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Preface

The treatment of huge data sets or the application of computer vision algorithms
are natural candidates for high performance computing systems, because of their

complexity.

Our goal is to achieve performance improvements and cut down the runtime.

The idea is to run collaboratively computer and FPGA device.

In this thesis, we focus on the FPGA implementation of a Linear Time Selection
Algorithm, which have applications on both huge lists of data and computer

vision algorithms, and its integration with ethmac for runtime communication.
The thesis is organized as follows :

In Chapter 1 we introduce the reader to the FPGAs’ technology and Computer

Vision Algorithms.

Chapter 2 describes the applications of Linear Time Selection Algorithm and the
motivation behind this project. It also gives a description of previous related

work.

Hardware description languages (HDLs), such as Very High Speed Integrated
Circuit HDL (VHDL) and Verilog, are high level programming languages
commonly used to describe the functionality of the circuits. After describing the
circuit using HDL, the designs are simulated and synthesized. A more detailed
explanation of the design steps is provided in Chapter 3. VHDL, Xilinx ISE 13.4

Design Suite and Modeltech Modelsim have been used in this thesis.

In Chapter 4, a brief description of the Linear Time Selection Algorithm and its

mathematical background is provided to the reader.

In Chapter 5 we analyze two alternative instantiations of target architecture,
which were developed at this thesis. The first one is rather memory efficient,

while the second one is more time efficient.



Chapter 6 is devoted to the runtime communication of the FPGA device and
thelocal host. Firstly, there is given a brief description about the integration of
our implemented core with the ethmac/driver. This if followed by a presentation
of a controller that we have developed. The previously mentioned component is
responsible for the arbitration when more than one cores are attached to the

ethmac.

In Chapter 7 we present the implementation results and we compare them with
the results of other alternatives, such as the C/C++ implementation of the same

algorithm or the use of other algorithms instead.
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Abstract

Data intensive applications (e.g. computer vision and data management
algorithms) impose considerable performance overheads that rarely are
sufficiently implemented onto general-purpose computers. Instead of this, more
advanced implementation medium are absolutely required in order to support
sufficient performance. An example affects the usage of customized hardware

accelerators, where the most computational intensive kernels are executed.

The goal of this thesis is to provide an efficient hardware/software co-design
implementation of such a data intensive algorithm. For this purpose, all the
timing critical kernels, as they already derived from profiling procedure, were
implemented onto reconfigurable hardware. More specifically, the target
reconfigurable medium is a state-of-the-art Xilinx Virtex-6 (xc6vlx240t), whereas
regarding the rest kernels (non-timing critical) are actually mapped onto a

general-purpose CPU.

Even though the introduced solution is applicable to various application
intensive applications, at this thesis we are dealing with the implementation of
Median algorithm targeting to two different application domains: (i) the
implementation of Median filtering targeting to remove impulsive noise from

data, and (ii) an algorithm for data querying.

Since the scope of this thesis affects the sufficient implementation of this
algorithm, in terms both of performance and amount of utilized resources, two
different versions of this algorithm were developed. More specifically, the first of
them employees the minimum amount of memory blocks, whereas the second
one is characterized by increased performance. Note that the second
implementation is very important due to inherent limitation about memory
blocks found in FPGAs. Additionally, we have to highlight that based on our
exploration results we achieve significant increased performance compared to

the software implementation (C++).

Keywords: FPGA, Median, Selection, Query, Order, runtime Communication,

Integration, Arbiter, Virtex6, Computer Vision, co-Design.
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[epiAnym

E@apuoyég pe vimA£Eg UTTOAOYLOTIKEG ATIALTNOELS, T.X aAyoplOpol yia Sioyelplon
dedopévwy, adyoplBpol pouToTIK OPACTG, ATIALTOVV TIOAV KOAEG EMISOOELS TIOV
OTIAVIX CUVAVIWVTAL OE TPOOWTIKOVUG LTOAOYLoTES. 'Etol Snulovpyeital 1
QVAYKT TNG VAOTIOIMONG TOUG O€ Mo €EEAlYHEVA HECA YA TNV ATOSOTIKY) TOUG
eKTEAEON. Ml TETOl LAOTOI(MOTM EMITUYXAVETAL WPE TN XpNomn customized
hardware emiTayuVTwWV, 0TOVG OTOIOVG AVADETOUUE TNV EKTEAEOT] TWV TILO

Bapliwv vmoAoylotika kernels.

0 otoxog autng Tng epyaciag elval 1 TAPOXN €VOG ATOTEAECUATIKOV OULV-
oxeblaopov hardware/software yix Tnv kaAvtepn vAomoinon  TETOLWV
ATALTNTIKOV 0AyopiBpwv. T To okomd autd, votepa amod TNV Sadikacia Tov
profiling mouv £ywe oTOUG KWOIKEG HAG, EMAELEAUE VX VAOTIOUCOVUE OF
emavanpooappocipo hardware, ta kernels pe to peyaAtepo critical path. H
TAQTPOPUA TIOV XPNOLUOTIOMOAUE Yot TNV VAomoinon oavty elvatr to Xilinx

Virtex-6 (xc6vIx240t).

Ye oUykplon pe TG N6N UTAPXOVOEG VAOTOMOELS, OE QUTH TNV gpyacia
QOoYOAOVUNOTE e TNV VAoTIoinon tou Median aiyopiBpov, otoxevovtag oe dUo
StaopetikoVg Topelg: (i) v vAomoinom &vdg @ATpov ywa TNV a@aipeon
BopuBou amod ewkoveg (ii)kat Tnv vAomoinon adyopiBuov emA0YNG HE OTOXO TN

Stepevvnon o€ Aloteg SeSopévwv.

Kabwg, 0o otdx0¢ pag emmpedlel Tov TPOTO UAOTOMONG TOGO WG TPOG TNV
emiSoom 6060 KAl WG TTPOG TO CUVOAD TWV ATALTOVHUEVWY TTOPWV, avanTOEaE Suo
SlaopeTikég  ekdooelg autol TOu aAyopiBpov. H mpwtn vAomoinon
XPNOLUOTIOLEL TOV EAGXLOTO ApLlOUO TOPWV (UvNun) Kot 1) SevTepn xapaktnpiletal
amd mo vymAgg emdooelg. Afloonuelwt elval N e@ApUOY AKOUA KAl TNG
devtepng vAomoinong oe  peyddo mANOog aplbpwv, dedopévouv  TwV
TEPLOPLOUEVWV TIOPWV PVvIunG Twv FPGA .

Na ava@épovpe TéAog kal TNV PEYAAN adinom tng emidoong oV EMITUXAUE O
oVYKpLoN HE TNV eKTEAEOT oty CPU.

A€Eerg KAewdua: FPGA, Median, Selection, Query, Order, runtime Communication,
Integration, Arbiter, Virtex6, Computer Vision, co-Design.
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Chapter 1

Introduction

In this chapter we give some information about what’s a FPGA, its history and
the future challenges. Also the reader will be informed about Computer Vision

Algorithms and why FPGA implementation was chosen.

1.1 Introduction to FPGAs

What is a FPGA?

The field-programmable gate array (FPGA) is a semiconductor device that can be
programmed after manufacturing. Instead of being restricted to any
predetermined hardware function, an FPGA allows you to program product
features and functions, adapt to new standards, and reconfigure hardware for
specific applications even after the product has been installed in the field—hence
the name "field-programmable”. You can use an FPGA to implement any logical
function that an application-specific integrated circuit (ASIC) could perform, but
the ability to update the functionality after shipping offers advantages for many

applications.

Unlike previous generation FPGAs using 1/Os with programmable logic and
interconnects, today's FPGAs consist of various mixes of configurable embedded
SRAM, high-speed transceivers, high-speed 1/0Os, logic blocks, and routing.
Specifically, an FPGA contains programmable logic components called logic
elements (LEs) and a hierarchy of reconfigurable interconnects that allow the
LEs to be physically connected. You can configure LEs to perform complex
combinational functions, or merely simple logic gates like AND and XOR. In most
FPGAs, the logic blocks also include memory elements, which may be simple

flipflops or more complete blocks of memory.
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Figure 1.1 FPGA structure

As FPGAs continue to evolve, the devices have become more integrated. Hard
intellectual property (IP) blocks built into the FPGA fabric provide rich functions
while lowering power and cost and freeing up logic resources for product
differentiation. Newer FPGA families are being developed with hard embedded

processors, transforming the devices into systems on a chip (SoC).
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Figure 1.2 FPGA Architecture

Compared to ASICs or ASSPs, FPGAs offer many design advantages, including:

* Rapid prototyping

* Shorter time to market

* The ability to re-program in the field for debugging
* Lower NRE costs

* Long product life cycle to mitigate obsolescence risk

Applications

Applications of FPGAs include digital signal processing, software-defined radio,
aerospace and defense systems, ASIC prototyping, medical imaging, computer
vision, speech recognition, cryptography, bioinformatics, computer hardware

emulation, radio astronomy, metal detection and a growing range of other areas.

FPGAs originally began as competitors to CPLDs and competed in a similar space,

that of glue logic for PCBs. As their size, capabilities, and speed increased, they

17



began to take over larger and larger functions to the state where some are now
marketed as full systems on chips (SoC). Particularly with the introduction of
dedicated multipliers into FPGA architectures in the late 1990s, applications
which had traditionally been the sole reserve of DSPs began to incorporate

FPGAs instead.

Traditionally, FPGAs have been reserved for specific vertical applications where
the volume of production is small. For these low-volume applications, the
premium that companies pay in hardware costs per unit for a programmable
chip is more affordable than the development resources spent on creating an
ASIC for a low-volume application. Today, new cost and performance dynamics

have broadened the range of viable applications.

Short History of FPGAs

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from
Xilinx. At the same time, a company called Altera were also developing a
programmable device, later to become EP1200 device which was the first high-
density programmable logic device. Altera’s technology was manufactured using
3-um CMOS erasable programmable read-only-memory (EPROM) technology
and required ultraviolet light to erase the programming whereas Xilinx’s
technology was based on conventional static RAM technology and required an
EPROM to sore the programming. The co-founder of Xilinx, Ross Freeman argued
that with continuously improving silicon technology, transistors were going to
increasingly get cheaper and could be used to offer programmability. This is was
the start of an FPGA market which was then populated by quite a number of
vendors, including Xilinx, Altera, Actel, Lattice, Crosspoint, Algotronix, Prizm,
Plessey, Toshiba, Motorola, and IBM. The market has now grown considerably
and Gartner Dataquest indicated a market size growth to 4.5 billion in 2006, 5.2
billion in 2007 and 6.3 billion in 2008. There have been many changes in the
market, including a severe rationalization of technologies with many vendors
such as Crosspoint, Algotronix, Prizm, Plessey, Toshiba, Motorola, and IBM

disappearing from the market and a reduction in the number of FPGA families as

18



well as the emergence of SRAM technology as the dominant technology largely
due to cost. The market is now dominated by Xilinx and Altera and more
importantly, the FPGA has grown from being a simple glue logic component to
representing a complete System on Programmable Chip (SoPC) comprising on-
board physical processors, soft processor, dedicated DSP hardware, memory and
high-speed 1/0. In the 1990s, ASIC was still seen for the key mass market areas
where really high performance and energy considerations were seen as key
drivers such as mobile communications. Thus graphs comparing performance
metrics for FPGA, ASIC and processor were generated and used by vendors to

indicate design choices.

The FPGA evolution is summarized in Table 1.1. It indicates three different eras
of evolution of the FPGA. The age of invention where FPGAs started to emerge
and were being used as system components. The age of expansion is where the
FPGA started to approach the problem size and thus design complexity was key.
The final evolution stage is described as the period of accumulation where FPGA

started to incorporate processors and high-speed interconnection.

Table 1.1 Three ages of FPGAs

Period Age Comments

1984-1991 Invention Technology is limited, FPGAs are much smaller than the
application problem size
Design automation is secondary
Architecture efficiency is key

1992-1999 Expansion FPGA size approaches the problem size
Ease-of-design becomes critical
2000-2007 Accumulation FPGAs are larger than the typical problem size

Logic capacity limited by I/O bandwidth

Challenges of FPGAs

The emergence of the FPGA as a DSP platform was accelerated by the application
of distributed arithmetic (DA) techniques (Goslin 1995, Meyer-Baese 2001). DA

allowed efficient FPGA implementations to be realized using the LUT-
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based/adder constructs of FPGA blocks and allowed considerable performance
gains to be gleaned for some DSP transforms such as fixed coefficient filtering
and transform functions such as Fast Fourier Transform (FFT). Whilst these
techniques demonstrated that FPGAs could produce highly effective solutions for
DSP applications, the concept of squeezing the last aspect of performance out of
the FPGA hardware and more importantly, spending several person months for
the creation of such innovative designs, meant that there was a growing gap in
the scope offered by current FPGA technology and the designer’s ability to
develop efficient solutions using modern tools. This was similar to the ‘design
productivity gap’ (ITRS 1999) identified in the ASIC industry where it was
viewed that ASIC design capability was only growing at 25% whereas Moore’s

law growth was 60%. This is proved by even more recent data during the 2007

ITRS roadmap .
-
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Figure 1.3 The design productivity gap (ITRS 2007)

20



The problem is not as severe in FPGA implementation, because sub-micrometer

design issues are missing. However, a number of key issues exist and include:

Design languages. Currently hardware description languages such as
VHDL and Verilog and their respective synthesis flows are well
established. However, users are now looking at FPGAs with the recent
increase in complexity resulting in the integration of both fixed and
programmable microprocessors cores as a complete system, and looking
for design representations that more clearly represent system
description. Therefore, there is an increased EDA focus on using C as a

design language.

Understanding how to map DSP functionality into FPGA. Some of the
aspects are relatively basic in this area, such as multiplications, additions
and delays being mapped onto on-board multipliers, adder and registers
and RAM components respectively. However, the understanding of
floating-point versus fixed-point, word length optimization, algorithmic
transformation cost functions for FPGA and impact of routing delay are
issues that must be considered at a system level and can be much harder

to deal with at this level.

Development and use of IP cores. With the absence of quick and reliable
solutions to the design language and synthesis issues, the IP market in
SoC implementation has emerged to fill the gap and allow rapid
prototyping of hardware. Soft cores are particularly attractive as design
functionality can be captured using HDLs and efficiently translated into
the FPGA technology of choice in a highly efficient manner by
conventional synthesis tools. In addition, processor cores have been
developed which allow dedicated functionality to be added. The attraction

of these approaches are that they allow application specific functionality
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to be quickly created as the platform is largely fixed.

* Design flow. Most of the design flow capability is based around developing

FPGA functionality from some form of higher-level description, mostly for

complex functions. The reality now is that FPGA technology is evolving at
such a rate that systems comprising FPGAs and processors are starting to
emerge as a SoC platform or indeed, FPGAs as a single SoC platform as
they have on-board hard and soft processors, high-speed communications
and programmable resource, and this can be viewed as a complete
system. Conventionally, software flows have been more advanced for
processors and even multiple processors as the architecture is fixed.
Whilst tools have developed for hardware platforms such as FPGAs, there
is a definite need for software for flows for heterogeneous platforms, i.e.

those that involve both processors and FPGAs.

1.2 Introduction to Computer Vision Algorithms

Computer visionis formed by a field that includes methods for acquiring,
processing, analyzing, understanding images and generally high-dimensional
data from the real world, in order to produce numerical or symbolic
information, e.g., in the forms of decisions. An issue that has been raised in the
process of the development of this field has been to duplicate the abilities of
human vision by electronically perceiving and understanding an image. This
image understanding can be seen as the disentangling of symbolic information
from image data using models constructed with the aid of geometry, physics,

statistics, and learning theory.

Nowadays, there are many implemented computer vision algorithms and
obviously computer vision has endless applications. Some of them are shown at

the diagram below.
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Vision Localization algorithms.

Computer Vision and FPGA.

Computer vision algorithms are natural candidates for high performance
computing due to their inherent parallelism and intense computational
demands. For example, a simple 3 x 3 convolution on a 512 x 512 gray scale
image at 30 frames per second requires 67.5 million multiplications and 60
million additions to be performed in one second. Computer vision tasks can be
classified into three categories based on their computational complexity and
communication complexity: low-level, intermediate-level and high-level. Special-
purpose hardware provides better performance compared to a general-purpose
hardware for all the three levels of vision tasks. With recent advances in very
large scale integration (VLSI) technology, an application specific integrated
circuit (ASIC) can provide the best performance in terms of total execution time.

However, long design cycle time, high development cost and in flexibility of a
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dedicated hardware deter design of ASICs. In contrast, field programmable gate
arrays (FPGAs) support lower design verification time and easier design
adaptability at a lower cost. Hence, FPGAs with an array of reconfigurable logic
blocks can be very useful compute elements. FPGA-based custom computing
machines are playing a major role in realizing high performance application
accelerators. Three computer vision algorithms have been investigated for

mapping onto custom computing machines:

(1) template matching (convolution) a low level vision operation
(ii) texture-based segmentation { an intermediate-level operation,
and

(iii)  point pattern matching { a high level vision algorithm.

The advantages demonstrated through these implementations are as follows.
First, custom computing machines are suitable for all the three levels of
computer vision algorithms. Second, custom computing machines can map all
stages of a vision system easily. This is unlike typical hardware platforms where
a separate subsystem is dedicated to a specific step of the vision algorithm.
Third, custom computing approach can run a vision application at a high speed,

often very close to the speed of special-purpose hardware.
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Chapter 2

Behind the Project

This chapter refers to the motivation behind this project and the applications of
Linear Time Selection Algorithm. We also give a brief description of previous

related work.

2.1 Applications

In statistics, the k-th order statistic of a statistical sample is equal to its kth-
smallest value. Along with rank statistics, order statistics are among the most

fundamental tools in non-parametric statistics and inference.

The problem of computing the kth smallest (or largest) element of a list is called
the selection problem. In computer science, a selection algorithm is an
algorithm for finding the kth smallest number in a list (such a number is called
the kth order statistic). Although this problem is difficult for very large lists,
sophisticated selection algorithms have been created that can solve this problem
in time proportional to the number of elements in the list, even if the list is

totally unordered.

Selection is a sub-problem of more complex problems like the nearest neighbor

problem and shortest path problems.
Some examples of order statistics follows:

* Sample maximum and minimum
* Quantile

e Percentile

e Decile
* Quartile
e Median

25



Sample maximum and minimum

Applications:
¢ Summary statistics

Firstly, the sample maximum and minimum are basic summary statistics,
showing the most extreme observations, and are used in the five-number

summary and seven-number summary and the associated box plot.
* Prediction interval

The sample maximum and minimum provide a non-parametric prediction
interval: in a sample set from a population, or more generally an
exchangeable sequence of random variables, each sample is equally likely to

be the maximum or minimum.
¢ Estimation

Due to their sensitivity to outliers, the sample extreme cannot reliably be
used as estimators unless data is clean - robust alternatives include the first

and last deciles.

* Normality testing

* Extreme value theory

Sample extreme play two main roles in extreme value theory. Firstly, they
give a lower bound on extreme events - events can be at least this extreme,
and for this size sample. Secondly, they can sometimes be used in estimators

of probability of more extreme events.
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Quantile

Quantiles are points taken at regular intervals from the cumulative distribution
function (CDF) of a random variable. Dividing ordered data into essentially
equal-sized data subsets is the motivation for -quantiles; the quantiles are the
data values marking the boundaries between consecutive subsets. Put another
way, the -quantile for a random variable is the value such that the probability
that the random variable will be less than is at most and the probability that the
random variable will be more than is at most . There are of the -quantiles, one

for each integer satisfying .

Percentile

In statistics, a percentile (or centile) is the value of a variable below which a
certain percent of observations fall. For example, the 20th percentile is the value
(or score) below which 20 percent of the observations may be found. The term
percentile and the related term percentile rank are often used in the reporting of

scores from norm-referenced tests.

Quartile

In descriptive statistics, the quartiles of a set of values are the three points that
divide the data set into four equal groups, each representing a fourth of the

population being sampled. A quartile is a type of quantile.

In epidemiology, sociology and finance, the quartiles of a population are the four
subpopulations defined by classifying individuals according to whether the value
concerned falls into one of the four ranges defined by the three values discussed

above.
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Median

In statistics and probability theory, median is described as the numerical value
separating the higher half of a sample, a population, or a probability distribution,

from the lower half.

In the context of image processing there is a type of noise, known as the salt and
pepper noise, when each pixel independently becomes black (with some small
probability) or white (with some small probability), and is unchanged otherwise
(with the probability close to 1). An image constructed of median values of

neighborhoods (like 3x3 square) can effectively reduce noise in this case.

Median Filter:

Real-time signal processing and image processing applications employ filtering
in order to process and to manipulate the signals, or to remove noise from data.
Median filter is a non-linear filter used for removing impulsive noise from data.
This chapter provides a description of the median filter and median filtering

techniques implemented on the hardware devices.

There are two types of filters: linear filters and non-linear filters. The median
filter is a non-linear filter; it is a special case of rank order filters, whose rank is
half the length of the sequence. In image processing applications, median filter is

used to remove impulsive noise from images while preserving the edges.

One of the disadvantages of linear filters, such as the moving average filter when
used to denoise the data, is that they not only smooth the noise, but also smooth
the sudden and sharp transitions that were present in the original data, such as
edges in images. Moreover, they are not as efficient as the median filters in
removing certain types of noise, such as impulsive noise. Although median filters
do not blur the edges as much as the linear filters do, as they still possess
smoothing characteristics, such as the size of the filter increases, there may be

significant image blurring. Impulsive noise can be classified into two types:
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(1) salt and pepper noise
(2) random valued noise.
Salt and pepper noise pixels take only two values, either the minimum or

the maximum possible value, for example, in a gray scale image, salt and pepper

noise pixels will be either 0 or 255.

However, random valued noise pixels take any random value, which is more
difficult to remove than the salt and pepper noise. If p and q are the probabilities
of occurrences of 255 and 0, where 0 < p, q < 1 and p and q can be equal or
different, a pixel may be replaced by 255 with a probability p and by 0 with a
probability q.

The median of a given sequence is given by sorting the sequence and choosing
the middle value from the sorted sequence. If there are odd number of elements
in a sequence, then the median is the middle element in the sorted list. If there
are even number of elements then the median is given by the arithmetic mean of

the two middle elements in the sorted sequence.

In image processing, the 2D filtering operation is performed by sliding the
window along all the rows and columns of the image until all the pixels are
covered by the window. The filtering is done by sliding the window across the
image, sorting all the pixels in the window, which consists of a center pixel and
the neighborhood pixels, and then replacing the central pixel with the median
intensity of the window. Since salt and pepper noise pixels take only either the
maximum or the minimum possible value and the result of a median filter
excludes the extreme value, median filtering provides a good reduction of the

salt and pepper noise.
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2.2 Related Work

In this section, we provide a short description of the academic related work to

date.

As we have mentioned above we implement on FPGA a Linear time Selection
Algorithm and we focus especially on the case of median filter as it is commonly

used for image filtering, which plays an important role in image preprocessing.

Linear time Selection Algorithm is a solution to the Selection problem, which is
to find the kth smallest element in a sequence of n numbers in arbitrary order.
This is a typical problem in algorithm design and analysis and solutions based on
divide and conquer strategy[31] and sorting algorithms [32] have been

proposed.

The existing hardware designs of median filters can be classified into two main
groups [1, 28, 30]: word-based and bit-based. Word-based (or bit-parallel)
architectures process the bits of the input samples in parallel, but the samples
are usually processed sequentially. On the contrary, bit-based filters process
input samples in bit-serial but the samples included in the window are processed

in parallel.

Next, median filters can be categorized as non-recursive and recursive. In the
non-recursive filters, windows contain values of the input samples only, while in
the recursive filters, the window contains the most recent median values as well
as the input values [16]. Because the recursive filters reuse the hardware in
iterative manner, they usually more compact but slower than non-recursive

versions.

Furthermore, median filters can be divided into three categories: array
architectures [2-12] sorting-network architectures [13-18] and stack-based
architectures [20-26]. In array architectures each element of the window is
associated with the rank, and with each window shift, the ranks are updated.
Sorting network based architectures first range the samples and then select the
sample of corresponding rank. Stack-based architectures translate filtering into

binary domain through the use of threshold logic [21, 22, 24], majority elements
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[23], hamming comparators [26], etc. Generally, array architectures consist of N
processors but have a longer sampling period due to word-level comparison.
Sorting network based architectures, in turn, are inherently pipelined and so
have a higher throughput. However, they require a large number of compare-
swap units. Stack based architectures provide reasonable performance with a
limited modularity. In bit-parallel implementations of stack architectures, the
number of processing levels grows exponentially, while bit-serial

implementations are typically slow.

Experimental evaluation and comparisons between software and hardware
executions show that high throughput FPGA circuits easily outperform even the

most advanced DSP processors [29].
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Chapter 3

Hardware and Software

3.1 The Platform

The device we used for the FPGA implementation of linear time selection
algorithm is the Virtex-6 xc6vix240t. For the integration with the driver we have

also used Virtex-5 xc5vix50t and Spartan 3E.
An overview[30] of the Virtex-6 family devices follows:

General Description

The Virtex®-6 family provides the newest, most advanced features in the FPGA
market. Virtex-6 FPGAs are the programmable silicon foundation for Targeted
Design Platforms that deliver integrated software and hardware components to
enable designers to focus on innovation as soon as their development cycle
begins. Using the third-generation ASMBL™ (Advanced Silicon Modular Block)
column based architecture, the Virtex-6 family contains multiple distinct sub-
families. This overview covers the devices in the LXT, SXT, and HXT sub-families.
Each sub-family contains a different ratio of features to most efficiently address
the needs of a wide variety of advanced logic designs. In addition to the high-
performance logic fabric, Virtex-6 FPGAs contain many built-in system-level
blocks. These features allow logic designers to build the highest levels of
performance and functionality into their FPGA-based systems. Built on a 40 nm
state-of-the art copper process technology, Virtex-6 FPGAs are a programmable
alternative to custom ASIC technology. Virtex-6 FPGAs offer the best solution for
addressing the needs of high-performance logic designers, high-performance
DSP designers, and high-performance embedded systems designers with

unprecedented logic, DSP, connectivity, and soft microprocessor capabilities.
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Configuration

Virtex-6 FPGAs store their customized configuration in SRAM-type internal
latches. The number of configuration bits is between 26 Mb and 177 Mb,
depending on device size but independent of the specific user-design
implementation, unless compression mode is used. The configuration storage is
volatile and must be reloaded whenever the FPGA is powered up. This storage
can also be reloaded at any time by pulling the PROGRAM_B pin Low. Several
methods and data formats for loading configuration are available, determined by
the three mode pins. Bit-serial configurations can be either master serial mode
where the FPGA generates the configuration clock (CCLK) signal, or slave serial
mode where the external configuration data source also clocks the FPGA. For
byte- and word-wide configurations, master SelectMAP mode generates the
CCLK signal while slave SelectMAP mode receives the CCLK signal for the 8-, 16-,
or 32-bit-wide transfer. Alternatively, serial-peripheral interface (SPI) and byte-
peripheral interface (BPI) modes are used with industry-standard flash
memories and are clocked by the CCLK output of the FPGA. JTAG mode uses
boundary-scan protocols to load bit-serial configuration data. The bitstream
configuration information is generated by the ISE® software using a program
called BitGen. The configuration process typically executes the following

sequence:
* Detects power-up (power-on reset) or PROGRAM_B when Low.
e Clears the whole configuration memory.

e Samples the mode pins to determine the configuration mode: master or slave,

bit-serial or parallel, or bus width.

e Loads the configuration data starting with the bus-width detection pattern
followed by a synchronization word, checks for the proper device code, and ends

with a cyclic redundancy check (CRC) of the complete bitstream.

e Start-up executes a user-defined sequence of events: releasing the internal
reset (or preset) of flip-flops, optionally waiting for the phase-locked loops

(PLLs) to lock and/or the DCI to match, activating the output drivers, and
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transitions the DONE pin High.
Dynamic Reconfiguration Port

The dynamic reconfiguration port (DRP) gives the system designer easy access
to configuration bits and status registers for three block types: 32 locations for
each clock tile, 128 locations for the System Monitor, and 128 locations for each
serial GTX or GTH transceiver. The DRP behaves like memory-mapped registers,
and can access and modify block-specific configuration bits as well as status and

control registers.
Encryption, Readback, and Partial Reconfiguration

As a special option, the bitstream can be AES-encrypted to prevent unauthorized
copying of the design. The Virtex-6 FPGA performs the decryption using the
internally stored 256-bit key that can use battery backup or alternative non-
volatile storage. Most configuration data can be read back without affecting the
system'’s operation. Typically, configuration is an all-ornothing operation, but the
Virtex-6 FPGA also supports partial reconfiguration. When applicable in certain
designs, partial reconfiguration can greatly improve the versatility of the FPGA. It
is even possible to reconfigure a portion of the FPGA while the rest of the logic

remains active i.e., active partial reconfiguration.

CLBs, Slices, and LUTs

The look-up tables (LUTs) in Virtex-6 FPGAs can be configured as either one 6-
input LUT (64-bit ROMs) with one output, or as two 5-input LUTs (32-bit ROMs)
with separate outputs but common addresses or logic inputs. Each LUT output
can optionally be registered in a flip-flop. Four such LUTs and their eight flip-
flops as well as multiplexers and arithmetic carry logic form a slice, and two
slices form a configurable logic block (CLB). Four flip-flops per slice (one per
LUT) can optionally be configured as latches. In that case, the remaining four flip-
flops in that slice must remain unused. Between 25-50% of all slices can also use
their LUTs as distributed 64-bit RAM or as 32-bit shift registers (SRL32) or as
two SRL16s. Modern synthesis tools take advantage of these highly efficient

logic, arithmetic, and memory features. Expert designers can also instantiate
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them.

Clock Management

Each Virtex-6 FPGA has up to nine clock management tiles (CMTs), each

consisting of two mixed-mode clock managers (MMCMs), which are PLL based.
Phase-Locked Loop

The MMCM can serve as a frequency synthesizer for a wider range of frequencies
and as a jitter filter for incoming clocks. The heart of the MMCM is a voltage-
controlled oscillator (VCO) with a frequency from 600 MHz up to 1600 MHz,
spanning more than one octave. There are three sets of programmable frequency
dividers (D, M, and O). The pre-divider D (programmable by configuration)
reduces the input frequency and feeds one input of the traditional PLL
phase/frequency comparator. The feedback divider (programmable by
configuration) acts as a multiplier because it divides the VCO output frequency
before feeding the other input of the phase comparator. D and M must be chosen
appropriately to keep the VCO within its specified frequency range. The VCO has
eight equally-spaced output phases (0°, 45° 90°, 135° 180°, 225° 270° and
315°). Each can be selected to drive one of the seven output dividers, 00 to 06

(each programmable by configuration to divide by any integer from 1 to 128).
MMCM Programmable Features

The MMCM has three input-jitter filter options: low bandwidth, high bandwidth,
or optimized mode. Low-bandwidth mode has the best jitter attenuation but not
the smallest phase offset. High-bandwidth mode has the best phase offset, but
not the best jitter attenuation. Optimized mode allows the tools to find the best
setting. The MMCM can have a fractional counter in either the feedback path
(acting as a multiplier) or in one output path. Fractional counters allow non-
integer increments of 1/8 and can thus increase frequency synthesis capabilities
by a factor of 8. The MMCM can also provide fixed or dynamic phase shift in
small increments that depend on the VCO frequency. At 600 MHz the phase-shift

timing increment is 30 ps; at 1600 MHz, itis 11.5 ps.
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Clock Distribution

Each Virtex-6 FPGA provides five different types of clock lines (BUFG, BUFR,
BUFIO, BUFH, and the high-performance clock) to address the different clocking

requirements of high fanout, short propagation delay, and extremely low skew.
Global Clock Lines

In each Virtex-6 FPGA, 32 global-clock lines have the highest fanout and can
reach every flip-flop clock, clock enable, set/reset, as well as many logic inputs.
There are 12 global clock lines within any region. Global clock lines can be driven
by global clock buffers, which can also perform glitchless clock multiplexing and
the clock enable function. Global clocks are often driven from the CMT, which can

completely eliminate the basic clock distribution delay.
Regional Clocks

Regional clocks can drive all clock destinations in their region as well as the
region above and below. A region is defined as any area that is 40 I/O and 40 CLB
high and half the chip wide. Virtex-6 FPGAs have between 6 and 18 regions.
There are 6 regional clock tracks in every region. Each regional clock buffer can
be driven from either of four clock-capable input pins, and its frequency can

optionally be divided by any integer from 1 to 8.
1/0 Clocks

[/0 clocks are especially fast and serve only /0 logic and serializer/deserializer
(SerDes) circuits, as described in the 1/0 Logic section. Virtex-6 devices have a
high-performance direct connection from the MMCM to the 1/0 directly for low-

jitter, high-performance interfaces.

Block RAM

Every Virtex-6 FPGA has between 156 and 1064 dual-port block RAMs, each
storing 36 Kbits. Each block RAM has two completely independent ports that

share nothing but the stored data.
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Synchronous Operation

Each memory access, read and write, is controlled by the clock. All inputs, data,
address, clock enables, and write enables are registered. Nothing happens
without a clock. The input address is always clocked, retaining data until the next
operation. An optional output data pipeline register allows higher clock rates at
the cost of an extra cycle of latency. During a write operation, the data output can
reflect either the previously stored data, the newly written data, or remain

unchanged.
Programmable Data Width

e Each port can be configured as 32K x 1, 16K x 2, 8K x 4, 4K x9 (or 8), 2K x 18
(or 16), 1K x 36 (or 32), or 512 x 72 (or 64). The two ports can have different

aspect ratios, without any constraints.

e Each block RAM can be divided into two completely independent 18 Kb block
RAMs that can each be configured to any aspect ratio from 16K x 1 to 512 x 36.
Everything described previously for the full 36 Kb block RAM also applies to
each of the smaller 18 Kb block RAMs.

e In 18 Kb block RAMs, only simple dual-port mode can provide data width of
>36 bits. In this mode, one port is dedicated to read and the other port is
dedicated to write operation. In SDP mode one side (read or write) can be
variable while the other is fixed to 32/36 or 64/72. There is no read output
during write. The dual-port 36 Kb RAM both sides can be of variable width.

e Two adjacent 36 Kb block RAMs can be configured as one cascaded 64K A~ 1
dual-port RAM without any additional logic.

Error Detection and Correction

Each 64 bit-wide block RAM can generate, store, and utilize eight additional
Hamming-code bits, and perform single-bit error correction and double-bit error
detection (ECC) during the read process. The ECC logic can also be used when
writing to, or reading from external 64 /72-wide memories. This works in simple

dual-port mode and does not support read-during-write.
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FIFO Controller

The built-in FIFO controller for single-clock (synchronous) or dual-clock
(asynchronous or multirate) operation increments the internal addresses and
provides four handshaking flags: full, empty, almost full, and almost empty. The
almost full and almost empty flags are freely programmable. Similar to the block
RAM, the FIFO width and depth are programmable, but the write and read ports
always have identical width. First-word fall-through mode presents the first-
written word on the data output even before the first read operation. After the
first word has been read, there is no difference between this mode and the

standard mode.

Digital Signal Processing—DSP48E1 Slice

DSP applications use many binary multipliers and accumulators, best
implemented in dedicated DSP slices. All Virtex-6 FPGAs have many dedicated,
full-custom, low-power DSP slices combining high speed with small size, while
retaining system design flexibility. Each DSP48E1 slice fundamentally consists of
a dedicated 25 x 18 bit two's complement multiplier and a 48-bit accumulator,
both capable of operating at 600 MHz. The multiplier can be dynamically
bypassed, and two 48-bit inputs can feed a single-instruction-multiple-data
(SIMD) arithmetic unit (dual 24-bit add/subtract/accumulate or quad 12-bit
add/subtract/accumulate), or a logic unit that can generate any one of 10
different logic functions of the two operands. The DSP48E1l includes an
additional pre-adder, typically used in symmetrical filters. This new pre-adder
improves performance in densely packed designs and reduces the logic slice
count by up to 50%. The DSP48E1 slice provides extensive pipelining and
extension capabilities that enhance speed and efficiency of many applications,
even beyond digital signal processing, such as wide dynamic bus shifters,
memory address generators, wide bus multiplexers, and memory-mapped [/0
register files. The accumulator can also be used as a synchronous up/down
counter. The multiplier can perform logic functions (AND, OR) and barrel

shifting.

Input/Output
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The number of 1/0 pins varies from 240 to 1200 depending on device and
package size. Each [/0 pin is configurable and can comply with a large number of
standards, using up to 2.5V. The Virtex-6 FPGA SelectlO Resources User Guide
describes the I/0 compatibilities of the various I/0 options. With the exception
of supply pins and a few dedicated configuration pins, all other package pins

have the same /0 capabilities, constrained only by certain banking rules.

All I/0 pins are organized in banks, with 40 pins per bank. Each bank has one
common VCCO output supply-voltage pin, which also powers certain input
buffers. Some single-ended input buffers require an externally applied reference
voltage (VREF). There are two VREF pins per bank (except configuration bank 0).

A single bank can have only one VREF voltage value.
1/0 Electrical Characteristics

Single-ended outputs use a conventional CMOS push/pull output structure
driving High towards VCCO or Low towards ground, and can be put into high-Z
state. The system designer can specify the slew rate and the output strength. The
input is always active but is usually ignored while the output is active. Each pin
can optionally have a weak pull-up or a weak pulldown resistor. Any signal pin
pair can be configured as differential input pair or output pair. Differential input
pin pairs can optionally be terminated with a 100Q) internal resistor. All Virtex-6
devices support differential standards beyond LVDS: HT, RSDS, BLVDS,
differential SSTL, and differential HSTL.

Digitally Controlled Impedance

Digitally controlled impedance (DCI) can control the output drive impedance
(series termination) or can provide parallel termination of input signals to VCCO,
or split (Thevenin) termination to VCCO/2. DCI uses two pins per bank as
reference pins, but one such pair can also control multiple banks. VRN must be
resistively pulled to VCCO, while VRP must be resistively connected to ground.
The resistor must be either 1x or 2x the characteristic trace impedance, typically

close to 50Q.
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1/0 Logic
Input and Output Delay

This section describes the available logic resources connected to the [/0
interfaces. All inputs and outputs can be configured as either combinatorial or
registered. Double data rate (DDR) is supported by all inputs and outputs. Any
input or output can be individually delayed by up to 32 increments of ~78 ps
each. This is implemented as IODELAY. The number of delay steps can be set by
configuration and can also be incremented or decremented while in use. For
using either IODELAY, the system designer must instantiate the IODELAY control
block and clock it with a frequency close to 200 MHz. Each 32-tap total IODELAY
is controlled by that frequency, thus unaffected by temperature, supply voltage,

and processing variations.
ISERDES and OSERDES

Many applications combine high-speed bit-serial /0O with slower parallel
operation inside the device. This requires a serializer and deserializer (SerDes)
inside the I/0 structure. Each input has access to its own deserializer (serial-to-
parallel converter) with programmable parallel width of 2, 3, 4, 5, 6, 7, 8, or 10
bits. Each output has access to its own serializer (parallel-to-serial converter)
with programmable parallel width of up to 8 bits wide for single data rate (SDR),
or up to 10 bits wide for double data rate (DDR).

System Monitor

Every Virtex-6 FPGA contains a System Monitor circuit providing thermal and
power supply status information. Sensor outputs are digitized by a 10-bit
200kSPS analog-to-digital converter (ADC). This fully tested and specified ADC
can also be used to digitize up to 17 external analog input channels. The System
Monitor ADC utilizes an on-chip reference circuit thereby eliminating the need
for any external active components. On-chip temperature and power supplies
are monitored with a measurement accuracy of +4°C and +1% respectively. By
default the System Monitor continuously digitizes the output of all on-chip

sensors. The most recent measurement results together with maximum and
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minimum readings are stored in dedicated registers for access at any time
through the DRP or JTAG interfaces. User defined alarm thresholds can
automatically indicate over temperature events and unacceptable power supply
variation. A specified limit (for example: 125°C) can be used to initiate an
automatic power down. The System Monitor does not require explicit
instantiation in a design. Once the appropriate power supply connections are
made, measurement data can be accessed at any time, even pre-configuration or

during power down, through the JTAG test access port (TAP).

Low-Power Gigabit Transceivers

Ultra-fast serial data transmission between ICs, over the backplane, or over
longer distances is becoming increasingly popular and important. It requires
specialized dedicated on-chip circuitry and differential I/O capable of coping
with the signal integrity issues at these high data rates. All but one Virtex-6
device has between 8 to 72 gigabit transceiver circuits. Each GTX transceiver is a
combined transmitter and receiver capable of operating at a data rate between
480 Mb/s and 6.6 Gb/s. Lower data rates can be achieved using FPGA logic-
based oversampling. Each GTH transceiver is a combined transmitter and
receiver capable of operating at a rate between 2.488 Gb/s and 11.18 Gb/s. The
GTX transmitter and receiver are independent circuits that use separate PLLs to
multiply the reference frequency input by certain programmable numbers
between 4 and 25, to become the bit-serial data clock. The GTH transceiver is a
purpose-built design for 10 Gb/s rates and shares a single high-performance PLL
between four transmitter and receiver circuits. Each GTX and GTH transceiver
has a large number of user-definable features and parameters. All of these can be
defined during device configuration, and many can also be modified during

operation.
Transmitter

The GTX transmitter is fundamentally a parallel-to-serial converter with a
conversion ratio of 8, 10, 16, 20, 32, or 40. The GTH transmitter offers bit widths
of 16, 20, 32, 40, 64, or 80 to allow additional timing margin for high-

performance designs. These transmitter outputs drive the PC board with a
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single-channel differential current-mode logic (CML) output signal. TXOUTCLK is
the appropriately divided serial data clock and can be used directly to register
the parallel data coming from the internal logic. The incoming parallel data is fed
through a small FIFO and can optionally be modified with the 8B/10B, 64B/66B,
or the 64B/67B (GTX only) algorithm to guarantee a sufficient number of
transitions. The bit-serial output signal drives two package pins with
complementary CML signals. This output signal pair has programmable signal
swing as well as programmable pre-emphasis to compensate for PC board losses

and other interconnect characteristics.
Receiver

The receiver is fundamentally a serial-to-parallel converter, changing the
incoming bit serial differential signal into a parallel stream of words, each 8, 10,
16, 20, 32, or 40 bits wide. The GTH transceiver offers 16, 20, 32, 40, 64, and 80
bit widths to allow greater timing margin. The receiver takes the incoming
differential data stream, feeds it through a programmable equalizer (to
compensate for PC board and other interconnect characteristics), and uses the
FREF input to initiate clock recognition. There is no need for a separate clock
line. The data pattern uses non-return-to-zero (NRZ) encoding and optionally
guarantees sufficient data transitions by using the selected encoding scheme.
Parallel data is then transferred into the FPGA logic using the RXUSRCLK clock.
The serial-to-parallel conversion ratio for GTX transceivers can be 8, 10, 16, 20,
32, or 40. The serial-to-parallel conversion ratio for GTH transceivers can be 16,

20, 32, 40, 64, or 80 for GTH.
Out-of-Band Signaling

The GTX transceivers provide Out-of-Band (OOB) signaling, often used to send
low-speed signals from the transmitter to the receiver, while high-speed serial
data transmission is not active, typically when the link is in a power-down state

or has not been initialized. This benefits PCI Express and SATA/SAS applications.

43



Inteqrated Interface Blocks for PCI Express Designs

The PCI Express standard is a packet-based, point-to-point serial interface
standard. The differential signal transmission uses an embedded clock, which
eliminates the clock-to-data skew problems of traditional wide parallel buses.
The PCI Express Base Specification Revision 2.0 is backwards compatible with
Revision 1.1 and defines a configurable raw data rate of 2.5 Gb/s, or 5.0 Gb/s per
lane in each direction. To scale bandwidth, the specification allows multiple
lanes to be joined to form a larger link between PCI Express devices. All Virtex-6
devices (except the XC6VLX760) include at least one integrated interface block
for PCI Express technology that can be configured as an Endpoint or Root Port,
compliant to the PCI Express Base Specification Revision 2.0. The Root Port can
be used to build the basis for a compatible Root Complex, to allow custom FPGA-
FPGA communication via the PCI Express protocol, and to attach ASSP Endpoint
devices such as Fibre Channel HBAs to the FPGA. This block is highly
configurable to system design requirements and can operate 1, 2, 4, or 8 lanes at
the 2.5 Gb/s data rate and the 5.0 Gb/s data rate. For high-performance
applications, advanced buffering techniques of the block offer a flexible
maximum payload size of up to 1024 bytes. The integrated block interfaces to
the GTX transceivers for serial connectivity, and to block RAMs for data
buffering. Combined, these elements implement the Physical Layer, Data Link
Layer, and Transaction Layer of the PCI Express protocol. Xilinx provides a light-
weight, configurable, easy-to-use LogiCORE™ wrapper that ties the various
building blocks (the integrated block for PCI Express, the GTX transceivers, block
RAM, and clocking resources) into an Endpoint or Root Port solution. The system
designer has control over many configurable parameters: lane width, maximum
payload size, FPGA logic interface speeds, reference clock frequency, and base

address register decoding and filtering.

10/100/1000 Mb/s Ethernet Controller (2,500 Mb/s Supported)

An integrated Tri-mode Ethernet MAC (TEMAC) block is easily connected to the
FPGA logic, the GTX transceivers, and the SelectlO resources. This TEMAC block

saves logic resources and design effort. All of the Virtex-6 devices (except the
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XC6VLX760) have four TEMAC blocks, implementing the link layer of the OSI
protocol stack. The CORE Generator™ software GUI helps to configure flexible
interfaces to GTX transceiver or SelectlO technology, to the FPGA logic, and to a
microprocessor (when required). The TEMAC is designed to the IEEE Std 802.3-
2005 specification. 2,500 Mb/s support is also available.

3.2 Software Design Flow

The 13.4 version of the Xilinx design suite, Integrated Software Environment, has
been used to implement the design in software. The design should be created,

tested and verified in the software before the hardware can be configured.

The first step in the design flow is the HDL description of the circuit. In this step,
the design files are created using one of the hardware description languages. For
this thesis work, the language which was used is VHDL. These source files can be
simulated to verify the functionality of the design in software. However,
successful behavioral simulation does not guarantee successful implementation

on the hardware.

The next step is to synthesize the design files that were created in the previous
step. During this step, the software checks syntax errors, applies user constraints
and optimizes the logic to the target device. The constraints include a
requirement about the value of the clock frequency and placement of input and
output pins based on the physical connections of FPGA pins to circuits on the
development board. These connections are described in the documentation for
the development board. The output files from this step will be used in the next

step.

The third step is the implementation step. During this step, the software verifies
whether the design can be implemented on the hardware, for example, it checks
how the design will be routed on the chip and optimizes the design according to
the timing specifications. The design suite provides tools such as the Floorplan
editor and FPGA editor that let the designer to create constraints, and see how

the design will be placed and routed on the FPGA, and let the designer perform
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placing and routing manually. The software generates detailed analysis reports

about the implementation.

The final step in the software design is to generate the programming file to be
used configure the FPGA. Therefore , the programming file generated is then

downloaded onto the FPGA through JTAG cable.
More information about each step:

Translate : The Translate process merges all of the input netlists and design
constraints and outputs a Xilinx Native Generic Database (NGD) file,

which describes the logical design reduced to Xilinx primitives.

Table 3.1 Translate properties

Command line tool NGDBuild
Tcl command process run "Translate”
Input files EDIF, SEDIF, EDN, EDF, NGC, UCF, NCF,

URF, NMC, BMM

Output files BLD (report), NGD

Tools available after running process Constraints Editor, PlanAhead software

Map : The Map process maps the logic defined by an NGD file into FPGA
elements, such as CLBs and [OBs. The output design is a Native Circuit
Description (NCD) file that physically represents the design mapped to

the components in the Xilinx FPGA.
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Table 3.2 Map properties

Command line tool

MAP

Tcl command

process run "Map"

Input files NGD, NMC, NCD, NGM
Note : The NCD and NGM files are for
guiding.

Output files NCD, PCF, NGM, MRP (report), GRF,

MAP, PSR

Tools available after running process

FPGA Editor, PlanAhead software,

Timing Analyzer

Place and Route : The Place and Route process takes a mapped NCD file, places

and routes the design, and produces an NCD file that is used as

input for bitstream generation.

Table 3.3 Place & Route properties

Command line tool

PAR

Tcl command

process run "Place & Route"

Input files NCD, PCF
Note : In addition to the NCD file from
MAP, PAR also accepts an NCD file for
guiding.

Output files NCD, PAR (report), PAD, CSV, TXT, GRF,
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DLY

Tools available after running process

FPGA Editor, PlanAhead software,

Timing Analyzer, TRACE, XPower

Analyzer

Generate Programming File : The Generate Programming File process produces a

bitstream for Xilinx device configuration. After the

design is completely routed, you must configure the

device so it can execute the desired function.

Table 3.4 Generate Programming file properties

Command line tool

BitGen

Tcl command

process run "Generate Programming

File"

Input files

NCD, PCF, NKY

Output files

BGN, BIN, BIT, DRC, ISC, LL, MSD, MSK,
NKY, ISC, RBA, RBB, RBD, RBT

Tools available after running process

IMPACT
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Chapter 4

Algorithm Analysis

The Selection problem

If a set of “n” unordered numbers is given, the Linear Time Selection Algorithm,
also called Median Finding Algorithm, finds the k@ smallest element in the

sequence.

Other Solutions:

If asequenceS=(al,aZ,...,an) of nelements is given, then the kth smallest
of the sequence is an element b in the sequence such that there are at most k -1
values for i for which ai < b, and at least k values of i for which ai <= b. For

example, 4 is the second and third smallest element of the sequence 7, 4, 2, 4.

One obvious solution is to sort the sequence into non-decreasing order and then
locate the element at the kth position. We already know that this will take O(n log
n) time both in the average and the worst case. For some values of k it is easy to

solve the problem more efficiently.

For example, k =1 and k = n correspond, respectively, to finding the minimum
and the maximum element, and these can be done in O(n) time. Also, when k is
close to 1, we can construct a min-heap (i.e., a heap with the minimum at the
root) of the given elements in O(n) time, then do k deletemin operations in O(k
log n) time for a total time of O(n + k log n). Note that this is O(n), when k is O(n/
log n). Symmetrically, if k is close to n we can use a max-heap and deletemax
operations. An important special case occurs when k = [n/2 |, in which case we

are interested in finding the median. Can we find the median in linear time?
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Why Linear Time Selection Algorithm ?

If a set of “n” unordered numbers is given, the Linear Time Selection Algorithm,
also called Median Finding Algorithm, finds the kt*h smallest element in O (n)
time in worst case. In order to cut down the running time substantially, it uses

elimination and Divide and Conquer strategy.[33]

Another algorithm which will take Order of O(n) time is the quickselect
algorithm. But this algorithm is linear-time only on average. It can require
quadratic time with poor pivot choices (consider the case of pivoting around the

smallest element at each step).

Properties of pivot

The chosen pivot is both less and greater than half of the elements in the list of
medians, which is around elements for each half. Each of these elements is a
median of 5, making it less than 2 other elements and greater than 2 other
elements outside the block. Hence, the pivot is less than elements outside the
block, and greater than another elements outside the block. Thus the chosen
median splits the elements somewhere between 30%/70% and 70%/30%,

which assures worst-case linear behavior of the algorithm.

Basic steps to solve the problem :

Step 1 :If nis small (n < 6 ), then just sort and return the kth smallest number in

constant time. ( Bound time - 7 )

Step 2 : If nis not small ( n > 5), then group the given numbers in subsets of 5.

( Bound time n/5)

Step 3 : Sort the numbers within each group and select the middle elements,

which are the medians of each group. ( Bound time - 7n/5)
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Step 4 : Call your "Selection” routine recursively to find the median of n/5

medians and call it m. ( Bound time - Tn/s)

Step 5 : Compare all n-1 elements with the median of medians m and determine
the sets L and R, where L contains all elements <m, and R contains all elements
>m. Clearly, the rank of m is r=/L/+1 (|L| is the size or cardinality of L). ( Bound

time - n)

Step 6 : If k=r, then return m, else if k<r then return k t smallest of the set L

(Bound time T7n/10), else return k-r th smallest of the set R.
For example :

We have n elements and the given set is the following:
(.......2,5,9,19,24,54,5,87,9,10,44,32,21,13,24,18,26,16,19,25,39,47,56,71,91,6 1,4
4,28.........).

Because n > 5, we arrange the numbers in groups of five:

©
SNONONONE
@O 0® @ 6
®O ® @ 06
®

Figure 4.1 Arrangement in groups of 5
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Then we find the medians of each group :

& O @ O ®....

Figure 4.2 Find the medians of each group

We continue until median of medians is found:

Figure 4.3 Find the median of medians
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We compare each n-1 elements with the median m and find two sets L and R
such that every element in L is smaller than M and every element in R is greater

than m.

A
Yy
3
A
v

3n/10<L<7n/10 3n/10<R<7n/10

Figure 4.4 Find LESS and GREATER subsets.

Finally, according to Step 6 we check if the kth smallest number is found, else we
have to choose the right subset to continue recursively until we find the wanted

number.

Recursive formula:

T (n)=0(n) + T (n/5)+T (7n/10)

We will solve this equation in order to get the complexity.
We assume that T (n)< C*n
T(n)=a*n+T(n/5)+T(7n/10)

C*n>=T(n/5) +T(7n/10) + a*n

C>= C*n/5+ C*7*n/5 + a*n
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C>=9*C/10 +a
C/10>=a
C>=10*a

There is such a constant that exists....so T (n) = O (n)

Why groups of five and not some other term?

If we divide elements into groups of 3 then we will have
T(n)=0(Mm)+T(n/3)+T(2n/3)so T (n) >0 (n).....

If we divide elements into groups of more than 5, the value of constant 5 will be

more, so grouping elements in to 5 is the optimal situation.
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Chapter 5

Implementation

We have implemented the Linear Time Selection Algorithm with two different
architectures in mind, thus we have two versions. Version 1 uses less RAM

memories than Version 2, although Version 2 is faster.

5.1 Version 1: Implementation with minimum memory

requirements

In Version 1, we firstly store all the numbers in Initial RAM or LESS and
GREATER memories. Then we start arranging them in groups of 5. The
components we have used are the following: median_top, m_finder, mergesort,

compexch, Init RAM, SRAM and S_RAMEM components.

Our program is parametric, therefore we are able to change easily the width of

the words and the depth of our memories.

Parameters (Generic) :

o width : determines the size of the word.
o bits_depth : determines the size of the addresses of Initial RAM and SRAM
memories.

. depth_small : determines the size of the addresses of S_ RAMEM memories.
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The picture below depicts the connectivity among different kernels:

Initial_RAM

Median_top / LESS
\ GREATER
SRAM_0
M_finder | SRAM 1
/ SRAM_2
mergesort SRAM.3
SRAM_4

Compexch O Com p:axch_8

Figure 5.1 Connectivity among kernels

5.1.1 Median_top component

Median_top is the top module. At the beginning all the numbers are inserted here
and median_top writes them to the Initial RAM memory. When writing is done,
we examine if we have less than 6 or more than 5 elements. In the first case
mergesort component is enabled and the value of k is assigned to wanted_merge
signal. The output of mergesort is the result of median finding algorithm too. Its
value is assigned to the signal mdn_out and writeback becomes ‘1’. In the other

case(more than 5 numbers) m_finder component is enabled and we start
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supplying it with data. When signal mdn_found is equal to ‘1’ then pivot is found.
Later on, we compare its value with each element and find two sets. In the first
one, every element is smaller than pivot (LESS), whilst in the other one, every
element is greater than pivot (GREATER). To store these two sets we use the 2
SRAM memories. When the comparison is over, we have to examine if the
wanted result is found, otherwise we search in which subset k (the position of
the number we are looking for) belongs to. If it belongs in LESS subset ( lls <=‘1",
grt <= ‘0’) then we will read from LESS, else ( lls <= ‘0", grt <= ‘1’) from
GREATER instead of Initial RAM. The process continues running recursively

until the kth smallest number that we asked for is found.

en_pivot_search <=1’ finish =1’

pivot_found = ‘1’

start_comparison <= ‘1’

finish = ‘1’

element
found

Figure 5.2 Main steps of the operation of median_top component

Component Description

Inputs

. rst (std_logic) : reset signal.

. clock (std_logic)
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. Imt ((std_logic_vector(bits_depth-1 downto 0)) : if we want to restrict our
search in a smaller set of numbers than the initially given set (or if we
have not filled the initially defined memory in the case we use the
hardware testbench) then Imt signal must have a value different than
zero ( instead of “n” elements, if Imt > 0 then we will have (Imt+1) ).

. max_addr (std_logic_vector (bits_depth-1 downto 0)) : it is equal to n -1.

. wanted_pos (std_logic_vector (bits_depth-1 downto 0)) : indicates the
position of the number we are looking for.

. mdn_datain (std_logic_vector(width-1 downto 0)) : input data.

o median_wr_en (std_logic) : shows when writing data to median_top ‘s

local memory is enabled.
Outputs :

. num_mdn_out (std_logic_vector(0 downto 0)) : number of outputs. For

our case it is equal to one.

. writeback (std_logic) : request to send data back.
. mdn_out ((std_logic_vector(width-1 downto 0)): result of the median
finding algorithm
rst

clock

Imt num_mdn_out

max_addr writeback

Median_top

mdn_datain
wanted_pos

median_wr_en

Figure 5.3 Median_top component
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Next, Figure 5.4 shows an output from Modelsim.
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Figure 5.4 Select the right subset, if the wanted number is not found yet.

5.1.2 M_finder component

In case we have more than 5 numbers, m _finder component is used. Firstly, it
arranges the numbers in groups of five and secondly, mergesort is applied. For
the partitioning of the numbers the 5 S_RAMEM memories are used. The results
of mergesort (medians) are stored back to the 5 S_RAMEM memories
(overwrite). The same process continues running until the median of medians is
found. When this is found we assign the value ‘1’ to the signal mdn_found and the

value of the median of medians to the signal f median.
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Arrangemen . ey Calculate the
: ram_writing <= ‘0
tin groups number of
medians

Overwrite the 5
RAM memories
with the
medians

mergesort
with data

Return

Figure 5.5 Main steps of the operation of median_top component

Component Description

Inputs

. rst (std_logic) : reset signal.

. clock (std_logic)

. inp_num (std_logic_vector(bits_depth-1 downto 0)) : number of input
data.

. new_input (std_logic_vector(width-1 downto 0))

o m_f_en (std_logic) : shows when median_top component sends data to
m_finder.

Outputs

o f_ median (std_logic_vector(width-1 downto 0)) : median of medians.

. mdn_found (std_logic) : indicates when median of medians is found.
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Next, Figure 5.6 and Figure 5.7 show how m_finder component supplies the

mergesort with data and how it stores medians back to the 5 S_RAMEM

memories.
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Figure 5.6 Read from the 5 RAM memories and supply with data the mergesort

component.
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Figure 5.7 Overwrite the 5 RAM memories with the results of mergesort

component, until median of medians is found.

5.1.3 Mergesort component

We chose to use merge sort for the sorting of each group. Merge sort parallelizes
well due to use of divide-and-conquer method and is one of the most efficient
methods for the sorting of 5 or less elements .It also allows us to implement
pipelined sorting of many groups. For the pipelined and parallelized
implementation we use 9 compexch components. If we have 5 input numbers,
then we select as median the third number. If we have 3 or 4 input numbers,
then we select as median the second number. In case we have less than 3 input
numbers, we select as median the first number. The only exception is when
mergesort component is enabled by the median_top component. In this case the

value of k is assigned to wanted signal.
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According to the mergesort algorithm:

Table 5.1 Comparisons per clock cycle

Compexch

Inputs

[0, 4]

[0, 2] [2, 4]

[2,3]

[1,2]

Compexch

Inputs

[1,3]

[0, 1]

[1, 4]

[3, 4]

[0,4][1,3]

[0,2]

[2,4][0,1]

[2,3][1,4]

Figure 5.8 Steps of mergesort for 5 elements
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Component Description

Inputs

rst (std_logic) : reset signal.

clock (std_logic)

wanted (std_logic_vector(2 downto 0)) : which number we want as an
output after the sorting.

rest (std_logic_vector(2 downto 0)) : number of data, which we will be
sorted.

arrOa , arrla, arrZa, arr3a, arr4a (std_logic_vector(width-1 downto 0)) :

input data.

Outputs

median (std_logic_vector(width-1 downto 0)) : the middle element selected

after the sorting.

Next figure shows the inputs and outputs of mergesort component.

wanted

rst

clock

rest

arrOa
arrla
arr2a
arr3a

arrda

Figure 5.9 Mergesort component.
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Figure 5.10 shows how the pipelined operation of mergesort component. In each

cycle a new group of 5 elements inserts.
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Figure 5.10 Pipeline. In every clock cycle merge sort is applied to a new group

of numbers.

5.1.4 Compexch component

Compexch component compares the values of a and b. If a > b, then it switches

their position.

Component Description

Inputs

. rst (std_logic) : reset signal.
. clock (std_logic)
. a, b (std_logic_vector(conv_integer(width)-1 downto 0)) : input data.
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Outputs

. ¢, d (std_logic_vector(conv_integer(width)-1 downto 0)) : output data.

Next figure shows the inputs and outputs of compeexch component.

rst

clock

compexch

Figure 5.11 Mergesort component.

Figure 5.12 shows the operation of compexch component.
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Figure 5.12 Compare a and b inputs and if it is needed switch their positions.
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5.1.5 Init_ RAM component

Single port RAM memory created with ISE’s Block Memory Generator ( Write
first). Always enabled. Used for Initial_RAM.

Component Description

Inputs

. clka (std_logic)

. regcea (std_logic) : read.

. wea (std_logic_vector(0 downto 0)): write.

. addra (std_logic_vector(bits_depth-1 downto 0)) : address.
. dina (std_logic_vector(width-1 downto 0) : input.

Outputs

. douta (std_logic_vector(width-1 downto 0) : output.

clka

regcea

wea douta

Init RAM

addra

dina

Figure 5.13 Init RAM component.
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5.1.6 SRAM component

True dual port RAM memory created with ISE’s Block Memory Generator (Read
first). Always enabled. Common clock. Used for LESS and GREATER.

Component Description

Inputs

. clka (std_logic) : clock

. rsta (std_logic) : reset.

. regcea (std_logic) : read from address addra.

. wea (std_logic_vector(0 downto 0)): write to address addra.

. addra (std_logic_vector(bits_depth-1 downto 0)) : address a.

. dina (std_logic_vector(width-1 downto 0) : input to address addra.

. clkb (std_logic) : clock

. rsta (std_logic) : reset.
. regceb (std_logic) : read from address addrb.
. web (std_logic_vector(0 downto 0)): write to address addrb.

. addrb (std_logic_vector(bits_depth-1 downto 0)) : address b.

. dinb (std_logic_vector(width-1 downto 0) : input to address addrb.
Outputs

. douta (std_logic_vector(width-1 downto 0) : output when regcea = ‘1’.
. doutb (std_logic_vector(width-1 downto 0) : output thwn regceb = ‘1’.
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clka

rsta
regcea

wea

addra
douta

dina
clkb
rstb

doutb

regceb
web
addrb
dinb

Figure 5.14 SRAM component.

5.1.7 S_RAMEM component

True dual port RAM memory created with ISE’s Block Memory Generator ( Read
first). Used for SRAM_0, SRAM_1, SRAM_2, SRAM_3, SRAM_4. S_RAMEM
memories need to have 1/5 of the size of SRAM memories. Always enabled.

Common clock. They are used for the arrangement of the numbers in groups of 5.

Component Description

Inputs

. clka (std_logic) : clock.

. regcea (std_logic) : read from address addra.

. wea (std_logic_vector(0 downto 0)): write to address addra.

. addra (std_logic_vector(depth_small-1 downto 0)) : address a.

. dina (std_logic_vector(width-1 downto 0) : input to address addra.
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. clkb (std_logic) : clock.

. regceb (std_logic) : read from address addrb.

. web (std_logic_vector(0 downto 0)): write to address addrb.

. addrb (std_logic_vector(depth_small-1 downto 0)) : address b.

. dinb (std_logic_vector(width-1 downto 0) : input to address addrb.
Outputs

. douta (std_logic_vector(width-1 downto 0) : output when regcea = ‘1.
. doutb (std_logic_vector(width-1 downto 0) : output thwn regceb = 1’.

clka

regcea

wea

addra

dina douta

clkb
doutb

regceb
web
addrb
dinb

Figure 5.15 S_RAMEM component.
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5.2 Version 2: High-performance

In the implementation of the second version we took advantage of the capability
to arrange the elements in groups of 5 in parallel with their storage either in
Initial RAM or LESS and GREATER memories. In this case we save much time,
but we need to use S_ RAMEM component 5 more times. Mergesort, compexch,
Init_RAM, SRAM and S_RAMEM components are the same as Version 1. Also,

both versions have the same parameters.

Their differences on what concerns their architecture are the following:

. Version 2 uses 10 S_RAMEM memories and Version 1 uses 5 of them.
. Version 2 does not have the m_finder component.
. The two versions have different top modules.

The picture below depicts the connectivity among different kernels:

SRAM_0_A
Initial RAM

SRAM_4 A
LESS Median_top

SRAM_0_B

GREATER
SRAM_4_B
mergesort

Compexch O | | ... Compexch_8

Figure 5.16 Connectivity among kernels.
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Median top component

Median_top is the top module. In the beginning all the numbers insert here and
median_top writes them in parallel to Initial RAM and to SRAM_0_A, SRAM_1_A,
SRAM_2_A, SRAM_3_A, SRAM_4_A memories. By this time the arrangement of
numbers in groups of 5 is already done. When writing has been finished, we
examine if we have less than 6 or more than 5 elements. In the first case
mergesort component is enabled and the value of k is assigned to wanted_merge
signal. Rest signal takes the value of input_num( shows the number of inputs).
The output of mergesort is the result of median finding algorithm too. Its value,
is assigned to the signal mdn_out and writeback becomes ‘1’. In the other case
mergesort component is again enabled, but now all the outputs (medians of each
group) are written back to the 5 S_.RAMEM memories (overwrite the old data
that we do not need anymore). This task is over, when median of medians is
found. Then signal mdn_found is equal to ‘1’ . After that we compare its value
with each element and find two sets. In the first one every element is smaller
than pivot (LESS) and in the other one, every element is greater than pivot
(GREATER). To store these two sets we use the 2 SRAM memories. In parallel we
arrange the elements again in groups of 5. The numbers that belong to LESS
subset are written to SRAM_0_B, SRAM_1_B, SRAM_2_B, SRAM_3_B, SRAM_4_B
memories and the numbers that belong to GREATER subset to the SRAM_0_A,
SRAM_1_A, SRAM_2_A, SRAM_3_A, SRAM_4_A memories. When the comparison
is done, we examine if the wanted result is found. If not, we search in which
subset k (the position of the number we are looking for) belongs to. If it belongs
to LESS subset (lls <= ‘1", grt <= ‘0’) then in the next run we will read from LESS
and SRAM_0_B, SRAM_1_B, SRAM_2 B, SRAM_3_B, SRAM_4_B memories,
otherwise (lls <= ‘0", grt <= ‘1’) from GREATER and SRAM_0_A, SRAM_1_A,
SRAM_2_A, SRAM_3_A, SRAM_4_A memories instead of Initial_ RAM. The process

continues running until the kth smallest number that we demanded is found.
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Component Description

Inputs

All the input signals are the same with the Version 1.

Outputs

All the output signals are the same with the Version 1.

5.3 Comparison between Version 1 vs. Version 2

In the following table and figures we present the differences of the two

implemented version with more details. As we have referred and above, all the

changes that affect the operation of our core have been done in the top module.

Table 5.2 Version 1 vs Version 2

Step Operation

Comparison

Version 1

Version 2

1 First
memory
writing

2 Search
pivot

for

We store the input

numbers in Initial RAM.

We read from
Initial RAM or LESS or
GREATER and supply

We store the input numbers
in Initial RAM and in
SRAM_0_A, SRAM_1_A,
SRAM_2_A, SRAM_3_A,
SRAM_4_A (arrangement in
groups of 5) in parallel.

We read from the the 5
S_ RAMEM memories and

enable the mergesort. The
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m_finder with data. The
grouping and  the
enable of mergesort is

doing there.

results of mergesort are
written back to the 5
S_ RAMEM memories. We
continue until median of

medians(pivot) is found.

Compare

We compare the value
of pivot with the value
of the numbers read
from

Initial RAM(lss='0" and
grt ='0") or
LESS(Iss="1") or
GREATER(grt="1")
memory and we find
the new two subsets.
The numbers compared
are stored either to
LESS or GREATER

memory.

Version 2 does the same
with Version 1, but during
the comparison it writes the
numbers and to the 10
S RAMEM memories in
parallel. SRAM_0_A,
SRAM_1_A, SRAM_2_A,
SRAM_3_A, SRAM_4_A are
used for the storage of
greater than pivot numbers.
SRAM_0_B, SRAM_1_B,
SRAM_2_B, SRAM_3_B,
SRAM_4_B are used for the
storage of smaller than pivot

numbers.
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The figures below show the different way that the two version act in the second

step of their operation, as we have described it above.
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Chapter 6

Communication

As it has been previously mentioned, the goal of this thesis is not only the FPGA
implementation of a core, but also to provide a full integration between software and
hardware. In order to achieve that, we have implemented several other modules, for

enabling communication between software and hardware.

Thus, we need a driver that will be able to transfer data between the local host and the
FPGA device and a controller who will manage the data flow. In the case we have
more than one cores attached, the controller will be responsible and for the

management of the writeback priorities.

6.1 Integration with Ethernet

Driver Description :

The main goal of the driver is to read the data from the local host and sending them
over Ethernet cable to our controller. Moreover, it is responsible for getting data from
the controller and send them to the local host over the Ethernet again. Use of Ethernet
provides us with greater flexibility and will make core simulations easier as there is
no need for someone to be familiar with VHDL or how to run a VHDL program. The
only thing the user has to know is a high level language. In this thesis, the program
was written in C language. So, driver is responsible for reading data that are generated

by the C program.

First of all, driver reads 4 bytes containing the number of data that are going to be
transferred. After that, driver reads packages of 4 bytes until data are finished. Every
32bit data that is read is being transferred in the controller. We split them in 4
words(each word has 8 bits width) and we start supplying the cores.
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When the reading is finished the driver gets in a state where variables for write back
process are initialized, such as number of output data. Driver reads data from the
controller and stores them in a char buffer until the driver receives and

acknowledgement signal. At this time, data are being transferred back.

When process is done, driver returns to its initial state. Obviously, driver is described

with the use of an FSM, with each state’s functionality to be described above.

Local host

Buffer

Figure 6.1 Connection
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Now we give a description of the main steps:
Step 1: we trigger the reception process (state 0)
Step 2 : we wait until the local host is ready to send data to the FPGA (state 1).

Step 3 : In the next step we wait until a frame is received (state 2) and we check
for proper frame reception (state 3). This frame should contain information

about the number of data that will be sent.
Step 4 : This information is stored (state 5)

Step 5 : After that we start receiving data (state 6) and we always check for

proper frame reception. All the inputs are stored in a buffer.

Step 6 : We read from the buffer and we start supplying the cores with data. In
the buffer the word size is 32 bits so we have to split each one in 4 x 8 bits (states
14, 15, 16 , 17), when we sent the numbers to the cores. When the driver is

sending data to the cores the value of enable_wr signal is ‘1.

Step 7 : We check if we have read all the bytes. If there are more number to be

read then we repeat the process described above (state 18).

Step 8 : We wait for the core to finish its task. When the core is ready to send data

to the driver then writeback signal is equal to ‘1.
Step 9 : We store the core’s output to the driver’s buffer (state 27)

Step 10 : The transmission from the FPGA to the local host starts and we always
check if there is any error. Because the output of our core is only 1, we know that

only one 1 byte need to be sent.

Step 11 : We go back to state 1 and wait for new request for data transmission.
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Wait until Receive data
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Read from Read from
buffer and buffer and
send data to send data to
local host the 1ores
Wait until Store the Wait for a
all cores’ cores’ core to
outputs are outputs to finish its
stored the buffer task

Figure 6.2 Main steps

To send the data from the Local host to the FPGA we have to run the

tx_file_plus_len, followed by the name of the file that we want to send.

To receive data from the FPGA we have to run the rx_file, followed by the name
of the file that the results will be written, the number of expected bytes and a

value for the append flag.

The C programs that we run for the communication send and read ASCII

characters.

82



Controller Component Description :

Inputs :

clk (std_logic)

rst (std_logic)

E_COL (std_logic) : Collision Detected. The PHY asynchronously asserts
the collision signal E_COL after the collision has been detected on the
media. When deasserted, no collision is detected on the media.

E_CRS (std_logic) : Carrier Sense. The PHY asynchronously asserts the
carrier sense E_CRS signal after the medium is detected in a non-idle
state. When deasserted, this signal indicates that the media is in an idle
state (and the transmission can start).

E_MDC (std_logic) : Management Data Clock. This is a clock for the
E_MDIO serial data channel.

E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial
data channel for PHY/STA communication.

E_RX_CLK (std_logic) : Transmit Nibble or Symbol Clock. The PHY
provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100
Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for
the transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER.

E_RX_DV (std_logic) : Receive Data Valid. The PHY asserts this signal to
indicate to the Rx MAC that it is presenting the valid.

E_RXD (std_logic) : Receive Data Nibble. These signals are the receive data
nibble. They are synchronized to the rising edge of E_RX_CLK. When
E_RX DV is asserted, the PHY sends a data nibble to the Rx MAC. For a
correctly interpreted frame, seven bytes of a preamble and a completely
formed SFD must be passed across the interface.

E_TX CLK (std_logic) : Transmit Nibble or Symbol Clock. The PHY
provides the E_Tx_Clk signal. It operates at a frequency of 25 MHz (100
Mbps) or 2.5 MHz (10 Mbps). The clock is used as a timing reference for
the transfer of E_TXD[3:0], E_TX_EN, and E_TX_ER.
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* E_RX_ER (std_logic) : Receive Error. The PHY asserts this signal to indicate
to the Rx MAC that a media error was detected during the transmission of
the current frame. E_RX ER is synchronous to the E_RX CLK and is

asserted for one or more E_RX_CLK clock periods and then deasserted.

Outputs :

* E_MDIO (std_logic) : Management Data Input/Output. Bi-directional serial
data channel for PHY/STA communication.

e E_TX EN (std_logic) : Transmit Enable. When asserted, this signal
indicates to the PHY that the data E_TXD[3:0] is valid and the
transmission can start. The transmission starts with the first nibble of the
preamble. The signal remains asserted until all nibbles to be transmitted
are presented to the PHY. It is deasserted prior to the first E_TX CLK,
following the final nibble of a frame.

* E_TXD (std_logic) : Transmit Data Nibble. Signals are the transmit data
nibbles. They are synchronized to the rising edge of E_TX_CLK. When
E_TX_EN is asserted, PHY accepts the E_TXD.

e E_TX ER (std_logic) : Transmit Coding Error. When asserted for one
E_TX_CLK clock period while E_TX_EN is also asserted, this signal causes
the PHY to transmit one or more symbols that are not part of the valid
data or delimiter set somewhere in the frame being transmitted to
indicate that there has been a transmit coding error.

* PHYA_RESET (std_logic)

84



clk
rst
E_COL
E_CRS E_MDIO
E_MDC E_TX_EN
E_MDIO E_TXD
E_RX_CLK E_TX_ER
E_RX_DV PHYA_RESET
E_RXD
E_TX_CLK
E_RX_ER

Figure 6.3 Controller component

6.2 Arbiter

In case we have more than one cores attached to the driver, we need to manage
the write-back priorities of the cores. For this reason we have developed a
controller. This controller reads the write-back requests of each core and if it is
its turn to write back then it stores its outputs to the driver’s Tx buffer. The only
difference compared to the implementation described above is that in this case
we need one more signal for the communication of the driver with the cores.
This signal indicates when the core should start sending data back or if it must

wait. The Tx buffer of the driver has also 32 bits long words.
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Chapter 7

Implementation Results

The results of the implementation methods discussed in the previous chapters
are displayed here. In our charts and tables we have also included the results of
the C/C++ implementation of both Linear Time Selection Algorithm and
Quicksort Algorithm. Thus, we compare the performance of the method we
chose to implement with another common method(quickselect which is also
another popular solution is based on the quicksort algorithm, so we can also
conclude about how k and number of inputs affect and this method’s execution

time) and in parallel we compare the software and hardware runtimes.
We have measured the performance for the following cases:

e Search for the minimum
e Search for the median

* Search for the 25th percentile

All input data are random numbers from 0 to 255 (8bits) and are created with

the use of rand() function.
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7.1 Performance Results

We have measured the cycles needed to complete the process for all the

implementations mentioned before for a variety of different number of inputs.

The charts below show the increase of the cycles needed to complete the process
as we send more data to the core. We have used both linear and log scale in

order to present better their performance differences.

Table 7.1 Results of the search for the minimum number.

Cycles for Cycles for
Cycles for Cycles for
Number of selection selection
quicksort selection
Inputs algorithm algorithm
(C/C++) algorithm (C/C++)
(VHDL V1) (VHDL V2)
10 3200 5400 158 67
100 32000 26400 667 474
500 179200 111400 2990 1999
1000 231200 177600 5629 3700
5000 2175200 877600 26938 17358
10000 4809600 709600 54308 34803
50000 20918400 3279200 271641 173386
100000 68388800 8198400 535694 342327
200000 284828800 12285600 1068560 682837
500000 1615546400 32924000 2678545 1710784
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Figure 7.1a Results of the search for the minimum number. Linear scale.
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Figure 7.1b Results of the search for the minimum number. Log scale.
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Table 7.2 Results of the search for the median.

Number of

Inputs

Cycles for
quicksort

(C/C++)

Cycles for

selection

algorithm (C/C++)

Cycles for
selection
algorithm

(VHDL V1)

Cycles for
selection
algorithm

(VHDL V2)

10 4000 8600 193 93

100 32800 17400 370 269
500 179200 105600 2978 1968
1000 382400 262800 5776 3981
5000 2204800 969600 27749 17837
10000 4556800 1094400 32579 22581
50000 21837600 2676000 269096 171951
100000 80164800 6545600 540401 344946
200000 252299200 13148800 1082806 690750
500000 1451534400 36572800 2723650 1735245
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Figure 7.2.a Results of the search for the median number. Linear scale.
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Table 7.3 Results of the search for the 25th percentile.

Number of

Inputs

Cycles for
quicksort

(C/C++)

Cycles for

selection

algorithm (C/C++)

Cycles for
selection
algorithm

(VHDL V1)

Cycles for
selection
algorithm

(VHDL V2)

10 4000 6600 143 55

100 32800 32600 750 537
500 178400 113600 3089 2060
1000 283200 266500 5752 3762
5000 1755200 1038400 27188 17513
10000 5368000 1133600 55032 35226
50000 20691200 4512800 218085 143460
100000 68938400 7859200 540870 345211
200000 277820000 15831200 1087437 693274
500000 1458095200 40347600 2680974 1711191
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Figure 7.3a Results of the search for the 25th percentile. Linear scale.
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From the above Tables and Figures, we notice that for less than 10 inputs
quicksort is faster than selection algorithm, while for more than 10 inputs the
opposite happens. This is expected because the quicksort algorithm takes O(n
logn) time to sort an unorded given set of numbers , while Selection finding
algorithm takes 0(n) in worst case. Also because of this difference in their order
times we notice that as the number of inputs increases, the performance gain

with the use of Selection algorithm instead of quicksort is bigger.

Moreover, we notice that both VHDL implementations are much faster than the
C/C++ implementations. The reason is that VHDL runs concurrently, while

C/C++ runs sequentially.

The following figures show their differences:

Figure7.4 Concurrent

94



Figure7.5 Sequential

Finally, we notice that Version 2 is faster than Version 1. As we have mentioned
and in the previous chapter Version 2 is more time efficient than Version 1, as it

is build with a concept that enables the parallel writing to different memories.

7.2 Power and Leakage Results

Although, in this thesis we have not focused on the management of power
consumption on FPGAs, we have measured both total power and leakage power
for all the above scenarios, as power has become a major concern for
semiconductor vendors and customers For these measurements we have used

the XPower Analyzer tool.
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Table 7.4 Leakage and total power results

Number of L:zlv(vaegre Total
Inputs w Power(W)
10 2,88 2,979
100 2,88 2,989
500 2,88 3,001
1000 2,881 3,011
5000 2,881 3,008
10000 2,881 3,021
50000 2,891 3,252
100000 2,902 3,536
200000 2,903 3,556
o Leakage power e
SR — — —  Total power P
3.252 .
3.021 1 —
bl
3.008 - s —
. 3.011 A —~
S 3001 7
2.989 4 -
N e —
2979 4—— "
2.903 A
2.902 4
2.891 4
2.881 4
2.88 ; / : :
101 102 1038 104 105

Number of inputs

Figure7.6 Leakage and power results

As it is expected Leakage power and the total power increases as the number of

inputs becomes bigger. Larger designs suffer even more with these issues.
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7.3 Implementation Reports

In the next table we present a summary about the device utilization for both

Version 1 and Version 2.

Table 7.5 Number of Slice LUTs, Number of Occupied Slices.

Nl;mber of Number of Slice LUTs Number qf Occupied
nputs Slices

Version 1 Version 2 Version 1 Version 2

100 | 1,358 (1%) | 1,239 (1%) | 627(1%) 524(1%)

500 | 1,579 (1%) | 1,654 (1%) | 625(1%) 529(1%)

1000 | 1,634 (1%) | 1,831 (1%) | 644(1%) 589(1%)

5000 | 1,864 (1%) | 2,14 (1%) 726(1%) 753(1%)

10000 | 1,892 (1%) | 2,166 (1%) | 756(2%) 780(2%)
50000 | 2,065 (1%) | 2,727 (1%) | 850(2%) 1,177(3%)
100000 | 2,072 (1%) | 2,632 (1%) | 856(2%) 1,095(2%)
200000 | 2,162 (1%) | 2,343 (1%) | 933(2%) 1,020(2%)

Table 7.6 Memory utilization

N‘;mbe’ °f  Number of RAMB36E1  Number of RAMB18E1
nputs
Version 1 Version 2 Version 1 Version 2
100 | 0(0%) 0(0%) 8(1%) 13(1%)
500 | 0(0%) 0(0%) 8(1%) 13(1%)
1000 | 0(0%) 0(0%) 8(1%) 13(1%)
5000 | 0(0%) 0(0%) 14(1%) 19(2%)
10000 | 0(0%) 0(0%) 20(2%) 25(3%)
50000 | 24(5%) 24(5%) 52(6%) 77(9%)
100000 | 97(23%) 122(29%) 3(1%) 3(1%)
200000 | 197(47%) 247(59%) 0(0%) 0(0%)

We notice that Version 1 uses less memory sources than Version 2. This is
expected because Version 1 uses 5 S_RAMEM memories, while Version 2 uses 10

of them.
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The table below shows the maximum operation frequencies for both versions. If

want to achieve ever higher frequency, we should use the pipeline option in the

ISE Coregen, while we generate our Block Ram memories.

Table 7.7 Maximum operation frequency

N';:::t':’f Maximum operation Frequency (MHz)
Version 1 Version 2

100 225 225
500 200 205
1000 199 223
5000 163 190
10000 170 189
50000 179 182
100000 174 194
200000 164 145
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7.4 Conclusion

According to our measurements we conclude that the experimental results
confirm the theory and our expectations. Linear time Selection algorithm is a
much more efficient solution to the selection problem than the quicksort
algorithm. Also with the FPGA implementation we achieve important
performance improvement. As we have noticed and above with the 2rd Version
the performance improvement is even bigger, while the 1st Version allows us to
use tha FPGA implementation for larger sets of numbers, which is also very
important due to inherent limitation about memory blocks found in FPGAs. To be
more specific Version 1 presents 21% memory savings compared to Version 2,

whilst Version 2 is up to 45 % faster.

Another conclusion is that Linear time Selection Algorithm needs approximately
the same time to find any kth number from the given set of numbers, while
Quicksort’s (and so by extension Quickselect’s) execution time is affected by the
value of k and the number of input data(the pivot is chosen at random). This is

shown and in the next figures.
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Figure7.7 Comparison between the runtimes for the search of kth smallest

number with the use of Linear time Selection Algorithm.
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