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Περίληψη 
 

Στην παρούσα διπλωµατική εργασία, οι δευτεροτάξιες δυνάµεις (Drift forces) 

διερευνώνται θεωρητικά, πειραµατικά και αριθµητικά. Οι συγκεκριµένες δευτεροτάξιες 

δυνάµεις είναι δυνάµεις διεγειρόµενες από τους θαλάσσιους κυµατισµούς και µπορούν να 

προκαλέσουν την παρέκκλιση ενός πλοίου από την πορεία του. Υπάρχουν µέσες 

δευτεροτάξιες δυνάµεις (Mean Drift forces) που εµφανίζονται σε µονοχρωµατικούς 

κυµατισµούς και δευτεροτάξιες δυνάµεις χαµηλής συχνότητας (Low frequency Drift 

forces) που οφείλονται σε πολυχρωµατικούς κυµατισµούς. Οι δυνάµεις δεύτερης τάξης αν 

και µικρότερες σε µέτρο από τις πρωτοτάξιες δυνάµεις, δύνανται να προκαλέσουν έντονες 

αποκρίσεις. Ένα πρακτικό πρόβληµα που συνδέεται µε τις δευτεροτάξιες δυνάµεις είναι ότι 

µε την άνοδο της ζήτησης του φυσικού αερίου καθίσταται αναγκαία η εγκατάσταση νέων 

µονάδων παραγωγής και αποθήκευσης φυσικού αερίου στα ανοιχτά της θάλασσας. Η 

αλληλεπίδραση µεταξύ ενός πλοίου µεταφοράς υγροποιηµένου φυσικού αερίου (LNG) και 

ενός σταθµού αποθήκευσης και επεξεργασίας στα ανοιχτά, δηµιουργεί πληθώρα 

υδροδυναµικών προβληµάτων, στα οποία υπεισέρχονται οι δευτεροτάξιες δυνάµεις. 

 Οι  δευτεροτάξιες δυνάµεις επηρεάζονται από ποικίλες πηγές και παράγοντες σε 

µέτρο και σε πρόσηµο. Όσον αφορά στην ιστορική εξέλιξη των θεωριών που αφορούν 

στην εκτίµησή τους, υπάρχουν δυναµικές θεωρίες για τον υπολογισµό των µέσων και των 

χαµηλόσυχνων δευτεροτάξιων δυνάµεων και µη δυναµικές θεωρίες για την εκτίµηση της 

σηµασίας των συνεκτικών φαινοµένων στις µέσες δευτεροτάξιες δυνάµεις. Στην παρούσα 

διπλωµατική εργασία, από τις δυναµικές θεωρίες αναλύονται η µέθοδος άµεσης 

ολοκλήρωσης της πίεσης (Near-field or Direct integration method) και η µέθοδος της 

ορµής (Far-field or Momentum method). Επιπλέον, γίνεται µια µικρή αναφορά στις µη 

δυναµικές θεωρίες. 

 Το πειραµατικό και θεωρητικό κοµµάτι της διπλωµατικής εργασίας 

διεκπεραιώθηκε υπό το πλαίσιο του προγράµµατος ERASMUS σε συνεργασία µε το 

Πανεπιστήµιο Ecole Centrale Marseille (ECM). Αφορά στο δισδιάστατο πρόβληµα µίας 

ορθογώνιας φορτηγίδας. Ιδιαίτερη προσοχή δόθηκε στο φαινόµενο των αρνητικών (µε 

κατεύθυνση αντίθετη της κατεύθυνσης διάδοσης του κύµατος) µέσων δευτεροτάξιων 

δυνάµεων. Εξετάστηκαν οι συνθήκες υπό τις οποίες η µέση δευτεροτάξια δύναµη γίνεται 

αρνητική καθώς και το αν η πηγή αυτού του φαινοµένου είναι δυναµική ή οφείλεται σε 

φαινόµενα συνεκτικότητας. 

 Η µέση δευτεροτάξια δύναµη µετρήθηκε και υπολογίστηκε για διάφορες διατάξεις. 

Με στόχο τη µελέτη της επίδρασης του φαινοµένου της µεταβαλλόµενης βαθυµετρίας στο 

πρόσηµο της δευτεροτάξιας δύναµης, µια απότοµη µετάβαση του βάθους του πυθµένα και 

ένας τοίχος µπροστά από το µοντέλο εισήχθησαν στη γεωµετρία του προβλήµατος. Η 

µέτρηση της κίνησης του µοντέλου επιτυγχάνεται από ένα σύστηµα αποτελούµενο από δύο 

ηλεκτροφωταυγείς διόδους (τοποθετηµένες πάνω στο µοντέλο) και µία αριθµητική 

βιντεοκάµερα. Στη συνέχεια, η διαδικασία µέτρησης διεκπεραιώνεται µέσω διαδοχικών 

προγραµµάτων matlab. Το γραµµικό θεωρητικό µοντέλο στηρίζεται στη διακριτοποίηση 

του πεδίου ροής µε κατάλληλη διακριτοποίησή του σε περιοχές ορθογωνικής γεωµετρίας. 

Το γραµµικό πρόβληµα ακτινοβολίας-περίθλασης λύνεται µε αναπτύγµατα 

ιδιοσυναρτήσεων Fourier και οι δευτεροτάξιες δυνάµεις υπολογίζονται µε την µέθοδο της 

ορµής χρησιµοποιώντας δύο κατακόρυφες τοµές ανάντι και κατάντι της ροής. Επιπλέον 

όροι απόσβεσης προσµετρούνται στην κατακόρυφη ταλάντωση (heave) και στον 

διατοιχισµό (roll), για την µοντελοποίηση των συνυπαρχόντων συνεκτικών φαινοµένων 

και για την αποφυγή φαινοµένου έντονου συντονισµού. 

 Στα συνολικά αποτελέσµατα, παρατηρείται καλή συµφωνία µεταξύ πειραµάτων και 

θεωρίας. Οι αποκλίσεις στη δευτεροτάξια δύναµη αποδίδονται στην αδυναµία της 

δευτεροτάξιας απόκρισης να φθάσει σε κατάσταση ισορροπίας. Αρνητική δευτεροτάξια 

δύναµη παρατηρείται στην περίπτωση του τοίχου και συµπεραίνεται ότι είναι αποτέλεσµα 



 

 

 

δυναµικών φαινοµένων. Επιπλέον, η εµφάνιση της αρνητικής δευτεροτάξιας δύναµης 

επηρεάζεται από την έντονη ταλάντωση του µοντέλου και της ελεύθερης επιφάνειας στην 

κατακόρυφη κατεύθυνση. Ωστόσο, δεν πρέπει να αµεληθούν συνυπάρχοντα µη- γραµµικά 

φαινόµενα, όπως είναι ο διαχωρισµός της ροής, τα οποία µπορούν να προκαλέσουν 

απόσβεση των αρνητικών δευτεροτάξιων δυνάµεων. 

 

Λέξεις κλειδιά: << δευτεροτάξιες δυνάµεις, δισδιάστατο πρόβληµα, 

διακριτοποίηση του πεδίου ροής, µέθοδος της ορµής, δυναµική προέλευση των αρνητικών 

δευτεροτάξιων δυνάµεων, καθ’ ύψος συντονισµός τύπου παλινδροµούντος εµβόλου (piston 

mode resonance), συνυπάρχοντα µη- γραµµικά φαινόµενα >> 



 

 

 

Abstract 
  

 In the present thesis the drift forces are theoretically, experimentally and 

numerically investigated. Drift forces are second-order wave exciting forces which may 

cause a vessel to loose its course, i.e. to drift away. There are mean drift forces acting in 

regular waves and low-frequency drift forces occurring in an irregular sea-state. Drift 

forces although being smaller in magnitude than their first-order counterparts, may excite 

large amplitude motions, especially in the modes of motions where hydrostatic restoring 

forces are lacking or they are small. A practical problem linked with the drift forces is 

connected with the rising demand for natural gas and the incentive for new import facilities 

placed offshore. The interaction between a LNG carrier and an offshore LNG receiving 

terminal gives rise to many hydrodynamic issues where the drift forces are involved.  

 Drift forces are influenced by diverse sources and factors in magnitude and in sign. 

Concerning the historical development of theories for their evaluation, there are potential 

theories used to calculate the mean and low frequency drift forces and non-potential 

theories used to evaluate the viscous effects in mean drift forces. As far as the potential 

methods of evaluation are concerned, the Near-field or Direct integration method and the 

Far-field or Momentum method are analysed in the present thesis. A small reference to the 

non-potential theories is also made. 

 The experimental and numerical investigation has been carried out in the 

framework of the ERASMUS Programme in collaboration with the Ecole Centrale 

Marseille (ECM). It concerns the 2-D problem of a rectangular barge with square bilges. 

Special attention has been paid to the occurrence of negative (opposite to the wave 

direction) mean drift force phenomenon. The circumstances under which this force 

becomes negative as well as whether the source of this phenomenon is potential or viscous 

are examined.  

Wave drift force is measured and calculated for different configurations. Under the 

scope of studying the effect of the variable bathymetry on the sign of the drift force, an 

abrupt depth transition and a wall in front of the barge were implemented in the geometry 

of the problem. In order to measure the movement of the barge, a system consisted of two 

electroluminescent diodes located on the barge and a numerical video-camera was used. 

The procedure of measurement is fulfilled through a sequence of matlab programs. The 

linear theoretical model is based on the discretization of the flow-field using rectangular 

sub-domains. The linear radiation-diffraction problem is solved by eigen-function 

expansions and the calculation of the drift force is obtained from momentum considerations 

(Far-field method) with two vertical cuts at upstream and downstream infinity. Extra 

dissipation terms at heave and roll responses are added in order to model the dependency 

on viscous phenomena and to avoid excessive resonance. 

In the global results, good agreement between experiments and theory is observed. 

Discrepancies at drift are attributed to the difficulty of drift to attain a stable state. Negative 

drift force is observed in the case of the wall and is deduced to be of potential origin. The 

excessive oscillation of the barge and the free surface in the heave direction influences the 

occurrence of negative drift forces. However, there are co-existing non-linear effects as it is 

the flow separation which may cause the damping of the negative drift force. 

 

Key words: << drift forces, 2-D problem, discretization of the flow-field using 

rectangular sub-domains, momentum considerations, dissipation terms, potential origin of 

negative drift forces, piston mode resonance, co-existing non-linear effects >>  
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1. INTRODUCTION 
 

In recent years, there is rising demand for natural gas and this fact creates the 

incentive for new import facilities. The natural gas is cooled down at a temperature of 

-160°C and liquefied in order to be transported. In the liquefied form, at atmospheric 

pressure, LNG occupies only 1/600
th

 of its volume at gaseous state and is therefore 

more economical to be stored and transported over long distances. In addition to the 

condensation of the natural gas, the liquefaction procedure removes the impurities 

such as carbon dioxide, water and sulfur. The end result is an odorless, colorless 

product consisting mostly of methane (approximate range 85% to 99%). The clean 

LNG (liquid natural gas) is therefore not menacing for the environment and not 

damaging for the equipment of its transportation. 

The LNG Supply Chain contains five different steps as it is illustrated in 

Figure 1-1. The liquefaction plant is similar to a large refrigerator with compressors, 

condensers, pressure expansion valves and evaporators. Then the LNG is piped in 

storage tanks. The following step of the transportation can occur either via pipelines 

or by LNG carriers. Moreover the LNG arrives at the receiving terminal, to be stored, 

regasified and piped to the end-user such as a power plan when needed. 

 

 
 

Figure 1-1:  The LNG Supply Chain. 

 

The receiving terminal must mainly include marine jetty facilities for 

discharging LNG, special tanks for LNG storage, process equipment for the 

regasification of the liquefied natural gas. The selection of the length of the unloading 

jetty is very important and is a function of different parameters: waterdepth, overall 

length of the LNG carrier, other specific site conditions that have been selected to 

offer the maximum flexibility for the transportation requirements. In addition to the 

jetty, a turning circle will also be demanded to permit the turning of the LNG carrier 

either on arrival or on departure. 

As mentioned in Foss (2006), LNG receiving terminals have been built mostly 

on-shore despite the long history of offshore crude oil receiving facilities around the 

world. Nowadays, there are a lot of different projects of developing receiving and 

regasification offshore terminals, which can be floating or fixed. There are both 

opportunities and challenges linked with offshore development. In some locations, an 

offshore receiving terminal may provide a better alternative due to the use of existing 

offshore facilities and pipelines and easier access for LNG tankers. Possible 

drawbacks could be the limited or distant access to natural gas distribution pipelines, 

the lack of onshore services and in most instances, higher initial investments. 

There are many hydrodynamic issues as well arising from the concurrence of 

hard environmental conditions and the complex bathymetry. A lot of calculation 

problems are mainly present in near-shore activities. The practical problem comes out 
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from the existence of the floating oil or gas production annex storage facility, to 

which the export tanker is moored during loading operations. For example, reference 

is made to a LNG carrier moored to a FSRU (Floating Storage Regasification Unit) 

(see Fig. 1-2).  

A common hydrodynamic issue is the prediction of the wave induced mooring 

loads. The mooring system must be designed in a way that prevents an intense wave 

induced response so that it permits the LNG transfer. Moreover, it is important to 

define the critical loads for the structure and the environment. A critical parameter to 

this problem is the period of the sea in comparison with the natural periods of the 

movements under consideration. Furthermore, the turning circle is also responsible for 

a varying bathymetry region and its impact on the total loads must be taken into 

consideration.  

Last but not least, it arises the problem of numerical simulation of the motions 

of a LNG carrier moored to a storage unit. In such a problem, accurate prediction of 

the wave drift force and moment on each vessel is important and must be taken into 

account in the design of the mooring system. The narrow spacing between the 

adjacent vessels introduces an added complexity. 

 

 
 

Figure 1-2: LNG-carrier during its procedure of unloading along a FSRU. 
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2. BACKGROUND AND THEORY 
 

2.1 General 

 

Problems of time-dependent interactions between waves and marine 

structures concern both naval architects and civil engineers. There do exist methods to 

solve this hydrodynamic body-wave interaction problem but in both aspects there are 

limitations one has to take into account. Naval architects are occupied in defining the 

motions and the structural loads imposed on a ship by the sea waves. Linearized 

water-wave theory based on the ideal-fluid, irrotational-flow model is a very good 

tool. However, the excitation and damping of roll motion as well as the viscosity 

effects cannot be treated adequately by this approach.  

Civil engineers from their part focus on wave loads on fixed structures which 

can be analyzed approximately by the use of Morison’s formula. Morison’s formula 

includes the loads associated with both viscosity and inertia of the water but it does 

not take into account any diffraction effects. It is widely used in offshore truss 

constructions for structural elements which can be considered as hydrodynamic 

slender bodies. This formula is simple in its application but there are still some doubts 

concerning the validity of the superposition of an inertia force and a viscous force. 

Actually, the Morison’s formula is the most generally used method which includes 

viscosity phenomena but it is very primitive. 

As offshore platforms become a dominant subject, both of these approaches 

are required to predict forces and motions and both diffraction and viscosity have to 

be accounted for. Thus, what is missing by both methods is a combined consideration 

of diffraction of incident waves and of viscosity effects [Ogilvie (1983)]. 

 

The periods where the sea waves give rise to an important amount of energy 

cover a range of 3 to 20 sec. At these periods, the waves generate oscillations to the 

floating structures and from their part, the floating structures respond by a movement 

of the same period whose amplitude is related almost linearly to the waves’ 

amplitude. In case of resonance, we must be alert to catastrophic responses.  

Aiming to avoid the resonance, a practical technique usually used is to 

transpose the natural periods of the structures before or after the period of the sea. 

This is why it is generally preferable to have smooth anchorage, so as the natural 

periods of the horizontal movements are in the order of the minute or more. To 

whatever extent, it is naïve to believe that by directing to a technique like this the 

phenomenon of resonance will be annulated. Practically, it is always observed a 

response at the natural periods even if they are far away from the waves’ periods. 

Non-linear mechanisms are held responsible for the appearance of these phenomena 

[Molin (2002)]. 

 For classical ship-motions problems, the linearized water-wave theory gives 

accurate results. As far as platform problems are concerned there are some non-linear 

phenomena which play a very important role. At this point, we introduce the second-

order wave forces, called wave drifting forces. These forces cause the vessel to loose 

its course, i.e. to drift away. At first, it is clarified that second-order implies forces 

that are quadratic functions of the height of the incident waves. Right after, we do 

mention that there are mean second-order drift forces acting in regular waves and low 

frequency drift forces occurring in irregular waves. The drift-force problem is a time-

dependent problem because the waves and thus the motion of the vessel are a function 
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of time. As it is suggested by their name, the second-order forces are well smaller in 

magnitude than their first-order counterparts that are predicted by the linear theory. 

By working out the results of Zhao et al. (1988), Faltinsen (1990) shows that the 

linear wave excitation forces of a wave amplitude of 1m are 100 times larger than the 

mean wave drifting forces and that for a wave amplitude of 10 m the first-order force 

is about 10 times larger. This fact depicts the need for accuracy both in the 

calculations and the experiments. However, the reason we are high interested to these 

forces is that, as pointed out by Hsu and Blenkarn (1970) and Remery and Hermans 

(1972), slowly varying wave drifting forces may give rise to large amplitude low-

frequency horizontal motions of moored vessels in irregular waves despite their small 

magnitude. These scientists laid great stress also on the importance of defining the 

mean second-order forces in regular waves in the same problem. It is very important 

to predict the magnitude of these forces acting on a platform within the scope of 

ensuring that their responses are kept in acceptable limits. 

Furthermore, we will make an attempt to elucidate the importance of the word 

moored. An unrestrained ship or platform has no natural frequencies in its horizontal-

plane motions (surge, sway, yaw) and this is attributed to the absence of hydrostatic 

restoring coefficients for these motions. A floating platform in offshore technology 

must be restrained with respect to its horizontal position, most usually thanks to 

mooring lines fixed to anchors and in this case natural frequencies of oscillations 

come into play. What is remarkable is that these frequencies take a much lower value 

than the frequencies of the incident waves which give rise to the familiar responses of 

heave, pitch and roll. This fact results in another phenomenon which is not predicted 

by the linear theory: resonance of the system with low-frequency second-order 

excitations.  

In order to refer to the effect of resonance, it has to be confirmed that there are 

found low-frequency waves in the wave spectrum as well. An accurate explanation is 

the following: because of the non-linearity of the free-surface conditions, usually we 

cannot make reference to one single wave frequency. For example, the existence of 

two waves of different frequencies always implies the existence of waves at the sum 

and at the difference (beat) frequencies. The beat frequencies may occur near the 

resonance frequency of the moored platform in surge, sway or yaw. The only way to 

restrict this resonant response can be provided by the relevant hydrodynamic damping 

mechanisms. To sum up, if the incident wave system acts in a continuous spectrum of 

wave frequencies, as it is the sea surface which is a continuous mean with infinite 

number of degrees of freedom, a low-frequency disturbance must be expected, and if 

the damping is small (as it is usually the case in such motions) a highly amplified 

resonant motion comes out. 

To this end it is also important to neglect the interaction between waves and 

body and consider merely the fluid motions in the environment called “free waves”. 

Ogilvie (1983) shows that drift force may be inherent in the formulation of the 

second-order incident wave velocity potential. Reference will be made to the case of 

sinusoidal unidirectional waves in deep water. It is well-known that to first-order a 

fluid particle with equilibrium co-ordinates X0 and Z0 moves in a clockwise circle 

about the equilibrium position (on the free surface). To second-order, however, the 

fluid particles have a steady horizontal transport velocity component. This may be 

small, but it can be by no means negligible. What is remarkable is the fact that this 

steady horizontal velocity component is always in the incident wave propagation 

direction.  
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2.2 Common problems 

 

There are a lot of common problems arising from the existence of the mean 

and slowly-varying wave loads (difference frequency loads). Referring to a moored 

ship, its equilibrium attitude with respect to the direction of incident waves is affected 

by the second-order forces and moments. It is important to mention however that 

drifting is affected by the direction of the waves. Concerning moored vessels, the 

drifting impact may seem to be limited when the system encounters head waves. 

Furthermore, the slowly varying components and the phenomenon of resonance may 

cause severe damage to the mooring system. This is practical in the framework of the 

analysis of offshore loading systems.  

Drifting effects arise also in the case of a freely floating ship. As mentioned in 

Prins (1995), an important contribution to the drifting phenomenon is introduced by 

the incoming waves. Moreover, from measurements, a significant increase of the drift 

forces is observed due to the forward speed of the ship. These ships face an added 

resistance above their resistance in calm water, which has to be overcome by their 

engines. This fact implies that in the drift force problem, the combined effect of both 

current and forward speed has to be considered. But also in harbor circumstances the 

drifting forces may become critical owing to the impact of shallow water. Hence 

bottom effects have to be also considered. 

Besides, sum frequency forces can cause problems. These forces can result 

resonant oscillations of tension-leg platforms (TLPs) in vertical plane motions (heave, 

pitch, roll). In literature this is the so called phenomenon of “springing” or “ringing” 

and can contribute to fatigue problems in the tension legs. Due to the springing, we 

can also find a ship resonating as a vibrating beam in response to periodic wave 

excitation. Low-frequency motions in the vertical plane may be significant as well. 

For example, large-volume structures are sometimes designed with small waterplane 

areas in order to decrease their natural frequency of heave. It is common to find 

natural periods of 30 to 60 sec. Consequently, this kind of structures can undergo 

second-order vertical-plane resonances similar to the horizontal-plane resonances.  

 The vertical components of the second-order forces are sometimes known as 

suction forces. This term is generally used for submarine vessels when hovering or 

travelling near the free surface and is in connection with the mean wave induced 

vertical force and pitching moment of the vehicle [Ogilvie (1963)]. The suction force 

can impose a problem concerning the control of the vehicle in the vertical plane. 

 

 

2.3  Historical development of theories 
 

To start with, the physical similarity between the drift force problem and the 

added resistance problem is accentuated. Actually, the added resistance is simply the 

longitudinal component of the mean second-order wave force for the case of non-zero 

forward speed. Noteworthy is the fact that initially attention was paid to the added 

resistance problem. In recent years, owing to the development in offshore technology 

and to the increase in the number of vessels being moored at sea, the zero forward 

speed problem is also considered. In addition to the initial interest in the mean wave 

forces, the consideration of the low frequency wave forces has also begun. 

Suyehiro (1924) is considered to be the first one to report the existence of 

wave drifting forces. He observed a steady side force on a model rolling in beam seas. 

He attributed this force to the wave reflection of the incoming waves by the model. 
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Watanable (1938) applied to a different mechanism; namely, interaction between the 

incident waves and the motions of the ship for explaining the second-order drifting 

phenomenon. His calculations partly agreed with Suyehiro’s experimental results. 

Havelock (1942) developed a more mathematical analysis but concerning the mean 

longitudinal drifting force on a vessel heaving and pitching in regular head waves. 

The disadvantage of these theories is that they are not completely accurate, as a lot of 

very important phenomena are not taken into account. For instance, diffraction 

effects and hydrodynamic effects are only partly taken into consideration. 

Maruo (1960) presented expressions for the calculation of the mean horizontal 

second-order drift forces exerted on bodies exposed to regular sea waves and floating 

in infinite waterdepth. Briefly, his theory is based on the conservation of energy and 

momentum of the fluid restricted by three bounders: the hull, the free surface, and a 

control surface far from the body. Newman (1967) extended Maruo’s formula to 

include also yaw drift moments. In both works the control surface has been set to 

infinity and the second-order terms were expressed in terms of Kochin functions grace 

to the far-field asymptotic behavior of the velocity potential. Faltinsen and Michelsen 

(1974) have developed similar theories to Maruo’s approach by accounting for the 

finite water depth case. Moreover, a development by Molin (1979a) introduced the 

mean wetted surface boundary of the body as control surface. The theories of Maruo, 

Newman, Faltinsen and Michelsen, and Molin are three-dimensional and exact to 

second-order within potential theory. Their basic assumptions do not introduce 

restrictions on the hull form.  
Nevertheless, the application of the momentum method in studying the heave 

force and the mean pitch and roll moments is generally not preferable due to the 

integrations to be carried out over the free-surface and the sea-bottom. Mavrakos 

(1988) has proved that in case of truncated or compound vertical cylinders, where 

analytic representations of the required first-order velocity potential are disposable, 

these integrations can be evaluated analytically. Mavrakos derived some new 

expressions for the mean vertical force and pitching moment on an arbitrarily shaped 

floating body for both finite and infinite water depth. However, there still remains a 

great difficulty in the solution of a problem including an interacting group of bodies 

attributed once again to the free-surface and the sea-bottom integrations involved. 

Gerritsma and Beukelman (1971) estimated the increase in wave resistance of 

vessels travelling in head seas. They assumed that the mean resistance increase 

(longitudinal drift force) can be found by equating the damping energy radiated by the 

heaving and pitching vessel with the work done by the incoming waves. 

In a series of papers Pinkster (1976, 1977, 1979a, 1979b, 1980) has provided 

us with one of the most thorough analyses. Pinkster suggested a method based on 

direct integration of all pressure contributions to the second-order wave forces on the 

wetted hull of the body. He gives insight in the mechanism of interaction between 

waves and body. His method is also in accordance with the potential theory. Later, 

Pinkster and Hooft (1978), Pinkster (1979b) expanded this theory to three-

dimensional cases by making use of the second-order non-linear incident wave 

potential in order to calculate the mean and low-frequency part of the wave drifting 

forces (see also Chapter 3.13). 

Last but not least, Wahab (1974), Pijfers and Brink (1977) introduced methods 

of calculating the drift forces which take into account viscous effects. Viscous effects 

may become significant as far as slender constructions, i.e. semi-submersibles, are 

concerned. Huse (1976) has reported a qualitative indication of the viscous effect on 

the mean wave drift forces acting on semi-submersibles. 
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In total, the theories elaborated in the past can be grouped in four main categories: 

 

1. Potential theories which derive the mean second-order forces relying on the 

application of the momentum conservation principle to a control volume 

surrounding the body. These theories take advantage of the far-field behaviour 

of the potentials describing the motions. Some of the scientists who have dealt 

with this category are the following: 

-Maruo (1960) 

-Newman (1967) 

-Faltinsen and Michelsen (1974) 

-Molin (1979a) 

-Mavrakos (1988, 1995) 

-Lee and Newman (1971) 

 

The momentum conservation principle has been implemented in finite control 

volumes as well; as opposed to those of infinity extent (far-field). These 

methods have been developed in relation with multi-body configurations, 

where the application of the classical form of the momentum method in the 

far-field would have resulted in evaluating the total force on the entire multi-

body system and not on the drift-force calculation of each member of the 

configuration. In that context, Lee and Newman (1994) and Mavrakos (1995) 

presented formulations of the momentum conservation principle in finite 

control volumes that surround each body of the configuration, while Chen 

(2007) introduced an alternative formulation, the so-called “middle-field” 

method, also based on finite control volumes surrounding each participating 

body in the multi-body configuration. 

 

2. An alternative formulation of calculating the mean drift forces as well as the 

low frequency second-order forces, which is also exact to potential theory is 

based on the direct integration of the fluid pressure over the instantaneous 

wetted surface of the body, keeping all relevant terms up to second-order. In 

some of these cases the final expressions ensue from using Gauss theorem, 

modified to equivalent expressions which have to be evaluated on a fictitious 

boundary at great distance from the vessel. Hence, in this case it must be made 

once again use of the asymptotic or far-field behaviour of the potential 

characterizing the flow. Theories in this category are thanks to: 

-Watanable (1938) 

-Havelock (1942) 

-Ogilvie (1963) 

-Pinkster (1976), (1979a), (1979b) 

-Faltinsen and Loken (1978) 

 

3. The third category refers to potential theories which calculate the mean 

second-order forces by equating the damping energy radiated by the 

oscillating vessel to work done by the incoming waves. These theories are 

approximative and assume a slender body. Examples of these theories are 

owing to: 

-Gerritsma and Beukelman (1971) 

-Kaplan and Sargent (1976) 
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4. The fourth category includes theories which exploit Morison’s equation and 

the relative motion concept in order to evaluate viscous effects in the mean 

drift force. These methods are applicable to semi-submersible structures which 

are assumed to consist of slender elements. Representatives of this theory are: 

-Wahab (1974) 

-Pijfers and Brink (1977) 

-Huse (1976) 

 

In our study, we are going to analyze the first two methods which are according to 

potential theory. In addition, a small reference to the theory linked with the fourth 

category will be made. 

 

 

2.4 The second-order potential and Newman’s argument 
 

The majority of all existing papers contain a kind of assumption that 

eliminates the need to solve for the second-order potential at the difference 

frequency i jω -ω . It is the simplifying assumption of Newman (1974) which allows us 

to act in this way. His approach is going to be described in greater extent at a later 

time. At this point, only considerations and comparisons with Newman’s results by 

other researchers are mentioned. 

It is proved that the mean drift force does not depend on the second-order 

potential, whereas in principle the low-frequency force does depend on the second-

order potential. Briefly, what Newman suggests is to express the low-frequency force 

in terms of the mean drift force. A lot of scientists made an attempt to solve the 

second-order problem in order to prove the validity of Newman’s argument. Molin 

(1979b) managed to avoid the exact evaluation of the second-order potential by 

introducing an assisting radiation potential and using Green’s second identity. This 

formulation was followed further by several investigators who calculated the second-

order force’s components on vertical axisymmetric bodies [Eatock Taylor and Hung 

(1987)], [Abul-Azm and Williams (1988)], [Mavrakos and Peponis (1992)]. The first 

attempt to consistently predict the complete sum- and difference second-order force’s 

components has been made by Loken (1986) who solved for the second-order velocity 

potential in the case of an arbitrarily shaped body. Later, Kim and Yue (1989, 1990) 

calculated the double-, sum- and difference second-order potential in case of vertical 

axisymmetric bodies using a boundary integral formulation involving general order 

free-surface ring-source Green functions. The general second-order hydrodynamic 

problem in three dimensions has also been treated by Zaraphonitis and Papanicolaou 

(1991) who evaluated the second-order potentials and associated forces on arbitrarily 

shaped large floating bodies using improved integration techniques for the free-

surface integration. 

However, Newman’s argument is well-founded only in the case of deep water 

and requires that the two frequencies forming the difference i jω -ω are within a short 

distance. In order to clarify the two preconditions, reference is made once again to a 

case of free waves (no body present) in the presence of at least two frequencies. There 

are two components for the difference-frequency problem; the first one being found 

directly from
( )1

wΦ and the second one depending on
( )2

Φ w . Actually, it is shown that 

the amplitude of the fluid velocity associated with the second-order potential goes to 

zero as the beat frequency approaches zero, in a case of deep water. This result (which 

can be proved only for free waves) confirms that ( )2
Φ can be omitted. Sometimes, the 
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wavelength associated with these beat-frequency waves may be very, very long and in 

this case one must treat them as shallow-water waves. In such a problem, the fluid 

velocities arising from the second-order beat-frequency potential do not disappear as 

the beat frequency approaches zero. It must be noted that this happens only for 

second-order waves because of their very low frequency.  First-order waves can well 

continue being treated as deep water waves. 

Bowers (1976) studied the longitudinal drift force on a moored ship in head 

waves. In his analysis, he had to consider the second-order difference-frequency 

waves as shallow-water waves. The typical wave period in the spectrum of incident 

waves, in his problem, was about 5 sec. This is linked to a wavelength of about 40 m 

which can be taken as a deep-water wave. The natural frequency of the mooring 

system was 0.1 rad/sec or less, corresponding to wavelengths of 250 m or even more. 

This is why the difference-frequency motion associated with the natural frequency of 

the mooring system is undoubtedly a shallow-water motion. Therefore, Newman’s 

argument is invalid and Bower’s had to include both first-order and second-order 

potential’s effects in his calculations. According to Bowers’ computed results and 

comparisons between the cases with and without the effects of ( )2
Φ , the importance of 

the second-order potential was more evident for surge movement. 

Pinkster and Huijsmans (1982) found that their computed forces, concerning 

low-frequency forces on a semi-submersible in waves, were 30% to 40% lower than 

their measured forces. In their analysis second-order potential is neglected and as 

stated by Bowers the discrepancies can be justified by the non-existence of ( )2
Φ . 

Nevertheless, while comparing different theories the dissimilarities between them 

must not be left behind. Pinkster and Huijsmans solved a problem of a semi-

submersible, and they did include diffraction effects at least within the scope of the 

first-order potential. Bowers was concerned with a ship in head waves only, without 

calculating diffraction effects. As a result, the comparison between them is not 

obvious. 

  Newman’s argument in not valid for the vertical-plane motions mentioned 

already, because the corresponding resonance frequencies are considerably higher 

than in the horizontal-plane motions. The vertical-plane problems encompass this 

great difficulty. 

 

 

2.5 Different types of wave forces  

 
A summary of all the different types of wave forces is going to be presented so 

that the classification of the wave drift forces is possible. A structure exposed to the 

action of sea waves is subjected to forces that arise from the presence of different 

mechanisms. The following types of forces are marked out: 

 

a. Froude-Kryloff forces are the forces exerted to the fictitious contour of the 

structure from the sea waves. The basic assumption used in defining these forces is 

that the presence of the body does not deform the fluid field, therefore the body is 

considered to be invisible. These forces are easily calculated through the direct 

integration of the pressure’s flow field of the simple harmonic wave on the wetted 

surface of the body. 

b. Diffraction forces are the forces generated if the presence of the body and the 

following deformation of the wave field are taken into consideration. The body is 

assumed to be present but immovable. Hence, a new potential due to the diffraction 

effect is introduced. In the framework of linear theory, the superposition principle is 
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valid and we can sum the undisturbed incident wave potential and the diffraction 

potential. The forces that come out from this summation constitute the hydrodynamic 

exciting loads. 

c. Radiation forces emanate from the movement of the structure, when a moving 

structure is considered. This movement of the structure gives rise to waves which are 

characterized by the radiation potential. The radiation potential in its turn leads to 

radiation forces exerted on the moving structure. In a linear theory consideration, in a 

similar way the characteristic potential can be also added to the other potentials. 

d. Resistance forces are due to the viscosity of the flow field and are proportional to 

the velocity square. They are present if the fluid is real. The drag forces obtained by 

the Morison’s formula belong to this category. 

e. Other forces: The sea wave exciting forces have a non-linear nature. Therefore, 

they can be divided in forces of different orders. The forces described in a, b and c 

constitute the first-order forces, which are calculated by the solution of the linear 

problem. Moreover, there are the forces of second-order and of superior order. Drift-

forces correspond to second-order forces. It is also important to mention that the 

radiation forces and the Froude-Kryloff forces are usually reported in bibliography as 

fluid inertia forces. 

   

In areas of the fluid flow where the drag forces exerted on the body can be 

neglected (when they have a value inferior to the 10% of the total force) it can be 

made use of the potential theory. The flow is assumed to be incompressible, inviscid 

and irrotational. Such a consideration is realistic in the majority of calculation 

problems of the loads of massive offshore constructions as long as the significant 

phenomena of diffraction of the flow are taken into consideration. 
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3. NEAR-FIELD METHOD 
 

The Pinkster’s potential method for calculating the drift forces, termed also the 

“Direct Pressure Integration” or the “Near-Field” method, is going to be presented. 

This is a method applicable to all six degrees of freedom and yields results for both 

mean and low-frequency wave drifting forces. The procedure is based on direct 

integration of all contributions to the second-order forces over the instantaneous 

wetted surface of the hull of the structure. The body is considered to move with zero 

or very low forward speed. 

 

3.1 Perturbation Theory 

 

The theory is developed in accordance with perturbation theory methods 

which however include some limitations. The perturbation theory is a very useful tool 

predicting non-linear effects at the cost of restriction in fairly small wave amplitudes 

and wave slopes. In this theoretical context, it is also assumed that the side walls of 

the structure meet the undisturbed free surface at right angles in order to avoid 

singularities not predicted by linear theory. 

By referring to a perturbation analysis, it is assumed that there is a small 

parameter ε<<1, called steepness which can act as a basis for series expansions 

representations of all quantities that come up. For example, the steepness may depict 

the relation between the amplitude of the waves and the wavelength. We can therefore 

imagine this parameter equal to
Η

ε=
2λ

. 

Practically, the velocity potentialΦ of the flow and all quantities derivable 

from the flow such as waveheight, pressures, potentials, motions etc., are considered 

to vary only very slightly relative to some initial, static value. They can all take the 

following written form:  

 
( )2(0) (1) 2X=X + εX + ε X ...+ , 

 

where the affixes ( )0 (1) (2), ,  denote respectively the static value, the first-order 

oscillatory variation and the second-order variation. 

Ogilvie (1983) in his analysis refers to the existing problem of invalidation of 

the basic assumptions of the perturbation theory, when the horizontal excursions of a 

platform are found larger compared with the platform’s dimensions. Triantafyllou 

(1982) solved this problem by observing that the platform’s velocity may remain quite 

small (if we associate it with the small amplitude of fluid particle velocities), even 

while allowing large excursions of the platform in the horizontal plane. According to 

him, the entire hydrodynamic problem can be analyzed to a series of linear 

hydrodynamic problems. 
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3.2 Co-ordinate Systems 

 

Three different co-ordinate systems are applied. The linearization process is 

present in the formulation of these systems and therefore they are developed with 

respect to the mean position of the body and to the mean free surface. The 

first 1 2 3G-x -x -x is a Cartesian ship-fixed co-ordinate system which follows the 

movement of the ship. The system’s point of origin is the centre of gravity G and the 

positive direction of the 3 G-x axis is vertically upwards in the mean position of the 

oscillating vessel.  It is chosen in a way so that its planes of symmetry coincide with 

the body’s planes of symmetry. The hull geometry of a ship is unambiguously defined 

relative to this system and the position of a point on this surface is described by the 

vector x
�

. The orientation of a surface element in this system is defined by the outward 

pointing normal vector n
�

(a vector pointing to the fluid and not to the surface of the 

body). This system can be also named as the system of “body axes”. 

The second co-ordinate system 1 2 30-x -x -x is a fixed inertia system with axes 

parallel to the 1 2 3G-x -x -x system, when the body lies in a calm state. The system’s 

origin is on the mean free surface of the fluid in calm state. 

Finally, the third system 1 2 3G-x '-x '-x '  has origin in the centre of gravity G of the 

body and its axes remain at all times parallel to the axes of the fixed 

system 1 2 30-x -x -x . The system is subjected only to translation motions with respect to 

the fixed inertia system 1 2 30-x -x -x and coincides with 1 2 3G-x -x -x when the latter is in 

its mean position. 

 

 
 

Figure 3-1: Co-ordinate systems [Fig. from Pinkster (1979)]. 

 

From the preceding schema we observe that the Eulerian angles x4, x5 and x6 

represent the angular motions of the body about the body axes.  
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3.3 Motions of a point on the body 

 

Assuming that the body is floating in small amplitude waves subjected to the 

first-order hydrodynamic forces, the arising displacement of a point P (on the surface) 

of the body has to be a small first-order quantity as well. It is convenient to express 

the displacement vector X
���

 relative to the fixed system of axes 1 2 30-x -x -x because this 

is going to be our system of reference through which we are going to depict all our 

variables:  

 

                                                     
(1)

X Xε=
��� ���

       1ε <<  (3.1) 

 

In kinematics, the displacement of a rigid body can be represented by its 

translation, namely the position of one of the particles of the body specifically chosen 

as a reference point (typically coinciding with the center of mass or centroid of the 

body), together with its angular position (also known as orientation or attitude of the 

body). Thus, the position (1)X
�

 is consisted of two components: linear and angular 

respectively: 

 

                                                   
(1) (1)

(1)
gX X R x= + ⋅

��� ��� �
                                              (3.2) 

 

where (1)

gX
�

 is the first-order displacement vector of the point G relative to the fixed 

system of axes 1 2 30-x -x -x , x
�

 is the time invariable vector of the position of a point P 

on the body relative to the system 1 2 3G-x -x -x and (1)R
�

 the matrix which contains the 

rotation angles about the system 1 2 3G-x -x -x , in our case the first-order oscillatory 

angular motions. 

 

                                

(1) (1)

6 5

(1) (1) (1)

6 4

(1) (1)

5 4

0

0

0

x x

R x x

x x

 −
 

= − 
 − 

 and 

1

2

3

x

x x

x

 
 =  
  

�
                            (3.3) 

 

The prefixes (1) (1) (1)

4 5 6, ,x x x  are respectively the first-order roll, pitch and yaw motions. 

In a similar way, we may analyze the velocity v
�

of the point P relative to the 

fixed system of axes. This is also a first-order quantity. Thus, for the first-order 

problem the perturbation series provides us with the following equation: 

 

                                                        (1)v ε= Χ = Χ
� �� ɺ ɺ

                                                   (3.4) 

 

where                                       (1) (1) (1)

gX X R x= + ⋅
�� �ɺ ɺ ɺ                                                 (3.5) 

 

and 

                                       

(1) (1)

6 5

(1) (1) (1)

6 4

(1) (1)

5 4

0

0

0

x x

R x x

x x

 −
 

= − 
 − 

ɺ ɺ

ɺ ɺ ɺ

ɺ ɺ

                                            (3.6) 
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. 

 

The existence of the outward pointing normal vector n
�

 in the system of 

axes 1 2 3G-x -x -x  has been already denoted. Moreover, the surface orientation vector n
�

 

will be transformed to a vector N
�

in the fixed system of axes. This transformation will 

be also accurate for the third system of axes 1 2 3G-x '-x '-x ' , with axes always parallel to 

the 1 2 30-x -x -x  system. The vector N
�

is time variable; the orientation of the surface 

elements is affected by the rotation of the body. 

  

                                          (0) (1) (1)N N N n Nε ε= + = +
� � � ��

                                           (3.7) 

where 

                                                    (1) (1)N R n= ⋅
� �

                                                (3.8) 
 

(1)R  is once again given by equation (3.3). 

 

Even if it is not our case, it is reported that equations (3.2), (3.5) and (3.8) are 

valid for all orders. The general form of (3.2) is the following and in a similar manner 

the general forms of (3.5) and (3.8) are formed. 

 

                                          
( ) ( )

( )
i i

i
gX X R x= + ⋅

��� ��� �
   i = 0, 1, 2,..                                  (3.9) 

 

where, 

11 12 13

21 22 23

31 32 33

a a a

R a a a

a a a

 
 =  
  

 

with, 

        

11 5 6

12 4 5 6 4 6

13 4 5 6 4 6

21 5 6

22 4 5 6 4 6

23 4 5 6 4 6

31 5

32 4 5

33 4

cos cos

sin sin cos cos sin

cos sin cos sin sin

cos sin

sin sin sin cos cos

cos sin sin sin cos

sin

sin cos

cos cos

a x x

a x x x x x

a x x x x x

a x x

a x x x x x

a x x x x x

a x

a x x

a x

= ⋅

= ⋅ ⋅ − ⋅

= ⋅ ⋅ + ⋅

= ⋅

= ⋅ ⋅ + ⋅

= ⋅ ⋅ − ⋅

= −

= ⋅

= ⋅ 5x

 

 

Furthermore, the rotation matrix is developed to a Taylor series in order to 

provide us with R
(0)

, R
(1)

, R
(2)

. Equation (3.3) is the result of this procedure for the 

first-order. The fact that in equation (3.7) (0)N n=
� �

, comes also from this procedure. 

The way we have defined the system of axes justifies this result as well. 
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3.4 Fluid Motions and Boundary Conditions 

 

The fluid domain is bounded by the free surface, the wetted surface of the 

floating object and the sea bottom. The fluid under consideration is water; therefore it 

is assumed to be incompressible at all times. Furthermore, supposing that the fluid is 

inviscid, irrotational and homogeneous the fluid motions can be described by a 

velocity potential Φ and hence the velocity in the fluid is ΦV = ∇
� �

. As already 

mentioned, the velocity potential can be expressed through a perturbation series: 

 

                                                    
( ) ( )1 22Φ= εΦ +ε Φ +…                                            (3.10) 

  

The potentials are considered relative to the fixed system of 1 2 30-x -x -x axes. 

 

In this problem, there exist two unknown quantities: the potentialΦ(x,t)
�

 and 

the free surface elevation ( )1 2η x ,x ,t , which must satisfy the following boundary 

conditions. Basically, these boundary conditions are non-linear. The axes are the same 

as for the potentials, i.e. fixed in space: 

 

1. Everywhere within the fluid field ( )D D η=  the Laplace equation, which 

expresses the continuity of the flow and the irrotationality of the flow field, is 

satisfied. This equation represents the physical principle of conservation of mass. This 

is a linear equation itself: 

 

                                                        2 0∆Φ = ∇ Φ =
�

, x D∈
�

                                    (3.11) 

 

Since Φ satisfies the linear Laplace equation, each ( )iΦ in the perturbation series also 

satisfies the Laplace equation. For our case, it must be satisfied to first and to second-

order. 

 

2. At the water surface FD∂ we have two boundary conditions. The two boundary 

conditions which follow are written in a linearized form. This fact restricts our results 

to small amplitudes of both the motions and the incoming wave field. Naturally, the 

boundary conditions are applied to the actual moving free surface 3x η= . 

Implementing a linearization procedure by means of Taylor series expansions, they 

are transformed into boundary conditions at the fixed mean free surface 3 0x = . 

Because there are no exterior restrictions to the water surface, these boundary 

conditions will be referred to as the free surface: 

•    The pressure should be constant on the free surface and equal to the 

atmospheric pressure p0 (dynamic condition). 

                                         

                                              g   0 ηΦ+ =ɺ
Fx D∈∂

�
 :  x3=0                              (3.12)  

 

• The fluid normal to the free surface is equal to the velocity of the surface in 

the same direction. This fact states that a fluid particle cannot leave the 

surface, or in other words that no fluid particles pass through the free surface 

(kinematic condition). 
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3x

η
∂Φ

=
∂

ɺ  Fx D∈∂
�

 :  x3=0                                 (3.13)  

 

By removing the dependence on the free surface elevation ( )1 2η x ,x ,t , the two 

equations are combined and to first-order the following homogeneous condition is 

obtained: 

 

                                                    
3

(1) (1) 0g ΧΦ +Φ =ɺɺ   Fx D∈∂
�

 : x3=0                      (3.14) 

 

The second-order boundary condition is non-homogeneous and is satisfied if: 

        

       
3 3 3 3

(2) (2) (1) (1) (1) (1) (1)1
2 ( )X X Xg

g
ΧΦ +Φ = − ⋅∇Φ ⋅∇Φ +Φ Φ + ⋅Φ

� �
ɺɺ ɺ ɺ ɺɺ  Fx D∈∂

�
 :  x3=0   (3.15) 

 

3. The boundary condition at the sea floor DΠ∂  states that to first and to 

second-order no fluid particles may cross this boundary. Therefore, both the normal 

component of the fluid velocity and the normal component of the surface velocity 

must be equal to zero: 

                                    
( )

0
i

nU
n

∂Φ
= =

∂
�   ( 1,2)i =  , 3x =-h                            (3.16)  

 

where n
�

is the normal vector of a point on the surface of the sea bottom and nU is the 

bottom surface velocity. 

 

4. The floating body wetted surface BD∂ is assumed to be impermeable, so no 

fluid particles can pass through this boundary. This fact is expressed by the condition 

of continuity of the normal velocities between the fluid and the floating object: 

 

                                                   N U N∇Φ⋅ = ⋅
� � � �

   , Bx D∈∂
�

                                  (3.17) 

  

where U
�

 is the velocity of the body surface itself. 

 

An equivalent form of equation (3.17) is the following: 

 

  n nV U=    , Bx D∈∂
�

 

 

At first, the condition must be satisfied to first and to second-order at the 

instantaneous position of the hull surface. Right after, we will write down the linear 

expansion. 

To first-order the boundary condition is as follows:  

     

                                                      (1) (1)n U n∇Φ ⋅ = ⋅
� �� �

                                              (3.18) 

 

And its linear expansion has the same form:    

    

                                                     (1) (1)n U n∇Φ ⋅ = ⋅
� �� �

                                               (3.19) 
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To second-order:           

                    

                                             (2) (1) (1) (1)( )n U∇Φ ⋅ = −∇Φ ⋅Ν
� � � ��

                                   (3.20) 

 

Linear expansion: 

 

                               (2) (1) (1) (1) (1) (1)( ) ( )n n U∇Φ ⋅ = − Χ ⋅∇ ∇Φ ⋅ + −∇Φ ⋅Ν
� � � � �� �� �

                (3.21) 

 

To second-order, there is an additional term which is due to the procedure of 

linearization, when applying the Taylor expansion to the velocity (1)∇Φ
�

. In the 

linearized equations, the potentials and their derivatives must be considered at the 

mean position of the body. 

 

5. To make the solution of our mathematical model unique, an extra condition 

has to be imposed, which is called radiation condition. This condition describes how 

the potential Φ(x,t)
�

acts in very large distances away from the body. It suggests 

that Φ(x,t)
�

must describe only waves which travel away from the body. Otherwise 

there would be solutions for waves having been created at infinity, fact that has no 

physical meaning. When studying the equations analytically, this condition can be 

imposed to infinity. However, in numerical studies limited computer time and 

memory may impede this. In this case, this condition has to be given on an artificial 

boundary. 

 

 

3.5 Potentials  

 

The first order potential ( )1
Φ can be decomposed to a sum of three potentials: 

the potential due to the undisturbed incoming waves, the diffraction potential, and the 

radiation potential:  

 

                                                  
( ) ( ) ( )1 1 1(1)

w d RΦ = Φ +Φ +Φ                                        (3.22) 

 

The diffraction potential and the radiation potential express respectively the 

disturbance of the free surface field due to the presence of the body (when it is 

considered to be motionless) and the movements of the body. These two potentials 

substitute the unknown potentials which have to be defined in a way that the total 

potential ( )1
Φ satisfies all the boundary conditions. The first-order potential of the 

undisturbed incoming waves does not have to comply with the radiation condition as 

it refers to incoming waves, whereas the radiation condition has to be applied to the 

potentials
( )1

dΦ and
( )1

RΦ . The physical meaning of the diffraction and radiation 

potential will be clarified after their substitution in the floating object’s boundary 

condition.  

Therefore, we substitute equation (3.22) in boundary condition (3.19) and our 

problem takes the following form: 

 

                                          
( ) ( ) ( )1 1 1 (1)

w d R{ } n U n∇Φ +∇Φ +∇Φ = ⋅
�� � � ��

                         (3.23) 
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Afterwards, since the main problem is linear it can be decomposed to two problems: 

 

         Diffraction Problem:                 
( ) ( )1 1

d wn n∇Φ ⋅ = −∇Φ ⋅
� �� �

                                (3.24) 

          Radiation Problem:                    
( )1 (1) UR n n∇Φ ⋅ = ⋅

� �� �
                                    (3.25) 

 

From equation (3.24) it is obvious that in order to determine the diffraction potential, 

the body is assumed to be motionless and there exist only the undisturbed incoming 

waves. The Radiation Problem suggests that the radiation potential depends 

exclusively on the real motions of the body but in calm water. According to the 

solution of the first-order problem, the combination of
( )1

dΦ with
( )1

wΦ provides us with 

the first-order wave exciting forces. Moreover, through 
( )1

RΦ  the hydrodynamic 

reaction forces are defined, which can be expressed in terms of added mass and 

damping coefficients. More details on this procedure are written down in the 

description of the proposed theoretical model. Complete first-order solutions are 

discussed at length in literature. In the following, it is assumed that the first-order 

solution is known.  

In the second-order problem, it is firstly found a potential satisfying the free-

surface condition, without regard to the body condition. By combining equations 

(3.22) and (3.15), a general form for the second-order potential is obtained: 

 

     
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2

ww dd bb wd wb db dw bw bd dΦ =Φ +Φ +Φ +Φ +Φ +Φ +Φ +Φ +Φ +Φ  (3.26) 

 

where the first nine components of the right side are particular solutions to the 

following type of boundary condition: 

 

         
( ) ( ) ( ) ( )

3 3 3 3

2 2 1 1 (1) (1) (1)1
2

X tt t t X X ttXww ww w w w ww wwg
g

 
Φ +Φ = − ∇Φ ⋅∇Φ +Φ Φ + Φ 

 

� �
     (3.27) 

 

The last potential (2)

dΦ is a kind of “ordinary” potential which is in agreement with the 

linearized homogeneous free surface condition: 

 

                                                      
3

(2) (2) 0
X ttd dgΦ +Φ =                                          (3.28) 

 

Equation (3.26) will be simplified by assuming only two components for the 

second-order potential. The first component, representing the sum of the first nine 

components on the right-hand side of equation (3.26), may be considered as the 

second-order equivalent of the first-order undisturbed wave. In general, this potential 

presents a problem due to the complexity of the second-order surface boundary 

condition. The second component is without any change the potential
( )2

dΦ . 

 

                                                       (2) (2) (2)

w dΦ = Φ +Φ                                           (3.29) 

 

Concerning the radiation condition in the second-order problem, it must be 

imposed exclusively in the calculation of (2)

dΦ . Likewise to the first-order problem 

where there was no radiation condition for (1)

wΦ , in this problem a radiation condition 
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for (2)

wΦ  needs not to be imposed. The components of (2)

wΦ are particular solutions to 

the free surface boundary condition (3.27) which is valid over the complete free 

surface. 

 

Since the expression for the second-order potential has been simplified, an 

approach to the second-order body boundary condition can be made. Through the 

combination of equations (3.29) and (3.21) it is obtained: 

 

                  ( )(2) (2) (1) (1) (1) (1) (1)( ) ( )w d n n U∇Φ +∇Φ ⋅ = − Χ ⋅∇ ∇Φ ⋅ + −∇Φ ⋅Ν
� � � � � �� �� �

          (3.30) 

Or 

                   { }(2) (2) (1) (1) (1) (1) (1)( ) ( )d wn n U∇Φ ⋅ = −∇Φ − Χ ⋅∇ ∇Φ ⋅ + −∇Φ ⋅Ν
� � � � � �� �� �

         (3.31) 

 

Equation (3.31) illustrates directly how the second-order diffraction 

potential (2)

dΦ  is formed. It is deduced that (2)

dΦ  
firstly acts in a way similar to (1)

dΦ  

as it compensates the second-order velocity components of (2)

wΦ . Moreover, it 

compensates the second-order correction to the first-order velocity (1)∇Φ
��

, which is the 

additional term due to the Taylor expansion, mentioned in (3.21). It is also evident 

that the second-order diffraction potential depends on the difference between the first-

order velocity (1)U
�

of the body surface and the first-order fluid velocity (1)∇Φ
��

 
in a 

direction along the first-order normal
(1)

N
���

. Pinkster (1980) during the procedure of 

decomposition of the second-order potential includes the additional component 

of (2)

RΦ . The potential (2)

RΦ  is equivalent to (1)

RΦ  
but it satisfies the boundary 

condition on the body carrying out low frequency second-order motions in still 

water. As it is the case for (1)

RΦ , (2)

RΦ  may be also expressed in terms of 

hydrodynamic reaction forces. In our problem, this potential is not studied as it has 

been assumed that the body is strictly allowed to act in response to the first-order 

oscillatory hydrodynamic forces.  

  If the right-hand side of equation (3.31) is known, (2)

dΦ  
can be solved using 

numerical methods. From the solution of (2)

dΦ  and (2)

wΦ , the low frequency second-

order wave exciting forces are defined. However, the major problem is the 

verification of the non-homogeneous second-order free surface condition and thus, the 

definition of the second-order potential becomes a tremendous undertaking. A general 

formula for this can be found in Wehausen and Laitone (1960), but the numerical 

work prevents anyone from fulfilling this task. Nevertheless, the formulation of the 

entire problem is not pointless since essential information can be still obtained from 

the formulation of the problem itself. 

Furthermore, reference will be made to Pinkster’s approximative method, 

offering at least an indication of the magnitude of the (2)Φ  contribution to the low 

frequency wave drifting forces. 

 

 

3.6 Pressure in a point within the fluid 

 

After the determination of the velocity potential Φ and the potential’s 

boundary conditions, the fluid pressure can be defined. Considering the fluid to be 
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ideal or inviscid, which means that the fluid has no resistance to shear stress, the 

pressure distribution can be obtained using the Bernoulli equation: 

 

                                           
2

0 3

1
- - - ( )

2
tp p gX C tρ ρ ρ= Φ ∇Φ +

��
                         (3.32) 

 

where 0p stands for the atmospheric pressure and C(t) is a function independent of co-

ordinates. Both of these parameters may be taken equal to zero without loss of 

generality. 

In the same time, it can be formulated a definition of the pressure based on the 

existence of different order pressure components. Assuming that the point is 

performing small, first-order oscillations
(1)

X
��

in the wave frequency, about a mean 

position
(0)

Χ
��

, applying a Taylor expansion to the pressure in the mean position and 

combining these results with equation (3.32) the following expression is derived: 

 

                                                  ( )2   (0) (1) 2p p p pε ε= + +                                        (3.33) 

 

where:  
 

Hydrostatic pressure   :                   (0) (0)

3 -  p gXρ=                                             (3.34) 

 

First-order pressure     :              (1) (1) (1)

3- - tp gXρ ρ= Φ                                          (3.35) 

 

Second-order pressure:       
2 (1)

(2) (1) (2) (1)1
- - - ( )

2
t tp Xρ ρ ρ= ∇Φ Φ ⋅∇Φ

�� ��� ��
              (3.36) 

 

Theoretically, the hydrostatic component (2)

3-ρgX  owing to the second-order 

vertical motion should have been also included in the calculation of (2)p . This 

component is neglected since it is part of the second-order reaction forces due to 

second-order motions of the body. 

Based on the Taylor expansion, the derivatives of the potentials also have to 

be considered in the mean position of the point.  

  

This expression has been formed for a point within the fluid but it is also valid 

for a point on the hull of the body. This may not seem logical as it is well-known that 

a point on the hull can be part of the time within and rest of the time outside the actual 

fluid domain. Nevertheless, according to Joseph (1973) this is permissible if the 

potential functions are adequately “smooth” at the boundaries. 

 

 

3.7 Second-order wave force 

 

In the case of harmonic waves, the motion of the ship may be also expected 

harmonic and thus drifting would be unexpected. Nevertheless, there has been 

observed drifting even in harmonic waves and there comes up a mean drifting force 

which is not equal to zero. This is due to the existence of second-order effects since 

the mean value of the first-order quantities is zero. An attempt will be made to explain 
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why there is a mean second-order drifting force on a structure exposed to regular 

incident harmonically oscillating waves. A major contribution to the horizontal mean 

drifting force, as it will be proved, is the relative vertical motion between a surface 

piercing body and the waves. Any point in the free-surface zone of the structure is 

alternately within and outside the actual fluid domain and consequently a non-zero 

mean pressure is observed even in regular harmonically oscillating waves. Thus, if the 

relative vertical motion changes around the waterline, we do refer to non-zero mean 

wave forces. This is the case for large-volume structures which modify the incident 

waves’ field. 

 

Before proceeding to the calculation of the drift forces, the applied system of 

axes has to be selected. The force acting on the body is studied, thus it would be 

practical to have the object within the frame of the default co-ordinate system. The 

axes of ' ' '

1 2 3G-x -x -x  system of co-ordinates, which is always parallel to the fixed 

system 1 2 30-x -x -x , seems to be the most appropriate one. 

 

The body is subjected to the following fluid force:  

 

                                                      
S

F p NdS= − ⋅∫∫
�� ���

                                                (3.37) 

 

with S  the instantaneous wetted surface and N
��

 the instantaneous normal vector to the 

surface element dS , relative to the default system of axes.  

This computation is not as easy as it seems to be. The actual position of the body is 

not known and according to the linearization process all quantities have been 

calculated on the average position. To this end, it would be practical the separation of 

the instantaneous wetted surface S  into a perturbed and an unperturbed term which 

are respectively: a constant part 0S  going up to the static waterline on the hull which 

is equivalent to the mean wetted surface, and an oscillating part s(t)  between 0S  and 

the wave profile along the body. This is apparent in the preceding Figure 3-1. Note 

that in our case of zero or very low forward speed, the oscillating surface s(t) does not 

contribute to quantities of first-order. It will be now presented the extraction of the 

time dependence from s(t)  .  

 

After combining equations (3.33) and (3.7) it follows that: 

 

     

0

(1)
(0) (1) 2 (2)( )( )

S

F p p p n dSε ε ε= − + + + Ν +∫∫
�� � ��

 

          
(1)

(0) (1) 2 (2)

( )

( )( )
s t

p p p n dSε ε ε− + + + Ν =∫∫
� ��

                  

                                        (0) (1) 2 (2) 3( )F F F Oε ε ε= + + +
� � �

                                       (3.38) 

 

In this way we derive the hydrostatic force (0)F
�

, the first-order oscillatory fluid force 
(1)F
�

and the second-order force (2)F
�

. 

Hydrostatics describes fluids in a calm state, when there is not observed 

relative movement between different molecules of the fluid. The hydrostatic force is 

the stationary contribution to the power series of forces and is the application of 
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Archimedes’ law. It results from the integration of the hydrostatic pressure (0)p over 

the mean wetted surface 0S . The total hydrostatic force and moment is equilibrated by 

the weight of the floating body. 

 

                                       

0

(0)(0)
(0)

3 3 (0,0, )
S

F F g X ndS gVρ ρ= = =∫∫
�� �

                      (3.39) 

 

where V represents the displaced volume. 

 

The total first-order oscillatory fluid force arises from the integration of the 

first-order pressure (1)p over the mean wetted surface 0S and normal vector n
�

, as well as 

from the integration of the static pressure (0)p over 0S  and normal vector N
��

 so that 

there is always a first-order product, being preceded by ε. 

 

    

0 0 0

(1) (1) (1)
(1) (0) (1) (1)

3 t

S S S

F =- (p n+p N )dS=- -ρgX ndS+ ρΦ ndS (0,0, )R gVρ+ ⋅∫∫ ∫∫ ∫∫
��� � �� � � ��

     (3.40) 

 

Τhe first two terms represent the total first-order fluid force relative to the body 

axes 1 2 3G-x -x -x . They correspond to the hydrostatic restoring force [first term] and to 

the first-order wave exciting force and the hydrodynamic reaction force (added mass 

and damping force) [second term]. The third term is the hydrostatic contribution to 

pressure being multiplied by the matrix of first-order angular displacements. This 

term is also relative to the body axes.  

  The total second-order force (2)F
�

comes out on the one hand after integrating all 

the products of pressure p  and normal vector N
��

, which contribute to second-order 

forces, over the constant part 0S  and on the other hand after integrating all first-order 

pressures over the oscillating surface s(t) .  

 

                                

0

(2) (1)
(1) (2) (1)

( )

( )
S s t

F p N p n dS p ndS= − + −∫∫ ∫∫
�� ��� � �

                           (3.41) 

 

Taking into consideration that: 

 

                                                          
(1)

(1)R  N n= ⋅
��� ��

                                               (3.42) 

 

And since angular displacements are identical for all surface elements dS , the first 

part of the first integral is transformed to: 

 

                                             

0 0

(1) (1)
(1) (1)( )

S S

p N dS R p ndS− = ⋅ −∫∫ ∫∫
��� �� �

                           (3.43) 

 

The entire equation is a consequence of the choice of the axes ' ' '

1 2 3G-x -x -x  to which 

the second-order force is referenced. It demonstrates that after a rotation relative to 
' ' '

1 2 3G-x -x -x  a first-order fluid force relative to the body axes can create a second-

order force contribution relative to ' ' '

1 2 3G-x -x -x  system of axes. Furthermore, an 
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example is given by Pinkster (1979b) for surge drifting force. He reports that after a 

rotation even a vertical first-order force can give rise to a longitudinal second-order 

component.  

Likewise, the first-order component of the hydrostatic force acting on the body 

relative to the body axes, is considered to be a second-order force if acting 

on ' ' '

1 2 3G-x -x -x . 

If this component is added to equation (3.43): 

 

                                      

0

(1) (1) (1) (1)
(1) (0,0, )

S

R p ndS R gV R Fρ
  
⋅ − + ⋅ = ⋅ 
  
∫∫

�� � �� �� ��
             (3.44) 

 

Where 
(1)

F
�

is the total first-order fluid force including all the first-order components of 

equation (3.40). As 
(1)

F
�

 
is the total first-order force it can be also expressed through 

the Newton’s law: 

 

                                                         
(1)

(1)

gF M X= ⋅
�� �ɺɺ

                                               (3.45) 

 

From which it follows that: 

 

                                                  
(1) (1) (1)

(1)( )gR F R M X⋅ = ⋅ ⋅
�� �� �� �ɺɺ

                                   (3.46) 

 

The second part of the first integral in equation (3.41) involves a 

straightforward integration of the hydrodynamic pressure over the mean submerged 

part of the hull as given by Bernoulli for (2)p . 

The second integral over the oscillating surface s(t) is solved after making use 

of equation (3.35) for (1)p and the following equation for the surface element dS . This 

step imposes some geometrical restrictions, like a vertical ship hull at the free surface.  

 

                                              3dS dX dl= ⋅                                                  (3.47) 

 

Right after, we rely on the dynamic condition on the water surface in order to 

approximate (1)

tΦ at the static waterline of the vessel which is near to z=0: 

 

                                                      (1) (1)

t gρ ρ ζ− Φ =                                                (3.48) 

 

where (1)ζ is the first-order wave elevation 

 

Therefore after combining the preceding equations it follows that: 

                               

                              

(1)

(1)
3

(1) (1)

3 3

( )

( )

WL
s t WL X

p ndS gX g n dX dl

ζ

ρ ρ ζ− = − − + ⋅∫∫ ∫ ∫
� �

                  (3.49) 

 

The relative wave height is the wave height as measured from the vessel: 
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                                                         (1) (1) (1)

3WLrζ ζ= −Χ                                          (3.50) 

 

where (1)

3X
WL

 is the first-order vertical motion of a point on the hull at the waterline. 

 

Consequently, the final expression for the integral is simplified in the following form: 

 

                                                       (1) 21
( )

2
r

WL

g ndlρ ζ− ∫
�

                                          (3.51) 

 

Basically, this contribution is connected with the statement that near the surface the 

pressure in the waves can be approximated by the hydrostatic pressure. The 

aforementioned equation reveals that the hydrostatic pressure increase at both the 

mean waterline on the hull and the additional area where the pressure acts is 

proportional to the relative wave height. The integral around the time dependent 

oscillating surface has been transformed to a line integral around the static waterline 

of the vessel. Additionally, by introducing the relative wave height an equation 

completely relative to the motion of the vessel has been obtained. 

 

The working out of equation (3.41) can be written as: 

 

      

0

2(2) (1)
(1) 2 (1) (2) (1)1 1

( ) ( )
2 2

r t t

WL S

F g ndl ndSρ ζ ρ ρ ρ = − − − ∇Φ − Φ − Χ ⋅∇Φ + 
 ∫ ∫∫

�� � �� �� �� �
  

                            (1) (1)( )gR M X+ ⋅ ⋅
�ɺɺ

                                                                        (3.52) 

 

3.8 Contribution of the different components of the mean second-

order wave exciting forces 

 

There are five components in equation (3.52). Pinkster through his 

computations analyses the behavior of each component in sign and in magnitude. 

These results are presented in the following Figure 3-2 and refer to the mean surge 

drifting force on a rectangular barge and a semi-submersible. In Figure 3-3 Pinkster 

illustrates a comparison between these different contributions and the total mean 

horizontal drifting force. These results concern the three-dimensional case of a free 

floating hemisphere in infinitely deep water. 
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Figure 3-2: Components of the computed mean surge drifting force [Fig. from 

Pinkster (1979b)]. 

 

 
 

Figure 3-3: Components of the computed mean second-order horizontal 

drift force [Fig. from Pinkster (1979b)]. 

 

It is observed that contribution I, due to the relative wave elevation, is 

preponderant while the other contributions tend to reduce the effect of contribution I. 

In the case of the sphere this contribution is twice larger in magnitude than the total 

force and has always the same sign with it. It expresses a pressure increase and its 

sign coincides with the direction of propagation of the waves. 
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As it comes out from the example of the sphere, contribution II, which is the 

effect of the square of the velocity, is different in sign but equivalent in magnitude to 

the total. It represents a pressure decrease and what is remarkable is that it 

corresponds to a mean force component which, contrary to intuition, is directed into 

the waves. 

The following contribution, due to the second-order potential (2)Φ , is not taken 

into consideration in the calculation of the mean drift forces in regular waves. 

The following term, which is a mixed product of pressure gradient and first-

order motion, will be termed as contribution III. It is quite complicated to predict the 

exact sign of this term. The sign depends on the phase angles of both quantities. This 

component is linked with the motions of the body and the pressure gradients. In the 

case of the sphere, it is smaller in magnitude and acts differently than the total force. 

At very high wave frequencies where the wavelengths are small, the motion of the 

vessel tends to zero and consequently this is also the case for the force component. At 

low frequencies, the pressure gradients tend to nullification and so does the force. 

This is apparent in all examples. 

Contribution IV is the last term which incorporates the products of angular 

motions and body accelerations. In the example of the sphere, it is zero because there 

are no angular motions. Generally speaking, it is only in intermediate frequencies that 

this component takes a non-zero value which depends on the phase between the first-

order included components. Similarly to contribution III, in high frequencies where 

the waves are considered to be short, the hull tends to immobilization and at low 

frequencies accelerations tend to zero. 

Noteworthy is the fact that finally at high wave frequencies, as it is proved by all 

examples, only contributions I and II remain. 

In Figure 3-4, the computed mean vertical wave drifting force is presented for 

the same structures presented in Figure 3-2. It is depicted that the mean vertical force 

on the barge is downwards while on the semi-submersible it is upwards. On the 

presumption that both vessels have vertical walls at the waterline, contribution I is 

zero. Contribution II and also partly contribution III and contribution IV give rise to 

the mean vertical wave drifting force. The peak in the mean vertical drift response 

function takes place at the natural pitch and heave frequency. 

 

   
 

Figure 3-4: Components mean heave drifting force [Fig. from Pinkster (1979b)]. 
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3.9 Second-order wave moment 

 

The moment of the fluid about the axes of ' ' '

1 2 3G-x -x -x  system follows from: 

 

                                                     ( )
S

M p X N dS= − ⋅ ×∫∫
��� ��� ���

                                      (3.53) 

The adopted procedure for obtaining the moments is similar to the procedure we 

followed for obtaining the forces. 

The final formulae for the drift forces and drift moments are almost equivalent. The 

differences are that translational motion is replaced by the rotational motion, and the 

normal n
�

by x×n
��

: 
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S

x n dSρ ρ ρ − − ∇Φ − Φ − Χ ⋅∇Φ ⋅ × 
 ∫∫

�� �� �� � �
  (3.54) 

 

Equations (3.52) and (3.54) include the total second-order loads acting on a vessel; 

the wave exciting force in the absence of motions, the hydrodynamic and hydrostatic 

reaction force. Generally, we focus more on the second-order wave exciting force so 

the dependence on the other components has to be eliminated. In our case, in which 

we have not taken into account the second-order displacement, there are no second-

order terms of hydrostatic reaction forces. The hydrodynamic reaction force is hidden 

in the total second-order potential (2)Φ , in the specific term of (2)

RΦ . It has been 

already noted the difficulty in the determination of the second-order potential. 

However, in the calculation of the mean drift forces the contribution due to (2)Φ  is 

zero in regular waves and we have no interest towards this potential in this problem. 

In the following sections it will be shown that in practice for irregular waves in finite 

depth a simple approximation of these second-order potential contributions can be 

used. To sum up, what we get if we neglect (2)Φ  is a wave exciting force and moment, 

but without the components of (2)Φ  that do contribute to the wave force in irregular 

waves. 

 

 

3.10 Quadratic transfer functions for the mean and slow-drift (or low 

frequency) wave drifting force in irregular waves 

 

The expressions for the second-order wave exciting forces and moments 

obtained by the direct integration method on the wetted surface of a body may give an 

insight into the mechanism by which the waves and vessels interact to produce the 

second-order force, but their form is quite complicated for practical applications. In 

this section, an attempt is made to formulate the forces under consideration by means 

of time independent quadratic transfer functions (QTF) for the mean and low 

frequency force and moment components. This will also allow the transition from 

time domain to frequency domain. Generally, frequency-domain methods are very 

useful in the preliminary design stage since they are computationally more efficient 

although time-domain analysis is indispensable for the final design purpose. 
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We start with low frequency second-order forces and furthermore we are 

going to clarify how we get mean wave forces in irregular sea-state. 

Considering the different components of equation (3.52), the total quadratic 

function also consists of contributions due to first-order and second-order quantities. 

We focus on first-order quantities and as we are interested in the low frequency 

forces, the low frequency part of the longitudinal force’s component due to the first-

order contribution of the relative wave elevation is treated. 

 

                                       (2) (1) 2

1 1 1

1
( ) ( ) (t, ) ( )

2
r

WL

F F t g l n l dlρ ζ= = − ⋅ ⋅∫                    (3.55) 

 

where: 
(1) 2( ) (t, )r lζ = time dependent relative wave elevation in a point l along the waterline 

1( )n l            =direction cosine of a length element dl in longitudinal direction 

 

The goal is to separate the double dependence of rζ on time and on a specific 

point l along the waterline into two components: a time independent part which 

includes the dependency on this specific point along the waterline and a time 

dependent part. 

The treatment of low frequency components infers that the corresponding 

environment is an irregular wave system. A simple approach is to decompose this 

wave system to a discrete spectrum of regular waves. It is assumed that the waves are 

long-crested. Thus, the first-order wave elevation of the incoming, undisturbed, long-

crested waves with respect to the mean position of the centre of gravity of the floating 

body is a sum of regular wave components: 

 

                                                       (1) (1)

1

( ) cos( )
N

i i i

i

t tζ ζ ω ε
=

= +∑                             (3.56) 

 

The square of the wave elevation is: 

 

                                  { }2
(1) (1) (1)

1 1

( ) cos( )cos( )
N N
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t t tζ ζ ζ ω ε ω ε
= =
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The low frequency part of the square of the wave elevation is derived by applying the 

identity [ ]1
cos( ) cos( ) cos( ) cos( )

2
x y x y x y⋅ = − + + : 

 

                                { } ( ) ( ){ }2
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1
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2
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t tζ ζ ζ ω ω ε ε
= =
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The first-order relative wave elevation at a point l along the waterline can be written 

as: 

                                     { }(1) (1) (1)'

1

( , ) ( ) cos ( ( )
i i

N

r i r i i r

i

t l l t lζ ζ ζ ω ε ε
=

= ⋅ + +∑                 (3.59) 

 
(1)

iζ        = amplitude of i-th regular wave component 
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iω           = frequency of i-th component 

iε           = random phase uniformly distributed over 0-2π 

(1)'( )
ir

lζ  = time independent transfer function of the amplitude  

                 of the first-order relative wave elevation 

( )
ir

lε      = phase angle of the relative wave elevation related to the undisturbed 

                 wave crest passing the centre of gravity. It has the role of a phase transfer                                                                                       

                 function. 

 

Combination of equations (3.55), (3.57) and (3.59) gives as a result: 

 

( ){ }(2) (1) (1)

1

1 1

( ) cos ( )
N N

i j ij i j i j
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F t P tζ ζ ω ω ε ε
= =
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           ( ){ }(1) (1)

1 1

sin ( )
N N

i j ij i j i j

i j

Q tζ ζ ω ω ε ε
= =

+ ⋅ ⋅ ⋅ − + − +∑∑  

                                   + high frequency terms                                                        (3.60) 

 

The coefficients ijP and ijQ  can be interpreted as transfer functions for the low 

frequency loads. The word “transfer function” means that these coefficients are 

independent of wave amplitudes and of time and thus they can be calculated 

independently of the sea state. Briefly, the calculation of these transfer functions 

requires the knowledge of the first-order amplitude and phase transfer functions as a 

function of the wave frequency. More specifically, as denoted by the coexistence of 

the subscripts i and j, ijP and ijQ are a function of two wave frequencies iω and jω : 

 

                                { }'(1) '(1)

1

1
cos ( ) ( )

4 i j i jij r r r r

WL

P g l l n dlρ ζ ζ ε ε= −∫                           (3.61) 

. 

                                { }'(1) '(1)

1

1
sin ( ) ( )

4 i j i jij r r r r

WL

Q g l l n dlρ ζ ζ ε ε= − −∫                        (3.62) 

 

If we take the low frequency part of the square of the wave elevation as it is 

given in equation (3.58), it is found that ijP and ijQ give respectively the part which is 

in-phase and out-of-phase with the low frequency part of the square of the incident 

waves. In other words, they provide us with the in- and out-of phase low frequency 

oscillating part of the second-order wave exciting forces when the body is exposed to 

a wave train constituted by two regular waves. 

In similar ways, we can find the other contributions which depend on first-

order quantities. The total in-phase and out-of-phase transfer functions are calculated 

by summation of all contributions. There is also a second-order contribution to the 

low frequency part of the longitudinal component of (2)F due to (2)Φ . In Chapter 3.13, 

it is presented Pinkster’s simplifying formula for estimating (2)Φ and for evaluating 

the quadratic transfer functions due to the second-order potential in relation to the 

QTFs obtained for the first-order relative wave height. 

The most basic sea state which generates low frequency wave drifting forces is 

depicted. It consists of two frequencies: 
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                                                      (1) (1)

1 1 1 2 2 2cos( ) cos( )t tζ ω ε ζ ω ε= ⋅ + + ⋅ +           (3.63) 

 

The wave drifting force in this case is: 
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             ( ) ( ){ }(1) (1)

1 2 12 21 1 2 1 2( ) cosP P tζ ζ ω ω ε ε+ + − + − +  

                                     ( ) ( ){ }(1) (1)

1 2 12 21 1 2 1 2( )sinQ Q tζ ζ ω ω ε ε+ − − + −                  (3.64) 

 

There are two constant components in this equation. Each one illustrates the force 

which would be found if the wave group consisted of a single regular wave. In 

irregular sea-state, these are the representatives of the mean wave force in the total 

second-order force containing both constant and low frequency parts. A remarkable 

fact is that although the total force is a non-linear phenomenon, the constant or the 

mean second-order force acts as a first-order force. The superposition principle, which 

suggests that in an environment of two or more wave disturbances each disturbance 

can be propagated in space independently of the others, is valid. Consequently, the 

mean wave force in a wave group consisting of a superposition of regular waves is the 

sum of the mean forces acting on each of the constituent waves. 

 

                                     
2 2(2) (1) (1)

1 1

( , )
N N

mean i ii i i i
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This formula is explained by the fact that in an irregular sea-state the only time 

independent terms describing a time-average occur when i j= . Hence, in both regular 

and irregular waves the mean wave drift force can be expressed as a function 

dependent on one frequency. Another interesting comment coming out from 

Pinkster’s analysis that we have pursued, is that the quadratic transfer function of the 

mean wave force ( , )i iP ω ω  appears to be a special case of the general ( , )i jP ω ω  

characterizing the force in regular wave groups. 

Apart from the constant parts, low frequency parts which are a function of the 

difference frequency 1 2ω ω− are also present in equation (3.64). It is observed that the 

amplitudes of the in-phase transfer functions depend on the sum of the in-phase 

quadratic transfer functions 12P  and 21P . Similarly, the amplitudes of the out-of-phase 

functions depend on the difference of the corresponding transfer functions. Contrary 

to the mean force, the transfer functions for low frequency components do not appear 

in isolation but are joined in pairs. As this is the case, these components may be 

chosen at random so that for instance: 

 

                                                 ( , ) ( , )i j j iP Pω ω ω ω≠  
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However, as it is known a priori that they appear in pairs, they can be 

rearranged so that the following symmetry relations are valid: the in-phase 

component i jP(ω ,ω ) takes the form of a matrix which is symmetrical about the 

diagonal while the out-of-phase i jQ(ω ,ω ) is asymmetrical about the diagonal: 

 

                                                ( , ) ( , )i j j iP Pω ω ω ω=                                               (3.66) 

 

                                               ( , ) ( , )i j j iQ Qω ω ω ω= −                                              (3.67) 

and 

 

                                           ij jiT T= , where 2 2

ij ij ijT P Q= +                                   (3.68) 

 

where ijT is the amplitude of the quadratic transfer function. 

 

 

3.11 Frequency domain representation of the mean and low 

frequency wave drifting force 

 

Equations (3.64) and (3.65) describe the low-frequency and mean second-

order wave exciting forces that arise from first-order quantities in irregular waves as a 

function of time for discrete values of the frequencies iω and jω . 

The irregular waves are characterized by a spectral density or energy density 

( )iS ω where: 

                                                      
2( )1

( )
2

l

i i iS dω ω ζ=                                             (3.69) 

 

The transition from a discrete to a continuous representation is possible through 

correlation between equations (3.65) and (3.69): 
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∞

= ∫                                   (3.70) 

 

Similarly it can be shown that the spectral density of the low frequency oscillating 

part of the wave drifting force follows from: 

 

                                        ( )
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1 2 1 2 2

0

( ) 8 ( ) ( ) ,FS S S T dµ ω ω ω ω ω
∞

=   ∫                        (3.71) 

 

where 1 2ω ω µ− =  is the low frequency and ( )1 2,T ω ω is the amplitude of the 

quadratic transfer function as given by equation (3.68). 

 Equation (3.72) can also take the following form: 
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3.12 Newman’s approximations 

 

A second-order contribution to the slowly varying forces stems from the 

existence of the second-order potential. Instead of analyzing the quantities which 

depend on ( )2
Φ , reference will be made once again to Newman’s approximations 

applicable to the case of deep water. Newman (1974) focuses on the same component 

analyzed by Pinkster which is the low frequency contribution of the component 

arising from the relative waveheight. Some restrictions are introduced and Newman 

proves that the low frequency transfer functions can be formed in terms of the mean 

forces transfer functions. Thereby, we remain in the mean second-order force problem 

in regular waves and there is no need to solve for (2)Φ as required in a sea state of 

irregular waves. 

 Newman stresses out the fact that we can observe slowly varying forces 

between all components of the spectrum. It is very important to study the slowly 

varying forces in a framework of a complete analysis especially in the case where a 

low resonant frequency exists. If this is the case, it is likely that the moored vessel 

with the low natural frequency resonates with the i jω -ω components of the sea. 

Newman formulates the wave elevation’s expression which comes out by a 

discrete spectrum of unidirectional waves. To first-order the force arises directly from 

the wave elevation if we appeal to the first-order transfer function. There is also the 

analogous expression for the second-order force thanks to second-order transfer 

functions, which contains both sum and difference frequency components. The 

transfer functions corresponding to the difference frequency components are identical 

to those mentioned in the analysis of Pinkster but here they also incorporate the phase 

transfer function. Newman concentrates on the difference loads: 

 

                                        
( )

( ) Re m ni t

m n mn

m n

f t A A F e
ω ω−∗= ∑∑                                   (3.73) 

 

where an asterisk ( )∗ indicates the complex conjugate and mnF  is the transfer function 

for the difference frequency. mnF  represents the total transfer function including 

both the in-phase (real part) and the out-of-phase (imaginary part) terms with the low 

frequency part of the square of the incident waves quadratic transfer functions. 

Newman takes the time-average of this force:  

 

                                                    
1

Re
2

m m mm

m

f A A F∗= ∑                                        (3.74) 

 

The time independent terms are dominated by m n= . Hence, the time-average 

is described by mmF . Newman introduces his first assumption; since these expressions 

are preceded by the real designation and as long as they include no other imaginary 

term, the imaginary part of mmF has no sense. mmF is supposed to be real. In a physical 

sense, this transfer function can now describe the second-order steady force acting on 

the vessel in regular waves of unit amplitude and frequency mω . 

Furthermore, the investigator studies the non-diagonal terms mnF which 

represent the amplitude and phase of the difference-frequency force in a regime of 

two simultaneous waves with frequencies mω and nω . Firstly, a question of correlation 

between these transfer functions is posed. According to him, the most practical 
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solution is to ascribe to two off-diagonal terms, which are in the same time complex 

conjugates, an equal contribution to the total force: 

 

                                                 *

mn nmF =F                                                      (3.75) 

 

This is exactly similar to the sum of equations (3.66) and (3.67) for P and Q, obtained 

by Pinkster. 

Eventually, Newman attempting to express mnF in terms of mmF generalizes the 

idea of time average in the case of the “slowing varying force”. At this point, his 

second assumption is imposed. For practical reasons, the time average of the slowly 

varying force is associated with those off-diagonal elements for which m nω ω≅ ; this 

hypothesis implies that the difference of frequencies has to be very small compared to 

the average: 

 

                                                       
1

( )
2

m n m nω ω ω ω− +≪                                    (3.76) 

 

Furthermore, Newman’s second assumption has also a physical meaning 

because a large frequency difference m nω ω−  gives a smaller oscillation period which 

is further away from the resonance period of the structure. 

As a result, the slowly varying force can only be linked to those terms which 

are very close to the principal diagonal for which m nω ω≅ . In fact, we realize that if 

the difference frequency is sufficiently small, so that we do not depart too much from 

the diagonal, and supposing that mnF are regular functions of the two frequencies, mnF is 

simplified: 

 

                                                     ( )mn mm m nF F O ω ω= + −                                      (3.77) 

 

This function turns out to depend only on the transfer function of the diagonal mmF plus 

on a term which is attributed to the small existing difference between the frequencies. 

However, we must be cautious if mmF exhibits pronounced maxima because this 

means that we are in the resonance area and therefore adjacent mnF  may present 

significantly different values. Equation (3.73) takes the following form: 

 

                                    � ( )
( ) Re ( )m ni t

m n mm m n

m n

f t A A F e O
ω ω ω ω−∗= + −∑∑                 (3.78) 

 

What changes now at the formulation of the time-average problem of the 

forces under consideration is that the asymptotic approximation to the slowly varying 

force depends exclusively on the regular wave second-order transfer function mmF . As 

a lot more is known about this transfer function in comparison with the off-diagonal 

terms mnF , equation (3.78) can be exploited to offer us at least a simple approximation 

for the slowly varying second-order forces. In addition to this, under this asymptotic 

approximation with the support of mmF , mnF  gets also the real character of mmF . In total, 

it is observed that during Newman’s approximations the quadratic transfer functions 

are real quantities and thus, they offer an estimation of the real part P. 
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Nevertheless, the double summation in equation (3.78) requires a large 

computational time. Newman overcomes this difficulty by substituting the double 

series with the square of an appropriate chosen single series. 

Newman concludes that the quantitative accuracy of his approximations may 

vary from one case to another. Some knowledge of the off-diagonal second-order 

forces coming out from the simultaneous presence of two discrete wave systems is of 

primary importance in order to have a complete image of this approximate 

calculation. Because of the mysterious character of these forces, in most cases the 

present approximation is the best solution instead of complete ignorance of the 

phenomenon. 

   

 

3.13 Approximation for the contribution of the second-order    

potential 

 

Inevitably, there are some cases where Newman’s argument is annulated. In 

Chapter 2.4, we have already justified the two preconditions (deep water and iω close 

to jω ) that ensure the validity of Newman’s argument in a case of free waves. An 

important case of invalidation is when referring to mooring systems in shallow water 

because they are stiffer than deep water ones and the difference of frequencies is 

higher. Bowers (1976) is based on his scale model results of a barge in irregular head 

waves and points out that, as the natural surge frequency is increased by increasing 

the stiffness of the mooring system, the impact of (2)Φ on the low frequency drifting 

force also increases. A general assumption is that when natural frequencies are low 

owing to the large effective mass in relation to the stiffness of the mooring system, the 

second-order potential can be neglected whereas in the opposite case the contribution 

due to this potential may be important. It seems that in a great number of LNG 

terminals, which are near-shore terminals, the second-order potential contribution to 

the quadratic transfer functions cannot be neglected. 

We have already reported the difficulty to solve for (2)Φ in the complete 

second-order problem due to the complexity of the non-homogeneous second-order 

free surface condition (equation (3.15)). Pinkster (1979b) makes an attempt to provide 

us with an indication of the magnitude of the contribution of (2)Φ  to the low frequency 

wave drifting forces. He invokes an approximative method based on linear potential 

theory which is practical for both two and three dimensions as well as for a case of 

shallow water. 

Pinkster states that in equation (3.26) which offers the general form of (2)Φ , 
(2)

wwΦ  is the dominant term concerning the low frequency second-order force due 

to (2)Φ . (2)

wwΦ  stands for the second-order potential associated with the undisturbed 

incoming first-order wave potential. This statement implies that (1)Φ d and (1)Φ R  are 

small relative to (1)Φ w . In practice, in the sophisticated inhomogeneous free surface 

condition (3.15) this assumption allows us to substitute (1)Φ  for the terms involving 

the first-order velocity potential of the undisturbed incoming waves. 

Moreover, Pinkster presents the form of the first-order velocity potential 

arising from the undisturbed incoming regular wave group of two regular waves. 

Hereafter (i)Φ w will be replaced by (i)Φ I : 

 



 

 
Sea-keeping and wave drift forces in varying bathymetry                                      

Oikonomidou C. Haris 
35 

                  
2

(1) 3
1

1

cosh ( )
sin( )

cosh

i i
I i i i

i i i

g k X h
k X t

k h

ζ
ω ε

ω=

+
Φ = − + +∑                  (3.79) 

 

 Then the low frequency component of (2)Φ  that comes out from the same 

wave group is as follows: 
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ζ ζ
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                               }( ) ( )i j i jtω ω ε ε+ − + −                                      , i jω ω≥          (3.80) 

 

Bowers denotes that ijA is a coefficient which is a function of the frequencies ,i jω ω  

and the waterdepth h. 

The expression (3.80) for (2)Φ I describes long waves which are introduced by 

the presence of the regular wave group. In the following Figure 3-5 it is indicated that 

the phase of these long waves in comparison with the short wave group’s phase 

presents a trough where the wave group develops its maximum wave height. The 

potential (2)ΦI  represents an accompanying long wave to the bichromatic sea-state, 

inducing a decrease (set-down) of the mean free-surface. Βy what means are we going 

to calculate the contribution of (2)Φ I to the second-order low-frequency forces?  

 

 
Figure 3-5: Wave due to the second-order potential of a wave group [Fig. 

from Pinkster (1979b)] 

 

According to the second assumption of Pinkster, the long waves linked to this 

potential can be regarded as separate waves. Τhe potential of a separate wave does not 

satisfy the boundary condition on the body which for the simplified case, is assumed 

to be equivalent to the normal first-order boundary condition. The validity of the 

normal first-order boundary condition implies that all the first-order contributions in 

the right hand side of equation (3.21) is zero. In this way, the separate waves 

introduce a diffraction potential which is described by a motionless body in the 

presence of undisturbed incoming waves. The (2)

dΦ  is considered to be a simple, 

ordinary potential because it has been already shown that it satisfies the homogeneous 

free surface condition of equation (3.28). This potential needs only to verify the 

equation of continuity, the boundary condition at the sea-floor, the radiation condition 

and the homogeneous free surface condition: 

 

                                                     
Χ3

(2) (2)gΦ +Φ =0
ttd d                                              (3.81) 
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From the last condition the dispersion relationship arises: 

 

                                                       2 tanhkg khω =                                                 (3.82) 

 

Through equation (3.80) we realize that the undisturbed incoming waves are 

characterized by a wave number equal to i jk -k  and a wave frequency equal to i jω -ω . 

These waves do not follow the dispersion law. If the frequency of the incoming waves 

is i jω -ω , the diffracted waves’ frequency will be the same. However, the wave number 

of the diffracted waves will not be equal to i jk -k  but will result from the application 

of the dispersion relationship: 

 

                                         ( )2

tanhi j kg khω ω− =                                       (3.83) 

 

The third simplification is applied according to which the diffraction waves 

are allowed to have the same wave number i jk -k  as the incoming waves. This is 

permitted only for the diffracted waves which are further away from the body. Near 

the body, the situation cannot change because the boundary condition at the body still 

has to be satisfied. 

The difficulty level of the problem under consideration has been lowered. It is 

required the calculation of the low frequency (2)F  caused by a wave described by 

(3.80) while assuming that the diffracted waves have the same wave number and 

frequency as the incoming waves. The procedure of solution suggests the correlation 

between the expressions of (1)

IΦ  and (2)

IΦ , or the transition from (1)F  to (2)F . (1)F  

acts in the environment of a regular wave with wave number equal to k . In order to 

produce the wave number of the low-frequency (2)F caused by two regular waves 

which is equal to i jk k− we set: 

 

                                                   i jk k k= −                                                 (3.84) 

 

We are situated in an ordinary gravity field with g as the constant of gravity. In this 

case, the wave frequencyω of (1)F obeys the dispersion law. We change ω  for 

i jω ω−  by choosing another value for the constant of gravity: 

 

                                             
( )

( ) ( )

2

tanh

i j

ij

i j i j

g
k k k k h

ω ω−
=

− −
          , i jω ω≥             (3.85) 

 

The low-frequency part of (2)F  is proportional to the constant of gravity. The first-

order velocity potential of equation (3.79), which is responsible for (1)F , is also 

proportional to the constant of gravity. Therefore, in order to express (2)F  

through (1)F  the following correlation factor is used: 

 

                                                                  
ij

ij

g
n

g
=                                                  (3.86) 
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To this end, the transformed potential of the first-order regular wave given by 

equation (3.79) changes to: 
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For the completion of the transformation we merely need to relate the amplitude of 

the preceding equation (3.87) with the amplitude of equation (3.80): 

 

                                                   
a ij

i j ij

i j

g
A

ζ
ζ ζ

ω ω
=

−
                , i jω ω≥                    (3.88) 

 

Equation (3.89) expresses that the first-order wave amplitude must be selected in a 

way that it verifies: 

 

                                                
( )ij i j

a i j

ij

A

g

ω ω
ζ ζ ζ

−
=             , i jω ω≥                  (3.89) 

 

The low-frequency (2)F  is also proportional to the wave amplitude. Thus, equation 

(3.89) depicts the second correction factor imposed on (1)F  in order to provide us 

with (2)F . In total we get: 

 

                                        
( ) (1)

(2) i j ij i j

ij ij

ij

A F
F n

g

ζ ζ ω ω−
=       , i jω ω≥                  (3.90) 

 

After combining (3.90) with (3.86) the low-frequency part of F
(2) 

owing to 

ΦΙ
(2)

 is obtained. We have obviated the computation of (2)Φ itself: 

 

                                                            (2) (1)

ij ijF f F= ⋅                                             (3.91) 

 

where 

 

                                                    
( )i j ij i j

ij

A
f

g

ζ ζ ω ω−
=              , i jω ω≥              (3.92) 

 

To this end, one would worry if they are still valid the foregoing quadratic 

transfer functions for the low frequency wave drifting forces defined by equation (91). 

In order to comply with the definition of the quadratic transfer functions due to first-

order relative wave height, the in- and out-of-phase transfer functions of the force 

component due to the second-order (2)

IΦ become: 

 

                                                    (2)1

2
ij ijP P=            , i jω ω≥                                (3.93) 
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                                                     ij jiP P=                                                                (3.94) 

 

                                                   (2)1

2
ij ijQ Q=           , i jω ω≥                                 (3.95) 

 

                                                   ij jiQ Q= −                                                              (3.96) 

 

Where (2)

ijP and (2)

ijQ stand for the in-phase and out-of-phase components of the 

second-order wave force as determined by equation (3.91).  

At this point it is reported that Newman’s preconditions are also well 

explained by means of Pinkster’s analysis. According to the analytical expression of 
(2)

ΙΦ (equation (3.80)), (2)

ΙΦ is a function of ( )m nω ω− and ( )m nk k− , and consequently 

this potential’s contribution vanishes when the difference of frequencies goes to zero. 

As the water depth decreases there remains a factor ( )m nω ω− and the contribution 

of (2)

ΙΦ at the difference frequency can no longer be neglected. 

Pinkster’s approximation is exact in cases where the contributions to (2)Φ of 

the first-order diffraction and body motions are negligible, so that the (2)

IΦ component 

is indeed dominant. In general, it is more likely that this requirement is satisfied by 

vessels like semi-submersibles rather than by ordinary ships or barge shaped 

structures. Noteworthy in Pinkster’s remarks is the statement that when the first-order 

diffraction and body motion effects grow, the total (2)F will be dominated by first-

order phenomena so that the increase in the error of the component owing to (2)Φ is of 

small importance relative to the total force. 

 Moreover, Pinkster presents a specific example where the foregoing 

approximation gives accurate results. We study the horizontal low frequency wave 

drifting force arising from (2)Φ , acting on a vertical wall in deep water. In such a 

problem, total reflection is observed. Therefore, the first-order incoming waves and 

the first-order outgoing waves are identical. Τhe total second-order potential consists 

of the contribution of the undisturbed incoming waves and the outgoing diffraction 

waves. In this case we may have diffraction which is not included in Pinkster’s 

approximation but the formula remains accurate. The reason for this is that since the 

outgoing component is equal to (2)

IΦ , the approximation can well predict both of 

them. 
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4. EXAMPLE OF AN LNG-CARRIER MOORED AT A 

JETTY IN A COMPLEX BATHYMETRY AND 

DEVELOPMENT OF A CORRECTION FACTOR TO THE 

QUADRATIC TRANSFER FUNCTIONS 
 

Concerning motions and mooring loads of an LNG- Carrier moored at a jetty 

in a complex bathymetry area the results from the paper of Weiler et al. (2009) are 

remarkable. The Yemen LNG Company was planning to design and construct a near-

shore LNG plant in the Republic of Yemen. Deltares in Delft together with Marin 

conducted a study to compare the hydrodynamic scale model tests, in the 40×40m 

basin in Delft, with the computer simulations derived by the software TERMSIM 

from Marin. The scope of their project was to determine the limiting environmental 

conditions for loading and safe mooring of the LNG carriers in this very hard to be 

simulated environment. 

 The natural periods in the horizontal motions surge, sway and yaw are 

typically in the range of 30 to 100 sec and this means that both the linear wave 

response as well as the second-order slow-drift motion must be accounted for in the 

design of the berthing system. In the formulation of the problem, it must be also 

considered that the bathymetry around the jetty is very complex. Moreover, the 

environmental conditions at this area are characterized by monsoon seasons and by a 

strong sea breeze. A cape near the jetty also influences the incoming wave conditions. 

The carrier has to stay at the berth almost 24 hours to complete the loading operation 

and so it will have to face the wave conditions created by the sea breeze blowing 

during the afternoon. The sea breeze will give rise to a so- called young sea 

dominated by short-crested (multidirectional) waves. This is why Deltares suggested 

that short-crested waves should be incorporated in the test conditions. In general, 

different combinations of tests proceeded: with wind and without wind, and in both 

short-crested and long-crested waves. 

Concerning the short-crested waves, the experiments showed that Deltares’ 

input lead to greater motions and mooring loads compared with long-crested wave 

conditions. Furthermore, through the comparison of the six motions spectra arising 

from model tests and simulations (Figure 4-1), it is observed that the greatest 

discrepancies are found for the surge, sway and yaw responses. For these motions, as 

we have justified in the beginning of our study, the low-frequency motions are 

dominant. The numerical simulations assuming long-crested waves (primary waves 

and low-frequency waves), seem to overestimate the loads. The difference in surge is 

eventually attributed to the wave loading or the response of the ship on the sloping 

bathymetry. For sway and yaw the shifts in the peak frequencies can be correlated 

with differences in added mass. Besides, there is also observed a great difference in 

roll response. This is ascribed to the differences in sway and yaw.  

The genre of these discrepancies does not give away an obvious reason for this 

variance. An ultimate solution to this problem can be presented by means of the 

comparison of the quantity of energy between the two different procedures. However, 

it seems that despite the larger low-frequency wave energy in the basin, the vessel 

manifests smaller motions compared to numerical simulations. The paper does not 

explain this contradiction. 

Finally, the suggested explanation is that it is the distribution of energy 

which creates the disagreement and not the quantity of energy itself. In the basin the 

low-frequency energy is spread over a wider range of directions. The basin possesses 
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a non-uniform bottom with a slope whose steepness is not the same between the two 

sides of the vessel and there may be a different behavior of the long wave energy 

predicted by the simulations (flat bottom expressions). Besides, in the simulations the 

low-frequency waves are co-linear with the primary waves and this may lead to larger 

vessel responses. In addition, it is possible that a part of the low frequency energy in 

the basin does not lead to vessel motions and is defused in the interaction of waves 

with the headland or with the shallow water area near the location of the plant. 

 In their conclusion, the researchers report that since the condition of short-

crested waves excites larger ship motions and mooring loads, it is important to check 

whether this condition has to be integrated in a problem where local wind gives rise to 

waves. They also stress out that actually, a conventional numerical code may be 

inadequate as far as the evolution of low-frequency waves over the bathymetry is 

concerned. In such a complex bathymetry the assumption of long crested waves with 

low frequency bound waves (or locked) in the same direction is a very simplifying 

assumption. 

  

 
 

Figure 4-1: Motion spectra from model tests and simulations [Fig.  

from Weiler et al. (2009)]. 

 

From Weiler et al. (2009) we got aware of the failure of the flat bottom 

expressions to depict a variable bathymetry and to properly estimate the low 

frequency loads. A mild bottom slope to first-order waves can be very steep to the 

second-order accompanying long waves. The regular wave drift forces can still be 

accurately calculated by the flat bottom assumption, whereas, the second-order long 

waves shoal up on the varying bathymetry and not on the limit predicted by the 

constant depth model. Hence, they are not developed to the full extent following from 

the flat bottom theory, unless the slope is negligible. Wave shoaling, in simple words, 

is the effect according to which surface waves increase in wave height when they 

enter area of shallower water. This is explained by the conservation of energy flux. In 

the same time, the phases of the various frequency components sometimes give rise to 
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velocities significantly different from those predicted by the linear finite-depth 

dispersion velocity. In total the shape of individual shoaling waves changes from an 

almost symmetrical profile in deep water to a shape with sharp crests and broad, flat 

troughs in shallow water. 

Another significant argument mentioned in Molin et al. (2011) is that the 

phase relationship of the second-order long waves with the short waves envelope also 

does not agree with the flat bottom model. The local sea state is not unidirectional and 

this is attributed either to the long-crested wave system being affected by the variable 

bathymetry, or to the incoming wave system due to local wind (young seas) being 

short-crested.  

Molin et al. (2011) give a response to Weiler et al. (2009) by introducing a 

correction factor to the quadratic transfer functions. It is assumed that the incoming 

wave system initially is and remains long-crested and thus the angular spreading 

phenomenon is not considered. Molin et al. (2011) focus on the effect of shoaling, 

which affects the wave both in magnitude and in phase. 

If the water depth can no longer be considered as deep, we have to 

include (2)Φ in the problem. According to Pinkster (2)Φ can be approximated by (2)

ΙΦ in 

the calculation of the low frequency second-order force and therefore the correction 

due to the effect of shoaling refers to this component of the second-order potential. 

Molin et al. (2011) actually exploit equation (3.60) arising from the integral over the 

waterline, to import a correction for (2)

ΙΦ . It is stated that in flat bottom, in a 

bichromatic wave system, the associated acceleration with the second-order incident 

potential is 90�  out of phase with the short wave envelope. So it seems hat (2)

ΙΦ  

mostly contributes to the out-of phase imaginary part Q of the QTFs. Therefore, in the 

determination of the low frequency loads when shoaling in varying bathymetry takes 

place, it is the imaginary part Q which has to be altered. The longwave is reduced in 

amplitude but is also shifted. Therefore, because of the phase lag the QTF takes the 

following form: 

 

    
( , )(2) ( , ) ( , ) ( , ) ( , ) i ji

i j i j i j i jf P iQ R e
α ω ωω ω ω ω ω ω ω ω− = + × =  

                                             sin cosP QR iQRα α= − +  (4.1) 

 

with 1R ≤ . As a result, the modulus of the QTF is decreased in comparison with its 

flat bottom reference value. Furthermore, depending on the value of the phase lag α, it 

can even get a lower value than the Newman’s approximation P alone. The values of 

R and α depend on the bathymetry profile, from the deep water region to the terminal. 

Furthermore, Molin et al. (2011) put forward the problem of the a priori 

determination of the impact of shoaling in the correction factor in comparison with the 

flat bottom model. In a bathymetry formed by a constant depth zone with a following 

rectilinear ramp, the following main parameters are selected: the initial depth, the 

bottom slope, the mean wave period and the resonant period of the mooring system. It 

appears that the initial depth is not a critical parameter contrary to the wave and beat 

periods. Practically, it is concluded that as the bottom slope, the wave period and the 

beat period increase, the R coefficient gradually decreases and the phase shift α 

increases. Hence, the low-frequency second-order loads will be significantly lower 

compared to the values obtained by the flat bottom model. 
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5. FAR-FIELD METHOD 
 

Another way to obtain expressions for mean wave forces and moments in 

regular waves is to refer to the potential flow theory known as far-field method. 

Actually this method applies the Newton’s second law, or in other words the 

fundamental equation οf conservation of linear and angular momentum in the fluid. 

The law of conservation of momentum states that if no external force acts on a closed 

system of objects, the momentum of the closed system remains constant. Actually, 

through this principle the forces on the structure can be related to the forces on 

exterior fixed or moving control surfaces and to the rate of change of the fluid 

momentum between the control surfaces and the body.  
A three-dimensional case is studied and thus a control volume Ω needs to be 

defined in order to proceed with our analysis. Let Ω be the volume bordered by the 

surface SB, SFS, SD and S∞. SB depicts the instant wetted surface of the body, SFS the 

real free surface, SD the surface of the bottom which is assumed to be horizontal and 

S∞ a non-moving vertical cylindrical surface with large radius away from the body. It 

is remarkable that S∞ does not need to be far away from the body. The total enclosing 

control surface S does not need to follow the fluid motion. As system of reference, it 

has been selected the system 1 2 30-x -x -x which is fixed in space with z=0 being the 

plane of the calm water surface and the z-axis positive upwards. The body is 

considered to be excited by a plane periodic wave, propagating in water of finite depth 

h. 

The linear and angular momentums inside Ω are expressed by the following 

vectorial forms: 

 

                                                   ( )M t Vdρ ω
Ω

= ∫∫∫
��� ��

   (5.1) 

 

                                                   ( ) ( )H t r V dρ ω
Ω

= ×∫∫∫
��� � ��

   (5.2) 

   

where V = ∇Φ
�� ��

is the fluid’s velocity and ρ the fluid’s density. 

 

By means of the definition of a derivative and taking into account that the rate 

of change of the system’s momentum can be decomposed to a part depending on the 

rate of change of the momentum of the fluid in the control volume and to a part 

depending on the rate of the net outflow of the momentum through the control surface 

S it is obtained: 

 

                               nU
S

d M d V
Vd d V dS

dt dt t
ρ ω ρ ω ρ

Ω Ω

∂
= = +

∂∫∫∫ ∫∫∫ ∫∫
��� ��

�� ��
  (5.3) 

  

where Un is the normal component of the velocity of the surface S itself in which the 

positive normal direction has been defined to be out of the fluid. 

 

Actually the first term of equation (5.3) denotes the non-permanent flow in which the 

vector of the fluid’s velocity may change over time while the control volume remains 

invariable, whereas the second term stands for the rate of net outflow in the non-
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constant surface which may change over time. A non-constant surface in time means 

that the area S(t) is not identical with the area S(t+∆t). However, ∆t should be small. 

Right after, we make use of the Euler equation of motion and for an 

incompressible fluid it can be state: 

 

                                           ( )
V p

V V gz
t ρ

∂
+ ⋅∇ = −∇ +

∂

��
�� ���� ��

 (5.4) 

    

Then, the Gauss’ theorem-divergence theorem is applied in order to transform the 

volume integral into a surface integral. The divergence theorem is a conservation law 

which states that the total volume of all sinks and sources, the volume integral of the 

divergence, is equal to the net flow across the volume’s boundary: 

 

                                           
S

d n XdSω
Ω

∇ Χ =∫∫∫ ∫∫
�� �
� �  (5.5) 

 

Here X can be a scalar, vector or tensor and �  denotes a dot or cross or an ordinary 

multiplication or nothing. It is assumed that X has continuous derivatives in Ω. 

The outcome of the combination of (5.3), (5.4) and (5.5) is:  

 

                                 ( ) ( )n n

S

d M
p gz n V V U dS

dt
ρ ρ = − + + − ∫∫

���
� ��

 (5.6) 

  

where nV n= ⋅∇Φ
� ��

is the normal component of the fluid velocity at the surface S.  

 

In all the preceding equations n
�

 is specified to be a unit vector normal to the 

corresponding surface S. More precisely, with respect to the real free surface SFS, this 

vector is almost parallel to the unit vertical vector pointing outwards from the fluid. 

This is valid in an environment of small amplitude harmonic waves. Regarding the 

body surface SB, n
�

 is oriented into the body. In the sea-bottom surface, n
�

is identical 

with the vertical unit vector but in an opposite direction, pointing outwards from the 

control volume. Finally, concerning S∞ n
�

coincides with the horizontal unit radial 

vector and its direction is outwards the fluid. 

The total force exerted on the body, following from the pressure integration, is 

as follows: 

 

                                                         ( )

BS

F t pndS= ∫∫
�� �

 (5.7) 

 

According to the body boundary condition mentioned already:  

 

                                                                n nV U=                                                (5.8) 

 

Consequently, if terms of equation (5.6) are rearranged, thanks to equations (5.7) and 

(5.8) the force on the body is acquired: 
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                       [ ]( ) ( )

B B

n n

S S S

d M
F g zndS p gz n V V U dS

dt
ρ ρ ρ

−

= − − − + + −∫∫ ∫∫
���

�� � � ��
         (5.9) 

Equation (5.9) can be generalized to incorporate the fluid moment G
��

on the 

body. It is practical to make use of notifications 1,2,3, 4,5,6i =  in order to express 

separately every axis component of the fluid force F
��

( )1 2 3F ,F ,F=  and of the fluid 

moment 4 5 6( , , )G F F F=
��

. In a similar manner, 

1 2 3( , , )M M M M=
���

= linear momentum of fluid inside S 

4 5 6( , , )H M M M=
���

= angular momentum of fluid inside S 

1 2 3( , , )n n n n=
�

 

4 5 6( , , )r n n n n× =
� �

 (where r is the position vector relative to the origin of the 

coordinate  system 1 2 30-x -x -x  which is fixed in space )                       

1 2 3( , , )V V V V=
��

= fluid velocity 

4 5 6( , , )r V V V V× =
� ��

 

 

Starting from the definition of the angular moment (equation (5.2)), if we 

proceed in parallel steps we can prove the validity of equation (5.9) also for i= 4, 5, 6. 

Within the scope of finally determining the steady mean wave drift forces we 

calculate the time averages of all terms over one period of oscillation. The time 

average of 
d M

dt

���

 is zero since the movement is periodical and an increase of 

momentum in the control volume from the one circle to the other cannot be 

flourished.  

 

                  [ ]( ) ( )

B B

i i i i n n

S S S

F g n zdS p gz n V V U dSρ ρ ρ
−

= − − + + −∫∫ ∫∫    , i= 1..6       (5.10) 

 

Concerning the horizontal motions i= 1, 2, 6, the terms containing z can be neglected 

as they offer no net contribution when associated with ni, i= 1, 2, 6. For the vertical 

motions this is not the case and this is why their analysis is more complicated. 

Equation (5.10) is simplified by analyzing the boundary conditions on the control 

surfaces that make up S-SB: 

-On the fixed surface S∞, the velocity of the control volume is equal to zero 0nU = . 

-On the material surface SFS, bounded by SB and S∞, n nV U=  and p=0.  

In order to justify the last equation it is underlined that on the free surface the pressure 

is equal to the atmospheric pressure p0 (dynamic condition). In a previous section 

when developing Bernoulli equation we have mentioned that p0 can be set equal to 

zero without loss of generality. Therefore, it can be assumed that p=0 on the free 

surface.  

-On the fixed surface SD, the requirement that no fluid particles may cross this 

boundary renders the normal component of both the surface’s velocity and the fluid’s 

velocity equal to zero: 0n nU V= =  

 

After taking into account this theoretical background, the following equation 

for the horizontal force is established: 
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                                             [ ]i i i n

S

F pn VV dSρ
∞

= − +∫∫  , 1,2,6i =                            (5.11) 

 

Equation (5.11) was derived by Maruo (1960) for the cases i= 1, 2 and Newman 

(1967) expanded it to the significant case of mean wave-drift yaw moment case of 

i=6. 

Equation (5.11) together with the aforementioned equations, provide us with 

the total mean wave force. It goes without saying that in order to take the mean drift 

force, merely the arising second-order terms need to be taken into consideration. 

Concerning the potential, merely the knowledge of the first-order potential gives an 

adequate solution as far as the mean wave drift forces are concerned. 

In the same equation the pressure can be calculated evoking Bernoulli’s 

equation. However, we must not leave behind the time dependence of S∞ due to the 

time-varying wave elevation at S∞. In order to carry out computations and especially 

under the scope of calculating the time average it is important to separate the time-

dependent and time-independent terms. It is practical to divide S∞ into two parts: 

C∞ and 1S ∞ . This is exactly what we have also put into practice in the near-field 

method in which the total force (2)F
�

 is consisted of an integral of pressure over the 

constant surface 0S and a pressure integral over the oscillating surface s(t). The first 

part C∞ denotes the integration from z = −∞  to 0z = . In this case, second-order terms 

have to be kept in the integrand in order to obtain the components of the second-order 

force (2)F
�

. The second part 1S ∞ includes the surface between the mean free-surface 

level z=0 and the instantaneous position ζ ∞ of the free surface. This part of the total 

water surface comes up only in the case of surface-piercing bodies. Sinceζ ∞ is a first-

order quantity, we need exclusively first-order quantities in the integral. Finally after 

applying the same simplifications used in near-field method an equation identical to 

equation (3.49) is derived. 

Equation (5.11) takes the following form:  

 

                          { }
1

2 2

1

1

2
i i i R i

C S

F n p VV dS g n dlρ ε ρ ζ
∞

∞

= − + −∫∫ ∫�                                (5.12) 

 

                                   with { }2 2 2 2

1 1 1

1

2
x y zp ε ρ= − Φ +Φ +Φ                                  (5.13) 

 

The hydrostatic pressure integrates to zero overC∞ and thanks to the potential’s 

periodicity the potential time derivatives do not contribute to the mean value of the 

pressure. 

  It is remarkable that the contribution due to the oscillating part of the wave 

elevation is the same in both methods and is proportional to the first-order wave 

elevation. 

It is also important to mention that equation (5.11) is applicable to a two-

dimensional case as well. In such a case S∞ stands for the sum of the surface elements 

included between the verticals S-∞ and S∞, which are the vertical control surfaces for 

negative and positive horizontal coordinates respectively. 
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Mavrakos (1995) came to a proof of the same equation but originating from 

the equation of the hydrodynamic force exerted on the body.  

 

                                                          

B

B

S

F pn dS= ∫∫
�� �

                                                (5.14) 

Mavrakos invokes the divergence theorem and the fact that p=0 on the free surface: 

 

               

B FS D B D

B D

S S S S S S S

pd pndS pn dS pn dS pn dSω
∞ ∞

∞
Ω + + +

∇ = = + +∫∫∫ ∫∫ ∫∫ ∫∫ ∫∫
�� � � � �

            (5.15) 

 

A reformulation of (5.15) gives: 

 

                                 

B D

B D

S S S

pn dS pd pn dS pn dSω
∞

∞
Ω

= ∇ − −∫∫ ∫∫∫ ∫∫ ∫∫
��� � �

                         (5.16) 

 

From (5.14) and (5.16) the force F
��

can be derived: 

 

                                      

D

D

S S

F pd pn dS pn dSω
∞

∞
Ω

= ∇ − −∫∫∫ ∫∫ ∫∫
�� �� � �

                               (5.17) 

 

From Bernoulli it is obtained: 

 

                                   
1

2
tp g zρ ρ ρ∇ = − ∇ − ∇Φ − ∇ ∇Φ⋅∇Φ

�� �� �� �� �� ��
                              (5.18) 

 

The first term of equation (5.17) takes the following form: 

 

                                 
1

( )
2

tpd gz dω ρ ω
Ω Ω

∇ = − ∇ + ∇Φ ⋅∇Φ +Φ∫∫∫ ∫∫∫
�� �� �� ��

                    (5.19) 

 

The first and second terms of equation (5.19) are transformed by accounting for the 

divergence theorem and the last term is rewritten after making use of the momentum 

theorem as described above and the definition of the linear momentum in the control 

volume Ω: 

 

                                                    
S

g zd g zndSρ ω ρ
Ω

∇ =∫∫∫ ∫∫
�� �

                                  (5.20) 

 

                                              
1

( )
2

S

d dS
n

ρ ω ρ
Ω

∂Φ
∇ ∇Φ⋅∇Φ = ∇Φ

∂∫∫∫ ∫∫
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                   (5.21) 
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       (5.22) 
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Furthermore, we exploit once again the boundary condition at SD and S∞ and we get 

rid of the term containing Un at these surfaces. 

 

                                   ( )

B FS

t

S S

d
d d U n dS

dt
ρ ω ρ ω ρ

Ω Ω +

∇Φ = ∇Φ − ∇Φ ⋅∫∫∫ ∫∫∫ ∫∫
�� �� �� �� �

          (5.23) 

 

Upon substituting (5.18), (5.19), (5.20), (5.21) and (5.22) in equation (5.17) the force 

can be expressed in the form: 
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                                                         (5.24) 

 

In addition we take into consideration the boundary condition at the vertical surface 

S∞, where n
�

is identical with the horizontal unit vector. Therefore, 0z n∞⋅ =
�

: 
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According to the boundary conditions, we substitute
n

∂Φ
∂

for (U n⋅
�� �

) in the surfaces SFS 

and SB and furthermore we apply the boundary condition at the sea bottom SD where 

Un=Vn=0: 
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2
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t D

S S S S

dM
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ρ ρ
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                              (5.26) 

 

As previously mentioned the terms containing z offer no net contribution in horizontal 

motions and furthermore , , 0D x D yn n= =  and , 0zn∞ = . 
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              (5.28) 

 

The preceding equations (5.27) and (5.28) are in agreement with equations (5.11). 

Mavrakos (1988, 1995) provides us also with an equation for Fz: 
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     (5.29) 

 

From the final form of zF (equation (5.29)), it is apparent that the application 

of the momentum approach for predicting the mean heave and the roll and pitch 

moments leads to expressions that include unattractive integrations to be carried out 

over the free-surface and the sea-bottom in the case of finite depth water. Mavrakos in 

his analysis also denotes that the corresponding expression for the moments can be 

derived in a similar way. All equations referring to forces and moments are exact 

under the assumption of irrotational flow. 

The total mean forces are calculated by the time average of equations (5.27), 

(5.28) and (5.29). As previously mentioned, assuming periodic first-order solutions, 

implies that the mean values in time of the rate of change of linear and angular 

momentum vanish. We have non-linearities resulting from two reasons: the non-linear 

terms introduced by the Bernoulli equation and the integrations to be carried out on 

the control surfaces ( )FSS t , ( )BS t , ( )DS t , ( )S t∞ . Equations (5.27) and (5.28) 

connected with the horizontal forces are developed similarly to equation (5.12) by 

separating ( )S t∞ into two parts. Concerning the vertical drift force, all integrals 

over ( )FSS t , ( )BS t , ( )DS t and ( )S t∞ need to be decomposed into two parts. 

As already mentioned, equation (5.11) is also valid for a two-dimensional 

case. Maruo (1960) elaborated this equation to derive a useful formula for the 

horizontal drift force exerted on a two-dimensional surface piercing body in incident 

regular beam deep-water waves. The body can be either fixed or free oscillating 

around a mean position. There is no current and the body has no constant speed. 
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Three potentials are required for the determination of the environment around 

the body. The velocity potential for the incident waves is described by the following 

form: 

                                        sin( )kza e t ky
k

ζ
ϕ ω δΙ = − − +                                          (5.30) 

 

The presence of the body disturbs the wave-field and is responsible for the potential 

of the reflected waves: 

 

                                     sin( )kzR
R

A
e t ky

k

ω
ϕ ω ε= − + +                                           (5.31) 

 

A combination of the incident waves and the waves generated at y →∞ by the body 

creates the velocity potential of the transmitted waves which is written as: 

 

                                    sin( )kzT
T

A
e t ky

k

ω
ϕ ω γ= − − +                                            (5.32) 

 

In all three cases ,  , a R TA Aζ  stand for the amplitude of these waves. 

 

 
 

Figure 5-1: Definition of control surfaces and wave systems in the analysis of 

drift forces on a two-dimensional body [Fig. from Faltinsen (1990)]. 

 

 

Moreover, equation (5.12) is used. A 2-D case is studied therefore the surface 

S∞ is limited by two vertical planes at y = ±∞ . The line integral over 1S ∞  is replaced 

by 2 2

1 1ζ ζ
+∞ −∞

− . The horizontal drift force takes the following form: 
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                                           2 2 2

2

1

4
a R TF g A Aρ ζ = + −                                          (5.33) 

Longuet-Higgins (1977) generalized equation (5.33) to finite waterdepth. In 

this case, the right hand side should be multiplied by
2

1
sinh 2

kh

kh

 + 
 

, where h is the 

waterdepth. 

 

If it is assumed that the average energy flux is zero through SB, the inward 

mass transport must be equal to the outward mass transport: 

 

                                                         2 2 2

a R TA Aζ = +                                               (5.34) 

 

This statement introduces the requirement that there is no work done (or absorbed) by 

the body during one period of oscillation; the body cannot be an active wave power 

device.  

At this moment, the elegant equation of Maruo for the second-order horizontal 

mean wave drift force can be obtained:  

 

                                                            2

2

1

2
RF gAρ=                                               (5.35) 

 

According to Maruo’s formula the wave-drift force will always act in the wave 

propagation direction. Due to condition (5.34), Maruo’s formula is firmly linked with 

the existence of energy-flux equilibrium. 

It has been stated that ΑR is the amplitude of the reflected waves. If the body is 

fixed, the   reflected waves can be computed by the diffraction potential only. In other 

words, the incoming waves are disturbed exclusively by the presence of the restrained 

body. If the body is buoyant and free to move, ΑR also encompasses the disturbance 

caused by the movements of the body. Reflection potential in this case includes both 

the diffracted waves and the motion-generated waves moving to the left. In both 

cases, the average force in a potential flow model is described by the amplitude of the 

waves that travel in the direction against the incident waves and is connected with a 

structure’s ability to generate waves. 

To this end, the effect of the wavelength’s magnitude on Maruo’s formula is 

considered. On the one hand, for long wavelengths relative to the cross-sectional 

dimensions, the body becomes “invisible” and does not disturb the wave field. Hence, 

the reflected wave amplitude and consequently the average drift force become 

negligible. On the other hand, if the wavelengths are very short in reference with the 

dimensions of the body, the incident waves are totally reflected from a surface-

piercing body with vertical hull surface in the wave zone. It is therefore obvious that 

the amplitude of the reflected waves is equal to the amplitude of the incident waves 

and this fact gives rise to an important asymptotic value: 

 

                                   R aA ζ→   and  2

2

1

2
aF gρ ζ→  as 0λ →                             (5.36) 

 

This asymptotic value is valid whether the body is restrained or free. It is also valid 

for a submerged body. 
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Maruo’s formula depicts clearly the drift force dependence on resonance. In 

the vicinity of the resonance frequencies, the amplitude of the reflected waves is 

likely to be large and this formula offers an explanation to the common peak of wave 

drift forces in this area. However, it is not necessary that the resonance occurs in the 

same degree of freedom as the horizontal drift force. In particular, due to heave 

resonance the amplitude of reflection is likely to be large and the horizontal wave drift 

force may exhibit a peak around this resonance frequency. This is also confirmed by 

the experimental results presented in Chapter 9.  
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6. FACTORS AFFECTING DRIFT FORCES IN 

MAGNITUDE AND IN SIGN 
 

6.1 Effects of diffraction and of different wave-directions  

 

From the aforementioned it is obvious that the magnitude of wavelengths is a 

matter that also affects the importance of the diffraction effects. When the waves are 

short, the wave-diffraction effects are dominant whereas when the waves are long the 

body motion effects become critical and tend to cancel the diffraction effects. Hence, 

it must be noted that both diffraction’s and motions’ effects must be accounted for in 

the calculation of the drift forces. 

The diffraction phenomenon is also affected by the direction of waves. 

Salvesen (1974) in his theory for steady force on ship like forms neglects diffraction 

waves in head waves and obtains accurate results. Furthermore, Bowers (1976) does 

not take into consideration diffraction effects in drift force’s calculations in head sea 

and acquires good agreement with experimental results. However, according to 

Faltinsen (1972), Maruo and Sasaki (1974), and Ursell (1975) diffraction of head 

waves is a complex phenomenon because it does not concern exclusively the small 

frontal area of the ship. The incident waves are diffracted all along the length of the 

ship gradually from bow to stern. 

It has been stated that the diffraction effects, which depend on the direction of 

the waves, contribute to the drift force. Hence, it is logical that the wave propagation 

direction influences also the drift forces. In the potential flow model, wave-drift force 

is considered to be always in the wave propagation direction. This is valid for head 

waves but other wave headings may affect the direction and the magnitude of the 

force. Calculations presented by Faltinsen et al. (1979) illustrate that for the smallest 

wavelength the transverse drift force has greater magnitude for beam sea waves, while 

for the largest wavelength drift forces vanish in beam waves and are larger in wave 

headings between 45° and 135° (see Fig. 6-1). In the same figure it is demonstrated 

that the transverse drift force is more amplified when the wavelength is smaller. It is 

therefore inferred that diffraction effects may be the dominant cause of drift force 

compared with the effect of the ship’s motions. 

Besides, different parts of a structure may cause the generation of various 

waves. These waves are superposed and for some wavelengths and headings they can 

result in small wave drift forces. An illustrative example is a Tension Leg Platform 

(TLP). Each column acts as an independent wave generator, therefore in total one 

column may tend to intensify or invalidate the other. 
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Figure 6-1: Transverse drift force 2F on a ship as a function of wave 

heading β for two wavelengths λ. Infinite water depth(L=ship length, β=0º in 

head seas, ζa=wave amplitude of the incident waves)  

[Fig. from Faltinsen (1990)] 

 

 

6.2 Viscous effects on mean drift forces and negative drift forces 

 

So far, we have analyzed the two main approaches (near-field and far-field 

methods) which offer calculation methods for the drift forces due to potential effects 

(potential drift forces). In the following, reference will be made to the fourth category 

mentioned in Chapter 2.3 including the calculation of the contribution of the viscous 

effects in the mean drift forces (viscous drift forces).  

In a framework of idealization, the viscous phenomena are often neglected. 

However, we must be cautious especially when referring to potential flow theory and 

develop a sense on when these phenomena are not negligible. When there is 

significant loss of energy owing to viscosity, the potential theory is invalidated. For 

example, due to these phenomena Maruo’s formula which is based on potential flow 

theory may be cancelled. In addition, viscosity is strongly present in roll movement 

and especially near the roll resonance. Thus, it is necessary to take into consideration 

viscous effects while calculating roll resonance amplitudes. For example, a common 

way to take into account viscous effects in a potential flow theory is the 

implementation of correction terms into the equations of motion. This is applied in the 

proposed theoretical model described in Chapter 8. 

According to Dev (1994) the viscous effects must be accounted for when the 

behavior of semi-submersibles or tension leg platforms (TLPs) is analysed. This is 

due to the geometry of this kind of semi-submersibles, which is characterized by 

surface piercing column structures. The viscosity effects are more intense in a low 

frequency range. In fact, diffraction and viscosity effects act as competitive 

phenomena. Concerning ships and very large floating structures, cases in which 

diffraction effects are dominant to the total forces, especially at moderate to low wave 

periods, the potential drift force is significant. In low frequency range where 
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diffraction effects are feebler for slender bodies, the impact of viscous effects 

becomes more important and the second-order force may be also due to viscous 

effects. This impact becomes even greater if the waves co-exist with currents due to 

their non-linear interactions. To sum up, the importance of the viscous effects can be 

influenced by three parameters: 

1. the type of structure 

2. the frequency range 

3. the presence of currents 

 

It is deduced that in some cases the sum of the potential and viscous 

phenomena may be essential for a more accurate estimation of the drift forces. In the 

following graph presented by Dev (1994), it is depicted that especially in lower 

frequencies the measured mean drift forces are higher than those calculated by the 

potential model. After adding the viscous effects in the calculation of the drift forces, 

the experimental and theoretical results seem to be in better agreement notably in the 

low frequency range (see Fig. 6-2).  

    

 
 

Figure 6-2: Mean drift force in regular beam waves  

[Fig. from Dev (1994)]. 

 

Several authors have investigated the viscous effects in the mean drift force. 

The majority of these scientists have developed a theory based on the drag force term 

of Morison’s equation and on the relative motion concept. However, not much 

attention has been paid to the values of the mean drag coefficients for variant flow 

fields and only horizontal relative velocity has been taken into consideration. 

Furthermore, in bibliography the mean drift force due to waves has been mainly 

attributed to the wave elevation up to the instantaneous sea level whereas the wave-

current interaction effects have been mostly analyzed merely up to the mean water 

level.  

Dev (1994) calculates the viscous contribution to drift forces by applying the 

linear Airy theory. Dev considers constant velocity in the wave crest in order to 

obviate the ambiguous validity of the linear theory up to the instantaneous water line. 

In the calculation of the viscous mean drift force due to the waves only, Dev 

calculates the mean drift force up to the splash zone (from the mean waterline up to 

the actual sea level). Concerning the viscous drift force emanating from the 

contribution of both waves and current, he studies both components of splash and 

submerged zones (from the mean waterline down to the bottom of the cylinder). 
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The viscous drag force according to Morison’s equation together with Lorentz 

hypothesis formulate the mean viscous drift force in the splash zone for a unit length 

cylindrical section in waves only: 

 

       2 2 3

0 0

0 0

4 1 2
cos

(3 ) (3 )

T

D D a D aF C D tdzdt g k C D
T

ζ

ρ ζ ω ω ρ ζ
π π

= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅∫ ∫         (6.1) 

 

Thus it is proved that the mean drift force on the splash zone, which is the major 

source of the viscous contributions in waves without currents, is a function of the 

cube of the wave height in regular waves and that for a constant wave height it 

would be a function of the square of the wave frequency. While the wave amplitude 

increases, the drift forces caused by viscous effects become gradually more important. 

It is deduced that while the potential mean drift-force is, when non-dimensionalized, 

independent of the wave height, the total viscous and potential mean drift force is a 

function of the wave height (see Fig. 6-3, Fig. 6-4). Therefore, the viscous mean drift 

forces in irregular waves should not be considered as quadratic transfer functions. 

 

 
 

Figure 6-3: DF  versus k R∗  in waves only for different wave amplitudes 

[Fig. from Dev (1994)]. 
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Figure 6-4: TF  versus k R∗  in waves only for different wave amplitudes 

[Fig. from Dev (1994)]. 

 

In order to study the combined effect of waves and currents, a forward 

velocity simulating the effect of currents is added to the Morison’s formula. In this 

case, the mean viscous drift force is evaluated at both the submerged and the splash 

zone. The magnitude of the forward velocity with respect to the wave particle’s 

velocity influences the final form of the viscous drift forces. In Dev’s results it is 

depicted that the wave-current interaction is much more pronounced at or immediately 

below the mean water level. This interaction increases with the increase of wave 

frequencies for a constant wave height. It is observed that the draft also influences the 

drift forces; an increment in draft leads to a feebler interaction (see Fig. 6-5). 

 

 
 

Figure 6-5: DF  over T in waves and currents for different wave         

                              frequencies [Fig. from Dev (1994)]. 
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It is remarkable that the viscosity phenomenon additionally to its contribution 

to the force’s magnitude may also influence the drift forces’ direction. At this point, 

the new term of positive and negative drift force is introduced. The positive force 

refers to a force in the propagation direction of the incident waves whereas the 

negative drift force is the force acting in the opposite direction. According to ideal-

fluid theory a body undergoes a positive average drift force. This is obvious from 

Maruo’s formula (see equation (5.35)). Concerning the near-field approach, owing to 

the various terms contributing to the second-order wave forces, it is more difficult to 

deduce that the horizontal mean drift force is always positive. However, in Chapter 

3.8 it is accentuated that the contribution due to the relative wave height is the 

dominant term in the calculation of the horizontal drift forces. This term coincides 

always with the wave propagation direction. In addition according to the theory 

outlined in Chapter 2.1, a fluid particle in a regime of free waves is always in the 

direction of wave propagation. 

In order to investigate the mechanism which formulates the direction of the 

viscous drift forces, reference will be made to the longitudinal viscous drift force of a 

pontoon type construction. In this case, a longitudinal viscous drift force is formed by 

the combined contribution of the normal drag force and the relative velocity, between 

a strip of the platform and the incident wave field, in the direction of the vertical 

normal vector. The longitudinal force arising from a vertical force’s contribution is 

due to the rotation of the pontoon in reference to the selected earth fixed co-ordinate 

system. Noteworthy is the fact that depending on the phase angles between the 

platform motions and the wave motions, viscous effects may induce a force causing 

the platform to move against the waves. The time average of this longitudinal viscous 

drift force is one of the contributions to mean wave forces arising from drag forces 

[Faltinsen (1990)]. 

In bibliography, there have been reported negative force examples attributed to 

viscous phenomena. Particularly, Huse (1977) makes reference to a negative drift 

force on a platform observed in model tests at the Norwegian Ship Model Tank (see 

Fig 6-6). There are reported results of two platforms: a platform having a vertical 

cylinder as its underwater body and a pontoon-type (semi-submersible) platform. The 

drift force is presented as a function of the variable
r

ω
ω

, whereω is the radian 

frequency of the regular incident waves and rω is the pitch resonance frequency. The 

pontoon-type construction experiences negative drift forces in a narrower area of 

frequencies compared with the other construction. As already stated, the relation 

between these two parameters seems to define the sign of the drift force. According to 

Huse (1977), there is a physical explanation for the pontoon platform: “Whenever it 

has a nonzero pitch angle, the crossflow drag on the pontoons produces a horizontal 

component of force. Whether this causes a positive or negative drift force depends on 

the phase of the pitch motion with respect to the incident waves.” His assessment, 

which is also confirmed by his experimental results, proves that when the 

frequencyω is higher than the pitch resonance frequency rω  a negative drift force is 

observed. Huse does not provide us with an adequate theoretical explanation of the 

vertical cylinder’s behavior. 
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Figure 6-6: Mean drift force measured in regular waves (positive CFT      

                     referring to negative drift force) [Fig. from Ogilvie (1983)]. 
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7. EXPERIMENTAL PART 
 

The experimental part of the research project took place in the wave flume of 

Ecole Centrale Marseille (ECM). The ECM’s wave-tank is a glass-windowed 

structure of 18 m length, 65 cm width and 1.5 m height, containing fresh water. 

 

 
 

Figure 7-1: ECM’s canal. 

 

The model applied to our experiments was a rectangular barge with square 

bilges with 64.5 cm length, 30 cm width, and a draft of 6 cm. Experiments were 

conducted by exposing the model in regular beam waves. The length of the barge 

coincided with the width of the canal. 

 

 
 

Figure 7-2: The model. 
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 In this work, the two-dimensional problem is studied, by considering three out 

of the six degrees of freedom of a floating structure; a vertical movement (heave), a 

horizontal movement (sway) and a rotational movement (roll). For this type of 

floating models, there is the possibility that the barge's natural period coincides with 

the wave period. In this case of resonance, the amplitude exhibits a maximum value 

which depends on the damping capacity of the system. Reader should be aware that 

there are two sources of damping: the radiation damping and the damping caused by 

viscous phenomena. The former is suggested in the case of heave and sway, while the 

latter is dominant in the roll response, where strong viscous effects are observed, as 

for example the separation of the flow over the bilges of the barge. 

Experiments consisted of four steps. First of all, the floater was moored with a 

variable spring system and there was no obstacle downstream. Various experiments 

were conducted in order to verify that there is good agreement between the 

experiments and the model, and additionally to study the impact of the variant number 

of springs. Furthermore, the floater was set free and was placed just ahead of an 

abrupt depth transition. The setup in the third step was similar to the previous’ step 

except that the depth transition was modified to form a vertical wall. The distance 

between the barge and the wall was variable (Fig. 7-3). During this step, video 

techniques with a vertical laser light sheet were utilized (Fig. 7-4). We added a laser 

aiming to study more thoroughly the free surface elevation and the interaction 

between the rectangular model and the wall including the phenomenon of piston mode 

resonance. Last but not least, in the final series of experiments the moored rectangular 

barge was installed in front of the wall. The mooring line allowed the placement of 

the barge near to the wall. The mooring was returned upwards by a pulley system 

(Fig. 7-5). The wave steepness ε
λ
Η

= was fixed at various values for each series of 

experiments.   
 

 
 

Figure 7-3: Freely drifting barge in front of a wall. 
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Figure 7-4: Vertical laser light sheet. 

 

 

 

 
 

Figure 7-5: Rectangular barge moored in front of a wall. 

 

 

 

Presentation of the equipment 

 

1. The wave-maker is of flap type possessing a rotation axis lowered by 40 cm 

in reference to the bottom of the canal. It allows the generation of focused waves, 

regular, irregular and transient seas in variable water depth from 25 cm to 1 m. 
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Figure 7-6: Flat type wave-maker at ECM’s canal. 

 

2. The time evolution of the free surface elevation is recorded by wave gauges. 

In the beginning of the experiments, the instrumentation consisted of 8 wave gauges 

along the canal (5 gauges ahead of the barge and 3 gauges after it). When the wall was 

inserted in the experiments’ instrumentation, 6 wave gauges (5 gauges ahead of the 

barge and 1 gauge after it) were used (Fig. 7-3) when the barge was free, while 6 

gauges upstream the barge were used when it was moored (Fig. 7-5). The gauges 

which are used in the ECM’s canal are resistive gauges of the Churchill Control 

model. Each gauge is constituted of 2 rigid and parallel cables made of steel, of 50 cm 

length, 1.5 mm diameter and 12.5 mm separation distance. A gauge when plunged 

into a liquid delivers a current which is proportional to its depth of immersion. In 

order to avoid the polarisation of the sensor on the surface of the cable, the gauge is 

inserted into a high frequency oscillating circuit.  

 

 
 

Figure 7-7: Wave gauges at ECM’s canal. 
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An alternating current (AC)-continuous voltage converter provides us directly with 

the relation between the immersion depth of the gauge and the voltage at the exit of 

the converter. During the experiments, the response of all gauges was effectively 

linear, dominated by a constant sensitivity [cm/Volt]. 

 

 
 

Figure 7-8: Linear response of the wave-gauges. 

 

The gauges ahead of the barge allow us to separate the incident wave 

component from the reflected component, by following the method of quadratic error 

minimization. This method minimizes the quadratic error between measurements and 

theory. Concerning the gauges after the barge, they allow the calculation of the 

transmitted wave component. As a result, we can derive the coefficients of 

reflection ( )/R IR A A=  and transmission ( )/T IT A A=  of the experiments. 

Additionally, the precise value of the incident wave amplitude is critical for the 

forthcoming experimental calculation of the transfer functions RAOs (Response 

Amplitude Operators) for all degrees of freedom of the rectangular barge. In the final 

series of experiments, the placement of the barge near the wall does not allow the 

installation of a gauge after the barge. Thus, in this case the coefficient of 

transmission cannot be obtained. 

 

3. In order to measure the movement of the barge, a system consisted of two 

electroluminescent diodes located on the barge and a numerical video-camera was 

used. 

 
 

Figure 7-9: System electroluminescent diodes-numerical video camera. 
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The camera was a Mikrotron Eosens model with a resolution of 1280X1024 

pixels
2 

and a frame rate of 50 Hz. During the trials, the lights in the laboratory were 

turned off in order to produce total black images except the light emitted by the 

diodes. By this means, a technique of automatic detection of the diodes can be used. 

Furthermore, the procedure is based on the sequential matlab programs: 

  

traite_barge: the images derived from the camera’s software, are imported in the 

program in the form of a table of 720 columns, 576 lines and 3 colours (red, green, 

blue). The intensity of each colour is defined by a value between 0 and 255. 

Therefore, each element of the matrix corresponds to three values describing the 

intensity of the three colours. Due to the diodes’ light properties only the red value is 

considered.  The program iterates through video frames to create a new table sequence 

for the different values of luminosity. The function contour() offers the possibility 

of drawing isovalue lines. In our case, we are interested to closed curves which are 

surrounding each of the two diodes. By selecting luminosity value, the function 

contour() finally creates the corresponding matrix. This matrix represents the circle 

which is characterized by the specific luminosity. Hence, it includes all position co-

ordinates ( , )x y  of the circle. To continue with, the mean position 

[ ] ( ) ( )posx, posy mean x ,mean y=     is calculated for every step in time, which 

actually refers to the centre of the circle for every step in time. To end with, through 

this procedure we obtain the position of both light-emitting diodes (LEDs) as a 

function of time, given in the tables posx and posy.  

 

 

traite_data: this program is composed of two parts: the part gauge and the part LED. 

To begin with, the first part of the program (gauge) involves the processing of 

the signals of the gauges, in order to provide us with the amplitude of the incident 

wave IA  and the reflection/transmission coefficients as a function of time. These 

coefficients are presented as a percentage of the amplitude of the incident wave. 

The second part LED calculates the three motions of the barge (: heave, sway 

and roll) from the position of the diodes LED1 and LED2. In Figure 7-10 the model’s 

initial position and a random position of the barge during its response to the waves are 

presented.  

 

 
 

 

Figure 7-10: The barge in movement [Fig. from Kimmoun and  

Molin (2007)] 
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The movements of the floater are given by 1OO
�����

, which is the vector of the 

displacement of the barge’s centre of rotation. This vector can be decomposed as 

follows:  

 

                                  1 1 1 0 1 1 1( ) ( ) ( ) ( )oOO OL t L t L t L t O= + +
����� �������� ����������� ��������

                                      (7.1) 

 

where 0t corresponds to 0θ = and t  to the random angle θ . The angleθ , which 

actually is the angle of roll, is geometrically given by the angle between the vector 

( ) ( )1 2L t L t
������������

 and the horizontal.  

In Equation (7.1), we can derive the vectors 1( )oOL t
��������

and 1 1( )L t O
��������

 from the 

geometry of the problem. For this purpose, we need the horizontal distance between 

the two LEDs ( )e , the vertical distance between the LEDs and the centre of 

careen ( )c , as well as the random angleθ . In our problem, 0.2e m=  and 0.23c m= . 

Moreover, ( ) ( )1 0 1L Lt t
�������������

 is directly given by[ ]1 1,posx posy . Thus, firstly, we produce 

the value of roll and right after the values of sway and heave can be derived. 

 

                                   
( )
( )

2 11

2 1

tan
posy posy

posx posx
θ −  −
=   − 

                                      (7.2) 

                           ( ) ( )1sway=posx + cos sin
2

e
cθ θ⋅ + ⋅                                (7.3) 

                           ( ) ( )1posy sin c cos
2

e
heave θ θ= + ⋅ − ⋅                                (7.4) 

  

It is reported that the solutions of each iteration are influenced by the propagation of 

the disturbance owing to the wave maker. In order to avoid this disturbance it is 

preferable to filter the solutions. Thus, a low-pass filter is adopted.  

To continue with, the drift movement has to be computed. The drift movement 

is a low frequency movement which is superposed to the movement of sway in the 

wave period [Kimmoun and Molin (2007)]. Therefore in order to measure the drift 

movement, the oscillation caused by the movement of sway has to be ignored. In 

order to obviate the contribution of the roll angle which is involved in the 

computation of sway, we select the horizontal movement of the second 

LED ( )2posx to represent the drift movement instead of the sway movement itself. For 

the experiments where the barge was moored, a low pass Butterworth filter is adopted 

in order to eliminate the oscillation of the data ( )2posx . The cut-off frequency of the 

filter is computed by the matlab function buttord(). In the application of 

buttord(), the natural frequency of the mooring system (which is a function of the 

number of springs) determines the passband/stopband corner frequencies of the 

butterworth filter. For the rest of the trials where the barge was set free we consider 

solely ( )2posx  as the first estimation of the drift movement. 

Afterwards, for all the movements we make use of the Short Time Fourier 

Transform (STFT) with a sliding window of 2T with a lag of T/10 between two 

successive windows. While Fourier Transform determines the main components of a 

sinusoidal movement, Short Time Fourier Transform (STFT) provides us with a 

superior time-frequency analysis. STFT is a mathematical procedure which permits 
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under certain circumstances the more rapid execution of the Fourier transformation. 

Thus, the latter was utilized in our program. As a result, in the graphs of sway, heave, 

roll and drift the amplitudes of the sinusoidal movement are derived as a function of 

the corresponding time. For each period T, instead of calculating a total average of the 

movement, thanks to STFT we obtain the more representative parameter of the 

average of the amplitudes that corresponds to the temporal interval between debt and 

fint . This procedure is repeated for each wave period, resulting the mean amplitude’s 

values as a function of period T. 

In order to better comprehend the physical phenomenon and the selection of a 

specific debt and fint , we are going to analyze the behavior of the coefficient of 

reflection. Four discrete areas are observed in the diagram of the coefficient of 

reflection as a function of time. To begin with, we observe a disturbed area 

characterized by several pronounced maxima caused by the omnipresence of the 

wave-maker. After the elimination of the disturbances, the coefficient of reflection 

tends to decrease until it reaches the last gauge. The second area starts since the waves 

pass from the last gauge, reach the model and get reflected on it, and ends when they 

pass for a second time from all the gauges. In this area (see Fig. 7-11), which starts at 

about 20 sec, the coefficient of reflection starts to increase steadily. Right after, we 

enter in an area (~25 sec) with no gauges where the reflection is constant; this is the 

area between the first gauge and the wave-maker. The waves cover this distance twice 

in an opposite direction. In the end of this area (~45-55 sec) the coefficient of 

reflection tends to decrease until it reaches the last gauge. Finally, in the fourth area 

the waves reach for second time the model and the coefficient of reflection starts to 

increase again. Numerous reflections take place in this area. In the following graph, a 

coefficient of reflection, taken from the first series of experiments, is plotted.  

 

 
 

Figure 7-11: Coefficient of reflection. 

 

Concerning the coefficient of reflection, as characteristic area is considered the 

constant reflection area. This area is plotted in red color in Figure 7-11. For the 

responses of sway, heave and roll we consider the representative temporal distance 

between debt and fint  (which is equal to 2T) to be located in the end of the second area, 

in which the coefficient of reflection starts to increase (Fig. 7-12). Regarding the drift 
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movement, we refer to a characteristic temporal distance, wider than 2T, which is 

situated in the third area of constant reflection (Fig. 7-13). For the drift, the temporal 

interval is wider because it is difficult to reach a stable state for this movement. In the 

following Figures 7-12, 7-13 the characteristic area is also plotted in red color. 

 
Figure 7-12: Diagrams of roll, heave and sway.  

 

 

 
 

Figure 7-13: Diagram of drift. 

 

In Figure 7-13, the blue dotted line is the drift movement calculated by the 

STFT. It is noticed that there still exists some oscillation. In order to remove it, the 

matlab function smooth()is applied. In particular, data is smoothed with the method 

Robust Loess (quadratic fit). The number of points used to compute the smoothed 

curve is 50% of the total number of the data points. The outcome of the application of 

the function smooth() is marked with the continuous blue line in Figure 7-13.  



 

 
Sea-keeping and wave drift forces in varying bathymetry                                      

Oikonomidou C. Haris 
68 

 

As we have already stated, this procedure can be repeated for each wave 

period. Therefore, after the completion of both parts (gauge, LED), diagrams of each 

experimental series as a function of the wave period T are obtained. In total, we can 

plot the RAOs of sway, heave and roll, the normalized drift force, the drift force, the 

coefficients of reflection and transmission and the steepness as a function of the wave 

period. These diagrams can be directly compared with the theoretical model. 

Concerning the drift force, it can be approximated only in the case where the 

model is moored. If this is the case, the drift force is simulated with the force given by 

the Hooke’s Law. The force’s magnitude is drift driftF k x= ⋅ , where k is the spring rate 

and driftx  is the mean drift movement between debt and fint that we have already 

estimated. If the barge is set free the drift force cannot be measured because the 

reference position continuously varies. 

Reference will be made to the extraction of the RAOs which depict the 

movement of the barge. RAOs are effectively transfer functions used to determine the 

effect that a sea state will have upon the motion of a ship through the water. In linear 

theory, the barge’s response to a monochromatic wave corresponds to a movement of 

the same period as the wave with amplitude proportional to the wave’s amplitude. If 

the free surface elevation is given by: 

 

                                               ( ) ( )i t

It A e ωη −= ℜ ⋅                                         (7.6) 

 

Then the movement of the structure in the corresponding degree of freedom k 

(k=2, 3, 4) is the following: 

 

                                   ( ) ( ) ( )( )i t i t

k k I kX t x e A f eω ωω− −= ℜ ⋅ = ℜ ⋅ ⋅               (7.7) 

 

 where ( )kf ω is the Response Amplitude Operator of the movement kX . In linear 

theory, the RAO is obtained by the ratio of the response’s amplitude to the amplitude 

of the waves. More specifically, the RAOs of sway, heave and roll are calculated as 

follows: 

                                                           k
k

I

x
x

A
=ɶ    k = 2, 3                                              (7.8) 

                                                        
0

k
k

I

x
x

A k
=

⋅
ɶ   k = 4                                             (7.9) 

 

where kx in our case is the mean value of the amplitudes corresponding to the degree 

of freedom k and calculated for the time interval between debt and fint , IA  is the 

incident wave amplitude obtained by the part gauge of the program and 0k  stands for 

the wave number which satisfies the equation of dispersion. 

The drift force is normalized as in the following form: 

  

                                             
2 2

drift drift

drift

I I

F k x
F

g A L g A Lρ ρ

⋅
= =

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
ɶ                             (7.10) 

 

where L corresponds to the length of the barge (L = 0.645 m) 
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4. During the video-techniques, we used an Ion-Helium source with an optical 

fibre to generate the laser sheet, associated with fluorescein in water. The matlab 

program utilised is display_SL which plots two graphs for each experiment; the first 

depicting the wave elevation in the gap between the barge and the wall as a function 

of time in a 3-D graph and the second picturing the wave elevation as a function of the 

distance between the barge and the wall in a 2-D graph. 

 

5. The existence of an absorption beach is very important to ensure the 

reestablishment of a calm sea state after every trial (see Fig. 7-14). Nevertheless, 

during the first experiments, a part of the ramp had slipped out of the water. There 

was more reflection and less absorption. This fact may explain some discrepancies.  

 

 

 
 

Figure 7-14: Absorption beach. 
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8. LINEAR NUMERICAL MODEL – STEP METHOD 
 

The ultimate scope of an experimental series is the optimization of a numerical 

model which simulates as precisely as possible the physical phenomenon in an extent 

that experiments are no longer indispensable. Noteworthy is the fact that this 

optimization process is an iterative procedure that uses as a feedback mechanism the 

comparison between reality and theory. 

There exist diverse numerical methods to depict the environment and the 

linear wave response of floating bodies within the scope of potential flow theory. A 

very practical and accessible family of numerical models in a varying bathymetry 

problem is the idealization of the sea-floor as a succession of steps. This is called the 

step method and it is not a new method. It has been frequently used in coastal 

engineering (for example we refer to Kirby and Dalrymple (1983)) but in absence of a 

floating structure. In our case we additionally introduce a floating body in the 

environment. 

This macroelement method is based on the discretization of the flow field 

around the structure using rectangular elements (sub-domains). In these successive 

rectangular sub-domains the velocity potential can be analytically expressed as two 

propagative modes plus two series of evanescent modes emanating from the 

boundaries. The method of separation of variables is used in order to express this 

velocity potential in all sub-domains. The unknown coefficients are determined by 

matching the potentials and the horizontal velocities at the vertical boundaries of the 

sub-domains. The arising complex linear systems are numerically solved through the 

corresponding numerical code. Moreover, the solution of the equation of movement 

provides us with the amplitude of motions in all three degrees of freedom. Therefore, 

the potential in the entire area of the fluid domain can be obtained. According to Liu 

(2010b), a drawback of the step method is that it is restricted to a two-dimensional 

case whereas an advantage is that it allows us to treat also the case of a varying 

bathymetry with no limitation on the bottom slope. Therefore the bottom slope can be 

locally vertical.  

The numerical code is practical when the barge is moored. It has not been 

validated in the case where the model is free to respond to the movement of the 

waves. This is a complex problem because it implies the solution of the model’s 

equations of movement in time. Thus, graphs which present a direct comparison 

between the experiments and the model are going to be plotted merely for the 1
st
 and 

4
th

 series of experiments, where the barge is moored. The numerical code proceeds to 

the calculation of the drift forces. In total two characteristic graphs can be derived. 

The first depicts the normalized response amplitudes, including the normalized drift 

force and the normalized response amplitudes of the free surface elevation at a point 

situated in the gap between the body and the vertical transition as a function of the 

wave period. The second plots the normalized response amplitudes as a function of 

the distance from the vertical transition (for the experiments where a vertical obstacle 

exists). Theoretically, a collection of infinite graphs of the first type, each one been 

plotted for a different distance corresponding to the exact position of the barge as a 

function of time, provides us with the complete solution of the free barge problem. 

The other graph is also very important because it shows clearly the dependence of the 

drift force on the distance between the barge and the vertical transition. In addition to 

this, through the RAO of the free-surface elevation as a function of the variable 

distance, the impact of the sloshing modes on the free-surface elevation can be also 

depicted.  
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To this end, the basic steps of the applied method adjusted to our case are 

going to be described. The environment is described as a water layer restrained by two 

horizontal boundaries: the upper limit is the free-surface and the lower limit is a rigid 

bottom. The problem of the 1
st
 series of experiments is considered to be a flat bottom 

problem. In order to geometrize the problems of the 2
nd

, 3
rd

 and 4
th

 series of 

experiments, an abrupt vertical transition which has the form of a step and a wall were 

added to the geometry of the numerical model. Each sub-domain is characterized by a 

constant depth. The varying bathymetry consists in the different water depth between 

the upwave and the downave regions. Concerning the case with the vertical wall the 

downwave water depth is equal to zero. This problem can be also considered as a flat 

bottom problem. The applied model is the rectangular body which has been already 

described in the experimental part of our study except that in the numerical code the 

barge is supposed to be characterized by a unit length. 

Similarly to the experiments, the two-dimensional problem is studied and 

therefore the body possesses three degrees of freedom. Cartesian coordinates (x, z) are 

used. Due to the fact that horizontal axis is denoted by x instead of y that was used in 

the experimental part, the degrees of freedom are the following: surge, heave, and 

pitch. Needless to mention, both problems are equivalent. The axis z is directed 

vertically upwards from the undisturbed free surface and the axis x, whose direction 

coincides with the length of the canal, is oriented towards the right-hand side. The 

point of origin of the system coincides with the undisturbed free surface in the 

longitudinal position where the vertical transition begins. The surface of the rigid 

bottom is described by ( )z h x= −  where: 

 

       
1

2

, 0
( )

, 0

h x
h x

h x

<
= 

>
             (8.1) 

 

The fluid domain D is decomposed in four sub-domains mD , 1..4m = . 1D  is the sub-

domain situated in the area between x<x1 and 1h h= , 2D  is the sub-domain 

characterized by 1 2 1(x x x ) ( )h h< < =∪ which includes the floating body and 3D , 4D  

are the sub-domains described respectively by 2 3 1(x x 0) ( )x h h< < = =∪  and 

2(x>0) ( )h h=∪ . In the flat bottom problems, the number of sub-domains is reduced 

to three with 1h h= . (see Fig. 8-1) 
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Figure 8-1: Geometrical configuration of the numerical 2-D problem 

concerning the case with the abrupt vertical transition. 

 

In the framework of the potential theory, the fluid is assumed to be 

incompressible and inviscid and the flow is considered to be irrotational. The wave 

spectrum in the region D is represented by monochromatic harmonic incident waves 

along x axis, propagating from the left-hand-side towards the right-hand side. In order 

to refer to perturbation analysis, the steepness of the wave-field is assumed to be 

sufficiently small. Similarly, the motions of the fluid and the body are also supposed 

to be sufficiently small. Hence, the linearized boundary value problems are valid. 

Concerning the fluid, this approach of linearization suggests that we are interested to 

the mean position of the free surface and therefore we study an invariable fluid 

domain. The potential Φ  is a function of three variables: two spatial variables and a 

time variable. The harmonic problem is studied in which the entire hydro-mechanical 

system is harmonically oscillating with angular frequency ω. Under these 

circumstances, the velocity potential takes the following form:  

 

     { }( , ; ) ( , ) i tx z t x z e ωϕ −Φ =ℜ             (8.2) 

 

where the function ( , )x zϕ  plays the role of the complex amplitude of the time 

harmonic velocity potential ( , ; )x z tΦ . 

 The free-surface elevation is given in terms of the wave potential on the free 

surface as will be stated next. This is the dynamic condition on the free surface: 

 

       
( ), 01

( , )
x z

x t
g t

ϑ
η

ϑ
Φ =

= −              (8.3) 

 

The incoming incident first-order waves in the upwave area are the regular waves 

Airy governed by: 

 

           0(1) 0 1
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+Α

= −                        (8.4) 
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where A is the incident wave amplitude, g is the acceleration due to gravity, 0k  is the 

wave-number and 1i = − . The wave number 0k  satisfies the equation of dispersion 

which connects the wavelength 
0

2

k

π
λ =  and the wave period 

2
T

π
ω

= : 

 

      
2

21
1 0 0 1

2
tan tanh

2

hgT
h gk k h

π
λ ω

π λ
= ⇒ =            (8.5) 

 

Another advantage of the existing linearity is the validity of the superposition 

principle. Thus, it is possible the decomposition of the main problem to a series of 

elementary problems: 

• a diffraction problem: this problem is described as the determination of the 

incident flow’s perturbation due to the presence of the body restrained from 

movement. 

• three problems of radiation: while the body is placed in calm water, the flow 

submitted to a forced oscillation in all three degrees of freedom has to be 

defined. 

 

To formulate the diffraction and radiation problems, it is assumed that the 

transient phenomena have been damped. Therefore, concerning the diffraction 

problem some waiting time is required after the penetration of the body into the water. 

In the radiation problem, it is critical to wait some time after the beginning of the 

body’s movement. At this point, both potentials can be considered as time harmonic 

functions of the same frequency as the incoming wave: 

 

   
{ }
{ }

( ) ( )

( ) ( )

m m

m m

i t

d d

i t

R R

e

e

ω

ω

ϕ

ϕ

−

−

Φ =ℜ

Φ =ℜ
              (8.6)  

 

The floating body is also assumed to perform a forced oscillation with frequency ω: 

 

{ }i t

kx e ωξ −= ℜ
�

             (8.7) 

 

  Moreover, the form of the boundary condition on the body contour in 

association with the assumption that the fluid is excited to movement only by the 

oscillation of the body, lead to the following linear decomposition of the total 

radiation potential: 

                                                  
1,3,5

( , ) ( , )R k Rk

k

x z i x x zϕ ω ϕ
=

= −∑                                 (8.8) 

 

Hereafter the following modifications in the notation are valid: 

 

                                           
0 ( , ) ( , )

( , ) ( , )

I

d D

Ag
x z i x z

Ag
x z i x z

ϕ ϕ
ω

ϕ ϕ
ω

= −

= −
                                   (8.9) 
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Το this end, if we relate the validity of the superposition principle with 

expressions (8.8), (8.9), the potential ( , )x zϕ  can be expressed by the following form: 

 

                        
1,3,5

( , ) ( ( , ) ( , )) ( , )D k Rk

k

Ag
x z i x z x z i x x zϕ ϕ ϕ ω ϕ

ω Ι
=

= − + + −∑              (8.10) 

 

where ( , )D x zϕ  denotes the complex amplitude of the diffraction potential due to the 

presence of the (fixed) body and the variable bathymetry and ( , ), 1,3,5Rk x z kϕ =  

denote the complex amplitudes of the radiation wave potentials arising from the 

forced body oscillation linked with the three degrees of freedom, i.e. sway(k=1), 

heave(k=3), roll(k=5). , 1,3,5kx k =  stand for the complex amplitudes of the 

corresponding motions of the body. 

 

In the diffraction problem the potential Dϕ  is governed by the five boundary 

conditions mentioned also in the theoretical part of our study: the Laplace equation, 

the two conditions of impermeability on the solid boundaries, the free-surface 

boundary condition and a radiation condition.  

  

1. 0Dϕ∆ =                         ( , )x z D∈                                                                        (8.11) 

2. D I

n n

ϕ ϕ∂ ∂
= −

∂ ∂
                on the body contour 0C                                                  (8.12) 

3. 0D

z

ϕ∂
=

∂
                        ( )z h x= −                                                                        (8.13) 

4. 2 0D
Dg

z

ϕ
ω ϕ

∂
− =

∂
         z=0                                                                                 (8.14) 

5. propagation of waves to infinity                                                                         (8.15) 

 

In the diffraction problem the radiation condition must ensure that in the 

upwave region 1D , the wave field consists in a reflected wave and in the downwave 

region, it consists in a transmitted wave. 

 

Henceforward, the potential in sub-domains 1, 3 and 4 where there is no body 

presence will be termed external potential. In sub-domain 2 which includes the 

floating body the characteristic potential will be named as internal potential. 

Equations (8.10) to (8.14) as well as the radiation condition (8.15) are related in the 

method of separation of variables in order to define the form of the diffraction 

potential in all sub-domains.  

More specifically, concerning the external diffraction problem the Laplace 

equation is firstly used in order to provide us with a general form of the diffraction 

potential. Moreover, the preceding equation is combined with the equation on the sea-

floor. At this point, the radiation condition is applied. To continue with, the free-

surface boundary condition determines the foregoing solutions. The latter condition 

provides us with two equations: the first one is the dispersion equation which yields 

one positive root whereas the second one is a group of infinite solutions. The 

evanescent modes are determined by this second group of infinite solutions. Therefore 

we can report that the presence of the evanescent modes is the result of the Laplace 

equation and is designated by the free-surface boundary condition. 
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Referring to the internal diffraction problem, at a first step the Laplace 

equation together with the equation on the sea-floor are applied. In this problem there 

is no need to impose a radiation condition. Finally, the body boundary condition 

yields an infinity of solutions which is used to determine the evanescent modes. Το 

this end, all the velocity potentials have been expressed in the form of eigen-function 

expansions that arise from the Fourier series.  

   

In the same way the radiation problem is designated by the following 

boundary conditions: 

 

1. 0Rkϕ∆ =                      ( , )x z D∈                                                                          (8.16)  

2. Rk
k kn f

n

ϕ∂
= =

∂
     on the body contour 0C                                                           (8.17) 

3. 0Rk

z

ϕ∂
=

∂
                      ( )z h x= −                                                                         (8.18) 

4. 2 0Rk
Rkg

z

ϕ
ω ϕ

∂
− =

∂
       z=0                                                                                 (8.19) 

5. propagation of waves to infinity                                                                         (8.20) 

  

In total, the parameters kf ( 1,3,5)k =  represent the components of the generalized 

normal vector on the body boundary. In our problem the components of the 

generalized normal vector kn  are the following: 

 

                                             

( ) ( )

1

3

5

x

z

G x G z

n n

n n

n z z n x x n

=

=

= − − −

                                (8.21) 

 

These vectors introduce the forcing of the system for each degree of freedom k . 

The verification of this equation gives rise to a particular potential solution for each 

radiation problem.  

The difference between the diffraction and the radiation problem lies in the 

transformation of the boundary condition on the hull of the body. In addition to this, 

the formulation of the total problem does not prescribe an incident wave component in 

the radiation problem. In order to define the external potentials the condition of 

impermeability on the body surface is not used. Therefore, the downstream external 

potential remains invariable in both diffraction and radiation problems whereas the 

upwave external potential is modified due to the absence of the incident wave 

component. The condition on the body contour formulates the internal potential of the 

radiation problem. As already indicated, this potential obeys the Laplace’s equation as 

well as the boundary conditions on the sea floor and on the body boundary. It is 

required that the particular solution of each radiation problem also verifies the above 

conditions. Thereby, as long as the problem is linear, the total internal potential is the 

sum of the internal potential obtained by the diffraction problem plus the particular 

solution corresponding to each degree of freedom k . Το this end, the total solution 

fulfills the requirements of the radiation problem. 

In both diffraction and radiation problems the application of the boundary 

conditions gives rise to the general analytical form of the potential as two propagative 

modes plus two series of evanescent modes. The propagative modes are described by 

a coefficient of transmitted wave amplitude and a coefficient of reflected wave 
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amplitude. There are also two coefficients that represent the amplitude functions for 

the evanescent modes ( 1n = →∞ ) at the boundaries. The effect of the evanescent 

modes is significant near the body and it decays exponentially with the distance from 

the boundary. Furthermore, an order of truncation for the series of the evanescent 

modes has to be selected. 

Moreover, in order to get the complete expression of every potential in all 

problems, the calculation of the unknown Fourier coefficients is necessary. There are 

two conditions, applied at each boundary between adjacent regions, which will 

contribute in the calculation of the unknown coefficients. They ensure the continuity 

of the velocity potential: 

 

• 1m mϕ ϕ +=       ( )mx x=                                                                                 (8.22) 

• 1m m

x x

ϕ ϕ +∂ ∂
=

∂ ∂
( )mx x=                                                                                 (8.23) 

 

We also take advantage of the orthogonality of the eigen-functions in order to 

furthermore simplify our problem. Thus, after solving complex linear systems, we end 

up getting the potentials Dmϕ and Rkmϕ  in the successive domains in the form of Fourier 

series.  

 

The next step is the calculation of the first-order hydrodynamic exciting loads 

kF ( 1,3,5)k =  on the floating body by surface integration: 

  

                                                      

0

( )( ) HYD

k k

C

F t p n dS= ∫∫                                         (8.24) 

 

where p
(HYD)

 is the hydrodynamic pressure exerted on the wetted surface of the 

floating body 0C  and kn , 1,3,5k = , are the (non-zero) components of the generalized 

normal vector on the mean wetted surface of the floating body 0C , pointing inside the 

body. 

 

Given the linear approach, the hydrodynamic pressure as expressed by Bernoulli is 

simplified as: 

         ( )HYDp
t

ρ
∂Φ

= −
∂

                                  (8.25) 

 

In addition, the force arising from the harmonic problem can be expressed as follows: 

 

               { }( , ; ) ( , ) i t

k kF x z t f x z e ω−=ℜ           (8.26) 

 

The combination of (8.24), (8.25) and (8.26) gives: 

 

                0

0

'

'

k k

C

k k

C

Ag
f i i n dS

f Ag n dS

ωρϕ
ω

ρϕ

= − ⇒

=

∫∫

∫∫
          (8.27) 
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In a 2-D problem (8.27) takes the following form: 

 

     

0

'k k

C

f gA n dlρ ϕ= ∫             (8.28) 

 

The velocity potential 'ϕ  in equations (8.27) and (8.28) is the sum of the 

incident wave potential and the diffraction potential ( ' I Dϕ ϕ ϕ= +  ). The Froude-

Kryloff forces together with the diffraction forces, as determined in Chapter 2.5, 

constitute the hydrodynamic exciting loads (exciting forces and moments). 

 

Furthermore, reference will be made to the radiation forces and moments. 

These forces give rise to the hydrodynamic coefficients of added-mass and damping. 

The loads RkF arise from the integration of the pressure field emanating from the 

body’s forced oscillation with amplitude kx . We analyze these forces in order to 

define the hydrodynamic coefficients and in order to give insight into the mechanism 

the radiation forces act. 

 

Similarly to equation (8.26) we write: 

 

          { }( , ; ) ( , ) i t

Rk RKF x z t f x z e ω−=ℜ            (8.29) 

 

Therefore: 

           
( )

0

0

2

Rk R k

C

k Rk k

C

f i n dS

i x n dS

ωρϕ

ω ρ ϕ

= =

= −

∫∫

∫∫
                  (8.30) 

 

In a 2-D problem: 

            ( )
0

2

Rk k Rk k

C

f i x n dlω ρ ϕ= − ∫            (8.31) 

The radiation loads can be furthermore analyzed by introducing the 

hydrodynamic coefficients. Henceforward the notation is modified as: 

 

       

0

kl Rkl k

C

n dlρ ϕΠ = ∫            (8.32) 

To this end,  

       ( )2

Rkl l klf i xω= − Π            (8.33) 

 

This is the hydrodynamic radiation force of the fluid in direction k (in our case 

k=1, 3, 5), owing to the movement of the body in direction l (l=1, 3, 5). 

  

             ( ) ( ) ( )kl kl kl kl

i
a bω ω ω

ω
Π = Π = +                           (8.34) 

 

where kla is the symmetric matrix of added-masses and klb is the associated matrix of 

damping coefficients. By combining equations (8.33) and (8.34) we get: 
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                                       2 ( ) ( ) ( )Rkl l kl l klf x a i x bω ω ω ω= +                            (8.35) 

 

From expressions (8.31) and (8.35) the following expression is derived: 

 

                       

( )
0

0

2 2

2 2

( ) ( ) ( )

( ) ( ) ( )

l Rkl k l kl l kl

C

Rkl k kl kl

C

i x n dl x a i x b

n dl a i b

ω ρ ϕ ω ω ω ω

ρω ϕ ω ω ω ω

− = + ⇒

= +

∫

∫
           (8.36) 

 

Reader should be aware that the matrices kla  and klb  are symmetric which means that: 

         

    kl lka a=  and kl lkb b=                                      (8.37) 

 

Based on expressions (8.8), (8.31) and (8.36) we can write: 

 

          
1,3,5

( ( ) ( ) )Rk kl l kl l

l

f a x b xω ω
=

= − −∑ ɺɺ ɺ           (8.38) 

 

The above expression reveals that the response of the fluid to the movement of the 

body comprises: 

• one term which is 180°  out of phase with the acceleration, resulting in the 

augmentation of the inertia of the body 

• one term which is 180°  out of phase with the velocity. This term depicts the 

damping of the mechanical energy of the floating body, due to the dissipation 

of energy expressed by the propagation of waves. The damping coefficients 

follow solely from the wave making and they are not related with the damping 

due to phenomena of friction or viscosity. 

 

Furthermore, the ensemble of these equations allows the formulation and the 

solution of the equations of motion of the floating body. The equations of motion are 

the working out of Newton’s second-law: 
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M C x f f
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=
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∫
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∑ ∫
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          { }
0

2

1,3,5

( ) 'kl kl kl kl l k

l C

M a ib C x gA n dlω ω ρ ϕ
=

− + − + =∑ ∫                                     (8.39) 

 

 Where p  is the total pressure exerted on the wetted surface 0C  of the floating body 

and lx ( 1,3,5)l = stand respectively for heave, sway and roll complex amplitudes 
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This equation expresses the dynamic equilibrium between the inertial forces, 

the hydrodynamic responses, the hydrostatic restoring forces and the exciting 

loads. klC  denote the restoring coefficients of the hydrostatic loads, and klM stands for 

the generalized inertial tensor.  

In our problem we firstly calculate the contribution of the potential to the 

exciting loads and to the radiation forces (which include the dependence on the 

matrices kla  and klb ) from expressions (8.28) and (8.31) respectively: 

 

  

0

'k k

C

P n dlϕ= ∫                         (8.40) 

                                                          and 

0

kl Rkl k

C

N n dlϕ= ∫                          (8.41) 

 

However, an extra term must be added to the radiation forces in order to model 

the dependency on viscous phenomena and to avoid excessive resonance [Kimmoun 

and Molin (2007)]. It has been indicated that the origin of the damping in the roll 

movement is mainly attributed to viscous phenomena (as it is the flow separation) 

which take place at the square bilges of the barge. In order to take into consideration 

these effects an extra term of dissipation which is a quadratic function of the velocity 

is adopted:  

 

                                                          QB θ θ⋅ ⋅ɺ ɺ                                                        (8.42) 

 

where θ  is the angle of the roll movement. Based on experimental considerations we 

express the coefficient QB   in the following form: 

 

                                                     41

2
Q dB C B Lρ= ⋅ ⋅ ⋅                                            (8.43) 

 

where B describes the breadth of the barge, L the length of the barge, which in the 

present numerical mode is supposed to be equal to one, and dC  the coefficient of 

damping. In our case the value of dC  is considered to be between 0.1 and 0.2. 

However, it is obvious that this is a non-linear term introduced in a linear equation. It 

must be linearized for the harmonic problem. This linearization is possible if we apply 

the Lorentz hypothesis: 

                                                       0

8

3
θ θ ω θ θ

π
ɺ ɺ ɺ≃                                             (8.44) 

where 0θ  is the amplitude of roll. 

 

From previous experiments in the wave flume of ECM it has been observed 

that in order to obtain a good agreement between the numerical model and the 

experiments, it was required to add a dissipation term also for the heave response. 

This term is introduced in the same way as the roll damping. The value selected for 

the heave damping is significantly superior to 1 and corresponds to the value obtained 

from many previous comparisons [Kimmoun and Molin (2007)]. 
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Moreover, we define the non-zero elements of the matrices klC  and klM  that 

correspond to the geometry of our problem. Finally, the following system3 3×  (Eq. 

(8.45)) is derived. This system provides the complex amplitudes concerning the 

responses of the model to the three radiation problems.  

 

      

( ){ }

( ){ }

2

1,3,5

2 2

1,3,5

kl kl l Rkl k

l

kl kl kl l k

l

M C x f f

M C N x gAP

ω

ω ω ρ ρ

=

=

− + − = ⇒

− + − =

∑

∑
         (8.45) 

 

Right after, the RAOs in the three degrees of freedom are calculated. They follow the 

same normalization as in the experimental part: 

 

       k
k

x
x

A
=ɶ      k = 1, 3           (8.46) 

       
0

k
k

x
x

A k
=

⋅
ɶ   k = 5                                  (8.47) 

 

The total wave potential in each sub-domain including the diffraction potential 

and the three radiation potentials is obtained by the superposition formula (Eq. 8.10). 

To this end, the free surface elevation in each sub-domain can be also calculated by 

referring to expression (8.3). The RAO of the free surface is as follows: 

 

                                                     
A

η
η =ɶ                                                      (8.48) 

 

The main scope of the conducted experiments and thus of the theoretical 

model is the drift force’s calculation. As already mentioned, there are two well-known 

formulations for the calculation of the wave drift force: “the far-field method” and 

“the near-field method”. In our problem, drift force is obtained through the far-field 

method’s momentum considerations with two vertical cuts at upstream infinity and at 

downstream infinity.  

A synopsis of the far-field’s advantages and disadvantages is presented. A 

significant advantage of the method of reference is that the control surface can be 

extended to infinity. Furthermore, according to Liu (2010b) in a problem where the 

sea-floor is flat below the barge, the momentum method with the two control cuts in 

the flat region, presents higher numerical convergence in comparison with the direct 

integration method. However, three disadvantages are reported. Firstly, the far-field 

method allows the calculation of the three out of the six components of the drift 

forces. Moreover, when the interaction between different structures is studied, the far-

field method does not allow the computation of the drift force exerted separately on 

each structure. Last but not least, through the far-field method merely the mean drift 

forces are calculated instead of the total mean and slow drift forces computed by the 

near-field method. Hence, it is common to put into practice both methods. 

In the theoretical part of our study, we have already made reference to the 

expression for the mean horizontal drift forces as it is derived by the far-field method: 

 

                                  { }
1

2 2

1

1

2
i i i R i

C S

F n p VV dS g n dlρ ε ρ ζ
∞

∞

= − + −∫∫ ∫�                        (8.49) 
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                             with { }2 2 2 2

1 1 1

1

2
x y zp ε ρ= − Φ +Φ +Φ                            (8.50) 

where C∞  is the surface up to 0z =  and 1S ∞  is the remaining part between 0z = and 

z ζ= . iV  stands for the fluid velocity in direction i , RV  is the radial component of the 

fluid velocity on C∞ and 1ζ  represents the first-order wave elevation. 

 In the numerical model, we make use of Maruo’s formula [Maruo (1960]. 

This is an elaboration of the far-field method’s expression (Eq. (8.49)) corresponding 

to a two-dimensional case. In a two-dimensional caseC∞ is a rectangular surface 

enclosing the body and S∞ is limited by two vertical planes at y = ±∞ . In our problem 

the upstream infinity −∞  is located at the 1
st
 sub-domain and the downstream infinity 

+∞  is situated in the 3
rd

 sub-domain no matter the geometry of the problem. 

.   

Following Maruo’s formula, the mean horizontal drift force when the sea-floor 

is flat is obtained as:  

           ( )2 * *

1 1 3 3

1
1

2

G
d

C
F g A R R T T

C
ρ= + −           (8.51) 

 

where GC  is the group velocity and C  the phase velocity. 1R  denotes the complex 

coefficient of reflection in the upwave infinity and 3T  the complex coefficient of 

transmission in the downwave infinity. * *

1 3,R T represent their conjugates.  

We point out that in a flat bottom problem the drift force is always positive. 

This is obvious by combining the flat bottom expression (Eq. (8.51)) with the 

expression describing the energy flux conservation * * 1RR TT+ ≡ . If the barge is an 

active power device which consumes energy, the current form for the energy flux 

conservation is * * 1RR TT+ < . We become aware of the fact that the drift force 

remains positive. 

The problems with a vertical transition are also considered to be flat bottom 

problems as far as the formulation of the drift-force is concerned. This is due to the 

fact that the downwave region is still selected to be situated in the 3
rd

 sub-domain. 

However, Eq. (8.51) is altered in order to include also the reflection caused by the 

vertical obstacle: 

                  ( )2 * * *

1 1 3 3 3 3

1
1

2

G
d

C
F g A R R T T R R

C
ρ= + − −            (8.52) 

  

Noteworthy is the fact that in the latter problems, governed by Eq. (8.52), the 

sign of the drift force can be also negative due to the reflection caused by the vertical 

obstacle. This is also confirmed by the experimental results which are going to be 

analyzed in the following chapter. 

Nevertheless, through the above expressions (Eq. (8.51), (8.52)) the total mean 

force acting both on the body and on the sea-floor is derived. To be accurate, there is 

need to either isolate the body by considering a contour closer to it or to make use of 

the “near-field method”. But in the same time as mentioned by Liu (2010b) the 

“near-field method” encounters slow convergence problems owing to the singularity 

of the velocity potential at the square bilges.  

 The final results for the drift forces are normalized by 2gAρ :                                                       

                                                   
2

d
d

F
F

gAρ
=ɶ                                               (8.53) 
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9. COMPARISON BETWEEN EXPERIMENTS AND 

THEORY 
 

The main goal of the present experimental and theoretical investigation is to 

highlight the occurrence of negative drift force. In this context we are dealing with 

circumstances under which this force becomes negative, trying to explain whether the 

source of this phenomenon is potential or viscous. The incentive to our experimental 

research was given by Liu et al. (2010a), where negative drift forces in a case of a step 

or a wall downwave the flow are reported. 

 

 
 

Figure 9-1: The drift force of the barge when the bathymetry is a submarine cliff 

with different heights [Fig. from Liu et al. (2010a)]. 

 

In Figure 9-1, the numerical results for an applied model of the following 

dimensions are presented: length in the direction of the canal =1 m, distance barge-

cliff = 2 m, draft = 0.4m. The waterdepth h1 of the weather side is equal to 0.8 m and 

in the lee side it is considered successively as equal to 1 1 1
1, , ,

4 16 64

h h h
h and right after as 

equal to nil (which is the case of the wall). The momentum method is used for the 

calculation of the drift force. It is shown that the drift force is always positive when 

1 2h h= and presents multiple negative peaks in the low period range as approaching 

the case of the wall. According to Liu et al. (2010a) this is due to sloshing modes in-

between the barge and the abrupt vertical transition. Concerning the drift force which 

becomes negative in greater periods than 4-5 sec, this is attributed to some kind of 

piston mode between the barge and the vertical transition. 

In the following analysis, we must be aware of the existing non-linear 

phenomena which affect our system. Firstly, the flow separation at the square bilges 
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of the barge leading to vortex shedding is present in a case of roll or heave resonance. 

In order to take into consideration this effect, roll and heave damping coefficients 

have been added to the numerical model. Another non-linearity occurs when the fluid 

is entrapped in a small gap, for example when two floating bodies are in proximity. If 

this is the case, the fluid is characterized by an infinite number of resonance modes; a 

piston mode resonance in heave and an infinite number of sloshing modes. Flow 

separation may occur also due to these phenomena. Additionally, negative drift force 

may be observed due to this large amplitude motion of the fluid. In total, due to the 

flow separation the potential theoretical model notably over-predicts the responses. 

Last but not least, the wave-flume is not adequately long. Therefore there may be non-

linear interactions as there is not enough time for equilibrium to be re-established. 

Consequently, the experimental results may be amplified in comparison with the 

numerical results. 

 

At first, we are going to make an attempt to gain insight into the effect of the 

distance between the barge and the wall on the sign and the magnitude of the drift 

forces. Three cases of the theoretical model, governed by different distance between 

wall and barge, are presented. For the different cases, the distance between wall and 

barge, as measured from the right corner of the barge, is the following: 

• Distance= 1.9 m 

• Distance= 0.9 m 

• Distance= 0.2 m 

 

The waterdepth is equal to 0.513 m in all cases and the wave steepness is equal to 

0.02. The RAOs of the considered degrees of freedom, the normalized drift force and 

the normalized free surface elevation at distance equal to -0.1 m from the wall are 

presented. The viscous damping in roll and heave, when included in the equations, 

take the following values:  roll 0.1DC =  and  heave 5DC = . 

 

 
 

Figure 9-2: Barge 1.9 m from the wall with no dissipation terms in the equations. 

 

It is observed that there are two particular cases where the drift force is equal 

to zero. In the first case, in certain periods (~0.86 sec, ~1.03 sec, ~1.22 sec, ~1.45 sec) 

in addition to the cancellation of the normalized drift force the RAO of heave 

response is also cancelled, while the RAOs of roll and sway exhibit maximum values. 
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In the second case, in the periods when the normalized drift force is cancelled, a 

cancellation of the roll and sway motions together with a maximum heave motion take 

place (~0.83 sec, ~0.95 sec). In all the preceding cases, the normalized free surface 

elevation crosses the value level of 2 except for the periodical interval between 0.7-

0.8 sec when it takes a greater value due to the heave resonance. [Kimmoun et al. 

(2011)] 

Moreover, we show that in this case the total maximum negative drift force 

occurs in the vicinity of the heave resonance (~0.75 sec) which also corresponds to a 

resonance of the free surface in the gap between the wall and the barge. Another local 

maximum of the negative drift force takes place at ~0.85 sec, which also coincides 

with a maximum of heave’s RAO and of the normalized free surface. It is also 

observed that when local or total maxima of the negative drift force occur, the 

responses corresponding to all three considered degrees of freedom are significantly 

oscillating. 

 

 
 

Figure 9-3: Barge 1.9 m from the wall with viscous damping in roll. 

 

The roll dissipation term, which is added in the theoretical model in Figure 9-

3, changes significantly the roll response. In particular, it reduces the magnitude of the 

roll’s RAO between T = 0.94 sec and T = 1.2 sec and decreases considerably the roll 

resonance after T = 1.2 sec. The drift force is not affected by this dissipation term 

except that around T = 1.2 sec the small negative drift force peak vanishes. 
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Figure 9-4: Barge 1.9 m from the wall with viscous damping in roll and heave. 

 

Moreover, in Figure 9-4 both roll and heave dissipation terms are incorporated 

in the equations. The heave dissipation term changes significantly the heave response, 

the free surface elevation as well as the normalized drift force. All the maxima of 

heave’s RAO have been attenuated and the normalized free surface never exceeds the 

value level of 2. Noteworthy is the fact that the heave dissipation term influences the 

drift force especially when it takes negative values and the negative peaks appear to 

be significantly minimized in magnitude. 

In total, from the preceding Figures 9-2, 9-3, 9-4 it can be deduced that the 

viscous damping coefficients influence mostly the intensity of the responses without 

significantly displacing their maximum and minimum values. 

To illustrate more sufficiently the response of the free surface elevation, the 

graphs of the normalized free surface elevation as a function of the distance from the 

wall are plotted. In the two following Figures 9-5, 9-6 the free surface elevation is 

depicted for the wave periods where the RAO of heave response is cancelled: 

 

 
 

Figure  9-5: Free surface profile for T= 0.862 sec (zero heave) with viscous 

damping in roll. 
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Figure 9-6: Free surface profile for T= 1.038 sec (zero heave) with viscous 

damping in roll and heave. 

 

There is no difference between the cases with roll viscous damping and with 

both roll and heave viscous damping. When the drift force is nullified the body is 

considered to be invisible and it can be assumed that there in no wave reflected from 

the body. Hence, it is expected that the transmission coefficient is equal to 1, which 

means that the same incident wave (but with a phase lag) arrives at the wall and is 

reflected on it [Kimmoun et al. (2011)]. Therefore, the normalized free surface on the 

wall is expected to be equal to 2 in these cases of cancellation of the drift force. 

In the same way, in the following Figures 9-7, 9-8 the free surface profile for 

the periods corresponding to the sway’s and roll’s cancellation is plotted. In Figure   

9-7 the case of T = 0.828 sec is considered, which stands for a cancellation of sway 

and roll in Figure 9-3. In Figure 9-8, the case of T = 0.836 sec is studied. In this 

period, both sway and roll are nullified for the case with viscous damping in roll and 

heave. 

  
 

Figure 9-7: Free surface profile for T= 0.828 sec (neither sway nor roll) with 

viscous damping in roll. 
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Figure 9-8: Free surface profile for T= 0.836 sec (neither sway nor roll) with 

viscous damping in roll and heave. 

 

 Figure 9-7 is in line with the theory we have already expressed. The presence 

of the body does not disturb the wave-field and additionally, the undisturbed incoming 

wave is fully reflected on the wall. Therefore the normalized free surface is equal to 2. 

When the heave damping is added (Fig. 9-8) it is obvious that a great part of the 

reflected wave on the wall is absorbed and consequently the normalized free surface 

approaches the value level of 1. To sum up, Figure 9-8 illustrates that when the heave 

response is significant, viscous phenomena arising from the heave response are also 

significant. Thus, when a heave dissipation term is added, in other words when the 

dissipation caused by viscous phenomena due to heave resonance is accounted for, the 

reflected wave on the wall seems to reduce.  

 At this point, the free surface elevation when the negative drift force is 

maximum is plotted.  

 
 

Figure 9-9: Free surface profile for T= 0.842 sec (maximum negative drift force) 

with viscous damping in roll. 
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Figure 9-10: Free surface profile for T= 0.850 sec (maximum negative drift force) 

with roll and heave dissipation terms. 

 

In both Figures 9-9, 9-10 it is obvious that the maximum negative drift force 

coincides with a maximum free surface elevation in the gap between the barge and the 

wall. It is mentioned that this maximum depicts a resonance of the free surface linked 

with the phenomenon of high sloshing modes. It is not surprising that when heave 

damping is added in the equations (Fig. 9-10), this phenomenon is reduced in 

magnitude. However, the phenomenon even if reduced in magnitude is not nullified. 

The viscous effects do not cause the total damping of the high sloshing modes. 

 

 The following graphs concern the case where the distance between the wall 

and the barge is equal to 0.9 m. 

 

 
 

Figure 9-11: Barge 1.9 m from the wall with no dissipation terms in the 

equations. 
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Figure 9-12: Barge 0.9 m from the wall with viscous damping in roll. 

 

 

 
 

Figure 9-13: Barge 0.9 m from the wall with viscous damping 

 in roll and heave. 

 

By comparing Figures 9-11, 9-12, 9-13 corresponding to distance wall-barge 

equal to 0.9 m, we come to the same conclusion about the impact of the viscous roll 

and heave damping on the total results: the viscous roll damping mainly diminishes 

the roll response whereas under the influence of both roll and heave damping the 

heave, the free surface elevation and the negative drift force are also reduced in 

magnitude. In Figure 9-13 similarly to Figure 9-4 the normalized free surface 

elevation never exceeds the value level of 2. 

Moreover, it is observed that in total the RAOs plotted for the smaller distance 

exhibit less pronounced maxima (especially for the case with no viscous dissipation 

terms or with only a roll dissipation term) and show a smoother oscillation with a 

smaller number of peaks than the RAOs corresponding to a greater distance. 

To continue with, the free surface elevation as a function of the distance from 

the wall is plotted for two periods where in the first case (T = 0.86 sec) neither sway 

nor roll are observed and in the second case (T = 0.95 sec) heave is equal to zero. In 

both cases a roll and a heave dissipation terms are added in the equations.  
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Figure 9-14: Free surface profile for T= 0.86 sec (neither sway nor roll) with 

viscous damping in roll and heave. 
 

 

 

 
 

 

 

 

 
 

 

\ 

 

 
 

 

 

 

 
 

 

 
 

 Figure 9-15: Free surface profile for T= 0.95 sec (no heave) with viscous 

damping in roll and heave. 
 

 Similarly to Figure 9-8, in period 0.86T = sec where the heave is maximum 

and there are both roll and heave viscous damping terms added in the theoretical 

model the reflected wave on the wall is fully absorbed mainly due to the viscous 

effects caused by the heave resonance (Fig. 9-14). Concerning Figure 9-15, this graph 

is in line with Figure 9-6. 
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In the following graphs the case distance wall-barge = 0.2 m is presented: 

 

 

 
 

Figure 9-16: Barge 0.2 m from the wall with no viscous dissipation terms 

 

 

 
 

Figure 9-17: Barge 0.2 m from the wall with viscous damping in roll. 
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Figure 9-18: Barge 0.2 m from the wall with viscous damping in roll and heave. 

 

In this case, it is depicted that the responses develop more pronounced maxima 

(especially for the case with no heave dissipation term) in comparison with the 

responses of a distance wall-barge equal to 0.9 m. However, these maxima are less 

pronounced compared to the maxima of the case where the distance is equal to 1.9 m. 

Therefore a general conclusion cannot be drawn concerning the impact of the distance 

on the considered degrees of freedom. However, the RAO of heave and the 

normalized free surface elevation at periods close to the period of maximization of the 

negative drift force can be considered as indicators of the magnitude of the negative 

drift force. 

Concerning the oscillatory behavior, this case confirms the aforementioned 

remark that while the barge approaches the wall the oscillations of all degrees of 

freedom become smoother. 

As a consequence of the short distance from the barge to the wall, the 

evanescent modes which are significant at close distance from the model become very 

important. They mainly influence the normalized free surface, at a point situated 

between the barge and the wall, and the normalized drift force. In Figure 9-17 with 

viscous damping in roll, the free surface elevation is strongly amplified when the peak 

of the negative drift force is observed ( 4RAO ≈ at 0.8T = s). This effect disappears 

when the heave damping is added. Furthermore, in Figure 9-18 it is shown that the 

value of the maximum negative drift force is lower when the heave damping is 

present. 
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To continue with, the experimental results are presented and compared with 

the theoretical results when possible. The first experimental series with no obstacle 

downwave the flow is now presented. 

The diagrams corresponding to different parameters of the problem are 

plotted. A direct comparison between experiments and model is presented. Viscous 

damping coefficients in roll and heave have been taken into consideration in all the 

numerical results. The waterdepth is equal to 0.565 m for all the experiments of this 

series. The steepness is fixed at various values. 

 

Experiments 1-20 

 

Variable Value 

number of springs 4 

period range [sec] [0.5:1.45] 

waterdepth [m] 0.565 

roll viscous damping 0.2 

heave viscous damping 3 

 

 

 

 
 

Figure 9-19: Steepness for experiments 1-20. 
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Figure 9-20: RAO of roll for experiments 1-20. 

 

 
 

Figure 9-21: RAO of heave for experiments 1-20. 

 

 
 

Figure 9-22: RAO of sway for experiments 1-20. 

 
 

Figure 9-23: Normalized drift force for experiments 1-20. 
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Figure 9-24: Coefficients of reflection and transmission for experiments 1-20. 

 

 
 

Figure 9-25: Drift force [N] for experiments 1-20. 
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Experiments 21-40 

 

Variable Value 

number of springs 6 

period range [sec] [0.5:1.45] 

waterdepth [m] 0.565 

roll viscous damping 0.13 

heave viscous damping 3 

 

 

 
 

Figure 9-26: Steepness for experiments 21-40. 

 

 
 

Figure 9-27: RAO of roll for experiments 21-40. 
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Figure 9-28: RAO of heave for experiments 21-40. 

 

 
 

Figure 9-29: RAO of sway for experiments 21-40. 

 

 
 

Figure 9-30: Normalized drift force for experiments 21-40. 
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Figure 9-31: Coefficients of reflection and transmission for experiments 21-40. 

 

 
 

Figure 9-32: Drift force [N] for experiments 21-40. 
 

 

Experiments 41-60 

 

Variable Value 

number of springs 6 

period range [sec] [0.5:1.45] 

waterdepth [m] 0.565 

roll viscous damping 0.13 

heave viscous damping 3 
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Figure 9-33: Steepness for experiments 41-60. 

 

 
 

Figure 9-34: RAO of roll for experiments 41-60. 

 

 
 

Figure 9-35: RAO of heave for experiments 41-60. 
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Figure 9-36: RAO of sway for experiments 41-60. 

 

 
 

Figure 9-37: Normalized drift force for experiments 41-60. 

 

 
 

Figure 9-38: Coefficients of reflection and transmission for experiments 41-60. 
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Figure 9-39: Drift force [N] for experiments 41-60. 

 

 

Experiments 71-90 

 

 

Variable Value 

number of springs 8 

period range [sec] [0.5:1.45] 

waterdepth [m] 0.565 

roll viscous damping 0.1 

heave viscous damping 5 

 

 
 

Figure 9-40: Steepness for experiments 71-90. 
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Figure 9-41: RAO of roll for experiments 71-90. 

 

 
 

Figure 42: RAO of heave for experiments 71-90. 

 

 
 

Figure 9-43: RAO of sway for experiments 71-90. 
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Figure 9-44: Normalized drift force for experiments 71-90. 

 

 
 

Figure 9-45: Coefficients of reflection and transmission for experiments 71-90. 

 

 
 

Figure 9-46: Drift force [N] for experiments 71-90. 
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It is shown that generally there is good agreement between experimental and 

theoretical results. For the drift force and for the normalized drift force there are 

greater discrepancies between theory and experiments and this is due to the difficulty 

of drift to reach a stable state. However, there is better agreement between theory and 

experiments for the drift force when the number of springs is equal to 8 (Fig. 9-44 and 

Fig. 9-46). When the number of springs is greater, the body exhibits a greater initial 

displacement but it more easily oscillates around a mean position, compared with a 

case with a smaller number of springs. If the drift movement attains a state of 

equilibrium, the average used for the experimental calculation of the drift force yields 

more realistic results. We must also not leave behind the fact that the numerical model 

cannot precisely follow a non-stable state where the mean position of the barge is not 

constant.  

  We come to the conclusion that the number of springs is a critical parameter 

in the measurement of the drift forces. However, the mooring system must be neither 

too loose nor too stiff. Before studying the drift forces it is important to formerly 

ensure that the first-order wave induced motions will not be influenced by the 

mooring system. In theory this requirement is satisfied if the only force induced by the 

mooring system is a constant force equal and opposite to the mean second-order wave 

drift force. For example, in our case of a spring system consisted of lines 

incorporating springs the spring system gives rise to a force which includes two parts: 

a constant and an oscillating part. The constant part is equal to the mean second-order 

drift force while the oscillating part is linked with the first-order motions and the 

spring characteristics of the mooring system. If the spring is too stiff, the oscillating 

part is more intense and may modify the first-order responses. If this is the case, the 

drift force may be also affected. [Pinkster (1980)] 

Moreover, the stiffness is also connected with the natural frequency of the 

horizontal-plane motions (surge, sway, yaw). As the stiffness increases, the natural 

frequency also increases. Hence, there is the danger that the resultant higher natural 

frequency of the system coincides with the frequency range of the waves and 

resonance takes place. In a case of resonance both first-order motions and mean drift 

forces are affected.  

At this point, the drift movement connected with the experiments 71-90 is 

plotted. The difficulty of drift to attain a stable position, even in a case with a greater 

number of springs, is depicted.  

 

 
 

Figure 9-47: Drift movement for experiments 71-90 at T = 0.6 sec. 
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Figure 9-48: Drift movement for experiments 71-90 at T = 0.8 sec. 

 

 

 
 

Figure 9-49: Drift movement for experiments 71-90 at T = 1.1 sec. 

 

 

 
 

Figure 9-50: Drift movement for experiments 71-90 at T = 1.2 sec. 
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Figure 9-51: Drift movement for experiments 71-90 at T = 1.3 sec. 

 

 

 
 

Figure 9-52: Drift movement for experiments 71-90 at T = 1.4 sec. 
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 In the following, the case of the barge moored in front of a wall is studied. The 

distance between wall and barge is equal to 1.9 m, as measured from the right corner 

of the barge. The parameters of this experimental series are the following: 

 

Experiments 241-258 

 

Variable Value 

number of springs 6 

period range [sec] [0.6:1.45] 

waterdepth [m[ 0.506 

roll viscous damping 0.1 

heave viscous damping 5 

 

 

 
 

Figure 9-53: Steepness for experiments 241-258. 

 

 
 

Figure 9-54: RAO of roll for experiments 241-258. 
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Figure 9-55: RAO of heave for experiments 241-258. 

 

 
 

Figure 9-56: RAO of sway for experiments 241-258. 

 

 
 

Figure 9-57: Normalized drift force for experiments 241-258. 
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Figure 9-58: Drift force [N] for experiments 241-258. 

 

 It is shown that the results for roll and heave between experiments and 

theoretical model are in good agreement. The discrepancies observed for the RAO of 

sway and for the drift can be attributed to the mooring system because the 

experimental results present a lot of peaks in the drift graphs (for 1 secT > ) which are 

not predicted by the numerical model. 

 The reflection coefficient is plotted in Figure 9-59. By considering Figure 9-58 

and Figure 9-59, it is observed that the minima of the reflection coefficient coincide 

with a zero or almost zero drift force. In particular, this is obvious for T = 0.75 sec, T 

= 0.85 sec, T = 1.05 sec. Therefore, the experimental results confirm the statement 

that when the drift force is equal to zero or approaches zero, the structure of the body 

is considered to be transparent and the wave reflected from the body tends to zero.  

 

 
 

Figure 9-59: Coefficient of reflection for experiments 241-258. 

  

 The experimental results for T = 0.95 sec and T = 1.45 sec are now studied. As 

already mentioned, these are two characteristic cases of the theoretical model where 

while the drift force is equal to zero, we observe respectively either cancellation of 

sway and roll motion or cancellation of heave motion. The calculations of the 

numerical model for distance wall-barge = 1.9 m and waterdepth = 0.506 m are 

plotted (Fig. 9-60). 
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Figure 9-60: Barge 1.9 m from the wall with viscous damping in roll and heave. 

 

 At T = 0.95 sec the experimental results confirm the cancellation of 

sway and roll (Fig. 9-61). In the same period, a local maximum of heave is observed 

in Figure 9-55. 

 
Figure 9-61: Responses for experiments 241-258 at T = 0.95 sec. 

 

 At T = 1.45 sec the extinction of heave is also observed for the experimental 

results (Fig. 9-62). In addition, at this period the roll and the sway responses are 

situated in area of increasing value (Fig. 9-54 and Fig. 9-56). 
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Figure 9-62: Responses for experiments 241-258 at T =1.45 sec. 
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 The case of the freely drifting rectangular barge in front of a wall is now 

considered. The distance between wall and barge is equal to 0.2 m, as measured from 

the right corner of the barge. The parameters of this experimental series are the 

following: 

 

Experiments 151-162 

 

Variable Value 

period range [sec] [0.5:1.05] 

waterdepth [m] 0.513 

roll viscous damping 0.1 

 

 
Figure 9-63: Steepness for experiments 151-162. 

 

 As already mentioned in Chapters 7 and 8, the drift force can neither be 

calculated nor measured when the barge is not moored. The numerical model is 

practical only when the model is oscillating around a mean position. Furthermore, the 

drift force is a function of the distance between wall and barge and it changes 

continuously depending on the exact position of the barge with reference to the wall. 

As it will be shown, in the solution of the free barge problem the drift force must be 

calculated for the instantaneous position of the barge. 

 To this end, the experimental results for the case of 0.8T = sec are presented 

(Fig. 9-65, 9-66). The RAO of heave is maximum for this period (Fig. 9-64). 
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Figure 9-64: RAO of heave for experiments 151-162. 

 

 

 
 

Figure 9-65: Drift movement for experiments 151-162 at T = 0.8 sec. 

 

 It is observed that in this case where the barge is set free the drift movement, 

before applying the matlab function smooth(), is smoother comparing it with a case 

where the barge is moored (Figure 9-65). 

 In the following graph (Fig. 9-66), at T = 0.8 sec the extinction of roll and 

sway motion in the time interval 30 40t = − sec is shown. The heave response has a 

constant value and as it is apparent from Figure 9-64 this is also the maximum value 

as far as this experimental series is concerned. In addition, we become aware of the 

fact that at 35t =  sec the drift movement attains its maximum negative value. 
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Figure 9-66: Responses for experiments 151-162 at 0.8T = sec. 

 

 In the theoretical results for T = 0.8 sec, plotted for the corresponding position 

of the barge when the negative drift is maximum and assuming the barge fixed, the 

responses of roll and sway are also attenuating at T = 0.8 sec (Fig. 9-67). 

 

 
                  

Figure 9-67: Barge 0.2217 m from the wall with viscous damping in roll. 

 

 The effect of the variable distance between wall and barge on the RAOs of the 

considered degrees of freedom is going to be illustrated. The theoretical RAOs and 

the normalized drift force corresponding to different positions of the barge, as 

experimentally measured for T = 0.8 sec, are plotted. 
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Figure 9-68: Barge 0.2002 m from the wall with viscous damping in roll. 

 

 

 
 

Figure 9-69: Barge 0.1757 m from the wall with viscous damping in roll. 
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Figure 9-70: Barge 0.2217 m from the wall with viscous damping in roll. 

 

 

 
 

Figure 9-71: Barge 0.1807 m from the wall with viscous damping in roll. 

 

In the global results, it is observed that while the distance wall-barge becomes 

smaller, the drift force becomes more negative and the negative drift force peak takes 

place in a smaller period. 

Therefore for a same wave period it would be interesting to study the drift force as 

a function of the wall-barge distance. The RAOs as a function of the wall-barge 

distance are presented schematically for T = 0.8 sec in Figure 9-72. No viscous 

damping is added in the equations of the theoretical model. 



 

 
Sea-keeping and wave drift forces in varying bathymetry                                      

Oikonomidou C. Haris 
117 

 
 

Figure 9-72: Barge at variable distance in front of the wall with no dissipation 

terms in the equations. 

 

 Intuitively, it could be claimed that the magnitude of the negative drift force 

would increase steadily while the body was approaching the wall. However this is not 

confirmed by the theoretical results as presented in the beginning of this Chapter, 

where a general conclusion for the effect of the distance wall-barge on the drift force 

could not be deduced. Furthermore, this is also depicted in Figure 9-72. In the same 

wave period, when the barge approaches the wall there is a negative drift force (-0.75 

m up to -0.65 m approximately). Then, a balance when there is no more drift motion 

is observed and afterwards another negative drift force peak takes place (-0.2 m). 

During experiments this balance was not achieved and oscillations were observed. 

Noteworthy is also the fact that depending on the starting point, the drift force can 

attain two different positions of nullification. The first one, situated at -0.75 m from 

the wall, is characterized by a stable equilibrium, because if the barge drifts away 

from the equilibrium position the force tends to bring it back to its equilibrium 

position. The second one ( 0.63 m)− corresponds to an unstable equilibrium because if 

the barge departs from the equilibrium position the drift force has the tendency to 

move it further away. We show that the steady equilibrium occurs simultaneously 

with the extinction of roll and sway while the unsteady equilibrium coincides with the 

cancellation of heave motion. It is also observed that due to the unsteady equilibrium 

the heave response finds more difficulty in being cancelled completely contrary to 

sway’s and roll’s extinction which are complete. 

 

 To continue with, some results of a space-time representation of the free 

surface between the wall and the barge as depicted by the laser and the numerical 

model are presented. In this case, the freely drifting barge is placed at distance equal 

to 0.4 m in front of the wall. The waterdepth is equal to 0.513 m. 
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Experiments 131-150 

 

 
 

Figure 9-73: Space time representation of the free surface between the wall         

and the barge for T = 0.90 sec and Aincident = 0.01 m. 

 

 

 
 

Figure 9-74: Free surface elevation between the wall and the barge for T = 0.90 

sec and Aincident = 0.01 m. 
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Figure 9-75: Space time representation of the free surface between the wall         

and the barge for T = 0.95 sec and Aincident = 0.011 m. 

 

 
 

Figure 9-76: Free surface elevation between the wall and the barge for T = 0.95 

sec and Aincident = 0.011 m. 

 

 It is observed that experimental and theoretical results are in good agreement 

concerning the free surface elevation in the gap between the wall and the barge (Fig. 

9-74 and Fig. 9-76). By comparing Figure 9-73 with Figure 9-75, it is deduced that 

the free surface elevation corresponding to T = 0.95 sec displays greater oscillation. 

Furthermore, in Figure 9-77, it is shown that this greater oscillation takes place 

simultaneously with a negative drift response which is not observed for T = 0.90 sec. 
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Figure 9-77: Drift movement for experiments 131-150 at T = 0.95 sec. 

 

  



 

 
Sea-keeping and wave drift forces in varying bathymetry                                      

Oikonomidou C. Haris 
121 

Last but not least, the case of the freely floating barge in front of a vertical 

transition is presented. The distance between the vertical transition and the barge is 

equal to 0.4 m, as measured from the right corner of the barge. The waterdepth h1 of 

the weather side is equal to 0.561 m and in the lee side the waterdepth h2 is equal to 

0.515 m. Results of the drift movement as experimentally measured and calculations 

of the numerical model assuming the barge moored are shown. In the global results no 

negative drift values are observed. 

 

Experiments 94-122 

 
 

Figure 9-78: Drift movement for experiments 94-122 at T = 0.6 sec 

 

 
 

Figure 9-79: Drift movement for experiments 94-122 at T = 0.9 sec. 

 

 
 

Figure 9-80: Drift movement for experiments 94-122 at T = 1.2 sec. 
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Figure 9-81: Drift movement for experiments 94-122 at T =1.4 sec. 

 

 
 

Figure 9-82: Drift movement for experiments 94-122 at T = 1.7 sec. 

 

 The preceding Figures 9-78 – 9-82 besides the positive drifting, confirm the 

statement that the drift movement is smoother compared with a moored barge case. 

 Figure 9-80 depicts that at t = 28 sec the barge reaches the step and there is no 

more drifting. In Figure 9-83 the responses of the considered degrees of freedom are 

plotted for T = 1.2 sec. After t = 28 sec some time is required until the oscillation of 

roll, heave and sway diminishes. 
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Figure 9-83: Responses for experiments 94-122 at 1.2T = sec. 

 

 

 
 

Figure 9-84: Barge 0.4 m from the step with no dissipation terms in the 

equations. 
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Figure 9-85: Barge 0.4 m from the step with viscous damping in roll. 

 

 

 
 

Figure 9-86: Barge 0.4 m from the step with viscous damping in roll and heave. 

  

 This case as also depicted by the numerical model does not present a 

remarkable interest. Merely between T = 0.9 sec and T = 1 sec, when a heave 

dissipation term is not added in the equations, the drift force reaches some negative 

value which is not noticeable. A possible reason no drifting opposite to the waves’ 

direction is observed is that the height of the step is not adequate to cause this 

negative drift force ( 2 10.92h h≈ ⋅ ). Our case is very close to the 1 2h h=  case presented 

in Liu et al. (2010a) (Fig. 9-1), where no negative peaks are observed. The drift 

forces’ calculation formula as already mentioned in Chapter 8 is the following:  

 

                                           ( )2 * * *

1 1 3 3 3 3

1
1

2

G
d

C
F g A R R T T R R

C
ρ= + − −                    (9.1) 

 

The height of the step influences the magnitude of the lee side’s reflected wave 

amplitude coefficient which determines the sign of the wave drift force. 

  



 

 
Sea-keeping and wave drift forces in varying bathymetry                                      

Oikonomidou C. Haris 
125 

In the following Figures 9-87, 9-88 the same problem, except that the step is replaced 

with a wall, is considered. The theoretical results are presented: 

 

 
 

Figure 9-87: Barge 0.4 m from the wall with viscous damping in roll. 

 

 

 
 

Figure 9-88: Barge 0.4 m from the wall with viscous damping in roll and heave. 

 

In Figure 9-87 with no heave dissipation term, in the vicinity of T = 0.9 sec it 

is observed a more noticeable negative drift force compared with the case of the 

vertical step. The RAO of heave and the normalized free surface elevation also take 

greater values near T = 0.9 sec thus some negative drifting is connected also with this 

fact. The effects of piston mode resonance and sloshing are present in the case of the 

wall where the fluid is entrapped between the wall and the barge. When the viscous 

damping in heave is added the negative peak is almost eliminated. By comparing 

Figures 9-85, 9-86 with Figures 9-87, 9-88 it is deduced that the viscous effects 

arising from the heave resonance of the model and the piston mode resonance and 

sloshing modes of the fluid are more significant in the case of the wall. 

From Figures 9-72, 9-87 and 9-88 it is concluded that in addition to the height 

of the step, the distance between step and barge in the current experiments is not the 

most characteristic distance for the illustration of the negative drift force. 
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10. CONCLUDING REMARKS AND PERSPECTIVES 
 

 In the present work the 2-D drift force exerted on a floating body has been 

both experimentally and numerically examined. Special attention has been paid to the 

occurrence of negative drift forces on the floating body. The work has been carried 

out in the framework of the ERASMUS Programme in collaboration with the Ecole 

Centrale Marseille (ECM). 

 The main findings of the present work can be summarized as follows: 

 We concluded, as it was traced back from the foregoing analysis that the 

source of the negative drift force is of potential origin. We are going to show this 

upon closer inspection. Actually, in the case of the wall the body-wave interaction can 

be considered as the superposition of two cases. In the first one, the wall is not taken 

into consideration. The system is excited by the incident wave and consequently a 

reflected (due to the diffraction and the radiation caused by the isolated body) and a 

transmitted wave component are produced. In the second case, the reflection on the 

wall is considered. The reflected wave on the wall corresponds to the incoming wave 

of this case. Both cases are regarded as identical except that they are acting in 

opposite directions. Concerning the sign of the drift force, the most dominant or in 

other words the case which will induce the greatest reflection on the body, determines 

the final sign of the drift force. Hence, even if a negative drift force is observed, this 

drift force can still be considered to have the propagation direction of the incoming 

wave, which in this case is the one of the reflected wave on the wall. The sign of the 

mean drift force is in accordance with the ideal-fluid theory and thus it is a potential 

effect. Nevertheless, the phenomenon is much more complicated if we take into 

consideration that multiple reflections on the model and on the wall take place and 

affect the drift force in magnitude and in sign. 

 The global experimental and theoretical results have shown that another factor 

that might be susceptive for the negative wave drift force can be the excessive 

oscillation of the barge and of the free surface in the heave direction; especially is the 

case where the reflecting wall is present and the fluid is entrapped in a small gap 

between the barge and the wall. This is also a potential effect. However, in the second 

case the potential effect gives rise to co-existing non-linear effects, as it is the flow 

separation, which may cause the damping of the negative drift force.  

 As far as the further perspectives of the present work are concerned, 

difficulties emanating from the experimental setup have to be solved. As already 

mentioned in Chapter 10 the number of springs is a critical parameter in the 

calculation of the drift force. Therefore, the mooring lines must be properly sized in 

order to enable the drift force to attain a stable state without in the same time 

modifying the first-order responses. Concerning the theoretical model, a better 

formulation of the viscous damping should be implemented so that the flow 

separation at the barge bilges is properly accounted for. This is the case of the barge’s 

resonance in roll or in heave as well as of the gap resonance in between the barge and 

the wall. For the latter case, we make reference to two techniques which are 

mentioned in Kimmoun et al. (2011). In Kristiansen and Faltinsen (2011) a numerical 

domain-decomposition method is proposed to take into consideration the damping 

induced by the flow separation at bilge keels. More specifically, a combination of the 

Bernoulli equation in the greatest part of the water and of the Navier-Stokes equations 

in the viscous domain near the ship bilges is used. Another technique consists in 

adding a massless lid at the inner free surface and attributing to it a quadratic damping 

force (Molin et al. 2009).  
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