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Hepidnpn

Avti M SwoTeLBn Sepevva TNV awddocm SOy UWOVTEAOY TEOBAE-
PNG TLHOV NAEXTOLXTG EVEQYELQG %Ol OELOAOYEL TOV GAVTIXTUTTO TNG UETO-
popag uadnong. H ueAétn emxevToOVETOL GTLG 0YOQEG NAEXTOLANG EVEQ-
vevag TG Kevtouxng Evpwnng, avadvovtog dedopéva amd To 2019 éng To
2021. XpnorpwomoriBnxav extd wovtéda TpoBAepng: Autoregressive with
Exogenous variables (ARX), k-Nearest Neighbors (kNN), Regression
Tree, Random Forest Regression (RFR), Support Vector Regression
(SVR), Artificial Neural Network - Multi-Layer Perceptron (ANN-MLP),
xow Long Short-Term Memory (LSTM) networks, ta omoio agiohoyndn-
%oy we yoNon Tov Metpuewv Mécov Amdivtov X@diuatos (MAE), Pilag
Méoov Tetpayovixot Lpdiuatoq (RMSE) xow Zvpuetorxod Mécov AToiv-
tov IlocosTiaiov Xpdaiuatog (SMAPE).

To wovtého ANN-MLP ue clustering gemépaoce otadepd Too dAAo wo-
vTéNa, 6€ OAeG TIg weTELxég. H weAétn eEétace emiong Ty emidpacn 6NUAVTL-
AWV YEOTOMTIXWY YEYOVOTOV, 0Twe 1 6VYxeoven Ovxpaviag-Pociog xal 1
evepyetoxt %0l61, 6TNY amwodoen TV wovTédwv. Ta amoteAécuata deiyvovy
avEnueva 6paipato TEOBAEPNG xaTd TN OLEEXELD AVTOY TOV TEQLOdLV,
VIOINAOVOVTOG TNV TEOXANGT TNG SLaTNENONG TNG axQiBelag v WEGH TNG
aGTAYELOG TNG YOQUG.

H uetapopdg uadneng édete 0TL, eve 1 a§LoToiNGT| TEOEXTOULOEVUEVOY
WOVTEA®Y atd cuvadf 6VVOAX dedOUEVOY BeV TORAYEL TAVTO TG YoUNAO-
TEQPEG UETOLXEG GPAAUOTOG, TOQEYEL AVTOYOVIGTLXG OTTOTEAEGUOATO GE GLVTO-
wOTEQO YEOVLXO SLAGTNUN. AVTO TO eVEN WO, VITOYEOUWICEL TO duvauxd TNG
UETOPOQAG WADNGNG YLor TN BEATIOGT TNG arodoTLXOTNTAG TNG TEOBAEDTC.

H dwotoBn xatadyer 6vinTevTog TG ETLTTWGEL, OGVTOV TV EVQT-
WAT®Y 0L TEOTEVOVTOG WEAMOVTIXEG %xoTevdVVGELS £pevvag, OTOG TG

EVEOUATWONG ETLTALOY EEWYEVOY UETABANTOV, TNG AVATTUENS VBELOLX®Y



WOVTEA®Y %0l TNG BEATIOGTNG TNG EQUNVEVGLUOTNTOG TO®V WOVTEA@Y.

Aégeic-xAherdud: [1pOBAEYN TLUOV MAEXTELXNG EVEQYELOG, WNYOVLXT WO~
¥nomn, ANN-MLP, ueta@opd wddnemg, 7e@TOMTLXE YeEYOVOTQ, VBOLOLXA Wo-
vtéha, ENTSOE.



Abstract

This thesis investigates the performance of various electricity price fore-
casting models and evaluates the impact of transfer learning on forecasting
accuracy. The study focuses on the electricity markets of Germany, Belgium,
and the Netherlands, analyzing data from 2019 to 2021. Seven forecasting mod-
els were employed: Autoregressive with Exogenous variables (ARX), k-Nearest
Neighbors (kNN), Regression Tree, Random Forest Regression (RFR), Support
Vector Regression (SVR), Artificial Neural Network - Multi-Layer Perceptron
(ANN-MLP), and Long Short-Term Memory (LSTM) networks. These models
were evaluated using Mean Absolute Error (MAE), Root Mean Square Error
(RMSE), and Symmetric Mean Absolute Percentage Error (sMAPE).

The ANN-MLP model with clustering consistently outperformed other
models across all metrics. The study also examined the impact of significant
geopolitical events, such as the Ukraine-Russia conflict and the energy crisis, on
model performance. Results indicate increased prediction errors during these
periods, highlighting the challenge of maintaining accuracy amidst market
volatility.

Transfer learning experiments demonstrated that while leveraging pre-
trained models from related datasets does not always produce the lowest error
metrics, it provides competitive results in a shorter time frame. This finding
underscores the potential of transfer learning to enhance forecasting efficiency.

The thesis concludes by discussing the implications of these findings and
suggesting future research directions, including the integration of additional ex-
ogenous variables, development of hybrid models, and improvement of model

interpretability.

Keywords: Electricity price forecasting, machine learning, ANN-MLP, clus-

tering, transfer learning, geopolitical events, hybrid models, ENTSOE.
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Evpceio ITepidqdm

H mpoBAcdn Tipnev nAextouxng evépyerag (EPF) amotelel xpiciuo epyoieio
6T AELTOVQYIOL TOV OTTEAEVDEQOUEVOY 0rYOROV NAEXTOLXTG EVEQYELOG, BoNd®OVTOG
6T BEATLGTOTOINGT T1NG OLXOVOULXTIG OTTOBOTLXOTNTOG %0 TNG GTAVEQOTNTAG TOV
duxtVov. H mwopovco, SITAOUOTLXT £QYOGI0 ETUXEVTOOVETAL GTNY AELOAOYNGT
BLoPOEOY WOVTEA®Y TEOBALDNG TLUOY NAEXTOLXTG EVEQYELOG, XAV X0l GTNV
e@apuoyn wedodwv ueta@oeds wadnong yioo TN BeATioon TNg axpiBelag TOV
TEOBAEPEDV.

Movtéha I1poBAePNC

To wovtého wov e§eTAGTNXOY TEQLAOUBAVOLV:
o AvtomaAivdpouwa we EEwyeveic MetafAnTtég (ARX)

® k-nearest Neighbors (kNN)

Toyoato Adorn ITadvdpouncng (RFR)

AévToa, [TaAvdpdunong

YrwoothoEn Avovvepatixtg Halvdpdunong (SVR)

Texvnta Nevpovixd Aixtva - [loAvemimedn epoemtovio (ANN-MLP)
o Aixtva Maxpoypdviag Bpayxvmeodeoung Myviung (LSTM)

To dedoucva wov yonewoTodnxay TEOLEX0VTaL amd Ty ITAat@iouo
Avapdverag Tov ENTSO-E yia T T'epuavia, To Bédyo xor Tnv OAMAMavdio xatd
v wepiodo 2019-2021. H a&oAdynomn Tng amddocns ToOV WOVTEA®Y €YLVe We
XONoN UETEWX®Y 0Twg To Méco AmoAvto X@dAua (MAE), to Tetpayovixo
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Méoo ZpdApa (RMSE) xor To Zouuetoixd Méco AmoAvto ITocooTiaio Tdpdiuo
(SMAPE).

AgmoTtedécpaTo

H avdAvon tev amoTeAecudtov &detEe tL to wovtého ANN-MLP upe 1
xofon clustering eiye TNV %aA0TEQET ATO06T, UETAED TV eEETALOUEV®Y WO-
vrédev. Toa evpfiuato avta cvdvypouwilovtar ue TN BiBALOYpo@io, 1 oTOi0
VIOOELXVVEL TNV ATOTEAEGUATIXITNTO TV BodOV VELEOVIX®Y XTVOYV GTNY

TEOBAEYTN TOAMOTAOX®Y %Ol W1 YOOUWAOV GYEGEDY.

leomwoMTixd I'eyovota xouw Emiwtoceg 6ty Ayopd

Katd tnv wepiodo Tng ueAétng, 6NUaVTLXG YEGTOMTIXD YEYOVOTO, OTOG 1
60Yxpoven Ovxpaviag-Pociog, enpéacay Sponatixd Tig TLUEG TNG NAEXTELXNG
evépyewog 6Ty Evpomn. H avEnuévn actddeio xor afeBoldTnTo. Tov TEOXA-
Vnxe awd avTEG Tig eEEAIEELS ONULOVEYNGE GTUAVTIXEG TEOXATGELG YLO, TO WO-
vTENO, TEOBAEYNG.

H avddvon €detEe 0TL oL TLpég TNG NAEXTOLXTG EVEQYELOG TOROVGIOGOY G-
oV TLx a0ENGT TNG UETABANTOTNTOGC X0Td TNV évapén Tov 2021, yeyovog wov
eMNEENGE TNV axQiBela T®V TEOBALPewY TV WovTéAnv. Toa cvpfuato avTd
AVOIELXVOOUY TNV aVAY®T YIo WOVTEAG, TEOBAEDNG TOV WITOEOVY VA, TROGOQ-

wogovtor dvvauxd 6Tig UeTaBaAldueveg cuVINXES TNG 0YOQA.

Metapopda Madnoeng

H petagopd wadnong agoAoydnxe o¢ 6TeaTnywxl] Yoo TN BeATI®ON TNG

axpiBelag TOV TEOBALPewY 68 BLaPopeTinég ayoess. Ta amoteAécuata 0oy
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OTL N UETOPOQEC WADNGTNG WITOEEL Vo TEOGPEREL 0PEAT, WIMG 6TN WelwGT TOV
SsMAPE, xot emtoyydver 6xedov e&icov xald amoTeEALGUOTO OGOV apoQEd, TO
MAE xar to RMSE. IlapdAAnAa, emenuaiveTon M wel®cn TOU }0VOU EXTTOL-
0eV6G, (AVLGTOVTOG T1 WETOPOQCG WADNGNG U0 TEAXTLXY] %0 OTTOTEAEGUATLXT

ETTLAOY.

Yvougepacuato xar Ilpotacelg yroo MeAhovTixy ‘Epevva

H £épevvo avTi] avadeixvoer T SvvatoTNTo TOV TEOYOENUEVOY WOVTEADY
unyovixng waddnong, xar ewdix0Tepo Tov wovtéhov ANN-MLP ue clustering,
TNV 0xELBMN TEOBAEYT TV TLw®V TNg NAexTOLxTg evipyerag. Ilapd Tig mEO-
®MGELG TOV TEOEXVLYPAY ATO TO YE@TTOALTLAG YEYOVOTO, TO WOVTEAQ, ETTEDELEOY
LGYVET ATTOB06T], VITOYEAUUILOVTAG TNV avdyx Yo 6VVEXT BEATI®GN %o TQEO-
GOQUOYN TOV TEXVILX®V TEOBAPTG.

Ov wpoTacelg Yior WeAAOVTLAN €QeVVOL TEQLAGUBAVOLV:

® BeATIOON TOV TEYVIXWY UETAPOQAS WADNGNG we TN (N6 Ued0dwv TEO-

GOEUOYNG TOUER %0 TTOAMVXOTAXTLXTG WADNGTG.

® FvooUATOG6N ETLITALOV EEOYEVOY UETABANTOV, OTOC YEWTTOAMTLXOL OeixTEC,

0L%0VOWLX0l OEixTEG %0l TEOYVWGT %0LQOV.

® AVATTLEN VBEWOXOY WOVTEA®Y TOv cuvdvdlovy TN dVvaun daddpwv

TEYVIXOV UNYOVLXTG WADNGNG X0l GTATIGTIXWY WeDOOOV.

® YAOTOINGT GUGTNUATOV TEOBALYNG 68 TEAYUATIXO XEOVO TOV WITOQOVV

vo. TEOGaEUOLovTal duvaulxd 6Ta véa dedouéva.

® BeATIOON TNG EQUNVEVGLUOTNTOG TOV UWOVTEA®Y UNYOVIXNG WADNGNG VLo
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TNV o0ENGT TNG EUTLETOGVVNG %0 TNG aTodoyNG ard TOVG eVALAPEQOUE-

VOUG POQELG.

o MeAETN TOV EMTTOCEDY TG EVEOUATOGNG TOV WVOVEDGLU®DY TNYWV EVEQ-

YELOG GTLG OVVAULAEG TOV TLU®Y NAEXTELANG EVEQYELOG.

H 7pd0od0g 6TIG Texvixég unyovixng WodNeNg %ol OVAAVGTNG YEOVOGELQWY
TEOGPEREL GNUAVTIXEG EVXOLQLES YIow TN BEATIOOT TNG TEOBAeYNG TLUOY NAE-
xTELXNG evépyerag. Me Ty aglomoinet Tov evenuateny e BLBALoYpapiog oL
TV TELQAUATIXDY UOG EVENUATOV, WITOQOVUE VO, GUVEYIGOVUE VO, BEATIOVOVWUE
%XOL VO EVIGYVOVUE TO UWOVTEAX TEOBAEYPTS, GLVUBAAAOVTOG GE TTLO GITTODOTIXEG

%o ELOTTLGTEG OLYOQEG EVEQYELOG.
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1 Introduction

1.1 Background and Context
1.1.1 Electricity Market Dynamics

The landscape of electricity markets has undergone significant transformations over
the past few decades, marked notably by the shift from regulated monopolies to
deregulated market structures. This transition has been driven by the belief that
competition fosters efficiency, leading to lower prices and improved service quality for
consumers. Deregulation introduced a wholesale electricity market where regulatory
bodies do not set prices but are determined by supply and demand dynamics.

The deregulated electricity market is characterized by its distinct segments: gen-
eration, transmission, distribution, and retail. In this market structure, electricity
producers compete to sell their generated power in a wholesale market, while re-
tail energy suppliers purchase this power to sell to consumers and businesses. The
competitive nature of these markets has led to the development of various financial in-
struments, such as futures and options, allowing market participants to hedge against

price volatility.

1.1.2 Importance of Electricity Price Forecasting

Forecasting electricity prices has become increasingly critical in deregulated markets
for several reasons. First, it enables power-generating companies to make informed
decisions regarding the dispatch of their generation assets, operational planning, and
maintenance schedules. For consumers and retail suppliers, accurate price forecasts
are crucial for budget planning and choosing the optimal mix of fixed and spot market
purchasing to minimize costs.

Moreover, electricity price forecasting plays a pivotal role in energy trading.
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Traders rely on forecasts to make buying and selling decisions in spot markets and
to formulate strategies for derivative markets. Given the high volatility and unpre-
dictability of electricity prices, driven by factors such as fluctuating demand, fuel
prices, and unforeseen outages, accurate forecasting models are indispensable tools
for mitigating financial risk and capitalizing on market opportunities.

The complexity of forecasting in this context arises from the unique characteristics
of electricity as a commodity: it cannot be economically stored in large quantities,
its demand is highly inelastic, and its production must constantly balance demand
to maintain grid stability. These factors contribute to the electricity price’s inherent

volatility and present a substantial challenge for forecasting models.

1.2 Challenges in Electricity Price Forecasting
1.2.1 Price Volatility

Electricity markets are notorious for their price volatility, which can be attributed
to the unique characteristics of electricity as a commodity. Unlike other goods, elec-
tricity must be produced and consumed simultaneously, making storage a costly and
technically challenging option. This immediate necessity for balance between supply
and demand leads to significant price fluctuations, influenced by a myriad of factors.

Demand variability is a primary driver of price volatility. Electricity consump-
tion patterns are closely linked to human activity, weather conditions, and economic
factors, leading to predictable daily and seasonal peaks but also unexpected spikes
in demand. For instance, extreme weather conditions, such as heat waves or cold
snaps, can cause sudden surges in demand due to increased use of heating or cooling
systems.

Fuel prices also play a critical role in determining electricity prices, especially in

markets heavily reliant on fossil fuels for electricity generation. Fluctuations in the
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prices of coal, natural gas, or oil can directly impact electricity production costs,
thereby affecting market prices.

The integration of renewable energy sources introduces additional variability.
While beneficial for sustainability and energy independence, the variable nature of
wind and solar power, dependent on weather and time of day, complicates the task
of balancing the grid and can lead to erratic price movements.

Unexpected outages of power plants or transmission infrastructure further exacer-
bate price volatility. Such events can lead to sudden shortages in supply, prompting
sharp price increases. Conversely, unanticipated dips in demand or overproduction
from renewables can result in negative prices, where producers pay to offload excess

electricity.

1.2.2 Data Complexity

The complexity of electricity price data poses another significant challenge for fore-
casting. Characteristics such as non-linearity and non-stationarity reflect the market’s
dynamic nature but complicate modeling efforts. Prices can exhibit sudden spikes or
drops, often referred to as price jumps, which are difficult to predict using standard
statistical methods. These anomalies can arise from various market conditions, in-
cluding bidding strategies of market participants, regulatory changes, or significant
shifts in supply and demand.

Moreover, the presence of seasonal and weekly cycles adds to the data’s complexity,
requiring models to account for varying patterns of electricity usage throughout the
year and on different days of the week. Traditional linear models and even some
machine learning approaches struggle to capture these intricate patterns, especially

when historical data exhibit changing trends over time.
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1.2.3 Modeling Limitations

Traditional forecasting models have faced limitations in accurately predicting elec-
tricity prices due to the aforementioned challenges. Linear regression models and
time-series analyses like ARIMA are based on assumptions of linearity and stationar-
ity, which are seldom met in the electricity market context. These models often fail
to account for the market’s non-linear responses to external factors and the inherent
volatility of prices.

Furthermore, the predictive accuracy of conventional models is significantly chal-
lenged by extreme market events, such as regulatory changes, major outages, or sud-
den economic shifts. These events can lead to substantial forecasting errors, under-
scoring the need for more adaptable and sophisticated modeling techniques.

Given these challenges, there’s a growing consensus among researchers and prac-
titioners about the necessity to explore and develop alternative forecasting methods.
These methods aim to better capture the complex, volatile nature of electricity prices,
leveraging advancements in computational power, data analytics, and machine learn-
ing. The subsequent sections will review traditional forecasting methods and discuss
the emergence of innovative approaches that promise to enhance the accuracy and

reliability of electricity price forecasts.

1.3 Review of Traditional Forecasting Methods
1.3.1 Statistical Models

Historically, the foundation of electricity price forecasting has been laid by statistical
models, with a particular emphasis on time series analysis. Among these, Autore-
gressive Integrated Moving Average (ARIMA) models have been prominently used.

ARIMA models are capable of modeling a wide range of time series data with the
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assumption of linearity and stationarity in the data. They work on the principle
of describing the autocorrelations in the data, which has made them suitable for
short-term forecasting where the price series exhibit regular patterns.

However, the electricity market’s deregulation introduced complexities that of-
ten violate the underlying assumptions of ARIMA models. For instance, the non-
stationary nature of electricity prices, characterized by sudden spikes or drops due
to demand-supply imbalances, poses a significant challenge. Despite variations like
Seasonal ARIMA (SARIMA) introduced to handle seasonality, the core limitations
related to non-linear patterns and abrupt changes remain inadequately addressed.

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models
emerged as an extension to capture the volatility clustering in time series data, a
common feature in financial markets, including electricity. GARCH models account
for varying variances over time, which is indicative of the periods of relative calm and
turbulence in electricity prices. While GARCH models marked an improvement over
ARIMA in handling volatility, their predictive performance in the face of extreme
price jumps and the non-linear dynamics of the electricity market has been less than

satisfactory.

1.3.2 Early Machine Learning Approaches

The advent of machine learning brought about a new era in electricity price fore-
casting. Neural networks and their ability to model complex non-linear relationships
without predefined equations offered a promising alternative. Multilayer Perceptrons
(MLPs) and Radial Basis Function (RBF) networks have been applied to capture
the intricate patterns in electricity prices. These models learn from historical data
to predict future prices, adjusting their internal parameters to minimize forecasting

errors.
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Support Vector Machines (SVMs) have also been explored for their robustness
in classification and regression tasks, including price forecasting. SVMs aim to find
the optimal separation between data points of different categories (or values, in the
case of regression) by maximizing the margin between them. This methodology,
particularly with its kernel trick, allows the modeling of non-linear relationships in
the data effectively.

Despite the advancements offered by neural networks and SVMs, their application
in electricity price forecasting is not without challenges. The black-box nature of these
models often leads to difficulties in interpretation and understanding of the model’s
decision-making process. Moreover, their performance is heavily dependent on the
selection of hyperparameters, which requires extensive experimentation and domain

knowledge.

1.3.3 Limitations of Traditional Methods

The primary limitation across traditional forecasting methods, including both sta-
tistical models and early machine learning approaches, lies in their struggle to fully
encapsulate the dynamics of deregulated electricity markets. Factors such as regula-
tory changes, market participant behavior, and the increasing integration of renew-
able energy sources introduce complexities that demand more adaptive and flexible
modeling approaches.

Furthermore, the requirement for extensive historical data for accurate predictions
poses a challenge in rapidly changing market conditions, where past patterns may not
reliably indicate future trends. This has led to a growing interest in developing hybrid
models and exploring novel machine-learning techniques that can better handle the

multifaceted nature of electricity price data.
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1.4 Emergence of Alternative Forecasting Approaches
1.4.1 Hybrid Models

The limitations of traditional forecasting methods in addressing the multifaceted na-
ture of electricity price data have prompted researchers to explore hybrid models.
These models synergize the predictive capabilities of different methodologies to en-
hance overall forecasting accuracy. A notable example is the integration of wavelet
transforms with machine learning techniques. Wavelet-based decomposition aids in
isolating the price series into more manageable sub-series, capturing distinct fre-
quency components. This preprocessing significantly improves the model’s ability to
understand and predict complex patterns within the electricity price data [15, [16].
By combining statistical methods with advanced machine learning algorithms, hybrid
models offer a balanced approach to capturing both linear and non-linear relation-
ships inherent in the data, thus providing more reliable forecasts in volatile market

conditions.

1.4.2 Memory-Based Models

Memory-based approaches, such as the k-Nearest Neighbors (k-NN) algorithm, have
gained popularity for their simplicity and effectiveness in forecasting tasks. These
models operate on the principle that historical data contains valuable insights that
can be directly applied to predict future outcomes. By analyzing past instances that
closely resemble the current market situation, memory-based models can generate
predictions without the need for explicit model formulations [17]. This approach is
particularly adept at handling the seasonality and recurring anomalies within the
electricity price series, offering an adaptable framework that remains effective even
as market dynamics evolve. The work by Papalexopoulos and Hesterberg [[18] under-

scores the potential of memory-based models in capturing temporal dependencies and
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patterns in electricity prices, illustrating their practicality in real-world forecasting

scenarios.

1.4.3 Fractal Approaches

Fractal theory introduces a novel perspective in modeling financial time series, includ-
ing electricity prices, by exploiting the self-similar patterns within the data. Man-
delbrot’s pioneering work on fractals has laid the foundation for applying fractal
geometry to financial markets, suggesting that price movements exhibit fractal char-
acteristics [G]. In the context of electricity price forecasting, fractal models seek to
identify and leverage these repeating patterns at various scales, offering insights into
the underlying market dynamics. Fractal approaches, such as those explored by Ser-
letis and Andreadis [19], aim to model the complexity and irregularities in electricity
prices, revealing deep-seated structures that traditional linear models often overlook.
However, the implementation of fractal models in electricity markets is still in its
infancy, with ongoing research focused on refining these methods to enhance their

predictive performance and computational efficiency.

1.4.4 Enhanced Computational Techniques

The advent of deep learning has marked a significant milestone in the evolution of
forecasting methodologies. Deep learning models, particularly Recurrent Neural Net-
works (RNNs) and Long Short-Term Memory (LSTM) networks, have demonstrated
remarkable success in capturing the temporal dynamics of time series data. Their
ability to process sequential information over extended periods makes them well-
suited for electricity price forecasting, where long-term dependencies and seasonal
trends play a crucial role [20, 21]. The application of deep learning in this domain is

not without challenges, particularly concerning model interpretability and the need
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for large datasets. Nevertheless, the empirical success of these models in various fore-
casting competitions and studies highlights their potential to redefine the accuracy

benchmarks in electricity price forecasting.

1.5 Research Gap and Thesis Contribution
1.5.1 Identified Gaps

The exploration of electricity price forecasting methodologies reveals critical gaps in
the literature, particularly regarding the adaptability and interpretability of exist-
ing models amidst the evolving dynamics of deregulated electricity markets. Studies
have underscored the challenges posed by the integration of renewable energy sources,
which introduce additional volatility and unpredictability into the market [I], 22]. Fur-
thermore, the black-box nature of many advanced machine learning models, such as
deep neural networks, raises concerns about interpretability and trust among stake-
holders [2].

Another significant gap lies in the scarcity of comprehensive frameworks that syn-
ergize the strengths of various forecasting approaches—statistical, machine learning,
and novel methodologies like fractal and memory-based models—in a cohesive, inter-
pretable manner [3, 4]. The literature also points to a lack of rigorous evaluation of
these integrated models in real-world market conditions, highlighting an opportunity

for impactful research contributions [5].

1.5.2 Thesis Objectives

This thesis seeks to bridge these gaps through several targeted objectives:

o To critically evaluate the efficacy of fractal and memory-based models for fore-
casting electricity prices, with a focus on their ability to decipher complex mar-

ket dynamics [6, [7].
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e To develop and validate a hybrid forecasting framework that melds statisti-
cal, machine learning, and alternative approaches, emphasizing accuracy, inter-

pretability, and real-world applicability [8, 9].

o To investigate the impacts of renewable energy integration and regulatory shifts
on market prices, integrating these insights into the forecasting models for a

more nuanced understanding of price determinants [10, 11].

o To enhance the transparency and interpretability of forecasting models, thereby
fostering trust and enabling more informed decision-making among market par-

ticipants [12].

1.5.3 Expected Contributions

This research is poised to make several significant contributions to the field. By
advancing the theoretical framework around alternative modeling approaches and
their integration into hybrid models, it aims to offer novel insights into electricity
price forecasting. The development of a comprehensive, hybrid forecasting framework
will not only set new standards for forecasting accuracy but also address the pressing
need for models that stakeholders can interpret and trust.

Additionally, by systematically incorporating factors like renewable energy and
regulatory changes into the forecasting process, this thesis will shed light on their
complex effects on electricity prices. Such insights are invaluable for market partici-
pants navigating the intricacies of deregulated markets.

The emphasis on model interpretability and stakeholder usability marks a pivotal
shift towards bridging the gap between advanced computational techniques and prac-
tical market applications. This approach aligns with recent calls in the literature for
more user-friendly, transparent forecasting tools that can demystify complex market

dynamics for a broader audience [13, [14].
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1.5.4 Scientific Contribution

The methodologies and insights derived from this thesis are expected to be a substan-
tial addition to the scientific discourse on electricity price forecasting. By addressing
the identified research gaps and pushing the boundaries of current forecasting method-
ologies, this work lays the groundwork for future investigations into more adaptive,
reliable, and interpretable models. This contribution not only advances academic
knowledge but also has the potential to revolutionize market participants’ approach

to navigating the volatile landscape of electricity markets.

1.6 Thesis Structure

The remainder of this thesis is structured as follows:

e Chapter 2: Literature Review - This chapter provides an extensive review
of the existing literature on electricity price forecasting, including traditional
statistical models, early machine learning approaches, advanced deep learning
techniques, and alternative methodologies. It also highlights the identified re-

search gaps and sets the foundation for the methodologies used in this study.

o Chapter 3: Methodology - This chapter details the methodological frame-
work employed in this research, including data collection and processing, model
selection, and the implementation of forecasting models. It also describes the
transfer learning approach used to enhance model performance across different

datasets.

e Chapter 4: Implementation - This chapter provides a detailed explanation
of how the forecasting models were implemented. It includes the technical steps,

coding environments, and specific configurations used for each model.
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o Chapter 5: Data Analysis, Results, and Conclusion - In this chapter,
the results of the data analysis and the performance of the forecasting models
are presented. It includes descriptive statistics, performance metrics, and the
impact of geopolitical events on electricity prices. The effectiveness of transfer
learning is also evaluated. The chapter concludes with a summary of the key
findings, reiterating the contributions to the field of electricity price forecasting,

and provides a concluding perspective on the study’s impact and significance.

e« Chapter 6: Discussion and Future Work - This chapter discusses the
implications of the findings, addresses the limitations of the study, and suggests
potential directions for future research. It emphasizes the need for continuous
improvement in forecasting methodologies to adapt to the evolving dynamics

of electricity markets.
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2 Literature Review

Electricity Price Forecasting (EPF) has emerged as a pivotal function within deregu-
lated electricity markets, facilitating the nuanced navigation required between supply,
demand, and market pricing dynamics. The shift from regulated monopolies towards
competitive market structures underscores the imperative for accurate forecasting
techniques. These techniques are essential for informed decision-making, optimizing
economic efficiency, and ensuring grid stability. The advocacy for competition to
enhance market efficiency has necessitated the development of sophisticated financial
instruments and advanced forecasting models to adeptly manage the complexities
introduced by price volatility.

In deregulated electricity markets, price volatility is significantly influenced by
the dynamic interplay of demand fluctuations, fuel price variability, and the in-
termittent nature of renewable energy sources. The inherent challenges associated
with electricity—primarily its difficulty to store and the necessity for its production
and consumption to occur simultaneously—exemplify the unique characteristics of
electricity markets. These aspects contribute to the complex and volatile nature of
electricity pricing, necessitating advanced and precise forecasting models [, 2].

Historically, the foundation of EPF was laid by statistical models like Autore-
gressive Integrated Moving Average (ARIMA), which provided essential insights into
linear relationships within time series data. These models were instrumental in the
early stages of EPF, particularly within more predictable, regulated markets. How-
ever, the transition to deregulated markets revealed the limitations of these traditional
models, as they struggled to capture the complex, non-linear dynamics prevalent in
these environments [4, b].

The evolution of forecasting methodologies saw the introduction of machine learn-

ing (ML) and deep learning (DL) techniques, representing a significant shift towards
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models capable of addressing the non-linear characteristics of electricity prices. Mod-
els such as Artificial Neural Networks (ANNs), Support Vector Machines (SVM),
and Long Short-Term Memory (LSTM) networks, which utilize historical data to un-
cover patterns, have marked a new era in forecasting. These advancements promise
enhanced accuracy but also present challenges in model interpretability and the fine-
tuning of hyperparameters [[15, [16].

Recent advancements in EPF have focused on the integration of sophisticated
computational techniques and the development of hybrid models. These efforts aim
to combine the predictive strengths of diverse methodologies to more accurately ad-
dress the volatility and unpredictability inherent in electricity markets. Such progress
is critical for the advancement of forecasting tools that can meet the demands of in-
creasingly complex and deregulated markets [21], [17].

EPF remains a critical component of deregulated electricity markets, with the
accuracy and reliability of forecasts becoming increasingly vital. The progression
from traditional statistical methods to contemporary ML and DL techniques reflects
the ongoing efforts to adapt to the intricacies of electricity pricing dynamics. As the
market continues its trajectory towards enhanced sustainability and efficiency, the
refinement and development of forecasting models will be paramount in securing a
stable and economically viable energy future.

The bedrock of electricity price forecasting (EPF) in the early days of deregulated
markets was laid by traditional statistical methods. These methods, characterized by
their simplicity and theoretical foundation, were initially perceived as adequate tools
to predict electricity prices. However, as the complexity of the electricity market
evolved, the limitations of these traditional forecasting methods became increasingly

apparent.
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2.1 Statistical Models

The Autoregressive Integrated Moving Average (ARIMA) model and its variants, such
as Seasonal ARIMA (SARIMA), have been prominently used in EPF due to their
capability to model a wide range of time series data under the assumption of linearity
and stationarity [4]. These models describe the autocorrelations in data, making
them suitable for short-term forecasting where price series exhibit regular patterns.
However, the deregulation of electricity markets introduced complexities that often
violate the assumptions underpinning ARIMA models. The non-stationary nature
of electricity prices, characterized by sudden spikes or drops due to demand-supply

imbalances, poses a significant challenge for these models.

2.2 Volatility Models

To capture the volatility clustering common in financial markets, including electric-
ity markets, Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
models emerged as an extension of ARIMA. GARCH models are designed to model
varying variances over time, indicative of periods of relative calm and turbulence in
electricity prices [22]. Despite their improved handling of volatility, GARCH models
still struggle with the extreme price jumps and the non-linear dynamics prevalent in

deregulated electricity markets.

2.3 Challenges and Limitations

The primary challenge facing traditional forecasting methods lies in their inability
to capture the non-linear and complex relationships within the electricity market.
Factors such as regulatory changes, the integration of renewable energy sources, and

unexpected outages introduce dynamics that these linear models cannot accurately
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predict. Additionally, the assumption of stationarity and linearity, foundational to
these models, is seldom met in the volatile environment of electricity markets [1].

The limitations of traditional forecasting methods, particularly their struggle with
the non-stationarity and non-linearity of electricity price data, led to a burgeoning
interest in alternative approaches. Researchers and practitioners began exploring
machine learning techniques as potential solutions to the inadequacies of statistical
models. This shift was motivated by the need for models that could adapt to the
rapidly changing dynamics of electricity markets and handle the increasing volume
and variety of data influencing price movements [2].

In summary, while traditional forecasting methods laid the foundational principles
for EPF, their limitations in the face of deregulated market complexities necessitated
the exploration of more sophisticated approaches. The advent of machine learning
and deep learning models represented a paradigm shift towards methodologies capable
of addressing the intricate and dynamic nature of electricity prices, setting the stage

for the next generation of forecasting models.

2.4 Early Machine Learning Approaches

The limitations inherent in traditional forecasting methods, particularly their inability
to model the non-linear and volatile nature of electricity prices effectively, catalyzed
the exploration of early machine learning (ML) approaches in EPF. These approaches
marked a significant shift in forecasting methodologies, introducing more flexible and

powerful tools capable of handling the complexities of deregulated electricity markets.

2.4.1 Introduction of Neural Networks

Among the first ML methods applied to EPF were Artificial Neural Networks (ANNs).

ANNS, inspired by the biological neural networks that constitute animal brains, are
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systems of interconnected nodes or "neurons” that can process complex patterns
in data. The ability of ANNs to learn from historical data and capture non-linear
relationships made them particularly appealing for EPF, where price dynamics are

influenced by a multitude of factors beyond simple supply and demand [21].

2.4.2 Radial Basis Function Networks and Multilayer Perceptrons

RBF networks and MLPs are specific types of ANNs that were explored for their
potential in EPF. MLPs, with their layered structure and backpropagation learning
algorithm, were utilized for their capacity to approximate virtually any non-linear
function, making them suitable for predicting complex price patterns. RBF networks,
known for their simplicity and the speed of learning, offered an alternative approach,
particularly effective in scenarios where the relationship between input variables and

the target variable (electricity price) is highly non-linear [15].

2.4.3 Support Vector Machines (SVM)

Another early ML approach adopted for EPF was the Support Vector Machine (SVM).
SVMs are supervised learning models that analyze data used for classification and
regression analysis. In the context of EPF, SVMs were valued for their ability to
perform well in high-dimensional spaces and their effectiveness in regression tasks,
making them a robust tool for forecasting prices in markets with high volatility and

data variance [16].

2.4.4 Challenges and Adaptations

Despite the advantages offered by these early ML approaches, their application in
EPF was not without challenges. The ”black-box” nature of models like ANNs and

SVMs raised concerns regarding interpretability and transparency, critical factors for
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stakeholders in the electricity market. Moreover, the performance of these models
heavily depended on the selection of hyperparameters and the architecture of the

networks, requiring extensive experimentation and domain knowledge to optimize.

2.4.5 Shift Towards Hybrid and Advanced ML Models

The recognition of these challenges, combined with the evolving complexity of electric-
ity markets, prompted further research into hybrid models that combine traditional
statistical methods with ML techniques. The goal was to leverage the strengths of
both approaches to improve forecasting accuracy while addressing the limitations of
early ML models in handling extreme market events and non-linear dynamics [17].
The adoption of early ML approaches in EPF represented a pivotal development
in the quest for more accurate and reliable forecasting models. These methodologies
provided the foundation for subsequent innovations in the field, including the inte-
gration of deep learning and hybrid models, aimed at further enhancing the precision
and adaptability of EPF tools in response to the challenges posed by deregulated

electricity markets.

2.5 Advanced Approaches and Deep Learning

The limitations of early machine learning approaches in handling the full complexity
and non-linearity of electricity prices in deregulated markets spurred the interest
in deeper, more sophisticated models. This interest coalesced around deep learning
(DL) techniques and the development of hybrid models, combining various forecasting

methodologies to enhance predictive accuracy and reliability.
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2.5.1 Deep Learning in EPF

Deep learning, a subset of machine learning inspired by the structure and function of
the brain’s neural networks, utilizes layered architectures known as neural networks
with many layers. These models, particularly Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks, have shown great promise in EPF due to
their ability to process sequential data and capture temporal dependencies, a critical
aspect given the time-series nature of electricity price data [20, 21]. LSTMs, with
their specialized architecture for remembering information over long periods, have
been particularly effective in forecasting electricity prices, addressing the challenges
of volatility and the influence of external factors like weather conditions and renewable

energy generation.

2.5.2 Hybrid Models

Hybrid models in EPF represent an innovative approach that synthesizes the
strengths of statistical methods, traditional machine learning, and deep learning
techniques. By integrating these disparate models, researchers aim to capture both
linear and non-linear relationships in the data, mitigate the limitations of individual
models, and improve overall forecasting performance. Examples include combining
wavelet transforms with ANN or LSTM models to preprocess and decompose the
price time series into more manageable components before forecasting [[15, 16]. This
preprocessing step enhances the model’s ability to detect and model the underlying

patterns in the data, leading to more accurate and robust forecasts.

2.5.3 Challenges and Opportunities

Despite their advanced capabilities, deep learning and hybrid models introduce new

challenges, particularly regarding computational demands and the need for large
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datasets for training. Moreover, the ”black-box” nature of these models persists,
presenting difficulties in interpreting the models’ decision-making processes which
is a significant concern for stakeholders requiring transparency in forecasting. Ad-
dressing these challenges has become a focal point of ongoing research, with efforts
focused on improving model interpretability, reducing computational requirements,

and optimizing models for better generalization across different market conditions.

2.5.4 Future Directions

The advent of deep learning and the exploration of hybrid models have set new bench-
marks in the accuracy and reliability of EPF. Future research is likely to explore more
sophisticated hybrid models that leverage the latest advancements in Al and ML, such
as Generative Adversarial Networks (GANSs) for generating synthetic electricity price
data, and reinforcement learning for dynamic adaptation to market changes. Fur-
thermore, the integration of external data sources, including weather forecasts and
socio-economic indicators, into these models promises to enhance their predictive ca-
pabilities further, aligning EPF more closely with the realities of a rapidly evolving
energy landscape.

The advancements in deep learning and the development of hybrid models rep-
resent a significant leap forward in EPF. These methodologies not only offer the
potential for unprecedented forecasting accuracy but also embody the continuous
evolution of the field towards more adaptive, robust, and transparent forecasting

solutions, catering to the complex needs of deregulated electricity markets.

2.6 Alternative Approaches

As the electricity market continues to evolve, the quest for more accurate and reliable

forecasting methods has led researchers to explore beyond the confines of traditional

39



statistical, machine learning, and even advanced deep learning techniques. This ex-
ploration has unearthed alternative approaches that provide unique insights into the

complex dynamics of electricity prices.

2.6.1 Fractal Approaches

Fractal theory, which examines data patterns that repeat at different scales, intro-
duces a fascinating angle to EPF. The foundational work by Mandelbrot on fractals
has inspired applications in financial markets, suggesting that electricity prices might
also exhibit fractal-like behavior. This perspective has driven the exploration of
fractal geometry to model the electricity market’s intricacies, focusing on identify-
ing self-similar patterns within price data. While still an emerging area of research,
fractal approaches hold promise for uncovering deep-seated structures in electricity
prices, potentially offering more nuanced forecasts that traditional linear models often

overlook [6].

2.6.2 Memory-Based Models

Another promising direction is memory-based approaches, such as the k-Nearest
Neighbors (k-NN) algorithm, which forecasts future prices based on the most similar
historical patterns. This method hinges on the principle that past market behaviors
can offer valuable insights into future price movements, especially when dealing with
seasonal and recurring patterns in electricity demand and pricing. Memory-based
models, by directly leveraging historical data without assuming a specific underlying
model, offer flexibility and adaptability in capturing the cyclical nature of electricity

markets [[18].
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2.6.3 Hybrid and Ensemble Techniques

Building on the strengths of various forecasting methods, hybrid and ensemble tech-
niques have emerged as powerful tools in EPF. These approaches combine multiple
forecasting models, including traditional, machine learning, fractal, and memory-
based methods, to achieve superior accuracy. By aggregating the forecasts from
different models, hybrid and ensemble techniques can mitigate the weaknesses of
individual models and capitalize on their strengths, leading to more reliable and ro-
bust predictions. This strategy is particularly effective in addressing the multifaceted
challenges of EPF, where single-model approaches may fall short due to the market’s

complexity and volatility.

2.6.4 Challenges and Future Research Directions

While alternative forecasting approaches offer new perspectives and potential im-
provements in EPF accuracy, they also present challenges. Fractal and memory-based
models, for instance, require in-depth analysis to identify appropriate scales and pa-
rameters for modeling. Additionally, the integration of these alternative methods
into hybrid and ensemble frameworks necessitates sophisticated algorithms for model
selection and combination, ensuring that the aggregated forecast optimally balances
the contributions of each method.

The continuous innovation in EPF methodologies highlights the field’s dynamic
nature and its critical role in supporting the efficient operation of deregulated elec-
tricity markets. Future research is likely to delve deeper into alternative forecasting
approaches, refining and integrating these methods within comprehensive frameworks
that can adeptly navigate the complexities of electricity price dynamics. Moreover,
advancements in computational techniques and data analytics will further enhance

the ability of these models to provide timely, accurate, and transparent forecasts, em-
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powering stakeholders to make informed decisions in an increasingly complex energy
landscape.

The advancement in EPF methodologies, from traditional statistical models to so-
phisticated deep learning and alternative approaches, underscores the field’s dynamic
evolution. However, the effectiveness of these models varies significantly across dif-
ferent markets and conditions, necessitating a critical evaluation to understand their

strengths, weaknesses, and applicability.

2.7 Performance Across Markets

The variance in model performance can be attributed to several market-specific fac-
tors, including the market structure, the level of competition, the mix of generation
sources, and the presence of renewable energy sources. For instance, studies have
shown that while deep learning models like LSTMs exhibit superior performance in
markets with high data availability and variability, simpler models like SVMs or
even traditional time-series models might perform adequately in less volatile markets
[15, 21]. This variance highlights the importance of tailoring the forecasting approach

to the specific characteristics and needs of each market.

2.8 Influence of Data Availability and Quality

The accuracy of EPF models is heavily dependent on the availability and quality
of input data. High-resolution data, encompassing a broad spectrum of market and
external factors (e.g., demand, weather conditions, fuel prices), can significantly en-
hance model performance. However, challenges such as missing data, inaccuracies,
and the time lag in data collection can impair the models’ effectiveness, underscoring

the need for robust data preprocessing and validation techniques [16].
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2.9 Model Complexity vs. Interpretability

A recurring theme in the evaluation of EPF models is the trade-off between complexity
and interpretability. While more complex models, such as deep neural networks, may
offer higher accuracy, their "black-box” nature can pose challenges for interpretabil-
ity and trust among stakeholders. Conversely, simpler models or those with inherent
interpretability features (e.g., decision trees) may facilitate easier understanding and
adoption, despite potentially lower accuracy [2]. This trade-off emphasizes the need
for a balanced approach, considering both the accuracy requirements and the stake-

holders’ ability to interpret and act on the forecasts.

2.10 Adaptation to Market Dynamics

The rapidly changing dynamics of electricity markets, driven by factors such as regula-
tory changes, technological advancements, and the increasing integration of renewable
energy, require forecasting models to be highly adaptable. Models that can dynami-
cally update or retrain in response to changing market conditions are more likely to
maintain high levels of accuracy over time. This adaptability is particularly crucial
for managing the unpredictability introduced by renewable energy sources, which can

significantly impact supply and demand balances [[].

2.11 Future Directions and Challenges

The ongoing evolution of EPF methodologies faces several challenges, including im-
proving model accuracy in the face of market and data complexity, enhancing in-
terpretability, and ensuring the models’ adaptability to changing market conditions.
Future research is likely to explore the integration of advanced machine learning
techniques, such as reinforcement learning and transfer learning, to address these

challenges. Additionally, the development of standardized evaluation frameworks

43



and benchmarks could facilitate more systematic comparison and improvement of
forecasting models across different markets and conditions.

In conclusion, the critical evaluation of EPF models reveals a landscape marked
by diverse methodologies, each with its own set of strengths and limitations. The
quest for the optimal forecasting approach remains a dynamic and ongoing process,
reflecting the complexity of electricity markets and the evolving needs of market
participants. As the field progresses, the balance between accuracy, interpretability,
and adaptability will continue to guide the development of more sophisticated and

effective forecasting tools.

2.12 Research Gaps and Future Directions

Despite significant advancements in EPF methodologies, several research gaps re-
main, highlighting opportunities for future studies to enhance forecasting accuracy,
reliability, and usability. Addressing these gaps is crucial for developing forecast-
ing models that can effectively support decision-making in increasingly complex and

dynamic electricity markets.

2.12.1 Integration of Renewable Energy Sources

One of the most pressing challenges in EPF is accurately accounting for the impact
of renewable energy sources on electricity prices. The intermittent and unpredictable
nature of renewables, such as wind and solar power, introduces substantial volatility
into the market. Current forecasting models often struggle to fully capture this vari-
ability, underscoring the need for improved methodologies that can integrate weather
forecasts, renewable production data, and market responses into the forecasting pro-

cess [1].
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2.12.2 Advanced Machine Learning Techniques

While machine learning and deep learning have significantly improved EPF, there is
still room for leveraging more advanced techniques. Areas such as reinforcement learn-
ing, transfer learning, and generative adversarial networks (GANSs) present promising
avenues for future research. These techniques can offer novel approaches to model
training, adaptation, and the generation of synthetic data for enhanced model ro-

bustness [2].

2.12.3 Model Interpretability and Trust

The ”black-box” nature of many advanced forecasting models poses challenges for
interpretability and trust among stakeholders. Developing models that not only pro-
vide accurate forecasts but are also interpretable and transparent is a crucial research
direction. Techniques for model explanation, such as LIME (Local Interpretable
Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations), could be
explored within the context of EPF to bridge the gap between model complexity and

user trust [23].

2.12.4 Real-time Data Processing and Forecasting

The ability to process real-time data and update forecasts accordingly is becoming
increasingly important as electricity markets grow more dynamic. Research into
models and systems that can efficiently handle streaming data, providing near-real-
time forecasts, would be highly valuable. This includes exploring the potential of

edge computing and real-time analytics for faster decision-making support.
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2.12.5 Cross-Market Dynamics and Transfer Learning

Electricity markets do not operate in isolation; they are influenced by interconnected
market dynamics and regulatory environments. Investigating the cross-market influ-
ences on price formation and leveraging transfer learning to apply insights from one
market to another could uncover new strategies for improving EPF accuracy. This
approach could be particularly beneficial for emerging markets or those with limited

historical data [21].

2.12.6 Standardization of Evaluation Frameworks

A significant gap in EPF research is the lack of standardized evaluation frameworks
and benchmarks. Establishing common benchmarks and performance metrics would
facilitate more meaningful comparisons between different forecasting models and
methodologies, accelerating the identification and adoption of best practices across

the field.

2.12.7 Conclusion

The exploration of research gaps and future directions in EPF underscores the field’s
vibrant and evolving nature. As electricity markets continue to transform, driven by
technological advancements and the shift towards renewable energy, the demand for
sophisticated, reliable, and interpretable forecasting models will only increase. Future
research efforts, guided by these identified gaps, hold the potential to significantly

advance EPF, supporting more efficient and sustainable electricity market operations.
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3 Methodology

3.1 Overview

The methodology adopted in this study aims to rigorously assess the performance
of various electricity price forecasting models and evaluate the impact of transfer
learning within this context. The process begins with the systematic collection of
electricity market data from the ENTSO-E Transparency Platform, covering Ger-
many, Belgium, and the Netherlands for the period 2019-2021. This data undergoes
meticulous cleaning and preprocessing to ensure its quality and suitability for analysis.

Following data preparation, a diverse set of forecasting models is selected for evalu-
ation, including Autoregressive with Exogenous variables (ARX), k-nearest Neighbors
(kNN), Random Forest Regression (RFR), Regression Trees, Support Vector Regres-
sion (SVR), Artificial Neural Network - Multi-Layer Perceptron (ANN-MLP), and
Long Short-Term Memory (LSTM) networks. Each model is trained on the German
dataset, leveraging its rich and complex data to develop robust predictive capabilities.

The models’ performance is evaluated using a suite of statistical metrics, specifi-
cally Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric
Mean Absolute Percentage Error (sMAPE), to provide a comprehensive assessment
of accuracy and reliability. Based on this evaluation, the best-performing model is
identified and subsequently retrained on the Belgian dataset to facilitate the transfer
learning process.

Transfer learning techniques are employed to adapt the model trained on the
Belgian dataset for forecasting electricity prices in the Netherlands. This involves
fine-tuning the model parameters to accommodate the unique characteristics of the
Dutch market while retaining the learned knowledge from the Belgian market. The

effectiveness of this transfer learning approach is then compared against a model

47



trained solely on the Dutch dataset from scratch.

This methodological framework is designed to evaluate the forecasting accuracy
of various models and explore the potential benefits of transfer learning in enhancing
model performance across different market contexts. Detailed descriptions of each
algorithm, the implementation steps, and the evaluation metrics are provided in the

subsequent sections.

3.2 Data Collection

The foundation of any robust electricity price forecasting model lies in the quality
and comprehensiveness of the data used. This study employs data from the European
Network of Transmission System Operators for Electricity (ENTSO-E) Transparency
Platform, which provides an extensive range of electricity market data across Europe.
The datasets specifically used in this research encompass historical electricity prices,
demand figures, generation statistics, and transmission data for Germany, Belgium,
and the Netherlands from 2019 to 2021.

The ENTSO-E Transparency Platform was chosen as the primary data source
due to its comprehensive coverage and reliability. It offers real-time and historical
data crucial for understanding market dynamics and is widely recognized for its stan-
dardization of data formats, which facilitates comparative analysis across different
European countries. The data collection involved automated scripts developed in
Python, which utilized APIs provided by ENTSO-E to fetch data efficiently. This
approach ensured that the data was collected in a structured format, allowing for

easier processing and analysis.
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3.3 Data Processing and Preparation

Effective data processing and preparation are critical to ensuring the accuracy and
reliability of electricity price forecasting models. This section details the steps taken
to address issues such as missing data and discrepancies in data reporting frequencies

across the different datasets collected from Germany, Belgium, and the Netherlands.

3.3.1 Handling Missing Data

e« Germany: The dataset for Germany, one of Europe’s largest electricity ex-
changes, displayed missing data exclusively on the days when the time has been
adjusted due to daylight saving changes. These missing entries occurred because
the dataset recorded electricity prices and values in quarter-hour increments,
creating gaps during the hour shift. To resolve this, entries corresponding to
the missing time slots were identified and removed from the dataset to maintain

consistency and data integrity.

o Belgium and Netherlands: The datasets from Belgium and the Netherlands
did not contain missing values due to the preprocessing already performed on

the ENTSO-E platform, which included adjustments for time changes.

3.3.2 Data Aggregation and Timeframe Standardization

e Germany: The original data was already aligned with the quarter-hour re-
porting period used throughout the dataset. Additionally, a ’cluster’ column
was introduced to classify data points into the respective quarter of the hour,

aiding in more granular analyses and modeling.

e Belgium: Belgium’s data was reported on an hourly basis. To align with the

analysis framework and facilitate comparative analysis, each entry was tagged
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with a 'cluster’ representing the corresponding hour of the day.

e Netherlands: Unlike Belgium, the Dutch dataset initially presented a mis-
match in reporting frequencies; while values were reported every quarter-hour,
prices were reported on an hourly basis. To harmonize the dataset, values from
each of the four quarters within an hour were aggregated to produce a consol-
idated hourly value. This adjustment ensured that both the values and prices
were synchronized on an hourly timeframe. The ’cluster’ for the Netherlands

dataset was similarly adjusted to denote the hour of the day.

Through these meticulous data processing and preparation steps, the datasets
for Germany, Belgium, and the Netherlands were optimized for use in sophisticated
forecasting models. This preparation not only addressed data quality issues but also
standardized the datasets for consistent analysis and comparative evaluations across

different market conditions.

3.4 Data Description

To ensure clarity and accuracy in the analysis, it is essential to understand the specific
attributes of each data column collected from the ENTSO-E Transparency Platform.

Below are detailed descriptions for key variables included in the datasets:

« Day-ahead Price [EUR/MWHh]: Represents the prices for each market time
unit in each bidding zone, expressed in EUR per MWh. Publishing deadline:

No later than one hour after gate closure.

« Day-ahead Total Load Forecast [MWh] & Actual Total Load [MWh]:
Represents the forecasted and actual total load per bidding zone for each mar-

ket time unit. Total load equals the sum of power generated minus the balance
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of exports and imports, minus power absorbed by storage, adjusted for losses.
Calculation: Average real-time load values per bidding zone per market time
unit. Details include net generation (or estimated if not known), imports, ex-
ports, and absorbed energy not including stored energy. Publishing deadline:
No later than one hour after the end of the operating period (H+1).

Solar Forecast [MWh], Wind Offshore Forecast [MWh]|, & Wind On-
shore Forecast [MWh]: Forecasts of net generation from solar, offshore wind,
and onshore wind power, provided per bidding zone for each market time unit.
Updates: Current forecast: Regularly updated throughout intra-day trading.
Day ahead forecast at 18.00: Published no later than 18:00 Brussels time, one
day before actual delivery. It represents the most recent forecast at that time
and is not updated post-18:00. Intraday forecast at 8.00: Published at 8:00
Brussels time on the day of delivery for intra-day trading. Represents the most
recent forecast at that time and is not updated post-8:00. Applicability: Only
for bidding zones in Member States with more than 1% annual feed-in from
wind or solar power or for bidding zones with more than 5% feed-in from wind

or solar power.

Solar Actual Aggregated [MWh], Wind Offshore Actual Aggregated
[MWh], & Wind Onshore Actual Aggregated [MWh]|: Actual aggre-
gated net generation output from solar, offshore wind, and onshore wind per
market time unit and per production type. Publishing deadline: No later than

one hour after the operational period.
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Figure 1: Overview of the Methodology
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4 Implementation

4.1 Model Selection

Selecting appropriate models for electricity price forecasting (EPF) involves evalu-
ating their strengths in handling the complexities of electricity market data. This
study incorporates a diverse set of models, each chosen for its unique capabilities and

suitability for specific aspects of EPF:

« Autoregressive with Exogenous Variables (ARX): Preferred for its abil-
ity to integrate past values of the target variable along with exogenous influ-
ences, making it ideal for scenarios where relationships are linear or nearly

linear.

« k-Nearest Neighbors (kNN): Chosen for its non-parametric nature, which
is effective in modeling nonlinear relationships without the need for complex
configurations. kNN works by averaging the outputs of the nearest dataset

points, thus adapting flexibly to changes in data.

« Random Forest Regression (RFR): Selected for its robustness and accu-
racy, Random Forest builds multiple decision trees and merges their outputs to
prevent overfitting and to handle complex interactions between features effec-

tively.

o Regression Tree: Utilized for its interpretability and ease of understanding,
regression trees split data into branches, thereby simplifying the nonlinear fore-

casting into a series of decisions that can be easily analyzed.

« Support Vector Regression (SVR): Incorporated for its proficiency in man-
aging high-dimensional spaces and its effectiveness in ensuring generalization

by avoiding overfitting through the use of regularization techniques.

93



o Artificial Neural Network - Multi-Layer Perceptron (ANN-MLP):
Employed for its deep learning capabilities, allowing it to learn intricate pat-

terns in large volumes of data through multiple layers of processing.

e Long Short-Term Memory (LSTM) networks: Chosen for their ability
to remember information for long periods, LSTMs are particularly effective in
capturing temporal dependencies in time series data, crucial for forecasting in

volatile markets like electricity pricing.

These models were selected based on their theoretical and practical capabilities to ad-
dress the challenges inherent in forecasting electricity prices, which include non-linear
relationships, complex interactions among variables, and the need for incorporating

exogenous information like weather conditions and market policies.

4.2 Model Implementation
4.2.1 ARX (Autoregressive Model with Exogenous Variables)

The Autoregressive model with Exogenous variables (ARX) is a staple in economet-
rics and statistical forecasting, extending the classical autoregressive (AR) model
by incorporating exogenous inputs. This model structure is particularly well-suited
to time series data where external factors significantly influence the variable being
forecast.

Mathematical Formulation:
p q
Y=o+ Z BiY—i + Z Vi Xi—j + €
i=1 j=1

Where:
e 1y, is the dependent time series at time ¢,
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e [3; are the parameters for the lagged values of the dependent series,
« X,_; are the exogenous variables (external inputs) at time ¢ — j,

» 7; are the coefficients for the exogenous variables,

e ¢ is the error term, assumed to be white noise,

e p,q represent the order of the autoregressive model and the number of lagged

exogenous inputs, respectively.

The model accounts for the own past values of a series (autoregressive part) and
the impact of external series (exogenous part), making it robust for scenarios where
external influences such as economic, weather, or policy changes affect the forecast
variable. The inclusion of exogenous variables allows the ARX model to adapt to
shifts in the underlying process generating the data, which pure AR models might
miss.

Model Training Details:

o Data Preparation: Before training, the data is partitioned into training and
testing sets based on window sizes, exploring how the length of historical data

influences predictive accuracy.

o Parameter Optimization: For the ARX model, the key parameters such as
the number of lags (p and ¢) are determined based on preliminary analyses such
as the Partial Autocorrelation Function (PACF) for the dependent variable and

the Cross-Correlation Function (CCF) for exogenous variables.

o Model Fitting: The model is fitted using linear regression techniques, where
the dependent variable is regressed against its own lagged values and those of

the exogenous inputs.
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4.2.2 k-Nearest Neighbors (kINN)

The k-Nearest Neighbors (kNN) algorithm is a simple, versatile machine learning
algorithm used for both classification and regression. It operates on the principle
that similar instances tend to be near each other in feature space. The output for a
regression task is computed as the average of the values of its k nearest neighbors.

Mathematical Formulation:

y:% Z Yi

1€ Ny (z)

Where:

y is the predicted value,

o k is the number of nearest neighbors,

e Ni(z) denotes the set of k nearest neighbors to point x,
o y; are the values of the k nearest neighbors.

Model Training Details:

o Feature Scaling: All features are standardized using MinMax scaling, bringing

them within a [0, 1] range.

o Parameter Tuning: The number of neighbors, k, is a crucial parameter. A
grid search over a range of possible k values (specifically from 3 to 100, stepping
by 2) was conducted to identify the optimal k. Cross-validation within this
search helped ensure that the chosen k£ generalizes well across different subsets

of the data.
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e Optimal k& Value: The grid search determined that the optimal & for this
specific dataset and problem is 31. This value provided the best balance between

bias and variance, minimizing the prediction error on the validation set.

o Distance Metric: The Euclidean distance is used due to its effectiveness in
many scenarios, though other metrics were considered during the exploratory

phase.

e Model Fitting and Evaluation: The model is straightforwardly applied by
storing the training data and using it for future predictions. Each test instance
is compared against all stored instances to find the k£ closest neighbors, and

predictions are made by averaging these neighbors’ values.
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Figure 2: k Nearest Neighbours Descriptive [@]
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4.2.3 Regression Tree

Regression Trees are decision trees designed for continuous outcome variables. They
are advantageous for their interpretability and capability to model non-linear rela-
tionships by partitioning the feature space into simpler regions where responses are
relatively homogenous.

Mathematical Formulation:

Y = f(X) =) cal(X €Ry)

m=1
Where:

e Y is the dependent variable,

e X are the predictors,

e R, are the partitions of the input space,

e ¢, represents the mean response for the data points in R,,,

e [ is an indicator function,

M 1is the total number of partitions.
Model Training Details:

o Data Preparation: Regression trees do not require feature scaling, as they

are invariant to the magnitude of input features.
o Tree Construction:

— Splitting Criteria: The model uses recursive binary splitting. At each
node, the algorithm selects the split that results in the greatest reduction

in MSE.
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— Pruning: To avoid overfitting, the tree undergoes pruning, which involves
removing splits that have little impact on the model’s predictive power,

governed by a complexity parameter.

o Parameter Tuning: A grid search is performed to identify the optimal maxi-
mum depth of the tree. The depth should be sufficient to capture the complexity
of the data but avoid overfitting.

« Optimal Parameters: For non-clustered data, the optimal tree depth was
found to be 5. For clustered data, a slightly greater depth of 7 provided the

best balance between model complexity and accuracy.
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4.2.4 Random Forest Regression

Random Forest Regression is an ensemble learning method that builds multiple deci-
sion trees during training and outputs the mean prediction of the individual trees. It
improves upon the variance of single decision trees by averaging multiple predictions,
which generally leads to better performance and robustness against overfitting.

Mathematical Formulation:

1 B
Y = E;fb(X)

Where:
e Y is the predicted outcome,
e B is the number of trees in the forest,
o fp(X) is the prediction from the b-th decision tree,
e X are the input features.
Model Training Details:

o Feature Scaling: Ensuring that all features are on the same scale can help in

achieving faster convergence and a more balanced feature split.
o Parameter Optimization:

— Number of Estimators (n__estimators): A grid search was conducted

between 50 and 150 trees to find the optimal number.

— Maximum Depth (maz__depth): The grid search tested depths from

3 to 20 to avoid overfitting while ensuring sufficient model complexity.
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o Optimal Parameters: The optimal configuration found was 100 trees

(n__estimators) and a maximum depth of 5 (maz_depth).

o Cross-Validation: To ensure that the model is not overfitting and performs
well on unseen data, cross-validation was used during the grid search, specifi-

cally with a 5-fold strategy.
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Figure 3: Random Forest Regressor Descriptive [2§]
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4.2.5 Support Vector Regression (SVR)

Support Vector Regression (SVR) extends the concepts of Support Vector Machines
(SVM) to regression problems. It involves fitting a model within a certain threshold
of the training data points while trying to minimize model complexity and error.

Mathematical Formulation:

Where:
e w is the weight vector,
e x is the feature vector,
e b is the bias term.
Model Training Details:

o Data Normalization: Features were normalized using StandardScaler, ensur-

ing mean subtraction and variance scaling to unit norms.
o Hyperparameter Tuning:
— Kernel: The Radial Basis Function (RBF) kernel was chosen to handle
non-linear relationships effectively.

— C (Regularization parameter): Values tested ranged from 0.01 to 0.04.

— Epsilon: Values like 0.085, 0.009, and 0.0095 were tested to fine-tune

model sensitivity.

— Gamma: The tested range was 0.01 to 0.04.
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o Optimal Parameters: The best parameters found through GridSearchCV
were:
— For non-clustered data: C' = 0.04, e = 0.0085, v = 0.04
— For clustered data: C' = 0.04, e = 0.0085, v = 0.04
o Implementation: Utilized a sliding window approach to predict future val-

ues, simulating a more realistic scenario where the latest data is utilized for

forecasting.

K(x, x)
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Figure 4: Support Vector Regressor Descriptive [29]
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4.2.6 Artificial Neural Network (ANN) for Electricity Price Forecasting

Artificial Neural Networks (ANNs) are inspired by the biological neural networks that
constitute animal brains. An ANN is based on a collection of connected units or nodes
called artificial neurons. Each connection can transmit a signal from one neuron to
another. The receiving neuron processes the signal and signals downstream neurons
connected to it.

Mathematical Formulation:
e Linear Combination: z = wyx; +wyxy + -+ + wpx, +b
e Activation Function: Common activation functions include:

— ReLU (Rectified Linear Unit): o(z) = max(0, 2)

_1
14+e—*#

— Tanh: o(z) = tanh(z)

— Sigmoid: o(z) =

e Output Calculation: For an MLP with one hidden layer, the output y can
be calculated as: y = c(W® (a(WMz + bM)) + b(3)

o Error and Loss Function: For regression tasks, Mean Squared Error (MSE)

is often used:
n

1 N
MSE = n Z(?/z —i)°

=1

Model Training Details:
« Data Normalization: Inputs were standardized using StandardScaler.
« Hyperparameter Tuning:

— Architecture: Tested configurations included two hidden layers with 64

and 32 neurons, respectively.

64



— Activation Function: ReLU
— Optimizer: Adam
— Learning Rate Initiation: Evaluated values were 0.001, 0.01, and 0.1.

— Maximum Iterations: Set between 200 to 400 to define training epochs.
e Optimal Parameters:

— Hidden Layers: (64, 32)
— Activation: ReLLU
— Solver: Adam
— Learning Rate: 0.01
— Max Iterations: 200
o Implementation: A rolling window approach was implemented for training
the ANN. This method involves sequentially moving the window of training data

forward, incorporating more recent data into the training set while phasing out

older data.
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4.2.7 Long Short-Term Memory Network (LSTM)

LSTMs are specifically designed to avoid the long-term dependency problem, making
them exceptionally good at capturing relationships in sequential data that unfold over
prolonged periods.

Mathematical Formulation:

Forget Gate:
Je=0(Wylhi—1, ] + by)

o Input Gate and Candidate Layer:
iy = o(Wilhe—1, 2] + ;)

ét = tanh(WC[ht_h l’t} + bC)

Output Gate:
0t = U(Wa[ht—la xt] + bo)

ht = Ot tanh(Ct)

o Cell State Update:
Cy :ft*thl‘i‘it*é’t

Model Training Details:
o Data Normalization: Data is scaled using MinMaxScaler.

e Sequence Creation: Sequences of past data points are created as input for

the LSTM.
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o Network Architecture: Configured with layers of LSTM units. The optimal

configuration includes:

— Units: 50 per layer
— Activation: ReLU

— Optimizer: Adam
e Training Process: The model is trained using a rolling window approach.

« Hyperparameters: Optimal settings include a learning rate of 0.01 and 50

epochs.

v

(=) ®—{ + | . o
| | Ii ;tanh_‘
X /.- . ‘tanh ( 0 _';\
’ 0

W | !

o

Figure 7: Long Short Term Memory Descriptive [@]
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4.2.8 Transfer Learning

Transfer Learning is a machine learning technique where a model developed for one
task is reused as the starting point for a model on a second task.

Mathematical Formulation:

o Model Decomposition: Assume a pre-trained model is decomposed into two

parts:

— Base Model (f): Consists of the initial layers that capture universal

features.

— Task-Specific Model (g): Includes the final layers specific to the original
task.

e« Weight Transfer and Modification:

— Freezing Layers: The weights (W) of the base model are kept frozen.

— Layer Re-training: The task-specific layers (IW,) are re-initialized or

fine-tuned with new data.
Wy = argmin L(y, g(f (z; Wy); Wy))

Model Training Details:
o Initialization: The model weights are initialized using a pre-trained model.

o Feature Adaptation: Some layers may be retrained while others might be

frozen.

« Hyperparameter Tuning: Parameters such as learning rate, number of re-

trained layers, and epochs are tuned.
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e Outcome: The model adapts to the new data, improving learning efficiency

and prediction accuracy.
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Figure 8: Transfer Learning Descriptive [@]
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4.3 Evaluation Metrics

« Mean Absolute Error (MAE):
WL N
T - Yi — Yi

« Root Mean Squared Error (RMSE):

n

1
RMSE = | = s — )2
" ;Zl(y )

o Symmetric Mean Absolute Percentage Error (sMAPE):

100% <~ |yi — il

sMAPE = -
n Ll 002

These metrics serve to quantify the difference between predicted values and actual
values, allowing analysts to assess the accuracy of forecasting models in a quantifiable
manner. Each metric has its strengths and is chosen based on the specific requirements

and sensitivity of the prediction task.
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5 Data Analysis, Results, Conclusion

In this section, we delve into the analytical processes applied to the gathered data to
extract meaningful insights and patterns that can inform our forecasting models. The
analysis covers a basic descriptive statistics and representative cluster diagrams which
aim at understanding the dynamics of electricity prices and demand across different
time frames and market conditions. This comprehensive analysis not only aids in
validating the data but also ensures the robustness and reliability of the forecasting

models deployed in subsequent sections.

5.1 Descriptive Statistics

The Descriptive Statistics subsection provides a foundational understanding of the
data characteristics for each country involved in the study—Germany, Belgium, and
the Netherlands. By presenting key statistical measures such as mean, standard
deviation, minimum, and maximum values, this analysis offers a snapshot of the
central tendencies and variability within the datasets. These statistics are crucial for
identifying outliers, understanding data distribution, and setting the stage for more
detailed exploratory data analysis. Tables summarizing these statistics will facilitate
a direct comparison across the datasets, highlighting unique features and potential

anomalies in market behavior.
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Germany (entries: 104828)

Day- | Actual| Solar | Wind | Wind | Solar | Wind | Wind | Day-
ahead | Total | Fore- | Off- On- Ac- Off- On- ahead

Total | Load* | cast* | shore | shore | tual* | shore | shore | Price
Load | [GWh] [GWh]| Fore- | Fore- | [GWh]| Ac- Ac- [EUR

Fore- cast* | cast* tual* | tual* | /
cast* [GWh]| [GWHh] [GWh] [GWh] MWHh]
[GWHh]

mean | 55.40 | 57.13 | 5.10 2.88 11.02 | 5.13 2.86 11.14 | 55.55
std 9.38 9.93 7.80 1.88 8.66 7.87 1.93 8.86 57.06
min 32.65 | 29.88 | 0.00 0.03 0.15 0.00 0.00 0.09 -
149.99
25% | 47.70 | 49.03 | 0.00 1.12 4.42 0.00 1.06 4.32 28.82
50% | 55.33 | 56.88 | 0.15 2.71 8.49 0.10 2.70 8.51 41.59
75% | 63.30 | 65.32 | 8.23 4.56 15.23 | 8.30 4.58 15.73 | 60.89
max | 78.31 | 82.17 | 36.62 | 6.78 42.18 | 36.53 | 7.20 41.96 | 2985.76

Table 1: Germany: Descriptive Statistics (Values in columns marked with * are in
10> GWh)

The statistics reveal that the mean day-ahead total load forecast is approximately
55.40 GWh, with a standard deviation of 9.38 GWh, indicating moderate variability.
The actual total load has a slightly higher mean of 57.13 GWh and a similar stan-
dard deviation. The mean solar and wind forecasts and actuals show the expected
variations, with significant maximum values indicating periods of high renewable en-
ergy production. The day-ahead price mean is 55.55 EUR/MWh, with substantial
variability as indicated by the standard deviation of 57.06 EUR/MWh.
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Belgium (entries: 26304)

Day- | Actual| Solar | Wind | Wind | Solar | Wind | Wind | Day-
ahead | Total | Fore- | Off- On- Ac- Off- On- ahead
Total | Load* | cast* | shore | shore | tual* | shore | shore | Price
Load | [GWh] [GWh]| Fore- | Fore- | [GWh]| Ac- Ac- [EUR
Fore- cast* | cast* tual* | tual* | /
cast* [GWh] [GWh] [GWh]| [GWh] MWh]
[GWh]
mean | 38.20 | 38.10 | 0.47 0.81 0.45 0.47 0.70 0.43 58.43
std 5.29 5.28 0.74 0.67 0.40 0.76 0.65 0.41 57.91
min | 26.33 | 24.98 | 0.00 0.00 0.00 0.00 0.00 0.00 -
500.00
25% 34.07 33.95 0.00 0.20 0.14 0.00 0.11 0.12 30.40
50% 38.01 38.04 0.01 0.67 0.32 0.01 0.48 0.30 42.26
75% 42.05 41.82 0.72 1.40 0.64 0.71 1.20 0.63 61.17
max 52.98 54.47 3.79 2.17 1.98 3.79 2.18 1.98 620.00
Table 2: Belgium: Descriptive Statistics (Values in columns marked with * are in 103
GWh)

The mean day-ahead total load forecast is 38.20 GWh, closely matching the actual

total load mean of 38.10 GWh, suggesting accurate load forecasting. The solar and

wind energy statistics reflect lower production levels compared to Germany, with

mean values for wind offshore and onshore forecasts at 0.81 GWh and 0.45 GWh,
respectively. The day-ahead price mean is 58.43 EUR/MWh, with a high standard

deviation of 57.91 EUR/MWHh, indicating price volatility.
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Netherlands (entries: 26304)

Day- | Actual| Solar | Wind | Wind | Solar | Wind | Wind | Day-
ahead | Total | Fore- | Off- On- Ac- Off- On- ahead
Total | Load* | cast* | shore | shore | tual* | shore | shore | Price
Load | [GWh] [GWh]| Fore- | Fore- | [GWh]| Ac- Ac- [EUR

Fore- cast* | cast* tual* | tual* | /
cast* [GWh]| [GWHh] [GWh] [GWh] MWHh]
[GWHh]

mean | 47.41 | 49.94 | 2.60 1.77 3.60 0.10 2.43 2.02 58.78
std 8.67 7.71 4.26 1.24 3.23 0.20 2.17 1.71 54.48
min 17.70 | 26.18 | 0.00 0.01 0.03 0.00 0.00 0.00 -79.19
25% | 41.52 | 43.86 | 0.00 0.61 1.03 0.00 0.71 0.65 32.10
50% | 46.94 | 48.78 | 0.18 1.61 2.61 0.00 1.94 1.45 42.38
75% | 52.57 | 55.23 | 3.64 2.92 5.35 0.11 3.21 3.01 60.26
max | 77.45 | 72.08 | 23.85 | 5.83 23.38 | 1.33 9.01 8.53 620.00

Table 3: Netherlands: Descriptive Statistics (Values in columns marked with * are in

10° GWh)

The mean day-ahead total load forecast stands at 47.41 GWh, while the actual
total load mean is higher at 49.94 GWh. Solar energy statistics show lower pro-
duction with a mean forecast of 2.60 GWh. Wind energy, both offshore and on-
shore, shows moderate production levels, with forecasts closely matching actual val-
ues. The day-ahead price mean is 58.78 EUR/MWh, with a standard deviation of
54.48 EUR/MWHh, reflecting price fluctuations.

These descriptive statistics provide valuable insights into the central tendencies
and variability of energy parameters, essential for refining forecasting models and

managing energy markets effectively.
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5.2 Comparative Descriptive Diagrams

In this section, we provide a comparative visual analysis of various energy param-
eters. The following diagrams illustrate the quarterly and hourly averages for each

parameter, comparing the energy markets in these countries.

5.2.1 Day-ahead Total Load Forecast and Actual Total Load

Germany

o The day-ahead total load forecast and actual total load show a consistent trend,
with the actual total load slightly higher on average. This indicates a generally

accurate forecasting model with minor discrepancies.

» Variations in the forecast and actual loads are visible, highlighting periods of

underestimation and overestimation.
Belgium

» Both day-ahead total load forecast and actual total load follow a similar pattern
to Germany’s, with the actual load often exceeding the forecast. This trend

suggests similar forecasting accuracy and reliability.

e The hourly variations provide insight into peak demand periods and the effec-

tiveness of the forecasting.
Netherlands

o The day-ahead total load forecast and actual total load for the Netherlands show
a close alignment, similar to Belgium and Germany. However, the forecast tends

to slightly underpredict the actual load.

o The hourly data reflects consistent forecasting performance with some devia-

tions during peak hours.
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5.2.2 Wind Onshore and Offshore Forecast and Actual Aggregated

Germany

o The wind onshore forecast and actual aggregated values are closely matched,

indicating a high degree of accuracy in wind energy forecasting.

o Offshore wind data shows a slight underestimation in forecasts compared to
actual aggregated values, suggesting room for improvement in offshore wind

predictions.
Belgium

o Wind onshore forecast and actual aggregated data reveal a moderate level of

accuracy, with some periods showing significant deviations.

o Offshore wind forecasts show more variability compared to actual aggregated

values, highlighting the challenges in predicting offshore wind energy generation.
Netherlands

o The wind onshore forecast and actual aggregated values are relatively aligned,
similar to Germany and Belgium. This suggests a robust forecasting model for

onshore wind.

o Offshore wind forecasts exhibit greater variance compared to actual values,

indicating the need for enhanced forecasting techniques for offshore wind energy.
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5.2.3 Solar Forecast and Actual Aggregated

Germany

» Solar forecast and actual aggregated values display a clear pattern of under-
prediction, particularly during peak solar production periods. This suggests

potential improvements in solar energy forecasting.

o The quarterly data shows significant seasonal variations, reflecting the impact

of changing weather conditions on solar energy generation.
Belgium

o Solar forecasts tend to underpredict actual aggregated values, especially during
high solar output periods. This trend is consistent with the patterns observed

in Germany.

o Hourly data reveals fluctuations in solar production, highlighting the impor-

tance of accurate real-time forecasting.
Netherlands

e Similar to Germany and Belgium, the Netherlands’ solar forecast generally
underpredicts actual aggregated values, indicating a consistent pattern across

these regions.

e The hourly variations emphasize the need for adaptive forecasting models that

can account for rapid changes in solar energy output.
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5.2.4 Day-ahead Price

Germany

o The day-ahead price exhibits significant fluctuations, reflecting the dynamic
nature of the energy market. Peak prices correspond with periods of high

demand and lower renewable energy production.

o The quarterly averages show seasonal price trends, with higher prices during

winter months due to increased heating demand.
Belgium

o Similar to Germany, Belgium’s day-ahead price shows variability, driven by

market demand and supply conditions.

o The hourly data provides a detailed view of price changes throughout the day,

highlighting the impact of renewable energy integration on market prices.
Netherlands

o The day-ahead price in the Netherlands follows a similar pattern to Germany

and Belgium, with price spikes during peak demand periods.

o Hourly variations offer insights into the market’s response to fluctuations in

renewable energy production and consumption patterns.
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Figure 9: Germany: quarterly average
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Figure 11: Belgium: hourly average
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Figure 10: Germany: quarterly aver-
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Figure 12: Belgium: hourly average
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Figure 15: Germany: quarterly aver-
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Figure 17: Belgium: hourly average
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Figure 19: Netherlands: hourly aver-
age Wind Offshore Forecast [MWh]
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Figure 16: Germany: quarterly aver-
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Figure 18: Belgium: hourly average
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Figure 20: Netherlands: hourly aver-
age Wind Offshore Actual [MWHh]
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Figure 21: Germany: quarterly aver-
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Figure 23: Belgium: hourly average
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Figure 25: Netherlands: hourly aver-
age Wind Onshore Forecast [MWHh]
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Figure 22: Germany: quarterly aver-
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Figure 24: Belgium: hourly average
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Figure 26: Netherlands: hourly aver-
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Figure 33: Germany: quarterly average Day-ahead Price [EUR/MWHh]
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Figure 34: Belgium: hourly average Day-ahead Price [EUR/MWHh]
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Figure 35: Netherlands: hourly average Day-ahead Price [EUR/MWHh]
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5.3 Results and Conclusions

In this section, we present the outcomes of our extensive investigation into electricity
price forecasting models, focusing on their accuracy and reliability across different
market conditions. We begin by detailing the results obtained from various models
applied to our datasets, specifically highlighting the performance metrics for each
model and comparing the clustered versus non-clustered approaches. This analy-
sis includes visual representations to facilitate a clear understanding of the model
performance trends.

We further explore the impact of significant geopolitical events, such as the
Ukraine-Russia conflict and the ensuing energy crisis, on electricity prices. These
events have drastically altered market dynamics and presented challenges to fore-
casting models, particularly in terms of maintaining accuracy over extended periods.
Our analysis shows how these factors have influenced the models’ performance, par-
ticularly noting the increased prediction errors as we approached the period of these
events.

In addition, we discuss the implementation of transfer learning as a strategy to
enhance forecasting accuracy in different market contexts. By leveraging knowledge
from one market (Belgium) and applying it to another (Netherlands), we evaluate
the effectiveness of this approach in improving prediction reliability.

Finally, we draw conclusions from our findings, summarizing the key insights and
contributions of our study to the field of electricity price forecasting. We also suggest
potential avenues for future research, aimed at addressing the limitations identified
in our models and further enhancing their adaptability and accuracy in the face of

evolving market conditions.
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5.4 Results
5.4.1 Model Performance and Metrics

The primary objective of our experiments was to evaluate the performance of different
forecasting models across three datasets (Germany, Belgium, and the Netherlands).
We employed seven models: ARX, kNN, Regression Tree, Random Forest Regression,
SVR, ANN-MLP, and LSTM. Each model was trained using both clustered and non-
clustered approaches on the German dataset. The training process involved a rolling
window methodology, starting with 30 days to predict the 31st day, incrementally
increasing the window size until the dataset’s end.

The performance of these models was measured using three metrics: Mean Abso-
lute Error (MAE), Root Mean Square Error (RMSE), and Symmetric Mean Absolute
Percentage Error (sMAPE). The results are summarized in Table @ Additionally,
we provide visualizations of the performance metrics over the window sizes for the

best-performing model (ANN-MLP with clustering), as illustrated in Figures @, @,

and @
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Metric O Z O Z | = b4 O Z O z O Z | =0 zZ
Minimum
MAE 3.9 3.8 4.2 4.2 3.4 44 3.6 4.3 4.0 3.9 3.7 4.3 5.1 4.5
RMSE 5.3 5.2 5.3 5.3 4.7 5.4 4.6 5.5 5.1 5.2 4.7 5.6 6.2 6.3
sMAPE 9.7 9.3 11.1 11.1 8.3 10.5 9.8 10.5 9.7 9.8 9.5 9.8 11.8 12.8
Average
MAE 25.0 25.1 24.4 24.4 25.2 26.0 25.6 25.6 27.2 272 | 23.2 24.6 32.6 32.3
RMSE 28.4 28.4 28.0 28.0 28.7 29.6 29.0 29.2 30.6 30.7 | 26.7 28.3 36.6 36.3
sMAPE 44.7 | 448 | 43.7| 4377 | 455 | 46.9 | 457 | 458 | 47.6 | 47.7| 42.2| 445| 654 | 63.5
Standard Deviation
MAE 39.6 39.6 38.5 38.5 39.3 39.6 39.8 39.6 44.0 439 | 38.2 38.8 46.1 46.2
RMSE 42.6 | 42.6| 419 | 419 | 425 | 428 | 429 | 428 | 47.0| 469 | 41.9| 423 | 493 | 495
sMAPE 320 319| 296| 29.6 | 31.1| 31.0| 31.5| 309| 358| 356/| 30.0| 304 | 449 | 44.6
Median
MAE 9.7 9.8 9.8 98| 103| 109| 10.3| 10.5| 10.1 10.2 9.1 98| 146| 141
RMSE 12.1 12.2 12.1 12.1 12.8 134 12.7 12.8 12.5 126 | 11.4 12.3 17.7 17.0
sMAPE 30.3 30.5 30.2 | 30.2 33.0 34.0 32.7 32.9 31.5 31.6 30.3 31.2 49.0 46.6

Table 4: Performance Metrics Pivot Table
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MAE vs. Window Size
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Figure 36: Mean Absolute Error (MAE) for ANN-MLP Clustered Approach

RMSE vs. Window Size

40071 Rmse

e Lowest RMSE
350 +

300 4

250+

200 4

RMSE

150 -

100

50

T T T
0 200 400 600 800 1000
Window Size (Days)

Figure 37: Root Mean Square Error (RMSE) for ANN-MLP Clustered Approach
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sMAPE vs. Window Size
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Figure 38: Symmetric Mean Absolute Percentage Error (sMAPE) for ANN-MLP
Clustered Approach

The detailed results for the ANN-MLP model, including the clustering approach,
indicate it was the most effective method among the tested models. These results in-
dicate that the ANN-MLP model, particularly with the clustering approach, achieved
the best overall performance across the various metrics. The clustering approach gen-
erally improved the accuracy and robustness of the models, as evidenced by the lower
error rates in the clustered models compared to their non-clustered counterparts.

Analyzing the metrics in detail, we observe that the Mean Absolute Error (MAE)
values for the ANN-MLP clustered approach were consistently lower than those of the
other models, highlighting its superior ability to minimize absolute prediction errors.
The Root Mean Square Error (RMSE) further supports this finding, showing that
the ANN-MLP model effectively reduced the impact of larger errors, which is critical
in ensuring more reliable and accurate predictions.

The Symmetric Mean Absolute Percentage Error (sSMAPE) results also demon-
strate the efficacy of the ANN-MLP clustered approach. The lower sMAPE values
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indicate that this model was particularly adept at handling percentage errors, making
it more reliable for predictions where relative accuracy is crucial. This is especially
important in the context of electricity price forecasting, where small percentage errors
can translate into significant financial implications.

The clustering approach not only enhanced the performance of the ANN-MLP
model but also provided more stability and consistency across the different time
windows. This stability is reflected in the lower standard deviations of the metrics
for the clustered models, suggesting that the predictions were more reliable and less
prone to fluctuations compared to the non-clustered models.

Moreover, the median values for MAE, RMSE, and sMAPE reinforce the overall
findings, showing that the ANN-MLP clustered approach maintained superior per-

formance not just on average but also at the median

5.4.2 Geopolitical Events and Market Dynamics

The dataset spans from January 1, 2019, to December 31, 2021, a period marked by
significant geopolitical events and their ensuing impact on electricity markets. No-
tably, the Ukraine-Russia conflict and the subsequent energy crisis have profoundly
influenced the dynamics of electricity prices in Europe, particularly in Germany, Bel-
gium, and the Netherlands.

Central Europe’s heavy reliance on Russian energy supplies exacerbated the
volatility in electricity prices. The onset of the Ukraine-Russia conflict in early
2021 triggered widespread uncertainty and market disruptions. The imposition of
economic sanctions on Russia and the subsequent retaliatory measures led to sig-
nificant fluctuations in energy supply and demand. These disruptions were further
compounded by the broader energy crisis, characterized by sharp increases in natural

gas prices and reduced energy imports from Russia.
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Impact on Model Performance The geopolitical events and the energy crisis
have had a pronounced effect on the performance of the forecasting models. As
illustrated in Figures @, @, and @, there is a noticeable increase in prediction errors
starting around 800 days into the dataset, coinciding with the beginning of 2021. This
period aligns with the escalation of geopolitical tensions and the onset of the energy
crisis, highlighting the challenges faced by the models in maintaining accuracy under
such volatile conditions.

The figures for the ANN-MLP clustered approach, which consistently outper-
formed other models, show a clear trend of increasing Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Symmetric Mean Absolute Percentage Error
(sMAPE) as the window size grows. This trend underscores the difficulty in achieving

precise forecasts during periods of heightened market instability.

Analysis of Figures

o Figure @ (MAE vs. Window Size): The graph demonstrates a steady
increase in MAE values beyond the 800-day mark, with a sharp rise towards the
end of the dataset. The lowest MAE was observed at a window size of 135 days,
at 3.70, reflecting relatively stable market conditions before the geopolitical

turmoil.

« Figure @ (RMSE vs. Window Size): Similar to the MAE trend, the RMSE
values escalate significantly beyond the 800-day window, with the lowest RMSE

recorded at 4.80 for a window size of 135 days.

« Figure @ (sMAPE vs. Window Size): The sMAPE values exhibit in-
creased volatility, with the lowest sSMAPE of 8.95 observed at a window size of
135 days. This indicates that percentage errors were relatively contained before

the energy crisis intensified.
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These results highlight the profound impact of geopolitical events on electricity
price forecasting. The escalation of the Ukraine-Russia conflict and the subsequent
energy crisis introduced unprecedented volatility and uncertainty into the market,

challenging the predictive capabilities of even the most robust models.

Conclusion The analysis demonstrates that while the ANN-MLP model with clus-
tering generally provided the best performance, the accuracy of all models was ad-
versely affected by the geopolitical events and the energy crisis. This underscores
the importance of considering external factors and incorporating adaptive mecha-
nisms in forecasting models to better handle such unpredictable and volatile market

conditions.

5.4.3 Transfer Learning Results

After determining that the ANN-MLP model with clustering was the best-performing
model, we proceeded to evaluate the impact of transfer learning between the Belgian
and Dutch datasets. The aim was to leverage the knowledge gained from the Belgian

dataset to improve the predictive performance on the Dutch dataset.

Experiment Setup We trained an ANN-MLP model on the Belgian dataset using
both clustered and non-clustered approaches. The model was then fine-tuned using
the Dutch dataset to assess the benefits of transfer learning. For comparison, we
also trained an ANN-MLP model solely on the Dutch dataset without using transfer

learning.

Performance Metrics The performance metrics for these experiments, including

MAE, RMSE, and sMAPE, are summarized in Table H
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Model MAE | 2 |RMSE | & | sMAPE |
Belgian MLP (No Cluster) 1.9 | 312 2.2 312 4.4 765
Belgian MLP (Clustered) 1.6 144 2.1 144 4.4 144
Netherlands MLP (No Cluster) 1.8 | 592 2.1 592 4.6 100
Netherlands MLP (Clustered) 1.0 | 201 1.5 201 3.2 201
Transfer Learning MLP (Clustered) | 1.4 86 1.7 86 2.5 924

Table 5: Performance Metrics for Transfer Learning Experiments

Analysis of Transfer Learning Results

The results demonstrate mixed out-

comes for the transfer learning approach. The ANN-MLP model with clustering,

when fine-tuned using the Dutch dataset, showed some improvements in sMAPE

and achieved almost as good results regarding MAE and RMSE compared to models

trained directly on the Dutch dataset.

o Belgian Dataset Results: The ANN-MLP model performed better with the

clustering approach, showing lower minimum MAE and RMSE values, as well

as comparable sMAPE.

e Netherlands Dataset Results: When trained directly on the Dutch dataset,

the model achieved reasonable performance. The clustering approach consis-

tently yielded better results, with notably lower MAE, RMSE, and sMAPE

values.

o Transfer Learning Results: The transfer learning approach leveraging the

Belgian dataset’s knowledge showed improvements in sMAPE and achieved

competitive results for MAE and RMSE. This suggests that while transfer learn-

ing may not always produce the lowest error metrics, it can still provide efficient

and reliable predictions, particularly in less time compared to training a model.
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5.5 Conclusion

The transfer learning experiment confirms that while leveraging pre-trained models
from related datasets can offer some benefits, particularly in reducing percentage
errors as indicated by sMAPE, it does not necessarily guarantee lower MAE and
RMSE. However, the ANN-MLP model with clustering demonstrated superior accu-
racy in some metrics and achieved competitive results for others.

One of the key benefits of transfer learning is the reduced training time. By start-
ing with a model pre-trained on a related dataset, significant time and computational
resources can be saved. This is particularly valuable in real-world applications where
timely predictions are crucial.

In summary, although transfer learning may not always outperform models trained
directly on the target dataset, it provides a practical and efficient alternative that
achieves good results in a shorter time frame. These findings underscore the potential
of transfer learning to enhance forecasting models in the energy market, where quick

and reliable predictions are essential for decision-making and strategic planning.
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6 Discussion and Future Work

This section aims to provide a comprehensive discussion of the implications of our
findings and propose potential directions for future research. Drawing from the exten-
sive literature reviewed in this study, we highlight key areas where further investiga-
tion could enhance the understanding and application of electricity price forecasting
models. Additionally, we outline potential improvements to the methodologies em-

ployed in this study, leveraging insights from related fields and emerging technologies.

6.1 Implications of Findings

The results of our study underscore the efficacy of advanced machine learning models,
particularly the ANN-MLP with clustering, in accurately forecasting electricity prices.
Despite the challenges posed by recent geopolitical events such as the Ukraine-Russia
conflict and the energy crisis, our models demonstrated robust performance. The
clustering approach, in particular, proved beneficial in enhancing the accuracy and
reliability of predictions.

Our findings align with those of Weron (2014) [}, who highlighted the potential of
machine learning techniques in electricity price forecasting. Furthermore, the success
of the ANN-MLP model echoes the insights of Goodfellow et al. (2016) [2] on the
power of deep learning in handling complex, nonlinear relationships inherent in time
series data. The integration of exogenous variables, as discussed by Papalexopoulos

and Hesterberg (1990) [1§], also played a crucial role in improving model performance.

6.2 Limitations and Challenges

While our models achieved commendable results, several limitations warrant atten-

tion. The sensitivity of machine learning models to data quality and preprocess-
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ing steps is a critical factor influencing their performance. Additionally, the trans-
fer learning approach, although promising, did not consistently outperform models
trained directly on the target dataset. This highlights the need for further refinement
and optimization of transfer learning techniques in this domain.

The geopolitical events during our dataset’s span introduced significant volatility
and uncertainty, complicating the forecasting process. As observed by Benth et al.
(2018) [22], market disruptions can lead to substantial deviations in electricity prices,

challenging the predictive capabilities of even the most advanced models.

6.3 Future Research Directions

Building on our findings, several avenues for future research can be pursued:

1. Enhanced Transfer Learning Techniques: Investigating more sophisticated
transfer learning frameworks could yield better results. Techniques such as
domain adaptation and multi-task learning might improve the ability of models

to generalize across different markets and conditions.

2. Integration of Additional Exogenous Variables: Incorporating a broader
range of exogenous factors, such as geopolitical indicators, economic indices, and
weather patterns, could further enhance model accuracy. The work of Hyndman
and Athanasopoulos (2018) [4] on time series forecasting principles suggests that

a comprehensive set of predictors can significantly improve forecasts.

3. Hybrid Models: Developing hybrid models that combine the strengths of
various machine learning and statistical techniques could offer a more robust
solution. For instance, integrating ARIMA with deep learning models, as ex-
plored by Conejo et al. (2005) [15], could leverage the advantages of both

approaches.
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4. Real-time Forecasting and Adaptation: Implementing real-time forecast-
ing systems that continuously update and adapt to new data could improve
the responsiveness and accuracy of predictions. Advances in streaming data

processing and online learning algorithms could facilitate this approach.

5. Explainability and Interpretability: Enhancing the interpretability of ma-
chine learning models is crucial for gaining trust and acceptance among stake-
holders. Techniques such as those proposed by Ribeiro et al. (2016) [23] for
explaining model predictions can be applied to electricity price forecasting mod-

els.

6. Impact of Renewable Energy Sources: As the integration of renewable
energy sources continues to grow, studying their impact on electricity price dy-
namics becomes increasingly important. Sioshansi (2014) [11] discusses the chal-
lenges and opportunities associated with renewable energy integration, which

could inform future forecasting models.

6.4 Conclusion

The advancements in machine learning and time series analysis present significant
opportunities for improving electricity price forecasting. Our study highlights the
potential of the ANN-MLP model with clustering and emphasizes the importance
of considering geopolitical factors in forecasting models. While challenges remain,
the proposed future research directions offer a roadmap for further enhancing the
accuracy and applicability of these models in dynamic and volatile energy markets.
By leveraging the insights from the literature and our experimental findings, we
can continue to refine and improve electricity price forecasting models, contributing

to more efficient and reliable energy markets.
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