

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ

Εργαστήριο Μεταλλικών Κατασκευών

Διπλωματική εργασία

« Η ΠΥΡΚΑΓΙΑ ΩΣ ΦΟΡΤΙΣΗ ΣΤΑ ΣΙΔΗΡΑ ΔΟΜΙΚΑ ΕΡΓΑ, ΣΥΜΦΩΝΑ ΜΕ ΤΙΣ ΔΙΑΤΑΞΕΙΣ ΤΟΥ ΕΥΡΩΚΩΔΙΚΑ 1»

Σαχίνη Χριστιάνα

Επιβλέπων: Γιώργος Ιωαννίδης, Καθηγητής Ε.Μ.Π.

AOHNA 2009

Θα ήθελα να ευχαριστήσω...

Με τη διπλωματική αυτή εργασία ολοκληρώνεται η φοίτηση μου στη Σχολή Πολιτικών Μηχανικών του Εθνικού Μετσόβιου Πολυτεχνείου. Με την αφορμή αυτή θα ήθελα να ευχαριστήσω όσους έπαιξαν πολύ σημαντικό ρόλο κατά τη διάρκεια των σπουδών μου.

Καταρχάς θα ήθελα να ευχαριστήσω τον Καθηγητή του Ε.Μ.Π. κύριο Γιώργο Ιωαννίδη, επιβλέποντα της διπλωματικής μου εργασίας. Η βοήθειά του υπήρξε πολύτιμη για την ολοκλήρωση της εργασίας αυτής.

Επίσης θέλω να ευχαριστήσω τους καθηγητές του τομέα Δομοστατικής του Εθνικού Μετσόβιου Πολυτεχνείου για τη συμμετοχή τους στην εξεταστική επιτροπή της διπλωματικής μου εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω την οικογένειά μου για τη συμπαράστασή της.

Πίνακας Περιεχομένων

Εισαγωγή		1	
1.	1. Η πυρκαγιά ως φόρτιση		
	1.1	Γενικά	3
	1.2	Θερμικές δράσεις για την ανάλυση της θερμοκρασίας	3
	1.3	Η αναπτυσσόμενη θερμοκρασία	4
2.	Η συ	μπεριφορά του χάλυβα σε υψηλές θερμοκρασίες	8
	2.1	Γενικά	8
	2.2	Μηχανικές ιδιότητες των συνήθων χαλύβων	9
	2.3	Θερμικές ιδιότητες των συνήθων χαλύβων	10
	2.4	Σχεδιασμός έναντι πυρκαγιάς	14
	2.5	Ανάπτυξη της θερμοκρασίας του χάλυβα σε μη προστατευμένα εσωτερικά	15
		δομικά μέλη από χάλυβα	
	2.6	Ανάπτυξη της θερμοκρασίας του χάλυβα σε εσωτερικά δομικά μέλη	18
		από χάλυβα μονωμένα με υλικά πυροπροστασίας	
3.	Παρα	ιμετρικές καμπύλες θερμοκρασίας – χρόνου	21
	3.1	Γενικά	21
	3.2	Προσδιορισμός παραμετρικών καμπυλών	21
	3.3	Παραδείγματα στον υπολογισμό των παραμετρικών καμπυλών	24
		θερμοκρασίας – χρόνου	
	3.4	Παραδείγματα στην ανάπτυξη θερμοκρασίας του χάλυβα σε δομικά μέλη	
		42	
		από χάλυβα μονωμένα και μη	
4.	Θερμ	ιικές δράσεις σε εξωτερικά μέλη – Απλοποιημένη μέθοδος υπολογισμού	56
	4.1	Γενικά	56
	4.2	Απλοποιημένη μέθοδος υπολογισμού	56
	4.3	Συνολικοί συντελεστές διάταξης	64
	4.4	Μεταφορά θερμότητας σε εξωτερικά δομικά στοιχεία από χάλυβα	64
	4.5	Παραδείγματα στον υπολογισμό θερμικών δράσεων σε εξωτερικά μέλη	70
5.	Топи	κές πυρκαγιές	81
	5.1	Γενικά	81
	5.2	Χαρακτηριστικά τοπικής πυρκαγιάς	81
	5.3	Παραδείγματα στις θερμικές δράσεις που αναπτύσσονται στις τοπικές πυρκαγιές	84

6. Πυκνότητα πυροθερμικού φορτίου		97
6.1	Γενικά	97
6.2	Προσδιορισμός της πυκνότητας πυροθερμικού φορτίου	99
6.3	Αντίδραση στην καύση	102
6.4	Ρυθμός εκροής θερμότητας Q	102
6.5	Παράδειγμα υπολογισμού της πυκνότητας πυροθερμικού φορτίου q _{f,d}	103
7. Ισοδὑναμος χρόνος ἐκθεσης στη φωτιἁ t _{e,d}		109
7.1	Γενικά	109
7.2	Παραδείγματα υπολογισμού του ισοδύναμου χρόνου ἑκθεσης στη φωτιἁ για	112
	διάφορες χρήσεις κατασκευής	
8. Συντελεστής διάταξης Φ		127
8.1	Γενικά	127
8.2	Επίδραση σκίασης	128
8.3	Εξωτερικά μέλη	128
8.4	Παραδείγματα υπολογισμού του συντελεστή διάταξης Φ	131
Συμπεράσματα 14		

Βιβλιογραφία

(1) Ι. Βάγιας, Ι. Ερμόπουλος, Γ. Ιωαννίδης, Σχεδιασμός δομικών έργων από χάλυβα,Κλειδάριθμος, (2005)

(2) Ι. Βάγιας, Ι. Ερμόπουλος, Γ. Ιωαννίδης, Σιδηρές κατασκευές (Παραδείγματα εφαρμογής του Ευρωκώδικα 3), Κλειδάριθμος, (2004)

(3) Γ. Μιχάλτσου, Ελαφρές Μεταλλικές κατασκευές, Παπασωτηρίου, (2004)

(4) Ευρωκώδικας 1, Βάσεις σχεδιασμού και δράσεις επί των κατασκευών (ΕΝV1991)

(5) Ευρωκώδικας 3, Σχεδιασμός Μεταλλικών Κατασκευών (ENV1993)

(6) Patrick Dowling, Peter Knowles, Structural Steel Design, (The steel construction Institute)

(7) Μεταλλικές κατασκευές, Εταιρία Ερευνών Μεταλλικών Έργων (Ε.Ε.Μ.Ε)

(8) Μεταλλικές κατασκευές, Ευρωπαϊκές Τεχνολογικές Εκδόσεις (Ε.Τ.Ε)

(9) David A. Nethercot, Limit states design of structural steelwork

(10) ECCS-Technical Committee 3 - Fire Safety of Steel Structures, European Recommendations for the fire safety of Steel Structures, (Elsevier)

Εισαγωγή

Σκοπός της διπλωματικής αυτής εργασίας είναι η μελέτη των διατάξεων του Ευρωκώδικα 1 «Βάσεις σχεδιασμού και δράσεις επί των κατασκευών» και ειδικότερα του μέρους 1.2 «Δράσεις επί των κατασκευών εκετεθειμένων σε πυρκαγιά». Πιο συγκεκριμένα μελετώνται τα παραρτήματα του Ευρωκώδικα 1.1.2 τα οποία αναφέρουν κάποιες ειδικές περιπτώσεις της πυρκαγιάς ως φόρτιση σε δομικά στοιχεία. Για την καλύτερη κατανόηση των κειμένων αυτών, πραγματοποιήθηκαν αριθμητικές εφαρμογές στις οποίες γίνεται ο υπολογισμός των θερμικών δράσεων που αναφέρονται στο μέρος 1.2 του Ευρωκώδικα 1 και χρησιμοποιούνται σχέσεις του Ευρωκώδικα 3 μέρους 1.2, με σκοπό την εύρεση των μεγεθών που αναπτύσσονται σε δομικά στοιχεία από χάλυβα λόγω πυρκαγιάς.

Αρχικά, στο 1° κεφάλαιο μελετάται η πυρκαγιά ως φόρτιση. Οι θερμικές δράσεις που αναπτύσσονται κατά τη διάρκεια μιας πυρκαγιάς εκφράζονται με τη θερμική ροή h_{net} στην επιφάνεια ενός μέλους. Η θερμοκρασία του αέρα που αναπτύσσεται σε ένα πυροδιαμέρισμα προσδιορίζεται από καμπύλες θερμοκρασίας – χρόνου. Οι καμπύλες αυτές είναι ονομαστικές (πρότυπη καμπύλη ISO) ή παραμετρικές.

Στο 2° κεφάλαιο εκτιμάται η συμπεριφορά του χάλυβα σε υψηλές θερμοκρασίες. Κατά τη διάρκεια μιας πυρκαγιάς από κάποια θερμοκρασία (400 °C) και μετά η αντοχή του χάλυβα μειώνεται ραγδαία, με αποτέλεσμα μετά την πάροδο κάποιου χρονικού διαστήματος τα φορτία της κατασκευής να καταστούν οριακά και να επέλθει αστοχία. Οι θερμικές ιδιότητες του χάλυβα εξαρτώνται από τη μεταβολή της θερμοκρασίας. Αναφέρονται επίσης οι τύποι που σχετίζουν τη μεταβολή της θερμοκρασίας του αέρα με την αναπτυσσόμενη θερμοκρασία στο χάλυβα μονωμένου και μη μέλους.

Στο 3° κεφάλαιο μελετώνται οι παραμετρικές καμπύλες θερμοκρασίας – χρόνου (παράρτημα Α του ΕΝ 1991.1.2). Οι καμπύλες αυτές σχεδιάστηκαν ώστε να λαμβάνονται υπόψη τα χαρακτηριστικά του πυροδιαμερίσματος (αερισμός, περίβλημα, πυροθερμικό φορτίο). Αναφέρονται κάποια παραδείγματα στα οποία υπολογίζονται οι παραμετρικές καμπύλες για δεδομένα στοιχεία πυροδιαμερίσματος.

Το κεφάλαιο 4 σχετίζεται με τις θερμικές δράσεις που αναπτύσσονται στα εξωτερικά μέλη μιας κατασκευής (παράρτημα Β, ΕΝ1991.1.2). Αρχικά εκτιμούνται οι συνθήκες πυροδιαμερίσματος (θερμοκρασία, διαστάσεις φλόγας) για συνθήκες με ή χωρίς ρεύμα αέρα και στη συνέχεια προσδιορίζεται η θερμοκρασία του χαλύβδινου εξωτερικού μέλους. Στο 5° κεφάλαιο αναφέρεται η ειδική περίπτωση των τοπικών πυρκαγιών (παράρτημα C). Γίνεται εκτίμηση των θερμικών δράσεων (με τη βοήθεια ενός αριθμητικού παραδείγματος) για την περίπτωση που οι φλόγες δεν αγγίζουν το δομικό μέλος και για την περίπτωση που οι φλόγες το περιβάλλουν.

Αντικείμενο του 6^{ου} κεφαλαίου είναι η εκτίμηση της πυκνότητας του πυροθερμικού φορτίου q_{f,d} (παράρτημα Ε). Ο υπολογισμός αυτός βασίζεται στην εκτίμηση κάποιων συντελεστών από πίνακες που περιέχονται στην εργασία.

Το κεφάλαιο 7 υποδεικνύει τον τρόπο υπολογισμού του ισοδύναμου χρόνου έκθεσης στην πυρκαγιά t_{e,d}, του χρόνου δηλαδή στον οποίο λαμβάνουμε το ίδιο θερμικό αποτέλεσμα από την πρότυπη καμπύλη ISO και την αντίστοιχη παραμετρική (παράρτημα F).

Τέλος, στο 8° κεφάλαιο (παράρτημα G) προσδιορίζουμε το συντελεστή διάταξης Φ που εκφράζει το τμήμα της συνολικής θερμότητας που αφήνει μια δεδομένη επιφάνεια εκπομπής και φθάνει σε μια δεδομένη επιφάνεια λήψης. Περιλαμβάνονται δύο παραδείγματα υπολογισμού του συντελεστή για μετάδοση θερμότητας από ένα άνοιγμα και μια φλόγα προς ένα εξωτερικό υποστύλωμα.

Κεφάλαιο 1

Η πυρκαγιά ως φόρτιση

1.1 Γενικἁ

Ένας σοβαρότατος κίνδυνος για τις κατασκευές και ειδικότερα για τις μεταλλικές κατασκευές είναι η πυρκαγιά. Τα υλικά με τη μεταβολή της θερμοκρασίας, μεταβάλλουν τις χαρακτηριστικές ιδιότητες και αντοχές τους, γεγονός που γίνεται εμφανέστερο σε μεγάλη αύξηση της θερμοκρασίας.

Η φωτιά είναι αποτέλεσμα της καύσης των διάφορων υλικών. Η καύση είναι μια ταχύτατη οξειδωτική αντίδραση και απελευθερώνει ιδιαίτερα μεγάλες ποσότητες ενέργειας υπό μορφή θερμότητας αλλά και ακτινοβολίας. Συνεπεία αυτού, αυξάνεται η θερμοκρασία του περιβάλλοντος (συγκεκριμένα του αέρα) και στη συνέχεια αυξάνεται και η θερμοκρασία της κατασκευής η οποία απορροφά ποσό θερμότητας. Η αύξηση της θερμοκρασίας ενός σώματος οδηγεί σε μείωση της αντοχής του αφού η ενέργεια που αποκτά το σώμα, υπό μορφή θερμότητας, βοηθά στην υπερνίκηση των δεσμών συνοχής των μορίων του.

Μια πραγματική φωτιά σε ένα κτίριο αναπτύσσεται και φθίνει σύμφωνα με το ισοζύγιο μάζας και ενέργειας που υπάρχει στο πυροδιαμέρισμα , μέσα στο οποίο αυτή εκδηλώνεται. Η απελευθερούμενη ενέργεια εξαρτάται από την ποσότητα και τον τύπο του διατιθέμενου προς καύση υλικού και από τις συνθήκες αερισμού. Είναι δυνατό να θεωρήσουμε ότι μία πραγματική φωτιά ακολουθεί τρεις φάσεις, οι οποίες μπορούν να οριστούν ως η γέννεση, η πλήρης ανάπτυξη και η εκτόνωση. Η ταχύτερη αύξηση της θερμοκρασίας συμβαίνει κατά την περίοδο που ακολουθεί την πυράκτωση, η οποία είναι το σημείο στο οποίο όλα τα οργανικά υλικά του πυροδιαμερίσματος καίγονται.

1.2 Θερμικές δράσεις για την ανάλυση της θερμοκρασίας

Οι θερμικές δράσεις εκφράζονται από την καθαρή θερμική ροή h_{net} (W/m²) στην επιφάνεια ενός μέλους.

Η θερμική ροή σχεδιασμού h_{net,d} σε επιφάνειες που εκτίθενται στη φωτιά, προκύπτει από το άθροισμα της θερμικής ροής λόγω αφ' ενός (h_{net,c}) της επαφής θερμού αέρα-χάλυβα (convection) και αφετέρου (h_{net,r}) της ακτινοβολίας των φλογών (radiation) :

$$h_{\text{net,d}} = h_{\text{net,c}} + h_{\text{net,r}}$$
(1.1)

Η θερμική ροή λόγω επαφής θερμού αέρα-χάλυβα h_{net,c} ορίζεται ως:

$$h_{\text{net,c}} = a_c \cdot (\Theta_g - \Theta_m)$$
(1.2)

όпου

- ac είναι ο συντελεστής μεταφοράς της θερμότητας δια συναγωγής (W/m²K),ο οποίος για χρήση της πρότυπης καμπύλης θερμοκρασίας χρόνου είναι ίσος με a_c= 25 W/m²K ενώ για χρήση παραμετρικής καμπύλης ο συντελεστής λαμβάνεται ίσος με a_c= 35 W/m²K.
- Θ_g είναι η θερμοκρασία του αέρα κοντά στο μεταλλικό μέλος (°C)
- Θ_m είναι η θερμοκρασία του μεταλλικού μέλους (°C)

Η θερμική ροή λόγω ακτινοβολίας h_{net,r} ορίζεται ως:

$$h_{\text{net},r} = \Phi \cdot \varepsilon_{\text{m}} \cdot \varepsilon_{\text{f}} \cdot \sigma \cdot [(\Theta_{\text{r}} + 273)^4 - (\Theta_{\text{m}} + 273)^4]$$
(1.3)

όпου

Φ είναι ο συντελεστής διάταξης, Φ=1,0.

- ϵ_m είναι ο συντελεστής ικανότητας ακτινοβολίας (emissivity) του μέλους, ϵ_m = 0,8.
- $ε_f$ είναι ο συντελεστής ικανότητας ακτινοβολίας (emissivity) της φλόγας, $ε_f = 1,0$.
- σ είναι η σταθερά του νόμου Stephan Boltzmann (= $5,67 \cdot 10^{-8}$ W/m²K⁴)
- Θ_r είναι η θερμοκρασία του ακτινοβολούντος περιβάλλοντος του μέλους (°C) και μπορεί να λαμβάνεται ίση με τη θερμοκρασία του αέρα Θ_g.
- Θ_m είναι η θερμοκρασία του μεταλλικού μέλους (°C).

1.3 Η αναπτυσσόμενη θερμοκρασία

Όταν εμφανιστεί πυρκαγιά εντός ή εκτός ενός πυροδιαμερίσματος, αυξάνεται βαθμιαία η θερμοκρασία του περιβάλλοντος χώρου (θερμοκρασία αέρα) και στη συνέχεια λόγω της παραπάνω αύξησης της θερμοκρασίας του αέρα αλλά και λόγω ακτινοβολίας επέρχεται η αύξηση της θερμοκρασίας του χάλυβα και η σταδιακή απομείωση της αντοχής του. Η μεταβολή της θερμοκρασίας του αέρα θ_g εκφράζεται με διάφορες μαθηματικές σχέσεις που οδηγούν σε καμπύλες θερμοκρασίας – χρόνου. Από τις σχέσεις αυτές κάποιες είναι καθαρά θεωρητικές που προκύπτουν από δοκιμές πυραντιστάσεως και άλλες προσεγγίζουν περισσότερο την πραγματικότητα αφού λαμβάνονται υπ' όψιν οι παράγοντες της κατασκευής όπως το πυροθερμικό φορτίο, τα ανοίγματα, το περίβλημα κ.λ.π. Οι συμβατικές καμπύλες που υιοθετούνται για την κατάταξη και τον έλεγχο του δείκτη πυραντίστασης λέγονται ονομαστικές(πρότυπη καμπύλη θερμοκρασίας- χρόνου, καμπύλη θερμοκρασίας για εξωτερική πυρκαγιά, καμπύλη που αντιστοιχεί σε καύση υδρογονανθράκων). Οι καμπύλες που προσδιορίζονται από ειδικές φυσικές παραμέτρους που καθορίζουν τις συνθήκες στο πυροδιαμέρισμα λέγονται παραμετρικές.

1.3.1 Ονομαστικές καμπύλες

1.3.1.1 Η πρότυπη καμπύλη θερμοκρασίας – χρόνου ISO

Η πρότυπη καμπύλη θερμοκρασίας – χρόνου χαρακτηρίζεται από θερμοκρασία αέρα στο πυροδιαμέρισμα η οποία αυξάνεται συνεχώς με το χρόνο, αλλά με επιβραδυνόμενο ρυθμό. Η συνάρτηση αυτή δεν παριστά κανένα τύπο φυσικής φωτιάς σε κτίριο και ο δείκτης πυραντίστασης που αναφέρεται στην καμπύλη αυτή δε δείχνει τον πραγματικό χρόνο κατά τον οποίο ένα στοιχείο θα επιζήσει σε μία πυρκαγιά κτιρίου, αλλά αποτελεί συγκριτική ένδειξη της πιθανότητας ενός στοιχείου να επιβιώσει σε μία σοβαρή πυρκαγιά.

Η μεταβολή της θερμοκρασίας συναρτήσει του χρόνου κατά τον ISO-834 είναι:

$$\Theta_{g} = 20 + 345 \cdot \log_{10}(8 \cdot t + 1)$$
(1.4)

όπου :

Θ_q είναι η θερμοκρασία του αέρα στο πυροδιαμέρισμα (°C)

t είναι ο χρόνος	(min)

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής είναι :

$$a_{c} = 25 \text{ W/m}^{2}$$

Σχήμα 1.1 Πρότυπη καμπύλη ISO θερμοκρασίας - χρόνου

1.3.1.2 Καμπύλη για εξωτερική πυρκαγιά

Η καμπύλη θερμοκρασίας για εξωτερική πυρκαγιά δίνεται από τη σχέση :

$$\Theta_{\rm g} = 20 + 660 \cdot (1 - 0.687 \cdot e^{-0.32 \cdot t} - 0.313 \cdot e^{-3.8 \cdot t})$$
(1.5)

(min)

όπου :

Θ_a είναι η θερμοκρασία του αέρα κοντά στο μέλος (°C)

t είναι ο χρόνος

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής είναι :

 $a_c = 25 \text{ W/m}^2\text{K}$

Σχήμα 1.2 Καμπύλη θερμοκρασίας – χρόνου εξωτερικής πυρκαγιάς

1.3.1.3 Καμπύλη καύσης υδρογονανθράκων

Η καμπύλη θερμοκρασίας - χρόνου από καύση υδρογονανθράκων δίνεται από τη σχέση :

$$\Theta_{\rm g} = 20 + 1080 \cdot (1 - 0.325 \cdot e^{-0.167 \cdot t} - 0.675 \cdot e^{-2.5 \cdot t})$$
(1.6)

όπου :

Θ_g είναι η θερμοκρασία του αέρα στο πυροδιαμέρισμα (°C)

6

t είναι ο χρόνος

(min)

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής είναι :

 $a_c = 50 \text{ W/m}^2\text{K}$

Σχήμα 1.3 Καμπύλη θερμοκρασίας - χρόνου καύσης υδρογονανθράκων

1.3.2 Παραμετρικές καμπύλες θερμοκρασίας - χρόνου

Οι παραμετρικές καμπύλες θερμοκρασίας – χρόνου είναι καμπύλες οι οποίες προκύπτουν αφού προσδιοριστούν οι παράγοντες που επηρεάζουν την εξέλιξη της πυρκαγιάς. Οι παράγοντες αυτοί είναι το πυροθερμικό φορτίο, τα ανοίγματα και οι θερμικές ιδιότητες του περιβλήματος του πυροδιαμερίσματος. Επιπλέον, οι καμπύλες αυτές έχουν το χαρακτηριστικό (αντίθετα με τις πρότυπες) να διαθέτουν καθοδικό κλάδο που αντιστοιχεί στην πτώση της θερμοκρασία του αέρα μετά την αιχμή της πυρκαγιάς. Ειδικότερη αναφορά στις παραμετρικές καμπύλες θερμοκρασίας- χρόνου θα γίνει στο κεφάλαιο 3.

Κεφάλαιο 2

Η συμπεριφορά του χάλυβα σε υψηλές θερμοκρασίες

2.1 Γενικά

Η αντοχή του χάλυβα απομειώνεται με την αύξηση της θερμοκρασίας του. Η μείωση της αντοχής (όπως αυτή εκφράζεται μέσω της τάσεως διαρροής) δεν είναι πρακτικά σημαντική μέχρι τη θερμοκρασία των 400 °C μετά την οποία όμως η μείωση αυτή είναι ραγδαία. Ο χάλυβας γίνεται πρακτικά ρευστός (μηδενική αντοχή) περί τους 1200 °C. Στην περιοχή μεταξύ 0 °C και 400 °C η τάση διαρροής δε μεταβάλλεται, μεταβάλλεται όμως η δυστένεια του χάλυβα, η πραγματοποίηση δηλαδή της αντοχής διαρροής συνδέεται, αυξανόμενης της θερμοκρασίας, με όλο και μεγαλύτερες ανηγμένες παραμορφώσεις. Μόνο το 23% της αντοχής του σε συνηθισμένη θερμοκρασία παραμένει στους 700°C, ενώ στους 800°C το ποσοστό αυτό μειώνεται στο 11% και στους 900°C στο 6%.

Σε περίπτωση πυρκαγιάς, της οποίας η διάρκεια ξεπερνάει κάποια όρια, η θερμοκρασία του χώρου μέσα στον οποίο εκδηλώνεται αυξάνεται ενώ η θερμοκρασία των δομικών στοιχείων από χάλυβα παρακολουθεί με κάποια χρονική υστέρηση (μεγαλύτερη ή μικρότερη ανάλογα με το βαθμό μόνωσης των στοιχείων αυτών) την αύξηση αυτή. Εάν, επομένως, κάποιος παράγοντας δεν αναστείλει την αύξηση της θερμοκρασίας του χάλυβα και δεδομένης της βαθμιαίας μείωσης της αντοχής του, μετά την πάροδο κάποιου χρονικού διαστήματος από την έναρξη της πυρκαγιάς τα φορτία που υπάρχουν επί της κατασκευής θα καταστούν οριακά και θα προκαλέσουν αστοχία.

Το χρονικό διάστημα από την έναρξη της πυρκαγιάς μέχρι την αστοχία της κατασκευής δίνει το μέτρο της αντοχής της σε συνθήκες πυρκαγιάς και ονομάζεται δείκτης πυραντίστασης. Στα έργα ο δείκτης αυτός αξιολογείται, τα δε στοιχεία μόνωσης των δομικών στοιχείων προσδιορίζονται ώστε ο δείκτης αυτός να βρίσκεται μέσα σε όρια καθοριζόμενα από τους κανονισμούς.

2.2 Μηχανικές ιδιότητες των συνήθων χαλύβων

Ως μηχανικές ιδιότητες του χάλυβα στους 20°C θα λαμβάνονται εκείνες που δίνονται στο ΕΝ 1993-1-1 για το σχεδιασμό σε συνήθη θερμοκρασία.

Ο Πίνακας 2.1 δίνει τους μειωτικούς συντελεστές για τις ιδιότητες του χάλυβα (σε υψηλές θερμοκρασίες) που συνδέονται με το διάγραμμα τάσεων – ανηγμένων παραμορφώσεων, το οποίο δίδεται στο Σχήμα 2.1. Οι παραπάνω μειωτικοί συντελεστές ορίζονται ως εξής:

- ενεργός τάση διαρροής ως προς την τάση διαρροής σε 20 °C: $k_{y,\theta} = f_{y,\theta} / f_y$
- όριο αναλογίας ως προς την τάση διαρροής σε 20 °C: $k_{p,\theta} = f_{p,\theta} / f_y$
- κλίση της γραμμικής ελαστικής περιοχής ως προς την κλίση στους 20 °C: k_{E,θ} = E_{a,θ} / E_a

f_{pθ} : όριο αναλογίας,

Ε_{α,θ} : κλίση της γραμμικής ελαστικής περιοχής,

ε_{ρθ} : παραμόρφωση αντιστοιχούσα στο όριο αναλογίας,

ε_{γ,θ} : παραμόρφωση διαρροής

ε_{t,θ} : μέγιστη παραμόρφωση στη στάθμη διαρροής,

ε_{и,θ} : οριακή παραμόρφωση.

Η πυκνότητα του χάλυβα ρ_α θεωρείται ότι είναι ανεξάρτητη από τη θερμοκρασία του και ίση προς : ρ_α = 7850 kg/m³.

Μειωτικοί συντελεστές σε θερμοκρασία θ _a ως προς την τιμή της <i>f_v</i> ή του <i>E</i> _a σε 20 °C				
θερμοκρασία χάλυβα <i>θ</i> a	Μειωτικός συντελεστής (ως προς την f _v) για την ενεργό τάση διαρροής	Μειωτικός συντελεστής (ως προς την f _v) για το όριο αναλογίας	Μειωτικός συντελεστής (ως προς το <i>E</i> a) για την κλίση της γραμμικής ελαστικής περιοχής	
	$k_{\mathrm{y},\mathrm{\theta}} = f_{\mathrm{y},\mathrm{\theta}} / f_{\mathrm{y}}$	$k_{\mathrm{p},\theta} = f_{\mathrm{p},\theta} / f_{\mathrm{y}}$	$k_{\rm E,\theta} = E_{\rm a,\theta}/E_{\rm a}$	
20 °C	1,000	1,000	1,000	
100 °C	1,000	1,000	1,000	
200 °C	1,000	0,807	0,900	
300 °C	1,000	0,613	0,800	
400 °C	1,000	0,420	0,700	
500 °C	0,780	0,360	0,600	
600 °C	0,470	0,180	0,310	
700 °C	0,230	0,075	0,130	
800 °C	0,110	0,050	0,090	
900 °C	0,060	0,0375	0,0675	
1000 °C	0,040	0,0250	0,0450	
1100 °C	0,020	0,0125	0,0225	
1200 °C	0,000	0,0000	0,0000	
ΣΗΜΕΙΩΣΗ: Για ενδιάμεσες τιμές της θερμοκρασίας του χάλυβα, μπορεί να χρησιμοποιείται γραμμική παρεμβολή.				

Πίνακας 2.1: Μειωτικοί συντελεστές για τις ιδιότητες του χάλυβα που συνδέονται με το διάγραμμα τάσεων - παραμορφώσεων, σε υψηλές θερμοκρασίες

2.3 Θερμικές ιδιότητες των συνήθων χαλύβων

Πέραν της αντοχής με τη θερμοκρασία μεταβάλλονται και οι θερμικές ιδιότητες του χάλυβα, οι οποίες επηρεάζουν τη συμπεριφορά του. Οι θερμικές ιδιότητες είναι η ειδική θερμότητα, η θερμική αγωγιμότητα και ο συντελεστής θερμικής διαστολής. Στα παρακάτω διαγράμματα παρουσιάζεται η μεταβολή των ιδιοτήτων του χάλυβα συναρτήσει της θερμοκρασίας. Στους 735°C στο χάλυβα εκδηλώνεται αλλαγή της κρυσταλλικής του δομής. Για το λόγο αυτό οι θερμικές ιδιότητες παρουσιάζουν περί τη θερμοκρασία αυτή ασυνέχειες.

2.3.1 Ειδική θερμότητα

Ως ειδική θερμότητα c (J/ kg·K) ορίζεται η ποσότητα ενέργειας (Joule) που απαιτείται για να ανυψωθεί η θερμοκρασία της μονάδας μάζας (kg) κατά ένα βαθμό Κέλβιν.

Η ειδική θερμότητα του χάλυβα c_a θα προσδιορίζεται από τις ακόλουθες σχέσεις:

- για 20 °C ≤ Θ_a < 600 °C:

$$c_{a} = 425 + 7,73 \times 10^{-1} Θ_{a} - 1,69 \times 10^{-3} Θ_{a}^{2} + 2,22 \times 10^{-6} Θ_{a}^{-3} J/kg K$$
(2.1a)
- για 600 °C ≤ Θ_a < 735 °C :

$$c_{a} = 666 + \frac{13002}{738 - Θ_{a}} J/kg K$$
(2.1β)
- για 735 °C ≤ Θ_a < 900 °C :

$$c_{a} = 545 + \frac{17820}{Θ_{a} - 731} J/kg K$$
(2.1γ)
- για 900 °C ≤ Θ_a ≤ 1200 °C :

$$c_{a} = 650 J/kg K$$
(2.1δ)
onou:

$$Θ_{a} είναι η θερμοκρασία του χάλυβα [°C]$$

Σχήμα 2.2: Ειδική θερμότητα συνήθους χάλυβα συναρτήσει της θερμοκρασίας

Στην καμπύλη της ειδικής θερμότητας η ασυνέχεια υποδηλώνει ότι η παραγόμενη ποσότητα θερμότητας αναλίσκεται στην αλλαγή της κρυσταλλικής δομής του χάλυβα και όχι στην αύξηση της θερμοκρασίας του. Στο σχήμα 2.2 φαίνεται η μεταβολή της ειδικής θερμότητας του χάλυβα με την αύξηση της θερμοκρασίας.

2.3.2 Θερμική αγωγιμότητα

Ως θερμική αγωγιμότητα λ (W/m·K) ορίζεται η ποσότητα θερμότητας (Joule) η οποία διαπερνά στη μονάδα του χρόνου (sec) ένα τοίχωμα από το υλικό πάχους 1m, όταν εκατέρωθεν του τοιχώματος υπάρχει διαφορά θερμοκρασίας ένας βαθμός Κέλβιν (1 Watt = 1 Joule/sec).

Η θερμική αγωγιμότητα του χάλυβα λ_αθα προσδιορίζεται από τις ακόλουθες σχέσεις:

-
$$\gamma_{Ia} \ 20^{\circ}C \le \Theta_a < 800^{\circ}C$$
:
 $\lambda_a = 54 - 3,33 \times 10^{-2} \Theta_a \quad W/mK$ (2.2a)

- yia $800\,^{\circ}C \leq \Theta_a \, \leq 1200\,^{o}C$:

$$\lambda_a = 27,3 \quad \text{W/mK} \tag{2.2\beta}$$

όπου:

Θ_a είναι η θερμοκρασία του χάλυβα [°C].

Στο σχήμα 2.3 φαίνεται η μεταβολή της θερμικής αγωγιμότητας του χάλυβα με την αύξηση της θερμοκρασίας.

Σχήμα 2.3 : Θερμική αγωγιμότητα συνήθους χάλυβα συναρτήσει της θερμοκρασίας

2.3.3 Θερμική διαστολή

Ο συντελεστής θερμικής διαστολής ΔΙ/Ι είναι σημαντικός παράγοντας, δεδομένου ότι συνήθως η πυρκαγιά εκδηλώνεται σε τμήμα του κτιρίου του οποίου η διαστολή παρεμποδίζεται από τα γειτονικά του, τα οποία βρίσκονται σε συνήθη ή χαμηλότερη θερμοκρασία.

Η θερμική διαστολή του χάλυβα ΔΙ/Ι θα προσδιορίζεται από τις ακόλουθες σχέσεις:

-
$$\gamma_{Ia} 20 \,^{\circ}\text{C} \le \Theta_a < 750 \,^{\circ}\text{C}$$
:

$$\Delta I/I = 1.2 \times 10^{-5} \,\Theta_a + 0.4 \times 10^{-8} \,\Theta_a^{-2} - 2.416 \times 10^{-4}$$
(2.3a)

- yia 750 °C
$$\leq \Theta_a \leq 860$$
 °C :

$$\Delta I/I = 1.1 \times 10^{-2}$$
(2.3β)

- yia 860 °C $\,<\,\Theta_a\,\leq\,1200\,^\circ C$:

$$\Delta I/I = 2 \times 10^{-5} \Theta_{a} - 6.2 \times 10^{-3}$$
(2.3)

όπου:

I	είναι	το μήκος στους 20 °C,
ΔΙ	είναι	η διαστολή λόγω της θερμοκρασίας,
Θα	είναι	η θερμοκρασία του χάλυβα [°C].

Στο σχήμα 2.4 φαίνεται πως μεταβάλλεται η θερμική διαστολή του χάλυβα με την αύξηση της θερμοκρασίας.

Σχήμα 2.4 : Θερμική διαστολή συνήθους χάλυβα συναρτήσει της θερμοκρασίας

2.4 Σχεδιασμός έναντι πυρκαγιάς

Κατά το σχεδιασμό η πυρκαγιά αντιμετωπίζεται ως φόρτιση, κατατάσσεται στις τυχηματικές (accidental) φορτίσεις και ως τέτοια συνδυάζεται με τα υπόλοιπα φορτία που δρουν επί της κατασκευής. Το πλαίσιο αντιμετώπισης της πυρκαγιάς ως φόρτιση αποτελεί αντικείμενο των κανονισμών. Ειδικότερα στον Ευρωκώδικα 1 : "Βάσεις σχεδιασμού και δράσεις επί των κατασκευών" στην πυρκαγιά αναφέρεται το μέρος του 1.2: "Δράσεις επί των κατασκευών" στην πυρκαγιά. Η αντοχή δομικών στοιχείων από χάλυβα σε υψηλές θερμοκρασίες (πυρκαγιά) αποτελεί αντικείμενο του Ευρωκώδικα 3: "Σχεδιασμός κατασκευών από χάλυβα" και ειδικότερα του μέρους του 1.2: "Σχεδιασμός δομικών στοιχείων έναντι πυρκαγιάς" (Structural fire design).

2.4.1 Μἑθοδοι ελἑγχου

Το προσομοίωμα του δομικού συστήματος που εφαρμόζεται κατά το σχεδιασμό, πρέπει να απεικονίζει την αναμενόμενη συμπεριφορά της κατασκευής κατά τη διάρκεια της πυρκαγιάς, πρέπει δε να επαληθεύεται ότι για τη θεωρούμενη χρονική διάρκεια t έκθεσης στην πυρκαγιά ισχύει :

$$E_{fi,d} \le R_{fi,d,t} \tag{2.4}$$

όπου :

E_{fi,d} το αποτέλεσμα των δράσεων σχεδιασμού για την κατάσταση πυρκαγιάς, το οποίο προσδιορίζεται σύμφωνα με το EN 1991-1-2, συμπεριλαμβανομένων των αποτελεσμάτων των θερμικών διαστολών και μετατοπίσεων.

R_{fi,d,t} η αντίστοιχη αντοχή σχεδιασμού για κατάσταση πυρκαγιάς.

2.5 Ανάπτυξη θερμοκρασίας του χάλυβα σε μη προστατευμένα εσωτερικά δομικά μέλη από χάλυβα.

Η αύξηση της θερμοκρασίας ενός χαλύβδινου μη μονωμένου μέλους κατά τη διάρκεια χρονικού διαστήματος Δt για ομοιόμορφη κατανομή της θερμοκρασίας στις διατομές, προσδιορίζεται από τη σχέση :

$$\Delta \theta_{a,t} = k_{sh} \frac{A_m / V \cdot h_{net,d} \cdot \Delta t}{C_a \cdot \rho_a}$$
(2.5)

όпου

Δθ_{a,t}η μεταβολή της θερμοκρασίας του χάλυβα (σε βαθμούς Κελσίου) εντός χρονικούδιαστήματος Δt (sec).

- k_{sh} ο διορθωτικός συντελεστής που χρησιμοποιείται για να ληφθεί υπόψη η σκίαση που παρέχουν τμήματα της διατομής σε άλλα
- A_m/V ο συντελεστής διατομής για μη μονωμένα μέλη από χάλυβα (m⁻¹)

- ρ_a η πυκνότητα του χάλυβα (kg/m³)
- $h_{net,d}$ η τιμή σχεδιασμού της θερμικής ροής (W/m²)
- Δt το χρονικό διάστημα (sec)

Προκειμένου για απλά υπολογιστικά προσομοιώματα η ειδική θερμότητα c_a του χάλυβα επιτρέπεται να θεωρείται ανεξάρτητη της θερμοκρασίας του και ίση προς 600 J / kg·K.

Η πυκνότητα του χάλυβα θεωρείται ίση με ρ_a=7850 kg/m³.

Για τον προσδιορισμό της μεταβολής της θερμοκρασίας του χάλυβα ενός μη μονωμένου μέλους δεν επιτρέπεται να θεωρούνται διαδοχικά χρονικά διαστήματα μεγαλύτερα των 5 sec.

Για διατομές διπλού ταυ ο διορθωτικός συντελεστής της επίδρασης της σκίασης μπορεί να προσδιορίζεται από :

$$k_{sh} = 0.9 \cdot (A_m/V)_b / (A_m/V)$$
 (2.6)

όпου

(A_m/V)_b η τιμή του συντελεστή διατομής θεωρώντας για τον υπολογισμό της A_m το ορθογώνιο που περιβάλλει τη διατομή.

Για διατομές με κυρτό σχήμα (π.χ. ορθογωνικές ή κοίλες κυκλικές διατομές), πλήρως περιβαλλόμενες από φλόγες, η επιρροή της «σκίασης» δεν παίζει ρόλο και επομένως ο διορθωτικός συντελεστής k_{sh} είναι ίσος με τη μονάδα.

Η θερμική ροή σχεδιασμού h_{net,d}, όπως έχει ήδη αναφερθεί στο κεφάλαιο 1.2 προκύπτει από το άθροισμα της θερμικής ροής λόγω αφ'ενός (h_{net,c}) της επαφής θερμού αέρα-χάλυβα (convection) και αφετέρου (h_{net,r}) της ακτινοβολίας των φλογών (radiation).

Ορισμένες σχέσεις για τον υπολογισμό της τιμής του συντελεστή διατομής A_m/V για μη προστατευμένα μέλη δίνονται στον πίνακα 2.2.

Πίνακας 2.2: Συντελεστής διατομής *Α*_m / V για μη προστατευμένα μέλη από χάλυβα.

2.6 Ανάπτυξη της θερμοκρασίας του χάλυβα σε εσωτερικά δομικά μέλη από χάλυβα μονωμένα με υλικά πυροπροστασίας.

Για περίπτωση ομοιόμορφης κατανομής της θερμοκρασίας στη διατομή, η αύξηση της θερμοκρασίας Δθ_{α,t} ενός μονωμένου μέλους από χάλυβα κατά τη διάρκεια ενός χρονικού διαστήματος Δt μπορεί να λαμβάνεται από:

$$\Delta \theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a} \cdot (1 + \varphi/3)} - (e^{\varphi/10} - 1) \Delta \theta_{g,t}$$
(2.7)

 $a\lambda\lambda \dot{a} \ \Delta \theta_{a,t} \geq 0 \ \epsilon \dot{a} v \ \Delta \theta_{g,t} > 0$

$$\mu \varepsilon \qquad \varphi = \frac{c_{p} \cdot \rho_{p} \cdot d_{p} \cdot \frac{A_{p}}{V}}{c_{a} \cdot \rho_{a}}$$
(2.8)

όπου:

A _p /V	είναι ο συντελεστής διατομής για μέλη από χάλυβα μονωμένα με υλικά προστασίας έναντι πυρκαγιάς,
A _p	είναι το κατάλληλο εμβαδόν του υλικού προστασίας ανά μονάδα μήκους μέλους (m²/m),
V	είναι ο όγκος του μέλους ανά μονάδα μήκους του (m³/m),
Ca	είναι η εξαρτώμενη από τη θερμοκρασία ειδική θερμότητα του χάλυβα, βλέπε κεφάλαιο 3 EN1993-1-2, (J/kg K),
Cp	είναι η ανεξάρτητη από τη θερμοκρασία ειδική θερμότητα του υλικού προστασίας (J/kg K),
d _p	είναι το πάχος του υλικού προστασίας (m)
Δt	είναι το χρονικό διάστημα (seconds)
$\Theta_{a,t}$	είναι η θερμοκρασία του χάλυβα τη χρονική στιγμή t (°C),
$\Theta_{g,t}$	είναι η θερμοκρασία του περιβάλλοντος το μέλος αέρα στο χρόνο t (°C),
$\Delta \theta_{g,t}$	είναι η αύξηση της θερμοκρασίας του περιβάλλοντος το μέλος αέρα κατά τη διάρκεια του χρονικού διαστήματος Δt (K),
λ_p	είναι η θερμική αγωγιμότητα του συστήματος προστασίας έναντι πυρκαγιάς (W/mK),
ρ _a	είναι η πυκνότητα του χάλυβα (kg/m³)

Ενίοτε γίνεται χρήση της προσεγγιστικής, απλοποιημένης και ανεξάρτητης της ειδικής θερμότητας του μονωτικού υλικού σχέσης :

$$\Delta \Theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$
(2.9)

Προκειμένου για απλά υπολογιστικά προσομοιώματα η ειδική θερμότητα c_a του χάλυβα επιτρέπεται να θεωρείται ανεξάρτητη της θερμοκρασίας του και ίση προς 600 J / kg·K. Η πυκνότητα του χάλυβα θεωρείται ίση με ρ_a=7850 kg/m³.

Για τον προσδιορισμό της μεταβολής της θερμοκρασίας του χάλυβα ενός μονωμένου μέλους δεν επιτρέπεται να θεωρούνται διαδοχικά χρονικά διαστήματα μεγαλύτερα των 30 sec.

Το εμβαδόν A_p του υλικού προστασίας πρέπει γενικά να λαμβάνεται ως το εμβαδόν της εσωτερικής του επιφάνειας. Για περίπτωση ορθογωνικού εγκιβωτισμού σε μια απόσταση από το χαλύβδινο μέλος πρέπει να εφαρμόζεται η ίδια τιμή όπως για ορθογωνικό εγκιβωτισμό χωρίς απόσταση από το χαλύβδινο μέλος. Χαρακτηριστικές τιμές σχεδιασμού του συντελεστή διατομής A_p/V μονωμένων μελών από χάλυβα δίνονται στον πίνακα 2.3.

Σχήμα	Περιγραφή	Συντελεστής διατομής (<i>A_p / V</i>)
	Περιμετρικό περίβλημα σταθερού πἁχους	Περίμετρος χάλυβα Εμβαδόν διατομής χάλυβα
$h \qquad \qquad$	Ορθογωνικός εγκιβωτισμός ενιαίου πάχους*	2 (b + h) — Εμβαδόν διατομής χάλυβα
	Περιμετρικό περίβλημα ενιαίου πάχους εκτεθειμένο στην πυρκαγιά από τρεις πλευρές	Περίμετρος χάλυβα - b — εμβαδόν διατομής χάλυβα
$ \begin{array}{c} $	Ορθογωνικός εγκιβωτισμός ενιαίου πάχους εκτεθειμένος από τρεις πλευρές*	2h + b εμβαδόν διατομής χάλυβα

Πίνακας 2.3: Συντελεστής διατομής Α_p/V για μέλη από χάλυβα μονωμένα με υλικά προστασίας έναντι πυρκαγιάς

Κεφάλαιο 3

Παραμετρικές καμπύλες θερμοκρασίας - χρόνου

3.1 Γενικά

Οι παραμετρικές καμπύλες θερμοκρασίας – χρόνου δημιουργήθηκαν από την ανάγκη να ληφθούν υπ' όψιν οι παράγοντες που επηρεάζουν την εξέλιξη της πυρκαγιάς. Οι παράγοντες αυτοί είναι το πυροθερμικό φορτίο, τα ανοίγματα και οι θερμικές ιδιότητες του περιβλήματος του πυροδιαμερίσματος. Επιπλέον, οι καμπύλες αυτές έχουν το χαρακτηριστικό (αντίθετα με τις πρότυπες) να διαθέτουν καθοδικό κλάδο που αντιστοιχεί στην πτώση της θερμοκρασία του αέρα μετά την αιχμή της πυρκαγιάς. Οι παραμετρικές καμπύλες θερμοκρασίας – χρόνου είναι το αντικείμενο του Παραρτήματος Α του Ευρωκώδικα 1 μέρους 1.2.

Οι παρακάτω καμπύλες θερμοκρασίας – χρόνου ισχύουν για πυροδιαμερίσματα επιφάνειας μεγαλύτερης των 500 m², χωρίς ανοίγματα στην οροφή και για μέγιστο ύψος διαμερίσματος 4 m. Υποτίθεται ότι το πυροθερμικό φορτίο του διαμερίσματος καίγεται ολοκληρωτικά.

3.2 Προσδιορισμός παραμετρικών καμπυλών

Οι καμπύλες θερμοκρασίας – χρόνου κατά τη φάση ανάπτυξης της πυρκαγιάς (ανοδικός κλάδος) δίνονται από τη σχέση :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$
(3.1)

όπου:

Θ_{g}	η θερμοκρασία του αέρα στο πυροδιαμέρισμα.	(°C)	
t*	ο σχετικός χρόνος	(h)	
β	$t^* = t \cdot \Gamma$		(3.2)
t	χρόνος	(h)	
Г	συντελεστής εξαρτώμενος από τις συνθήκες αερισμού Γ= (O/b)²/(0,04/1160)²		
b	συντελεστής εξαρτώμενος από τη μονωτική ικανότητα του περιβλήματος, b = √(ρcλ)		
	με τον ακόλουθο περιορισμό: 100 ≤ b≤ 2200	(J/m ² s ^{1/2} K)	
ρ	πυκνότητα του υλικού του περιβλήματος	(kg/m³)	

с	ειδική θερμότητα του περιβλήματος	(J/kgK)
λ	θερμική αγωγιμότητα του περιβλήματος	(W/mK)
0	συντελεστής επιρροής ανοιγμάτων : Α _ν . _√ h _{eq} /Α _t	(m ^{1/2})
	με τον ακόλουθο περιορισμό: 0,02 ≤ Ο ≤ 0,20	
A _v	η επιφάνεια των κατακόρυφων ανοιγμάτων σε όλους τους τοίχους	(m²)
h_{eq}	το μέσο ύψος των παραθύρων σε όλους τους τοίχους	(m)
A _t	η συνολική επιφάνεια του περιβλήματος (τοίχοι, οροφή και δάπεδο συμπεριλαμβανομένων των ανοιγμάτων)	(m²)

Η μέγιστη θερμοκρασία Θ_{max} στη φάση ανάπτυξης της πυρκαγιάς (φάση ανόδου) προκύπτει για χρόνο t^{*}=t^{*}_{max}.

$$t^*_{max} = t_{max} \cdot \Gamma$$
(3.3)

$$\mu \epsilon t_{max} = max ((0,2 \cdot 10^{-3} \cdot q_{t,d}/O) ; t_{lim})$$
(3.4)

όπου:

- $q_{t,d}$ η τιμή σχεδιασμού της πυκνότητας του πυροθερμικού φορτίου εκφραζόμενη στη συνολική επιφάνεια του περιβλήματος A_t , με $q_{t,d} = q_{f,d} \cdot A_f / A_t$ (MJ/m²). Ο ακόλουθος περιορισμός πρέπει να ισχύει : $50 \le q_{t,d} \le 1000 \text{ (MJ/m}^2).$
- q_{f,d} η τιμή σχεδιασμού της πυκνότητας του πυροθερμικού φορτίου, εκφραζόμενη στην επιφάνεια A_f του δαπέδου (MJ/m²) και υπολογίζεται στο κεφάλαιο 6.
- t_{lim} ο χρόνος όπου σε περίπτωση χαμηλού ρυθμού ανάπτυξης της πυρκαγιάς λαμβάνεται t_{lim} = 25 min,σε περίπτωση μεσαίου ρυθμού ανάπτυξης, t_{lim} = 20min και σε περίπτωση γρήγορου ρυθμού ανάπτυξης, t_{lim} = 15min.O ρυθμός ανάπτυξης της πυρκαγιάς εξαρτάται από τη χρήση του πυροδιαμερίσματος (σχετικός πίνακας 6.6 του κεφαλαίου 6).

Όταν ο χρόνος $t_{max} = t_{lim}$, ο σχετικός χρόνος t^* που χρησιμοποιείται στην εξίσωση 3.1 είναι ίσος με :

$t^* = t$: F _{lim}	(3.2β
t" = t·	Σ Γ _{lim}	(3.2β

$$\mu \epsilon \Gamma_{\text{lim}} = [O_{\text{lim}}/b)^2 / (0.04/1160)^2$$
(3.5)

όπου
$$O_{\text{lim}} = 0, 1 \cdot 10^{-3} \cdot q_{t,d} / \text{tlim}$$
 (3.6)

Οι καμπύλες θερμοκρασίας – χρόνου στη φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) δίνονται από τις σχέσεις:

$$\Theta_{g} = \Theta_{max} - 625 \cdot (t^{*} - t^{*}_{max} \cdot x)$$

 $\dot{\sigma} \tau av$ $t^{*}_{max} \le 0,5$ (3.7a)

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t_{max}^{*}) (t - t_{max}^{*} \cdot x) \quad \dot{o} \tau \alpha v \qquad 0,5 < t_{max}^{*} < 2 \qquad (3.7\beta)$$

$$\Theta_{g} = \Theta_{\max} - 250 \cdot (t^{*} - t^{*}_{\max} \cdot x) \qquad \dot{o} \tau \alpha v \qquad t^{*}_{\max} \ge 2 \qquad (3.7\gamma)$$

όπου x=1,0 αν $t_{max} > t_{lim}$, ή x= $t_{lim} \cdot \Gamma / t^*_{max}$ αν $t_{max} = t_{lim}$

Στην περίπτωση που η επιφάνεια περιβλήματος αποτελείται από διαφορετικές στρώσεις υλικού με b= $\sqrt{(\rho c \lambda)}$ τότε:

$$- Av b_1 < b_2, b = b_1$$
(3.8)

- Αν b₁ > b₂, εισάγεται το πάχος s_{lim} που υπολογίζεται για το εκτεθειμένο υλικό σύμφωνα με τον τύπο:

$$s_{\text{lim}} = \sqrt{\frac{3600 \cdot t_{\text{max}} \cdot \lambda_1}{c_1 \cdot \rho_1}}$$
(3.9)

• Av
$$s_1 > s_{lim}$$
 tote b_1
(3.10a)
• Av $s_1 < s_{lim}$ tote $b_1 = s_1 \cdot \frac{b_1}{s_{lim}} + (1 - \frac{s_1}{s_{lim}}) \cdot b_2$
(3.10b)

όπου :

ο αριθμός 1 αντιπροσωπεύει το στρώμα που είναι απευθείας εκτεθειμένο στην πυρκαγιά και ο αριθμός 2 το αμέσως επόμενο στρώμα.

si είναι το πάχος του στρώματος i

$$b_i = \sqrt{(\rho c \lambda)}$$

ρ_i είναι η πυκνότητα του στρώματος i

ci είναι η ειδική θερμότητα του στρώματος i

λ_i είναι η θερμική αγωγιμότητα του στρώματος i

Για διαφορετικές τιμές του συντελεστή b σε τοίχο, οροφή και δάπεδο, b= $\sqrt{(\rho c \lambda)}$

b =
$$(\Sigma(b_jA_j)) / (A_t - A_v)$$
 (3.11)

όпου

A_j είναι η επιφάνεια του περιβλήματος j, μη συμπεριλαμβανομένων των παραθύρων

b_j είναι η θερμική ιδιότητα του περιβλήματος j.

3.3 Παραδείγματα στον υπολογισμό των παραμετρικών καμπυλών θερμοκρασίας-χρόνου

<u>Παράδειγμα 3.3.1</u>

Θα χαραχθούν οι παραμετρικές καμπύλες θερμοκρασίας αἑρα-χρόνου (θg-t) για πυροδιαμἑρισμα με σταθερἑς τιμἑς πυκνότητας του πυροθερμικού φορτίου q_{td}=500 MJ/m² και συντελεστή περιβλήματος b=1200 J/m²s^{1/2}K και χαρακτηριστικἑς τιμἑς του συντελεστή αερισμού Ο (m^{1/2}).

Η παραμετρική καμπύλη θα προκύψει από τη γενική εξίσωση του Παραρτήματος Α του ΕΝ 1991.1.2, αφού λάβουμε υπόψη τα ειδικά χαρακτηριστικά του πυροδιαμερίσματος που εξετάζουμε.

Ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας – χρόνου δίνεται από την εξίσωση:

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$
(3.1)

όπου:

 $t^* = t \cdot \Gamma$ (t ο χρόνος σε ώρες, μετρούμενος από την έναρξη της πυρκαγιάς και t* ο σχετικός χρόνος σε ώρες, σχέση 3.2)

$$\Gamma = (0/b)^2 / (0.04/1160)^2$$
(-)

Θα εξετάσουμε πως μεταβάλλεται η παραμετρική καμπύλη θερμοκρασίας αέρα - χρόνου για διάφορες τιμές του συντελεστή επιρροής ανοιγμάτων Ο, διατηρώντας σταθερές τις τιμές του συντελεστή επίδρασης του περιβλήματος b και της πυκνότητας του πυροθερμικού φορτίου q_{td}:

<u>1^η περίπτωση</u>

Οσυντελεστής επιρροής ανοιγμάτων, **Ο=0,02**
$$(m^{1/2})$$
b $= \sqrt{(\rho c \lambda)}$ η επίδραση του περιβλήματος, b=1200 $(J/m^2 s^{1/2} K)$ q_{td}πυκνότητα του πυροθερμικού φορτίου, q_{td}=500 (MJ/m^2) Για b=1200 και O=0,02→ Γ=(0,02/1200)²/(0,04/1160)² $\Gamma=0,234$

Άρα ο σχετικός χρόνος είναι t^{*}= 0,234 t και αντικαθιστώντας στην παραπάνω εξίσωση (3.1) ο ανοδικός κλάδος της καμπύλης θα είναι :

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 0.234t} - 0.204 \cdot e^{-1.7 \cdot 0.234t} - 0.472 \cdot e^{-19 \cdot 0.234t})$

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0468t} - 0.204 \cdot e^{-0.3978t} - 0.472 \cdot e^{-4.446t})$

Και για χρόνο t σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.00077t} - 0.204 \cdot e^{-0.0066t} - 0.472 \cdot e^{-0.074t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·500/0,02= 5 h =300 min (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος t^{*}_{max} : t^{*}_{max}= t_{max}·Γ= 5·0,234= 1,17 h = 70,2 min.

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

$$\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.00077 \cdot 300} - 0.204 \cdot e^{-0.0066 \cdot 300} - 0.472 \cdot e^{-0.074 \cdot 300})$$

Θ_{max}= 966,93 °C

Επειδή 0,5 < t^{*}_{max}=1,17 h <2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7β :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t^{*}_{max}) \cdot (t^{*} - t^{*}_{max} \cdot x)$$

$$\Theta_{g} = 966,93 - 250 \cdot (3 - 1, 17) \cdot (t^{*} - 1, 17)$$

Θ_g=966,93 – 457,5·(t^{*}-1,17) ,ὀπου t^{*} σε ώρες

<u>2^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m²)

Гіа b=1200 ка
і O=0,10 \rightarrow Г=(0,10/1200)²/(0,04/1160)²

<u>Γ =5,84</u>

Άρα ο σχετικός χρόνος θα είναι t^{*}= 5,84·t και αντικαθιστώντας στην παραπάνω εξίσωση (3.1) προκύπτει ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας αέρα – χρόνου :
$$\begin{split} \Theta_{g} &= 20 + \ 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 5.84t} - 0.204 \cdot e^{-1.7 \cdot 5.84t} - 0.472 \cdot e^{-19 \cdot 5.84t}) \\ \Theta_{g} &= 20 + \ 1325 \cdot (1 - 0.324 \cdot e^{-1.168t} - 0.204 \cdot e^{-9.93t} - 0.472 \cdot e^{-110.96t}) \end{split}$$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες) :

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·500/0,10=1 h = 60 min (απόλυτος χρόνος)

Και ο σχετικός χρόνος t^{*}_{max} θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 1 \cdot 5,84 = 5,84 h = 350,4 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t= t_{max} $\Theta_{max} = 20+1325 \cdot (1-0,324 \cdot e^{-0,0195 \cdot 60} - 0,204 \cdot e^{-0,1655 \cdot 60} - 0,472 \cdot e^{-1,849 \cdot 60})$ $\Theta_{max} = 1211,77$ °C

Επειδή t^{*}_{max}= 5,84 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\begin{split} \Theta_{g} &= \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x) \\ x &= 1,0 \text{ yid } t_{max} > t_{lim} \rightarrow \end{split}$$

Θ_g= 1211,77- 250·(t^{*}- 5,84) ,όπου t^{*} σε ώρες

<u>3^η περίπτωση</u>

συντελεστής επιρροής ανοιγμάτων, Ο=0,20	(m ^{1/2})
= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m²s ^{1/2} K)
πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m ²)
	συντελεστής επιρροής ανοιγμάτων, Ο=0,20 = √(ρcλ) η επίδραση του περιβλήματος, b=1200 πυκνότητα του πυροθερμικού φορτίου, q _{td} =500

Гіа b=1200 каї O=0,20→ Г= (0,2/1200)²/(0,04/1160)² Г= 23,36

Άρα ο σχετικός χρόνος θα είναι t^{*}= 23,36t και αντικαθιστώντας στην παραπάνω εξίσωση (3.1) ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας αέρα – χρόνου θα είναι :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 23.36t} - 0.204 \cdot e^{-1.7 \cdot 23.36t} - 0.472 \cdot e^{-19 \cdot 23.36t})$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-4.672t} - 0.204 \cdot e^{-39.71t} - 0.472 \cdot e^{-443.84t})$$

Και για χρόνο σε λεπτά (min):

 $\Theta_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.077t} - 0.204 \cdot e^{-0.661t} - 0.472 \cdot e^{-7.41t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·500/0,20=0,5 h **=** 30 min. (απόλυτος χρόνος)

Και ο σχετικός μέγιστος χρόνος είναι :

 $t^*_{max} = t_{max}$. $\Gamma = 0,5.23,36 = 11,68$ h = 700,8 min.

Άρα η μέγιστη θερμοκρασία Θ_{max} βρίσκεται για χρόνο t=t_{max} : Θ_{max} = 20+1325·(1-0,324·e^{-0,077·30}-0,204·e^{-0,661·30} - 0,472·e^{-7,41·30}) Θ_{max}= 1302,39 °C

Επειδή t^{*}_{max}=11,68 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$$

x=1,0 yıa t_{max}>t_{lim} \rightarrow

Θ_g= 1302,39- 250·(t^{*}- 11,68) ,όπου t^{*} σε ώρες

Ομοίως προκύπτουν οι παραμετρικές καμπύλες θερμοκρασίας αέρα – χρόνου για τιμές συντελεστή επιρροής ανοιγμάτων Ο= 0,06 και Ο= 0,15.

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,06	(m ^{1/2})
b	= $\sqrt{(\rho c \lambda)}$ η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
\mathbf{q}_{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m ²)
Гıa b=	1200 ка O= 0,06 → Г= (0,06/1200) ² /(0,04/1160) ²	

<u>Γ= 2,10</u>

Ανοδικός κλάδος : $\Theta_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 2.1t/60} - 0.204 \cdot e^{-1.7 \cdot 2.1 \cdot t/60} - 0.472 \cdot e^{-19.2 \cdot 2.1t/60})$ Καθοδικός κλάδος : $\Theta_g = 1131.637 \cdot 250(2.1 \cdot t/60 - 3.51)$, με t_{max} = 100.2 min

0	συντελεστής επιρροής ανοιγμάτων, Ο= 0,15	(m ^{1/2})
b	= $\sqrt{(\rho c \lambda)}$ η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m²)
∏a b=	1200 ка। О= 0,15 → Г= (0,15/1200)²/(0,04/1160)²	

Ανοδικός κλάδος: $\Theta_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 13.14 \cdot t/60} - 0.204 \cdot e^{-1.7 \cdot 13.14 \cdot t/60} - 0.472 \cdot e^{-19.2 \cdot 13.14 t/60})$ Καθοδικός κλάδος : $\Theta_g = 1271.197 \cdot 250(13.14 \cdot t/60 - 8.8)$, με t_{max} = 40.2 min Οι παραμετρικές καμπύλες θερμοκρασίας αέρα – χρόνου για διάφορες τιμές του συντελεστή επιρροής ανοιγμάτων Ο φαίνονται στο σχήμα 3.1. Οι υπολογισμοί των θερμοκρασιών έγιναν με τη βοήθεια του προγράμματος Excel.

Σχήμα 3.1 Παραμετρικές καμπύλες της θερμοκρασίας του αέρα σε συνάρτηση με το χρόνο για χαρακτηριστικές τιμές του συντελεστή αερισμού Ο (m^{1/2}) και για σταθερές τιμές των συντελεστών b=1200(J/m²s^{0,5}K) και q_{td}=500MJ/m².

Παρατήρηση : Στο διάγραμμα 3.1 γίνεται εμφανές πως όσο αυξάνεται ο συντελεστής επιρροής ανοιγμάτων Ο, η θερμοκρασία του αέρα φτάνει σε υψηλότερα επίπεδα σε πολύ λιγότερο χρόνο. Ο χρόνος (t_{max}) στον οποίο έχουμε τη μέγιστη θερμοκρασία είναι μικρότερος για μεγαλύτερες τιμές του συντελεστή Ο. Οπότε συμπεραίνουμε πως για μεγάλες τιμές του Ο το φαινόμενο της καύσης τερματίζεται σε μικρότερο χρόνο, η αύξηση της θερμοκρασίας είναι πιο απότομη και οι θερμοκρασίες που αναπτύσσονται είναι πιο υψηλές. Θα χαραχθούν οι παραμετρικές καμπύλες θερμοκρασίας αέρα -χρόνου (Θ_g-t) για πυροδιαμέρισμα με σταθερές τιμές πυκνότητας πυροθερμικού φορτίου q_{td}=500MJ/m² και συντελεστή αερισμού O=0,10 (m^{1/2}) και χαρακτηριστικές τιμές του συντελεστή περιβλήματος b (J/m²s^{1/2}K).

Ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας – χρόνου δίνεται από την εξίσωση 3.1 :

$$\Theta_a = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^*} - 0.204 \cdot e^{-1.7t^*} - 0.472 \cdot e^{-19t^*})$$

Θα εξετάσουμε πως μεταβάλλεται η παραμετρική καμπύλη θερμοκρασίας αέρα - χρόνου για διάφορες τιμές του συντελεστή που εξαρτάται από τη μονωτική ικανότητα του περιβλήματος b, διατηρώντας σταθερές τις τιμές του συντελεστή επιρροής των ανοιγμάτων Ο και της πυκνότητας του πυροθερμικού φορτίου q_{td}:

<u>1^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=500	(J/m ² s ^{1/2} K)
\mathbf{q}_{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m ²)

Га b=1000 ка 0=0,10→ Г=(0,10/500)²/(0,04/1160)²

<u>Γ=33,64</u>

Άρα ο σχετικός χρόνος είναι t^{*}= 33,64t και αντικαθιστώντας στην παραπάνω εξίσωση (3,1) ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας αέρα- χρόνου θα είναι :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 33.64t} - 0.204 \cdot e^{-1.7 \cdot 33.64t} - 0.472 \cdot e^{-19 \cdot 33.64t})$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-6.728t} - 0.204 \cdot e^{-57.19t} - 0.472 \cdot e^{-639.16t})$$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.11t} - 0.204 \cdot e^{-0.953t} - 0.472 \cdot e^{-11.55t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·500 /0,10=1 h = 60 min. (απόλυτος χρόνος)

Και ο σχετικός μέγιστος χρόνος t^{*}_{max} :

 $t^*_{max} = t_{max} \cdot \Gamma = 1 \cdot 33,64 = 33,64 h = 2018,4 min.$

Οπότε η μέγιστη θερμοκρασία Θ_{max} βρίσκεται για t=t_{max.}

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.11 \cdot 60} - 0.204 \cdot e^{-0.953 \cdot 60} - 0.472 \cdot e^{-11.55 \cdot 60})$

Θ_{max} = 1344,4862 °C

Επειδή t^{*}_{max}= 33,64 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$$

x=1,0 yıa t_{max} > t_{lim} \rightarrow

Θ_g= 1344,4862 - 250·(t^{*}- 33,64) ,όπου t^{*} σε ώρες

<u>2^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1000	(J/m ² s ^{1/2} K)
\mathbf{q}_{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m ²)

Га b=1000 ка О=0,10→ Г= (0,10/1000)²/(0,04/1160)²

Γ= 8,41

Άρα ο σχετικός χρόνος είναι t^{*}= 8,41t και αντικαθιστώντας στην παραπάνω εξίσωση (3.1) ο ανοδικός κλάδος της παραμετρικής καμπύλης προκύπτει :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 8.41t} - 0.204 \cdot e^{-1.7 \cdot 8.41t} - 0.472 \cdot e^{-19 \cdot 8.41t})$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-1.682t} - 0.204 \cdot e^{-14.3t} - 0.472 \cdot e^{-159.8t})$$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.028t} - 0.204 \cdot e^{-0.238t} - 0.472 \cdot e^{-2.66t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·500/0,10=1 h = 60 min.(απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 1 \cdot 8,41 = 8,41 h = 504,6 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}.

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.028 \cdot 60} - 0.204 \cdot e^{-0.238 \cdot 60} - 0.472 \cdot e^{-2.66 \cdot 60})$

 $\Theta_{max} = 1264,99$ °C

Επειδή t^{*}_{max}=8,41 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

 $\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$

x=1,0 yıa t_{max} > t_{lim} \rightarrow

Θ_g= 1264,99 - 250·(t^{*}- 8,41) ,όπου t^{*} σε ώρες

<u>3^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1500	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m ²)

Гіа b=1500 каі O=0,20 \rightarrow Г = $(0,10/1500)^2/(0,04/1160)^2$

Άρα ο σχετικός χρόνος θα είναι t^{*}= 3,74t και αντικαθιστώντας στην παραπάνω εξίσωση (3.1) προκύπτει ο ανοδικός κλάδος της παραμετρικής καμπύλης :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 3.74t} - 0.204 \cdot e^{-1.7 \cdot 3.74t} - 0.472 \cdot e^{-19 \cdot 3.74t})$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.748t} - 0.204 \cdot e^{-6.358t} - 0.472 \cdot e^{-71.06t})$$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0125t} - 0.204 \cdot e^{-0.106t} - 0.472 \cdot e^{-1.184t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται

τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

 t_{max} = 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·500/ 0,10=1 h = 60 min. (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος θα είναι:

 $t_{max}^* = t_{max} \cdot \Gamma = 1 \cdot 3,74 = 3,74 h = 224,4 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

$$\Theta_{\max} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0125 \cdot 60} - 0.204 \cdot e^{-0.106 \cdot 60} - 0.472 \cdot e^{-1.184 \cdot 60})$$

$$\Theta_{max} = 1141,75 \, {}^{\circ}C$$

Επειδή t^{*}_{max}=3,74 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (t^* - t^*_{max} \cdot x)$$
x= 1,0 yia $t_{max} > t_{lim} \rightarrow$

Θ_g= 1141,75 - 250·(t^{*}- 3,74) ,όπου t^{*} σε ώρες

<u>4^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=2000	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q _{td} =500	(MJ/m²)

Га b=2000 ка 0=0,20→ Г=(0,10/2000)²/(0,04/1160)²

<u>Γ=2,103</u>

Άρα ο σχετικός χρόνος είναι t^{*}= 2,103t και αντικαθιστώντας στην εξίσωση (3.1) ο ανοδικός κλάδος της παραμετρικής καμπύλης θα είναι:

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 2.103t} - 0.204 \cdot e^{-1.7 \cdot 2.103t} - 0.472 \cdot e^{-19 \cdot 2.103t})$

 $\Theta_{q} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.42t} - 0.204 \cdot e^{-3.575t} - 0.472 \cdot e^{-39.96t})$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.007t} - 0.204 \cdot e^{-0.06t} - 0.472 \cdot e^{-0.667t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td} / O= 0,2·10⁻³·500/ 0,10=1 h =60 min.(απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 1 \cdot 2,103 = 2,103 h = 126,18 min$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

 $\Theta_{max} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.007 \cdot 60} - 0.204 \cdot e^{-0.06 \cdot 60} - 0.472 \cdot e^{-0.667 \cdot 60})$ $\Theta_{max} = 1055.54 \ ^{\circ}C$

Επειδή t^{*}_{max}= 2,103 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

 $Θ_g = Θ_{max} - 250 \cdot (t^* - t^*_{max} \cdot x)$ x= 1,0 για t_{max} > t_{lim} → $Θ_g = 1055,54 - 250 \cdot (t^* - 2,103)$, όπου t^{*} σε ώρες Ακολουθεί το διάγραμμα 3.2 όπου παρουσιάζονται οι παραμετρικές καμπύλες θερμοκρασίας – χρόνου.

Σχήμα 3.2 Παραμετρικές καμπύλες της θερμοκρασίας του αέρα σε συνάρτηση με το χρόνο για χαρακτηριστικές τιμές του συντελεστή περιβλήματος b(J/m²s^{0,5}K) και για σταθερές τιμές O=0,10(m^{1/2}) και q_{td}=500(MJ/m²).

Παρατήρηση : Στο διάγραμμα 3.2 παρουσιάζονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα - χρόνου για διάφορες τιμές του συντελεστή περιβλήματος b. Παρατηρούμε πως όσο μικρότερη είναι η τιμή του συντελεστή b, δηλαδή όσο μικρότερη είναι η μονωτική ικανότητα του περιβλήματος, οι θερμοκρασίες που αναπτύσσονται είναι υψηλότερες στον ίδιο χρόνο. Ο χρόνος που έχουμε τη μέγιστη θερμοκρασία στο πυροδιαμέρισμα δεν εξαρτάται από το συντελεστή b οπότε για σταθερές τιμές των συντελεστών Ο και q_{td} παραμένει ίδιος. Θα χαραχθούν οι παραμετρικές καμπύλες θερμοκρασίας αέρα – χρόνου (θg-t) για πυροδιαμέρισμα με σταθερές τιμές συντελεστή αερισμού Ο (m^{1/2}) και συντελεστή περιβλήματος b=1200 (J/m²s^{1/2}K) και χαρακτηριστικές τιμές πυκνότητας πυροθερμικού φορτίου q_{td} (MJ/m²).

Η παραμετρική καμπύλη θα προκύψει από τη γενική εξίσωση του Παραρτήματος Α λαμβανομένων υπόψη των ειδικών χαρακτηριστικών του πυροδιαμερίσματος που εξετάζουμε. Ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας – χρόνου δίνεται από την εξίσωση 3.1:

 $\Theta_{q} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$

Στο συγκεκριμένο παράδειγμα θα εξετάσουμε τη μεταβολή της παραμετρικής καμπύλης για διάφορες τιμές του πυροθερμικού φορτίου q_{td}, διατηρώντας σταθερές τις τιμές του συντελεστή επιρροής ανοιγμάτων Ο και συντελεστή επίδρασης περιβλήματος b.

Στην πρώτη περίπτωση που εξετάζουμε, η τιμή του πυροθερμικού φορτίου είναι πολύ μικρή $(q_{td} = 50 \text{ MJ/m}^2)$ και για το λόγο αυτό ο χρόνος που διαρκεί το φαινόμενο της καύσης είναι περιορισμένος. Όπως ήδη έχει αναφερθεί η μέγιστη θερμοκρασία αναπτύσσεται στο πυροδιαμέρισμα που εξετάζουμε για χρόνο ίσο με t_{max} . Ο χρόνος t_{max} προκύπτει ως αποτέλεσμα της έκφρασης $t_{max} = \max$ ($0,2 \cdot 10^{-3} \cdot q_{td} / O$, t_{lim}) όπως αναφέρεται στο παράρτημα A του prEN 1991-1-2, σχέση (A.7). Για τις δεδομένες τιμές των συντελεστών θα εξετάσουμε δύο περιπτώσεις στο παράδειγμα μας. Στην περίπτωση 1.α. ο χρόνος t_{max} θα είναι ίσος με το χρόνο t_{lim} , ο οποίος για μεσαίο ρυθμό ανάπτυξης πυρκαγιάς είναι 20 λεπτά. Στην περίπτωση 1.β. ο μέγιστος χρόνος t_{max} θα προκύπτει από τη σχέση $t_{max} = 0, 2 \cdot 10^{-3} \cdot q_{td} / O$. Στο διάγραμμα 3.3 φαίνονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα-χρόνου για τις δύο αυτές περιπτώσεις.

<u>1^η περίπτωση (a)</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
Q td	πυκνότητα του πυροθερμικού φορτίου, α_{tr}=50	(MJ/m ²)

Га b=1200 ка 0=0,10 \rightarrow Г = (0,10/1200)²/(0,04/1160)² <u>Г = 5,84</u>

Άρα t^{*}= 5,84·t και αντικαθιστώντας στην παραπάνω εξίσωση:

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 5.84t} - 0.204 \cdot e^{-1.7 \cdot 5.84t} - 0.472 \cdot e^{-19 \cdot 5.84t})$

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-1.168t} - 0.204 \cdot e^{-9.93t} - 0.472 \cdot e^{-110.96t})$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

 $t_{max} = max(0,2.10^{-3} \cdot q_{td} / O, t_{lim}) = (0,2.10^{-3} \cdot 50 / 0,10, 0,33) = (0,1h, 0,333h)$ $t_{max} = 0,333h = 20 \text{ min.}$

Ο χρόνος t_{lim} για μεσαίο ρυθμό ανάπτυξης (πίνακας 6.6 του κεφαλαίου 6) είναι ίσος με

 $t_{lim} = 20 \text{ min.}$

Ο σχετικός μέγιστος χρόνος στην περίπτωση αυτή θα είναι σύμφωνα με τη σχέση 3.2β :

 $t^*_{max} = t_{max} \cdot \Gamma_{lim} = 0,333 \cdot 0,13 = 0,043 h = 2,58 min.$

όπου από τη σχέση 3.5 και 3.6 αντίστοιχα :

 $\Gamma_{\text{lim}} = (O_{\text{lim}}/b)^2 / (0,04/1160)^2$ $\Gamma_{\text{lim}} = (0,015/1200)^2 / (0,04/1160)^2 = 0,13$

$$\begin{split} &O_{lim} = 0,1 \cdot 10^{-3} \cdot q_{td} / t_{lim} \\ &O_{lim} = 0,1 \cdot 10^{-3} \cdot 50 / 0,333 = 0,015 < 0,02 \end{split}$$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max} και Γ=Γ_{lim} :

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 0.13 \cdot 0.33} - 0.204 \cdot e^{-1.7 \cdot 0.13 \cdot 0.33} - 0.472 \cdot e^{-19 \cdot 0.13 \cdot 0.33})$

 $\Theta_{max} = 393,77$

Επειδή t^{*}_{max}= 0,043 h < 0,5 , η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7α :

<u>1^η περίπτωση (β)</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q_{td}=50	(MJ/m ²)

Гіа b=1200 ка
і O=0,10 \rightarrow Г = $(0,10/1200)^2/(0,04/1160)^2$

Άρα ο σχετικός χρόνος είναι t^{*}= 5,84·t και αντικαθιστώντας στην εξίσωση 3.1 προκύπτει ο ανοδικός κλάδος της παραμετρικής καμπύλης :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 5.84t} - 0.204 \cdot e^{-1.7 \cdot 5.84t} - 0.472 \cdot e^{-19 \cdot 5.84t})$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-1.168t} - 0.204 \cdot e^{-9.93t} - 0.472 \cdot e^{-110.96t})$$

Kaı για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·50/0,10= 0,1 h= 6 min. (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος είναι ίσος με :

 $t^*_{max} = t_{max} \cdot \Gamma = 0, 1 \cdot 5, 84 = 0,584 h = 35,04 min$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t = t_{max}

$$\Theta_{\max} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 6} - 0.204 \cdot e^{-0.1655 \cdot 6} - 0.472 \cdot e^{-1.849 \cdot 6})$$

Θ_{max} =862,9952 °C

Επειδή 0,5 < t^{*}_{max}= 0,584 h < 2, η καμπύλη θερμοκρασίας – χρόνου στη φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7β:

Θ_g= Θ_{max} - 250·(3- t^{*}_{max})(t^{*}-t^{*}_{max}·x) x=1,0 για t_{max}>t_{lim} → Θ_g= 862,9952 - 604·(t^{*}- 0,584) ,όπου t^{*} σε ώρες

Σχήμα 3.3 Παραμετρικές καμπύλες θερμοκρασίας αέρα Θ_g σε συνάρτηση με το χρόνο t για σταθερές τιμές O=0,10 m^{1/2}, b=1200 J/m²s^{1/2}K και q_{td}=50MJ/m² για t_{max}= t_{lim} και t_{max}=0,2*10⁻³q_{td}/O

<u>2^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q_{td}=200	(MJ/m ²)

Гіа b=1200 ка
і O=0,10 \rightarrow Г= $(0,10/1200)^2/(0,04/1160)^2$

Άρα ο σχετικός χρόνος θα είναι t^{*}= 5,84·t και αντικαθιστώντας στην εξίσωση 3.1 ο ανοδικός κλάδος της παραμετρικής καμπύλης προκύπτει :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 5.84t} - 0.204 \cdot e^{-1.7 \cdot 5.84t} - 0.472 \cdot e^{-19 \cdot 5.84t})$$

$$\Theta_a = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-1.168t} - 0.204 \cdot e^{-9.93t} - 0.472 \cdot e^{-110.96t})$$

Και για χρόνο σε λεπτά (min):

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες):

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·200/0,10=0,4 h **=** 24 min. (απόλυτος χρόνος) Ο σχετικός μέγιστος χρόνος θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 0, 4 \cdot 5, 84 = 2,336 h = 140,16 min.$

Η μέγιστη θερμοκρασία Θ_{max} υπολογίζεται για t = t_{max}

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 24} - 0.204 \cdot e^{-0.1655 \cdot 24} - 0.472 \cdot e^{-1.849 \cdot 24})$

 $\Theta_{max} = 1070,8388 \ ^{\circ}C$

Επειδή t^{*}_{max}=2,336 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

 $\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$

x=1,0 yia
$$t_{max} > t_{lim} \rightarrow$$

Θ_g= 1070,77 - 250·(t^{*}- 2,336), όπου t^{*} σε ώρες

3^η περίπτωση

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος,	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q_{td}=500	(MJ/m ²)

Παρατηρούμε ότι ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας αέρα – χρόνου για σταθερές τιμές των συντελεστών Ο και b παραμένει ίδιος. Άρα η εξίσωση του ανοδικού κλάδου για χρόνο μετρούμενο σε λεπτά θα είναι :

 $Θ_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$ όπως προκύπτει από την προηγούμενη περίπτωση.

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες):

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·500/0,10=1 h = 60 min. (απόλυτος χρόνος)

Ο σχετικός χρόνος είναι :

 $t_{max}^* = t_{max} \cdot \Gamma = 1 \cdot 5,84 = 5,84 h = 350,4 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

$$\Theta_{\max} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 60} - 0.204 \cdot e^{-0.1655 \cdot 60} - 0.472 \cdot e^{-1.849 \cdot 60})$$

 $\Theta_{max} = 1211,77 \ ^{\circ}C$

Επειδή t^{*}_{max}= 5,84 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

 $Θ_{g} = Θ_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$ x=1,0 για $t_{max} > t_{lim} →$ $Θ_{g} = 1211,77 - 250 \cdot (t^{*} - 5,84)$, όπου t^{*} σε ώρες <u>4^η περίπτωση</u> $Ω_{max} = 0.10$

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= √(ρcλ) η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q_{td}=750	(MJ/m ²)

<u>Γ= 5,84</u>

Η εξίσωση του ανοδικού κλάδου για χρόνο μετρούμενο σε λεπτά θα είναι : $\Theta_q = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

όπως προκύπτει από την προηγούμενη περίπτωση (αφού Ο και b παραμένουν σταθεροί)

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται

τη χρονική στιγμή (σε ώρες):

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·750 /0,10=1,5 h = 90 min. (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 1, 5 \cdot 5, 84 = 8, 76 h = 525, 6 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 90} - 0.204 \cdot e^{-0.1655 \cdot 90} - 0.472 \cdot e^{-1.849 \cdot 90})$

$$\Theta_{max} = 1270,77 \, {}^{\circ}C$$

Επειδή t^{*}_{max}= 8,76 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$$

x=1,0 yıa t_{max}>t_{lim} \rightarrow

Θ_g= 1270,77 - 250·(t^{*}- 8,76) , όπου t^{*} σε ώρες

<u>5^η περίπτωση</u>

0	συντελεστής επιρροής ανοιγμάτων, Ο=0,10	(m ^{1/2})
b	= $\sqrt{(\rho c \lambda)}$ η επίδραση του περιβλήματος, b=1200	(J/m ² s ^{1/2} K)
q _{td}	πυκνότητα του πυροθερμικού φορτίου, q_{td}=1000	(MJ/m ²)

<u>Γ= 5,84</u>

Η εξίσωση του ανοδικού κλάδου για χρόνο μετρούμενο σε λεπτά θα είναι :

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195t} - 0.204 \cdot e^{-0.1655t} - 0.472 \cdot e^{-1.849t})$

όπως προκύπτει από την προηγούμενη περίπτωση (αφού Ο και b παραμένουν σταθεροί)

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες):

t_{max}= 0,2·10⁻³·q_{td}/ O= 0,2·10⁻³·1000/ 0,10=2 h = 120 min. (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος θα είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 2 \cdot 5,84 = 11,68 h = 700,8 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 120} - 0.204 \cdot e^{-0.1655 \cdot 120} - 0.472 \cdot e^{-1.849 \cdot 120})$

 $\Theta_{max} = 1303,65 \ ^{\circ}C$

Επειδή t^{*}_{max}=11,68 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

Στο διάγραμμα 3.4 παρουσιάζονται οι παραμετρικές καμπύλες θερμοκρασίας- χρόνου για διάφορες τιμές του πυροθερμικού φορτίου q_{td}, με σταθερές τιμές των συντελεστών Ο και b.

→ q=200 → q=500 → q=750 → q=1000 → ISO

Σχήμα 3.4 Παραμετρικές καμπύλες της θερμοκρασίας του αέρα σε συνάρτηση με το χρόνο για χαρακτηριστικές τιμές της πυκνότητας του πυροθερμικού φορτίου q_{td} (MJ/m²) και σταθερές τιμές O=0,10 (m^{1/2}) και b=1200 (J/m²s^{0,5}K)

Παρατήρηση : Όπως παρατηρούμε στο διάγραμμα 3.4, ο ανοδικός κλάδος των παραμετρικών καμπυλών θερμοκρασίας αέρα – χρόνου είναι ίδιος για όλες τις τιμές που παίρνει η πυκνότητα του πυροθερμικού φορτίου q_{td}, αφού εξαρτάται μόνο από τους συντελεστές Ο και b. Για μικρές τιμές πυροθερμικού q_{td} η θερμοκρασία που αναπτύσσεται στο πυροδιαμέρισμα είναι χαμηλή και ο χρόνος που διαρκεί το φαινόμενο μικρός. Όσο η τιμή του πυροθερμικού φορτίου αυξάνεται αναπτύσσονται υψηλότερες θερμοκρασίες στο πυροδιαμέρισμα και το φαινόμενο της καύσης διαρκεί περισσότερο. Όσο μεγαλώνει η τιμή του πυροθερμικού φορτίου, αυξάνεται προφανώς και η τιμή του μέγιστου χρόνου t_{max}, του χρόνου δηλαδή στον οποίο πραγματοποιείται η μέγιστη θερμοκρασία του πυροδιαμερίσματος.

3.4 Παραδείγματα στην ανἁπτυξη της θερμοκρασίας του χἀλυβα σε δομικἁ μἐλη προστατευμἐνα ἡ μη.

Παράδειγμα 3.4.1

Να χαραχθούν τα διαγράμματα θερμοκρασίας αέρα – χρόνου (θ_g-t) και θερμοκρασίας μη μονωμένου χαλύβδινου μέλους–χρόνου (θ_a-t) σύμφωνα με την πρότυπη καμπύλη ISO και στη συνέχεια σύμφωνα με την παραμετρική καμπύλη για στοιχεία πυροδιαμερίσματος : O= 0,10 m^{1/2}, b=1500 J/m²sec^{1/2}K και q_{td}=500 MJ/m². Δίνεται διατομή HEB300.

Η αύξηση της θερμοκρασίας του χαλύβδινου μη μονωμένου μέλους κατά τη διάρκεια χρονικού διαστήματος Δt προσδιορίζεται από τη σχέση 2.5 :

 $\Delta \theta_{a,t} = k_{sh} \frac{A_m / V \cdot h_{\text{net,d}} \cdot \Delta t}{c_a \cdot \rho_a}$

Για ανοιχτή διατομή εκτεθειμένη από τρεις πλευρές :

Α_m/V= επιφάνεια εκτεθειμένη στην πυρκαγιά / εμβαδόν διατομής.

Η διατομή διπλού ταυ HEB300 έχει χαρακτηριστικά : ὑψος κορμού h = 300mm, πλάτος πέλματος b = 300 mm, εμβαδόν διατομής A= 149,10 cm², πάχος κορμού t_w = 11 mm και πάχος πέλματος t_f = 19 mm.

Περίμετρος διατομής σε επαφή με τον αέρα :

$$S=2\cdot (h - 2\cdot t_f) + 3\cdot b \Rightarrow$$

S=2·(30-2·1,9)+3·30= 142,4cm.

Επιφάνεια μέλους σε επαφή με τον αέρα ανά μέτρο μήκους του:

 $A_m = 142, 4.100 = 14240 \text{ cm}^2$

Αντίστοιχος όγκος υλικού: V= Α·100= 149,10·100= 14910 cm³.

Συντελεστής διατομής: $A_m/V = \frac{14240 \cdot 10^{-4}}{14910 \cdot 10^{-6}} = 95,51 \text{ m}^{-1}$.

Συντελεστής επίδρασης σκίασης από τη σχέση 2.6 :

$$k_{sh}=0,9\cdot(A_m/V)_b/(A_m/V)$$

Για τον υπολογισμό του συντελεστή (A_m/V)_b θεωρούμε ένα ορθογώνιο να περιβάλλει τη διατομή:

$$(A_m/V)_b = \frac{2 \cdot (b+h)}{A}$$

 $(A_m/V)_b = 2(30+30) \cdot 100 \cdot 10^{-4}/149, 10 \cdot 100 \cdot 10^{-6} = 80,48 \text{ m}^{-1}$

$$k_{sh} = 0,9.80,48/95,51 = 0,76$$

Προκειμένου για απλά υπολογιστικά προσομοιώματα η ειδική θερμότητα c_a του χάλυβα επιτρέπεται να θεωρείται ανεξάρτητη της θερμοκρασίας του και ίση προς 600 J / kg·K.

Η πυκνότητα του χάλυβα θεωρείται ίση με ρ_a=7850 kg/m³.

Για τον υπολογισμό της αύξησης της θερμοκρασίας του χάλυβα πρέπει να γνωρίζουμε τη θερμική ροή h_{net} που δέχεται η επιφάνεια από επαφή και ακτινοβολία. Αρχικά πρέπει να υπολογίσουμε για κάθε χρονικό διάστημα Δt = 5 sec τη θερμοκρασία του αέρα Θ_g και στη συνέχεια την αντίστοιχη θερμική ροή h_{net}. Ο υπολογισμός της θερμοκρασίας του αέρα θα γίνει βάσει της πρότυπης καμπύλης ISO και στη συνέχεια βάσει της παραμετρικής καμπύλης για τα χαρακτηριστικά του πυροδιαμερίσματος που έχουν δοθεί.

Η πρότυπη καμπύλη θερμοκρασίας- χρόνου προκύπτει από τη σχέση 1.4 :

$$\Theta_{g} = 20 + 345 \cdot \log_{10}(8t+1)$$

Για τα παρακάτω χαρακτηριστικά πυροδιαμερίσματος προσδιορίζεται η παραμετρική καμπύλη της θερμοκρασίας του αέρα του πυροδιαμερίσματος συναρτήσει του χρόνου:

Συντελεστής αερισμού : O=0,10 m^{1/2}

Συντελεστής περιβλήματος : b=1500 J/m²sec^{1/2}K

Πυκνότητα πυροθερμικού φορτίου : q_{td}=500 MJ/m².

Ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας – χρόνου δίνεται από την εξίσωση 3.1 :

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$ $\Gamma = (0.10/1500)^{2} / (0.04/1160)^{2}$ $\Gamma = 3.74$ Άρα ο σχετικός χρόνος είναι t^{*}= 3,74t και αντικαθιστώντας στην παραπάνω εξίσωση και για χρόνο μετρούμενο σε λεπτά (min) ο ανοδικός κλάδος προκύπτει από τη σχέση :

 $\Theta_g = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0125t} - 0.204 \cdot e^{-0.106t} - 0.472 \cdot e^{-1.184t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·500/0,10=1 h = 60 min.(απόλυτος χρόνος)

 $t_{max}^* = t_{max} \cdot \Gamma = 1 \cdot 3,74 = 3,74 h = 224,4 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t = t_{max}

$$\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0125 \cdot 60} - 0.204 \cdot e^{-0.106 \cdot 60} - 0.472 \cdot e^{-1.184 \cdot 60})$$

Θ_{max} = 1141,75 °C

Επειδή t^{*}_{max}=3,74 h > 2, η καμπύλη θερμοκρασίας – χρόνου στην φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7γ :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (t^{*} - t^{*}_{max} \cdot x)$$

x=1,0 yıa t_{max}>t_{lim} \rightarrow

Θ_g= 1141,75 - 250·(t^{*}- 3,74) , όπου t^{*} σε ώρες

Η θερμική ροή σχεδιασμού hnet,d προκύπτει από τη σχέση 3.14 :

 $h_{net,d} {=} h_{net,c} {+} h_{net,r}$

Η θερμική ροή δια συναγωγής για υπολογισμό σύμφωνα με την πρότυπη καμπύλη (a_c =25) :

$$h_{net,c} = 25 \cdot (\Theta_g - \Theta_m)$$

Η θερμική ροή δια συναγωγής για υπολογισμό σύμφωνα με την παραμετρική καμπύλη

(a_c=35) :

 $h_{net,c}=35 \cdot (\Theta_g - \Theta_m)$

Η θερμική ροή δι' ακτινοβολίας υπολογίζεται από τη σχέση:

$$\begin{split} h_{\text{net},r} &= \Phi \cdot \epsilon_{\text{m}} \cdot \epsilon_{\text{f}} \cdot \sigma \cdot ((\Theta_{\text{r}} + 273)^{4} - (\Theta_{\text{m}} + 273)^{4}) \\ h_{\text{net},r} &= 1, 0 \cdot 0, 8 \cdot 1, 0 \cdot 5, 67 \cdot 10^{-8} ((\Theta_{\text{g}} + 273)^{4} - (\Theta_{\text{m}} + 273)^{4}) \\ h_{\text{net},r} &= 4,536 \cdot 10^{-8} ((\Theta_{\text{g}} + 273)^{4} - (\Theta_{\text{m}} + 273)^{4}) \end{split}$$

Άρα αντικαθιστώντας στον τύπο 2.6 προκύπτει :

 $\Delta \theta_{\alpha,t} = 0,76 \cdot \frac{95,51 \cdot h_{\text{net,d}} \cdot \Delta t}{600 \cdot 7850}$

$\Delta \theta_{a,t} = 1,541 \cdot 10^{-5} \cdot h_{net,d} \cdot \Delta t$

Το χρονικό διάστημα Δt προκειμένου για μη μονωμένο μέλος δεν πρέπει να λαμβάνεται μεγαλύτερο από 5 sec. Άρα για Δt = 5 sec προκύπτει το παρακάτω διάγραμμα 3.5 θερμοκρασίας- χρόνου στο οποίο παρουσιάζεται η μεταβολή της θερμοκρασίας του χάλυβα Δθα,t ακολουθούμενη τη μεταβολή της θερμοκρασίας του αέρα Δθ_g (από την καμπύλη ISO και από την αντίστοιχη παραμετρική). Ακολουθεί ένα φύλλο του Excel που παρουσιάζονται οι υπολογισμοί από τους οποίους προκύπτουν οι καμπύλες θερμοκρασίας αέρα και χάλυβα μη μονωμένου μέλους συναρτήσει του χρόνου.

tsec	tmin	Θg παρ.	Θm	Δθa,t	hnet,c	hnet,r	hnet,d
0	0.000	20.0000	20.0000	0.000	0.0000	0.0000	0.0000
5	0.083	81.5838	20.0000	0.196	2155.4313	382.7427	2538.1740
10	0.167	137.6253	20.1956	0.390	4110.0424	954.4042	5064.4466
15	0.250	188.6437	20.5858	0.586	5882.0266	1723.1716	7605.1982
20	0.333	235.1089	21.1718	0.784	7487.8002	2683.7471	10171.5473
25	0.417	277.4470	21.9555	0.983	8942.2041	3820.9145	12763.1186
30	0.500	316.0440	22.9389	1.184	10258.6798	5112.9763	15371.6561
35	0.583	351.2496	24.1233	1.386	11449.4224	6534.6823	17984.1047
40	0.667	383.3807	25.5089	1.586	12525.5125	8059.5286	20585.0411
45	0.750	412.7245	27.0950	1.784	13497.0309	9661.4418	23158.4727
50	0.833	439.5410	28.8794	1.979	14373.1577	11315.9295	25689.0872
55	0.917	464.0661	30.8587	2.170	15162.2594	13000.7939	28163.0534
60	1.000	486.5134	33.0287	2.355	15871.9650	14696.5114	30568.4764
65	1.083	507.0764	35.3840	2.535	16509.2335	16386.3640	32895.5974
70	1.167	525.9304	37.9186	2.707	17080.4145	18056.3989	35136.8134
75	1.250	543.2345	40.6259	2.873	17591.3018	19695.2745	37286.5763
80	1.333	559.1326	43.4988	3.031	18047.1820	21294.0365	39341.2185
85	1.417	573.7552	46.5301	3.182	18452.8785	22845.8597	41298.7383
90	1.500	587.2205	49.7121	3.325	18812.7917	24345.7772	43158.5689
95	1.583	599.6356	53.0375	3.461	19130.9351	25790.4137	44921.3488
100	1.667	611.0978	56.4987	3.590	19410.9684	27177.7340	46588.7024
105	1.750	621.6949	60.0883	3.711	19656.2284	28506.8116	48163.0400
110	1.833	631.5066	63.7993	3.825	19869.7564	29777.6216	49647.3780
115	1.917	640.6053	67.6246	3.933	20054.3239	30990.8583	51045.1822
120	2.000	649.0564	71.5577	4.034	20212.4560	32147.7766	52360.2327
125	2.083	656.9192	75.5920	4.130	20346.4527	33250.0578	53596.5105
130	2.167	664.2476	79.7216	4.219	20458.4083	34299.6948	54758.1032
135	2.250	671.0902	83.9407	4.303	20550.2302	35298.8976	55849.1279
140	2.333	677.4912	88.2439	4.382	20623.6546	36250.0150	56873.6696
145	2.417	683.4907	92.6260	4.456	20680.2617	37155.4709	57835.7326
150	2.500	689.1249	97.0823	4.526	20721.4902	38017.7135	58739.2037
155	2.583	694.4267	101.6081	4.591	20748.6488	38839.1751	59587.8239
160	2.667	699.4259	106.1994	4.653	20762.9290	39622.2404	60385.1694
165	2.750	704.1496	110.8521	4.710	20765.4147	40369.2236	61134.6383

tsec	tmin	Θg παρ.	Θm	Δθa,t	hnet,c	hnet,r	hnet,d
170	2.833	708.6223	115.5625	4.765	20757.0922	41082.3502	61839.4424
175	2.917	712.8660	120.3272	4.816	20738.8593	41763.7452	62502.6045
180	3.000	716.9011	125.1430	4.864	20711.5326	42415.4250	63126.9576
185	3.083	720.7457	130.0070	4.909	20675.8557	43039.2921	63715.1478
190	3.167	724.4164	134.9162	4.952	20632.5053	43637.1337	64269.6390
195	3.250	727.9281	139.8682	4.992	20582.0973	44210.6213	64792.7186
200	3.333	731.2945	144.8605	5.030	20525.1926	44761.3125	65286.5052
205	3.417	734.5280	149.8908	5.066	20462.3022	45290.6537	65752.9559
210	3.500	737.6397	154.9571	5.100	20393.8914	45799.9840	66193.8754
215	3.583	740.6397	160.0573	5.132	20320.3844	46290.5393	66610.9236
220	3.667	743.5373	165.1897	5.163	20242.1677	46763.4576	67005.6253
225	3.750	746.3409	170.3525	5.192	20159.5940	47219.7838	67379.3779
230	3.833	749.0579	175.5440	5.219	20072.9852	47660.4750	67733.4602
235	3.917	751.6953	180.7629	5.245	19982.6349	48086.4055	68069.0404
240	4.000	754.2594	186.0076	5.269	19888.8117	48498.3724	68387.1840
245	4.083	756.7557	191.2768	5.292	19791.7607	48897.1005	68688.8612
250	4.167	759.1895	196.5693	5.315	19691.7066	49283.2471	68974.9537
255	4.250	761.5654	201.8838	5.335	19588.8548	49657.4069	69246.2617
260	4.333	763.8877	207.2193	5.355	19483.3938	50020.1165	69503.5103
265	4.417	766.1601	212.5745	5.374	19375.4963	50371.8586	69747.3548
270	4.500	768.3863	217.9486	5.392	19265.3210	50713.0661	69978.3871
275	4.583	770.5694	223.3404	5.409	19153.0141	51044.1259	70197.1400
280	4.667	772.7122	228.7491	5.425	19038.7098	51365.3827	70404.0925
285	4.750	774.8175	234.1737	5.440	18922.5322	51677.1419	70599.6741
290	4.833	776.8876	239.6134	5.454	18804.5956	51979.6733	70784.2690
295	4.917	778.9247	245.0673	5.467	18685.0061	52273.2137	70958.2198
300	5.000	780.9307	250.5347	5.480	18563.8618	52557.9696	71121.8313
305	5.083	782.9076	256.0146	5.492	18441.2537	52834.1199	71275.3736
310	5.167	784.8569	261.5064	5.503	18317.2668	53101.8182	71419.0850
315	5.250	786.7801	267.0092	5.513	18191.9800	53361.1952	71553.1752
320	5.333	788.6786	272.5224	5.523	18065.4673	53612.3603	71677.8276
325	5.417	790.5537	278.0452	5.532	17937.7979	53855.4037	71793.2016
330	5.500	792.4065	283.5768	5.540	17809.0366	54090.3984	71899.4351
335	5.583	794.2380	289.1167	5.547	17679.2448	54317.4015	71996.6463
340	5.667	796.0492	294.6640	5.554	17548.4802	54536.4557	72084.9359
345	5.750	797.8410	300.2182	5.560	17416.7973	54747.5910	72164.3883
350	5.833	799.6141	305.7784	5.566	17284.2481	54950.8255	72235.0736
355	5.917	801.3693	311.3441	5.570	17150.8818	55146.1673	72297.0491
360	6.000	803.1074	316.9146	5.575	17016.7456	55333.6149	72350.3604
365	6.083	804.8288	322.4892	5.578	16881.8844	55513.1585	72395.0429
370	6.167	806.5342	328.0673	5.581	16746.3414	55684.7813	72431.1227
375	6.250	808.2240	333.6481	5.583	16610.1582	55848.4599	72458.6181
380	6.333	809.8989	339.2310	5.584	16473.3748	56004.1653	72477.5402
385	6.417	811.5591	344.8154	5.585	16336.0300	56151.8639	72487.8940
390	6.500	813.2052	350.4006	5.585	16198.1614	56291.5179	72489.6792
395	6.583	814.8375	355.9859	5.585	16059.8052	56423.0860	72482.8912
400	6.667	816.4564	361.5707	5.584	15920.9972	56546.5244	72467.5216

Σχήμα 3.5 Θερμοκρασίες αέρα Θ_g(°C) και χάλυβα Θ_a(°C) σε συνάρτηση με το χρόνο για μη μονωμένο μέλος (A_m/V=95,51m⁻¹) σύμφωνα με την πρότυπη καμπύλη ISO και την παραμετρική καμπύλη για χαρακτηριστικά πυροδιαμερίσματος O=0,10,b=1500 και qtd=500.

Παρατήρηση : Στο διάγραμμα 3.5 φαίνονται οι παραμετρικές και πρότυπες ISO καμπύλες θερμοκρασίας αέρα συναρτήσει του χρόνου, καθώς και οι καμπύλες θερμοκρασίας χάλυβα συναρτήσει του χρόνου. Στους υπολογισμούς της μεταβολής της θερμοκρασίας του χάλυβα για μη μονωμένο μέλος, παρατηρήθηκαν αρνητικές τιμές της θερμικής ροής h_{net} μετά τη χρονική στιγμή t= 3620 sec= 60,25 min. Να χαραχθούν τα διαγράμματα θερμοκρασίας αἑρα – χρόνου (θ_g-t) και θερμοκρασίας μονωμένου χαλύβδινου μέλους – χρόνου (θ_a-t) σύμφωνα με την πρότυπη καμπύλη ISO και στη συνέχεια σύμφωνα με την παραμετρική καμπύλη για στοιχεία πυροδιαμερίσματος : O= 0,10 m^{1/2}, b=1500 J/m²sec^{1/2}K και q_{td} = 500 MJ/m². Δίνεται διατομή δοκού IPE270 και μονωτικό υλικό a) πετροβάμβακας με λ=0,036 W/mK και d=15 mm, b) ορυκτοβάμβακας με λ=0,25 W/mK και d=25 mm.

Η αύξηση της θερμοκρασίας Δθ_{α,t} ενός μονωμένου μέλους από χάλυβα κατά τη διάρκεια ενός χρονικού διαστήματος Δt μπορεί να λαμβάνεται από τη σχέση 2.7 :

$$\Delta \theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a} \cdot (1 + \phi/3)} - (e^{\phi/10} - 1) \Delta \theta_{g,t}$$

alla $\Delta \theta_{a,t} \ge 0$ sav $\Delta \theta_{g,t} > 0$

$$\mu\epsilon \qquad \phi = \frac{c_{p} \cdot \rho_{p} \cdot d_{p} \cdot \frac{A_{p}}{V}}{c_{a} \cdot \rho_{a}}$$

<u>Συντελεστής διατομής Ap/V</u>:

Για ορθογωνικό εγκιβωτισμό ενιαίου πάχους

A_p/V= 2(b+h)/εμβαδόν διατομής χάλυβα

Η διατομή διπλού ταυ IPE270 έχει χαρακτηριστικά : ύψος κορμού h =270mm, πλάτος πέλματος b = 135 mm, εμβαδόν διατομής A= 45,95 cm², πάχος κορμού t_w = 6,6 mm και πάχος πέλματος t_f = 10,2 mm. Άρα ο συντελεστής διατομής Α_p/V θα είναι ίσος με:

$$A_{\rm p}/V = \frac{2 \cdot (b+h)}{A}$$

A_p/V=2·(27+13,5)·100/45,95=176,28 m⁻¹

Η πυκνότητα χάλυβα $ρ_a$ λαμβάνεται ίση με $ρ_a$ =7850 kg/m³

Η ειδική θερμότητα του χάλυβα μπορεί να θεωρείται ίση με c_a=600J/kgK

Η τιμή του χρονικού διαστήματος Δt δεν πρέπει να λαμβάνεται μεγαλύτερη από 30 δευτερόλεπτα.

Ο υπολογισμός της θερμοκρασίας του αέρα θα γίνει βάσει της πρότυπης καμπύλης ISO και στη συνέχεια βάσει της παραμετρικής καμπύλης για τα χαρακτηριστικά του πυροδιαμερίσματος που έχουν δοθεί.

Η πρότυπη καμπύλη θερμοκρασίας- χρόνου προκύπτει από τη σχέση 1.4 :

$$\Theta_{g} = 20 + 345 \cdot \log_{10}(8t+1)$$

Για τα παρακάτω χαρακτηριστικά πυροδιαμερίσματος προσδιορίζεται η παραμετρική καμπύλη της θερμοκρασίας του αέρα του πυροδιαμερίσματος συναρτήσει του χρόνου ομοίως με το προηγούμενο παράδειγμα 3.3.1 :

Συντελεστής αερισμού : O=0,10 m^{1/2} Συντελεστής περιβλήματος : b=1500 J/m²sec^{1/2}K Πυκνότητα πυροθερμικού φορτίου : q_{td}=500 MJ/m².

→ Γ= 3,74

Ο ανοδικός κλάδος της παραμετρικής καμπύλης θερμοκρασίας – χρόνου, δίνεται από την εξίσωση:

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0125t} - 0.204 \cdot e^{-0.106t} - 0.472 \cdot e^{-1.184t})$$

όπου t, ο χρόνος σε λεπτά (min)

Ο καθοδικός κλάδος προκύπτει από την παρακάτω εξίσωση όμοια με προηγουμένως :

$$\Theta_{g} = 1141,75 - 250 \cdot (t^{*} - 3,74)$$

Στο παράδειγμά μας θα εξετάσουμε την αύξηση της θερμοκρασίας ενός μονωμένου χαλύβδινου μέλους, καθώς η θερμοκρασία του αέρα στο πυροδιαμέρισμα θα αυξάνεται με το χρόνο. Στην πρώτη περίπτωση το υλικό μονώσεως είναι πετροβάμβακας και τη δεύτερη περίπτωση ορυκτοβάμβακας. Θα γίνει χρήση της σχέσης 2.7 (Ευρωκώδικας 3) που δίνει τη μεταβολή της θερμοκρασίας χάλυβα και στη συνέχεια της απλοποιημένης, προσεγγιστικής σχέσης (2.9) ανεξάρτητης από την ειδική θερμότητα του μονωτικού υλικού.

A) Μόνωση με πλάκες **πετροβάμβακα**.

<u>Τεχνικά χαρακτηριστικά</u> :

Πυκνότητα ρ : 100 kg/m³

Πἁχος d : 15 mm

Συντελεστής θερμικής αγωγιμότητας λ : 0,036 W/mK

Ειδική θερμότητα c_p : 840 J/ kg·K

Συντελεστής μονωτικού υλικού d/λ:

 $d/\lambda = 0,015/0,036 = 0,42$

Χρήση μη απλοποιημένης σχέσης 2.7 :

$$\Delta \theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a} \cdot (1 + \phi/3)} - (e^{\phi/10} - 1) \Delta \theta_{g,t}$$

 $a\lambda\lambda \dot{a} \ \Delta \theta_{a,t} \geq 0 \ \epsilon \dot{a} v \ \Delta \theta_{g,t} > 0$

$$\mu\epsilon \qquad \phi = \frac{c_{p} \cdot \rho_{p} \cdot d_{p} \cdot A_{p}/V}{c_{a} \cdot \rho_{a}}$$

$$\varphi = \frac{840 \cdot 100 \cdot 0,015 \cdot 176,28}{600 \cdot 7850} = 0,047$$

$$\Delta \theta_{a,t} = \frac{0,036 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,015 \cdot 600 \cdot 7850 \cdot (1 + 0,047/3)} - (e^{0,047/10} - 1) \Delta \theta_{g,t}$$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \theta_{\alpha,t} = 2,65 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{\alpha,t}) - 0,0047 \cdot \Delta \theta_{g,t}$

Τα διαγράμματα που θα ακολουθήσουν βασίζονται σε υπολογισμούς που έχουν γίνει σε φύλλο Excel.

Σχήμα 3.6 Θερμοκρασία αέρα και χάλυβα σύμφωνα με την πρότυπη καμπύλη ISO και με την παραμετρική καμπύλη για μονωμένο μέλος ($A_p/V=176,28$) με πετροβάμβακα ($\lambda_p=0,036,c_p=840,d_p=0,03m$) d/ $\lambda=0,83$ για φ=0,047 και O=0,10,b=1500 και qtd=500.

Χρήση απλοποιημένης σχέσης 2.9 :

$$\Delta \theta_{\alpha,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

$$\Delta \theta_{a,t} = \frac{0.036 \cdot 176.28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0.015 \cdot 600 \cdot 7850}$$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \theta_{a,t} = 2,7 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{a,t})$

Σχήμα 3.7 Θερμοκρασίες αέρα θ_g και του χάλυβα θ_a μονωμένου μέλους (Ap/V=176,28) και d/λ=0,83 με βάση την πρότυπη καμπύλη ISO και την παραμετρική καμπύλη για χαρακτηριστικά πυροδιαμερίσματος: O=0,10 m^{1/2},b=1500 J/m²s^{1/2}K και q_{td}=500 MJ/m².

Γ) Μόνωση με ορυκτοβάμβακα.

Τεχνικά χαρακτηριστικά :

Πυκνότητα ρ : 120kg/m³

Πάχος d : 25 mm

Συντελεστής θερμικής αγωγιμότητας λ : 0,25 W/mK

Ειδική θερμότητα cp : 840 J/ kg·K

Συντελεστής μονωτικού υλικού d/λ:

 $d/\lambda = 0,025 / 0,25 = 0,10$

Χρήση μη απλοποιημένης σχέσης 2.7 :

$$\Delta \theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a} \cdot (1 + \phi/3)} - (e^{\phi/10} - 1) \Delta \theta_{g,t}$$

$$\begin{split} a\lambda\lambda\dot{a} & \Delta\theta_{a,t} \geq 0 \quad \epsilon \dot{a}v \; \Delta\theta_{g,t} > 0 \\ \mu\epsilon & \varphi = \frac{C_{p} \cdot \rho_{p} \cdot d_{p} \cdot A_{p}/V}{C_{a} \cdot \rho_{a}} \\ \varphi = \frac{840 \cdot 120 \cdot 0,025 \cdot 176,28}{600 \cdot 7850} = 0,094 \\ \Delta\theta_{a,t} = \frac{0,25 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,025 \cdot 600 \cdot 7850 \cdot (1 + 0,094/3)} - (e^{0,094/10} - 1)\Delta\theta_{g,t} \end{split}$$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \theta_{a,t} = 0,01 \cdot (\Theta_{g,t} - \Theta_{a,t}) - 0,0094 \cdot \Delta \theta_{g,t}$

Σχήμα 3.8 Θερμοκρασίες αέρα θ_g και χάλυβα θ_α μονωμένου μέλους με ορυκτοβάμβακα d/λ=0,10, φ=0,094 και A_p/V=176,28 με βάση την πρότυπη καμπύλη ISO και την παραμετρική καμπύλη για χαρακτηριστικά πυροδιαμερίσματος:O=0,10m^{1/2},b=1500J/m²s^{1/2}K και q_{td}=500MJ/m².

Χρήση απλοποιημένης σχέσης 2.9 :

$$\Delta \theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

$$\Delta \theta_{a,t} = \frac{0.25 \cdot 176.28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0.025 \cdot 600 \cdot 7850}$$

Για χρονικό διάστημα Δt = 30 sec :

Σχήμα 3.9 Θερμοκρασίες αέρα θ_g και του χάλυβα θ_a μονωμένου μέλους (ορυκτοβάμβακας ,d/λ=0,10, A_p/V=176,28) βάσει της πρότυπης καμπύλη ISO και της παραμετρικής καμπύλης για χαρακτηριστικά πυροδιαμερίσματος O=0,10,b=1500 και q_{td}=500

Παρατήρηση : Τα διαγράμματα που προκύπτουν από την απλοποιημένη σχέση παρουσιάζουν μεγαλύτερες θερμοκρασίες στο χάλυβα, όπως ήταν αναμενόμενο, καθώς στην προσεγγιστική σχέση αγνοείται η θερμοχωρητικότητα του μονωτικού υλικού. Επίσης, παρατηρούμε ότι ο πετροβάμβακας ως μονωτικό υλικό δεν επιτρέπει στο χάλυβα να φτάσει σε υψηλές θερμοκρασίες (μέγιστη θερμοκρασία 450 °C) λόγω της χαμηλής τιμής της θερμικής του αγωγιμότητας λ. Ο ορυκτοβάμβακας, αντιθέτως, επιτρέπει στη θερμότητα να περάσει σχετικά εύκολα στο χάλυβα και να αυξήσει τη θερμοκρασία του πάνω από τους 600 °C, όπου ο χάλυβας αστοχεί. Ο δείκτης πυραντίστασης σύμφωνα με την πρότυπη καμπύλη είναι κοντά στα 60 min και σύμφωνα με τη παραμετρική καμπύλη κοντά στα 45 min.

Κεφάλαιο 4

Θερμικές δράσεις σε εξωτερικά μέλη- Απλοποιημένη μέθοδος υπολογισμού.

4.1 Γενικά

Εξωτερικό μέλος είναι ένα δομικό μέλος που βρίσκεται εξωτερικά της πρόσοψης του κτιρίου και το οποίο μπορεί να εκτεθεί σε πυρκαγιά μέσω των ανοιγμάτων του περιβλήματος του κτιρίου. Για τον προσδιορισμό των θερμικών δράσεων που δέχεται ένα εξωτερικό μέλος σε περίπτωση πυρκαγιάς, πρέπει πρώτα να εκτιμηθούν οι συνθήκες του πυροδιαμερίσματος και οι φλόγες που εκπηγάζουν από τα ανοίγματα, αντικείμενο του παραρτήματος Β του ΕΝ 1991 μέρος 1-2 και στη συνέχεια να υπολογιστούν οι θερμικές ροές από ακτινοβολία και συναγωγή, οι οποίες μας επιτρέπουν να προσδιορίσουμε τη μέση θερμοκρασία T_m του εξωτερικού χαλύβδινου μέλους, αντικείμενο του παραρτήματος Β του ΕΝ 1993 μέρος 1-2.

Η θερμοκρασία εξωτερικών κατασκευών από χάλυβα θα προσδιορίζεται λαμβάνοντας υπόψη:

- τη ροή θερμότητας λόγω ακτινοβολίας από το πυροδιαμέρισμα,
- τη θερμική ροή λόγω ακτινοβολίας και λόγω συναγωγής (επαφής) από τις φλόγες που εκπηγάζουν από τα ανοίγματα,
- τις απώλειες θερμότητας από ακτινοβολία και συναγωγή από τη χαλύβδινη κατασκευή προς
 την περιβάλλουσα ατμόσφαιρα,
- τις θέσεις και τα μεγέθη των δομικών μελών.

4.2 Απλοποιημένη μέθοδος υπολογισμού

Η μέθοδος που παρουσιάζεται στο παράρτημα Β του Ευρωκώδικα 1.1.2 επιτρέπει τον προσδιορισμό :

a) των μέγιστων θερμοκρασιών του πυροδιαμερίσματος,

β) τις διαστάσεις και τις θερμοκρασίες των φλογών από τα ανοίγματα,

γ) των παραμέτρων που σχετίζονται με τη θερμότητα από ακτινοβολία και επαφή.

Η μέθοδος αυτή θεωρεί σταθερές συνθήκες για τις διάφορες παραμέτρους. Η μέθοδος ισχύει μόνο για πυκνότητες πυροθερμικού φορτίου μεγαλύτερες των 200 MJ/m².

4.2.1 Προυποθέσεις χρήσης μεθόδου

Όταν υπάρχουν περισσότερα από ένα παράθυρα στο σχετικό πυροδιαμέρισμα χρησιμοποιείται ο μέσος όρος των υψών των παραθύρων h_{eq}, η συνολική επιφάνεια κατακόρυφων ανοιγμάτων Α_v, καθώς και το άθροισμα των πλατών των παραθύρων w_t=Σw_i. Όταν υπάρχουν παράθυρα μόνο στον τοίχο 1 ο λόγος D/W δίνεται από τον τύπο :

$$D/W = \frac{W_2}{W_t}$$
(4.1)

 Όταν υπάρχουν παράθυρα σε περισσότερους από έναν τοίχους, ο λόγος D/W δίνεται από τον τύπο :

$$D/W = \frac{W_2}{W_1} \cdot \frac{A_{v1}}{A_v}$$
(4.2)

όπου :

- W₁ είναι το πλάτος του τοίχου 1, υποθέτοντας ότι περιλαμβάνει τη μεγαλύτερη επιφάνεια
 παραθύρων
- Αν1 είναι το άθροισμα των επιφανειών των παραθύρων στον τοίχο 1
- W₂ είναι το πλάτος του κάθετου στον 1 τοίχου στο πυροδιαμέρισμα.
- Όταν υπάρχει πυρήνας στο πυροδιαμέρισμα ο λόγος D/W υπολογίζεται όπως παρακάτω:
- εφαρμόζονται οι περιορισμοί που αναφέρονται παρακάτω σχετικά με τις διαστάσεις του πυροδιαμερίσματος
- · L_c και W_c είναι το μήκος και το πλάτος του πυρήνα αντίστοιχα
- · W₁ και W₂ είναι το μήκος και το πλάτος του πυροδιαμερίσματος αντίστοιχα :

$$D/W = \frac{(W_2 - L_C)A_{v1}}{(W_1 - W_C)A_v}$$
(4.3)

 Όλα τα μέρη ενός εξωτερικού τοίχου που δεν έχουν την απαιτούμενη για την ευστάθεια του κτιρίου αντοχή στην πυρκαγιά (REI) υπολογίζονται ως επιφάνειες παραθύρων.

Η συνολική επιφάνεια των παραθύρων σε έναν εξωτερικό τοίχο είναι :

η συνολική επιφάνεια, σύμφωνα με τα προηγούμενα, εάν είναι μικρότερη από το 50% της
 επιφάνειας του σχετικού εξωτερικού τοίχου του διαμερίσματος,

αρχικά η συνολική επιφάνεια και στη συνέχεια το 50% της επιφάνειας του αντίστοιχου
 εξωτερικού τοίχου του διαμερίσματος αν σύμφωνα με τα προηγούμενα η επιφάνεια είναι
 μεγαλύτερη του 50%. Αυτές οι δύο περιπτώσεις πρέπει να εξετάζονται στους υπολογισμούς.
 Όταν χρησιμοποιούμε το 50% της επιφάνειας του εξωτερικού τοίχου, πρέπει να επιλέγονται η
 θέση και η γεωμετρία των ανοιχτών επιφανειών ώστε να θεωρούμε τη δυσμενέστερη
 περίπτωση.

Οι διαστάσεις του πυροδιαμερίσματος δεν πρέπει να ξεπερνούν τα 70 m σε μήκος, τα 80 m
 σε πλάτος και τα 5 m σε ύψος.

 Η θερμοκρασία της φλόγας μπορεί να θεωρείται ομοιόμορφη κατά πλάτος και πάχος της φλόγας.

4.2.2 Επίδραση ανέμου

<u>Μέθοδος αερισμού</u>

Αν υπάρχουν παράθυρα σε απέναντι πλευρές του πυροδιαμερίσματος ή αν πρόσθετος αέρας τροφοδοτεί την πυρκαγιά από άλλη προέλευση (εκτός παραθύρων), τότε ο υπολογισμός γίνεται σε συνθήκες "με ρεύμα αέρα" (forced draught). Διαφορετικά ο υπολογισμός γίνεται σε συνθήκες "χωρίς ρεύμα αέρα" (no forced draught).

Εκτροπή φλόγας από τον άνεμο

Οι φλόγες από ένα άνοιγμα εκτιμάται ότι εξέρχονται από το πυροδιαμέρισμα :

- κάθετα στην πρόσοψη,
- με απόκλιση 45° λόγω της επίδρασης του ανέμου.

Key

1 Wind 2 Horizontal cross section

Σχήμα 4.1

4.2.3 Χαρακτηριστικά της φωτιάς και των φλογών

4.2.3.1 Χωρίς ρεύμα αέρα

Ρυθμός εκροής θερμότητας Q

Q= min (
$$(A_f \cdot q_{fd} / T_f)$$
 ; 3,15(1-e^{-0,036/0})·A_v· $\left(\frac{h_{eq}}{D/W}\right)^{1/2}$) (4.4)

Η θερμοκρασία του πυροδιαμερίσματος Τ_f:

$$T_{f} = 6000(1 - e^{-0.1/0}) \cdot O^{1/2} \cdot (1 - e^{-0.00286 \cdot \Omega}) + T_{o}$$
(4.5)

Το ύψος της φλόγας L_L δίνεται από τη σχέση :

$$L_{L} = \max\left(0; h_{eq} \cdot \left(2,37 \left(\frac{Q}{A_{v} \cdot \rho_{g} \cdot (h_{eq} \cdot g)^{1/2}}\right)^{2/3} - 1\right)\right)$$
(4.6)

Σημείωση: Για ρ_g = 0,45 kg/m³ και g = 9,81 m/s² η παραπάνω σχέση απλοποιείται ως εξής : $L_L = 1,9 \left(\frac{Q}{w_t}\right)^{2/3} - h_{eq}$

$L_{\rm L} = \frac{h_{\rm eq}}{3} \Rightarrow$	$L_1 = \sqrt{L_{\rm H}^2 + \frac{h_{\rm eq}^2}{9}} \cong \frac{h_{\rm eq}}{2}$	$L_1 \cong \frac{h_{eq}}{2}$
	$L_f = L_L + L_1$	$L_{\rm f} = \sqrt{L_{\rm L}^2 + \left(L_{\rm H} - \frac{h_{\rm eq}}{3}\right)^2} + L_1$
h _{eq} <1,25 <i>w</i> t	wall above	no wall above or h _{eq} >1,25w _t

Σχήμα 4.2

Το πλάτος της φλόγας είναι το πλάτος του παραθύρου,

$$w_f = w_i \tag{4.7}$$

Το βάθος της φλόγας d_f είναι τα 2/3 του ύψους του παραθύρου :

$$d_f = 2/3 \cdot h_{eq} \tag{4.8}$$

Η οριζόντια προβολή των φλογών L_H δίνεται από τις σχέσεις:

- σε περίπτωση που υπάρχει τοίχος πάνω από το παράθυρο :

$$L_{H} = h_{eq} / 3$$
 av $h_{eq} \le 1,25 w_{t}$ (4.9)

$$L_{\rm H} = 0,3 \cdot h_{\rm eq} \cdot (h_{\rm eq} \ / \ w_{\rm t})^{0,54}$$
 av $h_{\rm eq} > 1,25 \ w_{\rm t} \ \kappa a \ \eta \ a {\rm n} \dot{o} {\rm \sigma} {\rm rao} {\rm \eta} \ a {\rm n} \dot{o}$ (4.10)
οποιοδήποτε άλλο παράθυρο > 4 $w_{\rm t}$

 $L_{H} = 0,454 \cdot h_{eq} \cdot (h_{eq} / 2w_{t})^{0,54}$ σε ἀλλες περιπτώσεις. (4.11)

- στην περίπτωση που δεν υπάρχει τοίχος πάνω από το παράθυρο :

$$L_{\rm H} = 0.6 \cdot h_{\rm eq} \cdot (L_{\rm L} / h_{\rm eq})^{1/3}$$
(4.12)

- Το μήκος της φλόγας κατά μήκος του άξονα $L_{\rm f}$: όταν $L_{\rm L}\!>\!0$

ота
v $L_L=$ 0, тотє $L_f=$ 0

Η θερμοκρασία της φλόγας Τ_w στο παράθυρο δίνεται από τη σχέση :

$$\Gamma_{\rm w} = 520 / (1 - 0,4725(L_{\rm f} \cdot w_{\rm t}/Q)) + T_{\rm o}$$
(4.15)

 $\mu\epsilon\;L_f\cdot w_t/\;Q<1$

 Ο συντελεστής ικανότητας ακτινοβολίας (emissivity) των φλογών στο παράθυρο λαμβάνεται ίσος με :

$$\varepsilon_{\rm f} = 1,0$$
 (4.16)

Η θερμοκρασία της φλόγας κατά μήκος του άξονα δίνεται από τον τύπο :

$$T_{z} = (T_{w} - T_{o}) (1 - 0.4725 \cdot (L_{x} \cdot w_{t}/Q)) + T_{o}$$
(4.17)

 $\mu\epsilon\;L_{x}\cdot w_{t}\;/Q\,<\,1$

όπου L_x είναι το μήκος του άξονα από το παράθυρο ως και το σημείο όπου γίνεται ο υπολογισμός.

Ο συντελεστής ικανότητας ακτινοβολίας ε_f (emissivity) των φλογών λαμβάνεται ίσος με:

$$\varepsilon_{\rm f} = 1 - e^{-0.3 \rm df}$$
 (4.18)

όπου d_f είναι το πάχος της φλόγας (m)

Ο συντελεστής μεταφοράς θερμότητας από επαφή α_c δίνεται από τη σχέση :

$$a_c = 4,67 (1/d_{eq})^{0,4} (Q/A_v)^{0,6}$$
 (4.19)

Σε περίπτωση που ένα σκίαστρο ή ένας πρόβολος (με οριζόντια προβολή W_a) βρίσκεται στο επίπεδο της κορυφής του παραθύρου σε όλο του το πλάτος, για την περίπτωση που υπάρχει τοίχος πάνω από το παράθυρο και h_{eq} ≤ 1,25 w_t, το ύψος και η οριζόντια προβολή της φλόγας πρέπει να τροποποιείται όπως παρακάτω :

- το ύψος της φλόγας L_L μειώνεται κατά $W_a(1+\sqrt{2});$
- η οριζόντια προβολή της φλόγας L_H αυξάνεται κατά W_a.

Στην περίπτωση που ισχύουν οι ίδιες συνθήκες όσον αφορά το σκίαστρο ή τον πρόβολο με τα παραπάνω, αλλά δεν υπάρχει τοίχος πάνω από το παράθυρο ή h_{eq} > 1,25 w_t τότε το ύψος και η οριζόντια προβολή της φλόγας τροποποιείται ως εξής :

- το ύψος της φλόγας L_L μειώνεται κατά W_a ;

η οριζόντια προβολή της φλόγας L_H αυξάνεται κατά W_a, λαμβάνοντας υπόψη στον υπολογισμό την παραπάνω τιμή του L_L.

4.2.3.2 <u>Με ρεύμα αέρα</u>

Ο ρυθμός εκροής θερμότητας Q δίνεται από τον τύπο :

$$Q = (A_f \cdot q_{f,d}) / \tau_f$$
(4.20)

- Η θερμοκρασία του πυροδιαμερίσματος Τ_f δίνεται από τον τύπο :

$$T_{f} = 1200 \cdot ((A_{f} \cdot q_{f,d}) / 17,5 - e^{-0,00228\Omega}) + T_{o}$$
(4.21)

Το ύψος της φλόγας L_L δίνεται από τον τύπο :

$$L_{L} = \left(1,366 \left(\frac{1}{u}\right)^{0,43} \frac{Q}{A_{v}^{1/2}}\right) - h_{eq}$$
(4.22)

Σημείωση : Για u= 6 m/s, $L_L \approx 0,628 \text{ Q/A}_v^{1/2}$ - h_{eq}

Η οριζόντια προβολή των φλογών L_H δίνεται από τη σχέση :

$$L_{\rm H} = 0,605 \; ({\rm u}^2 \; / \; h_{\rm eq})^{0,22} \; (L_{\rm L} \; + \; h_{\rm eq}) \tag{4.23}$$

Σημείωση : Για u = 6 m/s, $L_H = 1,33(L_L + h_{eq}) / h_{eq}^{0,22}$

Το πλάτος της φλόγας w_f είναι ίσο με :

$$w_f = w_t + 0,4 L_H$$
 (4.24)

Το μήκος της φλόγας κατά μήκος του άξονα δίνεται από τη σχέση :

$$L_{f} = (L_{L}^{2} + L_{H}^{2})^{1/2}$$
(4.25)

Η θερμοκρασία της φλόγας στο παράθυρο Τ_w δίνεται από τον τύπο :

$$T_{w} = 520 / (1 - 0.3325 L_{f} (A_{v})^{1/2} / Q) + T_{o}$$
(4.26)

 $\mu\epsilon \quad L_f \cdot (A_v)^{1/2} / Q < 1$

Ο συντελεστής ικανότητας ακτινοβολίας (emissivity) στο παράθυρο μπορεί να λαμβάνεται
 ίσος με

$$\epsilon_{\rm f} = 1,0.$$
 (4.27)

Η θερμοκρασία της φλόγας κατά μήκος του άξονα δίνεται από τον τύπο:

$$T_{z} = \left(1 - 0.3325 \frac{L_{x} (A_{v})^{1/2}}{Q}\right) (T_{w} - T_{o}) + T_{o}$$
(4.28)

όπου L_x είναι το μήκος του άξονα από το παράθυρο ως το σημείο όπου γίνεται ο υπολογισμός.

Ο συντελεστής ικανότητας ακτινοβολίας ε_f (emissivity) των φλογών μπορεί να λαμβάνεται
 ίσος με :

$$\varepsilon_{\rm f} = 1 - e^{-0.3 \rm df}$$
 (4.29)

όπου d_f είναι το πάχος της φλόγας (m).

Ο συντελεστής μεταφοράς θερμότητας από επαφή α_c, δίνεται από τον τύπο:

$$a_{c} = 9,8 (1 / d_{eq})^{0,4} (Q/(17,5A_{v})+u/1,6)^{0,6}$$
(4.30)

Σημείωση : Για u = 6m/s ο συντελεστής μεταφοράς θερμότητας από επαφή δίνεται από τον τύπο:

 $a_c = 9.8 (1/d_{eq})^{0.4} (Q/(17,5A_v) + 3,75)^{0.6}$

4.3 Συνολικοί συντελεστές διάταξης

Ο συνολικός συντελεστής διάταξης Φ_f ενός μέλους για μεταφορά θερμότητας από ακτινοβολία από ένα άνοιγμα ορίζεται ως :

$$\varphi_{f} = \frac{\left(C_{1} \cdot \varphi_{f,1} + C_{2} \cdot \varphi_{f,2}\right) \cdot d_{1} + \left(C_{3} \cdot \varphi_{f,3} + C_{4} \cdot \varphi_{f,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$
(4.31)

όπου:

φ_{f,i} είναι ο συντελεστής διάταξης της όψης i του μέλους για το άνοιγμα αναφοράς.

- di είναι η διάσταση της διατομής της όψης i του μέλους
- Ci είναι ο συντελεστής προστασίας της όψης i του μέλους ως εξής:
 - για προστατευμένη όψη: C_i=0
 - για μη προστατευμένη όψη: C_i=1

Ο συντελεστής διάταξης Φ_{f,i} μιας όψης του μέλους από την οποία το άνοιγμα δεν είναι ορατό λαμβάνεται ίσος με μηδέν.

Ο συνολικός συντελεστής Φ_z ενός μέλους για μεταφορά θερμότητας εξ' ακτινοβολίας από μια φλόγα ορίζεται ως :

$$\varphi_{z} = \frac{\left(C_{1} \cdot \varphi_{z,1} + C_{2} \cdot \varphi_{z,2}\right) \cdot d_{1} + \left(C_{3} \cdot \varphi_{z,3} + C_{4} \cdot \varphi_{z,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$
(4.32)

όπου φ_{z,i} είναι ο συντελεστής διάταξης της όψης i του μέλους ως προς τη φλόγα.

Ο συντελεστής διάταξης Φ_{z,i} κάθε όψης του μέλους για μεταφορά θερμότητας από ακτινοβολία από τη φλόγα υπολογίζεται θεωρώντας ισοδύναμες ορθογωνικές διαστάσεις της φλόγας. Οι διαστάσεις και οι θέσεις των ισοδύναμων ορθογωνίων καθορίζονται στο παράρτημα G του Ευρωκώδικα 1-2-1.

4.4 Μεταφορά θερμότητας σε εξωτερικά δομικά στοιχεία από χάλυβα

Έχοντας προσδιορίσει τις συνθήκες του πυροδιαμερίσματος καθώς και τις διαστάσεις των φλογών που εξέρχονται από τα ανοίγματα προς τα εξωτερικά μέλη, μπορεί να εκτιμηθεί η θερμική ροή από ακτινοβολία και συναγωγή και στη συνέχεια η θερμοκρασία του χάλυβα σύμφωνα με το Παράρτημα Β του Ευρωκώδικα 1993-1-2.

4.4.1 Βασικές αρχές

Στο παρόν κεφάλαιο, το πυροδιαμέρισμα υποτίθεται ότι περιορίζεται σε ένα μόνο όροφο. Όλα τα παράθυρα ή άλλα παρόμοια ανοίγματα του πυροδιαμερίσματος υποτίθεται ότι είναι ορθογώνια.

Επίσης, διάκριση πρέπει να γίνεται μεταξύ μελών που περιβάλλονται από τις φλόγες και μελών που δεν περιβάλλονται, ανάλογα με τη σχετική θέση τους ως προς τα ανοίγματα επί των τοίχων του πυροδιαμερίσματος. Ένα μέλος το οποίο δεν περιβάλλεται από φλόγες πρέπει να υποτεθεί ότι δέχεται μεταφορά θερμότητας δι' ακτινοβολίας, από όλα τα ανοίγματα του πυροδιαμερίσματος, που βρίσκονται προς την πλευρά του και από τις φλόγες που προβάλλουν από αυτά τα ανοίγματα. Ένα μέλος το οποίο περιβάλλεται από φλόγες πρέπει να υποτεθεί ότι δέχεται μεταφορά θερμότητας δια συναγωγής από τις περιβάλλουσες αυτό φλόγες και επί πλέον μεταφορά θερμότητας δι' ακτινοβολίας από την περιβάλλουσα φλόγα και από το άνοιγμα του πυροδιαμερίσματος από το οποίο η φλόγα προβάλλει. Η μεταφορά θερμότητας δι' ακτινοβολίας από άλλες φλόγες και άλλα ανοίγματα μπορεί να αμελείται. Στο παρόν κεφάλαιο θα εξετάσουμε την περίπτωση ενός εξωτερικού χαλύβδινου υποστυλώματος μη περιβαλλόμενου από φλόγες.

4.4.2 Θερμική ισορροπία

Για ένα χαλύβδινο μέλος που δεν περιβάλλεται από φλόγες, η μέση θερμοκρασία του χάλυβα Τ_m [K] προσδιορίζεται από τη λύση της ακόλουθης εξίσωσης θερμικής ισορροπίας :

$$\sigma \cdot T_m^4 + \alpha \cdot T_m = \Sigma I_z + \Sigma I_f + 293 \cdot \alpha$$
(4.33)

όπου:

σ	είναι	η σταθερά του Stefan Boltzmann [56,7 $ imes$ 10 ⁻¹² kW/m ² K ⁴],
a	είναι	ο συντελεστής μεταφοράς θερμότητας δια συναγωγής [kW/m²K],
Iz	είναι	η θερμική ροή δι' ακτινοβολίας από μια φλόγα [kW/m²],
\mathbf{I}_{f}	είναι	η θερμική ροή δι' ακτινοβολίας από ένα άνοιγμα [kW/m²]

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής *α* μπορεί να λαμβάνεται από το Παράρτημα Β του ΕΝ 1991-1-2 για συνθήκες `χωρίς ρεύμα αἑρα' ή `με ρεύμα αἑρα', όποια είναι πιο κατάλληλη, χρησιμοποιώντας μία ενεργή διάσταση διατομής $d = (d_1 + d_2)/2$.

Για ένα μέλος που περιβάλλεται από φλόγες, η μέση θερμοκρασία του T_m [K] προσδιορίζεται μέσω της λύσεως της ακόλουθης εξίσωσης:

$$\sigma \cdot T_m^4 + a \cdot T_m = I_z + I_f + a \cdot T_z$$
(4.34)

όπου:

Tz	είναι	η θερμοκρασία των φλογών [Κ],
Iz	είναι	η θερμική ροή δι' ακτινοβολίας από τις φλόγες [kW/m²],
\mathbf{I}_{f}	είναι	η θερμική ροή δι' ακτινοβολίας από το αντίστοιχο άνοιγμα
		[kW/m ²].

Η θερμική ροή δι' ακτινοβολίας I_z από τις φλόγες θα προσδιορίζεται ανάλογα με τη θέση και τον τύπο του μέλους.

Η θερμική ροή δι' ακτινοβολίας Ι_f από ένα άνοιγμα θα προσδιορίζεται από:

$$I_{f} = \varphi_{f} \cdot \varepsilon_{f} \cdot (1 - a_{z}) \sigma \cdot T_{f}^{4}$$

$$(4.35)$$

όπου:

ϕ_{f}	είναι	ο συνολικός συντελεστής διάταξης του μέλους για περίπτωση
		μεταφοράς θερμότητας δι' ακτινοβολίας από αυτό το άνοιγμα,
ε _f	είναι	η ικανότητα ακτινοβολίας του ανοίγματος,
az	είναι	ο βαθμός απορρόφησης της θερμότητας από τις φλόγες,
T _f	είναι	η θερμοκρασία της πυρκαγιάς [Κ] από το Παράρτημα Β του
		EN 1991-1-2

Η ικανότητα ακτινοβολίας ενός ανοίγματος ε_f θα λαμβάνεται μονάδα, βλέπε Κεφάλαιο 4, σχέση 4.16.

Ο βαθμός απορρόφησης az της θερμότητας που εκπέμπεται από τις φλόγες θα προσδιορίζεται από το Παράρτημα Β του ΕΝ 1993-1-2, κεφάλαιο 4.3.5 για συνθήκες με ή χωρίς ρεύμα αέρα.

4.4.3 Υποστύλωμα μη περιβαλλόμενο από φλόγες

4.4.3.1 Μεταφορά θερμότητας δι' ακτινοβολίας

Πρέπει να γίνει διάκριση μεταξύ ενός υποστυλώματος που βρίσκεται απέναντι από ένα άνοιγμα και ενός που βρίσκεται μεταξύ ανοιγμάτων.

ΣΗΜΕΙΩΣΗ: Απεικόνιση του προηγούμενου δίδεται στο Σχήμα 4.6

Εάν το υποστύλωμα είναι απέναντι από άνοιγμα η θερμική ροή δι' ακτινοβολίας I_z από τη φλόγα θα προσδιορίζεται από:

$$I_{z} = \varphi_{z} \cdot \varepsilon_{z} \cdot \sigma \cdot T_{z}^{4}$$
(4.36)

όπου:

φz	είναι	ο συνολικός συντελεστής διάταξης του υποστυλώματος για
		θερμότητα από τη φλόγα, βλέπε σχέση 4.32,
ε _z	είναι	η ικανότητα ακτινοβολίας της φλόγας, βλέπε 4.18,
Tz	είναι	η θερμοκρασία της φλόγας [Κ] από σχέση 4.17.

Εάν το υποστύλωμα βρίσκεται μεταξύ ανοιγμάτων, η ολική θερμική ροή δι' ακτινοβολίας Ι_z από τις φλόγες σε κάθε πλευρά θα προσδιορίζεται από:

$$I_{z} = (\varphi_{z,m} \varepsilon_{z,m} + \varphi_{z,n} \varepsilon_{z,n}) \sigma T_{z}^{4}$$
(4.37)

όπου:

 θερμότητα από τις φλόγες στην πλευρά m. φ_{z,n} είναι ο συνολικός συντελεστής διάταξης του υποστυλώματος για θερμότητα από τις φλόγες στην πλευρά n. ε_{z,m} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά ε_{z,n} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά 	Φz,m	είναι	ο συνολικός συντελεστής διάταξης του υποστυλώματος για
 φ_{z,n} είναι ο συνολικός συντελεστής διάταξης του υποστυλώματος για θερμότητα από τις φλόγες στην πλευρά n. ε_{z,m} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά ε_{z,n} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά 			θερμότητα από τις φλόγες στην πλευρά m.
θερμότητα από τις φλόγες στην πλευρά n. ε _{z,m} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά ε _{z,n} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά	Φz,n	είναι	ο συνολικός συντελεστής διάταξης του υποστυλώματος για
ε _{z,m} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά ε _{z,n} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά			θερμότητα από τις φλόγες στην πλευρά n.
ε _{z,n} είναι η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά	ε _{z,m}	είναι	η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά m .
	ε _{z,n}	είναι	η συνολική ικανότητα ακτινοβολίας των φλογών στην πλευρά n .

β) συνθήκες `με ρεύμα αἑρα'

4.4.3.2 Ικανότητα ακτινοβολίας της φλόγας

Εἀν το υποστύλωμα βρίσκεται απέναντι από ἀνοιγμα, η ικανότητα ακτινοβολίας ε_ς της φλόγας θα προσδιορίζεται από την ἐκφραση για το ε που δίδεται στο Παρἀρτημα Β του ΕΝ 1991-1-2, χρησιμοποιώντας το πἀχος φλόγας λ στην ανώτερη στἀθμη των ανοιγμἀτων. Υπό την προϋπόθεση ὀτι δεν υπἀρχει σκἰαστρο ἡ εξώστης πἀνω από το ἀνοιγμα, το λ μπορεί να λαμβἀνεται ως εξής:

- για συνθήκες "χωρίς ρεύμα αέρα":

$$\lambda = 2h/3 \tag{4.38}$$

για συνθήκες `με ρεύμα αέρα':

$$\lambda = x \qquad a\lambda\lambda \dot{a} \ \lambda \le hx/z \qquad (4.39)$$

όπου h, x και z δίδονται στο Παράρτημα Β του ΕΝ 1991-1-2.

Εάν το υποστύλωμα βρίσκεται μεταξύ δύο ανοιγμάτων οι συνολικές ικανότητες ακτινοβολίας ε_{z,m} και ε_{z,n} των φλογών από τις πλευρές *m* και *n* θα προσδιορίζονται από την έκφραση για το ε που δίδεται στο Παράρτημα Β του ΕΝ 1991-1-2 χρησιμοποιώντας για το ολικό πάχος λ της φλόγας την τιμή:

- για την πλευρά m:
$$\lambda = \sum_{i=1}^{m} \lambda_i$$
 - για την πλευρά n: $\lambda = \sum_{i=1}^{n} \lambda_i$ (4.40)

όπου:

m	είναι	ο αριθμός ανοιγμάτων στην πλευρά m,
n	είναι	ο αριθμός ανοιγμάτων στην πλευρά n,
λi	είναι	το πάχος της φλόγας για το άνοιγμα ι.

Το πάχος της φλόγας λ_i θα λαμβάνεται ως ακολούθως:

- για συνθήκες "χωρίς ρεύμα αέρα" :

$$\lambda_i = w_i \tag{4.41}$$

για συνθήκες "με ρεύμα αέρα":

$$\lambda_{i} = w_{i} + 0.4s \tag{4.42}$$

όπου:

w είναι το πλάτος του ανοίγματος,

s είναι η οριζόντια απόσταση μεταξύ του άξονα του υποστυλώματος και του
 τοίχου του πυροδιαμερίσματος

4.4.3.5 Απορροφητικότητα της θερμότητας που εκπέμπεται από μία φλόγα

Για τη συνθήκη `χωρίς ρεύμα αέρα', η απορροφητικότητα φλόγας a_z θα λαμβάνεται ίση προς μηδέν. Για τη συνθήκη `με ρεύμα αέρα', η απορροφητικότητα a_z θα λαμβάνεται ως ίση προς την ικανότητα ακτινοβολίας ε_z της σχετικής φλόγας.

4.5 Παραδείγματα στον υπολογισμό θερμικών δράσεων σε εξωτερικά μέλη

Παράδειγμα 4.5.1

Θα βρεθούν τα χαρακτηριστικά της πυρκαγιάς και των φλογών σύμφωνα με το παράρτημα Β του ΕΝ 1991.1.2 για τον υπολογισμό των θερμικών δράσεων στα εξωτερικά μέλη πυροδιαμερίσματος με επιφάνεια δαπέδου A_f = 100 m² και στη συνέχεια θα υπολογιστεί η μέση θερμοκρασία εξωτερικού χαλύβδινου μἑλους, απόσταση s=3m. Οι διαστάσεις σε του πυροδιαμερίσματος είναι L_1 = 3,0 m, L_2 = 10,0 m και L_3 = 10,0 m και οι διαστάσεις των ανοιγμάτων του φαίνονται στο παρακάτω σχήμα (no forced draught).

Διαστάσεις ανοιγμάτων :

 $h_1=h_2=h_3=h_4=h_5=h_6=h_7=$ 1,20 m $b_1=b_4=b_5=b_7=$ 1,00 m $b_2=b_3=b_6=$ 1,50 m • Συνολική επιφάνεια των κατακόρυφων ανοιγμάτων, A_v : $A_v = b_1 \cdot h_1 + b_2 \cdot h_2 + b_3 \cdot h_3 + b_4 \cdot h_4 + b_5 \cdot h_5 + b_6 \cdot h_6 + b_7 \cdot h_7$ $A_v = 1,0 \cdot 1,2 + 1,5 \cdot 1,2 + 1,5 \cdot 1,2 + 1,0 \cdot 1,2 + 1,0 \cdot 1,2 + 1,5 \cdot 1,2 + 1,0 \cdot 1,2$ $A_v = 10,2 \text{ m}^2$

 Συνολική επιφάνεια περιβλήματος (τοίχος, οροφή και δάπεδο, συμπεριλαμβανομένων των ανοιγμάτων), A_t:

 $A_{t} = 2 \cdot [L_{1} \cdot L_{2} + L_{1} \cdot L_{3} + L_{2} \cdot L_{3}]$ $A_{t} = 2 \cdot [3, 0 \cdot 10, 0 + 3, 0 \cdot 10, 0 + 10, 0 \cdot 10, 0]$ $A_{t} = 320 \text{ m}^{2}$

Επιφάνεια παραθύρων στον τοίχο 1, Α_{v1} :

 $A_{v1} = b_1 \cdot h_1 + b_2 \cdot h_2 + b_3 \cdot h_3 + b_4 \cdot h_4$ $A_{v1} = 1,0 \cdot 1,2 + 1,5 \cdot 1,2 + 1,5 \cdot 1,2 + 1,0 \cdot 1,2$ $\underline{A_{v1}} = 6,0 \text{ m}^2$

Πλάτος του τοίχου που περιλαμβάνει τη μεγαλύτερη επιφάνεια παραθύρων, W1 :

 $W_1 = 10,0 \text{ m}$

Πλάτος του τοίχου που είναι κάθετος στον τοίχο 1 στο συγκεκριμένο πυροδιαμέρισμα, W₂ :
 <u>W₂ = 10,0 m</u>

Για την περίπτωση που υπάρχουν παράθυρα σε παραπάνω από έναν τοίχους, ο λόγος D/W υπολογίζεται από τον τύπο (4.2) :

$$D/W = \frac{W_2}{W_1} \cdot \frac{A_{v1}}{A_v}$$

 $\mathsf{D}/\mathsf{W} = \frac{10,0}{10,0} \cdot \frac{6,0}{10,2}$

D/W = 0,60

- Διάρκεια ελεύθερης καύσης, τ_f = 1200 sec.
- Ισοδύναμο ύψος ανοιγμάτων, h_{eq} = 1,20 m
- Συντελεστής ανοιγμάτων Ο ,

$$O = A_{\nu} \frac{\sqrt{h_{eq}}}{A_{t}} \Rightarrow O = 10.2 \frac{\sqrt{1.2}}{320} \Rightarrow \underline{O} = 0.035 > 0.02$$

Πυκνότητα πυροθερμικού φορτίου, q_{f,d} (υπολογίζεται σύμφωνα με το παράρτημα Ε) :
 q_{f,d} = 780·0,8·1,23·1,0·1,0 = <u>768 MJ/m²</u>.

Στο συγκεκριμένο παράδειγμα έχουμε συνθήκες **"χωρίς ρεύμα αέρα"** (no forced draught), οπότε κάνουμε χρήση των αντίστοιχων σχέσεων του παραρτήματος Β και υπολογίζουμε τα χαρακτηριστικά της πυρκαγιάς και των φλογών συμφωνα με το κεφάλαιο B.4.1 του ευρωκώδικα.

Ο ρυθμός εκροής θερμότητας Q υπολογίζεται από τον τύπο (4.4) :

Q= min (
$$(A_{f'}q_{fd}/T_{f})$$
; 3,15(1- $e^{-0.036/0}$)· A_{v} · $\left(\frac{h_{eq}}{D/W}\right)^{1/2}$)
Q= min ((100.768/1200) ; 3,15(1- $e^{-0.036/0.035}$)·10,2· $\left(\frac{1,2}{0,6}\right)^{1/2}$)
Q= min (64,0 ; 29,2)

Η θερμοκρασία στο πυροδιαμέρισμα Τ_f δίνεται από τη σχέση (4.5) :

$$T_{f} = 6000(1 - e^{-0.1/0}) \cdot O^{1/2} \cdot (1 - e^{-0.00286 \cdot \Omega}) + T_{o}$$

$$T_{f} = 6000(1 - e^{-0.1/0.035}) \cdot 0.035^{1/2} \cdot (1 - e^{-0.00286 \cdot 1344.3}) + 293$$

όпου

$$\Omega = \frac{(A_f \cdot q_{f,d})}{(A_v \cdot A_t)^{1/2}} = \frac{(100 \cdot 768)}{(10,2 \cdot 320)^{1/2}} = 1344,3$$

<u>T_f = 1328,4 K</u>

Διαστάσεις φλόγας

Το ύψος της φλόγας L_L δίνεται από τον τύπο (4.6) :

$$L_{L} = \max\left(0; h_{eq} \cdot \left(2,37 \left(\frac{Q}{A_{v} \cdot \rho_{g} \cdot (h_{eq} \cdot g)^{1/2}}\right)^{2/3} - 1\right)\right)$$
$$L_{L} = \max\left(0; h_{eq} \cdot \left(2,37 \left(\frac{29,2}{10,2 \cdot 0,45 \cdot (1,2 \cdot 9,81)^{1/2}}\right)^{2/3} - 1\right)\right)$$

 $L_L = max(0; 3,09)$

 $L_L = 3,09 \text{ m}$

- Το πλάτος της φλόγας w_f είναι ίσο με το πλάτος του παραθύρου, $w_f = w_i = 1,0$ m

Το βάθος της φλόγας d_f είναι ίσο με τα 2/3 του ύψους του παραθύρου,

 $d_f = 2/3 h_{eq} = 2/3 \cdot 1,20 = 0,8 m$

Η οριζόντια προβολή των φλογών L_H, για την περίπτωση όπου υπάρχει τοίχος πάνω από το παράθυρο και ισχύει h_{eq} ≤ 1,25 w_t τότε από τη σχέση (4.9) :

 $L_{H}=h_{eq} \ / \ 3 \ \
ightarrow$ aqovi 1,20 \leq 1,25.1,0

 $L_H = 1,2 / 3 = 0,4 m$

Το μήκος της φλόγας κατά μήκος του άξονα L_f, δίνεται από τη σχέση (4.13) :

 $L_{\rm f} = L_{\rm L} + h_{eq}/2$ αν υπάρχει τοίχος πάνω από το παράθυρο ή αν $h_{eq} \leq 1,25~w_t$

 $L_f = 3,09 + 1,2/2 = 3,69 \text{ m}$

Η θερμοκρασία της φλόγας Τ_w στο παράθυρο δίνεται από τη σχέση (4.15) :

$$T_w = 520 / (1 - 0.4725(L_f \cdot w_t/Q)) + T_o$$

 $\mu\epsilon L_{f'}w_t/Q < 1$

 $T_w = 520 / (1 - 0.4725(3.69 \cdot 1.0/29.2)) + 293$

<u>T_w = 846,2 K</u> , με 3,69·1,0/ 29,2= 0,126< 1,0

 Ο συντελεστής ικανότητας ακτινοβολίας (emissivity) των φλογών στο παράθυρο λαμβάνεται ίσος με : ε_f = 1,0.

Η θερμοκρασία της φλόγας κατά μήκος του άξονα Τ_z δίνεται από τον τύπο (4.17) :

$$T_z = (T_w - T_o) (1 - 0.4725 \cdot (L_x \cdot w_t/Q)) + T_o$$

 $\mu\epsilon\;L_x\!\cdot\!w_t\;/Q<1$

 L_x είναι το μήκος του άξονα από το παράθυρο ως και το σημείο όπου γίνεται ο υπολογισμός, L_x = 3,0 m

 $T_z = (846, 2 - 293) (1 - 0, 4725 \cdot (3, 0 \cdot 1, 0/29, 2)) + 293$

<u>T_z= 819 K</u> , με 3,0·1,0/ 29,2=0,1 <1

• Ο συντελεστής ικανότητας ακτινοβολίας $ε_f$ (emissivity) των φλογών λαμβάνεται ίσος με: $ε_f = 1- e^{-0,3df}$

όπου d_f είναι το πάχος της φλόγας (m)

$$\varepsilon_{\rm f} = 1 - e^{-0.3 \cdot 0.8} = 0.213$$

Ο συντελεστής μεταφοράς θερμότητας από επαφή α_c δίνεται από τη σχέση (4.19) :

 $a_{c} = 4,67 (1/d_{eq})^{0,4} (Q/A_{v})^{0,6}$ $a_{c} = 4,67 (1/0,33)^{0,4} (29,2/10,2)^{0,6}$ $a_{c} = 13,68 \text{ W/m}^{2} \text{ K}$

όπου d_{eq}: ενεργή διάσταση διατομής.

$$d_{eq} = (d_1 + d_2)/2 = (36 + 30)/2 = 33 \text{ cm} = 0,33 \text{ m}$$

Από την εξίσωση θερμικής ισορροπίας (4.33) που δίνεται στο Παράρτημα Β του
 Ευρωκώδικα 3-1-2, θα υπολογίσουμε τη μέση θερμοκρασία του χάλυβα Τ_m για χαλύβδινο
 μέλος που δεν περιβάλλεται από φλόγες :

$$\sigma T_m^4 + \alpha T_m = \Sigma I_z + \Sigma I_f + 293\alpha$$

Για υποστύλωμα μη περιβαλλόμενο από φλόγες που βρίσκεται απέναντι από ένα άνοιγμα η θερμική ροή δι'ακτινοβολίας από φλόγα προσδιορίζεται από τη σχέση (4.36) :

$$I_{z} = \phi_{z} \cdot \epsilon_{z} \cdot \sigma \cdot T_{z}^{4}$$

όπου:

- $Φ_z$ είναι ο συνολικός συντελεστής διάταξης του υποστυλώματος για θερμότητα από τη φλόγα (από το παράδειγμα 8.4.1), $φ_z = 1,0$
- $ε_z$ είναι η ικανότητα ακτινοβολίας της φλόγας, $ε_z = 0,213$

 T_z είναι η θερμοκρασία της φλόγας, T_z = 819 K.

Άρα I_z = 1,0·0,213·5,67·10⁻⁸·819⁴

 I_z = 5433,73 W/m²

Η θερμική ροή δι' ακτινοβολίας από ένα άνοιγμα προσδιορίζεται από τη σχέση (4.35) :

$$I_{f} = \phi_{f} \cdot \varepsilon_{f} \cdot (1 - a_{z}) \cdot \sigma \cdot T_{f}^{4}$$

όπου:

- φ_f είναι ο συνολικός συντελεστής διάταξης του μέλους για περίπτωση μεταφοράς θερμότητας δι' ακτινοβολίας από αυτό το άνοιγμα (από το κεφάλαιο 8, παράδειγμα 8.4.1), φ_f = 0,65
- ε_f είναι η ικανότητα ακτινοβολίας του ανοίγματος, ε_f = 1,0
- az είναι ο βαθμός απορρόφησης της θερμότητας από τις φλόγες, az= 0
- Τ_f είναι η θερμοκρασία της πυρκαγιάς Τ_f = Τ_w = 846,2 K

'Αρα I_f = 0,656·1,0·1,0·5,67·10⁻⁸·846,2⁴

 $I_f = 19071,24 \text{ W/m}^2$

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής α όπως υπολογίστηκε στο παράδειγμα για συνθήκες `χωρίς ρεύμα αέρα' είναι α = 13,68 W/m²K

Άρα αντικαθιστώντας στην εξίσωση θερμικής ισορροπίας (4.33) προκύπτει:

 $5,67 \cdot 10^{-8} \cdot T_m^4 + 13,68 \cdot T_m = 5433,73 + 19071,24 + 293 \cdot 13,68$

 $5,67 \cdot 10^{-8} \cdot T_m^4 + 13,68 \cdot T_m = 28513,21$

Και με δοκιμές τελικά προκύπτει η μέση θερμοκρασία του χαλύβδινου μέλους:

<u>T_m = 750 K</u>

Αν εφαρμόσουμε τη σχέση 2.5 για διατομή ΗΕΒ300 μπορύμε να κάνουμε μια εκτίμηση σχετικά με το χρονικό διάστημα μεσα στο οποίο θα αναπτυχθεί η θερμοκρασία αυτή στο εξωτερικό μέλος.

Έτσι για h_{net} = I_{f} + I_{z} = 19071,24 + 5433,73 = 24505 \Rightarrow

$$\begin{split} \Delta \theta_{a,t} &= k_{sh} \frac{A_m / V \cdot h_{net,d} \cdot \Delta t}{c_a \cdot \rho_a} \Rightarrow \\ (750-20) \cdot 600 \cdot 7850 &= 0,76 \cdot 95,51 \cdot 24505 \cdot \Delta t \Rightarrow \\ \Delta t &= 32,2 \text{ min.} \end{split}$$

Θα βρεθούν τα χαρακτηριστικά της πυρκαγιάς και των φλογών σύμφωνα με το παράρτημα Β του ευρωκώδικα 1.1.2 για τον υπολογισμό των θερμικών δράσεων στα εξωτερικά μέλη πυροδιαμερίσματος με επιφάνεια δαπέδου

 $A_f = 100 m^2$ και στη συνέχεια θα υπολογιστεί η μέση θερμοκρασία εξωτερικού χαλύβδινου μέλους σε απόσταση s=3m.Oι διαστάσεις του πυροδιαμερίσματος είναι L₁= 3,0 m, L₂= 10,0 m και L₃= 10,0 m και οι διαστάσεις των ανοιγμάτων του φαίνονται στο παρακάτω σχήμα (forced draught).

Διαστάσεις ανοιγμάτων

 $h_1 = h_2 = h_3 = h_4 = h_5 = h_6 = h_7 = h_8 = h_9 = h_{10} = 1,20 \text{ m}$

$$b_1 = b_4 = b_5 = b_7 = b_9 = 1,00 \text{ m}$$

 $b_2 = b_3 = b_6 = b_8 = b_{10} = 1,50 \text{ m}$

$$\begin{aligned} A_v &= b_1 h_1 + b_2 h_2 + b_3 h_3 + b_4 h_4 + b_5 h_5 + b_6 h_6 + b_7 h_7 + b_8 h_8 + b_9 h_9 + b_{10} h_{10} \\ A_v &= 1, 0 \cdot 1, 2 + 1, 5 \cdot 1, 2 + 1, 5 \cdot 1, 2 + 1, 0 \cdot 1, 2 + 1, 0 \cdot 1, 2 + 1, 5 \cdot 1, 2 + 1, 0 \cdot 1, 2 \end{aligned}$$

+1,5.1,2+1,0.1,2+1,5.1,2

$$A_{v} = 15,0 \text{ m}^2$$

 Συνολική επιφάνεια περιβλήματος (τοίχος, οροφή και δάπεδο, συμπεριλαμβανομένων των ανοιγμάτων), A_t:

 $A_{t} = 2 \cdot [L_{1} \cdot L_{2} + L_{1} \cdot L_{3} + L_{2} \cdot L_{3}]$ $A_{t} = 2 \cdot [3, 0 \cdot 10, 0 + 3, 0 \cdot 10, 0 + 10, 0 \cdot 10, 0]$ $A_{t} = 320 \text{ m}^{2}$

Ισοδύναμο ύψος ανοιγμάτων, h_{eq} = 1,20 m

Διάρκεια ελεύθερης καύσης, τ_f = 1200 sec.

Πυκνότητα πυροθερμικού φορτίου, q_{f,d} (υπολογίζεται σύμφωνα με το παράρτημα Ε) :

 $q_{f,d} = 780.0, 8.1, 23.1, 0.1, 0 = \frac{768 \text{ MJ/m}^2}{1000 \text{ MJ/m}^2}.$

Στο συγκεκριμένο παράδειγμα έχουμε συνθήκες `με ρεύμα αέρα' (forced draught), οπότε κάνουμε χρήση των αντίστοιχων σχέσεων του παραρτήματος Β και υπολογίζουμε τα χαρακτηριστικά της πυρκαγιάς και των φλογών συμφωνα με το κεφάλαιο Β.4.2 του ευρωκώδικα.

Ο ρυθμός εκροής θερμότητας Q υπολογίζεται από τον τύπο (4.20) :

$$Q = (A_{f} \cdot q_{f,d}) / \tau_{F}$$

$$Q = (100 \cdot 768) / 1200$$

$$Q = 64 MW$$

Η θερμοκρασία στο πυροδιαμέρισμα Τ_f δίνεται από τη σχέση (4.21) :

$$T_{f} = 1200 \cdot ((A_{f} \cdot q_{f,d}) / 17,5 - e^{-0,00228 \cdot \Omega}) + T_{o}$$

$$T_{f} = 1200 \cdot ((100 \cdot 768) / 17,5 - e^{-0,00228 \cdot 1108,5}) + 293$$

$$T_{f} = 5290724 \text{ K} \quad ???$$

όпου

Τ_ο η αρχική θερμοκρασία, Τ_ο =293 Κ

$$\Omega = \frac{(A_f \cdot q_{f,d})}{(A_v \cdot A_t)^{1/2}} = \frac{(100 \cdot 768)}{(15 \cdot 320)^{1/2}} = 1108,5$$

Παρατήρηση : Η θερμοκρασία του πυροδιαμερίσματος T_f στην περίπτωση που υπάρχει ρεύμα αέρα βρίσκεται σύμφωνα με τον τύπο B.19 του παραρτήματος B του prEN 1991-1-2. Παρατηρούμε όμως ότι το αποτέλεσμα που προκύπτει μετά από πράξεις δεν μπορεί να ανταποκρίνεται στη πραγματικότητα αφού η θερμοκρασία αυτή είναι πάρα πολύ υψηλή (T_f = 5290724 K).

Διαστάσεις φλόγας

Το ύψος της φλόγας L_L δίνεται από τον τύπο (4.22) :

$$L_{L} = \left(1,366 \left(\frac{1}{u}\right)^{0,43} \frac{Q}{A_{v}^{-1/2}}\right) - h_{eq}$$

<u>Σημείωση</u> : Για u= 6 m/s, $L_L \approx 0,628 \text{ Q/A}_v^{1/2}$ - h_{eq}

$$L_L = 0.628.64/15^{1/2} - 1.2$$

 $L_I = 9.18 \text{ m}$

Η οριζόντια προβολή των φλογών L_H δίνεται από τη σχέση (4.23) :

$$L_{H} = 0,605 (u^{2} / h_{eq})^{0,22} (L_{L} + h_{eq})$$

<u>Σημείωση</u> : Για u = 6 m/s, $L_{H} = 1,33(L_{L} + h_{eq}) / h_{eq}^{0,22}$

 $L_{H} = 1,33 \cdot (9,18 + 1,2) / 1,2^{0,22}$

<u>L_H = 13,26 m</u>

Το πλάτος της φλόγας w_f υπολογίζεται από τη σχέση (4.24) :

 $w_f = w_t + 0, 4 \cdot L_H$ $w_f = 1, 0 + 0, 4 \cdot 13, 26 = 6,304 \text{ m}$

Το μήκος της φλόγας κατά μήκος του άξονα L_f δίνεται από τη σχέση (4.25) :

$$L_{f} = (L_{L}^{2} + L_{H}^{2})^{1/2}$$
$$L_{f} = (9,18^{2} + 13,26^{2})^{1/2}$$
$$\underline{L}_{f} = 16,13 \text{ m}$$

Η θερμοκρασία της φλόγας στο παράθυρο Τ_w δίνεται από τον τύπο (4.26) :

$$T_{w} = 520 / (1 - 0.3325L_{f}(A_{v})^{1/2} / Q) + T_{o}$$

$$\mu\epsilon \quad L_{f}(A_{v})^{1/2} / Q < 1$$

$$T_{w} = 520 / (1 - 0.3325 \cdot 16.13 (15)^{1/2} / 64) + 293$$

$$\underline{T_{w}} = 1062.9 \text{ K} \qquad , \mu\epsilon 16.13 \cdot (15)^{1/2} / 64 = 0.976 < 1$$

Ο συντελεστής ικανότητας ακτινοβολίας ε_f (emissivity) στο παράθυρο μπορεί να λαμβάνεται
 ίσος με ε_f = 1,0.

Η θερμοκρασία της φλόγας κατά μήκος του άξονα Τ_z δίνεται από τον τύπο (4.28) :

$$T_{z} = \left(1 - 0,3325 \frac{L_{x}(A_{v})^{1/2}}{Q}\right) (T_{w} - T_{o}) + T_{o}$$

όпου

L_x είναι το μήκος του άξονα από το παράθυρο ως το σημείο όπου γίνεται ο υπολογισμός, L_x = 3,0 m

$$T_{z} = \left(1 - 0,3325 \frac{3,0 \cdot (15,0)^{1/2}}{64}\right) (1062,9 - 293) + 293$$

<u>T_z = 1016,4 K</u>

 Ο συντελεστής ικανότητας ακτινοβολίας ε_f (emissivity) των φλογών υπολογίζεται από τον τύπο (4.29) :

$$\epsilon_{f} = 1 - e^{-0.3df}$$

όπου d_f είναι το πάχος της φλόγας, το οποίο για συνθήκες 'με ρεύμα αέρα' είναι ίσο με L_H,

$$\begin{split} &d_f = L_H = 13,16 \ m \\ &\epsilon_f = 1 - \ e^{\ - \ 0,3df} = 1 - \ e^{\ - \ 0,3\cdot 13,16} = \ \underline{0,98} \end{split}$$

Ο συντελεστής μεταφοράς θερμότητας από επαφή α_c, δίνεται από τον τύπο (4.30) :

 $a_c = 9.8 (1 / d_{eq})^{0.4} (Q/(17,5A_v)+u/1,6)^{0.6}$

Σημείωση : Για u = 6m/s ο συντελεστής μεταφοράς θερμότητας από επαφή δίνεται από τον τύπο:

$$a_{c} = 9,8 (1/d_{eq})^{0,4} (Q/(17,5A_{v}) + 3,75)^{0,6}$$

$$a_{c} = 9,8 (1/0,33)^{0,4} (64/(17,5\cdot15) + 3,75)^{0,6}$$

$$\underline{a_{c}} = 35,05 \text{ W/m}^{2} \text{ K}$$

όπου d_{eq}: ενεργή διάσταση διατομής. d_{eq}=(d₁+d₂)/2=(36+30)/2=33cm=0,33m

Από την εξίσωση θερμικής ισορροπίας (4.33) που δίνεται στο Παράρτημα Β του
 Ευρωκώδικα

3-1-2 θα υπολογίσουμε τη μέση θερμοκρασία του χάλυβα T_m για χαλύβδινο μέλος που δεν περιβάλλεται από φλόγες :

 $\sigma T_m^4 + a T_m = \Sigma I_z + \Sigma I_f + 293a$

Για υποστύλωμα μη περιβαλλόμενο από φλόγες που βρίσκεται απέναντι από ένα άνοιγμα η θερμική ροή δι'ακτινοβολίας προσδιορίζεται από τη σχέση (4.36) : $I_z = \phi_z \cdot \epsilon_z \cdot \sigma \cdot T_z^4$

όπου:

- $Φ_z$ είναι ο συνολικός συντελεστής διάταξης του υποστυλώματος για θερμότητα από τη φλόγα (από παράδειγμα 8.4.1), $φ_z = 1,0$
- $ε_z$ είναι η ικανότητα ακτινοβολίας της φλόγας, $ε_z = 0,98$
- T_z είναι η θερμοκρασία της φλόγας, T_z = 1016,4 K.

$$I_z = 59301,78 \text{ W/m}^2$$

Η θερμική ροή δι' ακτινοβολίας από ένα άνοιγμα προσδιορίζεται από τη σχέση (4.35) :

 $I_{f} = \phi_{f} \cdot \epsilon_{f} \cdot (1 - a_{z}) \cdot \sigma \cdot T_{f}^{4}$

όπου:

- φ_f είναι ο συνολικός συντελεστής διάταξης του μέλους για περίπτωση μεταφοράς θερμότητας δι' ακτινοβολίας από αυτό το άνοιγμα δίνεται από το κεφάλαιο 8,παράδειγμα 8.4.1, φ_f = 0,65
- ϵ_f είναι η ικανότητα ακτινοβολίας του ανοίγματος, $\epsilon_f = 1,0$
- az είναι ο βαθμός απορρόφησης της θερμότητας από τις φλόγες, az = 0,98
- T_{f} είναι η θερμοκρασία της πυρκαγιάς $T_{f} = T_{w} = 1062,9$ K

Άρα I_f = 0,656·1,0·(1,0-0,98)·5,67·10⁻⁸·1062,9⁴

$$I_f = 949,5 \text{ W/m}^2$$

Ο συντελεστής μεταφοράς θερμότητας δια συναγωγής α όπως υπολογίστηκε στο παράδειγμα για συνθήκες `με ρεύμα αἑρα' είναι, α = 35,05 W/m²K

Άρα αντικαθιστώντας στην εξίσωση θερμικής ισορροπίας (4.33) προκύπτει:

 $5,67 \cdot 10^{-8} \cdot T_m^4 + 35,05 \cdot T_m = 59301,78 + 949,5 + 293 \cdot 35,05$

 $5,67 \cdot 10^{-8} \cdot T_m^4 + 35,05 \cdot T_m = 70520,93$

Και με δοκιμές τελικά προκύπτει η μέση θερμοκρασία του χαλύβδινου μέλους:

<u>T_m = 910 K</u>

Κεφάλαιο 5

Τοπικές πυρκαγιές

5.1 Γενικά

Τοπική χαρακτηρίζεται μια πυρκαγιά που αναπτύσσεται σε μια περιορισμένη έκταση και αναφέρεται σε ένα συγκεκριμένο πυροθερμικό φορτίο.

Οι θερμικές δράσεις μιας τοπικής πυρκαγιάς μπορούν να υπολογίζονται από τις σχέσεις που δίνονται στο παράρτημα C του Ευρωκώδικα 1991-1-2.

5.2 Χαρακτηριστικά τοπικής πυρκαγιάς

Το μήκος της φλόγας μιας τοπικής πυρκαγιάς δίνεται από τη σχέση:

$$L_{\rm f} = -1,02D + 0,0148Q^{2/5} \tag{5.1}$$

5.2.1 Όταν η φλόγα δεν επηρεάζει την οροφή του πυροδιαμερίσματος

Όταν η φλόγα δεν επηρεάζει την οροφή ενός διαμερίσματος δηλαδή **L_f < Η** ή σε περίπτωση πυρκαγιάς σε υπαίθριο χώρο, η θερμοκρασία Θ_(z) (°C)κατά μήκος του κατακόρυφου άξονα της πυρκαγιάς δίνεται από τη σχέση:

$$\Theta_{(z)} = 20 + 0.25 Q_c^{2/3} (z - z_o)^{-5/3} \le 900$$
(5.2)

- D είναι η διάμετρος της πυρκαγιάς (m)
- Q είναι ο ρυθμός εκροής θερμότητας (W)
- Q_c είναι το μέρος του ρυθμού εκροής θερμότητας εκ συναγωγής (convective part), με Q_c = 0,8 Q
- z είναι το ύψος κατά μήκος του άξονα της πυρκαγιάς (m)
- Η είναι η απόσταση ανάμεσα στην εστία της πυρκαγιάς και την οροφή (m)

Σχήμα 5.1

Η πραγματική αφετηρία z_o (m) του άξονα δίνεται από τη σχέση:

 $z_0 = -1,02 D + 0,00524 Q^{2/5}$ (5.3)

5.2.2 Όταν η φλόγα επηρεάζει την οροφή του πυροδιαμερίσματος

Όταν η φλόγα επηρεάζει την οροφή, δηλαδή $L_f \ge H$ τότε η θερμική ροή \dot{h} (W/m²) που λαμβάνει η εκτεθειμένη στην πυρκαγιά επιφάνεια στο επίπεδο της οροφής δίνεται από:

h = 100000 av y $\leq 0,30$

h=136300 ως 121000 y av 0,30 < y < 1,0

 $h = 15000 \text{ y}^{-3,7}$ av y $\ge 1,0$

όпου

y είναι η παράμετρος (-) που δίνεται από τη σχέση :

$$y = \frac{r + H + z'}{L_{h} + H + z'}$$
(5.5)

- r είναι η οριζόντια απόσταση ανάμεσα στον κατακόρυφο άξονα της πυρκαγιάς και στο σημείο κατά μήκος της οροφής όπου η θερμική ροή υπολογίζεται (m).
- Η είναι η απόσταση μεταξύ της εστίας της πυρκαγιάς και της οροφής (m).

Σχήμα 5.2

(5.4)

L_h είναι το οριζόντιο μήκος της φλόγας που δίνεται από την ακόλουθη σχέση:

$$L_{h} = 2,9 H (Q_{H}^{*})^{0,33}) - H$$
 (m) (5.6)

Q^{*}_H είναι αδιάστατος ρυθμός εκροής θερμότητας που δίνεται από τον τύπο:

$$Q_{H}^{*} = Q / (1, 11 \cdot 10^{6} \cdot H^{2,5})$$
 (-) (5.7)

z' είναι η κατακόρυφη θέση της πραγματικής εστίας θερμότητας και δίνεται από τη σχέση:

$$z' = 2,4 D(Q_{D}^{*}^{2/5} - Q_{D}^{*}^{2/3}) \qquad \text{orav} \quad Q_{D}^{*} < 1,0$$
(m)
$$z' = 2,4 D(1,0-Q_{D}^{*}^{2/5}) \qquad \text{orav} \quad Q_{D}^{*} \ge 1,0$$
(5.8)

Η καθαρή θερμική ροή h_{net} (W/m²) που λαμβάνει η εκτεθειμένη στην πυρκαγιά επιφάνεια στο επίπεδο της οροφής δίνεται από τον τύπο:

$$h_{net} = h - a_c \cdot (\Theta_m - 20) - \Phi \cdot \varepsilon_m \cdot \varepsilon_f \cdot \sigma \cdot \left[(\Theta_m + 273)^4 - (293)^4 \right]$$
(5.10)

όπου :

ο συντελεστής μεταφοράς θερμότητας : a_c = 35 W/m²K

οι συντελεστές ικανότητας ακτινοβολίας (emissivity) : ϵ_m = 0,8, ϵ_f = 1,0

ο συντελεστής διάταξης : Φ = 1,0

η σταθερά Stefan- Boltzman : $\sigma = 5,67 \cdot 10^{-8} \text{ W/m}^2 \text{K}$

5.3 Παραδείγματα στις θερμικές δράσεις που αναπτύσσονται στις τοπικές πυρκαγιές

<u>Παράδειγμα 5.3.1</u>

Δοχείο διαμέτρου D=2,0 m περιέχει πετρέλαιο 100 λίτρων σε διαμέρισμα ύψους H=8,0 m. Ζητείται ο έλεγχος έναντι πυρκαγιάς δοκού HEA 300 σε ύψος 8,0 m στον άξονα της φωτιάς σύμφωνα με το παράρτημα C του Ευρωκώδικα 1-1-2.

Στο παράδειγμα αυτό θα εξετάσουμε τις θερμικές δράσεις που δέχεται ένα μεταλλικό μέλος όταν εκτίθεται σε μία τοπική πυρκαγιά όταν οι φλόγες της φωτιάς δεν επηρεάζουν την οροφή (L_f < H). Αφού προσδιορίσουμε τα χαρακτηριστικά της τοπικής πυρκαγιάς (μήκος φλόγας, ρυθμός εκροής θερμότητας), θα υπολογίσουμε τη θερμοκρασία του αέρα κοντά στη μεταλλική δοκό και στη συνέχεια θα εκτιμήσουμε τη μεταβολή της θερμοκρασίας στο χαλύβδινο μέλος.

Το μήκος της φλόγας σε μια τοπική πυρκαγιά δίνεται από τον τύπο (5.1) :

 $L_f = -1,02D + 0,0148Q^{2/5}$ (m)

Ο ρυθμός εκροής θερμότητας Q (W) υπολογίζεται από τη σχέση 6.5 του Κεφαλαίου 6 που αναφέρεται στο παράρτημα Ε του ΕΝ 1991-1-2 :

$$Q = 10^{6} \left(\frac{t}{t_{a}}\right)^{2}$$

όпου

t_a είναι ο απαιτούμενος χρόνος για ρυθμό εκροής θερμότητας ίσο με 1 MW.

Από τον πίνακα 6.6 δίνεται η τιμή του t_a αναλόγως τη χρήση της κατασκευής. Οπότε στην περίπτωση της κατοικίας που εξετάζουμε προκύπτει t_a= 300 sec.

$$Q = 10^6 \left(\frac{t}{300}\right)^2 \Rightarrow$$

$$Q = 11,11 t^2$$
 (J/s)

Άρα το μήκος της φλόγας συναρτήσει του χρόνου υπολογίζεται από τη σχέση :

$$L_{f} = -1,02 \cdot 2,5 + 0,0148 \cdot (11,11 t^{2})^{2/5}$$

$$L_{f} = -2,55 + 0,0148 \cdot (2,62 t^{4/5})$$

$$L_{f} = -2,55 + 0,039 t^{4/5}$$
(m)

Η καθαρή θερμική αξία Η_u (MJ/kg) του πετρελαίου δίνεται από τον πίνακα 6.4 του κεφαλαίου 6 (πυκνότητα πυροθερμικού φορτίου) :

 $H_u = 45 \text{ MJ/kg}$

Άρα για 100 λίτρα πετρελαίου έχουμε:

 $M = \rho \cdot V = 0,82 \cdot 100 = 82 \text{ kg}$

Ta 82 kg πετρελαίου εκλύουν θερμότητα :

Q^{*}= 45*82 = 3690 MJ.

Η διάρκεια της πυρκαγιάς t (sec) δίνεται από τον υπολογισμό του παρακάτω ολοκληρώματος:

$$P = \frac{dQ}{dt} \Rightarrow Q^* = \int \frac{10^6 t^2}{300^2} dt = \frac{10^6}{300^2 \cdot 3} [t^3]_0^t = \frac{10^6}{300^2 \cdot 3} t^3 \Rightarrow \frac{10^6}{300^2 \cdot 3} t^3 = 3690 \cdot 10^6 \Rightarrow t = \sqrt[3]{3 \cdot 300^2 \cdot 3690} = 998 \text{sec.}$$

Άρα η πυρκαγιά ολοκληρώνεται σε χρόνο **<u>t</u> = 998 sec**.

Στο παράδειγμα μας ισχύει <u>L_f < H</u> :

Η θερμοκρασία $\Theta_{(z)}$ στον κατακόρυφο άξονα της φλόγας δίνεται από τη σχέση 5.2 :

$$\Theta_{(z)} = 20 + 0.25 Q_c^{2/3} (z-z_o)^{-5/3}$$
 (°C)

όπου:

ο ρυθμός εκροής θερμότητας εκ συναγωγής (convective part), Q_c:

$$Q_c = 0.8 \cdot Q = 0.8 \cdot 11.11t^2 = 8.89 t^2$$
 (W)

η πραγματική αφετηρία του άξονα της πυρκαγιάς z_o:

$$z_{o} = -1,02D + 0,00524Q^{2/5}$$

$$z_{o} = -1,02\cdot2,5 + 0,00524(11,11t^{2})^{2/5}$$

$$z_{o} = -2,55 + 0,014 t^{4/5}$$
(m)

Τελικά η θερμοκρασία Θ(z) μεταβάλλεται συναρτήσει του χρόνου σύμφωνα με τη σχέση :

$$\Theta_{(z)} = 20 + 0.25Q_{c}^{2/3} (z-z_{o})^{-5/3}$$

$$\Theta_{(z)} = 20 + 0.25(8.89t^{2})^{2/3} \cdot (z+2.55-0.014t^{4/5})^{-5/3}$$

$$\Theta_{(z)} = 20 + (1.0725 \cdot t^{4/3}) \cdot (z+2.55-0.014t^{4/5})^{-5/3}$$

Και σε ύψος z= 8 m η θερμοκρασία συναρτήσει του χρόνου μεταβάλλεται σύμφωνα με την παρακάτω σχέση 5.2 :

$$\Theta_{(z)} = 20 + (1,0725t^{4/3}) \cdot (8+2,55-0,014t^{4/5})^{-5/3}$$

$$\Theta_{(z)} = 20 + (1,0725t^{4/3}) \cdot (10,55-0,014t^{4/5})^{-5/3} \le 900$$
 (°C)

Για να προσδιορίσουμε τη θερμοκρασία της χαλύβδινης δοκού κάνουμε χρήση της σχέσης 2.5 αφού πρόκειται για μη μονωμένο μέλος (με την παραδοχή ότι πρόκειται για ομοιόμορφη κατανομή της θερμοκρασίας στη δοκό).

$$\Delta \Theta_{a,t} = k_{sh} \frac{A_m / V \cdot h_{net,d} \cdot \Delta t}{c_a \cdot \rho_a}$$

Για ανοιχτή διατομή εκτεθειμένη από τρεις πλευρές :

Α_m/V= επιφάνεια εκτεθειμένη στην πυρκαγιά / εμβαδόν διατομής.

Η διατομή διπλού ταυ ΗΕΑ300 έχει χαρακτηριστικά : ύψος κορμού h = 290 mm, πλάτος πέλματος b = 300 mm, εμβαδόν διατομής A= 112,50 cm², πάχος κορμού t_w = 8,5 mm και πάχος πέλματος t_f = 14 mm.

Περίμετρος διατομής σε επαφή με τον αέρα :

 $S= 2 \cdot (h - 2 \cdot t_f) + 3 \cdot b \Rightarrow$

 $S=2\cdot(29 - 2\cdot 1, 4) + 3\cdot 30 = 142, 4$ cm.

Επιφάνεια μέλους σε επαφή με τον αέρα ανά μέτρο μήκους του:

$$A_m = 142, 4.100 = 14240 \text{ cm}^2$$

Αντίστοιχος όγκος υλικού: V= A·100= 112,5·100= 11250 cm³.

Συντελεστής διατομής: $A_m/V = \frac{14240 \cdot 10^{-4}}{11250 \cdot 10^{-6}} = 126,6 m^{-1}$.

Συντελεστής επίδρασης σκίασης :

$$k_{sh} = 0.9 \cdot (A_m/V)_b/(A_m/V)$$

Για τον υπολογισμό του συντελεστή (A_m/V)_b θεωρούμε ένα ορθογώνιο να περιβάλλει τη διατομή:

$$(A_{\rm m}/V)_{\rm b} = \frac{2 \cdot (b+h)}{A}$$

 $(A_m/V)_b = 2(30+29) \cdot 100 \cdot 10^{-4}/112, 50 \cdot 100 \cdot 10^{-6} = 104, 9m^{-1}$

$$k_{sh} = 0,9 \cdot 104,9/126,6 = 0,75$$

Η θερμική ροή σχεδιασμού h_{net,d} προκύπτει :

$$h_{net,d} = h_{net,c} + h_{net,r}$$

Η θερμική ροή δια συναγωγής είναι :

$$h_{net,c} = 35 \cdot (\Theta_g - \Theta_m)$$

Η θερμική ροή δι' ακτινοβολίας υπολογίζεται από τη σχέση:

$$h_{net,r} = \Phi \cdot \epsilon_{m} \cdot \epsilon_{f} \cdot \sigma \cdot ((\Theta_{r} + 273)^{4} - (\Theta_{m} + 273)^{4})$$
$$h_{net,r} = 4,536 \cdot 10^{-8} ((\Theta_{g} + 273)^{4} - (\Theta_{m} + 273)^{4})$$

Τελικά αν αντικαταστήσουμε στην παραπάνω σχέση βρίσκουμε τη μεταβολή της θερμοκρασίας του χάλυβα Δθα για διαδοχικά χρονικά διαστήματα των 30 δευτερολέπτων.

$$\Delta \theta_{a,t} = 0,75 \ \frac{126,6 \cdot h_{\text{net,d}} \cdot 30}{600 \cdot 7850} = 2,02 \cdot 10^{-5} \cdot h_{\text{net,d}}$$

Στο διάγραμμα 5.4 φαίνεται η μεταβολή της θερμοκρασίας του αέρα κατά τη διάρκεια της τοπικής πυρκαγιάς συναρτήσει του χρόνου καθώς και η μεταβολή της θερμοκρασίας της μη μονωμένης δοκού διατομής HEA 300 όπως προκύπτουν μετά από υπολογισμούς που παρουσιάζονται στο φύλλο Excel που ακολουθεί.

— Θερμοκρασία αἑρα Θg, z= 8m 🛛 — Θερμοκρασία χάλυβα Θm, z= 8m

Σχήμα 5.4 Θερμοκρασία αέρα Θ_g και χάλυβα Θ_m μη μονωμένου μέλους διατομής HEA300, με συντελεστή διατομής A_m/V=126,6 m⁻¹ σε συνάρτηση με το χρόνο t(sec) σε συνθήκες τοπικής πυρκαγιάς για περίπτωση L_f < H (D=2m,Q*= 3690 MJ)

Διάμετρος δοχείου D=2m, Περιεχόμενο δοχείου 100lt.

	Διατομή δοκού ΗΕΑ 300								
t(sec)	L _f (m)	Q _c (W)	z₀ (m)	Θ(t) ,z=8m	Θm (°C)	hnet (W/m²)	Δθa,t (°C)		
0	-2.04	0	-2.04	20	20	0	0		
30	-1.45082	7999.2	-1.8314	22.216216	20	87.7974815	0.05320527		
60	-1.01419	31996.8	-1.67681	25.733999	20.0532	225.532542	0.13667272		
90	-0.62113	71992.8	-1.53764	30.086275	20.1899	393.971178	0.23874653		
120	-0.25396	127987.2	-1.40764	35.144314	20.4286	587.751463	0.35617739		
150	0.09511	199980	-1.28406	40.846581	20.7848	804.351763	0.48743717		
180	0.430389	287971.2	-1.16535	47.159664	21.2722	1042.49411	0.63175143		
210	0.75462	391960.8	-1.05055	54.065116	21.904	1301.6101	0.78877572		
240	1.069685	511948.8	-0.939	61.55365	22.6928	1581.61112	0.95845634		
270	1.376948	647935.2	-0.83022	69.622145	23.6512	1882.77768	1.14096328		
300	1.677443	799920	-0.72382	78.271948	24.7922	2205.70506	1.33665727		
330	1.971978	967903.2	-0.61954	87.507841	26.1288	2551.27998	1.54607567		
360	2.261197	1151885	-0.51714	97.337372	27.6749	2920.67664	1.76993004		
390	2.54563	1351865	-0.41644	107.77043	29.4448	3315.3664	2.00911204		
420	2.825716	1567843	-0.31727	118.81892	31.454	3737.1386	2.26470599		
450	3.101826	1799820	-0.21952	130.49662	33.7187	4188.13106	2.53800742		
480	3.374275	2047795	-0.12305	142.81897	36.2567	4670.87024	2.83054737		
510	3.643338	2311769	-0.02779	155.80304	39.0872	5188.32118	3.14412263		
540	3.909252	2591741	0.066357	169.46744	42.2313	5743.94814	3.48083258		
570	4.172226	2887711	0.159464	183.83231	45.7122	6341.7871	3.84312298		
600	4.432445	3199680	0.251595	198.91931	49.5553	6986.53148	4.23383808		
630	4.690073	3527647	0.34281	214.7516	53.7891	7683.63312	4.65628167		
660	4.945259	3871613	0.433159	231.35391	58.4454	8439.42048	5.11428881		
690	5.198134	4231577	0.522691	248.75253	63.5597	9261.23684	5.61230952		
720	5.448819	4607539	0.611447	266.97539	69.172	10157.601	6.15550621		
750	5.697423	4999500	0.699466	286.05209	75.3275	11138.3942	6.74986689		
780	5.944046	5407459	0.786784	306.01398	82.0774	12215.0762	7.40233621		
810	6.188778	5831417	0.873432	326.89422	89.4797	13400.9351	8.12096668		
840	6.431704	6271373	0.959441	348.72787	97.6007	14711.3736	8.91509243		
870	6.6729	6727327	1.044838	371.55201	106.516	16164.2372	9.79552773		
900	6.912439	7199280	1.129647	395.4058	116.311	17780.1853	10.7747923		
930	7.150385	7687231	1.213893	420.33061	127.086	19583.1096	11.8673644		
960	7.386801	8191181	1.297597	446.37015	138.953	21600.5971	13.0899618		
990	7.621743	8711129	1.380779	473.57057	152.043	23864.4343	14.4618472		
998	7.684153	8852484	1.402876	481.02625	<u>166.505</u>	23978.5979			

Δεξαμενή διαμέτρου D=3,0 m περιέχει πετρέλαιο 1000 λίτρων σε πυροδιαμέρισμα ύψους H= 8 m. Ζητείται ο έλεγχος έναντι πυρκαγιάς της δοκού HEA300 που βρίσκεται σε ύψος z=8 m στον άξονα της φλόγας (r=0) και της δοκού HEA300 σε ύψος z= 8m και σε απόσταση από τον άξονα της φωτιάς r= 3m σύμφωνα με το παράρτημα C του ευρωκώδικα 1-1-2.

Στο παράδειγμα αυτό θα εξετάσουμε τις θερμικές δράσεις που δέχεται ένα μεταλλικό μέλος όταν εκτίθεται σε μία τοπική πυρκαγιά όταν οι φλόγες της φωτιάς επηρεάζουν την οροφή (L_f \geq H). Αφού προσδιορίσουμε τα χαρακτηριστικά της τοπικής πυρκαγιάς (μήκος φλόγας, ρυθμός εκροής θερμότητας, οριζόντιο μήκος φλόγας), θα υπολογίσουμε την καθαρή θερμική ροή h_{net} που μεταβιβάζεται στη δοκό διατομής HEA 300 για r= 0 και r= 3m λόγω μεταβολής της θερμοκρασίας του αέρα και στη συνέχεια θα εκτιμήσουμε τη μεταβολή της θερμοκρασίας Δθ_α στο χαλύβδινο μέλος.

Το μήκος της φλόγας σε μια τοπική πυρκαγιά δίνεται από τον τύπο (5.1) :

$$L_f = -1,02D + 0,0148Q^{2/5}$$
 (m)

Ο ρυθμός εκροής θερμότητας Q (W) υπολογίζεται από τη σχέση 6.5 του κεφαλαίου 6 :

$$Q = 10^{6} \left(\frac{t}{t_{a}}\right)^{2}$$

όпου

t_aείναι ο απαιτούμενος χρόνος για ρυθμό εκροής θερμότητας ίσο με 1 MW.

Από τον πίνακα 6.6 δίνεται η τιμή του t_a ανάλογα με τη χρήση της κατασκευής, οπότε για κατοικία προκύπτει t_a = 300 sec.

$$Q = 10^6 \left(\frac{t}{300}\right)^2$$

$$Q = 11,11 t^2$$
 (J/s)

Άρα το μήκος της φλόγας L_f συναρτήσει του χρόνου υπολογίζεται από τη σχέση :

$$L_{f} = -1,02 \cdot 2,5 + 0,0148 \cdot (11,11 t^{2})^{2/5}$$
$$L_{f} = -2,55 + 0,0148 \cdot (2,62 t^{4/5})$$

 $L_f = -2,55 + 0,039 t^{4/5}$ (m)

Η καθαρή θερμική αξία Η_u (MJ/kg) του πετρελαίου δίνεται από τον πίνακα 6.6 του κεφαλαίου 6 (πυκνότητα πυροθερμικό φορτίο) :

 $H_u = 45 \text{ MJ/kg}$

Άρα για 1000 λίτρα πετρελαίου έχουμε: Μ=ρ·V = 0,82·1000 = 820 kg

Ta 82 kg πετρελαίου εκλύουν θερμότητα :

 $Q^* = 45*820 = 36900 \text{ MJ}.$

Η διάρκεια της πυρκαγιάς t (sec) δίνεται από τον υπολογισμό του παρακάτω ολοκληρώματος:

$$\begin{split} \mathsf{P} = & \frac{dQ}{dt} \Longrightarrow Q^* = \int \frac{10^6 t^2}{300^2} dt = \frac{10^6}{300^2 \cdot 3} \left[t^3 \right]_0^t = \frac{10^6}{300^2 \cdot 3} t^3 \Longrightarrow \\ & \frac{10^6}{300^2 \cdot 3} t^3 = 36900 \cdot 10^6 \Longrightarrow t = \sqrt[3]{3 \cdot 300^2 \cdot 36900} = 2152 \text{sec.} \end{split}$$

Άρα η πυρκαγιά ολοκληρώνεται σε χρόνο t = 2152 sec.

Σχήμα 5.5

Σε αυτή την <u>περίπτωση ισχύει **L_f >H**</u> :

Αδιάστατος συντελεστής Q^{*}_D (σχέση 5.9) :

$$Q_{D}^{*} = Q/1, 11 \cdot 10^{6} \cdot D^{2,5} = 11, 11 t^{2}/(1, 11 \cdot 10^{6} \cdot 2, 5^{2,5})$$

$$Q_{D}^{*} = 1,013 \cdot 10^{-6} \cdot t^{2}$$
 (-)

 $\Gamma \text{ia Q}^*_{\text{ D}} < 1.0 \rightarrow$

Κατακόρυφη θέση της πραγματικής εστίας θερμότητας z'(σχέση 5.8) :

$$z' = 2,4 D(Q_{D}^{*} c^{2/5} - Q_{D}^{*} c^{2/3}) = 2,4 \cdot 2,5 \cdot ((1,013 \cdot 10^{-6} \cdot t^{2})^{2/5} - (1,013 \cdot 10^{-6} \cdot t^{2})^{2/3})$$

$$z' = 0,024 \cdot t^{4/5} - 6,052 \cdot 10^{-4} \cdot t^{4/3}$$
(m)

Αδιάστατος ρυθμός εκροής θερμότητας Q^{*}_H (σχέση 5.7) :

$$Q_{H}^{*} = Q/1,11 \cdot 10^{6} \cdot H^{2,5} = 11,11t^{2}/1,11 \cdot 10^{6} \cdot 8^{2,5}$$

 $Q_{H}^{*} = 5,53 \cdot 10^{-8} \cdot t^{2}$ (-)

Οριζόντιο μήκος φλόγας L_h (σχέση 5.6) :

$$L_{h} = 2,9 \cdot H \cdot (Q^{*}_{H})^{0,33}) - H = (2,9 \cdot 8 \cdot (5,53 \cdot 10^{-8} \cdot t^{2})0,33) - 8$$
$$L_{h} = 40,8 \cdot 10^{-2,64} \cdot t^{0,66} - 8 \qquad (m)$$

Αδιάστατη παράμετρος γ συναρτήσει του χρόνου t (σχέση 5.5) :

$$y = \frac{r + H + z'}{L_h + H + z'}$$

<u>° Гіа r = 0 каї H= 8 m</u>

$$y = \frac{8 + 0,024t^{4/5} - 6,052 \cdot 10^{-4}t^{4/3}}{40,8 \cdot 10^{-2,64}t^{0,66} + 0,024t^{4/5} - 6,052 \cdot 10^{-4}t^{4/3}}$$
(-)

<u>° Гіа r = 3m каі H= 8 m</u>

$$y = \frac{3+8+0,024t^{4/5}-6,052\cdot10^{-4}t^{4/3}}{40,8\cdot10^{-2,64}t^{0,66}+0,024t^{4/5}-6,052\cdot10^{-4}t^{4/3}}$$
(-)

Η θερμική ροή *h* (W/m²) που λαμβάνει η εκτεθειμένη στην πυρκαγιά επιφάνεια στο επίπεδο της οροφής δίνεται από τη σχέση 5.4 :

h = 100000 av y $\leq 0,30$

 $h = 136300 \ \omega \varsigma \ 121000 \ y \qquad av \ 0,30 < y < 1,0$

$$h = 15000 \text{ y}^{-3,7}$$
 av y $\ge 1,0$

Η καθαρή θερμική ροή h_{net} (W/m²) που λαμβάνει η εκτεθειμένη στην πυρκαγιά επιφάνεια στο επίπεδο της οροφής δίνεται από τον τύπο 5.10 :

$$h_{net} = h - a_c \cdot (\Theta_m - 20) - \Phi \cdot \varepsilon_m \cdot \varepsilon_f \cdot \sigma \left[(\Theta_m + 273)^4 - (293)^4 \right]$$

όπου:

 $a_{c} = 35 \text{ W/m}^{2}\text{K}$ $\epsilon_{m} = 0.8$ $\epsilon_{f} = 1.0$ $\Phi = 1.0$ $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^{2}\text{K}$ $h_{net} = \dot{h} - 35 \cdot (\Theta_{m} - 20) - 4.536 \cdot 10^{-8} [(\Theta_{m} + 273)^{4} - (293)^{4}]$

Η μεταβολή της θερμοκρασίας του μη μονωμένου χαλύβδινου μέλους υπολογίζεται από τον τύπο 2.5 :

$$\Delta \theta_{a,t} = k_{sh} \frac{A_m / V \cdot h_{net,d} \cdot \Delta t}{c_a \cdot \rho_a}$$

Ο συντελεστής διατομής και ο συντελεστής σκίασης της δοκού ΗΕΑ300 έχει υπολογιστεί στο προηγούμενο παράδειγμα :

Συντελεστής διατομής: $A_m/V = 126,6 m^{-1}$. Συντελεστής επίδρασης σκίασης : $k_{sh} = 0,75$

Οπότε για διαδοχικά χρονικά διαστήματα Δt = 30 sec η μεταβολή της θερμοκρασίας του χάλυβα θα είναι :

$$\Delta \theta_{a,t} = 0.75 \frac{126.6 \cdot h_{\text{net,d}} \cdot 30}{600 \cdot 7850} = 2.02 \cdot 10^{-5} \cdot h_{\text{net,d}}$$

Στο σχήμα 5.6 δίνεται η θερμοκρασία της χαλύβδινης δοκού διατομής ΗΕΑ 300 που βρίσκεται στον άξονα της φλόγας (r= 0) σε ύψος z= 8 m συναρτήσει του χρόνου t καθώς και η θερμοκρασία δοκού ίδιας διατομής ΗΕΑ 300 που βρίσκεται στο ίδιο ύψος (z= 8m) αλλά σε απόσταση r= 3m από τον άξονα ης φλόγας, συναρτήσει του χρόνου t. Το διάγραμμα αυτό προκύπτει μετά από υπολογισμούς που παρουσιάζονται στο φύλλο Excel που ακολουθεί.

Παρατήρηση: Η καθαρή θερμική ροή h_{net} (W/m²) στην περίπτωση της δοκού που βρίσκεται στον άξονα της πυρκαγιάς αρχίζει να παίρνει αρνητικές τιμές μετά τη χρονική στιγμή t = 1530 sec = 25,5 min από την έναρξη της πυρκαγιάς. Το ίδιο φαινόμενο παρατηρείται και για την δοκό που βρίσκεται σε απόσταση r= 3 m από τον άξονα της πυρκαγιάς, τη χρονική στιγμή t = 2040 sec= 34 min, δηλαδή λίγο πριν το τέλος της πυρκαγιάς.

2χημα 5.6 Θερμοκρασία Θ_m μη μονωμένου μέλους σιατομής πΕΑ300, με συντελεστή διατομής $A_m/V=126,6 m^{-1}$ σε συνάρτηση με το χρόνο t, για δοκό σε r=0 και r=3 m στην περίπτωση L_f > Η σε τοπική πυρκαγιά (D= 3 m, Q*= 36900 MJ)

Παρατηρούμε στο διάγραμμα 5.6 πως η θερμοκρασία του χαλύβδινου μέλους αυξάνεται με πολύ αργό ρυθμό τα πρώτα 900 sec (15 min) καθώς η φλόγα δεν έχει φτάσει στην οροφή (z= 8m) που βρίσκονται οι δοκοί που εξετάζουμε. Στη συνέχεια η θερμοκρασία του χάλυβα αυξάνεται πολύ γρήγορα μέχρι και λίγο πριν τον τέλος της καύσης (t= 2152 sec =36 min).

t (sec)	Q (W)	L _f (m)	\mathbf{Q}_{D}^{*}	z'(m)	Q [*] _H	L _h (m)	y (r=0)	h (W/m²)	Θ (°C) _{r=0}	hnet (W/m ²)	Δθα,t (°C)
0	0	-3.060	0.000	0.000	0.0000	-8.000			20.000		
30	9999	-2.471	0.001	0.315	0.0000	-7.118	6.947	11.518	20.000	11.518	0.007
60	39996	-2.034	0.002	0.509	0.0002	-6.606	4.472	58.796	20.007	58.520	0.035
90	89991	-1.641	0.005	0.662	0.0004	-6.179	3.488	147.457	20.042	145.777	0.088
120	159984	-1.274	0.009	0.789	0.0008	-5.798	2.939	277.948	20.131	272.773	0.165
150	249975	-0.925	0.014	0.895	0.0012	-5.449	2.581	449.277	20.296	437.561	0.265
180	359964	-0.590	0.021	0.985	0.002	-5.122	2.326	660.055	20.561	637.843	0.387
210	489951	-0.265	0.028	1.062	0.002	-4.814	2.133	908.884	20.948	871.365	0.528
240	639936	0.050	0.037	1.126	0.003	-4.521	1.982	1194.516	21.476	1136.075	0.688
270	809919	0.357	0.047	1.181	0.004	-4.239	1.858	1515.919	22.164	1430.182	0.867
300	999900	0.657	0.058	1.226	0.005	-3.968	1.755	1872.301	23.031	1752.168	1.062
330	1209879	0.952	0.070	1.262	0.006	-3.707	1.667	2263.110	24.093	2100.788	1.273
360	1439856	1.241	0.083	1.291	0.007	-3.453	1.591	2688.030	25.366	2475.054	1.500
390	1689831	1.526	0.098	1.312	0.008	-3.206	1.525	3146.975	26.866	2874.221	1.742
420	1959804	1.806	0.113	1.327	0.010	-2.966	1.466	3640.083	28.608	3297.770	1.998
450	2249775	2.082	0.130	1.336	0.011	-2.731	1.414	4167.705	30.606	3745.399	2.270
480	2559744	2.354	0.148	1.338	0.013	-2.502	1.366	4730.404	32.876	4217.004	2.556
510	2889711	2.623	0.167	1.336	0.014	-2.278	1.323	5328.952	35.431	4712.673	2.856
540	3239676	2.889	0.187	1.327	0.016	-2.058	1.283	5964.329	38.287	5232.677	3.171
570	3609639	3.152	0.209	1.314	0.018	-1.842	1.247	6637.723	41.458	5777.464	3.501
600	3999600	3.412	0.231	1.296	0.020	-1.630	1.213	7350.538	44.959	6347.655	3.847
630	4409559	3.670	0.255	1.273	0.022	-1.421	1.181	8104.400	48.806	6944.037	4.208
660	4839516	3.925	0.280	1.246	0.024	-1.216	1.151	8901.164	53.014	7567.569	4.586
690	5289471	4.178	0.306	1.214	0.026	-1.014	1.124	9742.924	57.600	8219.376	4.981
720	5759424	4.429	0.333	1.179	0.029	-0.815	1.097	10632.033	62.581	8900.751	5.394
750	6249375	4.677	0.361	1.139	0.031	-0.619	1.073	11571.115	67.975	9613.162	5.826
780	6759324	4.924	0.391	1.096	0.034	-0.426	1.049	12563.086	73.800	10358.249	6.277
810	7289271	5.169	0.421	1.049	0.036	-0.235	1.027	13611.178	80.077	11137.833	6.750
840	7839216	5.412	0.453	0.998	0.039	-0.046	1.005	14718.965	86.827	11953.918	7.244
870	8409159	5.653	0.486	0.944	0.042	0.140	0.985	119461.607	94.071	116379.909	70.526
900	8999100	5.892	0.520	0.887	0.045	0.325	0.965	117478.278	164.597	111088.378	67.320
930	9609039	6.130	0.555	0.826	0.048	0.507	0.946	115551.765	231.917	105520.815	63.946
960	10238976	6.367	0.592	0.762	0.051	0.687	0.927	113676.871	295.862	99605.901	60.361
990	10888911	6.602	0.629	0.695	0.054	0.865	0.910	111848.891	356.224	93304.989	56.543
1020	11558844	6.835	0.668	0.625	0.058	1.042	0.892	110063.551	412.766	86619.256	52.491
1050	12248775	7.067	0.708	0.552	0.061	1.216	0.875	108316.955	465.258	79592.982	48.233
1080	12958704	7.298	0.749	0.476	0.064	1.389	0.859	106605.539	513.491	72311.720	43.821
1110	13688631	7.528	0.791	0.397	0.068	1.561	0.843	104926.033	557.312	64894.949	39.326
1140	14438556	7.756	0.834	0.316	0.072	1.730	0.828	103275.426	596.638	57483.950	34.835
1170	15208479	7.983	0.879	0.231	0.076	1.899	0.813	101650.935	631.474	50226.831	30.437
1200	15998400	8.209	0.925	0.144	0.080	2.065	0.798	100049.982	661.911	43263.344	26.218
1230	16808319	8.434	0.971	0.055	0.084	2.231	0.783	98470.171	688.129	36712.130	22.248
1260	17638236	8.658	1.019	-0.055	0.088	2.395	0.768	96864.690	710.376	30617.684	18.554
1290	18488151	8.880	1.068	-0.193	0.092	2.557	0.753	95205.041	728.930	25015.505	15.159
1320	19358064	9.102	1.119	-0.331	0.096	2.719	0.738	93555.222	744.090	20005.205	12.123
1350	20247975	9.323	1.170	-0.467	0.101	2.879	0.723	91914.787	756.213	15584.414	9.444
1380	21157884	9.542	1.223	-0.603	0.105	3.038	0.709	90283.313	765.657	11728.373	7.107

t (sec)	Q (W)	L _f (m)	\mathbf{Q}_{D}^{*}	z'(m)	Q [*] _H	L _h (m)	y (r=0)	h (W/m²)	Θ (°C) _{r=0}	hnet (W/m ²)	$\Delta\theta\alpha,t$ (°C)
1410	22087791	9.761	1.277	-0.739	0.110	3.196	0.694	88660.398	772.765	8396.825	5.088
1440	23037696	9.979	1.331	-0.873	0.115	3.352	0.680	87045.660	777.853	5540.360	3.357
1470	24007599	10.196	1.387	-1.008	0.119	3.508	0.666	85438.737	781.210	3105.612	1.882
1500	24997500	10.412	1.445	-1.141	0.124	3.662	0.652	83839.284	783.092	1039.147	0.630
1530	26007399	10.627	1.503	-1.275	0.129	3.816	0.638	82246.970	783.722	-709.910	-0.430
1560	27037296	10.841	1.563	-1.407	0.135	3.968	0.624	80661.481	783.292	-2188.291	-1.326
1590	28087191	11.054	1.623	-1.539	0.140	4.120	0.611	79082.517	781.966	-3437.803	-2.083
1620	29157084	11.267	1.685	-1.671	0.145	4.270	0.597	77509.792	779.883	-4495.111	-2.724
1650	30246975	11.479	1.748	-1.802	0.151	4.420	0.584	75943.029	777.159	-5391.887	-3.267
1680	31356864	11.690	1.812	-1.933	0.156	4.568	0.570	74381.966	773.891	-6155.174	-3.730
1710	32486751	11.900	1.878	-2.063	0.162	4.716	0.557	72826.351	770.161	-6807.862	-4.126
1740	33636636	12.110	1.944	-2.193	0.167	4.863	0.544	71275.942	766.035	-7369.195	-4.466
1770	34806519	12.319	2.012	-2.322	0.173	5.009	0.531	69730.505	761.570	-7855.272	-4.760
1800	35996400	12.527	2.080	-2.451	0.179	5.154	0.518	68189.818	756.809	-8279.515	-5.017
1830	37206279	12.735	2.150	-2.580	0.185	5.298	0.506	66653.666	751.792	-8653.084	-5.244
1860	38436156	12.941	2.221	-2.708	0.191	5.441	0.493	65121.842	746.548	-8985.247	-5.445
1890	39686031	13.148	2.294	-2.835	0.198	5.584	0.480	63594.146	741.103	-9283.694	-5.626
1920	40955904	13.353	2.367	-2.963	0.204	5.726	0.468	62070.387	735.477	-9554.805	-5.790
1950	42245775	13.558	2.442	-3.090	0.210	5.867	0.456	60550.379	729.687	-9803.878	-5.941
1980	43555644	13.762	2.517	-3.216	0.217	6.008	0.443	59033.944	723.746	-10035.318	-6.081
2010	44885511	13.966	2.594	-3.342	0.223	6.147	0.431	57520.908	717.665	-10252.791	-6.213
2040	46235376	14.169	2.672	-3.468	0.230	6.286	0.419	56011.106	711.451	-10459.357	-6.338
2070	47605239	14.371	2.751	-3.593	0.237	6.425	0.407	54504.375	705.113	-10657.576	-6.458
2100	48995100	14.573	2.832	-3.718	0.244	6.562	0.395	53000.559	698.654	-10849.601	-6.575
2130	50404959	14.774	2.913	-3.843	0.251	6.699	0.383	51499.508	692.080	-11037.243	-6.689
2152	51451565	14.921	2.974	-3.934	0.256	6.799	0.374	50400.409	685.391	-10822.704	-6.559

Κεφάλαιο 6

Πυκνότητα πυροθερμικού φορτίου.

6.1 Γενικά

Ως πυροθερμικό φορτίο ορίζεται σε (MJ) η εκλυόμενη, από το υλικό που καίγεται, ποσότητα θερμότητας εντός του χώρου που εκδηλώθηκε η πυρκαγιά. Ως πυκνότητα πυροθερμικού φορτίου, ορίζεται η ανά τετραγωνικό μέτρο εκλυόμενη ποσότητα θερμότητας σε (MJ/m²). Το πυροθερμικό φορτίο εξαρτάται προφανώς από το καιόμενο υλικό. Επομένως, κατά το σχεδιασμό και έλεγχο μιας κατασκευής, μεγάλη σημασία έχει η χρήση της (και άρα τα υλικά που περιέχει) και βάσει αυτής προκύπτει το πυροθερμικό φορτίο για το οποίο θα γίνει ο έλεγχος. Συχνά η πυκνότητα του πυροθερμικού φορτίου εκφράζεται και σε kg ξύλου που απαιτούνται να καούν για να αποδοθεί το ίδιο πυροθερμικό φορτίο. Η ισοδυναμία είναι 58 kg/m² ξύλου, προς 1000 KJ/m². Ο υπολογισμός της πυκνότητας του πυροθερμικού φορτίου είναι αντικείμενο του παραρτήματος Ε του ΕΝ 1991-1-2.

Η τιμή σχεδιασμού της πυκνότητας του πυροθερμικού φορτίου καθορίζεται:

- από μια εθνική κατάταξη πυροθερμικών φορτίων αναλόγως τη χρήση της κατασκευής ή
 - ειδικότερα, σε ένα συγκεκριμένο έργο από εκτίμηση των υλικών που περιέχει η κατασκευή.
 Η τιμή σχεδιασμού του πυροθερμικού φορτίου q_{fd} (MJ/m²) ορίζεται ως:

$$q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n \tag{6.1}$$

όпου

m : είναι ο συντελεστής καύσης.

δ_{q1} : είναι ο συντελεστής που σχετίζεται με τον κίνδυνο ενεργοποίησης πυρκαγιάς
 εξαιτίας του μεγέθους του κτιρίου.

- δ_{q2} : είναι ο συντελεστής που σχετίζεται με τον κίνδυνο ενεργοποίησης πυρκαγιάς
 εξαιτίας του είδους χρήσεως του κτιρίου.
- δ_n : είναι ο συντελεστής που σχετίζεται με τα ενεργά μέτρα προστασίας ενάντια στην
 πυρκαγιά (πυροσβεστικός ψεκαστήρας, ανιχνευτής καπνού, αυτόματος συναγερμός,
 πυροσβεστική υπηρεσία...). Αυτά τα μέτρα επιβάλλονται για λόγους ασφάλειας
 ζωής.
- q_{f,k} : είναι η χαρακτηριστική πυκνότητα του πυροθερμικού φορτίου ανά τετραγωνικό μέτρο.

Οι τιμές των συντελεστών δ_{q1} και δ_{q2} για διάφορες τιμές επιφάνειας πυροδιαμερισμάτων και διάφορες χρήσεις δίνονται στον πίνακα 6.1 και 6.2 αντίστοιχα.

Επιφἀνεια πυροδιαμερἰσματος Α _f (m²)	Κίνδυνος ενεργοποίησης πυρκαγιάς δ _{q1}
25	1,10
250	1,50
2500	1,90
5000	2,00
10000	2,13

Πίνακας 6.1 - Συντελεστή δ_{q1}

Πίνακας 6.2 - Συντελεστής δ_{q2}

Παραδείγματα χρήσεως κατασκευής	Κίνδυνος ενεργοποίησης πυρκαγιάς δ _{q2}
μουσείο, πισίνα, γκαλερί	0,78
γραφείο, κατοικία, ξενοδοχείο, χαρτοβιομηχανία	1,00
βιομηχανία μηχανικού εξοπλισμού	1,22
χημικό εργαστήριο, εργαστήρι ζωγραφικής	1,44
βιομηχανία πυροτεχνημάτων ή χρωμάτων	1,66

Οι τιμές των συντελεστών δ_{ni} ($\delta_n = \prod_{i=1}^{10} \delta_{ni}$) για διάφορα μέτρα προστασίας έναντι πυρκαγιάς δίνονται στον πίνακα 6.3.

Για τα συνήθη μέτρα προστασίας, που πρέπει πάντα να υπάρχουν, όπως οι διάδρομοι ασφαλείας, μηχανισμοί κατάσβεσης της πυρκαγιάς κλπ, η τιμή του συντελεστή δ_n μπορεί να λαμβάνεται ίση με 1,0. Αν όμως αυτά τα μέτρα δεν έχουν προβλεφθεί, τότε η τιμή του συντελεστή δ_n πρέπει να λαμβάνεται ίση με 1,50.

δ _{ni} Συνἀρτηση των ενεργών μἑτρων προστασἰας ἑναντι πυρκαγιἀ															
Αυτά	όματη φω	κατασ τιἁς	τολή		υτόματ /ἰχνευα φωτιἁα	רח סח 5	Χειροκίνητη καταστολή φωτιάς								
ματο σύστημα σβεσης με νερό		ρτητη παροχή νερού		Αυτόματη ανίχνευση	φωτιάς και συναγερμός συναγερμός ειδοποίησης οσβεστικής υπηρεσίας		πική υπηρεσία εν δράσει (work)	rική υπηρεσία εν δυνάμει (off site)	ρομοι ασφαλείας			ι κατάσβεσης της φωτιάς		ύστημα καπνού	
Алта	Αυτό κατά Ανεξάρ		από θερμότητα	από καπνό	Αυτόματος της πυρ	Πυροσβεα	Πυροσβεσ	Διά			μυχανισμα			N	
δ _{n1}	δ _{n2}		δ _{n3}	δ_{n4}	δ _{n5}	δ _{n6}	δ n7	δ _{n8}		δ _{n8}		δ _{n9}		10	
0,61	0 1,0	1 0,87	2 0,7	0,87	0,73	0,87	0,61	0,78	0,9	1,0	1,5	1,0	1,5	1,0	1,5

Πίνακας 6.3 - Συντελεστές δ_{ni}

6.2 Προσδιορισμός της πυκνότητας πυροθερμικού φορτίου.

6.2.1 Γενικά

Το πυροθερμικό φορτίο αποτελείται από όλο το εύφλεκτο περιεχόμενο του κτιρίου καθώς και τα εύφλεκτα μέρη της κατασκευής,

συμπεριλαμβανομένων των στοιχείων επένδυσης και τελειωμάτων.

Οι επόμενες ενότητες ισχύουν για τον προσδιορισμό της πυκνότητας του πυροθερμικού φορτίου είτε από την κατάταξη αναλόγως τη χρήση της κατασκευής, είτε από εκτίμηση των επιμέρους υλικών ενός συγκεκριμένου έργου.

Στην περίπτωση που η πυκνότητα του πυροθερμικού φορτίου καθορίζεται από ταξινόμηση ανάλογα τη χρήση τα πυροθερμικά φορτία διακρίνονται σε:

- πυροθερμικά φορτία χρήσεως, από τη δεδομένη κατάταξη ή
- πυροθερμικά φορτία από το κτίριο (δομικά στοιχεία, επενδύσεις και τελειώματα) που
 δεν περιλαμβάνονται στην κατάταξη.

6.2.2 Ορισμός

Το χαρακτηριστικό πυροθερμικό φορτίο ορίζεται ως:

$$Q_{fi,k} = \Sigma M_{k,i} \cdot H_{ui} \cdot \Psi_i = \Sigma Q_{fi,k,i}$$
(6.2)

όπου :

M_{k,i} είναι το ποσό του εύφλεκτου υλικού (kg)

H_{ui} είναι η καθαρή θερμική απόδοση (MJ/kg)

Ψ_i είναι ο προαιρετικός συντελεστής για την εκτίμηση των προστατευμένων πυροθερμικών φορτίων.

Η χαρακτηριστική πυκνότητα του πυροθερμικού φορτίου ανά μονάδα επιφάνειας ορίζεται ως:

$$q_{f,k} = Q_{fi,k} / A$$
 (6.3)

όπου Α είναι η επιφάνεια του πυροδιαμερίσματος.

6.2.3 Προστατευμένα πυροθερμικά φορτία

Τα πυροθερμικά φορτία ενός πυροδιαμερίσματος, τα οποία έχουν σχεδιαστεί έτσι ώστε να αντέχουν στην έκθεση στην πυρκαγιά (παραμένουν άθικτα) δε χρειάζεται να υπολογίζονται.

6.2.4 Καθαρή θερμική απόδοση

Η καθαρή θερμική απόδοση Η_u (MJ/kg) προσδιορίζεται σύμφωνα με το EN ISO 1716:2002. Η υγρασία που περιέχεται στα υλικά υπολογίζεται ως:

$$H_{u} = H_{u,0} \cdot (1 - 0, 01 \cdot u) - 0,025 \cdot u$$
(6.4)

όπου :

- u είναι η περιεχόμενη υγρασία εκφρασμένη ως ποσοστό του ξηρού βάρους
- Η_{u,0} είναι η καθαρή θερμική απόδοση του ξηρού υλικού

Η καθαρή θερμική απόδοση κάποιων στερεών, υγρών και αερίων δίνονται στον πίνακα 6.4.

6.2.5 Κατάταξη πυροθερμικού φορτίου αναλόγως τη χρήση της κατασκευής

Η τιμή της χαρακτηριστικής πυκνότητας του πυροθερμικού φορτίου εκτιμάται ανάλογα με τη χρήση της κατασκευής και προσδιορίζεται από τον πίνακα 6.5.

Πίνακας 6.5 – Χαρακτηριστικές πυκνότητες πυροθερμικού φορτίου q_{f,k} (MJ/m²) για διαφορετικές χρήσεις κατασκευής.

Χρήση κατασκευής	Μἑσος ὀρος q _{f,k}
Κατοικία	780
Νοσοκομείο (δωμάτιο)	230
Ξενοδοχείο (δωμάτιο)	310
Βιβλιοθήκη	1500
Γραφείο	420
Σχολική αίθουσα	285
Εμπορικό κέντρο	600
Θἑατρο (κινηματογράφος)	300
Συγκοινωνίες (δημόσιοι χώροι)	100

Οι παραπάνω τιμές του πίνακα 6.5 ισχύουν για την περίπτωση που ο συντελεστής δ_{q2} =1,0

Πίνακας 6.4 – Καθαρή θερμική απόδοση Η_u (MJ/kg) εύφλεκτων υλικών για τον υπολογισμό του πυροθερμικού φορτίου.

Στερεά	H _u (MJ/kg)
Ξύλο	17,5
Άλλα κυταρρινικά (cellulosic) υλικά	
• Ενδύματα	
• Φελλός	
• Βαμβάκι	20
• Χαρτί, χαρτόνι	20
• Μετάξι	
• Άχυρο	
• Μαλλί	
Άνθρακας	
• Ανθρακίτης	30
• Κάρβουνο	50
• Λιθάνθρακας	
Хղµıкἀ	
Παραφίνες	
• Μεθάνιο	
 Αιθάνιο 	50
• Προπάνιο	
 Воита́ую 	
Ολεφίνες	
• Αιθυλένιο	45
• Προπυλένιο	
Αρωματικές ουσίες	10
• Βενζόλη	40
ΑΛΚΟΟΛΕς	
	30
• Βενζίνη ακάθαοτο πετοέλαιο	45
	75
Υδρογογάνθρακες	
• Πολυαιθυλένιο	
• Πολυστυρόλιο	40
 Πολυπροπυλένιο 	
Άλλα προϊόντα	
ABS (πλαστικό)	35
Πολυεστέρας (πλαστικό)	30
Πολυουρεθάνη	25
ΡVC (πλαστικό)	20
Βιτούμιο, ἀσφαλτος	40
Δέρμα	20
Λινόλαιο	20
Καουτσούκ	30

6.3 Αντίδραση στην καύση

Η συμπεριφορά των καυσίμων υλικών πρέπει να λαμβάνεται ως συνάρτηση της χρήσης του πυροδιαμερίσματος και του πυροθερμικού φορτίου. Για τα υλικά κυτταρινικού τύπου, ο συντελεστής καύσης μπορεί να λαμβάνεται m=0,8.

6.4 Ρυθμός εκροής θερμότητας Q

Ο ρυθμός εκροής θερμότητας Q (W) δίνεται από τη σχέση :

$$Q = 10^{6} (t/t_{a})^{2}$$
(6.5)

t είναι ο χρόνος (sec)

t_a είναι ο χρόνος που απαιτείται για να φθάσει ο ρυθμός εκροής θερμότητας 1MW

Η παράμετρος t_a και ο μέγιστος ρυθμός απελευθέρωσης θερμότητας RHR_f , για διάφορες χρήσεις της κατασκευής δίνονται στον πίνακα 6.6.

Μἐγιστος ρυθμὀς απελευθἑρωσης θερμὀτητας RFR _f							
Χρήση	Ρυθμός ανάπτυξης φωτιάς	t _a (s)	RFR _f (kW/m ²)				
Κατοικία	Ενδιάμεσος	300	250				
Νοσοκομείο(δωμάτιο)	Ενδιάμεσος	300	250				
Ξενοδοχείο(δωμάτιο)	Ενδιάμεσος	300	250				
Βιβλιοθήκη	Γρήγορος	150	500				
Γραφείο	Ενδιάμεσος	300	250				
Σχολική αίθουσα	Ενδιάμεσος	300	250				
Εμπορικό κέντρο	Γρήγορος	150	250				
Θἑατρο (σινεμά)	Γρήγορος	150	500				
Συγκοινωνίες	Αργός	600	250				

Πίνακας 6.6 - Ρυθμός ανάπτυξης της φωτιάς και RFR_f για διάφορες χρήσεις

Οι παραπάνω τιμές του πίνακα 6.6 για το ρυθμό ανάπτυξης της φωτιάς και τον RFR_f ισχύουν για την περίπτωση που ο συντελεστής δ_{q2} είναι ίσος με 1,0.

Το στάδιο ανάπτυξης ολοκληρώνεται όταν ο ρυθμός Q σταθεροποιηθεί και λάβει την τιμή που δίνεται από την έκφραση (RFR_f·A_{fi})

όπου:

- Α_{fi} είναι η μέγιστη επιφάνεια της πυρκαγιάς, η οποία είναι ίση με την επιφάνεια του πυροδιαμερίσματος σε περίπτωση ομοιόμορφα κατανεμημένου πυροθερμικού φορτίου ή μικρότερη στην περίπτωση τοπικής πυρκαγιάς
- RFR_f είναι ο μέγιστος ρυθμός απελευθέρωσης θερμότητας που παράγεται από 1 m² πυρκαγιάς (kW/m²).

Η φάση της ύφεσης ξεκινάει όταν έχει καεί ολοκληρωτικά το 70% του συνολικού πυροθερμικού φορτίου.

6.5 Παράδειγμα υπολογισμού πυκνότητας πυροθερμικού φορτίου q_{f,d}

Παράδειγμα 6.5.1

Θα υπολογιστεί η τιμή σχεδιασμού της πυκνότητας του πυροθερμικού φορτίου q_{fd} (MJ/m²) για δύο διαφορετικές χρήσεις της κατασκευής : a) κατοικία, επιφάνειας $A_f = 120 \text{ m}^2$, O=0,06, b=1500, b) κτίριο γραφείων επιφάνειας, $A_f = 300 \text{ m}^2$, O=0,06, b=1500 και στη συνέχεια θα σχεδιαστεί η παραμετρική καμπύλη θερμοκρασίας αέρα-χρόνου και θερμοκρασίας χάλυβαχρόνου μονωμένου μέλους διατομής IPE270 (d/λ=0,10) για τα δεδομένα στοιχεία πυροδιαμερίσματος και στις δύο περιπτώσεις.

a) Αρχικά θα εξετάσουμε το πυροθερμικό φορτίο στην περίπτωση κατοικίας και στη συνέχεια
 θα σχεδιάσουμε την παραμετρική καμπύλη θερμοκρασίας – χρόνου που θα αναφέρεται στα
 χαρακτηριστικά του συγκεκριμένου πυροδιαμερίσματος.

Η πυκνότητα του πυροθερμικού φορτίου q_{f,d} (MJ/m²) δίνεται από τη σχέση 6.1 :

 $q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n$

 Η χαρακτηριστική πυκνότητα του πυροθερμικού φορτίου δίνεται από τον πίνακα 6.5. Για χρήση της κατασκευής ως κατοικία λαμβάνουμε την τιμή q_{fk}=780 MJ/m².

Για υλικά κυτταρινικού τύπου ο συντελεστής καύσης m θεωρείται ίσος με m= 0,8.

Από τον πίνακα 6.1 προσδιορίζεται ο συντελεστής δ_{q1} που εξαρτάται από την επιφάνεια
 A_f (m²) του πυροδιαμερίσματος.

Για επιφάνεια πυροδιαμερίσματος A_f = 120 m², ο συντελεστής δ_{q1} προσδιορίζεται με γραμμική παρεμβολή και είναι ίσος με δ_{q1} =1,27.

Από τον πίνακα 6.2 προσδιορίζεται ο συντελεστής δ_{q2} που εξαρτάται από τη χρήση της κατασκευής. Για χρήση της κατασκευής ως κατοικία ο συντελεστής δ_{q2} λαμβάνεται ίσος με δ_{q2}=1,00.

 Για δεδομένη τη λήψη των συνήθων μέτρων προστασίας από πυρκαγιά σε ένα πυροδιαμέρισμα ο συντελεστής δ_n λαμβάνεται ίσος με δ_n = 1,00.

Άρα αντικαθιστώντας στη σχέση 6.1 υπολογίζεται η πυκνότητα του πυροθερμικού φορτίου:

 $q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n = 780 \cdot 0, 8 \cdot 1, 27 \cdot 1, 0 \cdot 1, 0 \rightarrow$

<u>q_{f,d}= 792,5 MJ/m²</u>.

 Η πυκνότητα πυροθερμικού φορτίου που αναφέρεται στη συνολική επιφάνεια του περιβλήματος A_t, q_{t,d} είναι ίση με:

$$q_{t,d} = q_{f,d} \cdot A_f / A_t = 792, 5 \cdot 120 / 372 = 255, 64 \text{ MJ/m}^2.$$

Αφού υπολογίστηκε η πυκνότητα του πυροθερμικού φορτίου q_{td} θα προσδιοριστεί και θα σχεδιαστεί η παραμετρική καμπύλη για τα συγκεκριμένα χαρακτηριστικά του πυροδιαμερίσματος.

Οσυντελεστής επιρροής ανοιγμάτων, O=0,06
$$(m^{1/2})$$
b= $\sqrt{(\rho c \lambda)}$ η επίδραση του περιβλήματος, b=1500 $(J/m^2 s^{1/2} K)$ q_{t,d}πυκνότητα του πυροθερμικού φορτίου, q_{td}=255,64 (MJ/m^2)

Гіа b=1200 каі O=0,10 \rightarrow Г= $(0,06/1500)^2/(0,04/1160)^2$

Άρα ο σχετικός χρόνος θα είναι t^{*} = 1,35·t και από την εξίσωση 3.1 του παραρτήματος Α ο ανοδικός κλάδος της παραμετρικής καμπύλης είναι :

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 1.35t} - 0.204 \cdot e^{-1.7 \cdot 1.35t} - 0.472 \cdot e^{-19 \cdot 1.35t})$

Η μέγιστη θερμοκρασία (πέρας του ανοδικού κλάδου) πραγματοποιείται τη χρονική στιγμή (σε ώρες), σχέση 3.4 :

t_{max}= 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·255,64/ 0,06=0,85 h = 51,13min (απόλυτος χρόνος)

Ο σχετικός μέγιστος χρόνος από τη σχέση 3.3 είναι ίσος με :

 $t^*_{max} = t_{max} \cdot \Gamma = 0,85 \cdot 1,35 = 1,15 h = 69 min.$

Η μέγιστη θερμοκρασία Θ_{max} προκύπτει για t=t_{max}

 $\Theta_{\text{max}} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.0195 \cdot 51.13} - 0.204 \cdot e^{-0.1655 \cdot 51.13} - 0.472 \cdot e^{-1.849 \cdot 51.13})$

Επειδή 0,5 < t^*_{max} =1,15 h <2 , η καμπύλη θερμοκρασίας – χρόνου στη φάση ύφεσης της πυρκαγιάς (καθοδικός κλάδος) προκύπτει από τη σχέση 3.7β :

 $\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t^{*}_{max}) \cdot (t^{*} - t^{*}_{max} \cdot x)$
x=1,0 yia $t_{max} > t_{lim} \rightarrow$

$$\Theta_{q} = 965, 2-463, 3 \cdot (1, 35 \cdot t - 1, 15)$$

Η θερμοκρασία του μονωμένου χαλύβδινου μέλους με d/λ=0,10 δίνεται από τη σχέση 3.19 :

$$\Delta \theta_{\sigma,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

Η διατομή IPE270 έχει χαρακτηριστικά : πλάτος πελμάτων b=135mm, ύψος κορμού h=270mm και εμβαδόν διατομής A= 45,95 cm².

Ο συντελεστής διατομής για ορθογωνικό εγκιβωτισμό της διατομής είναι :

 $A_p/V=2(h+b)\cdot 100/A$

A_p/V=2(27+13,5)·100/45,95=176,28 m⁻¹

Γνωρίζοντας ότι η πυκνότητα χάλυβα είναι ρ_α= 7850 kg/m³ και η ειδική θερμότητα του εκτιμάται c_a= 600 J/kg K

Άρα:

 $\Delta \theta_{a,t} = \ \frac{0,25 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,025 \cdot 600 \cdot 7850}$

Για χρονικό διάστημα Δt = 30 sec :

$$\Delta \theta_{a,t} = 11,23 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{a,t})$$

b) Στη συνέχεια θα εξετάσουμε το πυροθερμικό φορτίο στην περίπτωση κτιρίου γραφείων και
 θα κατασκευάσουμε την αντίστοιχη παραμετρική καμπύλη θερμοκρασίας – χρόνου.

Η πυκνότητα του πυροθερμικού φορτίου q _{f,d} (MJ/m²) ορίζεται από τη σχέση 6.1 :

 $q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n$

 Για κτίριο γραφείων η χαρακτηριστική τιμή της πυκνότητας του πυροθερμικού φορτίου δίνεται από τον πίνακα 6.5, q_{f,k}= 420 MJ/m².

Ο συντελεστής δ_{q1} εξαρτάται από την επιφάνεια A_f του πυροδιαμερίσματος. Από τον πίνακα
 6.1 βρίσκουμε με γραμμική παρεμβολή:

$$A_f{=}300~m^2 \rightarrow \delta_{q1}{=}1,51$$

Ο συντελεστής δ_{q2} εξαρτάται από τη χρήση του πυροδιαμερίσματος και από τον πίνακα 6.2
 για χώρο γραφείων έχει την τιμή δ_{q2}= 1,00.

Ο συντελεστής καύσης m λαμβάνεται ίσος με m=0,8.

Ο συντελεστής δ_n για συνήθη μέτρα προστασίας (πίνακας 6.3) λαμβάνεται ίσος με δ_n=1,00.
 Άρα αντικαθιστώντας στη σχέση 6.1 υπολογίζεται η πυκνότητα του πυροθερμικού φορτίου:
 q _{f,d}= q _{f,k}·m· δ_{q1}·δ_{q2}·δ_n= 420·0,8·1,51·1,0·1,0 →

<u>q_{f,d}= 507,4 MJ/m²</u>

 Η πυκνότητα πυροθερμικού φορτίου που αναφέρεται στη συνολική επιφάνεια του περιβλήματος A_t, q_{t,d} είναι ίση με:

 $q_{t,d} = q_{f,d} \cdot A_f / A_t = 507, 4 \cdot 300 / 810 = 188 \text{ MJ/m}^2.$

Η παραμετρική καμπύλη με συντελεστή αερισμού O= 0,06 m^{1/2} συντελεστή περιβλήματος b= 1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου $q_{t,d} = 188$ MJ/m² δίνεται από τη σχέση 3.1 :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$

με t^{*}=t·Γ

Ο συντελεστής Γ εξαρτώμενος από τις συνθήκες αερισμού δίνεται από τον τύπο:

$$\Gamma = (O/b)^{2}/(0,04/1160)^{2}$$

$$\Gamma = (0,06/1500)^{2}/(0,04/1160)^{2} = 1,35$$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0,324 \cdot e^{-0,2 \cdot 1,35 \cdot t} - 0,204 \cdot e^{-1,7 \cdot 1,35 \cdot t} - 0,472 \cdot e^{-19 \cdot 1,35 \cdot t})$$

Από τη σχέση 3.4 ο μέγιστος χρόνος t_{max} είναι : t_{max} = 0,2·10⁻³·q_{td}/O= 0,2·10⁻³·188/0,06= 0,626 h = 37,7 min.

Ο μέγιστος σχετικός χρόνος (σχέση 3.3) είναι :

 $t^*_{max} = t_{max} \cdot \Gamma = 0,626 \cdot 1,35 = 0,851$

Επειδή 0,5 < t^{*}_{max} = 0,851 < 2 ο καθοδικός κλάδος της καμπύλης θερμοκρασίας- χρόνου δίνεται από τη σχέση 3.7β :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t_{max}^{*}) (t_{max}^{*} - t_{max}^{*} \cdot x) , x = 1,0$$

 $\Theta_g = 918,7758 - 250 \cdot (3 - 0,851) (t^* - 0,851)$

Η θερμοκρασία του μονωμένου χαλύβδινου μέλους με d/λ=0,10 δίνεται από τη σχέση 2.9 :

$$\Delta \Theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

Για διατομή IPE270 με b=135mm και h=270mm και A= 45,95 cm² προκύπτει ομοίως με πριν:

A_p/V=2(27+13,5)·100/45,95=176,28 m⁻¹

Άρα:

 $\Delta \theta_{\alpha,t} = \; \frac{0,25 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,025 \cdot 600 \cdot 7850}$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \boldsymbol{\theta}_{a,t} = \ \mathbf{11,23} \ \cdot \mathbf{10^{-3}} \cdot (\boldsymbol{\Theta}_{g,t} - \ \boldsymbol{\Theta}_{a,t})$

Ακολουθεί το διάγραμμα 6.1 στο οποίο απεικονίζονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα – χρόνου για δύο διαφορετικές τιμές της πυκνότητας του πυροθερμικού φορτίου q_{t,d} καθώς και οι αντίστοιχες καμπύλες θερμοκρασίας χάλυβα – χρόνου.

Σχήμα 6.1 Θερμοκρασίες αέρα και χάλυβα μονωμένου μέλους (d/λ=0,10) με συντελεστή διατομής A_p/V=176,28 βάσει της παραμετρικής καμπύλης για τιμές O=0,06, b= 1500 και για διαφορετικές τιμές πυροθερμικού φορτίου q_{td}= 255,64MJ/m² και q_{td} = 188 MJ/m²

Παρατήρηση : Όπως ήταν αναμενόμενο, παρατηρούμε ότι στο πυροδιαμέρισμα που το πυροθερμικό φορτίο είναι μεγαλύτερο η θερμοκρασία του χαλύβδινου μέλους φθάνει σε υψηλότερα επίπεδα και η διάρκεια της πυρκαγιάς είναι σαφώς μεγαλύτερη. Επίσης βλέπουμε πως ο ανοδικός κλάδος της παραμετρικής καμπύλης είναι ίδιος και στις δύο περιπτώσεις αφού εξαρτάται μόνο από τους συντελεστές Ο και b και μόνο ο καθοδικός κλάδος διαφοροποιείται καθώς εξαρτάται από το πυροθερικό φορτίο.

Κεφάλαιο 7

Ισοδύναμος χρόνος ἑκθεσης στη φωτιἁ

7.1 Γενικά

Ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά, που προκύπτει από την πρότυπη καμπύλη θερμοκρασίας - χρόνου είναι ο χρόνος αυτός κατά τον οποίο έχουμε το ίδιο θερμικό αποτέλεσμα, όπως σε μια πραγματική φωτιά στο συγκεκριμένο πυροδιαμέρισμα. Ο προσδιορισμός του ισοδύναμου χρόνου έκθεσης στην πυρκαγιά είναι αντικείμενο του Παραρτήματος F του Ευρωκώδικα 1 μέρους 1-2.

Η παρακάτω προσέγγιση μπορεί να χρησιμοποιείται όταν ο σχεδιασμός των μελών είναι βασισμένος σε πινακοποιημένα δεδομένα ή σε άλλους απλοποιημένους κανόνες που σχετίζονται με την πρότυπη έκθεση στην πυρκαγιά.

Σημείωση: Η μέθοδος που περιγράφεται σε αυτό το παράρτημα είναι εξαρτώμενη από το υλικό. Δεν είναι εφαρμόσιμη σε σύμμικτη ή ξύλινη κατασκευή.

Όταν η πυκνότητα του πυροθερμικού φορτίου προσδιορίζεται χωρίς ειδική μελέτη της συμπεριφοράς στην καύση (παράρτημα Ε), τότε αυτή η προσέγγιση πρέπει να περιορίζεται σε πυροδιαμερίσματα με πυροθερμικά φορτία κυτταρινικού (cellulosic) τύπου.

Ο ισοδύναμος χρόνος έκθεσης σε πυρκαγιά t_{e,d} (min) προσδιορίζεται από τον τύπο:

$$\begin{aligned} t_{ed} &= (q_{f,d} \cdot k_b \cdot w_f) \cdot k_c \\ \dot{\eta} \\ t_{ed} &= (q_{t,d} \cdot k_b \cdot w_t) \cdot k_c \end{aligned} \tag{7.1}$$

όπου:

q_{f,d} : η τιμή σχεδιασμού της πυκνότητας του πυροθερμικού φορτίου όπως υπολογίζεται στο κεφάλαιο 6 :

 $q_{td} = q_{fd} \cdot A_f / A_t$

- k_{b} : ο συντελεστής μετατροπής, όπως εκτιμάται από τον πίνακα 7.2
- w_f : ο συντελεστής αερισμού σύμφωνα τη σχέση 7.3 και ισχύει w_t = w_f·A_t / A_f
- k_c : ο συντελεστής διόρθωσης που εξαρτάται από το υλικό που συνθέτει τη διατομή και προσδιορίζεται από τον πίνακα 7.1.

Πίνακας 7.1- Συντελεστής διόρθωσης k_c σε σχέση με το υλικό της διατομής.

Υλικό διατομής	Συντελεστής διόρθωσης k _c
Οπλισμένο σκυρόδεμα	1,0
Προστατευμένος χάλυβας	1,0
Μη προστατευμένος χάλυβας	13,7.0

Όταν δε γίνεται λεπτομερής εκτίμηση των θερμικών ιδιοτήτων του περιβλήματος, ο συντελεστής μετατροπής μπορεί να θεωρείται :

$$k_b = 0,07 \text{ (min m2/MJ)}$$

(7.2)

Διαφορετικά ο k_b σχετίζεται με τη θερμική ιδιότητα b= $\sqrt{(\rho c \lambda)}$ του περιβλήματος σύμφωνα με τον πίνακα 7.2. Ο προσδιορισμός του b για πολλαπλές στρώσεις υλικών ή διαφορετικά υλικά σε τοίχους, δάπεδο, οροφή αναφέρεται αναλυτικά στο κεφάλαιο 3.2.

Πίνακας 7.2 -	Συντελεστής μετατροπής $k_{\text{b}},$	που εξαρτάται αΓ	ιό τις θερμικές ι	διότητες του
	περιβλήματος.			

$\mathbf{b} = \sqrt{(\rho c \lambda)}$	k _b	
(J/m ² s ^{1/2} K)	(min∙m²/MJ)	
b > 2500	0,04	
720 ≤ b ≤ 2500	0,055	
b < 720	0,07	

Ο συντελεστής αερισμού w_f (-) υπολογίζεται ως εξής :

$$w_{f} = (6,0/H)^{0,3} \cdot (0,62+90 \cdot (0,4-a_{v})^{4}/(1+b_{v} \cdot a_{h})) \geq 0,5$$
(7.3)

όπου:

a_ν= A_ν/A_f είναι η επιφάνεια των κατακόρυφων ανοιγμάτων στην πρόσοψη (A_ν) ως προς την επιφάνεια του δαπέδου A_f, με τον περιορισμό 0,025≤a_ν≤0,25.

a_h= A_h/A_f είναι η επιφάνεια των οριζόντιων ανοιγμάτων στην οροφή (A_h) ως προς την επιφάνεια του δαπέδου A_f.

 $b_v = 12, 5 \cdot (1 + 10a_v - a_v^2) \ge 10, 0$

είναι το ύψος του πυροδιαμερίσματος.

Για μικρά πυροδιαμερίσματα ($A_f < 100 \text{ m}^2$) χωρίς ανοίγματα στην οροφή ο συντελεστής w_f μπορεί επίσης να υπολογίζεται ως :

$$w_f = O^{-1/2} \cdot A_f / A_t$$
 (7.4)

όπου Ο ο συντελεστής αερισμού σύμφωνα με τον τύπο στο κεφάλαιο 3. Θα πρέπει να επαληθεύεται ότι:

t_{e,d} < t_{fi,d} (7.5)

όπου:

Н

t_{fi,d}: είναι η τιμή σχεδιασμού του χρόνου αντοχής της πρότυπης πυρκαγιάς των μελών σύμφωνα με τα μέρη του prEN 1992, prEN 1996 και prEN 1999.

7.2 Παραδείγματα στον υπολογισμό του ισοδύναμου χρόνου έκθεσης t_{e,d} στην πυρκαγιά

Παράδειγμα 7.2.1

Θα εκτιμηθεί ο ισοδύναμος χρόνος έκθεσης σε πυρκαγιά t_{e,d} σύμφωνα με το παράρτημα F του ευρωκώδικα 1-1-2 σε πυροδιαμέρισμα (κτίριο γραφείων) με A_f=300 m², συντελεστή αερισμού O=0,06 m^{1/2}, συντελεστή περιβλήματος b=1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου q_{fd} (MJ/m²) όπως υπολογίζεται σύμφωνα με το παράρτημα E.

Ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά δίνεται από τον τύπο (7.1) :

 $t_{e,d} = (q_{f,d} \cdot k_b \cdot w_f) \cdot k_c$

 Ο συντελεστής μετατροπής k_b, ο οποίος εξαρτάται από τις θερμικές ιδιότητες του περιβλήματος προσδιορίζεται αναλόγως με το συντελεστή περιβλήματος b από τον πίνακα
 7.2.

Για b=1500 (J/m²s^{1/2}K) ο συντελεστής μετατροπής k_b είναι ίσος με k_b=0,055 (min·m²/MJ)

 Ο συντελεστής διόρθωσης k_c, ο οποίος εξαρτάται από το υλικό της διατομής προσδιορίζεται από τον πίνακα 7.1.

Για προστατευμένο χάλυβα ο συντελεστής διόρθωσης είναι ίσος με k_c=1,0 .

Η τιμή σχεδιασμού του πυροθερμικού φορτίου δίνεται από τη σχέση 6.1 :

 $q_{f,d} = q_{f,k} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n$

Για κτίριο γραφείων η χαρακτηριστική τιμή της πυκνότητας του πυροθερμικού φορτίου δίνεται από τον πίνακα 6.5, q_{f,k}= 420 MJ/m².

Ο συντελεστής δ_{q1} εξαρτάται από την επιφάνεια A_f του πυροδιαμερίσματος. Από τον πίνακα 6.1 βρίσκουμε με γραμμική παρεμβολή:

 $A_f{=}300~m^2\rightarrow \delta_{q1}{=}1{,}51$

Ο συντελεστής δ_{q2} εξαρτάται από τη χρήση του πυροδιαμερίσματος και για χώρο γραφείων (πίνακας 6.2) έχει την τιμή δ_{q2}= 1,00.

Ο συντελεστής καύσης m λαμβάνεται ίσος με m= 0,8.

Ο συντελεστής δ_n για συνήθη μέτρα προστασίας (πίνακας 6.3) λαμβάνεται ίσος με δ_n =1,00.

Άρα η τιμή σχεδιασμού του πυροθερμικού φορτίου είναι ίση με:

q_{fd}= 420·0,8·1,51·1,0·1,0= 507,4 MJ/m² Η συνολική επιφάνεια είναι : A_t = 2·(L₁·L₂+L₂·L₃+L₃·L₁) A_t = 2·(3·15+15·20+20·3) A_t = 810 m²

Η τιμή σχεδιασμού του πυροθερμικού φορτίου εκφραζόμενο ως προς τη συνολική επιφάνεια του περιβλήματος είναι :

$$q_{t,d} = q_{f,d} \cdot A_f / A_t = 507, 4 \cdot 300/810 = 188 \text{ MJ/m}^2$$

Ο συντελεστής αερισμού w_f δίνεται από τον τύπο 7.3 :

$$W_f = (6/H)^{0,3}((0,62+90(0,4-a_v)^4/(1+b_v a_h)))$$

όπου:

$$a_v = A_v/A_f$$

$$a_h = A_h/A_f$$

$$b_v = 12,5(1 + 10a_v - a_v^2)$$

Το ύψος του πυροδιαμερίσματος είναι H= 3,0 m.

Η επιφάνεια των κατακόρυφων ανοιγμάτων είναι ίση με :

$$A_v = b_1 \cdot h_1 + b_2 \cdot h_2 + \dots + b_v \cdot h_v$$
$$A_v = 40 m^2$$

Άρα :

 $a_v = A_v / A_f = 40/300 = 0.13$ 0.025 < 0.13 0.25

Το κτίριο δεν έχει ανοίγματα στην οροφή άρα a_h = 0.

Άρα ο συντελεστής αερισμού w_f όπως προκύπτει από τα παραπάνω είναι ίσος με :

 $w_{f} = (6/3,0)^{0,3} \cdot ((0,62+90(0,4-0,13)^{4}))$ $w_{f} = 1,35 > 0,5$

Τελικώς ο ισοδύναμος χρόνος ἑκθεσης στην πυρκαγιά t_{e,d} θα είναι :

 $t_{e,d} \text{= } 507, 4 \cdot 0, 055 \cdot 1, 35 \cdot 1, 0 \rightarrow$

<u>t_{e,d} = 37,7 min</u>

Θα εξετάσουμε το θερμικό αποτέλεσμα που προκύπτει από την πρότυπη καμπύλη θερμοκρασίας χρόνου για ισοδύναμο χρόνο έκθεσης στην πυρκαγιά t_{e,d} = 37,7 min και από την αντίστοιχη παραμετρική καμπύλη σε πραγματικές συνθήκες πυρκαγιάς.

Η πρότυπη καμπύλη θερμοκρασίας - χρόνου προκύπτει από τη σχέση 1.4 :

 $\Theta_{g} = 20 + 345 \cdot \log_{10}(8 \cdot t + 1)$

Η παραμετρική καμπύλη θερμοκρασίας – χρόνου για τα συγκεκριμένα χαρακτηριστικά του πυροδιαμερίσματος υπολογίζεται παρακάτω :

Ο ανοδικός κλάδος της παραμετρικής καμπύλης με συντελεστή αερισμού Ο= 0,06 m^{1/2} συντελεστή περιβλήματος b= 1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου $q_{td} = 188 \text{ MJ/m}^2$ δίνεται από τη σχέση 3.1 :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$

Ο συντελεστής Γ εξαρτώμενος από τις συνθήκες αερισμού δίνεται από τον τύπο: Γ= (O/b)²/(0,04/1160)²

$$\Gamma = (0,06/1500)^2/(0,04/1160)^2 = 1,35$$

 $\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 1.35 \cdot t} - 0.204 \cdot e^{-1.7 \cdot 1.35 \cdot t} - 0.472 \cdot e^{-19 \cdot 1.35 \cdot t})$

Ο μέγιστος χρόνος στον οποίο αναπτύσσεται η μέγιστη θερμοκρασία στο πυροδιαμέρισμα θα είναι σύμφωνα με τη σχέση 3.4 :

$$t_{max}$$
= 0,2·10⁻³·q_{t,d} / O= 0,2·10⁻³·188 /0,06= 0,626 h = 37,7 min.

Kαι ο σχετικός χρόνος είναι : t^*_{max} = t_{max} ·Γ = 0,626·1,35 = 0,851 0,5<0,851<2 →

Ο καθοδικός κλάδος της καμπύλης θερμοκρασίας- χρόνου δίνεται από τη σχέση 3.7β :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t_{max}^{*}) (t^{*} - t_{max}^{*} \cdot x) , x = 1,0$$

 $\Theta_g = 918,7758 - 250 \cdot (3 - 0,851) (t^* - 0,851)$

Η θερμοκρασία του μονωμένου χαλύβδινου μέλους με d/λ=0,10 δίνεται από τη σχέση 2.9 :

$$\Delta \Theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

Η διατομή IPE270 έχει χαρακτηριστικά :πλάτος πέλματος b=135mm, ύψος κορμού h=270mm και εμβαδόν διατομής A= 45,95 cm².Ο συντελεστής διατομής θα είναι ίσος με :

A_p/V=2(27+13,5)·100/45,95=176,28 m⁻¹

Άρα:

$$\Delta \theta_{a,t} = \frac{0.25 \cdot 176.28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0.025 \cdot 600 \cdot 7850}$$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \theta_{a,t} = 11,23 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{a,t})$

Ισοδύναμος χρόνος te,d = 37.7 min και Ο=0,06, b=1500, qtd=188							
t (sec)	t(min)	Og ISO	Oa ISO	ΔΘa,t	Θg παρ.	Θα παρ.	ΔΘa,t
0	0.0	20.000	20.000	0.000	20.000	20.000	0.000
30	0.5	261.145	20.000	2.708	146.443	20.000	1.420
60	1.0	349.214	22.708	3.667	249.625	21.420	2.563
90	1.5	404.310	26.375	4.244	334.003	23.983	3.482
120	2.0	444.505	30.619	4.648	403.181	27.464	4.219
150	2.5	476.166	35.267	4.951	460.067	31.684	4.811
180	3.0	502.289	40.218	5.189	507.010	36.494	5.284
210	3.5	524.527	45.407	5.381	545.907	41.778	5.661
240	4.0	543.887	50.788	5.538	578.292	47.440	5.961
270	4.5	561.030	56.325	5.668	605.403	53.401	6.199
300	5.0	576.410	61.993	5.777	628.238	59.600	6.386
330	5.5	590.358	67.770	5.869	647.607	65.986	6.532
360	6.0	603.118	73.639	5.946	664.161	72.517	6.644
390	6.5	614.875	79.585	6.011	678.428	79.162	6.730
420	7.0	625.777	85.596	6.066	690.835	85.891	6.794
450	7.5	635.939	91.662	6.112	701.725	92.685	6.840
480	8.0	645.455	97.774	6.150	711.376	99.524	6.871
510	8.5	654.403	103.925	6.182	720.015	106.395	6.891
540	9.0	662.846	110.107	6.207	727.822	113.286	6.901
570	9.5	670.839	116.314	6.227	734.945	120.188	6.904
600	10.0	678.427	122.541	6.243	741.503	127.091	6.900
630	10.5	685.650	128.784	6.254	747.593	133.991	6.891
660	11.0	692.540	135.038	6.261	753.292	140.882	6.877
690	11.5	699.127	141.298	6.264	758.664	147.759	6.860
720	12.0	705.436	147.563	6.265	763.760	154.620	6.841
750	12.5	711.491	153.828	6.263	768.622	161.460	6.818
780	13.0	717.310	160.090	6.258	773.284	168.279	6.794
810	13.5	722.912	166.348	6.250	777.772	175.073	6.768
840	14.0	728.312	172.598	6.241	782.111	181.841	6.741
870	14.5	733.524	178.839	6.229	786.317	188.582	6.713
900	15.0	738.561	185.068	6.216	790.406	195.295	6.683
930	15.5	743.434	191.284	6.201	794.390	201.978	6.653
960	16.0	748.153	197.484	6.184	798.280	208.631	6.622
990	16.5	752.729	203.668	6.166	802.083	215.253	6.590
1020	17.0	757.169	209.834	6.147	805.807	221.843	6.558
1050	17.5	761.481	215.981	6.126	809.457	228.401	6.525
1080	18.0	765.672	222.107	6.104	813.038	234.926	6.492
1110	18.5	769.749	228.211	6.081	816.555	241.418	6.459
1140	19.0	773.719	234.292	6.058	820.010	247.877	6.425

t (sec)	t(min)	Og ISO	0a ISO	ΔΘa,t	Θg παρ.	Θα παρ.	ΔΘa,t
1170	19.5	777.585	240.350	6.033	823.407	254.302	6.391
1200	20.0	781.355	246.383	6.008	826.749	260.693	6.357
1230	20.5	785.032	252.391	5.982	830.036	267.050	6.322
1260	21.0	788.621	258.373	5.955	833.272	273.372	6.288
1290	21.5	792.126	264.327	5.927	836.459	279.660	6.253
1320	22.0	795.551	270.254	5.899	839.597	285.913	6.218
1350	22.5	798.899	276.154	5.870	842.688	292.131	6.183
1380	23.0	802.174	282.024	5.841	845.733	298.313	6.148
1410	23.5	805.379	287.865	5.812	848.734	304.461	6.112
1440	24.0	808.517	293.677	5.782	851.691	310.573	6.077
1470	24.5	811.591	299.459	5.751	854.606	316.650	6.041
1500	25.0	814.603	305.210	5.720	857.480	322.691	6.006
1530	25.5	817.555	310.930	5.689	860.312	328.697	5.970
1560	26.0	820.450	316.620	5.658	863.106	334.667	5.934
1590	26.5	823.291	322.278	5.626	865.860	340.601	5.899
1620	27.0	826.079	327.904	5.594	868.576	346.500	5.863
1650	27.5	828.815	333.499	5.562	871.254	352.363	5.827
1680	28.0	831.503	339.061	5.530	873.896	358.190	5.791
1710	28.5	834.143	344.591	5.498	876.502	363.981	5.756
1740	29.0	836.738	350.089	5.465	879.073	369.737	5.720
1770	29.5	839.288	355.554	5.432	881.609	375.457	5.684
1800	30.0	841.796	360.986	5.399	884.111	381.141	5.648
1830	30.5	844.262	366.386	5.367	886.580	386.789	5.613
1860	31.0	846.689	371.752	5.334	889.016	392.402	5.577
1890	31.5	849.077	377.086	5.300	891.419	397.979	5.541
1920	32.0	851.427	382.386	5.267	893.792	403.520	5.506
1950	32.5	853.741	387.654	5.234	896.133	409.026	5.470
1980	33.0	856.020	392.888	5.201	898.444	414.496	5.435
2010	33.5	858.265	398.089	5.168	900.724	419.931	5.399
2040	34.0	860.476	403.256	5.135	902.976	425.330	5.364
2070	34.5	862.656	408.391	5.101	905.199	430.694	5.329
2100	35.0	864.804	413.492	5.068	907.393	436.023	5.293
2130	35.5	866.921	418.561	5.035	909.560	441.316	5.258
2160	36.0	869.010	423.596	5.002	911.699	446.575	5.223
2190	36.5	871.069	428.598	4.969	913.812	451.798	5.188
2220	37.0	873.101	433.567	4.936	915.898	456.986	5.154
2250	37.5	875.105	438.503	1.966	917.959	462.140	2.051
2262	37.7	875.900	443.406	2.917	918.776	467.259	3.046

Παρατίθεται παραπάνω ένα φύλλο Excel όπου παρουσιάζονται οι υπολογισμοί στους οποίους βασίζεται το διάγραμμα 7.1. Παρουσιάζονται ενδεικτικά αποτελέσματα της θερμοκρασίας και του χρόνου ως τη χρονική στιγμή t = 40 min.Ομοίως έχουν γίνει οι υπολογισμοί και στα επόμενα παραδείγματα για το σχηματισμό των αντίστοιχων διαγραμμάτων.

Σχήμα 7.1 Θερμοκρασίες αέρα και χάλυβα μονωμένου μέλους (d/λ=0,10) με συντελεστή διατομής A_p/V=176,28 με βάση την πρότυπη καμπύλη ISO και ισοδύναμο χρόνο έκθεσης t_{e,d}=37,7min και την παραμετρική καμπύλη για πυροδιαμέρισμα με O=0,06, b=1500 q_{td}=188

Παρατήρηση: Στο διάγραμμα 7.1 απεικονίζονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα και χάλυβα σε συνάρτηση με το χρόνο για τις πραγματικές συνθήκες του πυροδιαμερίσματος (αερισμός, περίβλημα, πυροθερμικό φορτίο) καθώς και οι πρότυπες καμπύλες ISO θερμοκρασίας αέρα και χάλυβα συναρτήσει του χρόνου μέχρι τη χρονική στιγμή t = 37,7 min που αντιστοιχεί στον ισοδύναμο χρόνο έκθεσης στην πυρκαγιά t_{e.d}. Στο παραπάνω διάγραμμα παρατηρούμε πως το θερμικό αποτέλεσμα που προκύπτει από την καμπύλη ISO θερμοκρασίας χάλυβα - χρόνου για ισοδύναμο χρόνο έκθεσης t_{e,d} =37,7 min είναι ίδιο με αυτό που προκύπτει από την αντίστοιχη παραμετρική καμπύλη για τον ίδιο χρόνο. Η θερμοκρασία του χαλύβδινου μέλους φτάνει περίπου τους 450 °C τη χρονική στιγμή t= 37,7 min. Επίσης στο συγκεκριμένο παράδειγμα ο ισοδύναμος χρόνος έκθεσης συμπίπτει με το μέγιστο χρόνο t_{max} (πέρας του ανοδικού κλάδου της παραμετρικής καμπύλης θερμοκρασίας αέρα-χρόνου). Ο καθοδικός κλάδος στην παραμετρική καμπύλη δηλώνει ότι σε μια πραγματική πυρκαγιά κάποια χρονική στιγμή η θερμοκρασία του αέρα αρχίζει να μειώνεται (φάση ύφεσης). Αν αγνοήσουμε τον καθοδικό κλάδο της παραμετρικής καμπύλης τότε προκύπτει το ίδιο θερμικό αποτέλεσμα με αυτό που μας δίνει ουσιαστικά το τμήμα της πρότυπης καμπύλης για χρόνο $t_{e,d} = 37,7$ min.

Θα εκτιμηθεί ο ισοδύναμος χρόνος ἐκθεσης σε πυρκαγιά t_{e,d} σύμφωνα με το παράρτημα F του ευρωκώδικα 1-1-2 σε πυροδιαμέρισμα (κτίριο γραφείων) με A_f=400 m², συντελεστή αερισμού O=0,10 m^{1/2} (ανοίγματα και στην οροφή), συντελεστή περιβλήματος b=1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου q_{fd} (MJ/m²) όπως υπολογίζεται σύμφωνα με το παράρτημα E.

Σημείωση :Το πυροδιαμέρισμα που θα εξετάσουμε στο παράδειγμα αυτό έχει ανοίγματα στην οροφή κι έτσι διαφοροποιείται ο συντελεστής αερισμού w_f και ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά t_{e,d}.

Ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά δίνεται από τον τύπο 7.1 :

 $t_{e,d} = (q_{f,d} \cdot k_b \cdot w_f) \cdot k_c$

Ο συντελεστής μετατροπής k_b, ο οποίος εξαρτάται από τις θερμικές ιδιότητες του
 περιβλήματος προσδιορίζεται αναλόγως με την τιμή του συντελεστή περιβλήματος b από τον
 πίνακα 7.2.

Για b=1500 (J/m²s^{1/2}K) ο συντελεστής μετατροπής k_b είναι ίσος με k_b=0,055 (min·m²/MJ)

 Ο συντελεστής διόρθωσης k_c, ο οποίος εξαρτάται από το υλικό της διατομής προσδιορίζεται από τον πίνακα 7.1.

Για προστατευμένο χάλυβα ο συντελεστής διόρθωσης είναι ίσος με k_c=1,0.

Η τιμή σχεδιασμού του πυροθερμικού φορτίου δίνεται από τη σχέση 6.1 :

 $q_{f,d} = q_{f,k} \cdot \ m \cdot \ \delta_{q1} \cdot \ \delta_{q2} \cdot \ \delta_n$

Για κτίριο γραφείων η χαρακτηριστική τιμή της πυκνότητας του πυροθερμικού φορτίου δίνεται από τον πίνακα 6.5 του παραρτήματος Ε, q_{fk}=420 MJ/m².

Ο συντελεστής δ_{q1} εξαρτάται από την επιφάνεια A_f του πυροδιαμερίσματος. Από τον πίνακα 6.1 βρίσκουμε με γραμμική παρεμβολή:

$$A_f{=}400~m^2 \rightarrow \delta_{q1}{=}1,53$$

Ο συντελεστής δ_{q2} εξαρτάται από τη χρήση του πυροδιαμερίσματος (πίνακας 6.2) και για χώρο γραφείων έχει την τιμή δ_{q2}= 1,00.

Ο συντελεστής καύσης m λαμβάνεται ίσος με m=0,8.

Ο συντελεστής δ_n για συνήθη μέτρα προστασίας (πίνακας 6.3) λαμβάνεται ίσος με δ_n =1,00.

Άρα η τιμή σχεδιασμού του πυροθερμικού φορτίου είναι ίση με:

 $q_{f,d}$ = 420.0,8.1,53.1,0.1,0= 514,08 MJ/m²

Η τιμή σχεδιασμού του πυροθερμικού φορτίου εκφραζόμενο ως προς τη συνολική επιφάνεια του περιβλήματος είναι :

 $q_{t,d} = q_{f,d} \cdot A_f / A_t = 514,08 \cdot 400/1080 = 190,4 \text{ MJ/m}^2$

Ο συντελεστής αερισμού w_f δίνεται από τον τύπο 7.3 :

$$w_f = (6/H)^{0,3}((0,62+90\cdot(0,4-a_v)^4/(1+b_v\cdot a_h)))$$

όπου:

$$a_v = A_v/A_f$$

$$a_h = A_h/A_f$$

$$b_v = 12,5(1 + 10a_v - a_v^2)$$

Το ύψος του πυροδιαμερίσματος είναι H= 3,5 m.

Η επιφάνεια των κατακόρυφων ανοιγμάτων είναι ίση με :

 $A_v = b_1 \cdot h_1 + b_2 \cdot h_2 + \ldots + b_v \cdot h_v$

$$A_v = 40 \text{ m}^2$$

Άρα :

 $a_v = A_v / A_f = 40/400 = 0,10$ 0,025<0,10<0,25

Η επιφάνεια οριζόντιων ανοιγμάτων στην οροφή είναι ίση με:

$$A_h = b_1 \cdot h_1 + b_2 \cdot h_2 + \dots + b_v \cdot h_v = 10 \cdot 1, 0 \cdot 1, 0 = 10 \text{ m}^2$$

$$a_h = A_h/A_f = 10/400 = 0,025$$

$$b_v = 12,5(1 + 10a_v - a_v^2)$$

 $b_v = 12,5(1+10.0,054-0,054^2)$
 $b_v = 19,21$

Άρα ο συντελεστής αερισμού w_f προκύπτει:

$$w_f = (6/3,5)^{0,3} \cdot ((0,62+90(0,4-0,1)^2))$$

 $w_f = 1,61 > 0,5$

Τελικώς ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά t_{e,d} είναι ίσος με:

 $t_{e,d} \text{= } 514,08 \cdot 0,055 \cdot 1,61 \cdot 1,0 \rightarrow \underline{t_{e,d}} \text{= } 44,5 \text{ min}$

Θα εξετάσουμε το θερμικό αποτέλεσμα που προκύπτει από την πρότυπη καμπύλη θερμοκρασίας χρόνου για ισοδύναμο χρόνο έκθεσης στην πυρκαγιά t_{e,d} = 44,5 min και από την αντίστοιχη παραμετρική καμπύλη σε πραγματικές συνθήκες πυρκαγιάς.

Η πρότυπη καμπύλη θερμοκρασίας – χρόνου προκύπτει από τη σχέση 1.4 : $Θ_g = 20 + 345 \cdot \log_{10}(8 \cdot t + 1)$

Η παραμετρική καμπύλη θερμοκρασίας – χρόνου για τα συγκεκριμένα χαρακτηριστικά του πυροδιαμερίσματος υπολογίζεται όπως προηγουμένως :

Ο ανοδικός κλάδος της παραμετρικής καμπύλης με συντελεστή αερισμού Ο= 0,10m^{1/2} συντελεστή περιβλήματος b= 1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου $q_{td} = 190,4MJ/m^2$ δίνεται από τη σχέση 3.1 :

$$\Theta_{q} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$

µε t^{*}=t·Γ

Ο συντελεστής Γ εξαρτώμενος από τις συνθήκες αερισμού δίνεται από τον τύπο:

$$\Gamma = (O/b)^2/(0,04/1160)^2$$

$$\Gamma = (0, 10/1500)^2 / (0, 04/1160)^2 = 3,74$$

Αντικαθιστούμε στην προηγούμενη σχέση και έχουμε :

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 3.74 \cdot t} - 0.204 \cdot e^{-1.7 \cdot 3.74 \cdot t} - 0.472 \cdot e^{-19 \cdot 3.74 \cdot t})$$

$$t_{max} = 0,2 \cdot 10^{-3} \cdot q_{td}/O = 0,2 \cdot 10^{-3} \cdot 190,4/0,10 = 0,38 \text{ h} = 22,85 \text{ min.}$$

$$t^{*}_{max} = t_{max} \cdot \Gamma = 0,38 \cdot 3,74 = 1,42 \quad 0,5 < 1,42 < 2 \rightarrow$$

Ο καθοδικός κλάδος της καμπύλης θερμοκρασίας- χρόνου δίνεται από τη σχέση :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t_{max}^{*}) (t_{max}^{*} - t_{max}^{*} \cdot x) , x = 1,0$$

Η θερμοκρασία του μονωμένου χαλύβδινου μέλους με d/λ=0,10 δίνεται από τη σχέση 2.9 :

$$\Delta \Theta_{a,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

Η διατομή IPE270 έχει χαρακτηριστικά :πλάτος πέλματος b=135mm, ύψος κορμού h=270mm και εμβαδόν διατομής A= 45,95 cm².Ο συντελεστής διατομής θα είναι ίσος με : A_p/V=2(27+13,5)·100/45,95=176,28 m⁻¹

Άρα:

 $\Delta \theta_{\alpha,t} = \frac{0,25 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,025 \cdot 600 \cdot 7850}$

Για χρονικό διάστημα Δt = 30 sec :

 $\Delta \theta_{a,t} = 11,23 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{a,t})$

Ομοίως με το προηγούμενο παράδειγμα μετά από υπολογισμούς στο Excel προκύπτουν οι παρακάτω καμπύλες θερμοκρασίας-χρόνου.

Σχήμα 7.2 Θερμοκρασίες αέρα και χάλυβα μονωμένου μέλους (d/λ=0,10) με συντελεστή διατομής A_p/V=176,28 με βάση την πρότυπη καμπύλη ISO για ισοδύναμο χρόνο έκθεσης t_{ed}=44,5min και την παραμετρική καμπύλη για πυροδιαμέρισμα με O=0,10,b=1500 και q_{td}=190,4.

Παρατήρηση : Στο διάγραμμα 7.2 απεικονίζονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα και χάλυβα σε συνάρτηση με το χρόνο για τις πραγματικές συνθήκες του πυροδιαμερίσματος (αερισμός, περίβλημα, πυροθερμικό φορτίο) καθώς και οι πρότυπες καμπύλες ISO θερμοκρασίας αέρα και χάλυβα συναρτήσει του χρόνου για ισοδύναμο χρόνο έκθεσης t_{e,d} = 44,5 min. Παρατηρούμε πως το θερμικό αποτέλεσμα που προκύπτει από την καμπύλη ISO θερμοκρασίας χάλυβα - χρόνου για ισοδύναμο χρόνο έκθεσης t_{e,d} =44,5 min είναι περίπου ίδιο με αυτό που προκύπτει από την αντίστοιχη παραμετρική καμπύλη για τον ίδιο χρόνο. Η θερμοκρασία του χαλύβδινου μέλους φτάνει περίπου τους 500 °C τη χρονική στιγμή t= 44,5 min. Θα εκτιμηθεί ο ισοδύναμος χρόνος ἐκθεσης σε πυρκαγιά t_{e,d} σύμφωνα με το παράρτημα F του ευρωκώδικα σε πυροδιαμἑρισμα (κατοικία) με A_f=150m², συντελεστή αερισμού O=0,07 m^{1/2} , συντελεστή περιβλήματος b=1500J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου q_{fd} (MJ/m²) όπως υπολογίζεται σύμφωνα με το παράρτημα Ε.

Ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά δίνεται από τον τύπο 7.1 :

 $t_{e,d} = (q_{fd} \cdot k_b \cdot w_f) \cdot k_c$

Ο συντελεστής μετατροπής k_b, ο οποίος εξαρτάται από τις θερμικές ιδιότητες του
 περιβλήματος προσδιορίζεται αναλόγως με την τιμή του συντελεστή περιβλήματος b από τον
 πίνακα 7.2.

Για b=1500 (J/m²s^{1/2}K) ο συντελεστής μετατροπής k_b είναι ίσος με k_b=0,055 (min·m²/MJ)

 Ο συντελεστής διόρθωσης k_c, ο οποίος εξαρτάται από το υλικό της διατομής προσδιορίζεται από τον πίνακα 7.1.

Για προστατευμένο χάλυβα ο συντελεστής διόρθωσης είναι ίσος με k_c=1,0.

Η τιμή σχεδιασμού του πυροθερμικού φορτίου δίνεται από τη σχέση 6.1 :

 $q_{fd} = q_{fk} \cdot m \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n$

Για κτίριο γραφείων η χαρακτηριστική τιμή της πυκνότητας του πυροθερμικού φορτίου δίνεται από τον πίνακα 6.5 του κεφαλαίου 6, q_{fk}=780 MJ/m².

Ο συντελεστής δ_{q1} εξαρτάται από την επιφάνεια A_f του πυροδιαμερίσματος. Από τον πίνακα 6.1 βρίσκουμε με γραμμική παρεμβολή:

 $A_f = ~150~m^2 \rightarrow \delta_{q1} {=} 1,32$

Ο συντελεστής δ_{q2} εξαρτάται από τη χρήση του πυροδιαμερίσματος (πίνακας 6.2) και για κατοικία έχει την τιμή δ_{q2}= 1,00.

Ο συντελεστής καύσης m λαμβάνεται ίσος με m= 0,8.

Ο συντελεστής δ_n για συνήθη μέτρα προστασίας (πίνακας 6.3) λαμβάνεται ίσος με δ_n= 1,00.

Άρα η τιμή σχεδιασμού του πυροθερμικού φορτίου είναι ίση με:

$$q_{fd}$$
= 780·0,8·1,32·1,0·1,0= 823,7 MJ/m²
Η συνολική επιφάνεια είναι :
A_t = 2·(L₁·L₂+L₂·L₃+L₃·L₁)
A_t = 2·(3·10+10·15+15·3)
A_t = 450 m²

Η τιμή σχεδιασμού του πυροθερμικού φορτίου εκφραζόμενο ως προς τη συνολική επιφάνεια του περιβλήματος είναι :

 q_{td} = q_{fd} ·A_f / A_t= 823,7·150/450= 275 MJ/m²

Ο συντελεστής αερισμού w_f δίνεται από τον τύπο 7.3 :

$$w_f = (6/H)^{0,3}((0,62+90(0,4-a_v)^4/(1+b_v a_h)))$$

όπου:

$$a_v = A_v/A_f$$

 $a_h = A_h/A_f$
 $b_v = 12,5(1 + 10a_v - a_v^2)$

Το ύψος του πυροδιαμερίσματος είναι H= 3,0 m.

Η επιφάνεια των κατακόρυφων ανοιγμάτων είναι ίση με :

 $A_v = b_1 \cdot h_1 + b_2 \cdot h_2 + \ldots + b_v \cdot h_v$ $A_v = 25 \text{ m}^2$

$$a_v = A_v / A_f = 25/150 = 0,17$$
 0,025 < 0,17 < 0,25

Άρα ο συντελεστής αερισμού w_f προκύπτει:

$$w_{f} = (6/3,0)^{0,3} \cdot ((0,62+90(0,4-0,17)^{4}))$$
$$w_{f} = 1,07 > 0,5$$

Τελικώς ο ισοδύναμος χρόνος έκθεσης στην πυρκαγιά t_{e,d} είναι ίσος με:

 $t_{e,d}\text{= 823,7}{\cdot}0,055{\cdot}1,07{\cdot}1,0 \rightarrow$

<u>t_{e,d} = 48,5 min</u>

Θα εξετάσουμε το θερμικό αποτέλεσμα που προκύπτει από την πρότυπη καμπύλη θερμοκρασίας - χρόνου για ισοδύναμο χρόνο έκθεσης στην πυρκαγιά t_{e,d} = 48,5 min και από την αντίστοιχη παραμετρική καμπύλη σε πραγματικές συνθήκες πυρκαγιάς. Η πρότυπη καμπύλη θερμοκρασίας – χρόνου προκύπτει από τη σχέση 1.4 : Θ_g = 20 + 345·log₁₀(8·t + 1) Η παραμετρική καμπύλη θερμοκρασίας – χρόνου για τα συγκεκριμένα χαρακτηριστικά του πυροδιαμερίσματος υπολογίζεται όπως προηγουμένως :

Ο ανοδικός κλάδος της παραμετρικής καμπύλης με συντελεστή αερισμού Ο= 0,07 m^{1/2} συντελεστή περιβλήματος b= 1500 J/m²s^{1/2}K και πυκνότητα πυροθερμικού φορτίου $q_{td} = 275 \text{ MJ/m}^2$ δίνεται από τη σχέση:

$$\Theta_{a} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2t^{*}} - 0.204 \cdot e^{-1.7t^{*}} - 0.472 \cdot e^{-19t^{*}})$$

με t^{*}=t·Γ

Ο συντελεστής Γ εξαρτώμενος από τις συνθήκες αερισμού δίνεται από τον τύπο:

$$\Gamma = (O/b)^2 / (0.04/1160)^2$$

 $\Gamma = (0,07/1500)^2/(0,04/1160)^2 = 1,83$

$$\Theta_{g} = 20 + 1325 \cdot (1 - 0.324 \cdot e^{-0.2 \cdot 1.83 \cdot t} - 0.204 \cdot e^{-1.7 \cdot 1.83 \cdot t} - 0.472 \cdot e^{-19 \cdot 1.83 \cdot t})$$

Ο μέγιστος χρόνος στον οποίο αναπτύσσεται η μέγιστη θερμοκρασία στο πυροδιαμέρισμα είναι:

$$t_{max} = 0,2 \cdot 10^{-3} \cdot q_{td}/0 = 0,2 \cdot 10^{-3} \cdot 275/0,07 = 0,786 \text{ h} = 47,15 \text{ min.}$$

Kαι ο σχετικός μέγιστος χρόνος : t^*_{max} = t_{max} ·Γ = 0,786·1,83 = 1,44 0,5 <1,44< 2 →

Ο καθοδικός κλάδος της καμπύλης θερμοκρασίας- χρόνου δίνεται από τη σχέση 3.7β :

$$\Theta_{g} = \Theta_{max} - 250 \cdot (3 - t_{max}^{*}) (t^{*} - t_{max}^{*} \cdot x) , x = 1,0$$

 $\Theta_{q} = 999,5549 - 250 \cdot (3 - 1,44) (t^{*} - 1,44)$

Η θερμοκρασία του μονωμένου χαλύβδινου μέλους με d/λ=0,10 δίνεται από τη σχέση 2.9 :

$$\Delta \theta_{\sigma,t} = \frac{\lambda_{p} \cdot A_{p} / V \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{d_{p} \cdot c_{a} \cdot \rho_{a}}$$

Για διατομή IPE270 με b=135mm και h=270mm και A= 45,95 cm² προκύπτει όπως και πριν:

A_p/V=2(27+13,5)·100/45,95=176,28 m⁻¹

Άρα:

$$\Delta \theta_{a,t} = \frac{1,0 \cdot 176,28 \cdot (\Theta_{g,t} - \Theta_{a,t}) \cdot \Delta t}{0,10 \cdot 600 \cdot 7850}$$

Για χρονικό διάστημα Δt = 30 sec :

$$\Delta \theta_{a,t} = 11,23 \cdot 10^{-3} \cdot (\Theta_{g,t} - \Theta_{a,t})$$

Σχήμα 7.3 Θερμοκρασίες αέρα και χάλυβα μονωμένου μέλους (d/ λ=0,10) με συντελεστή διατομής A_p/V=176,28 με βάση την πρότυπη καμπύλη ISO για ισοδύναμο χρόνο έκθεσης t_{e,d}= 48,5 min και την παραμετρική καμπύλη για πυροδιαμέρισμα με O= 0,07,b=1500 και q_{td}=275.

Παρατήρηση : Στο διάγραμμα 7.3 απεικονίζονται οι παραμετρικές καμπύλες θερμοκρασίας αέρα και χάλυβα σε συνάρτηση - χρόνου για τις πραγματικές συνθήκες του πυροδιαμερίσματος (αερισμός, περίβλημα, πυροθερμικό φορτίο) καθώς και οι πρότυπες καμπύλες ISO θερμοκρασίας αέρα και χάλυβα - χρόνου για ισοδύναμο χρόνο έκθεσης $t_{e,d}$ = 48,5 min. Το θερμικό αποτέλεσμα που προκύπτει από την καμπύλη ISO θερμοκρασίας χάλυβα - χρόνου για ισοδύναμο χρόνο έκθεσης $t_{e,d}$ =48,5min είναι και πάλι κοντά με αυτό που προκύπτει από την αντίστοιχη παραμετρική καμπύλη για τον ίδιο χρόνο. Η θερμοκρασία του χαλύβδινου μέλους φτάνει στους 540 °C τη χρονική στιγμή t= 48,5 min σύμφωνα με την πρότυπη καμπύλη ISO και στους 595 °C σύμφωνα με την παραμετρική καμπύλη. Παρατηρούμε όπως και στο παράδειγμα 7.1 ότι ο χρόνος t_{max} = 47,2 min είναι περίπου ίσος με τον ισοδύναμο χρόνο έκθεσης στην πυρκαγιά $t_{e,d}$ =48,5 min.

Κεφάλαιο 8

Συντελεστής Διάταξης

8.1 Γενικά

Ο συντελεστής διάταξης Φ για μεταφορά θερμότητας δι'ακτινοβολίας από μία επιφάνεια Α προς μία επιφάνεια Β ορίζεται ως το τμήμα της διαχύτως ακτινοβολούμενης ενέργειας που ξεκινάει από την επιφάνεια Α και προσπίπτει στη γειτονική επιφάνεια Β.

$$dF_{d1-d2} = \frac{\cos\theta_1 \cos\theta_2}{\pi S_{1-2}^2} dA_2$$
(8.1)

Ο συντελεστής διάταξης μετρά το τμήμα της συνολικής θερμότητας που αφήνει μια δεδομένη επιφάνεια εκπομπής και φθάνει σε μια δεδομένη επιφάνεια λήψης. Η τιμή του εξαρτάται από το μέγεθος της επιφάνειας εκπομπής, την απόσταση της επιφάνειας εκπομπής από την επιφάνεια λήψης και το σχετικό τους προσανατολισμό. Ο ακριβής υπολογισμός του συντελεστή διάταξης Φ είναι αντικείμενο του παραρτήματος G του EN 1991-1-2.

Σχήμα 8.1

Σε περίπτωση που η εστία εκπομπής έχει ομοιόμορφη θερμοκρασία και ικανότητα ακτινοβολίας, ο ορισμός απλοποιείται ως εξής :

η στερεά γωνία εντός της οποίας μπορεί να εντοπιστεί από συγκεκριμένο τμήμα

απειροελάχιστης επιφάνειας το περιβάλλον που ακτινοβολεί, διαιρούμενη με 2π".

Η μεταφορά θερμότητας από ακτινοβολία σε μια απειροελάχιστη επιφάνεια ενός κυρτού μέλους καθορίζεται μόνο από τη θέση και το μέγεθος της πυρκαγιάς (position effect).Η μεταφορά θερμότητας από ακτινοβολία σε μια απειροελάχιστη επιφάνεια ενός κοίλου μέλους

καθορίζεται από τη θέση και το μέγεθος της πυρκαγιάς (position effect) όπως και από την ακτινοβολία άλλων τμημάτων του μέλους (shadow effects).

Άνω όρια του συντελεστή διάταξης Φ δίνονται στον πίνακα 8.1.

		Топікή	Πλήρως ανεπτυγμένη
position effect		Φ ≤ 1	$\Phi = 1$
shadow effect	κυρτό	$\Phi = 1$	$\Phi = 1$
	κοίλο	$\Phi \leq 1$	$\Phi \leq 1$

Πίνακας 8.1 - Όρια συντελεστή διάταξης Φ

8.2 Επίδραση σκίασης (shadow effects)

Συγκεκριμένοι κανόνες για να συνεκτιμηθεί η επίδραση της σκίασης δίνονται στα τμήματα του Ευρωκώδικα που αναφέρονται σε συγκεκριμένα υλικά.

8.3 Εξωτερικά μέλη

Όλες οι επιφάνειες που εκπέμπουν ακτινοβολία πρέπει να θεωρούνται ορθογώνιες στο σχήμα. Περιλαμβάνουν παράθυρα και άλλα ανοίγματα στους τοίχους του πυροδιαμερίσματος όπως και τις ισοδύναμες επιφάνειες των φλογών.

Στον υπολογισμό του συντελεστή διάταξης Φ, ένα ορθογώνιο περίβλημα πρέπει να σχεδιάζεται γύρω από τη διατομή του μέλους που λαμβάνει τη θερμότητα. Η τιμή του συντελεστή Φ προσδιορίζεται για το σημείο P (μέσο) της κάθε όψης του ορθογωνίου. Ο συντελεστής Φ πρέπει να υπολογίζεται για κάθε επιφάνεια λήψης ως το άθροισμα της συνεισφοράς της κάθε ζώνης στην επιφάνεια που ακτινοβολεί (κανονικά είναι τέσσερις) και είναι ορατές από το σημείο P της επιφάνειας λήψης. Οι ζώνες αυτές καθορίζονται από το σημείο X, το οποίο βρίσκεται όταν μια οριζόντια γραμμή που είναι κάθετη στην επιφάνεια λήψης τμήσει το επίπεδο που περιλαμβάνει την επιφάνεια εκπομπής. Καμία συνεισφορά δεν υπολογίζεται από τις ζώνες που δεν είναι ορατές από το σημείο P.

Σχήμα 8.**2**

Η συνεισφορά κάθε ζώνης καθορίζεται όπως παρακάτω:

a) <u>Όταν η επιφάνεια λήψης είναι παράλληλη στην επιφάνεια εκπομπής:</u>

$$\Phi = \frac{1}{2\pi} \left[\frac{a}{(1+a^2)^{0.5}} \tan^{-1} \left(\frac{b}{(1+a^2)^{0.5}} \right) + \frac{b}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$
(8.2)

όπου:

a= h/s

b = w/s

s: η απόσταση του σημείου P από το σημείο X.

h: το ύψος της ζώνης στην επιφάνεια εκπομπής ακτινοβολίας

w:το πλάτος της ζώνης αυτής.

Key a Radiating surface b Receiving surface

β) Όταν η επιφάνεια λήψης είναι κάθετη στην επιφάνεια εκπομπής:

$$\Phi = \frac{1}{2\pi} \left[\tan^{-1}(a) - \frac{1}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$
(8.3)

γ) <u>Όταν η επιφάνεια λήψης βρίσκεται σε επίπεδο που σχηματίζει γωνία θ με την επιφάνεια</u> εκπομπής:

$$\Phi = \frac{1}{2\pi} \left[\frac{\tan^{-1}(a) - \frac{(1 - b\cos\theta)}{(1 + b^2 - 2b\cos\theta)^{0.5}} \tan^{-1} \left(\frac{a}{(1 + b^2 - 2b\cos\theta)^{0.5}}\right) + \frac{a\cos\theta}{(a^2 + \sin^2\theta)^{0.5}} \left[\tan^{-1} \left(\frac{(b - \cos\theta)}{(a^2 + \sin^2\theta)^{0.5}}\right) + \tan^{-1} \left(\frac{\cos\theta}{(a^2 + \sin^2\theta)^{0.5}}\right) \right] \right]$$
(8.4)

8.4 Παραδείγματα υπολογισμού του συντελεστή διάταξης Φ

Παράδειγμα 8.4.1

Θα υπολογιστεί ο συνολικός συντελεστής διάταξης $φ_f$ ενός εξωτερικού υποστυλώματος διατομής ΗΕΒ360 για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από ένα άνοιγμα με διαστάσεις h=1,20 m και w=1,00 m καθώς και ο συντελεστής $φ_z$ για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από μία φλόγα με διαστάσεις ισοδύναμου ορθογωνίου w_f =1,0 m και h_f = 3,87 m σύμφωνα με το παράρτημα G του Ευρωκώδικα 1.1.2. Δίνεται η απόσταση του υποστυλώματος από το άνοιγμα s= 3 m.

Αρχικά θα γίνει ο υπολογισμός του συντελεστή διάταξης για μεταφορά θερμότητας δι'ακτινοβολίας από το άνοιγμα. Για την κάθε όψη του υποστυλώματος που δέχεται θερμότητα από το συγκεκριμένο άνοιγμα ο συντελεστής διάταξης υπολογίζεται ξεχωριστά και η τιμή του εξαρτάται από τη σχετική θέση της όψης (επιφάνεια λήψης) ως προς το άνοιγμα (επιφάνεια εκπομπής). Αν η όψη του υποστυλώματος δεν είναι ορατή από το άνοιγμα που εκπέμπει ακτινοβολία, ο συντελεστής διάταξης θεωρείται ίσος με το μηδέν.

• Παράθυρο ως επιφάνεια εκπομπής ακτινοβολίας

Πρώτα θα εξετάσουμε την όψη Α του υποστυλώματος, η οποία είναι παράλληλη προς το άνοιγμα.

<u>Όταν η επιφάνεια λήψης είναι παράλληλη στην επιφάνεια εκπομπής ο συντελεστής διάταξης</u> <u>υπολογίζεται από τη σχέση (8.2) :</u>

$$\Phi = \frac{1}{2\pi} \left[\frac{a}{(1+a^2)^{0.5}} \tan^{-1} \left(\frac{b}{(1+a^2)^{0.5}} \right) + \frac{b}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

όπου:

a= h/s

b= w/s

s: η απόσταση του σημείου P από το σημείο X.

h: το ύψος της ζώνης στην επιφάνεια εκπομπής ακτινοβολίας

w:το πλάτος της ζώνης αυτής.

Θεωρώντας μια νοητή οριζόντια γραμμή από το κέντρο του υποστυλώματος (σημείο Ρ) ως το σημείο Χ στο επίπεδο του ανοίγματος, το ορθογώνιο σε σχήμα άνοιγμα χωρίζεται σε τέσσερις ζώνες (όπως φαίνεται στο σχήμα γ.1).

Ζώνες 1,2,3,4

Το ύψος των ζωνών είναι h₁= h₂= 0,7 m και h₃= h₄= 0,5 m και το πλάτος τους w= w₁= w₂= w₃ = w₄= 0,5 m, άρα

 $a_1=a_2=h_1/s=0,7/3=0,233$ $a_3=a_4=h_3/s=0,5/3=0,167$ $b_1=b_2=b_3=b_4=w/s=0,5/3=0,167$

όπου s είναι η απόσταση του υποστυλώματος από το άνοιγμα, s= 3m.

Για τη ζώνη 1 και 2 ο συντελεστής Φ υπολογίζεται :

$$\Phi_{1} = \frac{1}{2\pi} \left[\frac{0,233}{(1+0,233^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,233^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,233}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{2} = \frac{1}{2\pi} \cdot (2,1+2,137) = 0,675$$

Για τη ζώνη 3 και 4 ο συντελεστής Φ υπολογίζεται ως :

$$\Phi_{3} = \frac{1}{2\pi} \left[\frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,167^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{3} = \Phi_{4} = \frac{1}{2\pi} \cdot (1,546+1,546) = 0,492$$

Σχήμα 8.6 Παράθυρο ως επιφάνεια εκπομπής παράλληλη στην επιφάνεια λήψης.

Για την όψη Α του υποστυλώματος:

 $\Phi_A = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 = 0,675 + 0,675 + 0,492 + 0,492 = 2,334$

Στη συνέχεια θα εξετάσουμε την όψη Β που είναι κάθετη στο άνοιγμα.

b) Όταν η επιφάνεια λήψης είναι κάθετη στην επιφάνεια εκπομπής ο συντελεστής διάταξης υπολογίζεται από τη σχέση (8.3) :

$$\Phi = \frac{1}{2\pi} \left[\tan^{-1}(a) - \frac{1}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

Η διατομή του υποστυλώματος HEB 360 έχει διαστάσεις :ὑψος κορμού h= 360mm= 0,36 m και πλάτος πελμάτων b= 300 mm= 0,3 m. Στην περίπτωση αυτή μόνο οι ζώνες 1 και 2 είναι ορατές από το άνοιγμα (όπως φαίνεται στο σχήμα 2), οπότε το ύψος της ζώνης 1 είναι

h₁=0,7m, το ύψος της ζώνης 2 είναι h₂=0,5m και το πλάτος τους είναι w₁= w₂= w_{ζώνης} = 0,5-0,36/2= 0,32 m, άρα :

$$a_1 = h_1/s = 0,7/3 = 0,233$$

 $b_1 = w_1/s = 0,32/3 = 0,107$

Για τη ζώνη 1 ο συντελεστής Φ είναι ίσος με:

$$\Phi_{1} = \Phi_{1} = \frac{1}{2\pi} \left[\tan^{-1}(0,233) - \frac{1}{(1+0,107^{-2})^{0.5}} \tan^{-1} \left(\frac{0,233}{(1+0,107^{-2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{1} = \frac{1}{2\pi} (13,12-12,97) = 0,024$$

 $a_2 = h_2/s = 0,5/3 = 0,167$ kai $b_2 = w_2/s = 0,32/3 = 0,107$

Για τη ζώνη 2 ο συντελεστής Φ είναι ίσος με :

Σχήμα 8.7 Παράθυρο ως επιφάνεια εκπομπής κάθετη στην επιφάνεια λήψης

Για την όψη Β του υποστυλώματος:

 $\Phi_{\rm B} = \Phi_1 + \Phi_2 = 0,024 + 0,018 = 0,042$

Για την όψη Γ του υποστυλώματος:

 $\Phi_{\Gamma} = \Phi_1 + \Phi_2 = 0,024 + 0,018 = 0.042$

Συνολικός συντελεστής διάταξης

Ο συνολικός συντελεστής διάταξης φ_f ενός μέλους για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από ένα άνοιγμα προσδιορίζεται από:

$$\phi_{f} = \frac{\left(C_{1} \cdot \phi_{f,1} + C_{2} \cdot \phi_{f,2}\right) \cdot d_{1} + \left(C_{3} \cdot \phi_{f,3} + C_{4} \cdot \phi_{f,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$

όπου:

- φ_{f,i} είναι ο συντελεστής διάταξης της όψης i του μέλους για το άνοιγμα αναφοράς.
- di είναι η διάσταση της διατομής της όψης i του μέλους
- Ci είναι ο συντελεστής προστασίας της όψης i του μέλους ως
 εξής:

- για προστατευμένη όψη: C_i=0

- για μη προστατευμένη όψη: C_i=1

Η διατομή του υποστυλώματος είναι ΗΕΒ360.

d₁ = 36 cm είναι η διάσταση της όψης Α του υποστυλώματος d₂ = 30 cm είναι η διάσταση της όψης Β του υποστυλώματος

Για C₁ = C₂ = C₃ = C₄ = 1,0 έχουμε:

$$\phi_{f} = \frac{(1,0 \cdot 2,334 \cdot 36) + (2,0 \cdot 0,042 \cdot 30)}{(1,0+1,0) \cdot 36 + (1,0+1,0) \cdot 30}$$
$$\phi_{f} = \underline{0,656}$$

Στη συνέχεια θα γίνει ο υπολογισμός του συντελεστή διάταξης για μεταφορά θερμότητας δι' ακτινοβολίας από τη φλόγα. Για την κάθε όψη του υποστυλώματος που δέχεται θερμότητα από τη φλόγα ο συντελεστής διάταξης υπολογίζεται ξεχωριστά και η τιμή του εξαρτάται από τη σχετική θέση της όψης (επιφάνεια λήψης) ως προς τη φλόγα (επιφάνεια εκπομπής). Η φλόγα θεωρείται ορθογώνια σε σχήμα και οι διαστάσεις της έχουν υπολογιστεί στο παράδειγμα B1 (θερμικές δράσεις σε εξωτερικά μέλη).

• Φλόγα ως επιφάνεια εκπομπής ακτινοβολίας :

Συνθήκες χωρίς ρεύμα αέρα.

Διαστάσεις ισοδύναμου ορθογωνίου φλόγας

Πλάτος: w_f = 1,00 m 'Yψος: h_f = $\frac{2}{3}$ ·h + L_L= $\frac{2}{3}$ ·1,2 + 3,09 = 3,89 m

Αρχικά εξετάζουμε την όψη Α του υποστυλώματος που είναι παράλληλη στη φλόγα που εξέρχεται από το άνοιγμα.

<u>Όταν η επιφάνεια λήψης είναι παράλληλη στην επιφάνεια εκπομπής ο συντελεστής διάταξης</u> είναι ίσος με (σχέση 8.2) :

$$\Phi = \frac{1}{2\pi} \left[\frac{a}{(1+a^2)^{0.5}} \tan^{-1} \left(\frac{b}{(1+a^2)^{0.5}} \right) + \frac{b}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

όπου:

a= h/s

b = w/s

s: η απόσταση του σημείου P από το σημείο X.

h: το ύψος της ζώνης στην επιφάνεια εκπομπής ακτινοβολίας

w:το πλάτος της ζώνης αυτής.

Με την ίδια διαδικασία όπως προηγουμένως χωρίζουμε την επιφάνεια της φλόγας (επιφάνεια εκπομπής) σε τέσσερις ζώνες. Το ύψος της ζώνης 1 και 2 είναι $h_1 = h_2 = 3,79$ m, το ύψος της ζώνης 3 και 4 είναι $h_3 = h_4 = 0,10$ m και το πλάτος και των τεσσάρων ζωνών είναι $w_1 = w_2 = w_3 = w_4 = 0,5$ m. Άρα : $a_1 = a_2 = h_1/s = 3,79/3 = 1,26$ $a_3 = a_4 = h_3/s = 0,1/3 = 0,033$ $b_1 = b_2 = b_3 = b_4 = w/s = 0,5/3 = 0,167$

Για τη ζώνη 1 και 2 ο συντελεστής Φ υπολογίζεται :

$$\Phi_{1} = \frac{1}{2\pi} \left[\frac{1,26}{(1+1,26^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+1,26^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{1,26}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{2} = \frac{1}{2\pi} \cdot (4,62+8,39) = 2,07$$

Για τη ζώνη 3 και 4 ο συντελεστής Φ υπολογίζεται ως :

$$\Phi_{3} = \frac{1}{2\pi} \left[\frac{0,033}{(1+0,033^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,033^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,033}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{3} = \Phi_{4} = \frac{1}{2\pi} (0,313+0,313) = 0,10$$

Σχήμα 8.8 Φλόγα ως επιφάνεια εκπομπής παράλληλη στην επιφάνεια λήψης.

Για την όψη Α του υποστυλώματος :

 $\Phi_A = \Phi_1 + \Phi_2 + \Phi_3 + \Phi_4 = 2,07 + 2,07 + 0,10 + 0,10 = 4,34$

Στη συνέχεια θα εξετάσουμε την όψη Β που είναι κάθετη στην επιφάνεια της φλόγας. Όταν η επιφάνεια λήψης είναι κάθετη στην επιφάνεια εκπομπής (σχέση 8.3) :

$$\Phi = \frac{1}{2\pi} \left[\tan^{-1}(a) - \frac{1}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

Στην περίπτωση αυτή μόνο οι ζώνες 1 και 2 είναι ορατές από τη φλόγα (όπως φαίνεται στο σχήμα 4), οπότε το ύψος της ζώνης 1 είναι h_1 = 3,79, το ύψος της ζώνης 2 είναι h_2 = 0,1 m και το πλάτος τους είναι w_1 = w_2 = $w_{ζώνης}$ = 0,5-0,36/2= 0,32 m, άρα :

 $a_1 = h_1/s = 3,79 / 3 = 1,26$ $b_1 = w_1/s = 0,32 / 3 = 0,107$

Για τη ζώνη 1 ο συντελεστής Φ είναι ίσος με :

$$\Phi_{1} = \Phi_{1} = \frac{1}{2\pi} \left[\tan^{-1}(1,26) - \frac{1}{(1+0,107^{2})^{0.5}} \tan^{-1} \left(\frac{1,26}{(1+0,107^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{1} = \frac{1}{2\pi} \cdot (51,56-51,1) = 0,073$$

 $a_2 = h_2/s = 0,1/3 = 0,033$ $b_2 = w_2/s = 0,107$

Για τη ζώνη 2 ο συντελεστής Φ είναι ίσος με :

$$\Phi_{2} = \Phi_{2} = \frac{1}{2\pi} \left[\tan^{-1}(0,033) - \frac{1}{(1+0,107^{2})^{0.5}} \tan^{-1} \left(\frac{0,033}{(1+0,107^{2})^{0.5}} \right) \right]$$

$$\Phi_{2} = \Phi_{2} = \frac{1}{2\pi} \cdot (1,89 - 1,879) = 0,0018$$

Σχήμα 8.9 Φλόγα ως επιφάνεια εκπομπής κάθετη στην επιφάνεια λήψης.

Για την όψη *Β* του υποστυλώματος:

 $\Phi_{\rm B} = \Phi_1 + \Phi_2 = 0,073 + 0,0018 = 0,075$

Για την όψη Γ του υποστυλώματος:

 $\Phi_{\Gamma} = \Phi_1 + \Phi_2 = 0,073 + 0,0018 = 0.075$

Συνολικός συντελεστής διάταξης

Ο συνολικός συντελεστής διάταξης φ_z ενός μέλους για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από μια φλόγα προσδιορίζεται από:

$$\phi_{z} = \frac{\left(C_{1} \cdot \phi_{z,1} + C_{2} \cdot \phi_{z,2}\right) \cdot d_{1} + \left(C_{3} \cdot \phi_{z,3} + C_{4} \cdot \phi_{z,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$

όπου:

- φ_{z,i} είναι ο συντελεστής διάταξης της όψης i του μέλους ως προς τη φλόγα.
- di είναι η διάσταση της διατομής της όψης i του μέλους
- Ci είναι ο συντελεστής προστασίας της όψης i του μέλους ως εξής:
 για προστατευμένη όψη: Ci=0
 - για μη προστατευμένη όψη: C_i=1

Η διατομή του υποστυλώματος είναι ΗΕΒ360.

d1 = 36 cm είναι η διάσταση της όψης Α του υποστυλώματος

d₂ = 30 cm είναι η διάσταση της όψης Β του υποστυλώματος

Για C₁=C₂ =C₃ =C₄ =1,0 έχουμε:

$$\phi_z = \frac{(1,0 \cdot 4,34 \cdot 36) + (2,0 \cdot 0,075 \cdot 30)}{(1,0+1,0) \cdot 36 + (1,0+1,0) \cdot 30}$$

φ_z = 1,22 > 1,0

Ο συντελεστής διάταξης $φ_z$ του υποστυλώματος που εξετάσαμε για περίπτωση μεταφοράς θερμότητας δι' ακτινοβολίας από μια φλόγα έχει την τιμή $φ_z = 1,22$ αλλά σύμφωνα με τα άνω όρια του συντελεστή που μας δίνονται στον πίνακα 8.1 του κεφαλαίου τελικά παίρνει την τιμή :

$\underline{\phi_z} = 1,0$

Θα υπολογιστεί ο συνολικός συντελεστής διάταξης φ_f ενός εξωτερικού υποστυλώματος διατομής ΗΕΒ360 για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από ένα άνοιγμα με διαστάσεις h=1,20 m και w=1,00 m καθώς και ο συντελεστής φ_z για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από μία φλόγα με διαστάσεις ισοδύναμου ορθογωνίου w_f =1,0 m και h_f = 3,87 m σύμφωνα με το παράρτημα G του Ευρωκώδικα 1.1.2. Δίνεται η απόσταση του υποστυλώματος από το άνοιγμα s= 3 m.

Στο παράδειγμα αυτό εξετάζουμε το ίδιο υποστύλωμα με προηγουμένως, μόνο που η σχετική του θέση ως προς το άνοιγμα είναι διαφορετική (το πέλμα παράλληλο στο άνοιγμα). Όλα τα άλλα στοιχεία παραμένουν ίδια στον υπολογισμό του συντελεστή διάταξης Φ.

• Παράθυρο ως επιφάνεια εκπομπής ακτινοβολίας

Πρώτα θα εξετάσουμε την όψη Α του υποστυλώματος, η οποία είναι παράλληλη προς το άνοιγμα.

<u>Όταν η επιφάνεια λήψης είναι παράλληλη στην επιφάνεια εκπομπής ο συντελεστής διάταξης</u> <u>υπολογίζεται από τη σχέση :</u>

$$\Phi = \frac{1}{2\pi} \left[\frac{a}{(1+a^2)^{0.5}} \tan^{-1} \left(\frac{b}{(1+a^2)^{0.5}} \right) + \frac{b}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

Θεωρώντας μια νοητή οριζόντια γραμμή από το κέντρο του υποστυλώματος (σημείο Ρ) ως το σημείο Χ στο επίπεδο του ανοίγματος, το ορθογώνιο σε σχήμα άνοιγμα χωρίζεται σε τέσσερις ζώνες

 $a_3 = a_4 = h_3/s = 0,5/3 = 0,167$
Για τη ζώνη 1 και 2 ο συντελεστής Φ υπολογίζεται :

$$\Phi_{1} = \frac{1}{2\pi} \left[\frac{0,233}{(1+0,233^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,233^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,233}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{2} = \frac{1}{2\pi} \cdot (2,1+2,137) = 0,675$$

Για τη ζώνη 3 και 4 ο συντελεστής Φ υπολογίζεται ως :

$$\Phi_{3} = \frac{1}{2\pi} \left[\frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,167^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_3 = \Phi_4 = \frac{1}{2\pi} \cdot (1,546 + 1,546) = 0,492$$

Για την όψη Α του υποστυλώματος:

 $\Phi_{A} = \Phi_{1} + \Phi_{2} + \Phi_{3} + \Phi_{4} = 0,675 + 0,675 + 0,492 + 0,492 = \underline{2,334}$

b) Όταν η επιφάνεια λήψης είναι κάθετη στην επιφάνεια εκπομπής:

$$\Phi = \frac{1}{2\pi} \left[\tan^{-1}(a) - \frac{1}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

Για διατομή HEB360 έχουμε :

h=360mm=0,36m кал b=300mm=0,3m.

 $w_1 = w_2 = w_{\zeta \dot{\omega} v \eta \zeta} = 0,5-0,3/2 = 0,35 \text{ m}.$

h1=0,7m кан h2=0,5m

Για τη ζώνη 1 ο συντελεστής Φ είναι ίσος με:

$$\Phi_{1} = \frac{1}{2\pi} \left[\tan^{-1}(0,233) - \frac{1}{(1+0,117^{2})^{0.5}} \tan^{-1} \left(\frac{0,233}{(1+0,117^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \frac{1}{2\pi} (13,12-12,94) = 0,029$$

Για τη ζώνη 2 ο συντελεστής Φ είναι ίσος με :

$$\Phi_{2} = \frac{1}{2\pi} \left[\tan^{-1}(0,167) - \frac{1}{(1+0,117^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,117^{2})^{0.5}} \right) \right]$$

$$\Phi_{2} = \frac{1}{2\pi} (9,481-9,352) = 0,02$$

Για την όψη Β του υποστυλώματος:

$$\Phi_{\rm B} = \Phi_1 + \Phi_2 = 0,029 + 0,02 = 0,049$$

Για την όψη Γ του υποστυλώματος:

 $\Phi_{\Gamma} = \Phi_1 + \Phi_2 = 0,029 + 0,02 = 0,049$

Συνολικός συντελεστής διάταξης

Ο συνολικός συντελεστής διάταξης φ_f ενός μέλους για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από ένα άνοιγμα προσδιορίζεται από:

$$\Phi_{f} = \frac{\left(C_{1} \cdot \phi_{f,1} + C_{2} \cdot \phi_{f,2}\right) \cdot d_{1} + \left(C_{3} \cdot \phi_{f,3} + C_{4} \cdot \phi_{f,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$

Η διατομή του υποστυλώματος είναι HEB360.

d1 = 30 cm είναι η διάσταση της όψης Α του υποστυλώματος

d₂ = 36 cm είναι η διάσταση της όψης Β του υποστυλώματος

Για C₁ = C₂ = C₃ = C₄ = 1,0 έχουμε:

 $\phi_{f} = \frac{(1,0\cdot 2,334\cdot 30) + (2,0\cdot 0,049\cdot 36)}{(1,0+1,0)\cdot 36 + (1,0+1,0)\cdot 30}$

• Φλόγα ως επιφάνεια εκπομπής ακτινοβολίας :

Συνθήκες χωρίς ρεύμα αέρα.

<u>a) Όταν η επιφάνεια λήψης είναι παράλληλη στην επιφάνεια εκπομπής:</u>

$$\Phi = \frac{1}{2\pi} \left[\frac{a}{(1+a^2)^{0.5}} \tan^{-1} \left(\frac{b}{(1+a^2)^{0.5}} \right) + \frac{b}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

s =3 m

$$h_1 = h_2 = 3,79 \text{ m}$$
, $h_3 = h_4 = 0,10 \text{ m}$

 $w_1 = w_2 = w_3 = w_4 = 0,5m.$

 $a_1 = a_2 = h_1/s = 3,79/3 = 1,26$

 $a_3=a_4=h_3/s=0,1/3=0,033$

 $b_1 = b_2 = b_3 = b_4 = w/s = 0,5 / 3 = 0,167$

Για τη ζώνη 1 και 2 ο συντελεστής Φ υπολογίζεται :

$$\Phi_{1} = \frac{1}{2\pi} \left[\frac{1,26}{(1+1,26^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+1,26^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{1,26}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \Phi_{2} = \frac{1}{2\pi} \cdot (4,62+8,39) = 2,07$$

Για τη ζώνη 3 και 4 ο συντελεστής Φ υπολογίζεται ως :

$$\Phi_{3} = \frac{1}{2\pi} \left[\frac{0,033}{(1+0,033^{2})^{0.5}} \tan^{-1} \left(\frac{0,167}{(1+0,033^{2})^{0.5}} \right) + \frac{0,167}{(1+0,167^{2})^{0.5}} \tan^{-1} \left(\frac{0,033}{(1+0,167^{2})^{0.5}} \right) \right]$$

$$\Phi_{3} = \Phi_{4} = \frac{1}{2\pi} \left(0,313 + 0,313 \right) = 0,10$$

Για την όψη Α του υποστυλώματος:

$$\Phi_{A} = \Phi_{1} + \Phi_{2} + \Phi_{3} + \Phi_{4} = 2,07 + 2,07 + 0,10 + 0,10 = 4,34$$

b) <u>Όταν η επιφάνεια λήψης είναι κάθετη στην επιφάνεια εκπομπής:</u>

$$\Phi = \frac{1}{2\pi} \left[\tan^{-1}(a) - \frac{1}{(1+b^2)^{0.5}} \tan^{-1} \left(\frac{a}{(1+b^2)^{0.5}} \right) \right]$$

Για διατομή HEB360 έχουμε : h=360mm=0,36m και b=300mm=0,3m.

$$w_1 = w_2 = w_{\zeta \dot{\omega} v \eta \zeta} = 0,5-0,30/2 = 0,35 \text{ m}.$$

Για τη ζώνη 1 ο συντελεστής Φ είναι ίσος με :

$$\Phi_{1} = \frac{1}{2\pi} \left[\tan^{-1}(1,26) - \frac{1}{(1+0,117^{2})^{0.5}} \tan^{-1} \left(\frac{1,26}{(1+0,117^{2})^{0.5}} \right) \right]$$

$$\Phi_{1} = \frac{1}{2\pi} \cdot (51,56 - 51,01) = 0,088$$

$$a_{2} = h_{2}/s = 0,1/3 = 0,033 \text{ kay } b_{2} = w_{2}/s = 0,117$$

Για τη ζώνη 2 ο συντελεστής Φ είναι ίσος με :

$$\Phi_{2} = \frac{1}{2\pi} \left[\tan^{-1}(0,033) - \frac{1}{(1+0,117^{2})^{0.5}} \tan^{-1} \left(\frac{0,033}{(1+0,117^{2})^{0.5}} \right) \right]$$

$$\Phi_{2} = \frac{1}{2\pi} \cdot (1,89 - 1,86) = 0,004$$

Για την όψη Β του υποστυλώματος:

 $\Phi_B = \Phi_1 + \Phi_2 = 0,088 + 0,004 = 0,092$

Για την όψη Γ του υποστυλώματος:

 $\Phi_{\Gamma} = \Phi_1 + \Phi_2 = 0,088 + 0,004 = 0,092$

Συνολικός συντελεστής διάταξης

Ο συνολικός συντελεστής διάταξης φ_z ενός μέλους για περίπτωση μεταφοράς θερμότητας δι'ακτινοβολίας από μια φλόγα προσδιορίζεται από:

$$\phi_{z} = \frac{\left(C_{1} \cdot \phi_{z,1} + C_{2} \cdot \phi_{z,2}\right) \cdot d_{1} + \left(C_{3} \cdot \phi_{z,3} + C_{4} \cdot \phi_{z,4}\right) \cdot d_{2}}{\left(C_{1} + C_{2}\right) \cdot d_{1} + \left(C_{3} + C_{4}\right) \cdot d_{2}}$$

Η διατομή του υποστυλώματος είναι HEB360.

d1 = 30 cm είναι η διάσταση της όψης Α του υποστυλώματος

d₂ = 36 cm είναι η διάσταση της όψης Β του υποστυλώματος

Για C₁=C₂=C₃=C₄=1,0 έχουμε:

$$\phi_z = \frac{(1,0 \cdot 4,34 \cdot 30) + (2,0 \cdot 0,092 \cdot 36)}{(1,0+1,0) \cdot 36 + (1,0+1,0) \cdot 30}$$

$$\underline{\Phi_z} = 1,00$$

Συμπερἀσματα

Ολοκληρώνοντας τη διπλωματική εργασία που αποσκοπεί στη μελέτη των διατάξεων του μέρους 1.2 του Ευρωκώδικα 1 και των αντίστοιχων παραρτημάτων του, οδηγηθήκαμε σε κάποια συμπεράσματα σχετικά με τις παραμέτρους που επηρεάζουν την πυρκαγιά ως δράση σε δομικά έργα, με τη βοήθεια των αποτελεσμάτων που προκύπτουν από τις αριθμητικές εφαρμογές που πραγματοποιήθηκαν. Άρα καταλήγοντας :

- Μεγάλη σημασία έχει η χάραξη των παραμετρικών καμπυλών θερμοκρασίας χρόνου βάσει των στοιχείων του πυροδιαμερίσματος που εξετάζουμε (O, b, qtd), καθώς μπορούμε εύκολα να προσδιορίσουμε τις μέγιστες τιμές της θερμοκρασίας του αέρα που αναπτύσσονται μέσα στο πυροδιαμέρισμα.
- Γνωρίζοντας τη θερμοκρασία του αέρα μπορούμε να προσδιορίσουμε τις θερμοκρασίες που αναπτύσσονται στα χαλύβδινα δομικά μέλη προστατευμένα ή μη έναντι πυρκαγιάς. Με τη βοήθεια των καμπυλών θερμοκρασίας χάλυβα χρόνου είμαστε σε θέση να προσδιορίσουμε το δείκτη πυραντίστασης για το δεδομένο πυροδιαμέρισμα, το χρόνο δηλαδή που μεσολαβεί από την έναρξη της πυρκαγιάς ως την αστοχία της κατασκευής.
- Επίσης αφού εξετάσαμε την ειδική περίπτωση των θερμικών δράσεων που δέχονται εξωτερικά μέλη, με τη βοήθεια των σχέσεων του παραρτήματος Β του ΕΝ 1991-1-2 προσδιορίσαμε τη θερμοκρασία του πυροδιαμερίσματος σε περίπτωση φωτιάς και στη συνέχεια την αναπτυσσόμενη θερμοκρασία σε ένα εξωτερικό χαλύβδινο μέλος που λαμβάνει θερμότητα δι' ακτινοβολίας από τα ανοίγματα και τις φλόγες του πυροδιαμερίσματος.
- Εξετάσαμε στη συνέχεια την περίπτωση των τοπικών πυρκαγιών και καταλήξαμε στο συμπέρασμα πως αναλόγως το φορτίο που καίγεται και την θερμική του απόδοση, η θερμοκρασία που αναπτύσσεται σε ένα δομικό μέλος που βρίσκεται κοντά στον άξονα της πυρκαγιάς μπορεί να είναι σημαντική και να προκαλέσει ακόμα και αστοχία της κατασκευής.
- Το πυροθερμικό φορτίο που βρίσκεται σε ένα πυροδιαμέρισμα αποτελεί έναν από τους σημαντικότερους παράγοντες που επηρεάζουν την εξέλιξη και τη διάρκεια μιας πυρκαγιάς. Ο προσδιορισμός του γίνεται αφού γίνει γνωστή η χρήση του πυροδιαμερίσματος, η επιφάνεια του και η ύπαρξη ή μη μέτρων έναντι πυρκαγιάς.

- Κατά την εξέταση του ισοδύναμου χρόνου έκθεσης στην πυρκαγιά ενός πυροδιαμερίσματος καταλήξαμε ότι στο χρόνο αυτό έχουμε το ίδιο θερμικό αποτέλεσμα κατά τη μελέτη του φαινομένου με τη βοήθεια της πρότυπης καμπύλης ISO και με τη βοήθεια της παραμετρικής καμπύλης θερμοκρασίας - χρόνου. Αυτός είναι ένας τρόπος για να λάβουμε υπόψη τα χαρακτηριστικά του πυροδιαμερίσματος που επηρεάζουν την πυρκαγιά γνωρίζοντας την καμπύλη ISO, καθώς κατά τη χάραξή της τα χαρακτηριστικά αυτά δεν προσμετρούνται. Επίσης ο χρόνος αυτός είναι περίπου ίσος με το χρόνο στον οποίο πραγματοποιείται η μέγιστη θερμοκρασία στον αέρα του πυροδιαμερίσματος, το οποίο είναι λογικό καθώς για να υπολογίσουμε το δείκτη πυραντίστασης μας ενδιαφέρει το χρονικό διάστημα από την αρχή της πυρκαγιάς ως και τη στιγμή που αναπτύσσεται η μέγιστη θερμοκρασία.
- Τέλος έγινε μια προσπάθεια προσδιορισμού του συντελεστή διάταξης Φ, ο οποίος είναι ιδιαίτερα χρήσιμος στην περίπτωση της μεταφοράς θερμότητας από ακτινοβολία σε εξωτερικά μέλη, καθώς μας δίνει το ποσό θερμότητας που μεταφέρεται από μια επιφάνεια σε μια άλλη γνωρίζοντας τη μεταξύ τους απόσταση και το σχετικό τους προσανατολισμό. Προσδιορίζοντας δηλαδή το συντελεστή Φ γνωρίζουμε τις απώλειες της θερμικής ροής από ένα άνοιγμα σε ένα εξωτερικό δομικό μέλος, που βρίσκεται σε κάποια απόσταση.