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Περίληψη

Η έρευνα αυτή εστιάζει στο τομέα του Explainable AI και στις εφαρμογές της για την ανάπτυ-
ξη μοντέλων μηχανικής μάθησης για την ανίχνευση άνοιας μέσω ανάλυσης ομιλίας. Η έρευνα

πραγματοποιήθηκε στα πλαίσια του έργου COMFORTAGE, το οποίο έχει στόχο την ανάπτυξη
εργαλείων για την παρακολούθηση και διάγνωση ασθενών με άνοια. Η μελέτη μας περιλαμβάνει

μια επισκόπηση των μεθόδων XAI και των μετρικών τους, επισημαίνοντας τα πλεονεκτήματα και
τα μειονεκτήματα των διάφορων προσεγγίσεων. Εξετάσαμε επίσης τις ηθικές και νομικές εκτάσεις

της χρήσης εφαρμογών τεχνητής νοημοσύνης στην υγεία, με γνώμονα τη διαφάνεια, την ευθύνη

και τη δικαιοσύνη στην ανάπτυξη τέτοιων μοντέλων, και τον ρόλο που έχει να παίξει το XAI στον
συγκεκριμένο τομέα. Η έρευνα μας κορυφώθηκε με την ανάπτυξη ενός XAI εργαλείου ονόματι
DEMET, το οποίο έκανε χρήση ensemble learning συνδυάζοντας ταξινομητές και transformers
για την ανίχνευση άνοιας από δείγματα ομιλίας. Το DEMET έδειξε ότι το ensemble learning
δίνει σημαντικά αποτελέσματα στην απόδοση, επιτυγχάνοντας πάνω από 97% ακρίβεια στο σύνολο

δεδομένων DementiaBank. Εξετάσαμε επίσης τη χρήση φωνητικών χαρακτηριστικών τα οποία
υπήρχαν στα δείγματα ομιλίας του συνόλου δεδομένων DementiaBank, τα οποία μετατράπηκαν
σε μια πιο ερμηνεύσιμη μορφή την οποία ονομάσαμε CHA tokens και ύστερα δημιουργήσαμε ε-
ξηγήσεις από τρεις διαφορετικές μεθόδους επεξηγησιμότητας, τις LIME, Transformers-Interpret
και Anchors. Παρατηρήσαμε ότι οι LIME και Transformers-Interpret ήταν πιο αποτελεσματικές
στην παροχή εύκολα ερμηνεύσιμων εξηγήσεων, ενώ η μέθοδος Anchors δεν είχε την ίδια απόδοση.
Επίσης, παρατηρήσαμε ότι τα CHA tokens κατάφεραν να βελτιώσουν την ερμηνευσιμότητα του μο-
ντέλου παρέχοντας πιο κατανοητές εξηγήσεις που συμφωνούσαν με την υπάρχουσα βιβλιογραφία

σχετικά με τα συμπτώματα της άνοιας. ΄Ενα βασικό εύρημα της εργασίας μας ήταν ότι ο συνδυα-

σμός διαφορετικών εξηγήσεων οι οποίες δημιουργήθηκαν από διαφορετικούς transformers για την
τελική δημιουργία μίας ενιαίας εξήγησης, μια μορφή ensemble learning δηλαδή αλλά στα πλαίσια
της εξήγησης, μπορεί να μειώσει προκαταλήψεις των μοναδικών εξηγήσεων και να προσφέρει πιο

αξιόπιστες ερμηνείες. Αυτά τα ευρήματα προήλθαν από μια κλινική μελέτη που πραγματοποιήσαμε

για να αξιολογήσουμε τη χρησιμότητα και την αποτελεσματικότητα των μεθόδων επεξηγησιμότη-

τας σε ένα πραγματικό περιβάλλον. Οι επαγγελματίες υγείας που συμμετείχαν στην κλινική μελέτη

πιστεύουν ότι οι εφαρμογές που βασίζονται στο XAI όπως το DEMET μπορεί να είναι χρήσιμες
στην ανίχνευση και παρακολούθηση της άνοιας, ιδιαίτερα για μη κλινικές, εμπορικές εφαρμογές.

Αυτά τα εργαλεία μπορούν να παρέχουν σε ασθενείς ένα μη επεμβατικό, οικονομικό μέσο αξιο-

λόγησης της κατάστασής τους, και τελικά να τους οδηγήσουν στην επικοινωνία με κάποιον ειδικό.

Τα ευρήματα από αυτήν την έρευνα συμβάλλουν στις συνεχείς προσπάθειες του έργου COMFOR-
TAGE για την ανάπτυξη αποτελεσματικών λύσεων για τη φροντίδα της άνοιας, με το DEMET να
παίζει έναν πιθανό ρόλο στην επίτευξη αυτών των στόχων.

Λέξεις Κλειδιά: XAI, XAI Evaluation, Ensemble Learning, Dementia Detection, Speech
Analysis, Ensemble XAI, CHA tokens, Transformers, LIME, Anchors, Transformers-Interpret,
COMFORTAGE





Abstract

This study focuses on the field of Explainable Artificial Intelligence (XAI) and its application
in the development of machine learning models for dementia detection through speech analysis.
The research was conducted as part of the COMFORTAGE project, which aims to develop tools
for monitoring and diagnosing dementia patients. The study involved a comprehensive review
of XAI methods and their metrics, highlighting the advantages and disadvantages of various ap-
proaches. We also delved into the ethical and legal considerations surrounding the use of AI in
healthcare, emphasizing the importance of transparency, accountability, and fairness in model
development, and the role that XAI stands to play in this ever-evolving landscape. Our research
culminated in the development of an XAI-driven cognitive assessment tool, named DEMET,
which leveraged ensemble learning techniques in order to combine classifiers and transformers
to detect dementia from spontaneous speech samples. DEMET demonstrated that ensemble
models can significantly improve performance, achieving over 97% accuracy on the Dementia-
Bank dataset. We explored the use of phonological features derived from the speech samples
of the DementiaBank dataset, which were converted into a more interpretable format which
we called CHA tokens and generated explanations from three different explainable methods,
namely LIME, Transformers-Interpret and Anchors, to assess each method’s performance on
both qualitative and quantitive metrics. Our results showed that LIME and Transformers-
Interpret were more effective in providing interpretable explanations, while Anchors did not
perform as well. We also found that CHA tokens managed to enhance model interpretability
by providing more understandable explanations which were aligned with existing literature on
dementia symptoms. A key finding of our work was that combining explanations from different
models could reduce potential biases of singular explanations and offer more reliable interpreta-
tions. These findings were derived from a clinical study we conducted to evaluate the usability
and effectiveness of the explainability methods in a real-world setting, and although the clin-
ical study involved a small sample size, feedback from healthcare professionals indicated that
XAI-driven approaches like DEMET could be valuable in dementia detection and monitoring,
particularly for non-clinical, commercial applications. These tools could provide individuals
with a non-invasive, cost-effective method of self-assessment, potentially leading to professional
consultation. The findings from this research contribute to the ongoing efforts of the COM-
FORTAGE project to develop effective solutions for dementia care, with DEMET playing a
potential role in achieving these goals.

Keywords: XAI, XAI Evaluation, Ensemble Learning, Dementia Detection, Speech Analy-
sis, Ensemble XAI, CHA tokens, Transformers, LIME, Anchors, Transformers-Interpret, COM-
FORTAGE
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Chapter 1

Εκτεταμένη Περίληψη στα Ελληνικά

1.1 Εισαγωγή

Στο χώρο της υγειονομικής περίθαλψης, οι αναδυόμενες τεχνολογικές καινοτομίες καταγράφουν
μια ταχεία μετάβαση προς μια προσέγγιση που θέτει στο επίκεντρο τον ασθενή, σε σύγκριση με
προσεγγίσεις του παρελθόντος [26]. Αυτή η αλλαγή έχει ονομαστεί ως η τέταρτη επανάσταση
υγειονομικής περίθαλψης ή Healthcare 4.0, η οποία προωθεί τη χρήση τεχνολογιών που βασί-
ζονται σε μεγάλο όγκο δεδομένων, εφαρμογές blockchain, υπολογιστικά νέφη και συσκευές με
αισθητήρες για τη βελτίωση των αποτελεσμάτων και των εμπειριών των ασθενών [21]. Στον
πυρήνα αυτής της επανάστασης βρίσκεται η επιτάχυνση της ιατρικής καινοτομίας και έρευνας, και
η ταυτόχρονη παροχή των απαραίτητων εργαλείων και πόρων για την επίτευξη της καλύτερης

δυνατής φροντίδας των ασθενών. Η Healthcare 4.0 υιοθετείται πλέον από πολλούς παρόχους
υγειονομικής περίθαλψης και αναμένεται να αποτελέσει το νέο πρότυπο στον κλάδο.

Η τεχνητή νοημοσύνη (AI), μαζί με άλλες τεχνολογίες, στη ραγδαία ανάπτυξή της έχει δείξει
σημαντικά αποτελέσματα στον τομέα της υγειονομικής περίθαλψης, οδηγώντας την έτσι σε μια νέα
και βελτιωμένη εποχή, όπου η έμφαση δίνεται πλέον στην ευημερία του ασθενή και την ποιότητα της
φροντίδας που λαμβάνει, ενώ παράλληλα μειώνει τα κόστη και βελτιώνει την αποτελεσματικότητα
των συστημάτων. Αυτή η εποχή ονομάζεται Healthcare 5.0 και περιλαμβάνει την ενσωμάτωση της
τεχνητής νοημοσύνης με εκατομμύρια συσκευές IoT, οι οποίες θα είναι διασυνδεδεμένες και θα
μπορούν να επικοινωνούν μέσω δικτύων 5G. Αυτές οι συσκευές θα συνδυαστούν με εξελιγμένους
αλγόριθμους τεχνητής νοημοσύνης για να παρέχουν εξατομικευμένη περίθαλψη στους ασθενείς

[139].

Ωστόσο, η τεχνητή νοημοσύνη δεν είναι αλάνθαστη, και η εκτεταμένη χρήση της στην υγειονομική
περίθαλψη μπορεί να έχει σοβαρές επιπτώσεις στην ασφάλεια των ασθενών [112]. Είναι προφανές
ότι, προκειμένου να επιτευχθεί η συμμόρφωση των συστημάτων αυτών με τις ηθικές αρχές και
τις απαιτήσεις που θέτει το συνεχώς μεταβαλλόμενο τοπίο των τεχνολογικών καινοτομιών, είναι
απαραίτητη η στροφή προς ένα σύστημα που είναι υπεύθυνο και διαφανές. Αυτή η ανάγκη έχει
οδηγήσει στη δημιουργία της Υπεύθυνης Τεχνητής Νοημοσύνης (Responsible AI), η οποία είναι
μια διεπιστημονική και δυναμική διαδικασία, που υπερβαίνει τις τεχνικές πτυχές της ανάπτυξης
της τεχνητής νοημοσύνης και περιλαμβάνει τα ηθικά, νομικά και κοινωνικά πρότυπα που είναι
απαραίτητα για διαφανή και υπεύθυνα συστήματα τεχνητής νοημοσύνης [54].

Η Επεξηγηματική Τεχνητή Νοημοσύνη (Explainable AI, XAI) είναι ένας υποτομέας της
Υπεύθυνης Τεχνητής Νοημοσύνης και αφορά την ανάπτυξη συστημάτων τεχνητής νοημοσύνης

ικανών να παρέχουν εξηγήσεις για τις αποφάσεις και τις ενέργειές τους. Με την πρόοδο στην
τεχνητή νοημοσύνη, τα μοντέλα γίνονται ολοένα και πιο πολύπλοκα, καθιστώντας έτσι δύσκολη,
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ακόμη και για τους ειδικούς, την κατανόηση της διαδικασίας λήψης αποφάσεων αυτών των μον-
τέλων [160]. Πιο απλά μοντέλα, όπως η γραμμική παλινδρόμηση ή τα δέντρα αποφάσεων, είναι
εύκολα κατανοητά στις αποφάσεις τους, καθώς βασίζονται σε μαθηματικούς κανόνες και μπορούν
να αναπαρασταθούν οπτικά. Αυτά τα μοντέλα θεωρούνται εγγενώς ερμηνεύσιμα, δηλαδή ερμη-
νεύσιμα από τον σχεδιασμό τους. Αντίθετα, τα μοντέλα βαθιάς μάθησης, όπως τα νευρωνικά
δίκτυα, δεν τηρούν αυτήν την ιδιότητα, καθώς η κλίμακα και η πολυπλοκότητά τους καθιστούν
δύσκολο να μπορέσει κανείς να κατανοήσει πως τα δεδομένα εισόδου, συμβάλλουν στη μεταβολή
των παραμέτρων του μοντέλου και στην τελική του απόφαση. Το XAI αποσκοπεί στην επίλυση
αυτού του ζητήματος παρέχοντας εξηγήσεις και ερμηνείες για τις αποφάσεις που λαμβάνονται από

αυτά τα πιο περίπλοκα μοντέλα. Στον τομέα της υγειονομικής περίθαλψης, όπου οι αποφάσεις που
λαμβάνονται μπορεί να είναι κρίσιμες για την ευημερία των ασθενών, η ανάγκη για διαφανή και
υπεύθυνα εργαλεία υποστήριξης είναι ουσιαστική. Πλέον η λύση ενός ”μαύρου κουτιού” δεν είναι
είναι επαρκής, σε ένα χώρο όπου η εμπιστοσύνη και η διαφάνεια είναι απαραίτητες. Τα XAI συστή-
ματα έχουν την δυνατότητα να αποσαφηνίσουν αυτά τα μοντέλα ”μαύρου κουτιού” σε ερμηνεύσιμα
και κατανοητά εργαλεία υποστήριξης.

1.1.1 Κίνητρα για τη μελέτη

Το κίνητρο για αυτήν τη μελέτη προέρχεται από την ανάγκη να γίνει μια ολοκληρωμένη ανασκόπηση

του XAI και της εφαρμογής του στη βιομηχανία της υγειονομικής περίθαλψης, ιδιαίτερα στον τομέα
της ψυχικής υγείας και των νευροεκφυλιστικών ασθενειών. Αυτή η μελέτη στοχεύει στη συλλογή
και ανάλυση της τρέχουσας κατάστασης του XAI και στην παροχή μιας λεπτομερούς επισκόπησης
των διαφόρων μεθόδων και τεχνικών που χρησιμοποιούνται στον τομέα. Η μελέτη θα εξετάσει
επίσης τα πιθανά οφέλη και τις προκλήσεις της εφαρμογής του XAI στην ψυχική υγεία μέσα από
την μελέτη σχετικών έργων στον τομέα. Επίσης θα διερευνήσει τις ηθικές και νομικές επιπτώσεις
της χρήσης αυτών των συστημάτων στην κλινική. Τέλος, αυτή η έρευνα στοχεύει να συμβάλει
στην ανάπτυξη συστημάτων τεχνητής νοημοσύνης που είναι διαφανή, υπεύθυνα και αξιόπιστα.
Κάνοντάς το αυτό, επιδιώκει να αντιμετωπίσει το κρίσιμο χάσμα μεταξύ των δυνατοτήτων της
τεχνητής νοημοσύνης και της πραγματικής εφαρμογής αυτών των συστημάτων στην υγεία.

1.1.2 Ερευνητικά ερωτήματα και στόχοι

Αυτή η διπλωματική εργασία καθοδηγείται από τα ακόλουθα ερευνητικά ερωτήματα:

1. Πώς μπορούν οι μέθοδοι ΧΑΙ να εφαρμοστούν για την ανάπτυξη αξιόπιστων μοντέλων
τεχνητής νοημοσύνης για την ψυχική υγεία;

2. Ποια είναι τα τρέχοντα υπερσύγχρονα μοντέλα τεχνητής νοημοσύνης στην ψυχική υγεία
τα οποία χρησιμοποιούν επεξηγήσιμες μεθόδους, και πόσο αποτελεσματικά είναι στην ταξ-
ινόμηση ή πρόβλεψη διάφορων προβλημάτων ψυχικής ή νευροεκφυλιστικής υγείας;

3. Ποιοι είναι οι βασικοί δείκτες για την αξιολόγηση της επεξηγησιμότητας των μοντέλων τεχν-
ητής νοημοσύνης, και πώς επηρεάζουν αυτοί οι δείκτες την εμπιστοσύνη και την αξιοπιστία
των αποφάσεων που προέρχονται από την τεχνητή νοημοσύνη;

4. Ποιοι ηθικοί κίνδυνοι πρέπει να ληφθούν υπόψη κατά την ανάπτυξη και την εφαρμογή μον-
τέλων τεχνητής νοημοσύνης στην ψυχική υγεία, και πώς μπορεί το ΧΑΙ να συμβάλει στην
αντιμετώπιση αυτών των ηθικών προκλήσεων;

Για την αντιμετώπιση αυτών των ερευνητικών ερωτημάτων, οι στόχοι αυτής της μελέτης είναι:
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1. Να γίνει ανασκόπηση του τρέχοντος τοπίου των μεθόδων ΧΑΙ και των εφαρμογών τους
στην ψυχική υγεία.

2. Να εντοπιστούν υπερσύγχρονα μοντέλα τεχνητής νοημοσύνης που χρησιμοποιούν επεξ-
ηγήσιμες μεθόδους για τη διάγνωση, τη θεραπεία και την παρακολούθηση καταστάσεων
ψυχικής υγείας, επισημαίνοντας τα δυνατά τους σημεία, τις αδυναμίες τους και τους τομείς
για βελτίωση.

3. Να αναπτυχθεί ένα πειραματικό μοντέλο τεχνητής νοημοσύνης χρησιμοποιώντας εξηγήσεις
από το μοντέλο LIME για να αποδειχθεί η πρακτική εφαρμογή του ΧΑΙ στην ψυχική υγεία
και συγκεκριμένα στην άνοια.

4. Να διερευνηθούν οι ηθικές διαστάσεις της τεχνητής νοημοσύνης στην υγεία, με ιδιαίτερη
έμφαση στον ρόλο του ΧΑΙ στην ενίσχυση της διαφάνειας, της υπευθυνότητας και της
εμπιστοσύνης μεταξύ παρόχων υγειονομικής περίθαλψης και ασθενών.

Μέσω αυτής της έρευνας, η μελέτη στοχεύει να συνεισφέρει πολύτιμες γνώσεις και πρακτικά
εργαλεία στον τομέα της τεχνητής νοημοσύνης για την ψυχική υγειονομική περίθαλψη, με έμφαση
στην σημασία της επεξηγησιμότητας, της ηθικής και του ανθρωποκεντρικού σχεδιασμού στην
ανάπτυξη εφαρμογών τεχνητής νοημοσύνης.

1.2 Θεωρητικό υπόβαθρο

Αρχικά εισήχθη από τους Van Lent et al [88] το 2004, το XAI στόχευε να καταστήσει τα συστή-
ματα τεχνητής νοημοσύνης κατανοητά από τους ανθρώπους. Τα επόμενα χρόνια, καθώς τα μον-
τέλα μηχανικής μάθησης (ML) και βαθιάς μάθησης (DL) προόδευαν, η έμφαση μετατοπίστηκε στην
επεξηγησιμότητα αυτών των μοντέλων. Ο όρος XAI έγινε συνώνυμος με την υπεύθυνη τεχνητή
νοημοσύνη, γεφυρώνοντας το χάσμα μεταξύ της φύσης ”μαύρου κουτιού” των μοντέλων τεχν-
ητής νοημοσύνης και της ανάγκης για διαφάνεια και ανθρώπινη κατανόηση. Το 2017, η DARPA

[57]
1
ξεκίνησε το πρόγραμμα XAI, για την ανάπτυξη ενός συστήματος τεχνητής νοημοσύνης

για καλύτερη κατανόηση της διαδικασίας λήψης αποφάσεων από τους τελικούς χρήστες. ΄Εχουν
επίσης διεξαχθεί μελέτες από αξιόπιστους οργανισμούς για το XAI και το αντίκτυπο που έχει
στην κοινωνία και την επιστήμη.

Σήμερα, το ΧΑΙ χρησιμοποιείται σε διάφορους τομείς και σε ποικίλες εφαρμογές και ενισχύει
τα προϋπάρχοντα μοντέλα τεχνητής νοημοσύνης, σε μια εποχή διαφάνειας και υπευθυνότητας. Η
χρήση του εκτείνεται απο την ανάλυση συναισθηματών για καλύτερες προτάσεις διαφημίσεων στο

ηλεκτρονικό εμπόριο, μέχρι πραγματικού χρόνου εφαρμογές σε στρατιωτικές επιχειρήσεις. ΄Αλλες
εφαρμογές περιλαμβάνουν τη χρήση του XAI στην υγειονομική περίθαλψη, στις μεταφορές, στα
οικονομικά, στη δικαιοσύνη, στις επιχειρήσεις και σε πολλά άλλα.

1.2.1 Μέθοδοι XAI

Η επεξηγησιμότητα μπορεί να είναι τοπική (local), που σημαίνει ότι ενδιαφερόμαστε για μια
συγκεκριμένη περίπτωση πρόβλεψης και την εξήγηση του μοντέλου για αυτή τη συγκεκριμένη

περίπτωση, ή συνολική (global), που σημαίνει ότι ενδιαφερόμαστε για το πώς λειτουργεί το μον-
τέλο σε έναν πληθυσμό περιπτώσεων και πώς συμπεριφέρεται γενικά το μοντέλο. Η τοπική επεξ-
ηγησιμότητα μπορεί να διατυπωθεί ως το ερώτημα του γιατί το μοντέλο πήρε μια συγκεκριμένη

1
Η DARPA είναι μια υπηρεσία που αναπτύσσει πρωτοποριακή τεχνολογία και καινοτομίες με στόχο την εθνική

ασφάλεια των Ηνωμένων Πολιτειών.
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απόφαση για μια δοσμένη περίπτωση, και η συνολική επεξηγησιμότητα μπορεί να διατυπωθεί ως το
ερώτημα του πώς το μοντέλο θα συμπεριφερθεί γενικά όσον αφορά την επεξήγηση, όταν πρόκειται
για μια σειρά περιπτώσεων. Στην παρούσα μελέτη, θα επικεντρωθούμε κυρίως στην τοπική ερμη-
νευσιμότητα και επεξηγησιμότητα.

Υπάρχουν δύο γενικοί τύποι μεθόδων για την επεξηγησιμότητα [110]. Αρχικά, υπάρχει η
μέθοδος που είναι συγκεκριμένη για το μοντέλο (model specific), η οποία είναι κυρίως προσανα-
τολισμένη προς μοντέλα μηχανικής μάθησης όπως τα Decision Trees, Random Forests και άλλα.
Η μέθοδος αυτή αναφέρεται στην ικανότητα της μεθόδου να έχει προηγούμενη εκτεταμένη γνώση

της εσωτερικής δομής και των εσωτερικών λειτουργιών του μοντέλου, όπως τις παραμέτρους
του, τις συναρτήσεις ενεργοποίησης και ενδεχόμενως βελτιστοποιήσεις του μοντέλου. Η δεύτερη
μέθοδος ονομάζεται ανεξάρτητη από το μοντέλο (model agnostic). Ο τρόπος που λειτουργεί αυτή
η μέθοδος είναι ότι παρέχει επεξηγησιμότητα χωρίς καμία γνώση σχετικά με το πώς λειτουργεί

το μοντέλο στην πραγματικότητα, αλλά αντλεί όλες τις εξηγήσεις εξετάζοντας την είσοδο και την
έξοδο του μοντέλου. Αυτή η μέθοδος χρησιμοποιείται κυρίως με δίκτυα βαθιάς μάθησης, συνε-
λικτικά νευρωνικά δίκτυα και άλλα μοντέλα όπου είναι εξαιρετικά δύσκολο να κατανοηθεί πώς

υπολογίζουν τις εξόδους τους και λαμβάνουν αποφάσεις [69].

Υπάρχουν και άλλοι τρόποι με τους οποίους μπορεί να κατηγοριοποιηθεί η επεξηγησιμότητα,
όπως οι ante-hoc και οι post-hoc μέθοδοι. Η ante-hoc μέθοδος αναφέρεται σε μοντέλα που είναι
εγγενώς ερμηνεύσιμα, πράγμα που σημαίνει ότι ο σχεδιασμός τους ευνοεί την επεξηγησιμότητα
με κάποιο τρόπο, κυρίως λόγω της χρήσης κανόνων απόφασης και οπτικοποιήσεων. Η post-hoc
αναφέρεται σε μοντέλα που είναι τύπου ”μαύρο κουτί”, όπως τα νευρωνικά δίκτυα και οι trans-
formers. Εδώ η επεξηγησιμότητα προκύπτει με την αξιολόγηση της εισόδου και της εξόδου αυτών
των μοντέλων.

Η τεχνητή νοημοσύνη έχει σημειώσει μεγάλες επιτυχίες τα τελευταία χρόνια, αλλά η φύση των
μοντέλων ”μαύρου κουτιού” δεν έχει επιτρέψει τη μεγάλη ενσωμάτωσή τους σε πολλούς τομείς
όπου η λήψη αποφάσεων είναι κρίσιμη για την ασφάλεια και την προστασία ανθρώπων και ορ-

γανισμών. Τα μοντέλα που σημειώνουν την υψηλότερη ακρίβεια είναι στην πραγματικότητα, στις
περισσότερες περιπτώσεις, τα πιο πολύπλοκα, γεγονός που καθιστά τους επιστήμονες και τους
επαγγελματίες επιφυλακτικούς στη χρήση τους. Οι κανονισμοί που θέτονται από τα κράτη και τους
κυβερνητικούς οργανισμούς επίσης αποτελούν εμπόδια για τη χρήση τέτοιου τύπου μοντέλων. Οι
επεξηγηματικές μέθοδοι post-hoc στοχεύουν να προσδώσουν εμπιστοσύνη σε αυτά τα μοντέλα
και να διευκολύνουν την ενσωμάτωσή τους σε περιβάλλοντα που απαιτούν αυτή τη διαφάνεια.

Ante-Hoc
Τα εγγενώς ερμηνεύσιμα μοντέλα παρέχουν, από τον σχεδιασμό τους, ρητούς κανόνες και δι-
αισθητικές αναπαραστάσεις ώστε οι χρήστες να μπορούν να κατανοήσουν τη διαδικασία λήψης

αποφάσεων τους. Θεωρούνται ο ευκολότερος και ταχύτερος τρόπος για την παραγωγή εξηγήσεων,
αλλά περιορίζονται σε εκείνο το μοντέλο για το οποίο έχουν σχεδιαστεί.

Post-Hoc
Οι μέθοδοι post-hoc χρησιμοποιούνται για να εξηγήσουν τις προβλέψεις πιο πολύπλοκων μον-
τέλων. Χρησιμοποιούνται για να παράγουν εξηγήσεις χωρίς καμία γνώση της εσωτερικής δομής
του μοντέλου. Είναι πιο ευέλικτες και προσαρμόσιμες, καθώς οι ερμηνείες μπορούν να λειτουργή-
σουν με οποιοδήποτε μοντέλο μηχανικής μάθησης. Είναι επίσης πολύ ευέλικτες ως προς τη μορφή
της εξήγησης, με μορφές όπως κανόνες, δέντρα αποφάσεων, παραδείγματα και άλλα. Παραδείγματα
τέτοιων μεθόδων είναι το LIME, το SHAP, το Anchors, το SHAPley Additive Explanations και
άλλα.
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1.2.2 Μετρικές XAI

΄Οταν ασχολούμαστε με συστήματα XAI που παράγουν εξηγήσεις για να βοηθήσουν τη λήψη
αποφάσεων για εργασίες σε ένα επαγγελματικό περιβάλλον, τίθεται γρήγορα το ερώτημα σχετικά
με την εγκυρότητα των εξηγήσεων που παρέχονται από τα συστήματα αυτά [66]. Τι κάνει λοιπόν
μια εξήγηση έγκυρη; Το μεγαλύτερο μέρος της έρευνας που έχει γίνει στο θέμα της επεξηγη-
σιμότητας έχει επικεντρωθεί έντονα στην ανάπτυξη νέων μεθόδων και τεχνικών για την παραγωγή

εξηγήσεων, ενώ προσπαθεί να αυξήσει την απόδοση της διαδικασίας. Υπάρχει ένα θεμελιώδες
κενό στη βιβλιογραφία όταν πρόκειται για τη σύνδεση της επεξηγησιμότητας με συγκεκριμένες

περιπτώσεις χρήσης, και λίγη έρευνα έχει γίνει για να αξιολογηθεί η ποιότητα των εξηγήσεων που
παράγονται από τα XAI. Συνεπώς, προκύπτει η ανάγκη για την ποσοτικοποίηση της ποιότητας
των εξηγήσεων του XAI, προκειμένου να είναι δυνατή η αξιολόγηση της απόδοσης μιας μεθόδου
και η σύγκριση ή αντιπαράθεση διαφορετικών μεθόδων πάνω σε συγκεκριμένες εργασίες.

΄Ενα ζήτημα στο πλαίσιο της αξιολόγησης είναι ότι οι εξηγήσεις που παρέχονται από αυτές τις

μεθόδους είναι συχνά εξαιρετικά υποκειμενικές και εξαρτώνται από το πλαίσιο πάνω στο οποίο

ενεργούν, καθιστώντας δύσκολη την αξιολόγηση της ποιότητάς τους, δεδομένης της δυσκολίας
ορισμού του τι πραγματικά είναι τελικά μια καλή εξήγηση. Δεν υπάρχει ακόμη κάποιο καθολικά
αποδεκτό μέτρο ποιότητας εξηγήσεων από τους ερευνητές στον τομέα. Η ειδική φύση των εξ-
ηγήσεων για κάθε τομέα χωριστά καθιστά δύσκολη τη γενίκευση της διαδικασίας αξιολόγησης

σε διαφορετικές εφαρμογές, καθώς η ποιότητα μιας εξήγησης εξαρτάται σε μεγάλο βαθμό από
το πλαίσιο στο οποίο χρησιμοποιείται. Σύμφωνα με το Alan Turing Institute [72], οι εξηγήσεις
τοποθετούνται σε 6 κατηγορίες, τις rationale, responsibility, data, fairness, safety και impact
εξηγήσεις. Κάθε μια από αυτές τις κατηγορίες αναφέρεται σε διαφορετικό τμήμα της εξήγησης
και της αξιολόγησης των μοντέλων XAI.

Οι μέθοδοι για να αξιολογήσει κανείς την ποιότητα των εξηγήσεων που παράγονται από τα

XAI μπορούν να χωριστούν σε τρεις κατηγορίες, συγκεκριμένα τις application-grounded μεθό-
δους, που αναφέρονται στην αξιολόγηση των εξηγήσεων μέσω έρευνας σε ανθρώπους, πάνω σε
συγκεκριμένες εφαρμογές, τις human-grounded μεθόδους, που αναφέρονται στην αξιολόγηση
των εξηγήσεων και πως αυτές εξυπηρετούν στην κατάκτηση απλών στόχων από ανθρώπους χωρίς

τεχνικές γνώσεις και τις functionally-grounded μεθόδους, που αναφέρονται στην αξιολόγηση των
εξηγήσεων μέσα από σαφείς ορισμούς των στόχων που έχουν οριστεί για να είναι μια εξήγηση

καλή. Οι κυρίαρχες κατηγορίες των μετρικών για την αξιολόγηση εξηγήσεων είναι αυτές που
μετρούν την ποιότητα (qualitative) και αυτές που μετρούν αντικειμενικές πληροφορίες σχετικά
με την εξήγηση (quantitative). Οι μετρικές ποιότητας είναι πιο υποκειμενικές και αξιολογούν
την ποιότητα της εξήγησης από την άποψη του χρήστη, ενώ οι μετρικές ποσότητας είναι πιο
αντικειμενικές και αξιολογούν την ποιότητα της εξήγησης μέσω συγκεκριμένων μετρικών.

1.3 Μεθοδολογία

1.3.1 Σχεδιασμός ΄Ερευνας

Ο σχεδιασμός της έρευνας που χρησιμοποιησάμε στη παρούσα μελέτη είναι μια υβριδική προσέγ-

γιση μεταξύ της ποιοτικής και της ποσοτικής έρευνας. Το πρώτο κομμάτι της μελέτης αφορά την
ανάλυση της βιβλιογραφίας και την καταγραφή των πιο σύγχρονων μεθόδων και τεχνικών XAI, κα-
θώς επίσης και τις μετρικές και εφαρμογές τους μέσα από συστηματική έρευνα. Το δεύτερο κομμάτι
αφορά την ανάλυση και επεξεργασία δεδομένων ομιλίας από ασθενείς με άνοια για την εξαγωγή

χαρακτηριστικών ομιλίας και την εκπαίδευση μοντέλων. Τα εξαγώμενα χαρακτηριστικά μετα-
τράπηκαν σε μια πιο κατανοητή μορφή ονόματι CHA tokens τα οποία χρησιμοποιήθηκαν για την
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παραγωγή πιο ερμηνεύσιμων εξηγήσεων. Η τρίτη φάση ήταν η εκπαίδευση transformer μοντέλων
και η αρχική παραγωγή εξηγήσεων με τρεις διαφορετικές μεθόδους, το LIME, το Transformers-
Interpret και το Anchors. Οι παραγώμενες εξηγήσεις δόθηκαν σε επαγγελματίες ιατρούς για να
αξιολογηθούν ως προς διαφορετικές μετρικές ποιότητας, με γνώμονα τη χρήση των μεθόδων αυτών
σε πραγματικά κλινικά περιβάλλοντα. Τέλος, η τελευταία φάση αφορά την δημιουργία μιας εφαρ-
μογής XAI που θα επιτρέπει την εύκολη χρήση των μεθόδων που αναπτύχθηκαν στην παρούσα
μελέτη από ειδικούς και μη ειδικούς χρήστες.

1.3.2 Δεδομένα

Τα δεδομένα που χρησιμοποιήθηκαν για την έρευνα αυτή προέρχονται από το σύνολο δεδομένων

DementiaBank [87] [53], το οποίο περιλαμβάνει γραπτές ηχογραφήσεις συνεδριών κλινικής αξι-
ολόγησης ασθενών με άνοια. Λειτουργήσαμε με το σύνολο δεδομένων σύμφωνα με τον οδηγό
CHAT που προσφέρει το DementiaBank. ΄Εγινε επεξεργασία πάνω σε αυτά τα δεδομένα ώστε
να εξαχθούν χαρακτηριστικά ομιλίας, τα οποία μετατράπηκαν σε CHA tokens. Μετά έγινε ένας
έλεγχος για το ποιο μέγεθος κειμένου ήταν το βέλτιστο για την εκπαίδευση και αξιολόγηση των

μοντέλων μεταξύ τριών διαφορετικών μεγεθών, 5, 20 και 50 λέξεων ανά κείμενο. Ονομάσαμε αυτά
τα μεγέθη ’μικρα’, ’μεσαία’ και ’μεγάλα’ αντίστοιχα και βέλτιστο μέγεθος βρέθηκε το ’μεσαίο’ κα-
θώς συνδυάζει καλή διαχείριση του μηχανισμού attention των transformers και ένα ικανοποιητικό
τελικό μέγεθος dataset για την εκπαίδευση και επαλήθευση των μοντέλων. Παρακάτω φαίνεται ο
πίνακας μετατροπής των CHAT συμβόλων σε CHA tokens για κάποια από τα συχνότερα σύμβολα
που χρησιμοποιούνται στο DementiaBank.

CHAT Symbol CHA Token
[/] [CHA REPETITION]
[//] [CHA RETRACING]
(.) [CHA SHORT PAUSE]
(..) [CHA MEDIUM PAUSE]
(...) [CHA LONG PAUSE]
+... [CHA TRAILING OFF]
&+ [CHA PHONOLOGICAL FRAGMENT]
&* [CHA INTERPOSED WORD]
&- [CHA FILLER]
text(text)text [CHA NON COMPLETION OF WORD]
+..? [CHA TRAILING OFF QUESTION]
+/. [CHA INTERRUPTION]
+/? [CHA INTERRUPTION OF QUESTION]
+//. [CHA SELF-INTERRUPTION]
+//? [CHA SELF-INTERRUPTED QUESTION]

Table 1.1: Μετατροπή CHAT σε CHA tokens

Μετά την μετατροπή και την επεξεργασία των δεδομένων, έγινε ανάλυση ώστε να εξαχθούν
διαφορετικά συμπεράσματα για τα δεδομένα και τα χαρακτηριστικά ομιλίας που χρησιμοποιήθηκαν.
Συγκεκριμένα είδαμε ότι υπήρχαν συγκεκριμένα χαρακτηριστικά ομιλίας που εμφανίζονταν συχνά

σε ασθενείς με άνοια, το οποίο συμφωνεί με την βιβλιογραφία που υπάρχει για το θέμα. Πολλά
από αυτά τα χαρακτηριστικά ομιλίας εμφανίζονταν συχνά ως ζευγάρια στο ίδιο κείμενο, το οποίο
ενισχύει την δυναμική τους ως ενδείξεις για την παρουσία άνοιας. Από τα παραπάνω αντιλαμβανό-
μαστε πόσο σημαντικά μπορεί να είναι τα CHA tokens για την εξαγωγή ερμηνεύσιμων εξηγήσεων
από τα μοντέλα XAI και πάνω σε αυτό το φαινόμενο ακριβώς θα στηριχτούμε για την επεξηγη-
μότητα των μοντέλων μας.
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Figure 1.1: Κατανομή των CHA tokens στο σύνολο των δεδομένων

Παρακάτω φαίνεται ο πίνακας των CHA tokens ως προς την συχνότητα εμφάνισης ζευγαριών
στο ίδιο κείμενο σε μορφή heatmap. Είναι φανερό πως κάποια tokens τα οποία αποτελούν ισχυρή
ένδειξη εμφάνισης άνοιας εμφανίζονται συχνά μαζί στο ίδιο κείμενο όπως για παράδειγμα τα [CHA
SHORT PAUSE] και [CHA LONG PAUSE] ή τα [CHA TRAILING OFF]. Είναι σημαντικό
να τονίσουμε ότι επιβάλλεται εκτενέστερη ανάλυση για να δούμε πως τα CHA tokens μπορεί
να επηρεάσουν την πρόβλεψη ενός transformer μοντέλου για την επιλογή μιας κλάσης μεταξύ
ασθενών με άνοια και χωρίς.

Figure 1.2: Κατανομή των CHA tokens ως προς τη συχνότητα εμφάνισης ζευγαριών στο ίδιο
κείμενο

1.3.3 Μοντέλα

Για την εφαρμογή των μεθόδων ΧΑΙ στα δεδομένα μας, επιλέξαμε να χρησιμοποιήσουμε μοντέλα
transformer, τα οποία έχουν αποδειχθεί ότι είναι εξαιρετικά αποτελεσματικά για εργασίες επεξερ-
γασίας φυσικής γλώσσας. Οι λόγοι για τους οποίους τα επιλέξαμε είναι ο μηχανισμός attention
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που διαθέτουν, ο οποίος επιτρέπει στα μοντέλα αυτά να εστιάζουν σε συγκεκριμένα τμήματα
του κειμένου και στον τρόπο που αυτά αλληλεπιδρούν μεταξύ τους για την παραγωγή της πρόβ-

λεψης, το transfer learning που προσφέρουν, το οποίο εξυπηρετεί στην εκπαίδευση μοντέλων για
πολύπλοκες εργασίες με χρήση μικρής σχετικά ποσότητας δεδομένων και τέλος την δυνατότητα

παραγωγής εξηγήσεων μέσω της χρήσης των σχέσεων που προσδίδει ο μηχανισμός attention στα
δεδομένα. Επιλέξαμε να χρησιμοποιήσουμε αρχικά τρεις transformers με διαφορετική αρχιτεκ-
τονική, το BERT, το RoBERTa και το DistilBERT, να τους εκπαιδεύσουμε στα δεδομένα και
ύστερα να εκπαιδεύσουμε μια σειρά από classifiers πάνω στα embeddings που παρήγαγαν τα μον-
τέλα αυτά. Επαναλάβαμε ύστερα το πείραμα για ακόμη δύο transformers, τους ClinicalBERT και
BioBERT για να δούμε αν μπορούμε να βελτιώσουμε την απόδοση των classifiers και είδαμε πως με
αυξημένη πολυπλοκότητα των transformers, αυξάνεται και η απόδοση τους. Τέλος, επιχειρήσαμε
να χρησιμοποιήσουμε τις εξόδους όλων των classifiers για μια τελική πρόβλεψη μέσω της μεθόδου
του ensemble learning, όπου είδαμε ότι η απόδοση των μοντέλων μας δεν βελτιώθηκε τελικά,
πιθανότατα λόγω του μικρού αριθμού των transformers που χρησιμοποιήσαμε και το γεγονός
ότι κάθε classifier είχε τους ίδιους transformers στην βάση του. Παρακάτω φαίνεται η συνολική
αρχιτεκτονική που χρησιμοποιήσαμε για την εκπαίδευση των μοντέλων μας.

Figure 1.3: Συνολική αρχιτεκτονική μοντέλων

1.3.4 Μεθοδολογία Εξήγησης

Μετά την εκπαίδευση των αρχικών transformer μοντέλων, εφαρμόσαμε τρεις διαφορετικές μεθό-
δους εξήγησης, το LIME, το Transformers-Interpret και το Anchors. Τα αποτελέσματα των
εξηγήσεων δόθηκαν σε επαγγελματίες ιατρούς για να αξιολογηθούν ως προς την ποιότητα τους.
Μετά την ανάλυση των αποτελεσμάτων, η οποία λόγω μικρής δειγματοληψίας δεν ήταν στατιστικά
σημαντική, επιχειρήσαμε να χρησιμοποιήσουμε την κυρίαρχη μέθοδο εξήγησης, το LIME, για να
εξηγήσουμε τις προβλέψεις των μοντέλων μας. Το LIME επιλέχθηκε λόγω της απλότητας των
εξηγήσεων που παρήγε και της σημασίας που έδωσε στα CHA tokens. Το Transformers-Interpret
είχε παρόμοια απόδοση με το LIME αλλά δεν ήταν τόσο αρεστό στους επαγγελματίες ιατρούς,
ενώ το Anchors δεν είχε καλή απόδοση καθώς δεν κατάφερε να παράγει εξηγήσεις οι οποίες να
είναι εύκολα ερμηνεύσιμες από τους ειδικούς. Με την δημιουργία των εξηγήσεων είδαμε πως κάθε
μοντέλο εστίαζε σε διαφορετικά τμήματα του κειμένου για να παράγει την πρόβλεψη του. Αυτό
μας οδήγησε στο συμπέρασμα ότι μπορούμε να δημιουργήσουμε συνολικές εξηγήσεις οι οποίες

χρησιμοποιούν τις εξηγήσεις από διαφορετικά μοντέλα για την δημιουργία μιας εξήγησης η οποία

δεν είναι προκατειλημμένη από το μοντέλο που την παράγει για συγκεκριμμένες λέξεις ή tokens.
Η εξήγηση χρησιμοποιεί weighted average των εξηγήσεων από τα τρία μοντέλα που εκπαιδεύσαμε
με γνώμονα τις μετρικές των transformers. Για την αξιολόγηση των εξηγήσεων χρησιμοποιήσαμε
διάφορες qualitative και quantitative μετρικές, όπως το fidelity, ο χρόνος που χρειάστηκε για
την παραγωγή της εξήγησης, η σημασία που δόθηκε στα CHA tokens και η ευκολία που είχαν οι
επαγγελματίες ιατροί στην ερμηνεία των εξηγήσεων.
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Figure 1.4: BERT LIME

Figure 1.5: RoBERTa LIME

Figure 1.6: DistilBERT LIME

Figure 1.7: Συνολική εξήγηση
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1.4 Αποτελέσματα

Η μελέτη αυτή έγινε στα πλαίσια ενός ευρωπαϊκού προγράμματος, του COMFORTAGE, που
ασχολείται με την ανάπτυξη εργαλείων για την παρακολούθηση και διάγνωση ασθενών με άνοια.
Στόχος της μελέτης ήταν να εξετάσει την αποτελεσματικότητα των μεθόδων XAI στην εξήγηση
προβλέψεων και η δημιουργία ενός πειραματικού περιβάλλοντος για την εξήγηση των προβλέψεων

των μοντέλων μηχανικής μάθησης για την διάγνωση ασθενών με άνοια το οποίο να είναι εύχρηστο

και αξιόπιστο. Η συνεισφορά μας στο COMFORTAGE είναι το DEMET, μια εφαρμογή XAI που
επιτρέπει την εύκολη χρήση των μεθόδων που αναπτύξαμε στην παρούσα μελέτη από ειδικούς

και μη ειδικούς χρήστες μέσω μιας γραφικής διεπαφής. Το DEMET χρησιμοποιεί τα ensemble
μοντέλα που εκπαιδεύσαμε και τις εξηγήσεις που παράγαμε για την παραγωγή μιας συνολικής

εξήγησης και πρόβλεψης για το αν ένας ασθενής πάσχει πιθανότατα από άνοια μέσω ομιλίας. Το
DEMET βρίσκεται σε πρώιμο στάδιο ανάπτυξης και αποτελεί μια προσπάθεια για την ενσωμάτωση
των μεθόδων XAI σε κλινικά περιβάλλοντα.

Figure 1.8: DEMET Αρχιτεκτονική

1.4.1 Αποτελέσματα Μοντέλων

Οι μετρικές που χρησιμοποιήθηκαν για την αξιολόγηση τόσο των transformers όσο και των clas-
sifiers που εκπαιδεύσαμε είναι οι εξής: accuracy, precision, recall και F1-score. Για την επιλογή
αρχικά του μεγέθους των δεδομένων τρέξαμε το πείραμα με τα τρία διαφορετικά μεγέθη, 5, 20 και
50 λέξεων ανά κείμενο και είδαμε ότι το μεσαίο μέγεθος είχε την καλύτερη απόδοση. Το μεγάλο
μέγεθος είχε καλύτερα αποτελέσματα φαινομενικά αλλά οδηγούσε το dataset σε ένα πολύ μικρό
μέγεθος, ενώ το μικρό μέγεθος είχε την χειρότερη απόδοση. Για την εκπαίδεση των μοντέλων
αρχικά εκπαιδεύσαμε τρεις transformers, το BERT, το RoBERTa και το DistilBERT, και ύστερα
επεκτείναμε την μελέτη μας στα ClinicalBERT και BioBERT. Τα αποτελέσματα των μοντέλων
μας φαίνονται στο παρακάτω πίνακα.
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Model Accuracy Precision Recall F1-score
BERT 0.85 0.87 0.86 0.86

RoBERTa 0.86 0.90 0.81 0.85
DistilBERT 0.83 0.80 0.86 0.83
ClinicalBERT 0.81 0.91 0.71 0.79
BioBERT 0.82 0.85 0.81 0.83

Table 1.2: Αποτελέσματα μοντέλων

΄Υστερα χρησιμοποίησαμε τις εξόδους των transformers ως εισόδους σε classifiers για την
παραγωγή των τελικών προβλέψεων. Επιχειρήσαμε το πείραμα δύο φορές, την πρώτη με τρεις
transformers και την δεύτερη με πέντε για να δούμε αν μπορούμε να βελτιώσουμε την απόδοση
των μοντέλων μας με ενισχυμένη πολυπλοκότητα. Τα αποτελέσματα για τα ensemble μοντέλα με
τρεις transformers φαίνονται στον παρακάτω πίνακα.

Classifier Accuracy Precision Recall F1-score
Bagging Regressor 0.9616 0.9433 0.9609 0.9792
Random Forest 0.9666 0.9533 0.9662 0.9794

Gradient Boosting 0.9683 0.9533 0.9678 0.9828
Support Vector Machine 0.9616 0.9433 0.9609 0.9792

Logistic Regression 0.9600 0.9533 0.9597 0.9662
K-Nearest Neighbors 0.9633 0.9500 0.9628 0.9760

Decision Tree 0.9533 0.9366 0.9493 0.9623
Majority Voting 0.9666 0.9533 0.9662 0.9794

Table 1.3: Αποτελέσματα classifiers με τρεις transformers

Τα ensemble μοντέλα με πέντε transformers είχαν καλύτερα αποτελέσματα, το οποίο μας
οδήγησε στο συμπέρασμα ότι απαιτείται η εύρεση του βέλτιστου αριθμού transformers και classi-
fiers για την επίτευξη της μέγιστης απόδοσης. Λίγοι transformers μπορεί να αποδόσουν χαμηλά
αποτελέσματα, και πολλοί transformers μπορόυν να εισάγουν θόρυβο, επομένως υπάρχει χώρος
σε αυτό το σημείο για βελτιστοποίηση.

Classifier Accuracy Precision Recall F1-score
Bagging Regressor 0.9683 0.9533 0.9678 0.9828
Random Forest 0.9766 0.9766 0.9766 0.9766
Gradient Boosting 0.9683 0.96 0.9681 0.9763

Support Vector Machine 0.9716 0.9633 0.9714 0.9796
K-Nearest Neighbors 0.9783 0.9733 0.9782 0.9831
Logistic Regression 0.9716 0.9633 0.9714 0.9796

Decision Tree Classifier 0.9633 0.9633 0.9633 0.9633
Majority Voting 0.9733 0.9666 0.9731 0.9797

Table 1.4: Αποτελέσματα classifiers με πέντε transformers

1.4.2 Αποτελέσματα Εξήγησης

Για την αξιολόγηση των εξηγήσεων χρησιμοποίησαμε τις εξής μετρικές, απλότητα στην εξήγηση,
ικανοποίηση του χρήστη ως προς την εξήγηση, οπτική ποιότητα και ικανοποίηση του χρήστη,
συμπεριφορά εξήγησης σε σχέση με τα CHA tokens, ευκολία χρήσης, χρόνος παραγωγής εξήγησης
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και πόσο καλά η εξήγηση κατάφερε να προσεγγίση το μοντέλο. Τα αποτελέσματα των μεθόδων
εξήγησης φαίνονται στον παρακάτω πίνακα.

Type Metric LIME T-I Anchor DEMET
Qlt Simplicity 4 3 1 4

Human Evaluation 4 3 1 4
Visual Appeal 4 3 1 4

CHA Token Importance 4 4 3 4
Ease of Use 1 1 1 5

Qnt Fidelity 0.73 1 0.9 1
Time of Generation (GPU + 83 GB RAM) 55.47s 1.05s 0.11s 167.43s
Time of Generation (CPU + 16 GB RAM) FAILED 59.19s 9.43s FAILED

Table 1.5: Αποτελέσματα μεθόδων εξήγησης

Τα αποτελέσματα έδειξαν ότι η μέθοδος LIME ήταν η πιο αρεστή στους επαγγελματίες ιατρούς.
Η μέθοδος Anchors δεν κατάφερε να παράγει εξηγήσεις οι οποίες να είναι εύκολα ερμηνεύσιμες
από τους ειδικούς, ενώ το Transformers-Interpret είχε παρόμοια απόδοση με το LIME αλλά
δεν ήταν τόσο αρεστό όσο το LIME. Λόγω της υπολογιστικής πολυπλοκότητας της μεθόδου
LIME, προτείνουμε, στην περίπτωση όπου η εξήγηση των προβλέψεων είναι απαραίτητο να γίνει
σε σύντομο χρονικό διάστημα και με μικρότερη υπολογιστική πολυπλοκότητα, να γίνει χρήση
της μεθόδου Transformers-Interpret. To DEMET, όντας βασισμένο στην μέθοδο LIME, είχε
αντίστοιχη απόδοση σε όλες τις μετρικές με το LIME, πέρα από την ευκολία χρήσης στην οποία
ήταν η βέλτιστη επιλογή.

1.5 Ηθικά Ζητήματα

΄Ενα από τα κυριότερα ηθικά ζητήματα στην έρευνά μας είναι η ιδιωτικότητα και η εμπιστευ-

τικότητα των δεδομένων που χρησιμοποιούνται. Τα δεδομένα που παρέχονται από το Dementia-
Bank είναι εξαιρετικά ευαίσθητα και περιέχουν προσωπικές πληροφορίες για άτομα και ασθενείς.
Η διαχείριση τέτοιων δεδομένων απαιτεί αυστηρή συμμόρφωση με τους νόμους και τους κανον-

ισμούς προστασίας δεδομένων. Οι ερευνητές πρέπει να διασφαλίζουν ότι αυτά τα δεδομένα είναι
ασφαλισμένα και ανώνυμα, ώστε να αποτρέπεται οποιαδήποτε πιθανή παραβίαση της ιδιωτικότη-
τας των ατόμων αυτών. ΄Ενα άλλο σημαντικό ηθικό ζήτημα είναι η προκατάληψη που εισάγεται
πιθανά στα δεδομένα και στα μοντέλα και η διατήρηση της δικαιοσύνη στις αποφάσεις τους. Η
εκπαίδευση των μοντέλων τεχνητής νοημοσύνης σε δεδομένα που είναι προκατειλημμένα για μια

συγκεκριμένη μερίδα ανθρώπων μπορεί να οδηγήσει σε προκατειλημμένα και άδικα αποτελέσματα

για τους ασθενείς. ΄Ενα παράδειγμα προκατάληψης είδαμε και στις εξηγήσεις της μεθόδου LIME,
όπου ορισμένες λέξεις και σύμβολα υπογραμμίζονταν ως ισχυρές ενδείξεις άνοιας, ακόμα κι αν
δεν συνδέονταν διαισθητικά με τη νόσο. Τέτοιες προκαταλήψεις μπορούν να εισαχθούν κατά τη
διάρκεια της εκπαίδευσης των μοντέλων, λόγω του τρόπου με τον οποίο συλλέγονται και επεξ-
εργάζονται τα δεδομένα, ή ακόμα και κατά τη διαδικασία μεταγραφής της ομιλίας των ασθενών.
Γνωρίζουμε ότι τα πρότυπα ομιλίας μπορούν να διαφέρουν δραστικά ανάμεσα σε διαφορετικές

δημογραφικές ομάδες, και τα μοντέλα πρέπει να αξιολογούνται ώστε να διασφαλίζεται ότι δεν
επηρεάζουν δυσανάλογα κάποια συγκεκριμένη ομάδα. Η διαφάνεια και η λογοδοσία σε αποφάσεις
υψηλής επικινδυνότητας και σημασίας είναι επίσης μια πτυχή που πρέπει να ληφθεί υπόψιν κατά

την ανάπτυξη μοντέλων τεχνητής νοημοσύνης για εφαρμογές υγειονομικής περίθαλψης. Η έλλειψη
διαφάνειας μπορεί να οδηγήσει σε κακή χρήση ή υπερβολική εξάρτηση από τα συστήματα αυτά,
φαινόμενο το οποίο ενδέχεται να έχει επιβλαβείς συνέπειες για τους ασθενείς και οργανισμούς που
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τα χρησιμοποιούν. Απαιτούνται αυστηρές κατευθυντήριες γραμμές και κανονισμοί για να διασ-
φαλιστεί το ποιος οφείλει να λογοδοτεί για τις αποφάσεις που λαμβάνονται από τα μοντέλα αυτά

όταν εκείνα χρησιμοποιούνται για διαγνωστικούς σκοπούς. Είναι επίσης ουσιώδες να αναφέρουμε
ότι αυτά τα εργαλεία χρησιμοποιούνται ως συμπληρωματικά εργαλεία στην κλινική, και όχι ως υπ-
οκατάστατα της ανθρώπινης κρίσης και εξειδίκευσης. Τέλος, πρέπει να εξεταστεί η ευρύτερη ηθική
χρήση της τεχνητής νοημοσύνης στην υγειονομική περίθαλψη. Τα εργαλεία τεχνητής νοημοσύνης
πρέπει να χρησιμοποιούνται για να βελτιώνουν την ποιότητα ζωής και φροντίδας των ασθενών, και
να εφαρμόζονται με συνεπή και ηθικό τρόπο.

1.6 Συμπεράσματα

Στα πλαίσια της παρούσας μελέτης καταφέραμε να αναλύσουμε εκτενώς το πεδίο του XAI και
των μεθόδων εξήγησης προβλέψεων των μοντέλων μηχανικής μάθησης. Μιλήσαμε για τις μεθό-
δους αυτές και τις μετρικές τους, καθώς επίσης και για τα πλεονεκτήματα και τα μειονεκτήματά
τους. Τα αποτελέσματα της δουλειάς μας στο DEMET έδειξαν πως η χρήση ensemble μον-
τέλων μπορεί να καταφέρει σημαντικές βελτιώσεις από τα απλά transformer μοντέλα, με αποτελέσ-
ματα που ξεπερνούν το 97% στο σύνολο δεδομένων του DementiaBank. Είδαμε πως η χρήση
φωνολογικών χαρακτηριστικών ως CHA tokens μπορεί να βελτιώσει την επεξηγησιμότητα των
μοντέλων μας προσφέροντας μια πιο ερμηνεύσιμη εξήγηση η οποία στηρίζεται στη βιβλιογραφία

σχετικά με τα συμπτώματα της άνοιας. Σημαντικό εύρημα ήταν ο συνδυασμός διαφορετικών εξ-
ηγήσεων μιας ίδιας μεθόδου εξήγησης, για την δημιουργία μιας νέας, η οποία δεν πλήττεται από
πιθανές προκαταλήψεις των επιμέρους εξηγήσεων και παρέχει μια πιο αξιόπιστη εξήγηση. Οι έρε-
υνα που πραγματοποιήσαμε με επαγγελματίες ιατρούς, παρά το μικρό αριθμό των συμμετεχόντων,
έδειξε πως η συγκεκριμένη κατεύθυνση μπορεί να επιφέρει σημαντικά αποτελέσματα στον τομέα

της ανίχνευσης και παρακολούθησης της άνοιας, όχι τόσο για κλινική χρήση, αλλά για εμπορικές
εφαρμογές και υπηρεσίες, παρέχοντας σε άτομα μια μη επεμβατική, οικονομική και αποδοτική
μέθοδο αυτοαξιολόγησης η οποία στη συνέχεια μπορεί να οδηγήσει σε συνάντηση με έναν ειδικό.
Στα πλαίσια της έρευνάς μας, τονίστηκε η πολυδιάστατη φύση της άνοιας και πως δεν αρκούν μόνο
τα φωνολογικά χαρακτηριστικά για την ανίχνευση της νόσου, αλλά απαιτούνται και άλλα είδη δε-
δομένων και σίγουρα η κλινική εμπειρία και γνώση ενός ειδικού. Το έργο του COMFORTAGE
στοχεύει στην ανάπτυξη και παροχή λύσεων για το πρόβλημα της άνοιας, και ελπίζουμε ότι το
DEMET μπορεί να προσφέρει κάποια βοήθεια στην επίτευξη των στόχων αυτών.

13



Chapter 2

Introduction

In the healthcare industry, emerging technological advances have been documented in the shift
towards a more patient centric approach to treatment and diagnosis, compared to the hospital
centric approach that has been prevalent in the past [26]. This shift has been coined as the
fourth healthcare revolution or Healthcare 4.0, promoting the use of data-driven technologies,
blockchain applications, fog and cloud computing, cyber-physical systems and sensor enabled
devices to improve patient outcomes and experiences [21]. At the core of this revolution is
the accelaration of medical innovation and research, and the simultaneous provision of neces-
sary tools and resources to achieve the best possible patient care. Healthcare 4.0 is now being
adopted by many healthcare providers, and is expected to be the new standard in the industry.

AI, along with other technologies much like the ones mentioned above, in its rapid devel-
opment has shown great promise in the healthcare industry, driving healthcare to a new and
improved paradigm shift, where the focus is deeply rooted in the patient’s well-being and the
quality of care they receive, while also reducing costs and improving systems efficiency much like
Healthcare 4.0 has promised. This shift is termed Healthcare 5.0, and it involves the integration
of millions of IoT devices, which will be interconnected and have the ability to communicate
through networking infrastuctures like 5G. These devices will be combined with state-of-the-art
AI algorithms to provide personalized and precise healthcare to patients [139].

But AI is not without fault, and the extensive use of AI in healthcare can have serious
implications on patient safety [112]. It is apparent that in order for these systems to adhere to
the ethical principles and regulatory requirements set by the ever changing landscape of tech-
nological innovations, a shift towards a system that is accountable and transparent is necessary.
This need has led to the creation of Responsible AI, which is an interdiscplinary and dynamic
process, that goes beyond the technical aspects of AI development, and includes the ethical,
legal and societal standards that are necessary for transparent and accountable AI systems [54].

Explainable AI (XAI) is a subfield of Responsible AI, and is concerned with the develop-
ment of AI systems capable of providing explanations for their decisions and actions. With the
advancements in AI, models are becoming all the more complicated and convoluted, making it
difficult for experts even to understand the decision making process of these models [160]. Sim-
pler models, like linear regression or decision trees, are easily interpretable in their decisions,
as they are based on mathematical rules and can be visually represented. These models are
considered to be inherently interpretable, meaning interpretable by design. On the other hand,
deep learning models, like neural networks, do not adhere to this property, since their scale
and complexity makes it difficult to understand how the data in the model contributes to the
shifting of the parameters in the model, and ultimately the decision that is made. Explainable
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AI aims to solve this issue by providing explanations and interpretations for the decisions made
by these more complicated models. In the field of healthcare, where the decisions made by
clinicians and healthcare professionals can be crucial to the well-being of patients, the need for
transparent and accountable support tools is essential. It is also essential for patients to be
able to receive explanations about their diagnosis and treatment, and so it is apparent that a
black box solution will not suffice. XAI has the potential to demystify these black box models
into interpretable and understandable support tools, promoting trust and accountability in the
healthcare industry.

2.1 Background and overview of AI in healthcare

AI is already being utilised in the industry, with applications in a variety of fields. Some of
these fields include medical operations and data management, drug discovery, medical diagnosis
through image recognition, and personalized treatment plans [119].

Drug Discovery
AI has been a catalyst for pharmaceutical companies in the discovery of new drugs, speeding up
their processes and allowing for new ways to identify potential drug candidates [84]. AI’s ability
to analyze large datasets and identify patterns has been instrumental in processes of drug re-
purposing and minimising repeated clinical trials and tests. Pfizer, for example, has used IBM’s
Watson to accelerate immuno-oncology research and find potential treatments [121]. Sanofi has
also been investing in AI, collaborating with Exscientia, to produce an AI-based pipeline for
drug discovery focusing on oncology and immunology. Genentech, a subsidiary of Roche, in col-
laboration with GNS Healthcare in Cambridge, has been using AI to identify new drug targets
for cancer treatment. There is skepticism surrounding these practices, but proponents argue
that AI can assist in faster, cheaper and more efficient drug developement automating a lot
of the processes involved in drug discovery, allowing for better understanding of the biological
components of the target, optimising drug structure design.

Diagnosis
AI has also been used in the diagnosis of diseases, enabling healthcare professionals to make
more accurate and timely decisions. In the field of cardiology, AI has been used for screening
and diagnosis of heart diseases like cardiac contractile dysfunction

1
and arrhythmias

2
using

electrocardiogram (ECG) data [175] [165]. In the field of pediatrics, scientists have developed
AI models to distinguish between control and hydrocephalic groups

3
using MRI data [123].

MRI data has also contributed to the development of AI applications that are able to diag-
nose children with hypoxic-ischemic encephalopathy

4
[136] using classification and machine

learning models. In our field of interest which includes mental health and neurodegenerative
diseases, which we will delve deeper into in the next sections, AI has been utilised to diagnose
and predict the progression of neurodegenerative diseases like Alzheimer’s and Parkinson’s, de-
mentia and different types of mental disorders and diseases [74] [15] [101]. Dentistry is another
field that has been revolutionised by AI, with systems capable of assessing bone quality for os-
teoporosis

5
or providing tooth segmentation solutions [77] with architectures like CNN models.

1
Decrease in contractile function of the heart muscle and prolonged relaxation.

2
Irregularity in the heart’s rhythm and beat.

3
Hydrocephalus is a condition where there is an accumulation of cerebrospinal fluid in the brain.

4
Brain injury caused by lack of oxygen before or shortly after birth

5
A condition where bones become weak and brittle
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Surgery and Operating Room
AI has been a prevalent tool in the operating room as well, assisting in intraoperative opera-
tions like pharmacotherapy, hemodynamic optimization

6
, neuromuscular block monitoring

7
,

and anesthesia depth assessment [43]. AI stretches its reach to applications in bariatric surgery
8
[30] and the management operations of the operating room [157]. Researchers have also

demonstrated that the use of AI can facilitate in the prediction of postoperative complications
and mortality, as well as operation success or failure, allowing for clinicians to assess their
approach and make necessary adjustments for better patient outcomes as early as 2002 [59].

Patient Care
AI has also been used to fasttrack operations in patient care, namely in remote patient monitor-
ing, where it allows for cost effective and efficient monitoring, optimising in this way hospitili-
sation and assisting in the avoidance of complications by early detection of deteriorating health
[2]. Extensive research has been conducted in the field of robotics and AI, for the creation of
exoskeletons and wearables to assist patients in rehabilitation and physical therapy [143] [65].
Chatbots, as we will later discuss in detail, have been used to provide mental assistance and
support to clinically depressed patients, allowing for a more accessible and affordable approach
to mental health care [3]. Lastly with the use of wearable devices and IoT, AI is at the palm
of our hands, with applications able to monitor and track our health and fitness, in real time,
providing us with insights and recommendations for a healthier lifestyle [44]. All this data
can later be collected and analyzed to be used in the development of new AI applications and
models, that can further improve patient care.

It is evident that AI is here to stay. The applications of AI in healthcare can be a cor-
nerstone of innovation and development in the industry, allowing for better patient outcomes
and providing clinicians and healthcare professionals with additional support tools for more
informed and accurate decisions. The afformentioned applications do not only highlight the
capabalities that AI possesses, in augmenting and improving the healthcare industry beyond
what was once possible, but also lay the foundation for the importance of further research into
ways to make these systems more available for clinical practice.
In order for that to be a possibility however, we need to go back to the importance of Responsi-
ble AI, and the need for transparency in these systems and models. The rapid development of
AI systems has led to the increase of black box models, and that deters both professionals and
patients alike from trusting and using these systems in their practices. The need for explain-
ability in AI is essential in order to combat this issue and promote trust and accountability in
the healthcare industry.

2.2 Importance of explainability in AI

The importance of explainability is prevalent in healthcare, where the decisions made by clin-
icians and healthcare professionals are directly influenced by the support tools they use. AI
systems and deep learning models can contribute immensely to the decision making process,
but they are not always correct or reliable in their outputs. We must not forget that these
models are trained systems based on mathematical foundations, but can statistically fail in

6
adequate oxygen delivery for tissue needs during operations

7
stimulation of nervers for muscle movement measuring

8
Surgery performed on the stomach or intestines to induce weight loss.
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their predictions. Not to say that clinicians don’t fail in their diagnosis or treatment plans,
but the issue arises when the model fails and accountability has to be attributed to the parties
involved. The patient also has the right to know why a certain decision was made in order to
understand the reasoning behind their diagnosis or treatment and to be able to assess whether
or not they want to proceed with a specific plan of action. Multiple cases of misjudgement
have been documented where the model has failed to provide adequate results in their task due
to different reasons. Such reasons include the lack of diversity in the training data, where the
model provides biased decisions towards a specific group of people and hence fails to provide
accurate results for those specific groups. Another reason can be the weathering of the training
data over time, where due to changes in environment or settings of deployment, the model
fails to predict correctly, making it unreliable for the task at hand. Research has shown that
the extensive unfiltered use of Artificial Intelligence in the workplace can lead to de-skilling
of professionals, where the reliance on the model’s decisions can be taken for granted, thus
producing a lack of critical thinking and reasoning in the way professionals approach their
tasks. This can lead to a substantial decrease in the quality of services provided by healthcare
professionals which can have serious implications in the way patients are treated and diagnosed.

The solution cannot be to simply abolish the use of AI in healthcare. That would cer-
tainly prove to be detremental to the progress in strides that researchers have made in the
field. We have already highlighted the importance of AI in industry and the potential for it
is vast and promising. The industry requires for a solution that provides context, a solution
that assists both professionals and patients alike and produces in turn, a better environment
in which healthcare is provided. Explainability has proven to be one such solution. In this
instance, the model stops being a blackbox-like uninterpretable machine, and start to become
a dynamic and transparent tool that provides essential insight in its own process of creating
an output, providing clinicians with necessary information required for them to make informed
decisions and assess a situation accordingly. Explainability, in the process of failure in a model’s
prediction, can produce outcomes that facilitate the understanding of failure by professionals
and thus the mitigation and misjudgement. This process can also provide patients with the
necessary information they need to proceed with their own decisions as to whether or not they
allow for any procedure or treatment. Individuals have an inherent need and human right to
understand the reasoning behind a decision made in their regard, especially when it comes to
their health or health services provided to them, and in order for them to be able to trust and
accept these decisions, they need to be provided with the necessary explanations as to why a
certain decision was made. Transparency allows for accountability and the ability for back-
tracking a failed decision in order to address who is at fault in a legal standing. Explainability
can be the gateway to a more trustworthy and accountable system that can be used widely in
clinical practice. These models have the ability to provide the necessary foundations for ethical
and legal use of AI in healthcare which is a matter of utmost importance in the industry today.

2.3 Motivation for the study

The motivation for this study is driven by the need to provide a concrete and comprehensive
review of explainable AI and its application in the healthcare industry, particularly in the field
of mental health and neurodegenerative diseases. This study aims to collect and analyze the
current state of the art in XAI, and to provide a detailed overview of the different methods and
techniques used in the field. The study will also investigate the potential benefits and chal-
lenges of implementing XAI in mental health by reviewing related work in the field, and will
explore the ethical and legal implications of using these systems in clinical practice. Lastly, this
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research aims to contribute to the development of AI systems that are transparent, accountable
and trustworthy. In doing so, it seeks to address the critical gap between the capabilities of AI
and the actual implementation of these systems in clinical practice.

2.4 Research questions and objectives

This thesis is guided by the following research questions:

1. How can explainable AI methods be applied to develop transparent and trustworthy AI
models for mental health care?

2. What are the current state-of-the-art AI models in mental health care that employ ex-
plainable methods, and how effective are they in classifying or predicting various mental
health conditions?

3. What are the key metrics for evaluating the explainability of AI models in the context
of mental health, and how do these metrics impact the trust and reliability of AI-driven
decisions?

4. What ethical considerations must be taken into account when developing and implement-
ing AI models in mental health care, and how can explainable AI contribute to addressing
these ethical challenges?

To address these research questions, the objectives of this study are:

1. To review and critically assess the current landscape of explainable AI methods and their
applications in mental health care.

2. To identify and evaluate the state-of-the-art AI models that utilize explainable meth-
ods for diagnosing, treating, and monitoring mental health conditions, highlighting their
strengths, limitations, and areas for improvement.

3. To develop an experimental AI model using transformers and Local Interpretable Model-
Agnostic Explanations (LIME) to demonstrate the practical application of explainable
AI in mental health care and how it can be used to predict dementia.

4. To explore the ethical dimensions of AI in mental health care, with a particular focus on
the role of explainable AI in enhancing transparency, accountability, and trust between
healthcare providers and patients.

Through this research, the study aims to contribute valuable insights and practical tools to
the field of AI in mental health care, with a particular emphasis on the critical importance of
explainability, ethics, and human-centered design in the development of AI systems.
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Chapter 3

Literature Review

3.1 Evolution and Current State of XAI

Initially introduced by Van Lent et al [88] in 2004, XAI aimed to make AI systems understand-
able by humans. Over the coming years, as Machine Learning (ML) and Deep Learning (DL)
models progressed, the focus shifted towards the explainability of these models in an assortment
of sectors. The term XAI became synonymous with responsible AI, bridging the gap between
the black-box nature of AI models and the need for transparency and human comprehension.
In 2017, the Defense Advanced Research Projects Agency (DARPA) [57]

1
launched their XAI

program, to develop an AI system for better understanding of decision making by end-users.
There have also been studies conducted by reputable organisations on XAI and their impact.

Today Explainable AI is used in various domains and applications and enhances traditional
preexisting AI models, in a much needed time of transparency and accountability in AI sys-
tems due to their increasing prevalence in our daily lives. Their use stretches from e-commerce
product reviews with improved sentiment analysis and emotion classification, to military appli-
cations with real-time sensor data in military operations, which require data assurance. Other
applications include the use of XAI in healthcare as we have already established, transporta-
tion, finance, justice, bussiness and many more.

There are specific desired properties which are widely used in research and development of
XAI models.

1. Interpretability: It refers to a sense of understanding how the model works.

2. Explainability: It explains as to how a decision was made.

3. Transparency: It assesses the information that is available to the user.

4. Justifiability: It refers to the facts that support the decision.

5. Contestability: It refers to the ability to challenge the decision by the user.

1
DARPA is an agency that develops cutting-edge technology and innovations geared towards the national

security of the United States.

19



Explainability can be local, meaning that we are interested in a single instance of a pre-
diction and the model’s explanation for that specific instance, or global, meaning that we are
interested in how the model works in a population of instances and how the model behaves in
general. Local explainability can be formed as a question as to why the model made a specific
decision for a specific instance, and global explainability can be formed as a question as to how
the model will behave generally in terms of explaining, when it comes to a series of instances.
In this particular study, we will focus mostly on local interpretability and explainability.

3.2 Explainable AI in Health Care

XAI in healthcare is of paramount importance. It is used in various clinical assessments of
models, data management, diagnosis, reducing sensor bias, disease classification and critical
object separation in medical images. These models help in easier error correction and better
performance as they explain the results of their decisions. They also have the ability to provide
explanation for the entire model and its architecture, as well as for each prediction separately,
while also adapting to the needs and conditions of the patient, thus maintaining a high level of
trust and reliability.

XAI is being intergated with clinical knowledge to enhance the accuracy and reliability of
health diagnostics and predictions. New methodologies leverage multi-modal and multi-center
data fusion, utilizing case studies in areas like COVID-19 classification and ydroccephalus

2
seg-

mentation. Research is focusing on the interpretability and explainability of machine learning
algorithms, on personalised healthcare services and practical scenarios like ECG data analysis,
surgical planning and COVID-19 diagnosis. A generalised taxonomy for XAI is being proposed
to address current challenges and guide future research. Frameworks are being developed as
well, to collect data for XAI applications. Lastly, cloud-centric systems are being proposed for
multi-modal data analysis. [139] Explainable AI plays a pivotal role for the future of healthcare
and the vision for Healthcare 5.0.

Healthcare 5.0 is a vision for the future of healthcare that strives for the personalisation of
medical interventions on patients based on genetic makeup, lifestyle, and specific health needs.
In this vision of the future, the patient and his needs are placed in the center of the decision
making process of treatment. The implimentation of advanced technological appliances such
as IoT devices, 5G networks and Explainable and Responsible AI models is at the forefront of
Healthcare 5.0, as well as the ethical implications of involving such advanced technologies in
healthcare.

3.3 Mental Health and XAI

We will focus our attention on the application of XAI in the field of mental health. Men-
tal health, like a plethora of other fields, has been impacted by the rise of AI and digital
technologies. The use of AI in mental health has been a topic of interest for researchers and
practitioners alike, as it has the potential to revolutionise the way we combat mental health
issues. The introduction of digital mental health has established new tools and applications
such as personal sensing or digital phenotyping, natural language processing of clinical texts

2
Buildup of fluid in cavities deep within the brain
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and social media content and also chatbots for the betterment of the conditions of patients. [36]

1. Personal Sensing: Personal sensing or digital phenotyping is the use of digital devices
to collect data on an individual’s behaviour and environment. This data can be used
to monitor and predict mental health conditions. Research in the area as been particu-
larly involved in the identification of signs of depression and anxiety through indicators
such as physical activity and smartphone interactions. Early studies suggest the poten-
tial detection of conditions like schizophrenia by monitoring changes in communication
patterns. Additionally smartphones serve as a platform for Ecological Momentary As-
sesments (EMA), enabling real time mental health monitoring through questionnaires.
This concept can be extended with the concept of Ecological Momentary Interventions
which offers timely psychological interventions based on the data collected from the user,
with the end goal being the development of AI-driven applications that provide highly
personalised and contexual relevant therapy recommenndations.

2. Natural Language Processing: Natural language processing (NLP) is a subfield of
linguistics, computer science, and artificial intelligence concerned with the interactions
between computers and human language, in particular how to program computers to pro-
cess and analyze large amounts of natural language data. NLP is used to analyse clinical
texts and social media content to predict mental health conditions. Characteristics in-
dicative of language disturbance, such as limited vocabulary, lack of semantic coherence,
and simple syntax are very telling of severe mental health problems like schizophrenia.
These characteristics can be quantified with the use of NLP techniques, and subsequently
fed into ML or DL models for mental health prediction and classification with notable
accuracy. Additionally the sheer amount of data available online allows for the develop-
ment of models able to predict mental health issues like depression and phychosis, as far
as suicidal tendencies from users’ posts, with high accuracy. This research corroborates
long-standing observations concering the connection between language and mental health,
and offers an accurate, scalable and efficient way of detection and intervention of mental
health issues.

3. Chatbots and other agents: Agents are designed to simulate conversation with end
users, employing a range of simple rule-based interactions, conservational classifications
all the way to more advanced and complicated NLP techniques. The origins of said
agents in mental health can be traced back to the 1960s, with the development of ELIZA,
a computer program that emulated a Rogerian psychotherapist. Chatbots have since
been evolved to address various mental health conditions with general positive user sat-
isfaction. Modern day chatbots such as Woebot, Wysa and Tess are designed to provide
mental health support and interventions, using techniques such as cognitive behavioural
therapy (CBT) and motivational interviewing. These Chatbots show their potential when
it comes to users hesitant to seek traditional therapy by professionals, due to stigma or
accessibility issues. Further research is needed concerning ethical considerations, handling
of emergencies and limitations of these agents.
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3.4 Existing Frameworks and models for Explainability

There are two types of general methods to explainability [110]. First, there is the model specific
method, mainly geared towards Machine Learning models like Decision Trees,Random Forests
and others. Model specific refers to the ability of the method to have prior extended knowl-
edge of the internal structure and inner workings of the model, such as parameters, activation
functions and optimisations to the model. The second method is called model agnostic. The
way this method works is it provides explainability without any knowledge concerning the way
the model actually works but derives all explanations from examining input and output of the
model. This method is used predominanlty with Deep Neural Networks, Convolutional Neural
Networks and other models where it’s extremely difficult to understand how they compute their
outputs and make decisions [69].

There are other ways that explainability can be categorised, such as ante-hoc and post-hoc.
Ante-hoc refers to models that are inherently interpretable, meaning that their design favours
explainability in some sense, mostly due to the usage of decision rules and visualisations. Post-
hoc refers to models that are black-box like, like neural networks and transformers, and the
explainability is derived by assessing input and output of these models.

Artificial Intelligence has had great success over the past few years, but the black-box na-
ture of models up until recent years has not allowed for major integration in numerous fields
where decision making is critical to safety and security. The models that score the highest in
accuracy and precision are in fact, in most cases, the most complex, meaning that scientists
and professionals alike are hesitant to use them. Regulations also produce a hurdle when it
comes to using none transparent models. These explainable methods aim to enstill trust in
these models and facilitate this integration.

3.4.1 Interpretable Models

Inherently interpretable models provide explicit rules, feature importance and intuitive repre-
sentations so that users can understand their decision making process. They are deemed the
easiest and fastest way to produce explanations but are limited to the one model that they are
designed upon.

1. Linear Regression [105] is a statistical model that examines the response of an outcome
variable to a set of predictor variables. This regression can be simple or multiple, for a
single predictor variable or multiple ones respectively. The output of this model is a
function of the sum of weighted predictor variables. These weights are the coefficients of
the model and are used to estimate the relationship between the predictor variables and
outcome variable. The model is easy to interpret and understand, and is used in a variety
of fields such as economics, biology, and psychology. The relationship between a specific
predictor variable and the outcome variable can be estimated by holding all other predictor
variables fixed, changing the specific predictor variable and seeing how the model reacts
to the changes. The importance of a feature can be derived from the magnitude of the
coefficient of the variable in the model. These features produce inherent interpretability.
The model is limited in its use cases, since it can only model linear relationships between
variables, and is not suitable for complex data.

2. Logistic Regression [120] is an extension of linear regression for classification tasks.
The way logistic regression works is by using the logistic function to model the proba-
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bility of a linear equation between 0 and 1. This approach helps combat the problem of
linear regression and its inability to model non-linear relationships and perform classifi-
cation tasks properly. Interpretability is obtained in a different way in the case of logistic
regression, where weights don’t impact the probability linearly. In this case, the weights
are formatted as odds, and the exponent of the weights is used to calculate the odds
ratio. The odds ratio is then in turn used to measure the impact of a feature on the out-
come. This process can be done for numerical, binary and categorical features, by using
any encoding to transform them into binary features. Each feature’s odds ratio changes
differently depending on the type of feature, but outcomes are easily interepretable.

3. Decision Trees [133] are a non-parametric supervised learning method used for classifi-
cation and regression tasks. The model works by splitting the data into subsets based on
the value of a feature. It then continues to split the data into smaller and smaller sub-
sequent datasets until the data is homogenous or a stopping criterion is met. The model
is easy to understand and interpret, and visualisation is intrinsicly available due to the
model’s architectural design. Decisions trees are robust to outliers and missing data, and
have the ability to handle numerical and categorical data. Decision Trees can be prone
to overfitting and introduce instabilities in the way the model classifies different datasets,
meaning a small change in the data can in fact produce different trees. A Decision Tree
can be interpreted by simply following the path of the constructed tree and observing
the edges that explain the decision as to why each step was taken, until a leaf is reached
and the decision is made. Feature importance can be measured using the Gini index to
indentify the information gain each time a feature was used for a split.

4. Decision Rules [68] [89] are simple IF-THEN statements that contain a condition (IF)
and a statement or outcome (THEN). Multiple of these rules can be combined similarly
to a Decision Tree to predict a model’s decision to a specific input. These rules strongly
resemble natural language making them one of the most interpretable solutions for ex-
plainability. Each condition can only use one feature, but can be combined with other
conditions with AND statements. Decision rules have two metrics to measure quality of
a rule, support and accuracy. Support is the percentage of data that the rule applies
to, and accuracy is the percentage of data that the rule predicts correctly. There can be
a trade-off between the two metrics, where adding more features to a rule can increase
the accuracy but decrease the support. In order to get the most out of decision rules,
in order to classify a decision, multiple rules should be used to cover one’s bases. This
can introduce issues and complexity, and these issues are combated by using decision lists
and decision sets. Decision lists allow for order in the evaluation of each rule and decision
sets allow for majority voting between rules to produce a decision, where some rules can
be more important than others. Some methods for extracting these rules include OneR,
which learns rules from a single feature, sequential covering, which removes data covered
by each rule created sequentially and Bayesian rule lists which use Bayesian statistics
[166] to create decision lists, much like the name suggests.

5. RuleFit is an algorithm introduced by Friedman and Popescu [49] in 2008, which learns
a sparse linear model by combining the original features and a set of decision rules. These
decision rules extract the connection between the original features and are generated by a
tree ensemble model. Each path through a tree can essentially be translated as a decision
rule. Feature importance can be calculated by the coefficients of the linear model. RuleFit
also includes partial dependence plots, which are used to visualise the effect of a change
of a feature on the model’s prediction. Interpretation for linear features in RuleFit is
the same as with linear regression, but for the decision rules, the interpretation differs.
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Decision Rules are binary rules, which are equal to 1 if the condition is met, and 0 if
the condition is not met. An advantage of RuleFit is the induction of interactions of
features to the linear model, without having to manually add each one separately. It is
used for classification and regression and is very interpretable and easy to understand. A
drawback can be detected when it comes to the linear features which are fixed to assess
importance and reactions to a singular feature. Performance also can be unstable in some
cases, and the model can be prone to overfitting.

6. Naive Bayes is a well known family of classifiers which use Bayes conditional probability
[38]. It is a supervised and statistical learning method that assumes a probabilistic model
and allows for the capturing of uncertainty by calculating the probability of an outcome
[159]. Interpretable is derived in Naive Bayes by the clarity in which we can assess why
a decision was made based on a single feature by its contribution towards a prediction of
a certain class, due to its conditional probability.

7. K-nearest neighbors or KNN [16] is a non-parametric method used for classification
and regression. The model works by finding the K-nearest neighbors of a data point
and classifying it based on the majority class of its neighbors [86]. To explain the way a
decision was made by a KNN model, it is advised to collect the K-nearest neighbors of
the data point in question and observe the class of each neighbor. The majority decision
of the neighbors is the decision of the model.

3.4.2 Model Agnostic Methods

Model agnostic methods are used to explain the predictions of complex models. They are used
to produce explanations without any knowledge of the model’s internal structure. They are
more versatile and flexible since the interpretations can work with any machine learning model.
They are also very flexible in terms of explanation format, since the explanations can be in the
form of rules, feature importance, or even visualisations.

1. Local Interpretable Model Agnostic Explanations, or LIME in sort, originally
introduced by Marco Tulio Ribeiro et al. [129] in 2016 is a model agnostic method that
explains the predictions of complex models. This is achieved by generating samples of
input and evaluating them by the original model. After this evaluation process, LIME
tries to approximate the original model using a linear function which is easier to interpret.
Essentially LIME produces a surrogate model of the original, a reduction of sorts, to
produce explanations. This can be very computationally expensive in some cases, since
the quality of explainations are dependant upon the quality of the reduction to this
surrogate model, which in turn requires extensive sampling to be obtained. Sampling also
introduces uncertainty in explanations and it has shown to produce different explanations
for the same input. This instability is prevelant when compared to other model-agnostic
XAI methods. [96]

2. Anchors, which was also introduced by Ribeiro et al. [130] in 2018, describes human
readable simple rules that describe conditions in which a model’s prediction is subject
to change. These rules are essentially ”anchors” that explain the decision boundary of a
model for a specific instance. The resulting explanations come in the form of IF-THEN
statements, which define the decision boundary region for each anchor. In order to extract
these rules reinforcement learning is used, combined with beam search and heuristic search
algorithms by cycling through different candidate anchors, filtering out the best ones and
finally extending the anchor rules. Anchors are evaluated using two metrics, precision and
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coverage. Ribeiro et al. define precision as the accuracy in which the anchor can predict
the model’s behaviour. Coverage describes the amount of data that an anchor’s decision
rule applies to. Anchors produce understandable and human readable explanations but
can be computationally intensive in tuning hyper-parameters and dealing with constant
calls to the original model. Instances close to the decision boundaries of different anchors
require extensive feature extraction.

3. GraphLIME [70] by Huang et al. is a model agnostic method that explains the predic-
tions of GNN ( Graph Neural Network) models and is based on LIME as its name suggests.
This particular variation of LIME tries to find a surrogate model based on a non linear
feature selection method called Hilbert-Schmidt Independence Criterion (HSIC) Lasso to
explain a specific node on a graph. It borrows from the training process of the GNN to
extract representative embeddings from each node, which is used in node classification.
GraphLIME samples in an N-op neighborhood of nodes to collect features for node pre-
diction, these features are in turn used to train the HSIC Lasso, which is kernel based
and thus explainable.

4. LRP or Layer-wise Relevant Propagation was original introduced by Bach et al. [22] in
2015. This XAI method requires the internal structure of the model to be explained. It
uses the network’s parameters and architecture to redistribute the explanable factors of
the network from the output layer all the way to the input layer, step by step through
every layer using back propagation. This way LRP breaks the original model down into
smaller pieces which are easier to explain.

5. The Deep Taylor Decomposition or DTD [111] is a propagation-based explanation
technique which uses decomposition in order to explain a neural network’s decision. Sim-
ilarly to LRP, it redistrutes the output values to the input values, layer by layer in
combination with the first-order Taylor expansion, which is used to extract the relevance
of the lower layer while this redestribution process is taking place. This method is highly
based on mathematical and theoretical efficiency, making it computationally sound and
trustworthy. Researchers have used this method to provide software for further research
in explainability with iNNvestigate [14], an interface in Python build on Keras and Ten-
sorFlow 2.0, with out of the box implementations for various models, and Zennit [76], a
highly customisable framework also in Python, build on Torch.

6. Prediction Difference Analysis or PDA [177] is a continuation of the work of Robnik-
Sikonja et al. [132] and measures the importance of a feature when the feature is omitted
from the prediction, either by actually omitting it, flagging it as unknown or by margilaz-
ing it. The relevance of this feature is then measured by the difference in the prediction
when the feature is present and when it is not to draw a conclusion on the importance of
the feature.

7. Testing with Concept Activation Vectors or TCAV [81], is a method of explainabil-
ity where the amount of influence of a concept is measured in the decision of a model
concerning classification. This is done by combining two different datasets, one in which
the concept is prevelant and one which is not. A logistic regression is then used on the
final dataset to assess whether the concept is present on an image sample or not. The
coefficients of the regression used are then formatted as a vector, called concept activation
vector, or CAV in short. CAVs are finally used to calculate the conceptual sensitivity
of the model, which is a measure of how strongly the presence of a specific concept con-
tributes to classification. The formula for conceptual sensivity is the dot product of the
CAV and the gradient of the model’s output. TCAV is easy to use and does not require
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any extensive knowledge about the model’s architecture. The main objective for this
method to work is the gathering of the datasets, which a lot of times requires domain
specific knowledge and expertise. TCAV can also be used to improve the robustness of a
model and eliminate biases or overfitting. Drawbacks can emerge when the concept is not
well defined, or is extremely abstract, making difficult to gather data, or detect. Another
drawback is that TCAV is only applicable to image data and not text or speech.

8. Explainable Graph Neural Networks [167] is an explainability solution for graph
neural networks and is part of DIG [92] (Deep Graph Library), a Python library for graph
neural networks. Yuan et al. explain [168] XGNN as a method that generates graphs based
on nodes of the preexisting graph, to maximise a certain prediction of the model. The
graph generation is done via reinforcement learning, where in each step of the generation
an edge is added to the original graph. The trained GNN provides information that is
used to guide the generation of the graph with a policy gradient method. XGNNs can be
used to identify issues with the trained GNN and provide solutions for improvement.

9. SHapley Additive exPlanations or SHAP for sort, is a family of explainability meth-
ods for explaining machine learning models. SHAP is based on cooperative game theory
and Shapley Values, where each player is assessed in terms of their contribution to the
outcome of the game [145]. This idea is applied to machine learning with each feature
representing a player of sorts, and their contribution to the models prediction is measured
through the Shapley Values. This Shapley Value is the average marginal contribution of
a feature for an instance across all possible coalitions. SHAP is model agnostic and can
be used for any model, making it extremely versatile. Lundberg and Lee introduced a
unified framework for explainability in 2017 [94]. SHAP draws from deep mathemati-
cal theory, which can prove accurate and trustworthy in its capabilities and outcomes,
but a drawback to this is its complexity and computational intensity. When SHAP is
used with deep neural networks and high dimensional input use cases, the computations
can prove time consuming beyond practicality. Efforts by Lundberg have been made to
produce interpretability for tree based machine learning models [95] like random forests,
decision trees, and gradient boosted trees which stray towards the model specific side of
explainability.

10. Assymetric Shapley Values or ASV, is a method of explainability originally introduced
by Christopher Frye et al. [50]. The researchers found that the Shapley Value was
very restrictive, especially in regards to the causal structure of data. This is due to the
symmetry in SHAP, meaning that if the effect of two different variables on a model is
the same, they will take identical values, and thus identical attributions. But in the case
where a variable as a causal effect on another, the entirety of attributions should be given
to the causal variable. This is what ASV can achieve by describing the causal relationship
between variables, using a causal graph. When the nodes of this causal graph are not
connected, the graph is reduced to Shapley Values. Using this causal graph, the ASV
values are calculated as the average effect of adding a variable to other variables similarly
to the way SHAP does, but with the added condition that the variable is not a cause of the
other variables. This method is particularly useful when doing model fairness analysis,
which is a process where a model is assessed in fairness and equality in its predictions by
capturing effects on variables by other variables.

11. Break-Down [27][28]
3
is based on variable contribution analysis, which produces an order

in which variables contribute to a model’s prediction. The Break-Down method analyses

3
The book can be found in this link https://pbiecek.github.io/ema/
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these orders to identify and visualise various interactions between variables inside the
model. To make attributions on variables, a greedy euristic function is used to produce
a final ordering of variables, which will determine the attributions to be made on each
variable. This method is very useful when a model’s behaviour in its prediction is not
additive, where SHAP would fail [55].

12. Shapley Flow [162] is similar to ASV in that it allows for dependency evaluation between
variables. Another similarity is that it uses causal graphs to extract these dependencies.
The main difference is that attributions are now distributed to the edges of the graph, and
not the nodes. The nodes represent variables and the edges represent the relationships
between those variables. An added property to this modified graph is that the boundaries
hold the original Shapley Values for each explanation. The edge most case of boundary
reduces to the ASV values. It is apparent that Shapley Flow contains a lot of information
concerning the causal relationship between variables and also the explanation boundaries
between variables. This information can make explanations far more robust. A downside
to the use of this method is the need for a causal graph, which in turn limits the use of
Shapley Flow to only models that have a causal structure. The complexity of the graph
also grows exponentially with the number of variables, making the method computation-
ally expensive, and not interpretable by humans for large amounts of variables.

13. Textual Explanations of Visual Models is a method of explainability that produces
sentences explaining an image sample. This was originally done by combining a CNN
model for processing the input image, and an RNN model for learning textual repre-
sentations. This method produces an easier way to analyse and evaluate data, than
attribution maps do. It is apparent that this method requires extensive modification to
produce explainability since, these sentences describe images and don’t actually explain
the model’s decision process. Hendricks et al. [64] introduced a method that produced
sentences which contain the unique attributes that differentiate images to their specific
classes. In essence, the sentences contained those attributes that the model used to pro-
duce a prediction and thus explainability is accomplished. This is done through a use
of a discriminative loss function to generate sentences which contain class discriminative
attributes while also using the relevance loss which produces sentences relevant to the
prediction. Backpropagation is done through reinforcement learning with the help of
REINFORCE [164]. It is important for validation purposes, to consult experts in the
field of the images’ domains, to ensure the validity of the explainations proposed by these
methods, since there is no other way to check whether they are correct or not.

14. Integrated Gradient [151] is a method used widely in deep neural networks and dif-
ferentiable models. It is based on sensitivity and implementation invariance. Sensitivity
assigns attributions to inputs that differ slightly but produce different outputs. Imple-
mentation invariance asserts that if the behaviour of two different models is identical, than
the attributions of inputs must also be identical. The approach consists of aggregating
the gradients of the model’s output with respect to the input, over a path from a baseline
input to the input of interest. It is essential to produce a proper baseline observation,
which is a reference point for the model to compare the input to. This method can only
be used with differentiable models, the path from baseline to interest can sometimes not
be properly defined or covered. Also the gradient shattering problem can produce issues
to the explainability [23] [138] of this method.

15. Meaningful Perturbations is a perturbation-based model agnostic explainability method
originally introduced by Fong and Vedaldi [45]. A perturbed input sample is inserted into
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the model to produce a prediction, and the explainability is derived solely from this pre-
diction due to the perturbation. The model measures the relevance between the perturbed
sample and the original one to produce a sparse occlusion map. This method formats the
explanation problem as a meta-prediction task and aims to solve this task with optimisa-
tion techniques. Drawbacks to this method is the genesis of image artifacts by moving the
sample of natural image manifold, and the computational demands, which are far larger
than propagation-based methods. Agarwal and Nguyen proposed a method to alleviate
the production of artifacts using generative models [5].

16. EXplainable Neural-Symbolic Learning or X-NeSyL [39] is a method which com-
bines CNN and SHAP to provide insight for feature relevance in the decision making
process of a model. After this process a graph is build that contains information con-
cerning the relationship between features and the constraints that are present in those
relationships. A designated loss function is used to punish non overlap between these
two axioms. This loss function has shown to help with explainability and performance
of the model. It is based upon Neural-Symbolic Learning [52] which derives from prior
human knowledge like concept learning, to provide highly explainable and intrepretable
solutions like mathematical equations and domain specific languages [103]. This method
is designed to produce explainability but lacks in the fact that it needs domain specific
knowledge to function properly which is not always available.

17. Grad-CAM [142] is a method that produces visual explanations for CNN models. It is
based on the gradient of the model’s output with respect to the feature maps of the last
convolutional layer. The gradients are then used to produce a heatmap that highlights
the regions of the image that the model used to make a decision. This method is very
useful for image classification tasks, but is limited to CNN models and is not applicable
to other types of models.

Concluding this review of state-of-the-art explainable methods, it is important to note that
there is space for valuable contribution, especially in the realm of human intervation concerning
the validity of explainability predictions. There is a need for software development and research
in the field of human-AI interaction, so that experts who are not able to understand the inner
workings of AI models, can provide domain specific knowledge and intergration can be achieved
so that human experience and knowledge and be enstilled in these models for explainability.
Further research in the field of variable casaulity is also needed since it has been shown that
these relationships produce more robust and trustworthy explanations.
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Researchers Method URL
Marco Tulio Ribeiro
et al.

LIME https://github.com/marcotcr/lime

Qiang Huang et al. GraphLIME https://github.com/WilliamCCHuang/

GraphLIME

Marco Tulio Ribeiro
et al.

Anchors https://github.com/marcotcr/anchors

Christopher J. Anders
et al.

Zennit (LRP) https://github.com/chr5tphr/zennit

Maximilian Alber et
al.

iNNvestigate
(LRP)

https://github.com/albermax/

innvestigate

Luisa Zintgraf et al. PDA https://github.com/lmzintgraf/

DeepVis-PredDiff

Been Kim et al. TCAV https://github.com/tensorflow/tcav

Hao Yuan et al. XGNN https://github.com/divelab/DIG/

tree/dig-stable/benchmarks/xgraph

Lundberg and Lee SHAP https://github.com/slundberg/shap

Nickalus Redell [126] SHAP and ASV
(experimental)

https://github.com/nredell/shapFlex

Przemyslaw Biecek et
al. [27] [24]

Break-Down https://github.com/ModelOriented/

DALEX

Jiaxuan Wang et al. Shapley Flow https://github.com/nathanwang000/

Shapley-Flow

Hendricks et al. Textual Expla-
nations of Visual
Models

https://github.com/LisaAnne/

ECCV2016

Ankur Taly et al. Integrated Gra-
dients

https://github.com/ankurtaly/

Integrated-Gradients

Fong and Vedaldi Meaningful Per-
turbations

https://github.com/ruthcfong/

perturbexplanations

Jules Sanchez et al. X-NeSyL https://github.com/JulesSanchez/

X-NeSyL

Jules Sanchez et al. X-NeSyL https://github.com/JulesSanchez/

MonuMAI-AutomaticStyleClassification

Ramprasaath R. Sel-
varaju et al.

Grad-CAM https://github.com/ramprs/grad-cam/

Table 3.1: Model Agnostic XAI Methods
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3.5 Applications of Explainable AI models in healthcare

We have already discussed some of the applications of AI in healthcare and established the im-
portance of integrating these technologies into clinical practices. These applications range from
drug discovery, to clinical diagnosis of diseases, to patient care and treatment. In this section,
we will discuss the integration of explainability in AI applications and how these integrations
can be applied to clinical practice in order to improve patient outcomes and facilitate in the
adoption of AI in a more transparent and ethical manner in the healthcare industry.

Essentially, the applications of explainable AI aim to improve the afformationed applica-
tions of AI in healthcare by providing the addition of interpretability in a model’s prediction
and output. In that regard, we won’t steer away too much from what has already been men-
tioned in terms of the broad spectrum of applications in the industry, but rather review similar
applications in a different light, namely how diagnosis, treatment and patient outcomes can be
improved by the use of explainable AI models.

Diagnostic Decision Support
In the field of diagnostic decision support researchers have been making strides in develop-
ing systems that integrate explainablity in their models with the core objective of providing
clinicians with additional information on what features are important and how these features
contribute to the model’s prediction. One such research comes from researchers Amoroso et
al. [17] who developed an explainable framework that extracts the most important clinical fea-
tures concerning patients’ profiling when it comes to breast cancer treatments using clustering
and dimensionality reduction techniques. Through their work, it is apparent that data-driven
models can be used to identify features correlated with breast cancer in a more personalised
and patient-centric manner. Dindorf et al. [40] developed an explainable classifier based on
SVM and RF for spinal posture classification. For this task, researchers employed LIME for
explainability. Peng et al. [75] created an explainable framework for the assistance of doctors
in prognosing hepatitis patients by comparing between different intrinsicly interpretable models
such as regression based, kernel based and decision rule based models to see which one would
perform the best in the task. Sarp et al. [140] developed a CNN model capable of classifying
different chronic wound types and used LIME to provide clinicians with visual queues and
representations on the data for explainability. Another group of researchers, namely Tan et al.
[153] used logical neural networks on temporal high-resolution computed tomography

4
(HRCT)

bone slices for fenestral otosclerosis diagnosis. XAI was used in order to provide visualisations
on the most important features derived for the LNNs. Rucco et al. [134] propose an XAI
solution for diagnosing glioblastoma

5
. The researchers computed the local feature importance

and relevance in the test set using LIME to produce explainability. Another proposal is derived
by Meldo et al. [107] who developed a computer-aided system on diagnosing lung cancer. The
first part of the system is using LIME to extract the relevant features from lung segmentations
and the second part is responsible for the transformation of the extracted features into natural
language explanations. A system for prognostic and diagnostic analysis for traumatic brain
injury (TBI) was developed using clustering methods by researchers Yeboah et al. [37] with
capabilities of combining data analysis and medical expert knowledge. Interpretations were
provided by the system by analyzing how features contributed to creating clusters or discrimi-
nating between them. Wang et al. [85] developed COVID-NET, a CNN network for diagnosing
COVID-19 from chest X-ray imaging. The researchers employed GSInquire as an explainability

4
A type of computed tomography that enhances image resolution

5
the most aggressive and most common type of cancer that originates in the brain, and as very poor prognosis

for survival
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tool to assess the predictions of their network.

Treatment recommendation systems
Explainable AI can facilitate immensly in the development of treatment recommendation sys-
tems, allowing clinicians to assess the best possible plan for a specific patient. The computa-
tional ability of AI allows for extensive analysis on patient data and medical records to assess
proper parameters for drug selection and dosage. Clinicians, through the explanations given
by these models, can understand model reasoning and take into consideration patient genetic
makeup, their medical history and drug response. The healthcare industry is rapidly crossing
over to a more patient-centric approach to healthcare, with the integration of AI and XAI
models. Personalised Treatment Plans: Healthcare professionals are now able to produce
personalised treatment to patients based on analysis done to their genetics, biomarkers and
treatment responses of similar patients. Predictive Analysis for better Outcomes: Pre-
dictive analysis on this data allows for the identification of specific subgroups of population
that can possibly respond negatively to a treatment plan. This obviously allows for further and
better adjustements in treatment regimens and dosages. XAI as also been used in infectious
disease treatment and management, with applications in selecting antibiotics based on pathogen
identification and resistance. Especially in the realm of mental health and psychiatry, explain-
able AI has been at the forefront of treatment recommendations. XAI models have been used
to predict mental disorders and recommend treatment plans such as professional intervention or
medication. These recommendations are accompanied by explanations for both clinicians and
patients to enhance understanding and trust in the model’s decisions [19]. AI models can also
efficiently analyze medical imagery and derive critical information for treatment and diagnosis,
resulting in the reduction of misdiagnosis and improved patient outcomes. Treatment Op-
timisation: These treatment plans can be optimised, by AI, for patient preferences, resource
allocation, cost effectiveness and clinical guidelines and regulations. AI also plays a crucial role
in developing precision therapy by identifying and targeting specific biomarkers and genetic
mutations associated with diseases, infections and viruses.

Predictive modeling and health risk assessment
XAI has been utilised in health risk assessment and predicting wellness outcomes. In the field
of mental health, researchers have developed models able to predict risk of suicide in depressed
individuals through tabular data using explainable methods like SHAP and RF models [58].
Another approach to predicting risk was taken by researchers Akter et al. [6] who set out to de-
velop an explainable model for predicting the possibility of a patient suffering a stroke incident.
Their approach consisted of an ensemble of classifiers for predicting these incidents. Important
features where highlighted using explainability methods and tools. As we have already men-
tioned in this literature review, researchers have also made great efforts in assessing the risk of
individuals progressing into MCI, Alzheimer’s and Parkinson’s disease. Other applications in
this space include predicting the risk of heart attacks or cancer. A team of researchers utilised
genetic algorithms, neural networks and fuzzy logic to assess risk of eart attack in patients. The
explainability is derived in the form of graphs detailing feature importance [106]. Another team
used an explainable approach to assess the risk of skin cancer in patients through 2D imagery
[93]. Their impressive scores provided a proof-of-concept for the use of AI in similar tasks.
In the topic of cancer, research has been conducted regarding the risk of breast cancer and its
developing stages in order to assist in the development of smart sensors capable of detecting the
disease in its early stages. The research focuses on the primary identifiers of breast cancer and
provides an interpretable solution for feature importance and explanation [73]. Another study
by researchers in the field of cancer treatment was done in order to combat the lethality of lung
cancer by predicting its risk. The researchers proposed a multi-modal expainable method to
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assist clinicians in assessing their cancer patients [144].

Regulatory compliance and legal implications
The integration of AI in healthcare has raised concerns regarding the ethical and legal implica-
tions of the use of these technologies in a clinical setting. The European Union as well as the
United States have implemented strict regulations regarding the use of AI in healthcare. XAI
has the potential to provide transparency and accountability in AI models, in order to combat
the regalutory and ethical concerns surrounding these practices. Patient Privacy and Con-
sent: The development of AI models and systems should be in accordance with regulation
regarding patient privacy and consent, especially when it comes to collecting medical data and
patient information 7.2.2. In this regard, research has been conducted in order to approach
the matter in a way that is both ethical and legal. Researchers and corporations in the field
have developed different frameworks and guidelines in order to assure the preservation of pri-
vacy of patients. Different approaches in the matter include collaborative learning, federated
learning and synthetic data generation all of which can be of great help in the development of
AI models 7.2.3 with ethicacy in mind. Bias and Fairness: The development of AI models
should be done in a way that is fair and unbiased. Data collection and model development
is predominanlty done by humans and is thus subject to certain human biases and errors.
There have been a significant amount of instances where bias has influenced the outcome of
AI model prediction and thus has produced unfair results for patients of specific demographics
7.3.2. There is a number of ways in order to mitigate bias in AI algorithms and researchers and
corporations alike have made great efforts in the development of methods and tools to ensure
fairness in AI algorithms. Specific ways of mitigating bias include tools that produce metrics
for model evaluation concerning fairness and bias, model simulations under specific conditions
and environmental changes in order to evaluate sway in data and model predictions, and lastly
frameworks that assess data for bias and fairness across different demographics 7.3.4.

3.6 State-of-the-Art Models and Techniques

In the course of this literature review, a systematic search was conducted across three promi-
nent databases: IEEE Xplore, Science Direct, and PubMed. The search query employed was
structured to include a combination of key terms related to explainability and artificial intelli-
gence, as well as their applications in the mental health domain, specifically targeting dementia,
Alzheimer’s, and general mental health. The terms used were: (explainability OR XAI) AND
(mental health OR dementia OR Alzheimer’s) AND (deep learning OR machine learning OR
transformer). A total of 27 articles were meticulously reviewed, forming the foundation of the
insights and discussions presented in this review concerning state of the art research in the field
of explainable AI in mental health.

3.6.1 Speech Processing

In the realm of Alzheimer’s Disease and Related Dementia (ADRD) detection, several notable
advancements have emerged. One such innovation is ADscreen, a speech-processing based
screening algorithm for identification of patients with ADRD (Alzheimer’s Disease and Related
Dementia) by Maryam Zolnoori et al.[178] It does noise reduction and extensive linguistic anal-
ysis of patients’ recorded speech, and uses Joint Mutual Information Maximization (JMIM) to
extract important features in speech. By fusing these features with three different ML archi-
tectures (DistilBERT, BiLSTM, CNN) the researchers attained a better understanding of the
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correlation between these features and ADRD presence in patients. For the classification task,
the researchers employed different ensemble, gradient boosting and kernel based ML classifiers
to see how each one performed. They achieved F1-score of 84.64% and AUC-ROC of 92.53%.
Bahman Mirheidari et al. [108] focused their efforts on developing a cognitive impairment
assessment system for stroke survivors which predicts the MoCA scores of patients after re-
sponding to prompts from the Intelligent Virtual Agent (IVA), a chatbot utility developed for
the CognoSpeak system. Data collection was done on site by speaking to patients in person.
The model proposed firstly transforms the data collected from speech to transcript, features
are then extracted from the transformed data where regression is done for the prediction of
MoCA scores and classification for cognitive impairment identification. The results yielded an
F1-score of 0.74%, a Specificity of 0.73% and a Sensitivity of 0.75%.
Erik Edwards et al. [42], in response to the ADReSS Challenge, explored the significance of
phoneme representations in AD classification. First they used acoustic features extracted from
the data by discarding highly correlated features using Correlation Feature Selection (CFS) fol-
lowed by Recursive Feature Selection with Cross Validation (REFCV) where feature importance
is evaluated and removed if it doesn’t improve in repetition. These features where used for clas-
sifications by a multitude of ML models and yielded an accuracy of 0.74%. They continued by
processing transcript data and extracting linguistic features. These features where used to train
different Deep Random Forest models, fine tune pre-trained transformer models or train mod-
els from scratch. The feature extraction was done by word embeddings like Word2Vec, GloVe
and Sent2Vec. The best performing model in this experiment was a pre-trained model using
Word2Vec, scoring a 0.926% for accuracy and a 0.923% for F1-score. Lastly the researchers
used phoneme representations of data by transcribing the segment text into phoneme written
text with the help of CMUDict. Text classifiers (Fast2Text, Sent2Vec, StarSpace) where then
trained on this data and yielded results of up to 0.9352% by combining Word2Vec, phonemes
and audio.
Junghyun Koo et al. [82] responded to the ADReSS Challenge with a multi-modal feature
approach, using acoustic and textual features extracted from the ADReSS Dataset using em-
beddings which are later set as input to a Scaled Dot-Product Attention Layer followed by a
one dimensional CNN. Lastly the CNN outputted embeddings are placed into a BiLSTM that
outputs the final classification of AD and regression for the MMSE patient score. The model
manages an accuracy of 0.8125% when using ensembled output features.
Ilias Loukas and Askounis Dimitris [74] used the ADReSS Challenge Dataset and utilised several
transformer-based models like BERT, BioBERT, BioClinicalBERT, ConvBERT, RoBERTa,
ALBERT, and XLNet to process transcriptions. There approach consisted of two different
methodologies, the first one was a single task method to classify whether a transcription from
the dataset belonged to a person with dementia or not, and the second one was a multi task
method where the first task was to classify the above and the second was to identify the MMSE
(Mini Mental State Examination) score of each person. Both approaches where evaluated using
different metrics such as Accuracy, Precision, Recall, F1-score, and Specificity. They showed
that the BERT pretrained model outperforms all other proposed models for the single task and
scores 81.66% for Recall, 86.73% for F1-Score and 87.50% for Accuracy. The multi task models
performed an average Precision of 73.62%, average Recall of 69.16% and an average F1-Score
64.75 with the MTL-BERT model, which outperforms other multi task models for these par-
ticular task in the literature. They employed LIME to produce an interpretable solution for
the decision making of their best performing model, the pretrained BERT model.
Changye Li et al. [90] hypothesized that speech impairments characteristic of dementia could
lead to systematic errors in Automatic Speech Recognition(ASR)-generated transcripts, which
might be leveraged to improve the accuracy of dementia classification models. The study fo-
cused on evaluating the impact of ASR errors on the performance of these models, both in
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processing imperfect transcripts and during the fine-tuning phase with ASR-generated lan-
guage samples. They went on to utilise two datasets: the Alzheimer’s Dementia Recognition
through Spontaneous Speech (ADReSS) and recordings from the Wisconsin Longitudinal Study
(WLS), both featuring the ”Cookie Theft” picture description task, where they were shown a
picture stimuli and where asked to describe what they saw. They pre-processed the audio and
transcripts by removing artifacts and resampling audio to match ASR training requirements,
and divided the recordings into smaller segments. The ADReSS dataset was used for dementia
classification, while the WLS dataset helped adapt ASR models and train a language model.
Data was split into training and test portions for model evaluation. The study assessed two
ASR models, Wav2Vec2 and HuBERT, alongside a BERT model for classifying dementia in
ASR-generated speech transcripts. The models used advanced decoding techniques for gen-
erating transcripts and were adapted at three levels: unmodified pre-trained, fine-tuned with
task-specific data, and fine-tuned BERT for classification. The evaluation process was done in
two phases, the first phase was generating the transcripts with pre-trained and task-specific
ASR models, and the second phase was fine-tuning BERT to classify ASR-derived transcripts
from the first phase. By repeating the evaluation process 100 times they managed to achieve
a best overall performance of 0.863% for accuracy and 0.882% for AUC with the domain spe-
cific wav2vec2-large-960h model. In this research, explainability is achieved through the use
of SHapley Additive exPlanations (SHAP) during the text classification stage, specifically af-
ter the ASR-generated transcripts have been obtained and used to fine-tune the BERT model
for classifying between dementia patients and healthy controls. SHAP is applied to analyse
how individual input features (words, phrases, or tokens from the ASR-generated transcripts)
contribute to the model’s classification decisions. By calculating Shapley values for these in-
put features, the researchers can quantify the contribution of each feature to the likelihood
of a transcript being classified as indicating dementia or being from a healthy control. This
approach provides a detailed explanation of the model’s decision-making process, ighlighting
which features are most influential in its predictions and offering insights into the linguistic
characteristics associated with dementia in spontaneous speech.

3.6.2 Text Processing

Anshu Malhotra’s et al. [102] proposed system to help prevent suicide attempts involves ex-
tracting text from social media, preprocessing it, fine-tuning pretrained BERT models with
mental health datasets, and then applying SHAP and LIME for post-hoc explainability. Ad-
ditionally, BERTopic is used for unsupervised topic modelling to identify themes and issues
discussed by users, which can help in assessing mental health risks and prioritizing urgent cases
for treatment and intervention. Preprocessing of user generated data is done before using it for
training, cleaning and standardizing it for the transformer’s input structure. After this process
the data is funnelled to pretrained BERT like models for detecting depression and suicidal
behaviours in users. The researchers employed post-hoc XAI techniques, specifically LIME
and SHAP, to explain and interpret the decisions of Transformer Language Models trained for
detecting depression and suicide from social media posts.
Kumar, Abhinav et al. [83] deployed a methodology where they combined various machine
learning techniques such as Random-Forest, KNN, Näıve Bayes, Gradient Boosting and De-
cision Trees and deep learning models in order to detect depression in English and Arabic
speaking social media posts. The deep learning models consisted of BERT-based models com-
bined with LSTM, BiLSTM and GRU models. They managed to provide explainability to this
methodology by evaluating the importance of the words inside each tweet and applying a color
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to each word, thus created a heatmap that allows for explainability in the decision making pro-
cess of the model, similarly to what others researchers have done in the space. The researchers
evaluated the performance of their models for detecting depressive indicators in tweets using
various metrics such as Precision (P), Recall (R), F1-score (F1), confusion matrices, and AUC-
ROC curves. For training and testing the models they used three datasets: two in Arabic (D1
and D2) and one in English (D3). For the conventional machine learning models, Random
Forest (RF) was found to be the most effective across all datasets. Specifically, for the Arabic
dataset D1, RF achieved high scores in precision, recall, and F1-score (0.98), with its perfor-
mance visualized in confusion matrices and ROC curves. Similarly, for the Arabic dataset D2,
RF again outperformed other conventional models with scores of 0.84 (precision), 0.83 (recall),
and 0.82 (F1-score). For the English dataset D3, RF achieved precision, recall, and F1 scores
of 0.62, 0.59, and 0.52, respectively. In the exploration of deep learning models, the researchers
found that for the Arabic datasets (D1 and D2), the Arabic- camelBERT + Bi-LSTM model
outperformed both conventional and other deep learning models. For D1, this model achieved
perfect scores (1.00) in precision, recall, and F1-score. For D2, it also performed best with
scores of 0.82 for both precision and F1-score, and 0.83 for recall. For the English dataset D3,
the fine-tuned RoBERTa model was the most effective among the deep learning approaches,
achieving scores of 0.61 in precision, recall, and 0.60 in F1-score.
Yeldar Toleubay et al. [155] developed a model based on Logical Neural Networks (LNNs)
to classify mental disorders. Their LNN model differs slightly from standard neural networks,
primarily because its neurons operate under the constraints of logical gate truth functions and
handle both upper and lower bounds for logical predicates or sub formulas, making them more
complex than typical dense neurons. In their approach, they designed the LNN with four AND
logic gates, each serving as a binary classifier for a different class of mental disorder. The
inputs to these gates are predicates derived from patient utterances, with the training data
consisting of samples that represent truth values for these predicates. After training, the model
assigns weights to each predicate and outputs scores for an input, which are the averaged lower
and upper bounds for each mental disorder class. The effectiveness of each logic gate, act-
ing as a binary classifier, is assessed using True Positive Rate (TPR) and False Positive Rate
(FPR) metrics, alongside the generation of ROC curves to visualize performance across different
thresholds. This setup allows the researchers to evaluate the model’s ability to accurately iden-
tify instances of each mental disorder. The researchers implemented three pruning methods to
reduce training time which was found to grow exponentially as predicates grew in numbers. By
grouping together similar predicates (similarity pruning) the number of predicates was reduced
by half, they removed predicates that were not unique to a single class and also eliminated
those that appeared only once (exclusive pruning) which showed a significant variation in the
number of predicates amongst different classes and lastly they prioritised predicates which ap-
peared more frequently then others (frequency pruning) which showed that a large portion of
predicates appeared only once, and also did not significantly impact the model’s scores in any
way. To evaluate the model they employed a pretrained BERT model fine-tuned for the task
at and showing AUC scores above 0.72 for all classes treated as binary classifiers but only 58%
accuracy in a multi-class setting. The baseline LNN managed to score an AUC score of 0.76 for
anxiety, and the exclusive LNN managed to score an AUC score of 0.79 for depression, though
the DL model outperformed all LNNs for binary classifications.
Elma Kerz et al. [80] approach consisted of creating three different types of models for men-
tal health detection using text based data from the Self-reported Mental Health Diagnoses
(SHMD), Dreaddit , GoEmotions, and MBTI Kaggle datasets. The first type of model is
a Bidirectional LSTM either on GLFs(General Linguistic Features)(model A), LTFs(Lexicon-
Based Features)(model B) or both(model C). These features provide a comprehensive approach
to understanding and analyzing language in the context of mental health and provide inter-

35



pretability. The second type is a pre-trained fine-tuned mentalRoBERTa model and the third
type is a multi-task fusion model utilizing the mentalRoBERTa model being trained on two
(MHC + emotion recognition, MHC + personality detection) or three tasks (MHC + emotion
+ personality) with the predicate that the model will use all knowledge about emotion and
personality to perform better for the task at hand. For type 1 models the researchers used
SP-LIME (Submodular Pick Lime) for interpretability and for the transformer based models
they used LIME and AGRAD a self-explaining method based on attention gradients. Type
1 models’ performance ranged from 57.14% to 70.78% with the highest performance being in
detecting stress. Detecting stress also scored highest for the Type 2 models with an F1 score
of 81.62%.
Ahmed H. Alkenani et al. [15] contributed significantly in the field by utilizing patient language
samples describing the cookie theft picture, which were later transformed into transcripts using
the CHAT transcript protocol. They used a feature space consisting of lexicosyntactic and
n-gram vocabulary features which were unified and later filtered to extract the most prevalent
and important features for the task. Feature selection was done using Pearson’s correlation.
They researchers employed 10 fold cross validation to train different base ML models which
were after combined into an ensemble fusion model. The fusion model scored an AUC of 98.1%
and accuracy and F1-score of 95% for spoken data and an AUC of 99.47% and accuracy and
F1-score of 97% for written data.

3.6.3 Multi-modal

David Ortiz-Perez et al. [118] used DementiaBank audio and text data to produce a multimodal
classification model for dementia. To create feature vectors for audio they produced a Mel Spec-
togram for each MP3 file and later set it as input to a CNN which outputs the audio feature
vectors. For the creation of text feature vectors, they fine-tuned a BERT model with CHAT
encoded text, which in turn outputs word embeddings into an LSTM that lastly outputs into
a dense layer that produces the final text feature vectors. They tested each model separately,
and later concatenated the two for the multimodal approach. The best result was obtained
with the text based approach with an accuracy score of 90.36%. To explain the transformer’s
decisions, the researchers used the Transformers Interpret software proposed by Charles Pierse
in 2021 .
The main objective that Pavan Rajkumar Magesh et al. [101] set out to accomlish is the cre-
ation of a deep learning model capable of diagnosing early stage PD using SPECT DaTSCANs,
provide an comprehensive analysis of the results of the model and provide an intrepretable
solution using LIME. DaTSCANS and other imagery as been used in the past by researched
for PD classifications with great success. Namely Towey et al used the Näıve Bayes classifier
and Principal Component Analysis for such task, Oliveira et al used Support Vector Machines
for the same task and Martinez-Murzia et al proposed the use of CNNs for PD classifica-
tion. The researchers preprocessed SPECT DaTSCAN images from the Parkinson’s Markers
Initiative (PPMI) dataset by performing attenuation correction, reconstruction, and spatial
normalization to a standard coordinate system, followed by cropping, contour detection, and
intensity normalization to standardize the images and enhance feature visibility, particularly in
the putamen and caudate regions, before resizing them for compatibility with the VGG16 neu-
ral network architecture that they used. The model achieved an accuracy of 92.0%, specificity
of 81.8%, sensitivity of 97.5%, precision of 90.9%, with a Cohen’s Kappa score of 0.81% and an
F1 score of 0.94%. The researchers improved their model scores by optimizing the threshold
value for classifying the predicted probabilities into PD and non-PD classes by changing the
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original threshold of classification to a more optimal value.The final scores after optimizing the
threshold were an accuracy of 95.2%, specificity of 90.9%, precision of 95.2%, with a Cohen’s
Kappa score of 0.89% and an F1 score of 0.96%. The researchers used LIME to ighlight the
specific regions within the brain images, particularly the putamen and caudate regions, which
the model deemed most influential in making its predictions. By applying LIME, they could
visually demonstrate how the model distinguishes between healthy controls and Parkinson’s dis-
ease (PD) patients based on the appearance of these regions in the SPECT scans. This visual
explanation made it easier for non-experts to understand the basis of the model’s diagnoses, by
showing which parts of the image were most important for the model’s decision-making process.
Das et al. [9] addressed the challenge of diagnosing and treating Alzheimer’s Disease (AD) in
a cost-effective and interpretable manner, especially given the limitations of current diagnostic
tools like cerebrospinal fluid (CSF) tests and neuroimaging (MRI, PET) which are accurate but
often expensive, invasive, and not widely available. Their approach was to develop a computer-
aided diagnosis (CAD) framework that leverages large and diverse datasets from studies like the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) to assist medical practitioners in making
more informed decisions about AD diagnosis and treatment. SHIMR is part of a multistage
diagnostic process, where it serves as an initial screening tool using less expensive and more
accessible biomarkers, such as blood tests. This is the first step before potentially moving on to
more advanced and costly diagnostics like CSF analysis or MRI, depending on the outcomes of
the initial stage. A distinctive feature of SHIMR is its rejection option, which allows the model
to withhold making a decision on cases that are difficult to classify, i.e., patients who are close
to the decision boundary of the model. This ensures that only patients for whom the model
as high confidence are classified at this stage, thereby reducing the risk of misdiagnosis. The
model employs interval conjunction rules to make its decisions. These rules are sets of ”if-then”
statements that are both interpretable and accurate, making it easier for medical practitioners
to understand the basis of the model’s decisions. The interval conjunction rules contribute to
the interpretability of SHIMR by providing clear and concise decision sets. These decision sets
allow practitioners to see exactly why the model made a particular diagnosis, including which
features were most influential in the decision-making process. SHIMR showed strong perfor-
mance in AD vs. NC classification, with an AUC (Area Under the Curve) of 0.86% during
internal cross-validation, high sensitivity of 0.84%, and a specificity of 0.69%, indicating its re-
liable accuracy in distinguishing between the two groups. Compared to a Decision Tree, which
is a known interpretable, SHIMR not only provided better interpretability but also achieved a
igher classification AUC of 0.86 compared to the DT classifier’s AUC of 0.73. This suggests
that SHIMR can maintain a balance between interpretability and accuracy more effectively
than traditional DT classifiers. Further experimentation showed that increasing interpretabil-
ity (e.g., by simplifying the model) could lead to a slight reduction in classification accuracy.
However, SHIMR was able to maintain a reasonable accuracy (AUC = 0.79%) even with a
highly interpretable model (rule length 18), surpassing DT’s accuracy (AUC = 0.73%).
C.R. Aditya et al. [4] sought to develop a computational method to distinguish between non-
demented (ND) subjects and those with Alzheimer’s Disease (AD) using data from the Open
Access Series of Imaging Studies (OASIS) ( https://www.oasis-brains.org). The researchers
employed MAA, which involves generating a Multifactor Affiliation Table (MAT) that sim-
plifies the complex relationships between multiple data features. This method reduced high-
dimensional data into a more manageable form, capturing the inter-feature relationships impor-
tant for distinguishing between ND and AD subjects. The study further analyzed individual
subjects by calculating their ”AD affiliation distances,” a measure of how closely a subject’s
data aligns with AD characteristics compared to the ND group. This analysis used Euclidean
distance calculations and the MAT to assess the degree of affiliation. The AD affiliation dis-
tances were refined using a weightage factor ’W’, adjusted according to the subjects’ Clinical

37



Dementia Rating (CDR) scores to enhance the differentiation between ND and AD subjects.
After the refinement process there was a clear differentiation between ND and AD subjects
into two separate groups. The explainability of this research lies in its methodical approach to
breaking down complex data into more understandable and interpretable components.
Ahmad Wisnu Mulyadi et al. [113] proposed the XADLiME (Explainable Alzheimer’s Disease
Likelihood Map Estimation) and ADPEN (Alzheimer’s Disease Progressive Engaging Network)
models to assess the progression of Alzheimer’s disease and to provide explainable likelihood
maps for the disease. XADLiME integrates clinically relevant information with neuroimaging
data to create explainable likelihood maps. These maps are designed to visually represent the
likelihood of Alzheimer’s disease. ADPEN leverages machine learning techniques to analyze
MRI data and predict AD progression. They used 2 different datasets for training and evalu-
ation, ADNI (Alzheimer’s Disease Neuroimaging Initiative) and GARD (Gwangju Alzheimer’s
and Related Dementia). Overall, XADLiME demonstrates strong performance, particularly in
distinguishing between CN and AD cases (AUC of 0.9492%, balanced accuracy of 0.9183%, and
an F1-Score of 0.9182%), as indicated by the high AUC, balanced accuracy, and F1-Score in
both the ADNI and GARD scenarios. However, its performance appears to be varied across
different classification tasks and datasets, with some scenarios showing lower scores.
El-Sappagh et al. developed a model consisting of two main layers, each with its own oracle
classifier based on Random Forest (RF) and 22 explainers and trained on the ADNI dataset
and other EHR data. For interpretability, they used Decision Trees (DT), SHAP and Fuzzy
Rule-Based Systems (FRBS) as explainers to interpret the oracle decisions. These models were
chosen due to their accuracy and explainability. The model outputs diagnosis and prognosis
decisions along with a multitude of explanations concerning the model’s decision making in
various forms such as visualisations and fuzzy natural language. In detecting AD patients the
model scored a multi class accuracy score (MCA) of 93.33% and a multi class F1 score of 93,82%
using specific modulaties. In predicting whether MCI patients would progress to AD the model
scored 88% for precision and accuracy and 87% for F1 score. Compared to other classifiers the
model showed igher performance overall.
Mahmud et al. [13] used established convolutional neural networks to produce ensemble models
of VGG and DenseNet models respectively using MRI imagery of AD patients. The ensem-
ble models outperformed the standalone models and scored up to 95% for accuracy, 91% for
precision, 90% for recall and 89% for f1-score (Ensemble 2). To improve upon those finding
and produce interpretable solutions to AD classifications they proposed a novel model which
utilises saliency maps

6
and grad-CAM. The model achieved impressive results with accuracy

reaching 96%. For the proposed model the researchers used EfficientNet for feature extraction
and proceeded to create a CNN for classification.
Jahan et al. [11] set out to create an AD predictive model using a multimodal dataset. The
dataset was created after fusing clinical, phychological and MRI data. The researchers used
the KNN algorithm to fill in missing values and used statistical analysis to evaluate feature
relevance. Feature selection was done using the Pearson’s correlation to identify and retain
important features while removing highly correlated redundant features. To address class im-
balance in their dataset they applied Synthetic Minority Oversampling Technique (SMOTE)
before model training. The model used was a Random Forest with 10-fold cross validation.
Explainability was achieved using SHAP and the model achieved 98.81% accuracy.

6
an image that ighlights the regions in which an eye focuses first
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Researchers AI Results XAI
Maryam Zolnoori et
al.

Speech processing,
JMIM, DistilBERT,
BiLSTM, CNN

F1-score: 84.64%, AUC-
ROC: 92.53%

-

Ahmed H. Alkenani et
al.

CHAT transcript proto-
col, lexicosyntactic fea-
tures, ensemble fusion
model

Spoken data: AUC 98.1%,
F1-score: 95%
Written data: AUC 99.47%,
F1-score: 97%

-

Bahman Mirheidari et
al.

Intelligent Virtual Agent
(IVA), regression, classi-
fication

F1-score: 0.74%, Speci-
ficity: 0.73%, Sensitivity:
0.75%

-

Erik Edwards et al. Acoustic features, CFS,
REFCV, Deep Ran-
dom Forest, Word
embeddings (Word2Vec,
GloVe, Sent2Vec), CMU-
Dict, Text classifiers
(Fast2Text, Sent2Vec,
StarSpace)

Accuracy: 92.6%, F1-score:
92.3%, Combined Accuracy:
93.52%

-

Junghyun Koo et al. Scaled Dot-Product
Attention Layer, one-
dimensional CNN

Accuracy: 81.25% -

Anshu Malhotra et al. BERT, BERTopic D1(MentalBERT): 0.888%
Accuracy, D2(PHSBERT):
0.967% Accuracy,
D3(PHSBERT): 0.98%
Accuracy

SHAP,
LIME

Abhinav Kumar et al. ML classifiers, BERT-
based transformers, BiL-
STM, GRU

camelBERT + BiLSTM:
Perfect Scores for precision,
recall, F1-score (D1)
0.82% for precision and F1-
score, 0.83 for recall (D2)

Word
Coloring
Heatmap

Yeldar Toleubay et al. Logical NN, BERT,
Pruning

Single-Class: AUC 0.72%,
Multi-Class: AUC 0.58%,
Baseline LNN: AUC 0.76%
for Anxiety, AUC 0.79% for
Depression

LNN

Changye Li et al. Wav2Vec, HuBERT,
BERT

Accuracy: 0.863%, AUC:
0.882%

SHAP

Ilias Loukas and Dim-
itris Askounis

BERT Variants, XLNet Single-Task: 81.66% Recall,
86.73% F1-Score, 87.50%
Accuracy

LIME

Table 3.2: Related Work
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Researchers AI Results XAI
Elma Kerz et al. BiLSTM, mental-

RoBERTa
81.62% F1-score (Stress De-
tection)

SP-LIME

David Ortiz-Perez et
al.

CNN, BERT, CHAT en-
coding, LSTM

90.36% Accuracy Transformers
Interpret

Pavan Rajkumar
Magesh et al.

VGG16 95.2% Accuracy and Preci-
sion, 0.96%

LIME

Das et al. SHMIR 0.86% AUC SHMIR
C.R. Aditya et al. MAA - MAA
Ahmad Wisnu
Mulyadi et al.

ADPEN 0.9492% AUC, 0.9183% Ac-
curacy, 0.9182% F1-score

XADLIME

El-Sappagh et al. RF, DT 93.33% Accuracy (MCA),
93.82% F1-score (MCA),
88% Precision and Accu-
racy (MCI to AD progres-
sion)

SHAP,
DT, FRBS

Mahmud et al. VGG ensemble,
DenseNet ensemble,
EfficientNet

96% Accuracy Saliency
Map, grad-
CAM

Jahan et al. KNN, Pearson’s corella-
tion, SMOTE, RF, 10-
fold validation

98.81% Accuracy SHAP

Table 3.3: Related Work (Continued)
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Researchers Datasets Type Availability
Maryam Zolnoori et
al.

English Pitt Databank Speech -

Erik Edwards et al. Provided by ADReSS Challenge Speech -
Junghyun Koo et al. Provided by ADReSS Challenge Speech -
Changye Li et al. ADReSS, Wisconsin Longitudinal

Study
Speech Available

Ilias Loukas and Dim-
itris Askounis

ADReSS Speech Available

Bahman Mirheidari et
al.

On site recordings Speech Not Available

Ahmed H. Alkenani et
al.

Dementia Bank, Alzheimer’s Dis-
ease Blog Corpus

Speech (DB),
Text (ADBC)

Available

Anshu Malhotra et al. Rezazabeh’s Twitter Depression
Detection Dataset, Komati’s
Kaggle Suicide and Depression
Detection Dataset, Murarka’s
Reddit scraped Dataset, Haque’s
Reddit scraped Dataset

Text Partially Avail-
able

Abhinav Kumar et al. Modern Standard Arabic mood
changing and depression dataset,
Depression Detector ??

Tweets Available

Yeldar Toleubay et al. Counseling and Psychotherapy
Transcripts

Text Available

Elma Kerz et al. Self-reported Mental Health Di-
agnoses (SHMD), Dreaddit ,
GoEmotions, MBTI Kaggle

Text Available

David Ortiz-Perez et
al.

DementiaBank Audio and
Text

Available

Pavan Rajkumar
Magesh et al.

Parkinson’s Progression Markers
Initiative

DaTSCAN Available

Das et al. ADNI Dataset Multi-modal Available after
Application
Review

C.R. Aditya et al. OASIS Data Neuroimaging Available
Ahmad Wisnu
Mulyadi et al.

ADNI, GARD Multi-modal Available after
Application
Review

El-Sappagh et al. ADNI Multi-modal Available after
Application
Review

Mahmud et al. Alzheimer MRI Preprocessed
Dataset from Kaggle

MRI Imagery Available

Jahan et al. OASIS-3 Dataset Multi-modal Available

Table 3.4: Datasets used by Researchers
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This literature review has traversed the evolving landscape of Explainable Artificial In-
telligence (XAI), with a focused examination of its application within healthcare, including
mental health. It has highlighted the progression from foundational models and frameworks
to state-of-the-art techniques in areas such as speech and text processing, and multi-modal
approaches. The review underscores the critical role of interpretability and transparency in AI
models, which is paramount in sensitive sectors like healthcare where decisions can significantly
impact human lives.

Despite considerable advances, the integration of XAI in healthcare still faces significant
challenges especially concering ethical implications when it comes to practical and clinical use.
Furthermore, specific areas such as mental health are still in the early stages of employing XAI,
signaling a vast arena for future research.

Future studies should focus on developing more robust, interpretable models that do not
compromise performance for transparency. These systems should be geared towards the ethical
application of XAI, in order to promote their usage in clinical practice. There is also a pressing
need to create standardized frameworks for evaluating the efficacy of XAI systems in real-world
medical settings. As AI continues to permeate healthcare, the ethical implications of explain-
ability become increasingly important. Addressing these concerns will not only improve patient
outcomes but also enhance the trust and acceptance of AI systems by healthcare professionals.

Through a diligent exploration of existing models and emergent techniques, this review
lays a foundation for further inquiry and practical experimentation within the field. The con-
tinuous advancement in XAI promises to bridge the gap between AI capabilities and human
understanding, ultimately leading to more informed and ethical decisions in healthcare.
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Chapter 4

Evaluation of Explainable AI models

When dealing with Explainable Artificial Intelligence that produces explanations in order to
assist decision makers in their tasks and pursuits, a question quickly arises to the validity of
the explanations provided by the model [66]. So what makes an explanation valid? Most of
the research done on the topic of explainability has been strongly focused on the development
of new methods and techniques to produce explanations while trying to increase performance
in the process. There is a fundamental gap in the literature when it comes to connecting ex-
plainability to specific use cases and little research has been done to evaluate the quality of
explanations produced by XAI. Consequently, a need arises for the quantification of the quality
of XAI explanations in order to be able to evaluate method performance and to compare and
contrast different methods in relation to specific tasks.

Now an issue in the context of evaluation, is that explanations provided by these methods
are often highly subjective and context dependent, making it difficult to evaluate their quality
given the difficulty of defining what a good explanation really is. To add to the complexity,
there is still no agreed upon metric of explanation quality by researchers in the field. The
domain-specific nature of explanations makes it difficult to generalize the evaluation process
across different applications, as the quality of an explanation is highly dependent on the context
in which it is used. We will now attempt to provide an overview of the evaluations metrics
and criteria surrounding the explainability of XAI models as provided by the literature using
as base the roadmap on metrics provided by Zhou et al. [174].

According to the Alan Turing Institute [72], explanations can be categorised into six types
which are listed below:

• Rationale explanation These explanations answer as to why a decision was taken,
providing reasons and rationale for that decision. This answer is provided to the user in
a non-technical manner, with simplicity in mind. This specific explanation, should it fail
to meet the expectations of developers, can be used to assess the model’s reasoning and
correct flaws.

• Responsibility explanation These explanations answer as to who is responsible for the
development, management and implementation of the AI system, this way it provides a
clear pathway of communications for inquiry about the model’s decision.

• Data explanation These explanations provide insight on the data used for a specific
decision made. These insights include the data sources, and how the data was used to
support decision making. These types of explanations are important in order for users to
understand how data influences the model’s decision.
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• Fairness explanation These explanations provide insight on the steps taken during
design and implementation of the model to ensure fairness in the model’s decisions. These
explanations ensure that the model’s decisions are not biased and can act with equity
towards all users.

• Safety and performance explanation These explanations answer as to how the model
provides maximum performance while ensuring safety, security and reliability across de-
cisions. These explanations are especially important when it comes to regulatory compli-
ance and ensuring that the model is safe to use.

• Impact explanation These explanations provide insight on the impact of the model’s
decisions on the user, society and the environment. These explanations are important
in order to understand the consequences of the model’s decisions and to ensure that the
model is used responsibly.

A common perception on the matter is that the main factors of measuring understandability
in the context of XAI are the features of the system on which the explanations need to be
provided upon and the user’s cognitive abilities of understanding the explanations provided.
There are three main methods of evaluating explainability according to a widely cited paper
by Doshi-Velez and Kim [41].

• Application-grounded evaluation This kind of evaluation requires conducting human
experiments in the context of an application. It is used to test the effectiveness of the
explanation in relation to the application and its performance. Whether the explanation
performs well or not is direct evidence of the success of the explanation. The effectiveness
of the explanation is measured by how it helps the user complete the task at hand and is
widely used in decision making tasks.

• Human-grounded evaluation This kind of evaluation requires conducting human ex-
periments in the context of a simpler task that is strongly related to the application, and
thus keeps the essence of it without the complexity. These experiments do not require
domain expertise and can be conducted by any user. The effectiveness of the explanation
is measured by how well the user understands the explanation.

• Functionally-grounded evaluation This kind of evaluation does not require human
experiments but is based on a formal definition of an explanation as proxy to evaluate
the explanation quality of a model’s decision.

4.1 Scoring the Explainability of XAI Models

The first two categories depend strongly on the pool of users selected for evaluating the ex-
planations of a model. The usage of these types of evaluation methods can provide strong
support in evaluating the quality of explanations but can be expensive and time consuming
since they require the gathering of human subjects and the conducting of experiments. In ad-
dition to these drawbacks, the evaluations are prone to subjectivity and bias and the conducted
experiments require thorough planning and execution in order to provide reliable results. On
the other hand, functionally-grounded evaluation can be less expensive and time consuming,
provided that the proxy used to evaluate the explanation quality is well defined and reflects
the quality of the explanation.
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Application-grounded and Human-grounded evaluation
The evaluation of the quality of explanations can be done using a variety of metrics and criteria.
Firstly, the two main categories of metrics used to evaluate the quality of explanations in
human-grounded and application-grounded evaluation are as follows:

• Subjective or Qualitative metrics These metrics are based on the user’s perception
of the explanation quality. They include user trust, confidence and satisfaction with the
explanation. Hoffman et al. [66] provided a list of subjective metrics much like the ones
mentioned. The literature suggests that these types of metrics are in the center of evalu-
ating the quality of explanations. Zhou et al. [173] found that providing the correlation
between features and target variables affected user confidence in the explanation and
subsequent decision.

• Objective or Quantitative metrics These metrics are based on objective information
concerning the task at hand or the human behavior when interacting with a decision or
explanation. These metrics include physiological, behavioral and psychological indicators
provided by humans and task completion success and length. Zhou et al. [172] investi-
gated how physiological signals such as Galvanic Skin Response (GSR) and Blood Volume
Pulse (BVP) of users interacting with XAI can be used as objective metrics to evaluate
the quality of explanations and user trust. Again it was highlighted that presenting how
features correlate with target variables in the explanations enhances user trust in the
model.

Functionally-grounded evaluation
The evaluation metrics of explanations when it comes to functionally-grounded evaluation are
placed into three broad categories of quantitative metrics and are as follows:

• Model-based metrics These metrics use the model to evaluate the quality of explana-
tions. Various metrics such as model size and runtime operations counts are included in
this category of metrics. Model size such as amount of nodes or number of rules in a
decision tree, and boolean or arithmetic operations can be used to provide insight about
the model’s complexity which has shown to be directly correlated to the explainability
of the model as we have discussed in earlier sections. Reducing complexity in the model
can greatly impact its interpretability. Another metric included in the category is the
measure of agreement between the model’s decision and the explanation provided by the
XAI model, which can express the level of clarity and correctness in the explanation.

• Attribution-based metrics These metrics quantify the importance of features in the
model’s decision making process and their explanatory capabilities. Metrics in this cate-
gory include monotonicity, non-sensitivity, and effective complexity for the assessment of
explanation qualities with individual features all proposed by Nguyen and Martinez [116].
The researchers propose a method to assign feature importance through feature attribu-
tions. These attributions are then used to measure the direction of the feature’s influence
on the model explanations, which describes the monotonicity metric. Non-sensitivity
on the other hand, ensures that zero-importance is assigned to attributions that do not
influence the model’s explanations. Effective complexity is used to measure the effects
of non-important features on the model’s explanations. If a series of attributions are
non-monotonic, it is an indication that these attributions do not provide proper feature
importance. If effective complexity appears to be low for a series of attributions, it is
indicative of the fact that some features can be emitted or altered without affecting the
model’s explanations.
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• Exampled-based metrics Example-based explanations summarise a model by pro-
viding representative examples or high-level concepts. Nguyen and Martinez [116] pro-
vide quantitative metrics for example-based explanations. The researchers propose non-
representativeness to measure the amount of representativeness in the examples. They
also define diversity to measure the degree of integration of the explanation. Lastly they
define simplicity as the number of examples needed to compute non-representativeness
and diversity. The smaller the number of examples, the simpler the explanation and the
easier it is for a human to understand it.
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Chapter 5

Methodology

In the introduction of this thesis, we discussed the importance of explainability in AI models,
especially in healthcare. In this chapter, we address one of the main questions of this thesis,
which is the application of explainable AI in mental health in order to ensure trust and trans-
parency in AI-driven clinical practice. In order to address this question, we will develop and
deploy explainable AI systems and evaluate their performance and applicability.

5.1 Research design

Our research design employed a hybrid approach, combining both qualitative and quantitative
research methods. The first phase of our research included a comprehensive literature review of
State-of-the-Art explainable AI models in healthcare and mental health, as well as explainable
metrics and applications. This was done with a systematic review of the literature, in order
to identify the most relevant and recent studies. The second phase of our research included
data collection,processing and statistical analysis of spontaneous speech data from patients
with dementia. The data collected was processed and analyzed in order to extract phonological
features, which were then used to develop and evaluate explainability. These features were
transformed into a more interpretable format, which allows for easier interpretation and un-
derstanding by clinicians and other users. The third phase was the initial model development
and evaluation of explainable methods using spontaneous speech and phonological features
derived from the collected data. Once the model was developed and the explanations from
different explainable methods were generated, a survey was conducted to evaluate the expla-
nations. The survey’s participants were clinicians, including mental health professionals and
neurologists. They were chosen to assess whether the explanations could be useful in clinical
practice, and provide feedback as to whether the model could be trusted and used in clinical
practice. Once the feedback was collected, we used the best performing explainable method
in order to develop an ensemble explainer and an ensemble model, which was then evaluated
using the same dataset. The final phase of our research was the development and deployment
of an explainable interface, which was designed to be user-friendly, practical and accessible to
clinicians. The tool’s purpose is to provide explanations for predictions made, and streamline
the decision-making process in clinical practice. It is important to note that these tools are not
meant to replace clinicians, but rather to assist them in making more informed decisions. We
will now delve deeper into each phase of our research design.
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5.2 Data collection methods

5.2.1 Collection and Processing

The data collected were spontaneous speech samples in written transcript form from patients
with dementia and control. The data were collected from DementiaBank [87], which is a well-
established and reputable database containing real-world data from interviews with patients
[53]. The interviews were conducted by trained professionals and were in the form of different
well known tests, such as verbal fluency, story recall, and picture description. For the process-
ing and analysis of the data, we created a Processor Object, which was used to to create three
different datasets from the transcripts for training and testing the transformers. We initialised
the Processor Object with configuration details, including paths to input files, an output path,
and patterns for text replacement. For each text file from DementiaBank, specific patterns
like timestamps and speaker labels are removed or replaced to clean the text. A very impor-
tant replacement was made to introduce greater interpretability and simplicity by transforming
specific CHAT symbols to more interpretable tokens. These tokens are phonological features
derived from patients. We will later discuss as to how these tokens can be used as evidence
of dementia or non dementia. These tokens are called CHA tokens and are very helpful in the
later stages of producing explainability to our models. The table 5.1 includes all the specified
patterns and their replacements in a clear and structured format. For the conversion, the official
CHAT Transcript Format was used, provided by DementiaBank. Due to automated approach
of the Processor Object, a large number of CHAT symbols were not found on the data provided
by the corpuses and thus will not be present in the analysis of the data.

After the cleaning and transformation process of the data, the Processor examines each file
and splits the transcripts into segments based on the specific markers that correlate with the
participant of the interview, meaning that we only took into account the patient and not the
clinician. The segments were then split into three different sizes to test which size was best
for training our transformers. The sizes were as follows, ’short’ for a median segment size of
5 words, ’medium’ for a median segment size of 20 words, and ’large’ for a median segment
size of 50 words. For each segment, we provided a ground truth, the value 1 for Dementia
and value 0 for Control patients. The ground truth was provided by the initial data. The
processed segments and corresponding labels are then saved into csv files, balanced and shuf-
fled for training and evaluation. The Processor Object is also able to function as a minimal
digital signal processor for audio files, detecting and condensing silences, removing repeating
words, and fillers to produce a cleaner transcription based on the CHA tokens. This entire
process ensured that the data collected from DementiaBank, is cleaned, organised and ready to
be utilised for further analysis and model training and evalution. The format provided by the
CHA tokens is more interpretable and easier to understand, which will prove to be very useful
in the later stages of our research, specifically in the explainability of the models. Providing a
more interpretable format for the data and the phonological features derived from it, will allow
for a more comprehensive understanding of the patient’s cognitive state, which is crucial in the
diagnosis and treatment of dementia. We will now delve deeper into the analysis of the data
and the phonological features derived from it.
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CHAT Symbol CHA Token
[/] [CHA REPETITION]
[//] [CHA RETRACING]
(.) [CHA SHORT PAUSE]
(..) [CHA MEDIUM PAUSE]
(...) [CHA LONG PAUSE]
+... [CHA TRAILING OFF]
&+ [CHA PHONOLOGICAL FRAGMENT]
&* [CHA INTERPOSED WORD]
&- [CHA FILLER]
text(text)text [CHA NON COMPLETION OF WORD]
&=belches [CHA BELCHES]
&=hisses [CHA HISSES]
&=grunts [CHA GRUNTS]
&=whines [CHA WHINES]
&=coughs [CHA COUGHS]
&=hums [CHA HUMS]
&=roars [CHA ROARS]
&=whistles [CHA WHISTLES]
&=cries [CHA CRIES]
&=laughs [CHA LAUGHS]
&=sneezes [CHA SNEEZES]
&=whimpers [CHA WHIMPERS]
&=gasps [CHA GASPS]
&=moans [CHA MOANS]
&=sighs [CHA SIGHS]
&=yawns [CHA YAWNS]
&=groans [CHA GROANS]
&=mumbles [CHA MUMBLES]
&=sings [CHA SINGS]
&=yells [CHA YELLS]
&=growls [CHA GROWLS]
&=pants [CHA PANTS]
&=squeals [CHA SQUEALS]
&=vocalizes [CHA VOCALIZES]
+..? [CHA TRAILING OFF QUESTION]
+/. [CHA INTERRUPTION]
+/? [CHA INTERRUPTION OF QUESTION]
+//. [CHA SELF-INTERRUPTION]
+//? [CHA SELF-INTERRUPTED QUESTION]

Table 5.1: Transformation of CHAT symbols into CHA tokens
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5.2.2 Analysis

Our approach to the analysis of the data was to extract phonological features from the tran-
scripts, and see how they correlate with the patient’s cognitive state.

CHA Token Distribution
In our analysis process, we first explored the frequencies of the tokens derived from the process-
ing stage inside the segments. By iterating through the dataset, we counted the occurrences
of the tokens within both groups of dementia and non dementia transcripts. To visualise our
findings we generated a bar plot which displayed the counts of tokens inside both groups.
Each group for color coded for better differentiation between the groups. The plot highlighted
distinct differences in token frequencies between dementia and non-dementia transcripts, pro-
viding insights into the phonological markers associated with dementia. This plot underlines
the potential of CHA tokens as valuable indicators of dementia in patient’s speech patterns and
requires for further investigation.

Figure 5.1: Frequencies of CHA tokens in Dementia and Non-Dementia transcripts

CHA Token Percentages
The next step of our analysis was to investigate the distribution of the CHA tokens in the
segments further. This was done by calculating and visualising the percentage distribution of
each token in the segments. First we compute the total number of occurrences of each token
for both groups, and then calculate the percentage of dementia and non-dementia occurences
for each token. For each token a pie chart is generated in order to visualise the distribution
of the token in the segments. This visualization provides a clear, comparative view of how
frequently each phonological feature appears in dementia versus non-dementia speech, high-
lighting potential diagnostic markers for dementia. Intuitively, the large the percentage of a
token in the dementia group, the more likely it is for this token to be an indicator of dementia.
The figure 5.3 includes examples of CHA token distributions that possibly indicate dementia.
On the other hand, there were tokens that were similarly distributed in both groups, which
may not be useful for diagnostic purposes. Interestingly enough, there was no distribution of
CHA tokens that were more frequent in the non-dementia group. These findings suggest that
CHA tokens could be a valuable tool for diagnosing dementia from spontaneous speech data.
They also agree with the literature on the subject, which suggests that phonological features
can be indicative of cognitive decline.
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Below are some examples of CHA token distributions that possibly indicate dementia. These
examples are mostly related to the patient pausing or trailing off during speech, which suggests
cognitive decline, distortion in the patient’s thought process, or difficulty in finding the right
words. Οther examples include the patient’s inability to complete words, or the repetition of
words, which could be indicative of memory loss or confusion. These tokens are more frequent in
the dementia group, as indicated by the pie charts, and could be used as indicators of dementia
in patients’ speech.

(a) [CHA SHORT PAUSE] (b) [CHA MEDIUM PAUSE]

(c) [CHA LONG PAUSE] (d) [CHA TRAILING OFF]

Figure 5.2: Examples of CHA token Distributions that possibly indicate Dementia

51



Below are some examples of CHA token distributions that are similarly distributed in both
groups. These tokens provide little to no diagnostic value, but could be linked to dementia
in other ways. Possibly in how they are used in speech, or how they relate to other tokens.
Other ways could be the sequential use of tokens and speech patterns to indicate possible
cognitive decline. This is a topic that requires further investigation and analysis, but will be
more prevalent in the later stages of our research. Specifically, in the model training phase and
the evaluation of the explainability of the models. Some of the tokens that are present below
are in fact indicative of dementia, such as the non-completion of word token, but it is possible
that they are used in a different context in the non-dementia group. Such context could be the
patient’s inability to complete a word due to a different reason, such as a speech impediment
or a different cognitive issue, or even the patient’s accent or dialect. These are all factors that
need to be taken into account when analyzing the data, and could provide valuable insights
into the diagnostic value of the CHA tokens.

(a) [CHA NON COMPLETION OF
WORD] (b) [CHA RETRACING]

(c) [CHA INTERRUPTION OF QUES-
TION] (d) [CHA FILLER]

Figure 5.3: Examples of CHA token Distributions that are similarly distributed in both groups
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Co-occurences of CHA Tokens
The third step of our analysis was to investigate the coexistence of different CHA tokens in a
single segment. By analysing the co-occurences of tokens we can associate different phonolog-
ical features with each other, and possibly identify patterns that are indicative of dementia.
To do so, we created a correlation matrix of the CHA tokens, which shows the pair wise cor-
relation coefficients between different tokens across all trascripts. We then used the matrix
to generate a heatmap, in order to visualise the co-occurences of the tokens in an intuitive
way. The heatmap provides a clear view of the relationships between tokens. Positive cor-
relations between two different tokens indicate that they are likely to co-occur in the same
segment, while negative correlation indicates that they are unlikely to co-occur in the same
segment. The larger the absolute value of the correlation coefficient, the stronger the relation-
ship between a pair of tokens. This analysis provides a clear and comprehensive visualisation of
the relationships between different phonological features, hightlighting potential patterns. By
cross-referencing this information with the token distributions and frequencies we can provide
valuable insights into the diagnostic value of a group of tokens appearing together in a segment.

Figure 5.4: Co-occurences of CHA tokens in Dementia and Non-Dementia transcripts

In the figure 5.4 we can see the co-occurences of CHA tokens in the trascripts. The heatmap

53



provides strong evidence that certain tokens, much like the ones related to pausing and trailing
off, are indicative of dementia, and also appear together in multiple transcripts as shown by
their strong positive correlation. We can associate these tokens with cognitive decline, mem-
ory loss or confusion, and the fact that they appear together in the same segment provides
further evidence of dementia. Other co-occurences of tokens can also be indicative of other
cognitive issues or even speech impediments or mannerisms in speech. Another reason for spe-
cific co-occurences can be the patient’s accent or dialect, ethnicity, or the manner in which the
interview was conducted. Since the interviews were transcribed by manual labour, the clinician
or professional conducting the interview and providing the trascripts could also insert their own
biases or mannerisms into the transcripts, due to the way they trascribe and understand the
patient’s speech.

It is important to note that more analysis is required in order to determine the diagnostic
value of the CHA tokens. Possibly, a multi-dimensional analysis, including features such as
speech duration, pitch, and other phonological features could provide more insights into the
diagnostic value of these tokens. Furthermore, different characteristics of the patient, such as
age, ethnicity, educational level and other factors could also play a role in the diagnostic value
of these tokens. These factors can provide a more comprehensive view of the patient’s cognitive
state and ability to communicate, thus making each token a multi-dimensional feature that
can be used to further investigate the patient’s cognitive state. That way, we could explicitly
sway the token distribution in favor of dementia or non-dementia. This approach could be very
useful in the research and development of AI models for diagnosing dementia from speech data,
and could provide valuable insights into the patient’s cognitive abilities, but it is an approach
outside the scope of this thesis.

The data analysis phase of our research is crucial for several reasons. First, it provides evi-
dence that the CHA tokens derived from the transcripts are valuable indicators of dementia in
patients’ speech and should be used in the development of AI models for diagnosing dementia.
This approach should be investigated further in order to determine the diagnostic value of the
tokens, and how they can be used to develop AI models for diagnosing dementia. Secondly,
by providing these tokens into the training process of AI models, we can enhance the models’
performance and accuracy, and provide more comprehensive explanations to the clinicians and
professionals. This approach also provides a data-driven basis for further investigating the
diagnostic value of phological features in patients’ speech for exploring new diagnostic mark-
ers and improving the diagnosis and treatment of dementia. Lastly, this approach provides a
more interpretable format for clinical applications and decision-making, which allows for the
development of non-invasive, cost-effective, and efficient diagnostic tools for diagnosing demen-
tia from spontaneous speech. Overall, the analysis of the CHA tokens is a pivotal step in this
research, providing critical insights into the speech characteristics of individuals with dementia.
It enhances the development of diagnostic models, supports clinical applications, and lays the
groundwork for future research.

5.3 Model Development

5.3.1 Selection Criteria

In this section we will discuss the reasons for selecting Transformer models for our research,
and how they can be used to develop explainable AI models for diagnosing dementia from
spontaneous speech data.
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Attention Mechanism
The selection of AI models for healthcare applications is a critical decision that requires careful
consideration. We need to take into account the complexity and variability of the data at
hand, the need for interpretability and explainability, the performance and accuracy of the
models, and the ethical and legal implications of using AI in healthcare. In our research, we
chose Transformer models for several reasons. The first reason, is the ability of Transformer
models to handle sequential data and capture dependencies. This is done by using self-attention
mechanisms, which allow a model to determine relative importance between different parts of
the input sequence [158]. This will prove instrumental in generating explanations and evaluating
how different words and tokens in the input can indicate dementia. Essentially, three different
vectors are assigned to each word in the sequence, a query vector, a key vector, and a value
vector. The attention score is then calculated, which is the dot product of the query and key
vectors, divided by the square root of the dimension of the key vector. The attention score is
then applied to the value vector, which is then used to calculate the output of the self-attention
mechanism. Attention is used as a fundamental building block in Transformer models, and
allows them to capture long-range dependencies in the data, which is crucial for understanding
the context of the input sequence. A current limitation of the self-attention mechanism is that
it can be computationally expensive, especially for longer sequences.

Figure 5.5: Transformer Architecture from ”Attention is all you need”

Transfer Learning
The second reason is strongly related to the large number of pre-trained Transformer models
available, which can be fine-tuned on specific tasks with relatively small amounts of data. This
practice is called transfer learning, and is widely used in natural language processing tasks,
where large pre-trained models are fine-tuned on specific tasks with smaller datasets. This is
particularly useful in healthcare applications, especially in our use case, were data is scarce due
to privacy concerns and the difficulty of the collection process. This issue of scarcity is common
in healthcare applications, especially in fields were data collection requires patient consent and
cooperation, such as dementia research. The collection process for these types of tasks can
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prove to be challenging, time-consuming, and expensive, which is why transfer learning is a
valuable tool for developing AI models for diagnosing dementia. This was a key factor in our
decision to use Transformer models, as they can be fine-tuned on the data collected by the
DementiaBank corpuses and used to develop our AI models for diagnosing dementia.

Interpretability and Explainability
The third reason is the ability to leverage the self-attention mechanism in transformer models
in order to generate explanations. During the prediction process, we can inspect the self-
attention scores of the encoder and decoder layers, in order to determine which parts of the
input sequence are most important for the prediction. This allows us to generate explanations
for the model’s predictions, and provide insights into the decision-making process of the model.
This is crucial for developing explainable AI models for diagnosing dementia, as it allows us to
provide clinicians with evidence and reasoning for the model’s predictions, and build trust and
transparency in the model’s decision-making process.

Support by the Literature
In addition to these reasons, the literature on the subject supports the use of Transformer
models for diagnosing dementia and similar tasks as we have discussed in the literature review.
Research has shown that these models can achieve state-of-the-art performance on natural lan-
guage processing tasks, significantly outperforming traditional machine learning models and
providing more accurate and reliable predictions. The literature also shows that the self-
attention mechanism can assist in understanding the contextual relationships between different
parts of the input sequence which is crucial in the task at hand. There is also strong evidence
that Transformer models can be used to develop explainable AI models for diagnosing demen-
tia, and provide clinicians with valuable insights into the decision-making process of the model.
This evidence supports our decision to use Transformer models for our research, and provides
a strong foundation for the development of AI models for diagnosing dementia.

In summary, we concluded that Transformer models are the most suitable choice for our
research, due to their ability to contextualise and capture dependencies in the trascripts, their
support for transfer learning, their ability to be interpretable and explainable, and the strong
evidence in the literature supporting their use in healthcare applications and in our specific use
case. We will now discuss our proposed model architecture and the steps we took to develop
and evaluate the model.

5.3.2 Model Architecture

In our research we propose an ensemble model, which combines different transformer models
and classifiers in order to provide more accurate and reliable predictions. The ensemble model
development is divided into two separate stages, the first stage being the fine-tuning of the
transformer models on the data collected from DementiaBank, and the second stage being the
training of multiple classifiers on the output of the transformer models. The final output of
our ensemble model is a majority vote of the predictions made by the classifiers, which is then
used to make the final prediction. We will now go into further detail about the architecture of
the ensemble model and the steps taken to develop and evaluate it.

Fine-tuning Transformer Models
As we have already discussed, the first stage of our ensemble model development leverages the
ability of transformer models to be fine-tuned on specific tasks with relatively small amounts
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of data. In our research, we utilised the Hugging Face transformers library (huggingface.co) to
select five different transformer models, namely, BERT, RoBERTa, DistilBERT, ClinicalBERT
and BioBERT. After selection, we inserted the CHA tokens into each transformer model as
special tokens, and the models were then fine-tuned on the data collected and processed from
DementiaBank. The fine-tuning process involved training the different transformer models un-
der 5-fold cross-validation and 5 epochs. The performance of the models was evaluated using
different metrics, such as accuracy, precision, recall and F1-score. During the training process
of the transformer models, all three segment sizes were used, ’short’, ’medium’, and ’large’, in
order to determine which size was best for training the models. We found that the ’medium’
segment size was the most suitable for training the transformer models, as it provided the
best performance and also allowed for a more comprehensive training of the attention mecha-
nism. The ’short’ size did not allow for the model to capture long-range dependencies in the
data, which hindered the explainability of the model. The ’long’ size did not provide adequate
amounts of data for validation. Further research is in order on the subject of segment sizes
and their impact on model performance but also on the explainability of the models. Larger
segment sizes may be more suitable for capturing dependencies in the data, but that may
add complexity and computational cost, which becomes a trade-off between performance and
explainability. The figure 5.6 includes heatmaps of the different segment sizes for the BERT
model, which show the performance of the model on each size. We also tested fine-tuning
the models with different learning rates, batch sizes, and optimisers, in order to determine
the best hyperparameters for training, without significantly affecting the performance of the
models. Lastly we wanted to evaluate weather the models’ performance was being hindered
due to the addition of the CHA tokens as special tokens to each transformer which also showed
no significant impact on the performance of the models, allowing us to proceed with our initial
hypothesis and the induction of the CHA tokens in the overall architecture. We will further
discuss the overall results of the fine-tuning process in the next chapter.

(a) Short segment (b) Medium segment (c) Long segment

Figure 5.6: Heatmaps of Short, Medium and Large segment sizes

Through the fine-tuning process we were able to obtain three different transformer models
capable of making predictions on the segments with relatively high accuracy, precision, recall
and F1-score. The models were not quite as accurate as the state-of-the-art models in the
literature, but they provided a solid foundation for the development of the ensemble model
and the explainability of the predictions. The next step was to train multiple classifiers on the
output of the transformer models, in order to provide more accurate results.

Training Classifiers
The second stage of our ensemble model development involved training multiple classifiers and
aggregating their predictions with a majority voting scheme which selected the most frequent
prediction. The initial approach contained a single fold of the triad of transformer models,
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which was then used to train a single classifier. We based our experiment on the paper of
Julian Risch and Ralf Krestel [131] who used a similar approach to aggregate the predictions
of multiple transformer models using bagging. We used a Bagging Regression classifier as the
initial classifier, which was trained on on the concatenated output logits of each transformer
model, and was then used to make predictions on a test set. The predictions showed very
promising results, with a significant increase in all metrics, which was a strong indication of
the potential of the ensemble model.

Figure 5.7: Single Ensemble Model Architecture

To extend our experiment, we trained multiple other classifiers such as Random Forest,
Gradient Boosting, Support Vector Machines, Decision Tree Classifier, K-Nearest Neighbors,
and Logistic Regression similarly to the bagging classifier. The results of the classifiers were
then aggregated using a majority voting scheme, which selected the most frequent prediction.
The final output of the ensemble model was the majority vote of the predictions made by the
classifiers, and that final output represented the decision of our ensemble model. All classifiers
were trained under grid search, in order to determine the best possible parameters for training.
All classifiers showed state-of-the-art performance, with a significant increase in accuracy, pre-
cision, recall and F1-score compared to the transformer models.

Figure 5.8: Ensemble Model Architecture

As we can see in the figure 5.8, the ensemble model architecture is a combination of mul-
tiple classifiers and transformer models, which are used to make predictions on the segments.
The final output of the ensemble model is the majority vote of the predictions made by the
classifiers, which is then used to make the final prediction. The ensemble model provides more
accurate and reliable predictions compared to single transformer models or single classifiers.
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5.4 Selection Criteria for explainable methods

In this section we will discuss the reasons for selecting the LIME explainable method for our
research and subsequent user interface development. During the course of our research we eval-
uated multiple explainable methods capable of providing explanations for transformer models.
These methods included LIME, Anchor and Transformers-Interpret. To evaluate the explain-
ability of the methods we conducted a survey with clinicians and professionals experienced in
treating dementia, who were asked to evaluate the visual explanations provided by each method
and provide feedback on how informative and useful they were. Due to very low participation
in the survey, we were unable to provide a comprehensive analysis of the results, but we were
able to draw some conclusions from the feedback provided by the participants. The survey
showed that LIME was the most preferable method out of all three.

5.4.1 Selection Criteria

LIME was selected for several reasons. We will shy away from stating its applicability and ease
of use in incorporating it into transformer models, due to the fact that all three methods were
equally capable of providing explanations for the transformer models and the code implemen-
tations were readily available and would not be a factor in the ease of use by professionals and
clinicians. We will focus instead on the comparison of the visual explanations provided by each
method, and how each method was able to highlight different parts of the input sequence and
specifically the CHA tokens.

Visual Simplicity
The first reason for selecting LIME was the visual simplicity of the explanations provided.
LIME uses simple and intuitive structures to provide insights into the decision-making process
of the model, providing scores for each word or feature in the input sequence, and color coding
them based on importance and relevance to dementia. Simplicity allows for non-technical users
to understand the explanations and make informed decisions upon the explanation provided.
Transformers-Interpret provided a similar interface, the feature importance scores were clear
and the CHA tokens were highlighted in the explanations, but the interface, color-scheme and
font selection were not as vibrant as LIME which made it less appealing to the participants.
Anchor provided a more complicated interface and failed to tokenise the CHA tokens as well.
Additionally, the textual representation of the explanations provided by Anchor contained UNK
tokens, which made it difficult for the participants to understand the explanations. Lastly, a
very important factor in the selection of LIME was the addition of a more informative scoring
system, which provided the attribution scores used in the visualisation.

Feature Highlighting
The second reason is strongly dependent on the first. LIME, through its visualisation frame-
work, provides the transcript back to the user, with the most important words and features
highlighted in color. Dementia-related words are highlighted in red and orange shades, and
non-dementia related words are highlighted in blue shades. This made the interpretation of
the explanations much easier for the participants, and allowed for a more comprehensive un-
derstanding once the participants understood the color coding scheme and the CHA token
representations. LIME was capable of tokenising the CHA tokens and highlighting them com-
pletely, which was a significant advantage over the other methods. Transformers-Interpret had
a similar approach, though the highlighting was not nearly as clear as LIME, possibly due to
the color selection or the way coloring was implemented through scoring. Anchor provided a
complicated textual output that had no color coding or highlighting, using placeholder text and
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cluttering its output, which made it difficult for the participants to understand the explanations.

Comparative Analysis
LIME, due to its local interpretability approach, was able to assess the importance of each word
and CHA token in the input sequence relative to its context, meaning that for a single CHA to-
ken, LIME was able to provide insight into how the token swayed the model’s prediction towards
dementia or non-dementia. Depending on the input sequence, LIME would provide different
explanations for the same token, which provided a more comprehensive view of the token’s
importance and relevance to the overall prediction. Transformers-Interpret provided insight on
the CHA tokens, but was not as detailed as LIME, while Anchor, due to its example-based
approach in providing explanations, requires a more focused and detailed analysis of its output.

Overall, LIME’s flexibility, simplicity in visualisation and feature hightlighting capabilities
made it the most preferable method out of the three and thus was selected for our ensemble
explainer framework and user interface.

5.4.2 Providing Explainability

Our strategy for providing explainability consisted of creating an ensemble explainer frame-
work, which combined the best performing explainable method from the survey. The ensemble
explainer framework was developed in three stages, the first stage being, the generation of
explanations from all three explainable methods, the second stage was to assess the quality of
explanations through the afformentioned survey and lastly, the final stage was the aggregation
of the explanations provided by LIME using a weighted average scheme. The final output of
the ensemble explainer framework was a single aggregated explanation for the sequence which
required an explanation. In this section we will discuss in detail, the steps taken to create the
ensemble explainer framework.

Generation of Explanations
After the selection of transformer models and their fine-tuning, we proceeded to generate ex-
planations for two different sequences, one for each group of dementia and non-dementia tran-
scripts. The explainability methods utilised were LIME, Anchor and Transformers-Interpret,
which were used to generate explanations out of the token representations provided by the three
fine-tuned transformer models. For all the example explanations provided, a single sequence
was used as input, which belonged to the dementia group. The sequence used is provided below.

youknow it [CHA FILLER]I [CHA REPETITION] I [CHA RETRACING] [CHA
FILLER]excuse me but youknow I [CHA REPETITION] I

Figure 5.9: Example Sequence for Testing

We first generated explanations using LIME, which provided a comprehensive and intuitive
visualisation of the explanations along with color coding and feature highlighting. These ex-
planations also provided insights as to how much each word or token stimulated the model’s
prediction towards dementia or non-dementia. Various words and tokens, due to the token rep-
resentations provided by the transformer models and the linear approximation of the model’s
decision function by LIME, were exponentially emphasized in the explanations. These phenom-
ena were particularly evident in a variety of words which would not intuitively be associated
with dementia, but were highlighted as important by the model. Such occurences could be
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evidence of the model being biased towards certain words or tokens, due to their prevalence in
the training data, or due to the way the model was making certain associations between words
and dementia. The CHA tokens were also highlighted in the explanations, and were mostly in
accordance with the token distributions and token analysis we conducted, although most of the
CHA token scores were not as high as we expected possibly due to them being added to the
tokenizers as special tokens and not being part of the vocabulary.

The LIME explanation for the BERT model is shown in the figure 5.10. The explanation
shows that repetitons of words in this input sequence are indicative of dementia, and that
retracing is not. The model also interprets the concatenated word ”youknow”, which should
have probably been tokenised as a filler word but was not transcribed as such by the clinician,
as strong evidence of dementia in this particular sequence. The figure 5.11 shows the LIME
explanation for the RoBERTa model. The explanation here also highlights the importance of
”youknow” in the sequence as a strong indicator of dementia, as well as repetitions of words,
but defers from the BERT explanation in that filler words have a higher importance in showing
non-dementia. Lastly, the explanation for the DistilBERT model, which is shown in the figure
5.12, highlights most of the tokens and words as strong indicators for dementia, especially the
repetitions of words which is a significant difference from the other two explanations.

Figure 5.10: BERT LIME

Figure 5.11: RoBERTa LIME

Figure 5.12: DistilBERT LIME

Quite interestingly, each model provided different reprsentations for the same tokens, which
drove LIME to produce completely different explanations for a single sequence. Although the
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explanations do provide insights into the model’s decision-making process, they are not utterly
reliable and should be further investigated.

The second candidate for generating explanations was Anchor, which is a rule-based ex-
plainable method that provides a non-linear approximation of the model’s decision function,
and is significantly more precise than LIME. Anchor’s visualisation framework and examples
provided for interpretation were not as intuitive as LIME’s, and the explanations were not
nearly as informative as the ones provided by LIME.

1 Model Predicts Dementia

2
3 Examples where anchor applies and model predicts Dementia:

4 youknow UNK [ CHA UNK UNK UNK REPETITION UNK I UNK UNK UNK UNK UNK UNK FILLER]excuse me but youknow I [ CHA REPETITION ] UNK

5 youknow UNK UNK UNK UNK [ CHA REPETITION ] I [ CHA UNK ] UNK CHA FILLER]excuse me but youknow I [ UNK UNK ] I

6 youknow it UNK UNK FILLER]I [ UNK REPETITION ] UNK UNK CHA RETRACING UNK [ CHA FILLER]excuse me but youknow UNK UNK CHA UNK ]

7 UNK it UNK CHA UNK [ UNK REPETITION ] I UNK CHA UNK ] [ CHA FILLER]excuse me but UNK I [ CHA UNK ] I

8 youknow it [ CHA UNK UNK UNK UNK UNK UNK UNK CHA RETRACING UNK UNK CHA UNK me but youknow I [ UNK REPETITION UNK UNK

9 youknow UNK UNK CHA FILLER]I UNK CHA UNK ] UNK [ UNK UNK ] [ UNK UNK me UNK UNK I [ CHA UNK ] I

10 youknow UNK UNK CHA FILLER]I [ UNK UNK ] UNK UNK CHA RETRACING ] [ CHA UNK me UNK youknow I [ CHA REPETITION UNK UNK

11 UNK UNK UNK UNK FILLER]I UNK UNK UNK ] UNK UNK UNK UNK UNK UNK UNK FILLER]excuse me but UNK I UNK UNK UNK ] UNK

12 UNK it [ CHA UNK [ CHA UNK ] I [ CHA UNK ] [ UNK UNK me UNK youknow I UNK CHA UNK UNK UNK

13 UNK it UNK CHA FILLER]I UNK UNK REPETITION ] I UNK UNK UNK ] UNK UNK UNK me but youknow UNK [ CHA REPETITION ] I

14
15 Examples where anchor applies and model predicts Non -Dementia:

Figure 5.13: BERT Anchor

1 Model Predicts Non -Dementia

2
3 Examples where anchor applies and model predicts Dementia:

4 youknow UNK UNK CHA FILLER]I [ UNK REPETITION UNK I [ CHA RETRACING ] [ UNK UNK me but youknow UNK UNK UNK REPETITION ] I

5 youknow UNK [ CHA UNK UNK CHA UNK ] UNK UNK CHA RETRACING ] UNK UNK FILLER]excuse UNK UNK youknow UNK [ UNK UNK ] UNK

6 youknow UNK UNK CHA FILLER]I [ CHA REPETITION ] UNK [ UNK UNK UNK UNK CHA FILLER]excuse me but youknow UNK UNK UNK REPETITION

UNK UNK

7 youknow UNK [ UNK FILLER]I [ CHA REPETITION ] I UNK UNK UNK ] [ CHA UNK UNK but youknow I UNK CHA REPETITION UNK UNK

8 UNK UNK [ CHA UNK UNK CHA REPETITION UNK UNK [ CHA UNK ] [ UNK FILLER]excuse UNK UNK youknow I UNK CHA REPETITION UNK I

9 UNK it UNK UNK FILLER]I UNK CHA UNK ] I [ UNK RETRACING ] UNK UNK FILLER]excuse UNK UNK youknow I UNK CHA UNK ] I

10 youknow it UNK CHA UNK UNK CHA UNK ] UNK UNK CHA UNK ] [ UNK UNK me UNK youknow UNK [ CHA REPETITION ] UNK

11 youknow UNK [ UNK FILLER]I UNK CHA UNK UNK UNK UNK UNK UNK UNK [ CHA FILLER]excuse UNK but youknow UNK [ CHA REPETITION ] I

12 youknow UNK UNK CHA FILLER]I UNK CHA REPETITION ] I UNK CHA UNK UNK [ CHA FILLER]excuse me but youknow I [ CHA REPETITION ]

UNK

13 UNK it [ UNK FILLER]I [ CHA REPETITION ] I [ CHA RETRACING UNK UNK CHA FILLER]excuse UNK UNK youknow UNK [ CHA UNK ] UNK

14
15 Examples where anchor applies and model predicts Non -Dementia:

Figure 5.14: RoBERTa Anchor

1 Model Predicts Dementia

2
3 Examples where anchor applies and model predicts Dementia:

4 UNK UNK [ CHA UNK [ UNK UNK UNK UNK [ UNK UNK ] UNK UNK UNK UNK but youknow I [ CHA UNK UNK I

5 UNK it [ CHA FILLER]I UNK UNK REPETITION UNK UNK UNK UNK UNK ] [ CHA UNK me but UNK UNK [ CHA UNK UNK UNK

6 youknow UNK UNK CHA UNK UNK CHA UNK ] UNK [ CHA UNK ] UNK CHA FILLER]excuse UNK UNK UNK I [ CHA REPETITION UNK UNK

7 youknow UNK [ UNK UNK UNK UNK REPETITION ] I [ CHA UNK ] UNK UNK UNK UNK UNK youknow I UNK CHA REPETITION UNK I

8 UNK it UNK UNK FILLER]I UNK CHA UNK ] UNK [ UNK RETRACING ] [ CHA UNK me but youknow UNK UNK CHA UNK UNK UNK

9 UNK UNK UNK UNK FILLER]I UNK UNK REPETITION UNK UNK UNK CHA UNK ] [ CHA FILLER]excuse UNK but UNK I UNK CHA REPETITION UNK I

10 youknow UNK UNK CHA FILLER]I UNK CHA UNK UNK UNK UNK UNK RETRACING ] [ UNK UNK UNK but youknow UNK UNK CHA REPETITION UNK UNK

11 youknow it UNK UNK FILLER]I [ CHA REPETITION UNK UNK [ CHA RETRACING ] UNK UNK FILLER]excuse UNK but youknow I UNK CHA UNK ] I

12 youknow UNK UNK CHA UNK UNK CHA UNK UNK I UNK CHA RETRACING UNK UNK CHA UNK me UNK youknow I UNK CHA REPETITION ] I

13 UNK UNK [ UNK UNK [ UNK UNK UNK UNK UNK CHA RETRACING ] UNK CHA FILLER]excuse me UNK youknow I UNK CHA REPETITION ] UNK

14
15 Examples where anchor applies and model predicts Non -Dementia:

Figure 5.15: DistilBERT Anchor

The Anchor explanation for the BERT model is shown in the figure 5.13. The explanation
essentially provides multiple examples of subsequences that are indicative of the prediction
made by the model. The subsequences contain different words and tokens that reside in the
original input sequence and provide evidence of the model’s prediction, which in this case is
dementia. The Anchor explanation contains multiple examples, but it is apparent that the
examples are visualised in a cluttered manner and require focusing on each example separately
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word by word to fully comprehend the explanation. Anchor also uses UNK tokens as place-
holders for words that are not part of a specific example in the explanation, which makes it
difficult to understand the explanation. Another significant issue in the explanations provided
by Anchor, is Anchor’s inability to properly tokenise the CHA tokens, due to missing an in-
ternal tokeniser for special tokens that do not exist in the vocabulary. In multiple examples
provided by Anchor, the CHA tokens were not tokenised properly, which concluded in them
being split into multiple different tokens, and thus being misinterpreted as UNK tokens. In the
figure 5.14 we can see the Anchor explanation for the RoBERa model, which at first glance
seems to be similar to the BERT explanation, but upon closer inspection we can see disparities
in the examples provided. The DistilBERT explanation, shown in the figure 5.15, suffers from
the same issues as its two predecessors, and provides examples that are similar to the other two
models. It is important to note that the Anchor explanations, despite their visual complexity,
greatly favoured the CHA tokens, even though they were not tokenised properly, and rarerly
provided examples that did not contain them.

The third and final method we employed for generating explanations was Transformers-
Interpret, a newly developed explainable open-source framework for creating explanations for
transformer models. Transformers-Interpret calculates word and token attributions using the
integrated gradients method, and provides visual explanations similar to the ones provided
by LIME. Transformers-Interpret was able to provide clear and informative explanations, but
the color-scheme and font selection were not as vibrant as LIME, which hindered the appeal
of the explanations. The repetitions of words, for the BERT explanation in figure 5.16, were
highlighted as indicative of non-dementia, while the RoBERTa explanation in figure 5.17 was
indifferent. The DistilBERT explanation in figure 5.18 highlighted the repetitions as indicative
of dementia, being the only explanation out of the three to focus on the CHA tokens. All
three explanations showed larger inconsistencies in terms of evaluating importance of words
and tokens compared to LIME. Transformers-Interpret failed, on some occasions, to properly
tokenise words and tokens, which resulted in some placeholder text, without that being a no-
table issue in the explanations. Overall the explanations provided by Transformers-Interpret
were informative, but the visuals and minor inconsistencies in feature importance made them
less preferable than LIME for our intended purpose.

Figure 5.16: BERT Transformers-Interpret

Figure 5.17: RoBERTa Transformers-Interpret
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Figure 5.18: DistilBERT Transformers-Interpret

Ensemble Explainer Framework
After generating explanations and assessing their quality and utility through the survey, we
proceeded to aggregate the explanations provided by LIME using a weighted average scheme.
The values of the weights were determined based on the best performing transformer model, in
terms of token representations and overall performance. The final output of the ensemble was
the aggregated explanation, using the interface provided by LIME.

Figure 5.19: Ensemble Explainer Architecture

The ensemble explainer framework was able to smooth out the explanation by combining
the individual explanations. The ensemble explainer framework explanation for the sequence
is shown in the figure 5.20. A more detailed investigation of the best possible weights for the
ensemble explainer framework is required, in order to determine the best possible weights, so
that the CHA tokens attribution scores can be distributed effectively and provide a more com-
prehensive explanation in line with the literature concerning phonological features as evidence
of dementia and the token analysis we conducted. Again, we see that even the ensemble ex-
plainer places a strong emphasis on the ”youknow” token, which is due to the fact that all three
individual explanations hightlighted it as a strong indicator of dementia which is an attribution
made due to the self-attention mechanism in the training of the transformer models. A possi-
bility is that this token is apparent in the group of dementia transcripts which inserts a bias in
the model’s decision-making process and the explanations provided. Again, we see that further
research is required in order to determine the diagnostic value of each CHA token and how it
can be used to develop interpretable explanations. An approach that could be used is for each
CHA token, to produce a pair of new tokens, one for each group of dementia and non-dementia
transcripts through the multi-dimensional analysis we discussed earlier. We will refer to these
tokens as MVCHA tokens for the purpose of this discussion. That would allow for more reli-
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able sequence generation during the data processing stage, where each CHAT trascript symbol
would be replaced by either of the two new tokens, depending on the group it belongs to. That
way, we could explicitly sway the token distribution in favor of dementia or non-dementia and
provide more reliable explanations. Another important aspect of creating such an ensemble is
diversity in the models used, an ensemble of larger variety of models could provide variance in
the attributions and eliminate possible biases by single models. Lastly, an approach were all
words are eliminated from the original transcripts, and the MVCHA tokens are significantly
augmented in the sequence through speech and behavioural analysis, could prove promising in
the development of comprehensive explanations.

Figure 5.20: Ensemble Explanation

This approach can also be utilised with other explainable methods, such as Transformers-
Interpret, where the approach of setting attributions and scores on words and tokens is quite
similar to LIME. This way, we can provide more robust explanations for the transformer models.
The ensemble explainer framework can possibly be extended to include multiple explainable
methods, and provide a more comprehensive and reliable explanation for the model’s predic-
tions.

Evaluation metrics for explainability
We largely assessed the quality of the explanations using qualitative metrics related to the sur-
vey such as simplicity, and human evaluation. We also evaluated the explanations on account
of their degree of proper usage of the CHA tokens and their visual appeal. In addition to the
survey, we also evaluated the explanations based on fidelity and time of generation. Fidelity
is a measure of how well the explanation approximates the model’s decision function. We
tested the fidelity of the explanations provided by LIME, Anchor and Transformers-Interpret
by comparing the model’s predictions to the predictions proposed by the explanations. All
three methods showed similar fidelity scores. The results of the evaluation scores are presented
in greater detail in the next chapter.

Overall, we have assessed that the explanations require further investigation and research,
especially by incorporating the MVCHA tokens. The evaluation process has yielded promising
results, and shows a comparative analysis of the explainability methods used in the research.
The ensemble explainer framework also shows that an ensemble approach with greater diversity
in the transformer models could in fact be a route to examine further to develop more reliable
and comprehensive explanations.

Computational Resources
In order to expedite the computational processes involved in our experiments, we utilized
GPU acceleration available on cloud computing services. The platform used provided access
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to NVIDIA A100 Tensor Core GPUs, which significantly reduced the execution time for our
experiments. The use of GPU acceleration was critical in handling the intensive computations
required for fine-tuning the transformer models and also generating the explanations. We also
utilized increased memory capacity which was essential in handling the explainer’s computa-
tions of up to 83 GB of RAM. The experiments were conducted in a Python environment with
relevant libraries such as TensorFlow and PyTorch optimized for GPU performance. We also
tested the models on a local system with an ARM-based-system-on-chip M1 processor with 16
GB of RAM. The local system failed to generate the LIME explanations due to high memory
consumption, which was a significant limitation in the development of the ensemble explainer
framework. The cloud computing platform provided the necessary resources to handle the
memory-intensive computations required for generating the explanations.

5.5 Ethical considerations

One of the foremost ethical considerations in our research is the privacy and confidentiality
of the data used. The data provided by DementiaBank is highly sensitive and contains per-
sonal information about individuals. Handling of data such as this requires strict adherence to
data protection laws and regulations. Researchers must ensure that such data is secured and
anonymised to prevent any potential breaches of privacy. Another important ethical considera-
tion, is the bias and fairness concern. The training of AI models on data that is biased or unfair
can lead to biased and unfair outcomes for patients. We saw an example of bias in the LIME
explanations provided, where certain words and tokens were highlighted as strong indications of
dementia, even though they were not intuitively associated with the disease. Such biases can be
introduced during the training process of the models, due to the way the data is collected and
processed, or even during the transcribing process of the patients’ speech. We know that speech
patterns can vary drastically across different demographics, and the models should be evalu-
ated to ensure they do not disproportionately affect any particular group. Transparency and
accountability is another aspect to take into account when developing AI models for healthcare
applications. Lack of transparency can lead to misuse or over-reliance on AI systems, poten-
tially resulting in harmful consequences for patients. Strict guidelines and regulations also need
to set in order to ensure accountability in the use of AI models for diagnostic purposes. Each
participant in the decision making process should have a clearly defined role and responsibility
so that accountability can be established. It is also essential that these tools are used in a
supplementary manner, and not as a replacement for human judgement and expertise. Finally,
the broader ethical use of AI in healthcare must be considered. AI tools should be used to
enhance patient care and outcomes and should be implemented in a way that is consistent
with ethical principles, including beneficence (doing good), non-maleficence (avoiding harm),
autonomy (respecting patient choices), and justice (ensuring fairness and equality).
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Chapter 6

The COMFORTAGE Project

This research was conducted as part of the COMFORTAGE project, formally known as ”Pre-
diction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia
and Frailty”, which aims to develop personalized and adaptive solutions for dementia and
frailty prevention and management. This effort aims to establish a pan-European framework
for prevention and intervention in dementia and frailty. It bolsters a multidisciplinary approach,
combining expertise from the fields of medicine, social sciences, humanities and technology.

6.1 Dementia and Frailty

Dementia is defined as the loss of cognitive function to such an extent has it interferes with a
person’s daily life and activities. Dementia ranges in severity from the mildest stage, where the
person is starting to notice mild cognitive decline, to the most severe, where the person must
depend on others for basic activities of daily living, including eating, dressing, and bathing.
Dementia affects memory, thinking, language, judgment, mood and behavior. It is a progressive
disease that worsens over time and affects millions of people worldwide. It is not a normal
part of the aging process of an individual. Signs of dementia become apparent when a person’s
healthy brain cells stop functioning, which results in different symptoms. Symptoms of dementia
include:

• Memory loss, poor judgment and general confusion

• Difficulty in speaking, understanding, reading and writing

• Difficulty formulating thoughts, repeating oneself, inability to find the right words

• Difficulty in performing routine tasks, loss of interest in previously enjoyed activities,
mood swings

• Hallucinations, delusions, paranoia, agitation, aggression, loss of empathy, apathy

• Loss of balance and modility issues

There are different types of dementia, with Alzheimer’s disease being the most common.
Other types of dementia include frontotemporal dementia, lewy body dementia and vascular
dementia. There are several causes that would lead to dementia, such as damage or loss of
brain cells, changes to the brain’s structure and different types of proteins building up in the
brain.

The process of diagnosing dementia involves ruling out other conditions that may cause
congititive decline, such as vitamin deficiencies, thyroid problems, depression and hormonal
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imbalances. The next step is to evaluate the patient’s medical and family history and proceed
with a physical and neurological examination. These examinations include non invasive eval-
uations such congitive and neuropsychological tests and phychiatric evaluations. The doctor
may also order brain scans, blood tests, genetic tests and cerebrospinal fluid tests to assess
the patient’s condition. Early detection of dementia is important as it may, in some cases, be
treated. However, there is no cure for dementia, but there are treatments that can help manage
the symptoms and slow down the progression of the disease.

Frailty is a condition defined as a clinically recognizable state of increased vulnerability
resulting from aging-associated decline in reserve and function across multiple physiologic sys-
tems such that the ability to cope with everyday or acute stressors is compromised. Frailty
is a common condition in older adults and is associated with increased risk of adverse health
outcomes, including disability, hospitalization, and mortality. Criteria for frailty include unin-
tentinal weight loss, exhaustion, low grip strength and low general physical activity. Leading
causes of frailty include aging, genetics, lifestyle, and environmental factors.

Treatment for frailty is highly individualized, depending on the patient’s needs and life
expectancy. Overall, the goal in treating frailty is improving the patient’s quality of life and
preventing further decline as much as possible. Treatment includes physical activity such as
walking and light strength training, proper nutrition and hydration, and prioritising mental
activity, mental health and social interaction.

6.2 Problem Objectives and Outcomes

Early detection and timely diagnosis of dementia and frailty are a crucial step in managing
these conditions and mitigating their impact on the patient’s quality of life. Different factors
hinder the ability of healthcare institutions and professionals to provide personalised treatment
and care for patients, and instead rely on a generalised approach, which may not consider the
individual’s needs and circumstances. The COMFORTAGE project aims to develop a person-
alized and adaptive solution for dementia and frailty prevention and management. In order
to achieve this, the project will develop a pan-European framework for community-based and
people-centric prevention, monitoring and progression managing solutions for dementia and
frailty. COMFORTAGE’s mission is to develop a Virtualised AI-Based Healthcare Platform
(VHP), first of its kind, to centralise AI resources for risk assessment, early diagnosis, and
personalized decision-making. COMFORTAGE brings together interdisciplinary experts from
across Europe’s leading research institutions, universities and companies. This collaboration
aims to improve clinical outcomes, support clinicians in their decision-making processes, and
ultimately enhance the quality of life for patients with dementia. The framework proposed
by COMFORTAGE incorporates AI and big data innovations, along with domain specific ex-
pertise and IoT technologies to provide highly coordinated, personalized and proactive patient
care through the VHP. This effort aims to improve the quality of life in dementia and frailty
patients, reduce the burden on healthcare systems, and provide a more efficient and effective
approach to managing these conditions.
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Figure 6.1: COMFORTAGE Framework

In our work, we aim to develop explainable AI systems that are capable of facilitating
the efforts of the COMFORTAGE project, by providing an accurate and reliable means of
predicting dementia through spontaneous speech. Our methodology is in line with the project’s
objectives and outcomes, as well as the overall mission. This research provides a framework
for non-invasive, cost-effective and highly scalable solutions for dementia early detection and
monitorin. We also aim to provide a clear path into future research directions that can be taken
to further improve model performance and explainability.

6.3 DEMET: Our Contribution to the COMFORTAGE

Project

Our contribution to the COMFORTAGE project is the development of DEMET, or Dementia
Explainable Transformer, an explainable, AI-driven cognitive assessment agent for dementia
detection through spontaneous speech. DEMET utilises state-of-the-art deep learning models
and explainability techniques to provide an accurate prediction along with detailed insights into
the model’s decision-making process. DEMET’s architecture is designed to be highly scalable
and efficient, along with allowing for easy integration into the COMFORTAGE project. Our
work is largely based upon the utilisation of phonogical features for explainability purposes and
the implementation of ensemble learning techniques to improve model performance. We also
propose an ensemble explainer framework that, with further investigation and development,
can provide a more comprehensive understanding of the model’s decision-making process and
improve the overall explainability of the model. The ensemble explainer framework is designed
to take into consideration the attributions of tokens provided by different trasnformer models
in order to interpret how different phonological features in the patient’s speech contrisolution
the model’s decision. DEMET provides both server and client-side implementations. The
server-side implementation runs the model and explainer, along with an API that can easily
be accessed by the client-side implementation. The client-side has a user-friendly and easy-to-
use interface that allows for textual and audio input, and provides the user with the model’s
prediction and explanation. It can be used through the web application and the CLI tool
application.
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Figure 6.2: DEMET Application Architecture

DEMET allows for both textual and audio input. The Processor Object inside DEMET is
responsible for processing the input into an appropriate format that can be used for prediction
and explanation. The Processor Object is also responsible for extracting phonological features
from the input, which are then used by the ensemble explainer to provide an explanation for the
model’s prediction. The DEMET model is trained on a processed version of the DementiaBank
dataset, which contains trasncriptions of spontaneous speech from patients with dementia and
healthy controls. The ensemble architecture of the predictor inside DEMET is based on three
transformer models, namely BERT, RoBERTa and DistilBERT. These models were fine-tuned
on the downstream task of dementia detection, and there outputs were combined into a con-
catenated feature vector. This vector was then fed into different classifiers. The classifiers used
in the ensemble predictor are Random Forest, Gradient Boosting, Support Vector Machine,
Logistic Regression, Decision Tree Classifier, K-Nearest Neighbors and Bagging Regressor. Ul-
timately, the final prediction of the ensemble predictor is the majority vote of the predictions
provided by the classifiers. The explainer inside DEMET is based on LIME, which is a model-
agnostic explainer that provides local explanations for the model’s predictions. DEMET uses
all three transformer models attributions to provide three different explanations for the model’s
prediction which are then aggregated into a single explanation. The aggregated explanation
is the weighted average of the attributions of tokens provided by the individual explanations.
The weights are determined by different factors, such as transformer model performance and
qualitative metrics of the explanations provided by the different attributions of the transformer
models. DEMET’s performance is evaluated on a subset of DementiaBank manages an accu-
racy of 0.96%. The model’s explainability is evaluated through the use of different qualitative
and quantitative metrics, such as fidelity, simplicity, human evaluation and phonogical feature
importance to name a few. The results of the prediction along with the explanation for the
prediction made are provided to the user through the client-side implementation of DEMET
in a user-friendly and easy-to-understand manner. Our explanation uses the scores provided
by the ensemble explainer to color code the tokens in the input text, and highlight the most
important phonological features and words that contributed to the model’s prediction. The
color coding is based on the same color scheme used in the LIME explainer, which is orange
and red shades for dementia indicative tokens and blue shades for healthy indicative tokens.
DEMET’s next steps include further investigation into the ensemble predictor and ensemble
explainer framework to improve diversity of transformer models and classifiers, and further
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improvement into the phonological feature extraction scheme that was used in this research.
We hope to also gamify the user experience of DEMET further, by providing the user with a
more interactive and engaging experience and providing different cognitive assessment options
and tests that can be used to further evaluate the patient’s condition. The DEMET model
architecture is provided in the figure below.

Figure 6.3: DEMET Model Architecture

The user can input text or audio along with the corresponding flags and metadata into the
client-side application through the CLI tool or Web application to to receive the correspond-
ing prediction and explanation as DEMET’s output. The code implementations along with
the documentation for DEMET can be found in the following link. These client-side appli-
cations are designed as a proof of concept that can be further developed and integrated into
the COMFORTAGE project and are by no means the final product, or intended for clinical
use as of the time of writing this thesis. Significantly more research and development is re-
quired to ensure that DEMET is a reliable and accurate tool for dementia detection through
spontaneous speech, and the application of DEMET is subject to further validation and test-
ing in order to ensure that it meets the necessary standards for clinical use and user satisfaction.

Through the development of DEMET, we hope to assist the COMFORTAGE project in
achieving its objectives and outcomes, and provide a valuable contribution to the field of Ex-
plaianable AI applications for the improvement of quality of life in dementia patients. We
also hope to provide a path for further research and development into the subject of dementia
detection through spontaneous speech and urge the scientific community to further investigate
the potential of AI-driven cognitive assessment agents for dementia detection and monitoring.

6.4 Algorithms and Models: Implementation and Re-

sults

In this section we present the results of our work on DEMET, an explainable, AI-driven cog-
nitive assessment agent for dementia detection through spontaneous speech. We evaluated all
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stages of the DEMET pipeline, including the ensemble predictor and ensemble explainer frame-
work, and their subsequent components such as the transformer models and classifiers, as well
as individual explainable methods used for the ensemble explainer development. All evalua-
tions were conducted on a processed version of the DementiaBank dataset, were phonological
features provided by the clinicians were transformed into a more interpretable format called
CHA tokens. These tokens allowed for the generation of more interpretable explanations on
the model’s predictions.

6.4.1 Model Evaluation

Our metrics for evaluating model performace include accuracy, precision, recall and F1-score.

• Accuracy is the ratio of correctly predicted observations to the total observations. It is
a measure of the model’s ability to make correct predictions.

Accuracy =
CorrectPredictions

TotalPredictions

• Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations. It is a measure of the model’s ability to correctly predict positive
observations.

Precision =
TP

TP + FP

• Recall is the ratio of correctly predicted positive observations to the all observations in
actual class. It is a measure of the model’s ability to find all the positive observations.

Recall =
TP

TP + FN

• F1-score is the weighted average of Precision and Recall. It is a measure of the model’s
accuracy on a particular dataset.

F1 − score = 2 ∗
Precision ∗Recall

Precision +Recall

The initial stage of the DEMET pipeline was to find the best suitable format for the input
sequences that would be fed into the transformer models. We tested three different sizes of the
input sequences, ’short’ for 5 words per sequence, ’medium’ for 20 words per sequence, and
’long’ for 50 words per sequence. We evaluated the transformer models on the different input
sequence sizes to determine the best suitable format for the input sequences. The evaluation
was done on a non balanced dataset under 5-fold cross validation, providing 20% of the data
for testing. The evaluation results for all input sequence sizes are as follows:

Model Accuracy Precision Recall F1-score
BERT 0.66 0.70 0.68 0.69

RoBERTa 0.68 0.73 0.69 0.71
DistilBERT 0.64 0.64 0.84 0.72

Table 6.1: Evaluation Results for ’short’ Input Sequence Size
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Model Accuracy Precision Recall F1-score
BERT 0.74 0.79 0.76 0.77

RoBERTa 0.73 0.74 0.75 0.75
DistilBERT 0.69 0.73 0.80 0.76

Table 6.2: Evaluation Results for ’medium’ Input Sequence Size

Model Accuracy Precision Recall F1-score
BERT 0.73 0.74 0.69 0.71

RoBERTa 0.78 0.80 0.77 0.79
DistilBERT 0.78 0.96 0.68 0.80

Table 6.3: Evaluation Results for ’long’ Input Sequence Size

The results showed a clear improvement in model performance when using the ’medium’
and ’long’ input sequence sizes. We argue that the ’medium’ input sequences provided an
adequate amount of context for the attention-mechanism to work as well as enough samples
for the model to be tested on. The ’short’ sequences did not allow for the attention mechanism
to work properly, and the ’long’ sequences reduced the dataset size significantly, which after
balancing left us with a very small amount of samples to train and test on. The ’medium’ input
sequence size was chosen as the best suitable format for the input sequences for our DEMET
model. The dataset was then balanced and the transformer models were fine-tuned on the
balanced dataset. The evaluation was done on a balanced dataset under 5-fold cross validation,
providing 20% of the data for testing. The evaluation results for the transformer models are as
follows:

Model Accuracy Precision Recall F1-score
BERT 0.85 0.87 0.86 0.86

RoBERTa 0.86 0.90 0.81 0.85
DistilBERT 0.83 0.80 0.86 0.83
ClinicalBERT 0.81 0.91 0.71 0.79
BioBERT 0.82 0.85 0.81 0.83

Table 6.4: Evaluation Results for Transformer Models

Figure 6.4: Heatmap for balanced BERT

We then proceeded to train and evaluate different classifiers on the transformer models’
outputs. We refer to these models as single ensembles, as they combine the three concatenated
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feature vectors provided by the transformer models as input to the classifiers. The classifiers
used in this stage were Random Forest, Gradient Boosting, Support Vector Machine, Logistic
Regression, Decision Tree Classifier, K-Nearest Neighbors and Bagging Regressor. The evalu-
ation was done on a balanced dataset under grid search, providing 20% of randomly selected
data for testing. The same was also done for the aggregation of the classifiers as a majority
vote scheme. Aggregating the classifiers’ output provided us with a singular prediction for the
ensemble predictor. The evaluation results for the ensemble predictor are as follows:

Classifier Accuracy Precision Recall F1-score
Bagging Regressor 0.9616 0.9433 0.9609 0.9792
Random Forest 0.9666 0.9533 0.9662 0.9794

Gradient Boosting 0.9683 0.9533 0.9678 0.9828
Support Vector Machine 0.9616 0.9433 0.9609 0.9792

Logistic Regression 0.9600 0.9533 0.9597 0.9662
K-Nearest Neighbors 0.9633 0.9500 0.9628 0.9760

Decision Tree 0.9533 0.9366 0.9493 0.9623
Majority Voting 0.9666 0.9533 0.9662 0.9794

Table 6.5: Evaluation Results for Ensemble Predictor on 3 Transformer Models

The above results are the evaluation results for the ensemble predictor using three trans-
former models, BERT, RoBERTa and DistilBERT. They showed that the Gradient Boosting
classifier provided the best performance for the ensemble predictor, with an accuracy of 0.9683,
precision of 0.9533, recall of 0.9678 and F1-score of 0.9828. Through the evaluation process,
we determined that the low variance in classifiers did not allow for the ensemble predictor to
improve the model’s performance significantly. We argue that the ensemble predictor’s perfor-
mance could be improved through the use of more diverse classifiers, and furhter investigation
into the diversity of classifiers used in the ensemble predictor is required. In the figure 6.5 we
provide a heatmap of the Gradient Boosting classifier’s performance on the ensemble predictor.
The heatmap shows the confusion matrix of the classifier.

Figure 6.5: Heatmap for Gradient Boosting Classifier

We also evaluated the ensemble predictor using all five transformer models, BERT, RoBERTa,
DistilBERT, ClinicalBERT and BioBERT with minor improvements in the ensemble predic-
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tor’s performance. The evaluation results for the ensemble predictor using all five transformer
models are as follows:

Classifier Accuracy Precision Recall F1-score
Bagging Regressor 0.9683 0.9533 0.9678 0.9828
Random Forest 0.9766 0.9766 0.9766 0.9766
Gradient Boosting 0.9683 0.96 0.9681 0.9763

Support Vector Machine 0.9716 0.9633 0.9714 0.9796
K-Nearest Neighbors 0.9783 0.9733 0.9782 0.9831
Logistic Regression 0.9716 0.9633 0.9714 0.9796

Decision Tree Classifier 0.9633 0.9633 0.9633 0.9633
Majority Voting 0.9733 0.9666 0.9731 0.9797

Table 6.6: Evaluation Results for Ensemble Predictor on 5 Transformer Models

The results reinforced our initial hypothesis that the ensemble predictor’s performance could
be improved through the use of more diverse transformer models. Overall, DEMET’s perfor-
mance in predicting dementia through spontaneous speech yielded promising results and showed
the potential of transformer models and ensemble learning techniques in improving model per-
formance, which validated our initial hypothesis for this research. The single ensemble of the
Gradient Boosting Classifier provided an accuracy of 0.9683, which is a significant improvement
over the baseline transformer models’ accuracies of 0.87, 0.85, 0.86, 0.81 and 0.82 for BERT,
RoBERTa, DistilBERT, ClinicalBERT and BioBERT respectively, , along with improvements
in precision, recall and F1-score. The ensemble predictor’s performance could be further im-
proved through diversifying both classifiers used, but also the transformer models used in each
classifier respectively. The number of models used in the ensemble model should be investigated
heavily in order to deduce the optimal number of models that would provide the best perfor-
mance. Too few models and the ensemble predictor will not be diverse enough, too many and
the ensemble predictor’s judgements will be hindered by noise. For a majority voting scheme to
be effective, the base models need to be diverse and provide different outlooks on the data. If
all base models make similar errors and predictions, the majority voting scheme will not be able
to improve the model’s performance. Another approach to improving the ensemble predictor’s
performance is through the use of a weighted voting scheme, where the classifiers’ predictions
are weighted based on individual performance.

6.4.2 Explainability Evaluation

We evaluated three major explainable AI methods, namely LIME, Transformers-Interpret and
Anchor, to determine the most suitable method for the ensemble explainer framework. Our
metrics for evaluating explanations include both qualitative and quantitative metrics. We ex-
tracted the value of qualitative metrics through a survey that was conducted with clinicians and
domain experts. The survey was designed to evaluate simplicity, and human evaluation, along
with visual appeal and CHA token importance. We also evaluated the explainability of the
methods through the quantitative metric of fidelity, the explanation’s ability to approximate
the model’s decision and time of generation on GPU. Lastly, we included the qualitative metric
of ease of use, due to the existence of a user-friendly interface in the client-side implementation
of DEMET.

• Simplicity is the ease of understanding the explanation provided by the explainer. It is
a measure of the explanation’s ability to be easily understood by the user.
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• Human Evaluation is the measure of the explanation’s ability to be assessed as useful
and informative by the user.

• Visual Appeal is the measure of the explanation’s ability to be visually pleasing and
engaging to the user.

• CHA Token Importance is the measure of the explanation’s ability to highlight the
most important phonological features

• Fidelity is the measure of the explanation’s ability to approximate the model’s decision.

• Time of Generation is the measure of time taken by the explainer to generate the
explanation. and words that contributed to the model’s prediction.

• Ease of Use is the measure of the explanation’s ability to be easily generated by the
user.

We scored the qualitative metrics on a scale of 1 to 5, with 1 being the lowest score and 5
being the highest. The resulting scoring for the three explainable AI methods, along with the
quantitative metric we mentioned, are in the table below:

Type Metric LIME T-I Anchor DEMET
Qlt Simplicity 4 3 1 4

Human Evaluation 4 3 1 4
Visual Appeal 4 3 1 4

CHA Token Importance 4 4 3 4
Ease of Use 1 1 1 5

Qnt Fidelity 0.73 1 0.9 1
Time of Generation (GPU + 83 GB RAM) 55.47s 1.05s 0.11s 167.43s
Time of Generation (CPU + 16 GB RAM) FAILED 59.19s 9.43s FAILED

Table 6.7: Evaluation Results for Explainable AI Methods

The results showed that the LIME explainer was the most suitable for the ensemble explainer
framework, as it scored the highest in all qualitative metrics. The LIME explainer provided
the most interpretable and understandable explanations, along with the highest visual appeal.
All explainers managed to use the CHA tokens properly, and introduce their importance to the
end user in a satisfactory manner. Anchor scored lower in the CHA token importance due to
providing some examples in its explanations that were not tokenising the CHA tokens properly.
As far as the quantitative metric of fidelity is concerned, Anchor scored the highest, due to its
ability to provide a non linear approximation closer to the model’s prediction function. The
time of generation for Anchor took the least amount of time for both GPU and CPU, while
LIME took the most amount, and failed in generating long sequence explanations on CPU due
to memory constraints of the limited RAM of 16 GB. We tested the explanation generation
on a subsequence of the original testing sequence ?? containing 5 words, and the generation
took close to 5 minutes to complete. It is essential, due to computational constraints of using
explainable AI methods, that services such as DEMET and the VHP of COMFORTAGE to
run on high performance computing systems, possibly using microservices and cloud computing
to provide the necessary computational resources for the model’s prediction and explanation.
After this assessment process, we determined that DEMET should use the LIME explainer for
the ensemble explainer framework, as it provided the most interpretable and understandable
explanations, even though it lacked in the quantitative metrics. Our key reasoning for choosing
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LIME was that time of generation is not as critical of a factor as the qualitative metrics, since
real time generation is not crucial for diagnosis and treating dementia. Also fidelity is being
bypassed by the ensemble predictor and the explainer’s approximation will not be a factor in
DEMET’s final output. If time of generation becomes a critical factor, we propose the use of
Transformers-Interpret instead, as a faster alternative to LIME with similar performance in the
qualitative metrics. DEMET scored the same as LIME in all metrics due to its architecture
being a wrapper for multiple LIME explainers. DEMET was significantly easier to use that the
other explainers, since it provided a user-friendly interface that allowed for easier access to the
model’s prediction and explanation without needing to write the code implementation for the
explainer. It is important to note that the ensemble explainer framework is a proof of concept
and is subject to further investigation and development in order to provide more comprehensive
and accurate explanations.

6.5 Discussion

The results of our work on DEMET, an explainable AI-driven cognitive assessment agent for
dementia detection through spontaneous speech, showed some promising results and provided
valuable insights into the potential of AI-driven cognitive assessment agents. The ensemble
predictor provided an accuracy of 0.96% on the DementiaBank dataset, which is a significant
improvement over the baseline transformer models’ accuracies. Our analysis of the CHA to-
kens showed that phonological features are important in generating explanations for clinicians
and should not be omitted from the processed datasets used to train these models. A future
direction of creating MVCHA tokens through multi-dimensional analysis of the CHA tokens
is proposed, in order to sway the tokens towards the most appropriate class between demen-
tia and non-dementia. The ensemble explainer framework provided valuable insights into the
model’s decision-making process and showed the potential of using ensemble learning techniques
to improve model explainability. Through the increase of diversity in the ensemble explainer
framework, we hope to provide more comprehensive and accurate explanations, with a focus
on the importance of the CHA tokens in the input sequences. The computational constraints
placed forth by the explainable methods showed that such systems require high performance
computing systems to run efficiently as commercial applications and services. Our survey, de-
spite its small sample size, showed that clinicians and domain experts found the research to
be applicable and useful in the field of dementia detection and monitoring, not so much for
clinical use, but for commercial applications and services, to provide tentative individuals with
a non-invasive, cost-effective and efficient means of self-assessment and subsequent consultation
with a healthcare professional. They also stressed the multi-faceted problem of dementia and
frailty, and the need for constant monitoring of patients besides the use of automations and
AI-driven assistance. The COMFORTAGE project aims to provide a solution to this problem,
and we hope that DEMET can provide some assistance in achieving the project’s goals.
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Chapter 7

Ethical and Legal Considerations

Healthcare is in the midst of a profound transformation, being driven by the increasing amount
and availability of data, the development of new and robust technologies and algorithms, and
the increasing demand for personalised and precision medicine as the vision of Healthcare 5.0
comes to fruition. New discoveries and breakthroughs are being made in the field, and there
seems to be no sign of stopping this progress. AI has proven to have the potential to become a
valuable ally in this tranformation, providing evidence based insights and decision support to
clinicians and healthcare professionals, enabling them to provide better healthcare services and
import patient outcomes [152]. These improvements are prevalent in the areas of clinical diag-
nosis [18], drug discovery [154] [169], operational efficiency [78] and personalised healthcare [91].

It is apparent that such technologies can not safely and in good conscience be left unchecked.
It is of paramount importance for a legislative framework to be put in place to combat what
researchers and clinicians have stressed when discussing the impact of such technologies on
healthcare and medicine. This framework should be designed to protect patients from uneth-
ical and miscalculated practices, and to ensure that the use of AI is in line with the ethical
principles of healthcare and the betterment of patient outcomes that is, if AI is to be imple-
mented and attached to clinical diagnosis.

AI healthcare is still in its infancy stage, but governments around the globe have shown
great interest in the potential that it shows, investing heavily in the development of AI tech-
nologies [156] [171] [62]. That can prove problematic, granted that there is still a vast amount
of uncertainty surrounding these ethical implications, namely biases, fairness and privacy. Re-
searchers should now, more than ever before, focus their attention on the task of providing
insight to governments about the implications of AI in healthcare, such the governmental bod-
ies can legislate towards fair, ethical and safe use of AI.

7.1 Roadmap of ethical concerns

The map introduced by Mittelstadt et al. [109] provides a comprehensive overview of the ethical
concerns that are associated with the use of AI in healthcare. The map is divided into three
main pillars: the epistemic, the normative and the overarching ethical concerns.

1. Epistemic concerns: AI techniques have shown to be able to surpass human capabil-
ities when it comes to evidence based decision making, and the ability to process and
analyse vast amounts of data, where humans seem unable to do so. AI is scalable and can
recognise patterns that are not visible to the human eye and intuition. This is a great
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advantage, but it can be taken as fact, but rather as a support tool. Models can suffer
from overfitting, miscalculations and lack of validation by external professional expertise.
All these issues raise questions when it comes to the scientific backing of AI in healthcare,
which is an obvious safety concern.
At the individual level, misdiagnosis and mistreatment of a patient can happen due to a
wearable device with diagnostic capabilities, or a clinical decision support system that is
taken at face value by a health professional. Research has shown that health professional
can have a tendency of trusting the decisions of automated systems without critically
assessing their output [32]. This can also lead to drop in skill level of health professionals
[31], as they become more reliant on these systems and technologies.
These concerns can escalate to a societal level, where miscalulations in global health
crises can have catastrophic consequences. A distortion of evidence of spreading diseases
and viruses much like the influenza outbreaks [79] can lead to a lack of preparedness,
mismanagement of resources and the distress of the people. These outcomes can have a
significant impact on the global economy and the general trust in the healthcare system,
government and academia.

2. Normative concerns: Arguments have been made and research is there to support
that AI can produce unfair and biased outcomes for patients where an action or decision
can have different effects depending on the group of people it applies to. This is a ma-
jor concern of discrimination and fairness, where a model can learn to prioritise certain
groups of people over others, who may have better predicted outcomes by the model [176]
[29]. Another concern is the lack of patient oversight over the the collection of data being
gathered passively by AI systems and IoT devices [147] which may or may not be used
with ill intent. This predicament does not allow for the individual to have control over
their own personal data, or have a say in the way it is being used while simultaneously
being unable to assess and exert their own say as to how treatment is being administered.
Automations and AI systems in the field of healthcare can also strongly impact the rela-
tionship between healthcare professionals and patients. It is important to note that with
excess automation of AI systems and diagnostic algorithms, healthcare can become de-
humanised by the lack of human interaction and the feeling of not participating strongly
in the decision making process for the treatment of patients. This can obviously reduce
the capabilities of professionals, and also their rigour to provide the best care and service
possible for their patients. Clinical practice, after all, is a process that is heavily based
upon interactions between clinicians and patients, with constant evaluation, reassessment,
trial and error to find the best possible treatment and provide favorable outcomes thus
one should not base the entirety of the assessment process on the decisions of automated
systems.
At a societal level, it is important to stress that algorithms and models are trained on data
received by extensive research and sampling, which may be biased upon the population
that is derived from. This produces models and algorithms that can help certain groups
of people,able to generate enough data to train these models, and harm in a lot of cases,
patients from other walks of life [156].
We thus arrive to the conclusion that there needs to be a clear and concise framework that
delegates the amount of influence automations and AI systems can have in the decision
making process of clinicians so that the risk of all these concerns can be reduced [117] [1].

3. Overarching concerns The concerns expressed in the previous excerpts are not iso-
lated as mere technicalities in the ethics of healthcare, but rather paint a picture for a
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very serious and complex issue that needs to be addressed. It is important to be able
to address liabilities in these matters for when mistakes inevitably occur, and the ethics
of responsibility and accountability play a significant role in this aspect [99]. The inter-
action between professionals, automated systems and AI support tools can make this an
intricate matter, as it is difficult to determine who is responsible for the decisions that
lead to mistreatment or misdiagnosis of a patient.
There needs to be a clear path to trace back to the source of the problem, and to be able to
hold the responsible party accountable for their actions. This is a matter of transparency
and trust, and it is important to be able to provide a clear and concise explanation to
the patient as to why a certain decision was made, and who is responsible for it.
Danis and Solomon [97] make an argument for enabling patients to take action in their
own healthcare, which is a matter of autonomy and informed consent on one’s health and
treatment. AI systems and automations can make this process very approachable by using
IoT devices and wearables to gather data and provide insights to the patient. This can
cause a multitude of issues. For one it can produce a conflict of interest between patient
and automations where the patient may act upon ill decisions made by the system, thus
causing harm to themselves. Lack of traceability and backtracking would make it difficult
to hold the responsible part accountable since the authority assessing the situation would
not be able to determine whether the patient did not adhere to the recommendations of
the system, or if the system made a mistake.
The above aformentioned implications can scale to a larger issue of bias where certain
groups of people can be assumed to care less about their general health and well-being
and that they would be less likely to act upon decisions made by such systems. Koerber
et al. [63] suggest that wrist-worn wearable devices have shown bias towards darker skin
tones, when it comes to predicting arrythmias using LED reflections on the skin and thus
creating the above assumption. This can lead to a general consensus that these groups
of people are not to be trusted to act upon their own health, causing discrimination and
unfair treatment by health institutions and insurance companies [104].
There needs to be regulation imposed by governing bodies to assess the responsibilities of
all parties responsible for the creation, distribution and use of AI systems, from the devel-
opers and manufacturers, who need to ensure the quality of predictions of their products,
to healthcare professionals who need to use these products in a responsible manner.

7.2 Patient privacy and consent

Privacy is defined as a human right by the United Nations [115] in the Universal Declaration
of Human Rights, that no one is to be subjected to arbitrary interference with their privacy,
family, home or correspondence. Laws and regulations have been put in place to protect these
rights, like the Health Insurance Portability and Accountability Act (HIPAA) of 1996 [35] but
navigating the ethical implications of AI in healthcare even with these laws in place can be
challenging. Firstly we should begin by explaining some core principles of privacy and consent
as they relate to AI defined by HIPAA which is the regulatory entity that we will use as base
to understand patient privacy and consent in more detail. Note that there are other entities
with different regulatory systems in place, such as the GDPR in Europe where regulations may
vary. The core principles are as follows:
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7.2.1 Core principles of privacy and consent

1. Protected Health Information (PHI) is any information gathered by healthcare pro-
fessionals during the course of providing health care services to a patient such as diagnosis,
treatment, provisions and payments, that can be used to identify a person. PHI is used
and distributed to researchers for necessary researchers and HIPAA regulations allow for
such uses. PHI is clearly defined by HIPAA and is subject to the Privacy Rule. PHI is
identifiable by 18 distinct identifiers and any data which does not contain any of these
identifiers is not considered PHI and is not subject to the HIPAA guidelines for PHI.
The 18 identifiers are as follows: names, dates, addresses/zip codes/geocodes, telephone
numbers, fax numbers, email addresses, social security numbers, medical record numbers,
health plan beneficiary numbers, account numbers, certificate/license numbers, vehicle
identifiers and serial numbers, device identifiers and serial numbers, IP addresses, biomet-
ric identifiers, full face photos and any other unique identifying number, characteristic or
code.

2. Covered Entity is a healthcare provider, health plan, or healthcare clearinghouse that
uses and transmits PHI in electronic form. Covered entities are required to comply with
the Privacy Rule and the Security Rule.

3. Business Associate is a person or entity that performs certain functions or activities on
behalf of a covered entity, such as billing, claims processing, data analysis, or legal services.
Business associates are required to comply with the Privacy Rule and the Security Rule
and are required by law to have a Business Associate Agreement in place to mitigate
the risk of using and disclosing PHI in a way that does not protect the patients privacy.
This agreement covers the sharing of data between the covered entity and the business
associate.

4. The Privacy Rule established a a set of national standards for the protection of PHI,
and is enforced by the Department of Health and Human Services (HHS). The Privacy
Rule applies to health plans, healthcare clearinghouses and healthcare providers who
transmit health information in electronic form. The Privacy Rule requires that these
entities implement safeguards to protect the privacy of PHI, and to provide patients with
a notice of privacy practices that explains how their PHI will be used and disclosed. The
Privacy Rule also gives patients the right to access their PHI, to request corrections to
their PHI, and to request an accounting of disclosures of their PHI.

5. The Security Rule is a set of national standards for the protection of electronic PHI,
and is enforced by the HHS. The Security Rule requires that covered entities imple-
ment administrative, physical, and technical safeguards to protect electronic PHI, and to
conduct risk assessments to identify vulnerabilities in their systems. The Security Rule
also requires that covered entities implement policies and procedures to prevent, detect,
contain, and correct security violations.

6. Consent for usage and disclosure of PHI falls into three separate categories under HIPAA
regulations. The first one is when no consent is required to use PHI, which is an exception
when it comes to public health and safety concerns, a covered entity’s usage to provide
treatment, payment and healthcare operations, and to prevent or lessen imminent danger
or pain to a person or the public, for example disclosing information to law enforcement
in regards to a criminal activity. The second category of consent is when verbal consent or
acquiescence is required to use PHI, for the disclosure to family members, friends or other
persons involved in the patient’s care or disclosures in facility directories where patient
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data is stored to be displayed for healthcare services. For when a patient is incapacitated
or in an emergency situation, covered entities have to ability to disclose information
without the patients consent if they determine that such actions are for the betterment
of their health and well-being by their own professional judgement. Lastly, the third
category of consent is the requirement of written and explicit consent by the patient for
the usage and disclosure of PHI for general requirements, with exceptions being limited
to the ones mentioned in the first category, phychotherapy notes, marketing and sales
of PHI, and research purposes. In order for a written consent to be considered valid, as
defined and regulated by HIPAA, the form of consent must contain the information to
be used, the persons and entities to use said information, the purpose of usage, a date
of expiration of usage, and lastly a place where the patient can provide their name and
signature.

7. Breach is the acquisition, access, use or disclosure of PHI in a manner not permitted by
the Privacy Rule which compromises the security or privacy of the PHI. Covered entities
are required to notify affected individuals, the HHS, and in some cases the media if a
breach of unsecured PHI is detected. Financial and or criminal penalties for the knowing
and willful neglect of the Privacy Rule can be imposed on the perpretrator.

7.2.2 Research and development under privacy regulations

In order for researchers to be able to use PHI in the development of AI systems, they can
proceed with one of two pathways. The first one is to deidentify the data, or the Safe Harbor
method, which means to remove any and all occurrences of the 18 identifiers that are used to
identify whether data is PHI or not. Once a researcher has managed to completely deidentify
the data, they are free to use it in any way they see fit, as it is no longer subject to the Privacy
Rule of HIPAA. This allows for complete freedom to train, validate, test and distribute AI
technologies without restrictions. There’s three main downsides with this method, the first one
being that one has to deidentify the data in the first place, which can be a rigorous task. The
second one is to ensure the deidentification of data has been successful in its entirety, as any
remaining identifiers can still be used to identify a person and thus make the data unusable.
And the third one is that by striping parts of the data the model may not be as robust as
it could be, as it is not trained on the entirety of the data. Note that researchers and AI
developers are considered Business Associates and are required to obtain a Business Associate
Agreement that states information about how the data is going to be used and for what pur-
pose. This approach is not without serious risks. Namely, there is a risk of reidentification of
data by malicious actors, or the merging of non PHI data with other datasets to produce PHI
and assume the ability to identify a person. Often times it is not expected by covered intities
to be able to safeguard against such techniques and thus the deidentification of data is not
a foolproof method. Additional risks include the exploitation of loopholes and grey areas in
the Privacy Rule, and what really constitutes research and development for the betterment of
healthcare and patient outcomes by corporations and business entities.
A second pathway is to obtai written and explicit consent from the patient to use their PHI
in the development of AI systems as we discussed in the previous section concerning consent
and its categories. With this method challenges arise when it comes to collecting and obtaining
consent from a large number of patients in order to have a diverse and representative dataset
capable of training a model sufficiently. In addition to the challenge of obtaining the data, re-
searchers have to be accepted by permitted disclosure under specific guidelines and regulations,
often rigorous and time consuming.
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7.2.3 Privacy preserving AI techniques

Covered entities are required by law to make resonable efforts to disclose the minimum amount
of PHI necessary to accomplish an intended purpose such as AI development. This poses a
significant challenge to researchers and developers alike, since it is in the very nature of robust
and complicated models to require vast amounts of data to be able to make accurate predictions
and produce reliable outcomes. This duality of requirements can be a significant barrier in the
breaching of cutting edge tech and also the assurance of patient privacy and consent.
Privacy preserving AI techniques have been developed and are still a subject of research to
help mitigate the issues of privacy in health related data. Pati et al. [135] propose the use of
federated learning to train their model collaboratively without the need to share data between
institutions. This allows for global scale training of models and diversity and complexity of
data beyond what a single institution can provide. Yoon et al. [12] use a different approach
by proposing the use of synthentic data. They introduce a framework for generating highly
realistic and privacy-preserving synthetic EHR data called EHR-Safe, combining sequential
encoder-decoder networks with adversarial training while preserving the aspects and properties
of the original data. A similar approach is taken by Kumar et al. [8] who use generative
adversarial to produce synthetic data which are in turn solely used as the benefactor for the
training of a deep learning model for glaucoma detection. One would be remiss not to mention
the work of Chambon et al. [33] who leverage the Stable Diffusion model to generate domain
specific imagery. Their approach consists of exploring various sub-components of the Stable
Diffusion pipeline to fine tune their proposed model to generate synthetic medical images.
Synthentic data introduces a new set of posibilities by allowing the training of models on PHI-
esque data without the need to disclose any real PHI [61]. From a privacy perspective, there
is an issue to be argued about how much the synthetic data is trully representative of the real
data, and also how much of the data is trully synthetic.

Researchers AI Method Description
Pati et al. Federated

Learning
Desentralised training of models without
sharing data

Yoon et al. EHR-Safe Generation of synthetic EHR data
Kumar et al. Generative

Adversarial Net-
works

Generation of synthetic data for glaucoma
detection

Chambon et al. Stable Diffusion Generation of synthetic medical images

Table 7.1: Privacy Preserving AI Techniques

7.3 Bias and fairness in AI algorithms

Healthcare is constantly adopting more AI use cases for detecting disease, predicting patient
outcomes, generating treatment plans and supporting clinicians and healthcare professionals to
make better decisions in order to provide better care and services to patients. As we already
discussed, AI has been a major factor for progress in the area of healthcare but is not without
fault and ethical implications. Questions about fairness have been plaguing researchers, de-
velopers and governing bodies, as AI systems often show inconsistent performance in different
groups of people or propagate pre-existing biases in the data they are trained on. Data is col-
lected by humans, and humans are inherently biased, which is a reality that can not be ignored.
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We will now delve deeper into the ethical implications of bias and fairness in AI algorithms.

7.3.1 Core concepts of bias and fairness

Let us first set the stage by defining some core concepts that are relevant to the discussion as
it pertains to bias and fairness in AI algorithms.

1. A biased algorithm is an algorithm that demonstrates significant differences in perfor-
mances across different groups of people based on:

(a) their demographic characteristics, such as race, ethnicity, age, gender, sex etc.

(b) their socioeconomic standing, such as income, education, insurance status

(c) their geographical location, such as urban or rural areas

A biased algorithm can be biased towards a single element of the above, or a combination
of them.

2. Equality is the giving of equal resources and opportunities to all individuals but does
not ensure equal outcomes for all.

3. Equity takes into consideration the differences of people in a socioeconomical context
and provides resources and opportunities so that people can reach equal outcomes [122].

4. Disparity refers to the differences in outcomes in the context of fairness.

5. Type I Error is a false positive error where the algorithm predicts a positive outcome
when the true outcome is negative.

6. Type II Error is a false negative error where the algorithm predicts a negative outcome
when the true outcome is positive.

7.3.2 Sources of bias in AI algorithms

There are a lot of different ways that bias can infiltrate an AI algorithm, and it is important to
be able to identify where in the process of creating and distributing AI algorithmic solutions
bias can be introduced.
The first way of introducing bias when trying to solve a problem is essential asking the wrong
question. Strategic objectives in the implementation of AI algorithms in health should reflect
health equity and justice which means that researchers and developers alike should be rethinking
their approaches to developing AI systems and automations. Their strategy should involve
moving from aggregated results such as high scoring models and growing service line volumes
to more granular and patient-centric outcomes such as models that perform equally well across
different and diverse populations and solutions that are accessible to all communities.
The second way is how bias can be introduced in the data that is used to train models for
healthcare [114]. A lot of times models make crucial mistakes in the deployment stage of their
lifecycle where they are asked to make predictions and support decisions for clinicians in real
world situations and environments. It is obvious that mistakes like these can be mitigated
if the data used for the training of said models is up to the task at hand. A comprehensive
scoping review done on the subject by Daneshjou et al. [124] found that the majority of studies
reviewed for detecting skin disease lacked significant information concerning the data used for
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training and validating AI models like ethnicity or skin tone. A significant minority of the
datasets where publicly available and close to 40% of datasets used for developing cutting edge
AI tech where below the standard for labeling and annotation. The researchers concluded
that the datasets being used for development of AI technologies lack transparency, have low
standards and are unable to assess patient diversity. Some very interesting initiatives have
been taken by various researchers to address the issue of bias in datasets. Namely the Data
Nutrition Project is a driving force in the development of frameworks for assessing the quality of
datasets used for training AI systems [67] enabling researchers to select the best datasets before
developing their models with the the Dataset Nutrition Label. Their focus is on understanding
the data by proper feature selection and data preprocessing, taking into account privacy, data
completeness and proper representation. The knowledge of bias in datasets should strongly
impact the way that research and development of AI models and systems is conducted, driving
approach, methodology and standarisation of data collection, curation and preprocessing to
produce the best possible software.
Yan et al. [100] make a strong argument for the incomplete capture of patient outcomes in
electronic health records, which is another way that bias can creep into AI model decision
making. Essentially the issue lies with the fact that datasets included in the training of AI
systems should only contain data causal to the proper identification of a disease or condition,
but often times data contains differential observability factors, for example race, that cause
algorithms to be biased. These factors are unobservable in the data and thus researchers can
not account for them in the testing process of the model and so they move forward with the
assumption that there are no such differential observability concerns. Another issue with EHR
is their inability to capture certain intricacies with social determinants of health and aggregated
health statuses of patients, which is combated by using proxy variables. These proxy variables
are not always accurate and can introduce bias themselves. In its essence the issue lies in
the actual way healthcare is provided to the patients and this leads to an incomplete capture
of patient information. This can lead to algorithms that perpetuate these findings and thus
continue this cycle of bias.

7.3.3 Mitigating bias in AI algorithms

By discussing the sources of bias in AI algorithms, we should now be able to address ways to
mitigate bias and ensure fairness in AI algorithms in healthcare. Genevieve Smith and Ishite
Rustagi [146] in their leadership playbook, inform on the importance of setting up a diverse and
multi-disciplinary team to develop AI systems. Engaging individuals in the ethics and social
sciences space as well as domain experts in healthcare and artificial intelligence that prioritise
equity and justice. Much like the Data Nutrition Project, they also stress the importance of
practicing responsible dataset curation and preprocessing, along with establishing policies for
corporate governance, leadership and accountability. Kerstin et al. [161] propose a roadmap
outlining how bias can be mitigated during the entire lifecycle of an AI system, from its incep-
tion to its deployment. The roadmap is divided into four different stages: the data collection
and preparation stage, the model development, the model evaluation and lastly the deployment
of the model. During each step of the way, the researchers propose specific actions to be taken
to ensure that bias is not introduced into the final product. PROBAST [7] is a tool that can be
used to assess the risk of bias in prediction model studies and can be used to evaluate the qual-
ity of the data used for training AI systems during the data collection and preparation stage.
In the development stage Brian Hu Zhang et al. [170] propose the use of adversarial learning
to reduce demographic bias, such as gender or zip code, in AI systems drawing from the work
of Hardt et al. [60]. This is done by simultaneously training a predictor and an adversary for a
given input X, to predict an output Y, for example an income bracket, and a protected variable
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Z, for example gender. During the model evaluation phase, an obvious solution would be to use
explainable and intrepretable solutions, much like the ones mentioned in our literature review
3.4. Lastly, after the model has been developed and evaluated, during the deployment stage of
its lifecycle, researchers and developers should be monitoring the model for differences between
patient cohort in clinical practice and patient cohort in the training data, a phenomenon called
data shift, which we will address in detail later in 7.4.3. This way errors to the model’s deci-
sion making can be detected and corrected. The researchers stress that these strategies should
become best practices in the development of AI systems in healthcare to ensure that bias is
mitigated and fairness is ensured.

7.3.4 Frameworks to reduce bias in healthcare

Researchers are well aware of the implications of bias in AI algorithms and are working towards
developing ways to reduce it for better patient outcomes. Ben Green [56] makes a serious case
for ethics in the tech industry lacking the backbone to address some hard hitting issues when
it comes to the development of AI systems, as some corporations address ethics in an abstract
manner, and their positions are lacking in explicit commitments to fairness and justice with
proper calls to action. Large corporations and industry giants like Google AI have proposed
various frameworks enabling developers to assess the fairness of their data and models to battle
claims like the ones Green has made. One such framework is the Fairness Indicators [127].
This framework is a suite of tools that can generate metrics for transparency reporting and
fairness analysis, which helps developers produce models more responsibly. The toolkit is able
to compute confidence intervals which can detect disparities in the model’s performance across
different groups of people. The What-If Tool [128] is another tool developed by Google AI,
which allows developers to evaluate their models in hypothetical scenarios by changing the in-
put stream of data and observing model behaviour. These two tools can be intergrated together
to provide a comprehensive solution for assessing fairness and bias in the development of AI
systems. Saleiro et al. [137] propose a similar framework called Aequitas, which is easy to
use and apply to one’s machine learning workflow to assess bias and fairness in the data used
for training models. The framework tests data for bias across different groups of people and
provides interpretable explanations for the results of the test. IBM AI has also been a preva-
lent force in the space with the development of the AI Fairness 360 toolkit [25] which contains
metrics for assessing bias and fairness in data and models, and algorithms for mitigating bias
in AI systems as well as Watson OpenScale [71] which is a development and deployment plat-
form that provides solutions for bias detection in model data and decision making, regulation
compliance auditing and model explainability. IBM has also developed the AI Explainability
360 toolkit [20] which provides a comprehensive set of algorithms for model explainability and
interpretability. Another open source tool is Fairlearn [163] which is a Python package that
provides help in considering a system’s societal context based on the work of Ben Green.
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Developer Method URL
Google AI Fairness Indica-

tors
https://www.tensorflow.org/tfx/

guide/fairness_indicators

Google AI What-If Tool https://pair-code.github.io/

what-if-tool/

Saleiro et al. Aequitas https://github.com/dssg/aequitas

IBM AI AI Fairness 360 https://github.com/Trusted-AI/

AIF360

IBM AI Watson Open-
Scale

https://client-docs.aiopenscale.

cloud.ibm.com/html/index.html#

IBM AI AI Explainabil-
ity 360

https://github.com/Trusted-AI/

AIX360

Microsoft Fairlearn https://fairlearn.org/

Table 7.2: Bias Reduction Frameworks
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7.4 Compliance with healthcare regulations

It is apparent that compliance with healthcare regulations is of paramount importance when
it comes to the development and deployment of AI systems in healthcare after discussing all
the ethical implications in privacy and consent, bias and fairness in the above excerpts. Safety
and efficacy of AI systems are at the core of the regulatory frameworks in place to ensure that
patients are protected from harm. The Food and Drugs Administration in the US has been at
the forefront of this initiative, proposing regulatory frameworks for modifications in AI systems
[47] based on the risk categorisation principles of the International Medical Device Regulators
Forum (IMDRF) [48] as well as released an action plan that outlines a multi-faceted approach
for the entire lifecycle of AI products and systems [46] to aid in the development of systems
that assist in better patient outcomes.

7.4.1 AI Act

Regulatory compliance is about ensuring that bussinesses and organisations adhere to the laws,
regulations and specifications which are relevant to their business activities and operations. We
have already discussed some of the regulations concerning patient privacy and consent placed
forth by HIPAA in section ??, which have been a great aid in ensuring safety and efficacy of AI
systems in healthcare. The General Data Protection Regulation (GDPR) in Europe has also
produced valuable efforts in the protection of patient data and privacy, driving the development
of AI systems and promoting accountability and transparency in the space. Europe has also
been the first to propose a comprehensive and unified regulatory framework in the Artificial
Intelligence Act [34] which aims to define a global standard for the development and use of AI
systems in all domains and sectors. Many other countries have followed suite to impose their
own policies in relation to Artificial Intelligence. The Act assigns applications of AI into four
separate and distinct categories: unacceptable risk, high risk, limited and minimal risk. AI Act
explicitly states the banning of all systems deemed of unacceptable risk by the Commission, for
their potential to seriously harm the safety, livelihoods and rights of individuals. This european
legislative framework also states a comprehensive list of high risk applications that are to be
subject to strict and rigorous requirements and obligations before they can be deployed for use.
In addition to the above, the Act clearly defines the obligations that providers of AI systems
have to adhere to, which state many of the prefered requirements that we have already discussed
in the previous sections about privacy and bias. These matters include:

1. adequate risk assessment and mitigation systems in place

2. the usage of high quality data devoid of discriminatory biases

3. proper logging during development lifecycle activities for traceability and transparency

4. Clear and concise documentation stating the purpose, functionality and limitations of the
system

5. Clear and concise documentation for the deployer and user of the system

6. Appropriate human oversight and control mechanisms in place for risk mitigation and
assessment

7. High level of robustness, accuracy and security
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The case of limited risk is mostly associated with lack of transparency. The Act intro-
duces clauses concerning transparency obligations of developers and providers in general when
it comes to informing the public about content generated by AI systems, like chatbot com-
munications and deep fakes. It is the providers’ responsibility to ensure that their AI systems
are in fact identifiable as such. These steps are taken to promote trust between the public
and corporations developing such systems. Lastly, on the low or no risk side of the spectrum,
there are no specific regulations imposed by the Act. Applications in this category include AI
systems used in entertainment and spam filtering, and compose the majority of AI systems in
use today in the EU.

In addition to regulations and requirements imposed by the AI Act, they offer a pipeline for
providers to follow to be in accordance with the legislation. Once a provider has developed an
AI system, they are required to undergo a conformity assessment procedure by the Commission
to ensure compliance with the Act. In cases where domain specific knowledge is required, a
notified body is also to be involved in the assessment process. The system is then registered
in the EU database for AI systems. Once the conformity assessment is completed, a declara-
tion of conformity is issued upon the system which bears the CE marking

1
and the system

is then ready for deployment. In the case of notable changes to the system, it is required by
the provider to undergo a new conformity assessment procedure to ensure that the system is
still in compliance with the Act. Once a system is deployed, it is up to all parties involved to
ensure that the system is functioning as intended with systems in place to monitor and assess
the system. Perperteators of the Act are subject to fines and penalties for non-compliance.
The AI Act is expected to be fully implemented by Spring of 2024.

7.4.2 Corporate Adaptation

It is apparent that with new legislative bodies in place to regulate the development and deploy-
ment of AI systems and automations, corporations and businesses need to adapt in order to be
able to comply with the ever changing regulatory landscape. Corporations are strongly encour-
aged to adopt a culture of ethical responsibility when it comes to AI, in order to showcase their
commitment to the safety and well-being of the public. It is not the first time that corpora-
tions have been faced with a paradigm shift in regulatory frameworks, where they were tasked
to adapt to new standards and practices. Once such occurrences take place, corporations are
required to reevaluate their business models and strategies, and those who manage are viewed
as socially responsible and ethical which can be a great promotional leverage. The companies
that are delayed in their compliance can fall behind in the market and lose their competitive
edge. So it is in everyone’s best interest move forward in accordance with the new regulations.

There are specific steps that a corporation can take to ensure compliance with the latest
regulations. In the executive level, corporations should start their process by aligning their
business strategy with the goal of creating responsible AI applications along with resource al-
location and proper budgeting for the development of said systems, such as hiring new and
capable talent and investing in the latest tech. In addition to this, corporations should also
establish an ethics committee for the reviewing of ongoing projects. Teams involved in the
development process should be diverse and multi-faceted, including domain experts, lawyers
and business professionals. Training and education should be provided to all members of the
team to ensure adherence to established regulations and standards. Education should also aim
to instill a culture of ethical responsibility and AI governance. At the operational level, teams

1
CE marking is a certification mark that indicates conformity with health, safety, and environmental pro-

tection standards for products sold within the European Economic Area (EEA).
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are advised to set up workflows and processes that ensure that all requirements by governing
bodies are met. These processes entail collecting, processing and storing data, assessing model
performance and safety, logging activities and producing reliable documentation and reports.
These steps can greatly increase a corporation’s ability to comply with regulations while also
promoting a culture of ethical responsibility in building AI software.
Consulting firms and legal entities have also entered the space and have started offering ser-
vices to corporations in order to aid them in their compliance with regulatory systems and
standards offering software solutions and tools, automating a lot of the tasks that are required
by corporations.

7.4.3 Regulatory Challenges

It is apparent that navigating through the legislative landscape can be challenging for corpora-
tions in many ways. It requires great planning and resources to manage to adhere to regulations
every step of the way but it is also a great opportunity for corporations to move the needle
forward when it comes to responsible Artificial Intelligence. Deriving from the above discussion,
it is clear that data is a significant driving force in AI software development. The quality of
data often dictates the quality of the model and the outcomes it produces. But what happens
when data becomes outdated or irrelevant? Zech et al. [125] found that the performance of a
deep learning model for predicting pneumonia disease from chest x-rays decreased significanlty
when altering deployment settings and environments. Schulam et al. [141] trained a model on
lab clinical EHR to predict risk of an adverse event

2
on data from 2011-2013, which tested well

on data for the following next year, but had a significant drop in performance when testing on
data from 2015. This effect is known as data shift and is a significant challenge for AI systems
in industry, and as it so happens, it is one of the main reasons why developers have to reassess
their models with the authorities after deployment.
The problem of data shift arises from differences in the environment and settings a model was
trained on and the environment and settings it is deployed on. These changes can occur by
changes in environment over time, i.e. outdated, or differences caused by situational factors in
deployment, i.e. irrelevant. Models who are trained on data that are subject to data shift can
begin over time, to generalise poorly and produce inaccurate predictions [148].
We will focus on the specifics of data shift in regards to healthcare. The main reasons as to
why data shift happens in healthcare mostly has to do with three main categories of interest,
namely changes in technology, changes in patient populations and setting and lastly change in
behaviour [51]. Changes in technology usually occur when there is a shift in a piece of equip-
ment used or an infrastracture changes. Changes in patient populations and setting refers to
demographic changes in population or changes in disease prevalence and incidence. Behavioural
changes are associated with how patients interact with the healthcare system, how the clini-
cians change their practices and how incentives are structured and altered.

There are two main pathways to combat data shift. The first one involves reacting to the
changes in data by retraining the model on new data, specific to all target environments, shifted
towards the proper distributions in accordance with the changes in setting and environment.
This requires a clear understanding of the target domain, plethora of data and constant mon-
itoring and maintenance of a model. Now this approach can be costly and time consuming,
factors that can be a significant barrier for corporations to overcome when it comes to large
scale software. Gretton, in his work [10], and following this approach, matches the distribu-
tions of training and testing data in a high dimensional space by using a kernel mean matching

2
An undesired effect of a drug or other type of treatment, such as surgery
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technique. Sugiyama et al. [98] propose a similar approach by using a covariate shift correction
based on importance weighting. In critically important situations it is very important for mod-
els to be able to function properly without major changes after deployment. It is apparent that
clinicians and healthcare professionals require a different approach. This approach is called
proactive adaptation, the second pathway to combat data shift. In this case, the model does
not require the amount and specificity of data that a reactive approach would require. Models
trained on this paradigm should be able to anticipate and identify possible data shifts and
their potential risk to the target outcome. Subbaswamy et al. [149] [150] have done significant
work in this area by proposing a graph based approach where they use causal graphs to iden-
tify the relationships between variables that do not generalise across different environments.
The graphs identify paths that cause instability in statistical influence and are subsequently
removed, favouring relationships between variables that are stable across different environments.

Concluding this section, the ethics of AI in healthcare is a complicated matter and a lot of
great minds have gathered to approach the subject from different angles, providing solutions
and frameworks to combat the issues that arise. The importance of patient privacy is not be
understated for it is a basic human right and researchers and developers should be wary of
that. The necessity for unbiased, fair and responsible AI systems is prevalent as well, and
researchers have shown great efforts in developing with these principles in mind. Governments
and legislative bodies have also taken a stand, in what it seems to be a global phenomenon
which will change the way humans receive healthcare, in legislating for responsible endeavours
in AI development and deployment in accordance with the vision for Healthcare 5.0.
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Chapter 8

Future Directions and Challenges

8.1 Emerging trends in explainable AI for healthcare

In recent years there has been growing interest in the literature for explainability and trans-
parency in the use of AI systems. This is particularly important in fields where the decisions
made are of critical importance to the well-being and safety of individuals, organisations and
society in general. In healthcare, the need for explainability is ever more important as the
decisions made by AI systems can have significant consequences on the health and well-being
of patients. The responsible use of AI applications is becoming a necessary utility in healthcare,
in order to address the ethical, legal and social implications of these systems. Explainability is
a key component in ensuring that AI systems are used responsibly and ethically, and is a tool
that is ever changing and evolving since its infancy in 2004. The following section will discuss
the emerging trends in explainable AI for healthcare, and how these trends are shaping the
future of AI in healthcare.

Interactive Explainability
Interactive explainability is a new trend in the field of explainable AI, and is the practice of
allowing the user to interact with an explainable framework and tweak the parameters of the
input data or the model to see how the explanation changes. This is usually done with the
integration of an explainability method with a user interface. The interface provides different
options to the user for altering parameters and seeing how the outcome of the explanation is
affected. A prime example of such a system is the What-If Tool by Google AI, which allows
users to interact with the input data and see how the model’s behaviour is altered. These
frameworks are particularly useful due to real-time feedback and the ability to explain by inter-
pretable examples. This may allow for clinicians to adjust certain parameters in their patients’
data and see how the AI behaves acoording to these adjustments, and also correlate their cases
with similar cases in the past. Interactive explainability is a trend that has major significance
in the field of healthcare, providing clinicians and healthcare professionals with enhanced un-
derstanding of a model’s behaviour and the relationships between recommendations made by
the system and the patient’s data and profile. Subsequently, higher trust can be achieved and
personalised insight about specific cases can be obtained, allowing for a more tailored and ac-
tionable approach. Such systems can also be utilised to detect potential biases and errors in
the model’s decisions when cross-referenced with clinical expertise in order to promote higher
performance and explainability.

Integration with Electronic Health Records (EHR)
XAI systems are being intergrated with EHR systems to provide clinicians with real-time expla-
nations of the AI’s decisions based on the profile of the patients and his personal health records
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and medical history. This is particularly important in providing clinicians with the necessary
information and insight in order to provide personalised care and treatment to patients. This
enhances the relationship between clinician and AI system interactions and provides holis-
tic and comprehensive diagnostic tooling and recommendation systems for healthcare. When
integrated with EHR systems, XAI explanations can be more interpretable and actionable,
providing clinicians with the necessary information to make informed decisions and account
for possible biases and errors, due to their own expertise and knowledge. These systems can
be used with interactive dashboards much like the VHP system introduced by COMFORT-
AGE, where patient data, model predictions and explanations are provided in an intuitive and
user-friendly manner. A well-integrated system provides a seamless user experience where AI
tools are embedded into the clinical workflow and provide real-time insights and explanations,
even possibly streamlining routine operations and tasks and provide secure and reliable decision
support and automations. Visualising EHR data may also provide clinicians with the ability to
assess the model’s behaviour and provide feedback on the model’s performance and explanation
quality for further improvement.

Regulatory Compliance
There is a growing focus on developing explainable AI systems that are not only reliable, but
also ethical, trustworthy and compliant with regulatory standards. This is particularly im-
portant in healthcare, where decisions made are of critical importance. The development of
explainable AI systems need to be designed with considerations for patient privacy, consent,
and the overall impact on the healthcare system. Regulatory institutions such as the GDPR,
HIPAA and FDA have set guidelines and standards for the development and deployment of AI
systems, along with the proper handling of patient data. These regulations are put in place
to ensure that AI systems are used responsibly and ethically, and organisational and corporate
adherence to these standards is crucial in ensuring the safe and secure usage of AI systems
in healthcare. Regulations include mitigating bias through different channels and techniques,
providing data security and privacy by using methods suc as encryption, access controls and
audit trails, and data sanitisation and anonymisation, by cleaning, de-identifying and imputat-
ing data.

IoT Healthcare
XAI is increasingly being intergated with IoT devices in healthcare in order to enhance the
transparency, trust, and usability of AI-driven insights derived from IoT devices, which are
extensively used for monitoring and managing patient health. IoT devices such as wearables,
smart-home applications and monitoring devices collect real-time data on patients. XAI sys-
tems can provide interpretable insights and automations by detecting anomalies or trends in
the patients health, providing clinicians with recommendations and insight into the patient’s
health status. This is especially applicable in elderly care and chronic disease management,
where continuous monitoring and early detection of health risk is crucial. XAI can also be used
in IoT servicing and maintenance, by providing predictions and explanations for possible fail-
ures or malfunctions to ensure timely intervention and maintenance reliability. The integration
of XAI with IoT devices provides significant benefits in healthcare, by increasing reliability,
trust and adoption of AI-driven insights and recommendations, increasing transparency and
accountability and improving clinical decision-making and patient outcomes.

In conclusion, the integration of XAI in healthcare is driving significant advancements in
patient care, clinical decision-making, and system reliability. As these technologies continue to
evolve, the focus on transparency, ethical compliance, and user-centric design will be crucial in
realizing the full potential of AI in healthcare, ultimately leading to improved patient outcomes
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and a more efficient healthcare system.

8.2 Anticipated challenges and potential solutions

Integrating XAI in healthcare, although promising and certainly beneficial, is not without its
challenges. These challenges need to be addressed to ensure effective and responsible use of AI
systems in healthcare. In this section, we will discuss some of the anticipated challenges in the
space and potential solutions to address them.

Explainability and Interpretability
Through this research, we have discussed the importance of explainability and interpretability
in AI systems, and the difficulty of providing reliable and accurate explanations for complex
models. Providing these explanations that are both accurate and understandable to clinicians
and patients is difficult, especially with complex AI models like deep learning. Developing
user-friendly interfaces and visualisation tools that can translate complicated computations of
explainability methods into intuitive and actionable insights is crucial in ensuring that AI sys-
tems are used responsibly and ethically. It is important to develop these trools in collaboration
with domain experts and end-users in order to ensure that the explanations provided are rele-
vant and useful in clinical decision-making.

Bias and Fairness
XAI models can inheret biases from all stages of the model’s development and deployment, in-
cluding data collection, preprocessing, feature selection, model training and evaluation. Biases
can also be introduced by outdated or incorrect data. This can lead to unfair and discriminatory
outcomes, particularly in healthcare. To combat this issue, it is important for developers to im-
plement different bias detection and mitigation techniques, much like the ones we discussed in
previous sections. Additionally, it is important for developers to use diverse and representative
datasets, hire and maintain diverse teams, and continuously monitor and evaluate the model’s
performance for biases and fairness. This can help ensure that the model is fair, unbiased and
reliable, and that the decisions made by the model are ethical and just.

Interoperability
Integrating XAI systems with existing healthcare systems and infrastructure can be challenging
due to differences in formatting, standards and protocols. This can lead to issues in integration,
data sharing and overall communication between different components of a system or infras-
tructure. The way to address this challenge is to develop standardised data exchange protocols
and APIs in order to facilitate the seamless integration between applications, systems and AI
models. XAI systems should be designed into the clinical workflow and provide real-time, ac-
tionable insights and recommendations to clinicians and healthcare professionals. The tools
should enhance the decision-making process and efficiency of the healthcare system in place.

Data Quality and Consistency
One of the major challenges in the development of XAI systems is the quality and consistency
of the data used to train and validate machine learning models. In healthcare, data is often
incosistent, noisy, incomplete and possibly biased. Data comes in many forms and by many
sources, such as EHRs, medical imaging, wearables and clinical notes, and may be stored in
different formats and structures. This can lead to challenges in data integration, processing and
analysis, and may affect the overall performance and reliability of AI systems. To combat this
issue, it is important to ensure robust data cleaning, standardisation, and integration processes.
Ensuring data quality and consistency is crucial in developing reliable and accurate AI models,
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and even more so in healthcare where the decisions made are of critical importance.

Data Privacy and Security
Another challenge in the development of XAI is data privacy and security concerns. In health-
care, patient data is higly sensitive and confidential, and must be handled in such a way that
ensures patient privacy and compliance with regulatory standards such as HIPAA and GDPR.
To ensure compliance with these standards and provide security in data handling, it is impor-
tant to implement encryption schemes, access controls, anonymisation techniques and regular
security audits and compliance checks in order to maintain the integrity and confidentiality of
patient data.

Regulatory Compliance
Developing XAI systems that are compliant with regulatory standards is crucial in ensuring
the responsible and ethical use of AI in healthcare. Regulatory standards such as the GDPR,
HIPAA and FDA have set guidelines and standards for the development and deployment of AI
systems, along with the proper handling of patient data. It is important for developers to adhere
to these standards and stay updated with the latest regulatory guidelines. It is also important
for organisations in the space to involve legal and compliance teams in the development and de-
ployment of AI systems in order to ensure that the systems are compliant with these regulations.

Constant Adaptation
Healthcare is a dynamic field that is ever changing and evolving, especially with advancements
in technology and medicine. AI systems need to be able to adapt to these changes and provide
accurate and reliable recommendations and insights to clinicians and healthcare professionals.
This requires regular monitoring and evaluation of the model’s performance, and continuous
re-training and updating of the models used in clinical practice on new data. There also needs
to be a feedback loop between the AI systems in place and the clinicians using them, to ensure
the models remain up-to-data and relevant to the clinical workflow.

Resource Allocation and Cost
Developing and deploying XAI systems in healthcare can be a costly and resource-intensive in-
deavour. It requires significant investment in infrastructure, data collection, model development
and deployment, maintenance and personnel. It is important for organisations to demonstrate
the long-term benefits and cost-effectiveness of these systems in order to justify possible invest-
ments. It is also important that these systems are developed through pilot projects and case
studies to ensure proof of concept and feasibility before full-scale deployment. Funding and
resources should be sought from government, private and public sectors and stakeholders, as
well as partnerships with research institutions, policymakers and industry partners.

Integrating XAI in healthcare presents multiple challenges, from ensuring data quality and
security to achieving regulatory compliance and clinician trust. Addressing these challenges
requires a collaborative effort and a multifaceted approach among technologists, healthcare
professionals, regulatory bodies, and patients to fully harness the potential of XAI for improved
patient outcomes, enhanced clinical decision-making, and a more efficient healthcare system.
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8.3 Recommendations for future research

Our research has highlighted the importance of explainable AI in healthcare, and the potential
benefits and challenges of Integrating XAI systems in clinical practice. In this section, we will
provide recommendations for future research in the field of XAI in healthcare.

Real-time Explainability
Developing real-time explainability methods that can provide clinicians with actionable insights
and recommendations in real-time is crucial in enhancing the clinical decision-making process.
Dynamic and interactive explainability tools are very important as patients’ health status can
change rapidly and require timely intervention. Real-time explainability can provide clinicians
with the necessary information to make informed decisions and account for possible biases and
errors in the model’s predictions. The issue of real-time explainability is particularly important
in certain clinical scenarios, such as emergency care and critical care, where timely intervention
is crucial. Future research should focus on developing real-time explainability methods that can
provide interpretable insights and recommendations to clinicians in real-time, and enhance the
overall clinical workflow. In this work, we discussed how LIME, even though we used extremely
powerful hardware, was still slow in providing explanations.

Human-Centered Design
The development of XAI systems should be done in a manner that emphasises human-centered
design principles. Developers should conduct usability studies to understand how clinicians
and healthcare professionals interact with XAI systems. This includes how different explana-
tion styles such as visual, textual, and interactive explanations are perceived and understood
by end-users, and how they impact decision-making, trust and user satisfaction in a clinical
setting. Understanding clinician and patient perspectives on AI and ensuring that explanations
are accessible to both experts and non-experts alike can help in creating systems that are more
widely accepted and trusted by the public.

Ensemble Explainability
An aspect that we explored in this work was the use of multiple instances of a single explain-
ability method to provide a more comprehensive and robust explanation. We propose that
future research should focus on developing ensemble explainability methods that combine dif-
ferent explainability techniques, multiple instances of the same technique, or different methods
to provide a more hollistic explanations that derives from different sources. This may provide
more reliable and accurate feature importance scores and attributions, and enhance the overall
interpretability and trustworthiness of the model’s predictions.

Longitudinal Studies on XAI Impact
Conducting longitudinal studies to evaluate the impact of XAI systems on clinical practice and
patient outcomes is crucial in understanding the long-term benefits and challenges of integrating
XAI in healthcare. Such studies should measure how the use of XAI influences trust, accuracy
and the adoption of AI-driven insights in clinical decision-making over time. They should also
evaluate how XAI systems affect patient outcomes, healthcare costs, and the overall efficiency
of the healthcare system.

Interdisciplinary Collaboration
Encouraging interdisciplinary collaboration in research between technologists, healthcare pro-
fessionals, policymakers, and patients is crucial in developing XAI systems that are relevant,
reliable and ethical. Future research should focus on fostering collaboration between different
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stakeholders in the healthcare ecosystem to ensure that XAI systems are developed with consid-
erations for patient safety, privacy, and regulatory compliance. Such collaboration is essential
for addressing the complex challenges associated with XAI in healthcare and ensuring that
research findings are practical, ethical, and aligned with the needs of the healthcare industry.

Improvement of Interpretability
There is a need for further research on improving the pre-existing explainability methods and
developing new methods that can provide more accurate and reliable explanations for complex
AI models such as deep learning. This needs to be done in a way that ensures that accu-
racy is not compromised in favour of interpretability. Investigating the trade-offs between how
to interpret accuracy and interpretability in different explainability methods and developing
methods that can provide a balance between the two is crucial in ensuring that AI systems are
used responsibly and ethically in healthcare. This could involve developing new techniques for
extracting meaningful explanations from black-box models or creating inherently interpretable
models that are still powerful enough for healthcare applications.

Education and Training
Educating and training clinicians, healthcare professionals, and patients on the use of XAI
systems is crucial in ensuring that these systems are used at their full potential. It is important
that all stakeholders are aware of the benefits and limitations of ΧΑΙ, as well as the ways of
interpreting and acting upon the explanations provided by these systems.

Advancing XAI in healthcare requires a multifaceted research approach that addresses tech-
nical, ethical, and practical challenges. By focusing on domain-specific methods, improving in-
terpretability, integrating systems into clinical workflows, and ensuring fairness and scalability,
future research can help realize the full potential of XAI in improving patient outcomes and
healthcare delivery. Collaboration across disciplines and active involvement of healthcare pro-
fessionals and patients will be crucial in guiding this research toward meaningful and impactful
solutions.
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Chapter 9

Conclusion

9.1 Summary of key findings and contributions of the

thesis

Our research and work has shed significant light upon the possible explainability solutions that
researchers and developers can deploy to make AI systems more reliable as well as transparent
and trustworthy. These methods allow for clinical use of AI systems in healthcare and other
critical domains. In this section, we summarise the key findings and contributions of our thesis
in the applications of XAI in healthcare.

9.1.1 CHA Tokens

Our initial approach of utilising phonological features inside the CHAT Transcript Protocol
files as a means of explainability in the context of diagnosing dementia through spontenous
speech was a significant step towards understanding how these features can be used to explain
the model’s decision. We proposed a significantly more intrepretable format for these fea-
tures, which we call CHA tokens, which are a more human-readable format of the phonological
features. Most of the research done in the field, tends to overlook and ignore these phonolog-
ical features, ommitting them from the finalised, processed dataset that is used to train their
models.

During our research, We found that certain phonological features provided significant evi-
dence of possible dementia in the patient, which agrees with the existing literature. We also
found that certain features were appearing as pairs in certain cases, and these pairings were at
times evidence of dementia as well. We argue that these features can be further investigated to
understand the underlying mechanisms of dementia and how they manifest in speech. During
the process of providing explanations for the model’s decision, we found that certain features
were sometimes evidence of dementia, and sometimes not, which probes the question of how
we may further refine each feature to provide more accurate explanations. A way to do this, is
by using the CHA tokens and other features derived from the CHAT Transcript Protocol files,
to provide clusters of features that are evidence of dementia, and those that are not through a
unsupervised learning algorithm. After clustering we may inquire as to why certain features are
evidence of dementia, and rename them to be more accurate in the explanation. We call these
tokens, MVCHA tokens, from their multi-variate nature, which is an approach we propose for
future research.
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9.1.2 Ensemble Models

Our research into providing accurate predictions for the diagnosis of dementia also showed the
importance and power of ensemble learning, by using multiple transformer models’ outputs
as inputs to a final classifier. We found that this approach provided a significant increase
in all metrics, and by providing a larger variety of transformers, the metrics increased even
further. We argue that through the use of ensemble learning, and diverse transformer and
classifier selections, we can provide a more accurate and reliable model for NLP tasks, and
specifically diagnosing dementia through spontaneous speech. This approach can be extended
by using more features derived from the CHAT Transcript Protocol files, such as age, rate
of speech, ethnicity and other features. These additional features can be concatenated with
the transformer outputs, and used as inputs to the final classifier to provide a more hollistic
approach to diagnosing dementia, though the amount of data required to train such a model
would be significantly larger and more diverse, which was not available to us during our research.

In our work, we tried to provide an ensemble of classifiers trained on the afformentioned
data, but found that, without extensive diversity in the transformers that were used on each
singular classifier, the final ensemble did not provide any significant increase in the metrics,
but mearly scored a similar result to the best classifier in the ensemble. We argue that this is
due to the lack of different transformers entering each classifier, and that by providing a more
diverse set of transformers, each different for each classifier, we may be able to provide a more
accurate and reliable ensemble, even though our results were in fact state-of-the-art.

9.1.3 Ensemble Explainer

Our research into providing explanations sought to conduct a comparative analysis of three of
the most popular explainability methods for transformer models, seeing as to how they per-
formed in qualitative and quantitative metrics for the task of diagnosing dementia through
spontaneous speech. We compared LIME, Anchors and Transformers-Interpret, and found
that LIME scored the highest in all quantitative metrics through a survey we conducted with
clinicians and healthcare professionals. We also found that Transformers-Interpret, should the
clinical use case require a faster explanation, may also be used instead of LIME, as it scored
better in the quantitative metrics for speed and fidelity. In our work, we propose a novel ap-
proach to providing explanations based on ensemble learning, which combines the outputs of
the three LIME instances to provide a more hollistic and comprehensive explanation for the
model’s decision and the CHA tokens in the sequence of the patient’s speech. This approach
can be used with LIME and Transformers-Interpret, and we argue that by using a multitude
of transformers, we can provide a more unbiased and reliable explanation on the attributions
of the CHA tokens and how they contribute to the model’s decision and sway the final predic-
tion towards a diagnosis of dementia. A next step to provide further explanations, would be
extending our explanations by also explaining the classifier’s decision, and how each feature de-
rived from the CHAT Transcript Protocol files, and the transformer outputs, contribute to the
final prediction as a more hollistic approach to providing explanations. The final explanation
would be a visual representation of all finding by the ensemble LIME or Transformers-Interpret
instances, and the classifier’s explanation of features.

9.1.4 User-Centric Design

In our research, we developed a user-centric design for using the ensemble model and explainer
in a clinical setting through the use of a CLI and Web Application client, named DEMET,
which is a framework for diagnosing dementia through spontaneous speech. The explainability
methods we used in our research, were integrated into the DEMET framework, as we discussed
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in the previous sections, to provide an easy-to-use and intuitive interface for clinicians and
healthcare professionals to use. DEMET provides an API that can be intergrated into any
existing system, and is our contribution to the COMFORTAGE project. A very important
aspect of using these types of systems that provide explainability, is the fact that they are
computationally expensive, and require a lot of resources in order to produce explanations in a
timely manner without sacrificing the performance of the system. We urge future research to
investigate how we may provide explanations in a more efficient manner. If these systems are
to be used effectively in a clinical setting, they must be able to provide explanations efficiently,
consistently and reliably, and we argue that this is a significant challenge that must be addressed
in future research.

9.2 Implications for the healthcare industry

The integration of XAI in the healthcare industry has profound implications, affecting vari-
ous aspects of healthcare delivery, clinical decision-making, patient outcomes and the broader
healthcare ecosystem. In this section, we discuss the implications of our research findings for
the healthcare industry.

9.2.1 Enhancing trust in AI technologies

XAI builds trust among healthcare professionals and patients by providing transparent and
understandable explanations for AI-driven decisions. This increased trust can lead to broader
acceptance and adoption of AI technologies in healthcare, enabling more widespread use of
AI in clinical practice. By offering interpretable explanations for the model’s decision, XAI
supports clinicians and healthcare professionals in understanding the AI system’s reasoning
and making informed decisions based on the model’s predictions. This approach can inhance
diagnostic accuracy, improve patient outcomes and personalise treatment plans and patient
care. Through the use of XAI, clinicians may better understand the underlying mechanisms
of model predictions and decision making processes, leading to a more confident and evidence-
based clinical decision. XAI can also help to identify possible biases and errors in model
predictions, promoting fairness in healthcare delivery and reducing the risk of misdiagnosis
or incorrect treatment. In this manner, AI decisions will be more accountable and will not
disproportionately affect certain patient groups or demographics.

Through the use of XAI models, clinicians and healthcare professionals facilitate the inte-
gration of AI technologies into clinical practice by simultaneously complying with regulatory
requirements and ethical standards that govern the use of AI in healthcare. The use of XAI
can also help to address challenges in accountability, transparency and trustworthiness of AI-
driven systems, potentially influencing legal frameworks around liability and accountability in
healthcare. When using AI-driven solutions for critical healthcare tasks, certain liability and
legal issues may arise, specifically in the case of misdiagnosis or incorrect treatment, which was
influenced by the use AI. XAI can help to mitigate these risks by providing transparent and
interpretable explanations.

9.2.2 Patient-centric approach

XAI has the potential to empower patients by providing them with more information and control
over their healthcare decisions, by offering more intrepretable, understandable and accessible
explanations for AI-driven insights and recommendations. Patients who can better understand
the AI system’s predictions and recommendations are more likely to trust the system and seek
treatment and medical advice should they require it. This allows patients to be more actively
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involved in their healthcare and treatment plans, which leads to significantly better patient
satisfaction and surely better adherence to proposed treatment plans. XAI, incorporated into
healthcare systems through the use of IoT devices, mobile applications, monitoring systems and
EHR patient portals, can provide patients with real-time insights and explanations for their
health data, enabling them to make informed decisions about their health and well-being and
take proactive steps to improve their health outcomes.

As XAI becomes more and more integrated and widely adopted in healthcare, healthcare
organisations and patients alike will be able to benefit from the cost efficiencies associated with
AI-driven automation and decision support. By streamlining workflows, automating routine
and tedious tasks, and providing real-time insights, recommendations and alerts on patient
health conditions, XAI can contribute in a more cost-effective and efficient healthcare delivery
system, ultimately leading to better financial outcomes for patients and driving costs down.
This will also allow healthcare organisations to allocate resources more effectively, reduce ad-
ministrative burden and improve overall operational efficiency.

9.2.3 Breaking new ground in Explainability

Our research has contributed to the field of XAI by proposing novel methods and approaches
for enhancing the explainability of AI models in healthcare, specifically in the context of diag-
nosing dementia through spontaneous speech. By introducing CHA tokens and the ensemble
explainer, we have demonstrated how XAI can be used to provide more interpretable, reliable
and comprehensive explanations for transformer models’ decisions without sacrificing perfor-
mance. Our research findings have significant implications for the healthcare industry, enabling
more accurate and transparent AI-driven diagnostics and decision-making processes. By inte-
grating XAI into clinical practice, we can enhance trust in AI technologies, improve patient
outcomes, empower patients and drive innovation in the healthcare industry. We believe that
our work has opened new avenues for research and development in the field of XAI in health-
care, by providing an ensemble explanation through the use of multiple instances of different
explainability methods, utilising the weighted averages of the attributions provided by each
instance, thus providing a more comprehensive and hollistic explanation, eliminating single
instance bias and providing reliability into how CHA tokens contribute to the model’s decision.

9.2.4 Conclusion

We find ourselves at a critical juncture in the evolution of AI in healthcare, where the in-
tegration of XAI is transforming the way care is delivered. The implications of XAI in the
healthcare industry are far-reaching, influencing trust, decision-making, equity, regulatory com-
pliance, and patient empowerment. As XAI becomes more integrated into healthcare systems,
it has the potential to transform how care is delivered, making AI-driven insights more acces-
sible, transparent, and reliable. However, these advancements also bring challenges related to
computational resources, accuracy of explanations, ethics, legality, and policy, which must be
carefully managed to fully realize the benefits of XAI in healthcare. XAI has still a long way
to go, and we are excited to see how the field evolves in the coming years.
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9.3 Concluding remarks

In this thesis, we have explored the applications of XAI in healthcare, focusing on the diagnosis
of dementia through spontaneous speech. We have proposed a novel approach to explainability,
using CHA tokens to provide more interpretable explanations for transformer models. We have
also demonstrated the power of ensemble learning in improving the accuracy of AI models, and
proposed an ensemble explainer to provide more comprehensive and hollistic explanations, when
it comes to phonological features found in patients’ speech, for the model’s decision. We have
developed a user-centric design for using the ensemble model and explainer in a clinical setting,
through the DEMET framework, which is our contribution to the COMFORTAGE project.
Our research findings have significant implications for the healthcare industry, enhancing trust
in AI technologies and enabling more widespread adoption of AI in clinical practice. We hope
that our work will inspire further research in the field of XAI in healthcare, and contribute
to the development of more reliable, transparent and trustworthy AI systems for clinical use.
We are looking forward to further investigating the applications of XAI in healthcare, and
exploring new methods and tools for enhancing the explainability of AI models. We believe
that XAI has the potential to revolutionize healthcare delivery, improve patient outcomes,
and empower patients to take control of their health and well-being. By integrating XAI into
clinical practice, we can address key challenges in healthcare, such as diagnostic accuracy,
patient empowerment, and regulatory compliance, while also unlocking new opportunities for
innovation and collaboration in the healthcare industry. As we move forward, it is essential to
continue exploring the field of XAI in healthcare, by conducting further research, developing
new tools and methods, fostering collaboration between researchers, clinicians, and industry
partners, and ensuring that these technologies are used ethically, responsibly, and equitably. By
working together to advance the field of XAI in healthcare, we can create a more transparent,
trustworthy, and patient-centric healthcare system that benefits all stakeholders and improves
health outcomes for patients worldwide. It was a pleasure to work on this thesis, as part of
the COMFORTAGE project, and we are excited to see how the future of XAI in healthcare
unfolds. We will continue to work towards developing a more sophisticated and reliable AI
system for diagnosing dementia through spontaneous speech, and we hope that our research
will contribute to the broader field of XAI in healthcare.
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Appendix A: Questionnaire

The following pages contain the questionnaire that was used during the research and evaluation
of the explainability methods used in this thesis. The questionnaire was designed to gather
feedback from medical professionals and clinicians with experience in the field of dementia and
neurodegenerative diseases. We contacted a total of 20 professionals, including neurologists
and psychiatrists and a total of 10 large medical institutions in Greece, England, the United
States, Canada and Australia, and asked them to participate in the evaluation of the methods
used in this thesis. The questionnaire was distributed and collected via email and was filled
out by 3 participants, all of whom have experience in the field of dementia. Due to very low
participation in the survey, we were unable to provide a comprehensive analysis of the results,
but we were able to draw some conclusions from the feedback provided by the participants. The
questionnaire is split into three sections, each containing questions about the validity of the
CHA tokens, the explainability of the methods used in this thesis, and the overall usefulness
of the methods in a clinical setting. The first section includes questions about the validity of
the CHA tokens and their ability to provide evidence of dementia in a patient’s speech. For
each token used in the training of our models, the questionnaire contains a marker that asks
the participant to rate the token’s validity as evidence of dementia on a scale of 1 to 5, 1
meaning that the token provides no evidence for such a claim and 5 meaning that the token
provides strong evidence of dementia. The second section provides two distinct examples, one
of a patient with dementia and one of a patient without dementia, and asks the participant
to rate the explainability of the model’s visualizations for each example in regards to how
informative they are in explaining the model’s decision. The third section contains questions
on the trustworthiness of the model’s predictions and whether these explainable AI methods
could be used in clinical practice. In regards to the use of the CHA tokens, the overall sentiment
from the participants was that some tokens could possibly provide evidence of dementia, namely
those that are related to repetition, non-completion of words or sentences, short to long pauses
and trailing off, but highlighted that the validity of these tokens is highly dependent on the
context in which they are used, which means that further investigation is in order. In terms
of the explainability of the model’s visualizations, the participants found LIME to be the most
informative and easy to understand method, followed by Transformers-Interpret and Anchor.
In terms of the trustworthiness of the model’s predictions, the participants were generally
skeptical, with most participants stating that the diagnosis of dementia is a multi-faceted and
complicated process that requires constant monitoring and evaluation by medical professionals
and could not be solely based on spontaneous speech. The participants do see potential in the
use of these models in a supplementary setting, used by citizens who are worried about their
cognitive health but are tentative to visit a clinician.
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Explainable AI Applications for the
improvement of quality of life in Dementia

patients

This survey aims to assist in the understanding of how AI applications can be used to improve medical practices
and introduce automations in the healthcare sector, specifically in the treatment of dementia using phonological
features of spontaneous speech as tokens for training large AI models. These tokens can be used to introduce
strong explainability, the ability that a model has to explain a certain decision that it made, in these models, and
thus allow for trust and transparency. The survey is designed to extract information from medical professionals
who have experience in the treatment of dementia patients. Three different AI models where used in this study,
BERT, RoBERTa, and DistilBERT. Three different explainability techniques were used to explain the decisions
of these models, LIME, Transformer-Interpret, and ANCHOR.
Please answer the following questions to the best of your ability. Your responses and personal information will
be kept confidential and will be used for research purposes only. Thank you for your time.

About you

Please provide the following information:

1. Your name:

2. Title:

3. Years of Experience:

4. Contact Information(e-mail):
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Phonological Features of Dementia

Please evaluate the following phonological features as to how they provide strong evidence for the presence of
dementia in a patient. Assume that the patient was interviewed and the following features were observed in
their speech.

5a. [CHA REPETITION] The patient is repeating a word
Non Dementia 2—2—2—2—2 Dementia

5b. [CHA RETRACING] The patient starts to say something, stops, re-
peats the basic phrase, changes the syntax but maintains the same idea
Non Dementia 2—2—2—2—2 Dementia

5c. [CHA SHORT PAUSE] The patient pauses for a short duration
Non Dementia 2—2—2—2—2 Dementia

5d. [CHA MEDIUM PAUSE] The patient pauses for a medium duration
Non Dementia 2—2—2—2—2 Dementia

5e. [CHA LONG PAUSE] The patient pauses for a long duration
Non Dementia 2—2—2—2—2 Dementia

5f. [CHA TRAILING OFF] The patient’s attention drifts off and the sentence is left incom-
plete Non Dementia 2—2—2—2—2 Dementia

5g. [CHA PHONOLOGICAL FRAGMENT] The patient’s phonological material differs be-
tween words Non Dementia 2—2—2—2—2 Dementia

5h. [CHA FILLER] The patient uses fillers such as ’uh’, ’um’, ’you know’ etc.
Non Dementia 2—2—2—2—2 Dementia

5i. [CHA NON COMPLETION OF WORD] The patient does not complete a word
Non Dementia 2—2—2—2—2 Dementia

5j. [CHA LAUGHS] The patient laughs during the conversation
Non Dementia 2—2—2—2—2 Dementia

5k. [CHA SIGHS] The patient sighs during the conversation
Non Dementia 2—2—2—2—2 Dementia

5l. [CHA TRAILING OFF QUESTION] The patient asks a question but does not complete
it Non Dementia 2—2—2—2—2 Dementia

5m. [CHA INTERRUPTION] The patient interrupts the interviewer
Non Dementia 2—2—2—2—2 Dementia

5n. [CHA INTERRUPTION OF QUESTION] The patient interrupts the interviewer while
they are asking a question Non Dementia 2—2—2—2—2 Dementia
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BERT Explanations

Please evaluate the following model explanations as to how informative they are in explaining the model’s de-
cision.

6a. Using LIME and predicting Dementia Not Informative 2—2—2—2—2 Informative

6b. Using LIME and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

7a. Using T-I and predicting Dementia Not Informative 2—2—2—2—2 Informative

7b. Using T-I and predicting Non Dementia Not Informative 2—2—2—2—2 Informative
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8a. Using ANCHOR and predicting Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Dementia

2

3 Examples where anchor applies and model predicts Dementia:

4 youknow UNK [ CHA UNK UNK UNK REPETITION UNK I UNK UNK UNK UNK UNK UNK FILLER]excuse me but

youknow I [ CHA REPETITION ] UNK

5 youknow UNK UNK UNK UNK [ CHA REPETITION ] I [ CHA UNK ] UNK CHA FILLER]excuse me but youknow

I [ UNK UNK ] I

6 youknow it UNK UNK FILLER]I [ UNK REPETITION ] UNK UNK CHA RETRACING UNK [ CHA FILLER]excuse

me but youknow UNK UNK CHA UNK ] I

7 UNK it UNK CHA UNK [ UNK REPETITION ] I UNK CHA UNK ] [ CHA FILLER]excuse me but UNK I [ CHA

UNK ] I

8 youknow it [ CHA UNK UNK UNK UNK UNK UNK UNK CHA RETRACING UNK UNK CHA UNK me but youknow I [

UNK REPETITION UNK UNK

9 youknow UNK UNK CHA FILLER]I UNK CHA UNK ] UNK [ UNK UNK ] [ UNK UNK me UNK UNK I [ CHA UNK ]

I

10 youknow UNK UNK CHA FILLER]I [ UNK UNK ] UNK UNK CHA RETRACING ] [ CHA UNK me UNK youknow I [

CHA REPETITION UNK UNK

11 UNK UNK UNK UNK FILLER]I UNK UNK UNK ] UNK UNK UNK UNK UNK UNK UNK FILLER]excuse me but UNK I

UNK UNK UNK ] UNK

12 UNK it [ CHA UNK [ CHA UNK ] I [ CHA UNK ] [ UNK UNK me UNK youknow I UNK CHA UNK UNK UNK

13 UNK it UNK CHA FILLER]I UNK UNK REPETITION ] I UNK UNK UNK ] UNK UNK UNK me but youknow UNK [

CHA REPETITION ] I

14

15 Examples where anchor applies and model predicts Non -Dementia:

8b. Using ANCHOR and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Non -Dementia

2

3 Examples where anchor applies and model predicts Non -Dementia:

4 UNK CHA FILLER]standing UNK UNK UNK UNK stool ’s UNK to UNK UNK [ UNK FILLER]let UNK go to

mother UNK mother UNK dish

5 [ CHA FILLER]standing on UNK UNK UNK stool ’s UNK to fall over [ UNK UNK ’s go to UNK the

mother UNK UNK

6 UNK CHA FILLER]standing on stool UNK the stool UNK UNK to fall UNK [ CHA FILLER]let UNK UNK to

mother UNK UNK drying

7 [ CHA FILLER]standing on stool but UNK stool ’s UNK UNK fall over [ CHA UNK UNK UNK to mother

the mother UNK dishes

8 [ UNK FILLER]standing on stool UNK the UNK UNK UNK UNK UNK over UNK CHA FILLER]let ’s UNK to

UNK the mother UNK dishe

9 [ CHA FILLER]standing on stool UNK UNK stool ’s UNK UNK fall over UNK CHA UNK ’s UNK to UNK

UNK UNK drying UNK

10 [ CHA FILLER]standing UNK stool UNK the stool ’s UNK to UNK over [ CHA UNK ’s UNK UNK mother

the UNK drying dishes

11 [ UNK FILLER]standing on UNK but UNK UNK ’s about UNK UNK over [ CHA UNK ’s go to UNK UNK

mother UNK UNK

12 UNK UNK FILLER]standing UNK stool but the UNK ’s about UNK fall UNK [ CHA UNK ’s UNK UNK UNK

UNK mother UNK UNK

13 [ CHA FILLER]standing on stool but UNK UNK UNK about UNK fall UNK [ UNK FILLER]let ’s UNK UNK

UNK the UNK drying dish

14

15 Examples where anchor applies and model predicts Dementia:
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RoBERTa Explanations

Please evaluate the following model explanations as to how informative they are in explaining the model’s
decision.

9a. Using LIME and predicting Dementia Not Informative 2—2—2—2—2 Informative

9b. Using LIME and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

10a. Using T-I and predicting Dementia Not Informative 2—2—2—2—2 Informative

10b. Using T-I and predicting Non Dementia Not Informative 2—2—2—2—2 Informative
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11a. Using ANCHOR and predicting Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Dementia

2

3 Examples where anchor applies and model predicts Dementia:

4 youknow UNK UNK CHA FILLER]I [ UNK REPETITION UNK I [ CHA RETRACING ] [ UNK UNK me but youknow

UNK UNK UNK REPETITION ] I

5 youknow UNK [ CHA UNK UNK CHA UNK ] UNK UNK CHA RETRACING ] UNK UNK FILLER]excuse UNK UNK

youknow UNK [ UNK UNK ] UNK

6 youknow UNK UNK CHA FILLER]I [ CHA REPETITION ] UNK [ UNK UNK UNK UNK CHA FILLER]excuse me but

youknow UNK UNK UNK REPETITION UNK UNK

7 youknow UNK [ UNK FILLER]I [ CHA REPETITION ] I UNK UNK UNK ] [ CHA UNK UNK but youknow I UNK

CHA REPETITION UNK UNK

8 UNK UNK [ CHA UNK UNK CHA REPETITION UNK UNK [ CHA UNK ] [ UNK FILLER]excuse UNK UNK youknow I

UNK CHA REPETITION UNK I

9 UNK it UNK UNK FILLER]I UNK CHA UNK ] I [ UNK RETRACING ] UNK UNK FILLER]excuse UNK UNK

youknow I UNK CHA UNK ] I

10 youknow it UNK CHA UNK UNK CHA UNK ] UNK UNK CHA UNK ] [ UNK UNK me UNK youknow UNK [ CHA

REPETITION ] UNK

11 youknow UNK [ UNK FILLER]I UNK CHA UNK UNK UNK UNK UNK UNK UNK [ CHA FILLER]excuse UNK but

youknow UNK [ CHA REPETITION ] I

12 youknow UNK UNK CHA FILLER]I UNK CHA REPETITION ] I UNK CHA UNK UNK [ CHA FILLER]excuse me but

youknow I [ CHA REPETITION ] UNK

13 UNK it [ UNK FILLER]I [ CHA REPETITION ] I [ CHA RETRACING UNK UNK CHA FILLER]excuse UNK UNK

youknow UNK [ CHA UNK ] UNK

14

15 Examples where anchor applies and model predicts Non -Dementia:

11b. Using ANCHOR and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Non -Dementia

2

3 Examples where anchor applies and model predicts Non -Dementia:

4 [ UNK UNK on stool but UNK stool UNK UNK to UNK over [ CHA FILLER]let ’s go UNK mother the

mother drying dishes

5 [ UNK UNK on UNK UNK UNK stool ’s UNK UNK fall UNK [ UNK FILLER]let ’s go UNK UNK the mother

drying dishes

6 [ CHA FILLER]standing on stool but UNK stool UNK about to fall over UNK CHA UNK UNK UNK UNK

mother UNK mother dry

7 UNK UNK FILLER]standing on stool but UNK UNK ’s about to fall UNK [ UNK UNK UNK go UNK UNK the

UNK drying dishes

8 UNK CHA UNK UNK stool but the UNK ’s UNK to fall UNK [ UNK UNK ’s UNK to mother the mother

drying UNK

9 UNK UNK UNK on stool but UNK stool ’s about to UNK UNK UNK UNK FILLER]let ’s go UNK mother UNK

UNK drying dishes

10 [ UNK UNK UNK stool but UNK stool ’s about UNK UNK UNK UNK CHA UNK UNK go to UNK the UNK

drying UNK

11 [ UNK UNK UNK stool UNK UNK stool ’s UNK UNK fall over [ CHA FILLER]let ’s UNK UNK UNK the UNK

drying dishes

12 [ CHA FILLER]standing on stool but the UNK ’s about UNK UNK UNK [ UNK UNK ’s UNK to mother the

mother drying dish

13 UNK UNK FILLER]standing UNK stool but UNK stool ’s about UNK fall over UNK UNK UNK ’s go UNK

mother UNK UNK dryin

14

15 Examples where anchor applies and model predicts Dementia:
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Distil Explanations

Please evaluate the following model explanations as to how informative they are in explaining the model’s
decision.

12a. Using LIME and predicting Dementia Not Informative 2—2—2—2—2 Informative

12b. Using LIME and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

13a. Using T-I and predicting Dementia Not Informative 2—2—2—2—2 Informative

13b. Using T-I and predicting Non Dementia Not Informative 2—2—2—2—2 Informative
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14a. Using ANCHOR and predicting Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Dementia

2

3 Examples where anchor applies and model predicts Dementia:

4 UNK UNK [ CHA UNK [ UNK UNK UNK UNK [ UNK UNK ] UNK UNK UNK UNK but youknow I [ CHA UNK UNK I

5 UNK it [ CHA FILLER]I UNK UNK REPETITION UNK UNK UNK UNK UNK ] [ CHA UNK me but UNK UNK [ CHA

UNK UNK UNK

6 youknow UNK UNK CHA UNK UNK CHA UNK ] UNK [ CHA UNK ] UNK CHA FILLER]excuse UNK UNK UNK I [

CHA REPETITION UNK UNK

7 youknow UNK [ UNK UNK UNK UNK REPETITION ] I [ CHA UNK ] UNK UNK UNK UNK UNK youknow I UNK CHA

REPETITION UNK I

8 UNK it UNK UNK FILLER]I UNK CHA UNK ] UNK [ UNK RETRACING ] [ CHA UNK me but youknow UNK UNK

CHA UNK UNK UNK

9 UNK UNK UNK UNK FILLER]I UNK UNK REPETITION UNK UNK UNK CHA UNK ] [ CHA FILLER]excuse UNK but

UNK I UNK CHA REPETITION UNK I

10 youknow UNK UNK CHA FILLER]I UNK CHA UNK UNK UNK UNK UNK RETRACING ] [ UNK UNK UNK but youknow

UNK UNK CHA REPETITION UNK UNK

11 youknow it UNK UNK FILLER]I [ CHA REPETITION UNK UNK [ CHA RETRACING ] UNK UNK FILLER]excuse

UNK but youknow I UNK CHA UNK ] I

12 youknow UNK UNK CHA UNK UNK CHA UNK UNK I UNK CHA RETRACING UNK UNK CHA UNK me UNK youknow I

UNK CHA REPETITION ] I

13 UNK UNK [ UNK UNK [ UNK UNK UNK UNK UNK CHA RETRACING ] UNK CHA FILLER]excuse me UNK youknow I

UNK CHA REPETITION ] UNK

14

15 Examples where anchor applies and model predicts Non -Dementia:

14b. Using ANCHOR and predicting Non Dementia Not Informative 2—2—2—2—2 Informative

1 Model Predicts Non -Dementia

2

3 Examples where anchor applies and model predicts Non -Dementia:

4 UNK CHA UNK on stool but the UNK UNK UNK UNK UNK UNK [ CHA FILLER]let ’s go to UNK UNK mother

drying UNK

5 [ CHA UNK on UNK but the stool UNK about UNK fall over [ CHA FILLER]let UNK UNK to mother the

mother drying UNK

6 [ CHA UNK UNK stool UNK UNK UNK ’s UNK UNK UNK UNK UNK CHA UNK ’s go UNK UNK the UNK drying

UNK

7 UNK UNK FILLER]standing UNK stool UNK UNK stool UNK about to fall UNK UNK CHA FILLER]let ’s

UNK to UNK UNK mother dryi

8 UNK UNK FILLER]standing UNK UNK UNK the stool ’s UNK to fall UNK [ CHA FILLER]let ’s go to UNK

the UNK drying dishes

9 UNK UNK UNK on UNK but the UNK ’s UNK to UNK over [ UNK UNK ’s go UNK mother the UNK drying

dishes

10 UNK UNK FILLER]standing on UNK but UNK UNK UNK about to UNK UNK [ CHA UNK UNK go UNK UNK the

mother drying dishes

11 [ UNK FILLER]standing on UNK UNK the UNK ’s about UNK UNK UNK UNK CHA FILLER]let UNK UNK UNK

UNK UNK UNK drying dishes

12 [ CHA UNK on UNK UNK UNK UNK ’s UNK to fall UNK UNK UNK FILLER]let UNK go to mother the UNK

drying dishes

13 UNK UNK FILLER]standing on stool UNK UNK UNK ’s UNK to fall over UNK CHA UNK UNK UNK to UNK

the UNK drying UNK

14

15 Examples where anchor applies and model predicts Dementia:
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General Questions

Please answer the following questions assuming that a model predicts correctly 95% of the time:

15. Which model do you think performed the best in terms of explainability?

2 BERT

2 RoBERTa

2 DistilBERT

16. Which explainability technique do you think was the most informative?

2 LIME

2 Transformer-Interpret

2 ANCHOR

17. Knowing that LIME takes 5 minutes to generate an explanation, Transformer-Interpret
takes 1 minute, and ANCHOR takes 10 second, which technique would you prefer to use
in practice?

2 LIME

2 Transformer-Interpret

2 ANCHOR

18. Do you think that the use of AI models in the treatment of Dementia patients is beneficial?
Not at all 2—2—2—2—2 Completely

19. Do you think that the use of AI models in the treatment of Dementia patients is ethical?
Not at all 2—2—2—2—2 Completely

20. Would you be willing to use AI models in your practice?
Not at all 2—2—2—2—2 Completely

21. Would you be willing to use AI models in your practice more if they were explainable?
Not at all 2—2—2—2—2 Completely

22. Would an automated system that uses AI models to diagnose Dementia be beneficial?
Not at all 2—2—2—2—2 Completely

23. Would an automated system that uses AI models and provides ex-
planations for its decisions in diagnosing Dementia be beneficial?
Not at all 2—2—2—2—2 Completely

24. How much would you trust an AI model in diagnosing Dementia?
Not at all 2—2—2—2—2 Completely

25. Considering that data for this type of research is in low supply and high demand, would
you agree that a global database should be created to facilitate research in this area?
Not at all 2—2—2—2—2 Completely

26. Would you be willing to contribute to such a database?
Not at all 2—2—2—2—2 Completely

27. Do you think your patients would be willing to contribute to such a database?
Not at all 2—2—2—2—2 Completely

28. Do you think that such a database, provided that it is secure and anonymized, would be
ethical? Not at all 2—2—2—2—2 Completely
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Give us your thoughts

29. Please provide any additional comments or thoughts you have about the use of AI models
in the treatment of Dementia patients.



Appendix B: DEMET Interface

The DEMET model and interface are a proof of concept designed to be easily intergrated
to the COMFORTAGE architecture framework in order to provide accurate predictions and
interpretable explanations for the diagnosis and treatment of dementia through spontaneous
speech. DEMET is our proposed model and research contribution to the COMFORTAGE
project, and is designed to provide clinicians with the necessary insight into the model’s decision-
making process. DEMET utilises phonological features extracted from spontaneous speech
transcripts provided by DementiaBank, which were transformed into a more interpretable and
understandable format for clinicians and patients alike, called CHA tokens. DEMET provides a
user friendly client-side interface that allows clinicians to interact with the model by providing
textual and audio representation of the patient’s speech. The output of the interface is a textual
color coded explanation of the transcript, along with a prediction of the patient’s diagnosis.
The interface is designed to be highly intuitive and user-friendly. It can be used through
the CLI tool as well as the Web Application interface. We aim to further investigate how
CHA tokens can be used for explainability purposes, enhance the qualitative and quantitative
metrics of explainability in our explainer, and provide a greater visualisation and user interface
for DEMET for a greater user experience overall. We also aim to incorporate camera and
computer vision features to DEMET for the analysis of facial expressions and gestures during
the interview process. This will allow for the addition of more CHA tokens into the transcripts
to be used for the model’s predictions and explanations, and provide a more comprehensive and
holistic approach to the diagnosis and treatment of dementia. The code implementation for
DEMET are provided here. Contributions to the project are welcome and encouraged, and we
aim to further develop the model and interface for the COMFORTAGE project in the future.

126

https://github.com/peter-avg/DEMET


Figure 9.1: DEMET CLI Dementia Prediction

Figure 9.2: DEMET Web
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