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Abstract 

 The use of ionizing radiation in cancer therapy has been a major medical 

achievement and radiotherapy has repeatedly been proven a promising tool for the 

clinical practice. However, important challenges, such as the protection of normal 

tissues surrounding the tumor, are yet to be overcome, urging for the advancement of 

the current radiotherapy techniques. Proton radiation has been noted for its beneficial 

biological effects, compared to electrons or X-rays, as it presents a sharp Bragg peak 

and therefore it can more effectively target the cancerous tumor. At the same time, there 

is multiple evidence suggesting that when radiation is delivered in ultra-high dose rates 

(FLASH), it tends to have additional protective benefits to normal tissues, compared to 

conventional dose rates. The precise effects that FLASH proton radiotherapy has on the 

normal tissues though, is still a field under research.  

    In the present thesis, the effects of FLASH proton radiotherapy on the 

mitochondria of healthy cells are investigated and compared with those of the 

conventional dose rate. For this purpose, TEM microscope images of the small 

intestinal tissue of rodents are analyzed. In addition, a machine learning algorithm is 

trained upon the image dataset, in order to perform segmentation of mitochondria out 

of unseen images of cells. Chapter one provides the necessary theoretical background 

in radiation physics, radiotherapy, biology and radiobiology, electron microscopy and 

machine learning. Chapter two presents the materials and methods used for the 

experiments, as well as the detailed approach followed for the analysis of the image 

data and the training of the segmentation model. In the third chapter, the results are 

presented and discussed, while the last chapter is a conclusion. Finally, two appendices 

are attached, for the result tables and the programming code. 
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Περίληψη 
 

 Η χρήση της ιοντίζουσας ακτινοβολίας στη θεραπεία του καρκίνου αποτελεί 

ένα σημαντικό ιατρικό επίτευγμα και η ακτινοθεραπεία έχει επανειλημμένα αποδειχθεί 

ένα πολλά υποσχόμενο εργαλείο για την κλινική πρακτική. Ωστόσο, σημαντικές 

προκλήσεις, όπως η προστασία των υγιών ιστών που περιβάλλουν τον όγκο, δεν έχουν 

ακόμη ξεπεραστεί, δημιουργώντας την ανάγκη για πρόοδο των σημερινών τεχνικών 

ακτινοθεραπείας. Η ακτινοβολία πρωτονίων έχει ιδιαίτερα ευεργετικές βιολογικές 

επιδράσεις, σε σύγκριση με τα ηλεκτρόνια ή τις ακτίνες Χ, καθώς παρουσιάζει μια 

απότομη κορυφή Bragg και ως εκ τούτου μπορεί να στοχεύσει πιο αποτελεσματικά τον 

καρκινικό όγκο. Ταυτόχρονα, υπάρχουν πολλαπλά στοιχεία που υποδηλώνουν ότι όταν 

η ακτινοβολία χορηγείται σε εξαιρετικά υψηλούς ρυθμούς δόσης (FLASH), τείνει να 

έχει πρόσθετα προστατευτικά οφέλη για τους υγιούς ιστούς, σε σύγκριση με τους 

συμβατικούς ρυθμούς δόσης. Ωστόσο, οι ακριβείς επιδράσεις που έχει η 

ακτινοθεραπεία με πρωτόνια FLASH στους υγιούς ιστούς, είναι ακόμα ένα πεδίο υπό 

έρευνα.  

    Στην παρούσα διατριβή, διερευνώνται οι επιδράσεις της ακτινοθεραπείας 

πρωτονίων FLASH στα μιτοχόνδρια υγιών κυττάρων και συγκρίνονται με αυτές του 

συμβατικού ρυθμού δόσης. Για το σκοπό αυτό, αναλύονται εικόνες μικροσκοπίου TEM 

από ιστό λεπτού εντέρου τρωκτικών. Επιπλέον, ένας αλγόριθμος μηχανικής μάθησης 

εκπαιδεύεται στα δεδομένα των εικόνων, προκειμένου να αναγνωρίζει τα μιτοχόνδρια 

σε άγνωστες εικόνες κυττάρων. Στο πρώτο κεφάλαιο παρέχεται το απαραίτητο 

θεωρητικό υπόβαθρο στην ακτινοφυσική, την ακτινοθεραπεία, τη βιολογία και τη 

ραδιοβιολογία, την ηλεκτρονική μικροσκοπία και τη μηχανική μάθηση. Στο δεύτερο 

κεφάλαιο παρουσιάζονται τα υλικά και οι μέθοδοι που χρησιμοποιήθηκαν για τα 

πειράματα, καθώς και με λεπτομέρεια η προσέγγιση που ακολουθήθηκε για την 

ανάλυση των δεδομένων εικόνας και την εκπαίδευση του μοντέλου μηχανικής 

μάθησης. Στο τρίτο κεφάλαιο παρουσιάζονται και συζητούνται τα αποτελέσματα, ενώ 

το τελευταίο κεφάλαιο αποτελεί συμπέρασμα. Τέλος, επισυνάπτονται δύο 

παραρτήματα, για τους πίνακες των αποτελεσμάτων και για τον κώδικα 

προγραμματισμού. 
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Chapter 1: Theoretical Background 
 

 

 

 

 

 

 

1.1. Basic Radiation Physics 
 

The term radiation refers to the propagation of energy in the form of waves or 

particles through a medium or space. Radiation can be either in the form of waves (rays) 

or it can be of particle nature. Some common types of radiation based on the 

propagating medium are electromagnetic radiation, which includes radio waves, 

microwaves, infrared, visible light, ultraviolet x-rays and gamma rays, acoustic 

radiation, particle radiation (such as alpha, beta, proton radiation, etc.) and gravitational 

waves.  

Radiation is often also classified as ionizing and non-ionizing depending on the 

amount of energy it carries. The distinctive point is often given at 10 electron volts 

(eV). Radiation carrying more than 10 eV is able to ionize atoms and break most of the 

chemical bonds that play a role in biology, having a critical impact on living organisms 

[1]. 

 

1.1.1. Types of ionizing radiation 

Ionization of matter from radiation can be either direct or indirect. Directly 

ionizing radiation deposits energy in the medium in a direct way through the Coulomb 

interactions between the radiative charged particles and the electrons of the atoms in 

the medium.  
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Indirectly ionizing radiation is usually photons or neutrons which ionize matter 

through a two-step process: Firstly, charged particles are released in the medium which 

in turn interact with the orbital electrons of the medium through Coulomb forces [1]. 

Ionizing radiation can be either electromagnetic or particulate. Particulate 

ionizing radiation includes alpha particles, beta particles, positrons, neutrons and 

protons, while electromagnetic ionizing radiation includes gamma rays and x-rays. For 

the purpose of this thesis, we will focus more on particulate radiation.  

Alpha particles are practically nuclei of helium atoms. They consist of two 

neutrons and two protons and they are positively charged. Naturally, they are usually 

emitted by unstable atoms with a low neutron-to-proton ratio. Beta particles are high-

energy electrons emitted from the nucleus of radionuclides. They have negative charge, 

in contrast to positrons which bear a positive one [2]. Lastly, protons are fundamental 

hadrons with a positive charge. All of the charged particles mentioned above are most 

often characterized as directly ionizing radiation because the ionization comes as a 

result of the Coulomb forces that are involved. Charged particles can be produced 

naturally by radioactive decays, artificially by accelerating devises or through indirect 

interaction of electromagnetic radiation with matter [1]. Beta particles are generally 

more penetrative than alpha particles because of their lower mass and lower charge, but 

they don’t reach further than the human skin [1]. Alpha particles result in more 

ionizations but they lose their energy rapidly and they have even smaller depth of 

penetration. Protons cause less damage than alpha particles and they are less penetrative 

than beta particles [1]. 

Gamma rays is high-energy electromagnetic radiation with frequencies greater 

than 30 × 10ଵ଼ Herz and energy greater of 106 eV, while x-rays have lower energies 

ranging from 100 eV to 106 eV.  Generally, gamma rays originate from internal nucleic 

processes while x-rays are emitted from outside of the nucleus. X-rays can be emitted 

either as a characteristic x-ray of an atom (as an electron of an outer shell fills the 

vacancy of an inner shell) or from accelerating electrons, in which case they are called 

Bremsstrahlung radiation [3]. In contrast, gamma rays are usually emitted from a 

process called gamma decay, in which an excited nucleus decays to a lower state 

producing energy. They can also be emitted as a product of electron-positron 

annihilation and other particle physics processes as well as from cosmic sources [4].  
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1.1.2. Radiation dose and relevant quantities 

 

In the context of radiobiology, some important physical quantities are defined 

as follows.  

 Exposure is the ability of radiation to produce ionization in air, under standard 

temperature and pressure. It is defined as  

𝑋 =
௱ொ

௱௠ೌ೔ೝ
           

Where 𝛥𝑄 is the collected charge and 𝛥𝑚௔௜௥ is the mass of the air and its S.I. 

unit is C/kg. This quantity only refers to the ionization of air and cannot be 

applied to biological tissue. 

 Absorbed dose is critical for organisms. It refers to the amount of energy in 

joules absorbed per unit mass of target and it is defined as 

𝐷 =
௱ா

௱௠
  

Its unit in S.I. is 1 grey (1Gy = 1 J/kg).  

 Equivalent Dose represents the health effects of ionizing radiation on tissues in 

a stochastic way. It is defined as the product of the radiative dose and a quality 

factor wR, dependent on the type of radiation. 

𝐻் = 𝐷𝑤ோ 

Its unit in S.I. is 1 Sievert (1 Sv). 

 Effective dose is the sum of the equivalent doses multiplied by a weighting 

factor for each different tissue. It is used to estimate the risk of radiation in each 

different tissue/organ and it is measured in sievert.  

𝐸 = 𝛴𝑤் × 𝐻் 
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1.1.3. Interaction of radiation with matter 

Charged particles can interact with the atoms of the medium mainly through 

collisions. This can be either elastic scattering or inelastic scattering. The main 

difference between them is that, in elastic scattering, the total kinetic energy and 

momentum are conserved quantities, while in the inelastic case, energy can be 

transferred to another particle or in the form of a photon.  

Electron interactions 

 Electrons can either interact with the nucleus or with the atomic electrons of the 

target material. In the case of inelastic scattering from the atomic electrons, some of the 

energy of the incident electron is transferred to an atomic electron, which remains 

bound to the atom (excitation, not ionization). The extra energy is then released in the 

form of an X-ray. If the incident and the atomic electrons collide elastically, the atomic 

electron usually experiences ionization, getting enough energy to escape the atom. This 

secondary electron might produce additional ionizations. When incident electrons 

interact inelastically with the atomic nucleus, it is slowed down and changing its 

direction, emitting Bremsstrahlung radiation in the form of X-rays. In elastic electron-

nucleus collisions, the incident electron simply bounces off, without losing energy, due 

to its far smaller mass [5]. 

Protons and other heavy charged particles 

 When heavy charged particles travel through a medium, thousands of orbiting 

electrons are attracted to them due to their charge. This causes both excitations and 

ionizations to the atoms in the medium. As they interact with the electrons, they slow 

down, attracting even more electrons, until they completely lose their kinetic energy. 

After reaching a threshold kinetic energy of 0.01 MeV, heavy charged particles are able 

to interact with the nucleus, resulting in various nuclear reactions. They can also 

experience Bremsstrahlung but it has minimal effect because of their large mass [5]. 

Neutrons 

  Due to their zero charge, neutrons mainly interact with the atomic nucleus. 

When a neutron has high kinetic energy, it might undergo elastic collision with a proton 

of the nucleus, releasing it from the atom. Neutrons are more likely to interact 

elastically with light nuclei, like hydrogen and less likely with heavy ones, such as lead. 
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When neutrons are sufficiently slow (thermal neutrons, 0.025 eV), they can participate 

in nuclear reactions, like radiative capture, transmutation or fission [5]. 

On the other hand, electromagnetic radiation can generally interact with matter 

in three ways: Through the photoelectric effect, the Compton scattering and the pair 

production. We will briefly look at each of the above. 

Photoelectric effect 

This is an atomic phenomenon in which a photon is absorbed by an orbital 

electron of an atom of the medium resulting in its ionization. In order for the electron 

to be ejected from the atom, it is necessary for the photon to have energy greater than 

the binding energy 𝐸௕ of the electron. The following formula gives the kinetic energy 

𝐾௘ of the ejected electron. 

𝐾௘ = ℎ𝑣 − 𝐸௕ 

Where hv is the energy of the incoming photon. In most cases, the vacancy left 

from the ejected electron is filled with an electron of an outer shell, which upon 

descending, emits energy in the form of a characteristic x-ray as mentioned above [1]. 

These x-rays are called characteristic because each element has unique energy levels 

and as a result, emitted x-rays can be used for their identification. Sometimes, especially 

when the target is biological material, the emitted x-ray can be reabsorbed by another 

electron of the atom resulting in a secondary ionization. This is known as the Auger 

effect [1].  

 

 

Figure 1.1. Schematic representation of the photoelectric eƯect, characteristic x-ray production 
and Auger eƯect. [4] 
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Compton scattering 

In this interaction, the incident photon is scattered by a free electron or at least 

by an electron whose energy is considerably small compared to that of the photon. The 

photon transfers part of its energy to the electron and it is re-emitted in a different angle 

θ. The electron acquires kinetic energy and velocity at a different angle φ. The amount 

of energy transfer depends both on the initial energy of the photon and on the angle θ. 

 

 

Pair production 

It is the process in which a high-energy photon, travelling at the vicinity of the 

nucleus, produces a pair of an electron and a positron. For the production to occur, it is 

necessary that the energy of the photon is equal to at least two electron masses, which 

is approximately 1.022 MeV. The produced positron, after losing its energy, annihilates 

with an electron, creating a pair of gamma rays. 

 

Figure 1.2. The Compton effect [3] 

Figure 1.3. Schematic representation of pair production [4] 
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1.2. Physical and Biological Characteristics of Particle Therapy 

 

Radiation therapy (radiotherapy) has extensively been used in cancer treatment 

for many decades. Ionization radiation damages the genetic material of cancerous and 

normal cells, resulting in prolonged abnormal cell function which finally may lead to 

cell death. Beams of electromagnetic radiation and especially x-rays have been tested 

for years and are considered the ‘conventional’ treatment method in clinical practice 

[7]. Charged particle therapy on the other hand, is a relatively new development, 

emerged in the late twentieth century. It offers significant advantages compared to the 

conventional method, achieving more effective tumor control while sparring the 

surrounding normal tissue. Proton therapy is the most widely used type of charged 

particle radiotherapy, with carbon ion therapy being developed in recent years [6]. In 

the following section we will focus our interest on proton beam radiotherapy. 

 

1.2.1. Proton Beam Radiotherapy 

 

Physical characteristics of proton therapy 

The main physical difference between electromagnetic and particle 

radiotherapy is the distribution of dose as a function of depth. While photons deliver 

the maximum dose upon entering the tissues, protons and other charged particles 

deposit most of the dose at the end of their trajectory, when they decelerate [7]. This is 

known as the “Bragg Peak” and is shown in figure 1.4.  

The existence of the Bragg peak is of utmost importance for clinical practice as 

the steep and localized nature of dose deposition allows for a targeted delivery of 

radiation over the tumor.  In contrast, conventional x-ray beams, bearing no mass or 

charge, penetrate deeper inside the tissue depositing energy at an exponential rate along 

the whole length of their path. Consequently, proton beams can deliver the same amount 

of dose in the tumor with much less irradiation of the surrounding normal tissues 

compared to the conventional method, resulting in important health benefits [7].  
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The shape of the Bragg peak varies with the type of the charged particle and it 

is dependent on the energy spreading of the beam, its range straggling and its lateral 

sharpness, all of which being inversely proportional to the mass of the particle [6]. 

Additionally, depending on the size and the depth of the tumor, the Bragg peak can be 

adjusted and broadened. This is termed as “spread out Bragg peak” (SOBP) and it is 

the sum of several individual Bragg peaks at staggered depths. A typical SOBP is shown 

in figure 1.5.  

 

 

 

 

Figure 1.5. SOBP of carbon ion beam [6] 

Figure 1.4. The Bragg peak of proton beam and carbon ion beam compared with the 
dose distribution of electromagnetic radiation. [6] 
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Biological characteristics of proton therapy 

In the context of radiobiology two crucial concepts are used in order to explain 

the effects of radiation in living matter. These are the linear energy transfer (LET) and 

the relative biological effectiveness (RBE).  

Linear energy transfer refers to the energy transferred in the medium per unit 

length of the track. Travelling charged particles ionize atoms along their track. These 

ionizations are localized and differ for each type of particle. So, for example, proton 

beams have a higher LET compared to photons but a lower LET compared to carbon 

ions, which are considered high-LET beams. Proton beams cause a uniform and sparse 

ionization across their track, in contrast to the equivalent of carbon ion beams, which 

is more dense and thus more biologically active [6].  

From the aforementioned, it has been clear that in case of different types of 

radiation, even when the absorbed dose is the same, the produced biological effects 

differ. For example, 1 Gy of carbon ion beams produces a greater biological effect than 

1 Gy of X-rays [6]. The concept of relative biological effectiveness compares the 

biological effect of different types of radiation with that of x-rays. X-rays were selected 

as the point of reference because of their wide use. RBE is defined as the ratio 𝐷ଶହ଴ 𝐷௥⁄  

where 𝐷ଶହ଴ and 𝐷௥ are the doses of 250 kV x-rays and test radiation required for equal 

biological effect [6]. The quantity labeled as ‘biological effect’ is most often the death 

of half of the cells in a test group.  

LET and RBE are closely related, with the latter being a function of the first. 

More specifically, RBE initially increases approximately linearly with increasing LET, 

before it reaches a turning point and starts to decrease (Fig. 1.6) The decrease beyond 

the turning point is due to energy wasting as the ionizing events are closer than the 

diameter of the DNA double helix [6]. 

In the case of proton beams, the generally used value of RBE is 1.1. irrespective 

of fractionation, tissue type, or radiation quality [6]. This value is constant alongside 

the track of the proton beam and thus it is the same for normal tissues and the tumor. 

However, as shown in figure 1.7, the actual value of RBE is changing with LET, which 

in turn gets its maximum value close to the end of the trajectory of the protons. As a 

result, the maximum value of RBE is observed at the distal part of the range of the 

proton beam [6].    
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Beam delivery systems 

The proton beam used in radiotherapy is mainly produced by accelerator 

systems. In conventional x-ray therapy, linear accelerators are used to accelerate 

electrons which form a beam. In proton therapy however, the limited size of a linear 

accelerator cannot produce a sufficiently strong electric field in order to accelerate the 

heavier protons. Thus, circular accelerators are being used, such as cyclotron, 

synchrotron and synchrocyclotron [6]. In therapeutic applications, protons are 

accelerated in energies ranging from 70 to 250 MeV [7].  

Particle beams can be delivered with two different methods: Passive system 

beam scattering and active system beam scanning. The first method makes use of a 

modulator, a collimator, and a range compensator to create an SOBP at the desired depth 

and of dimensions that match the volume size of the target. The lateral and longitudinal 

spreading of the beam is achieved by the modulator, while the collimator and the 

compensator are further shaping the beam to conform it with the target [7]. The second 

method is more precise and clinically more effective [7], as the peak position can be 

moved within the target, like a scanner, by controlling the beam energy in the 

accelerator or by changing the beam’s penetration using absorbers [6]. For each beam, 

the treatment is delivered in “layers,” defined by their energy. Cumulatively, 

contributions from multiple beams produce the desired pattern of dose [7]. The two 

beam delivery systems are shown in figure 1.7.  

Figure 1.6. RBE as a function of LET. RBE values of the most 
important radiation types are noted. [6] 
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1.2.2. FLASH Radiotherapy 

The term FLASH radiotherapy refers to the delivery of ultra-high dose rate 

radiation, usually ≥ 40 Gy/s, significantly higher than the rate used in conventional 

methods (~5 Gy/min) [8]. It is a very recent development in cancer therapy as research 

interest started in 2014 and since then it has given really promising results. Its main 

advantage over conventional dose rate therapy is that it possesses a normal tissue 

sparing capability while maintaining tumor cytotoxicity [9]. This ability of FLASH 

radiotherapy is known among the scientific community as the “FLASH effect”.  

The FLASH effect was first reported in 1964 but it wasn’t particularly 

investigated till the recent years [9]. Experiments in mice have shown that irradiation 

with FLASH dose rate results in significantly less damage to normal tissues of the 

lungs, the brain and the skin compared to the conventional rates of the same total dose 

[8,10,11,12]. It is worth noting that in the long-term, FLASH irradiated cells exhibited 

functioning more like the non-irradiated cells than like the ones which were irradiated 

conventionally [9].  

Apart from sparing normal tissues, FLASH effect has also been reported to have 

high control of the tumor. This means that despite the limited effect of FLASH 

radiotherapy over normal tissues, its anti-tumor properties are comparable to those of 

conventional rate therapy. In studies involving breast, head and neck cancer treatment 

in mice, FLASH proved to be as effective as conventional radiotherapy, without some 

post-radiation side-effects such as fibrosis and inflammation [9, 10, 11]. FLASH 

Figure 1.7. Scheme of passive scattering beam (A) and active scanning beam (B). [6] 
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radiotherapy has also been applied successfully to a human patient with CD30+ T-cell 

cutaneous lymphoma and it also has been compared with conventional dose-rate 

radiotherapy. The results showed no significant differences between the two, with both 

of them having the same acute and late effects, such as skin irritation [12]. However, 

further research should take place before FLASH radiotherapy is used in clinical 

practice; mainly in case of tumors other than superficial skin ones.  

The mechanism behind the FLASH effect is not yet fully understood but the 

most prevailing explanation is the oxygen depletion hypothesis. Upon irradiation, apart 

from the direct damage, the DNA molecule undergoes indirect damage through water 

radiolysis and subsequent generation of reactive oxygen species (ROS) which attack 

the DNA. In the case of low-LET radiation, 60-70% of DNA damage is caused by ROS 

[9]. Therefore, it is obvious that the shortage of oxygen molecules results in less DNA 

damage, something which explains why hypoxic environments (like tumors) are 

radioresistant. In the case of FLASH, the oxygen depletion hypothesis suggests that, 

due to the short exposure time frame, local oxygen is depleted faster than reoxygenation 

can occur, leading to a state of hypoxia which increases radioresistance and protects the 

normal tissues [9]. The reason why this phenomenon does not also increase the 

radioresistance of cancer cells is still under investigation, however it is often attributed 

to the different morphology of ROS and free radicals that are generated in tumor 

environments [9].  

Currently, most of FLASH radiotherapy experiments are performed using 

electron beams on linear accelerators. However, this type of radiation is limited in 

treating effectively mainly superficial cancers due to its low tissue penetration [9]. The 

advantages of proton radiotherapy, analyzed in the previous section, make it clear that 

proton FLASH radiotherapy should be researched further. Current in vitro studies are 

ambiguous on whether FLASH effect is still present in FLASH proton therapy [9]. 

Recently reviewed data revealed that only one in ten studies demonstrated the FLASH 

effect in protons [13]. However, it is worth noting that all of these experiments were 

performed at aerobic conditions, something which might be the reason for not observing 

the FLASH effect. As a result, further in vitro studies need to take place, in varied 

oxygen levels. On the other hand, in vivo studies are more promising, with experiments 

in gastrointestinal and thoracic tissue of mice demonstrating the expected normal tissue 

sparring and tumor control of the FLASH effect [14,15]. Another study examining the 
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effect of proton beam FLASH on brain tumor of mice showed no significant differences 

between FLASH (100 Gy/s) and conventional dose rate (1Gy/s) therapies for the same 

single fraction of radiation (10 Gy) [16]. Nevertheless, additional insight on FLASH 

proton beam therapy should be acquired, and this is something that the current study 

aims to do. 

 

1.3.  Cell Biology and Histology 

 

Histology is the science interested in the microscopic structure of biological 

material and the ways in which individual components are structurally and functionally 

related [17]. Its scope stands at the borders of biochemistry, molecular biology, 

physiology and pathology, giving a unique perspective to the biological and medical 

fields. Nowadays, techniques such as electron microscopy, cell cloning and molecular 

genetics allow for precise and in-depth experiments, making histology a rapidly 

evolving field [17]. 

Probably the most fundamental concept of histology is cell theory. Cells are the 

basic building blocks of biological matter. They are separated from their environment 

by their cell membrane and they are specialized so as to perform certain functions. 

According to their specialization, the basic types of cells are: epithelial cells, supporting 

cells, contractile cells, nerve cells, germ cells, blood cells, immune cells and hormone-

secreting cells. This categorization is not absolute and one cell may belong to more than 

one type [17].  

Cells arranged together in an organized way in order to perform higher level 

functions form a tissue (Greek: “ιστός”) (see figure 1.8). Tissues might consist of cells 

of the same type, in which case the tissue is called simple, or of cells of more than one 

type, in which case it is called compound. For example, nervous tissue contains nerve 

cells, support cells, epithelial cells and immune cells [17]. Ascending one level higher, 

tissues grouped together in an anatomically distinct way, form organs (e.g. the heart, 

kidney or brain). Organs which have similar or related functional roles are often referred 

to as systems. Thus, for example, there is the musculoskeletal system, nervous system, 

alimentary system, etc.  The relationship between cells, tissues, organs and systems is 

presented in figure 1.9.  
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1.3.1. Cell Structure 

All types of cells share some common defining characteristics. Cells are 

composed of specific subcellular compartments, which can be organelles, specific 

structures that take on sets of tasks within the cell, or they can be local regions of the 

cell defined by the concentration of molecules or distinct physical characteristics and 

proportions. Subcellular structures include the nucleus, the cytoskeleton, the 

endoplasmic reticulum, the ribosomes, the Golgi apparatus, and the mitochondria. Each 

cell is surrounded by its cell membrane, which separates it from the environment and 

contains the various organelles. Organelles are specialized functional compartments of 

the cell which have their own membranes and are surrounded by a proteinaceous fluid 

termed cytosol. The shape and fluidity of the cell is determined by the cytoskeleton, an 

arrangement of internal filamentous proteins such as actin and microtubules [17]. 

Below, we are going to present a brief overview of the different subcellular structures 

and their function. 

Figure 1.9. The hierarchical structure of human anatomy [17].

Figure 1.8. Different types of tissues.[18] 
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Cell Membrane 

It is composed of a lipid bilayer containing specialized proteins for the 

transportation of material in and out of the cell and its communication with the 

environment. The main lipid structure is formed spontaneously on water, as lipid 

molecules have one hydrophilic end and one hydrophobic end, tending to form bilayers. 

Because of this composition, cell membrane is fluid, allowing diffusion of membrane 

proteins and facilitating the mobility of the cell, as well as eliminating breaks and tears. 

It is also highly selective to its permeability, allowing water, oxygen and small 

molecules to enter the cytosol, while blocking charged ions such as N+ and K+ [17]. 

Membrane proteins have various functions, such as transporting molecules in and out 

of the cell, attaching cytoskeletal filaments to the membrane, as well as cells to the 

extracellular matrix, or receiving chemical signals (e.g. hormone receptors) [17].  

 

Cytosol and Cytoskeleton 

Cytosol is the dense fluid matrix in which all organelles are found. Apart from 

organelles, it contains the cytoskeleton and numerous free ribosomes, particles which 

are involved in protein synthesis. Inside the cytosol there exist also various nutritious 

enzymes and products of metabolism [17].  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.10 Cell structure [17] 
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Cytoskeleton is formed by protein filaments; it defines the shape and maintains 

the stability of the cell. The filamentous proteins become attached to cell membranes 

and create a dynamic three-dimensional scaffolding of the cell that performs multiple 

tasks, such as shaping the cellular architecture, enabling cell mobility, transporting 

material inside the cytosol and compartmentalizing the cell [17]. 

Nucleus 

It is the larger single-membraned organelle in the cell and contains the genetic 

material (DNA). It is usually spherical or ovoid in shape with a diameter of around 5-

10 μm. Nucleus contains a smaller spherical compartment, the nucleolus, which 

synthesizes ribosomal subunits. DNA inside the nucleus is tightly packed around 

proteins called ‘histones’, forming nucleosomes. These nucleosomes, in turn, wound 

into filaments, creating a structure called chromatin. Chromatin can be further 

condensed into distinct chromosomes. The distribution of chromatin is not the same 

everywhere, being less dense in the regions where an unfolding exists, for example in 

case of DNA transcription. As a result, in microscopy photos of the nucleus, the less 

dense regions appear brighter (‘euchromatin’) while the denser ones bear a darker tone 

(‘heterochromatin’) [17].  

Mitochondria 

Mitochondria are the main energy production sites of the cells. They have 

cylindrical shape measuring 0.5-2 μm in length. Mitochondria are believed to have 

evolved from procaryotic organisms, symbiotics to the human cells, as they have their 

own DNA and protein synthesis system [17].  

A. B. 

 

      Figure 1.11. Schematical illustration (A) and TEM micrograph (B) of a mitochondrion. [17,19] 
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Each mitochondrion bears an outer and an inner membrane. The inner 

membrane is folded into pleats (cristae), increasing its surface area. It is highly 

impermeable to small ions and it is the place where ATP, the ‘energy coin’ of the cell, 

is generated by the mitochondrion through oxidative phosphorylation. It also contains 

the mitochondrial DNA, ions and enzymes. The outer membrane is responsible for the 

transportation of molecules. One of its most important properties is that it can release 

large mitochondrial proteins into the cytosol, through transmembrane pores. The 

release of these proteins, triggered by a variety of stimuli, begin a series of actions that 

lead to cell death (apoptosis) [17]. Given that the mitochondria act as transducers of 

certain stimuli that lead to cell death, they are a good measure of the health condition 

of the entire cell.  

 

Endoplasmic Reticulum (ER) and Golgi 

ER and Golgi are two different regions of an intercommunicating membrane-

bound system that takes part in the biosynthesis and transport of proteins and lipids 

inside the cell. Their shape resembles a multiple-times-folded flattened membrane. ER 

can be of two forms, smooth and rough endoplasmic reticulum. Smooth ER is 

responsible for lipid synthesis and processing of proteins, while in rough ER peptides 

are translated with the aid of ribosomes attached to its surface, hence the name ‘rough’. 

Lastly, Golgi is responsible for further processing the proteins after smooth ER, as well 

as for the modification and sorting of macromolecules [17]. 

Autophagosomes 

Autophagosomes are organelles in the macroautophagic pathway. They are 

membraned vesicles that form around cellular components, such as damaged organelles 

or proteins, to sequester them for degradation. They are involved in a process called 

autophagy, in which cells recycle their own contents to maintain homeostasis [17].   

  

1.3.2. The Digestive Tract 

Digestive tract is a part of the human alimentary system responsible for the 

digestion of food material and the absorption of the end products of it. It comprises the 
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stomach, the small intestine and the large intestine. The digestive tract can be seen as a 

muscular tube, lined on its interior by specialized epithelial cells, which have both 

absorptive and secretory function. The patterns of the epithelial cells on the three main 

organs of the digestive tract differ, as shown in figure 1.11. In its exterior, the tract is 

covered by an outer layer of flat mesothelium where it runs through the peritoneal 

cavity. Various secretory organs, such as the pancreas and the liver, lie partly or 

completely outside of it. These organs produce secretions which are vital for the proper 

digestive function [17].   

 

 

The epithelium of the tract is supported by a variable layer which is called 

lamina propria and it is composed of supporting cells, nerve cells, blood vessels and 

cells of the immune system. In the deep aspect of lamina propria lies a thin muscle 

layer, muscularis mucosae. On the outer side of muscularis mucosae, lies the 

submucosal layer which also contains vessels and nerves that supply and drain their 

equivalent in lamina propria. The mucosa and, partially, the submucosa contain 

lymphoid tissue which provides the immunological defense against antigens ingested 

in the digestive tract [17]. 

Exterior to the submucosal layer, two layers of smooth muscle exist, 

traditionally called circular and longitudinal layers. Their purpose is to facilitate the 

movement of the luminal contents along the tract through peristalsis. In certain areas, 

localized thickening of the circular muscle is observed, called sphincter. Sphincters act 

as valves, preventing the contents of the lumen to pass or to change direction of motion. 

Figure 1.12. Illustration of the basic structure of the digestive tract [17] 
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Lastly, the outer shell of the tract is called adventitia and it is composed of loosely 

arranged fibroblasts and collagen. When adventitia is covered by mesothelium (as in 

the case of the small intestine), it is called serosa [17] (see also fig 1.12).  

In order to maximize the efficiency of absorption and secretion processes, the 

digestive passage forms folds and glands in its interior so as to increase its surface area. 

In this way, more epithelial cells come in contact with the lumen. Increase in surface 

area can be achieved by intrusions or inversions of the lining epithelium or by formation 

of complex glands on the tract wall. The gut has a great collection of nerves and 

ganglion cells that in some areas (mainly the surrounding muscles and the submucosal 

layer) take the form of an interconnected network-like plexus. The autonomic impulses 

in these nerves mediate visceral reflexes and sensations such as hunger and rectal 

fullness [17]. The present thesis focuses on the morphometric analysis of intestinal 

tissues and most specifically, the small intestine. 

1.3.3. Small Intestine 

The food material, after being partially digested in the stomach, goes through 

the pyloric sphincter and continues to the small intestine. There, enzymes are secreted 

to complete the digestion, while the basic products of digestion (such as sugars, fats 

and amino acids) are absorbed. The small intestine starts at the pylorus and ends at the 

ileocaecal valve, which connects it with the large intestine. In life, the small intestine 

measures about 3 m in length, while in autopsy, where muscles are relaxed, it can reach 

up to 6 m. It is divided into three regions, duodenum, jejunum and ileum, although their 

limits are not strictly defined. The three regions of the small intestine perform different 

functions. Duodenum mainly receives secretions from glands (e.g. liver and exocrine 

component of the pancreas), jejunum is the main absorptive site and ileum is 

characterized by a greatly developed lymphoid tissue [17].  

The mucosa and submucosa of the small intestine are shaped in numerous folds 

or plicae that are arranged circularly around the lumen. The surface of the plicae is 

further arranged into villi, smaller protrusions into the intestine (see fig, 1.13). At the 

base of the villi, there are tubular glands called ‘crypts’ that extend down to the 

muscularis mucosae. The epithelium of the small intestine has three functional regions, 

the villi, the crypts and the neck zone, which is the area where the villi and the crypts 

merge. Many types of cells are involved in the formation of the epithelium, including 



28 
 

enterocytes, mucous cells, endocrine cells, Paneth cells, etc. and they are distributed 

inhomogeneously [17].  

 

 

The main cells in the villi, which are also the cells that we will focus our interest 

on in the present thesis, are the enterocytes (see Figure 1.14). They are tall columnar 

cells with oval-shaped nucleus in the lower third of their length. Enterocytes are 

absorptive in nature. Their surface is highly specialized, with each cell bearing 2000-

3000 densely packed microvilli. Microvilli are coated with a glycoprotein, the 

glycocalyx, which contains a number of proteins important in digestion and transport. 

Beneath their surface, enterocytes contain lysosomes and smooth endoplasmic 

reticulum, while, as we approach the nucleus, ribosomes, mitochondria, Golgi and 

rough ER prevail. The lateral walls of enterocytes are the sites of Na+ and K+ ATPase 

activity and they are separated from the microvillus surface by desmosomes and tight 

junctions [17]. 

Apart from enterocytes, in the epithelium lie several other types of cells. 

Mucous cells are mostly found in the upper part of the crypts or can be scattered among 

enterocytes of the villi. They are most frequent in the ileum and jejunum parts while 

their number decreases in the duodenum. Paneth cells are found at the base of the 

crypts. Their main function is to protect against infections by secreting a substance 

called ‘defensine’. Endocrine cells are located on the lower part of the crypts as well as 

the villi and they produce a number of hormones and peptides. Lastly, a number of 

unspecialized stem and intermediate cells can be found in the lower third of the crypts, 

waiting to develop in order to replace the mucous cells and enterocytes of the villi, as 

these cells have a short lifespan of about five days. In many cases of illnesses of the 

small intestine, stem cells are particularly numerous [17]. 

Figure 1.13. The architecture of the small intestine. A) Macroscopic view of the plicae. B) Micrograph of the plicae (P) 
in which the villi can be seen. C) Closer view of the villi (V) and the crypts (C).[17] 
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1.4. Radiation Damage on cells and tissues 

 

1.4.1. Effects of Ionizing Radiation on cells and tissues 

When biological matter is irradiated, it undergoes physiological changes as a 

result of ionization. The most severe consequence of IR is cell death. Cell death can be 

classified in two types, based on the time that the cell disintegrates after exposure: 

Interphase death, where disintegration happens before cell enters into the first mitosis 

after irradiation, and reproductive/mitotic death, where the cell dies several divisions 

after exposure [20]. Both types of cell death can be caused by either necrosis or 

apoptosis. Necrosis refers to the irreversible destruction of cell membranes and 

metabolism as a result of extreme damage from IR. Apoptosis, on the other hand, is an 

intrinsic self-destructing mechanism of the cell, which is triggered by specific proteases 

and endonucleases. The cause of cell death depends on the dose of irradiation, with 

lower doses of radiation usually inducing apoptosis, while necrosis is caused mainly by 

Figure 1.14. TEM image of small intestinal tissue. The 
nuclei of the various enterocytes can be seen. 
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higher doses [20, 21]. In addition, necrosis and apoptosis can be distinguished by their 

morphological features. Apoptosis is characterized by shrinkage and fragmentation of 

the nucleus, disintegration of the Golgi complex and dilation of the endoplasmic 

reticulum. Mitochondria also experience alterations during apoptosis, like swelling and 

disappearance of cristae [20,22]. Necrosis, on the other hand, is characterized by 

vacuolization of the Golgi complex, lysosomal rupture, mitochondrial swelling, 

disorganization of cytoskeleton and breaking of the plasma membrane [20]. 

The effects of IR on plasma membrane can be varied. Radiation-induced 

membrane perturbations are primarily characterized by changes in the organization and 

composition of the cell glycocalyx, leading to altered amounts and distributions of 

negatively charged membrane components, such as sialic acid and calcium-binding 

sites. Ionizing radiation typically causes a temporary reduction in surface negative 

charges, which however recover within an hour. Exposure to radiation can also modify 

calcium localization within cell membranes, affecting intracellular communication and 

the structure of intercellular contacts like gap junctions. These alterations in cellular 

morphology, surface micromorphology, and intercellular connections contribute to 

disrupted cell communication, increased genetic instability, and potential cellular 

transformations, such as tumorigenesis [20]. Finally, a common effect of radiation in 

epithelial cells is the loosening of contact with each other and the growing of lateral 

and basal projections. Tight junctions (TJ) of the epithelial and endothelial cells undergo 

changes or break completely. This may lead to aberrant cell proliferation, adhesion, 

function and migration [23].  

Cellular organelles also undergo morphological changes in case of exposure to 

ionizing radiation. As far as the nucleus is concerned, studies on irradiated cells show 

changes in nuclear shape (such as swelling and irregularity of the border [23]), 

chromatin condensation along with formation of nuclear bodies (ring-like chromatin 

aggregates), as well as alterations on the nuclear envelope [20]. Post-IR effects on 

mitochondria include swelling, elongation, branching and an increase in size resulting 

in the creation of giant forms. Some studies indicate that the total number of 

mitochondria also changed dynamically after irradiation, while vacuolization and 

disruption of outer and inner membranes and cristae of mitochondria are also frequently 

observed after exposure [20, 24]. IR may also cause enlargement of the Golgi complex, 

degranulation and fragmentation of the endoplasmic reticulum and redistribution of the 
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cytoskeletal filaments [23, 20]. In addition, an increase in the number and volume of 

lysosome-like vacuoles in the enterocytes has been observed [25]. Last but not least, 

irradiation may lead to abnormal levels and fluctuations many brush border enzymes, 

such as lactase, sucrase, maltase, etc. Ionizing radiation could be activating or altering 

various intracellular signaling pathways, leading to tissue pathophysiological changes 

and increased cell death [23]. 

Specifically for the small intestine, the effects of ionizing radiation might 

include partial or complete loss of integrity of the intestinal epithelium (which is the 

earliest responding tissue in the intestine) as well as damage on the haemopoietic and 

immune cells. Apart from depletion of the epithelium, connective tissue and vessels are 

affected, with fibrosis being a common pathological alteration. Fibrosis is characterized 

by accumulation of a dense extracellular matrix in the submucosa, muscular propria 

and subserosa regions [23].  

Under normal circumstances, the crypts which lie under the villi of the small 

intestine, contain a significant number of stem cells. Their purpose, as discussed in 

1.3.3, is to replicate and replace the specialized cells of the villi. In case of exposure to 

ionizing radiation, due to the death of enterocytes and muscular cells, rapid 

repopulation takes place. In addition, radiation prevents stem cells from reproducing by 

causing mitotic inhibition. As a result, a significant loss of stem cells is observed after 

irradiation [23]. This has a profound impact on the shape of the crypts and the villi. 

More specifically, a decrease in the circumference of the crypts and the height of the 

villi is observed, along with swelling and increase of bacteria in the irradiated area. In 

addition, changes in the length, diameter and frequency of the microvilli of enterocytes 

is observed [23]. Beside the epithelial cells, other types of cells undergo apoptosis and 

changes in their morphology as well, such as fibroblasts and lymphocytes [23]. 

It is important to note that not all cells react to radiation in the same way as in 

the small intestine. In general, lymphatic tissue and red bone marrow cells are among 

the most radiosensitive, leading to hypoplasia and hemolysis following exposure 

greater than 2 Gy. At even higher doses, brain function could be affected too and 

cerebral cell death may occur. In addition, studies on animal fetus indicate that radiation 

can affect the implantation of the embryo in the wall of the uterus, although further data 

should be gathered from human embryos [26].  
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1.4.2. Effects of Ionizing Radiation on Biological Molecules 

Ionizing radiation affects biological macromolecules either directly or 

indirectly, through radiolysis of water and the subsequent creation of high-energy 

species (i.e., high-energy molecules). Upon irradiation of cellular water, reactive 

oxygen species (ROS) (e.g. hydrogen peroxide (H2O2), hydroxyl radical (O֗H)) and 

reactive nitrogen species (RNS) (e.g. nitric oxide (N֗O), peroxynitrite (ONOO-)) are 

generated rapidly. These species are very reactive with biomolecules, such as the DNA, 

therefore they are extremely harmful to the cell. The effects from these chemical 

reactions occur in a time window which ranges from 0.01 ps to several minutes or hours. 

Direct radiation damage, on the other hand, is even more rapid, on the range of 10-14-

10-12 s and it refers to the breaking of S-H, O-H, N-H and C-H bonds [27]. Reactive 

species may also be formed via the activation of endogenous ROS-producing systems. 

Directly created ROS and RNS are more reactive and affect a wide range of 

biomolecules, while those produced by endogenous processes tend to be more selective. 

Early, rapid biochemical processes cumulate and they may affect the cell later on, 

manifesting their effects after minutes or hours [28].  

Effects of IR on Nucleic Acids 

The effects of ionizing radiation on nucleic acids have been known for many 

decades and have been extensively researched. DNA damaging inflicted by radiation 

include the deleterious alteration of bases and sugars, single- and double-strand breaks, 

cross link formation and DNA-clustering. Among the products of radiolysis, O֗H is the 

most destructive to nucleic acids, as well as the most abundant. ֗OH radicals, along with 

nucleic acid-binding enzymes, cause DNA strand breakages, as they interact with H 

molecules, resulting in damage to deoxyriboses. Nucleobases are also affected by O֗H, 

resulting in oxidative modification and abasic sites, though not on immediate strand 

breaks. Recent studies show that hydrated electrons also play a crucial role in the 

cumulative effects of ionizing radiation on DNA [28, 29]. 

After radiation-induced damage, cell responds immediately to repair itself. A 

complicated network of sensor, transducer and effector proteins is activated, initiating 

a cytoprotective response. Sensor and transducer proteins are able to locate DNA 

damage sites and initiate a series of biochemical reactions [29].  
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Effects of IR on Lipids 

Ionizing radiation can induce damage on the lipid layer of the cell membrane. 

Though radiation is capable of directly damaging lipids, there is indication that indirect 

damage induced by water radiolysis products is a more prominent threat. The main 

consequence of IR is the cause of lipid peroxidation, especially that of unsaturated fatty 

acids, leading to increased membrane permeability, disruption of ion gradient and 

altered activity of membrane proteins. In addition, studies on cell membrane indicate 

the induction of apoptosis at 5-10 Gy [28, 30]. 

Lipid peroxidation leads to the formation of lipid hydroperoxides (LOOH), the 

amount of which determine the biological response of the cell [30]. Moderate levels of 

LOOH activate the oxidative stress response which might lead to apoptosis. Higher 

levels of LOOH result in global damage of the cell membrane and the organelles, 

triggering lysis of the membrane and necrosis. Cells are known to possess natural 

mechanisms to reduce LOOH levels, however, IR can inactivate the detoxifying 

enzymes involved, leading to an intense disruption of cellular redox metabolism [28].  

Another effect of IR on lipids is the alteration of the sphingolipid metabolism. 

Exposure to IR might lead to relocalization of some enzymes involved in the production 

of sphingolipid ceramides, resulting in increased intracellular levels of them. The large 

accumulation of ceramides within membrane lipid rafts alters the membrane properties, 

forming large, ceramide-enriched membrane platforms. These platforms contain 

enzymes that are relocalized on irradiation, changing the molecular dynamics of the 

cell [28]. 

Effects of IR on Proteins 

Apart from nucleic acids and lipids, ionizing radiation can induce changes in 

the expression and activity of proteins as well. Recent studies have shown that protein 

expression and protein-protein interaction are affected by doses as low as 1 Gy, contrary 

to the traditionally held 10 Gy threshold [28]. At 2-8 Gy inactivation of redox-sensitive 

enzymes, such as catalase, is observed. The most important effect of IR on proteins 

though is the induction of oxidative or reductive post-translational modifications 

(PMT). Oxidation of proteins can be of several types, such as oxidative cleavage of the 

protein backbone and amino-acid side chains, carbonylation and direct amino-acid 

oxidation (e.g., for Cysteine and Methionine) [28]. 
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In the case of the radical cleavage of the protein backbone and amino-acid 

chains, O֗H radicals, generated via radiation, initiate cleavage of the protein backbone 

and react with all of the amino-acids on the chain at an extremely high rate. In a similar 

way, ֗OH abstracts hydrogen atoms from aliphatic amino-acid side chains at all carbon 

sites. These reactions can lead to fragmentation of the protein chain [28]. 

Carbonylation, on the other hand, refers to the process of post-translational addition of 

carbonyl moieties to amino-acid side chains, as a result of radiation-generated ROS, 

usually occurring via metal catalysis. Carbonylation produces a variety of modified 

amino acids that are capable of inducing damages in the protein backbone [30]. It is 

believed to be a selective and irreversible process and it is involved in the 

pathophysiology of many diseases, including chronic lung disease, diabetes and 

neurodegenerative disorders [28]. Methionine and Cysteine oxidation occurs when 

radiation generates reactive oxygen species (ROS) that oxidize methionine or cysteine, 

forming products like methionine sulfoxide (MetO) and sulfenic acid. This oxidation 

can affect protein function, signaling pathways, and may contribute to diseases like 

Parkinson’s [28].  

The effects of IR-induced reductive processes on proteins are less investigated 

than the oxidative equivalent. Reducing radicals generated by radiation, such as 

hydrogenated electrons (eaq
-) and H⋅ can modify proteins by targeting sulfur-containing 

amino acids like methionine and cysteine. These modifications include radical 

formation, amino acid conversion and potential protein-lipid damage [28].  
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1.5. Basics of Transmission Electron Microscopy (TEM) 

 

Transmission electron microscopy (TEM) is a microscopy technique in which 

the image is generated when a beam of electrons is transmitted through a sample. The 

first TEM microscope was invented in 1930s by Ernst Ruska and Max Knoll and since 

then it has been irreplaceable in biological research, due to its near-atomic-level 

resolution; much greater than that of its optical counterparts.  

The exceptional resolution of TEM microscopes is due to the smaller de Broglie 

wavelength of electrons compared to photons. Because of this, they are able to capture 

extreme levels of detail and as they can achieve magnification of objects up to 2 million 

times [1]. TEM microscopes find applications in various fields, including cancer 

biology and virology, material science, nanotechnology, semiconductor research, etc.  

 

1.5.1. Principles of operation 

The TEM microscope (see Figure 1.15), instead of light, makes use of a high 

voltage coherent electron beam of about 60-120 kV for biological applications. The 

electrons are emitted from the heating cathode filaments of an electron gun at the top 

of the TEM system and then travel through an ultra-high vacuum tube (10-1-10-5 Pa). 

The cathode ray then passes through an anode and alignment coils which accelerate and 

focus the beam. A condenser aperture excludes the high angle electrons and a magnetic 

condenser lens induces a helical convergence to the beam before it reaches the 

specimen. The electron beam then hits the very thin specimen (around 60-90 nm) which 

is placed upon a grid-like stage. There, they either scatter or pass through it and reach 

at a fluorescent screen at the bottom of the microscope. In this way, an image is created 

where the regions less dense in electrons are represented in a lighter tone, while the 

denser regions bear a darker shade [1].  
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1.5.2. Imaging Process and Preparation of Samples 

The image produced by the electron beam is focused on the objective lens. A 

diffraction lens then applies Brag scattering on the electrons while the objective 

aperture is used to select or exclude the portion of the sample that produced the 

scattering. The intermediate and projector lenses magnify and calibrate the image 

before it reaches the fluorescent screen, where it is visualized. This image, apart from 

direct studying, can also be photographed with a digital camera and be exported as a 

TIFF file [1]. 

Living matter consists of approximately 80% of water, so, without the necessary 

preparation of the specimen, every trace of liquid would be removed in the high vacuum 

of the tube. Additionally, as biological matter consists mainly of light elements, such as 

carbon and hydrogen, the high-speed electrons do not interact strongly with its atoms. 

These reasons create the need for sampling preparation. Conventional sample 

preparation consists of chemical fixation, sample dehydration (at room temperature or 

Figure 1.15 The architecture of a TEM microscope [1]. 
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at 4 oC) and embedding with epoxy or acrylic resin. Alternative methods to chemical 

fixation include cryofixation via vitrification, where the sample undergoes freezing 

through various techniques [1]. 

 

1.6.  Principles of Morphometry 

 

Morphometry, in general terms, is the analysis of form, encompassing the size 

and shape of an object, in a quantitative way. The objects analyzed are usually 

organisms and morphometry gives insight of varied biological interest, such as 

developmental changes, the impact of radiation or mutations on shape, registering the 

fossil record, etc. The purpose of morphometric analysis is to statistically test 

hypotheses about the factors that affect shape and from this data to deduce something 

of their ontogeny or function.  

In the context of morphometry, one might analyze length, width, mass, angles, 

area and ratios. For the analysis of the data and the visualization of the shape alterations, 

various statistical methods can be used. These can be bar graphs and other diagrams 

showing the statistics of the quantity under study. Morphometry can be useful in 

exploring patterns of variations, relative alterations, population means as well as 

deviations of individuals from it. For the purposes of the present thesis, morphometry 

is used to study the ultrastructural changes induced by ionizing radiation on the 

mitochondria of rat intestinal tissues. 

 

1.7.  Basics of Machine Learning 

 

1.7.1. General background 

The field of machine learning (ML) belongs to the more general field of 

Artificial Intelligence. Artificial intelligence encompasses any technique that enables 

computers to perform tasks that mimic human behavior and problem-solving skills. As 

such, it is concerned with a variety of problems, including reasoning, learning, 

planning, perception and communication [31]. ML, specifically, refers to a method of 
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computer learning, where the computer automatically learns meaningful relationships 

and patterns from examples and observations, without the need of explicit human 

intervention. This is achieved through the application of algorithms that iteratively 

extract information from problem-specific training data, finding hidden insights and 

patterns without having been previously programmed to do so [20]. Proven successful 

and reliable, especially in tasks involving high-dimensional data, machine learning 

faces rapid development and shows a performance that excels human capabilities in 

many areas. For this reason, it finds various applications in a vast number of fields, such 

as molecular biology, clinical practice, speech and image data analysis, electronic 

marketing and many others [31,32].  

Machine learning is generally divided into three types: supervised learning, 

unsupervised learning and reinforcement learning. In the case of supervised learning, 

computers are called to learn how to predict the class or the value of unknown data after 

undergoing training with an observed set of data. To achieve this, we provide the 

computer model with a set of input-output pairs that calibrate its parameters and serve 

as examples for future, unknown data [31]. Unsupervised learning, on the other hand, 

is the task where computers identify unknown patterns in data, like groups or classes, 

without any pre-existing knowledge of the output labels. The goal is to find structural 

information of interest, like common properties or data representations between 

elements, based entirely on the input [31]. Lastly, in reinforcement learning, rather than 

supplying input-output pairs, we outline the current state of the system, define a goal 

and offer a set of permissible actions along with their environmental constraints. The 

machine learning model then autonomously navigates the process of reaching the goal, 

using trial and error to maximize the reward [31]. Supervised learning methods, based 

on the type of their output, are classified as regression methods, when the output is 

numerical, and as classification methods when the output is categorical and include 

linear and SVM regression, decision trees, random forests, k-neighbors classification, 

Bayesian methods, neural networks etc. Unsupervised learning methods, based on their 

goal, are divided into clustering (in which the model searches for groups/clusters of 

elements with common properties) and dimensionality reduction methods (in which the 

number of features or variables is reduced, while preserving the essential information) 

and include k-means, UMAP and others [32]. A taxonomy of the different methods of 

ML can be seen in figure 1.14. 
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1.7.2. Artificial neural networks and deep learning 

Inspired by the way that biological neurons process information, artificial neural 

networks is a family of machine learning algorithms of flexible structure that can find 

applications in all three types of ML. They consist of mathematical representations of 

interconnected processing units called artificial neurons. Their function mimics that of 

their biological counterparts, as they transmit signals in the way brain synapses do. 

These signals are multiplied by weights that are constantly adjusted during the learning 

process. Subsequent neurons only process signals that have exceeded a certain 

threshold, determined by an activation function. The neural network is structured in 

layers: An input layer receives the data input, an output layer produces the output and 

a number of intermediate hidden layers creates a non-linear mapping between input and 

output. The number of layers and neurons, the learning rate and the activation function 

are called hyperparameters of the system and cannot be learned by the model itself; 

they have to be decided manually in order to be optimal for each situation [31]. 

 

 

Figure 1.16. Taxonomy of the main machine learning algorithms [32]. 
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Neural networks, based on their 

architecture, can be of various types, such as 

recurrent neural networks, long short-term 

memory networks, gated recurrent networks, 

convolutional neural networks, generative 

models and others [32]. Deep neural networks 

(DNNs) usually refer to neural networks with 

more than one hidden layers, organized in deep 

complex architectures. In addition, DNNs consist 

of more advanced neurons than simple neural 

networks, meaning that they use advanced operations, such as convolutions or multiple 

activation functions, between the ‘synapses’, instead of a simple activation function 

[31]. Due to these features, DNNs are able to automatically discover complex 

representations for the corresponding learning tasks, a process known as deep learning. 

The basic difference of deep learning algorithms from other ML algorithms, known as 

shallow machine learning, is that they are considered "black box" models because they 

involve multiple layers of processing, making it difficult to interpret how exactly they 

arrive at their predictions. The complexity of these models often obscures the internal 

decision-making process, making them less transparent and harder to explain. In 

contrast, in shallow machine learning, the decision-making processes are relatively 

transparent and easy to understand and therefore they are considered "white box" 

models [31]. 

 

 

Figure 1.18. Venn diagram showing the relationship between machine learning, neural 
networks and DNNs.[31] 

Figure 1.17. Basic architecture of a neural 
network [31] 
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Deep learning is suitable for addressing problems with large and high 

dimensional data, like text, image, video, speech and audio. In these domains, DNNs 

outperform shallow ML algorithms and exhibit superhuman performance. However, in 

problems with a lower number of dimensions, or limited train data availability, shallow 

ML can provide superior results, in addition of being more easily explainable. 

Furthermore, tasks that require strong AI capabilities, such as actual understanding or 

intentionality, have proven unsolvable in the context of deep learning [31]. 

 

1.7.3. Analytical model building 

 

In this section, we analyze briefly the main process behind building a machine 

learning model. In general, this process consists of the following steps: data input, pre-

processing of the data and feature extraction, model building and training, and 

evaluation of the model performance [33].  

For a supervised machine learning model, as the one of interest for the present 

thesis, input data consist of input-output pairs. The first thing after loading the data is 

to inspect them. This is a crucial step as it gives us a more solid understanding of the 

nature of the data and the ability to visualize them, if they are images e.g. Furthermore, 

we have to ensure that there are no missing or misaligned data and that the inputs 

correspond to the correct outputs, otherwise the model training will fail.  

Loaded data need to be in a form which is compatible with the requirements of 

the ML model. In addition, not all features of the data are useful for the specific task of 

interest. This is why data pre-processing and feature extraction are important. With a 

series of custom functions, data are transformed in a way that keeps (‘extracts’) all the 

crucial information for the training, while extra information is discarded. These 

transformations usually come with a significant decrease in the size of the data, making 

them easier to handle. Resizing and normalization might also be applied to conform the 

data with the model requirements. In cases where the number of input data is 

insufficient, or where we want to provide the model with a more spherical approach on 

the data, data augmentation can be applied. This refers to series of transformations, like 

rotations and flips, that extract extra useful information from the data, not accessible in 

their original form [31,33]. 
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In the classical approach of building an ML model, the next step is usually the 

test-train split. The original number of available data is divided into train and test sets, 

with a ratio defined by the programmer. The train data will be used as training examples 

for the model to learn, while test data will be given to the model after training is 

completed, in order to evaluate its performance [33].  

In the building phase, one should choose and implement the architecture of the 

model, which can be either customized or imported from an existing source. There are 

different architectures suitable for different tasks and with variable degrees of 

complexity. After defining the model, it can be trained by fitting on the train data set. 

An important step in this point is the definition of the hyperparameters of the model. 

These are parameters, such as the learning rate and the activation function, that should 

be imported manually in the system, as they practically define its foundations. The 

optimization of the hyperparameters can be done during an optimization routine, letting 

the model try different values of them and seeing which ones give the best results 

[31,33]. 

After training the model, the test data set is given to it as input, in order to 

evaluate it. Specialized evaluation functions compare the output of the model with the 

ground truth outputs of the test set, giving an assessment of its performance [31,33]. 

 

1.8.  Aim of Study 

In the present study, healthy intestinal tissues from mice were exposed to proton 

beam radiation (both conventional and flash) and then after processing they were 

photographed with a TEM microscope. Tissues were processed and studied at three 

different time points post IR, namely 30 minutes, 4 hours and 18 hours. The aim of this 

study was twofold. Firstly, mitochondrial damage was estimated and compared for 

conventional and flash radiotherapy. To do this, morphometric analysis is performed, 

extracting the mean population and area of healthy and damaged mitochondria for each 

condition. 

Secondly, an attempt was made to build and train a machine learning model in 

order to automatically segment the mitochondria out of a given electron micrograph. 

For this purpose, a deep learning neural network model was utilized and fed with the 
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dataset analyzed on the first part. The aim was to create an automatic model for 

segmentation that could be used for future biological analysis.  
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Chapter 2: Materials and 
Methodology  

 

 

 

 

 

 

 

 

2.1. Irradiation Procedure 

 

All animal studies performed for the purposes of this project were reviewed and 

approved by the Institutional Animal Care and Use Committee of University of 

Pennsylvania. Female 13-week-old C57BL/6J mice (Jackson Labs, Bar Harbor, ME) 

were used and they were anesthetized using isoflurane in medical air.  The mice were 

subjected to 15 Gy whole abdominal FLASH PRT (130 Gy/s) versus standard PRT 

(0.88 Gy/s), using a 230 MeV (range ~32.0 g/cm2) proton beam generated by an IBA 

Proteus Plus Cyclotron (Louvain-La-Neuve, Belgium) to a fixed research beam line 

[34]. The irradiation field was square, 20 x 20 mm. Field uniformity was verified with 

radiographic film (EBT3, Ashland Advanced Materials, Bridgewater, NJ, USA). Dose 

was measured with a calibrated NIST-traceable Advanced Markus Chamber (PTW, 

Freiburg, Germany). All the aforementioned radiative experiments were performed by 

Dr. Michele M. Kim, Assistant Professor of Radiation Oncology at the Hospital of the 

University of Pennsylvania.  

The total number of experimental conditions that were analyzed was 14. 

Experiment was performed twice in order to enhance the reliability of the results. Each 

experiment had seven conditions. One condition was always the control group, where 

no irradiation had been taken place, and the other six conditions corresponded to 

irradiated tissues fixed at different time-points (30 minutes, 4 hours and 18 hours post 
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IR). Irradiated tissues were exposed to either conventional dose rate proton radiation or 

ultra-high dose rate (FLASH) proton radiation (see below Table 2.1).  

 Conventional Dose Rate FLASH Control 

GROUP 1 30 min 4 h 18 h 30 min 4 h 18 h No IR 

GROUP 2 30 min 4 h 18 h 30 min 4 h 18 h No IR 

 

Table 2.1. The different post-IR timepoints measured in the experiment. Along with the two not irradiated control 
groups, there is a total of 14 conditions. 

 

2.2. Transmission Electron Microscopy 

 

2.2.1. Operation 

The observation and photography of the samples was performed using the JEOL 

JEM 2100plus TEM, operated at 80 kV and equipped with a CMOS Camera Gatan 

OneView. 

 

2.2.2. Tissue Sample Preparation 

The intestinal tissues were excised at 30 minutes, 4 hours, and 18 hours post IR and 

were immediately fixed for 2 hours, at room temperature, by immersion in 2.5% 

glutaraldehyde (in 0.01M PBS) for downstream analyses of morphological changes. 

Following fixation, the tissues were accordingly washed in 0.01M PBS. Finally, they 

were cut into smaller cubes (1-2 mm) and stored in 0.01M PBS, in tubes at 4 oC. Tissue 

fixation was performed by Dr. Anastasia Velalopoulou, Research Associate at Dr. 

Koumenis Lab (Department of Radiation Oncology, Perelman School of Medicine, 

University of Pennsylvania).  After fixation, the standard procedure for TEM 

processing of tissues was followed, i.e., dehydration, infiltration and embedding in 

epoxy resin. Epoxy blocks were then cut into thin sections (~80 nm thickness), which 

were mounted on copper grids, stained with uranyl acetate and lead citrate, and finally 

observed and photographed with the JEM 2100plus TEM.  The TEM tissue processing, 

as well as the TEM observation and photography was performed by Dr. Ioanna Tremi 
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and Assist. Prof. Sofia Havaki, at the Laboratory of Histology – Embryology, Medical 

School of Athens, National and Kapodistrian University of Athens. 

 

2.3. Morphometry and Data Acquisition 

The morphometric analysis was done by using the Image J software (see Figure 

2.1). Image J is a powerful tool for analyzing photographs and extracting features from 

images. The analysis performed can be seen as three separate tasks: mitochondria 

classification, mask creation and measurement of areas.  

 

 

2.3.1. Mitochondria classification 

In each electron micrograph, the total number of mitochondria was counted. 

Then, each mitochondrion was classified as either healthy or damaged, based on their 

morphological features. As a general rule, mitochondria that were considered as 

damaged, had a more swelled phenotype, they appeared larger, they sometimes didn’t 

have well preserved structure, and they also had fragmented outer membrane or cristae 

which resulted in “white areas” (see Figure 2.2). Mitochondria can be recognized, 

among other organelles and vesicles, by their size and shape, as well as by their cristae 

and characteristic double membrane. The total number of cells in each electron 

micrograph was also counted and registered along with all the aforementioned 

measurements in an excel file. 

Figure 2.1. The Image J toolbar, showing its different functions 
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2.3.2. Mask creation and Area measurements 

Using the ‘freehand selection’ tool of Image J, the periphery of each 

mitochondrion was carefully outlined. By right clicking inside the selection and 

selecting ‘add to overlay’, the outline was fixed on the background of the image (see 

Figure 2.3). After selecting and adding to overlay all the mitochondria out of an image, 

a binary mask could be created (see Figure 2.4) by clicking Edit->Selection->Create 

Mask. The mask would be used to extract area features, as explained below, and then 

saved in order to be used later in the training and testing of the machine learning model.  

In order to measure the area, scaling was necessary. In general, images came in 

various size scales that could be seen in the down left or down right corner of it. With 

the use of ‘straight line’ tool, one could draw a line of the same length as the scale bar 

noted in the image. Then, by clicking Analyze->Set Scale, a new tab appears where, in 

the section ‘Known Distance’, one should put the scale indicated in the image (see 

Figure 2.5). In this way, the length of the drawn line in pixels corresponds to the actual 

length indicated by the scale of the image and the system is properly set up and ready 

for measuring the area. 

 

Figure 2.2. Representative electron micrographs of mouse intestinal tissues (small) 18h post IR. Damaged 
mitochondria are noted in red, while healthy ones in green (right). 
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After scaling the image, the macro shown in figure 2.6. was installed in the 

‘Plugins’ section. By running this macro for the mask created in the previous step, we 

could get an output of the total area covered by the mitochondria contained in the image, 

as well as a file containing the list of the areas covered by each one of them separately.  

Because we were interested in the total area covered by the healthy and the 

damaged mitochondria respectively, the same macro was applied to a second mask, 

which contained only the healthy mitochondria. In this way, the total area of the 

damaged mitochondria could also be found by a simple abstraction. This second mask 

was not saved, as it contained no additional information needed for the machine 

  

Figure 2.5. Scaling: Drawing a line of the same length as the scale bar 
and setting the knowing distance indicated by the image. 

Figure 2.3. Selected peripheries of mitochondria. The 
process of adding them to overlay can be seen. 

Figure 2.4. Example of a binary mask, generated with 
Image J 
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learning algorithm. Lastly, we were interested in the total area of the cytoplasm of the 

image. To measure this, all of the area containing cytoplasm was selected (by 

subtracting the nuclei and extracellular spaces) via the ‘freehand selection’ tool and then 

we clicked Analyze->Measure (see Figure 2.7). In the cases where the image appeared 

dim or blurred, brightness and contrast were adjusted through Image J as needed. 

 

 

 

 

 

 

 

 

Figure 2.7. The output of the application of the macro to a mask. 
The up tab contains the areas of each of the mitochondria of the 
image and the down tab the total area that they cover 

Figure 2.6. The macro used in order to extract the areas of the mitochondria. After being installed in the 
Plugins section, it is run by clicking on its name. 
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2.4. Statistical Analysis of the Data 

The analysis that followed data acquisition was the same for each of the fourteen 

conditions of the data. Firstly, the average percentage of normal and damaged 

mitochondria per squared micrometer (μm2) was calculated. To do this, the number of 

normal (or damaged) mitochondria per μm2 was found for each micrograph and the 

percentage was measured as the sum of the number of normal (or damaged) over the 

sum of the total number of mitochondria per μm2. The error was assumed to be the 

standard statistical error: 

𝑆𝐸 =
𝑠𝑡. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

√𝑛
              (2.1) 

Because the percentages were calculated as ratios of sums, the following 

formula was used for their variance, derived from first-order Taylor expansion: 
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ቇ          (2.2) 

Where, 𝜇ଵ,ଶ are the mean values and 𝜎ଵ,ଶ
ଶ  are the variances of the datasets that 

refer to the sums.  

Secondly, the average area per mitochondrion was calculated, separately for 

healthy and damaged ones, for each condition. This was done by dividing the total area 

covered by the normal (or damaged) mitochondria over their number. Again, for the 

error, the expression (2.1) was used.  

Because we had two groups of data at our disposal, each condition of the first 

group had an equivalent condition from the second group. In order to combine the 

information provided by the equivalent conditions from the two groups, their combined 

average percentage and area were calculated, using the basic statistical formula for the 

combined average of two datasets: 

      𝑋ത =
𝑛ଵ𝑋ଵ

തതത + 𝑛ଶ𝑋ଶ
തതത

𝑛ଵ + 𝑛ଶ
                   (2.3) 

Where 𝑋ଵ
തതത, 𝑋ଶ

തതത are the averages of the two sets and 𝑛ଵ, 𝑛ଶ the number of their 

elements. The combined standard errors were also calculated using the following 

formula: 
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    𝑆𝐸 = ට𝑆𝐸ଵ
ଶ + 𝑆𝐸ଶ

ଶ                   (2.3)  

Using these information, a series of graphs were plotted to better understand the 

results. Finally, in order to verify if any differences that existed in the percentage and 

area of normal and damaged mitochondria between the conventional and FLASH dose 

rates were statistically significant, a series of t-tests were performed. Those were 

performed separately for each condition, at thirty minutes, four hours and eighteen 

hours after exposure, with a significance level of 𝑎 = 0.1. 

 

2.5. Segmentation of Mitochondria using Machine Learning 

The analysis performed on the previous steps resulted in a dataset of total 577 

TEM images and their corresponding masks. Both the images and the masks had 

dimensions of 4096×4096 pixels, with the images being in RGB, while the masks being 

in binary format. All the images were saved as TIFF files. 

The total number of images and masks from the 14 conditions were saved in 

two separate folders, each containing 577 items. The two folders were sorted (with their 

items renamed when necessary) in such a way that an image and its corresponding mask 

were found in the equivalent positions of their respective folders. Correct pairing 

between images and masks (labels) is a very crucial step for the success of the model 

and cannot be omitted.  

The code for image segmentation was written in Python, using a Jupyter notebook 

(anaconda 3). Jupyter is an open-source web-based interactive platform for creating 

computational documents in various programming languages [35]. 

 

2.4.1. Importing the libraries and the data 

Firstly, the following Python libraries were imported on our environment: 

NumPy:  Package used for scientific computing, providing various calculations and 

support for matrices and multi-dimensional arrays. 

Matplotlib: Package for plotting graphs and diagrams in Python. 
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Cv2 and Image: Libraries for image processing. 

OS: Module for interacting with the operating system, including file and directory 

operations.  

Following this, the paths to the image and mask directories were defined, as 

seen in Figure 2.8. 

 

2.4.2. Data preprocessing 

As part of data preprocessing, the original images and masks were resized to 

256×256 pixels and converted in the proper format to be used by the model [36]. For 

these purposes, we first defined a SIZE parameter equal to 256, as well as two empty 

lists to contain the transformed data (see Figure 2.9).  

For all TIFF files in the Image directory, the full path to the image was 

constructed. Afterwards, the image was read in color (number 3 indicates RGB). A 

check for if the image had been read correctly was added, to ensure that all images 

contain valuable information and to prevent bugging. After checking, the image array 

was converted to a PIL Image object and then resized to 256×256. Following resizing, 

it was converted to a NumPy array and appended at the ‘image_dataset’ list. Finally, 

after all images had been stored at ‘image_dataset’, the list itself was converted to a 

NumPy array of shape (577, 256, 256, 3), where the first argument refers to the number 

of images, the second and third at their dimensions and the fourth at the number of their 

channels. 

   

Figure 2.8. Importing python libraries and defining data directories. 
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The exact same procedure was followed for pre-processing the masks, with the 

addition of an extra line to ensure that the mask is in binary format. Furthermore, after 

converting the mask list to a NumPy array, we expanded its dimensions by one along 

the third axis, because the code tends to omit the channel dimension (see Figure 2.10) 

[36]. As a result, the final array of the masks had the shape (577, 256, 256, 1). 

   

 

Figure 2.9. Pre-processing of images 

Figure 2.10. Pre-processing of masks. Notice the difference in reading the masks, having a 
zero value where images had a value of 3, indicating they are binary. 
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Due to the limited number of data that we had at our disposal for training the 

model, two tactics were followed to enhance the results: data augmentation and the use 

of a neural network architecture with pre-trained weights. A pre-trained network (often 

called a backbone in the context of machine learning) is a model already trained in a 

broad dataset to recognize various patterns, edges, textures, and shapes. This knowledge 

is transferable and can be applied to different tasks. Therefore, instead of training our 

model from scratch, we used this pre-trained network and fine-tuned it by training it on 

our data. In this way, features could be more easily extracted than if we had used a 

brand-new model architecture from the beginning.  

In order to use the pre-trained model, an additional library was installed and 

imported, that of segmentation models. Segmentation models library contains pre-built 

models and utilities for image segmentation tasks. The backbone architecture chosen is 

called ‘resnet34’ and it is a residual network with thirty-four layers [36]. To prepare our 

data to be used by the network, a preprocessing function from segmentation models 

library was used. This function performed normalization of the data, specifically for the 

requirements of the backbone model (see Figure 2.11). 

 

Following this, with the aid of train_test_split function, we split our dataset in 

training and testing sets with a test size ratio of 0.25. In figure 2.12, X_train corresponds 

to the image training set, X_test to the image test set and y_train, y_test are the 

equivalent for the masks. Testing sets were used both for validation of training 

performance and for visualizing the final results. 

 

 

Figure 2.11. Preparing the data to enter the pre-trained ‘resnet34’. 
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Lastly, to ensure that our images and masks correspond correctly to each other, 

we performed a sanity check. For a random image of the X_train set, we plotted it 

alongside its corresponding mask from y_train set. The result can be shown in the 

following figure 2.13. 

 

 

 

 

2.12. Test-train split 

Figure 2.13. Sanity Check after pre-processing. The mask corresponds correctly to the image. 



56 
 

2.4.3. Data augmentation 

Data augmentation is the process of artificially enhancing the diversity of 

existing data with the use of various modifications on them. It is a common practice to 

increase the performance of the model in cases where the dataset is limited.  

To perform data augmentation, ImageDataGenerator class was imported. This 

is a python class allowing for real-time data augmentation. It generates batches of 

augmented images from the original data and uses this extra data to feed the 

segmentation model. Setting a constant seed (see figure 2.14) is important because it 

ensures that ImageDataGenerator produces the same augmented images each time the 

code runs -in a different scenario the model would be unable to learn.  

Using two python dictionaries, we specified the parameters for augmenting the 

input images and masks [36]. We used random rotation up to 90o, horizontal and vertical 

shift up to 30%, shear transformations with an intensity of 0.5, zooming in or out up to 

30%, horizontal and vertical random flipping. Any new pixels created from 

transformations were filled with reflections from the borders (fill_mode='reflect'). 

Augmentations for masks were identical with those for the images, with the exception 

of the application of a lamda function. This function ensures that all pixel values in the 

mask (including those generated from augmentations) are either 0 or 1 (see Figure 

2.14). 

 

 Figure 2.14. Defining the parameters for augmenting the images and the masks.  
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The generators for images and masks were then defined as 

image_data_generator and mask_data_generator. These were fitted in the train and 

test sets of images and masks, always with the same seed value. The four resulting 

generators (train and validation for images and the same for masks) were as seen in 

figure 2.15. 

A function for combining generators was then defined and used to combine the 

image and mask train generators, as well as the two validation generators. This resulted 

in one generator for training and one for validation.  

In order to check that the results from data augmentation were all valid, a batch 

of augmented images and corresponding masks were visualized.  

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Implementation of the image and mask generators for augmentation. The first four 
generators are combined in two, one for training and one for testing/validation. 
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Figure 2.16. Plotting of an artificial image and its mask as a result of augmentation  

 

 

 

2.4.4. Implementation and training of the model (U-Net) 

The deep learning model used for the segmentation of mitochondria had a U-

Net architecture. U-Net is a special type of convolutional neural network designed for 

image segmentation. It features a symmetrical encoder-decoder structure with a series 

of convolutional layers. The encoder (or contracting path) progressively reduces the 

spatial dimensions of the input image, while increasing its depth, extracting high-level 

features. The decoder (or expansive path) then reconstructs the image to its original 

dimensions by up sampling and combining these features with corresponding high-

resolution features from the encoder via skip connections. This combination helps 

preserve spatial details and enhances the accuracy of the segmentation. Due to the shape 

of its architecture (with the encoder and decoder paths), it resembles the shape of ‘U’ 

(see also figure 2.17) [37].  

An implementation of the U-Net architecture exists in the segmentation models 

library and can be downloaded from there. Upon defining it, the backbone network was 

put as argument, trained in the ImageNet dataset, a large-scale image database used for 

training and evaluating machine learning models.  
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The model was compiled with Adam optimization. Adam is an adaptive 

optimizer that manipulates the learning rate of the model during training. For the loss 

function, a combination of binary cross-entropy (BCE) and the Jaccard index was used 

[36]. Loss function is the hyperparameter of the model suitable for balancing pixel-wise 

classification and overlapping measures. For the evaluation of training, the metric used 

was Intersection over Union (IoU) which measures the overlap between predicted and 

ground truth masks. After compilation, the model was fitted on the training data. For 

the training and validation, the two data generators from the previous steps were used. 

The U-Net model was trained for fifty epochs (iterations over the entire training 

dataset), with fifty batches of images for training and validation per epoch (see below 

Figure 2.18). 

 

Figure 2.17. Representation of the U-Net model architecture [38]. 
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Except of this model with the pre-trained weights, two more trainings were 

performed on a simple U-Net without a residual network, one with data augmentation 

and one without. In this way, the contribution both of the backbone and of the data 

augmentation could be made clear.  

 

2.4.5. Model evaluation  

For better visualization of the training procedure, the training and validation 

accuracy and loss curves were plotted by measuring them at each epoch. The code used 

for these tasks is shown in Figures 2.19 and 2.20.  

 

 

 

  

Figure 2.18. Model loading, compilation and training for 50 epochs.  

Figure 2.19. Code for plotting the training and validation loss curve 
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For image segmentation tasks, traditional accuracy is not a good metric. That is 

because it might be overestimated due to the prevailing background class of the masks 

(the black pixels is the background class, in contrast with the white mitochondria). 

Therefore, the metric of Intersection over Union is used for evaluation. This metric 

measures the intersection of covered areas between the two classes and divides it by 

their union. In our code, IoU was implemented as shown in figure 2.21. A threshold of 

0.5 was used to binarize the output predictions [36]. 

 

 

  

Finally, a code for visualizing the results was added. The code shown in figure 

2.22 takes a random image from the X_test dataset and plots it alongside its ground 

truth label (its true mask) and the prediction made by the model. The predicted label is 

binarized with a threshold which can be adjusted, based on the effectiveness of the 

model. 

 

Figure 2.20. Plotting the training and validation accuracy via the 
IoU value. 

Figure 2.21. Intersection over Union on the predictions of the model. 
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Figure 2.22. Code for plotting the test image, its ground truth label and predicted label 
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Chapter 3: Results and Discussion 
       

 

 

 

 

 

 

 

3.1. Statistics from the morphometric analysis 

3.1.1. Percentage of mitochondria per μm2 

Conventional dose rate 

From the analysis of the electron micrographs of the small intestinal tissue, the 

percentage of normal and damaged mitochondria per squared micrometer was plotted, 

at thirty minutes, four hours and eighteen hours after exposure (Figure 3.1). For 

comparison, the percentages of the non-irradiated control group are presented on the 

same graph.  

 
Figure 3.1. Percentage of normal and damaged mitochondria per μm2 for the control group and the 
three timepoints after exposure at conventional dose rate. 
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The analytical values of all the measurements for the graphs can be found on 

Appendix 1. In figure 3.2, representative electron micrographs are presented, for the 

control group as well as for each timepoint after exposure with conventional dose rate 

protons. 

A. B. 

 

 

C. D. 

 

Figure 3.2. Representative electron micrographs for each experimental condition. (A) Control group, (B) 30 minutes after exposure 

to conventional dose rate proton radiation, (C) 4 hours after exposure to conventional dose rate proton radiation and (D) 18 hours 

after exposure to conventional dose rate proton radiation. 
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FLASH   

The equivalent graph was plotted for the FLASH dose rate and is shown in 

Figure 3.3. In Figure 3.4, some representative electron micrographs are presented, from 

the control group as well as for each of the three timepoints after exposure to FLASH 

radiation. 

 

Comparison of conventional and FLASH 30 minutes post-exposure 

In order to get a better understanding of the results, the condition from graphs 

3.1 and 3.3 that corresponds to the 30-minute post-exposure timepoint was re-plotted 

in Figure 3.5.  

From a quick look on this diagram, one could deduce that there is no significant 

difference in the percentage of damaged mitochondria between the samples irradiated 

with conventional dose rate and FLASH radiation. In both cases, normal mitochondria 

greatly outnumber the damaged ones, but the percentages seem equivalent for the two 

radiation dose rates. To test whether the difference between them was statistically 

significant we performed a t-test [39], with parameters the average percentage of 

Figure 3.3. Percentage of normal and damaged mitochondria per m2 for the control group and the three 
timepoints after exposure to FLASH proton radiation. 
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damaged mitochondria, its standard error and the number of samples (images) for each 

dose rate.  

A.  B. 

 

C. 

 

D. 

 

Figure 3.4. Representative electron micrographs for each experimental condition. (A) Control group, (B) 30 minutes after exposure to 

FLASH proton radiation, (C) 4 hours after exposure to FLASH proton radiation and (D) 18 hours after exposure to FLASH proton 

radiation. 
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The resulting p-value showed no statistically significant diƯerence between the 

percentages. 

Comparison of conventional and FLASH 4 hours post-exposure 

 

 

In figure 3.6 the percentages of normal and damaged mitochondria for the two 

dose rates are compared, four hours after the exposure. The percentages of normal 

Figure 3.5. Comparison of normal and damaged mitochondria between conventional dose rate and 
FLASH 30 minutes after exposure.  

Figure 3.6. Comparison of normal and damaged mitochondria between conventional dose rate and 
FLASH 4 hours after exposure.  
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mitochondria are still higher than these of the damaged ones, but their difference has 

significantly decreased compared to the thirty-minute timepoint.  

Although it might seem that the percentage of damaged mitochondria at FLASH 

is slightly lower than that at conventional dose rate, the t-test [39] showed no 

statistically significant difference between the two. 

Comparison of conventional and FLASH 18 hours post-exposure 

 

 

As shown in Figure 3.7, eighteen hours after exposure, the damaged 

mitochondria outnumber the normal ones for both radiation dose rates.  

Whether the percentages differ significantly between the two rates is again a 

hypothesis to be tested. Neither in this case, however, the results were encouraging. The 

t-test [39] showed no statistically significant difference for the percentages of damaged 

mitochondria between the two dose rates.  

 

 

 

Figure 3.7. Comparison of normal and damaged mitochondria between conventional dose rate and 
FLASH 18 hours after exposure. 
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General Overview 

 The above results indicate that mitochondrial response in conventional and 

ultra-high dose rate irradiation (FLASH) does not present any significant differences at 

any timepoint up to eighteen hours post-IR. In both cases, the percentage of damaged 

mitochondria is continuously increasing, reaching sixty to seventy percent at eighteen 

hours after exposure. This result is in contrast to a recent study investigating the effects 

of proton radiation on mitochondria in normal human lung fibroblasts [40]. According 

to this study, FLASH irradiation (100 Gy/s) showcased increased survival and minimal 

mitochondrial damage, compared to conventional dose rate irradiation (0.33 Gy/s). The 

total dose delivered was 15 Gy at ambient oxygen concentration (21%), the exact same 

conditions as in our experiment. Furthermore, another study in mouse embryonic 

fibroblast cells, showed decreased apoptosis and necrosis for FLASH radiation (29% 

decrease), relative to conventional dose rate radiation (14.25% decrease) [41]. 

Considering the relationship between damaged mitochondria and induced cell death 

[42], decreased levels of apoptosis are linked to lower damage of the mitochondrial 

outer membrane (and subsequently less morphological alterations). These findings have 

led scientists to believe that mitochondrial sparing at FLASH irradiation could be a 

possible explanation for the mechanism behind FLASH effect [42].  

The fact that our observations are not in accordance with the above findings 

may be due to several reasons. It is generally accepted that the protective effects of 

FLASH are not uniform across all types of cells and tissues [41], so a more extended 

investigation of ultra-high dose rate radiation on the small intestinal epithelium is 

needed. In addition, while there are indications suggesting that FLASH effect is still 

present in normoxic environments [42], general consensus claims that it is more 

prominent in hypoxic environments [9, 13]. Since our experiment was performed in 

ambient oxygen, the expected FLASH effect could have been masked. Differences in 

the timing of the assessment between the present and the aforementioned studies could 

have also played a role in determining the outcome. More specifically, it is possible that 

the timepoint of eighteen hours post-IR has been quite early for the final assessment, 

and the differences between conventional and FLASH could have been more obvious 

in a later timepoint. Furthermore, the method followed in the present thesis for 

evaluating normal and damaged mitochondria was exclusively morphometrical, while 

other studies considered genetic, chemical and electrophysiological factors to 
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determine whether a mitochondrion could be considered damaged or not [42]. Finally, 

TEM microscopy, although a very powerful technique for qualitative research, it bears 

limitations in quantifying these findings. As a result, further studies need to take place 

for the evaluation of the percentage of normal and damaged mitochondria in FLASH 

and conventional dose rate, with more experimental variables and additional, more 

quantitative techniques along with TEM microscopy.  

3.1.2. Average area of mitochondria 

Conventional dose rate 

Using the image analysis software (ImageJ), the average area per mitochondrion 

was measured for normal and damaged mitochondria, for all the electron micrographs 

of the control conditions and of the different timepoints after exposure to conventional 

rate radiation. Following this, the combined average of the two groups of our data was 

calculated for each condition. The results are shown in Figure 3.8. The errors were 

assumed to be the standard statistical errors. For an analytical representation of the 

calculated values of averages and errors, see table 2 on Appendix 1. 
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Figure 3.8. Average area of normal and damaged mitochondria for the control group and the three timepoints after 
exposure to conventional dose rate radiation. 
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FLASH 

The equivalent graph for FLASH radiation was plotted below, in Figure 3.9. 

 
Figure 3.9. Average area of normal and damaged mitochondria for the control group and the three timepoints 
after exposure to FLASH radiation. 

 

From the two figures 3.8 and 3.9, it seems that, while exposure to conventional 

radiation leads to a progressively increasing area for both normal and damaged 

mitochondria, with the timepoint at 18 hours showing the greatest ‘swelling’, this is not 

the case for FLASH. According to Figure 3.9, after exposure to FLASH radiation, 

mitochondria tend to augment their size quickly, reaching a maximum value for the area 

within thirty minutes and then decreasing once more. The comparison of conventional 

dose rate and FLASH for each of the post-exposure timepoints is done in the following 

sections. 

Comparison of conventional and FLASH 30 minutes post-exposure 

In Figure 3.10, the average areas of mitochondria for conventional dose rate and 

FLASH radiation are compared. Both normal and damaged mitochondria seem to 

experience a greater area increase in FLASH radiation. The difference between the area 

of normal and damaged however, appears to have increased too. For conventional dose 

rate, the average area of damaged mitochondria is 0.254 μm2, 72% larger than that of 

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

control 30 min 4h 18h

A
ve

ra
ge

 a
re

a 
of

 m
it

oc
h

on
d

ri
on

 (
μ

m
2 )

Timepoints after Exposure

Average area of mitochondrion at FLASH 
radiation

normal damaged



72 
 

the normal (0.147 μm2), while for FLASH the damaged occupy approximately 92% 

more area than normal ones (0.435 μm2 for damaged compared to 0.226 for normal).  

 

Knowing the average values for the area, their standard errors and the number 

of elements of the samples, a t-test [39] was performed to determine whether the 

average areas of damaged mitochondria differ significantly between the conventional 

dose rate and FLASH radiation. This gave a p-value of 0.043 so there is a significant 

difference between the areas of the damaged mitochondria. 

We are also interested in the relative differences between the areas of normal 

and damaged mitochondria for each type of dose rate. In order to determine whether 

this difference is statistically significant, we performed a t-test with the null hypothesis,  

                                       𝐴̅௡,௖௢௡௩ − 𝐴̅ௗ,௖௢௡௩ = 𝐴̅௡,ி௅஺ௌு − 𝐴̅ௗ,ி௅஺ௌு       (3.5)  

Where 𝐴̅௜,௝ is the average area of mitochondria for j type of radiation dose rate 

and i= {normal, damaged}. The differences of the two sides of equation (3.5) were 

calculated as 𝐷௖௢௡௩ = 𝐴̅௡,௖௢௡௩ − 𝐴̅ௗ,௖௢௡௩ = 0.1067 and 𝐷ி௅஺ௌு = 𝐴̅௡,ி௅஺ௌு −

𝐴̅ௗ,ி௅஺ௌு = 0.2087.  
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Figure 3.10. Comparison of normal and damaged mitochondria areas between conventional dose rate and FLASH 30 
minutes after exposure. 
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The standard statistical errors of these differences were found to be equal to 

𝑆𝐸௖௢௡௩ = 0.027 and 𝑆𝐸ி௅஺ௌு = 0.04, so the combined error was 𝑆𝐸௧௢௧௔௟ = 0.048. 

These values gave a t-test score of 

𝑡௩௔௟௨௘ =
஽ಷಽಲೄಹି஽೎೚೙ೡ

ௌா೟೚೟ೌ೗
= 2.125. 

 Combining with the degrees of freedom for this case (𝑓 = 𝑛ଵ + 𝑛ଶ − 2 =126), 

we got a p-value of 0.036 [43].  

As a result, the differences are statistically significant and the damaged 

mitochondria indeed appear more enlarged in relation to the normal ones in FLASH, 

compared to conventional dose rate.  

Comparison of conventional and FLASH 4 hours post-exposure 

Figure 3.11. Comparison of normal and damaged mitochondria areas between conventional dose rate and 
FLASH 4 hours after exposure. 

  

Figure 3.11 shows the average areas of mitochondria for the two dose rates 4 

hours after exposure. The percentages of damaged mitochondria seem comparable, 

while the normal ones appear to have a larger average area in FLASH than in 

conventional dose rate. More specifically, the relative difference between the areas of 

normal and damaged mitochondria reach 88% for conventional dose rate and 21% for 

FLASH. 
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Using the t-test [39] on the average areas of the normal mitochondria, a p-value 

of 0.035 was acquired, meaning that the areas of normal mitochondria differ 

significantly between FLASH and conventional dose rate radiation. 

In addition, as in the condition of 30 minutes post-IR, a second t-test was 

performed to compare the relative differences of normal and damaged mitochondria 

between FLASH and conventional dose rate. With parameter values as: (𝐷௖௢௡௩ =

0.15, 𝐷ி௅஺ௌு = 0.056, 𝑆𝐸௧௢௧௔௟ = 0.033, 𝑡௩௔௟௨௘ = 2.8, 𝑓 = 164), a p-value of 0.0057 

was found [43], meaning a 0.57% probability for the null hypothesis. As a result, it is 

safe to reject it and assume that the relative area between normal and damaged 

mitochondria differs significantly in FLASH and conventional rate radiation.  

Comparison of conventional and FLASH 18 hours post-exposure 

Eighteen hours after the exposure, the average area of mitochondria was as 

shown in Figure 3.12. Both normal and damaged mitochondria appeared to have 

slightly smaller area when exposed to FLASH compared to conventional dose rate.  

Figure 3.12. Comparison of normal and damaged mitochondria areas between conventional dose rate and 

FLASH 18 hours after exposure. 
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In this case, comparing the average areas of damaged mitochondria of 

conventional dose rare versus FLASH, the t-test [39] showed no statistically significant 

difference between the two. 

Furthermore, the t-test performed on the relative differences of normal and 

damaged mitochondria between FLASH and conventional dose rate (with parameters 

values of 𝐷௖௢௡௩ = 0.173, 𝐷ி௅஺ௌு = 0.161, 𝑆𝐸௧௢௧௔௟ = 0.03, 𝑡௩௔௟௨௘ = 0.4, 𝑓 = 235), 

gave p-value = 0.345 [43]. This p-value corresponds to a 68.95% probability for the 

differences in areas to be statistically the same. Thus, an assumption cannot be made in 

favor of one of the two radiation rates 18 hours after exposure.  

General overview 

 In general, the experiment indicates a post-IR increase in the area of 

mitochondria for both conventional dose rate and FLASH. This is in accordance with 

older studies [20, 44] which refer to branching, elongation and size increase of 

irradiated mitochondria. As shown in figures 3.8 and 3.9, while area seems to increase 

with post-IR time until eighteen hours for conventional dose rate, FLASH-irradiated 

mitochondria take a maximum area value thirty minutes post-IR and then start to 

decrease in size. Although there aren’t many studies investigating the specific effects 

of FLASH proton radiation on the size of mitochondria, it is generally accepted that 

post-IR increase in mitochondrial size is reversible [20, 44, 45]. As a consequence, it 

might be the case that the maximum area value for the conventionally irradiated 

mitochondria would be reached in a timepoint after eighteen hours, not observed in the 

present study, and then a decrease would follow, similar to that observed in FLASH. 

This would indicate that the post-IR effects of FLASH concerning the size of 

mitochondria are far more short-lived than the equivalent for the conventional dose rate, 

despite being qualitatively similar.  

 Furthermore, the experiment indicates that the increase in mitochondrial area is 

present in both normal and damaged mitochondria, though not on the same extent. More 

specifically, damaged mitochondria appear generally larger than normal ones, 

something that can be attributed, among others, to the vacuolization and disruption of 

their membrane [20]. However, normal mitochondria show an increase in their size as 

well, reaching a maximum value of 0.207 μm2 at 18 hours post-IR for conventional 

dose rate and of 0.256 μm2 at 4 hours post-IR for FLASH. The increase in the area of 
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the normal mitochondria should not be surprising, since, though not severely damaged, 

they have undergone exposure to ionizing radiation as well.  

 Finally, the relative difference between the areas of normal and damaged 

mitochondria showcase dissimilarity in FLASH and conventional dose rates. More 

specifically, at thirty minutes post-IR the difference in areas was greater for FLASH 

irradiated cells, at four hours post-IR it was greater for conventionally irradiated cells 

(as a greater enlargement was observed for the FLASH-irradiated normal 

mitochondria), while at eighteen hours post-IR there was no statistically significant 

difference between them. In order to get a more global understanding of the underlying 

phenomena though, for the reasons discussed above, further studies are encouraged to 

shed light on more long-term effects of FLASH proton radiation at later timepoints. 
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3.2. Segmentation model results 

    

Loss and IoU graphs 

The model was trained for fifty epochs. From the data acquired during   training, 

the loss was plotted for both the training and validation processes (see Figure 3.). 

Furthermore, the Intersection over Union metric value was calculated and plotted for 

training and validation during the fifty epochs. The resulting graph is shown below in 

Figure 3.13.  

Loss is a measure of how well the model's predictions match the actual target 

values. In general, loss is expected to decrease over the progression of iterations. This 

is an indication that the model is learning useful features and adapts better in the input 

training data. As seen in Figure 3.13, training loss follows a quite smooth decrease from 

0.981 at the first epoch, to 0.398 at the final epoch. As far as loss is concerned, its 

increasing or decreasing nature is more important than its absolute value, which heavily 

Figure 3.13. Training and validation loss over the 50 epochs 
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depends on the choice of the loss function used (here, Binary Cross Entropy with 

Jaccard loss).  

Figure 3.14 shows that validation loss, although descending as well, appears to 

fluctuate more than the training loss, having ‘spikes’ at larger values. This behavior is 

expected as the training loss is used for directly optimizing the model on the training 

data. The weights of the network are constantly updating, therefore leading to a 

smoother curve for the loss. In contrast, validation loss is derived from the testing of 

the model on new images, unseen during training. As a result, the loss fluctuates more, 

but its descending nature is an indication that the model is successful with unknown 

data as well. 

 

Figure 3.14. Training and validation IoU value over the 50 epochs. 
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Intersection over Union (IoU) calculates the ratio of the intersection area 

between the predicted mask and the ground truth label over their union area. It is then 

obvious that IoU takes values in the range [0,1], with 1 being the perfect match. As it 

is a measure of the accuracy of the model, it is expected to increase with the number of 

iterations. This is indeed the case, as indicated in Figure 3.14.  Again, the training curve 

appears to be smoother than the validation one and this can be attributed to the different 

datasets that are used as reference. Training IoU starts at a value of 0.337 at epoch one 

and reaches 0.717 by epoch fifty, while validation IoU starts at 0.234 and reaches 0.697.  

 

Comparison of IoU for different training approaches  

As mentioned in the Methodology section, the model was run with three 

separate training approaches. In the first approach, data augmentation was removed and 

the model used was a simple U-Net without backbone amplification. In the second 

approach, data augmentation was used on this simple model, while on the third and 

final approach, both data augmentation and a resnet34 backbone to the model were 

added.  

Using a threshold of 0.5, IoU was calculated for all three cases. By thresholding 

the output, we ensured that the prediction masks would contain only binary values for 

the pixels and not a continuous spectrum of probabilities. In this way, IoU value is more 

relatable because a binary mask is expected as a final output as well. The measurements 

resulted in: 

 𝐼𝑜𝑈 = 0.32  for the simple U-Net model without data augmentation 

 𝐼𝑜𝑈 = 0.45  for the simple U-Net model using data augmentation 

 𝐼𝑜𝑈 = 0.73  for the U-Net model with resnet34 backbone, using data 

augmentation 

From the above results, the importance of both data augmentation and the 

backbone network was made obvious. More specifically, the simple model showed an 

IoU increase of 40% when data augmentation was used. When the backbone network 

was added, the increase in IoU reached 128% from the original approach and 62% from 

the second approach. As a result, it is fairly safe to assume that the combination of data 

augmentation and pre-trained network training showcases the best performance 

between the three. 
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The achieved IoU of the last approach, although very improved in relation to 

the other too, is not quite as high as the one achieved by the state-of-the-art models used 

for similar tasks, which may reach an IoU value of 0.8-0.9 [46, 47]. The reason for this 

could be lying on the nature of the dataset used. Except from being significantly smaller 

than the one used in recent studies [47], it presented much higher diversity in its 

instances. The images were at various focusing scales and were originating from 

different parts of the small intestine. In addition, the samples contained both healthy 

and damaged mitochondria due to radiation, something that has a visible effect on their 

phenotype. As a result, the combination of these factors incommoded the recognition 

of the mitochondrial shapes by the model. Finally, the human error factor is not to be 

ignored, as the entire original annotation of the shapes had been done manually. 

 

Visualization of the results 

In order to better understand the results, a random sample from the three training 

approaches was visualized and can be seen in the following figures 3.15 -3.17. 

 

 

 

Figure 3.15. Random testing image (left), alongside its ground truth label (middle) and predicted mask (right) for the final 
approach. (U-Net with backbone network and data augmentation). 
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Figure 3.16. Random image, true label and predicted mask for the simple U-Net model with the use of data augmentation. 

 

 

 
Figure 3.17. Random image, true label and predicted mask for the simple U-Net model without data augmentation. 

As we can see, the final model can distinguish the shapes of mitochondria with 

great success and it only fails to outline some edges, or some ambiguous shapes that 

would have possibly challenged a human annotator as well. On the other hand, in the 

original approach of the simple U-Net without augmentation, shapes are barely 

recognizable, with a lot of information missing. The shapes of some well-outlined 

mitochondria can still be distinguished but the majority of them are either extracted 

incompletely, or not extracted at all. Somewhere in the middle of the two, the simple 

U-Net with data augmentation performs better than the original but not quite as 

efficiently as the pre-trained model. Shapes are more correctly defined than in the 

original, but there are still missing information and badly shaped instances. Below, 

some more predictions from the final model are shown in Figure 3.18, to give a more 

general view on its performance. 
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Figure 3.18. Random samples along with predictions from the final model. 
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Chapter 4: Conclusion 

 FLASH radiotherapy is a promising cancer treatment that has demonstrated 

better sparing of the normal tissues surrounding the tumor, compared to conventional 

dose rate. However, whether the FLASH effect is still present in proton radiation is a 

question that remains to be answered. More studies are needed in this direction, mainly 

to decipher the role of hypoxia in the manifestation of the FLASH effect, to define the 

precise timepoints that the various effects (like the increase in area of the mitochondria) 

take place and to quantify the actual difference from the conventional dose rate, if it 

exists. As for the segmentation model, although the results are quite satisfying, several 

steps can be made for its improvement. By training it in a larger dataset, its accuracy 

would be enhanced and IoU could probably reach a value equivalent with that of the 

state-of-the-art models. In addition, a next-level implementation could be a multi-class 

semantic segmentation (for example to normal and damaged mitochondria). Such an 

amendment could save precious time to the researchers. It could also possibly reveal 

new insights into the morphological differences between normal and damaged 

mitochondria, for example differences not visible in the human eye. What is for sure, is 

that there are definitely a lot of opportunities and future prospects on this field.  
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Appendix I 
Table 1: Average percentages of mitochondria per μm2, with their variances and standard 
errors. 

                      
                     (%) 

CONVENTIONAL FLASH 
30 minutes 

 
normal 

Average 90.03 83.98 
Variance 2.00 2.50 
St. Error ±3.00 ±4.60 

 
damaged 

Average 9.86 15.96 
Variance 2.00 2.50 
St. Error ±3.00 ±4.60 

  4 hours 
 

normal 
Average 60.82 65.90 
Variance 5.00 3.00 
St. Error ±5.00 ±6.20 

 
damaged 

Average 39.12 34.00 
Variance 5.00 3.00 
St. Error ±5.00 ±6.20 

  18 hours 
 

normal 
Average 31.00 38.00 
Variance 7.00 7.50 
St. Error ±5.00 ±5.70 

 
damaged 

Average 68.93 61.67 
Variance 7.00 7.50 
St. Error ±5.00 ±5.70 

 

Table 2: Average areas of mitochondria, with their variances and standard errors. 

  
(μm2) 

CONVENTIONAL FLASH 
30 minutes 

 
normal 

Average 0.15 0.23 
Variance 0.006 0.024 
St. Error ±0.02 ±0.04 

 
damaged 

Average 0.25 0.43 
Variance 0.037 0.088 
St. Error ±0.05 ±0.07 

  4 hours 
 

normal 
Average 0.17 0.26 
Variance 0.003 0.035 
St. Error ±0.01 ±0.04 

 
damaged 

Average 0.32 0.31 
Variance 0.025 0.030 
St. Error ±0.04 ±0.04 

  18 hours 
 

normal 
Average 0.21 0.18 
Variance 0.015 0.019 
St. Error ±0.03 ±0.03 

 
damaged 

Average 0.38 0.34 
Variance 0.027 0.041 
St. Error ±0.03 ±0.04 
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Appendix II 
The complete code used for the Mitochondria Segmentation task is presented below. 

The data pipeline and model evaluation are heavily inspired by the work of Dr Sreenivas 
Bhattiprolu [36]. 

import os 
import cv2 
from PIL import Image 
import numpy as np 
from matplotlib import pyplot as plt 
 
 
image_directory = 'E:\\Electron Microscopy Photos\\diplomatiki\\Image_folder' 
mask_directory = 'E:\\Electron Microscopy Photos\\diplomatiki\\Mask_folder' 

# Data pre-processing 
 
SIZE = 256  #dimension of resizing 
image_dataset = []  #empty lists to store the processed data 
mask_dataset = []   
 
images = os.listdir(image_directory) 
for i, image_name in enumerate(images):     
    if (image_name.split('.')[1] == 'tif'): 
         
        image_path = os.path.join(image_directory, image_name) 
        image = cv2.imread(image_path, 3) 
         
        # Check if the image was correctly read 
        if image is None: 
            print(f"Error reading image: {image_name}") 
            continue 
         
        image = Image.fromarray(image) 
        image = image.resize((SIZE, SIZE)) 
        image_dataset.append(np.array(image))  
 
#Iterate through all images in Uninfected folder, resize to 64 x 64 
#Then save into the same numpy array 'dataset' but with label 1 
 
masks = os.listdir(mask_directory) 
for i, mask_name in enumerate(masks): 
    if (mask_name.split('.')[1] == 'tif'): 
        mask_path = os.path.join(mask_directory, mask_name) 
        mask = cv2.imread(mask_path, 0) 
         
        # Ensure that the mask is binary 
        _, mask = cv2.threshold(mask, 127, 1, cv2.THRESH_BINARY) 
         
        mask = Image.fromarray(mask) 
        mask = mask.resize((SIZE, SIZE)) 
        mask_dataset.append(np.array(mask)) 
         
#making images an numpy array 
image_dataset = np.array(image_dataset) 
#same for masks, but we expand one dimension to include channel 
mask_dataset = np.expand_dims(np.array(mask_dataset), 3) 
print(f"Total images: {len(image_dataset)}, Total masks: {len(mask_dataset)}") 
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#inspection of the data after pre-processing 
 
print(image_dataset.shape) 
print(mask_dataset.shape) 
print("Pixel values in the mask are: ", np.unique(mask_dataset)) 

#importing segmentation models class from keras 
 
import segmentation_models as sm 
 
BACKBONE = 'resnet34' # defining the pre-trained network 
preprocess_input1 = sm.get_preprocessing(BACKBONE)  
 
# preprocess (normalize) input images to suit the requirements of the network 
 
images1=preprocess_input1(image_dataset) 

#train-test split 
 
from sklearn.model_selection import train_test_split 
X_train, X_test, y_train, y_test = train_test_split(images1,  
                                                    mask_dataset,  
                                                    test_size = 0.25,  
                                                    random_state = 42) 
 

#Sanity check, view few mages 
 
import random 
import numpy as np 
image_number = random.randint(0, len(X_train)) 
plt.figure(figsize=(12, 6)) 
plt.subplot(121) 
plt.imshow(X_train[image_number, :,:, 0], cmap='gray') 
plt.subplot(122) 
plt.imshow(np.reshape(y_train[image_number], (256, 256)), cmap='gray') 
plt.show() 

#Defining dictionaries to be used as inputs to image generator  
 
seed=24 
from keras.preprocessing.image import ImageDataGenerator 
 
img_data_gen_args = dict(rotation_range=90, 
                     width_shift_range=0.3, 
                     height_shift_range=0.3, 
                     shear_range=0.5, 
                     zoom_range=0.3, 
                     horizontal_flip=True, 
                     vertical_flip=True, 
                     fill_mode='reflect') 
 
mask_data_gen_args = dict(rotation_range=90, 
                     width_shift_range=0.3, 
                     height_shift_range=0.3, 
                     shear_range=0.5, 
                     zoom_range=0.3, 
                     horizontal_flip=True, 
                     vertical_flip=True, 
                     fill_mode='reflect', 
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                     preprocessing_function = lambda x: np.where(x>0, 1, 0).astype(x.
dtype)) #Binarize the output again.  

# Defining image and mask generators for training and testing. 
 
image_data_generator = ImageDataGenerator(**img_data_gen_args) 
 
train_image_generator = image_data_generator.flow(X_train, seed=seed) 
valid_img_generator = image_data_generator.flow(X_test, seed=seed) 
 
mask_data_generator = ImageDataGenerator(**mask_data_gen_args) 
 
train_mask_generator = mask_data_generator.flow(y_train, seed=seed) 
valid_mask_generator = mask_data_generator.flow(y_test, seed=seed) 

# Combine the generators for images and masks to a single generator 
 
def combined_image_mask_generator(image_generator, mask_generator): 
    train_generator = zip(image_generator, mask_generator) 
    for (img, mask) in train_generator: 
        yield (img, mask) 
 
combined_train_generator = combined_image_mask_generator(train_image_generator,  
                                                         train_mask_generator) 
 
combined_validation_generator = combined_image_mask_generator(valid_img_generator,  
                                                              valid_mask_generator) 

x = train_image_generator.next() 
y = train_mask_generator.next() 
for i in range(0,1): 
    image = x[i] 
    mask = y[i] 
    plt.subplot(1,2,1) 
    plt.imshow(image[:,:,0], cmap='gray') 
    plt.subplot(1,2,2) 
    plt.imshow(mask[:,:,0]) 
    plt.show() 

# define the model using pre-trained weights 
 
model = sm.Unet(BACKBONE, encoder_weights='imagenet') 
model.compile('Adam', loss=sm.losses.bce_jaccard_loss, metrics=[sm.metrics.iou_score]
) 
print(model.summary()) 

#Fit the model 
history = model.fit(combined_train_generator,  
                    validation_data=combined_validation_generator, 
                    steps_per_epoch=50, 
                    validation_steps=50, epochs=50) 
model.save('my_model.h5') 

#plot the training and validation accuracy and loss at each epoch 
loss = history.history['loss'] 
val_loss = history.history['val_loss'] 
epochs = range(1, len(loss) + 1) 
plt.plot(epochs, loss, 'y', label='Training loss') 
plt.plot(epochs, val_loss, 'r', label='Validation loss') 
plt.title('Training and validation loss') 
plt.xlabel('Epochs') 
plt.ylabel('Loss') 
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plt.legend() 
plt.show() 

 

acc = history.history['iou_score'] 
#acc = history.history['accuracy'] 
val_acc = history.history['val_iou_score'] 
#val_acc = history.history['val_accuracy'] 
 
plt.plot(epochs, acc, 'y', label='Training IOU') 
plt.plot(epochs, val_acc, 'r', label='Validation IOU') 
plt.title('Training and validation IOU') 
plt.xlabel('Epochs') 
plt.ylabel('IOU') 
plt.legend() 
plt.show() 

#IOU 
y_pred=model.predict(X_test) 
y_pred_thresholded = y_pred > 0.5 
 
intersection = np.logical_and(y_test, y_pred_thresholded) 
union = np.logical_or(y_test, y_pred_thresholded) 
iou_score = np.sum(intersection) / np.sum(union) 
print("IoU socre is: ", iou_score) 

test_img_number = random.randint(0, len(X_test)-1) 
test_img = X_test[test_img_number] 
test_img_input=np.expand_dims(test_img, 0) 
ground_truth=y_test[test_img_number] 
prediction = model.predict(test_img_input) 
prediction = prediction[0,:,:,0] 
 
# Binarize the prediction 
threshold = 0.7 
binary_prediction = (prediction >= threshold).astype(np.uint8) 
 
plt.figure(figsize=(16, 8)) 
plt.subplot(231) 
plt.title('Testing Image') 
plt.imshow(test_img[:,:,0], cmap='gray') 
plt.subplot(232) 
plt.title('Testing Label') 
plt.imshow(ground_truth[:,:,0], cmap='gray') 
plt.subplot(233) 
plt.title('Prediction on test image') 
plt.imshow(binary_prediction, cmap='gray') 
 
plt.show() 

 

 

 


