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ABSTRACT

The numerical modelling of the transport of particles suspended in flowing biofluids,
whether they are beneficial (e.g. pharmaceuticals) or harmful (e.g. pollution) for humans,
is the main objective of this work. In particular, the mechanisms underlying the particles
- fluid interactions are investigated employing techniques of fluid dynamics. The solution
of the continuous phase is treated by Computational Fluid Dynamics (CFD) methods
based on an existing code. Special emphasis during development of the model is given
in solving the transport of the particulate phase within an Eulerian description (spatial
description). This description results in direct handling of particles diffusion, as well
as the straightforward calculation of the particle mass concentration. However, inertial
effects can not be easily included in the Eulerian form of the Particle Transport Equation.
For this reason, an approximate expression of the particles velocity should be used for
the integration of their inertial effects in the Eulerian approach.

In the present thesis, the fluid-particle flow in the limit of low mass load and volume
fraction is described through an Eulerian formalism. One-way coupling of the dispersed
phase is considered whereby the disperse-phase motion is affected by the continuous
phase, but not vice versa. In the Eulerian description of the dispersed phase we approxi-
mate the particle velocity in the mass conservation equation of the dispersed (particulate)
phase by an expression obtained in the limit of low particle relaxation time. The particle
velocity is decomposed into a diffusive term, which depends on the particle concentration
gradient, and a convective term, independent of particle concentration.The convective
particle velocity is essentially the velocity of the carrier fluid corrected by the inertial
drift (or slip) and the gravitational settling or other externally-induced velocities, thereby
introducing particle inertial and body force effects in the Eulerian form of the particle
transport equation (PTE).

The aforementioned treatment of PTE and its use to describe the transport and deposi-
tion of heavy, inert particles suspended in flowing fluid is the main innovative aspect
of this thesis. The proposed fully Eulerian methodology offers clear advantages; a) it
does not require time and effort consuming particle tracking histories in order to obtain
accurate statistics; b) it takes into account particle transport due to diffusion and inertia
simultaneously, thus it is valid for a wide range of particle sizes; c) it is fairly simple, as
it decouples the mass and momentum equations of the particulate phase and the particle
velocity is given only in terms of the fluid velocity and its spatial derivative; d) particle
concentration is directly calculated as natural part of the solution of the particle transport
equation.

The numerical treatment of the particulate phase transport is based on CFD techniques.
In particular, the particles transport equation is solved in three dimensions using a finite
volume method with a collocated arrangement of variables that takes into account grid
non-orthogonality and is suitable for multi-block grids. In the code, the convective term
is discretized using a second-order deferred correction approach, while a second-order
central difference scheme is preferred for the diffusive term. Moreover, we succeeded in
proposing and validating a novel numerical approach to the wall boundary condition,
where the usual totally absorbing wall condition is combined with the strong convective
fluxes towards the wall.
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The validation of the proposed methodology shows that particle diffusion and gravi-
tational settling are predicted accurately. More importantly, the validity of the particle
velocity approximation for higher particle relaxation times (or equivalently higher Stokes
numbers) is investigated, where inertial effects are important and gravitational settling
may not be a priori neglected. Thus, the results of the fully Eulerian methodology are
validated against analytical, numerical, and experimental data available in literature.
From the comparison it is shown that the proposed methodology can accurately predict
inertia-induced particle deposition efficiencies and that the particles deposition sites
indicated in the present study are in good agreement with experimental observations.

The developed model is used to study the three-dimensional transport and deposition
of particles suspended in flowing fluids in simple geometries, which can be considered,
though, as building-blocks of both the respiratory and cardiovascular system. In particular,
the fully Eulerian model is used to study particle inertial effects in aerosol flows inside
a 90° bend of circular cross-section, as well as, in a physiologically realistic single
bifurcation. In addition, the model is employed in order to investigate transport and
deposition of magnetic particles suspended in a flowing liquid medium under the
influence of an external magnetic field.

As shown by the practical applications that we have undertaken, with appropriate
use and then detailed analysis of numerical predictions, the model can contribute to
the interpretation of observed behavior of particles in the respiratory or cardiovascular
system, offering thus better physical insight and serving as a tool for the design and
optimization of biomedical applications.
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INTRODUCTION

A considerable volume of epidemiological studies associate the environmental expo-
sure to aerosol particles with severe health effects, such as increased morbidity of the
respiratory and the circulatory system, or even with increased mortality (Russell and
Brunekreef, 2009; Mills et al., 2009; Dvonch et al., 2009). Furthermore, there is recent
evidence that fine particles can penetrate the lung epithelium, the epithelium of the
gastrointestinal tract or the skin. As a result, a significant amount of particles may enter
the blood stream and be transferred to the heart and the tissues (Simkhovich et al., 2008).
Emerging new technologies like nanotechnology may pose additional risks from the
exposure to micro-nano-particles. On the other hand, new possibilities in nanomedicine
arise through the development of nano-drugs and nano-diagnostic systems, which are
inserted in the respiratory and circulatory systems for therapeutic or diagnostic purposes
(Sung et al., 2007; Gagnadoux et al., 2008; Plank, 2008; Dusinska et al., 2009; Misra et al.,
2011). The behavior of the particles in these systems is today a topic of high scientific
interest.

A suspension of particles in a fluid is a multiphase system, that is a system comprising
of a mixture of phases. Two kinds of fluid-particles systems are of particular importance
in biomedical applications; the suspension of solid or liquid particles into a gas, known
as aerosol, and the suspension of solid particles into a liquid, known as colloid. The terms
aerosol and colloid refer to both the particles and the carrier fluid, i.e. to the two-phase
flow. In order to refer specifically to the fluid the term continuous phase is used, whereas
for the suspended particles the terms dispersed or particulate phase apply.

In the applications of interest here, the particle size ranges from a few nanometers
(Inm = 10~7m) to several micrometers (1um = 10~°m). Moreover, for most two-phase
flows in the respiratory and the cardiovascular systems, the particulate phase is dispersed
enough, i.e. the total volume of the particles does not exceed 0.0001% of the total volume,
thus one-way coupling of the phases can be assumed. This means that, although the
behavior of particles into the system is influenced by the fluid flow field, the particulate
phase has negligible effect on the carrier fluid.

In practical situations, the population of the suspended particles is changing; it changes
due to various physical processes, such as nucleation, hygroscopic growth and coagu-
lation/aggregation. Moreover, particles move as a result of the carrier fluid flow, the
presence of gradients (i.e. phoretic phenomena) and the influence of external force fields.

Modelling of the particle dynamics and transport, can be particularly beneficial in two
specific respects; a) it can provide useful physical insight and enable the interpretation
of systems without the need of experiments, and b) it can be used for parametric
investigation and optimization of already developed systems . Of course, the numerical
modelling of the particulate phase needs to be combined with the respective numerical
modelling of the fluid flow, as in most applications, including biomedical ones, the
fluid-particle systems are flowing. Quite often these flows are three-dimensional and
rather complex.

The present thesis deals with particle systems in biofluid flows. The most common
biofluids flows are the air flow in the respiratory system and the blood flow in the
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circulatory system. Historically, the particle-ladden air flow in the respiratory system has
been first investigated — even Leonardo Da Vinci was interested in dust deposition in the
lungs.

In the respiratory system it is common to distinguish between two broad categories
of models for the fluid-particle systems; the empirical and the mechanistic (Housiadas
and Lazarides, 2010). The former are usually based on a combination of theoretical and
empirical expressions and they are simple enough to be used for operational purposes.
However, their application is limited to the conditions, for which their parameters have
been obtained, and by the fact that they do not incorporate particle dynamics. Mechanistic
models, on the other hand, predict particle transport and deposition as a result of various
physical processes and their main advantage is that they are applicable under a variety
of conditions.

A sub-category of the mechanistic models is those based on Computational Fluid
Dynamics (CFD) techniques. Although these models are complicated and usually com-
putationally expensive, and because of that not readily operational, they have strong
physical basis and provide a detailed description of deposition; the fluid flow field
and the particle concentration are calculated in detail. Thus, CFD-based models of the
particulate phase are particularly suitable for simulation of microphysical details of the
complex aerosol flows in the respiratory system (Housiadas and Lazarides, 2010).

The CFD-based mechanistic models can be further divided into two major categories
based on the frame used for the description of the fluid and particle motion; the La-
grangian modelling, where a moving frame of reference is used, and the Eulerian
modelling, where a fixed frame of reference is employed.

The numerical modelling of the transport of particles suspended in flowing biofluids,
whether they are beneficial (e.g. pharmaceuticals) or harmful (e.g. pollution) for humans,
is the main objective of the present thesis. In this study the main goal is to investigate
how inertia and body forces affect transport and deposition of particles on the “walls” of
the respiratory and circulatory systems.

Particle inertial effects are important in many fluid-particles applications and have
been investigated analytically, experimentally and numerically in the literature. The
simple geometry of a 90° bend of circular cross-section is often employed for these
studies, where due to the change of direction of the fluid flow particle inertia is easily
demonstrated.

The most extensive experimental study of particle deposition in a 90° bend of circular
cross-section up to now has been conducted by Pui et al. (1987). Measurements were
performed for both laminar and turbulent flows using monodisperse aerosol populations.
The bends were of different tube diameters d; and the bend curvature ratios R,, defined
as Ry, = Rp/(d¢/2) with Ry the bend radius, varied from 5.6 to 7.

Theoretical calculations of particle deposition in a 90° bend of circular cross-section
due to inertial effects were initially performed by Cheng and Wang (1975). They derived
an analytical solution of the particle equations of motion to obtain impaction efficiencies
using an idealized, analytical axial fluid flow field, neglecting the bend secondary flow.
They concluded that impaction efficiency depends weakly on the bend curvature. In a
later publication (Cheng and Wang, 1981), they used the Mori and Nakayama (1965)
analytical, laminar flow field to calculate inertial particle deposition for Reynolds numbers
(Re) 100 and 1000 and R, = 8. The Mori & Nakayama flow models fully developed bend
flow, the secondary flow modelled by a core region and a boundary layer, which however
is compressible. They concluded that the deposition efficiency depends primarily on
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the particle Stokes number, a dimensionless measure of particle inertia, and the flow
Reynolds number. Their numerical results were in good agreement with the experimental
measurements of Pui et al. (1987) for the high Reynolds-number flow (Re = 1000), but
they differed for the low Reynold-number flow (Re = 100). A possible reason for the
discrepancy is that the analytical flow models fully developed bend flow, thus not being
applicable to low Reynolds-number flows.

Numerical investigations of particle deposition due to the fluid-inertia induced sec-
ondary flow have also been carried out. Crane and Evans (1977) solved the carrier gas
(continuous phase) using the numerical technique developed by Rowe for an inviscid flow
and Lagrangian particle tracking for the particulate phase. They used an axisymmetric
flow velocity profile at the inlet to determine the secondary flow, and they simulated
turbulent droplet flows in a bend of curvature ratio 4. They showed that particle trajec-
tories were strongly affected by the secondary flow, but deposition efficiency was less
dependent on it.

A more realistic approach of a three dimensional developing flow field in a 90° bend
was adopted by Tsai and Pui (1990), who calculated the fluid flow with an elliptic three
dimensional finite-difference code; deposition efficiency was calculated by solving the
particle equations of motion. Apart from the influence of the Stokes number on the
deposition efficiency, they studied the effect of the Dean number (De = Re/y/R,), of
the bend curvature ratio, and of the inlet velocity profile. Breuer et al. (2006) simulated
particle transport and deposition in a 20° bend of circular cross section using a flow
field calculated via Large-Eddy Simulations and Lagrangian particle tracking for the
particulate phase. They studied deposition in a flow with Re = 10000, but their method
was validated at Re = 1000. Their solution was found to be in good agreement with
experimental and previous numerical results.

All the aforementioned numerical methods use a Lagrangian description of the par-
ticulate phase, whereby the particle equations of motion are solved (either numerically
or analytically) to determine the deposition efficiency. The Lagrangian approach is the
most frequent choice in that it provides a convenient and easy to implement method to
treat inertial effects. However, the determination of important quantities as, for example,
the local particle concentration field (Slater and Young, 2001) or the mean interphase
momentum transfer (Garg et al., 2009), are particularly difficult to obtain. A large number
of particle trajectories has to be calculated to minimize statistical error (Desjardins et al.,
2008), rendering the Lagrangian approach computationally inefficient. The control of
the numerical error associated with Lagrangian-Eulerian simulations becomes more
important for highly non-uniform spatial distributions of particles since the number of
simulated particles in a grid cell decreases; accordingly, the statistical error, which is
inversely proportional to the square root of the number of particles per cell, increases
(Garg et al., 2009). Recent advances in numerical implementations of Lagrangian-Eulerian
method have addressed this issue by introducing improved error estimators to obtain
numerically convergent simulations (Garg et al., 2009). In addition, if Brownian particle
diffusion is of importance the number of simulated particle trajectories further increases
to minimize the noise that arises from the stochastic particle motion.

A distinct advantage of the Lagrangian approach is that it easily captures particle-
trajectory crossings for finite-inertia (finite Stokes number) particles, namely cases where
the particle velocity distribution is not uni-modal and a finite probability exists that
particles at the same location have different velocities. Such situations may occur when
two particle jets cross, when a particle jet impinges on a surface and it rebounds, or
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for finite-Stokes number particle flows in Taylor-Green vortices. A recently proposed
quadrature-based Eulerian moment closure was shown to predict accurately flows with
particle-crossing trajectories (Desjardins et al., 2008).

Notable alternatives to the Eulerian-Lagrangian calculations are the works of Lawson
et al. (2006) and Armand et al. (1998). The former attempted to calculate the particle con-
centration in a bend by a fully Lagrangian method proposed by Healy and Young (2005).
Accordingly, the particle concentration was determined by calculating the deformation
(dilation or compression) of an infinitesimal rectangular volume along the trajectory
of a single particle. Armand et al. (1998) proposed and validated, in both laminar and
turbulent regimes, an Eulerian approach that included inertial particle drift in a two-
fluid model. The particle velocity was determined by solving numerically the coupled
dispersed-phase mass and momentum equations. Furthermore, they approximated the
laminar flow in a 90° circular bend by the flow between two curved parallel plates; their
results were in good agreement with the experimental data of Pui et al. (1987) and the
numerical solution of Tsai and Pui (1990) at Re = 1000.

The particle population balance equation (PBE) in an Eulerian description examines
aerosol processes (e.g., transport, nucleation, growth, and coagulation) in a fixed elemen-
tal volume; diffusion is, thus, treated directly and particle concentration is calculated
in a straightforward manner. However, inertial effects can not be easily included in the
standard form of the PBE. In the present thesis, an approximate expression for the particle
velocity is used to incorporate inertial effects in an Eulerian formalism.

This Eulerian approach offers significant advantages over two-fluid models that do
not decouple the mass and momentum conservation equations of the dispersed phase.
Firstly, the numerical solution of the particle momentum equation is not required to
determine the particle velocity field, as the momentum effects have been accounted for
perturbatively. As a result, the particle velocity is expressed solely in terms of the fluid
velocity and its spatial derivatives (in steady state). Moreover, it can be used for small
particle diameters where the particle equations of motion in a Lagrangian approach
become numerically stiff. Finally, it is more accurate than passive tracer models since it
can take into account simultaneously diffusive and inertial particle transport.

Efforts along this direction have been made for submicrometer particles. Longest and
Oldham (2008) developed an Eulerian-Eulerian model to predict particle deposition in a
laminar bifurcating flow system for cases in which diffusion and inertia are important for
particle deposition. They extended the drift flux approach with near-wall corrections to
account for particle deceleration between the nearest control volume center and the wall
surface. Xi and Longest (2008a) extended this Eulerian-Eulerian model to also account
for both aerosol dispersion in turbulent and unsteady flows, and they applied the model
to predict deposition in a realistic model of the tracheobronchial airways. Moreover, Xi
and Longest (2008b) applied the Eulerian-Eulerian model to predict particle deposition
due to inertia, diffusion, and turbulent dispersion in a complex model of the nasal
cavity. Similarly, Zhao et al. (2009) presented a generalized drift-flux model for turbulent
flows of ultrafine particles in indoor environments. These studies also reported particle
concentration and deposition profiles.

In this work, we use an Eulerian-Eulerian description of a dilute dispersed flow in
the limit of low mass loading and low volume fractions. One-way coupling of the
dispersed phase is considered whereby the disperse-phase motion is affected by the
continuous phase, but not vice versa. In the Eulerian description of the dispersed phase
we approximate the particle velocity in the mass conservation equation of the dispersed
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(particulate) phase, or equivalently the PBE, by an expression obtained in the limit of low
particle relaxation time. The particle velocity is decomposed into a diffusive term, which
depends on the particle concentration gradient, and a convective term, independent
of particle concentration. The convective particle velocity becomes the fluid velocity
corrected by the inertial drift (or slip) and the gravitational settling or other externally-
induced velocities, thereby introducing particle inertial and body force effects in the
Eulerian form of the PBE. The validity of the particle velocity approximation for higher
particle relaxation times is of primary importance in order to assess the validity range of
the employed approximation.

The modified Particle Transport Equation (PTE), that is the PBE without the effects of
nucleation, growth and coagulation, is solved numerically in three dimensions using a
CFD methodology. Particle concentration is obtained by imposing the commonly used
condition of totally absorbing wall (zero particle concentration at the wall). The particle
deposition flux is calculated as the sum of a convective and diffusive flux.

To our knowledge, this is the first time that the transport and deposition of heavy, inert
particles are predicted using an Eulerian formalism of the particles transport equation. As
shown in a number of practical applications that we have undertaken, with appropriate
use and then detailed analysis of numerical predictions, the model can contribute to
the interpretation of observed behavior of particles in the respiratory or cardiovascular
system, offering thus better physical insight and serving as a tool for the design and
optimization of biomedical applications.

The structure of the thesis is the following;:

¢ In Chapter 2 the theoretical background regarding fluid-particles flows is given and
the numerical models used are outlined. Specifically for the particulate phase, the
way that the particle inertial effects are incorporated in an Eulerian formulation of
the particles transport equation is described in detail.

¢ The validation of the proposed methodology is performed in Chapter 3. The dif-
fusion and external force terms are validated separately, prior to the validation
of the whole model. The results of the Eulerian model are compared to findings
of various experimental, analytical and computational studies available in literature.

¢ In Chapters 4 and 5, the developed Eulerian particle-fluid model is used in order to
study the effect of aerosol particle inertia in two basic geometries, which however
constitute building blocks of the respiratory system; a 20° bend and a bifurcation.
The effects of particle size and fluid flow characteristics are examined. Particle
deposition fractions and concentration profiles are calculated and deposition sites
are indicated.

¢ In Chapter 6, the developed Eulerian model is used to study transport and deposi-
tion of particles suspended in a liquid medium under the influence of an external
magnetic field, as employed in the circulatory system.

* Finally, in the Chapter 7, the main findings of the thesis are summarized and ways,
in which the presented methodology can be further developed, are provided.
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THEORY & MODEL DESCRIPTION

In this Chapter the theoretical background regarding fluid-particles flows is given and the
numerical models used are outlined. Specifically for the particulate phase, the way that
the particle inertial effects are incorporated in an Eulerian formulation of the particles
population balance equation is described in detail.

2.1 CONTINUOUS PHASE
2.1.1  Continuous Phase: Governing Equations

Let S be a closed surface that bounds a closed volume Q) of arbitrary shape within a
finite region of the fluid flow, fixed in space with the fluid moving through it, as shown
in Fig.1. In the absence of sources or sinks in the control volume Q, the integral form of
the continuity equation is written as:

prdQ+prﬁ-d§:O , (2.1)

and the momentum equation as:

d . -
dtJpfl3<1£1+Jﬁpf13-ds:ZFi , (2.2)
Q S

where T = ui + vj + wk is the fluid velocity, pr the fluid density, dS = fidS the elemental
surface with fi the normal to the surface unit vector (defined outward), dQ the elemental
volume, and 1,7, k the Cartesian basis vectors.

Figure 1: Generic finite computational volume.

In Eq.(2.2), ) Fi is the sum of the forces acting on the fluid mass, which is in the
volume (), each time. These forces can be body forces, l_fb, acting on the volume of the
fluid (e.g. gravitational, electric and magnetic) and/or surface forces, F, which act on
the surface of the fluid. The latter are due to the pressure distribution on the surface by
the surrounding fluid and the viscous shear stresses distributions imposed also by the
surrounding fluid as friction (viscous forces).
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Body forces can be written in the general form:

Fo = J prfp dQ (23)
Q

where f}, is the body force per unit mass acting on the fluid. Likewise, surface forces are
given by equation:
Fo = deS , (2.4)
S

where T is the stress vector that is related to the stress tensor o:

Oxx Oxy Oxz
Oyx Oyy Oyz (2.5)
Ozx Ozy Ozz
through (Tsangaris, 1995):
f=c'n , (2.6)

where o' the transpose of the stress tensor. For a Stokes fluid, the stress T and stress o
tensors are related through:
oc=—pl+t , (2.7)

where p is the pressure and I the unit tensor.
Therefore, for a Stokes fluid the momentum equation (Eq.(2.2)) becomes:

dt
Q S Q S

d J pfﬁ’dQ—I—Jf)’pfﬁ’~d§: J ¢ o dQ+J(—pI+T)T-d§ . (2.8)

Equation (2.8) is a vector relation, which in Cartesian coordinates is split into the following
three scalar expressions assuming negligible body forces:

4 [prudQ+ [prut-dS= —[pi-dS+
© > > e (2.9)
J (Tax+ Tyxj + T2xk) - dS
S
for the x-component,
L [pevdQ+ [prv0-dS= —[pj-dS+
Q S S N (2.10)
J (txyl+ Tyyj + T2yk) - dS
S
for the y-component, and
4 [pewdQ+ [prw¥-dS= —[pk-dS+
Q S S , (2.11)

J- (Txzl+ Tyz) + Tzzf{) -dS
S

for the z-component.In Egs.(2.9)-(2.11), Ti; are the components of the stress tensor.
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The stress tensor T for Newtonian fluids equals (Tsangaris, 1995):
T=2pusD+p;ItrD , (2.12)

where s the fluid dynamic viscosity, uf the volume viscosity and trD the trace of the
stress rate tensor D. The latter is related to fluid velocity U through:

D= % (VIG+V0) = | Dyy Dyy Dy | (2.13)
Dzx Dzy Dz
where
Dix = ?T;LIDyy = %,DZZ = %\)
Dy = Dyx =3 %+%> (2.14)
Dyz:Dzy:%(%v"‘%) . .
Dev =D =} (324 32)

1

Moreover, it is easily shown that trD = V - U, i.e. the trace of the stress rate tensor is
equal to the deviation of the fluid velocity.
For an incompressible fluid, for which p¢ is constant over time and space, the continuity
equation (Eq.(2.1)) gives:
V-i=0 . (2.15)

Taking into account Egs.(2.13)-(2.15), the components of the stress tensor of an incom-
pressible, Newtonian fluid are:
Txx = zuf% s Tyy = Zuf% y Tzz = zufaa%

o 9
Txy = Tyx = Kf (TX + 7u>

Y (2.16)
yz zy 254 dy dz
Tzx = Txz = Uf (% + %7‘;:)
and momentum equations (Egs.(2.9)-(2.11)) become:
4 [prudQ+ [pruv-dS=—[pi-dS+
Q s S
Tur 2331+ (82+8%)5+ (32 +3%) k| -aS
& [pivdQ+ [psvi-dS=—[pj-dS+
Q S S . L. (2.17)
e | 204 34) 042824 (32 + 32 K] - aS

4 [pewdQ+ [prwv-dS=—
Q S

pk
[ur [(52+ 52) 1 (82 +3w)j+292K] - as

These equations are the Navier-Stokes equations for an incompressible Newtonian fluid
in integral form. In the present study, steady-state flows are investigated, thus the first
term in the left hand side of Egs.(2.17) equals to zero, simplifying further the equations.

13
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If u, and { are the characteristic velocity and length of a given fluid flow problem
respectively, the steady-state form of Egs.(2.17) are rendered dimensionless (same notation
is retained for simplicity):

fut-dS= —[pti-dS
S s
1 dus . (2v , du)a, (dw , du\ | . 4%
e ] 29814 (g2 4+ 84) 5+ (32 + 34) K] - S
[vG-dS= —[pj-dS
° S] [(ov ou \ » ova ov ow \ {0 < ! (2'18)
+Re£_('()x+ay>l+26y]+(6z+ay)k:| dS
fws-dS= —[pk-dS
S s
+lge£_(%vx"+%§)i+<g§+%”)j+2%v;]-ds

using pru2 and u, /¢ for making dimensionless the pressure and the shear stress terms,
respectively. In Egs.(2.18), Re is the flow Reynolds number, defined as:

Re = °f Uo ! , (2.19)

Hf

which is the ratio of the inertial forces to the viscous forces into the fluid.
Throughout the present study, the mean inlet fluid velocity, v, and the tube diameter,
d¢, serve as characteristic velocity and length, respectively.

2.1.2 Continuous Phase: Numerical Solution

The Navier-Stokes equations for the three-dimensional incompressible flow field of the
carrier fluid are solved numerically using the in-house CFD code CADBA, which stands
for ‘Computational Algorithm for Diagnosis of Biofluid flow Abnormalities’. The code
is based on the methodology proposed by Ferziger and Peri¢ (2002) and developed by
Neofytou (2005); Neofytou and Tsangaris (2006). It has been validated in different flow
conditions and its basic features are outlined next.

The code incorporates the finite-volume method on multi-block, collocated, body-fitted
3D grids, where grid non-orthogonality is taken into account. Apart from Newtonian,
the code incorporates also generalized Newtonian and viscoelastic (Oldroyd-B) models.

In order to address the problem of pressure indeterminacy and guarantee that the
fluid velocity field satisfies the continuity equation, a pressure correction equation is
derived by the continuity equation and is used in conjunction with the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) (Patankar, 1980) in the code. SIMPLE is
an iterative method for the coupled velocity-pressure problems. Starting with an initial
guess of the flow field, Navier-Stokes equations are solved for the velocity field, then
the pressure field is corrected using the pressure correction equation and the velocities
are updated. These updated values of the velocities and pressure satisfy the continuity
equation, but not necessarily the momentum equations. Thus, the procedure is repeated
with the updated field values, until the obtained solution satisfies both the continuity
and momentum equations within a desired accuracy.
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Momentum equations (Eqs.(2.17)) are discretized in CADBA using a first-order forward
Euler scheme for the time dependent term, a third-order QUICK scheme for the convective
term and a central difference scheme (CDS) of second-order for the diffusion (viscous)
term, whereas the pressure term is treated as source (Ferziger and Peri¢, 2002). The
resulting linear equations system is solved iteratively by SIP (Strongly Implicit Procedure),
an incomplete LU decomposition method proposed by Stone (1968).

In the present study, solution is reached assuming incompressible Newtonian fluid,
laminar flow, constant fluid properties and one-way coupling, i.e. the influence of the
particulate phase on the hydrodynamic field of the carrier fluid is considered negligible.
Moreover, constant velocity profile and pressure are assumed at the inlet and non-
slip condition at the walls, whereas at the outlet both the velocity and pressure are
extrapolated from the values at the adjacent inner nodes. The velocity profile at the
inlet is that of a fully developed flow in a straight duct of circular cross-section, which
for Newtonians flows can be analytically obtained. In this case, the (parabolic) velocity
profile is given in dimensionless form by the following equation:

T

2
Vlintet =2 [1 - () ] 0T, (2.20)

Tt

where ry = d/2 is the tube radius.

2.2 DISPERSED PHASE
2.2.1 Dispersed Phase: General Theoretical Remarks

Particle concentration in terms of number or mass per unit volume of the carrier fluid is
a fundamental quantity in the description of aerosol flows. Equally important property is
the particle size that is the determining factor of the system behavior in the majority of the
applications. Other properties, which may become crucial under different conditions, are
particle shape because it affects various physicochemical properties, chemical composition
especially in reactive or toxicology related flows and/or particle electrical charge that for
example affects the design of electrostatic filters.

When a particle can be regarded spherical, particle diameter, d;, is used most often
as representative size. However, there are many cases where the shape of the particles
is irregular. Then an equivalent diameter is usually employed, which is the diameter
that a spherical particle should have in order to present the same behavior based on
a predecided criterion. The most widely used equivalent diameter is the aerodynamic
diameter, defined as the diameter of a spherical particle of unit density (1000 kg/m?)
that has the same settling velocity as the real particle. Stokes diameter is also frequently
used, which is the diameter of a spherical particle with the same density and settling
velocity as the real particle.

The particle size in aerosols spans over multiple size orders; from a few nanometers
(Inm = 10~7m) to several micrometers (1um = 10~®m). Based on their size, particle are
divided in coarse (dp > 2um or Tum depending on the researcher) and fine (d, < 2pm
or Tum). Fine particles are further divided into those that result from nucleation (d,, <
0.Tum) and those produced by accumulation (0.lum < d,, < 2um). Finally, an other
classification used frequently due to the advances in nanotechnology is nanoparticles, for
which d,, < 50+ 100nm.
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Particle size may affect not only the characteristics of an aerosol, but the physical laws
that describe its behavior too. The ratio of the mean free path, A, of the carrier gas to the
particle diameter, d;, /2, defines a dimensionless number called Knudsen number:

2\

Kn ="
n dp

(2.21)

Knudsen number is a criterion for mass, momentum and heat transfer between the
particles and the surrounding gas and based on it, two major limiting regimes are
defined; a) the continuum regime, for Kn << 1 or A << d;,, where the gas is regarded a
continuous medium, and b) the free molecular regime, for Kn >> 1 or A >> d,, where
the gas continuity does not hold. . In the first case, Navier-Stokes equations are used to
calculate the drag force on the particle, whereas in the second case, the kinetic theory of
gases should be implemented. Between these two regimes, there is a transition regime,
where the theory is not fully developed and various interpolation methods are used.

In practical applications particle population is non-uniform with respect to size. There-
fore, statistical methods are used to describe the particle size distribution, such as the
mean value and the variance. As a convention, we can assume single sized particles
(monodispersed) when the standard deviation of the size distribution is less than 10%.
Otherwise, a distribution extending in more than one particle sizes (polydispersed)
should be considered. Most of the naturally occuring and engineered particles fall into
the latter category.

In modelling, particle size distribution two basic approaches are used; a) discrete or
b) continuous . In the former, the size range is split into size intervals (called "size bins’)
each represented by a specific value of the size and all particles are counted and divided
by the total number of particles. The results are visualized in plots (histograms) like the
one shown in Fig.2(a) and comprise the discrete probability density function (PDF) for
the particle size. The continuous PDF is obtained when the size of the intervals tends to
zero, i.e. when their number tends to infinity (Fig.2(b)).
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Figure 2: Example of discrete (a) and continuous (b) particle size distributions (adapted from
Crowe and Michaelides (2006)).

Based on the continuous particle size distribution, a very useful family of equations
are defined, the so called moments of the size distribution. If n(v;¥,t) is the number



2.2 DISPERSED PHASE

concentration of particles with volumes in the range from v to v 4 dv at position ¥ and
time t, thn the general form of j-th order moment, M; is (Drossinos and Housiadas, 2006):

M;(T,t) = J dvvin(v;7,t) . (2.22)
0

Moments are related to the particle population characteristics; the zeroth moment Mg
equals the total number concentration N(¥,t), the first moment gives the average particle
diameter, d, = M;(¥,t)/My(F, t), the second moment provides the average particle
surface area, S, = M, (¥, t)/Mo (7, t), and finally the third moment gives the average
volume per particle V, = M3 (7, t)/6Mo (T, t).

Depending on the particular application, particle concentration other than number may
be more descriptive. In filters, for example, particle mass concentration is more suitable
as mass is the measured quantity, whereas surface concentration is more appropriate in
chemically reactive flows. In these cases the PDF for particle size in terms of mass or
surface is used instead.

2.2.2  Dispersed Phase: General Dynamic Equation

The variation in space and time of the particle size distribution under various physical
processes is of utmost importance in the study of aerosol flows. There are two categories
of processes that may alter the size distribution of an aerosol in a fixed elemental
volume; a) internal processes, such as coagulation or agglomeration and gas-to-particle
conversion, and b) external processes, such as convection and transport due to gradients
in the fluid (e.g. temperature, concentration), as well as external forces (e.g. gravity,
electromagnetic) . The intergrodifferential equation that describes the effect of these
phenomena on the particle size distribution is called the General Dynamic Equation
(GDE). Given appropriate initial and boundary condition, GDE describes fully the particle
size distribution in an aerosol flow.
In the presence of fluid flow, the GDE is given by (Drossinos and Housiadas, 2006):

an
ot

on . on
~— +V-v,) = 3t

- : (223)

gp c-a

where n(v; 7, t) the number concentration of particles with volume between v and v + dv
and Vv, the average particle velocity. Particle volume, v, is chosen as an independent
variable in the particle size distribution,n, instead of its diameter, d,, because is conserved
during coagulation/agglomeration. This expression of the particle size distribution is
adequate for single-species, spherical particles, which is of interest in the present study.
It should be noted, however, that if particle morphology is of importance, then additional
variables describing the shape should be introduced. Moreover, in the case of chemically
reactive flows, further descriptors are required to properly account for multicomponent
aerosol particles.

In Eq.(2.23), the first term of the left-hand-side (LHS) refers to particle accumulation
in time and the second to particle transport due to external processes, whereas the
right-hand-side (RHS) represents the internal processes; the first term corresponds to
gas-to-particle conversion and the second to coagulation or agglomeration. The different
internal and external processes will be discussed next.
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Internal Processes

Gas-to-particle conversions is a term used to refer in total to distinct aerosol processes
that take place when physical or chemical processes in the gas allow the formation of
unstable, saturated vapor. These processes alter not only the particle size distribution
but their mass concentration as well, because the vapor reaches a new state of equilib-
rium either by forming new particles or by condensing on preexisting particles, thus
altering the size distribution. In the first case, there is formation of new particles either
by condensation of the molecules of supersaturated vapor themselves (homogeneous
nucleation) or by condensation of vapor molecules in the presence of solid surface which
may occur at low saturation ratios (heterogeneous nucleation). In the second case, super-
saturated vapor changes the size of existing aerosol particles. Whether the particle size
increases (condensation) or decreases (evaporation) depends on the local thermodynamic
conditions.

Relative motion of particles suspended in a fluid leads to collisions, which in turn
may result to the formation of new particles either by agglomeration, where the identity
and shape of the primary particles are preserved, or by coagulation, where the primary
particles loose completely their characteristics. Various phenomena drive the relative
motion between the particles; a) Brownian diffusion, b) laminar shear or turbulence in the
fluid, and c) influence of external force fields (e.g. gravity, electrostatic and van der Walls) .
Coagulation (or agllomeration) results in decreased particle number concentration, while
increases particle size. Nevertheless, the total particle mass is conserved during these
processes as opposed to gas-to-particle conversion processes.

As internal processes are not taken into consideration in the present study, further
examination of these mechanisms is not included here. Extensive analysis of the different
internal processes can be found in Friedlander (2000); Hinds (1999); Seinfeld and Pandis
(1998); Drossinos and Housiadas (2006).

External Processes

The external processes are those that change the particle size distribution, n(v; ¥, t), by
transport of particles across the boundaries of the elemental volume. Different phenomena
influence the motion of a particle that is suspended in a fluid, whether the fluid is still or
flowing. The driving mechanisms of particle’s motion may cause its transport within the
fluid both across the elemental volume boundaries or towards a surface where they may
deposit. Thus these mechanisms are frequently referred to as deposition mechanisms.
In the following sections, several deposition mechanisms will be described and it will
be shown how these are incorporated in the GDE to account for particle transport and
deposition in aerosol flows.

2.2.3 Dispersed Phase: Deposition Mechanisms

Lets consider the motion of a single spherical particle of diameter d, in a viscous fluid.
The force needed to move this particle through the fluid is called drag force, Fp, the
direction of which is that of the fluid-particle relative velocity, U —V,,, and its magnitude
is given by the general form of the Newton’s resistance equation (Hinds, 1999):

Tt N
Fp =Cp 3 pf d]z3 |G —vpl2 . (2.24)
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In the above equation, Cp is a dimensionless quantity known as drag coefficient and is a
function of the particle Reynolds number:

_ Pf dp |ﬁ_\7p|

Re
P [agi

(2.25)
In analogy to the fluid flow Reynolds number (Eq.(2.19)), Re,, is the ratio of the inertial
forces to the viscous forces exerted on the particle. When the inertial forces dominate the
particle motion, that is for 1000 < Rep, < 2x10°, the drag coefficient is nearly constant
and equal to Cp = 0.44 (Newton’s law region). However, for Re, < 1000, drag coefficient
depends on the particle Reynolds number, i.e. Cp = f(Rep ). For Re}, in the range of 1
to 1000, the following relationship is used for the drag coefficient (Hinds, 1999; Seinfeld

and Pandis, 1998):
24

O.15Reg'687) ) (2.26)
In cases where the inertial forces are negligible compared to the viscous forces, Stokes
(1851) showed that the drag force exerted on the particle by the fluid equals:

Fp =3mpuedy [0—Vp| . (2.27)

Consequently, the drag coefficient is given by:

24

= .28
Re, (2.28)

D

i.e. it is inversely proportional to the particle Reynolds number. Equation (2.27) is known
as Stokes law. Negligible inertial compared to viscous forces implies low particle Reynolds
number and laminar fluid flow. These conditions apply for most aerosol flows, including
those of interest here, where the particle size is small and the velocities low.

Derivation of Eq.(2.27) is based on various assumptions, apart from the low Rey,; a) the
fluid is incompressible, b) there are no walls or other particles near, c) the particle is
rigid, and d) no-slip condition for the fluid velocity applies on the particle surface . Some
explanations are in order here. The first assumption implies that the particle does not
alter significantly the density of the surrounding air as it moves, rather than the air
being an incompressible fluid. Moreover, the absence of a solid surface (either a wall or
another particle) in the vicinity of the moving particle guarantees that the drag force

will not change because of the distortion of the fluid streamlines near the solid surface.

Finally, the effect of particle rigidity on the drag force is seldom important, thus it can be
considered as solid in practice. For dilute aerosol flows the first three assumptions hold
true and the Stokes law can be used for the drag force exerted on the particle.

The last assumption, however, regarding the fluid velocity no-slip condition on the
particle surface, implies that the Stokes law (Eq.(2.27)) is valid only when the gas can be
regarded as a continuous medium. As the particle size reduces and approaches the mean
free path of the gas, the relative velocity on the particle surface is no longer zero and the
gas elements “slip” on the particle surface, resulting in a decreased drag force.

In order to address this issue, a correction factor is introduced in Stokes law, which

now becomes: o
_ 3murdy [U—Vpl

F
D C.

(2.29)
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The correction factor is given by (Hinds, 1999):

Ce=1+ dA [2.34+ 1.05exp <0.39d)13ﬂ , (2.30)

1)
and is called slip correction factor or Cunningham correction factor. Equation (2.30)
shows that C. > 1 always. For air, the mean free path is related to its pressure p (kPa)
and temperature T (K)through (Drossinos and Housiadas, 2006):

101 T 1+110/293
Adir =Ares | — | 5535 | | =577 :
air = fref < P > (293)( 1+110/T > (231)
where Arer = 0.0664pum the mean free path of air at standard conditions, i.e. p = 101kPa
and T = 293K. In Fig.3, Cunningham factor versus particles diameter d,, is shown for

spherical particles of standard density (p, = 1000kg/m?) suspended in air at standard
conditions.

¢

Cunningham factor, C

10 10° 107 10° 10° 10"
particle diameter, dp [m]

Figure 3: Cunningham factor for spherical particles of standard density suspended in air at
standard conditions.

Diffusion

Aerosol particles experience continuous collisions with the molecules of the carrier
fluid. As a result, the particle move randomly and this motion is called Brownian
motion. Macroscopically, this movement manifests as flow of particles from high particle
concentration regions to low which is known as diffusion and is described by Fick’s law.
That is, if Tp is the flux and D a diffusion coefficient, then:

Tp =—-DVn . (2.32)

The diffusion coefficient of particles is given by the Stokes-Einstein equation corrected by
the Cunningham factor:
D— kg TrCe

N 37'Eufdp

(2.33)
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where kg = 1.381x10723 ] /K is the Boltzmann’s constant and T; the fluid temperature.

The diffusion coefficient depends both on the fluid properties and the particle size. From
Eq.(2.33) it is clear that diffusion becomes important as particle size reduces.

Gravitational Settling

The velocity that a particle acquires due to the effect of gravity equals (Drossinos and

Housiadas, 2006):
2
_ ppdp ( pf) —
Vg = 1—— ’ 2.

S = T8, on) 9 (2.34)
with g the acceleration of gravity, and the corresponding deposition mechanism is called
gravitational settling or sedimentation. In the majority of aerosol flows it holds that
pr << pp, and if slip correction is also taken into account, Eq.(2.34) becomes:

P d2cC .
52187’;9 : (2.35)

<l

Settling velocity increases rapidly with increasing particle size, as it is proportional to
the square of the particle diameter.

Inertial Impaction

Impaction is a crucial deposition mechanism, present in many industrial (e.g. size
classifiers, filters) and biological (respiratory deposition) processes. Suspended particles
do not always follow closely the streamlines of the accelerating carrier fluid, because of
their own inertia. As a result they may hit and deposit on surrounding surfaces.

A parameter that characterizes the response of particles to fluid flow changes is the
particle relaxation time, T, which is defined as the time a particle of diameter d,, and
density pp needs to acquire its terminal velocity, if it released in a still fluid of viscosity
ie. These quantities are related through (Drossinos and Housiadas, 2006):

. ppdf,CC

= .36

i.e. the particle relaxation time is a function of the fluid properties, through the viscosity

and the Cunningham factor, in addition to those of the particle (density and diameter).

Substitution in Eq.(2.35), shows that Vs = 1, §. In analogy, the velocity v, of a particle
subjected to a force F is given by:

=

F

vp = Tpmip ’ (2-37)

where m,, the mass of single particle.
Another parameter that describes the extent to which a particle continue its initial
motion while the fluid flow changes, is the stop distance defined by:

SL=UoTp , (2.38)

where u, the initial velocity of the particles. The stop distance is an indication of how far
a particle with initial velocity u, will travel into a still fluid before it stops.
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Finally, a very useful dimensionless number in the study of particle inertial effects is
the Stokes number, which is defined as the ratio of the stop distance to a characteristic
length of the fluid flow or, equivalently, the ratio of the particle relaxation time to a
characteristic time of the flow:

SiL_ Tp ppdéccuo
L L/u,  18usL

St = (2.39)
Stokes number is a criterion used extensively to characterize how easily a particle adjust
to changes of the fluid flow; St << 1 indicates particles that follow closely the fluid
streamlines - thus impaction is not an important deposition mechanism for these particles,
whereas high Stokes numbers (St > 1) indicates particles that deviate from the fluid
streamlines and impact on surfaces.

From both Egs.(2.36) and (2.39) it is evident that the bigger the particle, the stronger
the inertial effects. Empirically it is found that impaction should be always considered as
a deposition mechanism for particles with diameters greater than Tum.

2.2.4 Dispersed Phase: Transport and Deposition of Particles

Consider a monodispersed population of spherical particles, each of diameter d,, and
mass my,, which is dispersed in a flowing incompressible fluid. If the internal processes
are not taken into account, therefore particle size and total number remain constant,
then at position ¥ and time t the particle number concentration will be n(+, t).The GDE

(Eq.(2.23)) becomes:

d
a—Tt‘Jrv-(nvp) —0 (2.40)

where it is reminded that v, (¥, t) is the particle velocity. In order to distinguish the above
equation that ignores the aerosol internal processes from the GDE, from now it will be
referred to as particle Population Transport Equation (PTE). It is clear that PTE can be
solved for the particle concentration, provided that the particle velocity is known.

Adopting a two-fluid methodology for the fluid-particle system, it will be shown next
how one can obtain the average particle velocity v, under different conditions without
solving the average particle momentum equation.

Aerosol particles are the dispersed phase into a continuous phase (fluid). When the
dispersed phase is dilute enough it is reasonable to assume that the particles do not
interact with each other. However, they do interact with the carrier fluid and with external
force fields, if present. Consequently, if the force per unit mass exerted on the particles
by the fluid is denoted by ff(f’, t) and the one exerted by the external fields by l?ext(f', t),
then the continuity equation for the dispersed phase is given by:

oc R
a—l—v-(cvp) =0 , (2.41)

and the corresponding average momentum equation by:

ov 1 S o
a—f+\7p~V\7p:EV-ﬂp+Ff+Fext , (2.42)



2.2 DISPERSED PHASE

where ¢(¥,t) = m, n(7, t) the particle mass concentration and IT,, the stress tensor of the
particles. In order to proceed, the forms of the stress tensor Il;, and the fluid-particle
force Fy need to be specified.

Since the aerosol particles do not interact with each other, the dispersed phase may be
regarded as an ideal gas, the local temperature of which equals that of the fluid, T¢(¥, t),
and is subjected to a force field equal to l?f(?,t) + fext(ﬁt). If in addition, the particle
viscous stresses are neglected, then the particle stress tensor is written as:

m,=-Ip, , (2.43)

where the dispersed phase partial pressure, py, is given by the law for ideal gases:
pp (?/ t) - Tl(?, t) kBTf(?/ t) - C(?, t) Tf(?/ t) . (244)

The pressure term in the momentum equation (Eq.(2.42)), thus, is written as:

1

1 1 kg T¢
VM, =-V-(-Ip,) =—-V . .
: P= (—Ipyp) c < N C> (2.45)

In the majority of the biological flows, as those of interest here, it is fairly reasonable to
assume constant temperature, i.e. isothermal flow, which simplifies Eq.(2.45):
kg Te 1 kg T¢

-Vc =
mp, ¢ mp

%V Ty = Vinc . (2.46)

According to Ramshaw (1979), a general expression for the force field F¢ in case of
Brownian particles is:

Fr (F,t) = Bp (T—Vp) — (1/pp) Vp — (n/m) VInT +Fy (F,t) +Fp (F,t) ,  (2.47)

where 3, = 1/7, the inverse particle relaxation time, p(¥,t) the pressure of the fluid-
particle system, n the thermal diffusion coefficient. The last two terms of the RHS in
Eq.(2.47) represent the virtual mass force and the Basset-Bousinesq force, respectively.
These are unsteady forces due two the acceleration of the particle into the fluid. The
virtual (or added) mass force represents the force needed to accelerate the continuous
phase in the immediate vicinity of a particle when the phases relative velocity changes
and is given by:

Fv(Tt) = o— [U(t) —Vp(t)] , (2.48)

where U(t), {7p (t) the total derivatives of U and Vi, along the particle trajectory, respectively.
On the other hand, the Basset-Bousinesq force is given by:

= 9 pr, 12T —1/2 (4 -

Fg(F t) = [Bp} X J at’ [t—t] / [G(t) +Vp(t)] (2.49)

—00

This force accounts for viscous effects and represents the delay in the development of the
layer around the particle as the relative velocity changes in time.

Both the virtual mass and the Basset-Bousinesq forces become significant in accelerating

aerosol flows only when the fluid density, py, is at least of the same order of magnitude

as or greater than the particle density, p,, (e.g. water droplets in oil). Otherwise, that is
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when p, >> pr as in most aerosol flows, these forces can be neglected. In the present
study these unsteady forces are not taken into account and they will be dropped out of
the analysis from now on.

The second term in Eq.(2.47) accounts for the pressure-gradient force exerted on the
particle due to local pressure gradients around the particle. The force is important when
large pressure-gradients exist in the flow and the particle density is smaller than or equal
to the fluid density. Therefore, for the cases under examination here, where as already
stated pp, >> p¢, the contribution of the pressure-gradient force is of no importance.

Finally, the isothermal flow assumption for the biological flows means that the ther-
mophoretic term in Eq.(2.47), n"VInTs, vanishes as well.

Taking all these observations into account, the expression for the fluid-particle interac-
tion force field reduces to the drag force, that is:

T 1T .
Fe(Ft) = —(@—7p) (2.50)
Tp

Regarding the external force term in the momentum equation (Eq.(2.42)), the total

external force per unit mass based on Eq.(2.37) will cause the particle movement with

velocity equal to:
. 1.
Fext = —Vext - (2.51)
Tp

Incorporation of Eqs.(2.46), (2.50) and (2.51) in the momentum equation yields:
ovp kg T¢ 1 1

— 4V, - VV, = — Vine + — (i —v —V . 2.52
at+p P mp +Tp( p)+Tp ext (5)

In order to address the effect of inertia on Brownian diffusion Fernandez de la Mora
and Rosner (1982), proposed a first-order correction to particle velocity due to particle
inertia. This is achieved through a low particle relaxation time T, expansion of the particle
momentum equation in the case of isothermal, steady-state aerosol flows. Equation (2.52)
is now written as:

kT
TpVp - VVp =0 — V), — B prVInc +Vext - (2.53)
Mp
If the particle velocity is written as:
I () (1
p = 1(3 ) + Tpv1(3 : +O(T123) ’ (2.54)

as proposed by Fernandez de la Mora and Rosner (1982), then neglecting higher order
terms Eq.(2.53) becomes:

Tp [\7](30) +Tp\_fg)] -V [*{30) +Tp"g)} =

TpVIne + vext
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The term at the LHS is expanded as:

o [+ |V ) | =

o [ v 4y v ) v e v (250
Equation (2.53) can, thus, be rearranged as follows:
2 [ o)
2 [ol®) v + ) vl + s
T, 5 4 5. vo+ kn‘if vmc} 15 [3) =T Vent| =0

The terms of 2nd order or higher can be neglected. As a result, from the zeroth-order
term (Tg) we obtain that:

S0) oo
) — 5 Vert (2.58)

whereas from the first-order term (TY]J) we get that:

kg Tt

mp

\7](9” =—U-VU— Vinc . (2.59)

Therefore the particle velocity field (Eq.(2.54)) equals:

Vp =T+ Vext —TpU- VO —DVinc +0(t7) (2.60)
because: 5

keTr _ keTr Ppd;Ce kpTeCe -

mp P op %ﬂdg 18¢ 3mtpedp

The third term of Eq.(2.60) implies that the particle velocity field is compressible for
inertial particles regardless the presence of diffusion and the compressibility of the carrier
fluid.

The particle velocity is, thus, decomposed into two parts: a diffusive part, dependent
only on the particle concentration gradient, and a convective part V., independent of
particle concentration. In particular, the convective particle velocity

Ve =U+Vext —Tpu - VU (2.61)

depends only on the fluid velocity and its spatial gradients and it incorporates the effects
of particle inertia and external force fields.

The low-T, expansion of the particle velocity decouples the mass and momentum
conservation equations for the dispersed phase. Therefore, the dispersed-phase mass
conservation Eq.(2.41), under steady-state conditions that are of interest here, takes the
form of a modified steady-state convective diffusion equation:

V.-l (¥ —DVinc)] =0 , (2.62)

or equivalently:
V-(cv.)=V-(DVc) , (2.63)
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because ¢ Vinc = Vc. In view of Eq.(2.61), Eq.(2.63) can be further written in terms of
the fluid and external velocities:

Vlc (U4 Vext —TpU-VU)| =V - (DVe) . (2.64)

Equations (2.63) or (2.64) are the extended particle transport equations (EPTEs) that

incorporate the effects of particle convection, inertia, and diffusion as well as the effect of

external force fields in an Eulerian formalism to first order in the particle relaxation time.
In integral form of Eq.(2.63) becomes:

J V- (cVe) dQ:J V. (DVc) dQ (2.65)
Q Q

which is simplified using Gauss theorem to:
J cvc-d§:DJ Ve-dS (2.66)
S S
or equivalently:

J c(6+ﬁext—Tpﬁ-V6)-d§:DJ Vc-dS (2.67)
S S

where in addition constant fluid and particles properties, thus constant diffusion coeffi-
cient, are assumed.

Herein, we focus on flow of fluid-particles systems into tubes (internal flows). The
tube diameter d¢, the mean fluid velocity at the tube inlet v, and the mean particle mass
concentration at the tube inlet c,, are thus chosen to render Eq.(2.66) dimensionless. The
following relationships hold for the various quantities:

C=cCoC
— -, - o 1 /
f=d,7,5=d2S, V=1V

! v de ) (2.68)
T =v,0’ !

These equations are incorporated into Eq.(2.67), which after a few manipulations becomes:

- - T N - —_/
Jc' |:U/+Véxt_ P v’-V’v’}-dS =

Ve ds' . 2.6
dt/uo J ( 9)

dtuo
S

However, the coefficient of the inertial term equals the particle Stokes number (see also
Eq.(2.39)), defined using the chosen characteristic length and velocity:

_ TplUo

St ,
dy

(2.70)
whereas the coefficient of the diffusive term is the inverse of the dimensionless mass
Peclet number, which is defined by:

. dt Uo

Pe = .
e D P (2.71)
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and is the ratio of the convective flux to the diffusive flux of particles. As Pe increases the
convective flux becomes more important than the diffusive one and vice versa. Note that
high Peclet numbers implies low diffusion coefficient and, consequently, bigger particles
for the same geometry and flow conditions.

Finally, the particle transport equation in integral and dimensionless form is written as
(for simplicity the  are omitted):

Jc [0+ Vext —StT- VD] - dS = Pe ™! JVC -ds (2.72)
S S

or expressed in terms of the (dimensionless) particle convective velocity as:

Jcﬁc .dS =Pe! JVC -dS (2.73)
S S

with V. = U + Vext —StU - VU. The extended particles transport equation written in the
form of Eq.(2.73) resembles the usual convective diffusion equation and, thus, it can be
numerically treated similarly.

2.2.5 Dispersed Phase: Boundary Conditions

For all cases of fluid-particle flows in the present study, at the inlet a plug concentration
particle profile is used (inlet concentration of unity in dimensionless form), i.e.:

The particle concentration wall boundary condition was the usual condition of a totally
absorbing wall:

cly =0, (2.75)

which at the wall boundary gives a (dimensionless) diffusive flux, J¢ ‘W, equal to:

Ja ——Pe_]JVc~d_S‘W : (2.76)
S

Moreover, there is a finite non-zero particle convective velocity just before the wall,
due to the external forces (Eq.(2.73)), resulting to a (dimensionless) convective flux, J¢|,,,
which can be written as:

—

0 if vo-dS| <0
Il = 5 Y , (2.77)
M|V dS| if Ve dS| >0
S w w

where the particle convective velocity, V, is calculated just before the wall boundary; i.e.
at the computational grid point closest to the wall. Hence, if the convective flux at the
grid point closest to the wall is towards the wall, this flux is taken equal to the depositing
convective flux at the wall; otherwise, the convective flux at the wall is zero. The two
cases of Eq.(2.77) indicate that only outward fluxes are permitted; influx of particles from
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the wall is not permitted, because is physically unrealistic in the present study. Therefore,
the total (dimensionless) deposition flux becomes:

Jdep = Jc|w + Jd‘w . (2-78)

Longest and collaborators (Longest and Oldham, 2008; Xi and Longest, 2008a,b) used
Eq.(2.78) to calculate the deposition fraction of sub-micron particles as the sum of a
convective and a diffusive term. Furthermore, they analyzed two other alternatives to
specify the convective flux at the wall and they concluded that a velocity correction
based on a sub-grid Lagrangian solution improved numerical predictions for the local
and regional deposition fractions of fine respiratory aerosols. However, the theoretical
basis of their corrections is not fully justified. On the contrary, it seems like they were
trying to find a way to better agree with the experimental findings. Moreover, we do
not expect that this correction would modify significantly our deposition-fraction results
because we simulate high inertia-particles (high Stokes-number particles), whose velocity
responds slowly to changes of the fluid velocity. Their velocity at the center of the
computational grid closest to the wall persists for a longer time than the velocity of fine
aerosol particles (d, < Tum). More importantly, in the majority of our simulations, a
body force independent of the fluid velocity, acts on these particles.

The modified convection-diffusion equation, Eq.(2.63) or (2.73), was obtained from the
leading order correction of the particle velocity in terms of the particle relaxation time
(in a low Stokes-number expansion). It arises from a perturbative solution of the particle-
phase momentum conservation equation. Consequently, it captures the leading order
effect of particle inertia on the usual convective diffusion equation, and hence it becomes
important when both inertial and diffusive particle transport occur simultaneously (for an
analysis of the low Stokes-number expansion in a simple shear flow, and the decoupling
of the two continuum conservation equations, see Drossinos and Reeks (2005)).

Nevertheless, the range of validity of the low Stokes-number expansion has not been
specified. Ferry and Balachandar (2001) investigated it partly, in particular the uniqueness
of the Eulerian particle velocity field as a function of T, in the absence of diffusion and
with elastic particle rebound at the walls. Whereas they derived an inequality specifying
how small T, should be, they ascertained the accuracy of the expansion through a
comparison of the particle velocity obtained by Lagrangian particle tracking and by
the Eulerian method truncated at various orders (zeroth, first, and second) in turbulent
channel flow. They found that for small T, (specifically, when the particle response time
normalized by the fluid time scale is less than unity) the first-order approximation gave
a significant improvement over the zeroth-order term, but the second-order correction
did not lead to further improvements. In this work, where in addition a concentration
boundary layer exists and particles diffuse, the validity of the approximation is fully
ascertained by comparing our results to experimental data and previous simulations.

2.2.6 Dispersed Phase: Numerical Solution

Once the fluid velocity U is numerically obtained using CADBA code, the convective
particle velocity V. is calculated from Eq.(2.61) and, subsequently, the modified convection-
diffusion equation is solved for particle concentration. A primary scope of the present
study is to incorporate the solution of the particles PTE into the existing CFD code
(CADBA), thus the methodology used for the numerical treatment of it is chosen to
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be analogous to that used for the carrier fluid flow. Therefore, the particle convection-
diffusion equation (Eq.(2.73)) is solved in three dimensions using a finite volume method
with a collocated arrangement of variables that takes into account grid non-orthogonality
and is suitable for multi-block grids. The discretization and numerical treatment of the
particle equation are described next; first the expressions for a Cartesian grid are obtained,
and then the correction for non-orthogonal grid are introduced.

The typical topology of a Cartesian computational grid for a collocated arrangement
of variables and the control volume (CV) are shown in Figure 4. The centre of the CV is
computational node P, whereas E, W, N, S, T and B are its neighbor nodes and define the
respective CV faces e, w, n, s, t and b.

(@) (b)

Figure 4: Topology of a Cartesian grid (a) and the control volume (b) (adapted from Neofytou
and Tsangaris (2006)).

The net particle flux through the CV surface equals the sum of integrals over the six
CV faces. Thus Eq.(2.65) becomes:

> (feveas) =X [ret|veas) @79)

©\sk ) S«
or equivalently:
Z ]K =0 s (2.80)
K
where ] is the total flux through the face «, i.e. . = J¢ + J¢ with
Je = J Ve - ds ’ (2.81)
Sk
the convective flux and
ﬁ:—m1JVc£ , (2.82)
S«

the diffusive flux. As the particle velocity field and the properties are known, particle
concentration c is the only unknown. The surface integrals of Egs.(2.81) and (2.82) cannot
be calculated exactly as only the values of c at the CVs centers are known, thus they have
to be approximated.

In the following analysis, only CV face e is considered (Fig.5) . The expressions for the
rest CV faces are derived in the same manner.
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Figure 5: Typical Cartecian control volume and the notation used. For simplicity and clarity a two
dimensional CV is shown (adapted from Ferziger and Peri¢ (2002)).

Convective Term

The convective mass flow m¢ through CV face e is equal to:
meé = Jvc dS ~ vel, Se, (2.83)
Se

where v. and S, are the x-components of the convective velocity V. and the east face
surface vector S.. The convective flux (Eq.(2.81)) can be, then, approximated by the
product of the convective mass flow times the value c. of particle concentration on the
center of the face, e, that is:

Js = J cVe-dS~mlee . (2.84)
Se

The convective-velocity term is treated by a deferred-correction approach to avoid
application of high-order schemes that would result in big computational molecules
(Ferziger and Peri¢, 2002). Thus, the convective term is split into an implicit part, J§ ;,,,,,
which is discretized using a first order upwind scheme (UDS), and an explicit part, J§ cxp,
comprised of the difference between the UDS and the second-order central difference

scheme (CDS). In particular, J¢ is written as:

]g = ]g,imp + ]g,exp ’ (285)
where the implicit term is equal to:

C

. ubDs
eimp — (mg Ce)

, (2.86)

and the explicit is written as:

old
g,exp = [(mg Ce)CDS - (mg Ce)UDS . (287)
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The explicit part of the convective flux, Eq.(2.87), is evaluated using the values of the
previous iteration. For the CDS, the value of c at the CV face center e is approximated by
linear interpolation between the nodes P and E:

Ce = 7\e Ce + (] _}\e) cp (288)

where the interpolation factor A, is the ratio of the distance of e from the node P to the
distance of node E from node P, that is:

L
Ae = Lpe (2.89)
PE
On the other hand, the UDS is given by:
(¢ ce)'P% = max(m¢, 0) ep +min(im,0)ce (290)

i.e. the value of ¢ at the CV face center e equals the one at node P, if ¢ > 0 (mass flow
from P to E), or the value at node E, if m¢ < 0 (mass flow from E to P).

Substitution of the last equations into Eq.(2.85), gives the approximation of the convec-
tive flux at the center of the CV face e:

JS = max(m§,0) cp +min(mg,0) ce (2.91)
+{Ae ce + (1—Ac) cp] — [max(m, 0) cp +min(mg,0) cel}*H
If there is no mass flow between these two nodes (¢ = 0), both the implicit and explicit
parts of the convective flux are equal to zero, as expected.

Once the iterations converge, the low-order scheme (UDS) cancel out and the obtained

solution corresponds to the higher-order scheme (CDS).

Diffusive Term
The diffusive flux of particle through CV face e (Eq.(2.82)) equals:

aC 1 aC
adSN—Pe n Se , (2.92)

e

jd = —pe! J Ve -fdS=—Pe J
Se Se

where fi the surface unit vector and S, the surface of CV face e (S_,; = fiS¢). The term

oc . is the gradient of particle concentration in the direction of the surface vector. The

second-order central difference approximation is used for the concentration gradient, so
Eq.(2.92) becomes:
CE —Cp

]g =-—Pe! Se (2.93)

Lpe

Corrections for Non-Orthogonal Grids

The discretization of the convective and diffusive fluxes in the preceding analysis, is
valid when a Cartesian (orthogonal) grid is used for the description of the computational
domain. A non-orthogonal computational grid, however, differs from a Cartesian one. In
the latter case, the surface vector has components in more than one Cartesian directions
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and all the components of the convective velocity contribute to the mass flux (Fig.(6)).
Therefore, Eq.(2.83) becomes:

mg = vCX|e Se" + VCH ‘e Sey + vcz|e Sez 4 (2‘94)

i.e. each velocity component is multiplied by the corresponding surface vector component.

y

| X

Figure 6: Typical non-orthogonal computational volume and the notation used. For simplicity
and clarity a two dimensional CV is shown (adapted from Ferziger and Peri¢ (2002)).

An important difference between a Cartesian and a non-orthogonal grid is, also, that
the line that connects two neighbor computational nodes, i.e. P and E, cuts the CV face at
the point e¢’, which may be different from the face center e (Fig.(7)). Due to this fact, the
previously derived approximations of the concentration and its gradient are second-order
accurate at e’.

-1 T~

Figure 7: Topology in the case of arbitrary CV shape (adapted from Ferziger and Peri¢ (2002)).

In order to preserve the second-order accuracy of the midpoint rule on irregular
grids, concentration and its gradient should be calculated at the center e of the CV face
with second-order approximations. Therefore, Eqs.(2.91) and (2.93) should be properly
corrected to account for the general case of a non-orthogonal grid.

The simplest second-order accurate scheme that relates the value of particle concentra-
tion at the CV face centre e to that of the point e’ is (Ferziger and Peri¢, 2002):

Ce =Cer + V|, - (Fe —Ter) (2.95)

which uses the concentration gradient at the CV center and is suitable for CVs of arbitrary
shape. It should be noted that no correction is used for the gradient of c from e’ to e,
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i.e. it is assumed that 9c/0&|, ~ 9c/0&|.,, because the need for the second gradient of c
would lead to higher computational cost.

Based on Eq.(2.95), the CDS scheme used in the discretization of the explicit convective
flux (Eq.(2.88)), is now corrected to:

Ce =AecCg +(1—Ae) cp+ Vel - (Fe—Ter) (2.96)
which is incorporated in Eq.(2.91) and the discretization of the convective flux becomes:

Jo = max(mg,0) cp +min(mg,0) ce

+{Aece +(1—A¢) cp+ Vel - (Fe —Ter)] . (2.97)
— fmax(m,0) cp + min(mé,0) cgl}°?

The correction of the diffusive flux is implemented through a deferred correction
approach. The implicit term are based on the values at nodes P and E without considering
the grid irregularity, i.e. the values at e are used, while the different between the implicit
term and the more accurate approximation is treated explicitly. Therefore, the diffusive
flux (Eq.(2.82)) for irregular grids is written:

Jg = ]g,imp + ](ei,exp 7 (298)
where the implicit part equals:
oc
Jeimp =P 2| Se (2.99)
eimp a& . €
or equivalently:
]g,imp = —Pe! SeCEL;ECP , (2.100)

with & is denoted the direction of the line PE (see also Fig.(6), and the explicit part is
equal to:

oc
e 0%
The explicit part of the diffusive flux is, thus, the difference of the particle concentration
gradient in the directions of the surface vector (first term in the brackets) and the line PE
(second term in the brackets) calculated with values of the previous iteration.

The gradient of the concentration in the direction of the surface vector is given by:

2
on

whereas the one in the direction of the PE line by:

ac
ot

oc

old
d o =—Pe! — . .
]e,exp € el . (2.101)

old
) (e (2:102)
e

>

old
> = (VC|e)Old' £ (2.103)
e
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where 1; is the unit vector in the direction of the line PE. Consequently, the explicit part
of the diffusive flux equals:

]e,exp = _Pe_1 Se (Vc|e)01d : (ﬁ _ié) ’ (2.104)

and the discretization of the diffusive flux for irregular grids becomes:

J¢ = —Pe 'S ST —Pe! Se (Vel )M () (2.105)

2.2.6.1 Algebraic Equation
Substitution of Egs.(2.97) and (2.105) in Eq.(2.80) gives:

% [ Klmp+]K1mp+( KeXP+JK€XP)} =0=

(2.106)

; ( Kimp +IK1mp> = g ( K,exp +L<exp)
Using Egs.(2.86) and (2.100) for the implicit fluxes in the LHS of the last equality we
obtain:

max(ms,0) cp +min(ms,0) cx — Pe 'S Sk=Cp | —
K K Lpx

K

{Z [max(mﬁ,O) + PesLﬁ} } cp+ Z { [mtn €,0)— PeLPK} CK}

K

(2.107)

Therefore, the discretized form of Eq.(2.73) applied on a computational cell leads to
the following algebraic equation:

apcp+ Y axck=¢q , L=T,BEWN,S , (2.108)
K

where the subscript P denotes the computational cell. In Eq.(2.108) ax are the coefficients
of the unknown concentrations, from which the coefficient of P equals:

Sk
ap = ; [max(mi,O) + Pelpg | (2.109)
whereas the coefficients ok are given by:
ax = min(m¢,0) — S (2.110)
K PeLpK '

If ) (m¢) is added and subtracted from Eq.(2.109), after some manipulation we get:

ap = Z {[max( ng,0) —mel+ PeSLKPK +n‘1ﬁ}

. s . , (2.111)
= Z [ min(my, 0) + pors. —i—mK}

or equivalently:

op :—Z(ocK—mi) , (2.112)
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because for a number x it holds that max(x,0) —x = —min(x,0). Equation (2.112)
shows that only the coefficients of the neighbor to P nodes should be calculated, i.e. the
coefficients at E, W, N, S, T and B. Finally, in Eq.(2.108) q is the source term containing
all the known terms arising from the discretization, which in this case are the explicit
parts of the discretized fluxes. That is:

q= Z ( i,exp + Ig,exp) : (2-113)

K

Application of Eq.(2.108) on each cell results in a system of linear algebraic equations
that is solved using the iterative strongly implicit procedure (SIP) (Ferziger and Peric,
2002), an incomplete lower-upper decomposition method.

2.3 CONCLUSIONS

In Chapter 2, the theoretical background and the numerical approach, on which the
proposed methodology is based, are presented.

The derivation of the Navier-Stokes equations that govern the flow of an incompressible,
Newtonian flow is described briefly. These equations describe fully the fluid velocity and
pressure fields and are solved using the in-house CFD code developed by Neofytou and
Tsangaris Neofytou and Tsangaris (2006). The code uses a finite-volume methodology
with a collocated arrangement of variables, while it enables multi-block computations. A
pressure-correction equation is used and the coupling of velocity and pressure is dealt
with using the SIMPLE algorithm. In this code, the convection terms are discretized using
the QUICK difference scheme, which is of third-order, whereas the central difference
scheme (CDS) is used for the diffusion (viscous) terms. Herein, a solution is reached
assuming steady-state, laminar flow of a Newtonian fluid of constant properties. The
influence of the dispersed (particulate) phase on the fluid flow field is considered
negligible (one-way coupling).

Regarding the dispersed phase, after a brief introduction to multiphase flows and the
processes present in fluid-particle systems, a detailed description of the derivation of the
equation that governs the transport of particles (PTE), is given. Internal aerosol processes
are not taken into account in this study and it is assumed that the particulate phase can be
considered as an ideal gas, i.e. that particles are dilute enough so that they do not interact
with each other. Moreover, the low particle relation time expansion of the particle average
momentum equation in case of isothermal, steady-state flow proposed by Fernandez
de la Mora and Rosner (1982) is adopted in order to address inertial effects on Brownian
diffusion. It is shown that the particle velocity is described by two components; a) a
diffusive part, dependent only on the particle concentration gradient, and b) a convective
part that depends only on the fluid velocity and its spatial gradients and incorporates the
effects of particle inertia and external force fields . Incorporation of this particle velocity
into the mass conservation equation of the particulate phase, gives a population balance
equation for the particles that incorporates particle convection, diffusion, inertia and the
influence of external force fields in an Eulerian formulation.

The methodology used for the numerical treatment of the particulate phase transport
is similar to the one used for the fluid flow, as the direct connection of the two codes is
desired. Therefore, the particles population balance equation is solved in three dimensions
using a finite volume method with a collocated arrangement of variables that takes into
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account grid non-orthogonality and is suitable for multi-block grids. In the code, the
convective term is discretized using a second-order deferred correction approach, while
a second-order central difference scheme is preferred for the diffusive term.



VALIDATION

Prior to applying the fully Eulerian approach in order to investigate particle transport
and deposition in practical applications, the accuracy of the computational methodology
should be validated. Therefore, the results of the Eulerian model are compared to findings
of various experimental, analytical and computational studies available in literature.

3.1 VALIDATION OF THE DIFFUSIVE TERM

The numerical discretization of the diffusive term is validated by solving the usual
convective diffusion problem for a passive tracer, that is for an inertialless particle. Given
the similarities of heat and mass transfer, the Graetz-Nusselt problem is an appropriate
comparison basis. This problem considers the development of the temperature profile for
an incompressible fluid of constant properties, while it flows in a straight, circular duct,
of diameter di, having fully developed laminar velocity profile, of mean velocity v, (Shah
and London, 1978). The solution is reached with the following boundary conditions;
uniform temperature profile, Ti,,, at the inlet and constant, uniform temperature at
the tube wall, T,, # Tin.. The following equation, in dimensionless integral form, and
boundary conditions describe the Graetz-Nusselt problem:

[TT-dS =2Pe;! [VT-dS
S S

T =Tin = constant at the inlet (z=0) ’ (3.1)

T =T,, = constant at the wall

where Pet, = d{v,/« is the thermal Peclet number and « the fluid thermal diffusivity.
The analytical solution of Eq.(3.1), derived independently by Graetz (1883, 1885) and
Nusselt (1910), gives the fluid temperature distribution in an infinite series form:

T-Tw

T = Ton—To T;) CnRuexp (—2372%) (3-2)

where z* = z/Peyy, is the dimensionless axial coordinate. In Eq.(3.2), Ar, R, and C;, are
eigenvalues, eigenfunctions and constants, respectively, the values of which are given in
Shah and London (1978).

In Fig.8, the mean (mixing) fluid temperature T, which is defined by:

[ TG -dS,
St

is shown for different thermal Peclet numbers. In Eq.(3.3) St is the flow area. The
agreement of our numerical simulations with both the analytical results of Shah and
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London (1978) and the standard numerical results of Schmidt and Zeldin (1971) for
Pet, >> 1 is excellent.
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Figure 8: Mixing temperature in a straight duct of circular cross-section for different thermal
Peclet numbers.

Overall, this comparison demonstrates that our numerical treatment of the diffusive
term is valid.

3.2 VALIDATION OF THE EXTERNAL FORCE TERM

The validity of the external force term in the particle transport equation (Eq(2.73)) will be
investigated through the effect of gravity on particle transport, which is a significant de-
position mechanism of large aerosol particles, i.e. for d, > Tum, in the upper respiratory
system. Herein, the transport of aerosol particles in an inclined circular tube under the
sole influence of gravity for a fully developed laminar (Poiseuille) fluid flow is considered
(Fig.9), for which analytical solutions are available. The fraction of the deposited particles
in the duct, n, is numerically calculated by:

¢ | outlet

n=1-—
¢l

, (3-4)

inlet

where ¢ = [ ¢V, - dS; is the dimensionless particle flowrate through the area S; of the
St
tube cross-section. The subscripts “inlet” and “outlet” refer to the tube inlet and outlet

respectively.
In this case, the particle convective velocity (Eq.(2.61)) is written as:

—

p=U+Vs , (3-5)

with Vs the particle settling velocity given by Eq.(2.35). Equation (3.5) is incorporated
into the integral form of the PTE (Eq.(2.66)) giving;:

J c(ﬁ+’rp§)-d§:DJ Ve-dS (3.6)
S S
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Figure 9: Aerosol particle sedimentation in a tube of circular cross-section of diameter d; and
length L, which is at angle 6 from the horizontal. Poiseuille fluid flow, with mean
velocity v, is considered (adapted from Finlay (2001)).

or in dimensionless form (the same notation is kept for simplicity):

Jc (G+StFr'g) - dS =Pe ™ Jw-a“s / (37)
S S

where Fr = vg /dtg is the dimensionless Froude number, which provides an estimation of
the importance of particle convection to gravitational settling.In Eq.(3.7), § = /g, where
g = 9.81m/s?, is the unit vector in the direction of the acceleration of gravity.

The results of the Eulerian model are compared to those of Finlay (2001), who presented
an analytical solution for the gravitational settling of particles in each generation of the
human lung. In particular, if v, = vs/vm and {, = L/dy, according to the analysis of
Finlay (2001), for Poiseuille fluid flow, the particle deposition fraction in the circular tube
is equal to:

Ps=1-E-Q , (3.8)

where E is the fraction of particles escaping the tube, given by:

[ VY (T=v) (1=2y) + arcsin (/1 —y)] for —90° < B <0°

arcsin (\/1 - ) — AT rvosing) ”J)Ilme) [Buolocos® — (2+vosind)n] for 0° < 6 < 90°
(3.9)

and Q is the fraction of particles retreating out of the tube due to gravity, which is equal
to:

2
7T
24
7T

1-1 [3m+ arcsiny/T—s+ (1—9s?) arcsin 15355} for —90° <0 <0°

0 for 0° < © < 90°

(3.10)
In the previous relationships (Egs.(3.9) and (3.10)), 0 is the angle of the circular tube from

the horizontal as shown in Fig.9. Moreover, the parameters v, 1 and s are given by:

Q=

(%voliocose)z/3
Y= T, (3.11)
— 3V08in0
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1/3
Vo (6€oc059 + /40,5030 + 36€%c0529>

n= 16

, (3.12)
vg/ 3sing

1/3
22/3 (6o + /40,5in?0 + 36(2c0s70

and

1gvosinﬁ

§=— . 1
1— %vosine (3.13)
For the case of the trachea (tube diameter dy = 0.018m, length L = 0.125m and mean
inlet velocity v,y = 1.166m/s), the results of the Eulerian model are identical to the
analytical solution, as shown in Fig.10. The parameter k in the figure, is defined by
(Finlay, 2001):

3..¢gL
k=-St= . (3.14)
47 v

0.5

045}

04}
Foast
g
£ 0.3r
)
L p2st
c
S
% 02
o
[=%
& 015

0.1

0.05F present work -

O Finlay (2001)
0.05 0.1 015 02 025 03 0.35

k

Figure 10: Deposition fraction of particles sedimenting in a straight duct of circular cross-section.

The inclusion of the gravitational effects in the particle transport equation through the
settling velocity gives accurate results, as shown in the previous analysis.

3.3 VALIDATION OF THE INERTIAL TERM

In the proposed Eulerian description of the dispersed phase, particle velocity is approx-
imated in the mass conservation equation of particles, or equivalently in PTE, by an
expression obtained in the limit of low particle relaxation time (cf. section 2.2.4). The main
goal of the present work is to study the validity of the particle velocity approximation for
higher particle relaxation times (or equivalently higher Stokes numbers), where inertial
effects are important and gravitational settling may not be a priori neglected. Taking
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into account simultaneously particle inertial effects and gravitational settling, the particle
velocity (Eq.(2.60)) becomes:

Vp =T+ Vs —Tp0 - VU —DVInc+O(13) . (3.15)

If Eq.(3.15) is incorporated into the integral dimensionless form of the PTE (Eq.(2.73)),
then we obtain:

—

Jc [0+ St (Fr'g—0.50-Vv)] - dS = 0.5Pe™ JVC .dS . (3.16)
S S

Equation (3.16) is solved numerically, in order calculate the concentration field for
transport of coarse aerosol particles (5um < dp < 20um) in a simple bend geometry of
curvature ratio R, assuming laminar flow field. The results of the fully Eulerian model
are compared with benchmark solutions available in literature. It should be noted that
the "0.5” coefficients in front of the inertial and diffusive terms is a result of the Stokes
and Peclet numbers definitions based on tube radius, r¢ = di/2, instead of its diameter
to conform with the studies found in literature.

3.3.1 Bend Geometry and Computational Grid

Deposition of a monodispersed aerosol population in a 90° bend of circular cross-section
was simulated adopting the geometry proposed by Pui et al. (1987) and Breuer et al.
(2006). The main geometrical features of the bend are shown in Fig.11. Two linear sections,
the first of length d before the bend inlet and the second of length 2d, after the bend
exit, are introduced to ensure that the fluid flow in the bend is not disturbed by the
inlet and outlet conditions. The diameter of a cross-section of the tube at the symmetry
plane (z=0.5) is denoted as A-A, whereas the diameter of a cross-section of the tube
perpendicular to the symmetry plane is denoted as B-B. Given this geometry, the flow
Reynolds number is Re = pfv,d¢/p¢. Note that the bend radius Ry, depends on the scale
used to render lengths dimensionless, whereas the bend curvature ratio R, (= Ry /1¢)
does not.

Based on the description of the experimental set up of Pui et al. (1987), the orientation
in 3D space of the tubes for Re = 100 is that of Fig.12(a) and for Re = 1000 is that of
Fig.12(b). The unit gravity vectors in each case are also noted in this figure. For the case
Re = 100 a vertical inlet section was used in the experimental set up of Pui et al. (1987)
to minimize particle settling in this section, whereas a horizontal inlet-vertical outlet was
used for the high Reynolds number experiments (Re = 1000).

The computations were performed using a grid based on an O-type multiblock structure
to avoid singularities imposed by a polar grid. The outer block is nearly polar, enclosing
the square inner block as shown in Fig.13. The grid is refined in the vicinity of the wall to
capture in detail the concentration boundary layer, a region important for the calculation
of particle deposition.

The resolution of the grid is about 1.46 x 106 computational volumes (CVs), consisting
of about 6500 grid points in every cross section and 225 grid points in the direction of
the flow.
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B

Figure 11: Bend geometry (Rp = 2.85, R, = 5.7); A-A is the diameter of the cross-section at the
symmetry plane and B-B the diameter perpendicular to it.
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Figure 12: Orientation of the bends with respect to the acceleration of gravity; (a) vertical inlet

(CDIGx), (b) horizontal inlet - vertical outlet (CDIGy) and (c) totally horizontal tube
(CDIGz).

3.3.2 Continuous Phase

In bends of circular cross-sections with curvature ratios R, > 5, the fluid flow field
depends exclusively on a dimensionless number, called Dean number (Pui et al., 1987).

This number is defined as:
Re

N (3.17)
and is a measure of the importance of the fluid centrifugal and inertial forces to the
viscous forces.

The validity of the calculated flow field is ascertained by simulating two flows with
De = 38 (Re = 100, R, = 7) and De = 423 (Re = 1000, R, = 5.6). Results are shown in
Fig.14. The axial velocity profiles along the diameters A-A in the symmetry plane (left

De =
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Figure 13: Grid cross-section

column) are skewed towards the outer bend wall due to the centrifugal forces exerted on
the fluid. The axial velocity profiles along the diameters B-B which are perpendicular to
the symmetry plane (right column) are deformed but remain symmetric with respect to
the symmetry plane of the bend. The deformation of the axial velocity profiles along the
diameters A-A shifts towards the outer boundary wall of the bend with increasing Dean
number. These results are in good agreement with the numerical solution of Tsai and Pui

(1990).
0.5
o° 45° 90°
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Figure 14: Axial velocity profiles at 6 = 0° (inlet), 8 = 45° and 0 = 90° (exit) cross sections along
the diameters A-A (left) and B-B (right). (a) De = 38; (b) De = 423. Results of this
study are shown with a continuous line, results of Tsai and Pui (1990) are shown with
a dashed line.

The secondary-flow streamlines and contours of constant axial fluid velocity are shown
in Fig.15 at angles 6 = 45° and 6 = 90° along the bend for Dean numbers De = 38
(left column) and De = 423 (right column). The streamlines of the low Dean number
secondary flow show the formation of a pair of symmetric, counter-rotating vortices, the
centers of which are slightly displaced towards the outer bend wall at both angles. The
main feature of the flow is the formation of an inviscid rotational core surrounded by
a thin boundary layer. The peak of the axial fluid velocity is located closer to the outer
wall. Our results are similar to those obtained by Pui et al. (1987) for intermediate Dean
numbers (17 < De < 370).

The secondary-flow streamlines for De = 423 at 45° also show two main, symmetric
counter-rotating vortices, but their centers are displaced towards the inner bend wall and
they are skewed with respect to the symmetry plane. In addition, increased centrifugal
forces lead to increased fluid flow towards the outer wall; the boundary layer of the
secondary flow gets thinner near the outer wall and thicker near the inner wall. At
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Figure 15: Secondary-flow streamlines and contours of constant axial velocity at 8 = 45° (top)
and 0 = 90° (bottom) cross sections for De = 38 (left) and De = 423 (right).

0 = 90° six vortices that are per two symmetric with respect to the diameter A-A are
formed; the peak of the axial fluid velocity shifts further towards the outer wall. These
results are in agreement with both the theoretical descriptions of Pui et al. (1987) for
large Dean numbers (De > 370) and the numerical simulations of Breuer et al. (2006).

3.3.3 Dispersed Phase

Bend Deposition

Particle deposition fractions obtained using the fully Eulerian model are compared to
those of previous theoretical calculations and experimental results. Simulations were
performed for both analytically and experimentally obtained flow fields.
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Figure 16: Deposition fraction — Comparison with analytical results of Cheng and Wang (1975).

Deposition calculations without gravitational settling were performed for two bend
curvature ratios (R, = 5 and 30) with the ideal flow field without secondary flow used by
Cheng and Wang (1975); calculated deposition fractions are compared to their analytical
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Fluid temperature T 293 K

Fluid density p¢ 1.21 kg/m?3

Fluid dynamic viscosity pis 1.81 x 1072 kg/m s
Particle density pp 200 kg/ m?3

Particle diameter dy, 5—20um

Dean number De = 38 (Re = 100,R, = 7,Rp = 3.5)
Tube diameter d¢ 0.93x 1073 m

Fluid mean inlet velocity v, 1.686 m/s

Dean number De =419 (Re = 1000, R, = 5.7,Ry, = 2.85)
Tube diameter d¢ 3.95%x 1073 m

Fluid mean inlet velocity v, 3.86 m/s

Table 1: Fluid and particle properties used in the 90° bend simulations.

results in Fig.16. The predictions of the Eulerian model agree with the analytical solution
at low Stokes numbers, whereas they diverge at high Stokes numbers and at the low bend
curvature ratio. The disagreement at high Stokes numbers is not unexpected since the
model is based on a low Stokes-number expansion. The difference is at maximum 10%,
tending to zero with increasing bend curvature, i.e. as particle inertial effects become
weaker.

Simulations were also performed for experimental flows taking into account both
gravitational and inertial effects and using the parameters shown in Table 1. Numerical
simulations of aerosol flows for two Dean numbers (De = 38, 419) are compared to the
experimental results of Pui et al. (1987), who used oleic acid aerosol particles of varying
diameters from 5um to 2oum, as well as with Lagrangian simulations.

The Eulerian model predicts well the deposition fraction with respect to experimental
data of Pui et al. (1987) for both De = 38 and De = 419, as shown in Figs.17 and 18
respectively.

These experiments have been used repeatedly for the validation of deposition efficiency
calculations via Lagrangian simulations of the particulate phase for the De = 419 case.
The results of some of these simulations (Cheng and Wang, 1981; Breuer et al., 2006), are
compared to ours in Fig.18, allowing a direct comparison of Eulerian and Lagrangian
methods. The deposition fractions calculated with the Eulerian model differ from the
results of Cheng and Wang (1981) (who performed Lagrangian simulations with the
analytical fluid flow proposed by Mori and Nakayama (1965)) by less than 10%. However,
the difference is up to 30% with the numerical results of Tsai and Pui (1990) and Breuer
et al. (2006), who solved numerically for the flow field and used a different friction law.
It should be noted that the aforementioned Lagrangian simulations do not take into
account gravity. However, we found that gravity is not important compared to the inertial
effects for De = 419.

Particle Concentration Profiles

One of the most appealing features of the Eulerian approach is that it allows an easy
calculation of particle concentration profiles. The spatial distribution of particle concen-
tration is presented in Fig.19 at the 0 = 45° and 6 = 90° cross sections along the bend
for De = 38 and St = 0.36 (fist column) and 1.18 (second column), and De = 419 and
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Figure 17: Deposition fraction for De = 38 — Comparison with experimental measurements.
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Figure 18: Deposition fraction for De = 419 — Comparison with experimental measurements and
numerical simulations.

St = 0.35 (third column) and 1.21 (fourth column). The color scale was chosen to vary
from o (light) to 15 (dark) to visualize the main features of the concentration profiles since
maximum particle concentrations of approximately 570 (De = 38) to 1100 (De = 419)
were calculated. For the low Dean-number flow, lower Stokes number particles (St = 0.36)
follow the fluid streamlines and the main features of the secondary fluid flow can be
recognized. Deposition is negligible, though there is significant particle accumulation
close the bend walls. With increasing Stokes number, and consequently inertial effects,
bend deposition increases, the secondary flow persists and particles accumulate closer
to the walls. Nevertheless, particle trajectories do not deviate significantly from the gas
streamlines. For the higher Stokes number (St = 1.18) the particle concentration field
is qualitatively different from the fluid velocity field because inertial effects dominate;
almost no particles exit the bend and the deposition fraction tends to unity. The large
particle-free regions in Fig.19 make evident the difficulty to compute particle concentra-
tions via traditional numerical implementations of Lagrangian particle tracking: a very
dense particle-injection grid would be required to capture the small regions where the
particle concentration is low. As mentioned in the Introduction (Chapter 1), for highly
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inhomogeneous spatial particle distributions an improved numerical scheme, such as
suggested by Garg et al. (2009), should be used in the Lagrangian simulations. These
trends become more prominent for De = 419 since the fluid flow is more intense.

St=0.36 St=1.18 St=0.35 St=1.21

" (b) De=419

0123 :>6-'BS‘U

Figure 19: Particle concentration at 8 = 45° (top row) and 6 = 90° (bottom row) cross sections
along the bend. (a) De = 38 (first two columns) and (b) De = 419 (last two columns).
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St=0.36 (a) De=38 St=1.18

St=0.35

(b) De=419 St=121

CO 5 101520253035404550

Figure 20: Particle concentration at the wall boundary.(a) Top: De = 38; (b) Bottom: De = 419.
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CVs (x103)
coarse fine erRMS (%)
276 698 4.53
698 1173 3.48
1173 1457 1.36
1457 1747 0.31

Table 2: A measure of grid convergence; the root mean square error of particle concentration erys
for different grid densities (coarse and fine).

Deposition Sites

The location of particle deposition in terms of the particle concentration at the wall
boundary is shown in Fig.20 for De = 38 (top) and 419 (bottom): the particle concentration
at the computational wall-boundary cell is shown. Deposition sites are shown for low
and high Stokes numbers, and the bend is presented from both the inner and outer sides.
For both Dean numbers, for low Stokes numbers (St = 0.36 and St = 0.35) significant
deposition occurs towards the exit of the bend, as well as at the last straight portion of
the tube. As a result of the secondary flow a substantial amount of particles deposit on
the bend side walls, in addition to those deposited on the outer wall. For high Stokes
numbers (St = 1.18 and St = 1.21) deposition occurs closer to the bend inlet, and particles
deposit mostly at the outer walls. Thus, the particle-free zone of the bend walls at the
inner side is wider in this case. The aforementioned trends are particularly obvious for
the higher Dean-number flow. These findings are in agreement with the experimental
observations made by Pui et al. (1987). Moreover, comparison of the two sub-figures (a)
and (b) confirms that the effect of particle inertia is considerably more intense at higher
Dean numbers.

3.3.4 Grid Independence

Grid independence of the solution was tested using different grid densities. The root-
mean-square of the relative error of the particle concentration for various grid densities
is shown in Table 2. The root-mean-square is defined as:

2
c-
ERMS = ZNI , (3.18)

where €; is the relative error given by:

Ci,coarse — Ci fine

€i = s (319)

C{ fine

and N the number of points used (here 300 from different regions of the computational
domain). Table 2 shows that a further increase of the CVs of the chosen grid by 20%
(from 1457 x 103 to 1747 x 103) changes the concentration by less than 0.5%. Therefore,
this resolution have be used for all bend simulations.
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3.4 CONCLUSIONS

In Chapter 3, the Eulerian-Eulerian model was validated against analytical, numerical,
and experimental results. In particular, each term of the particle transport equation, i.e.
diffusion, external body force and particle inertia, has been examined. The comparison
with the Graetz-Nusselt problem showed that the numerical treatment of diffusion was
valid. Moreover, the effect of gravity (body force) on the transport of particles was
examined and the results of the Eulerian model was in agreement with the analytical
solution of Finlay (2001). Regarding the particle inertia term, the developed model was
validated by comparing inertia-induced particle deposition efficiencies in a 90° laminar-
flow bend of circular cross section. The model predictions agreed with the analytical
results of Cheng and Wang (1975) for low Stokes numbers, whereas slightly overestimated
deposition at high Stokes numbers. However, maximum difference was about 10% for
the smallest bend curvature ratio, tending to zero as the curvature ratio increases, and
therefore sufficiently accurate for practical purposes. More importantly, comparison of the
Eulerian model with experimental data (Tsai and Pui, 1990) was very good for both low
and high Dean-number flows (De = 38 and De = 419), indicating that the approximation
used for the inertial term, though based in a low relaxation time expansion, it is valid
for higher T, as well, rendering the fully Eulerian approach adequate for a wide range
of particle sizes. Finally, the predicted deposition sites were in good agreement, at least
qualitatively, with the experimental observations of Tsai and Pui (1990).
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PARTICLE INERTIAL EFFECTS: BEND

In Chapters 4 and 5, the developed Eulerian particle-fluid model is used in order to
study the effect of particle inertia in two basic geometries, which however constitute
building blocks of the respiratory system; a 90° bend and a bifurcation. In both cases,
the focus is on heavy, inert particles particles (dp, > 1um), where both inertial effects and
gravitational settling affect particle deposition.

Herein, in continuation of the validating study (Chapter 3), a parametric study of the
aerosol flow in the 90° bend is conducted to define the effect of the fluid flow Reynolds
number, Re, the bend curvature ratio, Ry, and gravity on the fluid flow and particle
behavior. The parameters used in the simulations are summarized in Table 3 and the
three orientations of the bend with respect to the acceleration of gravity are depicted in
Fig.12.

In the discussion that follows, the different cases are labeled using the initials ‘C’, 'D’,
T and ‘G’ that stand for Convection, Diffusion, Inertia and Gravity, respectively and
indicate which mechanisms are taken into account in each simulation. Moreover, the
indexes 'x’, 'y’ and 'z’ show the direction on which the acceleration of gravity acts; "x’
corresponds to g = (1,0,0), 'y to g = (0,—1,0), and 'z" to § = (0,0, —1).

4.1 BEND: AIR FLOW

As discussed in Section 3.3.2, the fluid flow in curved tubes is characterized by Dean
number, given by Eq.(3.17), which provides a measure of the secondary flow field intensity
and the axial velocity skewness towards the outer bend wall. However, bend curvature
ratio, Ry, affects also the fluid flow in the bend by regulating the balance of the inertial,
centrifugal and viscous forces (Tsai and Pui, 1990).

The effect of the bend curvature ratio on the fluid flow axial profiles along the A-A and
B-B diameters at both the 45° and 90° cross-sections, is shown in Fig.21 for low Reynolds
flow (Re = 100) and Fig.22 for high Reynolds flow (Re = 700).

For Re = 100 it is seen that there is no significant change in the axial velocity profiles,
while R, decreases, i.e. the bend becomes steeper, at the 45° cross-section along both
A-A and B-B diameters. At the bend exit (90° cross-section), a difference between the

Fluid temperature T 293 K

Fluid density p¢ 1.21 kg/m?3

Fluid dynamic viscosity p¢ 1.81 x 1075 kg/m s
Particle density py, 900 kg/m?3

Particle diameter dp 5—20um

Fluid flow Reynolds number Re 100, 300, 500, 700, 1000
Bend curvature ratio R, 4.4,5.7,7,83

Acceleration of gravity (gx, 9y, 9z)  (1,0,0), (0,-1,0), (0,0,-1)

Table 3: Fluid and particle properties used in the 90° bend parametric study.
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Figure 21: Effect of bend curvature ratio R, on axial velocity profiles at 8 = 45° (left) and 6 = 90°
(right) cross-sections along the diameters (a) A-A and (b) B-B, for low Reynolds number
(Re = 100).

profiles can be noticed, though not so big. For the high Reynolds number flow (Re = 700),
however, velocity profiles change significantly in all cases with decreases curvature ratio,
especially near the center of the tube (y-axis position equal to zero). Nevertheless, in both
Figs.21 and 22, there is no noticeable shifting of the axial velocity profile towards the
outer bend wall (along A-A diameters) with R,.

—— R =8.3(De=243) R =7(De=265) wreeee R =5.7(De=293) -...... R =4.4(De=334)
05 outer wall 05 outer wall
450 R o
5 = 90 S
— " o
0 T 0
-05 -0.5
0 05 u 1 15 2 0 0.5 u1 15 2
(a ) A-A ol A
05 0.5
45° ¥
0 0
-05 -0.5
0 0.5 2 0 2
u!xnul
(b) B-B Re=700

Figure 22: Effect of bend curvature ratio R, on axial velocity profiles at 8 = 45° (left) and 6 = 90°
(right) cross-sections along the diameters (a) A-A and (b) B-B, for high Reynolds
number (Re = 700).

Dean number is also a function of the flow Reynolds number, the effect of which on
the axial velocity profiles is given in Fig.23 for R, = 8.3 and in Fig.24 for a steeper bend
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with R, = 4.4. It is shown that axial profiles along both A-A and B-B diameters and in all
cases are affected by Re. However, the change in the profiles is bigger when Reynolds
increases from 100 to 500, than when it increases from 500-1000 for both curvature ratios.
Moreover, one can notice that the velocity profile does not shift further towards the outer
wall in the latter case. These features may be an indication that there is a minimum
Reynolds number for each curvature ratio, above of which the inertial forces dominate
the flow of the fluid over the viscous and centrifugal forces.

Re=100(De=35) Re=500(De=174) =e=ee=s Re=1000(De=347)
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-0.5

0 0.5 1 1.5 2
u
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Figure 23: Effect of Reynolds number on axial velocity profiles at 6 = 45° (left) and 6 = 90°
(right) cross-sections along the diameters (a) A-A and (b) B-B, for high bend curvature
ratio (R, = 8.3).

The effect of both the Reynolds number (Re = 100, 500and1000) and bend curvature
ratio (R, = 8.3,7,5.7and4.4) on the secondary flow field streamlines is shown in Figs.25-
27, where in addition constant axial velocity contours are depicted. For low Reynolds
number (Fig.25), the shift of the axial velocity towards the outer wall is noticeable,
especially at the 90° cross-section, thought the characteristics of the secondary flow field
do not alter considerably.

In Fig.26, for Re = 500 and all curvature ratios, one can see the shift of the centers
of the symmetric vortices towards the inner bend wall, as well as that now the vortices
are skewed with respect to the plane of symmetry (A-A diameter). At the exit of the
tube (90° cross-section) there are significant changes of the secondary flow as Dean
number increases, i.e. R, decreases; the formation of a second pair of symmetric vortices
is observed.

Finally, for the high Reynolds number case (Fig.27), at the 45° cross-section the vortices
move further towards the inner bend wall and closer to the center of the tube. As bend
curvature ratio decreases, a second pair of vortices forms at the inner wall. At the 90°
cross-section, the secondary flow field changes drastically with increasing Dean number;
from one pair of counter-rotating vortices for De = 347 to four pairs for De = 477.
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Figure 24: Effect of Reynolds number on axial velocity profiles at 6 = 45° (left) and 6 = 90°
(right) cross-sections along the diameters (a) A-A and (b) B-B, for low bend curvature

ratio (R, = 4.4).
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Figure 25: Effect of Dean number on the secondary-flow streamlines and contours of constant
axial velocity at 6 = 45° (top) and 8 = 90° (bottom) cross sections for Re = 100.
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4.2 BEND: AEROSOL PARTICLES

4.2.1  Effect of Gravity

For low Dean number (De = 38), gravity influences greatly the particle deposition
fraction. The orientation of the tube in the gravitational field is important, too. In the
case of vertical tube inlet (CDIGXx), the contribution of the settling velocity Vs is on the
x-direction of the particle convective velocity, thus more particles are driven towards the
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Figure 26: Effect of Dean number on the secondary-flow streamlines and contours of constant
axial velocity at 6 = 45° (top) and 8 = 90° (bottom) cross sections for Re = 500.
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Figure 27: Effect of Dean number on the secondary-flow streamlines and contours of constant
axial velocity at 6 = 45° (top) and 8 = 90° (bottom) cross sections for Re = 1000.

outer bend wall, where they deposit. This is obvious in Fig.28, where the CDIGx curve is
distinctively higher that those of the other orientations.

Deposition fraction in the CDIGy case is comparable to the one without gravity (CDI)
though somewhat lower especially at higher Stokes numbers. This is easily understood,
if one considers the fact that the settling velocity now contributes to the y-component
of V¢, which accommodates the change in direction of particles, allowing them to avoid
the outer bend wall. Finally, when the whole tube is horizontal and gravity acts on the
z-direction (CDIGz case), there is an increased deposition of particles with St < 1.2 and
decreased deposition fraction for bigger particles (always comparing to the no-gravity
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Figure 28: Effect of gravity on particle deposition fraction for De = 38.

case). This behavior is attributed to the fact that gravity now acts at the z-component
of Vi, which is in the direction of the secondary flow field, pushes the particles from
the upper to the lower lateral wall of the bend. Smaller particles, i.e. low Stokes number
particles, are easily diverted in this direction, whereas the diversion of heavier, inert,
particles is lesser and escape before they deposit on the lower wall.

For high Dean number aerosol flow (De = 419), the total deposition fraction is higher in
all cases. As shown in Fig.29, the effect of the gravity is less pronounced for a vertical inlet
(CDIGx) and for an horizontal inlet-vertical outlet (CDIGy), orientations. The stronger
secondary flow field results in inertial effects that dominate particle transport. Thus for
these cases, there is almost no difference between the CDIGx, CDIGy and the CDI lines.
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Figure 29: Effect of gravity on particle deposition fraction for De = 419.

This is not the case, however, for the totally horizontal tube (CDIGz), as the velocity
of gravitational settling pushes the particles away from the upper lateral bend wall,
decreasing considerably the deposition fraction especially for heavier particles.

The effect of the orientation of the tube with respect to the acceleration of gravity on
particle concentration profiles is shown in Fig.30 for low Stokes number particles and in
Fig.31 for high Stokes number particles. For smaller particles, the concentration profiles
do not change much between the different orientations for De = 38 at both 45° and 90°
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cross-sections (Fig.30). When the Dean number increases (De = 419), gravity influences
clearly only the concentration profiles in the CDIGz case at the 90° cross-section, where
particles accumulate in the vicinity of the lower bend wall.

low Stokes number particles
CDIGx CDIGy CDIGz

9909

" (b) De=419

Co1234567 68910

Figure 30: Effect of gravity on particle concentration profiles for low Stokes number particles; (a)
De=38, (b) De=419.

For higher Stokes number particles, this asymmetric accumulation is obvious in both
cross-sections and Dean numbers (CDIGz case in Fig.31). Moreover, for these bigger
particles there is obvious change in the concentration even in the CDIGx and CDIGy
orientations, where gravity does not influence strongly the secondary flow (comparing to
the CDI case).The effect is more pronounced for the higher Dean number.

Particle deposition sites are, also, influenced by gravity. In Figs.32 and 33, the con-
centration at the wall boundary is shown for low and high Stokes number particles,
respectively. The deposition patterns of the different tube orientations are compared to
the simulations without gravity.
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Figure 31: Effect of gravity on particle concentration profiles for high Stokes number particles; (a)
De=38, (b) De=419.

Gravity alters significantly the locations, where particles deposit, the differences being
bigger in the case of low Dean number flow (De = 38) for both low and high Stokes
number particles (Figs.32(a) and 33(a), respectively). For high Dean number (De = 419),
where inertial effects prevails, the influence of gravity is present though not so striking,
especially for the low Stokes number particles.

In general, it is observed that for low Stokes number particles and low Dean number
flow, there is deposition at the lateral walls of the bend and the exit tube, and a wider
particle-free zone at the inner wall for the CDIGx orientation, whereas for the CDIGy
case particles deposit mostly in the lateral walls of the bend and the outer wall of the
exit tube. On the other extreme of high Stokes number particles and Dean number flow,
particles deposit at a narrower area of the outer bend wall for the CDIGx case and a
wider area at the outer wall from the bend through out the exit tube for the cDIGy case.
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Figure 32: Effect of gravity on particle deposition sites for low Stokes number particles; (a) De=38,
(b) De=419.

For all Stokes and Dean numbers, there is an obvious asymmetry in the deposition sites
for the CDIGz orientation.

4.2.2  Effect of Fluid Flow Reynolds Number

The effect of fluid flow Reynolds number on the deposition fraction is shown in Fig.34 for
bend curvature ratio equal to R, = 5.7, where only particle inertia is taken into account
(CDI case). From this figure it is clear that an increase in Reynolds number leads to higher
deposition fraction. Moreover, it is shown that the growth rate decreases as Re becomes
larger. For example, at St = 0.6, the deposition fraction is quadrupled from Re = 100 to
Re = 300 (12% compared to 52%), whereas it is only 11% higher for Re = 700 compared
to Re = 500) (77% and 68%, respectively).

In Figs.35 and 36, the change in particle concentration profiles and deposition sites,
respectively, are shown for R, = 5.7. Particle deposition occurs further along the bend
and it spreads in a wider area for lower Reynolds number. For high Stokes number
particles (Fig.36(b)), it is clear that as Re increases particles deposit mainly at the outer
and lateral walls at the bend and at a slim region of the outer wall of the exit tube,
while the particle-free zone at the inner wall becomes wider. These characteristics are
also depicted in Fig.35(b), where at the 90° cross-section it can be observed that the
accumulation of particles at the periphery decreases as Reynolds number gets higher.

The effect of fluid flow Reynolds number on particle deposition fraction, concentration
profiles and deposition sites for the other bend curvature ratios is analogous to those for
Ro = 5.7, thus the results are omitted.
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Figure 33: Effect of gravity on particle deposition sites for high Stokes number particles; (a) De=38,
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Figure 34: Effect of fluid flow Reynolds number on particle deposition fraction for R, = 5.7.

4.2.3 Effect of Curvature Ratio

The effect of bend curvature ratio, Ry, on the transport of inert particles is also examined.
For both low (Re = 100, Fig.37) and high (Re = 100, Fig.38) Reynolds numbers, deposition
fraction increases as the curvature ratio decreases. This is easily understood, if ones
considers the fact that for the same Reynolds number, the secondary fluid flow and,
consequently, the particle inertial effects become stronger as the bend becomes steeper.
Nevertheless, the influence of curvature ratio is more pronounced for low Reynolds
number, where pure particle convection, i.e. that driven by the fluid velocity U, and
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Figure 35: Effect of fluid flow Reynolds number on particle concentration profiles for R, = 5.7;
(a)St = 0.35, (b)St = 1.21

inertial convection, controlled by U - VU, are comparable and thus their balance changes
easily with R,.

Finally, Fig.39 and 40 show that particle concentration profiles and deposition sites are
not affected significantly by changes of the bend curvature ratio.

4.3 CONCLUSIONS

In Chapter 4, a parametric study of aerosol flow in a 90° bend of circular cross-section is
performed. In particular the effect of fluid flow Reynolds number and the bend curvature
ratio on both the fluid flow and particle transport is examined. The influence that the bend
orientation has on particle deposition, is also investigated. For all cases, the simulations
refer to heavy, inert particles (5um < d, < 20um).
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Figure 36: Effect of fluid flow Reynolds number on particle deposition sites for R, = 5.7; (a)St =
0.35, (b)St = 1.21
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Figure 37: Effect of curvature ratio on particle deposition fraction for Re = 100.

In agreement with earlier studies (cf. Tsai and Pui (1990)), the analysis shows that both
the axial profiles and the secondary flow characteristics depend on the flow Dean number,
which is, in turn, a function of the flow Reynolds number and the bend curvature ratio.
Thus, the impact of these two parameters on the fluid flow is separately investigated.

The analysis shows that curvature ratio affects differently the axial velocity profiles and
the structure of the secondary flow field for low and high Reynolds numbers. Although
in the former case (Re = 100) the flow is almost independent of the bend curvature ratio,
for Re > 500 the influence of R, is obvious on velocity profiles, especially at the tube
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Figure 38: Effect of curvature ratio on particle deposition fraction for Re = 1000.

center, as well as on the secondary flow, where new pairs of symmetric vortices form
with decreasing curvature ratio (steeper bend). For all Reynolds numbers, however, there
is no shifting of the axial velocity profiles towards the outer bend wall as the curvature
ratio decreases.

On the other hand, the effect of Reynolds number on the fluid flow in the bend is
significant regardless of the curvature ratio. In particular, there seems to be a minimum
Re, above of which the axial velocity profile does not move further towards the outer bend
wall (in both R, = 4.4 and R, = 8.3 cases), implying that the inertial forces dominate and
the centrifugal ones cannot influence further the fluid flow in the bend. Moreover, one
can notice that for a given bend curvature ratio, increase of Reynolds number leads to
the shifting of the secondary flow vortices towards the inner bend wall and the center of
the cross-section, in addition to the formation of new pairs of symmetric vortices, which
is especially obvious at the 90° cross-section (bend exit).

Regarding the transport of inertial particles in the bend, the previous analysis shows
that gravitational settling is an important deposition mechanism and should not be
a priori neglected for such particles. The orientation of the tube with respect to the
acceleration of gravity, is more important for low Reynolds number aerosol flows, where
inertial effects are weaker. For Re = 100 and comparing to simulations without gravity
(CDI), deposition fraction for the CDIGx case is considerably higher for the whole range of
particle sizes under study, for the CDIGy case is comparable and for the CDIGz deposition
is higher for particle Stokes numbers less than unity and lower for bigger particles. On
the other hand, for Re = 1000, CDI, CDIGx and CDIGy orientations yield comparable
deposition fractions, whereas deposition for the CDIGz orientation is considerably lower.

The orientation of the tube influences, also, the particle concentration profiles. For
low Stokes number particles concentration profiles do not change significantly for the
CDIGx and CDIGy cases compared to the CDI for both low and high Reynolds numbers,
whereas for high Stokes number particles there are obvious differences between the afore-
mentioned cases (especially for higher Dean number aerosol flow). At the concentration
profiles for the totally horizontal tube (CDIGz), however, the asymmetric accumulation
of particles towards the lower lateral bend wall can be noticed even for the low Stokes
number particles.
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Figure 39: Effect of curvature ratio on particle concentration profiles; (a) low Stokes number
particles, (b) high Stokes number particles.

Moreover, gravity alters significantly the locations, where particles deposit. The differ-
ences between the various bend orientations are more pronounced for low Dean number
flows regardless the size of the particle, whereas for high Dean number flows, where
inertial effects prevail, the changes are not so striking. For all Stokes and Dean numbers,
there is an obvious asymmetry in the deposition sites for the CDIGz orientation.

In addition, the influence of Reynolds number and bend curvature ratio on inertial
particle transport is studied, without taking into account gravity (CDI case). The impact
of Reynolds number on particle deposition fraction is rather straightforward; deposition
fraction increases with increasing Reynolds number. However, it is noticed that the rate
of the increase becomes smaller. Particle concentration profiles and deposition sites are
affected by Reynolds number, the differences being more obvious for high Stokes number
particles.
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Finally, the analysis shows that, in correlation with what happens to the fluid flow, the
bend curvature ratio is important for the transport of particles only for low Reynolds
number flows. In this case, deposition fraction increases with decreasing R, that is as the
bend becomes steeper and thus the inertial effects stronger. Moreover, it is shown that
the patterns of particle concentration profiles and deposition sites are not particularly
changed with the bend curvature ratio.
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PARTICLE INERTIAL EFFECTS: PHYSIOLOGICALLY REALISTIC
BIFURCATION

Aerosol flows in bifurcations are of great importance for biomedical applications, because
this geometry can be considered a building block of the lungs. Estimation of internal
dose from inhalation of toxic particulate material is of interest to toxicologists, health-care
providers and regulators of air-quality standards (Kleinstreuer et al., 2008). Conversely,
there are numerous applications that aerosols are used as drugs, e.g. for the treatment of
asthma and chronic obstructive pulmonary disease, where the delivery of the particulate
matter in specific sites of the respiratory tract is crucial for their effectiveness.

In the literature, one can find experimental, analytical and computational studies re-
garding the transport and deposition of particles in single, double or multiple bifurcations.
However, aerosol flows in these complex geometries depend on many different parame-
ters and phenomena, thus generalized conclusions are not always reached (Annapragada
and Mishchiy, 2007).

Early theoretical studies used idealized flow fields and simplifying assumptions re-
garding the mechanisms and the geometry in order to predict transport and deposition
of particles in bifurcations (Agnew et al., 1984; Cai and Yu, 1988; Baldshazy et al., 1990,
1991; Gawronski and Szewczyk, 1986). These studies resulted in different deposition
formulas, which compared fairly well with the available experiments.

There are experimental studies, where a hollow cast of the tracheobronchial tree in
addition to one or more parts of the upper respiratory tract, such as the larynx and
the nasal or the oral cavity, where used for measurement of particle deposition in the
human respiratory cast. For example, Schlesinger and coworkers (Schlesinger et al., 1977)
measured deposition of particles with mean aerodynamic diameters between 2.5 and
8.1um in a hollow cast of the larynx and the tracheobronchial tree under steady inspira-
tory flow, and showed that these particles deposit preferably at bifurcations. Moreover
they concluded that deposition presented a maximum in the third lung generation (G3).
Later, Cheng et al. (1999) used a cast of the oral airway, which included the oral cavity,
the pharynx, the larynx, the trachea and three bronchi generations, in order to study
the deposition of particles (0.93 —30um) under different flow rates. They found that
impaction is the dominant mechanism, as deposition efficiency depends primarily on the
Stokes number.

However, most of the studies, either experimental or numerical, focus on a specific
part of the respiratory tract, usually on two or three consecutive generations of the lungs,
therefore in particle transport and deposition in a single or double bifurcation.

Kim and Iglesias (1989) studied experimentally deposition in a Y-shaped bifurcation
of circular cross-section of monodispersed oil droplets of 3, 5 and 7 um, varying the
branching angle and symmetry as well as fluid flow Reynolds number (Re = 1132 —3397)
and flow patterns in each of the branches. They found that deposition occurs near
the bifurcation and increased with increasing Stokes number, whereas it is not affected
significantly by branching angles lower than 45°, branching asymmetry and flow patterns
in the daughter branches for the tested particles and Reynolds numbers. Moreover, they
showed that bend models, such as those by Pui et al. (1987); Cai and Yu (1988); Cheng
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and Wang (1981), cannot realistically describe the deposition in bifurcating airways, as
previously assumed on the graounds of the geometrical similarity of a bifurcation to a
system of two adjacent bends.

This result triggered further experimental works on the aerosol flow in bifurcations. Kim
et al. (1994) measured deposition of monodispersed particle populations in a symmetrical
single bifurcation of circular cross-section under steady-state flow conditions. Particle
diameter, d;, air flow Reynolds number, Re, bifurcation angle and parent to daughter
diameter ratio served as problem parameters. The study showed that inertial impaction
was the most significant deposition mechanism for the particle sizes under investigation
(dp = Tum) and the majority of particles deposit in a narrow region at the top of the
carinal ridge. Moreover, they found that bifurcation angle, parent to daughter diameter
ratio and flow Reynolds number may influence the local particle deposition patterns,
but did not affect significantly the total deposition fraction. The latter depends only on
the Stokes number and increases monotonically with it. Their results were in agreement
with earlier findings of Johnston et al. (1977). Experimental studies in double bifurcations
reached similar conclusions (Kim and Fisher, 1999; Oldham et al., 2000; Miguel et al.,
2004). In addition, these studies concluded that deposition in the second bifurcation
is generally lower than the one in the first, a fact that is attributed to the fluid flow
downstream of the first bifurcation.

Apart from the experimental works, there are also many computational studies of
the fluid-particle flow in branching airways. All of them treat the fluid flow using an
Eulerian formulation, but the majority of the studies adopt a Lagrangian approach for
the particulate phase. Lee and Goo (1992) simulated the inertial deposition of particles in
a bifurcating channel of square cross-section, assuming equal parent and daughter sizes,
and studied the effect of different characteristics of the geometry and the fluid flow, as
well as the size of the particles. They showed that both the shape of the carinal ridge,
rounded or sharp, and the flow Reynolds number in combination with the bifurcating
angle influence the fluid flow field and the particle deposition. Moreover, in a similar
study by Asgharian and Anjilvel (1994), the deposition in a single bifurcation of square
cross-section based on the geometric characteristics of the third and forth generations of
the lung (G3-G4) was studied. They took into account impaction and sedimentation of
particles under steady flow for Reynolds numbers equal to 100 and 1000 and uniform
and parabolic inlet fluid velocity profiles. Their results indicated that deposition due
to impaction is sensitive in both fluid flow Reynolds number and inlet velocity profile,
whereas deposition due to sedimentation is almost independent for particles bigger than
10um. More recently, Hofmann et al. (2003) simulated aerosol flow in a single bifurcation
of circular cross section, based again on the G3-G4 generations characteristics and for
particles in the size range of 1 —500nm. They showed that molecular diffusion is the
dominant deposition mechanism for particles smaller than 10nm, whereas interception
cannot be neglected for high flow rates and even becomes the major mechanism for
particles larger than 20nm.

In the last decade, partly owing to great advances in computational speed and memory,
the interest is shifted to the simulation of three or more generations of the tracheo-
bronchial tree. Comer et al. (2001a) studied the three dimensional, steady, laminar,
inspiratory aerosol flow in a symmetric physiologically realistic model of the third to
fifth lung generation (G3-G5), i.e. a double bifurcation. Flow Reynolds number ranged
between 500 — 2000 and particle Stokes number between 0.02 —0.12. In addition, the effect
of carinal ridge shape and planar or non-planar configuration of the second bifurcation
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G3-G4 bifurcation

Parent diameter, D, 5.6x1 03m
Parent length, L; 11x1073m
Daughter diameter, D,  4.5x1073m
Daughter length, L, 9.2x1073m
Bifurcation angle, oy 359

Table 4: Geometrical characteristics of G3-G4 bifurcation according to Weibel (1963).

were investigated. Their results showed that total deposition efficiency depends almost
entirely on the Stokes number. Nevertheless, the shape of the bifurcation, inlet velocity
profile and flow Reynolds number have an effect on the particle deposition patterns.
Moreover, Comer et al. (2001a) showed that the particle concentration patterns are related
to the corresponding secondary flows and that in the first bifurcation, most particles
deposit because of inertial impaction. In contrast with the result of Lee and Goo (1992),
they found that the shape of the carinal ridge may alter the deposition patterns to some
extent, but affects little the total deposition efficiency in the bifurcations.

Other numerical studies of double bifurcations are the ones by Longest and coworkers,
who studied the aerosol flows of submicron particles (d, < 1um) in models of generations
G3-G5 and Gy7-Go, took into account turbulence and also simulated steady expiratory
flow (Longest and Oldham, 2006; Longest and Vinchurkar, 2009; Longest and Xi, 2007). In
addition, Zhang and coworkers studied fluid-particle flows in triple bifurcations (Go-G3
Zhang et al. (2005) and G3-G6 Zhang et al. (2002)). Finally, Farkas and Baldshazy (2008)
studied the deposition of particles in a five generations tree, whereas Zhang et al. (2009)
simulated a 16-generations tree by combining adjustable triple bifurcation units.

All the aforementioned studies use a Lagrangian description of the particulate phase.
An Eulerian formulation is adopted by a few researchers but only for the transport and
deposition of submicron particles, for which inertial effects are not important (Yu et al.,
1996, 1998; Zhang and Kleinstreuer, 2003; Longest and Oldham, 2008). In this section, the
developed Eulerian model is used for studying the transport and deposition of inertial
particles in a single bifurcation under steady state inspiratory flow. The effect of fluid
flow (Reynolds number, asymmetry in the branches) and particle size is investigated.

5.1 GEOMETRY & GRID

A physiologically realistic bifurcation (PRB) based on the geometric characteristics of
the bifurcation created by the third and fourth lung generations (G3-G4) according to
Weibel’s model (Weibel, 1963) is used in the simulations (Table 4). These generations are
chosen because they have been repeatedly used in literature, for example by Asgharian
and Anjilvel (1994); Kim et al. (1994); Comer et al. (2001a), and it was experimentally
shown that particles deposition peaks there (Schlesinger et al., 1977).

The PRB geometry is constructed using the Design Modeler application of the com-
mercial CFD package ANSYS 11 and user defined functions. In particular, the equations
that describe a curved carinal ridge by Heistracher and Hofmann (1995) are incorporated
for the description of the bifurcation region. The centerlines of the parent and daughters
tubes and the whole constructed surface of the PRB with the curved carinal ridge are
shown in Fig.41(a) and (b), respectively.
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(b) (d)

Figure 41: (a) Centerlines and geometrical characteristics of the G3-G4 bifurcation (due to geo-
metrical symmetry only one daughter tube is shown), (b) Constructed surface of the
G3-G4 bifurcation with curved carinal ridge, (c) unstructured surface grid, and (d)
structured volume grid and grid cross-section.

The three dimensional multi-block structured grid of the PRB is generated using
the methodology and software (in-house and commercial) developed by Makris and
coworkers (Makris et al., 2011; Makris and Housiadas, 2011), originally developed for
the generation of structured grids of patient-specific geometries obtained from medical
images, such as abdominal aortic aneurysms or an abdominal aorta bifurcation. The
advantage of this method is the preservation of the naturally complex biological geome-
tries with a structured grid, which has lower numerical diffusion and converges faster
compared to an unstructured one (Longest and Vinchurkar, 2007a). The basic steps of the
method are: a) creation of the geometrical surface (analytically or by image reconstruction
techniques using MIMICS or 3DSlicer); b) generation of an unstructured grid over the
surface; c) division of the unstructured grid into open sub-grids (Pyformex or ANSYS
ICEM CFD); d) transformation of each of the unstructured sub-grids into structured grid;
e) reassembly of the structured sub-grids to form the initial surface and definition of grid
blocks; and f) generation of the three dimensional volume grid of the space included by
the surface .

In Fig.41(c), the unstructured grid generated on the PRB surface is shown, whereas in
Fig.41(d) the structured volume grid, the division into blocks of the geometry as well
as the grid cross-section are shown. A grid independence study indicated that a grid
resolution of 9 x 10° nodes is sufficient in order to obtain the fluid flow and the particle
concentration fields.

5.2 SIMULATIONS

In the physiologically realistic bifurcation study, use is made of the developed fully
Eulerian computational model to calculate the fluid flow and particle concentration fields.



5.2 SIMULATIONS

Fluid temperature T 293 K
Fluid density p¢ 1.21 kg/m?3
Fluid dynamic viscosity ¢ 1.81 x 107> kg/m's
Particle density pp 900 kg/ m3
Particle diameter d 1—10um
Rest
Reynolds number Re 464

Fluid mean inlet velocity v, 1.24 m/s

Light Exercise
Reynolds number Re 1132

Fluid mean inlet velocity v, 3.02m/s

Heavy Exercise
Reynolds number Re 1788

Fluid mean inlet velocity v, 4.78 m/s

Table 5: Fluid and particle properties used in the PRB simulations.

Specifically for the particles, not only deposition fraction, but also concentration profiles
are provided and particle deposition sites are indicated. The fluid and particle properties
used in the simulations are shown in Table 5.

Flow symmetry is assumed for the three different flow conditions shown, which
correspond to inspiration of an adult man during rest (Re = 464) and under light
(Re = 1132) and heavy (Re = 1788) exercise. Moreover, for Re = 1132 (light exercise)
flow asymmetry is examined. If Q, Q2 are the flows exiting daughter tubes 1 and 2
respectively (Fig.42), then the cases of the flow in tube 1 being double than the one in tube
2,ie. Q1/Q2 = 2, as well as tube 2 being totally obstructed, i.e. Q, = 0, are investigated.
The former corresponds to partial obstruction of the flow in the daughter tube 2 and in
order to obtain the fluid flow field the wanted flow rates are enforced at the outlets of the
daughter tubes, whereas the latter to totally obstructed flow and it is enforced by setting
the outlet of the daughter tube 2 a wall boundary.

Fully developed fluid velocity (parabolic) profile and uniform (plug) particle concen-
tration profile at the entrance of the third lung generation (inlet) are assumed for all
cases.

In Fig.42, different cross-sections are defined. In particular, A-A cross-section lies at the
parent tube in the beginning of the bifurcation region (y=2.4), whereas cross-sections B-B’
and C-C’ are located downstream the bifurcation, at y=3.5 and y=4.5, respectively. The
subscripts 1 and 2 refer to the corresponding daughter tube. Note, however, that in the
presentation of the results, the subscript is omitted in the symmetric flow cases.

In addition, in the insert of Fig.42, the diameters H-H and V-V of a cross-section are
defined, the first of which lies parallel and the second perpendicular to the plane of the
PRB geometric symmetry z = 0.

5.2.1 PRB: Air Flow

The effect of Reynolds number to the axial velocity profiles along the diameters H-H
parallel (top) to and V-V perpendicular (bottom) to the symmetry plane for the symmetric

73



74

PARTICLE INERTIAL EFFECTS: PHYSIOLOGICALLY REALISTIC BIFURCATION

vV upper

Figure 42: Definition of cross-sections and diameters of interest.

flow case are shown in Fig.43 at the different cross-sections. Upstream the bifurcation
(A-A cross-section, left), the axial velocity profile is symmetric and almost independent
of the Re along H-H, preserving at large the parabolic profile of the inlet. However,
downstream the bifurcation (B-B’, centre, and C-C’, right, cross-sections), the velocity
profiles along H-H diameter are skewed towards the inner PRB wall due to the centrifugal
forces exerted on the fluid. The deformation shifts further towards the inner wall of the
PRB, in addition to the appearance of a second, much lower, peak of the axial velocity
towards the outer wall of the PRB with increasing Reynolds number. The axial velocity
profiles along the diameters V-V for the A-A cross-section remain parabolic, whereas
for the B-B” and C-C’ cross-sections are deformed but remain symmetric with respect to
the symmetry plane z = 0 of the PRB. These results are in good agreement with various
others numerical solutions, such as those by Balashazy and Hofmann (1993); Comer et al.
(2001b).
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Figure 43: Axial velocity profiles for different Reynolds numbers at cross-sections A-A (left), B-B’
(centre) and C-C’ (right) for symmetric flow at the diameters H-H (a) and V-V (b).
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Likewise, in Fig.44 the effect of flow asymmetry on axial velocity profiles is shown
for both daughter tubes of the PRB along diameters H-H (top) and V-V (bottom) for
Re = 1132. In contrast to the symmetric flow cases, the axial velocity profile at the A-A
cross-section along H-H diameter is no longer symmetric. The skewness of the curves is
a result of the blockage effect in daughter tube 2 (Comer et al., 2001b), and gets more
pronounced in the totally obstructed flow case (Q2 = 0). Downstream the bifurcation,
the axial velocity profiles along H-H are still shifted towards the inner PRB wall, but the
flow in the second daughter tube is markedly less than the one in the first daughter tube.
Moreover, it can be seen in the graphs along H-H diameter for the B1-B1” and C1-C1’
that the fluid accelerates in daughter 1, comparing to the symmetric case, in order to
accommodate the excess flow.

(a) H-H B1-B1" ci-c1’

TN
0

Figure 44: Axial velocity profiles for Re = 1132 and asymmetric flow at the diameters H-H (a)
and V-V (b). Corresponding cross-sections at both daughter tubes are shown.

The secondary-flow streamlines and contours of constant axial fluid velocity are
shown in Fig.45(a)-(c) at cross-sections B-B” and C-C’ for the symmetric flow cases (left).
Moreover, the contours of constant axial fluid velocity at the geometric symmetry plane
z = 0 and the velocity vectors at the H-H diameter of the cross-sections are depicted
(right). The streamlines of the low Reynolds number secondary flow show the formation
of a pair of symmetric, counter-rotating vortices. The centers of the vortices are slightly
displaced towards the outer PRB wall at the C-C’ cross-section. Moreover, the peak of the
axial fluid velocity is located closer to the inner wall. The secondary-flow streamlines for
higher Reynolds numbers, Re = 1132 and Re = 1788, at C-C’ cross-section also show two
main, symmetric counter-rotating vortices, but their centers are displaced towards the
outer PRB wall and they are skewed with respect to the symmetry plane. In addition,
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increased centrifugal forces lead to increased fluid flow towards the inner wall. These
results are quantitatively in agreement with other numerical simulations Comer et al.
(2001b); Longest and Vinchurkar (2007b); Martonen et al. (2001b,a).

c-C’
(a) Q,/Q,=1, Re=464

(e) Q,=0, Re=1132 [ mECSm.

Iul o 0zo40808 1 12141818 2

Figure 45: Contour of fluid velocity magnitude and vectors at the plane of symmetry of the PRB
(z = 0) and secondary flow streamlines and constant velocity magnitude contours
at different cross-sections downstream the bifurcation; (a) Q1/Q2 = 1,Re = 464, (b)
Q1/Q2=1,Re=1132,(c) Q1/Q2 =1,Re = 1788, (d) Q1/Q2 = 2,Re = 1132, and (e)
Q2 =0,Re=1132.

Similarly, the secondary flow streamlines and contours of constant axial fluid velocity
downstream the bifurcation in both daughter tubes of the PRB are shown in Fig.45 for
the asymmetric flows Q1/Q2 =2 (d) and Q; = 0 (e). The flow asymmetry between the
daughter tubes is obvious for both the fluid velocity vectors and the velocity magnitude
contour. The maximum velocity at A-A cross-section is shifted towards daughter tube 1,
the effect being more obvious for Q2 = 0. Comparing the corresponding cross-sections
between the daughter tubes, one can notice the differences in the secondary flow, as well.
In cross-sections B1-B1” and C1-C1’ of daughter 1 for both cases, there is the development
of two counter-rotating vortices with their centers approaching the outer PRB wall, such
as those for the symmetric case of Fig.45(b), but the maximum axial fluid velocity is less
shifted towards the inner PRB wall. These features also appear, less intense, in daughter
tube 2 of the partially obstructed flow case, Q1/Q2 = 2, as shown in the right part of
Fig.45(d). However, this is not the case for daughter tube 2 of the totally obstructed
flow, Q2 = 0. There are two counter-rotating vortices at the B2-B2" cross-section, but
their centers are displaced toward the inner PRB wall, whereas there are no vortices at
the C2-C2’ cross-section. It should be noted that the white background color in these
cross-sections (right part of Fig.45(e)), indicates the almost zero fluid velocity in daughter
tube 2 in this case.
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Closer observation of the fluid velocity vectors in Fig.45, indicate that there are regions
in the daughter tubes that flow recirculation occurs, e.g. at C-C” location of Fig.45(c) and
at the B2-B2’ location Fig.45(e). In Fig.46, the streamlines of the main fluid flow at the
plane of geometric symmetry, z = 0, are shown for all cases. For the symmetric flow
cases, Q1/Q2 =1, there is recirculation for the higher Reynolds numbers, Re = 1132 and
Re = 1788, and by optical comparison one notices that the recirculation zone becomes
wider with increasing Reynolds number. On the other hand, for the asymmetric flows,
recirculation occurs in the obstructed daughter tube, which for Q, = 0 is very strong.

'

W
(c) Q,/Q,=1, Re=1788

Figure 46: Main fluid flow streamlines at the plane of symmetry of the PRB (z = 0). Comparison
between different Reynolds numbers for flow symmetry (a,b,c) and Re = 1132 and
asymmetric flow (b,d,e).

5.2.2 PRB: Aerosol Particles

The flow fields obtained in the previous section are used to calculate particle transport
and deposition in the physiologically realistic bifurcation, equivalent to the third and
fourth generation of the human lung (G3-G4), with the developed fully Eulerian model. It
is reminded that a uniform (plug) particle concentration profile is applied at the entrance
of the third generation (G3) as an inlet condition. The particle diameter ranges between
Tum and 10um, for which inertial and gravitational effects should be taken into account
in the calculations. The orientation of the PRB is such that the unit vector in the direction
of the acceleration of gravity is equal to § = (g, 9y, 92) = (0,1,0), in order to coincide
with the orientation of the experimental set-up of Kim et al. (1994). Their findings are
compared against the results of the present study.

Total deposition fraction, 1, for symmetric flow conditions (Q1/Q2 = 1) as a function

of the particle Stokes number, St, is presented in Fig.47 for different Reynolds numbers.

The results of the Eulerian model are in good agreement with the experimentally derived
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results of Kim et al. (1994) up to St = 0.08 for the range of Reynolds number under
study, whereas the present model underestimates deposition fraction for higher Stokes
numbers.

#  Kim et al.(1994), Re=566-2264
------- Eulerian model, Re=464
Eulerian model, Re=1132 #
========= Eulerian model, Re=1788

0.251

0.2F *

0.15F *

0.1F

Deposition fraction, n

0.05F

Stokes number, St

Figure 47: Total deposition fraction for symmetric flow. Comparison with the experimental results
of Kim et al. (1994).

The effect of asymmetric fluid flow on the total deposition fraction is shown in Fig.48.
This results correspond to Reynolds number equal to 1132. From this figure shows that
partially obstructed flow in daughter 2, which results in a Q1/Q2 = 2 flow ratio, does
not affect significantly total deposition fraction in the PRB comparing with the symmetric
flow case (Q1/Q2 = 1). This finding is consistent with the experimental results of Kim
and Fisher (1999), who studied flow asymmetry in a PRB cast of lung generations three to
tive (G3-Gs5). From Fig.48, it is also obvious that if Q, = 0 in the single PRB under study
here, total deposition fraction is considerably lower than in Q1/Q2 =1 o0r Q1/Q2 =2
cases.

=
=

0.051

Deposition fraction, n

Stokes number, St

Figure 48: Total deposition fraction for asymmetric flow (Re = 1132).

The cumulative particle deposition fraction for particles with Stokes numbers St = 0.01
(low) and St = 0.01 (high) along the axis of the PRB is shown in Figs.49(a) and 49(b)
versus the fluid flow Reynolds number and flow asymmetry, respectively. In both cases,
it is obvious from the diagrams that particle deposition occurs mainly in the bifurcation
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region and, in particular, at the bifurcation (y ~ 3.5). Moreover, for St = 0.1 there is also
deposition downstream the bifurcation for all Reynolds numbers under symmetric flow
and also for totally obstructed flow (Q2 = 0). In the latter case, there is also increased
deposition in the region upstream the bifurcation, probably because the strong flow
recirculation in the daughter tube 2, as shown in Fig.46(e), sends particles back to this
region, increasing the number of particles available to deposit there.
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Figure 49: Deposition fraction along the axis of the bifurcation in (a) the case of symmetric flow for
different Reynolds numbers and (b) the case of Re = 1132 for symmetric (Q1/Qz =1)
and asymmetric (Q1/Q2 = 2,Q3 = 0) flows.

The effect of flow Reynolds number under symmetric flow conditions on the concentra-
tion profiles and particle deposition sites are shown in Figs.50(a)-(c) and 51(a)-(c) for low
(St = 0.01) and high (St = 0.1) particle Stokes number, respectively. For St = 0.01 (Fig.50),
deposition occurs mainly at the bifurcation and at the middle of the upper and lower
PRB walls. Deposition is also high at the bifurcation in the case of high Stokes number
(Fig.51), but there is also significant deposition on the upper and lower PRB walls, which
moves toward the outer wall and further downstream in the daughter tubes as Reynolds
number increases.

If the particle concentration profiles at the cross-sections B-B” and C-C’ of these figures
are observed in conjunction with the secondary flow streamlines of Fig.46, it is shown
that low Stokes number particles (St = 0.01) accumulate at the periphery of the vortices,
whereas higher Stokes number particles (St = 0.1) are pushed further towards the PRB
walls by the secondary flow. In fact, higher Reynolds number flows lead to accumulation
of particles at the vicinity of the outer PRB wall, as the centers of the vortices in this case
are also closer to the outer wall, and this is more pronounced further downstream the
daughter tubes, i.e. at C-C’ cross-section rather than at B-B’. Thus, the chance of a highly
inertial particle to deposit at the outer wall of the PRB and towards the exit of the PRB
increases monotonically with Reynolds number.

Figures 50(d)-(e) and 51(d) and (e), present the effect of flow asymmetry on particle
deposition sites along the PRB and concentration profiles at cross-sections downstream
the bifurcation for St = 0.01 and St = 0.1, respectively. The patterns for the partially
obstructed flow (Q1/Q2 = 2), resemble those of the symmetric case with the same
Reynolds number (Re = 1132). However, deposition in daughter 2 occurs earlier along
the tube and mostly on the upper and lower walls, in contrast with deposition in daughter
1, where peak deposition occurs towards the exit and the outer PRB wall. Moreover,
the less intense secondary flow in daughter tube 2 (Fig.46(d)) allows for the particles to
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Figure 50: Particle concentration profiles at cross-sections downstream the bifurcation and particle
deposition sites on the PRB wall for low Stokes number, St = 0.01; (a) Q1/Q2 =1,Re =

464, (b) Q1/Qz = 1,Re = 1132, () Q1/Qz = 1,Re = 1788, (d) Q1/Q; = 2, Re = 1132,
and (e) Q2 = 0,Re = 1132.

accumulate at and outline better the periphery of the vortices, as it is shown by comparing
cross-sections B1-B1” and C1-C1” with B2-B2" and C2-C2’, respectively, in Figs.50(d) and
51(d). These features are particularly obvious for the higher Stokes number.

In the case of Q, = 0, it is shown that there is particle deposition in the totally
obstructed daughter tube 2, which in the case of St = 0.01 (Fig.50(e)) is comparable to the
deposition at the bifurcation. Particles that enter daughter 2 are pushed to the periphery
of the recirculation zones, shown in Fig.46(e), and probably some of them are trapped
between them increasing the chances to deposit in the region. This is true for high Stokes
number particles (Fig.51(e)) as well, where deposition occurs also at the outer wall and
towards the exit of daughter tube 1.

Low Stokes number particles deposit in a wider region of the PRB daughter tubes
including the inner wall (Fig.50), whereas there are regions on the outer wall that are
almost free of particles. On the other hand, deposition for high Stokes particles (Fig.51) is
more localized towards the outer wall and less particles deposit on the inner PRB wall. In
all studied cases, there is a region of the outer wall, at the beginning of the daughter tubes
opposite the bifurcation, where almost no particle deposition occurs. Finally, it should
be noticed that even if the total deposition fraction does not differs greatly between the
various flow cases, with the Q, = 0 case exception, the particle deposition sites and
concentration profiles are affected by the flow conditions.
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Figure 51: Particle concentration profiles at cross-sections downstream the bifurcation and particle
deposition sites on the PRB wall for high Stokes number, St =0.1; (a) Q1/Q2 = 1,Re =
464, (b) Q1/Q2 =1,Re =1132, (c) Q1/Q2 =1,Re =1788, (d) Q1/Q2 = 2,Re = 1132,
and (e) Q2 =0,Re =1132.

5.3 CONCLUSIONS

In Chapter 5, a computational study of particle transport and deposition in a physio-
logically realistic bifurcation corresponding to generations three and four (G3-G4) of
the human lung is conducted using the developed fully Eulerian model. In particular,
the effect of particle size and fluid flow Reynolds number and symmetry, is investi-
gated. It is found that total particle deposition fraction is loosely dependent on fluid
flow Reynolds number and our results are in agreement with experimental findings
(Kim et al., 1994). Total deposition fraction, also, does not change significantly between
symmetric Q1/Q2 = 1 and asymmetric Q1/Q2 = 2 flow conditions, but is considerably
lower for the totally obstructed case, Q, = 0. Even though deposition fraction does not
vary much for the various flow conditions, deposition sites and particle concentration
profiles depend on them. Apart from deposition at the bifurcation, which is present at all
cases, deposition sites downstream the bifurcation move towards the outer PRB wall and
daughter tube exit as Reynolds number increases. For the Q; = 0, it is also shown that
particles are trapped and deposit even in the obstructed daughter tube. In all studied
cases, it is found that there is a particle-free region at the outer wall, at the beginning
of the daughter tubes opposite the bifurcation. Overall, the use of the present Eulerian
model to obtain not only of the deposition fraction, but also the characteristics of particle
deposition and concentration patterns, can offer useful physical insight under different
aerosol flow conditions, in a straightforward and simple manner.
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In the last decade with the great advances in nanotechnology, there is an increasing
scientific interest for the use of magnetic nanoparticles (MNPs) in a wide range of
biomedical applications, because they demonstrate many favorable characteristics. MNPs
can bind to drugs, proteins, enzymes, antibodies and nucleotides and then directed by
external force fields to an organ or tissue or heated by an alternating magnetic field for
use in hyperthermia treatments (Gupta and Gupta, 2005). Among the various proposed
biomedical uses of MNPs, there are applications related to cancer diagnosis and therapy
(Cengelli et al., 2010; Grimm and Scheinberg, 2011; Grobmyer et al., 2011; Prijic and
Sersa, 2011; Yallapu et al., 2011), stem cell therapy (Iancu et al., 2009), advanced drug
delivery systems (Duran et al., 2008; Kumar et al., 2010; Neuberger et al., 2005) and
medical imaging (Lanza et al., 2004; Nahrendorf et al., 2008; Sharma et al., 2006; Sharma
and Kwon, 2007; Slevin et al., 2010; Thorek et al., 2006).

The majority of these studies refer to MNPs suspended in the blood, rather in air.
Therefore, in this Chapter, the developed Eulerian model is used to predict the transport
and deposition of particles suspended in a liquid medium under the influence of an
external magnetic force field. As the effect on the particles is due to the non-zero gradient
(inhomogeneity) of the magnetic field, the corresponding deposition mechanism is a
phoretic phenomenon, which is called magnetophoresis (in analogy to thermophoresis).

6.1 BASIC CONCEPTS OF MAGNETIC FIELDS & MATERIALS

The movement of an electric charge, a time varying electric field, even the movement of
electrons in a material can all produce a magnetic field. The magnetic field is a vector
field, i.e. it is defined in space by both direction and magnitude,and is characterized by
the quantity H which is called magnetic field strength and has units of [A/m]. Every
material will respond to the presence of a magnetic field H, and this response is described
by the magnetic induction (or magnetic flux density) B [T]. The magnetic induction is an
inherent property of a material and defines how strong a magnetic field will be within

the material.
The applied magnetic field, H, and the magnetic induction of a material, B, are related

by equation:
B=uH , (6.1)

where p[Tm/A] is the permeability of the material, which constitutes a measure of the
enhancement of the magnetic field inside the material and depends on the magnetic
properties of the material. The permeability of the free space, |, is constant and equals
47t x 1077Tm/A, i.e. in free space B is a linear function of the H. However, p may be a
function of the applied magnetic field, thatis p = f (ﬁ), as for example in ferromagnetic
materials.

The response of a material to an applied magnetic field, as well as the change of the
field due to the presence of the material are given by magnetization M, given in [A/m].
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Magnetization describes the density of magnetic dipole moments (permanent or induced)
inside a magnetic material, and is defined as:

M:

<3

, (6.2)

where M is the total magnetic moment and V the volume of the magnetic material.
In a linear material, the magnetic induction B and magnetization M are related to the
applied magnetic field H by equation:

—

BZHOG¥+M) , 6.3)

which holds for all magnetic systems.
Moreover, the relationship between the magnetic field H and magnetization M is:

M=xH , (6.4)

where the coefficient x is a dimensionless quantity, called (volume) magnetic suscep-
tibility of the material. Susceptibility expresses how easily a material responds to an
external magnetic field. As every material can be considered to have magnetic properties
depending on its atomic structure and temperature, Eq.(6.4) can be used to categorize
materials in terms of x (Pankhurst et al., 2003).

The majority of materials display little magnetism under the influence of an external
magnetic field. These materials have usually constant x (linear M — H relation) and can
be either paramagnets, for which x ranges from 107° to 10~ !, or diamagnets, for which
X ranges from —107° to —1073. The former are slightly attracted by a magnetic field,
whereas the latter are slightly repelled. However, the materials in both categories loose
their magnetic characteristics, when the external field is removed.

On the other hand, there are some materials that demonstrate ordered magnetic states
even in the absence of an external field. These materials are classified as ferro- , ferri- or
antiferro- magnets, depending on the coupling interaction between the material electrons.
The susceptibility of ordered materials is a function not only of the temperature but
also of ﬁ, which results in their characteristic sigmoidal M — H curve. In this case, the
magnetization M tends to a constant value, called saturation magnetization Mgqt, as the
magnetic field strength H increases. In addition, in ferro- and ferrimagnetic materials
the magnetization process is irreversible, which is depicted as hysteresis loops in their
M — H curve as the field strength decreases (Fig.52). The magnetization that remains
in a material after the field H is removed, is called residual magnetization M,, and
the (reverse) magnetic field strength needed to fully demagnetize the material is called
coersive field H..

Hysteresis is a phenomenon partly dependent on the size of the magnetic material;
particles larger than Tpum display narrower loops than smaller particles. However, when
the particle size is smaller than 3 —50nm (depending on the material), the M — H curves
are still sigmoidal but there is no hysteresis (anhysteric curves). These materials are called
superparamagnetic and can be magnetized by an external magnetic field similarly to a
paramagnet, though their magnetic susceptibility is much larger, whereas they are fully
demagnetized in the absence of a field.

The susceptibility of a material, x, can also be related to its permeability, p. If the
relative permeability is defined as . = pu/p,, i.e. the ratio of the permeability of the
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Figure 52: Indicative M — H hysterisis loop.

material to the permeability of free space, then the susceptibility and permeability of a
material are related by equation:

He=T4+x=>p=p (1+x) . (6.5)

The susceptibility of free space, and in practice also of air, is defined equal to zero (x = 0),
thus pu, = 1. In paramagnetic materials, as already mentioned, susceptibility is positive
but small, so p, is slightly larger than unity and in diamagnetic materials x is small and
negative, thus i, is slightly less than unity. Ferro- and ferrimagnetic materials have large
and positive x and p,.

The previous theoretical description of the basic concepts of magnetic fields and
materials is based on the studies of Pankhurst et al. (2003); Hatch and Stelter (2001);
Zborowski et al. (1999).

6.2 MAGNETIC FORCE ON PARTICLES

The magnetic force on a small particle can be assumed to equal the force exerted on a
point-like magnetic dipole moment m (Hallmark et al., 2010), and is given by:

Fn=(-V)B , (6.6)

which states that the magnetic force Fy,, results from the differentiation of the magnetic
induction B in the direction of the magnetic moment 1. It should be emphasized that
a non-uniform magnetic induction field is needed in order for the magnetic force on a
particle to become non-zero.

Assuming that the particle is magnetized uniformly over its entire volume V,, and that
the carrying fluid is an isotropic and weakly diamagnetic material, such as water or air,
for which it holds that pf ~ p,, then using Eqgs.(6.1-6.4), Eq.(6.6) becomes:

= VpX (5 -
Fm_?<B-V>B . 6.7)
If the magnetic field is static and there are no currents in the fluid, then Maxwell equation
gives V x B = 0. Making use of this result and the mathematical identity:

V(§~]§):2[]§X<VX]§>+<§-V>§] , (6.8)
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it follows that (B' . V) B = %B’ ‘B = %Bz, where B = ‘3’ Thus, Eq.(6.7) becomes:

- B?
Frn = — '
m = VpxV (2%) , (6.9)
or making use of Eq.(6.1):
r FLOHZ
Equivalently,
= 1o -

where the term %ﬁ -H is the energy density of the (magnetostatic) field (Pankhurst et al.,
2003; Zborowski et al., 1999).

The magnetic susceptibility in the equations above, can be itself a function of the
magnetic field, i.e. x = f (H) Therefore, Fy, is, in general, a complicated spatial function
of the various implicated quantities (Zborowski et al., 1999). In order to deal with the
problem, some simplifying assumptions can be made depending on each particular
application.

6.2.1  Linear Magnetization Model

Furlani and Ng (2006); Furlani (2007) derived the expression of the magnetic force Fm On
a particle using a linear magnetization model with saturation and the ’effective” dipole
moment method of Jones (1995), assuming dilute particle suspension, i.e. negligible
inter-particle effects and particle-fluid interactions (one-way coupling). Their findings are
summarized next.

The ’effective’ dipole moment method states that the magnetized particle can be
replaced bya point-like dipole with a magnetic moment 1, .¢f. Thus, the force on the
particle equals:

Frn = s (Mperr- V) H (6.12)

where H the applied external magnetic field. The “effective’ point dipole should be such
that, when positioned to the center of the particle, it will produce the same magnetic
field distribution outside the particle as the particle itself.

Assuming uniform magnetization over the volume of the particle, M, e = V) Mp,
and a weakly diamagnetic fluid, p¢ = po, Eq.(6.12) becomes:

Frn = Ho Vp (l\7lp 'V) H . (6.13)

An expression for the particle magnetic response is needed in Eq.(6.13) to calculate
the magnetic force. In this case the linear magnetization model is implemented. Below
saturation of the particle, its magnetization equals:

—

T\_/lp =XpHin (6.14)

where Xp = 1p /(Mo — 1) and Hin the field inside the particle. The latter is different from
the applied external field H due to the demagnetization field Hg,,, caused by the particle
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itself. It holds that Hi;, = H — Hgm,, whereas for a sphere in free space with uniform
magnetization the demagnetization field equals Hgqpm, = 7\7lp /3.

On the other hand, above saturation, i.e. if [Hin| > M} sat/Xp|, the magnetization of
particle is constant and equal to the magnetization saturation of the particle:

Mp = Mp,sat . (615)

Overall, Furlani and Ng (2006) showed that below saturation the magnetization of the
particle is given by:

v 3Xp Xp —=x) =
M, = P_2P , (6.16
P (xp—xe) +3(xe+1) )
and the magnetic field inside the particle equals:
- 3 (Xp —x) ~
Hin = P , 6.1
™ Op —xe) F3(xr + 1) (617
Moreover, the ’effective’ magnetic moment is described by:
My err = Vpf(HH (6.18)
where the function f(H) equals:
3(xp—xr) 3(xXp—xr)
f(H) = § Toxn 3t S o Xe “XMpsar
M, sa 3(Xp—x+)
e M2 o T Xp ~ XtMp sat

The first case corresponds to an under-saturated particle, whereas the second to a
saturated. Equation (6.19) is simplified when [xp| << 1:

3(xp—x+) 3(xp—Xrf)
f(H) = (xp—pw A mXp —XfMp,sat (6.20)
Mp,sa 3(xp—xr) ! :
th SJH 2 (XPBTL,XP _XfMp,sat
or when [xp| >> 1:
3 ,H< M 3
(H) = poat/3 (6.21)

M sa
pT't zH > Mp,sat/3

Finally, when [x, — x| << 1, then for the under-saturated case (Furlani, 2007):

f(H) =xp —xr - (6.22)

Overall, substitution of Eq.(6.18) in Eq.(6.12) gives the magnetic force on a particle
assuming linear response to the external magnetic field:

Fi = o Vpf(H) (ljl . V) H , (6.23)

which for a magnetostatic field without current, is simplified to:

. H?2
Fimn = Wo Vpf(H)V > , (6.24)
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where f(H) is given by Eq.(6.19) or, alternatively, by one of the Egs.(6.20-6.22) depending
on the specific application.

The dependence of coefficient f on H, is somehow misleading in the content of particle
magnetization linear approach. The value of the function f(H) changes only between
under-saturated and saturated state of the particle and in each case stays constant, giving
this way the linear relationship between particle magnetization and the external magnetic
field.

6.2.2  Superparamagnetic Particles - Langevin Function

In many biomedical applications, the magnetic particles material is composite, where
the actual magnetic component is dispersed in a polymeric matrix (Figuerola et al.,
2010; Lu et al., 2007; Cengelli et al., 2010; Thorek et al., 2006; Neuberger et al., 2005).
The magnetic component consists of spherical particles with diameters in the range of
nanometers, which typically results in superparamagnetic behavior under an applied
external magnetic field. As a result, the magnetic moment of the particles does not align
with the external magnetic field, because of their thermal agitation.

The average magnetization of the magnetic nanoparticles, M, p, in the direction of
the magnetic field H is given by (Chen et al., 2007b; Bockenfeld et al., 2010):

Mfm,p = Mfm,sl—((x) ’ (625)
where L(«) is the Langevin function:
1
L(a) = coth(a) — = (6.26)

The argument « in Langevin function, called Langevin argument, equals:

o — Ho Mfm,svsdp (H - %wfm,p Mfm,p)

T , (6.27)

where M¢, s is the saturation magnetization of the magnetic nanoparticles inside the
composite particle, Vgqp is the volume of a single nanoparticle, kg is the Boltzman
constant and T the absolute temperature.

In the previous equations, W, p is the volumetric fraction of magnetic nanoparticles
in the composite particle that is related to the weight fraction x¢, ,, through:

Xf ,
wfm,‘p = 1 m,p , (628)
Xfm,p + ( Xfm,p) pfm,p/ppol,p

with p¢m p and ppo1p the densities of the magnetic and the polymeric materials in the
particle, respectively. When the volume fraction wym p, is small, the term 1/3wW¢m,pMem,p
in Eq.(6.27), which represents the demagnetization of the whole composite particle, can
be neglected. Thus, Eq.(6.25) becomes:

qufm,sVsde> . kBT
kBT Ho Mfm,s Vs dp H

Mtmp = Mem,s [coth < (6.29)
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The (total) magnetic moment 1, of the composite particle, will be (Cregg et al., 2012):

M _
fmp | (6.30)

Substitution into Eq.(6.6), taking also into account that B = p,H, gives the following
expression for the magnetic force on the particle:

= M H?
Fm = Howfm,pvp %v <2> . (6.31)

6.2.3 Generalization

Comparison of Eq.(6.24) for the linear magnetization model to Eq.(6.31) for the superpara-
magnetic particles, shows that the different approaches for the particle magnetization
can be described by Eq.(6.10) with a proper expression for the susceptibility x.

In the case of linear particle magnetization the susceptibility:

Xlmm = f(H) ’ (632)

is related only to the particle and fluid properties and is independent of the external
magnetic field H. Its value changes only with respect to the particle being under- or
oversaturated, with f(H) given by Eq.(6.19).

On the other hand, in the case of superparamagnetic particles, susceptibility is a
function of the externally applied magnetic field and equals:

Xspm(H) = Wfm,p H - . (6.33)

6.3 MAGNETIC FIELDS
6.3.1  Magnetic Field of an Infinitely Long Straight Wire Carrying a Current I

At a point P, which is at a distance h from the wire, the magnitude of the field is equal to:
H=(1/27h)Ag . (6.34)

Consequently, the magnetic field density would be:
B=uoH =B =y, (I/2nh) A |, (635)

where 1, = 47107 T m/A the magnetic permeability of free space and fig is the unit
vector in the direction of the magnetic field. In particular, if fi,, and fi;, are the unit
vectors at the direction of the wire and the distance h, respectively, then fig is defined as:

fig =Ny X i . (636)
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6.3.2  Magnetic Field of a Circular Line Current

The magnetic field of a cylindrical superconducting magnet with diameter 2« and
thickness h, resembles that of a circular line current. For a loop of radius «, carrying a
current I, with H, = I/2«, the magnetic field is given by (Haverkort et al., 2009a):

1— S/Z _ZIZ ! (637)

[K(k) =8+ EK o = (2+9)

where K(k) and E(k) are elliptic integrals of the first and second kind, respectively,
with k given by:
4 !/
k= ;2 . (6.38)
(T+s")"+22
The cylindrical coordinates z and s represent the distance parallel and perpendicular to
the symmetry axis, respectively, whereas the prime denotes nondimensionalization with
the loop radius «, i.e. z’ = z/a and s’ = s/, and the 2, § denote the unit vector in the
direction of z and s, respectively (Fig.53).

Figure 53: Circular current carrying loop (adapted from Haverkort et al. (2009a)).

6.3.3 Magnetic Field of FM Wires in a Uniform External Magnetic Field

Based on the work of Murariu et al. (2001), the relationships that describe the magnetic
field produced by one and two ferromagnetic (FM) wires, which are magnetized by a
uniform external magnetic field H,, are derived in Cartesian coordinates.

One Wire

The magnetic field generated around a ferromagnetic (FM) wire placed in a uniform
magnetic field of intensity H, is in polar coordinates (r,0) (Fig.54):

- M., r%v . . My 2\ &
H = cos0 (Ho + 21‘2) £+ sind (—HO + TT—VZ" 0 , (6.39)
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where M,, is the magnetization and 1,, the radius of the wire. Equation (6.39) is made

dimensionless dividing by H,:

SN

T

N

h, = cos0 <1 + Kw

)i

2
hg = sind <—1 ~|—va2"> 6
T

4 =

(6.40)

where h, and hg are the radial and angular components of the dimensionless magnetic
field h = H /Ho, respectively. The demagnetization factor, K,,,, is a dimensionless constant
dependent on the magnetic properties of the FM wire and the external magnetic field. It
is K., = M,,,/2H,, at saturation of the wire and K,,, = 1 when the wire is undersaturated
(Hournkumnuard and Chantrapornchai, 2011; Rotariu et al., 2005b).

" :

.er

Figure 54: Geometry and systems of coordinates for 1 FM wire.

In Cartesian coordinates the (dimensionless) magnetic field is written as:

2 —Y =
hy =1+ K3, - —I—yz)z
2xy
hy = K12 j
Y w X2+y2)2

Derivation of Eq.(6.41) is shown in APPENDIX A.

Two Wires

(6.41)

The (dimensionless) magnetic field generated by two FM wires placed in a uniform
magnetic field of intensity H, can be found by the sum of the magnetic intensities
generated by each FM wire. In polar coordinates (r,0) one gets (Figs.55-56):

207 —0 20, —0
h, = cos0 +Kwrfv [COS( 2] ) + cos ( 22 )] F
™ 2
. . (6.42)
201 —0 20, —0) | 4
ho = sind + Ky, [Sm( 1-0) , sin(20; )} v
™ T2
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In Cartesian coordinates the (dimensionless) magnetic field is written as:

hy =14+ Kw13,

-y +0? P (y—0)? ]{
2+ (y+02)° 2+ y—10?2)7°

(6.43)
Xy+0) ,  Aly-y ]i
2)2

hy = Kw1?

w

2+ (y+02)° C+y—10

Derivation of Eq.(6.43) is shown in APPENDIX A.
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Figure 55: Geometry and systems of coordinates for 2 FM wires.

64 PARTICLE MAGNETIC VELOCITY

=

The magnetic force, F,,, results in particle movement with a ‘'magnetic” velocity equal to:
Un =TpFm (6.44)

according to Eq.(2.37).

Assuming that the particle is spherical, with diameter d,, and uniformly magnetized
over its entire volume, V,, = ndg /6, as well as that the carrying fluid is an isotropic and
weakly diamagnetic material, such as water or air, and there are no currents in the fluid,
then Egs.(6.9) and (6.10) apply for Fmm and Eq.(6.44) becomes:

. d&x_ (B2

B 18us PATHS

or equivalently,

dzx n H2
L Y o
um—]gufv< > ) . (6.46)
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Figure 56: Details of systems of coordinates for 2 FM wires and components of the H.
The magnetophoretic mobility of the particle, &, [m3s/kg], is defined as (Pankhurst

et al., 2003; Zborowski et al., 2002):

_ x4
P 18y

13 (6.47)

The magnetophoretic mobility depends on the field in exactly the same way as the
magnetic susceptibility does. For the linear magnetization model, it holds that:

dZ
=P f(H 6.48
Erp,hnﬂl 18H—f f( ) ’ ( 4 )
whereas for superparamagnetic particles:
_ % Mim,p
Evp,spm(H) = mwfm,p H . (6-49)

Finally, the ‘magnetic” velocity of the particle (Eq.(6.46)) is written as:

Ho H?
2

Um = &pV < (6.50)
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Characteristic Quantities of the Problem

length tube diameter, di

velocity mean inlet fluid velocity, v,
acceleration of gravity go = 9.81m/s?

magnetic field Ho

concentration mean inlet concentration, cq

Table 6: Characteristic quantities of the problem used to render dimensionless particle transport
equation

65 PARTICLES PTE IN MAGNETOPHORESIS

Taking into account the effects of particle, convection, inertia, gravitational settling,
magnetophoresis and diffusion, then the particle velocity (Eq.(2.60)) equals:

Vp =T+ Vs +im —DVInc—1,0- V5 +0(13) (6.51)
where the ‘'magnetic” velocity is given by Eq.(6.50).
If Eq.(6.51) is incorporated into the dimensionless form of the PTE (Eq.(2.73)), then we

obtain:
J c {6+St [Fr_1 (1 — pf) g—0.5U- VG}
S Pp

2
+0.5Mn, V <H2> } -dS =0.5Pe”! J Ve-dS
S

(6.52)

Equation (6.52) incorporates the effects of particle convection, inertia, gravitational
settling, magnetophoresis and diffusion in an Eulerian formalism to first order in the
particle relaxation time.

The characteristic quantities used to render dimensionless Eq.(6.52), are shown in
Table 6. In Eq.(6.52), the following dimensionless numbers appear; the Stokes number
St = Tpv, /14, the Peclet number Pe = rv,/D and the Froude number Fr = v% /(Ttgo).
In addition, a new dimensionless number related to the external magnetic field appears,
which is the particle magnetization number, given by:

_ Ho&pH3

Mn
P VoTt

(653)
It should be noted that while Stokes, Peclet and Froude numbers depend only on the
size of the particles, i.e. dp, for a given fluid-particles system, the particle magnetiza-
tion number can also be a spatial function of the applied magnetic field through the
magnetophoretic mobility &.

A few substantial remarks regarding Eq.(6.52) are in order here. As already mentioned,
in the present Chapter, the developed Eulerian model is used to predict particle transport
and deposition suspended in water, i.e. a liquid, rather than air that was the case in
the previous applications (Chapters 4 and 5). One of the main differences between a
liquid-particles system and an aerosol is that the assumption of py << p;, may no longer
be true. Therefore, Eq.(2.34) is used in the PBE, instead of the simplified Eq.(2.35), to
describe gravitational settling. Moreover, as liquids are always continuous media the
Cunningham correction factor is always equal to unity (more strictly, C. is not used in
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liquid-particles systems). Finally, as the viscosity of water is two orders of magnitude
higher than the viscosity of air, tyater = 0.001kg/m s and pqir = 1.81 X 10*5kg/m S
respectively, the particle relaxation time, or Stokes number, will be significantly lower, in
water and, thus, inertial effects of particles weaker.

6.6 SIMULATIONS & RESULTS

As the role of magnetic micro- and nano- particles in medicine became more important
over the years, mathematical and computational modelling of particles magnetophoresis
for applications of biological interest became important, as well. This field is very active
for more than one decade and the complexity of the modeled systems increases constantly.

Most of the works are focused on simple flow geometries and study the effect of the
origin of the magnetic field and its characteristics to particle capture. For example, Furlani
and coworkers have studied numerically in Lagrangian formulation the magnetophoresis
of particles in a tube of circular cross-section with laminar flow, where the magnetic
field was created by an infinite cylindrical magnet, magnetized perpendicular to its
axis (Furlani and Ng, 2006; Furlani and Furlani, 2007), whereas in an another set of
studies they examined a bioseperator that consisted of an array of conductive elements
embedded beneath a rectangular microfluidic channel (Furlani, 2006, 2007; Furlani et al.,
2007). Moreover, Rotariu and coworkers focused on the magnetic separation of particles
that carry microorganisms and examined both experimentally and numerically their
flow in cylindrical tubes under the influence of the magnetic field created by either one
or two ferromagnetic wires in a homogeneous external magnetic field (Rezlescu et al.,
1995; Murariu et al., 2001; Rotariu et al., 2005a). In addition, they work on targeted drug
delivery in the microvasculature of tumors and examined the effect of different magnetic
fields (Rotariu and Strachan, 2005).

All the aforementioned studies were two-dimensional. Haverkort, Kenjere$ and cowork-
ers used both commercial and in-house codes to study, also in Lagrangian description,
the three-dimensional flow of magnetic particles. In particularly, they examined particle
magnetophoresis under steady-state conditions in straight circular tube and 90° bend
of circular cross-section, where the magnetic field originated from infinite long current
carrying wire or circular current loop, as well as the time varying flow of particles
in the left coronary and the carotid arteries when the magnetic field is created by a
superconducting cylindrical magnet (Haverkort et al., 2009a,b; Haverkort and Kenjeres,
2009; Kenjere$ and Cohen Stuart, 2010; Cohen Stuart et al., 2011).

During the last years, Chen and coworkers (Chen et al., 2007a,b,c,d, 2008a,b,c; Bock-
enfeld et al., 2010; Chen et al., 2011) investigate, both experimentally and numerically
(commercial software and Lagrangian description), a portable magnetic separator device
for human blood detoxification. The device is comprised of parallel tubes, in which the
fluid flows, and long cylindrical wires with their axes parallel to the tubes axes. The
whole device is under the influence of an external constant magnetic field. This way the
wires produce a non-uniform magnetic induction field in the lumen of the tubes. If there
are magnetizable particles suspended in the fluid (blood) entering the device, then these
particles are affected by the magnetic field. Changing the properties of the wires and,
consequently, of the induced magnetic field, as well as the tube geometry, the particles
can be totally removed from the flowing fluid.
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Fluid & Particle Properties
Fluid temperature, T 293 K
Fluid density, p¢ 1000 kg/m3
Fluid dynamic viscosity, ¢ 35x1073 kg/m's

Fluid mean inlet velocity, v, 0.1 m/s

Tube diameter, d 7x1073 m
Particle density, pp, 6450 kg/m?>
Particle diameter, dp 0.25 —2.5um
Magnetic susceptibility, x 3

Dean number, De = Re/v/Ro  84.5

Table 7: Fluid and particle properties used in the comparison with Haverkort et al. (2009a).

From the aforementioned studies, it is obvious that Lagrangian description of the
particle population is used in the vast majority of the numerical studies of magnetophore-
sis. Notable exceptions are the works of Khashan et al. (2011a,b); Habibi and Ghasemi
(2011), who studied the flow of magnetic particles under the influence of magnetic fields
using fully Eulerian methodology. The studies of Khashan and coworkers (Khashan et al.,
2011a,b) assume Newtonian fluid and two-way coupling (i.e. the fluid flow is affected by
the particles), whereas the study of Habibi and Ghasemi (2011) assumes non-Newtonian,
ferrofluid. Although these studies are advanced in terms of the physical phenomena
involved, they are constricted to two-dimensional flows.

In this work, the developed fully Eulerian model will be used in order to study the
three-dimensional transport and deposition of particles suspended in a liquid medium.
In particular, the simple geometries and magnetic fields, that can be given analytically,
of Haverkort et al. (2009a); Chen et al. (2007b, 2008¢) are used for simulations and
comparison.

6.6.1  Comparison with Haverkort et al. (2009)

The numerical work of Haverkort et al. (2009a), and more precisely their study of particle
magnetophoresis in a a 90° bend of circular cross-section, is used for comparison. The
magnetic field comes from either an infinite long current carrying wire or a circular
current loop. The properties of the fluid and particles, used in the simulations, are
collected in Table 7 and a schematic diagram of the bend geometry used is shown in
Fig.57.

In this study, a linear particle magnetization model was used. In particular, the magne-
tization M is given by:

. H SH<M
M — X ) sat/ Xl . (6.54)
(X/ |X|) MsatH /H > Msat/ |X|

M;qt and x are the saturation magnetization and the magnetic susceptibility, respectively,
and H = ’]jl‘ the magnitude of the magnetic field. The first case of Eq.(6.54) corresponds

to under-saturated material, whereas the second to saturated. Assuming that the magnetic
field is approximately constant over the volume of a particle and the surrounding fluid



6.6 SIMULATIONS & RESULTS

-~

R =
—_ ) — —
0.7 em

Cd
= L

wire (1)

35¢em

sl 1}

Figure 57: Schematic diagram of the geometry used by Haverkort et al. (2009a). The position 1
(pos1) of the infinitely long current carrying wire is shown here.

has negligible magnetic susceptibility, the magnetic force F,, on a spherical particle with
diameter d, is:

__;'11
I

md3 H2
HOXTPV (T) /H < Msat/ |X|
N (6.55)
M

3 ~ —
Ho (X/ |X|) Tp satH -VH /H > Msat/|X|

Infinite Long Straight Current Carrying Wire

In this case particles are assumed to be under-saturated. The infinitely long current
carrying is positioned in four different ways in space, as shown in Fig.58. In this figure
the calculated magnetic force density is, also, shown at the bend wall, which is of the same
order of magnitude and presents the same patterns as the one presented in Haverkort
et al. (2009a).

The predictions of the present study for the different locations of the current curring
wire, in terms of particle deposition fraction, are shown in Fig.59. The results of the
Eulerian model compare well against the findings of Haverkort et al. (2009a), with the
exception of wire position 2 (the wire is located at the inside of the bend). The differences
in this particular case is greater for the smaller particles, but the reason for the discrepancy
is not clear.

Circular Current Carrying Line

Simulation are performed using the magnetic field of a circular current loop with radius
« = lcm, carrying a current I = 3 x 10°A and placed at a distance of 1cm from the
centerline halfway the bend. Fully saturated particles are assumed with a saturation
magnetization of Mgy = 10°A/m. The angle y between the axis of the current loop and
the plane of the bend (Fig.60) is varied from y = 0° (outside of the bend) to y = 180°
(inside of the bend). The properties of the fluid and particles are shown in Table 7.

In Fig.61, the deposition fraction of particles is shown versus the position, i.e. angle
v, of the current carrying loop. The agreement of the present work with the numerical
study of Haverkort et al. (2009a) is excellent for Tum particles and y angles from 0° to
135°. However, the Eulerian model predicts lower deposition for the submicron particles
regardless the loop position. The differences from the Haverkort et al. (2009a) simulations

are greater as the loop moves from the outer side (0°) of the bend to the inner (180°).
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Figure 59: Deposition fraction for different locations of the current carrying wire. The results of
the Eulerian model are shown in continuous lines, whereas the results of Haverkort

et al. (2009a) in dotted lines.

This is also depicted in Fig.62, where the deposition fraction for each loop position is
given as a function of the particle diameter.

Here, again the basis of these discrepancies, is not clear. One may think that this is a
sign of a ‘'missing” deposition mechanism, especially for particles with d,, < Tum, which
should be included into the particle population balance equation.
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Figure 60: Loop position around the bend. Definition of angle v (adapted from Haverkort et al.

(2009a)).
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Figure 61: Deposition fraction as a function of the current carrying loop location (y angle). The
results of the present work (Eulerian model) are shown in dashed lines, whereas the
results of Haverkort et al. (2009a) in dotted lines.

6.6.2  Comparison with Chen et al. (2007, 2008a,b)

In this section, the developed Eulerian model is used in order to predict magnetic particle
transport and deposition in a straight circular tube under the influence of the magnetic
field produced by two ferromagnetic wires in an external homogeneous magnetic field.

This configuration, shown in Fig.63, is in essence a ‘building block” of the device
proposed by Chen and coworkers, that they have studied both experimentally and
numerically (Chen et al., 2007b,c, 2008b,c). For all simulations, fully developed fluid
velocity profile at the inlet of the tube is assumed. The properties of the fluid and particles
are summarized in Table 8, and the properties of the wires and external magnetic field
are given in Table 9.

As shown in Table 8, the magnetic spheres in the study is a composite material, where
the magnetic particles are spherical with diameter of dfy, = 10nm. These particle
demonstrate superparamagnetic behavior under the influence of the induced magnetic
field, and their magnetization is expressed through the Langevin function (Eq.(6.26)).

In Fig.64(a) the (dimensionless) magnetic field, magnitude (contour) and streamlines,
for the base case properties is shown at a cross section of the tube. It should be noted that
there is no component of the magnetic field in the axial direction of the tube, because
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Figure 62: Deposition fraction as a function of the particle diameter at different locations of the
current carrying loop.

Properties for Chen et al. Comparison - A

Fluid temperature, T 298.15 K

Fluid density, p¢ 1000 kg/m3

Fluid dynamic viscosity, ps 1.0x 1073 kg/m s
Fluid mean inlet velocity, v, 0.14—45.0,5.0 m/s
Tube inner diameter, din, 0.75x 1073 m
Tube outer diameter, d¢ovt 1.0x1073 m
Sphere diameter, dy, 1.7um

Sphere magnetic mass fraction, x¢m,p 12.45%

FM particle material Magnetite

FM particle density, pfm,p 5050 kg/m?>

FM particle diameter, dfm,p 10nm

FM particle saturation magnetization, M¢p, s 4.21 x 10> A/m
polymer density, ppo1,p 1050 kg/m3

Table 8: Fluid and particle properties used in the comparison with Chen et al. Chen et al. (2007b).
Underlined are the base case properties.

the wires are long and the fringe effects at the wires” ends are neglected. In addition,
in Fig.64(b), the magnetic force density f.,,[N/m], is shown for the base case properties.
The contour is the magnitude of f,,,, whereas the vectors indicate the direction of the
force. These findings compare well, both qualitatively and quantitatively, with the results
shown in the study of Chen et al. (2007b).

Properties for Chen et al. Comparison - B

Wire material SS430

Wire radius, 14, 0.25% 1073 m
Wire magnetization saturation, My, s 13.42 x 105 A/m
Magnetic field induction, peHe 0.125—-05T

Table 9: Wire and external field properties used in the comparison with Chen et al. Chen et al.
(2007b). Underlined are the base case properties.
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Figure 64: (a) Magnetic field (dimensionless); the streamlines of H and its magnitude (contour)
are shown. (b) Magnetic force density for base case properties.

Deposition fraction, 1, as a function of the magnetic field induction B, = poHo[T]
for v, = 5cm/s (top) and v, = 8cm/s (bottom) is shown in Fig.65. The results of the
Eulerian model are compared with the experimental and theoretical findings of Chen
et al. (2007b) for the base case properties. The Eulerian model, underestimates 1 in both

cases, the difference being greater for the higher mean fluid velocity, i.e. for v, = 8cm/s.

However, it can be observed that the discrepancy decreases as the magnetic field becomes
stronger for both mean fluid velocities. It could be argued that a fluid flow related
phenomenon is present at the experiments, that gets less important as the influence from
the magnetic field increases.

Moreover, comparison with the theoretical and experimental results of Chen et al.

(2008¢) (Fig.66) shows that the predictions of the Eulerian model are in agreement with
the experimental measurements for low fluid viscosity (1 = 0.00Tkg/ms), whereas

differs from the experiments for v, > 2 in the higher viscosity case (s = 0.00Tkg/ms).

This may also be an indication of a shear related transport mechanism present at the
experiments, but neglected in the simulations.

Nevertheless, in all examined cases the fully Eulerian model is successful in describing
the trends of the experimental deposition fraction curves; deposition increases with
increasing magnetic field and decreasing fluid velocity. In addition, it is shown that the
rate of the deposition fraction decrease with increasing fluid velocity, is higher for higher
viscosity liquids.
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Figure 65: Deposition fraction as a function of the magnetic field induction B, = poHo[T] for
Vo = 5cm/s (top) and v, = 8cm/s (bottom) - Comparison with the results of Chen
et al. (2007b).
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Figure 66: Deposition fraction as a function of the mean fluid velocity volcm/s] (B, =
uwoHo = 0.5T) for water, s = 0.001kgm_1s_] (top), and for Ethylene Glycol,
e = 0.004kgm~'s~! (bottom) - Comparison with the results of Chen et al. (2008c).

6.7 CONCLUSIONS

In Chapter 6, basic concepts of magnetic fields and materials are outlined and the expres-
sions that describe the magnetic fields produced by infinitely long straight wire, a circular
line current and ferromagnetic wires in a uniform external field are given. Moreover,
the magnetic force acting on particles that have either linear or a superparamagnetic
behavior is presented. This force induces the movement of particles with a magnetic
velocity, which is incorporated into the particles population balance equation.

The developed fully Eulerian model is used to predict the transport and deposition of
magnetizable particles into a liquid medium under the influence of an external magnetic
field. Initially, the numerical study of Haverkort et al. (2009a), regarding magnetizable
particle flow into water in a 90° bend, is simulated. For the case of the magnetic field
produced by an infinitely long straight wire, the results of the present study compare
well with those of Haverkort et al. (2009a) for all wire positions, except for the case where
the wire is at the inner bend side.
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In addition, when the magnetic field is produced by a current carrying loop, the
agreement of the Eulerian model with the numerical study of Haverkort et al. (2009a) is
excellent for Tum particles and vy angles from 0° to 135°. However, the model predicts
lower deposition for the submicron particles regardless the loop position, the differences
between the studies being greater as the loop moves from the outer side (0°) of the bend
to the inner (180°).

The basis of these discrepancies, is not clear. One may think that this is a sign of
a ‘'missing’ deposition mechanism, which is especially important for particles with
dp < Tpm.

The model is also used to simulate the experimental and numerical studies of Chen
and coworkers (Chen et al., 2007b, 2008c). The Eulerian model, underestimates deposition
fraction compared to the experiments. Although the difference is greater for the higher
mean fluid velocity, it is observed that decreases as the magnetic field becomes stronger
for both mean fluid velocities. Moreover, the predictions of the present work are in
agreement with the experimental measurements for low viscosity fluid, but differs from
the experimental results for higher viscosity fluid.

Overall, in all examined cases the fully Eulerian model describes successfully the
qualitative characteristics of the experimental deposition fraction curves; deposition
increases with increasing magnetic field and decreasing fluid velocity. The discrepancies
between the present work and the experimental studies, indicate that maybe a fluid related
deposition mechanism is present in the experiments and should be taken into account
in modelling. Another explanation for the increased deposition in the experiments,
comparing to the calculated ones, could that the magnetic particles aggregate under
the influence of the magnetic field. Thus the same magnetic force density would apply
to bigger particles, enhancing that way particle deposition at the tube walls. Particle
transport in a liquid medium and the physical phenomena involved should be studied
further.
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The numerical modelling of the transport of particles suspended in flowing biofluids is the
main objective of this thesis. The motivation for this work arises from the high scientific
interest in the behavior of micro- or nano- particles in the respiratory and circulatory
systems. In particular, the mechanisms underlying the particles - fluid interactions are
investigated employing techniques of fluid dynamics. The solution of the continuous
phase is treated by CFD methods based on an existing code. Special emphasis during
development of the model is given in solving the transport of the particulate phase
with mechanistic approach. Eventually, it is expected that with appropriate use and then
detailed analysis of numerical predictions, the model can contribute to the interpretation
of observed effects of particles on respiratory and/or cardiovascular system.

The Particles Transport Equation (PTE) is a special case of the particles Population
Balance Equation that does not include internal particle processes (e.g. nucleation, hygro-
scopic growth and agglomeration). Within an Eulerian description (spatial description),
PTE describes particles transport in a given elementary volume. This description results
in direct handling of particles diffusion, as well as the straightforward calculation of the
particle mass concentration. However, inertial effects can not be easily included in the
typical form of PTE. For this reason, an approximate expression of the particles velocity
should be used for the integration of their inertial effects in the Eulerian approach.

In the present thesis, the fluid-particle flow in the limit of low mass load and volume
fraction is described through an Eulerian formalism. One-sided coupling of dispersed
phase (particles) is assumed, whereby the movement of particles is affected by the
continuous phase (carrier fluid), but the reverse is not true. The velocity of the dispersed
phase contained in the PTE, is expressed at the limit of small particle relaxation time.
Finally, the velocity of the particles is decomposed in a diffusion term, which depends on
the spatial derivative of the concentration of particles, and a convective part, independent
of the concentration.

The convective particle velocity is essentially the velocity of the carrier fluid corrected by
a slip velocity due to particle inertia and the total external force acting on the particles (e.g.
gravitational and/or magnetic). This way, the particle inertial effects and the influence
of external force fields are incorporated in the Eulerian description of PTE. The above
treatment of PTE and the use of it to describe the transport and deposition of heavy, inert
particles suspended in flowing fluid is the primary innovative aspect of this thesis. The
fully Eulerian methodology used offers clear advantages;

* It does not require time and effort consuming particle tracking histories in order to
obtain accurate statistics,

e It takes into account particle transport due to diffusion and inertia simultaneously,
thus it is valid for a wide range of particle sizes,

e It is fairly simple, as it decouples the mass and momentum equations of the partic-
ulate phase and the particle velocity is given only in terms of the fluid velocity and
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the its spatial derivative

¢ Particle concentration is directly calculated as natural part of the solution of the
particle transport equation (PTE).

The numerical treatment of the particulate phase transport is based on CFD techniques.
In particular, a methodology similar to the one used for the fluid flow, is used because
the direct connection of the two codes is desired. Therefore, the particles transport
equation is solved in three dimensions using a finite volume method with a collocated
arrangement of variables that takes into account grid non-orthogonality and is suitable
for multi-block grids. In the code, the convective term is discretized using a second-order
deferred correction approach, while a second-order central difference scheme is preferred
for the diffusive term. Moreover, we succeeded in proposing and validating a novel
numerical approach to the wall boundary condition, where the usual totally absorbing
wall condition is combined with the strong convective fluxes towards the wall.

The validation of the proposed methodology shows that particle diffusion and gravi-
tational settling are predicted accurately. More importantly, the validity of the particle
velocity approximation for higher particle relaxation times (or equivalently higher Stokes
numbers), where inertial effects are important and gravitational settling may not be a
priori neglected, is investigated. Thus, the Eulerian model is validated against analytical,
numerical, and experimental results on inertia-induced particle deposition efficiencies in
a 90° laminar-flow bend of circular cross section.

In particular, model predictions for low Stokes numbers agree with the analytical results,
where an ideal fluid flow without the secondary flow is used, slightly overestimating
deposition at high Stokes numbers. This is easily understood, if one considers that the
secondary flow field is neglected in the analytical solution. Nevertheless, maximum
difference was about 10% for the smallest bend curvature ratio (steeper bend), tending
to zero as the curvature ratio increases, and therefore sufficiently accurate for practical
purposes. In addition, the fully Eulerian approach compared to the experimental data
is successful in the prediction of deposition fraction in the bend for both low and high
Dean number flows. It is, also, found that the particles deposition sites indicated in the
present study are in good agreement with experimental observations. Therefore, the
approximation used for the inertial term is valid for high-inertia particles, rendering the
developed fully Eulerian methodology adequate for a wide range of particle sizes and,
thus, for a variety of applications.

After gaining confidence in our model, the developed Eulerian particle-fluid model
is used in order to gain physical insight on the effect of particle inertia in a 90° bend
and a physiologically realistic bifurcation. These two geometries though basic, can be
considered as building blocks of the respiratory system. The focus is on heavy, inert
particles particles (dp, > Tpum), where both inertial effects and gravitational settling
should be taken into consideration.

Initially, the effect of fluid flow Reynolds number and the bend curvature ratio on
both the fluid flow and particle transport in a 90° bend is examined. The influence
that the bend orientation with respect to the acceleration of gravity has on particle
deposition, is also investigated. For all cases, the simulations refer to heavy, inert particles
(Gbum < dp < 20pum).

The following results are obtained from the numerical experiments regarding the
continuous phase (air);
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* Both the axial profiles and the secondary flow characteristics depend on the flow
Dean number, which is, in turn, a function of the flow Reynolds number and the
bend curvature ratio.

* The curvature ratio affects differently the axial velocity profiles and the structure
of the secondary flow field for low and high Reynolds numbers; for Re = 100, the
flow is almost independent of the bend curvature ratio, whereas for Re > 500 the
influence of R, is obvious on velocity profiles. New pairs of symmetric vortices form
with decreasing curvature ratio (steeper bend) in the latter case. For all Reynolds
numbers, however, there is no shifting of the axial velocity profiles towards the
outer bend wall as the curvature ratio decreases.

* The effect of Reynolds number on the fluid flow is significant regardless of the
curvature ratio. There seems to be a minimum Re, above of which the axial velocity
profile does not move further towards the outer bend wall, implying that the inertial
forces dominate and the centrifugal ones cannot influence further the fluid flow
in the bend. For a given bend curvature ratio, increase of Reynolds number leads
to the shifting of the secondary flow vortices towards the inner bend wall and the
center of the cross-section, in addition to the formation of new pairs of symmetric
vortices.

Regarding the particulate phase, it is found that;

* Gravitational settling is an important deposition mechanism and should not be a
priori neglected.

¢ The orientation of the tube is more important for low Reynolds number aerosol
flows, where inertial effects are weaker. For Re = 100 and comparing to simulations
without gravity (CDI), deposition fraction for the CDIGx case is considerably higher
for the whole range of particle sizes under study, for the CDIGy case is comparable
and for the CDIGz deposition is higher for particle Stokes numbers less than unity
and lower for bigger particles. For Re = 1000, CDI, CDIGx and CDIGy orientations
yield comparable deposition fractions, whereas deposition for the CDIGz orienta-
tion is considerably lower.

* For low Stokes number particles concentration profiles do not change significantly
for the CDIGx and CDIGy cases compared to the CDI for both low and high
Reynolds numbers, whereas for high Stokes number particles there are obvious
differences between the aforementioned cases (especially for higher Dean number
aerosol flow). At the concentration profiles for the CDIGz case, the asymmetric
accumulation of particles towards the lower lateral bend wall can be noticed even
for the low Stokes number particles.

* Gravity alters significantly the locations, where particles deposit. The differences
between the various bend orientations are more pronounced for low Dean number
flows regardless the size of the particle. For all Stokes and Dean numbers, there is
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an obvious asymmetry in the deposition sites for the CDIGz orientation.

¢ The influence of Reynolds number and bend curvature ratio on inertial particle

transport is studied, without taking into account gravity (CDI case). Deposition
fraction increases with increasing Reynolds number. However, it is noticed that the
rate of the increase becomes smaller. Particle concentration profiles and deposition
sites are affected by Reynolds number, the differences being more obvious for high
Stokes number particles.

The bend curvature ratio is important for the transport of particles only for low
Reynolds number flows, where deposition fraction increases with decreasing R,
that is as the bend becomes steeper and thus the inertial effects stronger. Moreover,
it is shown that the patterns of particle concentration profiles and deposition sites
are not particularly changed with the bend curvature ratio.

Following the investigation of the academic case of aerosol flow in a 90° bend, nu-
merical experiments of particle transport and deposition in a physiologically realistic
bifurcation are conducted in order to determine the effect of particle size and fluid flow
Reynolds number and symmetry. It is found that;

¢ Total particle deposition fraction is loosely dependent on fluid flow Reynolds

number and does not change significantly between symmetric Q;/Q2 = 1 and
asymmetric Q1/Q2 = 2 flow conditions, but is considerably lower for the totally
obstructed case, Q2 = 0.

Deposition sites and particle concentration profiles depend on these parameters.
While deposition at the bifurcation is present at all cases, deposition sites down-
stream the bifurcation move towards the outer PRB wall and daughter tube exit
as Reynolds number increases. For the Q, = 0, it is also shown that particles are
trapped and deposit even in the obstructed daughter tube.

¢ It is found that there is a particle-free region at the outer wall, at the beginning of

the daughter tubes opposite the bifurcation, which is present in all examined cases.

Besides detailed results in the respiratory system, the developed model is appropriate
for current biomedical approaches in the cardiovascular system, as well. More specifically,
the developed model is used to predict the transport and deposition of magnetizable
particles into a liquid medium under the influence of an external magnetic field. Initially,
the numerical study of Haverkort et al. (2009a), regarding magnetizable particle flow into
water in a 90° bend, is simulated. The following conclusions are derived;

¢ For the case of the magnetic field produced by an infinitely long straight wire, the

results of the present study compare well with those of Haverkort et al. (2009a) for
all wire positions, except for the case where the wire is at the inner bend side.

¢ When the magnetic field is produced by a current carrying loop, the agreement of

the Eulerian model with the numerical study of Haverkort et al. (2009a) is excellent



CONCLUSIONS & FUTURE WORK

for Tum particles and y angles from 0° to 135°. However, the model predicts lower
deposition for the submicron particles regardless the loop position, the differences
between the studies being greater as the loop moves from the outer side (0°) of the
bend to the inner (180°).

* The basis of these discrepancies, is not clear. One may think that this is a sign of a
‘missing’ deposition mechanism, which is especially important for particles with
dp < Tpm.

The model is also used to simulate the experimental and numerical studies of Chen and
coworkers (Chen et al., 2007b, 2008¢) and it is found that;

* The Eulerian model, systematically underestimates deposition fraction compared
to the experiments.

¢ The difference is greater for higher mean fluid velocity, but decreases as the mag-
netic field becomes stronger for both mean fluid velocities.

* The predictions of the present work are in agreement with the experimental mea-
surements for low viscosity fluid, but differs from the experimental results for
higher viscosity fluid.

¢ The fully Eulerian model describes successfully the qualitative characteristics of the
experimental deposition fraction curves in the case of magnetophoresis of particles
suspended in liquid medium; deposition increases with increasing magnetic field
and decreasing fluid velocity.

* The discrepancies between the present work and the experimental studies, indicate
that maybe a fluid related deposition mechanism is present in the experiments and
should be taken into account in modelling.

The aforementioned conclusions demonstrate that accurate predictions of the transport
and deposition of heavy, inert particles suspended in flowing fluid are obtained by the
proposed methodology, that is, the incorporation of the particle inertial effects in an
Eulerian description of the particles transport equation and the numerical treatment of
this equation with CFD techniques. In addition, the use of the model to obtain, not only
the particles deposition fractions, but also the characteristics of particle deposition and
concentration patterns, offers useful physical insight under different flow conditions, in a
straightforward and simple manner.

The proposed methodology is versatile enough to account for both air-particles (respi-
ratory system) and liquid-particles (circulatory system) flows. However, it can be further
improved by incorporating more physical phenomena involved in particle transport
in fluids. For example, the model will be substantially improved, if internal aerosol
processes are incorporated in it, thus solving the full General Dynamic Equation of
Particles. In analogy for colloidal systems, colloid interactions, such as van der Waals
and/or electrical double-layer interactions can be added. Moreover, the model can be
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modified to account for unsteady fluid-particles flows. Finally, the model can be adapted
to calculate transport of polydispersed and/or non-spherical particle populations, which
often occurs in practice.
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IMEPIAHYH

H aplpunukn poviedomoinon 1tng petagopdg oopatdiov mov Pplokovrtat
dlaoxopriopeva og péovta Propevotd etvatl o Pactkog OKOIIOg TG Iapovoag otatpifr|s.
Zoykekpipéva, Olepeovovtal ot pnyaviopoi moo dwmoov TG aAnAemoOpdoelg
OOUATIOI®V - PELOTOV XPNOHOIIOIOVTAG TEXVIKEG TG dLVAIKNG pevotmy. H ovvexrg
@aon (pevoto) eMADETAL PE XPI)O1) LIIAPXOVTOG KMOKA, 0 omoiog Paociletat oe pedddovg
g DIIOAOYIOTIKIG pevoToduvapikrg (computational fluid dynamics - CFD). Idwaitepn
onpaocta Katd Ty avartodn tov poviélov 800nke otnv emilvon g pETAPOPAg TG
oopatdlakng gaong pe npooeyyton Euler. H xprjon g meprypagr|g katda Euler éxet ag
AIIOTENEOPA TNV JHECH] AVTIHETOION Thg Ouwaxvong T®V O®PATIOlOV KAt ToD
DIIOAOYIOHOD T OLYKEVIP®ONG Tovg. Qoto00, Ta adpavelakd @aiwvopeva Oev
evoopatovovtat evkoha oty katd Euler popern g ESiowong Metagopdg twv
Zopatdinv (particle transport equation - PTE). I'a va copmepiAngbooyv, enopévag, ta
adpavelakd ¢aiwvopeva oty pebodoloyia Euler, Oa mpemer va ypnowponowOet pa
IIPOOEYYIOTIKI] EKQEAOT Y1d TV TAXOTNTA TG OOPATIOIAKIG PAOT|G.

Zmv napovoa dwatpiPr), xpnowomnoteitat npooéyyton Euler yia v meprypaegn g
PONG PELOTOL - OHUATOIWV OTo Oplo TOoL YApnAov @optiov padag Kat HPIKPOL
KAAOpatog Oykov. Gempeitat povorevpr) ovlevdn) g OOPATIOWAKIG PAONG, TO OIoio
onpaivet 0Tt 1 PO1| TOL PeLOTOL ennpPeadet avty) TV ocOpatdinv, alda to avtibeto Oev
woyvet. H taybvmta g copatidiaxng gaong moov nepexetat oty PTE, exppdaletat oto
OplO0 TOD HIKPODL XPOVOL YAAIP®ONG TV oepatdiov. Tedkd, n taydmta tov
oopatdle®v amoteleitat amo evav 0po didyxvorg, 0 onoiog eSaptdatat ard TV KA g
OLYKEVIP®ONG TV ORPpATioV, Kat &vav Opo ovvayoyng, aveSaptnto g
ovykévipwons. H oopatidiaxr taydinta oovaymyrg eivat oDOLIoTIKA 1) TaxLTTA
oL PEpovTog agpiov dropbapévn amo v tayvtnta oAiodnong eSattiag g adpavetag
TOV OOUATIOI®V Kat TG ONKIg eS@Tepiknig OVVapnG nov aokeitat ota oopatidwa. Kata
auTOV TOV TPOIO, TA AdPAVELAKA PAVOHEVA TG OOHUATIOWIKIG PAONG Kl 1] enidpaon
eCMTEPIKMV MEOIOV OLVAPEDV EVO@PATOVOVTAL EMTOXOG otV Katd Euler meptypagn
g PTE.

H npoavagepbeioa avripetomorn g PTE xat ) epappoyr| g ya v meptypagr)
g petagopdag Kat evamnobeong Papéov, adpavelakmv OOPATIOiOV MIOL di@PoLVTAL
OlaOKOPIIOPEVA Og PEOVTA PELOTA elval 1 KOPLA KAWVOTOPid TG Iapovodg dtatpiPr|g.
H m\rpeg xatd Euler mepiypagrn mnpoogéper Sexdbapa mAeovextjpata: a) Oev
amnatteitat o damnavnpog, oe Ypovo Kat rnpoorrdbeta, vIIOAOY0p0g TG Tpoxdg mANOmpag
oopatdle®v yua T Ayn otatiotikd akptBoog Avorg, B) AapPdavel vmoyn tavtoypova
) PETa@opd TV oopatdiov egattiag g Oldyvong Kat g adpavelag, Kat yid aoto
etvat KataAAnAn yia peydho evpog peyebovg oopatidimy, y) eltvatl oXeTKd Ar\r), agov
draywpiet Tig eSlomoelg padag Kat opprg TG OOPATIOAKI|G PAONG KAl 1) TAYOTNTA TOV
oopatdlev divetat oe 0Povg TG TAXLTNTAG TOL PELOTOL KAl TOV XOPIKDV IAPAYDY®DV
aot)g, Kat 0) 1] OLYKEVIP®ON T®V OOPATOl®V LHOoAoyifetal dpeod, oG PEPOG TNg
ermAoorng g eSlomong PETAPOPAS TOV OOPATIOI®V.

H apBpntikn avtipetomon tmg copatdlaxng @aong Paoiletat oe texvikeg CFD.
ZOYKeKPpEVa, 1] eSlomOr PETAPOPAS TOV OOPATIOIOV emMADETAL OTIG TPELG OLa0TAOELG
xpnowponowwvtag pia pedodoloyla memepaopeéveov OyKmv pe opobetn Sudatady
petapAntov, n omoia AapPdavetl onoyr 1) pn-opfoy@vioTnTa TOV DAeYPATOV KAt etvat
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KAataAAnAn yia moAam\ev yepieov (multi-grid) mieypata. Ztov xe@dika o 0pog g
oovaymyng diakprromoteitatl pe xpron puag mpooeyyong avapariopevng otopbwong
(deferred correction) 215 talng, eve &va OXNPA KEVIPWKOV Ola@opmv 21 Tadng
Xpnowomoteitat yia tov opo diayvong. Emuhéov, oty napovoa epyacia mpoteivetat
KAl IIOTOMOLElTal 1 Xpron Hpag véag aplfuntikig IPooeyylong yla T CLVOPLAKIL
oovOnkn oto Tolywpa, omov 1 oovvidng ovvoplakry oovOnkn ToL TANP®G
AIIOPPOPNTIKOL TOLXOUATOG OLVOLAJETAl pe TIg OXLPEG POEG OLVAYWYNG MPOG TO
TOLYOpAL.

Kata v motonoinon g mpotevopevng pebodoloyiag Tekpnpiovovpe OTL 1)
diayvon kat n Papotikr] kabdilnon mpoPAémovtat pe apotn akpipeta. Znpaviikotepog
elvat Oaviwg o ENeyxog TG IPOOEYYIOTIKNG €KPEAONG Yid TNV TaxLITA TRV
OOUATIOlOV OTI§ MEPUITMOELS HEYAADV XPOV®V YAAAP®ONG (1] 10000VApd HeYAADV
appmv Stokes), Ormov Ta adpavelakd QAavopeva elvatl CNEAVIIKA KAt 1) emopact) g
Papotntag 0e propet ek TV Hpotep®v va Bempndet apeAntéa. Ta amotedeéopata too
avamtoyfevtog poviéhov ovykpivoviail, Aouridv, pe AavaALTIKEG, TMEPAPATIKEG Kt
appntikeg epyaoteg g PipAtoypagiag. H odykpion deiyver Ot 11 mpotevopevn
pebodoloyia pmopet pe emtoyia va mpoPAeyet v evamobeon T®V adpaAvelaxKmV
OOPATIOl®V, KAt OTtL Ot IEPLOXEG evarobeong TV oOPATIOI®Y IOV DIIOOEIKVDOVTAL IO
TO HOVTENO COPPDVOLY He TIG IEWPAPATIKEG TIAPATHPHOELG.

To povtedo mov avamtdxbnke xpnowpomotettat yia T peAét) tg TPOWdOTATNG
petagopag kat evanobeong copatidi®v mov Ppilokoviat Oteormappéva oe Kivodpeva
PELOTA PEOA O ATIAEG YEDPETPLEG, Ol OITOiEG, ®OTO0O, PHopPoLY va Bempnbody wg dopka
otolyela TOOO TOL AVAIVEDOTIKOD, OCO0 Kal TO KAPOayyelaKoL OLOTHATOG.
Zoykekpipéva, To avamtoxbév povtédo xpnowpomoteitat yla T pEAET TRV
adpPAVEIaK®Y PAIVOHEV®V O AgPOADHATA eVTOg piag yoviag 90° xoxkAikng Otatopr|s,
ON®G emiong Kat evitog piag guooloykda pealtotikig Staxhadwong (physiologically
realistic bifurcation - PRB). IIpoobeta, to povtéldo xpnowpomnoteitat ywa ) Siepevvnon
NG HETAPOPAS KAl EMKADIONG PHayVNTIKOV OOUATIOI®V, OEOTIAPPEVOV O DYPO €00,
ono MV enidpaorn e§®TEPIKOL payvnTKoL mediov.

Ot mpoavagepOeioeg peléteg Oeiyvoov OTL pe KAtaAAnAn xpron Kai KAatomty,
AvVAa\oon TV AIIOTEAEORAT®OV, TO IIPOTEWVOHEVO HOVTENO HIIOPEL VA OLVEIOPEPEL OTNV
ePPNVEla TG COPIEPLPOPAS TOV OOUATIONOV OTO AVAIIVEDOTIKO 1}/ KAl KAPOlayyelaKo
oLOTN A, IIPOOPEPOVTAG KANDTEPT) KATAVOLO1) TRV EPIMAEKOPEVROV PLOIKDV QALVOPEVRDV
Kat ovtag éva xprowo epyaleio yia to oxediaopod xat ) PeAtiotonoinon Plolatpikaov

EPAPHPOYDV.
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H exBeon oe awwpovpeva copatidta mov Bpiokoviatl oty atpoopaipa £xet oovoedet
pe ooPapda mpoPAnpata vyelag, onwg avSnpévy voonpotntd TOL AVAIIVEDOTIKOD KAt
TOL KAPdayYelaKOoD OLOTHHATOG, AKOPA KAt pe avinpévy Ovnopotta ocoppava pe
m\eioteg emoOnpioloywkég peAéteg (Russell and Brunekreef, 2009; Mills et al.,, 2009;
Dvonch et al., 2009). ITpooBeta, veotepa ototyeia Oeiyvoov Ot Ta Aentd oepatida
HIIOPOLYV va Olarepdoovy To emONA0 TOV IVELPOV®V KAl TOV YAOTPEVIEPIKOD CWANVA
Kabwg xat 1o déppa, pe amoté\eopa TNV £L0AYDYT| ONEAVTIKIG ITOOOTNTAG OOPATIOIDV
OTO dipa Kat T petagopd Toug otovg otovg (Simkhovich et al.,2008). Avadvopeveg véeg
texvoloyleg, omwg 1 Navotexvoloyia, evdéxetat va 0Oétoov veoog mapayovteg
dlaxivovvevong Aoyw g ékbeon oe pikpo- xat vavooopatidia. Amo v aA\n mAeopd,
veeg dovatotnteg mpokdItovy otV latpikn) péom g avamtolng vavopappakav Kat
VavoSlayv@oTIK®V  OLOTHAT®V, TA OHOld E0AYOVIAaL OTO CVAIIVEDOTIKO Kdt
KApOlayyelaKo oOOTHA Y O1ayveoTKovg 1)/ kat Oeparmevtikodg okomovg (Sung et al.,
2007; Gagnadoux et al., 2008; Plank, 2008; Dusinska et al., 2009; Misra et al., 2011). H
OLPIIEPLPOPA TOV OOPATOIOV 08 aUTA TA OLOTHUATA elval ONpePd €vag TOpEAg IOV
IapoLotadet avSnpévo emoTNHOVIKO EVOLAPEPOV.

To awwpnpa copatidiov eviog pepoTod CLVIOTA éva MOADPACIKO ovoTHHd, dNAadT)
éva oLOTPA IOV ATIOTEAELTAL AIIO €V OLVOLAOHO PACE®V. ADO OLOTHHATA PEDOTOV-
oopatdiev eivat wdiattepng onpaociag otig PLotatpikég EPAPHROYES: TO ALOPNHA OTEPEDY
1] VYPOV OOPATOIRV evTOg agplov, ITOL KAAeital agpOALHA, KAl TO ALOPNHA OTEPEDV
OOUATIOl®V eVTOG DYPOL, YVOOTO ®G KOAN0ewdég. Ot Opot agpolopa Kat KOANOedEg
AvAa@ePOVTAL TALTOXPOVA TOCO OTA OOPATIOT 00O KAl OTO PEPOV PevOTO, dnAadt) otV
dpaoixn) por). I'a va avagepbovpe ovykekpipéva OTo PeLOTO XPNOPOIOLELTAl O OPOG
ovveXN)G @AOL, &V® YA TAd JWPOVHEVA OMPATIOWT XPNOPOIoovVIal Ot Opot
O1aOKOPIIOPEVT) T) OOUATIONAKT] PAOT).

ZTG EPAPPOYEG MOV Hag evOlagepovy Oty mapovoda peléty), 1o peyebog twv
oopatdlev Kopaivetat amod pepikd vavopetpa (1Inm=10° m) wg apketd pHiKpopeTpa
(Ipm=10 m). ITpoobeta, yia 1 m\eloyn@ia T®V dPACIKOV POMV OTO AVAIIVEDOTIKO
KAl Kapdlayyelako ovotnpd, 1) OopaTdwaKky) @dorn eivat apketd apaiopévi (o
OLVOAIKOG OYKOG TV oopatdiav de Semepva to 0.0001% tov OLVOAIKOD OYKODL), OMOTE
propovpe va Bewpriocovpe povomievpr ovlevln T®V @acemv. AvTo onpaivet 0Tt IapoAo
IOV 1] COPIIEPLPOPU TOV OCOUATIOIOV OTO oLOTPA ennpedadetal Ao T POr) TOL PELOTOY,
1] OOPATIOIAKT) PAOT €XeL apeAnTéa emOPAOT) OTO PEPOV PELOTO.

Zmv npadn, o mAnboopdg 1OV awpovpeveyv oepatdiov petaBdMetar egattiag
OaPoOpOV PLOKAV dlepyaol®y, ON®G ITDPINVOIIOINOL, DYPOOKOMIKI] OlOYK®OIN Kdat
ovooepateon 1 oovabpoton. Enurhéov, ta oeopatidia kwvodviat AOye® TG porg Tov
@epovVTog pevotov, TV vduapln kAitoeav (.. dayvorn, Oeppo@oplon, NAeKTPOPOPLON))
KAt )V emopaor e§mtepkmVv nediav dovapemy.

H povtelomoinon tng OLVAPIKIG KAl TG PETAPOPAS TRV odpaTidimy, pmopet va
etvat waitepa anodotikn) yia tovg akolovboog Aoyoog: a) pmopet va Pondnoet otnv
KATavonoln TV QUOIKAOV @Pavopévemy Iov Adpfdavoov ywpa Oiymg TtV xpron
nelpapdatov, kat P) pmopel va xpnowpomownfel yla TV HOPAMETPIKI] PEANETI) OIIO
avamntodn O1PAacik®V oLOTNPIAT®V Kat T BeAtiotonoinon 1dn vnapyoviev. Pookd n
povtelomoinon TG O®MATIOWIKI)G @AONG IMPEmel va oLvOLAOTEL He TV
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avtioTolyn POVTEAOIIOiNOn TNG POIG TOL PEDOTOL, APOL OTIG MEPLOCOTEPEG EPAPHOYES,
ovopnep\apPavopévey TV Plolatpikev, TA OLOTHRATA  PELOTOL-COUATOIOV
Bpiloxovtat ev xwvroet (péovv). Zoxvd, HAAOTA, ot pogg avteg eivatl tpdtdotareg Kat
APKETA MePIITAOKEG.

Zmv napovoa Owatpifr) efetalovial Ta CLOTPATA PELOTOV-OOPATIOIOV Oe POLg
Bropevotmwv. Ot ovvnBéotepeg poég Propepotmv elvat 1) Por} TOL A¢Pa OTO AVAIIVEDOTIKO
ODOTNPA KAl 1] POI) TOL aipatog oto Kapdayyelako. lotopikd, mpmta peletr|Onke 1 pony
OOPATION®V OTO avamvevotiko ovotnpa. Axopa kat o Leonardo Da Vinci evoiagepOnke
yla Vv evanobeor oKOVIG OTODG IIVEDHOVEG.

Ta poviéha mov XPnolpoIolovLVIAL Yl TA OLOTHATA PELOTOL-OOUATIOI®Y OTO
avamnvevoTiko odotnpa ovvbag dakpivovial oe SO0 peydleg Katnyopieg: Ta epIEPKA
kat ta pnyaviotikd (Housiadas and Lazarides, 2010). Ta mpota Paocilovial oe eva
oLVOLAOHO De@PNTIKOV KAl EPIIEIPIKMDY OXE0EMV KAl eIVl APKETA AIAA Yo IIPAKTIKEG
epappoyés. Qotdoo, 1 epappoyr Tovg meplopiletat ot ovvlrkeg, vmoO TG omoieg
DIIOAOYIOT KAV Ol HAPUIPETPOL TOLG, KAl AIIO TO 0Tt 0ev Aapavoov vmoyrn 1) SOVAPIKI)
tov oopatdiov. Ta pnyaviotka povtéla, avtifeta, mpoPAEmovy 11 petagopd Kdt
evanobeon opATOlOV ®¢ AMOTENEOpA OAPOP®V PLOKAOV dlepyaolwV Kdt To
PEYaNDTEPO MAEOVEKTPA TOVG elval OTL PIIOPOLV VA EPAPHOOTOLY Yla pia IAndwpa
oovOnkav.

Mwa vookatnyopla T@V pnYaviotkov povtedev eivat avta mov Paocifovratr oe
TEXVIKEG TG DIIOAOYIOTIKIG PELOTORNXAVIKNG (computational fluid dynamics - CFD).
Av Kat aotd ta povteda eivat mepim\oxa Kat oov)0mg DIIOAOY0TIKA damavnpd, Kat yia
aoTo To AOYO OXt KATAAANAA yla HIPAKTIKEG EQAPHOYEG, EXODV 1OXLPI PLOKI| BAoT) pe
AToTEAEOHA TOOO TO MedlO POIG TOL PELOTOV, OO0 KAl 1] COYKEVIP®OI T®V OOPATIOIDV
va vroloyiovtat pe Aerrtopépeta. Ta povtéla g oopatidlakng gaong mov Paocifovrat
oe CFD eivay, enmopevmg, KataAAnAa dtaitepa yid TV IPpOCOpRoi®0r] TOV PIKPOPLOIK®DV
Aemrtopepel®v  T®V  OLVOET®V  PO®YV  AEPOADPAT®V  OTO  AVAIIVEDOTIKO OLOTNHA
(Housiadas and Lazarides, 2010).

Ta CFD, pnyaviotkd povtéda propobdv va katnyoptomowfoov mepattépm oe 600
KOPLEG KATNyopieg avaAoya pe To IMAAIo0 IEPLyPAPNS TG KIVIONG TOL PEDOTOD KAl TOV
oopatdiov. Ymdpyel, Aourtov, n Lagrangian 1] oopatidlaxi) Ieptypa@r), OImov
XPNOpoIIoteital eva Kivovpevo Aaioto avagopds, kat 1) Eulerian 1) xopikn) meptypaer,
o110V xpnotponoteital va otabepo Maiolo avapopdag.

H api®pntikny povteomoinon tg petagopdg Kat evarodeong copatidimy, ta omnola
elvat SaoKOPMOpEVA eVTOG PEOVI®V PlOPevoT®V, elval 0 KOPLOg OTOX0G TNG ITAPOoLOaAg
SatpiPrig. ZoYKEKPIPEVA, TO EVOLAPEPOV EMKEVIPOVETAL 0TI PEAETH TNG emOPAONS NG
adpavelag Kat TV e§RTEPIKOV HAlIK®OV dOVAPE®V 0T HeTagopd Kat evamnobeon tov
OOPATIONOV OTA «TO®HUATA» TOL AVAIIVEDOTIKOD KAl KOKAOPOPIKOD OLOTHIATOG.

H adpavela tov oopatdiov eival onpavtikyy oe MOAEG epAPHOYEG COOTNHATOV
PELOTOL-OOPATIOlOV Kat exetl diepevvnOel AVANDTIKA, MEPAPATIKA Kat aptfpnTikda otn
PipAoypagia. H amhr, axkadnpaikr), yeopetpia prag yoviag 90° pe KoxAiki) Otatopr),
XPNOWIOIIOLELTAl OLYVA Of ALTEG TIG PEAETEG, OMOL TA AOPAVEIAKA QALVOPHEVA T®V
oopatdlov avadelkvoovtal evkola eSattiag g alAayrg katevbovong g porg tov
PELOTO.

H mo 81e€odikn) netpapatikr) epyaocia ywa myv evamnobeon oopatdiov oe yovia 90°
e KoxAikn) datopr) og twpa éxet deSaxbetl amo tovg (Pui et al., 1987), kat agopovoe
HPETPIOELG TOOO O¢ OTPWTH] OO0 KAt TopPwdn por) pe povodieonappeva oopatiota. Ot
YoViEg etyav dtagopetikég Stapetpovg d, Kat ot AOyol KApImouAOTTag TG YoVidg R,
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oo opilovtat g R =R, /(d, /2) pe R, v axtiva mg yeovidg, kopatvovtav amd 5.6 @g
7.

OewpnTikol vmoloyopot g evamobeong ocopatdiov oe yovia 90° KoxAikrng
daropr|g eSattiag g adpavelag eywvav apyikd amno tovg (Cheng and Wang, 1975). H
avaAvTiki) AOOI) TOV eSI0MO0EMV KIVI01G TOV O@PATIOIOV ITOL IIPOTELVAV Y1d THV EDPEOT)
g evanoOeong vrobetetl pia WOAVIKY), AVAALTIKI), ASOVIKI) POI) PELOTOV, 1) oroia apeAet
evtehmg 1) SevTtepedovOA POty EVTOG TG YOVIdS. Me Bdon aotry T Avon coprepavay ot
10 KAdopa evarobeong dev eSaptdrat Wtaitepd Ao T0 AOYO KAPIDAOTTA TG YOVIAG.
Apyotepa, oe pa devtepn) dnpooievorn) tovg (Cheng and Wang, 1981), xprnowpomnoinoav
TO avaAvTiko, oTP®TO medio porg T@v Mori and Nakayama (1965) yia tov vrioAoylopo
g evanobeong TovV oopatdiov Aoy adpavelag yia aptdpovg Reynolds (Re) 100 kot
1000 xat R, =8. H por tov Mori & Nakayama meptypd@et pia IA)pmg averntoypevn
POI] €VIOG NG Y®VIAG, OMOL 1) Oe0TEPELOLOA POI) MPOOEYYI(eTAl AIIO P KEVTPLKI)
IIEPLOXN] KAl éva OPLaKO OTPMHA, 1) OIIold Op®G elval COPMEOTr). A0 avThV Tr) HeAétn
OLHIIEPAVAV OTL TO KAAOpdA evarofeong eSaptdral Katd Koplo Aoyo ard tov apifpo
Stokes T@V ocopATIOl®OV, E€va adlaoTato HETPO TNG AdPAVELAS TOV OOPATIOIRV, KAl Ao
tov appo Reynolds. Ta apiBpntikda tovg amoteAéopata 1)Tav KOVid otd MEPAapaTiKd
eoprjpata tv Pui et al. (1987) yia ) porj oywnAoov apibpod Reynolds (Re =1000), aA\a
dépepav ya ) por| xapnAov apipov Reynolds (Re=100). Evag Aoyog ywa aotr tn
Olagopd elvat OTL TO AVAADTIKO HOVIEAO pPOI)G IIOL xprowpornoujoav Oegv eivat
KATAaAANAo yia poég yapnAoo apipov Reynolds.

H evanoBeon oopatdiov eSattiag g adpdvelag tovg xet, emiong, peletndel pe
appnuikég pebodovg. Ov Crane and Evans (1977), é\voav t) ovvexr @don (pépov
a¢plo) YPIOHOIIOI®VTAS TV AptOpnTiKr) TeXViKt) Tov Rowe xat ) copatidiakn) ¢don
xpnowonowvtag Lagrangian pedodoloyia. Xprowpomoinoav pia aSovOOLPHETPIKI)
KATAVOHI] TayOINtag otV €loodo yua TV edpeon TG OeuTePELOLOAS POTS, Kdt
rpocopoinoav topPmdelg poig oopatidinav o pia yovid pe Aoyo kapmolotntag 4. H
HPENET) TOLG KATEANye OTO OTL 1) OeLTEPELOVOA POT| eNnPeAlel WOXLPA TIG TPOXIEG TOV
OOUATIOl®V, OX1 OP®G KAl TO KAAOHPA evariofeon.

Ma mo peaAloTiki) IPOOEyylon TOL AVAIITDOOOHEVODL TPLOtdoTatov Imediov Porg
evtog pa yovidg 90° viobetriOnke amo tovg Tsai and Pui (1990), ot omoiot voAdyioav
1) POI] TOL PELOTOL HE evay TPOAOTATO, EANEUTTIKO KOOIKA MEMEPAOHEVDV OLAPOPDV.
H evanobeon 1ov oopatidiov vrioAoylotnke péom tg emAvong oV e§lomoemV Kivnong
TV oopatdiov. Extog amnod myv enidpaor) tov apifpoov Stokes oto xKhdopa evarodbeorg,
pedémoav kot v emidpaon Tov appov Dean (De=Re/ \/R—D ), tov Adyoo
KAPITVAOTITAG KAl TG KATAVONLG TNG TAXOTNTAG 0TV €l0000 g yovids. Apyodtepd, ot
Breuer et al. (2006), mpooopoimoav 11 petagopd xat evarnobeon copatidi®ov oe yovid
90" xvxAr|g Startopr|g xpnowponolwvtag ITpooopoinoeig Meyahwv Awvev (Large-Eddy
Simulations - LES) ywa 1t pory xat Lagrangian peBodoloyia ywa ta oepatidla.
MeAétoav v evanobeor oe por) pe Re =10000, aAAa motonoinoav t) pedodoloyiag
tov o¢ por] pe Re=1000. Ta amoteAéopata Tovg eixav KaAr) COPPOVIA PE TEPAPATIKA
KAt GANa aplOpnTikd amnoteAéopatd.

OAeg ov mpoavagepbeioeg apdpntikég pédodot xpnopomolovy meptypa@ry Katd
Lagrange yta 1 oopatidlaxy) @dor), KAatd TV omoid emAvovIdl, ite aptOpntikd 1)
avalotikda, ot &§lomoelg kivnong tov oopatdieov. H mpoogyylon avt) eival n
OLXVOTEPA YPNOLHOIIOIOVHEVT), €medl] MPOooPEpel pia POAKI] Kat €OKOAn otV
epappoyng g pedodoloyla yla TNV AVIIPET®ION TOV AOPAVEWIKDV QPAVOPEV@DV.
€20T000, 0 LIOAOYIOHOG ONUAVTIK®V Heyedmv, ON®G eival 1 TOMIKI] OLYKEVIP®ON
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oopatdlov (Slater and Young, 2001) 1) n péon petagopd Oppng HETASL TOV PACEDV
(Garg et al., 2009), eivar dwaitepa dvokolog. Eival avaykaiog o vmoAoylopog tng
TPOXUIG €VOG peydhov aplfpod oepatidiov yia v eAayloTornoinon Tov OTATIOTIKO
opalpatog (Desjardins et al, 2008), kabotwvrag v Lagrangian mpooéyylon
oroAoyloTika pn arodotiki). O é\eyyog tov apipntkov opdApatog otig Eulerian-
Lagrangian Mmpooopoli®oelg YiveTtal IO ONUAVTIKOG Yld &VIOVA dVOPOIOHOP@PES
Katavopeg oopatdiov kabmg o aplfpog t1ov copatidiov mov vroloyiloviat ava ket
IAEYPATOG HELMVETAL, EVA TO OTATIOTIKO OQPUAPA IOV €LVAL AVTIOTPOP®DG AVANOYO TN|G
TETPAy®ViKIg pilag tov aplfpoov tov copatdiov ava keli, avdavet (Garg et al., 2009).
ITpoogateg Pertiwoelg ot Eulerian-Lagrangian peBodoloyia avrtipetomnifoov 1o
npoPANpa avtd pe KAaALTepeg EKTIPNTPLEG OPANRATOG yia T Afyn apldpntka
ovykAwvoviov arnotedeopatov (Garg et al., 2009). ITpoobeta, av n Brownian dwiyvon
TOV 0OPATOI®V elval ONUAvTIKY), 0 ApOpOg TOV OOPATION®V, TOV OMOol®V 1) TPoxLd Oa
vrohoytotet, avddvel mepattep® ®ote va pewwbet o BopvPog mov mapdayetar amod T
OTOXAOTIKI| KIVI|OT T®V O@patidinv.

Znpavtikeg evalaktikeg mpooeyyloelg otovg Eulerian-Lagrangian vrmoAoytopoog
arotehovyv ot epyaocieg twv Lawson et al. (2006) xat Armand et al. (1998). Ot mpwtot
EMXElPNOaV VA DIOAOYIOODV TI) OLYKEVIP®OIN TOV OOEATOIOV 0 Ha Yovid,
xpnowponowwvtag v m\npag Lagrangian pedodoloyia tov Healy and Young (2005).
Me aotov TOV TPOImO, I OLYKEVIP®MON TOV OOPATOI®V MIPOoodloplotnke pe TOV
DIIOAOYIOHO TG TAPAPOPP®ONG (OLAOTOANG 1) OLHIIEONG) €VOG AIELPOEAYIOTOV
opboymvikond Oykov otnv KatevOovor g TPoxLdg evog ompatidtov. Ot Armand et al.
(1998) mpotevav kdat mMOTOHIOINOAav, TO00 0 OTPWTEG 000 KAt TopPwdelg pogg, pa
Eulerian mpooéyyion, 1n omnoia oopmnep\dppPave exIPoIn) TOV OOPATIOV AOy®
adpavelag oe éva poviého dvo pevotov. H taydtnta tov copatidiov mpoodtopiotnke
ermAvovtag apldpnTkda TG ovlevypéveg eClomoelg pAalag Kat Oppng TG OOPATIOIKNG
¢@daong. Emmpoofeta, mpoocyyioav ) por) evtog piag yovidag 90° kokAikrg diatopr)g pe
) por avdapeod oe dvo KAPMLA®PEVES ITAPAIANAEG TAAKEG KAl TA AIOTEAEOPATA TOVLG
ftav xkovta ota nepapatikd dedopeva tov Pui et al. (1987) xat v apiBpntikr) Avon
tov Tsai and Pui (1990) yia Re =1000.

H eSiomon 1ooppormiag mAnboopod teov oopatdiov (particle population balance
equation - PBE) oe meprypagr) Euler, eSetdler tig Otepyaoieg tov agpoAdvpatog (IL.x.
OLVAY®YT), ITVPNVOIIOINGT), AVAIITLSN KAl CDOOMPIATMOL)) Oe Evav otadepod oTol elmdeg
OYKO, OmOTE 1] O1ayLON AvVTIPET®HIfeTal dpeoda KAt 1 OLYKEVIP®OI TOV OOPATOI0V
vmoloyiCetat  pntwg.  Qotoco, ta adpavelakda @awopeva Oe  HpImopoLV  va
ooprieptAn@Oovv evkola ot tomikr] popgry g PBE. Zwyv mapovoa Owatpifr),
XPNOWOIIOLELTAL Pld IIPOOEYYIOTIKI) EKPEAOT Y1a TV TAXOTNTA TOV COUATIOI®V ®OTE Ta
adpavelakd gawvopeva va evoopatoboov oe katd Euler meptypaen.

Avtr) n npoosyyion katd Euler mpoogépet onpavtika mleovektrpata o oxeorn pe ta
povtéda dvo pevotV MOL dev armoovvdiovv Tig e§lomOelg pAfag KAt Oppng Tng
oopatdlaxng eaong. Ipwta, 1 apBpntiki) Avon g e§iomwong oppng T®V oOpatdiny
dev elval anapattnt yia tov mpoodloptopod tov mediov TAXLTTOV TOV CORATIOIDY,
kabwg Ta ¢awopeva oppng AapPdvoviar vmnoyn o¢ datapaxr). Aovtd €xel oav
AIIOTEAEOPA TNV EKPPAOI) TNG TAXLINTAG T®V OOUATOIOV pEo® TG TaxLINTAG TOL
PELOTOL KAl TOV YOPIKAV MIAPAY®Y®V aLTHG (0T povipn kataotaorn). Emurkeov, n
npoogyylon pmopet va xpnowpomowufel ya oopatidia pukprg dapérpov, Omov ot
elowoelg xivnong oe pua Lagrangian poogyyion yivetat aptfpntika dookoAr). Teéhog, n
npoogyytlon xatd Euler mov Swanpaypatevopaote oty napovoa diatpifr) etvat mo
akpPrg ano wmyv amArn Euler npooéyylon mabntukoon tyvnhdrr) epooov AapPdavet vrioyn
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TavToOXPOva T PETAPOPA AOYy® OlaxLong Kat v emidpaon tng adpavelag tov
oOPATOI®V.

[TpoomidBeteg oe avtrv Vv katevbovor éyovv yivel yia oopatidia pkpotepa tov
1um . Ot Longest and Oldham (2008) avéntoav éva Eulerian-Eulerian povtélo yia v
poPAeyn) g emkdbiong ocopatidiov oe StaKA\ad®oelg pe oTP®TI] POL| Yid MEPUITMOELG
omov 1 Ouayvon kat 1 adpdvewa eivatr onpavtikég ywa vy evanobeon. Eméktewvav,
PAALOTA, TV IIPOCEYYIOT] EKTPOIING TG PO1G pe d10pOmoelg KOV OTO TOIXOPA WOTE VA
AngOet vmoyn n emPpadovorn Tov cHOPATdoL KaAbmg KIVeltat IPog TV EMPAVELD TOV
toywparog. O Xi and Longest (2008a) eméxtetvav nepattepm avto 1o Eulerian-Eulerian
povtélo @ote va avipetemiel ) Olaonopd oV oopatdiov oe TopPwdelg Kat pn-
POVjIEG POEG, Kal TO xpnolpomoinoav yia va mpoPAeyoov v emkdbon oe eva
PEANOTIKO POVTEAD T®V TpaxeoPpoyxikev aspayoymv. IIpoobeta, ot Xi and Longest
(2008b) eqdppooav to POVIEAO yla Va DIIOAOYIOOLV TNV dlacmopd oOPATOIOV AOY®
dayvong, adpaveiag kat TOpPng oe éva oLVOETO POVTENO TNG PLVIKIG KOWOTHTAG.
Avtiotoya, ot Zhao et al. (2009) napovotacav éva yeviKeDHEVO HOVTENO EKTPOIING NG
po1g yia TopPadelg Poég LIEPALITOV OOPATIOIDV 08 E0MTEPIKOVG Ywpovs. Ot epyaocieg
avtég £0wvayv, emiong, KAtavopeg TG OLYKEVIP®ONG KAt TV Béoewv evamobeong twmv
oOPATOI®V.

Zmv napovoa epyaocia, xprnowponowovpe piwa Eulerian-Eulerian meprypagr) piag
apaujg SlAoIappeVNG POIG OTO OPLO TOL YXARNAOD PopPTiov pdfag Kat PIKP®YV AOY®V
Oykov. Oewpovpe povomlevpn oLCELSN TG OGPATIOWAKI)G PAOHG, COPPOVA HE THV
oroia 1 oEpPATIOAKY) QAOT eNnEEAfeTAl ATIO T OLVEXT] PAOT, AAAA TO AVTILIOTPOPO dev
wyvet. 2ty Eulerian meptypagr) tng ompatdlakrg @dong, IpooeyyiCoope TV
TAXOTA TOV OOUATO®V otV &Siomorn padag Tev oepatdiav, 1 woddvapa otnv
PBE, pe pua €k@paon ot0 Opl0 TOV HIKPOV XPOVAOV YAAIP®DONG TOV OOUATIOI®V.
ZOYKEKPIPEVA, 1] TaxLITA TOV OOPATOIOV amotelettat amo évav opo Oudyvorng, o
oroiog eSaptdrat amod My YOPIKI IAPAY®OYO TG OLYKEVIP®ONG TOV OOPATIOI®V, Kt
amo &vav o0po ovvaywyng mov eivat aveSaptnrog g ovykévipoons. H taydtta
OLVAY®YI)G 1000TAl PE TNV TAYOINTA TOL PELOTOL dlopOmpEVI] KATA TV TaAXLTTA
extporr| (1) oAtoBnong) eSattiag g adpdavetag xat g Papotikig kadidnong 11 AoV
eCMTEPIKMOV OLVAPEDV, EL0CYOVTAG HIE AVTOV TOV TPOIIO TA AOPAVELAKA QALVOPEVA OTHV
Eulerian popen) g PBE. H 10x0g g mpootyylong g tayxdtntag 1oV oopatidiov yia
HPEYAANDTEPOVG YPOVOLS XANIPMONG elVal IPOTAPX KIS ONACLAS Yid TOV IIPOCOIOPIOPO
TOD €DPOVG EPAPHOVT|G TIG.

H tpomnonoupévr) eiomon petagopdg tov oopatdinv (particle transport equation -
PTE), dnhadny n PBE xwpig wv emidpaon tng moprnvomoinong, TG VYPOOKOIIKIG
avantodng Kat TG OLOCWHAT®ONG, emAveTal aplpnTka otg Tpelg daoTaoelg
xpnowponowwvtag CFD teyvikeg. H ovykevipwon tov ocopatdiov ovroloyiletat
emPdailovtag ) oovriOn oovoplakr) cvvOnKn ToL TAPWG ATIOPPOPNTIKOD TOXDHATOG
(pndeviky) oLyKEVTIPp®ON COUATIOI®Y OTO TOXOPA) O CLVOLAOPO PE TNV 1OXLPL| POI)
petagopdag oopatdimv mpog 1o Tolyopa efattiag g emidpaong v pafikov
dvvapewv.

ES 0owv yvepifoope, avt) eivat n mpwtrn) Qopd IIOL XPNOIOIOLELTAl pid IEPLyPAPn
kata Euler g eSlowong petagopdg Tov copattdiov yia v mpoPAeyn g PeTapopdag
Kat evamnobeong Papéwv, adpavev ocopatdiov. Oneg ¢atvetat amo TG diagopeg
MIPAKTIKEG EPAPHOYEG TTOD EGETAOAE, P& KATAAMNAL X101 KAl HEPALTEP® AVANDOL) TOV
aplpnTuke®v DpoPAEYemV TO POVTENO HUIIOPEL VA OLVELOPEPEL OTNV KATAVONOL] TG
OLPIIEPLPOPAS TOV OOUATIOI®V OTO AVAIIVEDOTIKO KAl KAPdlayyelako ovotnud,
IPOO@EPOVTAG e avutdov Ttov Tpomo Pabdtepn Katavonon TG QLOKNG KAt
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Aettovpyovtag g epyaleto yia 1o oxedaopo xat ) PeAtiotonoinon Protatpikov

EPAPHOYQV.

H 60}11] ¢ dratpPrig etvat 1) akoAovdn:
210 Kepdlato 2 6idetar 10 Oepntikd vnoPabpo OxeTKd pe TI§ POEG PELOTOL-
OOUATIOI®V KAl IEPLYPAPOVIAL TAd APOpNTIKA HOVTEAd ITOL yprotponou|dnkav.
ZOYKEKPIPEVA YA T OOPATIOAKT] PAOT), TIEPLYPAPETAL AEITTOPEPMS O TPOIIOG HIE TOV
oroto ta adpavelakd Qaivopeva evoopatodnkav oty neptypa@r xatda Euler tng
eSlomong petagopdg TV oopaTdimy.

* H motonoinorn) g npotetvopevng pebodoroyiag diverat oto KegpdaAato 3. Ot 0pot g
diayvong xat 1V eS@TEPIK®V OLVAPED®V IMOTOIOOLVTAL SeEX®PLOTA, MPWV TV
moToIoinon tov oovoAwkob povtélov. Ta amotehéopara tov kata Euler povtedoo
ovykpivovialr pe Ta evprjpata  OAQOp®V IEPAPATIKOV, AVANDTIKOV KAt
aplpnukev epyactov g PtpAtoypapiag.

= 2ta Kepahawa 4 xat 5, to avamtoxfév povieho xprowpomnoteitat yia T pelétn g
emdpaong g adpdvelag aepoOADIATOG yid Pogg oe OVO PACIKEG YeE@PETPLeG, O OTIOieg
®OTOOO AIIOTEAOLV OOMIKA OTOLXELD TOL CAVAIIVEDOTIKOD OLOTPATOG: O Pl YOVLIA
90" xat oe pla draxhadwor). Zoykekppeva, eSetalovrat 1 emidpaon Tov peyebovg
TOV OOPATIOOV KAl TOV XAPAKTNPOTIK®V ToL mediov por)g. Ymoloyilovial ta
KAaopata evanobeong Kat ot Katavopég OLYKEVTP®ONG KAt bIIOOeIKVDoVTdal ot Beoetg
evanobeong tov oopatdiov.

= 2to Kepdhawo 6, 10 poviedo xata Euler ypnowpomoteitatr ywa tn peAétn g
petagpopag Kat evanobeong oopatdinyv, ta onota eivat dieonappeva oe vypo pEco,
Kat Bpiokovtat oo v enidpaot) eS@TEPIKOL PayvNTIKOD IIEGLOD.

= Télog, oto Kepahato 7, oovoyiloviatl ta Paockotepa evoprjpata tg dtatpiPrig Kat
rpotelvovial Katevdovoelg yia T HEPAITEP®  AVAITLSN TG IIPOTEWVOHEVIG
peBodoloyiag.
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270 KEPAAAO ALTO MEPLYPAPETAL TO DempnTKO vIIOPADPO OXETIKA PE TA CLOTHPATA
PELOTOL-COPATIONOV Kat Ta aplOpNTIKA HOVTEAT TTOD XPOIPOIIO0DVTAL 0TV IApoLod

datpiPr.
2.1 XYNEXHX OAZH

2.1.1 Zoveyng Paon:EQowoerg

Ewova 2.1: 'evikevpévog Ienepacpévog BIIOAOY10TIKOG OYKOG.

Eote® S pua khewot) em@avela moo nepikAeiet évav oyko € toxaiov ox1patog o pida
MIEMIEPAOPEVT] TIEPLOXT) TN)G POIG TOL PELOTOL, oTabepr) OTOV X®PO HEoA amod TV omola
dutpyetat to pevoto, onwg @aiveratr oy Ew.2.1. H oloxAnpopatikyy poper g
eClowong OLVEXELAG EVOG AOLUIIIETTOL PELOTOL YPUPETAL OG:

[6-dS=0, 1)
S
KAl Ot TPLOLaoTateg el0MOEG OPHING OG:

ﬁj'pfudQ+J‘pqu-d§ = —jp{-d§+J‘(Txx{+TyX}+sz]2)~d§
51‘9 S S S

0 - oaa ALz 2 2 ~ P
Eipfvd9+£pfvu.ds = —!p] ~dS+J;(rxy1 +17,,j+7,k)-dS . (2.2)
%J.pfwdQ+J.pwa-d§=—J.plz'd§+j(rxzf+ryzj+rzzlg)-dg

Q S S S

Zug napandve e§lomoelg O = ui +vj+wk elvat n taxdta Tov pevotov, p 1 mieon, p;
1] IUKVOTITA TOL PEDOTOV, 7; Ol OLVIOTMOEG TOL TAVLOTH TOV TACE®V, dS=1dS 1

otoelwdng em@eavela omov 71 to kabeto oe avmv povadiwaio diavoopa, dQ o
otolyelmdNg OYKOG, Kat i ,j,l; ta davoopata Paong tov Cartesian xopov. Ot e§lomoetg
avtég amotehody Tig eSlomoetg Navier-Stokes yia éva aovprrieoto, Nevtovelo penoto oe
ONOKANPOPATIKY) pop@1). XtV mapovoda epyaota, eSetdloviatl pOvipeg PoEg, OMOTE O
IIP®TOG OPOG 0TO APLoTePO péNog TV EE.(2.2) woovtal pe to pndev, pe amoteleopa v
IIEPALTEP® AIIAOIIONNOT) TV ESIOMOEDV.

Av u, xat ¢ elvat n YapaktploTiKy] TAOTNTA KAl TO XAPAKTINPLOTIKO HNKOG,
avtioTolya, Yl €Va ODYKEKPEVO MPOPANpA por)g, TOTE 1 POVIHN, AOlAoTaTy) HOPPn
v EC.(2.2) ypdeetat (ta idia odpPola kpatodvtat yid eDKOALA):
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—_— A —_— 1 ~ ~ A —_
uo-dS=—\pi-dS+— i+7 j+7.k)-dS
.E v _!p Re .!(Txx Tyx] sz )

L E o= 1 A A Ao
Ivu-d5=—jp]-dS+R—eI(rxyz +7,,j+7,k)-dS , (2.3)
S S

S

—_ A —_ 1 ~ ~ A —_
wo-dS =—|pk-dS+— i+7 _i+7.k)-dS
! v !p Re v!(sz Tyz] Tzz )

Xpnotponowwvtag ta peyédn p; u> xat u, /¢ ywa mv adiaotatonoinon t@v Opwv g

mieong Kat T@V OlaTpnTKeV Tdoewv, avrtiotoiya. Xtig ES.(2.3), Re eivat o apiBpog
Reynolds g por)g, mov opiletat wg:
pru, L
Re=——, (24)
Hy
omov x4, 1 dvvapikr) covekTkOTTa ToL pevotov. O apBpog Reynolds iver tov Adyo

TOV duvAapemVv adpdvelag Ipog Tig SUVAELG OLVEKTIKOTNTAG PEOA 0T POL).

ZNpewVETAl  OTL OV  IIAPODOd EPYAOld, ®¢ XAPAKTINPEOTIKY] Tayvtta
Xpnotponoteitat 1 péor) TayxLTTA L0000D TOL PELOTOV, EVM MG XAPAKTNPLOTIKO HIKOG 1)
dlapetpog ToL aywyoo.

2.1.2 Xovexng Daon: ApiBuntiky Emiloon

Ot eSlowoelg Navier-Stokes yia tpdidotato, acvprieoto medio porg Tov PEPOVTOG
PELOTOL, emAvovTal apldpnTikda pe xpnon tov pn-epnopwkod CFD xodika CADBA
(Computational Algorithm for Diagnosis of Biofluid flow Abnormalities). O k®0tkag
PaoiCetat ot pebodoloyia mov mpoteivoov ot Ferziger and Peri¢ (2002) xat
avamtoydnke ano toog Neofytou (2005) xat Neofytou and Tsangaris (2006). O xoduag
éxel motoromdet yia Owdpopeg ovvOrKeg porg Kat Ta PACIKA TOL XAPAKTPLOTIKA
oovoyifovTtatl ot CLVEXELA.

O xodwkag evoopatavel T pebodoloyia memepaopeveov Ooykmv oe multi-block,
ooparodeta (body-fitted) mAéypata, omov AapPdavetat vmoyn 1 pn-opfoy®vioTnTa To0
m\eypatog. Extog amo Neotwvela, o kodwkag mepiexel yevikeopéva Nevtovela xat
wwdoehaotika (Oldroyd-B) poviéha pevotov. 'a va avtupetomotet 1o mpoPAnpa g
ieong xat va daogaliotet 0Tt To vrIoAoy{opevo medio por| kavormotel Vv e{lomon
ovveyelag, xprnowpomnoteitat otov Kodwka pia eiomon otopbwong mieong padi pe n
pebodoloyia SIMPLE (Semi-Implicit Method for Pressure-Linked Equations, Patankar
(1980)). H SIMPLE eivat pua enavalnmrtikr] pébodog yia ovlevypeva mpoPAnpata
TAXOTTAG-MIIEONG. EEKIVMOVTAG Ao pia apyki) vrobeon yia to medio por), ot e§lowoelg
Navier-Stokes emAvdovtat yia v edpeon) g TaxLTNTAG, KATOMY 1) IIieorn dopbmvetat
XPNOOIOIOVTAG TV e§lomor) 010p0mong Imieong Kat ot TayvINTeg evpep®@VOvVTAt. Avtd
Ta véa medla taydTnTag Kot Ieong KAavoroovy v eSlomon ovvéxetag, ald oyt
arapattnta kat tig eStonoelg opprs. Emopevag, n Stadwaoia emavalapPavetat pe to
avabempnpévo medio TayLT TRV, péxPt 1) Avor) Tov mediov por|g (TaxLTTEG KAl ITiEoT))
VA IKAVOIIOlel TALTOXPOVA TNV eSl0MOT) OLVEXELAG KAl TIG ESI0MOELG OPHL|S.

Ot e€lomoetg opurg (ES.(2.3)) draxpironotovvtat oto CADBA péowm epmpodg (mpoow)
Euler oynjpa ywa tov xpovika petapalopevo opo, pe to 31s tadng oxrpa QUICK yua
TOV OPO OLVAY®YTG, KAt pe To 215 TASng oXpa Kevipikmv dtagopmv (central difference
scheme - CDS) ywa tov 0po duixvong (0pot oLVEKTIKOTNTAG), EV® O OPOG TNG IEONG
avtpetomnietal og mmyt) (Ferziger and Peri¢, 2002). To obotnpa ypappikav eSlowoemv
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IIOL IIPOKLITEL EMAVETAL APOpNTIKA pe TV enavainmuiky pebodo SIP (Strongly
Implicit Procedure), pia pebodo atehodg LU mapayovtonoinong mov mpotabnke amo
tov Stone (1968).

2V napovoa gpyaotia, emAivovpe to nedio porg Bewmpwvtag acvprieoto, Nevtovelo
PELOTO, OTPWTL] Por), otabepeg OO TEG PeLOTOL Kat povi) oblevln, OnAadn Ot n
emopaor) g COUATIONAKIG PAOTG OTO DOPOOLVAPIKO edIO TOL PEPOVTOG agpiov etvat
apekntéa. Emuniéov, oty eloodo Oempovdpe otabepd mpo@il tayxdtntag xatr orabeprn
IT{E0T] KAl OTA TOW@UATA epappoletat 1) oovOnkn pn-oAiodnong, eva oty €é0do 1000 ot
TayvTeg, 000 Kat 1) mieorn Pplokovtal pe extrapolation amod Tig TIHEG TOV YEITOVIKOV
e0nTEPIKOV KOpPwv. H xatavoprn g taxdmtag oty eioodo eival avtr) g IApeg
AVEMTOYHEVIG POTG Ot eDODYPAPHPO KUKAKO aywyo, 11 omoia yia Nevtwveleg poeg
Ppiloketat avalvTikd. XtV HePITOON avtr), 10 (TAPAPOAKO) HPo@il TaxvIntag
dilvetat oe adidotaty) pop@r| amo v akolovdn oxéon:

2
r
V], = 2{1 —(7] },O <r<r, (2.5)
t

omov 1, =d, /2 1 aktiva tov aymyoo.

2.2 ZQMATIAIAKH ©OAXH
2.2.1 Zopanidraxy Ddon: 'evikn) Aovapikny ESiowon

H petaPBolr) oto xopo Kat 1o xpovo tng Katavopng peyebovg oopatidiov Kate aro
dagopeg puokég diepyaoieg eival vyiotng onpaociag yia T peAét) TG PONG TRV
agpOALHAT®V. YIapyoovv Ovo Katnyopieg Sadikaociewv Mov PIOPOLV Vd petafalovv
Vv katavopr] peyebovg tov agpoldpatog oe éva otabepd otoixeldn Oyko: a) ot
E0MTEPIKEG OLAOIKAOIEG, ON®G Il OLOCWHUAT®OL/ OLVADPOLON Kal 1) HETATPOML| AEPLAG
@aong oe oopatiolaxr), Kat P) ot eSmtepikeg Sradkaoieg, ONWG 1 OCLVAY®YI KAl 1|
dlayvon mov ogeiletat otny vIIAPEN KAOE®V CLYKEVIPWOTG, KAOMG Katl otV entdpaon
eotepkov  Oovdpeav (LY. Papvmrag, nlextpopayvntikng). H o Oragopui-
OANOKANP®OTIKY) €§l0®ON TIOL MEPLYPAPEL TNV €MidPAOI] ALT®V T®V QPAIVOHEVOV OTHV
Katavopr] peyébovg oopatdiov ovopdaletar I'evikr) Aovapwr) ESiowon (General
Dynamic Equation - GDE). Aofévtov KatdAnAev apXik®v Kat ObVoplakmv ocovinkov,
n GDE meprypaget m\fjpwg TV Katavopr) peyédovg tov ocopatidiov oe pia por)
agpoOALpATOG.

Evtog por)g, 1 GDE divetat amo ) oxéon) (Drossinos and Housiadas, 2006):

on on on
—+Vnv |=—| +— ,(2.6
ot ( V”) ot ot|.., (26

8P
omov n(v;7,t) elval 11 COYKEVIPWO! OOPATOIOV Katd aplfpd pe Oyko petadd v Kat

v+dv, kat v, n péon tayvua v oopatdiov. O oykog Tov copatdiov, v,

emAéyetal wg aveSdptnt petaPAnt) oty katavour peyéboog twv copatdiov, n,
evavtt mg Stapetpov tovg, d,, eneldn) datnpeital Katd T cLOoEEAT®ON/covabpotor).

H éx@paon avt) g xatavopr|g peyébovg tov copatdiov eivat katdAnAn yua
OPAPIKA OOPATIONT eVOg 1000G, Ta OIOIA XPNOOIIOOVVTAL OTHV IAPOVOd EPYAOid.
Zmv EE.(2.6), o mpwtog Opog OTO aPloTeEPO PENOG AVAPEPETAL OTHV XPOVIKI)
OLOOWPELON CHOPATIOIWY KAl 0 debTEPOG 0TI HETAPOPU TO®V COPATIOI®V eSattiag TV
eCHTEPIKMOV OAdIKAOI®V, Ve TO dell PENOG AVIUIPOOMIIEDEL TIG EONTEPIKEG dlepyaoieg (0
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IIP®WTOG OPOG TI] HETATPOII] CEPLAS QAONG Of OMUATIOWIKI] KAt O Oe0TeEPOg T
ovoowpatwor/oovadpotor). Kabwg ot eomtepikég Stadukaotieg de AapPdavovtat vrmoyn)
omVv napovoa Oatpifr), ot pnxaviopot avtoi Oev efetalovtatr mepattepw. Extevelg
avalvoelg TOV SaPop®V e0MTEPIKMOV dladikaolmv propet kavelg va Ppet otig epyaoteg
tov Friedlander (2000), Hinds (1999), Seinfeld and Pandis (1998) xat Drossinos and
Housiadas (2006).

Ot eotepikég dtadikaoieg elvat ekeiveg, ol omoieg PETAPANOLV TNV KATAVOMI)
peyéboug Tov copatidiev, n(v;7,t), eSattiag g petagopds Copatidi®ov dS1apéoon Tov
opl®V TOL OToLXEWOOVG OYKOL ToL egetdletat. Aldgopa @aivopeva ennpedfovy v
kivnon evog oopatidiov mov Pplokete péoa oe €va PevOTO, elTe TO PELOTO eival OTACLHO
ette xwvettat. Ot pnyaviopot mov odnyodv TV Kivnon Tov copatidi®ov pmopody va
IIPOKAANEOOLY TI] HETAPOPA TODG HEOA OTO PELOTO, TOOO OLAPEcOL TV OPlOV TOL
OTOLXEI®OODG OYKOV, OO0 KAt IIPOG HLd EMPAVELT OIIOL PIIOPOLV va evarotebovv. ['ia to
AOYyO avTo, ot pnyaviopol aotol KalodvIal ooxva &g pnyaviopol evamobeong. Ztig
evotnteg mov axkoAovbovv, meptypdgovtat Pacikol pryaviopoi evamobeong xat Ba
deifovpe g avtotl evoopatavovtatr ot GDE yia va Angbet vnoyn n petagopd xat
evanofeon cOPATIOI®V O POEG PELOTOV-OCOUATIOIDV.

2.2.2 Zopanioraky Pdon: Muyaviopoi evamobeong

Ag Bewprioovpe Vv Kivnorn evog copatidiov Stapetpov d,, 0 £va CLVEKTIKO PELOTO.
H dbvaun nmov aokeitat oto oopatidio kabmg avtd kiveltat oto pevotod, Kaleitat
avtiotaon, F,. H katevBovon g Sovapng avtig etvat avtr) TG OXeTIKNG TaydTnTag
petadd Tov PeLOTOL KAl TOL oEpATdioy, U —V,, KAl To PETPo g diverat amo T Yeviki

pop@1) g eSlomong avtiotaong tov Newton (Hinds, 1999):
V4 o L2
Fo=Cog Py -7, . 27)

v mponyovpevy eSiowon, Cp,, elvar pla adiaotatn Ioootnta Iov ovopddetat
OLVTENEOTI|G AVTIOTAONG, KAl ElVAl CLVAPTION TOL OOHRATIOlaKOL apdpod Reynolds:
d,|o-v
Re, = M (2.8)
Hy
Ze avaloyia pe tov appo Reynolds g porg (ES.(24)), o Re, diver 1o Aoyo tav

adpavelakwv duvapemdVv TPOG TG OLVAPELS OLVEKTIKOTNTAG IOV JOKOOVIAL OTO
ooparidto. Otav ot adpavelakég dovdapelg xkabopiloov Vv kivnon tov copatidiov,
dnAadn ywa 1000 <Re, <2x10°, o ovvteheotr)g avtiotaong eival otabepog i0og mpog

Cp =044 (mepoxrj vopoo Newton). Qotooo, yia Re, <1000, o ovvtedeotg avtiotaong
e€aptatrat amo tov appo Reynolds tov oopatidieov, dniadn C,=f (Rep ) INa

1<Re, <1000, n axolovbn oxeon pmopet va xpnowomnowbet yia tov ovvieheotr)

avtiotaong (Hinds, 1999; Seinfeld and Pandis, 1998):
24
Cp,=—(1+0.15Re>* ). (2.9
D Rep ( P ) (2.9)
211G MEPUITMOELS, OITOL Ol AdPAVelaKEg dLVApELS elval apeAnTéeg OLYKPLVOPEVEG e TIG
dvvapelg ovvektikotntag, o Stokes (1851) €deife OTL 1) aviiotaon mov ACKeltat OToO

O®UATION0 ard TO PELOTO LOOLTAL IE:
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F,=37u,d,|6-v,|. (210)
Enopévag, o ovvieleotr)g avtiotaong etvat 100g pog:

Cp= ﬁ, (2.11)
Re,
dnAadr) etvatl avtiotpopmg avaloyog Tov oopatidtakov aptdpov Reynolds. H EE.(2.10)
elvatl yveotr) g o vopog Tov Stokes. I'ia va etvat apeAntéeg ot adpavetlakég dovdypelg oe
OXe0n Me aLTEG TG OLVEKTIKOTTAG, Oa mpémel 1 por] va eivat oTp@T] KAt ot
oopatidiakol apipoi Reynolds yapnloi. Aoto ovpPaivel oTg HEPLOOOTEPEG
MEPUITMOELG AEPONDPATOV, OOUIEPINAPPAVOREVOV KAl ADTOV TI)G IAPOoLOAg epyaoctag,
omov 1o Péyefog TV COUATIONOV elval PKPO KAt TayOTNTEG PO1IG XAPNAES.

O vopog tov Stokes (ES.(2.10)) woxvet povo otav 1o pevoto pmopet va Bewpndet og
ovveyég péoo. Kabmg to peyebog tav oopatdiov pewwverat xat minowadet T péorn
e\evOepa Sradpopr) Tov agpiov, n OXETKE] TAXLTNTA OTHV EMUPAVELD TOL OOPATIOIOL dev
etvat mAéov pndevikr] KAt ta ototyela tov agpiov oAobaivoov otny em@davelda Tov
oOPAtolov, pe arotédeopd pewpéve avtiotaon. [a va avripetomotet 1o Oépa avto,
eloayetat evag oovteleotrg Otopbwong oto vopo tov Stokes, o omoiog topa ypdgetat
G

E, =w. (2.12)

O ovvteleotrig d10pOwong Stvetat amo ) oxéorn (Hinds, 1999):

C.=1+ %{2.34 + 1.05exp[—0.39diﬂ , (2.13)

P P
Kat ovopdaletat ovovieheotr)g oAioBnong 1) ovvteAeotrig Cunningham. H EE.(2.13), detyvet
ot C. 21, mavta. Zmyv Ew.2.2, divetar o ovviedeotr)g Cunningham ovvaptioet g

Sapetpov tov copatdiov d,, ya opaipikd oopatidia nokvotnrag p, =1000kg / m’,

daoxopmiopeva oe agpa (p =101kPa, T =293K).

¢

Cunningham factor, C

107 10° 107 10° 10° 10"
particle diameter, dp [m]

Ewova 22: Xovieheotr)g Cunningham vyia o@aipika oopatidua, mnokvomtag p=1000kg/ms3,
Owaokopmopéva oe agpa (p=101kPa, T=293K).

Awayoon
Ta copatidia tov agpoADPAT®V CLYKPODOVTAL OLVEXMDG HE TA POPLd TOL PEPOVTOG
agptlov, pe amotéheopa va kwvoovtat toyaia. H xivnon avtr) ovopdaletat kivnon Brown.
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Maxkpooxomkd, 1) kiviorn aotr] ekdnA@vetatl pe por) oOpPAtTdOl®v Ao meploxeg VYNATLg
OLYKEVTP®OONG OOPATOIV Ot TIEPLOXEG XAPNALG OLYKEVTP®OONG, 1) OIOla elval YV®OTH
g diayvon Kat neptypagetat aro to vopo tov Fick. AnAadr), av fp etvat ) pory xkat D o

OLVTEAEOTI|G OLAXLONG TOV OOPATIONDV, TOTE:
J,=-DVn.(2.14)

O ovvteleotr)g dayvong tov oopatdiov divertar amd v efiowon Stokes-Einstein
dropbwpévn amno to oovteAeotr) Cunningham:

ks T, C,
D=—"——,(215)
Smupd,

omov k, =1.381x10 J /K eivar n otabepd Boltzmann, xat T, 1 Beppoxpacia too

pevotod. O ovvieleotr)g dicryvorng eSapTatal TO0O Ao TG 1O T TEG TOL PEDOTOL OO KAt
ano 1o péyebog tov oopartidiov. Ano v EC. (2.15) eivat @avepo ot 1) dwayvor) yivetat
onpavtiky kabwg to péyebog TV copatidieav petmverat.

Bapotikny Kabilnon

H tayomta noo amoxtd éva ocopatidlo eSattiag tng emidpaong tg Papvtntag
wooutat pe (Drossinos and Housiadas, 2006):

d2
g=L% 25 (216
1844, P,

omov § 1 emrayovon g PapdIrag, KAt O avTioTtolyog PNYaviopog evarobeong
ovopdletat Papotikyy kabifnon. Ztwv mAeloyneia OV agpoAvpdtov, 1oxvel OTL
Py << p,, xat av An@bet ormoyn kat o covteheotnig oAiobnong, tote n EE.(2.16) yiverau

#2C
v =25 0a7)
184,

H tayvwmra kabifnong avdavel ypriyopa pe avdnon tov peyéboog tov copatidimy,
kabwg etvat avaloyrn Tov TETPAy®VOD TG OLIHETPOL TOV OOPATIOI®YV.

s

Abpaveaxn Ipookpovon

H adpavelakry mpookpovorn etvat Onpavtikog pnyaviopog emxadiong, mapov oe
OANEG Propnyavikég (1.x. katavopeig peyeboug, gpitpa) kat Proloyikég (evamnobeon oto
AVAIIVELOTIKO OVOTNHA) epappoyes. Ta atwpovpeva ocopatidia dev akolovbovv mavta
TIG YPAPHEG PO TOL EMITAXLVOHEVOL PeDOTOV, edattiag thg Oikrg Tovg adpavelag, pe
AIIOTEAEOHA VA IIPOCKPOLOLY KAl VA EMKAOOVTAL OTIG YEITOVIKEG EMIPAVELEG.

Mua napdpetpog moov yapaxtnpilet Vv amnoxplon TV oOpatidiov otig arlayég g
POTIG TOL PELOTOD €lval O XPOVOG XANAP®ONG TOL OOHATBio, 7,, 0 O1oiog OpileTatl wG O
XPOVOG 1oL xpetadetat éva oEpAtidlo dSapétpov d, KAl MOKVOTTAG p,, VA AIIOKTIOEL
TV TeAkr) Tov tayvtnta av agebet oe akivito pevoto €mdoVG Ly . ALTEG O1 TOCOTITEG
oxetiCovtal peom (Drossinos and Housiadas, 2006):

LAS

1844,
dnAadr] o xpovog xaldpmong tov oepatdiov eivat oovaptnon TOV WO0TTOV TOL

PELOTOV, PE0® TOL EWOOVG Kat Tov ovvieAeotr) Cunningham, kabwg xat avt®v tov
OoOPATOlov (mukvotnta KAt didapetpog). Avrtikataotaor), omv EE.(2.17), deiyver ot

, (2.18)

P
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V,=17,8. Avaloya, n taxdmra v, MOL dmOKIA &va Opatidlo mov vmokeral oe
dvvapn F, divetat amo ) oxéon:

7 =1~ (219)
mP

P

omov m, 1 paga evog oopatidiov.

Evag molv yxpriowpog adiaotatog aplfpog mov xpnotpomoteitat oty pelétn) Tov
adPAVEIAK®V QAIVOPEVROV TOV odpatdinv etvat o aptdpog Stokes, o onoiog opietat wg
0 AOYOG TOL XPOVOL XAAIP®ONG TOL OOPATIOOL TIPOG TO XAPAKTPLOTIKO XPOVO TNg
pON:

T, P, dﬁ C.v,
l/v 18,0

O apBpog Stokes amotelel KPP0 IOV XPNOLHOMIOLELTAL YId VA XAPAKTHPLOEL TO TOCO
EOKOAA éva OmUAtidlo mpoodappoletal oe alAayég oOtn por) Tov pevotov: St<<1
vrodnAwvet 0Tt T0 OEPATIO aKoAovDel TG YPAap|EG PONG TOL PELOTOL, Yld ALTO 1)
IIPOOKPOLOT) dev elval CNUAVTIKOG PNXAVIOROg evamnobeong yia Ta oopatidla aotd, eve
St>1 onodnhovel OTL Ta O®pAtiOla damokAivoov amo Tig ypappég Pong Kot
IIPOOKPOVOVV OF IIAPAKEIEVEG EMIPAVELEG.

Amo tig EC.(2.18) xat (2.20) elvatl mpogaveg 0Tt 000 peyaivtepo To oopatiolo, 10co
onpavikotepa ta adpavelakda @awvopeva. Exet Ppedel epmelpika ott 11 IPOOKPOLON)
MPEMeL TIAVTIA Va AdpPAvetal bmoyn o¢ HNXAaviopog evamobeong yla oopatidwa pe
diapetpo peyalvtepn too 1um.

St=

. (2.20)

2.2.3 Zopanidiaxy Paon: Metagpopad kar Evandbeon Zopatioiov

Bewpovpe éva povodieorappévo mANdvopd opalpikev oepatdiov, to xabdéva
Sapétpov d, xat padag m,, Ta omoia aiwpovVIAl S1ACKOPMIOPEVA O AOLHPMIECTO

KIVODPEVO PeDOTO. AV ayVOIOOVHE TIG E0MTEPLKEG Oradikaoieg (to péyebog kat o aptBpog
OV oOpaTldi®v napapévoov otabepd), TOTe TNV XPOVIKY otypr) f otnv 0éon 7 1
ovykevTpeon Katd apdpod tev copatdiov Ba eivat n(7,t) . H GDE (EE.(2.6)), ypagetat

TOTE:
on R
E;+V(an=0,Q2D

omov vrievhopiletat on v, (7,t) elvain taxotmnra tov copatdiov. Ia va diayepifovpe

MV OAparnave eSlomon mov apelel Tig e0TEPIKEG dladikaoieg TOL AgPOALHATOG ATIO
mv GDE, ano 0w xat oto &g Ba avagepopacte oe avt)v ®¢ e§l0mON PETAPOPAS
\ndvopoov copatdiev (particle population transport equation - PTE). Eivat mpogavég
ot 1 PTE pnopet va emAvbet yia v edpeon g COYKEVIPOONG TOV OOPATIOIOV av 1
TayvITag TOovg elvatl yvwoTr).

YwoBetovtag pra pebodoloyia 600 peLOT®Y YA TO OLOTNHA PELOTOL-COPATIOIDY, Oa
deifovpe G prropovpe va vrioAoyioovpe T péon taxvmta v copatdiov, v,, xoplg
v emntloorn) g péong eSlomong datpnong opprg T®V OOPATIODV.

Ta oopatidwa eivar Oraoxkopmiopéva eviog ovvexovg peocov (pevotd). Otav 1
OOPATOWAKI] PAOT) elvAl APKETA apdlr), HIIOPOovHE va vriobécovpe Ot Ta oopatidia dev
aMnAemOpovy petalvp tovg. Qotoco, alnAemOpodV pe 1O QPEPOV PELOTO KAl He
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e8wtepkd dovapka media, av avta eival mapovra. Emopévag, av F,(7,t) n dovapn

ava povada palag mmov aokeitat ota oopatidia amd 1o pevotd kat E

(7, 1) aotr) mov
aokettat amo Tig eEmtepikeg OvVApelg, tOTe 1) e§l0MON OLVEXELAG Yid TI) OOPATIOIAKT

@aon etvat:

oc _
E+V-(cvp):0, (2.22)
KAt 1] avTioToyn) peor) eSiomor opung:
ov

at ext/ (223)

omov c(7,t)=m,n(7,t) n ooykévipwon palag te@v oopatdiov kat [I, o tavoorig

oo 1 = =
—p+vp Vv, =ZV-HP+Ff +F

TAONG TOV OOPATIOIWV.

E@ooov ta copatidia dev alnAemdpoovv petadd tovg, 1) OOPATOWIKT) Aot propet
va BewpnOel wg 10aviko agpto, i) tomikr) Beppokpacia tov omoiov 1WovTAL Pe VTV TOV
pevotov, T,(7,t), kat vmokewtat oe pia ddvapn F,+F

ext *

Av, emuipoobeta, ot

OLVEKTIKEG dLVApElg ota oopatidla fempndody apeAntéeg, T0TE 0 TAVLONG TAONG TOV
OOPATIONOV YPAPETAL OG:
,=-Ip,, (2.24)

OIIOD 1] PEPTKT| TAOT] G OOPATOIAKIG PAOTS, p,, dlvetal amo 1o VOHO TOV W8avikov
agplov:

p, (7, t)=n(7,t)k, Tf(?,t)zk—Bc(?,t)Tf(?,t). (2.25)
m
P
O 0pog g mieong ot v eSioworn) oppr|g (EE.(2.23)) ypagetat Aou1ov:

kT
lv.Hflv-(—Ipp)?lV'[ ! CJ-(2-26)
C C

c mp

2V mAeloyn@ia TV BLOAOYIK®V po®V, OIIOG ALTEG IOV HAG EVOLAPEPODV OTO TIAPOV,
etvat Aoywo va vnobécoope otabepr| Oeppoxpaocia, OnAadn 10o0eppn por), Omote 1
EC.(2.26) am\omoteitat otnyv:

ks T ksT
1V~Hp=— 2 Lge B ine. 227)
c mp c mp

Zopgava pe tov Ramshaw (1979), pua yevikr) ekgpaor yia ) ddvapn moov aokeitat
OTd O@PATIOW aIIo To PELOTO, ?f (7,t), omv nepimrtoorn Brownian copatdiov eivat

F (7,t)=p,(0-7,)-(1/p,)Vp—(n/m)VInT, +F, (7,t)+ E, (7,t), (2.28)

omov B, =1/7, o avtiotpo@og xpovog xaAdpwong Tov oopatdiov, p(7,t) n meon tov
OLOTIPATOG  PELOTOV-OOPATOlV, 7 0 Oeppkog ovvteheotr)g dwayvong. Ot Gvo
tedevtaiot opot oto OeGt pélog g EE.(2.28) avuupoowmevoov T Ovvapn AOyw
ewoVvikng pdlag (virtual mass force) xat ) Ovvaprn Basset-Bousinesq, avtiotoiya, ot
omoieg elvatr ypovika petaPallopeveg Oovapelg edattiag TG EMITAYLVONG TOV
OOMATIOlOV HECA OTO PELOTO. XTV MAPOLOA EPYdOia Ol HI-POVIHEG avTEG Ot
Aappavovtat ooy kat dev Oa avalvbobdv nepattépw.

O Sevtepog Opog g EE.(2.28) avagépetat ot Ovvapun mov aokeitat otda o@patiola
eSattiag g KAiong tng mmeong otV meptloyy] yopw ard avtda. H dvvapn etvat onpavtikn
OTaV LIAPXOLV HEYANEG Y®PIKEG MAPAY®YOL IIEONG 0TI POI| KAl 1) HMUKVOTNTA TV
oOPATOleV etval pikpotepn 1) 101 avt)g Tov pevotod. Enopévag, yia tig mepurtowoetg
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oo egetadovtat oTo mapov, Orov p, >> P, 1} CLVELOPOPA G dvvapng avtrg dev etvat

ONMAVTIKY.

Té\og 1 vriobeon g 1WOOeppNg por|g yia Tig Ploloyikeg poég, onpaivet OTL KAt OPog
g Oeppogpoprong otnv EE.(2.28) e€agpaviletat.

[Taipvovtag OAeg avtég TG MAPATNPNOEG DIIOYL), 1] EKPPAOL yla T dvvapn oo
aokel To PELOTO OTA OEPATIONT peVETAL OV avtiotaor), OnAadm:

= 1,. -
F, (r,t):T—(u—vp). (2.29)
P
Ooov agopd tov 0po g e§mTePIKIg dLVaApng otny eSiomorn OpHIS, 1] OLVOAIKI)
eSmtepikr) dvvapn ava povdda padag, pe Paon v ES.(2.19), Oa woovtat pe:

Ext (?’ t) = lfjext : (230)
TP
H evoopdteon teov EE.(2.27), (2.29) xat (2.30) otnv eSiomorn) g opur)g Sivet:
ov, _ kT
—+V, Vv, =-
ot "7 m

Vlnc+l(6—17p)+l\7m.
P TV TP

Ia va avtpetonicoov v enidpaon g adpaveiag ot Brownian dwayvorn, ot

Fernandez de la Mora and Rosner (1982), mpotewvav pua 119 tadng St0pbwon g

Tayomtag TV oepatdiev  eattiag g adpdvelag TV ocopatidi®v. Avto

EMTOYYAVETAl PEO® AVAITOENG TG eSl0MOoNG OPHIG TO®V OOUATIONMY OTO OPlO HIKP®OV

XPOV®OV XaAdp®ong, z,, OV MEPIITOON povipng, wobeppikng porg agpolvpatog. H

(2.31)

EC.(2.31) topa ypagetat &g:

k,T
S VD - D L Bf
rpvp'va—u vV,

r,Vinc+v,, . (2.32)
mP
Av 1) TayoTNTA TOV OOPATIOIOV ypapel ®g:

7, =7 47,70 +0(z} ), (2.33)

onwg npotabnke ano tovg Fernandez de la Mora and Rosner (1982), tote ayvoamvtag
TOLG OpPOLG peyalvtepng Tadng, n) ES.(2.32) yiverat
ks T,

o[V 40 V[P0 4,0 =5 [70 + 1,7 ] -—Lr, Vinc+7,,, (2.34)
P
1] wodvvapa:
o[-Vt ]+
ALAR SRR AR . (2.35)

k., T
2| 70 45-Vo+—LVInc +TO|:17’50)_6_‘73M:|:O

Ot opot 215 1) vynAotepng tagng og 1pog 7, Bewpovvtar apeAnteot. Enopévag, anod tov

0po pNoeVvIKr|g TASng IPOKVLITTELS OTL:

7O =547, (2.36)

EV® arid Tov OPOo MP®TNG TASNG OTL:
—(1) — — kBTf
v, ==0-Vo-—=VlInc. (2.37)
ml’
H taxbvmta tov copatidiov (ES.(2.33)), Aoutodv, eivat ton 11pog:

V,=0+V,,~1,0-V6-DVInc+0(r} ). (2.38)
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O tpitog 0pog tng EE.(2.38) Seiyvel 0Tl 1] TaXLTTA TOV OOPATOIOV ELVAL OOPITIEOTE) Yia
adpavelakd oopatidia avefdpmta amd TV mapovola TG OuayxLong Kat T
OLHITLECTOTNTA TOL PEPOVTOG PELOTOD.

H taydtmta tov copatdiov propet va dtaympilotel oe dvo pépn: pia tayxdta
diayoong, 1 omoia eSaptatal povo amod TV XPOPIK IAPAYDYO TI)G OCOYKEVIPOONG TV
OOPATIOlOV, KAl Pl TaxOLITA OLVAY®YING aveSdptnT] TG OLYKEVIP®ONG TV
OOUATIONOV. ZOYKEKPLPEVA, 1) TAYOTTA OOVAYDYIG TOV OOUATIOIDV:

V.=0+V,, —1,0-VU, (239)
eaptatat amod TV TaxLITA TOL PELOTOL KAl TI§ XDPUKEG IAPAYDYOLS ALTHG, KAt
EVO@UATOVEL TV €IidPAO!] TOV AOPAVEIAK®V PALVOPEVAOV TOV OOUATIOI®V KAl Ta
emTEPIKA Media OLVAPEDV.

To avdmtoypa pikpov xpoveov yaAdpoong damoovvodeet Tig e§lomoelg palag xat
oppng g oopatdiaxng @dong. Ia 1o Aoyo avto, n Owatpnon padag g
oopatdlaxng @aong (ES.(2.22)), oe povipeg oovOrkeg, maipver T poOp@ry HLAg
TPOIIOIIOUHEVTG ESLOMOTG OLVAYDYT|G-O1ILONG:

V-[c(7.-DVInc)]=0, (2.40)
1] wodvvapa:
V-(cv.)=V-(DVc), (2.41)
erteldn) cVince =Ve. Baoet g EC.(2.39), 1) EC.(2.41) ypdgetat pe Opovg g TayvTnTag To0
PELOTOV KAl TV EEMTEPIKMDV TAX VT TAV:
V-[C(ﬁ—i—ﬁm—Tpﬁ-Vﬁ)]ZV-(DVC).(2.42)

Ot EG.(2.41) 1) (2.42) anotehobdv Tig dtevpopéveg eSLOMOELS HETAPOPUG COUATIOI®Y IOV
EVO@PATOVOLV TNV eOiOPAOT) TG OOVAY®YT)G, OLAXLONG KAl AOPAVELIG TV OCOPATIONDV,
Kabwg kat Tov e§mtepk®V duVAPE®V IOV AOKOLVTAL O aLTA ot Heptypagr katda Euler,
Kat etvat 11 tadng g Ipog Tov XPOovo YAAIP®ONG TOV OOPATIOMY.
e ohoxAnpeopatikr) popen, 1 ES.(2.41) ypagetat:
[ V-(cv.)da=[ v(DVc)dQ, (2.43)
1) ortoia an\oroteitat pe xprorn tov fewprparog Gauss:
[,cv.-dS=D| Vc-dS, (2.44)

1] wodvvapa:

[.c(6+7V.—7,6-V5)-dS=D[ Ve-dS, (245)

onov npoobeta Bewpovpe otabepég 1O10TNTEG pevOTOL KAl cwpatdimy, dpa otabepo
oLvTeAeOTr) OLayLONG.

2V [Oapovod ePyaold, EMKEVIPOVOHRAOTE O POEG OLOTNHATOV PELOTOL-
OOPATIOlOV péoa oe aymyovg (eomtepikég poég). H dtapetpog tov aywyov, d,, 1 peon
TAXOTTA TOL PELOTOL OtV €10000, v,, KAl I] €O OLYKEVTIP®OT| pdlag otny etoodo, c¢,,
XPNOHOIIOO0DVTAL MG XAPAKTNPLOTIKA peyédn yia v adiaotatomnoinon tg EES.(2.45).
Ioxboov ot akolovbeg oxéoetg yia ta didagopa peyedn:

c=c,c'
= 21 G 2 G 1 1
rzdtr,SzdtS,Vzd—V
I L (246)
U:UOU’ ut:Uo ext

UZ
0-Vo=—p"V'D'
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Ot EC. (2.46) evoayovtat otnv EE.(2.45), onnote teAika AapPavoope:
D
dt Uo

o o\ -
Ic 0'+v,,'-—L—0.V'5' |-dS'=
8 d, /v

[

[ vicds'. (247)

Q01000, 0 ovvieAeoTr)g TOL Opov TG adpdavelag toovtatl pe tov appod Stokes tav
OOUATIOIDV:

T
St=—"—,(248)
dt /Uo
EV® O OLVTEAEOTI|G TOL OPOL didyvoNg eivat o avtiorpoPog Tov aptdpov Peclet, o omoiog
opiletat ®g:

Pe= 4.0,

, (2.49)

Kat aroteAet Tov AOyo TG por|g AOY® ouvay®yr)g IIPpog T pory Aoy® Owayvong. Kabwg o
Pe avldvey, n por ocvovaywyng yiverat onpaviikotepn tg porg Aoy Oudyvong, Kdt
avtotpogas. ToviCetatl, ot yia Tig ideg ovvOnkeg porg oywnhot apidpotl Peclet
onpaivoov xapnAovg oovteAeoTteg Oy DONG, OIOTe pPeyaADTEPA O®PATION.

Tehikd, 1 eSlowon peta@opdg T®V OoOPATIOIMV 0t ONOKANPOUATIKY), adldoTatn
Pop®n] ypa@etat (Yia EDKOAIA 0 TOVOG IAPAAElIeTal):

[.c(0+V,,~St5-VD5)-dS=Pe [ Ve-dS, (2.50)
1] XP1OPOIIOIOVTAG TNV (adlaotatn) TaxvTTa COVAY®YIG OG:
[.cv.-dS=Pe™ [ Ve-dS, (2.51)
omov vV, =0+V,,—Stv-VU. H Oevpopévn eSlowon peta@opdg tTov oopatidiov ot

popen g EG.(2.51) powaler pe ) oovOn eSioworn petagopdg kat Otdxvong Kat, ya
avTO, PIIOPElL VA AVTIPETOIIOTEL APLOPNTIKA pe aVANOYEG TEXVIKEG.

2.2.4 Yopaniowaxy Paon:Opraxég ZovOnkeg

Ia O\eg T mePUIT®OEL] OLOTPATOV PELOTOV-OOPATOIOV oL efetalovTal otV
rnapovoa epyaoia, oty eioodo Oe@polpe OPOLOHOPPN KATAVOWUI] OLYKEVIP®ONG
oopatdle®Vv (OLYKEVTIP®OT €10000D ion pe ) povada oe adwdotaty poper)), dnAadr):

¢l =1.(252)
H optaxr) oovOnkn yia ) o0yKEVIP®OON TOV OOUATIOIOV OTO Tolymuda eivat 1) oovrong
ovvOnKn ToL TATNPWG ATIOPPOPNTIKOD TOYDHUATOG:

c|, =0, (2.53)

1 ornoia oto Toiypa Sivel (adidotatn) por| copatidiov Aoyo Siaxvong, J*

,» lon mpog:

J!| ==Pe [ Ve-dS| . (254)

Emu\éov, vridpyet pn-pndevike), IEMepAopEv) TAXOTNTA OVVAYDYIG TOV OOPATIOIDV
akppwg mpv 10 TolY@pa, eSaitiag TV eCOTEPIKOV OLVAPE®Y, 1] OHIOld £XEl @G

aroté\eopa pa (adiaotatn) por) copuatdi®v Aoy® oovayayng, |

) oxéon:

, TIov dtvetatl anod
w

0 if v.-dS| <0
| = B ., (255)
“ |f.ev.-dS| ifv.-dS| >0

w
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OTIOV 1) TAXLTTA OLVAYWYNG TO®V COPATOI®V, V., DIIOAOYI(eTal akpPPwg IPV Aro To
Toiyopa, OnAadr) otov LIIOAOYLOTIKO KOPBO TOL IAEYPATOG ITOL PPLOKETAL IO KOVTA OTO
tolyopa. Emopéveg, av n por] oovaymyrg oTov eyyovtepo KOPPO TOL MAEYpATog eivat
IIPOG TO TOLY@HA, TOTE 1) Por] avty) AdpPavetdal @g 1 por) evaridofeong 1oV oOpPATdiOV
AOoym ovvaywyng. Avtifeta, n pory oovay®yrg etvat ton pe pndev. Ot ddo mepurt®oetg
g ES.(2.55) vmodeikvoouv OTL emTPEnovIal pOVO Ot PoEg Mov e{é¢pyovtal aro To
toiyopa. H eloodog tov oopatidiov amd to toixopa Oev emtpenetal, emedr] dev
avtotolyel ota @uoikd mnpoPAnpatra mov efetalovial OtV IAPOLOd  EPYAOLdL.
Enopévag, 1 oovolikr) (adiaotatn) por| evamnobeong ypdgetat og:
Jaw =T +17|. - (2.56)
Ot Longest xat ot ovvepydarteg tov (Longest and Oldham, 2008; Xi and Longest, 2008a,b)

xpnowomnoinoav v EC.(2.56) ywa Ttov vmoloywopo Ttov KAdopatog evarobeong
oopatdiov pe d,<lum @g to abpoopa TOV OpeV ovvaywyng kar didayvong.

ITpoobeta, avelvoav dvo daMeg evallaxTikég Avoelg yla tov kaboplopod tng porg
OLVAY®YI)G OTA TO®HATA, Kat KatéAndav oto ovupmépacpa ot pa Owopbwon g
taxomtag nov Paoiletat oe pua vmomleypatikyy Lagrangian emilvon Peltiovel Tig
appntikeg mpoPALyelg yla Ta TOMKA KAl MEPIPEPELAKA KAdopata evamnobeong tov
AEIMTOV, EL0TIVELOIP®V AEPOADHAT®V. Q0TO00, 11 BempnTiki) BAon TOV IPOTACED®V TOVG
dev elvarl mAnpwg dikatoloynuévn. Avtbetwg, @aiverat oav va mpoonabovoav va
Ppovv évav TPOMO Yyld VA EOITOYOLV KAADTEPI] OLPPAOVIA He TA HEPAPATIKA
aroteléopata. EmmAéov, Oev avapévoope o1t 11 d10pbworn avtry Oa Tpomomnouoet
ONUAVTIKA TOV DIOAOYOpO TG evamofeong ota dammoteAéopata pag, —emeldn
IIPOCOPOIOVOLHE DYNALG adpdvelag oopatidia (oopatidia vynlov apidpov Stokes),
TOV OMOI®V 1] TAXVTNTA AVTIAIIOKPIVETAL APy OTlG AAAAYEG TG TAYVTTAG TOL PEVOTOD.
Taxvmta tovg otov DIIOAOYIOTIKO KOpPo 1mov Pploketal MANOEoTeEPAd OTO TOIXONA,
datnpeitat yia peyaldTepo XPOoviKO daotpd arod 0Tt 1] TAYOTNTA ALMTOV OOPATIODV
(d, <1um). Znpavukn Sagopomoinon amotelel, emiong 1o yeyovog, Ot OtV
IAeoYn@la TV IPOCOPOIMOEDY OTNV IAPOLOd €PYAOLA, AOKOLVIAL OTd OM®MATIOW
padikeg emTepikeg OLVAMELG, Ol OITOLEG ELVAL AVESAPTITES TG TAXVTITAG TOL PELOTOD.

2.2.5 Zopanidraxy Daon:AprOuntixy Emxiloon

E@ooov 1 taxvmta 100 pevoton, U, DIIOAOYLOTEL APOPNTIKA XPNOIOIOIMVTAS TOV
kodwa CADBA, n taydtnta ocovaymyng tov oopatdiov, V., vmoloyiletat amo v
EC.(2.39), xat ot ovvexela 1) eSlomon pPeTAPoOPAg 1OV oOpaTdl®V emAveTal yid TV
€DPEOT) NG OLYKEVTPWOTG TV oopatidle®v. Koplog otdoxog tng mapovoag epyaotag etvat
n evoopdtoon tng enilvong g PTE otov vmapyovia kOwa emiAvong tng porg
(CADBA), ywa aoto 1n pebodoloyla mov xprnowpomoteitat yia Tty  aplfpntixi)
AVTIPETOIION TG EMALYETAL VA elVAl AVAAOYT] AVLTIG TOV PEPOVTOG PEVOTOD.

Enopévag, 1 e§lomon petapopdg 1oV oopatidiov emAdeTal OTov TPOIoTATO XMPO
xpnowonowwvtag Tt pebodo TV menmepacpéveov  Oykev, pe opobetn dwatady
petaPAnteov, 1 onoia AapPdvet vmoyn 1 prn opfoymviotnta tov mMAEypatog Kat etvat
KataAAnAn ywa multi-block mAéypata.

O 06pog ovvaywyrg oy eSlomorn PETAPOPASG TOV OOPATIOIOV aVTIPETOIICETal
XPNOWOIIOIOVTAG Pia Ipootyyton avapBailopevng dtopbwong (deferred correction) 21s
talng, ywa Vv amoQuyr NG ePAPHOYNG OXNHATOV peyaAvtepng tadng mov Ha
odnyovoayv oe peydha vrohoylotikd popua (Ferziger and Peri¢, 2002). I'a to Aoyo aoto,
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0 0pog ovvaymyrg diakptronoteital oe évav memheypevo (implicit) 0po, otov omoio
Xpnotponoteitat éva avavtt oxnpa diakptronoinong (upwind discretisation scheme -
UDS) 1ns tadng, xat éva pnto (explicit) 0po, omoiog armotelet 1) Stagopd tov UDS amd
TO0 OXfpa Kevipikev Owagopmv (central difference scheme - CDS) 2ns tdalng xat
vmoloyiletat pe Tig Tpég TV peyebov oty mponyobvpevn) emavalnyn. Otav ot
eravalnyelg ovykAivoov, to oxfjpa yapnArg tdalng (UDS) akvpavetat kat 1 Ador) 11ov
Aappavetar avtototyet oto oynAotepng tadng oxnpa (CDS). To 2ns tadng oxnpa
dlaKplTonoinong KeVIPIK®V d1apopmVy XPIOHOIIOLELTAl KAl Yid 1) S1aKPITOIIOw|0r) ToL
opov dwayvong. To ypappikd ovotpa mov ImpoxvLITel ard T OlaKPITONoinon g
eClomong petagopdg TV oEpATdiov emAdetal aplipntikd pe TV eIavVAaANIITIK)
pébodo SIP (Strongly Implicit Procedure), i ormoia xprotpomnoteitat Kat yia v emiloon
Tov ediov Por|S.
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3.1 TIIZTOIIOIHZH OPOY AIAXYZHX

H apOpntikr) draxptromnoinon tov 0pov TG O1dyvong MIOTOIOELTAL [E TV €mADOT
Tov TPOPANPATOg OLVAY®YIG-OLAXLONG &vog mabntukod yvnAaty. AapPavovtag
omoyn TtV avaloyia tg petagopdg palag xat Oeppotntag, mpocopowwodape  To
poPAnpa Graetz-Nusselt (Shah and London, 1978). @sopmvtag mApmg averntoypévo
11e6i0 PO1)g KAt avarrtoooopevo Beppokpaotaxo medio, emhodnke n akoloodn) eSiowon
o¢ eD0VYPAPHO KOKAIKO ay®yo:

[T5-dS=2pe,} [VT-dS, (3.1)
S S

omnov T 1 Beppokpaoctia, Pe, o Oeppikodg apBpog Peclet icog pePe,, =d,v, /a, pe a
Oeppikn) ayoylpotntag tov pevotod. XV ei0odo Tov aywyol Bempovpe mapaPoAixr)
KATAVOI) Tayotntag (IA)p®G AVETOYHEVO Tedlo Porjg) KAt OHOOPOP@PI KATAVOHL)
Oeppokpaotiag, eve OTAd TOLYOPATA XPIOWOIOoLHE T ovvOnkn pn oAtofnong xat
Oempovpe otabepr) Oeppoxpaocia dragopetikr) avtr) tg ewoodov. H péon Oeppoxkpaoia
TOD PELOTOL KATA PIKOG TOL AYWYOL OPileTal Og:
[r5-ds,
T =St—_., (32)

" [o-ds,

5t
omov S, 1 datopr) Tov ayeyoo. Znv Ew.3.1, divetat i) péon Beppoxpacia tov pevotod
ya dagopouvg Beppikovg apibpoovg Peclet, ormov z* =z / Pe,, etvat nj adwdotaty) afovikrn
ovvtetaypevn (Shah and London,1978). H oopgovia tTov aplpnTtikov arnoteAeopatov
g Iapovodag epyaoctag pe Ta avalvtikd amnotedéopata t@v Shah and London (1978)

Kat Ta apdpntka anotedéopata t@v Schmidt and Zeldin (1971), eivatr dpiot yuwa
Pe, >1.

1=

0.
09l Q0 _ .,
08r
507
g
2 086
i
2 osf
5
= 04
c
@
2 03
--------- Shah & London (1978),Pe=1
02k © Schmidt & Zeldin (1971),Pe=1
: present work, Pe=1
-====-- Shah & London (1978),Pe=100
0.1F o Schmidt & Zeldin (1971),Pe=100
present work, Pe=100
0 \

4 3 .2 1 0 1

10 10 10 100 10 10

z
Ewova 3.1: Méor Beppokpaoctia oe evBOypappo KokAko ayeyo yia dtagopoug Beppikodg apifpoig Peclet.
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ZOVOANIKA, 1] OOYKPLOI AmOOEIKVOEL OTL 1 APOPNTIKI] AVTIPET®IION TOL OPOL TNG
dayvorng etvat opon.

3.2 IIIXTOINOIHXZH OPOY EEQTEPIKQN AYNAMEQN

O 0pog tav efotepikav dovapenv g eSlomong petagopds tov copatdiov, Oa
motornoOet péow g peletng g Papotikrg kadifnong, 1 omoia amotelel ONPAVIIKO
pnxaviopo  evanobeong tov  peyadev  ocopatdiov  (d,>1um) oto  avotepo
AVAIIVEDOTIKO OLOTNHA.  ZOYKEKPIPEVA, €MADETAl TO MPOPANpA TG HETAPOPAS
OOUATIOlOV agpOADHPATOG eVTOg eDOVYPAPOD, KEKAPEVOD ay®dYoL KUKAIKIG OlaTOpIg
omo Vv enidpaon tng Papovintag fewpavtag IAPOG aventoypevo medio por|g, yid to
oroto vrdapyet avalvTiky Avor). To kKAdopa evardfeong 1oV oOpATdinav oTov aywmyo,
n , bnoloyifetat aplOpnTKd &g;:

n= 1- C|uutlet , (33)

C|inlet

0110V ¢ = _[S cv,-dS, elvain adaotam napoxr) copatdiov dapeooo g emeavelag. Ot

t

deikteg ‘inlet’ kat ‘outlet’ ava@époviat oty el0odo kat otV £6o00 TOL aAyw@Yov,
avtiototya.
2TV IEPUITOON AUTI), 1) TAXVTTA COVAYDYIG TOV COUATIOI®V SiveTal amo T oxeon:
v, =0+Vv,, (34)

pe v, v tayovmta xadidnong tov copatdiov. H evoopdtwon g EE.(3.4) omv
adwaotatr), ohoxAnpopatiki) poper) g PTE pag divet:

IC(D + StFr'lg) .dS = Pe™ ch .ds, (3.5)

S S
onov Fr=v’/d,g elvat o adiaotatog apiBpog Froude, o omoiog anotehel extipnon g
onpaociag g ovvay®yrg T®V oopatdiov oe oxeon pe ) Papotikr) kabifnon. Zmyv
E€.(3.5), =g/, omov ¢=9.81m/s*, eivar 1o povadiaio Sidvoopa oty katevBovon
NG EMTAXLVONG NG PAPLTTAC.

0.5
045F

04r

n

~ 035}
03r
0.25f

0z2r

Deposition Fraction

present work
O Finlay (2001)

0 o005 o1 015 02 025 03 035
k
Ewova 3.2: KAaopa evanobeong yia oopatidwa mov emkabovtat oe enbdypappo aymyo KOKAIKIG Statopr|g.

Zmv Ew3.2, ta anotedéopata tov poviedov kata Euler ovyxpivoviar pe v
avalotiki) Avor tov Finlay (2001) ywa v nepimteoon g tpayeiag (diapetpog aymyov
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d, =0.018m, pnxog L=0.125m xat péon tayovmra ewodov v, =1.166m/s). Ta
anotedéopata T@v Ovo epyaomv tavtifovtat minpws. H mapdapetpog k oty ewkova,
opiletat wg (Finlay, 2001):

3

k =—Stg—L. (3.6)
4 v

[

3.3 [IIXTOITOIHZH OPOY AAPANEIAKQN ®AINOMENQN

XV npotevopevn neptypagr) xatda Euler tng copatidiakng ¢aong, 1 Taxd™ta tov
OOUATIOl®V YPAPETAL IIPOOEYYIOTIKA 0TV edioworn diatripnong padag tov oopatidiov
(PTE), Xpnopomnowwvtag pia €K@PAon IO IPOKLIITEL OTO OPlO0 HIKPOV XPOVOV
Xaldpwong. O KOPLOg OTOXOG TNG IMAPOLOAG EPYAOLAg elval 1) MOTOIOiNon Tg
peBodoloyiag xat yia copatiola pe peyaivtepong xpovoog XaAdpaong (1) woodvvapa
pe peyalvtepoog apipovg Stokes), omov Ta adpavelakd Qaitvopeva eival onpavIkda
Kat n Papotikyy xabifnon de pmopet va ayvonbel ex tov mpotépmv. AapPdvovrag
DIIOWT) TALTOXPOVA TNV AdPAVELD TOV OOPATIO®V Kat TV emidpaon tg Papvtntag, 1
TayvITa TOV OOPATOIOV ypdpetat:

9,=0+V,-1,06-VO-DVinc+0(z;). (3.7)

H EE.(3.7) ewoayetatr otmyv oloxAnpopatikr), adwaotatn popern g PTE, omote
Aappavoope:

[e[5+5t(Fr'3-0556-V5)]-dS=05Pe [Vc-dS . (3.8)

S S
H EC.(3.8) em\vetat aplOuntikd mote va vIoAoylotel To 1edio OLYKEVTIP®ONG KaTd TN
petagopda peydhov oopatdiov agpohvpatog (Sum<d, <20um) oe pa yovia 90°
KOKAIKI)G Olatopr)g Kat Aoyov kaupmovlotntag R, Bewpaovtag otpwt) pon aépa. Ta
anoteAéopata too povtélov kata Euler ovyxpivovtar pe amotehéopata ng
PPAoypagiag. Na onpewwbet ott ot ocvvieheotég ‘0.5" pmpootd amd Tovg Opovg
adpdvetag xat didyvorg, etval arotéAeopa Tov oplopod twv apldpmy Stokes kat Peclet,
avtiotolya, pe Paon v aktiva tov ayoyoo, r,=d, /2, avil g dapétpov wote va
OLPPOVOLV JE TIG EPYaoteg TG PipAtoypagiacg.

3.3.1 l'eoperpia I'oviag ka1 Ymoloyiotiko IIAEypa

H evamnobeon povodieonappevov agpolvpatog ot yovid 90° koxkAikng diatoprng
rpooopowwbnke viobetwvtag T yewperpia moov mpoteivoov ot Pui et al. (1987) xat
Breuer et al. (2006). Ta Pacikd ye®PETPIKA XAPAKTNPIOTIKA TNG YOVIAG PAIVOVTAL OTHV
Ew.3.3. Avo evf0ypappa tpfjpatd, To Ip®To PIKovg d, Imptv Vv el0o00 Tg YOVIAG KAt
10 debTepo prjKovg 2d, petd v £5000 TG, XPNOOIIOOLVTAL Y VA dlao@aiicovy 0Tt
1] POI) TOL PELOTOV OT1) YOVLA Oev Statapacoetatl aro Tig ovvinkeg oty eloodo kat otV
€000 tov aywmyoL. H Owapetrpog g Statoprig oto emirnedo COPPETPLAg TOL aAyYoL
(z=0.5) onpewwvetat pe A-A, eve 1) dudapetpog g datoprng mov Pploketat kabeta oto
emnedo ovpperpiag onpewwvetar pe B-B. Me Paon ) yeopetpia avt), o appog
Reynolds g porjg woovtat pe Re=p v, d, / u; .

ZOp@ova pe TV IePLypa®n g mepapartikng owrtadng tov Pui et al.(1987), o
IIPOCAVATOAOPOG TG YOVIAG oTov Tptdtactato xopo yia Re=100 eivar avtog g
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Ew.3.4(a) xat yua Re=1000 avtog g Ew.3.4(b). Ta povadaia dwavoopara tng
EMTAXLVONG TNG PapTnTag @aivovidt, eriong, oTig IAPATIAV® ELKOVEG.

<

-2 -1 0 1

outlet

AR
2|54
|
|
|

" B

A A
B
Ewova 3.3: l'eopetpia yoviag (Ry=2.85, R;=5.7). A-A eivat n diapetpog oto eminedo ooppetpiag xat B-B n
diapetpog xabeta oe avTo.

*inlet

I

| |(6.8,8)=(0.0-1)

|(9:9,9=(1.0.0)
upper lateral wall

|

|(6.9,8)=(0-1.0)

lower lateral wall

(a) CDIGx; (b) CDIGy; (c) CDIGz;

vertical inlet horizontal inlet-vertical outlet  totally horizontal tube
Ewova 3.4: TIpooavatoMopog TOV yOVIOV OXETIKA M TNV eMTAyvvon g Papotntag (a) Katakopoern
eloodog (CDIGXx), (b) opilovtia eiocodog - xatakopoer) é5odog (CDIGy), kat (c) opifovtiog ayayog (CDIGz).

Ot vohoytopot npaypatonow)dnkay xpnoponowvtag éva mieypa tomnoov-O, pe dvo
tpnpata (multiblock), @ote va amogevyxbodv ta 1OwOpoppa onpela evog MMOAKOD
IAEYPATOG. ZOYKEKPIPEVA, TO eCOTEPIKO THIHA elvatl oxeOOV MOANKO Kdtl IEPIKAEiel eva
TETPAYDVIKO e0MTEPIKO THNPA, onmg gaivetat otnv Ew.3.5. To m\éypa mokvmvet mpog
To Toly@pa Tov ay®yoLv, ®ote va vroloyifetat pe peyalvtepn axpifela to oplaxo
OTP®HA TNG OLUYKEVTPMOTNG, PLd IIEPLOXT] ONHAVTIKI| Y1d TOV DIIOAOYIOPO T evarobeong
Tov copatdiov. H avalvon tov nhéypatog eivat nept toog 1.46x10° vroAoylotikovg
oykovg (CVs), amotehodpevo amo mepirov 6500 xkopPoog ava dratopny kat 225 kopfoog
otV katevovor) g Pors.
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Ewova 3.5: Atator) vmoAoy1oTiKod IAEYPATog.

3.3.2 Xoveyng @aorn (Aépag)

Ze YOV1EG KOKAIKIG OlaTOPNG, 1] PO1] TOL PELOTOL eCAPTATAl AIIO €vav AdlaoTaTo
appo nov ovopadetat apidpog Dean (Pui et al., 1987). O apiBpog avtog opiletat wg:

De=2¢ (39

JR.
Omov 0 AOYyog KapmmoAotntag Otvetat amo 1 oxéon R, =R, /7, Kot armotelet éva peTpo
G ONUACLAG T®V PUYOKEVIP®V KAl AOPAVEIAK®Y OOVAIPEDV TOD PELOTOL Ot OXE0I He
TIG ODVEKTIKEG OLVApEL.

H opbomrta tov mediov porlg mov vmoloyiletat otnv MOAPOLOA  EPYdAoid,
emPefarwvetatl pe mpooopoinorn 6vo powv pe De=38 (Re=100,R, =7) xat De =423
(Re=1000,R, =5.6). Ta amoteAéopata Oivoviatr otmv Ew.3.6. Ot xatavopég trg
adovikng tayxvmtag ot dwaperpo A-A (apiotepr) omAn) petarvomifoviat mpog To
eCMTEPIKO TOLX®HA THG YOVIAG SAITIAG T®V QUYOKEVTIP®Y dOVAPEDV IOV AOKOLVTAL OTO
PELOTO, KAl I MPETATOMON &lvatl peyaldTtepn yla vynAotepovg apipovg Dean. Ot
KATAVOPEG TG aSovikng tayvtntag ot dapetpo B-B (0eSia otAn) napapoppavovtat
aMd mapapévoov CLPPETPLKEG ®G MPOG To emimedo ovpperpiag tov aywyoo. Ta
aroteAeopata avta etvat ovykpiowa pe exeiva tov Tsai and Pui (1990).

05 05
0° 90° 45°
(a) o+ o+
-0.5 -0.5
0.5 0.5
0
(b) of of
vi

-0.5 -0.5

A-A B-B
Ewova 3.6: Katavopég afovikr|g Tayotntag diatopég g yavidg 0=00 (eicodog), 8=45¢ xat 6=90° (¢5odog)
Katd prikog tov Stapétpov A-A(aptotepd) kat B-B(6eSia). (a) De=38 xat (b) De=423. Ta amoteAéopata g
IapovOoag epyactag Paivoval pe oovexr) ypappr, eve eketva tov Tsai and Pui (1990) pe Staxekoppévy).
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Zmv Ew.3.7 ¢aivovtat ot ypappég porg xat ta eminmeda otabepr|g afovikng
Taxomtag g devtepevovoag porg, otlg dwartopeg & =45 kat €=90° tov aywyoo yua
De =38 (aptotepa) xat De =423 (6eSua). Ot ypappég porg g devtepedovoag por|g yia
XapnAo apipo Dean deiyvoov to OXNpATIOpO evog (edyOoDG OLUHETPIKOV OV®V, Td
KEVIPA TOV OHOI®V elval eAa@p®dg HETATOMOPEVA MPOG TO e{@TEPIKO TOLXOPA TNG
yoviag kat otig dvo dwatopés. Eivay, emiong, epgaveg ot 1) péyotn) aloviky tayotnta
rapovotddetal Kovida oto emteptkod toixopa. Ta amotedéopatd pag etvat avtiotolya
exetvov Tov Pui et al. (1987) yia péoovg apiBpoovg Dean (17 < De <370).

De=423

T W

=

T T [ .
lulo 04081216 2
Ewova 3.7: Tpappég porjg g Sevtepevovoag pong kat emineda otabepr)g alovikig TaydTNTAg oTig O1aTopég
0=45° (mave) xat 6=90° (xatw) yia De=38 (apiotepd) kot De=423 (6edia).

Ot ypappég por|g g devtepedovoag porg yia De =423 xat 6 =457, Seiyvoov emiong
TOV OXNUATIORO DO KOPLMV, COPHETPIK®V OV®V, TA KEVIPA T®V OIOIOV OP®G £XODV
PETATOMOTEL TIPOG TO £0MTEPIKO TOLX®HA Kat elval vIIo KAIOI Og OX€on He TO eminedo
ovppetpiag. Xt Swatopr) € =90° oxnuatifovtar &8t diveg, 1 omoieg ava dvo etvat
OLPPETPIKEG OG IIPOG T OLAPETPO A-A, KAl 1] PEYLOT ASOVIKI] TAXOTNTA TOL PELOTOV
Pploketat akopa mo Kovid oto eSmtepiko tolyopa. Ta amotedéopata avtd oOPPOVOLY
1000 pe 11§ Dewpnrikég meprypagég twv Pui et al. (1987) ywa peydlovg apdpodg Dean
(De =370), 600 Kat pe Tig aplOpnTikeg IPOcopowwoelg T@v Breuer et al. (2006).

3.3.3 Zoparionaxy Ddon

EvamoOeon oty I'ovia

Ymoloyifovtal Ta xAdopata evamofeong TovV oopuatidi@v XPHOolponol®vIdg To
povtého kata Euler mov avamtoxOnke kat ovykpivovial pe ekelva mpornyovpevov
Oe@pnTIKOV KAt melpapatikeov epyaotev. Ipaypatonou)Onkav npocopolwoelg pe edia
pOI1)G TIOL eAT)PONOaV AVAADTIKA KAl DIIOAOYIOTIKAL.

Apxwda, omoloyiotnke 1 evamobeon yoplg va Aappavetatr omoyn 1 Papvtikn
kabinorn, yta 6vo Aoyovg kapmvAotntag g yoviag, R =5 xat 30, pe xpron tov
weatov nediov por|g twv Cheng and Wang (1975), to omoio &g Aapfdavet vnoyn tn
devtepevovoa por). Ta kKhaoparta evanobeong mov LIOAOYIOTNKAV HE TO IPOTELVOPEVO
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POVTEAO oLYKpivovTal fe Ta avaluTikd Tovg amnotedéopata otny Ew.3.8. Ot mpoPAeyetg
tov povtédoov kata Euler oopgpovody pe v avalvtikn Avon ywa xapnloovg apifpovg
Stokes, aMda Swagépoov yia ovywnlovg apidpovg Stokes kat yia pikpovg AOyovg
Kapmolomtag g yeoviag. H OSwagevia otovg vynlovg apibpovg Stokes nrav
avapevopevt), épooov 1o poviélo Paocifetat oe avarmrrtoypa xapniov apifpoov Stokes. H
péylotn dagopd etvat 10% xat teiver oto pndév kabmg o Aoyog KapmmoAotntag avidavet,
onoTe T AdPAVELAKA PAVOPEVA YIVOVTAL IO adbVApd.

1
08r

n,n
o o o o
oo N @
—T T

e
=

--eeee- Cheng & Wang (19?5),R0=5 i
Cheng & Wang (19?5),R0=30
— present work R =5 ]

Deposition Fractio
=g
w

=B o=
=
T

present work,R =30

o

03 06 0.9 12 15 1.8
Stokes Number, St
Ewova 3.8: KAaopa evanofeong - Zoykpton pe ta avalvtikda amotedéopata tov Cheng and Wang (1975).

(=}

Emiong, mpaypatonou)fnkav mpocopol®woelg DEPApaTiK®V pO®V AEPOADHAT®V, Td
omoia Aappavoov vmoyn toco 1 Papotikyy kabinor, 600 xat v adpaveld TV
oopatdiov. Ot vnoloyopotl yla pogg agpolvpartog pe aptdpoovg Dean 38 xat 419
ovykpivovtat pe ta mepapartika amotedéopata tov Pui et al. (1987), ov omoiot
xpnotwponoinoav oopatidla oleikod ofeog pe Owaperpovg 5+20um, xabwg xat
arnoteheopata Lagrangian vrmoAoyiopmy.

1

09r

08r

o
o
T

o
=)
T

05F

Deposition Fraction, n

present work
- = Puietal (1987)

02 04 086 08 1 12 14 16
Stokes Number, St

Ewova 3.9: Khdopa evamofeong yia De=38 - ZOykplon jie HEpAapaTikd armoTeEAEOPATa.

Ta amoteMéopata ywa ta xAdopata evamnobeong mov mpoPAemel 10 POVTENO Katd
Euler, oopgovoov pe ta nelpapatikda svprnpata tov Pui et al. (1987) tooo yia De =38
ooo xat yta De =419, onag gatvetat otig Ewk.3.9 xat 3.10, avtiotoiya.

Ta nelpapatika anotehéopara yiwa De=419, éxoov yprnopornowmdet enavelAnppéva
yld TNV IIOTOIIOiNO1 TOL LIOAOYOpPOL Tov KAdopatog evamnobeong péowm Lagrangian
pefodwv. Ta amoteAéopata KAIOW®V Ao avTég Tig peAéteg ouyKpivovTat pe ta OKda pag
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otV Ew.3.10, emtpénovrag v anevbeiag ovykpion tov pedodoloyiov xata Euler kat
katda Lagrange. Ta xKhaopata evanobeong tov povtédoov katd Euler diagépoov Atyotepo
ano 10% amo ta anotedéopata twv Cheng and Wang (1981), mov mpaypatomnoinoav
Lagrangian vrmoAoy10pog Xp1OHOIIOIMVTAS TO avAaALTko medio porg t@v by Mori and
Nakayama (1965). Qotooo, 1 Stagopd pe ta apldpntikd amotedéopata teov Tsai and
Pui (1990) xat Breuer et al. (2006) @tdver to 30%. Ilpémet va onpewwbel otL oOTIg
Lagrangian epyaoieg e AapPaverat omoyn 1 Papovtnra. Bprikape, opwg, neg n
Bapotnta Sev eivat onpavtiky oe oxéorn) pe ta adpavelaxkd @avopeva yta De=419.

1

n
e e 2 o o
o @m N m ©
T T T T

S
B
T

Deposition Fraction,

o
w

present work
= Puietal (1987);3.95mm, glass tube
=== Breuer et al. (2008)

o
)
T

e
=

Cheng & Wang (1981)
=== Tsai & Pui (1990)

0 ; \ \ . .
0 02 04 06 08 1 12 14

Stokes Number, St
Ewova 3.10: Khaopa evanofeong yia De=419 - Xoykpton pe HMEPAPATIKEG PETPIOELG Kat aplOpnTikd

AIIoTENEopaTa.

Karavouég Zoykévtpwong Zopatidiov

Eva amod ta mo onpavtikda xapaxtnplotikd tng mneptypa@ng kata Euler eivatl ot
EMTPEIEL TV EDKOAO DIIOAOYIOPO TNG KATAVOL|G ThG OOYKEVTP®OONG TV oopatidiov. H
XOPIKI] KATAVOHI TNG OLYKEVIP®ONG T®V oopatdieov Oivetatr omyv Ew.3.11 otig
datopég =45 xat =90° tov aywyov ywa De=38 kat St=0.36 (mpotn otrAn) Kat
1.18 (devtepn otAn), xkabwg xat yia De=419 xat St=0.35 (tpit otwAn) kat 1.21
(tetaptn otrAn).

Ia m por] xapnhov apOpod Dean, ta ocopatidia pe xapnio apidpod Stokes
(St=0.36) akolovBovv TIg YpAPHES POLIG TOD PELOTOL KAl PIIOPOLY VA AVAYVOPLOTOLV
TA KOPLa XAPAKTNPLOTIKA Tig devtepedovoag porg tov pevotov. H evamdbeon eivat
eNdxotr), al\d LIAPXEL EVTOVI] OLOOMPELON OOPATIOIMV KOVIA OTAd TOWXDUATA TI|G
yovidg. Me abdnon tov aptfpoo Stokes, Kat eMOPEVOS TOV AOPAVEIAK®V QALVOPEVAV, 1)
evamnobeon avfdavel Kat Ta OEPATIOT OLOOMPELOVTAL MO KOVTIA OTa Towpatda. [a
St=1.18, 10 medio OLYKEVIPOONG TOV OOPATIONOV elval MO0TIKA OlIPOPETIKO dAIIO
aoTO TOL PELOTOV, EMedl] TA AOPAVEIAKA @PALVOPEVA KOPLAPXOLV. ZyxedOV Kaveva
oopatiolo Oev efépyetal TG YOVIAG Kat To KAAopa evarobeong teivetl ot povada. Ot
peyaleg meployég ehevbepeg ompatidiov mov @aivovtat oty Ewk.3.11, xatadeikvooov
) OLOKOAla LIIOAOYIOPOD TNG OLYKEVIPWONG He TNV mapadootaxy) Lagrangian
pebodoloyia: Ba xperalotav eva MOAD MLKVO MAEYHA YA TOV EVIOMOHO T®V HIKPOV
MIEPLOY MV TIOD 1] OLYKEVIPOOT TOV OOPATIOl®V etvat oD xapnAr). Ta npoavagepbévia
@awopeva elvat mo eu@avy) omyv mepimtmorn g porg vynAod apiipod Dean
(De=419).
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“@De=38 T (b) De=419

|__EEEaEEE |

CU12345678610

Ewova 3.11: Katavopég ovykevipoong oopatidiov otig diatopeg 0=45¢ (mave) xat 0=90° (kdtm). (a) De=38
(mpwteg 6vo otrAeg) kat (b) De=423 (teAevtaieg Svo OTrAeg).

ITeproyég EvamoBeong Zopatidiov
Ot meproyeg evamobeong oopatidiov pe PAon 1) OLYKEVIP®OOL| TOVG OTO TOLXOHA
dakpivovtat oty Ewk.3.12 yia De =38 (mavw) kat De =419 (xdtw).

|}

St=0.36 (a) De=38 St=1.18

St=0.35 St=1.21

(b) De=419

i
co 5 1015202530 35 40 4550

Ewova 3.12: Zoykeévtpoor copatidiov oto totyepd. (a) De=38, xat (b) De=419.

2V eKova aovtr), Qaivovtat ot meploxeg evarodeong yla xapnAovg Kat oypnAovg
appodg Stokes, kat n yovid @aiveratr tO00 Ao TNV €0MTEPIKI) OO0 Kl ard TV
eSmtepikr) mhevpd. Kat yia toog dvo apbpodg Dean xat yia yapnloovg apidpovg Stokes,



152

ZYNOWH

DIIAPYEL CNPAVTIKI) evariofeon Kovtd oty 6000 TG Y®VIAG KAt 0To TeAKO evbvypappo
Tppa tov ayoyod. Efattiag tng Oevtepevovoag porg, évag onpavitikog aptopog
oopatdieov evamnotifetatl ota MAeLPIKA TOYOPATA TG YOVIAG, EKTOG AIIO TO e§OTEPIKO
toiyopa. I'ia vynlovg apidpovg Stokes, ta ocopartidia emxkdbovial mo Kovid otnv
€10000 TG Y®VIAG KAl, PAALOTA, KUPLg 0To e§@TepKO Totly@pa. I'ia avto kat i) meployn
e\eb0epn OOPATIOIOV OTNV E0MTEPIKI] IAELPA TG YOVIAG ELVAL EDPVTEPT O AVTHV TV
nepinteorn. Ta npoavagepbévia yapaxktnplotukd eivatl aitepa ep@av) ya t) por)
oynAotepov appod Dean. Ta amotedéopata avtd tov poviédoo kata Euler
OLPPOVOLV e TIG IEWPAPATIKES ITapatnprjoetg v Pui et al. (1987).

3.3.4 Avedaptnoia ITAéyparog

H aveSaptmoia g emiAvong TG OOPATOWIKIG (PAONG dIIod TV avdaAvon Tov
OAEYPATOg IOV Yprowpomouwidnke ywa v Iepypd@r) TG yeopetpiag, eléyxOnke
Xpnowponowwvtag mAéypata dtagopev mokvot)tev. Ztov Ilivaxka 1, divetat to RMS
TOD OXETIKOD OQPAANHATOG TNG OLYKEVIP®ONG yid Oldpopeg MOKVOTNTEG TAEYHATOG, TO
oroto opiletal g:

2

D4
s =\ S - (3:10)

To oxetiko opdApa dtvetat ard ) oxéon:
c

icoarse Ci,ﬁne
E =|l——

l

, (3.11)

Ci,ﬁne
evd N etvat o apidpog tov ypnotpornotovpeveov kKoppPov (edw 300 amd Oidgopeg
IIEPLOYEG TOD DIIOAOYIOTIKOD Y®OPLov.

CVs (x109)

Coarse  Fine Erus (%)
276 698 4.53
698 1173 3.48

1173 1457 1.36
1457 1747 0.31

ITwvakag 1: AveSaptnoia miéypatog. To erms TG OOYKEVTP®ONG TOV OORATIOIOV yid S1dpopeg TOKVOTNTEG
IAEYPLATOG.

Ao tov ITivaka 1, 61t mepattép® avinon t®v KOpPwv Tov emAeypévoo TAEyHaTog
kata 20% (amo 1457x10% oe 1747x10%), al\dalet 1) ovykevipwon Aryotepo amo 0.5%.
Enopévmg, aot) n avalvon nAéypatog xprnowponou)Onke yia OAeg TG IPOCOROIWOELS
OTI) YOVUd.

3.4 ZYMITEPAXMATA

210 Kegpdlato 3, napovotdotnke 1) motomnoinon tov povté\oov oo Paociletatl TANpwg
oe neptypaen kata Euler, péom ovykpioemv pe avalvtikég, MEWPAPATIKEG KAt aAAeg
apdpntikeg epyaoteg g PpAoypapiag. Ot Opot g didyvong Kat g emoépaong TV
ewTEPIKMV dvvapemv motonou)dnkav Sexmplotd o kabévag, mpv mPoY®PI)oovHE 0TV
dtepevvnon T0L OLVOAKOL poviéhov. H obykpron pe to mpoPAnua Graetz-Nusselt
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€0etle OTL 1] aplOPNTIKY] AVTIIPETOIION TOL OPOL NG OldIXLONG TOV COPATIOIWY elvatl
opbr), eve kat n peAétn g emdpaong g Papvrrag (©g eSowteplkr) dLvVaun) ot
HETAPOPA TOV OOUATIOl®V €de18e OTL 01 IPOPALYELG TOL HOVTENOD COPPHOVOLY ATIOALTA
pe TV avalvTikt) Ador) Tov IpoPAfjpatog,.

ZXeTIKA Pe TNV IIOTOIOINOI) TOL OPOL MOV HEPLYPAPEL TNV AOPAVELd TOV
oopatdilev, Ta amnotehéopatra tov poviéhov katd Euler ovykpibnkav pe avalvtikd,
MEPAPATIKA KAl dpOpnTIKa evprjpatd OXETIKA pe TV evarofeorn adpavelakmv
oopatdiov oe yovid 90° KoKAKIg OlATOPIg Yid OTP®TL) POI] PELOTOVL. ZOYKEKPLHEVA,
OtV Hepimtmorn) oL Xpnotpomnoteitat eva 19eato poiko nmedio yopig devtepedovoa por),
ol mpoPAéyelg TOL HOVIEAOL yia xapniovg apipovg Stokes ovppmvoLv pe Ta
AVAADTIKA AIIOTEAEOPATA, EV® EIVAl EAAPP®S aLSNHEVEG Yia peyalovg apldpovg Stokes.
Avto efnyeitat eOkoAa, av avaloylotel kKavelg to Ott 11 devtepevovoa por) O
AapPBavetat voyn oty avaiotikr) Avor). [Tap” OAa avtd, n peylotn dragopd eivat g
talng tov 10% yia 10 pikpoTePo AOYO KAPMDAOTNTAG TG Y®VIAG KAt Telvel oto pndev
kabwg o Aoyog avldvel, yeyovog mov Kabiotd 10 HOVTEAO KATAAANAO yld IIPAKTIKEG
epappoyés. Ilpoobeta, n mpooecyylon kata Euler ovykpivopevn pe Helpapatikd
goprjpata Otvel IKAVOIIOUTIKA AMOTEAEOHATA Yyla TOo KAAopa evamnobeong ot yovid
1000 yla xapnAov 0o kat vynAov apdpod Dean por). Emiong, o1 0¢oeig evamobeong tov
oopatdlev 1mov mpoPAémovtat oty IAPOLOd EPYAOoia OLPP®VOLY, TOLAAXIOTOV
IIOLOTIKA, PE TG IEWPAPATIKEG IIAPATIPI)OELGS.

Enopévamg, 11 Ipooéyylor) oL XPNOPOIIOEITAl Yia Ta AdPAVELAKA QALVOPEVA LOXDEL
ywa oopatidia peyding adpaveiag, kabotovtag ) pebodoloyia xatda Euler katdAnAn
yla £va peyalo e0pog peyedong OCOPATOmV Kat, yid avto, yld P IAELadd eQappoy®y.
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AAPANEIAKA ®AINOMENA ZQMATIAIQN: TQNIA

Zta Kegpdalawa 4 xat 5, to avamtoxbév povtedo kata Euler, ypnowponoteitat ywa tv
PEAETN Kat KaADTeEPT) KATAvonon g adpdvelag Tov oopattdlov kabmg avtd Kivoovtdat
evtog 000 BACIK®V YE@PETPLOV: piag yoviag 90° xat pa dtaxAadwong. Ot yeopetpieg
avtég, av Kat OXeTKd amAég, propovv va Bewpnbodv g ta dopwkd otoiyeia Ttov
avarvevotkod ovotrpatog. Kat otig dvo mepurtwoeig eotialovpe ot petag@opd Kat
evamnobeon Papéav oopatidiov (dp >1pum ), 61OV TO0O TA AOPAVELAKA PALVOHEVA, OCO
Kat ) entdpaon g Papvtntag eivat onpavtikotl pnxaviopot evanobeong.

2to napov KepdAhato, xat oe ovvéyelwa g pelétng motonoinong (Kepdahawo 3),
IIAPOLOLACETAL Pld TIAPAPETPIKY] PEAETH) THG PO1)G agpoAdpatog o yovia 90°, wote va
rpoodloptotel 1) enidpaon g Papovtag, too appov Reynolds tng porjg xat tov
AOYOL KApmoAOTNTAG TNG YWVIAG OTn PO TOL PELOTOL KAl T HPETAPOPA TOV
oopatdiey. Ztov ITivaxka 4.1, covoyilovtatl ot HAapdpeTpol mov Yproponouw)dnkav
otovg vroloywopods, evew oty  Ew.3.4 @aivoviat ot Ttpeig  dragopetikol
IIPOCAVATOAOPOL THG Y@VIAG 08 0XE0T HE TNV EMTAXLVON TG Bapvtntag.

Oeppoxpaoctia Pevotod T 293K

IToxvotnta pevotoo pt 1.21 kg/m?3

I€wdeg pevotod s 1.81x10° kg/m s
ITokvotnta copatidiov pp 900 kg/m3

Atdpetpog oopatidieov dp 5-20 pm

Ap1Bp0g Reynolds porig Re 100, 300, 500, 700, 1000
Aoyog xkapmoAotTag yovidag R, 44,57,7.83
Emtdyvvon g Bapottag (8x gy, &) (1,0,0), (0,-1,0), (0,0,-1)

IMivakag 4.1: 18w0tnteg pevotod kat oopaTdiov mov xpnowponou)dnkav otV DAPAPETPIKY) HENET) TG
yoviag 90e.

i ovodnmon mnoo akohovBei, ot  dwagopeg mepUIT®OE  ovopdldovrtat
xpnowponowwvtag ta apyxwka ‘'C, ‘D), T xat ‘G’ mov mpogpyovtat amo TG AeSelg
Convection (oovaywyr)), Diffusion (6wayvorn), Inertia (adpavewa) xat Gravity
(Bapotnta), avtiotolyd, KAt LIOOEKVLOLV IIOl0L PIXAVIOpol Aapfdavovtat vrnoyn oe
kdbe mpooopoiwon. EmuAéov, ot deixteg "X, 'y’ kat 'z’ vmodeikvoovv v xatevbovon
otV omoia Opa 1) emrtayovor g Papotntag: o 'x” avtiotoxet oe ¢=(1,0,0), 10y’ oe

¢=(0,-1,0), kar 1o 'z 0e $=(0,0,-1).

4.1 TQNIA: POH AEPA

Ze oopgovia pe pornyovpeveg peheteg (m.x. Tsai and Pui, 1990),  avaAvor £deile ot
T000 1 Katavopn TG alovikng Taxvintag, 000 KAl TA YXAPAKTNPLOTIKA TG
devtepedovoag porg Tov agpa eSaptovial amno tov appo Dean g por|g, o omoiog pe
m oepda tov efaptatat amo tov aplpod Reynolds tg porg, Re, xat to Aoyo
KapmoAotmtag g yovids, R . I'ta avtd to Aoyo, efetaletal Sexmplota 1) emidpaon
kabepiag amd avtég Tig napapétpovg Sexmplotd.
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—— R =8.3(De=243) R =7(De=265) -wweenee R =5.7(De=293) -......R =4.4(De=334)

05 outer wall 0.5 outer wall

1450 R 90°

o 0.5 1 15 2 o 0.5 1 15 2

-05

-0.5
] 0.5 1 1.5 2 0 0.5 1 1.5 2

u, |
(b)B-8 - Re=700
Ewova 4.1: EniSpaon tov Aoyov KapmoAdmTag mg yovids, R, oty xatavopr) g alovikng taxdntag
otig Statopég 0=45¢ (aprotepd) kat 0=90° (dedud), yra vynAo apdpo Reynolds (Re=700). (a) Sicpetpog A-A,
xat (b) dwapetpog B-B.

‘axial

R=8.3 R.=7 R=5.7 R =4.4

o

De=347 De=378 De=419

-

g

)
:
;
§

)

-

Re=1000 lu/ 0 04081216 2

Ewova 4.2: Enidpaon) tov Adyov KapmoAdtTag oTig ypappeég porg g Sentepedonoag por)g KAt otd emmeda
otabepr)g adovikr|g Tayvtntag otig diaropég 0=450 (mavw) kat 6=90° (kdat®), yia Re=1000.

H avdAvor) deiyvet 0Tt 0 AOYOg KAPITOAOTITAG TG YOVIAG eMnpedlel OLAQPOPETIKA TV
KATAVopI) g adovikrg TayOINTag Kat T Oopr tng OevtepedoLOoAg POrg yld Poég
xapnAoov kat vynAov apipov Reynolds. Zvykekpipéva eve oty mpotn HePITt®on
(Re=100) n pory etvat oxedov aveSaptnty) Tov AOYOL KAPITDAOTNTAG TG YOVIAG, yid
Re >500 1 enibpaon tov R, elvat ep@avi)g oTig KATAVOEG TG TayLTNTAS, KOPI®G OTO
kévtpo oL aynyoL (Ewk.4.1), kabwg xat otn devtepedovoa pory, 0mov oxnpatifovial véa
Cevyn ovppeTpkeV Svev pe pelmor tov Aoyov kaprmAottag (Ew.4.2). Ta xavevav
amno Tovg apipovg Reynolds mov efetaotnkav, opwe, n peyot) afovikn taxduyta dev
PETATOIOTNKE IMEPAITEP® IIPOG TNV ECOTEPIKI] MAELPA TG YOVIAG Kabwg o AOyog
KAPITOAOTITAG PELOVOVTAV.
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— Re=100(De=48) Re=500(De=238) - Re=1000(De=477)
05 outer wall 05 _I?ﬂter wall
90°
"
ameesn?®” all
0 B,
o

-0.5

0 0.5 1 1.5 2

umﬂ

0.5

-0.5

0 0.5 1 1.5 2
(b) B-B R,=4.4

Ewova 4.3: Enidpaon tov apidpov Reynolds, Re, oty xatavopr| g adovikig Tayodttag otig O1atopég
0=45° (aplotepd) kat 8=90° (6eSia), yia Aoyo kapmootntag R,=4.4. (a) 6iaperpog A-A, kat (b) diapetpog B-
B.

Re=100 Re=500

R=4.4

— T | .

[ul 0 04081216 2

Ewova 4.4: Enidpaon tov apiBpod Reynolds otig ypappég porg g GevTepebovoag por)g Kat ota enineda
otabepr)g alovikr|g Tayovttag otig diatopég 0=45¢ (mave) kat 0=90° (kdt®), yia R,=4.4.

ITap” 0Aa avtd, 1) enidpaorn tov apipov Reynolds ot por) tov aépa péoa ot yovida
elvat onpavtikny ave§dpmta Tov AOyoL Kapmolomtag TG yovidg (Ewk.4.3).
ZOYKEKPIPEVA, QALVETAL VA DIIAPYEL Pid eAdyloth) Tipr) Tov Re, mave amno v onoia n
Katavour] g alovikng TtayxLTNTag Oe METAKIVEITAL MHEPAITEP® IIPOG TO ECHTEPIKO
Toly®@pa g Yy®OVIAG, Yyua OANOLG TOuG AOYOLG KAPMDAOTNTAG IIOL €CETAOTNKAY,
DIIOVOMVTAG OTL TA AOPAVELAKA PAIVOHEVA KDPLAPXOLV KAl Ol PUYOKEVIPEG dvvapelg O
PIIOPOVV Vd eNnPedocovV Imepattépa T pot). Enurhéov, pmopet kaveig va napatnproet
omv Ew.4.4, o1t yua otabepo A\oyo kapmolotntag, 1 avnon tov apipov Reynolds
o0nyel ot OnpoLPYLA VEOV COPPETPIK®V dV®V, aAAd KAl T PETAKIVION TOV KEVIP®OV
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T@V 10N LIAPXOVIOV MPOG TV E0MTEPIKE] MAELPA TNG YDVIAG KAl TO KEVIPO TNG
datopn)g, yeyovog wiaitepa epgavég otn dwatopr) 8 =90° (¢odog ymviag).

4.2 TQNIA: ZQMATIAIA

Ooov agopd 11 peta@opd adpavelak®v oopaTdi®v peéoa ot yoOVid, I} avalvon
€0e1ge OTL 11 Papvtikn) xkabifnon elvatr onpavtikog pnxaviopog evamobeong xat dev
IIPEIIEL VA AYVOELTAL €K T®V MPOTEP@V. O IPOOaVvATOAIOpPOg TOL Ay®@YoL Og OxEon He TV
emrayovon g Papvtnrag elvatr onpAavtikOTEPOg Yla POEg AePOADHATOG XAPNAOD
apwpov Reynolds, omov ta adpavelakd @awvopeva etvat Artyotepo woxvpda (Eu.4.5(a)).
I'a Re =100 xat oe oOYKPLON PE TIg IPOCsOpowwoelg xoplg Papovtnta (CDI), n evanobeon
otV nepimtoorn CDIGx etvatl apketd vynAotepn) yia 0OAovg tovg apifpoovg Stokes, otnv
nepiotowon CDIGy xopaivetar ota idwa emineda, eve oty mepimtoon CDIGz 1
evanobeon eivat oyn\otepn yua copatidia pe appod Stokes pikpodtepo g povadag
Kat xapnAotepn ywa peyalvtepa oopatidwa. Avtibeta, yia Re=1000, ot nepurtwoelg
CDI, CDOGx xat CDIGy divoov ovykpiowpa kAdopata evamnobeong, eve 1) evamobeon
oV nepimtoorn CDIGz etvat eppavmg xyapnAotepr (Eu.4.5(b)).

1
0.8 De=38

08

n
o
-~

2
=]

05

Deposition fraction,

0 05 1 15 2 0 02 04 08 08 1 12
(a) Stokes number, St (b) Stokes number, St

Ewova 4.5: Enidpaon tng papvtntag oto khaopa evanodeong. (a) Re=100, kat (b) Re=1000.

O mpooavatoAlopog TV ayoymv ennpeddel, €miong, TG KATAVOHREG OVYKEVTP®OLG
v oopatdiov. Ia yapniovg appovg Stokes ta mpopil ovykévipwong Oe
petapalovtar onpavika otig nepurtwoelg CDIGx xat CDIGy ovykpruikd pe v
nepiatoon CDI 1000 ywa yapnAoovg, 0600 kat yta vywnlovg apipovg Reynolds, eve yua
oopatidola oynlod appod Stokes vmapyovv ep@aveig OlaPopég OTIg KATAVOPESG
OLYKEVTP®OONG PETASD TOV Mpoava@epfelomv MepUIT®OE®V (KOPIWG yla TIg POEg
agpolvparog vynAotepov aplfpov Dean) (Ewk.4.6). Qotoco, ota mpo@il tov evieAwg
opwgovtion aywyod (CDIGz) n acOpMETpn OLOOMPELON COPATIOIOV IPOG TO KAT®
IAaivo Toly®pa g YoVIdg elvat epgavig Kat yia tovg dvo apifpovg Dean.

[TpooOeta, n Paponta emnpedlel ONEAVIIKA TI§ IEPLOXEG emkdadong Twv
oopatdieov. Ot Owagopég elvatr eviovotepeg yia pogg yapniov apidpod Dean
aveSapmta tov peyédonvg TOV oopatdimv, eve yia poég vynAov apibpov Dean, omoo
Ta adpavelakd @aivopeva Koplapxovv, ot petaPolég dev etvat 1000 €vOLAKPLTEG
(Ew.4.7). I'ia 6Aovg tovg apiBpoovg Stokes kat Dean, eivat eppavr)g n aoovppetpia otig
eployeg evarobeong oty nepimtmor CDIGz.
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high Stokes number particles
CDIGY

(b) De=419

Ewova 4.6: Emidpaor) g fapdintag oTig KATavopég COYKEVTIPOONG TOV ompanﬁw)v YICI psya}\a oopatiowa
otig olatopég 0=45¢ (mave) kat 0=90° (kdt®). (a) De=38, kat (b) De=419.

CcDI
P

CDIGX CDIGy, CDIGz

MN

(a) low Stokes number partlcies

CDIGx CDIGy CDIGz

(b) high Stokes number particles —r .
€O 51015202530 35404550

Ewova 4.7: Enidpaor) tng Papidtntag otig meptoxég evamnobeong Tov oopatidiov yid por) aepoAdHATOG e
De=38. (a) Zopartidia yapnlobd apidpoo Stokes, kat (b) Zeopartidia vywnlov apiBpoo Stokes.

Emiong, Siepeovribnke 1 enidpaorn tov appod Reynolds g porjg xat too Adyov
KAQPIoAOTNTAg TG YOVIAG, Xopig va Angdet ooy 1 Papotikr xabdi{non (mepimtoon
CDI). H emidpaor tov apiBpod Reynolds oto xkhdopa evanobeong tov oopatidiov etvat
Sexabapn: 1o KAdopa evarobeong aviavet pe avdnorn tov appov Reynolds (Eu.4.8).
Qotooo, mapatnpeitat 0tt o pobpog avinong pewwvetrat. Axopn, Ppébnke ot ot
KATAVOHEG OLYKEVIPMONG KAl Ol MePLOXEG evarofeong 1oV oopatidiov ennpedafovtat
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arno tov appo Reynolds, pe tig dragopég va eivat eviovotepeg yua peyalotepa
oopatidwa (Ewk.4.9).

-

Re=100

Re=300
=== Re=500
*= Re=700

= Re=1000

o
w©

Deposition fraction, n
© © o © ©o o ©
L] w - o @ | @

=
o

k=]

0 02 04 06 0.8 1 12
Stokes number, St

Ewova 4.8: Enidpaon tov apiBpov Reynolds tng porig oto kAdopa evarobeong tov oopatidieov yia Re=5.7.

n

L

Re=100 Re=300 Re=500 Re=700

.’ l I

(a) concentration profiles
Re=100 Re=300 Re=500

1M

(b) deposition sites

Ewova 4.9: Enidpaon tov apidpod Reynolds tng porg ywa ocopatidwa an])\ou aptepob Stokes. (a)
Katavopég ooykévipwong otig diatopég 0=45¢ (mavw) xat 0=90° (xaww), kat (b) ITeproxég evarobeong
oopatdinv.

Telog, 1 avdaAvorn €0etSe OTL, Omwg ovpPaivel Kat pe T Pory Tov agpd, o AOyog
KAPITOAOTITAG T1)G Y®VIAG €lVAl ONUAVTIKY] IAPAPETPOS Y1d T HETAPOP OOPATIOIOV
povo yua poég xapnlov apwpod Reynolds (Ew.4.10). Ztnv mepimtoon aovt), 1)
evanobeon avddavetl pe petwon tov R, dnAadr) kabwg o aywyog yiveratl mo amotopog
Kat ta adpavelakd gawopeva oxvpotepa. EmuiAéov, ot ta mpo@il g ovykévipmong
Kat ot meploxég evamnobeong tov copatidiov Ot petafalAovial ONpavIKAa pe To AOyo
KAPITOAOTITAG TG YOVIAG.
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[ I I« I

Deposition fraction, n
(=]
o

04

03F

02f

o1 g Re=100, CDI |
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Stokes number, St
Ewova 4.10: Enidpaon tov Adyov KapmbAOT)Tag TG Y®VIAG 010 KAAIopA evarobeong Tov oopatidiov yia

Re=100.
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Ag@ov efetaotnke 1 akadnpaiky) MePUITOON TG PoNg agpolvpatog oty yovia 90°,
oto Tapov ke@dalaio, To povtélo katda Euler mov avamtoyOnke ota mAaiowa tng
datpiPrig, xpnotpomoteital yia Vv HeAET) TG HETAPOPAS KAt evariobeong oopatidinv
EVTOG OLAKAAO®MONG TTOL OLHP®VEL He T QULOOAOYIA TOL MVELPOVA. XKOMOG elval va
Bpebetl pe moto tpomo ennpealoov v evamnobeon to peyebog T@V ocopatidiov kat ta
XAPAKTNPLOTIKA TG POI)G, KAl OLYKeKppeva o apipog Reynolds xat i) ooppetpia g
por)g otovg Boyatpukovg aywyoig g SIaKAAdwOonG.

51 TEQMETPIA KAI TTAETMA

Zta  aplpnukd  HOEpdapatd, XPNOWHOIOolEiTtal  Hid  (QUOOAOYIKA  PEANOTIKY
draxhadwor) (physiologically realistic bifurcation - PRB), mov PaciCetat ota yeo@petpika
XAPAKTNPLOTIKA T1g TPiTng Kat tétaptng yevedg (G3-G4) tov mvedpova, obppmva pe 1o
povtedo tov Weibel (1963) (ITivaxag 5.1). Ot ovykekpipéveg yevedg emAéxOnkav emetdr)
gxoov ypnotponowndel enavelnppeva ot Prphoypagia (Asgharian and Anjilvel, 1994;
Kim et al., 1994; Comer et al., 2001a) , eve exet netpapatikda arnodeiydel OTL otV meployn
aovt) i evanobeon 1oV copatidiov napovowalet peytoto (Schlesinger et al., 1977).

AraxAadwon G3-G4

Audpetpog prtpukod ayeyov, Dy 5.6x10° m
Mr\xog pntpikod aywyov, Ly 11x10-° m
Atapetpog Boyatpikod aywyoo, D, 4.5x103 m
Mr\kog pntpikod ayeyoo, Lo 9.2x103 m
T'ovia dtaxkAadwong, dprb 350

ITivakag 5.1: Teopetpikd yapaktplotikd tov yeveov G3-G4 odpgava pe tov Weibel (1963).

H PRB yeopetpia kataokevdletal ypnotponowwvtag v epappoyr Design Modeler
tou epnopkod CFD maxétov ANSYS 11 kat tig avalvtikeg elomoetg towv Heistracher
and Hofmann (1995) mov meptypd@oov pia KapmoA@pévy) Kopo@r) otny IEPLOXT| TN
OtaxAadwong. Ot Keviplkeg YPAPPEG TOD HNTPLKOL KAl TOV OuYATPKOV ay®y®dv Kdt
oNOKAnNp1 1 emgavela g PRB nov kataokevaotnke, gatvoviat otig Ew.1(a) xat (b),
avTioTtolyd.

To Oopnpevo tpdwdotato mAéypa Ovo tpnpateov tmg PRB mapdayetatr pe 1)
pedodoloyia kat to Aoyopwko teov Makris et al. (2011) xat Makris and Housiadas
(2011), n omoia apywda avamtoydnke yla TV KATAOKELI] OOPNPEVOV MAEYHATOV
YEDHETPL®V TIOD AAPPAVOVIAL AIIO LATPLKEG €1KOVEG AOevmV, OI®MG TA AVELPVLOHRATA
KOWLAKI|G aopTrg 1) 1] KoWak1) StaxAadwor) g aoptrg. Ta mieoveéxktnpa tmg pebodov
aot)g eivat n Owat)pnon @V OLVOET®V ALTOV YE@PETPIOV HE XPron dopnpévoo
IAEYPATOG, TO OIOlo0 TIApovolalel xapnAotepn appntikn Owayvon Kat ovykAivet
ypnyopotepa amo eva pn dopnpévo mAéypa (Longest and Vinchurkar, 2007a). Ztnv
Ew.1(c), paivetrat to pn dopnpévo mov dnprovpyrnnke otny emeavewa g PRB, eve
otV Ew.1(d) gpaivovtat to dopnpevo tpidiaotato mAéypa xat i diatropt) too. O éeyyog
g aveSaptnolag g Adong amo v avaloor Tov DAEYRATog €dele OTL Eva IAEYHA IOV



164

ZYNOWH

arnoteheitat anod 9x10° vroloylotikod kKOPPoLS, apket yia TV edpeot) Tov mediov pPorg
TOL PELOTOD KAl TNG CLYKEVIPOONG T®V OOPATIOIDV.

(b) )
Ewova 5.1: (a) Kevipwkés ypappeg Kat ye®MeTpikd xapaxtnplotikd tmg G3-G4 daxhadwong (Aoym
YEDPETPIKIG OLPHETPiag @aivetat povo o évag Ooyarpikog aywyog), (b) H emeaveia g G3-G4
OlaxAdadwoong pe Vv KapmoAopévn Kopov@rn otnv meployn g dwaxhadwong, () To pn dopnupévo
empavetaxo méypa, kat (d) To dopnpévo miéypa xat n Siatopr) Tov.

5.2 ITIPOXOMOIQXEI%

X1 pelérn g PRB, ypnowponotettat to povtédo katd Euler yia tov vmoloytopo tng
PONG TOL aépa KAl TG OLYKEVIPOONG TAOV OMOPATOOV. ZvyKeKplpéva yla 1N
O®UATIOWIKI] PAot), SIvVOVTAl Ol KATAVOHEG OLYKEVTP®ONG Kat vrodeikvovovtat Béoetg
evanobeong tov oopatdiov, ektog Tov xhaopdtov evanobeong. XZtov Ilivaka 5.1,
ovvowyilovtal ot HapdpeTpot Iov Yprnowponoudnkav ota apldpnuika melpapara g
por)g agpoAvpartog ot StakAadmor).

I'a Toug Tpetg dragopetikovg aptBpovg Reynolds g por|g, Bewpeital coppetpia otn
pon] v Ovo Ovyatpikwv xAddwv, eve ylwa Re=1132 efetafovtat axopa 00O
MEPUITWOELG CIOLPPETPNG POIG. XvyKekplpéva, av Q,, Q, elvat ot mapoxég Iov
eCepyovial tov Boyatpwov ayeoyov 1 xat 2, avrtiotoiya, Ttote efetalovrat ot
nepurtwoelg Q, /Q, =2, dnAadr) moov anod tov évav aymyo eGépyetat Surhaoia por| amo
otL tov dMov, kat Q, =0, orov amo tov évav aywyo dev egépyetat pevoto. H mpwtn
IIEPUITOON AVTIOTOLXEl O HEPIKA AIIOPPAYHEVI] Por), eved 1) OedTepn O IANP®G
ATIoOPPAypEVI) por) otov Boyatpko aymyo 2.

Zmv eloodo g OraxAadwong Oewpovpe mapaPoAkd mpo@il TaxLITAg KAt
OHOLOPOP@PN] KATAVOHI OORATIOl®V yia OAeg Tig mepurtwoelg. XtV Ew.5.2, opifovtat
dagopeg dratopég. Zoykekpipéva, 1 Swatopr) A-A PPloKeTal OTOV PNTPKO AYDYO OTHV
apyn g nepoxng g daxhadwong (y =2.4), eva ot datopég B-B” kar C-C’ Bpioxovrat
Katavtt mg draxkhadworng, otig 0éoeg ¥y =3.5 xat y=4.5, avtiotorya. Ot Oeixteg 1 xat 2

AVA@PEPOVTAL OTOV avTioTolo Ouydrpikd ay@yo. ZNpelRdVETAl, MOOTO00, OTL OtV
IIAPOVOLAOI TOV AIOTEAEOPATOV O OelkTng MAapaAelmeTal yid TG OOPHETPIKEG POES.
ITpoobeta, oto évbeto g Ewk.5.2, opiovtat ot diapetrpot H-H xat V-V piag dwatopryg
nov Ppiokovrar mapdMnla kat kdfeta, aviiotolya, OT0 YE®HETPKO eminedo
ovppetpiag g PRB, z=0.
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Oeppoxpaoctia Pevotod T 293K

IMToxvotnta pevotov pt 1.21 kg/m3

I€wdeg pevotod pt 1.81x10° kg/m s

IMoxvotnta copatdioy pp 900 kg/m3

Awapetpog oopatidiov dp 1-10 pm

Hexovpaoy

Ap1Bp0og Reynolds porig Re 464

Meéon tayot)ta penotod v, 124 m/s
EXagpud doxron

Ap1Bpog Reynolds porig Re 1132

Meéon taydtnta pevotod o 3.02m/s
Evrovn doknon

Ap1Bp0og Reynolds porig Re 1788

Meéon taydTa pevotod Vo 478 m/s

IMTivakag 5.2: 1610tnTeg pevoTod Kat OOPATdi®V mov yprnotponouw)dnkayv otnv napapetpikr) pehétn g G3-
G4 draxAadwong.

Ewova 5.2: Optopog dtatopav Kat 61apéfb_m_{7 evolapEpovToG.
5.2.1 PRB: Ponj Aépa

H enidpaon tov apBpod Reynolds otnv xatavopr) tg afovikng TaxdTTag too aépa
@atvetat otV Ew.5.3A yia ooppetpikn) por) o Siagopeg datopés. 2t Owatopr| A-A, n
10 Opo@i\ g adovikng tayvtag etvat oxedov aveddptnto tov apiBpov Reynolds.
Avtifeta, otovg Boyatpikodg aywyovg (Siatopég B-B” kau C-C'), n péyrot alovikn
TAYOTTA PETATOIMETAL TIPOG TNV E0MTEPIKI) MAeLPd TG draxAadmorng (Orapetpog H-H),
eSa1Tiag T®V PLUYOKEVTIP®Y OLVAPEDV ITOL AOKOLVTAL 010 pevoto. IIpog v €§odo Tov
Boyatpkod aywyoov 1 péylotn aloviki] TAyLTTA HETAKIVELTAL IIPOG TO KEVIPO TOL
ayoyob kat kabwg o Re avfavel pia 6edtepn (pikpoTepr)) KOPLQT| eppavietat Kovtda
omVv e§mtepikl) mievpd. Ta amotedéopata avtd CLPP®VOLV HE TA EVPHHATA NGV
EPYAOI®V, OII®G ILY. Ot gpyaoieg tov Balashazy and Hofmann (1993) xat Comer et al.
(2001b).

[Tapopoia, oty Ewk.5.3B @aivetat i) enidpaor g acvppetpiag g porg ota mpo@il
g adovikrg tayvttag yia Re=1132. Avtifeta pe TG OOPPETPKEG POEG, 1) ASOVIKI)
tayomta myv H-H dwapetpo tng Swatopr)g A-A dev elval ma OOPPETPIKEG KAl 1)
petaromon tovg ogeitletat oty anogpadn tov Boyarpwov ayoyov 2 (Comer et al,
2001b) xat etvat eviovotepn otV Hepint®on) g DANP®G armo@paypévng pong, Q, =0.
Katavtt tng dtaxAadwong, xatda prjkog tg otapetpov H-H, n péyrot adovikr) taxvmta
Yl TIg AQODHPHETPEG POEG MAPAPEVEL PETATOMIOPEVT) TIPOG TNV €0MTEPLKI] MAELPA TNG
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dtaxkhadwong, ala eivatr awodnra xapnlotepn oto Ovyatpwkd aywoyo 2. Emiong,
@gatvetat ot oto Boyarpiko ayoyo 1, 1 por emrtaybvel oe OxEorn He ) OOPHETPLKL

'
HEleT(DOI].
(a) H-H BLET erer
{a) H-H : 2
5 A 05 B8 05 &E
‘;.‘h_\‘ M
o i
o .
0 o o 0 & A
"Q\ -
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05 05 R =
5 l 2 0 1 \:, u/ 1 2
Innor side
(b} V-V ; :
05 AoA 05 rec— 28 03 =
3 =~
e
¢
3 £
3 £
L ﬁ
o 0 i ok
1 1[
\l. (._.
%,
/ D
= Y e
057 . 2 5% i 2 % 1 ]
Resdgd o Re=1132 ———— Re=1788

A
Ewova 5.3: Katavopég afovikr|g tayotntag otig dtatopég A-A (aptotepd), B-B” (péoo) xat C-C” (dedua) otig
drapérpovg H-H xat V-V: A. Enidpaon apiBpod Reynolds yia ooppetpikég poég, kat B. Zoykpion petadd
OLHETPIKI| KAl AOOIPETP®OV POodV yia Re=1132.

(a) Q,/Q,=1, Re=464
BB,

(e) Q,=0, Re=1132 P ey

Ewova 5.4: Enineda otabepr)g taydtag xat dwavoopata oto eminedo ooppetpiag g PRB (z=0) kat
ypappég porg g devtepedovoag porg oe didpopeg Oiatopég katavtl g StaxkAadwong: (a) Qi/Qx=1,
Re=464, (b) Q1/Q»=1, Re=1132, (c) Q1/Q2=1, Re=1788, (d) Q1/Q2=2, Re=1132, kat (e) Q>=0, Re=1132.

Ot ypappég por|g TG devtepedovoag porg Kat ta enineda otabepr)g TayvInTaAg OTig
datopég B-B” xat C-C’ yia 11g ovppetpikeg poég gaivovtatl oty Ewk.5.4(a)-(c). Ze OAeg
TG IIEPUITMOELG DIIAPXEL OXNIATIONOG OVO COPPETPIK®V OvaV, ot ortoieg otr) datopry C-



AAPANEIAKA ®AINOMENA ZQMATIAIQN: ATAKAAAQZH

C’ petatomifovtat amo To KEVIPO ThG OaTopr|g MmpPog TV eSOTEPIKI] MAELPA TNG
dtaxkAadwong xat to emimedo ovpperpiag z=0 xkabwg o Reynolds avfavet. Ta
AITOTENEOPATA ALTA ELVAL TOOTIKA OLYKPIOIHA pe auTd AMN®OV apldpnTikov peAetov
(Comer et al., 2001b; Longest and Vinchurkar, 2007b; Martonen et al., 2001a,b).

Emiong, omv Ew.5.4(d)-(e) mapovoiwalovtat ot ypappég pong g devtepevonoag porg
Kat ta entreda otabeprig tayvntag otig dtatopeg B-B” kat C-C yia tig acdppetpeg poLg,
Q,/Q,=2 xat Q, =0, avtiotorya. H aocopperpia etvat eppavrig 1000 ota dtavvopata
g aovikng TaxLTTAS, 000 KAt ota enineda otabeprig TAXLTNTAG, EVO OLYKPLVOVTAG
TIg avtiotoleg dwatopég petadop Tov dvo Boyartpikov aywywv, Olaxpivovial Kat ot
dlagopég ot SevTEPELOLOA POT).

5.2.2 PRB: Xopartiowa

Ta media porlg mov vIOAOYIOTNKAV, XPNOWHOIOOLVTAL OTn OLVEXEW Yl TOV
DIIOAOYWOPO TG  petagopdag kat evamobeong oopatdiov pe  Odapérpovg
luym<d, <10um ot PRB. O npooavatohopog g dtaxhadwoong etvat €to10g Gote To
povadiato Siavoopa mg emttaxovong g Papvtnrag va etvatr ¢=(g,,g,,8.)=(0,1,0)
KAl VA OLHIIIITEL PE TOV IIPOOCAVATOAORO T1g Helpapatikng dwaradng twv Kim et al.

(1994), pe ta anotehéopata t@v onoimv Ba cvykptBovyv ta anoteAeoparta g IAPovodag
epyaotag.

»  Kim et al.(1994), Re=566-2264 — Q=1
| ==r====Eulerian model, Re=464 R
0.25- Eulerian model, Re=1132 ¥R
[ s Eulerian model, Re=1788

02}

015/

Deposition fraction, n
Deposition fraction, n

Stokes number, St Stokes number, St
@) (b)
Ewova 5.5: Zovolkd xAdopa evamofeong: (a) Zovaptioet too apifpod Reynolds yia ooppetpikr) por).
Zoykpton pe Ta melpapatika anotedéopara tov Kim et al. (1994), xat (b) ZOykpion COPPETPIKIG Kt
acOppeTp@V powv yia Re=1132.

To ovvoAko kKAaopa evamnobeong dev eSaptdrat WOtaitepa arno tov aptdpo Reynolds g
porg otnv mepimtoon ooppetpikng pong (Ewk.5.5(a)). To amotéleopa avto eivatl oe
ovpP@Via pe ta nelpapatikd eoprpara tov Kim et al. (1994). Emiong, n evanoeorn Oe
peTaBAal\etal oLOLAOTIKA HETASL TNG OOPPETPIKNG pong, Q; /Q, =1, Kat g peEPIK®G
aroppaypévng pons, Q,/Q, =2, al\d elvat oNuAvTKAa XapnA\otepn otV IEPUITOON
I\ P®G armoppaypévng pons, Q, =0, onmg gatvetat oty Ewk.5.5(b).

Av xat to oovoAko kKAdaopa evardfeong de petaBaletat Wtaitepa pe tig didpopeg
ovvOnkeg porjg, ot IEPloxég evarobeong Kat Ol KATAVOPEG OLYKEVIPOONG TV
oopatdiev eSaptovtat anod avtég (Ewk.5.6).

Xe ONeg TG IEPUIT®OOELG DLIAPXel evamnobeon oopatidiov otV Kopoer Thg
dtaxAadwong, ala Kat pia meptoxt) eAedbepn copatidi®v oto eE@TEPIKO TolY®HUA OTHV
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gvapln TV BoyaTpikeOv ayoymv armevavtt amno my kopo@r g dtaxkAadwong. Ot Béoetg
evanobeong otovg BuyatpiKong aymyong KIVOOVTAL dIIo TNV IAV® TAEDPA TOD Ay®YOD
IIPOG TNV €§MTEPIKY] KAt IIPog TNV €odo tov kabwg o apidpog Reynolds avlavet. Ztnv
nepimwon Q, =0 Ppédnke o1t ta oopatidia maywdedovial Kat TeAkd emkdbovrat
AaKOPd KAt OTOV aro@paypévo Boyatpiko aywyo.

[+

c-c’

(a) Q,/Q,=1, Re=464 ; (c) Q,/Q,=1, Re=1788

B8, B8,

(e) Q,=0, Re=1132 T W

Ewova 5.6: Katavopég ooykévipmong oopatidiov otig dtatopég Katavtt g StakAadmong Kat meploxEg
evanobeong oto toiyepa g PRB yia oopatidia peydhov apidpov Stokes: (a) Qi1/Qx=1, Re=464, (b)
Q1/Q2=1, Re=1132, (c) Q1/Q»=1, Re=1788, (d) Q1/Q»=2, Re=1132, xa () Q,=0, Re=1132.



MATNHTO®OPIZH

Tnv teleotaia Oexaetia pe ) peyaln avamrtodn g Navoteyvoloylag, vrdpyet
avSnpévo EMOTHHOVIKO evOlaQEPOV yla TNV XPHOn HAYVITIKOV VAVOOOPATIOIDV
(magnetic nanoparticles - MNPs) oe pia mewada Ploiatpikmv epappoywv, eneldn
emoekvdovy moAa embounta yapaktpotikd. Ta MNPs popovv va covdeovtat pe
Qappaxka, mpateiveg, €vQLHA, AVIIO®UATA KAl VOLKAEOTIOWT Kal OTn ovuVEYeld va
Katevfovovrtat vro TNy emdpact) WOXLP®V PAYVNTIK®V MEOI®V 0g KAIIO0 OPYAVo 1) va
Beppatvovtat pe xpron evalAacoopevoo payvntkov mediov yia Oepareieg vriepbeppiag
(Gupta and Gupta, 2005). Avapeoa otig O1a@opeg IPOTELVOPEVESG PLOTATPIKEG EPAPHOYEG
t@v MNPs, vriapyoov epappoyég yia ) dtayvmor) kat Bepamneia tov kapxivoo (Cengelli
et al., 2010; Grimm and Scheinberg, 2011; Grobmyer et al., 2011; Prijic and Sersa, 2011;
Yallapu et al., 2011), Oepamneieg pe PAaotika xottapa (lancu et al.,, 2009), mponypéva
ovotnpata petapopag gappaxkev (Duran et al., 2008; Kumar et al., 2010; Neuberger et
al., 2005) xat watpikr) anewovion (Lanza et al., 2004; Nahrendorf et al., 2008; Sharma et
al., 2006; Sharma and Kwon, 2007; Slevin et al., 2010; Thorek et al., 2006).

H m\etoyneia tov pedetov avtav apopovv MNPs oo Bpiokovtatl diaokopmopéva
oto aipa, xat oxt otov agpd. I'ta 1o Aoyo avtod, oto mapov KegpdAaio, 1o povtélo katd
Euler mov avamtdxOnke ypnowpomoteitat ywa v mpofAeyn TG HETAPOPAG Kdl
evanobeong HayvnTKOV copatidi®v SIaoKopImMOopEvav oe DYPO PEco VIO TV enidpaon
eSmtePKOL payvntikov mediov. Emedny n emidpaon ota oepartidia eivat amotéeopa
TOV P PNOEVIKOV XOPIK®OV MAPAYOY®V TOL €PAPHOCOPEVOD HAYVITIKOD IEGiOD, O
avtiotolyog pnxaviopog evamnobeong ovopdletatr payvnro@opton (oe avaloyia pe n
Oeppoopton 1) TV NAEKTPOPOPLOT)).

6.1 MATNHTIKH AYNAMH ZE Y>QMATIAIA

H payvntkr) dovapn oe eva pikpo oopatidto pmopet va Bewpnbet ion pe ) Govapun
IIOL AOKElTAl O¢ éva onpetaxko payvntiko oirmolo pomrg 7 (Hallmark et al., 2010), xat
dtlvetat amo ) oxéon:

E,=(m-V)B, (6.1)
n omoia SnA\ever ot n payvnukr Sovapn F, mpokdmtel amd T Sia@odpion g
payvnukeg enayoyrg B omy xatedbovon g payvnuikng pormg . Ilpémet va
TovioTel OTL amatteitat éva pn opolopop@o medlo PAyVNTIKIG ENAYDYIG MDOTE Vd
aoxnOet pn-pndevikn payvn Tk OOVApD OTo COPATIONO.
Oewpovtag ot 1o oopatidio payvnriGetat opotopopga oe 6Ao tov Tov oyko V, kat

OTL TO QPEPOV PELOTO elvdAl LOOTPOITKO KAl EAAPPA dAPayvNTIKO DAKO, OI®G TO VEPO
kat o agpag, OdnAadn 1n payvnuky Tov OSwamepatdTNTA ElvAl AT TOL KEVOL

u,=4rx107Tm /A, tote ) EE.(6.1) ypagetat og:
H,

F

m

(B-V)B. (6.2)
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Av 10 payvnuko nedio elvatl oTtatiko Kot dev LIIAPYXOLV PeOHATA OTO PELOTO, TOTE 1)
eSlowon Maxwell Sivetr V x B=0, omote 1ox0et (B-V)E =1/2B-B=1/2 B, énov B= ‘E‘ .
Enopévag, n) ES.(6.2) yivetat

- B?
E, =V yV|—1, (63
m 4 X {2/1 J ( )

o

1] XPIOWHOIIOIGVTAS Tr OXE0T) PAYVITIKYG EMAYOYHG KAl payviTikod medioo, B=u H :
- H?
Fm = ,uOVp ZV(T] . (64)

H payvnuikn) emdektikotTnta y oOTig Ipornyovjeveg eSl0moelg, propet va amotelet
Kat 1 18 ovvaptnon tov payvntikod mediov, dnhady y = f(H). Emopévag, 1 F,
aroteAel, YeVIKA, pua IEPUINOKIN XWPLKN] OLVAPTNON TV EPMNAEKOPEVOV Heyebmv
(Zborowski et al, 1999). To mnpoPAnpa avtd avrtipetemifetat pe T XPHon
AIIAOTIOU) TIK®V DIIOYE0EMV avda IEPUIT®ON).

6.2 MATNHTIKH TAXYTHTA ZQMATIAIQN

H payvnriky dovapn, F,, éxel og anotéleopa ta oopatidia va kwvodviat pe pia
‘payvnuky’ tayovtnta, ion mpog:
i, =7,F, . (6.5)
Oewpoviag o0Tt T oopatidua eivat opaipikd, pe dwapetpo d,, xatr payviridovrat
OHOWOPOPPA 08 OAODG TOLG TOV OYKO, V, = ﬂd;’ /6, xabwg kat OTL To PEPOV PevoToO etvat

LOOTPOIKO KAl eAa@pd StapayvnTiko (I.x. Vepo 1 aépag), Kat Oev DIIAPYOLV pedpATA
oTo PevOoTO, TOTe pe xpron tng ES.(6.4), n ES.(6.5) ypagetat wg:

u, =d§—ZV(#o—HZJ (6.6)
184, 2
H payvnrogopttkr)  kwvnukotia tov  ocopaudiov, ¢ [ma s/ kg] , opiletat g
(Pankhurst et al., 2003; Zborowski et al., 2002):
_ 4
5 = 18, ’

6.7)

Kat eaptdrat anod o payvnrikod medio H akpiPog pe Tov 1810 Tpomo onmg n payvnTike)
eMOEKTIKOTTA ¥ .
Tehkd, 1 payvntikr taxdmta 1ov copatdiov (ES.(6.6)) woovtat pe:

i, =&V (”THZJ . (6.8)

6.3 EEIZQ>H METAOOPAZ ZQMATIAIQN >TH MATNHTO®OPIXH

H ovvolikn) taydmta tov oopuatidieov bIo Vv emopaot) e§mTeplkod HAayvnTKoD
11edioL 100vTAl pE:

V,=0+V, +il, ~DVInc—7,6-V5+0(r}). (6.9)
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H evoopdtoon g ES.(6.9) oty adiaotatn poper g e§lomong petapopdag copatidiov
(PTE), to1e éx0ovpE:

2

| c{a + St[Frl (1 —ﬂJ §-050- va] + 0.5anv(H—J} :dS=05Pe' [ Vc-dS. (6.10)
s P, 2 s
Zmyv EG.(6.10) Aappavovtat vmoyrn Tavtoxpovd 1) PNYAVIopol TG oLVAY®YNG, NG
duaxvong, g adpdvelag, g Papvtikng kabi{nong kat TG HAyvnTroQOPlong TRV
oopatdiev oe meptypagrn kata Euler xat etvatr mpwmtng tadng &g mpog tov xpovo
XAAIP®ONG TOV OOPATIONDV.

Zmv EE.(6.10) epgpavifovtat ot akolovbor adiaotator apidpot: a) o apdpog Stokes,
St=t,v,/1,, P) 0 apbpog Peclet, Pe=r,u, /D, xat y) o apipog Froude, Fr= v /(r8).

EmuAéov, eppaviCetat évag véog adiaotatog aptdpog moo oxetifetat pe 10 e{atepiko
payvntiko nedio, o onoiog ovopadetat apldpog payviTiong 1oV oopatidiov Kat divetat
aro T oxéon:

Mn = . (6.11)
Uo rf

p

[Tpémetl va onpewwbet 0Tt v ot apidpoti Stokes, Peclet xat Froude eSaptaovtat povo amo
TA YAPAKTNPIOTIKA TOV OOPATIOIOV KAl TOL PEDOTOV, 0 aplfpdg payvijTiong propet va
elval  Y@PKr] OLVAPTNOL TOL EPAPHOCOPEVODL payvhTikov Iediov Péom TG
HAYVITOQOPNTIKY] KIVITIKOTNTAS TOV 0opatdiav, &, .

Zxeukd pe mv ES.(6.10), mpémet va yivoov ot akoAovbeg emonpavoetg. ‘Onmg 116n
avagepbnke, oto mapov Kepdhato, to povtédo kata Euler ypnowponoteitat yia v
IpOPAeYn) TG PETAPOPAG OOPATIOI®Y IOV PpiloKovtal SLAOKOPIIOpEVA 0e LYPO PECO
(xupleg vepo), Kat Ox1 0e agpa OImG OTig IIporyovpeveg epappoyés (Kepdhata 4 xat 5).
Ma anod tig xopleg drapopég petaldp evog oLOTPATOG DYPOV-CHUATIOI®Y KAl €VOg
agpolvpatog etvat ot 1) vnobeon p, << p, propet mAéov va pnv woxvet. I'a avto xat
omv EG.(6.10), xpnowpomnoteitat i mirjpng eSiomon tng Papotikng kabifnong xat oxt n
arm\omnoupévn. Ilpoobeta, xabwg éva vypo elvatl mavia cvveyég pEoo, O OLVTIEAEDTIG
d10pbwong Cunningham eivat navta ioog pe ) povada (avotnpotepa, o C. dev
XPNOWOIOLElTAl Yid Ta OLOTPATA VYPOL-OOpATdOieV). Télog, emedn) 1o 18wdeg TOL
vepoL etvat 8vo taelg pey£boug peyalvtepo anod avtd Tov adpd, i, =1x107 kg /ms

KAt ., =1.81x107° kg /ms avtiotoiya, o xpovog xahdpworng, 1) wodbvapa o apifpdg

Stokes, twv oopatdiov Oa elvat onpaviika HKPOTEPOG OTO VePO, OMOTE KAl TA
adpavelakd gawopeva aocbeveéotepd.

6.4 ITTIPOZOMOIQXEIZ

Kabag o poAog ToV payvnTIKOV piKpo- KAt VAVO-OOPATIOIROV OTNV 1aTPLKL] YiveTdal
10 ONUAVTIKOG, avarrtdydnke kat n pabnpatikr) Kat DIIOAOYL0TIKI] LOVTENOIIOLN O] TV
epappoyov avtev. To medio avtod g épevvag eivat MOAD evepyo yid IMEPLOCOTEPO ATIO
Hta dekaetia Kat 1) IOADIAOKOTITA T®V OLOTNHATOV IIOL HOVTEAOIIOOLVTAL aLSAVEL
OLVEX®G.

Ot meplooodtepeg epyaoieg eotialoov ot amAég Ye®HETPleg PONG KAl HEAETOLV THV
emdpaon SaPOpPOV HAYVNTIKOV Medl®V 0TI PETAPOPA KAl evarobeon oopatidimv.
Yndapyet pia mAewada OdldoTatov epyactov Iov Paociloviat oe Meplypa@n) Katd
Lagrange g oopatdiaxrg ¢daong (Furlani and Ng, 2006; Furlani and Furlani, 2007;
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Furlani, 2006, 2007; Rezlescu et al.,, 1995; Murariu et al., 2001, Rotariu et al., 2005;
Rotariu and Strachan, 2005), otig omoleg xprowpomotodvIal payvnukda mnedia amo
KOAVOPIKODG HayVIjTeg AIEPOL HPIIKOLS, OLOTOlYlEG AYDYIP®V OTolxeEl®v, éva 13 dvo
PepopayvnTika Kalodia oe opotopoppo emtepkd payvnuko medio. Ov Haverkort,
Kenjres and coworkers ypnotiponoinoav epropikong Kat S1kodg Toug K®OIKES, oG Oe
Lagrangian meptypa@r), yia ) pelétn) Tpdldotat)g porg HayvNTIKOV O@pATOi®V.
Zoykekppéva, efétaoav 1 otabepr) por] payvnukev oopatidiov oe evboypappo
ay®yo kat yovia 90 kok\ikr)g Statopr)g, OO To PayvhTiKo medio IMPogpxeTat elte aro
e0OOYPAPO PELPATOPOPO AYDYO AIEIPOL PNKODG I} AIIO KUKAKO PELHATOPOPO AYDYO,
aMA KAt TV Xpovikd petaPal\opevn) por] copatidi®v otny aplotepr] otepavidia
aptnpla Kat v Kap®tida OTav 10 PayviTiKoO Iedio IMPOoEPYETAL AIIO £VAV DIIEPAYDYLHO
KOAVOp1ko aywyo (Haverkort et al., 2009a,b; Haverkort and Kenjres, 2009; Kenjres and
Cohen Stuart, 2010; Cohen Stuart et al.,, 2011). Ta televtaia xpovia, ot Chen xat
ovvepyateg (Chen et al., 2007a,b,c,d, 2008a,b,c; Bockenfeld et al., 2010; Chen et al., 2011)
PEAETOLY MEIPAPATIKA KA DIIONOYIOTIKA (P€ XP1)0n epropukod kwOka kat Lagrangian
IEPLYPAPTG), P POPITE) HAYVITIKI] ODOKEDI] OLAX@PIOHOD Yid TNV AIIOTOSIV®OL] TO
avbpomvoo aipatog. H ovokeor] amoteAeitat ano napdAnla cwAnvdxia, péoa ota
oroia péel 10 PELOTO, KAl PAKPLA KODAWOPIKA Kalwdwa pe dafoveg mapalAnAovg oe
avTtodg T®V OWANVeV. OAOKANPI 1] OLOKELY] PPIOKETAL EVTOG OHOLOPOPPOL PAYVITUKOD
nediov. Me avtov Tov TpOMo HNAPAYETAL £VA HI-OHOOPO0P@O PAYVITIKO eSO OTO KEVO
TOV OOANVEOV. AV DIIAPXOLV PAYVNTIKA oopatiota dtaokopmopéva oto vypo (aipa)
IOV €L0£PXETAL AIIO TI) OLOKEDL), TOTE 1 Kivnorn Tovg Oa emnpeaoctel amno 10 payviTko
nedio. MetaBalovtag Tig 1010mTeg TV KAA®OI®V, KAl EMOPEV®OG TOL IAYDHEVOD
payvntikoo nediov, Kabwg Kat g ye®PETPLAg TV O®ANVOV, Ta 0opaTida prmopody va
arnopakpovBoLV IANP®G arod To PELOTO.

Ano g nmpoavagepbeioeg peéteg etvat gavepo, OTL 1) meprypa®ry katd Lagrange
XPNOWHOIOtelTal OtV HALOYNPIAd TOV EPYAOI®V payvntogoplong. Adioonpeioteg
eSaipeoeig eival ot epyaoteg twv Khashan et al. (2011a,b) xat Habibi and Ghasemi
(2011), ot omoiot peAétnoav T HETAPOP PAYVITIKOV OOPATIOIOV bIO TV emidpaor)
payvntikoo nediov xpnoponolovtag neptypa@r katda Euler. Ot epyaoieg tov Khashan
et al. (2011a,b) BewpobdV vevtwvelo pevotd kat durhr) ovlevln (dnAadn emidpaon twv
oopatdiev ot por)), eve ot gpydaoia tov Habibi and Ghasemi (2011) Oswpetl prn-
VELT®V10, QPEPOPAYVITIKO PEDOTO. AV KAl Ol €pydoieg avTEG eival MPOXWPNHEVES He
Bdon ta uoKAa PAatvopeva IIOL eQIIEPLEXOLY, IIEplopifovtatl oe d1d1aoTateg Poig.

Zmv mapovoa epyaocia, To nANp®g povtedo katd Euler ypnowpomoteitat yia n
HPEAETN NG TPOLAOTATHG HETAPOPUS OOPATOIOV dlaokopmiopevev oe bypoO péco. Ot
an\eg yeopetpieg kat ta payvnuka nedia tov Haverkort et al. (2009a) xat Chen et al.
(2007b, 2008c), mov €xoLV AVAADLTIKY] IEPLYPAPT), XPNOLHOIOI0DVTAL Yid IIPOCOHOIDOELS
Kdt OLYKPLoT).

6.4.1 Xoyxpion pe Haverkort et al. (2009a)

H appnuikr) epyaocia twv Haverkort et al. (2009a), xat mo ovykekpipéva 1 peAétn
G PLayvnTogoplong copatidiov ot pia yovida 90° KokAKrg Olatopr|g, XP1OpoIoteitat
yia ovykpron. To payvnuko medio mpoépyetat amod evOOYPAPHO PELPATOPOPO AYDYO
AIeipov PNKovg 1 Ao KOKAKO peopatopopo ayayo (Ew.6.1), xat ywa ta ceopartidwa
XPNopomoteital Ypappiko poviého payvitong. Ot 100tteg 1oV oopatidiov Kat Tov
pevotob divovtat otov [Tivaka 6.1.
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wirg (1)
2R =
— — —
0.7 g;mI

35cm

(a) (b)
Ewova 6.1: Zxnpatiko Siaypappa yeopetpiag moo xpnowomnoteitat and toog Haverkort et al. (2009a). (a)
EvBoypappog peopatopopog aymyog areipov prkovg - 0éon 1 (posl), kat (b) KoxAwkog pevopatopopog
aywyog.

Oeppoxpaoia Pevotod T 293K
IMoxvotnta peootod pr 1000 kg/m3
IE0deg pevoTod i 1x103 kg/m's
Méor) Tayvtnta penotod v, 01m/s
Aldpetpog aymyo di 7x10-3 m
ITokvotnta oopatidiov pp 6450 kg/m3
Atapetpog oopatidiev dp 0.25-2.5 pm
Mayvntikr) emoeKTKOTNTA X 3

Ap1Bpog Dean, De 84.5

ITivaxkag 6.1: [610t1eg pevotod Kat o@patidie®v mov xproponou|dnkav ot ocvykpion pe Haverkort et al.
(2009a).

pos2

pos3d posd

L]
]
i
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o

Ewova 6.2: Abvapn payvitiong avd povdoa oykov, frn [N/m3], yia tig Stagpopeg Béoetg tov enbvypappioo
PELPATOPOPOL AYDYOL.

Eob00ypaupiog peopatopopog aywyog ameipov urkoog

2V OeplItoon avty ta oopatida Bewpodviar pn-kopeopéva. O eobdypappog
PELRATOPOPOG AYDYOG TortobeTeiTal pe TE00EPIS HAPOPETIKOVG TPOIIODG O OXEOT) HE T1)
yovida, oneg ¢aivetatr omyv Ew6.2. Zmyv 10w ewova @aivetatr mokvotnta g
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payvnukng dvvapng oto Tolxopd TG YOVIAG ON®G LIOAOYIOTNKE OTnv MapoLod
gpyaota, 1 onota eivat g dwag tadng peyeboovg xat mapovoladel ta Ot HOOTIKA
xapaxtnplotika pe avtv tov Haverkort et al. (2009a).

Ot mpoPAéyetg too povtélov kata Euler yua tig diagopeg Béoetg tov peopatopopov
aywyou, pe Paon to kAaopa evamnobeong, divovrat otnv Ewk.6.3. Ta evprjpata pag etvat
OLYKPLOWa pe avtd tng epyaociag avagopds, pe eSaipeon tn 0¢on 2 (pos2) omov o
PELPATOPOPOG AYDYOS PPLOKETAL OTNV E0MTEPIKT TTAELPA TG YOVLAG. Ot dtagpopég oty
neplrt®on avtr eivat peyaldtepeg yla ta pkpotepa oopatiowa, al\d 1 attia ng
dragpopomoinong Oev etvat Sexabapn).

1 1
0.8 0.8
06 06
= =
0.4 4 0.4
0.2 02
post pos2
0 0
15 2 2

0 05 1 15 2 25 0 05 1 5
d, [um] d, [um]
1 1 -
0.8 0.8
0.6 086
= =
0.4 0.4
0.2 02
pos3 pos4
0 0
0 05 1 15 2 25 0 05 1 1.5 2 25
dp [um] dp [nm]

Ewova 6.3: KAaopa evanofeong oovaptroet g SlapeTpod T@V oopatidiov yia Tig didagopeg Béoeig Tov
evboypappov pevpatopopov ayeyod. Ta amotedéopara Tig mapovoag epydaoiag divoviatr pe ovvexr)
ypapp), eve avtd tov Haverkort et al. (2009b) pe Siaxexkoppévn.

Koxixog peopatopopog aywyog

[Tpaypatomoum)0nkav IMIPOCOPHOINOELG  XPNOLHOIOIMVIAG KUKAIKO —PELHATOPOPO
aywyo pe aktiva a=1cm, otov omoio péet pevpa [ =3x10°A, kat eivat tomobetnpévog
o¢ anootaorn lem Ao To KEVIPO TOL Ay@YOL OTI HEO TG Y®VIAG, KAl Td O®PATiOw
Bewpovvtat xopeopéva (M, =10°A/m). H yovia y petald too dova tou KOKAKOD
PELHRATOPOPOL AYDYOL KAl TOL EMUIEOOV TG YOVLAG, Kopatvetat arod y =0° (eSotepikn
IAeLPA YOVIAG) @G ¥ =180° (eowTtepikn) MAEDPA YOVIAG).

---é&--- presentwork O Haverkort et al{2009)

O — Y
e e =
1r
- 05}‘ -8
o £ y=4g
1
Sr

o
1 , I
- T ———— T
—— -
oS- : .
0.25 05 075 '

F'a-rticle diameter, dp [um]
Ewova 6.4: K\dopa evanobeong oovaptroet g SapeTpod T@V oopatidiov yia Tig didagopeg Béoeig Tov
KUKAIKOD PELPATOPOPOD AYDYOD.
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Zmv Ew.6.4, divetatl to kKhaopa evanobeong oe kabe 0¢on 100 KOKAIKOD peLPATOPOPOD
ayoyos Odivetar ovvaptrioet g Olapetpov Te®v oopatdiev. H oovpgovia tov
amnoTteAeopdTOV TG Hapovodag epyaotag pe avta tov Haverkort et al. (2009a) etvat
aplotn ywa oopatidia 1um etvar apot ywa y =0 -135". Qotooo, ot mpofPAeyelg oo
poviédov xata Euler Swagépoov avtov g epyaoiag avagopdg yla oopatiowa
d, <lum aveSaputa mg Beong tov ayoyoov. O dtagopeg eivat peyalvtepeg kabog o

aywyog kivettat arno y =0° mpog y =180°.

6.4.2 Xoyxpion pe Chen et al. (2007,2008a,b)

To povtédo xata Euler yprnowpomoteitat yia tov omoloylopd g evarodeong
HAYVNTIK®V OOPATOieOV oe evav enf0ypappo KOKAKO O®Ava vmo Iy entdpaon Tov
payvntikobd mediov. To medio dnpovpyeitat amnod 60VO PePOPAYVNTIKA KAADOIA eVTOG
OHOLOPOPPOL payviTKoL mediov. Aot 11 ye@petpia, mov @aitvetat omyv Ew.6.5(a),
arotelel otV ovota éva dopko otoyelo g ovokevrg mov mpoteivovv ot Chen and
coworker (Chen et al.,, 2007b,c, 2008b,c). I[a Tig mpooopowwoels, Bewpeitatr MAPwG
aventoypevo mpo@il tayvtrag. Ot 1010T)Teg TOL PELOTOD, TO®V OOPATOIDV, TOV
KAA@OIwV Kat Tov e§mtepkov payvntkov nediov otov ITivaka 6.2. Ta copartidwa g
gpyaotag avtrg, Iapovolalovy LIEP-TIAPARAYVTIKI] COPIEPIPOPUL.

Zmv Ew.6.5(b), gpatvetat oe pa Sratopr| To adidotato payvntiko mnedio, £viaorn Kat
ypappég porg, yiwa Tig Paowkeg Owotnteg. Ilpoobeta, oy Ewk.6.5(c) ¢aivetatr n
IIOKVOTNTA TG HAYVITIKNG OOVapng Imov aokeitat ota oopatidwa, f, [N /m] (to perpo
pe T xpopatiky kKAipaka xat ) devbovor) pe ta Stavoopata). Ta arotehéopata éyoov
KOAI] ODYKP1O1), TOOO IIOLOTIKA OO0 KAl HMOCOTIKA, PE TA AIOTEAEOpATd TG epyaoiag
avagopds.

Oeppoxpaoctia Pevotod T 298.15 K
IMToxvotnta pevotod pt 1000 kg/m3
I€wdeg pevotod s 1x103 kg/m s
Meéon taydta penotoL v, 0.14-450,50m/s
Eowtepkn) Stapetpog ayoyod diin 0.75x103 m
ESwtepikn) Stapetpog ay@yod diout 1x10-3 m
Awapetpog oopatdiev dp 1.7 pm
Mayvntiko kKAdopa padag oopatidiav Xem,p 12.45%

YAko FM oopatidiov Mayvnttg
IMToxvotnta FM copatidiov pm,p 5050 kg/m3
Awapetpog FM oopatidieov dm,p 10nm
Mayvrtion kopeopod FM oopatidieov Mems 4.21x105 A/m
IToxvotnta moAdpEPODS Ppolp 6450 kg /m3
YAk6 kah@diov 55430

AxTtiva KaA®6ioo 1y 0.25x10° m
Mayvrjtion Kopeopod KAA®@OIOV My s 13.42x105 A/m
Mayvntikn enayeyn poHo 0.125-0.5T

IMivakag 6.2: Id10tnTeg pevotod, oopATOI®V, KAA@OI®V Kat e®Teptkod payvnTikod mediov Moo
xpnowponou)dnkav ot ovykpion pe Chen et al. (2007b). Yroypappiopéveg etvat ot 1810t1eg TG Paotkrig
HePUIT®OONG.

To xAdopa evamobeong twv oopatdiov Otvetar omv Ew.6.6 ovvaptroel 1n
payvntkng enayoyng B, = 4 H [T], yia v, =5cm /s (mavw) xat v, =8cm /s (kdtw). Ta
aroteAeopata tov Euler poviedov ovykpivovtat pe ta melpapatika xat Oeopnuika
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eopiipata tov Chen et al. (2007) yia g Paokég dotteg. To povtédo xata Euler
DIOEKTIA TNV IMEPAPATIKY| evarofeon kat otig d0o MEPUIT®OELG, Ot dAPOPES OP®G
etvatl peyalotepeg yia v oywnAotepn péon tayvtnTa porg. 01000, mapatnpeitat 0t ot
dagopég pewwvovtal kabwg to payvnuiko medio yiverat oxvopotepo Kat otig Svo
TayOtnTeg Por|S.

PELLLRLEEEEEL L we

Wire
u
:%o | ] Tubing
Wire

(b) ©
Ewova 6.5: (a) Zynpatiko dwaypappa g nelpapartikng dwataing t@v Chen et al. (2007b, c). (b) Adwaotato
payvntiko nedio, ypappég porig kat évraor). (c) ITokvotmta payvntikrg SOvapng yia ) Pacikr) mepimtmon.

EmuAéov, i obykpion pe ta Oewpnrika kat newpapatikd anotehéopara tov Chen et
al. (2008c) (Ewk.6.7), detyvetr 0Tt ta anoteAéopata tov poviedov xatd Euler ocopgavoody
HE TIg HEPAPATIKEG HETPIOELG Yl PEVOTA pe XAPNAO 1Ewdeg, evad dtagépovv amod Ta
MEWPAPATA Yid U, > 2c /s OV IEPUIT®OOL) DYPOL pe PeyaNvTeEPO 1EMOEG.

= present study — ©  Chen et al. (2007) - experimental ---@--- Chen et al. (2007) - theoretical
1

08+
06
0.4r

=

02r

08r
06F
=
04
02r
u,= 8 cm/s
0 A L L i L i i
0.1 0.15 02 025 0.3 035 0.4 045 05

#, H, [T
Ewova 6.6: Khdopa evamobeong oovaptrioel g payvnukig enayoyng oo mediov, Be=p.H, [T], ywa
0,=5cm/s (HAV®) KAt V,=8cm/s (KAT®). OYKPLON pe Ta MEPAPATIKA Kat OeopnTikd amotedéopata tov
Chen et al. (2007b).
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present study ©  Chen et al. (2007) - experimental --@--= Chen et al. (2007) - theoretical

1 o— @ L Y

water (y, = 0.001 kg/m s)
0 . " L . . L L

ethylene glycol (u, = 0.004 kg/m s)
0 1 " 1 1

0 1 2 3 4 5 6 7 8
u_ [cm/s]
Ewova 6.7: Khdopa evamobeong oovaptrioel g péong TayodInTag Tod Pebotov, v, cm/s] (B,=0.5T) yia
vepo, 1r=0.001 kg/m s (mave), xat atBoAikr) yAvkoAr), pe=0.004 kg/m s (kat®). ZOyKplon pe Ta TEPApPaTIKA
kat Beopnrikda anotedéopata tov Chen et al. (2008c).

ZOVOAIKA, OTIg MEPUITOOELG oL eetaotnkav, to avamtoyfev poviédo kata Euler
MEPLYPAPEL EMITLUXMG TA TOOTIKA YAPAKTNPIOTIKA T®OV HEPAPATIK®OV KAPILDA®V: 1)
evanobeon avddavetl pe abdnorn Tov payviTikov mediov KAt pelmon TG TaxvTNTag Tov
oypoo. Ot dtagopég petadv g mapovoag epyaociag KAt IPONyODHEVOV HEPAPATIKOV
peAeT®V, LIIOdeKVDEL OTL 100G KATIOW0G PNYAVIOROg evariofeong mov oyetifetat pe to
PELOTO elval mapdv ota melpdpata, Kat mpérnet va Anedet vnoyn oto poviého. Mua
e€rjynon ywa mv avlnpuévn evamobeon ota mePAPATa 0e OXEO HE TOLG DIIOAOYIOHOVG,
Oa propovoe va eivai, emong, 1 oovadpolon T®V PAYVNTIKGOV OOPATIOIOV DI TV
ermdpaon tov payvntikov nediov mpwv avta evamnotedoovyv, mov Ba orfjpaive ot i O
IIOKVOTITA PayVvNTiKrg dovapng Oa aokovvtav ovoldaoTiKd oe pHeyaAbTepd OOpPATiow
aoSavovtag Vv emxadion ota ToOUATA.



178 ZYNOWH



ZYMITEPAXMATA

H aplBuntikr) povielomoinon g HETAPOPAS OOUATIOI®V IMOL  dlPOLVTAL
dlaoxopriopeva oe péovta Propevotd etvat o Pactkog OKOIIOg TG Iapovoag otatpifr|s.
To xivnipo ywa v egpyaocia avtr] IPOEPXeTal amd TO ALSNHEVO EMOTHOVIKO
evOla@EPOV OYETIKA PE T ODHIEPLPOPA T®V HIKPO- KAl VAVO- OOPATOmV OTo
AVAIIVEDOTIKO KAl KDKAOPOPIKO COOTHA. ZOYKEKPIHEV, OLEPELVMVTAL Ol PIXAVIopol
110D OKEIIOLY TG AAANAEMOPATE OCOPATIOIDV — PEDOTAOV XPNOPOIIOIDOVTAG TEXVIKES TI|G
DIIONOY1OTIKIG pevotodvvapikng. H emiAvorn tg ovveyxovg @aong (pevoto) yivetatl pe
xprjon vnapyovtog CFD k®Owka. IStaitepn onpaocia xatd v avartvdy) too HoVIEAoD
d00bnke otnv emiloon NG PETAPOPAS TOV OOPATIOIOV HEO® HWAG HPNYAVIOTIKIG
ripooéyytong. Eviéler, mpoPAenetat 0Tt pe KAatalAnAn xprjon Kot Aemtopepr) avaloon
TOV aplOpnNTIK®OV armoTeAeopdT®V, T0 HOVTENO HIIOpEl va ovvelopépet oty Pabvtepn
KATavonorn) g Napatnpovpevg emidpaong TV OOPATIOI®Y OTO aVAIIVEDOTIKO KAt/ 1
KapOlayyelako ovothpud.

H eSlowon petagopag twv oopatdiov (PTE) amotedet pla edwkr) mepimtwon g
eSlowon tooppormiag TANOLopoL TG COPATIONAKNG PAONG, 1) omoia Oev Iepléxet Tig
E0MTEPIKEG Dlepyaoieg TV OoPaTdOl®V (ILY. TLPNVOIIOiN 0T, DYPOOKOIKY d1OYK®OI Kat
ovvaBpoion). Ze pa neprypaer) katd Euler (yopwr) neprypaer)), n PTE meprypdpet tn
petagopa T@v oopatdiov oe évav dobevia otoiyewwdn oyxo. H meprypagr) avtr
avtpetomifet apeoa ) OuIXLON TOV OOPATIOIOV KAl EMITPENEL TOV PNTO DIOAOYIORO
TG OLYKEVIPWOOT|G TOVG. Q0TO00, Ta adpavelakd Qatvopeva Oev PIIOPOLV eOKOAA VA
ooprepiAn@boov otv tomkn popery tng PTE. I'a to Adyo avtov, mpémet va
xpnotporowfel pia mPooeyyloTiKY] OXEON Yl TV TaxLINTA TOV COUATIOIOV OOTe va
evoopatadet nj adpaveld tovg oty meprypa@r) katda Euler.

2 v napovoa Statpifr), xpnotponoteitat neptypagrn kata Euler g porig pevotoo -
oopatdi®v oto Opto ToL Yapnlod @optiov pafag Kat PIKPOL KAAOHATOS OYKOL.
Qe@peitat povomhevpr ovlevdn TG COUATIONIKIG PAOG, TO OIIOl0 onpaivel OTL 1) Por
TOL PeLOTOL emnpedlel avTy) TO®V COUATIONOV, ald to avtibeto Oev woxvel. H taxvmta
g oopatdlakng ¢dong mov nepiéxetat otV PTE, ekgppdaletat oto 0plo tov pikpod
Xpovoo xaldpwong 1oV oopatidiov. TeAkd, i taxdtta 1oV copatdiov amnoteleital
amno evav opo Ouwixvong o omoilog eSapTdtal amd TNV XOPKN HAPAYDYO TNG
OLYKEVIPOONG TV OOpATdiov, Kat &évav Opo ovvayoyng aveSaptnto g
OLYKEVTPWOT|G.

H ocopatidiakn taxdmta ocovaymyng elvat oDooTIKA 1) TayxOTNTAd TOL PEPOVTOG
agptov Owopbopévy amod v tayomta oAiotnong efattiag g adpdvelag Twv
OOPATOl®V KAt NG ONKIG e§oTePIKN)g OOVANNG MOV daOKeital ota cwpatiowa (IL.y.
Papotikn) xatr/1 payvnrikr). Kata aotov tov 1pomo, ta adpavelakd @Qaivopevd g
OOPATIOWIKI)G PAONG KAl 1) MOPAO! e{HOTEPIK®Y OVVARIKOV MEGIOV EVODUATOVOVTAL
oV Eulerian neprypaepn) g PTE. H nmpoavagepbeioa avtipetomorn g PTE xat n
EPAPHOYT) THG Yla TNV HEPLYPAPT] THG HETAPOPUS Kat evarobeong Papiémv, adpavelakmv
oopatdiov 1mov Ppiokovial OlaoKOPImIOpEVA O PEOVIA PELOTA elval 1 Kopla
Kawvotopia g mapovoag OwatpiPrg. H mArpwg Eulerian Eulerian mepiypaer)
npoo@epet Sexabapa mieovektrjpata:

* Aev anatteitat o damavnpog, oe XpOvo Kdt mpoornddeida, DIIOAOYIOPOG TG TPOXAS
m\nfwpag ocopatdiev yia ) Ay oTaTioTikd akptBovg Avong.
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*  AapPavet vmoyn TAvtoXpovd T HETAPOPd TOV oopatdiov eSattiag g diayvong
Kat g adpdvelag, KAt yla avTto eivat KatdAnAn yia peydalo eopog peyeboog
OOUATIOIDV.

= Eivat oxetwkd ami), a@ov Odwayepilert Tig eflomoelg pdlag kAt Oppng g
OOUATIOWIKIG PAONG KAl 1] Tax\umta Te®v oopatdiov Oivetatr oe Opovg g
TAayvTTAG TOL PELOTOL KAl TOV XOPIKOV IAPAYDYDV AUTH|G.

* H ovyxévipoon tov oopatdiov vmoloyiletal dpeoa, og pépog tng emthoong tng
eSlomong peTagopdsg TV COUATIOl®OV.

H apOpntikr) avtpetomon g oopatdtakg ¢dong Paocifetatr oe teyvikeg CFD.
Zoykekppéva, xpnotponoteital pebodoloyia avaloyn avtrig ov yxpnotponoteitat ya
PELOTO, emeldn) 1] apeot) ovvoeon) TV dVO KWOIK®V etvat emBopnty. I'ta To Adoyo avtov,
1 €§100WOT) PETAPOPAG TOV OOUATIONDV EMADETAL OTIG TPELG O1AO0TUOELG X P1OHOIOIDMVTAG
pla pebodoloyia menepacpéveov Oykav pe opobetn Owdtadn petapAntov, 1 omoila
Aappavet vmoyn ) pn-opfoye@viotta oV DAeYRATeOV Kat etvatl KatdAAnAn yia multi-
block mAéypata. Ztov KodKa 0 Opog NG OLVAYDYNG OLAKPITOIOLELTAl e XPT|0n Hlag
npoogyytong avapallopevng Otopbwong (deferred correction) 21s 1adng, eve éva oxfjpa
KEVTIPIK®V Olagopmv 21 Tadng xpnopomnoteitat yia tov opo diayvong. Emuriéov, otmv
IapoLoa epyaoia IMPOTEIVETAl Kol MIOTOMOLEITAl 1) XPNON Mg VEéag apldpnTikig
IIPOOLYYLONG Yl Tr OLVOPLAaK) ovvOnkn oto toiywpa, omov 1 oovvrdng ovvoplaxr)
OLVONKIN TOL MANP®G ATIOPPOPNTIKOD TOMOPATOG OLVOLACETAl HE TG OXLPES POEG
OLVAY®YI)G IPOG TO TOlXWUA.

H motonoinon tng npotetvopevng pebodoloyilag amodeikvidel 0Tt 1 Otdyvorn Kat n
Bapotikn) kabifnon npoPAémovtat pe akpifeia. ZNPavikotepog etvat IAVING 0 EAeyX0g
G MPOCEYYIOTIKYG EKPPAONG Yld TNV TaxLINTA TOV OOPATIOOV 0TI MEPUITMOELG
PEYAA®V XPOVOV XaAdp®ong (1] toodvvapa peyaldtepov apldpmv Stokes), omov ta
adpavelakd Qaivopeva elvat ONpavilkd Kat 1) emopaorn g Papvtntag de pmopet ek
tov npotépev va Oempndet apedntéa. Ta amotedéopata tov Eulerian povtéloo
ovyKpivovTal AOUIOV, pe avaALTIK, IEPAPATIKA KAt APOPNTIKA EVPHPATA OXETIKA e
v evarobeon adpavelakmv oopatdiov oe yovia 90° xoxkAikrg Siatopr)g yia oTpoTr)
po1 PeLOTOD.

ZOYKEKPIpéva, OtV HePimtmor) oL YPIOHooteital eva 10eatd poiko medio xopig
devtepedovoa por), ot mpoPAéyelg Tov povieAov yla xapnlovg apipovg Stokes
OLPPAOVOLY He TA AVAADTIKA OIIOTEAEORATA, eV elval eAa@pog davinpeveg yia
peyalovg apipovg Stokes. Avto efnyettat edkoAa, av avaloylotel Kaveig to 0Tt 1)
devtepedovoa por) de AapPavetratr vmoyn oty avalvtiky Avon. ITap” Oha avtd, n
péytotn Stagopd eivat g tadng tov 10% yia 1o pikpotepo AOYO KAPITDAOTHTAG NG
YoOVidg Kat tetvet oto pndev kabmg o Aoyog aviavet, yeyovog mov Kablotd 1o povieAo
KataA\nlo ya mnpaxtikég epappoyés. Ilpoobeta, n avamtoxbeioa mpoogyyion
OLYKPWOMEVI] HE MEPARATIKA e0prjpata Olvel IKAaVOIOUTIKA AMMOTEAEoPATa yid TO
KAaopa evanobeong otn yovida 1000 yid xapnlod 0co kat oynAoov apiipod Dean por).
Emiong, ot 0O¢éoelg evamobeong tov oopatidiov mov mpoPAemovial oty IApovod
gpyaoia OLPP®VOLY, TOLAUXIOTOV TOWOTIKA, HE T MEPAPATIKEG IIAPATIPI|OELG.
Enopévmg, n mpooéyytorn mov Xpnotponoteitatl yid ta adpavelakd @aivopevd 1oxOeL yia
oopartiowa peyalng adpavelag, kabotovtag v npotevopevn pebodoloyia KatdAnAn
Yid éva peydalo e0vpog peyefong o@patidiav Kat, yida avtod, yia P IAELAdd Qpappoy®y.
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Metd ta KavomouTKA AIOTEAEOPATA THG IILOTOIOINONG TOL HOVTIEAOD, aLTO
XPNOWOIIOLELTAL Y1 VA KATAVOICODHE KAADTEPA 1] PLOLKI] COPIIEPLPOPA ADPAVEIAKDV
oopatdiov péoa oe yovia 90° kat pra StakAadworn obp@®VY pe T QLOAOYIA TOD
avamvevotkov ovotpatog. Ot dvo avtég yempetrpleg av Kat AIAég, PIopovv vd
Oempnbodv wg dopkd ototyela Tov avarvevotikod ovotpatog. Eotialoope oe Papud,
adpavelaxkd oopatida (d, >1um), dnov 1000 Ta adpavelakd gawvopeva, 000 Kat 1)

Bapotikr) kadidnon npenet va Angdoov ooy
Apxikd, eSetaletat i enidpaon tov apdpov Reynolds kat tov Aoyov Kapmolottag
1000 OtV POr) 00O KAl 0Tl PETAPOPA TV oopatdiov péoa oe yovida 90°. Mehetdtat,
EIonG, 1N edPAOT TOL IPOCAVATOAOHROD TNG YOVIAG O OXEO0N He TNV EMTAYLVOT TNG
Bapotntag oty emkdadion oopatdiov. Xe ONeg TG MEPUITMOEL] AVAPEPOPAOTE O
Papwa, adpaveiaka ocopatidia (Sum<d,<20um). Ano ta apipnuikd nepapata
Bprikape ta akodovba 6oov agopd T ovvexr) Ao (a¢pag):
* Ta xapaxtploTiKd TOV KATAVOU®V T1)G ASoVikng TaydTntag Kat g devtepedovoag
porg eSaptavtat amo tov apldpod Dean tng porg, o omoiog pe T ogpd tov eivat
oovdaptnon tov aptBpod Reynolds kat 1o AOyov KapmoAOT)Tag g YOVIAG.

= O AOYyog KapmoAOTTag emdpd SLaPOPETIKA 0TV KATAVOHI) TG ASOVIKIG Tax\TTAS
kat ot dopr) tng OevtepedovOAG POING Yid YAMNAODG KAt vynAovg aptfpovg
Reynolds: yta Re =100, n por) eivat oxedov aveSaptntr arod 10 AOyo KAapmoAOTTag
g YoVidG, eve yia Re >500 1 emidpaon tov R, 0T KATavopég g Tayvtntag etvat
ep@avng. Xt dedteprn meplmtorn), oxnpatiCovial véeg ovppetpikég diveg kabmg o
AOYOG KaPITOAOTITAG PEWWVETAL (1] YOV YiveTal Mo anotopr). Qotooo, yida Kavévav
appo Reynolds, 1 xatavopr) tng adovikng taxvtag Oev pPeETAKIVELTAL IPOG TO
e§MTEPIKO TOLY®HA TG YOVIAG e T peiworn oo R .

* H emidpaon tov apipod Reynolds otn por] tov pevotov elvat ONEAVTIK)
aveSaptta amo to Aoyo xapmovlotntag. Paiveratr va vnapyet évag ehayotog Re,
IIAV® Ao Tov omoio to MPo@Pil g aovikng TayLTNTAg O PETAKIVELTAL TEPALTEP®
IIPOG TO eEMTEPIKO TOIXDPA TNG YOVIAG, YEYOVOG IOV DIIOOEIKVOEL OTL Ol AOPAVELAKEG
duvdapelg KoplapxoLV Kat ot YLYOKEVTIPEG O PIIOPOLY VA EINPEACOVY IIEPLOCOTEPO
m pon] otov aywyo. I'a 6edopévo Aoyo kapmvlotntag, avinon tov appod
Reynolds, mpoofeta g avinong twv divwv, odnyel oe peTATOmon TOV OWV®V NG
devTepedOLOAG POIG IIPOG TO EOMTEPIKO TOIXWHA TG YOVIAG KAl TO eminedo

ooppetpiag g dratoprs.

Ooov agopd ) oopattolaxs) gaor), Ppédnkav ta akoiovda:
*» H Bapotikny xabidnon eival onpaviikog pnxaviopog evarobeong kat 0ev mpemet va
Oewpeitatl apeAnTeéog K TV IPOTEPHV.

* O IpooavatoAopog TOL Ay®YOL &elval ONPAVTIKOTEPOG Yld POEG AePOADPATOS
xapnlobd apidpov Reynolds, omov ta adpavelakd @awvopeva eivar advvapa. I'a
Re=100 xat Xpnowomowwviag o¢ ava@opd TtV Meplmtoon xoplg Paputikn)
kabiCnon (CDI), to xAdopa evamnobeong ywa v nepimteon CDIGx (covaywyn),
adpdavela, Ouayvon Kat Papvtnta Katda Tov x-adova) eivat atodnta oynAotepo ya
OMo 10 ebpog peyeboug T@V copatdinv mov eetdotnke, yia v nepiatoon CDIGy
(ovvaywyr), adpaveila, dtayvorn Kat BapdTnTa Katd Tov y-daova) eival ovykpiopo,
eve yua v CDIGz (oovaywmyr), adpaveila, Ouayvor) Kat Papoutntd Katd Tov z-agova)
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etvat oynAotepo yua apipovg Stokes pikpotepoog g povdadag xat xapnAotepo yia
peyalotepa oopartidwa. I'ia Re=1000, ot mepurtwoelg CDI, CDIGx xat CDIGy
dlvoov mapopowa xAdopata evamnodeong, eve otmyv CDIGz n evamofeon etvat

ONHAVTIKA PKPOTEPD.

* Twa oopatida yapnloo apdpod Stokes ot katavopég otn ovykevipwor) Oe
petapallovrat Wiaitepa otig nepurtwoelg CDIGx xat CDIGy oe oxéon pe mv CDI
1000 yla XapnAo 00o Kat yia bynAo apidpo Reynolds, eve yia ocopatidia oywnlod
appod Stokes vmdpyxoov epgavelg dtagopég petalvp TV mpoavagepbivieov
MEPUITOOL®V (E0IKA yld Pogg daepolvpatog oywnAotepmv apipov Dean). Ztnv
CDIGz mnepimtmor), 1) AOOPPETPN] OLOOMPELON] OOPATOIOV IIPOG TO KATOTEPO
HAPAIAeLPO Toly®pa elval opatr) akopa kat ota oopatidia yapnlod apipov
Stokes.

* H enidpaor tov apiBpod Reynolds xat tov AOyov KapmoAoTnTag g y®Viag otnv
adpavelakyy PETAPopd TRV OOPATIOl®V e(etdotnke Yoplg va Anedei vmoyn 1)
Bapotnta (mepimtwon CDI). To xAdopa evamobeong avfavet pe v avdnon tov
appod Reynolds, aMa o pobpog avinong pewwverat. Ot xatavopés Tng
OLYKEVTP®ONG Kat ot Béoelg evamobeong emmpedalovtat emiong amd Tov aplopo
Reynolds, pe tig drapopég va eivat mo évtoveg yid ta Mo peyald oopatiod.

* O AOYOG KAapmoAOTTag NG Y®VIAG Elval ONUAVTIKOG yld T HPETAPOPA IOV
oopatdlov povo ya poég xapnloov appov Reynolds, onov 1 evanmobeon aviavet
kabog o R, pewwvetai Oniadn xabwg n yovid yivetar mo amotopn Kot ta
adpavelakd @aivopeva eviovotepa. Emuihéov, Bpenke 0Tt ta xapaktnplotkd g
KATAVOPI)G TG OLYKEVIP®WONG KAt twv 0Oeéoewv evamobeong &e petapdallovrat
0laitepd pe 1o AOyo KAPIIDAOTNTAS.

Metda v e§étaon Tng akadnpaikrg MePUITOONG TG PO1)G agpOAdpATOg ot yovid 907,
npaypatonouw)Onkav aplpnuikd MEPAapata yua TNV HEAET) TG HETAPOPAS Kt
evanobeong oopatdiov eviog StaxAdO®ong mov ovp@@vel pe T QULOAOYIA TV
yevewv G3-G4 tov avOpomvov mvevpova. Xkomog ntav va Ppedel pe mo Tpomo
ermpedadet 1o péyebog tav oopatdiev kat o apiipog Reynolds xabag xat 1) ooppetpia
g por|g v evaroeor). Ta amotehéopara ntav ta akodovda:

* To ovvolwko xKAdopa evamobeong Oev eaptatat Wiaitepa amod tov aptdpo Reynolds
g porg Kat dev aradlet onpavtika petadop ooppetpikng (Q, /Q, =1) xat pepka
eprodCopevng porg (Q,/Q,=2), a\d elvat onpavtkdad yapnlotepo otV
anogpaypévn por (Q, =0).

* On Béoerg evamnobeong Kat 0t KATAVOPEG OVYKEVTP®ONG T®V OOPATIOlOV eSaptmvTal
amo avtég Tig Hapapétpovs. Eve oe Oleg TIg HepuIt®woelg LIIAPYEL evariodeon)
oopatdlov akpipwg ot OdaxkAadwor, ot 0éoelg evamobeong KATAvIl TG
dtaxAadwong Kivovvtat Ipog 1o e§mtepiko Toiympa g PRB xat mpog v é§odo twv
Boyatpikeov ayeoyov kabwg o apipog Reynolds avfavet. Zmv nepimtwon Q, =0,
Bpébnke ott oopatidia maywdedovratr Kat TeAkd emxabovrar akopa Kdat otov
aro@paypévo Boyatpiko aymyo.



2ZYMIIEPAZMATA

»  2& OAeG TIG IEPUITMOELG TTOV ECETACTNKAV, DIIAPXEL Pd IePLoXT] eAedOept) oopatidimv
oto e{@TEPIKO Tolywpa otV evapdn Tov Boyarplkeov ayey®y, amévavtl amo T
draxhadworn).

Ext0¢ amo Aerrtopepr) anoteAéopata OTO AVAIIVEDOTIKO OLOTNHA, TO HOVTEAO IOV
avamtdxnke etvat  kataMnlo yia  ovyxpoveg Plolatpikeg  epappoyég  OTo
KApOlayyelaKO OLOTNHA. ZOYKEKPLHEVA, TO HOVIEAO yprnowpomoujdnke yia v
npOPAeY) TG HETAPOPAG KAl T1)G evarobeong payvntikeav oopatidiov mov Ppiokovrat
EVIOG DYPOL péoov, LIO TV emidpaon efoTEPKOL HayviTIKOL mediov. ApYiKd,
IIPOCOHOIMONKE 1] POT) HAYVITIKOV OOPATIOIRV - vepod oe yovid 90°, cdpgava pe v
appnuikyy pelétny tov Haverkort et al. (2009a). Ilpoékoywav ta axolovba
OLHIIEPAOPATAL
* 2V IEPUITOOT] IOV TO PAYVITIKO eSO IAPAYETAl AIIO evav eDODYPAPPO KAA®O0

AIIELPOL PIKOVG, TA AIOTEAEOPATA T1)G IIAPOLOAG EPYAOIAG EVAL AVANOYA AVTOV THG

ePYAoiag avagopdg yla OAeg TIG OXETIKEG 0£0elg YOVIAG — ay®yoD, €KTOG A0 THV

MEPUITOOT] IOV TO KAA®O0 PPIOKETAL OTNV E0MTEPLKT| IAEDPU T1)G YOVLAG.

* Otav 10 payvnuko mnedlo mapdyetat amd KOKAKO PELHATOPOPO AYDYO, Td
anotehéopata tov Eulerian povtédov copgavel pe aotd g epyaoctag avapopdag yia
oopatidwa 1um xat yovieg 0° og 1350, Qotdco, Tto povtélo mpoPAémet xapnlotepn
evamnobeon ywa oopatidia pwkpotepa too lum, aveSaptnra g 0éong Tov
PELPATOPOPOL AYWYOL, KAl I dlapopd Hetald Twv epyacimv aviavel xabwog o
ay®yog KIVelTat IPog TNV e0MTEPLKT] MAELPA TG YDVIAG.

To povtélo emiong ypnowomnoudnke ywa va mnpocopolwbovy ta melpdpata Kdat ot

vroloytopot t@v Chen et al. (2007b, 2008c) kot Bpebnkav ta akoAovda:

* To Eulerian povtéAo vrmotipd oooTNpATKA T0 KAAORA evariofeong OUYKPITIKA He Ta
MIELPAPATIKA AITOTENEOPATA.

* Ot Owagopeg eivatr peyaldtepeg ylia LYNAOTEPeg pEoeg TayxLTNTEG PONG, AN
petwvovtal Kabmg To vtaot) Tov payvnTikoo mediov avddvet.

* Ot npoPAéyelg NG IAPOLOAG EPYAOLAS COPPOVOLV HE TIG MELPAPATIKEG PETPIOELG
OtV IEPLITMOL) TOL PELOTODL YAPNAOD 1EDOOVG, AN dLAPEPOLV ATIO TA MEPAPATIKA
AIIOTEAEOPATA Y1d POT] DYNAOTEPOL 1EDOOVG.

» Tevikd, to Eulerian povtélo meptypd@et emtoxmg Ta MOOTIKA XAPAKTPIOTIKA TOV
MEPAPATIKOV  KAPMLA®V  evamobeong otnv mepimtmon TG HPayviTooplong
oopatdlev mov Pplokovial S1acKOPIIOPEVA O DYPO 1ECO: 1) evamobeon avidavet pe
avfnorn g évtaong Tou PAayVITIKOD Hediov Kat peimor) g TayvTNTag TOL PELOTOD.

* Ot dragopég petadp g INapodoag epyactag Kat TV HEPAPATIK®OV AIOTEAEOPAT®Y,
VIIOOEIKVDOLV OTL KATIOI0G PIXAVIOROG evariofeong mov eivat mapov otd MEPApata
de Aapfdavetat vnoyr) oTig IPOCOHOIDOELS.

Ta npoavagepbévta amotedéopata Oeixvoov 0Tt pe v potetvopev pedodoloyia ,
1] omold A@QOopPd TNV EVOMUATOON TOV AOPAVEWIKOV @avopeveov oe kata Euler
neplypa@r) g e§iomong PeTagopdas TV oOpPATOI®V Kat TV emloon TG pe TEXVIKEG
CFD, Aappavovtat owoteég mpoPAeyelg yla Tn petagopd xat evamnobeon Bapéwv,
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adpavelak®v oepatdiov mov eivat dackopmopeva oe peovia pevotd. I[Ipoobeta, 1)
XP1|01 TOL POVTENOL Yl TOV DIIOAOYIOHO Ol HOVO T®V KAAOPAT®V evarnobeong alda
KAl TOV YAPAKINPIOTIKOV T1g evarobeong 1oV O@PATdlov KAl TV KATAVOP®OV
OLYKEVTIP®OONG, TPOooPepel Paditepn Katavonon IOV QPUOKAV @QAWVOHEVOV  IIOD
Aappavoov yeopa oo didapopeg oovirkeg por|g pe évav endov kat am\o tporo.

H npotewvopevn pebodoloyia etvat apketd eDENKTH OOTE VA AVTIPETOII(EL TOOO POEG
AEPOANVPAT®V (AVAIIVEDOTIKO OLOTNHA) 000 KAl KOAOEW®V (KOKAOPOPIKO COOTHA).
Qotoo0, propet va PeAtiobel mepattép® Ao Vv eVOOPATOO! IEPLOCOTEPDV PLOIKMDV
QPAWOPEVOV IIOL EUMAEKOVIAL OTI POI] OLOTNHAT®V pevotov-oepatdiov. [a
napddetypa, onpavtikr) PeAtioon Tov poviedov Oa 1ntav 1 eVOORAT®on TG OOVAHRIKIG
TOL AgPOAVLHATOG KA, KAT EMEKTAOL), 1] €MADON TG YEVIKIG OLVAHIKIG £610MONG TRV
oopatdiev. Avtiotoya yia ta koAAoewdr), Oa pmopovoav va ovprepiAngboovv oto
povtélo ot alnAemdpdoelg T@V KoMV, Onng etvat ot alnAemopdacelg eattiag
tov dovapeov van der Waals xati/1 tov nlexktpuwod durhod otpopatog (electrical
double layer). ITpoofeta, to povtelo pmopet va tponomnowfet wote va AapPavet vrmoyn
PN povipa nedia porg. Tehog, To povtélo pmopet va tpomonowbetl mote va vroloyilet
) PETAPOPA MOADOIEOTIAPHEVOV KAl/1) PN o@aipik®v HAnbvopov oopatdiov, ta
OTIOLd ATIAVTMVTAL OLXVA OTNV IPAS).
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MAGNETIC FIELD OF FERROMAGNETIC WIRES

WIRE 1

Based on the geometry of Fig.54:

2
hy, = cosf; (1 + wa> i
, (A1)
hei = Sinei (—] + KWTVZV> 91
T

where (1i,0;) is the polar system of coordinates defined by wire i. In Egs.(A.1), the terms
cos0; and —sind; are the (dimensionless) components of the external magnetic field Ho
in the i-polar system.

TWO WIRES

The total magnetic field generated by two FM wires in a uniform external field will be of
the form:
H=H,+ ) H; , (A.2)
i=1,.2

where ljlj{ the magnetic field of FM wire i. In order to calculate the radial and angular
components of H, the expression of the magnetic field of each wire i in the polar
coordinate system (r,0) is needed. The systems of coordinates and the components of
vecH in each of them are shown in Fig.56. Neglecting the terms of the external field,
Egs.(A.1) become:

)
hi = KW—VZ"cosai
T4
2 (A3)
hg, = Ky sind;
1
From Fig.(56), it is shown that:
¢1=n—[/2—061)+(n/2+0)] =6, -0 (Aa)
2 =n—I[(n/2—0)+ (n/2+62)] = — (62 —0) '
Thus in the (r,0) system:
hi :h:]T_ B]T+hi2T+h82T , (A.S)

hg =N e+he e —Nre Tho,e
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188  MAGNETIC FIELD OF FERROMAGNETIC WIRES
where hy . = hj; - cosdi, hg.» = hg, - sindi, hi g = hi; - sind; and hy,e = hg, - cosdi.
Taking, also, into account the trigonometric identities:

cos(0—0;) = cos(0; —0)
sin(0 —0;) = —sin(6; —0)

. . (A.6)
cos(0; —0) = cosB;cosO + sinb;sind
sin(0; —0) = sinb;icosd — cosO;sind
then, Egs.(A.5) become:
hi = Z [h}.cos(0; —0) —hg sin(6; —0)]
i=1,2
' _ (A7)
hy = Z [h;'f_lsum(ei —0) + hp, cos(0; — 0)]
i=1,2

Substitution of Egs.(A.3) in Egs.(A.5) and using the last two identities of Egs.(A.6), we
get the constituents of the magnetic field created by two FM wires in polar coordinates:

20. —
RE = Kyr2, cos( 92l 0)
. T
i=1,2 i (AS)
in(20; —0) ’
hy = Kyr2, 3 STH290)
i=1,2 T
and, if the external magnetic field is added Egs.(A.8) becomes:
B 5 cos(20; —0)
hy = [cos® + Ky, 'Z —
i=1,2 i
(A.9)
. 2 sin(ZGi — 9) ~
he = —Slne + KWTW Z T 9
i=1,2 1
POLAR TO CARTESIAN
From Fig.55, it is seen that:
hx = cosOh, —sinbh,
* ) " 0 (A.10)
hy = sinBh, + cosbhg
or, by substitution of Eqs.(A.9):
20;
hy =1+ Kwrfv COS(Z )
n
=1 : (A.11)
3 sin(20;) ! '
hy =Kyri, ") '
i=1,2 i
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because
c0s(20;) = cos?0; — sin’0;
. . (A.12)
sin(20;) = 2sinB;cosH;

Moreover, from Fig.56, we get that for wire 1:
T = ‘OTP‘ =/x%+(y +0)?
cosfy = X/T] ’ (A13)
sindy = (y+¢) /m
whereas for wire 2:
TzZ‘OZP‘: x2+(y—£)z
cosfr = x/13 . (A.14)
sinby = (y—40) /m2

Therefore, for wire 1 it holds that:

cos (207) cos20; — sin?0; B x?—(y+10)?
S rt 2 ry+0?)?t (A1s)
sin(207)  2sin0®7cos0; 2x(y +0)
T Ryt 02)?
and for wire 2:
cos (202) cos?0, — sin?6, B x? —(y—10)?
o 3 2ty 02 (A16)
sin (20,)  2sinBcos0> 2x(y —10)
7 7 Rly-02)?

Thus, in Cartesian coordinates the (dimensionless) magnetic field of Eqs.(A.9) is written
as:

hy =1 +Kwr§v

Xy +0? P (y—0)? ]i
2+ (y+02)° 62+ (y—102)7°
2x(y +0) 2x(y — 1)

(x2 + (y +0)2)* g (y —6)2)2]

(A.17)

hy = Kwr%v )
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