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Abstract

Aquatic locomotion has been an active field of research for decades and contin-
ues to inspire technological solutions, ranging from small-scale propulsion systems
for autonomous underwater vehicles (AUVs) to larger-scale energy-saving devices
(ESDs) for ships. In particular, the thrust-producing kinematics emulated by
the majority of flapping-foil systems are, in fact, inspired from thunninform swim-
mers. Thunninform locomotion is found among marine mammals, sharks, and fish
species such as the Bluefin tuna, who can achieve remarkable efficiency over large
distance cruising without sacrificing agility. Extensive experimental and numerical
research on aquatic locomotion suggests that passively deforming wings with prop-
erly tuned material properties can attain greater propulsive efficiency compared to
equivalent rigid wings and thus are prime candidates for optimization studies. The
present work addresses two relevant engineering problems related to lifting surfaces
for hydrodynamic propulsion with direct technological applications. These prob-
lems are the hydro-elastic analysis of passively morphing wing thrusters and the
prediction of partial cavitation phenomena on hydrofoils operating beneath the
free surface.

Related to the former, within the context of this thesis the cost-effective com-
putational tool FlexWing3D has been developed to address the fluid-structure in-
teraction problem related to the elastic response and hydrodynamic performance
evaluation of passively deforming wings operating as marine thrusters (or thrust
augmentation devices) that undergo prescribed flapping motion. The elastic re-
sponse of wing submerged within the fluid medium is implicitly nonlinear since
wing deformation affects the hydrodynamic pressure and vice-versa. To tackle
the implicit non-linearity, a strongly coupled partitioned scheme has been devel-
oped. The model couples an unsteady boundary element method (3dBEM), that
is based on potential theory and treats the hydrodynamic problem of lifting flows
around wings, with a finite element method based on Discrete Kirchhoff Triangles
(2dFEM) that provides predictions for the response of a thin plate with stiff-
ness variation assuming small strains/rotations. The proposed method is suitable
for response predictions on wings of general geometry that operate in largely at-
tached flow conditions. The computational tools are written in C/C++ and have
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GPU-acceleration features exploiting the capabilities of tailor-made CUDA-kernel
functions for parallel computation on NVIDIA graphics cards. For simplicity, in
the present work, thrusters are assumed to be fully submerged within the fluid
medium; and interaction with other boundaries, such as the wavy free surface
or other bodies, is negligible. Optimization studies for realistic AUV propulsion
scenarios are conducted, involving both actively and passively morphing wings, re-
vealing trends that are useful to the design of more efficient bio-mimetic thrusters.

Our motivation behind the latter engineering problem studied here is derived
from the findings of several studies concluding that hydrofoils operating near the
free surface are highly prone to cavitation phenomena, which can significantly af-
fect their operation and may also result in adverse effects such as induced noise,
vibration, structural failure and drop in performance. Particularly, cavitation is
defined as the appearance of vapor cavities that are in contact with the hydro-
foil surface in an otherwise homogeneous liquid medium. Moreover, advances in
computational and experimental research have led to a better understanding of
this multi-phase phenomenon, thus enabling researchers to predict and alleviate
its adverse effects on hydrofoil performance. However, the number of works found
in the literature concerning high-fidelity cavitation models with free surface effects
remain limited, mainly due to the complex nature of the physical problem.

Our contribution to this field is a new continuous adjoint BEM-based opti-
mization prediction method for the analysis of partially cavitating hydrofoils op-
erating beneath the free surface. Following an inverse problem formulation, the
attached-cavity is parameterized using B-spline interpolation and is modeled as a
free-streamline. The design variable vector consists of the control points affect-
ing the attached cavity shape and the cavitation number. Under the fixed cavity
length assumption, the design variable vector is determined upon solution of the
optimization problem along with the velocity potential. The hydrofoil moves at
a constant speed at close proximity to the free surface, and free-surface elevation,
following a linearization assumption, is evaluated after the solution has been ob-
tained. The PCavPreMod numerical model, written in Matlab, is found to predict
well the cavity shape and cavitation number when compared against experimental
data and other methods from the literature. A parametric study concerning the
effects of Froude number and submergence depth on the cavitation number and
cavity shape is included and discussed. The findings suggest that PCavPreMod
can facilitate the preliminary design of partially cavitating hydrofoils operating be-
neath the free surface effects in conjunction with higher-fidelity multi-phase flow
models. Finally, the present model is formulated so that it can be extended to
treat 3-D, unsteady sheet cavitation of biomimetic thrusters operating beneath
the wavy free surface; Propeller blade sheet cavitation is also another application
that is considered as future extension.



Περίληψη στα Eλληνικά

ΟΔιεθνής Ναυτιλιακός Οργανισμός (IMO) τα τελευταία χρόνια φέρνει στο προσκήνιο
τις περιβαλλοντικές επιπτώσεις του κλάδου της ναυτιλίας και υιοθετεί μέτρα που

επιδρούν στη σχεδίαση και τη λειτουργία πλοίων με στόχο τη μείωση των αερίων

ρύπων και την αντιμετώπιση του φαινομένου του θερμοκηπίου [1], [2]. ΄Εμφαση δίνεται
κυρίως στη μείωση των εκπομπών διοξειδίου του άνθρακα (CO2), μεθανίου (CH4),
οξειδίων του αζώτου (NOx) και φθοριούχων αερίων (F-Gases), με τα τελευταία να
σχετίζονται με εφαρμογές ψύξης και κλιματισμού. Τα δύο βασικά μέτρα που έχουν
ληφθεί είναι ο σχεδιαστικός δείκτης ενεργειακής απόδοσης (EEDI ) και το σχέδιο
διαχείρισης της ενεργειακής αποδοτικότητας (SEEMP). Με τις νέες νομοθετικές
ρυθμίσεις, οι πλοιοκτήτριες εταιρείες ενθαρρύνονται να λάβουν σοβαρά υπόψη το
ενδεχόμενο υιοθέτησης νέων καινοτόμων τεχνολογικών προϊόντων που καθιστούν

δυνατή τόσο την ενεργειακή αναβάθμιση της απόδοσης του υπάρχοντος στόλου αλλά

και τη ναυπήγηση ενεργειακά αποδοτικότερων και φιλικότερων προς το περιβάλλον

πλοίων [3].

Υπό το πρίσμα αυτό, η συνεισφορά της έρευνας στον τομέα της υδροδυναμικής
βελτιστοποίησης σύγχρονων συστημάτων πρόωσης συμβατικών αλλά και μη, κα-
θώς και η ανάπτυξη τεχνολογίας για την αξιοποίηση πληθώρας πηγών ανανεώσιμης

ενέργειας (κυματική, αιολική, ηλιακή) είναι επιτακτική. Σε ότι αφορά τα μη συμ-
βατικά συστήματα πρόωσης, ήδη από τις αρχές της δεκαετίας του ’90 η μελέτη και
η σχεδίαση βιομιμητικών προωθητήρων που είναι εμπνευσμένοι από τους μηχανισ-

μούς ώσης και ελιγμών που απαντώνται στα θαλάσσια θηλαστικά και στα τονοειδή

κεντρίζει το ενδιαφέρον της επιστημονικής κοινότητας [4], [5]. ΄Αλλωστε, δεν εί-
ναι τυχαίο πως ο αριθμός των δημοσιεύσεων στα πεδία αριθμητικής και πειραματικής

προσομοίωσης ροών γύρω από πτέρυγες σε λειτουργία προωθητήρα αλλά και απομάσ-

τευσης ενέργειας από κύματα/ρεύματα έχει πληθύνει σημαντικά τα τελευταία χρόνια.
Τα αποτελέσματα είναι ιδιαιτέρως ενθαρρυντικά και καταδεικνύουν πως τα βιομιμητικά

πτερύγια μπορούν να παράξουν ώση με βαθμό απόδοσης εξίσου υψηλό με τις ναυτικές

έλικες, καθιστώντας τα συστήματα αυτά φιλικότερα προς το περιβάλλον. Επιπλέον,
η χαμηλόσυχνη λειτουργία τους, στο τυπικό εύρος αριθμών αδιάστατης συχνότη-
τας Strouhal 0.2 − 0.4 όπου και παρατηρείται η μεγιστοποίηση της απόδοσης [6],
δεν επιβαρύνει τον υποθαλλάσιο χώρο με υψηλά επίπεδα υποθαλάσσιου θορύβου σε
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αντίθεση με τις ναυτικές έλικες.

Πολλά πρωτότυπα έχουν ήδη κατασκευαστεί σε μικρή κλίμακα, με γνωστότερα
παραδείγματα τεχνολογικών εφαρμογών μη συμβατικών συστημάτων πρόωσης αυτά

των ρομποτικών ψαριών RoboTuna και SoFi του MIT, που σχεδιάστηκαν για την
εξερεύνηση θαλάσσιου βυθού. Τα υλικά καθώς και οι μηχανισμοί ελέγχου που χρησι-
μοποιήθηκαν για την κατασκευή αυτών των πρωτοτύπων είναι ικανά να προσδώσουν

δυνατότητες ενεργητικής και παθητικής παραμόρφωσης στα πτερύγια πετυχαίνον-

τας υψηλούς βαθμούς απόδοσης σε συνδυασμό με ικανότητα ελιγμών. Η ανάπτυξη
ρομποτικών ψαριών έχει εμπνεύσει πληθώρα άλλων συστημάτων πρόωσης για μη

επανδρωμένα αυτόνομα υποθαλάσσια οχήματα (AUV) [7], [8] με διάφορα βιομιμητικά
χαρακτηριστικά.

΄Οσον αφορά τις ναυπηγικές εφαρμογές για πλοία, μη συμβατικές διατάξεις συστη-
ματών πρόωσης, που βασίζονται σε απαραμόρφωτα δυναμικά πτερύγια έχουν προταθεί
κατα καιρούς ως εναλλακτική των ναυτικών ελίκων. Ωστόσο, η τοποθέτηση ταλαν-
τούμενων πτερυγίων σε πρύμνη ήδη διαμορφωμένη για κλασική διάταξη με ναυτική

έλικα απαιτεί κοστοβόρες μετασκευές. Δεδομένων των τεχνολογικών δυσκολιών και
του υψηλού κόστους σε συνάρτηση πάντοτε με το οικονομικό όφελος της εγκατάσ-

τασης αυτής ως επένδυση, η χρήση βιομιμητικών προωθητήρων ως κύριο σύστημα
πρόωσης ποντοπόρων πλοίων έχει σχεδόν εγκαταληφθεί, ενώ τη θέση της διαδέχεται
η μελέτη τους ως συστήματα υποβοήθησης πρόωσης και εξοικονόμησης ενέργειας [9].
Το δυναμικό πτερύγιο που μελετήθηκε στο πλαίσιο του ευρωπαϊκού ερευνητικού προ-

γράμματος SeaTech Horizon20 αποτελεί ένα τέτοιο παράδειγμα. Τοποθετείται στην
πλώρη και η λειτουργία του με κατάλληλο νόμο ενεργητικού ελέγχου για τη γωνία

πρόσπτωσης οδηγεί σε μείωση της ολικής αντίστασης του πλοίου σε κυματισμούς,
απόσβεση της κατακόρυφης ταλάντωσης και του προνευτασμού, ενώ απομαστεύει
μικρό ποσό κυματικής ενέργειας παράγοντας επιπλέον ώση, βλ. [10], [11]. Μία
επιπρόσθετη καινοτομία αποτελεί η μελέτη της βιομιμητικής συσκευής σε συνέργεια

με το ναυτικό κινητήρα με στόχο την αξιοποίηση της παραγώμενης ώσης προς αύξηση

της απόδοσης, καταδεικνύοντας πόσο σημαντική είναι η ολιστική μελέτη των συστη-
μάτων πρόωσης και εξοικονόμησης ενέργειας πλοίου.

Το αντικείμενο της παρούσας εργασίας αφορά τη μελέτη βιομιμητικών συστη-

μάτων τύπου ταλαντούμενου πτερυγίου. Πιο συγκεκριμένα επικεντρώνεται στην
ανάλυση προβλημάτων συμπεριφοράς και βελτιστοποίησης μέσω αριθμητικών προ-

σομοιώσεων που πραγματοποιούνται με τον κώδικα FlexWing3D που αναπτύχθηκε
για αυτό το σκοπό. Το υπολογιστικό εργαλείο βασίζεται σε μία πλήρως συζευγ-
μένη μέθοδο συνοριακών και πεπερασμένων στοιχείων που μπορεί να χρησιμοποι-

ηθεί για την πρόλεξη των υδροδυναμικών φορτίσεων αλλά και της απόκρισης πα-

θητικά παραμορφούμενων πτερύγων γενικής γεωμετρίας σε λειτουργία βιομιμητικού

προωθητήρα, υπό το πρίσμα μοντελοποίησης του σύνθετου προβλημάτος αλληλεπί-
δρασης ρευστού και κατασκευής. Η μαθηματική διατύπωση του υδροδυναμικού προβ-
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λήματος βασίστηκε στη θεωρία ιδανικού ρευστού, ενώ επεκτάθηκε για αυτό το σκοπό
3-Δ κώδικας συνοριακών στοιχείων (boundary element method, BEM) του ερ-
γαστηρίου ΕΝΘΥ [12]. Το εργαλείο αυτό χρησιμοποιήθηκε επίσης σε προβλή-
ματα ανάλυσης και βελτιστοποίησης ενεργητικά παραμορφούμενων πτερύγων. Η
πτέρυγα με τη σειρά της ως κατασκευή μοντελοποιείται ως λεπτή πλάκα μεταβαλ-

λόμενου πάχους και για τους αριθμητικούς υπολογισμούς αναπτύχθηκε 2-Δ κώδικας
πεπερασμένων στοιχείων (finite element method, FEM) με στοιχεία Discrete Kirch-
hoff Triangles (DKT). Ο προωθητήρας θεωρήθηκε πλήρως βυθισμένος και τυχόν
αλληλεπιδράσεις με άλλα σύνορα, όπως λ.χ. η κυματισμένη ελεύθερη επιφάνεια,
ανομοιογένειες του πυθμένα και άλλα σώματα αμελούνται, στα πλαίσια αρχικής ανάπ-
τυξης της παρούσας μεθοδολογίας. Εξετάζονται ενδεικτικά σενάρια βελτιστοποίησης
της απόδοσης βιομιμητικών προωθητήρων με κατάλληλη ρύθμιση των παραμέτρων

της γεωμετρίας και κινηματικής υπό περιορισμούς, με αποτελέσματα αξιοποιήσιμα
στο σχεδιασμό τέτοιων συσκευών. Η επίλυση των προβλημάτων βελτιστοποίησης
βασίστηκε σε αλγόριθμο sequential quadratic programming, όπου ο υπολογισμός
των παραγώγων ευαισθησίας πραγματοποιείται με σχήμα πεπερασμένων διαφορών

και διαδοχικές κλήσεις του συζευγμένου υδρο-ελαστικού υπολογιστικού εργαλείου.

Τέλος, στο πλαίσιο διερεύνησης μεθόδων βελτιστοποίησης, και λαμβάνοντας υπ-
όψη τον αυξημένο κίνδυνο εμφάνισης φαινομένων σπηλαίωσης για υδροτομές που

λειτουργούν κοντά στην ελεύθερη επιφάνεια, αναπτύχθηκε το μόνιμο 2-Δ υπολο-
γιστικό εργαλείο PCavPreMod για την πρόλεξη φαινομένων μερικής σπηλαίωσης με
επιδράσεις ελεύθερης επιφάνειας. Το μαθηματικό μοντέλο βασίστηκε στις υποθέ-
σεις της θεωρίας ιδανικού ρευστού υιοθετώντας διατύπωση ‘αντίστροφου’ προβλήμα-
τος για το σχήμα της προσκολλημένης φυσαλίδας, που μοντελοποιείται ως άγνωστη
γραμμή ροής. Για την επίλυση του προβλήματος βελτιστοποίησης που προκύπτει
χρησιμοποιήθηκε η συνεχής συζυγής μεθόδος. Η επαλήθευση του μοντέλου πραγ-
ματοποιήθηκε μέσω συγκρίσεων με άλλες μεθόδους και πειραματικά δεδομένα από

τη βιβλιογραφία, όπου καταδεικνύεται πως η πρόλεξη του σχήματος της φυσαλίδας
και του αριθμού σπηλαίωσης είναι αρκετά ικανοποιητικές. Επιπλέον, παρουσιάζονται
αποτελέσματα παραμετρικής μελέτης για τη διερεύνηση επιδράσεων αριθμού Froude,
γωνίας πρόσπτωσης και βύθισης από την ελεύθερη επιφάνεια σε σπηλαιούμενες υδρο-

τομές. Το μοντέλο PCavPreMod μπορεί να αξιοποιηθεί για τη μελέτη και το σχεδι-
ασμό υδροτομών σε συνέργεια με άλλα μοντέλα πρόλεξης φαινομένων σπηλαίωσης,
ενώ η επέκταση του σε μη-μόνιμες ροές στις 3-Δ δίνει τη δυνατότητα πρόλεξης
σπηλαίωσης φύλλου σε πιο σύνθετες γεωμετρίες όπως οι ναυτικές έλικες.

Η εργασία αποτελείται από τρία διακριτά μέρη. Το Κεφ. 1 που προηγείται περ-
ιλαμβάνει συνοπτική βιβλιογραφική ανασκόπηση σε θέματα που αφορούν σύγχρονα

συστήματα πρόωσης με έμφαση στη βιομιμητική πρόωση ταλαντούμενου πτερυγίου,
σύγχρονες μεθόδους σχεδιασμού με εργαλεία βελτιστοποίησης, ενώ γίνεται αναφορά
στη σπηλαίωσης υδροτομών με επίδρασεις ελεύθερης επιφάνειας. Το πρώτο μέρος
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περιλαμβάνει τα Κεφ. 2-4 όπου παρουσιάζονται τα υπολογιστικά εργαλεία που αναπ-
τύχθηκαν για την ανάλυση και βελτιστοποίηση βιομιμητικών προωθητήρων που αλ-

λάζουν σχήμα ενεργητικά ή παθητικά με στόχο την αύξηση της απόδοσης τους. Το
δεύτερο μέρος περιλαμβάνει το Κεφ. 5 όπου παρουσιάζονται παραδείγματα εφαρ-
μογής της συνεχούς συζυγούς μεθόδου στο πρόβλημα πρόλεξης φαινομένων μερικής

σπηλαίωσης υδροτομών που κινούνται με σταθερή ταχύτητα κάτω από την ελεύθερη

επιφάνεια. Τέλος, παρουσιάζονται συνοπτικά σε ξεχωριστό Κεφάλαιο τα επιμέρους
συμπεράσματα της παρούσας διατριβής, ενώ δεν παραλείπονται προτάσεις και κα-
τευθύνσεις μελλοντικής έρευνας. Το τελευταίο μέρος συνοψίζει τα ευρήματα της
εργασίας και προτείνει κατευθύνσεις για μελλοντική έρευνα.
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Chapter 1

Introduction

“Only the best is good enough.”

Ole Kirk Christiansen, The Lego Group

Over the last few years, the International Maritime Organization (IMO) that
stands as specialized UN agency, has brought the environmental impact of mar-
itime industry to the forefront by imposing mandatory measures and regulations
in order to contribute to the global fight against climate change through decar-
bonizing shipping by 2050 [1], [2]. Emission-reduction measures target mainly CO2

(carbon dioxide), CH4 (methane), NOx (nitrous oxide), SOx (sulfur oxide) and
fluorinated gases.

Under IMO’s amended, as of July 2011, pollution prevention treaty (MAR-
POL), the Energy Efficiency Design Index (EEDI) and the Ship Energy Efficiency
Management Plan (SEEMP) became mandatory measures for all seagoing vessels.
IMO forges ahead and develops new short-term regulations for existing vessels,
such as the attained and required Energy Efficiency Existing Ship Index (EEXI).
As shown schematically in Figure 1.1, the required Energy Efficiency Existing Ship
Index (EEXI) is calculated based on a reduction factor and expressed as a per-
centage relative to the EEDI reference line, based on the efficiency of ships built
between 1999 and 2009. Particularly, ships built between 2013-2015 are required
to have a design efficiency that is at least equal to the reference line. Ships built
between 2015-2020 comply with EEDI requirements only if they attain an index
that is at least 10% below the reference line. The same measure for ships built
after 2025 requires 30% EEDI reduction for compliance, pushing towards more
efficient designs.

On 14 July 2021, the European Commission also adopted a series of legislative
proposals to deliver the European Green Deal, the ‘Fit for 55’ package, setting out
how it intends to reduce its net greenhouse gas GHG by at least 55% by 2030,

27

https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en
https://www.consilium.europa.eu/en/policies/green-deal/fit-for-55-the-eu-plan-for-a-green-transition/
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compared to 1990 levels. These policies pave the way for Europe to become the
world’s first climate-neutral continent by 2050. In addition, the positive effects
of various market-based measures (MBMs) and environmental policies, such as
carbon taxes and emission trading systems, are studied, and are expected to boost
decarbonization efforts as highlighted in Lagouvardou et al. 2023 [3].

Apart from using alternative fuels as a prominent solution to decarbonize ship-
ping, the industry is currently assessing unconventional energy and technology
solutions to attain more drastic reductions in emissions [13], [14]. Shipowner com-
panies are also encouraged to actively invest in retrofit projects that would reduce
the environmental impact of their fleet while ensuring that the vessels comply with
IMO ambitious regulations.

Figure 1.1: Improving the performance of new-build vessels via EEDI [15].

1.1 Energy-saving devices (ESDs) and unconven-

tional ship propulsion systems

In general, the term ship energy-saving devices (ESDs) refers to various retrofit
solutions designed for commercial vessels that aim to reduce the rotational or axial
energy losses of the propulsion system, most commonly targeting water flow around
the propeller [14]. For instance, a vessel equipped with stern energy-saving devices
delivers the required thrust at lower engine power, thus operating at lower fuel
consumption, which results in emission reduction. Typically ESDs are categorized
based on the operation principle as upstream and downstream devices.
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Upstream devices are installed in the upstream of a propeller and by interfering
with the inflow they aim to improve propeller efficiency. These include (1) pre-
ducts, see e.g. [16]-[17], with the Becker Mewis Duct as one recognizable design
and (2) pre-swirl stators and fins, see e.g. the numerical works [18], [19] and [20].

On the other hand, downstream devices are mounted in the wake of a propeller
and improve the overall efficiency of the system by recovering rotational losses
of the wake. Notable devices include (1) rudder fins, see e.g. the computational
and experimental results for the thrust-rudder fin design from [21]-[22], and (2)
propeller boss-cap fins (PBCF) that mitigate losses from hub vortices as shown in
[23].

A useful summary of the reported performance improvement after installation
of various types of ESDs can be found in [24]. In their work, it is also highlighted
that downstream energy-saving devices achieve between 2%–5% efficiency gain,
whereas for upstream devices these figures can range between 4%-14% based on
model tests and sea trials, paving the way for successful future retrofit projects.

State-of-the-art design of ESDs requires an association between optimization
frameworks and computational fluid dynamics (CFD). For completeness, simula-
tions performed in the preliminary design phase should address unsteady hydro-
dynamic load prediction, cavitation behavior, and underwater noise emissions. In
the literature, there is a distinction between works that propose a methodology or
a framework that can facilitate the design of certain types of energy-saving devices
and works that are concerned with the design and assessment of full-scale ESD
retrofitting.

Regarding the latter, comparisons between the proposed computational tools
and full-scale sea trial results are extremely valuable, yet rather scarce. For in-
stance, the proposed computational framework in [16] was used for the optimal
design of a pre-duct for a Japan bulk carrier, and full-scale trials after retrofitting
showed a remarkable 10% improvement in propulsive efficiency, which corresponds
to higher gains compared to the previous duct design; installed to the same carrier.
Suggesting that numerical computations using reliable software (i.e. extensively
validated against model-scale experiments, full-scale data or other works from the
literature) prove to be extremely valuable to the design of similar projects.

Apart from ESDs, unconventional propeller geometries, such as the contracted
tip-loaded (CLT) propellers and the highly skewed KAPPEL designs, have emerged
through extensive experimental and numerical studies with an aim to produce
blade geometries with enhanced efficiency and improved cavitation performance
[25],[26] and [27]. Each concept has its own strengths and limitations, since compli-
ance with design requirements and other aspects including cavitation mitigation,
low acoustic noise, maximum efficiency, structural integrity, and various techno-
economic factors are often contradictory to one another.
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Particularly, CLT designs were motivated by the idea of tip-vortex-free pro-
pellers and are quite distinguishable from conventional geometries due to their
substantial tip chord length and the large end-plates attached to the tip. End-
plates follow the entire tip chord length and point toward the blade’s pressure sides.
These designs are typically unskewed, they introduce mechanical strength chal-
lenges and may be prone to certain types of cavitation, see, e.g. [28]. Traditional
design methods may fail to produce CLT designs that outperform conventional
blades, and therefore optimization-based methodologies may be more suitable for
the preliminary design phase, as discussed in the recent work by Gaggero et al.
2016 [26]. In [26], a CLT propeller geometry is produced via an optimization pro-
cess and is then studied in terms of open-water propeller performance, unsteady
cavitation, and induced pressure pulses to highlight the advantages of CLT designs.

On the other hand, Danish engineer Jens Julius Kappel presented the KAP-
PEL propeller in the early 2000s after a long development process. It stands out
from the CLT design in several ways. The blade tips are lifted and curved grad-
ually towards the suction side of the propeller with a large amount of skew. In
that sense, the blades are non-planar lifting surfaces, differing substantially from
most conventional propellers. Successful designs of these unconventional propellers
are proprietary or patented works, and consequently blade geometry data that is
available in the literature for benchmarking is quite limited. However, some works
reveal key aspects relating to the performance gains.

Sea trials with the conventional propeller and the KAPPEL propeller have been
performed and have proved an efficiency gain of 4% in favor of the new propeller.
The efficiency enhancement was attributed to lower propeller-induced pressure
fluctuations as shown in [27]. In addition, the recent work by [29] investigates
the effects of various tip-rake distributions on the performance of KAPPEL-like
propellers in terms of propulsive performance and mitigation of cavitation phe-
nomena, suggesting that a 2.5% performance enhancement is observed from the
RANSE-CFD computations. Findings also indicate that an increase in tip-rake
magnifies the low-pressure value and area on the suction side blade surface, which
together with a phenomenon of the tip-vortex stretching and inhibition of wake
vortex contraction, are beneficial to the elevation of propulsion efficiency.

1.2 Biomimetic thrusters

Lighthill’s study on the hydro-mechanics of fish locomotion, written in the early
70’s [30], is one of the earliest efforts in the field. Fish locomotion remains an
active research field and still contains various unknown aspects. The abundance
of evolutionary designs nature offers has not ceased to inspire propulsion solutions
based on the detailed classification of biomimetic thrusters and appendages used
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in autonomous underwater vehicles (AUVs) found in [31].
The combined efforts of experimental biologists and engineers through the years

have identified some key aspects related to the performance of artificial propulsion
systems, those mimicking fish-locomotion, see [32]. These are presented schemati-
cally in Figure 1.9. Key parameters include hydrodynamic shapes and morphology,
fish-propulsion kinematics, sensory perception, advanced actuation, active and/or
passive morphing, composite materials, and material property distribution. In ad-
dition, autonomous operation and adaptability are responsible for the fascinating
abilities of aquatic swimmers.

Nowadays, engineering applications that mimic the mechanics of aquatic loco-
motion often use soft materials in manufacturing, advanced active actuation, and
sensing to achieve a glimpse of the versatility and agility found in nature, see, e.g.,
[7], [8]. Flapping foils are popular for AUVs due to their advantages over rotary
propellers,

� low-frequency operation,

� high thrust/power ratios,

� low drag on the switched-off position,

� superior maneuverability,

� acceptable cavitation characteristics,

� versatile operation, i.e., stabilizer and controller modes,

making them a well-suited propulsion system for small autonomous underwa-
ter vehicles (AUVs) designed for oceanic exploration, based on reviews the in
Rozhdestvensky & Ryzov[4] and Shyy et al. [6].

The applications summarized in the recent review by Xing et al. 2023 [9]
include flapping foils as ESD-retrofit solutions for sea-going vessels. Thunninform
locomotion lies at the core of most flapping-foil system’s operating principle; where
thrust-producing kinematics are emulated using a superposition of out-of-phase
heave and pitch motions.

Notable efforts on thrust-augmentation devices based on flapping foils for ocean
going vessels include the experiments conducted by Bøckmann & Steen 2014 [33].
Fixed foils were mounted on the model vessel, shown in Figure 1.2 [left], and results
show that wing hydrodynamic forces lead to a reduction of ship resistance by 9-
17%, for the examined sea states; by suppressing ship heave and pitch motions in
waves. Soon after, this idea led to the development of WAVEFOIL’s modular bow-
wing retrofit solution, shown in Figure 1.2, with several installations on medium-
sized vessels operating in the North Sea.
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Figure 1.2: The tanker ship model with two fixed foils from the experiments con-
ducted by Bøckmann & Steen 2014 [33] [left] and the modular technology solution
developed by WAVEFOIL [right]

.

Recently, the EU-funded SeaTech consortium has developed two symbiotic ship
engine and propulsion innovations, ‘Next generation short-sea ship dual-fuel engine
and propulsion retrofit technologies’, that when combined, lead to a great increase
of fuel efficiency and radical emission reductions (see also: https://seatech2020.eu/).
Emphasis is given on future innovations that will be characterized by high retrofit-
ability and maintainability, offering ship owners attractive return-on-investment
due to resulting fuel and operational cost savings.

The proposed renewable-energy-based propulsion innovation consists of a dy-
namic wing mounted at the ship bow, resembling technologies already deployed
as stabilizers, to augment ship propulsion in moderate and higher sea states, cap-
turing wave energy, producing extra thrust, and damping ship motions. Project
findings have been published in Belibassakis et al. 2022 [10], Ntouras et al. 2022
[11] and Bowker & Townsend 2022 [34]. Snapshots of the towing tests in calm
water with and without the dynamic wing from [10] are shown in Figure 1.5. Fig-
ure 1.6 contains material from the experimental work conducted in Southampton
model basin [34]. The completion of this EU-funded research project marks the
deployment of large-scale dynamic wing devices on an ocean-going vessel to verify
the enhancement of such a retrofit on the attained energy indices and the reduction
of emissions. Similar works include [35] and [36].

https://seatech2020.eu/
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In the context of unconventional propulsion systems, various configurations
of flapping-foil thrusters were studied in the early 90s as alternatives for marine
propellers, see, e.g., [9], [37]. The comprehensive experimental study conducted
in Vermeiden et al. 2012 [38], which focused on the performance assessment of a
newly developed flapping-wing propulsion system for seagoing vessels, achieved a
remarkable 81% propulsive efficiency for the flapping propulsor at proper loading
compared to 63% for the ship’s screw-propeller at design point. The efficiency
variations were measured at a higher Reynolds number 200, 000 by varying sys-
tematically loading, pitching amplitude, chord- length, chordwise flexibility and
fin-spacing. Based on their observations, the flapping propulsor sweeps a larger
area compared to a conventional propeller (i.e. 5− 15%). A single-shaft flapping
mechanism that was tested in their experiments is shown in Figure 1.7. This mech-
anisms allows for vertical/pitching oscillations, whereas tandem configurations of
the device where found to increase the system’s efficiency.

Figure 1.3: (a) Figure 1.4: (b)

Figure 1.5: Tank tests of the hull model in calm water (a) without and (b) with
the dynamic wing from Belibassakis et al. 2021 [39].

Cycloidal drive propulsion that also exploits flapping wing dynamics for thrust
generation and maneuvering has reached a technological readiness level (TRL) that
allows for larger-scale deployment targeting ocean going vessels. For instance, the
innovative ABB Dynafin stand-alone propulsion system, shown in Figure 1.8, is
an all electric propulsion concept that combines cycloidal propeller technology
with bio-mimicry in terms of design and kinematics, to achieve higher efficiency
compared to conventional shaft line configurations, suggesting that there is space in
the industry for new propulsion solutions. Wings have leading edges with tubercles
mimicking the fin morphology of Humpback whales.

The low-frequency operation of flapping thrusters leads to significantly lower
underwater noise emissions, and proper tuning of kinematic, geometric, and struc-
tural parameters can yield high propulsion efficiency at low-speed cruising. How-
ever, installations of flapping-foil systems require a complete redesign of the hull
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Figure 1.6: Free running generic cargo ship model with bow foil [left] and computer-
aided design (CAD) rendering of the foil mechanism [right] from the experimental
work in Bowker & Townsend 2022 [34].

lines at the stern and thus have not gained much popularity. Applications of
flapping thrusters have been redirected towards their use as thrust-augmentation
devices and ESDs with an emphasis on retrofit-ability and re-tractability.

Other applications of flapping foils include energy extraction of wave and tidal
renewable resources, especially in coastal areas [40]. The mutual existence of waves
with strong following, oblique or opposing currents at various nearshore places,
which otherwise is characterized by quite a low wave potential, offers motivations
for a comprehensive investigation of such resources and the development of hybrid
technological devices, see, e.g., the analysis in [41] for a concept semi-activated
oscillating hydrofoil device.

Figure 1.7: Schematic representation of the single-shaft flapping mechanism [right]
and twin-foil configuration [left] tested experimentally in Vermeiden et al. 2012
[38] as a stand-alone propulsion system in tandem configurations.
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Figure 1.8: ABB’s Dynafin: An electric cycloidal propulsion system with aquatic-
inspired blade design.

1.2.1 Thrust-producing kinematics

Fish swimming modes can be categorized based on morphological characteristics,
kinematics, and locomotor behavior, [42] and [5]. Figure 1.10 contains a schematic
representation of the four distinctive fish locomotion modes. Joint experimental
and numerical research suggests that thunninform swimming, illustrated in Fig-
ure 1.11, is the most efficient. Thunninform swimming is a culminating point
in the evolution of swimming designs, and we encounter it among varied groups
of vertebrates (teleost fish, sharks, and marine mammals), which have evolved,
astonishingly, under different circumstances.

This highly efficient method of swimming attracts attention due to its potential
to provide artificial systems with superior propulsion characteristics compared to
other vehicles equipped with conventional propellers. The robotic fish ‘RoboTuna’
shown in Figure 1.12 was developed initially by Barret [43], [44] in MIT, was
shaped after an actual tuna and combined oscillating foil/tail movements with
carangiform body kinematics. This prototype, that continued to be built upon
years on, showcased all the advantages of bio-inspired thrusters for autonomous
underwater vehicle (AUV) propulsion. Mean propulsive efficiencies as high as 91%
have been reported for the RoboTuna [42], based on the optimal body motions
deduced from an optimization study using genetic algorithms. Its success spawned
further work in the area of swimming robots [8].

Typically, thunninform bio-inspired thrusters consist of a relatively stiff caudal
fin; shaped like a tapered hydrofoil with moderate sweep-back, curved leading edge
and sharp trailing edge. Fish et al. [45] provides abundant information on cetacean
fluke morphology. The thruster traces an oscillating path, propelling the AUV
forward, that is characterized by a peak-to-peak amplitude, a tail-beat frequency
and a wavelength. This combination of out-of-phase heave/pitch produces the
thrust-producing trajectory shown in Figure 1.11.

https://new.abb.com/marine/systems-and-solutions/dynafin
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Figure 1.9: Important aspects for the design of bio-inspired flapping thrusters.

In most engineering applications and experimental works, harmonic functions
are used for heave and pitch motions,

y(t) = Ay sin(2πft), (1.1)

θ(t) = Aθ sin(2πft+ ϕθ). (1.2)

Esfahani et al. [46]-[47] used CFD to study the effects of other non-harmonic fish-
inspired trajectories on the propulsive efficiency of flapping foils, with encouraging
results.

The main factors determining the relative contributions of momentum transfer
mechanisms to thrust and resistance are 1) Reynolds number, 2) reduced frequency,
and 3) shape. Reynolds number Re is defined as the ratio of inertial and viscous
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Figure 1.10: Body/caudal fin propulsion swimming modes from primitive to de-
rived: (a) anguilliform, (b) sub-carangiform, (c) caragiform and (d) thunninform,
adapted from Sfakiotakis et al. 1999 [42].

Figure 1.11: Schematic representation of the thunniform swimming mode.

forces,

Re =
LU

ν
, (1.3)

where L is a characteristic length, U is the swimming velocity, and ν is the kine-
matic viscosity of water. The reduced frequency k indicates the importance of
unsteady (time-dependent) effects in the flow and is defined as

k = 2π
fL

U
, (1.4)

where f is the oscillation frequency, L is the characteristic length, and U is the
swimming velocity. In some works, the Strouhal number, defined as

St =
2fAy

U
, (1.5)
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Figure 1.12: Built to simulate the action of a fish, RoboTuna metallic prototype
in MIT towing tank basin; courtesy of Sam Ogden.

is used alternatively as a measure of unsteadiness, with Ay denoting the peak-to-
peak amplitude.

Froude efficiency, namely swimming efficiency, is defined as,

η =
⟨T ⟩U
⟨P ⟩

, (1.6)

where U is the mean forward velocity, ⟨T ⟩ is the time-averaged produced thrust,
and ⟨P ⟩ power is required to sustain the prescribed motion of the device. Thrust
production efficiency of oscillating foils is maximized for Strouhal numbers 0.25−
0.35, based on the experiments of Triantafyllou et al. 1991 [48] in the early 90’s.
A summary of experimental biologist’s observations published in [49] reveals that
Strouhal numbers in nature lie between 0.2−0.4, which is indeed an extraordinary
finding.

Experiments revealing the hydro-mechanics of fish-like propulsion

Notably, many of the pioneering experimental works on thrust-producing oscil-
lating foils were conducted at MIT focus and focused on investigating the hydro-
mechanics of fish-like propulsion, see [49],[50], [51] and [52]. The examined wings
are made of stiff materials and performed a combination of harmonic heave and
pitch motions that yielded thrust-producing effective angle of attack profiles. A
characteristic experimental configuration in shown in Figure 1.13 related to the
work in [50]. In the review by Triantafyllou et al. [53], fluid mechanics-based scal-
ing laws are derived on theoretical, numerical, and experimental grounds, provid-

https://ocw.mit.edu/courses/2-a35-biomimetic-principles-and-design-fall-2013/resources/2-a35f13/
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ing valuable directions for assessing artificial flapping-foil systems. Recent exper-
imental studies concerning rigid flapping foils focus on unsteady motion analysis,
characterization of large-scale vortex structures, and investigation of tandem foil
configurations, see [54].

Figure 1.13: View of the test carriage used in the experiments by Read et al. [50],
which oscillates the foil in flapping motion while moving horizontally in the towing
tank.

Numerical models for hydrodynamics

Depending on the application, numerical models facilitate the analysis of various
wing configurations and, when used alongside experiments, provide a better un-
derstanding of the system’s hydro-mechanics. Ideal-flow-based models are a cost-
effective alternative to CFD; enabling fast simulations and achieving engineering
accuracy for hydrodynamic load predictions. Their applicability covers 3D, un-
steady hydrodynamic simulations on general planform shapes assuming attached
flow conditions.

Historically, models based on Prantl’s lifting line theory were the first to be
developed for lift predictions on large aspect ratio wings. Extensions of lifting
line theory allow for unsteady simulations and consideration of curved planform
shapes; as discussed in the recent works of Bird et al. 2020 [55] and Reid 2020
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[56], respectively. In the follow-up work by Bird et al. 2020 [57], extreme bench-
mark cases for the unsteady lifting line theory (ULLT); involving large-amplitude
kinematics at low Reynolds numbers, are examined and compared against experi-
mentally validated CFD simulations for Re = 10, 000. The findings emphasize on
the applicability of ideal-flow models and their extremely low computational cost.

Then, models based on lifting surface theory emerged to improve lift and
induced-drag predictions on small aspect ratio wings. The earliest works treated
lifting flows around arbitrary 3D bodies for aerodynamic applications [58], and
later, the works of notable scientists such as [59], [60] covered the lack of compre-
hensive text for boundary element methods (BEM). The BEM is still used today
due to the advantages it holds over other popular numerical methods, with ap-
plications not only limited to lifting-flow problems, see, e.g., [61], [39], [62], [63].
These advantages are:

� Dimensionality reduction, i.e., discretization schemes are implemented only
on the boundary, and thus approximate solutions to the 3D problem are
equivalent to the determination of unknowns on the specified 2D boundary.
Weak formulation.

� Straightforward handling of unbounded domain problems; in case closed
boundaries are contained, all flow generated information satisfies the infinity
condition by construction.

� Analytical or semi-analytical calculation of integral terms significantly re-
duces the computational cost.

� For lifting flow problems, the boundary values of the initially unknown po-
tential field and its derivative contain all the physical information required
to evaluate pressure and velocity on the whole domain.

� Solution of the corresponding initial boundary value problem yields the
boundary values of the potential field and its derivative.

The accuracy of hydrodynamic load predictions, as obtained using ideal-flow mod-
els, can improve further without considerably increasing the computational cost,
through viscous corrections based on empirical formulas.

In addition, an extension of such boundary element models allows the study of
intricate wing geometries with morphing capabilities (i.e., active & passive wing
shape modification) and their effect on the hydro-mechanics of propulsion with
low computational cost compared to solvers that require meshing on the whole
domain, such as computational fluid dynamics or finite elements. The motivation
for using these tools comes from the fact that studies of flapping thrusters with
bio-mimetic features have the potential to inspire future technological solutions
that are environmentally friendly and have enhanced efficiency.
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1.2.2 Wing geometry

The work by Fish et al. 1998 [45] provides abundant inspiration regarding the
morphology of cetacean flukes. Wing geometry is also closely related to wing
performance. The non-dimensional aspect ratio (AR) is one measure used to
correlate a wing planform to its performance. By definition, the aspect ratio
equals the square of the wingspan divided by the wing area. For a rectangular
wing, it holds that AR = s2/(sc), where c is the chord length at the root and s
is the span. Regarding planform shapes, a simple parameterization consisting of
the sweep angle Λ and the taper ratio λr = ct/cr, i.e., defined as the ratio of tip
chord ct to root chord cr, are two parameters that can be used to define various
wing configurations, as discussed in [59]. This representation, shown in Figure
1.14, is also followed in the present work for its simplicity and close resemblance
to cetacean fluke shapes.

Figure 1.14: Nomenclature for planform parameterization based on taper ratio
and sweep.

However, fins in nature have more complex shapes with variable chord lengths
and noticeable variations along the span, as discussed in [64] and [32]. Aspect
ratio is also a measure of agility and maneuverability for both artificial and nat-
ural swimmers (or fliers), with smaller values, for instance, AR < 3, suggesting
advanced maneuverability and higher values AR > 5 observed on wings with ex-
cellent steady-state forward flight capabilities.

In addition, fins found in nature may also exhibit intricate morphology in the
leading edge region, which affects the wing’s overall performance [65], [66]. The
humpback whale pectoral fins, with their distinct tubercle leading edge (TLE),
shown in Figure 1.17, are an excellent example of a mechanism for delaying and
restricting span-wise separation, tonal noise, and dynamic stall at high effective
angles of attack. Tubercles serve as vortex generators; suppressing flow separation
and improving maneuvering, as observed experimentally in [67], [68] and [69].
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These findings have recently motivated the design of tidal turbine blades with
tubercle leading edge [70] and novel appendages for yachts, such as the Club Swan
50 twin-rudder concept. A hub-less thruster for the yachting sector inspired from
humpback whales has been developed by BlueNav [71], featuring tubercle-inspired
tip and striations along blade body as shown in Figure 1.17. Also, from the
neighboring field of aeronautics, the review [65] and experimental study [67] discuss
similar findings. Some prototypes for small aerial vehicles with TLE wings have
also emerged [72].

Figure 1.15: (a) Figure 1.16: (b)

Figure 1.17: (a) Humpback whale pectoral fins with tubercles and (b) BlueNav
hub-less thruster featuring tubercle-inspired tips and striations on blade body [71].

1.2.3 Passively morphing wings

Fins found in nature are deformable and can adapt to hydrodynamic load excita-
tion; exploiting intrinsic musculature that allows for active shape control. These
observations drastically open the ‘shape’ space compared to the analysis and de-
sign of non-deforming wings. Many publications focus on the effects of flexibility
on the performance of flapping thrusters, supporting the development of artificial
swimming robots using new materials and advanced actuation. A summary of
notable experimental and numerical works follows in Tables 1.1 and 1.2.

Experimental studies

The findings from Prempraneerach et al. 2003 [73] suggest that properly selected
chord-wise flexibility can significantly enhance the propulsive efficiency of flapping
thrusters, even up to 36%, compared to rigid foils with the penalty of a small loss
in thrust. They also introduced a non-dimensional flexibility parameter to derive
a scaling law for flexibility effects. Indications that properly selected material
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properties enhance the performance are also present in Heathcote et al. 2004 [74]
experiments for purely heaving foils.

Heathcote et al. 2008 [75] note that the range for which Strouhal numbers are
beneficial for the efficiency overlaps with the range of Strouhal numbers 0.2− 0.4
found in nature.

Efficiency maximization can also be correlated with resonance effects and modal
analysis. In Paraz et al. 2014 [76], response curves representing the relative thin
plate tip amplitude with respect to the forcing frequency, exhibit peaks of reso-
nance for the natural modes of the purely heaving plate in the flow. Additionally,
for plates with uniform material properties, flexural rigidity within the examined
range has only minor effects on the response curves, when the forcing frequency
is normalized with the first natural mode. However, forcing amplitude signifi-
cantly affects the response indicating strongly nonlinear behavior, which needs to
be taken into consideration for the development of fluid structure interaction (FSI)
models.

In the experiments from Richards et al. 2015 [77], it was observed that maxi-
mum efficiency occurs at a frequency ratio resulting in both a beneficial phasing of
the deformation, with respect to the drive motion, and the maximum deflection.
Flapping (i.e. heave and pitch) kinematics were shown to increase the efficiency
while reducing the thrust, compared to a purely heaving study case. In addition,
an increase of the forcing amplitude, corresponding to the drive motion, was found
to cause the frequency ratio, providing maximum efficiency, to shift toward lower
values.

Kancharala et al. 2016 [78] performed water tunnel experiments on real and
fabricated caudal fins, to investigate effects of stiffness variation on thrust and
efficiency. The fabricated fins were constructed using carbon fiber reinforced
composites (CFRC) using various layer scheme configurations; mimicking stiff-
ness measurements (i.e., in the sense of EI) obtained from real fish fins (trout,
red/vermilion snapper). The findings suggest that the self-propelled flapping fin
prototypes based on bio-inspired stiffness variation outperformed the ones corre-
sponding to a constant layer scheme resulting in uniform EI stiffness. It was also
observed that optimal selection of the stiffness variation profile produces greater
thrust and enhances the propulsive efficiency.

The experimental work by Quinn et al. 2015 [79] stands out since it ad-
dresses the problem of efficiency maximization for the case of flexible thrusters
experimentally. In their study, a simple gradient-based optimization approach
is shown to lead to significant improvement in the efficiency of a flexible plate
with Young’s modulus E = 3.9GPa. Some of the design variables considered in-
clude the Strouhal number, heaving amplitude, and maximum pitch angle. The
multi-dimensionality and multi-modality of the efficiency space revealed, via the
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experiments, that flexible propulsors are prime candidates for optimization rou-
tines.

Theoretical models

Some experimental works also address the applicability of theoretical models to
the prediction of flexible-foil resonance phenomena and structural response in joint
frameworks that allow for the validation of the proposed models via comparisons
against the available measurements. For instance, in Alben et al. 2012 [89], the
self-propulsion water tunnel experiments at Re = 103−105 on purely heaving flex-
ible panels serve as the basis for theoretical model verification. They propose a 2D
model that consists of an in-extensible elastic equation strongly coupled with in-
viscid thin-airfoil theory. A good agreement between the model and experimental
measurements is observed in terms of (i) deformed shape/ wavelength predictions
and (ii) dependence of swimming speed on foil length, rigidity, and the correspond-
ing flows. It is noted that 3D effects are significant, however the model is sufficient
for scaling law derivation in this context.

In Quinn et al. 2014 [83], the small deflection of the examined heaving flex-
ible panel is modeled using the Euler-Bernoulli beam equation. The solution of
the equation is expressed using modal decomposition, and the natural modes are
correlated with the deformed shapes of the flexible panels obtained from the exper-
iments. Four constant-thickness panels with different flexural rigidities were exam-
ined, to account for flexibility effects. Emphasis is given to resonance phenomena
and efficiency peaks. It was observed that as the heaving frequency increases,
higher modes are actuated. Flexibility affects the frequency at which resonance
peaks are observed.

Modal analysis based on the Euler-Bernoulli beam equation is also considered
in Paraz et al. 2016 [90]. The experimental setup in [90] consists of a flexible
panel actuated at the leading edge, with end-plates restricting 3D flow phenomena.
The beam equation is coupled with unsteady airfoil theory to formulate a weakly
nonlinear model. Hydrodynamic pressure is based on Theodorsen’s theory. The
model can produce acceptable predictions in terms of the tip response amplitude as
a function of forcing frequency over a range that includes the first two resonance
peaks for the coupled system. Damping terms are added to the linear model
equations in order to improve numerical predictions. Their findings also suggest
that nonlinearities and 3D effects should be taken into account through numerical
simulations to enable predictions for wings with moderate/small aspect ratios,
which are typically found in nature.

Even though CFD simulations are gaining ground in the field, recent works that
tackle the FSI problem using analytic approaches still provide valuable insight. A
great example is the analytical model from Fernandez-Feria & Alaminos-Quesada
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2021 [91]. In the theoretical models presented previously, the foil is actuated at
the leading edge, whereas in [91] a framework for the analysis of a thin flexible
foil that undergoes prescribed heaving/pitching motions about any pivot location
is presented. The model is based on linear potential flow and the Euler-Bernoulli
beam equation using a quartic approximation for the deflection. This allows for
the analytic calculation of the deformation amplitude, thrust force, input power,
and propulsive efficiency in terms of stiffness, mass ratio, frequency, pivot location,
and kinematic parameters.

In the follow-up work by Sanmiguel-Roja & Fernandez-Feria 2021, [92], linear
theory predictions are compared against cfd results, for purely plunging flexible
foils, illustrating that the analytical model is a reliable and useful guide for the
design of underwater flexible flapping-foil thrusters. In addition, a practical chart
that relates the optimal flapping frequency to the actuation point, the stiffness,
and the mass ratios of the hydrofoil is provided.

Numerical models

Experimental works serve as a database for validating new computational tools
that are on the surge and suggest that the response of flexible thrusters is non-
linear, meaning that passive deformations affect the hydrodynamic force excitation
and vice-versa. In that sense, coupling methodologies are required for numerical
models to capture this FSI problem. From low-order methods, see, e.g., [63],
[93], to higher-fidelity simulations such as [94] and [94], researchers have been
able to predict the response of wings under hydrodynamic and inertial excitation
with inspiring results, see, e.g., a summary in Table 1.3. The structural models
used range from beams, plates/shells, and solids, whereas the numerical study of
passively deforming oscillating foils also requires reformulating computational fluid
dynamics models.

Coupling can either be weak or strong, depending on whether iterative schemes
are employed to solve the problem. Strong coupling requires the use of iterative
methods that tackle non-linear equations. Depending on the problem formula-
tion, the coupling can also be considered monolithic or partitioned. Partitioned
approaches use separate numerical tools and couple them through information ex-
change along their boundaries, see, e.g.,[63],[94]. In a strongly coupled/partitioned
scheme, the loads and movements for each physical time step are transmitted be-
tween the computational programs, enabling all non-linear contributions from the
hydro- and structural dynamics. In weak/partitioned coupling, information is ex-
changed between the fluid/structure boundaries once per time step, as discussed in
[95]. On the other hand, monolithic coupling tackles the full set of equations and
requires tailor-made mathematical formulations for each problem setup, which is
rare for works on passively deforming hydrofoils.
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What type of coupling should we use for our FSI? The appropriate methodology
depends on the density of the fluid medium. Daniel et al. 2002 [96] suggest that
for the case of passively morphing wings immersed in high-density fluids, such
as water, accurate predictions of the wing’s response require a solution to the
complete (full) set of equations coupling fluid and solid dynamics. This argument
is also supported by Zhu 2007 [63]. On the other hand, studies of animal flight
show that weak (or loose) coupling may suffice for many aero-elastic applications.

Table 1.3: Numerical works on FSI for passively morphing wing thrusters.

Authors Fluid Structure Coupling

Zhu 2007 [63] potential
(BEM)

thin plate, uniform material,
rectangular (FDM)

strong, par-
titioned

Zhu and Shoele
2008 [93]

potential
(BEM)

Euler-Bernoulli beams
(FDM), fish planform,
skeleton-strengthened fin

strong, par-
titioned

Dai et al. 2012
[97]

viscous
(CFD)

plate with frame, homoge-
neous (FEM)

strong, par-
titioned

Ducoin and
Young 2013 [95]

viscous
(CFD)

2-dof bend/twist, rectangu-
lar wing (FEM)

weak, parti-
tioned

Liao et al. 2019
[98]

viscous
(CFD)

solid (FEM), composite
(CFRP) cantilevered wing

weak, parti-
tioned

Luo et al. 2020
[94]

viscous
(CFD)

solid, fin, non-uniform stiff-
ness (CalculiX FEM, brick
elements)

strong,
partitioned
(preCISE)

Wang at al.
2020 [99]

viscous,
shear flow
(LBM)

plate, large-deformations
(FEM, DKT)

strong, par-
titioned

1.2.4 Flexible propulsors with enhanced performance

Flexible propulsors may be prime candidates for optimization routines, however,
hydro-structural optimization remains a challenging field of research due to its
multi-disciplinary nature. Notable works include Wills et al. 2007 [100], where a
computational framework that exploits models with different geometric and physi-
cal fidelity levels for designing high-performance flexible aerial vehicle wings is pro-
posed. For the fluid-structure interaction (FSI) problem, they used an unsteady
lifting-line formulation in conjunction with beam models for the wing surfaces.
This framework is suitable for both direct and inverse wing design problems.
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In their work, Garg et al. 2017 [101] discuss the importance of high-fidelity
FSI simulations and multi point optimization for the design of flexible hydrofoils
with optimal performance. The optimization problem involves the minimization of
hydrofoil drag-coefficient under constraints, including cavitation suppression. The
hydro-structural solver consists of a 3D nearly incompressible Reynolds-averaged
Navier–Stokes equations (RANSE) solver strongly coupled with a 3D structural
finite-elements. The structure is a solid homogeneous isotropic material with a
linear elastic response, and the use of adjoint optimization makes the cost of gra-
dient calculation nearly independent of the total number of the structural design
variables. Experimental verification of the optimal hydrofoil is performed in their
follow up work [102] with great results. By enriching the structural model to
account for fiber orientation effects (CFRP), Liao et al. 2021 [103] designed a
cavitation-free wing with minimum drag using a high-fidelity computational tool
for the FSI problem and adjoint-based optimization. Their findings suggest that
an optimal selection of fiber angle balances the bend-twist coupling and modifies
the directional strength to reduce the susceptibility to excessive deformation and
material failure for wings with a sweep angle.

The above works suggest that a lower-fidelity method that tackles the fully
coupled FSI problem can become instrumental both in terms of predicting the
hydro-elastic response of flexible fins but also by enabling the cost-effective hydro-
structural optimization of flexible wings, taking into account stiffness variability,
wing planform shape, unsteady hydrodynamic loading, and kinematic parameters.
The development of an FSI tool, combined with optimization at a cost-effective
level, lies at the core of this dissertation. Research on this field fills in the gap and
advances the scarcity of these models in the literature, see Table 1.3. Chapters 2,
3, and 4 of the present contain material related to the computational tools that
were developed for this purpose; with emphasis on leading to the fully coupled
FlexWing3D solver that is introduced in this work. The solutions to optimization
problems arising from the optimal tuning of geometric, kinematic, and stiffness
properties of flexible flapping foils, with a focus on performance maximization,
are addressed using a gradient-based method, sequential-quadratic programming
algorithm that is suitable for handling nonlinear constraints, and also is part of
many standard libraries for optimization. Sensitivity calculations are performed
for simplicity using standard finite difference schemes.

1.3 Hydrofoil cavitation

Cavitation is a multi-phase phenomenon defined by the appearance of vapor cavi-
ties inside an initially homogeneous liquid medium, which occurs in different situ-
ations depending on the flow configuration and the physical properties of the fluid
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itself, as discussed in Franc & Mickel 2006 [104]. The liquid medium breaks down
in the low-pressure region of lifting surfaces, such as the suction sides of propeller
blades and hydrofoils. These vapor structures tend to disturb and modify the
basic flow around the lifting surface as they develop, resulting in adverse effects
such as induced noise, vibration, structural failure, and a drop in performance, see
Carlton 2018 [105].

Extensive experimental work allows the physical aspects of the many forms of
cavitation to be understood and essentially contributes to the formation of an ac-
curate database for validating computational methods, i.e., [106], [107], [108] and
[109]. Multi-phase flow CFD has become increasingly popular in the last several
years and enables researchers to gain further insight into the physical mechanisms
driving cavitation phenomena. Some of these works include numerical methods
developed to predict specific forms of cavitation, such as partial or sheet cav-
itation [110], cloud cavitation [111], [112] and [113], super-cavitation [114] and
tip-vortex cavitation [115] and [116]. In Ji et al. [117], emphasis is given to the
cavitation shedding dynamics evolution and the cavitation-vortex interaction us-
ing Large Eddy Simulation (LES) coupled with a homogeneous cavitation model,
and the analysis of pressure fluctuations and the transition from attached sheet to
cloud cavitation. Another interesting multi-scale Eulerian-Lagrangian approach
for simulating a cavitating turbulent flow around the Clark-Y hydrofoils is pre-
sented in Wang et al. 2021 [118], where results of bubble dynamics analysis are
also provided.

Certain cavitation forms, such as partial or sheet cavitation, can be predicted
with acceptable accuracy using lower fidelity methods in the context of viscid-
inviscid models, see, e.g., [119] and [120] or purely potential-based methodologies,
see, e.g., Bal et al. 2001 [121]. Literature shows that the main points in partial
cavitation simulations are the cavity detachment position tuning and the wake
modeling downstream of the cavity [120]. Mass transfer between water vapor and
the water generates unsteadiness and instabilities in the wake downstream of the
attached cavity, which is characterized by a two-phase turbulent zone based on
the discussions in [117], [120]. This zone is perturbed moderately in certain flow
configurations, for which a steady solution is possible. In this case, numerical
results obtained with viscous models for the attached cavity region agree quite
satisfactorily with experimental observations. Moreover, an attached cavity would
develop from a sharp leading edge, and in the case of a smoother leading edge,
the cavity would detach at a point downstream of the laminar boundary-layer
separation point Celik et al. [122].

Despite neglecting viscosity phenomena, purely potential-based methods yield
acceptable results if they are used in conjunction with a cavity termination model
to bring numerical results closer to validated CFD simulations or experimental
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data, see, e.g., the discussion in Celik et al. 2014 [122]. Particularly in potential-
based methods, the solver is used in conjunction with a geometric criterion to
determine the initially unknown shape of the cavity, modeled as a free stream-
line. Problem unknowns can include either the cavity length or the cavitation
number, depending on the problem setup. In cases where the cavitation number
is considered known, an iterative scheme is employed to locate the cavity surface
and determine its length, until the exact boundary conditions are satisfied on all
portions of the foil/cavity and free surface boundaries.

Lower-fidelity methods remain a valuable tool in the prediction of cavitation
phenomena. Some advantages include their low computational cost and the “natu-
ral” boundary conditions imposed in potential-based formulations. Higher-fidelity
models often require careful tuning of various parameters to yield accurate results;
see, e.g., the work by Lee et al. 2021 [123] for marine propeller cavitation. On
the other hand, potential-based methodologies are suitable for the early stages of
lifting surface design and analysis, with simulations performed on personal com-
puters instead of high-performance computing resources. These methodologies
also provide the basis for fast extensible algorithms capable of addressing multi-
disciplinary problems, such as the effects of unsteady partial cavitation on the
hydro-elastic stability of a two-degree-freedom hydrofoil [124].

1.3.1 Free-surface effects

Hydrofoil performance during operation in proximity to the free surface is of ut-
most importance for the stability and performance of foiling yachts and crafts. The
lift generated by hydrofoil appendages raises the hull and reduces the crafts’ wetted
surface [125]. Consequently, a significant reduction in resistance is achieved, allow-
ing for high-speed cruising of the craft at fuel efficiency. Moreover, the interaction
of water waves with varying currents is essential for the design and development
of flapping-foil systems for the exploitation of marine renewable energy resources,
see e.g., [41] and the detailed reviews in Xiao & Zhu 2014 [40], Xing & Yang
2023 [9], especially if these devices are to be mounted onto sea-going vessels, Fil-
ippas & Belibassakis 2022 [12], Ntouras et al. 2022 [126]. These suggest that the
physics behind hydrofoil performance at low submergence needs to be addressed
for engineering applications.

Experimental work on submerged lift-producing hydrofoils is rather limited,
and historically one of the first experiments conducted by Duncan 1983 [127] back
in 1983, on a NACA 0012 hydrofoil at a 5deg angle of attack for different sub-
mergence depths with an aim to study the induced free surface waves and the
associated breaking and non-breaking wave resistance, still serves as a standard
verification case for emerging numerical methods. Applications of flapping-foil en-
ergy extraction devices have led to an increase in experimental analysis on the
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matter, see, e.g., Barranyk et al. 2012 [128] where a flexible oscillating plate is
studied experimentally as an energy extraction device at different depths of sub-
mergence, and even though the operation principle, between flow energy convert-
ers and hydrofoil craft appendages, differs, such works can also serve as validation
cases for numerical models.

Regarding the study of hydrofoils beneath the free surface, potential-based
methods remain popular for this type of analysis, see, e.g., the 3D method in-
troduced in Filippas & Belibassakis [129], [12], and continue to emerge, i.e., for
instance the recent 2D model in Chen 2012 [130] where, due to the cost-effective
nature of the models and their accuracy in predictions. However, their applica-
bility is limited to cases without wave breaking and where submergence depths
remain moderate, typically up to h/c ≤ 1.0, with h denoting submergence depth
and c hydrofoil chord.

Viscous solvers are extensively used in predicting hydrodynamic loading on
submerged hydrofoils. For instance we address two recent works in these top-
ics. Pernod et al. 2023 [131] performed numerical simulations based on unsteady
RANSE and confirm that at high proximity to the free surface, i.e., h < 0.5c,
significant modification of the pressure field around the foil is evident, and even
the lift is swapped to downward, highlighting the importance of considering the
effect of finite submergence to compute foils’ hydrodynamic forces. Moreover, in
Petikidis & Papadakis 2023 [132], where the performance of a fully passive flap-
ping foil device for energy harvesting in a free surface flow is examined via CFD
simulations, it was shown that regular waves with a frequency close to the natural
mode of the device aided energy harvesting.

However, when it comes to modeling the performance of hydrofoils operating
beneath the free surface under cavitation regimes, the relevant works in the litera-
ture are limited. Notable works based on multi-phase flow CFD include [133], [134],
and [135]. Regarding computational tools based on purely potential methods, i.e.,
Faltinsen & Semenov 2008 [136] and Bal et al. 2001 [121] are also characteristic.

Compared to higher-fidelity solvers, potential-based methods can treat the ef-
fects of a free surface on lifting surfaces operating in finite submergence depth
along with certain cavitation phenomena concurrently with relatively low addi-
tional computational costs. Therefore, to further investigate this topic, which is
relevant to the operation of hydrofoils, the present work addresses the problem of
partially cavitating hydrofoils moving steadily under a free surface via an inverse
problem formulation based on ideal flow assumptions.

1.3.2 Sensitivity calculation via the adjoint-method

Within the thesis context, and addressing the topic of partially cavitating hydro-
foils operating beneath the free surface that is relevant to the preliminary design of
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flapping foils, we introduce a mathematical model based on ideal-flow theory and
inverse design (ID) for hydrofoils in 2D domains. The objective function follows
the assumption of constant pressure on the cavity boundary, i.e., typical for cav-
itation prediction ideal-flow solvers. Upon solution of the optimization problem,
the strengths of velocity potential on the hydrofoil (including the attached cavity)
and the linearized free-surface boundaries are determined, along with the shape
of attached cavity, dictated by the objective function. Hydrofoil/cavity boundary
parameterization tool uses B-splines and the coordinates of control points included
in the design variable vector [137]. Upon solution of the optimization problem,
given the attached cavity extent, the cavitation number and cavity shape are de-
termined.

For the optimization problem solution, we used a gradient-based algorithm
with sensitivity derivative estimates obtained using the continuous adjoint method.
The adjoint method is very cost-effective, especially for large numbers of design
variables, compared to the number of objective functions (i.e., in our case, only
one objective function is considered), as it requires only two solver evaluations per
optimization cycle to produce the sensitivity derivative estimates for each design
variable. The primary and adjoint boundary value problems are solved numerically
at each optimization cycle using the source/vorticity BEM solver based on [58],
[59].

This research example, contained in Chapter 5 of the present, revealed insight-
ful aspects of continuous adjoint-based boundary element methods. The developed
computational tool PCavPreMod is validated against comparison with other works
and experimental data, constituting a new methodology for partial cavitation pre-
diction with free-surface effects. Moreover, it has the potential of extension to
account for 3D (i.e., sheet cavitation) and transient effects.

1.4 Design and optimization methods

As the available computational power and resources increase worldwide, the num-
ber of engineering problems that numerical simulations can tackle also increases.
Increased computational power combined with the utilization of parallel process-
ing systems and new algorithms makes it possible to simulate numerically detailed
models of various technologies and to incorporate multi-disciplinary optimization
(MDO) in the design process to yield solutions with superior performance, see
Thévenin & Janiga 2008 [138]. Especially, research related to the field ship energy-
saving devices and propulsion systems, where multiple contradictory design crite-
ria must be taken into consideration, is a prime candidate for multi-disciplinary
optimization (MDO) applications.

Each optimization process starts with the problem statement, using formula-
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tions that typically lie into one of the following categories:

� Direct Numerical Optimization (DNO)

� Inverse Design (ID)

Direct Numerical Optimization (DNO) couples design-variable parameterization
with computational tools in an iterative process in order to produce an optimal
solution that maximizes (or minimizes) the objective function and satisfies the
problem constraints. On the contrary, as the name suggests, the concept of In-
verse Design (ID) reverses the conventional design process, allowing new materials
and compounds to be ‘reverse-engineered’ simply by inputting a set of desired
properties and characteristics and then using an optimization algorithm to gen-
erate a predicted solution. For instance, relating to hydrodynamic analysis, this
could be a fluid dynamic characteristic, such as the pressure distribution.

Typically, the solution to an optimization problem can be determined using var-
ious algorithms. These lie in two dominant categories, the gradient-based methods
and the evolutionary approaches, depending on whether differentiation of the ob-
jective function with respect to the design variables is a requirement during the
optimization process. In addition, hybrid algorithms constitute another category
that has emerged in an attempt to bring the best of both worlds, i.e., gradient
and evolutionary, which are currently getting attention due to their versatility for
MDO applications, see, e.g., [139]-[140] on airfoil shape optimization.

1.4.1 Recent progress in ship design

Decarbonization of shipping by 2050 mandates that ship design adapts to a new
reality by incorporating holistic approaches and life cycle considerations aiming
at robust designs under uncertainties. Holistic ship design is introduced in Pa-
panikolaou 2010 [141], where the use of advanced optimization techniques for the
computer-aided generation, exploration and selection of optimal ship designs is
discussed with emphasis on the conflicting requirements resulting from the design
constraints and optimization criteria (merit or objective functions), reflecting the
interests of ship design stake holders that are inherent to the whole process.

Following this idea, in the recent work by Nikolopoulos & Boulougouris 2020
[142] a new holistic ship optimization framework is proposed where the geomet-
rical model lies at the core of their methodology and various modules targeting
stability, strength, powering and propulsion, safety, economics and even operation
simulation are considered.

Modern approaches to ship design, which also target the aspect of propulsion
and resistance to some extent via numerical towing tank simulations, have been
shown to lead to reduced required powering, improved environmental protection,
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increased safety, and partly innovative designs. In a sense, the traditional design
approaches, see, e.g., [143], nowadays have been enriched and merged with MDO
frameworks, advanced computer-aided design software, and numerical simulation
tools.

In that sense, methodologies that address the optimization of a ship propul-
sion subsystem can easily be incorporated into the holistic ship design approach
due to the modular nature of the developed frameworks. Related to the optimiza-
tion of propulsion systems and hydrofoil appendages, various methods have been
developed, see, e.g., [144] on the design optimization of a PBCF propeller, [145]
on an IGA-BEM for 2D hydrofoil optimization and [146] on a shape-informed di-
mensional reduction approach in hydrofoil modeling that is useful in optimization,
paving the way for more efficient ship propulsion.

1.4.2 Gradient-based and evolutionary approaches

Gradient-based methods

Gradient-based methods consider a baseline (reference) design and use informa-
tion obtained from the objective function derivative to each design variable, i.e.,
defined as sensitivities, to alter the design variable vector toward objective func-
tion minimization without violating the constraints. Steepest descent is one of
the oldest and most widely known methods for minimizing a general nonlinear
function, see Pironneau 1983 [147]. It is easy to implement and also available in
most optimization libraries. However, improving the performance and versatility
of gradient-based algorithms remains an active field of research.

The core of gradient-based methods lies in sensitivity derivative calculation,
the most computationally expensive aspect of this methodology. Regarding sen-
sitivity derivative calculation, standard finite difference schemes may be a simple
approach for producing estimates. However, this comes with a penalty in the over-
all computational time and potential rounding errors. The required computational
time is proportional to the order of the finite difference scheme used, assuming that
the finite difference stencil dictates the number of solver evaluations.

Other methods for sensitivity calculation include complex number approaches
and the more sophisticated adjoint-based methods, see, e.g., Thévenin & Janiga
2008 [138]. Sensitivity calculation using complex numbers is not prone to rounding
errors and requirements in terms of computational time are similar to estimations
based on finite differences. However, development time is proportionally greater
compared to implementations based on finite differences, since the main solver
needs to be extended for complex number variables.

Adjoint-based methods, on the other hand, are the most cost-effective con-
cerning sensitivity calculation when the number of design variables is greater than
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the number of objective functions, which is typically the case for engineering ap-
plications, see, e.g., Papoutsis-Kiachagias et al. 2014 [148] on the continuous
adjoint-method formulation with application to hydraulic turbomachines. They
can produce sensitivity derivative estimates at each optimization cycle at the com-
putational cost of two solver evaluations while remaining independent of the total
number of design variables. These methods require significant efforts for their
mathematical derivation and additional time invested into code development to
produce the equivalent adjoint solver but yield high-quality sensitivity derivative
estimates at a fraction of the computational cost required by other methods. Fi-
nally, adjoint formulations enable optimization studies based on computationally
demanding high-fidelity solvers, such as computational fluid dynamics (CFD) and
finite element methods (FEM) for structural problems. Various commercial and
open-source software (see ANSYS, CAESES, OpenFOAM) with high-fidelity sim-
ulation tools contain modules for adjoint-based sensitivity analysis and optimiza-
tion.

Evolutionary approaches

Evolutionary approaches also known as genetic algorithms (or stochastic opti-
mization methods), are inspired by evolution theory and observations of nature’s
optimization processes. Key characteristics of these methods include random num-
ber generation, gene editing, elitism, population, and generation concepts, see, e.g.
Sloss & Gustafson 2020 [149]. One advantage of randomized search algorithms,
compared to gradient-based algorithms, is that they succeed at locating the global
optimum solution while the latter are prone to get trapped in local optima.

Genetic algorithms require significantly more computational resources to emu-
late nature’s evolution process when compared to gradient-based methods. Each
generation requires hundreds of candidate solution evaluations, resulting in exces-
sive CPU time due to the excessive number of costly solver evaluations, see, e.g.,
Giannakoglou 2002 [150]. However, evolutionary approaches can become efficient
and effective by exploiting techniques that rely on surrogate (or approximation)
models. These models serve as a substitute for the exact and costly solver evalua-
tions. They are constructed using a limited number of solver evaluations at care-
fully selected design points and continuously gain ground along with the progress
in artificial intelligence.

Notable works include the following: Asouti et al. 2023 [151] investigate the
adequacy of radial basis function (RBF)-based models as surrogates in uncertainty
quantification (UQ) and CFD shape optimization. Kampolis et al. 2007 [152] pro-
pose multilevel optimization strategies based on metamodel-assisted evolutionary
algorithms targeted toward computationally expensive problems. Kyriacou et al.
2014 [153] addresses efficient PCA-driven EAs and metamodel-assisted EAs with
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applications in turbomachinery.
One of the few works relating to flexible hydrofoil applications is the study in

Sacher et al. 2018 [154]. MDO via the proposed surrogate-based model is used
for the design of a deformable hydrofoil for the 35th America’s Cup. The objec-
tive functions consist of minimization of hydrofoil drag and cavitation mitigation
at selected sailing conditions (boat speed and lifting force). A 2D, nonlinear,
fluid-structure interaction (FSI) solver predicts drag values and cavitation crite-
ria. The solver consists of a static vortex lattice method for the fluid flow with
viscous boundary layer equations and a nonlinear elasticity solver for the defor-
mations of the elastic components of the foil. Their successful approach suggests
that multiple-fidelity computational tools can contribute to superior and realizable
designs using MDO approaches.

Efficiency enhancement of marine propellers via reformation of blade
tip-rake distribution

The use of gradient-based optimization algorithms based on standard finite differ-
ence schemes for sensitivity calculation remains a valuable tool when coupled with
low-fidelity solvers for objective function evaluation. Matlab optimization toolbox
provides various tools for the solution of engineering problems. Particularly, the
fmincon solver is a sequential programming algorithm capable of handling non-
linear constraints. Familiarization with this tool has been accomplished within
the context of a study on enhancing the efficiency of marine propellers using opti-
mization techniques and geometry reformation. This study was motivated by the
increasing attention on efficient ship propulsion systems and energy-saving devices
supported by the short state-of-the-art review on Section 1.1.

In Anevlavi at al. 2023 [155], the effects of blade tip-rake reformation on
the performance of marine propellers using a low-cost potential-based vortex-
lattice method (VLM), calibrated and validated by the high fidelity artificial com-
pressibility CFD-RANS solver MaPFlow [126], [156]. The primary focus of this
study lies on determining whether the low-cost VLM, in conjunction with a multi-
dimensional parametric model for the tip-rake and pitch/camber distributions, can
produce a propeller geometry with improved efficiency.

Due to the availability of experimental and numerical data, the NSRDC 4381-
82 propellers were selected as reference geometries. Torque minimization serves
as the objective function in the gradient-based optimization procedure under a
thrust constraint, which translates into efficiency enhancement at the selected
design advance ratio. The optimized 4381 propeller yields a +1.1% improvement
in efficiency based on CFD-RANS, whereas for the modified skewed 4382 propeller,
the efficiency gain is +0.5%. The performance enhancement is also evident at a
region near the design advance ratio. The results suggest that the exploitation of
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low-cost VLM solvers can significantly reduce the CFD simulations required in the
optimization process and thus can be effectively used for the design of propellers
with tip-rake reformation.

1.5 Thesis outline

The thesis is divided in two Parts, corresponding to the distinct engineering prob-
lems addresses within the context of bio-mimetic propulsion applications. Part
I, containing Chapters 2-4, focuses on the development of numerical tools for the
analysis and optimization of morphing wing thrusters. Part II, containing Chapter
5, introduces the problem of partially cavitating hydrofoils including free surface
effects and addresses the formulation of a new continuous adjoint BEM-based op-
timization method for the prediction of partial cavitation on hydrofoils steadily
moving beneath the free surface. Optimization applications based on Direct Nu-
merical Optimization (DNO) can be found in Chapters 2 and 4 referring to the
performance enhancement of bio-mimetic flapping thrusters with active and pas-
sive morphing capabilities respectively, whereas an Inverse Design (ID) approach
is followed for the mathematical formulation of hydrofoil cavitation model pre-
sented in Chapter 5. Part III contains Chapter 6 addressing concluding remarks
and future work directions.

Chapter 2 deals with the extension of the unsteady boundary element method
introduced in Filippas & Belibassakis 2022 [12], to study actively morphing flap-
ping thrusters. Verification of the developed computational tool 3dBEM is per-
formed through a series of comparisons against other works found in the literature.
Friction drag corrections are included in the modeling via empirical coefficients.
The wings under study follow a thrust-producing flapping trajectory (heave/pitch)
and undergo prescribed (but arbitrary) active morphing. Optimal tuning of geo-
metric and kinematic parameters is performed via a series of optimization studies
using the 3dBEM solver, indicating that significant performance enhancement is
achieved via optimally tuned morphing features.

Chapter 3 introduces the Kirchhoff-Love thin plate theory model and the cor-
responding numerical implementation 2dFEM based on DKT finite elements, fol-
lowing the work in Karperaki 2021 [157], along with indicative comparisons for
validation. This model is used for the structural idealization of wings, thus flexu-
ral rigidity variability is included in the formulation to account for thickness profile
effects and the use of functionally graded materials. Rayleigh damping is included
in the modeling.

Chapter 4, addresses the problem of passively morphing wings and the devel-
opment of the cost-effective numerical tool FlexWing3D suitable for tackling the
fluid-structure interaction (FSI) problem. The proposed method follows a parti-
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tioned approach, where the potential solver 3dBEM is strongly coupled with the
thin-plate finite element solver 2dFEM. The FSI tool is validated and numerical
results concerning the effect of elasticity on the propulsive performance of flexible
flapping thrusters are presented. Optimization studies targeting hydrofoil shape,
kinematics, and material properties are included, indicating that proper material
selection and material properties distribution can yield favorable passive deforma-
tions that enhance propulsion metrics.

Chapter 5 deals with the inverse problem formulation for the case of partially
cavitating hydrofoils in 2D domains operating steadily beneath the free surface.
Inverse problem solution is obtained using a gradient-based method with sensitivity
derivative estimates based on the continuous adjoint method. Verification of the
numerical tool PCavPreMod is accomplished via a series of comparisons against
other works, both numerical and experimental. Finally, submergence and Froude
number effects on cavitation number, cavity volume, and shape are investigated.
The Chapter contains a description of the developed methodology and material
that has been published in Anevlavi & Belibassakis 2022 [158], in compliance with
Elsevier copyright policy.

A final Chapter is included to provide concluding remarks, summarize the find-
ings and also address future work directions, highlighting that although emphasis
is given to the performance of bio-mimetic wing thrusters, the computational tools
that were developed within the context of this work (FlexWing3D, PCavPreMod)
can facilitate the preliminary design of foil-based wave/current energy-saving de-
vices in general.

1.6 Original contributions

Morphing in nature also occurs through active deformation, so incorporating this
feature into the design of wing thrusters expands their range of applications. Em-
phasizing only the hydrodynamics, optimization studies referring to a realistic au-
tonomous underwater vehicle propulsion scenario were conducted, assuming two
distinct active morphing thruster concepts, to investigate whether propulsive per-
formance enhancement is achievable via optimal tuning of morphing and flapping
parameters. These were the concepts of (1) active hydrofoil-section adjustment
and (2) a combination of span-wise bend and twist morphing. A gradient descent
approach based on sequential quadratic programming (SQP) is used for optimal
tuning of design variables (including planform shape, flapping, and morphing pa-
rameters), targeting efficiency maximization under thrust and effective angle of
attack constraints.

Our findings indicate that the optimal thruster with chord-line morphing ex-
hibits up to 25% efficiency gain, whereas the results for a wing concept featuring
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span-wise bend and twist show an improvement of 9%. The studies performed
with the proposed 3dBEM computational tool give evidence on its capabilities
and suggest that it can support the preliminary design and optimization process
of actively morphing flapping-foil thrusters. The above provided essential vali-
dation required before developing the FSI model where the 3dBEM undertakes
hydrodynamic pressure predictions.

The geometry of wings operating as marine thrusters implies that a plate model
is suitable for extracting useful information about the structural response of lifting
surfaces with a moderate-to-low aspect ratio. For that purpose, the thin plate fi-
nite element solver 2dFEM written in C/C++, which also allows consideration of
the wing’s thickness profile in the sense of flexural rigidity variability and load dis-
tribution, has been developed for dynamic elastic response predictions. Boundary
conditions are introduced as additional equations using a new approach based on
Lagrange multipliers. An inverse distance weighting (IDW) method, also known
as Shepard interpolation, is implemented to map distributed load and thickness
profile data onto the unstructured mesh consisting of Discrete Kirchhoff Triangles
(DKT). These 9-dof elements provide excellent accuracy for thin plate predictions
and have the lowest computational cost compared to other plate elements.

One advantage of DKT elements is their suitability for general thin plate for-
mulations, including the Föppl–von Kármán equation for problems of large de-
flections. In addition, the DKT element can be directly extended to the Discrete
Shear Triangle (DST) that is compatible with First Order Shear Deformation
Theory (FSDT), allowing for simulations involving moderately thick plates (or
equivalently finite wings with thicker sections) as well as laminate composites. Ex-
tensive validation of 2dFEM covers modal analysis and static response benchmarks
for various thickness profiles and boundary conditions. The plate model can be
easily used as an external module in FSI frameworks, targeting applications of
bio-mimetic thrusters and other wave/current energy-saving devices.

The main contribution of the present thesis is the development of a low-cost
FSI model addressing the fully coupled non-linear problem of passively morphing
wings operating as marine thrusters. The new computational tool FlexWing3D,
written in C/C++, consists of the unsteady boundary element solver 3dBEM for
hydrodynamic pressure predictions and the thin plate finite element solver 2dFEM
for elastic response analysis. The partitioned BEM-FEM scheme exploits informa-
tion exchange between the two solvers and performs interpolation using the IDW
method to map data between the different meshes where it is required. Compar-
isons against experimental works found in the literature support the validity of
the present scheme and illustrate its prediction capabilities.

Effects of chord-wise flexibility on a thruster in flapping mode suggest that
passive deflections enhance the propulsive performance at the expense of thrust.
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Span-wise bending did not yield performance enhancement in the examined range
of parameters. An improved thickness profile is determined using optimization,
and results suggest that hydrofoils that are more slender near the trailing edge
outperform NACA profiles in flapping-foil propulsion applications. Finally, the
low computational cost and acceptable accuracy of the FlexWing3D method allow
for design-space investigations using a typical workstation, for which higher-fidelity
hydrodynamic would be, in some cases, computationally prohibitive.

To summarize the author’s contributions in terms of scientific publications
produced within the context of this thesis, the list of peer-reviewed publications
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Chapter 2

Hydrodynamic model for actively
morphing wings

List of symbols

XY Z Cartesian global (earth-fixed) coordinate system
xyz Cartesian local (body-fixed) coordinate system,

centered at the pitch rotation axis
h0 heave amplitude in meters
θ0 pitch amplitude in rad
h(t) instantaneous heave in m
θ(t) instantaneous pitch in rad
ω angular frequency in rad/s
f frequency in Hz
Tp harmonic motion period in s
ψ pitch phase difference in rad
c chord length in m
s span length in m
AR = s2/Area aspect ratio
Str = 2fh0/U Strouhal number
XR pitch pivot point as % of the chord
U forward motion velocity in m/s
s(t) instantaneous forward motion in m
αeff (t) effective angle of attack in rad
fs(t), fo ramp function and ramp function coefficient
CL(t) instantaneous lift coefficient
CT (t) instantaneous thrust coefficient
CM(t) instantaneous moment coefficient
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Cp(x; t), p(x; t) pressure coefficient, pressure in Pa
ρ fluid density in kg/m2

n(x; t) normal unit vector
D(t) fluid flow domain
∂DB(t), ∂DW (t) wing and wake surface boundaries
DtN Dirichlet-to-Neumann operator
η propulsive efficiency
V(x; t) velocity in m/s
Φ(x; t) velocity potential
µW velocity potential jump on the wake
µK(x; t) velocity potential jump on Kutta strip
G(x0|x), ∂nG(x0|x) Green’s function and its normal derivative
NEC, NEA number of chordwise, spanwise panel elements
dt time-step in s
Ac chord-line morphing amplitude in m
G1, F1 spanwise bending, twist mode
β(x; t) local vertical bending in m
γ(x; t) local hydrodynamic twist angle in rad
ψβ spanwise bending phase difference in rad
ψγ spanwise twist phase difference in rad
ψc chord-line adjustment phase difference in rad
K1, K2 Courant numbers
kG = πfc/U reduced frequency
Uo constant inflow velocity in m/s
α0 fixed hydrodynamic twist angle in rad
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2.1 Background

Technologically, the use of active wing morphing, i.e., wing shape modification, for
the control of lifting surfaces was initially introduced in aeronautics as a means of
meeting the varying demands of flight scenarios by keeping the aircraft trimmed (in
moment equilibrium) and controlling its direction of flight [59]. One of the Wright
brothers’ contributions, applied to the famous Wright glider, was the invention
of a system for varying the camber of their wings by warping via tugging wires
attached to wing-tip corners. In 1980, Glenn Curtis was the first to use hinged
ailerons to provide differential lift on the wings, a system used widely in most
aircraft since then, including later products of the Wrights. Flapped wings can
increase the total lift without requiring the whole aircraft to change its inclination
to the direction of flight. It became clear that multi-element airfoils were here to
stay, and their proper design remains a challenge to the aerodynamicist today.

Since the 80s, technologies for active wing morphing in the aviation industry
have matured and the geometrical parameters of a morphing solution are con-
veniently classified as (1) planform morphing, (2) out-of-plane morphing and (3)
airfoil section adjustment ; see, e.g., the recent reviews from [159] and [160]. The
demands of aviation may differ from fish locomotion, however, the abundant lit-
erature on actively morphing airfoils and wings provides valuable insight for the
present study, which aims to reveal interesting trends for the energy-minimizing
kinematics for hydrofoils in thrust-producing mode.

In the aviation industry planform morphing (span, sweep, chord) in the form
of variable sweep has proven successful, particularly in enabling military aircraft
to fly at supersonic speeds, albeit with a large weight penalty [159]. Sweep has
positive effects on boundary layer transition and dynamic stall behavior of finite
wings.

Out-of-plane morphing (twist, dihedral/gull, span-wise bending) is probably
the least common type of morphing solution, perhaps with the exception of wing
twists. The twist is the oldest shape morphing, but was discarded for almost 80
years to prevent aeroelastic problems. Advances in aerospace materials (compos-
ites) have made twist morphing possible. In addition, twist morphing (similar
to camber morphing) can serve multiple tasks simultaneously, such as alleviating
gust and maneuver load; increasing the lift coefficient, and replacing conventional
control surfaces [59]. Most of the research has been focused so far on actively
tailoring the wing elasticity to achieve the desired twist; moreover, traditional ac-
tuation systems have been adopted in most of the studies that reached the wind
tunnel test stage.

State-of-the-art multidisciplinary optimization (MDO) studies of aircraft wings
deal with actuation mechanisms, structural analysis, aerodynamic simulations, and
techno-economic aspects. Various approaches have been proposed for MDO, and
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taking into account the complexity of simulations, design detail, and contradictory
criteria, this new field of research is certainly getting a lot of attention, see, e.g.,
[101].

However, from the abundant literature on the topic, it is evident that airfoil
section morphing (camber, thickness), and more specifically camber morphing, is
the dominant research topic in subsonic aerodynamic applications when compared
to the planform and out-of-plane morphing methods, see e.g. [161], [162], [163]
and [164]. The research in airfoil morphing, which includes camber and thickness
distribution changes, is dominated by the camber morphing concepts.

Applications of actively morphing wings in the field of naval architecture are
limited. They can be found among technologies of wing stabilizers with actively
controlled flaps, such as the type-S retractable fin stabilizer by [165], and the
anti-rolling MR-Series of [166]. In addition, new designs have emerged from the
studies conducted for the America’s Cup racing sailboats, where safety factors are
kept to a minimum in order to attain maximum performance [167]. Many racing
and fast-cruising foiling sailboats use state-of-the-art actively controlled foils and
appendages; see, e.g., the methodology proposed by [168] for the sea-keeping of a
flying yacht or the split-flap concept for the T-foil of a sailing yacht [169].

Within the research community, there is an explicit distinction between stud-
ies focused primarily on (1) producing working prototypes of actively morphing
wings and (2) research that aims to reveal the physical principles of efficiency en-
hancement due to the incorporation of certain bio-mimetic features via numerical
computations. The first approach is directly linked to the most recent advances in
smart materials research, including developments in actuation technology, consti-
tutive laws, modeling, optimization, control, and failure prediction, which demand
more purposeful steps to progress variable-geometry wings. ‘According to studies
at NASA, it will take another 20-30 years before skies could be filled by aircraft
more similar to birds, having wings without discrete control surfaces that can
change their shape in a smart way’ [170]. On the other hand, the development of
computational tools that can accurately simulate the flow around actively morph-
ing wings is in demand and has been able to produce valuable results that facilitate
the development of working prototypes.

In general, this requires reformulating models that originate from the field of
computational fluid dynamics in order to derive the dynamic models needed for
the design and also for the control systems of the thruster device [6]. In recent
years, computational fluid dynamics (CFD) has been extensively used to investi-
gate the unsteady flow phenomena in oscillating wings with active deformation.
Both Navier-Stokes-based methods and ideal-flow approaches have been assigned
the task of predicting the hydrodynamic loads on oscillating actively morphing
wings that move within a fluid. The verification of newly developed numerical
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tools is essential, prior to conducting studies using them to derive insight into the
physics behind aquatic locomotion.

In [171], the effects of a prescribed harmonic time-varying chord-line morphing
profile on the propulsive efficiency of a hydrofoil using CFD were investigated and
compared results with the reference hydrofoil that undergoes a prescribed heaving
and pitching motions.

Chapter 2 contains the extension of an ideal-flow 3dBEM model for the hydro-
dynamic analysis of actively morphing wings. Concerning the kinematics, studied
wings undergo arbitrary but prescribed motions, including rigid-body dynamics
and morphing. The proposed 3dBEM solver is capable of hydrodynamic pressure
and integrated load predictions for finite wings, operating at small-to-moderate
angles of attack with acceptable accuracy. Moreover, 3dBEM includes a linear
wake model and free wake analysis. The free-wake model gives better predictions
for cases of large unsteadiness. The required computational cost is lower compared
to higher-fidelity viscous-RANS. Moreover, all simulations presented in this work
were performed using a workstation with an NVIDIA GPU exploited for parallel
computation.

The examples included here refer to various flapping-foil propulsion scenarios.
Therefore, I begin with the kinematic model and the distinction between the rigid-
body motions, i.e., heave, pitch, and the active morphing kinematics incorporated
into the model to provide additional bio-mimetic features. These morphing pa-
rameters can enhance the propulsive efficiency of the flapping thruster with proper
tuning, see e.g. [79].

Then, I provide the mathematical model for the case of unsteady flows around
wings that perform arbitrary but prescribed kinematics. This model serves as
the basis for boundary element implementation that yields the GPU-accelerated
3dBEM solver used to study morphing wings. The present model is compared
against other numerical and experimental works for validation, highlighting its
strengths and limitations. The proposed model provides useful predictions of
thrust coefficient and efficiency at small-to-moderate angles of attack.

Finally, results of optimization studies concerning proper tuning of geometric,
kinematic, and morphing parameters for performance enhancement under thrust
angle of attack constraints are discussed. These efficient flapping thruster designs
with morphing capabilities are proposed for the propulsion system of a concept
autonomous underwater vehicle (AUV). Some of the results are published in [172]
and including them is in accordance with Elsevier copyright policy. The pro-
posed methodology is suitable for the preliminary design actively morphing wing
thrusters with a wide range of applications, ranging from the propulsion of AUVs,
renewable-energy systems for wave/current energy harvesting or even large-scale
projects for augmenting ship propulsion in waves [129], [39], [126] and [12].
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2.2 Wing kinematics

The wing of chord length c and span s is assumed to be fully submerged within
the fluid medium, and any interactions with other boundaries, including wavy free-
surface effects, are considered negligible. The wing performs prescribed rigid-body
motions (heave, pitch) superimposed with arbitrary but prescribed morphing1, i.e.,
instantaneous changes in wing shape.

The whole formulation is set to an earth-fixed reference frame and a global
coordinate system XY Z, while an auxiliary moving body-fixed coordinate system
xyz is used as a reference for changes in shape due to active morphing. A schematic
representation of a wing cross section including the nomenclature used to describe
the rigid-body kinematics is shown in Figure 2.1. Heave and pitch motions are
based respectively on the following harmonic functions,

h(t) = h0 sin(ωt), (2.1)

θ(t) = θ0 sin(ωt+ ψ), (2.2)

where h0 denotes the amplitude of heave motion in meters, θ0 the amplitude of
pitch motion in radians and ω the forcing frequency in rad/s. In our case the
selected phase difference is set to ψ = −90o and negative pitch angles correspond
to nose-up rotations. The period of motion in seconds can be obtained from the
forcing frequency ω = 2πf as Tp = 1/f . This is based on observations suggesting
that this is the optimal phase difference, [173], [53]. The pivot axis for the pitch
motion is placed at XR = c/3 from the leading edge (LE). A forward translation
motion denoted as s(t) (toward the negative X-axis) given by,

s(t) = −Ut, (2.3)

simulates the AUV propulsion scenario for which free-stream velocity is set to zero
and shear current effects are negligible. Moreover, the effective angle of attack due
to the flapping is,

aeff (t) = −θ(t)− tan−1(ḣ(t)/U), (2.4)

where ḣ(t) denotes the heaving velocity, see Hover et al. [51].
Assuming that the morphed wing geometry denoted as x, is defined in a body-

fixed coordinate system xyz, then the following transformation can be used to
derive the morphed wing position in the global reference frame, denoted as X,

X = Q · x+T, (2.5)

1Details on the active morphing modes studied in the present can be found in Sec. 2.5.1.
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where

Q = fs(t)

cos θ(t) 0 −sin θ(t)
0 1 0

sin θ(t) 0 cos θ(t)

 , T = fs(t)

s(t)0
h(t)

 , (2.6)

withQ is the rotation matrix for the pitch motion with respect to the selected pivot
point and T the translation matrix considering both heaving and forward motion.
In addition, fs(t) = 1 − exp(−fo(t/Tp)2), where Tp is the period of harmonic
motion, denotes a ramp function permitting smooth transition from rest to the
fully developed state of oscillatory motions. At fo = 1.5, when t/Tp > 2, the
wing’s motion is fully developed and is not affected further by the filter.

A schematic representation of an actively morphing wing in the body-fixed xyz
and global XY Z coordinate systems is shown in Figure 2.2. I note that the rigid-
body motions are taken into consideration via Eq. (2.5) and are expressed in the
global coordinate system XY Z. A snapshot of the linearized trailing wake is also
included in the figure for visualization purposes since it is part of the boundary
mesh used in the 3dBEM numerical tool that is described in the next section.

Figure 2.1: Nomenclature for flapping-foil kinematics on a wing cross section in
the global XZ and local xz coordinate systems. The morphed instance of the wing
is represented with a dotted line.

2.3 Propulsive performance metrics

The instantaneous lift (CL), thrust (CT ) and moment (CM) coefficients, with re-
spect to the pivot axis, are calculated using,

CL(t) =
L(t)

0.5ρU2cs
= − 1

A

∫
∂DB

Cp n · iydS, (2.7)

CT (t) =
T (t)

0.5ρU2cs
=

1

A

∫
∂DB

Cp n · ixdS, (2.8)
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Figure 2.2: Body-fixed xyz and global XY Z geometry definitions for an actively
morphing wing, with {xo} representing points on the undeformed wing surface,
{xi} point coordinates on the morphed wing surface and {Xi

c} control point coor-
dinates on the morphed wing/wake in the global system.

CM(t) =
M(t)

0.5ρU2c2s
= − 1

Ac

∫
∂DB

Cp n · r(x|x∗)dS, (2.9)

where A denotes the planform surface area, c the chord length, s the span and
r(x|x∗) the reference vector for moment calculation.

To estimate the propulsive (Froude) efficiency η of an actively morphing flap-
ping thruster, it is essential to take into consideration not only the power required
to sustain the rigid-body motions but also the power for morphing. The efficiency
is calculated as follows,

η = CPout/C̄Pin
, (2.10)

where CPout = Pout/(0.5ρU
3A), C̄Pin

= Pin/(0.5ρU
3A) and

Pout =
1

TpU

∫ Tp

0

T (t)Udt, (2.11)

Pin =
1

TpU

∫ Tp

0

Ph(t) + Pθ(t) + Pmorph(t)dt, (2.12)

with Tp denoting the period of harmonic motion, T (t) the instantaneous thrust
and U the forward motion velocity. The mean input power Pin required by the
oscillating system per period of motion can be expressed using

Ph(t) = L(t)ḣ(t), (2.13)

Pθ(t) =M(t)θ̇(t), (2.14)

with ḣ, θ̇ denoting the heave/pitch velocities. The power component responsible
for sustaining the active morphing, following [171] and [173], is estimated as

Pmorph(t) =
1

A

∮
∂DB

Cpn ·Vmorphds, (2.15)
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where Cp is the pressure coefficient, Vmorph the velocity component due to the
morphing. Morphing velocity2 can be calculated as the difference between total
and rigid-body motion velocity. Thus,

Vmorph(x; t) = Vtotal(x; t)−Vrigid(x; t). (2.16)

2.3.1 Friction-drag correction

Consideration of friction drag effects can be included using the following empirical
formula that comprises of two coefficients, the skin-friction resistance component
and another related to the effective angle of attack from [129],

Cr(t) = CF + Ca(Re)α
2
eff (t), CF =

0.0858

[log10Re− 1.22]2
, (2.17)

with

CTvisc(t) = Cr(t) + CT (t), η = C̄Tvisc/C̄Pwtot. (2.18)

The friction coefficient increases at higher angles of attack, leading to better pre-
dictions. The corrections are implemented during the post-processing phase on the
instantaneous thrust coefficient and then on the efficiency after averaging for the
last period of the simulation. Formulation of other coefficients targeting effects,
such as leading-edge separation, will also improve our predictions, assuming that
adequate data from either CFD or experiments are available. This extension is
left for future work.

2.4 Unsteady lifting flows around actively mor-

phing wings

Concerning the hydrodynamic analysis of actively morphing flapping-foil thrusters,
an existing 3D unsteady boundary element model from Filippas and Belibassakis
[12] has been reformulated within the context of this thesis. The model in [12] is
suitable for the prediction of hydrodynamic loads on finite-span wings that undergo
flapping-type motions at small-to-moderate effective angles of attack, suggesting
that the flow remains attached. The initial version of the computational tool
consists of a three-dimensional boundary element method (BEM) for unsteady
lifting flows around wings operating beneath the wavy free surface. However, in
the present work, software extension addresses the case of flapping wings that are

2Velocities due to rigid-body motions are calculated analytically, whereas for the total velocity
a third-order finite difference stencil is implemented.
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fully submerged within the fluid medium and leaves free surface effects for future
work.

The BEM code exploits parallel programming techniques on graphics cards
(GPUs), which leads to a significant reduction in the required computational time.
In Papadakis et al. [174] and Filippas et al. [175], extensive comparisons between
the three-dimensional GPU-accelerated 3dBEM and the unstructured-grid RANS
solver MaPFlow suggest that the present potential code is capable of accurate
predictions concerning hydrodynamic loads for the case of rigid flapping-foils. It
is highlighted that the 3dBEM is very cost-effective as it provides a good com-
promise between the required accuracy and computational time. For example, in
Papadakis et al. [174], the computational cost of 3D-RANS simulations required
approximately 5 hours on 120 CPUs while detached-eddy simulations (DES) re-
quired 12 hours on 1000 CPUs. Coarse-mesh simulations using the 3dBEM re-
quired 88 sec using 1.3GB of VRAM. The simulations refer to a wing with aspect
ratio AR = 6, NACA 0012 sections, c = 0.1m, Strouhal number Str = 0.3, heaving
amplitude h0 = 0.75c and Reynolds number Re = 4 · 104.

Therefore, our efforts here build upon a cost-effective computational code and
aim to extend its capabilities in terms of enabling the analysis and optimization
of actively morphing flapping-foil thrusters. The benefits of using potential-based
solvers for the problem of energy-minimizing kinematics for animal flight are ad-
dressed in [170] and [176], where tuning of active morphing parameters is accom-
plished via optimization where a vortex-lattice method is used to evaluate the
performance of each candidate thruster.

The low computational cost of the proposed GPU-accelerated 3dBEM allows
for the completion of an optimization study on morphing thrusters using an AMD
Ryzen 9 3900XT workstation equipped with an NVIDIA GeForce RTX 3080 (10GB
VRAM) within a few days, referring to gradient-based optimization and also de-
pending on the total number of design variables, see Sec. 2.6 of the present.
Contributions of the thesis related to GPU-BEM solver extension are summarized
below:

1. Numerical calculation of the wing body boundary velocities Vtotal(x; t) us-
ing a (backward) finite difference scheme of third order, exploiting parallel
programming in CUDA.

2. Re-generation of wing mesh at each time step, in order to account for mor-
phing effects.

3. Re-calculation of induction coefficients at each time step, in order to account
for morphing effects.
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4. Evaluation of the propulsive performance metrics for the case of actively
morphing wings, including Vmorph(x; t) estimation.

2.4.1 Mathematical formulation

Figure 2.3: Computational domain and boundary conditions for the unsteady
lifting-flow problem of morphing flapping wings in the global coordinate system
XY Z.

The lifting flows studied in the present, under an ideal fluid assumption3, are
modeled as inviscid and incompressible. In the present work, the wing and wake
boundaries, which are denoted as ∂DB(t) and ∂DW (t) respectively, are conse-
quently modeled as surfaces of potential discontinuity. A schematic representation
of the wing and wake boundaries is provided in Figure 2.3. The wing undergoes
arbitrary but prescribed motions, including rigid-body kinematics and morphing
(i.e. changes in shape). The wake boundary represents the trailing-vortex sheet,
emanating from the sharp trailing edge, and is modeled as a free-shear layer with
non-zero vorticity.

The velocity potential Φ(x; t) is defined as a twice continuous differentiable
function inD(t) and its derivative yields the (disturbance) velocity field asV(x; t) =
∇Φ. Regarding the present formulation, the velocity potential Φ(x; t) is considered
an initially unknown scalar field. The governing equation (Laplace),

∆Φ(x; t) = 0, x ∈ D(t), (2.19)

represents the conservation of mass for incompressible and irrotational fluid flows.

3Ideal-flow in 2D translates into the assumptions of an incompressible, inviscid and irrorational
fluid. However, the irrotationality assumption is not valid for 3D problems.
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Concerning the boundary conditions, on the wing surface a flow tangency con-
dition must hold,

∂nΦ(x; t) = VB(x; t) · n(x; t), x ∈ ∂DB(t), (2.20)

where ∂nΦ(x; t) = ∇Φ(x; t) · n denotes the directional derivative of the velocity
potential, n is the unit normal to the body boundary pointing toward D(t) and
VB(x; t) is the total body velocity. For the present initial boundary value problem
(IBVP) formulation the disturbance potential and velocity fields vanish at large
distances from the body, in the sense of a radiation condition.

It is important to note that the velocity term VB(x; t) on the rhs of Eq. (2.20)
refers to known quantities, since the kinematics are prescribed. On the other hand,
for passively morphing wings, i.e. free to deform under hydrodynamic load excita-
tion, the total velocity consists of rigid-body motion induction terms and velocity
components due to elastic deformation. The elastic response of the wing is depen-
dent on its shape at each instant and vice-versa. In that sense the flow-tangency
condition becomes implicitly non-linear because the body boundary ∂DB(x; t) and
the velocities VB(x; t) are initially unknown quantities. More details regarding
the extension of BEM solver for the fluid structure interaction simulations are
contained in Chapter 4.

Furthermore, dynamic and kinematic boundary conditions should be satisfied
on the wake ∂DW (t). The dynamic boundary condition mandates that a free-shear
layer cannot carry loading and thus the pressure at both sides of it should be the
same,

puW (x; t) = plW (x; t), x ∈ ∂DW (t). (2.21)

At the same time, the upper and lower sides of a shear layer cannot be separated
to two distinct surfaces, thus the velocity component normal to the wake surface
should also be continuous,

∂nΦ
u(x; t) = ∂nΦ

l(x; t), x ∈ ∂DW (t). (2.22)

The superscripts “u”, “l” are used to denote the wake’s upper and lower side
respectively, while the indices “B”, “W” are used to denote values of the potential
field and its derivative at the wing surface and wake respectively. Bernoulli’s
equation in the inertial reference frame,

p(x; t)

ρ
+ ∂tΦ(x; t) +

1

2
[∇Φ(x; t)]2 = 0, x ∈ D(t), (2.23)

can be used to derive information about the pressure from velocity data. A detailed
derivation of Bernoulli’s equation on a body-fitted reference frame; which is useful
to hydrodynamic pressure calculation on the wing, can be found in Filippas 2019
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[37]. The above expression is nonlinear since the term [∇Φ(x; t)]2 is retained.
Moreover, Eq. (2.23) when used in conjunction with the dynamic and kinematic
boundary conditions on the wake, namely Eqs. (2.21)-(2.22) yields,

DµW (x; t)

Dt
= 0, x ∈ ∂DW (t), (2.24)

where D(·)/Dt = ∂t(·) +Vm
W · ∇(·) denotes the material derivative based on the

mean total velocity Vm
W = 0.5(∇Φu

W + ∇Φl
W ) on the trailing wake and µW =

Φu
W − Φl

W the potential jump on the wake. Based on this relation, the trailing
wake ∂DW (t) evolves in time as a material curve whose exact motion becomes
part of the solution, thus introducing an implicit non-linearity. Details concerning
the derivation can be found in [12].

A free wake model requires that the trailing-vortex sheet evolves in time as a
material surface, which leads to a significant increase of the required computational
time. This feature is included in the present version of the computational code.

For the simplified wake model, the generated vortex sheet emanates parallel to
the bisector of trailing edge and assumes the shape of trailing-edge path. Lineariza-
tion of wake dynamics simplifies the problem and provides satisfactory predictions
in flows of low/moderate unsteadiness.

A schematic comparison between the free and simplified wake models for the
time-evolution of a trailing vortex sheet in two-dimensions is shown in Figure 2.4,
where the free-wake model is shown with the blue vectors denoting the poten-
tial jump and the dashed line corresponds to the simplified wake model. This
visualization of free-wake reveals the famous von Kármán vortex-street formation
corresponding to thrust-producing foil kinematics.

Figure 2.4: Time-evolution of a trailing vortex sheet in two-dimensions based on
the free-wake (blue curve) and linearized (dashed line) models adapted from [177].

For lifting flows, enforcement of the Kutta condition is also required in order
to fix the circulation at each time instant. In the present work, a non-linear
(quadratic) pressure-type Kutta condition, requiring zero pressure difference at
the trailing edge, is enforced at the trailing edge,

∂t(Φ
u − Φl) + 0.5(∇Φu +∇Φl) · (∇Φu −∇Φl) = 0, (2.25)

x(ξ, η) ∈ ∂DB(t), (ξ, η) → (ξTE, ηTE). (2.26)
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Based on Eqs. (2.19),(2.20) and (2.22) the weakly singular boundary integral
equation (BIE) is obtained, which holds for each point on the body boundary, with
x0 ∈ ∂DB(t), as follows

4,

1

2
ΦB(x0; t) +

∫
∂DB(t)

ΦB(x; t)∂nG(x0|x)ds(x) (2.27)

=

∫
∂DB(t)

b(x; t)G(x0|x)ds(x)−
∫
∂DW (t)

µW (x; t)∂nG(x0|x)ds(x),

where µW denotes the dipole intensity, or potential jump, on the wake. Equation
(2.27) above is formulated using the fundamental solution of 3d Laplace equa-
tion known as Green’s function and its directional derivative. They are defined
respectively as

G(x0|x) = − 1

4π

1

r(x0|x)
, D(t) ⊆ R3, (2.28)

∂nG(x0|x; t) = − 1

4π

r(x0|x) · n(x; t)
[r(x0|x)]3

, D(t) ⊆ R3, (2.29)

with
r(x0|x) = x0 − x, r(x0|x) = ||x0 − x||2, (2.30)

where the latter is an Euclidean metric.
Regarding the initial boundary value problem, Eq. (2.27) and Eq. (2.25) form

a system of nonlinear equations with respect to the unknown velocity potential
field and the dipole intensity on the Kutta-strip. To solve this non linear system
of equations, a general iterative method such as the Newton-Raphson can be used.
Following the work of Filippas and Belibassakis [12], these equations are combined
to form a single dynamic equation with respect to the unknown dipole intensity
of the Kutta-strip, denoted with µK , as discussed in Section 2.4.2 that follows.
This dynamic equation is treated more efficiently, in terms of computational time
compared to the other approach based on general iterative methods, using a time-
stepping methodology.

2.4.2 Discrete formulation and solution of the boundary
integral equation

Regarding the spatial discretization, the following assumptions are made:

� C0 representation of the wing/wake boundaries based on bilinear quadrilat-
eral elements, as shown in Figure 2.5 and defined in Appendix A.

4Multiplier 1/2 suggests that the weak form is valid on smooth portions of the boundary;
otherwise a multiplier 1/α needs to be used instead, where α is defined by the local angle.
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� The velocity potential, its normal derivative and potential jump on the wake
at each time step are approximated by piece-wise constant distributions,

ΦB(x; t) = ΦBi(t), i = 0, 1, ..., NB − 1,

∂nΦB(x; t) = ∂ΦBi(t), i = 0, 1, ..., NB − 1, (2.31)

µW (x; t) = µWw(t), w = 0, 1, ..., NW (t)− 1.

� Finally, following a collocation scheme, the BIE in Eq. (2.27) is satisfied in a
finite number of points. To avoid singularities, the centroid of each element
are chosen as collocation (or control) points.

Figure 2.5: Schematic of a wing and its wake discretized into quadrilateral panels
in the global coordinate system XY Z.

Up to this point, the boundary D(t) consists of the body boundary and the
trailing vortex sheet i.e. ∂D(t) = ∂DB(t) ∪ ∂DW (t). In ∂DW (t) at the vicinity of
trailing edge there is a transitional region where the trailing vortex sheet trans-
form from a free surface to a bound surface. In the sequel that region will be
termed Kutta-strip and will be denoted as ∂DK(t) and with ∂DW (t) I will denote
the remaining free boundary. Moreover, in the discretized model, Kutta-strip is
approximated by NK boundary elements distributed along the span. Wing body
is discretized into NB elements total with NEA elements in the spanwise direction
and NEC elements chordwise.

The discretized form of Eq. (2.27) is as follows

Dpot
B (t) ·ΦB(t) = Spot

B (t) · b(t) +Dpot
B,K(t) · µK(t) +Dpot

B,W (t) · µW , (2.32)

whereDpot
B (t),Spot

B (t),Dpot
B,K(t),D

pot
B,W (t) are potential induction-factor matrices, with

S denoting source or single-layer integrals, and with D denoting dipole or double-
layer integrals. It is important to note that in the case of actively morphing wings,



80 CHAPTER 2. HYDRODYNAMIC MODEL

the self-induction coefficients must be re-calculated to consider effects of mesh
deformation.

Particularly, Dpot
B (t),Spot

B (t) model body-body interactions, while the additional
terms involving matrices Dpot

B,K(t),D
pot
B,W (t) model wake-body interactions and the

definition of the above matrices can be found in [37]. Terms with bold denote
vectors containing values of piecewise-constant functions on he panel elements
representing boundary fields such as ΦB = {ΦBj}, b = {bj}, µK = {µKk}, µW =

{µWw}. By multiplying both side of Eq. (2.27) with
(
Dpot

B (t)
)−1

I derive,

ΦB(t) = G(t) · b(t) + Z(t) · µK(t) + P(t) · µW , (2.33)

where

G(t) =
(
Dpot

B (t)
)−1 · Spot

B (t), Z(t) =
(
Dpot

B (t)
)−1 · Dpot

B,K(t)
)−1 · Dpot

B,W (t).

This mapping, namely the discrete Dirichlet-to-Neumann (DtN) operator, con-
nects the potential (Dirichlet data) with the velocity potential on the body bound-
ary ∂DB(t) (Neumann data). However it contains the unknown values of the dipole
intensity on the Kutta-strip µK (Dirichlet data) which is part of the wake ∂DW (t).
Apart from the Kutta-strip, the wake boundary introduces memory effects through
the term P(t) ·µW . The background field velocity effects are included in the term
b, as described in Eq. (2.20).

Finally, a system of, spatially and temporarily, non-local differential equations
with both explicit and implicit non-linearity in the following form5

dtµK = f
(
µK

)
, (2.34)

is used to describe the dynamics of an oscillating wing. This system of equations is
derived using the appropriate part of the DtN map in Eq. (2.33) and the pressure-
type Kutta condition in its discrete form; see also Sec. 2.8 from [37].

Time integration

The numerical solution of the aforementioned evolution equation is obtained us-
ing the fourth-order Adams-Bashford-Moulton (ABM) linear multistep method.
Assuming that the vector of unknowns in the previous time-step t is denoted as
U(t) = µK(t), then the solution in the current step is obtained using the predic-
tor/corrector formulas below,

U(t+ dt) = U(t) +
dt

24

[
9fpre(t+ dt) + 19f(t)− 5f(t− dt) + f(t− 2dt)

]
, (2.35)

5To be precise, the expression holds as dtµK = f
(
µK , t

)
, where dependence on time t orig-

inates from the enforced flapping kinematics; via information that is passed to the problem
through a body boundary flow-tangency condition.
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with predictor step

fpre(t+ dt) = ft+dt

(
Upre(t+ dt)

)
, (2.36)

Upre(t+ dt) = U(t) +
dt

24

[
55f(t)− 59f(t− dt) + 37f(t− 2dt)− 9f(t− 3dt)

]
,

where terms relating to current t and previous time steps t−dt, t−2dt, t−3dt are
used. The ABM scheme requires the calculation of only two derivative equations
at each time, and assuming that a fine discretization in time/space is used good
convergence is achieved, since the error is of order (dt5) where dt is the time-step.

Body velocity calculation

Total velocity on each collocation point is calculated using a third-order (backward)
finite difference stencil. Thus, consequent morphed configurations of the wing in
XY Z from the previous time steps need to stored. Morphing velocities can be
calculated using Eq. (2.16) by subtracting velocity components due to rigid-body
motions Vrigid(x; t) (i.e., for which analytical formulas can be exploited) from the
total velocity Vtotal(x; t). The latter is calculated numerically using a forward,
third-order finite difference scheme.

2.5 Numerical results and verification

The source code of the developed 3dBEM solver is written in C/C + + with
CUDA kernel functions that exploit the parallel computation capabilities of mod-
ern NVIDIA GPUs. In addition, a Matlab script (interfaceBEM.m) is written
for pre/post-processing purposes serves as the interface. Matlab is proprietary
software, however it our pre/post-processing modules can be easily replaced with
Python which is open-source.

All computations within the context of this thesis were performed on an AMD
Ryzen 9 3900XT workstation with 32GB RAM equipped with an NVIDIA GeForce
RTX 3080 (10GB VRAM) that launched in 2020, see Figure 2.6. The latter is gam-
ing graphics card however it can be exploited for parallel scientific computations.
Simulations using the present tool can also be performed in other workstations
equipped with an NVIDIA GPU after minor modifications in the makefile used
for source code compilation.

The study cases in Table 2.2 are selected for validating the extended 3dBEM
with emphasis on predicting hydrodynamic forces and the propulsive performance
of actively morphing flapping-foils. In all cases, a constant inflow velocity U∞
is considered. Regarding the performance metrics, these refer to mean values
concerning the last flapping-cycle of three-period simulations. Depending on the
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simulation parameters, the free wake model can be used to improve predictions at
flows with high unsteadiness. Unless stated otherwise a linearized wake model is
assumed. The accuracy at which the pressure-type condition is satisfied depends
on the temporal and spatial discretization. In the examples presented here, the
maximum pressure difference on the trailing edge lies between 10−2 − 10−3.

Overall, the GPU-accelerated 3dBEM performed well in the comparisons. In-
dicating that the developed numerical tool works best at attached-flow conditions,
as expected. Significant discrepancies were evident between our predictions and
the last study case against the experiment in [178], where viscous phenomena are
not negligible.

Figure 2.6: NVIDIA GeForce RTX 3080 (10GB).

Table 2.2: Validation studies for actively morphing wings.

id Flapping Morphing Data Medium
1 heave,

pitch
chord-line numerical, 2D-BEM

[177]
fresh water

2 heave spanwise bending experiment [75] fresh water
3 - spanwise bending numerical (inviscid), air

fixed twist angle Euler solution [173]
4 - spanwise bending experiment [178] air

2.5.1 Chordwise and spanwise morphing profiles

Hydrofoil-section adjustment. Abundant literature on the matter gives inspi-
ration for the design of hydrofoil-section adjustment technologies for flow control,
see, e.g., [161], [162],[163] and [164]. State-of-the-art research in airfoil morphing,
which includes camber and thickness distribution changes, is dominated by cam-
ber morphing concepts. In flapping-foil applications, hydrofoil sections have zero
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camber, in order to maintain symmetry in the loading during up- and down-stroke
motions. The same holds for ship fin stabilizer technologies and other foiling-vessel
appendages.

Considering the above, a scenario of time-varying chord-line morphing is in-
troduced instead of camber morphing. The hydrofoil-section adjustment profile
is uniform in the spanwise direction. A snapshot of a morphed hydrofoil section,
based on a NACA 0012 thickness profile, is shown schematically in Figure 2.7.
The normalized chord-line deformation profile is defined as,

yc(t) = 0, x/c ∈ [0, XR] (2.37)

=
Ac

c

(x−XR)
2

(1−XR)2
· sin(ωt+ ψc), x/c ∈ (XR, 1],

where Ac/c denotes the amplitude of morphing, ψc the phase difference, and {xo}
the reference-wing coordinates (with no morphing) in the body-fixed coordinate
system xyz. Morphing is restricted to the part between pitch pivot point XR and
the trailing edge (TE). Moreover, maximum displacement occurs at the TE. The

Figure 2.7: Snapshot of a NACA 0012 hydrofoil with chord-line morphing, based
on Eq. (2.37) at t = 0s with Ac = 0.08c, ψc = 90o and pivot location XR = c/3
shown with a black square.

above equation, when multiplied with the chord length, gives the y−coordinates
of the morphed chord-line profile. Frequency ω is kept the same as rigid-body
motion equations for simplicity, even though the effects of morphing frequency
on flapping-foil performance have technological interest and are included in future
work extensions.
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Spanwise bend and twist. Regarding the out-of plane morphing, I introduce
the linear bending mode G1 and the quadratic twist mode F1 in Stanford and
Beran [170],

G1 = 2|y|/s, (2.38)

F1 = (2|y|/s)2, (2.39)

where y ∈ [−s/2, s/2]. Each mode is then multiplied with a harmonic amplitude
to yield a time-varying morphing shape as follows,

β(x; t) = β1(t) ·G1(x), (2.40)

γ(x; t) = γ1(t) · F1(x), (2.41)

with

β1(t) = Ab sin(ωt+ ψb), γ1(t) = Aγ sin(ωt+ ψγ), (2.42)

where Ab, Aγ denote the amplitudes of bending displacement and hydrodynamic
twist respectively. Similarly, ψb, ψγ are the corresponding phase differences. Again,
the frequency ω is kept the same as rigid-body motion equations for simplicity. A
schematic representation of the above modes is provided in Figure 2.8.

The phase differences between the morphing modes and the rigid-body motions
play a significant role in terms of propulsive performance. In [179], a detailed
parametric study reveals the existence of optimum values for the phase difference
of active spanwise bending for the case of low-aspect-ratio flapping thrusters. It
is important to note that although morphing parameters, such as the bending
amplitude and the phase differences, are considered known quantities within the
context of actively morphing wings, proper tuning is expected to yield enhanced
propulsive performance. This is the subject of Section 2.6 of the present work,
where optimal tuning is accomplished via optimization.

Finally, passive bend/twist coupling in real aeroelastic applications, for in-
stance, in wind turbine installations, can also lead to instabilities and structural
failure. This needs to be considered in future applications involving actively-
morphing thrusters with spanwise bend/twist capabilities.

Morphed wing shape To sum up, the wing shape considering both hydrofoil-
section adjustment and out-of-plane bend/twist in the body-fixed coordinate sys-
tem xyz is represented via the following transformation,

{x} = Qtwist ·
(
xo −XR

)
+XR +T, (2.43)

where

Qtwist = fs(t)

cos β(x; t) 0 −sin β(x; t)
0 1 0

sin β(x; t) 0 cos β(x; t)

 , T = fs(t)

 0

����γsb (x; t)
γ(x; t)

 ,
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Figure 2.8: Schematic representation of the instantaneous spanwise (a) bend and
(b) twist morphing modes in the body-fixed coordinate system xyz. Nose-down
twist morphing corresponds to γ(x; t) > 0.

where xo denotes the wing configuration based on the instantaneous chord-line
morphing, XR = [xR, yR, zR]

T is the translation required for the enforcement of
hydrodynamic twist Qtwist in xz−plane with respect to the selected pivot point
and T the bending displacement. In our simulations, XR = [xR, 0, 0]

T typically
with xR = 1/3c. Ramp function, fs(t) = 1 − exp(−fo(t/Tp)2) is used to permit
a smooth transition from rest to the fully developed state of oscillatory motions.
The order of transformations is important for reproducibility. Moreover, the above
transformation can be written more compactly as

{x} = Q
′

morph · {xo}+T
′

morph, (2.44)

where Q
′

morph and T
′

morph represent the rotation and translation matrices consid-
ering all morphing motions.

Regarding the bending displacement, in Stanford and Beran 2010 [170] the
implementation of a foreshortening correction via an addition displacement in the
y−axis denoted as γsb (x; t) is proposed. If the amplitude of bending motion remains
small, neglecting this correction is justified.Otherwise, if not explicitly stated in
the simulations no corrections have been implemented.

In addition, effective angle of attack calculations for actively morphing wings
need to take into consideration both the hydrodynamic twist and bending dis-
placements. Thus, the extended Eq. (2.4) becomes,

αeff (x; t) = −
[
θ(t) + β(x; t)

]
− tan−1

( ḣ(t) + γ̇(x; t)

U

)
. (2.45)

2.5.2 Chordwise morphing

Temporal discretization dt is selected based on the following Courant numbers, in
order to avoid the occurrence of numerical instabilities,
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K1 =
Udt

dxKutta

< Kmax
1 , K2 =

√
U2 + (ωc)2dt

dxKutta

< Kmax
2 , (2.46)

where dxKutta is the average Kutta-strip panel length in the direction of chord
and Kmax

1 ,Kmax
2 are user-defined parameters with typical values within the range

0.7−1.2. Both Courant numbers are independent of the total number of panels in
the direction of span, therefore NEA is tuned so as to yield panel element aspect
ratios ∼ 1.

The purpose of this study is to provide representative information on the over-
all computational time using different simulation parameters. Table 2.3 contains
information regarding the computational time of three-cycle simulations based on
different combinations of mesh size, wake model, and DtN re-calculation mode.
Regarding the latter, induction coefficient matrix must be re-evaluated at each
time step for simulations of morphing wings. However, since it increases the over-
all computational time, simulations without DtN re-calculation are also performed
to investigate whether it could be omitted without great loss in accuracy. More
precisely, the required computational time is the average among results of per-
forming the same simulations several times.

Table 2.3: Required computational time. Simulation of a flapping-wing (rigid)
with c = 0.33m, s = 1.0m, h0 = 0.75c, θ0 = 23o, ψ = −90o and Str = 0.26.

id NEA NEC dt/Tp(%) DtN re-calc Wake Time [s] [min]
0 31 60 0.5 no linear 177 3
1 31 60 0.5 yes linear 300 5
2 31 60 0.5 yes free 918 15
3 31 120 0.31 no linear 841 14
4 31 120 0.31 yes linear 1417 24
5 31 120 0.31 yes free 4253 75

Comparison with 2D-BEM

The first test case is selected to verify that the extended computational tool is
capable of capturing chord-line morphing effects on the propulsive performance of
flapping wings. Results of GPU-accelerated 3dBEM are compared against predic-
tions obtained using the 2D-BEM from Anevlavi et al. 2020 [177]. Comparisons
between two and three-dimensional solvers serve as preliminary benchmark cases.
Finite wings with orthogonal planforms and high aspect ratios can be modeled
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using 2D theory, by assuming that downwash effects are negligible [59]. Moreover,
wing geometry and incident flow are assumed uniform in the direction of span.

The parameters that characterize the examined scenario are summarized in
Table 2.4. For the 3D simulations two aspect ratios are examined, AR = {6, 12}.
The wing undergoes prescribed flapping and forward motion defined in Eq. (2.5)
superimposed with active chord-line adjustment based on Eq. (2.37). Morphing is
uniform in the direction of span, thus comparisons between the solvers are justified.

For the 2D simulations, I used dt/Tp = 0.5/100 and NEC = 60 panels con-
cerning the discretization. The same parameters are used in 3D simulations, along
with NEA = 8AR. Courant parameter is set to Kmax

1 = 1.0. Figure 2.9 shows
consequent instances of the wing’s root section, i.e. where y = 0, on the flapping
trajectory.

Figure 2.10 contains the instantaneous thrust CT (t), lift CL(t), and moment
CM(t) coefficients obtained using the two and three-dimensional BEM solvers.
The time histories are in good agreement, and it is observed, as expected, that
3dBEM predictions on the wing with AR = 12 are closer to 2D results compared
to the prediction on AR = 6. Simulations with the AR = 6 lead to time histories
with a slight swift to the left (i.e. phase difference) when compared to the 2D
results. However, increasing the aspect ratio reduces the observed phase difference,
suggesting that results on a wing with AR > 12 will bring 3D simulations even
closer to the 2D idealization. This is in accordance with classic aerodynamic theory
and proves the validity of 3dBEM in predicting the performance of a flapping wing
with active chord-line adjustment.

Table 2.4: Motion parameters for comparison with 2D-BEM.

Geometry c = 1m, NACA 0012
Aspect ratio AR = {6, 12,∞}

Flapping motion h0 = 0.75c, θ0 = 23o, ψ = −90o

Strouhal number Str = 0.23
Morphing Ac = 0.08c, ψc = 0o

Mesh sensitivity

Additional simulations were performed for the finite wing with AR = 6 to inves-
tigate mesh sensitivity effects based on morphing wing simulations. This is not
intended to be a complete sensitivity analysis, but rather a study that provides
a quantification of the accuracy achieved using different simulation parameters
related to mesh and wake dynamics. Table 2.5 contains information regarding
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Figure 2.9: Morphed instances of the flapping-wing root section for the test case
in Table 2.4.

mesh size, DtN re-calculation mode, wake dynamics, etc. Results suggest that
analysis with and without DtN re-calculation shows deviations of 2% concerning
predictions for mean thrust coefficient and efficiency. The less computationally
expensive simulation (id = 4) refers to a coarse mesh and linear wake analysis
without DtN re-calculation, which results in a 1.1% loss of accuracy compared
to the fully resolved simulations (id = 0). These settings reduce the required
computational time with an acceptable loss in accuracy, which is useful to the
optimization studies on morphing wings discussed in Section 2.6.

Table 2.5: Effects of simulation parameters in the case of a chord-line morphing
wing with AR = 6.

id dt/Tp
(%)

NEC,
NEA

DtN Wake Time
[s]

CT Diff
(%)

η Diff
(%)

2D 0.5 60,- yes linear 3.62 0.2267 0.6253
3D
0 0.38 80,55 yes free 6129.7 0.2335 - 0.5465 -
1 0.38 80,55 yes linear 1870.6 0.2314 0.90 0.5380 1.57
2 0.38 80,55 no linear 1242.1 0.2661 -1.10 0.5516 -0.92
3 0.50 60,49 yes linear 682.92 0.2265 3.10 0.5320 2.72
4 0.50 60,49 no linear 442.47 0.2309 1.12 0.5462 0.05
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Figure 2.10: Instantaneous thrust (CT ), lift (CL) and moment (CMy) coefficients
for the test case in Table 2.4.

2.5.3 Heaving wing with spanwise bending

Furthermore, to verify that our method can predict the effects of active spanwise
bending on the propulsive performance of heaving wing I have selected the follow-
ing test case from the experiments in Heathcote et al. 2008 [180]. A schematic
representation of the wing kinematics examined in the experiment is shown in
Figure 2.11. The wings have NACA 0012 sections, aspect ratio AR = 3, and
main dimensions c = 0.1m, s = 0.3m. Regarding the heaving motion, the wing is
actuated at its root with sROOT (t) = h0cos(ωt), h0 = 0.175c, see also 2.11. The
inflow velocity is constant and the wing morphs passively under hydrodynamic
load excitation. Measurements of deflection reveal that the bending profile can
be modeled using a first-order mode. Moreover, in [180] measurements of the tip
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amplitude and phase difference with respect to the heaving motion are provided.
It is also important to note that the examined wings are labeled as ‘inflexible’,
‘flexible’, and ‘very flexible’ based on their flexural rigidity.

In our simulations, the whole wing is considered, thus s = 0.6m and AR = 6.
The flow is symmetric with respect to the yz−plane as shown in Figure 2.12,
where a snapshot of the simulated wing with free wake is provided. The vertical
skeg is included for visualization purposes. The symmetry plane is included for
visualization purposes. Table 2.6 contains geometric and kinematic parameters for
this test case.

The mesh consists of NEC = 60, and NEA = 5AR panels in the chordwise
and spanwise direction respectively. Free wake analysis is used and the time step
is set to dt/Tp = 0.45%. Inflow velocity is U = 0.3m/s at Reynolds number
Re = 3 · 104 where kinematic viscosity is ν = 10−6m2/s.

Figure 2.13 contains 3dBEM predictions for mean thrust coefficient per-unit-
span CT = T/(0.5ρU2c) as a function of reduced frequency kG = πfc/U and
the corresponding experimental data from [180]. In particular, Figure 2.13 [left]
contains our inviscid predictions which overpredict the thrust, however, they are
found to be in accordance with the experimental data in terms of trends. Im-
proved predictions are accomplished using the friction-drag coefficient defined in
Eq. (2.17) after calibration with the experimental data as shown in Figure 2.13
[right]. Calibration of the coefficients is performed heuristically using trial-error.
Friction drag correction comprises a skin-friction resistance coefficient and another
dependent on the effective angle of attack [129]. Implementation of friction-drag
corrections is performed in the post-processing phase. To sum up, this comparison
further supports the validity of our method in predicting out-of-plane morphing
effects on the propulsive performance of wings.

Table 2.6: Motion parameters for the scenario from [180].

Dimensions c = 0.1m, s = 1.2m
Sections NACA 0012

Heave amplitude h0 = 0.175c
Inflow velocity U = 0.3m/s

Reduced frequency kG = (0.5, 1.75)
Spanwise bending Ab(kG), ψb(kG) in [180]
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Figure 2.11: Schematic representation of the heaving and spanwise bending wing
from the experiments in Heathcote et al. 2008 [180].

Figure 2.12: Snapshot of numerical simulations using the present method for com-
parison against [180]: (a) free-wake formation, (b) instantaneous root/tip sections
and (c) planform shape.

2.5.4 Examples inspired from bird flight

Wing kinematics based on spanwise bend/twist morphing lie at the heart of bird
flight [6]. Bird-flight applications open a new world concerning physics, mainly
due to the different mission targets that require both thrust and lift production
during each flapping cycle. In addition, the maneuvering capabilities of birds
depend highly on active morphing, i.e., bend and twist manipulation. Studies on
this topic reveal interesting aerodynamic effects and provide abundant inspiration
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Figure 2.13: Comparison with experimental data from [180] for a heaving and
spanwise bending wing. GPU-accelerated 3dBEM results without [left] and in-
cluding friction-drag correction with CF = 0.0081 and Ca = 0.185 [right].

for future applications of both micro-aerial and underwater autonomous vehicles.
Motivated by this, I selected a relevant study from the numerical work of Neef

& Hummel 2001 [173], concerning a wing at a high-cruising speed that undergoes
active bend and twist mimicking bird flight. In their work, the propulsive per-
formance of the wings is predicted using a numerical solver based on the solution
of inviscid Euler equations. The propulsion scenario selected for comparison and
verification refers to a wing that undergoes active spanwise bending and has a
fixed twist angle to ensure that adequate lift is also provided during flight. The
parameters of motion and the wing geometry are summarized in Table 2.7 for
reproducibility of the results.

The wing operates at a reduced frequency kG = 2πfc/(2U) = 0.1 with f =
3s−1. Negative twist angle corresponds to a nose-up hydrodynamic twist at the
tip. In simulations performed with the present computational tool, the morphing
kinematics are emulated using the following expressions,

β(x; t) = fsAbsin(ωt)G1(x), Ab = 0.5s tan(15o), (2.47)

γ(x; t) = fs(t)α0G1(x), α0 = −4o, (2.48)

where fs(t) denotes the ramp function permitting smooth transition between rest
and the fully developed motion. Regarding the discretization, a fine mesh with



2.5. NUMERICAL RESULTS AND VERIFICATION 93

Table 2.7: Motion parameters for comparison against [173].

Orthogonal planform c = 0.16m, s = 1.28m
Aspect ratio AR = s/c = 8
Sections NACA 0012

Heave, pitch h0 = θ0 = 0
Bending amplitude Ab = 0.5s tan(15o)
Fixed twist angle α0 = −4o

Forward motion U = 15m/s

dt/Tp(%) = 0.125, NEA = 49 and NEC = 60 was used. The required computa-
tional time for each simulation was approximately 1.25 hours, including free-wake
analysis and DtN re-calculation. For wings operating at high cruising speeds fine
temporal discretization must be used to avoid numerical instabilities (i.e., arising
from the linear multi-step method used to solve the IBVP described in Sec. 2.4.2.

Figure 2.14 contains predictions of the instantaneous lift and thrust coeffi-
cients for the scenario with parameters summarized in Table 2.7. The comparison
includes results obtained using the present method, numerical solution from the
Euler equation solver in [173], and the unsteady vortex-lattice (UVLM) predictions
from [176]. It is important to note that the latter neglects wing thickness. The
presence of a non-zero twist angle results in lift production, as shown in Figure
2.14a. Particularly, lift production during the flapping cycle can be beneficial for
maneuvering and should be included in the design criteria of bio-inspired wing
devices for future applications in autonomous underwater vehicles (AUVs).

It is observed that the present method over predicts thrust coefficient time
history peaks by 3%, whereas lift predictions are in very good agreement with the
solution from [173]. This discrepancy can be attributed to an under-prediction in
terms of tip-vortex swirling strength or induced drag, which is relatively strong
as shown in the flow fields provided in [173].Tip-vortex swirling is not modeled in
the present 3dBEM formulation, however simulations based on free wake dynamics
can capture vortex sheet swirling up to a degree. Since all models are inviscid, this
comparison provides additional verification, that the present method is capable of
predicting bend/twist effects on the performance of wings.

Finally, an extreme test case from the experimental work in Fejtek & Nehera
1980 [178] is included to investigate the limitation of the present method. This
process is motivated by Bird et al. 2021 [57], where their findings establish that
ideal-flow models, such as the unsteady lifting-line theory, still provide a useful so-
lution for low-Reynolds-number Re = 1·104, large-amplitude kinematics problems,
via comparisons against experimentally validated fluid dynamics simulations.
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Figure 2.14: Comparison between the present method and results from [173].

The experiments in [178] are also inspired by bird flight and are one of the early
experiments in this field as discussed in [181]. They conducted wind tunnel mea-
surements on a high camber NACA 8313 wing with orthogonal planform, a blunt
tip, and main dimensions c = 76mm, s = 305mm corresponding to an aspect ratio
of AR = 4. Concerning the manufacturing materials, the wing was shaped from a
solid balsa plank and covered with a shrink-tight plastic film. No deflections were
observed during the experiments. Figure 2.15 contains information regarding the
experimental setup and wing kinematics. It is clamped at the root and performs
an enforced 1−dof motion mimicking the flapping (i.e. plunging) of bird flight with
an amplitude of 45o. The inflow velocity is constant and equal to Uo = 21.4m/s,
whereas the angle of incidence with respect to the wing’s leading edge is zero.
The forcing and reduced frequencies are f = 3.3s−1 and k = ωc/(2U) = 0.03082
respectively.

In 3dBEM simulations, the whole wing of aspect ratio AR = 8 is simulated,
as shown in 2.16. The kinematics are modeled using the linear bending mode
defined in Eq. (2.38). The flow in our simulations is symmetric with respect to
the xz−plane, thus ground-effects present in the experiments are accounted for
in the numerical modeling. In Vest & Katz 1996 [181], where a 3D potential-
based method is proposed for flapping wing analysis, the same simulation setup is
followed and their results are also taken into consideration.

Figure 2.17 contains the instantaneous lift and thrust coefficients obtained us-
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Figure 2.15: (a) Schematic representation of the wing kinematics and (b) snapshot
of wind tunnel experiments in [178].

Figure 2.16: Snapshot of the simulated wing during the downstroke motion. Com-
parison against Fejtek & Nehera 1980 [178]. The colorbar refers to the wake’s
z−coordinates. The wing is shown with black.

ing the present method, including numerical results from [181] and the experimen-
tal data from [178]. Concerning the present method, the data shown in Figure 2.17
refer to inviscid results without friction-drag corrections, for comparison against
the inviscid predictions of Vest & Katz in [181]. Viscous phenomena are domi-
nant, especially during the downstroke, as suggested in [181], which explains the
discrepancies between potential-based predictions and the experiment. Instanta-
neous lift is over predicted throughout the flapping cycle with greater deviations
near the peaks. Simulations with 3dBEM show a second positive peak during
downstroke, suggesting that thrust is generated; results that are in accordance
with [181] potential-based predictions. However, it is interesting that in the ex-
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periments, during the downstroke drag is generated.

Regarding mean lift and thrust coefficients, I have included in Figure 2.17 the
3dBEM predicted values using dashed lines and the corresponding experimental
value with solid lines. The mean lift coefficient is in good agreement with the
experiment, whereas mean thrust is over predicted. Present findings are contra-
dictory to experimental results, since measurements from [178] suggest that drag
is generated during each flapping cycle. Even though the ‘plunging’ motion is in-
spired from bird flight, it is evident from the experiments that birds must exploit
additional mechanisms; including twist morphing that is not examined in this sce-
nario, to generate thrust throughout each flapping cycle. If emphasis is to be given
on thrust predictions, results show that a new model needs to be formulated in
order to capture the dynamics of this particular bird flight scenario.

To sum up, the operational regime of bio-inspired thrusters based on flapping
foils refers to small-to-moderate effective angles of attack where viscous phenomena
are not dominant. In this regime, the present method provides a good compromise
between computational cost and accuracy in hydrodynamic load prediction. This
is supported by the summary of verification-study results presented previously.

Figure 2.17: Comparison between 3dBEM, numerical results from the potential
method [181] and experimental data [178] for (a) lift and (b) thrust coefficients.
Constant inflow velocity of Uo = 21.4m/s.
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2.6 Enhancing the performance of an actively

morphing thruster via optimization

Aiming towards the design of an eco-friendly propulsion system for AUVs, the con-
cept thruster shown schematically in Figure 2.18 is considered. The wing under-
goes prescribed out-of-phase heave and pitch motions, relating to the thunniform
swimming mode depicted in Figure 1.11, superimposed with active morphing in
the sense of either (i) hydrofoil adjustment or (ii) spanwise bend-twist.

Regarding the device prototype, the flapping-foil kinematics can be emulated
using a robotic-arm type mechanism with two degrees of freedom based on el-
bow/wrist servomotors. Replicating the active morphing, would require additional
internal mechanisms or the use of smart materials, see [182]. However, our focus
here does not lie on the structural aspects, but rather on the investigation of ef-
ficiency enhancement due to optimal tuning of design parameters affecting the
planform shape and the kinematics (i.e., rigid-body, morphing) motivated by the
findings in [6], [160].

Regarding the AUV body geometry and design cruising speed, the propul-
sion scenario studied in [183] with U = 2.52m/s is also considered here. De-
tails concerning the propulsion scenario are provided in Table 2.8. The AUV
body is modeled for simplicity as a prolate speroid with (5 : 1 : 1). The total
resistance of the vehicle consists of a friction-drag (based on the ITTC curve)
CF = RF/(0.5ρU

2Swet) and a wave-resistance component, which is calculated us-
ing the methodology presented in [61]. This analysis yields a thrust requirement
of CT = 0.32 corresponding to the design cruising speed. Detailed calculations us-
ing a higher-fidelity method were not considered necessary using the preliminary
design phase, thus the above calculations are adequate for deducing the thrust
requirement.

Moreover, to quantify the performance gain obtained from the optimal tuning
of the selected design parameters, a reference flapping-foil thruster, which satisfies
the thrust requirement, is also considered. Relevant information regarding the
reference wing geometry and flapping kinematics is summarized in Table 2.8. It
is important to note that the reference thruster performs only rigid-body motions
and does not morph. The reference wing has an orthogonal planform of moderate
aspect ratio AR = 3 and NACA 0012 sections, which are assumed uniform in the
direction of span.

The following section is dedicated to the study of actively morphing wings
for the propulsion scenario presented above and the optimal tuning of geomet-
ric and kinematic parameters for efficiency maximization. The following section
contains information regarding the optimization problem formulation. Studies are
performed for each morphing type, and their findings are discussed in the sections
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that follow.

(a) Side view (b) Perspective

Figure 2.18: Schematic representation of the AUV body (as a prolate spheroid)
and reference thruster configuration, including stern fin-rudder appendages.

Table 2.8: Propulsion scenario for the concept AUV.

Geometry Prolate
spheroid
(5 : 1 : 1)

Froude number Fr(LOA) = 0.36

Length overall LOA = 5m Friction-resistance CF = 0.0025
Surface Sw = 12.55m2 Wave-resistance CW = 0.0058
Submergence
depth

d/LOA = 0.16 Total-resistance
CTOT = CF + CW

CTOT = 0.0083

Cruising speed U = 2.52m/s Thrust req. CTreq = 0.32

Table 2.9: Geometry and kinematics of reference flapping-foil.

Dimensions c = 0.33m,
s = 1.0m

Strouhal number
(Str = 2h0f/U)

Str = 0.26

Sections NACA 0012 Aspect ratio AR = s/c = 3
Heave amplitude h0 = 0.75c Planform area cs = 0.33m2

Pitch amplitude θ0 = 23.30o Efficiency η = 0.64
Pivot axis XR = c/3 Mean thrust C̄T = 0.32
Phase difference ψ = −90o Angle-of-attack

(maximum)
amax
eff = 15o
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2.6.1 Optimization problem formulation

Concerning the morphing flapping-foil concept, the wing planform is modeled us-
ing two parameters: the sweep angle Λ and the taper ratio λr = ct/cr, see Moran
[59]. For simplicity, hydrofoil sections are assumed uniform in the direction of span.
The use of more complex models for wing geometry parameterization, including
the variability of thickness profiles in the direction of span, is left as future work.
Regarding the kinematics, I assume that the wing follows a flapping trajectory
and performs active morphing in the sense of either (i) hydrofoil adjustment or (ii)
span-wise bend-twist.

Design variables. The design-variable vector,

bn ∈ DS = {bn ∈ Rn | lb ≤ bn ≤ ub}, (2.49)

with DS denoting the design space as an n-dimensional bounding box and lb,ub
the lower/upper bounds respectively, contains parameters from the following cat-
egories:

� planform geometry (Λ, λr),

� rigid-body kinematics (h0, θ0, Str),

� hydrofoil-section morphing (Ac, ψc),

� spanwise bend/twist (Ab, Aγ, ψb, ψγ).

Optimal tuning of geometric and kinematic parameters is accomplished via the
solution of an optimization problem on efficiency maximization under thrust and
effective-angle constraints.

Objective function. Efficiency maximization,

η = UT/Pin, (2.50)

where T is the mean thrust force and Pin the input power required to sustain
the wing’s prescribed motions (flapping, morphing) under the resulting hydrody-
namic loads. The objective function corresponds to the maximization of Froude
efficiency, whereas the required thrust and maximum allowable effective angle of
attack are included as constraints.

Constraints. Thrust requirement,

(1− p)CTreq ≤ CT ≤ (1 + p)CTreq, (2.51)
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where p denotes a tolerance parameter for the thrust constraint that is set to
p = 3% for all optimization studies that follow. Mean thrust is calculated using
time history data from the last flapping-cycle of motion, and the constraint is valid
for the inviscid value. However, the viscous-corrected mean thrust (CTvisc) and
efficiency (ηvisc), for each candidate design, is also to be provided alongside the
optimization results; see also Sec. 2.3.1 on friction drag corrections.

Moreover, since the effective angle of attack can serve as an indication of flow
separation and dynamic-stall phenomena, an additional constraint is included to
limit the maximum angle during operation. The corresponding constraint is,

{αroot
eff , α

tip
eff} ≤ αmax, (2.52)

where αtip
eff , α

root
eff are the instantaneous effective angles of attack at the tip and root

respectively, evaluated using Eq. (2.45). The maximum effective angle of attack
is set to 15o for all optimization studies, assuming that this value corresponds
to largely attached flows where the present an ideal-flow hydrodynamic model
provides load predictions of acceptable accuracy.

The sweep angle does not affect the dimensions of chord and span, however
taper ratio changes the planform area. In order to maintain the same wing surface,
for comparison purposes, I keep the root chord fixed and re-define the span based
on the taper ratio λr using,

s = 2Sref/(cr + crλr), c = crefr = 0.33m. (2.53)

The above expression is not formulated as a constraint but rather as a limitation
to the admissible set of design variables.

The examined cruising speed is relatively low and therefore the device is at
no risk of cavitation. However, if higher speeds were to be examined, or opera-
tion close to the free surface, cavitation prevention criteria should be taken into
consideration, see, e.g. [184].

The Reynolds number for this study is Re = 861, 600 and the coefficients for
friction-drag corrections, i.e. CF = 0.0039 and Ca = 0.13, where calibrated via
comparisons against Heathcote et al. 2008 [75] as discussed in Section 2.5.3. A
typical three flapping-cycle simulation based on the linear wake model, without
DtN re-calculation and a coarse discretization (NEA = 8AR, NEC = 40 and
Kmax

1 < 1.0) requires 2−16min on an AMD Ryzen 9 3900XT workstation equipped
with an NVIDIA GeForce RTX 3080 (10GB VRAM).

All optimization studies are run using the Matlab 2022a sequential quadratic
programming (sqp) algorithm fmincon that is suitable for handling nonlinear con-
straints. For sensitivity and Hessian computations, the default option of forward
differences is used. Very small step-sizes where found produce rounding errors and
loss of precision even for double-precision arithmetic. Therefore, the selection of
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an appropriate step-size is important prior to each optimization study based on
sensitivity calculation using finite differences.

Moreover, gradient-based methods are prone to locate local optima. For en-
gineering applications where emphasis is given on improving the reference design,
this behavior is not problematic. However, an easy way to alleviate this issue is to
perform the same optimization study several times, starting from different initial
points using a random number generator, and to select the best candidate design
out of all the solutions obtained. An optimization study stops either when the
maximum number of solver calls has been reached or when converged is achieved.

2.6.2 Case 1. Chord-line morphing

For this optimization study I introduce the following design-variable vector bn =
{Λ, λr, Ar, ψc, Str}. The first two parameters are the sweep angle and taper ratio,
referring to the planform shape. Then I include the amplitude of chord-line morph-
ing and the corresponding phase difference defined in Eq. (2.37). Strouhal number
is also included in the design-variable vector to ensure that the thrust requirement
constraint can be satisfied. Table 2.10 contains a summary of the design-variable
bounds used in this study and the optimal set of parameters as deduced from the
optimization process that is discussed below. It is important to note that fmincon
optimizer requires the determination of lower/upper bounds, however that is not
the case for other gradient-based algorithms.

Table 2.10: Case 1. Design-variable bounds and optimal solution.

Description Design vari-
ables bn

Lower
bound
lb

Optimal Upper
bound
ub

Sweep angle Λ (deg) 0 18 25
Taper ratio λr 0 1.0 1.0
Morphing amplitude Ac/c -0.12 0.12 0.12
Phase difference ψc (deg) 0 165 180
Strouhal number Str 0.23 0.25 0.30

Taking into consideration that gradient-based algorithms are prone to locate
locally optimum solutions, I performed the same optimization study four times
starting from different initial points. The maximum allowable number of solver
evaluations per optimization set to N = 300 and the required CPU/GPU-time for
all (4) optimization studies was approximately three days on our workstation, tak-
ing into consideration that each solver evaluation requires approximately 15min.
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Even though the optimization is performed using coarse mesh, linear wake model
and no DtN re-calculation to save computational time, the results summarized
in Table 2.11 refer to fully resolved simulations including free wake analysis, finer
grids (NEA = 9AR, NEC = 60, Kmax

1 < 1.0) and DtN re-calculation at each
time step. Coarser grids still provide engineering accuracy, however for complete-
ness to optimization results based on finer grids and dynamic wake modeling are
included. The first column of Table 2.11 contains information regarding the initial
and final design variable values and below the corresponding propulsive perfor-
mance metrics; in the sense of viscous corrected propulsive efficiency (ηvisc), mean
thrust coefficient (CT ) based on ideal-flow predictions, viscous corrected mean
thrust coefficient (CTvisc) and maximum effective angle (αeff ) in degrees.

The best solution is deduced from the second optimization study and cor-
responds to bn = {20o, 1.0, 0.12, 165o, 0.25} after rounding, with a performance
gain compared to the reference thruster of +16.25%. The initial solution with
id = 1 in Table 2.11 is the reference thruster. Overall, the findings reveal that
a positive amplitude for the chord-line morphing at a phase difference between
150− 170o is highly beneficial to the propulsive efficiency. Optimal Strouhal num-
ber is for this propulsion scenario is slightly lower than the reference design and
equals Str = 0.25.

Table 2.11: Case 1. Optimization results.

Init. Optim.

id 1 2 3 4 1 [2] 3 4

Λ (deg) 0.0 20.0 24.08 11.2 0.03 19.9 23.9 11.2
λr 1.00 0.356 0.742 0.273 0.275 1.000 1.000 0.253
s (m) 1.00 1.47 1.14 1.57 1.56 1.00 1.00 1.59
Ac/c 0.00 -0.019 -0.114 0.041 0.078 0.117 0.120 0.120
ψc (deg) 0.00 164.8 152.8 141.3 73.5 164.2 167.3 156.4
Str 0.260 0.286 0.295 0.265 0.239 0.251 0.251 0.254

ηvisc 0.67 0.534 0.366 0.693 0.702 0.806 0.794 0.761

CT 0.328 0.381 0.376 0.341 0.314 0.316 0.312 0.311

CTvisc 0.291 0.337 0.329 0.303 0.282 0.281 0.276 0.276
αeff (deg) 15.93 18.58 19.55 16.48 13.68 14.88 14.97 15.00

Regarding the planform shape, it seems that the rectangular wing (λr = 1.0)
yields best performance and that sweep angles do not affect significantly the results
since they remains close to the initial value for all studies apart from id = 1. This
behavior could be either attributed to the selection of step-sizes for sensitivity cal-
culation using finite differences leading to rounding errors, or the dominant nature
of the other design variables in terms of their effect on the objective function.
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Moreover, sequential programming algorithms often search for a solution that
satisfies the constraints by favoring the lower/upper bounds. This can be evident
in the solution of id = {2, 3} where the taper ratio receives its upper-bound value,
and also id = {3, 4} where the morphing amplitude also receives its upper-bound
value. If that is the case for id = 1 and the value of sweep angle (i.e. receiving its
lower-bound value), it is important to further investigate this matter.

To investigate further the effects of sweep angle on the propulsive performance
of the chord-line morphing flapping-foil, I performed a parametric study with re-
sults shown in Figure 2.19 concerning the best candidate with design-variable
vector bn = {Λ, 1.0, 0.12, 165o, 0.25}. The thrust coefficient and the propulsive
efficiency are shown as functions of sweep angle suggesting the existence of an op-
timal value in terms of efficiency maximization at Λ = 15o. Since the latter peak
value corresponds to a thrust coefficient that is close to the lower-bound for the
required thrust, I selected for the candidate thruster a sweep angle of Λ = 18o.
This value enhances the performance and has a smaller divination from original
sweep Λ = 19.9o that was deduced from the optimization study for id = {2} in
Table 2.11.

To sum up, the propulsive performance of the reference and optimal thrusters
with chord-line morphing are summarized in Table 2.12, where a performance gain
of +25.37% is achieved via this optimization methodology.

Figure 2.19: Effects of sweep angle on (a) mean thrust and (b) viscous-corrected
efficiency for the candidate thruster with chord-line morphing. The region of
feasible solutions is defined using dashed lines [left].
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Table 2.12: Case 1. Comparison between reference and optimal designs. Opti-
mization is performed with thrust requirement CTreq = 0.32.

Design variables Reference Optimal
Λ (deg) 0.0 18.0
λr 1.00 1.00

s (m) 1.00 1.00
Ac/c 0.00 0.120

ψc (deg) 0.00 165
Str 0.260 0.250

Performance Diff(%)
ηvisc 0.67 0.84 +25.37%
CT 0.328 0.310 -5.5%
CTvisc 0.291 0.275 -5.5%

αeff (deg) 15.9 14.8 -6.9%

An interesting finding is deduced from the study of chord-line morphing profiles
for the optimal thruster. Figure 2.20 contains snapshots of the wing’s root section
on the flapping trajectory, revealing that maximization of efficiency is achieved
when the morphed shape of the chord-line is aligned with the flapping trajec-
tory. That is the case of passively morphing wings, where proper tuning of the
phase difference between wing deformation and flapping motions can enhance the
propulsive performance, see, e.g. Anevlavi et al. 2020 [177].

Figure 2.21 shows a snapshot of the 3dBEM simulations for the optimal wing
design with chord-line morphing. The free-wake formation behind the wing is
shown on the left, where roll-up effects are clearly evident. Red color is used to
highlight the Kutta-strip. Moreover, the tip and root sections of the wing are
provided on the right along with a schematic representation of the planform shape
based on c = 0.33m, s = 1.0m and sweep angle Λ = 18o.

To examine the origin of efficiency gain I present a comparison between the
instantaneous lift, thrust and moment coefficients of the reference and optimal
thruster design in Figure 2.22. The corresponding planform shapes are also shown
schematically. Introducing chord-line morphing leads to a phase difference that
is beneficial to the efficiency without drastic reduction in the mean thrust. It is
important to note, that for technological applications a more accurate estimation
of power required to sustain the flapping and morphing motions is essential for
predictions of efficiency.

For completeness, Figures 2.23-2.24 contain pressure coefficient envelopes for
the reference and optimal thruster respectively, at selected sections along the span
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and at four time instances during the last flapping-cycle of the motion. These post-
processing results highlight the capabilities of 3dBEM in terms of predicting the
hydrodynamic pressure. Suggesting that this computational tool can be exploited
for the analysis and optimization of bio-inspired thrusters with application to
autonomous underwater vehicles.

Figure 2.20: Case 1. Morphed chord-line instances for the optimal thruster on the
flapping-foil trajectory, denoted with a dashed line

.

Figure 2.21: Case 1. (a) Free-wake formation for the optimal thruster with chord-
line morphing, (b) root/tip sections and (c) planform shape.
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Figure 2.22: Case 1. (a) Instantaneous propulsive coefficients, (b) reference plan-
form and (c) optimal planform.

Figure 2.23: Case 1. Pressure coefficient envelopes on the reference wing [left].
Effective angle of attack and thrust time-history [right].
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Figure 2.24: Case 1. Pressure coefficient envelopes on the optimal wing [left].
Effective angle of attack and thrust time-history [right].

2.6.3 Case 2. Spanwise bend and twist morphing

In this section, I focus on the effects of out-of-plane morphing, in the sense of
active bend/twist, and their potential to enhance the propulsive performance of
the flapping-foil thrusters in the selected propulsion scenario. Sweep angle has
been set to the optimal value of Λ = 18o based on Case 1 presented in the previous
section. Span-wise bending contributes significantly to the thrust production, as
shown in the experiments conducted by [180]. This is also evident from bird flight
studies, where twist is mainly responsible for maneuvering and weight balancing.

A direct extension of the design-variable vector used in Case 1 for this scenario
would be, i.e. bn = {λr, Ab, ψb, Aγ, ψγ, Str}. However it fails to produce a feasible
design solution with enhanced propulsive performance. Thus, a redefinition of
the design-variable vector so that it also includes the heave/pitch amplitudes is
considered. To sum up, the design-variable vector for this case study is defined
as bn = {λr, Ab, ψb, Aγ, ψγ, Str, h0/c, θ0}. Table 2.13 contains a summary of the
lower/upper bounds of each parameters along with the optimal solution deduced
from the optimization studies.

For this scenario I performed two optimization studies; starting from different
initial points, and selected the best candidate thruster among the two. Optimiza-
tion results are summarized in Table 2.14. The reference design is included as an
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Table 2.13: Case 2. Design-variable bounds and optimal solution.

Description Design
variables
bn

Lower
bound
lb

Optimal Upper
bound
ub

Taper ratio λr 0.25 0.55 1.0
Bend amplitude Ab (deg) -15 5.3 15
Bend phase diff. ψb (deg) 0 16 180
Twist amplitude Aγ (deg) -8 -2.5 8
Twist phase diff. ψγ (deg) 0 110 180
Strouhal number Str 0.23 0.25 0.30
Heave amplitude h0/c 0.25 1.0 1.00
Pitch amplitude θ0 (deg) 5 25.9 35

initial point corresponding to the study with id = {1}, whereas the study with
id = {2} start from a randomly generated initial design-variable vector.

The best candidate solution, after rounding, yields a +7.5% efficiency enhance-
ment with moderate loss of thrust that lies within the tolerance percentage of 3%.
The corresponding vector is bn = {5.3o,−2.5o, 16o, 110o, 0.25, 1.0, 25.9o, 0.55}. Op-
timization is performed based on low-computational-cost 3dBEM simulations. For
completeness, the performance metrics of the final thruster, that are summarized
in Table 2.14, refer to simulations including free-wake analysis, DtN re-calculation
and a finer mesh (NEC = 60, NEA = 9AR, Kmax

1 < 1.0) to exploit the most out
of the engineering accuracy provided by the ideal-flow model.

The optimal taper ratio λr = 0.55 and selected sweep angle Λ = 18o produce
a crescent-like shape, indicating that a bio-mimetic planform are beneficial to
the efficiency of wings with active bend/twist. The planform shape is shown
schematically in Figure 2.25, where it is evident that its span is greater than the
reference geometry and s = 1.29m. This is essential to keep the planform surface
a constant for comparison purposes.

Table 2.15 contains details regarding the propulsive performance of reference
and optimal designs for comparison purposes. Regarding the effective angle of
attack, it is evident that the selection of heave/pitch and Strouhal numbers in the
optimal design are responsible for the large reduction of the maximum angle at
the root. Concerning, the value of effective angle at the tip, it is slightly lower
than the upper-bound set for the optimization study and within acceptable limits.

Moreover, Figure 2.25 contains the instantaneous lift, thrust and moment co-
efficients for the reference and optimal thrusters. Introducing active morphing in
the sense of spanwise bend/twist also yields a phase difference that is beneficial to
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Table 2.14: Case 2: Optimization study results.

Init. Optim.
id Ref. 1 2 1 2

Ab (deg) 0.0 0.0 9.70 1.73 5.28
Aγ (deg) 0.0 0.0 1.94 -2.34 -2.50
ψb (deg) 0.0 0.0 57.01 4.73 15.9
ψγ (deg) 0.0 0.0 171 34.75 110.6
Str 0.260 0.260 0.234 0.258 0.250
h0/c 0.75 0.75 0.75 0.99 1.00

θ0 (deg) 23.30 23.30 23.30 25.04 25.91
λr 1.00 1.00 1.00 0.56 0.55

s (m) 1.00 1.00 1.00 1.28 1.29
ηvisc 0.67 0.67 0.811 0.698 0.735
C̄T 0.328 0.328 0.315 0.301 0.312
C̄Tvisc 0.296 0.296 0.285 0.284 0.285

αroot
eff (deg) 15.93 15.93 12.80 14.00 12.46

αtip
eff (deg) 15.93 15.93 25.87 14.84 14.83

the efficiency with an acceptable reduction in thrust.

It is important to note that, optimal selection of the phase difference; between
the morphing motions and the enforced flapping kinematics, yields the performance
enhancement. This phenomenon is also observed in the previous study (Case 1)
with results shown in Figure 2.22. On the left, I present a schematic representation
of the wing mesh for the reference and optimal designs. The results suggest that
when active bend/twist morphing is incorporated into the design a crescent-like
planform contributed to efficient propulsion. On the contrary, a taper ratio did
not enhance the performance of a thruster with chord-line morphing as shown in
the previous study (Case 1) results.

Moving on to Figure 2.26, it contains a schematic representation of the free
wake formation, the instantaneous root/tip sections and the planform shape. From
root/tip section position in the global coordinate system, we can observe that
indeed the optimal design has sweep and taper. In this particular snapshot, both
bend and twist motions are evident.

Finally, Figure 2.27 shows the instantaneous morphed wing shape along its
flapping trajectory, with the colorbar (on the right) denoting the z-coordinates,
aiming to provide additional information regarding the flapping and morphing
kinematics of the device.
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Table 2.15: Case 2. Comparison between reference and optimal thrusters.

Design variables Reference Optimal
Λ (deg) 0.0 18.0
λr 1.00 0.55

s (m) 1.00 1.28
Ab 0.00 5.3
Aγ 0.00 -2.50

ψb (deg) 0.00 16.00
ψγ (deg) 0.00 110
h0/c 0.75 1.00

θ0 (deg) 23.30 25.90
Str 0.260 0.250

Performance Diff(%)
ηvisc 0.67 0.72 +7.5%
CT 0.3280 0.3103 -5.4%
CTvisc 0.2906 0.2707 -5.4%

αroot
eff (deg) 15.93 12.47 -22%

αtip
eff (deg) 15.93 14.8 -6.9%

Figure 2.25: Case 2. (a) Comparison of instantaneous thrust, lift and moment
coefficients, planform shape for (b) reference and (c) optimal thrusters respectively.
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Figure 2.26: Case 2. (a) Free-wake formation behind the optimal thruster with
active out-of-plane morphing, (b) root/tip sections and (c) planform shape with
Λ = 18o, λr = 0.55.

Figure 2.27: Case 2. Snapshots of the wing’s morphed shapes during its flapping-
type motion. The color-bar refers to the z-coordinate in global system XY Z.
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2.7 Discussion and future extensions

This Chapter focuses on the study of active morphing effects on the propulsive
performance of flapping thrusters with application to AUVs. The examined mor-
phing effects are (1) hydrofoil adjustment and (2) spanwise bending/twisting dur-
ing each flapping cycle of motion. To produce flapping-foil designs with improved
performance, in the sense of Froude efficiency maximization under certain thrust
and effective angle of attack constraints which are dictated by the adopted re-
alistic propulsion scenario described in our paper, two optimization studies are
conducted. A gradient-based solver is used and the design-variable vector con-
tains geometric (sweep angle, taper ratio) and kinematic parameters, such as the
heave/pitch amplitudes and forcing frequency (Strouhal number), alongside the
active morphing parameters.

To enable fast and efficient optimization studies, targeting quantities related
to hydrodynamic pressure and propulsive performance metrics for cases of ac-
tively morphing flapping-foils, I developed the 3dBEM solver as an extension to
the GPU-BEM version in Filippas et al. [12]. Particularly for the optimization,
hundreds of solver evaluations are performed using a desktop within a few days
using the proposed tool, whereas higher-fidelity simulations based on traditional
Reynolds-Averaged Navier-Stokes equation (RANSE) based solvers would require
significantly more computational time and resources. The aforementioned opti-
mization studies support the argument that optimal tuning of morphing parame-
ters indeed leads to a significant propulsive efficiency gain. From the perspective
of hydrodynamics, the optimal selection of morphing parameters produces wing
designs with enhanced propulsive efficiency delivering the required thrust.

Although ideal-flow models are able to provide low-cost and accurate predic-
tions, enabling the optimization of efficiency via proper tuning of various geometric
and kinematic parameters, a detailed analysis of the optimal designs using vis-
cous CFD is essential for the detailed analysis of future technological applications.
Therefore, CFD studies concerning operation and off-design conditions including
modeling of flow separation phenomena and dynamic stall are added as future
work directions.

The findings of our investigation suggest that a wing prototype with a trailing-
edge flap is the most promising solution for the efficient propulsion of a small-scale
AUVs. I propose the study and manufacturing of a bio-mimetic thruster with an
actively controlled trailing-edge flap mechanism. The performance of the concept
thruster can be be studied with the developed numerical tool 3dBEM, additional
viscous CFD simulations and towing tank experiments to provide proof of concept.

Concerning the direction of extending the present computational tool, the fol-
lowing aspects are proposed:
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� Free surface effects. The mathematical formulation presented in [12] in-
cludes modeling of free surface effects and waves; affecting the performance
of wings moving beneath the free surface through perturbation of the veloc-
ity profiles (i.e. due to forward motion) in the sense of a wave-induced gust.
The present version of the computational code can be extended to incorpo-
rate the solver module that treats the problem of a wing operating beneath
the free surface and in waves. This analysis is important for applications
of wings operating as thrust-augmentation devices for ships with energy-
harvesting capabilities, and AUV thrusters operating at small submergence
depths. Modeling free-surface effects with viscous solvers increases further
the required computational cost, thus the present extension is important
since the final results would be competitive against commercial software for
such applications, especially if it enables the fast hydrodynamic optimization
of foils.

� Performance predictions for complex wing geometries and marine
propellers. In nature, the cross-sectional shapes along the spanwise di-
rection exhibit noticeable variations in camber and thickness. This is also
evident in the design of aircraft wings where airfoils differ along spanwise
positions, see [32]. The geometric representation of the wing can be enriched
in order to account for more complex wing geometries. Parametric models
for wings have been developed using Computer-Aided-Design software, that
can be exploited for this purpose. The same holds for the extensions includ-
ing models of marine propellers, that can be treated using the mathematical
formulation behind the 3dBEM computational tool.

� Viscous-inviscid interaction. The adoption of boundary-layer corrections
to potential flow solvers enriches the obtained solutions from the physical
point of view, [145]. In Riziotis & Voutsinas 2008 [185], a model for strong
viscous-inviscid interaction coupling allows for hydrofoil performance predic-
tions including boundary-layer and and wake shear layer evolution effects. In
addition, separation effects are also modelled by introducing a second wake
originating, namely a ‘double-wake’ model, from the separation point that is
provided as part of the boundary layer solution. This particular model for
instance could be implemented in a strip-wise manner to enrich the predic-
tions of the developed 3dBEM, allowing improved predictions at off-design
points.

� Sensitivity calculation via the adjoint method. The standard finite
difference schemes used to evaluate the sensitivity derivatives via consecutive
solver calls, even for gradient-based algorithms, which are considered to be
less computationally intensive than algorithms based on evolution-approach
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(i.e. genetic algorithm), require computational time that is proportional
to the number of design variables. Therefore, the use of an adjoint GPU-
accelerated 3dBEM solver would allow for more detailed geometric and kine-
matic optimization studies regardless of the number of design variables used.
The surface of the wing could be parametrized using NURBS, see, e.g., [145],
[186] and then integrated into the adjoint 3dBEM optimization framework.

The 3dBEM computational tool can also be integrated into a fluid structure
interaction (fsi) framework to address the problem of flexible wings that deform
passively under hydrodynamic load excitation following a partitioned approach.
This is the subject of Chapters 3-4 that follow. Regarding the prospect of engi-
neering applications on flexible foils, the literature review presented in Chapter 1
suggests that proper tuning of the material properties of the flexible wing can yield
favorable deformation, i.e., changes in shape due to loading, that can enhance the
device’s performance. This approach lies within the state-of-the-art design of large
wing turbines, where optimal selection of rigidity leads to a significant reduction
in structure weight and aerodynamic loads. Relevant works are based on the use
of composite materials for custom rigidity properties. However, within the context
of this thesis, our effort is focused on the development of a fluid structure inter-
action solver for flexible wing analysis. Other extensions, concerning the use of
composites and inverse design for tailor-made elasticity are left as future work.



Chapter 3

Hydromechanics of thin elastic
plates

List of symbols

xyz Cartesian local (body-fixed) coordinate system
u, v, w displacement field
w0(x, y) field of vertical bending displacement in m
ϵxx, ϵyy, γxy field of linear strains
σxx, σyy, σxy field of stresses in Pa
q(x, y) distributed load in Pa
E Young modulus in Pa
ν Poisson’s ratio
D(x, y) flexural rigidity
h(x, y) thickness distribution
ρs material density in kg/m2

Ub, Us bending and transverse shear strain energy
Hx(ξ, η), Hy(ξ, η) Discrete Kirchhoff Triangle (DKT) shape functions
q global nodal unknown vector
Nelem number of DKT elements
∆t time-step
Mloc, Mglob local and global mass matrix
Kloc, Kglob local and global stiffness matrix
floc, Fglob local and global load vector
Cglob global proportional damping matrix
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3.1 Background

The main dimensions of the object under study often dictate appropriate structural
idealizations for the analysis always with a focus on the application. Typically, for
wings with relatively high aspect ratios, such as aircraft wings and applications
of aero-elasticity, three-dimensional beam models can be used. The main focus
of the present work lies in predicting the structural response of low-to-moderate
aspect ratio wings under hydrodynamic pressure excitation. Thus, a thin plate
idealization is most appropriate as suggested in Zhu (2017) [63], Dai et al. (2012)
[97] and Wang et al. (2020) [63], where similar models are proposed for the anal-
ysis of flexible plates in the context of fluid-structure interaction. In our model,
the homogeneous and isotropic plate has two identical faces whose dimensions
(breadth, length) are considerably greater than the thickness. To account for stiff-
ness variation effects in the context of classical thin plate models, spatial variation
of thickness and Young’s modulus is introduced.

The subject of plate bending based on the Kirchhoff and Mindlin plate theories
for a variety of transverse loading and boundary conditions has been studied by
numerous investigators, see, e.g., Wang et al. [187], Timoshenko & Krieger [188]
and Reddy [189]. Standard texts on plate theory also contain derivations of closed-
form solutions for the stress resultants and deflections for some plate cases, for
instance, Timoshenko & Krieger [188]. However, for most engineering applications
where exact solutions cannot be obtained, the designer can draw on very general
finite element software to solve their plate bending problems. Commercial packages
usually provide classical (or Kirchhoff) plate theory (CPT) elements and first-order
shear deformation (or Mindlin) plate theory (FSDT) elements that are designated
for plate analysis. The latter type of element allows for the effect of transverse
shear deformation.

Recent versions of commercial software, such as ANSYS, favor analysis using
multi-purpose shell elements that are able to capture the physics behind plates of
various geometries under general loading conditions. Despite the computational
cost these elements have gained popularity due to their versatility. In our era,
modern software retrieves information on the computer architecture and exploits
parallelization, for instance CPU multi-threading and parallel computing on graph-
ics cards/accelerators. Nevertheless, the use of commercial software may enable
detailed and accurate simulations of complex structures, which is important for
the final stages of engineering and manufacturing, but proprietary software does
not allow modifications of the source code. Thus, within the context of this thesis,
it was decided that the in-house finite element solver developed in Karperaki 2021
[157] based on Discrete Kirchhoff Triangles (DKT) would be extended to address
the dynamic analysis of wings modeled as thin plate structures with thickness
variability.



3.2. CLASSICAL PLATE THEORY (CPT) 117

3.2 Classical Plate Theory (CPT)

Plate theories are formally derived from the representation of displacement field
components through the plates’ thickness, using polynomial representations. In
Wang et al. [187], the classical plate theory (CPT) for the case of pure bending is
based on,

u(x, y, z) = −z∂w0

∂x
, (3.1)

v(x, y, z) = −z∂w0

∂y
, (3.2)

w(x, y, z) = w0(x, y), (3.3)

where (u, v, w) are the displacement components along the (x, y, z) coordinate
directions, respectively, and w0 is the transverse deflection of a point on the mid-
plane (i.e., z = 0).

The displacement field in (3.1) is formulated under Kirchhoff’s hypothesis for
plate kinematics. The neutral plane coincides with the mid-surface of the structure,
and the kinematic assumptions imply that,

1. straight transverse normals, which are perpendicular to the neutral mid-
plate, remain straight and normal after deformation - normal orthogonality
assumption,

2. points on the neutral line move only vertically,

3. transverse normals do not elongate after deformation,

4. normal transverse stresses are assumed negligible - plane stress assumption.

The fourth point carries the dimensional reduction to two dimensions. Figure 3.2
contains a geometric illustration of kinematic consideration.

A direct extension to first-order deformation theory (FSDT) by Mindlin, re-
laxes the orthogonality assumption and allows constant rotation of the straight
transverse normals, which remain straight but not orthogonal after deformation
while the rest of CPT kinematic assumptions hold [187], [190]. The additional
rotations referred to as shear angles allow predictions of thin-to-moderately thick
plates and can also be extended to treat problems of composite and laminate plates
as discussed in Reddy [191]. This interesting direct extension is left for future work.
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Figure 3.1: Undeformed and deformed geometries in CPT theory adapted from
Wang et al. [50].

3.2.1 Equations of equilibrium

The non-zero linear strains associated with the displacement field in Eqs. (3.1)
are,

ϵxx =
∂u

∂x
= −z∂

2w0

∂x2
, (3.4)

ϵyy =
∂v

∂y
= −z∂

2w0

∂y2
, (3.5)

γxy =
(∂v
∂x

+
∂u

∂y

)
= −2z

∂2w0

∂x∂y
, (3.6)

where (ϵxx, ϵyy) are the normal strains and γxy is the shear strain. Equilibrium
equation holds as,

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q(x, y) = 0, in Ω0, (3.7)

As discussed in Zienkiewicz [192], the thin constrained theory is widely used in
practice and is adequate for various structural problems. Even though it should
not be taken ‘literally’ as the true behavior near supports or where local load action
is important and three-dimensional elasticity phenomena become dominant.
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3.2.2 Governing equation in terms of deflection

The corresponding expressions for the stresses are,

σxx =
E(x, y)

1− ν2
(ϵxx + νϵyy), (3.8)

σyy =
E(x, y)

1− ν2
(ϵyy + νϵxx), (3.9)

σxy = G(x, y)γxy =
E(x, y)

2(1− ν)
γxy, (3.10)

where E = E(x, y) denotes the Young’s modulus distribution, G = G(x, y) the
shear modulus distribution, and ν Poisson’s ratio. Using Eqs. (3.8)-(3.10) and
carrying out the indicated integration over the plate thickness, I arrive at

Mxx =

∫ h/2

−h/2

σxxzdz =
E(x, y)

1− ν2

∫ h/2

−h/2

(ϵxx + νϵyy)zdz

= −D(x, y)
(∂2w0

∂x2
+ ν

∂2w0

∂y2

)
, (3.11)

Myy =

∫ h/2

−h/2

σyyzdz =
E(x, y)

1− ν2

∫ h/2

−h/2

(ϵyy + νϵxx)zdz

= −D(x, y)
(
ν
∂2w0

∂x2
+
∂2w0

∂y2

)
, (3.12)

Mxy =

∫ h/2

−h/2

σxyzdz = G(x, y)

∫ h/2

−h/2

γxyzdz

= −(1− ν)D(x, y)
∂2w0

∂x∂y
, (3.13)

where D = D(x, y) is the flexural rigidity distribution

D(x, y) =
E(x, y)h(x, y)3

12(1− ν2)
, (3.14)

Assuming that the wing’s thickness profile h = h(x, y) is provided, an exact rep-
resentation of the lifting surface geometry can be modeled via stiffness variability
effects. Bio-mimicry suggests that fins in nature have variable stiffness and mate-
rial properties. The present CPT formulation can also consider stiffness variability
effects due to Young modulus variation, which is also useful when modeling func-
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tionally graded materials. Substituting (3.11)-(3.13) to (3.7) yields,

∂2

∂x2

[
D
(∂2w0

∂x2
+ ν

∂2w0

∂y2

)]
+ 2(1− ν)

∂2

∂x∂y

[
D
∂2w0

∂x∂y

]
+

∂2

∂y2

[
D
(
ν
∂2w0

∂y2
+
∂2w0

∂x2

)]
+ q(x, y) = 0. (3.15)

The first term in (3.15) can be expanded as follows,

∂2

∂x2

[
D
(∂2w0

∂x2
+ ν

∂2w0

∂y2

)]
=

∂

∂x

∂

∂x

[
D
(∂2w0

∂x2
+ ν

∂2w0

∂y2

)]
(3.16)

=
∂

∂x

[∂D
∂x

(∂2w0

∂x2
+ ν

∂2w0

∂y2

)
+D

(∂3w0

∂x3
+ ν

∂3w0

∂x∂y2

)]
=
∂2D

∂x2

(∂2w0

∂x2
+ ν

∂2w0

∂y2

)
+
∂D

∂x

(∂3w0

∂x3
+ ν

∂3w0

∂x∂y2

)
+
∂D

∂x

(∂3w0

∂x3
+ ν

∂3w0

∂x∂y2

)
+D

(∂4w0

∂x4
+ ν

∂4w0

∂x2∂y2

)
.

The second term in (3.15),

2(1− ν)
∂2

∂x∂y

[
D
∂2w0

∂x∂y

]
= 2(1− ν)

∂

∂x

∂

∂y

[
D
∂2w0

∂x∂y

]
(3.17)

= 2(1− ν)
∂

∂x

[∂D
∂y

∂2w0

∂x∂y
+D

∂3w0

∂x∂y2

]
(3.18)

= 2(1− ν)
[ ∂2D
∂x∂y

∂2w0

∂x∂y
+
∂D

∂y

∂3w0

∂x2∂y

+
∂D

∂x

∂3w0

∂x∂y2
+D

∂4w0

∂x2∂y2

]
.

The third term (3.15) can be expanded as follows,

∂2

∂y2

[
D
(
ν
∂2w0

∂x2
+ ν

∂2w0

∂y2

)]
=

∂

∂y

∂

∂y

[
D
(
ν
∂2w0

∂x2
+
∂2w0

∂y2

)]
(3.19)

=
∂

∂y

[∂D
∂y

(
ν
∂2w0

∂x2
+
∂2w0

∂y2

)
+D

(
ν
∂3w0

∂y∂x2
+
∂3w0

∂y3

)]
=
∂2D

∂y2

(
ν
∂2w0

∂x2
+
∂2w0

∂y2

)
+
∂D

∂y

(
ν
∂3w0

∂y∂x2
+
∂3w0

∂y3

)
+
∂D

∂y

(
ν
∂3w0

∂y∂x2
+
∂3w0

∂y3

)
+D

(
ν
∂4w0

∂y2∂x2
+
∂4w0

∂y4

)]
.



3.2. CLASSICAL PLATE THEORY (CPT) 121

Finally the CPT equation for variable flexural rigidity becomes,

∇4w0 +∇2D∇2w0 + 2∇D · ∇(∇2w0) (3.20)

− (1− ν)(∂xxD∂yyw0 − 2∂xyD∂xyw0 + ∂yyD∂xxw0) = q(x, y).

Or in a more compact form using the following identity from vector calculus

∇2(D∇2w0) = ∇ · ∇(D∇2w0)

= ∇ · (∇D∇2w0 +D∇ · (∇2w0))

= ∇2D∇2w0 +∇D · ∇(∇2w0) +∇D · ∇(∇2w0) +D∇4w0

= D∇4w0 +∇2D∇2w0 + 2∇D · ∇(∇2w0). (3.21)

The above form of is suitable for static analysis, whereas for dynamic modeling an
additional term needs to be added in Eq. (3.20), see also Karperaki [157],

ρsh(x, y)∂
2
tw0 +∇2(D∇2w0) (3.22)

− (1− ν)(∂xxD∂yyw0 − 2∂xyD∂xyw0 + ∂yyD∂xxw0) = q(x, y; t),

where ρs denotes the material density and h(x, y) is the plate thickness. Note that
the forcing term on the rhs is also time-varying to model transient response.

3.2.3 Boundary conditions

In our formulation, the plate is symmetric with respect to the xz−plane and fully
submerged within the liquid medium. The side faces of the plate are free from load-
ing, whereas displacements and slopes are zero at the support configuration in the
vicinity of the axis of symmetry. This configuration is responsible for transmitting
the enforced rigid-body motions to the plate as a whole.

Conditions enforced on the primary variables (i.e., generalized displacements:
w0, ∂w0/∂n) constitute essential (or geometric) boundary conditions, whereas con-
ditions enforced on the secondary variables (i.e., generalized forces Vn, Mnn) con-
stitute natural (or force) boundary conditions. The latter is expressed in terms of
the normal and tangential coordinates (n, s) on the plate boundary [187].

At a free edge (F), which is not geometrically restrained in any way, the gen-
eralized displacements of the mid-plane are not equal to zero,

w0 ̸= 0,
∂w0

∂n
̸= 0. (3.23)

However, the edge may have applied forces and/or moments

Vn = Qn +
∂Mns

∂s
= V̂n, Mnn = M̂nn, (3.24)
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where quantities with a hat are specified forces/moments and Vn is the effective
shear force. For free rectangular plates, Mns = 0, hence no corner forces are
developed.

A fixed or clamped edge (C) is fully geometrically restrained,

w0 = 0,
∂w0

∂n
= 0. (3.25)

Therefore, the forces and moments on a fixed edge are not known a priori (i.e., they
are reactions to be determined as a part of the analysis). For clamped rectangular
plates, Mns = 0, hence no corner forces are developed.

At a simply supported edge (S),

w0 = 0, Mnn = M̂nn, (3.26)

where M̂nn is the applied normal bending moment on the edge. For simply sup-
ported rectangular plates, a reacting force of 2Mns is developed at each corner of
the plate.

3.3 Numerical implementation using finite ele-

ments

The fourth-order partial differential equations (PDE) in Eq. (3.20) and (3.22),
referring to static and transient response respectively, along with a set of boundary
conditions can be solved to obtain the solution in terms of the unknown transverse
bending deflection w0(x, t; y). Modal analysis can also be performed numerically
for in-vacuo frequency prediction under the selected boundary conditions. The
numerical solution of the above problems is performed via finite element analysis,
see, e.g., Hughes [193], Zienkiewicz & Taylor [192] and the standard text by Fung
& Tong [194].

Producing the weak formulation for plates from the pde is quite tedious, thus
the finite element formulation is derived from a Hamiltonian principle. In general,
the problem of thin plates associated with fourth-order differential equations leads
to a potential energy functional that contains second derivatives of the unknown
function w0(x, t; y), thus the shape functions need to be characterized by C1 con-
tinuity, i.e. the shape function and its first derivatives are continuous, which is
a rather strong restriction. Polynomial expressions with many dofs are required
to satisfy the strict C1 requirement and things become even more difficult when
popular schemes that work well for 1D problems, such as the Hermite interpolation
functions, can not be extended to triangular meshes.

In the literature, non-conforming techniques based on mixed formulations have
emerged over the years to construct triangle elements with few dofs that converge
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to the classical thin plate solution and essentially bypass the strict C1 continuity
restriction. In the present work, the reliable and efficient Discrete Kirchhoff Tri-
angle (DKT) introduced in Batoz et al. [195], Batoz & Lardeur [190] and [196]
is selected. This triangular flat element having displacements and rotations at
the corner nodes as degrees of freedom is particularly appealing for practical rea-
sons, including modeling arbitrary plate geometries and general supports with low
computational cost.

3.3.1 Discrete Kirchhoff Triangle (DKT)

The Discrete Kirchoff Triangle (DKT) is a non-conforming element with nine
degrees-of-freedom (dof), three on each node. The independent quantities are the
mid-surface deflection w0, and the rotations βx, βy with respect to x− and y−axis
respectively as shown in Figure 3.3.1 following the sign convention adopted in
Batoz et al. [195].

Before presenting details regarding the DKT element, I briefly summarize the
theory of plates using matrix notation. The kinematic assumptions of small dis-
placement theory are,

u = zβx(x, y), u = zβy(x, y), w = w(x, y), (3.27)

where βx, βy are the rotations of a normal to the undeformed middle surface corre-
sponding to the x−z and y−z planes respectively. In thin plate theory βx = −∂xw,
βy = −∂yw. The bending strains (linear through thickness) are,

ϵb = zκ, (3.28)

where κ is the three-component curvature vector,

κ =

 ∂xβx
∂yβy

∂xβy + ∂yβx

 . (3.29)

The transverse shear strains (constant through thickness) are,

γ =

[
∂xw + βx
∂yw + βy

]
. (3.30)

Plane stress assumption holds, i.e. σz = 0, and no coupling between σb and
transverse shear strains is considered, thus

σb =

σxσy
τxy

 = z

 D11 D12 D13

D22 D23

(sym) D33

κ = zDκ, (3.31)
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and

σs =

[
τxz
τyz

]
=

[
E13 E23

E23 E33

]
γ = Eγ, (3.32)

where the Eij, i, j = 1, 3 are the components of three-dimensional elasticity matrix,

Dij = Eij −
Ei3E3i

E33

. (3.33)

Based on all the above, kinematic assumptions and material description, the strain
energy is,

U = Ub + Us, (3.34)

where

Ub =
1

2

∫
A

κTDbκ
T dxdy, (3.35)

Us =
1

2

∫
A

γTDsγ
T dxdy, (3.36)

represent the bending and transverse shear contributions respectively. The matri-
ces Db, Ds are functions of the thickness h(x, y) and of elastic properties. Variable
A refers to the area of plate’s middle surface. For the case of isotropic (homoge-
neous) plates with thickness variability,

Db =
E(x, y)h(x, y)3

12(1− ν)

 1 ν 0
1 0

(sym) 1−ν
2

 , Ds =
E(x, y)h(x, y)k

2(1 + ν)

[
1 0
0 1

]
. (3.37)

The explicit expressions for Ub, Us are,

Ub =

∫
A

Eh3

24(1− ν)

[
∂xβ

2
x+∂yβ

2
y +2ν∂yβ

2
y∂xβ

2
x+

1− ν

2
(∂yβx+∂xβy)

2
]
dxdy, (3.38)

Us =

∫
A

Ehk

4(1 + ν)

[
(∂xw + βx)

2 + (∂yw + βy)
2
]
dxdy. (3.39)

The E and v are the Young’s modulus and Poisson’s ratio, and k is the shear
correction factor usually taken as 5/6.

The transverse shear energy Us is negligible for the kinematic assumptions, i.e.
relating rotations to transverse displacement under Kirchhoff hypothesis. However,
if shear energy is retained, the lock-free Discrete Shear Triangle (DST) for thick
plates can be formulated as discussed later in Batoz & Lardeur [190]. The DST
element as expected leads to the aforementioned DKT via degeneration. The
benefits of using these two reliable and cost-effective elements are illustrated in
the work of Karperaki [157], where finite element models of both are exploited for
calculations involving simulations of large floating structures in waves.
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Figure 3.2: Nine dof triangular plate bending element from Batoz et al. [195].
Element edges are denoted as ∂A.

The kinematic assumptions in DKT formulation are to be introduced in a dis-
crete way along the edges of an element to ensure compliance with the kinematic
assumptions. Only C0 continuity requirements need to be satisfied. Particularly,
the Discrete Kirchhoff Triangle (DKT) formulation in [195] consists of the follow-
ing,

1. Total rotations βx, βy are approximated using quadratic Lagrange functions
over the element,i.e.

βx =
6∑

i=1

Ni βxi
, βy =

6∑
i=1

Ni βyi , (3.40)

where βxi
, βyi are the nodal values at the corners (i = 1, 2, 3) and mid-nodes

(i = 4, 5, 6), the Ni(ξ, η) are the shape functions and ξ, η the are coordinates
in the element’s local coordinate system. Definition of the shape functions
can be found in Batoz et al. (1980) [195] and in Appendix B for completeness.

2. Thin plate kinematic assumptions are imposed at the corner and mid-nodes
respectively,

βx + ∂xw = 0, βy + ∂yw = 0, at nodes 1, 2, 3 (3.41)

βsκ + ∂sκw = 0, κ = 4, 5, 6. (3.42)

3. Hermite interpolation is used for w along the edges,

wsκ = − 2

3lij
wi −

1

4
∂siw +

3

2lij
wj −

1

4
∂sjw, (3.43)

with κ denoting the mid-node of side ij and lij equal to the length of corre-
sponding edge.
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4. A linear variation of βn is imposed along the sides, i.e.

βnκ = 0.5(βni
+ βnj

), (3.44)

where 4, 5, 6 denote the mid-node of sides 23, 31 and 12, respectively, see
Batoz et al. [190].

From the above relations, by assuming a cubic variation of w along the sides, w,s

follows a quadratic variation and so does βs. Since w,s matches βs at three points
along each side, the Kirchhoff hypothesis (i.e. γs = βs +w,s = 0) is satisfied along
each of the three boundary edges ∂A. Also, convergence toward the classical thin
plate solution is obtained since the transverse shear strain energy is neglected, and
because the Kirchhoff hypothesis is satisfied align the element boundary.

To obtain βx and βy in terms of the nodal dof vector,

UT = [w(1) θ(1)x θ(1)y w(2) θ(2)x θ(2)y w(3) θ(3)x θ(3)y ], (3.45)

where θx = ∂yw, θy = −∂xw expressing the rotations with respect to the x− and
y−axis respectively holds for compatibility, the following relations are needed on
each side, [

βx
βy

]
=

[
c −s
s c

] [
βn
βs

]
, (3.46)

and [
w,s

w,n

]
=

[
c s
s −c

] [
θn
θs

]
, (3.47)

where c = cos(x,nij) and s = sin(x,nij) in Figure B from Appendix B.
Consequently, the corresponding Discrete Kirchoff Triangle (DKT) shape func-

tion vectors Hx, Hy (with nine components each) are defined so that they comply
with all the above assumptions. Definition of shape functions Hx, Hy and their
derivatives is provided in Batoz et al. [195] and Appendix B for completeness. To
obtain rotations in terms of the nodal dofs,

βx = Hx
T (ξ, η)U, (3.48)

βy = Hy
T (ξ, η)U. (3.49)

The curvatures can now be computed as,

χ = [∂xβx ∂yβy ∂yβx + ∂xβy]
T = BbU, (3.50)

with

Bb =

 ∂xH
T
x

∂yH
T
y

∂yH
T
x + ∂xH

T
y

 =

 HT
x,ξ ξ,x +HT

x,η η,x
HT

y,ξ ξ,y +HT
y,η η,y

HT
x,ξ ξ,y +HT

x,η η,y +HT
y,ξ ξ,x +HT

y,η η,x

 , (3.51)
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where using curvilinear system notation,

ξ,x =
y,η
J
, ξ,y = −x,η

J
, η,x = −y,ξ

J
, η,y =

x,ξ
J
, (3.52)

for which the Jacobian J = x,ξy,η − y,ξx,η equals twice the size of each triangular
element. More details regarding the expression above can be found in Batoz et al.
[195].

Stiffness matrix

By means of Eqs. (3.34) and (3.3.1) the minimization principle involving the total
potential energy functional, δU = 0, yields the element stiffness matrix expression,

Kloc =

∫
A

Bb
TDbBb dA. (3.53)

If the thickness and material properties are constant over the element, then exact
integration of Kloc is obtained using three points for numerical integration located
inside the DKT element assuming Gauss quadrature.

Mass matrix

In the Discrete Kirchhoff Triangle, the rotations are represented by quadratic
surfaces, and the lateral deflection (i.e. bending displacement) by cubic curves
that are defined only on the edges. As it is not possible to define a consistent mass
matrix for this element and therefore the pseudo-consistent mass matrix definition
introduced in Sydenstricker et al. [196] is implemented.

Particularly, a cubic polunomial defines the lateral deflections w in the trian-
gle’s interiors and on the edges coincides with the curves used in DKT,

w = NwU, (3.54)

where Nw = LW ·HW following the notation in Sydenstricker et al. [196]. The
mass matrix is expressed as,

Mloc = ρh

∫
A

(
Nw

TNw +
h2

12
Hx

THx +
h2

12
Hy

THy

)
dA, (3.55)

where Nw are shape functions defined in Sydenstricker et al. [196] for the field
of bending displacements using a pseudoconsistent formulation. The mass matrix
includes rotary inertia terms involving the βx, βy shape functions, see, e.g. [197].
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Load vector

For distributed loads, the value fz corresponding to the element centroid is assumed
constant over the whole triangle and the nodal load vector is,

floc = fz
Ae

3
< 1 0 0 1 0 0 1 0 0 >T . (3.56)

3.3.2 Integration and interpolation

In practice, most of the integrals (encountered frequently) either cannot be eval-
uated analytically or the evaluations are very lengthy and tedious. Numerical
integration methods are preferred and the ones that employ Gaussian quadrature
techniques, which were originally designed for one-dimensional cases, are used ex-
tensively. This family of quadrature has gained popularity since the formulas are
simple to implement and they guarantee exact integration for polynomials less
than a specified degree.

Gaussian quadrature naturally extends to two- and three-dimensional rectan-
gular domains according to the notion of Cartesian product. Mapping techniques
allow for the implementation of Gaussian quadrature to triangular domains. A
Table summarizing the coordinates and weights for 3, 7 and 13-point integration
over triangular domains can be found in Bathe [198] and the integration formula
holds as, ∫ ∫

Fdrds =
1

2

∑
ciF (ri, si), (3.57)

where ci denotes the weights, (ri, si) the corresponding domain coordinates and
F (ri, si) the function evaluation at the integration points.

An interpolation scheme is also essential for mapping information, such as
thickness and distributed load, onto the triangle mesh. The inverse distance
weighting (IDW) scheme defined in Shepard [199] is implemented for that pur-
pose. Given a set of sample points {xi, ui | for xi ∈ Rn, ui ∈ R}Ni=1, the IDW
interpolation function denoted as u(x) : Rn → R is defined as follows,

u(x) =

∑N
i=1 ωi(x)ui∑N
i=1 ωi(x)

, if d(x,xi) ̸= 0, for all i (3.58)

= ui, if d(x,xi) = 0, for some i,

with

ωi =
1

d(x,xi)p
, (3.59)

where x denotes an interpolated (arbitrary) point, xi is an interpolating (known)
point, d is a given distance (metric operator) from the known point xi to the
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unknown point x, N is the total number of known points used in interpolation
and p is a positive real number, called the power parameter.

Scattered data interpolation will also be useful for coupling the 2dFEM solver
with the hydrodynamic solver 3dBEM (see Chapter 2) for addressing problems of
fluid-structure interaction. Moreover, since the above interpolation scheme can be
implemented to each x independently, the routine is parallelizable. The develop-
ment of a CUDA kernel for accelarating the computations related to interpolation
with IDW is left as a future extension.

3.3.3 Global matrix assembly

The mesher provides all relevant information regarding the properties of each tri-
angle and its neighbors, for the generated unstructured mesh. Each triangle is
characterized by three nodes and nine degrees of freedom are assigned to it (three
per node). The process for global matrix assembly based on the LM array de-
scribed in Hughes [193] is implemented in the developed plate solver. First, the
element nodal data array – which relates local to global node numbers – is defined
as

IEN(a, e) = A, (3.60)

in which a is the local node number, e is the element number, and A is the global
node number. The dimensions of IEN are M = 3, N = Nelem. The destination
array is defined as

ID(i, A) = P, (3.61)

in which i the local dof number and P is the global equation number. Finally, the
location matrix is defined as

LM(k, e) = ID(i, IEN(a, e)), (3.62)

where k is an index from 1− 9, since LM has dimensions M = 9, N = Nelem.

3.3.4 Static and dynamic problems

The structural governing equation residuals in discretized form, with respect to
q(x, y; t) representing the vector of unknowns in terms of transverse deflection and
rotations, can be written as,

Mglob
d2q

dt2
+Cglob

dq

dt
+Kglob q = Fglob(t), (3.63)

with
q = [w(1), b(1)x , b(1)y , ..., w(i), b(i)x , b

(i)
y ]T , i = {1, 2, ..Nnodes}, (3.64)
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Figure 3.3: Unstructured mesh with Nelem = 167 elements generated using De-
launay triangulation. Black squares denote the nodes affected by the boundary
conditions.

where i denotes the global node number in the planar mesh assumed to coincide
with mid-surface of the plate and Nnodes is the number of DKT nodes in the mesh.
Assuming that NGEN = 3Nnodes represents the total number of global unknowns,
then Mglob denotes the linear structural global mass matrix of size NGEN ×NGEN ,
Kglob is the global stiffness matrix of sizeNGEN×NGEN , Cglob is the global damping
matrix of same size, and Fglob(t) is the global load vector of size NGEN × 1. The
latter represents a pressure distribution that acts on the plate mid-surface and
it is assumed to be time-varying; similar to the vector of unknowns that is also
time-varying.

Plate boundary conditions. In the present study I consider the boundary
condition types introduced previously in Sec. 3.2.3 and particularly the case of
simply supported and fully clamped edges. Since these boundary conditions are not
satisfied a priori (i.e. in a weak form), they are enforced by means of additional
constraints. This approach is easy to implement and yields satisfactory results
in terms of accuracy as shown in the verification studies presented in Sec. 3.4.
Enforcing a fixed support at a node translates into setting the corresponding dofs
to zero,

w(i) = θ(i)x = θ(i)y = 0, (3.65)

whereas for simply supported nodes only the transversal deflection is set to zero,

w(i) = 0. (3.66)

Satisfaction of the above boundary conditions is achieved by using the method of
Lagrange multipliers leading to augmented global matrices which are formulated to
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include the constraints, referring to the enforced boundary conditions, as additional
equations.

Following a semi-discrete notation the augmented Eq. (3.63) takes the form,

Maug
d2qaug

dt2
+Caug

dqaug

dt
+Kaug qaug = Faug(t). (3.67)

Similarly, the vector of unknowns is also augmented to accommodate the extra
equations, i.e.,

qaug =

[
q
λ

]
, (3.68)

where q is the matrix of nodal unknowns with size NGEN×1 introduced previously
in Eq. (3.68), λ is an Ns × 1 matrix containing the Lagrange multiplies to be
defined upon solution of the problem and Ns denotes the number of dofs associated
with the boundary conditions.

An augmented stiffness matrix is introduced as,

Kaug =

[
Kglob (KL)

T

KL [0]Ns×Ns

]
, (3.69)

where matrixKL has a size Ns×NGEN and carries the implementation of Lagrange
multipliers for enforcing the boundary conditions as constrains. Its transpose is
used on the upper right portion of the augmented stiffness matrix. Moreover, the
rows of KL are defined as,

rowj = [ 0, ..., 0,︸ ︷︷ ︸
Bdof (j−1)

1, 0, ..., 0 ], j = {1, ..., Ns}, (3.70)

assuming that matrix Bdof contains the global indices of the nodal unknowns
affected by the boundary conditions and has a size of 1×Ns. Also, the augmented
force and mass matrices are defined as follows,

Maug =

[
Mglob [0]Ns×NGEN

[0]Ns×NGEN
[0]Ns×Ns

]
, (3.71)

Faug(t) =

[
Fglob(t)
[0]Ns×1

]
. (3.72)

From now on the global matrices are defined based on their augmented formulation
and the same holds for the Rayleigh damping (see Sec. 3.3.4), that is defined using
the augmented stiffness and mass matrices.

This process presented above implies that the constraints are enforced using
Lagrange multipliers and following a more rigorous mathematical notation start-
ing from the weak form we can derive the discrete form of the above equations.
This approach deteriorates the condition number of the mass matrix, however the
system of equations can be solved with the EIGEN sparse matrix linear solvers
(LU factorization, QR factorization) using double precision arithmetic.

https://eigen.tuxfamily.org/dox/group__TopicSparseSystems.html
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Rayleigh proportional damping

Classical viscous damping, also known as Rayleigh or proportional damping, is
defined using a linear combination of mass and stiffness. The damping matrix
Caug is given by,

Caug = aMaug + bKaug, (3.73)

where a, b ∈ R are the constants of proportionality. Mass and stiffness matri-
ces are denoted as Maug, Kaug respectively. The stiffness-proportional term con-
tributes damping that is linearly proportional to the response frequency, whereas
the mass-proportional term contributes damping that is inversely proportional to
the response frequency. An example of damping ratios as a function of natural
frequency is presented in Figure 3.3.4, where the first portion of the curve shows
non-linearity and beyond that the curve becomes linear.

Despite its simplicity, one of the less attractive features of Rayleigh damping
is that the damping ratio ζ varies with response frequency. Especially for sys-
tems with many degrees of freedom, the selection of meaningful Rayleigh damping
coefficients prior to each analysis is not straightforward.

In this work, I follow the methodology described in Chowdhury & Dasgupta
[200] since it produces rational estimates for damping coefficients a, b ∈ R that
take into consideration that modal mass participation decreases at higher modes.
The selection methodology begins with modal analysis and identification of the
significant modes (= m), i.e. the natural frequencies fi. Then, I select a damping
ratio ζ1 for the first mode, and a ratio ζm for the m-th significant mode. For
intermediate modes i, i.e., 1 < i < m, damping ratios ζi are based on linear
interpolation,

ζi =
ζm − ζ1
fm − f1

(fi − f1) + ζ1, (3.74)

whereas for modes greater than m, i.e., m < i < 2.5m, damping ratio values are
extrapolated using,

ζi =
ζm − ζ1
fm+1 − f1

(fi − f1) + ζ1. (3.75)

Based on the above set of data, I obtain bi ∈ R as,

bi =
2ζ1f1 − 2ζifi
f 2
1 − f 2

i

. (3.76)

Then by substituting this value into the following expression I obtain a ∈ R,

ai = 2ζ1f1 − bif
2
1 . (3.77)

Repeating the process in Eqs. (3.76)-(3.77) for the first and n = 2.5m−th mode
yields two sets of Rayleigh damping coefficients denoted as (a1, b1), (a2.5m, b2.5m).
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An averaging process is then used as a better approximation for the final Rayleigh
coefficients,

a = 0.5(a1 + a2.5m), b = 0.5(b1 + b2.5m). (3.78)

For instance, if m = 2, then the higher mode examined for damping ratios is the
n = 5-th mode and a modal analysis considering at least five natural frequencies
is sufficient.

Figure 3.4: Example of Rayleigh proportional damping for ζ1 = ζ2 = 0.022. The
first five natural frequencies given as input as shown with circles.

Time integration of equivalent 1st-order system

We can produce an equivalent system of first order equations, considering for
simplicity that q denotes the augmented vector of unknowns defined in Eq. (3.68),
by setting

u =

[
q̇
q

]
, (3.79)

and bring the dynamic equation into the form[
Maug 0
0 I

]
· u̇+

[
Caug Kaug

−I 0

]
· u =

[
Faug(t)

0

]
, (3.80)

where I is the identity matrix. Based on the above and assuming that u̇ =
f(t,u(t)), where ∆t denotes the time step, counter n = {1, ..., nmax} for the time
step index, the standard Crank-Nicolson method hold as,

un = un−1 +
1

2
∆t

(
f(tn−1, un−1) + f(tn, un)

)
. (3.81)
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Time integration of the 2nd-order system

To avoid handling a second-order system of equations, one can implement the
Newmark method, considering for simplicity that q denotes the augmented vector
of unknowns defined in Eq. (3.68) One advantage of not reducing to a system
of first-order equation is that Newmark method results in matrices with better
condition numbers. It is formulated in a predictor/corrector manner, depending
on whether the last terms in the expressions below are retained,

q̇n = q̇n−1 + (1− γ)∆t q̈n−1 + γ∆t q̈n, (3.82)

qn = qn−1 + hq̇n−1 +∆t2
(1
2
− β

)
q̈n−1 +∆t2 βq̈n, (3.83)

where γ, β are quadrature parameters; typical values include γ = 1/2, β = 1/6
(linear interpolation) and γ = 1/2, β = 1/4 (averaging). The last term in the above
expressions when omitted denotes the predictor formulas and when included the
corrector expressions.

To implement the Newmark Method, I write the dynamic equation for the
n−th time step and substitute the predictor equations above into Eq. (3.67) to
produce, [

Maug + γ∆tCaug + β∆t2Kaug

]
q̈n = Faug(t)n

−Caug

[
q̇n−1 + (1− γ)∆t q̈n−1

]
−Kaug

[
qn−1 +∆t q̇n−1 +∆t2

(1
2
− β

)
q̈n−1

]
. (3.84)

Implementation of the predictor/corrector Newmark time integration requires the
following steps,

1. Considering that the time step ∆t is uniform, then we can factor once and

store the expression
[
Maug + γ∆tCaug + β∆t2Kaug

]
,

2. The above system of equations is solved with respect to q̈n and

3. The result is then substituted to the corrector expressions in Eqs. (3.82)-
(3.83) to refresh predictions for the velocity and displacement respectively.

This method requires initial conditions for the acceleration, velocity and displace-
ment q̈n−1, q̇n−1, qn−1 to obtain estimates for the n−th time step (assuming that
n = 1 at the first time step). In addition, the forcing term at n−the time step is
needed. In cases where the forcing terms equals to zero at the first time step, esti-
mates for the acceleration need to be produced, i.e. using Eq. (3.84) in conjunction
with data for the displacement and velocity to start the time marching.
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3.4 Numerical results and verification

The 2dFEM source code is written in C/C++, routines from the standard LA-
PACK and BLAS libraries are used for vector/matrix operations and linear so-
lution of sparse systems is performed using the EIGEN library. Pre- and post-
processing is conducted in Matlab 2022a. Regarding the mesh generation, the
Delaunay triangulation (DT) routine from the Matlab PDE Toolkit is used. All
computations were performed in an AMD Ryzen 9 3900XT workstation with 32GB
RAM equipped with an NVIDIA GeForce RTX 3080 (10GB VRAM).

In this section I examine problems of modal analysis for rectangular plates of
constant and linearly varying thickness assuming boundary conditions that are
of interest to validate DKT stiffness/mass matrices. Comparison against Navier
analytic solution for a rectangular plate is included for completeness to validate
the forcing vector. Finally, a study case involving a plate with varying thickness
and distributed load resembling the geometry and loading condition of a wing
operating as marine thruster is examined and our results compared against ANSYS
Mechanical.

3.4.1 Eigenvalues and mesh sensitivity

The equation treated in the sense of modal analysis via finite elements holds as,

Maug
d2q

dt2
+Kaug q = 0, (3.85)

where q is the vector of structural displacements and rotations and M is the aug-
mented mass matrix, K is the augmented stiffness matrix (see also Sec. 3.3.4).
Assuming harmonic nodal displacements/rotations I derive the generalized eigen-
problem,

Kaug ϕ = ω2Maugϕ, (3.86)

where ωn the free vibration frequencies in rad/s,
√
ω2
n/(2π) the eigenvalues in Hz

and ϕn the corresponding modal shape (eigen)vector, see Bathe [198].

Rectangular plates with constant thickness. In Leissa [201] comprehensive
and accurate analytical results concerning the free vibration problem of rectangular
plates with constant thickness based on the CPT model. All possible combina-
tions (21) of clamped, simply supported, and free edge conditions are considered,
suggesting that this work is indeed a standard reference for benchmarking in the
field.

Verification of the FEM begins with comparisons against the closed-form so-
lutions for the free vibration problem of an isotropic, homogeneous rectangular
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plate with constant thickness. The following boundary conditions are considered:
clamped along edges (C-C-C-C), simply supported along edges (S-S-S-S), all edges
clamped and all other edges free from loading (C-F-F-F).

Regarding the boundary condition symbolism, concerning a more general ex-
ample, SS-C-SS-F notation refers to a rectangular plate with the edges x = 0,
y = 0, x = a, y = b having simply-supported, clamped, simply supported, and free
boundary conditions, respectively.

The completely clamped and simply supported cases are frequently used as
a test problem for analytical methods because of the simplicity of the boundary
conditions. Cantilever plate case is included as a benchmark since it is linked
directly to technological applications involving lifting and stabilizing surfaces in the
marine and aerospace industries. Table 3.2 summarizes the benchmark parameters.
The comparison is performed concerning the frequency parameter λ = ωa2

√
ρ/D,

thus the plate properties are included to support that this study case lies within
the assumptions of thin plate theory for a/h ≤ 0.1.

Modal analysis using the 2dFEM solver is performed using coarse and fine
meshes to obtain additional information regarding mesh sensitivity and conver-
gence. The results for all meshes, i.e. Nelem = {334, 1336, 5344}, are summarized
in Tables 3.3-3.5 for then thin plate benchmark case. The modal frequencies ob-
tained via numerical computations are arranged in ascending order. The coarse
and fine grids are provided in Figure 3.5.

Table 3.2: Plate properties of thin plate for comparison with [201],[202].

Material properties Geometry

Young’s modulus E = 210GPa dimensions a = b = 10m
Poisson’s ratio ν = 0.3 thickness h = 0.01m
density ρ = 7850kg/m3 aspect ratio a/b = 1
surface-density
(ρA = ρh)

ρA = 78.5kg/m2 thickness/chord h/a = 0.001

The comparison between our finite element model and the benchmark solutions
from Leissa [201] suggest that our DKT solver is capable of predicting the eigen-
frequencies with good accuracy as shown in Tables 3.3-3.5. It is worth mentioning
that as the mesh becomes finer, convergence is achieved; however each natural
frequency has its own rate of convergence. This behavior is attributed to the
orientation of triangles in the unstructured mesh, since it may affects convergence.

The accuracy improves for finer mesh discretizations as expected, ensuring h-
convergence. In Tables 3.3-3.4, the intermediate mesh discretization with Nelem =
1336 the accuracy is of the order of 1.0%, whereas for the fine mesh with Nelem =
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(a) Nelem = 334 (b) Nelem = 5344

Figure 3.5: Modal analysis using (a) coarse and (b) fine mesh, with black squares
indicating the boundary nodes.

5344 an accuracy of 0.2% is achieved. The results show that accuracy depends
both on the discretization and boundary conditions.

Table 3.3: Frequency parameters λ = ωa2
√
ρh/D for C-C-C-C rectangular plate

with constant thickness.

id Leissa
[201]

DKT
(334)

Diff(%) DKT
(1336)

Diff(%) DKT
(5344)

Diff(%)

1 35.992 36.0121 -0.0558 35.9927 -0.0019 35.9870 0.0139
2 73.413 73.6732 -0.3544 73.4735 -0.0824 73.4138 -0.0011
3 73.413 73.6961 -0.3856 73.4812 -0.0929 73.4159 -0.0040
4 108.27 109.1788 -0.8394 108.4826 -0.1964 108.2833 -0.0123
5 131.64 132.9158 -0.9692 131.9773 -0.2562 131.6832 -0.0328
6 132.24 134.8479 -1.9721 132.9123 -0.5084 132.3826 -0.1078

This is evident from Table 3.5 where the fine mesh yields an accuracy of the
order of 0.70%. The C-F-F-F boundary conditions are considered more demanding
than the fully-clamped case. Eigen-function contour plots are provided for com-
pleteness in Figures 3.6-3.8 related to all the examined boundary conditions. Each
mode is accompanied by a color bar referring to the bending deflection w in the
z−axis. These benchmarks verify the population of stiffness and mass matrices in
the source code.
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Figure 3.6: Eigenfunction contour plots for C-C-C-C results from Table 3.3 with
color bar refering to the z−coordinate.
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Figure 3.7: Eigenfunction contour plots for S-S-S-S results from Table 3.4 with
color bar refering to the z−coordinate.
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Figure 3.8: Eigenfunction contour plots for C-F-F-F results from Table 3.3 with
color bar refering to the z−coordinate and plate clamped along x = 0.
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Table 3.4: Frequency parameters λ = ωa2
√
ρh/D for S-S-S-S rectangular plate

with constant thickness.

id Leissa
[201]

DKT
(334)

Diff(%) DKT
(1336)

Diff(%) DKT
(5344)

Diff(%)

1 19.7392 19.8320 -0.4701 19.7626 -0.1185 19.7451 -0.0299
2 49.3480 49.8485 -1.0142 49.4771 -0.2616 49.3804 -0.0657
3 49.3480 49.9212 -1.1615 49.4947 -0.2973 49.3847 -0.0744
4 78.9568 80.5741 -2.0483 79.3722 -0.5261 79.0610 -0.1320
5 98.6960 100.6417 -1.9714 99.2081 -0.5189 98.8250 -0.1307
6 98.6960 101.5332 -2.8747 99.4196 -0.7332 98.8773 -0.1837

Table 3.5: Frequency parameters λ = ωa2
√
ρh/D for C-F-F-F rectangular plate

with constant thickness

id Leissa
[201]

DKT
(334)

Diff(%) DKT
(1336)

Diff(%) DKT
(5344)

Diff(%)

1 3.4917 3.4674 0.6959 3.4702 0.6157 3.4708 0.5986
2 8.5246 8.4045 0.2358 8.5059 0.2194 8.5062 0.2158
3 21.429 21.2803 0.6939 21.2835 0.6790 21.2838 0.6776
4 27.331 27.1772 0.5627 27.1947 0.4987 27.1977 0.4877
5 31.111 31.0194 0.2944 30.9730 0.4436 30.9590 0.4886
6 54.443 54.6274 -0.3387 54.3050 0.2535 54.2140 0.4206

Rectangular plates with linearly varying thickness. For the analysis of
plates with thickness variation, in our implementation each DKT element receives
information concerning the local thickness on its centroid. Thus, thickness is
assumed constant within each element. Shepard interpolation with parameter
p = 2.55 is used to assign thickness values to each element based on scattered
thickness data.

In Katsikadelis & Sapountzakis [202] results concerning the free vibration of
linearly tapered plates along the x−axis based on a boundary element method are
presented. The thickness profile in SI units is defined as,

h(x, y) = ho(1 + τx
x

a
), x ∈ [xo, x1] = [0, a]. (3.87)

where τx = h1/ho − 1 denotes the taper ratio and ho = h(0, y), h1 = h(a, y) are
known values. Based on the above profile, the thickness along x = 0 is less than
thickness along x = a, i.e. ho < h1.

The case of a fully-clamped plate with properties based on Table 3.2 is selected
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for comparison. Table 3.6 contains frequency parameter results obtained from
the present method and compared against Katsikadelis & Sapountzakis [202] and
Kuttler at al. [203]. The latter consists of a finite element model based on the
CPT with which our predictions are in very good agreement (0.3% accuracy).

The deviations observed regarding the comparison against Katsikadelis & Sa-
pountzakis [202] results are more evident in higher frequencies and can be at-
tributed to their numerical implementation using boundary elements. It is impor-
tant to note that results in [202] deviate (up to 3.95%) from the analytic solution
in Leissa [201] for C-C-C-C thin rectangular plates with constant thickness. Since,
our method is in excellent agreement (0.1% accuracy) with Leissa [201] for this
standard case as shown in Table 3.3, the deviations observed for the linearly ta-
pered case are justified. Regarding the C-F-F-F rectangular plate with linear taper

Table 3.6: Frequency parameters Ω = ωa2
√
ρA(ho)/D(ho) for C-C-C-C rectangu-

lar plate with taper ratio τx = 0.2 (ho = 0.01m, h1 = 0.012m).

τx = 0.2 τx = 0.4

id Katsikadelis
[202]

Kuttler
[203]

DKT
(5344)

Katsikadelis
[202]

Kuttler
[203]

DKT
(5344)

Ω2
1 0.1553·104 0.1559·104 0.1557·104 0.1827·104 0.1837·104 0.1832·104

Ω2
2 0.6182·104 0.6443·104 0.6471·104 0.7251·104 0.7605·104 0.7587·104

Ω2
3 0.6212·104 0.6469·104 0.6483·104 0.7383·104 0.7632·104 0.7630·104

Ω2
4 0.1390·105 0.1407·105 0.1411·105 0.1639·105 - 0.1664·105

in the x−axis, relevant results are also presented in Shufrin & Eisenberger [204].
The thickness profile along the x−axis in their study is based on,

h(x, y) = ho(1− τx
x

a
), x ∈ [xo, x1] = [0, a]. (3.88)

where τx denotes the taper ratio. Based on the above profile ho > h1. Regarding
the plate properties I consider data from Table 3.2, however the thickness is as-
sumed to be on the limit of moderately thick plates with ho/a = 0.1, since [204]
examines standard and higher-order plate models.

Table 3.7 contains the comparison results against the CPT model in Shufrin
& Eisenberger [204]. We can observe that the first two frequencies are predicted
with good accuracy, whereas for higher frequencies discrepancies are evident.

Table 3.8 contains results concerning the C-C-C-C case with τx = 0.25 for ref-
erence, where it is shown that for the standard case a deviation of up to 3% is
observed at higher frequencies. Deviations can be attributed to the interpolation
scheme based on which the distributed thickness properties are assigned to each
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element in our solver and also consideration of boundary conditions via augmen-
tation of the system of equations. The C-F-F-F problem is considered challenging
and taking into consideration that I compared against another numerical model,
the results overall lie within acceptable limits.

Table 3.7: Frequency parameters λs = ωa2
√
ρho/D(ho)/π

2 for C-F-F-F rectangu-
lar plate with taper ratio τx = 0.5 (ho = 1.0m, h1 = 0.5m).

id Shufrin [204] DKT
(5344)

Diff(%)

1 0.3859 0.3816 1.13
2 0.7563 0.7541 0.29
3 1.8485 1.7598 4.79
4 1.9438 1.9924 -2.50
5 2.4184 2.3659 2.17
6 4.0317 3.9625 1.71

Table 3.8: Frequency parameters λs = ωa2
√
ρho/D(ho)/π

2 for C-C-C-C rectan-
gular plate with taper ratio τx = 0.25 (ho = 1.0m, h1 = 0.75m).

id Shufrin [204] DKT
(5344)

Diff(%)

1 3.1767 3.1630 0.43
2 6.4650 6.3801 1.31
3 6.4782 6.3920 1.33
4 9.5610 9.3505 2.20
5 11.5702 11.2599 2.68
6 11.6375 11.3580 2.40

The eigenfunction contours are included in Figure 3.9 for comparison purposes
against Figure 3.8, where we can observe the effects of linear thickness variation
on the nondimensional frequencies and the eigenfunctions. All the above test cases
support the validity of the developed numerical tool for thin tapered plate analysis.

3.4.2 Static response

The system of equations treated via finite element analysis is,

Kaug q = Faug (3.89)
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Figure 3.9: Eigenfunction contour plots for C-F-F-F results from Table 3.7 with
color bar referring to the z−coordinate.



3.4. NUMERICAL RESULTS AND VERIFICATION 145

where q is the vector of structural displacements/rotations, K is the augmented
stiffness matrix and F the augmented load vector in Pa (see also Sec. 3.3.4).

Navier solution for S-S-S-S rectangular plate. Next, the static solution
under (i) uniform and (ii) concentrated loading scenarios is considered. For the
simply supported plate with constant thickness, numerical results are compared
against analytical solutions. Navier solutions for the S-S-S-S rectangular plate
case are derived by means of Fourier series representations [188]. For the case of
uniform load, the plate deflection is expressed as

w(x, y) =
16p0
Dπ6

∑
n=1,3,5..

∑
n=1,3,5..

sin(mπx)sin(nπy)

mn(m2/a2 + n2/b2)2
, (3.90)

where a, b are the x− and y−expanded dimensions respectively. For the concen-
trated load positioned at (ξ, η) the deflection reduces to,

w(x, y) =
16p0
Dabπ6

∑
n=1,3,5..

∑
n=1,3,5..

sin(mπξ/a)sin(nπη/b)sin(mπx/a)sin(nπy/b)

mn(m2/a2 + n2/b2)2
.

(3.91)
Setting po = 100N and keeping a large number of terms to ensure convergence, the
results for (ξ, η) = (5, 5) are presented in Table 3.9 and Figure below. The plate
properties are provided in Table 3.2, and a mesh of Nelem = 1336 is considered.

Regarding the sign convention of the present formulation, loads and displace-
ments are positive when directed towards the positive z-axis. The results are in
excellent agreement with the analytical solution. The selected test case illustrates
that concentrated load conditions lead to higher bending displacement compared
to the same load uniformly distributed along the surface of the plate.

Table 3.9: Maximum bending displacement wmax
0 (m) for static load cases.

Timoshenko [188] DKT (1336) Diff(%)
concentrated 0.6015·10−2 0.6034·10−2 +0.3070

uniform 0.2111·10−2 0.2108·10−2 -0.1427

Rectangular plate with constant thickness under distributed load. The
following test case is included to verify that the present numerical tool is capable
of predicting bending displacements under distributed load conditions. I com-
pared results obtained with the 2dFEM solver against ANSYS Mechanical 2023
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(a) po = 100N (b) po = 1Pa

Figure 3.10: Comparison with Navier solution in [188] for S-S-S-S rectangular plate
with properties in Table 3.2 under (a) concentrated and (b) uniform load.

R2 (Student) for a rectangular plate with properties shown in Table 3.2 under a
distributed load given by,

fx =
1

s

√
2π exp

(
− 0.5[(x0 −m)/s]2

)
, x0, y0 ∈ [−1, 1], (3.92)

x = a · 0.5(1− x0), y = b · 0.5(y0 + 1),

where s = 0.2,m = 0.6 are parameters and a, b are the main plate dimensions. The
distributed load over the plate surface is shown schematically in Figure 3.11. For
this example, Shepard interpolation parameter p = 5.55 is considered for mapping
the distributed load data onto the fem plate elements.

Figure 3.11: Distributed load scenario for 2dFEM. Positive load yields bending
deflection in the same direction.
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Regarding the boundary conditions C-F-F-F (clamped along x = 0) and F-
F-C-F (along x = a) are considered. This distribution in Eq. (3.92) resembles
the hydrodynamic loading of a wing that undergoes a prescribed flapping motion,
these boundary conditions are of value. Particularly, C-F-F-F models a flapping
wing that is actuated from its leading edge. Similarly, F-F-C-F models a T-foil
scenario, where due to symmetry only the half wing is simulated and the clamped
edge corresponds to the location of the vertical skeg.

ANSYS Mechanical is a commercial software that is used worldwide for edu-
cation and industry applications. It is important to note that the sign convention
in ANSYS Mechanical differs from 2dFEM since negative pressure yields positive
bending displacements. For comparison purposes, we used the legacy SHELL36
element which is very similar to the DKT for thin plates. In Geometry < Sur-
face Body < Commands (APDL), the following lines can be added to control the
element used in the simulations and plate thickness

et, matid, SHELL63

etcontrol, set, on

r, matid, 0.01

The distributed load is imported as tabulated data (in .csv format) using the
‘External Data’ from the ‘Component Systems’ in ANSYS Workbench and it is
linked to the Setup, see also the ANSYS GUI in Figure 3.15. Similarly, for the
case of variable thickness plates, tabulated data can be imported using ‘External
Data’ to incorporate distributed thickness profiles into the analysis. However, in
this case, it is linked to the ‘Model’.

The static response of the plate as obtained using the 2dFEM is shown in Fig-
ures 3.12-3.12 for the F-F-C-F and C-F-F-F boundary conditions respectively. Ta-
ble 3.4.2 summarized results for the maximum bending displacement from 2dFEM
and ANSYS. For the simulations, 20000 SHELL63 elements were used to achieve
maximum accuracy. The present method is in excellent agreement with ANSYS
results.

The corresponding ANSYS contour plots shown in Figure 3.14 for both sce-
narios agree with the results in Figures 3.12-3.12, supporting the above statement.
Moreover, the results highlight effects of boundary conditions on static response.

Rectangular plate with variable thickness under distributed load. In
addition, the case of a rectangular plate with thickness variation in the x−axis
under the distributed load is examined. The thickness profile is based on the NACA
0012 hydrofoil section. The profile is based on the hydrofoil section superimposed
with a filter function that increases the values near leading/trailing edges to ensure
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Figure 3.12: Bending displacement [left] and contour [right] for the C-F-F-F plate
under distributed load.

Figure 3.13: Bending displacement [left] and contour [right] for the F-F-C-F plate
under distributed load.
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Table 3.10: Maximum bending displacement wmax
0 (m) for distributed load case.

ANSYS SHELL63 DKT (1336) Diff(%)
C-F-F-F 0.005974 0.006009 0.58
F-F-C-F 0.040813 0.040846 0.08

(a) (b)

Figure 3.14: ANSYS contour plots for bending displacement: (a) C-F-F-F and (b)
F-F-C-F plates with constant thickness h = 0.01m under distributed load.

Figure 3.15: Static Structural with ‘External Data’ in ANSYS Workbench.

finite thickness near the edges. A normalized filter function given by,

f2(xnaca) =
f1(xnaca)

max|f1(xnaca)|
, f1(xnaca) = x2naca, (3.93)
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is used in conjunction with,

hnaca = 2 (0.1 ynaca + 0.01 f2(xnaca)), (3.94)

where (xnaca, ynaca) denote the NACA 0012 hydrofoil section coordinates, to de-
scribe the thickness distribution shown schematically in Figure 3.16. Please note
that the through thickness, hence the multiplication with two, is taken into con-
sideration for simulations with finite elements.

Figure 3.16: Distributed thickness based on hydrofoil section.

It was not possible to use SHELL63 elements for plates with thickness vari-
ability and instead, a mesh of 20000 SHELL181 elements was used. Table 3.11
summarizes results for maximum bending displacement, where good agreement
between the present method and ANSYS is observed. Deviations are attributed
to the element selection and accuracy lies within acceptable limits. Both pres-
sure and thickness distributions are uniform in the y−axis, thus the contour plots
for this case are similar to the previous case and only the magnitude of bending
displacement is different.

These comparisons suggest that the developed finite element solver 2dFEM is
suitable for static response predictions for thin tapered plates under distributed
load conditions. The interpolation scheme based on the Shepard method is suf-
ficient. Taking this a step further, the same solver is capable of predicting the
dynamic response of flexible plates as discussed in the following section.

Finally, I consider the following case,

hnaca = 2 (ynaca + 0.01 f2(xnaca)), (3.95)
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which is at the limit of thin plates, since h(x, y)/a ≤ 0.12. Results obtained using
2dFEM and ANSYS for F-F-C-F are summarized in Table 3.12 regarding the max-
imum bending displacement. The present model is suitable for predictions where
h/a < 0.1, otherwise higher-order elements need to be taken into consideration
to account for shear deformation effects. In Karperaki [157] finite element models
based on shear deformation theory are formulated, thus incorporating these ele-
ments into the 2dFEM solver to improve predictions on moderately-thick plates
is left for future work.

Table 3.11: Maximum bending displacement wmax
0 (m) due to distributed load for

plate with h(x, y)/a ≤ 0.012.

ANSYS SHELL181 DKT (5334) Diff(%)
C-F-F-F 1.2989·10−5 1.3457·10−5 3.5
F-F-C-F 3.9368·10−5 3.9268·10−5 0.33

Table 3.12: Maximum bending displacement wmax
0 (m) due to distributed load for

plate with h(x, y)/a ≤ 0.12.

ANSYS SHELL181 DKT (5334) Diff(%)
F-F-C-F 4.6067·10−8 4.4886·10−8 2.35

3.5 Discussion and future extensions

In this Chapter, I propose a thin plate model (CPT) with flexural rigidity vari-
ability for the hydromechanics of wings operating as marine thrusters. For the
numerical analysis of static and dynamic problems related to general plate config-
urations is based on a finite element method using the low-cost 3-node Discrete
Kirchhoff Triangle (DKT).

The 2dFEM solver is developed in C/C++ and various verification studies are
presented to support the validity of the developed scheme. Verification studies
included modal analysis of tapered plates and static solutions. These studies
involve the global matrices, refer to various standard boundary conditions and
prove that the 2dFEM is suitable for predictions on thin plates with thickness
variability.

Direct extensions related to the numerical implementation include:
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� GPU-acceleration. Enabling parallel computation using CUDA kernel
functions for sparse matrix handling, i.e., for instance using the cuSPARSE()
library, and faster scattered data interpolation using the Shepard method,
to decrease the overall computational time.

� Adaptive mesh generation for shapes with curved boundaries. Tri-
angulation in the current version of the 2dFEM solver is based on the De-
launay triangulation routine included in Matlab 2022a PDE Toolbox. The
latter is adaptive and can capture plate geometries with curved boundaries,
thus strategic efforts in mesh adaptability would potentially add value to the
analysis of plates with complex shapes and thickness variability. In addition,
the development or integration of an open-source adaptive mesher would fa-
cilitate cross-platform portability and enable optimization studies involving
design variables that target plate geometry and boundary conditions.

� Failure criteria. Evaluation of various failure criteria is important to the
selection of appropriate materials when designing a structure. For instance,
the von Mises yield criterion suggests that the yielding of materials begins
when the second deviatoric stress invariant reaches a critical value. In ma-
terial science and engineering, this criterion provides a simple indication for
failure due to yielding, which is expected to occur when von Mises stress
reaches a critical (or maximum) value, i.e., typically this value is the ma-
terial’s yield strength. This is part of a plasticity theory that applies best
to ductile materials, such as metals, and suggests that before yielding the
materials’ response is assumed to be elastic.

σv =
√
σ2
xx − σxxσyy + σ2

yy + 3σ2
xy < σmax. (3.96)

Evaluating the von Mises criterion requires straight-forward post-processing
related to calculating the stress components in Eqs. (3.8), and due to its
simplicity is widely used, see, e.g., Garg et al. [101] where the above is
included in the constraints for a high-fidelity multi-point hydro-structural
optimization for a 3-D hydrofoil.

All the above implementations are direct and can be addressed with relative
ease. Future extensions that are considered more demanding, yet open the field of
future applications where the 2dFEM solver can be useful, include the following:

� Large deflections. Enriching the thin plate model by retaining non-linear
terms to address problems of moderate rotations, or even large deflections
using the Föppl–von Kármán equations. This model is derived from strain-
displacement relations (von Kármán strains) corresponding to the three-
dimensional Lagrangian Green strain tensor. Neglecting higher-order terms
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but retaining the following and assuming small strains/moderate rotation,(∂w
∂x

)2

,
(∂w
∂y

)2

,
∂w

∂x

∂w

∂y
, (3.97)

allows for accurate predictions on more flexible wings. Especially for cases
where the forcing frequency is high, evaluating the above terms (in the post-
processing phase) and comparing them to the unit reveals whether the ex-
amined scenario violates the assumption of small strains/small rotations of
the present 2dFEM model.

� Moderately thick plates. The Discrete Kirchhoff triangle (DKT) can be
directly extented to the Discrete Shear Triangle (DST), that addresses the
problem of moderately thick plates as it is compatible with the Reissner-
Midlin or namely First-order Shear Deformation Theory (FSDT), see also
Batoz & Lardeur (1989) [190] and Batoz & Katili [205]. This type of element
is also studied in Karperaki (2021) [157] where numerical models for large
floating structures are developed. Essentially, extension to FSDT theory
allows for more accurate predictions in cases where the ratio of thickness to
chord (or span) lie above h/a > 0.1.

� Composite plates. Sandwich plate (core, facings) formulations, or lam-
inated composite plates in general, based on CPT and FSDT, have also
been studied. For instance, Reddy [191] introduces extensions of the above
theories to cases of laminated composite plates and shells, and Wang [187]
emphasizes extensions related to sandwich plates. Lifting surfaces made of
composite materials are prime candidates for rapid manufacturing, allow-
ing for more experiments at lower cost, which is not the case for wings
constructed using metals. In addition, manufacturing smaller-scale aquatic-
inspired thrusters using composite materials via layering (hand lay-up, mold-
ing, etc.) are cheaper, supporting the above argument. Considering also
that the optimal selection of composite layers can produce wings with tailor-
made rigidity distributions suggests that theories able to capture the physics
behind composite structures are extremely valuable to the design of these
devices.

� Higher-order terms and non linearity. Enrich the elastic equation
model by including higher order terms and other types of nonlinear damping
to improve predictions. Thin plate models for large displacements are also
an interesting field for research.

� Higher-fidelity fluid-structure interaction. Moreover, coupling the plate
model, or an extended version of it, with a hydrodynamic solver opens the
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field of potential applications. The development of a fluid-structure inter-
action solver for passively morphing lifting surfaces is the topic of our next
Chapter 4, however it is important to note that coupling the developed model
with a viscous CFD solver would allow for the analysis of flexible flapping
thrusters at operating conditions where viscous effects are dominant. Studies
on resonance and hydro-elastic instabilities are also of interest considering
the potential use of flexible lifting surfaces as small-scale autonomous under-
water vehicle appendages related to maneuvering and propulsion applications
[182], or even wave/current source energy harvesting devices [40], [9].



Chapter 4

A strongly coupled fluid-structure
interaction model for flexible
wing thrusters

List of symbols

XY Z Cartesian global (earth-fixed) coordinate system
xyz Cartesian local (body-fitted) coordinate system
U forward motion velocity in m/s
w0(x; t) field of bending deflection
∆Cp hydrodynamic pressure difference
n time-step iteration index
κ internal loop iteration index
J Jacobian matrix
R residual equation
Q load vector

4.1 Background

Conventionally most lifting surfaces for a variety of applications have been made
of metallic alloys, mainly due to the strict requirements for rigid body response
of highly-loaded thin structures. However, one increasingly popular alternative is
composite materials and depending on the application it is now possible to design
composite hydrodynamic lifting surfaces with passive shape adaptability that leads
to performance enhancement; see, e.g., Sacher et al. (2018) [154] and Liao et al.
(2021) [103].

155
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Motivated by this prospect I emphasize on developing a model for the hydro-
elastic analysis of passively deforming wings operating as bio-mimetic thrusters and
explore various design concepts that have the potential to yield enhanced efficiency.
Literature suggests that cost-effective computational tools suitable for performance
predictions on flexible flapping wing thrusters are considered valuable to the design
process of similar bio-inspired devices. Particularly, the findings in Garg et al.
(2017) [206] highlight that the design optimization process of flexible hydrofoils and
lifting-surfaces requires in general coupled hydrodynamic and structural analysis to
achieve truly optimal, physically realizable, and structurally sound designs. Their
work is directly linked to the final stages of lifting surfaces design and testing,
therefore a combination of high-fidelity computational tools and experiments is
used.

The study in Stanford et al. (2010) [170], where potential-based tools are
used for the hydrodynamic analysis of actively morphing wings for animal flight
scenarios, suggests that lower-fidelity numerical tools may help alleviate the burden
of paring down the field of design variables to those of particular importance, when
used alongside higher-fidelity models. It is also mentioned that potential-based
solver may even be used alone during the search process, if it is thought that
the tool is able to adequately capture the physical process that drives the design
concept.

This Chapter is dedicated to the methodology that was developed for the
fluid-structure interaction problem of passively morphing wings with emphasis on
flapping-foil marine thrusters. The numerical tool that is developed, FlexWing3D,
consists of the unsteady boundary element method 3dBEM (see Chapter 2) and
the thin plate finite element solver 2dFEM (see Chapter 3) following a parti-
tioned approach for a strongly coupled scheme. Both solvers have been introduced
previously, therefore here emphasis is given on the coupling algorithm. Parallel
computation techniques are exploited for by the hydrodynamics solver, however
the finite element tool could also benefit from CUDA kernel functions, but this is
left for future development.

4.2 Fluid-structure interaction

Following a partitioned approach, I use the potential (3dBEM ) and finite element
(2dFEM ) solvers, which were initially developed to treat each sub-problem sep-
arately but are extended here, to address the fluid-structure interaction problem
via a data exchange strategy that takes place at each time-step. The physical
problem addressed is implicitly nonlinear since the hydrodynamic forces affect the
field of bending displacements and vice-versa. In the literature coupling schemes
for partitioned solvers are typically categorized as,
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� Weak coupling : Data is exchanged once per time-step during the simu-
lation. Deformations from the previous step are used to generate the wing
mesh for the current time-step.

� Strong coupling : Data is exchanged during each time-step until conver-
gence is achieved by means of criteria set for each study, which involves
sub-iterations at each time-step or even additional evaluations using each of
the sub-solvers.

A weak coupling scheme is not sufficient for capturing the basic mechanisms
of the fluid-structure interaction problem involving a lifting surface submerged in
water, thus we are ‘obliged’ to follow a strongly coupled approach.

At each time-step, the analysis begins with predictions for hydrodynamic pres-
sure coefficient on the wing’s surface. Then, I calculate the difference in pressure
between the upper and lower sides of the wing’s surface. Load data are then trans-
ferred to the structural solver via interpolation (inverse distance weighting - IDW),
after using the centroid of each triangle on the finite element mesh. The struc-
tural solver then produces predictions for the vertical bending displacement and
the slopes. An example is shown in Figure 4.1. Then displacement field data are
used to reconstruct the deformed wing surface section-wise as shown in the Figure,
also by implementing the IDW scattered data interpolation method. This is the
first time during each time-step that the residual equation is evaluated, which is
formulated based on the time-marching scheme used for the structural problem. If
convergence criteria are satisfied, then I proceed to the next time-step. Otherwise,
Newton-Raphson internal iterations begin to bring the residual equation closer to
zero. When convergence is achieved the solver re-evaluates hydrodynamic loads
and proceeds to the next time-step. This process is described schematically in
Figure 4.2.

The numerical tool is validated via comparisons against experimental data, cor-
responding to Studies 1-2. Then additional results are provided to showcase the
capabilities of FlexWing3D regarding the analysis of thrusters in flapping mode.
Study 3 is dedicated to effects of chord-wise flexibility, where by selecting appro-
priate boundary conditions chord-line deflections become dominant. Finally, an
optimization study targeting the thickness profile of the flexible wing thruster is
presented.
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Figure 4.1: Extraction of chord-line data via IDW interpolation on finite element
solution for bending displacement in the local coordinate system xyz. Mesh recon-
struction data for hydrodynamic solver. The half wing shape, clamped at y = 0,
is ‘exaggerated’ for visualization purposes.
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Figure 4.2: Flowchart for strongly coupled fsi bem-fem simulations with qκ
n repre-

senting the solution of elastic problem at time-step n referring to sub-iteration κ.
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4.2.1 Fluid-flow solver (3dBEM )

The wing and wake boundaries, denoted as ∂DB(t), ∂DW (t) respectively, are mod-
eled as surfaces of potential discontinuity in a global coordinate system XY Z. The
wing undergoes prescribed rigid-body motions and is free to deform passively. The
wake boundary represents the trailing vortex sheet emanating from the sharp trail-
ing edge and is modeled as a free shear layer with non-zero vorticity.

The formulation of an initial boundary value problem (IBVP) is based on po-
tential theory and boundary integral equations (BIE), see also Chapter 2 for more
details. Laplace serves as the governing equation for the total velocity potential,

∆Φ(x;w0, t) = 0, x ∈ D(t). (4.1)

where w0 denotes the mid-surface deflection1 of the wing modeled as a thin plate.
For this boundary value problem, a flow-tangency condition must hold on the

body boundary,

∂nΦ(x;w0, t) = VB(x;w0, t) · n(x;w0, t), x ∈ ∂DB(t), (4.2)

where ∂nΦ(x;w0, t) = ∇Φ(x;w0, t) · n denotes the directional derivative of the
velocity potential, n is the unit normal to the body boundary pointing toward
D(t) and VB(x;w0, t) is the instantaneous velocity of the wing due to oscillatory
motions and elastic deformations.

The underlying coupling mechanism between the hydrodynamic and structural
problems is introduced via the boundary condition, which is enforced on the wing’s
surface. Particularly, the total body velocity used to formulate the tangential
boundary condition in Eq. (4.2) consists of a rigid-body and bending displacement
velocity components and is expressed on each control point on ∂DB(t) as follows,

VB = fs(t)
(
Vrigid + nz ·

dw0

dt

)
, nz = (−sinθ(t), 0, cosθ(t)), (4.3)

where the second term is a vector product that is used to map the displacement
velocity from the local system to the global. The ramp function fs(t) is used for
a smooth transition between rest to the fully developed unsteady motion. The
θ(t) denotes the instantaneous pitch angle - due to prescribed rigid-body motions,
wo the field of mean surface bending displacements and d/dt refers to the rate of
change with respect to the body-fixed reference frame. In cases where pitch angle
θ(t) is very small, the normal vector introduced above simplifies to nz = (0, 0, 1).

1Consideration of the w0 using a semicolon expression represents the implicit non-linearity
introduced to the hydrodynamics problem due to the effect of wing deflections on hydrodynamic
loading and vice-versa.



4.2. FLUID-STRUCTURE INTERACTION 161

To close the problem, a non-linear (quadratic), pressure-type Kutta condition
requiring zero pressure difference at the trailing edge is enforced,

∂t(Φ
u − Φl) + 0.5(∇Φu +∇Φl) · (∇Φu −∇Φl) = 0, (4.4)

x(ξ, η) ∈ ∂DB(t), (ξ, η) → (ξTE, ηTE). (4.5)

The above form of the pressure-type Kutta condition can be derived by using
the approximate Bernoulli’s theorem on the body at upper and lower sides of the
trailing edge in conjunction with the assumption that wake evolves in time as a
material curve based on the mean velocity. Linearization of wake dynamics yields
a simplified wake model, where the generated vortex sheet emanates parallel to
the trailing edge bisector; tracing the trailing edge path. Alternatively, the free
wake model formulated in the present assumes that the wake evolves in time as a
material surface (i.e. moving with the mean velocity). The latter is to be used for
simulations at higher Strouhal numbers where the flow is characterized by strong
unsteadiness.

Following a formulation that is direct with respect to the velocity potential,
the weakly singular Boundary Integral Equation (BIE), which holds for each x0 ∈
∂DB(t) is derived using the above information2,

1

2
ΦB(x0;w0, t) +

∫
∂DB(t)

ΦB(x;w0, t)∂nG(x0|x)ds(x) (4.6)

=

∫
∂DB(t)

b(x;w0, t)G(x0|x)ds(x)

−
∫
∂DW (t)

µW (x;w0, t)∂nG(x0|x)ds(x),

where µW denotes the potential jump on the wake. Equation (4.6) above is for-
mulated using the fundamental solution of 3d Laplace equation known as Green’s
function and its directional derivative.

For the numerical solution of the 3D, unsteady and nonlinear problem an ef-
ficient, both in terms of computational time and space complexity, the GPU-
accelerated element method 3dBEM developed in this work is used. The pressure-
type Kutta condition serves as the basis of constructing a dynamical system equa-
tion with respect to the unknown potential jump on the Kutta-strip µK(x;w0, t)
while other kinematic boundary conditions along with the BIE are used as con-
straints. Particularly, the discretized form of the BIE based on a low-order piecewise-
constant approximation is used as an algebraic constraint by means of the DtN

2Multiplier 1/2 suggests that the weak form is valid on smooth portions of the boundary;
otherwise a multiplier 1/α needs to be used instead, where α is defined according to the local
boundary angle.
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operator; leading to an evolution equation with respect to the potential jump on
the Kutta-strip,

dtµK = f
(
µK ;w0

)
. (4.7)

Starting from a given initial condition, for instance at rest, a time-stepping
method is applied to obtain the numerical solution. Calculation of the generalized
forces is obtained, without further assumptions, using pressure integration. The
latter is calculated via the approximate Bernoulli equation. In the present study,
the numerical solution is obtained using a higher-order Adams-Bashford-Moulton
(ABM) scheme. At time t, knowing U(t) = µK(t), I proceed to the next time step
using,

U(t+ dt) = U(t) +
dt

24

[
9fpre(t+ dt) + 19f(t)− 5f(t− dt) + f(t− 2dt)

]
, (4.8)

with predictor step

fpre(t+ dt) = ft+dt

(
Upre(t+ dt);w0(t+ dt)

)
, (4.9)

Upre(t+ dt) = U(t) +
dt

24

[
55f(t)− 59f(t− dt) + 37f(t− 2dt)− 9f(t− 3dt)

]
,

where w0 denotes the bending deformation of the wing modeled as a plate. Terms
in the expression above related to the current t and previous time steps, i.e., t−dt,
t − 2dt, t − 3dt, remain unaltered during the NR-scheme iterations. Semicolon
expression on the predictor step indicates implicit dependence to the solution w0

that comes from the finite element solver. Thus, only U(t+ dt) and fpre(t+ dt)
are updated during NR iterations.

Bernoulli’s equation on an inertial reference frame holds as,

p(x; t)

ρ
+ ∂tΦ(x; t) +

1

2
[∇Φ(x; t)]2 = 0, x ∈ D(t). (4.10)

The same expression referring to a body-fitted reference frame, that moves with
the morphing wing, is used to calculate the hydrodynamic pressure; see also [175],
[37] for more details on the derivation of Bernoulli’s equation for a moving ref-
erence frame. After the solution has been obtained for the current time step,
post-processing begins to derive the pressure coefficient on the wing and of course
the pressure-difference ∆Cp that serves as the loading vector for the finite ele-
ment analysis. Evaluating the maximum pressure difference on the upper and
lower sides of the wing boundary near the trailing edge serves as a criterion for
examining whether Kutta condition is satisfied. Depending on the simulation pa-
rameters, if this quantity exceeds unity numerical instabilities start to emerge and
the simulation terminates.
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Propulsive performance metrics

The instantaneous lift (CL), thrust (CT ) and moment (CM) coefficients are cal-
culated using Eqs. (2.7)-(2.9). Unlike propulsive performance studies on actively
morphing wings, the fluid structure interaction problem of passively deforming
thrusters requires the following formula for the propulsive efficiency metric η,

η = CPout/C̄Pin
, (4.11)

with

CPout =
Pout

0.5ρU3A
, Pout =

1

TpU

∫ Tp

0

T (t)Udt, (4.12)

C̄Pin
=

Pin

0.5ρU3A
, Pin =

1

TpU

∫ Tp

0

(
L(t)ḣ(t) +M(t)θ̇(t)

)
dt, (4.13)

where A denotes the wing’s surface, Tp the period of harmonic motion, T (t) the
thrust, L(t) the lift, M(t) the moment, ḣ, θ̇ the heave, pitch velocities and U
the forward motion velocity. Effects of passive morphing on body velocities are
embedded into the pressure coefficient term which is used to evaluate lift, thrust
and moment, thus the above expression for the Pin is appropriate, see also [63],
[75].

4.2.2 Structural solver (2dFEM )

The structural model used here is a 2D plate finite element solver. Especially for
marine thrusters designed for small-scale autonomous underwater vehicles with
low-aspect ratio wings, this structural idealization is suitable for capturing chord-
wise and span-wise flexibility effects. Moreover, it can also be used for moderate-
to-large aspect ratio wings.

The passive deformation caused by hydrodynamic pressure and inertial forces is
solver in a local body-fitted coordinate system xyz using Kirchhoff’s plate model,
known as Classical Plate Theory (CPT), based on the small displacement assump-
tion, see also Chapter 3. A direct consequence of the employed strain-displacement
relation of CPT is the zeroing of shear deformation that restricts the applicability
of this model to “thin” configurations, see also [189] for higher-order plate theories
allowing varying degrees of shear deformation. The vertical bending equation of
motion (in the z-direction) for plates with non-uniform rigidity is the following
4−th order PDE,

∇2(D∇2w0) + ρsτ(x)∂
2
tw0 (4.14)

− (1− ν)(∂xxD∂yyw0 − 2∂xyD∂xyw0 + ∂yyD∂xxw0) = Q(x; t), x ∈ Π
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where D(x) = E(x)h3(x)/(12(1 − ν2)) denotes the flexural rigidity, E(x) is the
Young’s modulus, ν Poisson’s ratio, ρs the material density, τ(x) plate thickness
and w0 the bending deflection with respect to the reference plane.

Note that the forcing term on the rhs is also time-varying to model transient
response. Particularly, the forcing term consists of the hydrodynamic pressure
difference term and the fictitious forces terms due to use of a body-fitted coordinate
system,

Q(x; t) = Qhydro(x; t) +Qfictitious(x; t). (4.15)

The hydrodynamic pressure term is obtained from the boundary element solver
(wingBEM) as,

Qhydro(x) = 0.5ρfU
2∆Cp, (4.16)

where ρf is the fluid density, U the forward velocity of the wing and ∆Cp the
pressure difference between the upper and lower sides of the wing projected to the
mean surface.

As mentioned previously, fictitious forces are also included in the modeling to
account for non-inertial nature of the body-fixed coordinate system based on which
finite elements are formulated, thus

Qfictitious(x) = −m(x)
(
w0(x; t)θ̇

2 + xθ̈(t) + ḧ(t)cosθ(t)
)
, (4.17)

where m(x) = ρsτ(x), see also Priovolos & Belibassakis [183] for fictitious force
derivation. The latter formula takes a problem-specific form and is linearized for
simplicity.

The above fourth order PDE is complimented by a set of natural and/or es-
sential conditions on each edge. The latter involve some of the primary variables,
i.e. the deflection w (vertical motion) and the rotations ∂xw,∂yw, and express ge-
ometric considerations. Natural conditions on the other hand involve expressions
of secondary variables which are known as stress resultants and the stress couples
referring to shear forces, bending and twisting moments.

The numerical treatment of Eq. (4.14) is sought after by means of FEM that
essentially targets the equivalent C1 variational problem. The smoothness re-
quirements on the approximate solution poses difficulties as the construction of
conforming FEM schemes becomes challenging. Interesting accounts on the sub-
ject can be found in [192]. For the numerical solution I developed a finite element
solver (FEM) based on DKT (Discrete Kirchhoff Triangle) elements. The DKT
follows a C0 formulation (Reissner-Mindlin) and satisfies the geometric Kirchhoff
assumptions. The extended global equation that is derived from the Galerkin
scheme using FEM assembly techniques, local-to-global numbering and Gaussian
quadrature is treated via the Newmark method for time integration.
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In Anevlavi et al. 2020 [177] the coupling algorithm for the strongly coupled
fluid-structure interaction problem is formulated using the Crank-Nicolson method
for time integration. The extension of this methodology is included in Appendix
C, however it was found to be more computationally intensive compared to the
coupling scheme based on the Newmark method thus it is not used but included
for completeness.

Numerical solution using Newmark

Alternatively, the solution can be obtained via the Newmark method, which is one
of the most widely used multi-step time integration algorithm for structural anal-
ysis. Considering for simplicity that q denotes the augmented vector of unknowns
defined in Eq. (3.68), at each time step I begin with the predictor step,

q̇pre
n = q̇n−1 + (1− γ)dtq̈n−1, (4.18)

qpre
n = qn−1 + dtq̇n−1 + dt2

(1
2
− β

)
q̈n−1, (4.19)

where γ, β are quadrature parameters; typical values include γ = 1/2, β = 1/6
(linear interpolation) and γ = 1/2, β = 1/4 (averaging).

Following the notation introduced in Chapter 3, the matrices shown below
correspond to the augmented format including the boundary conditions as addition
equations in the form of constraints using Lagrange multipliers, i.e. M = Maug,
K = Kaug, F = Faug(t) and q = qaug. This ensures that the global motions of
the wing that undergoes prescribed heave and pitch are transferred via the fixed
support boundary conditions assumed here.

To implement the Newmark Method, I write the dynamic equation for tn+1

and substitute the equations above to produce,[
M+ γdtC+ βdt2K

]
q̈n = Fn −C · q̇pre

n −K · qpre
n , (4.20)

Then, I calculate the corrector step that is used in the next time-step,

q̇n = q̇pre
n + γdtq̈n, (4.21)

qn = qpre
n + dt2βq̈n. (4.22)

For the numerical implementation,

1. the forcing vector consists of the hydrodynamic loads and the fictitious forces
terms, see Eqs. (4.16) and (4.17),

2. if the time step dt is uniform, then M+ γhC+ βdt2K can be factored once,
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3. then solve the above system of equations for q̈n+1.

This method requires initial conditions for the acceleration, velocity and displace-
ment q̈n, q̇n, qn at the first time step. Also, information referring to loading from
the proceeding time step is needed. In our case, if forcing at the first time step is
zero, then an estimate for the acceleration needs to be produced using Eq. (4.20).
This occurs only at the first time step.

Coupling scheme. Following the above time-marching scheme the residual equa-
tion treated holds as,

R(q̈κ
n) =

[
M+ γdtC+ βdt2K

]
· q̈n − Fn +C · q̇pre

n +K · qpre
n . (4.23)

Setting the residual expression to vanish,

R(q̈κ
n) → 0, (4.24)

is pursued using the Newton-Raphson method and successively approximated via,

q̈κ+1
n = q̈κ

n − ωr J
−1
(
q̈κ
n

)
·R

(
q̈κ
n

)
, κ = {0, 1, ..., κMAX}, (4.25)

where ωr ≤ 1.0 denotes a relaxation factor and unless stated otherwise I assume
ωr = 0.98. The matrix J is the Jacobian of function G : RN → RN where N
denotes the total number of unknowns for the structural problem,

Jij =
∂Ri

∂q̈j

, R(q̈) = [R1(q̈
κ
n), R1(q̈

κ
n), ..., RN(q̈

κ
n)]. (4.26)

The calculation of Jacobian matrix requires knowledge of the partial derivatives
of the scalar components Ri(q̈) of the function R(q̈). These components are nu-
merically approximated via a central differences scheme,

∂Ri

∂q̈κj
≃
Ri(q̈

κ
j + hj)−Ri(q̈

κ
j − hj)

2hj
, (4.27)

assuming that the step-size hj is sufficiently small. In practice it is selected as a
small percentage of |q̈j|, for instance hj = 0.001|q̈j|. Calculation of the Jacobian is
indeed the most computationally expensive part of the simulation.

Although various criteria can be established to monitor the Newton-Raphson
convergence at each time step, I found heuristically that the following criterion
yields a good compromise between accuracy and iteration number,

max|R(q̈κ)| < critEQ, crtiEQ = λmax(T), λ = 1e−3, (4.28)
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where

T =
[
T1, T2, T3, T4

]
, (4.29)

T1 =
1

N

i=N∑
i=1

abs
[
[{M}+ γdt{C}+ βdt2{K}] · q̈n

]
i−th

,

T2 =
1

N

i=N∑
i=1

abs
[
− {F}n

]
i−th

,

T3 =
1

N

i=N∑
i=1

abs
[
+ {C} · q̇pre

n

]
i−th

,

T4 =
1

N

i=N∑
i=1

abs
[
+ {K} · qpre

n

]
i−th

.

In this formulation, coarse mesh equals approximately 2 hours per simulation,
therefore coupling is based on the Newmark time integration method. Simulations
verify that both approaches (Crank-Nicolson, Newmark) give the same predictions,
therefore unless stated otherwise I present results based on the latter which is more
cost-effective.

4.3 Verification and numerical results

This section contains results of various representative study cases, out of which
Studies 1-2 are selected for validation purposes. Results concerning quantities of
interest, such as the bending deflection w0 and the mean thrust coefficient CT ,
are obtained using the developed computational tool and then compared against
experimental results from the literature. Study 3 is included to investigate chord-
wise flexibility effects on a flapping wing. The linearized wake model is used for
the simulations.

Tuning of Rayleigh damping coefficients is based on 2dFEM predictions for the
first in-air natural frequencies of the wings modeled as a plate including thickness
variability to account for the hydrofoil section. However, in cases where the natural
frequencies of the coupled system are provided, i.e. obtained via experimental
testing, they can be used instead of the in-air mode predictions for proportional
damping coefficient selection.

4.3.1 Study 1. Flexible wing under heaving excitation

The study case considered here is derived from the experimental work of Heathcote
et al. 2008 [180], where wings with orthogonal planform are placed within a flow
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and actuated at one edge. The wings undergo prescribed heaving motion and
deform passively under hydrodynamic load excitation. The tip amplitude and
phase angle of deflection are recorded.

Details regarding the experimental setup can be found in Sec. 2.5.3. However,
for completeness some information that is useful for the simulation results pre-
sented are included. In [180], the tested wings have NACA 0012 sections, aspect
ratio AR = 3 and main dimensions c = 0.1m, s = 0.3m. The heave profile is given
by sROOT (t) = h0cos(ωt), h0 = 0.175c and the inflow velocity is U = 0.3m/s at
Reynolds number Re = 30, 000. The forcing frequency is defined as kG = πfc/U
where ω = 2πf . It is important to note that the examined wings are labeled
as ‘inflexible’, ‘flexible’ and ‘very flexible’ based on their rigidity. The ‘inflexible’
wing is constructed using nylon and two steel beams placed near the aft part to
increase rigidity. The ‘flexible’ wing is made of PDMS with 1mm steel sheet are
core, see Figure 4.3.1.

Figure 4.3: Wings tested in Heathcote et al. 2008 [180].

Regarding the structural idealization, the ‘flexible’ wing is modeled as a rect-
angular plate made of steel with constant thickness, i.e. h = 1mm. The material
properties for structural steel are Young’s modulus E1 = 210GPa, Poisson’s ratio
ν = 0.28 and density ρs = 7850kg/m2. The boundary conditions considered are
F-F-C-F. Modal analysis in vacuo serves as the basis for Rayleigh proportional
damping coefficient tuning. Assuming that for the first and second eigenfrequency
damping ratios of ζ1 = 0.011, ζ2 = 0.018 are used, then the corresponding Rayleigh
coefficients are a1 = 0.173481, b1 = 0.000383. Another set of Rayleigh damp-
ing coefficients a2 = 3.576952, b2 = 0.006462 corresponding to higher ratios of
ζ1 = ζ2 = 0.022 is also tested for completeness.

Regarding the finite element simulations, the plate’s geometry corresponds to a
wing of c = 0.1m, s = 0.3m. However, hydrodynamic load calculations are based
on simulations concerning the whole wing with main dimensions c = 0.1m, s =
0.6m. Symmetry of the flow ensures compatibility with the experimental case.

The propulsive performance metrics correspond to the average values during
the last flapping cycle of a three-period simulation. Regarding the discretization,
I used NEC = 40 (chordwise), NEA = 5AR (spanwise) panel elements for the
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GPU-BEM spatial discretization, Nelem = 110 DKT triangles for the finite el-
ement mesh and a shared time-discretization of (dt/Tp)% = 0.40. The meshes
used are depicted in Figure 4.6. The fsi scheme based on the Newmark method
is implemented for time integration, whereas scattered data interpolation is per-
formed via Shepard’s Inverse Distance Weighting, see Sec. 3.3.2. Each simulation
requires approximately 137min ∼ 2.5hrs on our workstation. The Jacobian does
not change significantly during internal iterations and typically up to three cycles
are sufficient for convergence.

Figure 4.4: (a) Figure 4.5: (b)

Figure 4.6: Meshes used in the validation study against Heathcote et al. [75]: (a)
Structured quadrilateral BEM mesh for the whole wing, (b) Unstructured DKT
FEM mesh for the half wing. Black squares denote the clamped nodes in FEM
simulations.

In Figure 4.7, I compare the mean thrust predictions obtained with the cou-
pled scheme against experimental data for the flexible wing at reduced frequency,
denoted as kG, within the range {0.4 − 1.82}; corresponding to Strouhal number
between {0.0557− 0.2028}. It is observed that the present FSI model reproduces
the parabolic form of forcing frequency kG effects on the mean thrust coefficient.
Predictions obtained with the FlexWing3D over predict mean thrust coefficient at
low frequencies, whereas for higher kG values thrust is under predicted.

Moreover, in Figure 4.8, I compare maximum tip amplitude and the corre-
sponding phase lag predictions against PIV data from [75] for the same range of
reduced frequency. Tip amplitude is predicted well, however for higher frequencies
phase lag is under predicted. The examined range of reduced frequency (i.e. in the
sense of Strouhal number) suggests that ideal-flow predictions are applicable with
engineering accuracy. Thus, discrepancies between phase lag predictions; affecting
directly the mean thrust coefficient, are attributed to the structural idealization
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Figure 4.7: Thrust coefficient as a function of frequency and comparison with the
experimental data in [75] for two sets of Rayleigh damping coefficients; (α1, b1)
and (α2, b2).
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of the wing modeled as a thin metal sheet of constant thickness and neglect-
ing the effects of the PDMS material. It is possible that for higher frequencies,
the PDMS material exhibits non-linear damping behavior that is not modeled in
this benchmark study. Overall, the comparison suggests that FlexWing3D pro-
vides useful information for the physics behind flexible heaving plates submerged
within a fluid medium, assuming that the flow around the wing is largely attached
and forcing excitation lies within a range of low frequencies found in nature (i.e.
Str = {0.2, 0.4}).

Figure 4.8: (a) Tip amplitude and (b) phase lag as a function of frequency and
comparison with the experimental data in [75] for two sets of Rayleigh damping
coefficients; (α1, b1) and (α2, b2).

In Figure 4.9, I compare the time history of tip-deformation for the inflexible
and flexible wing at reduced frequency kG = 1.82. The amplitude predictions are in
good agreement, however, the phase lag is not predicted accurately. These obser-
vations suggest that strong coupling is considered necessary for accurate phase-lag
and improved bending deflection predictions, which agrees with the discussion in
Daniel et al. [96] and Zhu [63]. The red circles shown in the Figure denote se-
lected time instances (during the last period of motion) for which instances of the
deflected wing mid-surface are provided in Figure 4.10. On the latter, red circles
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show the exact position on which the maximum tip-deflection is evaluated in Fig-
ure 4.9. The deflected shapes provide an indication that first bending mode is
dominant in this scenario.

To provide additional information regarding the proposed scheme validity and
probable reasons why this discrepancy occurs, I also include results obtained with
the equivalent 2D version of the fluid-structure interaction tool and published in
[177]. These comparisons are shown in Figures 4.11 and 4.12, where the trailing-
edge response ratio, phase lag and thrust are shown. The results refer to a valida-
tion test case from the experimental work of [76], involving a flat plate submerged
within a water tank and actuated from its leading edge to perform heaving motion
within a flow of constant velocity. The plate’s material properties are a flexural
rigidity of D = 0.018Nm, material density ρs = 1200kg/m3. The heaving am-
plitude is h0 = 0.033c and the forcing frequencies examine lie within the interval
ω ∈ {0.3, 8.0} rad/s at Reynolds number Re = 6, 000.

Figure 4.9: Time history of tip deflection during two periods of motion for reduced
frequency kG = 1.82. Red circles denote selected time instances (during the last
period of motion) for which instances of the deflected wing mid-surface are pro-
vided in Figure 4.10.
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Figure 4.10: nstances of deformed wing with boundary conditions F-F-C-F for
kG = 1.82. Clamped nodes are denoted with black squares and red circles show
the exact position on which the maximum tip-deflection is evaluated and shown
in Figure 4.9.
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In Figure 4.11, where the equivalent FSI BEM-FEM solver in 2D [177] is com-
pared against Paraz et al. [76] experimental values, we can observe a second peak
in the plate’s response, revealing the second natural frequency of the coupled sys-
tem. Similar parametric studies can be used to reveal the first and even the second
natural frequency of the coupled system. It is important to note that calculation
of eigenfrequencies for the flexible plate submerged in a fluid medium can be per-
formed in a similar manner using the FlexWing3D by means of parametric studies,
however the present method is not developed for that purpose. The ABM and NR
legends in Figure 4.11 refer to two different solution schemes for the hydrodynamic
problem; namely ABM stands for the Adams-Bashford-Moulton linear multi-step
method and NR for the Newton Raphson method. More details regarding the
FSI method in 2D can be found in Anevlavi et al. 2020 [177]. Essentially, the
latter strongly coupled 2D BEM-FEM FSI scheme stands as the predecessor of
FlexWind3D that is presented in this dissertation.

From our experience with the model in Anevlavi et al. 2020 [177], high val-
ues of stiffness proportional damping coefficient may lead to over-damping of the
response, thus making the second peak unnoticeable. Reasonable damping yields
proportional coefficients that correspond to a > b, therefore in the present compar-
ison against Heathcote et al. 2008 [180] proportional damping coefficients satisfy
this relation. Moreover, it is important to note that the present model (and the 2D
version [177]) only considers proportional damping effects. The addition of viscous
damping can improve predictions, especially at higher excitation frequencies. This
direction is left for future work.
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Figure 4.11: Trailing-edge response ratio comparison with experimental data
(black squares) from [76] for the case of a heaving flexible flat plate with D =
0.018Nm, h0 = 0.004m at Re = 6, 000.

Figure 4.12: Thrust normalized by the characteristic elastic force fT/(a
2
leω

2) [left]
and phase lag (deg) [right] as a function of frequency ratio. Comparison with
experimental data (black squares) from [76].
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4.3.2 Study 2. Flexible wing in steady flow. Mesh sensi-
tivity

The experimental study in Zarruk et al. [207] addresses a steady fluid-structure
interaction problem involving passively deformable wings made of different mate-
rials. The study is concerned with both metal and composite wings of an upright
(unswept) tapered planform with NACA 0009 sections, i.e., thickness variability
chordwise and spanwise. In their work, they conduct experimental modal analy-
sis and then estimate the lift, moment, and drag coefficients for a wide range of
effective angles, including past stall points. Out of the examined wings, I selected
the Type-I prototype made of steel to compare against FlexWing3D for validation
purposes. The experimental tests used a tailor-made support to ensure that the
wing remains fully clamped at one edge; shown schematically in Figure 4.13.

Figure 4.13: Arrangement, geometry and dimensions of model hydrofoils showing
mounting flange and fairing disk where the models penetrate the tunnel wall (di-
mensions in mm); from [208].

FlexWing3D can treat steady fluid-structure interaction problems, assuming
that a sufficient number of simulation periods allows convergence to a steady state.
Our comparisons against the experiment refer to prediction of (1) the first natural
frequency in air and (2) the maximum deflection, as observed at the wing-tip; as-
suming the flexible wing is placed into a flow at a = 6deg angle of attack. The wing
positioning corresponds to a ‘nose-up’ a = 6deg, and the reported maximum tip
deflection is 4.9mm. The first in-air natural frequency is calculated experimentally
in [207] as f1 = 100Hz.

The wing geometry is of unswept trapezoidal planform of sfem = 0.3m span,
cr = 0.12m base (or root) chord and ct = 0.06m tip chord, i.e., with a taper ratio
of λr = 0.5. The aspect ratio of the wing examined in the experiments is AR =
3.33. Because the wing in the experiments is clamped at the root section, from a
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structural point of view, half the wing is modeled (i.e. exploiting symmetry) as a
plate of variable thickness clamped at one edge. Following the boundary condition
notation introduced in Chapter 3, this is labeled as F-C-F-F. The properties of
stainless steel (316L) reported in [207] are Young’s modulus of E = 193MPa and
density of ρs = 7900kg/m3. Poisson’s ratio for stainless steel is taken as v = 0.265,
with typical values between 0.26− 0.28 assuming perfectly isotropic material. On
the other hand, for the hydrodynamics I model the whole wing; corresponding to
to a span of s = 0.6m as shown in Figure 4.17.

Regarding the fluid-structure interaction simulations, for this particular test
case additional information includes Re = 1 · 106; corresponding to a velocity
11.11m/s based on kinematic viscosity v = 10−6m/s2 and mean chord cmean =
0.09m, as discussed in [207].

Starting with the modal analysis, Tables 4.2-4.3 contain first natural in-air
frequency predictions obtained using the 2dFEM solver. Three meshes were tested
for convergence and sensitivity. The coarse unstructured mesh consists of 106 DKT
triangles and the fine mesh of 1696 elements, see Figure 4.16. Table 4.2 refers to
the material properties reported in the experiment, whereas Table 4.3.2 contains
results considering the mean value of Young’s modulus for stainless steel.

Modal analysis is performed on wings with sfem = 0.3m and sfem = 0.29m
span length, to account for mounting effects (i.e. the exact dimensions of the
flange shown in Figure 4.13 are not provided in [207]) and with respect to the re-
ported Young’s modulus E = 193GPa and a representative value for stainless steel
in general, which is E = 200GPa. The latter is included to investigate effects of
Young’s modulus on the natural frequency. Especially, since in [207] material prop-
erties are based on data-sheet information and are not measured experimentally.
The results suggest that the effects of Young’s modulus on the natural frequency
are small but rather non-negligible, whereas mounting effects (i.e. reduction of the
effective span length) are substantial. The predictions converge as the mesh size
increases as expected, suggesting that acceptable accuracy can be achieved even
with the coarser mesh.

Deviations between our predictions and the data in Zarruk et al. [207] are
expected, since the natural frequencies correspond to experimentally measured
values and the reported material properties are based on reference data sheet for
the stainless steel (316L) billet that was used to manufacture the wing prototype.
However, deviations can also be attributed to mounting effects since the wing
prototype has an extended length that is used to fully mount the structure. This
type of support would be most accurately modeled by assuming an infinitely rigid
boundary condition at the root.

Modeling an effective span length as sfem = 0.3m leads to large deviations (up
to 6.9%) in terms of the first natural mode in air. However, by examining a wing
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assuming smaller effective span sfem = 0.29m to account for mounting effects it
is evident that are predictions lie closer to the reported results, suggesting that
in the comparison this effective span should be used. This case study takes into
consideration thickness variability in both directions, thus adds to the verification
of our numerical scheme.

Table 4.2: First natural frequency (Hz) prediction for the wing in [207], where
the reported value is f1 = 100Hz. Stainless steel E = 193GPa, ν = 0.265,
ρ = 7900kg/m3 and F-C-F-F boundary conditions.

id span DKT (106) DKT (424) DKT (1696) Diff(%)
1 sfem = 0.30m 92.2080 92.9969 93.0997 -6.9
2 sfem = 0.29m 99.6464 100.5367 100.5669 +0.56

Table 4.3: First natural frequency (Hz) prediction for the wing in [207], where
the reported value is f1 = 100Hz. Stainless steel, E = 200GPa, ν = 0.265,
ρ = 7900kg/m3 and F-C-F-F boundary conditions.

id span DKT (106) DKT (424) DKT (1696) Diff(%)
1 sfem = 0.30m 93.8652 94.6684 94.7730 -5.2
2 sfem = 0.29m 101.4373 102.3437 102.3744 +2.37

Concerning maximum tip amplitude predictions, I performed simulations (lin-
ear wake) with parameters shown in Table 4.3.2 using the surface boundary element
mesh shown in Figure 4.17. Selecting quantities related to the temporal discretiza-
tion requires special care since h0 = 0 and Str = 0. However, we can select a
time-step based on the following period of motion using information related to the
constant inflow T1 = cr/U . Temporal discretization is based on t/T1 = 0.35/100
with ramp filter parameter f0 = 1.8. Following the convention introduced in Sec.
2.2 phase difference is set to ψ = 90o, in order to ensure that pitch angle has the
desired value at the beginning of each simulation.

Simulations performed with the coarse finite element mesh of 106 DKT trian-
gles required approximately 4.2hrs for Nper = 5 on our workstation. A denser
mesh consisting of 426 DKT triangles is also tested in the context of sensitivity
analysis. For our simulations calculation of the full Jacobian is performed during
internal iterations when the following condition is true (iter = 1 || iter > 3), to
save computational time.

Selection of damping ratio is important for steady state predictions using tran-
sient analysis. The simulations performed are based on different set of damp-
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Figure 4.14: (a) DKT (106) Figure 4.15: (b) DKT (1696)

Figure 4.16: Meshes used in the modal analysis benchmark study with Zarruk et
al. [207]: (a) Coarse and (b) fine unstructured DKT FEM meshes for the half
wing. Black squares at y = 0 denote the clamped nodes and on the opposite side
tip deflection evaluation node location.

Figure 4.17: Structured quadrilateral 3dBEM mesh (NEC = 50, NEA = 6AR)
for the whole wing used in the validation study against Zarruk et al. [207]. Black
squares indicate Kutta-strip nodes.
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ing ratios to also investigate their effect on tip amplitude predictions, assuming
ζ1 = ζ2 = 0.5 and ζ1 = ζ2 = 1.0 corresponding to critical damping. Figures 4.19
and 4.20 shows the difference in predicted response for the thrust coefficient and
the tip deflection respectively, assuming ζ1 = ζ2 = 0.1 and ζ1 = ζ2 = 0.5. The
latter selection is found to achieve convergence after Nper > 3. Minor numerical
instabilities, of no importance to the final steady state we are seeking, occur in the
time history of thrust coefficient in Figure 4.19. These instabilities, however, did
not affect our tip deflection predictions. The spikes in Figure 4.19 can be elim-
inated by increasing the convergence threshold during each time step. However,
because the benchmark study emphasizes the steady state, I avoided increasing
the computational cost.

Table 4.3.2 summarizes the predicted values of tip deflection for the examined
scenarios. Half-span is assumed equal to sfem = 0.29m to account for mounting
effects by ‘matching’ the experimentally measured first natural frequency in-air
with the 2dFEM modal analysis predictions. Tip deflection for material of E =
193GPa is over predicted by our method, whereas the deviation corresponding to
a material of E = 200GPa is the smallest. Figure 4.18 shows schematically the
deformed wing shape for this scenario, where the circle indicates tip location at
which the results are provided.

Viscous corrections are not implemented in the present fluid-structure inter-
action analysis, thus deviations can be partly attributed to an over prediction of
hydrodynamic pressure due to the ideal-flow nature of the hydrodynamic solver;
see also Sec. 4.3.1. Over prediction of the tip deflection is closely related to an
over prediction of hydrodynamic loading, and since the wing is placed at a fixed
angle of attack a = 6o viscous phenomena might be non-negligible. Other uncer-
tainties related to the actual material rigidity of the wing and mounting effects
can also be considered as contributor to the observed deviation. Regarding the
boundary conditions examined, the F-C-F-F case was also found to be the most
difficult one for the CPT model as shown in the verification studies of Chapter
3. Overall, this study showcases the capability of FlexWing3D to perform FSI
steady-state analysis in the sense of converging in time. The solver behaves as
exacted in terms of under/over damped scenarios highlighting the importance of
tuning the proportional damping coefficients using natural frequency predictions
and the desired set of damping ratios (ζ1, ζ2).
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Table 4.4: Simulation parameters for comparison with [207]. The reported maxi-
mum tip deflection is 4.9mm.

id span material Nper DKT damping deflection Diff.
s(m) E(GPa) (z1, z2) amax

tip (mm) (%)

1 0.29 193 5 106 (1.0,1.0) 5.325 8.67
2 0.29 193 5 106 (0.5,0.5) 5.463 11.5
3 0.29 200 5 106 (1.0,1.0) 5.191 5.94
4 0.29 193 3 426 (1.0,1.0) 5.317 8.51

Figure 4.18: Bending deflection and contour plot for semi-span s = 0.29m, fixed
support at the root section (i.e. y = 0) and Young modulus E = 200GPa. A
selected tip deflection location is denoted with a circle. Comparison with [207].
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Figure 4.19: Steady-state simulations. Effect of damping ratio on the time history
of thrust. Clamped wing of span s = 0.58m, Young’s modulus E = 193GPa.
Comparison with [207].

Figure 4.20: Steady-state simulations. Effect of damping ratio on the maximum
tip amplitude. Clamped wing of span s = 0.58m, Young’s modulus E = 193GPa.
Comparison with [207].
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4.3.3 Study 3. Flexible wing in flapping mode

To investigate effects of flexibility on the propulsive performance of a wing in
flapping mode I examined a rectangular planform (c = 0.33m, s = 1.0m) of
moderate aspect ratio with NACA 0009 profiles. The flapping parameters are
provided in Table 4.5. Heaving amplitude and maximum effective angle are fixed,
whereas the pitch motion amplitude is defined based on Strouhal number selection
using Eq. (2.4). This process, described in Schouveiler et al. 2005 [52], ensures
that flapping motion is within a range of effective angles potential theory can treat.
The cruising speed is set to U = 2.27m/s and Reynolds number is Re = 7.5 · 105.

Table 4.5: Flapping kinematics of rectangular thruster.

Dimensions c = 0.33m, s = 1.0m, AR = 3
Planform, sections Λ = 0o, λr = 1.0, NACA 0009

Inflow (i.e. forward motion) Re = 7.5 · 105, U = 2.27m/s
Heave motion, Phase lag. h0/c = 0.75, ψ = −90o

Eff. angle, pivot point aeff = 15o, XR = 1/3c
Strouhal number Str = [0.2− 0.35]

This study is centered around chord-wise flexibility and therefore the wing is
modeled as a plate fully clamped at the leading edge. On the contrary, a T-foil
configuration where the root section of the wing is modeled as a fixed support is
more appropriate for span-wise flexibility studies, see, e.g., Heathcote et al. [75]
and the results of Studies 1-2. The plate’s thickness variation in the chord-wise
direction follows the NACA 0009 profile.

Regarding the discretization, I used NEC = 60, NEA = 6AR panel elements
for the 3dBEM spatial discretization chordwise and spanwise respectively, for the
finite element mesh Nelem = 106 DKT triangles and a shared time-discretization
of (dt/Tp)% = 0.48. Wake dynamics are linearized. The meshes used are depicted
in Figure 4.23. The Jacobian size is N = 204 for the Newmark fsi, whereas for the
Crank-Nicolson scheme it would be of size N = 408. The Rayleigh proportional
damping coefficients used here are a1 = 2.5, a2 = 0.01.

Table 4.6 contains results of average thrust, efficiency and maximum TE de-
flection of the root section for different materials assuming a Strouhal number of
Str = 0.25. The most flexible material labeled as P1 leads to an efficiency en-
hancement of 2.44% but the reduction of average thrust is substantial. The drop
lowers as forcing frequency decreases, whereas efficiency enhancement is evident
throughout the examined range of frequencies. This observation agrees with the
findings of Zhu 2007 [63].
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Figure 4.21: (a) Figure 4.22: (b)

Figure 4.23: (a) 3dBEM and (b) 2dFEM meshes used in the chord-wise flexibility
study referring to a NACA 0009 rectangular wing. Black squares denote fixed
support in FEM simulations.

Table 4.6: Material selection for chord-wise flexibility study. NACA 0009 rectan-
gular flapping thruster operating at Str = 0.25.

Materials Rigid P1 P2 AL ST
E(GPa) - 0.1 3.5 70 210
ρs(kg/m

3) - 1200 1200 2710 7850
Poisson ratio ν - 0.37 0.37 0.33 0.28

wmax(m) - 0.0150 7.61 · 10−4 3.37 · 10−5 3.47 · 10−5

E/ρsgc - 2.6 · 104 9.0 · 105 8.0 · 106 7.8 · 106
Thrust C̄T 0.2957 0.2411 0.2920 0.2946 0.2946
Efficiency η 0.7372 0.7550 0.7377 0.7371 0.7371
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For the P1-material, I performed parametric runs to retrieve information on
the wing’s performance near the Str = 0.25 design point. The results are provided
in Figure 4.24, where we can observe that efficiency enhancement is evident in
the range of examined forcing frequencies. In Figure 4.25, I provide additional
information regarding the maximum TE deflection at the root and predicted phase
lag. The corresponding effective angle of attack profiles for Str = {0.2− 0.4} are
provided in Figure 4.26 for completeness along with the selected pitch amplitudes.

A comparison between the time histories of lift, thrust and moment coeffi-
cients of the rigid and flexible wing thrusters operating in Str = 0.25 is provided
in Figure 4.27. Chord-wise flexibility in this scenario reduces both thrust and lift
coefficients, whereas leads to a small increase in the moment coefficient. Another
important aspect, related to resonance effects, is the phase difference between the
bending deflections and the enforced flapping frequency. A favorable phase differ-
ence results in larger bending deflections, leading to efficiency enhancement; see,
e.g., [76]. In the examined scenario we can observe that, as Strouhal number in-
creases, phase difference follows the trend resulting in greater bending deflections.
Moreover, the ascending behavior of the tip amplitude curve in Figure 4.25 sug-
gests that the first natural frequency of the coupled system does not lie within the
examined range of Strouhal numbers.

Figure 4.24: (a) Thrust and (b) propulsive efficiency as functions of Strouhal
number for the rigid and flexible wing assuming amax

eff = 15o.
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Figure 4.25: (a) Maximum TE tip amplitude at the root and (b) phase lag for the
P1-flexible wing, assuming amax

eff = 15o.

Related to the structural solution, in Figures 4.28-4.29 I provide the time his-
tory of trailing edge deflection at the root section for Str{= 0.25, 0.35} respec-
tively. Instances of wing bending deflection during the last simulation period for
operation at Str = 0.25 are shown schematically in Figure 4.30, where we can
observe that chord-wise flexibility is dominant in this study case. The nodes af-
fected by the fixed support boundary conditions are denoted with squares. An
orange circle is used to denote the TE location for which the time history of de-
flections is provided in Figures 4.28-4.29. Deflection in the span-wise direction is
observable, however chord-wise flexibility is dominant in this particular test case.
It is also important to note that maximum pressure difference occurs closer to the
leading edge where the thickness profile is fuller compared to the trailing edge re-
gion, therefore deflections in near the latter are very small as expected. Maximum
deflection occurs at the root section in the trailing edge.

The diagram of tip amplitude and phase lag suggest that the first natural
frequency of the coupled system does not lie within the examined range of forcing
frequencies, otherwise a peak in terms of the tip amplitude would have been located
based on the observations in Paraz et al. [76] experiments. Simulation of the wing’s
hydro-elastic behavior assuming homogeneous P1 material at higher frequencies
lies outside the scope of thin plate theory, thus slightly stiffer material is used to
simulate the response at higher forcing frequencies.
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Figure 4.26: Effective angle of attack profiles in degrees under the amax
eff = 15o

constraint for various Strouhal numbers during the last cycle of simulations.
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Figure 4.27: Instantaneous lift, thrust and moment coefficients for the rigid and
flexible wing operating at Str = 0.25. Negative values of thrust denote force
generated towards the direction of wing motion, i.e. negative x−axis.

It is evident that flexibility along the chord-line when significant yields an
observable enhancement in terms of propulsive efficiency at the expense of thrust
since it is reduced. These findings are compatible with 2D theory predictions and
experimental works.

Useful guidelines for performing analysis using the developed numerical tools
are also provided, since selection of material properties is important. Simulation
of overly flexible wings might lead to numerical instabilities since it exceeds the
prediction capabilities of the thin plate model used in our study. It is important
to note that the FlexWing3D solver can be also used in a ‘de-coupled’ mode,
where hydrodynamic pressure data from the 3dBEM module are transferred to the
finite element solver 2dFEM at each time-step for independent structural analysis.
These guidelines are summarized below,

1. Assuming a perfectly rigid wing thruster, begin by performing 3dBEM sim-
ulations to obtain the reference propulsive performance metrics in the sense
of (C̄T − Str), (η − Str) diagrams.

2. Select material properties, boundary conditions and a thickness profile for
the wing-plate idealization. Perform decoupled (or one-way coupling) simu-
lations with FlexWing3D to retrieve the time history of bending deflections.
The 2dFEM solver is numerically stable and may produce infeasible solutions



4.3. VERIFICATION AND NUMERICAL RESULTS 189

(i.e large bending deflections) might occur depending on the input param-
eters. Each ‘de-coupled’ simulation requires a few minutes of GPU/CPU
computational time. Also, take into account that coupled FlexWing3D sim-
ulations yield lower deflections compared to the ‘de-coupled’ results for the
same parameters.

3. Perform coupled FlexWing3D simulations to evaluate the effects of elasticity
on the designed wing thruster.

Figure 4.28: Time history of trailing edge deflection in the global [above] and local
[below] systems during the last two periods of motion at Str = 0.25. The TE
instances match the shapes provided in Figure 4.30 that follows.
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Figure 4.29: Time history of trailing edge deflection in the global [above] and local
[below] systems during the last two periods of motion at Str = 0.35.
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Figure 4.30: Instances of wing bending deflection during the last simulation period
for operation at Str = 0.25. The wing is clamped at the leading edge and tip
defections are provided for the TE location denoted with a circle.
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4.4 Enhancing the performance of a passively

morphing thruster via optimization

4.4.1 Case 1. Bio-inspired thickness profile

Riggs et al. 2010 [81] studied experimentally the effects of a bio-mimetic stiffness
profile, mimicking that of a ‘Pumpkinseed Sunfish’ (Lepomis gibbosus), on the
thrust generation capabilities of chord-wise flexible rectangular wings. Bioinspired
sections outperformed the NACA 0012 wings in thrust production over the range
of examined forcing frequencies. These profiles are shown schematically in Figure
4.31. Motivated by these findings, I performed an optimization study to determine
an improved thickness profile for the chord-wise flexible wing thruster examined
previously in Study 3 considering NACA 0012 profiles and material properties
corresponding to P1 in Table 4.6.

Following a Direct Numerical Optimization (DNO) approach, I introduce a
design variable vector containing geometric parameters that define the hydro-
foil thickness profile. Efficiency maximization is the objective function under the
thrust requirement formulated as a constraint. During the optimization process,
modifications to the geometric shape of the hydrofoils, occurring locally, are han-
dled using the PARSEC methodology. This method used widely in airfoil studies,
introduces physically intuitive parameters to represent a hydrofoil, see Vecchia et
al. 2014 [209].

PARSEC Parameterization

Modern airfoils have much more complex camber lines. Their shape is described
not by explicit formulas, but by giving the coordinates of points on their sur-
face. Local airfoil shape modification is usually obtained by smooth perturba-
tions of the original airfoil coordinates through analytical function, such as Leg-
endre, Chebyschev or Bernstein polynomials. These methods have the advantage
of smooth local modifications, although they have no direct relation to geometry
and this could lead to undulating curves. Therefore, the design of a new concept
airfoils requires parameterization methods able to accommodate a wider range of
new shapes. For instance B-splines and Bezier curves have been widely used to fit
airfoil shapes via interpolation methods. They are very useful to reconstruct and
optimize an airfoil (using several artifices on geometry curvature) but they give
rise to some problems due to the difficulties related to managing control points’
relative position. In Kostas et al. 2017 [145], an optimization procedure, based
on an isogeometric BEM, is developed and used for hydrofoil shape optimization
problems where airfoil shapes are represented by a closed B-spline curve defined
by a set of eight parameters.
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Figure 4.31: Bio-mimetic stiffness profile examined in Riggs et al. 2010 [81].

Physically intuitive methods enable the use of typical airfoil parameters for
shape definition such as the leading edge radius, airfoil thickness or trailing edge
angle. A methodology of this type, known as PARSEC, was developed by So-
bieczky in 1999. PARSEC uses the 11 parameters shown in Figure 4.32 to repre-
sent an airfoil and these are directly linked to the geometry (thickness, curvature,
maximum thickness abscissa, etc.) [209]. A description of the parameters is sum-
marized in Table 4.7. This parameterization is well-known to the aerodynamics
community and its physically intuitive parameters facilitate the optimization pro-
cess by directly providing information about the current airfoil shape. PARSEC
analytical formulation is given by,

zup =
n=6∑
i=1

aiup · xi−1/2, zlo =
n=6∑
i=1

ailo · xi−1/2, (4.30)

where zup, zlo are the vertical coordinate of the upper and lower side respectively,
x is the horizontal, or chord-wise coordinate normalized in [0, 1]. The coefficients
aup, alo have to be computed by using the 11 given parameters as follows,

Cup × aup = bup, Clo × alo = blo, (4.31)

where both coefficient matrices (Cup, Clo) and right hand sides (bup, blo) are defined
as shown in the matrices,
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, (4.32)
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Clo =
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bup =
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. (4.34)

Figure 4.32: PARSEC variable definition in Vecchia et al. [209].

Problem formulation and solution

For simplicity, hydrofoil sections are assumed uniform in the direction of span and,
since only symmetric profiles are examined, PARSEC parameterization is based
on five independent parameters (rle,Xup,Zup,ZXXup ,αte), whereas the others are be
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Table 4.7: PARSEC parameter definition.
Parameter Symbol Definition

p1 rle leading edge radius
p2 Xup upper crest position in horizontal coordinates
p3 Zup upper crest position in vertical coordinates
p4 ZXXup upper crest curvature
p5 Xlo lower crest position in horizontal coordinates
p6 Zlo lower crest position in vertical coordinates
p7 ZXXlo

lower crest curvature
p8 Zte trailing edge offset in vertical sense
p9 ∆Zte trailing edge thickness
p10 αte trailing edge direction
p11 βte trailing edge wedge angle

defined as,

Xlo = Xup, Zlo = −Zup, ZXXlo
= ZXXup ,

Zte = ∆Zte = bte = 0. (4.35)

Regarding the kinematics, I assume that the wing follows a flapping trajectory
examined previously in Study 3 and exhibits passive morphing mainly due to the
hydrodynamic loads leading to dominant deflection in the chord-wise direction.
Design variable vector comprises of bn = {p1, p2, p3, p4, p5} based on parameter
definition shown in Table 4.7. Optimal tuning of geometric parameters is accom-
plished via the solution of an optimization problem on efficiency maximization
under a thrust constraint. Pitch amplitude is defined based on Strouhal number
so that the effective angle of attack is αeff = 15o.

Propulsive efficiency maximization (or minimization of 1/η) is selected as the
objective function,

η = UT/Pin, (4.36)

where T is the mean thrust force and Pin the input power required to sustain the
wing’s prescribed motions (flapping, morphing) under the resulting hydrodynamic
loads. Taking into consideration that thrust losses due to flexibility are greater
for finite wing cases, compared to two-dimensional simulations as discussed in Zhu
2007 [63] I assume a tolerance parameter of p = 21%3,

(1− p)CTreq ≤ CT ≤ (1 + p)CTreq, (4.37)

3Smaller values of parameters p did not yield noticeable propulsive performance enhancement,
thus it was decided that a higher value is to be selected; which yielded p = 21%.
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where CTreq is the thrust generated by the rigid thruster at design point Str = 025.
Mean thrust is calculated using time history data from the last flapping-cycle
of motion, and the constraint is valid for the inviscid value. However, viscous-
corrected mean thrust and efficiency are included in the results assuming coeffi-
cients CF = 0.0039 and Ca = 0.13, see also Section 2.5.3 for details regarding
coefficient calibration. Proportional damping coefficients are assumed a = 2.5
(mass), b = 0.01 (stiffness).

All optimization studies are run using the Matlab sequential quadratic pro-
gramming algorithm fmincon that is suitable for handling nonlinear constraints.
Sensitivity and Hessian computations are based on forward differences; using de-
fault options. A typical three flapping-cycle simulation based on the linear wake
model and a coarse discretization (NEA = 6AR, NEC = 50, Nelem = 106
and dt/Tp = 0.4%) requires 210min on the AMD Ryzen 9 3900XT workstation
equipped with an NVIDIA GeForce RTX 3080 (10GB VRAM). Thus for a few
optimization cycles the optimization problem required roughly 9 days simulation
time.

Table 4.8 contains the optimal and reference designs along with the upper/lower
bounds required by the ‘fmincon’ solver. Sequential quadratic programming algo-
rithms, during the search for an optimal solution that also satisfied the constraints,
may favor the user-defined, preselected, upper and lower design-variable bounds.

Table 4.8: Optimal thickness profile.

naca0012 lb optimal ub

p1 rle 0.0152 0.0114 0.0130 0.0175
p2 Xup 0.2966 0.2521 0.2400 0.3411
p3 Zup 0.0588 0.0500 0.0605 0.0617
p4 ZXXup -0.4515 -0.4741 -0.4741 -0.000
p10 αte -9.0000 -11.250 -7.6500 -7.000

Figure 4.33 depicts the optimal thickness profile deduced from our simulations,
where similarity with the bio-mimetic stiffness profile in Riggs et al. [81] is evident.
In their designs, the bio-mimetic profile is more slender towards the trailing edge
and near the hydrodynamic center it becomes thicker compared to the NACA 0012
profile. Optimal shape, in our case, is slenderer near the trailing edge; however,
the increase in thickness near the pitch axis XR is more subtle, but evident. This
is shown in Figure 4.34 containing a ‘close up’ to the leading edge region. The
PARSEC parameter affecting the leading-edge radius for the optimal geometry is
greater than the NACA 0012.

Regarding the propulsive performance of the optimal shape, results show that
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Figure 4.33: Reference and optimal hydrofoil thickness profiles.

Figure 4.34: Close up on leading edge region for the reference and optimal hydrofoil
thickness profiles.
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slenderness towards the trailing edge region gives rise to higher bending deflections
which increase the efficiency η. Table 4.9 summarizes the propulsive performance
metrics, in the sense of Strouhal number, mean thrust coefficient and efficiency
(i.e. without viscous corrections), corresponding to the reference and optimal
thrusters. An enhancement of 3.1% is be obtained due to the bio-inspired selection
of thickness profile at a thrust reduction of 21%. The latter is considerable, thus
further investigation is needed for thrust compensation.

Table 4.9: Propulsive performance metrics (Str, CT , η) for the optimal and refer-
ence thruster.

id Material Profile Strouhal Mean thrust Diff. Efficiency Diff. Max.

CT (%) η (%) w (m)

0 Rigid 0012 0.250 0.2926 - 0.7308 - -
1 Flex. P1 optimal 0.250 0.2309 -21.08 0.7532 3.1 0.0173

2 Flex. P1 optimal 0.265 0.2482 -19.93 0.7389 1.2 0.0187
3 Flex. P1 0012 0.250 0.2612 -10.70 0.7350 0.6 0.0079

Figure 4.35 contains the time histories of thrust, lift and moment coefficients
for the reference and optimal thruster at design point, where the loss of thrust
is evident. The efficiency enhancement is also attributed to the phase difference
between the force coefficients. Instantaneous bending deflection at the trailing
edge at root section is presented in Figure 4.36, highlighting that deflections are
observable with respect to the wing’s dimensions. Finally, I provide a snapshot
of the flexible wing shape at maximum deflection in Figure 4.37 where chord-line
flexibility is dominant. Span-wise effects are still visible since variability along the
trailing edge deflection is visible. This effect may contribute to thrust reduction
and it needs to be addressed in future investigations.

For completeness, I also include results referring to the optimal thruster oper-
ating at a higher frequency Str = 0.265 (id = 2), where efficiency enhancement
is still evident. Moreover, the performance metrics of the flexible NACA 0012
thruster (id = 3) are included for the design point under study.

Loss of thrust is significant in this example, however for applications involving
AUVs for oceanic exploration running on limit battery capacity even the slightest
improvement in the propulsive efficiency corresponds to valuable extension of the
vehicle’s range. Further investigations need to be conducted in order to reveal
potential mechanisms for thrust compensation in cases of flexible thrusters.
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Figure 4.35: Instantaneous lift (CL), thrust (CT ) and moment (CM) coefficients
for the rigid (reference) and flexible (optimal) wing thruster deduced from the
optimization study at design point Str = 0.25.
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Figure 4.36: Time history of global and local displacement for the flexible thruster
with optimal thickness profile at design point Str = 0.25.
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Figure 4.37: Flexible wing thruster shape at maximum deflection referring to
design point Str = 0.25 in the local coordinate system.

4.5 Future extensions

Examination of various different support options and thruster planform shapes
over a range of flapping parameters and thickness profiles is left for future work.
Direct extensions referring to each sub-solver are also valuable for the coupled
computational tool. Further validation via comparisons against other works is
beneficial to the process of developing the present fluid-structure interaction tool
by means of showcasing its strengths and limitations.

For example, comparison with the numerical work of Zhu 2007 [63], where very
thin rectangular plates of constant thickness are tested can only be accomplished by
considering an extremely thin hydrofoil profile with our numerical tool as is. The
computational tool introduced in [63] is also based on potential flow formulation
for the hydrodynamics and since rigidity is varied from very stiff to flexible cases,
comparison against this work has some merit in terms of verification. Comparisons
require a very fine time-step (e.g. 0.05%Tp) to achieve convergence during internal
iteration and the overall computational time becomes extremely high.

To reduce the overall computational time for such cases in just a few hours
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requires further code development, exploitation of parallel computation techniques
on graphics cards and approximation of the Jacobian instead of direct calculation.
As the finite element mesh gets denser, the Jacobian size increases; resulting in a
significant increase of the overall simulation time. This translates as a ‘bottle-neck’
in terms of scaling to finer grids with the algorithm for strong coupling as is. A
direct extension related to this is the following,

� Approximate Jacobian. One way to alleviate these effects can be ac-
complished by implementing methodologies that do not require evaluation
of the full Jacobian, in order to save computational time. Spenke et al.
2020 [210] introduce a methodology that produces estimates of the Jacobian
using information from previous time steps, which significantly reduces the
overall computational time. This approach was successfully implemented by
Lauber et al. 2023 [211], to the numerical scheme developed for tackling the
FSI problem of flexible membranes.

� Optimization algorithms. The above extensions will enable optimization
studies involving a greater number of design variables. In addition, the use of
more sophisticated optimization algorithms, hybrid methods and evolution-
ary approaches is left as an interesting future work extension. The solution
of MDO problems can also be pursued.

Other extensions referring to investigation of flexibility effects on flapping-foil con-
figurations include,

� Boundary conditions. Perform simulations on flapping wing thrusters
assuming T-foil configurations (see, e.g., Figure 1.6), or more sophisticated
support options, to quantify effects on the propulsive performance.

� Planform shape parameterization. Curved boundaries and more com-
plex wing geometries. This requires extension of the mesh generation mod-
ules in the 3dBEM, 2dFEM tools. Alternatively, external modelers could be
used to generate the meshes.

� Non-uniform stiffness. Investigate effects of variability in material stiff-
ness, i.e. D(x, y), on the elastic response of wing thrusters. This includes
non-uniform material properties in the context of functionally graded mate-
rials, for instance Young’s modulus E = E(x, y).

� Friction-drag corrections. The friction drag coefficients that were intro-
duced in the post-processing phase of 3dBEM simulations, can be introduced
before mapping of hydrodynamic load to the finite element mesh so that they
are included in the fsi simulations.
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� Technological applications. The bio-inspired wings examined in the present
work, apart from small-scale AUV propulsion solution, are also studied in
the literature as wave/current energy extraction devices. Extension of the
developed scheme to address problems of semi-active or fully active flexible
flapping-foil energy harvesting devices is also possible; see, e.g. [40], [41] and
[9].



204 CHAPTER 4. FLUID-STRUCTURE INTERACTION MODEL



Part II

Partial-cavitation model based on
inverse design
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Chapter 5

Adjoint BEM-based method for
partially cavitating hydrofoils
beneath the free surface

In the present work, the problem of partial cavitation prediction for hydrofoils
steadily operating at finite submergence depths is addressed. Results regarding
the case of partially cavitating hydrofoils in an unbounded domain have been
published in Anevlavi & Belibassakis 2021 [212]. Ideal flow models are suitable
for predictions away from the wave-breaking regime, and therefore the present
method is suitable for cases of moderate submergence depths. The mathematical
formulation is for steady-state modeling of partially cavitating hydrofoils, and
transient phenomena are not part of the simulations. However, this method is
extensible to the case of unsteady partially cavitating hydrofoils where the length
and shape of the attached cavity must be modified accordingly; see the work
of Behbahani-Nejad and Changizian [213] for ideal-flow based unsteady partial
cavitation modeling. The sensitivities required for the gradient-based optimization
algorithm are derived using the adjoint method.

The adjoint method is extremely cost-effective for large numbers of design vari-
ables compared to the number of objective functions as it requires only two solver
evaluations per optimization cycle to produce the sensitivity derivative estimates
for every design variable. The objective function follows the assumption of con-
stant pressure on the cavity boundary, which is typical for cavitation prediction
ideal-flow solvers. The primary and adjoint boundary value problems are solved
numerically at each optimization cycle using the source/vorticity BEM solver, see,
e.g. [58], [59]. The hydrofoil/cavity boundary parameterization tool uses B-splines
and the coordinates of control points included in the design variable vector [137].

The inverse problem solution yields the initially unknown cavitation number
and the attached cavity shape for given cavity extent, see, e.g. Uhlman [214],

207
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Kinnas & Fine [62]. The cavity termination model introduced in the proposed
method consists of two modeling components. This model has a transition region
with the user-defined length between the rear part of the cavity, where a constant-
pressure condition needs to be satisfied, and the wet portion of the boundary where
a flow tangency condition holds. In the transition region, a flow tangency condition
on the cavity surface is also satisfied. Certain geometric constraints act on the B-
spline control points affecting the transition region. A comparison between the
present method and a standard finite difference scheme highlights the benefits of
using the adjoint method to produce sensitivity estimates for each design variable.

Alternative methodologies exist, such as the non-iterative algorithm of [213]
for unsteady partial cavitation of hydrofoils without free surface effects, where the
spatial-iterative scheme is removed by means of a new approach in determining
the instantaneous cavity length. Moreover, in the work of Choi et al. 2005 [215] a
shape-optimization model based on the continuous adjoint method was employed
to determine the optimum (minimum-drag) shape of a super-cavitating torpedo
given certain operating conditions and the cavitation phenomenon concurrently as
part of the solution. In Lemonnier &. Rowe 1998 [216], the authors introduce a
simple and adjustable minimization principle for cavity modeling and discuss its
effects on the predicted pressure profiles.

Results obtained using the proposed method are compared against the PC-
PAN solver from Kinnas & Fine [62], in the case of NACA 16006 hydrofoil at
various Froude numbers. The comparison targets wave elevation profile results,
the pressure coefficient distribution and the attached cavity shape. Additional
comparisons between the present method and experimental data illustrate that
the solver shows similar trends with other potential-based methods in terms of the
cavity length/cavitation number curve. Moreover, this work contains simulations
that detail angle of attack and submergence depth effects on the cavitation number
and cavity volume.

Chapter 5 is structured as follows. Following this short introduction, the math-
ematical formulation of the proposed inverse model for partially cavitating hydro-
foils operating beneath the free surface at a constant speed is provided. Then,
information regarding the numerical implementation of the method and the ge-
ometric representation of the attached cavity, using B-splines, are given. Our
method is verified via comparisons against other works, including the famous PC-
PAN method [62], and experimental data. Then, results concerning simulations
for the NACA 16006 hydrofoil at various angles of attack and submergence depths
is included. Interpretation and discussion on the results is provided in relation
to the predicted wave elevation profile, the pressure distribution on the hydrofoil
surface, and the attached cavity shape for a given cavity extent. Summary of the
findings are given in the conclusion section along with highlights. Exploitation of
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the present method is possible for the preliminary design of partially cavitating
lifting flow systems and applications of ship and marine hydrodynamics.

Figure 5.1: Problem definition for a partially cavitating hydrofoil steadily moving
beneath the free surface.

5.1 Mathematical formulation

This section presents first the governing partial differential equations for the lifting
flow problem of a hydrofoil steadily moving beneath the free surface under the
assumptions of ideal fluid flow, namely the primal problem. Various numerical
methods address non-cavitating hydrofoils submerged beneath the free surface,
such as [121], [136] and [217], under the assumptions of a linearized free surface
boundary and [218] for a more detailed overview.

The present work addresses the problem of a hydrofoil moving beneath the
free surface at constant velocity with the effects of finite submergence depth via
a steady formulation by introducing a body-fixed coordinate system, see Bal et
al. [121]. The steady formulation is shown schematically in Figure 5.1, where the
constant forward motion of the hydrofoil becomes equivalent to a uniform inflow
velocity profile denoted asU∞ = (−U∞, 0). The x−axis is negative in the direction
of uniform inflow, the z−axis is positive upwards, and the linearized free surface
at z = 0.

The domain boundary consists of the wetted part of the hydrofoil Γw (high-
lighted with gray), the attached cavity Γc (shown in blue) that has an initially
unknown shape in the context of free-streamlines, and the free surface boundary
Γfs. The hydrofoil of chord length c, is positioned at submergence depth d with
respect to its trailing edge (TE), facing the inflow at an angle of attack α. The unit
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normal vector denoted as n̂, faces the exterior of domain Ω and the unit tangential
vector at each position along the boundaries denoted as τ̂ , shown in Figure 5.1.

Under ideal-flow assumptions the total velocity potential Φ = −U∞x + ϕ, an
expression that arises from the superposition of inflow and perturbation potential.
The primary unknown for the boundary value problem (BVP) presented in this
section is the perturbation velocity field. The governing equation is the Laplace,

∇2Φ = 0, (x, z) ∈ Ω (5.1)

The body boundary, comprising of the wetted part and the attached cavity, is
modeled as a stream line and therefore a flow tangency condition must hold,

(∇ϕ+U∞) · n̂ = 0, (x, z) ∈ Γc ∪ Γw. (5.2)

A pressure-type Kutta condition is enforced to ensure that the total velocity,
defined as V = ∇ϕ +U∞, remains finite in the TE vicinity, which in the case of
a steady problem reads equivalently,

Vp
te · τ̂

p
te +Vs

te · τ̂
p
te = 0, (5.3)

where Vp
te, V

s
te denote the total velocity on the pressure and suction sides of the

hydrofoil, respectively, in the TE vicinity. Under the assumption of moderate
submergence depths, a linearized free surface condition holds on z = 0,

∂2ϕ

∂x2
+ ko

∂ϕ

∂z
= 0, (x, z = 0) ∈ Γfs, (5.4)

where ko = g/U2
∞ is the wave number for infinite water depth and g the gravi-

tational acceleration. The wavelength for infinite water depth can be calculated
as λ = 2π/ko. This linearization allows for the velocity potential and the free
surface elevation fields to be decoupled. The BVP in Eqs. (5.1)-(5.4) can be
solved when the inflow conditions and the hydrofoil/cavity boundary are known.
An integral formulation, based on a distribution of fundamental solutions of the
Laplace equation on the boundaries, is used to represent the perturbation (or dis-
turbance) potential in the following section. The solution representation satisfies
by definition the condition at infinity that holds as,

limz→∞∇ϕ→ 0. (5.5)

The infinity condition expresses the physical assumption that the disturbances
caused to the local fluid flow by the submerged lifting hydrofoil will decay at large
distances, and the constant inflow velocity profile with be dominant at infinity.
The standard ideal-flow models lack a mechanism that yields the decay of vortex
formation at large distances due to the inviscid assumption. Therefore, the very
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definition of the admissible solutions satisfies an infinity condition that holds for
the potential field representation.

The solution of the BVP yields the velocity distribution on the hydrofoil, and
Bernoulli’s theorem for steady potential flow provides estimates for the pressure
distribution from the velocity information,

p+ 0.5ρV 2 = p∞ + 0.5ρU2
∞, (5.6)

with ρ denoting the fluid density. The free surface elevation is derived from,

η = −U∞

g

∂ϕ

∂x
, (x, z = 0) ∈ Γfs. (5.7)

In the case of non-cavitating hydrofoils, the above formulation is suitable to
treat the wave resistance problem and provide predictions for the free surface
elevation at moderate hydrofoil submergence depths. In the case of near or wave-
breaking regimes, where non-linearities dominate, they need to be taken into count
as in [219]. In Section 5.1.3, a discussion about the representation of the velocity
potential and the solution of the BVP using Boundary Integral Equations provides
additional details on the matter. Predicting the effects of free surface on a hydrofoil
operating in the partial cavitation regime requires information about the shape of
the free-streamline that coincides with the attached cavity boundary for given
inflow conditions. The latter is an unknown boundary, which introduces non-
linearity to the problem under consideration.

A new formulation is proposed in this work to address free surface effects on
partial cavitation at moderate submergence depths and angles of attack. The free-
streamline problem for a given cavity length is treated in the context of inverse
problems. Regarding the problem statement, the following variation is considered:
Determine the cavity shape and cavitation number, following a constant-pressure
assumption on the cavity, for given cavity length and inflow conditions. The fixed-
cavity-length simplification facilitates the verification of the proposed numerical
scheme through comparisons against other methods that follow the same assump-
tions, i.e. [214]. However, the fixed cavity length assumption can be waived via
an iterative scheme, as shown in [121], thus allowing the present method to con-
sider more realistic applications in future work. The proposed method consists
of implementing a gradient-based optimization scheme to produce cavity shape
and cavitation number predictions at each optimization cycle, until the boundary
conditions are satisfied. The sensitivities required by the gradient-based optimizer
are derived analytically using the continuous adjoint method.
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5.1.1 Cavity termination model

For the parametric representation of the hydrofoil/cavity using B-splines a clock-
wise convention is adopted,

r(t) = {(x, z) ∈ R2 : x = x(t), z = z(t), t ∈ I = [0, 1]}, (5.8)

with xpte = (x(to), z(to)), x
s
te = (x(t1), z(t1)) denoting TE on the pressure and

suction sides respectively. The hydro- foil/cavity outline can then be remodeled for
any given set of nodal coordinates using interpolation [137]. The detachment point
is placed at the leading edge in the case of hydrofoils with a sharp nose, however
for a smoother leading edge, the cavity would detach at a point downstream of the
at a point downstream the leading edge laminar boundary, see Celik et al. [122].
The detachment point position is user-defined and measured as lD in SI units with
respect to the x−axis of the hydrofoil body-fixed coordinate system, whereas for
the case of leading-edge detachment point lD = 0.

After the cavity geometry has been parameterized a termination model must be
implemented alongside the parametric representation. Cavity termination model-
ing is an essential tool that brings numerical results closer to experimental data,
since in reality, the cavity closure region consists of a two-phase turbulent zone
where a very complex flow occurs. In the context of potential-based methods us-
ing a cavity, the termination model allows overcoming the difficulties in obtaining
information about the pressure distribution around the hydrofoil and a more re-
alistic cavity shape. There are various termination models, such as the end-plate
Riabouchinsky (or wall termination model) implemented in Uhlman [214], the re-
entrant jet model, and a more sophisticated approach in Yoon & Semenov [220]
based on viscid-inviscid formulations.

In the (sD − sL) region, which is confined by the detachment sD and termi-
nation sT positions, following a curvilinear parameterization as shown in Figure
5.1, a constant pressure condition must hold. The transition region (sT − sL) of
length lTL, defined by the termination sT and the reattachment point sL, belongs
to the wetted portion of the boundary where the flow-tangency condition is to be
satisfied. The proposed pressure recovery model is inspired from Celik et al. [122]
and assumes that pressure on the transition zone (sT − sL) of the attached cavity
surface is defined upon solution of the boundary value problem; thus a criterion
for constant pressure only holds for the (sD − sT ) region. The parametric repre-
sentation of the attached cavity using B-splines allows for certain constraints to be
enforced on the control points affecting the shape of (sT −sL) region to ensure that
the cavity either reattaches smoothly onto the wetted boundary of the hydrofoil or
a stagnation point occurs at the reattachment point, see Section 5.2.1 for details.

Following [122], two user-defined parameters are required to deduce a dynamic
boundary condition that holds along the attached cavity boundary. Moreover, its
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shape changes at each iteration by shifting the panels to form the new shape of the
discretized cavity boundary. The cavity termination model proposed in this paper
alleviates the need for a dynamic boundary condition formula based on user-defined
parameters. The proposed cavity model implements B-spline parameterization for
the attached cavity shape, which allows for a more intuitive tuning of the changes
in geometry in the reattachment region.

It is important to note that the B-spline parameterization of the boundary is
compatible with cavity termination models based on geometric criteria, such as
the wall termination model, which imposes a stagnation point at the reattach-
ment point, or the more realistic re-entrant jet model. Comparisons with other
potential-based models and experimental data have shown that the proposed cav-
ity termination model yields results and pressure coefficient profiles that agree well
with the literature, see Section 5.3 for additional details.

5.1.2 Inverse problem definition

For certain flow configurations, where the region near cavity termination is only
moderately perturbed, and therefore and steady solution is attainable. The present
work is based on the above assumption and particularly for the case of partially
cavitating hydrofoils operating beneath the free surface. This model can be ex-
tended to treat the corresponding unsteady problem providing information con-
cerning transient effects, however this is left for future work. The minimization
function expresses the assumption of constant-pressure on the (sD − sT ) region,
between detachment and termination points, of the cavity boundary,

F =

∫
Γc

gds =

∫
Γc

1

2
(p− pυ)

2ds, (5.9)

with pu denoting the initially unknown saturated vapor pressure. An optimum
has obtained when the predicted pressure on the cavity boundary is constant and
equal to the saturated vapor pressure. The cavitation number is defined as,

σ =
p∞ − pυ(T )

0.5ρU2
∞

, (5.10)

where U∞, p∞ and T∞ are, respectively the ambient velocity, pressure and tem-
perature in the flow field. In Eq. (5.9) the kernel can also be expressed in terms
of the non-dimensional pressure coefficient as follows,

p− pυ = 0.5ρU2
∞(Cp − σ). (5.11)

The design variables, denoted as bn, n = {1, ..., N} for the inverse problem pre-
sented in this section, refer to the target cavity pressure (or cavitation number) and
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B-spline control points used for the attached cavity shape parameterization. To
sum up, the design variable vector takes the form b = [σ, x1, y1, ..., xm, ym], where
m = (N − 1)/2, assuming that N denotes the total number of design variables.
Notably, admissible solutions must comply with the requirements of 2D incom-
pressible, inviscid, and irrotational fluid flow in the region. Our primal boundary
value problem (BVP) serves as a constraint for the optimization problem,

∆ϕ = 0, (x, z) ∈ Ω, (5.12)

(∇ϕ+U∞) · τ̂ |t0 + (∇ϕ+U∞) · τ̂ |t1 = 0, (5.13)

(∇ϕ+U∞) · n̂ = 0, (x, z) ∈ Γc ∪ Γw, (5.14)

∂2ϕ

∂x2
+ ko

∂ϕ

∂z
= 0, (x, z = 0) ∈ Γfs. (5.15)

The perturbation potential which is selected as the primal variable in our formu-
lation is implicitly dependent on the design variables ϕ = ϕ(x, z; bn).

A typical approach to sensitivity derivative estimates concerning each design
variable is via finite differences. For example, a central scheme would require 2N
evaluations of the primal solver, with N denoting the total number of design vari-
ables. On the contrary, with the adjoint method we can produce estimates based
on two evaluations of the fluid flow solver per optimization cycle. It is important
to note that the adjoint method implemented here is part of a cavitation predic-
tion tool used to investigate free surface effects on the performance of partially
cavitating hydrofoils.

Examples of CFD-based adjoint optimization methods that serve as a direct
link between numerical models for cavitation prediction and design improvement,
in the sense of cavitation suppression, are notably the works of Boger & Pater-
son 2014 [221] and Vrionis et al. 2021 [222]. These works show that cavitation
suppression and lift maximization can be achieved concurrently using single-fluid
solvers based on conservation equations governing the homogeneous mixture with
averaged properties. A similar extension that could be used for cavitation pre-
diction and design optimization of hydrofoils beneath the free surface using the
present numerical tool is left for future work.

The derivation of sensitivities, based on the continuous adjoint method, occurs
at the level of partial differential equations. Alternatively, symbolic mathematics
can be exploited to facilitate the derivation process; see, e.g., [223] on a similar
problem. Following the methodology presented in Papadimitriou & Giannakoglou
2007 [224], at first we introduce the adjoint velocity potential; a continuous and
twice differentiable Lagrange multiplier denoted as ψ. This is essential for the
derivation of adjoint-state equations. Then, the augmented minimization cost
function is introduced based on Eq. (5.9) and Eqs. (5.12)-(5.13) of the primal
boundary value problem.
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The augmented minimization function1 reads as,

L = F +

∫ ∫
Ω

ψ∇2ϕ dV +

∫
Γ

ψδ(s− s0)
[
(∇ϕ+U∞) · τ̂ |t0 + (∇ϕ+U∞) · τ̂ |t1

]
ds

(5.16)
where δ(s − s0) is the Dirac delta function. The first variation of the above Eq.
(5.16) obtained analytically with respect to each design variable holds as,

δL

δbn
= SD −

∫ ∫
Ω

δϕ

δbn
∆ψ dΩ−

∫
Γfs

δϕ

δbn

[ 1

ko

∂2ψ

∂x2
+
∂ψ

∂z

]
dx (5.17)

+

∫
Γw

δϕ

δbn

[
∇ϕ · n̂

]
ds+

∫
Γc

δϕ

δbn

[
−∇ψ · n̂+ ρ∇s

(
Vt(p− pυ)

)]
ds

−
[
ρVt(p− pυ)

∂ϕ

∂bn

]sT
sD

+ ψ(s0)
δ(∇ϕ)|s0
δbn

+ ψ(s1)
δ(∇ϕ)|s1
δbn

,

with

SD = −
∫ sT

sD

(p− pυ)
δpυ
δbn

ds+ g(sT )
δsT
δbn

− g(sD)
δsD
δbn

(5.18)

+

∫ tT

tD

g
δ||ṙ||
δbn

dt−
∫ tT

tD

ρVt(p− pυ)(∇ϕ+U∞) · δτ̂
δbn

dt

−
∫
Γc

ψ(∇ϕ+U∞) · δn̂
δbn

ds,

where sD =
∫ tD
t0

||ṙ|| ds, sT =
∫ tT
t0

||ṙ|| ds with {t0, tD, tT} ∈ I = [0, 1] and the
formula in Eq. (5.18) represents and approximation for the sensitivity derivatives
SD. Additional details regarding the derivation are contained in Appendix D.

Following the adjoint method, sensitivities in the above formula are by defi-
nition independent of the term ∂ϕ/∂bn, i.e. partial derivatives of potential with
respect to the design variables.

Regarding Eq. (5.17), additional assumptions are made to ease numerical
computations. Particularly, since admissible cavity shapes are such that both
sD and sL points on the boundary are fixed, the corresponding variation of each
δϕ/δbn on these points are set to zero. The only problem arises regarding the
extent of pressure attenuation (or transition) region (sT − sL). In our formulation
the position of sT should be such that Vt = U∞

√
σ + 1, equivalently p = pυ. For

1At first glance it may seem odd that the expression in Eq. (5.16) only considers Eqs. (5.12)
and (5.13); considering that the primal boundary value problem serves as a constraint to the
minimization process. However, the remaining Eqs. (5.14)-(5.15) are to be exploited during the
first variation of the augmented cost function, since they are ‘labeled’ as boundary conditions.
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that reason, it is assumed that terms associated with sT can also be neglected. The
extent of pressure transition region, i.e. t ∈ (tT , tL), is thus defined by numerical
experimentation, and the corresponding values, as it will be shown later on, are
compatible with the findings in Kinnas & Fine [62].

The adjoint boundary value problem presented below is introduced so that
sensitivity calculation becomes independent of δϕ/δbn and equivalently Eq. (5.17)
reads as δL/δbn = SD. Thus,

∆ψ = 0, (x, z) ∈ Ω, (5.19)

∇ψ · n̂ = 0, (x, z) ∈ Γw, (5.20)

∇ψ · n̂ = ρ∇s

(
Vt(p− pυ)

)
= 0, (x, z) ∈ Γc, (5.21)

∂2ψ

∂x2
+ ko

∂ψ

∂z
= 0, (x, z = 0) ∈ Γfs. (5.22)

Finally, it is important to note that the δϕ/δbn terms are computationally expen-
sive to calculate explicitly via finite differences, as additional calls to the primal
BEM solver are required. Via the adjoint method this is circumvented and the
overall computational cost reduced significantly.

The adjoint boundary value problem is very similar to the primal, however, on
the cavity boundary, a non-homogeneous Neumann condition has to be satisfied.
The undefined constant ψ(to) associated with the exterior Neumann boundary
value problem Eqs. (5.19)-(5.22) is resolved, in the present work, by assuming
ψ(t0) = 0. The latter is used in conjunction with continuity assumption of the
adjoint potential ψ, thus dropping the last two terms in the right hand-side of
Eq.(5.17). It is worth mentioning here that the numerical solution of the primal
and adjoint BVPs is obtained in the sense of BIE.

The present method can be directly extended to three-dimensions for the case
of a finite wing steadily moving at moderate submergence depths near a free sur-
face. The primal boundary value problem for the case of finite wings can be
formulated based on the work of Bal et al. [121], whereas the attached sheet can
be parameterized using a NURBS surface, see Hughes et al. [225] on this topic.
Regarding the cavity termination model, for the 3D case the transition zone extent
should be defined at each hydrofoil section along the wing span. Particularly, for
the case of sheet cavitation without free surface effects, the present method as is
could be implemented in selected positions along the span (in a strip-wise manner)
to produce estimates for the cavitation number and attached cavity sheet shape.

5.1.3 Solution representation based on BIE

The potential ϕ and velocity field V = ∇ϕ corresponding to the fluid flow problem,
are solutions to the BVP presented in Eqs. (5.12)-(5.15). This solution must
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also satisfy the equivalent weak form of the BVP in terms of Boundary Integral
Equations (BIE). The adopted formulation is based on a perturbation velocity
field representation using a superimposing of the governing equation solutions, i.e.
source and vortex [59]. The perturbation potential ∀r = (x, z) ∈ Ω that results
from changes in the flow field due to the existence of a submerged hydrofoil, is
represented as follows,

ϕ =

∫
Γ

G1(r, ro)σ(ro) ds(ro) + γ

∫
Γ

G2(r, ro) ds(ro), (5.23)

G1(r, ro) =
ln(r, ro)

2π
, r ∈ Ω− {ro}, (5.24)

G2(r, ro) =
1

2π
tan−1

( z − zo
x− xo

)
, r ∈ Ω− {ro}, (5.25)

where G1(r, ro), G2(r, ro) denote the point source- and vortex-type singularities,
solutions to the Laplace equation that also satisfy by definition the required con-
dition at infinity in Eq. (5.5). The total velocity potential in that sense becomes,

Φ = ϕ∞ + ϕ, (5.26)

where ϕ∞ denotes the velocity potential of the uniform inflow background field.
By differentiating Eq. (5.26) under the integral sign and using a limiting process
the new form of the integral equation is valid for each point on the boundary
r = (x, z) ∈ Γ the following representation for the total velocity field is derived,

V = U∞ − σ(r)

2
· n̂(r) +

∫
Γ

∇rG1(r, ro)σ(ro) ds(ro) (5.27)

− γ(r)

2
· τ̂ (r) +

∫
Γc∪Γw

∇rG2(r, ro) ds(ro),

with unknowns the source strength distribution σ(ro) and vorticity γ, see also [59].
We shall distinguish by indices + and – the limits obtained by approaching the

boundary ∂Ω from inside R2\Ω̄ (exterior) and Ω (interior), respectively. Particu-
larly Eq. (5.27) used express the boundary conditions of the BVP, thus forming
a system of equations with the strength of vortices and source singularities as the
unknowns. A distribution of vortices, that is associated with the circulation and
lift around the foil, is used only on the foil and cavity surface. In the discrete
version it is assumed constant along the foil, i.e. γ(s) = γ. The above Boundary
Integral Equation (BIE) formulation leads to a significant size reduction of the
numerical procedure, since the unknown velocity field solely dependents on the
boundary singularities σ(s) and γ.
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5.2 Numerical model

5.2.1 Mesh generation

Free surface

The discretized, linearized free surface is defined by the forward (upstream) and
aft (downstream) truncation points; denoted as xF and xA, respectively. Typical
values include xF = 3λ and xA = −5λ, assuming a wave length λ. To ensure
that unrealistic upstream waves are suppressed, the upstream-region is discretized
using an exponential distribution of panel elements with user-defined sparsity, so
that the final mesh is coarser in the upstream region.

xfs = −wd c− (xA − wd c)x
np

k , xk ∈ [0, 1], k = {0, ..Nss}, (5.28)

with c denoting the hydrofoil chord length and assuming wd = −2, np = 2 and
Nss = 25 as typical values for the above parameters. Particularly, wd defines the
upstream region length, np denotes a power coefficient related to the mesh sparsity
and Nss is the number of panel elements in the upstream region. Downstream iso-
spacing is used; see also Figure 5.2 containing a free surface mesh example.

Hydrofoil with attached cavity

The hydrofoil section is defined using two concatenated cubic Bezier curves as
(xfoil, yfoil) based on the parametric representation found in [226]. To generate an
initial guess for the attached cavity a parabolic function with one free parameter
β ∈ R+ that controls the cavity volume is used,

z = zfoil − βxfoil(xfoil − xfoil(tL)). (5.29)

The hydrofoil/cavity outline described in (5.8) consists of the original geometry of
the hydrofoil superimposed with the attached cavity generated using (5.8) above.
The attached cavity is then represented using B-spline interpolation of the fourth
order. B-splines are popular for their characteristic locality property [225], while
the control points of a Bezier curve affect the entire shape of the curve. B-spline
control points are include into the set of design variables bn, n = {1, ..., N} along
with the unknown cavitation number, denoted as σ.

The initial guess significantly affects the convergence rate of the optimization
method; see, also the discussion in Section 5.3. Additional results can be found
in Anevlavi & Belibassakis 2022 [158]. Starting from a parabolic shape does not
guarantee smooth transition near the cavity closure, and therefore the slope of
B-spline at the vicinity of cavity termination region should be adjusted, as shown
in Figure 5.3 for compliance with the selected cavity termination criteria. The
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Figure 5.2: Discretized free surface comprising of an upstream region (wd = −2,
np = 2 and Nss = 25) with exponential spacing and a downstream region with
isospacing. The example domain [below] and a close up of the transition between
upstream/downstream regions [above].

same holds for the attached cavity near the leading edge (LE), to ensure that
intersection between the cavity and reference hydrofoil geometry occur only at the
detachment point; for each optimization cycle.

In some cases, it is experimentally observed that the cavity detaches from a
position different from the leading edge. According to nonlinear cavity theory
the cavity slope equals the foil geometry slope at detachment point. The pro-
posed cavity representation can be used to model an attached cavity that detaches
smoothly from a selected position downstream the leading edge. Particularly, in
Section 5.3.2 where the present method is compared against experimental data the
detachment point is positioned at lD = 2− 4mm downstream the leading edge to
comply with the observations mentioned in [120]. Control points near detachment
are positioned accordingly, in order to ensure that the cavity detaches smoothly
from the hydrofoil; thus satisfying the slope requirement.

As previously discussed, the pressure transition region extent lTL is an input
parameter for the proposed cavity termination model, similar to the approach
followed in Bal et al. [121]. Since the aforementioned optimization problem is
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subjected to no constraints, it is essential to verify during the optimization pro-
cess that the attached cavity remains compatible with the physical assumption of
the free-streamline problem, i.e., the attached cavity boundary does not intersect
with the original hydrofoil geometry. The only intersections allowed are the de-
tachment and reattachment points of the cavity. Particularly, the first and last
two control points, see Figure 5.3, are not included in the design variable vector.
The cavity shape in re-attachment region depends solely on the cavity geometric
model constraints. It is important to note here, that the B-spline representation is
capable of reproducing other cavity termination models as well, such as the classic
wall termination model or the more sophisticated re-entrant jet, see e.g., [119] for
more details about these termination models. This can be achieved by introduc-
ing more control points in the re-attachment region of the cavity and imposing
certain constraints on them to re-create the desired shape of the cavity over the
re-attachment region, see Figure 5.4.

Figure 5.3: (a) Attached cavity parametrization using B–splines, with details about
(b) the cavity detachment position at the LE and (c) the cavity closure region.
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Figure 5.4: (a) Attached cavity parametrization using B–splines for the cambered
Foil A from [120], with details about (b) the cavity detachment position 0.5mm
from the LE and (c) the cavity closure region.

5.2.2 Minimization algorithm

Amongst optimization methods, gradient-based ones can be more efficient when
the optimum is nearby. Particularly, adjoint methods, following either continuous
[148] or discrete formulations [227], are of great interest due to their ability of
efficiently handling large numbers of design variables. Notable is the introduction
of continuous adjoint methods for design problems in fluid dynamics, typically
attributed to [147] who studied drag minimization for two-dimensional shapes in
Stokes and Low-Reynolds number flows. In the present work, the simple steepest-
descend method is implemented to treat numerically the deterministic optimiza-
tion problem based on the continuous adjoint method as a means for sensitivity
derivative approximation.

Our analysis leads to the algorithm described below, namely the PCavPreMod.
Rate of convergence is strongly dependent on the selection of steepest-descend
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parameter vector B, as well as the initial guess for the design variable vector.
It is important to note that since the steepest-descend parameters, denoted as
Bn n = {1, ...N}, are dimensional, the convergence thresholds must be properly
tuned beforehand. A local optimum is reached as the design cycles progress, assum-
ing that the parameter vector selected for the steepest-descend scheme are suffi-
ciently small. The optimization process continues until the solution has converged,
i.e., the values of sensitivities and cost function are below a certain threshold, or
the number of maximum evaluations M max has been reached. The convergence
metric, denoted as |F/Fo|, introduced in this work is defined as the absolute value
of the ratio between current and initial values of the minimization function in Eq.
(5.9). One way to explore further the design space within the capabilities of a
gradient-based method is to search for the optimal solution starting from different
initial cavity shapes.

Algorithm 1 PCavPreMod

Initialize b0n = {1, ..., N}, set B > 0, set Mmax

while (MOPTIM < Mmax or Convergence) do
Solve primal problem for ϕ
Solve adjoint problem for ψ
Calculate sensitivity derivatives SD = δL/δbn
Update bk+1

n = bkn −Bn · SD
Update k = k + 1
Update MOPTIM =MOPTIM + 1

end while
return bk+1

n

5.2.3 Solution of the primal problem

For the solution of the primal BVP in Eqs. (5.12)-(5.15) a low-order panel (BEM)
solver based on piece-wise constant source and vortex distributions is implemented.
The boundary is approximated with (M1+M2) straight-line segments, namely the
panel elements,

σ(s) = σj, j = {1, ...,M1 +M2}, (5.30)

γ(s) = γ, j = {M1 + 1, ...,M1 +M2}, (5.31)

withM1 source panel elements on the linearized free surface andM2 source, vortex
panel elements distributed on the hydrofoil boundary. Particularly, cosine spacing
near the leading/trailing edge of the hydrofoil is implemented and the same holds
for the cavity termination region. The total velocity induced at the midpoint of



5.2. NUMERICAL MODEL 223

i− th panel from the source- and vortex distributions is given by,

Vi = U∞ +

M1+M2∑
j=1

σjuσ,ij + γ

M1+M2∑
j=M1+1

uγ,ij, (5.32)

uσ,ij =

∫
panel j

(xs,i, zs,i)

2πr2r,i
ds, uγ,ij =

∫
panel j

(−zs,i, xs,i)
2πr2r,i

ds, (5.33)

where rs,i = (xs,i, zs,i) is the relative position of the control point (x̄i, z̄i) to the
point of integration. Particularly, xs,i = x̄i − xs and zs,i = z̄i − zs. The discretized
form of the boundary conditions is as follows,

∂x(Vj · τ̂ j) + koVj · n̂j = 0, j = {1, ...,M1}, (5.34)

Vj · n̂j = 0 j = {M1 + 1, ...M1 +M2}, (5.35)

VM1+1 · τ̂M1+1 +VM1+M2 · τ̂M1+M2 = 0. (5.36)

The x-derivative operator that appears above is numerically calculated using an
upstream fourth order finite difference scheme, or the Dawson’s operator [228].
Particularly,

∂u

∂x
|k ≃ Akuk +Bkuk−1 + Ckuk−2 +Dkuk−3, (5.37)

with
Ak = −(Bk + Ck +Dk),

Bk =
1

Ek

(xk−2 − xk)
2(xk−3 − xk)

2(xk−3 − xk−2)(xk−3 + xk−2 − 2xk),

Ck = − 1

Ek

(xk−1 − xk)
2(xk−3 − xk)

2(xk−3 − xk−1)(xk−3 + xk−1 − 2xk),

Dk =
1

Ek

(xk−1 − xk)
2(xk−2 − xk)

2(xk−2 − xk−1)(xk−2 + xk−1 − 2xk),

Ek = (xk−1 − xk)(xk−2 − xk)(xk−3 − xk)(xk−3 − xk−1)·
(xk−2 − xk−1)(xk−3 − xk−2)(xk−3 − xk−2 − xk−1 − 3xk),

where xk, k = {1, 2, ...,M1} denotes the control points on the free surface. Based
on the above, we derive the discrete form of the x−derivative of the horizontal
velocity on the free surface boundary as follows,

∂uk,j = Akuk,j +Bkuk−1,j + Ckuk−2,j +Dkuk−3,j, (5.38)

that represents the contribution of j− ith element in terms of ∂x() velocity on the
k − th control point on the free surface boundary.
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Based Eqs. (5.34)-(5.36), we form a linear system of (M1 +M2 + 1) equations
with (M1 +M2 + 1) unknowns with respect to the strengths of source and vor-
tex distributions. The pressure coefficient at the midpoint of each panel can be
calculated using

Cp(x̄j, z̄j) = 1− V 2
t /U

2
∞. (5.39)

After the solution has been obtained the lift and moment coefficients CL, CM be
calculated via numerical integration, see also [59]. The wave making resistance
CW of the hydrofoil can also be estimated by numerically integrating pressure on
the hydrofoil and projecting in the direction of inflow velocity.

5.2.4 Solution of the adjoint problem

The adjoint field equation accompanied with a Neumann-type boundary condition
can also be treated in the sense of BIE. However, the numerical solution of this
problem is much simpler than the primal problem. The same discretization scheme
is used to approximate the boundary of the hydrofoil/cavity. Since this problem
does not have circulation, vortex elements are not used in the representation. The
total adjoint velocity Va,i at the midpoint of i− th panel is given by,

Va,i = U∞ +

M1+M2∑
j=1

qa,juσ,ij, (5.40)

with induced velocities uσ,ij defined in (5.33). The corresponding boundary con-
ditions in discretized form are,

∂x(Va,j · τ̂ j) + koVa,j · n̂j = 0, j = {1, ...,M1}, (5.41)

Va,j · n̂j = ρ∂s
(
Vt,j(p− pυ)

)
, j = {M1 + 1, ...M1 +M2} ∩ Γc, (5.42)

Va,j · n̂j = 0, j = {M1 + 1, ...M1 +M2} ∩ Γw. (5.43)

The above Eqs. (5.41)-(5.43) form a system of (M1+M2) equations with the same
number of unknowns, with respect to the strengths qa,j of the piece-wise constant
source distributions.

5.2.5 Calculation of sensitivity derivatives

The formula in Eq. (5.18) can be used to produce estimates of the sensitivities
δL/δbn after the solutions of both the primal and adjoint problems are obtained.
The integrals are evaluated by means of standard numerical integration, and the
derivatives of geometric quantities with respect to the design variables are ap-
proximated via central finite differences. These quantities include the normal and
tangential vectors n̂, τ̂ vectors, and the Jacobian of the curve representation ||ṙ||.
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In order to verify the validity of Eq. (5.18), the sensitivities are compared
against results obtained via a direct implementation of a central difference scheme
on the cost function δF/δbn in Eq. (5.8) for various study cases, with one example
provided in Section 5.3 that follows. It is important to note that an estimate
for the sensitivities obtained with central differences, requires 2N evaluations of
the BEM solver, with N denoting the total number of design variables. On the
other hand, the approximation based on the continuous adjoint method requires
only two solver evaluations, i.e., namely one solution for the primal and one for
adjoint problem. Thus, reducing significantly the computational cost, since this
approach remains independent of the total number of design variables(i.e degrees
of freedom).

5.3 Results and discussion

5.3.1 Primal solver verification for non-cavitating hydro-
foils

Wave elevation due to a submerged point-vortex

A common abstraction in the sense of mathematical modeling, involving analytic
solutions based on complex theory, is to represent a hydrofoil section with a point
vortex-type singularity of the same circulation strength, denoted as Γ. Following
this approach with an aim to verify the potential-based solver, wave elevation
profile results that were obtained from a modified version of the primal BEM
solver are compared against the complex-variable method asymptotic solution in
[229] for the case of a point vortex of constant strength submerged within a fluid in
uniform velocity profile. Additional details about the asymptotic solution derived
with the complex-variable method for this problem can be found in Appendix E.

The comparison in Figure 5.5 refers to the case of a point vortex with unit
strength. The singularity is assumed to be submerged into a uniform inflow U∞ =
1.77m/s at submergence d = 0.15λ, where λ denotes the corresponding wave
length. A number of Nfs = 1290 non-uniformly spaced panels is used on the
free surface, whereas mesh spacing is increased in the upstream part to improve
the quality of numerical results. The predicted wave profile agrees well with the
asymptotic solution downstream the singularity. Our model slightly over predicts
wave elevation peaks downstream. This behavior can be attributed to effects
of domain truncation; which are treated by Dawson’s discrete scheme up to a
degree. The non-trivial deviation between the predicted wave elevation profile and
[229], occurring at the location of singularity in the x− axis, is attributed to the
asymptotic nature of the analytic solution expression; see also Appendix E.
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Figure 5.5: Wave elevation comparison between the asymptotic solution from
Kuznetsov et al. [229] and the present BEM for a point vortex singularity; sub-
merged in uniform inflow. Sub-figure (a) shows the vortex direction for visualiza-
tion purposes.

Pressure coefficient and wave elevation for a NACA 4412

Additional comparisons between the present method and the work of Yeung &
Bouger [230] are performed. The first study case refers to a NACA 4412 hydrofoil
at a = 5deg moving steadily beneath the free surface at Fr(c) = U∞/

√
(gc) = 1

including bottom effects, with Fr(c) = U∞/
√

(gh) = 0.447, with h denoting
the vertical distance of the flat-bottom boundary. Non-dimensional submergence
depth is taken as d/c = 1, whereas h/c = 5. The method of images, see, e.g. [59],
is employed to include flat bottom effects in the modeling.

The comparisons in Figure 5.6 suggest that the primal solver is capable of
accurately predicting, within the limits of potential flow, the pressure profile when
free surface effects are present. Particularly, the Cp profiles at α = 5deg compare
well with the numerical results in Giesing & Smith [231]. For this scenario the
predicted lift and wave resistance coefficients CL = 0.74, CR = 0.065 also compare
well with the values reported in [230]. Regarding comparisons against available
experimental data, it is observed that the measured data lie below the calculated
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values for α = 5deg. However, as reported in [231] this phenomenon can be
attributed to boundary layer displacement effects; that lower the circulation. A
comparison against equal lift coefficients, for instance CL = 0.48, reveals that the
present method is indeed in excellent agreement with the numerical tool presented
in [231]; assuming that the angle of attack for the potential model is adjusted to
α = 3.5deg.

Concerning results for wave elevation, in Figure 5.7 primal solver predictions
are compared against those in [230] for the case of a NACA 4412 at the same
angle of attack, submergence depth ratio d/c = 1 and at various Froude numbers
Fr(c) = {0.35, 0.45, 0.6, 1.8}. For the computations Nb = 240 panels are used
for the foil boundary and Nfs = 1000 on the free surface, assuming non-uniform
spacing. It was found that for Fr(h) = 1.0, uniform spacing with Nfs = 3600
panels on the free surface produced the best results, and these are shown in Figure
5.7 (d).

5.3.2 Verification of the adjoint prediction method for cav-
itating hydrofoils

The proposed model has been compared against other works, both numerical and
experimental, for cases of partially cavitating hydrofoils at deep submergence with
results presented in Anevlavi & Belibassakis 2021 [212]. The benchmarks, target-
ing cavitation number and cavity volume predictions, suggest that PCavPreMod
performs satisfactorily for cases of deep submergence.

In this Section we emphasize on indicative results supporting the validity of
Eq. (5.18), which yields approximations for the sensitivity derivatives. These
results refer to the case of a NACA 16006 hydrofoil at a = 5deg with cavity length
lc = 0.5c at deep submergence. Results for the same hydrofoil at finite submerge
of d/c = 0.6 and various Froude numbers are included and compared against the
PCPAN solver from the work of Bal et al. [121], which is also based on potential
theory.

In order to illustrate the capabilities of our method with respect to cavitation
number and cavity shape prediction, I analyzed cases of varying effective angle and
submergence. The initial guesses for the cavity boundary in all simulations are
based on Eq. (5.29) and the detachment point sD is placed at the LE. In addition,
the (sT − sL) transition region was tuned to lTL = 0.10lc, which lies within the
reported values found in Kinnas & Fine [62].

Cavitating hydrofoils at deep submergence

The extended method presented here can also treat the problem of partially cav-
itating hydrofoils without free surface effects, assuming that submergence depth
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Figure 5.6: Comparison of calculated and experimental pressure distributions from
Giesing & Smith [231] on a NACA 4412 hydrofoil at equal angles of attack and
at equal lift coefficients at Fr(c) = 1, Fr(h) = 0.447, d/c = 1 including bottom
effects h/c = 5.

is large enough. To demonstrate this, detailed results concerning a NACA 16006
hydrofoil at a = 5deg angle of attack, cavity length lc = 0.5c and submergence
depth d/c = 10 without bottom effects are presented in this section. Particu-
larly, the (sT − sL) transition region was tuned to lTL = 0.10lc. Upon solution
of the inverse problem, the cavitation number and cavity shape are determined.
Figure 5.8 contains the comparison between sensitivities based on SD formula in
Eq. (5.18) and estimated values obtained via direct numerical differentiation of
the objective function using central differences. The design variables consist of
the cavitation number and the B-spline control point coordinates of the attached
cavity, yielding a total of N = 38 design variables (or degrees-of-freedom). The
optimization algorithm, as presented in Section 5.2.2 requires information about
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Figure 5.7: Wave elevation profiles for the case of a submerged NACA 4412 at
α = 5deg, d/c = 1, including bottom effects h/c = 4 at various Froude numbers.
Comparison between the present method and Yeung & Bouger [230].

the steepest-descend parameter vector (i.e. of the same size as the design-variables.
It is important to note, that it is possible to restrict the xi-coordinates of the B-
spline control points affecting the cavity shape by simply setting the corresponding
steepest-descend parameters equal to zero. Figure 5.8 shows that the results are
in good agreement, considering that our method for SD yields an approximation
of the sensitivities; see Appendix D for more details on the terms that are omitted
from the final SD expression.

Additionally, in Figure 5.9(a) contains the comparison between Bal et al. [121]
and our prediction for the pressure profile. Regarding the foil boundary discretiza-
tion, a number ofNb = 290 panels was used, with cosine spacing to achieve a denser
mesh near the trailing/leading edge and detachment/re-attachment regions of the
cavity. A non-uniform mesh of Nfs = 700 panels was used on the free surface. Our
method yielded a cavitation number σ = 1.11 after MOPTIM = 500 cycles. This
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agrees with the findings in Bal et al. [121]. Also, the predicted sectional area of
the cavity is V ol/c2 = 0.0206 and the maximum cavity height hMAX = 0.082m.

The wave-like behavior of the pressure profile observed near cavity detachment
and reattachment points is attributed to the way our objective function in Eq.
(5.9) is defined. To suppress the wave-like behavior of the optimal solution, we
could reformulate the cost function so that it requires the first derivative of the
pressure profile on the attached cavity to be a constant. However, since these
fluctuations do not significantly affect the accuracy of our predictions, in terms
cavitation number or cavity sectional area, it is assumed that the cost function
expression in Eq. (5.9) suffices.

The cavity shape is shown in Figure 5.9(b). A close-up in the final geometry of
the attached cavity shape is provided in Figure 5.10, where active B-spline control
points are marked with squares. The dashed line corresponds to the initial guess
for the attached cavity shape. Finally, the convergence history as a function of
optimization cycle number is provided in Figure 5.11. It is shown that for values of
the ratio F/Fo that lie below two orders of magnitude, we assume that convergence
has been achieved. An extensive discussion regarding this matter, particularly for
cases of partially cavitating hydrofoils in unbounded flow can be found in Anevlavi
& Belibassakis [212].

Validation with experimental data

To investigate whether the present numerical scheme is capable of predicting cavi-
tation number as a function of cavity length, I compared our results against experi-
mental measurement data from a small hydrodynamic tunnel at the Bassin d’Essais
des Carène in France, which were published by Pellone & Maitre [120]. The out-
line of Foil-A, as stated in the publication, is given in the form of tabulated data,
which were then interpolated using B-splines for our numerical simulations. This
hydrofoil section has a maximum thickness of 11%, presents a negative camber,
and is the solution of an inverse two-dimensional potential calculation to provide a
target pressure profile. The work by Pellone & Maitre [120] also contains a numer-
ical model for the analysis of partially cavitating hydrofoils using a viscid-inviscid
method. Their numerical results are also included in the comparisons presented
in Figures 5.12 and 5.13 that follow.

All simulations are performed using Nb = 260 panels on the foil and by assum-
ing that submergence depth is large enough d/c = 15, thus interactions between the
free surface boundary and the hydrofoil are considered negligible. The study case
refers to α = 4deg angle of attack and uniform inflow velocity U∞ = 1.6m/s. The
experimental findings suggest that the detachment point occurs at lD = 0.5−4mm
downstream the leading edge.

Additional details regarding the numerical parameters, and the predicted cav-
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Figure 5.8: Sensitivity derivatives for each design variable after the first iteration.
Comparison between the present method and direct calculation via finite differ-
ences.

itation number σ and lift coeffcient CL as functions of cavity length lc/c, are
provided in Table 5.1 that follows. The cavity detachment position and transition
region (sT − sL) extent are user-defined parameters along with the number of de-
sign variables. Figure 5.12 contains the comparison between our method and the
experimental data. Convergence was achieved after 100–250 optimization cycles;
depending on the selection of an appropriate steepest-descend parameter vector.
The convergence metric used here, suggests that if F/Fo < 0.006 the solution has
converged.

The results indicate that the present method is capable of capturing the same
trend in terms of cavitation number prediction as a function of the cavity length
as the other numerical method. It is typical for potential based methods to over-
estimate the cavity length for a given cavitation number, as illustrated in Celik
et al. [122] though comparisons of potential based results and CFD simulations.
In terms of the lift coefficient, experimental data were not available, however the
present method agrees well with the viscid-inviscid model from Pellone & Maitre
[120] as shown in Figure 5.13, although the present method underestimates the
predicted values for the lift.

For attached cavity lengths up to lc/c = 0.3 our prediction curve has a slope
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Figure 5.9: Comparison between (a) the pressure coefficient and (b) the cavity
profile, as obtained with present method and numerical results found in [121] for
a NACA 16006 at a = 5deg, d/c = 10.

that agrees well with the data from Pellone & Maitre [120]. However for higher
values of cavity length the deviation of our predictions from the numerical data
from Pellone & Maitre [120] reduces. Overall the comparison is good, taking into
consideration that a full agreement between the present purely potential-based
method and either the numerical model (that includes boundary-layer thickness
into the formulation) or the experimental data from Pellone & Maitre [120] would
not be possible.
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Figure 5.10: Cavity profile of a NACA 16006 hydrofoil at 5deg in deep submergence
d/c = 10. The B-spline control points included in the design variable vector are
illustrated in squares. The dashed line corresponds to the initial guess for the
attached cavity shape.

Cavitating hydrofoils with free surface effects

Verification of the present method for cases including fre surface effects on partially
cavitating hydrofoils is performed via comparisons against the work by Bal et al.
[121], where finite submergence depths are considered. However, in our method
the two problems 1-hydrofoil beneath the free surface, 2-partially cavitating foil
at deep submergence) are treated via a monolithic approach. In order to avoid
numerical instabilities, especially as the submergence decreases, a filter-function is
used to eliminate strong interactions between the free surface and the foil; affecting
mainly the enforcement of flow-tangency condition on the hydrofoil boundary.

The first case study refers to a NACA 16006 hydrofoil at angle of attack α =
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Figure 5.11: Convergence history in terms of objective function with respect to its
value at initialization.

Table 5.1: Partially cavitating Foil-A: results and parameters.

Cavity
lc/c σ CL V ol/c2 lD(m) lTL(m) hMAX(m) N
0.10 1.3669 0.2008 0.0004 0.0035 0.0135 0.033 38
0.18 1.1501 0.2064 0.0017 0.0040 0.0243 0.043 42
0.30 1.0054 0.2179 0.0049 0.0020 0.0405 0.055 46
0.40 0.9090 0.2339 0.0091 0.0015 0.0460 0.066 46
0.50 0.8470 0.2500 0.0133 0.0010 0.0500 0.072 46
0.60 0.7967 0.2956 0.0227 0.0005 0.0600 0.085 46

5deg, chord length c = 1, submergence d/c = 0.6 and Froude number Fr(c) = 0.5.
Figure 5.14 contains the predicted pressure profile and wave elevation, which are
compared against the PCPAN method from Bal et al. 2001 [121]; with data
denoted as black squares. It is evident that results for cavitation number and
cavity volume are in good agreement. The wave-like behavior of the pressure
profile on the region corresponding to the attached cavity, does not affect the final
predictions, and is attributed to the nature of cost function definition. Follow
Anevlavi & Belibassakis 2021 [212] for additional details on this topic.

All simulations were performed using Nb = 240 on the hydrofoil and Nfs = 700
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Figure 5.12: (a) Cavity length predictions as a function of cavitation number σ
obtained with the present method and results from [120]. (b) Geometry of the
examined cambered Foil-A at 4o angle of attack at deep submergence.

on the free surface. Discrepancy regarding the cavitation number is attributed
to the implementation of cavitation modeling that is embedded in the geometric
model. To improve predictions, the attached cavity extent, including the tran-
sition zone, can be slightly adjusted to bring the numerical results closer to Bal
et al. [121] predictions. Proper tuning of the steepest-descend parameter vector
B significantly improves the convergence rate. In these simulations an optimal is
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Figure 5.13: Comparison of lift coefficient prediction as a function of cavitation
number σ obtained with the present method and the viscid-inviscid cavitation
model [120] for Foil-A at 4deg.

achieved after MOPTIM = 120 optimization cycles.
The second case study considered differs only in terms of the Froude num-

ber, which is Fr(c) = 0.75 with results provided in Figure 5.15. Again, PCPAN
predictions are denoted as black squares. Table 5.2 contains additional informa-
tion regarding the predicted results and other parameters for the examined Froude
numbers. It is shown that for an attached cavity of fixed length, cavitation number
and lift coefficient decrease at higher Froude numbers at this submergence depth.
The same holds for the predicted cavity volume and maximum height. However,
the wave profile has higher wave length and amplitude as Froude number increases.

5.3.3 Analysis of partially cavitating hydrofoils with free
surface effects

Angle of attack and submergence depth are two parameters that significantly affect
the behavior of partially cavitating hydrofoils. To further investigate the matter,
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Table 5.2: Froude number effects on a partially cavitating NACA 16006 at angle
of attack a = 5deg with lc = 0.5c and submergence d/c = 0.6.

Cavity Wave
Fr(c) σ CL V ol/c2 lTL(m) hMAX(m) λ max(η/c)
0.50 1.252 0.781 0.0202 0.0525 0.081 1.63 0.1060
0.75 1.027 0.649 0.0166 0.0525 0.072 3.38 0.2915
1.00 0.871 0.531 0.0158 0.0550 0.070 6.15 0.3941

Figure 5.14: Comparison between the present method and PCPAN [121] predic-
tions (black squares); for a NACA 16006 at α = 5deg, c = 1m, d/c = 0.6 and
Fr(c) = 0.5: (a) Pressure profile (σ = 1.25), (b) Wave elevation.

I performed a series of simulations, with results shown in Figure 5.16 referring to
a NACA 16006 hydrofoil at d/c = 1.0 submergence depth with Fr(c) = 0.5. The
angles of attack tested were α = {2, 4, 6}deg. The total number of design variables
is N = 34. All simulations are based on the lc = 0.4c cavity length assumption
with the transition zone (sT −sL) extent provided in Table 5.3 that follows. It also
contains other quantities of interest including the predicted cavitation number σ,
the cavity volume V ol/c2, maximum height hmax of attached cavity, wave length
λ and greatest wave height η/c. For these simulations, λ = 2πU2

∞/g is the kept
same, as it depends on the inflow velocity. Results that correspond to the deep
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Figure 5.15: Comparison between the present method and PCPAN [121] predic-
tions (black squares); for a NACA 16006 at α = 5deg, c = 1m, d/c = 0.6 and
Fr(c) = 0.75: (a) Pressure profile (σ = 1.02), (b) Wave elevation.

submergence case are also included for comparative purposes. The results suggest
that as the angle of attack increases so does the cavitation number, attached cavity
volume and wave elevation amplitude within the examined range of parameters.

The second series of parametric runs addresses the effects of finite submergence
depth on the predicted cavitation number and cavity shape. The present method
is capable of producing acceptable results for moderate submergence depths as
it has been shown in a previous section. In Figure 5.17, results concerning the
pressure coefficient, wave elevation profile and cavity shape as obtained with the
extended PCavPreMod algorithm are provided for a NACA 16006 hydrofoil at
Fr(c) = 1.0, cavity length lc = 0.5c, angle of attack α = 5deg and submergence
depths d/c = {0.6, 0.8, 1.0}.

To ensure that the present method performs well at the smallest submergence
depth which is d/c = 0.6, results obtained with the PCPAN solver [121] are also
included. The quantities of interest, namely the cavitation number, cavity volume
and minimum wave elevation are provided in Table 5.4. The results indicate that
for cases where the cavity length is kept the same, cavitation number decreases for
higher values of submergence depth and the same holds for the cavity volume. On
the other hand, the wave amplitude increases as the hydrofoil comes closer to the
free surface. These simulations illustrate that hydrofoils operating at submergence
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depths, smaller than d/c = 1, will have more strict requirements; to avoid or
suppress cavitation, and that it would be beneficial to include such cost-effective,
low-fidelity models to the preliminary phase of hydrofoil design.

Figure 5.16: Pressure profiles for NACA 16006 at Fr(c) = 0.5, d/c = 1.0 at angle
of attack (a) α = 2deg, (b) α = 4deg, (c) α = 6deg and the corresponding cavity
profiles in (d).

5.4 Discussion and future work

In this work, a new adjoint BEM-based prediction model for partially cavitating
two-dimensional hydrofoils that move at a constant speed beneath the free sur-
face is proposed. Following an inverse problem formulation, the optimal solution
for the steady state phenomenon, is determined using a gradient-based algorithm
with sensitivities derived via the continuous adjoint method. The saturated vapor
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Figure 5.17: (a) Pressure profiles, (b) wave elevation and (c) cavity profile, for a
NACA 16006 at Fr(c) = 1.0, cavity length lc = 0.5c, angle of attack α = 5deg at
submergence depths d/c = {0.6, 0.8, 1.0}.

Table 5.3: Angle of attack effects on a partially cavitating NACA 16006 at Fr(c) =
0.5 with lc = 0.4c and submergence d/c = 1.0.

cavity numerics wave

α σo σ CL V ol/c2 lTL hmax MOPTIM λ max

(deg) (d/c = 10) (m) (m) (η/c)

2 0.4730 0.5060 0.2634 0.0049 0.041 0.043 200 1.63 0.0081
4 0.9440 0.9810 0.5362 0.0108 0.041 0.062 201 1.63 0.0155
6 1.4731 1.5380 0.8277 0.0176 0.041 0.078 350 1.63 0.0262

pressure (cavitation number) and the cavity shape are included in the problem
unknowns, whereas the detachment and termination points are considered given
quantities. The objective function expresses a constant-pressure assumption on
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Table 5.4: Submergence effects on a partially cavitating NACA 16006 with lc =
0.5c at angle of attack a = 5deg.

Fr(c) = 1.0
d/c 0.6 0.8 1.0
σ 0.87 0.98 1.03

V ol/c2 0.0158 0.0179 0.0183
ηmin 0.3941 0.3525 0.3001

the cavity boundary apart from the transition region (sT − sL) which is included
in the wetted portion of the boundary where a flow-tangency condition holds based
on the implemented cavity termination model. Candidate solutions are evaluated
at each optimization cycle using a source-vorticity BEM solver. The cavity bound-
ary is parametrized as a B-spline and the control points are included in the design
variable vector along with the initially unknown cavitation number.

The proposed method is validated against experimental data and a viscid-
inviscid model for the case of steady cavitating hydrofoils without free surface
effects, and provides predictions for the cavitation number and lift coefficient as
functions of cavity length with good accuracy. These simulations correspond to
cambered hydrofoil at 4deg angle of attack and a U = 1.6m/s uniform inflow,
with the detachment point placed downstream the leading edge to comply with
experimental findings. Additional comparisons against the potential-based PC-
PAN method with free surface interaction, for the case of partially cavitating
hydrofoils moving at a constant speed, illustrate that the proposed scheme with
the selected cavity termination model agrees well with the reported shapes of the
attached cavity, cavitation numbers and wave elevation.

Two parametric studies with indicative results for the NACA 16006 hydrofoil
are also performed to investigate angle of attack and submergence depth effects.
The first case study yields that an increase in the angle of attack results in a higher
cavitation number, attached cavity volume and wave elevation amplitude, for fixed
cavity length and submergence depth. Results corresponding to the same scenario
at deep submergence-depth are shown to highlight the importance of including free
surface effects in cavitation prediction models. The second case study consists of
three simulations at d/c = {0.6, 0.8, 1.0} submergence depth, illustrating that as
submergence-depth increases the cavitation number decreases and the same holds
for the cavity volume. To conclude, cavitation imposes is more severe when the
submergence depth is small, and therefore it is essential to be included in the
preliminary design phase.

The developed numerical tool, being computationally inexpensive compared
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to high-fidelity multi-phase methods, can be exploited in systematic applications
required for the preliminary design of lifting surfaces with, or without, free surface
effects to predict the cavitation number and cavity shape as functions of cavity
length.

The extension of PCavPreMod to non-linear free surface models for on partially
cavitating hydrofoils, would allow simulating foils at smaller submergence. Future
work is also directed towards extending our method to 3D, in order to tackle
problems of attached sheet cavitation for bio-mimetic wings operating at close
proximity to the free surface. Extensions addressing the unsteady problem would
provide valuable information on transient effects. Finally, cavitation predictions
on propeller blade geometries is also of interest.
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Chapter 6

Summary and suggestions future
work

6.1 Hydrodynamics of morphing thrusters

To enable fast and efficient optimization studies, targeting quantities related to
hydrodynamic loading and performance metrics associated with actively morph-
ing flapping-foil thrusters, I developed the 3dBEM solver as an extension to the
GPU-BEM method introduced in Filippas & Belibassakis 2022 [12] exploiting the
capabilities of parallel computation using CUDA API. The unsteady hydrody-
namic problem formulation considers a non-linear pressure type Kutta condition
and also includes a free-wake dynamics model to improve predictions in cases of
high unsteadiness.

6.1.1 Summary

The optimization studies conducted using the aforementioned solver for candi-
date thruster evaluation revealed certain trends concerning the effects of planform
shape, flapping, and active morphing parameters in thruster performance. The
findings, which are summarized below, can be useful to the design of efficient
bio-inspired thrusters; especially those related to autonomous underwater vehicle
(AUV) propulsion applications.

The first thruster concept (Case 1) refers to a flapping foil with active chord-
line morphing. The optimal planform shape has a λr = 1.0 taper ratio and
Λ = 18o backward sweep angle. Optimal tuning of the design variables consisting
of bn = {Λ, λr, Ac, ψc, Str} yields an impressive +25.3% propulsive performance
enhancement. This result can inspire continuously morphing designs or simpler
solutions based on multi-component concepts with rigid parts. Technological ap-

245
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plications of continuously morphing wings with hydrofoil-section adjustment (i.e.,
chord-line morphing) require the use of smart materials, compliant structures, and
advanced actuation, see, also [8], [164]. A simple technical solution that has the
potential of enhancing the propulsive performance can be the rigid wing with a
trailing edge flap. Following the trends revealed from the optimization studies, it
is beneficial to the efficiency that flap displacement follows or is aligned with, the
flapping trajectory.

The second thruster concept (Case 2) refers to a flapping foil able to perform
active spanwise bending and twisting morphing in a continuous manner. The
design parameters examined correspond to bn = {λr, Ab, ψb, Aγ, ψγ, h0/c, θ0, Str}
vector of design variables. It performs a combination of prescribed out-of-phase
heave/pitch motions and continuous spanwise bend/twist morphing. The opti-
mal planform is crescent-like (i.e. resembling a whale-tail) with a taper ratio of
λr = 0.55 and a backward sweep angle of Λ = 18o. Optimal tuning of the param-
eters deduced from our optimization studies yields +7.5% propulsive performance
enhancement in this case. The above morphing scenario can be implemented tech-
nologically using an internal mechanism that would be responsible for the active
bend/twist coupling motion, similar to micro-aerial vehicles (MAV), see [6]. For
marine applications and especially AUV propulsion, such mechanisms can be used
to improve both propulsive efficiency and maneuverability.

6.1.2 Future work

Morphing wings have a wide range of technological applications for the marine
industry. Bio-mimetic flapping-foil propulsion systems for AUVs with increased
stealth and energy range pose as one future application, see [31]. Moreover, mor-
phing dynamic wings can also be considered as ship thrust-augmentation devices
that extract energy from the waves during the voyage, see [39] and [34]. In general,
wings are being used in ship-stabilization systems (fin stabilizers, T-foil, etc.) for
conventional ocean-going vessels and also for modern sailing yachts inspired by the
America’s Cup flying race boats [168]. Thus, morphing wing prototypes can be
exploited in all the above cases, since the control of wing shape can be tuned to
improve maneuverability and stability of vessels equipped with such devices.

Regarding future work directions associated with the unsteady hydrodynamic
model for wing operating as marine thrusters and the 3dBEM numerical tool, the
following extensions are proposed:

� Free surface effects. The mathematical model introduced in [12], upon
which the present computational tool is based, considers interactions be-
tween the wing thruster and the wavy free surface for regimes where wake-
breaking does not occur. Including the free surface boundary in the mod-
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eling will enrich our model by accounting for inflow velocity profile varia-
tions, similar to gusts, thus improving predictions for cases where the mor-
phing thrusters operate submerged but at close proximity to the wavy free
surface. This extension is useful for applications involving wings operat-
ing as thrust-augmentation devices for ships, and also for evaluating the
performance of bio-inspired AUV thrusters operating at small submergence
depths. Moreover, these extensions open the field to applications that ad-
dress wave/current energy harvesting devices based on bio-mimetic wings;
see, e.g. [40] and [9].

� Viscous-inviscid interaction. The adoption of boundary-layer correc-
tions to potential flow solvers enriches the obtained solutions from the phys-
ical point of view, [145]. In addition, separation effects are also modeled
by introducing a second wake originating, namely a ‘double-wake’ model,
from the separation point that is provided as part of the boundary layer
solution, see, e.g., Riziotis & Voutsinas 2008 [185]. These models could be
implemented, for instance, in a strip-wise manner to improve predictions at
off-design points where separation and viscous phenomena are dominant.

6.2 Hydro-mechanics of thin plates

To address the problem of elastic response for wings under hydrodynamic and in-
ertial force excitation, a thin plate model (CPT) is formulated. Stiffness variation,
involving thickness and material properties (i.e. Young’s modulus) is included
in the modeling. I developed the finite element method 2dFEM based on the
low-cost 3-node Discrete Kirchhoff Triangles (DKT) to obtain predictions on the
elastic response of wings modeled as plates. The source code of 2dFEM is writ-
ten in C/C++ and allows for parallel computation on an NVIDIA graphics cards
through the CUDA API. Extensive validation of the finite element solver, including
eigenvalue problems and static analysis confirms its applicability for the category
of engineering problems examined in the present dissertation; mainly involving
bio-mimetic flapping thrusters for AUV propulsion.

6.2.1 Future work

Direct extensions, related to the hydro-mechanics of wings modeled as plates,
include:

� Modeling moderate or large displacements/rotation. Enriching the
thin plate model by retaining non-linear terms to address problems of mod-
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erate rotations, or large deflections using the Föppl–von Kármán equations,
allows for accurate predictions when non-linear effects are dominant.

� Higher-fidelity FSI. Coupling the developed solver with a viscous CFD
solver gives rise to a series of studies associated with viscous effects on the
elastic response of flexible wings, including resonance effects and flatter-type
instabilities. Other applications include small-scale autonomous underwater
vehicle appendages, maneuvering studies, self-propulsion applications [182],
or even wave/current source energy harvesting devices [40], [9]. Moreover,
coupling the present plate model (or its extension including non-linear terms)
with a viscous solver is also useful for studies on the aero-elastic response of
wings in gust conditions.

6.3 Fluid-structure interaction model

All the above extensions can be beneficial to the proposed fluid-structure interac-
tion model and the corresponding FlexWing3D computational tool, comprising of
the unsteady hydrodynamic boundary element solver 3dBEM and the thin plate
solver for plates with stiffness variation based on DKT elements 2dFEM. The
strong coupling scheme that is developed treats the implicit non-linearity aris-
ing from the fact that hydrodynamic pressure affects bending displacement field
(thus the deformed shape of the wing under study that is modeled as a plate) and
vice-versa.

6.3.1 Summary

Validation of the proposed model is based on comparisons against experimental
works found in the literature involving a rectangular plate under prescribed heaving
excitation submerged within a constant inflow and the steady response of a tapered
wing at an angle of attack also submerged within a fluid medium. FlexWing3D
simulations also exploit the parallel computation capabilities of graphics cards,
thus requiring a few hours on a typical desktop for a three-period simulation on
passively deforming wings operating as marine thrusters.

Moreover, an optimization study is performed to define an improved thickness
profile for the case of a flexible flapping-wing thruster, assumed to be clamped at
the trailing edge, thus ensuring that chord-wise flexibility effects are dominant.
Results revealed that wings with a more slender shape near the trailing edge (i.e.
with a smaller thickness profile), compared to the NACA series, yield a perfor-
mance enhancement with a significant reduction in thrust. The final shape is
similar to the bio-mimetic stiffness profiles extracted from the analysis of fish fins.
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Overall, the findings agree with relevant works from the literature and contribute
to the field of bio-mimetic applications for flexible wing thrusters by introducing
a new cost-effective computational tool that is able to capture non-linear loading
effects and gives useful predictions related to both the elastic response of the wing
and its propulsive performance.

6.3.2 Future work

I propose the following directions for future work:

� Reducing computational time. One way to further reduce the compu-
tation time is to implement approximate methods for Jacobian evaluation
based on information related to the residual equation and previous changes to
the vector of unknowns. This type of methodology is introduced in Spenke
et al. (2020) [210] and successfully implemented in the numerical scheme
developed for the fluid-structure interaction problem of flexible membranes
presented in Lauber et al. (2023) [211]. These extensions will enable op-
timization studies involving a greater number of design variables and allow
for the use of more sophisticated optimization algorithms, such as hybrid
methods or evolutionary approaches.

� Complex shapes and non-uniform stiffness. Investigations related to
the effects of boundary conditions on the performance of wing thrusters, for
instance, exploring T-foil configurations; see, e.g. the wing support shown
in Figure 1.6 and studied in [34]. Performing simulations involving more
realistic planform shapes with curved leading edges, large taper/sweep, and
hydrofoil section variation along the span. In addition, the effects of variabil-
ity in material stiffness, i.e., D(x, y), on the elastic response of wing thrusters
are also of interest. This might also refer to non-uniform material properties
in the context of functionally graded materials.

6.4 Partial cavitation model

Within the context of this thesis, a new adjoint BEM-based partial cavitation
prediction model for hydrofoils operating at constant speed beneath the free surface
is introduced. The developed computational tool PCavPreMod written in Matlab
is compared against other methods and found to predict well the cavitation number
and cavity shape under the fixed-length attached cavity assumption. The proposed
method is computationally inexpensive compared to higher-fidelity multi-phase
solvers and thus can facilitate the preliminary design phase of lifting surfaces.



250 CHAPTER 6. SUMMARY AND SUGGESTIONS FUTURE WORK

6.4.1 Future work

Regarding future work extensions, I propose:

� Given cavitation number. Addressing optimization problems where the
cavitation number is given and the attached cavity length is included in the
design variable vector.

� Sheet cavitation. Extension of the present model to three-dimensional
problem for sheet cavitation prediction on bio-mimetic wings or propeller
blades; including free-surface effects. As a first approach, the present 2D
model can be implemented strip-wise to obtain predictions of the shape of
the sheet cavity; see, e.g., Kinnas & Fine 1993 [62].

� Unsteady cavitation. Consideration of a time-varying attached cavity
length leads to transient models.

� Non-linear free surface. Hydrofoils moving at close proximity to the free
surface give rise to non-linear wave phenomena, thus consideration of non-
linear free surface dynamics will improve the accuracy of the present model
in cases where d/c < 1.
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Appendix A

Iso-parametric 4-node
Quadrilateral Element

The generic bilinear quadrilateral element is defined in the local coordinate system
(ξ, η), bounded in [−1, 1]× [−1, 1], as shown in Figure ??. Using an isoparametric
transformation, the edges of the element are transformed to the 3D surface element
with x ∈ E,

x(ξ, η) =
4∑

n=1

xnNn(ξ, η), (A.1)

where x = (x, y, z) denotes the Cartesian coordinates in the global coordinate
system of a point with local coordinates (ξ, η) and xn are the global coordinates
of the element’s corner nodes, see also the numbering scheme in Figure A.1.

Each one of these functions is connected to a single node, describing a curved
surface (or ‘hyper-surface’), comprising of four straight-line edges defined along
the ξ− and η−directions. The shape functions are expressed compactly as,

Nn =
1

2
(1 + ξnξ)

1

2
(1 + ηnη), (A.2)

where (ξn, ηn) are the local coordinates of each corner node shown in Figure A.1.
The shape functions are depicted in Figure A.2. The individual shape function for
each node, with respect to the numbering is,

N1 =
1

4
(1− ξ)(1− η), (A.3)

N2 =
1

4
(1 + ξ)(1− η), (A.4)

N3 =
1

4
(1 + ξ)(1 + η), (A.5)

N4 =
1

4
(1− ξ)(1 + η). (A.6)
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The centroid co and the tangent vectors along the ξ,η directions are evaluated
respectively using the following expressions,

co = 0.25(x1 + x2 + x3 + x4), (A.7)

eξ =
∂x

∂ξ
=

4∑
n=1

∂Nn(ξ, η)

∂ξ
xn, (A.8)

eη =
∂x

∂η
=

4∑
n=1

∂Nn(ξ, η)

∂η
xn. (A.9)

Moreover, any function defined on the element, i.e., f = f(x(ξ, η)), can be
integrated as, ∫

E

f dS = 4

∫ η=1

η=−1

∫ ξ=1

ξ=−1

f(x(ξ, η))
√
α(ξ, η) dξdη, (A.10)

with √
α(ξ, η) = ||eξ × eη||, (A.11)

where
√
α(ξ, η) denotes the Jacobian of the transformation. The Jacobian is

defined as the square root of the determinant expression of the cross product and
it represents the area of one sub-cell in the local coordinate system. The unit
normal vector can then be defined as,

n =
(eξ × eη)

||eξ × eη||
. (A.12)

The expressions above are derived using the theory of curvilinear coondinate sys-
tems, tensor analysis and standard approaches for Structured Grids (or Meshes),
see, e.g., for additional information.

It is important to note that integral calculation, associated with the DtN opera-
tor, in the present 3dBEM implementation on a quadrilateral element is performed
using adaptive numerical integration. Particularly, in Filippas & Belibassakis [12]
problem-specific CUDA-kernels for efficient adaptive simpson integration were de-
veloped for far field calculations. For self-induced coefficient calculation a semi-
analytical approach is introduced.
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Figure A.1: Coordinate systems on a 4-node quadrilateral element in Global CS
[left] and Local CS [right].

Figure A.2: Shape functions of the 4-node bilinear quadrilateral element.



Appendix B

Discrete Kirchhoff Triangle
(DKT)

The shape functions below are defined in Batoz et al. 1980 [195] and in theory the
DKT element is derived from the Discrete Shear Triangle (DST) formulation via a
degeneration process. The DST element covers applications of thin to moderately
thick plates and is based on First Order Shear Deformation Theory (FSDT), see
also Batoz & Lardeur 1989 [190] and Batoz & Katili 1992 [205].

The quadratic shape functions Ni(ξ, η) in Eq. (3.40) are defined over the
element shown in Figure B as,

N1 = 2(1− ξ − η)(0.5− ξ − η), N2 = ξ(2ξ − 1),

N3 = η(2η − 1), N4 = 4ξη, (B.1)

N5 = 4η(1− ξ − η), N6 = 4ξ(1− ξ − η),

with ξ and η denoting the local coordinates. Also, a schematic representation of
the shape function is provided in Figure B.

Moreover, the functions Hx and Hy in Eqs. (3.48)-(3.49) are given compactly
as,

Hx1 = 1.5(a6N6 − a5N5), Hy1 = 1.5(d6N6 − d5N5),

Hx2 = b5N5 + b6N6, Hy2 = −N1 + e5N5 + e6N6, (B.2)

Hx3 = N1 − c5N5 − c6N6, Hy3 = −Hx2 .

Functions Hx4 , Hx5 , Hx6 , Hy4 , Hy5 and Hy6 are obtained from the above by re-
placing N1 by N2, index 6 by 4 and index 5 by 6 respectively, whereas functions
Hx7 , Hx8 , Hx9 , Hy7 , Hy8 and Hy9 are obtained by replacing N1 by N3, index 6 by
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Figure B.1: Triangle element, adapted from [195].

Figure B.2: Quadratic shape functions Ni(ξ, η).
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5 and index 5 by 4 respectively. Also,

ak = −xij/l2ij, bk =
3

4
xijyij/l

2
ij,

ck = (
1

4
x2ij −

1

2
y2ij)/l

2
ij, dk = −yij/l2ij, (B.3)

ek = (
1

4
y2ij −

1

2
x2ij)/l

2
ij, l2ij = (x2ij + y2ij),

based on the element geometry shown in Figure B.

The derivatives of Hx(ξ, η) and Hy(ξ, η) are obtained by differentiating Eqs.
(B.2) in conjunction with Eqs. (B.1). The following arrangement is proposed in
Batoz (1980),

Hx,ξ =



P6(1− 2ξ) + (P5 − P6)η
q6(1− 2ξ)− (q5 − q6)η

−4 + 6(ξ + η) + r6(1− 2ξ)− η(r5 + r6)
−P6(1− 2ξ) + η(P4 + P6)
q6(1− 2ξ)− η(q6 − q4)

−2 + 6ξ + r6(1− 2ξ) + η(r4 − r6)
−η(P5 + P4)
η(q4 − q5)
−η(r5 − r4)


, (B.4)

Hx,η =



−P5(1− 2η)− ξ(P6 − P5)
q5(1− 2η)− ξ(q5 + q6)

−46(ξ + η) + r5(1− 2η)− ξ(r5 + r6)
ξ(P4 + P6)
ξ(q4 − q6)
−ξ(r6 − r4)

P5(1− 2η)− ξ(P4 + P5)
q5(1− 2η) + ξ(q4 − q5)

−2 + 6η + r5(1− 2η) + ξ(r4 − r5)


, (B.5)
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Hy,ξ =



t6(1− 2ξ) + η(t5 − t6)
1 + r6(1− 2ξ)− η(r5 + r6)
−q6(1− 2ξ) + η(q5 + q6)
t6(1− 2ξ) + η(t4 + t6)

−1 + r6(1− 2ξ) + η(r4 − r6)
−q6(1− 2ξ)− η(q4 − q6)

−η(t4 + t5)
η(r4 − r5)
−η(q4 − q5)


, Hy,η =



−t5(1− 2η)− ξ(t6 − t5)
1 + r5(1− 2η)− ξ(r5 + r6)
−q5(1− 2η) + ξ(q5 + q6)

ξ(t4 + t6)
ξ(t4 − r6)
−ξ(q4 − q6)

t5(1− 2η)− ξ(t4 + t5)
−1 + r5(1− 2η) + ξ(r4 − r5)
−q5(1− 2η)− ξ(q4 − q5)


,

(B.6)

where k = 4, 5, 6 for ij = 23, 31, 12 respectively,

Pk = −6xij/l
2
ij = 6ak, tk = −6yij/l

2
ij = 6dk,

qk = 3xijyij/l
2
ij = 4bk, rk = 3y2ij/l

2
ij. (B.7)

Shape functions are evaluated on Gauss integration points, which are located at
selected position in the element’s interior. Regarding the planar mesh, the 2dFEM
solver uses the Delaynay triangulator provided in the Matlab PDE Toolbox. An
example is shown in Figure 3.3. The mesher provides all necessary information
by returning three arrays by default, let us denote them as pmat, tmat and emat.
Array pmat contains the nodal coordinates, whereas array tmat the nodal indices
corresponding to each triangle following a local-to-global numbering that is equiv-
alent to the IEN format. For example the triangle with global index 1 has nodes
given by

x1 = pmat(1, IEN(1, 1)), y1 = pmat(1, IEN(1, 1)),

x2 = pmat(1, IEN(2, 1)), y2 = pmat(2, IEN(2, 1)), (B.8)

x3 = pmat(1, IEN(3, 1)), y3 = pmat(2, IEN(3, 1)),

Array emat contains information about the triangle edges and it is useful for
post-processing, since surface and contour plots can be generated using the ‘pde-
plot()’ function in Matlab that needs to take as an input all three arrays from
the mesher. Apart from the post-processing, our source code 2dFEM needs only
the first two arrays to retrieve mesh connectivity information and perform the
global matrix assembly. Moreover, retaining Matlab as the pre/prost processing
tool gives access to useful functions contained within the PDE Toolbox, such as
the ‘pdegrad(pmat,tmat,u)’ that returns the gradient of ‘u’ evaluated at the center
of each mesh triangle.

Finally, since the process involving (IEN, ID, LM) arrays depends on array
indexing, it is important to make sure that each programming language is different
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with respect to the index of th first element in an array. For instance, Matlab
programming language starts from index 1 whereas in C access to the first element
of an array corresponds to an index 0.

Figure B.3: Geometry of the triangular element, adapted from [195].



Appendix C

Coupling based on
Crank-Nicolson

At each time step the solution is obtained using a Crank-Nicolson scheme for
w = [q̇, q]1 holds as,(

A− 1

2
dtB

)
·wn =

(
A+

1

2
dtB

)
·wn−1 +

1

2
dt
(
Qn−1 +Qn

)
, (C.1)

with the loading vector consisting of the interpolated pressure difference data at
each triangle centroid of each DKT element xi and fictitious forces terms.

Coupling scheme. The implicit nonlinearity is treated with an iterative scheme
that considers the system of Eqs. (C.1) to be in fact nonlinear. Starting from an
initial guess, typically wκ

n = wn−1, the residual equation is,

R(wκ
n) =

(
A− 1

2
dtB

)
·wκ

n −
(
A+

1

2
dtB

)
·wn−1 −

1

2
dt
(
Qn−1 +Qκ

n

)
, (C.2)

with κ = {0, 1, ..., κMAX} denoting the iteration index. Forcing term Qn is implic-
itly dependent on the field of bending displacements and vice versa. The index
n refers to the next time step t + dt and thus n − 1 to the previous step whose
information remains unaltered during the iterations of NR-scheme. Setting the
residual expression to vanish,

R(wκ
n) → 0, (C.3)

is pursued using the Newton-Raphson method and successively approximated via,

wκ+1
n = wκ

n − ωr J
−1
(
wκ

n

)
·R

(
wκ

n

)
, κ = {0, 1, ..., κMAX}, (C.4)

1This vector of unknowns stands as w = [q̇, λq̇, q, λq] where some places are reserved for the
Lagrange multipliers λq̇, λq that are introduced to satisfy the boundary conditions.
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where ωr ≤ 1.0 denotes a relaxation factor and unless stated otherwise we assume
ωr = 0.98. The matrix J is the Jacobian of function R : R2N → R2N where 2N
denotes the total number of unknowns for the structural problem,

Jij =
∂Ri

∂wj

, R(w) = [R1(w
κ
n), R1(w

κ
n), ..., R2N(w

κ
n)]. (C.5)

The calculation of Jacobian matrix requires knowledge of the partial derivatives
of the scalar components Ri(w) of the function R(w). These components are
numerically approximated via a central differences scheme,

∂Ri

∂wκ
j

≃
Ri(w

κ
j + hj)−Ri(w

κ
j − hj)

2hj
, (C.6)

assuming that the step-size hj is sufficiently small. In practice it is selected as a
small percentage of |wj|, for instance hj = 0.001|wj|. Calculation of the Jacobian
is indeed the most computationally expensive part of the simulation.

Although various criteria can be established to monitor the Newton-Raphson
convergence at each time step, I found heuristically that the following criterion
yields a good compromise between accuracy and iteration number,

max|R(wκ)| < critEQ, crtiEQ = λmax(T), λ = 1e−3, (C.7)

where

T =
[
T1, T2, T3, T4

]
, (C.8)

T1 =
1

2N

i=2N∑
i=1

abs
[(

A− 1

2
dtB

)
·wκ

n

]
i−th

,

T2 =
1

2N

i=2N∑
i=1

abs
[
−

(
A+

1

2
dtB

)
·wκ

n−1

]
i−th

,

T3 =
1

2N

i=2N∑
i=1

abs
[
− 1

2
dtQn−1

]
i−th

, T4 =
1

2N

i=2N∑
i=1

abs
[
− 1

2
dtQn

]
i−th

.

It is important to note that the matrices in expressions above, whose size is slightly
greater than 2N , include components referring to the Lagrange multipliers - relat-
ing to how boundary conditions are satisfied in the present finite element scheme.
The relevant components are excluded from the calculations involved in the deriva-
tion of critEQ. In any case, it is always possible to set critEQ equal to the desired
value for tolerance, such as 1e−9, and the scheme will work.

Variable κMAX is set by the user to limit the number of iterations that are
allowed during each time step. Typically, convergence is achieved before this limit
is reached however to avoid eternal while-loop this measure is also introduced for
completeness.



Appendix D

On adjoint-BEM sensitivity
derivation

This section provides additional information regarding the derivation and mathe-
matical handling of certain terms related to the first variation of the augmented
functional,

L = F+

∫ ∫
Ω

ψ∇2ϕ dV+

∫
Γ

ψδ(s−s0)
[
(∇ϕ+U∞)·τ̂ |t0+(∇ϕ+U∞)·τ̂ |t1

]
ds (D.1)

where δ(s− s0) is the Dirac delta function.
The first term in Eq. (D.1) becomes

δF

δbn
= g(sT )

δsT
δbn

− g(sD)
δsD
δbn

+

∫ sT

sD

δg

δbn
ds+

∫ sT

sD

g
δ

δbn
(ds), (D.2)

with the first two terms in the above expression appearing after the implementation
of Leibniz rule for integration. Our goal here is to introduce terms including the
field variable ϕ, the quantity δϕ/δbn and other known geometric quantities, see
also [224] and [223]. Moreover the forth term,∫ sT

sD

g
δ

δbn
(ds) =

∫ tT

tD

g
δ||ṙ||
δbn

dt. (D.3)

Also the third term,∫ sT

sD

δg

δbn
ds =

∫ sT

sD

(p− pυ)
δp

δbn
ds−

∫ sT

sD

(p− pυ)
δpυ
δbn

ds. (D.4)

From Bernoulli’s theorem for steady flows, i.e. Cp = 1 − V 2
t /U

2
∞, it holds that

p = 0.5ρU2
∞ − 0.5ρV 2

t where Vt is the tangential velocity on the body boundary
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∂Ω. Thus,

δp

δbn
= −ρVt

δVt
δbn

= −ρVt
[ δ

δbn
(∇ϕ · τ̂ ) + (∇ϕ+U∞) · δτ̂

δbn

]
(D.5)

where Vt = (∇ϕ+U∞) · τ̂ . Assuming that we can exchange the operators,

δ

δbn
(∇ϕ · τ̂ ) = ∇s

( δϕ
δbn

)
. (D.6)

Taking all the above into consideration,

δF

δbn
= g(sT )

δsT
δbn

− g(sD)
δsD
δbn

+

∫ tT

tD

g
δ||ṙ||
δbn

dt−
∫ sT

sD

(p− pυ)
δpυ
δbn

ds (D.7)

−
∫ sT

sD

ρVt(p− pυ)∇s

( δϕ
δbn

)
ds−

∫ sT

sD

ρVt(p− pυ)(∇ϕ+U∞) · δτ̂
δbn

ds.

Moving on to the following term using Eq. (5.12),

δ

δbn

(∫ ∫
Ω

ψ∇2ϕ dV
)
=

∫ ∫
Ω

δψ

δbn
�
��∇2ϕ dV +

∫ ∫
Ω

ψ
δ

δbn

(
∇2ϕ

)
dV (D.8)

+

∫ ∫
Ω

ψ∇2ϕ
��

����δ

δbn

(
dV

)
,

assuming, for the last term in the above, that the variation of a differential volume
dV with respect to the design variables is negligible. Then using Green’s second
identity1 and exchanging operators δ(.)/δbn and ∇2(.), we can express the above
term as follows,∫ ∫

Ω

ψ∇2
( δϕ
δbn

)
dV =

∫ ∫
Ω

δϕ

δbn
∇2ψ dV +

∫
∂Ω

ψ
∂

∂n
(
δϕ

δbn
) ds−

∫
∂Ω

δϕ

δbn

∂ψ

∂n
ds.

(D.9)
Variation of Eq. (5.14), which holds on Γc∪Γw, by parts with respect to the design
variables yields,

δ

δbn

[
(∇ϕ+U∞) · n̂

]
=

δ

δbn
(∇ϕ) · n̂+ (∇ϕ+U∞) · δn̂

δbn
= 0. (D.10)

Using Eq. (D.10) the third term in (D.9) becomes,∫
∂Ω

ψ
∂

∂n
(
δϕ

δbn
) ds = −

∫
Γc

ψ(∇ϕ+U∞) · δn̂
δbn

ds (D.11)

−
∫
Γw

ψ(∇ϕ+U∞) ·
�
�
�δn̂

δbn
ds+

∫
Γfs

ψ
∂

∂n
(
δϕ

δbn
) ds, (D.12)

1
∫
U
(ψ∇2ϕ− ϕ∇2ψ)dV =

∮
∂U

(
ψ ∂ϕ∂n − ϕ∂ψ∂n

)
dS
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where the term δn̂/δbn is zero on the wetted portion of the boundary Γw, since
only the attached cavity shape is affected by a variation in the design variable
vector. Now the term that refer to the linearized free surface boundary Γfs need
some attention. Using the Eq. (5.15) and integration by parts,∫

Γfs

ψ
∂

∂n
(
δϕ

δbn
) ds =

[
− 1

ko
ψ
∂

∂x

( δϕ
δbn

)
+

1

ko

∂ψ

∂x

δϕ

δbn

]xfs
b

xfs
a

− 1

ko

∫
Γfs

δϕ

δbn

∂2ψ

∂x2
dx

(D.13)

≃ − 1

ko

∫
Γfs

δϕ

δbn

∂2ψ

∂x2
dx,

δϕ

δbn
|Γfs

→ 0.

The last term in (D.9) becomes,∫
∂Ω

δϕ

δbn

∂ψ

∂n
ds =

∫
Γc∪Γw

δϕ

δbn

∂ψ

∂n
ds+

∫
Γfs

δϕ

δbn

∂ψ

∂n
ds (D.14)

=

∫
Γc∪Γw

δϕ

δbn

∂ψ

∂n
ds+

∫
Γfs

δϕ

δbn

∂ψ

∂z
dx

since (x, z = 0) ∈ Γfs. To sum up,∫ ∫
Ω

ψ∇2
( δϕ
δbn

)
dV =

∫ ∫
Ω

δϕ

δbn
∇2ψ dV (D.15)

−
∫
Γc

ψ(∇ϕ+U∞) · δn̂
δbn

− 1

ko

∫
Γfs

δϕ

δbn

∂2ψ

∂x2
dx (D.16)

−
∫
Γc∪Γw

δϕ

δbn

∂ψ

∂n
ds−

∫
Γfs

δϕ

δbn

∂ψ

∂z
dx. (D.17)

Variation of term two in Eq. (5.16) written compactly holds as,∫ ∫
Ω

ψ∇2
( δϕ
δbn

)
dV =

∫ ∫
Ω

δϕ

δbn
∆ψ dV −

∫
Γfs

δϕ

δbn

[∂ψ
∂z

+
1

ko

∂2ψ

∂x2

]
dx (D.18)

−
∫
Γc

ψ(∇ϕ+U∞) · δn̂
δbn

−
∫
Γc∪Γw

δϕ

δbn
(∇ψ · n̂) ds.

Finally, Eqs. (D.7) and (D.18) are used to derive the formula for sensitivities
introduced previously in Eqs. (5.17)-(5.18).



Appendix E

Asymptotic behavior of a point
singularity moving steadily
beneath a free surface

An analytic solution for the case of point singularities with constant strength in
uniform motion beneath the free surface is derived in [229] via the complex-variable
method. Assuming that a combined source of strength Q and a point vortex of
intensity Γ are located at zo = xo + iyo, yo < 0, the complex velocity potential at
every point of the domain z − x+ iy can be calculated using,

f(z) =
Γ + iQ

2πi
log(z − zo)−

Γ− iQ

2πi
log(z − z∗o) (E.1)

− Γ− iQ

πi
PV

∫ ∞

0

e−ik(z−z∗o )

k − ν
dk − (Γ− iQ)e−iν(z−z∗o ),

where ν = g/U2 and U denotes the inflow velocity. The integral term is defined in
sense of principal values (PV). An asymptotic form of this expression, i.e. x→ ∞
is given by doubling the last term based on [229] and is written as follows,

f(z) =
Γ + iQ

2πi
log(z − zo)−

Γ− iQ

2πi
log(z − z∗o)− 2(Γ− iQ)He−iν(z−z∗o ). (E.2)

whereH denotes a smoothed Heaviside functionH(x) = 0.5+0.5tanh(ax), a = ν/2
which is used to satisfy the physical condition that no upstream waves occur. In
addition it is important to note that based on the sign convention wave propagation
occurs toward the negative of x−axis.

By introducing the following expression for the natural logarithm,

log(z) = log(|z|) + iarg(z), −π + 2κπ < arg(z) < π + 2κπ, κ ∈ N (E.3)
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and obtaining the real part of Eq. (E.2) an expression for the velocity potential is
derived

Re
[
f(z)

]
=

Q

2π
log(|z − zo|) +

Q

2π
log(|z − z∗o |) (E.4)

+
Γ

2π
arg(z − zo)−

Γ

2π
argz(z − z∗o) (E.5)

+ 2H
[
− Γcos

(
ν(x− xo)

)
+Qsin

(
ν(x− xo)

)]
eν(yo+y)

In that sense, for a translating point vortex the velocity potential can be obtained
using the above for Q = 0,

Re
[
f(z), Q = 0

]
=

Γ

2π
arg(z − zo)−

Γ

2π
argz(z − z∗o) (E.6)

+ 2H
[
− Γcos

(
ν(x− xo)

)]
eν(yo+y).

The velocity field is obtained via direct differentiation. The above asymptotic
result offers an inexpensive, very good approximation of the wave potential and
the free-surface elevation at a horizontal distance in the order of one wavelength
away from the singularity and will be used in the present work for verification.
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