as:

My, 0 My 0
0 M, 0 0

My, 0 My 0
o 0 0 M,

(2.14)

The [3x3] matrices Myq, Myp, Mpg, My, describe the translational DOFs and are parts

of a matrix M; formulated as:
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Mt . [Maa Mab

= = N'R,,D,,,RE N, 2.15
Mba Mbb] b mLdtandly LNy ( )

where N is a [3x9] matrix that contains the beam element shape functions:

N 0 0 N 0 0 N 0 0
Ny=|0 N 0 0 Ny 0 0 N: 0 (2.16)
0O 0 N 0 0 Ny 0 o0 N

while R, is the [3x3] rotation matrix from the local to the global coordinate system
and Dy, is the constitutive matrix of the interfacial law. On the other hand, the [3x3]

matrix M, defines the rotational DOFs of the beam and its expressed as:

M, = RTC,R,, (2.17)

where C,. describes, in terms of a penalty stiffness factor, the relation of the rotational
DOFs of the EBE with those of the CBE and is written as:

C1 0 0
C,=10 ¢ 0 (2.18)
0 0 C3

with each diagonal element taking values on the range 0 < ¢; < 1, in agreement with the
rotational dependence of the two elements.

After applying numerical integration, eq. (2.13) can be rewritten as:

CLos [ M) -M)| | [KY, K2,
Kan =5 2 [—M@ M(@-)] B [Kzsh K2, (2.19)

where L is the length of the EBE, while & and w; are the points and weights according
to the integration scheme.

Accordingly, the internal force vector of the cohesive zone is:

_ f_ll Seped€ ] _ = [wleT(&)RmT] _ [ cloh] 2.90
fCOh [_ f_ll .fEBEdg ; _wZNbT(é.Z)RWLT (:20h ( ' )

where 7 is the interfacial stress corresponding to the relative displacement between the
EBE and CBE.
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Having described the cohesive zone FEM equations, next the DOF's ¥ = [ ’f/, . v’g/]
of each node k' of the CBE, which correspond to the DOFs v* = [vF, ..., vf] of their
respective EBE, are embedded in the DOFs u® = [u], ..., u3,] of the surrounding solid

element s with the relation:

o =T s (2.21)

where the [6x24] transformation matrix T*"* is formulated as:

T = T (2.22)
with:
[ NE (M) 0 0
0 Np(zF) 0
/ 0 0 N7 ('
Ek S . y . i (CU k) (223)
0 2 st,z (w ) §Nis,y (:B
3 Np, (&) gNg (M) 0 |

where N7, N7y, N7y, N;, are the shape functions and their derivatives on x, y, z of the
node i of each solid element s , while z* are the local coordinates of the CBE node &’
indicating its relevant position with respect to the host solid element. In the case of a

two-nodded CBE, eq. (2.21) can be written as:

20 Ll O e N D il g 2.24
v B[ 0 TB' S5 uSe [ v (2:24)

where v4', vB" and TA54, TB 55 are the v* and T*"* of the starting and ending node
of the CBE, while u%4 and u®? are the displacements u® of the corresponding solid
element in which each CBE node lies. The above formulation is illustrated in fig. 2.4 for
the starting node A of an EBE/CBE pair, while for the ending node B the formulation
is similar.

Applying the matrix T in eq. (2.19) the stiffness matrix takes the final form:

T * *
[ o) [km KB oo [ k],
o looIf |[KE, KZ |0 1) K2 K2
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The complete stiffness matrix of the whole system’s interaction is:

* *12
K- Kt Ko K (2.26)
K7 Ko+ KJ
where K, and K} are the solid and EBE stiffness matrices respectively.
In a similar way, the internal force vector in eq. (2.20) can be expressed as:
TT 1
f=|nr Q“’h] (2.27)
-fb + coh
Sa Sa
Un 11?3 Us ugA

13 Uis

Figure 2.4: Embedding of a beam element into the host solids

The definition of the interfacial constitutive equations between each EBE and the
surrounding matrix is usually done through the choice of specialized constitutive laws

such as bond-slip or traction-separation relations.
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Uncertainty quantification and

optimization

3.1 PROBABILITY THEORY

Consider an experiment where the outcome is uncertain. The set of possible outcomes
that can emerge each time the experiment is executed is called sample space 2. As
a structural mechanics example consider a concrete specimen where the compressive
yield stress is not constant each time a uniaxial compression test is performed due to
randomness in the material properties. In this case €2 contains all the possible values of
the yield stress that can emerge after the completion of the test. The set of all measurable
subsets included in §2 constitutes the o-algebra %. For each subset in & we can assign
a measure according to a function p : F — R. In probability theory this measure
declares the probability P of each event happening and is defined as P : & — [0,1]. The
probability of the union of all possible outcomes, namely the sample space 2, equals
always unity i.e. Po = 1. Going back to the concrete example, for each possible yield
stress value a probability can be assigned based on experimental results or computer
simulations. The triplet of (2, %, P) is called a probability space and can be used to
model non-deterministic features in real-world applications.

A random variable is a mapping from a sample space §2, which defined over a probability
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space (2, %, P), to a measurable space, most commonly the R space. It is expressed as:

X:Q-5R (3.1)

Depending on whether the image of a random variable is countable or continuous it
is called discrete or continuous random variable respectively. For a continuous random
variable, the probability that it will take values between a lower bound x; and an upper

bound x,, is expressed though the probability density function (PDF). This is defined as:

Plxp; <X <z, = /zu f(z)dz , where /00 flz)dr =1 (3.2)

The probability that a random variable will be equal or less to an upper value x,, is

described by the cumulative distribution function (CDF), postulated as:

Plz) = /_ " @)de (3.3)

A collection of random variables X1, ..., X is called a random vector X = [X7, ..., X4] €
R?. The expressions for the CDF and PDF are straightforwardly generalized in the
random vector case. The joint PDF for a lower bound vector x; = [z 1, ..., %1 4] and an

upper bound vector &, = [Zy 1, ..., Ty q] has the form:

Pl <x<wx,) = /wu f(x)dx , where /00 f(x)dx =1 (3.4)

l
with = [x1, ..., x4]. The respective joint CDF for an upper vector @, = [Ty, 1, ..., Ty.d]
is:
Loy
F(x) = / f(x)dz (3.5)
—0oQ

When the interest lies on a subset of the random vector Xy C X, the rest random
variables X .5 can be integrated out. This is called the marginalization operation and

the marginal PDF is obtained as:

fs(xs) = / f(x)dz (3.6)

The conditional probability of a random variable X;,i € [1,...,d] given the other

random variables X ; is defined as:
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P(X:, X.0)

(3.7)

When the random variables of a random vector are conditionally independent, meaning
that the knowledge of one’s value does not provide any knowledge about the values of

the other random variables, the joint PDF can be rewritten as:

f(x) = f(x1,...,2a) = fx,(x1)... [ Xa((7a) (3-8)

For each random variable we can define several metrics that quantify different aspects
of its probabilistic form. These metrics are expressed as linear operators applied on the
PDF of the random variable X. The most common metrics are the expectation or mean
value p which is the first order moment and the variance ¢ which is the second order

central moment. These are expressed as:

B =n= [ " af(@)de and E[(X - p)?) = 0® = / TP (39)

—00 — 00

Moments and central moments of different order can be defined accordingly as:

[e.o]

E[X" :/OO 2" f(x)dx and E[(X — p)" :/ (x — )" f(z)dz , n=1,... (3.10)

—00 —0o0

An additional useful metric is the coefficient of variation which is postulated as:

cov =2 (3.11)
1

where the term o, namely the squared root of the variance, is called standard deviation.
The joint variability between two random variables X; and X» is quantified through

the covariance as:

E[Xl,XQ] = E[XlXQ] — E[Xl]E[XQ] = /Oo (:L‘ — ,ul)(:r — ,le)f(l‘l,l‘g)dl‘ldlg (312)

—0o0
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3.2 SINGLE-LEVEL BAYESIAN INFERENCE

An effective technique for combining newly emerged observations with preexisting models
is based on the Bayes theorem and it is called Bayesian Update or Bayesian Inference.
With this technique, prior probabilistic information about the uncertain parameters are
updated according to previously unseen data of the mechanical system’s response. In
view of the Bayesian paradigm the problem is formulated in a probabilistic framework.
The relation between the measured data and the model predictions can be quantified
through different approaches.

Consider a model J(60) that is described by a series of parameters 8 = [0y, ..., 0]
which are assumed to be random variables. For instance the model 4l could be a
computational model of a structural assembly, while the parameters @ could define
a series of material or geometric properties of M. Additionally, consider a series of
experimental measurements or observations D, with D = [dy, ..., d;,], that have been
acquired from experiments on the physical replica of the computational model L.

The most used approach to relate the model predictions with the data is formulated

with the introduction of an additive error:

y(0) =m(0) + € (3.13)

where € denotes the error term most commonly expressed as a random variable with
a Gaussian probability density function (PDF) ~ N (0, X). The autocovariance tensor
3 encapsulates the magnitude of the Ml model prediction error and errors of the
experimental observations D. The term ¥’ represents the output of the stochastic
forward model Y according to which the data D are realized.

After relating the data with the model predictions through P(D|@), the Bayes’ theorem
can be readily applied to update the probabilistic form of the investigated parameters,

as:

P(D|6)P(6) ©(D|6)P(8)

POD) = =50y = T [ . I «(D|6)P(6)d0,d0;..d0,

(3.14)

where P(0) is the prior distribution i.e. the previous beliefs regarding the probabilistic
nature of the parameters. In the case that no prior assumptions can be made, non-

informative priors, such as the uniform distribution are most commonly applied. The
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term P(D) is called evidence and it is essentially a multidimensional integral, since
it involves the marginalization operation over the parametric space, resulting in an
analytically intractable solution in most cases. The term 7(D|0) denotes the likelihood
of D for given values of 8, which essentially quantifies the similarity between the data
and the model predictions in a stochastic manner. In eq. (3.14), direct evaluation of the
n-fold integral in the denominator is not feasible in the general case.

The typical assumption that the data D are uncorrelated is made in most practical

applications. Under this condition, eq. (3.14) is restated as:

[T, T2 [P(d
P(D)

6)11°(6)

P(0|D) = (3.15)

where 7(D|0) denotes the likelihood of D for given values of 8. In this equation, direct
evaluation of the n-fold integral in the denominator is not feasible in the general case.
This fact has motivated the use of Markov Chain Monte Carlo (MCMC) sampling
techniques, which allow direct sampling from the posterior distribution without the need

to solve the high-dimensional integral in (3.14), based on the fact that:

P(6|D) x P"(8|D) (3.16)

with P""#(0|D) = n(D|0)P(6) being the unscaled probabilistic model after taking into
consideration the new data. Representative algorithms based on the MCMC paradigm
are the Metropolis-Hastings algorithm and the Transitional Markov Chain Monte Carlo
(TMCMC) algorithm.

The Metropolis-Hastings (MH) algorithm [54], while being one of the oldest, it is the
most well-established algorithm in the realm of MCMC methods. The implementation

steps of the MH algorithm are summarized below:

1. Start with an initial value of parameters @

2. Select an arbitrary candidate density function g(-|-). The purpose of this function
is to propose the next candidate sample at each MCMC step. In this notation,
the first placeholder refers to the variables of the density function and the second
to its parameters. A typical choice is a Gaussian distribution with the previously

accepted sample as mean value and a pre-selected standard deviation.

3. Select a burn-in period Ny, During this period the samples acquired from the
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MH algorithm are discarded. This is important in order to ensure that the Markov
Chain has converged to its stationary distribution, meaning that the samples are

drawn from the posterior distribution.
4. Set i=1
5. While i < Npyrn + Nsampies (Nsamples being the required number of samples)

(a) Generate a candidate sample 8" from ¢(60'|0;_1)

(b) Evaluate the model response M (6') and calculate the likelihood 7 (w|6’)

Thoat(01w)g(610i—1)

. N
(c) Calculate the acceptance probability «(0;—1,0") = min |1, I (0,1 w)g (8 1]0")

(d) Draw v from the uniform distribution U (0, 1)

(e) If v < a(B;—1,0") then let B; = 0" and set i =i + 1, else let ; = 0;_4
6. Discard the first Ny, samples.

An alternative sampling method is the TMCMC algorithm, which aims at tackling the
difficulties that arise during sampling with the Metropolis-Hastings algorithm from more
complicated posterior distributions P(€|D) (e.g. multimodal, very peaked, very flat).
The TMCMC algorithm introduced in [18] proposes the construction and the sequential

sampling from a number of intermediate PDF's of the form:

P;(0) ~ P(D|0)YP(6) , j=0,...m with 0=¢q <q1 <..<¢@n=1 (3.17)

The main steps of the algorithmic procedure are:

TMCMC parameters: prior distribution P(8), likelihood function P(D|0), Ns; =
number of samples at each level, k& = coefficient of variation for w; = P(D|@;_1)% %1,
B = scaling factor of the proposal distribution

For j = 0, N, samples 01, ...,0 n, are drawn from the prior distribution P(8).
Subsequently, for all j > 0 :

1. Find g; by solving ¢; = argming(|CoV;(q) — k|), where CoVj(q) is the sample
coefficient of variation of the set {P(D[@;_ ;)%= %118 .
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2. Calculate the weighting coefficients w; = P(D|@;_; ;)% ~%-1.

s

3. Compute the covariance matrix of the proposal distribution X; = B2 ,ivzl [wj,k(oj—l,k—
S w;a6 1 0. o 1w1l93 LINT
25151"“]%1 ) ( J-Lk Zl %) Wil
4. For each [ in 1,..., Ng set 031 =
candidate sample. For k =1, ..., N, do the following:

0;_1, , where the superscript ¢ denotes the

e Select index [ from the set 1, ..., Ny with probability ﬁ

n=1Wjn

e Propose sample 8¢ from the normal distribution ¥ (6¢,, ;).

5l
e Generate sample v from the uniform distribution U(0,1).

P(9)

o Ifu< ( )

set 05 = 0° and HC = 0°; else set ngfefp

5. If gj = 1 terminate the iterations, else continue with j = j + 1.

3.3 HIERARCHICAL (MULTI-LEVEL) BAYESIAN INFERENCE

Let a series of models J*(8%), with i = 1, ..., K, where each one is characterized by a
series of parameters 0% = | i, s 07]’\,] considered as random variables. For instance the
model M could be a computational model of a structural assembly, while the parameters
6 could define a series of material or geometric properties of 4. Additionally, consider a
series of experimental measurements or observations D, with D = [dy, ..., d,,], that have
been acquired from experiments on the physical asset simulated by the computational
model L.

Based on the hierarchical Bayesian paradigm, each dataset D’ obtained from a
unique experimental setup is considered separately. For each one of them, the common
parameters @ have a distinct definition as @°. This distinction is necessary since these
parameters, albeit having the same physical meaning amongst all datasets, they can
ultimately be represented by different values due to the external variability. It is further
assumed that each 6% is conditioned on a series of hyperparameters 1, denoted as
P(0|)). These parameters are used to provide in the mathematical framework the sense
of affinity amongst 8° for i = 1,.., K and to explicitly account for the model variations
across the respective datasets. The hyperparameters generally represent statistical
parameters of a pre-specified family of distributions. The classical Bayesian problem

posed in eq. (3.14) is reformulated in the hierarchical variation as:
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Yy (0'|) = m' (0 |1p) + € i=1,.,K (3.18)

Each error term €' in eq. (3.18) can be considered as a random variable with a
predetermined PDF. Alternatively, the statistical parameters of this PDF could also be
considered as unknown parameters to be inferred. The joint posterior distribution is

expressed through Bayes theorem as:

K N;

p(9,¢|D>=P(D‘9)P((9’¢ H[H (d"]6")] (0"|¢)}£((’/’) (3.19)

~—

=1 j=1

where P(t)) is the prior distribution of the hyperparameters.

The form of both the conditional prior PDFs of 8¢ and the prior PDF of 1 have to be
determined. As in eq. (3.14), in situations where there is absence of prior information
regarding the investigated parameters, uniform distributions are generally preferred for
both PDFs. Alternatively, conjugate priors has been used for 1 in [19], however that
was done mainly for alleviating the computational demands, since a closed form solution

can be retrieved for the posterior.

3.4 GLOBAL SENSITIVITY ANALYSIS

Sensitivity Analysis (SA) is the study of how different sources of uncertainty in the
model’s input space can impact the uncertainty of the model output. SA is in close
relation with uncertainty analysis, with SA going a step further and instead of simply
aiming at the investigation of the uncertainty in the system output, it can also quantify
how this uncertainty is affected by each of the input factors. SA can serve a number of
valuable objectives in the economy of modelling, as it can uncover technical modelling
errors, identify critical regions in the input space, establish priorities for research and
simplify models. To overcome the limitations of derivative-driven SA methods, the
so-called global methods have gained significant traction. These methods consider the
input factors as uncertain and investigate simultaneously a handful of data points in the
input space. The global methods can outperform significantly the local ones, especially
in uncertain and nonlinear models. Here the variance-based (global) sensitivity analysis

(VBSA) will be reviewed, since it has been applied in the present thesis, but for a more
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thorough study of SA the reader is referred to [113].

Let Jl be a (scalar) model of the form M = f(X), where X = (X1,...,X4) €
[0,1] ¢ R? is the input vector of random variables, with X; being the i-factor and
f(X) e &P(Rd), a square-integrable function. By applying a functional decomposition,
known as Hoeffding decomposition [57], f can be written in terms of elementary functions

as:

d d d
FX) = fo+ ) F(X) + DD Fi(X, Xg) + oo+ fra(Xay oy Xa) (3.20)
i=1

i J>i

The functions f;, 4,4, are uniquely given by the equations:

Jo=E() (3.21)
fi = Ex_, (M| X;) — E(AL) (3.22)
fii = Ex (M| X3, X;) — fi — f; — E(M0) (3.23)

(similarly for higher order terms)

which satisfy the condition [120]

1 1
/ / lek(wuavszk)dle da:zk =0 y {zz,,zk} Q {il,..,id} (3.24)
0 0

In the above, the notation Ex _, (M| X;) refers to the mean of J(, taken over all possible
values of X.;, while keeping X; fixed.

In a similar fashion to eq. (3.20), a functional decomposition for the model variance
termed as ANOVA [31] is defined as:

d d

d
V) = V() +D D V(fij) + -+ V(fi2.a) (3.25)

i=1 i=1 j>i
where V() is the variance of the respective term.

The variance of each function of the ANOVA series can be written in terms of partial

variances as:
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V(fi) =V Ex.,(MX3)) , V(fij) =V (Ex.,, (M X5, X;))=V(fi) =V (f;) - (3.26)

and so on for higher order interactions.
If the expansion in eq. (3.25) is normalized i.e. divided by the total variance V (.l) of
the model then it takes the form:

d d d
DS+ YD S(fig) e+ S(fiza) ZS +ZZS” Fot Sia=1(3.27)
=1 i=1 j>1 i=1 j>1
with Sj, Sij, ..., S1.4 denoting the sensitivity indices or Sobol indices of the respective

order. These indices, whose values reside in the domain [0, 1], essentially provide
percentages of how the information of the model output is affected by each input factor
or by the synergy of them. For practical purposes, the most useful indices are that of
the first and second order, since generally these are the most dominant terms of the
expansion.

An additional metric was introduced in [58] with the so-called total effect indices. In
this case, for an input factor X;, in the normalized expansion of eq. (3.27) all the terms

that do not contain X; are left out. Thus, the expansion for a certain X; is expressed as:

d d
Spi = S; + Z Sij + Z Sijke + o+ S1.a=1—S¢; (3.28)
T P e

where S7; is the total effect index of X; and S¢; is the sum of the additional terms of
the expansion that do not involve X;. Essentially by employing these indices, the higher
order terms that include X; are also taken into consideration.

An efficient way to compute S; and Sp; was presented in [112] by using Monte Carlo
sampling or for better exploration of the input space via a pseudo-random procedure.
The general concept is that from two independent sampling matrices Q and R one can
create a series of additional matrices Qg), where all the columns are taken from Q
except for the column 4 which is taken from R and the same procedure holds for the
generation of Rg). The rows and columns of these matrices represent the samples and
input factors accordingly. Next, the estimators for the various indices can be computed.

A commonly applied estimator for the calculation of S; [112] is
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K .
5= g7 2 F@u) U (RY ) — F(R) (3.29)

=1

and accordingly the estimator for St is:

Sti >~

K
5 K V* Z g;g(j)»? (3.30)
j:l

where the subscript j denotes the row of the respective matrix, while K is the sample

size and V*(.l) is the unbiased estimator of the unconditional model variance.

An effective way to reduce the required evaluations is to restate eq. (3.29) as

Si ~

K
K V* PR 1@ ;) - 1) (3.31)
]=1

leading to K (d + 2) model solutions.

The estimator of the variance is then given by:

K d+2

Fiu = d+2 ZZ

jlul

(3.32)

Il M-i—

K
-

where F}; , are the components of a matrix F' that includes the model output for each

row j of the respective sampling matrix p and is expressed as:

(FQu) [(Ry) QR — FQgw)]

F=1/Qu) [(Ry) FQR,) -~ FQF,) (3.33)

FQu) F(Ri) FQRuw) — FQg )]

3.5 STOCHASTIC OPTIMIZATION

One fundamental aspect of optimization problems encountered in engineering lies in the
uncertainty surrounding the parameters involved. For instance, material parameters

such as yield stresses, along with external loading, manufacturing errors, numerical
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approximation errors, are not known a priori. Instead, they must be regarded as random
variables with specific probability distributions. Therefore, the optimization aims at
finding the optimal solution in a stochastic problem, which translates to finding the
optimal probability density functions that best describe the parameter values that
maximize or minimize a stochastic objective function.

Let’s think about a model, denoted as (6, 9), characterized by a set of parameters
0 = [01,...,0n], termed as design variables. For example, #l might represent a com-
putational model of a structural assembly, with 8 specifying various loading, material
or geometric attributes of 4. Also, let a set of input variables & = [Xy,..., L] that
directly affect the outcome of Ml and are assumed to be random variables. Additionally,
let an objective (cost) function f, dependent on @ and on statistics of the outcome of
(e.g E[m], E[m?)]). The minimization of f provides optimal targeted actions via selecting
the most appropriate 8. For example, this could be the choice of the optimal material
or geometry of a structure towards minimization of the expected displacement under
random loading conditions that constitute &.

A well-established algorithm to solve stochastic optimization problems is called Co-
variance Matrix Adaptation - Evolution Strategy (CMA-ES) [49]. This algorithm seeks
to find the minimum of the objective function f by sampling A points {Oi}f‘zl from a
Gaussian distribution N (p, ¥) with the mean p and covariance ¥ being updated at each
iteration (generation) of the algorithm. At each iteration the samples are evaluated and
sorted based on their corresponding function values. Then, p and ¥ are adapted based
on the k£ best samples in order to increase the probability of sampling future individuals
in the direction of favorable samples. The implementation steps of the algorithm are

outlined in algorithm 1.

e Initialize model parameters: o°, u°, C° p?, pY, kegpsce co,rc1ych,dg
e While termination criteria not met

1. Draw new candidate samples
091! = p9 4 0992, with z; ~ N (0, T) (3.34)

where 09 > 0 is the step size at the g-th generation and LY is the lower
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triangular matrix obtained from the Cholesky decomposition of

Y =0°C =’LL" (3.35)

2. Evaluate objective function f at the obtained samples BfH and sort them
according to their fitness

f(elz)\) < f(02:)\) <...< f(o)\:A) (336)

with 6;.) denoting the i-th fittest sample.

3. Choose the k first samples that produce the smallest function values and

update the mean as:

pdtt = - Z oIt (3.37)

4. Update the covariance matrix in order to increase the probability of selecting

favorable samples

9+l _ 9
pg+1 (1 — Cc)pc + Cc(2 — Cc)keff“ 09 s (338)
1 LIt —
pg+ (1 - CU)pg + CU(2 - Ca)keff(cg)_ii (3.39)

o9

g+1
o9 = gYexp (dg <IE”[€V(O HI] - 1)) (3.40)

_ T
CI™ = (1 —c1 —cp) C9+c1p?™t (p? 9“ +cp, szag—l-l (0?}1) ,
=1
(3.41)

g+1 g
ogetl _ % —p
with 6/, = e

5. Proceed to the next generation: g < g+ 1

e Return solution
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Machine learning and surrogate modeling

4.1 MACHINE LEARNING-BASED SURROGATE MODELS

In the past two decades, significant strides in computational technology have facilitated
the utilization of sophisticated, physics-based mathematical models to characterize com-
plex physical phenomena encountered across various domains of engineering and science.
These intricate models offer enhanced accuracy in portraying the fundamental physics of
a given problem, thereby yielding precise depictions of system behavior. However, de-
spite their efficacy, computational expenses remain a considerable challenge, particularly
in scenarios involving nonlinear or dynamic systems with high-dimensionalities. This
challenge becomes especially pronounced in parametrized systems, common in fields such
as stochastic analysis, sensitivity analysis, or optimization, where conducting numerous
simulations becomes imperative. To address this issue, surrogate models emerge as a
viable solution, enabling the substitution of the original model with a function that
replicates the complex system’s behavior at significantly reduced computational costs
per evaluation.

To describe the problem in a more concrete setting, let as consider a computational

model M, which takes M-dimensional vectors x as inputs and maps them to R':

M:xe®cRY —yeRY (4.1)
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A surrogate model M can then be defined as:
M:xe®cRY —yecRY (4.2)

such that
M ~ M (4.3)

The surrogate model’s construction may rely on an assumed functional form of M
and/or partial data gathered from restricted executions of the original model. Addi-
tionally, M is treated as a black box, where the internal workings remain unknown, and
only the output y = M(x) is observable. For instance, a finite element model serves as
a surrogate, approximating the solution to the system’s governing equations that lack
analytical solutions.

In recent decades, various methodologies have emerged for the development of surrogate
models. Noteworthy among these are polynomial chaos expansions, Gaussian process
regression, support vector machines, radial basis functions, principal component analysis,
and artificial neural networks. Next, the focus is on neural networks (NNs) and especially
on feed-forward neural networks (FFNNs) which have been extensively employed in this
thesis.

NNs are information-processing mathematical models inspired by the biological neural
networks that constitute the human brain. As its original counterpart, they are able to
learn from observational data, that is, by considering examples without being programmed
with any task-specific rules. The basic component of an NN is the artificial neuron.
An artificial neuron, denoted with j is a processing unit which performs the following

operations:

1. It receives an input signal x; from the synapse i
2. It multiplies the signal by the synaptic weight wj;

3. It sums all input signals x; with their respective weights wj;;, for all the synapses

¢ =1,...,n and adds a bias term b;.

4. Tt processes the sum of the input signals through an activation function ¢(-), for

example the sigmoid or the hyperbolic tangent function, and outputs the result y;.

In mathematical terms, the neuron j can be described by the equation:
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e = (D wji + bj) (4.4)
=1

Output: yjch{xTw+bj)

Neuron j
Activation function: ¢

Weighted sum: x'w+b;

weights

X1 X2 Xn inputs

Figure 4.1: Nonlinear model of a neuron, labeled j

A schematic representation of the computational model of a nonlinear neuron is depicted
in fig. 4.1.

In this context, an NN is an oriented graph with neurons being the nodes of the graph
and the synapses being the oriented edges. The synaptic weights are calibrated through
a training process based on observational data. Depending on the interconnection of
neurons, different types of neural networks arise. Amongst them, the most popular
and widely applied type is the feed-forward neural network (FFNN), also known as
perceptron. In terms of the architecture, an FFNN consists of the input layer, the hidden
layer(s) and the output layer. NNs with more than one hidden layer are referred to as
deep neural networks or multi-layer perceptrons. In terms of connectivity, in FFNN
neurons from a layer can only be connected with neurons from the next layer towards
the output layer. This means that the information moves in only one direction, forward,
from the input nodes, through the hidden nodes (if they exist) and to the output nodes.

An example of an FFNN network architecture is given in figure 4.2.
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Input layer hidden layers Output layer

Figure 4.2: Example of a generic feedforward neural network

For a specific choice of network architecture, to train the network a set of Ny, labeled
data {Z,y)}1<k<n,, is first provided. Next, a loss function is specified, such as the mean

square error, which is given by the expression:

Ntr

MSE =Y |y, — gel3 € R (4.5)
k=1

where, Y, is the target output for the input ), and yy, is the respective network’s output.
Then, the training of the network consists in finding the optimal weights w = (wj;)
that minimize MSE = M SE(w). Some commonly preferred algorithms to solve this
(non-convex) optimization problem are the stochastic gradient descent algorithm, the
Levenberg-Marquardt algorithm [47] and Adam [66].

Based on the above, FFNNs essentially establish a non-linear map from the space of
the input data to the space of the output data. Their powerful approximation properties
are well-established from numerous applications, but, also, from a theoretical standpoint,
from the universal function approximation theorem which states that:A FFNN with one
hidden layer, that contains a finite number of neurons and has non-constant, bounded
and continuous activation functions, can approximate any continuous function defined
on a compact subset of R™. Or, equivalently, the Cybenko’s theorems with respect to
one-hidden layer [24] and two-hidden layer networks [23].

Training an NN involves optimizing its set of weights, which can be approached using
various methods ranging from evolutionary algorithms to gradient-based techniques like

BFGS, with stochastic gradient descent and its many variants being the most common.
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In gradient-based methods, which are the most popular for NN training, evaluating
the gradient of a function f can be done using numerical differentiation, symbolic
differentiation, or automatic differentiation. Numerical differentiation approximates
derivatives using finite differences from the function’s values at sample points, but it has
several drawbacks. It requires O(n) evaluations of f for a gradient in nn dimensions and is
prone to being ill-conditioned and unstable. On the other hand, automatic differentiation
involves automatically manipulating expressions to obtain derivative expressions by
applying differentiation rules. While symbolic derivatives can produce exact analytical
expressions, they are not suitable for efficient runtime calculation as they can become
exponentially larger than the original expression.

Automatic Differentiation (AD) performs a unique interpretation of a computer
program by adjusting the domain of variables to include derivative values and redefining
operator semantics to propagate derivatives according to the chain rule of differential
calculus. As a technical term, AD refers to a set of techniques that compute derivatives by
accumulating values during code execution, resulting in numerical derivative evaluations
instead of symbolic derivative expressions. This approach allows for precise derivative
evaluation at machine precision, with minimal overhead and optimal asymptotic efficiency.
Unlike the complexity of reformatting code into closed-form expressions required by
symbolic differentiation, AD can be applied to standard code with minimal modifications,
accommodating branching, loops, and recursion.

In machine learning, the backpropagation algorithm, a specialized form of Automatic
Differentiation (AD), is essential for training neural networks. Essentially, backpropaga-
tion represents learning as gradient descent within the neural network’s weight space,
aiming to find the minima of an objective function. The necessary gradient is determined
by propagating the sensitivity of the objective value backward from the output, using
the chain rule to calculate the partial derivatives of the objective function with respect
to each weight.

A function f: R™ — R™ is constructed using intermediate variables v; such that:
e variables v;_, = x; , 72 = 1,...,n are the input variables,
e variables v; , i = 1, ..., are the working (intermediate) variables, and
e variables y,,,—; = v;_; , 1 =m — 1,...,0 are the output variables.

AD in the reverse accumulation mode corresponds to a generalized backpropagation
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algorithm, in that it propagates derivatives backward from a given output. This is done
by complementing each intermediate variable v; with an adjoint:

= ggiz (4.6)

which represents the sensitivity of a given output y; with respect to changes in v;. In

the context of backpropagation i.e. the training procedure, y corresponds to the scalar

error E. Additionally, AD has the ability to calculate the Jacobian J of the NN model,

i.e. the derivative matrix of the m-dimensional vector valued NN output with respect to

the n-dimensional vector valued NN input, expressed as:

9y .. Oym
o0x1 o1
J=1": : (4.7)
Oy . OYym
OTn OTn

Reverse mode AD involves a two-phase process for computing derivatives. Initially,
during the first phase, the original function code is executed forward, generating in-
termediate variables v; and logging dependencies in a computational graph through a
bookkeeping procedure. Subsequently, in the second phase, derivatives are determined

by backpropagating adjoints 7; from the outputs to the inputs.

4.2 MACHINE LEARNING-BASED MATERIAL MODELING

The idea to harness the exceptional predictive capabilities of machine learning algorithms
and especially NNs for the development of material models, based on experiments, has
already been explored more than 30 years ago [40]. The motivation for that is that if
the experimental results contain the relevant information about the material behavior,
then the trained NN would contain sufficient information about the material behavior to
qualify as a material model. Such a trained NN not only would be able to reproduce
the experimental results it was trained on, but through its generalization capability it
should be able to approximate the results of other experiments.

There are several ways to create an appropriate functional form for the material
behavior, e.g. based on the choice of a strain-based or stress based formulation or
whether the material is path-dependent or not. A NN can be trained on the results of

several proportional and non-proportional strain or stress paths and then can simulate
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the test results for other proportional and non-proportional strain or stress paths. The
degree of accuracy in this generalization depends on how comprehensive the training set
is. For instance, for a strain-controlled problem with no path-dependency, training means
to present the network with the experimental data and have it self-organize, or modify
its weights, such that it correctly reproduces the total stress state when presented with
the total strain state as shown in fig. 4.3 for a 2D material. Alternatively, when there is
path dependency, the current stress and strain states along with the strain increment
can be used as the input of the NN towards the prediction of the stress increment output
as illustrated in fig. 4.4 for a 2D material. By using the appropriate strain and stress

components, the extension to 3D materials is straightforward.

Figure 4.3: Strain-based NN for 2D non-path dependent material behavior
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Figure 4.4: Strain-based NN for 2D path dependent material behavior

A significant benefit of NN material models is that the tangent material stiffness
matrix can be straightforwardly be extracted through differentiation on the trained NN

[52]. The most efficient way to do this is through Automatic Differentiation as explained
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in section 4.1. The tangent matrix of a material model is expressed as:

a1 ... Oom

o Oer Oeq
C = — = . ° .. . 48
s . (4.9

a1 ... Oom

Oen Oen

Observing eq. (4.8), it can be realized that it corresponds to a standard case of a
Jacobian computation. Therefore, by applying the chain rule on the output layer, i.e.
the stress vector with respect to the input layer, i.e. the strain vector, one can directly

extract the components of the tangent matrix as:

doi; Ohy, ohy
8hk 6hk,1 86ij
where h are the hidden layers of the NN.

When experimental observations are absent, instead microstructural simulations can be

Cij =

(4.9)

utilized to create the necessary dataset for the NN training. This idea has been proposed
more recently (e.g. [74] for 2D RVE simulations and [72] for 3D RVE simulations) where
computational homogenization is applied towards the extraction of effective strain-stress
or strain-strain energy data pairs. In that sense the NN that is tasked with emulating
the behavior of a composite material system through RVE simulations can be considered
as a surrogate model. That is because when a multiscale computational homogenization
analysis takes place (section 1.6), the NN completely bypasses the need to perform
elaborate FE analyses each time the algorithmic procedure enters an integration point.
This surrogate modeling technique is an integral part of the present thesis and the
concept is expanded in more detail during the presentation of the original works (see
chapters 5-8).
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A neural network-aided Bayesian
identification framework for multiscale

modeling of nanocomposites

5.1 INTRODUCTION

This chapter proposes a framework for learning the parameters that characterize the
CNT/polymer interface in the microscale with data available from upper scales. These
parameters are associated with great uncertainties and their characterization is a difficult
task, since microscale measurements are costly and hard to obtain. To overcome this,
the present study introduces a computational framework for updating the prior beliefs
on the values of these parameters, by using deformation measurements on meso- and/or
macro-scale composite structures. In terms of modeling, the CNT/polymer interface is
formulated using a cohesive zone model and a bilinear bond-slip constitutive law. The
FE? method is then employed for predicting the response of the composite structures,
but despite its accuracy, this method is associated with immense computational demands
for large-scale problems. Therefore, its application to the Bayesian setting that requires
multiple model evaluations is prohibitive. To alleviate this enormous cost, a surrogate

modeling technique is developed which utilizes artificial neural networks, trained to
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predict the nonlinear stress-strain relationship of representative volume elements of the
microstructure. The data set over which the neural network is trained, is obtained
by analyzing a limited number of different RVE configurations using a detailed finite
element analysis. The elaborated methodology is first validated through a numerical
example from 2D elasticity, which demonstrated its high accuracy and its significant
cost reduction capabilities. It is then applied to a more challenging large-scale problem
from 3D elasticity. Even though this research focuses on the characterization of the
mechanical properties of composite materials, the proposed numerical procedure is
generic and can be straightforwardly applied to other physically analogous phenomena
related to nano-composite modeling, such as parameter identification in heat transfer or
electrical conduction.

The remaining of this chapter is organized as follows. In section 5.2 the formulation of
the multiscale problem and the modeling of the CNT /polymer interface with the cohesive
zone model are presented. Section 5.3 introduces the proposed Bayesian framework for
multiscale systems. In section 5.4 the usage of the neural network as a surrogate model
is illustrated. Lastly, section 5.5 provides numerical applications to test the efficiency of
the surrogate model compared to the full-scale system solution, in terms of precision

and computational cost reduction.

5.2 MULTISCALE MODEL AND SOLUTION PROCEDURE

For the accurate description of the composite material, a multiscale model with three
stages is implemented in this work. The atomic scale is linked with the microscopic scale
with a hierarchical approach, while the microscopic is linked with the macroscopic scale
with a semi-concurrent approach.

At the atomic scale each pair of carbon’s C-C covalent bonds are modeled with the
molecular structural mechanics (MSM) method [17]. According to this approach, the
lattice is simulated as a space frame structure, where every bond between adjacent carbon
atoms is modeled as a continuous circular beam. A more thorough description of MSM
is given in section 2.1. Despite this being a fairly accurate representation of the atomic
structure it leads to excessive computational cost for each CN'T. Hence, before proceeding
to the next scale each space frame is projected to an equivalent beam element (EBE),
which reduces the total degrees of freedom of the structure to a reasonable amount. As

detailed in section 2.1, the structural properties of the EBEs are calculated by subjecting
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a cantilever beam to an axial F}, a transverse F}, and a torsional 7" load. Subsequently,
the axial stiffness (E'A)¢q, the bending rigidity (E1)e, and the torsional rigidity (GI)eq
are obtained, via eq. (2.6), by measuring the horizontal displacement u,, the vertical
displacement u, and the angle of rotation ¢ corresponding to the aforementioned loads .

At the microscopic scale a representative volume element (RVE) is chosen for the
formulation of the surrounding polymer matrix. A number of EBEs are then added as
inclusions of the matrix in order to achieve a specific volume fraction of CNT/polymer.
The addition of these elements is usually done with a random positioning generator. In
terms of the finite element modeling of the CN'T /polymer composite system, the cohesive
formulation, provided in section 2.3, is used for simulating the interaction between the
two phases.

The non-linearity in the interface is given in the form of a bond-slip law expressed as:

T = f(Au) (5.1)
A linearization of eq. (5.1) yields the tangential relation between increments of the
traction d7 and the relative displacement dAw in terms of a tangent constitutive matrix
Dygy,. Thus, eq. (5.1) is restated in incremental form as:

T = Dy Av! (5.2)
where Av' is the relative displacement of the CBE with its corresponding EBE in local
coordinates and can be calculated as:

Avl = R Ny(v' — v) (5.3)

In the case that there is no coupling between the displacements in the three local

directions, Dy, is written as:

D1 O 0
Dtcm - 0 D22 0 (54)
0 0 Ds3

where D1, is the slip component, while Dys and D33 are the normal components. It is
assumed that perfect bonding exists between the solid and the EBE for the two normal

components, thus having linear behavior. On the contrary, for the slip component a
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bi-linear approach is selected, as depicted in fig. 5.1 and is formulated as:

Dy = Dy, TI < Tigs (5 5)
11 — .
Dpl =pDe, 11 > Tl,s

where Dy, is the elastic slope and D, is the plastic slope of the bi-linear diagram, while
T1,s is the interfacial shear strength i.e the shear stress at which the interface is leaving
the elastic region. Also, p € [0,1) represents the percentage of the hardening in the

plastic region.

el -

Aﬁﬁ (nm)

Figure 5.1: Bi-linear constitutive law of the slippage

This particular bi-linear law is straightforwardly parametrizable by the parameters
T1,s» Det, Dy and will allow us to demonstrate the application of the proposed Bayesian
methodology for updating our initial beliefs on these parameters based on available data.
However, other more involved constitutive laws could be used as well, such as bi-linear
relations with softening, tri-linear [131], or exponential [95].

Before advancing to the macroscopic scale, a homogenization scheme [88] must be
implemented towards a connection with the microstructure. This scheme is applied to
the microscopic model of an RVE of polymer matrix and linear EBEs representing the
CNT reinforced inside the matrix. According to it, for a given macroscopic strain € a

linear displacement function is applied to the boundary of the RVE as:

u(x) =€x at x € OV (5.6)

where @ is the position vector of a point on the boundary 0% of the RVE. This relation
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provides the boundary conditions that are applied to the RVE with respect to the
macroscopic variable and is referred to as the localization rule.

The solution of the aforementioned boundary value problem will produce the macro-
scopic stress o = [Ell,ﬁgz,Flg]T, calculated by the volume average of the microscopic

stress field o (x) via the relation:

il
og=—— [ odx (5.7)
1V S

with ||7|| denoting the volume of the RVE. This equation expresses the homogenization
rule, which yields the macroscopic state variables as a function of the microscopic
stress state. The transition from the microscopic level to macroscopic and vice versa is

schematically presented in fig. 5.2.

Figure 5.2: Transition between scales during F E?

Lastly, the macroscopic tangent (effective) modulus C is calculated as the derivative

of the macroscopic stress & with respect to the macroscopic strain €, that is:

C =00 (5.8)

A more detailed description regarding the transition between two-scale material systems
is given in section 1.3.

The semi-concurrent FE? algorithm [35] is used for the online transition between
the two scales during the solution of the macroscopic composite system. According to
this algorithm, for each load increment of the macrostructure, the macroscopic strain
€ is calculated on every integration point of each finite element, where it is assumed

that an RVE exists. After that, the previously described homogenization scheme is
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implemented, from which the macroscopic stress & and tangent modulus C are acquired
for each Gauss point. With these, the macroscopic internal force vector Fy,; (o) and
tangential stiffness matrix K(C) can be calculated. This procedure is repeated until
the internal force vector is equivalent to the external one, namely F.,. The interaction
of the two scales during the solution of the algorithm was illustrated in fig. 5.2. The

algorithmic steps of F'E? are presented in section 1.6.

5.3 BAYESIAN UPDATE OF THE INTERFACE PROPERTIES

The three previously introduced parameters that describe the interfacial relation between
the CNTs and the polymer matrix are selected as random parameters to be updated.
These are the interfacial shear strength 7 s, the elastic slope D,; before the slippage
and the plastic slope D, after 71 ; has been surpassed, namely, 8 = (715, Dej, Dpy). In
addition, the mechanical models to be investigated are CNT reinforced composite struc-
tures and the model predictions M;(0) for given realizations of € are obtained by solving
the multiscale problem with FEM. Also, the collected data d; involve measurements of
deformations at specific locations of the macrostructure.

The inverse problem as postulated by the Bayesian paradigm is provided in eq. (3.14).
The interfacial parameters are assumed to be independent to each other, therefore the
Bayesian update formulation of eq. (3.15) is adopted here. The discrepancy between the
data D and the model predictions is quantified by means of the additive error approach
of eq. (3.13). In order to efficiently draw samples from the posterior distribution
the Markov Chain Monte Carlo (MCMC) technique is employed based on equation
(3.16). Specifically, the Metropolis-Hastings (MH) algorithm [54] is selected in this study,
however, more sophisticated versions can also be applied such as the adaptive MH [46]
or the transitional MH [18], when challenging posteriors are to be anticipated. The
algorithmic procedure of MH is provided in section 3.2. A schematic representation of
the algorithmic steps of the MH algorithm for Bayesian update on multiscale systems is
depicted in fig. 5.3.

Evidently, the evaluation of the likelihood function 7(D|€’) in the expression of

uns
ﬂ-post

time. In the problems studied in this work, model evaluations are particularly time

(0’| D) requires the model M to be evaluated at the new parameter values 6’ each

consuming and a direct application of the MH algorithm would be unfeasible. To address

this issue, it is proposed in this work to build a surrogate model that will output the
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relation between the strain/interfacial parameters and the stresses as defined by RVE
simulations, which will drastically accelerate the model evaluations at new parameter
values 6’.

As a general remark, selecting a candidate density ¢g(6’|0) close to the target density
Tpost (0| D) will lead to more candidates being accepted in the MH algorithm. However,
this choice is problem dependent and cannot be determined a priori, since we do not
know 7. (0| D). Again, the utilization of the aforementioned surrogate will minimize
the negative impact a poor choice of candidate density will have on the MH efficiency.

The procedure to build the proposed surrogate will be illustrated in the following section.

Initialize
0=06,

A 4

Draw candidate
sample 6’ from g(0’|0)

v
Solve Macroscale Model

gy — M@©)

M(®’)

Calculate likelihood
function (w|0’)

m(w|6’)

Y

0 Accept(6'—8)
Reject(6—0)

Figure 5.3: Bayesian update on multiscale systems using the Metropolis-Hastings algorithm
5.4 SURROGATE MODELING OF THE RVE USING DEEP NEURAL NETWORKS
AND AUTOMATIC DIFFERENTIATION

Needless to say, the previously described procedure to update the parameters that lie in
the microscale during a F'E? algorithm, requires an immense computational effort. To

reduce this cost and make the problem computationally tractable, a surrogate modeling
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scheme is developed in this section. Specifically, a feed-forward neural network, or
FENN for short (see 4.1), is deployed that will emulate the nonlinear equation in the
RVE’s homogenization scheme, for different parameters of the CNT /matrix interface. Its
input neurons consist of the macroscopic strain vector € along with the three interfacial
parameters @ = (71 s, D¢, Dpy), while the output neurons are the values of macroscopic
stress vector . Due to the symmetry of the € and & tensors, they involve 3 unknown
variables for 2D problems and 6 variables for 3D problems.

In order to collect the necessary samples for the FFNN training, a number of RVEs
have to be solved for various input values € and 6. Usually these values are chosen in a
pseudo-random manner, by using sampling techniques such as Latin Hypercube Sampling
(LHS) [87], within some specified ranges. These have to be carefully selected, as small
ranges may lead to insufficient information during the solution of the bayesian multiscale
system, while large ones may require the evaluation of an unreasonable amount of RVEs
in order to accurately train the FFNN. Therefore, some intuition on the mechanical
system’s behavior from beforehand is required. Also, since the homogenization requires
an incremental-iterative algorithm, for each 8, the converged values of € at each increment
are considered as input samples.

Additionally, the macroscopic tangent modulus C needs to be derived from the surro-
gate. This can be straightforwardly implemented after the training of the FFNN using
Automatic Differentiation (AD) [5]. In essence, AD is a set of techniques developed
to numerically evaluate the gradient of a function specified by a computer program.
It exploits the fact that every operation performed by the program, no matter how
complicated, executes a sequence of elementary arithmetic operations (addition, subtrac-
tion, multiplication, division, etc.) and elementary functions (exp, log, sin, cos, etc.).
By applying the chain rule to these operations, derivatives of arbitrary order can be
computed to working precision. In the frame of this work, AD allows us to compute the
derivatives of the output & with respect to the input €. Thus, the elements ¢;; of the

macroscopic tangent matrix C' = [¢;j] can be obtained as
_ 85@' Ohy, Ohy
C- R oo
" Ohy, Ohy_1 8@@‘
where hy, is the output at the %, hidden layer of the FFNN for input €;;.

(5.9)

The whole procedure is summarized in the following steps:
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. Generate N random input samples ¢; = [€;,0;], i = 1,2, .., N within some specified

ranges.

. Solve the nonlinear equation of the RVE for each input vector ¢; and get the

respective output y; = [@7;], while keeping all the intermediate increment solutions

Niner

. Choose the FFNN architecture and train it using the N X n;,¢ pairs of input-output

. Calculate C using AD on the FFNN.

€1, 64] = =[0,]

TRAIN
FFNN

[e;, 0;]=> -[5,]

[en, ONl=> = [Gy]

Figure 5.4: Offline (training) procedure

Figure 5.5: Multiscale Bayesian Update, accelerated with surrogate modeling

5.5 NUMERICAL APPLICATIONS

ExAMPLE 1.

For the first application, the fixed composite panel depicted in fig. 5.6 is considered,
which is subjected to a bending test. It is made of a polyether-ether-ketone (PEEK)
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polymer reinforced with straight CNTs(8,8) as inclusions. The polymer is assumed to be
linear elastic with Young’s modulus £ = 4G Pa and Poisson’s ratio v = 0.4. Each CNT of
length Lo = 50nm is projected to an EBE as described in section 2.1 and after applying
eq. (2.6) the axial, bending and torsional stiffness are found to be EA., = 694.77nN
FEl., =100.18nN - nm? and GJ., = 68.77GPa - nm/rad respectively. The total number

of CNTs is chosen so as to achieve a volume fraction of 3%.
lP

wo 09

108 cm A

Figure 5.6: Fixed composite panel

The microstructure is characterized by an 100 x 100 x 20 (nm) RVE as the one shown
in fig. 5.7, in which the CNTs were placed with a random position and orientation
generator. The dimensions of the RVE were selected in order to eliminate the stochastic
effects of the geometry, thus, making a single realization representative of the response of
the microstructure. Following a similar procedure to the one described in [9] for verifying
this condition, 50 realizations of volume elements with the same interfacial parameters
and 3%vf, but with different dispersions of CNTs, were generated and solved for the
same loading conditions in order to evaluate the corresponding stress vectors. Next, the
coefficients of variation (CoV) for each component of the stress vectors were computed.
The max value of the CoV of all stress components was found to be 5.78% which was
considered low enough to justify the use of a single RVE instead of multiple Stochastic
Volume Elements (SVEs).

Subsequently, the RVE is discretized with 100 quadrilateral plane stress (2D) finite
elements. In the macroscopic scale, the model is discretized with the same finite element

type and for each integration point of the 44 elements, an RVE is assigned.

61



Figure 5.7: Representation of a 2D RVE for volume fraction 3%

The stochastic parameters D, Dy and 71 s in this example are modeled as independent
random variables, each having a normal probability density function (PDF) as its prior
distribution. It is initially assumed that the parameters follow Gaussian distributions,
N(p, o) with g being the mean and o the standard deviation. Specifically, the assigned
prior distributions are D¢ ~ N (10,2) (GPa/nm), Dy ~ N(1,0.2) (GPa/nm) and
T1s ~ N(0.1,0.02) (GPa). In the macrostructure, a measurement of the vertical
displacement in point A was recorded as uy = 4.2cm with an approximate error of
€4 = 0.1em for the vertical load P = 100kN. Thus the likelihood function is defined as a
Gaussian distribution with mean value equal to the measurement u4 and with standard
deviation equal to €4. To ensure that samples with negative values will not be proposed,
the selected candidate distribution for each parameter is a trivariate truncated Gaussian
on the domain [0, +00) X [0,400) X [0, +00). It is given by the following equation:

_ 9w (0'6i1)

9(6'16;-1) = T 00, 1) (5.10)

where gy (0'|0;,—1) is a trivariate Gaussian distribution with mean vector 6;_1 and a
diagonal covariance matrix 3 with entries:
031’5 = 0.0042 0 0
¥ = 0 op,, = 0.4 0 (5.11)
0 0 op,, = 0.04°
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while @ is the cumulative distribution function of a Gaussian distribution centered at
zero with the same covariance matrix X.

To construct the FFNN surrogate, a set of macroscopic stress-strain pairs are used as
training data. These are obtained from solving N = 300 RVEs using the computational
homogenization scheme. Also, Ny = 10 increments were chosen for each nonlinear
solution, resulting in a total amount of 3000 pairs of input-output. The adopted strategy
in order to select the appropriate ranges for the training samples is described next. For
the interfacial parameters 8 the selection is straightforward by establishing a sufficiently
broad range around the mean value of each prior distribution. On the other hand for the
strain vector € the intention is to gain first some knowledge of the macroscopic model’s
behavior. To achieve this, a plain parent material i.e. without any CNTs, is solved for
this specific model configuration. The computational cost for this analysis is negligible in
comparison to the multiscale F'E? setting. From this solution, the extreme macroscopic
strains are obtained and placed as the sampling minimum and maximum limits for €.
This is due to the fact that any analogous model with the addition of CNTs would only
mitigate the extreme strain values, that is, they would be inside of the proposed sample
limits. The ranges over which the FFNN was ultimately trained are depicted in table
5.1. The first component of the stress-strain relation for several values of the interfacial
parameters 6 is displayed in fig. 5.8, where the RVE was subjected to loading in €1
and studied for the cases of a bulk matrix, a composite with fully bonded interfacial

behavior and composites with intermediate values of 6.
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Figure 5.8: Stress-Strain relation for several material cases

Regarding the FFNN architecture, 3 hidden layers of 20 neurons each were considered
with the hyperbolic tangent as the activation function. The optimization algorithm used
to train the FFNN was the Levenberg-Marquardt algorithm. For the training process
the data were split in three subsets, namely the train, test and validation subset with
ratios 0.7, 0.15 and 0.15 respectively. The progression of the training is shown in fig.
5.9, which required approximately 300 epochs to reach acceptable levels of accuracy.

Due to the relatively low complexity of the RVE model and the macroscale structure
in this particular application, it is feasible to perform BU on both the full and the
surrogate model. The comparison between the results obtained from the two models will
serve as validation for the accuracy of the surrogate. To this end, a number of 15000
samples are drawn from both model solutions using the MH algorithm and the posterior
distribution of each stochastic parameter along with the respective prior is presented in
fig. 5.10. As evidenced by these results, the two models are in close agreement. It should
be mentioned that in order to obtain 15000 acceptable samples, the samples rejected
from the MH algorithm were approximately 8000. Additionally, the initial 500 samples
were considered to be burn-in steps and so they were discarded.

To quantify the speed-up achieved by the surrogate modeling approach, table 5.2
presents the computational costs required by both models. BU on the the full scale
model took up 189h, which was attributed to the computationally demanding nature

of the FE? algorithm. Specifically, for the calculation of the likelihood function of a
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candidate sample ', a complete multiscale F/E? model evaluation had to be performed,
resulting in as many RVE solutions as the total integration points of the macroscopic
system multiplied by the number of iterations for the nonlinear procedure. Hence, this
framework inevitably requires millions of RVE solutions even for simple problems such
as the one studied here. On the other hand, the surrogate model bypasses the RVE
homogenization process and thus requires only 0.8h in total. These include the offline
cost of collecting the 3000 initial training samples (300 realizations of € x 10 increments
each) and training the network, as well as the online cost of running the MH algorithm.
These results indicate a remarkable speedup, as the surrogate can reduce the cost by

two orders of magnitude, while maintaining high accuracy levels.

Data subset

Train
Test
Validation

. . . . .
0 50 100 150 200 250
Epoch

Figure 5.9: Progression of the FFNN training process

€11 €12 €22 D Dpl T1,s

-] [-] (-] [GPa/nm]| [GPa/nm]| [GPa]
min -0.1 -0.1 -0.1 1 0.1 0.01
max 0.1 0.1 0.1 20 2 0.2

Table 5.1: Input sample ranges for the FFNN training
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Figure 5.10: Comparison of the posterior PDFs of each parameter obtained by performing BU on

the full scale model and the surrogate model
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Computational time (sec)
Offline Online Total

Model || FEFNN FFENN | RVE FFNN FE? MCMC

sam- train- solution call/

pling ing C
Full - - 0.022 - 30.5 680850
scale
Surrogatg 174 31 - 8e-5 0.115 2588

Table 5.2: Computational time of each stage of the algorithm for both models

5.5.2 EXAMPLE 2.

For the second application, a wrench as the one displayed in fig. 5.11 is studied. The
structure is fixed at the inner part of the head (blue area) and it is subjected to a uniform
pressure at the top side of the tail (purple area). The material properties of both the
polymer and the CNTs are the same as in example 1. The number of CNTs is selected
o as to attain a weight fraction of 4.5%. The representation of the microscopic scale is
done with a 100 x 100 x 100 (nm) RVE as depicted in fig. 5.12, where the CNTs are
randomly scattered inside the parent material. The discretization of the macro-structure
consists of approximately 50000 tetrahedral elements, while that of the micro-structure
of 1000 hexahedral elements. It becomes obvious that the complexity of this model does
not permit a direct application of the BU framework and a surrogate modeling approach
is the only viable option.

Initially an investigation had to be performed to verify that the selected RVE is in
fact representative of the response of the microstructure. The same strategy as in the
first example was employed and 50 different solutions from volume elements with varying
morphology in the microstructure were acquired. The maximum CoV of the components
of the stress vectors in this case was found to be 3.13%, which suggests that a single

realization of the selected RVE is sufficient for continuing to the rest of the process.
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Figure 5.11: Composite Wrench

Figure 5.12: Representation of a 3D RVE for volume fraction 4.5%
Similarly to example 1, the normal PDFs D¢ ~ Normal(10,2) (GPa/nm), Dy ~
Normal(1,0.2) (GPa/nm) and 11,4 ~ Normal(0.1,0.02) (GPa) were chosen as priors for
the (independent) uncertain parameters. The vertical displacements of the structure were
measured at the points B = [B!, ..., B®] along its torso for two pressure loads, namely,
L1 = 150K Pa and Lo = 300K Pa, which are uniformly distributed over the purple area
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shown in fig. 5.11, resulting in 10 observations in total. Thus, the vector of the measured
responses is written as D = [dy, da], where Dy = [d}, ..., d}] and dy = [d3, ..., d3] are the
responses for L and Ls, as shown in table 5.3.

Although the measurements d; and dy are assumed to be independent, a statistical
dependence is taken into account between the points in B per loading. The auto-

covariance matrix that determines this dependency is the 5 x 5 matrix K = (k;;) with k;;
(=1IsD)

given by the autocovariance function K (s) = e2expT, where s is the distance between
the locations B and B7, € = 0.02 c¢m is the approximate error for each measurement and
«a =1 ¢m is the correlation length. Obviously, K is the same for both measurements dy

and dsy. Therefore, the likelihood function can be written as:

2
w(D|0) = H ((2ﬂ)gdet(K)éewp (—;(MZ(H) —d)TK~1(M;(0) - d,))) (5.12)
i=1
with M;(0) being the model predictions for the respective loading case. The candidate
density selected in this example is the same trivariate truncated Gaussian used in the
previous example.

The initial training data set of the FFNN consists of the macroscopic stress-strain
pairs obtained after solving N = 300 RVEs for different @ and considering n;,- = 10
increments for each nonlinear solution. In this 3D case, the input vector consists of the
strain € = [e11, €12, €13, €22, €23, €33] and the parameters @, while the output vector of the
stress @ = [011, 012,013, 022, 0923, 033]. For the FFNN architecture, 3 hidden layers with
20 neurons each and a hyperbolic tangent activation function were chosen. The FFNN
was trained with the Levenberg-Marquardt algorithm and for the training process the
data were split in ratios 0.7 for the train, 0.15 for the test and 0.15 for the validation
subset. The best performance was obtained in epoch 470 with 10~% mean squared error.
The ranges over which the FFNN was trained and the progression of the training are
shown in table 5.4 and fig. 5.13 respectively. Additionally, fig. 5.14 illustrates how
the first component of the stress-strain relation is varied for composite materials with

different properties when the RVE is subjected to €1 increments.
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Loading Measurement(mm)
case
B! B? B3 B* B°
Ly -0.15 -6.50 -5.31 -4.35 -5.23
Lo -0.31 -13.51 -11.03 -9.04 -10.88
Table 5.3: Displacement measurements
L%)J 10
0 50 100 150 200 Ep::ho 300 350 400 450
Figure 5.13: Progression of the FFNN training process
€11 €12 €13 €22 €23 €33 D, Dpl T1,s
=== = E D | [GPa | [GPa | [GPa)
/nm] | /nm]
man | -0.08 | -0.04 |-0.04 |-0.08 |-0.04 |-0.04 | 0.1 0.01 0.001
maz | 0.08 0.04 0.04 0.08 0.04 0.04 20 2 0.2

Table 5.4: Input sample ranges for the FFNN training
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Figure 5.14: Stress-Strain relation for several material cases

Due to the complexity of the model, BU was carried out only on the surrogate
model, since the implementation on the full scale model was computationally infeasible.
Nevertheless, to confirm the accuracy of the surrogate in this example before proceeding
with the BU, the following strategy was adopted. A set of 1000 new input samples

{(€5, Oj)}}golo were randomly generated and the surrogate’s accuracy was measured by

the errors:
1000 Hcsur _ éFEMH
errg = (5.13)
c 1000 || mFEM
=i e
and
1000 _gFEM
o]
€rre = 2= 1|(’)00 FEM L (5.14)
2= |[E M,
where (-)*"" refers to the macroscopic quantities predicted by the surrogate, (-)F#M to

the FEM solutions of the homogenization and ||-||, denotes the standard 2-norm. These
errors were found to be errg = 1.76% and errs = 0.80%, which demonstrated the high
accuracy achieved by the surrogate.

Having verified the surrogate’s accuracy, the posterior distribution of each component

of @ is obtained using 15000 samples. The acceptance rate was around 60%, resulting in
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the calculation of approximately 25000 likelihood functions, while the burn-in period
was 500 samples. The results are presented in fig. 5.15. These figs. indicate that the
initial assumptions on the interface parameters change significantly due to the new
measurements in the macrostructure. This is particularly noticeable in the pdf of the
shear stress 71, which is found to have smaller mean and less variance than those
initially assumed. This outcome is of great importance to material design applications,
since 71 ¢ is one of the most dominant parameters in the microstructure with regards to
its impact on the macroscopic behavior of the structure.

Moreover, in table 5.5 the computational time is illustrated for the surrogate model,
while for the full scale model the respective time is estimated with an approximate
prediction of the total RVE evaluations. This estimate is based on the fact that a single
FE? solution on the full scale model required almost 105 RVE solutions. Therefore,
performing BU on the full scale model would have taken up 105812 years, while the
surrogate required 359.9 hrs, or seven orders of magnitude lower cost. Comparing this
finding with that of example 1 it leads to the conclusion that the computational acceler-
ation achieved by the surrogate scales accordingly to the RVE’s and the macroscopic

model’s complexity.

Computational time (hours)
Offline Online Total
FFNN FFNN | RVE FFNN FE? MCMC
sam- train- solution call/
pling ing C
Full - - 0.033 - 37076 92690966
scale
(Predic-
tion)
Surro- 9.83 0.07 - 2.2e-8 0.014 350
gate

Table 5.5: Computational time of each stage of the algorithm for both models
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5.6 CONCLUSIONS

In this work, a methodology for updating the beliefs of the uncertain parameters
that lie in the microscale of nanocomposite systems has been proposed. In particular,
the bayesian framework with the MCMC technique has been employed on the FE?
algorithm to learn the parameters of the CNT /polymer interface. The elaborated
methodology utilized measurements from the macroscale structure to update the prior
beliefs on the nonlinear parameters, rather than expensive and hard-to-obtain microscale
measurements. In addition, to tackle the immense computational effort of performing
bayesian update on this type of problem, a neural network surrogate was developed in
order to replace the nonlinear relation of the homogenization scheme. This surrogate
model displayed a high level of accuracy compared to the full scale system solution as
well as a remarkable cost reduction. This allowed us to perform BU on complex large-
scale problems, which would otherwise be infeasible. The proposed methodology was
demonstrated on mechanical problems, where the uncertain parameters were successfully
updated in a reasonable computational time. However, this framework can be extended
to a diversity of nanocomposite-based applications, such as electrical conductivity or

heat transfer.
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Multiscale analysis of nonlinear systems

using a hierarchy of deep neural networks

6.1 INTRODUCTION

This chapter proposes a non-intrusive surrogate modelling strategy, dedicated to FEYN
computational homogenization approaches on systems with many scales (N > 2). The
idea is to employ a sequence of neural networks that represent the hierarchy of the
separate scales in the multiscale problem. Each neural network is being trained to learn
the physical law at a corresponding length scale of the problem. In a similar manner
to the original problem where each finer scale is contained in a coarser scale, neural
networks representing fine scales are contained in the DNNs that represent coarser
scales. At the end of the training process, a single deep network which emulates the
macroscopic behavior by incorporating all physical mechanisms arising at each of the
problem’s finer scales is derived. This approach takes full advantage of the accuracy and
modelling capabilities that FEY schemes provide, while at the same time overcomes
their immense computational requirements. Specifically, the DNNs are tasked with
learning parameterized versions of the constitutive law in each scale, which allows us to
model a wide range of possible material behaviors. This is accomplished by augmenting

the input layer of the DNNs with the set of the uncertain material parameters. With
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this approach, each DNN incorporates the uncertain behavior that comes from all the
previous scales and ultimately a macroscopic constitutive response that encapsulates all
this information is obtained through the final DNN. In turn, this DNN can be applied
as a surrogate of the material in any macrostructural system and for various multi-query
problems (e.g. sensitivity analysis, optimization, Bayesian inference).

The elaborated methodology is demonstrated on the analysis of a large-scale building
made of CNT-reinforced concrete. This particular structural system is modeled as a
four-scale problem consisting of (i) carbon nanotube-reinforced cement paste at the
microscale, (ii) reinforced cement mortar at a fine mesoscale level, (iii) reinforced concrete
at a coarse mesoscale level and (iv) the macroscopic structural system. The composite
material is characterized by different nonlinear constitutive laws at each scale. The
solution of the full multiscale problem is attained by using a F'E* scheme at a reasonable
computational time by virtue of the elaborated surrogate modelling setup. In turn, this
allows us to perform laborious sensitivity analyses in order to assess the uncertainty in
the material parameters and its propagation to the macroscopic structural response.

The rest of this chapter is organized as follows. Section 6.2 provides the constituents
of the CNT-reinforced concrete multiscale model developed in this work and the solution
framework based on a FE* algorithm. In Section 6.3 the reinstatement of the nested
solution scheme with the utilization of neural networks as surrogate modelling technique
is illustrated. Section 6.4 presents the application of global sensitivity analysis in the
context of nested multiscale analyses. Section 6.5 demonstrates a numerical example to

test the efficiency of the aforementioned methodology.

6.2 MULTISCALE MODEL AND SOLUTION PROCEDURE

This section illustrates a composite material modelling paradigm, which requires per-
forming computational homogenization on multiple scales. In particular, a multiscale
model of CNT-reinforced concrete is presented that consists of cement paste, CNTs
and aggregate particles. Each of these constituents and their interactions are defined
on appropriate length scales, as depicted in fig. 6.1. This approach will enable us to
accurately model the interaction of each constituent with the cement paste and eventually
study the macroscopic behavior of real-life structures composed of the composite. The

details on the implementation aspects of this approach are presented next.
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6.2.1 CEMENT PASTE MATERIAL MODEL

The cement paste is assumed to be fully hydrated and it is represented by a homogeneous
material. For the cement material a phenomenological relation is adopted. Specifically,
the transition into the inelastic regime is defined by the Drucker-Prager plasticity model

[27]. The yield function that describes this transition is of the following form:

® = Jy(o) +np(a) — e (6.1)

NANOSCALE MICROSCALE FINE MESOSCALE COARSE MESOSCALE

(a) (b) (c) (d)

Figure 6.1: Multiscale model of the CNT-reinforced concrete material: (a) the nanoscale represents
each individual CNT, (b) the microscale represents the cement paste reinforced with CNTs, (c) the
fine mesoscale with the addition of sand particles represents the CNT-reinforced mortar, (d) the
coarse mesoscale with the addition of high volume aggregates e.g. gravel represents the
CNT-reinforced concrete.

where Jy is the second deviatoric invariant of the stress tensor o, p is the hydrostatic
pressure, c¢ is the cohesion, while 1 and £ are constants that are chosen in a way to
approximate an equivalent Mohr-Coulomb yield surface. Here these constants are used
for the approximation of the outer edges of the Mohr-Coulomb criterion by the DP
surface and have the form:
6 sin ¢ 6 cos ¢

TS BG smg) T VBB sing) (62)

with ¢ being the friction angle.

The classical strain rate decomposition is applied:
E=¢E 1€ (6.3)
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with initial conditions:

€(to) = €c(to) + €,(t0), (6.4)

where the decomposition of the strain tensor into the elastic component ¢, and the
plastic component ¢, is performed.

According to the plastic flow rule, the rate of the plastic strain is postulated as:

. . OV

where A is the plastic multiplier and ¥ is the plastic flow potential. Here, non-associative
plastic flow is assumed, hence the plastic potential function takes a different form than

the yield function (® # W). The potential function that was chosen here is:

v = Ja(o) +7p(o) (6.6)
where 77 has a similar meaning with the approximation constants of ® and is given by:

6 sin ¢
N=———" 6.7
1T VBB —siny) 67
with ¢ being the dilatancy angle.

Furthermore, an isotropic linear hardening model is considered, hence c(€,) is expressed

as:

c(€p) = co + Hep (6.8)

where c¢g is the initial cohesion, i.e. the initial yield stress and H is the hardening
modulus.
Additionally, the rates of the plastic strain and the equivalent plastic strain are given

by:

1 1 . . .
€, = | ———(o — =trace(o)l +>)\ & €, =& 6.9
1= (573 o trocelo)D) + : (69
The preceding equations form an optimization problem that is completed with the

addition of the Kuhn-Tucker loading/unloading conditions:
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<0, A>0, PA=0 (6.10)

6.2.2 MICROSTRUCTURAL REPRESENTATION OF CNT-REINFORCED CEMENT
PASTE

Every CNT is described as an assembly of covalent bonds developed between the carbon
atoms (C-C bond) in hexagonal shapes. The molecular structural mechanics approach
(MSM), which is detailed in section 2.1, transforms the molecular structure of CNTs to
continuum structural models in the form of space frames. This transition is achieved with
the relations in eq. (2.5). While the structural representation offers a clear and precise
transition from molecular mechanics, the system’s complexity remains a challenge due
to the multitude of Degrees Of Freedom (DOFs) inherent in each space frame simulating
a CNT. To streamline the integration of CNTs into microstructure modeling, further
simplification is necessary. This simplification mirrors the approach of the MSM method,
whereby each space frame structure is projected onto an equivalent beam element (EBE)
using the relationships outlined in eq. (2.6).

To simulate the interaction between the CNTs and the cement paste, the embedding
finite element technique via the fully bonded formulation of section 2.2 is implemented.
A number of EBEs are scattered inside the microstructure RVE with random position
and orientation as depicted in fig. 6.1 until a prescribed weight fraction for the CNTs is
achieved. Since EBEs are 2-D elements there is no issue of overlapping with each other
and additional checks for their valid placement are not required. The dimensions of the
cement paste RVE are (500pu)3.

6.2.3 MESOSTRUCTURAL REPRESENTATIONS OF REINFORCED MORTAR AND
CONCRETE

A Fuller grading curve is applied in order to determine the size distribution of the

aggregate particles in the mesoscale, as follows:

d

dmax

P(d) = (

o, 0<P(d) <1 (6.11)

where d is the aperture diameter of a specific sieve, dy,qz is the maximum diameter of

the coarse aggregates and P(d) is the cumulative percentage of the aggregates that pass
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through d, while n is a constant that defines the shape of the curve.

The volume fraction of the aggregates within each of the segments [ds, dst1] is then
estimated as:
P(ds) — P(ds—1)

= ytot 6.12
P(dmaac) - P(dmzn) “ ( )

where V! is the total volume fraction of the aggregates inside the specimen.

Va[ds 7ds+1]

An algorithm is implemented for the placing of the aggregates inside the RVEs by
utilizing eq. 6.12. For simplicity, all the inclusions are modeled as spheres. Other
options, however, such as polygonal shapes are also applicable in a straightforward
manner. Each newly added inclusion has to satisfy the condition of non-overlapping with
the already existing particles. Nevertheless, the inclusions are allowed to intersect with
the boundaries of the RVE since periodic topology is adopted here. For more details on
the placing algorithm the reader is referred to [138]. Since the mesoscale is described by
two separate scales, the diameter bounds dy,, and dy,;, are assigned independently for
each one of them.

In the fine mesoscale, the aggregates which are essentially sand particles have a
minimum diameter dfnrfn = 0.Imm and a maximum diameter df,;gx = 2mm. The
particles are assumed to behave linearly elastic with a Young’s modulus £ = 30G Pa and
Poisson ratio v = 0.22 and their volume fraction inside the mortar is taken as 20%. The
interaction between the two phases of the material is direct i.e. without an Interfacial
Transition Zone (ITZ). The dimensions of the mortar RVE are (10mm)3. A sample of
the fine mesoscale representation of the mortar is included in fig. 6.1.

The coarse mesoscale model represents the reinforced concrete material. In this

representation, the range of the diameters of the coarse aggregates are d;; = 2mm
and dg.. = 20mm. Similarly to the sand particles, the coarse aggregates are taken as

linearly elastic and no I'TZ between the different phases exist. For these aggregates the
Young’s Modulus is E = 45G'Pa and the Poisson ratio is v = 0.22. The volume fraction
of the aggregates in this scale is chosen as 40%. The dimensions of the concrete RVE
are (200mm)3. A coarse mesoscale specimen is depicted as part of the multiscale model
in fig. 6.1.
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6.2.4 COMPUTATIONAL HOMOGENIZATION SCHEME FOR THE CNT-REINFORCED
CONCRETE

The macroscopic system is described by a homogeneous material with a constitutive
relation formulated by the coupling of all the finer scales as these are described in sections
6.2.2 and 6.2.3. This coupling is achieved with a standard computational homogenization
scheme as the one described in section 1.3. The information is initially propagated
through the localization rule. Starting from a macroscopic integration point, strain
driven boundary conditions are assigned on the RVE of the following scale. The resulted
strains on the integration points of the matrix material are then used to apply the
localization step onto the RVE that describes the next scale. This procedure continues
step-wise between each pair of consecutive scales until the finest scale RVE has been
reached, which is the microscale in the present model. Then, beginning from the finest
scale, the microscale RVE is solved for the boundary conditions that resulted from the
previous procedure and the homogenization step is applied to propagate the homogenized
stresses and tangent moduli onto the coarser scale. The homogenization step is repeated
between successive scale RVEs until the process has returned to the macroscale. It is
important to note here that this procedure is performed in the frame of a nonlinear
analysis, requiring internal iterations until the whole multiscale system is in a converged
state.

The nested multiscale scheme of CNT-reinforced concrete is visualized in fig. 6.2. The
connection of the four scales and the solution of the system is done according to the

procedure described in sections 1.6 and 1.7.

MACROSCALE

MICROSCALE COARSE MESOSCALE

FINE MESOSCALE

/\/Omogen'\za"‘o(\

Figure 6.2: Hierarchical scale coupling scheme. The material behavior at an integration point in the
macroscale is obtained from the analysis of a coarse mesoscale RVE. However, this requires the
analysis of a fine mesoscale RVE at each integration point in the coarse mesoscale, which, in turn,
requires the analysis of a microscale RVE at each of the corresponding integration points.
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As pointed out in the previous sections, the task of performing this FE* scheme is
directly associated to a prohibitive computational cost. This problem is tackled with

the use of hierarchical surrogate models, as described in the following section.

6.3 SURROGATE MODELLING OF THE FEN SCHEME UTILIZING A HIERARCHY
OF NEURAL NETWORKS

6.3.1 MAIN CONCEPT

The powerful approximation capabilities of DNNs have been validated from numerous
applications, but also, from the mathematical viewpoint, though the universal approx-
imation theorem [23, 24, 59]. Therefore, DNNs are considered capable of capturing
complex material behavior. In this framework, a dedicated surrogate modelling strategy
is presented herein for mitigating the cost of FEN solution schemes in the context
of computational homogenization. The key idea is to use DNNs [44, 39], to learn the
parametrized non-linear homogenized response of the RVEs on each scale in a hierarchical
manner, starting from the finest scale and progressively substituting each RVE with a
DNN that encapsulates the material behavior at all previous scales.

The steps for constructing the DNN-aided N-scale nested scheme are the following:

e A sequential homogenization procedure is implemented according to eqgs. (1.23)
and (1.25) on each pair of consecutive scales starting from the finest one, the 1st

scale.

e A set of parameters/variables that define the input and output of the corresponding
DNN are defined. The input involves the components of the strain vector at the
upper scale €, while the the output is the stress vector o(?) at the end of the
homogenization procedure. If we further assume that the solution of the system is
affected by a vector of parameters a(!) that characterize the material’s constitutive
law at the finest scale, then these parameters are also regarded as input to the

DNN.

e The tangent constitutive matrix C at a certain strain state €2, required for the
Newton-Raphson iterations, is effortlessly computed using Automatic Differentia-
tion (AD) [5]. By using differentiable activation functions in the DNN, such as the

logistic or hyperbolic tangent function, the DNN becomes a differentiable function.
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This technique allows for the computation of the derivatives of the output o

with respect to the input €® by applying the chain rule on the DNN and, thus,
the elements c\>)

;; of the macroscopic tangent matrix C (2) = [01(]2)] are obtained as:

2
@) _ 00y Ohy  Ohn
K Ohy, Ohy_1 86&?)

c (6.13)

where hy is the output at the k;, hidden layer of the DNN for input 62(]2-).

e After the successful training and validation, the finest scale DNN (scale 1) can
be straightforwardly applied to represent the constitutive relation of the matrix
material at the next scale (scale 2). The process is iterated for this scale and
a second DNN is built using (6(3),0'.(2),06(1)) as input and o® as output. To
simplify notation we write the input (6(3), a@, a(l)) as (6(3), 64(3)), where, in the
general case, (511 = (a(s), e ,a(l)) is the augmented parametric vector. Again,
the tangent matrix C®) is readily available through AD. It is important to note
here that the DNN of the second scale also involves the material parameters a/!)
of the previous scale as input, since this will allow it to capture the behavior of

the material at both the first and the second scale.

e This procedure is repeated for all scales up to the macroscale, where it ultimately
results in a single final DNN that incorporates all the information from the lower

scales and constitutes the surrogate model of the composite material’s behavior.

All aforementioned steps are summarized in the following algorithm:
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Output : The trained DNN that emulates the composite material’s behavior
oM (M) g(M))

for scale s =1 to N do

if s =1 then
Assign the matrix material of RV E* as the original matrix material of the

composite;
else
‘ Assign the matrix material of RV E* as the previously trained DNN*~1;

end

Choose the samples ranges in the input space [e**D, &+1] | where a6+ is

the augmented parametric vector @1 = [al®), ..., aM)];
nd

or sample j =1 to K do
(s+1) A (s+1)

Generate a sample [ej N}

Solve the RV E* and obtain the relation [e§s+1), dgsﬂ)] - [O'J(-S+1)];

Select the architecture and train DN N® with the acquired RVE solutions;

=0

| using the preferred sampling technique;

end

Algorithm 2: Offline DNN training

To better illustrate the proposed surrogate modelling strategy let us focus on the 4-
scale example of CNT-reinforced concrete presented in section 6.2. First, the DN N™icro
is trained to substitute the RVE of the microscale, which consists of cement paste and
CNTs, using (efm, a“) as input and /™ as output. Next, the DN N5/ which
represents the fine mesoscale RVE (cement mortar) is trained on pairs (ecm, al™, a“),
where now DN N™i° ig considered as the matrix material along with the fine aggregates
as the inclusions. The process is repeated one more time for the DN N™€5%:¢0Ts€ of the
coarse mesoscale RVE, which is the final DNN that encapsulates all previous DNNs and
represents the constitutive relation for the macroscale problem. The training procedure

is illustrated in fig. 6.3 and the final outcome of the process in figs. 6.4a-6.4b.
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DN lecfo

TRAIN

TRAIN
D N Ncoarse,meso

Figure 6.3: Training procedure according to the proposed strategy. Staring from the microscale, a
neural network, DN N™° is trained to emulate the stress-strain behavior of the microscale RVE.
This DN N™i€ is ysed in exchange of the host material in the fine mesoscale and, next,
DN N/Tine;meso is trained to emulate the stress-strain behavior of the fine mesoscale RVE. The
process is repeated one more time for the coarse mesoscale until the final network DN [N¢carse,meso
successfully encapsulates the overall composite material’s behavior.
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Figure 6.4: (a) Hierarchical construction of the surrogate DNN model and (b) Scale coupling using
the final DN N™¢80:€0a75¢ a5 constitutive model

6.3.2 IMPLEMENTATION ASPECTS

Regarding the implementation aspects of the surrogate modelling strategy, there are a few
key points that require further elaboration: To obtain the data for each DNN training, a
series of RVEs need to be solved for various combinations of strains and parameter values.
Starting from the finest (first) scale, a number of detailed FE simulations are required
for the preparation of the training data set. These calculations do not involve any direct
FE? simulations, since they are performed at the lowest scale. However, moving a step
up to the 2nd scale, the training of the DN N™¢5%.fin¢ requires a FE? analysis between
the first and second scale. Based on the premise that the first DN N™¥" is well-trained

and proven capable of accurately capturing the material behavior at the finest scale,
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the DN N™° is employed in lieu of the costly FE analyses. Then, this procedure
iterates one more time in order to establish DN N™€5%:c0ars¢ which will represent the
constitutive behavior of the composite material. With this approach, the hierarchical
training of the successive DNNs at each scale is performed in a computationally efficient
and tractable manner.

Furthermore, the problems studied here all assume small deformations and consider
materials with isotropic behavior on every scale. Thus, the strain and stress tensors
are symmetric and can be described with six independent variables, while the size of a
may vary on each scale. The accumulation of parameters a”, a/™, o as the training
procedure progresses might lead to high dimensional input spaces for the DNNs that
will impede an accurate training. Therefore, the sampling technique used for generating
the input data plays a critical role in the procedure and sampling with simple Monte
Carlo methods tend to not give representative results in the high dimensional space.
More efficient choices include space filling techniques such as Latin Hypercube Sampling
(LHS) [87] or quasi-Monte Carlo methods [119]. Additionally, attention must be paid on
the range of the sampling in order for the DNN to be able to predict the full response
of a system during every possible solution, while also avoid over-training the DNN for
extreme values with infinitesimal chance to be reproduced in the online solution and
increase unnecessarily the offline computational time.

As it is generally the case for all the data-driven material models, it should be
highlighted that with the proposed data-driven material modelling strategy, the DNNs
that learn to imitate the constitutive law of each scale are ultimately limited by the
level of detail that has been applied to describe the original materials’ behavior. These
may include the material formulation for each separate phase of the composite or the
interaction mechanisms between them. Nevertheless, this is merely a choice that has to
be made based on the desired material accuracy in exchange of computational complexity
and time. The core of the proposed scheme is invariant to different preferences for the

material formulations.

6.4 VARIANCE-BASED SENSITIVITY ANALYSIS ON COMPOSITE STRUCTURES

In this section, the variance-based SA framework, presented in section 3.4, is applied
in order to assess how sensitive are the structures made up of CNT-reinforced concrete

with respect to material parameters in the microstructure. Herein, SA is performed
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on the Drucker-Prager plasticity model parameters, namely, the friction ¢, the dilation
1), the initial cohesion ¢y and the hardening modulus H, in a CNT-reinforced concrete
building. The model parameters are collectively denoted as &™ = (¢, 1), co, H). Then,
SA will give us a measure of how uncertainty propagates across the various scales of
the model and affects the macroscopic response. In this setting, we can consider our
model Jl = f(¢,v,co, H) := f(&™) to be a quantity of interest of the structure in the
macroscale, such as a displacement at a given location, which is obtained after solving the
structural problem with the FE* scheme. The aim is to evaluate the sensitivity indices
S; and total indices S, for i = 1,2,3,4 corresponding to the four model parameters
¢, 1, co, H, respectively. To do this, we need to generate K - (d + 2) instances of the

M o (d+ ) according to a specified probability distribution, with K

parameter vector {¢&;
typically being of the order of 10® = 10° to produce reliable estimates of the sensitivity
indices and d = dim(&™) = 4. For each of these instances, the macroscale problem is
solved to obtain the responses {Jll;};_ 1d+2) and compute f(Rj), f(Q(;) and f( R ])),
according to equations (3.30) and (3.31).

Taking into account the complexity of the model, it becomes apparent that this
type of analysis would be computationally unrealizable with a direct application of
the FE* solution scheme. However, the surrogate modelling scheme developed in the
previous section can be employed to accelerate the repeated model evaluations for various
instances of the microscopic model parameters ¢, ¥, cg, H. A schematic representation
of the SA procedure in a general DNN enhanced multiscale analysis is depicted in fig.
6.5. According to this, K - (d + 2) instances of the parameter vector {&M } d+2) are
generated following a specified probability distribution and for each of these 1nstances
KUT2) The K- (d+2)
model evaluations necessary for the convergence of the SA are expected to require
affordable computational time since the final DNN, namely the DNN¥ | has replaced
the costly direct FEY scheme. After the samples have been collected and the SA has

been performed, critical deductions of the multiscale model parameters can be done by

the macroscale problem is solved to obtain the responses {J/(;},

observing how they affect the model output.
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Figure 6.5: Sensitivity analysis on a multiscale system accelerated by the proposed surrogate model.

The macroscale problem is solved for K - (d + 2) instances of the parameter vector &*. The

corresponding model output {./%i}f(:(ldw) can be efficiently computed by virtue of the proposed

surrogate modelling strategy. Then, the sensitivity indices of the material parameters can be
straightforwardly computed via statistical post-processing.

6.5 NUMERICAL APPLICATION

In this section we showcase the potential of the proposed framework in a CNT-reinforced
concrete structural model as the one presented in section 6.2. The structure to be
analyzed in the macroscale is a two-storey CNT-reinforced concrete building as depicted
in fig. 6.6. Each story has a height of 2.80m, while both slabs have dimensions of
2.50m x 2.50m x 0.30m. Both the columns and the beams have a rectangular cross-
section with dimensions 0.30m x 0.30m. The four columns are fixed on the ground.
At the edge of each storey, a lateral line load with magnitude Pr, = —5.28kN/cm is
applied on the z-direction while a dead pressure load of magnitude Pp = —0.16kN/cm?
is assigned on each slab. The macroscale model is discretized with 2308 hexahedral
elements, which in turn results in 12276 DOFs.
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Figure 6.6: Multiscale model of a CNT-reinforced structure. Each Gauss point of the macroscale is
associated with a constitutive law delivered by the DNN hierarchy

6.5.1 OFFLINE PROCEDURE

The initial cement paste matrix material is formed according to the Drucker-Prager(DP)
plasticity model presented in section 6.2.1. A series of parameters are selected, based
on which the SA of the macrostuctural response will be performed. As mentioned
previously, these parameters are the ones that characterize the cement paste mate-
rial, namely the friction angle ¢, the dilation angle %, the initial cohesion ¢y and
the hardening modulus H. To propagate the influence of these parameters on the
macroscale behavior, a ten parameter input vector for the DN N* of each scale i defined
zi/y’ and the

parametric vector a = [¢, 1), co, H]. The output vectors are the six stress components

in section 6.3.1 is used, containing the strains €' = [e}_, €l €., € €

Ty’ “x2) 6yz]

2
T

eq. 1.25.

As stated in the implementation aspects section, the choice of the input sample

%
vy’

7
z2)

2
Ty’

3

U$Z7

ol =0l ol 0l o a:,jz] resulting from the homogenization equations given by

ranges play a crucial role on the efficiency of the proposed approach. For the material

parameters « this choice is straightforward, as their statistical properties are known
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from their specifications. However, in order to set up reasonable and functional upper
and lower bounds for the strain vectors €’, even though the offline procedure is decoupled
from the macrostructure, a proper choice requires some prior information about the
macromodel’s behavior under certain conditions e.g. loading, boundaries.

A strategy is proposed here in order to pre-select the strain input ranges efficiently as
follows: An inverse hierarchical procedure is implemented starting from the macroscale
and then moving to the finer scales. A DP model is assigned as the material of the
macro-model, where the parametric vector a of the material is chosen in a way that
would yield the most critical response, i.e. the largest displacements on any point of the
structure under the loading conditions specified by the model configuration. To achieve
that, in the examined problem all the components of a are given their lowest values
based on the material specifications as imposed by the problem. After the solution of

the macroscale problem is completed, a pair of strain vectors is formed, namely the G%M
M

and €. . Each of these strains contain respectively the maximum and minimum values
of each component of the strain vector that resulted from the analysis. Since the loading

of the following scale, i.e. the coarse mesoscale, is defined by the macroscopic strains via
M M

mazx and €min

the localization rule, the € vectors represent the extreme candidate loading
conditions. Therefore these vectors are used to define the maximum and minimum strain

sampling ranges for the DN N¢07$€me50 training. In a similar manner, by solving the

coarse mesoscale model with two loading cases imposed by the €, and €. we can
track the maximum and minimum strains that resulted from the corresponding analysis.
These extreme strain vectors are used to form the €7 and €} respectively and can
be readily applied as the strain sampling ranges for the DN NTmemes0 training. This
procedure is repeated one last time in order to determine the e%ﬁ}m and efnrgx that will
represent the strain bounds for the DN N training. As there is no involvement of
any multiscale analysis during this process, the computational cost for this pre-selection
step involves minimal FE solutions at each scale, hence the additional computational
time is insignificant.

It has to be highlighted that the produced DNN from each step of the offline procedure
i.e. the training of the respective scale, represents a sub-multiscale system. The number
of scales that define this sub-multiscale system depends on all the preceding scales which
have already been used to train the previous DNNs. The optimal way to validate the
training quality of each of these intermediate DNNs is to compare them with direct

solutions of detailed sub-multiscale systems. However, for subsystems with more than 2
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scales, this is computationally intractable. Hence, a different strategy has to be employed
for the cases where a > FE3 analysis is required for the direct simulation. Since the
validation of the first and the second scale require FE and FE? analyses respectively,
these can be performed straightforwardly and without any further adjustments. For
validating each higher scale s (with s > 2) instead of solving F'E® systems, the already
trained DNN*~2 can be used as the matrix material of the s — 1 scale. This enables
the verification of all the higher DNNs by performing F E? analyses within a reasonable
time. Obviously this approach is based on the premise that the preceding DNNs are
accurately trained and therefore extensive testing is performed to verify the accuracy of
each DNN starting from the finest scale.

The number of RVE simulations in order to collect the training data for each scale
was determined by a concise trial and error procedure. For the number of samples that
were ultimately selected, we took into account both the factors of the total computation

burden for the RVE solutions and the achieved level of accuracy of the NNs.

MICROSCALE

The first scale to be analyzed is the microscale described by the CNT-reinforced cement

Nmicro

paste as presented in section 6.2.2. The bounds of the DN input parameters
are given in table 6.1, where for the strain vector these bounds were chosen based
on the aforementioned sampling strategy . For the DNN™€ training, 500 RVEs
were solved and the non-linear solution for each of them included 20 increments, thus
ultimately collecting a total of 10000 solutions. The DN N™"° architecture was selected
after a trial-and-error process and consisted of 3 hidden layers with 20 neurons each.
The weights and biases were initialized with the Nguyen-Widrow algorithm, while the
optimization of the DN N™¥° during the back-propagation was done by means of the
Levenberg—Marquardt algorithm. For the training process, the data were split in three
subsets, namely the train, test and validation subset with ratios 0.7, 0.15 and 0.15
respectively. A maximum limit of 3000 epochs were appointed. The total CPU time
required for the collection of the data and the DN N training where 28.4 hours and
5.8 hours, respectively. The progression of the training and the training error histogram
of the fully trained DN N™ are shown in fig. 6.7.
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S S A I s S A A K
Hl [ F [ EL [ F ]| [deg] | [deg] | [GPa) [GPa
mwn | - - - - - - 10 10 0.01 |1

0.0152| 0.0201| 0.0138| 0.0303| 0.0280| 0.0242
max | 0.0396] 0.0352| 0.0382| 0.0540| 0.0463| 0.0389| 40 40 0.05 | 5

Table 6.1: Input sample ranges for the DNN of the microscale
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Figure 6.7: (a). Progression of mean squared error during the DN N training (b). Training
error histogram of DN N on fully trained stage

To further assess the quality of the trained DNNs the normalized L2 norm of the
discrepancy between 50 direct numerical solutions and surrogate solutions is employed.
Specifically, the norm is computed for the differences of both the homogenized stress

vectors and the tangent modulus matrices as:

2?0:1 Hcg)EMd B CS}VNJHQ

50 (i)
Y

ETToG) = (6.14)

and
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50 i i
Zj:l HU})EM,]' - UE))]VN,]'HQ
S5 o],

where (-)pnn refers to the macroscopic quantities predicted by the surrogate, (-)rgas

(6.15)

errg(y =

to the FEM solutions of the homogenization and ||-||, denotes the standard Ly norm.
The superscript (i) denotes the scale, hence (i) = fm in the present case. These errors
were found to be errgrm = 3.28% and errg,pm = 2.16%, which demonstrated the high
accuracy achieved by the surrogate.

A comparison between the stress-strain relations for the two analyses was per-
formed next. Specifically two randomly selected loading cases were produced from
the strain space of €/™ that was used for the DN N training. These cases are used
as tests for validating the DN N™° predictions against the corresponding detailed
FEM analyses. Figs. 6.8a and 6.8b present the comparison of the stress-strain rela-
tion obtained with FEM and the DN N surrogate for the strain vectors 6{m =
2.21,-4.99, —1.98, —3.53, —4.08, —3.14]-10 3 and €)™ = [0.47,4.73,2.15,1.98, —2.84, —4.76]-
1073 respectively, while also these cases were tested for three different sets of parametric
vectors a, namely a1=[¢ = 10°, ¢ = 10°, ¢9 = 0.01GPa, H = 1GPa, aa=[¢ = 25°,
1 =25° ¢g = 0.03GPa, H = 3GPa], az=[¢p = 40°, ¢ = 40°, ¢y = 0.05GPa, H = 5GPal.

As can be seen from figs. 6.8a and 6.8b the curves are in good agreement for all cases.
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Figure 6.8: Comparison of DN N"™°" and FEM produced strain-stress curves for the two
randomly sampled loading cases (a) /™ = [2.21, —4.99, —1.98, —3.53, —4.08, —3.14] - 10~3 and (b)
e} =1[0.47,4.73,2.15, 498, —2.84, —4.76] - 102



FINE MESOSCALE

Once the homogenized response of the microscale has been learned accurately by the
DN N™icro the transition on the following scale can be done. This scale describes the
fine mesoscale of the reinforced mortar as mentioned in section 6.2.3. Similarly to the
preceding scale, the data obtained from 500 RVE solutions, with 20 time steps each,
were used for the training of the second DNN, namely the DN N/memeso  The choice
of the hyperparameters and the general architecture of the DN Nfnemeso ig jdentical
to the previous one. For the collection of the training data the computational cost was
25.2 hours, while for the DNN training 4.2 hours. The performance of the training and
the error histogram are illustrated in fig. 6.9. Also the L2 norm of the discrepancy
of the stresses and tangent moduli between direct FE? fine mesoscale analyses and
DN N/Jine;meso predictions, for 50 RVE resolutions were found to be errgem = 2.64%
and errgem = 1.89%.

N e A e N A N
= = =D =D P P IED | [deg] | [deg] | [GPa) [GPal
min | - - - - - - 10 10 0.01 |1

0.0087( 0.0192| 0.0081| 0.0200| 0.0167| 0.0183
mazx | 0.0197| 0.0200| 0.0181] 0.0316| 0.0241| 0.0245| 40 40 0.05 | 5

Table 6.2: Input sample ranges for the DNN of the microscale
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Figure 6.9: (a). Progression of mean squared error during the DN N™¢3%:/i"¢ training (b).
Training error histogram of DN N™¢s:fi7¢ on fully trained stage

Next, the stress-strain curves of direct FE? solutions in the fine mesoscale were
compared with the predictions of the DN N/iemes0  Thege tests were performed for
the same strain vectors €™ = e{m = [2.21,-4.99, —1.98, —3.53, —4.08, —3.14] - 1073
and €5 = egm =1[0.47,4.73,2.15,1.98, —2.84, —4.76] - 103 as in the microscale and are
shown in figs. 6.10a and 6.10b. Given the closeness of the results, we can confidently

deduce that the quality of the DN NTine:meso ig highly satisfactory.
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Figure 6.10: Comparison of DN N7 and FEM produced strain-stress curves for the two
randomly sampled loading cases (a) /™ = [2.21, —4.99, —1.98, —3.53, —4.08, —3.14] - 10~3 and (b)
€}™ = [0.47,4.73,2.15, 4,98, —2.84, —4.76] - 1072,



COARSE MESOSCALE

Lastly, the procedure is repeated for the coarse mesoscale of reinforced concrete which is
described in section 6.2.3. The DN N%78¢me0 wwhich has the same formulation with
the previously constructed DNNs, is trained with the 10000 samples acquired from the
RVE solutions, by following the same sampling strategy. Approximately 23.4 hours were
employed for the collection of the samples and 1.5 hours for the training of the DNN. The
progression of the training and the error histogram are reported in fig. 6.11. Since the
direct FEM analyses in this case require F'E? system solutions, these are computationally
intractable and the strategy described in section 6.2.4 is employed. To be able to perform

INeoarse;meso predictions

comparisons between direct simulations and the respective DN
we replace the microscale with the accurately trained DN N With this, direct F EM
solutions are enabled by solving F E? systems on the coarse mesoscale. By means of that,
the L2 norm of the homogenized variables between FE? analyses and DN Ncoarsemeso

predictions were estimated as erron = 2.23% and errgom = 1.58%.

N A O N
-1 [ =) ] ] J[E] | [deg) | [deg] | [GPa) [GP)
min | - - - - - - 10 10 0.01 |1

0.0056| 0.0171| 0.0052| 0.0163| 0.0089| 0.0153
maz | 0.0113| 0.0135| 0.0077| 0.0163| 0.0089| 0.0135| 40 40 0.05 | 5

Table 6.3: Input sample ranges for the DNN of the microscale
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Figure 6.11: (a). Progression of mean squared error during the DN N™¢50:¢0075¢ training (b).
Training error histogram of DN N"™¢39:¢0475¢ on fully trained stage

The loading modes defined by the strain vectors €]! = e{m = [2.21,—-4.99,—1.98, —3.53, —4.08, —3.14]
1073 and eé\/f = egm = [0.47,4.73,2.15,1.98, —2.84, —4.76] - 1073 are again utilized in
the direction of validating the performance of the DN N¢0475¢mes0  The comparison of
the strain-stress curves between the detailed FE? resolutions and the DN N¢oarsemeso
predictions is depicted in figs. 6.12a and 6.12b. Based on these figs., the excellent

predictive capabilities of the DN Nc0aT5¢MeES0 are evident.
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Figure 6.12: Comparison of DN N7 and FEM produced strain-stress curves for the two
randomly sampled loading cases (a) /™ = [2.21, —4.99, —1.98, —3.53, —4.08, —3.14] - 10~3 and (b)
€] = [0.47,4.73,2.15 1598, —2.84, —4.76] - 1072,



6.5.2 SENSITIVITY ANALYSIS ON THE MACROSTRUCTURE

A sensitivity analysis, as described in section 3.4, is performed, based on the lateral
displacement at the z-direction of node o, i.e. the monitored node, whose location can
be seen in fig. 6.6. For the purpose of this analysis, a stochastic parametric variability is
introduced to the model parameters. Thus, the friction angle ¢, the dilation angle v,
the initial cohesion ¢y and the hardening modulus H are assumed to follow independent
normal Gaussian distributions with properties listed in table 6.4. The propagation of the
uncertainty from the parameter space to the solution is investigated by extracting the
probability density function of ]uf| from 48000 simulations and the results are shown in
fig. 6.13.

Subsequently, SA is performed for the calculation of the sensitivity indices. Figs. 6.14a
and 6.14b present the convergence behavior of the first order indices S and the total
effect indices Sy, respectively, while fig. 6.15 illustrates both the first-order and total
indices. As can be seen in these figs., approximately 40000 simulations were necessary for
the first order sensitivity indices to converge. It is evident that for this type of analysis
a direct computational homogenization procedure would be impossible. Instead, by
utilizing the proposed surrogate model, the total analyses required for the collection of
all the samples were performed at reasonable and affordable computational times. Also,
from fig. 6.15 it is apparent that the initial cohesion cg is the most dominant parameter,
in the sense that it has the largest impact on the investigated model. Moreover, from
the S; indices it can be concluded that the interactions between the parameters also

have a noteworthy effect on the model’s response.

N(p, o) friction ¢ dilation 1) initial hardening
(degrees) (degrees) cohesion ¢ modulus H
(GPa) (GPa)
" 25 25 0.03 3
o 5 ) 0.004 0.6

Table 6.4: Probability distributions of the Drucker-Prager model uncertain parameters
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Figure 6.13: Probability Density Function of the horizontal displacement on the monitored node A.
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Figure 6.15: Sensitivity indices of the investigated parameters

To further assess the way each parameter affects the response of the model, scatter
plots were produced in fig. 6.16. These plots depict the response u? for various parameter
instances. Based on these results we can confirm that the initial cohesion has indeed a
strong correlation with the monitored response of the macrostructure. On the contrary,
for the rest of the investigated parameters, the macroscopic response is more or less

unaffected by their variability.
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Figure 6.16: Scatter Plots of the investigated parameters against the response. The cohesion has
the most notable influence in the macroscopic z-direction displacement of node A, while the friction,
dilation and hardening modulus do not impact considerably this response.

In addition to the scatter plots, a series of force-displacement curves are plotted in
fig. 6.17. Fig. 6.17a presents the evolution of the monitored response, if we assume
that the constitutive law that defines the material macroscopically is described by each
of the previously trained DNNs, namely the DNN™° the DN NTnemeso and the
DN Neearsemeso - corresponding to the reinforced cement paste, reinforced mortar and
reinforced concrete materials, respectively. The aim of this fig. is to provide us with
the information on how the material law progresses with the addition of each scale
and how the macromodel’s behavior is ultimately determined, for a fixed parametric
vector a. In this case this investigation was carried out for the parametric vector
ax=[¢p = 25°, ¢ = 25°, ¢y = 0.03GPa| and it can be observed that each added scale
increases structural stiffness. Moreover, fig. 6.17b illustrates the evolution of the
displacement, with regards to different combinations of the studied parameters. Here,

this evolution was examined for the cases of the parametric vectors a;=[¢ = 10°, 1) = 10°,
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cp = 0.01GPa (case A), H = 1GPa], ag=[¢p = 25°, ¢ = 25°, ¢p = 0.03GPa (case B),
H = 3GPa)] and az=[¢p = 40°, ¢» = 40°, ¢y = 0.05GPa, H = 5GPa] (case C). These
analyses were performed on the basis that the macroscopic material is the reinforced
concrete, described by the DN Ncoarse,meso,

5.28 5.28
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— pNNMesoffine —case B
4,00 || DNNmesocoarse a2 [—case C|
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a2 o211
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Figure 6.17: (a) Monitored response on the macrostructure by assigning each trained DNN as the
macroscopic material. (b) Monitored response on the macrostructure for various combinations of the
investigated parameters.

6.5.3 COMPUTATIONAL COST ASPECTS

A rough estimation of the computational time of the direct solution can be performed
with the help of eq. (1.33). Taking into account that the number of integration points are
16356, 15932 and 12276 for the fine mesoscale, the coarse mesoscale and the macroscale
respectively, while assuming that 10 incremental steps are assigned for the solution of
each scale with each of them requiring 3 newton iterations to converge, then the total

RVE evaluations for each macroscopic material point can be estimated as:

Krye ~ kM + M o km 4 1M x ko x kBIm
= (12276 x 3 x 10) + (12276 x 3 x 10) x (15932 x 3 x 10)+
+ (12276 x 3 x 10) x (15932 x 3 x 10) x (16356 x 3 x 10)
= 8.64 % 101°

(6.16)

The enormous amount of RVE solutions required for performing a complete analysis

of the macrostructure is evident from eq. (6.16). This amount is of several orders of
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magnitude higher if we take into account the repetitive model evaluations enforced by
the SA. In table 6.5 a comparison of the computational effort required for the direct
numerical simulation and the surrogate model is carried out. For the surrogate model, the
offline computations include the collection of the training data and the network training
for the DNNs of all scales. During the system solution, instead of solving BVPs dictated
by all the RVEs of the finer scales, minimal cost DNN computations take place. These
computations include the evaluation of the DN N€%$¢Me¢ gutput and its jacobian,
in order to acquire the macroscopic stresses and tangent moduli respectively. For the
full scale model, since the solution is computationally intractable, only a prediction
of the computational time is attempted here. This was done based on the total RVE
resolutions estimated by eq. (6.16) and by taking into account the 40000 repetitive
model solutions needed for the SA convergence. Note that all the computational effort

has been documented in terms of serial programming procedures.

Computational time (hours)
Offline Online Total

DNN DNN RVE DNN FE* SA

sam- train- || solution calculations

pling ing
Full - - 0.0513 - 4.435el5 1.774e20
scale
(Predic-
tion)
Surro- 7 11.5 - 7.34e-9  0.0027 108
gate

Table 6.5: Computational time of each stage of the solution for the full scale and the surrogate
model

As can be seen from table 6.5, carrying out the SA on the full scale model would have
taken up to 1.77¢20 hrs, while the surrogate required only 196.5 hrs, which is 18 orders
of magnitude lower. As a result, the otherwise unapproachable task of performing SA

on the four scale system, is implemented in a reasonable computational time.
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6.6 CONCLUSIONS

In this work a novel accurate and computationally efficient surrogate modelling strategy
is proposed for performing computational homogenization on nonlinear and parametrized
multiscale systems that involve more than two scales. A DNN hierarchy has been
employed as a surrogate model of the material behavior, where each DNN has been
assigned to learn the constitutive law at the respective length scale of the problem. In
contrast to the direct computational homogenization, which is inherently coupled, the
proposed approach enables the decoupling of the whole procedure and it results in a
dramatic decrease in computational cost. The proposed material modelling framework is
demonstrated on the analysis of a large-scale structure made of CNT-reinforced concrete,
where a sensitivity analysis has been performed to assess the influence of the constitutive
parameters on the macroscopic response. This otherwise unreachable problem, in terms
of computational effort, was solved in a reasonable time, by virtue of the elaborated
surrogate modelling strategy. Future extensions of this work include the application of
the proposed methodology to more complex analyses, such as post-fracture investigation
and crack propagation of concrete as well as enhancing the presented surrogate strategy
to work efficiently under non-monotonic loading paths. For the latter, several works
already exist in the literature in the direction of capturing arbitrary loading conditions of
complex path dependent materials. For that, different techniques can be utilized, such as
mechanistically informed neural networks [81] recurrent neural networks [139, 91] or the
enrichment of the neural network’s input layer with internal variables that characterize

the material’s nonlinear progression [137].
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Stochastic optimization of carbon
nanotube reinforced concrete for enhanced

structural performance

7.1 INTRODUCTION

In this chapter, a novel computational method is proposed for performing material
optimization towards improved structural performance. In this regard, we consider the
orientation of CNTs as the design variables to our optimization problem. This particular
parameter is shown to play a critical role in the composite’s performance [135]. Next, we
utilize an optimization method called Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [51, 49], which is derivative-free method for handling non-convex continuous
optimization problems and is suited for computationally expensive numerical models.
With this methodology we can obtain the optimal CNT orientations at every location of
the macroscale structure that will lead to a reduced overall deformation. Going one step
further, in the effort to provide a more rational and robust approach, we also take into
account the randomness in the external loading of the structure under investigation and
reformulate the problem in the context of stochastic optimization.

Stochastic structural optimization, as a procedure, entails a cumbersome computational
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effort and the task of performing it on the FE? multiscale model that is developed
to simulate the CNT-concrete structural system is very challenging. To alleviate the
immense computational burden associated with this endeavour, we employ a surrogate
modeling technique to simulate the composite material’s behavior. Specifically, the
methodology presented in the previous chapter is utilized and an appropriate sequence
of FFNNs is developed to represent the material of the FE? model. With this approach,
we achieve a drastic cost reduction per structural analysis that allows us to combat
efficiently the stochastic structural optimization problem.

The remaining of this chapter is organized as follows: In section 7.2, we present the
multiscale model for the analysis of structures made up of the reinforced concrete. Next,
in section 7.3 the surrogate modeling strategy is proposed, which will enable us to train
a highly efficient neural network to emulate the complex material’s behavior. In section
7.4 we describe the problem of stochastic material optimization and elaborate on the
numerical tools used in this work to tackle it. In section 7.5 numerical examples are
provided that demonstrate the application of the proposed methodology to structural

engineering applications.

7.2 MULTISCALE MODEL AND SOLUTION PROCEDURE

CNT-reinforced concrete is regarded as a 3-phase material in this work with its con-
stituents being a) CNTs, b) cement mortar, that is cement paste and fine aggregates (e.g.
sand) and c) large aggregates (e.g. gravel). This section presents the numerical models

used to describe each of the constituents, as well as the final model of the composite.

7.2.1 (CARBON NANOTUBES

CNTs are initially modeled as space frame structural models according to the Molecular
Structural Mechanics (MSM) approach. Subsequently, these space frames are projected
to Equivalent Beam Elements, aiming at systems with manageable DOFs. A more
detailed description about the complete transition process from the molecular mechanics

to the EBE representation is given in section 2.1.
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7.2.2 CEMENT MORTAR

The cement mortar, which consists of fully hydrated cement paste and fine aggregates,
is modeled as an isotropic homogeneous material, which obeys a non-linear constitutive
relation and exhibits elastoplastic behavior. We employed a Drucker-Prager type yield
function [34] to indicate the transition from the elastic to the inelastic regime, which

has the form:

(o) = /(1 - a)eo? + Ja(0)” + (o) — €3/ (1 — a)eo? + 2 (7.1)

with Js being the second deviatoric invariant of the stress tensor o, p the hydrostatic
pressure, cg the cohesion, n and ¢ are constants that are usually chosen in a way to
approximate an equivalent Mohr-Coulomb yield surface, while « is a material dependent
constant that indicates the ratio between its tension and compression strength. The

approximation constants are chosen as:

n=tan¢/V3 & = (3+tan¢)/3V3 (7.2)

with ¢ being the friction angle.

The classical strain rate decomposition is applied:

E=éotép (7.3)

with initial conditions:

€(to) = €c(to) + €p(to), (7.4)

at a pseudotime to, with €. and €, the elastic and plastic part of the strain tensor.
According to the plastic flow rule, the rate of the plastic strain is:
. 0¥
€)= A\— 7.5
4 o ( )
where A is the plastic multiplier and W is the flow potential function. Here, non-associative
plastic flow is assumed, hence the flow potential function takes a different form than the

yield function (® # W¥). The potential function that was chosen here is:

(o) = /(1 a)eo® + Jo(o)? +p(o) (76)
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where 77 has a similar meaning with the approximation constants of ® and is given by:

7= tant/V3 (7.7)

with v being the dilatancy angle.
The evolution of the hardening function c(€p) is defined by an isotropic linear softening

model and the rate of the equivalent plastic strain is given by:
&=\ (7.8)
In the above equations the Kuhn-Tucker conditions have to hold:

d<0, A>0, ®A=0 (7.9)

The mechanical properties and Druger-Prager model parameters considered in this

work are given in table 7.1.

\ \ Mortar \
Young’s modulus | 20G Pa
Poisson ratio 0.2
a (eq. (7.1)) 0.1

o (eq. (7.1)) 0.05

Table 7.1: Mechanical properties of mortar

7.2.3 CNT-REINFORCED MORTAR

For practical applications, we are interested in generating a representative volume element
(RVE) of the reinforced mortar that will allow us to study the material’s behavior. This
RVE will consist of the mortar matrix and a specified number of EBEs, added as
inclusions to the matrix, so as to achieve a specific volume or weight fraction. The
contribution of each EBE to the overall stiffness is taken into account using the embedded
FE technique of equation presented in section 2.2. The addition of these elements is
usually done with a random positioning generator and figure 7.1 illustrates a RVE of the
microstructure for 0.5% weight fraction. The geometrical and mechanical properties of

the CNTs considered in this work are given in table 7.2.
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CNT
Young’s modulus | 1.0517" Pa

Poisson ratio 0.35
length 100nm
diameter 1.063nm

Table 7.2: Geometrical and mechanical properties of CNTs

Figure 7.1: A RVE of the CNT reinforced mortar at the microscale. Its dimensions are
0.5 pm x 0.5 pm x 0.5 um

7.2.4 CNT-REINFORCED CONCRETE

CNT-reinforced concrete is studied at the mesoscale, represented by a computational
model of a two-phase composite consisting of the reinforced mortar matrix along with
coarse aggregates. The aggregates are considered to be linear elastic, while the nonlinear
behavior of the composite originates from its microstructure. For the coarse aggregates,

the following distribution is considered according to standard AB16 [133].
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‘ Cement Matrix Fine Aggregates Coarse Aggregates

Size [mm| - 0.063 [ 0.125 [ 0.25 | 05 1 2 2.8 4 | 56 8 [112] 16
Vol. fraction [%] 29.26 150 | 1.62 | 1.76 | 1.76 | 3.63 | 12.17 | 5.063 | 5.15 | 6.74 | 16.61 | 2.90 | 11.83

Total [%] 29.26 22.44 48.30

Total [%] 29.26 70.74

Table 7.3: Concrete compositions according to standard AB16

Knowing the composition of the coarse aggregates in the matrix, we can generate
a mesoscale RVE using a random geometry generator, as shown in figure 7.2. The
Young’s Modulus and Poisson ratio of the aggregates are taken to be 60 GPa and 0.22,

respectively.

Figure 7.2: A RVE of the CNT reinforced concrete at the mesoscale. Its dimensions are
150 mm x 150 mm x 150 mm

This section presents the numerical framework employed in order to investigate the
behavior of structures at the macroscale, which are made up of the composite. Since
the proposed material modeling approach involves separate model descriptions at the
microscale and mesoscale, an interaction between them is required in order to pass
information from one scale to the other. The interaction among scales is realised through

(successive) homogenisation and localisation procedures [88, 38].

7.2.5 FE? SOLUTION SCHEME

Having fully established the connections between the micro-, the meso- and the macroscale,

a variation of the semi-concurrent F'E? algorithm [35], termed F E? herein, is used for the
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online transition between the three scales during the solution of the macroscopic compos-
ite system. According to this algorithm, for each load increment of the macrostructure,

M ig calculated on every integration point of each finite element,

the macroscopic strain €
where it is assumed that a mesoscale RVE exists. The next step it to convert the
mesoscopic strain at each integration point of the mesoscale RVE to a displacement field
on a microscale RVE through a further localisation. Then, performing homogenisation
on the microscale RVE will return the mesoscale stresses " and tangent moduli C" at
all integration points of the mesoscale RVE. Lastly, the homogenization scheme is applied

M and tangent modulus

again at the mesoscale RVE, from which the macroscopic stress o
" are acquired for each integration point. With these, the macroscopic internal force
vector F%t(EM ) and tangential stiffness matrix RM(éM) can be calculated. This
procedure is repeated until the internal force vector is equivalent to the external one,
namely Fﬁ;[. However, the nested nature of this scheme further implies that for each
macroscopic iteration an additional set of mesoscopic iterations are required so that
o

F.' (™) = F... The interaction of the three scales during the solution of the algorithm
is illustrated in fig. 7.3.

Figure 7.3: Transition between scales during the F'E® solution algorithm

The advantage of this approach is the fact that we can model the composite material
at multiple resolutions and take into account the physical mechanisms at each scale
in a decoupled manner. This gives tremendous expressive capabilities to the proposed
material modeling paradigm, however, the number of RVE evaluations needed, even for
small problems in the macroscale, renders this approach computationally intractable.
This issue will be remedied using a dedicated surrogate modeling technique, which is the

focus of the next section.
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7.3 SURROGATE MODEL OF THE FE? SCHEME

A neural network-based surrogate model is implemented in order to mitigate the computa-
tional cost of F E3 analysis and allow the macroscale problem to be solved at a reasonable
time. The aim is to use deep neural networks (DNN) to discover the parametrized
non-linear homogenized response of the RVEs on each scale. Ultimately, this will enable
us to effectively substitute both the micro- and the mesoscale RVE, with a single DNN
that captures the mesoscale’s behavior. The steps to construct this surrogate are as

follows:

Step 1: Surrogate of the microscale RVE

Starting from the microscale, a set of input and output variables need to be defined,
upon which the DNN will be trained in order to learn the nonlinear constitutive law
of the microscale RVE. The equations that describe the micro-to-meso homogenization
procedure as presented in section 1.3 relate the strain vector € of the mesoscale with
the respective stress vector " after a solution of a boundary value problem on the
microscale. We can further assume that the solution of that system is also affected by
a vector 6¥, containing microscale parameters. In this regard, the input neurons of
the DNN can be represented by a vector that contains both the strain vector € and
the parameters 0*, thus assuming the form [€™, 8*]. Additionally, the output neurons
produce the stress vector ™ for a given input vector.

To incorporate DNNs in the context of newton type iterative solutions, the output
of the tangent modulus is also required by the DNN. In problems where the purpose
of the surrogate is the simulation of a constitutive law, a great flexibility is provided
by DNNs though the Automatic Differentiation (AD) technique [5]. AD allows for a
straightforward computation of the tangent constitutive matrix C™ at a certain strain
state €”, using the chain rule to effortlessly compute the derivatives of the output &
with respect to the input €”. Thus, the elements ¢} of the mesoscopic tangent matrix
c" = 7] can be obtained as

o _ 0% O O

U7 Ohy, Ohy—y O

where hy, is the output at the %y, hidden layer of the DNN for input ;.

For the training of the DNN, a series of microscale RVEs are solved for various strain

(7.10)
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combinations and parameter 6" realisations, leading to a training data set consisting
of pairs {[€]", 0] — " fvzti, with N]' being the number of training samples used for
training the microscale’s surrogate. Figures 7.4 and 7.5 illustrate the training procedure

of the elaborated surrogate and its function, respectively.

P

[€7.0/] =—>

Train DNN

[E%g,, 01{2,?] —_

Figure 7.4: Training of the microscale DNN surrogate

localisation

Figure 7.5: Replacement of the microscale RVE with its DNN surrogate

Step 2: Surrogate of the mesoscale RVE

From the previous step, we have established a ’cheap-to-evaluate’ function that gives
us the nonlinear constitutive law of the material at the microscale. Based on this, it is
now possible to solve multiple mesoscale RVEs at a reasonable time, that will allow us
to train the mesoscale DNN surrogate. Similarly to the procedure in Step 1, various

strain combinations and parameter 8™ realisations are generated, where in this case
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the parameters 0™ refer the mesoscale RVE. Solving the mesoscale RVE for each of
=M }N i
i Ji=1>

with N being the number of training samples used. It is instrumental to include in

these combinations, we can construct the training data set {[€M, 0", 0] —

the training process of the mesoscale surrogate, the microscale parameters 8*, defined
in the previous step, since with this approach we can indeed take into account the
composite material’s behavior at multiple scales. The training process of the surrogate
is schematically depicted in fig. 7.6. Furthermore, figure 7.7 demonstrates how the
surrogate can be used to replace the both the meso- and microscale RVE and return the
homogenised stress and tangent modulus at each integration point of the macroscale

problem at negligible cost.

[€}.0]".0!1 —> a
Train DNN O/ i X
[0, o;']—ﬁ{a q e, om0+ .j P
o5 05— G

|
N

.

Figure 7.6: Training of the mesoscale DNN surrogate

localisation

A

Figure 7.7: Replacement of the mesoscale RVE with its DNN surrogate

General remarks
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e The problems studied herein assume small deformations and consider materials
with isotropic behavior on every scale, thus the tensors €, € and ™, are
symmetric and can be outlined with six independent variables, while the sizes of

0+, 0™ may vary on each scale, according to the individual choices.

e An important factor to the accuracy of the surrogate is the sampling technique
used for generating the set of input training vectors. Sampling with simple Monte
Carlo methods can be inefficient as it might fail to give representative results in
high dimensional spaces with low samples. A more efficient alternative would be to
draw samples from the space spanned by the DNN input vector using space-filling
algorithms or variance reduction techniques. In this work, the input samples are

obtained using the Latin Hypercube Sampling (LHS) algorithm [87].

e Lastly, attention must be paid on the range of the sampling in order for the DNN
to be able to predict the full response of a system during every possible solution
and at same time avoid over-training for extreme values with infinitesimal chance
to be reproduced in the online solution, thus unnecessarily increasing the offline

computational time.

7.4 STOCHASTIC MATERIAL OPTIMIZATION

7.4.1 PROBLEM SETTING

Owing to the computational machinery developed in the previous sections, we are now
able to optimize our material based on the performance of structures constituted by
CNT-reinforced concrete. Let U be the mathematical model of the structural system
under investigation. Since in most cases of practical interest the mathematical model
cannot be derived analytically, the most common approach is to substitute it with a
numerical model U, typically obtained by the FE method. In this regard, U € R? is a
d-dimensional vector corresponding to the d dofs of the FE discretization. Further, if the
structure is subjected to random loading conditions, expressed through the r-dimensional
random vector g, with r being the number of random variables, then U := U(q). In
addition, the structural response is affected by the material at the microscale, whose
properties we chose to parametrize in this work according to the CNT orientation,
0 = 6" = (6,,0,) with 6, € [0 7] the polar angle and 0, € [0 27) the azimuthal, as

shown in figure 7.8. Therefore, we can express our final numerical model as U := U(q, 0).
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Figure 7.8: Polar angle 0, and azimuthal 6,, characterising the CNT's orientation in 3d space

To establish a basis of reference, we initially consider the absence of CNTs in the
cement mortar. This is because we want to assess how conventional concrete behaves
compared to the CNT-reinforced one. Therefore, we generate a large number, N,.y, of
realizations g, ..., qn,,, and perform the corresponding model simulations Uﬁ ef = Ul(q)
for i =1,..., Nycy. Subsequently, we calculate the mean and standard deviation from

this statistical sample as:

N'ref
1
E[U,./] = U, (7.11)
f Nref Zz;
(U, ~ E[U,f) © (U — E[Uys)
Std[Ures] = | Y Tefv f—12 ref (7.12)
i—1 re

where ® denotes the Hadamard product (elementwise multiplication). We compute the
structure’s mean total deformation, M, and standard deviation, 8§, by the Lo-norm of

the above vectors, that is,

M= [E[Ure]]2 (7.13)
8 = [|[Std[Urcs]ll2 (7.14)

The stochastic optimization problem is then defined as: For a given a weight fraction
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of CNTs in the mortar, find the values of the design vector 8 = (6, 6,) that minimize the
weighted sum of the mean and standard deviation of the total deformation, normalized
by the respective reference values given by eqs. (7.13) and (7.14). This statement can

be mathematically expressed as:

B[], Std[U]

6* = (0%,6%) = argmin  wj 9
g 0,€[0 ],02€[0 27] M S
= arg min Z£(0) (7.15)

0p€[0 7],0,€[0 27]

with £(0) = w1% + wz%[m denoting the loss function. Also, the weight factors
wy,ws in eq. (7.15) are chosen as 0.6 and 0.4, respectively, so as to put more emphasis
on the minimization of the mean value.

It is straightforward to extend the presented formulation to include separate CNT
orientation for each structural member or specific regions of the structure. Evidently,
the resulting structural designs after the optimization process will not be realisable
with current manufacturing capabilities. Nevertheless, performing stochastic material
optimisation based on structural performance can be regarded as one of the most
challenging problems in computational mechanics and, hopefully, the outcomes of this
investigation will indicate if material optimization is a research direction worth pursuing
in the effort to design stronger and safer structures.

To solve the minimization problem posed in eq. (7.15) we will employ the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES)[50]. The algorithmic procedure of
CMA-ES is given in section 3.5. In the problems studied in this work, the sample points
{x;}2, in the CMA-ES algorithm refer to the design variables {6;}2_, and the objective
function f is replaced by £ of eq. (7.15). However, the application of the CMA-ES
algorithm for minimizing &£ requires some modifications, since each evaluation of £
involves the estimation of the mean and standard deviation of the structural responses

due to the random loading conditions. This is achieved by performing Nj;c Monte Carlo

Nuye

simulations for various loading conditions {g;};2

at each evaluation £(0;). Therefore,
the number of FE analyses required to solve the stochastic optimization problem becomes
A X Nyo X Ngen, with Njye and A chosen to be 1000 and 300, respectively, while Ny,
is the number of generations required for the algorithm to converge. Evidently, this

problem would be computationally unattainable without the surrogate modeling strategy
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put forth in section 7.3.

7.5 NUMERICAL APPLICATIONS

In this section, we investigate two numerical examples to demonstrate the applicability of
the proposed methodology to structural problems and assess the improvement achieved

in structural performance.

7.5.1 TEST CASE 1: 3D BEAM FIXED AT BOTH ENDS

The first test case involves an illustrative example of a 3d beam, fixed at both ends,
which is subdivided into two smaller beams, A and B, that meet in the middle. The
beam is made up of CNT-reinforced concrete with 0.5% weight fraction of CNTs. The
structure is subjected to a uniform load ¢ as shown in fig. 7.9, which follows a truncated
Gaussian distribution with mean 10M N/m?, standard deviation 2M N/m? and its values
are restricted within the interval [2, 18] (M N/m?). Further, we assume that the CNTs
on each of the two beams can have different orientations, therefore, the vector of design
variables for this problems becomes 6 = (Gg‘, «91‘,4, 03, 053 ) The beam is discretized into
48 hexahedral elements, leading to 297 (free) dofs and 384 integration points.

0.50m

0.50 m \

1.50m 1.50m

Figure 7.9: 3d beam, fixed at both ends

The first step to apply the algorithmic framework developed in the previous sections,
is to establish the DNN surrogate for the microscale RVE. The input variables and
their ranges are shown in table 7.4. The DNN'’s architecture consists of 2 hidden
layers with 40 nodes each using the hyperbolic tangent activation function and the

Levenberg-Marquardt optimization algorithm [83]. For the training, 5000 initial training
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samples (500 realizations of [(€™,6),0,)] x 10 increments each for the nonlinear solution
algorithm) were used. The data were split in three subsets, namely the train,test and
validation subset with ratios 0.7,0.15 and 0.15, respectively. The progression of the
training is shown in fig. 7.10a, which required approximately 800 epochs to reach
acceptable levels of accuracy. The training of the mesoscale DNN is performed following
the same procedure as the microscale DNN, with its training progression given in fig.
7.10b.

€11 €22 €33 €12 €13 €23 9p 0,
min | -0.04 | -0.04 | -0.04 | -0.04 | -0.04 | -0.04 | 0 | O
max | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | @ | 27

Table 7.4: Input sample ranges for training the microscale DNN surrogate
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(a) Progression of the microscale DNN training (b) Progression of the mesoscale DNN training
process process

The optimal values of the design variables are obtained after applying the (100,300)-
CMA-ES algorithm. These are presented in table 7.5, while figure 7.11 provides a
schematic illustration of them. The reduction of the loss function & as a function of
the objective function evaluations is shown in fig. 7.12,from which we observe that the
loss function converges after 341x D objective function evaluations, where D = 4 is the
number of design variables in this example, to the value of & = 0.81. Lastly, we repeat
this procedure from the beginning five more times in order to investigate the effect that

different CNT contents in the mortar have on the structural performance. The results for
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wt% = 0.25—1.50 are displayed in figure 7.13. Additionally, the corresponding results that
we could obtain by adding randomly oriented CNTs (without any preferred orientation,
or alignment) are also included in this figure for the purposes of comparison. Upon
inspection of this figure it becomes evident that CNTs are highly promising candidates
for the development of high-performance concrete. Moreover, perfectly aligned CNT's
that are optimally oriented with respect to the structure’s loading conditions can give a

significant additional improvement in mitigating structural deformations.

Beam A | Beam B

6, (deg) | 90.47° 89.51°
0, (deg) | 0.02° 0.01°

Table 7.5: Optimal angles of CNTs in each structural member

V)
VY

Figure 7.11: Schematic depiction of optimal CNT angles
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Figure 7.12: Optimization algorithm convergence of the loss function &£ vs objective function
evaluations for CNT weight fraction equal to 0.5%
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Figure 7.13: Comparison in the minimization of the loss & for randomly oriented CNTs and CNTs
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aligned with the chosen orientation, as a function of the CNT weight fraction in the mortar

7.5.2 TEST CASE: 3D FRAME

For our our second test case we examine the 3d frame of fig. 7.14. This structure

is subjected to a random lateral load ¢, which follows a truncated Gaussian distri-

bution with mean 2M N/m?, standard deviation 0.15M N/m?, restricted within the
interval [1, 3] (M N/m?), and a vertical load gz that also follows a truncated Gaussian
with mean 5M N/m?, standard deviation 0.25M N/m?, restricted within the interval

[2, 8] (MN/m?). The frame is subdivided into the three structural members, columns

A,C and beam B, with each member having its separate CN'T orientation. As a result,
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the stochastic optimization problem in this example involves D = 6 design variables
0= (0;,4, 04, 95, 05, 05 ,0¢). Regarding the computational mesh, the structure is discre-

tised into 260 hexahedral finite elements, resulting in 2080 integration points.

TR,
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0.40m 4.00m 0.40m

Figure 7.14: 3d frame

In this example, we also assume that the CNT content in the mortar is 0.5%. This
enables us to use the already trained mesoscale DNN of the previous example. With
this tool available, we proceed with finding the optimal CNT orientation angles of each
structural member. These results are collectively presented in table 7.6 and a schematic
depiction is provided in fig. 7.15. The minimization of the loss function with respect to
the number of function evaluations is displayed in fig. 7.16, which converges ultimately
to the value of 0.755 after 503 x D evaluations. Finally, we repeat the process for various
CNT contents in the RVE of the microstructure to assess the structural performance
improvement. The results of this investigation are depicted in fig. 7.17, where also a
comparison with respect to the case of randomly aligned CNT is included. An interesting
conclusion is drawn after juxtaposing figs. 7.15 and 7.17 with the corresponding figs.
7.11 and 7.13 of example 1. Specifically, it can be observed that in the second example
we attained better improvement in structural performance by selecting the appropriate

CNT orientation angles. This leads us to speculate that in more complex problems, with
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more structural members involved, even better results can be expected.

Column A | Beam B | Column C

0, (deg) | 1.03° 89.20° 0.72°
0, (deg) | 0.01° 0.01° 0.02°

Table 7.6: Optimal angles of CNTs in each structural member

Figure 7.15: Optimal angles of CNTs in each structural member
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Figure 7.16: Optimization algorithm convergence of the loss function & vs objective function
evaluations for CNT weight fraction equal to 0.5%
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7.6 CONCLUSIONS

In this work a novel numerical framework has been developed for the analysis of structures
made up of CNT-reinforced structures. In particular, a two-level hierarchical material
model has been proposed based on continuum micromechanics to characterize CNT-
reinforced concrete. An extension of the FE? method, called FE? has been employed
to assess structural performance, where the excessive computational demands of the
method are effectively bypassed by using a neural network based surrogate as a substitute
for the composite material. With this implementation, we perform stochastic material
optimization, aiming to find the optimal CNT orientation at different members of the
macroscale structural systems that minimize the sum of the mean and standard deviation
of the overall structural deformation. The results of this investigation indicate that the
reinforcement of concrete with CNTs can lead to significant enhancement in structural
performance. In addition, the extension of the current manufacturing capabilities to
the design of structural members with appropriately aligned and oriented CNTs can
revolutionise structural design, leading to stronger, safer and more elegant structures.
The elaborated methodology is demonstrated on structural problems, nevertheless it can
be applied in a straightforward manner to other problems of engineering interest such as

heat transfer and electrical conduction.
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An efficient hierarchical Bayesian
framework for multiscale material

modeling

8.1 INTRODUCTION

The present chapter proposes an innovative method for determining material properties
within multiscale material systems through a range of experimental scenarios. The
presented framework holds the promise of merging data acquired from experiments
conducted on materials of different compositions and encompassing measurements taken
at various length scales, allowing the systematic integration of multiple experimental
data sources into a unified computational framework. To achieve this, we utilize the Tran-
sitional Markov Chain Monte Carlo (TMCMC) method to sample from the marginalized
posterior distributions of both multiscale model parameters and hierarchical hyperpa-
rameters. These hyperparameters are subsequently employed to derive informed physical
parameters, which can be used for future model predictions. Crucially, feedforward
neural networks (FFNNs) play a key role in reducing the computational complexity of
implementing hierarchical Bayesian analysis on top of nonlinear computational homoge-

nization. Their primary aim is to learn and accurately predict the nonlinear constitutive
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law across various scales. To evaluate the efficacy of the proposed approach, a study is
carried out on the parameters that define the interfacial mechanical behavior of carbon
nanotubes (CNTs) in CNT-reinforced cementitious material configurations. For this
task, we collected data from conventional experiments conducted on diverse material con-
figurations defined at multiple length scales, each associated and characterized through
a FE? based hierarchical multiscale computational model.

The rest of this chapter is structured as follows: Section 8.2 presents the general
problem of multiscale material parameter identification tackled in this study and details
the proposed hierarchical Bayesian framework. Section 8.3 revisits the theoretical
background of computational homogenization and the application of neural networks
toward the mitigation of its computational cost. Section 8.4 demonstrates an illustrative
example for the calibration of the interfacial mechanical properties in CNT-reinforced
cementitious materials. Lastly, Section 8.5 summarizes the key points and results of this

work and discusses possible extensions to the proposed strategy.

8.2 BAYESIAN INFERENCE ON MULTISCALE MATERIAL SYSTEMS.

8.2.1 PROBLEM DEFINITION

Consider a set of data D = [D!,..., DX], with D = [d"!, ..., d""i], that encompasses
measurements (i.e. mechanical responses) obtained from a number of K independently
performed experiments. Each i-th experiment is defined on a domain )’ and described
by a particular combination of boundary conditions 92’ and material composition.
In the context of material analysis, these experimental scenarios can be simulated by
the respective multiscale computational models (', ..., M* that are used to predict
structural responses m', ..., m’ in line with the experimental datasets. Each model
is characterized by a unique material formulation, for instance with a different number
of length scales, a dissimilar composition in all or a subset of the length scales, etc.
Consequently, the parameterization of these models is done through a distinct set 6%, as
o' =10, ..., Gfgi], which includes a series of physical, topological or constitutive attributes
for each length scale s = 1, ..., .S; of the respective system. In many cases, a subset of
these parameters ' C 0%, with “0° = [0, ...,COng_], is present in all the investigated
multiscale material models, meaning that @' N...N K =<9 = ... = 9K = 0.

In the present study, the focus is on the investigation of these common characteristics
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€@ by properly incorporating the knowledge from all the K experimental instances.
Towards this goal, we propose a hierarchical Bayesian framework tailored to tackle
this intricate task. As a graphical representation of the overall problem at hand and
without loss of generality, fig. 8.1 depicts a three-model scenario where common material
parameters are to be investigated. The hierarchical Bayesian strategy, complemented by
the hyperparameters 1, enables the identification of new physical parameters ™" in a
reliable manner. In turn, €@ can facilitate informed predictions y™¢" on unobserved
multiscale material systems. It is important to emphasize that the data sources have the
potential to encompass a wide range of experiments conducted across various length scales.
These experiments, for example, may include macroscale displacement measurements,
mesoscale topology characterization through Scanning Electron Microscope (SEM) images
[107], or microscale strain field extraction using the Digital Image Correlation (DIG)
technique [86]. Since we are only concerned with the inference of the common parameters
€@, for the sake of brevity, these will be plainly denoted as parameters 6 for the remainder
of the chapter.
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Figure 8.1: Parameter identification of the common properties “@ found in a series of diverse
experimental cases such as a model /L' of a bending test on reinforced beam made of a composite
material, a model /(2 of a digital image of a composite material's microstructure and a model (3 of

a rod specimen of the composite.
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8.2.2 OVERVIEW OF THE HIERARCHICAL BAYESIAN FRAMEWORK

In this study we explore the integration of data from diverse independent sources
with focus on parameter identification in multiscale material model analysis. Such
cases can occur, for example, from experiments that took place in non-communicating
laboratories, experiments from a single laboratory but for varying material compositions,
environmental conditions etc. It has been showcased from a series of previous works,
mainly in the field of structural dynamics, that in such cases the single-level Bayes
underestimates the total variability [117, 63]. That is because it tends to only represent
the “parameter estimation uncertainty” and is unable to account for the external
variability amongst the datasets. This variability denotes the aleatoric uncertainty that
cannot be explicitly quantified within the problem formulation due to lack of knowledge
regarding the experiment specific conditions [7]. Taking these findings into consideration
we opt for a hierarchical Bayesian approach for the formulation of the proposed strategy.

Several techniques have been proposed in the literature for the solution of eq. (3.19).
The most straightforward way is to directly sample from the joint distribution of eq.
(3.19) [93]. Despite this being a reliable approach, the high dimensionality of the
parameter space leads to enormous computational costs and cannot be effectively applied
in realistic scenarios. An alternative is to decouple the process for the solution of eq.
(3.19), by sequentially sampling from the marginalized posterior distributions of the
physical parameters and the hierarchical hyperparameters respectively [140].

Here we will implement the latter approach of the sequential sampling. In cases where
many data points are available, to alleviate the computational demands, in [117], it was
assumed that the form of the posterior is close to that of a Gaussian and analytical
expressions through Laplace’s approximation where derived. In this work we deal with
sparse data and potentially strong nonlinear phenomena that could unpredictably alter
the form of the target distributions. Therefore, to acquire the precise expression of
the posterior PDF's we opt for the utilization of the Transitional Markov Chain Monte
Carlo (TMCMC) [18] for drawing samples from both marginal distributions [140, 101].
A different technique will be used for the reduction of the computational cost and this
will be presented in the following section.

The first step is to sample from the marginal posterior distribution of the model

hyperparameters, which is postulated as:

132



K
1,7 | O 7 7 (¢)
P(|D) = /PD|0 (0\¢d0 ];[1[/9]1'[1 (d™7107) (0\¢)d0] (D)
(8.1)

where in the above equation we have used the fact that the likelihood function P(D|)

assumes the form:

P(D|y) = U H P(d™

91]1

0] (01|¢)d01] (8.2)

The integral of eq. (8.1) can be approximated via Monte Carlo sampling:

K Ngi
PiD) =] | S PO iy (83)
=1 k=1

To perform this integration, samples from each likelihood P(D?|6?) associated with
the model M?, have to first be collected. This is achieved efficiently by employing the
TMCMC algorithm [18] (see section 3.2). When TMCMC is used as a sampler for a
posterior PDF | the initial step is to gather an amount of samples from the prior PDF.
Since in our case we want to sample directly from P(D?|6%) an easy way to replicate the
standard algorithmic procedure of TMCMC is to assume auxiliary uniform prior PDF's
P(0%) for the initial sampling from each likelihood. To avoid introducing any bias in
the process, the lower limit u; and upper limit u, of the priors Ugi(u;,u,) should be
selected broad enough to cover the sample space of each 8¢ postulated by P(D?6%).

The marginal distribution of the updated multiscale model parameters 8¢ that take

into account all datasets and can be applied in future predictions is expressed as:

P(0""|D) = /Q P(0" b)) P(4p| D)dep (8.4)
»

The approximate solution of eq. (8.4) is done by generating an amount of samples for
1 through the empirical distribution of P(1|D) obtained from eq. (8.3), as follows:

Ny
P(0""|D) ~ ) P(0""|4y) (8.5)

k=1
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For the production of samples from eq. (8.4), the TMCMC algorithm is again used,
where in this case the initial sampling is performed on the hyperparameter prior P(1)).
On the contrary to sampling from P(D?@"), eq. (8.5) represents a cheap-to-evaluate
procedure, since no multiscale model resolutions are needed.

The assumption of globally identifiable parameters in the form of 8¢ is valid when
the hyperparameters 1) can account for the model variations across different datasets,
thus rendering the principle of total probability valid [117]. Since the material models
that involve common characteristics are similar by nature, this assumption can be
confidently made in the present context. After the posterior probabilistic form of 8™¢%
has been obtained following the hierarchical Bayesian scheme, these parameters can then
be used towards any uncertainty propagation analysis on future simulations Y% as
shown in fig. 8.2. These tests could be conducted on unseen material systems that are
partially described by the inferred parameters. The quantity of interest (e.g. a structural

new

response) y is calculated as:

anew

’LI_) O unknown variable —» variable dependency
(inference)

D observed variable >variable dgpendency
(propagation)
‘ ‘
i
D', i=1,...K
y Y

Figure 8.2: Directed Acyclic Graph (DAG) of the general hierarchical problem
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Input :Parameterized multiscale material models M*(8%), prior distributions
P(1)) and P(6"). Total samples N9 and TMCMC input parameters
and (. Total samples N¥ and TMCMC input parameters k"% and
IBTLE’LU

Output : parameter updated distribution P(6""|D), quantity of interest
updated distribution P(y"**|D)

for i <+ 1 to K do
Generate from P(D'@") samples

{0}, yor < TMCMC(P(6"), P(D'|6"), N', k", 3);
Store samples {6} o and likelihood function data P(D'[{0}, i)
end
Estimate P(v|D);
Generate from P(1|D) samples
[¥'}hne < TMCMC(P(w), P(DI), N¥, k¥, 8°);
Estimate P(6""|D);
Propagate posterior uncertainty P(y"¢*|D);

Algorithm 3: Algorithm for hierarchical Bayesian inference and uncertainty

propagation of heterogeneous multiscale material models

The proposed strategy is invariant to the technique that will be used for performing
the multiscale material analysis. For instance, approaches such as rule of mixtures [132]
or mean field homogenization [89] could be applied. Here we opt for a computational
homogenization procedure to bridge the scales of the system, since it can provide the

most accurate results in material cases with a notable non-linear behavior [145].

8.3 EFFICIENT COMPUTATIONAL HOMOGENIZATION AT MULTIPLE SCALES
THROUGH NEURAL NETWORK APPROXIMATIONS

The key concept is to employ feed forward neural networks (FFNNs) towards the
replacement of the costly RVE solutions that are repeatedly required during the FEN
analysis. This is accomplished by assigning the FFNNs to learn the stain-stress relation
imposed by the homogenization equation for each scale. For each multiscale model M*

this relation is expressed per scale j as:
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o (t) = £V (€4 (t), 0F) (8.7)

where é; contains all the static parameters from the finest scale up to the j scale and the
superscript i corresponds to the model Ml*. The expression in eq. (8.7) describes a plain
strain-stress relation without the need to take into account the strain history or other
internal variables. In this study, the knowledge of eq. (8.7) by the FFNNs is sufficient,
since the database of experimental results includes solely monotonic loading scenarios.
As a result, there will be a one-to-one correspondence for the strain-stress pairs and for
that reason no further information in the form of internal variables is required.

Starting from the finest scale, namely the scale 1, a number n of RVE solutions for
different cases of strain vector €2 and parameter vector éi tuples are performed. By re-
taining the converged states of all the solutions, a total amount of {{€2}1.4, {o2}1.1, éﬁ}ln
of parametrized strain/stress pairs is ultimately collected, where ¢ is the number of the
increments of each solution. After choosing the architecture of the candidate neural
network fiVV the components {{e2}1., é{}ln and {{o2}1:¢}1.n are then used for the
training as the input and output data respectively. The newly developed fi'" can be
considered as a computationally cheap phenomenological relation determined by a series
of non-physical parameters i.e. the optimized weights and biases of the network. It can
be readily applied as the material law of the scale 2 towards the development of the
next FFNN, namely the fI¥~. Following the same concept as in the first scale, a dataset
{{e3}1.1, {3} 1.4, 03} 1. is Obtained through a series of solutions of the RV E representing
the scale 2. The consistent constitutive matrix of the material represented by le Nt can
be effortlessly retrieved through Automatic Differentiation [5]. By sequentially applying
the aforementioned procedure for each pair of scales until the macroscale, FFNNs that
emulate the material law of each scale are ultimately retrieved. Additionally, all produced
FFNNs inherit the knowledge of how the constitutive relation is affected by a number
of parameters that characterize the finer structure. Therefore, they can be effectively
utilized in the hierarchical Bayesian framework of multiscale material systems presented
in section 8.2.2. By that, each likelihood function P(D%|@") is replaced by an inexpensive
to calculate counterpart which we will denote as PVN:(D?|6?).

Further details and implementation aspects for the development of the FFNN sequence
can be found in chapter 6. The algorithmic procedure presented in alg. 4 constitutes

the specialized version of the general algorithm 3, when surrogate models are employed
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for the replacement of the finer scales of each multiscale model M*.

Input :Total training samples n, total increments ¢ and FFNN hyperparameters.
Parameterized multiscale material models M*(6"), prior distributions
P(v) and P(8?). Total samples N and TMCMC parameters k' and
B¢, Total samples N¥ and TMCMC parameters k™% and fm?.

Output : parameter updated distribution P(6""|D), quantity of interest
updated distribution P(y"**|D)

Offline Stage:

for : + 1 to K do

for j + 1 to S; do

Generate and store training samples {{€;41}1:4, é;}lm;

Solve the BVP of scale j;

Store solution stresses {{o7j+1}1:t}1m;

Train the FENN £V,

Store FFNN £V,

end

end
Online Stage:

for i + 1 to K do
Generate from PYN4(D?6%) samples

{6}, yoi < TMCMC(p(6"), PNN4(D'0Y), N, k*, B%);
Store samples {6} o and likelihood function data PNN77:(D7;‘{0/L'}1:N92')
end
Estimate P(v|D);
Generate from P(t|D) samples
{$}1vw — TMCMC(P(), P(D|), NV, k¥, B);
Estimate P(6""|D);
Propagate posterior uncertainty P(y"¢*|D);

Algorithm 4: Algorithm of the proposed methodology for hierarchical
Bayesian inference and uncertainty propagation of heterogeneous multiscale

material models using surrogate modeling
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8.4 NUMERICAL APPLICATION

8.4.1 OVERVIEW OF EXPERIMENTAL LAYOUTS AND THE RESPECTIVE MULTI-
SCALE MATERIAL MODELS

As a means to illustrate the presented framework, the interfacial mechanical properties
of CNTs in cementitious material configurations has been explored. To perform the
calibration of the investigated material parameters, the results from thee separate tests
were obtained from the literature. These include a 3-point bending test of a CNT-
reinforced cement specimen [147], a tension test performed on CNT-reinforced mortar
rods [61] and a 4-point bending experiment on a CNT-reinforced concrete beam [94].
Next, the details for each experimental case will be presented along with the multiscale
model that reproduces the material’s scales as well as the overall structural and material

behavior.

CNT-REINFORCED CEMENT PASTE EXPERIMENTAL SETUP AND MULTISCALE
MODEL

The first dataset was obtained from a 3-point bending test on a fully hydrated (28 days)
cement paste coupon enhanced with a 0.3% weight fraction of CNTs. The testing beam
specimen had dimensions 160mm x 40mm x 40mm, while for its support two rollers,
100mm apart, were used. A single gradual point load was applied on the center of the
upper part via a third roller. The diameter of the CNTs varied between 10nm and
20nm and their length between 10um and 20pum. The experimental setting and the
measurements that relate the flexural strain with the respective stress based on the
experimental findings are depicted in fig. 8.3. To integrate the CNTs into the FE analysis
the Molecular Structural Mechanics (MSM) technique [75] was used for their simulation.
Following the MSM method, the covalent bonds that are developed between the carbon
atoms are reproduced by structural space frame elements with tailored mechanical
properties to replicate the effect of the force field constants of the carbon-carbon bonds
[75]. To reach the desired weight fraction, a significant amount of CNTs need to be
inserted into the RVE. To this purpose the high degree-of-freedom (DOF') space frame
CNT molecular models were projected into Equivalent Beam Elements (EBE) [100]
by mapping several structural responses of the space frame to equivalent mechanical

properties of the EBE. Subsequently, a series of EBEs were positioned randomly inside
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the volume of the RVE until the weight fraction requirement is achieved. A visual
representation of the CNT /cement paste RVE and the macroscopic model are given
in fig. 8.4. The Drucker-Prager (DP) plasticity material law [27] was used for the
modelling of the constitutive behavior of the cement paste matrix. The CNTs were
assumed to have an elastic behavior, while their interaction with the surrounding cement
paste was modeled through a bond-slip bi-linear constitutive law. As shown in fig.
8.5 this interfacial law is constituted of three parameters, namely the interfacial shear
strength Tgl’tl, the elastic stiffness kfﬁ’tl before the slippage and the inelastic stiffness
kfflf after the slippage. Therefore, the parametric vector 8! comprises these three

. 1 gell o pld
microscale parameters 6! Z[Ty’ ko kP

ot Koy s Koy ] In the context of the finite element analysis,

to integrate the CNTs in the composite material system the cohesive zone method [4]
was used in combination with an embedding technique. A more detailed description of

the finite element formulation of the CNT /matrix interaction is given in 2.3.
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(a) Experimental setup [147] (b) Flexural strain-stress data [147]

Figure 8.3: CNT-reinforced cement specimen
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CEMENT SCALE

Figure 8.4: CNT-reinforced cement multiscale model
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Figure 8.5: Constitutive law that defines the interaction between the CNTs and the matrix material

CNT-REINFORCED MORTAR EXPERIMENTAL SETUP AND MULTISCALE MODEL

The second experimental data source is a tension test conducted on a cylindrical rod
made of mortar with a 0.5% weight fraction of CNT's inserted as fillers. The specifications
of the rod coupon were 500mm for the length and 30mm for the diameter. The rod was
fixed at the end, while at the other one a gradually increasing tension load was applied.
In this laboratory study the CNTs had diameters between 10nm and 30nm, while
the length fluctuated between 1pum and 2um Characteristic specimens and the tensile
strain-stress dataset for the multi-walled CNT enhanced mortar bar are provided in fig.
8.6. The finest length scale of the material, which is the cement paste reinforced with

the CNTs was formed according to the previously presented model of the cement scale
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as shown in fig. 8.7. For constructing the model of the mortal scale a mesoscale RVE
was developed, which includes the sand particles inclusions that construe the mortar,
an additional length scale was added. These aggregates were modeled as spherical
inclusions with varying diameters. To replicate as realistically as possible the diameter
distribution of the inclusions a Fuller grading curve, as explained in [138], was enforced.
The minimum diameter of the candidate spheres were taken as d,,;, = 0.1mm, while
the maximum diameter as d,,q; = 2mm. Their positional placement was again done
randomly with a special caution that non-overlapping conditions between the inclusions
are satisfied. Perfectly elastic conditions were assigned on the inclusions. The two-
scale material configuration that characterize the macroscopic behavior and the FE
macromodel used to replicate the test are illustrated in fig. 8.7. Likewise to the previous
CNT-reinforced cement material model, the material constitutive behavior is affected by
the parameters that specify the CNT /matrix interfacial behavior in fig. 8.5. According
to the hierarchical Bayesian scheme presented in section 3.3, these parameters assume a
separate formulation for model 2 as 6% = [Ty’z jh2 k;pl’Q].
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(a) Experimental setup [61] (b) Tensile strain-stress data [61]

Figure 8.6: CNT-reinforced mortar specimen
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CEMENT SCALE MORTAR SCALE

Figure 8.7: CNT-reinforced mortar multiscale model

CNT-REINFORCED CONCRETE EXPERIMENTAL SETUP AND MULTISCALE MODEL

The third dataset comes from a 4-point bending test on a concrete beam reinforced with
steel rebar and further strengthened with CNTs of 1% weight fraction. The length of the
beam was 2100mm and the cross-section 150mm x 250mm, while supports were used,
2000m apart, at its lower part. The CNTs had diameters of 3 — 15nm and lengths of
15 — 330um. For the flexural test, two gradual point loads were applied on the upper
part of the beam. The specifications of this experiment and the corresponding flexural
displacement-load observations are presented in fig. 8.8. In this scenario the material
is represented by a cement, mortal and concrete three-scale model as shown in fig. 8.9
linked hierarchically to the macroscopic FE model of the beam. The first two scales were
formulated in accordance with the procedure described in sections 8.4.1 and 8.4.1, while
the final scale models the coarse aggregates at the mesoscale of the concrete specimen.
For this simulation a Fuller grading curve was once more applied for the generation of
inclusions of various sizes inside the RVE. The minimum and maximum diameters in
this case are d;, = 2mm and d,q; = 20mm respectively. The coarse aggregates were
assumed to behave linearly elastic. Again, following the hierarchical Bayesian concept,
the parametric vector of the constitutive law 8.5 that describes the interaction between
the CNTs and the matrix in this model /(3 is explicitly defined as 63 :[Ty’3 A 1’3].

wnt ? Vint 0 Vint
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Figure 8.8: CNT-reinforced concrete specimen
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(b)

Figure 8.9: (a) CNT-reinforced concrete multiscale model (b) geometric configuration of concrete
beam with rebar and stirrup reinforcement
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8.4.2 NUMERICAL RESULTS

In what follows, the results from the procedure outlined in algorithm 4 will be presented.
These include the offline stage of the FFNN sequence development for each multiscale
model described in section 8.3 and the online stage of performing the hierarchical

Bayesian analysis.

SURROGATE MODEL TRAINING

The material of the first model presented in fig. 8.4 is defined through the single scale of
the CNT/cement paste mixture. Therefore, according to the strategy summarized in
section 8.3 only one FFNN - le N-1is sufficient for the reproduction of the macroscopic
constitutive response. To acquire the dataset needed for the training of le N’l, 1000
unique parametrized strain sequences with 20 incremental steps each were generated.
To avoid unrealistic strain cases and parameter values, lower and upper bounds were set
for the sampling as presented in table 8.1. After the solution of the 1000 microstructure
BVPs of the RVE model of the microscale, the data pairs {{GM}1:20,0}}1:1000 and
{{om}1:20}1:1000 were used as input and output pairs for the training and testing of

1N N1 The Adam optimizer [66] with a learning rate of = 0.001 and a batch size of 128

was chosen for the calibration of the le NI barameters. The Mean Squared Error (MSE)
among the directly simulated stresses {{oar}1.20}1:1000 and the respective predicted
stresses from le N1 was used as the loss metric. To ensure a more reliable training, a
Min-Max normalization was applied to both the input and output data. Regarding the

1N N architecture, 3 hidden dense layers with 30 neurons and a hyperbolic tangent
activation function for each one were selected. To prevent excessive computational
times, a limit of 2000 epochs was set for the training. For the training process, the
data were split in three subsets, namely the train, test and validation subset with ratios
70%, 15% and 15% respectively. The training curves and the predictions provided in
fig. 8.10 demonstrate great performance. The training progress tracks the MSE loss for
each optimization iteration (epoch), while the prediction accuracy was calculated by
employing the L2 norm of each stress component in the test dataset and comparing it to

the prediction of the le N
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Bounds | € €19 €99 ket k:git TV,
= = (-] [GPa/nm]| [GPa/nm]| [GPa]

Lower -0.03 -0.03 -0.03 0 0 0

Upper 0.03 0.03 0.03 30 3 0.3

Table 8.1: Input sample ranges for the FFNN training
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(a) Training progress (b) Prediction accuracy

Figure 8.10: FFNN training results for the CNT-reinforced cement specimen - Cement scale

The second model of the CNT /mortar rod specimen is represented by the two-scale
material model of fig. 8.7. The training process was repeated again for this material model
starting from the microscale. In this scenario, the differences in the material properties,
compared to the first model described in sec. 8.4.1, necessitate the training to start
from the formulation of the FFNN - le N2 Which learns the CNT /cement homogenized
behavior. The next step is the development of the FFNN - é\f N2 which gives the total
macroscopic behavior. A set of data pairs {{€2}1.20, é%}1;1000 and {{o2}1:20}1:1000 Were
initially obtained by 1000 CNT/cement RVE solutions. These were then used for the
training and testing of ffv N’2, which was subsequently used as the matrix material
of the CNT /mortar scale. The next step was to gather data {{ens}1.20, 93}1:1000 and
{{oa}1:20}1:1000 via 1000 solutions of the CNT /mortar RVE and then used them to
train and test f2N N2 For both le N2 and f2N N2 the same choices as the previous
model were made regarding the FFNN architecture, the preprocessing and the training
hyperparameters. The high accuracy of both FFNNs is captured in figs. 8.11 and 8.12,

where the progression of the MSE metric during the training and the quality of the
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predictions are visualised, respectively.
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Figure 8.11: FFNN training results for the CNT-reinforced mortar specimen - Cement scale
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Figure 8.12: FFNN training results for the CNT-reinforced mortar specimen - Mortar scale

For the final model of the CNT /concrete beam specimen in fig. 8.9, a sequence of
three FFNNs, namely the le N’3, the f2N N3 and the fév N3 were constructed. Following
the same concept as in the previous models, we started from the finest scale which is
the CNT /cement scale by solving the BVP imposed by the homogenization equation
for 1000 different strain sequence/parameter cases {{€2}1.20, éi” }:1000 and retrieving the
respective stress outputs {{o2}1:20 }1:1000. With these data we were able to train and test

the first FENN - 1N N3 Which was then used towards the realization of the CNT/mortar
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data i.e. {{e3}1.20, ég’}lzlooo and {{o3}1.20}1:1000. After training and testing the second
FENN - 2N N3 through the utilization of the CNT /mortar dataset, the last step was to
generate the CN'T /concrete data pairs {{€xs}1:20, é§}1:1000 and {{oas}1:20}1:1000 and use
them to train and test the third FFNN - fév N3 All the choices regarding the formulation
and training aspects of the FFNNs were made likewise to the two previous models. The
results concerning the training process and the prediction accuracy based on the stress
L2 norms which are given in figs. 8.13, 8.14 and 8.15 for the three scales respectively,

demonstrate once more the high quality of the FFNN predictions.
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Figure 8.13: FFNN training results for the CNT-reinforced concrete specimen - Cement scale
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Figure 8.14: FFNN training results for the CNT-reinforced concrete specimen - Mortar scale
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Figure 8.15: FFNN training results for the CNT-reinforced concrete specimen - Concrete scale

PARAMETER IDENTIFICATION OF THE CNT-CEMENT PASTE INTERFACIAL PROP-
ERTIES

After the parametrized constitutive response of the three investigated models has been
learned by the FFNN surrogates, we are ready to move to the online procedure of
the proposed hierarchical Bayesian strategy as presented in algorithm 4. The data via
which the investigated parameters will be updated were obtained from the figs. 8.3b,
8.6b and 8.8b for the three models respectively. From each of the three curves, five
equally spaced points were retrieved and used towards the uncertainty quantification.
The initial step was to perform an independent TMCMC sampling from the likelihood
function P(D?|@%) of each model J(*,i = 1,2,3. Since the solution process at this stage
is decoupled, the posterior sampling for all models was enforced in a computationally
parallel manner. This is an important feature as it partially counters the drawback of the
MCMC algorithms which are serial by default and enables the option to employ a high
number of models in the hierarchical Bayesian framework. As explained in section 3.3, to
sample from each P(D?|0?), first the prior distributions P(6%) need to be defined. These
were chosen as uniform distributions with their upper and lower bounds selected based
on the parameter training bounds of the FFNNs. Therefore, for each model the priors
were defined as P(kS-7) ~ (0, 30), P(KP57) ~ 2(0,3) and P(t%) ~ 9(0,0.3). For the
error terms in eq. 3.18, the standard deviation was calculated based on a coefficient of
variation of 0.02. For the hyperparameters of the TMCMC algorithm, we followed the
suggested values by the authors [18] i.e. k' = 1.0 and 5° = 0.2, while the number of the
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samples was chosen as N* = 10000. The posterior form of each 6" is illustrated in figs.
8.16, 8.17 and 8.18.
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Figure 8.16: Results of the Bayesian analysis on the CNT /cement interfacial parameters of model

Jt*. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle

- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each
parameter pair
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Figure 8.17: Results of the Bayesian analysis on the CNT /mortar interfacial parameters of model

J?. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle

- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each
parameter pair
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Figure 8.18: Results of the Bayesian analysis on the CNT /concrete interfacial parameters of model

J3. Diagonal - Marginal probability density functions of the investigated parameters. Upper triangle

- Scatter plots for each parameter pair. Lower triangle - Joint probability density functions for each
parameter pair

After all the necessary samples {6" }1 yeoi have been collected, the next step is to
formulate the hyperparameter posterior PDF as postulated in eq. (8.3). Again, following
the process of algorithm 4 we used the TMCMC to sample from the empirical distribution
P(¢|D). The selection of the hyperparameter priors P(¢) and the parameter priors
P(6%|y) is given in table 8.2. At this stage, the TMCMC ran for N¥=50000 samples
and the hyperparameters were again appointed as k™" = 1.0 and ™" = 0.2. The
hyperparameter posterior PDF's are given in fig. 8.19. The last step of algorithm 4 is to
construct the probabilistic form of the new parameters 8¢ by utilizing the posterior
samples {1};.nv. Since each sample in {1 },.ys defines a uniform distribution with
certain bounds, a discrete mixture distribution could be formed by considering all these
uniform PDFs P(0""|{4},.nyv). By doing so, eq. (8.5) is expressed as:

P(6""| D) — sz ('Y, ('Y + {92))  with wizﬁ Ci=1,.. N' (88)

151



Sampling from such an empirical mixture PDF was straightforward. The resulting
distributions P(0™¢"|D) are presented in fig. 8.20.

Hyperparameter @ZJ;% t zbzie . 11’.” wipl d&iym wfiym
Prior PDF (0,20 | %(0,10) | %(0.2) | (0.1 | %(0,02) | %(0,0.1)
Parameter (i=1,2,3) kb Phi T
Prior POF | (0l Uiy + Vi) | Wk a1 i) | B0y vy 405,

Table 8.2: Prior distributions of the hyperparameters and the parameters of the tackled hierarchical
Bayesian problem

int int int int int int

Figure 8.19: Results of the hierarchical Bayesian analysis on the hyperparameters. Diagonal -
Marginal probability density functions of the hyperparameters. Upper triangle - Scatter plots for each
hyperparameter pair. Lower triangle - Joint probability density functions for each hyperparameter pair
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Figure 8.20: Results the of hierarchical Bayesian analysis on the newly formulated CNT/matrix
interfacial parameters. Diagonal - Marginal probability density functions of the new parameters.
Upper triangle - Scatter plots for each new parameter pair. Lower triangle - Joint probability density
functions for each new parameter pair

Finally, we performed an uncertainty propagation analysis on how the informed
el,new kpl,new ty,new

ot iy ) ,t7°"] impact the mechanical behavior of the

parameters 0" = [k
respective material for each model Jl*,w i =1,2,3. For that, we investigated the

enew

influence of the CNT /matrix cohesive properties on the macroscopic elastic stiffness

matrix C}'\/[. Essentially, we aim for the solution of the problem postulated by eq. (8.6),

neW ig the stiffness increase due the CNT reinforcement

where the quantity of interest y
by considering the parameters 8"¢". A standard Monte Carlo analysis was conducted
on the full material composition of each model, which is described by the single scale
model of fig. 8.4 for the CNT/cement specimen, the two-scale model of fig. 8.7 for
the CNT /mortar specimen and the three-scale model of fig. 8.9 for the CNT/concrete
specimen. The objective is to find the distributions for the axial and shear components
of the stiffness tensor. To ensure that the plasticity conditions are not met, we applied a
relatively small strain value and subsequently solved the homogenization problem. The
inexpensive emulators in the form of the FFNNs enabled us to perform these analyses
in negligible computational time since the homogenized strain-stress relation can be

instantly extracted from each FFNN, while the constitutive matrix can then be easily
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obtained using Automatic Differentiation. The material in all cases is isotropic due the
random orientation of the CNTs, therefore both the axial and shear stiffness is identical
in all directions. The components (C/C?)ziar and (C/C?)gpeqr of the elasticity tensor,
where C? is the respective stiffness value of the plain material, are presented in fig. 8.21.
On average, the stiffness ratio for both axial and shear components is higher in model
ALY, while the lowest ratio is observed in model (3. The results are consistent with
the expected outcome, since compared to the cement model ' the addition of fine
aggregates in model J(? and fine and coarse aggregates in model (2 leads to stiffer

materials and reduces the impact of the CNT reinforcement on that aspect.

T (C/CO)ax\al
—(CIC,),

0’shear M

—_(CIC)

0’axial

—(cIC.)

0’shear|

PDF

Wn I!miu.i‘,lll_
Al

|| ||||||I|II||.

135 1 105 115 12 125 135

Stlffness Ratlo Stiffness Ratio
(a) Cement material of /(' (b) Mortar material of /(2
_(C/CO)axial
—(crcy)

PDF

Stiffness Ratio

(c) Concrete material of (3

Figure 8.21: Posterior distribution of the stiffness improvement due to the CNT reinforcement in
the axial and shear components for each material model by considering the informed PDF
P(6™*|D) of the interfacial parameters.
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8.5 CONCLUSIONS

A hierarchical Bayesian strategy has been put forth in this work towards parameter
identification of multiscale material systems. The suggested framework has the potential
to integrate data that have been obtained from experiments performed on specimens
with dissimilar material composition and incorporate measurements that take place in
various length scales. To account for inherent model uncertainties due to environmental,
operational and material discrepancies across the tests, the physical parameters were
assigned to have a distinct definition for each dataset. This enabled a joint inference,
where we utilized the posterior form of the hyperparameters to construct a new prob-
abilistic representation of the physical parameters for future model predictions. To
acquire precise forms of the posterior distributions from both the hyperparameters and
the physical parameters, we employed the TMCMC method. To facilitate multiscale
analyses, we opted for a computational homogenization approach due to its reliability,
particularly in complex materials. The immerse computational demands were tackled
through the employment of FFNNs that were tasked with predicting the constitutive
response across multiple scales.

This study delved into the interfacial mechanical properties of CNTs within cementi-
tious material configurations. Our approach involves calibrating the parameters that
define a bond-slip cohesive law, utilizing experimental measurements from the literature.
These experiments were conducted on different material compositions, specifically a
CNT-reinforced cement paste specimen, a CNT-reinforced mortar coupon, and a CNT-
reinforced concrete large-scale test. The initial step of our computational procedure
focused on training surrogate models for each scale. These models were trained using
a series of strain-stress responses derived from offline RVE solutions. The exceptional
predictive accuracy achieved during the training phase enabled us to conduct the hierar-
chical Bayesian analysis in a cost-effective manner without compromising the precision
of the results. The analysis yielded the posterior distributions of the studied interfacial
parameters, which were then used for the investigation of the mechanical behavior of
the three CNT-reinforced materials.

The computational framework put forth herein can be straightforwardly applied
towards parameter inference to other multiscale material models and enables the efficient
study of multiphysics problems such as the joint investigation of mechanical, thermal

and electrical material attributes. The proposed strategy can also be generalized to
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problems where data are derived from measurements across various length scales such as,
for example, measurements recorded at the microscale and/or the mesoscale using the
Digital Image Correlation technique. These directions remain in the scope of a future

work.
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Summary

This thesis presented cost-efficient and accurate computational frameworks for con-
temporary composite material design, characterization and discovery. The exceptional
predictive capabilities of nested computational homogenization schemes were harnessed
herein. Surrogate modeling strategies based on machine learning were utilized to dramati-
cally reduce the prohibitive computational requirements of nested schemes on multi-query
analyses. Based on this, a series of methodologies were proposed for forward and inverse
uncertainty quantification problems in material engineering. Although, all the introduced
methodologies were presented through the lens of a specific nanocomposite material,
namely CNT-reinforced composites, they can be straightforwardly generalized to other

composite materials.

9.1 INNOVATION OF THESIS

First, a methodology for updating the beliefs of the uncertain parameters that lie in
the microscale of nanocomposite systems was proposed. In particular, the Bayesian
framework by means of the MCMC technique was employed on top of FE? analyses to
learn the parameters of the CNT /polymer interface. The elaborated methodology utilized
measurements from the macroscale structure to update the prior beliefs on the nonlinear

parameters, rather than expensive and hard-to-obtain microscale measurements. In
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addition, to tackle the immense computational effort of performing Bayesian update on
this type of problem, a neural network surrogate was developed in order to replace the
nonlinear relation of the homogenization scheme. This surrogate model displayed a high
level of accuracy compared to the full scale system solution as well as a remarkable cost
reduction. This allowed to perform BU on complex large-scale problems, which would
otherwise be unfeasible. The proposed methodology was demonstrated on mechanical
problems, where the uncertain parameters were successfully updated in a reasonable
computational time.

Furthermore, a novel accurate and computationally efficient surrogate modeling
strategy was proposed, in this thesis, for performing computational homogenization
on nonlinear and parametrized multiscale systems that involve more than two length
scales. A DNN hierarchy was employed as a surrogate model of the material behavior,
where each DNN was assigned to learn the constitutive law at the respective scale of the
problem. In contrast to the direct computational homogenization, which is inherently
coupled, the proposed approach enables the decoupling of the whole procedure and it
results in a dramatic decrease in computational cost. The proposed material modeling
framework was demonstrated on the analysis of a large-scale structure comprised of
CNT-reinforced concrete, modeled as a 4-scale system, where a sensitivity analysis was
performed to assess the influence of the constitutive parameters on the macroscopic
response. This otherwise unreachable problem, in terms of computational effort, was
solved in a reasonable time, by virtue of the elaborated surrogate modelling strategy.

In addition, a novel numerical framework was developed for the analysis of structures
made up of CNT-reinforced structures. In particular, a two-level hierarchical material
model was proposed based on continuum micromechanics to characterize CNT-reinforced
concrete. An extension of the FE? method, called FE? was employed to assess structural
performance, where the excessive computational demands of the method were effectively
bypassed by using a DNN sequence based surrogate as a substitute for the composite
material. With this implementation, stochastic material optimization was performed,
aiming at finding the optimal CNT orientation at different members of the macroscale
structural systems that minimize the sum of the mean and standard deviation of the
overall structural deformation. The results of this investigation indicated that the
reinforcement of concrete with CNTs can lead to significant enhancement in structural
performance. In addition, the extension of the current manufacturing capabilities to

the design of structural members with appropriately aligned and oriented CNTs can
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revolutionize structural design, leading to stronger, safer and more elegant structures.
Lastly, a hierarchical Bayesian strategy was put forth in this thesis towards parameter
identification of multiscale material systems. The suggested framework has the potential
to integrate data that have been obtained from experiments performed on specimens
with dissimilar material composition and incorporate measurements that take place in
various length scales. To account for inherent model uncertainties due to environmental,
operational and material discrepancies across the tests, the physical parameters were as-
signed to have a distinct definition for each dataset. This enabled a joint inference, where
the posterior form of the hyperparameters was utilized to construct a new probabilistic
representation of the physical parameters for future model predictions. To acquire precise
forms of the posterior distributions from both the hyperparameters and the physical
parameters the TMCMC method was employed. To facilitate multiscale analyses, a
computational homogenization approach was preferred due to its reliability, particularly
in complex materials. The intense computational demands were tackled through the
employment of DNNs that were tasked with predicting the constitutive response across
multiple scales. This study delved into the interfacial mechanical properties of CNT's
within cementitious material configurations. This approach involves calibrating the pa-
rameters that define a bond-slip cohesive law, utilizing experimental measurements from
the literature. These experiments were conducted on different material compositions,
specifically a CNT-reinforced cement paste specimen, a CNT-reinforced mortar coupon,

and a CNT-reinforced concrete large-scale test.

9.2 LIMITATIONS AND ASSUMPTIONS

In any PhD thesis, acknowledging the limitations and assumptions is crucial for provid-
ing a transparent and comprehensive understanding of the research conducted. This
section elucidates the key limitations of the research, such as constraints in data avail-
ability, methodological constraints, or external factors that may have influenced the
outcomes. Simultaneously, it outlines the assumptions made during the study, including
the theoretical, methodological, or empirical premises accepted as true for the purpose
of analysis.

Throughout this thesis, various surrogate modeling strategies were presented, all
utilizing feed-forward neural networks (FFNNs). FFNNs are the most popular type

of neural networks, favored for their simplicity and exceptional predictive capabilities.
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They are particularly well-suited for predicting one-to-one strain-stress relationships,
which were a central focus of the analyses conducted in this research. However, when
addressing non-monotonic analyses, such as cyclic loading cases, it becomes essential
to account for the path dependency inherent in complex materials like those exhibiting
plasticity or damage. Predicting the behavior of these materials poses a significantly
more intricate challenge for machine learning models. This complexity arises due to the
extreme dimensionality of the data, which introduces numerous bottlenecks, including
increased computational demands and the potential for overfitting.

In this thesis, a simplification was made in the finite element modeling of the studied
applications. Specifically, low-fidelity models were formulated across all length scales of
the multiscale models, resulting in a coarse finite element discretization. This choice
was deliberate to maintain focus on the core objectives of each proposed numerical
framework without unnecessary complexity. However, to achieve exceptional accuracy in
finite element simulations, higher-fidelity models should be considered. These models,
while providing greater precision, come with the inevitable drawback of significantly
increased computational costs.

Several simplifications were made concerning the material behavior in the studied
multiscale material models. For instance, simple constitutive responses were selected
for the matrix materials, with linear elastic behavior assumed for polymers and plastic
behavior for concrete. Additionally, in formulating the Representative Volume Elements
(RVEs), several assumptions were made. These included ignoring carbon nanotube (CNT)
functionalization and curvature, and assuming perfect bonding between aggregates and
cement. These choices were deliberate, reflecting the specific objectives and directions of
this thesis. While more elaborate constitutive models for the matrix materials, along
with the inclusion of additional micro- and meso-structural phenomena, could provide a
more detailed understanding, they would also introduce an additional layer of complexity.

The applications studied in this thesis, which illustrate the proposed inverse uncertainty
quantification frameworks, rely on experimental data. It is important to note that all
measurements used in this thesis are either artificially generated or sourced from external
literature. This decision was necessitated by the lack of both the necessary expertise
and access to laboratory equipment to conduct in-situ experiments. Consequently, the
effective implementation of the proposed model updating computational frameworks
depended heavily on a key assumption: the reliability of the sourced data. This

assumption is based on the expectation that standard procedures and guidelines were
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followed during the experiments referenced in the external sources. While the frameworks
account for moderate uncertainties through their probabilistic approach to parameter
identification, they are not equipped to address cases involving fundamentally erroneous
data.

9.3 FUTURE RESEARCH DIRECTIONS

Building on the limitations and assumptions discussed in the previous section, several
promising avenues for future research emerge. These directions are proposed to address
the constraints identified in this thesis and to further explore the unresolved aspects
of the study. By investigating these areas, future research can build upon the current
findings, refine the theoretical framework, and potentially offer new insights into the
topic.

The application of more sophisticated neural network architectures beyond feed-forward
neural networks (FFNNs), such as recurrent neural networks (RNNs), long short-term
memory networks (LSTMs), or transformers, should be investigated. These advanced
architectures may be better suited to address the path dependency and sequential nature
of non-monotonic analyses, such as cyclic loading cases, and might enhance predictive
accuracy for complex material behaviors. Additionally, hybrid models that combine
FFNNs with other machine learning techniques or traditional computational methods
should be developed and tested. For instance, integrating FFNNs with convolutional
neural networks (CNNs) could capture both spatial and temporal dependencies in
material behavior, potentially alleviating challenges associated with high-dimensional
data. Methods for augmenting training datasets or generating synthetic data to improve
the robustness and generalizability of machine learning models should also be explored.
Techniques such as Generative Adversarial Networks (GANs) could be employed to create
diverse and comprehensive datasets that better represent the complexities of material
behavior under non-monotonic loading conditions. Furthermore, research should focus on
enhancing the scalability and computational efficiency of surrogate modeling strategies,
which could involve optimizing neural network architectures for faster training and
inference e.g. by using Bayesian optimization for optimal neural network hyperparameter
selection.

Future research could focus on the development and application of high-fidelity finite

element models that offer greater accuracy compared to the low-fidelity models utilized
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in this thesis. Future works could investigate advanced techniques and methodologies to
balance the trade-off between accuracy and computational cost in high-fidelity models.
This may include the use of adaptive mesh refinement techniques, or reduced-order
modeling approaches to improve computational efficiency while maintaining accuracy.
Linear techniques such as Principal Component Analysis (PCA), or nonlinear methods
that uncover the data manifold such as kernel PCA or autoencoders may be employed
to reduce computational demands and mitigate the risk of overfitting while preserving
essential features of material behavior. Additionally, exploring innovative computa-
tional strategies and technologies to manage the increased computational demands of
high-fidelity models would be valuable. Research could encompass parallel computing,
high-performance computing (HPC) frameworks, or cloud-based solutions to improve
scalability and reduce simulation time.

Future research could focus on developing and incorporating more sophisticated
constitutive models for matrix materials. Investigating thermoviscoelastic, or thermovis-
coplastic behaviors in polymers and employing phase field damage modeling in concrete
will lead to more accurate simulations and predictions of material performance under
various conditions. Additionally, further studies could explore the effects of carbon
nanotube (CNT) functionalization and curvature on the mechanical properties of com-
posite materials. Such research could offer insights into how these factors influence
material behavior and performance at different scales. The development of more refined
Representative Volume Elements (RVEs) that account for real-world complexities, such
as imperfect bonding between aggregates and cement, is also warranted. This could
involve creating models that incorporate interface properties and potential degradation
effects to better simulate actual material behavior. Furthermore, future investigations
might integrate additional stochastic micro-, meso- and macro- structural phenomena
into multiscale models, including the effects of random topological features of the mi-
crostructure, or uncertain environmental and operational factors, to provide a more
comprehensive understanding of material performance.

Vital further research could arise from conducting in-situ experiments to generate em-
pirical data. This is essential for validating and refining the proposed inverse uncertainty
quantification frameworks. This approach will help to confidently assess the effectiveness
of the frameworks when applied to fully accounted experimental measurements, and
counter the high uncertainty that comes with literature-sourced data. Additionally,

expanding the range of datasets from various sources and experimental conditions will
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facilitate the generalizability and adaptability across different scenarios. This could
achieved through the utilization of data acquired from different material length scales,
such as via Digital Image Correlation measurements on the micro- or meso- structure.
Lastly, developing hybrid frameworks that integrate experimental data with simulated
data can further enhance model accuracy and reliability. The combination of real data
with high-quality simulated data, can mitigate the impact of data deficiencies and

improve the overall performance of the proposed models.
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