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PerÐlhyh

Μελετάμε τη διάδοση ανταγωνιστικών προϊόντων σε κοινωνικά δίκτυα μέσω ενός μη συνε-

ταιριστικού παιχνιδιού μεταξύ ανταγωνιζομένων επιχειρήσεων, που έχουν προϋπολογισμούς

για να ‘σπείρουν’ την αρχική υιοθέτηση των προϊόντων τους σε ένα δίκτυο καταναλωτών. Οι

ωφέλειες των επιχειρήσεων αυτών είναι ο τελικός αριθμός των υιοθετήσεων των προϊόντων

τους με το τέλος της συμμετέχουσας διαδικασίας διάχυσης.

Επικεντρωνόμαστε σε παιχνίδια 2-παικτών, και μοντελοποιούμε την διαδικασία διάχυ-

σης χρησιμοποιώντας το γνωστό linear threshold model, σε συνδυασμό με ντετερμινιστικά

κριτήρια για την επίλυση τυχόν ισοπαλιών. Παραταύτα, πολλά από τα αποτελέσματά μας ε-

ξακολουθούν να ισχύουν και υπό ένα γενικότερο σύνολο υποθέσεων για τη διαδικασία αυτή.

Κατ΄ αρχάς, δείχνουμε ότι τα παιχνίδια αυτά δεν έχουν πάντοτε αμιγή σημεία ισορροπίας

Nash (PSNE), και αποδεικνύουμε ότι το πρόβλημα απόφασης για την ύπαρξη PSNE σε ένα

τέτοιο παιχνίδι είναι coNP-hard. Στη συνέχεια, δείχνουμε ότι δεν μπορούμε να ελπίζουμε

ακόμη και για παιχνίδια πάνω σε δίκτυα με συγκεκριμένα in και out-degree distributions να

είναι πιο ευσταθή από άλλα, σε σχέση, για παράδειγμα, με την μορφή των improvement paths,
ή cycles που εμφανίζουν. Συνεχίζουμε με ικανές και αναγκαίες συνθήκες για την ύπαρξη

ενός PSNE, και προτείνουμε ικανές συνθήκες για την ύπαρξη του ως προϋποθέσεις για την

ύπαρξη μιας generalized ordinal potential. Στη συνέχεια, στοχεύοντας στην ποσοτικοποίηση

της αστάθειας των εν λόγω παιχνιδιών, εξετάζουμε tight approximate generalized ordinal
potentials. Περαιτέρω, υποκινούμενοι από μία απλή, αλλά ρεαλιστική κλάση κοινωνικών

δικτύων, θεωρούμε μια ειδική περίπτωση παιχνιδιών 2-παικτών, την οποία και χαρακτηρίζουμε

πλήρως όσον αφορά την ύπαρξη PSNE. Τέλος, επικεντρωνόμαστε σε παιχνίδια με αυθαίρετο

αριθμό παικτών και τα μελετάμε ως προς το Price of Anarchy και Stability. Στη συνέχεια,

προτείνουμε ένα νέο μέτρο που αποτυπώνει την αναποτελεσματικότητα ενός PSNE, όσον

αφορά τις ωφέλειες των παικτών, καθώς ο αριθμός των παικτών αυξάνει: Το ονομάζουμε

Price of Oligoply.

Lèxeic Kleidi�

Κοινωνικό δίκτυο, Διάχυση Πληροφορίας, Θεωρία Παιγνίων
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Abstract

We study the diffusion of competing products in social networks through a non-
cooperative game between competing firms that have budgets to “seed” the initial adoption
of their products within a network of consumers. The utilities of the firms are the eventual
number of adoptions of their product by the end of this diffusion process.

We mainly focus on 2-player games, and we model the involved diffusion process using
the known linear threshold model, enhanced with certain deterministic tie-breaking rules.
Nonetheless, many of our results continue to hold under a more general framework for this
process.

We first exhibit that these games do not always possess pure strategy Nash equilibria
(PSNE), and we prove that deciding if PSNE exist is coNP-hard. Afterwards, we prove that
we may not hope even for games over networks with special in and out-degree distributions
to be more stable than others, concerning, for example, the form of the improvement
paths, or cycles that they induce. We continue with the investigation of necessary and
sufficient conditions for the existence of PSNE, and we propose sufficient conditions for
the existence of PSNE as conditions for the existence of a generalized ordinal potential.
Next, we target to quantify the instability of the games in question, and we examine
approximate generalized ordinal potentials; tight bounds are offered. Further, motivated
by simple but realistic classes of recommendation networks, we consider a special case
of 2-player games, and we completely characterize them with regard to the existence of
PSNE. Finally, we focus on games with an arbitrary number of players, and we first study
their Price of Anarchy and Stability. Then, we propose a new measurement that captures
the inefficiency of a PSNE, with regard to the utilities of the players, as the number of
the involved players increases; we name it Price of Oligopoly.

Keywords

Social Networks, Information Diffusion, Game Theory, Economic Behavior
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Chapter 1

Introduction

The recent pervasion of the Internet in our every-day life induced the emergence of a
plethora of social media websites, such as the Facebook, Twitter, and the YouTube, as
well as of a myriad of interlinked blogs, that already constitute a sturdy nexus between
countless individuals, and a major conduit of information flow of any kind. And especially
for the consumers, today’s social platforms provoked an extremely favorable shift in their
power; they can massively share their preferences, and influence each other, over a plethora
of products at the click of a mouse [BBCW]. On the other hand, this emergent power
several companies already pave the way to harness, and strategically turn it to their
advantage through modernized word-of-mouth tactics [BBCW, BBCG, KATHP]. Hence,
the birth of the Internet, and the subsequent development of social media websites, have
in overall transformed viral marketing to an indispensable strategic tool for a company’s
growth and long-term success [BBCG].

Therefore, concerning this fervent movement toward viral marketing, and following a
series of related influential articles [AFPT10, DR01, IKMW07, KKT03, M00] and recent
books [C04, EK10, G07, VR07, J08], we define a non-cooperative game that captures the
diffusion of competing trends, or products; given a number of competitive firms that have
budgets to “sow” the initial adoption of their products within a static social network of
consumers, we define a non-cooperative game, and we analyze several of its characteristics.
To this end, we consider the strategy of each firm as the initial set of individuals that the
firm targets in order to “infect” with its product. Explicitly, we assume that each firm
can initially infect k ∈ Z>0 nodes. Additionally, we define the payoffs of the firms as
the eventual number of adoptions of their product that are “yielded” through a compet-
itive diffusion process over the network. Further, we consider this diffusion process as a
sequence of deterministic and irreversible local interactions between the consumers that
have already adopted a particular product and their friends/neighbors that have adopted
still none. Particularly, we consider a local interaction scheme based on the widely used
linear threshold model (LTM) [G78]. Moreover, according to this scheme, we propose a
deterministic tie-breaking criterion for the cases where an individual can adopt more than
one products, given, of course, that yet has none. Explicitly, we assume that the indi-
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viduals within the social network share over the involved products a common order of
preferences R≺; i.e., the distinctive quality of each of the products — which is assumed
to exist — is perceived the same by each individual, as, for example, Morris [M00], and
Immorlica et al. [IKMW07] similarly assume. Therefore, we solve such dilemmas with
regard to R≺, which is a clearly deterministic criterion — recall at this point the also
deterministic nature of the classic LTM. Finally, we note that in several of our results the
use of the threshold model LTM, as well as, of the criterion R≺, is done without loss of
generality.

Under this general framework, our work unfolds into four main parts. In the first part,
we illustrate that games over social networks with even simple structure may possess no
pure strategy Nash equilibria (PSNE). Next, we propose necessary and sufficient conditions
for the existence of a PSNE, along with some further necessary conditions. Moreover, we
prove that it is co-NP-complete to decide whether a PSNE exists given a particular game.
Afterwards, we establish that over a certain class of social networks, with appropriate
underlying structure, all possible game matrices are realizable, regarding the improvement
paths that they induce. Additionally, we prove that the result holds under “almost” any
consistent in and out-degree distributions that may characterize the structure of the social
network.

In the second part, we turn our attention to 2-player games, and we propose necessary
conditions for the existence of a generalized ordinal potential, conditions that involve the
structure of the social network. We continue with a set of sufficient conditions, and we
define a certain class of games where these conditions are also necessary. Then, further
classes of games with a generalized ordinal potential are described.

In the third part, and again for the 2-player game, we move on to approximate ε-
generalized ordinal potentials, as a novel method of measuring the “instability” of the
games in question — the larger the parameter ε is, the more “unstable” the game can
be characterized. Particularly, we prove that each game admits an ε-generalized ordinal
potential, where ε equals the maximum value of the diffusion collision factor of the involved
social network. Further, for the realistic special case of games with diffusion depth one,
we provide their complete characterization. We also prove that they always admit a
1-generalized ordinal potential. On the other hand, we provide tight examples to our
approximation results for all the possible cases of diffusion depth.

Finally, in the forth part, regarding the Price of Anarchy (PoA) and the Price of
Stability (PoS) of these games, and for any number of players, we show that the PoA may
obtain its worst value, even if PoS obtains its possible best. We end by illustrating that
when more than two firms are involved in the game, then a PSNE can exist where the
firm associated with the product of the “best” quality does not receive the greatest payoff
among the involved players.

Summarizing, in this work we unveil several features inextricably intertwined with
various structural characteristics of the underlying social networks that to the best of
our knowledge have met no previous investigation. Therefore, with this study we also
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target to motivate further empirical and experimental research on a series of relevant and
essential questions of interest; empirical research that can form a feedback loop that will
inevitably drive theoretical approaches on even more realistic models of social networks,
local interaction schemes, and tie-breaking criteria.

The rest of our work is organized as follows: In Chapter 2 we briefly survey a neces-
sary relevant background, and we discuss several related works. In Chapter 3, we again
summarize the major contributions of our work, and we continue with the main exposition
of our results. We end the chapter, and our study, with a discussion on motivated future
work, and with some further concluding remarks.





Chapter 2

Related Background and Work

Related Background

In this section we summarize several fundamental properties of social networks, and
some basic concepts of the diffusion of information through them. We begin with some
structural characteristics of social networks, like the diameter and the clustering coeffi-
cient. Additionally, we describe structural phenomena, such as the small-world and the
scale-free phenomena, that are present in a plethora of real-world social networks. After-
wards, we present several basic graph models for such networks.

We continue summarizing several models of information diffusion over social networks.
In the first place, we present the concept of a local interaction game, and we continue
with some of the prevailing models of information diffusion in the recent literature: the
threshold and the cascade models.

Furthermore, we present recent results on the inferring of social networks from a
collection of observed data of diffusion and influence within such networks. We end with
a rather different perspective by summarizing a series of empirical results that concern
many of the previous topics on information diffusion.

2.1 On the Structure of Social Networks: Basic Character-
istics

We begin by summarizing some of the basic structural properties of social networks.1

A social network can be described as a collection of individuals with some pattern of
interactions or “bonds” between them. Friendships among a group of individuals, business
relationships between companies, and epidemiological contact networks are all examples
of such networks. Network analysis has a long history in sociology with the literature
stretching back at least half a century to the pioneering work of Rapaport, Harary, and
others in the 1940s and 1950s. Typically, network studies in sociology have been data-
oriented, involving empirical investigation of real-world networks, that was followed by

1This introductory discussion heavily relies on the work of Newman et al. [NWS02].
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graph-theoretical analysis, and they often aimed at determining the centrality, or influence
of the various involved individuals in the network.

More recently, following a surge in interest in the network structure among math-
ematicians and physicists, another body of research investigated statistical properties
of networks, as well as methods for modeling networks either analytically, or numeri-
cally [S01, AB02]. One important and fundamental result, which has emerged from these
studies, concerns the number of bonds that each individual has with his friends/neighbors,
the so-called degree; it has been found that in many networks the distribution of individ-
uals” degrees is highly skewed, with a small number of individuals having an unusually
large number of bonds. Further simulations and analytic work suggested that this property
can have a crucial impact on the way in which communities operate, including the way
information diffuse/travels within the network. Thus, concerning these suggestions, we
continue by describing some important structural properties of real-world social networks.

2.1.1 Diameter of the Network

Recent work on social networks, within mathematics and physics, has focused on three
distinctive features of the network structure. The first concerns its usually small diame-
ter [D10], as highlighted in an early work by Stanley Milgram [M67]. Specifically, Milgram
described an experiment that he performed, involving letters that were passed from ac-
quaintance to acquaintance, from which he deduced that many pairs of apparently distant
people are actually connected by a very short chain of intermediate acquaintances. Par-
ticularly, he found this chain to be of typical length of only six. Since Milgram’s work,
it has been repeatedly shown that numerous other social networks are characterized by a
similar small-world phenomenon [WS98, AJB99, N01].

2.1.2 Small-World Phenomenon

Although Milgram [M67] talked about the small-world phenomenon, meaning the ques-
tion of how two people can have a short connecting path of acquaintances in a network
that has other social structure, such as insular communities or geographical and cultural
barriers, in a more recent work, Watts and Strogatz [WS98] have used this phrase over
networks that exhibit a combination of such short paths with a particular social structure
that is defined by clustering coefficient.

2.1.3 Clustering Coefficient

The clustering coefficient is the second property of social networks that has been
emphasized in the recent literature. Watts and Strogatz [WS98] showed that in many
real-world networks the probability of the existence of a bond between two individuals is
much greater if the two individuals in question have another mutual acquaintance, or even
several. In other words, the probability that two of one’s friends know one another is much
greater than the probability that two people chosen randomly from the population know
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one another. Based on this fact, Watts and Strogatz defined the clustering coefficient
as the probability that two acquaintances of a randomly chosen person are themselves
acquainted, and they showed that for a variety of networks this coefficient took values
anywhere from a few percent to forty or fifty percent — a fact supported by several other
subsequent studies [N01, NSW01].

But how this clustering phenomenon can affect a word-of-mouth diffusion processes
within a social network, and explicitly its duration? For a simple, but indirect answer, we
can consider a social network with a high clustering coefficient, and a particular individual i
in it — the initiator of the word-of-mouth process. Then, the number of distinct individuals
that can be reached from i after k steps — following the minimum paths of acquaintances
between i and each of the individuals in the network — cannot grow exponentially with
k. Therefore, the clustering phenomenon can have a major impact to the information
diffusion over social networks.

2.1.4 Scale-Free Phenomenon

The third and last structural property of interest concerns the highly skewed degree
distribution that many social networks exhibit, as Albert et al. [AJB99, BA99] first em-
phasized it. Explicitly, [AJB99, BA99] exploring several databases describing the topology
of large networks that span fields as diverse as the WWW, they analyzed them as undi-
rected graphs, and they showed that the probability P d(k) that a vertex in the network
interacts with k other vertices decays as a power law, following a P d(k) ∝ k−γ , where γ
ranges between 2 and 3. This fact implies that each node has a statistically significant
probability of having a very large number of connections compared to the average connec-
tivity and, as a result, there is no representative connectivity in the network. Thus, the
term scale-free network was also coined.

2.2 On the Structure of Social Networks: Basic Graph Mod-
els

In this part we point our attention to some of the basic graph models for the structure
of the social networks: the Erdős-Rényi and the Scale-Free models.

Before the observation of the scale-free properties in many of the social networks [2.1.4]
the Erdős-Rényi model (Erdős and Rényi [ER59]) constituted a prevailing model for a
variety of real-world networks, and numerous papers had discussed its properties. On the
one hand, an Erdős- Rényi graph G(n,p) is simple to define; one takes some number n
of nodes and places connections between them independently at random, such that each
pair of nodes i, j has a connecting edge with probability p. On the other hand, this
random process generates a graph with a degree distribution that converges to a Poisson
distribution as n → ∞; a property in strong discordance to the scale-free character of
many of the real-world networks [2.1.4].
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The inability of the Erdős-Rényi model to capture the scale-free phenomenon led Albert
and Barabási [BA99, BB03] to devise a new random algorithm — preferential attachment
— that can generate networks consonant with a power-law degree distribution. Later works
substantiated additional characteristics over an extended collection of random networks,
either undirected or directed, and under a variety of possible degree distributions [NSW01,
KN09].

2.3 On Models of Diffusion over Social Networks

We continue by summarizing some of the basic models of diffusion over social net-
works.2 All the discussed models, unless otherwise specified, concern the diffusion over a
social network of a single product (trend).

Although the first empirical studies of diffusion on social networks began to appear in
the middle of the 20th century [CKM66, RG43], formal mathematical models of diffusion
were introduced a few decades later [G78, S78]. In this overview, we will mainly concen-
trate on local interaction games [B93, E93, G96], threshold models [G78, S78, AM11], and
cascade models [GLM01a, GLM01b, KKT03].

To this end, we will model the structure of a social network with a graph G = (V,E),
either directed, or undirected. Each vertex v ∈ V will represent an individual within the
network. For convenience, throughout the exposition we will refer to the nodes in the graph
and the individuals they represent interchangeably. In a directed graph, an edge (u, v) ∈ E
will denote that u has a direct influence on the decisions made by v. Similarly, in an
undirected graph, the edge (u, v) ≡ (v, u) will signify a mutual influence between u and v.
Finally, we will denote by N(v) the neighbors of v. Explicitly, N(v) = {u|u ∈ V, (u, v) ∈ E}.

We proceed by firstly describing three different models of information diffusion over
social networks: local interaction games, threshold models and cascade models. Each
of these models relies on different assumptions with regard to how a network’s node is
influenced by its neighbors. In other words, they constitute alternative models for the
“inter-node” interactions.

2.3.1 Local Interaction Games

Before introducing the local interaction games, let us recall the class of coordination
games, as the class of games with multiple pure strategy Nash equilibria in which players
choose the same, or corresponding strategies. We are particularly interested in coordi-
nation games since the diffusion of a given product (trend) unfolds whenever individuals
without any product eventually adopt it, influenced by their friends/neighbors that have
already adopted it too. From a game-theoretic perspective, the former individuals choose
to “play” the same “strategy” as at least some of their neighbors. Therefore, coordination
games formalize the idea of coordination problems, which are clearly widespread in the

2This introductory discussion heavily relies on the work of Wortman [W08].
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social sciences, meaning situations in which all the involved parties can realize mutual
gains, but only by making mutually consistent decisions.

As an example of a coordination game, we consider the 2-player, 2-strategy game, with
the following payoff matrix:

A B

A u1(A,A), u2(A,A) u1(A,B), u2(A,B)
B u1(B,A), u2(B,A) u1(B,B), u2(B,B)

where {A,B} is the set of available strategies for the two players, and u1(S1, S2) (u2(S1, S2))
denotes the payoff of Player 1 (Player 2) when the a set of strategies (S1, S2) ∈ {A,B}2

is played. Evidently, this game is a coordination game, if u1(A,A) > u1(B,A) and
u1(B,B) > u1(A,B), as well as, if u2(A,A) > u2(A,B) and u2(B,B) > u2(B,A); then the
strategy profiles (A,A), and (B,B) are pure strategy Nash equilibria (PSNE). Evidently,
this setup can be straightforwardly extended for more than two strategies.

On this ground we introduce local interaction games, which were developed as an
extension of the two-player coordination games to the setting in which there is a large,
or even infinite population of players interacting along the edges of a social network.
Variations of local interaction games were presented and studied in the early nineties by
Blume [B93] and Ellison [E93], and they can be viewed as a precursor to the more general,
widely studied class of graphical games [KKLO03, KLS01]. Here, we focus primarily on
the version of local interaction games formalized by Morris [M00].

For our purposes, a local interaction game is a pair (G, q) where G = (V,E) is a
connected, undirected graph representing the underlying structure of the social network.
The vertex set V and edge set E may be finite or infinite, but it is assumed that no node
has more than a finite number M of neighbors. Here, q is a parameter specifying the
relative goodness of the two actions A and B. Particularly, if a player chooses action B,
then he receives a payoff of q for each of his neighbors that also chose B. If a player
chooses A, he receives a payoff of 1− q for each neighbor that also chose A. Thus, we can
think of each player as interacting with each of his neighbors via the game matrix

A B

A 1− q, 1− q 0, 0
B 0, 0 q, q

Consequently, the overall payoff for each player is the sum of all his payoffs from each one
of these separate games. A certain restriction, therefore, should be stressed: each player
can choose only one action among the available A and B, which will also be common over
all these separate games.

Now, if all the players in the network cannot deviate to a better strategy, given the
strategies of their neighbors, we say that a Nash equilibrium is obtained. A trivial example
of a Nash equilibrium is the situation where all the players choose action A, (or B), as
their strategy — if any player chooses to deviate he then receives a payoff of value zero.
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Examining a single equilibrium, however, does not give much insight about how trends
— here represented by strategies A and B — spread. Instead, and in order to model the
information diffusion process, it is more useful to consider the evolution of the players”
actions over time, where the players are assumed to play at each time step a best response
strategy to the strategies of their friends/neighbors. Specifically, we assume that at an
initial time t = 1 the (possibly infinite) set of nodes V start out in a particular configuration
where a finite set of players A1 adopt the “new” product — for example A —, while the
remaining set of players V \ A1 remain with the “preexisting” product — here B. Then,
at each subsequent time t, each player plays a best response strategy to the actions chosen
by his neighbors at time t− 1 (we note that from this latter assumption, a direct relation
to the concept of Stackelberg games is evident). Furthermore, we assume that any ties —
i.e., situations where both A and B constitute a best response strategy for an individual
— are broken in favor of the new product A. Therefore, examining the evolution over
time of the set of nodes that have eventually adopted A, we can yield a dynamic view of
how a new product, or trend may spread across the network.

Later, in [2.5.1], we will describe an extension to this previous model where the players
are allowed to play an extra strategy AB [IKMW07] also. Specifically, this new strategy
AB corresponds to the case where the products A and B are compatible with each other,
and therefore the players can even adopt them both, (by incurring, however, some extra
cost).

2.3.2 Threshold Models

Local interaction games can be viewed as a subclass of the more general class of
threshold models. Recall that in a local interaction game, a node v chooses its action at
time t as a best response to the actions of its neighbors at time t−1. If v chooses action A,
its payoff is 1− q times the number of its neighbors who choose A; if it chooses action B,
its payoff is q times the number of its neighbors who choose B. Thus, A is a best response
for v if and only if a fraction q, or more of its neighbors choose action A. Formally, node
v chooses action A at time t if and only if

1
|N(v)|

∑
u∈N(v)

Xu,t−1 ≥ q,

where Xu,t−1 is 1, if u chose action A at time t− 1, and 0 otherwise. Here the parameter
q can be viewed as a fixed cutoff, or threshold. And hence, this viewpoint gives rise to the
so-called threshold models.

Threshold models date back at least as far as Granovetter [G78] and Schelling [S78],
with a recent extension by Apt and Markakis [AM11]. Originally, they concern the spread
of a single product over a social network. One simple example is the linear threshold
model. In this model, each node v ∈ V has a nonnegative weight wuv for every u ∈ N(v),
where

∑
u∈N(v)wuv ≤ 1, and a personal threshold value θv ∈ (0, 1]. This threshold can be
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hard-wired to a particular value, as in the case of local interaction games, or chosen at
random at the start of the process.

Given these thresholds and an initial set A1 of active nodes — i.e., nodes that have
adopted the “new” product A —, the process unfolds deterministically in a sequence of
steps. At the t-th time step, every node that was active at time t− 1 remains active. On
the other hand, each node v that was inactive at time t − 1 becomes active at time t if
and only if ∑

u∈N(v)
Xu,t−1wuv ≥ θv,

where Xu,t−1 is again 1 if u was active at time t − 1 and 0 otherwise. Hence, the weight
wuv captures how much v is influenced by u, and the threshold θv the personal resistance
level of v to adopt a new product after its neighbors.

It is important to note that while the process is deterministic given the set of thresh-
olds, the ability to randomize the thresholds’ values allows an often natural injection of
randomness into the process. For example, Kempe et al. [KKT03, KKT05], in order to
model lack of prior knowledge about the true thresholds of each individual, assumed that
the thresholds are chosen independently and uniformly from [0, 1] for each individual.

The linear threshold model can be generalized further by replacing the term∑
u∈N(v)

Xu,t−1wuv ≥ θv

with an arbitrary function of the set of active neighbors of v [KKT03]. More specifically,
let fv be any monotone increasing function with fv(∅) = 0 that maps (active) subsets
of N(v) to the range [0, 1]. Similarly to the linear threshold model, in the general model
at each time t each inactive node v becomes active if and only if fv(S) ≥ θv, where
S = At−1 ∩ N(v) is the subset of N(v) that is active at time t − 1. As before, thresholds
may be fixed, or chosen randomly. A notable work using this general model is that of
Mossel and Roch [MR07].

Furthermore, note that for threshold models once a node has switched to a new action
— here A —, it can never switch back to the previous action — B. This property is
known as progressiveness [VNRT07]. Most of the dynamic processes that we examine here
are progressive, either explicitly as in this model, or implicitly as a result of the actual
dynamics of the model.

Finally, we note that these presented linear threshold models can be applied as they
are whenever only one new product is introduced within the social network. On the other
hand, Borodin et al. [BFO10], concerning the more competitive setting of more than one
products, presented several appropriately enhanced versions.

A significant difference between this two types of models concerns the necessary exis-
tence of particular tie-breaking criteria for the latter case. Explicitly, these criteria must
specify which product will be eventually adopted by each individual in the network, if he
at any given time-step of the diffusion process can adopt more than one products at the
same time. A detailed discussion on the subject can be found in [4].
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2.3.3 Cascade Models

Inspired by research on interacting particle systems [L85], cascade models of diffusion
were first studied in the context of marketing by Goldenberg et al. [GLM01a, GLM01b].
According to cascade models, each individual, when he becomes active, has a single,
and probabilistic chance to activate each of his inactive neighbors. For the particular
class of independent cascade models, the probability that an individual is activated by
a newly active neighbor is independent of the set of neighbors who have attempted to
activate her/him in the past. In overall, cascade models can capture directly the notion
of contagion, combining the idea that an individual”s receptiveness to influence depends
on the past history of interactions with his neighbors.

2.4 Influence Maximization

In this section we discuss influence maximization over social networks when a sin-
gle trend, or product is involved. Influence maximization is the problem of choosing the
“best” set of individuals within a network with regard to their potential to trigger a
widespread adoption of a given product. This problem was first introduced by Domin-
gos and Richardson [DR01], who noted that although data-mining techniques had been
traditionally used in various direct marketing applications with great success, a wealth
of network information was constantly remaining unused. Therefore, they suggested that
marketing companies, instead of deciding if they should directly target a consumer over
a particular product, and based solely on the expected profit that they could earn from
his individual purchases of this product, they should take into account the effect that this
consumer would have if she told her friends about it, and they, in turn, told their own
friends, and so forth.

The influence maximization problem can be formalized in a number of different ways.
Domingos and Richardson [DR01, RD02] modeled the problem as a Markov random field,
and discussed heuristic techniques that aimed at finding a marketing strategy that ap-
proximately maximizes the global expected lift in profit. (Intuitively, the expected lift in
profit — which was introduced by Chickering and Heckerman [CH00] in the context of
direct marketing — is the difference between the expected profit obtained by employing
a marketing strategy, and the expected profit obtained using no marketing at all.)

On the other hand, Kempe et al. [KKT03, KKT05], assuming a fixed marketing budget
sufficient to target k individuals, studied the problem of directly identifying the “best” k
individuals to target in the network. Particularly, they first showed that this problem is
NP-hard — concerning the linear threshold and the independent cascade model as models
of diffusion of the involved product —, and then they provided a simple greedy algorithm,
analogous to the standard greedy set cover approximation algorithm [CLRS01], that is
guaranteed to efficiently produce a (1− 1/e− ε)-optimal set, for any ε > 0.

The problem of influence maximization regarding two, or more competing products
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was extensively examined by Borodin et al. [BFO10]. Specifically, they showed that the
previously used greedy approach cannot be generally applied for this case. Nevertheless,
they proposed alternative models of competitive diffusion that are amenable to this greedy
approach. Additionally, they proved that under several such competitive influence models,
it is NP-hard to achieve an approximation that is better than a square root of the optimal
solution.

2.5 On Graph Properties Linked to Contagion

The previous section illustrated the problem of influence maximization. In this section,
we turn to the related but fundamentally different study of the properties of infinite graphs
that are linked to the spread of trends, or products.

Morris [M00] was one of the first to examine this question in depth. By studying best
response dynamics on local interaction games, he aimed to uncover the diffusion properties
of different classes of infinite graphs. Specifically, his work attempted to characterize the
set of graphs, and the values of the local interaction game parameter q [2.3.1] for which
there always exists a finite set of players A1 such that: If only A1 adopts action A at
time t = 0, and all other individuals/players within the involved network choose the
preexisting action B, then action A is eventually chosen everywhere in the network. In
this sense, Morris’ work was more focused on the analysis of a particular set of properties
of graphs, as opposed to the algorithmic aspects of viral marketing with which Domingos
and Richardson [DR01, RD02] and Kempe et al. [KKT03, KKT05] were mainly concerned.

Before presenting one of his main results, we first provide two useful definitions.

Definition (Epidemic set, and contagion threshold). We say that A is epidemic
on a graph G with parameter q, if there exists a finite set A1 such that⋃

t≥1
At = V,

where for every t ≥ 1, At is the set of players choosing action A at time t, assuming that
each player plays a best response to their neighbors” actions at time t − 1, and under
parameter q. Furthermore, we define the contagion threshold of a graph G as the
maximum value of q for which A is epidemic on G with parameter q.

Note that this setting is not explicitly defined to be progressive. In other words, there
is nothing preventing any nodes currently playing action A from switching back to action
B, if B constitutes a best response. However, if it is assumed that the initial set of
individuals A1 sticks with action A, then it can be shown that no other individual ever
switches from action A to action B.

On this ground, Morris [M00] proved that the contagion threshold is always less than,
or equal to 1/2, given any graph G. Therefore, he showed that under his model it is never
possible for a newly introduced product within a social network to overcome a stronger
preexisting one.
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2.5.1 Introducing Compatible Technologies

Immorlica et al. [IKMW07] introduced a model which we refer to as compatible con-
tagion games. Compatible contagion games are a natural extension of local interaction
games to the scenario in which the individuals within a social network may choose to
adopt either product A, or product B as before, or to instead adopt both products A and
B simultaneously at some additional cost c. This cost may be high, or low, depending on
the inherent compatibility between products A and B.

Moreover, Immorlica et al. [IKMW07] assumed that the population of the individuals
in the network is infinite, as Morris [M00] did. However, they also made the (possibly
restrictive) assumption that every individual/node in the network has degree ∆, for some
fixed ∆. Then, on the other hand, the cost c can be perceived as a per-neighbor cost of
r = c/∆, and consequently each set of neighbors can be viewed as playing the modified
coordination game presented in the following game matrix (Recall that the total payoff to
a node is the sum of its payoffs from all the coordination games it plays with each of its
neighbors).

A B AB

A 1− q, 1− q 0, 0 1− q, 1− q − r
B 0, 0 q, q q, q − r
AB 1− q − r, 1− q q − r, q max {q, 1− q} − r,max {q, 1− q} − r

The analog of the contagion threshold in the compatible contagion game setting is
a two-dimensional epidemic region Ω(G) consisting of all (q, r) pairs for which A can
become epidemic on G. Particularly, Immorlica et al. showed that the epidemic region
can be surprisingly complex, even for very simple graphs.

Furthermore, they showed that compatible contagion games satisfy a property very
similar to progressiveness. Specifically, Immorlica et al. [IKMW07] proved that if the
initial set of active nodes A1 is assumed to stick to action A, then no node ever switches
from action A to action B, or AB. Furthermore, no node ever switches from action AB

to action B. With these results in place, they subsequently proved that the existence of
a particular “blocking structure” in a graph G is sufficient to fully determine whether, or
not action A can become epidemic on G with parameters q and r.

An extension of this work was proposed recently by Oyama and Takahashi [OT10].
Explicitly, without adopting the restrictive assumption of a regular graph, they completely
characterized when does a trend spread contagiously from a finite subset of players to the
entire population in some network, and conversely, when a trend is never invaded by the
other trend in any network. Generically, they showed that at least one convention spreads
contagiously in some network, and for some range of payoff parameters, both conventions
each spread contagiously in respective networks.
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2.6 On Inferring Networks of Diffusion and Influence

Over the last decade a plethora of large scale data have emerged shedding some light
to the patterns of influence in social networks [2.7]. On the other hand, the actual un-
derlying networks over which the observed trends spread remained mostly unknown. A
step towards to the solution of this challenge was made by Gomez-Rodriguez et al. it their
recent work [RLK10, RLK10s]. There they developed a framework for tracing paths of
diffusion and influence through networks, and inferring the networks over which contagions
propagate. In particular, given the times when individuals adopt pieces of information, or
become “infected”, they can identify the optimal network that best explains the observed
infection times. Although they note that the the optimization problem is NP-hard to
solve exactly, they develop an efficient approximation algorithm, called NETINF, that in
practice gives near-optimal performance.

Therefore, their algorithm allows the study of several properties of real-world networks.
Particularly, Gomez-Rodriguez et al. [RLK10, RLK10s] address several interesting ques-
tions, such as “What is the network over which the information propagates on the Web?”,
“What is the global structure of such a network?”, “How do news media sites and blogs
interact?”, or “What roles do different sites play in the diffusion process and how influen-
tial are they?”. As a forward step to obtain an answer, they evaluated NETINF on a large
real data set of memes propagating across news websites and blogs. Then, they found
that the inferred network exhibits a core-periphery structure with mass media influencing
most of the blogosphere. Explicitly, they observed that clusters of sites related to similar
topics existed (politics, gossip, technology, etc.), while a few sites with social capital were
“acting” as interconnectors between these clusters, allowing, simultaneously, a potential
diffusion of information among the sites of these different clusters.

In the next section we encounter a more detailed discussion with regard to the dynamics
of information diffusion over social networks, based on some additional recent works over
collected empirical data.

2.7 On Empirical Data of the Dynamics of Viral Marketing

In this part, we present a collection of mostly empirical studies over large-scale data,
pertained to recommendation networks, the blogspace, and Internet chain-letters, that
target to unveil several kinds of cascades that arise frequently in real life as well as how
these kinds reflect the properties of their underlying network environment.

In the first place, Leskovec et al. [LSK06, LAH07] addressed these issues directly,
regarding information cascades; information cascades are phenomena in which individuals
adopt a new action, idea, or product due to influence by others. Particularly, Leskovec et
al. considered information cascades in the context of recommendations, and more explicitly,
they studied the patterns of cascading recommendations that arise in large social networks.

Thus, they investigated a large person-to-person recommendation network, by ana-
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lyzing an online retailer’s incentivised viral marketing program. The recommendation
network consisted of four million people who made sixteen million recommendations to
others over half a million products.

Then, they focused on the analysis of the topological aspects of the information cas-
cades formed. To this end, they enumerated and counted cascade subgraphs on large
directed graphs to disclose frequent patterns and they found that the distribution of cas-
cade sizes follows approximately a power-law; cascades tend to be shallow, but occasional
large bursts of propagation can occur. The cascade sub-patterns revealed to them mostly
small tree-like subgraphs; however, they observed differences in connectivity, density, and
the shape of cascades across product types. Indeed, the frequency of different cascade
subgraphs, they calculated, was not a simple consequence of differences in size or density;
rather, they found instances where denser subgraphs were more frequent than sparser
ones. They summarized these results at [LSK06], p. 8, Table 2; for example, for the class
of recommendation networks evolved over book products they identified 122,657 cascades,
of which only 959 were topologically different. Moreover, they stressed that only 213 cas-
cades between them occurred at least ten times. For the remaining classes of products
(DVDs, music, videos) they tabulated similar results. Moreover, they found that the most
common cascade represented the single recommendation; it accounted for 70% of all book
cascades, 86.4% of all music cascades, 74% of all video cascades, but just 12.8% of DVD
cascades, since DVD cascades, tended to be most densely linked.

Furthermore, Leskovec et al. [LMFGH07], working on the same data-set as previously
in [LSK06], also noted that all formed cascade networks were very sparsely linked. For ex-
ample, the typical size of the largest connected component that they calculated contained
fewer than 5% of the nodes at the end-time of data over all kinds of networks products.
Even more illustrative is Figure 3 ([LMFGH07], p. 13) where two typical product recom-
mendation networks are depicted: (a) a medical study guide, and (b) a Japanese graphic
novel. Explicitly, Figure 3(a) reveals the low connectivity of some of the examined net-
works as well as that the single recommendation costitutes the prevailing type. In Figure
(b) we also notice bursts of recommendations; some nodes recommend to many friends,
forming a star like pattern.

Finally, Leskovec et al. note that throughout the dataset they studied they observed
similar patterns: “most product recommendation networks consist of a large number of
small disconnected components where we do not observe cascades. Then, there is usually a
small number of relatively small components with recommendations successfully propagat-
ing. This observation is reflected in the heavy tailed distribution of cascade sizes ([LAH07],
p. 16 , Figure 6), having a power-law exponent close to 1 for DVDs in particular.”

From a rather different perspective, concerning how do blogs cite and influence each
other, Leskovec et al. in [LMFGH07], concluded again a series of similar results: the
most popular shapes of the cascade networks examined were the “stars”, that is, a single
blog-post that is cited by several others, where, additionally, none of the citing posts are
themselves cited. And more generally, they observed that most cascades followed tree-like
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shapes ([LMFGH07], p. 7, Figure 9, and p. 9, Figure 12).

Moreover, they made similar conclusions, as in [LSK06, LAH07] with regard to the
topological aspects of the cascades formed when certain posts became popular and were
linked by other posts. For example, they found that from a total of 2,092,418 cascades,
97% of them were trivial cascades (isolated posts), 1.8% were the smallest possible non-
trivial cascades, and only the remaining 1.2% of the cascades were topologically more
complex.

Furthermore, they showed that the diameter of the cascade networks analyzed in-
creased logarithmically with the size of the cascade ([LMFGH07], p. 9, Figure 12), taking,
thus, rather low values — less than 5 for the given dataset.

A last observation that Leskovec et al. made in [LMFGH07], strongly related to our
work, concerns the enumeration of the collisions of cascades ([LMFGH07], p. 9, Figure 13),
i.e., the cases where a particular post cites more than one different blog-post. They find
out that 98% of all nodes belong to a single cascade, and that the rest of the distribution
follows a power-law with exponent -2.2.

Finally, we discuss briefly the work of Liben-Nowell and Kleinberg [LK08] in order to
illustrate that the kind of approach taken to analyze a particular network can yield rather
different results concerning the structure of the emerged cascades, regardless of the actual
structure of the underlying network. Particularly Liben-Nowell and Kleinberg traced
information-spreading processes at a person-by-person level using methods to reconstruct
the propagation of massively circulated Internet-chain letters. Surprisingly, they found
that rather than fanning out widely, reaching many people in very few steps according to
the “small-world” principles, the progress of these chain letters proceeded in a narrow but
very deep tree-like pattern, continuing for several hundred steps. Explicitly, they derived
a tree that had 18,119 nodes, of which 17,079 (94.26%) had exactly 1 child. Additionally,
its median node depth was 288 and its the width 82.

This observation motivated Liben-Nowell and Kleinberg to suggest a new and more
complex picture for the spread of this kind of information through a social network. Rather
than assuming that the letter spreads in fixed unit time steps, they modeled each recipient
as waiting a length of time τ before acting on the message, where τ is distributed according
to a density function (related empirical observations have been presented extensively in
the previously discussed work of Leskovec et al. [LAH07] over the case of recommendation
networks). Then, they showed that this asynchronous pattern of response has a ““seri-
alizing”” effect in networks with large clustering coefficient [2.1.3]: “If the neighbors of a
forwarding node are mutually connected, then they will forward the letter to each other
as they act on it in order, producing a single long list with all of their names rather than
many distinct shorter lists, each containing one of their names.” In the observable tree,
they further argued, this change would tend to produce deeper “runs”” of nodes in which
each node has exactly one child — precisely the structure that they had actually observed.
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2.8 Related Work

In this section we summarize some of the studies on competitive information diffusion
over social networks.

Competitive information diffusion is encountered when there are at least two
competing parties, external to the involved network, that aim to maximize their influence
to the network’s population; i.e., each party seeks to optimally promote its product (trend)
over the network — by “seeding” the network with initial adoptions of its product — even
at the expense of the rest of the parties. We note that in order to further differentiate
these parties from the individuals within the involved social network, we will refer to them
as external players.

Next, we begin with some of the recent studies that analyze this competing behavior
of the external players using a Stackelberg-game [S34] framework. Afterwards, we continue
with those studies that use a simultaneous-game approach. Particularly, and on the latter
subject, we overview the only existing works on the subject — to the best of our knowledge
— of Alon et al. [AFPT10], and in less detail of Goyal and Kearns [GK12].

2.8.1 External players: Stackelberg Game Approach

Morris [M00], as [IKMW07], and the recent [AM11, SA12], proposed several conditions
for a newly introduced product (trend) A in a social network, adopted initially by a finite
set S of individuals, to eventually spread to the whole network’s population. For the
following, let us assume that the selection S constitutes the strategy of an external player
ps the seeks to promote product A over the network. Moreover, let us consider that
the preexisting product B has been catholicly spread due to a previous act of another
also hypothetical external player — a first-mover pf . Under this framework, we can
define a sequential two-player game where ps can play only a sufficient amount of time
after pf . Evidently, this class of games shares an essential characteristic with Stackelberg
games [S34]: the sequentiality in playing.

In the same manner we can also interpret the works of Kempe et al. [KKT03], and
Borodin et al. [BFO10] for example. In their studies they examined the Influence Maxi-
mization Problem [2.4], where over a social network an external player seeks to maximize
its expected influence, given that initially he can “infects” a set of k individuals with a new
product that she wants to promote. Therefore, and similarly to the previous discussion,
this player corresponds to the second-mover ps, while the hypothetical first-mover pf is
responsible for the preexisting product over the whole population.

On the other hand, actual instances of Stackelberg games were introduced with the re-
cent studies of Carnes et al. [CNWZ07], Bharathi et al. [BKS07], and Kostka et al. [KOW08].
Carnes et al. studied the strategies of a company that wishes to invade an existing market
and persuade people to buy their product. To this end, they defined a Stackelberg game
where the first-mover player chooses a strategy in the first stage, which takes into account
the likely reaction of the second-mover players (followers). In the second stage, the fol-
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lowers choose their own strategies having observed the first-mover’s decision. Carnes et
al. used models similar to the ones proposed in [KKT03] and showed that the second player
faces an NP-hard problem if aiming at selecting an optimal strategy. Furthermore, the
authors proved that a greedy hill-climbing algorithm leads to a (1−1/e−ε)-approximation.

Bharathi et al. [BKS07] introduced roughly the same model, but in the context of com-
peting rumors, and they also proved that there exists an efficient approximation algorithm
for the second-mover player. Moreover, they presented an FPTAS for the single-player
problem over trees.

Finally, under the model of Kostka et al. [KOW08] two players select a disjoint subset of
nodes as initiators of the rumor propagation, seeking to maximize the number of persuaded
nodes. They showed that computing the optimal strategy for both the first-mover and the
second-mover is NP-complete, even in a most restricted model. Moreover, they proved
that determining an approximate solution for the first player is NP-complete as well.
Additionally, the authors analyzed several heuristics and showed that being the first to
decide is not always an advantage; namely, networks exist where the second player can
convince more nodes than the first, regardless of the first player”s decision.

2.8.2 External players: Simultaneous Game Approach

To the best of our knowledge, the work of Alon et al. [AFPT10] was the first to deal
with the incentives of interested parties outside a social network under the framework of
a simultaneous non-cooperative game. In particular, they supposed that several external
players/firms there exist that strive to advertise their competing products over a social
network using viral marketing. To this end, they assumed that all the firms target simulta-
neously at an initial step a small subset of individuals each, in the hope that subsequently
the rumor about their products will spread throughout the network. Additionally, they
assumed that an individual within the network that adopts a product cannot adopt an-
other, and hence the campaign of one firm can negatively affect the success of the others.
As a result, a competitive game-theoretic setting emerges.

Under this setting, and under the model of information diffusion over social net-
works they introduced, they studied the relation between the diameter of the involved
network and the existence of pure Nash equilibria of the corresponding game. Particu-
larly, they showed that if the diameter of a modified version of the original network (see
errata [AFPT11], [THS12]) is at most two, then an equilibrium exists and can be found in
polynomial time, whereas if the diameter is greater than two, then an equilibrium is not
always guaranteed to exist.

We now present in detail the model of information diffusion over social networks that
Alon et al. used in [AFPT10]. In the first place, the underlying social network is repre-
sented by an undirected graph Gud = (V,E), where the vertices model the individuals of
the network, and the edges the (assumed mutual) bonds between them. Furthermore, the
set of the external players/firms, is denoted as M = {1, . . . ,m}, m ∈ Z>0. On the other
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hand, the diffusion process unfolds as follows: There are n + 2 colors: a color for each
firm i ∈ M, as well as the white and gray. Initially, at time t = 1, some of the vertices
are colored in the colors of M, while the others are colored white. Moreover, at time
t+ 1 each white vertex that has neighbors colored in color i, but does not have neighbors
colored in color j, for any j ∈ M \ {i}, is colored in color i. Additionally, a white vertex
that has two, or more neighbors colored by two, or more distinct colors (i, j) ∈M, i 6= jm
— i.e. faces a dilemma between two different products —, is colored gray. In other words,
Alon et al. assumed that if two firms compete for an individual at the same time, they
“cancel out”, and the user is removed from the game. Finally, the process continues until
it reaches a fixed point, that is, all the remaining white vertices are unreachable due to
the colored gray vertices.

Now, a game Γ = (Gud,M) is induced by a graph Gud, and the set of agents M.
The strategy space of each agent is the set of vertices V in the graph, that is, each agent
i selects a single node that is colored in color i at time t = 1. At this point Alon et
al. [AFPT10] noted that if two, or more firms select the same vertex at time t = 1, then
that vertex is colored automatically gray. Furthermore, Alon et al. defined as a strategy
profile a vector x = (x1, . . . , xm) ∈ V m, where xi ∈ V , i ∈ {1, . . . , |V |}, is the initial vertex
selected by agent i. Also, they considered x−i := (x1, . . . , xi−1, xi+1, . . . , xm).

Moreover, given a strategy profile x ∈ V m, the utility of agent i ∈ M, denoted ui(x),
is the number of nodes that are colored in color i when the diffusion process terminates.
Further, a strategy profile x is a pure strategy Nash equilibrium (PSNE) of the game Γ if
an agent cannot benefit from unilaterally deviating to a different strategy, i.e., if for every
i ∈M and x′i ∈ V it holds that ui(x′i,x−i) ≤ ui(x).

Finally, concerning the definition of the diameter of an undirected graph: Given an
undirected graph Gud, and a pair of nodes (u, v) ∈ V 2, let dmin(u, v) be the length of the
shortest path between u and v (in terms of the number of edges). Then, the diameter
of the graph Gud, denoted DM(Gud), is the maximum shortest path between any pair of
vertices, i.e., DM(Gud) = max(u,v)∈V 2dmin(u, v).

Now we restate the main results of Alon et al. [AFPT10]. The first demonstrates
that for underlying graphs with small diameter — and under certain modifications of the
involved graph — the existence of a PSNE is guaranteed. On the other hand, the second
illustrates that for greater diameters a PSNE may not exist. Explicitly:

Theorem ([AFPT10], errata [AFPT11, THS12]). Let Gud be an undirected graph, and
let M = {1, . . . ,m} such that DM(Gud′) ≤ 2, for every Gud′ that is obtained from Gud by
removing m− 1 vertices along with their neighbors. Then the game Γ = (Gud,M) admits
a Nash equilibrium, which can be found in polynomial time.

Theorem ([AFPT10]). LetM = {1, 2}. Then, there exists a graph Gud with DM(Gud) =
3 such that the game Γ = (Gud,M) does not admit a Nash equilibrium.

This latter theorem can be easily extended to any larger number of agents, or to any
(finite, or infinite) diameter greater than three, thus coinciding with the general result we
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have previously described.
Below, we turn our attention to the recent work of Goyal and Kearns [GK12]. Explic-

itly, they analyzed a simultaneous game where two firms simultaneously choose to allocate
their resources on subsets of a consumers’ social network, firstly, in order to “seed” the
network with initial adoptions, next, to trigger a competitive diffusion process, and finally,
to eventually each maximize — even at the expense of the other — the total number of
consumers that will adopt its product. To this end, and similarly to Alon et al. [AFPT10],
they considered the payoffs to the firms as the eventual number of adoptions of their
product through a competitive stochastic diffusion process in the network. Then, they
identified a general property of the adoption dynamics for which the Price of Anarchy is
uniformly bounded above, across all equilibria and networks. They also showed that if this
property is even slightly violated, the Price of Anarchy can be unbounded, thus yielding
sharp threshold behavior for a broad class of dynamics.

They also introduced a new notion, the Price of Budgets, that measures the extent that
imbalances in player budgets can be amplified at equilibrium. Then, they again identified
a general property of the adoption dynamics for which the (pure) Price of Budgets is
uniformly bounded above, across all equilibria and all networks. Finally, they showed that
even a slight departure from this property can lead to unbounded Price of Budgets, again
yielding sharp threshold behavior for a broad class of dynamics.





Chapter 3

Contributions

Given a number of competitive firms that have budgets to “sow” the initial adoption
of their products within a static social network of consumers, we define a non-cooperative
game, and we analyze several of its characteristics. To this end, we consider the strategy
of each firm as the initial set of individuals that the firm targets in order to “infect” with
its product. Explicitly, and in contrast to Alon et al. [AFPT10], we assume that each firm
can initially infect k ∈ Z>0 nodes, instead of only one. Additionally, and similarly to Alon
et al. [AFPT10], we define the payoffs of the firms as the eventual number of adoptions of
their product that are “yielded” through a competitive diffusion process over the network.
Further, we consider this diffusion process as a sequence of deterministic and irreversible
local interactions between the consumers that have already adopted a particular product
and their friends/neighbors that have adopted still none. Particularly, we consider an
enhanced to Alon et al. [AFPT10] scheme, based on the widely used threshold model
(LTM) [G78]. Moreover, according to this scheme, instead of “coloring” gray the nodes
that are on a dilemma between two or more products, as in Alon et al. [AFPT10], we
assume that the individuals within the social network share over the involved products a
common order of preferences R≺; i.e., the distinctive quality of each of the products —
which is assumed to exist — is perceived the same by each individual, as, for example,
Morris [M00], and Immorlica et al. [IKMW07] similarly assume. Therefore, we solve such
dilemmas with regard to R≺, which is clearly a deterministic criterion — recall at this
point the also deterministic nature of the classic LTM. Finally, we note that in several of
our results the use of the threshold model LTM, as well as, of the criterion R≺, is done
without loss of generality.

Under this general framework, our work unfolds into four main parts. In the first part,
we illustrate that games over social networks with even simple structure may possess no
pure strategy Nash equilibria (PSNE). Next, we propose necessary and sufficient conditions
for the existence of a PSNE, along with some further necessary conditions. Moreover, we
prove that it is co-NP-complete to decide whether a PSNE exists given a particular game.
Afterwards, we establish that over a certain class of social networks, with appropriate
underlying structure, all possible game matrices are realizable, regarding the improvement
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paths that they induce. Additionally, we prove that the result holds under “almost” any
consistent in and out-degree distributions that may characterize the structure of the social
network.

In the second part, we turn our attention to 2-player games, and we propose necessary
conditions for the existence of a generalized ordinal potential, conditions that involve the
structure of the social network. We continue with a set of sufficient conditions, and we
define a certain class of games where these conditions are also necessary. Then, further
classes of games with a generalized ordinal potential are described.

In the third part, and again for the 2-player game, we move on to approximate ε-
generalized ordinal potentials, as a novel method of measuring of the “instability” of the
games in question — the larger the parameter ε is, the more “unstable” the game can
be characterized. Particularly, we prove that each game admits an ε-generalized ordinal
potential, where ε equals the maximum value of the diffusion collision factor of the involved
social network. Further, for the realistic special case of games with diffusion depth one,
we provide their complete characterization. We also prove that they always admit a
1-generalized ordinal potential. On the other hand, we provide tight examples to our
approximation results for all the possible cases of diffusion depth.

Finally, in the forth part, regarding the Price of Anarchy (PoA) and the Price of
Stability (PoS) of these games, and for any number of players, we show that the PoA may
obtain its worst value, even if PoS obtains its possible best. We end by illustrating that
when more than two firms are involved in the game, then a PSNE can exist where the
firm associated with the product of the “best” quality does not receive the greatest payoff
among the involved players.

Summarizing, in this work, under a general, realistic and deterministic framework,
and using novel methods, we unveil several features inextricably intertwined with vari-
ous structural characteristics of the underlying social networks that to the best of our
knowledge have met no previous investigation. Therefore, with this study we also first
target to motivate further empirical and experimental research on a series of relevant and
essential questions of interest; empirical research that can form a feedback loop that will
inevitably drive theoretical approaches on even more realistic models of social networks,
local interaction schemes, and tie-breaking criteria. For a detailed discussion: [8].



Chapter 4

Preliminaries

We define a non-cooperative game between competitive firms that simultaneously al-
locate their resources on subsets of consumers within a social network; firstly in order to
“seed” the network with initial adoptions, next, to trigger a competitive diffusion process,
and finally, to eventually each maximize — even at the expense of the others — the total
number of consumers that will adopt its product.

4.1 Social Networks

The underlying structure of the social network is assumed static, and is modeled by
a fixed directed graph G = (V,E) with no parallel edges and no self-loops. We denote
the cardinality of V as |V |— and similarly for any other involved set. We also assume
|V |, |E| < ∞. Furthermore, each node v ∈ V represents an individual within the social
network, while each directed edge (u, v) ∈ E represents that v can be influenced by u

over a set C of m available products (trends), where m ∈ Z>0, and m < ∞. To each
such product we assign a unique color, such that C = {c1, . . . , cm}. Throughout this
work, we shall use the terms product and color interchangeably. Moreover, we assume
that m firms exist, each one associated with a different color from C. We denote the
set of firms by M = {1, . . . ,m}. Furthermore, we shall use the terms firm and external
player interchangeably. Also, we shall call the firm associated with the color c, simply,
firm c. Further, the colors are assumed incompatible with each other, and no node that
has already adopted one will adopt any other. Additionally, as with most of the literature,
we assume that all adoption are final; no node that has adopted a particular color shall
later alter its decision.

Moreover, the neighbors of v ∈ V is the set {u ∈ V |(u, v) ∈ E} — i.e., the set of
nodes that can influence v. Also, we denote as doutv (dinv ) its out-degree (in-degree). How
the influence is exerted between any two neighbor-nodes is described by a local interaction
scheme.

Definition 1 (Local Interaction Scheme LIS). Given a directed graph G = (V,E),
and any node v ∈ V , a local interaction scheme (LIS) defines how v can be influenced
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by any subset of its neighbors over an available set of colors C.

A particular example of a LIS is the linear threshold model (LTM) [G78, S78], [2.3.2]:
firstly, it describes that each individual within a social network can be influenced by his
neighbors over the single color in the market, color that at least some of them have already
adopted, and which he has still not. Additionally, it defines how this influence is quantified
through the node’s threshold θv, and the neighbors’ edge weights wuv, ∀u ∈ V such that
(u, v) ∈ E.

Additionally, whenever m ≥ 2 — i.e., |C| ≥ 2 — we shall call the diffusion process
concerning the involved m competitive products as competitive diffusion process.

When a node adopts a color, we shall refer to it as colored. Also, we shall call a node
white if it is still uncolored.

We assume that at an initial step t = 0 each firm i ∈ M targets a subset S ⊆ V

of at most k ∈ Z>0 nodes, where k < |V | — and in practice k is much smaller than
|V |. Specifically, S constitutes a strategy for firm i. We note that throughout this
work, we shall use the phrases “strategy S” and “subset S” interchangeably. Furthermore,
we denote as S(k) ≡ {S : |S| = k} the set of available strategies, which is assumed
the same for each firm. We shall refer to parameter k as the maximum strategies’
cardinality. Additionally, we call as pure strategy profile the vector s = (S1, . . . , Sm) ∈
Sm, where Si corresponds to the strategy played by player i ∈ M. Also, we consider
s−i := {S1, . . . , Si−1, Si+1, . . . , Sm}. Moreover, we define the set sdj of strategy profiles of
disjoint strategies as sdj = {s|s ∈ Sm,∀(S, S′) ∈ s, S ∩ S′ 6= ∅}. We note at this point
that under the appropriate context, we shall often consider the set of available strategies S
as {Si}i∈{1,...,|S|} — thus, under this notation, we shall use strategy Si as the “i-th strategy
within S”, and not as the “strategy of player i ∈M”.

Moreover, we refer to step t = 0 as the initiation step, and to the eventually colored
nodes as initiated nodes. On the other hand, we shall call those nodes that adopt a
color at any later step t ≥ 1 — i.e., during the competitive diffusion process — infected.
Further, we shall say that a white node faces a dilemma at a particular step t, t ≥ 0, if
it can adopt at t more than one color.

Specifically, and to completely define the game, we use two tie-breaking rules over such
dilemmas: One at the initiation step, and one during the competitive diffusion process.
At the initiation step, two, or more external players may target to color overlapping
subsets of nodes, i.e., given a pair of firms ∃(i, j) ∈ M2, i 6= j, and their corresponding
strategies (Si, Sj) ∈ S2, it may happen Si ∩ Sj 6= ∅. In other words, each node in Si ∩ Sj
faces a dilemma between the colors ci, cj . Thus, a tie-breaking criterion TBC1, that
resolves such dilemmas, should assumed; for example, TBC1 may capture the actual order
of preferences of the involved nodes over the set C of available colors.

Similarly, during the competitive diffusion process, and at a particular step t ≥ 1, a
white node v ∈ V may exists that faces a dilemma between two, or more colors, due to its
neighbors earlier adoptions. Specifically, we assume that at step t a white node decides if
it shall adopt a color by considering only the colors that its neighbors have in step t− 1.
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At this point, we stress that each diffusion step t is assumed to have zero duration, i.e.,
to be instantaneous. Therefore, to solve such dilemmas, an additional tie-breaking
criterion TBC2 should be considered, similar, or same to TBC1. Such a criterion we have
tacitly assumed that was incorporated in our previous Definition 1 of a LIS, whenever
m ≥ 2.

A particular instance of the TBC1, TBC2 criteria, that we shall often invoke in our work,
is the following: All the individuals within the social network share a common order of
preference R≺ ≡ c1 � . . . � cm over the available products C — i.e., all the individuals
solve their dilemmas between any involved products by adopting the one that is most
preferred with regard to R≺. Therefore, under R≺, we shall refer to the product c1 as the
product with the highest, (or best) quality.

Next, we formal define a social network.

Definition 2 (Social Network). A social network N is defined through the tuple
(G, LIS, TBC1, TBC2).

4.2 Strategic Games

A game Γ ≡ (N ,M, k) is induced by a social network N and the set of firms M.
Given a strategy profile s ∈ Sm, the utility(/payoff) of firm i ∈M, denoted by ui(s), is
the number of nodes that have been colored in ci by the end of the competitive diffusion
process. We note that whenever we consider the 2-player game —M = {1, 2} — we shall
alternatively denote the players’ utilities, given a strategy profile s = (S1, S2) ∈ S, as u12

i ,
instead of ui(S1, S2), ∀i ∈M = {1, 2}. Similarly, whenever we consider the set of available
strategies S as {Sx}x∈{1,...,|S|}, we shall often denote the players’ utilities, given a strategy
profile s = (Sx, Sy) ∈ S2, as uxyi , instead of ui(Sx, Sy), ∀i ∈M = {1, 2}.

Next, we denote as Π(Γ) the associated game matrix. Also, for the 2-player game, we
denote the game matrix restriction over the sets of strategies SA, SB ⊆ S as Π(SA, SB).

Furthermore, given any firm i ∈ M, any pair of its available strategies (Si, S′i) ∈ S,
and any joint strategy s−i ∈ Sm−1 of its opponents, we call Si a better response to
s−i with regard to S′i if ui(Si, s−i) ≥ ui(S′i, s−i). Similarly, we call Si a best response if
∀S′i ∈ S it is ui(Si, s−i) ≥ ui(S′i, s−i).

Additionally, we call a pure strategy profile s a pure strategy Nash equilibrium
(PSNE) of game Γ if no agent can benefit from unilaterally deviating to a different strat-
egy, i.e., if for every i ∈ M and S′i ∈ S it holds that ui(S′i, s−i) ≤ ui(s). Similarly, a
strategy profile s is an ε-PSNE of Γ if no agent can benefit more than ε from unilater-
ally deviating to a different strategy, i.e., if for every i ∈ M and S′i ∈ S it holds that
ui(S′i, s−i) ≤ ui(s) + ε. Moreover, as NE(Γ) we denote the set of existing PSNEs of Γ, and
as as ε-NE(Γ) its set of ε-PSNEs. We note that in this work we do not deal with mixed
strategy Nash equilibria.

We continue with the formal definitions of the generalized ordinal potential [MS96],
and ε-generalized ordinal potential [CS11]. A function P : Sm 7→ R is a generalized
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ordinal potential for Γ if ∀i ∈M, ∀s−i ∈ Sm−1, and ∀x, z ∈ S,

ui(x, s−i) > ui(z, s−i)⇒ P (x, s−i) > P (z, s−i).

Similarly, a function P : Sm 7→ R is an ε-generalized ordinal potential for Γ if ∀i ∈M,
∀s−i ∈ Sm−1, and ∀x, z ∈ S,

ui(x, s−i) > ui(z, s−i) + ε⇒ P (x, s−i) > P (z, s−i).

We shall refer to a game Γ that admits an ε-generalized ordinal potential as ε-unstable.
Evidently, a 0-unstable game Γ admits a generalized ordinal potential. We note, however,
that in order to capture the actual instability of the involved games, we should also consider
the relative value of ε with regard to the typical value of the utilities of the players in these
games. Below, an illustrative example follows:

Example. Consider the game matrices of two 2-player, 2-strategy games, as in Table 4.3.
We call the game associated with Table 4.4a L, and the one with Table 4.4b R.

It can be verified that both games do not have any PSNE, but they both have two
1-PSNEs: the strategy profiles (A,B), and (B,A). Moreover, they both admit the same
1-generalized ordinal potential. Nevertheless, observe that the game R is far more stable
than game L is in the following sense: In game R, in order for the 1-PSNEs to exist,
Player 1 must be compromised with a decrease to his payoff of only 0.1%. On the other
hand, in game L, Player 1 must be compromised with a decrease of 50%.

Therefore, we could redefine an ε-unstable 2-player game as ε̄-unstable, where

ε̄ ≡ ε

maxs∈ε-NE
u1(s)+u2(s)

2
.

Evidently, an (ε̄ = 0)-unstable game Γ admits a generalized ordinal potential, as an
(ε = 0)-unstable does.

A B

A 2,0 1,1
B 1,1 2,0

(a) Game matrix of
game L.

A B

A 1000,0 999,999
B 999,999 1000,0

(b) Game matrix of game R.

Table 4.3: The game matrices of two 2-player, 2-
strategy games that both admit the same 1-generalized
ordinal potential.

Thereby, under this more concise definition for our case, the game R is 1/999-unstable
— i.e., it is essentially 0-unstable —, whereas the game L is 1-unstable.

Moreover, we shall call path, in the strategy space Sm, any sequence (x1,x2, . . . ,xk, . . .)
of strategy profiles xk ∈ Sm such that for all k = 1, 2, . . . the strategy combinations xk
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and xk+1 differ in exactly one coordinate, say the i(k)-th. Then, a path is called an
improvement path if ui(k)(xk) < ui(k)(xk+1), ∀k = 1, 2, . . ., and it is called a best
response improvement path if additionally ui(k)(xk+1) = maxx∈Sui(k)(x, (xk+1)−i(k)),
∀k = 1, 2, . . .. Moreover, a finite path (x1, . . . ,xn), n ∈ Z>1, is called an improvement
cycle if it is an improvement path, also x1 = xn, and ui(k)(xk) < ui(k)(xk+1) for some
k ∈ {1, . . . , n− 1}.

Next, for any 2-player game, i.e.,M{1, 2}, we define the strictly component-wise dom-
inance between any two sets of strategies X,Y ⊆ S.

Definition 3 (Strictly component-wise dominance). For any 2-player game, given
two sets of strategies X,Y ⊆ S, we say that X strictly compo- nent-wise dominates
Y , if at least one of the following holds:

i For all strategy profiles (a, b) ∈ Y × (Y ∪X), there exists x ∈ X such that u1(x, b) >
u1(a, b), and for all strategy profiles (a, b) ∈ X × Y , there exists x ∈ X such that
u2(a, x) > u2(a, b).

ii For all strategy profiles (a, b) ∈ (Y ∪X)× Y , there exists y ∈ X such that u2(a, y) >
u1(a, b), and for all strategy profiles (a, b) ∈ Y × X, there exists x ∈ X such that
u1(x, b) > u1(a, b).

In the following, given a game Γ(N ,M, k), we denote the set of strictly component-
wise undominated strategies as SD.

Moreover, given a strategy profile s, we call the sum SW (s) =
∑m
j=1 uj(s) the social

welfare of s. When the social welfare of s is maximal, we call s a social optimum.
Furthermore, the price of anarchy [KP99], and the price of stability [ADKTWR04] are
defined as follows.

Definition 4 (Price of anarchy). Given a finite game that has a Nash equilibrium, its
price of anarchy (PoA) is the ratio SW (s)/SW (s′) where s is a social optimum, and s′

is a Nash equilibrium with the lowest social welfare.

Definition 5 (Price of stability). Given a finite game that has a Nash equilibrium, its
price of stability (PoS) is the ratio SW (s)/SW (s′) where s is a social optimum, and s′

is a Nash equilibrium with the highest social welfare.

In the rest of this section, we introduce some further essential definitions. In the
first place, given a firm in M that plays a strategy S ∈ S, we consider in the following
definition the hypothetical situation where no other firm participates in the game — i.e.,
we assume that no other strategy is played over the involved social network by any other
player in M \ {i}. Then, we denote as dS ∈ Z≥0 the last time step of the diffusion
process initiated by strategy S. Therefore, if dS = 1, the associated diffusion process
has only one step. We note that in general dS is upper-bounded by the diffusion depth D
[Definition 7]. Next, we define the ideal spread of S at time step t of the diffusion process,
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the ideal cumulative spread of S at time step t of the diffusion process, as well as, the ideal
cumulative spread of S.

Definition 6. i. Assume that only one player from M participates in the game, and
let S be one of its available strategies. We define as ideal spread of S at time
step t of the diffusion process, denoted by ItS , the set of nodes in V that adopt the
associated with this player color under strategy S, and at the particular time step t

only. Further, we assume I0
S := S, as well as, ItS := ∅, whenever t ∈ {dS + 1, . . . , D}.

ii. Assume that only one player from M participates in the game, and let S be one
of its available strategies. We define as ideal cumulative spread of S at time
step t of the diffusion process, denoted by Ht

S , the set of nodes in V that adopt the
associated with this player color under strategy S, and until the particular time step
t, i.e., Ht

S ≡
⋃t
i=0 I

i
S .

iii. Define as ideal cumulative spread of S, denoted by HS , the set of nodes in V

that will eventually adopt the associated with player i color under strategy S — i.e.,
HS ≡ HdS

S .

For our purposes, given a strategy Si ∈ S, where i ∈ {1, . . . , |S|}, we shall alternatively
denote Iti := ItSi , H

t
i := Ht

Si
, and Hi := HSi .

Furthermore, we set |Hmax| := maxS∈S {|HS |}.
Now, we shall say that a set S′ ⊆ V is reachable from a strategy S ∈ S if and only if

S′ ⊆ HS .
Additionally, given a social network N , a strategy S ∈ S, and a node u ∈ V , we define

the diffusion distance of u from the associated subset S as

d̂(S, u) = argmint∈Z≥0

{
u ⊆ Ht

S

}
.

Further, if u is not reachable from S, we assume d̂(S, u) = ∞. Evidently, the diffusion
distance is a non-symmetric relation.

Finally, we define the diffusion depth of a game Γ as the maximum number of steps
that the competitive diffusion may take place, given any strategy profile s ∈ Sm.

Definition 7 (Diffusion depth). The diffusion depth D(Γ) of a game Γ = (N ,M, k)
is defined as D ≡ maxS∈S,u∈V d̂(S, u).

Observe that the diffusion depth can take values either lower, equal, or greater than
the diameter of underlying graph G.
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Existence: Examples and
Complexity

For simplicity, we shall mainly consider the games (N = (G, LIS = LTM, TBC1 =
R≺, TBC2 = R≺),M = {1, 2} , k), unless otherwise specified.

We first present several examples of games without a pure strategy Nash equilibrium
(PSNE). Then, we consider a game that although it has a PSNE, it does not admit
a generalized ordinal potential. Afterwards, we repeat this discussion, but for games
restricted over the set sdj of strategy profiles of disjoint strategies. Finally, we prove
that deciding whether the game (N = (G, LIS = LTM, TBC1, TBC2),M, k) has a PSNE is
coNP-hard.

5.1 Examples of games with no PSNE

Example 1 (Cycle). Consider the social network in Figure 5.1: As ni, ∀i ∈ {1, . . . , |V |},
we denote single nodes. Further, we assume that all of them have threshold 1. Moreover,
the edges (ni, nj), where i, j ∈ {1, . . . , |V |}, are annotated with their corresponding weight
with regard to the LTM.

n1 n2 n3 . . . n|V |−1 n|V |1 // 1 // 1 // 1 // 1 //

1

jj

Figure 5.1: A social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) with underlying structure a cycle.

Next, let k = 1. Then, the involved game matrix is as in Table 5.1. Therefore, no
PSNE exists.

Example 2 (Acyclic chain). Consider the social network in Figure 5.2: As ni, ∀i ∈
{1, . . . , |V |}, we denote single nodes. Further, we assume that all of them have thresh-

45
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n1 n2 · · · n|V |−1 n|V |

n1 |V |, 0 1, |V | − 1 · · · |V | − 2, 2 |V | − 1, 1
n2 |V | − 1, 1 |V |, 0 · · · |V | − 3, 3 |V | − 2, 2
...

...
... . . . ...

...
n|V |−1 2, |V | − 2 3, |V | − 3 · · · |V |, 0 1, |V | − 1
n|V | 1, |V | − 1 2, |V | − 2 · · · |V | − 1, 1 |V |, 0

Table 5.1: The game matrix for the game (N ,M, k = 1), where the social network N is as in Figure 5.2.

old 1. Moreover, the edges (ni, nj), where i, j ∈ {1, . . . , |V |}, are annotated with their
corresponding weight with regard to the LTM.

n1 n2 n3 . . . n|V |−1 n|V |1 // 1 // 1 // 1 // 1 //

Figure 5.2: A social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) with underlying structure an acyclic
chain.

Next, let k = 1. Then, from the involved game matrix it can be verified that no PSNE
exists.

Example 3 (Clique). Consider the social network in Figure 5.3: As ni, ∀i ∈ {1, . . . , 3},
we denote single nodes. Further, we assume that all of them have threshold 1/2. Moreover,
the edges (ni, nj), where i, j ∈ {1, . . . , 3}, are annotated with their corresponding weight
with regard to the LTM.

n1

n2

n3
1/2 ++

1/2

99

1/2
yy

1/2

��

1/2
kk

1/2

WW

Figure 5.3: A social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) with underlying structure a clique.

Next, let k = 1. Then, from the involved game matrix it can be verified that no PSNE
exists.

We note that the same result holds for any number of nodes |V | ∈ Z≥3 that form a
clique, and have thresholds and edge-weights equal to 1/(|V | − 1).

Example 4 (Equitable graph). Consider the social network in Figure 5.4: As ni,
∀i ∈ {1, . . . , 3}, we denote single nodes. Further, we assume that all of them have thresh-
old 1/2. Moreover, the edges (ni, nj), where i, j ∈ {1, . . . , 3}, are annotated with their
corresponding weight with regard to the LTM.
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Next, let k = 2: Therefore, there exist six available strategies, the {n1n2, n1n3, n1n4,

n2n3, n2n4, n3n4}, where, for example, strategy n1n2 corresponds to the set (n1, n2). Then,
the involved game matrix is as in Table 5.2. Evidently, no PSNE exists.

n1n2 n1n3 n1n4 n2n3 n2n4 n3n4

n1n2 4,0 3,1 3,1 3,1 3,1 2,2
n1n3 2,1 2,0 2,1 2,1 2,2 2,1
n1n4 2,1 2,1 2,0 2,2 2,1 2,1
n2n3 2,1 2,1 2,2 2,0 2,1 2,1
n2n4 2,1 2,2 2,1 2,1 2,0 2,1
n3n4 2,2 2,1 2,1 3,1 3,1 3,0

Table 5.2: The game matrix for the game (N ,M, k = 2), where the social network N is as in Figure 5.4.

Next, we consider a game that although it has a PSNE, it does not admit a generalized
ordinal potential.

Example 5. Consider the social network in Figure 5.5: As ni, ∀i ∈ {1, . . . , 9}, we denote
single nodes. Further, we assume that all of them have threshold 1, except of node n9 that
has 1/2. Moreover, the edges (ni, nj), where i, j ∈ {1, . . . , 9}, are annotated with their
corresponding weight with regard to the LTM.

Next, let k = 1. Then, the involved game matrix, after eliminating the strictly domi-
nated strategies {n5, . . . , n9}, is as in Table 5.3. It can be verified that the strategy profile
(n1, n2) constitutes a PSNE. On the other hand, the following improvement cycle exists:
(n1, n1) → (n1, n4) → (n2, n4) → (n2, n1) → (n1, n1). Note that this path is also a best
response improvement path.

5.1.1 Examples of restricted games over sdj with no PSNE

Next, we consider similar examples but for games (N = (G, LIS = LTM, TBC1 =
R≺, TBC2 = R≺),M = {1, 2} , k) restricted over the set sdj of strategy profiles of dis-
joint strategies. To this end, we assume that ∀s /∈ sdj it is ui(s) = 0, ∀i ∈M.

n1 n3

n2 n4

1/4
33

1/4
ss

1/4
��

1/4

__

1/4

??

1/4
//

Figure 5.4: A social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) with underlying structure an
equitable graph.
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n1 n3 n2

n4 n5 n6n7

n8 n9

1
��

1
��

1/2

��

1
��

1
��

1
��

1/2
��

Figure 5.5: The social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) of Example 5.

n1 n2 n3 n4

n1 4,0 4,3 3,3 1,3
n2 3,4 3,0 3,3 3,3
n3 3,3 3,3 3,0 3,2
n4 3,1 3,3 3,2 3,0

Table 5.3: The game matrix, after eliminating the strictly dominated strategies {n5, . . . , n9}, for the
game (N ,M, k = 1), where the social network N is as in Figure 5.5.

Example 6. Consider the same social network in Figure 5.2. Next, let k = 1. Then, the
involved game matrix is as in Table 5.4. Evidently, no PSNE exists.

n1 n2 · · · n|V |−1 n|V |

n1 0, 0 1, |V | − 1 · · · |V | − 2, 2 |V | − 1, 1
n2 |V | − 1, 1 0, 0 · · · |V | − 3, 3 |V | − 2, 2
...

...
... . . . ...

...
n|V |−1 2, |V | − 2 3, |V | − 3 · · · 0, 0 1, |V | − 1
n|V | 1, |V | − 1 2, |V | − 2 · · · |V | − 1, 1 0, 0

Table 5.4: The game matrix for the game (N ,M, k = 1), where the social network N is as in Figure 5.2.

Next, we consider a game over sdj that although it has a PSNE, it does not admit a
generalized ordinal potential.

Example 7. Consider the social network in Figure 5.6: As ni, ∀i ∈ {1, . . . , 5}, we denote
single nodes. Further, we assume that all of them have threshold 1/2. Moreover, the
edges (ni, nj), where i, j ∈ {1, . . . , 5}, are annotated with their corresponding weight with
regard to the LTM.

Next, let k = 2. Then, the involved game matrix is as in Table 5.5. It can be
verified that the strategy profile (n1n4, n2n3) constitutes a PSNE. On the other hand,
the following improvement cycle exists: (n3n4, n1n2) → (n4n5, n1n2) → (n4n5, n1n3) →
(n2n4, n1n3) → (n2n4, n1n5) → (n3n4, n1n5) → (n3n4, n1n2). Note that this path is
also a best response improvement path.
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n1

n2

n3

n4n5

1/4
��

1/4
33

1/4
77

1/4
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Figure 5.6: The social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) of Example 7.

n1n2 n1n3 n1n4 n1n5 n2n3 n2n4 n2n5 n3n4 n3n5 n4n5

n1n2 0,0 0,0 0,0 0,0 0,0 0,0 0,0 3,2 2,2 2,3
n1n3 0,0 0,0 0,0 0,0 0,0 2,3 2,2 0,0 0,0 3,2
n1n4 0,0 0,0 0,0 0,0 3,2 0,0 3,2 0,0 3,2 0,0
n1n5 0,0 0,0 0,0 0,0 2,2 3,2 0,0 2,3 0,0 0,0
n2n3 0,0 0,0 2,3 2,2 0,0 0,0 0,0 0,0 0,0 2,2
n2n4 0,0 3,2 0,0 2,3 0,0 0,0 0,0 0,0 2,2 0,0
n2n5 0,0 2,2 2,3 0,0 0,0 0,0 0,0 2,2 0,0 0,0
n3n4 2,3 0,0 0,0 3,2 0,0 0,0 2,2 0,0 0,0 0,0
n3n5 2,2 0,0 2,3 0,0 0,0 2,2 0,0 0,0 0,0 0,0
n4n5 3,2 2,3 0,0 0,0 2,2 0,0 0,0 0,0 0,0 0,0

Table 5.5: The game matrix for the game (N ,M, k = 2), where the social network N is as in Figure 5.6.

5.2 Complexity finding a PSNE

In this section, we prove that deciding whether the game (N = (G, LIS, TBC1, TBC2),M,

k) has a PSNE is coNP-hard [Theorem 1].
We begin with an illustration of the involved proof over the 2-player game (the gener-

alization to m > 2 players by introducing dummy areas is straightforward): We construct
a social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) [Figure 5.7] that is composed by
three main areas: The upper part, to node y3, of the social network in Figure 5.8, the
right part, to node y3, of the social network in Figure 5.9, and the lower part, to node y3,
of the social network in Figure 5.8. The upper part, to node y3, is constructed such that
Player 1 always initiates the set of nodes S := {n1, . . . , nk} [Figure 5.8], given that node
y3 is not initiated, or infected first by Player 2. The right part, to node y3, is constructed
with regard to any given 3CNF boolean formula Φ, and it is such that [Figure 5.9]:

i. Player 2 always initiates an appropriate subset L of k nodes from the set of nodes
{u1,¬u1, . . . , un,¬un}, where ui,¬ui, i ∈ {1, . . . , n}, correspond to the literals that
construct formula Φ. Specifically, if Φ is satisfiable, then L is composed by these
nodes that correspond to those literals that constitute a satisfying assignment of Φ.
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Upper part, to node y3, of
the social network in Figure 5.8

θy3

��
1−ε

��

y3

ε

��

Right part, to node y3, of
the social network in Figure 5.9

θy3−xoo

Lower part, to node y3, of
the social network in Figure 5.8

Figure 5.7: Overview of the constructed social network (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) for
the proof of Theorem 1: Node y3 is assumed to have a threshold θ3. Moreover, the lower part, to node y3,
of the social network in Figure 5.8 is composed by a set of nodes that all have threshold one. The edges in
this overview are annotated with the cumulative weight of the corresponding edges between the depicted
areas, as well as, between the depicted areas and the node y3. For example, note that the upper part of
the social network in Figure 5.8 has out-going edges of cumulative weight 1− ε to each of the nodes in the
lower part of it. Furthermore, note that ε is a constant in (0, 1). On the other hand, the right part, to
node y3, of the social network in Figure 5.9 is constructed with regard to any given 3CNF boolean formula
Φ in order for parameter x to take a value zero if Φ is satisfiable, and a positive value — lower than θ3 —
if not.

On the other hand, if Φ is not satisfiable, then L is composed by any set of k nodes
from {u1,¬u1, . . . , un,¬un} where @i ∈ {1, . . . , n} such that ui,¬ui ∈ L.

ii. The parameter x equals to zero if Φ is satisfiable, and to some positive real value
— lower, or equal to θ3 — if not. Evidently, if x = 0, it is d̂(L, y3) = 2 — y3 is
reachable from L at the t = 2 time-step of the involved diffusion process — otherwise
d̂(L, y3) =∞ [Figure 5.9].

Next, the lower part, to node y3, of the social network [Figure 5.8] guarantees the existence
of a PSNE whenever Φ is not satisfiable [Figures 5.8, 5.9]: If Φ is satisfiable, then d̂(L, y3) =
2, while d̂(S, y3) = 3. In other words, Player 2, by playing L, infects first the node y3, and
as a result, Player 1, by playing S, cannot infect the nodes f1, . . . , fρ2 . Then, however,
and due to the network’s construction in Figure 5.7, Player 1 prefer to deviate from
S to L, and generally no PSNE exists. On the other hand, if Φ is not satisfiable, it
is d̂(L, y3) = ∞, while it still is d̂(S, y3) = 3: Consequently, Player 1, by playing S,
infects all the nodes in the social network of Figure 5.8, and due to the construction of the
social network in Figure 5.9, Player 2 continues to play L, since it infects all the nodes
b1, . . . , bρ3 ; i.e., under the network’s construction in Figure 5.7, if Φ is not satisfiable, a
PSNE exists where the Player 1 plays S, and the Player 2 plays L.

Theorem 1. Deciding whether the game (N = (G, LIS, TBC1, TBC2),M, k) has a PSNE
is coNP-hard.

Proof. We prove the theorem using a reduction from the 3SAT problem. Specifically,
consider any 3CNF boolean formula Φ: Denote as C = {c1, . . . , cm} the set of clauses that
construct Φ, and as U = {u1, . . . , un} the associated set of boolean variables.
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Figure 5.8: First part of the constructed social network (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺) for
the proof of Theorem 1: Edges of different styles are annotated with the different weight that corresponds
to them: all the edges of the same style have also the same weight. Moreover, the “· · · ” between nodes
e1, and eρ1 denotes that ρ1 − 2 same nodes exists between them, i.e., nodes that have the same in and
out-going weighted edges as well as threshold as e1, and eρ1 do (similarly for n1 · · ·nk, and f1 · · · fρ2 ).
Finally, note that this part shares the node y3 with the right part in Figure 5.9 as in Figure 5.7.

Given any Φ we construct a certain social network that induces a game with at least
one PSNE if and only if Φ is not satisfiable. We illustrate the construction through the
following example: Let, without loss of generality, Φ = (u1∨¬u2∨u3)∧(u1∨u2∨u3). Then,
C = {c1, c2}, or m = 2, and U = {u1, u2, u3}, or n = 3. Next, and as Figure 5.7 suggests,
we construct the network as the combination of the networks in Figures 5.8, and 5.9 —
note that these two networks share the y3 node. Specifically, in Figures 5.8, and 5.9 only
single nodes are depicted, with thresholds: ∀i ∈ {e1, . . . , eρ1}∪ {n1, . . . , nk}∪ {y1, y2}∪
{f1, . . . , fρ2}∪ {u1, . . . , un}∪ {¬u1, . . . ,¬un} it is θi = 1. Moreover, ∀i ∈ {a1, . . . , an},
it is θi = 1/2, ∀i ∈ {b1, . . . , bρ3}, it is θi = 2/3, and ∀i ∈ {c1, . . . , cm}, it is θi = 1/3.
Furthermore, for node y3 it is θy3 = (k+1)(m+2n)/(5kn+2km+2m+5n). Additionally,
it is ε = O(1) ∈ (0, 1), ρ1 = 2k + 2m − 2, ρ2 = m, and ρ3 = k + m − 2. On the other
hand, all the edges are annotated with their corresponding weight with regard to the
LTM. Specifically, for readability, each edge has a particular style associated with a unique
weight, as it is designated in Figure is labeled with this weight.

Finally, let k := n — note that n ≥ 3, and m ≥ 1; therefore ρi > 0,∀i ∈ {1, 2, 3}.
For the first part of our proof, consider a satisfiable formula Φ, and denote as {t1, . . . , tλ}

the set of its possible satisfying assignments, where λ ∈ Z≥1. Furthermore, denote as Sa
the set of nodes {n1, . . . , nk}. Also, denote as Sti , i ∈ {1, . . . , λ}, the set of k nodes that
correspond to those literals among the pairs {ui,¬ui}, i ∈ {1, . . . , n}, that are true with
respect to the assignment ti. For example, if Φ = (u1 ∨¬u2 ∨ u3)∧ (u1 ∨ u2 ∨ u3), we may
set as St1 the set {u1, u2, u3}, as St2 the set {u1,¬u2, u3}, and so forth, given that we also
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Figure 5.9: Second part of the constructed social network (N = (G, LIS = LTM, TBC1 = R≺, TBC2 =
R≺) for the proof of Theorem 1: Edges of different styles are annotated with the different weight that
corresponds to them: all the edges of the same style have also the same weight. Moreover, the “· · · ”
between nodes b1, and bρ3 denotes that ρ3 − 2 same nodes exists between them, i.e., nodes that have the
same in and out-going weighted edges as well as threshold as b1, and bρ3 do. Finally, note that this part
shares the node y3 with the upper part in Figure 5.8 as in Figure 5.7.

set t1 = {u1 = true, u2 = true, u3 = true}, and t2 = {u1 = true, u2 = false, u3 = true}
— both truthful evaluations of Φ.

Next, without loss of generality, consider the part of the induced game matrix as in
Table 5.6, where Sβ ∈ Sβ := S \ {Sa, St1 , . . . , Stλ}. Moreover, recall that given a strategy
profile s = (Sx, Sy) ∈ S2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy),
∀i ∈M = {1, 2}[4.2].

Sa St1 · · · Stλ Sβ

Sa 3K + 3m+ 1, 0 3K + 2m, 3K + 3m− 1 · · · 3K + 2m, 3K + 3m− 1 uaβ1 , uaβ2

St1 3K + 3m− 1, 3K + 2m 3K + 3m− 1, 0 · · · 3K + 3m− 1, ut1tλ2 ut1β1 , ut1β2
...

...
...

. . .
...

...
Stλ 3K + 3m− 1, 3K + 2m 3K + 3m− 1, utλt12 · · · 3K + 3m− 1, 0 u

tλβ
1 , u

tλβ
2

Sβ uβa1 , uβa2 uβt11 , uβt12 · · · u
βtλ
1 , u

βtλ
2 uββ1 , 0

Table 5.6: Game matrix of the induced game over the social network constructed in the proof of Theo-
rem 1.

We prove that no PSNE exists. Firstly, denote as SAβ the set of the possible sets of k
nodes {xi}i∈{1,...,n}, (recall that k=n), such that xi ∈ {ui,¬ui}, and SAβ ⊆ Sβ. Moreover,
let SBβ ≡ Sβ \ SAβ . Now, assume that Sβ ∈ SAβ , and observe that 3k + m − 2 − k ≤
u
β(·)
1 ≤ 3k + 2m − 3: The maximum value is obtained when Player 1 achieves, among

other, to color m − 1 nodes from the set {c1, . . . , cm}, while Player 2 does not infect
first nodes that would ideally be colored by Player 1. On the other hand, the minimum
value is obtained when Player 1 achieves to color zero node from the {c1, . . . , cm}, while
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Player 2 achieves to first infect k nodes that Player 1 was going to color at a later step.
Recall that Sβ ∈ Sβ, thereby, Player 1 cannot possibly color all the m nodes {c1, . . . , cm}.
For the case that Sβ ∈ SBβ , observe that uβ(·)

1 ≤ (3k + 2m − 3 − ρ3) − 1 = 2k + m − 2.
Finally, note that the above discussion holds similarly for Player 2.

Now, observe that utiti1 = 3k + 3m − 1 > 3k + 2m − 3 ≥ uβti1 , i ∈ {1, . . . , λ}, given
any Sβ ∈ Sβ. Similarly, uaa1 > uβa1 , Sβ ∈ Sβ. Next, let Sx ∈ SBβ , and Sβ ∈ Sβ. Then,
uaβ1 ≥ ρ1 + 2 = 2k + 2m, and uxβ1 ≤ 2k + m − 2, thus uaβ1 > uxβ1 . On the other hand, if
Sx ∈ SAβ , and Sβ ∈ SAβ , it is uaβ1 = 3k+ 3m+ 1 > 3k+ 2m− 3 ≥ uxβ1 . Finally, if Sx ∈ SAβ ,
and Sβ ∈ SBβ , it is uxβ2 ≤ 2k +m− 2 < 3k + 3m+ 1 = uxa2 .

With regard to the payoff of Player 2 we also have: uaβ2 ≤ 3k+2m−3 < 3k+3m−1 =
uat12 , since Sβ ∈ Sβ. Additionally, for i ∈ {1, . . . , λ}, utiβ2 ≤ 3k+ 2m− 3 < utia2 = 3k+ 2m.

In sum, never a pair of strategies (Sx, Sy) ∈ S2, where Sx, and/or Sy is in Sβ, can
be a PSNE. Therefore, all the remaining candidate PSNEs lie within the pool of pairs
{Sa, St1 , . . . , Stλ}

2. However, ∀(i, j) ∈ {1, . . . , λ}2, i 6= j, it is utitj2 ≤ k, whereas uatj2 =
3k + 2m. Moreover, it can be verified from the above game matrix that the rest of the
pairs of strategies cannot be a PSNE either. Hence, we have completed the first part of
our proof: If Φ is satisfiable, there exists no PSNE.

For the reverse case, assume that Φ is not satisfiable; we prove that a PSNE always
exists. First, let Sω = ×ni=1 {ui,¬ui}, and set µ = |Sω|. Also, let Sω =:

{
Sb1 , . . . , Sbµ

}
,

with |HSb1
| ≥ . . . ≥ |HSbµ

|.
We prove that the pair (Sa, Sb1) constitutes a PSNE. On the one hand, it is uab1

1 =
3k+3m+1 ≥ uxb1

1 , ∀Sx ∈ S\Sa. On the other hand, 3k+m−1 ≤ uab1
2 ≤ 3k+2m−3, and,

by the definition of
{
Sb1 , . . . , Sbµ

}
, uab1

2 ≥ uabi2 , i ∈ {1, . . . , µ}. Finally, let Sx ∈ S \ Sω.
Then, uax2 ≤ 2k+m− 2 < 3k+m− 1 < uab1

2 . Thus, if Φ is not satisfiable, a PSNE always
exists, and our proof is completed.





Chapter 6

Characterizations

In this section, we mainly consider the 2-player game (N ,M = {1, 2} , k), unless
otherwise specified.

6.1 Utilities quantification

We start with quantifying the utility functions ui : S2 7→ N, i ∈M, of the two players.
We first need to introduce some important notions. Recall first the definition of HS , in
Section 4. This refers to the ideal spread of a product if the firm was playing on its own
and used S as a seed. In the presence of a competitor, the firm will lose some of the nodes
that belong to the ideal spread HS . The losses happen due to three reasons. First, the
competitor may have managed to infect a node at an earlier time step than the step that
the firm would reach that node. Second, the firm may lose nodes if it happens that both
firms are eligible to infect a node at the same time step due to the tie-breaking criteria.
Finally, there may be nodes that belong to HS , but the firm did not manage to infect
enough neighbors so as to color them as well. These nodes either remain white, or are
eventually infected by the other player. All these are captured below:

Orism’os 6.1. Given a game ((G, LIS, TBC1, TBC2),M = {1, 2} , k), and a strategy profile
s = (S1, S2),

1. for i ∈ {1, 2}, αi(s) denotes the number of nodes that belong to HSi, and under
profile s, player i would be eligible to color them at some time step t but the other
player has already infected them at some earlier time step t′ < t (e.g., this may occur
under the threshold model when θv < 1/2 for some node v).

2. for i ∈ {1, 2}, βi(s) denotes the number of nodes in HSi, such that under profile s,
both firms become eligible to infect them at the same time step, and due to tie-breaking
rules, they get infected by the competitor of i.

3. for i ∈ {1, 2}, γi(s) denotes the number of nodes that belong to HSi, but under s,
firm i never becomes eligible to infect them (because i did not manage to color the
right neighbors under s).

55
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Finally, we set αi,max (respectively βi,max, γi,max) to be the maximum value of αi(s)
over all valid strategy profiles and also αmax = max{α1,max, α2,max} (similarly for βmax,
and γmax).

The following example serves as an illustration of these concepts.

Example. Consider the game (N ,M = {1, 2} , k = 1) over the social network (G, LIS =
LTM, TBC1 = R≺, TBC2 = R≺) in Figure 6.1: As ni, ∀i ∈ {1, . . . , 5}, we denote single
nodes. Further, we assume that all of them have threshold one, i.e., θni = 1, ∀i ∈
{1, . . . , 5}. Moreover, the edges (ni, nj), where i, j ∈ {1, . . . , 5}, are annotated with their
corresponding weight with regard to the LTM. For example, wn1n5 = 1, while wn3n4 = 1/2.

Now, verify that the in-neighbors of, e.g., n4 form the set N(n4) = {n2, n3}, while
for n1 it is N(n1) = ∅. Moreover, it is dn3 = 0, dn1 = 1, and dn2 = 2. Further, observe
that the diffusion depth is D = dn2 = 2. Additionally, the ideal spread of n2 is
Hn2 = {n2, n3, n4}, i.e., n3, and n4 are both reachable by n2. On the other hand, n4

is not reachable from n1, since wn3n4 = 1/2 < θn4 = 1. Also, the ideal spread of n5 is
Hn5 = ∅.

Next, observe that n4 can be infected during the diffusion process by a player i ∈M,
only if i has colored both nodes n2 and n3 — either at the initiation step, or later.
Therefore, if the strategy profile s = (n1, n2) is played, node n4 remains white after the
termination of the competitive diffusion process: Player 1 infects first node n3, according
to TBC2 = R≺. Thereby, given that Player 1 initiates n1, and Player 2 n2, it is γ2(s) = 1.
On the other hand, it is γ1(s) = 0. Clearly, γ1(s) 6= γ2(s).

Similarly, α1(s) = 0, α2(s) = 0, β1(s) = 0, and β2(s) = 1. As a result, u1(s) = |Hn1 | −
α1(s)−γ1(s) = 3−0−0 = 3, while u2(s) = |Hn2 |−α2(s)−β2(s)−γ2(s) = 3−0−1−1 = 1.

Finally, if both players choose to initiate the same node, e.g., n1, then node n1 will
be colored only by Player 1, according to TBC1 = R≺, and it will be u1(n1, n1) = |Hn1 | −
α1(n1, n1)−γ1(n1, n1) = 3−0−0 = 3, while u2(n1, n1) = |Hn1 |−α2(n1, n1)−β2(n1, n1)−
γ2(n1, n1) = 3− 0− 1− 2 = 0.

n5 n3
1/2 // n4

n1

1
OO

1
==

n2

1/2
OO

1
aa

Figure 6.1: A social network (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺).

When we use R≺ for tie-breaking, clearly β1(s) = 0, hence the following is straightfor-
ward.

Lemma 1. Consider the 2-player game ((G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k).
The utility function of Player 1, given a strategy profile s = (S1, S2) ∈ S2, is

u1(s) = |HS1 | − α1(s)− γ1(s), (6.1)
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Moreover, the utility function of Player 2 is

u2(s) = |HS2 | − α2(s)− β2(s)− γ2(s). (6.2)

In the following, whenever we consider more general games than the (N = (G,
LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), we shall resort to the fundamental defi-
nition of the payoff functions [4.2].

6.2 Conditions for the existence of a PSNE

Given a game (N = (G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), we discuss
several necessary and/or sufficient conditions for the existence of a PSNE.

Lemma 2 (Necessary and sufficient conditions for the existence of a PSNE).
Given a game ((G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), a strategy profile s =
(S1, S2) ∈ S2 is a PSNE, if and only if

1. α1(s) + γ1(s) ≤ α1(S′1, S2) + γ1(S′1, S2) + |HS1 | − |HS′1
|, ∀S′1 6= S1, S

′
1 ∈ S.

2. α2(s) + β2(s) + γ2(s) ≤ α2(S1, S
′
2) + β2(S1, S

′
2) + γ2(S1, S

′
2) + |HS2 | − |HS′2

|, ∀S′2 6=
S2, S

′
2 ∈ S.

Proof. For s it must:
u1(s) ≥ u1(S′1, S2),∀S′1 6= S1, S

′
1 ∈ S, (6.3)

u2(s) ≥ u2(S1, S
′
2),∀S′2 6= S2, S

′
2 ∈ S. (6.4)

The proof completes by substituting Equations (6.1), (6.2) in Equations (6.3), (6.4), re-
spectively.

Theorem 2 (Necessary condition for the existence of a PSNE). Given a game
((G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), if the strategy profile s = (S1, S2) ∈ S2

is a PSNE, then it holds that |HS1 | + |HS2 | ≥ |Hmax| − γ1(Smax, S2), where |Hmax| ≡
maxS∈S {|HS |}, and Smax ≡ argmaxS∈S {|HS |}.

Proof. For the following proof, given a strategy profile s = (Sx, Sy) ∈ S2, (x, y) ∈
{1, . . . , |S|}2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy), ∀i ∈M = {1, 2}.

In the following, we assume that S = {Si}i∈{1,...,|S|}, where |HSi | ≥ |HSi+1 |, ∀i ∈
{1, . . . , |S| − 1}.

We first consider a strategy profile s = (Si, Sj) ∈ S2, where i > j. Then, if |HSi | <
|HSj |, s cannot be a PSNE, since uij1 ≤ |HSi | < |HSj | = ujj1 . On the other hand, if |HSi | =
|HSj |, for s to be a PSNE, it must uij1 ≥ ui

′j
1 , ∀i′ ∈ {1, . . . , |S|}. Thereby, by substituting

in the previous inequality uij1 = |HSi |, and ui
′j

1 = |HS′i
| − α1(S′i, Sj)− γ1(S′i, Sj), we have

|HSi | ≥ |HS′i
|−α1(S′i, Sj)−γ1(S′i, Sj), which for i′ = 1 gives |HSi | ≥ |Hmax|−α1(S1, Sj)−

γ1(S1, Sj). Moreover, it is α1(S1, Sj) ≤ min
{
|HSj |, |Hmax|

}
= |HSj |, and as a result, from
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|HSi | ≥ |Hmax| − α1(S1, Sj)− γ1(S1, Sj) we have |HSi |+ |HSj | ≥ |Hmax| − γ1(S1, Sj). In
other words, if s is a PSNE, then it is |HSi |+ |HSj | ≥ |Hmax| − γ1(Smax, Sj).

Now, we note that a strategy profile s = (Si, Si) ∈ S2, cannot be a PSNE, since uii2 = 0,
and even though, e.g., |HS1 |+ |HS1 | = 2|Hmax| > |Hmax|.

Next, given a strategy profile s = (Si, Sj), we assume i < j. Then, for s to be a
PSNE, it must be uij1 ≥ ui

′j
1 , ∀i′ 6= i, (i, i′) ∈ {1, . . . , |S|}2. Thus, the inequality must

also hold ∀i′ ≤ i. Now, let i′ =: i − x, x ∈ {0, . . . , i− 1}, and substitute uyj1 = |HSy | −
α1(Sy, Sj) − γ1(Sy, Sj), y ∈ {i, i− x} to the previous inequality: We take α1(Si, Sj) +
γ1(Si, Sj) ≤ α1(Si−x, Sj) + γ1(Si−x, Sj) + |HSi | − |HSi−x |, ∀x ∈ {0, . . . , i− 1}. Thereby,
we have α1(Si−x, Sj) + γ1(Si−x, Sj) + |HSi | − |HSi−x | ≥ 0. However, α1(Si−x, Sj) ≤
min

{
|HSj |, |HSi−x |

}
= |HSj |, due to our initial assumption and the fact that i−x ≤ i < j.

Thereby, it must hold |HSj |+ |HSi | ≥ |HSi−x | − γ1(Si−x, Sj), ∀x ∈ {0, . . . , i− 1}, i.e., for
x = i − 1 must hold |HSj | + |HSi | ≥ |HS1 | − γ1(S1, Sj) = |Hmax| − γ1(Smax, Sj), and the
proof is completed.

Next, we prove that a strategy profile s = (S1, S2) ∈ S2 cannot be a PSNE if S1 is
reachable from S2, .

Theorem 3. A game ((G, LIS, TBC1 = R≺, TBC2),M = {1, 2} , k) in which the strategies
in S, are all reachable one from the other has no PSNE.

Proof. Assume that S1 is reachable from S2, i.e., S1 ⊆ HS2 . Then, HS2 ⊇ HS1 , and as a
result, u1(S2, S2) = |HS2 | ≥ |HS1 | > |HS1 | − |S2 \ S1| ≥ u1(S1, S2), since S1 6= S2, (i.e.,
since S1 6= S2, Player 1, by playing S1, cannot color at least one of the nodes in S2).
Thereby, the strategy profile s = (S1, S2) ∈ S2 is not a PSNE.

At this point, note the trivial case where a single strategy S exists in the game, i.e.,
k = |V | (contrary to our basic assumption in this paper that k < |V |): Then, a unique
trivial PSNE (S, S) exists, where Player 1 has utility |HS |, and Player 2 zero. On the
other hand, S is reachable by itself, since S ⊆ HS by definition.

6.3 Realizability of improvement paths

We first establish that over a certain class of social networks, with appropriate under-
lying structure, all possible game matrices are realizable with regard to the improvement
paths that they induce [Theorem 4]. Afterwards, we prove that this result holds under “al-
most” any consistent in and out-degree distributions that may characterize the underlying
structure of the social network [Corollary 1].

Recall that given a game Γ(N ,M, k), the set SD constitutes the set of strictly component-
wise undominated strategies of the involved players [4.2]. Here, we set SD =: {S1, . . . , Sr} ⊆
S, where r ∈ Z≥2, and we further assume |HS1 | ≥ . . . ≥ |HSr |.

Furthermore, we denote as Gd = (Vd, Ed) any graph from the class of graphs that is
defined in the following proof of Theorem 4 by assuming a fixed set Vd, and a variable Ed.
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Theorem 4 (All improvement paths are realizable). Consider the games (N (Gd,
LIS = LTM(wuv ≥ θv, ∀(u, v) ∈ Ed), TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k = 1), where
D ≥ 2, for all the possible instances of Gd. Then, all improvement paths are realizable in
Π(SD,SD).

Proof. For the following proof, given a strategy profile s = (Sx, Sy) ∈ S2, (x, y) ∈
{1, . . . , |S|}2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy), ∀i ∈M = {1, 2}.

We construct a certain class of graphs, denoted by Gd, that induce a class of social
networks with the involved property. To this end, we consider without loss of gener-
ality that k = 1, and D = 2. Moreover, we assume that under our construction it
holds α1(S1, S2) = α2(S2, S1), and β2(S1, S2) = β2(S2, S1), ∀(S1, S2) ∈ S (Definition 6.1).
Thereby, we set for simplicity αS2S1 ≡ α1(S1, S2), i.e., αS1S2 = α2(S1, S2).

Additionally, we assume that LIS = LTM(wuv ≥ θv,∀(u, v) ∈ E). Therefore, for i ∈
{1, 2}, it is γi(S1, S2) = 0, ∀(S1, S2) ∈ S2, where S1 6= S2. Also, recall that γ1(S, S) = 0,
∀S ∈ S, since TBC1 = R≺.

Furthermore, we let |HSi | = H, ∀i ∈ {1, . . . , r}, where H will be appropriately chosen
to guarantee that the set {Si}i∈{1,...,r} is a sink in S.

Next, we assume for the constructed class of social networks that:

i. I0
Si
∩ I1

Sj
= ∅, ∀(i, j) ∈ {1, . . . , r}2, where i 6= j,

ii. (H1
Sj
∩ I2

Si
) ∩ (H1

S′j
∩ I2

S′i
) = ∅, ∀(i, j, i′, j′) ∈ {1, . . . , r}4, where (i, j) 6= (i′, j′),

iii. (H1
Sj
∩H1

Si
) ∩ (H1

S′j
∩H1

S′i
) = ∅, ∀(i, j, i′, j′) ∈ {1, . . . , r}4, where (i, j) 6= (i′, j′),

iv. (H1
Sj
∩H1

Si
) ∩ (I2

S′j
∩ I2

S′i
) = ∅, ∀(i, j, i′, j′) ∈ {1, . . . , r}4, where (i, j) 6= (i′, j′),

v. (I2
Sj
∩ I2

Si
)∩ (I2

S′j
∩ I2

S′i
) = ∅, ∀(i, j, i′, j′) ∈ {1, . . . , r}4, where (i, j) 6= (i′, j′), as well as,

vi. H = (r − 1)(2αmax + βmax) + 1 + c, where c is appropriately chosen for the set
{Si}i∈{1,...,r} to be a sink in S.

Over these assumptions, we can construct a class of social networks, where H1
Sj
∩ I2

Si
,

H1
Sj
∩ H1

Si
, and I2

Sj
∩ I2

Si
can be independently decided from one another. Particularly,

without loss of generality, consider the pair of strategies (Si, Sj), where i 6= j, and (i, j) ∈
{1, . . . , r}. Then, recall that LIS = LTM(wuv ≥ θv, ∀(u, v) ∈ E), and consider the following
three disjoint areas of HSi that can share nodes only with three corresponding areas of
HSj (Figure 6.2):

A. Name this area Ai (Figure 6.3); through its structure we shall later show that the value
of αSiSj can be independently decided from the values of αS′iS′j , β2(S′i, S′j), ∀(i′, j′) ∈
{1, . . . , r}2. Assume, Ai ⊂ HSi , |Ai| = αmax, and that ∀k ∈ Ai, (Si, k) ∈ E, while
@v ∈ V \ {Si, Sj} : (v, k) ∈ E. Additionally, assume Ai = (H1

Si
∩ I2

Sj
) ∪ Xi, where

Xi ≡ Ai \ (H1
Si
∩ I2

Sj
), and that ∀k ∈ Xi, @v ∈ V : (k, v) ∈ E. Similarly, ∀k ∈
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Ai ∪Bj

To similar areas
of nodes, shared
with each of the

strategies S′j ∈ SD,
S′j 6= Si, Sj .

Si

|| ��

BB

//oo Bi ∪Aj Sjoo

\\

��

//

""

To similar areas
of nodes, shared
with each of the

strategies S′i ∈ SD,
S′i 6= Si, Sj .

Area of c nodes Ci ∪ Cj Area of c nodes

Figure 6.2: The partially shared areas Ai∪Bj , Bi∪Aj , and Ci∪Cj between the two strategies (Si, Sj) ∈
SD2, Si 6= Sj . Moreover, the similar areas that exists between Si, Sj and any other strategy in SD2 are
depicted, as well as, the sets of c nodes that each of them targets.

H1
Si
∩ I2

Sj
, @v ∈ V : (k, v) ∈ E. Next, note that it is |H1

Si
∩ I2

Sj
| = αSiSj by definition,

therefore |Xi| = αmax − αSiSj .

The corresponding region in HSj subset of which is the set H1
Si
∩ I2

Sj
is the area Bj

(Figure 6.3). Below we define Bi.

Area Xi

Si

99

// Area H1
Si
∩ I2

Sj uBj
oo

xx

Sjoo

Area Yj

Figure 6.3: The partially shared area Ai ∪ Bj between the two strategies (Si, Sj) ∈ SD2, Si 6= Sj :
Ai ≡ (H1

Si
∩ I2

Sj
) ∪ Xi, and Bj ≡ (H1

Si
∩ I2

Sj
) ∪ Yj ∪

{
uBj
}

. Moreover, note that |H1
Si
∩ I2

Sj
| = αSiSj ,

and |Xi| = αmax − αSiSj . Therefore, |Ai| = αmax. Also, it is |Yj | = αmax − αSiSj , and as a result
|Bj | = αmax + 1.

B. Name this part Bi (Figure 6.4); through its structure we shall later show that the value
of αSjSi can be independently decided from the values of αS′iS′j , β2(S′i, S′j), ∀(i′, j′) ∈
{1, . . . , r}2. Assume, Bi ⊂ HSi , |Bi| = 1 + αmax. Specifically, let Bi = (H1

Sj
∩ I2

Si
) ∪

Yi∪{uBi}, where Yi ≡ Bi \(H1
Sj
∩I2

Si
)∪{uBi}, and uBi denotes a single node such that

(Si, uBi) ∈ E. Moreover, ∀k ∈ (H1
Sj
∩ I2

Si
) ∪ Yi we consider (uBi , k) ∈ E. Additionally,

@v ∈ V \ {uBi , Sj} : (v, k) ∈ E. Lastly, ∀k ∈ Bi, @v ∈ V : (k, v) ∈ E, except uBi that
has edges only to (H1

Sj
∩ I2

Si
) ∪ Yi as defined previously.

Evidently, subset of (H1
Sj
∩I2

Si
)∪Yi is the set H1

Sj
∩I2

Si
; therefore, area Bi is constructed

to give area Aj the end that similarly area Ai had (Figures 6.3, 6.4).

C. Name this part Ci (Figure 6.5); through its structure we shall later show that the
value of β2(Si, Sj) can be independently decided from the values of αS′iS′j , β2(S′i, S′j),
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Area Xj

Si // uBi
//

&&

Area H1
Sj
∩ I2

Si Sjoo

ee

Area Yi

Figure 6.4: The partially shared area Bi ∪ Aj between the two strategies (Si, Sj) ∈ SD2, Si 6= Sj :
Bi ≡ (H1

Sj
∩ I2

Si
) ∪ Yi ∪ {uBi}, and Aj ≡ (H1

Sj
∩ I2

Si
) ∪ Xj . Moreover, note that |H1

Sj
∩ I2

Si
| = αSjSi ,

and |Yi| = αmax − αSjSi . Therefore, |Bi| = αmax + 1. Also, it is |Xj | = αmax − αSjSi , and as a result,
|Aj | = αmax.

∀(i′, j′) ∈ {1, . . . , r}2. Assume, Ci ⊂ HSi , |Ci| = βmax, and that ∀k ∈ Ci, (Si, k) ∈ E,
while @v ∈ V \ {Si, Sj} : (v, k) ∈ E. Additionally, assume Ci = (H1

Si
∩ H1

Sj
) ∪ Zi,

where Zi ≡ Ci \ (H1
Si
∩ H1

Sj
), and that ∀k ∈ Zi, @v ∈ V : (k, v) ∈ E. Similarly,

∀k ∈ H1
Si
∩H1

Sj
, @v ∈ V : (k, v) ∈ E. For simplicity we have assumed I2

Si
∩ I2

Sj
= ∅, but

the generalization is straightforward. Therefore, note that it is |H1
Si
∩H1

Sj
| = β2(Si, Sj),

i.e., |Zi| = βmax − β2(Si, Sj).

Area Zi

Si //

88

Area H1
Si
∩H1

Sj Sjoo

xx
Area Zj

Figure 6.5: The partially shared area Ci ∪ Cj between the two strategies (Si, Sj) ∈ SD2, Si 6= Sj :
Ci = (H1

Si
∩H1

Sj
) ∪ Zi, and Cj = (H1

Si
∩H1

Sj
) ∪ Zj . Moreover, note that here |H1

Si
∩H1

Sj
| = β2(Si, Sj),

and |Zi| = |Zj | = βmax − β2(Si, Sj). Therefore, |Ci| = |Cj | = βmax.

Now, recall that we assumed β2(Si, Sj) = β2(Sj , Si). Therefore, an area similar to Ci
exist also in HSj , i.e., an area Cj , that shares the same H1

Si
∩H1

Sj
with Ci (Figure 6.5).

Evidently, H1
Sj
∩ I2

Si
, H1

Sj
∩ H1

Si
, and I2

Sj
∩ I2

Si
can be independently decided from one

another.
We can now justify our selection for H. Specifically, rewrite H as H = (r− 1)(αmax +

(1+αmax)+βmax)+1+c: The factor “(r−1)” is due to the fact that region HSi is connected
with — at most — the rest (r−1) of the HS(·) regions (Figure 6.2). Furthermore, the first
factor in the sum, “αmax”, is the cardinality of area Ai, while the second the cardinality
of Bi, and the third the cardinality of Ci. Lastly, the unity corresponds to the node
Si, while c corresponds to the cardinality of a set Xi such that ∀k ∈ Xi, (Si, k) ∈ E,
while @v ∈ V \ {Si} : (v, k) ∈ E and @v ∈ V : (k, v) ∈ E. And as noted before, if c is
sufficiently large, e.g. c ≥ αmax, the set {Si}i∈{1,...,r} is a sink in S. We note that an
obvious modification to the structure of Bi can decrease c to zero.



62 Chapter 6. Characterizations

As a final step to our proof, we prove that if

i αmax = r − 1, and

ii βmax = αmax + r − 1,

then all possible value orderings of
{
αSiSj

}
(i,j)∈{1,...,r}2 , {β2(Si, Sj)}(i,j)∈{1,...,r}2 are achiev-

able.
First, we justify our selection for αmax. Recall that in our social network for uij1 ≥ u

i′j
1 ,

i′ ∈ {1, . . . , r}\{i} to hold, it must αSjSi ≤ αSjS′i . Moreover, αSjSi ∈ {0, 1, . . . , r − 1}, i.e.
it can take a value from a pool of r different ones. On the other hand, αSjSi is compared
with exactly (r − 1) other αSjS′i , since i′ ∈ {1, . . . , r} \ {i}. Thereby, there exist a set of
surjective functions defined from the set

{
αSiSj

}
(i,j)∈{1,...,r}2 to the set {0, 1, . . . , r − 1}

that achieves all the possible value orderings of
{
αSiSj

}
(i,j)∈{1,...,r}2 and, in accordance,

all the possible value orderings of u(·)j
1 , ∀j ∈ {1, . . . , r} (cf. Remark 2).

Next, given that
{
αSiSj

}
(i,j)∈{1,...,r}2 has been decided, we can validate our selection

for βmax. First, recall that in our social network for uij2 ≥ uij
′

2 , j′ ∈ {1, . . . , r} \ {j}
such that j 6= i, and j′ 6= i, to hold, it must β2(Si, Sj) ≤ αSiS′j − αSiSj + β2(Si, S′j),
∀j′ ∈ {1, . . . , r} \ {j} such that j 6= i, and j′ 6= i, (i.e., we do not consider the strategy
profiles (S, S), since u2(S, S) = 0, while u2(Si, Sj) ≥ 1, ∀Si, Sj ∈ S, where Si 6= Sj

— also, recall from the begining of the proof that γ2(Si, Sj) = 0, ∀(Si, Sj) ∈ S2, where
Si 6= Sj). Therefore, β2(Si, Sj) is compared with exactly (r−1) other β2(Si, S′j), since j′ ∈
{1, . . . , r} \ {j}. Now, we are able to give an algorithm that achieves all the possible value
orderings of {β2(Si, Sj)}(i,j)∈{1,...,r}2 and, in accordance, all the possible value orderings of
u
i(·)
2 , ∀i ∈ {1, . . . , r}, for any given

{
αSiSj

}
(i,j)∈{1,...,r}2 . Specifically,

1. For fixed i ∈ {1, . . . , r}, for all (j, j′) ∈ 1, . . . , r2, j 6= j′ compute αSiS′j − αSiSj .

2. Let β = max(j,j′)∈1,...,r2

{
αSiS′j − αSiSj

}
.

3. Define the set of surjective functions from the set {β2(Si, Sj)}(i,j), where (i, j) ∈
{1, . . . , r}2, to the set {β, . . . , β + (r − 1)} that achieves all the possible value order-
ings of {β2(Si, Sj)}(i,j)∈{1,...,r}2 .

4. return this set of functions.

Since, β ≤ αmax, and βmax = αmax + (r − 1), the above algorithm works for all possible
values of β. The fact completes our proof.

Given any game Γ = (N ,M, k), Theorem 4 suggest that in the involved game matrix,
or its restriction Π(SD,SD), any improvement path may exists. Therefore, it indicates
that it is generally hard to identify a unique set of conditions that capture simultaneously
all games Γ that have at least one PSNE, or even admit a generalized ordinal potential.
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Remark 1. We stress that the above constructed graph is a DAG.

Remark 2. We note with regard to the condition αSjSi ≤ αSjS′i , ∀i
′ 6= i, i′ ∈ {1, . . . , r},

that ∀x ∈ {1, . . . , r} it is u1(Sx, Sx) = H, i.e., aSxSx = 0 and u1(Sx, Sx) is always greater,
or equal to any of the u1(S′x, Sx), x′ ∈ {1, . . . , r} \ {x}; a restriction that should be
considered whenever we state that “all improvement paths are realizable”. On the other
hand, this limitation can be nullified through simple modifications to the constructed
network: (Sketch of proof) It is sufficient to letting |HSi |, ∀i ∈ {1, . . . , r}, differ slightly
from H, and increasing appropriately the αmax, βmax.

Conjecture 1 (Generalization of Theorem 4). Classes of networks similar to the
one in Theorem 4 can be constructed over a greater variety of games (N = (G, LIS,
TBC1 = R≺, TBC2),M, k = 1).

On the other hand, an indirect generalization step for k > 1 is given in the following
Lemma 3, while for D = 1, we characterize the 2-player game in Theorem 9.

Lemma 3 (Generalization step from k > 1 to k = 1). Consider the game (N =
(G, LIS = LTM, TBC1, TBC2),M, k > 1), and its game matrix Π. A graph Gs ≡ (Vs, Es),
Gs ⊃ (V,E), exists, such that the game (N ′ = (Gs, LIS = LTM, TBC1, TBC2),M, k = 1),
with diffusion depth D + 1, induces a game matrix Πs with a restriction Πs(X,X) that:
Except of its entries on the diagonal that correspond to the utility of Player 2, and which
have zero value, as the ones in Π, all its remaining entries have value equal to the increased
by one value of the corresponding entries in Π. Specifically, it is Gs = (Vs := V ∪X,Ec :=
E ∪ EX), and

i. V ∩X = ∅, where X denotes a set of
(|V |
k

)
new nodes added to G.

ii. E ∩ EX = ∅, where EX = {(v, u) | v ∈ X,u ∈ V }, and ∀(u, v) ∈ EX , wuv = θv.

Next, we provide some necessary definitions, and then we prove that Theorem 4 holds
under “almost” any consistent in and out-degree distributions that may characterize the
underlying structure of the social network.

Definition 8. Given a graph G = (V,E), let k ∈ Z≥0, and δ ≡ δ(E) ∈ {0, . . . , |V |}. We
define as PGin ≡ PGin(r, αmax, βmax) a set of in-degree distributions over a graph G, such
that ∀PGin ∈ PGin,

PGin(k) ≥


r, if k = 0

r + r(r − 1), if k = 1
0, if k ≥ 2

Similarly, we define as PGout ≡ PGout(r, αmax, βmax, δ) a set of out-degree distributions
such that ∀PGout ∈ PGout,

PGout(k) ≥


δ, if k = 1

r(r − 1), if k = αmax

r, if k = (r − 1)(1 + αmax + βmax)
0, otherwise
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Definition 9 (Restriction of an in-degree (out-degree) distribution to PGin (PGout)).
Given any in and out-degree distributions Pin, Pout consistent with each other, we denote
as PGin, PGout their consistent with each other restrictions in PGin and PGout respectively —
i.e. PGin ∈ PGin, and PGout ∈ PGout, and consistent with each other.

Furthermore, we denote as G′d an augmented version of Gd [Theorem 4]; specifically,
the class of all possible graphs G′d is defined in the following proof of Corollary 1.

Corollary 1 (All improvement paths are realizable under “almost” any consis-
tent in and out-degree distributions). Consider any in and out-degree distributions
Pin, Pout consistent with each other. Moreover, consider the games (N = (G′d, LIS =
LTM(wuv ≥ θv,∀(u, v) ∈ E′d), TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k = 1) of diffusion
depth D ≥ 2, where G′d has as in and out-degree distributions the PGin and PGout, respec-
tively. Then, all improvement paths are realizable in Π(SD, SD).

Proof. For the following proof, recall that given a strategy profile s = (Sx, Sy) ∈ S2,
(x, y) ∈ {1, . . . , |S|}2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy), ∀i ∈
M = {1, 2}[4.2]. Furthermore, recall that we consider αxy := αSxSy , as well as, βxy :=
βSxSy [4.2].

We construct a certain class of social networks with the involved property, based on
the social networks of Theorem 4.

Firstly, we construct r new disjoint graphs Yi, i ∈ {1, . . . , r}, which we will later
append to the graph Gd of Theorem 4:

1. For each i ∈ {1, . . . , r}, construct a directed rooted tree Yi = (VYi , EYi), such that
|VYi | = nY , |EYi | = nY − 1, and let rYi denote the root.

Thereby, all nodes in VYi have in-degree one, except of the root, and out- degree one,
except of the leaves. The number of leaves defines the value of δ(E′d) [Definition 8].

2. Given Yi, add edges between the nodes of VYi , according to the Pin and Pout distri-
butions, bearing in mind the preexisting structure of the graph of Theorem 4.

3. Next, add the edge (Si, rYi).

4. Finally, as in Theorem 4, set wij = θj , ∀(i, j) ∈ E′d.

Thus, we obtain a modified graph G′d that has in-degree distribution PGin, and out-
degree distribution PGout, consistent with each other.

To complete our proof, we prove that the set of strategies {Si}i∈{1,...,r} is strictly
component-wise undominated over the set {Si}i∈{r+1,...,|V |}. We first consider the strictly
component-wise dominance of {Si}i, i ∈ {1, . . . , r}, over {Si}i, i ∈ {r + 1, . . . , |V |}, from
Player’s 2 perspective. To this end, let (λ, λ′) ∈ {r + 1, . . . , |V |}2, and (i, j, j′) ∈
{1, . . . , r}3, where i 6= j, i 6= j′, j 6= j′, as well as, d̂(Si, Sλ) = ∞, d̂(Sj , Sλ′) = ∞. Next,
consider the following part of the game matrix:
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Sj Sj′ Sλ

Si uij2 uij
′

2 uiλ2

Sj 0 uij
′

2 ujλ2

Sλ′ uλ
′j

2 uλ
′j′

2 uλ
′λ

2

We want,

i. uij2 > uiλ2 : Equivalently, we write αij + βij < αiλ + βiλ + |HSj | − |HSλ |. However,
αiλ + βiλ = 0, since d̂(Si, Sλ) = ∞. Thus, we have αij + βij < |HSj | − |HSλ |.
But, |HSj | − |HSλ | ≥ N = (r − 1)(2αmax + βmax) + 1 + c > αmax + βmax =
max(i,j)∈{1,...,r}2 {αij + βij}. Therefore, uij2 > uiλ2 .

ii. ujj
′

2 > ujλ2 : Replace in the previous analysis i with j, and j with j′.

iii. uλ
′j

2 > uλ
′λ

2 : Equivalently we write αλ′j +βjλ′ < αλ′λ+βλλ′ + |HSj |− |HSλ |. However,
αλ′j + βjλ′ = 0, since d̂(Sj , Sλ′) =∞. Thus, we have αλ′λ + βλλ′ + |HSj | − |HSλ | > 0,
which always holds, and the proof is completed.

Thereby, the set
{
Sj , Sj′

}
strictly component-wise dominates Sλ.

Now, let µ ∈ {r + 1, . . . , |V |}, while (i, j) ∈ {1, . . . , r}2, i 6= j. We can limit our
analysis, from the Player’s 1 perspective, to the following part of the game matrix:

S1 · · · Sj · · · Sr

Si ui11 · · · uij1 · · · uir1
...

... . . . ... . . . ...
Sµ uµ1

1 · · · uµj1 · · · uir1

It is uµj1 ≤ |HSµ |. On the other hand, it is ujj1 = |HSj | ≥ N + |HSµ | > |HSµ |, since
(Sj , rYj ) ∈ E. Thereby, ujj1 > uµj1 , and as a result {Si}i∈{1,...,r} strictly component-wise
dominates {Si}i∈{r+1,...,|V |}.

The fact completes our proof.

Remark 3. Assuming that nY >> N , and since N = O(r2), PGin (PGout) and Pin (Pout)
can be considered essentially the same.

6.4 Generalized ordinal potentials

In this section, we first propose necessary and/or sufficient conditions for the existence
of a generalized ordinal potential over a game (N ,M = {1, 2} , k) — conditions that also
involve the underlying structure of the social network N . Next, we continue with certain
classes of networks that induce a 2-player game that admits a generalized ordinal potential.

At this point, recall that if a game admits a generalized ordinal potential, then it has
at least one PSNE. Therefore, we target to classify games that has a PSNE by identifying
if they admit a generalized ordinal potential.
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We note that although the following unfold over the whole game matrix Π, similarly we
could consider the existence of a generalized ordinal potential only within the restriction
Π(SD,SD), where SD is the set of strictly component-wise undominated strategies. The
main reason for such a direction is to avoid taking into consideration relative small areas
in the social network that, on the one hand, generate improvement cycles, and, on the
other hand, they are actually never played by any of the players. A representative example
follows [Example 8].

Remark 4. We may interpret the results of this section not with regard to the standard
generalized ordinal potential for better response paths, but for best response paths [V00].

Example 8. Consider the game (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M =
{1, 2} , k = 1) over the social network in Figure 6.6: As ni, ∀i ∈ {1, . . . , 5}, and as ai,
∀i ∈ {1, . . . , 200} we denote single nodes. Further, we assume that all of them have
threshold 1. Moreover,all the edges are annotated with their corresponding weight with
regard to the LTM.

n1 n2

a1 · · · a100 a101 · · · a200

n3 n4

n5

1
��

1
��

1
��

1
��

1 **

1zz1

RR

Figure 6.6: Social network for Example 8.

Evidently, over the game matrix Π [Table 6.1] there is no generalized ordinal potential,
due to the clique of nodes n3, n4, and n5. On the other hand, any player would never
play n3, n4, and n5, in comparison to n1, n2. Therefore, we prefer to restrict our analysis
in Π({n1, n2} , {n1, n2}) for the existence of a generalized ordinal potential, as we would
restrict our analysis in Π({n1, n2} , {n1, n2}) if we were interested on a generalized ordinal
potential not for better response paths, but for best response paths.

n1 n2 n3 n4 n5

n1 101,0 101,101 101,3 101,3 101,3
n2 101,101 101,0 101,3 101,3 101,3
n3 3,101 3,101 3,0 1,2 2,1
n4 3,101 3,101 2,1 3,0 1,2
n5 3,101 3,101 1,1 2,1 3,0

Table 6.1: The game matrix for the game (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k =
1) over the social network in Figure 6.6.

Lemma 4 (Necessary conditions for the existence of a generalized ordinal po-
tential). Let {Si}i∈{1,...,|S|} be the set of strategies of a game (N = (G, LIS, TBC1 =
R≺, TBC2),M = {1, 2} , k). Then, Γ cannot admit a generalized ordinal potential if
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i. ∃(i, j) ∈ {1, . . . , |S|}2, i 6= j, such that Sj is reachable from Si, and Si is reachable
from Sj.

ii. ∃(i, j) ∈ {1, . . . , |S|}2, i 6= j, such that |HSi | = |HSj |.

iii. ∃(i, j) ∈ {1, . . . , |S|}2, i 6= j, such that |HSi | > |HSj |, and u1(Si, Sj) < |HSj |.

Proof. For the following proof, recall that given a strategy profile s = (Sx, Sy) ∈ S2,
(x, y) ∈ {1, . . . , |S|}2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy), ∀i ∈
M = {1, 2}[4.2].

We treat only the first and the third case. The proofs for the second case is similar.
For the first case, let (i, j) ∈ {1, . . . , |S|}2 such that Sj is reachable from Si, and Si is

reachable from Sj . Then, we deduce HSi = HSj . Consequently, it is also |HSi | = |HSj | =:
N . Now, consider the following part of the game matrix:

Si Sj

Si N, 0 uij1 , u
ij
2

Sj uji1 , u
ij
2 N, 0

From Player’s 1 perspective, it is uij1 < |HSi | = N , and similarly for uji1 . From
Player’s 2 perspective, it is uij2 > 0 and, similarly for uij2 . Therefore, when Sj is reachable
from Si, and Si is reachable from Sj there is an improvement cycle. Thus, a generalized
ordinal potential cannot exist.

For the third case, consider the following part of the game matrix:

Si Sj

Si |HSi |, 0 uij1 , u
ij
2

Sj uji1 , u
ij
2 |HSj |, 0

It is uji1 ≤ |HSj | < |HSi |. Thus, if uij1 < |HSj | there is an improvement cycle. The fact
completes our proof.

The following corollary, provides one more sufficient condition for the special case
where k = 1, and follows from Lemma 4(i). When k = 1, a player has to pick a single
node. Then the only reasonable strategies are the nodes u for which there exists at least
one edge (u, v) such that wuv ≥ θv.

Corollary 2. If the game ((G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k = 1)
admits a generalized ordinal potential, then

1. the graph contains a DAG that includes the set {u|∃v ∈ V, v 6= u, such that wuv ≥ θv}.

2. if wuv ≥ θv for every edge (u, v) ∈ E, then G has to be a DAG.

Next, we prove a set of sufficient conditions, useful for the proof of Theorem 5.
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Lemma 5 (Sufficient conditions for u1(S1, S2) ≥ u1(S′1, S2), S1 6= S′1, and u2(S1, S2) ≥
u2(S1, S

′
2), S2 6= S′2). Consider a game Γ = ((G, LIS, TBC1 = R≺, TBC2),M = {1, 2} , k),

and that (S1, S
′
1, S2, S

′
2) ∈ S4, for S1 6= S′1 and S2 6= S′2. If |HS1 | ≥ |HS′1

| + |HS2 | +
γ1(S1, S2), then u1(S1, S2) ≥ u1(S′1, S2), and if |HS2 | ≥ |HS′2

| + |HS1 | + γ2(S1, S2), then
u2(S1, S2) ≥ u2(S1, S

′
2).

Proof. For the following proof, given a strategy profile s = (S1, S2) ∈ S, we denote the
players’ utilities as u12

i , instead of ui(S1, S2), ∀i ∈M = {1, 2}.
Let S1 6= S′1, and consider the following part of the game matrix, from Player’s 1

perspective:

S2

S1 u12
1

S′1 u1′2
1

It is u12
1 ∈ {max {0, |HS1 | − |HS2 | − γ1(S1, S2)} , . . . , |HS1 |}. The lower bound is ob-

tainable if Player 2, by playing S2, colors the whole region HS2 , even if Player 1 plays
S1. On the other hand, the upper bound is achievable when Player 1, by playing S2,
colors the whole region HS1 , regardless the fact that Player 2 plays S2. Similarly, it is
u1′2

1 ∈
{
max

{
0, |HS′1

| − |HS2 | − γ1(S′1, S2)
}
, . . . , |HS′1

|
}

. Now, assume |HS1 | − |HS2 | −
γ1(S1, S2) ≥ |HS′1

|, i.e., |HS1 | ≥ |HS′1
|+ |HS2 |+ γ1(S1, S2). Then, u12

1 ≥ u1′2
1 .

Now, let S2 6= S′2, and consider the following part of the game matrix, from Player’s
2— perspective:

S2 S′2

S1 u12
2 u12′

2

It is u12
2 ∈ {max {0, |HS2 | − |HS1 | − γ2(S1, S2)} , . . . , |HS2 |}. Similarly for u12′

2 . Now,
assume |HS2 | − |HS1 | − γ2(S1, S2) ≥ |HS′2

|, i.e., |HS2 | ≥ |HS′2
|+ |HS1 |+ γ2(S1, S2). Then,

u12
2 ≥ u12′

2 , and the proof is completed.

Through the next example we present the basic intuition behind Theorem 5.

Example 9 (Introductory example for Theorem 5). Consider a game Γ = (N =
(G, LIS, TBC1 = R≺, TBC2),M = {1, 2} , k = 1) over the following social network: As
ni, ∀i ∈ {1, . . . , 5}, we denote single nodes. Further, we assume that all of them have
threshold 1. Moreover, the edges (ni, nj), where i, j ∈ {1, . . . , 5}, are annotated with their
corresponding weight with regard to the LTM.

n1

n2 n3

n4 n5

1
��

1
��

1
��

1
��
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Next, verify that |HSn1
| = 5, whereas |HSn2

| = 3. Now, observe that |HSn2
| >

|HSn1
|/2, and as a result |HSn2

| = 3 > |HSn1
| − |HSn2

| = 2. Therefore, if Player 1
initiates node n1, and Player 2 node n2, then the latter player will eventually achieve a
higher payoff than the former. On the other hand, if Player 1 initiates n2, then Player
2 would prefer to initiate n1. And then, Player 1 would prefer again to play n1, and so
forth.

In other words, this game does not admit a generalized ordinal potential since the
strategy with the second highest ideal spread can first infect more than half the number
of nodes that the strategy with the highest ideal spread also can.

Next, we have the following related theorem.

Theorem 5 (Sufficient condition for the existence of a generalized ordinal po-
tential). Consider a game ((G, LIS, TBC1 = R≺, TBC2),M = {1, 2} , k). If there is an
ordering of the available strategies

{
S1, . . . , S|S|

}
, such that for all i

|HSi+1 | ≤
b|HSi |+max {γ1(Si, Si+1), γ2(Si, Si+1)}c

2 ,

the game admits a generalized ordinal potential. Moreover, all its PSNE have the form
(Smax, S2), where Smax ≡ argmaxS∈S {|HS |}.

Proof. For the following proof, given a strategy profile s = (Sx, Sy) ∈ S2, (x, y) ∈
{1, . . . , |S|}2, we denote the players’ utilities as uxyi , instead of ui(Sx, Sy), ∀i ∈M = {1, 2}.

Moreover, we assume for simplicity that |HS |+max {γ1(S, Y ), γ2(Y, S)} is even, ∀(S, Y ) ∈
S2.

Assume (i, i′, j) ∈ {1, . . . , |S|}3, and set j > i′ > i. We shall compare uij1 and ui
′j

1 :
Based on the hypothesis, and the assumption that j > i′ > i, it is |HSi | ≥ 2(|HSi+1 | +
γ1(Si, Si+1)) > |HSj |+γ1(Si, Sj)+ |HSi′ |+γ1(Si, S′i) > |HSj |+ |HSi′ |+γ1(Si, Sj). Thereby,
uij1 > ui

′j
1 , according to Lemma 5.

Now, set j = i′ > i. We shall compare uij1 and ujj1 : It is |HSi | ≥ 2(|HSi+1 | +
γ1(Si, Si+1)) ≥ |HSj | + |HSj | + γ1(Si, Sj). Thus, uij1 ≥ ujj1 . However, it also is ujj2 = 0,
therefore the strategy profile (Sj , Sj) cannot be a PSNE.

In sum, Player 1, from any strategy profile (Si′ , Sj) such that i′ < j, can deviate to
any strategy profile (Si, Sj), i < i′, and increase his utility.

Similarly, we can prove that Player 2, from any strategy profile (Si, Sj′) such that
j′ ≤ i, can deviate to any strategy profile (Si, Sj), j < j′, and increase his utility.

Now, due to the previous discussion no improvement cycles exist — i.e., a generalized
ordinal potential exists [MS96, VN97] — and the candidate sets of strategy profiles, where
a PSNE can exist, are the

1. (S1, Sj), ∀j ∈ {2, . . . , |S|}, (for j = 1 it is u11
2 = 0), and

2. (Si, S1), ∀i ∈ {1, . . . , |S|}. However, u11
1 = |HS1 | > ui11 , ∀i ∈ {2, . . . , |S|}, since

ui11 ≤ |HSi |, and |HSi | < |HS1 | from the hypothesis.
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Thereby, all PSNE have the form (Smax, Sj), and our proof is completed.

Example 10. Let a game (N = (G, LIS = LTM(wuv ≥ θv,∀(u, v) ∈ E), TBC1 = R≺, TBC2 =
R≺),M = {1, 2} , k = 1), where G is a DAG such that ∀k ∈ V it is doutk = d, d ∈ Z≥2.
Then, this game admits a generalized ordinal potential function, and all PSNEs have the
form (Smax, Sj), where Smax := argmaxS∈S {|HS |}, and Sj ∈ S \ {Smax}.

Sketch of Proof. It follows from Theorem 5.

In the following example, we present a game (N = (G, LIS = LTM(wuv ≥ θv, ∀(u, v) ∈
E), TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k = 1), where G is a DAG such that ∀k ∈ V it
is doutk = 1, that has no PSNEs, and as a result, it does not admit a generalized ordinal
potential.

Example 5. Consider the game (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M =
{1, 2} , k = 1) over the following social network: As ni, ∀i ∈ {1, 2, 3}, we denote single
nodes. Further, we assume that all of them have threshold 1. Moreover, the edges (ni, nj),
where i, j ∈ {1, . . . , 5}, are annotated with their corresponding weight with regard to the
LTM.

n1 n2 n3
1 // 1 //

Then, the induced game matrix is:

Sn1 Sn2 Sn3

Sn1 3,0 1,2 2,1
Sn2 2,1 2,0 1,1
Sn3 1,2 1,1 1,0

Evidently, there is no PSNE, and as a result no generalized ordinal potential.

We end the section with some necessary and sufficient conditions for the existence of a
generalized ordinal potential over games (N = (G, LIS, TBC1 = R≺, TBC2),M = {1, 2} , k)
that have symmetric game matrices.

Theorem 6 (Necessary and sufficient conditions for the existence of a gener-
alized ordinal potential over symmetric games). A game (N = (G, LIS, TBC1 =
R≺, TBC2),M = {1, 2} , k) that has a symmetric game matrix admits a generalized ordi-
nal potential if and only if it is u1(Si, Sj) ≥ u1(S′i, Sj), ∀(i, i′, j) ∈ {1, . . . , |S|}3, such
that |HSi | ≥ |HSi′ |. Moreover, all PSNEs have the form (Smax, Sj), where Smax :=
argmaxS∈S {|HS |}, and Sj ∈ S \ {Smax}.

Proof. For the following proof, recall that given a strategy profile s = (S1, S2) ∈ S, we
denote the players’ utilities as u12

i , instead of ui(S1, S2), ∀i ∈M = {1, 2}[4.2].
Without loss of generality, consider the following part of the game matrix, where

|HS1 | ≥ |HS2 | ≥ |HS3 |:
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S1 S2 S3

S1 |HS1 |, 0 u12
1 , u

21
1 u13

1 , u
31
1

S2 u21
1 , u

12
1 |HS2 |, 0 u23

1 , u
32
1

S3 u31
1 , u

31
1 u32

1 , u
23
1 |HS3 |, 0

In the first place, in order for a generalized ordinal potential to exist, the condition
(iii.) of Lemma 4 must hold: Therefore, u12

1 ≥ |HS2 |, u13
1 ≥ |HS3 | and u23

1 ≥ |HS3 | (on the
other hand u21

1 < |HS2 | ≤ |HS1 |, and similarly u31
1 < |HS1 |, u32

1 < |HS2 |). Moreover, u12
1 ≥

|HS2 | ≥ |HS3 | > u32
1 , and similarly for the other cases. Thus, u12

1 > u32
1 . Consequently,

if it is u13
1 < u23

1 , the condition (iv.) of Lemma 4 cannot hold, and a generalized ordinal
potential cannot exist.

6.5 ε-generalized ordinal potentials

We move on to approximate ε-generalized ordinal potentials, as a method of measuring
the “instability” of the games in question — the larger the parameter ε is, the more
“unstable” the game can be characterized. Therefore, recall that we shall characterize a
game Γ that admits an ε-generalized ordinal potential as ε-unstable [4.2].

We first obtain such a potential function for games that have diffusion depth D = 1,
based on the ideal spread of a player’s strategy.

Theorem 7. Any game Γ = ((G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), where
D(Γ) = 1, admits the function P (s) = (1 + βmax + γmax)|HS1 | + |HS2 | − β2(s) − γ2(s),
∀s = (S1, S2) ∈ S2, as a k-generalized ordinal potential. Moreover, a k-PSNE can be
computed in polynomial time.

Proof. Firstly, assume (S1, S
′
1, S2, S

′
2) ∈ S4, where S1 6= S′1, and S2 6= S′2, and set s =

(S1, S2). Now, let Player 1 diverge from S1 to a better strategy S′1. Specifically, set
s′ = (S′1, S2), and let K1 ≥ k + 1 be the increasing step, such that

u1(s′) = u1(s) +K1 ⇔

|HS′1
| − |S2 ∩ (HS′1

\ S′1)| = |HS1 | − |S2 ∩ (HS1 \ S1)|+K1 ⇒

|HS′1
| ≥ |HS1 |+ 1,

since |HS′1
| − |S2 ∩ (HS′1

\ S′1)| ≤ |HS′1
|, and K1 − |S2 ∩ (HS1 \ S1)| ≥ 1. Moreover,

β2(s′) + γ2(s′) ≤ βmax + γmax + β2(s) + γ2(s). Therefore, after substitution we get:

P (s′) = (1 + βmax + γmax)|HS′1
|+ |HS2 | − β2(s′)− γ2(s′)

≥ (1 + βmax + γmax)|HS1 |+ 1 + βmax + γmax + |HS2 | − β2(s)− γ2(s)− βmax − γmax
> P (s).

Now, let Player 2 diverge from S2 to a better strategy S′2. Specifically, set s′ = (S1, S
′
2),
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and let K2 ≥ k + 1 be the increasing step, so that

u2(s′) = u2(s) +K2 ⇔

|HS′2
| − α2(s′)− β2(s′)− γ2(s′) = |HS2 | − α2(s)− β2(s)− γ2(s) +K2 ⇒

|HS′2
| − β2(s′)− γ2(s′) ≥ |HS2 | − β2(s)− γ2(s) + 1,

since K2 + α2(s′)− α2(s) ≥ 1. Therefore,

P (s′) = (1 + βmax + γmax)|HS1 |+ |HS′2
| − β2(s′)− γ2(s′)

≥ (1 + βmax + γmax)|HS1 |+ |HS2 | − β2(s)− γ2(s) + 1

> P (s).

Example 11 (Approximation ε = k in Theorem 7 is tight). Consider the game
((G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), where D = 1, over the social
network in Figure 6.7, where we have assumed without loss of generality that |V | = 2,
and k = 1 (generally, we could consider a clique of |V | = 2k nodes, where k ≥ 1, and such
that wuv = θv, ∀(u, v) ∈ E, with regard to the LTM). Then, the induced game matrix is
as in Table 6.2; evidently, there is no PSNE; nevertheless, the game has a 1-generalized
ordinal potential.

n1 n2

θn2 **

θn1

jj

Figure 6.7: Tight example for Theorem 7: The
edges are annotated with their corresponding
weight with regard to the LTM.

n1 n2

n1 2,0 1,1
n2 1,1 2,0

Table 6.2: The game matrix for the game
(N ,M, k = 1), where the social network N is as in
Figure 6.7.

Next, we turn our attention to the games Γ = (N = (G, LIS, TBC1 = R≺, TBC2 =
R≺),M = {1, 2} , k), where D ≥ 2.

For games with higher diffusion depth, we define below an important parameter that
captures the quality of approximation we can achieve via ε-generalized ordinal potentials.

Definition 10. 1. Given a 2-player game, and two strategy profiles s = (S1, S2), s′ =
(S′1, S2), the diffusion collision factor of player 1 for strategy S′1 compared to S1,
given S2, is defined as DC1(S′1, S1|S2) ≡ (α1(s′) + γ1(s′))− (α1(s) + γ1(s)).

2. Similarly, for two strategy profiles s = (S1, S2), s′ = (S1, S
′
2), the diffusion collision

factor of Player 2 for S′2 compared to S2 compared to S1 is defined asDC2(S′2, S2|S1) ≡
(α2(s′) + γ2(s′))− (α2(s) + γ2(s)).

Evidently, the diffusion collision factor of any player is a non-symmetric function.
Moreover, for i ∈ {1, 2}, we denote as DCi,max the maximum diffusion collision factor
that can be achieved by player i over all his strategy pairs. Also, we set DCmax =
max{DC1,max, DC2,max}.
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Theorem 8. Any game Γ = ((G, LIS, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), where
D(Γ) ≥ 2, admits the function P (s) = x1|HS1 | + |HS2 | − β2(s), ∀s = (S1, S2) ∈ S2, as a
DCmax-generalized ordinal potential, where x1 is any number satisfying x1 > βmax.

Proof. Firstly, assume (S1, S
′
1, S2, S

′
2) ∈ S4, where S1 6= S′1, and S2 6= S′2, and set s =

(S1, S2). Now, let Player 1 diverge from S1 to a better strategy S′1. Specifically, set
s′ = (S′1, S2), and let K1 ≥ DCmax + 1 such that

u1(s′) = u1(s) +K1 ⇔

|HS′1
| = |HS1 |+ (α1(s′) + γ1(s′))− (α1(s) + γ1(s)) +K1 ⇒

|HS′1
| ≥ |HS1 |+ 1,

since K1 ≥ DCmax + 1. Moreover, β2(s′) ≤ βmax + β2(s). Therefore,

P (s′) = x1|HS′1
|+ |HS2 | − β2(s′)

≥ x1|HS1 |+ x1 + |HS2 | − β2(s)− βmax
> P (s).

Now, let Player 2 diverge from S2 to a better strategy S′2. Specifically, set s′ = (S1, S
′
2),

and let K2 ≥ DCmax + 1 such that

u2(s′) = u2(s′) +K2 ⇔

|HS′2
| − α2(s′)− β2(s′)− γ2(s′) = |HS2 | − α2(s)− β2(s)− γ2(s) +K2 ⇒

|HS′2
| − β2(s′) ≥ |HS2 | − β2(s) + 1,

since K2 ≥ DCmax + 1. Therefore,

P (s′) = x1|HS1 |+ |HS′2
| − β2(s′)

≥ x1|HS1 |+ |HS2 | − β2(s) + 1

> P (s).

Example 12 (Approximation DCmax in Theorem 8 is tight). Consider the game
((G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k), such that D = 2, over the social
network in Figure 6.8, where we have assumed without loss of generality that |V | = 3,
and k = 1 (for the description of the general case, see below). Then, the induced game
matrix is as in Table 6.3; evidently, there is no PSNE; nevertheless, the game has an ε-
generalized ordinal potential only if ε = DCmax = 2 (for s = (n2, n2), and s′ = (n1, n2), it
is DCmax = DC1(n1, n2|n2) = (α1(s′)+γ1(s′))− (α1(s)+γ1(s)) = 2, since it is α1(s′) = 2,
and α1(s) = γ1(s′) = γ1(s) = 0).
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n1 n2

n3

θn2 **

θn3zzθn1

RR

Figure 6.8: Tight example for Theorem 8: The
edges are annotated with their corresponding
weight with regard to the LTM.

n1 n2 n3

n1 3,0 1,2 2,1
n2 2,1 3,0 1,2
n3 1,2 2,1 3,0

Table 6.3: The game matrix for the game
(N ,M, k = 1), where the social network N is as in
Figure 6.8.

Generally, we could consider a social network similar to the one in Figure 6.8, where
the nodes n1, n2, and n3 are replaced by the sets of k nodes S1, S2, and S3, respectively,
and the edges (n1, n2), (n2, n3), and (n3, n1), with the following: For i ∈ {1, 2, 3}, and
j = (i mod 3) + 1, we consider ∀vi ∈ Si, ∀vj ∈ Sj , that wvivj = θvj/k — i.e., only if all
the nodes in Si are colored by a unique color, they can infect any node in Sj . Moreover,
no other edges exist in the network.

6.6 Special Case: Diffusion Depth, and Maximum Strate-
gies’ Cardinality One

In this section, motivated by recent empirical studies over the underlying structure of
real-world recommendation networks [LSK06, LAH07, LMFGH07] [2.7], we consider the
games (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k = 1), where D = 1
— i.e., games where both D, and k equal one.

Although these games are apparently simple, several examples exist with no PSNE:
For example, the clique in Example 3, Section 5.1. On the other hand, given such a game,
it is easy to decide whether a PSNE exists — O(n2).

Finally, observe that according to Lemma 3, the games (N = (G, LIS = LTM, TBC1 =
R≺, TBC2 = R≺),M = {1, 2} , k > 1), where D = 1, are essentially equivalent to games
where D ≥ 2, and k = 1.

6.6.1 Underlying network structure

We restrict our analysis over a weakly connected component of G. Evidently, because
the diffusion diameter, as well as, the parameter k are equal to one, we assume LTM(wvu ≥
θu, ∀(v, u) ∈ E), without loss of generality.

Next, we consider a weakly connected component ∆ of graph G, and some node v ∈ V
such that doutv ≥ 1. Then, we distinguish between the following:

1. No other node u ∈ ∆ has doutu ≥ 1 [Figure 6.9]: As a result, the component is like a
star with center node the node v: ∀u ∈ ∆, where u 6= v, it is (v, u) ∈ E.

2. There exists at least one additional node u ∈ ∆, u 6= v, that has doutu ≥ 1: We sepa-
rate further our analysis: Specifically, for each such pair of nodes u, v we consider the
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Figure 6.9: A weakly connected component ∆ with only one node v such that doutv ≥ 1.

connections between u, v and their out-neighbors, i.e., the nodes that they influence:

i. (v, u) /∈ E, and (u, v) /∈ E [Figure 6.10]. Therefore, the component has at least
two stars — one for each node with out-degree more than one. Moreover, due to
the connectivity of ∆, these stars must share with each other at least one leaf:
For example, in Figure 6.10 the node n5 is a shared leaf.
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Figure 6.10: A weakly connected component ∆ with two nodes v, u such that (v, u), (u, v) /∈ E, and
doutv ≥ 1, and doutu ≥ 1: v, u must share at least one of their leaves n1, . . . , n15 — here only the n5.

ii. (v, u) ∈ E, whereas (u, v) /∈ E [Figure 6.11]. Now, since D = 1, node v must
have out-going edges to all the nodes that u also has.
Note that |Hu \ {u} | ≥ 1, since u has at least one out-going edge; therefore,
|Hv \ {v} | ≥ 2, since v points not only to u, but also to each node that u does.
Generally, (recall that v ∈ Hv by definition),

Hu \ {u} ⊆ Hv ⇒

|Hu| ≥ |Hv|+ 1
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Figure 6.11: A weakly connected component ∆ with two nodes v, u such that (v, u) ∈ E, (u, v) /∈ E, and
doutv ≥ 1, and doutu ≥ 1: v must have out-going edges to all the nodes that u also has.
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iii. (v, u) /∈ E, whereas (u, v) ∈ E. This case is symmetric to the previous one.

iv. (v, u) ∈ E, and (u, v) ∈ E [Figure 6.12]. By combining the two previous cases,
it is

N := |Hu| = |Hv|.

We note that the induced game matrix between the two corresponding strategies
Sv, and Su is

Sv Su

Sv N, 0 N − 1, 1
Su N − 1, 1 N, 0

Evidently, an improvement cycle exists.

6.6.2 Game characterization

For our purposes, we assume that the set of available strategies S for the two players
in M constitutes from all the nodes v ∈ V such that doutv ≥ 1 — i.e., we associate with
each such v a strategy Sv. In other words, we ignore any weakly dominated strategies
that correspond to leaves-nodes, i.e., nodes with out-degree zero. Finally, we note that we
shall refer to strategy Sv, and node v interchangeably.

In the following lemma, we consider a class of games where {Sv}∩I1
Su

= ∅, ∀(v, u) ∈ V 2,
while u 6= v: Particularly, this assumption states that in the involved network do not exist
any nodes (u, v) ∈ V 2 such that doutv , doutu ≥ 1, and (u, v) ∈ E, or (v, u) ∈ E.

Lemma 6. Consider a game Γ = (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺), M =
{1, 2} , k = 1), where D = 1, and {Sv} ∩ I1

Su
= ∅, ∀(v, u) ∈ V 2, where u 6= v. Then,

Γ admits a generalized ordinal potential P (s) = (1 + |V |)|HS1 | + |HS2 | − |HS1 ∩ HS2 |,
∀s = (S1, S2) ∈ S2. Moreover, all PSNEs have the form (Smax, Sj), where Smax :=
argmaxS∈S {|HS |}, and Sj ∈ S \ {Smax}.

Proof. In the first place, observe that under the hypothesis that {Sv} ∩ I1
Su

= ∅, ∀(v, u) ∈
V 2, where u 6= v, the player’s utilities [Lemma 1] can be written as follows, given a strategy

v u

n1

n2

**jj
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Figure 6.12: A weakly connected component ∆ with two nodes v, u such that (v, u), (u, v) ∈ E, and
doutv ≥ 1, and doutu ≥ 1: v must have out-going edges to all the nodes that u also has, and similarly, u must
have out-going edges to all the nodes that v also has.
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profile s ∈ S2:

u1(s) = |HS1 | (6.5)

u2(s) = |HS2 | − |HS1 ∩HS′2
| (6.6)

Now, assume (S1, S
′
1, S2, S

′
2) ∈ S4, where S1 6= S′1, and S2 6= S′2. Now, let Player 1

diverge from S1 to a better strategy S′1. Specifically, set s′ = (S′1, S2), recall that | {S2} ∩
I1
S1
| = | {S2} ∩ I1

S′1
| = 0 from the hypothesis, and let K1 ≥ 1 be the increasing step such

that

u1(s′) = u1(s) +K1 ⇒

|HS′1
| = |HS1 |+K1 ⇒

|HS′1
| ≥ |HS1 |+ 1.

In other words, whenever Player 1 digresses to a better strategy S′1, it increases its ideal
cumulative spread |HS′1

|. Moreover, |HS′1
∩HS2 | ≤ |HS1 ∩HS2 |+ |V |. Therefore,

P (s′) = |V ||HS′1
|+ |HS′1

|+ |HS2 | − |HS′1
∩HS2 |

≥ |V ||HS1 |+ |V |+ |HS1 |+ 1 + |HS2 | − |HS1 ∩HS2 | − |V |

> P (s).

Now, let Player 2 diverge from S2 to a better strategy S′2. Specifically, set s′ =
(S1, S

′
2), recall that | {S2} ∩ I1

S1
| = | {S′2} ∩ I1

S1
| = 0 from the hypothesis, and let K2 ≥ 1

be the increasing step such that

u2(s′) = u2(s) +K2 ⇒

|HS′2
| − |HS1 ∩HS′2

| = |HS2 | − |HS1 ∩HS2 |+K2 ⇒

|HS′2
| − |HS1 ∩HS′2

| ≥ |HS2 | − |HS1 ∩HS2 |+ 1.

Moreover, |HS′1
∩HS2 | ≤ |HS1 ∩HS2 |+ |V |. Therefore,

P (s′) = |V ||HS1 |+ |HS1 |+ |HS′2
| − |HS1 ∩HS′2

|

≥ |V ||HS1 |+ |HS1 |+ |HS2 | − |HS1 ∩HS2 |+ 1

> P (s).

At this point, recall that |Hmax| := maxS∈S {|HS |}.

Theorem 9. For a game (N = (G, LIS = LTM, TBC1 = R≺, TBC2 = R≺),M = {1, 2} , k =
1), where D = 1, either

i. all its PSNEs have the form (Smax, Sj), where Smax := argmaxS∈S {|HS |}, and Sj ∈
S \ {Smax}, or

ii. it has no PSNE.
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Additionally, it always admits a 1-generalized ordinal potential [Theorem 7].

Proof. Recall that the players’ set of available strategies constitutes from all the nodes
v ∈ V such that doutv ≥ 1. Therefore, instead of (v, u) ∈ E, we shall write (Sv, u) to denote
the out-going edge from a node v, that has doutv ≥ 1, to a node u ∈ V , u 6= v.

In the following, we assume that the strategy Sv ∈ V — associated with node v ∈ V
— achieves the maximum ideal spread |Hmax|.

i. Assume that {Si}∩I1
Sj
,∀(i, j) ∈ V 2: Then, according to Lemma 6, the game Γ admits

a generalized ordinal potential.

ii. Assume that exists at least one pair (Sv, Su) ∈ V 2 such that (Sv, Su) ∈ E, and
(Su, Sv) /∈ E: Then @k ∈ V such that (Sk, Sv) ∈ E if also (Sv, Sk) /∈ E, since
that would imply |HSk | > |HSv | = |Hmax| (recall that the assumption D = 1 implies
that k connects to all the out-neighbors of v if (Sk, Sv) ∈ E), which contradicts our
assumption that |HSv | = |Hmax| . We have the following further cases:

(a) Assume that ∃k ∈ V, (Sv, Sk) ∈ E, and (Sk, Sv) /∈ E: Then |HSv | > |HSk |.
Assume that Player 2 plays Sk, and let Player 1 play Sv. Then, Player 1
shall have utility u1(Sv, Sk) = |Hmax|−1, and Player 2 a utility u2(Sv, Sk) = 1.
Now, if Player 2 does not have a better strategy to diverge to, then the strategy
profile (Sv, Sk) is a PSNE.
On the other hand, if Player 2 has an alternative S to play, then he will always
obtain a utility greater, or equal to one, while Player 1 will obtain, by playing
Sv, a utility u1(Sv, S) = |Hmax|, if S /∈ HSv , or u1(Sv, S) = |Hmax| − 1, if
S ∈ HSv . Particularly, Player 2 can obtain a higher utility only if there is a
strategy S such that (Sv, S) /∈ E, which means that the utility of Player 1 will
then be |Hmax|, and that the strategy profile (Sv, S) is a PSNE.
Next, assume that Player 2 prefers to play Sk, given that Player 1 plays Sv,
and that Player 1 has an alternative strategy S′v 6= Sv, that gives him utility
u1(S′v, Sk) = |Hmax|. However, that means that k /∈ HS′v , or else it would be
|HS′v | = |Hmax|+ 1: contradiction. Therefore, there exists a node b ∈ HS′v , that
it is not in HSv , such that u1(S′v, Sk) can be equal to |Hmax|. Next observe that
v /∈ HS′v , or else it must be k ∈ HSv , due to the fact that D = 1. As a result,
given that Player 1 plays strategy Sv (and not the alternative S′v), if Player 2
picks S′v, then Player 1 obtains a utility |Hmax|, and Player 2 a utility of at
least 2, since he infects the nodes v′, and b: a contradiction. Hence, the strategy
profile (Sv, Sk) is a PSNE.

(b) Assume (Sv, Sk) ∈ E, and (Sk, Sv) ∈ E. Then, it is also |HSk | = |Hmax|. The
proof is similar to the previous case.



Chapter 7

Quantifying Inefficiency

In the section we first study the price of anarchy and stability of the games (N ,M, k),
and then, after of Theorem 12(ii), we propose a new measurement that we call “price of
oligopoly”.

7.1 Price of Anarchy and Stability

We focus our attention on the price of anarchy and stability of the games (N ,M, k).
In the first place, concerning their price of anarchy, it is

1 ≤ price of anarchy ≤ |V |
mk

Therefore, we set PoAmax := |V |/(mK). Similarly, concerning their price of stability, it
is

1 ≤ price of stability ≤ price of anarchy.

We have the following theorems.

Theorem 10. The price of anarchy for the games (N = (G, LIS = LTM, TBC1 = R≺,

TBC2 = R≺),M, k) can be PoAmax, even if the price of stability is one.

Proof. We construct a social network such that the induced game over it has price of
anarchy PoAmax = |V |/(mK), and price of stability 1. Specifically, we consider the social
network in Figure 7.1: As V we assume the union of following sets of nodes: X0 ∪X1 ∪
. . . ∪Xm−1 ∪Xr, where |X0| = |X1| = . . . = |Xm−1| = k. Moreover, as E we assume the
union of following sets of edges:

i. ∀u ∈ X0,∀v ∈ X1 ∪ . . . ∪Xm−1 there is an edge (u, v) with w′uv = 1/k.

ii. ∀u ∈ X1 ∪ . . . ∪Xm−1, ∀v ∈ Xr there is an edge (u, v) with w′uv = 1/ [(m− 1) k].

Furthermore, in Figure 7.1, the edges (X0, Xi), where i ∈ {1, . . . ,m− 1}, are annotated
with the accumulated corresponding weight of the underlying edges between each of the
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Figure 7.1: The social network for the proof of Theorem 10 (i ∈ {2, . . . ,m− 2}).

nodes in X0 and each of the nodes in Xi, and with regard to the LTM. In other words, X0

accumulatively points with weight 1 to each node in Xi. Similarly, for the edges (Xi, Xr).
Additionally, all nodes in V are assumed to have threshold 1.
Thereby, only if the entire set X0 is uniquely colored by a single firm it can color all

the nodes in each of the Xi, i ∈ {1, . . . ,m− 1}. On the other hand, X0 cannot color any
other node in V . Additionally, only if the entire X1 ∪ . . . ∪Xm−1 area is uniquely colored
it can color Xr. Nevertheless, it cannot color any other subset of the graph.

Furthermore, the maximal social welfare of the induced game is exactly |V |. Specif-
ically, given i ∈ M, for any strategy profile (Si, S−i) ∈ Sm, such that Si = X0, and
Sj ⊂ Xr, ∀j ∈M \ {i}, player i colors initially X0, then X1 ∪ . . . ∪Xm−1 and afterwards
Xr \

⋃
j∈M\{i} Sj . Thereby, the whole network is eventually colored, and a maximal social

welfare is obtained.
Also, the lowest social welfare is obtained for the PSNE where the firm associated

with the best quality product, according to R≺, picks the area X0 as its strategy, and the
remaining m− 1 players pick the areas X1, . . . , Xm−1. Moreover, this lowest value is mK,
and as a result the price of anarchy for the involved game is |V |/(mK).

On the other hand, the highest social welfare is also obtained for the equilibrium
where the firm associated with the best quality product, according to R≺, picks X0, and
the remaining m − 1 players pick any of the mutual exclusive subsets of Xr. This best
value is |V |, and as a result the price of stability for the involved game is 1.

The previous facts complete our proof.

Theorem 11. The price of anarchy and the price of stability for the games ((G, LIS =
LTM, TBC1 = R≺, TBC2 = R≺),M, k) can be equal to k

k+1PoAmax.

Proof. The proof is similar to the proof of Theorem 10, but over the social network in
Figure 7.2.

7.2 Price of Oligopoly

We first prove that if at least three firms are involved in a game (N = (G, LIS =
LTM, TBC1 = R≺, TBC2 = R≺),M, k), then a PSNE may exist where the firm associated
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Figure 7.2: The social network for the proof of Theorem 10 (i ∈ {2, . . . ,m− 2}).

with the best quality product does not necessarily receive the highest payoff among all
the involved players. Then, we propose a relevant measurement under the name “price of
oligopoly”.

Recall thatM = {1, . . . ,m}, R≺ = 1 � . . . � m, and that we denote as NE(Γ) the set
of existing PSNEs of game Γ.

Theorem 12. Consider the class of games (N = (G, LIS, R≺, TBC2),M, k).

i. If m = 2, then for all strategy profiles s ∈ NE it is u1(s) ≥ u2(s).

ii. If m ≥ 3, and LIS = LTM, TBC2 = R≺, then a game Γ exists that has a strategy profile
s ∈ NE such that ui(s) < uj(s), although i � j with regard to R≺.

Proof. i. Assume that a PSNE s := (S1, S2) exists such that u1 (s) < u2 (s). Then,
Player 1 can deviate to S′1 := S2, and obtain utility u1(S2, S2) ≥ u2(s) > u1(s).
Thus, s cannot be a PSNE.

ii. Assume R≺ = 1 � 2 � 3, and consider the social network in Figure 7.3: As ni,
∀i ∈ {1, . . . , 8}, and as ai, ∀i ∈ {1, . . . , ν}, where ν ∈ Z>k, we denote single nodes.
Further, we assume that all of them have threshold 1, except of node n3 that has
θn3 = 1/2, and node n8 that has θn8 = 1/2. Moreover, as Si, ∀i ∈ {1, 2, 3}, we denote
sets of k nodes in V , with no edges among them, and such that Si ∩ Sj = ∅, ∀(i, j) ∈
{1, 2, 3}2, whenever i 6= j. Finally, the edges (ni, nj), where i, j ∈ {1, . . . , 5}, and the
edges (n8, ai), where i ∈ {1, . . . , ν}, are annotated with their corresponding weight
with regard to the LTM. On the other hand, the edges (Si, nj), where i ∈ {1, 2, 3}, and
j ∈ {1, . . . , 8}, and the edges (S2, ai), where i ∈ {1, . . . , ν}, are annotated with the
accumulated corresponding weight of the underlying edges between each of the nodes
in Si and node nj , and each of the nodes in S2 and node ai with regard to the LTM.

We shall prove that the strategy profile s := (S1, S2, S3) constitutes a PSNE, even
though it is u2(s) = k+ν+4, u1(s) = k+3, u3(s) = k+1 — i.e., u2(s) > u1(s) > u3(s),
while 1 � 2 � 3: Firstly, Player 1, by deviating to S3, receives utility u1(S3, S2, S3) =
k+3 = u1(s). Moreover, by deviating to S2, he receives utility u1(S2, S2, S3) = k+3 =
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Figure 7.3: The social network for the proof of Theorem 12(ii): All single nodes have threshold 1, except
of node n3 that has θn3 = 1/2, and node n8 that has θn8 = 1/2. Moreover, the “· · · ” between nodes a1,
and aν , where ν ∈ Z>k, denotes that ν−2 same nodes exists between them, i.e., nodes that have the same
in and out-going weighted edges, as well as, threshold as a1, and aν do.

u1(s), and as a result, he fails again to increase his utility. Finally, Player 1 cannot
achieve utility higher than k by initiating any other combination of k nodes from V .

Similarly, it can be verified that neither Player 2, nor Player 3 can deviate to a
better strategy, given that the strategy profile s := (S1, S2, S3) is initially played.
Hence, s constitutes a PSNE, and the fact completes our proof.

Remark 6. With regard to the first part of Theorem 12(i): It follows that for m = 2,
@s ∈ NE such that u2(s) > |V |/2. With regard to the second part of Theorem 12(ii):
Firstly, the assumption TBC2 = R≺ can be abandoned. Additionally, we conjecture that
the assumption LIS = LTM can be also relaxed.

Now, with regard to the game over the social network in Figure 7.3 [Theorem 12(ii)]:
Given the PSNE s = (S1, S2, S3), observe that u2(s) = k+ ν+ 4 > u1(s) +u3(s) = 2k+ 4,
since ν ∈ Z>k. Thereby, if firm 1 is affiliated with firm 3, while their products are
marketed as competing and incompatible, firm 1 is incentivized to withdraw firm 3 from
the game: Firm 1, by participating in the 2-player game between itself and firm 2, achieves
at the unique PSNE (S1, S2) the maximum possible utility — i.e., u1(S1, S2) = k+ ν + 4.
Moreover, notice that in this 2-player game, firm 1 initiates only k nodes in order to achieve
this maximum utility. On the other hand, in the original 3-player game, firms 1 and 3
initiate k nodes each, and still they achieve a lower sum of utilities at the PSNE s. Thus,
firm 1, by nullifying the affiliated firm 3, not only induces a game with a unique PSNE,
where its utility equals the maximum possible utility with regard to both the induced
2-player game and the original 3-player game, but also it achieves this utility by initiating
only k nodes in V .

Our previous discussion over Theorem 12(ii) indicates the necessity of a new measure-
ment that captures the motivation of a player inM to either merge with other players in
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M, or to divide itself to several new players that, although they are affiliated, they are
still non-cooperative within the induced game. Hence, we suggest for this measurement
the name “price of oligopoly”.





Chapter 8

Conclusions and Future Work

In this work we analyzed a non-cooperative game between firms that compete to pro-
mote their products over a social network. Particularly, we unveiled several of its proper-
ties, and we demonstrated that they are inextricably intertwined with various structural
characteristics of the underlying network — characteristics that to the best of our knowl-
edge have met no previous investigation. Therefore, with this study we first target to
motivate further empirical and experimental research on relevant essential questions of
interest as: What is the general structure of common social networks, for example, of con-
sumers? How much influence each individual exerts to his neighbors, and which parameter
values capture these influences, with regard to a threshold model for example? And even
more importantly, are there any representative values concerning decisive structural fea-
tures such as the diffusion depth, and the maximum diffusion collision factor? In other
words, how unstable are the induced games over such networks? Or, do they generally
possess a PSNE, or even admit a generalized ordinal potential?

Moreover, which values of k can be considered optimal with regard to the existence
and the efficiency of the PSNE? Or, what is the optimal number of firms, (possibly af-
filiated), that should participate in the game? Equivalently, when the price of oligopoly
is minimized/maximized? On the other hand, which are the typical values for the price
of anarchy, and stability? Additional compelling questions may concern the robustness of
the discussed characteristics to network changes. For example, how the introduction of
new individuals in the network can affect the answers to all the previous questions?

Finally, we stress the exciting prospect of relaxing the assumption — common in the
related bibliography [M00, IKMW07] — that a unique reputation ordering holds over the
existing products, and throughout the population. Nevertheless, such a richer framework
may render randomized tie-breaking criteria unavoidable, due to the intractability of the
deterministic approach. Therefore, we believe that risk analysis should constitute an
essential part of such future works.
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