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Chapter 0 

Introduction 

 

The modeling of wave-energy converters of the oscillating-water-column (OWC) 

type with pneumatic power take-off by means of the so-called method of ‘applied-

pressure’ description has been investigated in several works, such as Evans (1982), 

Porter and Evans (1995), Falnes (2002), and Gkikas et al (2005). According to this 

line of work, the hydrodynamic problem is treated in the context of linear water-wave 

theory, and the various quantities of interest, e.g.  wave height, velocity, volume flow 

rate, etc., are obtained on the basis of the linear superposition principle. Using, e.g., 

the domain decomposition presented in Figure (0.1), the scattering and radiation wave 

potentials Sφ  and Rφ  are obtained by formulating complete modal-type 

representations in each sub-region (e.g., Mei and Black, 1969, Black et al, 1971, 

Porter and Evans, 1995, Gkikas, 2003) and requiring their complete matching at the 

interfaces  
1 2
,D D∂ ∂ .  

 

Figure 0.1.  Domain decomposition  

 

Numerical results as well as the corresponding complete mathematical modeling  of 

the OWC hydrodynamic  problem can be found, besides Chapter 3 of this thesis, in 
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the works of  Evans (1982), Porter and Evans (1995), Falcao and Justino (1999), 

Falnes (2002)  among others.  

Besides having derived the expressions for both scattering and radiating wave 

potentials, we have also managed to decouple the estimation of the latter quantities 

from the pressure fluctuations inside the OWC chamber. In this way the equations 

governing the corresponding nonlinear thermodynamic sub-problem can also be 

derived and solved separately from the hydrodynamic problem.  

Coming now to the development of a system identification method for the 

approximation of the pressure inside the OWC chamber, we must first note that the 

thermodynamic part of the OWC system is modeled as a lumped, nonlinear system, 

following previous formulations of similar open thermodynamic systems, 

[Gyftopoulos and Beretta (1991), Bejan (1997), Falcao and Justino (1999), Gkikas 

(2005)]. In consequence, the system of differential equations is derived and solved in 

the time domain, while it is also used as a means for numerical experiments during the 

system identification process. We note that slow thermodynamic processes are 

assumed, the air inside the chamber is considered to be homogeneous and any 

possible spray effects (due to wave breaking in the OWC chamber) are neglected.  

Having obtained numerical solutions for both hydrodynamic and thermodynamic 

problem we proceed in order to obtain equivalent representation within the context of 

system modeling.  

The question raised at this point is why choose to develop a systemic analogue of the 

overall problem instead of solving the latter directly. The answer can be given initially 

by comparing the massive difference at the computational costs between the 

numerical schemes that correspond to the physical modeling and the systemic one. In 

consequence, a large number of numerical experiments can be conducted without 

having to consider the, otherwise quite large, computational effort. In addition, a 

systemic representation of a physical model also allows for direct modeling of an 

experimental or a full scale OWC wave energy converter system, without having to 

resort to any kind of simplified modeling. Furthermore, system modeling greatly 

facilitates the analysis and assessment of the whole system in random seas.  Thus, the 

main goal of the present work is to develop a novel, accurate system identification 

technique based on a Volterra-type system modeling. 
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The concept of a functional representation of a system of nonlinear differential 

equations through Volterra series was created on the basis of a generalization of 

power series solutions, Volterra (1959), and found many successful applications in 

various scientific areas as, e.g. the theory of elasticity, population dynamics, 

hereditary effects in electromagnetism, etc. The Volterra functionals were initially 

implemented in nonlinear system theory by Norbert Wiener (1942), who used them in 

order to analyze the response of an R-L-C circuit with a nonlinear resistor while on 

subsequent stages he established a systemic approximation theoretical context based 

on the Volterra –Wiener kernels. 

The Volterra series approach being a power series generalization, it is also consequent 

to come across with various power series related convergence issues, e.g., Palm and 

Poggio (1977). Rugh (1981), Sandberg (1984) and Boyd et al. (1984) provided the 

conditions for the series to converge with the aid of various versions of the Gain 

Bound theorem, while again Boyd and Chua (1985) via the fading memory concept, 

derived suitable approximation theorems for the truncated Volterra series defined on 

non-compact subsets of the input space, i.e., defined on the infinite line. Sandberg and 

Xu (1998) provided similar approximation theorems and conditions for vector–valued 

functions and for causal and non–causal systems with the aid of the myopic mapping 

concept, which may also be considered as an extension of the fading memory concept.  

Some very useful results with respect to classes of nonlinear dynamical systems that 

admit Volterra series modeling and identification were developed by Palm and Poggio 

(1978) with emphasis on the mathematical rigor and validity of the Lee–Schetzen 

identification method, see Lee and Schetzen (1965), Schetzen (1980) or Orcioni et al 

(2005).  Palm (1978) continued and extended his work by focusing on the equivalency 

conditions between different types of nonlinear systemic approximation schemes, 

such as the  Volterra – type systems realized via separable kernels, the  Volterra – 

type systems realized via ‘sandwich’ structures and Volterra – type polynomial 

systems in general. One of the main results of this work is that all continuous-time 

dynamical systems can be approximated by either the class of separable kernel 

polynomial systems or the class of “sandwich” systems both being subclasses of the 

polynomial-system class. Analogous results were given by Mann (1979) for the 

identification capability of the separable kernel systems as well as for the 

adequateness of a harmonic time series as a test signal. Korenberg and Hunter (1986) 
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and Hunter and Korenberg (1986) made extensive research with respect to the 

identification of biological systems with Hammerstein (H), Wiener (W) and Wiener-

Hammerstein (W-H) systemic structures.  

Despite the fact that there is quite a large number of system identification concepts 

and techniques [Wiener (1958), Schetzen (1980),  Sandberg (1983, 1984), Barret 

(1963), Brocket (1976), Rugh (1981), and Sandberg and Xu (1998),Watanabe and 

Stark (1975), Boyd and Chua (1984), Storer (1991) and Chatterjee and Vyas (2003, 

2004), Lang and Billings (1997), Doyle et al. (2002), Giri and Bai (2010)] the 

development of a widely applicable, generic approach seems to be lacking. This is 

usually credited to the individualistic character of the nonlinear system under 

approximation.  

In this work a Wiener-Hammerstein (W-H) cascade, Figure (0.2), is proposed and 

implemented for the modeling and identification of the thermodynamic subsystem. 

Existing system identification schemes for Wiener-Hammerstein systems Rugh 

(1982), Schetzen (1980), Hunter and Korenberg (1986), Haber and Unbehauen 

(1990), mainly address to weakly nonlinear systems that operate under quite narrow 

band excitations. 

 

Figure 0.2.  Structure of a Wiener-Hammerstein cascade 

 

From a theoretical standpoint, according to Boyd and Chua (1985), Sandberg (1983, 

1984) and Sandberg and Xu (1998), appropriate use and implementation of W-H 

cascades may effectively lead to the development of systemic, Volterra series-type, 

structures able to approximate nonlinear fading-memory (or myopic) dynamical 

systems such as the OWC, thermodynamic, nonlinear system. 

Thus, based on this cascade, we develop a robust and innovative way to describe in 

detail and estimate accurately the balance between the first and higher harmonics for 

an arbitrary input.  Both W-H transfer functions, corresponding to the filters before 

and after the static polynomial, are parameterized in the frequency domain (covering 

the whole range of frequencies that are significant to our application), while the 

polynomial coefficients are parameterized on the joint amplitude-frequency lattice. A 

similar amplitude-frequency approximation scheme has been recently proposed by 
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Ngoya et al (2009), in the context of RF power amplifiers. Furthermore, the excitation 

is taken to be monochromatic (also covering an application-dictated frequency-

amplitude lattice) and at the same time, the conceptual and theoretical basis for an 

enhanced system identification scheme able to approximate the response of our 

nonlinear system, under any kind of excitation (multichromatic or stochastic) is set.  

For nonlinear, stationary excitation cases, such as the sea waves, use is made of the 

Hilbert-Huang time frequency transform (Huang et al., 1998, 1999, 2003, 2004, 2005, 

Veltcheva et al (2004), Wu and Huang, 2005, 2008, 2009, Guedes and Soares, 2004). 

In this way, the original time series is separated into a small number of modes where 

each of them corresponds to a distinct time scale, the properties of which are derived 

by means of Fourier spectral analysis.  

Finally, having obtained the frequency-domain operator representations, for both the 

hydrodynamic and thermodynamic subsystems, we proceed by implementing these 

operators in the closed-loop configuration shown in Figure (0.3).  

 

 

Figure 0.3. Closed-loop OWC configuration. 

 

where, 
, ,
( ), ( )

S in R in
F Fω ω  correspond to the linear frequency-domain scattering and 

radiation operators, ( )
far
η ω , ( )

OWC
η ω  denotes the far-field and the equivalent piston 

displacement  driving the thermal subsystem of the installation, and T    
i  denote the 

nonlinear thermodynamic operator.  

In effect, a novel system identification method where the systemic elements of the 

nonlinear part (cascade) i.e., the coefficients and integral kernels (static and dynamic 

parts, respectively), are defined on the joint Time-Frequency (kernels) and Frequency- 

Amplitude (polynomial coefficients) space, is proposed, implemented and 

successfully applied in order to approximate of the nonlinear pressure fluctuation and 
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the mean wave elevation, under realistic excitations,  inside the chamber of an OWC-

WEC.   

In conclusion, in this work, the effort is focused on the development of an enhanced 

system identification method capable of approximating a large class of nonlinear 

dynamical systems through linear systemic components implemented in such a way 

so that efficient nonlinear structural concepts are achieved. 

In a sense, an iterative constructivist method was applied throughout the line of this 

work, as the approximation schemes and concepts that were developed and mixed in 

order to achieve accurate and fast algorithms were made on the basis of a continuous 

and relentless reform of some original methods such as the ones presented by Rugh 

(1981), Schetzen (1980) and Boyd (1984). 

 

 

Overview 

 

In Chapter 1, an extensive overview on the nonlinear system modeling and system 

identification theory and methods is presented. Within the context of this introductory 

material, we focus on various Volterra-related systemic topics and structures. A 

number of nonlinear Volterra-type systemic schemes as well as their corresponding 

functional properties are also presented. Furthermore, introduction and 

implementation of the Hilbert-Huang, time-energy-frequency, transform is made. The 

application of the transform is performed on a sea-wave record (also used in Chapter 

4 as the nonlinear stimulus driving the OWC plant). 

 

In Chapter 2, we focus on the analysis of various approximating structures of causal 

and non causal, fading-memory or myopic, I/O maps with scalar and vector valued 

inputs. In addition, a comprehensive state of the art review of relative works is 

prepared so that the transition between the realization of the approximating structure 

and its mathematical foundations may be smooth and complete. The corresponding 

theorems are derived for scalar and vector valued inputs and outputs while the 

approximation of nonlinear dynamical systems by means of  functional (infinite or 

truncated) power series with respect to the effect the system’s response at the not so 

remote past has upon its corresponding present one is extensively investigated. 
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In Chapter 3 we elaborate on the mathematical formulation of the wave field 

surrounding the OWC based on linear water wave potential theory (Porter and Evans, 

1995). In effect, the hydrodynamic characteristics of the plant are also outlined, while 

a decoupling of the wave field from the, internal, pressure is obtained. Furthermore, 

we decompose the total wave field into the corresponding scattering and radiating 

parts. Subsequently, the corresponding frequency response functions (FRFs) are 

obtained in a straightforward manner. In addition, we derive the set of differential 

equations in order to model the thermodynamic processes taking place inside the 

OWC chamber, and particularly focus on the internal dynamic pressure response. 

 

In Chapter 4, we refer to the context of the Volterra – Wiener theory where nonlinear 

dynamical systems can be alternatively represented by means of nonlinear system, 

identification methods (Giannakis and Serpedin, 2001). Using Wiener – Hammerstein 

cascades, we derive a concise identification basis, based on appropriately selected 

harmonic excitation cases, whose elements are defined on the joint amplitude-

frequency lattice, static polynomial coefficients, and the discrete time-frequency 

space. With the aid of this basis and the use of band-pass filter banking or Hilbert 

Huang transform, we manage to derive convergent systemic schemes, for the 

nonlinear thermodynamic model, using a small number of, excitation, modes 

(composing the overall excitation). Subsequently, the systemic representations 

derived for the linear hydrodynamic and the nonlinear thermodynamic problems are 

implemented in a feedback system, in order to accurately estimate the internal wave 

elevation and dynamic pressure. 
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Main Contributions 

 

o Numerical solutions of the scattering and radiation hydrodynamic problems 

for an OWC of finite front wall width. 

o Investigation on the hydrodynamic characteristics of an OWC with respect to 

various geometric configurations and derivation of corresponding frequency 

transfer functions. 

o Thermodynamic modeling of the OWC. 

o Development of a novel nonlinear input-dependent system identification 

method under monochromatic or multichromatic inputs (Layer of Harmonics 

System Identification Method, LHSIM ). 

o Development of a novel nonlinear input dependent system identification 

method under nonlinear, stationary excitations with the aid of the Hilbert-

Huang transform and Fourier spectral analysis (Layer of Scales System 

Identification. Method, LSSIM). 

o Application of LHSIM and LSSIM to the nonlinear, thermodynamic, part of 

the OWC-WEC modeling. 

o Development of a unified systemic representation for the entire coupled 

OWC-sea waves hydromechanic problem. 

 

Publications: 

[1] Gkikas G.D., Xiros N.I., Athanassoulis G.A. and Belibassakis K.A., “A nonlinear 

model for Oscillating Water Column analysis, design and control”, 16
th
  Annual 

International Offshore and Polar Conference and Exhibition ISOPE 2006, San 

Francisco  USA. 

[2] Gkikas G.D., Athanassoulis G.A., “Development of an input-dependent nonlinear 

system identification scheme of the pressure fluctuation inside an oscillating water 

column on the joint frequency-amplitude space.  Part I: Theoretical background and 

harmonic excitation case”. (Submitted to J. Ocean Engineering).  

[3] “Development of an input-dependent nonlinear system identification scheme of 

the pressure fluctuation inside an oscillating water column on the joint frequency-

amplitude space.  Part II: Bi-chromatic excitation case”. (To be submitted to J. Ocean 

Engineering).   
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Major contributions 

 

• We have created   a robust and accurate reduced order systemic model for the 

OWC pressure fluctuation by implementing Volterra series with the Hilbert-

Huang transform. 

• Developed a system identification method able to be implemented on a wide 

class of nonlinear systems. 

• Obtained an overall systemic representation for the pressure and wave 

elevation inside the OWC –WEC. 

• Developed and solved numerically the hydrodynamic and thermodynamic 

(sub)problems for the OWC –WEC. 

 

Open problems 

 

• Set the basis for a robust extension of the thermodynamic modeling to 

facilitate additional information with respect to a turbine making the modeling 

more realistic. 

• Extend the hydrodynamic modeling problem by considering a general 

bathymetry or even a nonlinear hydrodynamic formulation in order to study 

the effects of the radiation onto the surrounding wave field. 

• Enhance modeling with control theory. 

• Application of the system identification method to other experimental or 

analytical nonlinear dynamical systems. 

• Further investigation of the Hilbert-Huang transform with respect to the 

decomposition properties  and its use on dynamical systems. 
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 Chapter 1 

An Introduction to the Concepts of  

Nonlinear Systems, System Identification  

and 

Time – Frequency Distributions with extensive analysis 

of the Hilbert – Huang Transform 

 

 

1.1 Black box modeling. Some notes and comments  

 

A basic characteristic of the black box modeling is that its constituents are not in a 

“free” state of growth and thus it cannot acquire a property that it did not posses 

before. To clarify this, we state that in order to use black boxes we need to make two 

basic assumptions: first, that the box is deterministic and second, that it is history 

independent. To quote Peter Fletcher (1998),  “it seems at this point that time is 

rather inessential” where, one may also consider time as nothing more than just a 

coordinate in a (temporal) domain just as the space coordinates in the spatial domain.  

In fact, when it comes to black boxes what really matters is what comes in and what 

comes out and on that basis we set our efforts for the development of various 

approximating (identification) and control structures.  

 

To overcome such simplistic, mathematical and practical-wise, approaches, we need 

to fully associate the operation of a dynamical system with respect to the 

characteristics of the input transcending  from the “pure” black-box modeling to the 

reasoning of non – parametric, deterministic and stochastic grey box, concepts. 

Where the physical principles are not well understood or the physical complexity of 

the system requires extraneous effort to perform adequate analysis and/or numerical 

computations, we usually implement the input-output (I/O) modeling. Fluid 

phenomena or multi-body dynamics are usually quite hard to approximate efficiently, 

as the solution depends heavily on the boundary and initial conditions as well as the 

form of the, parametric or not, excitation. In this sense, the lack of the adjusting 
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feature in the black-box modeling usually leads to approximating schemes with very 

limited range of operation unless heuristic methods are implemented.  

The “white-box“ methods and by that we mean the analysis of, linear or nonlinear, 

dynamical systems, based on physical principles and formulations (Lagrangian, 

Eulerian, etc.) followed by numerical solutions of the corresponding, derived, system 

of differential equations, require significant analytical and computational effort thus, 

counterbalancing in this way the advantages gained from the ability to produce 

accurate results and to adjust the modeling to significant design parameters and 

conditions.  

 

From these remarks it is evident that for computationally efficient schemes we must 

require reduced system complexities. Therefore, it is without saying that for an 

optimal design process one needs to develop a white box method while a black box 

model is definitely an inadequate, unless linear problems are the case, tool. However, 

with the aid of time-frequency concepts (wavelets, Short Time Fourier Transform, 

Wigner transform, etc, or even plain band-pass filtering) the development of accurate 

systemic schemes is possible. 

 

Lee (1998) noted that the nonlinear model predictive control (NMPC) designs            

“ …despite wide publicity and intensive research effort it has attracted over the past 

decade, the NMPC approximation technique is still perceived as an academic concept 

rather than a practical control strategy”.  Lee also notes that the inability to construct a 

nonlinear approximation structure on a reliable and consistent basis i.e., a systematic 

approach, is the primary reason that holds back such efforts from industry. 

Finally, according to Billing (1980), Lee (1998), Mathews & Sicuranza (2000), 

Pearson (2000) the nonlinear system modeling should always focus on very specific 

model classes as it usually lacks of any sort of robust extensions.  

 

1.2 Some basics on nonlinear dynamical systems 

 

Nonlinear dynamical systems excited by exogenous forcings are systems that, among 

other features, exhibit direct and simultaneous dependence upon the forcings’ energy 

and frequency variations that is, they possess nonlinear and memory characteristics, 

simultaneously.  
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First, we note that for nonlinear systems, the principle of superposition cannot be 

applied, i.e., 

 

( )( ) ( )( )
1 1 1

( ) ( ) ( ) ( )
K K K

k k k k k
k k k

y t a x t a x t y t
= = =

    = ≠ =     
∑ ∑ ∑T T      (1.2.1) 

 

 

where, 
k
a , ( )

k
x t and ( )T i

 
correspond to scalar numbers, components of the input 

function and a nonlinear operator, respectively. 

On the other hand the dynamic, memory, property clearly dictates that the system’s 

response at a certain time instant depends on the excitation’s state not only at that 

same time instant but for previous, finite or infinite, time instants as well. Thus, the 

frequency at which the excitation oscillates is quite crucial to the system’s response. 

Issues with respect to the memory characteristics of a nonlinear system under 

approximation are outlined and discussed in Chapter 2, where various crucial, with 

respect to this line of work, theoretical results, that are based and developed on the 

concepts of fading memory and myopic mapping, will be presented and investigated 

in detail.   

 

In the case of linear systems, the dynamic nature of a system may be modeled by the 

means of Frequency Response Functions (FRFs), whose magnitude and phase angles 

are defined as  

( )
( )

( )

Y
FRF

X

ω
ω

ω
=

          
(1.2.1) 

 

 

( ) ( ) ( )FRF Y Xω ω ω∠ = ∠ −∠           (1.2.2) 

 

where, ( )X ω  and ( )Y ω denote the Fourier transforms of the harmonic input, ( )x t , and 

output, ( )y t , time series respectively. 

In addition, it is also well known that for nonlinear but stationary input signals, the 

power spectral density (PSD) function of the response, ( )yyS ω , is defined as , 

2
( ) ( ) ( )S FRF Syy xxω ω ω= ⋅       (1.2.3) 
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where, ( )x xS ω  corresponds to the power spectral density of the input, ( )x t . 

 

However, the above results, for both harmonic and nonlinear input signals, cannot 

hold true for nonlinear systems, as the principle of superposition cannot be applied 

although, effective use of the FRFs can be still made for the approximation of 

nonlinear structures, if we embody these functions within the context of the Volterra-

Wiener system theory.   

 

1.3  Cascade models and Volterra series 

1.3.1 Hammerstein and Wiener systems 

 

Hammerstein and Wiener models can be characterized as members of a class of 

systemic models known as cascade or block structures.  Both of these models consist 

of the same elements i.e., a linear dynamic part and static nonlinear (polynomial) part. 

The main difference between them lies in the way the static and dynamic parts are 

interconnected. In a Wiener system, Haber and Unbehauen (1990), Hunter and 

Korenberg (1986),  Doyle (2002) and Schetzen (1980), the dynamic linear operator is 

followed by the static nonlinearity as it is illustrated in Figure (1.3.1.1a), while the 

corresponding relations may be observed from Equation (1.3.1.1) 

 

Figure 1.3.1.1a. Schematic representation of a typical Wiener ( )W system 

( ) ( )
( )

1 1

1 1
1

1

( ) ( )

    ( ) ( ) ( )

                                                ( ) ( )

k
k

k
i

u t G u t d x t

p x t a x t y t

y t x t

τ τ τ
∞

−∞

=

→ − ≡ →

 → = =  

 ⇒ =   

∫
∑

W

                (1.3.1.1) 

 

In Hammerstein models, the input signal undergoes first a nonlinear transformation 

via the static nonlinearity and then it convolves (when looking the processes in the 

time domain) with the impulse response function. The corresponding relation and 

schematic graph may be observed from Equation (1.3.1.2) and Figure (1.3.1.1b), 

respectively. 
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Figure 1.3.1.1 b. Schematic representation of a typical Hammerstein ( )H  system. 

 

( )

( ) ( )
1

1

1

( ) ( ) ( ) ( )

    ( )

                                                ( ) ( )

k
k

k
i

u t p u t a u t t

G t d y t

y t x t

ν

τ ν τ τ

=
∞

−∞

 → = ≡ →  

→ − =

 ⇒ =   

∑

∫
H

                (1.3.1.2) 

 

The fusion of the above models leads to the Wiener – Hammerstein systems where we 

come across a linear dynamic – static nonlinear – linear dynamic cascade model. 

 

 

Figure 1.3.1.2.  Schematic representation of a Wiener – Hammerstein ( )WH system 

 

( ) ( ) ( )
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( ) ( )
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1 1
1
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1

( )  

     ( ) ( ) ( )

     ( )
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p x t a x t t
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y t x t

τ τ τ
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τ ν τ τ

∞

−∞

=
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∫
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 (1.3.1.3) 

 

A few more models worth noting are: 

• The generalized Hammerstein model usually termed as the Uryson model  
r

N
U  

that consists of r  Hammerstein models, of nonlinear degree N, connected in parallel 

presented in Figure (1.3.1.3). 

• The generalized Wiener model also termed as the Projection – Pursuit model 

r

N
P  where r  Wiener models, of nonlinear degree N, are connected in parallel, see 

Figure (1.3.1.4).  Following  Palm (1978), Schetzen (1980) and Doyle (2002), we may 

obtain the following very interesting result: 

« for very large r  the model class 
r

N
P  can be said to be equivalent to the class of the 

Volterra series». 
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Figure 1.3.1.3. An r–channel Uryson  (
r

N
U  ) model. 

 

Figure 1.3.1.4.  An r–channel Projection – Pursuit (
r

N
P  ) model. 

 

The properties of both Hammerstein and Wiener models were investigated, among 

various cascade models, in various works such as Haber and Unbehauen (1990), 

Hunter and Korenberg (1986), Gardiner (1973a, b), Palm (1978) and some very 

interesting characteristics were discovered regarding the morphology of the kernels, 

the poles and zeros of the corresponding transfer functions, as well as the 

development of equivalence conditions between various Volterra type system classes. 
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As an example we state that Marmarelis and Naka (1974) noted that, for quadratic 

cases, the two dimensional kernels that exist only at the main diagonal are definitely 

parts of a Hammerstein system class while, again for the quadratic case, if the output 

signal is proportional to the square root of the corresponding input then the actual 

system can be approximated by a Wiener system.   

Various cascade approaches are widely used as identification schemes of nonlinear 

systems with the aid of white Gaussian noise or harmonic functions as inputs, see for 

example Rugh (1981), Marmarelis (1978), Schetzen (1980).  

Marmarelis and Naka (1972) made an early use of the Wiener structure in order to 

describe various nonlinear dynamical systems as well as neural processing, while the 

model was also applied in various cases for biological systems, see Hunter (1985).    

In the case where the input is a white Gaussian noise time series with zero mean and a 

power density level A ,  one may proceed with the measurement of the kernel, or the 

Wiener G-functionals (Schetzen, 1980) and the estimation of the static nonlinear part 

by using low and high order cross-correlations between the input and the output. The 

need to obtain cross-correlations stems from the Wiener theorem which clearly states 

that a random process does not possess a Fourier transform since the integral defining 

the transform diverges for a very large number of frequencies.  

 

1.3.2 Volterra integral equations and Volterra series 

 

Next, we are going to present an illustrative correspondence that exists between the 

solution of a nonlinear Volterra integral equation and the Volterra series always 

developed within the context of systemic time invariant modeling. 

Let the nonlinear Volterra integral equation  

( ) ( ) ( )( )0
,

x

a
y x y x K t y t dt= + ∫

    

 (1.3.2.1) 

correspond to the solution of the following nonlinear differential equation  

( ) ( )0 0
, ,

dy
K t y y x y

dx
= = .              (1.3.2.2) 

This integral equation, can be solved by the means of Picard’s successive 

approximation (SA) method, as in the case of linear Volterra integral equations,   

 ( ) ( ) ( )( )0 1
, , 1, 2,...

x

n n
a

y x y x K t y t dt n−= + =∫
   

 (1.3.2.3) 
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Tricomi (1957) states that the SA method can be extended easily to the more general 

non-linear Volterra integral, of the second kind 

( ) ( ) ( )( )
0

, ,
x

y x f x K x t y t dt= + ∫
   

 (1.3.2.4) 

if the latter equation possesses one and only one solution  i.e.,  

( ) ( )lim
nn

Y x y x
→∞

=
   

   (1.3.2.5)
 

 under the restriction that ( )( ), ,K x t y t  and ( )f x  be 
2
L  functions and satisfy the 

following conditions 

( ) ( ) ( ) ( )1 2 1 2 1 2
, , , , , , ,K x t z K x t z a x y z z pair z z− ≤ − ∀

      

(1.3.2.6) 

and 

( )( ) ( )
0

, ,
x

K x t y t dt n x≤∫       (1.3.2.7) 

where, ( ),a x y , ( )n x  are also 
2
L  functions. 

Therefore, if we implement the Picard’s Successive Approximation (Substitution) 

procedure to Equation (1.3.2.4) and by assuming that the kernel ( )( ), ,K x t y t  is 

degenerate, we may deduce the following recurrence formula  

( ) ( ) ( ) ( )10
,

n n

x
y x f x K x t y t dt−= + ⋅∫   for 1,2,....n =   (1.3.2.8) 

Following again Tricomi (1957), one may alternatively express the above relation as  

 

( ) ( ) ( )1n n n
y x y x y x

−
− = ɶ ,  for 1,2,....n =    (1.3.2.9) 

 

obtaining the following form of solution  

              ( ) ( ) ( )0
1

n

n k
k

y x y x y x
=

= +∑ ɶ            (1.3.2.10) 

where,   

( ) ( ) ( )10
,

k k

x
y x K x t y t dt−= ⋅∫ɶ ɶ .      (1.3.2.11) 

 

Alternatively, we may set 

( ) ( ) ( )00
,

k n

x
y x k x t y t dt= ⋅∫ ɶɶ ɶ

        

 

(1.3.2.12) 

where,  

( ) ( ) ( )1 1 1 10
, , ,

n n

x
k x t K x x k x t dx−= ⋅∫ɶ ɶ   , for 2,3,...n =    (1.3.2.13) 
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and 

     ( ) ( )1
, ,k x t K x t=ɶ

    
 (1.3.2.14) 

and 

    ( ), 0K x t =  for  t x>  .     (1.3.2.15) 

 

Note that the last relation may be regarded as an explicit correspondence to a systemic 

causality condition. 

 

For illustrative purposes we also present the following explicit integral representations 

as seen in Equation (1.3.2.16) 

 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

2 1 1 10

3 1 1 2 2 1 20 0

1 1 1 10 0

1

, ,

, , ,

, , , ,

, ... , ,
n n n

n

x

x x

x x

k x t K x t

k x t K x x K x t dx

k x t K x x K x x K x t dx dx

k x t K x x K x t dx dx− −

−

=

= ⋅

= ⋅ ⋅

= ⋅ ⋅

∫
∫ ∫

∫ ∫

ɶ

ɶ

ɶ

⋮

ɶ … …
�����������

   (1.3.2.16) 

 

Thus, from the above results and  Equation (1.3.2.5) we get the following infinite–

series  solution, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0
1

1 1 1 10 0
1

lim lim ,

lim ... , ,

n

n kn n
k

n

n nn
k

n

x

x x

y x y x f x k x t f t dt

f x K x x K x t f t dx dx dt

→∞ →∞
=

− −→∞
=

= = + ⋅ =

= + ⋅ ⋅ ⋅

∑∫

∑ ∫ ∫

ɶ

… …
���������

   

(1.3.2.17) 

 

Now, if we want to obtain a systemic Volterra series representation we can set 

 

( ) 1f t = , 

and 

( ) ( ) ( )1 1 110 0

1

, ... , ..., ...
n

n n n k nk

n

x x
k x t h x x u t x dx dx

−=

−

  = −   
Π∫ ∫ɶ

���������
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and thus, obtain the corresponding response, for a general input ( )u t , that results 

from an n order nonlinear Volterra system i.e., 

( ) ( ) ( ) ( )1 1 10 0
1

1 lim ... , ..., ... ...
n

k k k kn
k

n

t t
y t h x x u t x u t x dx dx

→∞
=

= + − −∑ ∫ ∫
���������

 .  (1.3.2.18) 

 

 

1.3.3 Volterra models and systems 

 

 

1.3.3.1  A few notes about Vito Volterra  and Volterra  series  

 

 

Before going any further, it is worthwhile to make a short reference on Vito Volterra 

an astonishing mathematician with a major contribution upon the theory of functions, 

functionals and integrodifferential equations. His reputation began to spread at a very 

small age (23) when he was appointed Professor of Rational Mechanics at the 

University of Pisa. His wide spread of interests as well as some very important results 

in mathematics and biological sciences made him  very popular  while at the same 

time his vision for an international scientific co-operation thrusted him in the sphere 

of the pioneers of mathematics. He developed the homonymous series on the basis of 

a generalization of power series solutions while many successful applications of the 

Volterra integral and integrodifferential equations can be found in many scientific 

areas besides the theory of elasticity for which the Volterra equations were first 

implemented. These results inspired many important mathematicians to make 

significant contributions to the functional and approximation theory. A quite 

representative example is the mathematical figure of Frechét (1910), who by 

extending the Weierstrass approximation theorem from functions to functionals 

proved that even in the case where a finite number of terms is used, instead of an 

infinite series such as the one presented in Equation (1.3.3.1), one may still 

approximate continuous real valued mappings defined on compact spaces  

 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
1

, ,
n n n n

n

u t h u t u t u t d d dτ τ τ τ τ τ τ τ τ

∞ ∞∞

= −∞ −∞

= − − −∑∫ ∫⋯ … … …N�

    

              

 (1.3.3.1) 
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1.3.3.2  An overview of Volterra system identification schemes and techniques 

 

In 1942, two years after Volterra passed away, the Volterra functionals were initially 

implemented in nonlinear system theory by Norbert Wiener (1942) who used them in 

order to analyze the response of an R-L-C circuit with a nonlinear resistor while on 

subsequent stages of his work he established a systemic-approximation theoretical 

context based on the Volterra-Wiener kernels, Schetzen (1965, 1980). In 

consequence, the Volterra functionals were also used in many ways in nonlinear 

system theory and integrodifferential equations with applications ranging from 

telecommunications to hydrodynamics and biological sciences. 

 

- A discussion on Volterra Series 

A very important result that stems from the implementation of the Volterra series with 

respect to the approximation of nonlinear systems, is that this approach conduces 

significantly to an enhanced functional representation of the latter, also allowing in 

this way to retrieve more information with respect the systems’ nonlinear inner 

structures. Nevertheless, as Volterra series is a power series generalization, it is also 

natural to come across with various power series related difficulties such as 

convergence issues; for example one may refer to Chatetterjee and Vyas (2000) or 

Binh and Chang (2003).  

In practice, a finite, truncated, Volterra series is usually used in order to obtain 

practical systemic approximation schemes and as a result of this, the convergence 

ability of the approximating operator is severely restricted to a rather small range of 

inputs. 

Rugh (1981), Sandberg (1983) and Boyd et al. (1984) provided the conditions for the 

series to converge with the aid of various versions of the Gained Bound theorem, 

while Boyd and Chua (1985) by means of the fading memory concept, derived 

suitable approximation theorems for the truncated Volterra series defined on non-

compact subsets of the input space i.e., defined on the infinite line (say t ∈ ℝ ), and 

not in just some finite interval ( )[0, ]T . Sandberg and Xu (1998), provided similar 

approximation theorems and conditions for vector–valued instead of scalar–valued 

functions and for non–causal systems instead of causal ones with the aid of the 

myopic mapping concept which may be considered as an extension of the fading 
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memory concept,. This convergence-handicap is often diagnosed during the 

identification process of many nonlinear dynamical systems and as a result of this we 

are lead to obtain heuristic Volterra structures such as  the Volterra-type model 

proposed in Chapter 4. 

Besides the Gain Bound theorem, Boyd et al. (1984) developed considerable 

theoretical results for the Volterra series with respect to: 

i) continuity, 

ii) uniqueness, 

iii) polynomial mappings, 

iv) properties of the systemic Volterra  operators, 

v) steady state (as well as periodic and quasi periodic) cases, 

vi) generic formulas for the corresponding general input case. 

Recapitulating, we may state that the Volterra series operator presented in                

Equation (1.3.3.1) 

• can be regarded as the functional analogue to a power series representation 

that corresponds to the solution of a (system of) nonlinear dynamic 

integrodifferential equation(s),  

• is, qualitatively, well behaved as it can be regarded as an extension of  the 

linear finite impulse response models while it can also be shown that through a 

separable kernel (Palm, 1978) formulation, using such linear dynamic 

operators, one may obtain equivalent functional representations, 

• when subjected in periodic excitation they generate periodic response with 

super-harmonics (higher harmonics) due to the inherent polynomial nature of 

the series, 

• cannot induce chaotic responses to asymptotically stable input sequences, and 

the structure of the Volterra models is Bounded Input Bounded Output stable 

(BIBO),  

• may be retrieved from a wide variety of, custom, systemic models including 

non parametric forms.  

In consistence with this line of work, several major contributions were made by 

Wiener (1958), Sandberg (1983, 1984), Barret (1963), Brocket (1976), Rugh (1981), 

Sandberg and Xu (1998) and Schetzen (1980), thus establishing solid foundations for 
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the system–theoretic background in almost every relative aspect whether deterministic 

or stochastic issues were to be addressed.   

 

We note that many of the theoretical results produced from the majority of the 

aforementioned works, can still be applied to a large number of system identification 

schemes and methods (Input /Output modeling mostly) and as a result of this, a 

number of ways is created in order to transcend from the theoretical context to the 

fields of application but also from one approximation, or system identification, 

technique to another, a potentially more efficient, more suitable and more appropriate 

one to the nature of the problem and application.  

Although, a large variety of approximation structures exist, i.e., Wiener, Hammerstein 

Wiener –Hammerstein etc. there is also a quite large number of “standard”,  heuristic 

and non parametric formulations, concepts and structures. However, for the derivation 

of an efficient system identification scheme, the construction of a unified approach 

seems to be as a very difficult task to achieve. 

 

- Literature Review on System Identification 

At this point it would be quite illustrative to mention some representative examples of 

system identification techniques, algorithms and applications based on the Volterra 

series and models while a complete, at least up to the year 2000, bibliography on 

system identification in general is presented in the work of Giannakis and Serpedin 

(2001). We may start by referring to the work of Watanabe and Stark (1975) where a 

finite – dimension kernel algorithm was developed with the aid of a least square error 

method and by using random input variables. The main difference from other works is 

that they proposed to work within a subspace of kernel functions that are most likely 

to provide outputs close to the ones the biological system is expected to produce, 

instead of working with the whole space of  n–variable functions in order to 

approximate the n
th
 order kernels. This line of work is presented in order to emphasize 

on the need to begin with the correct functional ingredients for accurate and fast 

approximation schemes such as suitable function spaces (or subspaces) or test 

functions. The application with respect to the system identification scheme is a 

physiological (biological) control system. 

We proceed with the work of Boyd and Chua (1985) where, again, a time-efficient 

algorithm is developed for the estimation/measurement of second order kernels. This 
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is achieved by enhancing the multitone method (harmonic probing) i.e., a method 

where a two – tone signal (a sum of two harmonic components at distinct frequencies) 

is applied at two or three energy levels and then by the means of interpolation or least 

squares one can make an estimate about the second order frequency response function 

each time at a different frequency point with coordinates the frequencies of the 

harmonic components. Of course, this procedure is repeated for a quite large number 

of distinct frequencies until a two dimensional FRF is obtained on the frequency – 

frequency ( f1, f2 ) plane. This technique is definitely very slow and thus specific  

couples of frequencies were selected so as the second order inter-modulation tones lie 

on frequencies different than any of the ones that could be found on the corresponding 

inputs. The application was made upon a nonlinear electro-acoustic transducer.  For 

more information one may also check Storer (1991) and Chatterjee and Vyas (2003, 

2004). 

Lang and Billings (1997) provided us with an analytical approach with respect to the 

relationship that exists between the input and output frequency ranges of nonlinear 

systems. In addition, explicit relations and algorithms for the calculations of the 

system’s output frequency range are derived with respect to the frequency 

components of the (general) input and the system’s nonlinearities.  

Extensive analytical review with respect to the general formulas between harmonic 

and zero mean stationary Gaussian inputs and outputs of nonlinear systems has been 

made by Bedrosian and Rice (1971). This seminal work examines in its first part, the 

derivation of explicit formulas for the leading terms of the output, in time and 

frequency domain, for the case where Volterra series are implemented to describe the 

system’s nonlinear operator. To do this, the Volterra transfer functions were assumed 

symmetric and known. In the second part, and from a system identification 

perspective, the Volterra transfer functions were assumed unknown and with the aid 

of the relations developed in the first part, explicit expressions were given by means 

of the Harmonic Input (H.I.) and the Direct Expansion (D.E.) methods. For the H.I. 

method, a Riccati differential equation and a quasi-static approximation to a filtered 

frequency modulation system are put to the test, while for the D.E. method a 

modulator–filter–demodulator system is used. 

Some very useful results with respect to the Volterra series type system modeling and 

identification were developed within the context of biological cybernetics. It is very 

impressive that not only approximation techniques and algorithms were developed, 
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analyzed and proposed but also a large variety of, theoretical and structural issues 

were addressed and carefully investigated.  

Starting from the biological research field, Palm and Poggio (1977) were initially 

concerned with the kind of classes of nonlinear dynamical systems that admit 

Volterra–like series and the mathematical rigor and validity of the Lee–Schetzen 

identification method. The latter issue is presented in full extend in the works of Lee 

and Schetzen (1965) or Schetzen (1980) while some suggestions were made by 

Orcioni et al (2005) with regards to the improvement (with respect to the estimation 

of diagonal kernel elements) and accuracy of the method.  

Palm (1978) continued by focusing on the equivalency conditions between different 

types of systemic approximation subclasses that may approximate nonlinear systems, 

such as: 

• the  Volterra – type systems realized via separable kernels (where the kernels 

of the Volterra  series may be expressed as separable functions),  

• the  Volterra – type systems realized via ‘sandwich’ structures (where we 

come across the Linear Dynamic – Nonlinear Static – Linear Dynamic 

cascades)  

• the  Volterra – type polynomial systems in general.  

 

One of the main results of this work is that, all continuous-time dynamical systems 

can be approximated by either the class of separable kernel polynomial systems or the 

class of “sandwich” systems, both being subclasses of the polynomial system class.  

Analogous results were given by Mann (1979) for the identification capability of the 

separable kernel systems as well as for the adequateness of a harmonic time series as 

a test signal.  Focusing on the second issue, as the first one was more or less outlined 

above, the following result is derived: 

While, the test signal ( ) cos( )u t tω=
 
is inadequate for the separable kernel systems 

that result from a product of linear operators whose output is usually of the form 

 

( ) ( ) ( )( )
1

cos
n

j j
j

y t H i t iω ω ϕ ω
=

= +∏ ,      (1.3.3.2) 
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it is adequate for the linear dynamic – nonlinear (N–order) static cascade systems. The 

output of the corresponding homogeneous or non homogeneous systems is presented 

in Equations (1.3.3.3) and (1.3.3.4), respectively. 

 

 
( ) ( ) ( )( )cosy t H i t iω ω ϕ ω

Ν
Ν= +

   
 (1.3.3.3) 

 

( ) ( ) ( )( )
1

cos
N n

n

n
n

y t a H i t iω ω ϕ ω
=

= ⋅ +∑ .                       (1.3.3.4) 

 

Continuing, a reference ought to be made to the works of Korenberg and Hunter 

(1986) and Hunter and Korenberg (1986) where an extensive research took place with 

respect to the identification of biological systems either with Hammerstein or Wiener 

or even with ‘Sandwich’ (L-NL-L) systemic structures. In these two works the 

characteristics of the structures mentioned above, are outlined as well as their 

suitability with respect to the nonlinear nature of the biological system under 

identification. In addition, identification algorithms were presented for all of these 

three cascade models, although there was not actual specification of the biological 

system being identified other than being just a generic neural process. 

Remaining in the area of the identification of nonlinear biological systems, it is 

interesting to refer to a method developed by Diaz and Desrochers (1998) applied for 

the identification of the mean arterial pressure, where a significantly different 

approach with respect to the estimation of the Volterra kernels takes place. To be 

more exact, instead of estimating the kernels directly from the input – output data, an 

intervening step is implemented so as to minimize the computation cost of the 

kernels’ elements. Thus, a difference equation is obtained from the I/O data by the 

means of a Nonlinear Auto-Regressive Moving Average with eXogenous input 

(NARMAX) method, which was initially introduced by Billings and Leontaridis 

(1985), and then one either proceeds to estimating the Volterra kernels as shown in 

this work or carries out with an overall state-space formulation. It is worth noting that 

Wan (2003) developed a method for estimating the entire Volterra series without 

truncation while Billings and Tsang (1989) presented a harmonic probing algorithm 

based on the NARMAX modeling. 

Another method that provides a correspondence between Volterra series and         

state - space realizations, is proposed by Suleiman and Monin (2007) who based their 
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approach upon an explicit connection that exists between Volterra series and recursive 

realizations; for more information one may also check earlier works such as Brocket’s 

(1976).  

A different kind of information may be obtained by processing the Volterra kernels, 

already estimated by some sort of a suitable system identification method, in order to 

diagnose any phenomena that could arise due to the nonlinear character of the system. 

Thus, and in conjunction with an artificial neural-network scheme, the detection and 

classification of any inherent nonlinearities that may exist and lead to any kind of 

fault or structural failure is presented by Aiordachioaie et al (2001). 

Finally, a special note must also be made to the seminal paper of Billings and Wei 

(2005) where wavelet networks are implemented in nonlinear system identification. 

According to this work high-dimensional systems can be approximated by the 

superposition of a relatively small number of functions defined in turn on low 

dimensional spaces. With the aid of multiscale wavelet decompositions and standard 

neural network techniques a robust identification method is developed. In fact the 

method proposed here can be regarded as a fusion of time-frequency transforms with 

nonlinear system identification techniques while several similarities in conceptual and 

practical issues can be found with the proposed nonlinear system identification 

scheme presented and developed in Chapter 4.  

 

1.4 An introduction to time – frequency concepts 

 

The theory behind time-frequency distributions besides being an incredibly 

challenging area of innovative mathematical and physical concepts, it might also be 

regarded as a significant think-tank for the development of new ideas and theories in 

nonlinear system theory and system identification. Many of these distributions, linear 

or quadratic, can also be used as, or realized via, filter-banks that separate the 

incoming signal into a finite, or infinite, number of components imbedded in the 

signal. The decomposition can be achieved in a numerous ways although the 

corresponding resolution properties, i.e., with how much detail we can obtain the 

representation of the signal on the time – frequency plane, may vary significantly 

from distribution to distribution. The impact of the Fourier analysis upon most of the 

areas of engineering is, to say the least, tremendous as through it we gained another, 

different kind of insight for the inherent properties of signals or systems of ordinary 

and partial differential equations. As far as signals are concerned, their spectral 



Chapter 1.     An Introduction to the Concepts of Nonlinear Systems, System Identification and Time-Frequency Distributions 

with extensive analysis of the Hilbert – Huang transform 

 

[1~18] 
 

content cannot be localized in time using standard Fourier-series analysis unless some 

sort of a time-window function is implemented. This infinite trigonometric series 

representation of stationary or periodic functions dictates that no local (temporal or 

spatial) spectral transform can be obtained. However, through less rigorous definitions 

of stationarity, such as the piecewise stationarity, and use of appropriate windowing 

functions one may obtain windowed–Fourier transforms such as the short time 

Fourier transform (STFT) or the Gabor transform, for a Gaussian window function, 

while the choice of the shape and scale of the window composes yet another problem 

as it is application dependent and dictated by the rate of variation of the spectral 

content i.e., energy and phase, of the signal.  

A rapid variation of the spectral content of the signal exposes major drawbacks of the 

STFT, or any of the windowed-transforms, regarding the desired level of temporal 

and frequency resolutions. To be more specific there is a certain requirement, a 

constraint imposed on the quality of resolution that can be achieved on the time-

frequency plane, i.e., the uncertainty principle (Heisenberg – Gabor inequality), 

stated, among others, by Gabor (1946) and Cohen (1995), which dictates that an 

explicit tradeoff exists between the signal’s duration, 
t
σ  and bandwidth 

ω
σ . We note 

the standard deviations of time and frequency are implemented, as they are both valid 

representatives of the duration of the signal, since for small values of 
t
σ   we have 

short duration signals, and the range of frequencies that the signal may cover, i.e., 

bandwidth, respectively.   

For reasons of illustration we present the general relations for  

• average time    ( )
21

s

t t s t dt
E

∞

−∞

= ∫              (1.4.1) 

 

• average frequency    ( )
21

s

S d
E

ω ω ω ω

∞

−∞

= ∫
   

       (1.4.2) 

 

• time spreading ( ) ( )
2 22 22 2

t
t t s t dt t tσ

∞

−∞

Τ = = − = −∫      (1.4.3) 

 

• frequency spreading ( ) ( )
2 2 2

22 2 S d
ω
σ ω ω ω ω ω ω

∞

−∞

Β = = − = −∫  

(1.4.4) 
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• the uncertainty principle, for normalized signals suitably translated in time and  

frequency so that they have zero mean-frequency and zero mean-time as 

follows,  

21
1 4

2t t
Cov

ω ω
σ σ⋅ ≥ + ⋅ .     (1.4.5) 

We note that for the relation presented in Equation (1.4.5) the equality holds only for 

Gaussian signals. 

Continuing, we will make an introduction to the Hilbert Transform by the means of 

which the definitions of analytic signal, instantaneous frequency (IF) and group delay 

(GD) are made. In addition, a brief overview of various time–frequency distributions 

and an extensive analysis of the Hilbert – Huang transform are subsequently made. 

The latter transform is also used extensively in our system identification modeling. 

 

1.4.1 Hilbert transform 

 

For a real valued signal, i.e., ( ) ( )2
s t L∈ ℝ  , and with the aid of the Hilbert transform 

defined in Equation (1.4.1.1) , one may obtain the corresponding analytic (complex–

valued) signal, upon which the concepts of instantaneous frequency and amplitude 

(IA) can be defined, Cohen (1995). 

 

( ) ( ){ } ( ) ( )

( ) ( )
0

1 1

1
                      lim

HT

t

t

s
s t s t s t PV d

t t

s s
d d

t t

δ

δ
δ

τ
τ

π π τ

τ τ
τ τ

π τ τ

∞

−∞

− ∞

→
−∞ +

    = = ∗ = =  −   
 
 = + − −  

∫

∫ ∫

H

          (1.4.1.1) 

 

Since, the Hilbert transform is defined as the convolution between the signal ( )s t  and 

the function
1

tπ
, the Fourier transform is the product of the corresponding Fourier 

transforms, as follows  

( ){ } ( ){ }{ } ( )

( ){ } ( ){ } ( )( )

1

1
             

HT
F s t F s t F s t

t

F s t F F s t j sign
t

π

ω
π

   = = ∗ =    
   = ⋅ = ⋅ −    

H

.   (1.4.1.2) 
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The last relation clearly shows how the transform works as a 90

the negative frequencies and as a 

As an example we present the 

turns out to be the sine function

 

           
( ){ }cos cos

s t f t s t= = ∗ =H H

                   
(1

f t t f t f
F F s t F

−

→ → →

 = ⋅ = 

                   

1 1

2f t
F f f f f j sign fδ δ

−

→

    = − + + ⋅ − =      

               

1 1

2f t
F f f f f f t

j
δ δ π

−

→

   = − − + =     

Figure 

 

Thus, the complex/ analytic signal

( )s t s t j s t A t
α

= + ⋅ =

where the corresponding instantaneous amplitude and frequency are defined as 

( )A t s t s t s t= = +
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The last relation clearly shows how the transform works as a 90 °  phase shift for all 

negative frequencies and as a –90 °  phase shift for all positive frequencies.

As an example we present the Hilbert transform of a simple cosine function 

the sine function. 

( ){ } ( )cos cos

1
cos 2

c
s t f t s t

t
π

π
= = ∗ =H H

  

( )( )cos

1
f t t f t f
F F s t F

tπ→ → →

   = ⋅ =     
 

( ) ( ) ( )( )c c
F f f f f j sign fδ δ

     = − + + ⋅ − =         

( ) ( ) ( )sin 2
c c c

F f f f f f t
j
δ δ π

  = − − + =   
.  

Figure 1.4.1.   Hilbert transform of a pure cosine wave. 

the complex/ analytic signal is defined as 

( ) ( ) ( ) ( )
e

j t

HT
s t s t j s t A t

ϕ= + ⋅ = ,   

where the corresponding instantaneous amplitude and frequency are defined as 

( ) ( )( ) ( )( )2 2

HT
A t s t s t s t

α
= = +

   

Frequency Distributions 

phase shift for all 

phase shift for all positive frequencies.  

sine function which 

  

  (1.4.1.3) 

 

 

  (1.4.1.4) 

where the corresponding instantaneous amplitude and frequency are defined as  

 
 (1.4.1.5) 
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 and 

 f t t s t

respectively. 

The term “instantaneous frequency

characteristic of a monocomponent signal,

on the time – frequency plane, in this case

 

As an example, we estimate 

patchwork of sine functions with abrupt 

presented in Equation 

respectively. 

 

( )

(

(

2 sin 2 ,              0, 20

5 sin 2 2 ,             20, 40

4 sin 2 ,          40, 60

s t

=         
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( ) ( ) ( )( )1 1
arg

2 2

d
f t t s t

dt α
ϕ
π π
′= = ,  

instantaneous frequency” corresponds to the local (in time)

of a monocomponent signal, i.e., a signal that exhibits a single “ridge” 

frequency plane, in this case the Hilbert spectrum.  

we estimate the Hilbert spectrum of a function s t

patchwork of sine functions with abrupt changes in amplitude and frequency

Equation (1.4.1.7) and seen from Figures (1.4.2) and (

)

)

2 sin 2 ,              0, 20

5 sin 2 2 ,             20, 40

1
4 sin 2 ,          40, 60

2

f t t

f t t

f t t

π

π

π

 ∈   

 ∈   

    ∈          

Figure 1.4.1. Time series of  ( )s t  

Frequency Distributions 

  (1.4.1.6) 

corresponds to the local (in time), frequency 

a signal that exhibits a single “ridge” 

( )s t  which is a 

frequency as it is 

) and (1.4.3), 

 

(1.4.1.7)
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- Instantaneous frequency

However, the concept of 

controversial mathematical term

not require a complete wave

Cohen (1995) with his five paradoxes about the analytic signal and 

frequency, made a clear statement wit

(1972), Vakman and Vainshtein

among others, made various 

concept and surely one must 

noting here that the above definition of 

local frequency definition 

may check Whitham (1975)

Concluding, there is a number of ways to justify why the derivative of the phase of an 

analytic signal matches with

one based on the stationary phase method and another one based on

representation of the average frequency in terms of the energy
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Figure 1.4.2.  Hilbert spectrum of ( )s t
 

Instantaneous frequency 

the concept of instantaneous frequency is still considered to be a 

mathematical term, as it is difficult to physically interpret

wave/cycle anymore to estimate it.  

with his five paradoxes about the analytic signal and 

statement with respect to the above argument,

Vainshtein (1977) and Huang et al. (1998, 1999, 2005a, b

made various approaches and efforts for thorough analysis 

one must seek these works for further clarification.

here that the above definition of instantaneous frequency is consistent with the 

local frequency definition that can be found in water wave theory; for example 

Whitham (1975).   

, there is a number of ways to justify why the derivative of the phase of an 

with instantaneous frequency and we’ll present two of them, 

one based on the stationary phase method and another one based on

representation of the average frequency in terms of the energy-density function

Frequency Distributions 

 

still considered to be a rather 

interpret it since we do 

with his five paradoxes about the analytic signal and instantaneous 

, while Vakman 

(1998, 1999, 2005a, b), 

efforts for thorough analysis of the IF 

these works for further clarification. It is worth 

is consistent with the 

for example one 

, there is a number of ways to justify why the derivative of the phase of an 

and we’ll present two of them, 

one based on the stationary phase method and another one based on the statistical 

density function. 
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The Fourier transform of any analytic signal is defined in Equation (1.4.1.8), while 

according to the stationary phase method (SPM), see Copson (1967),  

 

( )( )
( ) ( ) ( )

j t tj t

aa s t e dt A t e dt
θ ωω

ω

∞ ∞
−−

−∞ −∞

= =∫ ∫S       (1.4.1.8)

 
 

the maximum contribution to, or upper bound of the integral, of  ( )a ωS  
is achieved 

only at the stationary phase points, i.e.,  

 

 

( )( ) 0
d

t t
dt
θ ω− = .

    
 (1.4.1.9) 

 

Alternatively, on may examine the, energy-normalized, integral representation of the 

mean frequency, like Cohen (1995) who clearly derived that  

 

     ( ) ( ) ( )
2

*

1

1 1

s
E

s

d
S d s t s t dt

E j dt
ω ω ω ω

∞ ∞

=
−∞ −∞

= = =∫ ∫
  

           

( ) ( )
( ) ( ) ( ) ( )2 2
t

t j A t dt t A t dt
t

ϕ ϕ

∞ ∞

−∞ −∞

 ′Α   ′ ′= − =  Α  
∫ ∫

 

              (1.4.1.10)

 

 

and consequently stated that since ( )2A t  is a one-dimensional density function of the 

energy in time, the average frequency ω  is given in terms of that density and the 

corresponding instantaneous quantity ( )tϕ′ , thus  

 

 ( ) .tϕ ω′ =
    

 (1.4.1.11) 

 

- Group delay 

Next, we define, in a dual way, the term group delay as the average time of arrival of 

specific frequencies. In other words we assign a time to a frequency. To be more 

illustrative we present the relation for group delay, or envelope delay, ( )g
t f  (for 

detailed definitions and examples one may check Boashash, 2003) 

 

 ( ) ( ) ( )( )1 1
arg

2 2g

d
t f f S f

dt α
θ
π π
′= − = .

  
 (1.4.1.12) 
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In addition, the (now strictly non negative) Fourier transform of the analytic signal 

may be given in terms of the Fourier transform of the original signal as follows: 

 

( )
( )

( ) 0,           0

( ) 0 ,      0

( ) 2 ,  0

a

a

a

S

S

ω ω

ω ω

ω ω ω

= <

= =

= ⋅ >

S

S

S
     

 (1.4.1.13) 

 

 

1.4.2 Time – frequency representations  

 

Next, we briefly present some important time-frequency (TF) distributions namely, 

the Short-Time Fourier transform (STFT), Wavelets and the general Cohen’s class of 

(quadratic) distributions. With the introduction to the fundamental properties and 

characteristics of these transforms, we show, in general, the notions and concepts in 

representing a signal on the joint time-frequency plane. 

Through this overview, we are ready to proceed with the analysis of another time-

frequency transform which however, is quite different from all the other, as it is a 

semi-empirical one, while no windowing is performed whatsoever; the Hilbert-Huang 

transform. This transform is considered to be, at the moment, wavelets greatest 

competitor and much better than any STFT.   

 

1.4.2.1  The Short – Time Fourier Transform 

 

The short-time Fourier transform is essentially a variant, a localized version, of the 

Fourier transform as with the aid of a window function, one separates the original 

signal into a finite number of specific intervals, with minimum overlapping, and by 

assuming that the signal contained in that (usually temporal) interval is stationary, i.e., 

piecewise stationarity, performs a Fourier transform on the signal contained in each 

and every one of these intervals. In this way, the spectral representation of the signal 

obtains the property of (temporal) localization. 

However, as we have separated the original signal into a large number of relatively 

short duration signals we have also made a tremendous effect upon the bandwidth 

estimation which now deviates significantly from the bandwidth of the original signal. 

As the uncertainty principle takes its toll upon these short duration signals giving us 

frequencies that are probably nonexistent in the spectral representation of the original 
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signal, we must also consider that the signal is also, slightly, deformed by the 

convolution with the time window. However, besides these drawbacks, the STFT is 

well defined, giving most of the times a rather adequate picture of the localized 

spectral content of the signal and most of all it is easy to implement. Also, the squared 

magnitude of the STFT, called the spectrogram, leads to robust time - frequency - 

energy representations free of significant, cross-term artifacts, present in many 

nonlinear higher order time–frequency distributions. Even if the spectrogram is a 

quadratic representation and the quadratic superposition principle clearly dictates that 

the spectrogram of the sum of two signals is not equal to the sum of the spectrograms, 

the interference/cross-terms that arise are usually of relatively low energy content 

especially when the signals consist of components with frequency content distant 

from each other. In this way the auto-spectrograms do not overlap with each other and 

the cross terms arise with very low energies, Hlawatsch (1991).  

To be more illustrative, let ( ) ( )2
h t L∈ ℝ  be a window function such that it provides 

a compact support of the signal, i.e., a signal, or a function, ( )2
s L∈ ℝ   is suppressed 

outside some closed interval, and thus the modified signal becomes   

 

( ) ( ) ( ), .
h
s t s h tτ τ τ= ⋅ −

    
 (1.4.2.1.1) 

 

By performing Fourier analysis on the modified signal ( ),
h
s t τ , gives 

 

( ) ( ) ( ) ( )1 1
, ,

2 2

j j

h h
S t s t e d s h t e dωτ ωτω τ τ τ τ τ

π π

− −= = ⋅ −∫ ∫
ℝ ℝ  

 (1.4.2.1.2) 

 

denoted as the Short Time Fourier Transform of the signal ( )s τ . 

The corresponding energy density spectrum, the spectrogram, is defined as 

( ) ( ) ( ) ( ) ( )
2

2 1
, , .

2

j

hs t
SP t S t s h t e dωτω ω τ τ τ

π

−= = ⋅ −∫
ℝ   

 (1.4.2.1.3) 

 

Note that the spectrogram of the sum of two signals is 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2 1 2 1 2

,
, , , ,

s t s t s t s t s t s t

Cross terms

SP t SP t SP t SP tω ω ω ω
+

−

= + +
�������������

, 
 

 (1.4.2.1.4) 
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where,  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2

, 1 2 2 1

1 2

, , , , ,

                 2 Re , ,

s t s t h h h h

h h

SP t S t S t S t S t

S t S t

ω ω ω ω ω

ω ω

= + =

 = ⋅   

   (1.4.2.1.5) 

 

It is also important to note that the STFT may be also expressed as the inverse 

transform of the convolution between the window and signal spectra as follows, 

 ( ) ( ) ( ) ( )2
, ; .

j f t

h
S t h S f f e df

π ν
ν ν

−
= ⋅Η −∫

ℝ
  

 (1.4.2.1.6) 

 

From the relation presented in Equation (1.4.2.1.6) one may observe that the STFT is 

similar to a bank of band-pass filters of constant bandwidth.  

As far as the window-function is concerned, the intervals are centered around a time 

instant  t  while the question of how optimal the window, i.e.,  its form and length,  we 

choose is, clearly depends upon the rate of change of the spectral characteristics of the 

signal. To be more specific if we set the time window to be very small, seeking for a 

very high temporal resolution of the signal, it is expected due to the uncertainty 

principle that the bandwidth of the signal will be deformed significantly and this 

constitutes a poor choice unless the spectral content of the signal varies fast enough to 

justify the choice of such a short duration window. In contrast, if the time-window is 

too long it is evident that rapid spectral variations will lose any temporal localization. 

Gabor (1946) developed the discrete analogue to the STFT also known as the Gabor 

transform. Gabor proposed that the two dimensional (2-D) time-frequency space to be 

represented by an orthogonal grid and named each one of the rectangles of the grid as 

logons. The dimensions of the logons are also subjected to the Heisenberg uncertainty 

principle while Gabor himself exclaimed this principle as one of the most important in 

communication theory. The signal is then defined as 

 

( ) ( ) ( ), ,
,

,    ,
n k n k

n k

s c t n kτ ψ= ⋅ ∈∑ ℤ      (1.4.2.1.7) 

where, ( ),n k
tψ is a function centered about time n t∆  and frequency k f∆ , while the 

coefficients 
,n k

c  are complex valued and each one is assigned to a different logon, 

with discrete coordinates n (for time) and k (for frequency).  
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With the aid of the following orthogonality condition  

 

( ) ( )*

, ,

1,

0,m l n k

if m n and l k
t t dt

otherwise
γ ψ

∞

−∞

 = == 
∫

   

 (1.4.2.1.8) 

 

and by multiplying Equation (1.4.2.1.7) with the function ( )*

,m l
tγ   and then integrate 

it one gets 

( ) ( )*

, ,n k n k
c s dτ γ τ τ

∞

−∞

= ∫        (1.4.2.1.9) 

If we let  

( ) ( )* 2

,

j k f

m l
t h t n t e π τγ − ∆= − ∆ ⋅

    
 (1.4.2.1.10) 

 

and insert this last relation in Equation (1.4.2.1.10), one gets  

 

( ) ( ) 2

,
,j k f

n k
c s h n t e dπ ττ τ τ

∞
− ∆

−∞

= − ∆ ⋅∫
   

 (1.4.2.1.11) 

 

which is the Gabor transform of the signal ( )s t . 

For reasons of illustration we present the Inverse Gabor transform, 

 

( ) ( ) ( ) 2

, , ,
.j k f

n k n k n k
s c d c h n t e dπ ττ γ τ τ τ τ

∞ ∞
∆

−∞ −∞

= = − ∆ ⋅∫ ∫
 

 (1.4.2.1.12) 

 

For more information about the STFT one may also refer to a vast number of works 

among which we suggest Boashash (2003), Qian (2002), Auger et al (1996) and 

Cohen (1995). 

 

 

1.4.2.2  Wavelets 
 

The wavelet representation of a, stationary or non stationary, signal can be regarded 

as an extension of the STFT enhanced in such way to overcome, mainly, the 

constraints stemming from the Heisenberg - Gabor uncertainty principle. This is due 

to the fact that this transform is actually a time–scale and not just a time - frequency 

transform while the single–resolution dependent rectangular grid of the STFT is 

extended to a multi – resolution frequency depended lattice.  
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Defining the continuous wavelet transform (CWT) as a projection of a signal 

( )1
:s t →ℝ ℝ  onto a set of zero–mean functions derived by appropriately scaling a 

mother wavelet gives,  

 

( ) ( ) *1
, .

W

t
S t a s d

τ
τ ψ τ

αα

∞

−∞

 −  =    ∫
   

 (1.4.2.2.1) 

 

The scaling characteristic expressed through the dilation factor α , allows for a 

distinct application of the uncertainty principle for each time scale and it may provide 

a uniform resolution.  In this way the basic drawback of the STFT is tackled while the 

bandwidth obeys the following law (constant -Q  analysis) i.e.,  

 

.B Q ω=
     

 (1.4.2.2.2) 

 

Thus, the wavelets are bandwidth–adaptive functions leading to a better than STFT 

frequency resolution, although, as the waveform of the mother-wavelet is fixed, 

careful choice of the latter is necessary. A large variety of wavelets exists and comes 

along with a substantial list of pros and cons for each one of them, Daubechies 

(1992).  Finally, the wavelet analysis is considered as the best non-stationary data 

analysis method so far and it widely used not only in a vast number of applications 

but also as a validation tool for other time-frequency distributions. 

 
 

Figure 1.4.2.2.1.  A graphical illustration of the resolution achieved by the means of the: Shannon, 

Fourier, Short Time Fourier and Wavelet transforms. [Auger et al, (1996)]. 
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If no reconstruction of the signal is required, then the mother-wavelet can be of any 

form, as long as it corresponds to the properties of a wavelet, Daubechies (1992).  

The mother-wavelet has to satisfy the following admissibility condition 

( )
2

d
ω

ω
ω

∞

−∞

< ∞∫
Ψ

 ,      (1.4.2.2.3) 

where, ( )ωΨ  is the Fourier transform of the mother-wavelet. This admissibility 

condition clearly implies that  

( )0 0=Ψ ,      (1.4.2.2.4) 

 and as a result of the last relation we get  

 

( ) 0t dtψ

∞

−∞

=∫ .      (1.4.2.2.5) 

 

Thus, we may now express the reconstructed signal with the aid of the ( ),CWT t a , 

the admissibility function and the synthesis wavelet, always consisted to the (dual) 

wavelet analysis, as follows 

 

 ( ) ( )2

1 1
,

W

t
s t S t a d d

c

τ
ψ α τ
αα

∞ ∞

−∞−∞

 −  =    ∫ ∫
Ψ

.   (1.4.2.2.6) 

 

In a manner similar to the transition made from the continuous to the discrete STFT 

transform, we present, in brief, the discrete wavelet transform (DWT).  

Setting,  2 mα −=  and  2 mb n −= , the coefficients of the discrete wavelet transform, 

,m n
d , are defined as  

( ) ( ) ( )/2 *

, ,
2 ,2 2 2m m m m

m n W m n
d S n s t t n dtψ

∞
− −

−∞

= = −∫ .   (1.4.2.2.7) 

 

and in consequence, the reconstructed signal is recovered as follows  

 

( ) , ,
ˆ ( )

m n m n
s t d tψ

∞ ∞

−∞ −∞

= ∑ ∑          (1.4.2.2.8) 
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where, the sets of functions ( ){ },
,

m n
m n

tψ
∈ ℤ

  and ( ){ },
,

ˆ
m n

m n
tψ

∈ ℤ  
constitute two 

frames dual to each other.  By the term frame we denote a set of sequences  { }n n
ψ

∈ ℤ
 

by which we may characterize any signal s  from its inner products { },
n

n

s ψ
∈ ℤ

.   

For further information about frames one may refer to Daubechies (1992) or Strang 

and Nguyen (1996). 

Finally, a quadratic representation based on the wavelet transform is the scalogram, an 

energy-time-scale distribution, defined as follows  

 

( ) ( ) ( ) ( )
2

2
, ,

Ws t s t

d
E SC t S t a d

α
ω τ

α

∞ ∞

−∞ −∞

= = ∫ ∫     (1.4.2.2.11) 

 

This distribution preserves all the properties of the wavelet transform, while it ought 

to be noted that any artifacts that might arise depend mainly on the distance between, 

in the time-frequency plane, the auto-scalograms. Should there be a significant 

overlapping between the auto-scalograms, the interference terms obtain significant 

energy content.  

 

 

1.4.2.3 The kernel method and the general Cohen’s class of distributions 

 

 

Cohen (1995) states that all joint time – frequency distributions may be derived from 

the following relation  

 

( ) ( ) ( ) ( )*

2

1
, / 2 / 2 ,

4

j j t j uC t s u s u e du d dωτ θ θω τ τ φ θ τ θ τ
π

− − += + −∫∫∫
R

  

    (1.4.2.3.1) 

 

where, the function ( ),φ θ τ is the kernel with respect to which we may transcend from 

one TF distribution to another. 

This two dimensional function ( ),C t ω  may be also regarded as the characteristic 

function, i.e., the double Fourier transform, of the distribution ( ),M θ τ  i.e.,  
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( ) ( )
R

2

1
, ,

4

j j tC t M e d dωτ θω θ τ θ τ
π

− −= ∫∫
   

 (1.4.2.3.2) 

 

where, 

  

( ) ( ) ( ) ( )
( )

( ) ( )*

,

, , / 2 / 2 , ,j uM s u s u e duθ

θ τ

θ τ φ θ τ τ τ φ θ τ θ τ

Α

= + − = Α∫
�����������������������������������R

 
(1.4.2.3.3) 

 

In fact, we can express every quadratic time–frequency distribution ( )( ),QTFD t f  in 

the following form  

 

( ) ( )
( )

( )
,

, , ,
s

t f
QTFD t f t f W t fφ= ∗∗

   

 (1.4.2.3.4) 

 
where,   

 

( ) ( ){ } ( ) 2, , , j f

t f
t f F G t G t e dπ τφ τ τ τ−

→
= = ∫

ℝ

    (1.4.2.3.5) 

 

denotes the general kernel function,  and 

 

( ) ( ){ } ( ) ( )
( )

* 2

,

, , / 2 / 2

s

j f

s st f

K t

W t f F K t s t s t e dπ τ

τ

τ τ τ τ−

→
= = + −∫

ℝ
�������������������������

 

 (1.4.2.3.6)

 

denotes the Fourier transform of the Wigner distribution.  

 

In Table (1.4.2.3.1), we show how one may use the kernel method to obtain the 

required quadratic distribution.  

Note that through the kernel method, we are allowed to focus on the properties of a 

specific (generalized) function, whatever that might be, and not on the entire 

distribution thus making easier any further analysis.  
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Table 1.4.2.3.1. Association formulas between a number of quadratic TFDs with the Wigner 

distribution by the means of joint time – frequency kernels ( ),G t τ . 

 

 

 

 

 

 

 

 

 

Name Kernel  ( ),G t τ  Distribution: ( ),C t ω  

Wigner - Ville ( )tδ  
( ) ( )*1

/ 2 / 2
2

js u s u e dωττ τ τ
π

−+ −∫
ℝ

 

w - WVD ( ) ( )t wδ τ  ( ) ( ) ( )*1
/ 2 / 2

2
jw s u s u e dωττ τ τ τ

π

−+ −∫
ℝ

 

Spectrogram ( ) ( )*/2 /2w u w uτ τ+ −

 
( ) ( )

2

1

2

js w t e dωττ τ τ
π

−−∫
ℝ

 

Page 

2
t
τ

δ
   −   

 ( )
2

1

2

t

js e d
t

ωθθ θ
π

−

−∞

 
 ∂  
 ∂   
∫  

Rihaczek 

2
t
τ

δ
  −   

 ( ) ( )*1

2

j t

C C
s t S e ωω
π

−  

w-Rihaczek 

( )
2

w t
τ

τ δ
  −   

 ( ) ( ) ( )
*

1

2
j j t

C C
s t s w t e d eωτ ωτ τ τ

π

− −
 
 − 
  
∫
ℝ

 

Levin 
1

2 2 2
t t
τ τ

δ δ
        + + −           

 ( ) ( )*1
Re

2

j t

C C
s t S e ωω
π

−
       

 

w-Levin ( )
2 2 2

w
t t

τ τ τ
δ δ
        + + −           

 

( ) ( ) ( )
*

1
Re

2
j j t

C C
s t s w t e d eωτ ωτ τ τ

π

− −

      −        
∫
ℝ

 

General Class 

(Cohen) 
( )

R

, j te dθφ θ τ θ∫  ( ) ( ) ( )*

2

1
/ 2 / 2 ,

4

j j t j us u s u e dud dωτ θ θτ τ φ θ τ θ τ
π

− − ++ −∫∫∫
R
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1.5 The Hilbert - Huang transform 

1.5.1 Introduction 

 

The Hilbert-Huang time-frequency transform will be extensively investigated, as it 

constitutes the main “tool” by means of which we set analyze any non-periodic input 

data in order to estimate an accurate and robust way its spectral characteristics. The 

Hilbert-Huang transform is actually a data–adaptive, time–scale–energy (amplitude) 

representation with very good temporal and frequency resolution properties. 

The Hilbert-Huang transform is a combination of the empirical mode decomposition 

method, developed by Huang et al. (1998, 1999), and the Hilbert transform, Hilbert 

(1953), Hahn (1996), and it is actually an adaptive nonstationary data analysis tool, 

through which, one may obtain a very accurate time–frequency–energy (T-F-E) 

distribution with very good resolution properties. Such T-F-E distributions were 

presented above (spectrogram, scalogram, etc) however, with respect to time series 

analysis, their resolution properties can be often described as rather poor. 

The first part, the EMD method, is implemented in order to decompose the time series 

into a number of oscillating modes, the intrinsic mode functions (IMFs),  while in 

most of the times these modes correspond to actual physical components interacting 

with each other; Huang (1999) presents as a typical example, amongst other cases, the 

nonlinear water waves case where he clearly shows how distinct, almost orthogonal, 

physical scales are imbedded in the actual wave data (time series).  

These IMFs must satisfy the following requirements: 

• the number of extrema and the number of zero crossings must be equal or 

differ by one, 

• the mean value between the envelopes developed by the local maxima and 

local minima must be zero at any point in the whole data set.  

With the aid of the second requirement one avoids defining local averaging time 

scales while at the same time it is possible to obtain some symmetry on the wave 

forms necessary for the definition of a  meaningful instantaneous frequency as Huang 

(1998, 1999) and Cohen (1989, 1995) observe. In general, an IMF can be regarded as 

a single oscillation mode with modulated frequency and amplitude but with no riding 

waves, that would suggest the existence of another mode.  
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In specific, according to the EMD method the actual data time series is expanded into 

a sum of monocomponent signals, for the definition of monocomponent signals one 

may refer to Cohen (1995), where each of these components is a modulated – 

amplitude, modulated – phase oscillation mode, satisfying the requirements, set for 

the definition of the IMFs, or a residue component ( )res t
 
that can be a monotonic or 

a constant function appropriate for representing any kind of trend i.e., non zero mean, 

that may exist in the data.  

 

( ) ( ) ( )
1

n

k
k

x t res t IMF t
=

= +∑
    

 (1.5.1.1) 

 

where, both  ( ) ( )*2 ,
k

x IMF L k∧ ∈ ∈ℝ ℕ . 

The residue component seems artificial when observed separately from the other 

IMFs as such patterns, monotonic or constant, usually make no physical sense and can 

be explained as the residual error between the original signal and the sum of the IMFs. 

However, combining the residue component with the largest, or at least with one of 

the larger time scales, a physically justifiable mode may result, such as a tidal 

phenomenon.  

Having decomposed the signal time series into a finite, and sometimes quite small, 

number of intrinsic mode functions, through the sifting (EMD) process that will be 

presented in the following section and described in detail in the works of Huang et al 

(1998, 1999, 2004, 2005), we perform Hilbert transform upon these modes in order to 

estimate the instantaneous frequencies and amplitudes. 

Applying Hilbert transform analysis upon a signal or IMF, gives a complex-valued, 

analytic representation, 

 

 ( ) ( ) ( ){ } ( ) ( )
H k

j t

k k k ka
IMF t IMF t j IMF t A t e

θ  = + =      (1.5.1.2) 

 

 where, the instantaneous amplitude, phase and frequency are defined as  

 

( ) ( ) ( )( ) ( ){ }( )H
22

k k k ka
A t IMF t IMF t IMF t = = +           (1.5.1.3) 
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( ) ( )( )arg
k k a
t IMF tθ  =     ,     (1.5.1.4) 

 

( ) ( )
( ){ }
( )

H1 1
arctan

2 2

kk

I k

k

IMF td d
f t t

dt dt IMF t
θ

π π

   = = =    
 

( ) ( )
( ){ } ( ){ } ( )1 1

.
2

k k

k k

k

d IMF t d IMF t
IMF t IMF t

dt dtA tπ

   = −    

H
H

  

 (1.5.1.5) 

 

 

In consequence, the  analytical signal is defined as 

 

 ( ) ( ) ( ) ( ) ( ) ( )

1 1

k

n n
j t

a a k a k
a

k k

x t res t IMF t res t A t e
θ

= =

 = + = +  ∑ ∑ .   (1.5.1.6) 

 

and thus, the actual signal can be written as, 

 

( ) ( ){ } ( ){ } ( )

( ) ( ) ( )( )
1

1

Re Re Re

         cos

n

a a k a
k

n

k k
k

x t x t res t IMF t

res t A t tθ

=

=

    = = + =      

= +

∑

∑    

 (1.5.1.7) 

 

This is indeed a very interesting result as we have managed to express the original 

signal in terms of a sum of the analytic analogues of the intrinsic mode functions the 

signal consists of. The decomposition has significantly enhanced the information with 

respect to the signal as it now involves components with enhanced analytical 

properties.  

The phase variation, ( )k
tθ , corresponds to fast oscillating modes while the envelope 

function ( )k
A t

 
is usually a slowly-modulating term and in consequence, we use the 

concept of intra-wave frequency modulation to enhance the description of an IMF in 

terms of trigonometric functions. Through this definition, the IMF’s frequency, often 

gradual, variation corresponding to the small deformation of a harmonic wave–

profile, without the involvement of any dispersion phenomena (for the latter case we 

use the concept of inter-wave frequency modulation, see Huang, 1999), is described 

quite adequately. Note the example of the Hilbert transform where the signal, 

presented in Equation (1.4.1.7), may also be regarded as an IMF as the corresponding 

criteria are clearly satisfied. 
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1.5.2 Signal decomposition or sifting process 

1.5.2.1  Algorithm 

 

Next, we’ll describe in detail the algorithm through which we may achieve signal 

decomposition as this is precipitated by Huang’s empirical method: 

• Identify all local extrema, maxima and minima of a signal denoted by ( )s t  

(beginning of sifting process). 

• Connect local maxima via a spline (usually cubic) and create an upper 

envelope. 

•  Connect local minima via a spline (usually cubic) and create a lower 

envelope. 

• Calculate the envelope mean, denoted as ( )1
m t . 

• Calculate the difference (end of sifting process) ( ) ( ) ( )1 1
s t m t h t− = .  

• If the component ( )1
h t satisfies the IMF criteria i.e., all riding waves are 

eliminated, and the number of extrema and zero crossings differ by one point 

at the most, then we define ( )1
h t  as the first IMF,  ( ) ( )1 1

h t c t≡ .  

• If ( )1
h t does not satisfy the IMF criteria, then we repeat the sifting process 

treating ( )1
h t as the data.  Thus, we calculate through the local extrema of

( )1
h t , the upper and lower envelopes and their corresponding mean, ( ) ( )1 1

m t  

and calculate the difference ( ) ( ) ( ) ( ) ( )1 1 1 1 1
h t m t h t− = . Again, we check 

whether the term ( ) ( )1 1
h t  satisfies the IMF criteria, and if not we perform the 

sifting process treating each time the resulting components                             

( ) ( )1 1
h t , ( ) ( )1 2

h t ,…, ( ) ( )1 1k
h t

−
 as the data.  Assuming that after k  iterations we 

have obtained an oscillating mode satisfying the IMF criteria i.e.,   

( ) ( ) ( ) ( ) ( )11 1 1kk k
h t m t h t

−
− = , we designate it as ( ) ( ) ( )11 k

h t c t≡  , the first 

(highest frequency term) IMF component.  We note here, that if the sifting 

process is repeated several times, even if the IMF criteria are met, each of the 

components ( ) ( )1 1k
h t

+
, ( ) ( )1 2k
h t

+
,…, ( ) ( )1 k v

h t
+

 corresponds to a more 
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symmetric and smoother wave form while the last of these components are 

characterized by a modulated frequency but constant amplitude mode of 

oscillation. This is most of the times undesirable as the time-varying energy 

characteristics of the IMF are totally lost. Therefore, a stop sifting criterion 

was developed in order to obtain physically meaningful IMFs, i.e., 

( ) ( ) ( ) ( )( )
( ) ( )

2

1 1 1

2
0 1 1

,    for  sufficiently small
T

k k

t
k

h t h t
Crit

h t
ε ε

−

= −

−
= <∑ .                                                                            

Typical values for this criterion are set between 0.2 and 0.3, see Huang (1999).  

•   Next, we separate the first IMF component ( )1
c t  from the signal ( )s t , i.e., 

( ) ( ) ( )1 1
s t c t r t− = , where, in the component ( )1

r t  several low-frequency 

oscillation modes coexist. The time series ( )1
r t  is now treated as data and the 

sifting process is consequently performed upon it.  

• In a similar to the process described above, the resulting second IMF is 

denoted by ( )2
c t , while the remaining data to be decomposed is derived from 

the following difference: ( ) ( ) ( )1 2 2
r t c t r t− = . 

• Continuing, the process is repeated  i.e.,

( ) ( ) ( ) ( ) ( ) ( )2 3 3 1
, ...,

n n n
r t c t r t r t c t r t−− = − =                                                       

until the last term, say ( ) ( )n
r t res t≡  becomes a constant or a monotonous 

function, probably expressing a part of a very long period phenomenon that 

data length cannot encompass, or a component separated from a very long 

period terms due to the IMF criteria. 

• Finally, the signal time series is decomposed as follows:   

( ) ( ) ( ) ( ) ( )
1 1

n n

k k n
k k

s t IMF t res t c t r t
= =

= + = +∑ ∑ .    (1.5.2.1.1) 

For reasons of illustration, we present the first two iterations, performed on the entire 

actual sea wave data (focusing for presentation purposes on the first hundred (100) 

seconds from a time record of 2380.8 seconds with sampling frequency of four (4) 

Hz) in order to extract the first IMF, for which we actually need to perform up to at 

least thirty-four (34) iterations. Observe that the top plot of Figure (1.5.2.1.1) is the 

original signal , also presented in full in Figure (1.5.3.1), while during the next 
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iteration the data to be sifted, denoted as the candidate-IMF, is shown in the middle 

plot of Figure (1.5.2.1.2), for which the IMF-stopping criteria, stated above, are not 

satisfied.   

 

Figure 1.5.2.1.1.  In the top plot the original signal along with the corresponding upper and lower 

envelopes and the envelope mean are presented. The middle plot corresponds to the difference 

( ) ( ) ( ) ( ) ( )( )if  satisfies the  criteria
1 1 1 1

s t m t h t c t h t IMF− = =  while in the bottom plot the residue  

( ) ( ) ( )1 1
r t s t c t= −  is presented should the ( )1

h t  time series satisfied the IMF criteria.   

 

 

Figure 1.5.2.1.2. In the top plot the candidate-IMF is treated as the data instead of the original signal 

and is shown along with the corresponding upper and lower envelopes and the envelope mean. The 

middle plot again corresponds to the difference between the data (candidate-IMF) and the envelope 

mean i.e., ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )iff  satisfies the 
1 11 1 1 1 1 1
h t m t h t c t h t IMF criteria− = = −  while in the 

bottom plot the residue term ( ) ( ) ( )1 1
r t s t c t= −  is presented should the component ( ) ( )1 1

h t  time 

series satisfies the IMF–criteria .   
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- The Orthogonality Index 

The issue of orthogonality is addressed a posteriori and after all IMFs have been 

estimated through the sifting process described above. Orthogonality issues is not a 

prerequisite for the empirical mode decomposition but it can be considered as a 

derivative result.  

In order to investigate the orthogonal “nature” of the EMD method Huang (1999) 

proposed an orthogonality index defined as follows 

( ) ( )( )
( )

1 1

2
[ 0 ] 1 1,

n n
k j

t T k j j k

IMF t IMF t

s t

+ +

∈ = = ≠

 ⋅   =     
∑ ∑ ∑OI�    (1.5.2.1.1) 

 

where, 

( ) ( )
1

1

n

k
k

s t IMF t
+

=

= ∑
   

  (1.5.2.1.2) 

This index is based on the fact that the square of the signal, which was defined, by the 

means of in the EMD method and presented in Equation (1.5.1.1) and (1.5.2.1.2), 

contains cross-terms that ought to be zero, should this decomposition be orthogonal.  

To be more specific since the square of the signal is   

 

( ) ( )( ) ( ) ( )
1 1 1

2
2

1 1 1,

2
n n n

k k j
k k j j k

s t IMF t IMF t IMF t
+ + +

= = = ≠

= + ⋅∑ ∑ ∑
  

    (1.5.2.1.3) 

 

then, the corresponding cross terms must be zero as follows i.e., 

 

( ) ( )
1 1

[ 0 ] 1 1,

0
n n

k j
t T k j j k

IMF t IMF t
+ +

∈ = = ≠

⋅ =∑ ∑ ∑    (1.5.2.1.4) 

 However, the normalized orthogonality index ( )OI  is set by Huang as a rather 

“intuitive” norm, as it is definitely controversial to try and produce orthogonal 

nonlinear components. The IMFs include low and high frequency components that are 

not be described as harmonic distortions, as in the Fourier expansion, but are 

interpreted as intra-wave modulations. In addition, it is possible, but not very 

probable, that the EMD intrinsic modes may contain the same frequency content in 

different time intervals. This implies that orthogonality can be achieved only locally 

although and as it will be observed from the following case study a global 

orthogonality condition is also practically achieved.   
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1.5.2.2  On the stochastic structure and confidence limits of the Hilbert-Huang 

transform 

 

- Description of H-H transform by means of the random phase model 

In this section, an effort is made in order to derive a description of the Hilbert-Huang 

transform by the means of a stochastic model and deduce, if this is possible, any kind 

of information with respect to any probability patterns the EMD may exhibit during 

the mode extraction process. Issues such as stationarity or ergodicity could also be 

examined although it is clear that this is not an easy task. Note, that there is no need 

for the signal to be stationary
1
 in order to perform the Hilbert – Huang transform 

although this condition is actually a prerequisite for a Fourier analysis.   

Among various stochastic models, the one that has been used with quite success is the 

so-called “random phase model” or the Pierson and Longuet-Higgins model (see 

Pierson 1962, 1955 and Longuet-Higgins 1952). According to this model the 

stochastic process can be represented by a superposition of harmonics of deterministic 

amplitude and frequency but of random phase angles. To be more specific if ( )X t  

stands  for the random process then, 

 

 ( )( ; ) cos ( )
n n n

n

X t tβ ω ε β= Α +∑       (1.5.2.2.1) 

 

where, { }0,
n

nω > ∈ ℕ  and { }0,
n
A n> ∈ ℕ  correspond to deterministic 

sequences of real numbers while  { }( ),
n

nε β ∈ ℕ  is a sequence of independent 

random variables, uniformly distributed on the [0,2π) interval and β  is the stochastic 

argument. 

 

Having in mind that we have already managed to represent the input data by the 

means of the Hilbert-Huang transform as a superposition of amplitude-modulated,  

frequency modulated trigonometric functions, i.e.,  

 

                                                 
1
  In Appendix 1-A one may find introductory material on the fundamentals of the Stochastic 

Process Theory such as definitions for random   variable, random process, stationarity (in the 

strict- and wide- sense) and ergodic random process. 
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 ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

cos
n n

k k k
k k

x t IMF t res t A t t t res tω
= =

= + = +∑ ∑     (1.5.2.2.2) 

 

we may consequently associate, following Gu (2004), the expression presented above 

with the stochastic model presented in Equation (1.5.2.2.1) by inserting a random 

phase angle, also uniformly distributed on the [0,2π) interval, into the former 

expression while keeping deterministic both amplitude and  frequency parameters as 

follows: 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
1 1

; ; cos
n N

k k k k
k k

X t t res t A t t t res tβ β ω ε β
= =

= + = + +∑ ∑Imf  

   (1.5.2.2.3) 

 

In consequence, the corresponding mean, auto-covariance functions are: 

 

( )( ) ,
X

m t res t=       (1.5.2.2.4) 

 

( ) ( ) ( ) ( ) ( )( )
1

1
, cos

2

N

X X k k k k
k

C t s A t A s t t s sω ω
=

= ⋅ ⋅ − ⋅∑     (1.5.2.2.5) 

 

while variance becomes  

 

( ) ( )( )
2

1

1
,

2

N

X X k
k

C t t A t
=

= ∑  .    (1.5.2.2.6) 

 

 

- Derivation of a confidence limit for the HHT 

The nonlinear and nonstationary character of the processes that the Hilbert-Huang 

transform mainly addresses to, lead Huang (2003) to a novel technique in order to test 

the validity and accuracy of the EMD without having to invoke the ergodic 

assumption. According to this method, the sample set is generated by appointing each 

time different, than the ones described in Section 1.5.2.1, stopping criteria upon the 

intrinsic-mode extraction process (sifting process) and hence a number of nonlinear 

modes (not necessarily IMFs) sets is created.  

In addition, the orthogonality index criterion, presented above, is employed in order to 

deduce the values (range) of stopping criteria for which the decomposition manages to 

produce a set of nonlinear modes (IMFs) corresponding to acceptable orthogonality 

levels.  
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Thus, a set of modes (IMFs) corresponding to each time scale becomes available and 

hence a statistical analysis can be performed upon the generated ensembles rather than 

on a single set of IMFs.  

Two different stoppage criteria where proposed by Huang (1998, 2003), which 

despite being both quite similar to the ones presented in Section 1.5.2.1 they can lead 

to significantly different results. To be more specific the first stoppage criterion, is a 

Cauchy-type convergence, according to Huang et al (1998), criterion where the 

iterating sifting process seizes as soon as the difference between successive siftings 

becomes less than a preset limit, as follows 

( ) ( )
( )

2

( 1) ( )

2
[0, ] ( 1)

,    for  sufficiently small,

  2, ..., , 1, ...,

m k m k

t T m k

h t h t

h t

k N m M

−

∈ −

 −   <

= =

∑ E E

         

(1.5.2.2.7) 

where, ( )( )m k
h t  is the mode that corresponds to the thk   sift for the extraction of the 

thm time scale time series. These modes are usually not IMFs as the IMF criterion is 

not implemented at all in this case while only the difference between the successive 

sifting is examined.   

The second stoppage criterion corresponds to a number of successive siftings S

 

for 

which the number of extrema and zero crossings are equal or differ by one. This 

method is clearly an extension of the sifting process described in Section 1.5.2.1 as 

the IMF criterion is required to be satisfied but for a number of successive sifts. In 

addition to this criterion the orthogonal index, mentioned above, in conjunction with 

the mean and standard deviation values that correspond to each IMF are also 

implemented in order to derive the S  values for which a rather “well-separated” IMF 

set is obtained.  

According to Huang (2003), the optimum stoppage criteria corresponds to a value of    

3 5S≤ ≤ , although another critical issue needs to be dealt as well; the mode-

mixing or intermittence phenomenon, where modes from different scales coexist in 

the same IMF, may still be encountered even though a confidence limit based on the 

orthogonality index is derived. In order to overcome this obstacle an intermittence 

criterion, see Huang et al. (1999, 2003), is introduced according to which longer 

waves than the ones expected to be embedded in a specific time-scale are removed 

and replaced by intervals of equal length and of mean value.  
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Using the intermittence criterion alters however the adaptive character of the EMD 

while at the same time it is considered as a further reassessment, beyond the standard 

EMD procedure, of the results in order to obtain mode-mix free IMFs. 

An alternative way to build a valid IMF set can be conducted by the means of the 

Ensemble EMD (EEMD) method introduced below and analyzed and presented in full 

in Chapter 4. The EEMD method is the method that we have followed in order to 

obtain mode-mixing free IMFs and consequently inserted the corresponding IMF set 

into our system identification process. 

 

- Ensemble EMD 

 

The Ensemble EMD method, see Wu & Huang (2005, 2009) and Huang & Wu 

(2008), is a variant of the “standard” EMD method, as white Gaussian noise of finite 

amplitude is added to the targeted data, thus populating the entire time-frequency 

space in a uniform manner, and the resulting data is processed according to the 

“standard” EMD method presented in Section 1.5.2.1. The above procedure is 

repeated for, a preferably large, N number of times, each time with different white 

noise series  (but of same finite amplitude) and in this way an ensemble of N sample 

sets, for each IMF, is constructed. 

In consequence, the time-series that corresponds to each time-scale, say 

( ), 1, ...,
j
c t j n= (number of IMFs), is defined as the mean of the superposition, for 

each IMF, of the analogous ensemble set as follows: 

 

( ) ( )
1

1
lim

N

j jkN
k

c t c t
N→∞

=

= ∑      (1.5.2.2.8) 

where,  

( )jk j jk
c c r t= +      (1.5.2.2.9) 

 

corresponds to the  thj  IMF contaminated by the thk  white noise trial. 

According to this EEMD method, the mode-mixing is largely eliminated and the 

decomposition behaves in much more consisted, than before, manner, in the sense that 

the time-scales become more narrow band. The EEMD method is definitely a better 

alternative than the stoppage/intermittence criteria based confidence limit and thus it 

will be used in the proposed system identification scheme. 
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1.5.3  Case Study: Sea-waves time series 

 

Within the context of this section, EMD analysis will be performed on real sea wave 

data, presented in Figure (1.5.3.1), as well as a second order statistical analysis upon 

the latter and the resulting IMFs. In this way, we may observe how the energy of each 

IMF is distributed over a range of frequencies using, in a complementary way, Fourier 

spectral analysis, as well as how the initial, data, power spectral density is 

decomposed into a finite small number of IMF-power spectral density functions.  

Note that the sea wave elevation data corresponds to a single time record of 2380.8 

seconds with sampling frequency of 4  Hz.  

 

Figure 1.5.3.1.  Sea waves recorded time series 

 

Having performed the EMD method upon the wave time series we end up with ten 

(10) IMFs and a residual trend.  The first five IMFs, shown in Figure (1.5.3.2), can be 

easily considered as the most energetic ones while the last five IMFs, see Figure 

(1.5.3.3), contain almost insignificant wave content always with respect to the original 

wave record and the first five IMFs. The same holds true for the residual trend which 

is almost zero throughout the entire data span.   

A criterion tool of the ability of EMD to decompose a stationary or non stationary 

time series into a number of “well-separated” IMFs, presented in Section 1.5.2.1, is 

also employed for this data set, and the corresponding orthogonality index value is 

0.055, which according to Huang et al (2003) is assumed to be satisfactory.  
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Figure 1.5.3.2. Original signal and IMFs 1-5 

 

 
Figure 1.5.3.3. Original signal, IMFs 6-10 and Residual trend 

 

One may also observe Figure (1.5.3.4) where the IMFs are superimposed starting 

from the lower frequency and moving up in scales. Even though the empirical mode 

decomposition is a complete decomposition, in the sense that the superposition of all 

IMFs results to the exact representation of the original signal with error of magnitude 
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approximation of the signal 

( ) (c2f7 t res t IMF t IMF t s t= + << ≈

 
Figure 1.5.3.4. Signal reconstruction 

 

1.5.3.1  Level-crossing curves

 

Having performed the EMD

number of IMFs, we may come across 

the extraction of level-crossing curves for each 

crossing curves are obtained by measuring the number of upcrossings for a

number of levels, positive, negative and zero. The outcome is actually very 

enlightening since it outlines

between the IMFs and temporal scales

level is reduced with each 

In addition, we may also observe

variance for each IMF.  
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, the contribution of the last six IMFs is negligible with respect to the total 

approximation of the signal i.e.,   

( ) ( ) ( ) ( )
10 5

5 1
k k

k k

t res t IMF t IMF t s t
= =

= + << ≈∑ ∑
  

 

. Signal reconstruction – From Coarser (Low Frequency) to Finer (Higher Frequency) 

Scale 

crossing curves 

EMD upon the wave data and consequently extracted a finite 

we may come across some other interesting results 

crossing curves for each IMF.  To be more specific,

crossing curves are obtained by measuring the number of upcrossings for a

, positive, negative and zero. The outcome is actually very 

outlines, when looking at the zero level, a direct correspondence 

s and temporal scales as the number of upcrossings at this 

level is reduced with each IMF.  

observe the frequency of occurrence of the wave

Frequency Distributions 

s is negligible with respect to the total 

  (1.5.3.1) 

 

 

 

to Finer (Higher Frequency) 

upon the wave data and consequently extracted a finite 

 that arise from 

specific, the level-

crossing curves are obtained by measuring the number of upcrossings for a large 

, positive, negative and zero. The outcome is actually very 

, when looking at the zero level, a direct correspondence 

s the number of upcrossings at this zeroth 

frequency of occurrence of the wave amplitude 



Chapter 1.     An Introduction to the Concepts of Nonlinear Systems, System Identification and Time-Frequency Distributions 

with extensive analysis of the Hilbert – Huang transform 

 

[1~47] 
 

Therefore, both frequency and energy results can be obtained by means of the 

implementation of the level-crossing curves even before spectral analysis or the 

concepts of instantaneous frequency and amplitude are implemented. 

 

  

Figure 1.5.3.1.1.  Level-crossing curves 

 

 

1.5.3.2   Estimation of Instantaneous Frequencies and Amplitudes 

 

Next , the estimation of the instantaneous frequencies and amplitudes for each IMF is 

performed according to the analysis presented above. The results may be observed 

from Figures (1.5.3.2.1 a, b) and (1.5.3.2.2 a, b), respectively.  

It is clear at this point, that each IMF corresponds to a different time scale while there 

is almost no overlapping between instantaneous frequencies. Having estimated the 

number of upcrossings at the zero mean level, through the level–crossing curves, for 

every IMF,  the corresponding mean frequency can be also estimated and compared 

with the, time-averaged value of each instantaneous frequency time series, presented 

in  Equation (1.5.3.2.1), again for each IMF. 
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( ) ( ),

0

1
T

t T
IF t IF t dt

T
< > = ∫

    

 (1.5.3.2.1) 

 

The corresponding comparison graphs can be observed from Figures (1.5.3.2.3a, b). 

 

 

Figure 1.5.3.2.1.  Instantaneous frequency plots for a) IMFs (1-5) and b) IMFs (6-10) and Residual 

  
Figure 1.5.3.2.2 Instantaneous amplitude plots for a) IMFs (1-5) and b) IMFs (6-10) and Residual 

a) 

b) 

a) 

b) 
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Figure 1.5.3.2.3a. Plot of the mean frequency of upcrossings and the mean IFs for every IMF. 

 

 

Figure 1.5.3.2.3b. . Plot (log–scaled)  of the mean frequency of upcrossings and the mean IFs 

for every IMF. 

 

Consequently, one may conclude that the IFs and specifically their temporal mean 

seem to be consisted with the frequency of upcrossings, even for nonlinear data where 

safe results cannot be easily extracted unless other time-frequency distributions are 

appropriately implemented. 

 

As far as the instantaneous amplitudes, or energies, are concerned again it is evident 

that the  IMFs 2-4  are shown to be the most energetic modes, a result that can be also 

observed from Figures (1.5.3.2–4). More about the IMFs’ energy characteristics is 

presented in the following sections. 
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1.5.3.3  Power spectral density functions and spectral characteristics of the IMFs 

 

Within the context of this section, the corresponding spectral density functions of 

each IMF and the wave data time series are estimated in order to obtain more 

information about the way the EMD separates a nonlinear signal, such as the one 

obtained from a sea waves recording floating buoy, in terms of various spectral 

components and parameters, such as the spectral moments ( )0 1 2 3 4
, , , ,m m m m m , the 

significant wave height ( )sH , the peak ( )pω  
and mean ( )ω frequencies and the 

spectral bandwidth parameters ( ),ε ν ; an excellent textbook where these quantities 

are  defined and described in detail can be found in the work of Athanasoulis  (1997) 

where a consisted stochastic analysis of sea waves and spectral parameters among 

others is performed. 

A similar effort to connect wave spectra with the Hilbert – Huang transform is made 

in the work of Veltcheva and Guedes Soares (2004), where again the intrinsic modes 

of the EMD are examined with respect to their  spectral, in the Fourier sense, 

characteristics.  In this way we’ll be able to deduce coherent results with respect to the 

characteristics of the decomposition, such as the orthogonality property, and the 

derivative products of the Hilbert transform, such as the IF and IA. 

 

Stationarity and ergodicity issues for a specific input data case: Sea wave data 

Having derived in Section 1.5.2.2 the expressions for the ensemble mean and auto-

correlation functions, we may also derive the temporal mean and auto-covariance 

functions for the sea-wave data input case described above. Thus, in consistence to 

the stochastic definition of the signal presented in Section 1.5.2.2, the temporal mean 

can be observed from Equation (1.5.3.3.1). 

 

( ) ( ) ( ) ( )( ) ( ), , ,
1

; cos
N

t T k k k t T t T
k

X t A t t t res tβ ω ε β
=

< > = < + > + < > ⇒∑
 

( ) ( ), ,
;

t T t T
X t res tβ< > =< >      (1.5.3.3.1)

  

For the specific input data it was derived that ( ) ( ) ,
0 0

t T
res t res t≈ ⇒ < > ≈ .  

 

 

Thus, the corresponding auto-correlation function becomes
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( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

,

,
1 1

; ;

cos cos

t T

N N

k k k l l l t T
l k

X t X s

A t t t A s s s

β β

ω ε β ω ε β
= =

< > =

= < + + >∑ ∑  

 (1.5.3.3.2) 

 

It can be said at this point that the stochastic processes ( );X t β  and ( );
k
t βImf are 

stationary and ergodic in the mean, however the stationarity and ergodic assumptions 

in terms of the auto-covariance functions, cannot be confirmed yet. 

An interesting remark that should be noted here, is that if the number (n) of IMFs 

become quite large, the IMF functions tend to lose any kind of amplitude-modulation 

characteristic, but of still of modulating frequency. 

In addition, and regardless of the number of IMFs,  it can also be said that should the 

EMD or (EEMD) manages to separate the input data into a number of mode-mixing 

free time scales one could argue that the frequency content that corresponds to each 

time scale can be described as a small perturbation ( )p t  around a specific 
k
ω

frequency as follows  

     ( ) ( ), ( )
k k k
t p t p tω ω ω= + << .  (1.5.3.3.3a) 

 

In conjunction with the assumption that a large number of IMFs is extracted, so that 

the resulting modes are of constant amplitude and quite narrow band, the (temporal) 

autocovariance function, for T →∞ , becomes  

 

( ) ( ) ( ),
1

1
; ; cos ( , )

2

N

t k k xx
k

X t X s A R t sβ β ω τ
∞

=

< > ≈ ≈∑  (1.5.3.3.3b) 

 

 

Thus, the corresponding stochastic processes can be regarded to be a second order, 

weakly stationary processes, as well as ergodic since the ensemble and temporal mean 

and auto-covariance functions are equal and very close to each other, respectively.   

 

 

Thus, it is cannot be far from the truth to assume that for a relatively small number of 

IMFs both, sea wave data and IMFs, correspond to weakly stationary, ergodic random 
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processes and thus we are allowed to use a single, large, observation sample instead of 

an ensemble of observations.  

From another perspective, for the statistical properties of nonlinear water waves we 

may refer to a number of works such as the ones made by Ochi (1998) or Bendat and 

Piersol (1986), that clearly state that sea waves’ time series can be considered as 

stationary, at least in the weak sense, ergodic random process.  

Therefore, with the weak stationarity assumption of the measured data time series 

taken as granted we can extend this result, at least, to the most energetic IMFs since, 

according to Huang (1998), at most of the times they represent physically-meaningful 

oceanic time scales. However, besides this assumption, the IMF–criteria strictly 

dictate the zero-mean requirement for each IMF thus leading, a priori, to a stationarity 

in the mean.  

In consequence, it is safe to assume that for the specific recorded data we are 

permitted to perform Fourier spectral analysis upon any one of the IMF - time series 

mentioned above.  

As far as nonstationary processes are concerned, more advanced stochastic models 

and concepts must be employed although one can alternatively calculate the marginal 

spectrum, instead of the Fourier one, expressed in Equation (1.5.3.3.4) and shown in 

Figures (1.5.3.3.2) and (1.5.3.3.3) 

 

( ) ( )
0

, .
T

h H t dtω ω= ∫         (1.5.3.3.4) 

 

This spectral representation may be considered as an analogue of the Fourier spectrum 

since it also represents a cumulative, in time, energy, or amplitude, contribution per 

frequency (bin/component) throughout the entire time span although it differs 

significantly from it (Fourier spectrum) in terms of definition and the way it 

distributes energy over the frequency line.   

In what follows, we estimate for every IMF as well as for the recorded time series, the 

auto-correlation functions i.e., ( ), 1 : 10
k k

IMF IMF
R kτ = and ( )xx

R τ , where  

( ) ( ) ( )1
lim , for 1 : 10

2k k

T

IMF IMF k kT
T

R IMF t IMF t dt k
T

τ τ
→∞

−

= + =∫  
 (1.5.3.3.5) 
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( ) ( ) ( )1
lim ,

2

T

xx T
T

R x t x t dt
T

τ τ
→∞

−

= +∫   
  (1.5.3.3.6) 

 

Subsequently we compute  the analogous power spectral density (p.s.d.) functions or 

spectrums i.e., ( ), 1 : 10
k

IMF
S kω =

 
and ( )xx

S ω
 
respectively, by the means of the 

Wiener-Khintchine theorem which states that for a weakly–stationary random process 

the auto-correlation and psd  functions constitute a Fourier transform pair, i.e., 

 

( ) ( ) ( ) ( )F F
1

k k k k k k k k
IMF IMF IMF IMF IMF IMF IMF IMF
S R R Sω τ τ ω−   = ⇔ =      

  (1.5.3.3.7) 

 

 

( ) ( ) ( ) ( )1

xx xx xx xx
S R R Sω τ τ ω−   = ⇔ =      F F

   
 (1.5.3.3.8) 

 

 

The spectrums of each IMF i.e., ( ), 1 : 10
k

IMF
S kω = , the sum of these spectrums 

i.e., ( )
10

1
k

IMF
k

S ω
=
∑ , as well as the spectrum of the sea waves recorded data ( )xx

S ω
 
are 

superimposed for reasons of illustration and comparison and can observed from 

Figure (1.5.3.3.1). 

 

Figure 1.5.3.3.1. Spectrum plots for all IMFs, their corresponding sum and the original sea waves time 

series. 

Besides the power spectral densities, the marginal spectrums, in linear and log scales, 

are also plotted in Figures (1.5.3.3.2) and (1.5.3.3.3), respectively.  These results 
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exhibit a resemblance to the corresponding spectrums plotted in Figure (1.5.3.3.1) 

since they both show that the IMFs 2, 3, 4 are the most energetic modes, while their 

peak frequencies almost coincide. In this way we also verify, in an alternative and 

“global” manner, that this marginal spectrum provides a valid estimate of the way 

energy content is distributed on the frequency space.       

 

Figure1.5.3.3.2. Marginal Spectrum plots for a) IMFs (1-5) and b) IMFs (6-10). 

 

 
                  Figure1.5.3.3.3.  Marginal Spectrum plots (log scaled) plots for a) IMFs (1-5) and b) IMFs 

(6-10). 
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Next, we estimate the spectral moments ( )0 1 2 3 4
, , , ,m m m m m and the spectral width 

parameters ε (Cartwright and Longuet-Higgins, 1956) and v (Longuet-Higgins, 1975), 

according to Equations (1.5.3.3.9), (1.5.3.3.10) and (1.5.3.311) respectively.  

The corresponding values may be observed from Table (1.5.3.3.1), 

( )
0

j

j
m S dω ω ω

∞

= ∫               
     (1.5.3.3.9) 

 

2

2

0 4

1
m

m m
ε = −

    
 (1.5.3.3.10) 

 

2 0

2

1

1
m m

v
m

= − .
    

 (1.5.3.3.11) 

 
# IMF 

0
m  

1
m  

2
m  

3
m  

4
m  ε  v  

        

1 0.0075078 0.023567 0.10816 0.68107 5.3573 0.84211 0.67975 

2 0.079295 0.11808 0.20971 0.44188 1.1456 0.71823 0.43883 

3 0.083033 0.080088 0.093559 0.13087 0.26506 0.77606 0.45954      

4 0.03876 0.022184 0.016432 0.016231 0.035465 0.89643 0.54241 

5 0.0051552 0.0018648 0.001044 0.001143 0.0048492 0.97796 0.74000 

6 0.0010652 0.00026492 0.00011758 0.00015718 0.00091051 0.99285 0.88571 

7 0.00041719 9.321e-005 3.9418e-005 6.3733e-005 0.0004192 0.99555 0.94488 

8 0.00016966 3.6281e-005 1.3194e-005 1.0389e-005 3.3622e-005 0.98462 0.83699 

9 0.00018232 3.8935e-005 1.4889e-005 1.7514e-005 9.4735e-005 0.99356 0.88920 

10 0.00014838 3.1618e-005 1.2041e-005 1.3965e-005 7.469e-005 0.99344 0.88719 

Table 1.5.3.3.1.  Spectral moments ( )0 1 2 3 4
, , , ,m m m m m  and spectral bandwidth                                              

parameters v  and  ε  for each IMF. 

 

Through the spectral width parameters ε and v, we may verify whether any of the 

IMFs are actually infinitely narrow, finitely – narrow, non - narrow or even wide band 

processes as well as define in a more exact way the significant wave height ( )sH  as 

specified by Ochi (1998). According to Ochi the significant wave height is actually 

depended on the bandwidth parameter ε, as shown in Figure (1.5.3.3.4). Therefore, 

one now may read-off the ratio 
0

/
s

H m c
ε

=  for each specific ε, calculate the 

significant wave height ( )0 0
4 ,

s
H c m m

ε
= ≠  and then plot it against its 

corresponding peak frequency ( )pω  for each IMF as it can be seen from Figure 

(1.5.3.3.5). 
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             Figure1.5.3.3.4. Significant Wave height ( )sH as a function of spectral bandwidth parameter ε . 

 

 

Figure 1.5.3.3.5. Significant Wave Height  ( )sH  against peak frequency( )pω  

 

From the values of the bandwidth parameters ε and v  listed in Table (1.5.3.3.1), one 

may deduce that except for the second and third IMFs which can be characterized as 

non-narrow band processes all the other IMFs seem to belong to the corresponding 

wide-band class. In addition, the marginal spectrums in Figures (1.5.3.3.2) and 

(1.5.3.3.3) tend to verify the broadness of the energy leakage in various frequencies, 

also present in the power spectral density plot in Figure (1.5.3.3.1). 
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However, the temporal localization of the frequency enables us to have a closer look 

at the way the frequencies behave on the time-frequency plane.  

To be more exact it seems that the bandwidth seems to be relatively large although the 

frequency modulation is quite small for the most of the signal’s duration. However, 

several mode-mixing phenomena could result to the increase of the signal’s 

bandwidth by alternating the spectral “global” properties of a larger piece, of narrow 

or finitely narrow bandwidth of the signal.  

With all of these in mind, an analytic comparison of some useful spectral 

characteristics of the IMFs would be quite beneficiary and informative, as far as the 

employment of the Hilbert – Huang transform on sea waves, whether stationary or 

non stationary processes is concerned.  

In addition, a further implementation of these characteristics into the proposed system 

identification approach, described and explained in Chapter 4, is proved to be 

decisive to the accuracy of the method. 

Therefore,  we proceed by calculating the mean circular frequency ( )ω  according to 

Equation (1.5.3.3.12), and then plot it along with the analogous peak frequency ( )pω , 

that is read-off from Figure (1.5.3.3.1), and the temporal average of instantaneous 

frequency  ( ) ,t T
IF t< >  defined in Equation (1.5.3.2.1). 

 Note that both ω  and 
p
ω  have been divided by a factor of 2π in order to get ( )f and 

( )pf  
respectively i.e., with units of Hz instead of radians/second.  

 

 

( )

( )
0 1

0

0

2

S d
m

f
m

S d

ω ω ω
ω

ω
π

ω ω

∞

∞
= = ⇒ =
∫

∫
.    (1.5.3.3.12) 

 

Observing Figure (1.5.3.3.6) below, we may deduce that the corresponding peak 

frequencies are not very close to each other, whilst at the same time there is a 

discrepancy between the  time–averaged instantaneous frequency and both peak and 

mean frequencies especially for the first two IMFs. This can be also confirmed by 

Figure (1.5.3.3.7) where the difference percentage is plotted. As we are only 

interested in the IMFs with significant energy content we’ll focus our attention only 
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on the first five scales, even if IMFs  2, 3 and 4 are the most energetic ones, and as a 

test case we’ll investigate the most ambiguous mode, i.e., the 1
st
 IMF.   

 

Figure 1.5.3.3.6 . Plots of the mean frequency( )f , peak frequency ( )pf
 
and the

 

                 
temporal average of instantaneous frequency ( ) ,t T

IF t< > . 

 

 

                           Figure1.5.3.3.7.  Plots of the percentage differences 
( )
( )

,

,

100
t T

t T

IF t f
x

IF t

 < > −      < >  
(blue),       

                                               and  
( )
( )

,

,

100
t T p

t T

IF t f
x

IF t

 < > −     < >  
 (red).  
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- On the investigation of the 1
st
 IMF’s mode-mixing phenomena 

In the case of the first IMF, the difference between the mean IF, ( )( ),t T
IF t< > , and 

mean frequency ( )f
 
is approximately

 
 50%, while the analogous difference with the 

peak frequency ( )pf  
reaches 80%.  

First, we estimate the standard deviation for each IF, at least for the first three IMFs, 

and produce the analogous plots i.e., of the IFs, their mean and their standard 

deviation  

 

Figure1.5.3.3.8.    IFs, IFs’ mean and standard deviation of the first three IMFs 

 

Observing the 1
st
 IMF’s instantaneous frequency, as well as the latter’s mean estimate 

and standard deviation, one may deduce that a small percentage of the IFs are 

scattered in ranges far greater than one standard deviation. In consequence, we are 

going to investigate the causes of the divergences mentioned above in the 

corresponding spectrum and spectral characteristics i.e., peak frequency( )pf , mean 

frequency ( )f  and significant wave height ( )sH  
in conjunction with the IMF’s time 

series.  

From Figure (1.5.3.3.1) where the spectrums of all IMFs are plotted, note that the 

distribution of energy over a relatively wide range of frequencies validates the IF plot. 

Nevertheless, the discrepancies observed between IF and the mean or peak 

frequencies can be clarified and interpreted by observing Figures (1.5.3.3.9) and 
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(1.5.3.3.10), where the time series of instantaneous amplitude and instantaneous 

frequency (scaled by a factor of 0.1 for comparison purposes) are plotted together.  

In  these plots a substantial drop in instantaneous frequency with a simultaneous rise 

in wave amplitude is observed due to the fact that wave packets of significant energy 

content are detected. The drop in frequency is of minor importance as far as the 

estimation of the mean IF is concerned, but when combined with considerable energy 

fluctuations as it happens in the 1
st
 IMF’s case, a considerable mean, circular or peak, 

frequency shift occurs.  

This phenomenon is usually interpreted as a mixing of modes that correspond to much 

different time scales and in order to demonstrate this phenomenon better, specific 

time intervals, such as the ones presented in Figures (1.5.3.3.11-14), were selected.   

Through these plots, this mixing-mode phenomenon, presented briefly in Section 

1.5.2.2 and extensively in this section and Chapter 4, can be clearly observed in these 

figures, while for further information and for ways to overcome this problem one may 

as well as check Wu and Huang (1998, 2003, 2004, 2005, 2008, 2009).  

 
Figure 1.5.3.3.9. Time series of instantaneous amplitude and instantaneous frequency (scaled by a 

factor of 0.1). 
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Figure 1.5.3.3.10.  Time series of instantaneous amplitude and instantaneous frequency (scaled by a 

factor of 0.1) with marking of the most significant wave packets. 

 

 

Figure 1.5.3.3.11.  Selected time interval (500 – 800 sec) of the time series of instantaneous  amplitude  

and instantaneous frequency  (scaled by a factor of 0.1) in  order to  outline the presence of the wave 

packets. 
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Figure 1.5.3.3.12.  Selected time interval (500 – 800 sec)  of the time series of instantaneous  amplitude 

and instantaneous frequency (scaled by a factor of 0.1)  with marking  of the most significant wave 

packets 

 

1.5.3.4   Filtering issues with respect to the EMD 

It is evident that the Empirical Mode Decomposition can separate a signal into a 

number of (intrinsic) modes with distinct instantaneous frequency ranges or time 

scales.  As it can be observed from Figures (1.5.3.3.8), (1.5.3.4.1), (1.5.3.4.2) and 

(1.5.3.4.3), where we plot along with the values of each IF  its corresponding mean IF 

( )( ),t T
IF t< >

 
and standard deviation ( )( )( )sd IF t , the IMFs’ frequency ranges

( )IF
FR , as these are defined below  

 

( ) ( ) ( )( ) ( ) ( )( ), ,
,

t T t TIF
IF t sd IF t IF t sd IF t = < > − < > +  

FR    (1.5.3.4.1) 

 

do not overlap with each other, while all IFs  present minor overlapping as well. 
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Figure 1.5.3.4.1. IFs, IFs’ mean and standard deviation of the IMFs 3, 4, 5. 

 

 

Figure1.5.3.4.2. IFs, IFs’ mean and standard deviation of the IMFs 5, 6, 7. 

 

Figure 1.5.3.4.3. IFs, IFs’ mean and standard deviation of the IMFs 7, 8, 9. 

 

Next, we show that the EMD corresponds to an equivalent bank of band – pass filters 

with distinct center and cut-off frequencies and exhibiting almost no overlapping. We 
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note that the band-pass filter bank characteristics are not pre-specified but always 

adapted to the time-series under decomposition.  Thus, all IMFs have different mean 

IFs with the latter being at a satisfactory distance from each other. Thus, in 

conjunction with the corresponding standard deviations we managed to construct a 

frequency range ( )( )FR
IF

 that exhibits almost no overlapping except in the case of 

IMFs 6 and 7, which however are of minimum importance with respect to the 

reconstruction of the signal, as it can be observed from Figure (1.5.3.4).  Thus, the 

characteristics of the EMD-equivalent (band-pass) filter bank are presented in Table 

(1.5.3.4.1), while the corresponding filters, with gain one, can be observed from 

Figures (1.5.3.4.4)   and  (1.5.3.4.5). 

 
Figure 1.5.3.4.4. EMD equivalent band-pass filters based on the mean and std values of the IFs 

(IMFs 1:5) 

 

Figure1.5.3.4.5. EMD equivalent band-pass filters based on the mean and std values of the IFs  

(IMFs 6:10) 
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# IMF 

Center 

Frequency 

( )( ),t T
IF t< >  

Standard 

Deviation 

( )( )sd IF t    

Negative Cut-off Frequency 

( ) ( )( ),t T
IF t sd IF t< > −  

Positive Cut-off Frequency 

( ) ( )( ),t T
IF t sd IF t< > +  

1 1.0507000 0.31629000 0.69101000 1.32360000 

2 0.3360500 0.08578100 0.25027000 0.42183000 

3 0.1725400 0.04178700 0.13076000 0.21433000 

4 0.0934000 0.02213000 0.07127000 0.11553000 

5 0.0500830 0.01531000 0.03477400 0.06539300 

6 0.0254240 0.00946880 0.01595500 0.03489300 

7 0.0126400 0.00429110 0.00834910 0.01693100 

8 0.0058684 0.00146830 0.00440010 0.00733670 

9 0.0029300 0.000605920 0.00232410 0.00353590 

10 0.0012094 0.000816230 0.00039318 0.00202560 

Residual 0.00037592 9.7972e-005 0.00027795 0.00047389 

Table 1.5.3.4.1. EMD equivalent Filter Bank characteristics 

 

Finally, we present in Figures (1.5.3.4.6 & 7) the Hilbert spectrum of the empirical 

mode decomposition and the analogous plot for the first five (1–5) IMFs.   

 

Figure 1.5.3.4.6. Hilbert spectrum for the entire wave data (all IMFs). 
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Figure 1.5.3.4.7.  Hilbert spectrum for the wave data (first five IMFs (1:5)). 

 

1.5.4   Discussion 

 

The EMD method can actually separate the signal into a finite number of modes with 

minimum overlapping as far as their bandwidth is concerned while at the same time 

their energy distribution seems consisted with the power spectral density of the initial 

time series as it can be observed from Figure (1.5.3.3.1).  In addition, the estimation 

of the instantaneous frequency and amplitudes by the means of the Hilbert transform 

shows to be in agreement with the analogous spectral characteristics that were 

extracted for each IMF, while at the same time it manages to detect the presence and 

characteristics of (mode-mixing) wave packets. The ability of the EMD method to 

separate a signal into a finite and small number of modes is of the upmost importance 

since it manages to discriminate the lower energy high frequency components, noise 

included, from larger time scales without significant energy leakage, as far as the 

most energetic modes are concerned. Furthermore, the Hilbert – Huang spectrum 

exhibits enhanced resolution properties in comparison with other time – frequency 

techniques. However, there are simple cases where it just cannot separate two plain 

harmonic components with small integer frequency ratio since the concept of intra-

wave modulation is dominating in the nature of this decomposition. An example of 

this behavior is presented by Huang et al (1998), where an analysis is made with 

respect to the Stokian waves and its derived inherent oscillatory modes and 

Schlurmann (2002) where detailed analysis with respect to the frequency and 

amplitude properties of the harmonic modes that compose a periodic signal is made.     
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Appendix 1-A 

An introduction to the Fundamentals of the Stochastic 

Process Theory 

 

For the sake of clarification and illustration of the stochastic quantities of stationarity 

and ergodicity for random processes, that are used within the context of this thesis, we 

made an introductory appendix with the aid of the works of Athanasoulis (1997) and 

Ochi (1998). Thus, we begin with a definition of a random process and then we 

proceed with the definition of the stationarity (in the strict- and wide- sense) property. 

 

Definition 1:  Given a probability space( ), , Pr  Ω ℑ ⋅  
, an index set T  and a 

(topological) spaceX we denote as a generalized random variable X:Χ Ω → , every 

family ( ){ }T�, , ,t t ωΧ ⋅ ∈ ∈ Ω  of ordinary random variables ( ),ωΧ ⋅ , that is defined 

on the probability space  ( ), , Pr  Ω ℑ ⋅  
.  Now, if the index set T ⊆ ℝ then we may 

state that the random variable ( );t ωΧ  represents a continuous time random process. 

□  

 

In other words the random process ( );t βΧ  is defined as a function of two arguments, 

time and sample space, where for t fixed it is reduced to a random variable.   

We now proceed with the definition of strict- and wide-sense stationarity.  

 

Definition 2:  A random process ( );t βΧ  is stationary, in the strict sense, if all the 

families of the cumulative density functions remain invariant under any time shift i.e. 

Tτ∀ ∈ ,  n∀ ∈ ℕ , and ( ) T1 2
, , ,

n
t t t∀ ∈…  the following holds true 

( ) ( )
1 2 1 2
, , , 1 2 , , , 1 2

, , , , , ,
n n

t t t n t t t n
F x x x F x x x

τ τ τ+ + +
=

… …
… … .      □  

          

The stationarity condition stated above is very severe and only a few cases can be 

found to satisfy it. Thus, a more relaxed condition is usually proposed for steady state 

random processes, that of the wide-sense stationarity stated below: 
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Definition 3:  A random process ( );t βΧ  is stationary, in the wide sense, if :  

• it is a second order stochastic process i.e. ( )
2

;E t
β

β
 
Χ < ∞ 
  

, 

• the mean value is not time dependent i.e. ( )
X X
m t m= , 

• the autocovariance function depends on the time lag τ only, i.e. 

( ) ( )
XX XX
C t Cτ τ+ = .  

                                                                                                                                      □  

Finally, we give the definition for an ergodic s.p. in order to conclude this 

introductory section with regard to some fundamentals of the stochastic processes 

theory. 

 

Definition  4:  A  s.p. ( );t βΧ  is said to be an ergodic process if all statistical 

properties of the ensemble, a set of r.v. consisting of n sample/records taken 

simultaneously at a specified time t,  are equal to those of a single, sufficiently long, 

record . Restricting the statistical properties on the mean and the covariance, then the 

s.p. is said to be a weakly ergodic r.p. 
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Chapter 2     

Fundamental and Advanced Systemic Concepts and 

Topics With Respect to the Approximation of a Wide 

Class of Nonlinear Dynamic Operators 

  

2.1 Introduction  

 

Within the context of this chapter we shall deal with the analysis of approximating 

structures of causal and non causal I/O maps with scalar and vector valued inputs. At 

this point connection to any time-frequency analysis related issues or to specific 

dynamical systems is avoided as this would probably be out of scope while on the 

other hand the complexity of the analysis would increase significantly. This study 

aims mainly at outlining and clarifying the theoretical background and context within 

which contemporary efficient and convergent alternative functional approximations of 

nonlinear dynamic operators may be based upon.  

In addition, a comprehensive state of the art review of relative works is prepared so 

that the transition between the realization of the approximating structure and its 

mathematical foundations may be smooth and complete. 

Central issues are, among others, causal as well as non causal systems which are 

extensively investigated while corresponding theorems are derived for scalar and 

vector valued inputs and outputs as well.  

Another major topic that is extensively outlined and investigated is the approximation 

of nonlinear dynamical operators through functional (infinite or truncated) power 

series and with respect to the effect the system’s response at the not so remote past 

has upon its corresponding present one. In consequence, the burden is transferred to 

the linear integral kernels which are responsible for inserting the dynamic part in the  

systemic representation. 

Dynamic systems are directly related throughout the literature to the term memory 

and more specific to the very “sensitive” nature of the actual energy transfer 

mechanism taking place between past and present time steps.  
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Some of the main concepts that were extensively investigated and discussed are the 

concepts of fading memory and myopic mapping, the latter when it comes to non 

causal systems. With the aid of such concepts, major benefits may be gained such as 

the lift of the compactness criterion for the input space, or the ability to construct 

convergent truncated functional (Volterra) series, through “flexible” adaptive 

systemic schemes.  

In order to obtain an I/O map representation of a nonlinear dynamical system there are 

many issues to be addressed, each however to be dealt and confronted with different 

analytical tools.  

An alternative functional representation that is able to approximate efficiently the 

behavioral aspects of the state variables of a dynamical system needs to be 

constructed very carefully while by no means these efforts can be regarded as generic 

since the main problem lies with the individualistic, nonlinear nature of the dynamical 

system under investigation. 

In addition, the rational justification that is needed to provide sound theoretical or 

methodological guidelines in order to back up/support an efficient empirical or semi-

empirical approach is usually developed upon various, and usually  slight, adaptations 

of monumental works and theorems while quite less effort is made in order construct 

new and more enhanced guidelines.  

The field of nonlinear dynamical systems approximation/identification may be in turn 

decomposed in various sub-areas with regards to: 

• the theoretical justification for using a specific systemic scheme,  

• the study of the nonlinear behavior of the state variables with respect to a 

variety of actual system parameters, or the frequency–amplitude/energy 

correlations, in general, that may arise from frequency detuning near 

fundamental or not resonances either for steady state or non steady conditions, 

• the memory properties of the system and how one may use and formulate 

them appropriately in terms of systemic and functional characteristics, 

respectively, 

• the development of functional components and systemic structures in order to 

be consistent with all of the above. 
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2.2 Representation of a linear time-varying system through a time invariant 

systemic realization 

 

At this point we present a theorem (Schetzen, 1981, Bendat, 1990) that provides us 

with a very important insight concerning the basic structure of linear time–varying 

systems, and its relation to quadratic time–invariant systems. 

 Various extensions to multi-linear time varying systems can also be made but since 

this chapter and thesis aims at a different direction, we’ll have to postpone this line of 

work for another time slot and research opportunity. Although the following theorem 

does not constitute a generic basis upon which an approximating structure of 

nonlinear dynamical systems may be built upon, it is however, a very illustrative one 

with respect to the way a time varying (linear) structure may be reformulated in terms 

of higher-order  time-invariant (constant parameter) one. 

 

Theorem [Schetzen, 1981]: 

Any linear time-varying system can be synthesized by means of a time–invariant 

quadratic system. The latter is a physically realizable system iff the former is 

physically realizable. 

Proof :  First assume that ( )y t is the output of a linear time varying system i.e.,  

 

( ) ( ) ( ),y t h t x t dτ τ τ= −∫ ,          (2.2.1) 

 

where the time–varying  kernel ( ),h t τ  is assumed known.  

For the same input ( )x t  consider the quadratic system 

 ( ) ( ) ( ) ( )2 2
,y t h x t x t d dτ β β τ β τ= − −∫ ∫ ,            (2.2.2) 

where, ( )2
,h τ β  is the corresponding quadratic kernel. 

For ( )y t  to be equal to ( )2
y t the following equation must hold true 

( ) ( ) ( )2
, ,h t h x t dτ τ β β β= −∫ .     (2.2.3) 

 

Note that  ( )2
, 0h τ β =  for  0, 0τ β< <   iff  ( ), 0h t τ =  for  0τ < ,  i.e., the 

bilinear system will be physically realizable iff the time–varying  system is physically 

realizable as well. 

Next, let ( ),g τΗ  be the Fourier transform of ( ),h t τ  with respect to t , i.e.,
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( ) ( ){ } ( ) 2, , , j gt

t g
g F h t h t e dtπτ τ τ −

→
Η = = =∫   

              ( ) ( ) 2

2
,

j g t
h x t d e dt

π
τ β β β

−= − =∫ ∫  

              ( ) ( )

( )

( )2 2

2
,

j g t j g

g

x t e dt h e d
π β π ββ τ β β

− − −

Χ

= − =∫ ∫�������������������������
 

( ) ( ) 2

2
,

j g
X g h e d

π β
τ β β

−= ∫ .               (2.2.4) 

 

 

Let now ( ),J f g  be the Fourier transform of ( ),gτΗ  with respect to τ ,  i.e., 

( ) ( ){ } ( )

( ) ( )

( ) ( ) ( )

2

2 2

2

2

2

, , ,

         ,

         ,

j f

f

j g j f

j g f

J f g F g g e d

g h e d e d

g h e d d

πτ

τ

π β πτ

π β τ

τ τ τ

τ β β τ

τ β β τ

−

→

− −

− +

= Η = Η =

= Χ =

= Χ =

∫

∫ ∫

∫ ∫

   

( ) ( )2
,g H f g= Χ      (2.2.5) 

 

where the frequency response function ( ),J f g  is the double Fourier transform of 

( ),h t τ  ,  i.e., ( ) ( ){ }, ,
f

t g

J f g F h t
τ

τ
→
→

= . 

If the function  ( ),h t τ  is known, as it was initially assumed, one may construct 

( )2
,h τ β  simply by taking the double inverse Fourier of the following quantity   

 

          ( ) ( ) ( )2
, , /H f g J f g g= Χ .     (2.2.6) 

 

while on the other hand if ( )2
,h τ β  or ( )2

,H f g  is obtained through a system 

identification procedure one may easily compute ( ),J f g again through Equation 

(2.6.6)            à 
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2.3   Basic Classes of analytic systems 

2.3.1 Expressing analytic mappings in terms of symbolic integrals  

 

The following theorem states that for the quite general (infinite-dimensional) linear 

topological spaces E, F,  the terms of a Taylor series of an analytic mapping S  

:S E F→ :=
1  

i
n

S x K x
∞

=

= ∑     (2.3.1.1) 

can be written in terms of a symbolic integral and 
i

K  may be represented by an 

integral kernel (
1
) . 

 

Theorem [Palm 1978]:  

Let E  be a topological vector space and �  be a dense subset  of E  while by � 
*
 we 

denote the corresponding dual space of � . Let also F be a topological vector space 

contained in � 
*
.  Consequently, the usual topology in �  is finer than the topology 

induced by E, and the topology of F is finer than the topology induced by � 
*
 on F.  

Consider now :
n

K E F→   a bounded homogeneous polynomial functional of 

degree-n, i.e., *n
K

E F⊇ → ⊆� � . Then, for every x E∈ , 
n

K x  can be written 

in term of a symbolic integral with 
n
k ∈� ( )1n+ℝ . 

 

( )( ) ( ) ( ) ( )1 1 1
... , ..., , ... ...

n n n n n
K x t k t x x d dτ τ τ τ τ τ= ∫ ∫   (2.3.1.2) 

à 
 

The proof can be found in the works of Palm (1978) and Gkikas (2007).  

The investigation of the topological properties of some basic subclasses, stated and 

defined in the next sections, of analytic systems can lead to good number of useful 

theoretical and practical results since their corresponding systemic representation can 

be expressed in terms of polynomial operators of the Volterra type 

 

 ( )( ) ( ) ( ) ( )0 1 1 1
1  

... , ..., , ... ...
k

n n n n
n

S u t h h t u t u t d dτ τ τ τ τ τ
=∞

=

= + − −∑ ∫ ∫ ,     (2.3.1.3) 

                                                 

(
1
) The variable x may belong either at an input space such as an ( )pL ℝ  with  1 p≤ < ∞ , space or 

just the Banach space �o of all continuous functions :x →ℝ ℝ that vanish at infinity. 
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2.3.2 Some specific classes of analytic systems [Palm 1978] 

 

The four major (sub) classes of analytic systems are: 

A) The class of  polynomial systems     (�) 

B) The class of  separable-kernel polynomial systems   (�) 

C) The class of  sandwich systems     (�1) 

D) The class of multiplicative systems    (�2) 

 

A)   The class of polynomial systems  � 

The class of polynomial systems � corresponds to a truncated Volterra series 

functional representation (finite k–terms)  as it can be observed by Equation (2.3.2.1)  

 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )0 1 1 1
1  

... , ..., , ... ...
k

n

n n n
n

S u t h t h t u t u t d dτ τ τ τ τ τ
=

= + − −∑ ∫ ∫�
  

 (2.3.2.1) 

 

B)    The class of separable–kernel polynomial systems   � 

The class of separable–kernel polynomial systems � consists of all polynomial 

systems where the integral kernels of Equation (2.3.2.1) may be expressed in terms of  

separable functions i.e., 

 
( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 1 1 2 2
, ..., , ...

n n n n

n n n
h t g g gτ τ τ τ τ= .   (2.3.2.2) 

 

 

and the corresponding system’s response may be given by Equation (2.3.2.3) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

0 1 1 1 1
1  

... ... ... ...
N

n n

n n n n
n

S u t h t g g u t u t d dτ τ τ τ τ τ
=

  = + − −   ∑ ∫ ∫�
 

    (2.3.2.3) 
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As an example (Top-Down example) we consider a non-homogeneous quadratic 

separable kernel system as follows: 

 

( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

(1)

0 1 1 1 12

(2) (2)

1 1 2 2 1 1 1 2
                       

S u t h t g u t d

g g u t u t d d

τ τ τ

τ τ τ τ τ τ

  = + − +  
+ − − ⇒
∫
∫ ∫

�
 

( )( ) ( ) ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )

(1)

0 1 1 1 12

(2) (2)

1 1 1 1 2 2 1 2
                       

S u t h t g u t d

g u t d g u t d

τ τ τ

τ τ τ τ τ τ

  = + − +  
+ − − ⇒

∫
∫ ∫

�
 

 

( )( ) ( ) ( ) ( ) ( ) ( )(1) (2) (2)

0 1 1 22
S u t h t u t u t u t       = + + ⋅              �

L  L  L  .       (2.3.2.4) 

 

In the special case where ( ) ( ) ( )(2) (2) (1)

1 2
g g gτ τ τ= =  the representation presented in 

Equation (2.3.2.4) becomes  

( )( ) ( ) ( ) ( ) ( )( )
2

(1) (1)

0 12
S u t h t u t u t     = + +          �

L  L      (2.3.2.5) 

 

On the other hand (Bottom-Up example), for an n
th
 order homogeneous system such 

as the one presented in Figure (2.3.2.1), the response of the total system may be 

observed from Equation (2.3.2.6) that follows: 

( )( ) ( ) ( )1 1 1 1
( )

n
n

y t x t g u t dσ σ σ
∞

−∞

 = = − =  ∫      

       ( ) ( ) ( ) ( )1 1 1
...

n n n
g u t d g u t dσ σ σ σ σ σ

∞ ∞

−∞ −∞

     = − ⋅ ⋅ − ⇒       ∫ ∫     

( ) ( ) ( ) ( )1 1 1
( ) ... ... ...

n n n
y t g g u t u t d dσ σ σ σ σ σ

∞ ∞

−∞ −∞
= ⋅ − −∫ ∫   (2.3.2.6) 

 

For n = 2 (quadratic case) the response of the total system may be observed from 

Equation (2.3.2.7) 

 

( ) ( )
2

1 1
( )y t g u tσ σ

∞

−∞

 = −   ∫ ( ) ( ) ( ) ( )1 2 1 2 1 2
g g u t u t d dσ σ σ σ σ σ

∞ ∞

−∞ −∞
= − −∫ ∫      

(2.3.2.7) 

 

and thus the quadratic Volterra kernel is a product of the two kernels as shown in 

Equation (2.3.2.8)  that follows  

 
( ) ( )2

1 2
,h σ σ ( ) ( )1 2

g gσ σ= .    (2.3.2.8) 
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Note that the quadratic kernel 
( ) ( )2

1 2
,h σ σ of the system presented in Figure (2.3.2.1) 

corresponds to the special case where ( ) ( ) ( )(2) (2)

1 2
g g gτ τ τ= =  while the output 

( )1
x t  of the linear system 

( )1
L   is the input for the quadratic function (squarer) e.g. 

2

1
( ) ( ( ))y t x t= .  

Note also that if 
1

( ) ( )
N

y t x t =   � , where  ( ) ( ) ( ){ }1 2

...
N

N
= + + +�    , 

results to the functional representation, presented in Equation (2.3.2.3), for the up to 

�
th
 order separable–kernel (as well as sandwich systems, see Equation 2.3.2.9) 

polynomial systems.  For �=2, the corresponding response matches the one presented 

in Equation (2.3.2.5). 

 

Figure 2.3.2.1.  Linear filter with a memoryless n
th
 order homogeneous system in cascade 

 

C)     The class of sandwich systems �1 

The class of sandwich systems �1 corresponds to more perplex structures since it is 

generated by the following rules 

C1.  All linear systems belong to  �1. 

C2.  If S belongs to �1 and :f →ℝ ℝ  is a polynomial function, then  

 

( ) ( )( ):T x f S x= ∈�1.    (2.3.2.9)  

 

C3.   If ,λ µ ∈ ℝ  or ( )ℂ  S and T belong to �1   then T Sλ µ+ ∈  �1 and T S ∈� �1 

i.e., 

 ( ) :T S x T y=� .     (2.3.2.10) 

 

Next, a nonlinear system compliant with the property C3 will be presented as the 

other properties are more or less dealt above. This system is a cascade of a nonlinear 

(dynamic) system i.e., the homogeneous n
th
 order system presented in Figure 

(2.3.2.1), with a linear one, as it is presented in Figure (2.3.2.2). We will show that 
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this kind of systems belongs to the class of sandwich systems, at least with respect to 

the C3 property.  

 

Figure 2.3.2.2. Nonlinear–Linear  systems in cascade 

 

To be more exact the corresponding response for n = 2 may be given by the following 

relation                                        

                                                                                                                                                                                                                   

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1

1 2

1 2

1 1 2 1 2 1 2

1 2

1 1 2 1 2 1 2

( )

   ,

   ,

y t g x t d

g h u t u t d d d

g h u t u t d d d

σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

∞

−∞
∞ ∞ ∞

−∞ −∞ −∞
∞ ∞ ∞

−∞ −∞ −∞

= − =

= − − − − =

= − − − −

∫
∫ ∫ ∫
∫ ∫ ∫

  

      (2.3.2.11) 

 

where, the integral kernel corresponding to the linear system is 
( ) ( )1

1
g t  while the 

kernel corresponding to the quadratic system is given by Equation (2.3.2.8).  

Changing variables as follows, 

 
1 1 2 2

,σ σ τ σ σ τ+ = + = ⇒  
1 1 2 2

,σ τ σ σ τ σ= − = − ,  (2.3.2.12) 

results in Equation (2.3.2.13) 

 

( ) ( ) ( ) ( ) ( ) ( )1 2

1 1 2 1 2 1 2
( ) ,y t g h u t u t d d dσ τ σ τ σ τ τ τ τ σ

∞ ∞ ∞

−∞ −∞ −∞
= − − − −∫ ∫ ∫         

(2.3.2.13) 

 

One now may observe that the kernel of the (total) system G is actually a convolution, 

or a synthesis, between the kernels of the two systems i.e.,  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1

1 2

1 2 1 1 2

( , ) ,

( , ) ,

g t t g t h t t

g g h dτ τ σ τ σ τ σ σ
∞

−∞

= ∗ ⇒

= − −∫
   (2.3.2.14) 

 

and therefore the system’s response is 

 

( ) ( ) ( )1 2 1 2 1 2
( ) ,y t g u t u t d dτ τ τ τ τ τ

∞ ∞

−∞ −∞
= − −∫ ∫                        (2.3.2.15) 
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D)  The class of multiplicative systems �2 

The class of multiplicative systems �2 is generated by the following rules 

D1.  All linear systems belong to �2. 

D2.   If S and T  belong to �2 , then T S+ ∈�2 and S T⋅ ∈�2  i.e.,  

( )( ) ( ) ( ):S T x S x T x= ⋅ .                         (2.3.2.16) 

 

2.3.3 Systems’ class equivalence 

 

The following theorem is quite enlightening results since the approximation strength 

of each subclass is compared with respect to the analogous strength of the rest of the 

subclasses.  

 

Theorem [Palm 1978]: 

�1=�2 =�⊆�     (2.3.3.1) 

 

Proof:   �2 =� is obvious since the definition of the � class is based upon the 

multiplicative properties of the �
2
 class.  For example Equation (2.3.2.3) represents a 

bilinear system with separable kernels.  

Now the result  �2⊆�1  can be extracted from the fact that an n-linear separable 

kernel polynomial system may be reconstructed by various sandwich system forms.  

For example we illustrate the following basic relation for a second order system 

excited by a two component input as shown in Equation (2.3.3.2). Each of the 

components in the r.h.s. of this equation may be realized by a similar to Figure 

(2.3.2.1) arrangement. Thus, one may use similar arguments in order to derive all 

sorts of equivalent structures for any multiplicative system.  

 

( )( ) ( )( ) ( ) ( ) ( ) ( )
2 2 2

2 Hx t Gx t Hx t Gx t Hx t Gx t     ⋅ = + − −              (2.3.3.2) 

 

where,   

 

( )( ) ( )( ) ( ) ( ) ( ) ( )1 2 1 2 1 2
Gx t Hx t h g x t x t d dτ τ τ τ τ τ

∞ ∞

−∞ −∞
⋅ = − −∫ ∫         (2.3.3.3) 
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Obviously, any �1   system, which can also be linear, belongs to the class of separable 

kernel polynomial systems i.e., �1 ⊆  � As an example we state that if the variables 

of a polynomial function :f →ℝ ℝ  are elements of the class �  i.e., ( )S x ∈�, one 

may easily conclude that the response  

 

 ( ) ( )( ) ( )( )
0

:
n i

i
i

T x f S x a S x
=

= = ∈∑ � .    (2.3.3.4) 

 

 Finally, if 
0 0

,
n n

i i
i i

S K T L
= =

= = ∈∑ ∑ �  i.e., 
i

K  is a separable i–linear operator 

and
j
L  is a separable j–linear operator, then   

 

( ) ( )
0 0 0 0

n m n m

i j i j
i j i j

S T K L x K L x
= = = =

      = =        
∑ ∑ ∑∑� � ∈�     (2.3.3.5) 

 

since 
i j

K L�  is a separable ( ),i j linear−  kernel. 

Thus,    

 � = �2  ⊆   �1 ⊆  �⊆  �              (2.3.3.6) 

à 
 

Then, we proceed by presenting the conditions under which the closures ,� �  

coincide, by stating the following theorems (for proofs see Palm, 1978). 

 

2.3.4 Comparison of different strengths of approximations (different 

topologies) 

 

Next, the pointwise and uniform approximation will be subsequently defined while 

two equivalence and one non equivalence conditions that exist between the closures 

of polynomial and separable-kernel systems will be outlined and discussed 
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• Pointwise Approximation 

Let �  be a quite general (infinite-dimensional) linear topological space, M  be a 

“Sub”–family  such that { }: :M= → ℝ�M and S  be  a  “Universal”–family  such 

that { }: :S= → ℝ�S . Mapping M will be said a weak–approximation [or an ε–

pointwise approximant] of mapping S, iff  

 

 ( ) ( )
1 2

0 , ,..., ,n

n n

x x x t a b

Sx t Mx t
ε

ε
 > ∈ ∈   

− <∧ ∧ ∧
�

    (2.3.4.1) 

 

Note that this type of approximation corresponds to the case where the number of 

input functions is finite i.e., 
1 2
, , ...,

n
x x x ∈ � . 

 

The next theorem is presented in order to deduce that the closures of the separable 

kernel polynomial systems and the polynomial systems coincide for all the real valued 

mappings defined on a compact subset of the Banach space of continuous functions 

( )C → ℝ�  or on a ( )pL → ℝ�  space with 1 p≤ < ∞ .   

 

Theorem.  [Palm, 1978]: 

Let F  be a closed bounded subset of ( )C → ℝ�   or ( )pL → ℝ�  space with 

1 p≤ < ∞ .   Then = = ℝ�� � , where ℝ�  is the set of all mappings :S → ℝ� .  

à 

• Uniform Approximation 

Let   �  be a quite general (infinite-dimensional) linear topological space, M  be  a    

“Sub”–family  such that { }: :M= → ℝ�M and S be  a “Universal”–family  such 

that { }: :S= → ℝ�S . Mapping M will be said a strong–approximation [or an ε–

uniform approximant] of mapping S, iff  

 

 ( ) ( )
0 ,x t a b

Sx t Mx t
ε

ε
 > ∀ ∈ ∈   

− <∧ ∧ ∧
�

    (2.3.4.2) 

 

This type of approximation corresponds to the case where the number of input 

functions (points) is infinite i.e., x∀ ∈ � .  Here, the closures ,� �  do not coincide.  



Chapter 2.                                Fundamental and Advanced Systemic Concepts and Topics  

With Respect to the Approximation of a Wide Class of Nonlinear Dynamic Operators 

 
[2~13]

Theorem [Palm, 1978]: 

Let �  be a Banach space and let �  be a closed bounded subset of an 

( ); 1pL p→ ≤ < ∞ℝ�  space.   

Then =� � , where �  is the set of all weakly continuous functional onE . 
à 

 

For the finite dimensional (pointwise) case and since this topology is separable, i.e., it 

contains an algebraic structure (or algebra (
2
) ) that separates functions, one may 

deduce that the topological space (
3
)  ( ), σ�,  = �  according to the             Stone -

Weierstrass theorem.  Therefore, as the closure � coincides with the set of all weakly 

continuous functionals �  defined on a compact subset of an 

( ); 1pL p→ ≤ < ∞ℝ�  space it is consistent to state that for the infinite 

dimensional case �  is much smaller than � . This result is also stated in the next 

theorem, where the restriction with respect to the ( ); 2pL p→ ≤ < ∞ℝ�  space is 

specified.  

 

Theorem [Palm, 1978]: 

We always have ⊆� � .  For the infinite dimensional case, if �  is a closed bounded 

subset of an ( ); 2pL p→ ≤ < ∞ℝ�  space; then ≠� � . 

à 

These results clearly show that the polynomial operators of the Volterra type, may be 

realized by various subsystems especially for the finite dimensional (pointwise 

approximation) case where the closures of the classes of the polynomial 

approximation systems and its aforementioned (sub)classes coincide. It ought to be 

noted that, according to Prenter (1970), for a very small and compact input subset �  

of a suitable Banach space the requirements of the Stone- Weierstrass theorem are 

completely fulfilled while the following holds true: 

= =� �  the set of all norm-continuous functionals defined on � . 

                                                 

(
2
)We define as algebra a linear space A of functions in ( )C X , the set of all continuous functions on a 

compact Hausdorff  space X,  equipped with a collection of operations (unary, binary,…n–ary) on A  

i.e. for the n–ary case one may consider the following function : ...
n

f A A A A× × →����������� .  

(
3
) �  is a Banach space and 

*
� is the corresponding  dual space and ( )*,σ �,�  is the weak topology 

on� .  
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2.4   Approximation of nonlinear operators: Scalar–valued, continuous, causal,   

fading-memory systems 

2.4.1 Introduction 

 

The approximation of nonlinear operators by a polynomial system of the Volterra type 

is heavily relied upon the memory property of the actual dynamical system. To be 

more exact it is of great importance to know at a first level the significance of the 

effect a past input has on the present or future outputs.  

 The initial approximating theorems were constructed in such a way that convergence 

is made within a small neighborhood of the input space and as far as this limitation is 

concerned quite a few suggestions are made within the context of this chapter in order 

to circumvent this obstacle.  

Note that in the case where we have long memory processes we need to follow 

different approximation schemes than the ones that correspond to the short memory 

process. 

Reformulation by restatement of the properties of the approximation scheme through 

appropriate analysis seems to be sufficient without having to change to a great extend 

the original version of the essential approximation theorems. For reasons of 

illustration we give the following example:  

As we are allowed to use integral kernels in a polynomial or sandwich Volterra type 

systems as long as they are distributions this enhances our ability to construct 

convergent schemes per case. 

Surely each scheme may have specific or distinct limitations as well but as we will 

see in the subsequent chapters and sections, with the aid of the analytical tools 

provided below, these difficulties are continuously alleviated.  

One of the tools that significantly aids towards this direction is the fading-memory 

concept/property. Through this concept we are allowed to provide enhanced integral 

kernels with respect to any of its arguments, such as variables or parameters like time, 

frequency or energy, since we deal with physical dynamical systems. 

However, this property has not been fully exploited since it is still used in a rather 

elementary manner as far as current modeling is concerned. 

In consequence, some of the more important works that managed to overcome various 

basic difficulties for more complex and more demanding requirements, such as 

discontinuous inputs or vector-valued instead of scalar inputs, are provided in order to 
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formulate a solid basis for future alternative structure theorems and systemic 

realizations. 

The theorems that follow or precede this section are presented in order to outline the 

necessary properties of a systemic formulation, expressed via a functional series 

whose main elements are either generalized functions, such as an integral kernel, or 

coefficients, such that the choice of the (systemic) parameters is consisted with these 

theorems while on the other hand these parameters may be derived in an efficient 

manner through appropriate, as shown in the next chapters, system identification 

techniques.  This “strategy” is definitely consistent with the time–frequency system 

representations with the aid of which we may end up with a quite complete systemic 

scheme. 

 

2.4.2 Fundamental approximation theorems 

 

We will begin by referring to the classical Stone-Weierstrass theorem as well as to the 

Arzela–Ascoli  theorem without their proofs (see Mukherjea & Pothoven, 1978) but 

with various interesting corollaries in order to obtain a good insight with respect to the 

problem of approximating continuous functions.  

Both theorems are monumental contributions to the analysis not only because they are 

significant analytic tools for various proofs in important approximation theorems but 

also as they are two of the major cornerstones upon which the approximation theory 

of functions was built upon. 

 

Stone–Weierstrass Theorem [Mukherjea & Pothoven, 1978]: 

Let X be a compact topological space and A an algebra (or subalgebra) 
(4)
 contained 

in ( )C X 5
 that separates points of X and contains the constant functions; then 

A = ( )C X  i.e., A is dense in the Banach algebra ( )C X .  

          ∎ 

A more relative to our scope version of this classical theorem follows.  

 

                                                 
(
4
) For definition see Section 2.3.4. 

(
5
) ( )C X  denotes for  the set of continuous real-valued functions on X . It coincides with ( )b

C X , the 

space of bounded continuous real-valued functions, when  X  is compact 
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Stone–Weierstrass Theorem [Boyd, 1985]: 

Let E be a compact metric space and �  a set of continuous functionals on E which 

separates points. Let F be any continuous functional on E and 0ε > . Then there exist 

M ∈ ℕ  elements 
1 2
, , ...

M
G G G ∈ � and a polynomial : Mp →ℝ ℝ  such that  for  all 

u E∈  

( )1 2
, , ...

M
Fu p G u G u G u ε− ≤ . 

              ∎ 

Corollary 1 [Real–Valued Continuous Functions]: 

Any real-valued continuous function on a compact subset mE ⊂ ℝ  is the uniform 

limit of a sequence of polynomials (in the m coordinates) on E. 

                                                                                             ∎     

Theorem [Mukherjea & Pothoven, 1978] :  

(Corresponding to the complex-valued functions’ case) 

Let A be an algebra, subset of ( )C
C Χ , the complex-valued continuous functions on 

a compact space X,  such that  

(i) A  contains the constant functions 

(ii) A  separates points of X 

(ii) A A
*f f∈ ⇒ ∈ . 

Then, the closure of A  coincides with ( )C
C Χ , that is ( )A

C
C X= . 

           à 

 

Corollary 2 [Periodic Real–Valued Functions]: 

Let f  be a periodic, real-valued function on ℝ  with period 2π, 

i.e., ( ) ( )2f x f x π= +  for all x ∈ Χ . Then, given any 0ε > , there exists a positive 

integer � and constants ,
n n
bα ,  0,1, 2,...,n N=  such that  

( ) ( )
0

cos sin
N

n n
n

f x a nx b nx ε
=

− + <∑ .                 (2.4.2.1) 

           à 
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Arzela–Ascoli Theorem [Mukherjea & Pothoven, 1978]:  

Let X  be a compact Hausdorff space and Y a complete metric space and  ( ),C X Y  

the set of all continuous maps from X to Y, equipped with the metric 

( ) ( ) ( )( ), sup ,
x X

d f g d f x g x
∈

= . Then, a subset F of ( ),C X Y  has compact closure 

iff F is equicontinuous on X and for each x X∈ the set ( ){ }F:f x f ∈  has a 

compact closure in Y. 

           à 

 

2.4.3  Limitations of the fundamental approximation theorems 

 

At this point it is useful to see an approximation theorem by Rugh (1982), and analyze 

its potential with respect to its very restrictive domains of definition & properties.    

 

Theorem [Rugh, 1982]: 

 Let K be a compact subset of 2 0,L T     and suppose N : 0,K C T →     is a time-

invariant (
6
) (TI), causal (

7
), continuous (

8
) operator. Then, for any 0ε >  there is a 

Volterra series operator Nˆ  such that  for all u K∈ and 0 t T≤ ≤  

 

( ) ( )N Nˆu t u t ε− ≤      (2.4.3.1) 

           à 

 

Now let us show in detail the basic limitations of this theorem. 

First, the input signals as well as the approximation itself are defined upon the finite 

time interval 0,V T =    , while the approximation is additionally restricted to a 

compact subset of the ( )2L V  input space. To be more exact, the main deficiency lies 

mainly with the definition of continuity of a nonlinear operator N  with respect to 

                                                 

(
6
)
 
An operator N  is time-invariant (TI) if N N   for all U U

τ τ
τ= ∈ ℝ .  

(
7 
)An operator N  is causal if ( ) ( )u t tυ=  for t τ≤  implies  ( ) ( )N Nu t tυ= . 

(
8
) An operator ( )N

2: 0, 0,L T C T →      is continuous   iff ( )0 0 such thatε δ ε∀ > ∃ >  

( )21 2 0,L T
u u δ ε

   
− < ⇒  N N

1 2 0,C T
u u ε

   
− < . 
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which  the effects of the remote past remain unsolved and not considered explicitly. 

As a counterexample one may consider the case where past inputs have severe effects 

upon a present output, i.e., strong and long or infinite memory processes (e.g. peak-

hold operator); in this case this continuity definition is suitable although it doesn’t 

hold true for the class of dynamical systems we are concerned with.  

In addition, the compact subset K as well as the finite time interval are evidently 

tailored to correspond to the requirements of Stone-Weierstrass theorem, thus 

showing that little progress has been made so far. 

These drawbacks may be surmounted by stating a crucial, with respect to the memory 

characteristics of the operator, i.e., the fading-memory property, which may hold true 

for  a wide class of physically realizable and really interesting nonlinear systems. 

Inserting the latter with the appropriate functional form and justification into the 

corresponding original theorems we end up with more “relaxed” approximation 

results and schemes defined upon non-compact input sets and for infinite time 

intervals. The input (function) space may be scalar or vector-valued (this case will be 

examined in detail in the following sections of this chapter).   

 

�otations and Definitions 

Let I  be an interval of real numbers, possibly unbounded and ( )b
C I  be the space of 

bounded continuous functions, with the usual norm ( )sup
t

u u t
∈

≜
D

(
9
).   

The mapping ( )D:
b

f C → ℝ  is called functionals, while the mapping 

( ) ( ):
b b

F C C→D D  is  called operators.  

The τ –delay operator U
τ
, is defined in the following relation 

( )( ) ( )U u t u t
τ

τ−≜ .     (2.4.3.2) 

For reasons of illustration we consider the case where we define a function in terms of 

another whose arguments are shifted back in time i.e., ( ) ( )( ) ( )k
v t U u t u t k= = − . 

As a result of this we get a forward shift of the new function with respect to the old 

one as it can be observed from Figure (2.4.3.1). 

                                                 

(
9
) Note that unless stated otherwise,  sup , t

∞
⋅ = ⋅ ⋅ ∈≜ D . 
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u  ( t ) u  ( t  -  k )uU
k
  ( t )  =      v  ( t ) =

u  ( t )

k

 

Figure 2.4.3.1.  Demonstrating the τ –delay operator property 
  

 

Some functional representations on scalar-valued functions 

 

Let ( )_
b

u C∈ ℝ  where  ( ) ( )
( )

,       0

0 ,       0e

u t t
u t

u t

 ≤ >
≜                                         (2.4.3.3) 

which can be interpreted as an extension of u from ( )_
b

C ℝ  to  ( )b
C ℝ . 

We may now relate a TI causal operator N  to an operator F on ( )_
b

C ℝ  as follows  

                        ( )N 0
e

F u u≜ (
10
)      

 or 

( )N
t

FPU u u t
−

=      (2.4.3.4) 

where,  the operator ( ) ( ): _
b b

P C C→ℝ ℝ  maps an element ( )b
u C∈ ℝ  to an 

element of ( )_
b

C ℝ  and  

( ) ( )  for 0Pu t u t t= ≤ .    (2.4.3.5) 

In this way this functional representation acts as a link between the ( )_
b

C ℝ  (past) 

and the ( )b
C ℝ (present).  In order to clarify the use of the above operators we display 

in Figure (2.4.3.2) the result of the P  operator /projection onto the time-shifted         

( t−  delayed or t advanced), extension of u (as defined in Equation 2.4.3.3)  i.e., 

t e
PU u−  . 

                                                 
(
10
) Often the parentheses around the arguments of functionals and operators are dropped i.e.  

( )F u F u=  and ( ) ( )( )u t u t=N N . 
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u ( s )

t

t

t

t

0 0

u ( s )
0

0 0

0

0

0

0

0

0

u ( s )
t

0 0

u ( s )
t

0 0

u ( s )
0

0 0

u ( s )
0

0 0

 

Figure 2.4.3.2. Display of the resulting effect of the 
t

PU
−
operator /projection onto ( )e

u t ,  

as  function ( )u t  evolves. 

 

 

2.4.4 Definition of Fading-Memory (FM)  

 

Before the definition of the fading-memory is given, we state again the conditions 

under which continuity and causality hold for a nonlinear operator. 

 

Definition: 

Let that for each 0ε >   and for each ( )b
u C∈ ℝ  there exists a ( ), 0uδ δ ε= >  such 

that the following relation holds true:  

( ) ( ) ( ) ( )N N
0

sup 0 0
t

u t t uυ δ υ ε
≤

− < → − < .    (2.4.4.1) 

Then the time–invariant operator N  is said to be causal and continuous.  

       ö 

 

Next, the Fading-Memory  (FM) of an operator (Boyd, 1985) is defined as follows 

Definition [Boyd 1985]:  

The nonlinear operator N  has w–Fading-Memory (FM) on a subset K of ( )b
C ℝ  if 

there is a decreasing function (: 0,1w
+

→ ℝ : ( )lim 0
t

w t
→∞

= , such that for each u 

∈ K  and ε > 0 there is a ( ), 0uδ δ ε= >   where for all Kυ ∈  the following holds 

true: 
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( ) ( ) ( ) ( ) ( ) ( )( )
0

sup
w t

u u t t w t u t t w tυ υ υ δ
≤

 − − − = − − <  ≜   

( ) ( )N N0 0u υ ε⇒ − <       (2.4.4.2) 

           ö 

The weighting function w, according to which we define the FM property of the 

operator N  may be realized as an exponentially decaying function i.e., 

( ) t
w t e

λ−= .  Other types of fading-memory factors may also be used. 

Note the following important result; with ( ) 1w t ≤ , an operator with FM is still 

continuous while one may also state that FM strengthens continuity.  

Resuming we may say thatN  has FM on K if and only if it is continuous with 

respect to the weighted norm { } 
 

   on  .
w

PK Pu u K⋅ ∈≜  

 

2.4.5  Approximation & Volterra series 

 

 Let us now proceed with a very fundamental, with respect to our work, theorem 

which proves that certain scalar, single-variable, causal, fading-memory systems 

may be approximated by a finite Volterra series. Note that the operatorN  presented 

in Equation (2.4.4.2) could be a nonlinear ODE or a nonlinear PDE. This is interesting 

since these nonlinear operators may be now alternatively represented by a sequence of 

polynomial Volterra series type according to the Corollary–1,  

• for non-compact subsets of the input space  

• for  all  t∈ℝ , and not just in some finite interval [0,T]). 

  

Theorem 1 [Boyd 1985]: 

Let  ε > 0 and ( ){ }1 2
, ( ) ( ) for 0

b
K u C u M U u t u t M

τ
τ τ∈ ≤ − ≤ ≥≜ ℝ  

     (2.4.5.1) 

 or 

 ( ) ( ) ( ) ( ) ( ){ }1 2
,  for 0

b
K u C u t M u s u t M s t s t= ∈ ≤ − ≤ − − ≥ℝ (

11
)  

(2.4.5.1’) 

 

                                                 

(
11
)  In this way K can be described as those signals bounded by M1, and having Lipschitz constant M2, 

that is, slew limited by M2. 
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Suppose thatN  is any TI operator with w − fading-memory on K. Then, there is a 

finite Volterra series operator N̂  such that for all u K∈  the following relation holds 

true 

ˆN u N u ε− ≤      (2.4.5.2) 

 

Proof: Suppose K is given by Equation (2.4.5.1)  and N  is a w −  fading-memory 

operator on K and let F be the functional associated withN  according to Equation 

(2.4.3.4).  Also let,  

 

( ) ( ) ( ) ( ) ( )1 2
_ { _ ,   for 0}

b
K u C u t M u s u t M s t t s= ∈ ≤ − ≤ − ≤ ≤ℝ .   

   (2.4.5.3) 

 

Step 1 / Lemma 1:  Show that _K   is compact with the weighted norm    
w

⋅  on 

( )_
b

C ℝ  as defined in Equation (2.4.4.2). 

According to the definition of compactness, in order to prove Lemma 1, we need to 

show that for any sequence , 1, 2,...
n
u n =   in _K  there is a  

0
_u K∈ such that a 

subsequence of { }nu  converges to 
0
u in the   

w
⋅  norm.  

1.  We have defined above the function space ( )_ _ _K K≡ℝ . 

Let also,  _ , 0K n −    be the function space whose input functions are restricted from 

( )_
b

C ℝ  to , 0
b

C n −   , that is  

( ) ( ) ( ) ( )1 2
, 0 ,

_ , 0
for 0

b
u C n u t M u s u t M s t

K n
n t s

   ∈ − ≤ − ≤ −     −      − ≤ ≤ ≤   
≜   (2.4.5.4) 

2. According to the Arzela-Ascoli theorem stated above, a subset of the function 

space ( ),C X Y on a compact metric space X  has compact closure iff it is 

equicontinuous on that space X , and for every element of that space the set 

( ){ }F:f x f ∈  has compact closure in Y  (closed and pointwise relatively 

compact in Y ) . 
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 For each n, the corresponding elements of _ , 0K n −    are all uniformly 

bounded by 
1

M  while as it can be easily verified by the second inequality 

presented in Equation (2.4.5.4) _ , 0K n −    is equicontinuous. 

Thus _ , 0K n −    is compact in , 0
b

C n −   .  

Hence, for a (1)

0
_ 1, 0u K  ∈ −    and an infinite subset 1

⊂ℕ ℕwe get  

( ) ( )(1)

0 1
1 0

sup 0  as ,  
n

t

u t u t n n
− < <

− → → ∞ ∈ ℕ    (2.4.5.5) 

In a similar manner, for a (2)

0
_ 2, 0u K  ∈ −     and for an infinite subset 2 1

⊂ℕ ℕ  

( ) ( )(2)

0 2
2 0

sup 0  as ,  
n

t

u t u t n n
− < <

− → → ∞ ∈ ℕ     (2.4.5.6) 

As  (2)

0
u  extends the notion of (1)

0
u  to a smaller set, for a sequence of infinitely 

decreasing subsets 
1 2

...⊃ ⊃ ⊃ℕ ℕ ℕ and for each k (lower bound of 
k
ℕ ) we end up 

a with 
0

_u K∈  for which the following holds true, 

  ( ) ( )0
0

sup 0  as ,  
n k

k t

u t u t n n
− < <

− → → ∞ ∈ ℕ    (2.4.5.7) 

According to the above result we may now choose any increasing subsequence 
k
n as 

long as 
k k
n ∈ ℕ  and get for each 

0
k  

 

( ) ( )
0

0
0

sup 0  as 
k
n

k t

u t u t k
− ≤ ≤

− → → ∞     (2.4.5.8) 

 

That is, for a convergent sequence there exists a uniformly convergent subsequence 

on a compact subset (according to the compact condition that is implemented on 

_ , 0K n −   ). 

 

Then, we want to show that 
k
n
u  converges to 

0
u  in the w −weighted norm, i.e., 

 

 
0

lim 0.
k
nk w

u u
→∞

− =      (2.4.5.9) 
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To do so, let 0ε >  and as ( )lim 0
t

w t
→∞

=  one may find a 
0

 k ∈ ℕ  such 

that ( )0 1
 w / 2k Mε< ; since 

0
, _

k
n
u u K∈  we have  

 

( ) ( ) ( ) ( )
0

0 1 0
sup 2

k
n

t k

u t u t w t M w k ε
≤ −

− − ≤ <  .    (2.4.5.10) 

 

We only have to find a
1

 k  such that Equation (2.4.5.10)  is satisfied  

 

 ( ) ( )
0

0 1
0

sup ,     for 
k
n

k t

u t u t k kε
− ≤ ≤

− ≤ ≥     (2.4.5.11) 

 

From Equations (2.4.5.9 - 11) we conclude that 

 

 
0 1

,    for 
k
n

w

u u k kε− ≤ ≥     

 (2.4.5.12) 
           �� 

 

Since Lemma 1 is the key to obtaining approximations valid  for all time and on non 

compact sets, some discussion is in order. Note that now K_ needs no longer be 

compact with the standard norm   ⋅  (first restriction is off).  

However, a system with fading-memory whose output sequence may exist in disjoint 

time intervals can also converge to zero in the w −weighted norm (12). The idea 

behind Lemma 1 is that the fading-memory reformulates the given non compactness 

of an input function space  X   to a compact one.  

In other words as Boyd (1985) states:  “K_ seems compact to the functional F “. 

 

 

Step 2: Define a set of functionals G on K_ which are continuous with respect to the 

weighted norm   
w

⋅ . 

  

Let �  be a set of linear functionals such that 

                                                 

(
12
)  A suitable example is for  ( ) { }0 1 2

max 0,u t M M t−≜  the sequence 
0

_  in _
n n

PU u Kυ ≜ . 
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( ) ( )

( ) ( )
0

1

0

, where : such that

            

G Gu g u d g

g w d

τ τ τ

τ τ τ

∞

+ +

∞
−

    = − →        < ∞      

∫

∫

ℝ ℝ

≜�   (2.4.5.13) 

Then,  

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( )

1

0
1

00

1

0

  

            sup

            .

t

w

Gu G g t w t u t t w t dt

u t t w t g t w t dt

u g t w t dt

υ υ

υ

υ

∞
−

∞ −

≥
∞ −

   − ≤ − − − ≤      

 ≤ − − − =  

 = −   

∫

∫

∫

                 (2.4.5.14) 

Therefore, any  G ∈ �  is continuous with respect to the weighted norm   
w

⋅ . 

 

Also note that if ( ) ( ) ( )0 11 1 1w t
g w L g L

< ≤−
+ +

⋅ ∈ → ∈ℝ ℝ .   (2.4.5.15) 

 

Step 3/ Lemma 2: Show that the functionals G ∈ �  separate points in K_. 

 

Proof: Let , _u Kυ ∈  with u υ≠  and define the function 

( ) ( ) ( )( ) ( )0

t
g t u t t w t eυ

−− − −≜ . 

Then, for the corresponding set of functionals is 
�
�   the following hold true  

( ) ( )
1

0

0

g t w t dt u υ

∞
−  ≤ + < ∞  ∫   

and  

( ) ( )( ) ( )
2

0 0

0

0tG u G u t t w t e dtυ υ

∞
−− = − − − >∫ .  

           �� 

We may conclude now that for the set of functionals � defined above and for a 

polynomial : mp →ℝ ℝ  we have, according to the Stone-Weierstrass theorem, 

( )1
, ...,

m
Fu p G u G u ε− <   for  all u K∈ . 
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An important result with respect to the class of the Volterra series comes from the 

following derivation: 

 Since 

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 1

1

1 1

1

1 1

1

1 0 ,...,
1  ,...,

0 ,..., 1 1 1
1  ,...,

0 ,..., 1 1 1 1
1  ,...,

0
1

, ..., ...

...

n n

n

n n

n

n n

n

K

M i i i i
n i i M

K

i i i i n n n
n i i M

K

i i i i n n
n i i M

n

p G u G u a a G u G u

a a g u d g u d

a a g g u u d d

a

τ τ τ τ τ τ

τ τ τ τ τ τ

= ≤

= ≤

= ≤

=

= + =

= + − ⋅ ⋅ ⋅ − =

= + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ =

= +

∑ ∑

∑ ∑ ∫ ∫

∑ ∑ ∫ ∫

( ) ( ) ( ) ( )( )
1 1

1

,..., 1 1 1 1
  ,...,

...
n n

n

K

i i i i n n
i i M

a g g u u d dτ τ τ τ τ τ
≤

⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅∑ ∑∫ ∫
   (2.4.5.16) 

 

Now since the right hand part of Equation (2.4.5.16) must be equal to the finite 

Volterra series operator Nˆ   we get  

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
1 1

1

0 ,..., 1 1 1 1
1  ,...,

0 1 1 1
1  

  ... ...

... , ..., ... ... .

n n

n

K

i i i i n n
n i i M

K

n n n n
n

a a g g u u d d

h h u u d d

τ τ τ τ τ τ

τ τ τ τ τ τ

= ≤

=

+ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − =

= + ⋅ − −

∑ ∑∫ ∫

∑ ∫ ∫
 

Thus,  

0 0
h a≜   

( ) ( ) ( )
1 1

1

1 ,..., 1
,..., 

, ..., ...
n n

n

n n i i i i n
i i M

h a g gτ τ τ τ
<

⋅∑≜   (2.4.5.17) 

 

We ought to outline here that the relation expressed in Equation (2.4.5.17) shows how 

a Volterra series, approximating a nonlinear operator N , may be realized in terms 

of  a separable-kernel polynomial system.  

Now note that, since for each 1,...,k n=  we have ( )1

k
i
g L

+
∈ ℝ , then one may also 

deduce that ( )1 n

n
h L

+
∈ ℝ . 

Finally, and according to Equation (2.4.3.4) we may obtain the following result which 

is true   for all   t ∈ℝ , and  for all u ∈ K  (note that _
t

PU u K− ∈ ) i.e., 

( ) ( ) ( )N N
1

ˆ,...,
t t M t

FPU u p G PU u G PU u u t u t ε
− − −

− = − < .          à 
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A systemic realization corresponding to such approximations may be observed by 

Figure (2.4.5.1). 

*g
 1

*g
 2

*g
 N

u(t)
p( . )

Nu (t)

Single-Input Multi-Output
Multi-Input Single-Output

Memoryless Nonlinearity

 

Figure 2.4.5.1 .  Systemic/ Artificial Realization of a Volterra Series 

 

 

2.4.6 A discussion upon the properties of fading-memory, its relation to the 

linear finite dimensional (exponentially stable) dynamical systems and its 

extensions to nonlinear dynamical systems 

 

An intuitive  definition of the fading-memory of an operator as given by Boyd (1985): 

“An operator has fading-memory if two input signals which are close in the recent 

past and not close in the remote past yield present outputs which are close”. 

We have shown in detail how this is proved by using the Stone-Weierstrass theorem 

appropriately. However, if the end result (present output) does not depend on what 

happens at the remote (but maybe not so remote) past, then it is consistent to say that 

a system formed through time varying integral kernels also yields outputs that do not 

depend heavily on the remote past.  

 

This kind of considerations may lead us to several different and sometimes diverse 

conclusions that have already been made about the explicit connections that exist 

between the notion of fading-memory with finite dimensional dynamical systems.  

Thus, in the case of unstable dynamical systems the steady state equilibrium points 

may vary with initial or previous energy conditions of the excitation (parametric or 



Chapter 2.                                Fundamental and Advanced Systemic Concepts and Topics  

With Respect to the Approximation of a Wide Class of Nonlinear Dynamic Operators 

 
[2~28]

not) while now it is possible to obtain a corresponding FM adaptive scheme, freed 

from the fundamental limitations of structural (systemic) invariance.  

 

2.4.6.1  Fading-memory – Exponential stability 

For reasons of illustration we present a theorem which connects a finite Volterra 

series operator, which can be the I/O operator  of an exponentially stable dynamical 

system, with a time invariant operator but with fading-memory on the input function 

space. 

 

Theorem  [Boyd 1985]: 

Let 0ε >  and K  be given by Equation (2.4.5.1). Suppose that N  is any time 

invariant TI operator with fading-memory on K. Then there is a finite Volterra series 

operator Nˆ  such that for all u K∈  

 

N Nˆ  u u ε− ≤      (2.4.6.1.1) 

 

where Nˆ  is the I/O operator of the dynamical system  
 

( ),  x A x b u y p x= + =ɺ     (2.4.6.1.2) 

 

where A is the exponentially stable m m×  matrix and : mp →ℝ ℝ  is a polynomial. 

           à 

2.4.6.2  Fading-memory – Unique steady state  

According to the above results and theorems it can be safely deduced that this FM 

concept may be related to the unique steady state property of a dynamical system 

without though excluding the possibility that it may also be used in the case where the 

nonlinear network may exhibit more than one distinct modes of steady state solutions 

depending on how close the initial conditions as well as the previous energy states of 

the system remain in the very recent past. 

 

The definition of the unique steady state property for nonlinear systems as given by 

Chua and Green (1976) is presented first and consequently a theorem about the 

relation between the FM and the unique steady state of the dynamical system 

follows. 

. 
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Definition [Chua & Green 1976]:  

Let ,n mx ξ∈ ∈ℝ ℝ  and : n m nf × →ℝ ℝ ℝ  be a 1C − function. Then the differential 

equation 

( ),x f x ξ= −ɺ ,     (2.4.6.2.1) 

 

has a unique steady state solution iff all solutions are bounded and regardless of the 

initial conditions, the norm of the difference of any pair of solutions of Equation 

(2.4.6.2.1) will tend asymptotically to zero, i.e.,  if ( ) ( )1 2
,x x⋅ ⋅  be any two solutions 

then, 

( ) ( )1 2
lim 0
t

x t x t
→∞

− =     (2.4.6.2.2) 

             à 

Theorem  [Boyd 1985]: 

Suppose N  has FM  on ( )K C
+

⊂ ℝ , where K is closed under concatenation.  Let X  

denote the set of all states reachable with (small to be quite exact) inputs from K,  i.e., 

 

( ){ }N 0,X u t t u K= ≥ ∈ .   (2.4.6.2.3) 

 

Then the system has a unique steady state for inputs from K and initial conditions in 

X.  

           à 

However, this theorem shows that the way that fading-memory is treated is not 

entirely correct as one has to be very specific about the exact properties the dynamical 

system exhibits. To be more specific one has to take into account that this theorem is 

somewhat incomplete as far as the actual capabilities of the fading-memory concept is 

concerned. To state it in another way we must be more specific with respect to the 

actual energy transfer in  a nonlinear dynamical system. Therefore, even though the 

input signals are close at the recent past this is not necessarily a sufficient condition 

for a unique steady state due to the fact that the nonlinear operator may consist of 

some kind of hysteresis operators in conjunction with other types of nonlinear 

operators. These operators although they usually do not rely on the remote past they 

surely rely on the recent past as well as on the accurate level of energy of the 

dynamical system at specific frequencies i.e., we need an exact history of the every 

signal even though it may be a really short one.   
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2.5 Approximation of nonlinear operators: Vector-valued, causal and non 

causal, discontinuous, myopic systems    

2.5.1 Introduction 

 

Within the context of this section there will be performed a closure of the effort made 

in the previous sections to provide the substantial theoretical background needed for 

the approximation of a wide class of nonlinear operators.   

In this case the time dependence (scalar case) of the input functions is just a reduced 

form of a more generic (vector valued) case which is going to be analyzed over the 

next sections. 

This case may correspond to causal and non causal systems as well, while the input 

function can now be, as in real applications, discontinuous i.e., it can contain a finite 

number of discontinuities within a specified but not too limited subdomain of the 

input space.  

Some very interesting results made derived by Sandberg et al (1996, 1997,1998) and  

Sandberg (1984, 1991 and 1992) which also present a consistency with respect to the 

direction this chapter and thesis in general follow. Consequently, we may allegate that 

with suitable systemic forms composing the alternative functional representation one 

can approximate a nonlinear operator whose inputs may contain a finite number of 

discontinuities. 

Now, while the case of non causal systems is not frequently met in many applications, 

this aspect is also examined in this section as it is an exceptional and very powerful 

tool for multidimensional problems such as image processing. 

 

In conclusion, it is worth noting that with the aid of such results not only we have all 

the necessary theoretical tools to support and substantiate a customized alternative 

functional representation for a wide class of nonlinear operators but also to comment 

on some of the general principle and guidelines that may be generated and coupled 

during the development of a new methodology, such as the ones that are precipitated 

by the combination of intuition, theory, numerical testing and applications.  

 

2.5.2 The concept of myopic mapping  

 

We start by giving some useful definitions and notations at this point of the thesis for 

reasons of illustration and continuity. 
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  Therefore, for
0
n ∈ ℕ :  

1. Let ( )nC →ℝ ℝ  denote the set of continuous functions. 

2. Let ( )n

n n
D D= →ℝ ℝ stand for any subset of ( )nC →ℝ ℝ  - dense on 

( )C V → ℝ  for any V  which is a compact subset of nℝ , 

( ) ( ) ( ){ }: , ,n n

n n compact
D q D f q f C Vε= ∈ − < ∈ → ∈ ⊂ℝ ℝ ℝv v v .   (

13
) 

3. Let : nw →ℝ ℝ , be a Lebesgue measurable function on mℝ such that 

      ( ) ( ), 1,
m

p

w d p< ∞ ∈ ∞∫ℝ β ββ ββ ββ β   and ( )sup  
V
w

∈
< ∞

αααα
αααα and  

      ( )inf 0,
V
w

∈
>

αααα
αααα for each compact subset mV ⊂ ℝ . 

4. Let ( )m nE E= →ℝ ℝ  be a set of measurable functions. 

5. Let ( ),p p m n

w
L L w= →ℝ ℝ   be the normed linear (complete) space defined by   

( ) ( ) ( )
1/

,
:

p m

p
p

p m n

w L w
L x E x w x d

     = ∈ → = < ∞       
∫ℝℝ ℝ β β ββ β ββ β ββ β β .   (2.5.2.1) 

 

The following definitions are also important for the formulation of a more generic 

theoretical setup since the function spaces are further clarified and the mapping 

conditions are such so that the dependence of the dynamic nonlinear operators to 

their every argument can be explicitly given.     

• Let S  be a nonempty subset of the set of essentially bounded maps (14) of 

( )m nE →ℝ ℝ  i.e., ( ). .

m n p

ess bound w
S E L⊂ → ⊂ℝ ℝ   and closed under translation 

i.e.,  

 ,   mT S S= ∀ ∈ ℝ
ββββ

ββββ   and      (2.5.2.2) 

( )( ) ( ),   ,mT x x x S= − ∈ ∈ℝ
ββββ

α α β αα α β αα α β αα α β α .             (2.5.2.3) 

                                                 

(
13
) 

n
D  will correspond, in this case, to the memoryless nonlinear (polynomial) network, while in other 

cases may take the form of a radial basis functions,  linear piecewise functions, sigmoids or a 

combination of all of the above. 

(
14
)  As a reminder of the definition of essential bounding  of a set we give the definition of one of its 

bounds – the essential supremum : sup ( ,  for uniformly essential boundness)  ess f a= ≤ , where 

a stands for the smallest number on the real line such that for a given measurable function :f X → ℝ , 
whereX  is a measure space with measure  µ, the following holds true: 

( )( ){ }inf : 0,x f x a aµ > = ∈ ℝ . Otherwise, supess f = ∞ . 
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• Let :G ( ). .

m n

ess bound
E S→ ⊃ →ℝ ℝ � ( )m →ℝ ℝ  be a shift invariant (

15
), causal 

(
16
,
17
)   mapping of  the set S  to the set � , the set of ℝ -valued  functions on mℝ . 

 

• Definition (myopic mapping): 

A map G  is myopic on S with respect to w if for a given 0ε >  there is a 0δ >  

such that for ,x y S∈  the following holds true   

 

( )( ) ( )( )0 0
,pL w

x y Gx Gyδ ε− < ⇒ − < .         (2.5.2.4)  

ö 

The term “myopic” is very precise since the influences of the near present conditions 

are  much more significant, almost dominant, than the corresponding  remote past or 

future conditions. A more tangible approach to the mechanics of a myopic map may 

be given by stating that the effect of the values of ( )x αααα  at points remote, but not 

necessarily very far away from αααα , upon the mapping ( )( )G x αααα  is negligible  with 

respect to the dominating effect the values of  ( )x αααα  have when we are very close to 

αααα  (a similar notion was given to the definition of fading-memory (FM)).  

This kind of mapping, as we’ll see in the later sections, is admissible to 

straightforward systemic approximations that can be realized through appropriate 

combinations of linear dynamic processings with nonlinear static networks.   

Next, some important properties of the myopic mapping are stated: 

• Let �( )w , � ( )w−
 be any sets of measurable functions : ng D → ℝ , where 

 or m mD −= ℝ ℝ   respectively,  such that the following conditions are satisfied:         

 

 a)  ( ) ( )1
q

D
w g d

−
< ∞∫ β β ββ β ββ β ββ β β , where

1 1
1

p q
+ = .  (

18
)   (2.5.2.5)                                                                                                                     

                                                 

(
15
)  Only when S  is closed under translation i.e. T S S=

ββββ
 and ( )( ) ( )( ),GT x Gx= −

ββββ
α α βα α βα α βα α β  

,m∈ ℝαααα  ,m∈ ℝββββ  x S∈ . 

(
16
)  A map is causal if: ( ) ( ) ( )( ) ( )( )α α β βα α β βα α β βα α β β , for ,  

j j
x y Gx Gy a jβ= ⇒ = ≤ ∀ . 

(
17
)  Treated separately as follows. 

(
18
) We note here that this result (used via Holder’s inequality) in conjunction with the fact that 

( ). .

m n p

ess bound w
x E L∈ → ⊂ℝ ℝ  is used in order to show that integrals of the 

form ( ) ( ),
nD

g x d∫ ℝ
β β ββ β ββ β ββ β β ,  where g ∈ �( )w or � ( )w−

, are also well defined and finite. 



Chapter 2.                                Fundamental and Advanced Systemic Concepts and Topics  

With Respect to the Approximation of a Wide Class of Nonlinear Dynamic Operators 

 
[2~33]

    b)   For each nonzero ( ). .

m n p

ess bound w
x E L∈ → ⊂ℝ ℝ , corresponds  a nonzero 

function g      i.e.,   

                                 ( ) ( ), 0
mD
g x d

⊆
≠∫ ℝ

β β ββ β ββ β ββ β β                   (2.5.2.6)    

 

c)    Let �( )w  be approximated by any dense subset of ( )m

q
L ℝ (

19
) with respect to 

the weight ( ) 1

w
−
i   i.e.,  if ( )−

Β Βɶ ɶ  is that dense subset of �( )w  (� ( ))w−  with 

respect to the weight ( ) 1

w
−

⋅ on  D  in the 
q
L −norm  and ( )f ∈ Βɶββββ ( )−

Βɶ  then,                                

                                                                             

( ) ( ) ( )( )1
q

D
w g f d ε

−
− <∫ β β β ββ β β ββ β β ββ β β β ,       (2.5.2.7) 

 

We also note that  

( ) ( ) ( ) ( ) ( )0 11 w tq qg f w L D g f L D
< ≤−− ⋅ ∈ → − ∈ .        (2.5.2.8) 

 

 

For the corresponding proof one may check Gkikas (2007) or Sandberg (1998). 

 

• Let the map   where( )( ) ( ),   and Qs s s= ∀α β αα β αα β αα β α  , where for the elements of 

, ,α βα βα βα β    ,
j j

α βα βα βα β , respectively holds  

    =  .
j j

−β αβ αβ αβ α       (2.5.2.9) 

The next theorem/result provides us with a necessary and sufficient condition for the 

uniform approximation of shift invariant while this kind of approximation is 

consisted with many cases of system identification techniques and alternative 

systemic realizations that may correspond to functional series of the Volterra type. 

 Theorem 1 [Sandberg & Xu, 1998]: 

Let k ∈ ℕ , and 
k
b  denote a closed ball of radius k in mℝ  centered at the origin. 

Assuming that S is uniformly-essentially-bounded set and that for each k,   
k
b

S (a ball 

of k-radius in S) is relatively compact in ( )p k
L b with respect to the metric  

( ) ( )
1/

( , ) ,      ,
kk

p
p

k bb
x y x y d x y Sρ

  = − ∈  
∫ β β ββ β ββ β ββ β β ,        (2.5.2.10)   

                                                 
(
19
) Stone (1962) showed that result for 1m n= =  and D = ℝ , with x corresponding to a Hermitian 

function. 
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 then the following two statements are equivalent: 

1. G is myopic with respect tow . 

2. For each 0ε >  there are an 
0
n ∈ ℕ , elements 

0
1 2
, , ...,

n
g g g of �( )w ,   

L is a linear integral operator where 

( ) ( ) ( ) ( ),
m jj

Lx h x d= −∫ℝα α β β βα α β β βα α β β βα α β β β , ( ) ( ),  j j
h g j− = − ∀α β β αα β β αα β β αα β β α  (2.5.2.11) 

       and  

0
n

N D∈  such that ( )( ) ( )( ) ,      , .mG x N L x x Sε − < ∈ ∀ ∈   ℝα α αα α αα α αα α α        (2.5.2.12) 

 

2’.   For the case where G is causal we also need to impose the Q map upon the 

functions x S∈ , with the condition that QS S⊆ . In addition, the elements 

( )
01 2

, , ...,
n

g g g w
−

∈ �  and the linear integral operator is given according to Equation 

(2.5.2.12’) that follows:  

( ) ( ) ( ) ( )
(

( ( (1,
, ,    where , , ... , .

j mj
Lx h x d a a

−∞ 

  = − −∞ = −∞ × −∞    ∫
αααα

α α β β β αα α β β β αα α β β β αα α β β β α

     (2.5.2.12’) 

It ought to be outlined here, that Q may be replaced by any map from S to ( )m →ℝ ℝ  

such that ( )( ) ( )Q x x=α αα αα αα α  for , mx S∈ ∈ ℝαααα , and for distinct elements ,x y QS∈  

holds the restriction ( ) 0
m

x y− ≠
ℝ

.  

It is important to note that the functional series that correspond to the nonlinear 

operator ( )N L i  presented in Equations (2.5.2.11 - 12’) can be also regarded as a 

generalization of a Volterra series since 
0n

D  can be chosen to correspond to 

polynomial function sets. Thus, for n = 1 the nonlinear operator becomes  

( )( )N L x 
  αααα  = ( ) ( ) ( )

1

0 1 1 1
1

, ,
n

j j j j
D D

j

k k x x d d
=

+ − −∑ ∫ ∫… … … …α β α β β β β βα β α β β β β βα β α β β β β βα β α β β β β β  

where, 
0
k  is constant,  

1
n  is a positive integer, ,mD = ℝ or ( , ]−∞ αααα  (for the causal 

case)  ( ) ( ) ( ) ( ) ( )1 11
, ,

j j
j j i i jj
k h h− − = − −… ⋯α β α β α β α βα β α β α β α βα β α β α β α βα β α β α β α β  

where, the indices   ( ) ( ) 0
1 , , 1,...,

j j
i i j n ∈   … ,  and  ( ) ( ),  j j

h g j− = − ∀α β β αα β β αα β β αα β β α . 
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The formulation of the myopic mapping is such that in the case where we deal with an 

actual/physical dynamical system direct connections can be made with respect to the 

functional dependence of the operator to any of its physical counterparts through the 

appropriate selection or construction of the integral kernels. In this way a black-box 

system identification method is transformed to a grey-box one in the sense that some 

of the actual structural elements of the dynamical system start to penetrate to the 

alternative functional representation and operation in a more explicit way.  

 

Next follows the proof of this fundamental theorem by Sandberg et al (1998) which is 

restated in such a way so that the main steps are more evident.  

 

Proof  1 2→ :   Step 1.  Show that the S is a relatively compact subset of p

w
L . 

Proposition: Let R be a subset of ( ),A ρ  where A is a complete metric space induced 

by the metric ρ , and let : ,  1, 2,...
i

M A A i→ =   

Then if : 

1. ( )
i

M R  is a relatively compact subset of ,   A i∀  and 

2. ( ), 0
i

x M x as iρ → → ∞  uniformly  x R∀ ∈ , 

R is a relatively compact subset of A. 

          óó 

1. Show that ( )
i

M R  is a relatively compact subset of ,   A i∀ . 

a) Define Mi on 
p

w
L  b y 

( )( ) ( )
( )

,

0, \

i

mi

i

x if b
M x

if b

 ∈=  ∈
ℝ

α αα αα αα α
αααα

αααα
            (2.5.2.13) 

Note that : p p

i w w
M L L→  

b) Set and p

w
R S A L= =  (complete). 

c) Let a map  ( ): p

p i w
I L b L→  such that: 

( )( ) ( )
( )

,

0, \

i

m

i

x if b
I x

if b

 ∈=  ∈
ℝ

α αα αα αα α
αααα

αααα
            (2.5.2.14) 

and  since we have that ( )sup
V
w I

∈
< ∞ ⇒

αααα
αααα  is continuous.  
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Since 
i
b

S  is relatively compact in ( )p i
L b  (from definition with respect to the metric 

( , )
k
x yρ ), then ( ) ( )

i
ib

I S M S
  =  

 is relatively compact in p

w
L    

          ó1 

 

At this point and before we proceed with the second step of the proposition we can 

make an important “upgrade” with respect to the original definition of 
i
b

S meaning 

that the condition of S  being uniformly-essentially-bounded is a very mild condition.  

Even though we have set that ( ). .

m n p

ess bound w
S E L⊂ → ⊂ℝ ℝ   and closed under 

translation, its elements may be also approximated to within an 0ε >  on each 
i
b  in 

the ( )p i
L b  norm by a set of a uniformly bounded equicontinuous maps defined on

i
b . 

This leads to the following result: the elements of S on a specific interval ,i i −    may 

incorporate at the most 
i
d  discontinuities while at the same time they could be 

Lipschitz continuous, with a Lipschitz constant 
i
l .  

In this case it is sufficient to set the 
i
l  as an independent from i constant number 

and let 
0 0
,

i
d i d d= ⋅ ∈ ℕ  (in order to show that the number of discontinuities 

allowed are proportional to the range of the interval  ,i i −    ). 

In what follows we state two theorems. The main goal of the first theorem is to 

provide a direct connection between the property of relative compactness of a set 

( )p k
Y L b⊆   with the ability of being approximated by a set M which is a collection 

of all sets of uniformly bounded equicontinuous maps i.e., : , ,
m

n

i
M i i i − → ∀   ℝ .  In 

the next theorem the discontinuity arrangement within a specific closed interval is set 

in such a way so that it forms an established condition for relative compactness. This 

is achieved with the aid of an appropriate function capable of operating as a linear 

extrapolator from the lower bound of each discontinuity region to the zero of  function 

y (this function continues to incorporate the aforementioned discontinuities and the 

Lipschitz condition). It must also be outlined that the main result of Theorem 2 is used 

in order to meet the requirements of the Arzela – Ascoli theorem as shown below. We 
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note that Theorem 3 is proved for m = 1, while it can be generalized to cover 

important cases for m > 1 as well. 

 

Theorem 2 [Sandberg 1998]: 

Let M be the collection of all sets of uniformly bounded equicontinuous maps 

: , ,
m

n

i
M i i i − → ∀   ℝ . Then a subset ( )p i

Y L b⊂  is relatively compact in ( )p i
L b  

iff for each 0ε >  there exists an E M∈  with the property that for any y Y∈  there 

is an e E∈  such that 
p
L

y e ε− < . (For proof see Sandberg 1998, appendix E). 

à 

Theorem 3 (Condition for Relative compactness, Case m = 1) [Sandberg  1998]: 

Let m =1,  d ∈ ℕ  and  l and c be positive constants. Let also 

( )1
: , ,

m
nY i i i

= − → ∀   ℝ  where for any y Y∈  the following conditions are satisfied:  

 i)    ,y c t≤ ∀ , 

ii)    y has at most d discontinuities in the interval  ,i i −    and 

iii)   ( ) ( )1 2 1 2 1 2 .
, ,

cont
y t y t l t t t t− ≤ − ∀ ∈ Ι  ( the continuity interval of y). 

Then Y is relatively compact in ( )p i
L b .      

 à 

2.  Show that ( ), 0
i

x M x as iρ → → ∞  uniformly  

Let 0ε >  given. Choose 
1
k ∈ ℕ , such that  

( ) 1

\

,
m

k

p
p

b

c w d k kε< ≥∫
ℝ

β ββ ββ ββ β ,              (2.5.2.15) 

where  ( )sup sup
m

p

s S

c ess s
∈ ∈

=
ℝαααα

αααα .             (2.5.2.16) 

Thus, for 
1

k k≥  and s S∈ ,   ( ) ( ) ( )( )
1/

m

p

p

k kw
s M s w s M s d

    − = − =      
∫
ℝ

β β β ββ β β ββ β β ββ β β β  

 ( ) ( ) ( )
1/ 1/

\ \m m
k k

p p

p p

b b

w s d c w d ε

        = ≤ <           
∫ ∫
ℝ ℝ

β β β β ββ β β β ββ β β β ββ β β β β . 

           ó2 

�� 
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Step 2.  Show that a nonlinear functional/map F may be uniformly approximated by a 

nonlinear-vector valued operator: ( )
0

1
, ...,

n
N v v  where 

01
: , ...,

n
v v=v  are well defined 

and finite functional integral representations on mℝ . 

 

By definition, the functional ( )( )G ⋅ 0  is uniformly continuous on S  with respect to 

w
⋅  (since G is myopic with respect to w). 

 

Lemma 1.                                                                                                                               

Let 
. . .

:
Uniformly continuous

unif ess bound
F U →ℝ , with respect to the

w
,   

where ( ). . .

m n

unif ess bound
U E⊂ →ℝ ℝ  and  relatively compact in 

w
X . 

Given 0ε > , there are an  
0
n ∈ ℕ , elements 

01 2
, , ...,

n
g g g of �( )w and a 

0
n

N D∈ such 

that  

( ) ( ) ( )
0

1
, ..., ,      ,

n
F u N y u y u u Uε − < ∈  

    (2.5.2.17) 

where,  ( ) ( ) ( ),
mj j

y u g u d= ∫ℝ β β ββ β ββ β ββ β β . 

 

Proof of Lemma 1 : (Steps 1 – 8) 

1. If a sequence { }nu  of U converges to some u in p

w
L , then  

n p
u u in L→ sense 

on compact subsets on mℝ  and { }nu is a sequence restricted to any such compact 

subset having a converging subsequence in that subset (classical theorem of 

pointwise convergence almost everywhere (a.e.) in
p
L of a Cauchy subsequence) 

see Rudin (1976).  

2.  Since, ( ). . .

m n

unif ess bound
U E⊂ →ℝ ℝ  then 

( ) ( ). . . . .

m n p

unif ess bound ess bound w
cl U E L⊂ → ⊂ℝ ℝ . 

3. Let Fe  be a continuous extension of F  to ( ). . .unif ess bound
cl U  (Rudin, 1976). 
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4. Let ( ) ( ) ( ) ( ). . .
: ; ,

munif ess bound
A cl U u c g u dρ

   = → = +    
∫ℝℝα α β β βα α β β βα α β β βα α β β β (

20
)  

where g ∈  �( )w  and ,cρ ∈ ℝ .   

5. Since, ( ) ( ) ( ) ( ) ( ) ( )
1

, ,
m m
g u d w g w u d

− = ≤  ∫ ∫ℝ ℝ
β β β β β β β ββ β β β β β β ββ β β β β β β ββ β β β β β β β

( ) ( ) ( ) ( )
1/ 1/

1

m m

p q
p q

w g d w u d
−         ≤ ⋅ < ∞          

∫ ∫ℝ ℝ
β β β β β ββ β β β β ββ β β β β ββ β β β β β .   

Thus, αααα  is continuous. 

6. Let 
1 2
,u u ∈ ( ). . .unif ess bound

cl U  and 
1 2
,r r ∈ ℝ  such that if  

1 2 1 2
, 0u u r r c= ⇒ = = .  If 

1 2
u u≠ then the following equation holds true 

 ( ) ( ) ( )1 2 1 2
,

m
c g u u d r r− = −∫ℝ β β β ββ β β ββ β β ββ β β β .    

 Setting ( ) ( )1 1
,

m
r c g u dρ = − ∫ℝ β β ββ β ββ β ββ β β  one gets ( )1 1

u r=αααα , ( )2 2
u r=αααα . 

7. Lemma [Stone  1962]:  

Let χ  be the family of continuous real-valued functions of  ( ). . .unif ess bound
cl U ,              

 let 
0
χ  be an arbitrary subfamily of χ ,                                                                                 

let �0  be the family of functions (lattice set (
21
) ) generated from 

0
χ  by lattice 

operations (
22
) on real valued functions and uniform passage to the limit.  

Suppose thatx χ∈ , and that for any 
1 2
,u u ∈ ( ). . .unif ess bound

cl U  and 
1 2
,r r ∈ ℝ  such 

that if  
1 2 1 2
u u r r= ⇒ =  there exists an 

0
χ∈αααα  such that 

( ) ( )1 1 2 2
,u r u r= =α αα αα αα α . Then x ∈�0.  

 �  

8. For 
0

A χ= ,
e

x F= , and u ∈ ( ). . .unif ess bound
cl U  there are 

0
n  elements of 

0
1
, ...,

n
a a A∈ , and a lattice (

23
) map 0:

n
M →ℝ ℝ  such that  for a given 0ε >  

we have           

                                                 

(
20
) Approximation of ( )uαααα  through the well defined-finite integral. 

(
21
)  A lattice set is a partially ordered set whose nonempty finite subsets all have a unique supremum 

(called join) and an infimum (meet) 

(
22
) The lattice operations on pairs of real numbers ,a b are defined as ( )min , ,a b a b∧ = (meet) and 

( )max ,a b a b∨ = (join). 

(
23
)  A map 0:

n
M →ℝ ℝ is a lattice map if ( )M v  is generated from the components 

0
1
,...,

n
v v of v by 

a finite number of lattice operations that do not depend on v . 
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                           ( ) ( ) ( )( )
0

0
1

, ..., / 2

n components of v

e n
F u M a u a u ε− <

�

�����������������

.          (2.5.2.17) 

 

a. Let  0,
n∈ ℝρρρρ c  and ( )

0 0
1 1

: , ..., ...
n n

v v K K= ∈ × ×v  be associated with αααα  by 

( ) 0
, 1,2,...,

j j j j
a u c v j nρ= + = . 

b. Define as before ( ) ( ) ( ),
mj j j

y u g u d v= =∫ℝ β β ββ β ββ β ββ β β   for 

u ∈ ( ). . .unif ess bound
cl U .    The set ( )( ). . .

:
j j unif ess bound

K y cl U=  is a compact set in  

ℝ . 

c. Let 
0
n

N D∈  satisfy: ( ) ( )
0 0 0 0

1 1 1 1
, ..., , ..., / 2.

n n n n
M c v c v N v vρ ρ ε+ + − <  

             
 
(2.5.2.18) 

d. Then, for u U∈ , we  get through the triangle inequality and Equations 

(2.5.2.17 - 18)  

( ) ( ) ( )
0

1
, ...,

n
F u N y u y u − ≤  

        

( ) ( ) ( )( )
( ) ( )

( )
�

( )
01 10

0 0 0 0 0
1 1 1 1 1

, ..., , ..., , ...,

nn
va ua u v

n n n n n
F u M a u a u M c v c v N y u y uρ ρ

         − + + + −            

���������������� �����������

/ 2 / 2ε ε ε< + = ⇒ . ( ) ( ) ( )
0

1
, ...,

n
F u N y u y u ε − ≤  

.         �� 

 

Step 3.  Replace the appropriate maps, functions and functional representations on the 

result obtained from Lemma 1. 

 

Let ( )( ), 0U S F G= = ⋅  and u T x−=
αααα

, where , 0,m x Sε∈ > ∈ℝαααα  are given. 

Then one gets, 

( )( ) ( ) ( )
0

1
, ...,

n
GT x N y T x y T x ε

− − −
 − <  α α αα α αα α αα α α

0

( )( ) ( ) ( ) ( )( ) ( )( )
0

1
, ...,

n
Gx N y T x y T x Gx N L x ε

− −
   − = − <     α αα αα αα α

α α αα α αα α αα α α ,   (2.5.2.19) 

where for  j = 1,…,n0 

( )( ) ( ) ( ) ( ) ( ) ( ), ,
m mj j j j

L x y T x g T x d g x d
− −

= = = + ⇒∫ ∫ℝ ℝα αα αα αα α
α β β β β α β βα β β β β α β βα β β β β α β βα β β β β α β β

 

( )( ) ( ) ( ) ( ) ( ), ,
m mj j j

L x g x d h x d= − = −∫ ∫ℝ ℝ
α β α β β α β β βα β α β β α β β βα β α β β α β β βα β α β β α β β β . ��    

                                                                                                                                                                à 
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Proof  1 2 '→ : Assume that G is a shift invariant - causal map as well as myopic on S 

with respect to w , while  QS S⊆ .  We follow the same first step made for the proof 

1 2→  while changing the corresponding steps 2 and 3. 

 

Step 2 '  .  Show that a functional/map F may be uniformly approximated by a 

nonlinear-vector valued operator: ( )
0

1
, ...,

n
N v v  where 

0
1

: , ...,
n

v v=v are well defined 

and finite functional integral representations on m

−ℝ . 

 

Lemma 2: 

Let 
. . .

:
Uniformly continuous

unif ess bound
F U →ℝ , with respect to the

w
,   

where ( ). . .

m n

unif ess bound
U E⊂ →ℝ ℝ - relatively compact in p

w
L . 

Given 0ε > , there are a 
0
n ∈ ℕ , elements 

0
1 2
, , ...,

n
g g g of � ( )w−

and a 
0
n

N D∈ such 

that  

( ) ( ) ( )
0

1
, ..., ,      ,

n
F u N y u y u u QUε − < ∈  

   (2.5.2.19) 

where,  ( ) ( ) ( ),
mj j

y u g u d
−

= ∫ℝ β β ββ β ββ β ββ β β .��    

Step 3 ' .  Replace the appropriate maps, functions and functional representations on 

the result obtained from Lemma 1. 

 

Using this lemma, which is a modified version of Lemma 1, one may now proceed as 

before and substitute the appropriate maps, functions and functional representations in 

order to obtained the desired result. 

 Let ( )( ), 0U S F G= = ⋅  , u QT x−=
αααα

, where , 0,m x Sε−∈ > ∈ℝαααα  are given. 

 

* EOTE: By setting u QT x−=
αααα

 we could merely define ( )( ) ( )ˆQ x x=α αα αα αα α  

where α̂ααα  could be a unique point in m

−ℝ  while m∈ ℝαααα  that minimizes ˆ−α αα αα αα α , in 

other words an additional useful approximation while for each j holds that  

( ) ( ) ( )ˆj j j
y u y QT x y T x

− −
= =

α αα αα αα α
.  
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In our case we may also use this additional mapping in order to further restrict the 

nonzero condition of the functional ( )j
y ⋅  with respect to its domain of definition i.e., 

the vector valued input u or x. 

Thus, one gets  

 

( )( ) ( ) ( )0
0

1
, ...,

n
GQT x N y QT x y QT x ε

− − −
 − <  α α αα α αα α αα α α

 

( )( ) ( ) ( ) ( )( ) ( )( )
0

ˆ ˆ1
ˆ ˆ ˆ,...,

n
Gx N y T x y T x Gx N L x ε

− −
   − = − <     α αα αα αα α

α α αα α αα α αα α α ,  

 

where, for  
0

1,...,j n=    and  for  ,m−∈ ℝαααα  

 

( )( ) ( ) ( ) ( ) ( ) ( ), ,
m mj j j j

L x y T x g T x d g x d
− −

− −
= = = + ⇒∫ ∫ℝ ℝα αα αα αα α

α β β β β α β βα β β β β α β βα β β β β α β βα β β β β α β β

 

 

( )( ) ( ) ( ) ( ) ( )
( , ] ( , ]
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j j j
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−∞ −∞
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α αα αα αα α
α β α β β α β β βα β α β β α β β βα β α β β α β β βα β α β β α β β β                   

              where 
1

( , ] : ( , ] ... ( , ]
m

a a−∞ = −∞ × × −∞αααα  ��    

                                                                                                                                                                à 

 

Proof  2 1→ :  It holds that for a fixed 0ε > , there are an 
0
n ∈ ℕ , elements 

0
1 2
, , ...,

n
g g g of  �( )w and a 

0
n

N D∈ such that  

( )( ) ( )( ) ,      , .mGx N Lx x Sε − < ∈ ∀ ∈   ℝα α αα α αα α αα α α   

L  is a linear integral operator given by: 

( ) ( ) ( ) ( ) ( ) ( ), ,    where ,  , .
m j j jj

Lx h x d h g j= − − = − ∀∫ℝα α β β β α β β α βα α β β β α β β α βα α β β β α β β α βα α β β β α β β α β  

For distinct  
1 2
,u u S∈ , and one gets  

( )( ) ( )( )0 0
1 1

/ 3,G u N L u ε − <    ( )( ) ( )( )0 0
2 2

/ 3G u N L u ε − <   . 

Using the triangle inequality one gets  

( )( ) ( )( ) ( )( ) ( )( )0 0 0 0
1 2 1 2

2 / 3G u G u N L u N L uε    − < + −       . 
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Note that � is continuous by definition while  ( )( )0L S  is bounded and thus � is 

uniformly continuous on( )( )0L S . Thus, there is a 
0

0δ >  for all 
j
u  (i.e., 

j
u  

independent) for which we get 

( )( ) ( )( ) ( )( ) ( )( )0 0 0 0
1 2 0 1 2

/ 3L u L u N L u N L uδ ε   − < ⇒ − <       . 

 

Now, we only have to show the continuity property with respect to the w-norm in 

order to be consistent with the complete definition of myopic mapping.  

Thus, we have to find a 0δ >  such that 

( ) ( ) ( )( ) ( )( ) ( )( )0 0
1 2 1 2 0m

p

w u u d L u L uδ δ− < ⇒ − <∫ℝ β β β ββ β β ββ β β ββ β β β . 

Thus, for 
0

1,2,...j n=   

( ) ( ) ( ) ( )0 0
1 2j j

Lu Lu− ≤ ( ) ( ) ( )( )1 2
,

m

p

j
g u u d−∫ℝ β β β ββ β β ββ β β ββ β β β  

( ) ( ) ( ) ( ) ( )( )1

1 2m j
w g w u u d

− ≤ ⋅ −  ∫ℝ β β β β β ββ β β β β ββ β β β β ββ β β β β β

( ) ( ) ( )( ) ( ) ( )
1/1/

1

1 2m

m

qp
qp

j
w u u d w g d

−       ≤ − ⋅           
∫ ∫ℝ

ℝ

β β β β β β ββ β β β β β ββ β β β β β ββ β β β β β β  

Therefore, a 0δ >  must exist and this completes the proof. 

                                                                                                                                                                à 

Similar results were extracted for the discrete case in the work of Sandberg et al 

(1997) where a uniform approximation theorem for discrete multidimensional myopic 

maps is developed and presented. We note that this work be regarded as a follow up 

to the continuous case presented above.  

 

2.6 Discussion 

 

The main objective for the statement and analysis of the theorems presented 

throughout this chapter, is to provide a sound mathematical foundation upon which 

custom systemic models could be built upon. In consequence, the existence of the 

resulting functional representations is validated while the derivation of corresponding 

systemic models in which the elements can be determined analytically, 

experimentally (through numerical or physical experiments) or even (semi) 

empirically is fully justified. The adaptive characteristics that may exist in a systemic 



Chapter 2.                                Fundamental and Advanced Systemic Concepts and Topics  

With Respect to the Approximation of a Wide Class of Nonlinear Dynamic Operators 

 
[2~44]

formulation are also justified where until now this kind of approach was mainly 

rationalized within the context of heuristic methods.  

The realization of a good approximating structure relies primarily upon the good 

coupling between intuitive and heuristic concepts and mathematical analysis. As 

constant feedback is needed from already operating, but not necessarily accurate, 

structures as well as from innovative mathematical techniques adaptive 

approximation methodologies can be then developed in order to achieve convergent 

representations. Another dilemma rises from the fact that usually accuracy is against 

efficient, in terms of computation and analysis costs, and thus  we need a simple as 

possible model but not simpler, to rephrase Albert Einstein’s famous quote ; that is 

why the notions of fading-memory or myopic mappings were given a great 

importance.  

Towards this direction the Volterra series may be regarded as ideal for approximating 

dynamic nonlinear systems that exhibit such characteristics since the approximating 

nonlinear operator can be formulated in terms of such functional series.  

Another point that needs to be outlined  is that the function space upon which the 

operators or functionals are built upon can be scalar or vector valued while the 

myopic attributes defined and discussed above could be applied to any each one of 

them.  

Thus, one may conclude that dynamical systems or operators exhibiting fading-

memory or “myopic” attributes can be perceived and formulated as  locally-supported  

functional representation  that are severely affected by the near present behavior 

(temporal or spatial – wise or with respect to any kind of dimension is regarded 

significant) of its arguments and nothing else.      
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Chapter 3 

The Oscillating Water Column - Wave Energy Converter 

(OWC - WEC) 

 

3.1. An Overview of wave energy concepts and devices 

3.1.1 Introduction 

 

A lot of concepts/applications have been built upon the wave to wire scheme and in 

order to review all of them a separated coverage is required to a somewhat great 

extend. Most of the wave energy patents-devices were designed over the last forty 

years and some of them have been advanced to production, even as a prototype. 

Although the wind power scheme was the first renewable energy system to make 

significant steps towards establishment during the last ten years the wave energy 

generated scheme offers more alternatives (wave energy converters with much 

different operational characteristics) depending on the local climate, location 

(islands), not to mention the protection that some of these devices may offer to 

harbours and ports as wave breakers.  

Wave energy is currently considered as the friendliest renewable energy source with 

respect to the environment as it produces no chemical, noise or any other kind of 

pollution without interfering with the biota of the ecosystem in a severe way; for more 

details one may consult Table (3.1.1).  

  

Environmental Effects Shoreline �earshore Offshore 

Land use/sterilization L   

Construction/maintenance sites L   

Recreation L L  

Coastal Erosion  L L-M L-M 

Sedimentary flow patterns   L L 

Navigation hazard  L L 

Fish & Marine biota L L L 

Acoustic noise L   

Working fluid losses   L L 

Endangered species  L L  

(L: Low, M: Medium)    

Table 3.1.1: Environmental impact of wave energy devices (
1
). 

                                                 
(
1
) Wave energy utilisation in Europe- “European Thematic Network on Wave Energy-2000”  
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The wave energy concept is an ideal solution for small remote communities which are 

served by small grids or even depend on diesel generators for their electricity. 

However, the integration of such power plants in the already existing electrical grid 

requires attention as the output from the scheme may fluctuate considerably (except in 

the case of schemes such as the TAPCHAN) and cause swings in voltage or frequency 

on the entire grid. In order to deal with this kind of problem, a ‘dump’ load can be 

incorporated into the system. For voltage values higher than the desired “domestic” 

one, the extra electrical energy is sent to a water/space heater ‘dumb’, so that the 

output will be again smoothed. Therefore, the hybrid electricity scheme may obtain a 

stable voltage grid via a series of voltage sensors so that the remote community may 

enjoy substantial gains in electricity supply. The reduction in diesel oil consumption 

would also be substantial, and the cost savings could be large. 

 

3.1.2 Economical  aspects of wave energy 

 

At present the world-installed, fully commissioned, wave energy capacity is about 

5MW and it seems that it can be extended to 20MW in the near future. The potential 

worldwide wave energy economic contribution in the electricity market is estimated 

of the order of 2,000 TW h /year, about 10% of the world electricity consumption, and 

with an investment cost of EUR820 billion, according to Thorpe (1999). The 

predicted electricity generating cost has reached an average value of approximately 

0.08 EUR/kWh at a discount rate of 8%. As the average electricity cost in the EU is 

approximately 0.04 EUR/kWh, the wave energy electricity price is not far away from 

composing a highly competitive solution. To accomplish this, initial financial and 

market support are needed to back this effort. 

In order to make a good estimate of the commercial prospects of wave energy, one 

must take into account not only the current status of the, so far, commissioned energy 

devices but also the future prospects that correspond to each design. The electricity 

costs for a number of devices have been evaluated over the past 10 years using a peer-

reviewed methodology Thorpe (1999), the results of which are demonstrated in Figure 

(3.1.2.1). The predicted electricity production costs of several current wave energy 

devices are rated at 8,5 c€ / kWh, should the devices achieve their anticipated 

performance. 
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Figure 3.1.2.1.  Predicted Electricity costs for wave energy technologies (
2
). 

 

Should the wave energy devices perform as predicted, then their economic 

contribution would be over 2000 TWh /year by the year 2025 (
2
). This is comparable 

to the amount of the electricity currently produced worldwide by large scale 

hydroelectric schemes and would correspond to a capital investment of over EUR 800 

billion. 

 

3.1.3 History review 

 

The well known ‘oil crisis’ that took place back in 1973 raised a question concerning 

the ability of the fossil fuel-depended countries to provide themselves with alternative 

sources of energy. As no other material could replace the fossil fuel in stored 

consumable quantity, the scientific community focused on alternative solutions such 

as the renewable sources of energy. With regard to the environmental aspect, 

renewable sources are considered to be very clean and don’t affect the ecosystem in 

any way while at the same time the capital costs are very low with respect to any 

other energy alternatives such as nuclear energy  and the operating costs remain at 

very low levels throughout the entire life cycle of the plant.  

However, and despite of all the scientific research made upon this area (mathematical 

modelling and experimental investigation), the government support was not the one 

that ought to be. Sponsoring was insufficient whilst on the other hand the expectations 

were not in consistence with the rate of development for these new concepts. That 

                                                 
(2) Wave energy utilisation in Europe- “European Thematic Network on Wave Energy-2000”  
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resulted in the curtailing of the wave energy programme. As far as the UK is 

concerned the wave energy programme ceased in 1982 although through some 

research teams, one oscillating water column wave energy device (OWC-WED) 

prototype, managed to be commissioned on Islay in Scotland.  

However, Norway and Japan increased funding due to the need of clean energy 

sources with good efficiencies. According to Lovseth (1995), 55% of the energy used 

in Norway is covered by hydropower.  

During the last two decades the ecosystem was polluted so much, it begun to alter the 

physical sequences (climate) that remained constant for nearly thousands of years. 

The global warming/greenhouse effect started showing its teeth to a global scale while 

nuclear (Chernobyl) and oil spillage (Exxon) accidents altered the life of entire 

continents.  

European Union can be said to have a rather good reaction to this global threat and in 

conjunction with the effort to obtain an energy independence profile, took the 

initiative to provide funding for a small number of projects, such as a prototype OWC 

in the Portuguese Azores and an ‘OSPREY’ OWC at Dounrey in Scotland.  

A review conducted by the ETSU Chief Scientists’ Group (Thorpe, 1992) concluded 

that: 

� The technically achievable (nominal) U.K offshore wave energy resource is 

large (7-10 GW annual average, equivalent to 61-87 TW h/ year)  

� In the long term, the wave energy concept could help to reduce the magnitude 

of global warming. 

Within the context of this section there will also be a review of the devices and 

methods developed in order to efficiently extract large amounts of wave energy. The 

wave energy converters will be separated in two categories. The first category 

corresponds to the onshore (fixed) wave energy devices whilst the second one 

corresponds to the offshore (fixed or freely floating, and underwater) converters. Most 

of the collected data and pictures that are presented below were taken from Duckers 

(1984) and Ross (1995) wave energy reviews. 
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3.1.4 Onshore wave energy converters 

 

• Tapered Channel (TAPCHA�) 

 

Figure 3.1.4.1  Graphical representation of the tapered channel (TAPCHAN). [Duckers (1984)] 

 

The tapered channel wave energy converter or TAPCHAN is a very simple concept 

which takes advantage of the kinetic energy of the incoming waves as they move 

towards it. The TAPCHAN scheme was originally designed as a shoreline device but 

the current trend for offshore energy converters led to a redesign of this concept so as 

to be able to perform as a floating device as well.  The TAPCHAN scheme reviewed 

here is the shoreline device presented in Figure (3.1.4.1).  

-  Method 

The TAPCHAN device works as a hybrid hydro power device since it stores water in 

order to take advantage of its potential energy and then convert the latter into 

electricity via hydro turbines (Kaplan).  The device consists of: 

�  A 40m wide horn-shaped collector called the mouth. 

� A tapered channel where the incoming waves proceed towards the reservoir. 

� A reservoir where the incoming waves store.  

Dimensions: The channel walls of the prototype are 10m high                              

(from 7m below sea level to 3m above) and 170m long.  

� A low-head Kaplan turbine system. This powers a 350kW induction 

generator, which delivers electricity into the Norwegian grids.  

-  Principle 

Through the mouth, waves enter into the reservoir via an ever-narrowing channel, 

which amplifies their energy as they gain in height. Due to channel geometry the 
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waves are augmented and spilled in the reservoir.  From there, the water is returned 

back to the sea via the low-head Kaplan turbine system. 

-  Advantages 

� High reliability and low maintenance costs due to the very few moving parts.  

� The storage reservoir also helps to smooth the electrical output, as in hydro 

power plants.  

� Integral storage capacity, which is generally not found in other wave energy 

converters. 

� Cost reduction may also be achieved if a shorter channel is implemented in the 

design.   

Several TAPCHANs are being planned, in Indonesia, Tasmania and Shetland  

-  Disadvantages 

� The TAPCHAN scheme has a rather limited range as it’s useful when situated 

in very energetic wave climates. 

� In order to achieve a significant amplification of the incoming waves the shore 

should be close to deep waters. 

� Useful only when small tidal variability occurs (less than 1.0m). 

� Requires appropriate morphology of the shoreline. 

 

3.1.5 Offshore wave energy converters 

 

• Backward Bent Duct Buoy – (BBDB) and 'Whale’ 

 

Figure 3.1.5.1. The Backward Bent Duct Buoy. [Duckers (1984)] 
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• The Whale 

 

 

Figure 3.1.5.2.  The “Whale” WEC. [Duckers (1984)] 

 

 

Figure 3.1.5.3. Photograph of the “Whale” WEC 

 

-  Method 

The operating principle of both Whale” and BBDB is largely based upon the OWC 

principle. Both devices are floating ones and they perform best when deployed at very 

deep waters.  

-  Advantages 

� Both the “Whale” and BBDB have the ability to harvest more energy than any 

fixed, on-shore, devices as the wave power density is greater offshore than in 

shallow waters.  

� There is no restriction with respect to the deployment of large arrays of such 

devices. 

�  As far as the “Whale” is concerned its enormous dimensions in conjunction 

with its ability to produce electricity, results in a very cost effective scheme. 

 



Chapter 3.       The Oscillating Water Column - Wave Energy Converter (OWC-WEC) 

[3~8] 

 

-  Disadvantages 

� A rather massive structure is required to provide a reasonably stable frame of 

reference. 

� High initial capital cost. 

 

• Circular Clam 

-  Method 

The circular Clam may be considered as a very large floating OWC, suitably designed 

for deep water (40-100m at full scale), consisting of 12 interconnected air chambers, 

or cells, arranged around the circumference of a toroid, as it may be observed from 

Figure (3.1.5.4). 

 

Figure 3.1.5.4.  The circular Clam [Duckers (1984)] 

 

According to Duckers (1984) detailed description and as shown in Figure (3.1.5.4), 

should the circular clam be constructed in full scale, this device would be 60m or so 

in diameter. Each cell is sealed against the sea by a flexible reinforced rubber 

membrane. Waves cause the movement of air between cells. Air, pushed from one 

cell by the incident wave, passes through at least one of the 12 Wells turbines on its 

way to fill other cells. As the air system is sealed, this flow of air will be reversed as 

the positions of wave crest and trough on the circle change, see Figure (3.5.1.5).  

 

Figure 3.1.5.5. Cross-section of the Clam. [Duckers (1984)] 
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•   Salter’s Duck 

-  Method 

The Edinburgh Duck, presented in Figure (3.1.5.6), energy device is considered to be 

one of the most highly sophisticated wave energy converters as it was designed in 

order to match the orbital motion of the water particles, as shown in Figure (3.1.5.7). 

 

 

Figure 3.1.5.6.  Salter’s Duck. [Duckers (1984)] 

 

 

Figure 3.1.5.7. Orbital motion of water particles. [Duckers (1984)] 

 

 

This concept is very promising as it may achieve quite high efficiency rates. As far as 

the long waves are concerned the device may be able to be adjusted accordingly by 

control of the flexure of the spine through its joints. The concept is theoretically one 

of the most efficient wave energy schemes, but it will take some years before fully 

developing the system with respect to every engineering aspect. 
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• The Pelamis  

The Pelamis is an articulated semi-submerged structure with sections linked by 

hinged joints and hydraulic rams are used to pump  high-pressure oil through 

hydraulic motors. The Pelamis device is usually moored in a typical fashion in order 

to maintain position and direction, while a number of such devices can be connected 

in the sense of a wave farm. A commissioned 750kW (3x250) full-scale prototype, 

shown in Figure (3.1.5.8), is 120m long and 3.5 m in diameter and it consists of three 

modules where each of them contains a complete electro-hydraulic power generation 

system.  

  

 

Figure 3.1.5.8. The Pelamis, fully commissioned, device during [Source: Ocean Power Delivery]. 

 

• Ocean Swell Powered Renewable Energy (Osprey) 

-  Method 

The OSPREY is actually an OWC with four Wells turbines. 

-  Dimensions and Design (
3
) 

OSPREY 1 was 28m high and designed to stand on the sea bed in 14m of water, 

300m from the shore and be held in position by large ballast tanks. 

 

 

                                                 

(3) Wavegen Website: http://www.wavegen.co.uk 
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Figure 3.1.5.9. Cross section of the bottom standing OSPREY 1. [Duckers (1984)] 

 -  Advantages 

� it can capture smaller waves coming from other directions other than the seaward 

frontage.  

� It can be situated almost everywhere near the shore and quite easily. 

� Future prospects are on the way, see WOSP (3.5 MW) in Figure (3.1.5.10).   

-  Disadvantages 

� Structural sensitivity to the sea conditions. During the first day of the 

prototype’s deployment and before the ballast tanks were filled a sudden storm 

damaged the body of the device and consequently sunk it before the device 

managed to obtain a fixed position.    

� It cannot be deployed in deep waters. 

�  

Figure 3.1.5.10. Artistic representation of the WOSP. [Duckers (1984)] 
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For reasons of illustration, the rest of the wave energy devices are just going to be 

displayed without entering into any level of detail with respect to their design or 

principles of operation.  

• Frog 

 

Figure 3.1.5.11.  The pitching and surging FROG wave energy converter. [Duckers (1984)] 

• Mace 

 

Figure 3.1.5.12. Edinburgh University “Mace”. [Duckers (1984)] 

• Ecovision Lilypad 

 

Figure 3.1.5.13. Ecovision Lilypad. [Duckers (1984)] 
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• Tethered buoy 

 

Figure 3.1.5.14.  Tethered buoy. [Duckers (1984)] 

 

• Sweedish Hosepump   

 

 

Figure 3.1.5.15.  Sweedish Hosepump. [Duckers (1984)] 

 

• ,EL 

 

Figure 3.1.5.16. A row of NEL-OWC WEC-breakwaters. [Duckers (1984)] 
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3.1.6   Discussion: wave energy against other renewable sources 

  

In an attempt to make a comparison between wave energy and the other renewable 

sources, the pros and cons of the wave energy scheme against the latter are illustrated 

as follows: 

-  Pros 

� The wave energy may be extracted via a wide variety of designs and concepts, 

the choice of which can be made on the basis of wave climate and purpose of 

operation (islands or larger electrical grids). This variety is not integrated in 

other sources. 

� All converters are more environment friendly than any other renewable energy 

power plants.  

� Converters, in some cases can offer protection to ports and harbours, acting as 

wave-breakers. No other sources can provide this kind of protection. 

� The economic status of the wave energy may be considered as sufficient and 

its future prospects promising. 

� Some converters can achieve high efficiencies at very energetic seas 

producing large power outputs, without affecting the ecosystem in any way. 

Again, this is not the case with any other renewable sources of energy. 

� The potential of wave energy is enormous, see Figure (3.1.6.1), and should a 

good fraction of it be harvested, a great deal of it may be incorporated in the 

already existing electricity grid. 

 

Figure 3.1.6.1. Global wave power distribution in kW/m of crest length. 
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-  Cons 

� The power output may be fluctuating considerably due to the irregular nature 

of the sea waves. This may result in loss of extracted energy in order to 

provide the grid with the appropriate smoothed voltage.  

� The wave-generated electricity is still more expensive than the corresponding 

wind-generated or the current electricity price in EU. 

� Needs a lot of financial support and sponsoring in order to achieve more cost 

effective designs. 

� Maximum efficiency is usually difficult to be achieved due to the irregularity 

in wave amplitude, phase and direction.  

� In extreme weather conditions, some of the designs have proved to be 

defective. 

 

3.2   Oscillating Water Column-Wave Energy Converter (OWC-WEC) 

3.2.1 Introduction  

 

The modern oscillating water column (OWC) originates from a design made by a 

former Japanese Naval Commander in 1947. According to the OWC wave energy 

converter principle, the flow of the waves is converted into a stream of air, which in 

turn drives an air turbine. Professor Masuda first invented a device based upon that 

principle. Although the original generating capacity was very small, this new concept 

was considered as very promising and with great potential of improvements.  

In the beginning one-way air turbines were implemented in the design and very low 

efficiencies were obtained. With the invention of the Wells turbine the device’s 

efficiency was significantly improved as this turbine is able to rotate in a bi-

directional way allowing  for electricity to be generated during both compression and 

decompression  (
4
) stages.    

 

 

                                                 
(4) Compression: Internal sea level rises and as soon as the air pressure insides the OWC becomes greater than the 

ambient one, air flows  out of the chamber----Decompression: Internal sea level  falls  and air enters  the  chamber. 
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Figure 3.2.1.1. Graphical representation of the Islay OWC-WEC [Duckers (1984)] 

 

Several OWC designs were suggested over the last 20 years, but only a few managed 

to be commissioned achieving moderate to good efficiencies (Islay, Kvarner). In order 

to optimize the design of the OWC scheme with respect to the incoming waves and at 

the same time protect it from severe storms, a construction sequence of an artificial 

gully was proposed by the Queen’s University, Belfast as it can be observed from 

Figure (3.2.1.2).  

 
Figure 3.2.1.2. Construction sequence of the OWC artificial gully 

 

The (onshore) oscillating water column wave energy converter (OWC-WEC) has the 

remarkable feature of being the recipient of a continuous energy flow without 

provoking any severe disturbance to the form, flux or the intensity of this energy flow. 
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In addition, the OWC principles of operation may also apply to more than one device. 

Therefore, should one understand the basic principles governing the OWC 

performance, consequently may also become familiar to the underlying design of 

more advanced systems driven by these principles (floating OWC, arrays of OWCs, 

etc).  

This device can be regarded as a mechanical complex system consisting of  

• A chamber whose hydrodynamic characteristics and optimum geometry can 

be determined by experimental or numerical investigation, as in our case, 

• By pass or throttle valves or both situated on the chamber in order to control 

the dynamic pressure fluctuation and sustain it to an optimal level with respect 

to the efficient flow rates of the successive turbine during the compression and 

decompression processes. 

• An air turbine, responsible for converting this pressure fluctuation into 

mechanical energy through stators and rotors. This air turbine is usually of the 

standard Wells type but given its rather medium efficiency and limited range 

of efficient flow rates, attempts are made to evolve or redesign in some cases 

the air turbine concept in every aspect.  

• An induction generator which is powered by the turbine so as electricity is 

converted from mechanical shaft power.  

 

3.2.2 A brief  overview of mathematical models of the OWC-WEC 

 

The overall mathematical modeling of the physics inside the OWC associates, most of 

the times, hydrodynamic (linear and non linear) and thermodynamic (non linear) 

theory. In several cases, advanced electromechanical descriptions are sought and 

implemented, see Evans (1982) and Falnes and McIver (1985) and Falnes (2002), in 

order to describe the operation of such power plants in terms of already established 

theory and techniques. This kind of modeling is based mainly on classical linear water 

wave theory, Mei (1983) Evans and Porter (1995), although non linear 

approximations have been derived as well by Korde (1997a, 1997b). Bredmo et al 

(1996) derived a linear modeling of the OWC including viscous loss, while another 

notable work is the one made by Brito-Melo et al (2001) where again within the 

context of linear water wave theory a 3-D radiation-diffraction boundary element 

code was developed. Finally, in the works  of Falcao (2001,2002) and Falcao et al 
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(1999, 2002) a systematic effort was made in order to present a realistic hydro-

thermodynamic model of the operation of a OWC power plant either under harmonic 

or under stochastic forcing. 

In order to obtain the optimum performance, one must first clarify the mechanical 

couplings taking place at some points in the system. Concisely, the first main 

coupling occurs between the volume flux of the incident water waves inside the 

chamber of the oscillating water column and the radiation conditions that occur during 

the filling and discharge processes. Olson (1958) and Evans (1982), provided for this 

kind of couplings specific reciprocity relations for which it can be said that they 

originate from techniques and methods usually found within the context of the 

electromechanical theory. In addition, the dynamic pressure undergoes certain 

thermodynamic processes, with respect to the compression or decompression of the 

entrapped air, which on the other hand depend on the thermodynamic states and 

assumptions made at the inlets and outlets of the valves (flow regulators) as well as of 

the turbine. Thus, it can be said that from the far field of the sea, where the 

mathematical modeling begins, until the last stage of the system where electricity is 

generated, this engineering concept maintains a quite complex and reciprocal 

character. Even though it is so far approximated through linear modeling, a more 

sophisticated mathematical modeling will be developed and outlined in the following 

sections and chapters. 

 

3.2.3 Operational parameters 

 

Comparing several devices with respect to their operating costs, power capacity or 

mean efficiency, one cannot produce definite results with respect to the most optimum 

design. One must also take into account the range of operation or flexibility with 

regard to the possible allocations of the site of construction. The situation is getting 

even more complicated should one try to consider additional parameters such as: 

� The intensity of the wave energy. 

� The magnitude of the depth of the sea bed. 

� The sea spectrum. 

� Currents. 

� Wind forces.  

� Variable bathymetry.  
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Incorporating all the above environmental characteristics we end up with really 

complicated criteria of selection as far as the most optimum concept is concerned. 

Therefore, instead of comparing the devices with regard to their, difficult to estimate, 

actual performance, it is easier to set as the major criterion the flexibility of the design 

to adjust well in various operating conditions. According to this criterion the OWC is 

found to be the most suitable design even as an onshore structure. This is due to the 

fact that the operation of the OWC device is highly adjustable since the driving force 

is the pressure difference that arises from the volume flux of the seawater inside the 

chamber of the device. This property can be quantified without significant errors 

during the different stages of the process through hydrodynamic, thermodynamic and 

turbomachinery theory and can be regulated via different methods of flow control.  

Thus, the system as a whole has no black boxes and the application of more advanced 

theories, in order to extend the first simplified approaches, can be superimposed 

thereafter. 

 

 

3.2.4 The economical aspects and future prospects for the OWC - WEC 

The economical aspects and future prospects are also very important decision factors. 

The predicted electricity costs compose a significant factor, as the converter should be 

able to produce cheap electricity in order to sustain an economically viable solution. 

Observing Figure (3.2.4.1) it is easy to deduct that the shoreline OWC provides the 

cheapest electricity when compared to other wave energy schemes.  

 

 
\ 

Figure 3.2.4.1. Predicted electricity costs 
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3.2.5 Information about commissioned OWC converters 

 

Thorpe (1992) made a very indicative summary of various OWC and TAPCHAN 

operational prototypes apposed in Tables (3.2.5.1 & 3.2.5.2) that follow. For a more 

updated review of wave energy technologies one may seek Thorpe (1999 or Falcao 

(2010).  

 

 

Table 3.2.5.1.  Prototypes 

 

Year Type Location Owner Installed 

capacity 

(kW) 

Comments 

1965 Navigation 

Buoy OWC 

Japan Maritime 

agency 

0.05 Several hundred now 

deployed around the 

coastline of Japan 

1978-

1986 

Kaimei Japan IEA 375-1000 No further interest in 

energy testing but 

fundamental data on 

moorings and material 

1983 OWC Sanze, Japan Mitui and Fuji 40 Low output, 

decommissioned after one 

year 

1985 OWC Toftestallen, Norway Kvaerner 

Brug 

600 Good performance. 

Destroyed by storms in 

December 1988 

1985 TAPCHAN Toftestallen, Norway Norwave 350 Good performance, still 

operational 

1985 OWC Neya, Japan Taisei Corp. 40 Wells turbine driving a 

heat generating eddy 

current-type device. Tests 

finished in 1988 

1988 OWC array Kujukuri, Japan Takenaka 

Komuten Co. 

30 Array of 10 OWCs, with 

rectifying valves feeding a 

common high-pressure 

reservoir. Planned to 

continue until 1995. 

1989 OWC Sakata, Japan Port & 

Harbour Res.  

Institute 

60 The OWC is an integral 

part of a new harbour wall. 

Now operational 

1991 OWC Islay, UK Queen’s 

University, 

Belfast 

75 Still operational. Over 

1000 hours of testing 

1991 OWC Trivandrum, India IIT Mandras 150 Near completion in 1992 

1995 OSPREY UK ART 2000 Pilot plant designed to 

operate near shore 
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Type Location Owner Installed 

Capacity 

(kW) 

Comments 

OWC Pico Island, Azores Portugal 350-500 Currently at planning 

stages 

Whale  Japan Japan Marine Science and 

Technology Centre 

100-400 Funding requested from 

Japanese authorities 

BBDB Japan  Ryokuseisha Corp. 330 1:10 model tested at sea 

Clam West coast of 

Scotland 

Convenrty University 2000 1:15 model tested in Loch 

Nes. Component 

development and 

theoretical modelling 

proceeding  

TAPCHAN Indonesia Norwave 1000-1500 Under consideration 

OWC Scotland UK Government 500-1000 Early stages of planning 

TAPCHAN Shetland, Scotland Norwave/ACER/Shetland 3000 Funding requested 

Table 3.2.5.2. Various designs and prospects  

 

3.3    OWC hydromechanics  

3.3.1 Introduction 

 

The objective of this section is three-fold: to decompose the dynamics of the OWC-

WEC into decoupled hydrodynamic systems or mechanisms, to develop the 

differential formulations for the derived subsystems, and to solve numerically each 

subsystem in order to be able to generate the appropriate transfer functions and 

implement the latter into a unified systemic scheme.    

Wave-energy converters of the oscillating-water-column (OWC) type with pneumatic 

power take-off may be modeled by the so-called method of ‘applied-pressure’ 

method.  Following the works by Evans (1982) and Evans & Porter (1995), the OWC 

system can be partitioned to a hydrodynamic and a thermodynamic part.  

The hydrodynamic part consists of the wave field inside and below the OWC chamber 

(see Figure 3.3.1.1), as well as the wave field outside of the chamber and offshore. 

The offshore end is excited by a far-field, incident waveform, and the in-chamber end 

is excited by the entrapped air pressure fluctuation with respect to atmospheric 

pressure. In consequence, the velocity potential inside the entire wave field is 

partitioned to a radiating and a scattering part while due to the linearity assumption, 

the two parts of the response may be superimposed at any point within the wave field 
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in order to give the value of any variable of interest e.g. velocity, pressure, wave 

height etc. Effectively, the hydrodynamic waveguide is modeled as a distributed 

linear system while the numerical schemes are also consistent with linear water wave 

theory. 

On the other hand, the thermodynamic part of the OWC system is modeled as a 

lumped but nonlinear system, following previous formulations of similar open 

thermodynamic systems similar to the ones that were developed in the work of 

Gyftopoulos & Beretta (1991) while the derived differential equations are originally 

formulated and solved in the time domain. 

For the analysis of a given OWC installation, i.e., with a priori knowledge of 

geometrical configuration data of the hydrodynamic waveguide and air chamber, 

turbine and possible bypass valve characteristics, the energy transfer relation, 

developed in this and next chapters,  between the wave field and the thermodynamic 

system is of major importance as it allows for the evaluation of the matching between 

the plant design and the wave climate at the installation site, specified by the power 

spectral density (psd) of the surrounding wave climate.  
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Figure 3.3.1.1:  Schematic presentation of OWC chamber. 
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It is obvious that with the aid of such decompositions, the design of the 

thermodynamic subsystem or the hydrodynamic waveguide, by altering the sea 

bottom conditions, can be modified within the context of an optimization process 

separately, in order to achieve improved performance.  

 

3.3.2 Hydrodynamic characteristics of the oscillating water column 

 

Next, the hydrodynamic characteristics of the oscillating water column for a constant 

depth sea bed will be investigated (
5
). A decomposition of the velocity potential is 

necessary, so as to model the diffraction of the incident wave (scattering problem) as 

well as the radiation due to the oscillation of the air inside the chamber of the device 

(radiation problem).  The method that is usually followed considers the wall’s 

thickness infinitesimal, see Evans et-al (1995).This is due to the fact that the latter’s 

dimensions are considered to be very small when compared to the waves’ magnitude. 

Despite this, a formulation for a finite wall-thickness problem is developed in order to 

enhance information with respect to any kind of design issues that may arise or effects 

the wall-thickness may have upon the wave elevation inside the chamber.  

According to this finite-thickness-wall approach, Mei et-al (1969) or Black et-al 

(1971),  the domain of definition of the problem is divided into three sub-regions  i.e. 

 

                   D = D1U D2 U D3.             (3.3.2.1) 

 

while for the infinitesimal-thickness wall case sub-region 2 is completely neglected, 

Evans (1995). 

Each sub-region is formulated separately from the other two, while appropriate 

matching conditions are applied to connect subsequent sub-regions. The matching 

conditions require continuity of the velocity potential (C
o
 continuity: dynamic 

condition), and continuity of the analogous horizontal spatial derivative i.e. velocity 

(C
1 
continuity: kinematic condition), on the interface of the two regions. As an 

example, the two matching conditions for the sub-regions 1 and 2 are presented in 

Equations (3.3.2.2) and (3.3.2.3) that follow 

                                                 

(
5
) The thermodynamic characteristics of the OWC that interconnect with the corresponding 

hydrodynamic ones will be discussed in a later section. 
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        (1) (2)Φ = Φ                  
(3.3.2.2) 

 

                 
(1) (2)

x x

∂Φ ∂Φ
=

∂ ∂
.               (3.3.2.3) 

 

3.3.2.1   Formulation of the general OWC hydrodynamic problem 

 

The formulation of the hydrodynamic problem, in the frequency domain, for the 

OWC as seen in Figure (3.3.2.1.1), under the assumption that the wave potentials are 

harmonic functions of time i.e. ( ) ( )Re expt i t
ο

φ ω
   Φ = ⋅ −    

, is presented in Equations 

(3.3.2.1.1) to (3.3.2.1.5). 

 

Figure 3.3.2.1.1 OWC domain decomposition 

 

According to these equations the velocity potential must satisfy the following 

conditions: 

• ∇ 2
 
ο

φ  = 0,           everywhere in the domain of the fluid   (3.3.2.1.1) 

 

• 

2

0

,   

     0,      
z

i p
on Si

g
z g

on Se

ο
ο

ω
φ ω

φ ρ

=

   − ∂  − =   ∂     

     (3.3.2.1.2) 
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• 

W

n

ο

φ

∂

 
 ∂ 
 ∂  

= 0,  on  every solid boundary of the chamber   (3.3.2.1.3) 

• 
z

ο

φ∂
∂
=0,         at sea bed       (3.3.2.1.4) 

• Radiation condition: 
ο

φ  and its termwise derivatives to be bounded  (3.3.2.1.5) 

 

Following Evans (1982), the velocity potential can be decomposed according to 

Equation (3.3.2.1.6) 

S R

i p

g

ο ο οω
φ φ φ

ρ
= −      (3.3.2.1.6) 

The above decomposition further leads to two new conditions for the scattering and 

radiation problem respectively as presented in Equations (3.3.2.1.7) and (3.3.2.1.8) 

2

0

0
S

S

z

z g

ο
ο

φ ω
φ

=

 
 ∂ − = ∂ 
 

     (3.3.2.1.7) 

2

0

1,      

0,      

R
R

z

on Si

on Sez g

ο
ο

φ ω
φ

=

    ∂  − =   ∂    

    (3.3.2.1.8) 

 

The formulation is completed by the appropriate conditions at infinity, requiring that  

S
ο

φ  behaves like the superposition of a plane incident and a reflected wave, while  

R
ο

φ  

behaves always as a outgoing wave.  

The corresponding expressions for the scattered and radiated velocity potentials at the 

far field are presented in Equation (3.3.2.1.9) and (3.3.2.1.10), respectively 

 

( )
0 0

1( ) ( )

0 0
( , ) { } ( ),         as 

S

ik x ik xSx z e B e Z z x
ο

ε ε
φ

− − −∼ + → ∞ɶ           (3.3.2.1.9) 

( )1( )

0
( , ) ( ),          

R

R ik xx z A e Z z as x
ο

εφ −∼ → ∞ɶ    (3.3.2.1.10) 

 

where A
R
 is unknown and it denotes the amplitude of the radiated wave due to the 

oscillation/forcing of the air of the chamber above the internal free surface. 
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B0
S
   is also unknown and it denotes the amplitude of the reflected incident wave with 

a modulus of one, as all incident wave energy must be reflected at this problem while 

for both of the above propagating modes the wavenumber 
( )1

0 0
k k=  is the positive real 

root of the dispersion relation, formulated for a constant h  and the vertical 

eigenfunction is equal to  
( )

( )

( )

1

01

0 1

0

cosh ( )
( )

cosh( )

k z h
Z z

k h

 +  =ɶ . 

In accordance with the domain decomposition, the wave potentials Sφ  and Rφ  will be 

obtained by formulating complete modal-type representations in each sub-region (see, 

e.g. Mei & Black, 1969, Black et al, 1971, Evans and Porter 1995), and requiring 

their complete matching at the vertical interfaces separating the three sub-domains 

(matching of the potential and its normal derivative). 

Within the context of the following sections a formulation of the problem for every 

sub-region will be made separately and following that, the matching conditions 

presented in Equations (3.3.2.2) and (3.3.2.3) will be applied in conjunction with the 

rest of the boundary conditions in order for the coefficients of the velocity potentials 

to be estimated. In accordance to the above, the problem will be focusing on the 

interfaces between the connecting regions as well as on the impermeabilities of any 

solid boundary. We note that the axis origin is not set on the front wall of the OWC 

structure but at the back wall as shown in Figure (3.3.2.2). 

  

3.3.2.2  Diffraction problem 

 

As an incident wave approaches the oscillating water column, the sea level inside the 

chamber begins to oscillate functioning as a pump to the rest of the system. However, 

besides the incoming wave, scattered waves are also produced due to the existence of 

solidity areas in the water environment. The problem is reduced to the case of a 

regular monochromatic wave approaching a 2-D structure, see Figure (3.3.2.1.1), and 

satisfying the conditions stated in Equations (3.3.2.1.1) - (3.3.2.1.10) but in the 

absence of an imposed pressure i.e. radiation problem.   The problem may be treated 

in a similar way as the scattering of the waves by two equally submerged barriers in 

finite depth, according to Evans and Porter (1995).   
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-  Velocity Potentials 

 

The general representation of the velocity potential for each sub-region is 

Region 1 

(ε< x) 

     

(1) (1) (1)
0 0

(1)

( - ) ( - ) ( - )(1) (1) (1) (1) (1) (1)

0 0 0 0
1

( , ) ( ) ( ) ( )n

S

ik x ik x k xS S S

n n
n

x z e Z z e Z z e Z z
ο

ε ε ε
φ

∞
− −

=

= Α + Β + Β∑ɶ ɶ ɶ   

         (3.3.2.2.1) 

where (1)

0

S igα

ω

−
Α = with α  being the amplitude of the incident wave, (1)

0

SΒ   is the 

complex amplitude of the propagating diffracted wave and (1)S

n
Β  denotes for the 

complex amplitudes of the evanescent modes of diffracted wave.  The vertical 

structure of the modes ( )1,2,...n =  is given by 

( ) ( ) ( )( ) ( )( )1 1 1
( ) cos / cos

n n n
zZ k z h k h= + ,                       (3.3.2.2.1a) 

and the infinite set of numbers 
( ){ }1

, 1, 2,..
n

k n =  are  the roots of the dispersion 

relation 

 ( ) 2tan , /K k kh K gω= − = .                                            (3.3.2.2.1b)         

Region 2 

(b<x<ε) 

 

( ) ( )(2) (2)

(2)

( ) ( )(2) (2) (2) (2) (2) (2)

0 0 0
1

( , ) ( ) ( )n n

S

k x b k xS S S S

n n n
n

x z A x B Z z A e B e Z z
ο

ε
φ

∞
− − −

=

= + + +∑ ɶ

   

(3.3.2.2.2) 

 

where the numbers 
( ){ }2

, 1, 2,..
n

k n =  and the functions  
( ) ( ){ }2

, 0,1, 2...
n

Z z n =  

appearing in the above expansion are given as the eigenvalues and eigenfunctions, 

respectively, of vertical Sturm-Liouville problems formulated in the interval 

1
h z h− < <− , satisfying Neumann boundary conditions at both ends 

(
1

andz h z h= − = − ).  

Thus, 
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 ( )2

n
k  

(2)( )
n

X x  (2)( )
n

Z zɶ  

   n=0  

0 
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0 0

S SA x B+  

1

1
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n

h h

π
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Table 3.3.2.2.1  Eigenvalues  and Eigenfunctions  of  the S-L problem. Diffraction Case. 

Region 3 

(0<x<b) 

(3)

(3) (3) (3) (3) (3) (3)

0 0
1

( , ) cos( )  ( ) cosh( )  ( )

S

S S

n n n
n

x z B k x Z z B k x Z z
ο

φ
∞

=

= +∑ɶ ɶ             (3.3.2.2.3) 

 

It should be noted here that as regions 1 and 3 have the same depth (1) (3)

n n
k k=  and 

(1) (3)( ) ( )
n n

Z z Z z=ɶ ɶ . 

-  Matching Conditions 

The solution of the hydrodynamic scattering problem is finally obtained by estimating 

the unknown complex coefficients  
( ) ( )

, , ,1,2, 3, 0,1, 2,....
i S i S

n n
A B i n= = , appearing 

in the expansions (3.3.2.2.1) , (3.3.2.2.2) and (3.3.2.2.3) in the sub-domains  

1 2 3
, ,D D D , respectively. According to the matching conditions, we require 

continuity of the wave potential on the vertical interfaces separating the three sub-

domains as follows: 

Sub-Regions D1  and  D2. 

C
o
 continuity at the interface 

1
D∂  (between sub-regions 

1
D  and

2
D ) 

For the corresponding velocity potential Equation (3.3.2.2) becomes,  

(1) (2)S S
ο ο

φ φ=      
(3.3.2.2.4) 

Multiplying each side by the vertical orthonormal (2)( )
m

Z zɶ  and then integrate over the 

interval 
1

[ , ]h h− −  gives 

1
(1)

(2)( )

h S

m

h

Z z dz
ο

φ

−

−
∫ ɶ  

= 

1
(2)

(2)( )

h S

m

h

Z z dz
ο

φ

−

−
∫ ɶ     (3.3.2.2.5) 
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where we have set  
( )

( ) ( )

0

( ) ( )

i S
N

i i

n n
n

X x Z z
ο

φ
=

= ∑ ɶ  for i=1,2      (3.3.2.2.6) 

 

Applying  now Equation (3.3.2.2.6) in Equation (3.3.2.2.5), in conjunction with the 

orthonormal property of the vertical eigenfunction gives 

 

1

(1) (1) (2) (2)

0

( ) ( )

h
N

n n m m
n h

X Z z Z z dz X

−

= −

=∑ ∫ ɶ ɶ     (3.3.2.2.7) 

  

C
1
 continuity at the interface 

1
D∂  (between sub-regions 

1
D  and

2
D ) 

For the corresponding velocity potential Equation (3.3.2.3) becomes,  

  

(1) (2)

         

S S

x x

ο ο

φ φ∂ ∂
=

∂ ∂
      (3.3.2.2.8) 

Multiplying each side by the vertical orthonormal function (1)( )
m

Z zɶ and then integrate 

over the interval  
1

[ , ]h h− −  gives 

 

1 1

(1) (2)

(1) (1)( ) ( )

S S
h h

m m

h h

d d
Z z dz Z z dz

dx dx

ο ο

φ φ
− −

− −

=∫ ∫ɶ ɶ  
   (3.3.2.2.9) 

 

For the interval 
1

[ , 0]h−  the corresponding integral is 

 

1

(1)

0

(1)( ) 0

S

m

h

d
Z z dz

dx

ο

φ

−

=∫ ɶ .    (3.3.2.2.10) 

 

From Equations (3.3.2.2.9) and (3.3.2.2.10) and with the aid of Equation (3.3.2.2.6) 

on the resulting sum gives  

 

10(1) (2)
(1) (1) (2) (1)

0 0

( ) ( ) ( ) ( )

h
N N

n n

n m n m
n nh h

dX dX
Z z Z z dz Z z Z z dz

dx dx

−

= =− −

=∑ ∑∫ ∫ɶ ɶ ɶ ɶ   (3.3.2.2.11) 

 

whilst, due to the orthonormal property of the vertical eigenfunctions over the interval     

[ , 0]h−  i.e. 

0

(1) (1)( ) ( )
n m

h

Z z Z z dz

−
∫ ɶ ɶ  = δmn  Equation (3.3.2.2.11) becomes  

 



Chapter 3.       The Oscillating Water Column - Wave Energy Converter (OWC-WEC) 

[3~30] 

 

  

1(2) (1)
(2) (1)

0

( ) ( )

h
N

n m

n m
n h

dX dX
Z z Z z dz

dx dx

−

= −

=∑ ∫ ɶ ɶ .                (3.3.2.2.12) 

 

 

-  Resulting Matching Equations Between Sub-Regions D1 and D2 
 

C
o
 continuity 

Using Equation (3.3.2.2.7) the corresponding resulting matching equations for the 

continuity of the velocity potential at x = ε are presented in Equations (3.3.2.2.13 ) 

and ((3.3.2.2.14)  for m=0 and m ≠ 0 respectively. 

 

For m=0 and x=ε 

(1)(1) ( ) (1) (1) (2)

0 0 0 0

(1) (1) (2) (2) (2)

0 0 0
1

{ } ,

,

S ik S

N
S S S

n n
n

e Z Z

Z Z A B

ε

ε

−

=

Α + Β < > +

+ Β < > = +∑

ɶ ɶ

ɶ ɶ
             (3.3.2.2.13) 

For m ≠ 0 and x=ε 

(1)

(2)

(1) ( ) (1) (1) (2)

0 0 0

( )(1) (1) (2) (2) (2)

1

{ } ,

, n

S ik S

m

N
k bS S S

n n m m m
n

e Z Z

Z Z A e B

ε

ε

−

− −

=

Α + Β < > +

+ Β < > = +∑

ɶ ɶ

ɶ ɶ
  (3.3.2.2.14) 

where  

(1) (2),
n m

Z Z< >ɶ ɶ  = 

1

(1) (2)( ) ( )

h

n m

h

Z z Z z dz

−

−
∫ ɶ ɶ  . 

C
1
 continuity 

In a similar manner, using Equation (3.3.2.2.12) and after some manipulation, the 

corresponding resulting matching equations for the continuity of velocity at x = ε  are 

presented in Equations (3.3.2.2.15) and (3.3.2.2.16) for m=0 and m ≠ 0 respectively. 

 

For m = 0 and x=ε 

(1)

(2)

(1) (1) ( ) (1) (1) (2) (2) (1)

0 0 0 0 0

( )(2) (2) (2) (2) (2) (1)

0
1

( ) ( ) ( ) ,

[( ) ( ) ] ,n

S ik S S

N
k bS S

n n n n n
n

ik e ik A Z Z

k A e k B Z Z

ε

ε

−

− −

=

− Α + Β = < > +

+ − + < >∑

ɶ ɶ

ɶ ɶ
             (3.3.2.2.15) 
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For m ≠ 0 and x=ε 

(2)

(1) (1) (2) (2) (1)

0 0

( )(2) (2) (2) (2) (2) (1)

1

( ) ( ) ,

[( ) ( ) ] ,n

S S

m m m

N
k bS S

n n n n n m
n

k A Z Z

k A e k B Z Z
ε− −

=

− Β = < > +

+ − + < >∑

ɶ ɶ

ɶ ɶ
             (3.3.2.2.16) 

 

Sub-Regions D2 and D3 

C
0
 and C

1
 continuity at the interface 

2
D∂  (between sub-regions 

2
D  and

3
D ) 

In a similar manner to the analysis performed above, the expressions presented in 

Equations (3.3.2.2.17) and (3.3.2.2.18), represent the matching conditions in terms of 

separated variables as follows 

C
0
 continuity 

  

1

(3) (3) (2) (2)

0

( ) ( )

h
N

n n m m
n h

X Z z Z z dz X

−

= −

=∑ ∫ ɶ ɶ               (3.3.2.2.17) 

C
1
 continuity 

 

1(2) (3)
(2) (3)

0

( ) ( )

h
N

n m

n m
n h

dX dX
Z z Z z dz

dx dx

−

= −

=∑ ∫ ɶ ɶ .              (3.3.2.2.18) 

-  Resulting Matching Equations Between Sub-Regions D2 and D3 

 

C
o
 continuity 

The corresponding resulting matching equations for the continuity of the velocity 

potential at x=b are presented in Equations (3.3.2.2.19) and (3.3.2.2.20) for m=0 and   

m ≠ 0 respectively. 

 

For m=0 and x=b 

  

(3) (3) (3) (2)

0 0 0

(3) (3) (3) (2) (2) (2)

0 0 0
1

cos( ) ,

cosh( ) ,

S

S S S

n n n
n

B k b Z Z

B k b Z Z A b B
∞

=

< > +

+ < > = +∑

ɶ ɶ

ɶ ɶ
             (3.3.2.2.19) 

For m ≠ 0 and x=b 

(2)

(3) (3) (3) (2)

0 0

( )(3) (3) (3) (2) (2) (2)

1

cos( ) ,

cosh( ) , ( )m

S

m

k bS S S

n n n m m m
n

B k b Z Z

B k b Z Z A B e
ε

∞
−

=

< > +

+ < > = +∑

ɶ ɶ

ɶ ɶ
  3.3.2.2.20) 
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C
1
 continuity 

The matching equations for the continuity of the velocity at x=b are presented in 

Equations (3.3.2.2.21) and (3.3.2.2.22) for m=0 and m ≠ 0 respectively. 

 For m = 0 and x = b  

(2)

(2) (2) (3)

0 0 0

( )(2) (2) (2) (2) (2) (3)

0
1

(3) (3) (3)

0

( ,

( ) ( ) ) ,

( ) sin( )

n

S

k bS S

n n n n n
n

S

A Z Z

k A k B e Z Z

k B k b

ε
∞

−

=

< > +

+ − + < >=

= −

∑

ɶ ɶ

ɶ ɶ                          (3.3.2.2.21)  

For m ≠ 0 and x = b 

(2)

(2) (2) (3)

0 0

( )(2) (2) (2) (2) (2) (3)

1
(3) (3) (3)

( ,

( ) ( ) ) ,

( ) sinh( )

n

S

m

N
k bS S

n n n n n m
n

S

m m m

A Z Z

k A k B e Z Z

k B k b

ε−

=

< > +

+ − + < >=

=

∑

ɶ ɶ

ɶ ɶ                         (3.3.2.2.22)                        

 

3.3.2.3  Radiation Problem 

 

The oscillation of the air inside the chamber of the OWC, as a result of an established 

dynamical phenomenon in this complex system, performs in turn as a pulsating wave 

generating source.  

-  Velocity Potentials 

 

The general representation of the velocity potential for each sub-region is 

Region 1 

(ε< x) 

(1)(1)

(1)

( - )(1) ( - ) (1) (1) (1)

0 0
1

( , ) ( ) ( )n

R

k xR ik x R

n n
n

x z A e Z z A e Z z
ο

εεφ
∞

−

=

= +∑ɶ ɶ    (3.3.2.3.1) 

 

Region 2 

(b<x<ε) 

 
(2) (2)

(2)

(2) (2) (2)

0 0 0

( ) ( )(2) (2) (2)

1

( , ) ( ) ( )

( ) ( )n n

R

R R

k x b k xR R

n n n
n

x z A x B Z z

A e B e Z z

ο

ε

φ
∞

− − −

=

= + +

+ +∑ ɶ
    (3.3.2.3.2) 

 

 where 
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 (2)( )
n

X x  (2)( )
n

Z zɶ  

   n=0 (2) (2)

0 0

R RA x B+  

1

1

h h−
 

n=1,…� (2) (2)( ) ( )(2) (2)n n
k x b k xR R

n n
A e B e

ε− − −+  

1

2 cos 2( ) cos[ ( )

cos( )
n n

n

k h k z h

h h k h

+
−

 

Table 3.3.2.3.1  Eigenvalues  and Eigenfunctions  of  the S-L problem. Radiation case.  

 

Region 3 

(0<x<b) 

(3)

(3) (3) (3) (3) (3) (3)

0 0
1

1
( , ) cos( )  ( ) cosh( )  ( )

R

R R

n n n
n

x z B k x Z z B k x Z z
ο

φ
∞

=

= + +
Κ∑ɶ ɶ   (3.3.2.3.3) 

 

According to Evans (1995), the term 
1

Κ
 is included in Equation  (3.3.2.3.3)  so as to 

satisfy the free surface boundary condition presented in Equation  (3.3.2.1.8). It 

should be noted here that as regions 
1

D  and 
3

D  have the same depth then (1) (3)

n n
k k=  

and (1) (3)( ) ( )
n n

Z z Z z=ɶ ɶ . 

-  Matching Conditions 

The solution of the hydrodynamic radiation problem is finally obtained by calculating 

the unknown complex coefficients 
( ) ( )

, , ,1, 2, 3, 0,1, 2,....
i R i R

n n
A B i n= = , appearing 

in the expansions (3.3.2.3.1) , (3.3.2.3.2) and (3.3.2.3.3) in the sub-domains  

1 2 3
, ,D D D , respectively. The latter are determined by means of the matching 

conditions, requiring continuity of the wave potential on the vertical interfaces 

separating the three subdomains: 

 

Sub-Regions D1 and D2 

C
0
 and C

1
 continuity at the interface 

1
D∂  (between sub-regions 

1
D  and

2
D ) 

For the corresponding, radiating, velocity potential Equation (3.3.2.2) becomes,  

(1) (2)R R
ο ο

φ φ=        
(3.3.2.3.4) 
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Multiplying each side by the vertical orthonormal (2)( )
m

Z zɶ and then integrate over the 

interval 
1

[ , ]h h−  gives 

1
(1)

(2)( )

h R

m

h

Z z dz
ο

φ

−

−
∫ ɶ  

= 

1
(2)

(2)( )

h R

m

h

Z z dz
ο

φ

−

−
∫ ɶ                            (3.3.2.3.5) 

where we have set  

( )

( ) ( )

0

( ) ( )

i R
N

i i

n n
n

X x Z z
ο

φ
=

= ∑ ɶ  for i=1,2      (3.3.2.3.6) 

Applying the expression presented in Equation (3.3.2.3.6) in Equation (3.3.2.3.5) in 

conjunction with the orthonormal property of the vertical eigenfunctions gives 

 

  

1

(1) (1) (2) (2)

0

( ) ( )

h
N

n n m m
n h

X Z z Z z dz X

−

= −

=∑ ∫ ɶ ɶ               (3.3.2.3.7) 

 

C
1
 continuity at the interface ∂D1 (between sub-regions 1 and 2) 

For the corresponding velocity potential Equation (3.3.2.3) becomes,  

(1) (2)

         

R R

x x

ο ο

φ φ∂ ∂
=

∂ ∂
      (3.3.2.3.8) 

Multiplying each side by the vertical orthonormal (1)( )
m

Z zɶ and then integrate over the 

interval 
1

[ , ]h h−  gives 

1

(1)

(1)( )

R
h

m

h

d
Z z dz

dx

ο

φ
−

−
∫ ɶ  

= 

1

(2)

(1)( )

R
h

m

h

d
Z z dz

dx

ο

φ
−

−
∫ ɶ       (3.3.2.3.9) 

For the interval [-h1,0] the corresponding integral is 

1

(1)

0

(1)( ) 0

R

m

h

d
Z z dz

dx

ο

φ

−

=∫ ɶ .    (3.3.2.3.10) 

From Equations (3.3.2.3.9), (3.3.2.3.10)  and (3.3.2.3.6) on the resulting sum gives  

10(1) (2)
(1) (1) (2) (1)

0 0

( ) ( ) ( ) ( )

h
N N

n n

n m n m
n nh h

dX dX
Z z Z z dz Z z Z z dz

dx dx

−

= =− −

=∑ ∑∫ ∫ɶ ɶ ɶ ɶ  (3.3.2.3.11) 
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whilst, due to the orthonormal nature of the vertical eigenfunctions over the interval     

[ , 0]h−   Equation (3.3.2.3.11) becomes  

 

1(2) (1)
(2) (1)

0

( ) ( )

h
N

n m

n m
n h

dX dX
Z z Z z dz

dx dx

−

= −

=∑ ∫ ɶ ɶ               (3.3.2.3.12) 

 

-  Resulting Matching Equations Between Sub-Regions D1 and  D2 

 

C
o
 continuity 

The corresponding resulting matching equations for the continuity of the velocity 

potential at x = ε are presented in Equations (3.3.2.3.13) and (3.3.2.3.14) for m =0 and 

m ≠ 0 respectively. 

 

For m=0 and x=ε 

(1) (1) (2)

0 0 0

(1) (1) (2) (2) (2)

0 0 0
1

,

,

R

N
R R R

n n
n

Z Z

A Z Z A Bε
=

Α < > +

+ < > = +∑

ɶ ɶ

ɶ ɶ
                   (3.3.2.3.13) 

For m ≠ 0 and x=ε 

(2)

(1) (1) (2) (1) (1) (2)

0 0
1

( )(2) (2)

, ,

n

N
R R

m n n m
n

k bR R

m m

A Z Z A Z Z

A e B
ε

=
− −

< > + < > =

= +

∑ɶ ɶ ɶ ɶ
              (3.3.2.3.14) 

where  

(1) (2),
n m

Z Z< >ɶ ɶ  =  

1

(1) (2)( ) ( )

h

n m

h

Z z Z z dz

−

−
∫ ɶ ɶ  and 

1

(1) (1)( ) ( )

h

n m

h

Z z Z z dz

−

−
∫ ɶ ɶ  = δmn 

 

C
1
 continuity 

The corresponding resulting matching equations for the continuity of the velocity at      

x = ε are presented in Equations (3.3.2.3.15) and (3.3.2.3.16) for m=0 and m ≠ 0 

respectively. 

For m = 0 and x=ε 

(2)

(1) (1) (2) (2) (1)

0 0 0 0

( )(2) (2) (2) (2) (2) (1)

0
1

( ) ,

[( ) ( ) ] ,n

R R

N
k bR R

n n n n n
n

ik A Z Z

k A e k B Z Z
ε− −

=

Α = < > +

+ − + < >∑

ɶ ɶ

ɶ ɶ
              (3.3.2.3.15)  
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For m ≠ 0 and x=ε 

(2)

(1) (1) (2) (2) (1)

0 0

( )(2) (2) (2) (2) (2) (1)

1

( ) ,

[( ) ( ) ] ,n

R R

m m m

N
k bR R

n n n n n m
n

k A Z Z

k A e k B Z Z
ε− −

=

− Α = < > +

+ − + < >∑

ɶ ɶ

ɶ ɶ
             (3.3.2.3.16) 

 

 

Sub-Regions D2-D3 

Once more the methodology used so far is again implemented in order to derive the 

matching conditions between sub-regions 2 and 3. 

 

C
0
 and C

1
 continuity at the interface 

2
D∂  (between sub-regions 

2
D  and

3
D ) 

The matching conditions are presented in terms of separated variables in Equations 

(3.3.2.3.17) and (3.3.2.3.18) respectively 

 

  

1

(3) (3) (2) (2)

0

( ) ( )

h
N

n n m m
n h

X Z z Z z dz X

−

= −

=∑ ∫ ɶ ɶ    (3.3.2.3.17) 

 

1(2) (3)
(2) (3)

0

( ) ( )

h
N

n m

n m
n h

dX dX
Z z Z z dz

dx dx

−

= −

=∑ ∫ ɶ ɶ  .              (3.3.2.3.18) 

 

-  Resulting Matching Equations Between Sub-Regions D2 and D3  

 

C
o
 continuity 

The corresponding resulting matching equations for the continuity of the velocity 

potential at x=b are presented in Equations (3.3.2.3.19) and (3.3.2.3.20) for m=0 and 

m ≠ 0 respectively. 

 

For m=0 and x=b 

 

(3) (3) (3) (2) (3) (3) (3) (2)

0 0 0 0
1

1

(2) (2) (2)

0 0 0

cos( ) , cosh( ) ,

1
( )

R R

n n n
n

h

R R

h

B k b Z Z B k b Z Z

Z z dz A b B
K

∞

=
−

−

< > + < >+

+ = +

∑

∫

ɶ ɶ ɶ ɶ

ɶ
 (3.3.3.2.19) 
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For m ≠ 0 and x=b 

(2)

(3) (3) (3) (2) (3) (3) (3) (2)

0 0
1

1
( )(2) (2) (2)

cos( ) , cosh( ) ,

1
( ) ( )m

R R

m n n n m
n

h

k bR R

m m m

h

B k b Z Z B k b Z Z

Z z dz A B e
K

ε

∞

=
−

−

−

< > + < >

+ = +

∑

∫

ɶ ɶ ɶ ɶ

ɶ
    (3.3.2.3.20) 

 

C
1
 continuity 

The corresponding resulting matching equations for the continuity of the velocity at 

x=b are presented in Equations (3.3.2.3.21) and (3.3.2.3.22) for m=0 and m ≠ 0 

respectively. 

 

For m = 0 and x = b  

(2)

(2) (2) (3)

0 0 0

( )(2) (2) (2) (2) (2) (3)

0
1

(3) (3) (3)

0

( ,

( ) ( ) ) ,

( ) sin( )

n

R

N
k bR R

n n n n n
n

R

A Z Z

k A k B e Z Z

k B k b

ε−

=

< > +

+ − + < >=

= −

∑

ɶ ɶ

ɶ ɶ     (3.3.2.3.21)  

For m ≠ 0 and x = b 

(2)

(2) (2) (3)

0 0

( )(2) (2) (2) (2) (2) (3)

1
(3) (3) (3)

( ,

( ) ( ) ) ,

( ) sinh( )

n

S

m

N
k bS S

n n n n n m
n

S

m m m

A Z Z

k A k B e Z Z

k B k b

ε−

=

< > +

+ − + < >=

=

∑

ɶ ɶ

ɶ ɶ                 (3.3.2.3.22) 

 

 

3.3.2.4    Solution matrices (Scattering and Radiation problem) 

 

Next, we identify through appropriate matrix algebra all the necessary unknown 

coefficients for both diffraction and radiation problems in order to determine the 

corresponding velocity potentials.  From the Equations (3.3.2.2.13) to (3.3.2.2.22), for 

the scattering problem, and Equations (3.3.2.3.13) to (3.3.2.3.22), for the radiation 

problem we arrange the equations in such a way so that we end up with the following 

corresponding matrix forms 
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11 12 13 14 ( ) 11

21 22 23 24 ( ) 21

31 32 33 34 ( ) 22

41 42 43 44 ( ) 31

I S

n S

II S

n S

II S

n S

III S

n S

S S S S B F
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where,   

• 
ijS and ijR  for , 1, 2, 3, 4i j = , are all ( ) ( )1 1N N+ × +  matrices ,where 

N stands for the number of modes used for each problem to achieve 

convergent solutions, 

•  ( ) ( ) ( ) ( ), , ,I S II S II S III S

n n n n
B A B B  and  ( ) ( ) ( ) ( ), , ,I R II R II R III R

n n n n
A A B B are the ( )1 1N + ×  

unknown coefficient matrices for the scattering and radiation problem 

respectively, 

• 
11 21 22 31, , ,
S S S S

F F F F  and 11 21 41 21, , ,
R R R R

F F F F  are the ( )1 1N + ×  forcing matrices 

for the scattering and radiation problems respectively. 
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The coefficient matrices are 
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Finally, the forcing matrices for the scattering problem  are  
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and for the corresponding ones for the radiation problem are 
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3.3.2.5  �umerical results and investigation of the performance of the OWC with 

respect to its geometric characteristics  

 

Next, we‘ll display some illustrative graphical representations of the both scattering 

and radiating wave fields based on the analytical solutions that were derived and 

solved in the way described above and following that, a number of 3-D design charts 

is also provided in order to study the combined effect of the front wall’s depth, 

distance from the shore and thickness for a rather wide range of wave frequencies, 

upon the mean wave elevation inside the OWC chamber. We emphasize on the mean 

wave elevation inside the OWC as it is the driving force for the operation of the plant. 

We must note here that the investigation procedure performed below is quite 

indicating as far as the dynamics involved inside the chamber are concerned. For this 

effort we used the scattering part of the wave field alone, as the radiating corresponds 

to mild restoring coefficient characteristics especially for low wave frequencies. In 

addition, we need to also impose the pressure fluctuation, above the corresponding 

surface, which is in turn dependent upon the OWC characteristics thus increasing the 

numerical computations, at this stage, to a disproportional level with respect to the 

effect the radiation contributes to the overall investigation. The complete model will 

be presented in detail in Section 4.3. 

 

3.3.2.5.1 Scattering wave field and wave elevation 

 

The scattering wave field, derived and explained above, shows how an incident wave 

approaches and gets diffracted by the presence of an OWC onshore energy device in 
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the absence of any imposed, other than the atmospheric, pressure field.  It is 

interesting to see how this field is distributed and modulated with respect to various 

geometric configurations of the OWC structure in conjunction with the frequency of 

the monochromatic incoming wave.   

The geometrical characteristics that we can vary are: 

• the distance d  between the back side of the OWC’s front wall from the back 

wall (shore) (F.W.DI.), 

• the depth of immersion 
1

h  of the OWC’s front wall (F.W.DE.), 

• and the thickness th  of that front wall (F.W.TH.). 

In addition we can control the constant water depth h  which is fixed throughout this 

analysis  at  ten (10) meters and the frequency f  of the incoming wave.  

First, we present three different configurations of the OWC for an incoming wave 

with frequency of 0.1 ( )f Hz=  and consequently of wavelength ( )λ  of 93.38m and 

of unit amplitude i.e.  a  = 1m. We note that the horizontal line between the front and 

back walls of the OWC represents the mean wave elevation inside the chamber i.e.  

 

 

(int)

1
( , )

FS

sc sc

OWC OWC OWC

D

x f dx
d

η η η

∂

≈ = ∫ .      (3.3.2.5.1.1) 

 

 

Figure 3.3.2.5.1.1. Front wall depth 1(m), distance 2(m) and breadth 20cm, and wave frequency 0.1 

(Hz).  
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Figure  3.3.2.5.1.2.Front wall depth 4(m), distance 2(m) and breadth 20cm, and wave frequency 0.1 (Hz). 

 

Figure  3.3.2.5.1.3.  Front wall depth 4(m), distance 5(m) and breadth 20cm, and wave frequency 0.1 

(Hz). 

 

Figure  3.3.2.5.1.4. Front wall depth 1(m), distance 2(m) and breadth 20cm, and wave frequency 0.2 

(Hz). 
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Figure 3.3.2.5.1.5. Front wall depth 4(m), distance 2(m) and breadth 20cm, and wave frequency 0.2 

(Hz). 

 

Figure  3.3.2.5.1.6. Front wall depth 4(m), distance 5(m) and breadth 20cm, and wave frequency 0.2 

(Hz). 

 

Figure  3.3.2.5.1.7. Front wall depth 1(m), distance 10(m) and breadth 20cm, and wave frequency 0.2 

(Hz). 
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Figure  3.3.2.5.1.8. Front wall depth 1(m), distance 2(m) and breadth 20cm, and wave frequency 0.5 

(Hz). 

 

- Discussion 

In the graphical results, presented in Figures (3.3.2.5.1.1-8), the wave field is 

represented by the means of equipotential lines. These lines also intersect every solid 

boundary in a perpendicular way showing that every imposed Neumann condition is 

satisfied while at any of the two vertical interfaces that separate the wave field into 

the corresponding three sub-domains, perfect matching is achieved. In addition, the 

free surface wave elevation along with the chamber’s mean wave elevation are also 

computed and displayed.  

It can also be deduced that relatively long, with respect to the inner diameter or inner 

opening of the OWC chamber, waves in general tend to excite more the inner surface 

of the OWC than the relatively short waves, especially when the distance d , 

mentioned above, becomes quite large. The ratio 
d

λ
 seems to be a key factor for the 

design of the OWC-WEC as for really low values of that ratio i.e. 2% - 10% 

(depending on the wave frequency), the free surface inside the chamber oscillates at 

significant amplitudes, compare Figures (3.3.2.5.1.5) and (3.3.2.5.1.6). However, 

even if the amplitude of the mean wave elevation increases as d  decreases, we must 

also note that the induced volume flow also decreases due to the reduction of the inner 

surface area.  

For high frequency wave components, the wave elevation inside the OWC becomes 

more and more depended on the depth of immersion of the front wall 
1

h . The 

deflection from the front wall becomes significant for relatively large immersions 
1

h  
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and wave frequencies ω , as it can be also observed from Figure (3.3.2.5.1.8), while 

for the lower-frequency wave components, larger 
1

h  correspond to significantly larger 

mean wave elevations as in this way successful resonances are achieved, for example 

see Figure (3.3.2.5.1.5). However, for such cases i.e. larger 
1

h - lower ω values, the 

effect of the ratio 
d

λ
 is small in comparison to the effect the immersion of the front 

wall has upon the induced volume flow inside the chamber. For inverse 

configurations where the immersion is small 
1

h  and the wave frequency ω  is 

relatively high, the effect of the ratio 
d

λ
 upon the hydrodynamic characteristics of the 

device is dominant. Further results are produced in Section 3.3.2.5.3  where the 

combined effect of the distance d and immersion 
1

h  , on the mean wave elevation 

inside the chamber, is examined per wave frequency.  

In overall, we must be very careful when we are choosing an optimum chamber size 

as we must take into consideration the required induced volume flow characteristics in 

conjunction with the power spectral properties of the local wave climate.  

 

3.3.2.5.2 Radiating wave field and wave elevation 

 

Next, we provide again some graphical results of the radiating wave field for various 

values of d ,th , 
1

h  and ω . We note that according to the decomposition of the 

velocity potential presented in Equation (3.3.2.1.6), the radiating velocity potential is 

eventually scaled by 
i p

g

ω

ρ
, where g is the gravitational constant, ρ  is the sea water 

density and p  corresponds to the dynamic pressure (note that outside the chamber 

0p = ). Thus, in order to provide more illustrative results we scale the wave elevation 

inside the chamber by a factor of 
i

g

ω
, see Figures (3.3.2.5.2.1-3),  except from the 

cases,  see Figures (3.3.2.5.2.4-5),  where the scaling  of the wave elevation, inside the 

chamber, is made by a more representative factor such as  

	

i p

g

β

ω

ρ

     
, in order to give a 

more illustrative preview of the dynamics of the radiating conditions in the absence of 
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any kind of scattering phenomena. For these two cases we have set 5β = , although 

in general (1,10)β ∈  depending on the OWC’s geometry, valve-turbine 

configuration, wave climate and chamber size.  More details with respect to the 

estimation of the dynamic pressure can be found in the (open system) thermodynamic 

analysis, presented and explained in detail in Section 3.3.3. In addition to this analysis 

we have also developed the analogous numerical schemes and consequently 

performed the numerical computations for configurations that correspond to actual 

full scale operational OWC chamber sizes such as the ones described in the work of 

Falcao & Justino (1999). 

  

 

Figure 3.3.2.5.2.1.  Front wall depth 1(m), distance 2(m) and breadth 20cm, and  

wave frequency 0.1(Hz). 

 

 

Figure 3.3.2.5.2.2. Front wall depth 1(m), distance 2(m) and breadth 50cm, and 

wave frequency 0.1 (Hz). 
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Figure 3.3.2.5.2.3. Front wall depth 1(m), distance 2(m) and breadth 50cm, and 

wave frequency 0.2(Hz). 

 

Figure 3.3.2.5.2.4. Front wall depth 0.5(m), distance 12(m) and breadth 20cm, and                                 

wave frequency 0.2 (Hz). 

 

Figure 3.3.2.5.2.5. Front wall depth 0.5(m), distance 12(m) and breadth 20cm, and                                 

wave frequency 0.1 (Hz). 
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3.3.2.5.3 Transfer functions 

 

A more representative and quite helpful, when it comes to constructing the overall 

systemic representation of the OWC operation, aspect of both scattering and radiating 

wave fields can be created by means of the analogous frequency domain transfer 

function. With the aid of the latter one may detect any kind of resonance 

characteristics inherit in the OWC hydromechanics as well as obtain a more complete 

view with respect to the abilities, behavior and potentials of the OWC in general. The 

following transfer functions are always subjected to the OWC geometric 

characteristics such as the F.W.DI., the F.W.DE. and the F.W.TH.  as well as the depth 

of the sea bottom (for the constant depth case; otherwise the overall problem is 

dependent upon the far and near field bathymetry of the sea bottom). The following 

transfer functions were derived for the cases where: F.W.DI. = [2, 4, 6, 8, 10, 12] (m), 

the F.W.DE. = 0.5 (m), the F.W.TH. = 0.2(m), while the sea bottom depth is set at ten 

(10) meters.  

Finally, we note that the radiation transfer function has been scaled by 
j

g

ω

ρ
 while the 

corresponding units are: is ( )/m Pa  i.e. wave elevation/dynamic pressure units, for 

the radiation problem and ( )m  wave elevation for the scattering problem.   

 

Results 

      

 

Figure 3.3.2.5.3.1. Transfer functions for the Scattering and Radiation sub-problems, (d=0.5m, h1= 2m 

and th=0.2m). 
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Figure 3.3.2.5.3.2. Transfer functions for the Scattering and Radiation sub-problems, (d=0.5m, h1= 4m 

and  th=0.2m). 

       

Figure 3.3.2.5.3.3. Transfer functions for the Scattering and Radiation sub-problem, (d=0.5m, h1= 6m 

and  th=0.2m). 

      

Figure 3.3.2.5.3.4. Transfer functions for the Scattering and Radiation sub-problems, (d=0.5m, h1= 8m 

and th=0.2m). 
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Figure 3.3.2.5.3.5. Transfer functions for the Scattering and Radiation sub-problems, (d=0.5m, h1= 

10m and th=0.2m). 

 

        

Figure 3.3.2.5.3.6. Transfer functions for the Scattering and Radiation sub-problems, (d=0.5m, h1= 

12m and th=0.2m). 

 

- Comments 

 

The derivation of both scattering and radiation transfer functions, enhance our 

information with respect to the operating capabilities of the OWC-WEC in terms of 

the geometrical characteristics of the device as well as the surrounding wave climate. 

These linear operators besides giving us a realistic look upon the way the OWC 

interacts with the incoming sea waves it also provides us with the necessary 

information in order to proceed with a desirable/optimum design. In addition to the 

these transfer functions we also present alternative design charts in Section 3.3.2.5.4, 

where we investigate the behavior of the device for a number of d – h1 – th  

configurations per (incoming) wave frequency. A first comment that can be made for 
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the radiating transfer functions is that are consistent with the scattering case ones, 

except for the low frequency cases where the air oscillates at slow rates and thus the 

radiation phenomenon is significantly reduced, since for intense fluctuations, 

resonance or near resonance conditions, of the internal surface due to incoming waves 

correspond to analogous radiation patterns. The majority of the scattering transfer 

functions shows that for large OWC structures the wave environment should be such 

that low-frequency waves are to be encountered more frequently than the 

corresponding higher frequency ones since the latter are fully diffracted by the 

structure even for minimum front wall depth (h1) while the former seem to have small 

losses of energy. As a consequence of this it turns out that for the long waves case the 

overall contribution of the radiating/restoring part to the total velocity potential inside 

that chamber, is a relatively small fraction of the scattering velocity potential.  

However, in cases where the OWC structure is made in, arrays of, tube like shapes i.e. 

the distance of the front wall from the back wall is very small while the depth of 

immersion in large, the corresponding scattering and radiation transfer functions 

exhibit greater gain  i.e. the device becomes more efficient, at higher frequencies. 

 

3.3.2.5.4 Design charts 

 

In order to have a more elaborate look at the way the, mean, free surface oscillates 

inside the OWC with respect to the chamber and incoming wave characteristics that 

were mentioned above i.e. front wall depth, breadth, distance from the wall and wave 

frequency or length we plot the mean wave elevation in three-dimensional plots 

against both front wall immersion depth and distance from the shore (back wall). 

Every plot is made for a specific wall-thickness i.e. 0.2 meters, the front wall distance 

and immersion-depth ranges from 1 to 10 meters and 0.5 to 4 meters, respectively, 

while the wave frequency, which varies per plot, range from 0.1 to 1 Hz, see Figures 

(3.3.2.5.4.1-10).  In order to investigate the effect that the wall-thickness may have 

upon the hydrodynamic characteristics of the OWC, we plot again, for the lower 

wave-frequency cases i.e. 0.1 and 0.2 Hz, the mean wave elevations inside the 

chamber as well as the difference that corresponds to two extreme thickness cases i.e.  

1 1
([0.5, 0.1];0.2) ( , ; 0.5, 0.2) ( , ; 0.1, 0.2)

th OWC OWC OWC
d h th f d h th fη η η∆ = = = − = =

,     (3.3.2.5.4.1) 

against distance and immersion with the same discretisation that was described above 

and can be observed from  Figures (3.3.2.5.4.11) to (3.3.2.5.4.14).   
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- Average wave elevations inside the OWC chamber  
1

( , ; , )
OWC

d h th fη  

 

Figure 3.3.2.5.4.1. Average wave elevation for an incoming wave of frequency 1Hz and amplitude 1m. 

 

Figure 3.3.2.5.4.2. The same as Figure (3.3.2.5.4.1), but for wave frequency 0.9 Hz. 

 

Figure 3.3.2.5.4.3. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.8 Hz. 
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Figure 3.3.2.5.4.4. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.7 Hz. 

 

Figure 3.3.2.5.4.5. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.6 Hz. 

 

Figure 3.3.2.5.4.6. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.5 Hz. 
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Figure 3.3.2.5.4.7. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.4 Hz. 

 

 

Figure 3.3.2.5.4.8. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.3 Hz frequency. 

 

Figure 3.3.2.5.4.9. The same as Figure (3.3.2.5.4.1), but for wave frequency 0.2 Hz frequency. 
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Figure 3.3.2.5.4.10. The same as Figure (3.3.2.5.4.1),  but for wave frequency 0.1Hz. 

 

Front wall-thickness effect 

 

 

Figure 3.3.2.5.4.11. Average wave elevations for an incoming wave of 0.1Hz  frequency  and 1m  

amplitude and for wall-five thickness cases i.e. th = 0.1, 0.2, 0.3, 0.4, 0.5m. 
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Figure 3.3.2.5.4.12. Average wave elevations for an incoming wave of frequency  0.2Hz  and 1m  

amplitude and for five wall-thickness cases i.e. th = 0.1, 0. 2,  0.3,  0.4,  0.5m. 

 

Figure 3.3.2.5.4.13. Average wave elevations for an incoming wave of frequency 0.2Hz  and unit  

amplitude and for the two extreme wall-thickness cases i.e. th = 0.1m and  0.5m. 
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Figure 3.3.2.5.4.14.  Difference ([0.5, 0.1];0.2)
t OWC
η∆  between the mean wave elevations for an 

incoming wave of frequency  0.2 Hz  and unit amplitude and for the two extreme wall -thickness cases 

i.e. th = 0.1m and  0.5m. 

 

- Discussion 

 

A first comment that we can make about the operation of the OWC in general, is that 

from a systemic perspective the device primarily functions as a low pass filter, as all 

high-frequency incoming-wave components  either are fully diffracted or  have minor 

contribution upon the wave field inside the chamber of the converter except for the 

cases where the depth of immersion is negligible or very small    (
1

h = 0.5m) and the 

distance from shore is also the minimum one (d = 1m), see Figures (3.3.2.5.4.1) to 

(3.3.2.5.4.7).   

For these, minimum, distance and immersion values only for the low frequency case, 

i.e. the 0.1 Hz case, as well as for the even lower frequencies i.e. f < 0.1 Hz, the 

outcome is almost constant and relatively close to the amplitude of the surrounding 

wave elevation.  

As far as the medium to higher frequency modes of oscillation are concerned, the 

resulting M.W.E. (
OWC
η ) is not small since it may range from 1 to 2m depending on 

the incoming wave frequency.  This kind of design would be acceptable if we would 
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want to exploit the high frequency wave components of a rather mild surrounding 

wave climate. 

As these tube-like plant configurations are not (yet?) under consideration, we are 

restricted to more realistic configurations where only the slower wave components are 

likely to cause any kind of pressure fluctuation inside an operating OWC chamber.  

In addition, the medium and lower frequency waves (0.4 to 0.2 Hz), see Figures 

(3.3.2.5.4.8) and (3.3.2.5.4.9), can be held account for resonance phenomena when  

medium to high immersion depths and low to medium distances from the shore are 

the case.  

For the low frequency waves cases (0.1 Hz and lower i.e. f < 0.1 Hz) the M.W.E. 

changes slightly with any kind of thickness-distance-immersion combination even for 

large distance-from-the-shore values, see Figures (3.3.2.5.4.10) and (3.3.2.5.4.11), 

while it can also be said that it almost matches the amplitude of the incoming 

excitation. The last remark can be quite helpful especially for the case where large 

mass flow rates and thus greater internal surfaces are required in conjunction with the 

ability to have a structure that is able to sustain under some quite energetic wave 

environments. 

On the other hand for the low or the medium wave frequency cases, an increase on the 

wall-thickness can actually have positive effects, up to 20%, on the OWCs’ M.W.E. 

even with relatively small internal surfaces and medium to high immersion depths, as 

it can be observed from Figures (3.3.2.5.4.12) to (3.3.2.5.4.14). In addition, for any 

other distance-immersion combination the corresponding wall-thickness effect is 

either minor or even negligible thus allowing, again, for the design of more rigid 

constructions. 

In overall, in order to decide on the size and geometrical features of the OWC –WEC 

for an optimum operation, one must take into account, in conjunction with the design 

charts provided above, the surrounding wave climate, which is usually identified by 

the corresponding power spectral density or spectrum, as well as the mass flow rate 

and pressure requirements specified by the turbine manufacturer and the operational 

requirements.   
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3.3.3 Thermodynamic processes inside the OWC 

3.3.3.1   Open system thermodynamics 

 

In order to be able to understand the physics, from a thermodynamic point of view, 

inside the OWC one has to regard the wave energy device as an open system, one may 

consult the works of Kestin (1966), Gyftopoulos & Beretta (1991) (
6
) and Bejan 

(1997), where quite analytical reviews are made for  this kind of systems  

Conservation Laws  

- Distributed description 

The variation of the thermodynamic variables (temperature, mass, pressure) inside an 

oscillating water column wave energy device depends mainly on the variations of the 

induced volume fluxes on the lower control surface (internal free surface) as well as 

on the mass flow rates (inflows or outflows) that take place on the upper control 

surfaces (effective areas of the turbine(s) or control valve(s).  

If we do not restrict the inflows or outflows to penetrating discrete patches (ports) the 

corresponding mass conservation equation and 1
st
 Law of thermodynamics become, 

Bejan (1997), 

  

U

U

V S

V dS
t

ρ
ρ

∂
∂ = − ⋅

∂∫ ∫ v n ,    (3.3.3.1.1) 

 
( )

   

L U

L U

V S S

e
V dS W h dS

t

ρ
ρ

∂
∂ = − ⋅ − − ⋅

∂∫ ∫ ∫q n v nɺ   (3.3.3.1.2) 

 

where V  is the control volume, 
L

S  is the lower  permeable control surface (the only 

part of the closed control surface where the heat-fluxes take place, which in this case 

corresponds to the internal sea free surface, i.e.,  the lower boundary of the control 

volume) ,
U

S  is the upper  permeable control surface (the only part of the closed 

control surface where mass exits or enters the OWC chamber and usually located at 

the top of the chamber), ρ  is the air density, h denotes the specific enthalpy, e is the 

specific energy, Wɺ  is the work transfer rate, whilst q, v, n denote the net heat flux 

vector, the velocity vector and the unit vector, respectively. 

                                                 
(
6
)  Gyftopoulos and Beretta avoid systematically the open system term.  Instead they use the term bulk-

flow interactions. 
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-    Lumped description 

The mass and energy conservation equations in the corresponding “lumped” 

description are as follows: 

  
inflow outflow

dM
m m

dt
= −∑ ∑ɺ ɺ       (3.3.3.1.3) 

   ( ) ( )
inflow outflow

dE
Q W m e Pv m e Pv

dt
= − + + − +∑ ∑ɺ ɺ ɺ ɺ    (3.3.3.1.4) 

 

The specific energy e in our case is considered to be the specific internal energy only, 

i.e., no potential or kinetic energy is considered due to the nature of the process, 

Therefore, as the specific enthalpy is  

 

h u Pv= + ,      (3.3.3.1.5) 

 

where P  corresponds to the air pressure and ,u v  denote the specific internal energy 

and specific volume, respectively, Equation (3.3.3.1.4), becomes 

 

                    ( ) ( )
inflow outflow

dU
Q W m u Pv m u Pv

dt
= − + + − + ⇒∑ ∑ɺ ɺ ɺ ɺ  

      
inflow outflow

dU
Q W mh mh

dt
= − + −∑ ∑ɺ ɺ ɺ ɺ      (3.3.3.1.6) 

 

It is clarified that the objective here is the study of the system properties during the 

two phases of operation. For this purpose we replaced the turbine with an orifice with 

appropriate geometrical characteristics to simulate the flow of the air through the 

turbine. To model the mass flow entering or leaving the chamber via the aid of a valve 

of suitably chosen proportions, in order to simulate the turbine effect upon the 

compressibility of the air, one of the last two terms in Equation (3.3.3.1.6) is always 

zero depending on whether the pressure inside the chamber is smaller or larger than 

the corresponding atmospheric one while the summation disappears as well due to the 

existence of only one port.  The air inside the chamber is assumed to be homogeneous 

since any possible spray effects (due to wave breaking in the OWC chamber) have 

been neglected. The term mɺ   is related to the mass flow rate through the, turbine 

simulating, valve only, whose effective area (or blockage effect)  has been adjusted 

accordingly so as to have pressure responses closer to more realistic engineering 

scenarios or plants such as the one presented in the work of  Falcao & Justino (1999). 
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3.3.3.2    Application of the balance equations to the OWC –WED 

 

Observing Figure (3.3.1.1) one may deduce that it corresponds to a variant design of 

,System A  presented in Figure (3.3.3.1.1), with only one ports, i.e. the turbine one.  

In order to be able to model the thermodynamic processes inside the OWC it was 

found necessary to divide the performance of the plant into two stages with respect to 

the air flow direction.  

During the first stage, the mean water level rises and as soon as the pressure inside the 

chamber builds up to a value higher than the external-ambient one i.e. the atmospheric 

one, the air particles leave the chamber through the turbine or the valves. This first 

stage will be termed as the “compression process”. 

During the second stage, termed as the “decompression process”, the mean water 

level falls and air enters the chamber again through the inlets the moment the pressure 

inside falls below the ambient pressure. Following Equation (3.3.3.1.6), and since 

dU
U mu mu mu

dt
= ⇒ = + ɺɺ , the equation of energy conservation adjusted to the 

wave energy device takes the following form, depending on the phase of the process 

 

or    

( )

( )

AIR

OWC

du
m Q p V m h u

dt

du
m Q p V m h u

dt

= − + −

= − − −

ɺ ɺ ɺ

ɺ ɺ ɺ

,           (3.3.3.2.1) 

 where, 

• p  is the pressure inside the chamber of the device, 

•  ,
AIR OWC

h h  denote the enthalpy state at the exit for the two different phases, 

compression and discharge respectively.,  

• mɺ  denote the associated mass flow rate (with positive sign for when air enters the 

chamber).  

• Qɺ  stands for the heat flow rate. 

• Vɺ  is the rate of change of the existing volume inside the chamber. 
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The equation describing the flow of a perfect gas through an orifice, Xiros (2001), 

Dixons (1989) is  

, , d

d o u u

u

P
m C A f P T

P

  =    
ɺ ,                                            (3.3.3.2.2) 

 

where mɺ  is the mass flow rate,  
d

C  is an orifice discharging constant, 
o

A  is the area 

of the orifice, ,
u u

P T  are the upstream pressure and temperature, respectively, and 
d

P  

is the downstream  pressure. 

When  0.528d d

u u critical

P P

P P

  > =   
 (as it always happens to be in this case), the function  

f   in the right hand side of Equation (3.3.3.1.2) becomes 

 

1 ( 1)/

, , 2.06 1d u d d

u u

u d o u uu

P P P PW
f P T

P C A P PT

γ γ γ− −           = = −                 
             (3.3.3.2.3) 

 

Converting the above into the S.I. unit system and using it in Equation (3.3.3.1.2), the 

latter becomes: 

2/ ( 1)/

2
1

1
u d d

V Veq

u uu

P P P
m C A

P PRT

γ γ γ

γ

γ

+               = ⋅ −            −           

ɺ  ,      (3.3.3.2.4)   

 

where CV and ΑVeq   are constants denoting the equivalent  resistance coefficient for the 

gas flow through the mean effective area of a turbine and the equivalent effective area 

of the turbine, respectively. We note that the estimation of the values of the 

coefficients CV and ΑVeq   is based on the results emerged from the experimental 

optimization of the power take-off impedance carried out in irregular-wave basin with 

a model of the Pico OWC pilot plant (Brito-Melo et al., 1995). To be more specific, in 

order to regulate these values, it was assumed that the pressure p  is proportional to 

the mass flow rate with a constant of proportionality equal to 

( ) / ( )p t m t =ɺ 99.4 1Pa s kg− . 
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The air volume inside the OWC at each time t is given by 

 ( )
OWC Piston OWC OWC

V V V V Area tη= − = − ⋅ .            (3.3.3.2.5) 

where,  
OWC
η  denotes for the mean wave elevation of the internal free surface.  

The 1
st
 thermodynamic law presented in Equation (3.3.3.2.1), is formulated each time 

with respect to the stage of the process i.e. intake or discharge. 

Since, 
v

dU m du m c dT= = (internal energy) and 
p

dh c dT=  Equation (3.3.3.2.1) 

becomes  

( ) ( ) ( ) ( )( )( ) ( ) ( ) ( )

( ) ( ) ( )V p V

p t dV tdu t dT t Q t m t
c c T c T t

dt dt m t m t dt m t
= = − + − ⇒

ɺ ɺ
i     

( ) ( ) ( ) ( )( ) 1 ( ) 1 ( )

( ) ( ) ( )

p

V V V

p t dV t cdT t Q t m t
T T t

dt c m t c m t dt m t c

  = − + −    

ɺ ɺ
i   (3.3.3.2.6) 

 

where,  

 ( ) ( ), ( )

, ( )
OWC ATM

ATM OWC ATM

T t P t P
T

T P t P

 >=  <
i ,        (3.3.3.2.7) 

 

and ( ) ( ) ( ), ,p t m t V t  are the air pressure, mass and volume inside the chamber, 

respectively; ( )
net

Q t A q= − ⋅ɺ  where A denotes the control free surface area while 
net

q  

is the net heat flux through the air-water interface i.e. 

 

( )
net th initial water

q g T T= −               (3.3.3.2.8) 

 

where the thermal conductivity
th

g  is a constant. We note that in our calculations the 

both compression and decompression processes were assumed adiabatic, following 

Falcao and Justino (1999), i.e.,  ( ) 0Q t =ɺ , for reasons of consistence. 

In a similar manner, the equation for the mass flow rate (mɺ ), differs with respect to 

the stage of the process as well. To be more specific  

 

2/ ( 1)/

* ( ) ( ) ( )2
( )

1 ( ) ( )( )

u d d

V Veq

u uu

P P P
m t C A

P PRT

γ γ γ

γ

γ

+            = −            −        

i i i
ɺ

i ii
  (3.3.3.2.9) 

 

where,  the coefficients * , ,
V Veq

C A γ  are constants and  
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( ),   ( )
( ) ,

,      ( )
OWC OWC ATM

u

ATM OWC ATM

P t P t P
P

P P t P

 >=  <
i            (3.3.3.2.10) 

 

           
,           ( )

( )
( ),      ( )

ATM OWC ATM

d

OWC OWC ATM

P P t P
P

P t P t P

 >=  <
i               (3.3.3.2.11) 

 

( ) ( ) ( ), ( )

, ( )
OWC ATM

u

ATM OWC ATM

T t P t P
T T

T P t P

 >= =  <
i i .  *

,  ( )

,   ( )
V OWC ATM

V

V OWC ATM

C P t P
C

C P t P

− >=  <
  (3.3.3.2.12) 

 

Next, for reasons of illustration and clarification with respect to the system 

identification method presented in Chapter 4, we bring the, thermodynamic, system 

of differential equations presented in Equations (3.3.3.2.5 - 12) in a state-variable 

form as follows:  

 

( ) ( )( )

( )

( )

1 2
1

2

1
1

1 2
1

2

( ) ( )
( ) , ( )

( ) ( )

( )
( ) , ( )

( )

( ) ( )
( ) , ( )

( ) ( )

p V OWC ATM

V V

OWC ATM

V

p

ATM OWC ATM

V V

R x t x t
u t c c x t P t P

c u t c x t

R x t
x t u t P t P

c u t

cR x t x t
u t T x t P t P

c u t x t c

 ⋅− + − > ⋅ ⋅ ⋅= − = ⋅   ⋅  − + ⋅ − <  ⋅   

ɺ
ɺ

ɺɺ

ɺ
ɺ

         

(3.3.3.2.13) 

( ) ( )

( )
( ) ( )

( )
( ) ( )

2 1

2/ ( 1)/

2 1 2 1

2

( )

2
, ( )

1

( ) 0, ( )

2

1

V Veq

ATM ATM

OWC ATM

OWC ATM

V Veq ATM

ATM

C A x t R x t

u t

P u t P u t
P t P

x t R x t x t R x t

x t P t P

C A P

R T

γ γ γ

γ

γ

γ

γ

+

− ⋅ ⋅ ⋅ ⋅
×

      ⋅ ⋅            × − >          − ⋅ ⋅ ⋅ ⋅           

= =

⋅ ⋅
×

⋅

×  −

ɺ

( ) ( )
( )

( ) ( )
( )

2/ ( 1)/

2 1 2 1
, ( )

OWC ATM

ATM ATM

x t R x t x t R x t
P t P

u t P P u t

γ γ γ+

         ⋅ ⋅ ⋅ ⋅           − <          ⋅ ⋅            

   

(3.3.3.2.14) 
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where,

   

 

1 2

2 1
1 2

( ) ( ), ( ) ( ),

( ) ( )
( ) ( ( ), ( ), ( ))

( )OWC OWC

x t T t x t m t

x t R x t
P t P x t x t u t

u t

= =

⋅ ⋅
= =

       (3.3.3.2.15)

  

 

and  , , , , ,
V p V Veq

C R c c A γ

 

are constants. 

 

The forcing term in this system of equations, corresponds to  

 

( )  cos( )
OWC o

u t V Area h tω= − ⋅ ⋅      (3.3.3.2.16a) 

  ( ) sin( )
o

u t Area h tω ω= ⋅ ⋅ ⋅ɺ       (3.3.3.2.16b) 

 

where, 
OWC

V , Area , 
o

h  and ω  denote the  volume of the OWC chamber, above the 

undisturbed free surface, the free surface area under the chamber and  the amplitude 

and frequency of the mean wave elevation inside the chamber. We note that the 

quantity for which the system identification is performed is the dynamic pressure, 

( )
D

p t , inside the chamber, i.e.,  

 

( ) ( )
( ) ( )

( )D ATM OWC ATM

m t R T t
p t P P t P

V t
= − = −      (3.3.3.2.17)  

 

According to a compendious stability investigation with respect to the dynamical 

system, described in Equations (3.3.3.2.13 – 17), and the OWC pressure in particular, 

presented in Appendix 3-A, it was derived that the internal pressure fluctuation 

corresponds to a stable dynamical system with ( )
OWC ATM

P t P=

  

being its equilibrium 

point. In effect, and in conjunction with Equation (3.3.3.2.17), the stable equilibrium 

point for the dynamic pressure fluctuation corresponds to a zero value.   
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3.3.3.3   �umerical Results 

 

The numerical results presented in Figures (3.3.3.3.1)  to (3.3.3.3.4), were derived by 

implementing a 4
th
 order Runge-Kutta method with a fixed time step of 0.1 sec (10Hz 

sampling frequency), on the system of differential equations presented in Equations 

(3.3.3.2.13-17) for the following OWC-geometrical characteristics and 

thermodynamic properties: 

2144Area m= , 31050
OWC

V m= , 51.013 10
ATM

P Pa= ⋅ , 0.9
V

C = , 0.82
Veq

A = ,  

1.4γ = , 1004.5 / /
p

C J Kg K= , 287.05 / /R J Kg K= , 293.16
ATM

T K= , 

while, the initial values, i.e. 0t = , were set as follows: 
4
( 0) ,

OWC
x t V= =  

1
( 0) ,

ATM
x t T= =  

2
( 0) ( )

ATM OWC ATM
x t P V R T= = . 

Dynamic Pressure  Time series 

 

Figure 3.3.3.3.1. OWC pressure response (Pa) for three different levels of amplitude and one 

constant frequency monochromatic input, i.e.,   f 1 = 0.1 Hz, A = [0.5, 0.75, 1.00] m. 
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Figure 3.3.3.3.2. The same as Figure 3.3.3.3.1, but for different constant frequency, i.e.,   f 2  = 0.05 Hz. 

 

Maximum Pressure vs Oscillation Amplitude 

 

Figure 3.3.3.3.3. Maximum dynamic pressure (PD) against oscillation amplitude for  

a series of regular wave excitations. The set  of oscillation amplitudes and periods is 

[0.25,0.5,..., 2]( )A m=  and [1,2,...,10](sec)T = , respectively.. 
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Maximum Pressure vs. Oscillation Period 

 

Figure 3.3.3.3.4. Maximum dynamic pressure (PD) against oscillation period for a 

 series of regular wave excitations. The set  of oscillation amplitudes and periods is 

[0.25,0.5,..., 2]( )A m=  and [1,2,...,10](sec)T = , respectively.. 

 

Maximum Pressure vs.  Oscillation Amplitude & Period 

 
Figure 3.3.3.3.5. Three dimensional plot of the maximum dynamic pressure (PD) for a series of regular 

wave excitations  on the  Amplitude-Frequency plane.  The set of oscillation amplitudes and periods is 

[0.25,0.5,..., 2]( )A m=  and [1,2,...,10](sec)T = , respectively. 
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- Discussion & Application Issues 

 

The effects of the second and, especially the, third order terms upon the overall 

response can be clearly observed in both Figures (3.3.3.3.1 & 2) where, the OWC’s 

pressure response for two different sets of monochromatic excitations is displayed. 

Each set corresponds to three harmonic functions of same frequency ( f 1 = 0.1 Hz and 

f 2  = 0.05 Hz) but of different amplitude, i.e., A = (0.50, 0.75, 1.00) m. The 

contribution due to the third order terms is evident in both figures as the overall 

response clearly exhibits cubic trends, while the quadratic terms appear to be present  

only in the first case. From Figure (3.3.3.3.3) one may observe how the maximum 

values of the dynamic pressure, max( ( ; , ))
D exc exc

p t A T , varies with the excitation’s 

amplitude while keeping constant the oscillating periods. A nonlinear pattern appears, 

especially for the low frequency responses i.e. 5,...,10 sec
exc

T =  although the 

higher frequency ones i.e. 1,..., 5 sec
exc

T =  are also, but considerably less, 

nonlinear. From Figure (3.3.3.3.4) we can also observe how the maximum pressure 

value varies with the excitation’s oscillating period per constant amplitude.   

Finally, for reasons of illustration, a three-dimensional plot of the maximum values of 

the dynamic pressure on the joint Amplitude-Period plane is made. Higher frequency 

and higher amplitude components lead to higher pressure fluctuations, as it was 

expected, while when it comes to design aspects, where these plots can be quite 

helpful and enlightening, we are able to make a first estimation of the power output of 

an air turbine, such as the Wells (
7
) turbine a schematic representation of which is 

shown in Figure (3.3.3.3.6), under harmonic excitation with the aid of the 

corresponding turbine performance curves presented in Figure (3.3.3.3.7). 

Indeed, Gato et al (1996) derived a power performance curve, shown in Figure 

(3.3.3.3.7), for a monoplane six-bladed rotor, placed between two rows of guide 

vanes, with: 

- outer diameter of 590 mm,  

- hub diameter of 400 mm, 

- NACA 0015  profile rotor blades, with chord length of 125 mm, 

 

                                                 
(
7
) For details with respect to this turbine one may check the works of Raghunathan (1995) and  

Setoguchi et-al (2001). 
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Figure 3.3.3.3.6. Schematic representation of the Wells turbine-Electrical generator arrangement 

[Ragunathan 1995] 

 

The power coefficient Π  against pressure coefficient Ψ  curve is displayed below: 

 

Figure 3.3.3.3.7. Wells turbine power coefficient curve Π against pressure coefficient Ψ. 

[Falcao and Justino, 1999] 
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The dimensionless power and pressure coefficients are given by the relations 

presented in Equations  (3.3.3.3.1)  and  (3.3.3.3.2)  respectively, 

 

 
* 3 5

T
W

N Dρ
Π =

ɺ
     (3.3.3.3.1) 

 

* 2 2

D
p

N Dρ
Ψ =       (3.3.3.3.2) 

 

where, *ρ is the stagnation density at the turbine’s entrance, 2.3D m=  is the outer 

diameter of the turbine rotor while 157.1 / secN rad=  is the rotational speed and 

P  is the power output. The pressure for the maximum power output is obtained for  

310.5 10
D

p Pa≈ ⋅ . The corresponding excitation characteristics can be obtained 

from Figure (3.3.3.3.8)  

 

Figure 3.3.3.3.8. Maximum power performance area for harmonic excitations. 
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Using the value of  Ψ  from the diagram of Figure (3.3.3.3.8) that corresponds to the 

maximum value of Π  and the Equation (3.3.3) the appropriate pressure of system is 

obtained. In consequence and in conjunction with the specific wave climate that the 

OWC-WEC will be situated in, one may deduce, through the OWC’s design charts 

provided above, the appropriate geometrical characteristics of the device in order to 

achieve the desired oscillations of the internal sea surface (which should range 

between 0.8m and 1.2 m).   
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Appendix 3-A 

Stability investigation with respect to the OWC internal 

pressure fluctuation 

 

The fixed points for the overall thermodynamic system presented in Equations 

(3.3.3.2.13-17), are found by setting
1 2
( ) 0, ( ) 0x t x t= =ɺ ɺ . From the second branch of 

Equation (3.3.3.2.14), 
2
( ) 0x t =ɺ  if 

( )
OWC ATM
P t P=

 

  or   2 1
( ) ( )

( ) ATM

x t R x t
P

u t

⋅ ⋅
=                    (3-A.1) 

In this case, the first and third branch of Equation (3.3.3.2.13) coincide with the 

corresponding second branch, and for ( )1
1

( )
( ) 0

( )
V

R x t
x t u t

c u t

⋅
= − =

⋅
ɺɺ , ( ) 0u t =ɺ  as 

1
( ) 0,x t ≠  for every t . For the monochromatic excitation case in particular, according 

to Equation (3.3.3.2.17),  ( ) 0u t =ɺ  if  sin( ) 0tω = . Thus,     

t kω π=   or  2,t k T k= ∈ ℕ .     (3-A.2)  

The last result reveals the periodic property of the thermodynamic system and in 

conjunction with the result obtained for 
1
( ) 0x t =ɺ , i.e., ( )

OWC ATM
P t P= , we have 

obtained the set of equilibrium conditions of the overall dynamical system. 

Furthermore, from Equation (3.3.3.2.15), we derive that  

2 1 2 1 2 1

2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )OWC

x t R x t x t R x t x t R x t
P t u t

u t u t u t

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= + −
ɺ ɺ

ɺ ɺ   (3-A.3) 

which also becomes zero for the equilibrium set derived above. After extensive 

numerical investigation, including significant variations of the initial conditions for 

the Equations (3.3.3.2.13-17), and for a large number of distinct excitations, the above 

results are verified for all three thermodynamic quantities, i.e., mass, temperature and 

pressure, while for the latter it is also deduced that 
ATM
P

 

is a stable fixed point. Thus, 

the internal pressure fluctuation corresponds to a stable dynamical system with 

( )
OWC ATM
P t P=

  

being its equilibrium point.  
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 Chapter 4 

Nonlinear System Modeling & Identification  

 

4.1 Introduction  

 

In Chapter 1, an extensive overview on the nonlinear system modeling and system 

identification theory and methods was presented. Within the context of this 

introductory material, we focused on various Volterra-related systemic topics and 

structures. A number of nonlinear Volterra-type systemic schemes as well as their 

corresponding functional properties were presented, in Chapter 2 as well, so that the 

development of the concepts and modeling of our systemic proposal can take place 

without any further due. In Chapter 3 we elaborated on the decoupling of the wave 

field from the, internal, pressure factor as well as we derived suitable solutions in 

order to decompose the total wave field into the corresponding scattering and 

radiating parts. Note, that having derived numerical solutions for both wave fields as 

well as for the pressure fluctuations inside the OWC chamber we can deduce that we 

have decomposed this complex – system problem into three sub-problems, two linear 

and one nonlinear, each of which can be solved separately.  As far as the linear 

problems are concerned we can derive suitable frequency response functions in a 

straightforward manner. The difficulty lies mainly with the derivation of suitable 

identification method for the nonlinear, thermodynamic, part. For the latter issue we 

refer to the context of the Volterra – Wiener theory where nonlinear dynamical 

systems can be represented alternatively with or without the aid of the fading memory 

concept.  

The structure of our system identification scheme is a Wiener – Hammerstein  system 

i.e. linear dynamic – nonlinear static – linear dynamic cascade while the degree of 

nonlinearity is deduced by the number of significant harmonics of the, Fourier 

transformed, response that corresponds to monochromatic/harmonic excitations.  

A similar identification structure was initially derived by Rugh (1981) for cases of 

restricted ranges of input’s amplitudes and narrowband signals, while this technique is 

mainly concerned with monochromatic harmonic excitations, as adequate results are 

achieved only under such conditions. This system identification method despite  
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�omenclature 
 

Values estimated from measurements or relations including measurements are noted with a ∧  above them. Subscripts n 

and/or m indicate correspondence to the reference lattice points and cells. 

 

f  Frequency  ,
ref

� �  Reference amplitudes  set 

ω  Angular frequency  *

,ref n
�  Influence amplitude strip        

T Period  
ref

�  Amplitude-frequency lattice  

M Number of reference frequencies 

(periods) 

 *

, ,ref n m
�  

Influence cell  

N Number of reference amplitudes  
, ,

( , )
ref n ref m
A ω  

Lattice point 

ref
ω , 

m
ω  

 

Reference frequency, 1,...m M=   

*
, ,

ˆ
ref n m

S
�

 
Set of systemic elements  

A  Amplitude  
1 2 3
, ,a a a  Static polynomial coefficients 

ref
A , 

n
A  Reference amplitude, 1,...,n N=   ( ; )g t ⋅  Impulse response function 

θ   Phase angle  ( ; )G jω ⋅  Frequency response function 

( ; , )u A ωi  Monochromatic input  
k

A  Amplitude of kth harmonic 

component   

,
( ), ( )

n m
y t y t  System response  

sτ  Sampling period 

( )
D
p t  Dynamic pressure  

,j m
Κ  Length  of the impulse response 

ˆ ( , )nH f Α  Nth harmonic component of the 

response 

 ϕ∆  Phase lag 

,
ref

Ω Ω  Reference frequencies set 

 

 DNS Direct numerical solution 

*

,ref m
Ω  Influence frequency strip   W-H Wiener-Hammerstein 
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having significant limitations it can provide us with a very promising functional basis 

upon which a more advanced system could be built upon. In order to circumvent the 

above restrictions and to manage to describe and estimate accurately and in a detailed 

manner the effect of second and third order terms to the first order ones we proceeded 

with the restatement of the structural elements i.e. the coefficients and integral kernels 

(static and dynamic part, respectively) and not so much with the structure of the 

model i.e. the way the linear and nonlinear parts are interconnected.  

To be more specific, the inherent limitations of Rugh’s model can be alleviated by 

constructing an enhanced version according to which the system’s constituents are 

defined on the Time–Frequency – Energy space. 

 

4.2 �onlinear system modeling 

 

The structure of the original systemic scheme, as proposed by Rugh (1981), consists 

of two linear time-invariant (LTI) filters ( )1
G t  and ( )2

G t  and a static, constant 

coefficient, finite order polynomial ( )p i  as it can be observed from Figure (4.2.1). 

 

 

Figure 4.2.1.  Structure of the polynomial system identification model. 

 

As it was mentioned above, the order of the static polynomial is deduced a priori and 

it can be estimated numerically especially when the degree of nonlinearity of the 

function(al)s describing the actual dynamical system is not evident from the 

functional expressions. Thus, from the number of significant harmonics of the, 

Fourier transformed, response (
1
) one may deduce the order of nonlinearity. As it will 

be shown in later sections for the thermodynamic system under investigation, we end 

up with a third order static polynomial i.e. 2 3

1 2 3
( ) ( ) ( ) ( )p a a a= ⋅ + ⋅ + ⋅i i i i .  

                                                 
(
1
) Initially we must  obtain a set of time series of the response of the  actual dynamical system by 

means of computation i.e. numerical integration and for a number of harmonic excitations 

corresponding to various distinct combinations of frequencies and amplitudes. Then, a Fourier 

transform is performed upon these sets in order to obtain the frequency spectrum from where we can 

identify the number of significant harmonics. 
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According to Rugh’s identification technique, the filters and coefficients are estimated 

by taking into account the system’s response at one reference frequency, i.e. the 

zeroth  frequency (
2
) (DC), and for a rather wide range of oscillation amplitudes 

followed by a Least-Squares procedure carried out entirely in the frequency domain.  

This method is found fit for weakly-nonlinear system identification cases where the 

nonlinear system under approximation must operate under narrow-band excitations 

while, at the same time, the amplitude or energy of the input (signal) must also lie 

within some very restricted limits. In addition, the use of the  zeroth order harmonic in 

order to estimate the frequency response functions (dynamic parts) and the 

polynomial coefficients (static part) of the cascade system presented in Figure (4.2.1) 

is suitable for cases where the DC harmonic component is of considerable amplitude  

and thus it can be safely used. Another characteristic of Rugh’s system identification 

method is that it corresponds to nonlinear systems where the analogies between the 

amplitudes of the harmonics are constant or nearly constant.  

Starting from the last remark, the set of nonlinear dynamical equations describing the 

thermodynamic processes that take place inside the chamber of the OWC, presented 

in detail in Section 3.3.3, do not conform in any way with the specifications of 

Rugh’s method. To be more specific, the nonlinear characteristics of the system’s 

response (OWC’s dynamic pressure) do not follow a steady pattern i.e. the amplitudes 

of the first three harmonic components, 1ˆ ( , ),H f Α  2ˆ ( , )H f Α  and 3ˆ ( , )H f Α , 

respectively, do not maintain constant or almost constant ratios between them, as the 

dynamical system exhibits an arbitrary, frequency-amplitude depended, nonlinearity 

pattern.  This result can be observed from Figures (4.2.2) to (4.2.4) where the ratios 

between the, absolute values of, first and second harmonics i.e. 1 2ˆ ˆ( , ) ( , )H f H fΑ Α  

as well as second and third harmonics i.e. 2 3ˆ ˆ( , ) ( , )H f H fΑ Α are displayed. 

                                                 

(
2
) In addition, the dynamic pressure response becomes zero for the very long oscillation periods i.e. 

zeroth reference frequency and thus one is forced to find another reference frequency to build upon the 

system identification algorithm. 
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Figure 4.2.2. The ratio of the absolute values of the 1
st
 over the 2

nd
 harmonic i.e. 1 2ˆ ˆ( , ) / ( , )H f H fΑ Α    

(log scaled), for a frequency range 0.05 Hz – 1 Hz and amplitude range 0.5m - 2m. 

 

 

Figure 4.2.3.  Same as Figure (4.2.2) but for the medium to higher frequency range 0.2 Hz – 1 Hz in 

order to make a better illustration of  the corresponding ratio, (linear scaled).. 
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Figure 4.2.4. The ratio of the absolute values of the  2

nd
 over the 3

rd
 harmonic i.e.  

2 3ˆ ˆ( , ) / ( , )H Hω ωΑ Α  (linear scaled), for a frequency range    0.05 Hz – 1 Hz and amplitude range 

0.5m - 2m. 

 

From Figure (4.2.2), where the ratio between the magnitudes of the first and second 

harmonics is displayed on the joint frequency-amplitude lattice, it is evident that the 

resulting pattern is quite nonlinear while the nonlinearity gradient varies with 

amplitude and frequency. The ratio obtains its maximum values at the lower ends of 

the frequency-amplitude lattice, while the exact opposite happens at the 

corresponding higher ones. More information with respect to this region can be 

obtained by Figure (4.2.3) where the lower frequency cases are omitted for reasons of 

illustration. Nevertheless, from both figures it can be deduced that the gradients are 

directly dependent upon both frequency and amplitude although the corresponding 

relations should be considered arbitrary.  

From Figure (4.2.4), where the ratio between the magnitudes of the second and third 

harmonics is displayed, some very interesting and useful results, with respect to the 

inherent nonlinearities of the system, can be extracted. To be more specific, it can be 

observed that for the lower frequency input cases, irrespective of amplitude, the ratio 

is under unity. The opposite result holds for the vast majority of the medium and 
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higher frequency inputs, except for the low amplitude excitations where they are 

either close or under unity. The ratio patterns are nonlinear and the nonlinearity is 

again, arbitrarily, dependent upon the frequency and amplitude of the input.  

All of the observations and remarks made above lead to the conclusion that the 

frequency spectrum of the response exhibit irregular patterns as we vary the amplitude 

and frequency of the excitation. The second order harmonics contribute significantly 

when dealing with inputs of high frequency and high amplitude characteristics while 

they diminish for the low-frequency input cases, where the third order terms come to 

contribute the most with respect to the second or any other higher order term. 

 

4.2.1   Conceptual background of system identification in the frequency-

amplitude domain 

 

With consideration to all of the above issues, we developed a nonlinear system 

identification scheme with inherent adaptive characteristics with respect to properties 

the input signal, i.e., the mean wave elevation inside the chamber of the OWC-WEC.  

The ratios between the magnitudes of the harmonics exhibit strong dependence on the 

input’s amplitude and frequency combinations (Figure 4.2.2 - 4.2.4), and hence it is 

important that the systemic representation is also consistent with this characteristic. 

Thus, use is made of a joint amplitude-frequency parameterization, permitting to 

incorporate such implicit dependencies into the systemic scheme. This bi-parametric 

formulation of the systemic model rules out the common practice of using just a 

single reference frequency (
ref
ω ), with respect to which the integral kernels and 

polynomial coefficients are estimated during the system identification numerical 

solutions, (Rugh, 1982).  Using a single reference frequency 
ref
ω  would effectively 
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restrict the applicability of the model to excitation frequencies belonging to just a 

narrow band centered at 
ref
ω .  

 To overcome this restriction, a set of reference frequencies 
ref
Ω  is introduced, 

{ },1 , 2 , ,
, , ..., , ...,

ref ref ref ref m ref M
ω ω ω ωΩ =     (4.2.1.1) 

while, the corresponding influence frequency strip, centered at a reference frequency 

,
, 1, 2,...,

ref m
m Mω = ,  is defined as 

*

, ,
: , 0

2ref m ref m

ω
ω ω ω ω+
  ∆ Ω = ∈ − ≤ ∆ ≥    

ℝ .  (4.2.1.2) 

 In effect, the reference frequency-element of the 
ref
Ω  set, with respect to which the 

system is conditioned to, is the one closest to the frequency of the input signal. As a 

result of such an implementation, the systemic elements are approximately 

conditioned to the excitation frequency.  

However, this “frequency adaptivity” is not adequate as long as the nonlinear 

characteristics are not conditioned per frequency. This becomes clear from the fact 

that in low-frequency cases the second order terms become negligible while the third-

order terms are responsible for the nonlinear effects, as oppose to the higher 

frequency cases where the second-order terms become significant and the third-order 

terms diminish. In consequence, we expanded the parameterization of the polynomial 

coefficients to the joint amplitude-frequency space, by also defining the joint 

amplitude-frequency lattice  

 

( ) ( ) ( ){ },1 ,1 , , , ,
, , ..., , , ..., ,

ref ref ref ref ref ref n ref m ref N ref M
A A Aω ω ω×Ω =� ��    

(4.2.1.3) 
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where, 
ref

�  denotes the set of reference amplitudes  as 

{ },1 ,2 , ,
, , ..., , ...,

ref ref ref ref n ref N
A A A A=� .    (4.2.1.4) 

Accordingly, the influence strip that corresponds to the arbitrary reference amplitude 

,ref n
A  is  

*

, ,
: , 0

2ref n ref n

A
A A A A+
  ∆ = ∈ − ≤ ∆ ≥    

ℝ�      (4.2.1.5) 

and the influence cell that corresponds to the reference lattice point ( ), ,
,

ref n ref m
A ω  is 

defined by  

( )*

, , , , , ,
, : , , ,

2 2 2 2ref n m ref n ref n ref m ref m

A A
A A A A

ω ω
ω ω ω ω

     ∆ ∆ ∆ ∆    ∈ − + ∈ − +         
��

  (4.2.1.6) 

For the case of a monochromatic excitation with amplitude and frequency 

characteristics ( ) *

, ,
,

ref n m
A ω ∈� , the elements of the proposed system identification 

are defined on the joint Amplitude–Frequency space as follows 

1 1 , , 2 2 , , 3 3 , ,
( , ), ( , ), ( , )

ref n ref m ref n ref m ref n ref m
a a A a a A a a Aω ω ω= = = .   (4.2.1.7a) 

 
1 1 ,

( ; )
ref m

g g t ω= ,  
2 2 ,

( ; )
ref m

g g t ω=     (4.2.1.7b) 

An illustration of the above definitions is depicted in Figure (4.2.1.1)  where, for two 

different cases, a monochromatic signal ( , ; ) cos( )
exc exc exc exc exc

u A t A tω ω θ= +  is 

“channeled” to the appropriate reference cell 
*

, ,ref n m
�  of the joint amplitude-frequency 

lattice, i.e., 

 
** *

, , , ,
( , )

exc exc ref n ref m ref n m
A ω ∈ × Ω =� � .     (4.2.1.8)  



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~10]

 

 

Figure 4.2.1.1.  Schematic representation of the system identification channeling for two different, 

monochromatic excitations i.e. 
3,1 3 1

( , ; )u u A tω=  and
1,4 1 4

( , ; )u u A tω= . 
3,1
S  and 

1,4
S denote the 

systemic configurations that correspond to 
3,1
u and 

1,4
u , respectively. 

 

Through this parameterization we have effectively set the conceptual background for 

a concise system identification method by permitting the system to be fully 

conditioned to the oscillatory properties of the input. This type of conditioning can be 

extended to general types of excitation and significantly aid towards the development 

of efficient low-order Volterra series representations of the system. It can also be 

considered  as an adequate complement to the truncation that is made upon the order 

of the Volterra series resulting to a well convergent low-order Volterra series which, 

as it was outlined in Section 2.3,  it can be realized through the class, amongst other, 

of separable kernel polynomial systems (�).  

In Section 2.4, we showed that such a Volterra series representation possesses 

adequate convergent characteristics with respect to a fading memory nonlinear 

system, see Theorem 1 in Section 2.4.5, while in Section 2.5 similar results were 

deduced for myopic mappings. It is of the upmost importance to note that in both 

cases the corresponding integral kernels that compose these alternative systemic 
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representations, and can be derived from Theorem 1, Section 2.5.2, despite being 

quite complicated, they can still be represented by separable type kernels that could be 

conditioned in turn by an arbitrary set of system identification parameters. 

These reformulations and adjustments of the structural elements of the system i.e. 

kernels and coefficients, allow for very accurate estimations of the response and at the 

same time provide us with substantial tools to approximate successfully even 

responses that correspond to multi-harmonic (Layer of Harmonics model, LHM) and 

nonlinear stationary inputs (Layer of Scales model, LSM), as it will be shown in the 

subsequent sections.  

 

4.2.2  General equations for the identification of the Wiener-Hammerstein model 

under monochromatic excitation 

 

Having clarified most of the conceptual issues behind the proposed system 

identification model, the analogous to the initial systemic fixed-parameter structure 

presented in Figure (4.2.1) is presented in Figure (4.2.2.1), that follows:  

 

 

Figure 4.2.2.1.  Structure of the nonlinear polynomial identification model for corresponding 

to a single steady state input 

 

. 

For the derivation of the system’s general equations for the monochromatic input 

case, the reference frequency ( )ref
ω and amplitude ( )ref

A  are set equal, or very close 

( )0A∆ ≈ , to  the excitation frequency ( )exc
ω  and amplitude( )exc

A   , respectively, 

i.e., the excitation parameters ( ),
exc exc
A ω  belong to some influence cell 

*

, ,ref n m
�  

while, the derivation of the overall system response will be calculated at the lattice 

point
, ,

( , )
ref n ref m
A ω  which will be simply denoted as ( ),

ref ref
A ω . To be more specific 

we set: 

ref exc
ω ω= , 

ref exc
A A= .     (4.2.2.1) 
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- Calculus 

• Output right after the first filter 

 

 ( ) ( )1 1 1 1
( ) ; ; ,

ref exc exc
x t g u t A dσ ω σ ω σ

∞

−∞
= −∫    (4.2.2.2) 

 

 

• Output  right after the polynomial operator 

 

( ) ( )2 3
* * *

1 2 3
( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

ref ref ref
t a A x t a A x t a A x tν ω ω ω= + +  

               

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

*

1 1 1 1 1

*

2 1 1 1 2

1 2 1 2

*

3 1 1 1 2 1 3

 =  ( , ) ; ; ,

         ( , ) ; ;

                  ; , ; ,

; , ; ; ;   

ref ref exc exc

ref ref ref

exc exc exc exc

ref ref ref ref

a A g u t A d

a A g g

u t A u t A d d

a t A g g g

ω σ ω σ ω σ

ω σ ω σ ω

σ ω σ ω σ σ

ω σ ω σ ω σ ω

∞

−∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞

− +

+ ×

× − − +

+ ×

∫

∫ ∫

∫

( ) ( ) ( )1 2 3 1 2 3
          ; , ; , ; ,         

exc exc exc exc exc exc
u t A u t A u t A d d dσ ω σ ω σ ω σ σ σ

∞

−∞

× − − −

∫ ∫

            

(4.2.2.3) 

 

• Output (total system response)  right after the second filter 

 

( ) ( )

( ) ( )

( )

( ) ( ) ( )

( ) ( )

2

*

1 2 1 1

1 1

*

2 2 1 1 1 2

1 2

( ) ;

( , ) ; ;

               ; ,

( , ) ; ; ;     

        ; , ; ,

ref

ref ref ref

exc exc

ref ref ref ref

exc exc exc exc

y t g t d

a A g g

u t A d d

a A g g g

u t A u t A d

σ ω ν σ σ

ω σ ω σ ω

σ σ ω σ σ

ω σ ω σ ω σ ω

σ σ ω σ σ ω

∞

−∞

∞ ∞

−∞ −∞

∞ ∞ ∞

−∞ −∞ −∞

= − =

= ×

× − − +

+ ×

× − − − −

∫

∫ ∫

∫ ∫ ∫

( ) ( ) ( ) ( )

( ) ( ) ( )

1 2

*

3 2 1 1 1 2 1 3

1 2 3 1 2 3

( , ) ; ; ; ;  

; , ; , ; ,

ref ref ref ref ref

exc exc exc exc exc exc

d d

a A g g g g

u t A u t A u t A d d d d

σ σ σ

ω σ ω σ ω σ ω σ ω

σ σ ω σ σ ω σ σ ω σ σ σ σ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

+

+ ×

× − − − − − −

∫ ∫ ∫ ∫

 

            (4.2.2.4) 
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In order to obtain a standard-form Volterra series representation for the system’s 

response, presented in Equation (4.2.2.4), we proceed with a change of variables as 

follows 

 

   1 1 2 2 3 3

1 1 2 2 3 3

, ,  

, ,

σ σ τ σ σ τ σ σ τ

σ τ σ σ τ σ σ τ σ

+ = + = + = ⇒

= − = − = −
,              (4.2.2.5) 

 

which yields, 

 

( ) ( )*

1 1 1 1 1
( ) ( , ) ; ; ,

ref ref exc exc
y t a A k u t A dω τ ω τ ω τ

∞

−∞
= − +∫  

 

( ) ( ) ( )*

2 2 1 2 1 2 1 2
( , ) , ; ; , ; ,

ref ref exc exc exc exc
a A k u t A u t A d dω τ τ ω τ ω τ ω τ τ

∞ ∞

−∞ −∞
+ − − +∫ ∫  

 

( )

( ) ( ) ( )

*

3 3 1 2 3

1 2 3 1 2 3

( , ) , , ;

    ; , ; , ; ,

ref ref

exc exc exc excref exc exc

a A k

u t A u t A u t A d d d

ω τ τ τ ω

τ ω τ ω τ ω τ τ τ

∞ ∞ ∞

−∞ −∞ −∞
+ ×

× − − −

∫ ∫ ∫
 

            (4.2.2.6) 

 

where, 

( ) ( ) ( )1 1 2 1 1
; ; ;

ref ref ref
k g g dτ ω σ ω τ σ ω σ

∞

−∞
= −∫     (4.2.2.7) 

 

( ) ( ) ( ) ( )2 1 2 2 1 1 1 2
, ; ; ; ;

ref ref ref ref
k g g g dτ τ ω σ ω τ σ ω τ σ ω σ

∞

−∞
= − −∫  (4.2.2.8) 

 

 

( )
( ) ( ) ( ) ( )

3 1 2 3

2 1 1 1 2 1 3

, , ;

   ; ; ; ;

ref

ref ref ref ref

k

g g g g d

τ τ τ ω

σ ω τ σ ω τ σ ω τ σ ω σ
∞

−∞

=

= − − −∫
 (4.2.2.9) 

 

• Laplace transform 

 

Having derived the expressions for the first, second and third Volterra kernels we 

perform a Laplace transform to each one of them so that we obtain the corresponding 

operators in the frequency domain. 
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For reasons of illustration and in correspondence with Figure (4.2.2.1), we present in 

Figure (4.2.2.2), for two different steady state harmonic inputs, what would be a 

typical outcome right after the Laplace transform is performed on the response of a 

third–order system.  

 

Figure 4.2.2.2.  Schematic representation of the system’s (arbitrary) response for two different steady 

state harmonic inputs on the frequency–frequency plane (corresponding Figure 4.2.2.1). 

 

Now if we set,  

 

 1 1 1 2 2 2 3 3 3

1 1 2 2 3 3

, ,

  , ,

s j s j s j

B B B

σ ω σ ω σ ω

τ σ τ σ τ σ

= + = + = + ⇒

− = − = − =
,    (4.2.2.10) 

 

Then, according to Equations (4.2.2.7 - 4.2.2.10) the corresponding kernels may be 

defined as follows:  

 

( ) ( )
( ) ( )

1 1

1 1

1 1 1 1 1

2 1 1 1

ˆ ; ;

              ; ;

s

ref ref

s

ref ref

K s k e d

g g e d d

τ

τ

ω τ ω τ

σ ω τ σ ω σ τ

∞ −

−∞
∞ ∞ −

−∞ −∞

= =

= − =

∫
∫ ∫

 

        
( ) ( ) ( )

( ) ( )

1 1

1 1 1

2 1 1 1

2 1 1 1

; ;

; ;

s B

ref ref

s B s

ref ref

g g B e dB d

g g B e e d dB

σ

σ

σ ω ω σ

σ ω ω σ

∞ ∞ − +

−∞ −∞
∞ ∞ − −

−∞ −∞

= =

= ⇒

∫ ∫
∫ ∫

 

( ) ( ) ( )1 1 2 1 1 1
ˆ ; ; ;

ref ref ref
K S G s G sω ω ω=                    (4.2.2.11)  
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Working in a similar manner for the 2
nd
 and 3

rd
 order kernels one derives the 

expressions presented in Equations (4.2.2.12) and (4.2.2.13), respectively.  

 

( ) ( ) 1 1 2 2

2 1 2 2 1 2 1 2
ˆ , ; , ;

s s

ref ref
K s s k e e d d

τ τ
ω τ τ ω τ τ

∞ ∞ − −

−∞ −∞
= =∫ ∫  

( ) ( ) ( ) 1 1 2 2

2 1 1 2 2 1 1 2
; ; ;

s s

ref ref ref
g g g d e e d d d

τ τ
σ ω τ σ ω τ σ ω σ σ τ τ

∞ ∞ ∞ − −

−∞ −∞ −∞
= − − ⋅ =∫ ∫ ∫

( ) ( ) ( ) ( ) ( )1 1 2 2

2 1 1 2 2 1 2
; ; ;

s B s B

ref ref ref
g g B g B e e d dB dB

σ σ
σ ω ω ω σ

∞ ∞ ∞ − + − +

−∞ −∞ −∞
= ⇒∫ ∫ ∫  

 

( ) ( ) ( ) ( )2 1 2 2 1 2 1 1 1 2
ˆ , ; ; ; ;

ref ref ref ref
K s s G s s G s G sω ω ω ω= +      (4.2.2.12) 

 

( ) ( ) ( ) ( ) ( )3 1 2 3 2 1 2 3 1 1 1 2 1 3
ˆ , , ; ; ; ; ;

ref ref ref ref ref
K s s s G s s s G s G s G sω ω ω ω ω= + +   

      (4.2.2.13) 

 

Where, ( );
i ref

G s ω  is the Laplace transform of ( );
i ref
g τ ω  i.e.  

( ) ( ); ;
s

i ref i ref
G s g e d

τ
ω τ ω τ

∞ −

−∞
= ∫          (4.2.2.14) 

 

We also note that the cascade system presented in Figure (4.2.2.1) dictates that the 

transfer functions are symmetric and thus obey the following rule  

( ) ( ) ( ) ( )1 1 1 1 2 1
ˆ ,..., .... .... , 1, 2,...
n n n n n

K s s a G s G s G s s n= + + =  (4.2.2.15) 

 

4.2.3 System response to harmonic excitations 

  

The system’s response for any steady state monochromatic input ( , ; )u A tω (
3
) was 

derived and presented in Equation (4.2.2.6). Now, if the input is set to be a cosine 

function i.e.  

 

( ) ( ); 2 cos( ) j t j tu t A t A e eω ωω ω −= = +        (4.2.3.1a) 

 

and let define as (
4
)   

                                                 

(
3
) note that  we set 

exc
ω ω=  and 

exc
A A=  for illustration  reasons.  

(
4
) In this way we make an implicit reference to the Volterra series without neglecting that the 

terms
1

Hɶ ,
2

Hɶ ,
3

Hɶ   are actually partial responses of the system. 
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•  ( )( )1
; , ; ,

ref ref
H u t A Aω ωɶ  the response-component  that arises from the 

interaction of the input with the first order Volterra operator  

• ( )( )2
; , ; ,

ref ref
H u t A Aω ωɶ  the response-component  that arises from the 

interaction of the input with the 2
nd
 order homogeneous Volterra operator  

• ( )( )3
; , ; ,

ref ref
H u t A Aω ωɶ  the response-component  that arises from the 

interaction of the input with the 3
rd
 order homogeneous Volterra operator , 

 

and,  thus overall system response can be expressed as the superposition of the partial 

responses as follows 

( ) ( )( )
3

1

; , ; ,
k ref ref

k

y t H u t A Aω ω
=

=∑ ɶ .   (4.2.3.1b) 

Thus, 

( )( ) ( ) ( ) ( ) ( )( )1 1*

1 1 1 1 1
; , ; , , ;

j t j t

ref ref ref ref
H u t A A a A A k e e d

ω τ ω τ
ω ω ω τ ω τ

∞ − − −

−∞
= + =∫ɶ  

( ) ( )( )1 1

1

 
*

1 1 1 1
, ;

Fourier Transform
j jj t j t

ref ref j
a A A k e e e e d

ωτ ωτω ω

τ ω
ω τ ω τ

∞ − −

→−∞
= + =∫  

 ( ) ( )*

1 1 1
ˆ ˆ( , ) ; ;j t j t

ref ref ref
a A A K j e K j eω ωω ω ω ω ω − = + − =  

 

  
( ){ }

( ) ( )

*

1 1

*

1 1 1

ˆ2 ( , ) Re ;

ˆ2 ( , ) ; cos

j t

ref ref

ref ref

a A A K j e

a A A K j t

ωω ω ω

ω ω ω ω θ

=

= + ⇒
 

 

( )( ) ( ) ( )*

1 1 1 1
ˆ; ; 2 ( , ) ; cos

ref ref ref
H u t A a A K j tω ω ω ω ω ω θ= ⋅ +ɶ   (4.2.3.2) 

 

where, 
1
θ  is the phase of ( )1

ˆ ;
ref

K jω ω . 

 

Now, let us assume that 

 

 ( ) ( ) ( ); , ; ;j t j t

a b a
X t A e X t A e X tω ωω ω ω−= = = ,   (4.2.3.3a) 

or 

( ) ( ) ( ); ; ;
a b

u t X t X tω ω ω= +         (4.2.3.3b) 
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 then the response from the second order operator becomes 

 

 

( )( ) ( ) ( )
( ) ( )

( ) ( ){ } ( ) ( ){ }

*

2 2 2

*

2 2 2

2 2

; ; ( , ) ; ; ;

         ( , ) ; ; ; ;

          ; , ; ; ; , ; ;

ref ref a b ref

ref a ref b ref

a b ref b a ref

H u t a A H X t X t

a A H X t H X t

H X t X t H X t X t

ω ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω ω

 = + =  
    = + +       

+ + 

ɶ

            

(4.2.3.4) 

The functional representation of the bilinear operator is 

{ } ( ) ( ) ( )2 2 1 2 1 2 1 2
, ; , ; ; ;
a b ref ref a b

H X X k X t X t d dω τ τ ω τ ω τ ω τ τ
∞ ∞

−∞ −∞
= − −∫ ∫ . 

(4.2.3.5) 

and 

( ) ( ) ( ){ }2 2
; , ; , ,

ref ref
H X H X X where a b

κ κ κ
ω ω κ  = =  

.               (4.2.3.6) 

 

 

Inserting ( ; )
a

X t ω  and ( ; )
b

X t ω , as expressed in Equation (4.2.3.3) into Equations 

(4.2.3.5-4.2.3.6)  yields 

 

2
( ; );
a ref

H X t ω ω 
   ( ) ( ) ( )1 22

2 1 2 1 2
, ;

j t j t

ref
A k e e d d

ω τ ω τ
τ τ ω τ τ

∞ ∞ − −

−∞ −∞
= =∫ ∫

( )
( ) ( )

1 2

1 2

 
2 2

2 1 2 ,
, ;

Fourier Transform
j j j t

ref
j j

A k e e e
ωτ ωτ ω

τ ω τ ω
τ τ ω

∞ ∞ − −

→ →−∞ −∞
= =∫ ∫  

 

                    ( )2 2

2 2
ˆ( ; ); , ; j t

a ref ref
H X t A K j j e ωω ω ω ω ω  =   .            (4.2.3.7) 

 

 

Working in a similar manner for all the other operators gives: 

 

• ( )2 2

2 2
ˆ( ; ); , ; j t

b ref ref
H X t A K j j e ωω ω ω ω ω −  = − −   .  (4.2.3.8) 

• { } ( )2

2 2
ˆ( ; ), ( ; ); , ;

a b ref ref
H X t X t A K j jω ω ω ω ω ω= − .            (4.2.3.9) 

• { } ( )2

2 2
ˆ( ; ), ( ; ); , ;

b a ref ref
H X t X t A K j jω ω ω ω ω ω= − .            (4.2.3.10) 

 

Inserting the expressions presented in Equations (4.2.3.7) - (4.2.3.10) in Equation 

(4.2.3.4) results in:  

 

( )( )
( ){ } ( ){ }

*

2 2

2 2 2

2 2

; ; ( , )

ˆ ˆ              2 Re , ; 2 Re , ;

ref ref

j t

ref ref

H u t a A

A K j j e A K j jω

ω ω ω

ω ω ω ω ω ω

= ×
 × + −  

ɶ
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or in terms of magnitudes and phases 

( )( )
( ) ( ) ( ){ }

2 2

2 2

2 2 2

; , ; , ( , )

ˆ ˆ         2 , ; cos 2 2 Re , ;

ref ref ref ref

ref ref

H u t A A a A

A K j j t A K j j

ω ω ω

ω ω ω ω θ ω ω ω

= ×

 × + + −  

ɶ

            

(4.2.3.11) 

where, 
2
θ  is the phase of ( )2

ˆ , ;
ref

K j jω ω ω . 

Working in a similar manner for the third order operator we get 

( )( ) ( ){ }
( ){ }

33

3 3 3

3

3

ˆ; , ; , ( , ) 2 Re , , ;

ˆ                          3 2 Re , , ;

j t

ref ref ref ref ref

j t

ref

H u t A A a A A K j j j e

A K j j j e

ω

ω

ω ω ω ω ω ω ω

ω ω ω ω

= +


+ ⋅ − 


ɶ

  \ 

   (4.2.3.12a) 

or 

 

( )( ) ( ){ }
( ){ }

3

1,3

33

3 3 3

3

3

ˆ; , ; , ( , ) 2 Re , , ;

ˆ                          3 2 Re , , ;

j t

ref ref ref ref ref

j t

ref

H u t A A a A A K j j j e

A K j j j e

ω θ

ω θ

ω ω ω ω ω ω ω

ω ω ω ω

+

+

= +


+ ⋅ − 


ɶ

 

(4.2.3.12b) 

where, 
3
θ  is the phase of ( )3

ˆ , , ;
ref

K j j jω ω ω ω  and 
1,3
θ  is the phase of 

( )3
ˆ , , ;

ref
K j j jω ω ω ω− . 

In summary, the overall response of the Wiener-Hammerstein system, subjected to a 

monochromatic excitation, is 

( ) ( ){ } }

( ) ( )
( ) ( )

( ) ( ) }

2

2 2

1 1 1

3

3 3 1,3

2

2 2 2

ˆ2 ( , ) Re , ; 0

ˆ ( , ) ; cos
 1

ˆ( , ) 3 , , ; cos

ˆ  ( , ) , ; cos 2 2

th

ref ref ref

ref ref ref st

ref ref ref

nd

ref ref ref

y t a A A K j j Harmonic

a A A K j t
Harmonic

a A A K j j j t

a A A K j j t Harmo

ω ω ω ω

ω ω ω ω θ

ω ω ω ω ω ω θ

ω ω ω ω ω θ


= − +


+ + + + − + 

+ + +

( ) ( ) }3

3 3 3
ˆ( , ) , , ; cos 3 3rd

ref ref ref

nic

a A A K j j j t Harmonicω ω ω ω ω ω θ


+ + 


             (4.2.3.13)             
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Since the zeroth frequency response (D.C. term) is negligible, for the OWC case, it is 

omitted,  and  the above equation, with the aid of Equations (4.2.2.11-13) ,takes the 

form 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 1

2
2

2 1 2 2

3
3

3 1 2 3

2
3

3 1 1 2 1,3

2 ( , ) ; ; cos

( , ) ; 2 ; cos 2

( , ) ; 3 ; cos 3

3 ( , ) ; ; ; cos

ref ref ref ref

ref ref ref ref

ref ref ref ref

ref ref ref ref ref

y t a A A G j G j t

a A A G j G j t

a A A G j G j t

a A A G j G j G j t

ω ω ω ω ω ω θ

ω ω ω ω ω ω θ

ω ω ω ω ω ω θ

ω ω ω ω ω ω ω ω θ


= + +


+ + +

+ + +


+ − +


       (4.2.2.14) 

The two terms of frequency ω  can be combined into one term, resulting in  

( ) ( ) ( )

( )
1 1 2 2

3 3

2 ( , ) cos ( , ) cos 2

( , ) cos 3

y t j A t j A t

j A t

ω ω θ ω ω θ

ω ω θ


= + + + +



+ +


A A

A
    (4.2.2.15) 

where, 

( ) ( )
( ) ( )

1 1 1 2

3
3

3 1 2

( , ) ( , ) ; ;

    3 ( , ) ; ;

ref ref ref ref

ref ref ref ref

j A a A A G j G j

a A A G j G j

ω ω ω ω ω ω

ω ω ω ω ω

= +

+

A
                 (4.2.2.16) 

( ) ( )
2

2

2 2 1 2
( , ) ( , ) ; 2 ;

ref ref ref ref
j A a A A G j G jω ω ω ω ω ω=A            (4.2.2.17) 

( ) ( )
3

3

3 3 1 2
( , ) ( , ) ; 3 ;

ref ref ref ref
j A a A A G j G jω ω ω ω ω ω=A             (4.2.2.18) 

are the amplitudes of the first, second and third harmonic components  of the systemic 

response. 

 

The expressions stated in Equations (4.2.2.16-18) can be considered as a modified 

version of Rugh’s (1981) general formula for the magnitudes of the first three 

harmonic components of the overall response that corresponds of a typical Wiener-

Hammerstein cascade under harmonic excitation. Rugh’s general formula, modified 

in accordance with our notation reads as follows:  
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( )
( )

( ) ( ) ( )( )

/2
2

2
0

1 1 2

2
( , ) ,

            ; ; ; , 1, 2,..., ,

N n
n k

n n k ref ref
k

n k k

ref ref ref

n k
j A a A A

n k

G j G j G j n n N

ω ω

ω ω ω ω ω ω

−
+

+
=

+

 +  = ⋅ ⋅ × +  

× − =

∑A
                 

(4.2.2.19) 

where n denotes the order of the component. 

 

 

4.2.4 System identification method 

 

Within the context of this section we will make a detailed description of an algorithm 

developed to estimate the systemic elements of the cascade presented in Figure 

(4.2.2.1). This system identification scheme is based on the input-output relations 

presented in Equations (4.2.3.16-19) that correspond to monochromatic-input steady 

state responses.  

 

Data generation 

Before, elaborating on the algorithm, we need to present the derivation of both input 

and output data, arrays, used below.  

The input data corresponds to a trigonometric function (cosine) array, 

 

 ( ); , cos( ) 2 cos( )
n m m n m

u t A A t A tω ω ω= =ɶ    (4.2.4.1a) 

 

with amplitude and period ranging as follows: 

 

( )2 0.25 , 1,.., 8
n n
A A n meters n= = =ɶ     (4.2.4.1b) 

( )

1,2,.., ., 9,10,15, 20(sec),

2 / sec , 1, 2,.., ., 9,10,15, 20

m

m m

T

T rad mω π

=

= =

  (4.2.4.1c) 

 

In addition, we define the corresponding amplitude and frequency sets as 

 { }A , 1, ..,
n
A n N= =ɶ

l
    (4.2.4.1d) 

and 

{ }, 1, ..,
m
m Mω= =

l
ΩΩΩΩ     (4.2.4.1e) 
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while, the identification process is defined on the A×
l l
ΩΩΩΩ  lattice. Based on this 

N M×  input-grid an analogous output grid is consequently developed with the aid of 

the actual nonlinear (thermodynamic) system, presented in Section 3.3.3, by 

generating the corresponding output data (time series), for all possible  amplitude-

frequency configurations  according to Equations (4.2.4.1a - c).  

To be more specific, the actual dynamical response is numerically calculated via a 4
th
 

order Runge-Kutta method (with integral step ∆t = 0.1 sec), each time for a distinct 

amplitude-frequency combination, 

 

( ) ( )
3

,
1

ˆˆ ( ) ; , ( ) 2 ( , ) cos ( , )ˆ
n m n m k n m m k n m

k

y t u A t A k t Aω ω ω θ ω
=

 
 = = ⋅ +
  

∑i A�

  (4.2.4.1f) 

 

where,  
  i�  denotes the nonlinear thermodynamic system and 

1 2 3
, ,ˆ ˆ ˆA A A  

are the amplitudes of the first, second and third harmonic components of the measured 

(thermodynamic pressure) response. Note that, the values estimated from 

measurements or relations including measurements are noted with a  ∧   above them. 

Subsequently, a Fourier analysis is performed upon each of the corresponding time 

series in order to obtain the harmonic components of the response. This procedure is 

performed for ( )N M×  times so that the response grid is complete.  

 

�umerical solution of the identification method 

Step A:  First estimation of the polynomial coefficient 
1
,a  

3
a  based on the 

amplitudes of the first harmonic 

 

According to the analysis presented in Section 4.2, we set as reference frequency the 

frequency of the, monochromatic, excitation i.e. 0
ref exc m
ω ω ω= = ≠  (

5
) where m  is 

an arbitrary, but fixed, value from the set that was presented in Equation (4.2.1.4c).  

 

 

                                                 
(
5
)An algorithm for a zeroth reference frequency as well as for a static polynomial nonlinearity 

intermitted between the linear filters has been developed by Rugh (1981) and also used  by Xiros and 

Georgiou (2005). 
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1
st
 order harmonic components 

According to Section 4.2.3, the absolute value of the response due to the 1
st
 order 

terms for an arbitrary reference amplitude and frequency becomes:  

   

( ) ( )
( )

1 1 2

2
3

1 3 1

( , ) ; ;

           ( , ) 3 ( , ) ;

m m

n m n n m

j A G j G j

a A A A a A G j

ω ω ω ω ω

ω ω ω ω

= ×
 
× + 
  
ɶ ɶ

A

    (4.2.4.2) 

 

Since the model’s structure is such that constant multipliers can be assigned 

throughout the cascade in various ways we may set without loss of generality 

 ( ) ( )1 2
; ; 1

m m m m
G j G jω ω ω ω= = .             (4.2.4.3) 

 

The rest of the algorithm is presented in distinct steps for reasons of illustration. 

• First we normalize  
1 3
,a a  (

6
) in order to simplify the notation  

 

 ( ) ( )1 1 1 2
( ) ; ;

m m m
a a G j G jω ω ω ω ω= ,                        (4.2.4.4a)  

( ) ( )3 3 1 2
( ) ; ;

m ref ref
a a G j G jω ω ω ω ω= .                       (4.2.4.4b)  

 

• The next step is to estimate the absolute values of the response at the fundamental 

harmonic at the, fixed, excitation frequency 
m
ω  and for the range of amplitudes 

presented in Equation (4.2.4.1b). i.e.  
1
( , ), 1,..., 8

m n
j A nω =ɶA .   

Then, 

              

       3

1 1 1 3
( , ) ( , ) ( ) 3 ( )ˆ

n m m n m n m n
A j A a A a Aω ω ω ω= = +A A ,    n = 1,…,8.   

           (4.2.4.5) 

or in matrix form 

1

a

3
1 1 1 1

3 1 m

2 21 2

3 3 m

8 8
1 8

( , ) 3
( )

3( , )

( )
3( , )

ˆ

ˆ

ˆ

ˆ

m

m

m

j A A A
a

A Aj A

a
A Aj A

A

ω
ω

ω

ω

ω

                    = ⋅                      

⋮ ⋮⋮

���������
��������������������������������

A

A

A

AAAA

    (4.2.4.6) 

                                                 
(
6
) we note that the amplitude dependence is not necessary yet. 
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Next, we apply a Least Squares Method (LSM) on the above relation  

1
a A A AT -1 Tˆ ( ) ˆ= AAAA       (4.2.4.6) 

and thus a first estimation of the polynomial coefficients using a single reference 

frequency, equal to the excitation frequency, and the entire set of amplitudes 

A
1 1
ˆ ˆ ( , ),

m
a a ω=

l
 A

3 3
ˆ ˆ ( , ),

m
a a ω=

l
 is achieved. 

 

Step B: Estimation of the filters  ( ) ( )1 1 2 2
,

ref ref
G G j G G jω ω ω ω= ≠ = ≠  at 

various frequencies 

 

Inserting  A
1̂
( , ),

m
a ω

l
A

3̂
( , )

m
a ω

l
 in the general equation for every ω gives  

( )
( ) ( )

2
3

1 1 3 1

1 2

ˆ ˆ( , ) ( , ) 3 ( , ) ;

                        ; ; , { }

n m n m n m

m m m

j A a A a A G j

G j G j

ω ω ω ω ω

ω ω ω ω ω ω

 
= + × 
  
× ∈ −

ɶ A AA
l l

l
ΩΩΩΩ

      (4.2.4.7) 

 

To simplify the notation we set  

 
( ) ( )
( ) ( )

A

A

1 1 1 2

3

3 1 1 2

ˆ( ) ( , ) ; ; ,

ˆ( ) ( , ) ; ; .

m m m

m m m

k a G j G j

k a G j G j

ω ω ω ω ω ω

ω ω ω ω ω ω

=

=

l

l

     (4.2.4.8a) 

 

    

and thus  Equation (4.2.4.7) takes the form 

3

1 1 3
( , ) ( ) 3 ( ) , { }

n n n m
j A k A k Aω ω ω ω ω= + ∈ Ω−A          (4.2.4.8b) 

 

 

Thus, for all { }
m

ω ω∈ −
l
ΩΩΩΩ we get  

 

k

A k

3
1 1

1 1

3 1

2 21 2
1

3 3

8 8
1 8

1

( , ) 3
( )

3( , )
( ) ( )

( )
3

( , )

ˆ

ˆ

ˆ

ˆ

ˆ
A

j A A A
k

A Aj A

k
A A

j A

ω

ω
ω

ω ω

ω

ω

 
  
    
    
    = ⋅ ⇒ = ⋅    
    
           

⋮ ⋮⋮

���������
�����������

���������������

A

A

A

AAAA

AAAA

 (4.2.4.8c) 
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Applying Equation (4.2.4.8c) for each (reference) frequency ω  and in conjunction 

with the least squares method presented below 

k A A AT -1 T

1
ˆ( )=( ) ( )ˆω ωAAAA ,    { }

m
ω ω∈ −

l
ΩΩΩΩ     (4.2.4.9) 

 

 

the functions 
1 3
ˆ ˆ( ), ( )k kω ω  are estimated for the set of frequencies presented in 

Equation (4.2.4.1c).    

To obtain the magnitudes of the frequency response functions (FRF) 

( ); , 1, 2
j m

G j jω ω = ,  we first take the ratio between 
1 3
ˆ ˆ( ), ( )k kω ω ,  

( ) ( ) ( )

( ) ( ) ( )
A

A

1 1 2
1

3

3
3 1 2

ˆ , ; ;ˆ ( )
ˆ ( ) ˆ , ; ;

m m m

m m m

a G j G jk

k
a G j G j

ω ω ω ω ωω

ω
ω ω ω ω ω

=
l

l

                       (4.2.4.10) 

 

 

and then we solve with respect to the ( )1
;

m
G jω ω , as follows  

( )
A

A

1/2

1 1

1

3 3

ˆ ˆ( ) ( , )
ˆ ; ,

ˆ ˆ( ) ( , )

m

k m

m

k a
G j

k a

ω ω
ω ω

ω ω

  =    

l

l

{ }
k m
ω ω∈ −

l
ΩΩΩΩ .      (4.2.4.11a) 

 

 

Then, from Equation (4.2.4.8b) we get 

 

( ) ( )( )
A

1
1

2 1

1

ˆ( )ˆ ; ;
ˆ ( , )k m k m

m

k
G j G j

a

ω
ω ω ω ω

ω

−

=
l

, { }
k m
ω ω∈ −

l
ΩΩΩΩ .          (4.2.4.11b) 

 

 

 

We repeat the procedure described above for a number of reference frequencies 
m
ω ,  

where 1, 2,..., 9, 10, 15, 20m =  and following the estimation of the, arbitrarily 

shaped,  frequency response functions we perform a frequency sampling-based linear 

phase finite impulse response (FIR) digital filter design by the means of a Hamming 

window, according to Schetzen (1981), Bose (1985), Mitra (1998) and Jackson 

(1996).  
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As a result of this process, for the sampling period 0.1sτ = sec, the impulse 

response functions (IRFs)  ( )1̂
;

msg κ τ ω  are symmetric about their center coefficient 

,
1

2
j m
Κ −

, i.e.,  

( ) ( ) ,

,

3
ˆ ˆ; ( 1 ) ; , 0,1, 2,..., , 1, 2

2

j m

j m j j m ms sg g jκ τ ω κ τ ω κ
Κ −

= Κ − − = = ,    

(4.2.4.11c) 

 

where   
,
, 1, 2

j m
jΚ = , 1,2, ,m M=  denotes the (odd) length of the impulse 

responses.  

We note that the impulse response functions and the frequency response functions 

constitute a, discrete, Fourier transform pair, i.e.,   

( ) ( )
,

1

0

ˆ ˆ; , 1, 2,
j m

sj

j m j ms sG j g e j
κω τ

κ

ω τ ω κ τ ω

Κ −
−

=

= =∑   (4.2.4.11d) 

 

As a result of this we have derived two sets of impulse response functions, 

corresponding to the two filters of the cascade. In consequence, the polynomial 

coefficients as well as the FRFs (or IRFs) of both filters, depend explicitly on the 

frequency of the excitation.  

 

- Filter  phase angle 

We must also note that as for every reference period (frequency) ( )
m m
T ω  the derived 

coefficients ( )1,2
;

m
g Tκ  are symmetric about the center coefficient  then the resulting 

filters are indeed linear phase ones i.e. for each reference frequency ω ∈ΩΩΩΩ
l
, the 

phase angles 
1,2
( , )

m
G jω ω∠   are linear functions of frequency as follows 

1,2 1,2
( ; ) ( )

m m
G j Sω ω ω ω∠ =−

⌢
,  1,2,...,m M=      (4.2.4.12a) 

where 
1,2
( )

m
S ω
⌢

is a slope-constant that corresponds to either of the two filters per 

reference frequency, while the phase angle for the first three harmonic components, in 

specific, is defined as: 
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1,21

1,2

1,2

Im{ ( )}
( ) tan , and 1,2, 3

Re{ ( )}

k

k k

k

G j n
G j n n

G j n

ω
ω ω

ω

−
  ∠ = ∈ =   

ΩΩΩΩ
l

  (4.2.4.12b) 

 

For example, in the Figure (4.2.4.3) we present the phase angles for the filters 
1 2
,G G  

that correspond to the reference period 
5

5 secT = .  

 

 

Step C: Estimation of the coefficient  
2 2

( , )
n m

a a A ω= ɶ   

Having estimated the second harmonic component ( )2
,ˆ

m n
j AωA for any distinct 

combination of ,
n m
A ω  and derived the magnitudes 

1
ˆ ( ; )

m
G jω ω  and 

2
ˆ ( ; )

m
G jω ω  for every reference frequency( , 1, 2,..., )

m
m Mω = , the polynomial 

coefficient 
2
a  can be determined directly from Equation (4.2.3.19) ,  

( )
( )

2

2 2 2

2

,
ˆ ˆ ( , )

ˆ 2 ;

ˆ
m n

n m

n m m

j A

a a A
A G j

ω

ω
ω ω

= =ɶ
A

   (4.2.4.13) 

This estimation is performed M N×  times, covering in this way the entire lattice. 

 

Step D: Final estimation of the coefficients   
1 3
( , ), ( , )

n m n m
a A a Aω ωɶ ɶ   

The determination of the coefficients
1
a ,

3
a , presented above, gives in general quite 

unsatisfactory results. Such conclusions can be easily deduced by either visual 

inspection or with the aid of a frequency domain, criterion error index such as the one 

presented in Equation  (4.2.4.14) applied on the entire set of the responses that 

correspond to the  × Ωɶ�  grid, 
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( _ )( , ) ( , ) 0.1 ( , ),ˆ ˆ ˆsystem id

k m n k m n k m n
j A j A j Aω ω ω− ≤ ×A A A          (4.2.4.14) 

where, 1, 2, 3k = . 

To overcome this problem, distinct amplitude-conditioning per reference frequency is 

also implemented into the identification scheme by making use of the magnitude of 

the 3
rd
 order harmonic components in order to estimate again the coefficient. Thus, by 

means of a third harmonic-amplitude correction we get 

 

( )( ) ( )
3

3 3
3

1 2

( , )
ˆ ( , )

ˆ ˆ; 3 ;

ˆ
m n

n m

n m m m m

j A
a A

A G j G j

ω
ω

ω ω ω ω

=ɶ
A

   (4.2.4.15) 

The coefficient 
1
( , )

n m
a A ωɶ  is then re-estimated  

 

3

1 3

1

ˆ( , ) 3 ( , )
ˆ ( , )

ˆ
m n n m n

n m

n

j A a A A
a A

A

ω ω
ω

−
=

ɶ
ɶ

A
,       (4.2.4.16) 

where, 1, 2,..., , 1, 2,...,m M n N= = . 

This estimation process is performed M N×  times for both 
1
( , )

n m
a A ωɶ , 

3
( , )

n m
a A ωɶ in order to cover the entire reference space and hence at every lattice 

point (or cell),  corresponds a distinct set of three polynomial coefficients and two 

integral kernels as 

 

 { }1 2 3 1 2*
, ,

ˆ ˆ ˆ ˆ ˆ( , ), ( , ), ( , ), ( ; ), ( ; )ˆ
n m n m n m m m

ref n m
s sa A a A a A g gS ω ω ω κ τ ω κ τ ω= ɶ ɶ ɶ

�
, 

 (4.2.4.17) 

where, ,
n m
A ω∈ ∈ Ωɶ ɶ� , 1, 2,..., , 1, 2,...,m M n N= = . 
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Case study: System Identification of an OWC nonlinear dynamical system (in 

particular of the dynamic-pressure fluctuations inside the chamber of an OWC)  

 

In what follows, we apply the system identification method described above, for the 

approximation of a thermodynamic system (for the dynamic pressure inside the 

chamber of an OWC-WEC), described and presented in Section 3.3.3. 

 

-  Dynamic elements (Filters) 

The impulse response functions, ˆ ( ; ), 1, 2
i msg jκ τ Τ =  , defined on the discrete 

time–reference period ( 2 / )
m m
T π ω=  space, are presented in Figures (4.2.4.1)  and 

(4.2.4.2) respectively.  

The center coefficients of the IRFs of the first filter increase with frequency, 

following an almost exponential pattern for high frequencies, while the rest of the 

coefficients follow a symmetric, linear, decreasing pattern as they draw away from the 

center ones. Regarding the second filter, the IRFs decrease with frequency in an 

almost linear manner, while symmetric evanescent rippling occurs for every IRF. 

The linear phase characteristic is illustrated in Figure (4.2.4.3), where the 

corresponding plots for both filters, at the arbitrary reference period of  
5

5(sec)T = , 

verify  that phase is a linear function of frequency. 

- Impulse response of the first filter bank  ( )1 s m
g ;Tκ τ    

 
Figure 4.2.4.1.  Display of the ( )1

;
s m

g Tκ τ   impulse response on the discrete time ( )sκτ – reference  

period ( )
m
T  space. 
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- Impulse response of the second  filter bank  ( )2
;
s m

g Tκ τ   

 
Figure 4.2.4.2. Display of the ( )2

;
s m

g Tκ τ    impulse response on the discrete time ( )sκτ  – reference     

period ( )
m
T  plane. 

 

 

 
Figure 4.2.4.3. Phase angles 

1 5
ˆ ( ; )G jω ω∠  and 

2 5
ˆ ( ; )G jω ω∠ . at the reference period 

5
( 5 sec)T = . 
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- Static elements (polynomial coefficients) 

 

The distribution of the estimated polynomial coefficients 
1 2 3
, ,a a a  is plotted on the 

joint amplitude – period space presented below. 

 
 

Figure 4.2.4.4.  Distribution of the coefficients 
1 2 3
, ,a a a

 
on the joint  period–amplitude  reference 

space . 

 

The nonlinear patterns describing the ratios between the magnitudes of the harmonics, 

see Figures (4.2.2-4), seem to be in consistence with the distribution of the 

polynomial coefficients over the amplitude-period space, depicted in Figure (4.2.4.4), 

as the values of the coefficients vary in an analogous manner. Large variations are 

observed for the second and third order polynomial coefficients, while the first order 

coefficients also exhibit strong dependence upon the amplitude and period 

(frequency) of the excitation. 
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4.2.5 Application of the proposed system identification method to an  OWC-

WEC system, under monochromatic input 

 

In this section, the validity and accuracy of the proposed system identification scheme 

is illustrated by means of numerical simulations. In addition, a simpler systemic 

configuration using a mono-parametric (frequency) model, has been implemented in 

order to emphasize on the importance of the bi-dimensional parameterization and 

conditioning, described above.   

First,, we examine, for the OWC system described in Section 3.3.3, the dynamic 

pressure responses, ( )D
p t , for two representative input cases, i.e. a low frequency – 

high amplitude excitation ( 0.1( ),
exc
f Hz=  1.75( ))

exc
A m=  and a medium 

frequency – low amplitude one ( 0.2( ),
exc
f Hz= 0.50( ))

exc
A m= . Time-domain 

simulations are obtained by direct numerical solution (DNS) of the system of 

differential equations presented in Section 3.3.3 and by applying the appropriate 

systemic elements, derived above in order to obtain the overall systemic response.  

The corresponding results are presented in Figures (4.2.5.1) and (4.2.5.4), 

respectively. Subsequently, we applied Fourier analysis in order to obtain the 

amplitudes, and phases in the frequency domain, where the agreement between 

systemic and DNS is further illustrated. The corresponding results are presented in 

Figs (4.2.5.2), (4.2.5.3) and (4.2.5.5), (4.2.5.6) for the first and second excitation case 

respectively. 

 

Case 1: 0.1( ), 1.75( )
exc exc
f Hz A m= =  

For this excitation case, we observe almost excellent matching between the time-

domain results, produced by the thermodynamic model, denoted in figures as DNS, 

and the systemic model. The discrepancies observed in the figure are less than 5%  

deviation in amplitude (occurring at the troughs) and less than 4%  in phase 

difference (occurring mainly at the peaks). The large discrepancies observed at the 

initial time interval (0-3sec) are due to the transient part of the DNS. 
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Figure 4.2.5.1. Time-domain simulation and comparison between the pressure response ( )D
p t

 

obtained by DNS (– –) and the proposed systemic model (solid line), for a monochromatic wave 

excitation of frequency 
1

0.1( )f Hz=  and amplitude 
1

1.75( )A m= . 

 

In Figure (4.2.5.2), the corresponding to Figure (4.2.5.1) frequency-domain amplitude 

plot is presented and as it can be observed, excellent agreement, at the primary and 

higher order harmonics, between the DNS and the systemic model is achieved. Any 

discrepancies in amplitudes are well below 2%. Let it be noted that the amplitudes of 

the second and third harmonic components are almost equal to each other, and they 

add-up to almost 25% of the amplitude of the first harmonic.  

 

Figure 4.2.5.2. Amplitudes of the first three harmonic components obtained by the DNS (– –, □ ) and 

the proposed systemic model (solid line, ○ ), for a monochromatic wave excitation of frequency 

1
0.1( )f Hz=  and  amplitude 

1
1.75( )A m= .  
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In the corresponding phase plot presented in Figure (4.2.5.3), relatively good 

matching characteristics are observed as minor discrepancies occur for the primary 

harmonic components (
1 10

π
ϕ∆ ≈ ). However, more severe phase lags can be 

detected at the second and third harmonic components, i.e., 
2 4

π
ϕ∆ ≈  and 

3 2

π
ϕ∆ ≈ , respectively. However, these phase lags have minor impact to the 

resulting waveform while no distortion effects were observed, mainly due to the linear 

phase characteristic imposed on the impulse responses functions that correspond to 

any of the two filters of the cascade. The apparent discontinuities in the phase plot at 

the frequencies 0.1, 0.2 and 0.3 Hz,  are a result of the existence of strong, with 

respect to the rest of the spectrum, frequency components, while the discontinuities 

observed at 0.16, 0.17, 0.26 and 0.28 Hz  are due to the phase wrapping that results 

from resolving the phase from the real and imaginary parts, that correspond to each 

harmonic component, with the arctangent function, that returns principal values 

between π−  and π .  

 

 
 
Figure 4.2.5.3.  Phases of the first three harmonic components obtained by the DNS (– –) and the 

proposed systemic model (solid line), for a monochromatic wave excitation of frequency 

1
0.1( )f Hz=  and amplitude 

1
1.75( )A m= . 
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Case 2:  0.2( ), 0.50( )
exc exc
f Hz A m= =  

For this excitation case, the time-domain simulations show, in Figure (4.2.5.4) , that 

except from the transient part of the DNS and the zero crossings where a minor 

deviation occurs, excellent matching is achieved almost everywhere. 

The corresponding frequency-domain amplitude plot, presented in Figure (4.2.5.5), 

also show that negligible discrepancies exist between the DNS model and the 

proposed system identification method. To be more specific, the corresponding 

differences for all harmonic components are well below 1%, while in this case the 

third harmonic component is clearly the most important nonlinear term. 

 

 
Figure 4.2.5.4. The same as Figure (4.2.5.1), but for a monochromatic wave excitation of frequency 

2
0.2( )f Hz=  and amplitude 

2
0.50( )A m= . 

 
Figure4.2.5.5. The same as Figure (4.2.5.2), but for a monochromatic wave excitation of frequency 

2
0.2( )f Hz=  and amplitude  

2
0.50( )A m= . 
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From Figure (4.2.5.6), excellent agreement is observed for both first and second 

harmonic components, while non-negligible phase lag ,
3 5

π
ϕ∆ ≈ ,  occurs for the 

third harmonic component. Note that the apparent discontinuities that can be observed 

in this plot, are either due to the presence of significant harmonic components at the 

frequencies 0.2, 0.4 and 0.6 (Hz), or are a result due to the phase wrapping (at around 

0.38, 0.56 and 0.58 Hz) discussed above. 

 
Figure 4.2.5.6. The same as Figure (4.2.5.3), but for a monochromatic wave excitation of frequency 

2
0.2( )f Hz=  and amplitude 

2
0.50( )A m= . 

 

From the above results, it can be deduced that for both input cases the proposed 

systemic representation is successful. Let it be noted that the model can produce quite 

satisfactory results for any monochromatic input ( ; , )u A ωi  provided that ( , )A ω  

belong to the parameter space  
,1 , ,1 ,
, ,

ref ref N ref ref
A A ω ω

Μ
   = ×      

�  . This is mainly 

a consequence of the amplitude-frequency conditioning of the static polynomial 

coefficients and the frequency conditioning of the integrals kernels, which result in a 

robust modeling of the nonlinear characteristics of the actual (OWC) system’s 

response. 
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- On the significance of the third-harmonic amplitude correction 

 

The efficiency of the proposed model can also be ascertained by comparing its results 

with the ones obtained by a simpler systemic model. This model consists of systemic 

elements as these were estimated in Steps A, B & C of Sec. 4.2.4, without taking into 

consideration the correction of the odd coefficients 
1 3

( , )a a  due to the amplitude of the 

third harmonic, i.e., Step D.  

The resulting responses are found to be quite unsatisfactory for both excitation cases. 

Especially for the lower frequency case (which is of the upmost importance with 

regards to the sea waves-structure interactions and OWC operation) the corresponding 

response is severely distorted, as it is shown in Figure (4.2.5.7). For the medium 

frequency case, one can observe in Figure (4.2.5.8)  that large discrepancies between 

the target (DNS) and the systemic response occur. From both figures it is evident that 

the proposed systemic model produces clearly superior results. 

 

 

Figure 4.2.5.7. Time-domain simulation and comparison of the dynamic pressure response, ( )D
p t , 

 

obtained by the DNS (– –),  the proposed systemic model (solid line) and a systemic model without the 

third harmonic amplitude correction ( )−+− , for a monochromatic wave  excitation of frequency 

1
0.1( )f Hz=  and amplitude 

1
1.75( )A m= . 
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Figure 4.2.5.8. The same as Figure (4.2.5.7), but for a monochromatic wave excitation of frequency 

2
0.2( )f Hz=  and amplitude 

2
0.50( )A m= . 

 

In conclusion, the amplitude-correction of the 3
rd
 order polynomial coefficients via 

Equation (4.2.4.16) (step D), not only allows for a much better approximation of the 

amplitudes of the corresponding harmonics but also introduces a frequency 

dependence of the polynomial coefficients leading to a much more robust modeling of 

the energy transfer mechanism from the higher order terms to the lower order ones per 

reference frequency. As a result of this, the proposed model takes fully into account 

the characteristics of the nonlinear responses, i.e., amplitudes of all resulting 

harmonic components, that correspond to the amplitude-frequency input grid.  

This is the crucial step towards amending this systemic model in comparison with 

various commonly used system identification methods (Rugh, 1982, Boyd, 1984, 

Doyle et al., 2002, Giri and Bai, 2010). In this way the nonlinearities of the OWC 

system, presented in Sec. 4.2 and expressed mainly through the inherent nonlinear 

patterns between harmonics displayed in Figures (4.2.2 - 4), can be modeled 

efficiently regardless of the fact that they can be the quadratic, cubic or both, 

depending on the frequency and amplitude properties of the excitation. 
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- Discussion  

 

The accurate measurement of the higher order coefficients, in this case the 3
rd
 order 

ones, not only allows for a much better approximation of the lower order coefficients, 

the 1
st
 order ones in this case, but also rectifies any kind of errors caused from the 

implementation, as an initial estimation scheme, of the Least squares method. The 

frequency-amplitude dependence of the polynomial coefficients as well as the 

frequency (only) conditioning of the  integrals kernels was employed in order to 

approximate as accurately as possible the nonlinear behavior of the actual system’s 

response, under monochromatic excitations, illustrated in Sections (4.2.2)-(4.2.4). In 

effect, both magnitude and phase were adequately approximated even though the 

identification method was based on a magnitude-matching scheme. The use of higher 

order harmonics showed that near perfect approximation of the magnitudes of the 

harmonic constituents can be achieved, while in conjunction with the linear phase 

assumption of the filters the corresponding systemic phase angles present also good 

matching characteristics to the ones computed from the system of nonlinear 

differential equations. However, besides the monochromatic input case the frequency 

and amplitude-frequency conditioning of the frequency response functions and 

polynomial coefficients respectively, composes an identification basis upon which the 

approximation of a multichromatic or nonlinear-stationary signal can ultimately be 

developed.  

A main feature of this time-frequency-amplitude (energy) oriented system 

identification method is that it is fully compatible to a number of time-frequency 

transforms and methods, some of them presented in Section 1.4 and 1.5.  Through 

such transforms, we can either identify the instantaneous frequency and amplitude 

content of a time–varying monocomponent input, for the corresponding definition one 

could check Section 1.4.1, or decompose a multichromatic signal into its harmonic 

constituents. As far as a nonlinear signal is concerned it can also be decomposed into 

a number of components where each of them incorporates a different set of spectral 

properties or even correspond to a distinct time scale. Such cases will be outlined and 

presented in the following sections. 

In summary, through the proposed system identification method described above we 

have derived a systemic identity of an actual nonlinear dynamical system (OWC-

WEC) by the means of which we may accurately approximate the latter’s response 
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under harmonic excitation. The resulting systemic structure corresponds to a 

truncated Volterra series while at the same time  the systemic and functional basis of 

a more advanced systemic approximation scheme,  the Layer of Harmonics systemic 

concept,  is set, presented and analyzed in the following sections. 

 

4.2.6    Introduction to the Layer of Harmonics system identification concept 

 

The proposed system identification method besides being able to accurately 

approximate the response of the OWC (thermodynamic) nonlinear system, described 

extensively in Section 3.3.3, under a wide range of harmonic excitations, it can also 

provide us with a systemic basis in order to derive the system’s response under multi- 

(linear or nonlinear) component excitations. 

 In order to achieve the latter, we must outline first some essential characteristics of 

this novel system identification structure as well as interpret and extend the 

monochromatic-input based system cascade to a much broader perspective.  

By this point we have derived the general equations with respect to the 

monochromatic-input case and consequently developed an algorithm in order to 

estimate the systemic elements, the proposed systemic scheme consists of i.e. integral 

kernels and coefficients. The parametric dependency of these systemic elements was 

made with respect to the amplitude and frequency content of the input signal while 

their derivation did not have any conceptual background besides the abnormal 

patterns that could be observed for the ratios between the harmonics.  

In Equation (4.2.4.15), the highest (in our case the third) order coefficients are 

directly computed from the analogous harmonics without any contribution from the 

lower order ones, while for the estimation of the first order coefficients, the energy 

content contributed from the third to the first order terms is appropriately decoupled.   

In effect, we distinguish the energy contributions of the higher order terms to the 

lower order ones and thus the corresponding polynomial coefficients are derived with 

respect to this principle, while the estimation of the coefficients that correspond to the 

higher harmonic components must precede the estimation of the corresponding lower 

order ones.  

To be more specific,  

( ) ( )3 1 3

3 1
ˆ ˆ ˆ( , ) ( , ), ( , )a H a H Hω ω ωΑ → Α Α     (4.2.6.1) 
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or in a more generic form  

 

( ) ( )
( )

2

2

2

ˆ ˆ ˆ( , ) ( , ), ( , ) ...

ˆ ˆ ˆ              ... ( , ), ..., ( , ), ( , )

n n n

n n

I n n

I

a H a H H

a H H H

ω ω ω

ω ω ω

−
−

−

Α → Α Α →

→ Α Α Α
ɶ

ɶ

  (4.2.6.2) 

where, 

 

 
1,   for odd order terms

0,  for even order terms
I
= 

ɶ      (4.2.6.3) 

 

 

The coefficients can be consequently separated in three or more, depending on the 

degree of nonlinearity of the system under investigation, groups and according to the 

order of the harmonic they correspond to, whilst through this grouping a layer is 

formed. It is consequent that the number of layers is equal to the order of the 

nonlinearity of the system, and hence the definition of the proposed systemic scheme 

as the “Layer of Harmonics model (LHM)”. 

 

Recapitulating, we have already stated that for the determination of the energy of the 

prime harmonic due to the first order terms only, the determination of the energy 

content of the higher order harmonics must be made first. As a result of this, the 

system identification scheme can be interpreted as an energy-contribution mechanism 

from the layers that correspond to the higher order harmonics (or coefficients) to the 

layers of the lower order ones.  

 

For reasons of illustration a schematic representation of the system identification 

model is presented in Figure (4.2.6.1) where the “one way” energy contribution from 

layer to layer is displayed. 
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Figure 4.2.6.1. Schematic representation of the system identification model as a layer of harmonics. 

 

 A special notice should be made with respect to the amplitude (energy)–frequency 

“coordinates” of each coefficient as these differ according to their order. As an 

illustrative example of the Layer of Harmonics coordinate system, the simple 

monochromatic input case is first examined.   

 

- Case I : Monochromatic input  

For example, for a monochromatic input of amplitude A  and frequency ω  i.e. 

( ),u A ω , the coordinates of the first, second, third and n order coefficients at the 

corresponding layers are : 

( ) ( )(1) (1) (1)

1
, ,

ref ref
a A a Aω ω= ɶ ,      (4.2.6.4a) 

 

( ) ( )(2) (2) (2)

2
, , 2

ref ref
a A a Aω ω= ɶ ,      (4.2.6.4b) 

 

( ) ( )3(3) (3) (3)

3
, , 3

ref ref
a A a Aω ω= ɶ       (4.2.6.4c) 

 

and 
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 ( ) ( )( ) ( ) ( ), ,nn n n

ref ref n
a A a A nω ω= ɶ ,  respectively,    (4.2.6.4d) 

 

where, ( ) ( ), , 1, 2, 3,...n nA nω =  are the amplitude and frequency properties of each of 

the terms, the overall response consists of.  To be more specific,  for the first order 

terms, (1) (1),A A ω ω= = , the second order (2) 2 (2), 2A A ω ω= = and so on. 

Based on this “coordinate” system we have assigned to each coefficient specific 

amplitude, frequency and order parameterization, so that when multi- inputs excite the 

system, the selection and assignment of the coefficients to the resulting cross terms 

can be performed in a similar, separate, manner, as it will be illustrated in the 

following sections. 

  

Alternatively, we state that we can now assign systemic elements by taking into 

consideration the frequency and energy content of the terms in conjunction with the 

order these terms correspond to, without having to make any further associations to 

the properties of the original input.  

 

In brief, we focus on each mode separately either being cross-or auto-term. 

 

A similar approach is made for the dynamic parts of the identification scheme with 

the exception that the integral kernels are parameterized with respect to the frequency 

content of each mode and the order of the harmonic this mode corresponds to.  

Thus,  

( ) ( )(1) (1)

1 1
; ;

ref
g t g tω ω≡      (4.2.6.5a) 

 

( ) ( )(1) (1)

2 2
; ;

ref
g t g tω ω≡      (4.2.6.5b) 

 

( ) ( )(2) (2)

2 2
; ; 2

ref
g t g tω ω≡      (4.2.6.5c) 

 

( ) ( )(3) (3)

2 2
; ; 3

ref
g t g tω ω≡    .  (4.2.6.5d) 

 

 

An illustrative example of this order-based “coordinate” system with respect to the 

monochromatic-input based cascade system presented in Figure (4.2.2.1). In this 
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figure we can observe that a single input-single output (SISO) (
7
) modeling exists at 

all three stages of the cascade i.e. for both filters and the static nonlinear part as well. 

However, this SISO characteristic can be rearranged as follows (for reasons of 

illustration we will deal with the last two systemic operations only):  

The input to the static nonlinear part  ( )x t  first interconnects with a number of linear 

and nonlinear static operators (for the first and higher order terms, respectively) while 

the assignment of coefficients occurs according to the spectral properties of the 

original signal ( );u t ω  followed by a superposition of the resulting modes before 

entering the linear dynamic operator whose transfer function has also been selected 

with respect to the initial input’s properties. In a schematic way one can also observe, 

besides Figure (4.2.2.1), Figure (4.2.6.2) (we omit the coefficients and impulse 

responses’ arguments i.e. time, amplitude and frequency for reasons of simplicity): 

 

( ) ( ) ( )1 2 3

1 2 3 2*
v

x a a a g v y→ ⋅ • + ⋅ • + ⋅ • → →  

Figure 4.2.6.2. Initial SISO systemic representation. 

 

However, according to the order-based assignment criteria presented in Equations 

(4.2.6.4 & 5) the cascade can be alternatively represented as follows: 

 

( )

( )

( )

(1) (1)

(2) (2)

(3) (3)

1 (1) (1) (1) (1) (1)

2

3
2 (2) (2) (2) (2) (2) ( )

2

1

3 (3) (3) (3) (3) (3)

2

*

*

*

z v

z v
i

i

z v

a z g v y

x a z g v y y y

a z g v y

⊕

=


→ • → ⋅ → →



→ → • → → → → =


→ • → → →


∑  

Figure 4.2.6.3. Reformulation of the initial SISO systemic representation into a             

SIMO-MIMO-MISO model. 

 

In this way each of the operations, static or dynamic, that occur inside the cascade is 

dealt in a completely autonomous way.  

 

                                                 
(
7
) SISO - Single Input-Single Output,  MISO - Multiple Input-Single Output, MIMO - Multiple Input- 

Multiple Output. 
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Case II: Multichromatic input  

 

However, for multi-chromatic input cases the increase in the number of auto and cross 

terms, due to the existence of nonlinear operators inside the cascade, needs to be 

addressed with the way presented in Figure (4.2.6.3) in order to assign polynomial 

coefficients and kernels in a robust manner.   

Thus, the selection and assignment higher order polynomial coefficients must be 

according to the resulting frequency and amplitude of the corresponding modes as 

well as with respect to the order the latter correspond to. Otherwise the effect of the 

cross terms to the total response will be surely misestimated. 

 

Let a K-chromatic input,  

( )
1 1

( ; , ) cos( )
K K

k k k k k k
k k

u t u t B B tσ σ ε
= =

= = +∑ ∑ɶ     (4.2.6.6) 

enter the cascade presented in Figure (4.2.2.1). Then the general form of the output 

after the first filter will be  

( ) 1
1 1

( ; , ) ( ; , )
K K

k k k k k k
k k

x t u t B x tσ β σ
= =

= ∗ =∑ ∑ɶ g     (4.2.6.7)

 
where, 

1
g  denotes the impulse response corresponding to the first filter, and ∗  

denotes for convolution. 

 Then, the output of the nonlinear polynomial operator ( )iP takes the form 

( ) ( ) ( )
�

( ) ( )

( ) ( ) ( )

3
1 2 3

1
1 2 3

1 2 3(1) (2) (3)

1 2

v( ) ( ) v ( ) v ( ) v ( ) v ( )

                       = ( ) ( ) (

st nd rd

st nd

j

j

order terms order terms order terms

order terms order terms

t x t t t t t

v t v t v

=

= = = + + =

⋅ + ⋅ + ⋅

∑ɶɶ
������� �������

ɶ ɶ ɶ
����������� �����������

P

A A A

3

)

rd order terms

t
�����������

      (4.2.6.8)
 

where the terms  
( )
( )

j
v tɶ  are defined with the aid of the multinomial theorem, and  

( ),  1, 2, 3j j =A , denotes the polynomial coefficient corresponding to  the 
th
j - order 

terms, 
( )
( )

j
v tɶ . Finally, the overall systemic output ( )y tɶ  is given by 

2
( ) v( )y t t= ∗ɶ ɶg�      (4.2.6.9) 
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In the monochromatic case ( 1K = , 
1
B B=  and

1
σ σ= ) should the excitation 

parameters ( ),B σ  belong to an arbitrary influence cell 
*

, ,ref n m
� , defined in Equation 

(4.2.1.6),  then, the calculation of the overall system response will be based at the 

lattice point ( , )
n m
A ω  and thus 

1 1
( ; )

m
g t ω≡g , 

2 2
( ; )

m
g t ω≡g  and 

( ) ( , )j

j n m
a A ω≡ ɶA , 1,2, 3j = . 

However, in the multichromatic case, due to the existence of several distinct modes 

embedded in the excitation, the systemic elements cannot be conditioned with respect 

to just a single influence cell (lattice point). In order to tackle this problem, we need to 

reformulate Equation (4.2.6.7) as follows: 

Beginning from, the corresponding relation becomes 

 

( )
( )

(1)

1 ,
1 1

( ; , ) ( ; ) ( ; , )
k

k k k ref m k k k
k k

x t u t B g t u t Bσ ω σ
Κ Κ

= =

= ∗ = ∗ =∑ ∑ɶ g   

1

( ; , )
k k k

k

x t β σ
Κ

=

= ∑  ,   (4.2.6.10) 

 

assuming that each of the excitation frequencies, 
k
σ , belongs to the, appropriate, 

frequency strip *

,
k

ref m
Ω , centered at a reference frequency 

( )

(1)

,
k

ref m
ω  with 

( )
1,2,...,

k
m M ∈     , that is 

(1)

, ( )
( 2 )

k ref m k
σ ω ω− ≤ ∆ . 

 In a similar manner, each of the first, second and third order terms exiting the 

polynomial operator (Equation 4.2.6.8) are reformulated as follows: 

( )
( ) ( )

K
1 (1) (1) (1)

1 , ,
1 1

v ( ) ( ) ( ; ) ( )
k k

K

k ref n ref m k
k k

t x t a A x tω
= =

= ⋅ = ⋅∑ ∑ ɶA            (4.2.6.11) 

 

( ) ( )
2

2 2(2) (2)

1

v ( ) ( ) ( )
K

k
k

t v t x t
=

  = ⋅ = ⋅ =   
∑ɶA A  

         

( ) ( ) ( ) ( ), ,

(2) (2)

2 , ,
1 1

   

( ; ) ( ) ( )
i k i k

K K

ref n ref m i k
i k

a A x t x tω
= =

= ⋅ ⋅∑∑           (4.2.6.12) 

and 
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( ) ( )
3

K
3 3(3) (3)

1

v ( ) ( ) ( )
k

k

t v t x t
=

  = ⋅ = ⋅ =   
∑A A   

        

 

( ) ( ), , , ,

(3) (3)

3 ,
1 1 1

( ; ) ( ) ( ) ( )
i k l i k l

K K K

ref m ref i k l
i k l

a A x t x t x tω
= = =

= ⋅ ⋅ ⋅∑∑∑                    (4.2.6.13) 

 

where,  for , , 1, 2,...,Ki k l  ∈    : 

- 
( )

(1)

,
k

ref n
Aɶ  denotes the first order reference amplitude that corresponds to the 

amplitude 
k

A B=ɶ  and the influence amplitude strip *

,
k

ref n
�  (the 

corresponding frequency (1)

, ( )ref m k
ω  has  already been defined). 

- 
( ),

(2)

,
i k

ref n
A  

( ),

(2)

,
i k

ref m
ω  and  

( ), ,

(3)

,
i k l

ref n
A ,

( ), ,

(3)

,
i k l

ref m
ω  denote the second and third order 

reference amplitudes and frequencies, respectively (to be defined).  

 

Combining, Equation (4.2.6.10-13)  and  (4.2.6.9), the overall system response takes 

the form 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( , ) , ,

( , , ) , , , ,

(1) (1) (1)

2 , 1 , ,
1

(2) (2) (2)

2 , 2 , ,
1 1

   

(3) (3) (3)

2 , 3 ,
1

( ) ( ; ) ( ; ) ( )

( ; ) ( ; ) ( ) ( )

( ; ) ( ; )

k k k

i k i k i k

i k l i k l i k l

K

ref m ref n ref m k
k

K K

ref m ref n ref m i k
i k

K

ref m ref m ref
l

y t g t a A x t

g t a A x t x t

g t a A

ω ω

ω ω

ω ω

=

= =

=

= ∗ ⋅ +

+ ∗ ⋅ ⋅

+ ∗

∑

∑∑

ɶɶ

1 1

( ) ( ) ( )
K K

i k l
i k

x t x t x t
= =

⋅ ⋅ ⋅∑∑∑

  (4.2.6.14) 

 

Algebraic, conceptual and preliminary numerical evidence dictate that: 

• The second order reference amplitude 
( ),

(2)

,
i k

ref n
A  should correspond to 

i k
A B B=ɶ , and the reference frequency 

( ),

(2)

,
i k

ref m
ω  should correspond to 

( ) 2
i k

ω σ σ= + . 
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• The third order reference amplitude 
( ), ,

(3)

,
i k l

ref n
A  should correspond to 

3
i k l

A B B B=ɶ  and the reference frequency 
( ), ,

(3)

,
i k l

ref m
ω  should correspond to  

( ) 3
i k l

ω σ σ σ= + + . 

It should be emphasized that we still use, in the multi-chromatic case, the parameter 

set as this was defined on the joint × Ωɶ�  reference grid, fully exploiting the 

analysis performed for the monochromatic case. 

In conclusion, for multi-chromatic excitations, the conditioning of the polynomial 

coefficients (the number of which is now controlled by the multinomial expansion 

theorem), is performed separately for each term. This method can be regarded as an 

adaptive synthesis of dynamic and static operators the assignment and number of 

which depends on the number of harmonic modes composing the input, the degree of 

nonlinearity, as well as the frequency and amplitude characteristics of the excitation. 

The method will be further developed, numerically implemented and applied in the 

following sections. 

 

 

4.2.7 A systemic perspective of the Layer of Harmonics model  

 

As far as the systemic structure and elements, in overall, are concerned, this method 

can be regarded as an adaptive synthesis of various dynamic and static parts in 

consistence to the number of components that compose the input, the degree of 

nonlinearity, and hence the number of the resulting auto and cross terms, as well as 

the frequency and amplitude (energy) characteristics of each of the modes embedded 

in the overall response. 

In this sense, the systemic scheme is placed in a non-parametric context while in 

consequence, the systemic structure presented in Figure (4.2.2.1) can no longer apply 

to more complex (multi-component) input cases.  

As the number of elements is now variable, it will be subsequently illustrated how the 

building elements, kernels and coefficients, are embodied, manipulated and assigned, 

in the context of a systemic realization that is depending on the, a-priori identified, 

oscillatory characteristics of a multi-component (chromatic) input.  



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~48]

 

Besides the parameterization of the kernels and coefficients, which allow us to obtain 

an enhanced systemic scheme, another conceptual characteristic of this approach 

needs also to be stated: As each mode, embedded in the multichromatic output signal, 

is assigned to a specific set of coefficient and kernels it can be said that the Layer of 

Harmonics model becomes the means through which a distinct energy leveling is 

achieved by each of these modes. For example, a highly energetic mode corresponds 

to much different set of systemic elements than a lower energy mode or a slower 

mode and in this sense the initial constituents of the signal as well as the developed, 

due to the nonlinearities, modes must be lead or channeled to the appropriate 

magnification factor. 

 However, in order to achieve this kind of systemic manipulation we must first 

embody to the structure appropriate signal decomposition operators such as band-pass 

filters. The use of such filters is restricted to the decomposition of the initial signal 

and the output from the nonlinear polynomial operator to the linear modes they 

consist of, without any implication to their amplitudes (unit gain) or phases (zero 

phase).  

However, we may also incorporate other types of signal decomposition such as the 

Empirical Mode Decomposition (EMD) or wavelets. In the nonlinear stationary input 

case, examined in later sections, we employ the EMD method instead of the band-

pass filter banks in order to benefit from the small number of nonlinear modes, the 

signal consists of, that can be extracted with the aid of this method.    

 

4.2.8 Application for the bi-chromatic input case 

 

The method presented below corresponds to the case where the forcing is a 

superposition of two harmonics with different amplitude and frequency oscillating 

characteristics. For a greater number of harmonics the system is “expanded” in a 

straightforward manner and in consistence to the methodology presented above.   

We note that due to the periodic nature of the excitation’s components the 

implementation of the Fourier transform is highly suggested amongst other 

transforms, as it can be quite accurate for such cases. 

Thus, as the signal is decomposed to its constituents, we may also derive every auto 

and cross term that is generated by the nonlinearities of the dynamical system through 

appropriate trigonometric identities. The derivation of the auto terms to the system’s 
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total response is trivial, with respect to the procedure followed for the monochromatic 

case, while similar approach is followed for the cross terms.  

 

Let the input signal be defined as:  

  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2 2

1 1

; , cos
n n

i exc i exc i exc i exc i exc i
i i

u t u t A A tω ω θ
= =

= =

= = +∑ ∑ɶ   (4.2. 8.1) 

 

with 

   ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ; , cos
i i exc i exc i exc i exc i exc i
u t u t A A tω ω θ= = ⋅ ⋅ +ɶ (

8
)     (4.2.8.2) 

 

 

Next, for reasons of illustration we outline the processes the input signal undergoes in 

the form of steps while a representative systemic scheme, from input to output, can be 

observed from Figure (4.2.8.1).  

 

Step 1.   Estimation of the output after the first band-pass filter bank 

Step 2.   Estimation of the output after the first low-pass filter bank 

Step 3.   Estimation of the output after the static polynomial operator 

Step 4.  Estimation of the output after the high–pass filter bank (Total system 

response) 

 

It is noted that in actual devices, band-pass filtering is also required for the output 

after the static polynomial operator. However, for reasons of illustration it is decided 

not to present it and assume that ideal separation, with unit gain and zero phase lag, is 

achieved for each of the resulting modes.  

                                                 

(
8
)  The phase term ( )exc i

θ   can be set to zero without any loss of generality. 



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~50]

 

 

Figure 4.2.8.1. Systemic realization for the multi-chromatic forcing case (n = 2). The boxes of the filter 

banks are shaded for reasons of illustration and do not correspond to an exact position of the interacting 

filter. 
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Step 1:  Output after the first band-pass filter bank 

 

First, we make a decomposition of the periodic (bi-harmonic) excitation to its 

harmonic constituents i.e.  ( ) ( ) ( ) ( ) ( )1 2
u t u t u t→ +ɶ ɶ ɶ .          

Having identified, by the means of the Fourier transform, the frequency and energy, 

content of the two harmonic components that compose the entire input signal, we 

consequently define the corresponding reference quantities i.e.  

( ) ( )( )1,exc j ref j
A A= ,   ( ) ( )( )1,

, 1, 2
exc j ref j

jω ω= =     (4.2.8.3) 

 and continue by denoting  the impulse response function of the band–pass filters that 

the first filter bank consists of,  i.e. ( )( )(1) 1,
;

ref j
b t ωɶ  for 1,2j = .  

Note that the number of filters and systemic elements presented above depends on the 

number of linear modes composing the input and thus a quite small orthogonal filter 

bank is essential at this point. 

The impulse response ( )( )(1) 1,
;

ref j
b t ωɶ  corresponds to an ideal/rectangular, for the sake 

of simplicity, filter (
9
) with a frequency domain representation such as the one 

presented in Equation (4.2.8.4). Note that the coefficient ( )
( )1
j
ω∆  is suitably selected 

and is dependent upon the frequency content of each mode. 

 

( )( )
( )

( ) ( )
( )
( )

( )
( )
( )

( )
( )

ω

ω

1,

1,

1 1

1

(1) 1,

1

1,      ,
2 2;

0,                                                   

ref j

ref j

j j

ref j ref j

ref j

ω

ω

ω ω
ω ω

ω ω

   ∆ ∆    ∈ Ι = − +   Β =     ∉ Ι

ɶ (4.2.8.4) 

 

The result of this interaction, the signal with the first band-pass filter bank, is the 

separation of the initial, bi-chromatic, signal into its two harmonic constituents 

( ) ( )1 2
,u t u tɶ ɶ  i.e. 

( ) ( ) ( )( ) ( )1 1 1 11,
; , 1, 2

j ref j
u t b u t d jσ ω σ σ

∞

−∞
⋅ − =∫ ɶɶ ɶ=       (4.2.8.5)   

                                                 
(
9
)  The impulse response function could be a sinc or a Gaussian function suitable for band–pass 

filtering, see Strang (1996) or Haykin (2000). 
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such that  perfect reconstruction is achieved 

 

( ) ( ) ( ) ( ) ( ) ( )1 2
û t u t u t u t= + =ɶ ɶ ɶ .    (4.2.8.6) 

 

 

Step 2:  Output after the first low-pass filter bank 

 

Next, both parts of the decomposed signal convolve with the low – pass filters 

( )( )1 1,
;

ref j
g t ω   derived during the initial monocomponent system identification. Thus, 

the outputs right after the low–pass filter bank can be observed in Equation (4.2.8.7) 

that follows, 

( )( ) ( ) ( )( ) 1 1 1 11,
( ) ; , 1, 2

j ref j j
x t g u t d jσ ω σ σ

∞

−∞
= ⋅ − =∫ ɶɶ    (4.2.8.7) 

 

while, for reasons of illustration,  we define ( )x t
 
as 

 

( ) ( )1 2
( ) ( ) ( )x t x t x t= +ɶ ɶ .

   
 (4.2.8.8) 

 

Step 3: Output after the polynomial operator 

 

In the monochromatic case the number of coefficients of the polynomial operator was 

fixed and equal to the nonlinearity degree, as this was estimated above, of the 

dynamical system, while the superposition of the resulting modes took place before 

the corresponding output was convolved with the appropriate impulse response. 

In the multichromatic case however, the number of coefficients is variable and 

dependent upon the number of linear modes, the excitation signal consists of, that 

enter this operator. 

Thus, in order to estimate the distinct outputs after the polynomial operator, we first 

proceed to the separation of terms according to their order, decompose these terms to 

their intrinsic linear modes and then according to their frequency and amplitude 

content the assignment of coefficients takes place as shown below 

( ) ( )( ) ( ) ( )
�

( ) ( )

( ) ( )

3
1 2 3

1 2
1

1 2 3

1 2(1) (2) (3)

1 2

( ) ( ) v ( ) v ( ) v ( ) v ( )

ˆ ˆ ˆ                       ( ) ( )

st nd rd

st nd

k

k

order terms order terms order terms

order terms order terms

x t x t t t t t

v t v t

=

+ → = + + =

= ⋅ + ⋅ +

∑ɶ ɶ
������� �������

ɶ ɶ
����������� �����������
A A A

P

( )3

3

( )

rd order terms

v t⋅ ɶ
�����������

    (4.2.8.9) 

where,   
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( ) ( ) ( ) ( )( )1 2
( ) ( ) ( ) ( )

nnn
v t x t x t x t= = +ɶ ɶ ɶ  , 1,2, 3n =   (4.2.8.10) 

 

and ( )ˆ , for  1,2, 3n n =A , stands for a general coefficient notation of order n that is to 

be distinctly assigned to each of the inherent components 
( )
( )

n
v tɶ . 

Note that since we have identified the frequency and energy (amplitude) content of 

the harmonic components that compose the total input and consequently separated 

them by the means of a band-pass filter bank, we may proceed as follows by 

superimposing the resulting modes and then: 

• Either apply the nonlinear operator in order to obtain the higher order cross and 

auto terms and consequently perform the analogous band-pass filtering before 

proceeding to the parametric assignment of the coefficients as it can be observed 

in Figure (4.2.8.1).   

• Or, alternatively, due to the pre-specified input-dependent structure of the model 

and the harmonic nature of the functions that compose the initial input, we can 

derive, with the aid of the trigonometric identities, all of the modes that compose 

the higher order terms without performing any further band pass filtering prior to 

a direct assignment of the appropriate coefficients. 

Even though the first approach is purely systemic and fully realizable in this sense, 

with the corresponding diagram also helping in understanding the concept behind the 

channeling of the intrinsic modes, the second approach is clearly more illustrative as it 

provides us with more compact functional expressions, as far as the overall response 

is concerned. Thus, we proceed with the second choice, to the assignment of 

coefficients to the resulting modes, even though we have avoided to implement any 

further band-pass filtering. This kind of description also helps towards the 

construction of a more general (nonlinear excitations) model where band-pass 

filtering operations are avoided. 

 

1
st
 order terms 

 

Due to the estimation of the amplitude and frequency contents of the harmonic 

components that compose the initial signal in a previous section, it can be said that the 

resulting amplitudes and frequencies of all modes that are produced inside the 

polynomial operator can be safely derived, irrespective of the order they correspond 
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to, and in this way we can deduce what are the appropriate reference frequencies and 

amplitudes. We note that the for the first order terms, the corresponding reference 

quantities are the same with the ones presented in Equation (4.2.8.3) as low-pass 

operators are linear.  

 

Thus, 

( )
( )

( ) ( ) ( )( )
( )

( )

1

1 (1)

1 1, 1,
ˆ( ) ( ) ; ( ), for 1, 2

j

j j ref j ref j j

a

v t x t a A x t jω= ⋅ ≡ ⋅ =

ɶ

ɶɶ ɶ ɶ
�����������������

A  

( )
( ) ( )( )
( )

( ) ( ) ( )( )
( )

( )

( ) ( )

( )
( )

( ) ( )

( )
( )

( )
( )

( )
( )

1 1 1 2

1 1

1 2

1

1 11,1 1,1 1 1,2 1,2 2

1 1

1 1 1 1 2 2 1 2

( ) ( )

v ( ) ; ( ) ; ( )

                ( ) ( ) ( ) ( )

ref ref ref ref

a a

v t v t

t a A x t a A x t

a x t a x t v t v t

ω ω= ⋅ + ⋅

= ⋅ + ⋅ = + ⇒

ɶ ɶ

ɶ ɶɶ ɶ ɶ ɶ
����������������� �����������������

ɶ ɶ ɶ ɶ
����������� �����������

    (4.2.8.11a) 

 
( )

( )
( )

( )
( )

( ) ( ) ( ) ( )
1 1 1

1 2 1 1 1 1 2 2
v ( ) ( ) ( ) ( ) ( )t v t v t a x t a x t= + = ⋅ + ⋅ɶ ɶ ɶ ɶ   (4.2.8.11b) 

 

 

2
nd
 Order Terms 

The second order terms are divided into two categories, the auto and cross terms, in 

order to benefit from the simpler system identification model, as it will be 

demonstrated below.  

As far as the auto-terms ( )AT  are concerned e.g. ( )
2 ( ), 1, 2
j

x t j =ɶ , the resulting 

excitation–frequency is twice the frequency of this signal component while there is 

another frequency component located at the zeroth  frequency (DC term) which, for 

this class of dynamical systems, is assumed to have negligible contribution to the 

overall response.   

Thus, for these terms the corresponding excitation and reference frequencies are 

 

 
( )

( )
( )

( )
( )

2,12,1

2,

22,2

2 2
, 1, 2

22 2

exc jexc

ref j exc j

exc

f
j

f

ωω π
ω ω

ω π

=  ⇒ = = == 

   (4.2.8.12a) 

 

while the corresponding amplitudes will be  

( ) ( ) ( ) ( ) ( ) ( )
2 2

2,1 1 1 2,2 2 2
,

ref exc exc ref exc exc
A A A A A A= = = = .       (4.2.8.12b) 
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For the cross term   ( ) ( )
(2)

(1,2) 1 2
( ) ( )CT x t x t= ⋅ɶ ɶ , one may deduce that as it corresponds to a 

product of circular functions, the corresponding Fourier spectrum peaks are centered 

at the frequencies  

( )

( ) ( )

1 22,3

1 22,4

2

2

exc

exc

f f

f f

ω π

ω π

= − = + 

    (4.2.8.12c) 

 

Note that for the 2
nd
 order cross terms the frequency according to which the reference 

frequency, for both coefficients and kernels, is set in consistence to the monocromatic 

system identification scheme described above, i.e.,  

 

( )
( ) ( )1 2

2,3 2

exc exc

ref

ω ω
ω

+
=      (4.2.8.12d) 

 

while the corresponding amplitude will be  

 

( ) ( ) ( )2,3 1 2ref exc exc
A A A= .         (4.2.8.12e) 

 

Therefore, we end up with 

( ) ( )
( ) ( )( )

( ) ( )( ) ( )( )

( )

( ) ( )( )

2(1)

2(2)

2
2 2(2) (2)

1 2

2

2 2,1 2,1 1

2 1

2 2,2 2,2

ˆ ˆv ( ; ) ( ) ( ) ( )

             ; ( )

               ;

ref ref

a

auto term

ref ref

a

t v t x t x t

a A x t

a A

ω

ω

ω

Ο − −

= ⋅ = ⋅ + ≡

≡ ⋅ +

+

ɶ

ɶ

ɶ ɶ ɶ

ɶ ɶ
�����������������

�������������������������

ɶ
��������������� �

A A

( )( )

( )

( ) ( )( ) ( ) ( )

( )
2(3)

2

2

2 2

2 2,3 2,3 1 2

2

( )

               2 ; ( ) ( )

auto term

ref ref

a

cross term

x t

a A x t x tω

Ο − −

Ο −

⋅ +

+ ⋅ ⋅ ⋅

ɶ

ɶ
�

��������������������������

ɶ ɶ ɶ
�����������������

�������������������������������

   (4.2.8.13) 

 

where, we denote by ( )
( )2

v ( )
auto

t  and ( )
( )2

v ( )
cross

t  the  second order auto and cross terms 

respectively, as follows 
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 ( )( )
2 2

(2)

( ) 2( )
1

v ( ) ( )
auto j j

j

t a x t
=

= ⋅∑ ɶ ɶ      (4.2.8.14a) 

( ) ( ) ( )
(2)

2 3 1 2

(2)

v ( ) 2 ( ) ( )
cross

O cross term

t a x t x t

−

= ⋅ ⋅ɶ ɶ ɶ
�����������������

    (4.2.8.14b) 

Summarizing,  the second order modes exiting the polynomial block are presented in 

Equation (4.2.8.15) that follows 

 

 
( )

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )

2 2
2

2 1 1 2 2 2 2 3 1 2

(2)(2) 1 (2) 2

v ( ) ( ) ( ) 2 ( ) ( )

O cross termO auto term O auto term

t a x t a x t a x t x t

−− − − −

= ⋅ + ⋅ + ⋅ ⋅ɶ ɶ ɶ ɶ ɶ ɶ ɶ
������������������������������ �������������

     (4.2.8.15)       

 

 

3
rd
 order terms 

Working in a similar manner for the third order terms, we have: 

The frequency spectrum peaks of the auto-terms ( )( )
3

( )
j

x tɶ  located at the at the 

corresponding third harmonics i.e.  

 

( ) ( )
( ) ( ) ( )

( )
( )

3,13,1

3,

23,2

2 3
, 1, 2

32 3

exc jexc

ref j exc j

exc

f
j

f

ωω π
ω ω

ω π

=  ⇒ = = == 

       (4.2.8.16) 

 

as well as at the fundamental frequencies of the signals ( )( ), 1, 2
j

x t j =ɶ  i.e.  

( )

( )

13,3

23,4

2 ,

2 ,

exc

exc

f

f

ω π

ω π

= = 

             (4.2.8.17) 

 

The corresponding amplitudes for the third order auto-terms are  

 

 

( ) ( ) ( ) ( ) ( ) ( )
3 3

3 3
3,1 1 1 3,2 2 2

,
ref exc exc ref exc exc
A A A A A A= = = = .       (4.2.8.18) 

 

 

The cross-terms are ( ) ( )
2

1 2
( ) ( )x t x t⋅ɶ ɶ  and  ( ) ( )

2

1 2
( ) ( )x t x t⋅ɶ ɶ  and since these terms 

correspond to products of circular functions, their frequency spectrum peaks are 

located at the following frequencies: 
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( )

( )

( ) ( )
( )

( )

( ) ( )

13,5

1 23,6

1 23,7

23,8

1 23,9

1 23,10

2 ,

2 2 ,

2 2 ,

2 ,

2 2

2 2

exc

exc

exc

exc

exc

exc

f

f f

f f

f

f f

f f

ω π

ω π

ω π

ω π

ω π

ω π

= = − = + = = − = + 

          (4.2.8.19) 

 

Note that for the 3
rd
 order cross terms, the frequencies and amplitudes according to 

which the corresponding reference quantities,  for both coefficients and kernels,  are 

set are:  

• ( )
( ) ( )1 2

3,7

2
,

3

exc exc

ref

ω ω
ω

+
=  

• ( ) ( ) ( )
2

3
3,7 1 2ref exc exc

A A A=             for the cross terms ( ) ( )
2

1 2
( ) ( )x t x t⋅ɶ ɶ ,  

and 

•  ( )
( ) ( )2 1

3,10

2
,

3

exc exc

ref

ω ω
ω

+
=  

• ( ) ( ) ( )
2

3
3,10 2 1ref exc exc

A A A=  , for the cross term ( ) ( )
2

1 2
( ) ( )x t x t⋅ɶ ɶ ,  respectively. 

 

Thus,
( )

( ) ( )( )
3

3 (3)

1 2
ˆv ( ) ( ) ( )t x t x t= ⋅ + ⇒ɶ ɶA

 
( )

( ) ( )( ) ( )( ) ( ) ( )( ) ( )( )

( )

3(1) 3(2)

3 3
3

3 33,1 3,1 1 3,2 3,2 2

3 3,7

v ( ; ) ; ( ) ; ( )

+3 ;

ref ref ref ref

a a

auto term auto term

ref ref

t a A x t a A x t

a A

ω ω ω

ω

− −

= ⋅ + ⋅ +

⋅

ɶ ɶ

ɶ ɶɶ ɶ ɶ ɶ
����������������� �����������������

������������������������� ���������������������������

ɶ ɶɶ ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )
3(7) 3(10)

2 2

33,7 1 2 3,10 3,10 1 2
( ) ( ) 3 ; ( ) ( )

ref ref

a a

cross term cross term

x t x t a A x t x tω

− −

⋅ + ⋅ ⋅

ɶ ɶ

ɶ ɶɶ ɶ ɶ ɶ ɶ
����������������� �������������������

������������������������������� ���������������������������������

    

           (4.2.8.20) 

 

where, we denote by denote by ( )
( )3

v ( )
auto

t  and ( )
( )3

v ( )
cross

t  the 3rd order auto and cross 

terms respectively as follows 
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( )( )
2 3

(3)

( ) 3( )
1

v ( ) ( )
auto j j

j

t a x t
=

= ⋅∑ ɶ ɶ  ,       (4.2.8.21a)

 

( )
( )

( )( ) ( ) ( )( ) ( )

2 2
3

3(7) 3(10)1 2 2 1
v ( ) 3 ( ) ( ) ( ) ( )
cross

t a x t x t a x t x t
  = ⋅ + ⋅   
ɶ ɶ ɶ ɶ ɶ ɶ            (4.2.8.21b) 

 

Summarizing, the third order components exiting the polynomial block are presented 

in Equation (4.2.8.22) that follows 

 

( )
( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )

3 3
3

3 1 1 3 2 2

(3) 1 (3) 2

2 2

3(7) 3(10)1 2 2 1

(3) 1 (3)

v ( ) ( ) ( )

3 ( ) ( ) 3 ( ) ( )

O auto term O auto term

O cross term O cr

t a x t a x t

a x t x t a x t x t

− − − −

− −

= ⋅ + ⋅ +

      + ⋅ + ⋅        

ɶ ɶ ɶ ɶ
������������� �������������

ɶ ɶ ɶ ɶ ɶ ɶ

���������������������
2oss term− −

���������������������

        (4.2.8.22) 

 

Step 4. Output after the high–pass filter bank - Total system response 

 

Next, the assignment of the integral kernels, that correspond to each of the 

components exiting the static polynomial block, takes place, while  in order to obtain 

a rather compact and elegant form of this output it is most prudent to separate first the 

auto terms from the cross terms. In this way we manage to group the systemic 

elements in the form of a series of polynomial systems such as the one derived for the 

monochromatic case and a number of higher (second and third) order cross-terms that 

arises due to system’s nonlinearities. This non-parametric, in the sense that the 

number of the coefficients and kernel is not fixed and depends on the number of 

modes the signal consists off, formulation of the system that corresponds to the bi- or 

multi-chromatic input case, is in consistence with the systemic structure that was 

derived for the monochromatic case as the latter can be considered to be a special case 

of the former.  

Thus, we denote the, two in this case, monochromatic systems as auto-terms. Despite 

the fact that auto terms are higher, not first, order terms we appose the first order 

constituents  ( ) ( )1 1 1
( )a x t⋅ɶ ɶ  and ( ) ( )1 2 2

( )a x t⋅ɶ ɶ  to the auto term grouping for reasons of 

illustration with respect to the monochromatic-input, systems.   

 

Therefore, 



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~59]

 

( ) ( )( ) ( )( )1 2
v ( ) v ( ) v ( ),
auto auto auto

t t t= +     (4.2.8.23) 

where, 

 

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( ) ( ) ( )( )

2 3

1 1 1 1 2 1 1 3 1 1

1 2 3
2

2 1 2 2 2 2 2

4 5

v ( ) ( ) ( ) ( )

v ( ) ( ) ( )

auto

auto term auto term auto term

auto

auto term auto term

t a x t a x t a x t

t a x t a x t a

− − − − − −

− − − −

= ⋅ + ⋅ + ⋅

= ⋅ + ⋅ +

ɶ ɶ ɶ ɶ ɶ ɶ
����������� ������������� �������������

ɶ ɶ ɶ ɶ ɶ
����������� �������������

( ) ( )( )
3

3 2 2

6

( )

auto term

x t

− −

⋅ ɶ
�������������

  (4.2.8.24) 

 

As far as the corresponding cross-terms are concerned, 

 

( ) ( )
( )

( )
( )2 3

v ( ) v ( ) v ( )
cross cross cross

t t t= + =    (4.2.8.25) 

where, 

( )
( )

( ) ( ) ( )
2

2 3 1 2

(2)

v ( ) 2 ( ) ( )
cross

O cross term

t a x t x t

−

= ⋅ ⋅ɶ ɶ ɶ
�����������������

   (4.2.8.26) 

 

( )
( )

( )
( )

( )
( )

( )( ) ( ) ( )( ) ( )

3 3 3

(1) (2)

2 2

3(7) 3(10)1 2 2 1

(3) 1 (3) 2

v ( ) v ( ) v ( )

          3 ( ) ( ) 3 ( ) ( )

cross cross cross

O cross term O cross term

t t t

a x t x t a x t x t

− − − −

= + =

      = ⋅ + ⋅        
ɶ ɶ ɶ ɶ ɶ ɶ

��������������������� ���������������������

   (4.2.8.27) 

 

In conclusion, the total output of the approximate systemic model is the superposition 

of the convolutions of each mode that exits the polynomial operator with the pre-

specified integral kernels, located in the, last, high-pass filter bank, as these were 

derived during the system identification scheme developed and presented above.   

 

  

( ) ( )( ) ( )
( )( )

( ) ( )( ) ( )
( )( )

( ) ( )
( ) ( )

( )
( )

1 2

2

2 (1,1) 2 (1,2)1 2

2

2 (2,3)
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   ; v ; v

    + ; v

auto auto
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ref refauto auto

y y
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y
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g t d g t d

g t d

σ ω σ σ σ ω σ σ

σ ω σ σ

∞ ∞

−∞ −∞

∞

−∞

=

= − + − +

−

∫ ∫

∫

����������������������������������� ���������������������������������

����������� �
( ) ( )

( ) ( )
( )
( )

( ) ( )
( ) ( )

( )
( )

3

(1)

3

(2)

3

2 (3,7) (1)

3

2 (3,10) (2)

+ ; v

    ; v    

cross

cross

ref cross

y

ref cross

y

g t d

g t d

σ ω σ σ

σ ω σ σ

∞

−∞

∞

−∞

− +

+ −

∫

∫

���� ��������������� ���������������������������������

�����������������������������������

               (4.2.8.28) 

 

 



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~60]

 

or, 

( )( ) ( )( ) ( )
( )

( )
( )

( )
( )2 3 3

1 2 (1) (2)
( ) ( ) ( ) ( ) ( ) ( )

auto auto cross cross cross
y t y t y t y t y t y t= + + + +     (4.2.8.29)  

 

As the components ( )( )1auto
y  and ( )( )2auto

y , correspond to monochromatic input cases, it 

can be stated that for an n-chromatic input case we end up with n-monochromatic 

input models plus the resulting higher order cross terms, that can be estimated 

explicitly.  

 

4.2.9 Results 

 

Next, the time-series for three different cases of bi-chromatic inputs are presented in 

order to observe the agreement between the output of the proposed systemic 

approximation and the, dynamical pressure, response from the actual thermodynamic 

system, presented and analyzed in Section 3.3. 

 

 

1
st
 case:  ( ) ( )1 2

0.2 ,1.50( ) 0.6 , 0.75( )u u Hz m u Hz m= +ɶ ɶ ɶ  

 

Figure 4.2.9.1. Time-domain simulation of the proposed Volterra series polynomial model (blue), and 

comparison with the response of the actual nonlinear (thermo) dynamical system (red) for 

( ) ( )1 2
0.2 , 1.75( ) 0.6 , 0.75( )

exc exc exc exc
u u f Hz A m u f Hz A m= = = + = =ɶ ɶ ɶ . 
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2
nd
 case:  ( ) ( )1 2

0.1 ,1.5( ) 0.6 , 0.5( )u u Hz m u Hz m= +ɶ ɶ ɶ  

 

Figure 4.2.9.2. The same as Figure (4.2.9.1), but for 

( ) ( )1 2
0.1 , 1.5( ) 0.6 , 0.5( )

exc exc exc exc
u u f Hz A m u f Hz A m= = = + = =ɶ ɶ ɶ . 

 

 

3rd case:  ( ) ( )1 2
0.2 ,1.5( ) 0.5 ,0.75( )u u Hz m u Hz m= +ɶ ɶ ɶ  

 
Figure 4.2.9.3.  The same as Figure (4.2.9.1), but for 

( ) ( )1 2
0.2 , 1.5( ) 0.5 , 0.75( )

exc exc exc exc
u u f Hz A m u f Hz A m= = = + = =ɶ ɶ ɶ . 
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4.2.10 Some comments on the n-chromatic input case 

 

A distinct characteristic of the proposed systemic scheme that ought to be outlined is 

the arrangement embedded in the system so that the energy/amplitude and frequency 

characteristics of each mode, irrespective of the order it corresponds to, can be 

derived quite accurately and in a robust way. 

The functional properties that were presented throughout Chapter Two are in 

consistence with the resulting functionals that correspond to the proposed systemic 

schemes (monochromatic and multichromatic) while the same can be said for the 

nonlinear input case that will be presented in the following sections.  

The results show that the response’s both energy and frequency characteristics are 

matched. Irrespective of how close the frequencies of the two modes are, the total 

systemic response is an almost perfect match to the corresponding actual response. 

The generalization to the multi-chromatic input case is straightforward and in this way 

we have constructed a convergent low-order Volterra series, at least for the periodic 

input case so far. In the next sections, the nonlinear-stationary input case is examined 

and a corresponding systemic scheme is developed with the aid of spectral analysis 

and the Hilbert-Huang time-frequency transform.       

 

4.3 �onlinear system modeling and identification with the aid of the Hilbert-

Huang  transform 

 

As a multichromatic signal can be expressed as a sum of (linear) monochromatic 

modes, a recorded, possibly stationary but definitely nonlinear, signal, denoted from 

now on as complex signal, can also be expressed as a superposition of nonlinear, 

intrinsic mode functions where each of them corresponds to a different time scale 

instead of a different, constant-frequency value. The complex-input systemic scheme 

can be considered as an extension of the concepts that correspond to the periodic input 

systems developed and presented above. A major change with respect to these models 

is the implementation of the Hilbert-Huang (H-H) time-frequency-energy transform, 

by means of which the input signal can be decomposed into a small number of modes 

where each of them corresponds to a different time-scale.  

The Hilbert-Huang transform and its properties were presented in detail in Sections 

1.4.1 and 1.5, however various important aspects and features will be outlined and 

displayed again in this section for reasons of illustration, clarity and consistence.   
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According to the analysis performed in these sections, the Hilbert-Huang transform 

consists of two major parts/operations: the Empirical Mode decomposition, that 

decomposes the signal into a number of nonlinear modes called intrinsic mode 

functions i.e. IMFs and the Hilbert transform, which in turn is performed onto the 

derived intrinsic mode functions, so as to obtain knowledge of their, time-varying, 

frequency and energy content.    

Each of these modes can be represented in terms of a trigonometric zero-mean 

function (cosine) where the fast dynamics are represented by the time-varying phase 

content ( )tθ
 
and the slow dynamics are assigned to the time-varying (modulating) 

envelope function ( )A t . 

In accordance to this approach the concept of intra-wave frequency modulation was 

introduced by Huang (1999) according to which the IMF’s frequency, often gradual, 

variation corresponds to the small deformation of a harmonic wave–profile without 

the involvement of any dispersion phenomena (inter-wave frequency modulation 

case).   

It was derived in Section 1.5.1 that the original signal ( )x t  can be expressed in terms 

of the analytic analogues of the intrinsic mode functions,   

 

( ) ( ){ } ( ){ } ( )
1

e e e
n

a a k a
k

x t x t res t IMF t
=

    = ℜ = ℜ + ℜ       
∑

  

(4.3.1) 

or, 

( ) ( ) ( ) ( )( )
1

       cos
n

k k
k

x t res t A t tθ
=

= +∑

    

(4.3.2) 

 

As far as the decomposition properties of the H-H transform is concerned, even 

though the IMFs cannot be regarded as harmonic distortions, as in the Fourier type 

expansions, the corresponding instantaneous frequencies are well separated and do 

not overlap for most of the time, as it can be observed from Figures (1.5.3.3.8), 

(1.5.3.4.1), (1.5.3.4.2) and (1.5.3.4.4), and hence the resulting IMFs can be considered 

as nonlinear oscillatory modes of distinct mean frequency and specific energy content.   

Thus, the systemic arrangement that was developed for the multichromatic-input case 

can still be used in conjunction with the EMD and in order to proceed any further we 

must define the corresponding reference quantities, amplitude (energy) and frequency, 

according to which the systemic elements, integral kernels and coefficients, may be 

conditioned to. 
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Note that the systemic elements need not be estimated again, as the derived 

monochromatic input, system identification  basis is appropriate for both, periodic and 

complex, input cases and the only thing that needs to be careful about is the 

determination of the reference parameters.  

 

In consequence, as the IMF itself can also be considered as complex data, but more 

narrow banded than the original signal, we can select: 

As a reference frequency  

• either the corresponding peak frequency ( )pω  , 

• or the temporal average of the instantaneous frequency  ( ) ,t T
IF t< >  , 

• or the mean circular frequency ( )ω , 

and as a reference amplitude  

•  either the significant wave height ( )Hs  , 

•  or the temporal average of the instantaneous amplitude ( ) ,t T
IA t< > . 

 

For reasons of illustration we present these two groups in Figures (4.3.1) and (4.3.2), 

respectively. The discrepancies that arise for the first two IMFs, as far as the averaged 

frequency content is concerned, is mainly due to the existence of mode-mixing or 

wave packets of significant energy content and simultaneous drop in instantaneous 

frequency, as it was shown in detail in Section 1.5.3.3. Specific methods to alleviate 

this mode-mixing phenomenon will be presented in detail in Section 4.3.7.  

Discrepancies are also observed between the mean instantaneous amplitude and the 

significant wave height. This is expected, as the latter is equivalent to a representative 

mean value for the one-third of the highest waves ( )1/3
H  while the former takes into 

account the entire instantaneous amplitude time series and thus it is consequent to be 

smaller.  
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Figure 4.3.1.  Plot of the mean circular frequency( )f , peak frequency ( )pf

 
and the

 

                 
temporal average of instantaneous frequency ( ) ,t T

IF t< > . 

 

 

Figure 4.3.2. Significant Wave Height /2  ( )/ 2
s

H  (blue) and Mean Instantaneous Amplitude 

( ) ,t T
IA t< >

 
(red) of each IMF.  
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It is worth noting that the Hilbert-Huang transform can also enhance any information 

related with various spectral quantities such as the peak frequency or the significant 

wave height amongst other, from a completely different perspective. The detailed 

local (instantaneous) representation of a signal on the time-frequency space provided 

from this transform, seems to be consistent with more global spectral (such as the 

Fourier) representations and in this sense it can be considered as another excellent 

tool for processing, analysis and identification of nonlinear water waves.   

 

Through the Hilbert-Huang transform, the most energetic modes of the signal can be 

easily identified and thus we can reduce the number of components/modes that we 

will be working with. In our case the significant energy content seems to be located in 

the second, third and fourth IMF although the first and fifth IMF are not of 

insignificant energy content altogether. 

In regards with the OWC application, it must be noted that for simplicity purposes we 

have assumed, unless stated otherwise, that the complex data, analyzed and used as 

nonlinear excitation to our system, corresponds now to the mean wave elevation 

inside the chamber although it is just a recorded sea wave elevation time series. 

Alternatively, it can be assumed that the scattering, linear, operator that was derived 

within the context of Section 3.3 has a flat power spectrum of unit gain at any 

operating frequency while the radiating field is neglected entirely. This assumption is 

fairly consistent for the low-frequency wave components of the incoming wave field, 

see Figures 3.3.2.5.3.9 and 3.3.2.5.3.10, while on the other hand, the higher frequency 

modes, that could be easily neglected due to minor energy contribution to the overall 

system’s response, are suppressed as the OWC actually acts as a low-pass filter, as it 

can be observed from the figures in Section 3.3, especially when the front wall is 

significantly immersed.  

Following these results and assumptions we are lead into primarily focusing onto the 

higher-energetic modes upon which the total response estimation is heavily depended 

upon i.e. IMFs 2 and 3, while several conclusions will be also deduced for the 

remaining modes, i.e. IMFs 1, 4 and 5, and for the original signal and response, as 

well.   

A clear objective of this direction is besides obtaining satisfactory solutions to 

optimize the accuracy of the latter with respect to an as low as possible number of 

excitation modes.  
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Furthermore it must be outlined that, from the investigation on the Hilbert-Huang 

transform related bibliography and publications in general, this is the first time that 

this transform is implemented into the identification of nonlinear dynamical systems 

by the means of approximate systemic realizations and/or Volterra series , as in our 

case. Additionally we validate its usefulness as an alternative to extensive filtering or 

wavelet application.   

 

 In the next subsections we will investigate whether we can achieve an convergent 

Volterra series approximation scheme with the aid of an as small as possible number 

of, most energetic, intrinsic most functions.  

 

4.3.1 IMF (mono-component) data input cases and results 

 

In the IMF input case which has already been characterized as a monocomponent 

nonlinear signal according to the definition given by Cohen (1995), and restated in 

Section 1.4.1, the mode is considered to be an analogue to the monochromatic case 

presented above and hence various similarities between the multichromatic and the 

complex input systemic can be found, i.e., conceptual- and application-wise.  

However, from a systemic perspective a major difference between these two cases 

could be located on the fact that the systemic schemes for the periodic input case were 

developed with the aid of band-pass filter banks instead of the alternative EMD based 

processing.  

Therefore, in correspondence to a monochromatic input case, in order to estimate the 

response of the actual/physical (OWC-WEC) system excited by a stationary, or not, 

nonlinear  time series that corresponds to any of the intrinsic mode functions             

(IMFs-1,2,3,4,5),  we use a cascade model, denoted by  
thj

IMF
S   and  shown in Figure 

(4.3.1.1) that follows 

 

                                                 
thj

IMF
S  

Figure 4.3.1.1. Structure of the nonlinear polynomial identification model
th
j

IMF
S  corresponding to a single-

intrinsic mode function input. 
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The reference amplitude and frequency will have to be now statistically derived 

quantities arising either from the spectral processing of the IMF’s time series or from 

the temporal averaging of instantaneous quantities derived by means of the Hilbert-

Huang transform.  

Thus, the two main reference sets derived are: 

• the Fourier-parameter set i.e. peak frequency-significant wave height set, 

( ) { }1
, / 2

ref p ref s
RS A Hω ω= = =   

• and the Hilbert-parameter set i.e. temporal means of instantaneous frequency 

and amplitude ( ) ( ) ( ){ }, ,2
,

ref t T ref t T
RS IF t A IA tω= =< > =< > , respectively.  

In consequence the time domain functional expression that corresponds to this 

approximate scheme, for the first set of reference parameters (
10
), can be observed 

from Equations (4.3.1.1) to (4.3.1.4)  

 

( )( ) ( ) ( )1 ( ) ( ) 1 1 1 1
( ) ( , ) ;

auto s j p j p j j
y t a H K IMF t dω τ ω τ τ

∞

−∞
= −∫  

                

( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 2 1 2 1 2 1 2
( , ) , ;

s p pj j j j j
a H K IMF t IMF t d dω τ τ ω τ τ τ τ

∞ ∞

−∞ −∞
+ − − +∫ ∫  

 

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

3 3 1 2 3

1 2 3 1 2 3

( , ) , , ;

                    

s p pj j j

j j j

a H K

IMF t IMF t IMF t d d d

ω τ τ τ ω

τ τ τ τ τ τ

∞ ∞ ∞

−∞ −∞ −∞
+ ×

× − − −

∫ ∫ ∫
 

            (4.3.1.1) 

where, 

 

( )( ) ( )( ) ( )( )1 1 2 1 1
; ; ;

p p pj j j
K g g dτ ω σ ω τ σ ω σ

∞

−∞
= −∫                   (4.3.1.2) 

  

 

( )( ) ( )( ) ( )( ) ( )( )2 1 2 2 1 1 1 2
, ; ; ; ;

p p p pj j j j
K g g g dτ τ ω σ ω τ σ ω τ σ ω σ

∞

−∞
= − −∫         (4.3.1.3) 

      

( )( )
( )( ) ( )( ) ( )( ) ( )( )

3 1 2 3

2 1 1 1 2 1 3

, , ;

   ; ; ; ;

p j

p p p pj j j j

K

g g g g d

τ τ τ ω

σ ω τ σ ω τ σ ω τ σ ω σ
∞

−∞

=

= − − −∫
  (4.3.1.4) 

  

                                                 
(
10
 ) For brevity the reference amplitude is denoted as Hs instead of the proper Hs/2. In the expressions 

presented in Equations (4.3.1.1-9) we could have inserted the second, Hilbert, reference set instead. 
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Alternatively, with the aid of the definition of the IMF in terms of its instantaneous 

amplitude and frequency  

 

( )( ) ( ) ( )
       ( ) ( )cos ( ) ,

j j j
IMF t A t t tω= ⋅    (4.3.1.5) 

 

we may deduce the following very interesting result, presented in Equations (4.3.1.6 -

4.3.1.9),  as we address a complex input case via a harmonic-input based system 

modeling, similar to the one that was developed in Section 4.2.3, see also Equations 

(4.2.3.16 - 4.2.3.20). 

Thus,  

( )
( )
( )
( )

1 ( ) ( ) ( ) 1 ( ) ( )

2 ( ) ( ) ( ) 2 ( ) ( )

3 ( ) ( ) ( ) 3 ( ) ( )

( , ; ) cos ( ) ( , ; )

2 ( , ; ) cos 2 ( ) ( , ; )

( , ; ) cos 3 ( ) ( , ; )

s j p j j s j p j

auto s j p j j s j p j

s j p j j s j p j

H t t t H t

y t H t t t H t

H t t t H t

ω ω θ ω

ω ω θ ω

ω ω θ ω

 ⋅ + + 
 
 = ⋅ + +
 
 ⋅ +  

B

B

B

       (4.3.1.6) 

 

where, in consistence to the expressions derived in Section 4.2.3, we may derive that  

 

( ) ( )
( ) ( ) ( )

1 ( ) ( ) 1 ( ) ( ) ( ) 1 ( ) 2 ( )

2
3

3 ( ) ( ) ( ) 1 ( ) 1 ( ) 2 ( )

( , ; ) ( , ) ( ) ; ;

3 ( , ) ( ( )) ; ; ;

s j p j s j p j j p j p j

s j p j j p j p j p j

H t a H A t G j G j

a H A t G j G j G j

ω ω ω ω ω ω

ω ω ω ω ω ω ω

= +

+ ⋅ −

ɶ

ɶ

B
   (4.3.1.7) 

 

( ) ( )
2

2

2 ( ) ( ) 2 ( ) ( ) ( ) 1 ( ) 2 ( )
( , ; ) ( , )( ( )) ; 2 ;

s j p j s j p j j p j p j
H t a H A t G j G jω ω ω ω ω ω= ɶB   (4.3.1.8) 

 

( ) ( )
3

3

3 ( ) ( ) 3 ( ) ( ) ( ) 1 ( ) 2 ( )
( , ; ) ( , ) ( ( )) ; 3 ;

s j p j s j p j j p j p j
H t a H A t G j G jω ω ω ω ω ω= ɶB .  (4.3.1.9) 

 

  

In addition, some more results and comments will be made with respect to a third 

reference set i.e. the mean circular frequency-significant wave amplitude set. 

This kind of parametric investigation is conducted in order to observe the effect of 

these parameters onto the, partial, response of the system corresponding to a single-

IMF input before passing to the multi-component case.  

We also note that this investigation is the final step towards the closure of the 

proposed system identification method as the determination of the spectral parameter 

set to be used, in order to condition the systemic elements completes the identification 

process and system modeling.  
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-   Case I:  IMF-2 Time Series 

 
Figure 4.3.1.2. Time series plot of the responses of the thermodynamic system (blue) and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that 

correspond to the second IMF–input. 

 

Figure 4.3.1.3. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  

(green) that correspond to the second IMF–input. 

 

•••• Comparison for the three different parametric sets:  Time Series (Snapshots) 

 
Figure 4.3.1.4. Time series plots of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red), ( ),

s
Hω  (black)   and 

( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  (green), that correspond to the second IMF–input (snapshots). 
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Figure 4.3.1.14  (cont.).   
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•••• Fourier-parameter set: Time Series (Snapshots) 

 

 

 
 

Figure 4.3.1.5.  Time series plots of the responses of the thermodynamic system 

(blue) and the approximate systemic analogue with reference parameters ( ),
p s
Hω  

(red) that correspond to the second IMF–input (three snapshots). 
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•••• Hilbert spectrum comparison (1
st
 Fourier parametric set) – 2

nd
 IMF 

 

Figure 4.3.1.6. Hilbert Huang spectrum plot of the responses of the thermodynamic system 

and the approximate systemic analogues with reference parameters( ),
p s
Hω , that 

corresponds to the second IMF–input. 

 

 

-   Case II:  IMF-3 Time Series 

 
Figure 4.3.1.7. Time series plot of the responses of the thermodynamic system (blue) and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that 

correspond to the third IMF–input. 
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Figure 4.3.1.8. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that correspond to the 

third IMF–input (three snapshots).. 
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Figure 4.3.1.9. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) , ( ),

s
Hω  (black)   and 

( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  (green), that correspond to the third IMF–input (three snapshot). 
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•••• Hilbert spectrum comparison (1
st
 Fourier parametric set) – 3

rd
 IMF 

 
Figure 4.3.1.10. Hilbert spectrum plot, of the responses of the thermodynamic system and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω , that correspond to 

the third IMF–input. 

 

 

-   Case III:  IMF-4 Time Series 

 

Figure 4.3.1.11. Time series plot of the responses of the thermodynamic system (blue) and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that correspond 

to the fourth IMF–input. 
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Figure 4.3.1.12. Time series plot of the responses of the thermodynamic system (blue) and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that 

correspond to the fourth IMF–input (two snapshots). 

 

 

Figure 4.3.1. 13. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) , ( ),

s
Hω  (black)   and 

( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  (green), that correspond to the fourth IMF–input( four snapshots). 
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Figure 4.3.1.13  (cont.).  
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•••• Hilbert spectrum comparison (1
st
 Fourier parametric set) – 4

th
  IMF 

 

 
Figure 4.3.1.14. Hilbert spectrum density plots of the responses of the thermodynamic system 

and the approximate systemic analogue with reference parameters ( ),
p s
Hω , that correspond to 

the fourth IMF–input. 

 

 

 

-   Case IV:  IMF-1 Time Series 

 

 
Figure 4.3.1.15. Time series plot of the responses of the thermodynamic system (blue) and 

the approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that 

correspond to the first IMF–input. 
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Figure 4.3.1.16. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) that correspond to the 

first IMF–input (three snapshots). 
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Figure 4.3.1.17. Time series plot of the responses of the thermodynamic system (blue) and the 

approximate systemic analogue with reference parameters ( ),
p s
Hω  (red) , ( ),

s
Hω  (black)   and 

( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  (green), that correspond to the first IMF–input (three snapshots). 
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•••• Hilbert spectrum comparison (1
st
 Fourier parametric set) – 1

st
 IMF 

 
Figure 4.3.1.18. Hilbert spectrum density plots of the responses of the thermodynamic 

system and the approximate systemic analogue with reference parameters ( ),
p s
Hω , that 

correspond to the first  IMF–input. 

 

 

-   Case V:  IMF-5 Time Series 

 
Figure 4.3.1. 19. Time series plot of the responses of the thermodynamic system 

(blue) and the approximate systemic analogue with reference parameters ( ),
p s
Hω  

(red) , ( ),
s

Hω  (black)   and ( ) ( )( ), ,
,

t T t T
IF t IA t< > < >  (green), that correspond 

to the first IMF–input. 
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•••• Hilbert spectrum comparison (1
st
 Fourier parametric set) – 5

th
 IMF 

 

 
Figure 4.3.1.20. Hilbert spectrum density plots of the responses of the thermodynamic 

system and the approximate systemic analogue with reference parameters ( ),
p s
Hω , that 

correspond to the fifth  IMF–input. 

 

 

•••• Instantaneous Amplitudes comparison, between actual and the                    

input-dependent Volterra models, for the first five IMFs. 

 

Figure 4.3.1.21. Instantaneous Amplitude comparison between the actual (blue) and the 

systemic model (red) system for the first five IMFs. 
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- Discussion and comments on the results 

 

As it can be observed from the majority of the results presented above, the proposed 

input-dependent, Volterra approximation scheme can be regarded as a quite 

successful systemic approximation scheme as it can produce quite satisfactory results 

for almost all cases with only a few exceptions. 

The simulation of a nonlinear dynamical system under nonlinear excitation is realized 

through a model structure identical with the one used for the monochromatic-input 

case despite the fact that the IMF-input case is far more complicated in structure than 

the latter. The complexity reduction is based on the fact that the reference-frequency 

and amplitude upon which coefficients and kernels are being conditioned to, are now 

derived through a Fourier spectral analysis in conjunction with a time-frequency 

transform in this case the Hilbert-Huang transform. 

Through the empirical mode decomposition (EMD), integrated in the H-H transform 

and performed on the sea wave elevation time series, we manage to decompose the 

latter to a small number of nonlinear modes where each of them corresponds to a 

different time scale, as it was presented in detail in Section 1.5.3.  An immediate 

benefit from this decomposition is that each of the intrinsic mode functions (IMFs) 

has a considerably narrower spectral bandwidth, see Table (1.5.3.3.1), than the 

original time series and as result of this the estimation of the reference frequency for 

each time scale could be made on a more robust basis.  

 

In summary, three different sets of reference-parameters were constructed i.e.  

( ),
p s
Hω , ( ),

s
Hω  and ( ) ( )( ), ,

,
t T t T

IF t IA t< > < >
 
and put to the test.  The first set 

was found to be the most successful of the three, while the other two, especially the 

last, Hilbert, set of parameters, was leading to excessively overestimating or 

underestimating results depending on the case.  

The most significant discrepancies between these sets can be observed for the first 

two IMFs. A first explanation for these differences can be attributed to the presence 

and number of wave packets, mainly due to the mixed-mode phenomenon caused by 

the standard EMD, with relatively, to the rest of the time series, significant energy 

content, as these energy packets can alter significantly the overall energy 
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profile/distribution of the time series. Thus, the difference between the temporally 

averaged and the spectral analysis derived quantities arises.  

 

In overall, by the means of the first “Fourier” set, the output from the Volterra 

approximation scheme is in agreement with the corresponding responses of the 

thermodynamic modeling amplitude, frequency and phase wise. 

As far as the Hilbert spectrum plots, presented in Figures (4.3.1.6), (4.3.1.10), 

(4.3.1.14), (4.3.1.18) and (4.3.1.20) is concerned, a good agreement is observed in the 

most energetic cases, while medium to bad agreement is observed for intrinsic mode 

function with very low energy. 

 

 

4.3.2 Extending the “Layer of the Harmonics” concept to the “Layer of Scales” 

 

 

In Section 4.2.6, the “Layer of Harmonics” concept was introduced in order to 

interpret the energy transfers from the higher order harmonics to the lower order ones 

in consistence with the system identification structure and method that was developed 

within the context of this work.   

As the complexity of the input is significantly enhanced i.e. from harmonic to 

nonlinear, an extension of this concept could be achieved by introducing a more 

“extended” concept such as the “Layer of Scales” systemic model, by means of which 

the input functions, which were initially harmonic, become nonlinear and correspond 

to distinct time-scales.  

In this way, the “Layer of Harmonics” model, which is suitable for periodic cases in 

general, can be considered to be a special case of the latter.  

This argument can be also verified with the aid of Equation (4.3.1), by means of 

which, an IMF, can be reduced to a harmonic function by setting constant amplitude 

and frequency instead of the analogous time-varying instantaneous quantities.  

 

4.3.3 Multi – nonlinear-component  data input - Total system response  

 

Having derived the appropriate systemic structure and elements for the IMF-input 

case we may proceed to the next step: the estimation of the system’s response that 

corresponds to the total mean wave elevation.  
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For this case, in contrast to the periodic case, the band-pass filtering has been replaced 

by the empirical mode decomposition method in order to approximate the overall 

response with an as small as possible number of, band-limited, modes. In previous 

sections we have already identified that IMFs 2 and 3 are the most energetic ones with 

modes 4, 1 and 5 following. The energy content of the rest of the IMFs i.e. modes 6-

10, is relatively insignificant and hence they are neglected.  

Although the, conceptual and systemic, extension from the IMF nonlinear input case 

to the, overall wave elevation  is in  principle the same with the corresponding 

extension from the harmonic to the multi-chromatic case, schematic representation for 

the corresponding model is presented in Figure (4.3.3.1) for reasons of illustration and 

clarification. 
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Figure 4.3.3.1. EMD-based systemic realization for the complex input-dependent Volterra 

type approximation scheme. 
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4.3.4 General equations for the multi-(nonlinear) component input case 

 

Having already shown that the complex input signal can be decomposed into a small  

number of nonlinear modes of oscillation i.e. the intrinsic mode functions (IMFs), via 

the empirical mode decomposition,  the excitation force can be defined as shown in 

Equation (4.3.4.1):  

 ( )
1

( ) ( ) ( )
m

i
i

u t IMF t res t
=

= +∑ɶ ,        (4.3.4.1) 

 

where, m  is the total number of modes the signal is composed of, in our case is ten (m 

= 10) modes, and ( )res t  stands for the residual, error, function which does not 

comply with the IMF criteria. As a reminder it is stated that with the aid of this 

decomposition each of these IMFs can be regarded as mono-component signals upon 

which the Hilbert transform can be performed in order to obtain information about the 

oscillation’s instantaneous amplitude and frequency. This first step can be also 

considered as the analogous action to the first band-pass filtering that is performed for 

the multichromatic case. 

 

Output after the, first, low-pass, filter bank 

 

Next, each IMF convolves with the appropriate low – pass filter ( )1
;

ref
g t ω ,  that was 

derived during the initial harmonic-input system identification procedure. The filter’s 

reference-frequency argument is statistically derived. Having derived that the first 

“Fourier” set, i.e., ( ) ( ) ( ){ }(1) ( ) ( ) ( )
,

j p j s j
RS IMF IMF H IMFω=  is the most suitable 

one, we get: 

  

( ) ( ) ( )(1)

( )p jref j ref j
IMFω ω ω= =     (4.3.4.2a) 

and 

( ) ( ) ( )(1)

( )
0.5

s jref j ref j
A A H IMF= = ⋅       (4.3.4.2b) 

 

 and hence the outputs right after the low–pass filter bank become  

 

( )( ) ( ) ( )( ) 1 1 1 1
( ) ;

j ref j j
x t g IMF t dσ ω σ σ

∞

−∞
= ⋅ −∫ɶ    (4.3.4.4) 
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We must note that the outputs from the first low-pass filter 
( )
( ) , 1, 2,...,10

j
x t j =ɶ  still 

correspond to the same reference frequency and amplitude that was derived for each 

of the IMFs due to linearity.  

 

Output after the polynomial operator. 

 

For this input case the number of coefficients is variable and dependent upon the 

number of nonlinear oscillation modes (IMFs) the original excitation signal consists 

of. 

In a similar, to the multichromatic-input case, manner the terms are separated 

according to their order, as shown in Equation (4.3.4.4). 

 

( ) ( )
�

( ) ( )

( ) ( )

3
1 2 3

( )
1 1

1 2 3

1 2(1) (2)

1 2

( ) v ( ) v ( ) v ( ) v ( )

ˆ ˆ                       ( ) ( )

st nd rd

st nd

m
k

j
j k

order terms order terms order terms

order terms order terms

x t t t t t

v t v t

= =

   → = + + =   

= ⋅ + ⋅

∑ ∑ɶ
������� �������

ɶ ɶ
����������� ���� �

P

A A
( )3(3)

3

ˆ ( )

rd order terms

v t+ ⋅ ɶ
� ����� �����������

A

      (4.3.4.4) 

 

where,  with the aid of the multinomial theorem we get 

 

( ) ( ) ( ) ( )( )
1

2

1 2

1 2

( ) (1) (2)
1 , ,..., 0 1 2

...

!
( ) ( ) ( ) ( ) ... ( )   

! !... !

k

k

k

n n
m m nnn

j k
j n n n k

n n n n

n
v t x t x t x t x t

n n n= ≥

+ + + =

  = =   
∑ ∑ɶ ɶ ɶ ɶ ɶ  

  (4.3.4.5a) 

or  

( )
( , )

( )

( )
1

            ( ) ( ),  
K m n

n n

i
i

v t v t
=

= ∑ɶ      (4.3.4.5b) 

where,    

1
( , )

   1

m n
K m n

m

 + +  =  −  
      (4.3.4.6) 

 

stands for the total number of components ( )

( )
( )n

i
v t  that corresponds to each sub-group  

( )
v ( ), 1, 2, 3
n
t n =  formulated above. In addition, ( )ˆ , for 1, 2, 3n n =A  stands for a 

general thn - dimension coefficient.  

The ability to express in trigonometric form any of the IMFs, as it was outlined in 

Section 1.5.1, in conjunction with obtaining reference quantities by means of Fourier 

spectral analysis, or the Hilbert –Huang transform, allowed for implementing the 
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entire conceptual background and systemic schemes that were developed for the 

multichromatic case to be applied here, as well.  

It can also be stated that despite the fact that these intrinsic components are artificially 

generated through the EMD, in many cases, see Huang et al (1999), Veltcheva et al 

(2004), Schlurman (2002), it is shown that they correspond to physically-meaningful 

oscillation modes that interact with each other resulting to the overall sea wave 

elevation. In that aspect the “averaged” energy and frequency characteristics that are 

attributed to these constituents/modes is well justified and consistent with the 

theoretical context that was developed for the statistical and stochastic representation 

of sea-wave elevation. The numerical results in Section 4.3.1 also showed that this 

assumption is meaningful and consisted with the periodic-input models examined 

before.  The use of trigonometric functions for this role was found to be an excellent 

representation due to the conceptual interconnections that exist between the already 

established system identification structure and method, developed for the mono- and 

multi-chromatic input cases and the functional representation that can be given to an 

intrinsic mode function by the means of the Hilbert transform.  

In addition, by obtaining a, statistically-aided, average representation of the long term 

behavior of each IMF, we can estimate a priori all of the reference frequencies and 

amplitudes for the entire set of the higher order cross terms. 

 

1
st
 order terms. 

As        ( ) ( ) ( )( )
( )

( )

1

(1) (1) (1)

1
ˆ ( ) ; ( ), for 1, 2,...,

j

j ref j ref j j

a

x t a A x t j mω⋅ ≡ ⋅ =

ɶ

ɶɶ ɶ ɶ
���������������

A                (4.3.4.7) 

Then, 

 

( ) ( )
( ) ( ) ( )

1 1(1) (1)

1
1 1

ˆ ˆv ( ) ( ) ( ) ( )
m m

j j j
j j

t v t x t a x t
= =

= ⋅ = ⋅ = ⋅∑ ∑ɶ ɶ ɶ ɶA A      (4.3.4.8) 

 

 

2
nd
 Order Terms 

The second order terms are again, in consistence with the multi-chromatic case, 

separated  into two main groups, the auto and cross terms, in order to benefit from the 

simpler, monochromatic, system identification model as it will be demonstrated 

below.  As far as the auto-terms are concerned i.e. ( ) ( )( )
2

(2) ( ) , 1, 2,...,
j j

at x t j m= =ɶ , the 
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associated  frequency  is twice the spectrally derived average frequency that was 

estimated for each of the IMFs, see Equation (4.3.4.2). 

For any of these terms the corresponding reference frequencies are: 

 

 ( )
( ) ( )( )(2)

( )

2
, 1, 2,...,

2

p j

p jref j

IMF
IMF j m

ω
ω ω

⋅
= = =    (4.3.4.9) 

 

while the corresponding reference amplitudes will be  

 

( ) ( )( ) ( )
2

(2)

( ) ( )
0.5 0.5

s j s jref j
A H IMF H IMF= ⋅ = ⋅ .        (4.3.4.10) 

 

For the cross terms ( ) ( ) ( ) ( )(2)

,
( ) ( ) ( ) for , and , 1, 2,...,10

i j i j
ct t x t x t i j i j= ⋅ ≠ =ɶ ɶ  the 

corresponding reference frequencies are  

 

( )
( ) ( )( ) ( )(2)

, 2

p i p j

ref i j

IMF IMFω ω
ω

+
=             (4.3.4.11) 

while the corresponding amplitude will be  

 

( )( ) ( )( )(2)

( , ) ( ) ( )
0.5 0.5

ref i j s i s j
A H IMF H IMF= ⋅ ⋅ .      (4.3.4.12) 

 

 

Therefore, we end up with 

 

( ) ( )
( )

2

2 2(2) (2)

1

ˆ ˆv ( ) ( ) ( )
m

j
j

t v t x t
=

  = ⋅ = ⋅ ⇒   
∑ɶ ɶA A            (4.3.4.13a) 

( )
( ) ( )( ) ( )( )

( )

( ) ( )( ) ( ) ( )

( )

2( )

2( , )

2
2 (2) (2)

2
1

2

(2) (2)

2 , ,

2

v ( ) ; ( )   

      ; ( ) ( )

j

i j

m

ref j ref j j
j

a

auto terms

ref i j ref i j i j

a

cross terms

t a A x t

a A x t x t

ω

ω

=

Ο −

Ο −

= ⋅ +

+ ⋅ ⋅

∑
ɶ

ɶ

ɶ ɶ
���������������

�����������������������

ɶ ɶ ɶ
�����������������

������������������ �

1, 1
   

m

i j
i j
= =
≠

∑
����������

             (4.3.4.13b) 

where, we denote by ( )
( )2

v ( )
auto

t  and ( )
( )2

v ( )
cross

t  the O(2) auto and cross terms respectively 

as it can be observed from Equations (4.3.4.14a) and (4.3.4.14b), below: 

( )( )
2

(2)

( ) 2( )
1

v ( ) ( )
m

auto j j
j

t a x t
=

= ⋅∑ ɶ ɶ                         (4.3.4.14a) 
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( ) ( )
(2)

( ) 2( , )
1, 1

   

v ( ) ( ) ( )
m

cross i j i j
i j
i j

t a x t x t
= =
≠

= ⋅ ⋅∑ ɶ ɶ ɶ   (4.3.4.14b) 

 

Summarizing, the second order modes exiting the polynomial block are presented in 

Equation (4.2.8.15) that follows 

 

 
( )

( )( ) ( ) ( )

2
2

2( ) 2( , )
1 1, 1

   

(2) (2)

v ( ) ( ) ( ) ( )
m m

j i jj i j
j i j

i j

O auto term O cross term

t a x t a x t x t
= = =

≠

− −

= ⋅ + ⋅ ⋅∑ ∑ɶ ɶ ɶ ɶ ɶ

����������������� �����������������������

         (4.3.4.15) 

 

 

3
rd
 order terms 

Working in a similar manner for the third order terms, we have: 

As far as the auto-terms are concerned i.e. ( ) ( )( )
3

(3) ( ) , 1, 2,...,
j j

at x t j m= =ɶ , the 

associated  frequency  is three times the spectrally derived average frequency that was 

estimated for each of the IMFs, see Equation (4.3.4.2). 

For any of these terms the corresponding reference frequencies are: 

 

 ( )
( ) ( )( )(3)

( )

3
, 1, 2,...,

3

p j

p jref j

IMF
IMF j m

ω
ω ω

⋅
= = =    (4.3.4.16a) 

 

while the corresponding reference amplitudes will be  

 

( ) ( )( ) ( )
3

(3) 3
( ) ( )

0.5 0.5
s j s jref j

A H IMF H IMF= ⋅ = ⋅ .        (4.3.4.16b) 

 

For the cross terms   

 

( ) ( )( ) ( ) ( )
2

(3)

,
( ) ( ) ( ), for  and , 1,2,...,10

i j i j
ct t x t x t i j i j= ⋅ ≠ =ɶ ɶ                  (4.3.4.17a) 

 

 and 

 

 ( ) ( ) ( ) ( )(3)

( , , )
( ) ( ) ( ) ( ), for  and , , 1, 2,...,10

i j k i j k
ct t x t x t x t i j k i j k= ⋅ ⋅ ≠ ≠ =ɶ ɶ ɶ  

(4.3.4.17b) 

 

the corresponding reference frequencies are  

( )
( ) ( )( ) ( )(3)

,

2

3

p i p j

ref i j

IMF IMFω ω
ω

⋅ +
=           (4.3.4.18a) 
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and 

( )
( ) ( ) ( )( ) ( ) ( )(3)

, , 3

p i p j p k

ref i j k

IMF IMF IMFω ω ω
ω

+ +
=            (4.3.4.18b) 

 

while the corresponding amplitude will be  

( )( ) ( )( )
2

(3)

( , ) ( ) ( )
0.5 0.5

ref i j s i s j
A H IMF H IMF= ⋅ ⋅       (4.3.4.19a) 

and 

 

( )( ) ( )( ) ( )( )(3)
3

( , , ) ( ) ( ) ( )
0.5 0.5 0.5

ref i j k s i s j s k
A H IMF H IMF H IMF= ⋅ ⋅ ⋅ .     (4.3.4.19b) 

 

 

( ) ( )
( )

3

3 3(3) (3)

1

ˆ ˆv ( ) ( ) ( )
m

j
j

t v t x t
=

  = ⋅ = ⋅ ⇒   
∑ɶ ɶA A                      (4.3.4.20a) 

( )
( ) ( )( ) ( )( )

( )

( ) ( )( ) ( )( ) ( )

( )

3( )

3( , )

3
3 (3) (3)

2
1

3

2
(3) (3)

3 , ,

3

v ( )  ; ( )   

        ; ( ) ( )

j

i j

m

ref j ref j j
j

a

auto terms

ref i j ref i j i j

a

cross terms

t a A x t

a A x t x t

ω

ω

=

Ο −

Ο −

= ⋅ +

+ ⋅ ⋅

∑
ɶ

ɶ

ɶ ɶ
���������������

�����������������������

ɶ ɶ ɶ
�����������������

�������������� �

( ) ( )( ) ( ) ( ) ( )

( )
3( , , )

1, 1
   

(3) (3)

3 , , , ,
1, 1,

   

3

       ; ( ) ( ) ( )

i j k

m

i j
i j

m

ref i j k ref i j k i j k
i j j k
i j k

a

cross terms

a A x t x t x tω

= =
≠

= = =
≠ ≠

Ο −

+

+ ⋅ ⋅ ⋅

∑

∑
ɶ

� ���������������

ɶ ɶ ɶ ɶ
�������������������

���������������������������������������

                (4.3.4.20b) 

 

where, we denote by ( )
( )3

v ( )
auto

t  and ( )
( )3

v ( )
cross

t  the O(3) auto and cross terms respectively 

as it can be observed from Equations (4.3.4.21a) and (4.3.4.21b), below: 

 

( )( )
3

(3)

( ) 3( )
1

v ( ) ( )
m

auto j j
j

t a x t
=

= ⋅∑ ɶ ɶ                                   (4.3.4.21a) 

( )( ) ( ) ( ) ( ) ( )

(3) (3)
( ) 1 ( ) 2

2
(3)

( ) 3( , ) 3( , , )
1, 1 1, 1,

      

v ( ) v ( )

v ( ) ( ) ( ) ( ) ( ) ( )

cross cross

m m

cross i j i j ki j i j k
i j i j j k
i j i j k

t t

t a x t x t a x t x t x t

− −

= = = = =
≠ ≠ ≠

= ⋅ ⋅ + ⋅ ⋅ ⋅ ⇒∑ ∑ɶ ɶ ɶ ɶ ɶ ɶ ɶ

������������������������� ���������������������������������

 

             (4.3.4.21b) 

(3) (3) (3)

( ) ( ) 1 ( ) 2
v ( ) v ( )+v ( )
cross cross cross

t t t
− −

⇒ =     (4.3.4.22) 

Summarizing, the third order components exiting the polynomial block are presented 

in Equation (4.3.4.23) that follows 
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( )
( )( )

( )( ) ( ) ( ) ( ) ( )

3
3

3( )
1

(3)

2

3( , ) 3( , , )
1, 1 1, 1,

      

(3) 1 (3)

v ( ) ( )

( ) ( ) ( ) ( ) ( )

m

j j
j

O auto term

m m

i j i j ki j i j k
i j i j j k
i j i j k

O cross term O cross te

t a x t

a x t x t a x t x t x t

=

−

= = = = =
≠ ≠ ≠

− −

= ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ ⋅

∑

∑ ∑

ɶ ɶ

�����������������

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

�������������������������
2rm

���������������������������������

    (4.3.4.23) 

 

Output after the high–pass filter bank - Total system response 

 

Each of the components exiting the polynomial block becomes an input to the high-

pass filter bank. In accordance with the modeling presented above the auto terms, 

irrespective of order, are separated from the cross terms in order to obtain more 

compact form.  

Therefore, 

( )
( )

( ) ( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( )
( )( )

1 (2) (3)

( ) ( )

2 3

2( ) 3( )1
1 1 1

2 3

2( ) 3( )1

v

v ( ) v ( ) v ( ) v ( )

( ) ( ) ( ) =

= ( ) ( ) ( )

auto j

auto autoauto

m m m

j jj j j j
j j j

j jj j j j

t t t t

a x t a x t a x t

a x t a x t a x t

= = =

= + + =

= ⋅ + ⋅ + ⋅

 
 ⋅ + ⋅ + ⋅  

∑ ∑ ∑ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

��������������������������������������� �1

m

j=

=∑
���

 (4.3.4.24a)  

 

( ) ( )( )
1

v ( ) v ( )
m

auto auto j
j

t t
=

=∑     (4.3.4.24b) 

 

As far as the corresponding cross-terms are concerned, 

( ) ( )
( )

( )
( )

( )
( )

( ) ( )

( )( ) ( ) ( ) ( ) ( )

2 3 2 (3) (3)

( ) 1 ( ) 2

2( , )
1, 1

   

2

3( , ) 3( , , )
1, 1 1, 1,

     

v ( ) v ( ) v ( ) v ( ) v ( )+v ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

cross crosscross cross cross cross

m

i j i j
i j
i j

m

i j i j ki j i j k
i j i j j k
i j

t t t t t t

a x t x t

a x t x t a x t x t x t

− −

= =
≠

= = = = =
≠

= + = + =

= ⋅ ⋅ +

+ ⋅ ⋅ + ⋅ ⋅ ⋅

∑

∑

ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ

 

m

i j k≠ ≠

∑

 

                                                                     (4.3.4.25)

  

In conclusion, the total output of the approximate systemic model is the superposition 

of the convolutions of each mode that exits the polynomial operator with the pre-

specified integral kernels, of the high-pass filter bank, as these were derived for the 
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system identification scheme that was developed for the monochromatic case and 

presented above.   
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or 
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 (4.3.4.27) 

 

From Equations (4.3.4.26) and (4.3.4.27) one may observe that the overall system’s 

response can be decomposed in two major partial sub-responses: the auto-terms’ 

response and the cross-terms response. The auto-terms response is actually a 

superposition of the IMF (monocomponent)-input responses while the response due to 

the cross-terms can be derived in a robust manner according to the above analysis.  

Alternatively, we can present the overall response in a Volterra-related type functional 

expression as follows:    

( ) ( ) ( )1 2 3
( ) ( ) ( ) ( )y t y t y t y t= + +       (4.3.4.28) 
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where,  
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where,   
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(4.3.4.32) 

and 
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where,  
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From Equations (4.3.4.28), (4.3.4.29), (4.3.4.41) and (4.3.4.44), we derive the 

following Volterra-type functional expressions presented below 
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or  
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(4.3.4.38) 

4.3.5   Overall response time series results (EMD) 

 

In what follows we examine various IMF combinations as inputs.   

Cases I corresponds to a multi-input – single output scheme, where the inputs 

corresponds to the entire set of IMFs, from the fastest to the slowest time scale.  

 

Cases II- IV correspond to fewer inputs in order to test the ability to approximate the 

total response with the aid of only the most energetic inputs.  

 

In Case V we embody the first IMF to the second one. This is because of the mixed 

mode phenomenon (high-frequency/noise scale intermixed with much lower 

frequency components) that is clearly observed in the first IMF. Since we do not want 

to miss any of the energy that is concentrated in the first IMF we proceed to the 

generation of another oscillation mode, not an IMF this time, by superimposing the 

first two IMFs.  

 

Cases VI corresponds to a single-input – single output scheme, where the input is the 

overall wave elevation. 

 

We also note that in order to avoid any undesirable artifacts due to noise, that is 

mainly located in the first IMF, besides mixing the noisy IMF with a slower time 

scale we may also implement another decomposition method and more specifically a 

variant of the empirical decomposition method, the Ensemble Empirical 

Decomposition Method- (EEMD) by the means of which the mixing phenomenon is 

alleviated as it will be shown in the Section 4.3.7. 
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Case I: ( )1:10 1 2 10
, , ...,u IMF IMF IMF=  

 
Figure 4.3.5.1. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red)  with reference parameters ( ),
p s
Hω  that correspond to 

the multi-input (IMF) signal 
1:10
u . 

 

 

 
Figure 4.3.5.2. Time series snapshot-plots of the total responses of the thermodynamic system 

(blue) and the approximate systemic analogue (red)  with reference parameters ( ),
p s
Hω  that 

correspond to the multi-input (IMF) signal 
1:10
u . 
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Figure 4.3.5.3. (Cont.) 

 



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~100] 

 

Case II: ( )1:5 1 2 5
, , ...,u IMF IMF IMF=  

 

Figure 4.3.5.4. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red)  with reference parameters ( ),
p s
Hω  that correspond to 

the multi-input (IMF) signal 
1:5
u . 

 

Case III: ( )2:4 2 3 4
, ,u IMF IMF IMF=  

 

Figure 4.3.5.5. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to 

the multi-input (IMF) signal 
2:4
u . 
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Case IV:  ( )2:3 2 3
,u IMF IMF=  

 

Figure 4.3.5.6. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to 

the multi-input (IMF) signal
2:3
u . 

 

Case V:  
2

1 2,3,4,5 3 5
1

, , ...,
j

j

u IMF IMF IMF+
=

  =    
∑  

 

Figure 4.3.5.7. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to 

the multi-input (IMF) signal
1 2,3,4,5
u
+

. 
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Figure 4.3.5.8. Time series snapshot-plots of the total responses of the thermodynamic system 

(blue) and the approximate systemic analogue (red)  with reference parameters ( ),
p s
Hω  that 

correspond to the multi-input (IMF) signal 
1 2,3,4,5
u
+

.
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Figure 4.3.5.7. (cont.)  Time series snapshot-plots of the total responses of the thermodynamic 

system (blue) and the approximate systemic analogue (red)  with reference parameters ( ),
p s
Hω  

that correspond to the multi-input (IMF) signal 
1 2,3,4,5
u
+

. 
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Case VI:  
10

1
Total j

j

u IMF res
=

= +∑  

 

Figure 4.3.5 9. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond 

to the single-input (Original Sea Wave Data) signal
Total
u . 

 

 

 

Figure 4.3.5.10. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to 

the single-input (Original Sea Wave Data) signal
Total
u  (two snapshots). 
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4.3.6   Contribution from the 1
st
, 2

nd
 and 3

rd
 order, partial, responses to the 

overall response  

 

Next, we present the, instantaneous, contribution of each order to the overall response, 

in particular for the Case II ( ( )1:5 1 2 5
, , ...,u IMF IMF IMF= ) as it can be observed 

from Figure (4.3.6.1) that follows.    

 

Figure  4.3.6.1. Contribution from the 1
st
, 2

nd
 and 3

rd
 order, partial, responses to the overall response  

 

 

 

4.3.7   Ensemble EMD  

 

However, as the EMD method can produce a number of different outcomes, based on 

the different sifting criteria configurations, see Huang et al (2003), Veltcheva et al 

(2004), we have initially proceeded with a standard EMD method, presented in 

Section 1.5, without imposing any kind of restrictions or requirements upon the 

sifting criteria other than the typical IMF-sifting criteria, thus obtaining the results 

presented in Figures (4.3.5.1–8).  

In addition to the “standard” EMD method, we employ another alternative 

decomposition technique, a noise-assisted empirical mode decomposition method , 

also called the Ensemble Empirical Mode Decomposition (EEMD), Wu and Huang 

(2005, 2008, 2009), in order to alleviate the mode-mixing phenomenon that is 

observed mainly in the fastest time-scale i.e. first IMF.  The EEMD concept relies 

mainly upon the effective use of a Gaussian white noise time series when it comes to 

independent component analysis (ICA), see De Lathauwer et al (2005). As with the 
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aid of Gaussian white noise the inherent time-scales of the data are uniformly 

populated by it and their extraction becomes easier and more robust. Flandrin et al. 

(2005) and Gledhill (2003) were the first to observe the effect of finite amplitude, 

instead of infinitesimal that was used in most cases, noise upon the EMD, while in 

general several works have been conducted with respect to the efficient use of noise, 

pre-whitening, in order to obtain better spectral estimations i.e. one may consult Press 

and Tukey (1956), Trucco (2001), Priestley (1991) and Kao (1992).  The EEMD is 

actually a variant of the EMD method, as the former contains two more steps than the 

latter; one in the start of the algorithm and one in the end.  

To be more specific prior to the decomposition of the data into a number of IMFs a 

white noise series of specific energy is added, first extra step, and then the empirical 

mode decomposition is implemented to the mixed time series. The last step is 

repeated 3 times, each time with a different white noise realization (but with same 

amplitude level) and thus an ensemble of decomposition sets is obtained.  

Thus, if the noise-added data for the j
th
 repetition is denoted by 

( )
( )

NA j
x t  we have 

 

( ) ( )
( ) ( ) ( ) ,   for 1 :

NA j j
x t x t w t j N= + =       (4.3.7.1) 

 

Then, by taking the ensemble mean(s) for each of the IMFs set, last extra step, we end 

up with the desired IMF, i.e., if  

( ) ( , ) ( )
1

( ) ( ) ( )
m

NA j i j j
i

x t IMF t res t
=

= +∑    (4.3.7.2) 

and 

( ) ( , )
1

1
( ) lim ( )

N

i i kN
k

IMF t IMF t
N→∞

=

= ∑ .              (4.3.7.3) 

 

Note that according to the statistical rule presented below  

 

n
N

ε
ε =        (4.3.7.4) 

where 
n
ε  is the standard deviation of error or difference between the input signal and 

the corresponding IMFs, ε  is the amplitude of the white noise and N is the number of 

ensemble elements, the larger the number of repetitions ( )N  is, the lower the effect of 

the added white noise becomes, see Figure (5) in (or consult in general) the work of 

Wu and Huang (2005). In consequence we have set 310N = . This procedure can also 

be done for different levels of noise energy/amplitude in order to observe whether 
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results improve and/or converge or not. In our case we carried out this method for 

four different noise amplitudes i.e.   

 

 
( )

( ) 0.1, for 1,..., 4
k

std x k kε = ⋅ ⋅ =    (4.3.7.5) 

 

The improvement of the accuracy can be observed in the corresponding figures and it 

will discussed along with the “standard” EMD results. However, the reliability of the 

EMD results is clearly a very important issue but mostly in terms of data/signal 

analysis.  But this also raises the following question: Is the “standard” EMD method 

with or without mode mixing still valid and suitable for the proposed system 

identification scheme? This clearly puts to the test the strength, or the degree of 

dependence to the reliability of the EMD results, of the proposed system identification 

method. In other words we need to deduce whether the alternative systemic 

approximation manages to “absorb” any kind of abnormalities that are generated by a 

typical EMD algorithm or that the employment of more advanced techniques such as 

the Ensemble EMD is a necessity.   

  

4.3.8    Overall response time series results (EEMD) 

 

The EEMD method was performed for four different amplitude levels while each of 

the ensembles consists of 3( ) 10N =  realizations. First we present how the initial data 

is decomposed onto its corresponding IMFs (for reasons of space the first five IMFs 

to be exact although the first six are used in our computations) and following that the 

corresponding responses are also plotted. Having observed that the results improve 

with the mixing, or absorption, of the fastest time scale (noise) i.e. the first IMF, with 

a slower time-scale, such as the second IMF, we have also computed the 

corresponding overall response for each of the four, corresponding to different levels 

of amplitude, cases. In addition we have computed the case where the fastest time 

scales i.e. IMF1, IMF2 and IMF3 are superimposed while the overall input vector also 

contains the other three much slower time scales i.e. IMF4, IMF5 and IMF 6.  This is 

done in order to separate in an obvious way the fast from the much slower time scales 

and then look upon the effects it has upon the overall response. Attempts like the last 

one are expected to provide smoother results due to the reduction of modes that 

actually matter while it must be noted that the complexity of the overall modeling is 

further reduced.    



Chapter  4.                                                      Nonlinear System Modeling & Identification  

 

 

[4~108] 

 

- IMFs 

EMD 

 

Figure 4.3.8.1. Time series of the original signal and the first five IMFs that were computed by 

the means of the “standard” EMD method.  

 

EEMD 

a)                                                            
(1)

10% ( )std xε = ⋅  

 
 

b)                                                            
(2)

20% ( )std xε = ⋅  

 

Figure 4.3.8.2. Time series of the first five IMFs that were computed by the means of the EEMD 

method for amplitude levels:  a) 
(1)

10% ( )std xε = ⋅ , b) 
(2)

20% ( )std xε = ⋅ . 
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c)                                                      
(3)

30% ( )std xε = ⋅  

 
d)                                                             

(2)
40% ( )std xε = ⋅    

 

Figure 4.3.8.2 (cont.). Time series of the first five IMFs that were computed by the means of the 

EEMD method for amplitude levels:   c) 
(3)

30% ( )std xε = ⋅ , d)  
(2)

40% ( )std xε = ⋅ . 

- Overall system response for the multi-input case:  

( )1:6 1 2 6
, , ...,u IMF IMF IMF=  

a)           
(1)

10% ( )std xε = ⋅  

 
Figure 4.3.8.3.  Time series plot of the total responses of the thermodynamic system (blue) and the 

approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to the 

EEMD-derived multi-input (IMF) signal
1:6
( )u t  for the amplitude level: a) 

(1)
10% ( )std xε = ⋅ . 
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b)      
(2)

20% ( )std xε = ⋅  

 
c)      

(3)
30% ( )std xε = ⋅  

 
d)      

(4)
40% ( )std xε = ⋅  

 

 

Figure 4.3.8.3. (cont.) Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to the 

EEMD-derived multi-input (IMF) signal
1:6
( )u t  for amplitude levels: b) 

(2)
20% ( )std xε = ⋅ ,  c), 

(3)
30% ( )std xε = ⋅  d). 
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Overall system response for the multi-input case: 
2

1 2,3,4,5,6 3 6
1

, , ...,
j

j

u IMF IMF IMF+
=

  =    
∑  

a)      
(1)

10% ( )std xε = ⋅  

 
b)      

(2)
20% ( )std xε = ⋅  

 
c)      

(3)
30% ( )std xε = ⋅  

 
Figure 4.3.8.4. Time series plot of the total responses of the thermodynamic system (blue) and the 

approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to the 

EEMD-derived multi-input (IMF) signal
1 2,3,4,5,6

( )u t
+

 for amplitude levels: a) 
(2)

10% ( )std xε = ⋅ , b) 

(2)
20% ( )std xε = ⋅ ,  c) 

(3)
30% ( )std xε = ⋅ . 
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d)      
(4)

40% ( )std xε = ⋅  

 
Figure 4.3.8.4. (cont.)  Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to the 

EEMD-derived multi-input (IMF) signal
1 2,3,4,5,6

( )u t
+

 for amplitude level:  d) 
(4)

40% ( )std xε = ⋅ . 

 

Overall system response for the multi-input case: 
3

1 2 3,4,5,6 4 6
1

, ,...,
j

j

u IMF IMF IMF+ +
=

  =    
∑  

a)      
(1)

10% ( )std xε = ⋅  

 
b)      

(4)
40% ( )std xε = ⋅  

 
Figure 4.3.8.5. Time series plot of the total responses of the thermodynamic system (blue) and 

the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  that correspond to 

the EEMD-derived multi-input (IMF) signal
1 2 3,4,5,6

( )u t
+ +

 for amplitude level:  a) 

(1)
10% ( )std xε = ⋅  and b) 

(4)
40% ( )std xε = ⋅ . 
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- Snapshots of overall system response for the multi-input cases 
1:6
( )u t ,

1 2,3,4,5,6
( )u t

+
 

and 
1 2 3,4,5,6

( )u t
+ +

  (EEMD method) and for two finite amplitude noise cases. 

 

(1)
10% ( )std xε = ⋅  

a)                                                
1:5
( )u t  

 
 

b)                                                          
1 2,3,4,5

( )u t
+

 

 
 

c)                                                          
1 2 3,4,5

( )u t
+ +

 

 

 

Figure 4.3.8.6. Snapshot of the time series plot of the total responses of the thermodynamic 

system (blue) and the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  

that correspond to the EEMD-derived, amplitude level 
(1)

10% ( )std xε = ⋅ , multi-input (IMF) 

signals: a) 
1:5
( )u t , b) 

1 2,3,4,5
( )u t

+
and c)  

1 2 3,4,5
( )u t

+ +
. 
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(4)
40% ( )std xε = ⋅  

 

a)                                                              
1:5
( )u t  

 
 

b)                                                              
1 2,3,4,5

( )u t
+

 

 
 

c)                                                              
1 2 3,4,5

( )u t
+ +

 

 

 

Figure 4.3.8.7. Snapshot of the time series plot of the total responses of the thermodynamic 

system (blue) and the approximate systemic analogue (red) with reference parameters ( ),
p s
Hω  

that correspond to the EEMD-derived, amplitude level 
(1)

40% ( )std xε = ⋅ , multi-input (IMF) 

signals: a) 
1:5
( )u t , b) 

1 2,3,4,5
( )u t

+
and c)  

1 2 3,4,5
( )u t

+ +
. 
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- Discussion and comments on the results 

 We begin with the last result, presented in Figure (4.3.6.1) with the aid of which we 

can detect that for a large number of time instances there is an immense effect of the 

3
rd
 order terms, both auto and cross, to the overall response as they are comparable to 

the first order, dominating, terms.  

On the other hand the 2
nd
 order terms are but a small fraction of the total response and 

on the basis of this observation one may state that if the first order terms are of order 

one then the third order term are, in average, of order ε, while the second order terms 

are of order  ε
2
.  

The much stronger presence of the third order terms is a rather interesting and at the 

same time unexpected outcome since, according to the analysis that took place in 

Section 4.2, the nonlinear nature of the system exhibits both second and third order 

nonlinearities, depending on the excitation’s energy and frequency characteristics.  

Thus, it is the excitation force and more specifically the sea wave elevation and the 

inherent modes that compose it, that actually determine the nonlinear “behavior” of 

the system. 

To be more specific even if this could seem at first as a plain deduction or 

observation, usually implemented in various band-limited systemic, deterministic or 

stochastic, models and concepts, it is clearly more than that. A simple argument 

towards this direction is that during the system identification procedure the conditions 

under which the system will operate are in general unknown!  

Moreover, this ascertainment is the quintessence and the backbone of the proposed 

non-parametric system identification model, meaning that in order to approximate 

efficiently and accurately the response of a nonlinear system when subjected to 

nonlinear excitations, we need to alleviate any kind of black box-originated 

restrictions and develop more insightful and meaningful input-dependent systemic 

and functional relations and formulations.  

Thus, it can be stated that in this sense the complexity of the total response of the 

nonlinear system can be considered as a function of, or depending upon, both the 

complexity of the excitation force (number of linear or nonlinear modes that compose 

it) and the complexity of the nonlinear nature of the system (identified usually in the 

frequency domain by means of input-output tests) as well.  
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The complexity of a signal was explicitly expressed by the means of: 

- the Fourier, linear, decomposition for the periodic input case 

- the empirical, nonlinear, mode decomposition method for the complex-input 

case.  

As far as the systemic modeling of the nonlinear system is concerned we implemented 

the harmonic distortion method for both the proposed system identification method 

and the development of the nonparametric approximating structure when this is 

excited by periodic/multichromatic excitation forces. In this way a detailed 

description of the nonlinear patterns inherent to the system was also obtained and 

outlined in detail while the periodic-input systemic schemes were based upon robust 

energy-frequency relations. 

For the complex input case models the EMD method, in conjunction with the Hilbert 

transform, functioned as a complement to the harmonic distortion method as the input 

signal can be decomposed into a small number of nonlinear modes (IMFs) with, 

however, more specific spectral, energy and frequency, characteristics than the 

original input signal. In addition to the Hilbert-Huang transform, Fourier spectral 

analysis was also implemented in order to provide further information with respect to 

a variety of statistical properties of the IMFs. This implementation can be also 

regarded as an extension to the system identification method since we couldn’t 

determine a priori the appropriate spectral criteria. In consequence, three parametric 

(amplitude/energy, frequency) sets were derived for this reason and once concluded 

that the first Fourier parametric set is the most suitable one, the system identification 

method is completed and ready to use.  

Focusing now upon the results the following comments can be made: 

••••  In overall the majority of results are more or less satisfactory whether the 

number of input components (IMFs) is large of small. 

••••  It has been shown that even with a two input-mode case, i.e. 
2,3
( )u t , the 

approximating systemic structure leads to very good results as far as both 

amplitude and phase are concerned. For the specific input case there is a small 

energy loss but for several hydro-mechanic or fluid-structure interaction 

problems in general it is the energetic modes that play, by far, the most 

significant role in this systemic approximation. 
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•••• The results improve as the number of inputs increase. However this deduction 

holds only for the modes of significant, or even non negligible, energy content 

i.e.  IMFs 1-5 and not for the rest of them.   

•••• One quite interesting result is that if the first IMF is superimposed to a slower 

time scale i.e. 2
nd
 or 3

rd
 IMF the overall system response improves significantly. 

This is the case whether the decomposition method that is followed is the EMD 

or the EEMD method.  

•••• A very successful result is also derived by the superposition of the relatively 

fastest time scales (IMFs 1 – 3) to create a single, mixed, mode 
1 2 3,4,5

( )u t
+ +

 

•••• As far as the EEMD based results are concerned, the accuracy of the results 

improves as the noise amplitude is increased. The allegation of Wu and Huang 

(2009) that the largest the amplitude of noise is the better, also holds true for this 

approximating technique as well. Another thing that can be verified besides the 

elimination of the mixed-mode phenomenon is that the end-effects of the 

“standard” EMD method are significantly reduced as the noise amplitude 

increases. The effective use of added noise data not only decomposes the targeted 

data in a much more robust manner but also improves the way we can now 

approximate the response of a nonlinear dynamical system under nonlinear 

excitations.     

•••• In the case where we use all or most of the IMFs there is a good chance to obtain 

unnecessary artifacts due to the generation of a very large number of cross-terms 

as well as due to the fact that the minimum level of amplitude that was set during 

the system identification procedure is 0.25m. Thus, any modes with significantly 

less mean wave elevation leads to overestimation and generation of artifacts. 

•••• The same argument can be stated for the use of the first IMF case (usually finite 

amplitude noise). 

•••• In the case where the input is the initial sea wave elevation the outcome can be 

regarded as adequate, even if the corresponding phase and amplitude presents 

greater discrepancies than any other case. However, the concept of the  input-

dependent systemic model in conjunction with the effective use of the first 

Fourier parametric set ( ),
p s
Hω

 
 shows that in cases where the system’s 
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complexity needs to be as low as possible such as in a more complex i.e. 

feedback, modeling, the one-mode input can be used. 

•••• The system identification method can be said to be completed with the selection 

of the appropriate parameter set as far as the average frequency and energy are 

concerned. These three parameter sets besides showing that an input depended 

approximation scheme is needed, also enhanced our information with respect to 

the way each of the IMFs behaves in average from completely different 

perspectives i.e. the Fourier-spectral analysis perspective and the Hilbert one. The 

mixed-mode phenomenon was surfaced by the discrepancy that was observed 

between the Fourier and the Hilbert sets while this discrepancy was projected 

onto the partial responses of the nonlinear system when this is excited by a single 

IMF. It was shown that the first Fourier approach as a measure of energy and 

frequency content was more substantial, at least for our problem, while the 

temporal averaging that corresponded to the Hilbert approach seemed also robust 

but unfit for this system identification case, at least where there is an intense 

mixed-mode phenomenon,.  However, the discrepancy that was mentioned above 

may be regarded as an additional identification tool as it not only outlined the 

mode-mixing but also showed that as it gets smaller i.e. when the mean 

instantaneous frequency converges to the peak spectral frequency the partial, due 

to IMF, response results improve significantly, leading to the better 

approximation of the overall response of a nonlinear system under nonlinear 

excitation. 

•••• In order to have a systemic representation able to deal with significant variations 

of the statistical properties of the encountered spectrum, one may impose a time 

window upon the nonlinear excitation time series and subsequently implement all 

of the above analysis on each of these windowed intervals separately. As 

minimum overlapping between these time intervals can be obtained by means of 

suitable functions, e.g. Gaussian, etc., perfect matching at the upper and lower 

ends can be achieved.  
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4.4 Systemic modeling of the OWC- sea waves interaction 

4.4.1 Feedback system formulation 

 

Having obtained the frequency-domain operator representations, for both the 

hydrodynamic and thermodynamic subsystems, we proceed by implementing these 

operators in the closed-loop configuration shown in Figure (4.4.1.1).  

At a first glance, this configuration has been inspired by the physical principles 

governing energy exchange interactions in a typical OWC system since the in-

chamber water column free surface acts as a reciprocating piston for the air mass 

entrapped inside the chamber. As we have already shown in Section 3.3.2.5.1 we 

consider that the spatial average at any instant of the in-chamber wave height is the 

driving signal of the air pressure, while this average spacing is also required in order 

to interface correctly the distributed hydrodynamic subsystem to the lumped 

thermodynamic one. 

The dynamics of this interaction are depicted by the truncated polynomial operator of 

the thermodynamic part as this was explained and presented within the context of 

Section 4.2. We note that the systemic scheme that was used in this feedback 

modeling corresponds to Case VI of Section 4.3.5 where the nonparametric systemic 

scheme is adapted with respect to a single, wide band, input. However, we may also 

implement more complex forms of the nonlinear operator, as these were derived and 

presented above, into the feedback scheme but for the following reasons the 

aforementioned systemic was chosen: 

• First, we want the feedback to be done in a robust manner without having, at least 

at this point, to provide more complex channeling operations as we have done in 

the feed-forward cases examined above. 

• Secondly, it has already been shown that the scattering frequency-domain operator 

may act, especially when the distance of the front wall from the back wall is large, 

as a low-pass filter bank, thus cutting off any of the medium or higher frequency 

wave components i.e. 0.5-1 Hz and higher, and in this way the incoming-wave 

input is transformed into a narrower-band signal. In this sense the nonlinear could 

be approximated by a less-enhanced although quite accurate, due to the 

conditioning of the systemic elements to the spectral characteristics of the signal, 

systemic scheme.   
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In addition, the water column height is determined by both the far field excitation, 

through the linear operator of the scattering part and the entrapped air pressure, 

through the linear operator of the radiating part. The frequency-domain 

representations of both these operators were obtained by modal decomposition 

approaches as these were presented in detail in Section 3.3. 

 

 

Figure 4.4.1.1. Closed-loop OWC configuration. 

 

In effect, one may express the wave height inside the OWC as follows: 

 

, ,

, ,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ,
OWC S in far R in air

S in far R in OWC

F F p

F F

η ω ω η ω ω ω

ω η ω ω η ω

= + =
 = + ⋅   T

   (4.4.1.1) 

where,                 

    
1

( ) ( , ) ,

i

OWC

i D

x dx
S

η ω η ω

∂
∫≜      (4.4.1.2) 

and 

 

i

i

D

S dx

∂
∫≜ .     (4.4.1.3) 

 

while, 
, ,
( ), ( )

S in R in
F Fω ω  correspond to the linear frequency-domain scattering and 

radiation operators, respectively, that were derived in order represent the effect of the 

geometry of the OWC to the wave elevation inside the chamber.   

Based on the above we obtain: 

 

{ }
1

, ,
( ) ( ) ( )

OWC R in S in far
F Fη ω ω η ω

−   = −       I T ,                  (4.4.1.4) 
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where I denotes the unity operator and the brackets indicate connection of systems 

(linear or nonlinear) in cascade.  

In conclusion, the above frequency-domain relation governs the transfer of energy 

from the far-field excitation ( )
far
η ω  to the equivalent piston displacement ( )

OWC
η ω  

driving the thermal subsystem of the installation.  

 

4.4.2 Results 

 

In what follows we will present two different front wall lengths cases, i.e., 6m and 

12m, (the front wall depth and thickness are 0.5 (m) and 0.2 (m) respectively, for both 

cases) in order to examine the way the OWC interacts with the surrounding sea 

environment as well as to observe the behavior of the spatially-averaged wave 

elevation inside the chamber with respect to an incoming wave excitation, the 

properties of which were presented in Chapter 1.5.2.1.  

 

 

- Case I.  F.W.D. = 6m 

 
 

Figure 4.4.2.1.  Time series of the overall oscillation of the internal free surface (blue), the 

oscillation of the internal surface due to scattering (red) and the incoming wave excitation 

(green), for the case where the FWD = 6m. 
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Figure 4.4.2.2. Time series of the overall oscillation of the internal free surface (blue), the   

oscillation of the internal surface due to scattering (red), for the case where the FWD = 6m. 

 

 
 

Figure 4.4.2.3. Snapshots of the time series of the overall oscillation of the internal free surface 

(blue), the oscillation of the internal surface due to scattering (red) and the incoming wave 

excitation (green) ), for the case where the FWD = 6m. 
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Figure 4.4.2.4. (Cont.). 

- Case II.  F.W.D. = 12m 

 
Figure 4.4.2.5. Time series of the overall oscillation of the internal free surface (blue), the 

oscillation of the internal surface due to scattering (red) and the incoming wave excitation 

(green), for the case where the FWD = 12m. 
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Figure 4.4.2.6. Time series of the overall oscillation of the internal free surface (blue), the   

oscillation of the internal surface due to scattering (red), for the case where the FWD = 12m. 

 

 

 
 
Figure 4.4.2.7. Snapshots of the time series of the overall oscillation of the internal free surface (blue), 

the oscillation of the internal surface due to scattering (red) and the incoming wave excitation (green) ), 

for the case where the FWD = 12m. 
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Figure 4.4.2.8. (Cont.) 

 

- OWC- Wave Elevation Comparison between Cases I and II 

 

 
Figure 4.4.2.9. Time series of the overall oscillation of the internal free surface chamber for the 

following two cases: FWD = 6m (blue), and FWD = 12m (red). 
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Figure 4.4.2.10. Snapshots of Figure (4.4.2.7). 

 

- OWC- Dynamic Pressure Comparison between Cases I and II 

 
Figure 4.4.2.11. Time series of the dynamic pressure oscillation inside the OWC chamber for 

the following two cases: FWD = 6m (blue), and FWD = 12m (red). 
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4.4.3  Discussion/Comments 

 

From these results as well as from the entire analysis that took place above the overall 

wave elevation of the internal surface differs, sometimes significantly, per geometry 

case. This difference ranges from 10 to 30% depending on the localized frequency 

content of oscillation. The overall wave elevation of the internal free surface results 

are in agreement with the design charts and the transfer functions since it can be 

deduced again  that the smaller the distance between the back and front walls is, the 

greater the amplitude of the, spatially averaged, oscillation of the internal surface 

becomes for the same excitation modes. The discrepancy observed between the two 

cases can be justified with the aid of the multipurpose, as it seems, Hilbert-Huang 

transform with the aid of which we have already identified the time-scales that the 

more energetic oscillation modes, embedded in the data, correspond to. Thus, it must 

be noted that besides the usage of the Hilbert-Huang transform in system 

identification techniques, we must also acknowledge, again, the potential of this 

transform to successfully identify the spectral characteristics of the intrinsic 

oscillation modes embedded in the wave data.  

According to the analysis that took place in Section 1.5 and throughout this chapter, 

the Hilbert-Huang transform showed that the two most energetic modes 

corresponded in time scales with peak (or mean instantaneous) frequencies around 

0.15 and 0.2 Hz, respectively. In this sense we may perform an identification process 

upon the wave data in order to implement this information to the design of the plant.  

According to Justino and Falcao (1999) the optimal dynamic pressure is around 

10.5
.
10

4
 Pa  but in our case we seem to get approximately 40-50% of that target. In 

consequence we need to adjust the size and geometry of the chamber as follows:  

If, for example, the surrounding wave climate present similar characteristics to the 

one that was used in this work i.e. a relatively mild wave environment, the geometry 

of the chamber need to have as small as possible distance between the front and back 

wall, while it would also be beneficiary to have large front wall immersions. In this 

way resonances can be achieved and the target pressure is reached. However, we must 

keep in mind that since the area of the internal surface must be around 120-150 m
2
, 

the chamber of the OWC need to have large OWC width/ OWC length ratios 

( )/ 20 25, 4 6L W L≈ − ≈ −  see Figure (4.4.1).  
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On the other hand for really energetic wave climates the /L W ratio should be 

adjusted to near unity values ( )/ 1, , 10 12L W LW m≈ ≈ − , see Figure  (4.4.2). 
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Figure 4.4.3.1.  Required OWC scheme for mild wave environments. 
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Figure 4.4.3.2. Required OWC scheme for more energetic wave environments. 
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