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Abstract 

A wide variety of engineering structures exhibit Vortex-induced Vibration (VIV) problems 

arising from the flow dynamics. Vortex-induced vibrations commonly involve excitation of 

the structure in both the in-line and transverse directions; thus they are characterized by 

complex trajectories, which often take the form of a figure eight. This thesis reports the 

results of a computational study of flow past a cylinder forced to oscillate in both the in-line 

and transverse directions with respect to a uniform stream, at a Reynolds number equal to 

400. The in-line vibration occurs at twice the frequency of the transverse oscillation, 

resulting in a figure eight motion of the cylinder, emulating vortex-induced vibration.  

For a flow stream from left to right, we have distinguished between two oscillation modes of 

the cylinder, depending on the direction of the cylinder motion in the upper half plane: a 

counter-clockwise mode (if the upper part of the trajectory is traversed counter-clockwise), 

and a clockwise mode (if the upper part of the trajectory is traversed clockwise).  Both two- 

and three-dimensional simulations of the flow were performed, using Direct Numerical 

Simulation (DNS) based on a Spectral Element Method (SEM). A spectral element based 

parallel code was used to enable efficient computations; the code has been evaluated for its 

performance and scalability in parallel computer clusters.  This thesis reports on the results 

of both two- and three-dimensional simulations, quantifying the forces acting on the moving 

cylinder, and characterizing the wake dynamics.  

We have performed two-dimensional flow simulations of the two oscillation modes 

(counter-clockwise and clockwise), using a range of frequencies close to the natural 

frequency of the Kármán vortex street, and several oscillation amplitudes. We have 

calculated the non-dimensional values of the power transfer from the fluid to the body, the 

forces acting upon the cylinder, and have correlated the results to the structure of the wake. 

We have found that the results are greatly influenced by the direction in which the figure 

eight is traversed (counter-clockwise and clockwise). In general, the counter-clockwise 

motion maintains positive power transfer at higher oscillation amplitudes, and is also 

characterized by higher force levels. Flow field visualizations have shown that wakes are 

characterized by 2S structure (two single vortices) at low amplitudes, and more complicated 

wake structures at higher amplitudes. It is found that the presence of in-line oscillation 

affects the forces acting on the cylinder and the wake structures. 

Three-dimensional simulations have been performed for the counter-clockwise mode, for 

the case of resonant forcing. The results demonstrate a much smoother variation of force 

coefficients in comparison to the two-dimensional flow. In accordance with two-dimensional 

flow, the lift signal is characterized by the presence of the strong third harmonic component. 

The flow visualization has demonstrated the formation of 2S type mode in the wake, with 

the wake structure becoming very complex at high oscillation amplitudes. Three-

dimensionality in the wake has been identified indicating the development of streamwise 

vortices interacting with Kármán vortices.  
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Layout of Thesis 

The thesis is organized as follows:  

The Introduction (Chapter 1) describes the motivation and objectives of the dissertation. A 

brief overview of the phenomena of vortex shedding and Vortex-induced Vibration (VIV) is 

provided. A number of literature studies involving forced vibrations of a circular cylinder in 

the transverse direction, in-line direction and both transverse and in-line direction, with 

respect to an incoming flow, are reported. Reference is also made to two degrees of 

freedom VIV studies. 

Chapter 2 presents the numerical method employed in the Navier-Stokes solver. In 

particular, an outline of the spatial discretization and the time-splitting scheme that was 

used for two- and three-dimensional simulations is given.  

Chapter 3 refers to the implementation of the Navier-Stokes solver on parallel computer 

clusters as well as on the code validation. The code scalability and performance is 

characterized, based on tests with different parallel clusters.  

Chapter 4 presents the computational results of two-dimensional flow past a cylinder 

oscillating both transversely and in-line with respect to a uniform stream, at Reynolds 

number of 400. The dependence of motion direction, oscillation frequency and amplitude on 

the flow structure and forces acting on the cylinder is discussed in detail.  

Chapter 5 presents corresponding computational results of three-dimensional flow for 

resonant forcing. Effects of flow three-dimensionality on wake structure and forces are 

analyzed.  

Finally, Chapter 6 summarizes the main findings of the present study and suggests further 

research. 
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1.1 Wake flows  

The study of the flow past non-aerodynamic (bluff) bodies is an area of considerable interest 

in fluid dynamics. The dynamics of flow past a bluff body depend on the Reynolds number, 

commonly defined as 
U D

Re= ∞

ν
, where U

∞
 is the free-stream velocity, D a characteristic 

length of a cylinder diameter and ν the kinematic viscosity of the fluid.   

The flow past a bluff body, such as a circular cylinder, usually experiences boundary layer 

separation and flow instabilities in the wake region.  Ludwig Prandtl, in the early twentieth 

century, was the first to describe the phenomenon of boundary layer separation, Prandtl 

(1928). As the boundary layer separates from the body surface it forms a discrete vortex. 

The vortex grows and it sheds in the near wake region. At a low Reynolds number, the 

vortex shedding is periodic with two staggered counter-rotating vortices shed within a 

period (Figure 1-1).  

  

The non-dimensional frequency of the vortex shedding is the Strouhal number, s
t

f D
S

U
∞

= ,  

where ��  is the shedding frequency, D the diameter of the cylinder and U
∞

 the velocity of 

the incoming uniform flow. The Strouhal number is almost constant at a value of 0.2 for a 

wide range of Reynolds numbers (approximately 300 ≤Re ≤ 100.000), see (Figure 1-2). The 

formation and shedding of vortices results in time-dependent lift and drag forces, which in 

turn can initiate oscillation and in some cases fatigue damage.  

The phenomenon of lock-in or synchronisation occurs when the vortex shedding frequency 

is synchronized with the natural frequency of the structure. 

The wake flows of bluff bodies in certain range of Reynolds numbers exhibit a variety of flow 

phenomena. At very low Reynolds number, the flow is steady involving a region of two 

counter-rotating standing vortices placed symmetrically in the wake. Bifurcation to 

oscillatory flow (Kármán street) occurs at Re≈49. Up to Reynolds, Re≈190, the oscillatory 

flow remains two-dimensional and forms a dynamical system described by Stuart–Landau 

equation, see Provansal et al. (1987). 

Figure 1-1:  Von Kármán vortex street at Re=140 by S. Taneda, Van Dyke (1982). 
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Figure 1-2: Strouhal number versus Reynolds number in a flow past a stationary circular 

cylinder. Techet (2005) 

Three-dimensional wake transition of the flow past a circular cylinder was originally 

described by Roshko (1954) based on velocity fluctuation measurements, in the range of 

Reynolds number 150 to 300. Flow visualizations of the wake presented by Hama (1957), at 

Reynolds numbers between 80 to 300, showed that the wake transition is characterized by 

irregular spanwise waviness of the Kármán vortices, introducing three-dimensionality in the 

near wake. The flow visualization study by Gerrard (1978) showed the presence of dye 

“fingers”, associated with streamwise vortices. The dye “fingers” were connecting the 

successive Kármán rolls. The distance between the streamwise vortex structures in the 

spanwise direction was shown to vary along the cylinder span. 

Transition to three-dimensionality in the wake is characterized by two discontinuous 

changes in the Strouhal – Reynolds curve as shown in Figure 1-3, Williamson (1989; 1996). 

The curve of Strouhal frequency illustrates a region of laminar vortex shedding up to a 

Reynolds number of 190 which is characterized by two types of vortex shedding (parallel or 

oblique). The first discontinuity in the Strouhal frequency occurs at a Reynolds number 

around 190 corresponding to the Mode-A three-dimensional instability. The second 

discontinuity corresponds to the Mode-B vortex shedding, occurring at Reynolds number in 

the range of 230 - 260, Williamson (1996a). Barkley and Henderson (1996) used Floquet 

stability analysis to identify the critical spanwise wavelengths for both Mode A and Mode B. 

They reported that the critical Reynolds numbers were 188.5 and 259 for Mode A and Mode 

B respectively, in accordance with the experimental results presented in Williamson (1996). 

A sketch of vortex shedding with the corresponding wake modes, as well as experimental 

flow visualizations of the streamwise vortices, are presented in Figure 1-4 and  Figure 1-5 

respectively.  



 

 

Figure 1-3: Strouhal-Reynol

correspond to parallel shedding as well as oblique shedding 

boundary conditions. Williamson (1989; 1996a)

 

Figure 1-4: Sketch of vortex shedding process in the wake of

vortex shedding (b) Mode A vortex shedding (c) Mode B vortex shedding

Three-dimensional wakes are characterized by the presence of spanwise vortex Kármán rolls 

and streamwise vortex pairs. Mode

4 cylinder diameters, see Williamson (1996a)

by a shorter wavelength (approximately one cylinder diameter). 

and Mode B in the wake of a circular cylinder observed by 

been confirmed in various other experimental studies, 

(1997), Brede et al. (1996). Numerical st

cylinder performed by Thompson et al. (1996; 2001)

Mode A and Mode B type of vor

Kármán vortices 

Reynolds number relationship, based on experimental data. Results 

correspond to parallel shedding as well as oblique shedding induced by end (spanwise)

Williamson (1989; 1996a) 

ortex shedding process in the wake of a circular cylinder: (a) Laminar 

vortex shedding (b) Mode A vortex shedding (c) Mode B vortex shedding. Morton (2010)

dimensional wakes are characterized by the presence of spanwise vortex Kármán rolls 

and streamwise vortex pairs. Mode-A instability is associated with a spanwise wavelength 3

Williamson (1996a). In contrast, Mode-B instability is characterized 

by a shorter wavelength (approximately one cylinder diameter). The presence of Mode A 

and Mode B in the wake of a circular cylinder observed by Williamson (1989; 1996)

been confirmed in various other experimental studies, Zhang et al. (1995)

. Numerical studies of the three-dimensional flow past a circular 

Thompson et al. (1996; 2001) also demonstrated the presence of 

Mode A and Mode B type of vortex shedding (see  Figure 1-6).  

streamwise

 vortex pairs
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, based on experimental data. Results 

induced by end (spanwise) 

 
a circular cylinder: (a) Laminar 

Morton (2010)  

dimensional wakes are characterized by the presence of spanwise vortex Kármán rolls 

A instability is associated with a spanwise wavelength 3-

B instability is characterized 

The presence of Mode A 

Williamson (1989; 1996) have 

Zhang et al. (1995), Henderson 

dimensional flow past a circular 

also demonstrated the presence of 

streamwise 

vortex pairs 
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Figure 1-5: Top-view of the three-dimensional wake vortex structures in flow past a circular 

cylinder at Re= 200 and Re=270, corresponding to Mode A and Mode B. Both photographs 

are to the same scale, and the flow is upwards.  Williamson (1996a) 

 

Figure 1-6: Three-dimensional wake vortex structures in flow past a circular cylinder at 

Re=210 (Mode A) and Re=250 (Mode B), based on computational results. The yellow and 

blue isosurfaces represent positive and negative streamwise vorticity. The flow is from left 

to right. The front of the circular cylinder is shown at the left of each plot. Thompson et al. 

(2001) 

A third mode of wake instability was discovered by Blackburn and Lopez (2003) using 

Floquet stability analysis; the mode is referred to as quasi-periodic (QP) mode. Blackburn 

and Lopez (2003) suggested that the QP mode resulted from a centrifugal type of instability 

in the wake. The critical wavelength of the QP mode was approximately 2.5 cylinder 

diameters, i.e. in-between that of Mode A and Mode B.  

For Reynolds number higher than approximately 103, the shear layers separating from the 

upper and lower surface of the cylinder develop unstable flow structures due to the Kelvin-

Helmholtz mode of instability (Williamson (1996)). The Kelvin-Helmholtz instability mode 

was first observed by Bloor (1964) and is characterized by the formation of small scale 

vortices in the separated shear layers in contrast  to large scale Kármán vortices. Braza et al. 

(1986) observed that the presence of Kelvin-Helmholtz vortices in the wake results in a 

primarily two-dimensional instability.  At Re≈3.5∙10
5 the laminar boundary layer becomes 

unstable and undergoes a transition to turbulence. Thus the mean separation points move 

downstream, resulting in a substantial decrease of drag coefficient (drag crisis). 



 

 

In the Reynolds number region of 

regime, the flow is symmetric 

and turbulent boundary layer separation; the mean drag coefficient is extremely low. For a 

Reynolds number higher than 10

number, see Figure 1-7. The boundary layer is now turbulent upstream of the separation 

point. 

 

Figure 1-7: Variation of drag coefficient 

cylinder based on experimental results. 

1.2 Vortex-induced vibrations 

The phenomenon of flow induced vibration is a major issue in the design and operation of 

various marine, mechanical and civil engineering structures, such as 

underwater and hanging cables, offshore platforms, bridges, buildings, heat exchanger 

tubes, cooling towers, etc. (see

to experience vibrations due to the formation of 

dependent forces. These forces can induce an oscillatory motion of the body, known as 

Vortex-induced Vibration (VIV). VIV may 

engineering structures. Thus, understanding and mitigating VIV is essential for the safe 

design of structures exposed to fluid streams. 

It was Leonardo da Vinci that first dealt with VIV, in particular 

lot of research has been carried in the field of flow

fundamental questions remai

structures, as the collapse of the Tacoma Narrows bridge in 1940, has been a substantial 

motivation to VIV research. 

proved that it was a complicated fluid

In the Reynolds number region of 3.5 x 10
5
 < Re < 1.5 x 10

6, known as the supercritical 

symmetric in mean, characterized by a laminar-turbulent boundary layer 

and turbulent boundary layer separation; the mean drag coefficient is extremely low. For a 

Reynolds number higher than 106, the drag begins to increase at increasing Reynolds 

. The boundary layer is now turbulent upstream of the separation 

rag coefficient versus Reynolds number in flow past a stationary 

experimental results. Panton (2005)  

induced vibrations  

The phenomenon of flow induced vibration is a major issue in the design and operation of 

marine, mechanical and civil engineering structures, such as deep sea 

underwater and hanging cables, offshore platforms, bridges, buildings, heat exchanger 

(see Figure 1-8). Most of the practically used bluff structures tend 

due to the formation of Kármán vortex street, which results in time

hese forces can induce an oscillatory motion of the body, known as 

ibration (VIV). VIV may cause fatigue damage and catastrophic failure of 

engineering structures. Thus, understanding and mitigating VIV is essential for the safe 

tructures exposed to fluid streams.  

It was Leonardo da Vinci that first dealt with VIV, in particular “Aeolian Tones”. Since then, a 

lot of research has been carried in the field of flow-structure interaction; nonetheless, 

fundamental questions remain unanswered. Furthermore, the failure of engineering 

structures, as the collapse of the Tacoma Narrows bridge in 1940, has been a substantial 

motivation to VIV research. Although the failure was originally attributed to VIV, i

mplicated fluid-structure interaction between the gusting wind
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, known as the supercritical 

turbulent boundary layer 

and turbulent boundary layer separation; the mean drag coefficient is extremely low. For a 

, the drag begins to increase at increasing Reynolds 

. The boundary layer is now turbulent upstream of the separation 

 

Reynolds number in flow past a stationary 

The phenomenon of flow induced vibration is a major issue in the design and operation of 

deep sea risers, 

underwater and hanging cables, offshore platforms, bridges, buildings, heat exchanger 

Most of the practically used bluff structures tend 

which results in time-

hese forces can induce an oscillatory motion of the body, known as 

catastrophic failure of 

engineering structures. Thus, understanding and mitigating VIV is essential for the safe 

Aeolian Tones”. Since then, a 

structure interaction; nonetheless, many 

, the failure of engineering 

structures, as the collapse of the Tacoma Narrows bridge in 1940, has been a substantial 

Although the failure was originally attributed to VIV, it was 

structure interaction between the gusting winds and 
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the bridge that caused the Tacoma Narrows bridge to undergo complex vibrations that 

eventually reached a severe enough magnitude to cause collapse.   

Several structural failures due to VIV involve risers, platform mooring cables and other 

construction parts that are employed in an offshore oil exploration and production. One of 

the first reported failures is related to the severe construction difficulties encountered 

during the installation of an offshore oil terminal in a tidal flow, at Immingham, UK in 1969. 

A wide range test program was conducted both at the field site and at various laboratories, 

in order to determine the causes of the vibrations and to devise means of preventing similar 

ones. In 1979, the jack-up rig “Offshore Mercury” was drilling for the British Gas Corporation 

in 61 m of water in the English Channel near the Isle of Wight. Problems were encountered 

with vibrations of a drill pipe due to vortex shedding. This rig was operating in a 1.5 m/s 

current; the pipe, 610 mm in diameter, was oscillating with a displacement amplitude of 0.5 

diameters transversely to the current direction. The drilling machinery on the deck of the rig 

was vibrating in unison with the pipe. These resonant vibrations resulted in the fatigue 

failure of the drill pipe inducing losses over five million U.S. dollars for the company, Griffin 

(1985). 

Numerous cases of marine structure failures were attributed to VIV. For this reason the 

prediction of force distributions is extremely important for estimating the lifetime of such 

structures. The potential VIV problems are investigated prior to installation, in order to 

prevent fatigue failure. For example, the vibrations of long foundation piles (130 m) for a 

Shell Oil production platform in the Cognac field of Mexico Gulf due to underwater currents 

were measured during installation. The anticipated difficulties involved the “stabbing” of 

oscillating pipes into the sleeves of the platform base, as well as the vibrations of the 

stabbed pipes during the driving procedure. When the foundation pipes were excited by the 

currents at a velocity magnitude of 0.45 m/s, the prediction for the fatigue failure of the 

foundation piles was four days, Griffin (1985). 

The design goal of engineering structures subjected to fluid flow is to mitigate VIV, thus 

avoiding fatigue damage. Recently, energy harvesting from structures undergoing VIV has 

attracted considerable attention. In such applications, VIV enhancement is used to maximize 

energy extraction from the fluid. Among others, the Vortex Induced Vibration Aquatic Clean 

Energy (VIVACE) converter, invented by Prof. M. Bernitsas of the University of Michigan, is a 

VIV-based energy harvesting device. Generation of energy by the VIVACE Converter is based 

on extracting kinetic energy from a fluid flow by VIV excitation of a rigid cylinder, and 

converting the motion energy to useful forms of energy as electrical energy. The device has 

been proven to extract energy even at current velocities as low as 0.25  m/s,  Raghavan 

(2007).  Although the topic of the present study bears several similarities with the above 

problem, due to the high values of Reynolds number, its study would require another 

approach than the DNS one utilized here, as the Large Eddy Simulation (LES). 
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Figure 1-8: Marine structures: (a) Deep-sea risers (b) Offshore platforms (c) Tensor leg 

platforms (d) Fixed rigs. Techet (2005) 

1.3 A review of forced and free vibration studies 

The problem of a flow past a cylinder has been the subject of many experimental and 

numerical investigations; see the review articles by: Sarpkaya (2004), Sarpkaya and Shoaff 

(1979), Bearman (1984; 2011), Williamson and Govardhan (2004; 2008) and relevant 

textbooks by Zdravkovich (1997; 2003) and Blevins (1990).   

Flows past circular cylinders undergoing prescribed motions are important for vortex-

induced vibration studies. Due to the periodic vortex shedding the cylinder experiences 

time-dependent forces at the frequency of vortex shedding. Under certain conditions, the 

cylinder can be excited to oscillate by the flow at a frequency close to its natural frequency. 

Large amplitude vibrations can occur predominantly in the transverse direction with respect 

to the incoming flow whether lower amplitude vibrations have been observed in the in-line 

direction. While the transverse vibration occurs at or near the vortex shedding frequency, 

(c) (d) 
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the in-line vibration occurs at twice the transverse frequency associating with figure eight 

motions, Vandiver (1983). 

Studies of vortex-induced vibration of cylinders generally consider either forced or free 

oscillations (see Figure 1-9). Cylinders may be forced to oscillate transversely to the direction 

of the incoming flow, in-line with the direction of the flow, or both in the transverse and in-

line directions. Experimental studies have mainly focused on forced rigid cylinder oscillation, 

especially oscillation transversely to the incoming flow. Experimental studies of free 

oscillation have involved both rigid and flexible cylinders, oscillating either in the transverse-

only or both in the transverse and inline direction with respect to a free stream. 

Computational studies also concern both forced and free cylinder oscillation. A large portion 

of these studies involves Direct Numerical Simulation (DNS), and is thus limited to low 

Reynolds numbers due to the requirement for extensive computational resources. For 

higher Reynolds numbers alternative numerical methods have been used as the Large Eddy 

Simulation (LES) and Reynolds Averaged Navier Stokes (RANS) simulations.  

 

 

 

Figure 1-9: Three representative configurations of cylinder undergoing VIV: (a) flow of a 

uniform stream past a fixed rigid cylinder (b) flow of a uniform stream past an elastically 

mounted rigid cylinder (c) flow of a non-uniform stream past a flexible cylinder. Mukundan 

(2008). 

Below, representative works are reviewed, involving free and forced oscillation in one 

direction only (mainly in the transverse-only direction) or both in the transverse and in-line 

direction.  

Firstly, studies of flow past a cylinder oscillating transversely to a free stream include the 

experiments of Bishop and Hassan (1964). These experiments, performed for Reynolds 

numbers of a few thousand (order 6000 to 11000), showed that the system undergoes a 

transition as the oscillation frequency is increased, at constant amplitude, resulting in abrupt 

changes in the amplitude and phase of the lift force. The transition was characterized by 

hysteresis, and was always observed at frequencies lower than the Strouhal frequency.  
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In early experiments of forced oscillations by Protos et al. (1968), Toebes (1969), Stansby 

(1976) and Sarpkaya (1977; 1978), the lift force and its phase angle were measured. More 

specifically, Protos et al. (1968) and Toebes (1969) indicated the correspondence of phase 

angle and power transfer between the fluid and the cylinder. Stansby (1976) observed a 

switch in phase angle of the lift force in certain values of frequency and amplitude of 

oscillation, resulting in changes in the wake width. Sarpkaya (1977; 1978) expressed the 

harmonic part of the lift force in terms of two components: the inertial component, in-phase 

with the cylinder acceleration, and the excitation component, in-phase with the cylinder 

velocity. These measurements are in agreement with the subsequent experimental results 

by Moe and Wu (1990). Similar experiments with a transversely oscillating cylinder were 

performed by Staubli (1983). He used his measurements to predict the response of a freely 

vibrating cylinder in crossflow. His measurements were compared with previous data of 

freely oscillating cylinder provided by Feng (1968). He also demonstrated the hysteresis 

effect in experiments with elastically mounted cylinders due to the nonlinearities between 

the amplitude of oscillation and fluid force.   

Williamson and Roshko (1988) performed a reference experimental study for the case of the 

cylinder forced to vibrate transversely to a steady stream, in a low Reynolds number range 

of 300 to 1000. Based on flow visualization, they produced a detailed map of wake modes at 

Re≅400, over a wide range of normalized amplitudes and frequencies of the cylinder motion. 

These wake modes correspond to different vortex shedding patterns, including two single 

vortices (2S), two vortex pairs (2P), a combination of a pair and a single vortex (P+S), as well 

as more complex patterns. In this study, the transitions reported in Bishop and Hassan 

(1964) were attributed to a switch in the wake mode from 2P to 2S, at increasing oscillation 

frequency, at values lower than the Strouhal frequency. Many studies have further 

addressed the issues related to the mode transitions in a flow past a cylinder forced to 

oscillate transversely with respect to a uniform stream, see Carberry, Sheridan et al. (2001; 

2005). Similar wake transitions that characterized the flow past a forced oscillating cylinder 

were also found in studies of a freely vibrating cylinder as in the early experiments by Feng 

(1968), Brika and Laneville (1993) and later by Govardhan and Williamson (2000; 2001).  

The P+S type of vortex shedding has also been found in earlier studies in which the cylinder 

was forced to oscillate in-line with the incoming flow by Griffin and Ramberg (1974) and 

Ongoren and Rockwell (1988). More specifically, the smoke visualizations of Griffin and 

Ramberg (1974) showed an asymmetric wake structure with two counter-rotating vortices 

and a single vortex. Using flow visualization, Ongoren and Rockwell (1988) found a 

symmetrical vortex pair and anti-symmetrical modes correspond to 2S, S+P and 2P in the 

wake. For these two modes of vortex shedding it is possible either to synchronize with the 

motion of the cylinder or to compete with each other.  

Gopalkrishnan (1993) conducted detailed experimental studies of turbulent flow past 

cylinders undergoing transverse oscillation, in which he identified the excitation regime 

versus the non-dimensional amplitude and frequency of the cylinder oscillation. His results 
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confirmed the transition and corresponding phase shift in the lift signal reported in Bishop 

and Hassan (1964) at frequencies lower than the Strouhal frequency.   

Blackburn and Henderson (1999) performed a computational study of the same problem at 

Re=500, at a constant oscillation amplitude of 0.25 cylinder diameters, and oscillation 

frequencies between 0.75 and 1.05 times the Strouhal frequency. They also observed the 

phase angle switch reported in the higher Reynolds number experiments of Bishop and 

Hassan (1964), and attempted to interpret it, based on vorticity dynamics. In addition, their 

results demonstrated that the flow dynamics is characterized by hysteresis, as well as that 

the flow structure can be rather complex.  

Anagnostopoulos (2000) studied numerically the flow past a circular cylinder oscillating 

transversely to a steady stream, at Reynolds number equal to 106, a band of frequencies 

ranging from 0.8 to 1.2 times the Strouhal frequency, and oscillation amplitudes up to half 

the cylinder diameter. His results illustrate that, while the flow is periodic for oscillation 

frequencies less than or equal to the Strouhal frequency, it is qualitatively different for 

higher oscillation frequencies, with the wake becoming quasi-periodic.  

Carberry et al. (2001) conducted experiments of a cylinder oscillating transversely to a free 

stream, at a Reynolds number of 2300. They concluded that the interaction between the 

natural instability of the wake and the forced oscillation of the cylinder leads to a transition 

between the 2S and 2P wake modes. This interaction depends strongly on the ratio of the 

excitation frequency to the natural shedding frequency. Within the lock-in regime an abrupt 

change in the magnitude and phase of lift force was observed. Carberry et al. (2005) 

extended their previous experimental study to Reynolds numbers up to 9300. They found 

similarities in the timing and mode of vortex shedding between their experiments of forced 

oscillating cylinder and the experiments of freely oscillating cylinder by Govardhan and 

Williamson (2000). They also underlined the difference between flow past forced and freely 

oscillating cylinder regarding the direction of energy transfer from the fluid to the cylinder. 

The excitation in free vibration evidently exhibits positive power transfer, whereas for forced 

vibration the energy transfer can be either positive or negative. Thus, they concluded that a 

forced strictly sinusoidal vibration characterized by a negative energy transfer from the fluid 

to the cylinder does not exclude free oscillation at comparable oscillation amplitude.  

DNS studies were performed by Dong and Karniadakis (2005) to compute the three-

dimensional flow past a stationary cylinder as well as past a cylinder forced to oscillate in the 

transverse direction, at a Reynolds number of 10,000. They used a Spectral Element Fourier 

method, with 300 million degrees of freedom and polynomial orders ranging, from 5 to 8. 

The calculated values of drag and lift coefficients were in good agreement with the previous 

experimental data (Bishop and Hassan (1964), Gopalkrishnan (1993), Norberg (2003)). 

Recently, Willden et al. (2008) reported both two-dimensional (at Re=100) and three-

dimensional (at Re=300) numerical simulations of flow past a cylinder undergoing transverse 

oscillation with respect to a uniform flow. The two-dimensional simulations corresponded to 

a detailed variation of both the normalized oscillation frequency and amplitude, and 
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identified the limiting curve of zero energy transfer from the flow to the structure. On the 

other hand, the three-dimensional simulations, performed for frequency values equal to or 

lower than the Strouhal frequency, reported transitions from 2S to P+S and finally to 2P 

wake modes, at increasing oscillation amplitudes.  

Kaiktsis et al. (2007) studied numerically the forces exerted on a cylinder forced to oscillate 

harmonically in the transverse direction, at a Reynolds number of 400. They solved the two-

dimensional Navier-Stokes equations in a coordinate system fixed to the cylinder. Three 

cases of motion were studied corresponding to frequencies below, at, and above the 

resonant forcing. The lift force was decomposed into a component in phase with the velocity 

and a component 180o out of phase with the acceleration. The variations of these 

components, along with other flow parameters were examined over a range of non-

dimensional oscillation amplitudes. Smooth variations of the force coefficients and regular 

vortex patterns were found below resonance oscillation frequency. Two sharp transitions in 

the force coefficients were found for resonant forcing, whereas changes of the 

hydrodynamic coefficients appeared in a sharp but continuous manner for above resonant 

forcing. 

Atluri et al. (2009) used a two-dimensional Large Eddy Simulation (LES) to study the flow 

past a cylinder forced to transverse oscillation, for Reynolds number in the range of 500 to 

8000. They concluded that the nature of the wake patterns is more complicated than that 

suggested by the Williamson - Roshko map (derived for Re≈400). 

Recently Morse and Williamson (2006; 2009) performed experiments with a cylinder 

undergoing transverse controlled vibration, at Reynolds number of 2400-6800, 4000 and 

12000. They demonstrated that under carefully controlled experimental conditions there 

exists close correspondence between the forced cylinder and the freely vibrating cylinder; 

thus experiments with forced cylinder vibrations can be used to predict vortex-induced 

vibrations. 

In contrast to the large body of literature studies on the flow past a cylinder oscillating 

transversely to a free stream, few studies have examined the more realistic case of the flow 

past a cylinder vibrating both transversely and in-line with respect to the free steam. Among 

these Moe and Wu (1990) performed experiments in which the cylinder was allowed to 

vibrate both in the transverse and the in-line direction with respect to the incoming flow, 

thus following a figure eight motion; the cylinder was also clamped and/or forced to vibrate 

transversely. Moe and Wu found that when the cylinder followed a figure eight motion the 

responses were different than those of the transversely oscillating cylinder. Sarpkaya (1995) 

performed similar experiments to study the behavior of a cylinder allowed to oscillate in 

both the transverse and in-line direction with respect to incoming stream. He found that, in 

certain cases, the amplitudes of transverse oscillation were also quite different from those 

of a freely vibrating cylinder. 

The flow past of a circular cylinder allowed to freely vibrate both in the transverse and in-

line direction with respect to a free stream at a Reynolds number of 325 was investigated in 
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the two-dimensional simulations of Mittal and Kumar (1999). In most of the considered 

cases, the cylinder followed a figure eight trajectory (Lissajou figure of 8). Mittal and Kumar 

observed that the vortex shedding frequency of the oscillating cylinder does not match 

exactly the structural frequency but is slightly modified (“soft lock-in”). The flow structure 

was related to the variation of forces, as well as to the appearance of additional frequencies 

in their power spectra. Higher Reynolds number simulations (in the range 103-104) 

demonstrated the presence of disorganized wakes, Mittal and Kumar (2001).  

Experimental studies for a cylinder motion with two degrees of freedom include the one of 

Jeon and Gharib (2001), who conducted experiments by forcing a cylinder to move both in 

the in-line and transverse directions.  In their work, the frequency of the in-line motion was 

twice that of the transverse motion; thus the cylinder followed a trajectory resembling a 

figure eight. The transverse and in-line cylinder instantaneous displacements were thus, 

y(t)=AΥsin(ωt) and x(t)=AΧsin(2ωt+φ). They considered an amplitude ratio, AX/AY of 0.2, and 

phase angles equal to 0ο and –45o. Their results indicate that, while the frequency of vortex 

shedding is still determined by the transverse motion, the in-line motion controls the phase 

of shedding, and thus the phase of the instantaneous lift force, determining the energy 

transfer to the cylinder. Another interesting result is that the presence of in-line motion, 

even at small amplitude, can inhibit the formation of the 2P mode in the wake.  

Several published studies have addressed the problem of VIV in prototype experiments with 

elastically-mounted cylinders. Jauvtis and Williamson (2003; 2004) conducted experiments 

with an elastically mounted cylinder, free to oscillate both in-line and transversely with 

respect to the free stream, at Reynolds numbers ranged from 1000 to 15000. They found 

complex wake structures with two triplets of vortices known as 2T mode. They also found 

that the in-line oscillation affects surprisingly little the forces and wake structures. Thus, 

they concluded that the study of transverse-only VIV can be used to characterize more 

complex VIV motions. This observation contradicts the experiments of Marcollo and 

Hinwood (2006) of long flexible cylinder free to oscillate at several vibration modes to a 

uniform flow, at Reynolds number varied from 8000 to 40000. Marcollo and Hinwood (2006) 

found that there is a strong interaction between transverse and in-line oscillations at low 

Reynolds numbers.  

Didier and Borges (2007) performed a two-dimensional computational study of the flow past 

a cylinder oscillating in the in-line, transverse or both the in-line and transverse directions, 

resulting in a circular motion, at a Reynolds number of 300. The frequency lock-in band of 

the circular motion was found to be different than those obtained for in-line or transverse 

oscillation. For transverse and circular oscillation, the time mean and RMS values of the drag 

and lift coefficients present an abrupt jump in a narrow band of oscillation frequencies that 

can be caused by a critical change in vortex structure. 

Dahl et al. (2007; 2010) have published experimental results of a rigid circular cylinder free 

to oscillate in the in-line and transverse direction at subcritical (1.1 - 6 x 104) and supercritical 

(32-71 x 104
) regions of Reynolds number as well as computational results at a Reynolds 

number 1 x 104. They found that the phase difference between the in-line and transverse 
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motion can have a strong influence on the regularity of the cylinder trajectory as well as on 

the possible occurrence of strong harmonic components in the lift force. 

Although VIV refers to the free oscillation of the bluff body, recent studies emphasize the 

importance of forced oscillation studies for understanding VIV, e.g. Bearman (2009), Morse 

and Williamson (2006; 2009).   

Forced vibration studies involve the excitation of the cylinder at several combinations of 

oscillation frequency and amplitude (for a given Reynolds number); thus, the cylinder 

motion affects the wake, while the inverse is obviously not possible. Free vibrations are 

excited internally by the wake at an average excitation frequency depending on the past and 

present state of the motion; as a consequence, there is a coupling between the cylinder 

motion and the wake, so any change to the cylinder motion will affect the wake, which in 

turn can affect the cylinder motion. Thus, using force data from forced oscillation studies 

may or may not be adequate for predicting the response of a freely oscillating cylinder. State 

of the art codes use such data to do the predictions. 

In forced oscillations, the cylinder is commonly prescribed a harmonic motion at a constant 

amplitude and frequency. Experiments of free vibration of rigid cylinders have indicated that 

the response can be harmonic. Thus, forced oscillation experiments, performed using a 

harmonic cylinder motion are of relevance for VIV. Forced oscillation studies can yield the 

time-dependent forces acting on the cylinder. This information is useful for understanding 

the corresponding trends in forces on freely oscillating cylinders.  

As suggested by Sarpkaya (2004), forced oscillations can be used in order to “regularize VIV  

leading to nearly sinusoidal oscillations, and forces, as well as approximately repeatable 

wake states”. Thus, the interaction between the fluid and the structure is simplified and the 

study mainly concerns the investigation of the wake response to a prescribed motion. 

1.4 Motivation and objectives of the present study 

As demonstrated in the previous sections, several engineering structures exhibit vortex-

induced vibration problems, arising from the flow dynamics. In particular, it was shown that 

in several engineering structures, excitation is due to the formation of Kármán vortex street, 

which results in time-dependent loads. To understand the dynamics of the coupled flow-

structure system, it is customary to study prototype flows around bluff bodies, whose 

motion is prescribed externally, and is characterized by the non-dimensional values of the 

oscillation amplitude and frequency.  

The present work concerns the study of flow past an oscillating circular cylinder. As outlined 

in this chapter, the flow past a circular cylinder, despite the simple shape of the bluff body, is 

characterized by rich wake dynamics depending on the Reynolds number. Despite extensive 

research efforts for several decades a complete understanding of flow past stationary and 

oscillating cylinders is still missing.  
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Freely oscillating cylindrical structures commonly follow a trajectory of a figure eight. Thus, 

the present thesis concerns the computational study of flow past an oscillating cylinder 

following a figure eight motion, using Direct Numerical Simulation (DNS) based on a Spectral 

Element Method (SEM). Here, the cylinder is forced to oscillate both transversely and in-line 

with respect to a uniform flow. The frequency of the in-line motion is twice that of the 

transverse motion; thus the cylinder follows a trajectory resembling a figure eight, emulating 

the motion of a free vortex-induced vibration. The Reynolds number is held constant to a 

value of 400, falling into the regime of three-dimensional flow. Both two- and three-

dimensional simulations are performed to characterize the flow dynamics and compute the 

forces acting on the cylinder. 

The main objectives of the present study are: 

• To utilize the current capabilities of parallel clusters for the efficient computation of 

two- and three-dimensional flow past an oscillating cylinder following a figure eight 

motion. For the simulations we have implemented a spectral element based parallel 

code. Here, a Direct Numerical Simulation (DNS) approach is followed. The thesis 

objectives were accomplished by developing the computational tools necessary for the 

geometry input and subsequent mesh generation, as well as proper routines for 

problem definition and post-processing simulation results and extracting statistical 

quantities related to forces.  

• To characterize the flow past an oscillating cylinder, in particular :   

a) To characterize the wake dynamics, in a wide range of oscillation amplitude and 

frequency, for two- and three-dimensional flow. 

b) To compute the non-dimensional power transferred to the body, and thus assess on 

the parameter range corresponding to excitation and VIV. 

c) To compute the non-dimensional forces on the body, and relate the trends to the 

flow dynamics. 

d) To assess on the importance of three-dimensionality effects. 

• To assess the scalability and performance of a parallel spectral element code in parallel 

computer clusters.   
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2.1. Background 

In this thesis we have studied numerically the flow past a forced oscillating cylinder. Both 

two- and three-dimensional simulations have been performed by means of Direct Numerical 

Simulation (DNS). A Spectral Element Method (SEM) is used for the spatial discretization. 

SEM combines the advantages of spectral methods and finite element methods. The main 

advantage of spectral methods is their high accuracy, which is demonstrated by the 

exponential convergence to the correct solution at increasing resolution. Spectral methods 

are fitting for simple geometry problems. Finite element methods are suitable for problems 

in complex geometries. The spectral element method combines the good convergence 

properties of spectral methods with the flexibility of finite element methods in treating 

complex geometries. Here, high order polynomial expansions are applied within each 

element, in order to achieve high accuracy. Detailed information and foundations of the 

method can be found in Patera (1984), Maday and Patera ( 1989), Karniadakis (1989), Maday 

et al. (1990), Fischer and Patera (1991), Karniadakis and Sherwin (2005) and Deville et al. 

(2004). SEM is applicable to large simulations with parallel codes, Fischer (1994), Fischer and 

Rønquist (1994), Lee et al. (1996). In the present study, the parallel spectral element code 

Nek5000 has been utilized (see http://nek5000.mcs.anl.gov).  

2.2. Spectral element method 

The numerical solution of the Navier–Stokes equations has been a challenging issue for the 

research community. The complex phenomena and dynamics, that are simultaneously 

present at several different scales in fluid flow problems, call for demanding resolution 

requirements but also for accurate numerical methods. The methods available to solve the 

incompressible fluid flow equations are classified according to the formulation of the 

differential equations. Thus, we distinguish between the “strong” formulation that involves 

methods such as the Finite Difference Method (FDM) and the Finite Volume Method (FVM) 

and the “weak” formulation, involving Finite Element Methods (FEM) and spectral methods. 

The methods using the equations in the “strong” form are of great interest in applications of 

aerospace science, where there is a need for high speed simulations to capture the 

discontinuities (bow shocks) in the front of bluff bodies, Fletcher (1988). On the other hand, 

FEM is popular for its geometric flexibility. In FEM, the computational domain is divided into 

many small elements and a trial function (usually a linear or quadratic shape function) is 

specified into each element. Therefore, the method is employed to solve problems with 

complex geometries; a low-order (linear or quadratic) convergence rate is expected.  

FEM and spectral methods are based on the method of weighted residuals. Spectral 

methods involve in general two main categories, the collocation or pseudo-spectral methods 

and the Galerkin or modal methods. The former uses a set of nodes representing a grid, 

where the unknown velocity coefficients are taken by the requirement of zero residual at a 

set of nodes. The second approach utilizes the weighted residuals technique where the 

residual function is weighted with test functions and is set to zero after integration. The trial 

functions and the test functions are similar. Both the pseudo-spectral method and the 
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Galerkin method attain exponential convergence at increasing spatial resolution. This 

follows directly from the fact that the test functions are infinitely differentiable global 

functions (such as Chebyshev or Legendre polynomials), and have the advantage of 

exponential convergence. The order of the convergence is not fixed as in the finite element 

and finite difference methods, but depends on the solution regularity. Exponential 

convergence for a very smooth solution, in practice, implies that for an increase in the 

number of collocation points or the number of modes the numerical error decreases by at 

least the same order. Among the disadvantages of the spectral methods is that it is not 

easily applicable to complex geometries of engineering application since domain 

discretization is not involved, Canuto et al. (1988). A detail reference on the subject of 

spectral methods can be found in the monograph by Gottlieb and Orszag (1977) and the 

book by Canuto et al. (1988). 

The Spectral Element Method (SEM) introduced by Patera (1984) is a method capable of 

combining the accuracy of spectral methods and the geometric flexibility of FEM. It employs 

a technique of high-order weighted residuals for the solution of partial differential 

equations, similar to FEM, but based on orthogonal polynomials and highly accurate 

numerical quadrature. For this reason, the rate of convergence is exponential for the 

smooth solutions (such as incompressible fluid flow) instead of quadratic (or linear) as in 

FEM.  

In the following sections we will refer to implementation of flow-structure interaction 

problem in particular the formulation of Navier-Stokes equation, the imposition of boundary 

conditions, the spatial and temporal discretizations for two- and three-dimensional flow. 

2.3. Numerical formulation 

In this thesis we have considered the incompressible fluid flow, which is governed by the 

Navier–Stokes and incompressibility equations. For convenience, we non-dimensionalize all 

lengths with respect to cylinder’s diameter D, all velocities with respect to the free stream 

velocity U∞ , time with respect to /D U∞ , and pressure with respect to 2Uρ ∞ . Then the 

incompressibility and Navier–Stokes equations can be written as:                                                     

 ∇⋅ = 0u  in  Ω (2.1) 

 21
p

t Re

∂
+ ⋅∇ = −∇ + ∇

∂
u

u u u  in  Ω (2.2) 

where the fluid velocity u  and the pressure p are functions of space x and time t in a 

computational domain Ω⊂ ℝ . The Reynolds number of the flow, 
U D

Re=
ν
∞  is based on the 

free stream velocity U∞ , a characteristic length D as the cylinder diameter and the kinematic 

viscosity of the fluid, ν .  

Eq. (2.1) and (2.2) are subject to proper initial and boundary conditions. The initial condition 

specifies the velocity field at time t=0 such as, u=u
0
. On the cylinder surface, the 
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instantaneous fluid velocity is equal to the cylinder velocity, x t= ( , )u u . In the present 

problem of flow past a cylinder, we will consider Dirichlet boundary conditions on the inflow 

and lateral boundaries of the flow domain.  

A serious difficulty to overcome when solving numerically Eq. (2.1) and (2.2) is the coupling 

between the incompressibility condition and calculation of the pressure field. The 

incompressibility condition represents a constraint for the velocity filed whereas the 

pressure variable derived from the momentum equation provides the extra degrees of 

freedom to satisfy that constraint. For this reason, we calculate the pressure field by an 

implicit time scheme instead of an explicit one.  The pressure equation is derived by taking 

the gradient of Eq. (2.2) and considering the incompressibility requirement Eq. (2.1), yielding 

the pressure Poisson equation: 

 ( )p∆ =∇ − ⋅∇u u  (2.3) 

For the spatial descritization of Eq. (2.1) and (2.2) a spectral element method is used, 

whereas a discrete splitting scheme is used for the temporal descritization.  

2.4. Spatial discretization 

The SEM spatial discretization is based on a weak formulation of Eq. (2.1) and (2.2) and 

implementation of a Galerkin method. In contrast to the strong formulation of the problem, 

the weak formulation provides a lower solution regularity for velocity and pressure, along 

with proper natural boundary conditions.  

We assume that Eq. (2.1) and (2.2) are multiplied by a test function (v, q) and integrated 

over a computational reference domain Ω. Here, the functional spaces for the velocity v and 

pressure q are denoted as X:=H0
1
(Ω)

d
 and Z:=L0

2
(Ω) respectively, where d refers to the space 

dimension (d=2 or 3). The integration of pressure and viscous term is done by parts. Then 

the problem in the weak formulation reads:  

Find a solution (u(t), p(t)) ∈ X Z×  such that, for almost every t ∈ (0,T):
      

 ( ) 0,q∇⋅ =u       ∀ q ∈ Z (2.4) 

 ( ) ( )= ( ) )
d 1

, p ,
dt Re

+ ⋅∇ ∇⋅ − ∇ ∇v,u v u u , v v u(      ∀ v ∈ X (2.5) 

 0
(0) =u u  (2.6) 

where the inner comma ( , ) in the above equations is defined as:  

 ( )v ,u : vudx
Ω

= ∫  (2.7) 
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In SEM spatial descritization, the first step is to split the domain Ω Ω Ω= ∪∂  into E 

quadrilateral (in 
2
ℝ ) or hexahedral (in 

3
ℝ ) spectral elements, eΩ , with non-overlapping 

sides, where e = 1, . . . , E. The common sides between the elements will create an edge, a 

face or a vertex. Each element will involve a separate discretization mesh with the same 

number of collocation points in each direction. The dependant variables in each element are 

expanded in terms of Lagrange polynomials using Gauss-Lobatto-Legendre (GLL) collocation 

points. In each spatial direction, the number of collocation points in each element 

corresponds to the order of the
 
polynomials plus one (N+1).  To obtain convergence it can be 

increased either the number of elements or the number of collocation points. 

By applying the Galerkin approximation we define the sub-spaces XN ⊂ X and ZN ⊂ Z for the 

velocity and pressure respectively, in which we calculate the approximation for the velocity 

and pressure. To reduce the spurious modes in pressure, a staggered grid approach for 

discretization, introduced by Maday and Patera ( 1989), can be used where the interpolants 

for pressure are polynomials of two degrees lower than for velocities.  

The representation of a single element u ∈ XN, where XN is a space of N
th

-order Lagrange 

polynomial interpolants, in two-dimensions is:    

 e

0 0

( )) ( ) ( )
N N

e e N N

ij i j

i j

x (r ,s h r h s
Ω

= =

=∑∑u u            ∀ 2
[ 1 1]ˆr ,s : ,Ω∈ = −  (2.8) 

where the indices i, j refer to the Lagrangian GLL grid nodes, x
e
(r, s) is the mapping 

coordinate of the reference domain element Ω̂  to the physical domain element  
eΩ (see 

Figure 2-1) and 
e

ij
u  is  the basis coefficient corresponding to e element. Also 

N

ih (r) and 
N

jh (s)

are the basis functions of Lagrangian interpolants of N degree at (GLL) quadrature points, in 

a local element 
eΩ . The Lagrangian interpolants satisfy the condition  hi

N
(ξj

N
) = δij  where, 

N

jξ
 
is one of the (N+1) GLL quadrature points and δij is the Kronecker delta. 

The Gauss-Lobatto-Legendre integration scheme involves the integrated polynomials of the 

Galerkin projection. It is considered a very accurate integration scheme for smooth integrals, 

Karniadakis and Sherwin (2005). The form of the integral is: 

 

1

1

( )u x dx
−
∫  (2.9) 

The integrand represents a Lagrange polynomial of Q points xi, specified as, e.g.: 

 
1

0

( ) ( ) ( ) ( )
Q

i i

i

u x u x h x e u
−

=

= +∑  (2.10) 

where ( )e u  accounts for the integration error. 
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Figure 2-1:  Sketch of transformation from physical domain 
eΩ  to a local spectral element 

(computational domain) Ω̂  and backwards, for a two-dimensional case. Deville et al. (2004) 

Substituting this into Eq. (2.9) yields: 

 

1 1

01

( ) ( ) ( )
Q

i i

i

u x dx w u x R u
−

=−

= +∑∫  (2.11) 

where 

 

1 1

1 1

( ) and   ) ( )i iw h x dx R(u e u dx
− −

= =∫ ∫  (2.12) 

The integration of a polynomial u(x) of order Q−1 or less is considered exact if R(u)=0 for u(x) 

∈ [−1, 1]. However, as introduced by Gauss a specific choice of integration points, results in 

an exact integration and can be accomplished even for polynomial order higher than Q−1. 

The Gauss-Lobatto-Legendre method differs from the other Gauss quadrature formulations 

in the selection of the end points.  

Taking 
a ,

i ,N
x β

 as the N zeros of the N
th

-order Jacobi polynomial such that: 

 ( ) 0 0 1 1
a a,

N i ,NP x , i , ,...,N
β β = = −  (2.13) 

where 

 0 1 1

a , a , a ,

,N ,N N ,N
x x ... xβ β β

−< < <  (2.14) 

For a Legendre polynomial of order Q−1 the Gauss-Lobatto-Legendre quadrature can be 

defined as: 

r 

Ω̂  
eΩ  

s 
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[ ]

1 1

1 2

2

1

1 0

1 2

1 1

2
0 1

( 1)

( ) 0 ( ) 1 1

,

i i ,Q

i

Q i

, i

x x , i ,... / Q

, i Q

w , i ,...,Q
Q Q L ( x )

R u , if u x ,

− −

−

− =
= = −

 = −


= = −
−   

= ∈ −

 (2.15) 

where LQ−1(xi) is the Legendre polynomial. 

The last line in Eq. (2.15) denotes that the integration is exact for a polynomial order less 

than 2Q−1. In other words, for a fixed order N, the integrand yields: 

 
1

2
min

N
Q

+
≥  (2.16) 

Proceeding with the spectral element descretization we insert Eq. (2.8) into Eq. (2.4) and  

(2.5) and apply GLL quadrature for the integrals. Then, we write the semi-discretized 

equations in matrix notation: 

 
1

( )
Td

B D p C K
dt Re

= − −
u

u u u  (2.17) 

 0D− =u  (2.18) 

where B is the diagonal mass matrix, K is the stiffness matrix, C(u) is the non-linear operator 

and TD, D  represent the discrete divergence operator and gradient operator, respectively.  

2.5. Temporal discretization  

The numerical treatment of the velocity and the pressure field in the Navier-Stokes 

equations involves methods for the correction of pressure as well as the correction of 

velocity. In pressure-correction methods first a Helmholtz equation is solved for an 

intermediate velocity field, and then a pressure-correction is calculated to satisfy 

incompressibility for the final velocity field, see Chorin (1968), Kim and Moin (1985), Israeli 

et al. (1986). In velocity-correction methods the non-linear terms are solved explicitly in an 

intermediate velocity field and then, the velocity is extended by treating the viscous term 

implicitly via a Helmholtz equation. Thus the exact incompressibility of velocity field at the 

end is lost. A new method of splitting schemes known as consistent splitting schemes was 

introduced by Guermond and Shen (2003). The method is based on a weak formulation of 

the pressure Poisson equation where the velocity is solved by a Helmholtz equation and the 

pressure by a Poisson equation. 
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The temporal descritization for the numerical solution of incompressible unsteady Navier-

Stokes equations prescribes the form of the governing equations of pressure and velocity. In 

particular in our study the pressure governing equation is a Poisson equation taken from the 

momentum equation satisfying the constraint of incompressibility. It is known that in the 

equation of pressure the problem is to impose the correct boundary conditions. When 

Neumann boundary condition was implemented for pressure in the studies of Gresho and 

Sani (1987) and Orszag et al. (1986) a correct solution for pressure was reported. 

2.5.1 Time splitting scheme 

For the descritizaton of Eq. (2.1) and Eq. (2.2) we use the fractional-step scheme proposed 

by Karniadakis et al. (1991). The method treats the viscous term of the Navier Stokes 

equations implicitly using a backward difference scheme whereas it treats the convection 

terms explicitly. More details about the theoretical background of the method can be found 

in Yanenko (1971), Chorin (1968) as well as in Maday et al. (1990), where a general 

decomposition methodology is presented. 

The time splitting scheme introduced by Karniadakis et al. (1991) is a stiffly stable scheme 

based on an operator splitting technique that decouples velocity and pressure into several 

substeps that can be solved separately with implicit and explicit techniques. 

For a two-dimensional flow field the Navier Stokes equations can be written with the use of 

operator factors L(u) and N(u) as follows :     

 

0

1
( ) ( )p L N

t Re

∇⋅ =

∂
= −∇ + +

∂

u

u
u u  (2.19) 

Where u, p are the normalized velocity and pressure, Re is the Reynolds number; L(u) is an 

operator for the linear diffusion term and N(u) for the non-linear convection term. Those 

operators are defined as:   

 
2( )

( ) ( )

L

N

=∇

= − ⋅∇

u u

u u u

  (2.20) 

To estimate the time derivative of an equation 
u

f
t

∂
=

∂  
in a multistep method we use: 

 
1

1

0

0

1
( )

J
n n i

i

i

u a u
t
γ

∆

−
+ −

=

−∑  (2.21) 

where  γ0  is : 
J

i

i

aγ
−

=

=∑
1

0

0

for consistency reasons.  
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Thus Eq. (2.21) can be written: 

 
1 1 1( 1) ( 1)

1

( 1) ( 1)
0 0 0

1 1 1
( )

J J Jn t n t
n n i

i i i
n t n t

i i i

u
a u u a dt a fdt

t t t t

∆ ∆

∆ ∆∆ ∆ ∆

− − −+ ++ −

− −
= = =

∂
− = =

∂∑ ∑ ∑∫ ∫  (2.22) 

The integrand on the right hand side of Eq. (2.22) can be split into several parts, and each 

part can be evaluated implicitly or explicitly. Thus the momentum equation in Eq. (2.19) can 

be written as: 

 

1
1

0 1
0 1 1

0

( )
1

( ) ( )

i

e

J
n n q

q J
q n n n q

q

q

a

p
t Re

γ
β

∆

−
+ −

−
= + + −

=

−

= −∇ + +
∑

∑
u u

L u N u  (2.23) 

The time integration of the Eq. (2.23) is done into three separate sub-steps. The first of the 

three sub-steps computes explicitly the non-linear term of the velocity field u, using a third 

order Adams-Bashforth technique as follows:  

 

1

1
0

0

( )

i

e

J
n q

q J
q n q

q

q

ˆ a ( )

t
β

∆

−
−

−
= −

=

−

=
∑

∑
u u

N u  (2.24)

                                            

Where û  is the intermediate velocity field, n refers to the level of time, u
n+1 

is an 

approximation from the previous iteration of velocity, aq and βq are the appropriate Adams-

Bashforth coefficients for stiffly stable integration, and Ji, Je  are the order for the implicit 

and explicit solution, respectively. In Table 2-1 the values of γ0, aq and βq coefficients are 

presented for different values of scheme order. More details can be found in Karniadakis et 

al. (1991).  

Table 2-1: Coefficients for up to third order stiffly stable schemes 

Coefficient 1
st

 Order 2
nd

 Order 3
rd

 Order 

γ0 1 3/2 11/6 

α0 1 2 3 

α1 0 -1/2 -3/2 

α2 0 0 1/3 

β0 1 2 3 

β1 0 -1 -3 

β2 0 0 1 
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The second sub-step is the pressure correction step which is written as: 

 n
ˆ̂ ˆ

p
t∆

+−
= −∇ 1u u

 (2.25) 

where ˆ̂u is the second intermediate value of the velocity field and 
n

p
+1

 is the pressure field 

that ensures the incompressibility condition for the velocity at the end of n+1 step: 

 
n

n

t

n

t

pdt t p∆
+

+∇ = ∇∫
1

1  (2.26) 

The divergence of Eq. (2.25) leads to a Poisson equation for the pressure: 

 2 1
( )

n ˆ
p

t∆
+∇ =∇⋅

u
 (2.27) 

This requires the following Neumann pressure boundary condition to be implemented for 

this sub-step:  

 

11

0

1eJn
n q n q

q

q

p
N( )

n Re
β

−+
− −

=

∂  = − ∇×∇× ∂  
∑n u u   on  Ω∂  (2.28) 

where Ω is the boundary surface and n is the unit vector normal to the surface. This method, 

proposed by  Karniadakis et al. (1991), sets a condition for the normal pressure gradient at 

the boundary using the solution from the previous steps. The accuracy of the time splitting 

scheme of Karniadakis et al. (1991) is found to be one order higher than the order used to 

extrapolate the pressure boundary conditions.  

The third sub-step involves the viscous term, and consists in the solution of a Helmholtz 

equation: 

 
1

11
( )

n
n

ˆ̂
L

t Re

γ
∆

+
+−

=
u u

u  (2.29) 

The three sub-steps sequence is followed, with the updated fluid velocity 1nu +  advancing the 

solution in time. 

In this thesis we used a parallel code based on the SEM method discussed above to simulate 

the incompressible fluid flow past a cylinder. Details about the problem formulation and the 

boundary conditions can be found in section 4.3.2. Resolution tests, demonstrating the 

adequacy of the discretization utilized can be found in Appendix A. 
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3.1 Background 

The present study involves Direct Numerical Simulation (DNS) of two and three-dimensional 

flow past a circular cylinder, oscillating both transversely and in-line with respect to a 

uniform flow at Reynolds number Re=400. In this Reynolds number range, the flow is fully 

three-dimensional; thus three-dimensional simulations must be used to accurately predict 

the flow dynamics and forces. 

We have used an MPI-based spectral element parallel code. The code has been tested in 

terms of parallel efficiency, both for three-dimensional and two-dimensional flow.  

3.2 Code validation 

We have validated the present code for: (a) the case of flow past a stationary cylinder 

against the computational two dimensional results of Henderson (1995) (b) the case of 

three-dimensional flow past a stationary cylinder against the experimental results of 

Wieselberger (1921) (c) the case of flow past a cylinder oscillating transversely to a free 

stream, against the computational results of Kaiktsis et al. (2007). 

Here we have used a two-dimensional spatial discretization of 464 macro-elements, with 

5×5 and 9×9 elemental resolution, for several values of Reynolds number from 10 to 400, in 

order to compare the results of the flow past a stationary cylinder with those of Henderson 

(1995). In Figure 3-1 the computed values of the time-averaged drag coefficient, DC< >  (see 

definition in section 4.2.1.2) are presented at different Reynolds numbers. We observe that 

our simulations match the numerical results of Henderson (1995). Further, in Figure 3-1 

results of three-dimensional simulations are presented, and compared against the 

experiment of Wieselberger (1921), indicating a very good agreement. 

 

Figure 3-1: Time-averaged drag coefficient versus Reynolds number in flow past a stationary 
cylinder. Present two-dimensional and three-dimensional simulations and literature studies 

are presented. 
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We also compare the present results of two- and three-dimensional flow past a stationary 

cylinder with the numerical results in the review paper of Norberg (2003). In Figure 3-2 the 

computed values of the RMS fluctuation of the lift coefficient, CL,RMS (see definition in section 

4.2.1.1) are presented for different Reynolds numbers. A good agreement is demonstrated 

between the present simulations and the numerical results presented in Norberg (2003).  

 

Figure 3-2: RMS fluctuation intensity of lift coefficient versus Reynolds number in flow past a 

stationary cylinder. Present two-dimensional and three-dimensional simulations and 

literature studies are presented. 

To further validate the code, we performed two-dimensional simulations of the flow past a 

circular cylinder oscillating transversely to a uniform flow, at Re=400. The oscillation 

frequency ratio was F=fy/fs=1.0, where fy is the excitation and fs is the Strouhal frequency. 

The transverse oscillation amplitude was /yA D =0.10. The computed values of force 

coefficients (see definitions in section 4.2.1) are presented in Table 3-1, illustrating a very 

good agreement with the results in Kaiktsis et al. (2007).  

Table 3-1: Force coefficients of two-dimensional flow past a cylinder oscillating transversely 

with respect to a uniform stream, at Reynolds number 400. Here, the frequency ratio is 

F=1.0  and the transverse oscillation amplitude /yA D =0.10.  

 CLv CM CLa CL,RMS DC< >  CD,RMS 

Kaiktsis et al. (2007) 0.952107 -1.955304 -0.587760 0.791597 1.523790 0.141632 

Present work 0.949735 -1.967934 -0.591556 0.792110 1.522300 0.140870 

 



Chapter 3 

Parallel Processing 

 

29 

 

3.3 Parallel performance 

The simulations of the incompressible three-dimensional flow past an oscillating cylinder 

require fine resolution in all three flow directions. We have performed the present flow 

simulations with the spectral element parallel solver Nek5000. The solver is documented in 

detail by Fischer (1997), Fischer et al. (2000) and in the relevant webpage 

(http://nek5000.mcs.anl.gov).  

The discretization consisted of spectral elements in the in line-vertical planes (x-y planes) as 

well as in the spanwise direction (z-direction). Within each element, the field unknowns are 

expressed in term of high-order interpolants, which are based on Legendre polynomials. The 

number of collocation points in one direction is equal to the polynomial degree plus one. 

Thus an elemental resolutions of e.g. 8×8×8 corresponds to polynomials of seventh order.  

A third-order accurate semi-implicit splitting scheme was employed for time integration 

Karniadakis et al. (1991). Periodic boundary conditions are employed for the two end planes 

in the spanwise direction.  

The present study evaluates the capability of the parallel algorithm to properly utilize an 

increasing number of processors (scalability). Parallel computing requires efficient 

communication between multiple processors. The scalability of an algorithm is characterized 

by the speed-up factor indicating the turnaround time gain, in comparison to execution on 

one single processor. Ideally, in the absence of communication latency, the speed-up factor 

should increase linearly with the number of processor cores. Here performance tests for the 

present problem and discretization parameters are reported.  

The simulations have utilized a parallel cluster at ETH Zurich. Here, 12-core AMD CPUs were 

used, with 32 GB of RAM each. The cluster has a total of 17,000 cores with a peak 

performance of approximately 180 teraflops. The present tests consisted of simulations with 

a total of 100 time-steps. The computational grid consisted in total of 20560 elements.  

Figure 3-3 presents the turnaround time per time-step for 6×6×6 and 8×8×8 elemental 

resolution. The computations illustrate a sharp decrease in CPU time for a number of 

processors up to 256, which is less pronounced at higher processor number. The results also 

indicate that the overhead at increased resolution decreases with the number of processors.  

Speed-up factor: The speed-up factor is expressed as the ratio of turnaround CPU time for a 

low number of processors to the corresponding time for a higher processor number.  

Here, the reference value is based on the CPU time for 64 processors. The results are 

presented in Figure 3-4. In accordance with the results of Figure 3-3, the speed-up increases 

almost linearly at relatively low number of processors. For a processor number higher of 512 

(Nprocessors/64=8) the speed-up rate is lower than linear. 

Similar tests of three-dimensional simulation were performed on a parallel cluster of CSLAB 

in the School of Electrical and Computer Engineering of NTUA; these tests also included two-

dimensional simulations. In particular 8-core INTEL CPUs were used, with 2GB of RAM each. 
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The cluster has a total of 256 cores. Here a smaller number of processors were utilized 

ranging from 16 to 48 processors. The present tests consisted of simulations with a total of 

100 time-steps. The computational grid of three-dimensional simulations consisted in total 

of 20560 elements with 7X7X7 elemental resolution whereas the grid of two-dimensional 

simulations consisted of 2056 elements with 9X9 elemental resolution. The corresponding 

plots of turnaround CPU time per time-step and speed-up factor are presented Figure 3-5 

and Figure 3-6, respectively. Noting the lower number of processors, the trends are those 

identified for the ETH Zurich cluster, at low processor number.  

3.4 Conclusion  

After a number of validation tests, scaling simulations were performed to measure the 

performance of the parallel code used in the DNS of flow past a cylinder. The results have 

demonstrated that the numerical algorithm is scaling well on different computing machines. 

The speed-up factor increases almost linearly with the number of processors, for a number 

of processors up to 256. For high number of processors the speed-up is not linear but 

remains satisfactory. In general, the speed-up increases with the problem size.  
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Figure 3-3: Turnaround time/time-step versus number of processors of three-dimensional 

simulations on a parallel AMD Opteron cluster. 

 

 

Figure 3-4: Speed-up factor versus normalized number of processors of three-dimensional 

simulations on a parallel AMD Opteron cluster. The reference simulation is performed on 64 

processors.  
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Figure 3-5: Turnaround time/time-step versus number of processors of two- and three-

dimensional simulations on a parallel Intel Xeon cluster. 

 

 

 

Figure 3-6: Speed-up factor versus normalized number of processors of two- and three-

dimensional simulations on a parallel Intel Xeon cluster. The reference simulation is 

performed on 16 processors. 
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4.1 Background 

This chapter presents computational results of the two-dimensional flow past a cylinder 

oscillating transversely and in-line with respect to a uniform stream, at Reynolds number 

400. The in-line oscillation frequency (fx) is equal to twice the transverse frequency (fy) thus, 

the cylinder follows a figure eight motion. Three values of the transverse oscillation 

frequency are considered, close to the natural frequency of the Kármán vortex street. The 

ratio of in-line to transverse oscillation amplitude, /x yA A=ε , is equal to 0.2 or 0.4, while 

the values of transverse amplitude over diameter ratio correspond to excitation, i.e. positive 

power transfer from the fluid to the cylinder.  

For a flow stream from left to right, we distinguish between a counter-clockwise mode and a 

clockwise mode, if the upper part of the trajectory is traversed counter-clockwise or 

clockwise, respectively. We study the relation of force coefficients and power transfer to the 

direction of the cylinder trajectory (counter-clockwise or clockwise) and to the flow states. 

We use the time histories and power spectra to investigate the responses associating with 

vortex-induced vibrations. We correlate the wake structures to the calculated forces acting 

on the cylinder.  

4.2 Problem definition  

We consider a cylinder oscillating both transversely and in-line to a uniform stream, 

following a figure eight trajectory. The velocity of the fluid far upstream of the cylinder is 

∞U , the density and kinematic viscosity of the fluid are ρ and ν respectively. The Reynolds 

number of the flow, defined in terms of the free stream velocity ( ∞U ) and the cylinder 

diameter (D), is equal to 400, the same value as in previous studies Kaiktsis et al. (2007). We 

use a Cartesian coordinate system formed by x-axis, parallel to the incoming flow, and y-axis, 

normal to the flow. The cylinder is oscillating around its mean position; the in-line oscillation 

frequency is twice the transverse frequency, fx=2fy. The instantaneous displacement of the 

cylinder in x- and y-direction is: 

                                          
                         sin(2 )y y yA f tη π=                                                         (4.1)   

                                               
        

sin(2 ) sin(4 )x x x x yA f t A f tη π π= ± = ±                                         (4.2)     

For a flow stream from left to right, the plus (+) sign in Eq. (4.2) corresponds to a motion 

which is counter-clockwise in the upper x-y plane, and the minus (-) sign to a clockwise 

motion in the upper x-y plane. 

4.2.1 Hydrodynamic forces and power transfer parameter 

The fluid forces of the cylinder in the in-line and transverse direction are the drag and lift 

force acting on the cylinder. We calculate the lift and drag forces by integrating the pressure 
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and viscous stress terms around the cylinder. For a locked-in wake, the lift and drag forces 

per cylinder unit length, Fy, Fx  are harmonic in time with frequency fy  and  fx  respectively, 

and can be both decomposed into the excitation force and the inertia or added mass force, 

as follows:  

                                                    cos(2 ) sin(2 )y v y M yF F f t F f tπ π= +  
      

                                           (4.3) 

                                                    
cos(2 ) sin(2 )x vx x Mx xF F f t F f tπ π= +                                                 (4.4)                         

where Fv and Fvx are the amplitudes of the excitation forces, while FM and FMx are the 

amplitudes of the added mass forces. The amplitudes of the harmonic forces can be readily 

calculated from the force signals:  

                                                   0

2
exp(2 )

T

v M y yF iF F f t dt
T

π+ = ∫                                                        (4.5) 

                                                  0

2
exp(4 )

T

vx Mx x yF iF F f t dt
T

π+ = ∫                                                   (4.6) 

where 1−=i και 1/ yT f=  is the period of the cylinder oscillation in the y-direction.   

It is commonly assumed that the excitation forces are proportional to the dynamic pressure, 

and that the inertia forces are proportional to the cylinder acceleration. On this basis, non-

dimensional excitation coefficients, 
Lv

C , 
Dv

C  and inertia coefficients, MC , Mx
C  can be 

defined:  

                                                          

21

2
v LvF U DCρ ∞=                                                                        (4.7) 

                                                          

21

2
vx DvF U DCρ ∞=                                                                        (4.8) 

                                                         

2 2(2 )
4

M y y MF D A f C
π
ρ π=

 
                                                         (4.9) 

                                                          

2 2(2 )
4

Mx x x MxF D A f C
π
ρ π=                                                     (4.10) 

As the excitation and inertia forces are components of the same force, we also consider 

scaling the inertia components with the dynamic pressure, thus introducing the inertia 

coefficients, La
C , Da

C : 

                                                            

21

2
M LaF U DCρ ∞=                                                                    (4.11) 

                                                            

21

2
Mx DaF U DCρ ∞=                                                                  (4.12) 

The relationship between the inertia coefficients can be readily obtained: 

3 22 ( / )( )La y M

D / U
C A D C

T
π ∞= , 3 2/

8 ( / )( )Da x Mx

D U
C A D C

T
π ∞=

 
where T is the cylinder oscillation 

period in the y-direction. 
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From dimensional analysis it follows that all non-dimensional force coefficients are functions 

of: the Reynolds number, the reduced y-amplitude /yA D , the relative x-amplitude 

/x yA A=ε
 

and the reduced oscillation frequency /y sF f f= , (where fs is the natural 

frequency of the Kármán vortex street). Each of the two directions in which the figure eight 

trajectory is traversed defines a different physical problem, thus the dynamics also depends 

on the oscillation mode (counter-clockwise or clockwise).  

4.2.1.1 Lift force 

The total lift is scaled with the dynamic pressure, yielding the lift coefficient: 

                                                            

21

2
y LF U DCρ ∞=

  
                                                                    (4.13) 

The instantaneous lift coefficient, LC  can be decomposed into the time-averaged value,        

< LC  > and an instantaneous fluctuation, LC′ , i.e. L L LC C C′=< >+   where 
0

1
T

L LC C dt
T

< >= ∫ . 

We will denote the root mean square (R.M.S.) of LC′  by ,L RMSC . When the forces on the 

cylinder are harmonic in time, the value of ,L RMSC
 
is defined as: 

                                                           

2 2
,

1

2
L RMS Lv LaC C C= +                                                           (4.14) 

In the present study, we use MATLAB to calculate mean and the RMS values of the 
hydrodynamic forces. The RMS value of a signal’s fluctuations is defined as: 

                                                           

2

, ( )L RMS L LC C C= − < >                                                           (4.15) 

where the over-line signify mean value. 

4.2.1.2 Drag force 

The total drag force as showed above is also scaled with the dynamic pressure, yielding the 

drag coefficient, respectively: 

                                                            

21

2
x DF U DCρ ∞=                                                                     (4.16) 

Correspondingly, the decomposition of the drag coefficient, DC  is: D D DC C C ′=< > +   where 

0

1
T

D DC C dt
T

< >= ∫
 

and the root mean square (RMS) of DC′  by ,D RMSC
 
where:  

                                                           

2 2
,

1

2
D RMS Dv DaC C C= +                                                         (4.17) 

The RMS value of a signal’s fluctuations is also defined as Eq. (4.15) : 2

, ( )D RMS D DC C C= − < >  
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4.2.1.3 Power transfer parameter 

In vortex-induced vibrations, the power transfer parameter is an important quantity, as 

positive values correspond to excitation, and negative values to damping. The power 

transfer parameter is defined as the integral in time over one cycle of motion of the total 

force times the velocity: 

                                                             
Hydro

dη
P(t) = F (t)

dt
⋅

�

                                                                 (4.18) 

where ( )tη
 
is the instantaneous displacement of the cylinder from its mean position and  

dη

dt

�

 the instantaneous velocity of the cylinder. 

For forced vibrations in two dimensions, the total power transfer parameter, P, consists of 

the sum of the corresponding contributions of energy in both the in-line and transverse 

directions: 

                                                                       
x yP = P + P                                                                   (4.19) 

where x
P  and 

yP  denote the power transfer in the in-line and the transverse direction 

respectively.
 

In general, these two components can be calculated by taking their time 

averaged values:
       

                                                

1
lim { ( ) ( )

t T t T

yx
x y

T
t t

dd
P F t dt F t dt

T dt dt

+ +

→∞


= + 


∫ ∫

ηη
                            (4.20) 

 

The time-averaged power transferred from the flow to the cylinder (per cylinder unit length) 

can be normalized by  31

2
U D∞ρ  to yield the non-dimensional power transfer parameter:  

                                              
3

0

2 1
{

T T

yx
x y

o

dd
P F dt F dt

U D T dt dt


= + 


∫ ∫

ηη
ρ

                                     (4.21) 

4.2.1.4 Mean dissipation 

The non-dimensional mean power dissipation dP< > is characteristic of the flow dynamics, 

with high values being representative of energetic flows. Considering that the energy of the 

flow-structure system is constant in mean, we apply the first law of thermodynamics to the 

system as 0dP P< > + < >=  which is equivalent to ( )d x yP P P< >= − < > +< >
 
from Eq. (4.19). 

Then the mean power dissipation is given by the following expression:  

                                                 
( )

yx
d x y

dd
P F U F

dt dt

ηη
∞< >=< − > − < >                                          (4.22) 
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where xd

dt

η
 and 

yd

dt

η
 are the in-line and vertical velocity components of the cylinder. 

Dividing by 31

2
U Dρ ∞  and using the definitions of coefficients 

DC< > , 
DvC  and 

LvC  we obtain 

2
yx

d D Dv y Lv y

AA
P C C f C f

D D
π π< >=< > − −  . 

4.3 Flow field solution  

4.3.1 Governing equations 

The governing equations for the solution of our problem are the Navier–Stokes and 

incompressibility equations. For convenience, we non-dimensionalize all lengths with 

respect to D, all velocities with respect to the free stream velocity U∞ , time with respect to 

/D U∞ , and pressure with respect to
2

Uρ ∞ . Then the incompressibility and Navier–Stokes 

read:  

                                                            0u∇⋅ =
�

                                                                                  (4.23) 

                                                   

2u 1
u u p u

t Re

∂
+ ⋅∇ = −∇ + ∇

∂

�

� � �

                                                      (4.24)  

where u
�

 is the absolute velocity vector, and 
U D

Re=
ν
∞  is the Reynolds number of the flow.  

4.3.2 Problem formulation and boundary conditions 

The boundary conditions to solve the equations (4.22) and (4.23) are as follows: 

� On the cylinder surface, the instantaneous fluid velocity is equal to that of the 

cylinder:   

                                                     
yx

x y

dd
u u u i j

dt dt

ηη
= + = +

� �
� � �

                                                       (4.25) 

where (ηx, ηy) is now the non-dimensional cylinder displacement, and i
�

, j
�

are the 

unit vectors in the x and y directions.  

� Far upstream and at the side boundaries we assume uniform flow with velocity 

equal to U∞  : 

                                                                        
1u U i∞= =
��

�

                                                               (4.26) 

where i
�

 is the unit vector in the x-direction. 
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� Far downstream we assume a Neumann-type boundary condition:  

                                                                         0
u

n

∂
≈

∂

�

                                                                      (4.27) 

To avoid the reconstruction of the computational grid at each time step, we use a frame of 

reference that is fixed on the cylinder. Taking that u
�

 represents the relative, with respect to 

the moving cylinder, velocity, the incompressibility equation remains the same, while the 

momentum equation changes to: 

                                             

22
2

2 2

yx
ddu 1

u u p u i j
t Re dt dt

ηη∂
+ ⋅∇ = −∇ + ∇ − −

∂

�

� �
� � �

                           (4.28) 

i.e. at the right-hand side of Eq. (4.28) a d’Alambert acceleration is present. This means that, 

in order to find the actual force components acting on the cylinder, one has to subtract from 

the computed forces for lift and drag the “dynamic Archimedes” forces that are equal to  

2 2 2( ) /y

π
D d dt j

4
ρ η−

�

 and 2 2 2( ) /x

π
D d dt i

4
ρ η−

�

 for the lift and drag force, respectively.  

Moreover the flow boundary conditions are modified as follows:  

� on the cylinder surface, the instantaneous fluid velocity is reduced to:   

                                                                    0u =
�

                                                                              (4.29) 

� at the inflow and at the side boundaries : 

                                                     
 ( ) ( )

yx
dd

u U i j
dt dt

∞= − −
� ��

�
ηη

                                                          (4.30) 

� at the outflow the Neumann-type boundary condition is maintained, 0
u

n

∂
≈

∂

�

.          
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4.4 Discretization  

Equations (4.23), (4.28) subject to the above boundary conditions (4.27), (4.29) and (4.30) 

are solved using a spectral element method. The discretization in the x-y plane employs 

quadrilateral spectral elements, which are high-order finite elements with Legendre 

polynomials forming the expansion basis as tensor products in two dimensions. The size of 

the domain and discritization were selected according to previous numerical studies by 

Evangelinos and Karniadakis (1999), Blackburn and Henderson (1999), Delaunay and Kaiktsis 

(2001) and Kaiktsis et al. (2007) .  

The inflow boundary is located at x/D=-20, the lateral boundaries at y/D=±17, and the 

outflow boundary at x/D=60. The spatial discretization consists of 464 macro-elements, with 

9x9 elemental resolution. The time integration is based on a second-order accurate semi-

implicit splitting scheme, Karniadakis et al. (1991). Typically, the values of the non-

dimensional numerical time step were equal to Δt=0.00075 to 0.0015. The spectral element 

skeleton used is shown in Figure 4-1. Detailed spatial and temporal resolution tests have 

been performed, and are reported in Appendix A.1. 

 
 

 
 

Figure 4-1: Spectral element skeleton for two-dimensional flow past a circular cylinder, 

including elements close to the cylinder, and the entire mesh. Velocity boundary conditions 

for a coordinate system fixed on the cylinder are also indicated. 

 

 

 

(1 )x yu d dt i d dt jη η= − −
� �

�

  60 

   34 

  20 
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4.5 Results 

We have performed detailed numerical simulations of two-dimensional flow, for three 

values of frequency ratio F equal to 1.0, 0.9 and 1.1, corresponding to resonant, below-

resonant and above resonant forcing. Two values of amplitude ratio /x yA A=ε  are 

considered, equal to 0.2 and 0.4, for both the counter-clockwise and clockwise motion (see 

Table 4-1). The non-dimensional frequency of flow past a stationary cylinder is, fs=0.22017 

and the time-averaged drag coefficient is, DC< > =1.4169, values obtained from previous 

two-dimensional flow simulations (see Kaiktsis et al. (2007)) and verified by the present 

simulations.  

Table 4-1: The parameter values of the present two-dimensional simulations 

Parameter values  

Re 400  

y sF f f=  0.9,  1.0,  1.1 

 /x yA A=ε  0.2 , 0.4 

yA D  0 – 0.80 

motion counter-clockwise & clockwise 

The corresponding two-dimensional Navier-Stokes equations are integrated until a statistical 

“steady state” is reached, within which the flow mean quantities are time-independent. The 

reported flow statistics correspond to this state. In general, computations have been 

performed up to amplitudes for which negative values of the power transfer parameter are 

obtained. 

4.5.1 Power transfer and hydrodynamic force coefficients 

The total drag and lift signals of the statistical “steady state” are computed and analyzed as 

outlined in section 4.2.1, yielding the non-dimensional coefficients characterizing the flow. 

General statistics have been performed to the calculated forces over an integer number of 

periods when a “steady state” is reached. We present results for three different cases of 

cylinder oscillation frequency corresponding to oscillation at the natural frequency of vortex 

shedding (resonant forcing), oscillation at a frequency below the natural frequency and at a 

frequency above the natural frequency.  

4.5.1.1 Resonant forcing 

For F=1 (resonant forcing) the variation of power transfer parameter with respect to yA D  

is illustrated in Figure 4-2, for ε=0.2 (counter-clockwise and clockwise modes), as well as for 

the case of transverse-only oscillation (ε=0). In counter-clockwise motion, the range of 
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yA D  corresponding to positive P is larger, compared to either the clockwise mode or the 

case of transverse-only oscillation. The increase of the amplitude range of positive P is due 

primarily to the work of the fluctuating drag force which is in phase with the in-line velocity 

of the cylinder. (A small part of the increase is due to the work of the lift force, see Figure 4-

4, 
yA D values greater than 0.50). We can conclude therefore that, for resonant forcing, the 

counter-clockwise mode is the worst case scenario for free vibrating cylinder, because it 

results to higher values of yA D .  

Figure 4-3 illustrates the variation of the power transfer parameter versus yA D  for ε=0.4 

(counter-clockwise and clockwise modes). In comparison to the ε=0 case, the results shown 

in Figure 4-3 illustrate a reduction in the y-amplitude range of positive power transfer, for 

both the oscillation modes. This reduction is larger for the clockwise motion. 

Figure 4-4 - Figure 4-11 illustrate the dependence of coefficients Lv
C , Dv

C , MC , 
LaC , DaC , 

CL,RMS , DC< >  and CD,RMS  to the transverse oscillation amplitude, for ε=0, 0.2 and 0.4.  

The variation of the coefficient Lv
C  is shown in Figure 4-4. In all cases, there is 

correspondence with the P curves. For counter-clockwise mode, the Lv
C  values are initially 

positive, drop at moderate oscillation amplitude, and eventually are becoming negative. For 

the clockwise mode, transition to negative values, corresponding to energy transfer from the 

cylinder to the flow, occurs at very low and at oscillation amplitudes higher than 0.30.  

The variation of Dv
C  is shown in Figure 4-5. For the counter-clockwise mode, the  Dv

C  values 

are in the majority of cases positive, i.e. the in-line cylinder motion transfers energy from the 

flow to the cylinder. The curves are characterized by a sudden drop at yA D  values around 

0.25. In the case of clockwise motion, the Dv
C  values remain negative, i.e. there is energy 

transfer from the cylinder to the flow.   

Figure 4-6, presents the variations of the added mass coefficient MC . For clockwise mode, as 

well as for ε=0, MC  tends to minus infinity for very low oscillations amplitudes, which 

suggests that there is a finite force in phase with the cylinder acceleration, see also Kaiktsis 

et al. (2007). Also in clockwise motion, MC  acquires very high positive values for oscillation 

amplitudes tending to zero, i.e., in this case, there is a finite force which is 180o out of phase 

with the cylinder acceleration. This singular behaviour is eliminated by scaling the inertia 

force, FM, with the dynamic pressure: the values of coefficient 
LaC  shown in Figure 4-7, are 

bounded, and of the same sign as the values of the MC  coefficient. 

The coefficient DaC  is illustrated in Figure 4-8. In counter-clockwise mode, the values are 

positive for small and moderate oscillation amplitudes, i.e. the inertia force 
MxF  is 180o out 

of phase with the cylinder acceleration in the in-line direction. The 
DaC  values are negative 
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for the clockwise mode, with the exception of a region of moderate oscillation amplitudes 

for ε=0.2.  

The magnitude of non-dimensional lift forces versus the transverse oscillation amplitude, 

expressed in terms of the coefficient CL,RMS is illustrated in Figure 4-9. It is shown that, in 

clockwise motion, the lift fluctuations increase substantially with oscillation amplitude, 

while, in counter-clockwise motion, there is a milder dependence on  yA D .  

Figure 4-10 shows the variation of mean drag coefficient with respect to yA D . It is 

illustrated that the in-line oscillation in most cases increases the value of the mean drag 

coefficient. Exception to this is observed for a narrow range of high yA D  values, for which 

counter-clockwise mode is associated with lower mean drag coefficient. The drag coefficient 

fluctuations, expressed by CD,RMS (Figure 4-11), follow qualitatively the same dependence on 

oscillation amplitude as the mean drag coefficient. 

The mean power dissipation parameter values, shown in Figure 4-12, are increasing 

functions of oscillation amplitude, i.e. correspond to more energetic flows, and 

characterized by higher levels in the case of clockwise cylinder motion and ε=0.4.  
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Figure 4-2: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.2 

(counter-clockwise and clockwise modes) are shown. 

 

 

Figure 4-3: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.4 
(counter-clockwise and clockwise modes) are shown. 
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Figure 4-4: Excitation force coefficient, 
LvC , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) and shown. 
 

 

Figure 4-5: Excitation force coefficient, Dv
C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 
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Figure 4-6: Inertia force coefficient, 
MC , versus the reduced y-amplitude, for frequency ratio 

F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 (counter-

clockwise and clockwise modes) are shown. 

 

 

Figure 4-7: Inertia force coefficient, La
C , versus the reduced y-amplitude, for frequency ratio 

F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 (counter-

clockwise and clockwise modes) are shown. 
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Figure 4-8: Inertia force coefficient, Da
C , versus the reduced y-amplitude, for frequency ratio 

F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 (counter-

clockwise and clockwise modes) are shown. 

 

 

Figure 4-9: RMS fluctuation intensity of lift coefficient versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε 

= 0.4 (counter-clockwise and clockwise modes) are shown. 
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Figure 4-10: Time-averaged drag coefficient versus the reduced y-amplitude, for frequency 
ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 

 

 
Figure 4-11: RMS fluctuation intensity of drag coefficient versus the reduced y-amplitude, 

for frequency ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 

and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 

 



Chapter 4 

Two-Dimensional Flow 

 

49 

 

 
Figure 4-12: Time-averaged non-dimensional power dissipation versus the reduced y-

amplitude, for frequency ratio F = fy/fs = 1.0; here, the cases ε = 0 (transverse-only 

oscillation), ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 

4.5.1.2 Forcing below the natural frequency 

We consider the case where the cylinder oscillates at a frequency below the natural 

frequency, F=0.9. The variation of the power transfer parameter corresponding to the total 

value P is shown in Figure 4-13 and Figure 4-14, for ε=0.2 and ε=0.4, respectively, for the 

counter-clockwise and clockwise modes; the case corresponding to ε=0 is also included. 

Figure 4-13 and Figure 4-14 demonstrate that for ε=0.2 and ε=0.4, counter-clockwise motion 

is associated with an increased amplitude range of positive P values, in comparison to the 

other two oscillation cases (transverse-only oscillating cylinder and clockwise motion). We 

conclude that, for oscillation frequency below the natural frequency, counter-clockwise 

motion is the worst case scenario for a free vibrating cylinder, in accordance with the case of 

oscillation at resonant forcing.   

The variations of coefficients Lv
C , Dv

C , MC , 
LaC , DaC , CL,RMS , < DC >, and CD,RMS are shown in 

Figure 4-15 to Figure 4-22. The values that correspond to transverse-only oscillation (ε=0) 

are also illustrated. The variation of the coefficient Lv
C  is shown in Figure 4-15. In all cases, 

the variation follows qualitatively the corresponding behaviour of the P curves. For counter-

clockwise mode, the Lv
C  values are initially negative, then positive and increasing, reach a 

plateau, and acquire negative values at oscillation amplitudes higher than half a diameter. In 

clockwise mode, the form of the two curves is qualitatively similar, but the values remain 

positive only for low oscillation amplitudes.  
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The variation of Dv
C  is shown in Figure 4-16.  It is illustrated that, for counter-clockwise 

mode, the in-line cylinder motion transfers energy from the flow to the cylinder, as 

demonstrated from the positive values of the  Dv
C  coefficient; the effect is stronger for the 

ε=0.2 case. The in-line cylinder motion has the opposite effect (i.e. is associated with 

negative power transfer) for clockwise motion.     

The curve of added mass coefficient MC  illustrated in Figure 4-17 remains negative for all 

combinations of modes, ε and yA D  (i.e. is in phase with the cylinder acceleration in the 

transverse direction) except a range of yA D  in counter-clockwise mode and ε=0.4. The 

variation of the coefficient 
LaC  shown in Figure 4-18 follows qualitatively the corresponding 

variation of MC . The curve of coefficient DaC , illustrated in Figure 4-19, remains negative, 

except for a small range of low amplitudes for clockwise motion.  

The magnitude of non-dimensional forces for lift and drag is illustrated in Figure 4-20, Figure 

4-21 and Figure 4-22 (variation of CL,RMS , 
DC< > , and CD,RMS). When forcing below the 

natural frequency, the lift fluctuations increase with oscillation amplitude for clockwise 

motion, and remain flat for counter-clockwise motion. The time-averaged and fluctuating 

drag values are increasing functions of oscillation amplitude, with higher levels 

corresponding to higher relative x-amplitude (case ε=0.4).  

The variations of mean power dissipation parameter are shown in Figure 4-23 

demonstrating more energetic flow as they are increasing functions of oscillation amplitude. 

The case of clockwise cylinder motion and ε=0.4 is characterized by higher levels of mean 

power dissipation parameter. 
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Figure 4-13: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.2 

(counter-clockwise and clockwise modes) are shown. 

 

 

Figure 4-14: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 
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Figure 4-15: Excitation force coefficient, Lv
C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 
(counter-clockwise and clockwise modes) are shown. 

 

Figure 4-16:  Excitation force coefficient, Dv
C , versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 0.9; here, the cases ε = 0.2 and ε = 0.4 (counter-clockwise and 

clockwise modes) are shown. 
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Figure 4-17: Inertia force coefficient, MC , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 

 

Figure 4-18: Inertia force coefficient, LaC , versus the reduced y-amplitude, for frequency ratio 

F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 (counter-

clockwise and clockwise modes) are shown. 
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Figure 4-19: Inertia force coefficient, DaC , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 0.9; here, the cases ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise 
modes) are shown. 

 
Figure 4-20: RMS fluctuation intensity of lift coefficient versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε 

= 0.4 (counter-clockwise and clockwise modes) are shown. 
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Figure 4-21: Time-averaged drag coefficient versus the reduced y-amplitude, for frequency 
ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 

 

Figure 4-22: RMS fluctuation intensity of drag versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 
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Figure 4-23: Time-averaged non-dimensional power dissipation versus the reduced y-

amplitude, for frequency ratio F = fy/fs = 0.9; here, the cases ε = 0 (transverse-only 

oscillation), ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 

 

4.5.1.3 Forcing above the natural frequency  

 

Finally, we consider forcing above the natural frequency, with the frequency of oscillation in 

the y-direction equal to 1.1 times the natural frequency of vortex shedding (F=1.1). The 

variation of the power transfer parameters is shown in Figure 4-24 and Figure 4-25, for 

ε=0.2 and ε=0.4, respectively, for counter-clockwise and clockwise modes, along with the 

ε=0 case. It is demonstrated that the variation of P can be characterized by alterations 

between positive and negative values, with the positive values of P being higher for counter-

clockwise motion in comparison to either the transverse-only oscillation or clockwise 

motion. Thus, it is demonstrated that counter-clockwise mode remains the most hazardous 

one when forcing above the natural frequency for low oscillation amplitudes.  

The variations of coefficients 
LvC , 

DvC , 
MC , 

LaC , 
DaC , CL,RMS , 

DC< > , and CD,RMS  are 

illustrated in    Figure 4-26 - Figure 4-33; the values corresponding to transverse-only 

oscillation (ε=0) are also included.  

The variation of the coefficient 
LvC  shown in Figure 4-26 follows the corresponding 

behaviour of the P curves, shown in Figure 4-24 and Figure 4-25.  

The variation of 
DvC  is illustrated in Figure 4-27. In counter-clockwise motion, the 

DvC  

values are positive, while they are negative for clockwise motion, e.g. the in-line motion 

transfers energy from the flow to the cylinder when oscillating counter-clockwise.  
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The variation of the added mass coefficient 
MC  is presented in Figure 4-28; the values are 

positive for counter-clockwise motion, whereas they vary from positive to negative values 

for clockwise motion. The variation of 
LaC  illustrated in Figure 4-29 exhibit the same 

qualitative behaviour with the 
MC . The values of the coefficient 

DaC  shown in Figure 4-30 

illustrate that, for counter-clockwise mode, 
DaC  remains positive until a certain value of 

oscillation amplitude, while it varies between positive and negative values for clockwise 

mode.  

The non-dimensional forces for lift and drag are shown in Figure 4-31, Figure 4-32 and 

Figure 4-33, in terms of CL,RMS , DC< >  and CD,RMS values. Figure 4-31 demonstrates that, for 

clockwise oscillation, lift fluctuations acquire high values at high oscillation amplitude, and 

remain rather flat for counter-clockwise mode. Figure 4-32 and Figure 4-33 illustrate that 

the values of time-averaged and fluctuation intensities of drag are increasing functions of 

oscillation amplitude for high oscillation amplitude while sharp transitions occur in a region 

of oscillation amplitudes around 0.25-0.30.  

The values of mean power dissipation parameter illustrated in Figure 4-34 vary smoothly up 

to yA D values of order 0.30, and increase subsequently.  
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Figure 4-24: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.2 

(counter-clockwise and clockwise modes) are shown. 

 

Figure 4-25: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 
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Figure 4-26: Excitation force coefficient, Lv
C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 
(counter-clockwise and clockwise modes) are shown. 

 

Figure 4-27: Excitation force coefficient, Dv
C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.1; here, the cases ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise 

modes) are shown. 
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Figure 4-28: Inertia force coefficient, M
C , versus the reduced y-amplitude, for frequency ratio 

F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 (counter-

clockwise and clockwise modes) are shown. 

 
Figure 4-29: Inertia force coefficient, La

C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 
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Figure 4-30: Inertia force coefficient, Da
C , versus the reduced y-amplitude, for frequency 

ratio F = fy/fs = 1.1; here, the cases ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise 

modes) are shown. 

 

Figure 4-31: RMS fluctuation intensity of lift coefficient versus versus the reduced y-

amplitude, for frequency ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only 

oscillation), ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 
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Figure 4-32: Time-averaged drag coefficient versus the reduced y-amplitude, for frequency 
ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only oscillation), ε = 0.2 and ε = 0.4 

(counter-clockwise and clockwise modes) are shown. 

 
Figure 4-33: RMS fluctuation intensity of drag coefficient versus versus the reduced y-

amplitude, for frequency ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only 

oscillation), ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 
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Figure 4-34: Time-averaged non-dimensional power dissipation versus the reduced y-

amplitude, for frequency ratio F = fy/fs = 1.1; here, the cases ε = 0 (transverse-only 

oscillation), ε = 0.2 and ε = 0.4 (counter-clockwise and clockwise modes) are shown. 
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4.5.2 Wake modes 

In this section we characterize the wake modes of two-dimensional flow past an oscillating 

cylinder. We use the time histories and power spectra of the lift force to characterize the 

behavior of the response and relate the trends to the flow dynamics. Visualization of the 

flow in terms of vorticity isocontours is used to illustrate the vortex shedding and identify 

the wake structures. 

4.5.2.1 Time-histories of lift forces 

We use the time histories of the computed lift coefficient to characterize the flow dynamics 

in the wake of the cylinder. In Figure 4-35 to Figure 4-40 we illustrate the time histories of CL 

for three cases of frequency ratios (F=fy/fs) equal to 1.0, 0.9 and 1.1, corresponding to 

resonant forcing, forcing at below and at above the natural frequency. A value of amplitude 

ratio /x yA A=ε
 
is considered, equal to 0.2, for counter-clockwise and clockwise modes and 

representative values of amplitude ratios yA D . 

Figure 4-35 and Figure 4-36 illustrate the cases with frequency ratio, F=1.0, counter-

clockwise and clockwise cylinder motion, and transverse oscillation amplitude: (a)

yA D = 0.10 , (b) yA D = 0.30  and (c) yA D = 0.60
 
respectively. In Figure 4-35 (a), (b) the 

time history of CL fluctuates periodically with a uniform dominant frequency. At oscillation 

amplitudes higher than yA D = 0.30  the CL time series show a modulation with different 

oscillation frequencies in each cycle, see Figure 4-35 (c). On the other hand, for clockwise 

cylinder motion, the time history of CL illustrated in Figure 4-36 (a) and (b) is regular 

(harmonic) and has a dominant frequency, which is the excitation frequency (fy). In Figure 4-

36(c) the CL is nearly harmonic with indications of superharmonic frequencies. 

In Figure 4-37 the time series of CL are illustrated for frequency ratio F=0.9, counter-

clockwise cylinder motion and transverse oscillation amplitude: (a) yA D = 0.10 , (b)

yA D = 0.40  and (c) yA D = 0.60 . The time series of CL shown in Figure 4-37 (a) are regular 

and have a dominant frequency, which is the excitation frequency, fy. In Figure 4-37 (b), CL is 

nearly harmonic but with indication of superharmonics. At higher amplitudes as presented 

in Figure 4-37 (c) CL has a modulation within each cycle.  For clockwise motion the time 

history of CL illustrated in Figure 4-38(a) is periodic with a dominant frequency, the 

excitation frequency (fy). In Figure 4-38 (b) and (c) CL is nearly harmonic but with indications 

of superharmonics. For frequency ratio F=1.1, counter-clockwise and clockwise cylinder 

motion, the time series of CL are shown in Figure 4-39 and Figure 4-40. They are also 

characterized by periodic signals in low oscillation amplitudes and indication of modulation 

and superharmonic frequencies at higher amplitudes.   

In Figure 4-41 to Figure 4-45 phase portraits of CL-CD for some of the cases are shown.  
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Figure 4-35: Time histories of CL for the cases with frequency ratio F=fy/fs=1.0, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude: (a) yA D = 0.10 , (b) 

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-36: Time histories of CL for the cases with frequency ratio F=fy/fs=1.0, clockwise 

cylinder motion, ε=0.2, and transverse oscillation amplitude: (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-37: Time histories of CL for the cases with frequency ratio F=fy/fs=0.9, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude: (a) yA D = 0.10 , (b)

yA D = 0.40
 
and (c) yA D = 0.60 . 
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Figure 4-38: Time histories of CL for the cases with frequency ratio F=fy/fs=0.9, clockwise 

cylinder motion, ε=0.2, and transverse oscillation amplitude: (a) yA D = 0.10 , (b)

yA D = 0.40
 
and (c) yA D = 0.60 . 
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Figure 4-39: Time histories of CL for the cases with frequency ratio F=fy/fs=1.1, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude:  (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-40: Time histories of CL for the cases with frequency ratio F=fy/fs=1.1, clockwise 

cylinder motion, ε=0.2, and transverse oscillation amplitude: (a) yA D = 0.10 , (b)

yA D = 0.40
 
and  (c) yA D = 0.60 . 
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Figure 4-41: Orbits in the CL – CD plane for a case with frequency ratio F=fy/fs=0.9, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude yA D = 0.40 .

 
 

Figure 4-42: Orbits in the CL – CD plane for a case with frequency ratio F= fy/fs=0.9, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude yA D = 0.60 . 

 
Figure 4-43: Orbits in the CL – CD plane for a case with frequency ratio F=fy/fs=0.9, clockwise 

cylinder motion, ε=0.2, and transverse oscillation amplitude yA D = 0.40 . 
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Figure 4-44: Orbits in the CL – CD plane for a case with frequency ratio F=fy/fs=1.1, counter-

clockwise cylinder motion, ε=0.2, and transverse oscillation amplitude yA D = 0.60 . 

 

Figure 4-45: Orbits in the CL – CD plane for a case with frequency ratio F=fy/fs=1.1, clockwise 

cylinder motion, ε=0.2, and transverse oscillation amplitude yA D = 0.60 . 
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4.5.2.2 Spectral analysis 

 

Spectral analysis is used to post process the results of the simulation. More specifically we 

use Fast Fourier Transform to process the time series obtained from the simulation. The 

time series include the calculated forces and are sampled every ΔT interval, whereas the 

time interval is integer multiple of the Δt used for the calculations of the solver.  

The required length of simulation is long enough to achieve the required accuracy on the 

calculation of the dominant frequency. Thus simulation is carried on until a “steady state” is 

reached. We use MATLAB’s graphical interface to create Power Spectral Density diagrams 

and to identify the dominant frequencies.  

In Figure 4-46 - Figure 4-51 are illustrated the results of the lift spectra for three values of 

frequency ratio (F=fy/fs)  equal to 1.0, 0.9 and 1.1, corresponding to resonant forcing, forcing 

below and above the natural frequency. A value of amplitude ratio ε=Ax/Ay is considered, 

equal to 0.2, for both the counter-clockwise and clockwise modes. The non-dimensional 

frequency of flow past a stationary cylinder is fs=0.22017. 

For counter-clockwise motion when forcing at F=1.0 and F=0.9, lock-in of the lift is observed 

at relatively low values of the transverse oscillation amplitude (in the order of 0.1 cylinder 

diameters), whereas there is a strong peak at the third harmonic of fy in the lift spectra, see 

Figure 4-46(a) and Figure 4-48(a). At higher oscillation amplitudes the lift spectra is 

characterized by very rich frequency content, but still contains two strong peaks, at the 

excitation frequency and its third harmonic, see in Figure 4-46(c), Figure 4-48(b) and Figure 

4-48(c). For resonant forcing (F=1.0), multiple harmonics are present at even lower 

oscillation amplitudes (0.3 cylinder diameters), see Figure 4-46(b). A similar picture is 

obtained in the case of forcing at above the natural frequency (F=1.1), see Figure 4-50. In all 

cases, the third harmonic of the excitation frequency has a strong presence in the lift 

spectra.  

On the other hand, for clockwise cylinder motion at F=1.0 and F=0.9, odd harmonics are 

present in the spectra at low amplitude, and both odd and even harmonics at high 

amplitude (Figure 4-47 and Figure 4-49). The presence of the third harmonic remains 

pronounced at both oscillation frequencies, while complex spectra have only been obtained 

for forcing above the natural frequency (F=1.1), see Figure 4-51.  
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Figure 4-46: Lift coefficient spectra for a case with frequency ratio F=fy/fs=1.0, counter-

clockwise cylinder motion, ε=0.2 and transverse oscillation amplitudes:  (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-47: Lift coefficient spectra for a case with frequency ratio F=fy/fs=1.0, clockwise 

cylinder motion, ε=0.2 and transverse oscillation amplitudes:  (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-48: Lift coefficient spectra for a case with frequency ratio F=fy/fs=0.9, counter-

clockwise cylinder motion, ε=0.2 and transverse oscillation amplitudes:  (a) yA D = 0.10 , (b)

yA D = 0.40
 
and (c) yA D = 0.60 . 
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Figure 4-49: Lift coefficient spectra for a case with frequency ratio F=fy/fs=0.9, clockwise 

cylinder motion, ε=0.2 and transverse oscillation amplitudes: (a) yA D = 0.10 , (b)

yA D = 0.40
 
and (c) yA D = 0.60 . 
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Figure 4-50: Lift coefficient spectra for a case with frequency ratio F=fy/fs=1.1, counter-

clockwise cylinder motion, ε=0.2 and transverse oscillation amplitudes: (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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Figure 4-51: Lift coefficient spectra for a case with frequency ratio  F=fy/fs=1.1, clockwise 

cylinder motion, ε=0.2 and transverse oscillation amplitudes: (a) yA D = 0.10 , (b)

yA D = 0.30
 
and (c) yA D = 0.60 . 
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4.5.2.3 Visualization of the flow in the wake  

In this section we present visualizations of the wake in terms of vorticity isocontours for 

different values of yA D  in order to study the wake of the cylinder for all the cases. We will 

make a comparison between our observations and the three basic patterns observed 

experimentally by Williamson and Roshko (1988), which we summarize here for easy 

reference: (a) a 2S type of vortex street, in which single vortices are formed on both sides of 

the cylinder, (b) an S+P type of vortex street, in which a single vortex is formed on one side 

of the cylinder, and a pair of vortices of opposite sign on the other side, and (c) a 2P type of 

vortex street, in which pairs of vortices of opposite sign are formed on both sides of the 

cylinder. Also we should refer to another type of vortex pattern observed in the previous 

studies by Kaiktsis et al. (2007), the “partial S+P” mode. This mode originates as a regular 2S 

mode, and is modified through vortex splitting; thus, in an instantaneous field, vortex pairs 

appear on the one side, and single vortices on the other.  

Representative flow visualizations for the three oscillation frequencies of the present study 

are shown in Figure 4-52 - Figure 4-63 for the two studied motions (counter-clockwise and 

clockwise) and two representative ratios of the in-line vibration amplitude to the transverse 

amplitude, equal to 0.2 and 0.4. Several values of yA D   from 0.05 to 0.60 are considered. 

The visualizations correspond to the moment that the cylinder occupies its mean position 

(ηy/D= ηx/D= 0).  

In Figure 4-52 - Figure 4-55 different flow visualizations are illustrated for the case of 

resonant forcing, F=1.0. Most of the ε=0.2 cases are representative of a 2S mode, i.e. single 

vortices are present on each side of the wake. High yA D  values correspond to a type of 

wake characterized as a “partial S+P” mode, Kaiktsis et al. (2007) as well as complex vortex 

patterns in the wake, dominated by triplets or other combinations of vortices. This is in 

accordance with the variation of hydrodynamic forces acting on the cylinder. The 

dependence of flow structure on transverse oscillation amplitude remains the same for the 

ε=0.4 cases. 

Figure 4-56 - Figure 4-59 show the vortex streets at forcing below the natural frequency, 

F=0.9. For ε=0.2, counter-clockwise motion the wake resembles a 2S type whereas it  

becomes disordered at increasing yA D
 

values. Qualitatively, the same structures are 

present in the case of counter-clockwise motion and ε=0.4. For clockwise motion and ε=0.2, 

2S wakes are present at low oscillation amplitudes, asymmetric wakes for yA D
 
values of 

0.25 and higher, while structures resembling a 2P type of mode are present for yA D
 
values 

of order 0.6. For clockwise motion and ε=0.4, the patterns are qualitatively the same, with 

the “partial S+P” mode already present at 0.20yA D = , whereas complex asymmetric wakes 

are present at high oscillation amplitudes. These complex structures can be related to non-

zero time-averaged lift forces, together with a significant increase of drag force. 
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Figure 4-60 to Figure 4-63 show representative flow visualizations for F=1.1. For ε=0.2, when 

the cylinder is moving counter-clockwise, 2S structures are present, becoming more 

complicated downstream at high amplitudes. The visualization for ε=0.4 shows that counter-

clockwise motion is characterized by 2S structures at low oscillation amplitudes, and “partial 

S+P” wakes for yA D
 
values of 0.45 and higher. For clockwise mode and ε=0.2, 2S structures 

are present for yA D
 
up to 0.25. An alteration between “partial S+P” and 2S mode occurs at 

higher amplitudes, with the “partial S+P" mode dominating at yA D
 
values of 0.50 and 

higher. Visualizations for ε=0.4 and clockwise motion show a qualitatively similar behavior, 

with “partial S+P” mode already present at yA D  values of order 0.20, followed by a 

transition to 2S wakes at slightly higher oscillation amplitudes, and a return to the “partial 

S+P” mode at yA D
 
values of order 0.50. At higher amplitudes, the vortex patterns in the 

wake remain complex, dominated by triplets or other combinations of vortices. This is in 

accordance with the variation of hydrodynamic forces acting on the cylinder. 
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Figure 4-52: Instantaneous vorticity isocontours for various yA D , for F=1.0,  ε=0.2, 

counter-clockwise mode. 
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Figure 4-53: Instantaneous vorticity isocontours for various yA D , for F=1.0,  ε=0.2, 

clockwise mode. 
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Figure 4-54: Instantaneous vorticity isocontours for various yA D , for F=1.0,  ε=0.4, 

counter-clockwise mode. 
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Figure 4-55: Instantaneous vorticity isocontours for various yA D , for F=1.0,  ε=0.4, 

clockwise mode. 

Ay/D=0.20 

Ay/D=0.35 

Ay/D=0.40 

Ay/D=0. 50 

Ay/D=0.55 

Ay/D=0.05 



Chapter 4 

Two-Dimensional Flow 

 

 86 

 

 

 

 

 

 

 

 

 

Figure 4-56: Instantaneous vorticity isocontours for various yA D , for F=0.9,  ε=0.2, 

counter-clockwise mode. 
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Figure 4-57: Instantaneous vorticity isocontours for various yA D , for F=0.9,  ε=0.2, 

clockwise mode.  
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Figure 4-58: Instantaneous vorticity isocontours for various yA D , for F=0.9,  ε=0.4, 

counter-clockwise mode. 
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Figure 4-59: Instantaneous vorticity isocontours for various yA D , for F=0.9, ε=0.4, 

clockwise mode. 

   

Ay/D=0.20 

Ay/D=0.25 

Ay/D=0.50 

Ay/D=0.60 

Ay/D=0.05 

Ay/D=0.40 



Chapter 4 

Two-Dimensional Flow 

 

 90 

 

 

 

 

 

 

 

 

 

Figure 4-60: Instantaneous vorticity isocontours for various yA D , for F=1.1,  ε=0.2, 

counter-clockwise mode. 
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Figure 4-61: Instantaneous vorticity isocontours for various yA D , for F=1.1, ε=0.2, 

clockwise mode. 
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Figure 4-62: Instantaneous vorticity isocontours for various yA D , for F=1.1,  ε=0.4, 

counter-clockwise mode. 
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Figure 4-63: Instantaneous vorticity isocontours for various yA D , for F=1.1,  ε=0.4, 

clockwise mode. 
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4.6 Discussion 

In this chapter, we have presented computational results of the forces acting on a cylinder 

oscillating both transversely and in-line with respect to a free stream, following a figure 

eight trajectory, as in free vortex-induced vibration. Reynolds number is equal to 400. For a 

flow stream from left to right, we have studied both the counter-clockwise and clockwise 

oscillation modes (corresponding to a counter-clockwise or clockwise cylinder motion in the 

upper part of the trajectory, respectively). Two values of the in-line to the transverse 

oscillation amplitude were considered, ε=0.2 and ε=0.4, and the results were compared 

against the ε=0 case (transverse-only oscillation). The oscillation amplitude was varied from 

zero to values corresponding to negative power transfer from the flow to the cylinder. Three 

values of transverse oscillation frequency were considered, corresponding to F= 1.0, 0.9 and 

1.1. 

For F=1.0, counter-clockwise motion, the range of yA D
 
corresponding to positive P is 

larger, in comparison to the other two oscillation modes. In addition, the presence of in-line 

motion increases, in most cases, the drag forces exerted on the cylinder, compared to 

transverse-only oscillation.  

For F=0.9 (ε=0.2 and 0.4), counter-clockwise motion is associated with an increased 

amplitude range of positive P values, in comparison to the other two oscillation modes 

(transverse-only oscillation and clockwise motion). The corresponding variation of the drag 

force for ε=0.2 is an increasing function of oscillation amplitude, with higher levels 

corresponding to counter-clockwise oscillation mode.  

Finally, for F=1.1 the variation of P is characterized by alterations between positive and 

negative values, with the maximum values of positive P being lower in comparison to the 

cases of resonant and below-resonant forcing. With respect to the drag force, the variations 

are also non-monotonic and quite complex.  

The computed flow states depend strongly on the direction in which the cylinder trajectory 

is traversed. The present study has demonstrated that the counter-clockwise motion of the 

cylinder is, in most cases, associated with higher non-dimensional forces than the clockwise 

motion. For counter-clockwise motion, the power transfer to the cylinder remains, in most 

cases, positive for higher oscillation amplitudes, in comparison to the clockwise motion; for 

ε=0.2, these oscillation amplitude values are also higher in comparison to those of the case 

of transverse only oscillation. Also for the majority of oscillation amplitudes the CDv 

coefficient is positive for counter-clockwise motion indicating that in-line motion transfers 

energy from the flow to the cylinder. Thus, the counter-clockwise motion appears to be the 

most hazardous one for applications of vortex-induced vibrations.  

The flow dynamics can be characterized by considering the spectra of the computed lift 

coefficient signals. For cases illustrated at F=0.9 the flow is locked-in to the excitation 

frequency, even at the low amplitude. For counter-clockwise mode, the frequency content 

becomes rich at high amplitude, while a strong peak at the third harmonic is present. For 
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clockwise mode, odd harmonics are present in the spectra at low amplitude, and both odd 

and even harmonics at high amplitude. The presence of the third harmonic remains 

pronounced at F=1.0, while the spectra are characterized by very rich frequency content for 

F=1.1. The presence of significant third harmonic component in lift force at high oscillation 

amplitudes can lead to higher fatigue stresses on marine structures.  

Flow visualizations demonstrate that for frequency ratios less than or equal to 1.0, the 

observed wakes are characterized by a 2S type mode at low to medium amplitudes, and 

“partial S+P” modes at higher amplitudes. As the amplitude increases, the state of the wake 

becomes disordered, with complex vortex patterns. For higher frequency ratio (F=1.1), 2S 

structures are present in the near wake at low oscillation amplitude, becoming more 

complicated downstream. At higher amplitudes, the vortex patterns in the wake remain 

complex, dominated by triplets or other combinations of vortices.  The present results are in 

accordance with the experiments of Ongoren and Rockwell (1988) and Williamson and 

Roshko (1988); the latter are at almost the same Reynolds number with the present study.  

Further the formation of the asymmetric “partial S+P” mode, which was found in the 

computational study by Kaiktsis et al. (2007), is also observed in our computations at higher 

amplitudes. The presence of the third harmonic component in lift force being more 

pronounced in higher amplitude can be attributed to these complex wake structures. 

In general, the observed wakes are characterized by 2S structure at low amplitudes, and 

more complicated wake structure at high amplitudes, especially at higher values of 

amplitude ratio, ε i.e. at higher in-line oscillation amplitudes. This tendency towards 

complex and chaotic flow states at increasing in-line oscillation amplitude should be 

interpreted on the basis of the pattern competition between two modes, a symmetric flow 

mode due to the in-line oscillation and the asymmetric mode of the Kármán street, with 

entirely different spatial structures, see Ciliberto and Gollub (1984) and Perdikaris et al. 

(2009). 
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5.1 Background 

In this chapter we present computational results of the three-dimensional flow past a 

cylinder oscillating transversely and in-line with respect to a uniform stream. The in-line 

oscillation has a frequency equal to twice that of the transverse frequency, thus the cylinder 

follows a figure eight trajectory. We investigate the wake structure and hydrodynamic forces 

at the lock in, i.e. the transverse oscillation frequency is equal to the vortex shedding 

frequency. The corresponding oscillation amplitude is varied from 0.10 to 0.60 of the 

cylinder diameter and we assume that flow is past an infinitely long circular cylinder. This 

problem is approximated here with a finite domain length in the spanwise direction with 

periodic boundary conditions for the end planes.   

The Reynolds number is equal to 400, i.e. a regime where the flow is fully three-dimensional, 

characterized by three-dimensionality of the vortex street, see Figure 5-1. In this regime, 

most experiments (Williamson (1988; 1992; 1996; 1996a), Wu et al. (1994)) and numerical 

simulations (Karniadakis and Triantafyllou (1992), Zhang et al. (1995), Barkley and 

Henderson (1996), Thompson et al. (1996), Braza et al. (2001)) introduce the definition of 

two modes, Mode A and Mode B, in the wake transition. These two modes of vortex 

shedding have been identified as the dominant features of three-dimensionality in the wake 

and are characterized by the formation of primary spanwise vortex rolls and streamwise 

vortex pairs. In Mode A, which is introduced at low Reynolds number (around Re=190) the 

primary vortex rolls become distorted by the streamwise vortex pairs with a spanwise 

wavelength around 3 and 4 diameters. At higher Reynolds number (approximately Re=250) 

the Mode B wake structure is dominated by primary vortex rolls which are more uniform in 

the spanwise direction and streamwise vortex pairs with spanwise wavelength of around 

one diameter.  

We present the results of our three-dimensional simulations and highlight the differences 

with two-dimensional simulations. For transverse cylinder oscillation, it was reported by 

Tutar and Holdo (2000) that the results of three-dimensional simulations provide better 

agreement with experimental data. Although several studies, using different numerical 

tools, have reported comparability between two-dimensional and three-dimensional 

simulations of flow past a stationary cylinder, however, corresponding comparisons for an 

oscillating cylinder are limited. It is well known that two-dimensional simulations generally 

over-predict force coefficients; nonetheless they provide a reasonably accurate estimation. 

Two-dimensional simulations are conceived to provide more realistic estimates for 

oscillating cylinders, as oscillation reduces the three-dimensionality of vortex shedding, 

thereby increasing the correlation length of the vortices in the wake, Al-Jamal and Dalton 

(2004). 
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Figure 5-1: Experimental visualization

et al. (1994): (a) spanwise Strouhal vortices (counter

indicated by white arrow) (b) 

structure is indicated by yellow arrow). 

5.2 Discretization 

A fully three-dimensional discretization is employed. The computational domain extends 

from 20 diameters upstream from the center of the cylinder to 60

from the center of the cylinder. In the vertical direction the domain is symmetrical, 

extending up to 17 diameters from the cylinder center. 

dimension (z direction) is chosen to be 

previous literature studies summarized subsequently

 

(a) 

(b) 

visualization of the flow past a stationary cylinder at Re=440

(a) spanwise Strouhal vortices (counter-rotating streamwise vortices are also 

indicated by white arrow) (b) snapshot of instantaneous vortex structure

structure is indicated by yellow arrow).  

Discretization  

dimensional discretization is employed. The computational domain extends 

from 20 diameters upstream from the center of the cylinder to 60 diameters downstream 

from the center of the cylinder. In the vertical direction the domain is symmetrical, 

extending up to 17 diameters from the cylinder center. The domain length 

dimension (z direction) is chosen to be Lz = z/D =2π which is deemed sufficient based on the 

previous literature studies summarized subsequently.  

 

 

at Re=440 by Wu 

rotating streamwise vortices are also 

vortex structure isosurfaces (rib 

dimensional discretization is employed. The computational domain extends 

diameters downstream 

from the center of the cylinder. In the vertical direction the domain is symmetrical, 

The domain length in the spanwise 

deemed sufficient based on the 
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For a Reynolds number equal to 400 the flow is characterized by three-dimensionality of the 

vortex street, while the wake structure corresponds to the B-mode. In the present work, the 

selection of spanwise periodicity length of the flow domain has been based on experimental 

observations regarding the spanwise wavelength of B-mode, as well as on published three-

dimenional computational studies of flow past a cylinder. In general, the spanwise length 

should be equal to several spanwise wavelengths.  

Kim and Kim (2010) studied numerically the characteristics of three-dimensional flow past a 

circular cylinder at Reynolds number ranging between 300 and 1000, characterized by the 

presence of Mode B. For a Reynolds number characterized by the presence of Mode B, a 

proper spanwise length was assessed. The streamwise vortices interacted with the Karman 

vortices and significantly affected the behavior of the vortex street. An outcome of the study 

by Kim & Kim (2010) is that a minimum spanwise length of approximately πD is necessary to 

preserve the dynamics of three-dimensional flow in the presence of Mode B. This study 

follows previous experimental and numerical results, summarized in Williamson (1996), 

suggesting that the B mode is characterized by a spanwise wavelength of approximately one 

cylinder diameter (see Figure 5-2). Based on the above, in the present study at Re=400 a 

spanwise periodicity length of 2πD has been selected.  

 

Figure 5-2: Normallized spanwise wavelength of Mode A and Mode B versus Reynolds 
number from experimental and computational literature studies, Williamson (1996). 

In x-y planes the discretization consists of 2056 elements. In the z-direction, a total of 10 

element layers are used. In total 20560 three-dimensional spectral elements are utilized, 

each with 8×8×8 elemental resolution. The spectral element grid is illustrated in Figure 5-3. 

Detailed spatial resolution tests have been performed, and are reported in Appendix A.2. 
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The boundary conditions corresponding to x-y cross sections are identical to those utilized in 

two-dimensional simulations, see section 4.3.2. As previously indicated, periodic boundary 

conditions are prescribed for the end planes in the spanwise direction.  

A third order semi-implicit temporal scheme is employed for time discretization, Karniadakis 

et al. (1991). The time step was Δt = 0.0010. The present three-dimensional simulations at 

Re=400 show that the non-dimensional shedding frequency (Strouhal number) is fs=0.204. 

Thus, the shedding period is T = 1/fs = 4.902, and the value of Δt = 0.0010 corresponds to 

approximately 4900 time-steps per shedding period.  

 

 

 

 

Figure 5-3: Illustration of spectral element grid for three-dimensional flow past a circular 

cylinder, including: (a) a x-y plane and (b) a three-dimensional perspective view. 

(a) 

(b) 
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5.3 Results 

We conducted detailed Direct Numerical Simulation (DNS) studies of three-dimensional 

flow, for a frequency ratio, y sF f f=
 
equal to 1.0 corresponding to resonant forcing. We 

considered a value of amplitude ratio /x yA A=ε
 

equal to 0.2 and counter-clockwise 

cylinder motion (see Table 5-1); as indicated in Chapter 4, counterclockwise motion is 

characterized by higher levels of the power transfer parameter and its presence is more 

probable in VIV applications. Accordingly, the choice of ε=0.2 is based on experimental 

observations, Vandiver (1983). 

Table 5-1: The parameter values of the present three-dimensional simulations 

Parameter values  

Re 400  

y sF f f=  1.0 

/x yA A=ε  0.2  

yA D  0 – 0.60 

motion counter-clockwise 

Simulations were initialized from flow fields corresponding to lower oscillation amplitudes 

with a smooth increase in amplitude. In this constant amplitude regime, the governing 

equations were further integrated in time until a statistical “steady state” was reached, 

within which the flow mean quantities are time-independent. For the case of flow past a 

stationary cylinder, computed statistical flow quantities for Re=300, 400 are presented in 

Table 5-2 and Table 5-3 respectively; a very good agreement with literature data, also 

included, is found. 

Table 5-2: Comparison of present three-dimensional simulations results with experimental 

values for stationary cylinder at Re=300. 

 D
C< >  CD,RMS CL,RMS Strouhal Freq. (fs) 

Present 3D simulations 1.251 0.037 0.376 0.196 

Wieselberger ( 1921) 1.22    

Norberg (2003)    0.203 
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Table 5-3: Comparison of present two-dimensional simulations results with present three-

dimensional ones and experimental values for stationary cylinder at Re=400. 

 D
C< >  CD,RMS CL,RMS Strouhal Freq. (fs) 

Present 2D simulations 1.417 0.056 0.735 0.220 

Present 3D simulations 1.183 0.044 0.292 0.204 

Wieselberger ( 1921) 1.13    

Norberg (1994)    0.20 

 

5.3.1 Power transfer and hydrodynamic force coefficients 

In Figure 5-4 to Figure 5-12 we present the non-dimensional flow coefficients, see 

definitions in section 4.3.1.  The simulation results are processed for an integer number of 

periods, corresponding to the “steady state”. Here the power transfer parameter and the 

force coefficients defined in section 4.3.1 are calculated for three-dimensional flow. Figure 

5-4 to Figure 5-12 also include two-dimensional results for direct comparisons. 

The variation of the total power transfer parameter, P with respect to yA D  is presented in 

Figure 5-4, for three-dimensional and two-dimensional flow. P values corresponding to 

three-dimensional flow are higher than those of two-dimensional flow for oscillation 

amplitudes higher than approximately 0.23. P remains positive for the entire range of 

oscillation amplitudes i.e. they correspond to excitation considered here.  

The variation of the 
Lv

C  with respect to yA D  coefficient is shown in Figure 5-5. In all cases, 

there is correspondence with the P curves. The variation of 
Dv

C with respect to yA D  is 

shown in Figure 5-6. Both for the three-dimensional and two-dimensional flow, the values 

remain, in general, positive i.e. the inline motion contributes to excitation.  

Figure 5-7, presents the variation of the added mass coefficient MC  with respect to yA D . 

The results of two-dimensional simulation are characterized by positive values, whereas the 

three-dimensional simulation by negative values. The values of coefficient LaC  shown in 

Figure 5-8, are of the same sign as the values of the MC  coefficient. 

The variation of coefficient DaC  with yA D  is presented in Figure 5-9. The DaC  values are 

negative for two-dimensional and three-dimensional simulation, with the three-dimensional 

ones to exhibit lower negative values. The form of both curves suggests that the variation of 

drag force is generally in phase with the acceleration in the in-line direction. 
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The magnitude of non-dimensional lift forces, expressed in terms of the coefficient CL,RMS 

versus the transverse oscillation amplitude is presented in Figure 5-10. The results 

demonstrate that, in two-dimensional flow there is a decrease in the overall  CL,RMS  levels for 

oscillation amplitudes higher than approximately 0.23, followed by comparatively higher 

levels for the three-dimensional flow. The decrease in the force level of two-dimensional 

flow at yA D  levels of order 0.25 is also observed for the time averaged and RMS drag force 

(Figure 5-11 and Figure 5-12 respectively). In three-dimensional flow, a monotonic increase 

is observed for the averaged and RMS drag force indicating a wide wake (Figure 5-11 and 

Figure 5-12). 

In summary, in three-dimensional simulations forces are lower than in two-dimensional 

simulations at relatively low oscillation amplitudes (up to 0.20-0.25). At higher amplitudes, a 

decrease in forces corresponding to two-dimensional flow is observed, which results in 

relatively higher levels of the three-dimensional flow forces. It is noted that, in the case of 

ε=0 (transverse-oscillation only), two-dimensional simulations for Re=400 predict two abrupt 

transitions at yA D
 
levels near 0.25 and 0.40, Kaiktsis et al. (2007).  These transitions are 

accompanied by a phase shift in timing of vortex shedding, as well as corresponding drastic 

changes in the force levels, see Figure 5-13 and Figure 5-14. Regarding flow past a cylinder 

oscillating both in transverse and in-line directions, our results show that, in two-

dimensional flow, there is a “memory” of the first transition at yA D 0.25≈
 
which is not 

accompanied by a corresponding “memory” of the second transition. In three-dimensional 

flow, there is no “memory” of such transitions suggesting that, in all likelihood, they are not 

present in the case of three-dimensional flow past a cylinder exhibiting only transverse 

oscillation. Thus, at high oscillation amplitudes, there is substantial deviation between the 

results of two- and three-dimensional flow e.g. see Figure 5-13 and Figure 5-14 for results in 

the limit of  yA D = 0  (stationary cylinder).  
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Figure 5-4: Non-dimensional total power transfer, P, versus the reduced y-amplitude, for 

frequency ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and 

three-dimensional flow is shown. 

 
Figure 5-5: Excitation force coefficient, 

Lv
C , versus the reduced y-amplitude, for frequency 

ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and three-

dimensional flow is shown. 
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Figure 5-6: Excitation force coefficient,

Dv
C , versus the reduced y-amplitude, for frequency 

ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode); two- and three-

dimensional flow is shown. 

 
Figure 5-7: Inertia force coefficient, MC , versus the reduced y-amplitude, for frequency ratio 

y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and three-

dimensional flow is shown. 
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Figure 5-8: Inertia force coefficient, LaC , versus the reduced y-amplitude, for frequency ratio 

y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and three-

dimensional flow is shown. 
 

 
Figure 5-9: Inertia force coefficient, DaC , versus the reduced y-amplitude, for frequency ratio 

y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and three-

dimensional flow is shown. 
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Figure 5-10: R.m.s. fluctuation intensity of lift coefficient versus the reduced y-amplitude, for 

frequency ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and 

three-dimensional flow is shown. 
 

 
Figure 5-11: Time-averaged drag coefficient versus the reduced y-amplitude, for frequency 

ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) for two- and three-

dimensional flow is shown. 
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Figure 5-12: RMS fluctuation intensity of drag coefficient versus the reduced y-amplitude, 

for frequency ratio y sF f f 1.0= = ; here the case ε=0.2 (counter-clockwise mode) two- and 

three-dimensional flow is shown. 

 
Figure 5-13: Excitation force coefficient, 

Lv
C , versus the reduced y-amplitude, for frequency 

ratio y sF f f 1.0= = ; here, the cases: ε = 0  (transverse-oscillation only) for two-dimensional 

flow and ε=0.2 (counter-clockwise mode) for two- and three-dimensional flow, are shown. 
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Figure 5-14: Time-averaged drag coefficient versus the reduced y-amplitude, for frequency 

ratio y sF f f 1.0= = ; here, the cases: ε=0 (transverse-oscillation only) for two-dimensional 

flow and ε=0.2 (counter-clockwise mode) for two- and three-dimensional flow, are shown. 

 

5.3.2 Force time histories and spectra 

In this section we present force coefficients, signals and corresponding spectra. We study 

the temporal behavior of force coefficients, in order to characterize the effect of cylinder 

oscillation on forces. Sufficiently long signals are analyzed by means of MATLAB routines.  

The drag and lift coefficient signals and the spectra of the lift coefficient are shown in Figure 

5-15 and Figure 5-16 for flow past a stationary cylinder at Re=300 and 400, respectively; the 

dominant frequency is fs=0.196 at Re=300, while fs=0.204 for Re=400 as illustrated in Figure 

5-15(b) and Figure 5-16(b)).   

The time histories of the drag coefficient are shown in Figure 5-17, for three representative 

values of oscillation amplitude, both for three-dimensional and two-dimensional flow. In 

general the drag signals of three-dimensional flow are more ordered than their two-

dimensional counterparts. At yA D =0.40, the two-dimensional flow drag oscillation is 

minimal. 

Lift coefficients signals are presented in Figure 5-18. For low oscillation amplitudes 

( )yA D = 0.20
 
both two-dimensional and three-dimensional signals are nearly periodic. At 

higher amplitudes, there is increasing evidence of higher harmonics. Figure 5-18 
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demonstrates that the motion has the same effect on the lift force in two- and three-

dimensions.  

Lift coefficient spectra based on the three-dimensional flow signals, are presented in Figure 

5-19. The spectra demonstrate the strong presence of the Strouhal frequency, as well as the 

existence of the third superharmonic. The latter is more pronounced at high oscillation 

amplitudes.  

Finally, phase portraits of CL-CD are presented in Figure 5-20 suggesting the existence of 

ordered three-dimensional flows. 

 

 

 

Figure 5-15: Three-dimensional simulations of flow past a stationary cylinder at Re=300:     

(a) Time histories of CD and CL and (b) Lift coefficient spectra. 

 

(b) 

(a) 

fs=0.196 
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Figure 5-16: Three-dimensional simulations of flow past a stationary cylinder at Re=400:     

(a) Time histories of CD and CL and (b) Lift coefficient spectra. 
 

 

 

 

 

 

 

 

 

(b) 

(a) 

fs=0.204 
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Figure 5-17: Time histories of CD for the two and three-dimensional simulations with 

frequency ratio y sF f f 1.0= = , counter-clockwise cylinder motion, ε=0.2 and transverse 

oscillation amplitudes:  (a) yA D =0.20, (b) yA D =0.40 and (c) yA D =0.60. 

 

a) 

b) 

c) 
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Figure 5-18: Time histories of CL for the two and three-dimensional simulations with 

frequency ratio y sF f f 1.0= = , counter-clockwise cylinder motion, ε=0.2 and transverse 

oscillation amplitudes:  (a) yA D =0.20, (b) yA D =0.40 and (c) yA D =0.60. 

a) 

b) 

C
L 
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Figure 5-19: Lift coefficient spectra for the three-dimensional simulations with frequency 

ratio F = fy/fs = 1.0, counter-clockwise cylinder motion, ε = 0.2 and transverse oscillation 

amplitudes:  (a) yA D =0.20, (b) yA D =0.40 and (c) yA D =0.60. 
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Figure 5-20: Orbits in the CL – CD plane for the three-dimensional simulations with frequency 

ratio y sF f f 1.0= = , counter-clockwise cylinder motion, ε=0.2 and transverse oscillation 

amplitudes:  (a) yA D =0.20, (b) yA D =0.40 
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5.3.3 Visualization of the flow in the wake  

In this section we study the vortex structures in the three-dimensional wake of an oscillating 

cylinder following a figure eight trajectory, with counter-clockwise direction in the upper x-y 

plane at Re=400. The vortex structures consist of spanwise rolls and streamwise vortices 

(ribs). The generation of streamwise ribs induces a three-dimensional flow behind the 

cylinder. The flow three-dimensionality is expected to affect the hydrodynamic forces.  

In Figure 5-21 to Figure 5-24 snapshots of the three-dimensional flow past a stationary  

cylinder are presented, for different time instants, at Re=300 and Re=400. More specifically, 

for Re=300 instantaneous isosurfaces of spanwise (ωz), vertical (ωy) and streamwise (ωx) 

vorticity components are shown in Figure 5-21 and Figure 5-23 (top view), illustrating the 

presence of streamwise vortices forming rib-like structures in the braid region, in-between 

the spanwise (Karman) vortices. The spacing of the streamwise vortices in the spanwise 

directon is suggestive of Mode B vortex shedding. The results show that by increasing the 

Reynolds number from 300 to 400 the vortex structures are more persistant, while the 

complexity of the wake is increased. Isocontours of ωz for the plane z=3 are shown in Figure 

5-22 and Figure 5-24, illustrating the 2S vortex mode in the wake. These visualizations are in 

accordance with the experimental visualizations by Williamson (1996) and those of Wu et al. 

(1994) at Re=400 as illustrated in Figure 5-1. 

Figure 5-25 and Figure 5-26 show isosurfaces ω=±2 for all three vorticity components (ωx, 

ωy, ωz) for oscillating cylinder. The visualizations correspond to the cylinder mean position, 

i.e. ηy/D= ηx/D= 0. At Re=400 the wake is characterized by the formation of three-

dimensional vortex structures. First, the visualizations indicate the presence of Karman 

vortices, which are modulated in the spanwise direction. The visualizations also indicate the 

presence of counter-rotating streamwise vortices, in agreement with previous experimental 

studies (Williamson (1996)) and numerical simulations (Thompson et al. (1996)). The 

spanwise separation of streamwise vortices is suggestive of Mode B structure, Williamson 

(1996). While the primary rolls deform significantly as they roll up due to the generation of 

streamwise vorticity, the counter-rotating vortex pairs are stretched by the primary rolls. 

The vortex structures are quite coherent at 0.30yA D = , while the wake becomes more 

complex at higher oscillation amplitudes.  

In Figure 5-27 four subsequent snapshots of the instantaneous vorticity are plotted for 

oscillation amplitudes equal to 0.30 illustrating the formation and development of wake 

structures. Comparing them with the vortex structures in the wake of a stationary cylinder 

illustrated in Figure 5-21, it is realized that at yA D = 0.30
 
the wake is characterized by 

reduced levels of vortex tube deformation in the near wake. This demonstrates that, for 

relatively low amplitudes, forcing has a stabilizing effect, resulting in a more coherent wake 

structure. Figure 5-28 presents a surface of constant pressure, p=-0.25, over a range of 

yA D ,
 
demonstrating the spanwise vortex structures and their increasing complexity for 

oscillation values higher than yA D = 0.40 .  



Chapter 5 

Three-Dimensional Flow 

 

 117 

 

Figure 5-29 shows isocontours of spanwise vorticity, in planes of z=constant, demonstrating 

that the flow is not uniform along the cylinder’s span. This suggests that the phase of 

primary vortex shedding varies with the spanwise direction.  

In Figure 5-30, Figure 5-31 and Figure 5-32 we present contour plots of the vorticity 

components for the plane z=3 when the cylinder occupies its mean position. In particular 

Figure 5-30 presents the contours of spanwise vorticity and shows substantial discrepancies 

in comparison to two-dimensional flow (see Chapter 4, Figure 4-52). The vorticity plots 

depict a clear 2S vortex mode in the wake at low oscillation amplitudes, which becomes 

increasingly distorted at high oscillation amplitudes. In Figure 5-31 the streamwise vorticity 

component is plotted, showing the evolving streamwise structures (ribs). The vertical 

component of the vorticity is also plotted in Figure 5-32. The streamwise and vertical 

vorticity components illustrate strong vortex pairs in regions between the spanwise rolls. 

Finally in Figure 5-33 isocontours of total vorticity magnitude are presented for the plane 

z=3 when the cylinder occupies its mean position showing good qualitative agreement with 

experimental visualizations. 
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Figure 5-21: Flow past a stationary cylinder at Re=300: Snapshots of instantaneous 
isosurfaces of spanwise (ωz), vertical (ωy) and streamwise (ωx) vorticity components (top 

view). The snapshots are separated by half of a Strouhal period, T. Here, two levels of 

vorticity field are identified: ω=-2.0 and ω=+2.0. 
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Figure 5-22: Flow past a stationary cylinder

isocontours of spanwise vorticity (

of a Strouhal period, T. 
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Flow past a stationary cylinder at Re=300: Snapshots of i

isocontours of spanwise vorticity (ωz) for the plane z=3. The snapshots are separated by half 
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Figure 5-23: Flow past a stationary cylinder at Re=400: Snapshots of instantaneous 

isosurfaces of spanwise (ωz), vertical (ωy) and streamwise (ωx) vorticity components (top 
view). The snapshots are separated by half of a Strouhal period, T. Here, two levels of 

vorticity field are identified: ω=-2.0 and ω=+2.0. 
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Figure 5-24: Flow past a stationary cylinder at 

isocontours of spanwise vorticity (
of a Strouhal period, T. 
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Figure 5-25: Instantaneous isosurfaces of spanwise (ωz), vertical (ωy) and streamwise (ωx ) 

vorticity components (side view) for F=1.0, ε=0.2, counter-clockwise motion. The cylinder 

occupies its mean position. Here, two levels of vorticity field are identified: ω=-2.0 and 

ω=+2.0. 
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Figure 5-26: Instantaneous isosurfaces of spanwise (ωz), vertical (ωy) and streamwise (ωx) 

vorticity components (top view) for F=1.0, ε=0.2, counter-clockwise motion. The cylinder 

occupies its mean position. Here, two levels of vorticity field are identified: ω=-2.0 and 

ω=+2.0. 
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Figure 5-27: Snapshots of instantaneous isosurfaces of spanwise (ωz), vertical (ωy) and 

streamwise (ωx) vorticity components (top view) for F=1.0, ε=0.2, counter-clockwise motion 

and transverse oscillation amplitude yA D =0.30. The snapshots are separated by a quarter 

of an oscillating period, T. Here, two levels of vorticity field are identified: ω=-2.0 and 

ω=+2.0. 
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Figure 5-28: Instantaneous isosurfaces of pressure, p=-0.25 for F=1.0, ε=0.2, counter-

clockwise motion. The cylinder occupies its mean position. 
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Figure 5-29: Instantaneous 

F=1.0, ε=0.2, counter-clockwise mo
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Figure 5-30: Isocontours of spanwise 

clockwise motion and different oscillation amplitudes

position.   
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Figure 5-31: Isocontours of streamwise vorticity (

clockwise motion and different oscillation amplitudes

position.   

 
 

 

Isocontours of streamwise vorticity (ωx) for the plane z=3, F=1.0, 
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Figure 5-32: Isocontours of vertical vorticity (

clockwise motion and different oscillation amplitudes

position.   
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Isocontours of vertical vorticity (ωy) for the plane z=3, F=1.0, 

and different oscillation amplitudes. The cylinder occupies its mean 
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Figure 5-33: Isocontours of total vorticity magnitude for the plane z=3, F=1.0, ε=0.2, counter-

clockwise motion and different oscillation amplitudes. The cylinder occupies its mean 

position.   
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5.4 Discussion 

In this chapter, we have presented computational results of three-dimensional flow past a 

circular cylinder oscillating both transversely and in-line to a steady stream, following a 

figure eight trajectory, for a Reynolds number, Re=400. For a flow stream from left to right, 

we have studied the cylinder motion in a counter-clockwise direction. The transverse 

oscillation frequency is equal to the vortex shedding frequency, thus F=1.0, and the ratio of 

in-line to transverse oscillation amplitude is equal to ε=0.2.   

We investigated the three-dimensionality of the vorticity field and its effect on the force 

components.  We compared the results of three-dimensional simulations with those of the 

two-dimensional simulations (Chapter 4). Although the results, in general, follow the same 

trends, there is no “memory” of the transition observed in two-dimensional simulations at 

oscillation amplitudes yA D 0.25≈ . Since the transition is also present in two-dimensional 

flow past a cylinder exhibiting transversely only oscillation, we postulated that, the 

transition will not be present in such a case of three-dimensional flow.  

The spectra of the computed lift coefficient characterize the flow dynamics in the wake. In 

the present case of resonant forcing, the flow is locked-in to the excitation frequency at all 

amplitudes, in both two- and three-dimensional simulations. Also, the power spectra 

indicate multiple frequency peaks, while a strong third harmonic component is present.  

In three-dimensional simulations, flow visualization demonstrates the formation of 2S 

vortices, with streamwise vortex pairs in the regions in-between. These results are in 

accordance with experimental visualizations, Wu et al. (1994) and Williamson (1996). The 

present computational results show that, in comparison to the structure of flow past a 

stationary cylinder, the wake is characterized by reduced levels of vortex tube deformation 

in the near wake, at relatively low oscillation amplitudes, i.e. forcing has a stabilizing effect, 

making the wake more coherent. The wake structure is very complex for values of oscillation 

amplitude yA D
 
higher than approximately 0.50.  
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6.1. Summary 

In this thesis we have studied numerically the flow past a forced oscillating cylinder. Both 

two- and three-dimensional simulations have been performed over a wide range of 

amplitudes for different cases of cylinder oscillation, at a constant Reynolds number equal to 

400.  

The main conclusions of our study, are summarized as follows: 

6.1.1 Two-dimensional flow 

Simulations of two-dimensional flow have been performed for different cases, characterized 

by the type of cylinder motion (counter-clockwise or clockwise), the ratio of the in-line to 

the transverse oscillation amplitude (ε=0.2 and ε=0.4) and the ratio of transverse oscillation 

frequency to the natural frequency of vortex shedding (F= 1.0, 0.9 and 1.1). Here, the 

oscillation amplitude (
yA D ) varies from zero to approximately half the cylinder diameter. 

The results are compared against the case of transverse-only oscillation (ε=0).  

6.1.1.1 Resonant forcing (F=1.0) 

• Counter-clockwise motion maintains positive power transfer at higher values of 

yA D , in comparison to clockwise or to transverse-only cylinder oscillation (ε=0).   

• The presence of in-line motion in most cases increases, the drag forces exerted on 

the cylinder in comparison to transverse-only oscillation (ε=0). 

6.1.1.2 Forcing below the natural frequency (F=0.9) 

• Counter-clockwise motion is associated with an increased amplitude range of 

positive P values in comparison to the other two oscillation modes (transverse-only 

oscillation and clockwise motion).  

• The variation of the drag force for ε=0.2 is an increasing function of oscillation 

amplitude, with higher levels corresponding to the counter-clockwise oscillation 

mode.  

6.1.1.3 Forcing above the natural frequency (F=1.1) 

• The power transfer parameter (P) varies between positive and negative values, with 

the maximum values of positive power transfer being lower compared to the cases 

of resonant and below resonant forcing.  

• Clockwise oscillation is characterized by high values of lift force at high oscillation 

amplitudes.  

• The curve of drag force is also non-monotonic and complex. 
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6.1.1.4 Effect of in-line oscillation 

The presence of an in-line oscillation component has the following significant effects on the 

hydrodynamic forces acting on the cylinder:  

• a strong third harmonic component of the lift force, for transverse oscillation 

frequencies less than or equal to the Strouhal frequency. This can cause higher 

fatigue stresses on vibrating structures.  

• aperiodic lift forces for counter-clockwise motion, for transverse oscillation 

frequencies less than or equal to the Strouhal frequency, and for transverse 

oscillation amplitudes equal to at least one third of the cylinder diameter. The 

complexity in the force signals characterizes both the counter-clockwise and the 

clockwise mode, at higher frequency ratios. 

• complex force signals for both the counter-clockwise and the clockwise mode and  

for transverse oscillation frequencies higher than the Strouhal frequency.  

In summary, the computational results of two-dimensional flow for force coefficients 

and power transfer parameter demonstrate a strong interrelation between the flow 

states and the direction in which the cylinder trajectory is traversed. Counter-clockwise 

cylinder motion is, in most cases associated with higher non-dimensional forces; also the 

power transfer to the cylinder remains positive for high oscillation amplitudes, in 

comparison to the clockwise motion and the transverse-only oscillation, especially at 

resonant forcing. Thus, the counter-clockwise cylinder motion appears to be the most 

hazardous one for engineering applications exhibiting vortex-induced vibrations. 

6.1.1.5 Flow visualization 

• The visualization of the flow demonstrates 2S structures in the wake at low 

amplitudes, whereas more complicated wake structures are observed at increasing 

oscillation amplitudes, dominated by vortex splitting and combinations of vortices. 

The present results are in close agreement with the experiments of Ongoren and 

Rockwell (1988) and Williamson and Roshko (1988) and the computational study by 

Kaiktsis et al. (2007).  

• Rich wake dynamics and asymmetric flow are identified, becoming more 

pronounced at increasing in-line oscillation amplitude. This should be interpreted on 

the basis of the pattern competition between a symmetric flow mode (induced by 

in-line oscillation) and the asymmetric Kármán street mode, which exhibit entirely 

different spatial structures, see Ciliberto and Gollub (1984) and Perdikaris et al. 

(2009). 
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6.1.2 Three-dimensional flow 

Simulations of three-dimensional flow have been performed for the counter-clockwise 

oscillation mode, in particular for transverse oscillation frequency equal to the natural 

shedding frequency (F=1.0) and ratio of in-line to transverse oscillation amplitude equal to 

ε=0.2.   

The following conclusions can be drawn: 

• The three-dimensional flow is characterized by a smooth variation of force 

components with oscillation amplitude.  This contradicts the sharper variation in 

two-dimensional flow, especially at transverse amplitudes around 
yA D = 0.25 . 

Since a sharp transition is present in two-dimensional flow past a cylinder exhibiting 

transverse-only oscillation (ε=0), we expect that the transition will not be present in 

three-dimensional flow past a transverse-only oscillating cylinder. Nonetheless, in 

the absence of transitions, flow statistical parameters as force coefficients are 

surprisingly close to those of two-dimensional simulations.  

• The flow is locked-in to the excitation frequency at all amplitudes.  

• The power spectra of the lift force indicate multiple frequency peaks while a strong 

third harmonic component is present.  

• Flow visualizations illustrate the three-dimensional character of the wake, involving 

the formation of Karman vortices modulated in the spanwise direction and the 

presence of counter-rotating streamwise vortices. The spanwise separation of 

streamwise vortices is suggestive of the Mode B structure Williamson (1996). As the 

oscillation amplitude increases, and up to yA D = 0.30 , the wake structure 

becomes more coherent, in comparison to that of a stationary cylinder; the wake 

becomes increasingly more complex at higher oscillation amplitudes. 

• The vortex shedding is characterized by a 2S type mode, with complex wake 

structures at high oscillation amplitudes.  

6.1.3 Parallel processing 

The MPI parallel code provides a basis for the efficient computation of two- and three-

dimensional flow. The code has been validated against numerical and experimental 

literature data for flow past a stationary cylinder. Benchmarking simulations with grid points 

up to 107 demonstrate that the code scales well on different computer hardware. The 

parallel speed-up increases almost linearly with up to 256 processors. For a number of 

processors equal to 256, a total 20560 elements correspond to 80 elements per processor. It 

is expected that for a higher number of processors the local work per processor will 

decrease resulting in an increased speed-up, possibly linear. However, this has not been the 

case for a number of 512 and 1024 processors; we attribute the deviation from a linear 

speed-up to the increase in communication cost.   
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6.2. Future directions 

This thesis has aimed at contributing to the understanding of vortex-induced vibrations in 

flow past a cylinder. To this end, the flow past an oscillating cylinder following a figure eight 

trajectory has been studied. Summarizing the conclusions of the present chapter, the 

following avenues for future research are suggested:  

Study of the three-dimensional flow, for both the counter-clockwise and clockwise cylinder 

mode, in a wider range of oscillation frequency, around F=1. In addition to two-dimensional 

simulations already presented in the thesis, the performance of three-dimensional 

simulations over a range of oscillating frequencies and amplitudes for the two oscillation 

modes will enable a deeper understanding of the relation between the flow states and the 

direction in which the cylinder trajectory is traversed. An interesting question thereby is the 

dependence of important integral parameters as power transfer and lift/drag force 

amplitude on the direction in which the figure eight is traversed.   

Numerical studies at higher Reynolds number, being more representative of VIV applications. 

DNS of three-dimensional flow with the use of spectral methods in a parallel code allows a 

sensible reduction of the CPU time, and is considered to be the most accurate numerical 

method in VIV predictions ITTC (2008). Unfortunately DNS is restricted to low Reynolds 

numbers, due to the associated high computational cost. Considering Kolmogorov’s law, the 

number of grid points that are required for a reasonably accurate simulation in three 

dimensions is proportional to the Reynolds number raised to the 9/4 power (Re9/4) Rogallo 

and Moin (1984). Thus, a twofold increase in the Reynolds number results in about a fivefold 

increase in the number of grid points required for simulations. In flow past an oscillating 

cylinder, considering a Reynolds number of practical interest, say Re=10000, an increase in 

resolution requirements by three orders of magnitude is estimated, in comparison to that of 

the present study for Re=400. For the present resolution of approximately 10 million grid 

points, a total of about 3 days has been required to integrate for a total of 60 oscillation 

periods on 512 cores; this is considered close to the upper limit of the computational 

resources available to us. Evidently, to simulate high Reynolds number flows, the DNS 

approach is still not applicable. Thus, the approach of Large Eddy Simulations (LES) should be 

considered in future studies.  

Computational study of three-dimensional flow past a cylinder undergoing free oscillation. 

The present study has demonstrated the capability of the numerical approach to accurately 

simulate the flow past an oscillating cylinder. Following the present work, simulations of 

flow past a freely oscillating cylinder, both at low and high Reynolds numbers (with DNS and 

LES, respectively) can provide deeper understanding of VIV phenomena.  

Numerical study of a circular cylinder forced to oscillate at a yaw angle to incoming flow. 

Most of ocean structures as marine risers (pipes) are lied in different ocean current 

conditions where the flow angle of attack and direction may vary along their length. The 

study of the flow past a cylinder oscillating at an angle to the free stream will reveal the 

wake response and the variation of forces and may predict hazardous implications in the 

flow-structure system being of great engineering interest in the structural design process.  
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A.1. Two-dimensional simulations: Resolution tests 

To further validate the accuracy of the present results, we performed resolution tests for 

two-dimensional flow: a) spatial resolution tests for stationary cylinder and b) temporal and 

spatial resolution tests for a high-amplitude forcing case at below resonant frequency, in 

particular for counter-clockwise cylinder motion with F=0.9, ε=0.20 and Ay/D=0.50 at 

Re=400. The oscillation amplitude Ay/D=0.50 is appropriate for the validation tests, as high 

amplitude is associated with sharper flow field gradients.  

 Stationary cylinder 

In Table A.1-1, the computed force coefficient values obtained from spatial resolution tests 

are presented; here statistics are obtained for a time of 1092 non-dimensional units, 

corresponding to 240 shedding cycles.  Here, we have used the standard spatial 

discretization, consisting of 464 macro-elements. The numerical time-step was equal to 

Δt=0.0030. In almost all cases, the deviations of the computed values are in the third 

decimal point, demonstrating that the results are converged, i.e. that the spatial resolution 

utilized is adequate. 

Table A.1-1: Spatial resolution tests for two-dimensional flow past a stationary cylinder at 

Re=400.  

Resolution CL,RMS DC< >  CD,RMS 

7×7 0.765810 1.420500 0.080061 

9×9 0.765600 1.419400 0.079949 

11×11 0.764890 1.418000 0.079853 

 

Counter-clockwise cylinder motion at  F= 0.9, ε=0.20 and Ay/D=0.50   

In Table A.1-2, the computed force coefficient values obtained from spatial resolution tests, 

corresponding to different elemental resolutions, are presented. Here, Δt = 0.0015. We have 

maintained the standard spectral element skeleton (464 macro-elements), and used 

different polynomial degrees, corresponding to 7x7, 9x9, and 11x11 elemental resolution. 

The values presented correspond to averaging over 1009 time units, i.e. 200 forcing cycles. 

The differences of the calculated forces between the elemental resolutions 7x7 and 9x9 to 

11x11 varied from 0.07% to a maximum of 2.6% whereas comparing the results of 9x9 to 

11x11 smaller differences were found ranging from 0.05% to 0.94%. Given the small 

differences between the 9x9 and the 11x11 resolution, grid with 9x9 elemental resolution 

was utilized.   
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Next, we performed temporal resolution tests using the standard spatial discretization of 

464 macro-elements with 9×9 elemental resolution. The numerical time-step used for the 

temporal resolutions tests was equal to equal to Δt=0.00075, 0.0015, and 0.00225. The 

computed values of force coefficients are presented in Table A.1-3. The variation between 

the computed values ranged from 0.01% to 0.50%. Thus, the numerical time-steps of 

Δt=0.00075 and Δt=0.0015 are considered adequate for temporal discretization and were 

used in the present two-dimensional simulations. 

Table A.1-2: Spatial resolution tests for counter-clockwise cylinder motion at F=0.9, ε=0.20 

and Ay/D=0.50. Here, Δt=0.0015.   

Resolution CLv CM CLa CDv Cmx CDa CL,RMS DC< >  CD,RMS 

7×7 0.705106 -0.635578 -0.773765 0.512740 -0.528355 -0.514584 0.818390 2.339900 0.523330 

9×9 0.708771 -0.642409 -0.782081 0.519883 -0.536438 -0.522456 0.831400 2.345620 0.532860 

11×11 0.705586 -0.636408 -0.774776 0.522078 -0.539033 -0.524983 0.829080 2.346800 0.537580 

 

Table A.1-3: Temporal resolution tests for counter-clockwise cylinder motion at F=0.9, 

ε=0.20 and Ay/D=0.50. Here, a grid of 464 macro-elements with 9x9 elemental resolution 

was used. 

Δt CLv CM CLa CDv Cmx CDa CL,RMS DC< >  CD,RMS 

0.00075 0.708392 -0.641990 -0.781571 0.519953 -0.536330 -0.522351 0.830460 2.344200 0.532740 

0.00150 0.708771 -0.642409 -0.782081 0.519883 -0.536438 -0.522456 0.831400 2.345620 0.532860 

0.00225 0.711653 -0.644383 -0.784484 0.518892 -0.537278 -0.523274 0.834640 2.349400 0.533450 
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A.2. Three-dimensional simulations: Resolution tests 

Spatial resolution tests for three-dimensional flow past an oscillating cylinder were 

performed, at Re=400. A low oscillation amplitude equal to Ay/D=0.20 was taken for 

counter-clockwise cylinder motion at F=1.0, ε=0.20. The oscillation amplitude Ay/D=0.20 is 

considered appropriate for the validation tests since the flow field gradients are 

characterized by smooth variation.  

 In Table A.2-1, the computed force coefficient values obtained from spatial resolution tests, 

corresponding to 7x7x7 and 8x8x8 elemental resolution, are presented. We have utilized the 

spectral element skeleton of 20560 macro-elements and a time step of Δt = 0.0010. The 

values obtained correspond to averaging over 294 time units, i.e. 60 forcing cycles. The 

differences of the calculated forces between the elemental resolutions 7x7x7 and 8x8x8 

varied from 0.02% to a maximum of 2.8%. Thus the spatial 8x8x8 resolution used in the 

present three-dimensional simulations is considered adequate.   

Table A.2-1: Spatial resolution tests for counter-clockwise cylinder motion at F=1.0, ε=0.20 

and Ay/D=0.20. Here, Δt=0.0010.   

Resolution CLv CM CLa CDv Cmx CDa CL,RMS DC< >  CD,RMS 

7×7×7 1.118021 -0.514612 -0.265609 0.238706 -0.214515 -0.088575 0.820140 1.737300 0.181740 

8×8×8 1.117695 -0.526488 -0.271739 0.237013 -0.220518 -0.091054 0.821150 1.737000 0.181100 
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