EOGNIKO METXOBIO ITOAYTEXNEIO

2XOAH NAYIIHI'QN MHXANOAOI'QN MHXANIKQN
TOMEAYZ OAAAZYEIOQON KATAXKEYQN

«AVVOPLIKTY] COUTTEPLPOPE KOl HEGES OEVTEPOTAELES
ovvaperg o petafariropevny padbopetpior

AITTAQMATIKH EPT'AXIA

OIKONOMIAOY X. XAPIX

EmpBiénovreg : Kof. Mavpdkog A. .
EBvikdé Metoofio TTorvteyveio (E.M.IT.)

Prof. Molin B.
Ecole Centrale Marseille (E.C.M.)

/»\

Centrale Marseille

Abnva, TovAlog 2012



NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF NAVAL ARCHITECTURE AND MARINE ENGINEERING
LABORATORY FOR FLOATING STRUCTURES AND MOORING SYSTEMS

“Sea-keeping and wave drift forces in
varying bathymetry”

DIPLOMA THESIS

OIKONOMIDOU C. HARIS

Supervisors : Prof. Mavrakos S. A.
National Technical University of Athens (N.T.U.A), Greece

Prof. Molin B.
Ecole Centrale Marseille (E.C.M.), France

S

Centrale Marseille

Athens, July 2012



H cehida avt elvan oxoOmLo AVKT).



/70
8.

>

g4
1K

VPPOPOS

POMHOEV S
il
L

U

EOGNIKO METXZOBIO ITOAYTEXNEIO

2XOAH NAYIIHI'QN MHXANOAOI'QN MHXANIKQN
TOMEAYZ OAAAZZION KATAXKEYQN

«AVVOPLIKTY] COUTTEPLPOPE Kol HEGES OEVTEPOTAELES
ovvaperg o petafariropevny padbopetpior

AITIAQMATIKH EPT'AXIA

OIKONOMIAOY X. XAPIX

Empiémovreg : Kaf. Mavpdxog A. 2.
EBvuco MetooPio [Horvteyveio (E.M.I1.)

Prof. Molin B.
Ecole Centrale Marseille (E.C.M.)

Eykpinke amd v Tpipedn) eEETACTIKN EMTPOTN TNV cvveeeereeeireeeireeenreeennens

(Ymoypogr)) (Ymoypogry) (Ymoypogiy)
Maowpdkoc A. Zm. Ipnyopomovirog 1. T'p. Xatinyeowpyiov K. 1.
Kofnynmg E.M.IT. Kafnynmge E.M.IL Avamh. Kafnynmge E.M.IL.

ABMva, IodAog 2012



MepiAnyn

2mv mwopovoo NMAOUATIKY epyacic, ot dgvtepotdéieg dvvdpelg (Drift forces)
dlepeuvaviol BempnTikd, TEWPAPATIKA Kot apOuntikd. Ot cLYKEKPIUEVEG dEVTEPOTAELES
duvdpelg gtvar dvvapelg deyelpopeves amd Tovg BUAAGGIOVE KVLOTIGUOVG KOl UTOpovV Vo
TPOKAAEGOVLV TNV TOPEKKAION €vOg TAolov amd v mopeion Tov. YTAPYOLV UEGEC
devtepotaiieg dvvapelg (Mean Drift forces) mov epgaviCoviar 6e povoypOUOTIKOVS
KOUHOTIGHOVG Kot devtepotdéieg duvauelg yauning ovyvotntog (Low frequency Drift
forces) mov opeiloviol e TOAVYPOHOTIKOVG KULATIGHOVG. Ot duvaelg dgvtepng Taéng av
Kol LIKPOTEPES GE HETPO OO TIG TPMOTOTAEIEG OVVAUELS, SVVAVTOL VO TPOKOAEGOLV EVTOVEG
amoxpioels. 'Eva mpaxtikd mpofAinia mov cuvdéetal pe Tig 0evtepotdiieg SLuVALELS eivat 0T
pe v évodo g CRToNg Tov PLGIKOY aegPiov KabioTatol avaykaio 1 €yKatdotaoT vE®V
HOVAd®V Tapoy®yns Kot amodnkevong guowol aepiov ota avoytd g Odiaccas. H
aAAnAenidopaot peTa&y evog TAoiov petapopds vypomoinpévoy euckoL aepiov (LNG) kot
evog otofuod omobnkevong kot emeepyaciog oto avoyytd, Ompovpyel mAnOopa
VOPOSLVAUIK®OV TPOPANUAT®V, GTO OTTOI0 VIEIGEPYOVTOL 0L HEVTEPOTAEIEG OVVALELS.

Ot devtepothliec duvapelg emnpedloviar amd moKihec TNYEC Ko TOPAYOVIES OE
pétpo kol oe mpdonuo. Ocov apopd oV oTopiKn €EEAMEN TV BePldV TOV APOPOVV
GTNV EKTIUNGT TOVGS, VILAPYOVV SLVOUIKES Be®pPieg Y100 TOV VTOAOYIGUO TOV UEGHV KOl TMV
YOUNAOGLYVOV OEVTEPOTASI®MY SLVAUE®DY Kot U1 duvapukés Bempieg yia Ty ekTiumon g
ONUAGI0G TV GUVEKTIKOV QOVOUEVOV GTIG LEGEG OEVLTEPOTAELEG OLVALELS. TNV TOPOVCH
dmlopatiky  epyacia, amd TG Svvopukég Oewpieg oavaivovior 1 péBodog  dpeonc
oloxAnpwong g mieong (Near-field or Direct integration method) kot n péBodog g
opung (Far-field or Momentum method). EmmAéov, yivetoar por pikpn avo@opd oTig un
duvapukég Bewpies.

To mepopotikd Kot Oeopnrikd  KOUpATL ™G OWAMUOTIKNG  €pyaciog
dtekmepombnke vd to mhoico tov mpoypaupatog ERASMUS oe cuvepyoasio pe to
[Movemoto Ecole Centrale Marseille (ECM). Agopd oto diodidotato TpofAnue piog
opBoydviog goptnyidag. Idiaitepn mpocoyr| d6OnKe 6TO0 POIVOUEVO TV OpVNTIK®OV (U
katebBvvon oavtifetn g katehBvvong o1ddoong Tov KOUATOG) HECOV OeVTEPOTAELMV
duvvdpewv. Egetdomnkav ot cuvOnkeg vrd T1g omoieg n péom devtepotaSia dvvaun yiveton
aPVNTIKY KOODC KOl TO oV 1) TNy avTod TOL PUIVOUEVOD glvarl SUVOUIKY 1 opsihetan og
QOLVOLLEVO GUVEKTIKOTITOG.

H péon devtepotdéio dvvaun petpndnke kot vroroyiotnke yio didpopeg datdéerc.
Me o160 ™ HEAETN TG EMIOPACNS TOL PALVOUEVOL TNG HeTaPairopevng Pabopetpiog oto
TPOCTO TNG OEVTEPOTAELNG SVVOUNG, Mo amdToun petdfacn Tov BaBovg Tov Tubuéva Kot
évag 1olyog Umpootd amd to poviédo swonydnoav ot yeoperpio Tov mpoPinuotoc. H
pHETPMNO™M NG KIVNONG TOL HOVTEAOL ETTVYYAVETOL OO £VOL GUGTNLO ATOTEAOVEVO OTd VO
nAekTpoemTavYels 01000V¢ (TomoBetnuéves maved oto povtédo) Ko pio aplOunTikn
Bwrteokduepa. Xt cvvéyeld, N Sodkacion HETPNONG SEKTEPOLOVETOL HEGH JLOUOOYIKMV
npoypoappdteov matlab. To ypappuod Beopntkd poviého ompiletonr o dakplronoinom
TOV eSOV PONG HE KOTAAANAN S1OKPITOTOINGT) TOV GE TEPLOYEG 0pHOYOVIKNG YEOUETPIOG.
To ypappuwkd mpdPfinua  oktvoforioc-mepibAacng Advetar  pe  ovamTOYHOTO
woovvaptioewv Fourier kot ot devtepotdéieg duvapelg vroroyiCovtor pe v uébodo g
OPUNG XPNOOTOLDOVTOS dV0 KATAKOPLPEG TOUES OVAVTL KO KATAVTL TG pong. EmumAéov
opot amdcoPeong mpoouetpobivtar oty katokdpven TaAdvioon (heave) kor otov
dwroyiopd (roll), yio tnv poviehomoinen @V GLVLTOPYOVIMV GLVEKTIKOV QOIVOUEVMV
KO Y10 TNV 0TOPLYN POLVOUEVOD EVTOVOV GUVTOVIGHLOV.

270, CLUVOAMKE ATOTEAECLLATAL, TOPATNPEITOL KOAT] CLLEMVID LETAED TEPAUATOV KOt
Oewplag. Ov amokAicelg otn devtepotdélo dHvoun omodidoviar oV advvapio TG
devtepotdiiag anokpiong vo edoel oe katdotaon tcoppomiog. Apvntikn devtepotdéia
dvvaun TOPATNPEITOL GTNV TEPITTMGN TOV TOLYOL KOl CLUUTEPAIVETAL OTL EIVOL OTOTEAEG LN



duvapukov eawvopévav. Emmiéov, n euedvion g apvnTikng deutepotdélog dOUVOUNG
emnpealetal omd TNV £VIOVN TOAGVIMOOT TOV LOVTEAOL Kot TNG EAeV0EPTG EMPAVELNS GTNV
KaTakOpvEN Katevhuvor. QoTO60, dev TPEMEL VO AUEANBOVV GLVLTTAPYOVTO UM~ YPOLLUIKE
Qowvopeva, OmmG glval 0 SOY®PIGUOS TNG PONG, TO OMOiN UTOPOVV VO TPOKOAEGOLV
AmOGPREST) TV OPVNTIKMV SEVTEPOTAELMV SUVAUEWV.

AéEerg  KAewwa: << devtepotdlleg duvdpelg, doddoTato  TPOPANUa,
dwakprronoinon tov mediov pong, HEB0d0G TG OPUNG, SVVOULKT TPOEAEVOT] TOV APVITIKOV
dgVTEPOTAEIMV dUVAE®V, KOO’ VYOG GLVTOVIGUOG TOTOL TAAVIPOLOVVTOG EUPOAOD (piston
mode resonance), GUVLTAPYOVTOL [T~ YPOLLUIKG QavOpEVe, >>



Abstract

In the present thesis the drift forces are theoretically, experimentally and
numerically investigated. Drift forces are second-order wave exciting forces which may
cause a vessel to loose its course, i.e. to drift away. There are mean drift forces acting in
regular waves and low-frequency drift forces occurring in an irregular sea-state. Drift
forces although being smaller in magnitude than their first-order counterparts, may excite
large amplitude motions, especially in the modes of motions where hydrostatic restoring
forces are lacking or they are small. A practical problem linked with the drift forces is
connected with the rising demand for natural gas and the incentive for new import facilities
placed offshore. The interaction between a LNG carrier and an offshore LNG receiving
terminal gives rise to many hydrodynamic issues where the drift forces are involved.

Drift forces are influenced by diverse sources and factors in magnitude and in sign.
Concerning the historical development of theories for their evaluation, there are potential
theories used to calculate the mean and low frequency drift forces and non-potential
theories used to evaluate the viscous effects in mean drift forces. As far as the potential
methods of evaluation are concerned, the Near-field or Direct integration method and the
Far-field or Momentum method are analysed in the present thesis. A small reference to the
non-potential theories is also made.

The experimental and numerical investigation has been carried out in the
framework of the ERASMUS Programme in collaboration with the Ecole Centrale
Marseille (ECM). It concerns the 2-D problem of a rectangular barge with square bilges.
Special attention has been paid to the occurrence of negative (opposite to the wave
direction) mean drift force phenomenon. The circumstances under which this force
becomes negative as well as whether the source of this phenomenon is potential or viscous
are examined.

Wave drift force is measured and calculated for different configurations. Under the
scope of studying the effect of the variable bathymetry on the sign of the drift force, an
abrupt depth transition and a wall in front of the barge were implemented in the geometry
of the problem. In order to measure the movement of the barge, a system consisted of two
electroluminescent diodes located on the barge and a numerical video-camera was used.
The procedure of measurement is fulfilled through a sequence of matlab programs. The
linear theoretical model is based on the discretization of the flow-field using rectangular
sub-domains. The linear radiation-diffraction problem is solved by eigen-function
expansions and the calculation of the drift force is obtained from momentum considerations
(Far-field method) with two vertical cuts at upstream and downstream infinity. Extra
dissipation terms at heave and roll responses are added in order to model the dependency
on viscous phenomena and to avoid excessive resonance.

In the global results, good agreement between experiments and theory is observed.
Discrepancies at drift are attributed to the difficulty of drift to attain a stable state. Negative
drift force is observed in the case of the wall and is deduced to be of potential origin. The
excessive oscillation of the barge and the free surface in the heave direction influences the
occurrence of negative drift forces. However, there are co-existing non-linear effects as it is
the flow separation which may cause the damping of the negative drift force.

Key words: << drift forces, 2-D problem, discretization of the flow-field using
rectangular sub-domains, momentum considerations, dissipation terms, potential origin of
negative drift forces, piston mode resonance, co-existing non-linear effects >>
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1. INTRODUCTION

In recent years, there is rising demand for natural gas and this fact creates the
incentive for new import facilities. The natural gas is cooled down at a temperature of
-160°C and liquefied in order to be transported. In the liquefied form, at atmospheric
pressure, LNG occupies only 1/600™ of its volume at gaseous state and is therefore
more economical to be stored and transported over long distances. In addition to the
condensation of the natural gas, the liquefaction procedure removes the impurities
such as carbon dioxide, water and sulfur. The end result is an odorless, colorless
product consisting mostly of methane (approximate range 85% to 99%). The clean
LNG (liquid natural gas) is therefore not menacing for the environment and not
damaging for the equipment of its transportation.

The LNG Supply Chain contains five different steps as it is illustrated in
Figure 1-1. The liquefaction plant is similar to a large refrigerator with compressors,
condensers, pressure expansion valves and evaporators. Then the LNG is piped in
storage tanks. The following step of the transportation can occur either via pipelines
or by LNG carriers. Moreover the LNG arrives at the receiving terminal, to be stored,
regasified and piped to the end-user such as a power plan when needed.

& Gas LNG LNG Al Gas

Field ) ) o Receiving Power
Development Liquefaction Shipping Terminal Genegration

Figure 1-1: The LNG Supply Chain.

The receiving terminal must mainly include marine jetty facilities for
discharging LNG, special tanks for LNG storage, process equipment for the
regasification of the liquefied natural gas. The selection of the length of the unloading
jetty is very important and is a function of different parameters: waterdepth, overall
length of the LNG carrier, other specific site conditions that have been selected to
offer the maximum flexibility for the transportation requirements. In addition to the
jetty, a turning circle will also be demanded to permit the turning of the LNG carrier
either on arrival or on departure.

As mentioned in Foss (2006), LNG receiving terminals have been built mostly
on-shore despite the long history of offshore crude oil receiving facilities around the
world. Nowadays, there are a lot of different projects of developing receiving and
regasification offshore terminals, which can be floating or fixed. There are both
opportunities and challenges linked with offshore development. In some locations, an
offshore receiving terminal may provide a better alternative due to the use of existing
offshore facilities and pipelines and easier access for LNG tankers. Possible
drawbacks could be the limited or distant access to natural gas distribution pipelines,
the lack of onshore services and in most instances, higher initial investments.

There are many hydrodynamic issues as well arising from the concurrence of
hard environmental conditions and the complex bathymetry. A lot of calculation
problems are mainly present in near-shore activities. The practical problem comes out
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from the existence of the floating oil or gas production annex storage facility, to
which the export tanker is moored during loading operations. For example, reference
is made to a LNG carrier moored to a FSRU (Floating Storage Regasification Unit)
(see Fig. 1-2).

A common hydrodynamic issue is the prediction of the wave induced mooring
loads. The mooring system must be designed in a way that prevents an intense wave
induced response so that it permits the LNG transfer. Moreover, it is important to
define the critical loads for the structure and the environment. A critical parameter to
this problem is the period of the sea in comparison with the natural periods of the
movements under consideration. Furthermore, the turning circle is also responsible for
a varying bathymetry region and its impact on the total loads must be taken into
consideration.

Last but not least, it arises the problem of numerical simulation of the motions
of a LNG carrier moored to a storage unit. In such a problem, accurate prediction of
the wave drift force and moment on each vessel is important and must be taken into
account in the design of the mooring system. The narrow spacing between the
adjacent vessels introduces an added complexity.

Figure 1-2: LNG-carrier during its procedure of unloading along a FSRU.
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2. BACKGROUND AND THEORY

2.1 General

Problems of time-dependent interactions between waves and marine
structures concern both naval architects and civil engineers. There do exist methods to
solve this hydrodynamic body-wave interaction problem but in both aspects there are
limitations one has to take into account. Naval architects are occupied in defining the
motions and the structural loads imposed on a ship by the sea waves. Linearized
water-wave theory based on the ideal-fluid, irrotational-flow model is a very good
tool. However, the excitation and damping of roll motion as well as the viscosity
effects cannot be treated adequately by this approach.

Civil engineers from their part focus on wave loads on fixed structures which
can be analyzed approximately by the use of Morison’s formula. Morison’s formula
includes the loads associated with both viscosity and inertia of the water but it does
not take into account any diffraction effects. It is widely used in offshore truss
constructions for structural elements which can be considered as hydrodynamic
slender bodies. This formula is simple in its application but there are still some doubts
concerning the validity of the superposition of an inertia force and a viscous force.
Actually, the Morison’s formula is the most generally used method which includes
viscosity phenomena but it is very primitive.

As offshore platforms become a dominant subject, both of these approaches
are required to predict forces and motions and both diffraction and viscosity have to
be accounted for. Thus, what is missing by both methods is a combined consideration

of diffraction of incident waves and of viscosity effects [Ogilvie (1983)].

The periods where the sea waves give rise to an important amount of energy
cover a range of 3 to 20 sec. At these periods, the waves generate oscillations to the
floating structures and from their part, the floating structures respond by a movement
of the same period whose amplitude is related almost linearly to the waves’
amplitude. In case of resonance, we must be alert to catastrophic responses.

Aiming to avoid the resonance, a practical technique usually used is to
transpose the natural periods of the structures before or after the period of the sea.
This is why it is generally preferable to have smooth anchorage, so as the natural
periods of the horizontal movements are in the order of the minute or more. To
whatever extent, it is naive to believe that by directing to a technique like this the
phenomenon of resonance will be annulated. Practically, it is always observed a
response at the natural periods even if they are far away from the waves’ periods.
Non-linear mechanisms are held responsible for the appearance of these phenomena
[Molin (2002)].

For classical ship-motions problems, the linearized water-wave theory gives
accurate results. As far as platform problems are concerned there are some non-linear
phenomena which play a very important role. At this point, we introduce the second-
order wave forces, called wave drifting forces. These forces cause the vessel to loose
its course, i.e. to drift away. At first, it is clarified that second-order implies forces
that are quadratic functions of the height of the incident waves. Right after, we do
mention that there are mean second-order drift forces acting in regular waves and low
frequency drift forces occurring in irregular waves. The drift-force problem is a time-
dependent problem because the waves and thus the motion of the vessel are a function
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of time. As it is suggested by their name, the second-order forces are well smaller in
magnitude than their first-order counterparts that are predicted by the linear theory.
By working out the results of Zhao et al. (1988), Faltinsen (1990) shows that the
linear wave excitation forces of a wave amplitude of Im are 100 times larger than the
mean wave drifting forces and that for a wave amplitude of 10 m the first-order force
is about 10 times larger. This fact depicts the need for accuracy both in the
calculations and the experiments. However, the reason we are high interested to these
forces is that, as pointed out by Hsu and Blenkarn (1970) and Remery and Hermans
(1972), slowly varying wave drifting forces may give rise to large amplitude low-
frequency horizontal motions of moored vessels in irregular waves despite their small
magnitude. These scientists laid great stress also on the importance of defining the
mean second-order forces in regular waves in the same problem. It is very important
to predict the magnitude of these forces acting on a platform within the scope of
ensuring that their responses are kept in acceptable limits.

Furthermore, we will make an attempt to elucidate the importance of the word
moored. An unrestrained ship or platform has no natural frequencies in its horizontal-
plane motions (surge, sway, yaw) and this is attributed to the absence of hydrostatic
restoring coefficients for these motions. A floating platform in offshore technology
must be restrained with respect to its horizontal position, most usually thanks to
mooring lines fixed to anchors and in this case natural frequencies of oscillations
come into play. What is remarkable is that these frequencies take a much lower value
than the frequencies of the incident waves which give rise to the familiar responses of
heave, pitch and roll. This fact results in another phenomenon which is not predicted
by the linear theory: resonance of the system with low-frequency second-order
excitations.

In order to refer to the effect of resonance, it has to be confirmed that there are
found low-frequency waves in the wave spectrum as well. An accurate explanation is
the following: because of the non-linearity of the free-surface conditions, usually we
cannot make reference to one single wave frequency. For example, the existence of
two waves of different frequencies always implies the existence of waves at the sum
and at the difference (beat) frequencies. The beat frequencies may occur near the
resonance frequency of the moored platform in surge, sway or yaw. The only way to
restrict this resonant response can be provided by the relevant hydrodynamic damping
mechanisms. To sum up, if the incident wave system acts in a continuous spectrum of
wave frequencies, as it is the sea surface which is a continuous mean with infinite
number of degrees of freedom, a low-frequency disturbance must be expected, and if
the damping is small (as it is usually the case in such motions) a highly amplified
resonant motion comes out.

To this end it is also important to neglect the interaction between waves and
body and consider merely the fluid motions in the environment called “free waves”.
Ogilvie (1983) shows that drift force may be inherent in the formulation of the
second-order incident wave velocity potential. Reference will be made to the case of
sinusoidal unidirectional waves in deep water. It is well-known that to first-order a
fluid particle with equilibrium co-ordinates X, and Z, moves in a clockwise circle
about the equilibrium position (on the free surface). To second-order, however, the
fluid particles have a steady horizontal transport velocity component. This may be
small, but it can be by no means negligible. What is remarkable is the fact that this
steady horizontal velocity component is always in the incident wave propagation
direction.
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2.2 Common problems

There are a lot of common problems arising from the existence of the mean
and slowly-varying wave loads (difference frequency loads). Referring to a moored
ship, its equilibrium attitude with respect to the direction of incident waves is affected
by the second-order forces and moments. It is important to mention however that
drifting is affected by the direction of the waves. Concerning moored vessels, the
drifting impact may seem to be limited when the system encounters head waves.
Furthermore, the slowly varying components and the phenomenon of resonance may
cause severe damage to the mooring system. This is practical in the framework of the
analysis of offshore loading systems.

Drifting effects arise also in the case of a freely floating ship. As mentioned in
Prins (1995), an important contribution to the drifting phenomenon is introduced by
the incoming waves. Moreover, from measurements, a significant increase of the drift
forces is observed due to the forward speed of the ship. These ships face an added
resistance above their resistance in calm water, which has to be overcome by their
engines. This fact implies that in the drift force problem, the combined effect of both
current and forward speed has to be considered. But also in harbor circumstances the
drifting forces may become critical owing to the impact of shallow water. Hence
bottom effects have to be also considered.

Besides, sum frequency forces can cause problems. These forces can result
resonant oscillations of tension-leg platforms (TLPs) in vertical plane motions (heave,
pitch, roll). In literature this is the so called phenomenon of “springing” or “ringing”
and can contribute to fatigue problems in the tension legs. Due to the springing, we
can also find a ship resonating as a vibrating beam in response to periodic wave
excitation. Low-frequency motions in the vertical plane may be significant as well.
For example, large-volume structures are sometimes designed with small waterplane
areas in order to decrease their natural frequency of heave. It is common to find
natural periods of 30 to 60 sec. Consequently, this kind of structures can undergo
second-order vertical-plane resonances similar to the horizontal-plane resonances.

The vertical components of the second-order forces are sometimes known as
suction forces. This term is generally used for submarine vessels when hovering or
travelling near the free surface and is in connection with the mean wave induced
vertical force and pitching moment of the vehicle [Ogilvie (1963)]. The suction force
can impose a problem concerning the control of the vehicle in the vertical plane.

2.3 Historical development of theories

To start with, the physical similarity between the drift force problem and the
added resistance problem is accentuated. Actually, the added resistance is simply the
longitudinal component of the mean second-order wave force for the case of non-zero
forward speed. Noteworthy is the fact that initially attention was paid to the added
resistance problem. In recent years, owing to the development in offshore technology
and to the increase in the number of vessels being moored at sea, the zero forward
speed problem is also considered. In addition to the initial interest in the mean wave
forces, the consideration of the low frequency wave forces has also begun.

Suyehiro (1924) is considered to be the first one to report the existence of
wave drifting forces. He observed a steady side force on a model rolling in beam seas.
He attributed this force to the wave reflection of the incoming waves by the model.
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Watanable (1938) applied to a different mechanism; namely, interaction between the
incident waves and the motions of the ship for explaining the second-order drifting
phenomenon. His calculations partly agreed with Suyehiro’s experimental results.
Havelock (1942) developed a more mathematical analysis but concerning the mean
longitudinal drifting force on a vessel heaving and pitching in regular head waves.
The disadvantage of these theories is that they are not completely accurate, as a lot of
very important phenomena are not taken into account. For instance, diffraction
effects and hydrodynamic effects are only partly taken into consideration.

Maruo (1960) presented expressions for the calculation of the mean horizontal
second-order drift forces exerted on bodies exposed to regular sea waves and floating
in infinite waterdepth. Briefly, his theory is based on the conservation of energy and
momentum of the fluid restricted by three bounders: the hull, the free surface, and a
control surface far from the body. Newman (1967) extended Maruo’s formula to
include also yaw drift moments. In both works the control surface has been set to
infinity and the second-order terms were expressed in terms of Kochin functions grace
to the far-field asymptotic behavior of the velocity potential. Faltinsen and Michelsen
(1974) have developed similar theories to Maruo’s approach by accounting for the
finite water depth case. Moreover, a development by Molin (1979a) introduced the
mean wetted surface boundary of the body as control surface. The theories of Maruo,
Newman, Faltinsen and Michelsen, and Molin are three-dimensional and exact to
second-order within potential theory. Their basic assumptions do not introduce
restrictions on the hull form.

Nevertheless, the application of the momentum method in studying the heave
force and the mean pitch and roll moments is generally not preferable due to the
integrations to be carried out over the free-surface and the sea-bottom. Mavrakos
(1988) has proved that in case of truncated or compound vertical cylinders, where
analytic representations of the required first-order velocity potential are disposable,
these integrations can be evaluated analytically. Mavrakos derived some new
expressions for the mean vertical force and pitching moment on an arbitrarily shaped
floating body for both finite and infinite water depth. However, there still remains a
great difficulty in the solution of a problem including an interacting group of bodies
attributed once again to the free-surface and the sea-bottom integrations involved.

Gerritsma and Beukelman (1971) estimated the increase in wave resistance of
vessels travelling in head seas. They assumed that the mean resistance increase
(longitudinal drift force) can be found by equating the damping energy radiated by the
heaving and pitching vessel with the work done by the incoming waves.

In a series of papers Pinkster (1976, 1977, 1979a, 1979b, 1980) has provided
us with one of the most thorough analyses. Pinkster suggested a method based on
direct integration of all pressure contributions to the second-order wave forces on the
wetted hull of the body. He gives insight in the mechanism of interaction between
waves and body. His method is also in accordance with the potential theory. Later,
Pinkster and Hooft (1978), Pinkster (1979b) expanded this theory to three-
dimensional cases by making use of the second-order non-linear incident wave
potential in order to calculate the mean and low-frequency part of the wave drifting
forces (see also Chapter 3.13).

Last but not least, Wahab (1974), Pijfers and Brink (1977) introduced methods
of calculating the drift forces which take into account viscous effects. Viscous effects
may become significant as far as slender constructions, i.e. semi-submersibles, are
concerned. Huse (1976) has reported a qualitative indication of the viscous effect on
the mean wave drift forces acting on semi-submersibles.
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In total, the theories elaborated in the past can be grouped in four main categories:

l.

Potential theories which derive the mean second-order forces relying on the
application of the momentum conservation principle to a control volume
surrounding the body. These theories take advantage of the far-field behaviour
of the potentials describing the motions. Some of the scientists who have dealt
with this category are the following:

-Maruo (1960)

-Newman (1967)

-Faltinsen and Michelsen (1974)

-Molin (1979a)

-Mavrakos (1988, 1995)

-Lee and Newman (1971)

The momentum conservation principle has been implemented in finite control
volumes as well; as opposed to those of infinity extent (far-field). These
methods have been developed in relation with multi-body configurations,
where the application of the classical form of the momentum method in the
far-field would have resulted in evaluating the total force on the entire multi-
body system and not on the drift-force calculation of each member of the
configuration. In that context, Lee and Newman (1994) and Mavrakos (1995)
presented formulations of the momentum conservation principle in finite
control volumes that surround each body of the configuration, while Chen
(2007) introduced an alternative formulation, the so-called “middle-field”
method, also based on finite control volumes surrounding each participating
body in the multi-body configuration.

An alternative formulation of calculating the mean drift forces as well as the
low frequency second-order forces, which is also exact to potential theory is
based on the direct integration of the fluid pressure over the instantaneous
wetted surface of the body, keeping all relevant terms up to second-order. In
some of these cases the final expressions ensue from using Gauss theorem,
modified to equivalent expressions which have to be evaluated on a fictitious
boundary at great distance from the vessel. Hence, in this case it must be made
once again use of the asymptotic or far-field behaviour of the potential
characterizing the flow. Theories in this category are thanks to:

-Watanable (1938)

-Havelock (1942)

-Ogilvie (1963)

-Pinkster (1976), (1979a), (1979b)

-Faltinsen and Loken (1978)

The third category refers to potential theories which calculate the mean
second-order forces by equating the damping energy radiated by the
oscillating vessel to work done by the incoming waves. These theories are
approximative and assume a slender body. Examples of these theories are
owing to:

-Gerritsma and Beukelman (1971)

-Kaplan and Sargent (1976)
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4. The fourth category includes theories which exploit Morison’s equation and
the relative motion concept in order to evaluate viscous effects in the mean
drift force. These methods are applicable to semi-submersible structures which
are assumed to consist of slender elements. Representatives of this theory are:
-Wahab (1974)

-Pijfers and Brink (1977)
-Huse (1976)

In our study, we are going to analyze the first two methods which are according to
potential theory. In addition, a small reference to the theory linked with the fourth
category will be made.

2.4 The second-order potential and Newman’s argument

The majority of all existing papers contain a kind of assumption that
eliminates the need to solve for the second-order potential at the difference
frequency o;-0;. It is the simplifying assumption of Newman (1974) which allows us

to act in this way. His approach is going to be described in greater extent at a later
time. At this point, only considerations and comparisons with Newman’s results by
other researchers are mentioned.

It is proved that the mean drift force does not depend on the second-order
potential, whereas in principle the low-frequency force does depend on the second-
order potential. Briefly, what Newman suggests is to express the low-frequency force
in terms of the mean drift force. A lot of scientists made an attempt to solve the
second-order problem in order to prove the validity of Newman’s argument. Molin
(1979b) managed to avoid the exact evaluation of the second-order potential by
introducing an assisting radiation potential and using Green’s second identity. This
formulation was followed further by several investigators who calculated the second-
order force’s components on vertical axisymmetric bodies [Eatock Taylor and Hung
(1987)], [Abul-Azm and Williams (1988)], [Mavrakos and Peponis (1992)]. The first
attempt to consistently predict the complete sum- and difference second-order force’s
components has been made by Loken (1986) who solved for the second-order velocity
potential in the case of an arbitrarily shaped body. Later, Kim and Yue (1989, 1990)
calculated the double-, sum- and difference second-order potential in case of vertical
axisymmetric bodies using a boundary integral formulation involving general order
free-surface ring-source Green functions. The general second-order hydrodynamic
problem in three dimensions has also been treated by Zaraphonitis and Papanicolaou
(1991) who evaluated the second-order potentials and associated forces on arbitrarily
shaped large floating bodies using improved integration techniques for the free-
surface integration.

However, Newman’s argument is well-founded only in the case of deep water

and requires that the two frequencies forming the difference ;-o;are within a short

distance. In order to clarify the two preconditions, reference is made once again to a
case of free waves (no body present) in the presence of at least two frequencies. There
are two components for the difference-frequency problem; the first one being found

() (2)

directly from®"’ and the second one depending on®'” . Actually, it is shown that

the amplitude of the fluid velocity associated with the second-order potential goes to

zero as the beat frequency approaches zero, in a case of deep water. This result (which

)

can be proved only for free waves) confirms that ®? can be omitted. Sometimes, the
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wavelength associated with these beat-frequency waves may be very, very long and in
this case one must treat them as shallow-water waves. In such a problem, the fluid
velocities arising from the second-order beat-frequency potential do not disappear as
the beat frequency approaches zero. It must be noted that this happens only for
second-order waves because of their very low frequency. First-order waves can well
continue being treated as deep water waves.

Bowers (1976) studied the longitudinal drift force on a moored ship in head
waves. In his analysis, he had to consider the second-order difference-frequency
waves as shallow-water waves. The typical wave period in the spectrum of incident
waves, in his problem, was about 5 sec. This is linked to a wavelength of about 40 m
which can be taken as a deep-water wave. The natural frequency of the mooring
system was 0.1 rad/sec or less, corresponding to wavelengths of 250 m or even more.
This is why the difference-frequency motion associated with the natural frequency of
the mooring system is undoubtedly a shallow-water motion. Therefore, Newman’s
argument is invalid and Bower’s had to include both first-order and second-order
potential’s effects in his calculations. According to Bowers’ computed results and

comparisons between the cases with and without the effects of o, the importance of
the second-order potential was more evident for surge movement.

Pinkster and Huijsmans (1982) found that their computed forces, concerning
low-frequency forces on a semi-submersible in waves, were 30% to 40% lower than
their measured forces. In their analysis second-order potential is neglected and as
stated by Bowers the discrepancies can be justified by the non-existence of @
Nevertheless, while comparing different theories the dissimilarities between them
must not be left behind. Pinkster and Huijsmans solved a problem of a semi-
submersible, and they did include diffraction effects at least within the scope of the
first-order potential. Bowers was concerned with a ship in head waves only, without
calculating diffraction effects. As a result, the comparison between them is not
obvious.

Newman’s argument in not valid for the vertical-plane motions mentioned
already, because the corresponding resonance frequencies are considerably higher
than in the horizontal-plane motions. The vertical-plane problems encompass this
great difficulty.

2.5 Different types of wave forces

A summary of all the different types of wave forces is going to be presented so
that the classification of the wave drift forces is possible. A structure exposed to the
action of sea waves is subjected to forces that arise from the presence of different
mechanisms. The following types of forces are marked out:

a. Froude-Kryloff forces are the forces exerted to the fictitious contour of the
structure from the sea waves. The basic assumption used in defining these forces is
that the presence of the body does not deform the fluid field, therefore the body is
considered to be invisible. These forces are easily calculated through the direct
integration of the pressure’s flow field of the simple harmonic wave on the wetted
surface of the body.

b. Diffraction forces are the forces generated if the presence of the body and the
following deformation of the wave field are taken into consideration. The body is
assumed to be present but immovable. Hence, a new potential due to the diffraction
effect is introduced. In the framework of linear theory, the superposition principle is
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valid and we can sum the undisturbed incident wave potential and the diffraction
potential. The forces that come out from this summation constitute the hydrodynamic
exciting loads.

c. Radiation forces emanate from the movement of the structure, when a moving
structure is considered. This movement of the structure gives rise to waves which are
characterized by the radiation potential. The radiation potential in its turn leads to
radiation forces exerted on the moving structure. In a linear theory consideration, in a
similar way the characteristic potential can be also added to the other potentials.

d. Resistance forces are due to the viscosity of the flow field and are proportional to
the velocity square. They are present if the fluid is real. The drag forces obtained by
the Morison’s formula belong to this category.

e. Other forces: The sea wave exciting forces have a non-linear nature. Therefore,
they can be divided in forces of different orders. The forces described in a, b and ¢
constitute the first-order forces, which are calculated by the solution of the linear
problem. Moreover, there are the forces of second-order and of superior order. Drift-
forces correspond to second-order forces. It is also important to mention that the
radiation forces and the Froude-Kryloff forces are usually reported in bibliography as
fluid inertia forces.

In areas of the fluid flow where the drag forces exerted on the body can be
neglected (when they have a value inferior to the 10% of the total force) it can be
made use of the potential theory. The flow is assumed to be incompressible, inviscid
and irrotational. Such a consideration is realistic in the majority of calculation
problems of the loads of massive offshore constructions as long as the significant
phenomena of diffraction of the flow are taken into consideration.
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3. NEAR-FIELD METHOD

The Pinkster’s potential method for calculating the drift forces, termed also the
“Direct Pressure Integration” or the “Near-Field” method, is going to be presented.
This is a method applicable to all six degrees of freedom and yields results for both
mean and low-frequency wave drifting forces. The procedure is based on direct
integration of all contributions to the second-order forces over the instantaneous
wetted surface of the hull of the structure. The body is considered to move with zero
or very low forward speed.

3.1 Perturbation Theory

The theory is developed in accordance with perturbation theory methods
which however include some limitations. The perturbation theory is a very useful tool
predicting non-linear effects at the cost of restriction in fairly small wave amplitudes
and wave slopes. In this theoretical context, it is also assumed that the side walls of
the structure meet the undisturbed free surface at right angles in order to avoid
singularities not predicted by linear theory.

By referring to a perturbation analysis, it is assumed that there is a small
parameter €<<l, called steepness which can act as a basis for series expansions
representations of all quantities that come up. For example, the steepness may depict
the relation between the amplitude of the waves and the wavelength. We can therefore

imagine this parameter equal to 822—}L .

Practically, the velocity potential @ of the flow and all quantities derivable
from the flow such as waveheight, pressures, potentials, motions etc., are considered
to vary only very slightly relative to some initial, static value. They can all take the
following written form:

X=XO+ XV + X 4,

where the affixes ), ®, @ denote respectively the static value, the first-order

oscillatory variation and the second-order variation.

Ogilvie (1983) in his analysis refers to the existing problem of invalidation of
the basic assumptions of the perturbation theory, when the horizontal excursions of a
platform are found larger compared with the platform’s dimensions. Triantafyllou
(1982) solved this problem by observing that the platform’s velocity may remain quite
small (if we associate it with the small amplitude of fluid particle velocities), even
while allowing large excursions of the platform in the horizontal plane. According to
him, the entire hydrodynamic problem can be analyzed to a series of linear
hydrodynamic problems.
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3.2 Co-ordinate Systems

Three different co-ordinate systems are applied. The linearization process is
present in the formulation of these systems and therefore they are developed with
respect to the mean position of the body and to the mean free surface. The
first G-x,-x,-x;1s a Cartesian ship-fixed co-ordinate system which follows the
movement of the ship. The system’s point of origin is the centre of gravity G and the
positive direction of the G-x, axis is vertically upwards in the mean position of the
oscillating vessel. It is chosen in a way so that its planes of symmetry coincide with
the body’s planes of symmetry. The hull geometry of a ship is unambiguously defined
relative to this system and the position of a point on this surface is described by the
vector x . The orientation of a surface element in this system is defined by the outward

pointing normal vector n (a vector pointing to the fluid and not to the surface of the
body). This system can be also named as the system of “body axes”.

The second co-ordinate system 0-x,-x,-X,is a fixed inertia system with axes
parallel to the G-x,-x,-X, system, when the body lies in a calm state. The system’s

origin is on the mean free surface of the fluid in calm state.
Finally, the third system G-x,"-x,"-X;" has origin in the centre of gravity G of the

body and its axes remain at all times parallel to the axes of the fixed
system 0-x,-X,-X, . The system is subjected only to translation motions with respect to
the fixed inertia system 0-x,-X,-x, and coincides with G-x,-X,-x, when the latter is in
its mean position.

Figure 3-1: Co-ordinate systems [Fig. from Pinkster (1979)].

From the preceding schema we observe that the Eulerian angles x4, X5 and x¢
represent the angular motions of the body about the body axes.
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3.3 Motions of a point on the body

Assuming that the body is floating in small amplitude waves subjected to the
first-order hydrodynamic forces, the arising displacement of a point P (on the surface)
of the body has to be a small first-order quantity as well. It is convenient to express

the displacement vector X relative to the fixed system of axes 0-x, -X,-X, because this

is going to be our system of reference through which we are going to depict all our
variables:

X=eX = e<<lI 3.1)

In kinematics, the displacement of a rigid body can be represented by its
translation, namely the position of one of the particles of the body specifically chosen
as a reference point (typically coinciding with the center of mass or centroid of the
body), together with its angular position (also known as orientation or attitude of the

body). Thus, the position X" is consisted of two components: linear and angular
respectively:

X" =x," +RV.% (3.2)

where X, is the first-order displacement vector of the point G relative to the fixed
system of axes 0-x,-x,-X,, X is the time invariable vector of the position of a point P

on the body relative to the system G-x,-x,-x,and R the matrix which contains the

rotation angles about the system G-x,-x,-X,, in our case the first-order oscillatory

3
angular motions.

—X X X,
m_| O () T
RV =] x, 0 —x,’|and Xx=|x, (3.3)
—x® X0 0 X,

() M

The prefixes x,"”, x,”’, x," are respectively the first-order roll, pitch and yaw motions.

In a similar way, we may analyze the velocity v of the point P relative to the
fixed system of axes. This is also a first-order quantity. Thus, for the first-order
problem the perturbation series provides us with the following equation:

5=X=eX® (3.4)
where )?“) = )?g(” + RO . (3.5)
and
0o %" £
RV=x" 0o —x® (3.6)
0 50 0
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The existence of the outward pointing normal vector 7 in the system of
axes G-x,-X,-X; has been already denoted. Moreover, the surface orientation vector 7

will be transformed to a vector N in the fixed system of axes. This transformation will
be also accurate for the third system of axes G-x,'-X,-x;', with axes always parallel to
the 0-x,-x,-X, system. The vector N is time variable; the orientation of the surface
elements is affected by the rotation of the body.

N=N4+eN® =ji+eN® (3.7)
where

N =RY .5 (3.8)
R" is once again given by equation (3.3).
Even if it is not our case, it is reported that equations (3.2), (3.5) and (3.8) are

valid for all orders. The general form of (3.2) is the following and in a similar manner
the general forms of (3.5) and (3.8) are formed.

— () — () (i) - .
X =X, +R"-x 1=0,1,2,. (3.9)
where,
a, 4dp a;
R=|a, a, ay
A3 Ay dy
with,

a,; = COS X - COS X,

a,, = sin x, -SIn X - COS X, — COS X, - SIN X,
a,; = COS X, - Sin X; - COS X, +sin x, - sin x,
a,, = COS X; - SIn x;

a,, =sIn x, - SIn X, - Sin x, + COS X, - COS X
,, = COS X, - SIn X; - Sin x, —sin x, - cos x,
a,, = —sin x,

a,, =sin x, - cos x,

a5, = COS X, * COS X;

Furthermore, the rotation matrix is developed to a Taylor series in order to
provide us with R, RV, R®. Equation (3.3) is the result of this procedure for the

first-order. The fact that in equation (3.7) N =i, comes also from this procedure.
The way we have defined the system of axes justifies this result as well.
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3.4 Fluid Motions and Boundary Conditions

The fluid domain is bounded by the free surface, the wetted surface of the
floating object and the sea bottom. The fluid under consideration is water; therefore it
is assumed to be incompressible at all times. Furthermore, supposing that the fluid is
inviscid, irrotational and homogeneous the fluid motions can be described by a

velocity potential ® and hence the velocity in the fluid isV =V®. As already
mentioned, the velocity potential can be expressed through a perturbation series:

=" +e?0+. . (3.10)
The potentials are considered relative to the fixed system of0-x,-x,-X, axes.

In this problem, there exist two unknown quantities: the potential &Xt) and
the free surface elevationn(xl,xz,t), which must satisfy the following boundary

conditions. Basically, these boundary conditions are non-linear. The axes are the same
as for the potentials, i.e. fixed in space:

1. Everywhere within the fluid field D = D(I]) the Laplace equation, which
expresses the continuity of the flow and the irrotationality of the flow field, is

satisfied. This equation represents the physical principle of conservation of mass. This
is a linear equation itself:

AD=V’®=0,XeD (3.11)

Since @ satisfies the linear Laplace equation, each ®"in the perturbation series also
satisfies the Laplace equation. For our case, it must be satisfied to first and to second-
order.

2. At the water surface 0D, we have two boundary conditions. The two boundary
conditions which follow are written in a linearized form. This fact restricts our results
to small amplitudes of both the motions and the incoming wave field. Naturally, the
boundary conditions are applied to the actual moving free surfacex,=7.

Implementing a linearization procedure by means of Taylor series expansions, they
are transformed into boundary conditions at the fixed mean free surfacex, =0.
Because there are no exterior restrictions to the water surface, these boundary
conditions will be referred to as the free surface:

e The pressure should be constant on the free surface and equal to the
atmospheric pressure po (dynamic condition).

d+ gn =0 XedD,; . x3=0 (3.12)

e The fluid normal to the free surface is equal to the velocity of the surface in
the same direction. This fact states that a fluid particle cannot leave the
surface, or in other words that no fluid particles pass through the free surface
(kinematic condition).
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90 s %edD, . xs=0 (3.13)

ox,

By removing the dependence on the free surface elevationn(xl,xz,t), the two

equations are combined and to first-order the following homogeneous condition is
obtained:

gd", +®" =0 XedD, .x=0 (3.14)

The second-order boundary condition is non-homogeneous and is satisfied if:

. ~ - . 1 .
g0y +0? =-2.vo.vo + oV (@, +§ -®Y)) Xe€dD; . x3=0 (3.15)

3. The boundary condition at the sea floor 0D, states that to first and to

second-order no fluid particles may cross this boundary. Therefore, both the normal
component of the fluid velocity and the normal component of the surface velocity
must be equal to zero:

oo
on

U, =0 (i=1,2), x,=-h (3.16)

where nis the normal vector of a point on the surface of the sea bottom and U, is the
bottom surface velocity.

4. The floating body wetted surface 0D, is assumed to be impermeable, so no

fluid particles can pass through this boundary. This fact is expressed by the condition
of continuity of the normal velocities between the fluid and the floating object:

VO-N=U-N ,XedD, (3.17)

where U is the velocity of the body surface itself.

An equivalent form of equation (3.17) is the following:

V. =U, ,XedD,

n n

At first, the condition must be satisfied to first and to second-order at the
instantaneous position of the hull surface. Right after, we will write down the linear
expansion.

To first-order the boundary condition is as follows:

Vo .i=0".7 (3.18)
And its linear expansion has the same form:

Vo .i=0".7 (3.19)
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To second-order:
Vo i = UV -vo).NY (3.20)
Linear expansion:
VO .ji =XV . V)VO . ji+ UV -VO?). NV (3.21)

To second-order, there is an additional term which is due to the procedure of

linearization, when applying the Taylor expansion to the velocityV®®™ . In the
linearized equations, the potentials and their derivatives must be considered at the
mean position of the body.

5. To make the solution of our mathematical model unique, an extra condition
has to be imposed, which is called radiation condition. This condition describes how
the potential ®(X,t)acts in very large distances away from the body. It suggests

that ®(X,t) must describe only waves which travel away from the body. Otherwise

there would be solutions for waves having been created at infinity, fact that has no
physical meaning. When studying the equations analytically, this condition can be
imposed to infinity. However, in numerical studies limited computer time and
memory may impede this. In this case, this condition has to be given on an artificial
boundary.

3.5 Potentials

The first order potential @ can be decomposed to a sum of three potentials:
the potential due to the undisturbed incoming waves, the diffraction potential, and the
radiation potential:

(D(l): (I)(l)w +(D(1)d +(D(1)R (322)

The diffraction potential and the radiation potential express respectively the
disturbance of the free surface field due to the presence of the body (when it is
considered to be motionless) and the movements of the body. These two potentials
substitute the unknown potentials which have to be defined in a way that the total

potential @ satisfies all the boundary conditions. The first-order potential of the
undisturbed incoming waves does not have to comply with the radiation condition as
it refers to incoming waves, whereas the radiation condition has to be applied to the

potentials (I)(l)d and(I)(l)R. The physical meaning of the diffraction and radiation

potential will be clarified after their substitution in the floating object’s boundary
condition.

Therefore, we substitute equation (3.22) in boundary condition (3.19) and our
problem takes the following form:

Vol +vol +vel) 1 =0V .n (3.23)
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Afterwards, since the main problem is linear it can be decomposed to two problems:

Diffraction Problem: vo! = —§®(1)M, ‘N (3.24)
Radiation Problem: ﬁd)(l)R gi=U".5 (3.25)

From equation (3.24) it is obvious that in order to determine the diffraction potential,
the body is assumed to be motionless and there exist only the undisturbed incoming
waves. The Radiation Problem suggests that the radiation potential depends
exclusively on the real motions of the body but in calm water. According to the

solution of the first-order problem, the combination of @' . With @ provides us with

1)

the first-order wave exciting forces. Moreover, through @', the hydrodynamic

reaction forces are defined, which can be expressed in terms of added mass and
damping coefficients. More details on this procedure are written down in the
description of the proposed theoretical model. Complete first-order solutions are
discussed at length in literature. In the following, it is assumed that the first-order
solution is known.

In the second-order problem, it is firstly found a potential satisfying the free-
surface condition, without regard to the body condition. By combining equations
(3.22) and (3.15), a general form for the second-order potential is obtained:

(D(Z) :(D(Z)ww +(D(2)dd +(D(2)bb +(D(2)wd +(D(2)wb +(D(2)db +(D(2)dw +(D(2)bw +(D(2)bd +(D(2)d (3 26)

where the first nine components of the right side are particular solutions to the
following type of boundary condition:

go® 1o =290l Vo) +a0 {CD(D +lq’(l)w,,xs} (27

WWy3 Wwy W WWx3x3 g

The last potential ®? | is a kind of “ordinary” potential which is in agreement with the
linearized homogeneous free surface condition:

go?, +@%, =0 (3.28)

Equation (3.26) will be simplified by assuming only two components for the
second-order potential. The first component, representing the sum of the first nine
components on the right-hand side of equation (3.26), may be considered as the
second-order equivalent of the first-order undisturbed wave. In general, this potential

presents a problem due to the complexity of the second-order surface boundary

condition. The second component is without any change the potential ® d(z) .

O =0 +0?, (3.29)

Concerning the radiation condition in the second-order problem, it must be
imposed exclusively in the calculation of ®*,. Likewise to the first-order problem

where there was no radiation condition for (D“)W , in this problem a radiation condition
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for ®”  needs not to be imposed. The components of ®®, are particular solutions to

the free surface boundary condition (3.27) which is valid over the complete free
surface.

Since the expression for the second-order potential has been simplified, an
approach to the second-order body boundary condition can be made. Through the
combination of equations (3.29) and (3.21) it is obtained:

(ﬁcpmw +VO? ) i ==XV - V)WVO 7+ (U VD). NO (3.30)
Or
VO, .ji = {—ﬁcpmw —(X". 6)6@‘“} Gi+(O" -vo®). N (3.31)

Equation (3.31) illustrates directly how the second-order diffraction
potential ®? , is formed. It is deduced that®'”, firstly acts in a way similar to®"
@

w

as it compensates the second-order velocity components of @ Moreover, it

compensates the second-order correction to the first-order velocity V", which is the
additional term due to the Taylor expansion, mentioned in (3.21). It is also evident
that the second-order diffraction potential depends on the difference between the first-

order velocity U™ of the body surface and the first-order fluid velocity VO in a

direction along the first-order normal N". Pinkster (1980) during the procedure of
decomposition of the second-order potential includes the additional component

of ®?,. The potential ®”, is equivalent to®", but it satisfies the boundary
condition on the body carrying out low frequency second-order motions in still

water. As it is the case for®",, ®?®, may be also expressed in terms of

R>®
hydrodynamic reaction forces. In our problem, this potential is not studied as it has
been assumed that the body is strictly allowed to act in response to the first-order
oscillatory hydrodynamic forces.

If the right-hand side of equation (3.31) is known,®®, can be solved using

()

numerical methods. From the solution of ®*, and®"® , the low frequency second-

order wave exciting forces are defined. However, the major problem is the
verification of the non-homogeneous second-order free surface condition and thus, the
definition of the second-order potential becomes a tremendous undertaking. A general
formula for this can be found in Wehausen and Laitone (1960), but the numerical
work prevents anyone from fulfilling this task. Nevertheless, the formulation of the
entire problem is not pointless since essential information can be still obtained from
the formulation of the problem itself.

Furthermore, reference will be made to Pinkster’s approximative method,
offering at least an indication of the magnitude of the ®® contribution to the low
frequency wave drifting forces.

3.6 Pressure in a point within the fluid

After the determination of the velocity potential ® and the potential’s
boundary conditions, the fluid pressure can be defined. Considering the fluid to be
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ideal or inviscid, which means that the fluid has no resistance to shear stress, the
pressure distribution can be obtained using the Bernoulli equation:

1 |=_p
p=py-pgX;-p, -2 Vo[ +C0) (3.32)

where p, stands for the atmospheric pressure and C(t) is a function independent of co-

ordinates. Both of these parameters may be taken equal to zero without loss of
generality.

In the same time, it can be formulated a definition of the pressure based on the
existence of different order pressure components. Assuming that the point is

. . . <.
performing small, first-order oscillations X "in the wave frequency, about a mean

positioni(o), applying a Taylor expansion to the pressure in the mean position and
combining these results with equation (3.32) the following expression is derived:

p=p"+ep¥+e’p? (3.33)
where:
Hydrostatic pressure : V= -pgx,” (3.34)
First-order pressure PV =-pgX,V - po (3.35)
1 = .2 —1) —
Second-order pressure: p? = —Ep‘Vd)(”‘ - pd? —p(X(l) Vo) (3.36)

Theoretically, the hydrostatic component-pgX,” owing to the second-order

vertical motion should have been also included in the calculation ofp®. This

component is neglected since it is part of the second-order reaction forces due to
second-order motions of the body.

Based on the Taylor expansion, the derivatives of the potentials also have to
be considered in the mean position of the point.

This expression has been formed for a point within the fluid but it is also valid
for a point on the hull of the body. This may not seem logical as it is well-known that
a point on the hull can be part of the time within and rest of the time outside the actual
fluid domain. Nevertheless, according to Joseph (1973) this is permissible if the
potential functions are adequately “smooth” at the boundaries.

3.7 Second-order wave force

In the case of harmonic waves, the motion of the ship may be also expected
harmonic and thus drifting would be unexpected. Nevertheless, there has been
observed drifting even in harmonic waves and there comes up a mean drifting force
which is not equal to zero. This is due to the existence of second-order effects since
the mean value of the first-order quantities is zero. An attempt will be made to explain
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why there is a mean second-order drifting force on a structure exposed to regular
incident harmonically oscillating waves. A major contribution to the horizontal mean
drifting force, as it will be proved, is the relative vertical motion between a surface
piercing body and the waves. Any point in the free-surface zone of the structure is
alternately within and outside the actual fluid domain and consequently a non-zero
mean pressure is observed even in regular harmonically oscillating waves. Thus, if the
relative vertical motion changes around the waterline, we do refer to non-zero mean
wave forces. This is the case for large-volume structures which modify the incident
waves’ field.

Before proceeding to the calculation of the drift forces, the applied system of
axes has to be selected. The force acting on the body is studied, thus it would be
practical to have the object within the frame of the default co-ordinate system. The

axes of G-x,-x,-x, system of co-ordinates, which is always parallel to the fixed

system 0-x,-X,-X, , seems to be the most appropriate one.
The body is subjected to the following fluid force:

F:—ﬂp-ﬁds (3.37)

with S the instantaneous wetted surface and N the instantaneous normal vector to the
surface element dS, relative to the default system of axes.

This computation is not as easy as it seems to be. The actual position of the body is
not known and according to the linearization process all quantities have been
calculated on the average position. To this end, it would be practical the separation of
the instantaneous wetted surface S into a perturbed and an unperturbed term which
are respectively: a constant part S; going up to the static waterline on the hull which

is equivalent to the mean wetted surface, and an oscillating part s(t) between S, and

the wave profile along the body. This is apparent in the preceding Figure 3-1. Note
that in our case of zero or very low forward speed, the oscillating surface s(t) does not

contribute to quantities of first-order. It will be now presented the extraction of the
time dependence froms(t) .

After combining equations (3.33) and (3.7) it follows that:
F = _ﬂ(pw) +ep® +52P(2))(£+5ﬁ(l))dS+
So

_J‘J‘ (p(O) + gp(l) +82p(2))(;1+ SN(I))dS _
s(t)
=FO4eFY+&2F? +0(&%) (3.38)

In this way we derive the hydrostatic force F”, the first-order oscillatory fluid force

F" and the second-order force F®' .

Hydrostatics describes fluids in a calm state, when there is not observed
relative movement between different molecules of the fluid. The hydrostatic force is
the stationary contribution to the power series of forces and is the application of
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Archimedes’ law. It results from the integration of the hydrostatic pressure p” over
the mean wetted surfaceS,. The total hydrostatic force and moment is equilibrated by
the weight of the floating body.

—(0) 0)—
F=F" = pg|[ X, ndS = (0,0, pgV) (3.39)
So

where V represents the displaced volume.

The total first-order oscillatory fluid force arises from the integration of the
first-order pressure p'” over the mean wetted surface S,and normal vectorn, as well as

from the integration of the static pressurep” over S, and normal vector N so that
there is always a first-order product, being preceded by e.

FU=[[ @ n+pON")ds=-[[ -pgX, nds+ ([ p@,"ndS + K" -(0,0.pgV) ~ (3.40)
Sy Sy So

The first two terms represent the total first-order fluid force relative to the body
axes G-x,-X,-X; . They correspond to the hydrostatic restoring force [first term] and to

the first-order wave exciting force and the hydrodynamic reaction force (added mass
and damping force) [second term]. The third term is the hydrostatic contribution to
pressure being multiplied by the matrix of first-order angular displacements. This
term is also relative to the body axes.

The total second-order force F® comes out on the one hand after integrating all
the products of pressure p and normal vector N, which contribute to second-order
forces, over the constant part S, and on the other hand after integrating all first-order

pressures over the oscillating surfaces(t).

F =~[[(p"N" + p@nyds - [[ p" nds (3.41)
S, s(1)

Taking into consideration that:

N =R" ., (3.42)

And since angular displacements are identical for all surface elementsdS, the first
part of the first integral is transformed to:

_ ” pON"as =BV (- H " nds) (3.43)
So So

The entire equation is a consequence of the choice of the axes G-x, -x, -x, to which
the second-order force is referenced. It demonstrates that after a rotation relative to
G-x, -x, X, a first-order fluid force relative to the body axes can create a second-

order force contribution relative to G-x,-x,-x; system of axes. Furthermore, an
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example is given by Pinkster (1979b) for surge drifting force. He reports that after a
rotation even a vertical first-order force can give rise to a longitudinal second-order
component.

Likewise, the first-order component of the hydrostatic force acting on the body
relative to the body axes, is considered to be a second-order force if acting
onG-x, -X, -X; .

If this component is added to equation (3.43):

R" {— [[ p"nds +R" (0.0, ng)} -r".F" (3.44)
So

Where F' s the total first-order fluid force including all the first-order components of

equation (3.40). As E" is the total first-order force it can be also expressed through
the Newton’s law:

F'=m-x,0 (3.45)

From which it follows that:

R"F"=R".(m-x, M (3.46)

The second part of the first integral in equation (3.41) involves a
straightforward integration of the hydrodynamic pressure over the mean submerged

part of the hull as given by Bernoulli forp®®.

The second integral over the oscillating surface s(t) is solved after making use
of equation (3.35) forp"”

step imposes some geometrical restrictions, like a vertical ship hull at the free surface.

and the following equation for the surface elementdS. This

ds = dXx, -dl (3.47)

Right after, we rely on the dynamic condition on the water surface in order to
approximate ®'”, at the static waterline of the vessel which is near to z=0:

—p®," = pgc® (3.48)

where (" is the first-order wave elevation

Therefore after combining the preceding equations it follows that:

(1)

~[[p"nds ==[ | (~peX,+pg¢m-dx di (3.49)

h
s(t) WL x )3WL

The relative wave height is the wave height as measured from the vessel:
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&0 =¢0-x, ¢ (3.50)

M

where X, " is the first-order vertical motion of a point on the hull at the waterline.

Consequently, the final expression for the integral is simplified in the following form:
1 -
=] 5 pe(& ) ndl (3.51)
WL 2

Basically, this contribution is connected with the statement that near the surface the
pressure in the waves can be approximated by the hydrostatic pressure. The
aforementioned equation reveals that the hydrostatic pressure increase at both the
mean waterline on the hull and the additional area where the pressure acts is
proportional to the relative wave height. The integral around the time dependent
oscillating surface has been transformed to a line integral around the static waterline
of the vessel. Additionally, by introducing the relative wave height an equation
completely relative to the motion of the vessel has been obtained.

The working out of equation (3.41) can be written as:

—(2) 1 - 1 = 2 =0 = -
F7=—| 3 (&) ndl - [ {—5 p‘Vq)“)‘ —p0? — p(X -V(D‘”,)}ndS +
WL S

+RO(M-X,) (3.52)

3.8 Contribution of the different components of the mean second-
order wave exciting forces

There are five components in equation (3.52). Pinkster through his
computations analyses the behavior of each component in sign and in magnitude.
These results are presented in the following Figure 3-2 and refer to the mean surge
drifting force on a rectangular barge and a semi-submersible. In Figure 3-3 Pinkster
illustrates a comparison between these different contributions and the total mean
horizontal drifting force. These results concern the three-dimensional case of a free
floating hemisphere in infinitely deep water.
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Figure 3-2: Components of the computed mean surge drifting force [Fig. from

Pinkster (1979b)].
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Figure 3-3: Components of the computed mean second-order horizontal
drift force [Fig. from Pinkster (1979b)].

It is observed that contribution I, due to the relative wave elevation, is
preponderant while the other contributions tend to reduce the effect of contribution I.
In the case of the sphere this contribution is twice larger in magnitude than the total
force and has always the same sign with it. It expresses a pressure increase and its
sign coincides with the direction of propagation of the waves.
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As it comes out from the example of the sphere, contribution II, which is the
effect of the square of the velocity, is different in sign but equivalent in magnitude to
the total. It represents a pressure decrease and what is remarkable is that it
corresponds to a mean force component which, contrary to intuition, is directed into
the waves.

The following contribution, due to the second-order potential ®® , is not taken
into consideration in the calculation of the mean drift forces in regular waves.

The following term, which is a mixed product of pressure gradient and first-
order motion, will be termed as contribution III. It is quite complicated to predict the
exact sign of this term. The sign depends on the phase angles of both quantities. This
component is linked with the motions of the body and the pressure gradients. In the
case of the sphere, it is smaller in magnitude and acts differently than the total force.
At very high wave frequencies where the wavelengths are small, the motion of the
vessel tends to zero and consequently this is also the case for the force component. At
low frequencies, the pressure gradients tend to nullification and so does the force.
This is apparent in all examples.

Contribution IV is the last term which incorporates the products of angular
motions and body accelerations. In the example of the sphere, it is zero because there
are no angular motions. Generally speaking, it is only in intermediate frequencies that
this component takes a non-zero value which depends on the phase between the first-
order included components. Similarly to contribution III, in high frequencies where
the waves are considered to be short, the hull tends to immobilization and at low
frequencies accelerations tend to zero.

Noteworthy is the fact that finally at high wave frequencies, as it is proved by all
examples, only contributions I and II remain.

In Figure 3-4, the computed mean vertical wave drifting force is presented for
the same structures presented in Figure 3-2. It is depicted that the mean vertical force
on the barge is downwards while on the semi-submersible it is upwards. On the
presumption that both vessels have vertical walls at the waterline, contribution I is
zero. Contribution II and also partly contribution III and contribution IV give rise to
the mean vertical wave drifting force. The peak in the mean vertical drift response
function takes place at the natural pitch and heave frequency.
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Figure 3-4: Components mean heave drifting force [Fig. from Pinkster (1979b)].
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3.9 Second-order wave moment
The moment of the fluid about the axes of G-x, -x, -x; system follows from:

M:—”p-()?xﬁ)ds (3.53)

The adopted procedure for obtaining the moments is similar to the procedure we
followed for obtaining the forces.

The final formulae for the drift forces and drift moments are almost equivalent. The
differences are that translational motion is replaced by the rotational motion, and the

normal n by Xxn:

—® 1 o .
M :_J-Epg(fr(l))z(xxrz)dHR“’ (1-X, )+
WL

_J’J‘{_%pﬁq)(l)r _pq)t(z) —p(i(l) _%q)t“))}-(;cxﬁ)dS (3.54)
So

Equations (3.52) and (3.54) include the total second-order loads acting on a vessel;
the wave exciting force in the absence of motions, the hydrodynamic and hydrostatic
reaction force. Generally, we focus more on the second-order wave exciting force so
the dependence on the other components has to be eliminated. In our case, in which
we have not taken into account the second-order displacement, there are no second-
order terms of hydrostatic reaction forces. The hydrodynamic reaction force is hidden
in the total second-order potential ®?, in the specific term of®,” . It has been
already noted the difficulty in the determination of the second-order potential.
However, in the calculation of the mean drift forces the contribution due to ®? is
zero in regular waves and we have no interest towards this potential in this problem.
In the following sections it will be shown that in practice for irregular waves in finite
depth a simple approximation of these second-order potential contributions can be
used. To sum up, what we get if we neglect ®® is a wave exciting force and moment,

but without the components of ®® that do contribute to the wave force in irregular
waves.

3.10 Quadratic transfer functions for the mean and slow-drift (or low
frequency) wave drifting force in irregular waves

The expressions for the second-order wave exciting forces and moments
obtained by the direct integration method on the wetted surface of a body may give an
insight into the mechanism by which the waves and vessels interact to produce the
second-order force, but their form is quite complicated for practical applications. In
this section, an attempt is made to formulate the forces under consideration by means
of time independent quadratic transfer functions (QTF) for the mean and low
frequency force and moment components. This will also allow the transition from
time domain to frequency domain. Generally, frequency-domain methods are very
useful in the preliminary design stage since they are computationally more efficient
although time-domain analysis is indispensable for the final design purpose.
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We start with low frequency second-order forces and furthermore we are
going to clarify how we get mean wave forces in irregular sea-state.

Considering the different components of equation (3.52), the total quadratic
function also consists of contributions due to first-order and second-order quantities.
We focus on first-order quantities and as we are interested in the low frequency
forces, the low frequency part of the longitudinal force’s component due to the first-
order contribution of the relative wave elevation is treated.

R = K0 ==[ 5 pg " ) n0)-d (3.5)

WL

where:
(¢.")*(t,I)= time dependent relative wave elevation in a point | along the waterline

n, (1) =direction cosine of a length elementdl in longitudinal direction

The goal 1s to separate the double dependence of £ on time and on a specific
point 1 along the waterline into two components: a time independent part which
includes the dependency on this specific point along the waterline and a time
dependent part.

The treatment of low frequency components infers that the corresponding
environment is an irregular wave system. A simple approach is to decompose this
wave system to a discrete spectrum of regular waves. It is assumed that the waves are
long-crested. Thus, the first-order wave elevation of the incoming, undisturbed, long-
crested waves with respect to the mean position of the centre of gravity of the floating
body is a sum of regular wave components:

N
cV(0)=).¢"V cos(wt+¢,) (3.56)
i=1
The square of the wave elevation is:

o) = ZN: ZN: ¢ ¢ cos(mt +&,)cos(w,t +&,) (3.57)

i=l j=1

The low frequency part of the square of the wave elevation is derived by applying the

identity cos(x)-cos(y) = %[cos(x —y)+cos(x+ y)] :

(of =3y

i=l j=1

£ 'é’j(l) cos{(a),. _a)j)t+(gi -, )} (3.58)

N |~

The first-order relative wave elevation at a point 1 along the waterline can be written
as:

N
0w =3¢" ¢, Y Dcos{(wt+e,+¢, () (3.59)
i=1
¢ = amplitude of i-th regular wave component
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o, = frequency of i-th component

1

£ = random phase uniformly distributed over 0-2x

1

- @'(1) = time independent transfer function of the amplitude

of the first-order relative wave elevation
g.(l) =phase angle of the relative wave elevation related to the undisturbed

wave crest passing the centre of gravity. It has the role of a phase transfer
function.

Combination of equations (3.55), (3.57) and (3.59) gives as a result:

E(z)(t) :ZN:ZN:Q(I) _é’j(l) B] .cos{(a)i _a)_/)t+(gi _8_/)}4‘

i=1 j=1

=
=

+Zzé~i(1) ,é’j(l) -0, .sin{(a)l. —a)_/)t+(gl, —gj)}+

i=1 j=1

+ high frequency terms (3.60)

The coefficients P;andQ; can be interpreted as transfer functions for the low

frequency loads. The word “transfer function” means that these coefficients are
independent of wave amplitudes and of time and thus they can be calculated
independently of the sea state. Briefly, the calculation of these transfer functions
requires the knowledge of the first-order amplitude and phase transfer functions as a
function of the wave frequency. More specifically, as denoted by the coexistence of
the subscripts i and j, £, and O, are a function of two wave frequencies w,and @, :

L .
B= | 1P8C,¢ " cos{z, (- &, (Dfmdl (3.61)
WL

1 \ 1) -
0, =~ [ pet, "¢, Vsinle, O -&, (Dndl (3.62)
WL

If we take the low frequency part of the square of the wave elevation as it is
given in equation (3.58), it is found that B, and Q, give respectively the part which is

in-phase and out-of-phase with the low frequency part of the square of the incident
waves. In other words, they provide us with the in- and out-of phase low frequency
oscillating part of the second-order wave exciting forces when the body is exposed to
a wave train constituted by two regular waves.

In similar ways, we can find the other contributions which depend on first-
order quantities. The total in-phase and out-of-phase transfer functions are calculated
by summation of all contributions. There is also a second-order contribution to the
low frequency part of the longitudinal component of F® due to ®? . In Chapter 3.13,
it is presented Pinkster’s simplifying formula for estimating ®‘* and for evaluating
the quadratic transfer functions due to the second-order potential in relation to the
QTFs obtained for the first-order relative wave height.

The most basic sea state which generates low frequency wave drifting forces is
depicted. It consists of two frequencies:
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V0= ZZ:Q(” -cos(@t+&,)=

=¢ " cos(at +&)+ &, -cos(w,t + ¢,) (3.63)

The wave drifting force in this case is:

F(Z)(t):izz:é/i(l)gj(l)[;j 'COS{((OI. _a)_/)t+(8i _gj)}+

i=1 j=1

+ZZ“ZZ:§(”§](”Q” -sin {(a), —a)j)t+(8i -¢, )} =

=l j=I
= 4,1(1)2 'Pn +§2(1)2 ‘Pzz +

1O 0(p, +1321)cos{(a)1 —,)t+(g —52)} +

+§1(1)§2(1)(Q12 _Qzl)Sin{(a)l _w2)t+(gl —& )} (3'64)

There are two constant components in this equation. Each one illustrates the force
which would be found if the wave group consisted of a single regular wave. In
irregular sea-state, these are the representatives of the mean wave force in the total
second-order force containing both constant and low frequency parts. A remarkable
fact is that although the total force is a non-linear phenomenon, the constant or the
mean second-order force acts as a first-order force. The superposition principle, which
suggests that in an environment of two or more wave disturbances each disturbance
can be propagated in space independently of the others, is valid. Consequently, the
mean wave force in a wave group consisting of a superposition of regular waves is the
sum of the mean forces acting on each of the constituent waves.

N

N
Fmean(Z) = Zé/i(l) Bl = Zé/i(l) .P(a)i’a)i) (365)

i=1 i=1

This formula is explained by the fact that in an irregular sea-state the only time
independent terms describing a time-average occur wheni = j. Hence, in both regular
and irregular waves the mean wave drift force can be expressed as a function
dependent on one frequency. Another interesting comment coming out from
Pinkster’s analysis that we have pursued, is that the quadratic transfer function of the
mean wave force P(w,,®,) appears to be a special case of the general P(w,,®,)
characterizing the force in regular wave groups.

Apart from the constant parts, low frequency parts which are a function of the
difference frequency m, — @, are also present in equation (3.64). It is observed that the
amplitudes of the in-phase transfer functions depend on the sum of the in-phase
quadratic transfer functions B, and P,. Similarly, the amplitudes of the out-of-phase
functions depend on the difference of the corresponding transfer functions. Contrary
to the mean force, the transfer functions for low frequency components do not appear

in isolation but are joined in pairs. As this is the case, these components may be
chosen at random so that for instance:

Po,0;) # P(o;,o,)
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However, as it is known a priori that they appear in pairs, they can be
rearranged so that the following symmetry relations are valid: the in-phase
component P(o;,0;) takes the form of a matrix which is symmetrical about the

diagonal while the out-of-phase Q(®;,»;) is asymmetrical about the diagonal:
P(w,0,)=Po,,o,) (3.66)

Q(a)i’a)j) = _Q(a)jaa)i) (3.67)

and

T,=T,, where T, =, /Pl.j2 +Q,.j2 (3.68)

where T is the amplitude of the quadratic transfer function.

3.11 Frequency domain representation of the mean and low
frequency wave drifting force

Equations (3.64) and (3.65) describe the low-frequency and mean second-
order wave exciting forces that arise from first-order quantities in irregular waves as a

function of time for discrete values of the frequencies w,and o, .

The irregular waves are characterized by a spectral density or energy density
S(w,) where:

S@)d, =56 (3.69)

The transition from a discrete to a continuous representation is possible through
correlation between equations (3.65) and (3.69):

F, % =2[S(0)P(0,0)do (3.70)
0

Similarly it can be shown that the spectral density of the low frequency oscillating
part of the wave drifting force follows from:

S, =8] S(@)S(@,)[ T (e, 0, do, (3.71)

wherew, —w, = u 1s the low frequency and T (a)l,a)z)is the amplitude of the

quadratic transfer function as given by equation (3.68).
Equation (3.72) can also take the following form:

S, (1) = 8TS(a)+ WS@)[T(w0+u,0)] do (3.72)
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3.12 Newman’s approximations

A second-order contribution to the slowly varying forces stems from the
existence of the second-order potential. Instead of analyzing the quantities which
depend on®(2), reference will be made once again to Newman’s approximations
applicable to the case of deep water. Newman (1974) focuses on the same component
analyzed by Pinkster which is the low frequency contribution of the component
arising from the relative waveheight. Some restrictions are introduced and Newman
proves that the low frequency transfer functions can be formed in terms of the mean
forces transfer functions. Thereby, we remain in the mean second-order force problem
in regular waves and there is no need to solve for ®* as required in a sea state of
irregular waves.

Newman stresses out the fact that we can observe slowly varying forces
between all components of the spectrum. It is very important to study the slowly
varying forces in a framework of a complete analysis especially in the case where a
low resonant frequency exists. If this is the case, it is likely that the moored vessel
with the low natural frequency resonates with the @;-o;components of the sea.

Newman formulates the wave elevation’s expression which comes out by a
discrete spectrum of unidirectional waves. To first-order the force arises directly from
the wave elevation if we appeal to the first-order transfer function. There is also the
analogous expression for the second-order force thanks to second-order transfer
functions, which contains both sum and difference frequency components. The
transfer functions corresponding to the difference frequency components are identical
to those mentioned in the analysis of Pinkster but here they also incorporate the phase
transfer function. Newman concentrates on the difference loads:

f(t)=Re Z Z A,A'F, & (3.73)

where an asterisk (*) indicates the complex conjugate and F_ is the transfer function
for the difference frequency. F_  represents the total transfer function including

both the in-phase (real part) and the out-of-phase (imaginary part) terms with the low
frequency part of the square of the incident waves quadratic transfer functions.
Newman takes the time-average of this force:

7= %ReZAmAm*me (3.74)

The time independent terms are dominated by m = n . Hence, the time-average
is described by F__. Newman introduces his first assumption; since these expressions

are preceded by the real designation and as long as they include no other imaginary
term, the imaginary part of F_has no sense.F__is supposed to be real. In a physical
sense, this transfer function can now describe the second-order steady force acting on
the vessel in regular waves of unit amplitude and frequency o, .

Furthermore, the investigator studies the non-diagonal termsF, which

represent the amplitude and phase of the difference-frequency force in a regime of
two simultaneous waves with frequencies®_and o, . Firstly, a question of correlation

between these transfer functions is posed. According to him, the most practical
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solution is to ascribe to two off-diagonal terms, which are in the same time complex
conjugates, an equal contribution to the total force:

F =F (3.75)

This is exactly similar to the sum of equations (3.66) and (3.67) for P and Q, obtained
by Pinkster.
Eventually, Newman attempting to expressF_ in terms of F__generalizes the

idea of time average in the case of the “slowing varying force”. At this point, his
second assumption is imposed. For practical reasons, the time average of the slowly

varying force is associated with those off-diagonal elements for whichw, = @, ; this

hypothesis implies that the difference of frequencies has to be very small compared to
the average:

|, —o,|< %(a)m +,) (3.76)

Furthermore, Newman’s second assumption has also a physical meaning
because a large frequency difference @, — @, gives a smaller oscillation period which
is further away from the resonance period of the structure.

As a result, the slowly varying force can only be linked to those terms which
are very close to the principal diagonal for which®, = @,. In fact, we realize that if
the difference frequency is sufficiently small, so that we do not depart too much from
the diagonal, and supposing thatF__are regular functions of the two frequencies, F_ is

simplified:

FE, =F, +0,—-o,) (3.77)

mm

This function turns out to depend only on the transfer function of the diagonal F__plus

on a term which is attributed to the small existing difference between the frequencies.
However, we must be cautious if F  exhibits pronounced maxima because this

means that we are in the resonance area and therefore adjacent F, ~may present

mn

significantly different values. Equation (3.73) takes the following form:

mm

fO)=Re>.> 4 4'F, " +0(w, -,) (3.78)

What changes now at the formulation of the time-average problem of the
forces under consideration is that the asymptotic approximation to the slowly varying
force depends exclusively on the regular wave second-order transfer functionF__. As

a lot more is known about this transfer function in comparison with the off-diagonal
terms F, , equation (3.78) can be exploited to offer us at least a simple approximation

for the slowly varying second-order forces. In addition to this, under this asymptotic
approximation with the support of F__, F_ gets also the real character of F__ . In total,

it is observed that during Newman’s approximations the quadratic transfer functions
are real quantities and thus, they offer an estimation of the real part P.
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Nevertheless, the double summation in equation (3.78) requires a large
computational time. Newman overcomes this difficulty by substituting the double
series with the square of an appropriate chosen single series.

Newman concludes that the quantitative accuracy of his approximations may
vary from one case to another. Some knowledge of the off-diagonal second-order
forces coming out from the simultaneous presence of two discrete wave systems is of
primary importance in order to have a complete image of this approximate
calculation. Because of the mysterious character of these forces, in most cases the
present approximation is the best solution instead of complete ignorance of the
phenomenon.

3.13 Approximation for the contribution of the second-order
potential

Inevitably, there are some cases where Newman’s argument is annulated. In
Chapter 2.4, we have already justified the two preconditions (deep water and @, close

tow,) that ensure the validity of Newman’s argument in a case of free waves. An

important case of invalidation is when referring to mooring systems in shallow water
because they are stiffer than deep water ones and the difference of frequencies is
higher. Bowers (1976) is based on his scale model results of a barge in irregular head
waves and points out that, as the natural surge frequency is increased by increasing

the stiffness of the mooring system, the impact of ®® on the low frequency drifting
force also increases. A general assumption is that when natural frequencies are low
owing to the large effective mass in relation to the stiffness of the mooring system, the
second-order potential can be neglected whereas in the opposite case the contribution
due to this potential may be important. It seems that in a great number of LNG
terminals, which are near-shore terminals, the second-order potential contribution to
the quadratic transfer functions cannot be neglected.

We have already reported the difficulty to solve for®®in the complete
second-order problem due to the complexity of the non-homogeneous second-order
free surface condition (equation (3.15)). Pinkster (1979b) makes an attempt to provide
us with an indication of the magnitude of the contribution of @ to the low frequency
wave drifting forces. He invokes an approximative method based on linear potential
theory which is practical for both two and three dimensions as well as for a case of
shallow water.

Pinkster states that in equation (3.26) which offers the general form of @,

®® is the dominant term concerning the low frequency second-order force due

ww

to®® . ®®  stands for the second-order potential associated with the undisturbed

ww

incoming first-order wave potential. This statement implies that ®" and ®", are
small relative to®" . In practice, in the sophisticated inhomogeneous free surface

condition (3.15) this assumption allows us to substitute®"” for the terms involving
the first-order velocity potential of the undisturbed incoming waves.

Moreover, Pinkster presents the form of the first-order velocity potential
arising from the undisturbed incoming regular wave group of two regular waves.

Hereafter ®” will be replaced by @, :
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o — _22: 6,8 coshk,(X; +h)
- ) coshk,h

sin(k, X, + ot +¢,) (3.79)

Then the low frequency component of ® that comes out from the same
wave group is as follows:

2 2 cosh{(k, =k, )(X; + h)}
O =- C A, — sin{(k. — k)X, +
1 ;;é/lgj ij COSh(ki—kj)h {( i /) 1

o, — )+ (g~ )} , 0,20,  (3.80)

1

Bowers denotes that 4;is a coefficient which is a function of the frequencies w,,,
and the waterdepth 4.
The expression (3.80) for ®*, describes long waves which are introduced by

the presence of the regular wave group. In the following Figure 3-5 it is indicated that
the phase of these long waves in comparison with the short wave group’s phase
presents a trough where the wave group develops its maximum wave height. The

potential ®,” represents an accompanying long wave to the bichromatic sea-state,
inducing a decrease (set-down) of the mean free-surface. By what means are we going
to calculate the contribution of ®*, to the second-order low-frequency forces?

(2)

bue 7o §

ENVELOPE OF GROUPR

Figure 3-5: Wave due to the second-order potential of a wave group [Fig.
from Pinkster (1979b)]

According to the second assumption of Pinkster, the long waves linked to this
potential can be regarded as separate waves. The potential of a separate wave does not
satisfy the boundary condition on the body which for the simplified case, is assumed
to be equivalent to the normal first-order boundary condition. The validity of the
normal first-order boundary condition implies that all the first-order contributions in
the right hand side of equation (3.21) is zero. In this way, the separate waves
introduce a diffraction potential which is described by a motionless body in the
presence of undisturbed incoming waves. The ®,” is considered to be a simple,
ordinary potential because it has been already shown that it satisfies the homogeneous
free surface condition of equation (3.28). This potential needs only to verify the

equation of continuity, the boundary condition at the sea-floor, the radiation condition
and the homogeneous free surface condition:

go?, +0?, =0 (3.81)

it
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From the last condition the dispersion relationship arises:
" = kg tanh kh (3.82)

Through equation (3.80) we realize that the undisturbed incoming waves are
characterized by a wave number equal tok;-k; and a wave frequency equal to ®;-o;.

These waves do not follow the dispersion law. If the frequency of the incoming waves
isw,;-0;, the diffracted waves’ frequency will be the same. However, the wave number

of the diffracted waves will not be equal tok;-k; but will result from the application
of the dispersion relationship:

(@~ @,) = kg tanh kh (3.83)

The third simplification is applied according to which the diffraction waves
are allowed to have the same wave number k;-k; as the incoming waves. This is

permitted only for the diffracted waves which are further away from the body. Near
the body, the situation cannot change because the boundary condition at the body still
has to be satisfied.

The difficulty level of the problem under consideration has been lowered. It is
required the calculation of the low frequency F* caused by a wave described by
(3.80) while assuming that the diffracted waves have the same wave number and
frequency as the incoming waves. The procedure of solution suggests the correlation

between the expressions of ®," and®,?, or the transition from F" to F*¥. F©

acts in the environment of a regular wave with wave number equal tok . In order to
produce the wave number of the low-frequency F® caused by two regular waves
which is equal to &, —k; we set:

k=k —k (3.84)

L J

We are situated in an ordinary gravity field with g as the constant of gravity. In this

case, the wave frequencywof F " obeys the dispersion law. We change @ for

w, — @, by choosing another value for the constant of gravity:

2
g = (o -o) , 0>, (3.85)
" (k —k,)tanh(k,~k,)h |

The low-frequency part of F* is proportional to the constant of gravity. The first-
order velocity potential of equation (3.79), which is responsible for £ is also
proportional to the constant of gravity. Therefore, in order to express F
through F the following correlation factor is used:

n, =20 (3.86)
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To this end, the transformed potential of the first-order regular wave given by
equation (3.79) changes to:

¢.g, cosh{(k—k,)(X,+m)
0 -0, cosh(kl.—kj)h

1

D0 = _Z

1

sin{(k, —k,) X, +

2
=1

J
+(a)i—a)j)t+(8i—8j)} , W, 2 O,

(3.87)
For the completion of the transformation we merely need to relate the amplitude of
the preceding equation (3.87) with the amplitude of equation (3.80):

Sy sy 0>,

>0, (3.88)
; —a)j

Equation (3.89) expresses that the first-order wave amplitude must be selected in a
way that it verifies:

4 (a)l - a)].)
g, =¢¢,—= , 0,2 @, (3.89)
i
The low-frequency F® is also proportional to the wave amplitude. Thus, equation
(3.89) depicts the second correction factor imposed on F in order to provide us
with F® . In total we get:

(3.90)
8

After combining (3.90) with (3.86) the low-frequency part of F® owing to
®,? is obtained. We have obviated the computation of @ itself:

F = f; - F" (3.91)
where

| = é’i;inj iwj _wj) , O 2 o,

(3.92)

To this end, one would worry if they are still valid the foregoing quadratic
transfer functions for the low frequency wave drifting forces defined by equation (91).
In order to comply with the definition of the quadratic transfer functions due to first-
order relative wave height, the in- and out-of-phase transfer functions of the force

component due to the second-order @, become:

p =Lpo , 020,

iP5t i = O (3.93)
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P =P (3.94)

ij Ji

1

0,=-0%, , 0>

=3 (3.95)

0,=-0, (3.96)

Where P(z)i/. and Q(z)i/. stand for the in-phase and out-of-phase components of the

second-order wave force as determined by equation (3.91).

At this point it is reported that Newman’s preconditions are also well
explained by means of Pinkster’s analysis. According to the analytical expression of
@, (equation (3.80)), ®,?is a function of (@, —®,)and (k, —k,), and consequently
this potential’s contribution vanishes when the difference of frequencies goes to zero.
As the water depth decreases there remains a factor(w, —®,)and the contribution

of @, at the difference frequency can no longer be neglected.

Pinkster’s approximation is exact in cases where the contributions to ®* of
the first-order diffraction and body motions are negligible, so that the ®,'” component

is indeed dominant. In general, it is more likely that this requirement is satisfied by
vessels like semi-submersibles rather than by ordinary ships or barge shaped
structures. Noteworthy in Pinkster’s remarks is the statement that when the first-order
diffraction and body motion effects grow, the total F¥ will be dominated by first-
order phenomena so that the increase in the error of the component owing to ®® is of
small importance relative to the total force.

Moreover, Pinkster presents a specific example where the foregoing
approximation gives accurate results. We study the horizontal low frequency wave
drifting force arising from®'> , acting on a vertical wall in deep water. In such a
problem, total reflection is observed. Therefore, the first-order incoming waves and
the first-order outgoing waves are identical. The total second-order potential consists
of the contribution of the undisturbed incoming waves and the outgoing diffraction
waves. In this case we may have diffraction which is not included in Pinkster’s
approximation but the formula remains accurate. The reason for this is that since the

outgoing component is equal to®,”, the approximation can well predict both of
them.
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4. EXAMPLE OF AN LNG-CARRIER MOORED AT A
JETTY IN A COMPLEX BATHYMETRY AND
DEVELOPMENT OF A CORRECTION FACTOR TO THE
QUADRATIC TRANSFER FUNCTIONS

Concerning motions and mooring loads of an LNG- Carrier moored at a jetty
in a complex bathymetry area the results from the paper of Weiler et al. (2009) are
remarkable. The Yemen LNG Company was planning to design and construct a near-
shore LNG plant in the Republic of Yemen. Deltares in Delft together with Marin
conducted a study to compare the hydrodynamic scale model tests, in the 40x40m
basin in Delft, with the computer simulations derived by the software TERMSIM
from Marin. The scope of their project was to determine the limiting environmental
conditions for loading and safe mooring of the LNG carriers in this very hard to be
simulated environment.

The natural periods in the horizontal motions surge, sway and yaw are
typically in the range of 30 to 100 sec and this means that both the linear wave
response as well as the second-order slow-drift motion must be accounted for in the
design of the berthing system. In the formulation of the problem, it must be also
considered that the bathymetry around the jetty is very complex. Moreover, the
environmental conditions at this area are characterized by monsoon seasons and by a
strong sea breeze. A cape near the jetty also influences the incoming wave conditions.
The carrier has to stay at the berth almost 24 hours to complete the loading operation
and so it will have to face the wave conditions created by the sea breeze blowing
during the afternoon. The sea breeze will give rise to a so- called young sea
dominated by short-crested (multidirectional) waves. This is why Deltares suggested
that short-crested waves should be incorporated in the test conditions. In general,
different combinations of tests proceeded: with wind and without wind, and in both
short-crested and long-crested waves.

Concerning the short-crested waves, the experiments showed that Deltares’
input lead to greater motions and mooring loads compared with long-crested wave
conditions. Furthermore, through the comparison of the six motions spectra arising
from model tests and simulations (Figure 4-1), it is observed that the greatest
discrepancies are found for the surge, sway and yaw responses. For these motions, as
we have justified in the beginning of our study, the low-frequency motions are
dominant. The numerical simulations assuming long-crested waves (primary waves
and low-frequency waves), seem to overestimate the loads. The difference in surge is
eventually attributed to the wave loading or the response of the ship on the sloping
bathymetry. For sway and yaw the shifts in the peak frequencies can be correlated
with differences in added mass. Besides, there is also observed a great difference in
roll response. This is ascribed to the differences in sway and yaw.

The genre of these discrepancies does not give away an obvious reason for this
variance. An ultimate solution to this problem can be presented by means of the
comparison of the quantity of energy between the two different procedures. However,
it seems that despite the larger low-frequency wave energy in the basin, the vessel
manifests smaller motions compared to numerical simulations. The paper does not
explain this contradiction.

Finally, the suggested explanation is that it is the distribution of energy
which creates the disagreement and not the quantity of energy itself. In the basin the
low-frequency energy is spread over a wider range of directions. The basin possesses
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a non-uniform bottom with a slope whose steepness is not the same between the two
sides of the vessel and there may be a different behavior of the long wave energy
predicted by the simulations (flat bottom expressions). Besides, in the simulations the
low-frequency waves are co-linear with the primary waves and this may lead to larger
vessel responses. In addition, it is possible that a part of the low frequency energy in
the basin does not lead to vessel motions and is defused in the interaction of waves
with the headland or with the shallow water area near the location of the plant.

In their conclusion, the researchers report that since the condition of short-
crested waves excites larger ship motions and mooring loads, it is important to check
whether this condition has to be integrated in a problem where local wind gives rise to
waves. They also stress out that actually, a conventional numerical code may be
inadequate as far as the evolution of low-frequency waves over the bathymetry is
concerned. In such a complex bathymetry the assumption of long crested waves with
low frequency bound waves (or locked) in the same direction is a very simplifying
assumption.
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Figure 4-1: Motion spectra from model tests and simulations [Fig.
from Weiler et al. (2009)].

From Weiler et al. (2009) we got aware of the failure of the flat bottom
expressions to depict a variable bathymetry and to properly estimate the low
frequency loads. A mild bottom slope to first-order waves can be very steep to the
second-order accompanying long waves. The regular wave drift forces can still be
accurately calculated by the flat bottom assumption, whereas, the second-order long
waves shoal up on the varying bathymetry and not on the limit predicted by the
constant depth model. Hence, they are not developed to the full extent following from
the flat bottom theory, unless the slope is negligible. Wave shoaling, in simple words,
is the effect according to which surface waves increase in wave height when they
enter area of shallower water. This is explained by the conservation of energy flux. In
the same time, the phases of the various frequency components sometimes give rise to
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velocities significantly different from those predicted by the linear finite-depth
dispersion velocity. In total the shape of individual shoaling waves changes from an
almost symmetrical profile in deep water to a shape with sharp crests and broad, flat
troughs in shallow water.

Another significant argument mentioned in Molin et al. (2011) is that the
phase relationship of the second-order long waves with the short waves envelope also
does not agree with the flat bottom model. The local sea state is not unidirectional and
this is attributed either to the long-crested wave system being affected by the variable
bathymetry, or to the incoming wave system due to local wind (young seas) being
short-crested.

Molin et al. (2011) give a response to Weiler et al. (2009) by introducing a
correction factor to the quadratic transfer functions. It is assumed that the incoming
wave system initially is and remains long-crested and thus the angular spreading
phenomenon is not considered. Molin et al. (2011) focus on the effect of shoaling,
which affects the wave both in magnitude and in phase.

If the water depth can no longer be considered as deep, we have to

include ®“ in the problem. According to Pinkster @ can be approximated by @, in

the calculation of the low frequency second-order force and therefore the correction
due to the effect of shoaling refers to this component of the second-order potential.
Molin et al. (2011) actually exploit equation (3.60) arising from the integral over the

waterline, to import a correction for® . It is stated that in flat bottom, in a
bichromatic wave system, the associated acceleration with the second-order incident
potential is 90° out of phase with the short wave envelope. So it seems hat @

mostly contributes to the out-of phase imaginary part Q of the QTFs. Therefore, in the
determination of the low frequency loads when shoaling in varying bathymetry takes
place, it is the imaginary part Q which has to be altered. The longwave is reduced in
amplitude but is also shifted. Therefore, because of the phase lag the QTF takes the
following form:

] io(0;,0;)
j;(Z)(a)i’a)j):P(a)i’a)j)+lQ(a)i9a)j)xR(a)i,a)j)ela @;,0; _

=P—-0ORsina+iQRcosa 4.1)

with R <1. As a result, the modulus of the QTF is decreased in comparison with its
flat bottom reference value. Furthermore, depending on the value of the phase lag a, it
can even get a lower value than the Newman’s approximation P alone. The values of
R and a depend on the bathymetry profile, from the deep water region to the terminal.

Furthermore, Molin et al. (2011) put forward the problem of the a priori
determination of the impact of shoaling in the correction factor in comparison with the
flat bottom model. In a bathymetry formed by a constant depth zone with a following
rectilinear ramp, the following main parameters are selected: the initial depth, the
bottom slope, the mean wave period and the resonant period of the mooring system. It
appears that the initial depth is not a critical parameter contrary to the wave and beat
periods. Practically, it is concluded that as the bottom slope, the wave period and the
beat period increase, the R coefficient gradually decreases and the phase shift o
increases. Hence, the low-frequency second-order loads will be significantly lower
compared to the values obtained by the flat bottom model.
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5. FAR-FIELD METHOD

Another way to obtain expressions for mean wave forces and moments in
regular waves is to refer to the potential flow theory known as far-field method.
Actually this method applies the Newton’s second law, or in other words the
fundamental equation of conservation of linear and angular momentum in the fluid.
The law of conservation of momentum states that if no external force acts on a closed
system of objects, the momentum of the closed system remains constant. Actually,
through this principle the forces on the structure can be related to the forces on
exterior fixed or moving control surfaces and to the rate of change of the fluid
momentum between the control surfaces and the body.

A three-dimensional case is studied and thus a control volume € needs to be
defined in order to proceed with our analysis. Let Q be the volume bordered by the
surface Sp, Sgs, Sp and S.. Sp depicts the instant wetted surface of the body, Sgs the
real free surface, Sp the surface of the bottom which is assumed to be horizontal and
S a non-moving vertical cylindrical surface with large radius away from the body. It
is remarkable that S., does not need to be far away from the body. The total enclosing
control surface S does not need to follow the fluid motion. As system of reference, it
has been selected the system0-x,-x,-x, which is fixed in space with z=0 being the

plane of the calm water surface and the z-axis positive upwards. The body is
considered to be excited by a plane periodic wave, propagating in water of finite depth
h.

The linear and angular momentums inside Q are expressed by the following
vectorial forms:

M) =|[[ pVde (5.1)
H(t) = j j j p(rxV)dw (5.2)

where ¥ =V is the fluid’s velocity and p the fluid’s density.

By means of the definition of a derivative and taking into account that the rate
of change of the system’s momentum can be decomposed to a part depending on the
rate of change of the momentum of the fluid in the control volume and to a part
depending on the rate of the net outflow of the momentum through the control surface
S it is obtained:

aM dmdew pm_dmpﬂmds (5.3)

where U, is the normal component of the velocity of the surface S itself in which the
positive normal direction has been defined to be out of the fluid.

Actually the first term of equation (5.3) denotes the non-permanent flow in which the
vector of the fluid’s velocity may change over time while the control volume remains
invariable, whereas the second term stands for the rate of net outflow in the non-
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constant surface which may change over time. A non-constant surface in time means
that the area S(t) is not identical with the area S(t+At). However, At should be small.
Right after, we make use of the Euler equation of motion and for an
incompressible fluid it can be state:
V79 =L g) (5.4)
ot yo,

Then, the Gauss’ theorem-divergence theorem is applied in order to transform the
volume integral into a surface integral. The divergence theorem is a conservation law
which states that the total volume of all sinks and sources, the volume integral of the
divergence, is equal to the net flow across the volume’s boundary:

[[[Vexdo=[[noxds (5.5)

Here X can be a scalar, vector or tensor and o denotes a dot or cross or an ordinary
multiplication or nothing. It is assumed that X has continuous derivatives in Q.
The outcome of the combination of (5.3), (5.4) and (5.5) is:

dM

| [(p+ pgeyn+pV (V,-U,) |ds (5.6)

S

where V= n- V@ is the normal component of the fluid velocity at the surface S.

In all the preceding equations n is specified to be a unit vector normal to the
corresponding surface S. More precisely, with respect to the real free surface Sgs, this
vector is almost parallel to the unit vertical vector pointing outwards from the fluid.
This is valid in an environment of small amplitude harmonic waves. Regarding the

body surface Sg, n is oriented into the body. In the sea-bottom surface, nis identical
with the vertical unit vector but in an opposite direction, pointing outwards from the

control volume. Finally, concerning S, n coincides with the horizontal unit radial
vector and its direction is outwards the fluid.

The total force exerted on the body, following from the pressure integration, is
as follows:

F(t)= [ pnds (5.7)

According to the body boundary condition mentioned already:

v =U (5.8)

n n

Consequently, if terms of equation (5.6) are rearranged, thanks to equations (5.7) and
(5.8) the force on the body is acquired:
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F= —%—pgi{zﬁdS—J{B [(p+pg2n+pV(V,-U,)]dS (5.9)

Equation (5.9) can be generalized to incorporate the fluid moment G on the
body. It is practical to make use of notifications i=1,2,3,4,5,6 in order to express
separately every axis component of the fluid force F = (FI,FZ,F3) and of the fluid
moment G = (F,,F,,F,) . In a similar manner,

M = (M,,M,,M )= linear momentum of fluid inside S

H=(M +»M, M )= angular momentum of fluid inside S

ﬁ:(nl,nz,i%)

Fxn= (n,,ns,n,) (where r is the position vector relative to the origin of the
coordinate system 0-x,-x,-x, which is fixed in space )

V =V,,V,,V,)=fluid velocity

rxV =V, V. V)

Starting from the definition of the angular moment (equation (5.2)), if we
proceed in parallel steps we can prove the validity of equation (5.9) also for i=4, 5, 6.
Within the scope of finally determining the steady mean wave drift forces we
calculate the time averages of all terms over one period of oscillation. The time

average of — is zero since the movement is periodical and an increase of
t

momentum in the control volume from the one circle to the other cannot be
flourished.

F,=-pg|[nzdS~ [[ [(p+pgeyn,+ p¥,(V, ~U)]dS ,i=1.6  (5.10)
Sp

S-S,

Concerning the horizontal motions i= 1, 2, 6, the terms containing z can be neglected
as they offer no net contribution when associated with n;, i= 1, 2, 6. For the vertical
motions this is not the case and this is why their analysis is more complicated.
Equation (5.10) is simplified by analyzing the boundary conditions on the control
surfaces that make up S-Sg:

-On the fixed surface S, the velocity of the control volume is equal to zeroU, =0.

-On the material surface Sgs, bounded by Sg and S, V, =U, and p=0.

7

In order to justify the last equation it is underlined that on the free surface the pressure
is equal to the atmospheric pressure po (dynamic condition). In a previous section
when developing Bernoulli equation we have mentioned that py can be set equal to
zero without loss of generality. Therefore, it can be assumed that p=0 on the free
surface.

-On the fixed surface Sp, the requirement that no fluid particles may cross this
boundary renders the normal component of both the surface’s velocity and the fluid’s
velocity equal to zero: U, =V, =0

After taking into account this theoretical background, the following equation
for the horizontal force is established:
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F==[[[pn+pVy,Jas , i=1,2,6 (5.11)
S

Equation (5.11) was derived by Maruo (1960) for the cases i= 1, 2 and Newman
(1967) expanded it to the significant case of mean wave-drift yaw moment case of
i=6.

Equation (5.11) together with the aforementioned equations, provide us with
the total mean wave force. It goes without saying that in order to take the mean drift
force, merely the arising second-order terms need to be taken into consideration.
Concerning the potential, merely the knowledge of the first-order potential gives an
adequate solution as far as the mean wave drift forces are concerned.

In the same equation the pressure can be calculated evoking Bernoulli’s
equation. However, we must not leave behind the time dependence of S, due to the
time-varying wave elevation at S... In order to carry out computations and especially
under the scope of calculating the time average it is important to separate the time-
dependent and time-independent terms. It is practical to divide S, into two parts:

C,andS,”. This is exactly what we have also put into practice in the near-field
method in which the total force F® is consisted of an integral of pressure over the
constant surface S;and a pressure integral over the oscillating surface s(?). The first
part C, denotes the integration from z =—o toz =0. In this case, second-order terms
have to be kept in the integrand in order to obtain the components of the second-order
force F®. The second part S,”includes the surface between the mean free-surface
level z=0 and the instantaneous position ¢ of the free surface. This part of the total
water surface comes up only in the case of surface-piercing bodies. Since ¢ is a first-

order quantity, we need exclusively first-order quantities in the integral. Finally after
applying the same simplifications used in near-field method an equation identical to
equation (3.49) is derived.

Equation (5.11) takes the following form:

Fi=—J.J.{nil_)+pm}dS—%gng(j.)é’_zlnidl (5.12)
c, 5

with ﬁ:—%gzp{®21x+®21y+®zlz} (5.13)

The hydrostatic pressure integrates to zero overC_ and thanks to the potential’s

periodicity the potential time derivatives do not contribute to the mean value of the
pressure.

It is remarkable that the contribution due to the oscillating part of the wave
elevation is the same in both methods and is proportional to the first-order wave
elevation.

It is also important to mention that equation (5.11) is applicable to a two-
dimensional case as well. In such a case S, stands for the sum of the surface elements
included between the verticals S., and S.., which are the vertical control surfaces for
negative and positive horizontal coordinates respectively.
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Mavrakos (1995) came to a proof of the same equation but originating from
the equation of the hydrodynamic force exerted on the body.

F = [ piiyds (5.14)

Mavrakos invokes the divergence theorem and the fact that p=0 on the free surface:

[[[Vpdo="[[  pnas=[ pi,as+ [ pi,ds +|[ pii,as (5.15)

Sp+Sps+Sp+S,,

A reformulation of (5.15) gives:

JJ pigas = [[[Vpdo- [ pi.as -] p,ds (5.16)

From (5.14) and (5.16) the force F can be derived:
F = ([[Vpdew- [ pii,ds -|| pii,ds (5.17)
Q S, Sp
From Bernoulli it is obtained:
Vp=-pgVz-pV, -2 pV[V0- Vo) (5.18)
The first term of equation (5.17) takes the following form:

I£Wpda>=—pjiﬁ(gz%\%ﬁq)\m)t)da} (5.19)

The first and second terms of equation (5.19) are transformed by accounting for the
divergence theorem and the last term is rewritten after making use of the momentum
theorem as described above and the definition of the linear momentum in the control
volume Q:

pg|[[Vzdo= pg|| znds (5.20)

%pjy%(%ﬁq))dw:pjsj%%ds (5.21)
%zpjg%,dm,)g%(az)ds@

pjgjzﬁcp,dam%—pjsﬁqa(ﬁ-ﬁ)ds@ (5.22)

P[00 = p [[[V0do-p[[Vod s
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Furthermore, we exploit once again the boundary condition at Sp and S, and we get
rid of the term containing U,, at these surfaces.

pﬂjvq)dw p— jHVcha) p [[ Vo@ - nds (5.23)

Sp+Sps

Upon substituting (5.18), (5.19), (5.20), (5.21) and (5.22) in equation (5.17) the force
can be expressed in the form:

—pﬁj{gvﬂvcb +— V‘VCD vcb‘}dahup Il {gz+(D +—‘vc1> Vd)‘}ndS—

S,+Sp

:—pJ.J.I{gVZ+ V|V V@‘}da) p— qu)dmp [[ Vo@ mys+

Sp+Spg

+p H {gz+d)t +E‘§®-§®‘}ﬁd53

F:—pgﬂznds pj —VCDdS—aL[—M+p [ Vo@ nyds +
Sp+Sks
o [ {gz+(D +—\vc1> VCD‘}ndS (5.24)
S, +Sp

In addition we take into consideration the boundary condition at the vertical surface
S.., where n is identical with the horizontal unit vector. Therefore, z- n,=0:

=—pg || znds- p”—VdM’S——+p [[ Vo@-mds+

Sps+Sp+Sp Sp+Spg

+p ] {gz+d) +—‘ch V@‘}ndS (5.25)

So+Sp

. .. . . 0D — -,
According to the boundary conditions, we substltutea— for (U -n) in the surfaces Sgg
n

and Sp and furthermore we apply the boundary condition at the sea bottom Sp where
Uy=V,,=0:

F=-pg |[ zndS+pﬂ(gz+cD +—‘vq> V(I)‘}v S——+

Sps+Sp+Sp

+pﬁ{{gz+® +—‘ch vqﬂ —‘lq)vcp}ds (5.26)

nOO

As previously mentioned the terms containing z offer no net contribution in horizontal
motions and furthermoren,, ., =n, =0 and n,_=0.
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L= M , [gz—i-(l)t#—lﬁq)-%(l)@n —aEQD ds (5.27)
dt o8 2 on,,
dM | li=. = oD

F = e +pg{{gz+®t +E‘V<D-V<I)Hnm,y —aq)y}dtg (5.28)

The preceding equations (5.27) and (5.28) are in agreement with equations (5.11).
Mavrakos (1988, 1995) provides us also with an equation for F:

F =-pg H zn dS+pH(gz+<D +—‘§®‘§®‘}1DZ dMZJr
Sps+Sz+Sp ’ dt
+pﬂ[——q> ]dS:
= —pgS J‘L zn_dS +pﬂ(® +—W®-§®‘}vm dZZ +
e (5.29)

+pﬂ(——® ]dS:

=—pg [[ zn.ds- ﬂ (p+pgz)n,,

wﬁ(:@ Jos

From the final form of F, (equation (5.29)), it is apparent that the application

dM .
+
dt

of the momentum approach for predicting the mean heave and the roll and pitch
moments leads to expressions that include unattractive integrations to be carried out
over the free-surface and the sea-bottom in the case of finite depth water. Mavrakos in
his analysis also denotes that the corresponding expression for the moments can be
derived in a similar way. All equations referring to forces and moments are exact
under the assumption of irrotational flow.

The total mean forces are calculated by the time average of equations (5.27),
(5.28) and (5.29). As previously mentioned, assuming periodic first-order solutions,
implies that the mean values in time of the rate of change of linear and angular
momentum vanish. We have non-linearities resulting from two reasons: the non-linear
terms introduced by the Bernoulli equation and the integrations to be carried out on

the control surfaces Sy (1), S;(¢), S,(¢), S,(¢). Equations (5.27) and (5.28)
connected with the horizontal forces are developed similarly to equation (5.12) by
separating S (t)into two parts. Concerning the vertical drift force, all integrals

over Sy (1), S, (t),S, (¢)and S, (¢)need to be decomposed into two parts.

As already mentioned, equation (5.11) is also valid for a two-dimensional
case. Maruo (1960) elaborated this equation to derive a useful formula for the
horizontal drift force exerted on a two-dimensional surface piercing body in incident
regular beam deep-water waves. The body can be either fixed or free oscillating
around a mean position. There is no current and the body has no constant speed.
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Three potentials are required for the determination of the environment around
the body. The velocity potential for the incident waves is described by the following
form:

@ =- i e sin(wt — ky + 8) (5.30)

The presence of the body disturbs the wave-field and is responsible for the potential
of the reflected waves:

s =—%ekz sin(wt +ky + £) (5.31)

A combination of the incident waves and the waves generated at y — oo by the body
creates the velocity potential of the transmitted waves which is written as:

@, = —%e"z sin(wt — ky +7) (5.32)

In all three cases ¢, 4,, A, stand for the amplitude of these waves.
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Figure 5-1: Definition of control surfaces and wave systems in the analysis of
drift forces on a two-dimensional body [Fig. from Faltinsen (1990)].

Moreover, equation (5.12) is used. A 2-D case is studied therefore the surface
S« is limited by two vertical planes at y = +oo. The line integral over S,” is replaced

by 4’_12 —4’_12 . The horizontal drift force takes the following form:

—00

+00

Sea-keeping and wave drift forces in varying bathymetry 49
Oikonomidou C. Haris



— 1
Fy=pglg)+ 40— 47 ] (5.33)

Longuet-Higgins (1977) generalized equation (5.33) to finite waterdepth. In

this case, the right hand side should be multiplied by(l+_2ij, where / is the

sinh 2kh
waterdepth.

If it is assumed that the average energy flux is zero through Sg, the inward
mass transport must be equal to the outward mass transport:

CP=A4"+4" (5.34)

This statement introduces the requirement that there is no work done (or absorbed) by
the body during one period of oscillation; the body cannot be an active wave power
device.

At this moment, the elegant equation of Maruo for the second-order horizontal
mean wave drift force can be obtained:

— 1
F, =5pgAR2 (5.35)

According to Maruo’s formula the wave-drift force will always act in the wave
propagation direction. Due to condition (5.34), Maruo’s formula is firmly linked with
the existence of energy-flux equilibrium.

It has been stated that Ay is the amplitude of the reflected waves. If the body is
fixed, the reflected waves can be computed by the diffraction potential only. In other
words, the incoming waves are disturbed exclusively by the presence of the restrained
body. If the body is buoyant and free to move, Ar also encompasses the disturbance
caused by the movements of the body. Reflection potential in this case includes both
the diffracted waves and the motion-generated waves moving to the left. In both
cases, the average force in a potential flow model is described by the amplitude of the
waves that travel in the direction against the incident waves and is connected with a
structure’s ability to generate waves.

To this end, the effect of the wavelength’s magnitude on Maruo’s formula is
considered. On the one hand, for long wavelengths relative to the cross-sectional
dimensions, the body becomes “invisible” and does not disturb the wave field. Hence,
the reflected wave amplitude and consequently the average drift force become
negligible. On the other hand, if the wavelengths are very short in reference with the
dimensions of the body, the incident waves are totally reflected from a surface-
piercing body with vertical hull surface in the wave zone. It is therefore obvious that
the amplitude of the reflected waves is equal to the amplitude of the incident waves
and this fact gives rise to an important asymptotic value:

A4, —> ¢, and an%pgé’az as A —>0 (5.36)

This asymptotic value is valid whether the body is restrained or free. It is also valid
for a submerged body.
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Maruo’s formula depicts clearly the drift force dependence on resonance. In
the vicinity of the resonance frequencies, the amplitude of the reflected waves is
likely to be large and this formula offers an explanation to the common peak of wave
drift forces in this area. However, it is not necessary that the resonance occurs in the
same degree of freedom as the horizontal drift force. In particular, due to heave
resonance the amplitude of reflection is likely to be large and the horizontal wave drift
force may exhibit a peak around this resonance frequency. This is also confirmed by
the experimental results presented in Chapter 9.
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6. FACTORS AFFECTING DRIFT FORCES |IN
MAGNITUDE AND IN SIGN

6.1 Effects of diffraction and of different wave-directions

From the aforementioned it is obvious that the magnitude of wavelengths is a
matter that also affects the importance of the diffraction effects. When the waves are
short, the wave-diffraction effects are dominant whereas when the waves are long the
body motion effects become critical and tend to cancel the diffraction effects. Hence,
it must be noted that both diffraction’s and motions’ effects must be accounted for in
the calculation of the drift forces.

The diffraction phenomenon is also affected by the direction of waves.
Salvesen (1974) in his theory for steady force on ship like forms neglects diffraction
waves in head waves and obtains accurate results. Furthermore, Bowers (1976) does
not take into consideration diffraction effects in drift force’s calculations in head sea
and acquires good agreement with experimental results. However, according to
Faltinsen (1972), Maruo and Sasaki (1974), and Ursell (1975) diffraction of head
waves is a complex phenomenon because it does not concern exclusively the small
frontal area of the ship. The incident waves are diffracted all along the length of the
ship gradually from bow to stern.

It has been stated that the diffraction effects, which depend on the direction of
the waves, contribute to the drift force. Hence, it is logical that the wave propagation
direction influences also the drift forces. In the potential flow model, wave-drift force
is considered to be always in the wave propagation direction. This is valid for head
waves but other wave headings may affect the direction and the magnitude of the
force. Calculations presented by Faltinsen et al. (1979) illustrate that for the smallest
wavelength the transverse drift force has greater magnitude for beam sea waves, while
for the largest wavelength drift forces vanish in beam waves and are larger in wave
headings between 45° and 135° (see Fig. 6-1). In the same figure it is demonstrated
that the transverse drift force is more amplified when the wavelength is smaller. It is
therefore inferred that diffraction effects may be the dominant cause of drift force
compared with the effect of the ship’s motions.

Besides, different parts of a structure may cause the generation of various
waves. These waves are superposed and for some wavelengths and headings they can
result in small wave drift forces. An illustrative example is a Tension Leg Platform
(TLP). Each column acts as an independent wave generator, therefore in total one
column may tend to intensify or invalidate the other.
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Figure 6-1: Transverse drift force 7, on a ship as a function of wave

heading p for two wavelengths A. Infinite water depth(L=ship length, =0° in
head seas, {,=wave amplitude of the incident waves)
[Fig. from Faltinsen (1990)]

6.2 Viscous effects on mean drift forces and negative drift forces

So far, we have analyzed the two main approaches (near-field and far-field
methods) which offer calculation methods for the drift forces due to potential effects
(potential drift forces). In the following, reference will be made to the fourth category
mentioned in Chapter 2.3 including the calculation of the contribution of the viscous
effects in the mean drift forces (viscous drift forces).

In a framework of idealization, the viscous phenomena are often neglected.
However, we must be cautious especially when referring to potential flow theory and
develop a sense on when these phenomena are not negligible. When there is
significant loss of energy owing to viscosity, the potential theory is invalidated. For
example, due to these phenomena Maruo’s formula which is based on potential flow
theory may be cancelled. In addition, viscosity is strongly present in roll movement
and especially near the roll resonance. Thus, it is necessary to take into consideration
viscous effects while calculating roll resonance amplitudes. For example, a common
way to take into account viscous effects in a potential flow theory is the
implementation of correction terms into the equations of motion. This is applied in the
proposed theoretical model described in Chapter §.

According to Dev (1994) the viscous effects must be accounted for when the
behavior of semi-submersibles or tension leg platforms (TLPs) is analysed. This is
due to the geometry of this kind of semi-submersibles, which is characterized by
surface piercing column structures. The viscosity effects are more intense in a low
frequency range. In fact, diffraction and viscosity effects act as competitive
phenomena. Concerning ships and very large floating structures, cases in which
diffraction effects are dominant to the total forces, especially at moderate to low wave
periods, the potential drift force is significant. In low frequency range where
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diffraction effects are feebler for slender bodies, the impact of viscous effects
becomes more important and the second-order force may be also due to viscous
effects. This impact becomes even greater if the waves co-exist with currents due to
their non-linear interactions. To sum up, the importance of the viscous effects can be
influenced by three parameters:

1. the type of structure

2. the frequency range

3. the presence of currents

It is deduced that in some cases the sum of the potential and viscous
phenomena may be essential for a more accurate estimation of the drift forces. In the
following graph presented by Dev (1994), it is depicted that especially in lower
frequencies the measured mean drift forces are higher than those calculated by the
potential model. After adding the viscous effects in the calculation of the drift forces,
the experimental and theoretical results seem to be in better agreement notably in the
low frequency range (see Fig. 6-2).
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Figure 6-2: Mean drift force in regular beam waves
[Fig. from Dev (1994)].

Several authors have investigated the viscous effects in the mean drift force.
The majority of these scientists have developed a theory based on the drag force term
of Morison’s equation and on the relative motion concept. However, not much
attention has been paid to the values of the mean drag coefficients for variant flow
fields and only horizontal relative velocity has been taken into consideration.
Furthermore, in bibliography the mean drift force due to waves has been mainly
attributed to the wave elevation up to the instantaneous sea level whereas the wave-
current interaction effects have been mostly analyzed merely up to the mean water
level.

Dev (1994) calculates the viscous contribution to drift forces by applying the
linear Airy theory. Dev considers constant velocity in the wave crest in order to
obviate the ambiguous validity of the linear theory up to the instantaneous water line.
In the calculation of the viscous mean drift force due to the waves only, Dev
calculates the mean drift force up to the splash zone (from the mean waterline up to
the actual sea level). Concerning the viscous drift force emanating from the
contribution of both waves and current, he studies both components of splash and
submerged zones (from the mean waterline down to the bottom of the cylinder).
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The viscous drag force according to Morison’s equation together with Lorentz
hypothesis formulate the mean viscous drift force in the splash zone for a unit length
cylindrical section in waves only:

— 4 155 2
F.=——p-C L cos wtdzdt =——— k-C,. -D- 6.1
D G )p o D¢, T'([-([ Z )p g DO é/ (6.1)

Thus it is proved that the mean drift force on the splash zone, which is the major
source of the viscous contributions in waves without currents, is a function of the
cube of the wave height in regular waves and that for a constant wave height it
would be a function of the square of the wave frequency. While the wave amplitude
increases, the drift forces caused by viscous effects become gradually more important.
It is deduced that while the potential mean drift-force is, when non-dimensionalized,
independent of the wave height, the total viscous and potential mean drift force is a
function of the wave height (see Fig. 6-3, Fig. 6-4). Therefore, the viscous mean drift
forces in irregular waves should not be considered as quadratic transfer functions.
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Figure 6-3: Fp versus k+*R in waves only for different wave amplitudes
[Fig. from Dev (1994)].
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Figure 6-4: Fr versus k*R in waves only for different wave amplitudes
[Fig. from Dev (1994)].

In order to study the combined effect of waves and currents, a forward
velocity simulating the effect of currents is added to the Morison’s formula. In this
case, the mean viscous drift force is evaluated at both the submerged and the splash
zone. The magnitude of the forward velocity with respect to the wave particle’s
velocity influences the final form of the viscous drift forces. In Dev’s results it is
depicted that the wave-current interaction is much more pronounced at or immediately
below the mean water level. This interaction increases with the increase of wave
frequencies for a constant wave height. It is observed that the draft also influences the
drift forces; an increment in draft leads to a feebler interaction (see Fig. 6-5).
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Figure 6-5: F» over Tin waves and currents for different wave
frequencies [Fig. from Dev (1994)].
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It is remarkable that the viscosity phenomenon additionally to its contribution
to the force’s magnitude may also influence the drift forces’ direction. At this point,
the new term of positive and negative drift force is introduced. The positive force
refers to a force in the propagation direction of the incident waves whereas the
negative drift force is the force acting in the opposite direction. According to ideal-
fluid theory a body undergoes a positive average drift force. This is obvious from
Maruo’s formula (see equation (5.35)). Concerning the near-field approach, owing to
the various terms contributing to the second-order wave forces, it is more difficult to
deduce that the horizontal mean drift force is always positive. However, in Chapter
3.8 it is accentuated that the contribution due to the relative wave height is the
dominant term in the calculation of the horizontal drift forces. This term coincides
always with the wave propagation direction. In addition according to the theory
outlined in Chapter 2.1, a fluid particle in a regime of free waves is always in the
direction of wave propagation.

In order to investigate the mechanism which formulates the direction of the
viscous drift forces, reference will be made to the longitudinal viscous drift force of a
pontoon type construction. In this case, a longitudinal viscous drift force is formed by
the combined contribution of the normal drag force and the relative velocity, between
a strip of the platform and the incident wave field, in the direction of the vertical
normal vector. The longitudinal force arising from a vertical force’s contribution is
due to the rotation of the pontoon in reference to the selected earth fixed co-ordinate
system. Noteworthy is the fact that depending on the phase angles between the
platform motions and the wave motions, viscous effects may induce a force causing
the platform to move against the waves. The time average of this longitudinal viscous
drift force is one of the contributions to mean wave forces arising from drag forces
[Faltinsen (1990)].

In bibliography, there have been reported negative force examples attributed to
viscous phenomena. Particularly, Huse (1977) makes reference to a negative drift
force on a platform observed in model tests at the Norwegian Ship Model Tank (see
Fig 6-6). There are reported results of two platforms: a platform having a vertical
cylinder as its underwater body and a pontoon-type (semi-submersible) platform. The

drift force is presented as a function of the variable—, wherewis the radian
@

”

frequency of the regular incident waves and @, is the pitch resonance frequency. The

pontoon-type construction experiences negative drift forces in a narrower area of
frequencies compared with the other construction. As already stated, the relation
between these two parameters seems to define the sign of the drift force. According to
Huse (1977), there is a physical explanation for the pontoon platform: “Whenever it
has a nonzero pitch angle, the crossflow drag on the pontoons produces a horizontal
component of force. Whether this causes a positive or negative drift force depends on
the phase of the pitch motion with respect to the incident waves.” His assessment,
which is also confirmed by his experimental results, proves that when the
frequency wis higher than the pitch resonance frequency w. a negative drift force is

observed. Huse does not provide us with an adequate theoretical explanation of the
vertical cylinder’s behavior.
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Figure 6-6: Mean drift force measured in regular waves (positive Cygr
referring to negative drift force) [Fig. from Ogilvie (1983)].
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7. EXPERIMENTAL PART

The experimental part of the research project took place in the wave flume of
Ecole Centrale Marseille (ECM). The ECM’s wave-tank is a glass-windowed
structure of 18 m length, 65 cm width and 1.5 m height, containing fresh water.

Figure 7-1: ECM’s canal.

The model applied to our experiments was a rectangular barge with square
bilges with 64.5 cm length, 30 cm width, and a draft of 6 cm. Experiments were
conducted by exposing the model in regular beam waves. The length of the barge
coincided with the width of the canal.

Figure 7-2: The model.
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In this work, the two-dimensional problem is studied, by considering three out
of the six degrees of freedom of a floating structure; a vertical movement (heave), a
horizontal movement (sway) and a rotational movement (roll). For this type of
floating models, there is the possibility that the barge's natural period coincides with
the wave period. In this case of resonance, the amplitude exhibits a maximum value
which depends on the damping capacity of the system. Reader should be aware that
there are two sources of damping: the radiation damping and the damping caused by
viscous phenomena. The former is suggested in the case of heave and sway, while the
latter is dominant in the roll response, where strong viscous effects are observed, as
for example the separation of the flow over the bilges of the barge.

Experiments consisted of four steps. First of all, the floater was moored with a
variable spring system and there was no obstacle downstream. Various experiments
were conducted in order to verify that there is good agreement between the
experiments and the model, and additionally to study the impact of the variant number
of springs. Furthermore, the floater was set free and was placed just ahead of an
abrupt depth transition. The setup in the third step was similar to the previous’ step
except that the depth transition was modified to form a vertical wall. The distance
between the barge and the wall was variable (Fig. 7-3). During this step, video
techniques with a vertical laser light sheet were utilized (Fig. 7-4). We added a laser
aiming to study more thoroughly the free surface elevation and the interaction
between the rectangular model and the wall including the phenomenon of piston mode
resonance. Last but not least, in the final series of experiments the moored rectangular
barge was installed in front of the wall. The mooring line allowed the placement of
the barge near to the wall. The mooring was returned upwards by a pulley system

(Fig. 7-5). The wave steepness & zzwas fixed at various values for each series of

experiments.

Wawe
gauges

Variable distance

Figure 7-3: Freely drifting barge in front of a wall.
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Figure 7-4: Vertical laser light sheet.
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Figure 7-5: Rectangular barge moored in front of a wall.

Presentation of the equipment

l. The wave-maker is of flap type possessing a rotation axis lowered by 40 cm
in reference to the bottom of the canal. It allows the generation of focused waves,
regular, irregular and transient seas in variable water depth from 25 cm to 1 m.
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Figure 7-6: Flat type wave-maker at ECM’s canal.

2. The time evolution of the free surface elevation is recorded by wave gauges.
In the beginning of the experiments, the instrumentation consisted of 8 wave gauges
along the canal (5 gauges ahead of the barge and 3 gauges after it). When the wall was
inserted in the experiments’ instrumentation, 6 wave gauges (5 gauges ahead of the
barge and 1 gauge after it) were used (Fig. 7-3) when the barge was free, while 6
gauges upstream the barge were used when it was moored (Fig. 7-5). The gauges
which are used in the ECM’s canal are resistive gauges of the Churchill Control
model. Each gauge is constituted of 2 rigid and parallel cables made of steel, of 50 cm
length, 1.5 mm diameter and 12.5 mm separation distance. A gauge when plunged
into a liquid delivers a current which is proportional to its depth of immersion. In
order to avoid the polarisation of the sensor on the surface of the cable, the gauge is
inserted into a high frequency oscillating circuit.

Figure 7-7: Wave gauges at ECM’s canal.
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An alternating current (AC)-continuous voltage converter provides us directly with
the relation between the immersion depth of the gauge and the voltage at the exit of
the converter. During the experiments, the response of all gauges was effectively
linear, dominated by a constant sensitivity [cm/Volt].

Sensitivity of the gauges

4 !

sl

(]

Immersion(cm)

P
-8 -6 wn&fe(x/olf) )

Figure 7-8: Linear response of the wave-gauges.

The gauges ahead of the barge allow us to separate the incident wave
component from the reflected component, by following the method of quadratic error
minimization. This method minimizes the quadratic error between measurements and
theory. Concerning the gauges after the barge, they allow the calculation of the
transmitted wave component. As a result, we can derive the coefficients of

reflection(R= A,/ A4,) and transmission(T =4,/ 4,) of the experiments.

Additionally, the precise value of the incident wave amplitude is critical for the
forthcoming experimental calculation of the transfer functions RAOs (Response
Amplitude Operators) for all degrees of freedom of the rectangular barge. In the final
series of experiments, the placement of the barge near the wall does not allow the
installation of a gauge after the barge. Thus, in this case the coefficient of
transmission cannot be obtained.

3. In order to measure the movement of the barge, a system consisted of two
electroluminescent diodes located on the barge and a numerical video-camera was
used.

AL LED Camera DV

( ;.L_ - e

tirant d'eau +~—Centre de rotation
I — i
SL > =
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Profondeur
h

Figure 7-9: System electroluminescent diodes-numerical video camera.
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The camera was a Mikrotron Eosens model with a resolution of 1280X1024
pixels® and a frame rate of 50 Hz. During the trials, the lights in the laboratory were
turned off in order to produce total black images except the light emitted by the
diodes. By this means, a technique of automatic detection of the diodes can be used.
Furthermore, the procedure is based on the sequential matlab programs:

traite_barge: the images derived from the camera’s software, are imported in the
program in the form of a table of 720 columns, 576 lines and 3 colours (red, green,
blue). The intensity of each colour is defined by a value between 0 and 255.
Therefore, each element of the matrix corresponds to three values describing the
intensity of the three colours. Due to the diodes’ light properties only the red value is
considered. The program iterates through video frames to create a new table sequence
for the different values of luminosity. The function contour () offers the possibility
of drawing isovalue lines. In our case, we are interested to closed curves which are
surrounding each of the two diodes. By selecting luminosity value, the function
contour () finally creates the corresponding matrix. This matrix represents the circle
which is characterized by the specific luminosity. Hence, it includes all position co-
ordinates(x,y) of the vcirclee To continue with, the mean position

[posx,posy]=[mean(x),mean(y)] is calculated for every step in time, which

actually refers to the centre of the circle for every step in time. To end with, through
this procedure we obtain the position of both light-emitting diodes (LEDs) as a
function of time, given in the tables posx and posy.

traite_data: this program is composed of two parts: the part gauge and the part LED.
To begin with, the first part of the program (gauge) involves the processing of

the signals of the gauges, in order to provide us with the amplitude of the incident

wave A, and the reflection/transmission coefficients as a function of time. These

coefficients are presented as a percentage of the amplitude of the incident wave.

The second part LED calculates the three motions of the barge (: heave, sway
and roll) from the position of the diodes LED1 and LED?2. In Figure 7-10 the model’s
initial position and a random position of the barge during its response to the waves are
presented.

® o
L1(t0) L2(t0)

heave

(@]

—t - — | -

Figure 7-10: The barge in movement [Fig. from Kimmoun and
Molin (2007)]
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The movements of the floater are given by OO, , which is the vector of the

displacement of the barge’s centre of rotation. This vector can be decomposed as
follows:

00, =OL (1) + L, (1,)L, (1) + L (1) O, (7.1)

where 7, corresponds to @=0and ¢ to the random angle @. The angle&, which
actually is the angle of roll, is geometrically given by the angle between the vector
L, (#)L, () and the horizontal.

In Equation (7.1), we can derive the vectors OL(¢,)and L,(¢)O, from the
geometry of the problem. For this purpose, we need the horizontal distance between
the two LEDs(e), the vertical distance between the LEDs and the centre of

careen(c) , as well as the random angle #. In our problem, e=0.2m and ¢=0.23m.

Moreover, L, (z,)L,(¢) is directly given by[ posx,, posy,]. Thus, firstly, we produce
the value of roll and right after the values of sway and heave can be derived.

0 = tan"! (pOSyz _p05y1) (7.2)

( posx, — posx, ) '
swanosx1+§-cos(9)+c-sin(@) (7.3)
heave = posy, +§-sin(9)—c-cos(9) (7.4)

It is reported that the solutions of each iteration are influenced by the propagation of
the disturbance owing to the wave maker. In order to avoid this disturbance it is
preferable to filter the solutions. Thus, a low-pass filter is adopted.

To continue with, the drift movement has to be computed. The drift movement
is a low frequency movement which is superposed to the movement of sway in the
wave period [Kimmoun and Molin (2007)]. Therefore in order to measure the drift
movement, the oscillation caused by the movement of sway has to be ignored. In
order to obviate the contribution of the roll angle which is involved in the
computation of sway, we select the horizontal movement of the second

LED ( POsX, ) to represent the drift movement instead of the sway movement itself. For

the experiments where the barge was moored, a low pass Butterworth filter is adopted
in order to eliminate the oscillation of the data( POsX, ) The cut-off frequency of the

filter is computed by the matlab function buttord(). In the application of
buttord (), the natural frequency of the mooring system (which is a function of the
number of springs) determines the passband/stopband corner frequencies of the
butterworth filter. For the rest of the trials where the barge was set free we consider

solely ( posx, ) as the first estimation of the drift movement.

Afterwards, for all the movements we make use of the Short Time Fourier
Transform (STFT) with a sliding window of 2T with a lag of T/10 between two
successive windows. While Fourier Transform determines the main components of a
sinusoidal movement, Short Time Fourier Transform (STFT) provides us with a
superior time-frequency analysis. STFT is a mathematical procedure which permits
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under certain circumstances the more rapid execution of the Fourier transformation.
Thus, the latter was utilized in our program. As a result, in the graphs of sway, heave,
roll and drift the amplitudes of the sinusoidal movement are derived as a function of
the corresponding time. For each period 7, instead of calculating a total average of the
movement, thanks to STFT we obtain the more representative parameter of the
average of the amplitudes that corresponds to the temporal interval between ¢, and

t,, - This procedure is repeated for each wave period, resulting the mean amplitude’s

values as a function of period 7.
In order to better comprehend the physical phenomenon and the selection of a

specific ¢,,and?,, , we are going to analyze the behavior of the coefficient of

reflection. Four discrete areas are observed in the diagram of the coefficient of
reflection as a function of time. To begin with, we observe a disturbed area
characterized by several pronounced maxima caused by the omnipresence of the
wave-maker. After the elimination of the disturbances, the coefficient of reflection
tends to decrease until it reaches the last gauge. The second area starts since the waves
pass from the last gauge, reach the model and get reflected on it, and ends when they
pass for a second time from all the gauges. In this area (see Fig. 7-11), which starts at
about 20 sec, the coefficient of reflection starts to increase steadily. Right after, we
enter in an area (~25 sec) with no gauges where the reflection is constant; this is the
area between the first gauge and the wave-maker. The waves cover this distance twice
in an opposite direction. In the end of this area (~45-55 sec) the coefficient of
reflection tends to decrease until it reaches the last gauge. Finally, in the fourth area
the waves reach for second time the model and the coefficient of reflection starts to
increase again. Numerous reflections take place in this area. In the following graph, a
coefficient of reflection, taken from the first series of experiments, is plotted.
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Figure 7-11: Coefficient of reflection.

Concerning the coefficient of reflection, as characteristic area is considered the
constant reflection area. This area is plotted in red color in Figure 7-11. For the
responses of sway, heave and roll we consider the representative temporal distance
between 7,,and?,, (which is equal to 2T) to be located in the end of the second area,
in which the coefficient of reflection starts to increase (Fig. 7-12). Regarding the drift
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movement, we refer to a characteristic temporal distance, wider than 2T, which is
situated in the third area of constant reflection (Fig. 7-13). For the drift, the temporal
interval is wider because it is difficult to reach a stable state for this movement. In the
following Figures 7-12, 7-13 the characteristic area is also plotted in red color.
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Figure 7-12: Diagrams of roll, heave and sway.
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Figure 7-13: Diagram of drift.

In Figure 7-13, the blue dotted line is the drift movement calculated by the
STFT. It is noticed that there still exists some oscillation. In order to remove it, the
matlab function smooth () is applied. In particular, data is smoothed with the method
Robust Loess (quadratic fit). The number of points used to compute the smoothed
curve is 50% of the total number of the data points. The outcome of the application of
the function smooth () is marked with the continuous blue line in Figure 7-13.
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As we have already stated, this procedure can be repeated for each wave
period. Therefore, after the completion of both parts (gauge, LED), diagrams of each
experimental series as a function of the wave period T are obtained. In total, we can
plot the RAOs of sway, heave and roll, the normalized drift force, the drift force, the
coefficients of reflection and transmission and the steepness as a function of the wave
period. These diagrams can be directly compared with the theoretical model.

Concerning the drift force, it can be approximated only in the case where the
model is moored. If this is the case, the drift force is simulated with the force given by
the Hooke’s Law. The force’s magnitude is F,,,, = k-x,,, , where k is the spring rate
and x,, is the mean drift movement between ¢,,and?, that we have already
estimated. If the barge is set free the drift force cannot be measured because the
reference position continuously varies.

Reference will be made to the extraction of the RAOs which depict the
movement of the barge. RAOs are effectively transfer functions used to determine the
effect that a sea state will have upon the motion of a ship through the water. In linear
theory, the barge’s response to a monochromatic wave corresponds to a movement of
the same period as the wave with amplitude proportional to the wave’s amplitude. If
the free surface elevation is given by:

n(t)=R(4,-¢") (7.6)

Then the movement of the structure in the corresponding degree of freedom &
(k=2, 3, 4) is the following:

X, (t)=R(x,-e™)=R(4,- £, (w)-e™) (7.7)

where f, (a))is the Response Amplitude Operator of the movement X, . In linear

theory, the RAO is obtained by the ratio of the response’s amplitude to the amplitude
of the waves. More specifically, the RAOs of sway, heave and roll are calculated as
follows:

i,{:% k=23 (7.8)
1

~ X,

3 = k=4 (7.9)

YAk,

where x, in our case is the mean value of the amplitudes corresponding to the degree
s A, is the

incident wave amplitude obtained by the part gauge of the program and &, stands for

of freedom k and calculated for the time interval betweent,,and?

the wave number which satisfies the equation of dispersion.
The drift force is normalized as in the following form:

_ Fon kX4 (7.10)

P -
drift pgA[zL pgA[ZL

where L corresponds to the length of the barge (L = 0.645 m)
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4. During the video-techniques, we used an Ion-Helium source with an optical
fibre to generate the laser sheet, associated with fluorescein in water. The matlab
program utilised is display_SL which plots two graphs for each experiment; the first
depicting the wave elevation in the gap between the barge and the wall as a function
of time in a 3-D graph and the second picturing the wave elevation as a function of the
distance between the barge and the wall in a 2-D graph.

5. The existence of an absorption beach is very important to ensure the
reestablishment of a calm sea state after every trial (see Fig. 7-14). Nevertheless,
during the first experiments, a part of the ramp had slipped out of the water. There
was more reflection and less absorption. This fact may explain some discrepancies.

Figure 7-14: Absorption beach.
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8. LINEAR NUMERICAL MODEL - STEP METHOD

The ultimate scope of an experimental series is the optimization of a numerical
model which simulates as precisely as possible the physical phenomenon in an extent
that experiments are no longer indispensable. Noteworthy is the fact that this
optimization process is an iterative procedure that uses as a feedback mechanism the
comparison between reality and theory.

There exist diverse numerical methods to depict the environment and the
linear wave response of floating bodies within the scope of potential flow theory. A
very practical and accessible family of numerical models in a varying bathymetry
problem is the idealization of the sea-floor as a succession of steps. This is called the
step method and it is not a new method. It has been frequently used in coastal
engineering (for example we refer to Kirby and Dalrymple (1983)) but in absence of a
floating structure. In our case we additionally introduce a floating body in the
environment.

This macroelement method is based on the discretization of the flow field
around the structure using rectangular elements (sub-domains). In these successive
rectangular sub-domains the velocity potential can be analytically expressed as two
propagative modes plus two series of evanescent modes emanating from the
boundaries. The method of separation of variables is used in order to express this
velocity potential in all sub-domains. The unknown coefficients are determined by
matching the potentials and the horizontal velocities at the vertical boundaries of the
sub-domains. The arising complex linear systems are numerically solved through the
corresponding numerical code. Moreover, the solution of the equation of movement
provides us with the amplitude of motions in all three degrees of freedom. Therefore,
the potential in the entire area of the fluid domain can be obtained. According to Liu
(2010b), a drawback of the step method is that it is restricted to a two-dimensional
case whereas an advantage is that it allows us to treat also the case of a varying
bathymetry with no limitation on the bottom slope. Therefore the bottom slope can be
locally vertical.

The numerical code is practical when the barge is moored. It has not been
validated in the case where the model is free to respond to the movement of the
waves. This is a complex problem because it implies the solution of the model’s
equations of movement in time. Thus, graphs which present a direct comparison
between the experiments and the model are going to be plotted merely for the 1% and
4™ series of experiments, where the barge is moored. The numerical code proceeds to
the calculation of the drift forces. In total two characteristic graphs can be derived.
The first depicts the normalized response amplitudes, including the normalized drift
force and the normalized response amplitudes of the free surface elevation at a point
situated in the gap between the body and the vertical transition as a function of the
wave period. The second plots the normalized response amplitudes as a function of
the distance from the vertical transition (for the experiments where a vertical obstacle
exists). Theoretically, a collection of infinite graphs of the first type, each one been
plotted for a different distance corresponding to the exact position of the barge as a
function of time, provides us with the complete solution of the free barge problem.
The other graph is also very important because it shows clearly the dependence of the
drift force on the distance between the barge and the vertical transition. In addition to
this, through the RAO of the free-surface elevation as a function of the variable
distance, the impact of the sloshing modes on the free-surface elevation can be also
depicted.
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To this end, the basic steps of the applied method adjusted to our case are
going to be described. The environment is described as a water layer restrained by two
horizontal boundaries: the upper limit is the free-surface and the lower limit is a rigid
bottom. The problem of the 1* series of experiments is considered to be a flat bottom
problem. In order to geometrize the problems of the 2™, 3™ and 4™ series of
experiments, an abrupt vertical transition which has the form of a step and a wall were
added to the geometry of the numerical model. Each sub-domain is characterized by a
constant depth. The varying bathymetry consists in the different water depth between
the upwave and the downave regions. Concerning the case with the vertical wall the
downwave water depth is equal to zero. This problem can be also considered as a flat
bottom problem. The applied model is the rectangular body which has been already
described in the experimental part of our study except that in the numerical code the
barge is supposed to be characterized by a unit length.

Similarly to the experiments, the two-dimensional problem is studied and
therefore the body possesses three degrees of freedom. Cartesian coordinates (x, z) are
used. Due to the fact that horizontal axis is denoted by x instead of y that was used in
the experimental part, the degrees of freedom are the following: surge, heave, and
pitch. Needless to mention, both problems are equivalent. The axis z is directed
vertically upwards from the undisturbed free surface and the axis x, whose direction
coincides with the length of the canal, is oriented towards the right-hand side. The
point of origin of the system coincides with the undisturbed free surface in the
longitudinal position where the vertical transition begins. The surface of the rigid
bottom is described by z =—h(x) where:

h(x)z{}”’KO @.1)

The fluid domain D is decomposed in four sub-domains D, , m=1..4.D, is the sub-
domain situated in the area between x<x; and h=h, D, is the sub-domain
characterized by (x, <x < Xz)U (h = h) which includes the floating body and D,, D,
are the sub-domains described respectively by (x,<x<x; = O)U (h=h) and
(x>0)U (h =h,) . In the flat bottom problems, the number of sub-domains is reduced
to three with 4 = h, . (see Fig. 8-1)
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Figure 8-1: Geometrical configuration of the numerical 2-D problem
concerning the case with the abrupt vertical transition.

In the framework of the potential theory, the fluid is assumed to be
incompressible and inviscid and the flow is considered to be irrotational. The wave
spectrum in the region D is represented by monochromatic harmonic incident waves
along x axis, propagating from the left-hand-side towards the right-hand side. In order
to refer to perturbation analysis, the steepness of the wave-field is assumed to be
sufficiently small. Similarly, the motions of the fluid and the body are also supposed
to be sufficiently small. Hence, the linearized boundary value problems are valid.
Concerning the fluid, this approach of linearization suggests that we are interested to
the mean position of the free surface and therefore we study an invariable fluid
domain. The potential @ is a function of three variables: two spatial variables and a
time variable. The harmonic problem is studied in which the entire hydro-mechanical
system 1is harmonically oscillating with angular frequency w. Under these
circumstances, the velocity potential takes the following form:

D(x,z;t) =N {(p(x, z)e”“‘”} (8.2)

where the function ¢(x,z) plays the role of the complex amplitude of the time
harmonic velocity potential ®(x, z;1) .

The free-surface elevation is given in terms of the wave potential on the free
surface as will be stated next. This is the dynamic condition on the free surface:

1 SCD(x,z:O)

n(x,t) = g 9 (8.3)

The incoming incident first-order waves in the upwave area are the regular waves
Airy governed by:

; Ag coshky(z+ ) oot

8.4
@  coshkyh, 84

(00(1)(x7 Z) ==
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where A is the incident wave amplitude, g is the acceleration due to gravity, k, is the

wave-number and i =+/—1. The wave number £, satisfies the equation of dispersion

which connects the wavelength A = 2z and the wave period 7 = 2z :
o @
2
A= ng tanh 22 = @ — gk tanh ki (8.5)
V4

Another advantage of the existing linearity is the validity of the superposition
principle. Thus, it is possible the decomposition of the main problem to a series of
elementary problems:

e a diffraction problem: this problem is described as the determination of the
incident flow’s perturbation due to the presence of the body restrained from
movement.

e three problems of radiation: while the body is placed in calm water, the flow

submitted to a forced oscillation in all three degrees of freedom has to be
defined.

To formulate the diffraction and radiation problems, it is assumed that the
transient phenomena have been damped. Therefore, concerning the diffraction
problem some waiting time is required after the penetration of the body into the water.
In the radiation problem, it is critical to wait some time after the beginning of the
body’s movement. At this point, both potentials can be considered as time harmonic
functions of the same frequency as the incoming wave:

R
| (8.6)
R

The floating body is also assumed to perform a forced oscillation with frequency w:

E=R {xke-m} (8.7)

Moreover, the form of the boundary condition on the body contour in
association with the assumption that the fluid is excited to movement only by the
oscillation of the body, lead to the following linear decomposition of the total
radiation potential:

Pp(x,2) = Z —LOX, Py, (X, 2) (8.8)

k=1,3,5

Hereafter the following modifications in the notation are valid:

0y(5,2) =128 9, (3, 2)
@ (8.9)

A
@, (x,2) =—zf% (x,2)
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To this end, if we relate the validity of the superposition principle with
expressions (8.8), (8.9), the potential p(x,z) can be expressed by the following form:

(p(x,z)=—i£((pl(x,z)+(pD(x,z))+ Z —LOX, Py, (X, 2) (8.10)
w

k=1,3,5

where ¢, (x,z) denotes the complex amplitude of the diffraction potential due to the
presence of the (fixed) body and the variable bathymetry and ¢, (x,z),k=13,5

denote the complex amplitudes of the radiation wave potentials arising from the
forced body oscillation linked with the three degrees of freedom, i.e. sway(k=1),
heave(k=3), roll(k=5). x,,k=13,5 stand for the complex amplitudes of the

corresponding motions of the body.

In the diffraction problem the potential ¢, is governed by the five boundary

conditions mentioned also in the theoretical part of our study: the Laplace equation,
the two conditions of impermeability on the solid boundaries, the free-surface
boundary condition and a radiation condition.

1.Ap, =0 (x,z)eD (8.11)

2. (a7 = _oo1 on the body contour C, (8.12)
on on

3.9% _ z=—h(x) (8.13)
0z

46990 g 0 z=0 (8.14)

0z
5. propagation of waves to infinity (8.15)

In the diffraction problem the radiation condition must ensure that in the
upwave region D, , the wave field consists in a reflected wave and in the downwave

region, it consists in a transmitted wave.

Henceforward, the potential in sub-domains 1, 3 and 4 where there is no body
presence will be termed external potential. In sub-domain 2 which includes the
floating body the characteristic potential will be named as infernal potential.
Equations (8.10) to (8.14) as well as the radiation condition (8.15) are related in the
method of separation of variables in order to define the form of the diffraction
potential in all sub-domains.

More specifically, concerning the external diffraction problem the Laplace
equation is firstly used in order to provide us with a general form of the diffraction
potential. Moreover, the preceding equation is combined with the equation on the sea-
floor. At this point, the radiation condition is applied. To continue with, the free-
surface boundary condition determines the foregoing solutions. The latter condition
provides us with two equations: the first one is the dispersion equation which yields
one positive root whereas the second one is a group of infinite solutions. The
evanescent modes are determined by this second group of infinite solutions. Therefore
we can report that the presence of the evanescent modes is the result of the Laplace
equation and is designated by the free-surface boundary condition.
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Referring to the internal diffraction problem, at a first step the Laplace
equation together with the equation on the sea-floor are applied. In this problem there
is no need to impose a radiation condition. Finally, the body boundary condition
yields an infinity of solutions which is used to determine the evanescent modes. To
this end, all the velocity potentials have been expressed in the form of eigen-function
expansions that arise from the Fourier series.

In the same way the radiation problem is designated by the following
boundary conditions:

1.Ap,, =0 (x,z)e D (8.16)
2.% =n, = f, onthe body contour C, (8.17)
3.%:0 z=—h(x) (8.18)
4.g%—a}2%k =0 z=0 (8.19)
5. propagation of waves to infinity (8.20)

In total, the parameters f, (k=1,3,5) represent the components of the generalized

normal vector on the body boundary. In our problem the components of the
generalized normal vector n, are the following:

n=n,
n,=n 8.21
3 z (

ny=(z-z4)n, —(x—x;)n,

These vectors introduce the forcing of the system for each degree of freedom#k .
The verification of this equation gives rise to a particular potential solution for each
radiation problem.

The difference between the diffraction and the radiation problem lies in the
transformation of the boundary condition on the hull of the body. In addition to this,
the formulation of the total problem does not prescribe an incident wave component in
the radiation problem. In order to define the external potentials the condition of
impermeability on the body surface is not used. Therefore, the downstream external
potential remains invariable in both diffraction and radiation problems whereas the
upwave external potential is modified due to the absence of the incident wave
component. The condition on the body contour formulates the internal potential of the
radiation problem. As already indicated, this potential obeys the Laplace’s equation as
well as the boundary conditions on the sea floor and on the body boundary. It is
required that the particular solution of each radiation problem also verifies the above
conditions. Thereby, as long as the problem is linear, the total internal potential is the
sum of the internal potential obtained by the diffraction problem plus the particular
solution corresponding to each degree of freedomk . To this end, the total solution
fulfills the requirements of the radiation problem.

In both diffraction and radiation problems the application of the boundary
conditions gives rise to the general analytical form of the potential as two propagative
modes plus two series of evanescent modes. The propagative modes are described by
a coefficient of transmitted wave amplitude and a coefficient of reflected wave
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amplitude. There are also two coefficients that represent the amplitude functions for
the evanescent modes (n=1-— ) at the boundaries. The effect of the evanescent
modes is significant near the body and it decays exponentially with the distance from
the boundary. Furthermore, an order of truncation for the series of the evanescent
modes has to be selected.

Moreover, in order to get the complete expression of every potential in all
problems, the calculation of the unknown Fourier coefficients is necessary. There are
two conditions, applied at each boundary between adjacent regions, which will
contribute in the calculation of the unknown coefficients. They ensure the continuity
of the velocity potential:

* 9. =0, (x=x,) (8.22)
op 00,
Zm 2l (e — 8.23
ox Ox (x=x,) ( )

We also take advantage of the orthogonality of the eigen-functions in order to
furthermore simplify our problem. Thus, after solving complex linear systems, we end
up getting the potentials ¢, and ¢,, in the successive domains in the form of Fourier

series.

The next step is the calculation of the first-order hydrodynamic exciting loads
F, (k=1,3,5) on the floating body by surface integration:

F(0)=[[ p""'n,ds (8.24)

where p""™ is the hydrodynamic pressure exerted on the wetted surface of the

floating body C, and n,,k =1,3,5, are the (non-zero) components of the generalized

normal vector on the mean wetted surface of the floating body C,, pointing inside the
body.
Given the linear approach, the hydrodynamic pressure as expressed by Bernoulli is
simplified as:
oD
(HYD) _ _ p

~ (8.25)

In addition, the force arising from the harmonic problem can be expressed as follows:
F(x,z;) = R{f, (x,2)e ™} (8.26)

The combination of (8.24), (8.25) and (8.26) gives:

fi = —iﬂﬂiwp(p'nde =
.t (8.27)
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In a 2-D problem (8.27) takes the following form:

1, =pgA| pndl (8.28)

&

The velocity potential ¢' in equations (8.27) and (8.28) is the sum of the
incident wave potential and the diffraction potential (¢'=¢, +¢, ). The Froude-

Kryloff forces together with the diffraction forces, as determined in Chapter 2.5,
constitute the hydrodynamic exciting loads (exciting forces and moments).

Furthermore, reference will be made to the radiation forces and moments.
These forces give rise to the hydrodynamic coefficients of added-mass and damping.

The loads F;, arise from the integration of the pressure field emanating from the
body’s forced oscillation with amplitudex,. We analyze these forces in order to

define the hydrodynamic coefficients and in order to give insight into the mechanism
the radiation forces act.

Similarly to equation (8.26) we write:
Fop(x,238) = R{ f (x,2)e ™' } (8.29)

Therefore:
Jre = ” iOp Py dS =
Co

(8.30)
= ”‘—(z’a))z PX, P, dS
Co

In a 2-D problem:
S =_(ia))2 pxkj.(kankdl (8.31)

&
The radiation loads can be furthermore analyzed by introducing the
hydrodynamic coefficients. Henceforward the notation is modified as:

I, = pJ. Priahy Al (8.32)
Co

To this end,
Jru = _(m’)2 x 11, (8.33)

This is the hydrodynamic radiation force of the fluid in direction & (in our case
k=1, 3, 5), owing to the movement of the body in direction / (/=1, 3, 5).

I, =y (@) = a, (@) +-—b,(0) (834)
(0]

where q,,1s the symmetric matrix of added-masses andb,,is the associated matrix of
damping coefficients. By combining equations (8.33) and (8.34) we get:
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Jrua = a)zx,akl (@) + (io)x,b, (w) (8.35)
From expressions (8.31) and (8.35) the following expression is derived:

_(ia))z PX; _[ Pyl = 0 x,a, (@) + (i0)x,by (@) =
Co

pa)z J‘ P dl = a)zakz () +(iw)b, (w)

Co

(8.36)

Reader should be aware that the matrices a,, and b, are symmetric which means that:
a,=a, and b, =b, (8.37)
Based on expressions (8.8), (8.31) and (8.36) we can write:

Jr = Z (—a, (@)X, — b, (0)x;) (8.38)

1=1,3,5

The above expression reveals that the response of the fluid to the movement of the
body comprises:
e one term which is 180° out of phase with the acceleration, resulting in the
augmentation of the inertia of the body
e one term which is 180° out of phase with the velocity. This term depicts the
damping of the mechanical energy of the floating body, due to the dissipation
of energy expressed by the propagation of waves. The damping coefficients
follow solely from the wave making and they are not related with the damping
due to phenomena of friction or viscosity.

Furthermore, the ensemble of these equations allows the formulation and the
solution of the equations of motion of the floating body. The equations of motion are
the working out of Newton’s second-law:

Z

dr’

m —jpﬁcﬂ:

z (_Mkla) +Ck1) =fit S =

1=1,3,5

{ M, +Ck1 led}:fk:

1=1,3,5

{ ~M,@" +C,)x, —(0'x,a,(0) + (i©)xb, (a)))} = pgA [ pndl =
1=1,3 G

5
{(~M, +a)@ —ibyo+C, | x, = pgd [ p'ndl (8.39)
C,

1=1,3,5

Where p is the total pressure exerted on the wetted surface C; of the floating body

and x, (/ =1,3,5) stand respectively for heave, sway and roll complex amplitudes
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This equation expresses the dynamic equilibrium between the inertial forces,
the hydrodynamic responses, the hydrostatic restoring forces and the exciting
loads. C,, denote the restoring coefficients of the hydrostatic loads, and M, stands for
the generalized inertial tensor.

In our problem we firstly calculate the contribution of the potential to the
exciting loads and to the radiation forces (which include the dependence on the
matrices a,, andb,,) from expressions (8.28) and (8.31) respectively:

B = [ pndl (8.40)
Co
and
Ny, = J.(kalnkdl (3.41)

&

However, an extra term must be added to the radiation forces in order to model
the dependency on viscous phenomena and to avoid excessive resonance [Kimmoun
and Molin (2007)]. It has been indicated that the origin of the damping in the roll
movement is mainly attributed to viscous phenomena (as it is the flow separation)
which take place at the square bilges of the barge. In order to take into consideration
these effects an extra term of dissipation which is a quadratic function of the velocity
is adopted:

B,-6|) (8.42)

where @ is the angle of the roll movement. Based on experimental considerations we
express the coefficient B, in the following form:

BQ=%p-Cd~B4~L (8.43)

where B describes the breadth of the barge, L the length of the barge, which in the
present numerical mode is supposed to be equal to one, and C, the coefficient of

damping. In our case the value of C, is considered to be between 0.1 and 0.2.

However, it is obvious that this is a non-linear term introduced in a linear equation. It
must be linearized for the harmonic problem. This linearization is possible if we apply
the Lorentz hypothesis:

g 8 .
0l6)=——ola)¢ (8.44)

where ||90|| is the amplitude of roll.

From previous experiments in the wave flume of ECM it has been observed
that in order to obtain a good agreement between the numerical model and the
experiments, it was required to add a dissipation term also for the heave response.
This term is introduced in the same way as the roll damping. The value selected for
the heave damping is significantly superior to 1 and corresponds to the value obtained
from many previous comparisons [Kimmoun and Molin (2007)].
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Moreover, we define the non-zero elements of the matrices C,, and M, that

correspond to the geometry of our problem. Finally, the following system3x3 (Eq.
(8.45)) is derived. This system provides the complex amplitudes concerning the
responses of the model to the three radiation problems.

Z {(_Mk/a)z +Ck/)x/ _ka/} =L =

1=1,3,5

{(_]Mkza)2 + Ck,)—a)sz,d }xl = pgAP,

1=1,3,5

(8.45)

Right after, the RAOs in the three degrees of freedom are calculated. They follow the
same normalization as in the experimental part:

3 :xj k=1,3 (8.46)
~ X,

- k=5 8.47
X Ak, ( )

The total wave potential in each sub-domain including the diffraction potential
and the three radiation potentials is obtained by the superposition formula (Eq. 8.10).
To this end, the free surface elevation in each sub-domain can be also calculated by
referring to expression (8.3). The RAO of the free surface is as follows:

~ 7
n y (8.48)

The main scope of the conducted experiments and thus of the theoretical
model is the drift force’s calculation. As already mentioned, there are two well-known
formulations for the calculation of the wave drift force: “the far-field method” and
“the near-field method”. In our problem, drift force is obtained through the far-field
method’s momentum considerations with two vertical cuts at upstream infinity and at
downstream infinity.

A synopsis of the far-field’s advantages and disadvantages is presented. A
significant advantage of the method of reference is that the control surface can be
extended to infinity. Furthermore, according to Liu (2010b) in a problem where the
sea-floor is flat below the barge, the momentum method with the two control cuts in
the flat region, presents higher numerical convergence in comparison with the direct
integration method. However, three disadvantages are reported. Firstly, the far-field
method allows the calculation of the three out of the six components of the drift
forces. Moreover, when the interaction between different structures is studied, the far-
field method does not allow the computation of the drift force exerted separately on
each structure. Last but not least, through the far-field method merely the mean drift
forces are calculated instead of the total mean and slow drift forces computed by the
near-field method. Hence, it is common to put into practice both methods.

In the theoretical part of our study, we have already made reference to the
expression for the mean horizontal drift forces as it is derived by the far-field method:

E=—g{nlﬁ+p%}d5—%gngig_ﬂnidl (8.49)
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with p:_%gzp{qﬂu e +q>212} (8.50)

where C is the surface up to z=0 and §,” is the remaining part between z = 0 and
z={¢ .V, stands for the fluid velocity in direction i,V is the radial component of the
fluid velocity on C_ and ¢, represents the first-order wave elevation.

In the numerical model, we make use of Maruo’s formula [Maruo (1960].
This is an elaboration of the far-field method’s expression (Eq. (8.49)) corresponding
to a two-dimensional case. In a two-dimensional caseC, is a rectangular surface

enclosing the body and S is limited by two vertical planes at y = +o . In our problem

the upstream infinity —oo is located at the 1* sub-domain and the downstream infinity
+oo is situated in the 3" sub-domain no matter the geometry of the problem.

Following Maruo’s formula, the mean horizontal drift force when the sea-floor
is flat is obtained as:
1 CG 2 * *
Fy=5pg= 54 (1+RR -T,1;") (8.51)

where C; is the group velocity and C the phase velocity. R, denotes the complex
coefficient of reflection in the upwave infinity and 7, the complex coefficient of

transmission in the downwave infinity. R, ,7; represent their conjugates.

We point out that in a flat bottom problem the drift force is always positive.
This is obvious by combining the flat bottom expression (Eq. (8.51)) with the
expression describing the energy flux conservation RR* +TT" =1. If the barge is an
active power device which consumes energy, the current form for the energy flux

conservation iSRR +TT <1. We become aware of the fact that the drift force
remains positive.

The problems with a vertical transition are also considered to be flat bottom
problems as far as the formulation of the drift-force is concerned. This is due to the
fact that the downwave region is still selected to be situated in the 3™ sub-domain.
However, Eq. (8.51) is altered in order to include also the reflection caused by the
vertical obstacle:

C * * *
F, :5,og?0/12(1+RlR1 ~TT, -RR,) (8.52)

Noteworthy is the fact that in the latter problems, governed by Eq. (8.52), the
sign of the drift force can be also negative due to the reflection caused by the vertical
obstacle. This is also confirmed by the experimental results which are going to be
analyzed in the following chapter.

Nevertheless, through the above expressions (Eq. (8.51), (8.52)) the total mean
force acting both on the body and on the sea-floor is derived. To be accurate, there is
need to either isolate the body by considering a contour closer to it or to make use of
the “near-field method”. But in the same time as mentioned by Liu (2010b) the
“near-field method” encounters slow convergence problems owing to the singularity
of the velocity potential at the square bilges.

The final results for the drift forces are normalized by pgA4’:

F, = £y . (8.53)
peA
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9. COMPARISON BETWEEN EXPERIMENTS AND
THEORY

The main goal of the present experimental and theoretical investigation is to
highlight the occurrence of negative drift force. In this context we are dealing with
circumstances under which this force becomes negative, trying to explain whether the
source of this phenomenon is potential or viscous. The incentive to our experimental
research was given by Liu et al. (2010a), where negative drift forces in a case of a step
or a wall downwave the flow are reported.
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Figure 9-1: The drift force of the barge when the bathymetry is a submarine cliff
with different heights [Fig. from Liu et al. (2010a)].

In Figure 9-1, the numerical results for an applied model of the following
dimensions are presented: length in the direction of the canal =1 m, distance barge-
cliff = 2 m, draft = 0.4m. The waterdepth /; of the weather side is equal to 0.8 m and

hl,h1 , hl hl and right after as
4’16 64

equal to nil (which is the case of the wall). The momentum method is used for the
calculation of the drift force. It is shown that the drift force is always positive when
h, = h,and presents multiple negative peaks in the low period range as approaching

in the lee side it is considered successively as equal to

the case of the wall. According to Liu et al. (2010a) this is due to sloshing modes in-
between the barge and the abrupt vertical transition. Concerning the drift force which
becomes negative in greater periods than 4-5 sec, this is attributed to some kind of
piston mode between the barge and the vertical transition.

In the following analysis, we must be aware of the existing non-linear
phenomena which affect our system. Firstly, the flow separation at the square bilges
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of the barge leading to vortex shedding is present in a case of roll or heave resonance.
In order to take into consideration this effect, roll and heave damping coefficients
have been added to the numerical model. Another non-linearity occurs when the fluid
is entrapped in a small gap, for example when two floating bodies are in proximity. If
this is the case, the fluid is characterized by an infinite number of resonance modes; a
piston mode resonance in heave and an infinite number of sloshing modes. Flow
separation may occur also due to these phenomena. Additionally, negative drift force
may be observed due to this large amplitude motion of the fluid. In total, due to the
flow separation the potential theoretical model notably over-predicts the responses.
Last but not least, the wave-flume is not adequately long. Therefore there may be non-
linear interactions as there is not enough time for equilibrium to be re-established.
Consequently, the experimental results may be amplified in comparison with the
numerical results.

At first, we are going to make an attempt to gain insight into the effect of the
distance between the barge and the wall on the sign and the magnitude of the drift
forces. Three cases of the theoretical model, governed by different distance between
wall and barge, are presented. For the different cases, the distance between wall and
barge, as measured from the right corner of the barge, is the following:

e Distance= 1.9 m
e Distance= 0.9 m
e Distance=0.2 m

The waterdepth is equal to 0.513 m in all cases and the wave steepness is equal to
0.02. The RAOs of the considered degrees of freedom, the normalized drift force and
the normalized free surface elevation at distance equal to -0.1 m from the wall are
presented. The viscous damping in roll and heave, when included in the equations,

take the following values: C,, , =0.1 andC,, .. =5.

distance wall - barge = 1.9m

Figure 9-2: Barge 1.9 m from the wall with no dissipation terms in the equations.

It is observed that there are two particular cases where the drift force is equal
to zero. In the first case, in certain periods (~0.86 sec, ~1.03 sec, ~1.22 sec, ~1.45 sec)
in addition to the cancellation of the normalized drift force the RAO of heave
response is also cancelled, while the RAOs of roll and sway exhibit maximum values.
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In the second case, in the periods when the normalized drift force is cancelled, a
cancellation of the roll and sway motions together with a maximum heave motion take
place (~0.83 sec, ~0.95 sec). In all the preceding cases, the normalized free surface
elevation crosses the value level of 2 except for the periodical interval between 0.7-
0.8 sec when it takes a greater value due to the heave resonance. [Kimmoun et al.
(2011)]

Moreover, we show that in this case the total maximum negative drift force
occurs in the vicinity of the heave resonance (~0.75 sec) which also corresponds to a
resonance of the free surface in the gap between the wall and the barge. Another local
maximum of the negative drift force takes place at ~0.85 sec, which also coincides
with a maximum of heave’s RAO and of the normalized free surface. It is also
observed that when local or total maxima of the negative drift force occur, the
responses corresponding to all three considered degrees of freedom are significantly
oscillating.

distance wall - barge = 1.9m

Figure 9-3: Barge 1.9 m from the wall with viscous damping in roll.

The roll dissipation term, which is added in the theoretical model in Figure 9-
3, changes significantly the roll response. In particular, it reduces the magnitude of the
roll’s RAO between 7= 0.94 sec and 7 = 1.2 sec and decreases considerably the roll
resonance after 7 = 1.2 sec. The drift force is not affected by this dissipation term
except that around 7' = 1.2 sec the small negative drift force peak vanishes.
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distance wall - barge = 1.9m

Figure 9-4: Barge 1.9 m from the wall with viscous damping in roll and heave.

Moreover, in Figure 9-4 both roll and heave dissipation terms are incorporated
in the equations. The heave dissipation term changes significantly the heave response,
the free surface elevation as well as the normalized drift force. All the maxima of
heave’s RAO have been attenuated and the normalized free surface never exceeds the
value level of 2. Noteworthy is the fact that the heave dissipation term influences the
drift force especially when it takes negative values and the negative peaks appear to
be significantly minimized in magnitude.

In total, from the preceding Figures 9-2, 9-3, 9-4 it can be deduced that the
viscous damping coefficients influence mostly the intensity of the responses without
significantly displacing their maximum and minimum values.

To illustrate more sufficiently the response of the free surface elevation, the
graphs of the normalized free surface elevation as a function of the distance from the
wall are plotted. In the two following Figures 9-5, 9-6 the free surface elevation is
depicted for the wave periods where the RAO of heave response is cancelled:

RAO free surface

-2 -1.5 -1 -0.5
distance from the wall (m)

Figure 9-5: Free surface profile for 7= 0.862 sec (zero heave) with viscous

damping in roll.
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BAO free surface

i I i i
-3.5 -3 -2.5 -2 -1.5 -1 -0.5
distance from the wall (1)

Figure 9-6: Free surface profile for 7= 1.038 sec (zero heave) with viscous
damping in roll and heave.

There is no difference between the cases with roll viscous damping and with
both roll and heave viscous damping. When the drift force is nullified the body is
considered to be invisible and it can be assumed that there in no wave reflected from
the body. Hence, it is expected that the transmission coefficient is equal to 1, which
means that the same incident wave (but with a phase lag) arrives at the wall and is
reflected on it [Kimmoun et al. (2011)]. Therefore, the normalized free surface on the
wall is expected to be equal to 2 in these cases of cancellation of the drift force.

In the same way, in the following Figures 9-7, 9-8 the free surface profile for
the periods corresponding to the sway’s and roll’s cancellation is plotted. In Figure
9-7 the case of 7' = 0.828 sec is considered, which stands for a cancellation of sway
and roll in Figure 9-3. In Figure 9-8, the case of 7 = 0.836 sec is studied. In this
period, both sway and roll are nullified for the case with viscous damping in roll and
heave.

RAO free surface

I i i I
-3 -2.5 -2 -1.5 -1 0.5
distance from the wall (1)

Figure 9-7: Free surface profile for 7= 0.828 sec (neither sway nor roll) with
viscous damping in roll.
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RAQ free surface

I i i I
-3 -2.5 -2 -1.5 -1 -0.5
distance from the wall (m)

Figure 9-8: Free surface profile for 7= 0.836 sec (neither sway nor roll) with
viscous damping in roll and heave.

Figure 9-7 is in line with the theory we have already expressed. The presence
of the body does not disturb the wave-field and additionally, the undisturbed incoming
wave is fully reflected on the wall. Therefore the normalized free surface is equal to 2.
When the heave damping is added (Fig. 9-8) it is obvious that a great part of the
reflected wave on the wall is absorbed and consequently the normalized free surface
approaches the value level of 1. To sum up, Figure 9-8 illustrates that when the heave
response is significant, viscous phenomena arising from the heave response are also
significant. Thus, when a heave dissipation term is added, in other words when the
dissipation caused by viscous phenomena due to heave resonance is accounted for, the
reflected wave on the wall seems to reduce.

At this point, the free surface elevation when the negative drift force is
maximum is plotted.

4 T T T T T T
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RAOQ free surface

-2 -1.5 -1 -0.5
distance from the wall (m)

Figure 9-9: Free surface profile for 7= 0.842 sec (maximum negative drift force)
with viscous damping in roll.
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RAOQ free surface

-2 -1.5 -1 -0.5
distance from the wall (m)

Figure 9-10: Free surface profile for 7= 0.850 sec (maximum negative drift force)
with roll and heave dissipation terms.

In both Figures 9-9, 9-10 it is obvious that the maximum negative drift force
coincides with a maximum free surface elevation in the gap between the barge and the
wall. It is mentioned that this maximum depicts a resonance of the free surface linked
with the phenomenon of high sloshing modes. It is not surprising that when heave
damping is added in the equations (Fig. 9-10), this phenomenon is reduced in
magnitude. However, the phenomenon even if reduced in magnitude is not nullified.
The viscous effects do not cause the total damping of the high sloshing modes.

The following graphs concern the case where the distance between the wall
and the barge is equal to 0.9 m.

distance wall - barge = 0.9m

Figure 9-11: Barge 1.9 m from the wall with no dissipation terms in the
equations.
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distance wall - barge = 0.9m

Figure 9-12: Barge 0.9 m from the wall with viscous damping in roll.

distance wall - barge = 0.9m

Figure 9-13: Barge 0.9 m from the wall with viscous damping
in roll and heave.

By comparing Figures 9-11, 9-12, 9-13 corresponding to distance wall-barge
equal to 0.9 m, we come to the same conclusion about the impact of the viscous roll
and heave damping on the total results: the viscous roll damping mainly diminishes
the roll response whereas under the influence of both roll and heave damping the
heave, the free surface elevation and the negative drift force are also reduced in
magnitude. In Figure 9-13 similarly to Figure 9-4 the normalized free surface
elevation never exceeds the value level of 2.

Moreover, it is observed that in total the RAOs plotted for the smaller distance
exhibit less pronounced maxima (especially for the case with no viscous dissipation
terms or with only a roll dissipation term) and show a smoother oscillation with a
smaller number of peaks than the RAOs corresponding to a greater distance.

To continue with, the free surface elevation as a function of the distance from
the wall is plotted for two periods where in the first case (7' = 0.86 sec) neither sway
nor roll are observed and in the second case (7 = 0.95 sec) heave is equal to zero. In
both cases a roll and a heave dissipation terms are added in the equations.
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Figure 9-14: Free surface profile for 7= 0.86 sec (neither sway nor roll) with
viscous damping in roll and heave.

RAOQ free surface
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Figure 9-15: Free surface profile for 7= 0.95 sec (no heave) with viscous
damping in roll and heave.

Similarly to Figure 9-8, in period 7 =0.86 sec where the heave is maximum
and there are both roll and heave viscous damping terms added in the theoretical
model the reflected wave on the wall is fully absorbed mainly due to the viscous
effects caused by the heave resonance (Fig. 9-14). Concerning Figure 9-15, this graph
is in line with Figure 9-6.
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In the following graphs the case distance wall-barge = 0.2 m is presented:

distance wall - barge = 0.2m
6 T ! ! T T J ' !

T (=) ——FS

Figure 9-16: Barge 0.2 m from the wall with no viscous dissipation terms

distance wall - barge = 0.2m

T(s)

Figure 9-17: Barge 0.2 m from the wall with viscous damping in roll.
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distance wall - barge = 0.2m

Figure 9-18: Barge 0.2 m from the wall with viscous damping in roll and heave.

In this case, it is depicted that the responses develop more pronounced maxima
(especially for the case with no heave dissipation term) in comparison with the
responses of a distance wall-barge equal to 0.9 m. However, these maxima are less
pronounced compared to the maxima of the case where the distance is equal to 1.9 m.
Therefore a general conclusion cannot be drawn concerning the impact of the distance
on the considered degrees of freedom. However, the RAO of heave and the
normalized free surface elevation at periods close to the period of maximization of the
negative drift force can be considered as indicators of the magnitude of the negative
drift force.

Concerning the oscillatory behavior, this case confirms the aforementioned
remark that while the barge approaches the wall the oscillations of all degrees of
freedom become smoother.

As a consequence of the short distance from the barge to the wall, the
evanescent modes which are significant at close distance from the model become very
important. They mainly influence the normalized free surface, at a point situated
between the barge and the wall, and the normalized drift force. In Figure 9-17 with
viscous damping in roll, the free surface elevation is strongly amplified when the peak
of the negative drift force is observed (RAO =4 at T =0.8s). This effect disappears
when the heave damping is added. Furthermore, in Figure 9-18 it is shown that the
value of the maximum negative drift force is lower when the heave damping is
present.
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To continue with, the experimental results are presented and compared with
the theoretical results when possible. The first experimental series with no obstacle
downwave the flow is now presented.

The diagrams corresponding to different parameters of the problem are
plotted. A direct comparison between experiments and model is presented. Viscous
damping coefficients in roll and heave have been taken into consideration in all the
numerical results. The waterdepth is equal to 0.565 m for all the experiments of this
series. The steepness is fixed at various values.

Experiments 1-20

Variable Value
number of springs 4
period range [sec] [0.5:1.45]
waterdepth [m] 0.565
roll viscous damping 0.2
heave viscous damping 3
5 !
Ab _____________________________________________ i
g Bb ............................................. -
o= :
- 2_ ............................................. _
I M_@_@_e_e_g_e—_e_ oo o
1 _ ............................................. i
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T (s)
Figure 9-19: Steepness for experiments 1-20.
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Figure 9-20: RAO of roll for experiments 1-20.
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Figure 9-22: RAO of sway for experiments 1-20.
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Figure 9-23: Normalized drift force for experiments 1-20.
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Figure 9-25: Drift force [N] for experiments 1-20.
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Experiments 21-40

Variable Value
number of springs 6
period range [sec] [0.5:1.45]
waterdepth [m] 0.565
roll viscous damping 0.13
heave viscous damping 3
2 !
Al .............................................
— :
.E:‘u 3 ............................................... .............................................
= |
I EWOGO,‘,‘,‘,‘,‘ ........ O
Lb e .............................................
05 1 15

RAO roll
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Figure 9-27: RAO of roll for experiments 21-40.
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Figure 9-30: Normalized drift force for experiments 21-40.
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Figure 9-32: Drift force [N] for experiments 21-40.

Experiments 41-60

Variable Value
number of springs 6
period range [sec] [0.5:1.45]
waterdepth [m] 0.565
roll viscous damping 0.13
heave viscous damping 3
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Figure 9-35: RAO of heave for experiments 41-60.
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Figure 9-37: Normalized drift force for experiments 41-60.
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Figure 9-38: Coefficients of reflection and transmission for experiments 41-60.
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Figure 9-39: Drift force [N] for experiments 41-60.

Experiments 71-90

Variable Value
number of springs 8
period range [sec] [0.5:1.45]
waterdepth [m] 0.565
roll viscous damping 0.1
heave viscous damping 5
5 !
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Figure 9-40: Steepness for experiments 71-90.
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Figure 42: RAO of heave for experiments 71-90.

16 . ! ) T !

—o—exp —

Figure 9-43: RAO of sway for experiments 71-90.
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Figure 9-45: Coefficients of reflection and transmission for experiments 71-90.
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Figure 9-46: Drift force [N] for experiments 71-90.
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It is shown that generally there is good agreement between experimental and
theoretical results. For the drift force and for the normalized drift force there are
greater discrepancies between theory and experiments and this is due to the difficulty
of drift to reach a stable state. However, there is better agreement between theory and
experiments for the drift force when the number of springs is equal to 8 (Fig. 9-44 and
Fig. 9-46). When the number of springs is greater, the body exhibits a greater initial
displacement but it more easily oscillates around a mean position, compared with a
case with a smaller number of springs. If the drift movement attains a state of
equilibrium, the average used for the experimental calculation of the drift force yields
more realistic results. We must also not leave behind the fact that the numerical model
cannot precisely follow a non-stable state where the mean position of the barge is not
constant.

We come to the conclusion that the number of springs is a critical parameter
in the measurement of the drift forces. However, the mooring system must be neither
too loose nor too stiff. Before studying the drift forces it is important to formerly
ensure that the first-order wave induced motions will not be influenced by the
mooring system. In theory this requirement is satisfied if the only force induced by the
mooring system is a constant force equal and opposite to the mean second-order wave
drift force. For example, in our case of a spring system consisted of lines
incorporating springs the spring system gives rise to a force which includes two parts:
a constant and an oscillating part. The constant part is equal to the mean second-order
drift force while the oscillating part is linked with the first-order motions and the
spring characteristics of the mooring system. If the spring is too stiff, the oscillating
part is more intense and may modify the first-order responses. If this is the case, the
drift force may be also affected. [Pinkster (1980)]

Moreover, the stiffness is also connected with the natural frequency of the
horizontal-plane motions (surge, sway, yaw). As the stiffness increases, the natural
frequency also increases. Hence, there is the danger that the resultant higher natural
frequency of the system coincides with the frequency range of the waves and
resonance takes place. In a case of resonance both first-order motions and mean drift
forces are affected.

At this point, the drift movement connected with the experiments 71-90 is
plotted. The difficulty of drift to attain a stable position, even in a case with a greater
number of springs, is depicted.
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Figure 9-47: Drift movement for experiments 71-90 at 7' = 0.6 sec.
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Figure 9-48: Drift movement for experiments 71-90 at 7 = 0.8 sec.
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Figure 9-49: Drift movement for experiments 71-90 at 7 = 1.1 sec
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Figure 9-50: Drift movement for experiments 71-90 at 7 = 1.2 sec.

Sea-keeping and wave drift forces in varying bathymetry
Oikonomidou C. Haris

105



drift (m)
O
]

N 10-3 Period = 1.4s

5 T T T T |
o R e
d: Q e a= e S CL L AR A A "H":
=
=

_5 1 1 1 1 1

5 10 15 20 2b
1(s)

Figure 9-52: Drift movement for experiments 71-90 at 7 = 1.4 sec.
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In the following, the case of the barge moored in front of a wall is studied. The
distance between wall and barge is equal to 1.9 m, as measured from the right corner
of the barge. The parameters of this experimental series are the following:

Experiments 241-258
Variable Value
number of springs 6
period range [sec] [0.6:1.45]
waterdepth [m[ 0.506
roll viscous damping 0.1
heave viscous damping 5
2 !
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3l AN ]
g
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Figure 9-53: Steepness for experiments 241-258.
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Figure 9-54: RAO of roll for experiments 241-258.
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Figure 9-57: Normalized drift force for experiments 241-258.
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Figure 9-58: Drift force [N] for experiments 241-258.

It is shown that the results for roll and heave between experiments and
theoretical model are in good agreement. The discrepancies observed for the RAO of
sway and for the drift can be attributed to the mooring system because the
experimental results present a lot of peaks in the drift graphs (for 7 >1 sec) which are
not predicted by the numerical model.

The reflection coefficient is plotted in Figure 9-59. By considering Figure 9-58
and Figure 9-59, it is observed that the minima of the reflection coefficient coincide
with a zero or almost zero drift force. In particular, this is obvious for 7= 0.75 sec, T
= 0.85 sec, T = 1.05 sec. Therefore, the experimental results confirm the statement
that when the drift force is equal to zero or approaches zero, the structure of the body
is considered to be transparent and the wave reflected from the body tends to zero.
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Figure 9-59: Coefficient of reflection for experiments 241-258.

The experimental results for 7= 0.95 sec and 7= 1.45 sec are now studied. As
already mentioned, these are two characteristic cases of the theoretical model where
while the drift force is equal to zero, we observe respectively either cancellation of
sway and roll motion or cancellation of heave motion. The calculations of the
numerical model for distance wall-barge = 1.9 m and waterdepth = 0.506 m are
plotted (Fig. 9-60).
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distance wall - barge = 1.9m

T (5)
Figure 9-60: Barge 1.9 m from the wall with viscous damping in roll and heave.
At T = 0.95 sec the experimental results confirm the cancellation of

sway and roll (Fig. 9-61). In the same period, a local maximum of heave is observed
in Figure 9-55.
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Figure 9-61: Responses for experiments 241-258 at 7 = 0.95 sec.

At T = 1.45 sec the extinction of heave is also observed for the experimental
results (Fig. 9-62). In addition, at this period the roll and the sway responses are
situated in area of increasing value (Fig. 9-54 and Fig. 9-56).
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Figure 9-62: Responses for experiments 241-258 at 7 =1.45 sec.
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The case of the freely drifting rectangular barge in front of a wall is now
considered. The distance between wall and barge is equal to 0.2 m, as measured from
the right corner of the barge. The parameters of this experimental series are the
following:

Experiments 151-162

Variable Value
period range [sec] [0.5:1.05]
waterdepth [m] 0.513
roll viscous damping 0.1

wW

M/ (%)

[aM]

T (s

Figure 9-63: Steepness for experiments 151-162.

As already mentioned in Chapters 7 and 8, the drift force can neither be
calculated nor measured when the barge is not moored. The numerical model is
practical only when the model is oscillating around a mean position. Furthermore, the
drift force is a function of the distance between wall and barge and it changes
continuously depending on the exact position of the barge with reference to the wall.
As it will be shown, in the solution of the free barge problem the drift force must be
calculated for the instantaneous position of the barge.

To this end, the experimental results for the case of 7' = 0.8 sec are presented
(Fig. 9-65, 9-66). The RAO of heave is maximum for this period (Fig. 9-64).
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Figure 9-64: RAO of heave for experiments 151-162.
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Figure 9-65: Drift movement for experiments 151-162 at 7 = 0.8 sec.

It is observed that in this case where the barge is set free the drift movement,
before applying the matlab function smooth (), is smoother comparing it with a case
where the barge is moored (Figure 9-65).

In the following graph (Fig. 9-66), at T = 0.8 sec the extinction of roll and
sway motion in the time interval ¢ =30-40 sec is shown. The heave response has a
constant value and as it is apparent from Figure 9-64 this is also the maximum value
as far as this experimental series is concerned. In addition, we become aware of the
fact that at # =35 sec the drift movement attains its maximum negative value.
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Figure 9-66: Responses for experiments 151-162 at 7' = 0.8 sec.

In the theoretical results for 7= 0.8 sec, plotted for the corresponding position
of the barge when the negative drift is maximum and assuming the barge fixed, the
responses of roll and sway are also attenuating at 7= 0.8 sec (Fig. 9-67).
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Figure 9-67: Barge 0.2217 m from the wall with viscous damping in roll.

The effect of the variable distance between wall and barge on the RAOs of the
considered degrees of freedom is going to be illustrated. The theoretical RAOs and
the normalized drift force corresponding to different positions of the barge, as
experimentally measured for 7= 0.8 sec, are plotted.
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Figure 9-68: Barge 0.2002 m from the wall with viscous damping in roll.
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Figure 9-69: Barge 0.1757 m from the wall with viscous damping in roll.
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Figure 9-71: Barge 0.1807 m from the wall with viscous damping in roll.

In the global results, it is observed that while the distance wall-barge becomes
smaller, the drift force becomes more negative and the negative drift force peak takes
place in a smaller period.

Therefore for a same wave period it would be interesting to study the drift force as
a function of the wall-barge distance. The RAOs as a function of the wall-barge
distance are presented schematically for 7 = 0.8 sec in Figure 9-72. No viscous
damping is added in the equations of the theoretical model.
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Figure 9-72: Barge at variable distance in front of the wall with no dissipation
terms in the equations.

Intuitively, it could be claimed that the magnitude of the negative drift force
would increase steadily while the body was approaching the wall. However this is not
confirmed by the theoretical results as presented in the beginning of this Chapter,
where a general conclusion for the effect of the distance wall-barge on the drift force
could not be deduced. Furthermore, this is also depicted in Figure 9-72. In the same
wave period, when the barge approaches the wall there is a negative drift force (-0.75
m up to -0.65 m approximately). Then, a balance when there is no more drift motion
is observed and afterwards another negative drift force peak takes place (-0.2 m).
During experiments this balance was not achieved and oscillations were observed.
Noteworthy is also the fact that depending on the starting point, the drift force can
attain two different positions of nullification. The first one, situated at -0.75 m from
the wall, is characterized by a stable equilibrium, because if the barge drifts away
from the equilibrium position the force tends to bring it back to its equilibrium
position. The second one (—0.63 m) corresponds to an unstable equilibrium because if

the barge departs from the equilibrium position the drift force has the tendency to
move it further away. We show that the steady equilibrium occurs simultaneously
with the extinction of roll and sway while the unsteady equilibrium coincides with the
cancellation of heave motion. It is also observed that due to the unsteady equilibrium
the heave response finds more difficulty in being cancelled completely contrary to
sway’s and roll’s extinction which are complete.

To continue with, some results of a space-time representation of the free
surface between the wall and the barge as depicted by the laser and the numerical
model are presented. In this case, the freely drifting barge is placed at distance equal
to 0.4 m in front of the wall. The waterdepth is equal to 0.513 m.
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Experiments 131-150

Wave elevation in the gap between the barge and the wall
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Figure 9-73: Space time representation of the free surface between the wall

and the barge for 7= 0.90 sec and Aj,cigent = 0.01 m.
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Figure 9-74: Free surface elevation between the wall and the barge for 7= 0.90
sec and Ajncident = 0.01 m.
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Figure 9-75: Space time representation of the free surface between the wall
and the barge for 7= 0.95 sec and Ajycident= 0.011 m.
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Figure 9-76: Free surface elevation between the wall and the barge for 7= 0.95
sec and Ajpcigent= 0.011 m.

It is observed that experimental and theoretical results are in good agreement
concerning the free surface elevation in the gap between the wall and the barge (Fig.
9-74 and Fig. 9-76). By comparing Figure 9-73 with Figure 9-75, it is deduced that
the free surface elevation corresponding to 7 = 0.95 sec displays greater oscillation.
Furthermore, in Figure 9-77, it is shown that this greater oscillation takes place
simultaneously with a negative drift response which is not observed for 7= 0.90 sec.
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Figure 9-77: Drift movement for experiments 131-150 at 7= 0.95 sec.
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Last but not least, the case of the freely floating barge in front of a vertical
transition is presented. The distance between the vertical transition and the barge is
equal to 0.4 m, as measured from the right corner of the barge. The waterdepth /4, of
the weather side is equal to 0.561 m and in the lee side the waterdepth 4, is equal to
0.515 m. Results of the drift movement as experimentally measured and calculations
of the numerical model assuming the barge moored are shown. In the global results no
negative drift values are observed.
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Figure 9-78: Drift movement for experiments 94-122 at 7= 0.6 sec
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Figure 9-79: Drift movement for experiments 94-122 at 7= 0.9 sec.
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Figure 9-80: Drift movement for experiments 94-122 at 7= 1.2 sec.
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Figure 9-81: Drift movement for experiments 94-122 at 7 =1.4 sec.
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Figure 9-82: Drift movement for experiments 94-122 at 7= 1.7 sec.

The preceding Figures 9-78 — 9-82 besides the positive drifting, confirm the
statement that the drift movement is smoother compared with a moored barge case.

Figure 9-80 depicts that at # = 28 sec the barge reaches the step and there is no
more drifting. In Figure 9-83 the responses of the considered degrees of freedom are
plotted for 7= 1.2 sec. After t = 28 sec some time is required until the oscillation of
roll, heave and sway diminishes.
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Figure 9-83: Responses for experiments 94-122 at 7 =1.2 sec.
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Figure 9-84: Barge 0.4 m from the step with no dissipation terms in the
equations.
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Figure 9-85: Barge 0.4 m from the step with viscous damping in roll.

distance step - barge = 0.4m

Figure 9-86: Barge 0.4 m from the step with viscous damping in roll and heave.

This case as also depicted by the numerical model does not present a
remarkable interest. Merely between 7 = 0.9 sec and 7 = 1 sec, when a heave
dissipation term is not added in the equations, the drift force reaches some negative
value which is not noticeable. A possible reason no drifting opposite to the waves’
direction is observed is that the height of the step is not adequate to cause this
negative drift force (4, = 0.92-h,). Our case is very close to the A, = h, case presented

in Liu et al. (2010a) (Fig. 9-1), where no negative peaks are observed. The drift
forces’ calculation formula as already mentioned in Chapter § is the following:

1 C . . .
£y =§ngGA2 (1+R1R1 —LT - RR, ) ©.1)

The height of the step influences the magnitude of the lee side’s reflected wave
amplitude coefficient which determines the sign of the wave drift force.
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In the following Figures 9-87, 9-88 the same problem, except that the step is replaced
with a wall, is considered. The theoretical results are presented:

distance wall - barge = 0.4m

I e
I

RAO

Figure 9-87: Barge 0.4 m from the wall with viscous damping in roll.
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Figure 9-88: Barge 0.4 m from the wall with viscous damping in roll and heave.

In Figure 9-87 with no heave dissipation term, in the vicinity of 7= 0.9 sec it
is observed a more noticeable negative drift force compared with the case of the
vertical step. The RAO of heave and the normalized free surface elevation also take
greater values near 7 = 0.9 sec thus some negative drifting is connected also with this
fact. The effects of piston mode resonance and sloshing are present in the case of the
wall where the fluid is entrapped between the wall and the barge. When the viscous
damping in heave is added the negative peak is almost eliminated. By comparing
Figures 9-85, 9-86 with Figures 9-87, 9-88 it is deduced that the viscous effects
arising from the heave resonance of the model and the piston mode resonance and
sloshing modes of the fluid are more significant in the case of the wall.

From Figures 9-72, 9-87 and 9-88 it is concluded that in addition to the height
of the step, the distance between step and barge in the current experiments is not the
most characteristic distance for the illustration of the negative drift force.
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10. CONCLUDING REMARKS AND PERSPECTIVES

In the present work the 2-D drift force exerted on a floating body has been
both experimentally and numerically examined. Special attention has been paid to the
occurrence of negative drift forces on the floating body. The work has been carried
out in the framework of the ERASMUS Programme in collaboration with the Ecole
Centrale Marseille (ECM).

The main findings of the present work can be summarized as follows:

We concluded, as it was traced back from the foregoing analysis that the
source of the negative drift force is of potential origin. We are going to show this
upon closer inspection. Actually, in the case of the wall the body-wave interaction can
be considered as the superposition of two cases. In the first one, the wall is not taken
into consideration. The system is excited by the incident wave and consequently a
reflected (due to the diffraction and the radiation caused by the isolated body) and a
transmitted wave component are produced. In the second case, the reflection on the
wall is considered. The reflected wave on the wall corresponds to the incoming wave
of this case. Both cases are regarded as identical except that they are acting in
opposite directions. Concerning the sign of the drift force, the most dominant or in
other words the case which will induce the greatest reflection on the body, determines
the final sign of the drift force. Hence, even if a negative drift force is observed, this
drift force can still be considered to have the propagation direction of the incoming
wave, which in this case is the one of the reflected wave on the wall. The sign of the
mean drift force is in accordance with the ideal-fluid theory and thus it is a potential
effect. Nevertheless, the phenomenon is much more complicated if we take into
consideration that multiple reflections on the model and on the wall take place and
affect the drift force in magnitude and in sign.

The global experimental and theoretical results have shown that another factor
that might be susceptive for the negative wave drift force can be the excessive
oscillation of the barge and of the free surface in the heave direction; especially is the
case where the reflecting wall is present and the fluid is entrapped in a small gap
between the barge and the wall. This is also a potential effect. However, in the second
case the potential effect gives rise to co-existing non-linear effects, as it is the flow
separation, which may cause the damping of the negative drift force.

As far as the further perspectives of the present work are concerned,
difficulties emanating from the experimental setup have to be solved. As already
mentioned in Chapter 10 the number of springs is a critical parameter in the
calculation of the drift force. Therefore, the mooring lines must be properly sized in
order to enable the drift force to attain a stable state without in the same time
modifying the first-order responses. Concerning the theoretical model, a better
formulation of the viscous damping should be implemented so that the flow
separation at the barge bilges is properly accounted for. This is the case of the barge’s
resonance in roll or in heave as well as of the gap resonance in between the barge and
the wall. For the latter case, we make reference to two techniques which are
mentioned in Kimmoun et al. (2011). In Kristiansen and Faltinsen (2011) a numerical
domain-decomposition method is proposed to take into consideration the damping
induced by the flow separation at bilge keels. More specifically, a combination of the
Bernoulli equation in the greatest part of the water and of the Navier-Stokes equations
in the viscous domain near the ship bilges is used. Another technique consists in
adding a massless lid at the inner free surface and attributing to it a quadratic damping
force (Molin et al. 2009).
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