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Περίληψη

Η προσομοίωση της ροής ρευστού σε σωληνοειδείς γεωμετρίες είναι μια απαραίτητη συνιστώσα

της υπολογιστικής βιοϊατρικής μηχανικής, έχοντας εφαρμογή στη ρευστομηχανική ανάλυση
αγγειακών και αναπνευστικών οδών. Ακριβείς αιμοδυναμικοί υπολογισμοί είναι αναγκαίοι για
την κατανόηση της σοβαρότητας των ασθενειών, της φυσιολογίας των φαινομένων μεταφοράς
και της αιμάτωσης καθώς και των αιτιών που προκαλούνται και εξελίσσονται οι ασθένειες.
Συνήθως, η διαδικασία αυτή περιλαμβάνει την εξαγωγή της ανατομικής γεωμετρίας από ια-
τρικές απεικονίσεις και τη διενέργεια προσομοιώσεων υπολογιστικής ρευστοδυναμικής. Ωστόσο,
παρά την αποδοτικότητα της, η διαδικασία αυτή εξακολουθεί να απαιτεί σημαντικό χρόνο υπ-
ολογισμού, ο οποίος μπορεί να κυμαίνεται από ώρες έως ημέρες. Επιπλέον, αυτή η διαδικασία
επαναλαμβάνεται για γεωμετρίες με ανατομική ομοιότητα, με αποτέλεσμα την περαιτέρω αύξηση
του συνολικού υπολογιστικού κόστους. ΄Ετσι, η επιτάχυνση των προσομοιώσεων για την
παροχή λύσεων σε πραγματικό χρόνο μπορεί να ενθαρρύνει τη χρήση τους στην κλινική εφαρ-

μογή.
Τα Νευρωνικά Δίκτυα ενημερωμένα από την φυσική (Physics-Informed Neural Networks

- PINNs) έχουν πρόσφατα τραβήξει την προσοχή λόγω της ικανότητάς τους να προσεγγίζουν
τη συμπεριφορά πολύπλοκων, μη γραμμικών φυσικών συστημάτων. Αυτά τα δίκτυα χρησι-
μοποιούν τις θεμελιώδεις αρχές της φυσικής και τις συνοριακές συνθήκες ενός συστήματος,
επιτρέποντάς τους να προσεγγίζουν λύσεις με χαμηλά σφάλματα. Παρόλα αυτά, το απλό
PINN απαιτεί ξεχωριστή εκπαίδευση για κάθε νέο σύστημα, με αποτέλεσμα μια διαδικασία
που είναι πιο χρονοβόρα σε σύγκριση με τις συμβατικές ρευστομηχανικές προσομοιώσεις. Για
να αντιμετωπιστεί αυτό το ζήτημα, έχει προταθεί μια στρατηγική πολλαπλών περιπτώσεων
PINN (multi-case PINN). Αυτή η προσέγγιση περιλαμβάνει την παραμετροποίηση διαφορε-
τικών περιπτώσεων γεωμετρίας και ροής και την προ-εκπαίδευση τους στο PINN, επιτρέπον-
τας την ταχεία παραγωγή λύσεων σε νέες μελέτες. Αυτή η διπλωματική εργασία στοχεύει να
αναλύσει και να συγκρίνει διαφορετικές αρχιτεκτονικές δικτύων με σκοπό τη βελτιστοποίηση

του multi-case PINN μέσω πειραμάτων που θα διεξαχθούν σε ιδεατές 2D στενώσεις.

Λέξεις Κλειδιά

Αγγειακές Στενώσεις, Αιμοδυναμική Προσομοίωση, Υποκατάστατα μοντέλα, Βαθιά Μάθηση,
Νευρωνικά Δίκτυα Ενημερωμένα από τη Φυσική.
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Abstract

Simulating fluid dynamics in tube-like structures is an essential component of computa-
tional biomedical engineering, having important applications in vascular and airway fluid
dynamics. Accurate fluid dynamics computations are necessary to comprehend disease
severity, perfusion and transport physiology, and the biomechanical triggers that cause
diseases to start and progress. Typically, this process entails extracting anatomical ge-
ometry from medical imaging and conducting computational fluid dynamics simulations.
However, despite its efficiency, this process still requires a considerable amount of compu-
tational time, which can range from hours to days. Additionally, this procedure is repeated
for anatomically similar geometries, resulting in an increase in the overall computational
cost. Accelerating fluid dynamics simulations to provide real-time solutions may encourage
clinical usage and lead to advancements in disease assessment and decision-making.

Physics-informed neural networks (PINNs) have recently attracted attention for their
ability to approximate the behavior of intricate, non-linear physical systems. These net-
works utilize the fundamental principles of physics and the governing equations of a system,
enabling them to approximate solutions with low errors. Nevertheless, single case vanilla
PINN requires separate training for every new case, resulting in a more time-intensive
process compared to conventional fluid dynamics simulations. In order to tackle this issue,
a multi-case PINN strategy has been suggested. This approach involves parameterizing
different geometry and flow cases and pre-training them on the PINN. This enables rapid
production of flow solutions in new case studies.This thesis aims to analyze and compare
different network architectures so as to optimize the multi-case PINN through experiments
conducted on idealized 2D stenotic tubes.

Keywords

Vessel Geometries, Hemodynamic Simulation, Surrogate models, Deep Learning, Physics
Informed Neural Networks
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Chapter 1

Basics of neural networks

1.1 Introduction to neural networks

Artificial Neural Networks (ANNs) are adaptive systems inspired by the functioning
of the human brain. These systems can modify their internal structure to achieve specific
functional objectives, making them particularly effective at solving nonlinear problems by
reconstructing the fuzzy rules that govern optimal solutions. In Fig. 1.1, the comparison
between a biological and an artificial neuron is displayed.

Figure 1.1: Comparison between a biological neuron and an artificial neuron [1].

More specifically neural networks are complex functions characterized by the weights of
connections between neurons and the biases of these neurons. Let’s represent these weights
as W and the biases as b, with the complete set of parameters denoted as θ = {W, b}.
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1.1 Introduction to neural networks

Every neuron in the network calculates the weighted average of its input neurons and their
accompanying weights. It then adds its bias to the result and passes the resulting value via
a nonlinear activation function, which we refer to as α. Let x represent the inputs. The
given notation represents a neural network that defines a function f(x; θ). This function f
has the same dimension as the number of neurons in the output layer and can be a vector.
The most basic arrangement of deep neural networks (DNNs) is known as the multilayer
perceptron (MLP). In the case of these neural networks, the neurons are organized in
sequential layers, and each neuron is linked to all the neurons in the adjacent layers. In
Fig. 1.2, an example of a neural network with 3 hidden layers is demonstrated.

Figure 1.2: Example of a neural network with 3 hidden layers [1].

By employing vector notation, we represent the output of the ith layer as fi and the
biases as bi. The weight connecting the (i − 1)th layer to the ith layer is denoted by the
matrix Wi. The input layer is designated with the index 0, whereas the output layer is
designated with the index k. Thus the output of the ith layer is determined as follows:

fi(x) =


x if i = 0

σ(Wifi−1(x) + bi) if i = 1, 2, . . . , k − 1

Wifi−1(x) + bi if i = k

(1.1)

where σ is the vector that contains the outputs of the applied activation function. Also in
this way, in Fig. 1.3 the output of the network can be given as fk(x):
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Figure 1.3: A neuron taking an input feature of dimension d = 3.

1.2 Fundamentals of activation functions

Each neuron’s computation in an ANN is divided into two stages. In the first stage,
the input value is multiplied by a weighted value. In the second stage, an activation
function determines whether the neuron should be activated based on a threshold value,
thereby facilitating the network’s ability to recognize patterns between inputs and outputs
accurately. Consequently, the activation function is crucial for neuron activation. In this
section we will highlight some of the most important properties of activation functions:

• Non-linearity: Activation functions are vital for managing non linearity. Without
them, data would only move through the network’s nodes and layers using linear
functions, resulting in linear outputs regardless of the number of layers, as the com-
posite of linear functions remains linear.

• Computational Cost: The computation of activation functions should be straightfor-
ward.

• Differentiability: This property ensures a function is differentiable at every point in a
specific domain, allowing for easy calculation of gradients and optimization of neuron
weights. Complex activation functions can slow down computation.

• Vanishing Gradient: This problem occurs when the gradient diminishes significantly
during backpropagation, causing a loss of information. An effective activation func-
tions should mitigate this issue.

• Saturation: This term refers to the gradient approaching zero at certain points,
making it difficult to adjust parameter values.

• Monotonicity: The function’s graph should have no local minima, and the function’s
derivative should maintain a consistent sign.

• Less Parameterization: Most activation functions do not require additional parame-
ters, simplifying the computational calculations of the neuron model.

For this reason we have to employ various activation functions for different applications.
Thus, the understanding of their mechanisms can be helpful for the selection of the most
suitable ones for the task.
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1.3 Common activation functions

1.3 Common activation functions

In this section some of the most commonly used activation functions are explained.

Sigmoid

The Sigmoid activation function, Eq.1.2, is continuous and constrained between 0 and
1. Its gradient also falls within the range of 0 to 1. However, in practice, the gradient often
becomes zero in complex neural networks. As a result, error information cannot effectively
propagate through the neurons during backpropagation, which reduces the network’s per-
formance.

sigmoid(x) =
1

1 + e−x
(1.2)

Figure 1.4: Plot of Sigmoid activation function.

Hyperbolic tangent activation function

The hyperbolic tangent (tanh) activation function, Eq.1.3, is a modified variant of the
sigmoid function. It has the same S shape and it is continuous within the range of -1
and +1. When the input data consists of high positive or small negative numbers, the
tanh activation function will become saturated and cease to respond to minor changes in
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the input data, as it also experiences the gradient disappearing issue. Consequently, the
weight will remain unchanged and the gradient will gradually diminish, rendering the DNN
incapable of completing its training.

tanh(x) =
e2x − 1

e2x + 1
(1.3)

Figure 1.5: Plot of tanh activation function.

Rectified Linear Unit

The Rectified Linear Unit (ReLU), Eq.1.4, is a fast and effective activation function for
training complicated neural networks. Compared to the Sigmoid and tanh activation func-
tions, it provides superior performance in deep learning. The ReLU function preserves
the fundamental properties of linear models, which allows for straightforward optimization
using gradient descent methods. This is due to the fact that the ReLU function closely
approximates the linear function. The ReLU activation function performs a threshold op-
eration on each input element as it assigns a value of zero to negative arguments and retains
the original value for positive arguments. Despite the fact that it offers certain benefits, it
suffers from the ”dying ReLU” problem. More specifically several neurons during training
always output zero and do not contribute to the learning process, causing reduced model
capacity and slower convergence.
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ReLU(x) = max(0, x) (1.4)

Figure 1.6: Plot of ReLU activation function.

Leaky ReLU

Leaky ReLU, Eq.1.5, is an early rectified-based activation function that was created based
on ReLU. The LReLU was developed as a potential solution to address the potential prob-
lems of the ReLU mentioned before. It allows a small negative input to generate a large
gradient. Yet, LReLU functions in a manner that is nearly identical to regular rectifiers. It
has a negligible impact on network performance. Its linearity prevents its usage in complex
tasks. In specific application circumstances, it exhibits inferior performance compared to
Sigmoid and tanh.

Leaky ReLU(x) =

x if x ≥ 0

αx if x < 0
(1.5)
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Figure 1.7: Plot of Leaky ReLU activation function.

Exponential Linear Unit

The Exponential Linear Unit (ELU), Eq.1.6, is an activation function that maintains the
input’s value when it is positive, but assigns non-zero values to negative arguments. As
denoted below, α is a hyper-parameter that determines the value for negative inputs.

ELU(x) =

x if x ≥ 0

α(ex − 1) if x < 0
(1.6)
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Figure 1.8: Plot of ELU activation function.

Sigmoid-weighted Linear Unit

In the Sigmoid-weighted Linear Unit (SiLU), Eq.1.7, the input is multiplied by the output
of the sigmoid function. The SiLU function exhibits smoothness, non-monotonicity, and is
bounded below while being unbounded above. For large input, the SiLU activation func-
tion behaves similarly to the ReLU activation function.

SiLU(x) = x · sigmoid(x) =
x

1 + e−x
(1.7)
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Figure 1.9: Plot of SiLU activation function.

1.4 Loss functions

While neural networks offer appealing features in theory, their practical implementa-
tion is not simple. Finding sets of weights that yield correct approximations has proven
to be highly tough. There appear to be no straightforward methods for determining these
weights. Nevertheless, the task of determining optimal weights for neural networks can be
formulated as a minimization problem by defining an error measure between the parame-
terized function given by the neural network and the desired function to be approximated.
These error measures are commonly known as loss functions. Since, a regression task is
investigated in this Thesis, the mean squared error (MSE) loss is the suitable loss function,

L(θ) =
1

N

N∑
i=1

(f(xi, θ)− yi)2 (1.8)

where f(xi,θ) is the neural network’s approximation and yi is the ground truth.
The optimizers are responsible for identifying the ideal parameters that minimize the loss
function. This process in the context of neural networks is called training.
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1.5 First order optimization algorithms

The first order optimization algorithms use the first order derivative of the loss func-
tion and by gradually decreasing it, converge to the desired loss level. They are widely
used in machine learning applications with the most popular being the Stochastic Gradient
Descent (SGD) algorithm and the Adam algorithm.

Stohastic Gradient Descent

The SGD algorithm first calculates the first partial derivative of the loss function with
respect to its parameter vector and then subtracts this number multiplied by a learning
rate from the parameter values. This process is repeated until a local or global minimum
of the function is found. It is true that for small values of the learning rate more iterations
occur until the minimum is found, while for large values there is the risk of not finding
or jumping out of that minimum since the slope of the function is constantly changing.
Historically SGD refers to an optimizer that fits a single sample at the time and should
not be confused with Batch Gradient Descent and Mini-batch Gradient Descent which fit
a whole dataset at once or batches respectively.

Algorithm 1.1: Stochastic Gradient Descent.

Input: Learning rate η, initial parameters θ0, number of epochs E
Output: Optimized parameters θ
1: Initialize parameters θ ← θ0
2: for epoch = 1 to E do
3: for each training example (xi, yi) do
4: Compute the gradient: gi = ∇θL(θ;xi, yi)
5: Update parameters: θ ← θ − η · gi
6: end for
7: end for
8: return θ

AdaGrad

The ΑdaGrad is an abbreviation of "Adaptive Gradient" and is a method that imposes a
separate learning rate on each parameter instead of a single one shared by all parameters.
An advantage of this method is the normalization of the updates made to the parameters,
since, during the training, the values of some weights may increase significantly compared
to other weights and thus, not all the neurons of the model are used effectively. AdaGrad
accomplishes this by maintaining a history of previous updates which works as follows:
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Algorithm 1.2: AdaGrad.

Input: Learning rate η, initial parameters θ0, number of epochs E, small constant ϵ
Output: Optimized parameters θ
1: Initialize parameters θ ← θ0
2: Initialize accumulated gradients G← 0
3: for epoch = 1 to E do
4: for each training example (xi, yi) do
5: Compute the gradient: gi = ∇θL(θ;xi, yi)
6: Accumulate the squared gradient: G← G+ g2i
7: Update parameters: θ ← θ − η√

G+ϵ
· gi

8: end for
9: end for

10: return θ

Root Mean Square Propagation

RMSProp, which stands for Root Mean Square Propagation is another adaptation of SGD.
RMSProp, like AdaGrad, calculates an adaptive learning rate for each parameter, but it
employs an alternative method for updating the parameters.

Algorithm 1.3: RMSProp.

Input: Learning rate η, initial parameters θ0, number of epochs E, decay rate ρ, small
constant ϵ

Output: Optimized parameters θ
1: Initialize parameters θ ← θ0
2: Initialize squared gradient moving average E[g2]← 0
3: for epoch = 1 to E do
4: for each training example (xi, yi) do
5: Compute the gradient: gi = ∇θL(θ;xi, yi)
6: Update the moving average: E[g2]← ρE[g2] + (1− ρ)g2i
7: Update parameters: θ ← θ − η√

E[g2]+ϵ
· gi

8: end for
9: end for

10: return θ

Adaptive Momentum

Adam, short for Adaptive Momentum, is currently the most widely-used optimizer. It
builds upon RMSProp by incorporating the momentum concept from SGD. This means
that instead of directly applying current gradients, Adam applies momentums as in SGD
with momentum, followed by a per-weight adaptive learning rate using the cache, similar
to RMSProp. Additionally, Adam includes a bias correction mechanism (not to be con-
fused with the layer’s bias). This mechanism is applied to both the cache and momentum
to correct for their initial zero values, which can skew results in the early training steps.

26



1.6 Second order optimization algorithms

Algorithm 1.4: Adam.

Input: Learning rate η, initial parameters θ0, number of epochs E, decay rates β1, β2,
small constant ϵ

Output: Optimized parameters θ
1: Initialize parameters θ ← θ0
2: Initialize first moment vector m0 ← 0, second moment vector v0 ← 0
3: for epoch = 1 to E do
4: for each training example (xi, yi) do
5: Compute the gradient: gi = ∇θL(θ;xi, yi)
6: Update biased first moment estimate: mt ← β1 ·mt−1 + (1− β1) · gi
7: Update biased second moment estimate: vt ← β2 · vt−1 + (1− β2) · g2i
8: Compute bias-corrected first moment estimate: m̂t ← mt

1−βt
1

9: Compute bias-corrected second moment estimate: v̂t ← vt
1−βt

2

10: Update parameters: θ ← θ − η · m̂t√
v̂t+ϵ

11: end for
12: end for
13: return θ

1.6 Second order optimization algorithms

In addition to using derivatives to find parameters that minimize error, second-order
optimization methods utilize the Hessian matrix, or variations therefore, to determine the
curvature of the cost function. Generally, second-order optimization methods have not yet
proven to be as effective as first-order methods, primarily due to their significant compu-
tational burden.

Broyden–Fletcher–Goldfarb–Shanno algorithm
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm is one of the optimization al-
gorithms designed to exploit the advantages of the Newton-Raphson method without the
computational complexity required to create the Hessian matrix. The Newton method
calculates the Hessian matrix of the error function, which consists of the second partial
derivatives of the function. This calculation, along with inverting the matrix for each
iteration, is both time-consuming and computationally intensive. Instead of calculating
the Hessian matrix in every iteration, the BFGS algorithm approximates it, avoiding the
explicit computation of all second derivatives of the cost function. Consequently, it creates
Hessian matrices with elements corresponding to the parameters of the neural network.
However, a disadvantage of the BFGS algorithm is the need to store the matrix from the
previous iteration to compute the next one. It becomes clear that for training an NN
with a large number of parameters (weights and thresholds), storing the matrix between
iterations is infeasible. The Limited-memory BFGS (L-BFGS) algorithm addresses this
problem by simulating BFGS while using limited memory. Specifically, L-BFGS stores a
limited number of vectors that represent the Hessian approximation, making it suitable for
optimization problems with a vast number of variables.
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Algorithm 1.5: L-BFGS.

Input: Initial parameters θ0, number of epochs E, small constant ϵ, history size m
Output: Optimized parameters θ
1: Initialize parameters θ ← θ0
2: Initialize empty lists for storing past updates: S ← {} and Y ← {}
3: Initialize gradient ∇L0 ← ∇L(θ0)
4: for epoch t = 1 to E do
5: Calculate search direction: dt ← −Ht · ∇Lt(θ)
6: Perform line search to determine step size αt

7: Update parameters: θ ← θ + αt · dt
8: Compute new gradient: ∇Lt+1 ← ∇L(θ)
9: Store update differences: st ← θt+1 − θt, yt ← ∇Lt+1 −∇Lt

10: Update history: Append st to S, yt to Y
11: if history size > m then
12: Remove the oldest entry in S and Y
13: end if
14: Update Hessian approximation Ht using the stored S and Y
15: end for
16: return θ

1.7 Adaptive activation functions

During the training of neural networks, it is possible to increase the convergence and
accuracy of the model by learning both linear and nonlinear transformations. This can
be achieved by utilizing global adaptive activation functions, as suggested by Jagtap and
Karniadakis [9]. Global adaptive activations involve a trainable parameter that is multi-
plied by the input to the activations to adjust the steepness of the activations. Thus, a
non linear change at the layer ℓ will be expressed in the following form,

N ℓ
(
Hℓ−1; θ, a

)
= σ

(
aLℓ

(
Hℓ−1

))
, (1.9)

where N ℓ is the nonlinear transformation at layer ℓ, Hℓ−1 is the output of the hidden
layer ℓ − 1, θ is the set of model weights and biases, a is the global adaptive activation
parameter, σ is the activation function, and Lℓ is the linear transformation at layer ℓ.
Like the network weights and biases, the global adaptive activation parameter a is also a
trainable parameter. These trainable parameters are optimized by:

θ∗, a∗ = argmin
θ,a

L(θ, a). (1.10)
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Physics informed neural networks

2.1 Introduction to Physics informed neural networks

Over the past 20 years, deep learning has proven to be highly effective in various appli-
cations, including computer vision and natural language processing, through the utilization
of DNNs. Although deep learning has achieved significant success in these and related do-
mains, its adoption in the field of scientific computing remains limited. Recently, there has
been a development in solving partial differential equations (PDEs) using deep learning
techniques. This new sub-field, known as Scientific Machine Learning (SciML), involves
solving PDEs in either the traditional differential form or the integral form. Specifically, we
can substitute conventional numerical discretization techniques with a neural network that
provides an approximation of the solution. In order to acquire an approximation solution
of a PDE using deep learning, a crucial step is to restrict the neural network in such a way
that it minimizes the residual of the PDE. Additionally it should be highlighted that deep
learning offers a mesh-free approach that differs from standard approaches like the finite
difference method (FDM) and the finite element method (FEM) as it utilizes automatic
differentiation to overcome the curse of dimensionality.

2.2 PINNs for solving PDEs

Let’s examine the following PDE parameterized by λ for the solution u(x) with x =

(x1, . . . , xd) defined on a domain Ω ⊂ Rd:

f

(
x;

∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0, x ∈ Ω, (2.1)

with boundary conditions

B(u,x) = 0 on ∂Ω, (2.2)

where B(u,x) can take on any of the following boundary conditions: Dirichlet, Neumann,
Robin, or periodic. In the context of transient problems, we treat time t as a distinct
element of x, and Ω represents the temporal region. The initial condition can be regarded
as a specific form of Dirichlet boundary condition applied to the spatio-temporal domain.
For the solution of the PDE using PINNs it is necessary to follow the methodology as
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Chapter 2. Physics informed neural networks

described below [2]:

1. Create a neural network ûΘ with parameters Θ.

2. Define the training sets Tf and Tb for the PDE and boundary/initial conditions,
respectively.

3. Formulate the loss function LT (Θ) by combining the weighted MSE losses from the
PDE and the boundary/initial condition residuals.

4. Optimize the neural network by minimizing the loss function LT (Θ).

To illustrate the above points we use the schematic of a PINN solving the diffusion
equation ∂u

∂t = λ∂2u
∂x2 with mixed boundary conditions (BC) u(x, t) = gD(x, t) on ΓD ⊂ ∂Ω

and ∂u
∂n(x, t) = gR(u, x, t) on ΓR ⊂ ∂Ω. The initial condition (IC) is treated as a special

type of boundary condition and Tf and Tb denote the two sets of residual points for the
equation and BC/IC respectively:

Figure 2.1: Schematic of a PINN solving the diffusion equation [2].

The computation of partial derivatives is crucial for solving the PDE. Through the
utilization of AD, we can obtain the derivatives of any order of our network ûΘ with respect
to all related input variables, regardless of the programming code’s structure. Therefore, we
may incorporate the PDE residual into our calculations without requiring a computational
mesh, as is typically done in the finite element approach. This inclusion is achieved by
considering two subsets of the training data T ⊂ Ω̃. The set Tf ⊂ Ω̃ contains points within
the domain while Tb ⊂ ∂Ω̃ contains points on the boundary and initial data. It should be
emphasized that the training points are spread randomly throughout the domain.

In order to quantify the difference between the neural network approximation û and
the constraints, we utilize a loss function that is defined as the weighted sum of the L2

norm of the residuals for both the equation and boundary conditions.

L(θ; T ) = wfLf (θ; Tf ) + wbLb(θ; Tb), (2.3)
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2.3 Automatic differentiation

where

Lf (θ; Tf ) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (x; ∂û∂x1 , . . . , ∂û∂xd ; ∂2û

∂x1∂x1
, . . . ,

∂2û

∂x1∂xd
; . . . ;λ

)∥∥∥∥2
2

, (2.4)

Lb(θ; Tb) =
1

|Tb|
∑
x∈Tb

∥B(û,x)∥22 , (2.5)

and wf and wb are the weights. The loss pertains to derivatives, such as the partial
derivative ∂û/∂x1 or the normal derivative at the boundary ∂û/∂n = ∇û · n, which are
computed with the help of AD.

Lastly our model is ready to enter the phase of training, similarly to classic neural
networks. Due to the non-convex nature of the optimization problem, there is no theoretical
assurance that this approach will converge to the global minimum. However, in their
work Raissi, Perdikaris, and Karniadakis [8] highlight that if a given PDE is well-posed,
the method of PINNs can provide accurate predictions by using a sufficient number of
collocation points inside the domain Tf .

2.3 Automatic differentiation

When using PINNs, it is necessary to calculate the gradients of the network outputs
in relation to the network inputs. There are four potential approaches for calculating the
derivatives [10]:

• Manually calculating the derivative using analytical methods

• Approximating the derivative using finite differences or other numerical techniques

• Using symbolic differentiation in software programs like Mathematica, Maxima, and
Maple

• Employing AD, also known as algorithmic differentiation

In deep learning a particular technique of AD is used, to evaluate derivatives, called back-
propagation. Given that the neural network functions as a composition, the chain rule is
applied iteratively by AD to calculate the derivatives. AD involves two distinct steps: a
forward pass to calculate the values of all variables, and a backward pass to calculate the
derivatives. In order to illustrate the concept of AD, we examine a Fully Connected Neural
Network (FCNN) that consists of a single hidden layer with two input variables, x1 and
x2, and one output variable, y:

v = −2x1 + 3x2 + 0.5,

h = tanh(v),

y = 2h− 1.

The Table 2.1 illustrates the process of performing the forward pass and backward pass of
AD to calculate the partial derivative ∂y

∂x1
and ∂y

∂x2
at (x1, x2) = (2, 1)
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Chapter 2. Physics informed neural networks

Table 2.1: Example of AD to compute the partial derivatives ∂y
∂x1

and ∂y
∂x2

at (x1, x2) = (2, 1)
[8].

Forward pass Backward pass
x1 = 2 ∂y

∂y = 1

x2 = 1

v = −2x1 + 3x2 + 0.5 = −0.5 ∂y
∂h = 2

h = tanh v ≈ −0.462 ∂y
∂v = ∂y

∂h ·
∂h
∂v = 2 · sech2(v) ≈ 1.573

y = 2h− 1 = −1.924 ∂y
∂x1

= ∂y
∂v ·

∂v
∂x1

= 1.573× (−2) ≈ −3.146
∂y
∂x2

= ∂y
∂v ·

∂v
∂x2

= 1.573× 3 ≈ 4.719

It is evident that AD simply demands a single forward pass and a single backward pass
to evaluate all the partial derivatives, regardless of the input dimension. On the other hand,
when employing finite differences to calculate each partial derivative ∂y

∂xi
it is necessary

to compute two function values: y(x1, . . . , xi, . . . , xdin) and y(x1, . . . , xi + ∆xi, . . . , xdin),
where ∆xi is a small quantity. Consequently, a total of din +1 forward passes are needed
to assess all the partial derivatives. Therefore, AD is significantly more effective than finite
difference when the input dimension is large.Additionally AD can be recursively applied n
times to compute nth order derivatives. Nevertheless, using a nested technique can result
in inefficiency and numerical instability. As a result, other methods such as Taylor-Mode
AD have been developed to address these issues [11].

2.4 Error analysis in PINNs

Previous study [8] has shown that feed-forward neural networks with a sufficient num-
ber of neurons have the ability to accurately and consistently approximate any function,
as well as its partial derivatives. Still, neural networks implemented in real-world scenarios
are constrained by their finite capacity. Let F represent the set of all functions that may
be expressed using our selected neural network architecture. The solution u is improba-
ble to be a member of the family F . We define uF as the argument that minimizes the
difference between the functions in F and u, denoted as uF = argminf∈F ∥f − u∥. By
training the neural network on the training dataset T , we can define uT as the neural
network that minimizes the loss function uT = argminf∈F L(f ; T ). To elucidate, we make
the assumption that u, uF , and uT are clearly formulated and distinct. Minimizing the
loss to find uT is typically expensive to compute and as a result our optimizer provides an
approximate answer, denoted as ũT . The total error E can be analyzed as it follows:

E := ∥ũT − u∥ ≤ ∥ũT − uT ∥︸ ︷︷ ︸
Eopt

+ ∥uT − uF∥︸ ︷︷ ︸
Egen

+ ∥uF − u∥︸ ︷︷ ︸
Eapp

. (2.6)

The approximation error Eapp quantifies the degree to which uF can accurately ap-
proximate u. The generalization error Egen is dependent on the amount and distribution
of residual points inside T along with the capacity of the family F . Neural networks with
greater complexity exhibit reduced approximation errors, but may also result in increased
generalization errors, a phenomenon known as the bias-variance tradeoff. Overfitting arises
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when the generalization mistake becomes predominant. Furthermore, the optimization er-
ror Eopt emerges from the intricacy of the loss function and the configuration of the opti-
mization process, including the learning rate and the number of epochs. Currently, there
is no error quantification available for PINNs.

Figure 2.2: Illustration of errors of a PINN.

2.5 Comparison between PINNs and FEM

To clarify the concepts behind PINNs and make them more accessible to those familiar
with FEM, a point-by-point comparison between PINNs and FEM is offered [8]:

• In FEM, the solution u is usually represented by a piecewise polynomial, whereas in
PINNs, a neural network serves as the surrogate model, parameterized by its weights
and biases.

• FEM demands the construction of a mesh, while PINNs are entirely mesh-free, al-
lowing for the use of either a grid or randomly distributed points.

• FEM transforms a PDE into an algebraic system by utilizing stiffness and mass
matrices, whereas PINNs incorporate the PDE and boundary conditions directly
into the loss function.

• In the final step, FEM solves the algebraic system using a linear solver, while in
PINNs, the network is trained via a gradient-based optimization algorithm.

Fundamentally, PINNs offer a nonlinear approximation of the function and its deriva-
tives, while FEM provides a linear approximation.

Table 2.2: Comparison between FEM and PINNs.

FEM PINN
Basis function Piecewise polynomial (linear) Activation function (nonlinear)
Unknowns Nodal values Weights and biases
Spacial discretization Computational mesh Scattered points (mesh-free)
PDE embedding Algebraic system Loss function
Solver Linear solver Gradient-based optimizer
Errors Approximation/quadrature errors Eapp, Egen, and Eopt
Error bounds Partially available Not available yet
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Chapter 3

Nvidia Modulus Sym

3.1 Introduction to Nvidia Modulus Sym

Nvidia Modulus Sym is a deep learning framework that integrates the power of physics
and PDEs with AI to create more resilient models for enhanced analysis.

Machine learning (ML) and deep learning models can be applied to physics-based sys-
tems in various ways, depending on the availability of observational data and the depth
of understanding of the underlying physics. Based on these factors, ML/DL methodolo-
gies can be generally categorized into three types: forward (physics-driven) approaches,
data-driven approaches, and hybrid approaches that combine both physics and data as-
similation.

3.2 PINNs in Nvidia Modulus Sym

Modulus Sym has an alternative approach to calculating losses, which differs from the
traditional method outlined in section 1.4. The losses are expressed in integral form, and
Eq.1.8 can be represented as:

Lf =

∫
Ω

∥∥∥∥∂û∂t − λ∂2û∂x2

∥∥∥∥2
2

dx ≈
(∫

Ω
dx

)
· 1

|Tf |
∑
x∈Tf

∥∥∥∥∂û∂t − λ∂2û∂x2

∥∥∥∥2
2

(3.1)

Following that, the integral is approximated using Monte Carlo integration. Thus,
Eq.3.1 is derived in a manner that is equivalent to Eq.1.4, but with the additional consid-
eration of scaling by the area/volume of the domain, to preserve consistent loss per area
across all domains. The losses associated with the boundary conditions are handled in a
similar manner.

3.3 Nvidia Modulus Sym building blocks

Nvidia Modulus sym is neural network framework built on Pytorch. It offers APIs that
enable the user to develop his own applications using the pre-existing modules.

Geometry and data
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3.3 Nvidia Modulus Sym building blocks

The geometry module in Modulus Sym allows users to create a geometry from scratch using
basic shapes or to import an existing geometry from a mesh. For data-driven problems,
Modulus Sym provides various methods for accessing data, including standard in-memory
datasets and lazy loading techniques for handling large-scale datasets.

Nodes

In Modulus Sym, Nodes represent elements that are executed during the forward pass in
training. A Node can encapsulate a torch.nn.Module and includes additional information
about the required input and output variables. This enables Modulus Sym to construct
execution graphs and automatically add missing components to compute necessary deriva-
tives. Nodes can include built-in PyTorch neural networks, user-defined PyTorch networks,
feature transformations, models, functions, or even equations.

Constraints

Constraints refer to the specific objectives that are set for training in Modulus Sym. A
Constraint comprises the loss function and the group of Nodes that Modulus Sym use
to construct a computational graph for execution. Several physical problems require the
inclusion of many training objectives in order to establish a clear and precise definition of
the problem. Constraints serve as the mechanism to define such problems.

Domain

The Domain contains all Constraints along with other essential components for the train-
ing process, such as Inferencers, Validators, and Monitors. In Modulus Sym, user-defined
Constraints are added to the training Domain, forming a set of training objectives.

Solver

A Solver is the core Modulus Sym trainer responsible for the implementation of the opti-
mization loop and management of the training process. It utilizes a defined Domain and
invokes the Constraints, Inferencers, Validators, and Monitors as needed. During each iter-
ation, the Solver calculates the global loss from all Constraints and optimizes any trainable
models within the Nodes specified by the Constraints.

Hydra

Hydra is a configuration package integrated into Modulus Sym. It allows users to set
hyperparameters, which define the neural network’s structure and govern its training, us-
ing YAML configuration files. Hydra is the initial component activated when solving a
problem with Modulus Sym and directly influences all other components.
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Chapter 3. Nvidia Modulus Sym

Inferencers

An Inferencer executes only the forward pass of a group of Nodes. Inferencers can be
utilized during the training process to evaluate training quantities or obtain predictions
for the purpose of visualization or deployment. Hydra configuration options dictate the
frequency at which Inferencers are invoked.

Validators

Validators function similarly to Inferencers, except they additionally incorporate valida-
tion data. The accuracy of the model is quantified during training by validating it against
ground truth data obtained by an alternative method.

Monitors

Monitors function similarly to Inferencers, but they estimate specific measures rather than
fields. These metrics can refer to global quantities, such as the total energy of a system.

3.4 Modulus Sym workflow

The figure below depicts a standard workflow for development in Modulus Sym. While
not all problems will necessitate this identical approach, it can be used as a general guide-
line. The essential stages of this procedure comprise:

• Initialize Hydra: Use the Modulus Sym main decorator to load the YAML config-
uration file.

• Load Data: Import datasets if necessary.

• Set Geometry: Define the system’s geometry if required.

• Create Nodes: Establish any necessary Node, such as the neural network model.

• Establish Domain: Generate a Domain object for training.

• Add Constraints: Develop each of the Nc Constraints sequentially and integrate
them into the Domain.

• Include Validators, Inferencers, and Monitors: Generate any Inferencer, Val-
idator, or Monitor as required and incorporate them into the Domain.

• Initialize Solver: Create a Solver using the training Domain.

• Execute Solver: Run the Solver. The training process will optimize the neural
network to solve the physics problem.

36



3.4 Modulus Sym workflow

Figure 3.1: A typical workflow in Modulus Sym [3].

Figure 3.2: Modulus Sym training algorithm [3].
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Chapter 4

PINNs in Hemodynamics

The study of Hemodynamics is crucial for the clinical identification and treatment of
cardiovascular diseases such as aneurysms and stenosis. Hemodynamic modelling relies on
CFD, which often demand expertise and significant amount of computational resources.
However, PINNs have recently emerged as an innovative approach for addressing those
issues by including physics laws into the training algorithm of deep learning models, en-
abling real time flow predictions even with limited data.

One of the foundational studies showcasing the utility of PINNs in hemodynamics was
presented in the study by Raissi et al. [4]. The single case PINN proposed leverages the
spatio-temporal visualizations of a passive scalar to inference the velocity and pressure
fields. In this scenario, the passive scalar refers to the bolus dye commonly delivered into
the bloodstream aiming to facilitate blood flow monitoring and medical imaging. It should
be noted that this methodology does not need the implementation of initial and boundary
conditions as the algorithm is agnostic to geometry and only utilizes the conservation laws.
This early study paved the way for the wider adoption of PINNs in hemodynamics and
served as a source of inspiration for many later investigations.

Figure 4.1: 2D channel flow over an obstacle [4]: A representative snapshot of the input
data on the concentration field within the training domain is plotted in the top left panel
alongside the prediction of our algorithm. The algorithm is capable of accurately recon-
structing the velocity and the pressure fields without having access to any observations of
these fields (shown in the second and third rows). Furthermore, no boundary conditions are
specified on the boundaries of the training domain including the physical wall boundaries.
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Figure 4.2: A 3D intracranial aneurysm [4]: Contours of the exact fields and model pre-
dictions are plotted on two perpendicular planes for concentration c, velocity u, v, w, and
pressure p fields in each row.

Another critical advancement is the use of PINNs in combination with high-speed an-
giography (HSA) for neurovascular hemodynamics estimation by Williams et al. [5]. Like
[4], it predicts velocity and pressure fields by utilizing the convection equation, without
needing a predefined inlet velocity function. However, unlike [4] it enforces no slip bound-
ary condition at the walls. Despite the fact that the PINN is single case and needs to
be retrained for each new input model, the mean time for convergence was 23 minutes
including all the time needed for the pre-processing of the data.

Figure 4.3: Pre-processed 1000 fps HSA acquisition (left), its corresponding binary mask
used to define the vessel lumen (middle), and the Sobel-filtered binary mask, used to define
the walls of the model (right) [5].
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Figure 4.4: Spatial sampling at one time step showing vessel lumen in blue, and vessel walls
in green (left). Spatial sampling is then extended temporally for both the vessel lumen and
vessel wall (vessel wall omitted) (right) [5].

Figure 4.5: n vitro HSA image sequence (left four images) compared to the normalized mag-
nitude image (right) generated by the image-assisted PINN. Red arrows show progression
of contrast media edges [5].

In the study by Garay et al. [6], a PINN architecture was demonstrated that could
predict blood flow by coupling a reduced order model with Navier-Stokes in 3 dimensions.
By utilizing geometry data and the inlet velocity profile obtained from simulated 2D MRI
images, a mean pressure curve measured at the left-subclavian artery, the no slip boundary
condition at the walls, 3D Navier-Stokes equations and the equations of the 3 element
Windkessel model, the PINN successfully solved the coupled system. It not only succeeded
to solve the steady problem but also the transient despite the huge computational cost.
Moreover at the end of the training process the network accurately identified the most
suitable physical parameters that correspond to the proximal and distal resistance of the
vasculature and the distal’s vessels compliance. In summary the suggested architecture
offers an innovative approach to personalized hemodynamic models based on patient’s
clinical data.
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Figure 4.6: Feed-forward neural network architecture used for the transient problem. After
physics-informed training, the output of the network is used for reconstruct the 3D velocity
field and the Windkessel parameters of all the domain outlets [6].

Figure 4.7: Velocity streamlines of the transient problem for the reference solution (a and
d), the mean estimated velocity estimated by the PINNs (b and e), and the velocity obtained
after a FEM simulation using the found parameters (c and f) at two time instants: t =
0.12 s, which correspond to peak systole, and at t = 0.45 s, during mid diastole [6].
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Figure 4.8: Mean absolute relative error of the parameter estimation using the Kalman
filter approach (ROUKF) and PINNs [6].

The work by Zhang et al. [7], introduces a deep learning framework designed to map
the 4D hemodynamic profile (3d space and time) of blood flow in morphologically diverse
arteries. The framework integrates vessel structure and time series data with Navier-Stokes
equations to predict velocity and pressure fields. This implementation of PINN exhibits
superior performance and accuracy compared to previous deep learning studies. However
this architecture is still not yet ready for clinical use, primarily due to the fact that it
needs patient’s specific boundary conditions obtained by 4D flow MRI or particle image
velocimetry experiments to replace the CFD simulations, that do not represent the real
flow field.

Figure 4.9: Visual comparison of hemodynamic calculation results between CFD simulation
and deep learning method [7].
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Lastly the study by Wong et al. [12] that inspired the current thesis, explored a multi
case PINN approach for modelling fluid dynamics in idealized geometries. It employed
an unsupervised method by just enforcing the Navier-Stokes equations along with the
boundary conditions to the network’s loss function, demonstrating very low errors despite
the fact that it was not informed with data from simulations. As such, they can not be
used for clinical applications but the strategies identified are crucial for the future 3D scale
up.
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Methods
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Chapter 5

Hemodynamic predictions in 2D vessel stenoses using

PINNs

5.1 Problem definition

Computational fluid dynamics (CFD) for tubular geometries play a vital role in hemo-
dynamic assessments in vessels. PINNs are a potential substitute for conventional CFD
techniques. Nevertheless, vanilla PINNs typically require extended training durations com-
pared to traditional CFD techniques for individual flow scenarios, hence restricting their
extensive adoption. In order to tackle this issue, a multi-case PINN strategy has been sug-
gested. This approach involves parameterizing different geometric cases and flow conditions
and pre-training them on the PINN. This allows for quick computation of hemodynamic
results in unseen geometries at different Reynolds numbers.

This study aims to find the steady-state solutions for the flow of incompressible fluid
(blood) in idealized 2D stenotic vessels (channel with a narrowing in the middle). The ge-
ometric shape of the stenosis and the flow conditions are described by a parameter called
λ. The equations that govern this problem are as follows:

∇ · u = 0, x ∈ Ω, λ ∈ Rn (5.1)

(u · ∇)u = −1

ρ
∇p+ ν∇2u, x ∈ Ω, λ ∈ Rn (5.2)

u = 0, at x = Γwall (5.3)

p = 0, at x = Γoutlet (5.4)

u = umax ·
(
1− y2

R0
2

)
, v = 0, at x = Γinlet, λ ∈ Rn (5.5)

where p = p(x, λ) is the fluid pressure, x = (x, y) is the spatial coordinates and u =

u(x, λ) = [u(x, λ), v(x, λ)]T denotes the fluid velocity with components u and v in x and y
direction respectively across the fluid domain Ω and the domain boundaries Γ. A parabolic
velocity profile is prescribed at the inlet and a zero pressure condition at the outlet. λ is
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an n-dimensional parameter vector, consisting of two case parameters, fc (severity of the
stenosis) and umax (maximum inlet velocity). R0 is the radius of the vessel away from the
stenosis.

R(x) =


R0, for − 4 ·R0 ≤ x < −2 ·R0

R0 (1− fc(1 + cos(xπ)) , for − 2 ·R0 ≤ x ≤ 2 ·R0

R0, for 2 ·R0 < x ≤ 4 ·R0

(5.6)

where R(x) is the radius of the vessel with respect to its length.

(a) (b)

Figure 5.1: Example of 2 stenotic geometries, with (a) fc = 0.1 and (b) fc = 0.3.

We can define Ab as the stenosis percentage of the cross section:

Ab = (1− n) · 100% (5.7)

where n is the ratio As/A0, with As being the cross section at the point where the maximum
stenosis appears (x = 0) and A0 the cross section of the vessel away from the stenosis.

As = A0 ·n => b · ds = b · d0 ·n => ds = d0 ·n => Rs = R0 ·n => Rs/R0 = 1− 2 · fc = n

(5.8)
where b is the depth of the vessel geometry, ds is the diameter at the point where maximum
stenosis appears and d0 is the diameter of the vessel away from the stenosis. So Ab with
respect to fc can be described as:

Ab = 2 · fc · 100% (5.9)

The blood was defined as a fluid with density ρ = 1060 Kg/m3 and dynamic viscosity
µ = 0.004 Kg/(m · s). For the training of the multi-case PINN, the fc parameter was set
to vary from 0.1 and 0.3, and umax from 0.38 to 1.52 m/s, resulting at a Reynolds number
range of 500-2000. Firstly the problem was selected to be dimensional however the results
did not yield the expected accuracy and the problem was non dimensionalized with:

• length scale = 0.1 m (d0)

• velocity scale = 1.52 m/s (umax)

• density scale = 1060 Kg/m3 (blood density)

• kinematic viscosity scale = length scale · velocity scale

All the x, y coordinates that compose the geometry were divided by the length scale
of 0.1m. Each inlet velocity was divided by the velocity scale of 1.52m/s (umax). To
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instantiate the Navier-Stokes module in Modulus, we set the fluid density to a value of 1.
To find the kinematic viscosity, we divided the dynamic viscosity by the density and then
non-dimensionalized it by dividing it with the kinematic viscosity scale. In Eq 5.10 we get
the non dimensionalized radius of the vessel geometry with respect to x.

R(x) =


0.5, for − 2 ≤ x < −1

0.5 (1− fc(1 + cos(xπ)) , for − 1 ≤ x ≤ 1

0.5, for 1 < x ≤ 2

(5.10)

5.2 Network architecture

In this thesis, we employ PINN to solve the above system of PDE. The predictions of
the variables u and p are expressed as a constrained optimization problem. The network is
then trained, without the use of labeled data, using the governing equations and specified
boundary conditions. The loss function L(θ) for the physics constrained learning is defined
as follows:

L(θ) = ωphysicsLphysics + ωbcLBC (5.11)

θ∗ = argmin
w,b

(L(θ)) (5.12)

where W and b refer to the weights and biases of the fully connected neural network.
Lphysics represents the loss function over the entire domain for the parameterized Continuity
and Navier-Stokes equations, and LBC represents the boundary conditions loss. ωphysics

and ωbc are the weights parameters for the terms and both take the value of 1. The loss
expressions can be described as:

Lphysics =
1

NDomain

NDom∑
i=1

|∇ · û|2Ω +
1

NDomain

NDom∑
i=1

∣∣∣∣(û · ∇) û+
1

ρ
∇p̂− ν∇2û

∣∣∣∣2
Ω

(5.13)

LBC =
1

Nwall

Nwall∑
i=1

|û|2Γwall
+

1

Noutlet

Nout∑
i=1

|p̂|2Γoutlet

+
1

Ninlet

Nin∑
i=1

∣∣∣∣û− umax ·
(
1− y2

R2
0

)∣∣∣∣2
Γinlet

+
1

Ninlet

Nin∑
i=1

|v̂|2Γinlet

(5.14)

where NDomain, Nwall, Ninlet, Noutlet is the number of randomly selected points inside
the domain, at the walls, at the inlet and at the outlet respectively.

The PINN was trained and tested using a single GPU (Nvidia RTX 3070). In this study,
a feedforward FCNN called fθ was utilized where the surrogate network model is built to
approximate the solutions, ŷ = [û(x, λ), v̂(x, λ), p̂(x, λ)]T . In the FCNN, the output from
the network (a series of fully connected layers), ŷ(ψ; θ), where ψ represents the network
inputs, was computed using trainable parameters θ, consisting of the weights Wi and biases
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bi of the i-th layer for n layers, according to the equation:

ŷ(ψ; θ) =Wn (Φn−1 ◦ Φn−2 ◦ · · · ◦ Φ1) (ψ) + bn (5.15)

Φi = α (Wi (Φi−1) + bi) , for 2 < i < n− 1 (5.16)

where Φi represents the nodes of the ith layer in the network and α is the activation
function. AD is used to compute partial differential operators and all networks and losses
were constructed using NVIDIA’s Modulus framework.

Figure 5.2: The FCNN of our problem with 4 hidden layers and 16 nodes per hidden layer.

5.3 Tube specifc parameters

When addressing the fluid dynamics of biomedical tube-like flows, such as vascular
flows, it is crucial to consider tube-specific parameters as they directly affect it. These
parameters include the distance along the tube, the centerline and the distance from the
tube walls. For instance, at regions near the wall, solutions with low velocity magnitude
are expected because of the physics of the no slip boundary condition. Additionally, it is
expected that the fluid pressure will drop along the tube, as a result of energy losses in
the flow. Therefore, it is proposed that incorporating those parameters as inputs into the
tube flow PINN will improve its accuracy [12].

Thus we incorporated eight tube-specific parameters, referred to as TSPs into the PINN
as inputs.

1. Normalized centerline distance, c ∈ (−1, 1).
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2. Normalized width, Ln ∈ (−1, 1).

3. dsq = 1− L2
n

4. c2

5. L2
n

6. c× dsq

7. c× Ln

8. Ln × dsq

5.4 Computational Fluid Dynamics simulations in COMSOL

CFD ground truth data of the training and prediction geometries were generated using
COMSOL laminar flow steady state study. The problem was non dimensionalized as
described before so that the exported data is suitable for evaluating the performance of
PINNs.

The first step was the creation of the geometry. For the creation of the geometry, 4
parametric curves were defined, to generate 2 solid surfaces, that were subtracted from
the rectangle 2 × 1 with the help of the boolean operations that are offered in COMSOL
Multiphysics v6.2.

Figure 5.3: Example of a parametric curve used to simulate the blood flow in a stenosis
with fc=0.17.

The next step was the definition of the fluid properties as shown in Fig. 5.4
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Figure 5.4: Definition of fluid properties.

To define the BCs, we selected the section of the geometry, where the BCs are enforced
as shown in Figs 5.5, 5.6 and 5.7.

Figure 5.5: Inlet parabolic velocity profile with a maximum value of 0.46 m/s.
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5.4 Computational Fluid Dynamics simulations in COMSOL

Figure 5.6: Zero pressure condition at the outlet.

Figure 5.7: No slip conditions at the walls.

After the formulation of the constraints, the mesh was generated. COMSOL gives the
option to simplify the process of creating a mesh by either allowing the software to do
it automatically or by manually constructing a customized mesh. This is achieved using
either a physics-controlled ora user-controlled mesh sequence type, accordingly. No matter
which type of mesh sequence the user selects, there exist numerous options, settings, tools,
and generators that can be employed to generate an ideal mesh for the given geometry and
analysis.
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Figure 5.8: Statistics of an extra fine physics-controlled mesh.

Figure 5.9: Extraction of COMSOL data.

The relative error tolerance was set to 10−4 and a mesh independence analysis was
performed to reach the final accepted CFD solution. To compare the CFD and PINN
solutions, we applied post-processing to transform the computational mesh grid points from
COMSOL for proper PINN inference. Notably, the input parameters in the PINN model,
aside from the other parameters, are the x and y coordinates of a channel without stenosis.
Based on the fc parameter, the geometry is then transformed during inference to represent
a stenotic vessel. Therefore, the COMSOL computational mesh, representing a vessel
with a given stenosis severity, must first be transformed into a non-stenotic vessel before
being submitted to the PINN model. This "antistenosis" transformation (see Appendix
A) ensures that the comparison between CFD and PINN solutions is conducted using
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consistent coordinates, obtaining more precise error measurements.

5.5 Evaluation of errors

To quantify the errors between the COMSOL values, yCom = [u, v, p] ,and PINN values,
yPINN = [û, v̂, p̂], we used normalized root mean squared error (Norm RMSE).

Norm RMSE =
RMSE

yPINN
max − yCom

min

(5.17)

where RMSE is the root mean squared error,

RMSE =

√√√√ 1

n

n∑
i=1

(
yPINN
i − yCom

i

)2 (5.18)

Norm RMSE is typically used to measure accuracy in regression models. It takes values
from 0 to 1 and closer to zero means that the model is more accurate.
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Results
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Chapter 6

Study of different parameters

6.1 Advantages of tube specifc parameters

To test the performance of the PINN when employing TSPs, a network that consists
of 6 hidden layers and 512 neurons per hidden layer was used. The activation function
selected is SiLU and Adam algorithm is chosen as the optimizer.

Figure 6.1: Total loss for the 2 networks.
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Figure 6.2: Time per step for the 2 networks.

As observed the employment of TSPs not only reduces the total loss (Fig. 6.1), but also
lowers significantly the calculation time needed for each step (Fig. 6.2). More specifically
the total loss achieved when employing TSPs is 70% lower compared to the network’s loss
without TSPs and the time per step is decreased from 0.18 seconds per step to 0.12 seconds
per step. For the accuracy comparison, 3 random case studies were picked.

Table 6.1: The parameters of the 3 case studies for the evaluation of the TSPs implemen-
tation errors.

Study fc umax(m/s) Reynolds
1 0.24 0.62 816
2 0.11 1.1 1447
3 0.17 0.7 921
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6.1 Advantages of tube specifc parameters

(a)

(b)

(c)

Figure 6.3: Prediction of u velocity in Study 1 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.4: Prediction of v velocity in Study 1 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.5: Prediction of pressure in Study 1 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.6: Prediction of u velocity in Study 2 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.
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6.1 Advantages of tube specifc parameters

(a)

(b)

(c)

Figure 6.7: Prediction of v velocity in Study 2 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.8: Prediction of pressure in Study 2 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.9: Prediction of u velocity in Study 3 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.
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6.1 Advantages of tube specifc parameters

(a)

(b)

(c)

Figure 6.10: Prediction of v velocity in Study 3 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.11: Prediction of pressure in Study 3 (Table 6.1) using: (a) PINN without TSPs,
(b) PINN with TSPs, (c) FEM in COMSOL.
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Table 6.2: Errors for the 2 networks

Study Network RMSE u Norm RMSE u RMSE v Norm RMSE v RMSE p Norm RMSE p

1 TSPs 0.0354 0.0491 0.007 0.0236 0.0111 0.0855
1 NO TSPs 0.0367 0.0509 0.0067 0.0229 0.0125 0.0961
2 TSPs 0.0366 0.0453 0.0041 0.0331 0.0256 0.3694
2 NO TSPs 0.0363 0.0449 0.0040 0.0322 0.0258 0.3717
3 TSPs 0.0280 0.0465 0.0042 0.0244 0.0143 0.2032
3 NO TSPs 0.0289 0.042 0.00247 0.0249 0.0149 0.2123

The error measurements summarized in Table 6.2 clearly demonstrate that the use
of TSPs significantly reduces the Norm RMSE of pressure when comparing the PINN
and CFD solutions across all three case studies (Table 6.1), indicating an improvement in
pressure accuracy. However, the impact on velocity errors is minimal, as these errors are
already quite low. Given the reduced computational time per step and the improvement
in pressure accuracy, TSPs are utilized in all subsequent studies in this thesis.

6.2 Activation functions

The selection of the activation function has a substantial influence on the effectiveness
of training. When training using the backpropagation algorithm, it is necessary to compute
the derivative of the loss function with respect to the weights and biases of each layer. As
the studies have shown [13], training a neural network with multiple hidden layers may
not be effective if the derivative of the activation function has a small range.

When it comes to Modulus Sym, SiLU is the default activation function, yet in this
Thesis, we employed and evaluated the effects of the other activation functions discussed
in section 1.2 on the rate of convergence. All the experiments were performed using Adam
optimizer and a PINN with 4 hidden layers and 256 neurons per layer. It should be
highlighted, that the training was discontinued when the total loss was stabilized, which
is why certain trainings present with a lower number of epochs.
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6.2 Activation functions

Figure 6.12: Total loss for different activation functions.

Figure 6.13: Continuity loss for different activation functions.
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Figure 6.14: x-momentum loss for different activation functions.

Figure 6.15: y-momentum loss for different activation functions.

Based on the data presented above it is evident that SiLU and tanh exhibit lower overall
loss compared to the other AFs while Sigmoid possesses the largest total losses.
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6.3 Number of layers and number of neurons per layer

6.3 Number of layers and number of neurons per layer

In this section, we analyze how the the various combinations of number of layers and
neurons per layer affect the total loss and computation time for each run. Again the
optimizer used was the Adam with SiLU activation function. Firstly, we increased the
number of neurons per layer while keeping a fixed layer size.

Figure 6.16: Total loss for different numbers of neuron per layer.

It is evident that the architectures of 256 neurons per layer and 1024 neurons per
layer perform slightly better than the network with 512 neurons per layer. However if we
analyze the plot of total loss with respect to wall clock time (Fig. 6.17), it is obvious that
the architecture with 256 neurons per layer achieve the same total loss levels much faster.
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Figure 6.17: Total loss for different numbers of neuron per layer with respect to wall clock
time.

To test how the number of layers influence the performance of the PINN, we increased
the number of layers, while maintaining a constant number of neurons per layer.

Figure 6.18: Total loss for different number of layers.
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Figure 6.19: Total loss for different number of layers with respect to wall clock time.

As it can be observed in Figs 6.26 and 6.19, the network with the 4 layers does not
manage to reach a satisfying loss level. Additionally we can observe that the most efficient
architecture is the one with the 6 layers, as it achieves the lowest total loss in the least
amount of time.

Comparison between all different architectures

Figure 6.20: Total loss for the different architectures.
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Figure 6.21: Total loss for the different architectures with respect to wall clock time.

Figure 6.22: Continuity loss for the different architectures.
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6.3 Number of layers and number of neurons per layer

Figure 6.23: x-momentum loss for the different architectures.

Figure 6.24: y-momentum loss for the different architectures.

The network with the 6 hidden layers and 512 neurons per layer manages to achieve
the lowest total loss and the lowest individual losses. Therefore, we chose this architecture
to evaluate the accuracy of our trained model in comparison with the CFD validation data
provided by COMSOL.

69



Chapter 6. Study of different parameters

6.4 Optimizers

In this section we investigated how various optimizers influence the different losses in
our model. The optimizers are selected with their default hyperparameters from Nvidia
Modulus Sym and the network deployed, is a PINN with 4 hidden layers and 256 neurons
per layer. The selected activation function is SiLU.

Figure 6.25: Total loss for different optimizers.

It appears that SGD and AdaGrad get stuck in a local minimum and do not manage to
reach a lower total loss level (Fig 6.25). Moreover we observe that RMSProp surprisingly
succeeds in obtaining better convergence rate than Adam but with higher computation time
per step. The time required for each step in the Adam, AdaGrad, and SGD optimization
algorithms is nearly the same (Fig 6.26).
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6.4 Optimizers

Figure 6.26: Time per step for different optimizers.

Figure 6.27: Continuity loss for different optimizers.
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Figure 6.28: x-momentum loss for different optimizers.

Figure 6.29: y-momentum loss for different optimizers.

It is noticeable that SGD and AdaGrad have almost no fluctuations in their loss values
compared to the other 2 optimizers.
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6.5 Adaptive activation functions

6.5 Adaptive activation functions

To investigate how adaptive activation functions influence the accuracy and the con-
vergence, we tested the performance of 2 neural networks architectures with and without
adaptive activation functions. The architectures selected are one network with 4 hidden
layers and 256 neurons per layer and one network with 6 hidden layers and 512 neurons
per layer. All networks are trained with Adam optimizer and use SiLU as the activation
function.

Figure 6.30: Influence of adaptive activation functions.

It is evident that using adaptive activation functions does not always reduce the total
loss. To be more precise, enabling adaptive activation functions effectively reduces the
total training loss for the network with 4 layers and 256 neurons per layer. However, in
the larger network with 6 layers and 512 neurons per layer, it not only fails to reduce the
loss but actually increases it.
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Figure 6.31: Influence of adaptive activation functions on time per step.

As it was expected the utilization of adaptive activation functions leads to an increase
in the duration of each step. However the small network experiences much bigger rise in
time per step, in comparison to the bigger network that the increase in time per step is
only noticeable after the 100k steps.
For the accuracy test we picked 3 random pairs of fc and umax.

Table 6.3: The parameters of the 3 case studies for the accuracy evaluation of the adaptive
activation functions.

Study fc umax(m/s) Reynolds
1 0.256 1.111 1462
2 0.212 0.389 512
3 0.162 0.925 1217
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6.5 Adaptive activation functions

Accuracy of small network (4 layers-256 neurons per layer)

(a)

(b)

(c)

Figure 6.32: Prediction of u velocity in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.33: Prediction of v velocity in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.34: Prediction of pressure in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.35: Prediction of u velocity in Study 2 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.36: Prediction of v velocity in Study 2 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.37: Prediction of pressure in Study 2 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.38: Prediction of u velocity in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.39: Prediction of v velocity in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.40: Prediction of pressure in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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Accuracy of big network (6 layers-512 neurons per layer)

(a)

(b)

(c)

Figure 6.41: Prediction of u velocity in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.42: Prediction of v velocity in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL..

(a)

(b)

(c)

Figure 6.43: Prediction of pressure in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a) .

(b)

(c)

Figure 6.44: Prediction of u velocity in Study 2 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.45: Prediction of v velocity in Study 2 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.46: Prediction of pressure in Study 1 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.47: Prediction of u velocity in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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(a)

(b)

(c)

Figure 6.48: Prediction of v velocity in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.49: Prediction of pressure in Study 3 (Table 6.3) using: (a) PINN without, (b)
PINN with adaptive activation functions, (c) FEM in COMSOL.
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6.6 Number of sampling points

Table 6.4: Errors for the different networks and studies.

Study Network RMSE u Norm RMSE u RMSE v Norm RMSE v RMSE p Norm RMSE p

1 Small 0.0893 0.0676 0.0153 0.0233 0.0666 0.1243
1 Adapt small 0.0799 0.0606 0.0138 0.0212 0.0479 0.0893
1 Big 0.0776 0.0588 0.0064 0.0098 0.0224 0.0418
1 Adapt big 0.0808 0.0612 0.0071 0.0108 0.0197 0.0368
2 Small 0.0374 0.0984 0.0038 0.0260 0.0106 0.2608
2 Adapt small 0.0314 0.0826 0.0038 0.0259 0.0082 0.2007
2 Big 0.0240 0.0630 0.0026 0.0180 0.0061 0.1505
2 Adapt big 0.0246 0.0647 0.0028 0.0192 0.0064 0.1560
3 Small 0.0475 0.0612 0.0048 0.0215 0.0257 0.2238
3 Adapt small 0.0461 0.0594 0.0058 0.0264 0.0248 0.2155
3 Big 0.0382 0.0492 0.0041 0.0189 0.0210 0.1826
3 Adapt big 0.0406 0.0523 0.0042 0.0191 0.0217 0.1885

As summarized in Table 6.4, the big network (6 hidden layers and 512 neurons per
layer) with adaptive activation functions is associated with higher errors, while the small
network is performing better (lower errors) in all 3 case studies (with parameters defined
in Table 6.3) compared to to small network

6.6 Number of sampling points

In this section, the number of sampling points and its impact on the convergence rate
and accuracy is studied. We examine if the small network (4 hidden layers with 256 neurons
per hidden layer) with enabled adaptive activation functions of the section 6.5 can further
reduce its total loss and improve its accuracy by sampling more points. To record the
errors, we reuse again the 3 previous case studies (Table 6.6) .

A batch size of 1000 was consistently utilized in all trainings, resulting in a total of
3.84 million spatial points per epoch for sampling 1 and 5.92 million for sampling 2, since
in each training iteration 3840 batch points and 5920 were used accordingly.

Table 6.5: Number of points for the 2 samplings.

Geometry Sampling 1 Sampling 2
Inlet 160 160

Outlet 160 160
Up wall 160 300

Down wall 160 300
Interior 3200 5000

Table 6.6: The parameters of the 3 case studies for the accuracy evaluation of different
samplings.

Study fc umax(m/s) Reynolds
1 0.256 1.111 1462
2 0.212 0.389 512
3 0.162 0.925 1217
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Figure 6.50: Total loss for the 2 Samplings.

As expected the total loss is lower on sampling 2 but with slightly highercomputation
time per step.

Figure 6.51: Time per step for the 2 Samplings.
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6.7 Single-case PINN vs multi-case PINN

Table 6.7: Errors for the 2 samplings.

Study Network RMSE u Norm RMSE u RMSE v Norm RMSE v RMSE p Norm RMSE p

1 Sampling 1 0.0799 0.0606 0.0138 0.0212 0.0479 0.0893
1 Sampling 2 0.0798 0.0605 0.0107 0.0162 0.0190 0.0355
2 Sampling 1 0.0314 0.0826 0.0038 0.0259 0.0082 0.2007
2 Sampling 2 0.0314 0.0825 0.0034 0.0232 0.0080 0.1965
3 Sampling 1 0.0461 0.0594 0.0058 0.0264 0.0248 0.2155
3 Sampling 2 0.0467 0.0602 0.0055 0.0249 0.0255 0.2215

In Study 1 with the implementation of sampling 2, all errors decrease with a particularly
significant reduction in the pressure error. In Study 2, all errors show a slight decline.
Interestingly, in Study 3, only the error in v velocity decreases, while u velocity and pressure
errors experience a modest increase.

6.7 Single-case PINN vs multi-case PINN

In this section difference in losses and accuracy between single-case PINN and multi-
case PΙΝΝ is investigated. Both networks consist of 6 hidden layers and 512 neurons per
hidden layer, the activation function selected is SiLU and Adam optimizer are used. The
single-case PINN is trained for fc = 0.2 and Reynolds number approximately 1315, and
its errors are compared with the multi-case architecture for the same case.

Figure 6.52: Total loss for the 2 networks.

87



Chapter 6. Study of different parameters

Figure 6.53: Time per step for the 2 networks.

As we see, total loss for the single-case network is much lower with smaller time per
step. That was totally expected, since the multi-case Pinn has two additional dimensions
fc and umax, making it is much more difficult for the network to learn the hidden fluid
mechanics.

(a)

(b)

(c)

Figure 6.54: Prediction of u velocity using: (a) Single-case PINN, (b) Multi-case PINN,
(c) FEM in COMSOL.
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6.7 Single-case PINN vs multi-case PINN

(a)

(b)

(c)

Figure 6.55: Prediction of v velocity using: (a) Single-case PINN, (b) Multi-case PINN,
(c) FEM in COMSOL.

(a)

(b)

(c)

Figure 6.56: Prediction of pressure using: (a) Single-case PINN, (b) Multi-case PINN, (c)
FEM in COMSOL.
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Table 6.8: Errors for different networks.

Network RMSE u Norm RMSE u RMSE v Norm RMSE v RMSE p Norm RMSE p

Single-case 0.0468 0.0462 0.0081 0.0240 0.0167 0.0824
Multi-case 0.0483 0.0477 0.0079 0.0236 0.0238 0.1174

Upon observation, it is seen that errors in the u velocity do not reduce significantly
in the single-case architecture. However, errors in the v velocity partially increase, while
errors in pressure noticeably decrease.
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Chapter 7

FEM vs. multi-case PΙΝΝ

7.1 Introduction

In this chapter, we examine the accuracy of the multi-case PINN vs. FEM ground
truth data and investigate how severity of the stenosis and Reynolds number influence the
different errors. The PΙΝΝ used, had 6 hidden layers, 512 neurons per hidden layer, SiLU
as the activation function and Adam algorithm as the optimizer.

7.2 Case study 1: Re=500, fc =0.1

Figure 7.1: u velocity in multi-case PINN vs FEM for Re=500 and fc=0.1.
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Figure 7.2: v velocity in multi-case PINN vs FEM for Re=500 and fc=0.3.

Figure 7.3: pressure in multi-case PINN vs FEM for Re=500 and fc=0.3.

As illustrated in Fig.7.1, the PINN manages to accurately represent the u velocity field.
However, in Fig.7.2, it is noticeable that deep learning is not able to capture the gradient
of the v velocity after the stenosis. When it comes to pressure field Fig.7.3, the PINN can
not display the pressure drop, that is expected at the stenosis, as a result of the energy
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7.3 Case study 2: Re=500, fc =0.2

loss.

7.3 Case study 2: Re=500, fc =0.2

Figure 7.4: u velocity in multi-case PINN vs FEM for Re=500 and fc=0.2.

Figure 7.5: v velocity in multi-case PINN vs FEM for Re=500 and fc=0.2.
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Figure 7.6: pressure in multi-case PINN vs FEM for Re=500 and fc=0.2.

As observed in Fig.7.4, deep learning finds it difficult to represent the u velocity gradient
after the stenosis. In Fig.7.5, the PINN displays very low errors at the v velocity field.
Regarding the pressure field, Fig.7.6, the PINN can not display the gradual pressure drop.
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7.4 Case study 3: Re=500, fc =0.3

7.4 Case study 3: Re=500, fc =0.3

Figure 7.7: u velocity in multi-case PINN vs FEM for Re=500 and fc=0.3.

Figure 7.8: v velocity in multi-case PINN vs FEM for Re=500 and fc=0.3.
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Figure 7.9: pressure in multi-case PINN vs FEM for Re=500 and fc=0.3.

As observed in Fig.7.8 and Fig.7.9, deep learning manages to capture accurately the v
velocity and pressure fields. When it comes to u velocity field, again the errors are very
low, yet, the gradient after the stenosis is not depicted correctly.

96



7.5 Case study 4: Re=750, fc =0.1

7.5 Case study 4: Re=750, fc =0.1

Figure 7.10: u velocity in multi-case PINN vs FEM for Re=750 and fc=0.1.

Figure 7.11: v velocity in multi-case PINN vs FEM for Re=750 and fc=0.1.
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Figure 7.12: pressure in multi-case PINN vs FEM for Re=750 and fc=0.1.

As displayed in Fig.7.10, the PINN manages to accurately represent the u velocity field.
However, in Fig. 7.11, it is noticeable that deep learning is not able to capture the gradient
of the v velocity after the stenosis. When it comes to pressure field Fig.7.12, the PINN
can not depict the pressure drop, that is expected at the stenosis.
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7.6 Case study 5: Re=750, fc =0.2

7.6 Case study 5: Re=750, fc =0.2

Figure 7.13: u velocity in multi-case PINN vs FEM for Re=750 and fc=0.2.

Figure 7.14: v velocity in multi-case PINN vs FEM for Re=750 and fc=0.2.
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Figure 7.15: pressure in multi-case PINN vs FEM for Re=750 and fc=0.2.

As observed in Fig.7.13, deep learning can not accurately represent the u velocity
gradient after the stenosis. In Fig.7.14, the PINN displays very low errors at the v velocity
field. Regarding the pressure field, Fig.7.15, the PINN can not display the gradual pressure
drop.
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7.7 Case study 6: Re=750, fc =0.3

7.7 Case study 6: Re=750, fc =0.3

Figure 7.16: u velocity in multi-case PINN vs FEM for Re=750 and fc=0.3.

Figure 7.17: v velocity in multi-case PINN vs FEM for Re=750 and fc=0.3.
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Figure 7.18: pressure in multi-case PINN vs FEM for Re=750 and fc=0.3.

As illustrated in Fig.7.17 and Fig.7.18, deep learning manages to capture accurately
the v velocity and pressure fields. When it comes to u velocity field, again the errors are
very low, yet, the gradient after the stenosis is not depicted correctly.
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7.8 Case study 7: Re=1000, fc =0.1

7.8 Case study 7: Re=1000, fc =0.1

Figure 7.19: u velocity in multi-case PINN vs FEM for Re=1000 and fc=0.1.

Figure 7.20: v velocity in multi-case PINN vs FEM for Re=1000 and fc=0.1.
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Figure 7.21: pressure in multi-case PINN vs FEM for Re=1000 and fc=0.1.

As observed in Fig.7.19, the PINN manages to accurately represent the u velocity field.
However, in Fig.7.20, it is noticeable that deep learning is not able to capture the gradient
of the v velocity after the stenosis. When it comes to pressure field Fig.7.21, the PINN can
not display the pressure drop, that is expected at the stenosis, as a result of the energy
loss.
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7.9 Case study 8: Re=1000, fc =0.2

7.9 Case study 8: Re=1000, fc =0.2

Figure 7.22: u velocity in multi-case PINN vs FEM for Re=1000 and fc=0.2.

Figure 7.23: v velocity in multi-case PINN vs FEM for Re=1000 and fc=0.2.
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Figure 7.24: pressure in multi-case PINN vs FEM for Re=1000 and fc=0.2.

As illustrated in Fig.7.22, deep learning finds it difficult to represent the u velocity
gradient after the stenosis. In Fig.7.23, the PINN displays very low errors at the v velocity
field. Regarding the pressure field, Fig.7.24, the PINN can not display the gradual pressure
drop.
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7.10 Case study 9: Re=1000, fc =0.3

7.10 Case study 9: Re=1000, fc =0.3

Figure 7.25: u velocity in multi-case PINN vs FEM for Re=1000 and fc=0.3.

Figure 7.26: v velocity in multi-case PINN vs FEM for Re=1000 and fc=0.3.
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Figure 7.27: pressure in multi-case PINN vs FEM for Re=1000 and fc=0.3.

As observed in Fig.7.26 and Fig.7.27, deep learning manages to capture accurately the
v velocity and pressure fields. When it comes to u velocity field, again the errors are very
low, yet, the gradient after the stenosis is not depicted correctly.
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7.11 Case study 10: Re=1250, fc =0.1

7.11 Case study 10: Re=1250, fc =0.1

Figure 7.28: u velocity in multi-case PINN vs FEM for Re=1250 and fc=0.1.

Figure 7.29: v velocity in multi-case PINN vs FEM for Re=1250 and fc=0.1.
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Figure 7.30: pressure in multi-case PINN vs FEM for Re=1250 and fc=0.1.

As illustrated in Fig.7.28, the PINN manages to accurately represent the u velocity
field. However, in Fig.7.29, it is noticeable that deep learning is not able to capture the
gradient of the v velocity after the stenosis. When it comes to pressure field Fig.7.30, the
PINN can not display the pressure drop, that is expected at the stenosis, as a result of the
energy loss.
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7.12 Case study 11: Re=1250, fc =0.2

7.12 Case study 11: Re=1250, fc =0.2

Figure 7.31: u velocity in multi-case PINN vs FEM for Re=1250 and fc=0.2.

Figure 7.32: v velocity in multi-case PINN vs FEM for Re=1250 and fc=0.2.
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Figure 7.33: pressure in multi-case PINN vs FEM for Re=1250 and fc=0.2.

As observed in Fig.7.31, deep learning finds it difficult to represent the u velocity
gradient after the stenosis. In Fig.7.32, the PINN displays very low errors at the v velocity
field. Regarding the pressure field, Fig.7.33, the PINN displays the gradual pressure drop
more accurately compared to the other case studies with the same fc.
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7.13 Case study 12: Re=1250, fc =0.3

7.13 Case study 12: Re=1250, fc =0.3

Figure 7.34: u velocity in multi-case PINN vs FEM for Re=1250 and fc=0.3.

Figure 7.35: v velocity in multi-case PINN vs FEM for Re=1250 and fc=0.3.
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Figure 7.36: pressure in multi-case PINN vs FEM for Re=1250 and fc=0.3.

As displayed in Fig.7.35 and Fig.7.36, deep learning manages to capture accurately the
v velocity and pressure fields. When it comes to u velocity field, again the errors are very
low, yet, the gradient after the stenosis is not depicted correctly.
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7.14 Case study 13: Re=1500, fc =0.1

7.14 Case study 13: Re=1500, fc =0.1

Figure 7.37: u velocity in multi-case PINN vs FEM for Re=1500 and fc=0.1.

Figure 7.38: v velocity in multi-case PINN vs FEM for Re=1500 and fc=0.1.
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Figure 7.39: pressure in multi-case PINN vs FEM for Re=1500 and fc=0.1.

As illustrated in Fig.7.37, the PINN manages to accurately represent the u velocity
field. However, in Fig.7.38, it is noticeable that deep learning is not able to capture the
gradient of the v velocity after the stenosis. When it comes to pressure field Fig.7.39, the
PINN can not display the pressure drop, that is expected at the stenosis, as a result of the
energy loss.
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7.15 Case study 14: Re=1500, fc =0.2

7.15 Case study 14: Re=1500, fc =0.2

Figure 7.40: u velocity in multi-case PINN vs FEM for Re=1500 and fc=0.2.

Figure 7.41: v velocity in multi-case PINN vs FEM for Re=1500 and fc=0.2.
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Figure 7.42: pressure in multi-case PINN vs FEM for Re=1500 and fc=0.2.

As observed in Fig.7.40, deep learning finds it difficult to represent the u velocity
gradient after the stenosis. In Fig.7.41, the PINN displays very low errors at the v velocity
field. Regarding the pressure field, Fig.7.42, the PINN displays the gradual pressure drop
accurately.
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7.16 Case study 15: Re=1500, fc =0.3

7.16 Case study 15: Re=1500, fc =0.3

Figure 7.43: u velocity in multi-case PINN vs FEM for Re=1500 and fc=0.3.

Figure 7.44: v velocity in multi-case PINN vs FEM for Re=1500 and fc=0.3.

119



Chapter 7. FEM vs. multi-case PΙΝΝ

Figure 7.45: pressure in multi-case PINN vs FEM for Re=1500 and fc=0.3.

As displayed in Fig.7.44 and Fig.7.45, deep learning manages to capture accurately the
v velocity and pressure fields. When it comes to u velocity field, again the errors are very
low, yet, the gradient after the stenosis is not depicted correctly.
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7.17 Case study 16: Re=1750, fc =0.1

7.17 Case study 16: Re=1750, fc =0.1

Figure 7.46: u velocity in multi-case PINN vs FEM for Re=1750 and fc=0.1.

Figure 7.47: v velocity in multi-case PINN vs FEM for Re=1750 and fc=0.1.

121



Chapter 7. FEM vs. multi-case PΙΝΝ

Figure 7.48: pressure in multi-case PINN vs FEM for Re=1750 and fc=0.1.

As illustrated in Fig.7.46, the PINN manages to accurately represent the u velocity
field. However, in Fig.7.47, it is noticeable that deep learning is not able to capture the
gradient of the v velocity after the stenosis. When it comes to pressure field Fig.7.48, the
PINN can not display the pressure drop, that is expected at the stenosis, as a result of the
energy loss.
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7.18 Case study 17: Re=1750, fc =0.2

7.18 Case study 17: Re=1750, fc =0.2

Figure 7.49: u velocity in multi-case PINN vs FEM for Re=1750 and fc=0.2.

Figure 7.50: v velocity in multi-case PINN vs FEM for Re=1750 and fc=0.2.
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Figure 7.51: pressure in multi-case PINN vs FEM for Re=1750 and fc=0.2.

As observed in Fig.7.49, deep learning finds it difficult to represent the u velocity
gradient after the stenosis. In Fig.7.50, the PINN displays very low errors at the v velocity
field. Regarding the pressure field, Fig.7.51, the PINN can not display the gradual pressure
drop.
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7.19 Case study 18: Re=1750, fc =0.3

7.19 Case study 18: Re=1750, fc =0.3

Figure 7.52: u velocity in multi-case PINN vs FEM for Re=1750 and fc=0.3.

Figure 7.53: v velocity in multi-case PINN vs FEM for Re=1750 and fc=0.3.
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Figure 7.54: pressure in multi-case PINN vs FEM for Re=1750 and fc=0.3.

As displayed in Fig.7.53 and Fig.7.54, deep learning manages to capture accurately the
v velocity and pressure fields. When it comes to u velocity field, again the errors are very
low, yet, the gradient after the stenosis is not depicted correctly.

126



7.20 Errors PINNs vs FEM

7.20 Errors PINNs vs FEM

Table 7.1: Errors for the different studies.

Study Re fc RMSE u Norm RMSE u RMSE v Norm RMSE v RMSE p Norm RMSE p
1 500 0.1 0.0147 0.0548 0.0016 0.0427 0.0019 0.2246
2 500 0.2 0.0203 0.0576 0.0027 0.0222 0.0060 0.1893
3 500 0.3 0.0356 0.0636 0.1893 0.0197 0.0101 0.0997
4 750 0.1 0.0180 0.0444 0.0021 0.0387 0.0050 0.2830
5 750 0.2 0.0266 0.0497 0.0035 0.0189 0.0091 0.1339
6 750 0.3 0.0480 0.0573 0.0073 0.0170 0.0149 0.0667
7 1000 0.1 0.0227 0.0418 0.0026 0.0362 0.0097 0.3299
8 1000 0.2 0.0347 0.0476 0.0044 0.0173 0.0136 0.1153
9 1000 0.3 0.0660 0.0607 0.0062 0.0101 0.0078 0.0184
10 1250 0.1 0.0272 0.0403 0.0031 0.0348 0.0158 0.3424
11 1250 0.2 0.0459 0.0503 0.0046 0.0138 0.0161 0.0812
12 1250 0.3 0.0808 0.0599 0.0072 0.0093 0.0106 0.0161
13 1500 0.1 0.0319 0.0393 0.0035 0.0322 0.0229 0.3531
14 1500 0.2 0.0550 0.0500 0.0055 0.0135 0.0211 0.0746
15 1500 0.3 0.0947 0.0588 0.0085 0.0091 0.0195 0.0206
16 1750 0.1 0.0363 0.0382 0.0040 0.0309 0.0311 0.3581
17 1750 0.2 0.0660 0.0512 0.0069 0.0144 0.0273 0.0714
18 1750 0.3 0.1085 0.0579 0.0103 0.0095 0.0526 0.0410

Figure 7.55: Norm RMSE in u velocity.
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Figure 7.56: Norm RMSE in v velocity.

Figure 7.57: Norm RMSE in p pressure.

In general, errors in the velocity fields were very low. As it was observed u velocity
errors slightly increase at higher Reynolds numbers and degrees of stenosis, while v velocity
errors seem to increase at lower Reynolds numbers and degrees of stenosis. Additionally
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7.20 Errors PINNs vs FEM

results indicate that pressure prediction accuracy drops for bigger Reynolds numbers but
increases for bigger degrees of stenosis. It should be considered that errors in general were
slightly bigger than expected from the bibliography and that is because of the extended
range of Reynolds numbers and degrees of stenosis that the network had to learn to predict.
Moreover, it should be noted that the inspiration study [12], which exhibits very low errors,
investigates a multi-case PINN, that predicts the velocity and pressure fields for a constant
low Reynolds number and for gradual stenoses that do not reach high degrees of stenosis,
as opposed to our work. It is important to mention that the inaccuracies in velocity and
pressure fields seem to be consistent and appear at the same regions. More specifically it is
evident that while the degree of stenosis grows, the gradient of u velocity at the height of
the stenosis seems to be increasingly ignored after the narrowing. Regarding the pressure
it is observable that at low degrees of stenosis the network fails to represent the pressure
drop precisely.
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Conclusion

Vascular hemodynamics are often studied in similar patient-specific anatomies. Follow-
ing the conventional methodology, a separate CFD simulation must be performed for every
case. Despite being a well-optimized and accurate procedure, it still takes several hours to
prepare the geometry, create a mesh, setup and perform the numerical simulation. This
Thesis explores a special category of neural networks that integrate PDEs into the training
process, known as PINNs. Specifically, we investigated whether PINNs can be generalized,
so that they can predict the solutions of a PDE for different boundary conditions and in
different geometries, without the need for training data. We employed multi-case PINNs to
solve the 2D Navier–Stokes equations in simplified stenotic vessel geometries with varying
degrees of stenosis and for different Reynolds numbers, creating surrogate models of blood
flow. We analyzed how different activation functions, optimizers, network architectures
and point samplings influence the accuracy and performance of the multi-case PINNs. Ad-
ditionally, we examined how adaptive activation functions and TSPs could enhance these
models. The main findings of the Thesis are:

• Implementing TSPs improves accuracy and reduces computation time per step.

• SiLU and tanh produce the lowest overall loss compared to other activation functions.

• The most efficient architecture is a network with 6 hidden layers and 512 neurons
per hidden layer, achieving the lowest loss in the shortest time.

• While RMSProp offers better convergence rates, its high computation time makes
Adam the most practical optimizer.

• Adaptive activation functions do not consistently improve performance, as their ef-
fectiveness depends on the network architecture.

• A higher number of sampling points improves convergence but increases the time per
step.

• Single-case PINNs are less effective than CFD simulations due to worse convergence
rates.

• Multi-case PINNs, while generally performing worse than CFD simulations, enable
real-time predictions.

• Velocity errors are very low overall.

• u velocity errors increase with higher Reynolds numbers and degrees of stenosis.
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7.20 Errors PINNs vs FEM

• v velocity errors increase at lower Reynolds numbers and lower degrees of stenosis.

• Pressure prediction accuracy declines at higher Reynolds numbers but improves with
greater degrees of stenosis.

In summary, multi-case PINNs enable a single training process to handle various ge-
ometries and flow conditions, offering real-time predictions. Future work should extend
these models to 3D dimensions using patient-specific vascular models and explore advanced
unsupervised learning techniques that could surpass the performance of the PINNs used
in this study.
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Appendix A

Python code

1 class Stenosis(torch.nn.Module):
2 def __init__(self , r, l):
3 super().__init__ ()
4 self.register_buffer("r", torch.tensor(r), persistent=False

)
5 self.register_buffer("l", torch.tensor(l), persistent=False

) # length of line
6

7 def forward(self , x):
8 x_ref = x[..., 0:1]
9 y_ref = x[..., 1:2]

10 fc = x[..., 2:3]
11

12 # Transform x_ref to range [-1, 1] for the cosine function
13 x_ref_transformed = 2 * (x_ref - self.l/8) / (3* self.l/8 -

self.l/8) - 1
14

15

16 # Create masks for the piecewise function
17 mask1 = (x_ref >= -self.l/2) & (x_ref < -self.l / 8)
18 mask2 = (x_ref >= -self.l / 8) & (x_ref < self.l / 8)
19

20 # Compute y_case based on the interval
21 y_case = torch.where(
22 mask1 ,
23 y_ref ,
24 torch.where(
25 mask2 ,
26 y_ref * (1 - fc * (1 + torch.cos(x_ref_transformed

* torch.pi))),
27 y_ref
28 )
29 )
30

31 return torch.cat((x_ref , y_case), -1)

Listing A.1: Stenosis tranformation class
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Appendix A. Python code

With the help of the Stenosis class we can define the different stenosis geometries with
respect to fc.

1 class GE(torch.nn.Module):
2 def __init__(self , r, l):
3 super().__init__ ()
4 r = torch.tensor(r)
5 self.register_buffer("r", r, persistent=False)
6 l = torch.tensor(l)
7 self.register_buffer("l", l, persistent=False) # length of

line
8

9 def forward(self , x):
10 x_case = x[..., 0:1]
11 y_case = x[..., 1:2]
12 fc = x[..., 2:3]
13

14 # Transform x_ref to range [-1, 1] for the cosine function
15 x_ref_transformed = 2 * (x_case - self.l/8) / (3* self.l/8 -

self.l/8) - 1
16

17 # Create masks for the piecewise function
18 mask1 = (x_case >= -self.l/2) & (x_case < -self.l / 8)
19 mask2 = (x_case >= -self.l / 8) & (x_case < self.l / 8)
20

21 radius = torch.where(
22 mask1 ,
23 y_case / self.r,
24 torch.where(
25 mask2 ,
26 y_case / (1 - fc * (1 + torch.cos(x_ref_transformed

* torch.pi))) /self.r,
27 y_case / self.r
28 )
29 )
30

31 cline = 2. * x_case / self.l
32

33

34

35 return torch.cat((cline , radius), -1)
36

37 class Dissq(torch.nn.Module):
38 def __init__(self):
39 super().__init__ ()
40 def forward(self ,x):
41 return 1.-x[... ,0:1]**2.
42

43
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44 class warped(torch.nn.Module):
45 def __init__(self):
46 super().__init__ ()
47 def forward(self ,x):
48 return x[... ,2:4] -x[... ,0:2]
49

50

51 class Newcoord(torch.nn.Module):
52 def __init__(self ,s):
53 super().__init__ ()
54 s=torch.tensor(s)
55 self.register_buffer("s", s, persistent=False)
56 def forward(self ,x):
57 return self.s*x[... ,0:3]

Listing A.2: Classes that produced the tube specific coordinates

By utilizing the above classes we could enter as extra input to our network the tube specific
coordinates.

1 class NavierStokes_CoordTransformed(PDE):
2

3

4 name = "NavierStokes_CoordTransformed"
5

6 def __init__(self , nu ,case_coord_strList=None ,
case_param_strList=None , rho=1, dim=3, time=True , mixed_form
=False):

7 # set params
8 self.dim = dim
9 self.time = time

10 self.mixed_form = mixed_form
11 if case_param_strList is None:
12 case_param_strList ={}
13 if case_coord_strList is None:
14 case_coord_strList =["x_case","y_case","z_case"]
15 if (case_coord_strList)==1:
16 case_coord_strList=case_coord_strList +["y_case","z_case

"]
17 elif (case_coord_strList)==2:
18 case_coord_strList=case_coord_strList +["z_case"]
19 # coordinates
20 t= Symbol("t")
21

22 x = Symbol(case_coord_strList [0])
23 y = Symbol(case_coord_strList [1])
24 z = Symbol(case_coord_strList [2])
25 input_variables = {case_coord_strList [0]: x,

case_coord_strList [1]: y, case_coord_strList [2]: z, "t":
t}
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26 for key in case_param_strList:
27 input_variables[key]= case_param_strList[key]
28 if self.dim == 2:
29 input_variables.pop("z_case")
30 if not self.time:
31 input_variables.pop("t")
32

33 # velocity componets
34 u = Function("u")(* input_variables)
35 v = Function("v")(* input_variables)
36 if self.dim == 3:
37 w = Function("w")(* input_variables)
38 else:
39 w = Number (0)
40

41 # pressure
42 p = Function("p")(* input_variables)
43

44 # kinematic viscosity
45 if isinstance(nu , str):
46 nu = Function(nu)(* input_variables)
47 elif isinstance(nu , (float , int)):
48 nu = Number(nu)
49

50 # density
51 if isinstance(rho , str):
52 rho = Function(rho)(* input_variables)
53 elif isinstance(rho , (float , int)):
54 rho = Number(rho)
55

56 # dynamic viscosity
57 mu = rho * nu
58

59 # set equations
60 self.equations = {}
61 self.equations["continuity"] = (
62 rho.diff(t) + (rho * u).diff(x) + (rho * v).diff(y) + (

rho * w).diff(z)
63 )
64

65 if not self.mixed_form:
66 curl = Number (0) if rho.diff(x) == 0 else u.diff(x) + v

.diff(y) + w.diff(z)
67 self.equations["momentum_x"] = (
68 (rho * u).diff(t)
69 + (
70 u * ((rho * u).diff(x))
71 + v * ((rho * u).diff(y))
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72 + w * ((rho * u).diff(z))
73 + rho * u * (curl)
74 )
75 + p.diff(x)
76 - (-2 / 3 * mu * (curl)).diff(x)
77 - (mu * u.diff(x)).diff(x)
78 - (mu * u.diff(y)).diff(y)
79 - (mu * u.diff(z)).diff(z)
80 - (mu * (curl).diff(x))
81 )
82 self.equations["momentum_y"] = (
83 (rho * v).diff(t)
84 + (
85 u * ((rho * v).diff(x))
86 + v * ((rho * v).diff(y))
87 + w * ((rho * v).diff(z))
88 + rho * v * (curl)
89 )
90 + p.diff(y)
91 - (-2 / 3 * mu * (curl)).diff(y)
92 - (mu * v.diff(x)).diff(x)
93 - (mu * v.diff(y)).diff(y)
94 - (mu * v.diff(z)).diff(z)
95 - (mu * (curl).diff(y))
96 )
97 self.equations["momentum_z"] = (
98 (rho * w).diff(t)
99 + (

100 u * ((rho * w).diff(x))
101 + v * ((rho * w).diff(y))
102 + w * ((rho * w).diff(z))
103 + rho * w * (curl)
104 )
105 + p.diff(z)
106 - (-2 / 3 * mu * (curl)).diff(z)
107 - (mu * w.diff(x)).diff(x)
108 - (mu * w.diff(y)).diff(y)
109 - (mu * w.diff(z)).diff(z)
110 - (mu * (curl).diff(z))
111 )
112

113 if self.dim == 2:
114 self.equations.pop("momentum_z")
115

116 elif self.mixed_form:
117 u_x = Function("u_x")(* input_variables)
118 u_y = Function("u_y")(* input_variables)
119 u_z = Function("u_z")(* input_variables)
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120 v_x = Function("v_x")(* input_variables)
121 v_y = Function("v_y")(* input_variables)
122 v_z = Function("v_z")(* input_variables)
123

124 if self.dim == 3:
125 w_x = Function("w_x")(* input_variables)
126 w_y = Function("w_y")(* input_variables)
127 w_z = Function("w_z")(* input_variables)
128 else:
129 w_x = Number (0)
130 w_y = Number (0)
131 w_z = Number (0)
132 u_z = Number (0)
133 v_z = Number (0)
134

135 curl = Number (0) if rho.diff(x) == 0 else u_x + v_y +
w_z

136 self.equations["momentum_x"] = (
137 (rho * u).diff(t)
138 + (
139 u * ((rho * u.diff(x)))
140 + v * ((rho * u.diff(y)))
141 + w * ((rho * u.diff(z)))
142 + rho * u * (curl)
143 )
144 + p.diff(x)
145 - (-2 / 3 * mu * (curl)).diff(x)
146 - (mu * u_x).diff(x)
147 - (mu * u_y).diff(y)
148 - (mu * u_z).diff(z)
149 - (mu * (curl).diff(x))
150 )
151 self.equations["momentum_y"] = (
152 (rho * v).diff(t)
153 + (
154 u * ((rho * v.diff(x)))
155 + v * ((rho * v.diff(y)))
156 + w * ((rho * v.diff(z)))
157 + rho * v * (curl)
158 )
159 + p.diff(y)
160 - (-2 / 3 * mu * (curl)).diff(y)
161 - (mu * v_x).diff(x)
162 - (mu * v_y).diff(y)
163 - (mu * v_z).diff(z)
164 - (mu * (curl).diff(y))
165 )
166 self.equations["momentum_z"] = (
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167 (rho * w).diff(t)
168 + (
169 u * ((rho * w.diff(x)))
170 + v * ((rho * w.diff(y)))
171 + w * ((rho * w.diff(z)))
172 + rho * w * (curl)
173 )
174 + p.diff(z)
175 - (-2 / 3 * mu * (curl)).diff(z)
176 - (mu * w_x).diff(x)
177 - (mu * w_y).diff(y)
178 - (mu * w_z).diff(z)
179 - (mu * (curl).diff(z))
180 )
181 self.equations["compatibility_u_x"] = u.diff(x) - u_x
182 self.equations["compatibility_u_y"] = u.diff(y) - u_y
183 self.equations["compatibility_u_z"] = u.diff(z) - u_z
184 self.equations["compatibility_v_x"] = v.diff(x) - v_x
185 self.equations["compatibility_v_y"] = v.diff(y) - v_y
186 self.equations["compatibility_v_z"] = v.diff(z) - v_z
187 self.equations["compatibility_w_x"] = w.diff(x) - w_x
188 self.equations["compatibility_w_y"] = w.diff(y) - w_y
189 self.equations["compatibility_w_z"] = w.diff(z) - w_z
190 self.equations["compatibility_u_xy"] = u_x.diff(y) -

u_y.diff(x)
191 self.equations["compatibility_u_xz"] = u_x.diff(z) -

u_z.diff(x)
192 self.equations["compatibility_u_yz"] = u_y.diff(z) -

u_z.diff(y)
193 self.equations["compatibility_v_xy"] = v_x.diff(y) -

v_y.diff(x)
194 self.equations["compatibility_v_xz"] = v_x.diff(z) -

v_z.diff(x)
195 self.equations["compatibility_v_yz"] = v_y.diff(z) -

v_z.diff(y)
196 self.equations["compatibility_w_xy"] = w_x.diff(y) -

w_y.diff(x)
197 self.equations["compatibility_w_xz"] = w_x.diff(z) -

w_z.diff(x)
198 self.equations["compatibility_w_yz"] = w_y.diff(z) -

w_z.diff(y)
199

200 if self.dim == 2:
201 self.equations.pop("momentum_z")
202 self.equations.pop("compatibility_u_z")
203 self.equations.pop("compatibility_v_z")
204 self.equations.pop("compatibility_w_x")
205 self.equations.pop("compatibility_w_y")
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206 self.equations.pop("compatibility_w_z")
207 self.equations.pop("compatibility_u_xz")
208 self.equations.pop("compatibility_u_yz")
209 self.equations.pop("compatibility_v_xz")
210 self.equations.pop("compatibility_v_yz")
211 self.equations.pop("compatibility_w_xy")
212 self.equations.pop("compatibility_w_xz")
213 self.equations.pop("compatibility_w_yz")

Listing A.3: The Navier Stokes Equations class

Navier Stokes class that allows the user to implement the conservation of mass and mo-
mentum into his loss function.

1 channel = Channel2D_centerfocused(
2 (channel_length_nd [0], channel_width_nd [0]), #x1 ,y1
3 (channel_length_nd [1], channel_width_nd [1]), #x2 ,y2
4 parameterization=pr ,
5 )
6

7 inlet_2d = Line(
8 (channel_length_nd [0], channel_width_nd [0]), #x1 ,y1
9 (channel_length_nd [0], channel_width_nd [1]), #x1 ,y2

10 normal=-1,
11 parameterization=pr ,
12 )
13

14 outlet_2d = Line(
15 (channel_length_nd [1], channel_width_nd [0]), #x2 ,y1
16 (channel_length_nd [1], channel_width_nd [1]), #x2 ,y2
17 normal=1,
18 parameterization=pr ,
19 )
20

21 wall_btm = HLine(
22 (channel_length_nd [0], channel_width_nd [0]), #x1 , y1
23 (channel_length_nd [1], channel_width_nd [0]), #x2 , y1
24 normal=-1,
25 parameterization=pr ,
26 )
27

28 wall_top = HLine(
29 (channel_length_nd [0], channel_width_nd [1]), #x1 ,y2
30 (channel_length_nd [1], channel_width_nd [1]), #x2 ,y2
31 normal=1,
32 parameterization=pr ,)

Listing A.4: Creation of the domain in Nvidia Modulus Sym

To define the domain in Python we used the built-in features of Nvidia Modulus Sym.
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1 Stenosis_coordTransform=CustomModuleArch(
2 [Key("x"), Key("y"),Key("fc")],
3 [Key("x_case"), Key("y_case")],
4 module=Stenosis_2(channel_radius_nd ,channel_length_nd [1]-

channel_length_nd [0])
5 )
6

7

8 ge_net=CustomModuleArch(
9 [Key("x_case"), Key("y_case"), Key("fc")],

10 [Key("cline"), Key("radius")],
11 module=GE(channel_radius_nd ,channel_length_nd [1]-

channel_length_nd [0])
12 )
13

14

15 warp=CustomModuleArch(
16 [Key(’x’),Key(’y’),Key("x_case"), Key("y_case")],
17 [Key("warpx"), Key("warpy")],
18 module=warped ()
19 )
20

21 ns = NavierStokes_CoordTransformed(nu=nu_nd , rho=rho_nd , dim=2,
time=False)

22

23 normal_dot_vel = NormalDotVec (["u", "v"])
24

25

26 Dissq_net=CustomModuleArch(
27 [Key("radius")],
28 [Key("dissq")],
29 module=Dissq()
30 )
31

32 incrorder_NN = CustomModuleArch(
33 input_keys =[Key("cline"),Key("radius"),Key("dissq")],
34 output_keys =[Key("cline_sq"),Key("radius_sq"),Key("

cline_radius"),Key("cline_dissq"),Key("radius_dissq")],
35 module=incrorder (),
36 )

Listing A.5: Creation of list of nodes to unroll graph on in Nvidia Modulus Sym

By using the custom classes we created before, we created the nodes for our problem.

1 flow_net = instantiate_arch(
2 input_keys =[Key("x_case"), Key("y_case"),Key("cline"), Key(

"radius"),Key("dissq"),Key("cline_sq"),Key("radius_sq"),
Key("cline_radius"),Key("cline_dissq"),Key("radius_dissq
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"),Key("fc"),Key("inlet_u")],
3 output_keys =[Key("u"), Key("v"), Key("p")],
4 cfg=cfg.arch.fully_connected ,
5 activation_fn=Activation.RELU ,
6 )

Listing A.6: Creation of the network

For the creation of the network we had to define the input and output keys of our prob-
lem,the type of the neural network and the activation function used.

1 # inlet
2 inlet = PointwiseBoundaryConstraint(
3 nodes=nodes ,
4 geometry=inlet_2d ,
5 outvar ={"u": inlet_parabola , "v": 0},
6 batch_size=cfg.batch_size.inlet*batchsizefactor ,
7 parameterization=param_ranges ,
8 )
9 domain.add_constraint(inlet , "inlet")

10

11

12 # outlet
13 outlet = PointwiseBoundaryConstraint(
14 nodes=nodes ,
15 geometry=outlet_2d ,
16 outvar ={"p": outlet_p},
17 batch_size=cfg.batch_size.outlet*batchsizefactor ,
18 parameterization=param_ranges ,
19 )
20 domain.add_constraint(outlet , "outlet")
21

22

23 # no slip
24 no_slip_wall_btm = PointwiseBoundaryConstraint(
25 nodes=nodes ,
26 geometry=wall_btm ,
27 outvar ={"u": noslip_u , "v": noslip_v},
28 batch_size=cfg.batch_size.walls*batchsizefactor ,
29 parameterization=param_ranges ,
30 )
31 domain.add_constraint(no_slip_wall_btm , "no_slip_wall")
32

33

34 no_slip_wall_top = PointwiseBoundaryConstraint(
35 nodes=nodes ,
36 geometry=wall_top ,
37 outvar ={"u": noslip_u , "v": noslip_v},
38 batch_size=cfg.batch_size.walls*batchsizefactor ,
39 parameterization=param_ranges ,
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40 )
41 domain.add_constraint(no_slip_wall_top , "no_slip_wall")
42

43

44 # interior contraints
45 interior = PointwiseInteriorConstraint(
46 nodes=nodes ,
47 geometry=volume_geo ,
48 outvar ={"continuity": 0, "momentum_x": 0, "momentum_y": 0},
49 batch_size=cfg.batch_size.interior*batchsizefactor ,
50 bounds=Bounds ({x: channel_length_nd , y: channel_width_nd }),
51 parameterization=param_ranges ,
52 )
53 domain.add_constraint(interior , "interior")

Listing A.7: Definition of constrains in Nvidia Modulus Sym

The constraints used to define the loss function were the 2D Navier Stokes equations at
the computational domain as well as the boundary conditions at the inlet, outlet and the
walls.
In order to be able to start the running process we have to additionally use a configuration
file in which basic parameters of the training are defined.

1 defaults :
2 - modulus_default
3 - arch:
4 - fully_connected
5

6

7

8

9

10 - optimizer : adagrad
11 - scheduler : tf_exponential_lr
12 - loss : sum
13 - _self_
14

15

16

17

18 arch:
19 fully_connected:
20 layer_size: 256
21 nr_layers: 4
22 jit: false
23

24

25 scheduler:
26 decay_rate: 0.95
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27 decay_steps: 2000
28

29 training:
30 rec_validation_freq: 1000
31 rec_inference_freq: 1000
32 rec_monitor_freq: 1000
33 rec_constraint_freq: 2000
34 max_steps: 2000000
35

36

37 batch_size:
38 inlet: 160
39 outlet: 160
40 walls: 160
41 no_slip: 320
42 interior: 3200

Listing A.8: A basic configuration YAML file

1 file_path = "/data/Specific/Tube3_stenosis.csv"
2 if os.path.exists(to_absolute_path(file_path)):
3 mapping = {"x": "x", "y": "y", "u": "u", "v": "v", "p": "p"}
4 stenosis_var = csv_to_dict(to_absolute_path(file_path), mapping

)
5

6 # Update with constant control factors
7 stenosis_var.update ({"fc": np.full_like(stenosis_var["x"],

0.17)})
8 stenosis_var.update ({"inlet_u": np.full_like(stenosis_var["x"],

0.7)})
9

10 stenosis_invar_numpy = {
11 key: value for key , value in stenosis_var.items () if key in

["x", "y", "fc", "inlet_u"]
12 }
13

14 print("File found and processed.")
15

16 stenosis_inferencer = PointwiseInferencer(
17 nodes=nodes ,
18 invar=stenosis_invar_numpy ,
19 output_names =["u", "v", "p", "transformed_x", "

transformed_y"]
20 )
21 domain.add_inferencer(stenosis_inferencer , "StenosisInference")
22 else:
23 print(f"File not found: {to_absolute_path(file_path)}")

Listing A.9: Inferencing in Nvidia Modulus
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1 class AntiStenosis(torch.nn.Module):
2 def __init__(self , r, l):
3 super().__init__ ()
4 self.register_buffer("r", torch.tensor(r), persistent=False

)
5 self.register_buffer("l", torch.tensor(l), persistent=False

) # Length of Line
6

7 def forward(self , x):
8 x_ref = x[..., 0:1]
9 y_case = x[..., 1:2]

10 fc = x[..., 2:3]
11

12 # Transform x_ref to range [-1, 1] for the cosine function
13 x_ref_transformed = 2 * (x_ref - self.l / 8) / (3 * self.l

/ 8 - self.l / 8) - 1
14

15 # Create masks for the piecewise function
16 mask1 = (x_ref >= -self.l / 2) & (x_ref < -self.l / 8)
17 mask2 = (x_ref >= -self.l / 8) & (x_ref < self.l / 8)
18

19 # Compute y_ref based on the interval
20 y_ref = torch.where(
21 mask1 ,
22 y_case ,
23 torch.where(
24 mask2 ,
25 y_case / (1 - fc * (1 + torch.cos(x_ref_transformed

* torch.pi))),
26 y_case
27 )
28 )
29

30 return torch.cat((x_ref , y_ref), -1)

Listing A.10: The Anti-Stenosis class used to transform Stenosis x,y from COMSOL to
non Stenotic channel x,y

145





Bibliography

[1] Harrison Kinsley and Daniel Kukiela. Neural Networks from Scratch in Python. Sent-
dex, Kinsley Enterprises, Dallas-Fort Worth Metroplex, 2020.

[2] M. Raissi, P. Perdikaris and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, 2019.

[3] Modulus Contributors. NVIDIA Modulus: An open-source framework for physics-
based deep learning in science and engineering. 2023.

[4] Maziar Raissi, Alireza Yazdani and George Em Karniadakis. Hidden fluid mechanics:
Learning velocity and pressure fields from flow visualizations. Science, 367(6481):1026–
1030, 2020.

[5] Kyle A Williams, Allison Shields, Mohammad Mahdi Shiraz Bhurwani, SV Setlur
Nagesh, Daniel R Bednarek, Stephen Rudin and Ciprian N Ionita. Use of high-speed
angiography HSA-derived boundary conditions and Physics Informed Neural Networks
(PINNs) for comprehensive estimation of neurovascular hemodynamics. Medical Imag-
ing 2023: Physics of Medical Imaging, volume 12463, pages 194–204. SPIE, 2023.

[6] Jeremías Garay, Jocelyn Dunstan, Sergio Uribe and Francisco Sahli Costabal. Physics-
informed neural networks for parameter estimation in blood flow models. Computers
in Biology and Medicine, 178, 2024.

[7] Xuelan Zhang, Baoyan Mao, Yue Che, Jiaheng Kang, Mingyao Luo, Aike Qiao, You-
jun Liu, Hitomi Anzai, Makoto Ohta, Yuting Guo and Gaoyang Li. Physics-informed
neural networks (PINNs) for 4D hemodynamics prediction: An investigation of opti-
mal framework based on vascular morphology. Computers in Biology and Medicine,
164, 2023.

[8] Maziar Raissi, Paris Perdikaris and George Em Karniadakis. Physics Informed Deep
Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations.
arXiv preprint arXiv:1711.10566, 2017.

[9] Ameya D Jagtap, Kenji Kawaguchi and George Em Karniadakis. Adaptive activa-
tion functions accelerate convergence in deep and physics-informed neural networks.
Journal of Computational Physics, 404:109136, 2020.

[10] Michael Betancourt. A geometric theory of higher-order automatic differentiation.
arXiv preprint arXiv:1812.11592, 2018.

147



BIBLIOGRAPHY

[11] Jesse Bettencourt, Matthew J Johnson and David Duvenaud. Taylor-mode automatic
differentiation for higher-order derivatives in JAX. Program Transformations for ML
Workshop at NeurIPS 2019, 2019.

[12] Hong Shen Wong, Wei Xuan Chan, Bing Huan Li and Choon Hwai Yap. Strategies
for multi-case physics-informed neural networks for tube flows: a study using 2D flow
scenarios. Scientific Reports, 14:11577, 2024.

[13] Ashish Rajanand and Pradeep Singh. ErfReLU: adaptive activation function for deep
neural network. Pattern Analysis and Applications, 27(2):68, 2024.

[14] J.L. Randall. Finite difference methods for ordinary and partial differential equations:
steady-state and time-dependent problems. Choice Rev. Online, 45, 2008.

[15] Isaac E Lagaris, Aristidis Likas and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[16] Isaac E Lagaris, Aristidis C Likas and Dimitris G Papageorgiou. Neural-network
methods for boundary value problems with irregular boundaries. IEEE Transactions
on Neural Networks, 11(5):1041–1049, 2000.

[17] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang and George Em Karniadakis.
Learning Nonlinear Operators via DeepONet Based on the Universal Approximation
Theorem of Operators. Nature Machine Intelligence, 3(3):218–229, 2021.

[18] Lu Lu, Yeonjong Shin, Yanhui Su and George Em Karniadakis. Dying ReLU and
Initialization: Theory and Numerical Examples. Communications in Computational
Physics, 28(5):1671–1706, 2020.

[19] Lu Lu, Xuhui Meng, Zhiping Mao and George Em Karniadakis. DeepXDE: A deep
learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[20] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang
and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–
440, 2021.

[21] Félix Fernándezde la Mata, Alfonso Gijón, Miguel Molina-Solana and Juan Gómez-
Romero. Physics-informed neural networks for data-driven simulation: Advantages,
limitations, and opportunities. Physica A: Statistical Mechanics and its Applications,
610, 2023.

[22] Atilim Güneş Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul and Jeffrey
Mark Siskind. Automatic Differentiation in Machine Learning: a Survey. Journal of
Machine Learning Research, 18:1–43, 2018.

148



BIBLIOGRAPHY

[23] Enzo Grossi, Riccardo Marmo, Marco Intraligi and Massimo Buscema. Artificial
Neural Networks for Early Prediction of Mortality in Patients with Non Variceal Up-
per GI Bleeding (UGIB). Biomedical Informatics Insights, 1:BII.S814, 2008. PMID:
27429551.

[24] Violetta Schäfer. Generalization of PINNs for Various Boundary and Initial Condi-
tions. Master Thesis, University of Kaiserslautern, Faculty of Mathematics, Kaiser-
slautern, Germany, 2022.

[25] Oleg Rudenko, Oleksandr Bezsonov and Kyrylo Oliynyk. First-Order Optimization
(Training) Algorithms in Deep Learning. Proceedings of the International Conference
on Computational Linguistics and Intelligent Systems (COLINS), Kharkiv, Ukraine,
2020. CEUR Workshop Proceedings.

[26] Naveen Kumar Subramanian. Physics Informed Neural Networks in Fluid Dynamics.
Master’s thesis, Technische Universität München, Munich, Germany, 2021.

[27] Xiaowei Jin, Shengze Cai, Hui Li and George Em Karniadakis. NSFnets (Navier-
Stokes flow nets): Physics-informed neural networks for the incompressible Navier-
Stokes equations. Journal of Computational Physics, 426:109951, 2021.

[28] Yuekun Yang and Youssef Mesri. Learning by neural networks under physical con-
straints for simulation in fluid mechanics. Computers and Fluids, 248:105632, 2022.

[29] Philipp Moser, Wolfgang Fenz, Stefan Thumfart, Isabell Ganitzer and Michael Giret-
zlehner. Modeling of 3D Blood Flows with Physics-Informed Neural Networks: Com-
parison of Network Architectures. Fluids, 8(2):46, 2023.

[30] Revanth Mattey and Susanta Ghosh. A physics informed neural network for time-
dependent nonlinear and higher order partial differential equations. arXiv preprint
arXiv:2106.07606, 2021.

[31] Benjamin Wu, Oliver Hennigh, Jan Kautz, Sanjay Choudhry and Wonmin Byeon.
Physics informed RNN-DCT networks for time-dependent partial differential equa-
tions. International Conference on Computational Science, pages 372–379. Springer,
2022.

[32] Samuel Burbulla. Physics-informed neural networks for transformed geometries and
manifolds. arXiv preprint arXiv:2311.15940, 2023.

[33] Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya
Prakash Otta, Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kam-
yar Azizzadenesheli and Anima Anandkumar. Geometry-Informed Neural Operator
for Large-Scale 3D PDEs. Proceedings of the 37th Conference on Neural Information
Processing Systems (NeurIPS 2023). NVIDIA, 2023.

149



BIBLIOGRAPHY

[34] Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden, Nicholas
Plewacki, Luis Bravo, Anindya Ghoshal, Robert M. Kirby and George Em Karni-
adakis. Deep neural operators as accurate surrogates for shape optimization. Engi-
neering Applications of Artificial Intelligence, 129:107615, 2024.

[35] Mateus Dias Ribeiro, Abdul Rehman, Sheraz Ahmed and Andreas Dengel. DeepCFD:
Efficient steady-state laminar flow approximation with deep convolutional neural net-
works. arXiv preprint arXiv:2004.08826, 2020.

[36] Jan Oldenburg, Finja Borowski, Alper Öner, Klaus Peter Schmitz and Michael Stiehm.
Geometry aware physics informed neural network surrogate for solving Navier-Stokes
equation (GAPINN). SpringerOpen, 2022.

[37] Alvaro Abucide-Armas, Koldo Portal-Porras, Unai Fernandez-Gamiz, Ekaitz Zulueta
and Adrian Teso-Fz-Betono. Convolutional Neural Network Predictions for Unsteady
Reynolds-Averaged Navier-Stokes-Based Numerical Simulations. Journal of Marine
Science and Engineering, 11:129, 2023.

[38] Koldo Portal-Porras, Unai Fernandez-Gamiz, Ainara Ugarte-Anero, Ekaitz Zulueta
and Asier Zulueta. Alternative Artificial Neural Network Structures for Turbulent
Flow Velocity Field Prediction. Mathematics, 9(16):1939, 2021.

[39] Amanda A Howard, Mauro Perego, George Em Karniadakis and Panos Stinis. Multifi-
delity deep operator networks for data-driven and physics-informed problems. Journal
of Computational Physics, 493:112462, 2023.

[40] Han Gao, Luning Sun and Jian Xun Wang. PhyGeoNet: Physics-informed geometry-
adaptive convolutional neural networks for solving parameterized steady-state PDEs
on irregular domain. Journal of Computational Physics, 428:110079, 2021.

[41] Shinjan Ghosh, Amit Chakraborty, Georgia Olympia Brikis and Biswadip Dey.
Rans-pinn based simulation surrogates for predicting turbulent flows. arXiv preprint
arXiv:2306.06034, 2023.

[42] Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin and George Em Karni-
adakis. Physics-informed neural networks (PINNs) for fluid mechanics: A review.
Acta Mechanica Sinica, 37(12):1727–1738, 2021.

[43] Prakhar Sharma, Llion Evans, Michelle Tindall and Perumal Nithiarasu. Stiff-PDEs
and Physics-Informed Neural Networks. Archives of Computational Methods in Engi-
neering, 30:2929–2958, 2023.

[44] Mitchell Daneker, Shengze Cai, Ying Qian, Eric Myzelev, Arsh Kumbhat, He Li
and Lu Lu. Transfer learning on physics-informed neural networks for tracking the
hemodynamics in the evolving false lumen of dissected aorta. Nexus, 1, 2024.

150


	Acknowledgements
	Περίληψη
	Abstract
	Abbreviations-Acronyms
	Nomenclature
	I Theoretical part
	Basics of neural networks
	Introduction to neural networks
	Fundamentals of activation functions
	Common activation functions
	Loss functions
	First order optimization algorithms
	Second order optimization algorithms
	Adaptive activation functions

	Physics informed neural networks
	Introduction to Physics informed neural networks
	PINNs for solving PDEs
	Automatic differentiation
	Error analysis in PINNs
	Comparison between PINNs and FEM

	Nvidia Modulus Sym
	Introduction to Nvidia Modulus Sym
	PINNs in Nvidia Modulus Sym
	Nvidia Modulus Sym building blocks
	Modulus Sym workflow

	PINNs in Hemodynamics

	II Methods
	Hemodynamic predictions in 2D vessel stenoses using PINNs
	Problem definition
	Network architecture
	Tube specifc parameters
	Computational Fluid Dynamics simulations in COMSOL
	Evaluation of errors


	III Results
	Study of different parameters
	Advantages of tube specifc parameters
	Activation functions
	Number of layers and number of neurons per layer
	Optimizers
	Adaptive activation functions
	Number of sampling points
	Single-case PINN vs multi-case PINN

	FEM vs. multi-case PΙΝΝ
	Introduction
	Case study 1: Re=500, fc =0.1
	Case study 2: Re=500, fc =0.2
	Case study 3: Re=500, fc =0.3
	Case study 4: Re=750, fc =0.1
	Case study 5: Re=750, fc =0.2
	Case study 6: Re=750, fc =0.3
	Case study 7: Re=1000, fc =0.1
	Case study 8: Re=1000, fc =0.2
	Case study 9: Re=1000, fc =0.3
	Case study 10: Re=1250, fc =0.1
	Case study 11: Re=1250, fc =0.2
	Case study 12: Re=1250, fc =0.3
	Case study 13: Re=1500, fc =0.1
	Case study 14: Re=1500, fc =0.2
	Case study 15: Re=1500, fc =0.3
	Case study 16: Re=1750, fc =0.1
	Case study 17: Re=1750, fc =0.2
	Case study 18: Re=1750, fc =0.3
	Errors PINNs vs FEM


	Python code
	Bibliography

