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Abstract

This work focuses on wave propagation in generalized continua governed by sub-theories of
Mindlin’s general one. The primary focus is given on deriving new analytical solutions (i.e.,
Green’s functions) for infinite domains, which serve as a foundation for addressing problems
where body waves are confined within configurations of obstacle points (pins). The pins are
modelled as concentrated body forces, utilizing the displacement Green’s functions derived
in the work. The first chapter provides a brief overview of the key concepts presented in the
work and discusses potential applications. In the second chapter, Mindlin’s general theory
is thoroughly presented, beginning with the most general non-linear micromorphic theory.
The third chapter introduces the three simplified versions of Mindlin’s general theory, known
as Forms I, II, and III. Additionally, a brief overview of dipolar gradient elasticity, which
represents the simplest version of Mindlin’s general theory, is provided. This chapter also
includes a section dedicated to the elastodynamics of gradient continua, with a particular
focus on the formulation and proof of the completeness theorem, which the author believes
is a gap in the current literature. In the fourth chapter, two analytical solutions for infi-
nite domains under plane strain and anti-plane shear are derived using integral transform
techniques. Unlike their classical elasticity counterparts, these solutions are non-singular,
which makes them suitable for formulating various problems where waves are trapped inside
configurations of pins. In the fifth and final chapter, scattering problems are formulated
using the aforementioned Green’s functions. Due to the relatively low computational load of
the anti-plane shear Green’s function, complex geometries such as fractals can be considered
The results specifically address the case where Koch’s snowflake is generated through an
iterative process and due to the fractal nature of the configuration, the system’s response
reveals many intriguing phenomena.

Keywords: Bessel functions, Dispersion, Double Fourier transform, Form II, Fractals,
Green’s function, Hankel transform, Infinite domain, Koch snowflake, Microinertia, Mi-
crostructure, Mindlin’s general theory, Scattering.
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PerÐlhyh

Aut  h ergasÐa esti�zei sth di�dosh kum�twn se genikeumèna suneq  mèsa pou dièpontai apì
upojewrÐec thc genik c jewrÐac tou Mindlin. KÔria èmfash dÐnetai sthn exagwg  nèwn
analutik¸n lÔsewn (dhlad , sunart sewn Green) gia �peira qwrÐa, oi opoÐec qrhsimeÔoun wc
b�sh gia thn antimet¸pish problhm�twn ìpou kÔmata ìgkou egklwbÐzontai entìc sqhmatism¸n
pou orÐzontai apì shmeiak� empìdia (akÐdec). Oi akÐdec montelopoioÔntai wc sugkentrwmènec
kajolikèc dun�meic, qrhsimopoi¸ntac tic sunart seic Green gia tic metatopÐseic pou ex�go-
ntai sthn ergasÐa. To pr¸to kef�laio parèqei mia sÔntomh episkìphsh twn basik¸n ennoi¸n
pou parousi�zontai sthn ergasÐa kai suzht� pijanèc efarmogèc. Sto deÔtero kef�laio parou-
si�zetai diexodik� h genik  jewrÐa tou Mindlin, xekin¸ntac apì thn pio genik  mh-grammik 
mikromorfik  jewrÐa. To trÐto kef�laio eis�gei tic treic aplopoihmènec ekdoqèc thc genik c
jewrÐac tou Mindlin, gnwstèc wc Morfèc I, II kai III. Epiplèon, parèqetai mia sÔnto-
mh episkìphsh thc dipolik c elastikìthtac bajmÐdac, h opoÐa antistoiqeÐ sthn aploÔsterh
ekdoq  thc genik c jewrÐac tou Mindlin. Autì to kef�laio perilamb�nei epÐshc mia enìth-
ta afierwmènh sthn elastodunamik  twn elastik¸n ulik¸n bajmÐdac, me idiaÐterh èmfash na
dÐnetai sth diatÔpwsh kai thn apìdeixh tou jewr matoc plhrìthtac, to opoÐo o suggrafèac
pisteÔei ìti eÐnai èna kenì sthn trèqousa bibliografÐa. Sto tètarto kef�laio, ex�gontai
dÔo analutikèc lÔseic gia �peira qwrÐa upì epÐpedh paramìrfwsh kai antÐ-epÐpedh di�tmhsh
qrhsimopoi¸ntac teqnikèc oloklhrwtik¸n metasqhmatism¸n. Se antÐjesh me tic antÐstoiqec
lÔseic thc klassik c elastikìthtac, autèc oi lÔseic den eÐnai idiìmorfec, gegonìc pou tic ka-
jist� kat�llhlec gia th diatÔpwsh diafìrwn problhm�twn ìpou kÔmata pagideÔontai mèsa se
sqhmatismoÔc akÐdwn. Sto pèmpto kai teleutaÐo kef�laio, diatup¸nontai probl mata skèda-
shc qrhsimopoi¸ntac tic proanaferjeÐsec sunart seic Green . Lìgw tou sqetik� qamhloÔ
upologistikoÔ fìrtou thc sun�rthshc Green thc anti-epÐpedhc di�tmhshc, mporoÔn na lhfjo-
Ôn upìyh polÔplokec gewmetrÐec ìpwc ta fr�ktal. Ta apotelèsmata aforoÔn sugkekrimèna
thn perÐptwsh ìpou h nif�da tou Koch dhmiourgeÐtai mèsw miac epanalhptik c diadikasÐac
kai lìgw thc klasmatik c fÔshc tou sqhmatismoÔ, h apìkrish tou sust matoc apokalÔptei
poll� endiafèronta fainìmena.

Lèxeic kleidi�: Apeiro qwrÐo, Genik  jewrÐa tou Mindlin, Diaspor�, Diplìc metasqhma-
tismìc Fourier, Fr�ktalc, MÐkroadr�neia, MÐkrodomh, Metasqhmatismìc Hankel, Morf 
II, Nif�da tou Koch, Skèdash, Sunart seic Bessel, Sun�rthsh Green.
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Chapter 1 Setting the Stage

1 Setting the Stage

1.1 Introduction

As the title indicates, this thesis focuses on wave scattering in generalized continua governed
by specific sub-theories of Mindlin’s general theory, with the primary focus given on deriving
new closed-form analytical solutions that can be utilized to model wave scattering. Providing
a concise summary of the concepts presented here is challenging without delving into details.
The title also raises several questions, such as why a more advanced theory than the one of
Cauchy is adopted and what leads to wave scattering. Therefore, the first chapter is dedicated
entirely to addressing these questions and providing examples of potential applications for
this research.

1.2 Conceptual Framework

We consider the scenario where an infinite domain, governed by a generalized continuum
theory, is subjected to deformation due to the propagation of body waves. Within this
infinite domain, there exists a configuration of point obstacles (pins), which are assumed to
be undeformable. The objective is to explore how this configuration of pins can be tuned
to modify the characteristics of wave propagation according to our desired outcomes. In
other words, we aim to examine how the geometry of the pins, along with the parameters
introduced through the generalized continuum theories, influences the system’s response. In
the following section, a brief overview of generalized continua is provided, focusing on their
historical development and foundational concepts. For a more comprehensive understanding
of the topic, the reader is referred to the first chapter of [1].

Figure 1.2.1: Problem statement.
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Chapter 1 Setting the Stage

1.3 A Concise Overview of Generalized Continua

One of the earliest works on generalized continua was a paper published in 1839 by Mac-
Cullagh [2], where he developed a theoretical framework to understand how light behaves
when interacting with crystalline materials. In this paper, MacCullagh sought to extend
the understanding of light reflection and refraction from isotropic media where properties
are uniform in all directions to anisotropic or crystalline media, where properties vary with
direction. He proposed a dynamical theory that explained how light waves are reflected and
refracted at the boundaries of crystals, which exhibit different optical properties depending
on the direction of the light’s propagation. At that time, wave theories of light were often
based on the concept of the luminiferous ether a hypothetical medium thought to enable
light waves to propagate through a vacuum, despite the absence of any physical medium.
However, MacCullagh’s theory did not rely on the luminiferous ether, setting it apart from
other theories of the era. His work laid the foundation for future developments in electro-
magnetism and the theory of light, particularly contributing to the understanding of light
polarization and the behaviour of light in various media.

Same forty years latter Lord Kelvin [3] proposed a mechanical model that was based on
MacCullagh generalized continuum and in 1887 Voigt [4] constructed an elastic continuum
where each point of the continuum is supplied with a triad (directors) capable for describing
polar molecules in crystallography. In this work, Voigt introduced the concept of anisotropic
elasticity, where the elastic response of a material varies depending on the direction of the
applied stress. He systematically explored how crystals deform under mechanical forces and
derived equations that describe the relationship between stress and strain in crystalline ma-
terials. This work is significant because it expanded the understanding of elasticity from
isotropic materials (where properties are uniform in all directions) to anisotropic crystals,
which have directionally dependent properties. Voigt’s work laid the foundation for the
modern field of crystal elasticity and is particularly known for introducing the Voigt nota-
tion, which simplifies the mathematical representation of the elasticity tensor in crystalline
materials.

The most significant contribution to the field of generalized continua was made in 1909 by the
Cosserat brothers [5], who introduced a generalized theory of elasticity that expanded upon
classical continuum mechanics. In this ground-breaking work, they developed the concept
of micropolar or Cosserat continua, which considers the internal structure of materials by
incorporating additional degrees of freedom beyond those in traditional theories. Specifically,
they proposed that each point in a material has not only translational motion but also
rotational motion. This led to the introduction of couple stresses and rotational inertia.
Their framework enables the modelling of materials with complex internal structures, such
as granular materials, composites, and other heterogeneous media, marking a significant
advancement in the study of deformable bodies and continuum mechanics.

After World War II, a significant resurgence in this field occurred, marked by the publication
of Ericksen and Truesdell in 1958. Further advancements were driven by the foundational
contributions of researchers such as Kröner [6], Aero and Kuvshinskil [7], Nowacki [8] and
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Chapter 1 Setting the Stage

Maugin [9]. This revival was motivated by the limitations of classical models in explaining
certain mechanical behaviours of solids and fluids. Notable examples include the turbulence
of fluids and the behaviour of solids with complex microstructures. The 1960s are often
considered the heyday of generalized continua, as most of the seminal works in this field were
published during that decade. An incomplete couple stress theory was initially formulated
in 1960 by Truesdell and Toupin [10], and it was later corrected and completed in 1962
by Mindlin and Tiersten [11], Toupin [12], and Eringen [13] and became known as the
”indeterminate” couple stress theory.

In 1964, Eringen and Suhubi [14], [15] and Eringen [16], [17] introduced a new general
theory of non-linear micromorphic continua. This theory extends traditional balance laws
by incorporating additional ones and considering the intrinsic deformations and motions of
the body’s micro-constituents. It includes, as a special case, both the Cosserat continuum
and the indeterminate couple stress theory. That same year, Mindlin [18] published a linear
microstructure theory of elasticity, and Green and Rivlin [19] introduced a multipolar theory.
Additionally, Palmov [20] recapitulated the Cosserat continuum in 1964. These theories,
along with the micromorphic theory, are closely related. Since then, research in this area
has intensified, resulting in an abundance of papers on this topic and related fields.

Figure 1.3.1: Classification of generalized continua into higher-order and higher-grade media
[21].

The models proposed initially met all the requirements of Continuum Thermomechanics, in-
cluding the formulation of balance laws and general representations of constitutive equations.
This initially satisfied the scientific community. However, the models fell short in practical
applications. The main issue was the gap between the formulated constitutive equations and
the ability to identify the necessary material parameters. These models often involved many

3



Chapter 1 Setting the Stage

more parameters compared to classical models, making them difficult to apply. Additionally,
computational resources and available technology at the time were limited. Consequently,
from the late 1960s until the 1990s, only a small number of researchers in the scientific and
engineering communities continued to work in the field of Generalized Continua.

In the past twenty years, the landscape has transformed dramatically. Advances in computa-
tional capabilities have revitalized interest in previously overlooked models, allowing for the
numerical simulation of very complex problems. Additionally, increased focus on materials
with intricate microstructures and a better understanding of material parameters (including
scale effects) have significantly improved the accuracy of material identification. As a result,
we now have contributions that detail both micro and macro-behaviour, new theorems on
existence and uniqueness, and the formulation of multiscale problems. These developments
allow us to reassess the state of matter and explore emerging trends and applications.

As noted, there are various types of generalized continuum theories. The theory applied in
this work is Mindlin’s general theory [18], which is part of a broader class of generalized
continua known as micromorphic continua. Micromorphic continua poses the following very
interesting features [1]

• Inevitable introduction of characteristic lengths.

• Appearance of so-called capillarity effects (surface tension) due to the explicit intervening
of curvature of surfaces.

• Correlative boundary layers effects.

• Dispersion of waves with a possible competition and balance between non-linearity and
and dispersion, and the existence of solitonic structures [22].

• Intimate relationship with the Ginzburg–Landau theory of phase transitions [23], [24] and
for fluids, van der Waals’ theory [25], [26].

To clearly demonstrate the characteristics of the micromorphic continua, it is necessary to
present the governing equations. However, this will be addressed later in the context of this
work.

4



Chapter 1 Setting the Stage

1.4 Applications

1.4.1 Applications of Generalized Continuum Theories

Generalized continuum theories expand upon classical continuum mechanics by introducing
additional elements like microstructure effects, size dependencies, and higher-order gradients.
These advanced theories are especially valuable for modelling materials and phenomena that
classical methods cannot accurately capture. Key applications of generalized continuum
theories include:

1. Advanced Material Design

• Metamaterials: Generalized continuum theories, such as micropolar or micromor-
phic theories, are used to design and analyse metamaterials, which have unusual proper-
ties like negative refractive index, anisotropy, or tailored mechanical behaviour. These
materials are crucial in applications like superlenses, cloaking devices, and vibration
control [27].

• Composite Materials: In the study of composites, generalized continuum theories
help model the interactions between different phases at the microscopic level, improving
predictions of overall material properties such as stiffness, strength, and toughness [28].

2. Micro and Nano Scale Mechanics

• Micromechanical Systems (MMS) and Nanomechanical Systems (NMS):
Generalized continuum theories are essential for accurately modelling the mechanical
behaviour of structures at micro and nano scales, where surface effects, size dependen-
cies, and material microstructure play significant roles. These theories are used in the
design and optimization of MMS and NMS devices [29].

• Crystalline Materials: In materials science, generalized continuum theories help
describe the behaviour of crystals, particularly at small scales where dislocation dy-
namics, grain boundaries, and other microstructural features influence the material’s
mechanical properties [30].

3. Biomechanics

• Soft Tissue Modelling: Generalized continuum theories are used to model the
complex behaviour of biological tissues, which often exhibit non-classical mechanical
responses due to their hierarchical structure. These models are important in under-
standing soft tissue mechanics, aiding in medical device design, surgical planning, and
injury analysis [31].

• Bone Mechanics: In biomechanics, generalized continuum theories help simulate
the behaviour of bone, which has a complex microstructure. These models are used to
predict bone strength, understand fracture mechanisms, and design implants [31].

5



Chapter 1 Setting the Stage

4. Geomechanics

• Seismic Wave Propagation: In geomechanics, generalized continuum theories are
applied to model seismic wave propagation through complex geological media. These
theories account for the microstructure of rocks and soils, leading to more accurate
predictions of seismic behaviour and better earthquake-resistant design [32].

• Landslide and Subsidence Modelling: These theories help in the study of phe-
nomena like landslides or ground subsidence, where the microstructure of soil and rock
layers affects the overall stability and deformation patterns [32].

5. Structural Engineering

• Fracture Mechanics: Generalized continuum theories are applied to model the
initiation and propagation of cracks in materials, particularly in situations where tra-
ditional fracture mechanics fails. These theories can predict fracture behaviour in
materials with complex microstructures, such as composites, ceramics, and certain
alloys [33].

• Damage Mechanics: In structural engineering, generalized continuum theories are
used to model damage and failure in materials under various loading conditions. This
is especially relevant in predicting the lifespan of structures and materials subject to
fatigue, impact, or high-temperature environments [34].

6. Multiscale Modelling

• Bridging Scales: Generalized continuum theories provide a framework for multi-
scale modelling, where behaviour at the microscopic level influences macroscopic re-
sponses. This is important in fields like materials science, where understanding how
nanoscale features affect bulk properties is crucial for developing new materials [35].

These applications demonstrate the versatility and importance of generalized continuum
theories in advancing our understanding of complex materials and systems, leading to inno-
vations across multiple scientific and engineering disciplines. However, among the possible
applications, the ones that intrigue the author the most are those related to controlling
extreme natural events such as earthquakes and tsunamis:

• Controlling Earthquakes: The principles of generalized continua can be used to protect
civil structures and in some cases even entire cities. By modifying the soil a metamaterial is
created. This metamaterial can be engineered to have properties that mitigate the negative
effects of seismic waves. Prominent contributions to this field come from the research of
Brûlé, Javelaud, Enoch, and Guenneau [36], [37]. In 2012, they presented groundbreaking
work on using seismic metamaterials to control surface seismic waves. Through large-scale
experiments, they demonstrated how arrays of vertical boreholes, acting as metamaterials,
can manipulate seismic wave propagation. Their findings confirmed that seismic metamate-
rials can effectively redirect, attenuate, or block seismic waves, offering a novel method for
seismic protection. This research has significant implications for earthquake engineering, po-
tentially leading to new strategies for safeguarding buildings and infrastructure from seismic
hazards.
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Figure 1.4.1.1: Schematics of (a) a seismic wave in an alluvium basin and (b) the seismic
testing device cross section in the x− z plane [36].

Figure 1.4.1.2: Photograph of the seismic metamaterial experiment from Ménard. The three
dashed perimeters account for the location of sensors [measuring the three components of
wave velocity (green area on this photograph)], seismic metamaterial [5 m deep self-stable
holes of diameter 0.32 m with center-to-center spacing of 1.73 m (blue area)], and rotating
source (a vibrating probe set on a crane) with a horizontal displacement of 0.014 m generating
an elastic wave at frequency 50 Hz [36].
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In 2016, Achaoui, Ungureanu, Enoch, Brûlé, and Guenneau [38] conducted notable research
exploring the use of arrays of inertial resonators to dampen seismic waves. The study inves-
tigates the potential of these resonators—structures that vibrate at specific frequencies to
reduce the amplitude of seismic waves as they travel through the ground. By strategically
placing these resonators in the soil, they created a type of seismic metamaterial that can
effectively mitigate the impact of earthquakes, enhancing the protection of structures. Their
research combines theoretical analysis, numerical simulations, and experimental validations
to demonstrate the feasibility of this innovative approach.

Figure 1.4.1.3: Schematic diagram of a seismic wave shield consisting of inertial resonators
placed around the foundations of a large civil infrastructure. Inset shows a periodic cell with
an iron sphere connected to a bulk of concrete or soil through six iron or rubber ligaments
[38].

In 2019 Brûlé, Enoch, and Guenneau [39] examined how integrating nanophotonic materials
and devices into seismic engineering can lead to innovative approaches for mitigating seismic
risks and improving structural resilience. Nanophotonic materials have unique properties,
such as the ability to manipulate electromagnetic waves with high precision. This capability
allows engineers to develop advanced sensors, actuators, and damping mechanisms that can
significantly improve the effectiveness of seismic protection systems. Their study highlights
the potential of these cutting-edge technologies to revolutionize seismic design, offering new
solutions for safeguarding infrastructure against the challenges of earthquake-induced forces.
With the integration of nanophotonics into seismic engineering a significant advancement is

8



Chapter 1 Setting the Stage

made in the field, promising to push the boundaries of what is possible in creating resilient
and adaptive seismic megastructures.

Figure 1.4.1.4: Experiment on a flat seismic lens: (A) Photo (courtesy of S. Brûlé) of the
array of boreholes, (B), (C–E) Chronology of the x–y spatial distribution of normalized v2(t)
from (C) 1.900 s to (D) 2.124 s to (E) 2.345 s [39].

In all the examples that were given above, classical plate theory (CPT) was used as the
theoretical framework. There are many similarities between CPT and generalized continuum
theories, which will be further analysed later in this work.

• Controlling Tsunamis: History has shown that planting trees with complex root sys-
tems, such as mangroves, around coastlines can help control the impact of tsunamis. Man-
grove trees play a crucial role in protecting coastal areas from the devastating impact of
tsunamis. The dense root systems of mangroves act as a natural barrier, reducing the en-
ergy and speed of incoming tsunami waves before they reach inland areas. Scientific studies
have shown that mangroves can significantly reduce wave height and energy, providing a
buffer that minimizes coastal erosion and the impact on human settlements. According
to research by Kathiresan and Rajendran (2005) [40], mangroves can reduce the height of
tsunami waves by up to 50% over short distances, depending on the density and width of the
mangrove forest. Another study by Danielsen et al. (2005) [41] highlighted that areas with
healthy mangrove forests experienced less damage during the 2004 Indian Ocean tsunami
compared to regions where mangroves had been cleared.
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Figure 1.4.1.5: Wave propagation through a mangrove forest [42].

The effectiveness of mangroves in protecting coasts from tsunamis is largely due to their
complex and extensive root systems. Mangrove roots, particularly the stilt and prop roots,
are adept at trapping sediments and stabilizing the coastline. These roots interlock to form
a dense network that absorbs and dissipates the energy of the waves, reducing their force as
they move inland. Additionally, the roots help to reduce soil erosion by anchoring the soil
and preventing it from being washed away by the waves. This not only protects the coastline
but also helps maintain the health of the mangrove ecosystem itself, ensuring its continued
effectiveness as a natural tsunami barrier (Alongi, 2008 [43]).

In summary, mangrove forests serve as a vital natural defence against tsunamis, with their
root systems playing a key role in reducing wave energy and protecting coastal regions. The
preservation and restoration of mangrove forests are therefore essential for enhancing coastal
resilience against future tsunami events.

The concept of generalized continua can be applied to study wave propagation through
a mangrove forest. Traditional models often oversimplify the interaction between tsunami
waves and the complex root systems of mangroves, potentially missing important microstruc-
tural behaviours. Generalized continuum theories allow for a more precise representation
of energy dissipation, wave attenuation, and momentum exchange as the tsunami moves
through the dense root network. This approach leads to more accurate predictions of how
mangrove forests reduce wave intensity, providing valuable insights for designing coastal
protection strategies that leverage natural defences.

1.4.2 Modelling Crystal Latices With Fractals

Given that the problems under examination involve configurations of fractals, it is fitting
to discuss a few applications of fractals. Many applications of fractals in mechanics involve
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modelling crystal lattices. Although challenging, using fractals to model crystal lattices can
offer valuable insights, particularly when capturing the complexity, self-similarity, and hier-
archical structures found in certain materials. Traditional crystal lattices are often periodic
with regular, repeating patterns, but fractals can serve as effective conceptual or quantita-
tive models for specific types of crystal structures or related phenomena. Below are some
examples of fractals that can be useful in modelling or representing aspects of crystal lattices:

1. Sierpinski Triangle (or Gasket): The Sierpinski triangle can be used to model the
hierarchical structure of certain quasicrystals or fractal-like defects within a crystal
lattice. It’s a 2D fractal that exhibits self-similarity, where each triangle is composed
of smaller triangles that repeat at different scales [44]. This fractal can help visualize
how a crystal might form or break down in a self-similar manner, or how defects might
distribute across scales within the crystal.

2. Koch Snowflake: The Koch snowflake is a fractal curve that represents the concept of
infinite perimeter within a finite area. It’s useful for modelling interfaces or boundaries
in crystal lattices, particularly in cases where the surface exhibits complex, self-similar
roughness, such as grain boundaries or crack fronts in polycrystalline materials [45].
It can be used to understand the growth patterns of crystals or the development of
surface roughness during processes like solidification or phase transitions.

3. Cantor Set: The Cantor set is a 1D fractal that can be extended to higher dimen-
sions. It’s useful in modelling atomic distributions in disordered systems or in studying
the distribution of vacancies, impurities, or defects within a crystal lattice [45]. The
Cantor set’s fractal nature can represent how certain atomic sites might be occupied
or unoccupied across different scales, leading to a fractal distribution of defects or
dopants.

4. Mandelbrot Set: Although primarily a mathematical construct, the Mandelbrot set
can be used to explore the concept of fractal boundaries and phase transitions in
materials. It’s particularly useful in studying systems that exhibit chaotic behaviour
or complex boundary conditions [46]. The Mandelbrot set can model the complex and
chaotic behaviour of interfaces in crystal lattices, particularly in systems near critical
points or undergoing phase transitions.

5. Penrose Tiling: While not a fractal in the strictest sense, Penrose tiling exhibits non-
periodic order and is used to model quasicrystals, which have a structure that is ordered
but not periodic. Penrose tiling can be extended to exhibit self-similar properties,
making it relevant to fractal concepts [47]. This tiling is crucial in understanding the
atomic arrangement of quasicrystals, which can have fractal-like hierarchical structures
without repeating periodically.

6. Apollonian Gasket: The Apollonian gasket is a fractal generated by repeatedly filling
the gaps between circles (or spheres in 3D) with smaller circles (or spheres). It can be
used to model the packing of atoms in a crystal lattice, particularly in systems where
the atomic arrangement is non-regular or hierarchical. The Apollonian gasket can
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represent how atoms or particles pack in certain disordered or amorphous materials,
where space-filling and hierarchical organization are important [45].

7. Gosper Curve (or Gosper Island): The Gosper curve is a space-filling fractal
that can model certain aspects of crystal lattices, particularly those with hexagonal
symmetry or those that exhibit self-similar tiling patterns [48]. It can be used to
model the distribution of atoms in materials with hexagonal structures or to explore
the arrangement of defects or inclusions within such lattices.

8. Fractal Aggregation Models (e.g., Diffusion-Limited Aggregation - DLA):
DLA is a process that generates fractal patterns through the aggregation of particles
undergoing random motion. It’s used to model crystal growth, particularly in systems
where the growth is irregular or where particles aggregate in a fractal manner [49].
This model is relevant in studying the formation of dendritic crystals or the growth of
colloidal crystals, where the aggregation process leads to a fractal structure.

9. Vicsek Fractal: The Vicsek fractal is a self-similar fractal that can be used to model
the hierarchical and recursive nature of certain crystal structures, particularly in mate-
rials that form through recursive processes or that have fractal-like defects [45]. It can
be applied in studying materials that exhibit hierarchical porosity or in understanding
the recursive nature of certain defect patterns within crystal lattices [50].

Fractals are powerful tools for modelling and understanding complex structures and be-
haviours in crystal lattices, especially in cases where traditional periodic models fall short.
While these fractals might not replicate the exact atomic positions in a lattice, they provide
insights into the hierarchical, self-similar, and irregular features that can occur in real-world
materials.

1.4.3 Applications of Fractals in Continuum Theories

In addition to modelling crystal lattices, fractals have many other applications in classical
and generalized continua, including:

1. Modelling Microstructural Effects: Fractals can be used to model complex mi-
crostructures in materials where classical continuum theories might fall short. The
self-similar nature of fractals allows for the representation of hierarchical structures
and variations at different scales, which is particularly useful in understanding mate-
rials with complex internal structures like porous media or composites. Fractal-based
models are especially effective in capturing the microstructures of porous materials or
foams. Fractals can help in simulating how such materials behave under various stress
conditions and predict their mechanical properties more accurately than traditional
methods [51], [52].
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2. Enhanced Modelling of Damage and Failure: In the study of damage and fail-
ure in materials, fractal models can represent the distribution of cracks and defects.
The fractal dimension can be used to characterize the irregularities and complexity
of crack patterns, providing more detailed insights into the damage evolution process.
Applying fractal geometry to describe the crack patterns in brittle materials. By in-
corporating fractal dimensions into generalized continuum theories, researchers can
improve predictions of crack growth and material failure [53], [54].

3. Predicting Fractal-like Defects in Materials: Fractals are useful for modelling
defects and irregularities in materials that exhibit self-similar patterns. Generalized
continuum theories that include fractal descriptions can better capture the behaviour
of materials with complex defect structures, such as certain types of polycrystalline
materials [55]. Using fractal models to predict the behaviour of materials with fractal-
like defects, such as grain boundaries in polycrystalline materials or dislocations in
crystals. These models help in understanding how such defects influence the overall
mechanical properties [56].

4. Simulating Material Behaviour at Multiple Scales: Fractals can aid in bridging
scales between micro and macro levels in generalized continuum theories. They provide
a framework for incorporating scale effects and hierarchical structures into continuum
models, improving the accuracy of simulations for materials with complex hierarchical
features. Integrating fractal geometry into multiscale models to simulate the mechani-
cal behaviour of materials with hierarchical structures, such as hierarchical composites
or biological tissues. This approach helps in understanding how microstructural fea-
tures affect the macroscopic properties [57], [58].

5. Designing Metamaterials: Fractals are used in the design and analysis of metama-
terials, which are engineered to have specific properties not found in natural materials.
Fractal patterns can be incorporated into the design of metamaterials to achieve de-
sired mechanical or optical properties. For instance, fractal designs can be used to
create materials with negative refraction or other unique characteristics. By using
fractal geometry in the design process, engineers can create materials with enhanced
or tailored properties [59], [60].
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2 Mindlin’s General Theory

2.1 Introduction

In this section a brief presentation of Mindlin’s general theory is made, despite the fact
that only form II is used in this work. Mindlin’s general theory is an elasticity theory
that takes the existence of microstructure into account from the macroscopic point of view,
(which is the point of view of a continuum theory). By doing so, the continuum is now
described with more variables, in this way, the filed equations that arise are more detailed
compared to those of classical elasticity, which in many cases results in a more realistic
response of the material in relation to that predicted by the classical theory of Cauchy.
Initially, the kinematics are presented from a general point of view, which accounts for
every micromorphic continuum, (in this work the word micromorphic is used to indicate a
generalized continuum with microstructure). In this way, the kinematics of Mindlin’s general
theory can be formulated in a rational way. Having formulated the kinematics, we continue
by defining the kinetic and potential energy of the continuum, the expressions of which will
be used for the variational formulation of the equations of motion and boundary conditions
through Hamilton’s Principle. The constitutive laws are formulated for the general case of
anisotropic materials. These equations are quite extensive, however they can be significantly
simplified in the case of isotropic materials. Finally, the displacement equations of motion
are being derived which will be used extensively latter in the problems, as they will function
as a reference point in the search of analytical solutions.

2.2 Kinematics

2.2.1 Non – Linear Kinematics of Micromorphic Continua

Consider a body B whose particles occupy the points of a region of a Euclidean point space
E. During the motion of B, a point P of the reference configuration B0 with position vector
X measured from a fixed origin O is mapped into a point on the spatial configuration Bt
with position vector x relative at an origin o. The origin O from which X is measured
does not need to coincide with o. In a continuum theory that takes microstructure into
account a point P (respectively p) is manifested as a particle, which on the microscopic
level appears as a continuum of small extent. In each particle of B corresponds a micro –
configuration, the notations B′

0, B′
t are used in order to indicate the reference and spatial

micro – configurations. Let P ′ be a point of B′
0 that during the motion of B is mapped into

a point p′ on B′
t. The position vectors of points P ′, p′ are X′, x′ with respect to the macro –

frame of reference, while the same points are also measured with respect to a micro – frame
of reference by two other position vectors Ξ′, ξ′. The axis of Ξ′, ξ′ are parallel to those of X,
x, with origin fixed to the centroid of the micro – configuration, denoted by C (respectively
c), so that the origin of the coordinates ξ′i moves with the displacement u. It is clear that

14



Chapter 2 Mindlin’s General Theory

in micromorphic theories we are obliged to consider at least two frames of reference even for
the case of small deformations, one which describes the motion of the macro – medium and
another that describes the motion of the micro – medium.
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Figure 2.2.1.1: Motion of a continuum body with microstructure.

The motion of the macro – medium can be described by the same placement functions as in
classical continuum mechanic:

x = χ(X, t) (2.2.1.1)

X =X(x, t) (2.2.1.2)
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While the motion of the micro – medium can be described by two other placement functions
that will depend on both the micro and the macro - coordinates:

ξ = ξ̂(X,Ξ, t) (2.2.1.3)

Ξ = Ξ̂(x, ξ, t) (2.2.1.4)

In accordance with the impenetrability and indestructibly of matter, it is assumed that
(2.2.1.1), (2.2.1.3) and their unique inverse (2.2.2.1), (2.2.1.4) exist at all points of B0, Bt
and B′

0, B′
t respectively at every time t. This is valid when ∂x/∂X and ∂ξ/∂Ξ are continuous

functions of X, Ξ and t and the Jacobians satisfy the following conditions:

J = det

(
∂x

∂X

)
̸= 0 ∀X ∈ B0 ∀t (2.2.1.5)

J ′ = det

(
∂ξ

∂Ξ

)
̸= 0 ∀Ξ ∈ B′

0 ∀t (2.2.1.6)

Equations (2.2.1.1), (2.2.1.2) represent the spatial and referential form of the motion of the
macro – medium, whereas, equations (2.2.1.3), (2.2.1.4) represent the spatial and referential
form of the motion of the micro – medium.

From Figure (2.2.1.1), it is very easy to obtain the following equations:

x′ = x+ ξ (2.2.1.7)

X′ = X+Ξ (2.2.1.8)

Also, the placement functions (2.2.1.1), (2.2.1.2) can be expressed in terms of x′, X′ as:

x′ = χ(X′, t) = χ(X+Ξ, t) (2.2.1.9)

X′ =X(x′, t) =X(x+ ξ, t) (2.2.1.10)

Substituting (2.2.1.1), (2.2.1.3) into (2.2.1.9) and (2.2.1.2), (2.2.1.4) into (2.2.1.10) yields:
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χ(X+Ξ, t) = χ(X, t) + ξ̂(X,Ξ, t) (2.2.1.11)

X(x+ ξ, t) =X(x, t) + Ξ̂(x, ξ, t) (2.2.1.12)

Evaluating (2.2.1.11) at Ξ = 0 and (2.2.1.12) at ξ = 0 gives:

ξ̂(X, 0, t) = 0 (2.2.1.13)

Ξ̂(x, 0, t) = 0 (2.2.1.14)

In order to formulate an equation for the motion of the micro – medium in spatial form we
can expand (2.2.1.3) in terms of Taylor series about point Ξ = 0:

ξ = ξ̂(X, 0, t)+
∂ξ̂

∂Ξ

∣∣∣
Ξ=0

·Ξ+
1

2!

∂2ξ̂

∂Ξ2

∣∣∣
Ξ=0

: (Ξ⊗Ξ)+...+
1

n!

∂nξ̂

∂Ξn

∣∣∣
Ξ=0

•(Ξ⊗ ...⊗Ξ)︸ ︷︷ ︸
(n−1) times

(2.2.1.15)

In (2.2.1.15) the • symbol denotes n contractions. We can also formulate an equation for the
motion of the micro – medium in referential form by expanding (2.2.1.4) in terms of Taylor
series about point ξ = 0:

Ξ = Ξ̂(x, 0, t)+
∂Ξ̂

∂ξ

∣∣∣
ξ=0

·ξ+ 1

2!
+
∂2Ξ̂

∂ξ2

∣∣∣
ξ=0

: (ξ⊗ξ)+...+ 1

n!

∂nΞ̂

∂ξn

∣∣∣
ξ=0

•(ξ ⊗ ...⊗ ξ)︸ ︷︷ ︸
(n−1) times

(2.2.1.16)

Because of (2.2.1.13), (2.2.1.14) the constant term in (2.2.1.15), (2.2.1.16) vanish, thus we
have:

ξ =
∂ξ̂

∂Ξ

∣∣∣
Ξ=0

·Ξ+
1

2!

∂2ξ̂

∂Ξ2

∣∣∣
Ξ=0

: (Ξ⊗Ξ) + ...+
1

n!

∂nξ̂

∂Ξn

∣∣∣
Ξ=0

• (Ξ⊗ ...⊗Ξ)︸ ︷︷ ︸
(n−1) times

(2.2.1.17)

Ξ =
∂Ξ̂

∂ξ

∣∣∣
ξ=0

· ξ + 1

2!
+
∂2Ξ̂

∂ξ2

∣∣∣
ξ=0

: (ξ ⊗ ξ) + ...+
1

n!

∂nΞ̂

∂ξn

∣∣∣
ξ=0

• (ξ ⊗ ...⊗ ξ)︸ ︷︷ ︸
(n−1) times

(2.2.1.18)
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At this point we introduce a few definitions regarding macromorphic continua [61]

Definition 2.2.1.1. A deformable body B is called micromorphic continuum of grade
n if its motion in spatial form is described by (2.2.1.1) and (2.2.1.17), which are Cn

class with respect to the variables X, t and the inverse motion is given by (2.2.1.2),
(2.2.1.18).

If the microstructure is considered small with respect the macroscopic scale of the body, then
we can assume a linear approximation of (2.2.1.17), (2.2.1.18):

ξ = P ·Ξ (2.2.1.19)

Ξ = P−1 · ξ (2.2.1.20)

Where the micromorphic deformation gradient of each microstructure is defined as:

P =
∂ξ̂

∂Ξ

∣∣∣
Ξ=0

, P = P(X, t) (2.2.1.21)

While the inverse micromorphic deformation gradient is defined as:

P−1 =
∂Ξ̂

∂ξ

∣∣∣
ξ=0

, P−1 = P−1(X, t) (2.2.1.22)

The existence of P−1 is ensured due to (2.2.1.6).

Definition 2.2.1.2. A deformable body B is called micromorphic continuum of grade
one if its motion in spatial form is described by (2.2.1.1) and (2.2.1.21), which are C1

class with respect to the variables X, t and the inverse motion is given by (2.2.1.2),
(2.2.1.22).

From equations (2.2.1.1), (2.2.1.1) and (2.2.1.21), (2.2.1.22) it is obvious that the motion of
a micromorphic continuum of grade one can be completely described by a vector function
x = χ(X, t) (respectively X = X(x, t)) and a tensor function P = P(X, t) (respectively
P−1(X, t)). Thus, such a continuum in the most general case has 12 kinematic degrees of
freedom.
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From (2.2.1.1), it is also easy to express the macro – displacement and micro- displacement
vectors in terms of the material coordinates:

u = b+ x−X, u = u(X, t) (2.2.1.23)

u′ = u+ ξ −Ξ, u′ = u′(X,Ξ, t) (2.2.1.24)

Where b = b(t) is the displacement vector representing rigid body motion, u is the macro
– displacement vector in material description and u′ is the micro – displacement vector in
material description.

Equations (2.2.1.23) – (2.2.1.24) can be written using index notation as:

ui = aiJbJ + xi − aiJXJ (2.2.1.25)

u′i = ui + ξi − a′iJΞJ (2.2.1.26)

Where aiJ are the direction cosines between the spatial and material macro – coordinate
systems with unit vectors ei and EJ respectively and a′iJ are the direction cosines between
the spatial and material micro – coordinate systems with unit vectors e′i and E′

J .

aiJ = ei · EJ = EJ · ei (2.2.1.27)

a′iJ = e′i · E′
J = E′

J · e′i (2.2.1.28)

It was mentioned earlier that the axis of Ξ, ξ are parallel to those of X, x, which results in:

aiJ = a′iJ (2.2.1.29)

In order to examine the pure deformation, it is convenient to superimpose the coordinates
systems for the reference and spatial macro – configurations, which results in b = 0. In this
case the direction cosines degenerate into Kronecker deltas (aiJ = a′iJ = δiJ) and as a result
(2.2.1.23) – (2.2.1.24) become:

u = x−X (2.2.1.30)
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u′ = x−X+ ξ −Ξ (2.2.1.31)

or using index notation:

ui = xi − δiJXJ = xi −Xi (2.2.1.32)

u′i = xi − δiJXJ + ξi − δiJΞJ = xi −Xi + ξi − Ξi (2.2.1.33)

By differentiating equations (2.2.1.30), (2.2.1.31) with respect to the material position vectors
X, Ξ respectively, we define the material macro and micro – displacement gradients:

∇Xu = F− I (2.2.1.34)

∇Ξu
′ = F′ − I (2.2.1.35)

Where F is the classical deformation gradient (now the macro – gradient of the macro
deformation) and F′ is the micro – deformation gradient (the micro – gradient of the micro
deformation):

F = ∇Xx, F = F(X, t) (2.2.1.36)

F′ = ∇Ξξ, F′ = F′(X,Ξ, t) (2.2.1.37)

An essential assumption of the micromorphic theories is that the micro – deformation is
taken to be homogenous in the micro – medium and non – homogenous in the macro –
medium, which means that F′ must not depend from the micro – coordinates Ξ. Thus, in
view of (2.2.1.21), (2.2.1.37) we can write:

P(X, t) = F′(X, t) (2.2.1.38)

Equation (2.2.1.35) can be expressed in terms of P as:

ψT = P− I (2.2.1.39)
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Where ψ is the micromorphic displacement gradient, also commonly refereed in the literature
as the micro – deformation:

ψ = (∇Ξu
′)T, ψ = ψ(X, t) (2.2.1.40)

Equations (2.2.1.34), (2.2.1.35) are the fundamental relations that describe the deformation
and motion of a micromorphic continuum locally. Because (2.2.1.34), (2.2.1.35) are identical,
we can conclude that whatever holds for F regarding the polar decomposition will also hold
for P, meaning we can define deformation measures for the micro – deformation identical to
those of the macro – deformation in terms of P.

We now define the Green – Saint – Venant strain tensor E in the same way as in classical
continuum mechanics:

E =
1

2

(
FTF− I

)
(2.2.1.41)

In a similar fashion, we define a corresponding deformation metric tensor that measures how
much a given micro – displacement differs locally from a rigid body micro – displacement
[61].

M =
1

2

(
PTP− I

)
(2.2.1.42)

M is known as the micromorphic Green – Saint – Venant strain tensor.

It is also useful to define a strain measure that takes into account the differential deformations
of the continuum element and the microstructure by the name relative micro – macro – Green
– Saint – Venant strain tensor [61]:

Y =
(
I−PTF−T

)
(2.2.1.43)

It is noted that tensor Y takes into account the differential rotation between the micro and
macro-scale, since when applying the polar decomposition theorem in (2.2.1.43) the rotation
does not vanish, however we will see later that this problem is sorted within the three forms
of Mindlin’s general theory.
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We also define the following third-order tensor, called the first nonlinear micro-deformation
gradient [61]:

Λ =
(
F−1∇XP

)T13 (2.2.1.44)

With T13 indicating the transpose operator with respect to the first and third indices of Λ.

In equations (2.2.1.41) – (2.2.1.44) appear three independent strain measures F, P, ∇XP,
which means that in order to describe the deformation of a micromorphic continuum we
must use only three of the aforementioned four strain tensors. Since E is the only tensor
that measures the deformation of the macro – medium and Y is the only one of them that
measures the relative deformation of the microstructure with respect to the macro – medium
we are obliged to consider them, also since the tensor ∇XP appears only through Λ we come
to the conclusion that our deformation measures will be E, Y and Λ. In the next chapter
we will see that the strain tensors that are defined in Mindlin’s general theory (which is a
geometrically linear theory) will be derived by linearizing the expressions of E, Y and Λ.

2.2.2 Kinematics of Mindlin’s General Theory

Up to this point the kinematics has been presented from a general point of view which
does not only hold for Mindlin’s general theory but also applies in geometrically nonlinear
micromorphic continua. From this point on, we will continue by invoking the assumptions
regarding the kinematics of Mindlin’s general theory. We begin by considering the case of
small deformations, so the absolute values of the displacement gradients are assumed to be
small in comparison with unity:

∣∣∣∣ ∂ui∂Xj

∣∣∣∣≪ 1 (2.2.2.1)

|ψij| =
∣∣∣∣∂u′j∂Ξi

∣∣∣∣≪ 1 (2.2.2.2)

The above assumptions imply that there is little difference in the material and spatial coordi-
nates of a given material point in the continuum, thus the referential and spatial description
are approximately the same:

∂ui
∂Xj

≈ ∂ui
∂xj

, uj = uj(xi, t) (2.2.2.3)

ψij =
∂u′j
∂Ξi

=
∂u′j
∂ξi

, u′j = u′j(xi, ξi, t) (2.2.2.4)
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The linearization process is performed by initially expressing (2.2.1.41) – (2.2.1.44) in terms of
the displacement and micro – displacement gradients and then taking into account (2.2.2.3),
(2.2.2.4):

E =
1

2

[
(∇Xu+ I)T (∇Xu+ I)− I

]
+

1

2

[
∇Xu+ (∇Xu)

T + (∇Xu)
T ∇Xu

]
≈ 1

2

[
∇Xu+ (∇Xu)

T
]

≈ 1

2

[
∇xu+ (∇xu)

T
]
= ε (2.2.2.5)

M =
1

2

(
ψ +ψT +ψψT

)
≈ 1

2

(
ψ +ψT

)
= sym(ψ) (2.2.2.6)

Y =
[
I−

(
ΨT + I

)T
(∇Xu+ I)T

]
≈
[
(∇Xu)

T −ψ +ψ (∇Xu)
T
]

≈
[
(∇Xu)

T −ψ
]
= γ (2.2.2.7)

For the linearization of Λ it is convenient to use index notation.

λijk = F−1
kl Plj,i

≈ (δkl − uk,lPlj,i)

= Pkj,i − uk,lPlj,i

≈ Pkj,i = ψjk,i = kijk (2.2.2.8)

Where ε is the infinitesimal strain tensor, ψ is the symmetric part of the micro – deformation,
γ is the linearized micro – macro – Green – Saint – Venant strain tensor, kijk is the macro
– gradient of the micro - deformation and the comma symbol denotes differentiation with
respect to the coordinate xi or ξi. Tensors ε, sym(ψ) and γ can be expressed using index
notation as:
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εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.2.2.9)

ψ(ij) =
1

2
(ψij + ψji) (2.2.2.10)

γij =

(
∂ui
∂xj

− ψij

)
(2.2.2.11)

From classical continuum mechanics we know that in small deformations the symmetric part
of the displacement gradient is the infinitesimal strain tensor εij, defined in (2.2.2.9) (now the
macro – strain) and the antisymmetric part of the displacement gradient is the infinitesimal
rotation tensor ωij (now the macro - rotation).

ωij =

(
∂ui
∂xj

− ∂uj
∂xi

)
(2.2.2.12)

In the same sense the micro – deformation can be decomposed uniquely as the sum of a
symmetric and an antisymmetric second order tensor. The symmetric part of ψij is the
micro – strain ψ(ij), defined in (2.2.2.10) and the antisymmetric part is the macro – rotation:

ψ[ij] =
1

2
(ψij − ψji) (2.2.2.13)

Because ui and ψij are assumed to be continuous and single valued functions of the macro
– coordinates xi, the following compatibility equations are obtained for simply connected
bodies.

emikenlj
∂2εkl
∂xi∂xj

= 0 (2.2.2.14)

emij
∂kjkl
∂xi

= 0 (2.2.2.15)
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∂

∂xi
(εjk + ωjk − γjk) = kijk (2.2.2.16)

Where εijk is the alternating tensor.

2.3 Energetics

2.3.1 Kinetic Energy

In Mindlin’s general theory the micro – medium is considered as a parallelepiped with volume
V ′ and edges of lengths 2di and direction cosines lij with respect to the axis ξi. Let ξ′i be
oblique Cartesian coordinates parallel to the edges di respectively. Then:

ξi = lijξ
′
j (2.3.1.1)

The volume of a parallelepiped can be calculated as the mixed product of three vectors
parallel with the edges of the parallelepiped, with length equal to that of the edges.

V ′ = 8∥lijlik∥1/2d1d2d3 (2.3.1.2)

dV ′ = ∥lijlik∥1/2dξ′1dξ′2dξ′3 (2.3.1.3)

In his general theory Mindlin defined the kinetic energy density (kinetic energy per unit
macro – volume) as:

T =
1

2
ρM u̇ju̇j +

1

V ′

∫
V ′

1

2
ρ′(u̇j + u̇′j)(u̇j + u̇′j) dV

′ (2.3.1.4)

Where ρM is the mass of the macro – material per unit macro – volume, ρ′ is the mass of
the micro – material per unit micro – volume and the dot symbol designates differentiation
with respect to time. As we know from classical mechanics, the speed and thus the kinetic
energy of a system depends on the frame of reference. If one notices carefully the above
equation, then it is will be obvious that the first term represents the kinetic energy density
of a particle of the macro – medium with respect to the origin of the macro – frame of
reference, while the second term represent the kinetic energy density of the micro medium
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that at the macroscopic scale corresponds to the same particle, again with respect to the
macro – frame of reference.

By substituting (2.3.1.2), (2.3.1.3) into (2.3.1.4) and performing the integration we obtain:

T =
1

2
ρu̇ju̇j +

1

6
ρ′d2klψ̇ljψ̇lj (2.3.1.5)

where:

ρ = ρM + ρ′ (2.3.1.6)

d2kl = dpdq(δp1δq1lk1ll1 + δp2δq2lk2ll2 + δp3δq3lk3ll3) = d2lk (2.3.1.7)

From (2.3.1.7) it is clear that the expression of d2kl depends from the geometry of the micro
– structure. In Mindlin’s general theory the unit cell is taken to be a parallelepiped in order
to represent the unit cell of a crystal lattice. If another shape is considered then the only
expression that changes is that of d2kl. Also, the cell can be interpreted as a molecule of a
polymer, a crystallite of a polycrystal or a grain of a granular material.

2.3.2 Potential Energy

Regarding the potential energy density (potential energy per unit macro – volume), it is
assumed that a function of ϵij, γij, kijk exists.

W = W (ϵij, γij, kijk) (2.3.2.1)

At first glance, one could argue that it is absurd for W to depend from the entire γij. It is
reminded that γij is the linearized relative micro – macro – Green – Saint – Venant strain
tensor Y, defined in (2.2.1.43) that takes into account the differential rotation between the
micro and macro-scale, which means thatY apart from pure deformations also measures rigid
body motion. It will be proved later in the kinematics of form I that a small rigid rotation
of the deformed body produces an equal rotation of the micro – material, meaning that
ωij = ψ[ij]. Consequently, the antisymmetric parts of the tensors that appear in (2.2.2.11)
vanish, making γij an appropriate variable for the potential energy density. However, at the
moment the problem that was mentioned earlier regarding the rotation continues to exist.
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2.4 Variational Approach in Mindlin’s General Theory

2.4.1 Formulation of the Equations of Motion and Boundary Conditions

Instead of applying the conservation laws of linear and angular momentum the equations of
motion are formulated using Hamilton’s principle, since in this way, the boundary conditions
are also derived simultaneously. According to Bedford [62], for the case of a micromorphic
continuum Hamilton’s principle states:

Theorem 2.4.1.1 (Hamilton’s Principle for Micromorphic Continua)

Among admissible comparison motions (2.2.1.1), (2.2.1.2) and micro – motions
(2.2.1.3), (2.2.1.4), the actual motion of the system is such that:∫ t2

t1

[δ(J − W ) + δWext] dt = 0

Where δ denotes the variation, t1, t2 are fixed times with t1 < t2 at which we suppose
that the configuration of the system is prescribed, J is the total kinetic energy, W is
the total potential energy and δWext is the work of the external forces.

The major advantage of Hamilton’s principle when it comes to formulating equations of
motion and boundary conditions is that the quantities that appear in the above expression
are all scalar, which means that the principle is independent of the geometry of the system.
Equivalently, the equations of motion can be formulated using the balance of linear and
angular momentum, but first the relations that connect the multi – polar traction vectors
with the multi – polar stress tensors must be derived. This can be achieved using the idea
of Cauchy’s tetrahedron as in classical continuum mechanics, with the difference being that
the multi – polar forces that act in each face of the tetrahedron should also be considered.

The variation of the kinetic energy term in Hamilton’s principle is:

∫ t2

t1

δJ dt =

∫ t2

t1

δ

∫
B0

T dV dt

=

∫ t2

t1

δ

∫
B0

(
1

2
ρu̇ju̇j +

1

6
ρ′d2klψ̇ljψ̇lj

)
dV dt

=

∫ t2

t1

∫
B0

(
ρu̇jδu̇j +

1

3
ρ′d2klψ̇ljδψ̇lj

)
dV dt (2.4.1.1)

By integrating (2.4.1.1) by parts with respect to time and taking also into account the
conditions δui|t=t1 = δui|t=t2 = 0 and δψij|t=t1 = δψij|t=t2 = 0 we obtain:
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∫ t2

t1

δJ dt =

∫ t2

t1

∫
B0

(
ρu̇jδu̇j +

1

3
ρ′d2klψ̇ljδψ̇lj

)
dV dt

= −
∫ t2

t1

∫
B0

(
ρüjδuj +

1

3
ρ′d2klψ̈ljδψlj

)
dV dt (2.4.1.2)

In order to determine the variation of the potential energy, we define the following stress
tensors, the interpretation of which will be given later:

τij =
∂W

∂εij
(2.4.1.3)

σij =
∂W

∂γij
(2.4.1.4)

µijk =
∂W

∂kijk
(2.4.1.5)

In view of (2.3.2.1), (2.4.1.3) – (2.4.1.5) we can write the variation of the potential energy
density in the form of:

δW = τijδεij + σijδγij + µijkδkijk (2.4.1.6)

Using the definitions of εij, γij, kijk, (2.4.1.6) can be written as:

δW = τij
∂δuj
δxi

+ σij

(
∂δuj
δxi

− δψij

)
+ µijk

∂δψjk
δxi

(2.4.1.7)

The variation of the potential energy term in Hamilton’s principle is:
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∫ t2

t1

δW dt =

∫ t2

t1

δ

∫
B0

W dV dt

=

∫ t2

t1

∫
B0

(
τij
∂δuj
δxi

+ σij

(
∂δuj
δxi

− δψij

)
+ µijk

∂δψjk
δxi

)
dV dt

=

∫ t2

t1

∫
B0

{ ∂

∂xi
[(τij + σij)δuj]−

∂

∂xi
(τij + σij)δuj

}
dV dt

+

∫ t2

t1

∫
B0

[
∂

∂xi
(µijkδψjk)− σijδψij −

∂µijk
∂xi

δψjk

]
dV dt (2.4.1.8)

We will continue from here by applying a well – known theorem of vector calculus.

Theorem 2.4.1.2 (Divergence Theorem)

Let R be a regular area of an Euclidean space with boundary ∂R, let n be the out-
ward pointing unit normal vector at each point on the boundary and let T be a n –
order tensor field continuous on R and continuously differentiable at every point in its
interior. Then: ∫

R

∂Ti1,i2,...,iq ,...,in
iq

dV =

∫
∂R

Ti1,i2,...,iq ,...,inniq dS

Applying the divergence theorem in (2.4.1.8) yields:

∫ t2

t1

δW dt =

∫ t2

t1

∫
∂B0

(τij + σij)niδuj dS dt+

∫ t2

t1

∫
∂B0

µijkniδψjk dS dt

−
∫ t2

t1

∫
B0

∂

∂xi
(τij + σij)δuj dV dt−

∫ t2

t1

∫
B0

(
∂µijk
∂xi

+ σjk

)
δψjk dV dt (2.4.1.9)

The work of the external forces is:

Wext =

∫
B0

fjuj dV +

∫
B0

Fjkψjk dV +

∫
∂B0

tjuj dS +

∫
∂B0

Tjkψjk dS (2.4.1.10)

Where fj is the body force per unit volume, tj is the surface force per unit area, Fjk is
the double force per unit volume and Tjk is the double force per unit area. The double
(or dipolar) forces are antiparallel forces acting between the micromedia contained in the
continuum with microstructure. The diagonal terms of Fjk, Tjk are double forces without
moment and the off – diagonal terms are double forces with moment. The antisymmetric part
F[jk] of Fjk is the body double, while the antisymmetric part T[jk] of Tjk Is the Cosserat couple
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– stress vector. As for the notation of the double forces, the first index of the forces denotes
the orientation of the lever arm between the forces and the second index the orientation of
the pair of the forces.

The variation of the work of the external forces is:

δWext =

∫
B0

fjδuj dV +

∫
B0

Fjkδψjk dV +

∫
∂B0

tjδuj dS +

∫
∂B0

Tjkδψjk dS (2.4.1.11)

By substituting equations (2.4.1.2), (2.4.1.9), (2.4.1.11) into Hamilton’s principle, we obtain:

∫ t2

t1

∫
B0

[
∂

∂xi
(τij + σij) + fj − ρüj

]
δuj dV dt∫ t2

t1

∫
B0

(
∂µijk
∂xi

+ σjk + Fjk −
1

3
ρ′d2jlψ̈jk

)
δψjk dV dt

+

∫ t2

t1

∫
∂B0

[tj − (τij + σij)ni] δuj dS dt

+

∫ t2

t1

∫
∂B0

(Tjk − µijkni) δψjk dS dt = 0

(2.4.1.12)

Due to the independence of the fields δuj, δψjk, equation (2.4.1.12) yields the differential
equations of motions:

∂

∂xi
(τij + σij) + fj = ρüj (2.4.1.13)

∂µijk
∂xi

+ σjk + Φjk =
1

3
ρ′d2jlψ̈lk (2.4.1.14)

As well as the boundary conditions.

tj = (τij + σij)ni (2.4.1.15)

Tjk = µijkni (2.4.1.16)

Taking into consideration equations (2.4.1.3) – (2.4.1.5), (2.4.1.15), (2.4.1.16) as well as the
definitions of ϵij, γij, kijk it appears that an appropriate terminology for the three stress
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tensors is: Cauchy stress for τij, relative stress for σij and double (or dipolar) stress for
µijk. As for the notation of the double stresses, the first index denotes the orientation of the
outward pointing unit normal vector to the surface on which the double stress acts, while
the significance of the other two indices is the same as that of the indices of the double forces
Tjk.

2.4.2 Linear Stability Analysis

The stability of a micromorphic system can be described by the action functional S =
S(ui, ψij), which is defined as:

S =

∫ t2

t1

(T − W +Wext) dt (2.4.2.1)

Setting the first variation of the action functional equal to zero ensures the equations of
motion and boundary conditions through Hamilton’s principle. Regarding the stability of
the system, it is determined by the second variation of the action functional. By expanding
S in terms of Taylor series about the point (ui, ψij) we obtain:

S(ui + δui, ψij + δψij) = S(ui, ψij) +

(
∂S

∂ui
δui +

∂S

∂ψij
δψij

)
+

1

2

[
∂2S

∂ui∂uj
δuiδuj + 2

∂2S

∂ui∂ψjk
δuiψujk +

∂2S

∂ψij∂ψkl
δψijδψkl

]
+ ...

(2.4.2.2)

According to (2.4.2.2), the change of the action ∆S ≡ S(ui+ δui, ψij + δψij)−S(ui, ψij) can
be expressed as:

∆S = δS +
1

2
δ2S + ... (2.4.2.3)

Where the first variation δS must be equal to zero due to Hamilton’s principle:

δS =
∂S

∂ui
δui +

∂S

∂ψij
δψij (2.4.2.4)

Whereas the second variation is defined as:
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δ2S =
∂2S

∂ui∂uj
δuiδuj + 2

∂2S

∂ui∂ψjk
δuiψujk +

∂2S

∂ψij∂ψkl
δψijδψkl (2.4.2.5)

From equations (2.4.2.3) – (2.4.2.5) it is clear that the sign of δS is determined by the first
non – zero term in the Taylor series. If δ2S > 0, then ∆S > 0 and therefore S exhibits
a relative minimum, meaning that the equilibrium state (dynamic or static) is stable. If
δ2S < 0, then ∆S < 0, in this case S exhibits a relative maximum, meaning that the state
is unstable. Finally, known as neutral stability a special case occurs when the second and
all the higher order variations are equal to zero. When a system is in this state under the
influence of a virtual displacement field, it remains in this state without being able to return
to its original state due to zero restoring forces.

2.5 Constitutive Equations

2.5.1 Anisotropic Materials

From the previous analysis we derived 12 equations of motion (equations (2.4.1.13), (2.4.1.14))
using Hamilton’s Principle. The number of unknown functions that appear in (2.4.1.13),
(2.4.1.14)) are 54 and so the problem is undefined. We also have the kinematic equations
that relate the displacements with the strains. However, the stresses do not appear in these
equations, which means that in order to solve a problem in the context of Mindlin’s general
theory we need additional equations that relate the stresses with the strains. In order to
formulate these equations, we start by expanding (2.3.2.1) in terms of Taylor series about
the point (ϵij, γij, kijk) = (0, 0, 0).

W = W0 +

(
∂W

∂ϵij
ϵij +

∂W

∂γij
γij +

∂W

∂kijk
kijk

)
+

1

2

[
∂2W

∂ϵij∂ϵkl
ϵijϵkl +

∂2W

∂γij∂γkl
γijγkl +

∂2W

∂kijk∂klmn
kijkklmn

+2
∂2W

∂γij∂kklm
γijkklm + 2

∂2W

∂kijk∂ϵlm
kijkϵlm + 2

∂2W

∂γijϵkl
γijϵkl

]
+ ...

(2.5.1.1)

By setting aijk = ∂W/∂kijk, bij = ∂W/∂γij, cij = ∂W/∂ϵij, aijklmn = ∂2W/∂kijk∂klmn,
bijkl = ∂2W/∂γij∂γkl, cijkl = ∂2W/∂ϵij∂ϵkl, dijklm = ∂2W/∂γij∂kklm, fijklm = ∂2W/∂kijk∂ϵlm,
gijkl = ∂2W/∂γij∂ϵkl equation (2.5.1.1) can be written as:
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W = W0 + (cijϵij + bijγij + aijkkijk)

+
1

2
[cijklϵijϵkl + bijklγijγkl + aijklmnkijkklmn

+2dijklmγijkklm + 2fijklmkijkϵlm + 2gijklγijklϵkl] + ...

(2.5.1.2)

In (2.5.1.2) W0 is a constant, the terms inside the parenthesis express the potential energy
density due to residual stresses, the terms within the bracket express the potential energy
density due to linear elastic deformations, while the higher order terms that are not shown
express the potential energy density due to non – linear response of the material and in the
context of a constitutive linear theory can be neglected. Also, since in most engineering
problems the residual stresses are not taken into consideration, the terms inside the paren-
thesis can also be neglected. Taking the aforementioned into account, we can write (2.5.1.2)
in the form of:

W =
1

2
cijklϵijϵkl +

1

2
bijklγijγkl +

1

2
aijklmnkijkklmn

+ dijklmγijkklm + fijklmkijkϵlm + gijklγijklϵkl

(2.5.1.3)

In (2.5.1.3) the number of coefficients that seem to appear are 1764, however not all of them
are independent. Due to the symmetry of ϵij and the fact that interchanging the indices i,
j with k, l in the first and second terms and the indices i, j, k with l, m, n in the third
term does not change the potential energy density, the following symmetries result and so,
the number of unknowns is reduced to 903:

cijkl = cklij = cjikl (2.5.1.4)

bijkl = bklij (2.5.1.5)

aijklmn = almnijk (2.5.1.6)

fijklm = fijklm (2.5.1.7)

gijkl = gijlk (2.5.1.8)

Using (2.4.1.3) – (2.4.1.5) and (2.5.1.3) – (2.5.1.8), the following three constitutive equations
are obtained:
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τpq = cpqijϵij + gijpqγij + fijkpqkijk (2.5.1.9)

σpq = gpqijϵij + bijpqγij + dpqijkkijk (2.5.1.10)

µpqr = fpqrijϵij + dijpqrγij + apqrijkkijk (2.5.1.11)

Equations (2.5.1.9) – (2.5.1.11) are the three constitutive laws that relate the stresses with
the strains in Mindlin’s general theory for the most general case of an anisotropic materials.

2.5.2 Higher Order Isotropic Tensors

In the case of isotropic materials, the number of independent coefficients is greatly reduced.
In order to illustrate this, we will use the definition of isotropic tensors. However, it is
deemed necessary to first give o few formal definitions regarding group theory. (Definitions
2.5.2.3 - 2.5.2.6 here are the same as Definitions 2.1 – 2.4 of [63]).

Let V be a vector space of dimension m = 3 on the real field, equipped with an inner product
and referred to an orthogonal basis. Let Tn(V ) denote the vector space of tensors of order
n on V and let I be the identity tensor of T2(V).

Definition 2.5.2.1. The orthogonal group O(3) of a three – dimensional vector space
V is defined as:

O(3) =
{
Q ∈ Tn(V )|QQT = QTQ = I

}
Definition 2.5.2.2. The rotation group O+(3) of a three – dimensional vector space
V is defined as:

O+(3) = {Q ∈ O(3)|det(Q) = 1}

Definition 2.5.2.3. Let T be a subset of O(3). A Cartesian tensor T ∈ Tn(V ) is
said to be T – invariant if:

Tj1,j2,...,jn = Qi1j1Qi2j2 ...QinjnTi1,i2,...,in

With the help of the above definitions, we can now define the different types of isotropic
tensors.
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Definition 2.5.2.4. A Cartesian tensor T ∈ Tn(V ) is called isotropic if it is O(3) –
invariant. (The notation O(3) – invariant means orthogonally invariant).

Definition 2.5.2.5. A Cartesian tensor T ∈ Tn(V ) is called weakly isotropic if it is
O+(3) – invariant. (The notation O+(3) – invariant means rotationally invariant).

Definition 2.5.2.6. A Cartesian tensor T ∈ Tn(V ) is called skew – isotropic if it is
O+(3) – invariant and further more if it satisfies the equality:

Tj1,j2,...,jn = −Qi1j1Qi2j2 ...QinjnTi1,i2,...,in , ∀Q ∈ O(3), det(Q) = −1

Using the above definitions Montanaro and Pigozzi [63] proved the following Lemma’s that
will appear very useful when constructing constitutive laws for isotropic materials:

Lemma 2.5.2.1. Let T ∈ Tn(V ), with n even. If T is weakly isotropic, then T is
isotropic. If T is skew – isotropic, then T = 0.

Lemma 2.5.2.2. Let T ∈ Tn(V ), with n odd. If T is weakly isotropic, then T is skew
– isotropic. If T is isotropic, then T = 0.

Based on Lemma 2.5.2.2 we are led to the conclusion that isotropic tensors of odd order do
not exist, however there exist weakly isotropic tensors. Using the definitions of the various
types of isotropic tensors, it is not difficult to show that there is no Cartesian isotropic tensor
of order 1, as well as all isotropic tensors of order 2 are in the form of κδij and all weakly
isotropic tensors of order 3 are in the form of λϵijk, with κ, λ ∈ R. Later in this work we
will consider only the case of “pure” isotropic tensors, nonetheless, a few things regarding
weakly isotropic tensors of higher order will also be mentioned for the sake of completeness.

When it comes to higher order tensors Weyl [64] proved that every weakly isotropic Cartesian
tensor of even order can be expressed as a linear combination of products of the Kronecker
deltas δij, δkl,. . . ,δpq and every weakly isotropic Cartesian tensor of odd order is given by
a linear combination of terms formed of products of an appropriate number of Kronecker
deltas with an altering tensor ϵijk. Such products of Kronecker deltas with or without
the alternating tensor ϵijk are referred as fundamental (weakly) isotropic Cartesian tensors
(abbreviation FICT’s) [65]. For every order n > 1, the number N(n) of such tensors can be
calculated from the following formulas:

N(n) =
n!(n

2

)
!2n/2

, For n even (2.5.2.1)
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M(n) =
n!

3!

(
n− 3

2

)
!2(n−3)/2

, For n odd (2.5.2.2)

However, Racah [66] using concepts of group theory for the three – dimensional rotational
group O+(3), showed that N(n) in general exceeds the total number of linearly independent
fundamental weakly isotropic Cartesian tensors M(n):

M(n) =

[n+1
2

]∑
k=0

{[(
n
2k

)
− 1

2

(
n

2k − 1

)](
2k
k

)}
(2.5.2.3)

Order
n

2 3 4 5 6 7 8

Number of Distinct FICT’s
N(n)

1 1 3 10 15 105 105

Number of Linearly Independent FICT’s
M(n)

1 1 3 6 15 365 91

Table 2.5.2.1: Values of N(n) and M(n) for different order FICT’s.

Table (2.5.2.1) shows that for odd order tensors with n ≥ 5 and for even rank tensors with
n ≥ 8, there exist linear combinations among fundamental weakly isotropic Cartesian tensors
which are identically zero. This can be understood very easily by observing the following
two properties:

∥∥∥∥∥∥
δip δiq δir
δjp δjq δjr
δkp δkq δkr

∥∥∥∥∥∥ = ϵijkϵpqr (2.5.2.4)

∥∥∥∥∥∥∥∥
δip δiq δir δis
δjp δjq δjr δjs
δkp δkq δkr δks
δmp δmq δmr δms

∥∥∥∥∥∥∥∥ = 0 (2.5.2.5)

Identity (2.5.2.4) is a well – known result of linear algebra and can be verified directly by
expanding the 3× 3 determinant. The interpretation of identity (2.5.2.5) is that since there
are only three possible values of the indices in a three – dimensional space and since there
are four columns on the left – hand side, the indices of at least two columns must be equal
[65]. Hence the determinant in (2.5.2.5) must vanish.
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Order
n

Distinct and Linearly Independent Fundamental Isotropic Tensors

2 δij
4 δijδkm, δikδjm, δimδjk

6
δijδkmδpq, δijδkpδmq, δijδkqδmp, δikδjmδpq, δikδjpδmq
δikδjqδmp, δimδjkδpq, δimδjpδkq, δimδjqδkp, δipδjkδmq
δipδjmδkq, δipδjqδkm, δiqδjkδmp, δiqδjmδkp, δiqδjpδkm

Table 2.5.2.2: Expressions for distinct and linearly independent FICT’s.

The distinct and linearly independent isotropic tensors of even order are presented in Table
(2.5.2.2).

2.5.3 Isotropic Materials

In the previous analysis we showed that there are no isotropic Cartesian tensors of odd order.
Taking this into account we can eliminate tensors dijpqr, fijkpq from equations (2.5.1.9) –
(2.5.1.11) for the case of isotropic materials. The remaining tensors can be constructed as
linear combinations of the Kronecker deltas that appear in Table (2.5.2.2). Hence:

cijkl = λδijδkl + µ1δijδkl + µ2δijδkl (2.5.3.1)

bijkl = b1δijδkl + b2δijδkl + b3δijδkl (2.5.3.2)

gijkl = g1δijδkl + g2δijδkl + g3δijδkl (2.5.3.3)

aijklmn = a1δijδklδmn + a2δijδkmδnl + a3δijδknδlm

+ a4δjkδilδmn + a5δjkδimδnl + a6δjkδinδlm

+ a7δjkδilδmn + a8δjkδimδnl + a9δjkδinδlm

+ a10δjkδilδmn + a11δjkδimδnl + a12δjkδinδlm

+ a13δjkδilδmn + a14δjkδimδnl + a15δjkδinδlm

(2.5.3.4)

The following relationships are obtained thanks of the symmetries of the tensors cijkl, bijkl,
gijkl, aijklmn.

µ1 = µ2 ≡ µ (2.5.3.5)

g2 = g3 (2.5.3.6)
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a1 = a6, a2 = a9, a5 = a7, a11 = a12 (2.5.3.7)

Thus, the expression of the potential energy density reduces to:

W =
1

2
λδpqϵii + µϵijϵij +

1

2
b1γiiγjj +

1

2
b2γijγij

+
1

2
b3γijγji +

1

2
g1γiiϵjj + g2(γij + γji)ϵij

+ a1kiikkkjj + a2kiikkjkj +
1

2
a3kiikkjjk +

1

2
a4kijjkikk

+ a5kijjkkik +
1

2
a8kijikkjk +

1

2
a10kijkkijk + a11kijkkjki

+
1

2
a13kijkkikj +

1

2
a14kijkkjik +

1

2
a15kijkkkji

(2.5.3.8)

The constitutive equations are also reduced to:

τpq = λδpqϵii + 2µϵpq + g1δpqγii + g2 (γpq + γqp) (2.5.3.9)

σpq = g1δpqϵii + 2g2ϵpq + b1δpqγii + b2γpq + b3γqp (2.5.3.10)

µpqr = a1 (kiipδqr + kriiδpq) + a2 (kiiqδpr + kiriδpq) + a3kiirδpq

+ a4kpiiδqr + a5 (kqiiδpr + kipiδqr) + a8kiqiδpr + a10kpqr

+ a11 (krpq + kqrp) + a13kprq + a14kqpr + a15krqp

(2.5.3.11)

Equations (2.5.3.8) – (2.5.3.11) are the simplest expressions for the potential energy density
and the constitutive laws that can be generated in the context of Mindlin’s general theory.
Later we will see that by making some additional assumptions we can formulate three sub
- theories which are much simpler compared to the general one. These sub - theories are
known as the three forms of Mindlin’s general theory and in all three of them equations
(2.5.3.8) – (2.5.3.11) are greatly reduced.

2.6 Displacement - Strain Formulation

2.6.1 Displacement Equations of Motion

In classical elasticity we can express the equations of motion in terms of the displacements
only, this form of the equations of motion is known as the Navier – Cauchy equations
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and can be formulated by first substituting the kinematic equation that relate the strains
with the displacements into the constitutive equations and then the latter into the stress
equations of motion. In the same sense, we can formulate an equivalent set of equations in
Mindlin’s general theory, one for the macro – displacement ui and another one for the micro
– deformation ψij. These equations are derived inserting (2.2.2.8), (2.2.2.9), (2.2.2.11) into
(2.5.3.9) – (2.5.3.11) and then the latter into (2.4.1.13), (2.4.1.14).

(µ+ 2g2 + b2)
∂2ui
∂xj∂xj

+ (λ+ µ+ 2g1 + 2g2 + b1 + b3)
∂2uj
∂xi∂xj

− (g1 + b1)
∂ψij
∂xi

− (g2 + b2)
∂ψji
∂xj

− (g2 + b3)
∂ψij
∂xj

+ fi = ρüi

(2.6.1.1)

(a1 + a5)

(
∂2ψkl
∂xk∂xl

δij +
∂2ψkk
∂xi∂xj

)
+ (a2 + a11)

(
∂2ψki
∂xk∂xj

+
∂2ψjl
∂xi∂xk

)
+ (a3 + a14)

∂2ψkj
∂xi∂xk

+ a4
∂2ψll
∂xk∂xk

+ (a8 + a15)
∂2ψik
∂xj∂xk

+ a10
∂2ψij
∂xk∂xk

+ a13
∂2ψji
∂xk∂xk

+ g1
∂uk
∂xk

δij + g2

(
∂uj
∂xi

+
∂ui
∂xj

)
+ b1

(
∂uk
∂xk

− ψkk

)
δij

+ b2

(
∂uj
∂xi

− ψik

)
+ b3

(
∂ui
∂xj

− ψji

)
+ Φij =

1

3
ρ′d2ψ̈ij

(2.6.1.2)

2.6.2 Stress Compatibility Equations

In the same sense as in classical elasticity, the compatibility equations presented in (2.2.2.14)
- (2.2.2.16) can be expressed in terms of the stresses. This approach would allow the devel-
opment of a set of differential equations akin to the Beltrami-Michell compatibility equations
or the Ignaczak equation of elastodynamics. However, to the authors’ knowledge, this has
not yet been explored within the context of Mindlin’s general theory, though it has been
addressed in other generalized theories. For further information, the reader is referred to
[67].
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3 The Three Forms of Mindlin’s Gen-
eral Theory

3.1 Introduction

Mindlin’s general theory is quite complicated both from a physical and a mathematical point
of view and as result its application are limited. In order to make things simpler Mindlin
proposed three simplified versions of his theory, known as form I, II and III. Even though the
three forms are restricted to low frequency motions, they are much more applicable compared
to the general theory, since the field equations that arise can now be solved much easier
and in some cases, where the analyzed domain has a relatively simple geometry analytical
solutions are obtainable (see, e.g., [68], [69], [70], [71]). The idea behind the three forms is
that by setting a few kinematical constraints regarding the connection between the macro –
displacement ui and the micro – deformation ψij the field equations can be greatly simplified.
The assumptions of form I imply that the macro – gradient of the micro deformation kijk is
the second gradient of displacement, as a result the potential energy density can be expressed
as a function of the classical strains and the second gradient of displacement. In form II
the second gradient of displacement is considered to be a linear function of the gradient of
strains and thus the potential energy density is a function of the classical strains and the
gradient of the strains, while in form III the potential energy density is written in terms
of the infinitesimal strain tensor, the gradient of rotation and the fully symmetric part of
the gradient of strain. The three forms conclude to equivalent equations of motion, however
form II has a better algebraic structure, since in this case the total stress tensor is symmetric
in contrast with the other two forms, which include all the problems associated with non –
symmetric stress tensors as in the case of Cosserat and couple stress theories.

3.2 Form I

3.2.1 Assumptions

In the following two sections the governing equations of forms I, II and III are rederived.
The concept of the three forms is to formulate a set of displacement equations of motion that
are much simpler than (2.6.1.1) and (2.6.1.2). Even though in this work only form II and
dipolar gradient elasticity are implemented, it is essential to present form I in detail since
the equations of forms II and III are formulated based on the assumptions and the equations
of form I. Thus, we begin by stating the assumptions of form I.

σ(ij) = 0 (3.2.1.1)
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b2 − b3 → ∞ (3.2.1.2)

γ[ij] → 0 (3.2.1.3)

In view of (3.2.1.1) - (3.2.1.3) the isotropic constitutive equations of the general theory for
τpq and σpq presented in (2.5.3.9) and (2.5.3.10) degenerate to:

τpq = λδpqϵii + 2µϵpq + g1δpqγii + 2g2γpq (3.2.1.4)

σ(pq) = g1δpqϵii + 2g2ϵpq + b1δpqγii + (b2 + b3)γ(pq) (3.2.1.5)

σ[pq] = (b2 − b3)γ[pq] (3.2.1.6)

By observing (3.2.1.2) and (3.2.1.3), it is clear that σ[pq] is indeterminate in (3.2.1.6).

3.2.2 Form I Kinematics

We continue by examining the consequences of the assumptions (3.2.1.1) – (3.2.1.3) in the
strain measures ϵij, ψij, γij and kijk. In view of (3.2.1.1), (3.2.1.4) we obtain:

g1 + δpqϵii + 2g2ϵpq + b1δpqγii + (b2 + b3)γ(pq) = 0 (3.2.2.1)

Multiplying (3.2.2.1) with δpq gives:

g1 + δppϵii + 2g2ϵpp + b1δppγii + (b2 + b3)γpp = 0 (3.2.2.2)

Since δpp = 3 and by setting the repeated indices in (3.2.2.2) equal to i, we obtain:

γii =
3g1 + 2g2

3b1 + b2 + b3
ϵii (3.2.2.3)

By substituting (3.2.2.3) into (3.2.2.1), we can express γ(pq) in terms of the components of
the infinitesimal strain tensor only:
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γ(pq) = αδpqϵii + (1− β)ϵpq (3.2.2.4)

Where the expressions of α,β are given by:

α =
1

b2 + b3

[
g1 −

b1(3g1 + 2g2)

3b1 + b2 + b3

]
(3.2.2.5)

β = 1 +
2g2

b2 + b3
(3.2.2.6)

Regarding kijk, we begin by decomposing ψij in (2.2.2.16) into a symmetric and an anti –
symmetric part:

ψ(pq) = ϵpq − γ(pq) (3.2.2.7)

ψ[pq] = ωpq (3.2.2.8)

Where for the derivation of (3.2.2.8), assumption (3.2.1.3) has been taken into account. We
can also formulate an expression for ψ(pq) in terms of the components of the infinitesimal
strain tensor only by substituting equation (3.2.2.4) into (3.2.2.7):

ψ(pq) = αδpqϵii + βϵpq (3.2.2.9)

In view of (2.2.2.8) kijk can be expressed as:

kijk ≡
∂ψjk
∂xi

=
∂ψ(jk)

∂xi
+
∂ψ[jk]

∂xi
(3.2.2.10)

Inserting (3.2.2.7), (3.2.2.8) into (3.2.2.10) gives:

kijk =
αδjkϵll
∂xi

+
ωjk
∂xi

(3.2.2.11)

Substituting (2.2.2.9), (2.2.2.12) into (3.2.2.11) gives:
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kijk = α
∂ul

∂xi∂xl
δjk +

1

2
(1 + β)

∂uj
∂xi∂xk

− 1

2
(1− β)

∂uk
∂xi∂xj

(3.2.2.12)

The above equation can equivalently be written as:

k̃ijk = αk̃illδjk +
1

2
(1 + β)k̃ijk −

1

2
(1− β)k̃ikj (3.2.2.13)

where k̃ijk is the second gradient of the macro – displacement vector u.

k̃ijk =
∂uk

∂xi∂xj
= k̃ikj (3.2.2.14)

3.2.3 Form I Energetics

In the previous paragraph it was shown that the assumptions of form I imply that the sym-
metric part of the relative deformation tensor can be expressed in terms of the components
of the infinitesimal strain tensor, while the micro – deformation gradient is a function of
k̃ijk only. This means that the kinetic energy density will now be a function of the macro
velocity only, while, the part of the potential energy density that is a function of kijk in the
general theory becomes a function of k̃ijk in form I.

In order to formulate the expression of the kinetic energy density, we begin by decomposing
the micro – deformation into a symmetric and an anti – symmetric part:

ψpq = ψ(pq) + ψ[pq] (3.2.3.1)

By substituting (3.2.2.8), (3.2.2.9) into (3.2.3.1) we obtain:

ψpq = αδpqϵll + βϵpq + ωpq (3.2.3.2)

Using the definitions of ϵij and ωij, we can write the above equation as:

ψpq = αδpq
∂ul
∂xl

+
1

2
β(
∂up
∂xq

+
∂uq
∂xp

) +
1

2
(
∂uq
∂xp

− ∂up
∂xq

) (3.2.3.3)
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Differentiating (3.2.3.3) with respect to time gives:

ψ̇pq = αδpq
∂u̇l
∂xl

+
1

2
β(
∂u̇p
∂xq

+
∂u̇q
∂xp

) +
1

2
(
∂u̇q
∂xp

− ∂u̇p
∂xq

) (3.2.3.4)

The following expression is obtained by multiplying equation (3.2.3.4) with δipδjq and then
factorizing the terms:

ψ̇pq = [
1

2
(δikδjl − δilδjk) + αδijδkl +

1

2
β(δikδjl + δilδjk)]

∂u̇l
∂xk

(3.2.3.5)

The above expression can equivalently be written as:

ψ̇pq = hijkl
∂u̇l
∂xk

(3.2.3.6)

Where:

hijkl =
1

2
(δikδjl − δilδjk) + αδijδkl +

1

2
β(δikδjl + δilδjk) (3.2.3.7)

By inserting (3.2.3.6), (3.2.3.7) into (2.3.1.5) we obtain the formula for the kinetic energy
density function of form I.

T̃ =
1

2
ρu̇ju̇j +

1

6
ρ′d̃2pkmn

∂u̇n
∂xm

∂u̇k
∂xp

=
1

2
ρu̇ju̇j +

1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)
u̇k

]
− 1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)]
u̇k

(3.2.3.8)

Where:

d̃2pkmn = d2jlhlqpkhjqmn = d̃2mnpk

=
1

2
d2[δpmδkn − δpnδkm + 2α(3α + 2β)δpkδmn + β2(δpmδkn + δpnδkm)]

(3.2.3.9)
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Regarding the potential energy density, it was explained before why in the context of form
I it is a function of ϵij and k̃ijk only.

W̃ = W̃ (ϵij, k̃ijk) (3.2.3.10)

The eighteen independent components of k̃ijk may be resolved, in more than one way, into
tensors whose components are independent linear combinations of ∂i∂juk, so that other forms
of the potential energy density, for the law frequency approximation are possible. These are
the so – called forms II, III of Mindlin’s general theory and will be presented later in this
work.

3.2.4 Form I Constitutive Equations

The expression of the potential energy density for isotropic materials in the context of form
I can be obtained by inserting (3.2.1.3), (3.2.2.4), (3.2.2.12) into (2.5.3.8) and also taking
(3.2.1.2) into account:

W̃ =
1

2
λ̃ϵiiϵjj + µ̃ϵijϵij + ã1k̃iikk̃kjj + ã2k̃ijj k̃ikk + ã3k̃iikk̃jjk + ã4k̃ijkk̃ijk + ã5k̃iikk̃kji (3.2.4.1)

Where λ̃, µ̃, ã1 − ã5 are defined as:

λ̃ = λ+ 2µ− 8g22
3(b2 + b3)

− (3g1 + 2g2)
2

3(3b1 + b2 + b3)
(3.2.4.2)

µ̃ = µ− 2g22
b2 + b3

(3.2.4.3)

ã1 =
1

2

[
(1 + β)(3α + β)a1 + (1 + 2αβ + β2)a2 −

1

2
(1 + β)(1− 2α− β)a3

−(1− β)(3α + β)a5 −
1

2
(1− β)(1 + 2α + β)a6 + 2αβa11 − α(1− β)a14

+α(1 + β)a15]

(3.2.4.4)

ã1 =
1

2

{
−(1− 2α− β)(3α + β)a1 −

1

2
[1− (2α + β)2]a2 −

1

4
(1− 2α− β)2a3

+ (3α + β)2a4 + (3α + β)(1 + 2α + β)a5 +
1

4
(1 + 2α + β)2a8 + α(3α + 2β)a10

+ 2α(α + β)a11 − α(3α + 2β)a13 + α(1 + α + β)a14 − α(1− α− β)a15

} (3.2.4.5)
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ã3 =
1

4

[
−(1− β)2a2 +

1

2
(1 + β)2a3 +

1

2
(1− β)2a8

]
(3.2.4.6)

ã4 =
1

4

[
(1 + β)2a10 − (1− β)2(a11 + a13) +

1

2
(1 + β)2a14 +

1

2
(1− β)2a15

]
(3.2.4.7)

ã5 =
1

4

[
−(1− β)2a10 + (1 + 3β2)a11 + (1 + β2)a13 −

1

2
(1 + 2β − 3β2)a14

−1

2
(1− 2β − 3β2)a15

] (3.2.4.8)

The stress tensors are defined as:

τ̃ij ≡
∂W̃

∂ϵij
= τ̃ji (3.2.4.9)

µ̃ijk ≡
∂W̃

∂kijk
= µ̃jik (3.2.4.10)

Using (3.2.4.1), (3.2.4.9), (3.2.4.10) the following two constitutive equations are obtained:

τ̃pq = λ̃δpqϵii + 2µ̃ϵpq (3.2.4.11)

µ̃pqr =
1

2
ã1(k̃iipδqr2k̃riiδpqk̃iiqδpr) + ã2(k̃piiδqr + k̃qiiδpr)

+ 2ã3k̃iirδpq + 2ã4k̃pqr + ã5(k̃rqp + k̃rpq)
(3.2.4.12)

3.2.5 Form I Field Equations

The equations of motion and boundary conditions will be formulated using Hamilton’s prin-
ciple as in the case of the general theory. However, from (3.2.3.3) and (3.2.3.4) it is clear that
the fields ui and ψij are now coupled, meaning that Hamilton’s principle will be expressed
with one independent variation, which is chosen to be δui.

In view of (3.2.3.8), the total kinetic energy term in Hamilton’s principle is:

J̃ =

∫
B0

T̃ dV

=

∫
B0

{1
2
ρu̇ju̇j +

1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)
u̇k

]
− 1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)]
u̇k

}
dV

(3.2.5.1)
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Applying the divergence theorem in (3.2.5.1) yields:

J̃ =

∫
B0

{1
2
ρu̇ju̇j −

1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)]
u̇k

}
dV

+

∫
∂B0

1

6
npρ

′d̃2pkmn

(
∂u̇n
∂xm

)
u̇k dS

(3.2.5.2)

The variation of the kinetic energy term in Hamilton’s principle is:

∫ t2

t1

δJ̃ dt =

∫ t2

t1

δ

∫
B0

{1
2
ρu̇ju̇j −

1

6

∂

∂xp

[
ρ′d̃2pkmn

(
∂u̇n
∂xm

)]
u̇k

}
dV dt

+

∫ t2

t1

δ

∫
∂B0

1

6
npρ

′d̃2pkmn

(
∂u̇n
∂xm

)
u̇k dS dt

(3.2.5.3)

By executing the variations in (3.2.5.3) and then performing integration by parts with respect
to time we obtain:

∫ t2

t1

δJ̃ dt = −
∫ t2

t1

∫
B0

[
1

2
ρük −

1

3

∂

∂xp

(
ρ′d̃2pkmn

∂u̇n
∂xm

)]
δuk dV dt

−
∫ t2

t1

δ

∫
∂B0

1

3
npρ

′npd̃
2
pkmn (Dmün + nmDün) δuk dS dt

(3.2.5.4)

Where Dm is the surface gradient operator and D is the normal gradient operator, which
are defined as:

Dm ≡ (δml − nmnl)
∂

∂xl
(3.2.5.5)

D ≡ nl
∂

∂xl
(3.2.5.6)

In view of (3.2.3.10), (3.2.4.9), (3.2.4.10) we can write the variation of the potential energy
in the form of:

δW̃ = τ̃ijδϵij + µ̃ijkδk̃ijk (3.2.5.7)
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Using the definitions of ϵij, k̃ijk, (3.2.5.7) can be written as:

δW̃ = τ̃ij
∂δuj
∂xi

+ µ̃ijk
∂δuk
∂xi∂xj

(3.2.5.8)

The variation of the potential energy term in Hamilton’s principle is:

∫ t2

t1

δW̃ dt =

∫ t2

t1

δ

∫
B0

W̃ dV dt =

∫ t2

t1

∫
B0

(
τ̃ij
∂δuj
∂xi

+ µ̃ijk
∂δuk
∂xi∂xj

)
dV dt

=

∫ t2

t1

∫
B0

{ ∂

∂xj

[(
τ̃ij −

∂µ̃ijk
∂xi

)
δuk

]
− ∂

∂xj

(
τ̃jk −

∂µ̃ijk
∂xi

)
δuk

+
∂

∂xi

(
µ̃ijk

∂δuk
∂xj

)}
dV dt

(3.2.5.9)

Applying the divergence theorem in (3.2.5.9) yields:

∫ t2

t1

δW̃ dt =

∫ t2

t1

∫
∂B0

(
τ̃ij −

∂µ̃ijk
∂xi

)
njδuk dS dt

−
∫ t2

t1

∫
B0

∂

∂xj

(
τ̃jk −

µ̃ijk
∂xi

)
δuk dV dt+

∫ t2

t1

∫
∂B0

µ̃ijkni
∂δuk
∂xj

, dS dt

(3.2.5.10)

In the last integral of (3.2.5.10), only the normal component of the variation ∂δuk/∂xj is
independent of δuj on S. Having this in mind, we decompose the term inside the integral
as:

µ̃ijkni
∂δuk
∂xj

= µ̃ijkniDjδuk + µ̃ijkninjDδuk (3.2.5.11)

Following Toupin [12], we express the first term on the right – hand side of (3.2.5.11), which
contains the non – independent variation Djδuk, in the form of:

µ̃ijkniDjδuk = Dj(µ̃ijkniδuk)− niDjµ̃ijkδuk − (Djni)µ̃ijkδuk (3.2.5.12)

The last two terms in (3.2.5.12) contain the independent variation δuk, the preceding term,
on the surface ∂B0 can be written as:
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Dj(µ̃ijkniδuk) = (Dlnl)njniµ̃ijkδuk + epqmnq
∂

∂xp
(emljnlniµ̃ijkδuk) (3.2.5.13)

Equation (3.2.5.11) can be expressed with the help of (3.2.5.12), (3.2.5.13) as:

µ̃ijkni
∂δuk
∂xj

= (Dlnl)njniµ̃ijkδuk + epqmnq
∂

∂xp
(emljnlniµ̃ijkδuk)

− niDjµ̃ijkδuk − (Djni)µ̃ijkδuk + µ̃ijkninjDδuk

(3.2.5.14)

While the term inside the first surface integral in (3.2.5.10) can be written as:

(
τ̃ij −

µ̃ijk
∂xi

)
njδuk = τ̃ijnjδuk − njDiµ̃ijk − ninjDµ̃ijk (3.2.5.15)

The following result arises by inserting (3.2.5.14), (3.2.5.15) into (3.2.5.10) and then per-
forming a bit of algebra:

∫ t2

t1

δW̃ dt = −
∫ t2

t1

∫
B0

∂

∂xj

(
τ̃ij −

∂µ̃ijk
∂xi

)
δuk dV dt

+

∫ t2

t1

∫
∂B0

[nj τ̃jk − ninjDµ̃ijk − 2njDiµ̃ijk + (ninjDlnl −Djni) µ̃ijk] δuk dS dt

+

∫ t2

t1

∫
∂B0

ninjµ̃ijkDδuk dS dt

+

∫ t2

t1

∫
∂B0

epqmnq
∂

∂xp
(ϵmljnlniµ̃ijkδuk) dS dt

(3.2.5.16)

In order to factorize the variation δuk in the final integral of the above expression, we invoke
Stoke’s theorem:
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Theorem 3.2.5.1 (Stoke’s Theorem)

Let Λ be a regular surface bounded by a closed curve Γ and let v be a vector field
whose components have continuous partials derivatives on a region that contains Λ.
Then: ∫

Λ

ϵijk
∂vk
∂xj

dS =

∮
Γ

vini ds

Where Γ is positive oriented with respect to the unit vector n, normal to Λ.

If the surface ∂B0 has an edge C, formed by the intersection of two parts ∂B1 and ∂B2 of
∂B0, then applying Stoke’s theorem in the final (inner) integral of (3.2.5.16) yields:

∫ t2

t1

∫
∂B0

epqmnq
∂

∂xp
(ϵmljnlniµ̃ijkδuk) dS dt =

∮
C

[[nimjµ̃ijk]] δuk ds (3.2.5.17)

Where mj = ϵmljsmnl is a vector being tangential to the corner, sm are the components of
the unit vector tangent to C and the double brackets [[⋆]] indicate that the enclosed quantity
is the difference between its values taken at the two sides of the corner line.

Finally, by substituting (3.2.5.17) into (3.2.5.16) we obtain the following expression for the
variation of the total potential energy density:

∫ t2

t1

δW̃ dt = −
∫ t2

t1

∫
B0

∂

∂xj

(
τ̃ij −

∂µ̃ijk
∂xi

)
δuk dV dt

+

∫ t2

t1

∫
∂B0

[nj τ̃jk − ninjDµ̃ijk − 2njDiµ̃ijk + (ninjDlnl −Djni) µ̃ijk] δuk dS dt

+

∫ t2

t1

∫
∂B0

ninjµ̃ijkDδuk dS dt+

∮
C

[[nimjµ̃ijk]] δuk ds

(3.2.5.18)

The above expression of the variation of the total potential energy density suggests that the
work of the external forces has to be in the form:

Wext =

∫
B0

Fkuk dV +

∫
∂B0

P̃kuk dS +

∫
∂B0

R̃kDuk dS +

∮
C

Ẽkuk ds (3.2.5.19)

Where Fk is the body force per unit volume, while P̃k, R̃k and Ẽk represent surface forces
per unit are and their interpretation will be given later:
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The variation of the work of the external forces is:

δWext =

∫
B0

Fkδuk dV +

∫
∂B0

P̃kδuk dS +

∫
∂B0

R̃kDδuk dS +

∮
C

Ẽkδuk ds (3.2.5.20)

The equations of motion and boundary conditions of form I of Mindlin’s general theory are
obtained by substituting equations (3.2.5.4), (3.2.5.18), (3.2.5.20) into Hamilton’s principle
and performing afterwards a few operations:

∂

∂xj

(
τ̃ij −

∂µ̃ijk
∂xi

)
+ Fk = ρük −

1

3

∂

∂xj

(
ρ′d̃2pkmn

ün
∂xm

)
(3.2.5.21)

P̃k = nj τ̃jk − ninjDµ̃ijk − 2njDi ˜µijk + (ninjDlnl −Djni) µ̃ijk

+
1

3
ρ′npd̃

2
pkmn (Dmün + nmün)

(3.2.5.22)

R̃k = ninjµ̃ijk (3.2.5.23)

Ẽk = [[nimjµ̃ijk]] (3.2.5.24)

Taking into consideration equations (3.2.5.19), (3.2.5.22) – (3.2.5.24) it appears that an
appropriate terminology for the three traction vectors of form I is: Traction vector for P̃k,
double traction vector for R̃k and jump traction vector for Ẽk.

The displacement equations of motion can be obtained by inserting (2.2.2.9), (3.2.2.4) into
(3.2.4.11), (3.2.4.12) and then substituting the later into (3.2.5.21):

(λ̃+ 2µ̃)(1− l̃21∇2)∇∇ · u− µ̃(1− l̃22∇2)∇×∇× u+ F

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ü)
(3.2.5.25)

Where the expressions of l̃2i , h
2
i are given by:

l̃21 =
2(ã1 + ã2 + ã3 + ã4 + ã5)

λ̃+ 2µ̃
(3.2.5.26)

l̃22 =
2(ã3 + ã4)

µ̃
(3.2.5.27)

h21 =
ρ′d2[2α2 + (α + β)2]

3ρ
(3.2.5.28)
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h21 =
ρ′d2(1 + β2)

6ρ
(3.2.5.29)

The positive definiteness of W requires µ̃ > 0, λ̃ + 2µ̃ > 0, l̃2i > 0. It is also reasonable to
assume that h2i > 0. This can be justified since hi is related to the length of the edges of
the material’s cell which is an observable quantity through (3.2.5.28), (3.2.5.29). Generally,
l̃2i > 0 and h2i > 0 are treated as positive quantities that express length properties of
the material and are known in the literature as the gradient coefficients (λ̃1, λ̃2) and the
characteristic lengths of the material (h1, h2). These intrinsic parameters have units of
length square and represent the effect of the stiffness λ̃21, λ̃

2
2 and the inertia h21, h

2
2 of the

microstructure on the macrostructural response of the gradient elastic material [18]. It will
also be shown latter that λ̃21, h

2
1 are related to longitudinal deformations, while λ̃22, h

2
2 to

shear ones.

3.3 Forms II, III

3.3.1 The Equations of Form II

It was mentioned earlier that the eighteen independent components of k̃ijk may be resolved,
in more than one way, into tensors whose components are independent linear combinations of
∂i∂juk. One such, indicated by Toupin [12] is the gradient of the infinitesimal strain tensor:

k̂ijk ≡
∂ϵjk
∂xi

=
1

2

(
∂uk

∂xi∂xj
+

∂uj
∂xi∂xk

)
(3.3.1.1)

The gradient of the strain is assumed to be related with k̃ijk as:

k̃ijk = k̂ijk + k̂jki − k̂kij (3.3.1.2)

The expression of the potential energy density function of form II is obtained by substituting
(3.3.1.2) into (3.2.4.1):

Ŵ =
1

2
λ̃ϵiiϵjj + µ̃ϵijϵij + â1k̂iikk̂kjj + â2k̂ijj k̂ikk + â3k̂iikk̂jjk + â4k̂ijkk̂ijk + â5k̂iikk̂kji (3.3.1.3)

Where the constants â1 − â5 are given by:
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â1 = 2ã1 − 4ã3, â2 = −ã1 + ã2 + ã3

â3 = 4ã3, â4 = 3ã4 − ã5, â5 = −2ã4 + 2ã5
(3.3.1.4)

The stress tensors of form II are defined as:

τ̂ij ≡
∂Ŵ

∂ϵij
= τ̂ji (3.3.1.5)

µ̂ijk ≡
∂Ŵ

∂k̂ijk
= µ̂ikj (3.3.1.6)

While the constitutive equations are:

τ̂pq = λ̃δpqϵii + 2µ̃ϵpq (3.3.1.7)

µ̂pqr =
1

2
â1(k̂riiδpq + 2k̂iipδqr + k̂qiiδrp) + 2â2k̂piiδqr + 2â3(k̂iirδpq + k̂iiqδpr)

+ 2â4k̂pqr + â5(k̂rpq + k̂qrp)
(3.3.1.8)

In view of (3.3.1.3), (3.3.1.5), (3.3.1.6) we can write the variation of the potential energy in
the form of:

δŴ = τ̂ijδϵij + µ̂ijkδk̂ijk (3.3.1.9)

Using the definitions of ϵij, k̂ijk, (3.3.1.9) can be written as:

δŴ = τ̂ij
∂δuj
∂xi

+ µ̂ijk
∂δuk
∂xixj

=
∂

∂xj

[(
τ̂ij −

∂µ̂ijk
∂xi

)
δuk

]
+

∂

∂xj

(
τ̂ij −

∂µ̂ijk
∂xi

)
δuk +

∂

∂xi

(
µ̂ijk

∂δuk
∂xj

) (3.3.1.10)

The equations of motion and boundary conditions can once again be formulated using Hamil-
ton’s principle. The procedure will not be shown analytically this time due to the fact
that the expression of the kinetic energy is unchanged compared to form I, while equation
(3.3.1.10) has the same form as (3.2.5.8), which implies that that the expression of the work
of the external forces in both sub – theories is also identical. Having the aforementioned in
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mind we come to the conclusion that in form II the boundary conditions and the equations of
motion are the same as in form I with the only difference being that τ̃ij and µ̃ijk are replaced
by τ̂ij and µ̂ijk respectively:

∂

∂xj

(
τ̂ij −

∂µ̂ijk
∂xi

)
+ Fk = ρük −

1

3

∂

∂xj

(
ρ′d̃2pkmn

ün
∂xm

)
(3.3.1.11)

P̂k = nj τ̂jk − ninjDµ̂ijk − 2njDiµ̂ijk + (ninjDlnl −Djni) µ̂ijk

+
1

3
ρ′npd̃

2
pkmn (Dmün + nmün)

(3.3.1.12)

R̂k = ninjµ̂ijk (3.3.1.13)

Êk = [[nimjµ̂ijk]] (3.3.1.14)

At this point the major advantage of form II over the other two forms of Mindlin’s general
theory can be illustrated. It was mentioned before and it will be shown latter that the
three forms conclude to identical equations of motion. However, the fact that µ̃ijk = µ̃jik,
whereas µ̂ijk = µ̂ikj implies that the quantity inside the parenthesis on the left – hand side of
(3.2.5.21), (i.e. the total stress tensor) is not symmetric, but the corresponding quantity in
(3.3.1.11) is symmetric as in the case of classical elasticity, thus avoiding problems associated
with non – symmetric stress tensors introduced by Cosserat and couple stress theories.

The displacement equations of motion can be obtained by inserting (3.3.1.1), (2.2.2.9) into
(3.3.1.7), (3.3.1.8) and then substituting the later into (3.3.1.11):

(λ̃+ 2µ̃)(1− l̂21∇2)∇∇ · u− µ̃(1− l̂22∇2)∇×∇× u+ F

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ü)
(3.3.1.15)

Where:

l̂21 =
2(â1 + â2 + â3 + â4 + â5)

λ̃+ 2µ̃
(3.3.1.16)

l̂22 =
â3 + 2â4 + â5

2µ̃
(3.3.1.17)

From (3.2.5.26), (3.2.5.27), (3.2.5.4) we observe that l̂2i = l̃2i , which means that the dis-
placement equations of motion (3.2.5.25) and (3.3.1.15) of form I and II respectively are
identical.
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3.3.2 The Equations of Form III

In form III the potential energy density is a function of the infinitesimal strain tensor, the
gradient of rotation and the fully symmetric part of the gradient of strain. Even though in
this work form III is not implemented the governing equations are presented briefly for the
shake of completeness. We begin by defining the curl of the strain:

k̄ij ≡ ejlm
∂ϵmi
∂xl

(3.3.2.1)

By substituting (2.2.2.9) into (3.3.2.1) we can also express the curl of the strain as:

k̄ij =
1

2
ejlm

∂2um
∂xi∂xl

(3.3.2.2)

From the last two equations it is clear that k̄ij is the part of ∂xi∂xj∂uk that generates couple
- stresses. Also, k̄ii = 0, which means that k̄ij has only eight independent components. In
his original work Mindlin defined the fully symmetric part of the gradient of strain as:

¯̄kijk = k̂ijk +
1

3
eilj k̄kl +

1

3
eilkk̄jl (3.3.2.3)

Alternatively, ¯̄kijk can be expressed in terms of the displacement vector only be substituting
(3.3.1.1), (3.3.2.2) into (3.3.2.3):

¯̄kijk =
1

3

(
∂2uk
∂xi∂xj

+
∂2uj
∂xk∂xi

+
∂2ui
∂xj∂xk

)
(3.3.2.4)

The potential energy expression of form III can be obtained by solving (3.3.2.4) with respect
to k̂ijk and substituting the latter into (3.3.1.3):

W̄ =
1

2
λ̃ϵiiϵjj+µϵijϵij+2d̄1k̄ij k̄ij+2d̄1k̄ij k̄ji+

3

2
ā1
¯̄kiij

¯̄kkkj+ ā2
¯̄kijk

¯̄kijk+ f̄ eijkk̄ij
¯̄kkll (3.3.2.5)

Where the constants ā1, ā2, d̄1, d̄2, f̄ given by:
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18d̄1 = −2â1 + 4â2 + â3 + 6â4 − 3â5, 18d̄2 = 2â1 − 4â2 − â3

3ā1 = 2(â1 + â2 + â3), ā1 = â4 + â5, 3f̄ = â1 + 4â2 − 2â3
(3.3.2.6)

The stress tensors of form III are defined as:

τ̄ij ≡
∂W̄

∂ϵij
= τ̄ji (3.3.2.7)

µ̄ij ≡
∂W̄

∂k̄ij
, µ̄ii = 0 (3.3.2.8)

¯̄µijk ≡
∂W̄

∂ ¯̄kijk
= ¯̄µkij = ¯̄µjki = ¯̄µjik (3.3.2.9)

Where µ̄ij is the couple - stress deviator. The constitutive equations that arise are:

τ̄pq = λ̃δpqϵii + 2µ̃ϵpq (3.3.2.10)

µ̄pq = 4d̄1k̄pq + 4d̄2k̄qp + f̄ epqi
¯̄kijj (3.3.2.11)

¯̄µpqr = ā1

(
¯̄kiirδpq +

¯̄kiipδqr +
¯̄kiiqδrp

)
+ 2ā2

¯̄kpqr +
1

3
f̄ k̄ij (δpqeijr + δqreijp + δrpeijq) (3.3.2.12)

In view of (3.3.2.5), (3.3.2.7) - (3.3.2.9) we can write the variation of the potential energy in
the form of:

δW̄ = τ̄ijδϵij + µ̄ijδk̄ij + ¯̄µijkδ
¯̄kijk (3.3.2.13)

Using the definitions of ϵij, k̄ij, k̄ijk, (3.3.2.13) can be written as:

δW̄ =
∂

∂xj

[(
τ̄jk −

∂µ̄∗
ijk

∂xi

)
δuk

]
− ∂

∂xj

(
τ̄jk −

∂µ̄∗
ijk

∂xi

)
δuk +

∂µ̄∗
ijδuk

∂xi
(3.3.2.14)

Where:

µ̄∗
ijk ≡

1

2
ejklµ̄il + ¯̄µijk (3.3.2.15)
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In order to derive this time stress equations of motion and boundary conditions different
than those of form I and II we resolve (3.2.5.11) with respect to Dδuk:

Dδuk = 2δwinjeijk +Dk (niδui)− (Dkni) δui + nkδϵnn (3.3.2.16)

Where wi is the axial vector of the rotation tensor and ϵnn is the normal component of the
strain tensor:

wi ≡
1

2
eilm

∂um
∂xl

(3.3.2.17)

ϵnn ≡ ninjϵij, no summation over the n indices (3.3.2.18)

By integrating (3.3.1.14) by parts and applying the divergence theorem and Stoke’s theorem,
the following expression for the variation of the potential energy density:

δW̄ = −
∫
B0

(
∇ · τ̄ +

1

2
∇×∇ · µ̄−∇ · ¯̄µ · ∇

)
δu dV

+

∫
∂B0

{n · τ̄ +
1

2
n× (∇ · µ̄−∇trµ̄)− (∇× ¯̄µ) · n

− n · ∇ × [n× (n · ¯̄µ+ n · ¯̄µ · n⊗ n)]}δu dS

+

∫
∂B0

[n · τ̄ × n+ 2n× (n · ¯̄µ · n)× n] · (δw × n) dS

+

∫
∂B0

n⊗ n : ¯̄µ · n (δtrϵ) dS

+

∮
C

[
1

2
(trµ̄⊗ s) + (s× n) · (n ¯̄µ+ n · ¯̄µ : n⊗ n)

]
δu ds

(3.3.2.19)

In (3.3.2.19) s represents the unit vector tangent to the edge C. The above expression of
the variation of the total potential energy suggests that the work of the external forces has
to be in the form of:

Wext =

∫
B0

Fδu dV +

∫
∂B0

[P · δu+Q · δw × n+Rδ (trϵ)] dS +

∮
C

E · δu ds (3.3.2.20)
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Where Q is the tangential component of the couple - stress vector and R denotes a double
force per unit area, without moment, normal to S.

As in the previous cases the equations of motion and boundary conditions are formulated
by substituting (3.2.5.4), (3.3.2.19), (3.3.2.20) into Hamilton’s principle. It is noted that the
expression of the kinetic energy is the same as in form I

∇ · τ̄ +
1

2
∇×∇ · µ̄−∇ · ¯̄µ · ∇+ F = ρü− 1

3
∇ ·
(
ρ′d̃2 : ∇ü

)
(3.3.2.21)

n · τ̄ +
1

2
n× (∇ · µ̄−∇trµ̄)− (∇× ¯̄µ) · n

− n · ∇ × [n× (n · ¯̄µ+ n · ¯̄µ · n⊗ n)] +
1

3
ρ′n · d̃2 : ∇ü = P

(3.3.2.22)

n · µ̄× n+ 2n× (n · ¯̄µ · n)× n = Q (3.3.2.23)

n⊗ n : ¯̄µ · n = R (3.3.2.24)

[
1

2
(trµ̄⊗ s) + (s× n) · (n ¯̄µ+ n · ¯̄µ : n⊗ n)

]
= E (3.3.2.25)

The displacement equations of motion can be obtained by inserting (2.2.2.9), (3.3.2.2) and
(3.3.2.4) into (3.3.2.7) - (3.3.2.9) and then substituting the latter into (3.3.2.22):

(λ̃+ 2µ̃)(1− l̄21∇2)∇∇ · u− µ̃(1− l̄22∇2)∇×∇× u+ F

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ü)
(3.3.2.26)

Where:

l̄21 =
3ā1 + ā2

λ̃+ 2µ̃
(3.3.2.27)

l̄22 =
3d̄1 + ā1 + 2ā2 − f̄

3µ̃
(3.3.2.28)

Using (3.3.1.4), (3.3.1.16), (3.3.1.17), (3.3.2.6), (3.3.2.27), (3.3.2.28) it can be shown that
l̄2i = l̂2i , while it was previously proved that l̂2i = l̃2i meaning that the displacement equations
of motion (3.2.5.25), (3.3.1.15), (3.3.2.26) of forms forms I, II and III are identical. Having
the aforementioned in mind, from now on we will not distinguished between the intrinsic
gradient parameters l̃2i , l̂

2
i , l̄

2
i and we will write the equations of motion as:
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(λ̃+ 2µ̃)(1− l21∇2)∇∇ · u− µ̃(1− l22∇2)∇×∇× u+ F

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ü)
(3.3.2.29)

The above differential equation is indeed much simpler compared to (2.6.1.1), (2.6.1.2) and
in some cases closed form analytical solution can be obtained, however by making a few more
assumptions regarding the material properties (3.3.2.29) can be simplified even further as it
will be shown in the following section.

3.3.3 Dipolar Gradient Elasticity

Dipolar gradient elasticity was presented in 2003 by Georgiadis [72] and corresponds to the
simplest possible version of Mindlin’s general theory. This theory has been implemented
multiple times (see, e.g., [73], [74], [75], [76]) and can be easily formulated by setting ρ′ = ρ,
â1 = â3 = â5 = 0, â2 = λ̃l2/2, â4 = µ̃l2, g21 = g22 = 0. In this case, equations (3.2.2.5),
(3.2.2.6), (3.2.4.2) - (3.2.4.8), (3.2.5.26) - (3.2.5.29) imply that λ̃ = λ, µ̃ = µ, α = 0, β = 1,
d̃2pkmn = h2δpmδkn, l̂

2
1 = l̂22 = l2, h21 = h22 = h2 = d2/3. In this work dipolar gradient elasticity

is formulated having form II as a background for the kinematics and the potential energy
density, however versions of this sub - theory can be formulated using either form I or form
III.

By setting the above values in (3.2.3.8), (3.3.1.3) the following expressions for the kinetic
energy density and the potential energy density are obtained:

T̃ =
1

2
ρu̇ju̇j +

1

6
ρh2

∂u̇k
∂xp

∂u̇k
∂xp

(3.3.3.1)

Ŵ =
1

2
λϵiiϵjj + µϵijϵij +

λl2

2
k̂ijj k̂ikk +

µl2

2
k̂ijkk̂ijk (3.3.3.2)

The constitutive equations (3.3.1.7), (3.3.1.8) now become:

τ̂pq = λδpqϵii + 2µϵpq (3.3.3.3)

µ̂pqr = l2
∂

∂xp
(λδqrϵii + 2µϵqr) (3.3.3.4)

Because in this case the kinematics as well as the potential energy density are the same as
in form II, the equations of motion and boundary conditions can be formulated by setting
the values of the gradient parameters into the corresponding equations of form II. By setting
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ρ′ = ρ, λ̃ = λ, µ̃ = µ, d̃2pkmn = h2δpmδkn, l̂
2
1 = l̂22 = l2, h21 = h22 = h2 = d2/3 into (3.3.1.11) -

(3.3.1.14) the following equations are obtained :

∂

∂xj

(
τ̂kj −

∂µ̂ijk
∂xi

)
+ Fk = ρük −

1

3
ρh2

(
ün

∂xp∂p

)
(3.3.3.5)

P̂k = nj τ̂jk − ninjDµ̂ijk − 2njDiµ̂ijk + (ninjDlnl −Djni) µ̂ijk +
1

3
ρh2np

ük
∂xp

(3.3.3.6)

While the boundary conditions (3.3.1.13), (3.3.1.14) remain invariant.

Finally, the displacement equations of motion are obtained by setting in (3.3.1.15) l̂21 = l̂22 =
l2, h21 = h22 = h2 = d2/3:

(λ+ µ)(1− l2∇2)∇∇ · u+ µ(1− l2∇2)∇2u+ F = ρü− I∇2ü (3.3.3.7)

Where I is the micro-inertia coefficient defined as:

I = ρh2 =
1

3
ρd2 (3.3.3.8)

Because d has a geometric representation it can be considered as a real positive quantity. It
is reminded that 2d is the length of the edges of the cells that compose the microstructure,
for this reason it can be justified that I > 0.

Equation (3.3.3.7) corresponds to the simplest possible governing equation that can describe
the motion of a gradient material in the context of Mindlin’s general theory. Both (3.3.2.29)
and (3.3.3.8) will be used in this work for solving different problems with infinite domains.
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3.4 Elastodynamics of Gradient Continua

3.4.1 Lamé Potentials

The system of displacement equations of motion (3.3.2.29) has a disadvantageous feature in
that it couples the three displacement components. The aforementioned equations can be
uncoupled with Lamé type potentials as in the case of Navier – Cauchy equations, which is
the equivalent system of equations in classical elasticity.

Let us consider a decomposition of the displacement vector of the form of:

u = ∇ϕ+∇×ψ (3.4.1.1)

∇ ·ψ = 0 (3.4.1.2)

It will be shown that the above vector field indeed satisfies the displacement equations of
motion (3.3.2.29), however before we begin the decomposition proses it is necessary to quote
a theorem that will be used in order to decompose the body force vector in (3.3.2.29).

Theorem 3.4.1.1 (Helmholtz Decomposition Theorem)

Let p(x) be a vector field on a bounded domain V ⊆ R3, which is twice piecewise
differentiable inside V and let S be the surface that encloses V . Then p(x) can be
decomposed into an irrotational (curl – free) component and a solenoidal (divergence
– free) component as:

p = −∇P +∇×Q

Where:

P (x) =
1

4π

∫
V

∇ξ · p(ξ)
|x− ξ|

dV ′ − 1

4π

∮
S

n′ · p(ξ)

|x− ξ|
dS ′

Q(x) =
1

4π

∫
V

∇ξ × p(ξ)

|x− ξ|
dV ′ − 1

4π

∮
S

n′ × p(ξ)

|x− ξ|
dS ′

∇ ·Q = 0

In the above equations ∇′ is the gradient operator with respect to ξ and n′ is the
outward pointing unit normal vector at each point of the surface S ′.

The physical interpretation of ∇ · Q = 0 is that it acts as a closure condition. Since p(x)
is a vector function when decomposed it must be replaced by three equations. Also, it was
mentioned before that by performing Helmholtz decomposition, a vector filed is decomposed
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into an irrotational component and a solenoidal component. This can be easily be noticed
since the vector identities ∇×∇a = 0, ∀a and ∇ · ∇ × v = 0, ∀v hold, as long as a,v are
twice differentiable.

In the problems that are presented in this work the analyzed domain is always considered as
an infinite domain. In this case the expressions of P , Q that are given above are significantly
simplified.

Corollary 3.4.1.1. Let p(x) be a vector field on V = R3 (in this case V is un-
bounded), which is twice piecewise differentiable, if p(x) vanishes faster than 1/x as
x→ ∞. Then p(x) can be decomposed into an irrotational component and a solenoidal
component as:

p = −∇P +∇×Q

Where:

P (x) =
1

4π

∫
V

∇ξ · p(ξ)
|x− ξ|

dV ′

Q(x) =
1

4π

∫
V

∇ξ × p(ξ)

|x− ξ|
dV ′

∇ ·Q = 0

Using Helmholtz decomposition, we can express the body force vector in the form of:

F = (λ̃+ 2µ̃)∇F + µ̃∇×G (3.4.1.3)

Where the coefficients in front of the differential operators in (3.4.1.3) are placed for dimen-
sionality reasons.

We continue by inserting equations (3.4.1.1), (3.4.1.3) into (3.3.2.29):

(λ̃+ 2µ̃)(1− l21∇2)∇∇ · (∇ϕ+∇×ψ)− µ̃(1− l22∇2)∇×∇× (∇ϕ+∇×ψ)
+ (λ̃+ 2µ̃)∇F + µ̃∇×G

= ρ[(∇ϕ̈+∇× ψ̈)− h21∇∇ · (∇ϕ̈+∇× ψ̈) + h22∇×∇× (∇ϕ̈+∇× ψ̈)]
(3.4.1.4)

The above equation can be simplified with the help of the following vector identities:

∇ · ∇a = ∇2a, ∀a (3.4.1.5)
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∇ · ∇ × v = 0, ∀v (3.4.1.6)

∇×∇a = 0, ∀a (3.4.1.7)

Due to (3.4.1.5), (3.4.1.6), equation (3.4.1.4) takes the form:

(λ̃+ 2µ̃)(∇∇2ϕ− l21∇2∇∇2ϕ)− µ̃(1− l22∇2)∇×∇×∇×ψ + (λ̃+ 2µ̃)

∇F + µ̃∇×G = ρ[(∇ϕ̈+∇× ψ̈)− h21∇∇2ϕ̈+ h22 +∇×∇×∇× ψ̈]
(3.4.1.8)

The terms with the multiple curl operators in (3.4.1.8) can be further simplified due to the
following identity:

∇×∇× v = ∇∇ · v −∇2v, ∀v (3.4.1.9)

Substituting (3.4.1.9) into (3.4.1.8) and taking also (3.4.1.7) into account yields:

(λ̃+ 2µ̃)(∇∇2ϕ− l21∇2∇∇2ϕ) + µ̃(∇×∇2ψ − l22∇2∇×∇2ψ)

+ (λ̃+ 2µ̃)∇F + µ̃∇×G = ρ[(∇ϕ̈+∇× ψ̈)− h21∇∇2ϕ̈− h22 +∇×∇2ψ̈]
(3.4.1.10)

By assuming that ϕ is of C5 (it will be shown latter that this is not necessary) we can
interchange the Laplacian and the gradient operators, as well as the Laplacian and curl
operators in (3.4.1.10):

(λ̃+ 2µ̃)(∇∇2ϕ− l21∇∇4ϕ) + µ̃(∇×∇2ψ − l22∇×∇4ψ)

+ (λ̃+ 2µ̃)∇F + µ̃∇×G = ρ[(∇ϕ̈+∇× ψ̈)− h21∇∇2ϕ̈− h22 +∇×∇2ψ̈]
(3.4.1.11)

Where ∇4 is the biharmonic operator defined as:

∇4 = ∇2∇2 (3.4.1.12)

By rearranging the terms in (3.4.1.11), the following equation is obtained:
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∇[−(λ̃+ 2µ̃)l21∇4ϕ+ (λ̃+ 2µ̃)∇2ϕ+ ρh21∇2ϕ̈+ (λ̃+ 2µ̃)F − ρh21ϕ̈]

+∇× [−l22µ̃∇4ψ + µ̃∇2ψ + ρh22ψ̈ + µ̃G− ρψ̈] = 0
(3.4.1.13)

By applying the divergence operator in (3.4.1.13) and taking into account (3.4.1.5), (3.4.1.6)
we obtain:

∇2[−(λ̃+ 2µ̃)l21∇4ϕ+ (λ̃+ 2µ̃)∇2ϕ+ ρh21∇2ϕ̈+ (λ̃+ 2µ̃)F − ρϕ̈] = 0 (3.4.1.14)

By applying the curl operator in (3.4.1.13) and taking into account (3.4.1.7), we obtain:

∇×∇× [−l22µ̃∇4ψ + µ̃∇2ψ + ρh22∇ψ̈ + µ̃G− ρψ̈] = 0 (3.4.1.15)

The order of the final two differential equations can be reduced if we manage two prove that
the terms inside the brackets in (3.4.1.14), (3.4.1.15) are equal to zero. This idea is known
in the literature as the completeness theorem and the next paragraph of this work is entirely
devoted to formulating and proving this theorem.

3.4.2 The Generalized Completeness Theorem

According to Achenbach [77], the question of the completeness of the representation (3.4.1.1)
in the context of classical elasticity was first raised by Clebsch. Clebsch asserted that every
solution of the Navier-Cauchy equations of motion could be expressed using the represen-
tation (3.4.1.1) for li = hi = 0. The work of Clebsch and others, particularly Duhem, was
discussed by Sternberg [78]. As far as the author is concerned all the work that has been
made regarding the completeness theorem is in the context of classical elasticity and no one
has ever attempted officially to generalize the theorem in a more complicated theory than
the one of Cauchy. The formulation and proof of the theorem are presented below and are
identical to those of Achenbach but for the case of classical elasticity [77].
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Theorem 3.4.2.1 (Completeness Generalized Theorem)

Let u(x, t) and F(x, t) satisfy the conditions:

u ∈ B4(V × T )

F ∈ B(V × T )

As well as the displacement equation of motion (3.3.2.29), in a region of a space V
and in a closed time interval T . Also let F be given by (3.4.1.3). Then there exists
a scalar function ϕ(x, t) and a vector function ψ(x, t) such that u(x, t) is represented
by (3.4.1.1), (3.4.1.2). Where ϕ(x, t) and ψ(x, t) satisfy the following forth order
differential equations:

∇4ϕ− 1

l21
∇2(ϕ+

h21
ṽ21
ϕ̈)− 1

l21
F = − 1

l21ṽ
2
1

ϕ̈

∇4ψ − 1

l22
∇2(ψ +

h22
ṽ22
ψ̈)− 1

l22
G = − 1

l22ṽ
2
2

ψ̈

Proof : We begin by replacing the Laplacian operator in (3.3.2.29) with the expression given
in (3.4.1.9):

(λ̃+ 2µ̃)[∇∇ · u− l21(∇∇ · ∇∇ · u−∇×∇×∇∇ · u)]
− µ̃[∇×∇× u− l22(∇∇ · ∇ ×∇× u−∇×∇×∇×∇× u) + F]

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ·ü)
(3.4.2.1)

Equation (3.4.2.1) can be simplified with the help of (3.4.1.5) – (3.4.1.7)

(λ̃+ 2µ̃)(∇∇ · u− l21∇∇2∇ · u)− µ̃(∇×∇× u+ l22∇×∇×∇×∇× u) + F

= ρ(ü− h21∇∇ · ü+ h22∇×∇× ·ü)
(3.4.2.2)

The above equation can equivalently be written as:

ü− h21∇∇ · ü+ h22∇×∇× ·ü
= −v22l22∇×∇×∇×∇× u− v21l

1
2∇∇2∇ · u+ v21∇∇ · u− v22∇×∇× u+ f

(3.4.2.3)

Where ṽ1, ṽ2 are material’s constants that when the microstructural parameters are set equal
to zero, degenerate to the wave velocities of the primary and the secondary waves of classical
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elasticity and f = F/ρ is the body force per unit mass, which according to (3.4.1.3) can be
expressed as:

ṽ1 =

√
λ̃+ 2µ̃

ρ
(3.4.2.4)

ṽ2 =

√
µ̃

ρ
(3.4.2.5)

f = ṽ21∇F + ṽ22∇×G (3.4.2.6)

By integrating (3.4.2.3) two times with respect to time we obtain:

u− h21∇∇ · u+ h22∇×∇× ·u

= −ṽ22l22∇×
∫ t

0

∫ τ

0

(∇×∇×∇× u) ds dτ − ṽ21l
1
2∇
∫ t

0

∫ τ

0

(∇2∇ · u) ds dτ

+ ṽ21∇
∫ t

0

∫ τ

0

(∇ · u) ds dτ − ṽ22∇×
∫ t

0

∫ τ

0

(∇× u) ds dτ +

∫ t

0

∫ τ

0

f ds dτ

+ ṽ(x)t+ ũ(x)

(3.4.2.7)

Where ṽ(x) and ũ(x) are the initial conditions for the velocity and the displacement respec-
tively (ṽ(x) = v(x, 0), ũ(x) = u(x, 0)). Also, the initial conditions of the velocity and the
displacement can be expressed in terms of (3.4.1.1) as:

ṽ(x) = ∇ϕ̇0 +∇× ψ̇0 (3.4.2.8)

ũ(x) = ∇ϕ0 +∇×ψ0 (3.4.2.9)

Where:

ϕ0 = ϕ0(x) = ϕ(x, 0), ϕ̇0 = ϕ̇0(x) = ϕ̇(x, 0) (3.4.2.10)

ψ0 = ψ0(x) = ψ(x, 0), ψ̇0 = ψ̇0(x) = ψ̇(x, 0) (3.4.2.11)

Substituting (3.4.2.6), (3.4.2.8), (3.4.2.9) into (3.4.2.7) yields:
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u = −ṽ22l22∇×
∫ t

0

∫ τ

0

(∇×∇×∇× u) ds dτ − ṽ21l
2
1∇
∫ t

0

∫ τ

0

(∇2∇ · u) ds dτ

+ ṽ21∇
∫ t

0

∫ τ

0

(∇ · u) ds dτ − ṽ22∇×
∫ t

0

∫ τ

0

(∇× u) ds dτ

− h22∇×∇× ·u+ h21∇∇ · u+

∫ t

0

∫ τ

0

(ṽ21∇F + ṽ22∇×G) ds dτ

+ (∇ϕ̇0 +∇× ψ̇0)t+ (∇ϕ0 +∇×ψ0)

(3.4.2.12)

Due to the similarity between (3.4.1.1), (3.4.2.12) we define:

ϕ = −ṽ21l21
∫ t

0

∫ τ

0

(∇2∇ · u) ds dτ + ṽ21

∫ t

0

∫ τ

0

(∇ · u) ds dτ

+ h21∇ · u+ ṽ21

∫ t

0

∫ τ

0

F ds dτ + ϕ̇0t+ ϕ0

(3.4.2.13)

ψ = −ṽ22l22
∫ t

0

∫ τ

0

(∇×∇×∇× u) ds dτ − ṽ22

∫ t

0

∫ τ

0

(∇× u) ds dτ

− h22∇× ·u+ ṽ22

∫ t

0

∫ τ

0

G ds dτ + ψ̇0t+ψ0

(3.4.2.14)

By differentiating (3.4.2.13), (3.4.2.14) two times with respect to time we obtain:

ϕ̈ = −ṽ21l21∇2∇ · u+ ṽ21∇ · u+ h21∇ · ü+ ṽ21F (3.4.2.15)

ψ̈ = −ṽ22l22∇×∇×∇× u− ṽ22∇× u− h22∇× ü+ ṽ22G (3.4.2.16)

By substituting (3.3.1.1) into (3.4.2.15) and taking into account (3.4.1.5), (3.4.1.6), (3.4.1.9)
we obtain:

ϕ̈ = −ṽ21l21∇4ϕ+ ṽ21∇2ϕ+ h21∇2ϕ̈+ ṽ21F (3.4.2.17)

By substituting (3.3.1.1) into (3.4.2.16) and taking into account (3.3.1.7) we obtain:

ψ̈ = −ṽ22l22∇×∇×∇×∇× u− ṽ22∇×∇× u− h22∇×∇× ü+ ṽ22G (3.4.2.18)
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Inserting (3.3.1.9) into (3.4.2.18) yields:

ψ̈ = −ṽ22l22(∇∇·−∇2)(∇∇·ψ−∇2ψ)−ṽ22(∇∇·ψ−∇2ψ)−h22(∇∇·ψ̈−∇2ψ̈)+ṽ22G (3.4.2.19)

However, since one of the assumptions of the completeness theorem is, ∇ ·ψ = 0 the above
equation is simplified to:

ψ̈ = −ṽ22l22(∇∇ · ∇2ψ +∇2∇2ψ) + ṽ22∇2ψ + h22∇2ψ̈ + ṽ22G (3.4.2.20)

By interchanging the divergence and the Laplacian operators, the first term inside the paren-
thesis in (3.4.2.20) vanishes, since ∇ · ψ = 0 and in view of (3.4.1.12) the above equation
can be written as:

ψ̈ = −ṽ22l22∇4ψ + ṽ22∇2ψ + h22∇2ψ̈ + ṽ22G (3.4.2.21)

Dividing (3.4.2.17) with −v21 l̂21 and (3.4.2.21) with −v22 l̂2 gives:

∇4ϕ− 1

l21
∇2(ϕ+

h21
ṽ21
ϕ̈)− 1

l21
F = − 1

l21ṽ
2
1

ϕ̈ (3.4.2.22)

∇4ψ − 1

l22
∇2(ψ +

h22
ṽ22
ψ̈)− 1

l22
G = − 1

l22ṽ
2
2

ψ̈ (3.4.2.23)

And in this way the proof of the theorem is completed.

3.4.3 Wave Propagation in Gradient Continua

The only thing that remains to be considered before deriving analytical solutions, is to
examine what happens when plane waves propagate inside a gradient continuum. Unlike
classical elasticity, in the context of the three forms of Mindlin’s general the body waves are
dispersive, meaning that waves of different wavelengths travel at different phase speeds. To
illustrate this we begin by applying the divergence and the curl operator in the homogeneous
version of (3.3.2.29) and with the help of (3.4.1.6), we can obtain the equations that describe
the propagation of dilatation and rotation respectively.
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ṽ21(1− l21∇2)∇2(∇ · u) = (1− h21∇2)∇ · ü (3.4.3.1)

ṽ22(1− l22∇2)∇× (∇×∇× u) = (1 + h22∇×∇×)∇× ü (3.4.3.2)

Using (3.4.1.9) and taking also into account (3.4.1.6), (3.4.3.2) can equivalently be written
as:

ṽ22(1− l22∇2)∇2(∇× u) = (1 + h22∇2)∇× ü (3.4.3.3)

Where the expressions of the material’s constants ṽ1 and ṽ2 are given by (3.4.2.4), (3.4.2.5).
Also, it is worth mentioning that in contrast with the corresponding relations of classical
elasticity, the differential equations presented in (3.4.3.1), (3.4.3.3) of the forth order. This
implies that wave signals emitted from a disturbance point propagate at different velocities.
At this point, the dispersion relations can be determined by considering time - harmonic
plane wave solution of (3.4.3.1), (3.4.3.3) in the form of:

u = Adei[q(n·x)−ωt] (3.4.3.4)

Where A denotes the amplitude, (d,n) are unit vectors along the directions of motion and
propagation, respectively (n should not be confused with the outward unit vector normal
to a boundary of the body), x is the position vector, q is the wavenumber and ω is the
circular frequency of the plane wave. Upon substituting (3.4.3.4) into (3.4.3.1), (3.4.3.3),
the following dispersion equations are obtained for the primary and the secondary waves:

ω2 = ṽ21q
2
1

(
1 + l21q

2
1

) (
1 + h21q

2
1

)−1
(3.4.3.5)

ω2 = ṽ22q
2
2

(
1 + l22q

2
2

) (
1 + h22q

2
2

)−1
(3.4.3.6)

Where q1 and q2 are wavenumbers that describe the motions of the primary and the secondary
waves. Accordingly, the phase velocities of the longitudinal and shear waves ṽpi , i = 1, 2 in
either of the three forms of Mindlin’s general theory are given by:

ṽp1 ≡ ω

q1
= ṽ21

(
1 + l21q

2
1

)1/2 (
1 + h21q

2
1

)−1/2
(3.4.3.7)
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ṽp2 ≡ ω

q2
= ṽ22

(
1 + l22q

2
2

)1/2 (
1 + h22q

2
2

)−1/2
(3.4.3.8)

Equations (3.4.3.7), (3.4.3.8) show that the propagation velocities of body waves depend
on the respective wavenumber. Hence, both waves are dispersive in the context of the
three forms of Mindlin’s general theory. To investigate further the nature of the dispersion
relations (3.4.3.5), (3.4.3.6), we consider the group velocity ṽgi = dω/dqi at which the energy
propagates in a dispersive medium [77]. By differentiating (3.4.3.6), (3.4.3.7) with respect
to qi and with the help of (3.4.3.5), (3.4.3.6), we obtain:

ṽg1 = ṽp1 +
(
l21 − h21

)
ṽ1q

2
1

(
1 + l21q

2
1

)−1/2 (
1 + h21q

2
1

)−3/2
(3.4.3.9)

ṽg2 = ṽp2 +
(
l22 − h22

)
ṽ2q

2
2

(
1 + l22q

2
2

)−1/2 (
1 + h22q

2
2

)−3/2
(3.4.3.10)

The following three cases are distinguished [79], which will appear very important later in
the analysis of the scattering problems.

• For l2i < h2i , equations (3.4.3.9), (3.4.3.10) imply that ṽgi < ṽpi , thus the dispersion is
normal.

• For l2i > h2i , equations (3.4.3.9), (3.4.3.10) imply that ṽgi > ṽpi , this case is characterized as
anomalous dispersion.

• Finally, for l2i = h2i , or (l2i → 0, h2i → 0), the wave velocities degenerate into the non-
dispersive velocities of classical elastodynamics. This case presents a lot of interest, as it
combines aspects of both classical elasticity (i.e., non-dispersion) and gradient elasticity (i.e.,
the existence of microstructure).
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4 Fundamental Solutions

4.1 Introduction

In this chapter the process of deriving two new analytical solutions in the context of sub-
theories that are generated from Mindlin’s general theory is presented in great detail. We
consider a problem where plane waves generated by body forces propagate through an infinite
domain and we distinguish between the two cases of anti – plane shear and plain strain.
In both cases the analytical solutions are derived using purely displacement formulation
and the displacement equations of motion are solved analytically using integral transforms
techniques. Because in the plane strain problem the equations that arise are quite extensive,
the theory of dipolar gradient elasticity is adopted which represents the simplest possible
version of Mindlin’s general theory. In both cases the displacement Green’s functions are
given in closed form and their validity is ensured by the fact that they satisfy the displacement
equations of motion, while the corresponding solutions of classical elasticity can be obtained
as a special case when the microstructure parameters approach to zero. These Green’s
functions will appear very useful later when formulating the scattering problems because the
pins will be modelled as concentrated body forces and due to the principle of superposition
which generally applies to linear elasticity regardless whether the system is a Cauchy type
continuum or not, we can determine the displacement fields even for cases where the pins
define complex configurations.

4.2 Infinite Domain Under Anti - Plane Shear

4.2.1 Problem Statement

The first problem we will deal with pertains to the case where SH waves generated by a
concentrated body force, propagate in a infinite domain that is described by form II of
Mindlin’s general theory. In order to formulate the equations that describe the problem we
consider the case of anti-plane shear deformation, in this special case the displacements and
the body forces have the following forms:

ux = uy = 0, uz = uz(x, y, t) (4.2.1.1)

Fx = Fy = 0, Fz = Fz(x, y, t) (4.2.1.2)

Under this circumstances the displacement equations of motion of form II given by (3.3.1.15),
(3.3.2.29) degenerate to a single scalar differential equation. In order to illustrate this we
begin by expanding the divergence of the displacement vector:
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∇ · u =
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0 (4.2.1.3)

By substituting (4.2.1.1) - (4.2.1.3) into (3.3.2.29) and taking also (3.4.1.9) into account we
obtain the following equation, which describes the motion of a form II gradient material
under anti - plane conditions:

µ̃
(
1− l22∇2

)
∇2uz + ρh22∇2üz − ρüz + Fz = 0 (4.2.1.4)

From (4.2.1.4) it is noticeable that the particles motion is polarized in the z direction,
meaning that the resulting waves are shear waves SH. The SH notation refers to shear waves
(or secondary waves). In the context of this work the displacement uz and the body force
Fz are supposed to have a harmonic time variation:

uz(x, y, t) = Uz(x, y)e
−iωt (4.2.1.5)

Fz(x, y, t) = Pz(x, y)e
−iωt (4.2.1.6)

The equation of motion for time harmonic conditions is obtained by substituting (4.2.1.5),
(4.2.1.6) into (4.2.1.4):

µ̃
(
1− l22∇2

)
∇2Uz − ρh22ω

2∇2Uz + ρω2Uz + Pz = 0 (4.2.1.7)

It is also convenient to express (4.2.1.7) in Cartesian coordinates x, y, since it will be the
main frame of reference that will be adopted in the analyses:

− l22µ̃

(
∂4Uz
∂x4

+ 2
∂4Uz
∂x2∂y2

+
∂4Uz
∂y4

)
+
(
µ̃− ρh22ω

2
)(∂2Uz

∂x2
+
∂2Uz
∂y2

)
+ ρω2Uz + Pz = 0

(4.2.1.8)

The displacement Uz will be determined by solving (4.2.1.8). However, this is not necessary
since the equation of motion of Kirchhoff plates under certain conditions which will be stated
later is practically the same as (4.2.1.4). Nevertheless, the procedure of solving (4.2.1.8) will
be presented in detail for the sake of completeness.
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4.2.2 Correspondence to Classical Plate Theory

Another mechanical system that is described by a differential equation of motion in the form
of (4.2.1.4) is the Kirchhoff plate, when an isotropic prestress is also taken into account.
The Kirchhoff - Love theory of plates, also known as the classical plate theory (CPT) was
developed in 1888 by Love [80] using assumptions proposed by Kirchhoff [81] in 1850 and is
an extension of the Euler - Bernoulli beam theory to plates. The development of the classical
(Kirchhoff - Love) plate theory is based on three basic assumptions:

(1) Straight lines perpendicular to the mid-surface (i.e., transverse normals) before deforma-
tion remain straight after deformation,

(2) The transverse normals do not experience elongation (i.e., they are inextensible).

(3) The transverse normals rotate such that they remain perpendicular to the mid-surface
after deformation.

To examine the consequences of the Kirchhoff hypothesis, we consider a plate of uniform
thickness h. We use as a frame of reference rectangular Cartesian coordinates (x, y, z) with
the xy plane coinciding with the middle plane of the plate. The total displacement compo-
nents of a point of the plate are (u, v, w). When deformed a material point with coordinates
(x, y, z) in the unreformed pate moves to the position (x + u, y + v, z + w) in the deformed
plate. Assumptions (1), (2) imply that the normal strain along the thickness direction is
zero:

ϵzz =
∂w

∂z
= 0 (4.2.2.1)

Equation (4.2.2.1) implies that w is independent of the coordinate z, while assumption (3)
results in zero traverse shear strains:

ϵxz =
∂u

∂z
+
∂w

∂x
= 0, ϵyz =

∂v

∂z
+
∂w

∂y
= 0 (4.2.2.2)

By integrating equations (4.2.2.2) with respect to z and taking into account that w is inde-
pendent of z, we obtain the following form for the displacement field:

u(x, y, z, t) = u0(x, y, t)− z
∂w(x, y, z, t)

∂x
(4.2.2.3)

v(x, y, z, t) = v0(x, y, t)− z
∂w(x, y, z, t)

∂y
(4.2.2.4)

73



Chapter 4 Fundamental Solutions

w(x, y, z, t) = w0(x, y, t) (4.2.2.5)

Where (u0, v0, w0) denote the displacements of a material point on the middle plane (x, y, 0).
It is also noted that u0, v0 are associated with extensional deformation of the plate, while w0

denotes the bending deflection. For the general case of a prestressed Kirchhoff plate on top
of elastic springs where thermal effects are also taken into account, the equation of motion
in the transverse direction is given by Reddy, (equation (3.4.17) in [82]).

−D11
∂4w0

∂x4
− 2 (D12 + 2D66)

∂4w0

∂x2∂y2
−D22

∂4w0

∂y4
− kw0

−

(
∂2MT

xx

∂x2
+ 2

∂2MT
xy

∂x∂y
+
∂2MT

yy

∂y2

)
+ N (u0, v0, w0) + q

= I0
∂2w0

∂t2
− I2

∂2

∂t2

(
∂2w0

∂x2
+
∂2w0

∂y2

) (4.2.2.6)

In (4.2.2.6) Dij are the bending stiffness coefficients, k is the springs coefficient, MT
ij are the

thermal moments, q is a distributed surface load, I0 = ρh, I2 = ρh3/12 and N is given by:

N =
∂

∂x

(
Nxx +

∂w0

∂x
+Nxy +

∂w0

∂y

)
+

∂

∂y

(
Nxy +

∂w0

∂x
+Nyy +

∂w0

∂y

)
(4.2.2.7)

The terms Nij that appear in (4.2.2.7) represent the normal and shear prestress forces that
act on the plate. For the case where the prestress is isotropic (i.e., Nxx = Nyy = N , Nxy = 0),
(4.2.2.7) yields:

N = N

(
∂2w0

∂x2
+
∂2w0

∂y2

)
= N∇2w0 (4.2.2.8)

Also if the plate is isotropic then the bending stiffness coefficients that appear in (4.2.2.6)
are: D11 = D22 = D, D12 = vD, 2D66 = (1 − v)D, where D is the flexural rigidity of the
isotropic plate:

D =
Eh3

12(1− v2)
(4.2.2.9)
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By substituting the above expressions into (4.2.2.6) and ignoring the thermal moments and
the existence of the springs, we obtain:

−D

(
∂4w0

∂x4
− 2

∂4w0

∂x2∂y2
− ∂4w0

∂y4

)
+N

(
∂2w0

∂x2
+
∂2w0

∂y2

)
+ q

= ρh

[
1− h2

12

(
∂2

∂x2
+

∂2

∂y2

)]
∂2w0

∂t2

(4.2.2.10)

Or using vector notation:

N

(
1− D

N
∇2

)
∇2w0 + q = ρh

(
1− h2

12
∇2

)
ẅ0 (4.2.2.11)

Equation (4.2.2.11) is identical to (4.2.1.4), with the only difference being the coefficients
upfront of the derivatives, meaning that the Green’s function of a form II infinite domain
under anti - plane shear will be the same as that of a prestressed Kirchhoff plate. Also
by comparing (4.2.2.11) and (4.2.1.4) it is easy to find the correspondence between the mi-
crostructure parameters and the quantities that appear in classical plate theory. Specifically,
the gradient coefficient l22 can be correlated with D/N , while the characteristic length of the
material h22 has a similar role as the thickness of the plate h. Equation (4.2.2.11) has been
solved for various types of loads including the time harmonic case which is of particular
interest. In this case (4.2.2.11) degenerates into a bi - Helmholtz differential equation similar
to (4.2.1.8) the general solution of which can be found in many textbooks. Nevertheless the
procedure of deriving the general solution of (4.2.2.8) will be presented in detail.

4.2.3 Derivation of the Green’s Function

The differential equation presented in (4.2.1.8) will be solved using the double Fourier trans-
form, which is defined as:

ˆ̂
f(ξ, η) =

∫ +∞

−∞

∫ +∞

−∞
f(x, y)e−i(ξx+ηy) dx dy (4.2.3.1)

The inverse double Fourier transform is respectively defined as:

f(x, y) =
1

4π2

∫ +∞

−∞

∫ +∞

−∞

ˆ̂
f(ξ, η)ei(ξx+ηy) dξ dη (4.2.3.2)
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By applying the double Fourier transform in (4.2.1.8) for the case where Pz(x, y) = δ(x)δ(y)pz,
we obtain the following expression for the transformed displacement:

ˆ̂
Uz =

ˆ̂pz
µ̃(ξ2 + η2)[l22(ξ

2 + η2) + 1]− [h22(ξ
2 + η2) + 1]ρω2

(4.2.3.3)

Applying the double inverse Fourier transform in (4.2.3.3) yields:

ˆ̂
Uz =

pz
4π2

∫ +∞

−∞

∫ +∞

−∞

ei(ξx+ηy)

µ̃(ξ2 + η2)[l22(ξ
2 + η2) + 1]− [h22(ξ

2 + η2) + 1]ρω2
dξ dη (4.2.3.4)

In order to determine the integral presented in (4.2.3.4) it is convenient to use as a frame
of reference polar coordinates. The spatial coordinates (x, y) and the components of the
wavenumber (ξ, η) can be transformed into polar coordinates as:

x = r cos(θ), y = r sin(θ), r2 = x2 + y2 (4.2.3.5)

ξ = k cos(ϕ), η = k sin(ϕ), k2 = ξ2 + η2 (4.2.3.6)

Using (4.2.3.5), (4.2.3.6) as well as the fact that the Jacobian of the above transformation
is J = k, (4.2.3.4) can be written as.

ˆ̂
Uz =

pz
4π2

∫ 2π

0

∫ ∞

0

e−ikr[cos(ϕ) cos(θ)+sin(ϕ) sin(θ)]

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)ρω2
k dk dϕ (4.2.3.7)

The above integral can be simplified thanks to the following trigonometric identity:

cos(ϕ) cos(θ) + sin(ϕ) sin(θ) = cos(ϕ− θ) (4.2.3.8)

By substituting (4.2.3.8) into (4.2.3.7) we obtain:

ˆ̂
Uz =

pz
4π2

∫ 2π

0

∫ ∞

0

e−ikr cos(ϕ−θ)

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)ρω2
k dk dϕ (4.2.3.9)
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While the integral can be simplified even further by just rearranging the terms:

ˆ̂
Uz =

pz
2π

∫ ∞

0

k

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)ρω2

[
1

2π

∫ 2π

0

e−ikr cos(ϕ−θ) dϕ

]
dk (4.2.3.10)

The term inside the brackets in (4.2.3.10) corresponds to the Bessel function of the first kind
of order zero J0(kr). Therefore (4.2.3.10) becomes:

ˆ̂
Uz =

pz
2π

∫ ∞

0

k

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)ρω2
J0(kr) dk (4.2.3.11)

Where:

J0(kr) =
1

2π

∫ 2π

0

e−ikr cos(ϕ−θ) dϕ (4.2.3.12)

The following result arises by inserting (3.4.2.5) into (4.2.3.11):

ˆ̂
Uz =

pz
2πµ̃

∫ ∞

0

k

(l22k
2 + 1)k2 − (h22k

2 + 1)k̃22
J0(kr) dk (4.2.3.13)

The quantity k̃2 denotes the wave number along the direction that the SH wave propagates:

k̃2 =
ω

ṽ2
(4.2.3.14)

The roots of the denominator in (4.2.3.13) are:

p = ±

√√√√√h22k̃
2
2 − 1−

√
4l22k̃

2
2 +

(
h22k̃

2
2 − 1

)2
2l22

(4.2.3.15)

q = ±

√√√√√h22k̃
2
2 − 1 +

√
4l22k̃

2
2 +

(
h22k̃

2
2 − 1

)2
2l22

(4.2.3.16)
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It is noted that the denominator in (4.2.3.13) is the same as the dispersion equation (3.4.3.6),
while the roots p, q correspond to q2 in (4.2.3.6). By applying partial fraction decomposition
the transformed function in (4.2.3.13) can be expressed as:

k

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)k̃22
=
k

l22

(
A

k − p
+

B

k + p
+

Γ

k − q
+

∆

k + q

)
(4.2.3.17)

Where the coefficients A, B, Γ, ∆ are given by:

A =
1

2p (p2 − q2)
, B = − 1

2p (p2 − q2)
,

Γ =
1

2q (q2 − p2)
, ∆ = − 1

2q (q2 − p2)

(4.2.3.18)

Therefore the transformed function in (4.2.3.13) can be written as:

k

µ̃(l22k
2 + 1)k2 − (h22k

2 + 1)k̃22
=

1

l22

[
k

(k2 − p2) (p2 − q2)
+

k

(k2 − q2) (q2 − p2)

]
(4.2.3.19)

By substituting (4.2.3.19) into (4.2.3.13) we obtain:

ˆ̂
Uz =

pz
2πµ̃l22 (p

2 − q2)

[∫ ∞

0

k

(k2 − p2)
J0(kr) dk −

k

(k2 − q2)
J0(kr) dk

]
(4.2.3.20)

The integrals that appear in (4.2.3.20) can be determined using the following identity that
relates Bessel functions of the same order but of different kind, (see formula 1, page 424 in
[83]).

∫ ∞

0

[(1 + ei(b−n))Jn(kr) + i(1− ei(b−n))Yn(kr)]
kb−1

(k2 − λ2)m+1
dk

=
iπ

2mm!

(
d

λdλ

)m
λb−2H(1)

n (λr)

(4.2.3.21)

Where Yn is the Bessel function of the second kind of order n, H
(1)
n is the Hankel function

of the first kind (or equivalently the Bessel function of the third kind), r is a real positive
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number, m is a positive integer or zero and λ is a complex number with positive imaginary
part, while the following inequalities must also hold for (4.2.3.21) to be applicable:

|ℜ(n)| < ℜ(b) < 2m+
7

2
(4.2.3.22)

Equation (4.2.3.21) for b = 2, n = m = 0 yields:

∫ ∞

0

[(1 + e2iπ)J0(kr) + i(1− e2iπ)Y0(kr)]
k

k2 − λ2
dk = iπH

(1)
0 (λr) (4.2.3.23)

The above expression can be simplified with the help of Euler’s formula:

eix = cos(x) + i sin(x) (4.2.3.24)

By setting into (4.2.3.24) x = 2π, we obtain ei2π = 1, so due to this result (4.2.3.23) becomes:

∫ ∞

0

k

k2 − λ2
J0(kr) dk =

iπ

2
H1

0 (λr) (4.2.3.25)

The expression of Uz is finally obtained by applying (4.2.3.25) twice for λ = p, λ = q and
then substituting the results into (4.2.3.20):

Uz(r) =
pz

4l22µ̃ (p
2 − q2)

i
[
H

(1)
0 (pr)−H

(1)
0 (qr)

]
(4.2.3.26)

From (4.2.3.15), (4.2.3.16) it is clear that ±q are the real routes of the dispersion equa-
tion, while ±p are the imaginary routes of the dispersion equation. Having this in mind,
(4.2.3.26) can be written in terms of Hankel functions and modified Bessel functions with
real arguments as presented bellow:

Uz(r) =
pz

4l22µ̃π (P
2 + q2)

[
iπH

(1)
0 (qr)− 2K0(Pr)

]
(4.2.3.27)

Where p = iP and K0 is the modified Bessel function of order n, which is related to the
Hankel functions H

(1)
n , H

(2)
n as:
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Kn(x) =

{
π
2
in+1H

(1)
n (ix), −π ≤ arg(x) ≤ π

2
π
2
(−i)n+1H

(2)
n (−ix), −π

2
≤ arg(x) ≤ π

(4.2.3.28)

From (4.2.3.27) it can be seen that the H
(1)
0 term is associated with outgoing waves while the

K0 term is associated with evanescent modes. Another major advantage that (4.2.3.27) offers
compared to (4.2.3.26) is that it is much more appropriate for performing computations, since
in (4.2.3.27) all the arguments are real, while in (4.2.3.26) p is imaginary. Using (4.2.3.27)
we can express the problem’s Green’s function by performing a coordinate system shift:

g(r; r′) =
pz

4l22µ̃π (P
2 + q2)

[
iπH

(1)
0 (qs)− 2K0(Ps)

]
(4.2.3.29)

Where s = |r− r′| The Green’s function g(r; r′) expresses the displacement of a point with
position vector r in the z direction due to a concentrated force of magnitude pz at a point
with position vector r′ along the same direction. It is also noted that (4.2.3.29) is bounded
in the limit where r → r′:

g(r; r′) ∼ pz
l22µ̃

[
iπ + 2 ln (P/q)

4π (P 2 + q2)
+
s2ln(s)

8π

]
+O(s2) (4.2.3.30)

4.2.4 Displacement Contours

For plotting the displacement contours it is convenient to introduce the following non-
dimensional variables:

H =
h2
l2

(4.2.4.1)

K2 = l2k̃2 (4.2.4.2)

R =
r

l2
=
sk̃2
K2

(4.2.4.3)

Ūz =
µ̃Uz
pz

(4.2.4.4)

WhereH is the non-dimensional characteristic length of the material,K2 is a non-dimensional
wave number, R is the non-dimensional radial coordinate and Ūz is the non-dimensional
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displacement. By substituting (4.2.4.1) - (4.2.4.3) into (4.2.3.15), (4.2.3.16) the following
expressions for the roots of the dispersion equation arise:

p = ±

√√√√H2K2
2 − 1−

√
4K2

2 + (H2K2
2 − 1)

2

2K2
2

k̃22 (4.2.4.5)

q = ±

√√√√H2K2
2 − 1 +

√
4K2

2 + (H2K2
2 − 1)

2

2K2
2

k̃22 (4.2.4.6)

In view of (4.2.3.27), (4.2.4.1) - (4.2.4.4) the non - dimensional Green’s function is:

ḡ(r; r′) =
1

4π (P 2 + q2)

[
iπH

(1)
0 (qs)− 2K0(Ps)

]
(4.2.4.7)

Where:

p2 − q2 = −

√
4K2

2 + (H2K2
2 − 1)

2

l22
(4.2.4.8)

ps = ±

√√√√H2K2
2 − 1−

√
4K2

2 + (H2K2
2 − 1)

2

2
R (4.2.4.9)

ps = ±

√√√√H2K2
2 − 1 +

√
4K2

2 + (H2K2
2 − 1)

2

2
R (4.2.4.10)

The expressions of p, q are now given by (4.2.4.9), (4.2.4.10) and when (4.2.4.7), (or (4.2.3.26),
(4.2.3.27), (4.2.3.29)) are used only the positive roots are taken into account. It is also noted
that in view of (4.2.4.8) - (4.2.4.10), the radial coordinate r and the gradient coefficient l2 do
not appear in (4.2.4.7). The non-dimensional displacement contours are determined using
(4.2.4.7), we distinguish the cases of normal (H > 1), anomalous (H < 1) and no dispersion
(H = 1) by adjusting the value of H and for each one of the three cases we examine the
effect of the parameter K2. In the figures that follow the contours for the real part, the
imaginary part and the norm of the non-dimensional displacement Ūz are presented, for the
case where the body force is applied at the origin of the coordinate system.
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.1: Displacement contours for H = 1, K2 = 0.1, (no dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.2: Displacement contours for H = 1, K2 = 1, (no dispersion).
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.3: Displacement contours for H = 1, K2 = 10, (no dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.4: Displacement contours for H = 1, K2 = 100, (no dispersion).
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.5: Displacement contours for H = 0.1, K2 = 0.1, (anomalous dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.6: Displacement contours for H = 0.1, K2 = 1, (anomalous dispersion).
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.7: Displacement contours for H = 0.1, K2 = 10, (anomalous dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.8: Displacement contours for H = 0.1, K2 = 100, (anomalous dispersion).
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.9: Displacement contours for H = 10, K2 = 0.1, (normal dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.10: Displacement contours for H = 10, K2 = 1, (normal dispersion).
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𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.11: Displacement contours for H = 10, K2 = 10, (normal dispersion).

𝑅𝑒 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝐼𝑚 ഥ𝑈𝑧

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈𝑧

Figure 4.2.4.12: Displacement contours for H = 10, K2 = 100, (normal dispersion).
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The following conclusions are obtained by observing the above figures:

• Unlike the case of classical elasticity where the Green’s function of the corresponding
problem is singular at the point where the body force is applied, here the value of the
Green’s function is finite.

• For a fixed value of H the non-dimensional displacement decrease as the value of K2

increases.

• In the cases of anomalous dispersion and no dispersion for K2 ≤ 1 the non-dimensional
displacement contours are practically the same for a fixed value of K2, regardless the value
of H.

• Qualitatively the response of the system does not depend from the values of H, K2.
However, in the scattering problems that will be examined later, which are formulated using
the problem’s Green’s function, it will be shown that the response of the system will be
affected from the values of H, K2 both quantitatively and qualitatively, (i.e. bifurcations
will appear as the system’s parameters H, K2 approach specific values).

4.3 Infinite Domain Under Plane Strain

4.3.1 Definition of the Problem

In the second problem that we examine, the infinite domain is under plane conditions,
meaning that both P and SV waves will propagate inside the domain. From a mathematical
point of view, this is much more challenging case compared to anti-plane shear because the
differential equations of motion are coupled. For this reason, the theory of dipolar gradient
elasticity is adopted in order to simplify the resulting equations as much as possible. The
plane strain conditions for the displacements and the body forces are:

ux = ux(x, y, t), uy = uy(x, y, t), uz = 0 (4.3.1.1)

Fx = Fx(x, y, t), Fy = Fy(x, y, t), Fz = 0 (4.3.1.2)

Substituting the above expressions into (3.3.3.7) results to the following system of coupled
PDEs:
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(λ+ µ)(1− l2∇2)
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

)
+ µ(1− l2∇2)

(
∂2ux
∂x2

+
∂2ux
∂y2

)
+ Fx

= ρüx − I

(
∂2üx
∂x2

+
∂2üx
∂x2

) (4.3.1.3)

(λ+ µ)(1− l2∇2)
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

)
+ µ(1− l2∇2)

(
∂2uy
∂x2

+
∂2uy
∂y2

)
+ Fy

= ρüy − I

(
∂2üy
∂x2

+
∂2üy
∂y2

) (4.3.1.4)

Once again, the displacement and body force components are supposed to have a harmonic
time variation:

uj(x, y, t) = Uj(x, y)e
−iωt, j = x, y (4.3.1.5)

Fj(x, y, t) = Pj(x, y)e
−iωt, j = x, y (4.3.1.6)

The equations of motion for time harmonic conditions are obtained by substituting (4.3.1.5),
(4.2.3.6) into (4.2.1.3), (4.2.1.4):

(λ+ µ)(1− l2∇2)
∂

∂x

(
∂Ux
∂x

+
∂Uy
∂y

)
+ µ(1− l2∇2)

(
∂2Ux
∂x2

+
∂2Ux
∂y2

)
− Iω2

(
∂2Ux
∂x2

+
∂2Ux
∂x2

)
+ ρω2Ux + Fx = 0

(4.3.1.7)

(λ+ µ)(1− l2∇2)
∂

∂y

(
∂Ux
∂x

+
∂Uy
∂y

)
+ µ(1− l2∇2)

(
∂2Uy
∂x2

+
∂2Uy
∂y2

)
− Iω2

(
∂2Uy
∂x2

+
∂2Uy
∂y2

)
+ ρω2Uy + Fy = 0

(4.3.1.8)

Equations (4.3.1.7), (4.3.1.8) compose the system of PDEs that describe the problem and
will be solved using the double Fourier transform. It worth noting that the corresponding
problem of classical elasticity was solved by Eason, Fulton and Sneddon [84] and the solution
that is presented here is identical to theirs.
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4.3.2 Derivation of the Green’s Function - Purely Displacement Formulation

By applying the double Fourier transform in (4.3.1.7), (4.3.1.8) for the case where Pi(x, y, t) =
δ(x)δ(y)pi, i = x, y we obtain the following expressions for the transformed displacement
components:

ˆ̂
Ux =

L

N
,

ˆ̂
Uy =

M

N
(4.3.2.1)

Where:

L =
{[
µξ2 + (λ+ 2µ) η2

] [
l2
(
ξ2 + η2

)
+ 1
]
−
[
I
(
ξ2 + η2

)
+ ρ
]
ω2
}
px

− ξη (λ+ µ)
[
l2
(
ξ2 + η2

)
+ 1
]
py

(4.3.2.2)

M =
{[

(λ+ 2µ) ξ2 + µη2
] [
l2
(
ξ2 + η2

)
+ 1
]
−
[
I
(
ξ2 + η2

)
+ ρ
]
ω2
}
py

− ξη (λ+ µ)
[
l2
(
ξ2 + η2

)
+ 1
]
px

(4.3.2.3)

N =
{
µ
(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
I
(
ξ2 + η2

)
+ ρ
]
ω2
}

×
{
(λ+ 2µ)

(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
I
(
ξ2 + η2

)
+ ρ
]
ω2
} (4.3.2.4)

Substituting (3.3.3.8) into (4.3.2.2) - (4.3.2.4) and dividing the resulting expression with the
density ρ yields:

L

ρ
=
{(
v22ξ

2 + v21η
2
) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
ω2
}
px

− ξη
(
v21 − v22

) [
l2
(
ξ2 + η2

)
+ 1
]
py

(4.3.2.5)

M

ρ
=
{(
v21ξ

2 + v22η
2
) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
ω2
}
py

− ξη
(
v21 − v22

) [
l2
(
ξ2 + η2

)
+ 1
]
px

(4.3.2.6)

N

ρ
= ρ

{
v22
(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
ω2
}

×
{
v21
(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
ω2
} (4.3.2.7)

Where v21 and v22 are the propagation velocities of the primary and the secondary as they
are defined in classical elasticity:

v1 =

√
λ+ 2µ

ρ
(4.3.2.8)
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v2 =

√
µ

ρ
(4.3.2.9)

Dividing (4.3.2.5) - (4.3.2.7) with v22 results to:

L

µ
=
{(
ξ2 + β2η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21

}
px

− ξη
(
β2 − 1

) [
l2
(
ξ2 + η2

)
+ 1
]
py

(4.3.2.10)

M

µ
=
{(
β2ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21

}
py

− ξη
(
v21 − v22

) [
l2
(
ξ2 + η2

)
+ 1
]
px

(4.3.2.11)

N

µ
= µ

{(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21

}
×
{
β2
(
ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21

} (4.3.2.12)

Where β is the ratio of the propagation velocities and ki are the wavenumbers that describe
the motions of the primary and secondary defined in the same sense as in classical elasticity:

β =
v1
v2

(4.3.2.13)

ki =
ω

vi
, i = 1, 2 (4.3.2.14)

To determine the expressions of the displacement components, we write (4.3.2.1) as the sum
of the displacements caused by a force acting in the x and y directions separately, i.e.:

ˆ̂
Ux =

ˆ̂
Upx
x +

ˆ̂
Upy
x (4.3.2.15)

ˆ̂
Uy =

ˆ̂
Upx
y +

ˆ̂
Upy
y (4.3.2.16)

In view of (4.3.2.1), (4.3.2.10) - (4.3.2.12), (4.3.2.15), (4.3.2.16), the expressions of
ˆ̂
U
pj
i are

given by:

ˆ̂
Upx
x =

{(ξ2 + β2η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21} px
N

(4.3.2.17)
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ˆ̂
Upy
x = −ξη (β

2 − 1) [l2 (ξ2 + η2) + 1] py
N

(4.3.2.18)

ˆ̂
Upx
y = −ξη (β

2 − 1) [l2 (ξ2 + η2) + 1] px
N

(4.3.2.19)

ˆ̂
Upy
y =

{(β2ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21} py
N

(4.3.2.20)

The numerator of (4.3.2.17) can be written as:

(
ξ2 + β2η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21 = β2

(
ξ2 + η2 − k21

)
−
(
β2 − 1

)
ξ2 + l2

[
β2

(
ξ2 + η2 − h2

l2
k21

)
−
(
β2 − 1

)
ξ2
] (
ξ2 + η2

) (4.3.2.21)

Respectively, the numerator of (4.3.2.20) can be written as:

(
β2ξ2 + η2

) [
l2
(
ξ2 + η2

)
+ 1
]
−
[
h2
(
ξ2 + η2

)
+ 1
]
β2k21 = β2

(
ξ2 + η2 − k21

)
−
(
β2 − 1

)
η2 + l2

[
β2

(
ξ2 + η2 − h2

l2
k21

)
−
(
β2 − 1

)
ξ2
] (
ξ2 + η2

) (4.3.2.22)

Because of (4.3.2.12), (4.3.2.21) and (4.3.2.22), the terms
ˆ̂
U
pj
i can now be expressed as:

ˆ̂
Upx
x =

px
µβ2 (ξ2 + η2)

{
ξ2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21

+
β2η2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21

} (4.3.2.23)

ˆ̂
Upy
x =

py
µβ2 (ξ2 + η2)

{
1

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21

− β2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21

} (4.3.2.24)

ˆ̂
Upx
y =

px
µβ2 (ξ2 + η2)

{
1

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21

− β2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21

} (4.3.2.25)
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ˆ̂
Upy
y =

py
µβ2 (ξ2 + η2)

{
η2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21

+
β2ξ2

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21

} (4.3.2.26)

By applying the inverse double Fourier transform in (4.3.2.23) - (4.3.2.26) we obtain:

Upx
x =

px
4π2µβ2

{∫ +∞

−∞

∫ +∞

−∞

ξ2 (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

+

∫ +∞

−∞

∫ +∞

−∞

β2η2 (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

}
(4.3.2.27)

Upy
x =

py
4π2µβ2

{∫ +∞

−∞

∫ +∞

−∞

ξη (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

−
∫ +∞

−∞

∫ +∞

−∞

β2ξη (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

}
(4.3.2.28)

Upx
y =

px
4π2µβ2

{∫ +∞

−∞

∫ +∞

−∞

ξη (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

−
∫ +∞

−∞

∫ +∞

−∞

β2ξη (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

}
(4.3.2.29)

Upy
y =

py
4π2µβ2

{∫ +∞

−∞

∫ +∞

−∞

η2 (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

+

∫ +∞

−∞

∫ +∞

−∞

β2ξ2 (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

}
(4.3.2.30)

The final four expressions can written in compacted form as:

Upx
x = − px

4π2µβ2

[
∂2

∂x2
I(x, y, k1) + β2 ∂

2

∂y2
I(x, y, βk1)

]
(4.3.2.31)

Upy
x = − py

4π2µβ2

{
∂2

∂x∂y

[
I(x, y, k1)− β2I(x, y, βk1)

]}
(4.3.2.32)
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Upx
y = − px

4π2µβ2

{
∂2

∂x∂y

[
I(x, y, k1)− β2I(x, y, βk1)

]}
(4.3.2.33)

Upy
y = − py

4π2µβ2

[
∂2

∂y2
I(x, y, k1) + β2 ∂

2

∂x2
I(x, y, βk1)

]
(4.3.2.34)

Where:

I =

∫ +∞

−∞

∫ +∞

−∞

(ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη (4.3.2.35)

In order to determine the integral presented in (4.3.2.35), we convert to polar coordinates
(k, ϕ) using (4.2.3.5), (4.2.3.6):

I =

∫ 2π

0

∫ ∞

0

e−ikr[cos(ϕ) cos(θ)+sin(ϕ) sin(θ)]

k [k2 (l2k2 + 1)− (h2k2 + 1) k21]
dk dϕ (4.3.2.36)

The above integral can be simplified with the help of (4.2.3.8):

I =

∫ 2π

0

∫ ∞

0

e−ikr cos(ϕ−θ)

k [k2 (l2k2 + 1)− (h2k2 + 1) k21]
dk dϕ (4.3.2.37)

By rearranging the terms in (4.3.2.37) we obtain:

I = 2π

∫ ∞

0

1

k [k2 (l2k2 + 1)− (h2k2 + 1) k21]

[
1

2π

∫ 2π

0

e−ikr cos(ϕ−θ) dϕ

]
dk (4.3.2.38)

The term inside the brackets in (4.3.2.38) corresponds to the Bessel function of the first kind
of order zero J0(kr) given in (4.2.3.12). Therefore (4.3.2.38) becomes:

I = 2π

∫ ∞

0

1

k [k2 (l2k2 + 1)− (h2k2 + 1) k21]
J0(kr) dk (4.3.2.39)

Differentiating (4.3.2.39) with respect to r yields:

∂I

∂r
= 2π

∫ ∞

0

1

k [k2 (l2k2 + 1)− (h2k2 + 1) k21]

∂J0(kr)

∂r
dk (4.3.2.40)

94



Chapter 4 Fundamental Solutions

The derivative in (4.3.2.40) can be determined using the following identity:

∂

∂x

[
x−nJn(x)

]
= −x−nJn+1(x) (4.3.2.41)

By setting n = 0, we retrieve the derivative of J0(kr):

∂J0(x)

∂x
= −J1(x) (4.3.2.42)

Where J1 is the Bessel function of the first kind of order one. In view of (4.3.2.42), equation
(4.3.2.40) becomes:

∂I

∂r
= −2π

∫ ∞

0

1

k2 (l2k2 + 1)− (h2k2 + 1) k21
J1(kr) dk (4.3.2.43)

The roots of the denominator in (4.3.2.43) are:

p(k1) = ±

√√√√h2k21 − 1−
√

4l2k21 + (h2k21 − 1)
2

2l2
(4.3.2.44)

q(k1) = ±

√√√√h2k21 − 1 +
√

4l2k21 + (h2k21 − 1)
2

2l2
(4.3.2.45)

It is noted that the denominator in (4.3.2.43) is the same as the dispersion equation of the
primary waves (3.4.3.5), while the roots p(k1), q(k1) correspond to q1 in (3.4.3.5). Also by
setting k1 = βk1 in (4.3.2.44), (4.3.2.45) then the roots p(βk1) = p(k2), q(βk1) = q(k2)
are the same as the roots of the dispersion equation q2 of the secondary waves (3.4.3.6).
By applying partial fraction decomposition the transformed function in (4.3.2.43) can be
expressed as:

l2

(l2k2 + 1)k2 − (h2k2 + 1)k21
=

A

k − p(k1)
+

B

k + p(k1)
+

Γ

k − q(k1)
+

∆

k + q(k1)
(4.3.2.46)
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Where the coefficients A, B, Γ, ∆ are given by:

A =
1

2p(k1) [p2(k1)− q2(k1)]
, B = − 1

2p(k1) [p2(k1)− q2(k1)]
,

Γ =
1

2q(k1) [q2(k1)− p2(k1)]
, ∆ = − 1

2q(k1) [q2(k1)− p2(k1)]

(4.3.2.47)

Therefore the transformed function in (4.3.2.43) can be written as:

l2

k2 (l2k2 + 1)− (h2k2 + 1) k21
=

1

p2(k1)− q2(k1)

{
1

[k2 − p2(k1)]
− 1

[k2 − q2(k1)]

}
(4.3.2.48)

By substituting (4.3.2.48) into (4.3.2.43) we obtain:

∂I

∂r
= − 2π

[p2(k1)− q2(k1)] l2

[∫ ∞

0

J1(kr)

k2 − p2(k1)
dk −

∫ ∞

0

J1(kr)

k2 − q2(k1)
dk

]
(4.3.2.49)

The integrals that appear in (4.3.2.49) will be determined using (4.2.3.21). By setting in
(4.2.3.21) b = 1, n = 1, m = 0, we can construct the above integrals, however the inequality
presented in (4.2.3.22) is not satisfied, for this reason in order to utilize (4.2.3.21) we first
introduce the following decomposition.

−
∫ ∞

0

1

k2 − λ2
J1(kr) dk =

1

λ2

∫ ∞

0

(
1− k2

k2 − λ2

)
J1(kr) dk (4.3.2.50)

By setting in (4.3.2.50) λ = p(k1) and λ = q(k1) and substituting into (4.3.2.49) we obtain:

∂I

∂r
=

2π

[p2(k1)− q2(k1)] l2

[
1

p2(k1)

(∫ ∞

0

J1(kr) dk −
∫ ∞

0

k2

k2 − p2(k1)
J1(kr) dk

)
− 1

q2(k1)

(∫ ∞

0

J1(kr) dk −
∫ ∞

0

k2

k2 − q2(k1)
J1(kr) dk

)] (4.3.2.51)

The above equation can equivalently be written as:
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∂I

∂r
=

2π

[p2(k1)− q2(k1)] l2

[(
1

p2(k1)
− 1

q2(k1)

)∫ ∞

0

J1(kr) dk

− 1

p2(k1)

∫ ∞

0

k2

k2 − p2(k1)
J1(kr) dk +

1

q2(k1)

∫ ∞

0

k2

k2 − q2(k1)
J1(kr) dk

] (4.3.2.52)

The coefficient of the first integral in (4.3.2.52) can be simplified to give:

2π

[p2(k1)− q2(k1)] l2

(
1

p2(k1)
− 1

q2(k1)

)
=

2π

k21
(4.3.2.53)

In view of (4.3.2.53), equation (4.3.2.52) becomes:

∂I

∂r
=

2π

k21

∫ ∞

0

J1(kr) dk −
2π

[p2(k1)− q2(k1)] l2

[
1

p2(k1)

∫ ∞

0

k2

k2 − p2(k1)
J1(kr) dk

− 1

q2(k1)

∫ ∞

0

k2

k2 − q2(k1)
J1(kr) dk

] (4.3.2.54)

The first integral in (4.3.2.54) can be determined using the following identity, (see formula
18, page 654 in [85]).

∫ ∞

0

e−iarJ1(kr) dk =
1

r

[
1− a

(k2 + a2)1/2

]
(4.3.2.55)

Equation (4.3.2.55) for a = 0 yields:

∫ ∞

0

J1(kr) dk =
1

r
(4.3.2.56)

By setting in (4.2.3.21) b = 3, n = 1, m = 0 we obtain:

∫ ∞

0

[(1 + e2iπ)J1(kr) + i(1− e2iπ)Y1(kr)]
k2

k2 − λ2
dk = iπλH

(1)
1 (λr) (4.3.2.57)

The above expression can be simplified with the help of Euler’s formula, (see equation
(4.2.3.24) for x = 2π):
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∫ ∞

0

k2

k2 − λ2
dk =

iπλ

2
H

(1)
1 (λr) (4.3.2.58)

The following result arises by setting in (4.3.2.58) λ = p(k1) and λ = q(k1) and substituting
into (4.3.2.54):

∂I

∂r
=

2π

k21

{
1

r
− iπk21

2 [p2(k1)− q2(k1)] l2

[
H

(1)
1 (p(k1)r)

p(k1)
− H

(1)
1 (q(k1)r)

q(k1)

]}
(4.3.2.59)

By applying the chain rule in (4.3.2.31) - (4.3.2.34) we obtain:

Upx
x = − px

4π2µβ2

{
∂2I(r, θ, k1)

∂r2

(
∂r

∂x

)2

+
∂I(r, θ, k1)

∂r

(
∂2r

∂x2

)

+β2

[
∂2I(r, θ, βk1)

∂r2

(
∂r

∂y

)2

+
∂I(r, θ, βk1)

∂r

(
∂2r

∂y2

)]} (4.3.2.60)

Upy
x = − py

4π2µβ2

{
∂2I(r, θ, k1)

∂r2

(
∂r

∂x

∂r

∂y

)
+
∂I(r, θ, k1)

∂r

(
∂2r

∂x∂y

)
+β2

[
∂2I(r, θ, βk1)

∂r2

(
∂r

∂x

∂r

∂y

)
+
∂I(r, θ, βk1)

∂r

(
∂2r

∂x∂y

)]} (4.3.2.61)

Upx
y = − px

4π2µβ2

{
∂2I(r, θ, k1)

∂r2

(
∂r

∂x

∂r

∂y

)
+
∂I(r, θ, k1)

∂r

(
∂2r

∂x∂y

)
+β2

[
∂2I(r, θ, βk1)

∂r2

(
∂r

∂x

∂r

∂y

)
+
∂I(r, θ, βk1)

∂r

(
∂2r

∂x∂y

)]} (4.3.2.62)

Upy
y = − py

4π2µβ2

{
∂2I(r, θ, k1)

∂r2

(
∂r

∂y

)2

+
∂I(r, θ, k1)

∂r

(
∂2r

∂y2

)

+β2

[
∂2I(r, θ, βk1)

∂r2

(
∂r

∂x

)2

+
∂I(r, θ, βk1)

∂r

(
∂2r

∂x2

)]} (4.3.2.63)

Differentiating (4.3.2.59) with respect to r yields:

∂2I(r, θ, k1)

∂r2
= −2π

k21

{
1

r2
+

iπk21
2 [p2(k1)− q2(k1)] l2

[
1

p(k1)

∂H
(1)
1 (p(k1)r)

∂r

− 1

q(k1)

∂H
(1)
1 (q(k1)r)

∂r

]} (4.3.2.64)
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The derivative of the Hankel function of the first kind can be determined using the following
formula:

∂H
(1)
n (z)

∂z
=
nH

(1)
n (z)

z
−H

(1)
n+1(z) (4.3.2.65)

By setting in (4.3.2.65) z = p(k1), z = q(k1) and substituting the resulting expressions into
(4.3.2.64) we obtain:

∂2I(r, θ, k1)

∂r2
= −2π

k21

{
1

r2
+

iπk21
2 [p2(k1)− q2(k1)] l2

[
H

(1)
1 (p(k1)r)

p(k1)r
−H

(1)
2 (p(k1)r)

−H
(1)
1 (q(k1)r)

q(k1)r
+H

(1)
2 (q(k1)r)

]} (4.3.2.66)

The first and second derivatives of r are:

∂r

∂x
=
x

r
= cos(θ),

∂r

∂y
=
y

r
= sin(θ) (4.3.2.67)

∂2r

∂x2
=

1

r
− x2

r3
,

∂2r

∂x∂y
= −xy

r3
,

∂2r

∂y2
=

1

r
− y2

r3
(4.3.2.68)

The expressions of the displacement components are finally obtained by setting in (4.3.2.66)
k1 = βk1 and substituting the resulting expression into (4.3.2.60) - (4.3.2.63) along with
(4.3.2.66) - (4.3.2.68):

Upx
x =

px
4µβ2l2r

i

{
1

p2(k1)− q2(k1)

[
H

(1)
1 (p(k1)r)

p(k1)
− H

(1)
1 (q(k1)r)

q(k1)

]

+
β2

p2(βk1)− q2(βk1)

[
H

(1)
1 (p(βk1)r)

p(βk1)
− H

(1)
1 (q(βk1)r)

q(βk1)

]}

− 1

r

{
x2

p2(k1)− q2(k1)

[
H

(1)
2 (p(k1)r)−H

(1)
2 (q(k1)r)

]
+

β2y2

p2(βk1)− q2(βk1)

[
H

(1)
2 (p(βk1)r)−H

(1)
2 (q(βk1)r)

]}}
(4.3.2.69)
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Upy
x = − pyxy

4µβ2l2r2

{
1

p2(k1)− q2(k1)

[
H

(1)
2 (p(k1)r)−H

(1)
2 (q(k1)r)

]
− β2

p2(βk1)− q2(βk1)

[
H

(1)
2 (p(βk1)r)−H

(1)
2 (q(βk1)r)

]} (4.3.2.70)

Upx
y = − pxxy

4µβ2l2r2

{
1

p2(k1)− q2(k1)

[
H

(1)
2 (p(k1)r)−H

(1)
2 (q(k1)r)

]
− β2

p2(βk1)− q2(βk1)

[
H

(1)
2 (p(βk1)r)−H

(1)
2 (q(βk1)r)

]} (4.3.2.71)

Upy
y =

py
4µβ2l2r

i

{
1

p2(k1)− q2(k1)

[
H

(1)
1 (p(k1)r)

p(k1)
− H

(1)
1 (q(k1)r)

q(k1)

]

+
β2

p2(βk1)− q2(βk1)

[
H

(1)
1 (p(βk1)r)

p(βk1)
− H

(1)
1 (q(βk1)r)

q(βk1)

]}

− 1

r

{
y2

p2(k1)− q2(k1)

[
H

(1)
2 (p(k1)r)−H

(1)
2 (q(k1)r)

]
+

β2x2

p2(βk1)− q2(βk1)

[
H

(1)
2 (p(βk1)r)−H

(1)
2 (q(βk1)r)

]}}
(4.3.2.72)

From (4.3.2.44), (4.3.2.45) it is clear that ±q(k1) are the real routes of the dispersion equa-
tion, while ±p(k1) are the imaginary routes of the dispersion equation. Having this in mind,
(4.3.2.69) - (4.3.2.72) can be written in terms of Hankel functions and modified Bessel func-
tions with real arguments using (4.2.3.28):

Upx
x =

px
4µβ2l2r

i

{
1

P 2(k1) + q2(k1)

[
H

(1)
1 (q(k1)r)

q(k1)
− 2i

π

K1(P (k1)r)

P (k1)

]

+
β2

P 2(βk1) + q2(βk1)

[
H

(1)
1 (q(βk1)r)

q(βk1)
− 2i

π

K1(P (βk1)r)

P (βk1)

]}

+
1

r

{
x2

P 2(k1) + q2(k1)

[
2i

π
K2(P (k1)r)−H

(1)
2 (q(k1)r)

]
+

β2y2

P 2(βk1) + q2(βk1)

[
2i

π
H

(1)
2 (P (βk1)r)−H

(1)
2 (q(βk1)r)

]}}
(4.3.2.73)

Upy
x =

pyxy

4µβ2l2r2

{
1

P 2(k1) + q2(k1)

[
2i

π
K2(P (k1)r)−H

(1)
2 (q(k1)r)

]
+

β2

P 2(βk1) + q2(βk1)

[
2i

π
H

(1)
2 (P (βk1)r)−H

(1)
2 (q(βk1)r)

]} (4.3.2.74)

Upx
y =

pxxy

4µβ2l2r2

{
1

P 2(k1) + q2(k1)

[
2i

π
K2(P (k1)r)−H

(1)
2 (q(k1)r)

]
+

β2

P 2(βk1) + q2(βk1)

[
2i

π
H

(1)
2 (P (βk1)r)−H

(1)
2 (q(βk1)r)

]} (4.3.2.75)

100



Chapter 4 Fundamental Solutions

Upy
y =

py
4µβ2l2r

i

{
1

P 2(k1) + q2(k1)

[
H

(1)
1 (q(k1)r)

q(k1)
− 2i

π

K1(P (k1)r)

P (k1)

]

+
β2

P 2(βk1) + q2(βk1)

[
H

(1)
1 (q(βk1)r)

q(βk1)
− 2i

π

K1(P (βk1)r)

P (βk1)

]}

+
1

r

{
y2

P 2(k1) + q2(k1)

[
2i

π
K2(P (k1)r)−H

(1)
2 (q(k1)r)

]
+

β2x2

P 2(βk1) + q2(βk1)

[
2i

π
H

(1)
2 (P (βk1)r)−H

(1)
2 (q(βk1)r)

]}}
(4.3.2.76)

Where p(k1) = iP (k1). Since all the arguments in (4.3.2.73) - (4.3.2.76) are real we conclude

that the H
(1)
n terms are associated with outgoing waves, while the Kn terms are associated

with evanescent modes. By shifting the coordinate system and for convenience setting px =
py = 1, the problems Green’s function can be written in matrix form:

G(r; r′) =
1

4µβ2l2
i [Ψ(s)I+X(s)̂s⊗ ŝ] (4.3.2.77)

In (4.3.2.77) s is a vector in the direction s = r− r′, s = |s| is the magnitude of s, ŝ = s/|s|
is the unit vector n the direction s = r− r′ and X(s), Ψ(s) are scalar functions given by:

X(s) =
{1
s

[
A(s, k1) + β2A(s, βk1)

]
+ β2B(s, βk1)

}
(4.3.2.78)

Ψ(s) = B(s, k1) + β2B(s, βk1) (4.3.2.79)

Where:

A(s, k1) =
1

P 2(k1) + q2(k1)

[
2i

π
K2(P (k1)s)−H

(1)
2 (q(k1)s)

]
(4.3.2.80)

B(s, k1) =
1

P 2(k1) + q2(k1)

[
H

(1)
1 (q(k1)s)

q(k1)
− 2i

π

K1(P (k1)s)

P (k1)

]
(4.3.2.81)

It is also noted that (4.3.2.77) is bounded in the limit where r → r′:

G(r; r′) ∼ 1

8µl2π

{
iπ + ln(P (k1)/q(k1))

β2 [P 2(k1) + q2(k1)]
+
iπ + ln(P (βk1)/q(βk1))

P 2(βk1) + q2(βk1)
+O(s2)

}
I (4.3.2.82)
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4.3.3 Derivation of the Green’s Function - Lamé Potentials

In order to verify the validity of (4.3.2.7) the problem is also solved using Lamé potentials.
We begin setting l1 = l2 = l, h1 = h2 = h , ṽ1 = v1, ṽ2 = v2 in (3.4.2.22), (3.4.2.23), so that
they hold for dipolar gradient elasticity:

∇4ϕ− 1

l2
∇2(ϕ+

h2

v21
ϕ̈)− 1

l2
F = − 1

l2v21
ϕ̈ (4.3.3.1)

∇4ψ − 1

l2
∇2(ψ +

h2

v22
ψ̈)− 1

l2
G = − 1

l2v22
ψ̈ (4.3.3.2)

In the case of plane strain, the displacement and body force components are given by
(4.3.1.1), (4.3.1.2), since the vector potentials ψ, G are related with the displacement and
body force vectors through (3.4.1.1), (3.4.1.3), then they must be in the form of:

ψ = (0, 0, ψ), G = (0, 0, G) (4.3.3.3)

Consequently, (4.3.3.2) degenerates to a scalar differential equation:

∇4ψ − 1

l2
∇2(ψ +

h2

v22
ψ̈)− 1

l2
G = − 1

l2v22
ψ̈ (4.3.3.4)

For time harmonic conditions the displacement and body force components are in the form
of (4.3.1.5), (4.3.1.6), in the same sense the displacement and body force potentials also
exhibit a time harmonic variation:

ϕ(x, y, t) = ϕ(x, y)e−iωt, ψ(x, y, t) = ψ(x, y)e−iωt (4.3.3.5)

F (x, y, t) = F (x, y)e−iωt, G(x, y, t) = G(x, y)e−iωt (4.3.3.6)

The Lame potential differential equations for time harmonic conditions are obtained by
inserting (4.3.3.5), (4.3.3.6) into (4.3.3.1), (4.3.3.4)

∇4ϕ− 1

l2

(
1− h2ω2

v21

)
∇2ϕ− 1

l2v21
ϕ =

1

l2
F (4.3.3.7)
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∇4ψ − 1

l2

(
1− h2ω2

v22

)
∇2ψ − 1

l2v22
ψ =

1

l2
G (4.3.3.8)

The expressions of F , G can be determined using (3.4.1.3), (3.4.2.6), (4.3.1.6) and Corollary
3.4.1.1, which is a result of the Helmholtz decomposition theorem:

F (r) =
1

4πρv21

∫
V

∇r′ ·P(r′)

|r− r′|
dV ′ (4.3.3.9)

G(r) =
1

4πρv22

∫
V

∇r′ ×P(r′)

|r− r′|
dV ′ (4.3.3.10)

The above equations can be modified, so that F , G can be determined directly. To achieve
this we will use the following vector identities:

∇ · (av) = v · ∇a+ a∇ · v, ∀a,v (4.3.3.11)

∇× (av) = −v ×∇a+ a∇× v, ∀a,v (4.3.3.12)

In view of (4.3.3.11), (4.3.3.12), equations (4.3.3.9), (4.3.3.10) became:

F (r) =
1

4πρv21

∫
V

∇r′ ·
P(r′)

|r− r′|
dV ′ − 1

4πρv21

∫
V

P(r′) · ∇r′
1

|r− r′|
dV ′ (4.3.3.13)

G(r) =
1

4πρv22

∫
V

∇r′ ×
P(r′)

|r− r′|
dV ′ +

1

4πρv22

∫
V

P(r′)×∇r′
1

|r− r′|
dV ′ (4.3.3.14)

The divergence theorem for vector fields is:

∫
R

∇ · v dV =

∮
∂R

n · v dS (4.3.3.15)

By setting v = a× v in (4.3.3.15) we obtain:

∫
R

∇ · (a× v) dV =

∮
∂R

n · (a× v) dS (4.3.3.16)
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Sifting the terms in (4.3.3.16) yields:

∫
R

−a · (∇× v) dV =

∮
∂R

−a · (n× v) dS, ∀a,v (4.3.3.17)

Since (4.3.3.16) holds ∀a,v we can write:

∫
R

∇× v dV =

∮
∂R

n× v dS, ∀a,v (4.3.3.18)

By substituting (4.3.3.17) into (4.3.3.13) and (4.3.3.18) into (4.3.3.14) we obtain:

F (r) = − 1

4πρv21

∫
V

P(r′) · ∇r′
1

|r− r′|
dV ′ +

1

4πρv21

∮
∂V

n′ · P(r′)

|r− r′|
dS ′ (4.3.3.19)

G(r) =
1

4πρv22

∫
V

P(r′)×∇r′
1

|r− r′|
dV ′ +

1

4πρv22

∮
∂V

n′ × P(r′)

|r− r′|
dS ′ (4.3.3.20)

Due to the assumptions of Corollary 3.4.1.1 the surface integrals can be neglected in (4.3.3.19),
(4.3.3.20):

F (r) = − 1

4πρv21

∫
V

P(r′) · ∇r′
1

|r− r′|
dV ′ (4.3.3.21)

G(r) =
1

4πρv22

∫
V

P(r′)×∇r′
1

|r− r′|
dV ′ (4.3.3.22)

Where:

∇r′
1

|r− r′|
= −∇r

1

|r− r′|
(4.3.3.23)

Substituting (4.3.3.23) into (4.3.3.21), (4.3.3.22) yields:

F (r) =
1

4πρv21

∫
V

P(r′) · ∇x
1

|r− r′|
dV ′ (4.3.3.24)

G(r) = − 1

4πρv22

∫
V

P(r′ ×∇r
1

|r− r′|
dV ′ (4.3.3.25)
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In the above equations the gradient operator can be moved outside of the integrals:

F (r) =
1

4πρv21
∇r ·

∫
V

P(r′)

|r− r′|
dV ′ (4.3.3.26)

G(r) = − 1

4πρv22
∇r ×

∫
V

P(r′)

|r− r′|
dV ′ (4.3.3.27)

The integrals that appear in (4.3.3.26), (4.3.3.27) are related to the Green’s function of the
Poison equation ∇2g = f , which for the two-dimensional case is:

g(r; r′) = − 1

4π

∫
V

f(r′)

|r− r′|
dV ′ (4.3.3.28)

When P is considered as a point body force P = δ(r′)p, equations (4.3.3.26), (4.3.3.27) take
the form:

F (r) =
1

4πρv21
∇r ·

∫
V

pδ(r′)

|r− r′|
dV ′ (4.3.3.29)

G(r) = − 1

4πρv22
∇r ×

∫
V

pδ(r′)

|r− r′|
dV ′ (4.3.3.30)

Where p = (px, py) is a constant vector. Also, when f(r) = δ(r′), (4.3.3.28) yields:

g(r; r′) = − 1

4π

∫
V

δ(r′)

|r− r′|
dV ′ =

1

2π
ln(|r− r′|) (4.3.3.31)

In the following equations the norm of vector r will be denoted as: r = |r| =
√
x2 + y2. By

substituting (4.3.3.31) into (4.3.3.29), (4.3.3.30) we obtain:

F (r) = − 1

2πρv21
∇ · ln(r)p (4.3.3.32)

G(r) =
1

2πρv22
∇× ln(r)p (4.3.3.33)

Executing the differentiations in (4.3.3.32), (4.3.3.33) yields:
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F (r) = − xpx + ypy
2π(x2 + y2)ρv21

(4.3.3.34)

G(r) = G(r) =
xpy − ypx

2π(x2 + y2)ρv22
(4.3.3.35)

Inserting (4.3.3.34), (4.3.3.35) into (4.3.3.7), (4.3.3.8) gives:

∇4ϕ− 1

l2

(
1− h2ω2

v21

)
∇2ϕ− 1

l2v21
ϕ = − xpx + ypy

2π(x2 + y2)ρv21l
2

(4.3.3.36)

∇4ψ − 1

l2

(
1− h2ω2

v22

)
∇2ψ − 1

l2v22
ψ =

xpy − ypx
2π(x2 + y2)ρv22l

2
(4.3.3.37)

By applying the double Fourier transform in (4.3.3.36), (4.3.3.37) we obtain the following
expressions for the transformed displacement components

ˆ̂
ϕ =

ξpx + ηpy
(ξ2 + η2) {(λ+ 2µ) (ξ2 + η2) [l2 (ξ2 + η2) + 1]− [ρh2 (ξ2 + η2) + ρ]ω2}

i (4.3.3.38)

ˆ̂
ψ =

−ξpx + ηpy
(ξ2 + η2) {µ (ξ2 + η2) [l2 (ξ2 + η2) + 1]− [ρh2 (ξ2 + η2) + ρ]ω2}

i (4.3.3.39)

Equations (4.3.3.38), (4.3.3.39) can equivalently be written as:

ˆ̂
ϕ =

ξpx + ηpy
(ξ2 + η2) {v21 (ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1]ω2} ρ

i (4.3.3.40)

ˆ̂
ψ =

−ξpx + ηpy
(ξ2 + η2) {v22 (ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1]ω2} ρ

i (4.3.3.41)

In view of (4.3.2.14), equations (4.3.3.40), (4.3.3.41) become:

ˆ̂
ϕ =

ξpx + ηpy
(ξ2 + η2) {(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21} (λ+ 2µ)

i (4.3.3.42)

ˆ̂
ψ =

−ξpx + ηpy
(ξ2 + η2) {(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k22}µ

i (4.3.3.43)
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Using (4.3.2.13), we can prove that λ+ 2µ = β2µ, which results in:

ˆ̂
ϕ =

ξpx + ηpy
(ξ2 + η2) {(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21} β2µ

i (4.3.3.44)

ˆ̂
ψ =

−ξpx + ηpy
(ξ2 + η2) {(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21}µ

i (4.3.3.45)

By applying the inverse Fourier transform in (4.3.3.44), (4.3.3.45)

ϕ =
px

4π2µβ2

∫ +∞

−∞

∫ +∞

−∞

ξ (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

+
py

4π2µβ2

∫ +∞

−∞

∫ +∞

−∞

η (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] k21
dξ dη

(4.3.3.46)

ψ =
py

4π2µ

∫ +∞

−∞

∫ +∞

−∞

η (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

− px
4π2µ

∫ +∞

−∞

∫ +∞

−∞

ξ (ξ2 + η2)
−1
ei(ξx+ηy)

(ξ2 + η2) [l2 (ξ2 + η2) + 1]− [h2 (ξ2 + η2) + 1] β2k21
dξ dη

(4.3.3.47)

The final two equations can be written in compacted form as:

ϕ =
1

4π2µβ2

[
px

∂

∂x
I(x, y, k1) + py

∂

∂y
I(x, y, k1)

]
(4.3.3.48)

ψ =
β2

4π2µβ2

[
py
∂

∂y
I(x, y, βk1)− px

∂

∂x
I(x, y, βk1)

]
(4.3.3.49)

Where I is given by (4.3.2.35), while it’s polar coordinate representation is given by (4.3.2.39).
By applying the chain rule in (4.3.3.48), (4.3.3.49) we obtain:

ϕ =
1

4π2µβ2

[
px
∂I(r, θ, k1)

∂r

(
∂r

∂x

)
+ py

∂I(r, θ, k1)

∂r

(
∂r

∂y

)]
(4.3.3.50)

ψ =
β2

4π2µβ2

[
py
∂I(r, θ, βk1)

∂r

(
∂r

∂y

)
− px

∂I(r, θ, βk1)

∂x

(
∂r

∂x

)]
(4.3.3.51)

The expressions ∂I/∂r and the first derivatives of r are given by (4.3.2.59) and (4.3.2.67)
respectively. Finally, the Lamé potentials are obtained by substituting the aforementioned
equations into (4.3.3.50), (4.3.3.51)
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ϕ =
pxx+ pyy

2πk21µβ
2r2

− pxx+ pyy

4l2µβ2 [p2(k1)− q2(k1)] r
i

[
H

(1)
1 (p(k1)r)

p(k1)
− H

(1)
1 (q(k1)r)

q(k1)

]
(4.3.3.52)

ψ =
pyx− pxy

2πk21µβ
2r2

+
pyx− pxy

4l2µ [p2(βk1)− q2(βk1)] r
i

[
H

(1)
1 (p(βk1)r)

p(βk1)
− H

(1)
1 (q(βk1)r)

q(βk1)

]
(4.3.3.53)

The displacement components are obtained by substituting (4.3.3.52), (4.3.3.52) into (3.4.1.1).
The resulting expressions match those given in equations (4.3.2.69) - (4.3.2.72), indicating
that both methods lead to the same outcome.

4.3.4 Displacement Fields

For plotting the distributions of the displacement components it is convenient to introduce
the following non-dimensional variables:

H =
h

l
(4.3.4.1)

K1 = lk1 (4.3.4.2)

X =
x− x′

l
=

(x− x′)k1
K1

(4.3.4.3)

Y =
y − y′

l
=

(y − y′)k1
K1

(4.3.4.4)

R =
s

l
=
sk1
K1

, R2 = X2 + Y 2 (4.3.4.5)

Ūpx
x =

µ̃Upx
x

px
, Ūpy

x =
µ̃U

py
x

py
, Ūpx

y =
µ̃Upx

y

px
, Ūpy

y =
µ̃U

py
y

py
(4.3.4.6)

WhereH is the non-dimensional characteristic length of the material,K1 is a non-dimensional
wave number, X is the non-dimensional x coordinate, Y is the non-dimensional y coordinate,
R is the non-dimensional radial coordinate and Ū

pj
i are the non-dimensional components of

the Green’s function. Also, due to (4.3.2.15), (4.3.2.16) and (4.3.4.6), the non-dimensional
displacement components are:

Ūx = Ūpx
x + Ūpy

x , Ūy = Ūpx
y + Ūpy

y (4.3.4.7)
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By substituting (4.3.4.1) - (4.3.4.5) into (4.3.2.44), (4.3.2.45) the following expressions for
the roots of the dispersion equation arise:

p(k1) = ±

√√√√H2K2
1 − 1−

√
4K2

1 + (H2K2
1 − 1)

2

2K2
1

k21 (4.3.4.8)

q(k1) = ±

√√√√H2K2
1 − 1 +

√
4K2

1 + (H2K2
1 − 1)

2

2K2
1

k21 (4.3.4.9)

In view of (4.2.3.27), (4.3.4.1) - (4.3.4.6) the non-dimensional Green’s function is:

Ḡ(r; r′) =
1

4β2
i [Ψ(s)I+X(s)̂s⊗ ŝ] (4.3.4.10)

Where:

p2(k1)− q2(k1) = −

√
4K2

1 + (H2K2
1 − 1)

2

l2
(4.3.4.11)

p(k1)s = ±

√√√√H2K2
1 − 1−

√
4K2

1 + (H2K2
1 − 1)

2

2
R (4.3.4.12)

p(k1)s = ±

√√√√H2K2
1 − 1 +

√
4K2

1 + (H2K2
1 − 1)

2

2
R (4.3.4.13)

The expressions of p(k1), q(k1) are now given by (4.3.4.8), (4.3.4.9) and when (4.3.4.10), (or
(4.3.2.73) - (4.3.2.77)) are used only the positive roots are taken into account. It is also noted
that in view of (4.3.4.11) - (4.3.4.13), the radial coordinate s and the gradient coefficient
l do not appear in (4.3.4.10). The non-dimensional displacement contours are determined
using (4.3.4.10), we distinguish the cases of normal (H > 1), anomalous (H < 1) and no
dispersion (H = 1) by adjusting the value of H and β. It will be shown that β depends only
from the Poisson ratio v, thus the systems parameters are H, K1, v. In view of (4.3.2.8),
(4.3.2.9), (4.3.2.13) we obtain:
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β =

√
λ+ 2µ

µ
=

√
1 +

1

1− 2v
(4.3.4.14)

In the figures that follow the contours of the norm of the displacement components and the
norm of the total displacement are presented, for the case where the body force is applied
at the origin of the coordinate system. Unlike the case of anti - plane shear, the response
is not explored in detail here due to the greater number of parameters involved and results
are given only for characteristic values of the systems parameters. The reason that results
are given only for v = 0.25 is that for fixed values of H, K1 the qualitative response of the
system does not depend from the value of the Poisson ratio.
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ഥ𝑈𝑥

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈

Figure 4.3.4.1: Displacement contours for H = 1, K1 = 0.1, v = 0.25, (no dispersion).

ഥ𝑈𝑥

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙2

Τ𝑥 𝑙2

ഥ𝑈

Figure 4.3.4.2: Displacement contours for H = 1, K1 = 1, v = 0.25, (no dispersion).

111



Chapter 4 Fundamental Solutions

ഥ𝑈𝑥

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈

Figure 4.3.4.3: Displacement contours for H = 1, K1 = 10, v = 0.25, (no dispersion).
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ഥ𝑈

Figure 4.3.4.4: Displacement contours for H = 1, K1 = 100, v = 0.25, (no dispersion).
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ഥ𝑈𝑥
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ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈

Figure 4.3.4.5: Displacement contours for H = 0.1, K1 = 0.1, v = 0.25, (anomalous disper-
sion).
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ഥ𝑈𝑦
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ഥ𝑈

Figure 4.3.4.6: Displacement contours for H = 0.1, K1 = 1, v = 0.25, (anomalous disper-
sion).
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ഥ𝑈𝑥
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Τ𝑥 𝑙

ഥ𝑈

Figure 4.3.4.7: Displacement contours for H = 0.1, K1 = 10, v = 0.25, (anomalous disper-
sion).
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Figure 4.3.4.8: Displacement contours for H = 0.1, K1 = 100, v = 0.25, (anomalous disper-
sion).

114



Chapter 4 Fundamental Solutions

ഥ𝑈𝑥

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈

Figure 4.3.4.9: Displacement contours for H = 10, K1 = 0.1, v = 0.25, (normal dispersion).
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Figure 4.3.4.10: Displacement contours for H = 10, K1 = 1, v = 0.25, (normal dispersion).
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Figure 4.3.4.11: Displacement contours for H = 10, K1 = 10, v = 0.25, (normal dispersion).
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Figure 4.3.4.12: Displacement contours for H = 10, K1 = 100, v = 0.25, (normal dispersion).
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5 Scattering Problems

5.1 Introduction

In this part of the thesis the two fundamental solutions that where derived in the previous
chapter are applied in order to formulate scattering problems in the context of gradient
continua. In the problems that are examined the scattering is caused by a number of obstacle
points (or pins) which are modelled as concentrated body forces. When these configurations
of points form the corners of closed geometrical shapes such as polygons, then in some cases
exotic behaviours are observed in relation to the response of the system. For example, for
specific values of the waves frequency the system’s motions can be limited either inside or
outside these configurations. The idea behind this concept is similar to well known Faraday
cage where a electromagnetic field is trapped inside an enclosure. The reason why this idea
cannot be applied in the context of classical continua is because in classical elasticity the
corresponding Green’s functions are singular at the point where the body force is applied and
as a consequence the displacements are infinite in these points, however as it was shown in
the previous chapter that the Green’s functions that where derived are finite. For the case of
plane strain, due to the computational load that arises from the extensive expression of the
corresponding Green;s function, geometrically simple configurations of pins are considered
for circles consisting of 12, 24 and 64 pins. The case of anti-plane shear has much less
computational load, since the problem is scalar, which allows the consideration of more
complex configurations such as fractals. Specifically results are given for the case where the
pins form the corners of Koch’s snowflake [86]. To the knowledge of the author both problems
have never been attempted before in the context of sub-theories of Mindlin’s general one and
present interests both from a scientific and a practical point of view as related applications
where presented in the first chapter of the thesis.

5.2 Scattering by Points

5.2.1 Scattering by a Single Point Under Anti-Plane Shear

In this work, the wave scattering for the case of anti-plane strain is formulated having as
a mathematical background a paper published by Evans and Porter in 2007 [87]. In their
work Evans and Porter modelled the scattering of flexural waves by pined elastic plates in
vacuo and floating on water, which is a similar concept to the one indicated in this thesis.

In its equilibrium position an infinite domain governed by form II of Mindlin’s general theory
occupies the x − y plane and when excited by an incident wave field of unit amplitude,
undergoes a displacement normal to itself of the following form:
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R{uin(r)e−iωt} (5.2.1.1)

Where ω is the circular frequency of the incident excitation given by (3.4.3.6) and r =
(x, y) = (r cos(θ), r sin(θ)). A solution of the systems homogeneous equation of motion
(4.2.1.8) describing a long-crested incident wave is:

uin(r) = eiq[x cos(ψ)+y sin(ψ)] = eiqr cos(θ−ψ) (5.2.1.2)

Where q is the positive real root of the dispersion equation given by (4.2.3.15) and ψ is the
angle defined by the positive x-axis and the direction of wave propagation. Also, since the
Green’s function of anti-plane shear has been written in a non-dimensional form (4.2.4.7), it
is necessary to express (5.2.1.2) using the same non-dimensional parameters that are defined
by (4.2.4.1) - (4.2.4.3).

For an infinite domain under anti-plane shear, pinned by a single pin at a point with po-
sition vector r′ = (x′, y′), the non-dimensional displacement U(r) can be expressed as the
displacement generated by the incident wave given by (5.2.1.2) and the displacement due
to the existence of the pin. Since the pin can be considered as a consecrated body force,
the displacement field that it generates can be determined using the Green’s function of the
anti-plane shear, which in non-dimensional form is given by (4.2.4.7).

U(r) = uin(r) + Aḡ(r; r′) (5.2.1.3)

If the infinite domain is constrained at the position where the pin is placed, the constant A
can be determined by setting (5.2.1.3) equal to zero for r = r′:

A = − uin(r
′)

ḡ(r′; r′)
(5.2.1.4)

In other words, in order for a point (x′, y′) to remain stationary during the deformation, a
pin that generates a displacement equal and opposite to the one generated by the incident
wave must be inserted at the same point.
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5.2.2 Scattering by a Finite Number of Arbitrary Points Under Anti-Plane
Shear

We now consider the case where the infinite domain is pined byNp pins at points with position
vectors r′n. The non-dimensional displacement U(r) is now given as as the displacement
generated by the incident wave given by (5.2.1.2) and the displacement due to the existence
of all the pins:

U(r) = uin(r) +

Np∑
n=1

[Anḡ(rm; r
′
n)] (5.2.2.1)

Again, if the infinite domain is constrained at the position where the pins are placed, the
constants An can be determined by setting (5.2.2.1) equal to zero for rm = r′n and solving
the following Np simultaneous algebraic equations:

0 = uin(rm) +

Np∑
n=1

[Anḡ(rm; r
′
n)] , m = 1, 2, ..., Np (5.2.2.2)

The solution to the system of equations (5.2.2.2) can be expressed in matrix form as:

A = −Ḡ−1Uin (5.2.2.3)

WhereA is a Np×1 vector with components the scaling factors An, Ḡ is a Np×Np symmetric
matrix with components ḡ(rm; rn), (i.e. the problems Green matrix) and Uin is a Np × 1
vector with components uin(rm), (i.e. the non-dimensional displacement at each pin location,
caused by an incident wave, in an unpinned infinite domain).

A =


A1

A2
...
An

 , Ḡ =


ḡ(r1; r

′
1) ḡ(r1; r

′
2) · · · ḡ(r1; r

′
n)

ḡ(r2; r
′
1) ḡ(r2; r

′
2) · · · ḡ(r2; r

′
n)

...
...

. . .
...

ḡ(rn; r
′
1) ḡ(rn; r

′
2) · · · ḡ(rn; r

′
n)

 , Uin =


uin(r1)
uin(r2)

...
uin(rn)

 (5.2.2.4)

The constants An are used to scale the value of the Green’s function at the position of each
pin so that they satisfy (5.2.2.2), but they also scale the Green’s function at every other
location, as observed in the plate deflection equation. Therefore, in order to maximise the
displacements in an area of the plate defined by a configuration of pins, the absolute values
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of the constants An should be maximised. Since Uin depends only from the characteristics
of the incident wave and the geometry of the pins, by observing (5.2.2.3) it is clear that
the maximization of A occurs when | det(Ḡ−1)| is maximized. In the bibliography this
condition is stated by demanding that | det(Ḡ−1)| is maximized as this defines the scaling
factor applied to Uin. Equivalently, | det(Ḡ)| should be minimised. Although a detailed prof
of the last proposition has not yet been given, it has been established in many works that
the resonances appear when | det(Ḡ)| is minimised.

For a given configuration of pins, Ḡ depends only on the non-dimensional wave numberK2 of
the incident wave. Therefore the local minima points can be identified by plotting | det(Ḡ)|
as a function of K2. The wave numbers corresponding to these points caused the largest
displacements in the infinite domain and as it will be shown later resonances appear. It is
important to highlight that the method presented here for detecting resonant modes is not an
approximate one and if the computations are sufficiently dense then the local minima points
are determined with practically zero error. Regarding the computing part of the problem,
the detection of the local minima points is the operation with the biggest computational cost.
A good practice for reducing the computational load is initially to plot | det(Ḡ)| as a function
of K2 using a sufficiently large step size, ensuring that no local minima are overlooked. Then,
increase the calculation density (reduce the step size) around the identified local minima.

5.2.3 Scattering by a Single Point Under Plane Strain

For an infinite domain under plane stain, the idea is identical as in the case of anti-plane
shear, with the only difference being that the Green’s function is of matrix form. Conse-
quently, an incident wave field which includes both primary and secondary waves is given
by:

uin(r) = e1
(
eiq(k1)[x cos(ψ)+y sin(ψ)] + eiq(βk1)[x cos(ψ)+y sin(ψ)]

)
+ e2

(
eiq(k1)[x cos(ψ)+y sin(ψ)] + eiq(βk1)[x cos(ψ)+y sin(ψ)]

) (5.2.3.1)

Where q(k1) and q(βk1) are the positive real roots of the dispersion equations of the primary
and secondary waves respectively given by (4.3.2.45). It is also noted that if the incident
wave field consists solely of primary or secondary waves, only the corresponding terms in
(5.2.3.1) are considered.

For an infinite domain under plane strain, pinned by a single pin at a point with position
vector r′ = (x′, y′), the non-dimensional displacement U(r) can be expressed as the displace-
ment generated by the incident wave field given by (5.2.3.1) and the displacement due to
the existence of the pin. Since the pin can be considered as a consecrated body force, the
displacement field that it generates can be determined using the Greens function of the plane
strain, which in non-dimensional form is given by (4.3.4.10).
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U(r) = uin(r) + Ḡ(r; r′)A (5.2.3.2)

If the infinite domain is constrained at the position where the pin is placed, the coefficient
vector A can be determined by setting (5.2.3.2) equal to zero for r = r′:

A = −Ḡ−1(r′; r′)uin(r
′) (5.2.3.3)

Where A is a 2 × 1 vector, Ḡ is a 2 × 2 symmetric matrix and uin is a 2 × 1 vector. It is
also worth mentioning the similarity between (5.2.2.3) and (5.2.3.3)

5.2.4 Scattering by a Finite Number of Arbitrary Points Under Plane Strain

In view of (5.2.1.1,) for the case where the infinite domain is pined by Np pins at points with
position vectors r′n. The non-dimensional displacement U(r) is now by:

U(r) = Uin(r) + Ḡ(r; r′)A (5.2.4.1)

If the infinite domain is constrained at the position where the pins are placed, the constant
vector A can be determined by setting (5.2.4.1) equal to zero for rm = r′n and solving the
following 2Np simultaneous algebraic equations:

Ā = − ¯̄G
−1
Uin (5.2.4.2)

Now A is a 2Np × 1 vector with components the scaling factors Ajn, (or equivalently a
2 × 1 block vector with components Aj), Ḡ is a 2Np × 2Np symmetric block matrix with
components Ūij(rm; rn), (i.e. the problems Green matrix) and Uin is a 2Np × 1 vector with
components ujin(rm), (or equivalently a 2 × 1 block vector with components ujin(rm), (i.e.
the non-dimensional displacement at each pin location, caused by an incident wave, in an
unpinned infinite domain).

Ā =

[
Ax

Ay

]
, ¯̄G =

[
Ūxx Ūxy

Ūyx Ūyy

]
, Uin =

[
uxin
uyin

]
(5.2.4.3)

The expressions of the components of the above block matrices are given bellow:
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Aj =


Aj1
Aj2
...
Ajn

 , ujin =


ujin(r1)

ujin(r2)
...

ujin(rn)

 (5.2.4.4)

Ūij =


Ū
pj
i (r1; r

′
1) Ū

pj
i (r1; r

′
2) · · · Ū

pj
i (r1; r

′
n)

Ū
pj
i (r2; r

′
1) Ū

pj
i (r2; r

′
2) · · · Ū

pj
i (r2; r

′
n)

...
...

. . .
...

Ū
pj
i (rn; r

′
1) Ū

pj
i (rn; r

′
2) · · · Ū

pj
i (rn; r

′
n)

 (5.2.4.5)

It is noted that the subscripts and superscripts in the above equations are not related to
covariant and contravariant notation. They are used solely to make the equations more
compact when expressed with block matrices. The subscripts refer to the points where
the pins are placed, while the superscripts indicate the directions of the body forces and
displacements.

Regarding the interpretation of the above matrices, it is the same as the corresponding
ones of the anti-plane shear case. Also, the maximization of Ā occurs when | det( ¯̄G)−1| is
maximized due to the similarity between (5.2.2.3) and (5.2.4.2).

5.3 Scattering Under Plane Strain

5.3.1 Scattering by Circular Configurations

For the plane strain case circular configurations consisting of 12, 24, and 48 pins are con-
sidered. The systems parameters are the non-dimensional wave number K1, the material’s
internal length ratio H, the Poisson’s ration v and the angle ψ formed by the direction
of propagation and the horizontal x axis, (the definitions of H, K1 are given in (4.3.4.1),
(4.3.4.2)). The effect of the angle ψ is not considered because the circular configurations have
radial symmetry. This means that the displacement fields generated by waves propagating
in an oblique direction can be obtained by rotating the fields from a reference direction. In
order to analyse the system’s response, the distribution of the determinant of the Green’s
matrix with respect to K1 is plotted for various values of H that correspond to normal,
anomalous and no dispersion. As shown in the following figures, minima occur only in the
case of anomalous dispersion (H < 1) and thus, resonances are observed only under this
condition. Additionally, in the case anomalous dispersion as the number of pins inserted
increases the amount of local minima also increases.
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Figure 5.3.1.1: log(| det(Ḡ)|)−K2 diagram for a circular configuration consisting of 24 pins
(a) H = 0.01, (b) H = 0.1, (c) H = 1 and (d) H = 10, v = 0.25.
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Figure 5.3.1.2: log(| det(Ḡ)|)−K2 diagram for a circular configuration consisting of 48 pins
(a) H = 0.01, (b) H = 0.1, (c) H = 1 and (d) H = 10, v = 0.25.
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The effect of the Poisson’s ratio on the system’s response is analysed by using a circular
configuration with 48 pins. The determinant of the Green’s matrix is plotted as a function
of K1 for a fixed value of H while varying the Poisson’s ratio within the range (−1, 0.5).
As shown in the following figures, the number of minima generally remains constant as the
Poisson’s ratio increases. However, near the value of 0.5, there is a significant increase in the
number of minima as the Poisson’s ratio rises.

𝑙𝑜𝑔 𝑑𝑒𝑡 ത𝐆

𝐾1

𝑙𝑜𝑔 𝑑𝑒𝑡 ത𝐆

𝑙𝑜𝑔 𝑑𝑒𝑡 ത𝐆

𝑙𝑜𝑔 𝑑𝑒𝑡 ത𝐆

𝐾1

𝐾1 𝐾1

𝑎 𝑏

𝑐 𝑑

Figure 5.3.1.3: log(| det(Ḡ)|)−K2 diagram for a circular configuration consisting of 48 pins
(a) v = −0.99, (b) v = 0, (c) v = 0.25 and (d) v = 0.49, H = 0.01.

The analysis revealed that during the resonances, the displacement’s increase significantly
more when the incident wave is of S type. The results presented below for anomalous
dispersion highlight the strongest resonances observed in circular configurations with 12,
24 and 48 pins, this displacement fields are generated by S waves propagating along the
horizontal x axis. For the cases of normal and no dispersion, where there are no local
minima, results are given for the most interesting cases that were detected.
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Figure 5.3.1.4: Displacement contours for a circle with 12 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 37.103 (7th minima).
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Figure 5.3.1.5: Displacement contours for a circle with 24 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 28.054 (1st minima).

125



Chapter 5 Scattering Problems

ഥ𝑈𝑥

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈𝑦

Τ𝑦 𝑙

Τ𝑥 𝑙

Τ𝑦 𝑙

Τ𝑥 𝑙

ഥ𝑈

Figure 5.3.1.6: Displacement contours for a circle with 24 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 105.051 (13th minima).
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Figure 5.3.1.7: Displacement contours for a circle with 48 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 93.848 (11th minima).
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Figure 5.3.1.8: Displacement contours for a circle with 48 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 100.264 (12th minima).
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Figure 5.3.1.9: Displacement contours for a circle with 48 pins, H = 0.01 (anomalous dis-
persion), v = 0.49, K1 = 103.770 (13th minima).
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Figure 5.3.1.10: Displacement contours for a circle with 48 pins, H = 0.01 (anomalous
dispersion), v = 0.49, K1 = 109.244 (14th minima).

As shown in the figures above, at all resonances, the wave motion is largely confined within
the pin configuration, meaning the waves are trapped inside. In most cases, where Ūx is
maximized within the configuration, Ūy is minimized and vice versa. Additionally, increasing
the number of pins results in larger displacements, as the reduced spacing between pins makes
it more difficult for the trapped waves to escape the configuration.

To demonstrate that the local minima correspond to resonances, the non-dimensional dis-
placements are shown for a value of K1 that lies between two local minima, where the
resonances are notably strong. For a circular configuration with 48 pins and parameters
H = 0.01, v = 0.49, the system’s response appears to be significantly different from the
responses shown in the figures above for K1 = 100.264 (12th minima) and K1 = 103.770
(13th minima).

To further illustrate the effectiveness of the pins, the distribution of the norm of the non-
dimensional displacement Ū along the x axis is plotted.

In the following diagrams the distribution of the norm of the non-dimensional displacement Ū
along the x axis, for a circle with 12 pins is shown for (a) a wide range of the non-dimensional
coordinate x/l and (b), (c) close to the pins. The line y = 1 is included because the incident
wave has a unit amplitude. Two pins are positioned along the x axis axis at points (−1, 0)
and (1, 0), where the displacement magnitude is zero. The displacement function is smooth
and continuous on both sides of the pins, with similar patterns observed for circles with more
pins.
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Figure 5.3.1.11: Displacement contours for a circle with 48 pins, H = 0.01 (anomalous
dispersion), v = 0.49, K1 = 102 (between the 12th and 13th minima).
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Figure 5.3.1.12: Distribution of Ū , for a circle with 12 pins, H = 0.01, v = 0.49, K1 = 37.103
(7th minima), y = 0: (a) wide range of x/l and (b), (c) close to the pins.
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In the cases of normal and no dispersion, no local minima are observed, and as a result,
no resonances occur. The system’s response remains the same for different values of the
non-dimensional wave number K1, regardless of the number of pins inserted. Additionally,
the parameters v and H do not significantly affect the system’s response. However, it is
important to note that the system’s response differs significantly in the case of anomalous
dispersion, particularly for values of K1 that do not correspond to local minima. Under
anomalous dispersion, the motion of wave particles is largely confined within the pin con-
figuration, regardless of the value of K1. For specific values of K1, the displacements are
maximized, whereas in normal and no dispersion, the waves are not trapped within the pin
configuration.
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Figure 5.3.1.13: Displacement contours for a circle with 48 pins, H = 1 (no dispersion),
v = 0.49, K1 = 10.
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Figure 5.3.1.14: Displacement contours for a circle with 48 pins, H = 10 (normal dispersion),
v = 0.49, K1 = 10.

5.4 Scattering Under Anti-Plane Shear

5.4.1 Fractals - Koch’s Snowflake

The relative simplicity of the anti-plane shear Green’s function permits the consideration
of complicated configurations of pins. For this reason, Koch’s snowflake (a fractal curve) is
considered in order to examine the effect of the fractional dimension of the configurations.
The term fractal refers to a geometric shape containing detailed structure at arbitrarily small
scales, usually having a fractional dimension strictly exceeding the topological dimension.
Koch’s snowflake is one of the earliest fractals to have been described and it is based on the
Koch’s curve, which appeared in 1904 by the Swedish mathematician Helge von Koch [88].
The Koch snowflake can be built up through an iterative process, in a sequence of stages.
Initially, there is an equilateral triangle, and each successive stage is formed by adding
outward bends to each side of the previous stage, making smaller equilateral triangles.

The Koch snowflake can be constructed by starting with an equilateral triangle, then recur-
sively altering each line segment as follows: Initially the straight segments are divided into
three segments of equal length. Then, an outward pointing equilateral triangle that has the
middle segment of the previous iteration as its base is drawn and finally the line segment that
coincides with base of the triangle is removed. The Koch snowflake poses several geometrical
properties the most important of which are presented below.
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First iteration, (3 points). Second iteration, (12 points). Third iteration, (48 points).

Fourth iteration, (192 points). Fifth iteration, (768 points). Sixth iteration, (3072 points).

Figure 5.4.1.1: The first six iterations of Koch’s snowflake.

In each iteration the number of sides and corners is increased by four times compared to the
previous iteration, so the number of sides and corners after n iterations is given by:

Nn = 3 · 4n, n ≥ 0 (5.4.1.1)

If the original equilateral triangle has sides of length s, the length of each side of the snowflake
after n iterations is:

Sn =
Sn−1

3
=

s

3n
, n ≥ 1, S0 = s (5.4.1.2)

Since each side of the snowflake has the same length, the perimeter of the snowflake after n
iterations is given by multiplying the number of sides Nn by the side length Sn:

Pn = Nn · Sn = 3 · s ·
(
4

3

)n
, n ≥ 0 (5.4.1.3)

From (5.4.1.3) it is clear that the perimeter of the curve is unbounded, as n tends to infinity.
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lim
n→∞

(Pn) = lim
n→∞

[
3 · s ·

(
4

3

)n]
= ∞ (5.4.1.4)

For determining the area of Koch’s snowflake it is convenient to formulate first an expression
for calculating the area of each new triangle added in an iteration. In each iteration a new
triangle is added on each side of the previous iteration, so the number of new triangles added
in iteration n is:

Tn = Nn−1 = 3 · 4n−1, n ≥ 0 (5.4.1.5)

Let a0 denote the area of the original equilateral triangle. The area of each new triangle
added in an iteration is 1/9 of the area of each triangle added in the previous iteration, so
the area of each triangle added in iteration n is:

an =
an−1

9
=
a0
9n
, n ≥ 1 (5.4.1.6)

The additional area added in iteration n therefore is:

bn = Tn · an =
3

4
· 4
9

n

· a0, n ≥ 1 (5.4.1.7)

The total area of the snowflake after n iterations is:

An = a0 +
n∑
k=1

bk = a0

[
1 +

3

4

n∑
k=1

(
4

9

)k]
= a0

[
1 +

1

3

n−1∑
k=0

(
4

9

)k]
(5.4.1.8)

Collapsing the geometric sum in (5.4.1.8) gives:

An =
a0
5

[
8− 3

(
4

9

)n]
, n ≥ 1 (5.4.1.9)

From (5.4.1.9) it is clear that the perimeter of the curve is unbounded, as n tends to infinity.

lim
n→∞

(An) =
a0
5

lim
n→∞

[
8− 3

(
4

9

)n]
=

8

5
a0 (5.4.1.10)
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Finally, for defining the dimension of Koch’s snowflake it necessary to first introduce a few
definitions.

Definition 5.4.1.1. Let S be a subset of an Euclidean space Rn. Suppose that
N(ε) is the number of boxes of side length ε required to cover the set. Then the
Minkowski–Bouligand dimension (or box-counting dimension) is defined as:

dimbox(S) := lim
ε→0

[
ln(N(ε))

ln(1/ε)

]
If the above limit does not exist, one may still take the limit superior and limit inferior,
which respectively define the upper box dimension and lower box dimension. There is a
more technical definition known as Hausdorff dimension which always exists for a bounded
subset of Rn, and which agrees with the box-counting dimension in most cases, but before
defining the Hausdorff dimension, the diameter of metric space must be introduced.

Definition 5.4.1.2. Let (X, ρ) be a metric space. For any subset U ⊂ X , the diameter
of U , denoted as diam(Ai), is defined as:

diam(U) := sup{ρ(x, y) : x, y ∈ U}, diam(∅) := 0

Two more important concepts for defining the Hausdorff dimension are the d-dimensional
Hausdorff measure and the Hausdorff d-dimensional outer measure:

Definition 5.4.1.3. Let S be a bounded subset of an Euclidean space Rn and X be
a metric space. If S ⊂ X and d ∈ [0,∞], then d-dimensional Hausdorff measure is
defined as:

Hd
δ (S) := inf{

∞∑
i=1

[diam(Ui))]
d :

∞⋃
i=1

Ui ⊇ S, diam(Ui) < δ}

While the Hausdorff d-dimensional outer measure is defined as:

Hd(S) := lim
δ→0

[
Hd
δ (S)

]
Definition 5.4.1.4. The Hausdorff dimension dimH(X) is defined as:

dimH(X) := inf{d ≥ 0 : Hd(X) = 0}

The dimension of Koch’s snowflake can be easily determined using Definition 5.4.1.1. After
an iteration a line segment is substituted by four new line segments, meaning that after n
iterations the total amounts of line segments that the snowflake will have is 4n, while the
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length of the side segments is 1/3n. From the aforementioned we conclude that ε = 1/3 and
N(ε) = 4n. Using these values for the case where S is Koch’s snowflake we obtain:

dimbox(S) = lim
n→0

[
ln(4n)

ln(3n)

]
=

ln(4)

ln(3)
(5.4.1.11)

The above value can be verified using the definition of Hausdorff dimension, however it
is much easier to determine the fractals dimension using the more heuristic definition of
box-counting dimension.

5.4.2 Scattering by Koch’s Snowflake

Unlike the circular configurations where the log(| det( ¯̄G)|)−K1 diagram changes noticeably
when pins are added, the local minima positions in the case of Koch’s snowflake under
anomalous dispersion remain practically unchanged across different iterations, over a wide
range of non-dimensional wavenumbers K2.

For the first iteration no minima are formed in the log(| det(Ḡ)|)−K2 diagram because the
number of points is too low. Consequently, results for this case are not presented, as they
are not particularly meaningful.
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𝑎 𝑏

𝑐 𝑑

Figure 5.4.2.1: log(| det(Ḡ)|)−K2 diagram for the (a) second, (b) third, (c) fourth and (d)
fifth iterations of Koch’s snowflake, H = 0.01.
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Figure 5.4.2.2: log(| det(Ḡ)|)−K2 diagram for the (a) second, (b) third, (c) fourth and (d)
fifth iterations of Koch’s snowflake, H = 0.1.
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Figure 5.4.2.3: log(| det(Ḡ)|)−K2 diagram for the (a) second, (b) third, (c) fourth and (d)
fifth iterations of Koch’s snowflake, H = 1.
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Figure 5.4.2.4: log(| det(Ḡ)|)−K2 diagram for the (a) second, (b) third, (c) fourth and (d)
fifth iterations of Koch’s snowflake, H = 10.

In the case of anomalous dispersion, starting from the third iteration onward, the positions of
the local minima remain nearly constant, over a given range of non-dimensional wavenumbers
K2. This indicates that the resonant modes can be determined with high precision using
only a small number of pins. In contrast, when the dispersion is normal, no minima are
observed and as a result, no resonant modes are present, while in the case of no-dispersion
the number of local minima increases rapidly with each iteration and beyond a certain point,
discrete minima no longer exist. The difference in the log(| det(Ḡ)|)−K2 diagram for various
values of H, greater than and less than H = 1 is reflected in the system’s response, both
qualitative and quantitatively, as different types of resonant modes appear and the values of
the non-dimensional displacements differ dramatically.

The system’s response is examined by considering the first five iterations of Koch’s snowflake,
with the value of H adjusted for each iteration, the side length of the original equilateral
triangle is set to a = l, while the effect of the angle formed by the direction of propagation
with the horizontal x axis is not considered. Once again the system’s response undergoes
qualitative changes depending on the type of dispersion. Specifically, for the case of anoma-
lous dispersion results are given for the first four local minima for H = 0.1 and H = 0.01.
This allows for a comparison of the system’s response at the corresponding minima through-
out the iteration process. Further analysis revealed that for H < 0.01 and H > 10, the
results remain virtually unchanged. For the cases of normal and no-dispersion results are
given for values of K2 that either correspond to local minima or do not, focusing on the most
significant cases identified in the analysis.

137



Chapter 5 Scattering Problems

𝑈

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

Τ𝑦 𝑙2

Τ𝑥 𝑙2

𝑎 𝑏

𝑐 𝑑

𝑈

𝑈 𝑈

Figure 5.4.2.5: Displacement contours for H = 0.01, (anomalous dispersion), first minima:
(a) K2 = 64.265, (b) K2 = 69.547, (c) K2 = 73.566, (d) K2 = 75.879.
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Figure 5.4.2.6: Displacement contours for H = 0.01, (anomalous dispersion), second minima:
(a) K2 = 134.975, (b) K2 = 139.520, (c) K2 = 147.902, (d) K2 = 152.569.
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Figure 5.4.2.7: Displacement contours for H = 0.01, (anomalous dispersion), third minima:
(a) K2 = 375.460, (b) K2 = 214.042, (c) K2 = 229.299, (d) K2 = 236.518.
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Figure 5.4.2.8: Displacement contours for H = 0.01, (anomalous dispersion), fourth minima:
(a) K2 = 511.805, (b) K2 = 244.559, (c) K2 = 261.285, (d) K2 = 269.893.
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Figure 5.4.2.9: Displacement contours for H = 0.1, (anomalous dispersion), first minima:
(a) K2 = 52.047, (b) K2 = 57.435, (c) K2 = 60.4621, (d) K2 = 62.068.
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Figure 5.4.2.10: Displacement contours for H = 0.1, (anomalous dispersion), second minima:
(a) K2 = 94.144, (b) K2 = 96.301, (c) K2 = 101.480, (d) K2 = 103.924.
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Figure 5.4.2.11: Displacement contours for H = 0.1, (anomalous dispersion), third minima:
(a) K2 = 131.981, (b) K2 = 127.831, (c) K2 = 135.769, (d) K2 = 138.872.
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Figure 5.4.2.12: Displacement contours for H = 0.1, (anomalous dispersion), fourth minima:
(a) K2 = 184.300, (b) K2 = 140.283, (c) K2 = 149.982, (d) K2 = 153.657.
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Based on the figures above, the following conclusions can be made for the case of anomalous
dispersion:

• In the vast majority of cases, the percentage change in the minima value between consec-
utive iterations decreases.

• Two types of resonant modes are identified: (a) modes in which waves propagate along
discrete paths and (b) trapping modes, where the motion is mostly confined within the
arrangement of pins.

• The non-dimensional displacements values increase as the number of pins increases.

• The system’s response at the resonant modes where paths are formed remains nearly
unchanged both qualitatively and quantitatively, even as the iterations increase. In contrast,
at the trapping modes, the qualitative response stays consistent, but the non-dimensional
displacements within the pin configuration increase significantly with more iterations.

• When dispersion is anomalous, a decrease in the value of H leads to an increase in the
non-dimensional displacement.

• From the fourth iteration and on, when waves are trapped inside the configuration of pins,
the non-dimensional displacement increases unrealistically. This behaviour can be explained
by the structure of Koch’s snowflake, which contains many corners. With each iteration, the
number of corners quadruples. A configuration with numerous corners promotes successive
wave reflections, leading to increased superposition and consequently, larger displacements.

• Similar responses are observed for all other detected minima.

When there is no dispersion, the local minima correspond to resonances where either discrete
wave paths are formed, or the wave motion is confined predominantly inside the configuration
of pins. However, there is a qualitative difference in the displacement field compared to
the case of anomalous dispersion. In particular, the paths along which the waves propagate
change behind the configuration, while In the trapping modes, concentric circles form outside
the arrangement of pins, a pattern that does not occur in the anomalous dispersion case.
For all other cases of local minima, the system’s response is similar to what is shown in the
following figure.

In the case of normal dispersion, there are no local minima, and thus no resonances. The
system’s response remains almost unchanged, regardless of the number of pins inserted.
Additionally, the values of H and K2 have minimal impact on the system’s behaviour.
Cloaking modes, where the wave path is redirected around the pin configuration making
the pins appear absent or ineffective form at every value of K2. These paths are vertical
and extremely narrow, resulting in nearly uniform displacements across the entire infinite
domain.
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Figure 5.4.2.13: Displacement contours for H = 1, (no dispersion): (a) K2 = 8.797 (1st
minima), (b) K2 = 1.819 (1st minima), (c) K2 = 10.325 (2nd minima), (d) K2 = 13.951
(2nd minima).
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Figure 5.4.2.14: Displacement contours for H = 10, (normal dispersion), K2 = 10.
.
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Figure 5.4.2.15: Distribution of U , for the second iteration of Koch’s snowflake (12) pins,
H = 0.01 (anomalous dispersion), K2 = 64.265 (1st minima), y = 0: (a) wide range of x/l2
and (b), (c) close to the pins.

.

In the above diagrams the distribution of the norm of the non-dimensional displacement U
along the x axis, for the second iteration of Koch’s snowflake is presented. The line y = 1
is also shown because the incident wave has a unit amplitude. Two pins are positioned at
points (−1/3, 0) and (1/3, 0), where the displacement magnitude is zero. However, unlike
the case of plane strain where the displacements are smooth and continuous functions in the
areas where the pins are placed, when the infinite domain is under anti-plane shear, jumps
are created in the displacements close to the pins, regardless the number of pins inserted or
the type of resonance that occurs, while the value of K2, as long as it corresponds to a local
minimum, has little impact on the displacement discontinuities. Another useful information
that is extracted from the above diagrams is that the norm of the non-dimensional displace-
ment U does not reach zero behind the configuration of pins, instead it approaches y = 1
asymptotically.
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5.5 Remarks

In conclusion, in this work two Green’s function are derived for infinite media, subjected
to a point load with time harmonic variation, under plane strain and anti-plane shear,
within simplified versions of Mindlin’s general theory. These Green’s functions are finite at
the origin and are used to formulate problems involving wave scattering caused by point
obstacles (pins), which are modelled as concentrated body forces. When the pins are placed
in the infinite domain, configurations of obstacles are formed whose geometry affects the
system’s response both quantitatively and qualitatively.

For the plane strain case, circular configurations with 12, 24 and 48 pins were considered,
while for the anti-plane shear case, analyses were conducted for the first five iterations of
Koch’s snowflake to illustrate the potential impact of a fractal configuration of pins on the
system’s response. The results show that, in the case of anomalous dispersion, resonances
can occur, leading to a significant local increase in displacements within the infinite domain.
For the anti-plane shear state, resonances can also occur even in the absence of dispersion.
When the system resonates, either discrete wave paths form, or the motion of particles
becomes largely confined within the configuration of pins. The magnitude of these resonances
can be controlled by adjusting the number of pins and the material’s (non-dimensional)
characteristic length H, while details on how the parameters can be selected to tune the
system are thoroughly presented in this work

The concepts presented in this thesis have considerable potential for engineering applications,
such as designing seismic shields for earthquake protection and controlling tsunamis to safe-
guard coastlines. Significant research has been conducted in these areas over the past few
years, though the approach has primarily been numerical and experimental. The theoretical
framework in most cases raised many questions, as it was either lacking or, at best, based
on classical plate theory. While classical plate theory shares similarities with generalized
continuum theories, as presented in this thesis it is a technical theory that invokes a lot of
assumptions that rational theories of generalized elasticity do not. The two main limitations
of the derived Green’s functions are that they apply only to infinite domains, making them
unsuitable for cases where boundary conditions influence the system’s response. Addition-
ally, they are specific to deformation states that rarely occur in nature. However, these
Green’s functions can still be highly valuable when used to complement numerical solutions
or experiments.

The aim of this work is not to tackle practical problems as the ones mentioned above from an
analytical point of view, but to explore scattering from point obstacles in elasticity theory,
which cannot be addressed in classical elasticity due to the singularity of the corresponding
Green’s functions, as well as to highlight potential applications where these concepts could
be applied. This thesis also contributes to the bibliography of generalized continua by
introducing a new Green’s function for the plane strain case. Additionally, it presents a
formulation and proof of the generalized version of the completeness theorem that holds for
all three forms of Mindlin’s general theory, which, to the author’s knowledge, does not exist
in the current literature.
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