
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Αυτόματος Έεος Υπηρεσιών Διαδικτύου
με Χρήση Ιδιοτήτν

Διπματική Ερασία
του

Λενίδα Λαμπρόπουου

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εραστήριο Τενοοίας Λοισμικού
Αήνα, Ιούιος 2012

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Τενοοίας Λοισμικού

Αυτόματος Έεος Υπηρεσιών Διαδικτύου
με Χρήση Ιδιοτήτν

Διπματική Ερασία
του

Λενίδα Λαμπρόπουου

Επιέπν: Κστής Σαώνας
Αν. Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 10η Ιουίου, 2012.

........................
Κστής Σαώνας Νικόαος Παπασπύρου Κώστας Κοντοιάννης

Αν. Καηητής Ε.Μ.Π. Επικ. Καηητής Ε.Μ.Π. Αν. Καηητής Ε.Μ.Π.

Αήνα, Ιούιος 2012

...
Λενίδας Λαμπρόπουος

Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Λενίδας Λαμπρόπουος, 2012.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Καώς οι υπηρεσίες διαδικτύου (Web Services) αρίζουν και αποτεούν οοένα και α-
σικότερα τμήματα μοντέρνν διαδικτυακών συστημάτν οισμικού, η ύπαρξη αυτόματν
και εύρηστν αά ταυτόρονα και εκφραστικών προραμμάτν εέου ια υπηρεσίες
διαδικτύου καίσταται όο και σημαντικότερη. Η διπματική αυτή στοεύει στον πήρς
αυτοματοποιημένο έεο υπηρεσιών διαδικτύου: Ιδανικά, ο ρήστης απά περιράφει ιδιό-
τητες που οι υπηρεσίες πρέπει να ικανοποιούν, με τη μορφή σέσεν εισόδου-εξόδου, και το
σύστημά μας ανααμάνει τα υπόοιπα. Σε αυτή τη διπματική περιράφουμε αναυτικά
όα τα επιμέρους τμήματα του εραείου που φτιάξαμε: Πώς οι προδιαραφές (WSDL) μιας
υπηρεσίας διαδικτύου ρησιμοποιούνται ια να παραούν με αυτόματο τρόπο εννήτριες
συντακτικά ορών τυαίν δεδομένν και ιδιότητες, οι οποίες μπορούν να δοούν στο PropEr,
ένα εραείο εέου μέσ ιδιοτήτν, ώστε να κηούν οι μέοδοι της υπηρεσίας διαδικτύου
και να εεεί η απόκρισή τους. Παρόο που η διαδικασία είναι πήρς αυτοματοποιημένη,
το εραείο δίνει τη δυνατότητα στο ρήστη να αάξει το παραόμενο αρείο εέου που
περιέει τις ιδιότητες και τις εννήτριες ώστε να έει μεαύτερο έεο στην όη διαδικασία
και να μπορέσει να εέξει πιο στοευμένα την ειτουρικότητα της υπηρεσίας διαδικτύου.

Λέξεις Κειδιά

Erlang, Υπηρεσίες Διαδικτύου, Αυτόματος Έεος, Έεος μέσ Ιδιοτήτν, Έεος
άσει προδιαραφών, PropEr, WSDL

5

Abstract

With web services already being key ingredients of modern web systems, automatic and
easy-to-use but at the same time powerful and expressive testing frameworks for web
services are increasingly important. Our work aims at fully automatic testing of web
services: ideally the user only specifies properties that the web service is expected to
satisfy, in the form of input-output relations, and the system handles all the rest. In this
thesis we present in detail all the components which form this system: how the WSDL
specification of a web service is used to automatically create test case generators and
properties that can be fed to PropEr, a property-based testing tool, to create structurally
valid random test cases for its operations and check its responses. Although the process
is fully automatic, our tool optionally allows the user to easily modify its output to either
add semantic information to the generators or write properties that test for more involved
functionality of the web services.

Keywords

Erlang, PropEr, Web Services, Testing, Property-based Testing, WSDL-based Testing,
Automatic Testing

7

Ευαριστίες

Αρικά, α ήεα να ευαριστήσ τους ονείς μου και την αδερφή μου ια την υποστήριξη
που μου έουν προσφέρει στηρίζοντας όες μου τις επιοές.

Χρστά ένα εξίσου μεάο ευαριστώ στον επιέποντα καηητή μου, Κστή Σαώνα,
ιατί η καοδήησή του και η αάπη ια τις Γώσσες Προραμματισμού που μου μετέδσε
με έκαναν αυτό που είμαι σήμερα.

Θα ήεα επίσης να ευαριστήσ όους τους καηητές που με οήησαν στην πενταετή
πορεία μου στη σοή διαμορφώνοντας τα ενδιαφέροντά μου, και ιδιαίτερα τον Νίκο Πα-
πασπύρου και την Ντόρα Βαραρίου ια τη οήεια που μου προσέφεραν και το ιδιαίτερο
ενδιαφέρον που έδειξαν προς το πρόσπό μου.

Τέος, έ να ευαριστήσ όους τους φίους μου που μου έουν σταεί τα τεευταία
ρόνια σε καές και κακές στιμές.

Λενίδας Λαμπρόπουος

9

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Contents 12

List of Figures 13

List of Listings 16

1 Introduction 17

2 Background 21
2.1 Property Based Testing and PropEr . 21

2.1.1 Properties . 22
2.1.2 Generators . 22
2.1.3 Example of Use . 23

2.2 Web Services . 24
2.2.1 XML . 24
2.2.2 SOAP . 25
2.2.3 WSDL . 26
2.2.4 XSD . 27

2.3 Web Service Testing . 29
2.3.1 Non Functional Testing . 29
2.3.2 Functional Testing . 30

2.4 Some Erlang Tools . 31
2.4.1 xmerl . 31
2.4.2 Yaws and Erlsom . 31

3 PropEr WS Design and Implementation 33
3.1 PropEr WS Architecture . 33
3.2 Intermediate Representation . 34

3.2.1 Simple Types . 34
3.2.2 Complex Types . 35
3.2.3 Example . 36

3.3 Creating PropEr Generators . 37
3.4 Creating Type-Checking Properties . 42
3.5 Using PropEr WS . 44

11

12 Contents

3.5.1 Fully Automatic Response Testing 44
3.5.2 Fully Automatic Type Checking . 46
3.5.3 Property Based Testing . 46

4 Towards Property-Based Testing of Stateful Web Services 53
4.1 Web Service Implementation . 53
4.2 Stateful Testing with PropEr . 57
4.3 Defining a PropEr State Model . 58
4.4 Testing the Web Service . 60

5 Related Work 65

6 Concluding Remarks and Future Work 67

Bibliography 69

List of Figures

3.1 System architecture of our property-based testing framework. 33

13

List of Listings

1.1 Motivational response testing example . 18
1.2 Motivational type checking example . 18
2.1 Integer list generator example . 23
2.2 Delete implementation and property . 23
2.3 Testing the delete property . 24
2.4 A simple XML document . 25
2.5 A request SOAP message . 26
2.6 A response SOAP message . 26
2.7 An example of an XML Schema Definition 28
3.1 An XSD example . 36
3.2 Intermediate representation for example of Listing 3.1 37
3.3 PropEr generators for example in Listing 3.1 39
3.4 Auto-generated Erlang Library file . 40
3.5 An XSD example containing a simple choice 40
3.6 Generators for example shown in Listing 3.5 41
3.7 Stub for response testing . 42
3.8 Bottom Level Typechecking Code . 43
3.9 Bottom Level Typechecking Code for Lists 43
3.10 Top Level TypeChecking Code . 43
3.11 Type Checking Property . 44
3.12 Implementation of a simple web service . 45
3.13 Using PropErWS on the code of Listing 3.12 45
3.14 Real failing testcase structure . 46
3.15 A web service with error handling . 47
3.16 Using PropErWS on 3.15 . 48
3.17 XSD file of delete example . 49
3.18 Implementation of delete example as a web service 50
3.19 Modified parts of output file . 51
3.20 Testing the web service . 51
4.1 Login source code . 54
4.2 Login XSD types . 54
4.3 Authenticate source code . 54
4.4 Authenticate XSD types . 55
4.5 Logout source code . 55
4.6 Logout XSD types . 55
4.7 GetUsername source code . 56
4.8 GetUsername XSD types . 56
4.9 Setting the behaviour of our module . 58
4.10 Implementation of command/1 . 58

15

16 List of Listings

4.11 State callback functions . 59
4.12 Preconditions and Postconditions . 60
4.13 Generator Modifications . 61
4.14 Property for Login Service . 61
4.15 Testing the Property of Listing 4.14 . 62
4.16 Correct Implementation of Logout . 63
4.17 Re-Testing the Property . 63

Chapter 1

Introduction

Web services are becoming essential components of modern web systems, while numerous
tools to aid in their design and creation have been developed. At the same time, testing
web services is an extremely slow and painful process, mainly due to that overly verbose
nature of XML SOAP messages that makes writing test cases by hand an impractical
option. Many of the existing tools help in speeding up the process, up to a point, but
when web service functionality becomes involved, they fail to assist the tester in testing
the web services in an easy and straightforward manner.

One approach that could be used to make the testing of involved web services easier is
property-based testing (PBT). The idea of PBT is to express the properties that a program
must satisfy in the form of input-output relations, and present the general structure of
valid input messages in the form of generators while letting the system handle the creation
of progressively more complex test cases in an attempt to find a counter-example for
the property. Property-based testing is gaining popularity, especially in the community
of functional programming languages where tools such as QuickCheck (for Haskell and
Erlang) or PropEr (for Erlang) exist. When trying to apply property based testing to web
services, the user faces a similar problem with manual testing approaches: the test case
generators are cumbersome to write manually. This is where our tool comes in.

In this thesis, we present a tool designed to aid in property based testing of web services.
By parsing the WSDL specification of the property, we can extract all the information
needed to randomly create test data to provide as arguments in invoking web service
operations, an idea that has already been thoroughly exploited by other researchers whose
work is presented in a later in this thesis, in Chapter 5. At the same time, we can find
information about the return types of such operations for further verification. Our tool
uses all of the aforementioned information to fully automate black-box type testing of web
services, by parsing the WSDL specification to provide generators and properties, feeding
them to PropEr for execution.

Skipping ahead, in Listings 1.1 and 1.2 we show two small examples of using our tool to
perform fully-automated testing on a web service that, at the time of this writing (June
2012), can be accessed freely on the web.

In both examples, what our tool did was to read the WSDL specification of a web ser-
vice and based on the types and operations that were specified there, create a file with
test case generators and some properties. In Listing 1.1 the tool used an automatically

17

18 Chapter 1. Introduction

� �
1> proper_ws:type_check(”http://www.webservicex.net/ConvertCooking.asmx?WSDL”).
Testing property: prop_ChangeCookingUnit_responds
..... (100 dots)
OK: Passed 100 test(s).
true
� �

Listing 1.1: Motivational response testing example

� �
1> proper_ws:type_check(”http://www.webservicex.net/ConvertCooking.asmx?WSDL”).
Testing property: prop_ChangeCookingUnit_is_well_typed
..... (100 dots)
OK: Passed 100 test(s).
true
� �

Listing 1.2: Motivational type checking example

created property named prop_ChangeCookingUnit_responds to invoke the web service
operation “ChangeCookingUnit” 100 times and ensure that the web service responds with
valid SOAP messages for all these tests. In Listing 1.2 our tool used a more complex prop-
erty prop_ChangeCookingUnit_is_well_typed. This property, uses the automatically
created generators to invoke the operation ”ChangeCookingUnit” and parses its response
to verify that its type is what is described in the WSDL specification. After compiling and
loading this file, our tool performed 100 random tests on the same web service to check
the result types. The web service responded with well-typed SOAP messages on all these
tests as well.

Even though the above level of test automation is a great addition to the existing tools
by providing means of validating the response of web services, our tool is designed for
much more than automatically type checking web services. The file created by our tool
is actually an Erlang source file, with properties and generators written as functions (and
macros) in Erlang. Therefore, the user can easily modify generators to add semantic
information to the created test data — for example by restricting a string valued field
to a handful of meaningful names — or write his own properties using the ones provided
as guides, to test for more involved functionality of web services. Using the full power
and expressiveness of the Erlang programming language, a tester can describe arbitrarily
complex input-output relations in order to test for more involved functionality of a web
service without any knowledge and access to its source code.

The rest of this diploma thesis is organized as follows. In Chapter 2 we give a brief
overview of property based testing and PropEr, we include basic information about Web
Services and discuss the difficulties that arise when attempting to test them. We also
describe a couple of Erlang tools, besides PropEr, that we used in our implementation.
Chapter 3 is the main chapter of the thesis where we present our design decisions and
the implementation of the new property based testing tool for web services. We describe
in depth how the types in the WSDL specification are transformed to an intermediate
Erlang representation and then converted to actual code. We also show some examples of
our tool being used to find errors in web services both in automated and semi-automated
ways. Then, we attempt to show how the tool can be used to test a stateful web system

19

in Chapter 4. In Chapter 5 we present related work in this area. Finally, in Chapter 6 we
present some concluding remarks and discuss possibilities of future work.

Chapter 2

Background

2.1 Property Based Testing and PropEr

Testing of software products is one of the key steps in the development life cycle. Manual
testing has proved to be inefficient, time-consuming and accounts for an unreasonably large
portion of an average project’s cost. Many attempts to automate testing have appeared
over the years, and one approach that seems to be subject to automation in a natural
way was unit testing. In unit testing, where a software system individual components are
tested as black box “units”. The main process in unit testing can be broken into three
steps, as described in the first PropEr publication [12]:

• Acquire a valid input

• Invoke the component with that input and capture its response

• Validate the response according to some input-output specification

Even though in most traditional unit testing methods only the second step is automated
and the user is responsible for steps one and three for each individual test, property based
testing introduces a new way for input generation and output validation. It has shown
a great deal of promise in functional languages like Haskell and Erlang where the unit
components are pure functions. To test such functions, the user describes the general
structure of the inputs and a relation between input and output that must hold for all
valid inputs, and the property based testing (PBT) tool handles all the rest. Specifically, a
PBT tool generates random input that conforms to the aforementioned general structure,
calls the function with that input as argument, captures the response and checks that the
user specified property holds by examining the output. Should the property not hold, the
PBT tries to isolate the reason of the fault between the random “noise” in the input using
a process called shrinking.

PropEr is a property based testing tool for Erlang. Since its capabilities in testing pure
functions and stateful systems have been described in full in various other publications [12,
11, 1], we will present here its parts that are directly related to this thesis along with some
examples of their use.

21

22 Chapter 2. Background

2.1.1 Properties

Properties lie at the core of every PBT tool. In PropEr, a user can write properties using
the full power of the Erlang language. Since properties specify input-output relations,
the simplest of properties can be viewed as Boolean expressions containing variables and
functions calls. The PropEr way of writing properties is wrapping such Boolean expressions
with the following macro:

?FORALL(Vars, Generators, Prop) This macro receives three arguments. The first
field (Vars) must be a variable name, a list of variables or a tuple of variables. In
each case, the second field (Generators) contains the PropEr type, called a PropEr
generator, for each of the listed variables in the same structure. Finally, the last
field of the macro is a Boolean expression containing the variables in Vars as free
variables. An example of a ?FORALL macro in practice can be found in Listing 2.2.

2.1.2 Generators

PropEr generators are ways of describing the types of variables for use in properties.
Simple generators closely resemble Erlang types and type names. The ones we will be
using appear in Table 2.1

Generator Represented term
integer() all integers

integer(<LO>, <HI>) integers in the range <LO> - <HI>
range(<LO>,<HI>) integers in tha range <LO> - <HI>

float() all floats
float(<LO>, <HI>) floats in the range <LO> - <HI>

{T1,T2,...,TN} tuples of size N with elements of type T1,T2,...,TN
list(Type) arbitrary length lists of type Type

vector(<Len>, Type) fixed length lists of type Type with length <Len>
union([T1,T2,...,TN]) instances of T1,T2,...,TN chosen with equal probability

<Term> the actual Erlang term <Term>

Table 2.1: Basic PropEr Generators

In addition to the basic types described in table 2.1, PropEr also gives us the option to
combine different generators in order to produce more complex types. The PropEr way of
doing this is with the following macro:

?LET(Vars, Generators, In) The first two fields are identical with the ones used in the
?FORALL macro. The difference is that the third field is not a Boolean expression
but an expression containing variables from Vars that is (or a evaluates to) a type.

To better understand the use of a ?LET macro, consider the example in Listing 2.1 of a
generator that produces lists of integer where the list has length in a given range.

This basically uses a randomly generated instance created by the range generator to pop-
ulate the first argument of a vector generator.

2.1 Property Based Testing and PropEr 23

� �
1 ranged_int_list(Lo,Hi)->
2 ?LET(Length, range(Lo,Hi), vector(Length, integer())).� �

Listing 2.1: Integer list generator example

2.1.3 Example of Use

To demonstrate the power of a property based testing tool we will borrow an example of
the first PropEr publication. Assume we want to create a delete/2 function that should
take an integer X and a list L as arguments and return the list with the occurrences of X
in it deleted. Its implementation is shown in Listing 2.2.

� �
1 -module(mylists).
2 -export([delete/2]).
3 -include_lib(”proper/include/proper.hrl”).
4
5 %--
6
7 delete(X, L) ->
8 delete(X, L, []).
9

10 delete(_, [], Acc) ->
11 lists:reverse(Acc);
12 delete(X, [X|Rest], Acc) ->
13 lists:reverse(Acc) ++ Rest;
14 delete(X, [Y|Rest], Acc) ->
15 delete(X, Rest, [Y|Acc]).
16
17 %--
18
19 prop_delete_removes_every_x () ->
20 ?FORALL({X,L}, {integer(),list(integer ())},
21 not lists:member(X, delete(X,L))).� �

Listing 2.2: Delete implementation and property

The property is basically a Boolean expression saying that X is not a member of the list
that results from the call to delete with X as its first argument, wrapped in a PropEr
?FORALL macro. To test our implementation with this property, we only need to run
PropEr as shown in Listing 2.3.

In Listing 2.3 we see that PropEr run 64 successful tests before discovering a test case
that does not satisfy the property. This example, also shows the need for shrinking. The
first list that failed our property is a relatively large list of random integers that does not
appear to have any special structure. After the shrinking, we are left with a simple list
with two copies of the same element. This quickly reveals the fault in our implementation
to be mishandling of duplicate values, a fact that could be hidden amongst random noise
without shrinking the failed testcase.

24 Chapter 2. Background

� �
1> proper:quickcheck(mylists:prop_delete_removes_every_x()).
..!
Failed: After 65 test(s).
{4,[12,-5,0,-15,50,29,10,4,-10,-42,5,-15,-30,24,41,-19,93,-6,8,4,51,16,5,-45,8]}

Shrinking(12 time(s))
{0,[0,0]}
false
� �

Listing 2.3: Testing the delete property

2.2 Web Services

Over the past ten years, web systems designers have started to direct their attention
towards service-oriented architectures in order to tackle the problem of integrating highly
heterogeneous systems. By supporting the interoperability of inherently different systems
developed under disparate platforms through the use of widely established standards, web
services appear as the natural solution; a solution being adopted and pushed by numerous
companies including Microsoft, IBM, Sun and Amazon.

During this time period, many definitions of what a web service is have appeared. One
of the earliest definitions, given by the IBM Web Services architecture team as early as
September 2000 defines them as “A collection of functions that are packaged as a single en-
tity and published to the network for use by other programs”, focusing on the operational
aspect. A Microsoft researcher, focusing on a developers point of view, described web ser-
vices as “a very general model for building applications that can be implemented for any
operating system that supports communication over the Internet and represent black-box
functionality that can be reused without worrying about how the service is implemented”.
A final and more concise definition was given by the main international standards organi-
zation, World Wide Web Consortium (W3C). According to W3C web services are defined
as “a software system designed to support interoperable machine-to-machine interaction
over a network”. All these definitions capture the essence of a web service as software com-
ponents providing interfaces to other software components for network communication.

In order for this communication to take place in a truly cross-platform, unrestricted manner
a neutral specification and description language has been adopted: XML. Using XML a
number of standards has been developed and established to define data transfer, method
invocation and publishing protocols. The most widely used standards are SOAP, WSDL
and UDDI respectively. In the following few subsections we briefly present the above
technologies and introduces key concepts used in the rest of this thesis.

2.2.1 XML

XML stands for Extensible Markup Language. It was designed by W3C to describe data,
representing them in a flexible and customizable way while at the same time maintaining
both human- and machine-readability. An XML document forms a tree-like structure with
nodes and leaves that represent information. Listing 2.4 shows the general structure of
an XML document and also how data is represented.

2.2 Web Services 25

� �
1 <?xml version=”1.0” encoding=”ISO-8859-1”?>
2 <thesis type=”diploma thesis”>
3 <title>
4 Automatic Random Testing of Function Properties from Specifications
5 </title>
6 <author>
7 Manolis Papadakis
8 </author>
9 <year>

10 2010
11 </year>
12 <school>
13 National Technical University of Athens
14 </school>
15 </thesis>� �

Listing 2.4: A simple XML document

An XML document optionally begins with a single line - the prologue - that can contain
a declaration of the XML version used, encoding information and other document related
information. In this case, the prologue specifies that this document conforms to the 1.0
XML specification and that the ISO-8859-1 character set is being used.

Every XML document, regardless of the existence of a prologue, must contain a single root
element, that is the parent of all other elements in the document. In our example this root
element is a thesis element that contains four children. Each child contains some extra
information regarding the entity represented by the XML document, in this case a thesis.
Finally, this example shows another way to store information via attributes. The starting
tag of the thesis node contains an attribute declaring that the type of the thesis to be
“diploma thesis”.

An XML document with a correct syntax like the above is called “Well Formed”. In addition
to syntactical correctness however, one can define a list of legal elements that describe
the structure of an accepted document. At first, this was done with Document Type
Definitions (DTD), however this is gradually being replaced by XML Schema Definitions
(XSD), which we will present in a following section.

2.2.2 SOAP

Due to the numerous advantages of XML, from being inherently platform independent
because of its textual nature to providing the ability to create your own tags since it is
an extensible language, it is the chosen format for web service communication. In order
to achieve this independence for every web service, the Simple Object Access Protocol
(SOAP) was developed.

SOAP is a protocol specification that uses XML in a standardized message format enabling
machine-to-machine communication without any prior knowledge of the other machine and
its architecture. The main part of this message format is called the envelope and it is an
XML document. The envelope is the root node of the XML document that must contain
a body, which contains all the information that will reach the final recipient. In the web
services case, the body differs from request to response messages. A request body contains

26 Chapter 2. Background

information needed to invoke a web service operation, like name, uri and parameters, while
a response body contains information about the response value of the web service. In
addition to the body, a SOAP message can contain a header node describing application
specific information or a fault node indicating error messages.
To show an example of SOAP based communication with a web service, we use the example
contained in the W3Schools tutorials [17]. Listings 2.5 and 2.6 are indicative examples of
request and response SOAP messages.� �

1 <?xml version=”1.0”?>
2 <soap:Envelope
3 xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”
4 soap:encodingStyle=”http://www.w3.org/2001/12/soap-encoding”>
5
6 <soap:Body xmlns:m=”http://www.example.org/stock”>
7 <m:GetStockPrice>
8 <m:StockName>IBM</m:StockName>
9 </m:GetStockPrice>

10 </soap:Body>
11
12 </soap:Envelope>� �

Listing 2.5: A request SOAP message

We see that in order to invoke an operation of a web service called GetStockPrice that
takes a single parameter StockName, we wrap the parameter (“IBM”) in a StockName
node, make it a child of the operation name node and then include it in the body of a
SOAP envelope.� �

1 <?xml version=”1.0”?>
2 <soap:Envelope
3 xmlns:soap=”http://www.w3.org/2001/12/soap-envelope”
4 soap:encodingStyle=”http://www.w3.org/2001/12/soap-encoding”>
5
6 <soap:Body xmlns:m=”http://www.example.org/stock”>
7 <m:GetStockPriceResponse>
8 <m:Price>34.5</m:Price>
9 </m:GetStockPriceResponse>

10 </soap:Body>
11
12 </soap:Envelope>� �

Listing 2.6: A response SOAP message

To process the response of such a web service we must look inside the response envelope
body for our result. Here the result lies in a Price node, representing the actual price of
the stock whose name we provided in the request message.

2.2.3 WSDL

The Web Service Definition Language (WSDL) is essentially an XML document with a
predefined grammar describing a web service and mainly how to access the operations it

2.2 Web Services 27

exposes [6]. A WSDL document uses the following elements to describe a web service:

Types A data type definition container. WSDL can define types using a type system like
XSD, which we will explain more in the following section.

Operation A description of a method the web service exposes. These operations are the
main points of access of a web service.

Message A message element contains information about the data that can be passed in
a single remote procedure call (RPC).

Port Type A port type is the element of a WSDL specification that associates operations
with their respective input and output messages.

Binding A binding element describes the data format specification of a single port type.

Port A port element defines an endpoint combining binding elements to the unique re-
source identifiers (URI’s) where they can be found.

Service The service element of a WSDL specification is simply a list of endpoints.

Using all of the above elements in an XML document, one can fully describe a web service,
the methods that can be invoked, their respective locations and associated message and
data types. In order to be able to generate structurally valid SOAP messages and invoke a
web service operation, we must conform to the type system described in the specification.
For our framework, we used the most commonly used WSDL type system which is also a
W3C Recommendation, the XML Schema. In the following Section we explain some of its
basic notions that we will refer to in later sections that describe our tool’s implementation.

2.2.4 XSD

An XML Schema Definition (XSD) is basically an XML document that describes the legal
structure of another XML document [8, 13]. In our case, inside a WSDL specification,
an XSD describes the data types of the input and output messages for a web service’s
operations. Almost every type described in an XML Schema, with the exception of the
anyType which is the top type in every XSD type system, is a restriction or an extension
of another type. Primitive, commonly used datatypes such as integers and strings are
already implemented to avoid rewriting boilerplate code and they can be used by a user
to define custom simple or complex types for his web service. The rest of this section will
be devoted to make the distinction between simple and complex types and show how they
can be created by a user.

A simple type definition is always a restriction (the XSD equivalent of a subtype) upon the
anySimpleType datatype. This datatype is the root of the hierarchy of type definitions for
all simple types and can be described by any name that is a sequence of characters and can
be mapped to practically any set of values. Every restriction on a simple type yields a new
type that limits the value or the lexical space of its parent. The restrictions on a simple
type are called facets and describe how the value space is restrained. For example, any
real numbers that have a finite base 10 representation form the decimal type. This type

28 Chapter 2. Background

is derived from the anySimpleType by limiting the lexical choice to strings that conform
to the following pattern:

(+ |−)?([0− 9] + (.[0− 9]∗)?|.[0− 9]+)

which is a regular expression that describes all known finite base 10 fractional or not
numbers. In a similar fashion, this type can be further reduced to an integer (no fractional
part) or have its value space constrained by a limit (e.g. a maximum value).

Complex type definitions are basically ways to group other types (simple or complex)
together. There exist a great deal of ways to form these groupings of child elements, but
the most used one is to include the child elements with their types inside the complex type
declaration along with an indicator showing how these elements are grouped. There are
three indicators in an XSD schema which are described below:

all This indicator shows that the child elements contained must all appear exactly once,
but in any order. This is not used a lot in favor of the sequence indicator.

sequence This is the most widely used indicator. All the children elements must appear
in the specified order, while duplicates are allowed with respect to attributes in the
Schema.

choice This is another indicator that declares that exactly one of the child elements can
be used to form this super type.

We close this section with an example showing an example of (a fraction of) an XSD
schema that could be used to validate the sample XML document in Section 2.2.1.

� �
1 <element name=”thesis”>
2 <complexType>
3 <sequence>
4 <element name=”title” type=”string”/>
5 <element name=”author” type=”string”/>
6 <element name=”year” type=”year”/>
7 <element name=”school” type=”string/>
8 </sequence>
9 </complexType>

10 </element>
11
12 <simpleType name=”school”>
13 <restriction base=”integer”>
14 <minInclusive value=”1837”>
15 </restriction>
16 </simpleType>� �

Listing 2.7: An example of an XML Schema Definition

This listing, although it does not show the exact syntax of a valid XML Schema, is pretty
close to one that could be used to describe the thesis document omitting only namespace
information. In this listing we describe a complex type named thesis that contains four
child elements that appear exactly once. Three of them are of string type, while the year
element is a restriction on integers imposing a minimum value limit.

2.3 Web Service Testing 29

2.3 Web Service Testing

The increased attention web services have received has yielded a great number of tools
that aid in creating new and combining existing web services with little effort and time. At
the same time, however, little progress has been made in creating an effective and mature
tool that correctly tackles the issue of testing web services, largely because of the inherent
difficulty of the area.

First and foremost, the fact that service oriented architecture results in distributed, loosely
coupled systems with reusable components from various sources, while viewed as a great
advantage over more conventional techniques when it comes to creating a scalable and
extensible system, is a major drawback when trying to maintain a consistent Quality of
Service across various components. Since multiple components are combined in a single,
large system, the integrator must be able to validate the individual services and before
proceeding to test the entire application to reduce the introduced opportunities for failure.

In addition, most conventional testing techniques cannot apply to services. Testing at
the graphical user level is rendered useless without additional support to monitor and
validate messages between various intermediaries in order to locate and isolate problems.
In addition, since services are practically just interfaces for the integrator (and the user),
white box testing that used information extracted from the source code is impossible.
Mutation testing is also not an option, since without access to the source code, there is
little room in seeding it with errors.

Finally, in traditional applications, testing is done in relatively static environments, whereas
web service applications live in a dynamic environment, subject to continuous change.

However, manual testing remains a tedious, time-consuming task that accounts for a high
portion of the cost in software production. Therefore, despite the challenges posed in
testing web services, researches in recent years have strived to propose a number of dif-
ferent approaches for the automation of testing of both functional and non-functional
requirements.

2.3.1 Non Functional Testing

The term non functional testing of web services refers to the process of ensuring all the
non functional requirements (NFR) of a web service. The following list provides some
examples of NFRs.

Accessibility Verify the ability of anyone (user, integrator, provider) to access the ap-
plication depending on access privileges.

Availability Verify that the web service has a high uptime, usually conforming to a
service level agreement (SLA).

Performance Verify that system characteristics like response time and throughput are
in accordance with the requirements.

Load Verify that the application can process a number of concurrent transactions at the
same time.

30 Chapter 2. Background

The above NFRs introduce a more or less natural way of automated testing, and are
amongst the few characteristics of web services which existing tools can successfully test
usually by means of load and stress testing. However there exist other, equally important,
NFRs like scalability that are not subject to testing.

2.3.2 Functional Testing

Functional testing refers to the process of ensuring that a web service does what it is
supposed to do. The unit testing approach when applied to web services can be automated
in the same natural way, where each component now is a single web service operation. The
process of testing such an operation can be regarded as practically identical to testing unit
components in traditional software. Basically, it is the same three-step process:

• Produce a structurally valid input for the operation

• Invoke the web service and capture its response

• Ensure that the response conforms to some input-output specification

Similar to when testing traditional software, the second step is the one that has already
been fully automated. Complex test suites, like SoapUI, can simplify the life of testers by
introducing easy ways to enter data and capture the web service output. However, manual
data input and response verification still occurs.

One main difference in the field of web service testing, is that researchers realized early
on that the first step can also be automated using only information provided by the web
service, namely its WSDL specification. Without leaving the limits of black-box testing,
one can create an arbitrary number of structurally valid inputs of web service operations.
A number of tools have been proposed that follow this idea, and are described in length in
Chapter 5. However, these tools leave it to the tester to verify each output, requiring still
a significant amount of time to finish the testing. This problem of validating the response
of a software component, also referred to as the “oracle problem”, is amongst the most
challenging when it comes to black-box testing.

More recently another idea has emerged that pushes black-box testing of web services
to its limit [20]. Since WSDL specifications contain information both about input and
output messages in the contained XML Schema Definitions, one can use that information
to typecheck the output of the web service, providing a small kind of automated oracle.
This approach uses property based testing, as described in the previous section, to fully
automate the three-step testing process without any user input.

While this kind of testing shows much promise, it is still limited by the view of web services
as black boxes. As was quoted by a product manager of Compuware Corp named Mark
Eshelby, “No matter how easy it is to invoke WSDL, if you don’t know what the object was
supposed to do, I don’t believe you can test it”. He was advocating in favor of developers
doing component level, white-box testing instead of users or integrators. This is where
our tool comes in.

Using ideas from property based testing, we have created a tool that supports fully auto-
matic black box type testing as described above. However, the true power of our tool does

2.4 Some Erlang Tools 31

not lie in simply automating black box testing. Our tool provides the necessary support to
the testers to write their own properties regarding a web service, without need to concern
themselves with writing the generators, invoking the operation or parsing the output. Our
tool provides the generators for the input messages and the functions to call the WSDL
specification, deconstructs the output to its smallest units and all this in a out-of-the-box
compilable Erlang source file. The methods and techniques we used to achieve this result
is the main object of this thesis.

2.4 Some Erlang Tools

2.4.1 xmerl

Xmerl is an XML parser, included in the Erlang/OTP distribution [18]. It transforms
any valid XML to a (rather verbose) Erlang structure containing all the information con-
tained in the original XML document. In our framework, xmerl is used to parse the XSD
Schema of the WSDL specification into an Erlang structure, in order to extract the typing
information needed to create PropEr generators.

2.4.2 Yaws and Erlsom

Yaws is one of the most widely used Erlang HTTP web servers [19]. Yaws uses an XML
parser called Erlsom to handle the encoding and decoding of SOAP messages, a parser
module faster and more user friendly than the xmerl module of the Erlang distribution,
imposing however a few additional limitations, such as requiring most data to be converted
to strings. In our framework, Yaws is used at two different times: in the beginning, in
order to extract all the supported SOAP operations from the WSDL specification, and
during the actual testing phase, as an intermediary between PropEr and the web service,
wrapping the data generated by PropEr in a valid SOAP structure, invoking a web service
operation with the formed SOAP message, retrieving the result and returning it in the
form of an Erlang tuple to PropEr for further analysis.

Outside of our framework, we also used Yaws to create and host web services in Erlang,
which resulted in the examples of Chapter 3.

Chapter 3

PropEr WS Design and
Implementation

In this chapter we will present the design and implementation of a tool that can handle
automated property based testing of web services. First, we will briefly describe the
framework as a whole and give an overview of the process of testing. Then, we will get
into detail about the implementation and the techniques used in creating our tool.

3.1 PropEr WS Architecture

Figure 3.1 shows the architecture of our testing framework. Given a URI, the testing starts
by obtaining the WSDL specification of the web service. This specification is then fed into
two different Erlang tools, Yaws and xmerl, briefly described in Chapter 2. Using xmerl we
extract all the type information associated with the WSDL specification, while using Yaws
we extract needed information for all supported (SOAP) operations. These two pieces of
information are then used to create a testing file (the default is proper_ws_autogen) with
Erlang code that contains PropEr generators and properties ready for use. Then, as we
will see, the user can (optionally) modify this auto-generated file to add his own properties

Figure 3.1: System architecture of our property-based testing framework.

33

34 Chapter 3. PropEr WS Design and Implementation

or refine the generators. The testing file is then given as input to PropEr, which generates
random test cases, invokes the web service (using Yaws as a SOAP wrapper) and then
analyzes the result.

3.2 Intermediate Representation

In order to be able to generate PropEr generators and type-checking properties, we intro-
duced an intermediate representation (IR) of the types described in the WSDL specifica-
tion as Erlang tuples. This representation was created so that it holds all type information
needed to create both the generators and the properties, while at the same time it allows
for easier manipulation of all constraining facets of the XSD schema.

3.2.1 Simple Types

The first step towards creating the intermediate representation is mapping the primitive
datatypes of an XSD schema into Erlang tuples. Table 3.1 shows this mapping for some
of the most used basic types describing the format of the type that is expected by Yaws.
Yaws expects most of the types as strings, with the exception of integers and booleans.
An atom erlsom_string means the simple type must be converted to a string before it is
used to invoke the web service. Similarly, erlsom_bool and erlsom_int mean the simple
type must stay as a boolean or a integer respectively.

Simple Type Erlang Intermediate Representation
boolean {erlsom_bool, bool, []}
float {erlsom_string, float, {inf, inf}}
double {erlsom_string, float, {inf, inf}}
integer {erlsom_string, integer, {inf, inf}}

nonPositiveInteger {erlsom_string, integer, {inf, 0}}
negativeInteger {erlsom_string, integer, {inf, -1}}

long {erlsom_string, integer, {-1 bsl 63, 1 bsl 63 -1}}
int {erlsom_int, integer, {-1 bsl 31, 1 bsl 31 - 1}}

short {erlsom_string, integer, {-1 bsl 15, 1 bsl 15 - 1}}
byte {erlsom_string, integer, {-1 bsl 7, 1 bsl 7 - 1}}

nonNegativeInteger {erlsom_string, integer, {0, inf}}
positiveInteger {erlsom_string, integer, {1, inf}}
unsignedLong {erlsom_string, integer, {0, 1 bsl 64 - 1}}
unsignedInt {erlsom_string, integer, {0, 1 bsl 32 - 1}}

unsignedShort {erlsom_string, integer, {0, 1 bsl 16 - 1}}
unsignedByte {erlsom_string, integer, {0, 1 bsl 8 - 1}}

string {list, {{range, 0, inf}, {erlsom_int, integer, {32, 127}}}}

Table 3.1: Basic XSD primitive types mapped to our Erlang Intermediate Representation

The second element of the intermediate representation show in Table 3.1 is an atom de-
scribing the base type of the simple type, without regard for range constraints: integer,
boolean, float or list. This atom will be used later on both to create PropEr generators
and to create type-checking properties.

3.2 Intermediate Representation 35

The third element of the tuple contains extra information about the simple type. For
integers and floats, this extra information is basically range constraints: the minimum
and maximum possible type of the value. For a list, we store more information in this
representation: the possible values of its length and also the intermediate representation
of the type of the lists’ elements. In the above table we see that strings are represented as
arbitrary length lists containing integers in the range 32 – 127, since strings in Erlang are
implemented as integer lists. The added range constraint is used to ensure that the list
contains only printable ASCII characters.

With the above representation, we can easily handle all facet constraints for a simple type
in the XSD schema. Given a tuple and a range or length constraining facet — such as
minInclusive or maxLength — we can construct a new tuple with the respective element
altered. Therefore starting with the tuples described above for the primitive types, we
can go through the list of constraining facets and get a final tuple of the same form that
represents a type satisfying them. There is one specific facet that yields a different kind
of tuple: enumeration. When such a facet is encountered, we replace the tuple with one
entirely new one of the form: {elements, Options}, meaning that we can only use one
of the Options as a valid argument.

3.2.2 Complex Types

Another important issue that needs addressing is combining simple data types into complex
aggregates. First, we extract the name of the type from the WSDL specification. The
name is an Erlang tuple. Its first element is an atom that represents the actual name of
the type, the second element is a list of atoms that describes the path from the schema
node of the WSDL specification down to the complex type, and the final element holds
namespace information about the complex type. After creating the type’s name tuple, we
proceed to parse the elements that form the complex type and return their respective types
in order in a list. Table 3.2 shows how to create a complex type’s representation based
on the name, the generators list and also the indicator that describes how to combine the
generators.

Indicator Erlang Intermediate Representation
all {TypeName, {tuple, Generators}}

sequence {TypeName, {tuple, Generators}}
choice {TypeName, {union, Generators}}

Table 3.2: XSD indicators mapped to our Erlang Intermediate Representation

A choice indicator dictates that only one of the inner generators will be used as an ar-
gument. An all and a sequence indicator dictate that all of the inner generators must be
used. More precisely, a sequence indicator requires all the inner generators in order, while
an all indicator allows for mixed order in the SOAP message. However, we treat both in
the same way, since Yaws does not yet allow for arbitrary ordering in the inner elements.

36 Chapter 3. PropEr WS Design and Implementation

3.2.3 Example

In this section we will introduce now an example of a self-created web service that will
also be used in later sections to demonstrate the use of our tool. Listing 3.1 shows the
XSD of this web service.� �

1 <wsdl:types>
2 <s:schema elementFormDefault=”qualified” targetNamespace=”http://foo/”>
3 <s:element name=”MakeOrder”>
4 <s:complexType>
5 <s:sequence>
6 <s:element minOccurs=”1” maxOccurs=”unbounded”
7 name=”Orders” type=”tns:SingleOrder” />
8 </s:sequence>
9 </s:complexType>

10 </s:element>
11 <s:complexType name=”SingleOrder”>
12 <s:sequence>
13 <s:element name=”Title” type=”tns:BookName”/>
14 <s:element name=”Amount” type=”s:int”/>
15 </s:sequence>
16 </s:complexType>
17 <s:simpleType name=”BookName”>
18 <s:restriction base=”s:string”>
19 <s:enumeration value=”Programming Erlang”/>
20 <s:enumeration value=”Concurrent Programming in Erlang”/>
21 <s:enumeration value=”Learn You Some Erlang for Great Good”/>
22 <s:enumeration value=”Software for a Concurrent World”/>
23 <s:enumeration value=”Erlang Programming”/>
24 <s:enumeration value=”Thinking in Erlang”/>
25 <s:enumeration value=”Functions + Messages + Concurrency = Erlang”/>
26 </s:restriction>
27 </s:simpleType>
28 <s:element name=”MakeOrderResponse”>
29 <s:complexType>
30 <s:sequence>
31 <s:element name=”MakeOrderResult” type=”s:double” />
32 </s:sequence>
33 </s:complexType>
34 </s:element>
35 </s:schema>
36 </wsdl:types>� �

Listing 3.1: An XSD example

In this XSD schema there exist two elements, a complex and a simple type. The simple
type BookName is a simple enumeration of string possibilities describing a book title. The
complex type SingleOrder is a sequence of two inner elements, a Title of type BookName
and an Amount of type integer. Since no minOccurs or maxOccurs attributes are present,
exactly one of each type is expected to form the sequence. This complex type represents a
single order of a number of copies of a book. The first element, MakeOrder is a non-empty
unbounded list of Orders of type SingleOrder. This represents the entire order, different
books in different amounts. Finally, the last element MakeOrderResponse is a sequence of
a single element of type double, representing the web service’s response: the total price of
the order.

3.3 Creating PropEr Generators 37

When our tool is used on the XSD schema of Listing 3.1, we get the intermediate Erlang
tuples shown in Listing 3.2.

� �
1 [{{’MakeOrderResponse’,[],’http://foo/’},
2 {{’_xmerl_no_name_’,[anonymous,’MakeOrderResponse’],’’},
3 {tuple,
4 [{{’MakeOrderResult’,
5 [anonymous,’MakeOrderResponse’],
6 ’http://foo/’},
7 {erlsom_string,float,{inf,inf}}}]}}},
8 {{’BookName’,[],’http://foo/’},
9 {elements,

10 [”Programming Erlang”,”Concurrent Programming in Erlang”,
11 ”Learn You Some Erlang for Great Good”,
12 ”Software for a Concurrent World”,”Erlang Programming”,
13 ”Thinking in Erlang”,
14 ”Functions + Messages + Concurrency = Erlang”]}},
15 {{’MakeOrder’,[],’http://foo/’},
16 {{’_xmerl_no_name_’,[anonymous,’MakeOrder’],’’},
17 {tuple,
18 [{{’Orders’,
19 [anonymous,’MakeOrder’],
20 ’http://foo/’},
21 {list,
22 {{range,1,unbounded},
23 {toplevel,
24 {simple_or_complex_Type,
25 {’SingleOrder’,[],
26 ’http://foo/’}}}}}}]}}},
27 {{’SingleOrder’,[],’http://foo/’},
28 {tuple,
29 [{{’Title’,[’SingleOrder’],’http://foo/’},
30 {toplevel,
31 {simple_or_complex_Type,
32 {’BookName’,[],’http://foo/’}}}},
33 {{’Amount’,[’SingleOrder’],’http://foo/’},
34 {erlsom_int,integer ,{-2147483648,2147483647}}}]}}]� �

Listing 3.2: Intermediate representation for example of Listing 3.1

3.3 Creating PropEr Generators

The back-end of our implementation is responsible for converting the intermediate repre-
sentation to either a PropEr generator or a property. In this section we look at the details
of converting the IR Erlang tuples to actual Erlang code.

The first step in our conversion is figuring out exactly which of the tuples we have con-
structed we need to output in the form of generators, so that no extraneous or unused
code is included in the output file. To that end, we get all the input message types of
the supported web service operations, which are toplevel (or imported) element nodes in
the XSD schema. We add their representation to a list of tuples that need handling and
proceed to the actual creation of the generators. Every time we encounter a toplevel
tuple we add it to the list of the tuples that still require handling, and recursively go

38 Chapter 3. PropEr WS Design and Implementation

through this list taking care not to handle the same tuple twice. Since the number of
tuples is finite this process reaches a fixed point when all the necessary generators have
been successfully created.

The intermediate representation for simple types can be easily mapped to Erlang code. In
Table 3.3 we see this mapping for the three primitive types:

Erlang Intermediate Representation Code
{_, integer, {inf, inf}} integer()
{_, integer, {Min, Max}} integer(Min, Max)
{_, float, {inf, inf}} float()
{_, float, {Min, Max}} float(Min, Max)

{_, bool, _} union([true, false])

Table 3.3: Intermediate Representations of simple types mapped to Erlang Code

The first argument is used to determine whether or not to wrap the resulting code in a
?LET macro like this:

?LET(Gen, Code, %TYPE%_to_list(Gen))

which converts the generated instance to an Erlang string.

When a toplevel tuple is encountered, the generator that is created is simply a function
call to the actual generator that will be (or has already been) created at some time during
our toplevel element handling.

Finally, to create generators for list tuples, we create the generator code for the list element
type and then wrap this code in a ?LET macro to create a vector of a specified range.

Complex types, however, are an entirely more complex matter. To use Yaws in order to
invoke the web services — and also for better code readability — we populate the record
structures provided by erlsom in an .hrl (Erlang header) file when parsing the WSDL
specification. To be able to use these records however, we must strictly comply to the
erlsom naming conventions for sequence and choice complex types.

Sequences are relatively easy to handle. We iterate through the list of the inner IR tuples,
output their code as appropriately named generators and use these generators to populate
each field of the record inside a ?LET macro. To create a choice generator on the other
hand we first create generators for each one of the possibilities, wrap this generator in a
?LET macro that populates an erlsom-named record, and use all these wrapped macros in
another generator along with a union PropEr generator to choose one and populate the
choice field of yet another record.

The above process will be better understood viewing the examples that follow. In List-
ing 3.3 we show the generators produced for the example web service described in Sec-
tion 3.2.3. The Erlang records used in that above code excerpt exist in an erlsom-created
.hrl file, that can be seen in Listing 3.4.

The Listing 3.5 depicts an XSD file which describes a simple choice between an integer
and a double. The code generated by our tool can be found in Listing 3.6.

We can see that our tool created a generator for each of the two types (generate_Choice_foo/0
and generate_Choice_bar/0), then each of these generators was used inside another

3.3 Creating PropEr Generators 39

� �
1 generate_MakeOrder_Orders() ->
2 ?LET(
3 Len,
4 range(1,inf),
5 vector(Len, generate_SingleOrder())
6).
7
8 generate_MakeOrder() ->
9 ?LET(

10 Pr_MakeOrder_Orders,
11 generate_MakeOrder_Orders(),
12 [#’p:MakeOrder’{’Orders’ = Pr_MakeOrder_Orders}]
13).
14
15 generate_SingleOrder_Title() ->
16 generate_BookName().
17
18 generate_SingleOrder_Amount() ->
19 integer(-2147483648,2147483647).
20
21 generate_SingleOrder() ->
22 ?LET(
23 {Pr_SingleOrder_Title, Pr_SingleOrder_Amount},
24 {generate_SingleOrder_Title(), generate_SingleOrder_Amount()},
25 [#’p:SingleOrder’{
26 ’Title’ = Pr_SingleOrder_Title,
27 ’Amount’ = Pr_SingleOrder_Amount
28 }
29]
30).
31
32 generate_BookName()->
33 elements([”Programming Erlang”,”Concurrent Programming in Erlang”,
34 ”Learn You Some Erlang for Great Good”,”Software for a Concurrent World”,
35 ”Erlang Programming”,”Thinking in Erlang”,
36 ”Functions + Messages + Concurrency = Erlang”]).� �

Listing 3.3: PropEr generators for example in Listing 3.1

40 Chapter 3. PropEr WS Design and Implementation

� �
1 %% HRL file generated by ERLSOM
2 %%
3 %% It is possible to change the name of the record fields.
4 %%
5 %% It is possible to add default values, but be aware that these will
6 %% only be used when *writing* an xml document.
7
8 -record(’p:MakeOrder’, {anyAttribs, ’Orders’}).
9 -record(’p:MakeOrderResponse’, {anyAttribs, ’MakeOrderResult’}).

10 -record(’p:SingleOrder’, {anyAttribs, ’Title’, ’Amount’}).
11 -record(’soap:Body’, {anyAttribs, choice}).
12 -record(’soap:Envelope’, {anyAttribs, ’Header’, ’Body’, choice}).
13 -record(’soap:Fault’, {anyAttribs, ’faultcode’, ’faultstring’,
14 ’faultactor’, ’detail’}).
15 -record(’soap:Header’, {anyAttribs, choice}).
16 -record(’soap:detail’, {anyAttribs, choice}).� �

Listing 3.4: Auto-generated Erlang Library file

� �
1 <s:schema elementFormDefault=”qualified” targetNamespace=”http://foo/”>
2 <s:element name=”Choice”>
3 <s:complexType>
4 <s:choice>
5 <s:element name=”foo” type=”s:int”/>
6 <s:element name=”bar” type=”s:double”/>
7 </s:choice>
8 </s:complexType>
9 </s:element>

10 </s:schema>� �
Listing 3.5: An XSD example containing a simple choice

3.3 Creating PropEr Generators 41

� �
1
2 generate_Choice_foo() ->
3 integer(-2147483648,2147483647).
4
5 generate_Choice_bar() ->
6 ?LET(Gen, float(), float_to_list(Gen)).
7
8 generate_choice_Choice_foo() ->
9 ?LET(

10 Pr_Choice_foo,
11 generate_Choice_foo(),
12 #’p:Choice-foo’{’foo’=Pr_Choice_foo}
13).
14
15 generate_choice_Choice_bar() ->
16 ?LET(
17 Pr_Choice_bar,
18 generate_Choice_bar(),
19 #’p:Choice-bar’{’bar’=Pr_Choice_bar}
20).
21
22 generate_Choice() ->
23 ?LET(
24 Choice,
25 union([
26 generate_choice_Choice_bar(),
27 generate_choice_Choice_foo()
28]),
29 #’p:Choice’{choice=Choice}
30).� �

Listing 3.6: Generators for example shown in Listing 3.5

42 Chapter 3. PropEr WS Design and Implementation

wrapper to populate an appropriately named (NameSpace:ElementName-FieldName) Er-
lang record and finally the generator for the actual toplevel element generate_Choice/0
that uses the wrapper generators inside a union PropEr generator.

3.4 Creating Type-Checking Properties

Our tool creates two kinds of properties automatically: one that checks that a single
operation responds with valid SOAP messages for various random inputs and one that
checks the types of the elements inside these SOAP messages.
The response properties are created entirely without requiring information from the in-
termediate representation. All that is required is the name of the operation for which the
property is created. Knowing this name we simply output a code stub based on the one
shown in Listing 3.7.� �

1 prop_” ++ Op_name ++ ”_responds() ->
2 ?FORALL(Args, ” ++ ”generate_” ++ Op_name ++ ”(),
3 case call_” ++ Op_name ++ ”(Args) of
4 {ok, _Attribs, [#’soap:Fault’{}]} -> false;
5 {ok, _Attribs, _Result_record} -> true;
6 _ -> false
7 end).� �

Listing 3.7: Stub for response testing

All this property does is use the generator that is created for the operation to generate
random arguments, use these arguments to invoke the web service and finally pattern
match on the results returned. If the resulting tuple is not tagged by ok then the system
concludes that some error has occurred and the property fails. Otherwise we check the
record returned by Yaws: if it contains a soap:Fault record, the property fails. In any
other case, we (conservatively) pass the testcase and let PropEr proceed to create even
more complex structurally valid testcases.
The automatically created type-checking properties on the other hand are an entirely
different matter. The process of creating them is largely similar to the creation of the
PropEr generators. We use the exact same technique to reach a fixed point and determine
exactly which IR tuples need to be converted to actual Erlang code. We take extra care in
creating user-readable type checkers, because the functions that check the code also show
to the user how to deconstruct the answer records to their elements. Since our main goal
is property-based testing of web services, the user should only be concerned with writing
the property and not with implementation specific details regarding SOAP, Yaws, etc.
We introduced a few invariants to successfully handle all cases without a lot of code reuse.
First, each type-checking function receives a single argument named X. This argument is
assumed to be a simple type in the form returned by the web service, extracted from the
erlsom records and is afterwards converted to a correctly typed Erlang variable. During
this process, if an exception is raised — meaning X is incorrectly typed — the property
fails. Finally, in order to achieve a common way to handle range checks for numeric values,
we create Erlang code that returns a string true if both bounds are infinite or comparisons
between Value and the range limits contained in the intermediate representation.

3.4 Creating Type-Checking Properties 43

To demonstrate how simple types are type checked we include the type-checking functions
created by our tool for the example in Section 3.2.3.

� �
1 typecheck_MakeOrderResult(X) ->
2 try erlang:list_to_float(X) of
3 _Value ->
4 true
5 catch _:_ ->
6 false
7 end.� �

Listing 3.8: Bottom Level Typechecking Code

� �
1 typecheck_deleteReturn(X) ->
2 X =:= undefined orelse
3 (is_list(X) andalso
4 lists:all(
5 fun (X) ->
6 is_integer(X) andalso
7 begin
8 Value = X,
9 2147483647 >= Value andalso Value >= -2147483648

10 end
11 end,
12 X)).� �

Listing 3.9: Bottom Level Typechecking Code for Lists

In Listing 3.8 we see how we typecheck a float. Mainly we attempt to convert its string
representation (since erlsom handles all floats as strings). If this succeeds we check that
this value is a number and (if needed) we check the range constraints. An example of a type
cheking function when the argument is a list is shown in Listing 3.9 When type checking
lists, we check that the variable X is actually a list with the same built in function is_list
and then we use a predicate similar to this inside a lists:all/2 higher order function.

Complex types are handled differently. The function headers that do the checking still
receive a single argument, but this time we unwrap the record to its elements “the Erlang
way” and typecheck each field using the functions created before. The Listing 3.10 shows
the checker for the actual element of our example.

� �
1 check_MakeOrderResponse(
2 #’p:MakeOrderResponse’{
3 ’MakeOrderResult’ = Pr_MakeOrderResult
4 }
5) ->
6 typecheck_MakeOrderResult(Pr_MakeOrderResult).� �

Listing 3.10: Top Level TypeChecking Code

The final stage in creating the type checking property is to output the actual property in

44 Chapter 3. PropEr WS Design and Implementation

a way similar to the response property. The only difference is that we need not only the
operations’ input message type, but also the output one as shown in Listing 3.11.

� �
1 prop_OPERATION_NAME_is_well_typed() ->
2 ?FORALL(Args, ” ++ ”generate_” ++ Op_in ++ ”(),
3 case call_OPERATION_NAME(Args) of
4 {ok, _Attribs, [#’soap:Fault’{}]} ->
5 false;
6 {ok, _Attribs, [Result_record]} ->
7 check_OPERATION_RETURN_NAME(Result_record);
8 _ -> false
9 end).� �

Listing 3.11: Type Checking Property

In Listing 3.11 we can see that the difference between checking return type correctnes
and response testing lies in the second case clause of the pattern matching where we don’t
always return true, but delegate the check to an the already created type checking function.

3.5 Using PropEr WS

In this Section, we demonstrate how our tool can be used to test web services both with
and without user input.

3.5.1 Fully Automatic Response Testing

Our tool can automatically handle two types of testing without any user input: response
testing and type testing. Using the XSD schema described in Section 3.2.3, we create two
different (deliberately) faulty implementations of web services.

Firstly, the “response” web service, whose code is shown in Listing 3.12.

The fault in this implementation lies not only in the fact that we “forgot” the final enu-
meration value, but that we include no error handling when trying to extract an item’s
price. Trying to test this web service with our tool we get the output that can be seen in
Listing 3.13.

The first command is a call to our tool to generate a test file for the web service we
feed as an argument. Since no other arguments are given, the default output file is used
proper_ws_autogen.erl. In the second command we compile the output file, and in the
last one we use PropEr to check the response property created by our tool. As expected,
the web service crashes after a few tests, and PropEr manages to isolate the error in a single
test ordering 0 copies of the unhandled book title. The output of Listing 3.13 outputs
strings as integer lists. Even though in this case we would like a string representation,
PropEr has no way of distinguishing between a string and an integer list when it comes to
printing them - therefore, it conservatively prints everything as an integer list, to account
for examples such as the one in Listing 2.3, where we would like to avoid a list like [0,0]
be printed as a string. Listing 3.14 shows the real structure of the failed testcases, taken
simply by copy-pasting the structure in the Erlang shell.

3.5 Using PropEr WS 45

� �
1 -module(response).
2
3 -export([handler/4]).
4
5 -include(”response.hrl”).
6
7 -define(AVAILABLE_BOOKS,
8 [{”Programming Erlang”, 1.00},
9 {”Concurrent Programming in Erlang”, 0.42},

10 {”Learn You Some Erlang for Great Good”, 1.42},
11 {”Software for a Concurrent World”, 2.42},
12 {”Erlang Programming”, 3.00},
13 {”Thinking in Erlang”, 3.42}]).
14
15 handler(_Header, [#’p:MakeOrder’{’Orders’=Orders}], _Action, _SessionValue) ->
16 {ok, undefined, [get_response(Orders)]}.
17
18 get_price(Title) ->
19 {Title, Price} = lists:keyfind(Title, 1, ?AVAILABLE_BOOKS),
20 Price.
21
22 get_response(Orders) ->
23 TotalPrice = lists:foldl(
24 fun (#’p:SingleOrder’{’Title’=Title,’Amount’=Amount}, Acc) ->
25 Acc + Amount * get_price(Title)
26 end, 0.0, Orders),
27 Result = float_to_list(TotalPrice),
28 #’p:MakeOrderResponse’{anyAttribs = [], ’MakeOrderResult’=Result}.� �

Listing 3.12: Implementation of a simple web service

� �
1> proper_ws:generate(”file://tmp/response.wsdl”).
ok
2> c(proper_ws_autogen).
{ok,proper_ws_autogen}
3> proper:quickcheck(proper_ws_autogen:prop_MakeOrder_responds()).
....!
Failed: After 5 test(s).
[{’p:MakeOrder’,undefined ,[[{’p:SingleOrder’,undefined,[67,111,110,99,117,114,
114,101,110,116,32,80,114,111,103,114,97,109,109,105,110,103,32,105,110,32,69,
114,108,97,110,103],0}],[{’p:SingleOrder’,undefined,[67,111,110,99,117,114,114,
101,110,116,32,80,114,111,103,114,97,109,109,105,110,103,32,105,110,32,69,114,
108,97,110,103],1}],[{’p:SingleOrder’,undefined,[70,117,110,99,116,105,111,110,
115,32,43,32,77,101,115,115,97,103,101,115,32,43,32,67,111,110,99,117,114,114,
101,110,99,121,32,61,32,69,114,108,97,110,103],0}],[{’p:SingleOrder’,undefined,
[76,101,97,114,110,32,89,111,117,32,83,111,109,101,32,69,114,108,97,110,103,32,
102,111,114,32,71,114,101,97,116,32,71,111,111,100],-1}]]}]

Shrinking(5 time(s))
[{’p:MakeOrder’,undefined ,[[{’p:SingleOrder’,undefined,[70,117,110,99,116,105,
111,110,115,32,43,32,77,101,115,115,97,103,101,115,32,43,32,67,111,110,99,117,
114,114,101,110,99,121,32,61,32,69,114,108,97,110,103],0}]]}]
false
� �

Listing 3.13: Using PropErWS on the code of Listing 3.12

46 Chapter 3. PropEr WS Design and Implementation

� �
1> proper_ws:generate(”file://tmp/response.wsdl”).
ok
2> c(proper_ws_autogen).
{ok,proper_ws_autogen}
3> proper:quickcheck(proper_ws_autogen:prop_MakeOrder_responds()).
....!
Failed: After 5 test(s).
[{’p:MakeOrder’,undefined,

[[{’p:SingleOrder’,undefined,
”Concurrent Programming in Erlang”,0}],

[{’p:SingleOrder’,undefined,
”Concurrent Programming in Erlang”,1}],

[{’p:SingleOrder’,undefined,
”Functions + Messages + Concurrency = Erlang”,
0}],

[{’p:SingleOrder’,undefined,
”Learn You Some Erlang for Great Good”,
-1}]]}]

Shrinking(5 time(s))
[{’p:MakeOrder’,undefined,

[[{’p:SingleOrder’,undefined,
”Functions + Messages + Concurrency = Erlang”,
0}]]}]

false
� �
Listing 3.14: Real failing testcase structure

Henceforth, we will convert the integer lists to strings where needed, without a specific
mention of this fact.

3.5.2 Fully Automatic Type Checking

In addition to automatic response testing we can successfully type check a web service’s
responses fully automatically. To demonstrate this use of our tool, we created another
faulty web service: “semantic”. Its implementation is shown in Listing 3.15.

In this implementation, we also “forget” the final book, however now we include some sort
of error handling attempting to return an error string when a book is not found. Since
yaws expects most arguments in string form, it will not detect our error and allow our
web service to respond with a string instead of a double representing the price!

Our tool can be used to find this kind of error, as we can see in Listing 3.16.

As we can see the web service successfully passes 100 tests when tested with the automatic
response property, however is quickly discover to be faulty when we use the type-checking
property.

3.5.3 Property Based Testing

As mentioned before, the real power of our tool is providing all the necessary support for
a user to do property based testing on a web service. To demonstrate how easy it is to use

3.5 Using PropEr WS 47

� �
1 -module(semantic).
2
3 -export([handler/4]).
4
5 -include(”semantic.hrl”).
6
7 -define(AVAILABLE_BOOKS,
8 [{”Programming Erlang”, 1.00},
9 {”Concurrent Programming in Erlang”, 0.42},

10 {”Learn You Some Erlang for Great Good”, 1.42},
11 {”Software for a Concurrent World”, 2.42},
12 {”Erlang Programming”, 3.00},
13 {”Thinking in Erlang”, 3.42}]).
14
15 handler(_Header, [#’p:MakeOrder’{’Orders’=Orders}], _Action, _SessionValue) ->
16 {ok, undefined, [get_response(Orders)]}.
17
18 get_new_acc(_, {error, _Reason} = Error) ->
19 Error;
20 get_new_acc(#’p:SingleOrder’{’Title’=Title, ’Amount’=Amount}, {ok, AccPrice}) ->
21 case lists:keyfind(Title, 1, ?AVAILABLE_BOOKS) of
22 {Title, Price} ->
23 AccFloat = list_to_float(AccPrice),
24 {ok, float_to_list(AccFloat + Price * Amount)};
25 false ->
26 {error, ”Book Not Found”}
27 end.
28
29 get_response(Orders) ->
30 {_, Result} = lists:foldl(
31 fun (Order, Acc) -> get_new_acc(Order, Acc) end, {ok, ”0.0”}, Orders),
32 #’p:MakeOrderResponse’{anyAttribs = [], ’MakeOrderResult’=Result}.� �

Listing 3.15: A web service with error handling

48 Chapter 3. PropEr WS Design and Implementation

� �
1> proper_ws:generate(”file://tmp/semantic.wsdl”).
ok
2> c(proper_ws_autogen).
{ok,proper_ws_autogen}
3> proper:quickcheck(proper_ws_autogen:prop_MakeOrder_responds()).
....(100 dots)....
OK: Passed 100 test(s).
true
4> proper:quickcheck(proper_ws_autogen:prop_MakeOrder_is_well_typed()).
....!
Failed: After 5 test(s).
An exception was raised: error:badarg.
Stacktrace: [{erlang,list_to_float,[”Book Not Found”],[]}].
[{’p:MakeOrder’,undefined,

[[{’p:SingleOrder’,
undefined,
”Functions + Messages + Concurrency = Erlang”,
-6}],

[{’p:SingleOrder’,
undefined,
”Learn You Some Erlang for Great Good”,
-1}],

[{’p:SingleOrder’,undefined,”Thinking in Erlang”,1}],
[{’p:SingleOrder’,

undefined,
”Learn You Some Erlang for Great Good”,
-1}],

[{’p:SingleOrder’,undefined,”Programming Erlang”,0}],
[{’p:SingleOrder’,

undefined,
”Functions + Messages + Concurrency = Erlang”,
0}],

[{’p:SingleOrder’,undefined,”Programming Erlang”,0}]]}]

Shrinking ..(2 time(s))
[{’p:MakeOrder’,undefined,

[[{’p:SingleOrder’,
undefined,
”Functions + Messages + Concurrency = Erlang”,
0}]]}]

false
� �
Listing 3.16: Using PropErWS on 3.15

3.5 Using PropEr WS 49

the output of our tool we translated the delete example of Listing 2.2 to a web service.

To translate it, we created a WSDL file whose contained XSD schema is shown in List-
ing 3.17, and implemented the web service as shown in Listing 3.18. We can see that the
code that handles the main functionality has stayed exactly the same, and we just wrap
the arguments and results appropriately to handle the conversion to a web service.

� �
1 <schema elementFormDefault=”qualified” targetNamespace=”http://tests”
2 xmlns=”http://www.w3.org/2001/XMLSchema”>
3 <element name=”delete”>
4 <complexType>
5 <sequence>
6 <element name=”list” type=”xsd:int”
7 minOccurs=”1” maxOccurs=”unbounded”/>
8 <element name=”x” type=”xsd:int”/>
9 </sequence>

10 </complexType>
11 </element>
12 <element name=”deleteResponse”>
13 <complexType>
14 <sequence>
15 <element name=”deleteReturn” type=”xsd:int”
16 minOccurs=”0” maxOccurs=”unbounded”/>
17 </sequence>
18 </complexType>
19 </element>
20 </schema>� �

Listing 3.17: XSD file of delete example

Afterwards, we used our tool to create generators and properties for testing this service. In
Section 2.1.3 we needed to create a ?FORALL property and add a lists:member predicate
to form a boolean expression. To demonstrate how easy it is to use the created file for
property based testing, we modified the typechecking property and functions in place for
direct comparison.

The modified parts of the file is shown in Listing 3.19. We can see the following changes:

• In the typecheck_deleteReturn/1 function we added an argument (Elem) rep-
resenting the element we wanted to delete and replaced the entire lists:all/2
predicate with the lists:member/2 predicate.

• In the check_deleteResponse/1 function we just forward the extra argument needed.

• In the property we change the name, use the generator to copy-paste the record that
generate_delete/0 creates so that we can extract the ’x’ variable and finally feed
the check function with it.

That’s all! Obviously, we could also use the typechecking property as a stub to create
numerous other properties. To see property based testing of web services in action, we
just compile the modified file and run the property. The output of the Erlang shell is
shown in Listing 3.20.

50 Chapter 3. PropEr WS Design and Implementation

� �
1 -module(myDelete).
2 -export([handler/4]).
3
4 -include(”myDelete.hrl”).
5
6 handler(_Header,
7 [#’p:delete’{list = List, x = X}],
8 _Action,
9 _SessionValue) ->

10 {ok, undefined, get_response(List, X)}.
11
12 delete(X, L) ->
13 delete(X, L, []).
14
15 delete(_, [], Acc) ->
16 lists:reverse(Acc);
17 delete(X, [X|Rest], Acc) ->
18 lists:reverse(Acc) ++ Rest;
19 delete(X, [Y|Rest], Acc) ->
20 delete(X, Rest, [Y|Acc]).
21
22 get_response(List, X) ->
23 [#’p:deleteResponse’{anyAttribs = [], deleteReturn = delete(X, List)}].� �

Listing 3.18: Implementation of delete example as a web service

3.5 Using PropEr WS 51

� �
1 %typecheck_deleteReturn(X) ->
2 typecheck_deleteReturn(Elem,X) ->
3 X =:= undefined orelse
4 (is_list(X) andalso
5 not lists:member(Elem,X)).
6 % lists:all(
7 % fun (X) ->
8 % is_integer(X) andalso
9 % begin

10 % Value = X,
11 % 2147483647 >= Value andalso Value >= -2147483648
12 % end
13 % end, X)).
14
15 %check_deleteResponse(
16 check_deleteResponse(X,
17 #’p:deleteResponse’{
18 ’deleteReturn’ = Pr_deleteReturn
19 }
20) ->
21 %typecheck_deleteReturn(Pr_deleteReturn).
22 typecheck_deleteReturn(X, Pr_deleteReturn).
23
24 %prop_delete_is_well_typed() ->
25 prop_delete_removes_every_x() ->
26 % ?FORALL(Args, generate_delete(),
27 ?FORALL([#’p:delete’{’x’ = Pr_delete_x}]=Args, generate_delete(),
28 case call_delete(Args) of
29 {ok, _Attribs, [#’soap:Fault’{}]} ->
30 false;
31 {ok, _Attribs, [Result_record]} ->
32 %check_deleteResponse(Result_record);
33 check_deleteResponse(Pr_delete_x, Result_record);
34 _ -> false
35 end).� �

Listing 3.19: Modified parts of output file

� �
1> c(proper_ws_autogen).
{ok,proper_ws_autogen}
2> proper:quickcheck(proper_ws_autogen:prop_delete_removes_every_x()).
....!
Failed: After 5 test(s).
[{’p:delete’,undefined,[-5,0,-1,0,1,1,-2,1,-1],0}]

Shrinking(5 time(s))
[{’p:delete’,undefined,[0,0],0}]
false
� �

Listing 3.20: Testing the web service

Chapter 4

Towards Property-Based Testing
of Stateful Web Services

One of the most powerful features of PropEr is its ability to test stateful systems. Some
great tutorials on the subject were written by Eirini Arvaniti [1] and are located on the
PropEr website [14]. In this chapter we will present an application of our tool in testing a
stateful web service. Firstly, we will present the implementation of the actual web service
in Java. Then we will show how our tool’s output can be modified to add state information.
Finally, we will actually use our modified Erlang code to test the service.

4.1 Web Service Implementation

The basic web service example we developed for this chapter is a simple authentication
service. The idea is we have a basic pool of usernames with their associated passwords,
and upon successful login we provide an authentication token. For simplicity purposes,
we don’t encrypt our data and information when communicating, since we just want to
examine the potential in property based testing of web systems.

Our web service provides the following four operations:

login This method requires two strings, a name and a password, and upon successful au-
thentication returns an integer token. Its implementation can be found in Listing 4.1,
while the XSD types associated can be viewed in Listing 4.2.

authenticate This method receives an integer and returns a boolean value that is true
if this integer represents an actual authentication token. Implementation and XSD
types can be found in Listings 4.3 and 4.4.

logout This operation receives an authentication token and invalidates it. Returns a
boolean value according to the success of the operation. The source code associated
with this operation is contained in Listings 4.5 and 4.6.

getUsername Finally, this operation returns the username associated with a specific
authentication token or an empty string otherwise. The related implementation
details can be viewed in Listings 4.7 and 4.8.

53

54 Chapter 4. Towards Property-Based Testing of Stateful Web Services

� �
1 public int login(String name, String password){
2 Pair<String,String> p = new Pair<String,String>(name,password);
3 for(Pair<String,String> pass : passwords){
4 if (pass.first.equals(p.first) && pass.second.equals(p.second)){
5 Random r = new Random();
6 int id = r.nextInt(10000);
7 while(authenticate(id)) id = r.nextInt(10000);
8 logged.add(new Pair<String, Integer>(name, id));
9 return id;

10 }
11 }
12 return -1;
13 }� �

Listing 4.1: Login source code

� �
1 <element name=”login”>
2 <complexType>
3 <sequence>
4 <element name=”name” type=”xsd:string”/>
5 <element name=”password” type=”xsd:string”/>
6 </sequence>
7 </complexType>
8 </element>
9 <element name=”loginResponse”>

10 <complexType>
11 <sequence>
12 <element name=”loginReturn” type=”xsd:int”/>
13 </sequence>
14 </complexType>
15 </element>� �

Listing 4.2: Login XSD types

� �
1 public boolean authenticate(int id){
2 return !getUsername(id).equals(””);
3 }� �

Listing 4.3: Authenticate source code

4.1 Web Service Implementation 55

� �
1 <element name=”authenticate”>
2 <complexType>
3 <sequence>
4 <element name=”id” type=”xsd:int”/>
5 </sequence>
6 </complexType>
7 </element>
8 <element name=”authenticateResponse”>
9 <complexType>

10 <sequence>
11 <element name=”authenticateReturn” type=”xsd:boolean”/>
12 </sequence>
13 </complexType>
14 </element>� �

Listing 4.4: Authenticate XSD types

� �
1 public boolean logout(int id){
2 String user = getUsername(id);
3 if (user.equals(””)) {
4 return false;
5 }
6 for (Pair<String,Integer> p : logged){
7 if (p.getFirst().equals(user)){
8 logged.remove(p);
9 return true;

10 }
11 }
12 return false;
13 }� �

Listing 4.5: Logout source code

� �
1 <element name=”logout”>
2 <complexType>
3 <sequence>
4 <element name=”id” type=”xsd:int”/>
5 </sequence>
6 </complexType>
7 </element>
8 <element name=”logoutResponse”>
9 <complexType>

10 <sequence>
11 <element name=”logoutReturn” type=”xsd:boolean”/>
12 </sequence>
13 </complexType>
14 </element>� �

Listing 4.6: Logout XSD types

56 Chapter 4. Towards Property-Based Testing of Stateful Web Services

� �
1 public String getUsername(int id){
2 for(Pair<String,Integer> p : logged){
3 if (p.getSecond() == id){
4 return p.getFirst();
5 }
6 }
7 return ””;
8 }� �

Listing 4.7: GetUsername source code

� �
1 <element name=”getUsername”>
2 <complexType>
3 <sequence>
4 <element name=”id” type=”xsd:int”/>
5 </sequence>
6 </complexType>
7 </element>
8 <element name=”getUsernameResponse”>
9 <complexType>

10 <sequence>
11 <element name=”getUsernameReturn” type=”xsd:string”/>
12 </sequence>
13 </complexType>
14 </element>� �

Listing 4.8: GetUsername XSD types

4.2 Stateful Testing with PropEr 57

4.2 Stateful Testing with PropEr

In order to test the web service described in the previous section, we will need to use the
stateful testing part of PropEr. The idea behind testing a stateful system using PropEr
is to create a model of the system under test, in order to simulate the state that is not
directly accessible from the API of the system [9, 7]. Then, we generate test cases in the
form of symbolic API calls, which facilitates easier shrinking and also allows for repeatable
testcases. Since the PropEr terminology is vast, we will present here more parts of PropEr
not described in Chapter 2 that we will be needing in later sections.

Symbolic commands

{call, Module, Fun, Args} This tuple represents a symbolic function call. When the
generated symbolic testcases are executed, any such symbolic call is converted to an
actual call to the function Fun in module Module with Args as arguments.

{set, var, N, Command} This is a symbolic command. This binds the result of Com-
mand, which must be a symbolic function call, to the symbolic variable {var, N}
where N is a unique integer identifier for the symbolic variable. The generated test-
cases are actually sequences of this kind of commands, binding each result of an API
call to a different symbolic variable that can be used in the following commands.

More PropEr macros

?TRAPEXIT(Prop) This macro makes sure that if the contained property spawns and
links to a process that crashes, PropEr will treat it as a test failure instead of crashing
as well.

?WHENFAIL(Action,Prop) This macro executes Action when the property Prop
fails. It is very useful for debugging purposes.

Model callback functions

To define a state PropErly, a module must implement and export some functions that
fully describe the state and success conditions.

initial_state() Executed everytime the generated command sequence is executed to pro-
duce the initial state.

command(State) Receives the symbolic state as an argument and generates a symbolic
call.

precondition(State,Call) Allows a command to be executed based on the current sym-
bolic state or forces a new call to be chosen using the command/1 generator.

postcondition(State,Call,Result) Specifies a condition that should hold regarding the
Result based on the dynamic State after evaluating the symbolic Call.

58 Chapter 4. Towards Property-Based Testing of Stateful Web Services

next_state(State,Result,Call) Using this function, the next state is created after a
successful Call. Since this function is called both when generating testcases and
when executing them, the state and result handling must work both in symbolic and
dynamic content.

More PropEr functions

In order to evaluate symbolic command sequences PropEr we can use the following func-
tion:

run_commands(Module, Cmds) Evaluates a command sequence as described above
based on the callback functions described in Module. The result is a tuple of the
form {History, State, Result}.

• History contains a list of commands that where run without raising an excep-
tion.

• State contains the state when execution stopped.
• Result contains the outcome of the execution. An ok atom represents success.

4.3 Defining a PropEr State Model

In this section we will show how to describe an abstract state machine for the web service
we presented earlier. To keep things simple, we will do positive testing of the web service,
meaning we will only test our functionality with valid inputs. In addition, we will only
use in our tests the three primary operations of the web service (excluding getUsername).

First we define our modules behaviour and export the related functions as shown in List-
ing 4.9. Then we need to implement all those functions we just exported.

� �
1 -behaviour(proper_statem).
2 -export([command/1,initial_state/0,next_state/3,precondition/2,postcondition/3]).� �

Listing 4.9: Setting the behaviour of our module

To implement the commands function we initially just list the different calls to web service
operations with their respective generators. This is shown in Listing 4.10.

� �
1 command(_S) ->
2 oneof([{call, ?MODULE, call_login, generate_login()},
3 {call, ?MODULE, call_logout, generate_logout()},
4 {call, ?MODULE, call_authenticate, generate_authenticate()}]).� �

Listing 4.10: Implementation of command/1

Afterwards, we need to define our state which is shown in Listing 4.11. We can describe
our state as a list of authentication tokens, representing logged in clients. Therefore, we

4.3 Defining a PropEr State Model 59

define our initial state to be an empty list. Then, we need to describe the state transitions
for each of the three different commands. The simplest one is the authentication call,
since it changes nothing. Therefore, the associated next_state/3 call will just return the
State unchanged. To define the next state after a login operation, we must take extra
care with the symbolic nature during test case generation. Our initial approach would
be to add the result of the web service call to our list. However, since our result is not
the integer authentication token directly, but it is wrapped inside complex structures by
Yaws, we need to extract this information. Taking a look at how check_loginResponse
and typecheck_loginReturn work, we can copy paste the related records from the auto-
matically generated records until we reach our desired integer. The function extract_id
is the resulting function that returns the integer token based on the web service call. To
add it to our state, we add a symbolic call to this function to avoid raising an exception
during testcase generation. Finally, the state after a logout will be to delete the id from
the state. Here, we need to extract the argument, simply by copy-pasting the structure of
the generator generate_logout.� �

1
2 %% State
3 initial_state() -> [].
4
5 %% State update
6 next_state(S, V, {call, _, call_login, _}) ->
7 [{call, ?MODULE, extract_id, [V]} | S];
8
9 next_state(S, _V, {call, _, call_authenticate, _}) -> S;

10
11 next_state(S, _V, {call, _, call_logout, [#’p:logout’{’id’ = Pr_logout_id}]}) ->
12 lists:delete(Pr_logout_id, S).
13
14 extract_id({ok, undefined,
15 [#’p:loginResponse’{’loginReturn’ = Pr_loginReturn}]}) ->
16 Pr_loginReturn.� �

Listing 4.11: State callback functions

Next, we need to take care of pre- and post-conditions. This is shown in Listing 4.12. Since
we don’t need to exclude any commands, the precondition is always true. A postcondition
for a call_login command would be to ensure that the resulting authentication token is
not a duplicate. To that end we use the extract_id function from Listing 4.11. For the
call_authenticate function, since we are using only valid, registered id’s we expect the
resulting value to always be true. The same is the case with call_logout. The rest of
the implementation details are related to extracting the boolean values from the records
returned by Yaws.
The next step will be to make sure we only use valid integer tokens in our calls. To that end
we must modify the generators. The generator modifications are shown in Listing 4.13. To
generate a valid token, we just need to select one from the state using an elements PropEr
generator. This leads to the generate_userID generator that is used in generate_logout
and generate_authenticate generators subsequently. To use these generators we must
slightly modify the command generators to avoid exceptions during the early stages of
execution as proposed by Eirini Arvaniti in her tutorials [14]. Last, but not least, we need
to ensure that we only use valid passwords. This is the first time we lose the notion of

60 Chapter 4. Towards Property-Based Testing of Stateful Web Services

� �
1 %% Preconditions
2 precondition(_,_) -> true.
3
4 %% Postconditions
5
6 %When logging in a NEW id is returned
7 postcondition(S, {call, _, call_login, _}, V) ->
8 ID = extract_id(V),
9 not lists:member(ID, S);

10
11 % We use valid passwords so we always authenticate
12 postcondition(_S, {call, _, call_authenticate, _}, V) ->
13 {ok, undefined, [#’p:authenticateResponse’{’authenticateReturn’ = Bool}]} = V,
14 Bool;
15
16 postcondition(_S, {call, _, call_logout, _}, V) ->
17 {ok, undefined, [#’p:logoutResponse’{’logoutReturn’ = Bool}]} = V,
18 Bool.� �

Listing 4.12: Preconditions and Postconditions

black box testing, since we must know which the valid passwords would be. We could
try random username and password combination using PropEr until we find a correct
combination, but that is not its intended use... Therefore, we define a ?PASSWORDS macro
and use it in the generate_login generator.

Finally, we need to write our property. This is where we lose all ability to do black box
testing for this stateful web service. Before running each sequence of commands, we must
ensure in some way (e.g. via another web service call on some auxiliary web service) that
the state is the same for all executions and shrinking. In our implementation we use a
reset_state function that handles all the necessary state restorations. The final property
is shown in Listing 4.14 and uses both the ?TRAPEXIT and the ?WHENFAIL macros discussed
earlier.

4.4 Testing the Web Service

After all these modifications, we are ready to test the stateful system. Using an Erlang
Shell we run the property and get the output shown in Listing 4.15.

This Listing shows that our property failed after 28 tests, having created a rather large
and complex command sequence. The shrinking process allows us to recognize the actual
cause of the failure. Logging in twice with the same account, logging out with the second
and then attempting to authenticate the first account yields an error in our authenticate
postcondition - meaning the token does not authenticate. Upon careful examination of our
Java Code we locate the problem: As shown in Listing 4.5 we delete the first occurrence
of the username when logging out, rather than the occurrence of the integer token. We
fix that mistake with the code shown in Listing 4.16 and run the property again as shown
in Listing 4.17. Our web service passes 1000 correct tests!

4.4 Testing the Web Service 61

� �
1 -define(PASSWORDS, [{”Lemonidas”, ”foo”}, {”Kostis”, ”42”}, {”gearg”, ”100”}]).
2
3 %% Custom id generator
4 generate_userID(S) ->
5 elements(S).
6
7 generate_login() ->?LET(
8 {Pr_login_name, Pr_login_password},
9 elements(?PASSWORDS),

10 [#’p:login’{
11 ’name’ = Pr_login_name,
12 ’password’ = Pr_login_password
13 }
14]
15).
16
17 generate_logout(S) ->?LET(
18 Pr_logout_id,
19 generate_userID(S),
20 [#’p:logout’{’id’ = Pr_logout_id}]
21).
22
23 generate_authenticate(S) ->?LET(
24 Pr_authenticate_id,
25 generate_userID(S),
26 [#’p:authenticate’{’id’ = Pr_authenticate_id}]
27).
28
29 command(S) ->
30 Logged = (S =/= []),
31 oneof([{call, ?MODULE, call_login, generate_login()}] ++
32 [{call, ?MODULE, call_logout, generate_logout(S)}
33 || Logged] ++
34 [{call, ?MODULE, call_authenticate, generate_authenticate(S)}
35 || Logged]).� �

Listing 4.13: Generator Modifications

� �
1 prop_login_service_works_fine() ->
2 ?FORALL(Cmds, commands(?MODULE),
3 ?TRAPEXIT(
4 begin
5 reset_state(),
6 {History,State,Result} = run_commands(?MODULE, Cmds),
7 ?WHENFAIL(io:format(”History: ~p\nState: ~p\nResult: ~p\n”,
8 [History,State,Result]),
9 Result =:= ok)

10 end)).� �
Listing 4.14: Property for Login Service

62 Chapter 4. Towards Property-Based Testing of Stateful Web Services

� �
proper:quickcheck(login_statem:prop_login_service_works_fine()).
...........................!
Failed: After 28 test(s).
[{set,{var,1},

{call,login_statem,call_login,
[{’p:login’,undefined,”Kostis”,”42”}]}},

{set,{var,2},
{call,login_statem,call_login,

[{’p:login’,undefined,”Lemonidas”,”foo”}]}},
{set,{var,3},

{call,login_statem,call_login,
[{’p:login’,undefined,”gearg”,”100”}]}},

{set,{var,4},
{call,login_statem,call_authenticate,

[{’p:authenticate’,undefined,
{call,login_statem,extract_id,[{var,3}]}}]}},

{set,{var,5},
{call,login_statem,call_login,

[{’p:login’,undefined,”Lemonidas”,”foo”}]}},
{set,{var,6},

{call,login_statem,call_logout,
[{’p:logout’,undefined,

{call,login_statem,extract_id,[{var,5}]}}]}},
{set,{var,7},

{call,login_statem,call_authenticate,
[{’p:authenticate’,undefined,

{call,login_statem,extract_id,[{var,2}]}}]}},
{set,{var,8},

{call,login_statem,call_login,
[{’p:login’,undefined,”Kostis”,”42”}]}},

{set,{var,9},
{call,login_statem,call_logout,

[{’p:logout’,undefined,
{call,login_statem,extract_id,[{var,2}]}}]}}]

History: [...]
State: [208,8442,9485]
Result: {postcondition,false}

Shrinking(4 time(s))
[{set,{var,2},

{call,login_statem,call_login,
[{’p:login’,undefined,”Lemonidas”,”foo”}]}},

{set,{var,5},
{call,login_statem,call_login,

[{’p:login’,undefined,”Lemonidas”,”foo”}]}},
{set,{var,6},

{call,login_statem,call_logout,
[{’p:logout’,undefined,

{call,login_statem,extract_id,[{var,5}]}}]}},
{set,{var,7},

{call,login_statem,call_authenticate,
[{’p:authenticate’,undefined,

{call,login_statem,extract_id,[{var,2}]}}]}}]
History: [{[],{ok,undefined,[{’p:loginResponse’,[],3407}]}},

{[3407],{ok,undefined,[{’p:loginResponse’,[],2193}]}},
{[2193,3407],{ok,undefined,[{’p:logoutResponse’,[],true}]}},
{[3407],{ok,undefined,[{’p:authenticateResponse’,[],false}]}}]

State: [3407]
Result: {postcondition,false}
false
� �

Listing 4.15: Testing the Property of Listing 4.14

4.4 Testing the Web Service 63

� �
1 public boolean logout(int id){
2 for (Pair<String,Integer> p : logged){
3 if (p.getSecond() == id){
4 logged.remove(p);
5 return true;
6 }
7 }
8 return false;
9 }� �

Listing 4.16: Correct Implementation of Logout

� �
1> proper:quickcheck(login_statem:prop_login_service_works_fine(), 1000).
... (1000 dots) ...
OK: Passed 1000 test(s).
true
� �

Listing 4.17: Re-Testing the Property

Chapter 5

Related Work

Research in testing web services has seen a lot of growth in the past few years. A variety of
tools has emerged handling disparate aspects of testing, from functional to integration and
regression testing; cf. a survey on the subject [5]. Our tool can handle automatic functional
testing with structurally valid test cases created based on the WSDL specification of a web
service. Prior research work using a similar idea includes the work of Bartolini et al. [2]
and of Ma et al. [10]. Most existing tools have expanded on the idea of generating XML
messages based on a static analysis of the WSDL specification. Most of them, however,
lack in the aspect of validating the results of the web service and just present them to the
user for inspection.

Amongst the existing frameworks and tools in the area, there are a few that stand out.
Most notably, SoapUI [16], one of the most complete testing frameworks that can handle
semi-automated functional testing, amongst other things. This tool however does not
automatically generate sample test cases, just aids the user in doing so. Other tools, such
as WSDLTest [15] are similar to ours in generation strategy, yet user input happens for
every script if modifications and assertions (for output validation) are needed. Our tool,
creates generators that allow random test case creation, while any modification by the user
to refine the generators needs to take place only once and will be valid for all the SOAP
messages generated. Another category of tools is the one that contains WS-Taxi [3]. This
is one of the first tools to have been created based on the idea of WSDL-based testing.
WS-Taxi was first outlined in 2007 [4], but as stated in the related papers, while it provides
automatic data generation, the tool lacks a test oracle. Finally, there is a couple of papers
and a tool that use Haskell’s QuickCheck to do automatic test case generation. The idea
of Zhang et al. [21] is largely similar to our own: use a property-based testing tool to
create generators that allow for automatic testing. The tool that spawned from this effort,
monadWS [20], contains a promising comparison with SoapUI and SoapTest, yet also does
not utilize the power of QuickCheck for deeper validation of the results returned by the
web service.

All in all, what makes our tool stand out from the rest is that it was designed for use with
a property based testing tools with the power of PropEr. Our tool handles automatic
test data generation as efficiently and automatically as many other available tools, yet its
design will allow for faster and powerful testing, using properties to automatically validate
an arbitrary number of progressively more complex test cases.

65

Chapter 6

Concluding Remarks and Future
Work

This thesis described the technical and design issues and the implementation of a new prop-
erty based testing tool for web services. After introducing all the necessary background
information for web services and PropEr, we thoroughly presented implementation details
of this new property based testing tool and examples of its use. To evaluate our tool’s
capabilities we applied our tool to type check more than 40 web services freely available on
the net. Our tool was able to succesfully test all but one of them, finding no type errors.
The reason that we were unable to test that single web service was that it contained a spe-
cial (German) character in its WSDL specification, which Yaws did not support yielding
an error.

All in all, we consider the work as successful. We managed to create a tool that addresses
many of the difficulties in testing web services and provides significant support for the
tester to speed up the testing process.

Even though our tool has been able to succesfully handle all WSDL specifications that
could be handled by Yaws, some of the XSD language constructs (such as patterns) have
yet to be integrated into our tool. Providing completeness to our tool is definitely one of
the primary directions for future work.

The primary future goal, however, is to support stateful testing of web services. PropEr
provides this ability, thesis of Eirini Arvaniti [1] and was shown in Chapter 4, but it is
still unclear how to effectively automate or aid the user in applying property based testing
techniques of stateful systems for web services.

67

Bibliography

[1] E. Arvaniti. Automated Random Model-Based Testing of Stateful Systems. Diploma
thesis, National Technical University of Athens, School of Electrical and Computer
Engineering, July 2011. http://artemis.cslab.ntua.gr/el_thesis/artemis.
ntua.ece/DT2011-0142/DT2011-0142.pdf.

[2] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Towards automated wsdl-
based testing of web services. In Proceedings of the 6th International Conference on
Service-Oriented Computing, ICSOC ’08, pages 524–529, Berlin, Heidelberg, 2008.
Springer-Verlag.

[3] C. Bartolini, A. Bertolino, E. Marchetti, and A. Polini. Ws-taxi: A wsdl-based testing
tool for web services. In International Conference on Software Testing, Verification,
and Validation, pages 326–335, Los Alamitos, CA, USA, 2009. IEEE Computer Soci-
ety.

[4] A. Bertolino, J. Gao, E. Marchetti, and A. Polini. Automatic test data generation
for xml schema-based partition testing. In Proceedings of the Second International
Workshop on Automation of Software Test, AST ’07, pages 4–, Washington, DC,
USA, 2007. IEEE Computer Society.

[5] G. Canfora and M. Di Penta. Service-oriented architectures testing: A survey. In
A. De Lucia and F. Ferrucci, editors, Software Engineering, volume 5413 of Lecture
Notes in Computer Science, pages 78–105. Springer, Berlin, Heidelberg, 2009.

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services descrip-
tion language (wsdl) 1.1, Mar. 2001.

[7] I. K. El-Far and J. A. Whittaker. Model-based software testing. Encyclopedia on
Software Engineering. 2001.

[8] S. Gao, C. M. Sperberg-McQueen, and H. S. Thompson. W3c xml schema definition
language (xsd) 1.1 part 1: Structures, Jan. 2012.

[9] A. P. M. Utting and B. Legeard. A taxonomy of model-based testing. Working paper.
2006.

[10] C. Ma, C. Du, T. Zhang, F. Hu, and X. Cai. Wsdl-based automated test data
generation for web service. In International Conference on Computer Science and
Software Engineering, pages 731–737, Dec. 2008.

[11] M. Papadakis. Automatic Random Testing of Function Properties from Specifica-
tions. Diploma thesis, National Technical University of Athens, School of Electrical

69

http://artemis.cslab.ntua.gr/el_thesis/artemis.ntua.ece/DT2011-0142/DT2011-0142.pdf
http://artemis.cslab.ntua.gr/el_thesis/artemis.ntua.ece/DT2011-0142/DT2011-0142.pdf

70 Bibliography

and Computer Engineering, October 2010. http://artemis.cslab.ntua.gr/el_
thesis/artemis.ntua.ece/DT2010-0295/DT2010-0295.pdf.

[12] M. Papadakis and K. Sagonas. A PropEr integration of types and function specifica-
tions with property-based testing. In Proceedings of the 2011 ACM SIGPLAN Erlang
Workshop, pages 39–50, New York, NY, Sept. 2011. ACM Press.

[13] D. Peterson, S. Gao, A. Malhotra, C. M. Sperberg-McQueen, and H. S. Thompson.
W3c xml schema definition language (xsd) 1.1 part 2: Datatypes, Jan. 2012.

[14] Proper website.

[15] H. M. Sneed and S. Huang. Wsdltest - a tool for testing web services. In Eighth IEEE
International Symposium on Web Site Evolution, WSE ’06, pages 14–21, Sept. 2006.

[16] soapUI: The swiss-army knife of testing.

[17] W3c tutorials.

[18] xmerl reference manual.

[19] Yaws: yet another web server.

[20] Y. Zhang, W. Fu, and C. Nie. monadws: a monad-based testing tool for web services.
In Proceedings of the 6th International Workshop on Automation of Software Test,
AST ’11, pages 111–112, New York, NY, USA, 2011. ACM.

[21] Y. Zhang, W. Fu, and J. Qian. Automatic testing of web services in haskell platform.
2010.

http://artemis.cslab.ntua.gr/el_thesis/artemis.ntua.ece/DT2010-0295/DT2010-0295.pdf
http://artemis.cslab.ntua.gr/el_thesis/artemis.ntua.ece/DT2010-0295/DT2010-0295.pdf

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Figures
	List of Listings
	Introduction
	Background
	Property Based Testing and PropEr
	Properties
	Generators
	Example of Use

	Web Services
	XML
	SOAP
	WSDL
	XSD

	Web Service Testing
	Non Functional Testing
	Functional Testing

	Some Erlang Tools
	xmerl
	Yaws and Erlsom

	PropEr WS Design and Implementation
	PropEr WS Architecture
	Intermediate Representation
	Simple Types
	Complex Types
	Example

	Creating PropEr Generators
	Creating Type-Checking Properties
	Using PropEr WS
	Fully Automatic Response Testing
	Fully Automatic Type Checking
	Property Based Testing

	Towards Property-Based Testing of Stateful Web Services
	Web Service Implementation
	Stateful Testing with PropEr
	Defining a PropEr State Model
	Testing the Web Service

	Related Work
	Concluding Remarks and Future Work
	Bibliography

