TEAN

m
O,

3:

1,

_/5%?‘&
P
£

2

eT50p
e rﬂ e
v ‘\,
# nPoMHBEVS . €
12—.”!!%;05

Department of Fluids

N

i
ta,

|

National Technical University of Athens
School of Mechanical Engineering

Laboratory of Hydraulic Turbomachines

Development of a meshfree particle method for the simulation of steady and unsteady free
surface flows: application and validation of the method on impulse hydraulic turbines.

Doctoral Dissertation

PHOEVOS-CHARALAMPOS K. KOUKOUVINIS
Mechanical Engineer, M.Sc.

Phd Supervisors:

D. Papantonis, NTUA Professor

K. Giannakoglou, NTUA Professor
J.Anagnostopoulos, NTUA Assistant Professor

Examination Committee:

D. Papantonis, NTUA Professor

K. Giannakoglou, NTUA Professor

S. Tsangaris, NTUA Professor

S. Voutsinas, NTUA Associate Professor

D. Mathioulakis, NTUA Associate Professor
J.Anagnostopoulos, NTUA Assistant Professor
V. Riziotis, NTUA Lecturer

Athens, July 2012



Approval of the doctoral dissertation from the School of Mechanical Engineering of National
Technical University of Athens (NTUA) does not imply acceptance of the opinions of the author
(Law 5343/1932, Article 202)



otovg yoveig pov Kwvotaviivo ko Katepiva
Kot oty adepey uov Ipida






Everything is both simpler than we can imagine
and more complicated that we can conceive
- Goethe



Vi



Summary

The aim of the present thesis is the development of algorithms based on the Smoothed Particle
Hydrodynamics (SPH) method for the simulation of free surface flows, focusing mainly on the flow
in impulse turbines. During the course of the study, several algorithms were developed, based on
different variants of the SPH method and were applied to a wide range of problems including inviscid
and viscous, enclosed and free surface flows. The developed SPH algorithms were validated using
theoretical solutions, numerical or experimental results. The present work also involves novel
features, such as the numerical modeling of a Turgo impulse turbine, the design optimization of a
Turgo turbine and the development of a new high order variant for Riemann based SPH solvers.

The SPH method is a Lagrangian meshfree particle method based on the works of Gingold, Lucy
and Monaghan. SPH is well suited to describe the violent free surface flows occurring in impulse
turbines, since the Lagrangian formalism enables tracking of the free surface, whereas the method is
able to describe accurately large deformations, splashing and droplets, without significant loss of
accuracy.

The SPH method approximates the described medium as a set of particles which occupy volume,
carry mass and all the characteristic properties of the described medium, such as density, velocity etc.
The Navier - Stokes equations may be rewritten, using summation interpolations, involving a set of
randomly distributed particles and a kernel smoothing function. The kernel smoothing function plays
an important role in the validity and accuracy of the SPH interpolations.

For the simulation of incompressible fluids, it is possible to employ the solution of a Poisson
equation, but doing so results to a cumbersome and slow algorithm; the assumption of the flow as
weakly compressible is used instead. However, the SPH method faces several difficulties in handling
boundaries and, due to its nature, pressure oscillations arise when simulating weakly compressible
flows. Several corrections were examined, involving density filters, diffusion terms etc. to treat the
method’s inherent weaknesses. Simulation of viscous flows is possible, however at high Reynolds
flows unphysical solutions may be produced, due to distorted particle distributions. Advanced
treatments, such as particle redistribution help to regularize the particle arrangement and enable such
simulations. With the redistribution technique, combined with traditional turbulence models, it is
possible to use the SPH method for high Reynolds flows.

Free surface flows were examined, involving simple benchmark cases, such as water jet
impingement on a flat plate under different impingement angles, and more complicated practical cases
focusing on impulse turbine components. Simulation of a Pelton turbine nozzle was performed,
providing satisfactory results in comparison to experimental and numerical data. Moreover, the
method was used for the simulation of an impulse turbine deflector, examining whether it could be
used for throttling the turbine load. Also the method was applied in impulse turbine runners, both
stationary and moving/rotating and it was used in conjunction with a simpler flow solver for the
design optimization of a Turgo impulse turbine.

After identifying the main issues of the SPH method, several modifications were tested. The
implementation of the SPH method in conjunction with Riemann solvers was examined, in order to
treat the pressure oscillation issues. Further modifications, including the discretization of Euler
equations under ALE perspective using SPH approximations and implementation of accurate
boundary conditions using partial Riemann problems, were tested in basic benchmark problems, such
as shock tube, and more practical applications, such as simplified 2d boat hull / water interaction.
High order extensions were developed, based on the MUSCL-Hancock scheme. The results of the
SPH modifications are compared to the standard SPH method, proving that Riemann based SPH
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variants are superior to the standard SPH method, due to the better handling of boundaries and the
improved reproduction of the pressure field. Key issue areas are identified and further research is
proposed on the subjects of the SPH interpolation accuracy, the ALE formulation and the
parallelization capabilities of the SPH method.
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Hepiinyn

2T0)0¢ TNG TOPOVCAS epyociag ivol 1 avanTtuén VIOAOYICTIKOV aAyopifuwy Pacicuévav ot
péBodo Smoothed Particle Hydrodynamics (SPH) yio tnv mpocopoimon pomv pe eAedBepn empdvela,
€0TIALOVTOG OTIG POEG TTOV SLAHOPPDVOVTUL 6 VOpooTpofilovg dpdone. Koatd v ekmdévnon g
StpPic avamtoynkay alyopibuot faciopuévol og ddpopec moparrayic e nebddov SPH ot omoiot
epopudéoTNKay oe €va gupld QAcHo TTpoPAnudTov, meptAauBdvovtag poéc pe N yopilc 1EMOEG,
éyihelotec 1 pe ehevbepn empavela. Ot adydpifpot mov avortdynkoy metonomdnKay Le T xpnon
OVOATIKOV  AOCE®V, aplOuNTIKOV Kol TEWPOUATIKGOV omotedecpdtov. H moapodoa epyooio
TEPMAUPAVEL KOVOTOUO YOPOKTNPIOTIKG OTMOC TNV TPOCOUoimoT kol oyedlooud vdpootpofilov
Turgo, aAAG kol TV avamTuén vog véou oynuatog bymAng axpifelag yio tig pebddovg SPH mov
Bacilovton og emAvTeg Riemann.

H péBodoc SPH eivor pio pn-mAeypotikn, Lagrangian pébodog Poaciopévn otnv €peuvnTikyg
dpaoctpomrto tov Gingold, Lucy kot Monaghan. Apyikd n pébodog eiye dwpoppwbei yio v
eMiAvoT TOADTAOK®V OGTPOPLGIKAOV TPOPANUATOV, OGTOCO GOVTOUO EMEKTAONKE KAAVTTOVTIOG TN
CLUTEPIPOPA TV PELOTMOV Kol otepeddv. H pébodog eivar oe BEom va meprypdyel tKovomomTiKd Tig
nepimiokeg poég elevbepnc empdvelag mov AauPdvouvv ydpo ce vOpooTpoPilovg dpdong, Kabmg
Umopel va Teptypavet pe akpipelo peydleg TOPOLOPPAOCELS KOL GTOYOVISLO EDKOAQ.

H pébodoc SPH meptypdoet to meptypoa@OUevo HEGO GV EVO TETEPACHEVO GUVOAO GMOUATIOIMV,
kaBéva ek TV omoiwv katolapufdavel 0yKo kot eépel palo Kobmg Kol OAQ TO YOPOKTINPIOTIKG TOV
meprypapopevov pécov. O eélomoelg pong Navier — Stokes etvar dvvatd va Swokprromonfolvv
YPNOLUOTOIDVTAG 00poioUaTo TPOGEYYIoNG amd Eva avBaipETA KOTAVEUNUEVO GUVOLO COUATIOMV GE
ouvovooud pe pol ovvaptnon opoionoinong. H ev Adym cvvdptnon emnpedlel dpapotikd Tnv
akpifela Twv Tpoceyyicewy.

INa v mpocopoinon acvumiestng pong eivar duvvatd va yiver | emidvon ¢ e€icwong Poisson,
0ALG 0 TeEMKOG adyOpOpog glvar apydg, eved LITAPYOVY dVGKOAIEG KOl GTOV TOPUAANAIGUO Tov. [V
ovtOV ToV AOYo yivetar 1 mapadoyn OTL to pevotd givar acBevmg ocvupmieotd. H pébodog SPH
avTETOTILEL TPOPANUATO OTNV TEPLYPOOT TV Opimv kol, AOY® Tng ovorng g uedodov,
TPOKAAOVVTOL JTAPAYESG 6TO MEdIO NG TEONE OTOV TPOCOLOIDVOVTAL 0GHEVADC GUUTIESTEG POEC.
Aldpopeg 010pBmGELS SOKIULAGTNKAY, OO PIATPO TUKVOTNTAC, OPOL O1AYVONG KA. TPOKEEVOL V.
avVTIHETOTIoOVY TO BéUa TV dlatapoydv ¢ Tieons. H mpocopoinon pomv pe cuvektikotnta givon
duvarr, oAb oe poés vymimv Reynolds evdgyoupévmg va mpokhyovv apOGIKeG AVGES, AOY® NG
OVOHOLOHOPENG KoTavoung oTlg 0éoelg tov copotdiov. Teyvikéc OmOG M avOKOTUVOUR TOV
ocOMOTOIOV lvar duvaTd VO OVTIUETOTICOVV TNV OVOLOLOYEVH] KOTOVOUN COUATIOIOV KOl GE
ouVOLOGUO He KAOGIKA povTéha TOPPNG, wmopel va yivel mpocopoiwon podv vyniov aptBov
Reynolds.

Poéc ehevBepng empdvelog pelethOnkoay, coureptAapuBavouévemy amlovoTEPOV JOKIUOY OTMG M
TPOCGKPOVGT) dEGUNG OE EMIMEDT TAGKO Y10, SIUPOPES YOVIEC TPOCKPOVOTNG, OAAG KOl TLO TOAVTAOK®V
TPOKTIKOV podv, €0TIlovtag o poég o€ vdpootpofilovg Spdong. IIpocouoiwbnke n pon o¢
aKpo@volo  vOpootpofilov Pelton, divoviag 1KOVOTOMTIKA OMOTEAECUOTO GE GYEON LE TO
MEPOUATIKA OAAG Kot aplBuntikd dedopéva. Axopo 1 pébodog ypnoipwomomdnke ywo v
TPOGOUOIMOT TOV eKTPOTEN dEoUNG VOGS VOPooTPOPilov dpdong, Le okomd T depehivnon Tov Katd
no6c0o givor dvvatn  pLOULoN Tov Poptiov Tov VOPooTpoPirov. TéAog, N uEBOdOG ypNoiIoTO|ONKE
KOl Yyl TNV TPOCOWOimon TnNg pong o€ Jdpopeic vdpootpofilmv dOpdong oAAG kol Yo T
Beitiotomoinon tov dpopéa vdpootpofirov Turgo ce cvvdvacud pe €va amiovotepo aiydplBuo
TPOGOUOIGNG POT|S.



AoVl egvtomiotnKav ot Kopteg advvapieg g nedddov, SoKIUAoTNKAY OPICUEVES TPOTOTOU|OELS.
O ocvvdvaoudg g pebodov SPH e emivteg Riemann e£etdotnie, TPOKEWEVOD VO OVTILETOTIGTOVV
ot dtatapayéc g mieons. EmmAéov tpomomooelg, 6mmg 1 dtakpironoinon twv eElodoewv Euler pe
ALE meprypaen kot mpoceyyioelc SPH, kaBmdg kol 1 OVTILETOMION TOV OPlaKOV GUVONKOV e v
enilvon Ttov pepwov mpoPAnuatog Riemann Jdoxipdotnkav o Pacikég OAAG KOl TPOKTIKES
epopuoyéc. Emiong avamtdiybnkoav tpomomooelg vyning axpifelag Paciopéveg oto apOuntikod
oynuoa MUSCL-Hancock. To omotehéopato TOV TPOTOMOMGCE®Y GUYKPIONKav o€ oyéorn pe TNV
kAo péBodo SPH, 6mov amodeikvhoviol Ta TAEOVEKTAIOTA TG XPNONG EMAvT®V Riemann kabmg
glval dSuvaTn N OTOTEAEGUOTIKY OVTLLETOMIOT TOV 0plv, VO PEATIOVETAL CULOVTIKE TO TESIO NG
mieong. Zav TPOTACELS TEPULTEPM EPEVVOC TPOTEIVOVTAL 1| UEAETY TNG OKPIPELNG TV TPOCEYYIGEDY
SPH, ot duvatotnteg ¢ meptypagnic katd ALE Kot 0 omoTteAeoHaTIkOG TOPUAANAGLOC TG LeBOdoV.



Acknowledgements

First of all I would like to thank professor D. Papantonis, for the trust shown in me, his support
and guidance through the whole work. Also I would like to thank professor J. Anagnostopoulos for
his assistance in various numerical aspects I had to deal with, in the course of the study; without his
contribution it would be impossible to finish the present work. A particular thank to professor K.
Giannakoglou for his useful instructions and his kind comments during the writing of the present
thesis.

Moreover I would like to thank professor S.Voutsinas for the fruitful discussions we had
regarding particle methods and professor G.Tzabiras for his kind comments and guidance at paper
submission.

I would like also to thank my colleagues and staff at the laboratory of hydraulic turbomachines,
especially Fotis Stamatelos, Thanasis Nesiadis, Giannis Kassanos, Marios Xrysovergis, Alexandros
Panagiotopoulos and Thanasis Michalakopoulos, for our smooth collaboration.

Last but not least, I have to thank my family and my friends for their support and especially my
father who inspired me the interest on engineering.

Xi



Contents

L. INEEOAUCTION ...ttt ettt sttt sttt et et s a e sttt she et b e een e a e s bt emnesreemeennesueennenne 1
1.1. Generally about Computational Fluid Dynamics .......cc.ccceceerviiriirninniinienienieeieeeeieenee e 1

1.2. Particle meshfree methods in comparison with Eulerian mesh based methods ............cc.ceeceenene 2

1.3. CFD in hydraulic impulSe tUrbINes..........cccueiiiiiiiiiiiniiiniieiie ettt et st 3

1.4, Aim Of the PreSent STUAY .....c..eeooiiriiiriiieiieierteee ettt ettt sttt e st s s e 5

1.5. The structure of the Present thESIS .......oo.ii ittt st s 6

2. SPH MEthOA DASICS ..ottt st sttt ettt st st et e bt e saeesane e 9
2.1. Basic characteristics of the SPH method............ccociiiiiiiiniiniiiiceeceee e 9
2.2. SPH function representation — integral and particle representation ............ccccceveereeneeneeneennennn 10
2.3. Error estimation in the SPH approXimations..........ccecueeeueereeriienienienieniieeieesieesieesee st eeeenneens 14
2.4. The Kernel fUNCHON. .....cc.coteriirieiiireeeneeee ettt sttt ettt sre e s a et eanennes 17

3. The standard SPH method for flow SIMUIAtion........cc.ceoieriiriiriiiiiiieecc e 23
3.1. The Navier-StoKes EqUATIONS. ....c..ccouiruiriiiriieieeneentente ettt ettt et e st sttt et et e sreesaeesaeesareeane 23
3.2. Navier-Stokes equations expressed using the SPH method ...........cccccooviiiiiiiiiiiniininiice 27
3.3. Alternative ViSCOSILY LIEALIMEIILS ......eeeureeriieeiieerieeetteeriteestee ettt esbeesbteesseeesabeeessbeesabeesnseeesaseesnses 31
3.4. Equation of state — Tait @QUALION........cccueiiuiiiiiiriierie ettt ettt st st 32
3.5. Truly incompressible SPH........cooiiiiiiiiii ettt s 33
3.6. Pressure/density field smoothing — XSPH COITection ..........c.ceeeeveerienieniinnienneenecneenecseeeeeeane 41
3.7. Tensile instability/ Kernel COrreCtion ..........cceeviiriiiiiiiiiieeiteee ettt st 44
3.8. BOUNAATY CONAIIONS. ... .ueiiiiieiiiieriiieeiteeetee ettt ettt e st e ettt e sabeesbbeesateesbeeesabeesabeesnsaeesabeesnses 47
3.9. Neighbor search algOrithim ........c..coiiiiiiiiiiiiiiee et st s 54
3.10. ParalleliZatiON .....c..cocueriiiieriiiieienieeiee sttt ettt st et ettt sr et s e et nres 55

4. Validation of the SPH mMethod ......c...coouiiiiiiiiiiiieiceetete e 59
4.1 BASIC ESES .vieieireriieiieieetteterte ettt sttt ettt ettt et s ae et b e a e a et sr e ae e nesae e 59
4.2. Modeling viscous flows With SPH ..........cooiiiiiniiiiiiecceeee e 65
4.2.1. Particle rediStriDUION......c..oouiiiiriirieiereeccccce ettt ettt 77

4.2.2. Turbulence modeling in SPH.........cocciiiiiiiiiiii e 80

4.3, Free Surface fIOWS ......cocuiiiiiiiiiiieee ettt st sttt 90
4.4, Concluding TEMATKS. .......coiuieiuiiiiiiiee ettt ettt e sb e st st st et e bt e beesaees 98

5. Application of the SPH method in impulse hydraulic turbines.........c..cccccceveeneenicricnicnninnceceenee. 101
5.1. Flow inside @ Pelton NOZZIE ........c..cooiiriiriiiiiiiiiiietcceteec ettt 101
5.2. JEUALIECIOT «..onieeiterteeece ettt ettt st et st e a e s sr e ne 110
5.3. Impulse turbine SIMUIATIONS ........eeriuiiiriiiiiiiiiie ettt ettt et e st e e sateesbeeeaeeas 116
5.3.1. Application of the SPH method for simulation of Turgo turbine runners ..........c..cc......... 119

5.3.2. Application of the SPH method for simulation of Pelton turbine runners..........c..ccc........ 146

5.4, CoNCIUAING TEMATKS. ....eeiutiiiiiieiiie ettt ettt ettt e e bt eesabeesbteesabeesabeessbteesabeeenseeas 158

6. Incorporating Riemann solvers for particle interactions in SPH (SPH-R)........cccccoooiiiiiiinnininnnn. 161
6.1. Deriving SPH-R €qUALIONS ....c.cooiiriiiiieiienierieetceeee ettt ettt 161
6.2. MUSCL 2nd order Scheme / LIMILET .......c..ccvevueriirienierieieieneeienie et 164
6.3. TeStS/ APPLICALIONS ..ottt ettt st ettt e bt e bt e sbeesate st e ebeebeenbeesaees 167
6.4. Further possibilities With SPH-R ......c.ccooiiiiiiiiii ettt 174
6.5. Hybrid SPH/SPH-R ....cccooiiiiiiiieee ettt st s e 176
6.6. CoNCIUAING TEMATKS.......ueiiiiiiiiiteiiee ettt ettt ettt e ettt e st e e sabeessbteesabeeebaeesabeesbaeesabeenns 179

Xii



T.SPH-ALE MEROA ..o 181

7.1. GOVEINING ©QUALIONS. ....eerutieurieteenieenteenteete et et et e reesseesaeesaeeeateeeee st esbeesaeesatesanesareeaneenseenseennees 181
7.2. Implementation of the SPH-ALE model (1st order Godunov method)...........ccocceevienieneencnnnen. 183
7.3. MUSCL-Hancock 2nd order scheme / HMIter..........cccevieieriirienenieienieneeteneeeenieseere e 185
7.4. Boundary conditions - Partial Riemann problem ..........ccoccooviriiiniinieniiincnicnceccececeeeen 186
7.5. Low speed PreCONdItIONINE ....c..cevuteriiiierieeieeieeieeeite sttt ettt e sbte it st st e e ebeenbeesbeesaees 187
7.6. Validation of the method ........c..cooiiiiiiiiiiiii e 189
7.7. Hydrodynamic ProbIEIMS ........cccerieriiriiriiriiiiteiteeeseeste sttt sttt saeesaees 194
7.8. CONCIUAING TEMATKS......eeiutiiitiiiietteitte ettt ettt ettt ettt et e s bt e sbtesate st et ebe e beenbeesaees 208
B EDIIOZUE ...ttt ettt e bt et e e e bt e e hte e e bte e abe e s beeesbteeeabeeenaeeas 211
8.1. Comparison of the SPH-based Methods ...........ccooueiiiiiiiiiiiiiiie e 214
8.2. Contribution of the Present thesiS.........cociiviiriiiiiiiiiieeeeee et 215
8.3. General thoughts about SPH-based methods / Suggestions for further research ............cc..c....... 217
Appendix A: Euler equations and Riemann solvers — Godunov method..........cc.ccoecerviiiiniinninncenennnee. 221
Appendix B: Implementation details of the SPH-based algorithms .............cceccevieniicniiniiniinniiniineenee. 237
Appendix C: Parallelization with OpenMP ............ccoociiiiiiiiiiiiieee e 245
Appendix D: Details on the numerical schemes used by Fluent® software.........cc..ccoceeveeieencenceneenee. 251
Appendix E: Construction of the Turgo turbine ..........ccccoeveiiiiiiniiniiniiienccc e 253

Xiii



Xiv



Chapter 1: Introduction

Chapter 1

Introduction

Since the beginning of the human civilization, mankind’s effort was to harness its environment in
order to improve the quality of human life. However, in order to do that, it is necessary to understand
the underlying behavior of the desired phenomena. One way for doing so is through extensive
experimental investigation. Alternatively, it is possible to describe the basic principles of these
phenomena in the form of mathematical models, including algebraic, differential or integral equations.
By solving the corresponding mathematical models it is possible to obtain valuable results leading to a
further understanding of the principles behind these phenomena.

Practically, experiments are necessary as a first step in order to understand and define the
mathematical model. However the resulting mathematical model is often rather complicated to be
solved analytically. For this reason, in the past, studies were mainly conducted either through
experiments or by using approximate theories, based on the mathematical models with considerable
simplifications; without those simplifications the mathematical model would be impossible to solve.
With the recent increase in the computational power of modern computers it was possible to
approximate the mathematical model using numerical approaches. Eventually the concept of
numerical simulation was born; the physical problem is described mathematically using a set of
equations and, then, solved numerically using approximate numerical methods. Rather than adopting
the traditional theoretical practice of constructing layers of assumptions and approximations, the
numerical simulation approach directly attacks the original problems, without making too many
assumptions, with the help of modern computers. Moreover, it enables the accurate description of
complicated problems without having to conduct series of expensive or even dangerous experiments
in laboratories or on site. Thus, numerical simulation became an alternative tool for scientific
investigation along with experiments and theoretical tools.

1.1.  Generally about Computation Fluid Dynamics

In fluid mechanics, the numerical simulation is performed using as governing equations, relations
which are established from conservation laws; such laws state that certain quantities, such as mass,
momentum and energy must be conserved during the evolution of the described system. These
governing equations are expressed as a system of non-linear, partial differential equations, which,
through a number of numerical methods, are eventually transformed into a system of simple algebraic
equations. The system of algebraic equations is then possible to be solved, in order to obtain a
solution. The subject of Computational Fluid Dynamics (CFD) is the development of numerical
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methods which enable the solution of the mathematical model representing fluid flows, through
numerical operations involving:

- Governing equations

- Boundary and initial conditions

- Domain discretization

- Numerical discretization

- Resulting algebraic equations

As computer computational power increases, more and more refined and advanced methods and
computational models are developed in order to describe and solve complicated flow fields and flow
patterns. Today CFD has become an integral part in the design process of products, devices, machines
or vehicles where fluid flow phenomena play an important factor on the performance. Optimization
studies are commonplace in industries, where thousands of virtual designs are evaluated using CFD in
order to improve desired characteristics.

1.2.  Particle meshfree methods in comparison with Eulerian mesh based
methods

The fluid dynamics governing equations may be described using two different approaches; using
a Eulerian or Lagrangian frame. The Eulerian description is a spatial description where the
computational elements remain motionless throughout a simulation. On the other hand, the
Lagrangian description is the material description, where the computational elements move following
the flow. The two descriptions lead to totally different sets of PDEs, since in Lagrangian description
the convective derivative is included into the total time derivative.

Another way to categorize fluid dynamics methods is depending on whether a computational grid
is required or not. The computational grid, also called mesh, is defined as any of the open spaces or
interstices between the strands of a net that is formed by connecting computational nodes in a
predefined manner [1]. Computational nodes are the locations where field variables are evaluated and
their relations are defined by some kind of nodal connectivity. Moreover, accuracy of the numerical
approximation is directly related to the mesh size and mesh patterns. Methods based on a
computational mesh are called as mesh-based. On the other hand, meshfree methods establish a
system of algebraic equations for the whole problem domain without the use of a predefined mesh.
Meshfree methods use a set of nodes, scattered within the problem domain as well as on the
boundaries of the domain to represent the problem domain and its boundaries. These sets of scattered
nodes are called field nodes, and they do not form a mesh; no information is required on the
relationship between the nodes for the interpolation or approximation of the unknown functions of
field variables [2].

Considering the previous categories, there are four distinct combinations which may be used to
derive a numerical method; Eulerian mesh based, Eulerian meshfree, Lagrangian mesh based and
Lagrangian meshfree. Eulerian mesh based methods have been widely used in Computational Fluid
Dynamics; such methods are the Finite Difference Method (FDM), the Finite Element Method (FEM)
and the Finite Volume Method (FVM). The FEM may be also used under Lagrangian description; in
this form it is used in Computational Solid Mechanics (CSM).

Lagrangian methods have some advantages in respect to Eulerian methods [3]. Since there is no
need to model the convective term, the resulting algorithm is simpler. Moreover, since the
computational elements follow the moving material, it is easier to obtain the time history of the field
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variables at a material point. Free surfaces and material interfaces are easily handled since
computational elements position themselves naturally across these features. Due to the previous
property, only the described body is included in the problem domain, since computational elements
will move automatically tracking its position in space.

On the other hand, Lagrangian grid based methods suffer in cases where there is a large
deformation, since the mesh becomes greatly distorted. This is the main reason why Lagrangian mesh
based methods are used primarily for solids and not for fluids. A possible option to enhance the
capabilities of a Lagrangian method is by using rezoning [3], where the problem domain is
periodically remeshed controlling the mesh quality. However, this procedure is rather tedious and
time consuming.

Another possible approach is to adopt a meshfree approach under Lagrangian framework. In this
way large deformations, wave breaking, splashes and droplets are easily described [4], without using
treatments to handle the mesh distortion. Moreover, a meshfree method tackles the non-trivial part of
building a suitable computational mesh.

Meshfree particle methods (MPMs) are a special class of meshfree methods, where a finite set of
particles is used to describe the behavior of the simulated medium and record the movement of the
system. Each particle may be associated to a distinct physical object or represent a part of the
continuum domain. In CFD particle methods, each particle carries a set of field variables such as
mass, velocity, density and occupies space. A non-exhaustive list of such methods may be found in
Liu’s book [3].

1.3.  CFD in hydraulic turbines

The precursor of modern turbines was the water wheel which was extensively used in the past
thousands years for providing power to mills, manufacturing plants or industries. Its main
shortcoming was its size, which limited the water flow rate and water head to be harnessed. Hydraulic
turbines have been developed since the 19" century and were primarily used for electrical power
generation. The basic underlying principle is that water is properly directed on the turbine blades,
exerting force. Since the blades are rotating, useful work is extracted from the fluid and it is
transferred through the turbine shaft to the generator attached to the turbine.

Generally, turbines may be divided into two main categories, reaction and impulse turbines. In
reaction turbines pressures before and after the turbine runner are different, thus the runner casing
should be sealed. Such turbines are Francis, Kaplan and axial flow turbines. On the other hand, in
impulse turbines, all pressure drop occurs at the turbine nozzles which direct a high water velocity jet
on the runner. Such turbines are the Pelton and Turgo turbines. This enables operation with air
presence, in atmospheric environment.

CFD was used in reaction turbines components (rotors, draft tubes) since 1978 [5]; initially
simplified 2d and then 3d geometries were simulated under the assumption of potential flow. After
1987, the increase in computer capabilities and the development of more efficient and sophisticated
numerical methods enabled the solution of 3D Euler equations in Francis turbine runners [5]. Euler
equations enabled a better description of the flow field inside the turbine, by properly reproducing
vortices and being in agreement with LDA measurements. During the period between 1990 and 2000,
the steady state Reynolds Averaged Navier Stokes equations were mainly used for turbine
simulations. Since the RANS equations enabled the modeling of viscosity and turbulent effects, it was
possible to study turbine losses, boundary layer effects and separation in the turbines. Moreover,
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methods for coupling the flow in stationary and rotating components were used, including mixing
plane models, frozen rotor or sliding mesh approaches.

On the other hand, simulation of impulse turbines (and particularly Pelton turbines) was possible
only after 2000. This is explained by the complexity of the flow features developing during an
impulse turbine operation. Indeed, a reaction turbine is fully enclosed and immersed in a single fluid
and its operation could be approximated using a moving reference frame. However, flow in an
impulse turbine is rather complicated, since there are two immiscible fluid phases (air and water) with
a distinct interface between them. Furthermore the flow is unsteady and involves rotating components.
Eventually, after implementing special models, such as the Volume of Fluid method for tracking the
phases and their interface in combination with mesh refinement near the free surface, simulation of a
Pelton turbine was possible, using traditional Eulerian mesh based methods.

S. Kvicinsky [6] worked on the simulation of free surface flows, involving water jets, with the
commercial CFD packages CFX and FIDAP. The first simulations involved simple water jet
impingements on flat plates under different angles. After benchmarking the capabilities of the two
CFD programs, Kvicinsky eventually used CFX for simulating the flow in a Pelton bucket, replicating
the Pelton operation at various bucket angular positions.

H. Matthias et al. [7] performed simulations of the water jet impingement on a flat plate too.
However they have used the commercial CFD package Fluent for the solution of the flow field and
the Geo-Reconstruct Volume of Fluid scheme for tracking the two phase. Apart from the
impingement simulations they are the first to carry out a simplified analysis of a rotating impulse
turbine runner, which consisted of flat blades.

Zoppe et al. [8] have used the commercial CFD package Fluent, solving the Reynolds averaged
Navier Stokes in combination with the Volume of Fluid PLIC method, to predict the flow patterns in a
stationary Pelton bucket impinged by a water jet. The simulations involved various jet diameters and
different water impingement angles. The simulation results have been compared with results from
their experimental installation showing good agreement.

Perig et al. [9] have used CFX for the simulation of % of a rotating Pelton runner. Their results
where compared to experimental results, provided by a scale Pelton model equipped with an onboard
acquisition system for measuring the unsteady pressure distribution on the inner surface of the bucket.
They also compared the evolution of the free-surface on the bucket between experimental
observations and the numerical simulation. The comparison showed that despite some inaccuracies in
the free surface evolution, the overall results were accurate enough.

Mack et al. [10] used Eulerian CFD methods for simulating the flow at the distributor of a multijet
Pelton turbine. Also they used the volume of fluid model to study the effects of secondary flows, due
to pipe bends, on the quality of the jet formed at a Pelton turbine nozzle. Their simulations showed
that, whereas the volume of fluid model is able to predict the macroscopic deformation of the water
jet, it did not predict droplets and the expected wavy free surface; a much finer computational mesh,
than that they have used [10], was required to properly replicate such effects. Furthermore, they
performed simulations of a multi-jet Pelton turbine to determine the efficiency drop due to multi-jet
operation.

However, despite the ability of simulating Pelton geometries, using appropriate Eulerian
techniques, considerable computational resources were required, even for simple flows [8]. Thus,
even if the mesh based Eulerian CFD approach was available, several researchers applied semi-
analytical methods in order to simplify the flow and estimate approximately Pelton turbine efficiency.

Atthanayake [11] used velocity triangles and the boundary layer equations, assuming that the
velocity profile on the Pelton bucket is similar to that of the flow around a cylinder. The analytical
model provides a formula with which it is possible to determine the losses due to friction on the
surface of a Pelton turbine bucket.
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On the other hand, Zhang [12] has developed a method based on the velocity triangles and the
forces acting on a fluid element to calculate the flow velocities along the path of the flow, assuming
frictionless flow. Also Zhang quantified the influence of Coriolis, impact and centrifugal forces in the
energy exchange between the water and the bucket.

Generally, analytical models were able to produce useful results regarding the operation of a
Pelton turbine, but they involved several significant simplifications, such as the flow on the Pelton
bucket being 2-dimensional [12]. Other researchers, such as Fengqin et al [13], developed a simplified
cartoon frame method in order to predict the dynamic performance of a Pelton runner.

Over time it became apparent that a Lagrangian particle method might be preferable for the
simulation of the flow in such turbines. Lagrangian methods do not require interface tracking and are
able to handle easily rotating components.

J. Anagnostopoulos et al. have performed simulations and optimization of impulse turbines,
including Pelton [14, 15] and Turgo [16] impulse turbines, using a simplified Lagrangian model, the
FLS algorithm. The FLS algorithm does not solve the Navier — Stokes equations, but rather assumes
the water jet as frames of fluid parcels which move in a rotating reference frame, under the influence
of the centrifugal and Coriolis forces. However the algorithm involves adjustment of several factors,
which affect the jet spreading or losses due to friction, impact etc.

Other researchers have employed the Moving Particle Semi-Implicit method (MPS) [17] to
simulate the flow in a Pelton turbine. The MPS method enables the discretization and solution of the
N-S equations in a Lagrangian meshless framework. However, apart from a single paper, there are not
any other references mentioning the implementation of the MPS method for simulations in impulse
turbines.

A more promising meshfree particle method is the Smoothed Particle Hydrodynamics (hereinafter
SPH) method and its variants. The SPH method has been used for the simulation of various
hydrodynamics problems, since 1998; e.g. Stamatelos et al. [18] have implemented a simple SPH
solver for basic viscous flows. The greatest advantage of the method is the capability of describing
large deformations in the free surface and for that reason it has been used extensively in wave
breaking [19] and sloshing studies [20]. Marongiu et al. [21, 22, 23] have implemented a variant of
the SPH method for the simulation of a Pelton turbine.

1.4.  Aim of the present study

In the present work the SPH method, and its more recent variants, are examined. The SPH method
was chosen since it is one of the earliest of the meshfree particle methods, thus there is a considerable
theoretical background, research and experience behind the method. On the other hand, there is
potential for further improvement and research interest on the SPH method, since there are several
issues which need to be addressed, such the boundary condition implementation. Another reason why
this particular method was chosen is the proven capabilities of the method in simulating free surface
flows, since the present study will focus on such cases.

The aim of the present work is the development of algorithms based on the SPH method, along
with its variants, to explore its capabilities and to assess its performance. The developed algorithms
are used to simulate a wide range of problems including 1D, 2D and 3D problems involving free-
surfaces and viscous flows. The main focus is the implementation of the SPH method on impulse
turbines and especially in Turgo turbine design.
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A novel element of the present work is the numerical simulation of a Turgo impulse turbine with
the SPH method. Indeed, as it was discussed in section 1.3, it was not until recently that impulse were
able to be modeled using CFD techniques and only one research group has implemented the SPH
method for simulation of Pelton impulse turbines [21, 22, 23].

Another novel feature is the design of a Turgo turbine using the SPH method. Very few scientific
articles can be found in the literature covering the design of such turbines and only few companies
construct this turbine type worldwide. The developed SPH method is used for design optimization, in
combination with a simpler flow solver. After the optimization, a Turgo turbine model, based on the
optimal blade geometry, was built.

Furthermore, modern SPH implementations and techniques, involving the implementation of
Riemann solvers, are discussed and a novel 2" order variant, which proves capable of preventing
oscillations, while also reducing the inherent viscosity of the Godunov scheme, is proposed.

1.5. The structure of the present thesis

The thesis is divided into several parts, with each part discussing an SPH-based method,
benchmark tests or applications. Chapter 2 describes the basic characteristics and approximations of
all SPH-based methods presented in the present work.

Chapter 3 explains the derivation of the SPH approximations and the corresponding set of Navier-
Stokes equations using the SPH method expressions, along with implementation details, such as
density filters or kernel gradient corrections.

Chapter 4 presents several basic tests of the SPH method. Each test aims to test characteristic
properties of the resulting scheme, such as reproduction of the wave structure of Euler equations,
conservation of angular momentum and incompressibility. Moreover tests involving viscosity effects
are presented; several academic test cases are examined involving laminar flow, such as the Couette
or Poisseuille flow. Also more complicated cases are examined, involving back-step flow at laminar
and turbulent regime. Turbulence models and advanced SPH treatments, such as particle
redistribution, are also discussed. A simple free-surface flow, involving the impingement of a water
jet on a flat plate, is simulated using the SPH method. The results are compared with experimental
results from literature.

Chapter 5 focuses on the practical applications of the SPH method, involving the study of various
components of impulse turbines, such as the nozzle including the spear valve or the jet deflector.
Moreover, the interaction of impulse turbine runner with the water jet is examined for both Turgo and
Pelton impulse turbines. An optimization procedure using the SPH method and the FLS algorithm is
also presented.

In chapter 6, the implementation of Riemann solvers in combination with the SPH method is
presented. The equations of the resulting scheme are explained, along with a novel 2™ order scheme.
Various test cases are examined and results of the high order scheme in practical applications are
discussed. Moreover, an advanced treatment for enforcing boundary conditions is presented and a new
hybrid SPH-based method is analyzed.

In chapter 7, another SPH modification is proposed, employing a totally different perspective
from the former methods. Extension to 2" order accuracy is presented along with advanced numerical
techniques. The results of test cases and applications are discussed in comparison with the other
methods.
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Chapter 8 is a conclusion, summing up all the notable points from the presented methods and
presenting various important key areas, proposed for further research.

Appendix A discusses the implementation of various Riemann solvers, approximate and exact,
which are used in chapter 4, 8 and 9.

Appendix B is a short description of the structure of the developed algorithms for the present
study, along with of block diagrams outlining and implementation details.

Appendix C covers the procedure which was employed for the algorithm parallelization of the
presented methods.

During the development of the SPH methods, validation was conducted using theoretical
solutions and numerical or experimental results. Analytical solutions are provided for several simple
problems, such as the 2d jet impingement (see chapter 3) or the Green-Taylor flow (see chapter 7).
Numerical reference solutions were obtained from:

- Literature

- Developed FV algorithms (see appendix A)

- The Fluent® commercial CFD program, based on the Finite Volume method. This program is
widely used by researchers around the world for a wide range of problems, including free
surface/multiphase flows (see also section 1.3 of the current chapter). Moreover, it is available
to the students of NTUA, through Central CloudFront server (cloudfront.central.ntua.gr). For
the above reasons it was used to provide reference solutions for various problems. In the
present thesis, results produced by the Fluent® software, will be indicated by simply referring
to them as Fluent solution. Appendix D provides more information about the Fluent software.

Experimental results were obtained from literature sources or the experimental installations of the
Laboratory of Hydraulic Turbomachines.

Appendix E has details on the construction of a Turgo turbine runner, based on the optimized
blade geometry, produced from the optimization procedure involving the SPH method.

References are located at the end of each chapter.
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Chapter 2

SPH method basics

Smoothed Particle Hydrodynamics (SPH) method was invented by Lucy, Gingold and Monaghan
in 1977. Initially it was used for the simulation of astrophysical problems in the open three
dimensional space. However the potential of the method was recognized, thus it was extended to
cover the behavior of solids and fluids. In this chapter, the basic concepts of the SPH method will be
introduced. Moreover, the derivation of the SPH approximations will be discussed, along with error
estimation of the approximations.

2.1. Basic characteristics of the SPH method

The SPH method was developed for the numerical solution of hydrodynamic problems which can
be expressed in the form of partial differential equations (PDEs) of field variables such as velocity
density, temperature, etc. The field variables depend on the nature of the described medium and the
underlying phenomena. Generally analytical solutions for such problems are not available, apart from
several simple cases; thus the main effort is to obtain numerical solutions. In doing so, it is required to
discretize the problem domain where the PDEs are defined and then approximate relations between
the field variables are needed, for obtaining the PDE operators. These relations result to a set of
discretized equations which is possible to be solved in respect to time, using an integration scheme.

The SPH method has the following characteristics [1]:

1. The problem domain is represented using a set of arbitrarily distributed calculation elements,
called as particles. There is no connectivity between these particles, i.e. particles lack any
explicit topology relating them.

2. The PDEs are expressed in integral form and the integral representation method is used for
function approximation (weak form formulation). In the SPH method it is called kernel
approximation. In this way, the SPH method is stabilized, since the integral form has a
smoothing effect.

3. The kernel approximation is further approximated using discrete elements, the particles. This
is termed in SPH as particle approximation. It is done by replacing the integration in the
integral representation, using finite summations over the corresponding values of all
neighboring particles in a local domain, called the support domain. Thus the support domain
of each particle is finite (or compact).

4. The particle approximation is performed every time step and, as a consequence, depends on
the local distribution of particles. The SPH method adapts to the simulated problem, since
the local distribution of particles depends on the nature and the features of the problem. As a
result, the SPH method is especially suited for problems with large deformations, such as

9
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breaking waves, offering good resolution in areas of high interest. Since there is no need for a
computational mesh, the SPH approximations can be used with any particle distribution.
However, in order these approximations to be valid the support domain has to be filled with
an adequate number of particles.

5. The particle approximations are performed for all field variables and PDE terms/operators,
thus the discretized differential equations are expressed in respect to time only (Lagrangian
description)

6. The discretized equations are solved using an explicit integration scheme, enabling efficient
parallelization. The only requirement is to determine a time step which would ensure the
stability of the algorithm.

Summing up all the above, the SPH method is: a meshfree, explicit, adaptive, Lagrangian method.

2.2.  SPH function representation — integral and particle representation

The formulation of the SPH method is divided in two steps: the first step involves the integral
representation of field functions and variables (or kernel approximation) and the second step is the
particle representation. The first step is the expression of the kernel approximation using the integral
of a field function with the smoothing function (or kernel function — generally this function is
represented using W). Then this integral can be approximated with the finite sum of all neighboring
particles inside the support domain of the kernel function.

Integral representation of a function

The integral representation of a function f(r), using the SPH methodology, is based on the
following identity [1]:

f@=[fa)8e-r)dr @.1)
Q
In the above relation f{r) is a function of a 3D position vector r and J is the d-Dirac function,
defined as:
I r=r
5(r-r')={ , 2.2)
0O r#r

In equation 2.1, Q is the volume of the integral that contains r. Also eq. 2.1 implies that function f
can be expressed in integral form. The identity is valid when the f(r) function is defined and
continuous in Q. If the 3-Dirac function is replaced with a smoothing function W(r-r’,h), the integral
form can be expressed using the following relation:

F@)= [ fEW(e-r',h)dr 2.3)

The W(r-r’,h) is called as smoothing function or kernel function or kernel or W-function or
simply W. The & term is the smoothing length and defines the area of influence of the W kernel
function. Since the W-function is not the d-Dirac function, the previous relation is approximate (from
now on the approximate expressions will be denoted using the brackets: < >).

10
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The kernel function has to fulfill several requirements in order eq. 2.3 to be valid. The kernel
function should [1]:
1. Be normalized in the support domain, i.e.

[w(e-r',n)dr =1
Q

2. Be compact (local influence), i.e.

Wr—r',h)=0, for ||r - r'” > xh

3. Be positive for all points inside the support domain
4. Monotonically decreasing with the increase of the distance between two points
5. Tend to the $-Dirac function, when the smoothing length tends to zero, i.e.

limW(r-r',h)=6( -r')

h—0
6. Beeven,ie. W(r)= W(-r)
7. Be smooth enough, i.e. have continuous high order derivatives
The kernel functions used by consistency corrected variants of the SPH method may not necessarily
satisfy all the above requirements, such as e.g. the normalization condition or the evenness [2].
However in the present work, such SPH variants will not be considered, thus the kernel function will
obey to the properties 1-7.

Integral representation of the derivative of a function

The approximation of the space derivative Vf(r) is derived by replacing f(r) with Vf(r) in

equation 2.3:

<Vf(r)>= [Vf ()W (r-r',h) dr (2.4)

In the previous relation, the space derivative is expressed in respect to the r’ variable. Since:

VI W(r-r',h)=V(f @ W(r-r',h))- f@&)VW(r-r', h) (2.5)

the result, after replacing in eq. 2.4, is:

<VF(r) >= j V[ @ W (c-r', h)]dr — j FEVW(e-r',h)dr’ (2.6)

In the previous equation the first term in the RHS can be written as a surface integral at the boundary
S of the integration domain €2, using the divergence theorem. Thus:

<Vf(r)>= j FaYW(rr',h)nds - j F@HYVW (r-r',h)dr’ 2.7)
s Q
where n is the normal to the infinitesimal surface element dS.

Since the kernel function has a compact support, the surface integral is equal to zero, when the
boundary of the support domain is within the problem domain. If the support domain extends beyond
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the problem domain, then the kernel function is truncated by the boundary and the surface integral
cannot be considered zero. In such cases special treatments have to be made, in order to remedy the
influence of the boundary effects, if the surface term is assumed zero.

Problem domain J Problem domain :
[ — e e — e e T e —
|
w w i
1
1
)
{J
) Boundary
1
1
1
»> 7 Ld
N7 B e S
Support domain of I Interior region Support domain of W with K /1

Fig. 2.1. Support domain and problem domain of the kernel function W. Left: the support domain lies inside the problem
domain, thus the surface integral in eq. 2.7 is equal to zero. Right: truncated support domain near boundary.

Therefore for all points whose support domain is inside the problem domain eq. 2.7 can be written
as:

<Vf@)>==[ fFVW (e’ h)dr’ (2.8)
Q

In the previous equation (eq. 2.8) the derivative operator is transmitted from the f{x) function to the
smoothing function. Thus the gradient of a function f(x) is calculated using the values of that function
and the derivative of the smoothing function W, instead of using the derivatives of the f(x) function.
This feature is similar to the weak form methods that reduce the consistency requirement on the
assumed field functions and produce stable solutions for PDEs.

Particle representation

In the SPH method the described system is represented using a finite number of particles that
occupy space and carry mass and other characteristic properties. The continuous integral
representations are expressed as discrete summations for all particles residing inside the support
domain of the kernel function.

The infinitesimal volume dr’ is replaced by the finite volume AV, for particle j and is related to the
particle mass as follows:

m,=AV.p, (2.9)

where p; is the density of j particle. The continuous SPH integral representation is written in the
following discrete form [1]:

fr)= If(r')W(r-r’,h)dr‘:
fr)= if(rj)W(r-rj,h)AVj —

fr)= Zf(rj>W(r-rj,h)% (0,av,)=
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f(r)= Z%f(rj w (r-rj , h) (2.10)

J J

.. . . 8

Fig. 2.2. Kernel function support radius (or support domain).

From now on, it will be assumed that W, = W(rl.-r I h), for simplicity. Thus:

N

<@ >=Y" rae)w, @11
j=1 Fj
Vi@ >=-3" fe W, (2.12)

=L
In the previous relation VWl.j is expressed in respect to particle j. It is possible to rewrite the

previous relation, expressing VWl.j in respect to i particle for simplicity, as follows:

Vi@ >=>" f e v, (2.13)

=t Fj

V W, is calculated using the chain rule. In 1D:

dw dw dr
sl (2.14)
dx dr dx
Similarly, in 3D:
dw. dw,
g~y Mo _(dr dr aryaw, 1)
’ " dr, dx dy dz ) dr,

where:

dr_d(w/x2+y2+z2)_ X
dx dx /xz + y2 + 22
The previous is applied in the same manner for y and z. Substituting x (integral approximation)
with x;=x;-x; (particle approximation), leads to:
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y,, z; |dW, X=X, Y~y zi—z; |dW;

| = (2.16)
Tel)an Ul sl sl ) a5

H’/

Here V W, is expressed in respect to i particle and, because of that, the negative sign has been

ij lJ

removed. It has to be mentioned that ”1’,7 ” 1s the distance between the i, j particles, defined as:

I =0 =, F + 0=y, +e -2, F

It is possible, using the following identities:

a0 =%[V(m‘(r))—f(r)Vp] and

orr=o[s{ L)) L2,

to derive alternative formulations for the derivative, such as the following:

<Vr0>= 1) sl w, @1
<Vf(r)>=p, i (f(r J+[f(l;")j V., (2.18)
J=1 j Pi

The latter approximations, and especially eq. 2.17, tend to perform better than eq. 2.12 in the
gradient calculation, according to Colin et al. [3].

Similar formulations may be derived for the second derivative (or laplacian, denoted with A) of a
function [4]:

< Af(r)>=<V f(r>>—22—[f(r> Fape it (2.19)

£ I H

For two arbitrary functions, the following rules may be applied, in conjunction with the SPH
approximations:

<fitfi>=<fi>+<f,>
<Sfifh>=<[f,><f,>

<cf, >=c < f, >, for a constant ¢

2.3.  Error estimation in the SPH approximations

By observing the procedure of the SPH approximations derivation, one may notice that there are
two distinct approximations. The first approximation is made in eq. 2.3, when the §-Dirac function is
replaced by the smoothing function and is called integral approximation. The second approximation
is the calculation of the integral using finite summations of particle contributions (eq. 2.11-2.12) and
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is called particle approximation. Errors of the SPH expressions are attributed to the contribution of
both aforementioned expressions.

Integral approximation

The integral approximation has, at least, second order of accuracy (%) [1, 2, 5]. This can be
proved by considering the error of a Taylor expansion of the f{x”) function around x:

< @) >= [[f@+ 102+ + £ (@)= + . (', ' =

< f(x)>= f(x)J.W(x—x', h)dx'+f'(x)j (x'—x)W(x—x’, h)dx'+0(h2) (2.20)

In the previous relation the O(h") term denotes the error (and n the rank of the error). Since the W-
function is even in respect to x, then the function (x- x )W(x - x’,h) is odd, thus its integral in the
support domain is zero:

I (x)j (x'—x)W (x-x",h)dx'= 0

Eventually:
< f(x)>=f(x)+O0(h") (2.21)

The residual error term may be expressed in the following way:

oy =21 “h £+ 0 (2.22)

The o is a constant which depends on the kernel function used. It is possible to construct a kernel
function, for which the ¢ constant is zero. In that case the error of the integral approximation would be
of fourth order, since the O(h3) term is zero, due to the fact that the (x—x’)3 W(x-x’,h) function is odd.
Generally, in order to obtain n-th order approximations for the value of a function, it is proved [1] that
the following conditions have to be satisfied:

A, = [W(x-x' h)dx' =
i (x j x-x, h)dx' =0
=% i ( ) x-x',h)dx’ =0 (2.23)

A = Sl I(x x'j W (x-x'h)dx'=0

n
|
n. o h

In the previous relations:
- A, is equal to unity, due to the kernel normalization condition.
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- A, is equal to zero, since the function inside the integral is odd.
2
- Ajisequal to

, which, for specially designed kernel functions, may be zero

Similar conditions can be expressed for the n-th order integral approximation of the first and
second derivative of a function. To summarize; if a smoothing function satisfies the following
conditions:

M, = jW(x—x’,h)dx' =1
Q
M, = I(x — XYW (x-x"h)dx' =0

Q
M, = [ (x=x')*W (xx' h)dx’' =0 (2.24)
Q

M, = I(x— x)"W (x-x',h)dx' =0
Q

and

S (2.25)

then it is able to reproduce functions and the k-th order derivative of a function with n-th order of
accuracy [1]. The first requirement has to do with the accurate reproduction of polynomial functions.
The second requirement defines the surface values of the smoothing function and its derivatives at the
boundary of the support domain. It is highlighted that the second condition is a requirement of the
compact support of the smoothing function.

Using the above conditions, it is possible to construct high order smoothing functions. Monaghan
[5] has developed a technique for the calculation of high order smoothing functions. However, such
smoothing functions may become negative and as a result may produce unphysical solutions, such as
negative density (and mass) or energy. Actually G.R. Liu [1] proved that it is impossible to construct
high order functions, which are also positive in the whole support domain. This can be understood if

one considers the relations in eq. 2.24; for n being even (n=2, 4, 6,...), then (x—x")" >0, thus in

order the integral to be zero, the smoothing function has to be negative at a region of the support
domain.

All the above are valid when the integral relations are applied on the complete support domain, in
the opposite case the error would be larger.

Particle approximation

Generally the calculation of the particle approximation errors is not an easy task, since the particle
positions change over time, due to their motion (Lagrangian representation). Particle approximation
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errors depend mainly on the distribution of particles inside the support domain; errors are greatly
affected by the uniformity or irregularity of particle distribution and the distribution depends on the
flow patterns and the dynamics of the simulated phenomena. A first approach of estimating the errors
would be by placing particles on a regular Cartesian grid and moving them by a small, relatively to
the grid spacing, random perturbation. However, errors calculated in this way were found to be
overestimated [5]. The main reason why this happens is because, in practice, errors are much smaller
than the aforementioned estimate, since the induced disorder would not happen in a real simulation. In
other words, particle distributions in the SPH method may exhibit irregularities, but they do so in an
orderly way, following the motion of the described medium.

For that reason the errors will be estimated for a set of uniformly distributed particles. The error
estimation of the particle approximation is possible through the Poisson summation formula [2, 5].
Monaghan [5] proved that:

e The particle approximation error depends on the smoothness of the kernel function. Smoother

kernel functions tend to reduce errors.

e The summation approximation for a function (eq. 2.11) has negligible error when the

smoothing length is greater that the interparticle distance 4x (grid spacing).

¢ The summation approximation for the derivative of a function shows the same behavior with

the function approximation, i.e. error is small when A>4x, but generally the error is larger
than the error of the function approximation.

However, even if the particle approximation error is small/negligible for a uniformly set of
particles, such a type of particle distribution may not be advisable. The reason is the idiosyncratic
behavior of particles in SPH method, which, in the course of a simulation, tend to gather at
characteristic lines (for example in directional flows which appear in jets) and remain aligned even if
the result is unphysical [6]. Eventually particles tend to get compressed at one direction, while they
expand at another direction. Thus, at later stages of a simulation, the particle approximation errors
may dramatically increase due to the non-uniformity of the distribution and the large voids occurring
between particles. Also, it is very likely the final distribution of particles and, consequently, field
variable distributions to be unphysical. The previously discussed issue occurs especially when
particles are placed on uniform grids, since they are already positioned aligned. In the course of the
present work several examples of this issue will be shown, in cases of jet impingements, near
stagnation points, or in other cases (for example shear cavity flow).

To sum-up, the particle approximation is greatly affected by the particle distribution, but using a
regular particle distribution may not always be a good idea, since at later time steps it will result to
clumped particles. Sometimes a tradeoff has to be made and a random perturbation may be needed on
a regular particle distribution, in order to keep errors at a minimum, while ensuring that particles will
not align at later time steps.

2.4. The kernel function

From the above it is obvious that the kernel function plays a crucial role in the SPH
approximations. In the next part, several important kernel functions, widely mentioned in literature,
will be mentioned.

The general form of the kernel function is the following:
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W(r,)=Ah")f H ’H (2.26)

The kernel function may be expressed as the product of a function f, which depends on the ratio of
the interparticle distance llr;ll to the smoothing length £, and a parameter 4 which depends on the
smoothing length raised to the problem dimension d (1 for 1-dimensional, 2 for 2-dimensional and 3
for 3-dimensional problems). Function f may be polynomial or exponential, but it has to be
monotonically decreasing when the interparticle distance is increasing. The parameter A is used in
order the kernel function to be normalized. Its value can be calculated from the normalization

condition:
I W (r)dr =
| {A(hd ) f{Hﬂdr =1=
2 h
A(h?) = __ (2.27)

)

Lucy (1977) initially used the following bell-shaped function:

[ ) st
W(r) = A(h") h ] (2.28)
0 ke >0

The constant parameter A(h*) can be calculated as follows:

- For the 1D problem, the following definite integral has to be calculated (obviously there is no
point integrating beyond 4 since the kernel function has a value of zero):

+h h 3
IWdr = I[l + 3HJ[1 —HJ dr :ﬂ
h M h h 5

Thus A(h') = i
4h

»
P

o i

Fig. 2.3. Integration of the kernel function in 1D. Integration is performed in respect to the infinitesimal dr.
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- For the 2D problem:

' r rY h'r
!st = M (IHZJ(I_ZJ r \drd g ==

Thus A(h*) = i
h'z

2

. dg<<1

ds = rsin(dg)dr =
dS =rdrd¢

Fig. 2.4. Integration of the kernel function in 2D. Integration is performed in respect to the infinitesimal surface element dS.

- For the 3D problem:

h 3 3
deV =J' (1+31j(1—1) amr? |ar = 117
J ) h h 105

105

Thus A(h}) =
us ALY =es

Fig. 2.5. Integration of the kernel function in 3D. Integration is performed in respect to the infinitesimal volume shell dV.
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r/h
Fig. 2.6. Lucy’s kernel function. Left: 3D view. Right: Plot of the kernel function and its derivative

Monaghan (1992) [3, 4] devised a kernel function based on the Gaussian function. The main
advantage of this kernel function was the smoothness, even on high order derivatives, since the
Gaussian is differentiable infinite times, with continuous derivatives. This results to increased stability
and accuracy of the approximations. On the other hand, the Gaussian does not have a compact
support, but tends to zero at infinity. Its value approaches zero very fast numerically, but it takes
longer distance for its derivatives to approach zero. The previous facts lead to a large support domain,
with the inclusion of more particles and increased computational cost.

The Gaussian kernel function is the following:

_[HJZ
W)= Ah)e " (2.29)
1 1 2\ _ 1 3\ 1 .
where A(h') = ﬂ , A(h™)= 7 and A(h) = Th3, calculated exactly in the same manner
V4 /4 T
as above.

1.5

r/h

Fig 2.7. Gaussian kernel function. Left: 3D view. Right: Plot of the kernel function and its derivative

Monaghan and Lattanzio (1985) formulated the cubic spline kernel function. The cubic spline had
the advantage of resembling the Gaussian function, while also having compact support. However the
second derivative of the cubic spline is a piecewise function, thus not differentiable in areas of the
support domain, causing instabilities.
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W(r)=Ah' J=(2-q)

where ¢ :"Lh” and A(h') = l, Ay =

h

7

27

07

S ’
Wy , .
£22 \Y:f;"\.
‘i NSRSAAL ST
L7 L7~
oSt 005 ':.7 o
Lol s -0.4
o, .
"~'~'~:~':~7/

-0.6

-0.8

%—qz+lq3 0<g«<l
é 1<¢g<?2 (2.30)
0 q=?2

15 3 3

, A=
T h? Alr) 2k
0.8
06 T "
\ dwdr
0.4
l o LN\
0 : >f ’ )

0.2 0.5 1 g 2 2.5 3 3.5

r/h

Fig. 2.8. Cubic spline kernel function. Left: 3D view. Right: Plot of the kernel function and its derivative

Morris (1994, 1996) devised higher order spline kernel functions, based on the 4™ and 5™ order spline.
These kernel functions resemble the Gaussian function, have a finite support domain, are smoother
than the cubic spline kernel function and, as a result, are more stable.

4™ order Spline kernel function (quartic spline):

(g+25) —=5(g+15)" +10(g +05)* 0<¢g<05
—q)' -5015-¢) 05<g<l15
(25-¢q) 15<¢g<25
0 25<¢q
1 96
here A(h')=——, A(W’)=——, A(h’) =
where AU = A = oo A = 200
- 5™ order Spline kernel function (quintic spline):
(3—qf —6(2—¢g) +15(1—¢f 0<g<l
—q) —-6(2—q) 1<g<2
3-q) 2<g<3
0 3<¢q
el 1200 o7 o 3
hg="—, A(h)=—/, A(h") = AR =
with ¢ =55 AR =2 A= e A= S50

(2.31)

(2.32)
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In the present work the 4™ order spline kernel function was chosen and finally used, mainly
because of smoothness and stability. Alternatively the 5™ order spline might have been used, however
no notable difference was observed in results obtained with the 4" and 5" order spline kernel
functions. Moreover the 5™ order spline has increased support domain radius (3 smoothing lengths in
contrast to 2.5 smoothing lengths for the 4™ order spline), which means increased computational cost.

dwdr

! r/h
Fig. 2.9. Quartic kernel function. Left: 3D view. Right: Plot of the kernel function and its derivative
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Chapter 3

The standard SPH method for flow simulation

In this part, the standard SPH method will be described, based on the works of Monaghan [1] and
G.R. Liu [2]. Moreover, corrections and further developments, formulated by Violeau [3], Morris [4]
and other researchers, will be presented. The SPH formulation which is used in the present study is
based on the weakly compressible assumption, where pressure is linked to density through a stiff
equation of state. Truly incompressible SPH is possible, but, as it is explained in section 3.5, it
involves increased complexity and is prone to instabilities. The SPH model described here is capable
of including the influence of viscous effects of Newtonian and non-Newtonian flows.

3.1. The Navier-Stokes equations

The equations of fluid flow are based on the following principles:

e Conservation of mass

e Conservation of momentum

® Conservation of energy

The flow may be described using Lagrangian or Eulerian framework. The basic difference
between the two ways of description is the motion of the computational elements; using Eulerian
description the computational elements remain still, whereas in Lagragian description the
computational elements move following the flow. The mathematic consequence of the two different
descriptions is that the Lagrangian time derivative is the sum of the Eulerian time derivative and the
convection derivative. To be more specific the Lagrangian derivative of a scalar variable fis equal to:

D_f:ai_i_u.Vf:af af af ai

L tu——+v=—+w

1
Dr or o Mo Vay TV G-D

where:

D
. H the Lagrangian time derivative (or else material derivative)
t

° E the Eulerian time derivative
. u=(u, v, W) the velocity vector of the flow
o of o

. the space derivative of the scalar variable f'in respect to x, y, z respectively

ox dy 0z
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The fact that the SPH method is a particle Lagrangian method means that the calculation of the
convection derivative is not required, because it is included in the Lagrangian time derivative. This is
an advantage of the method, since the procedure of calculating the convection derivative, required for
Eulerian methods, introduces additional numerical dissipation. In the Lagrangian description the
control volume moves following the flow, thus the mass enclosed inside the control volume does not
change; the control volume, however, may deform.

Streamlines

5 u

/\;

Fig. 3.1. A Lagrangian control volume.

The total volume change AV of a Lagrangian control volume inside a velocity field u =(u,v,w)
may be calculated as the surface integral:
AV = [u-ndrds (3.2)
S

Using the divergence theorem (or Gauss theorem), the surface integral is written as a volume integral:

AV

== j(V-u)dV (3.3)
Vi

Assuming that the control volume is small enough, so that all properties of the medium enclosed are
the same throughout the volume, then:

@=<v.u>id<av>:<v-u>év:
1L DWV) _g (34)
oV Dt |

Continuity equation

The continuity equation is based on the conservation of mass. Considering that om = pdV :

D(ém) _ D(poV) 55)
Dt Dt '
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D(ém)

However =0, since the enclosed mass in the control volume remains unchanged through time.

Thus:
w22, POV g,
Dt Dt
D, L D(V)
Dt oV Dt
Dp

— =—plV- 3.6
o p(V-u) (3.6)

Momentum equation

The momentum equation expresses the 2" Newton’s law, i.e. the net force on the Lagrangian
volume is equals to its mass multiplying the acceleration of that fluid cell.
z

or,
(T, +€”‘dz)dxdy

4 o Zape

pdydz —p ldz gy ——> (r,, + 27 doydydz
gz «—t .____i _____ _— ox »
T dydz l/a
d

or
2 b)dxdz
% fy)

(Tyx +
Y Velocity components
v =(v, V)

Fig. 3.2. Forces acting on a Lagrangian cell

The forces acting on the fluid cell are body forces and surface forces. Gravity, magnetic forces or
other forces affecting the volume of a fluid cell can be considered as body forces. The surface forces
are:

- Pressure, which is imposed by fluid elements surrounding the control volume

- Shear and normal stresses, which result to shear deformation and volume change
In the x-direction the forces which act upon the Lagrangian control volume are:

- (p +a—pde —p |dydz + (‘L’xx + o, dx} -7, |dydz
0x ox
aTyX aT
+|7,+ dy |-t |dxdz+|| 7, +—=dz|—1, |dxdy 3.7
) ay Y. 4 az 4

ot
o, dxdydz + Cx dxdydz + 9 dxdydz
ox dy 0z

=— a_p dxdydz +
ox

where p is pressure, 7; is the stress at j direction acting on the surface whose normal lies on i direction.
Assuming the body force F,, expressed per unit mass, on the x-axis:
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o o or,, or
P dxdydz +22 dxdydz +—2 dxdydz + 22 dxdydz + F.(pdxdydz )
o ox dy 0z

Thus finally the momentum equation is written as:

o Jr,. o
p&:_a_er Do g Ty T”+pr
Dt ox ox dy oz

Jr, odr, 9
p& 8p+ S T’+pF,
Dt dy ox dy oz ’

Dw ap or, Or, It
p—=—" “+ +—=+pF,
Dt az ox dy oz '

The stress is proportional to the strain rate through the dynamic viscosity:

7'-ab = lu Sab

where g, is the strain rate (considering compressibility effects):

aub ou, 2
b - Z(V-uld
gub ax“ axb 3 ( u) ab

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

In the previous relation, d,, is 0-Dirac function (unity when a=b and zero in all other cases) and a, b

denote spatial dimension x, y, z.
All previous equations may be written in tensor form using the notation below:

Du
pE:V.P+pfbod)'

O-xx Txy sz Txx - p Txy sz
P=|7z, o, 7. |5 7, w—P 7. |=-pI+T
sz sz O-zz sz sz Tzz 4

Energy equation

(3.14)

(3.15)

The energy equation expresses the conservation of energy. The rate of change of energy for a
fluid element is equal to the total heat flux through the boundary from/towards the fluid element and
the rate of work done by forces (body and surface forces) acting on the fluid element. If the heat flux
is omitted, then the rate of change of the internal energy of the infinitesimal fluid cell consists of the:

- Pressure work due to volumetric strain
- Energy dissipation due to viscosity
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Thus:
De ou dv ow
o5 5 )
e 8_u+ ou ou

7. —47_ —
Tox  Yady Tz
ov ov dv
" ax Y dy ¥ 9z
ow ow ow

‘T, — 4T, —+T, —
zxax 2y ay 2z aZ

(3.16)

3.2.  The Navier — Stokes equations expressed using the SPH method

Relations for density calculation / continuity equation

The density approximation is very important for the SPH method, since it determines the particle
distribution and, depending on the implementation, the smoothing length evolution. Density may be
evaluated using two different approaches. The first approach is the summation density, which directly
applies the SPH approximations on the density field. Direct use of equation 2.11 for the density field,
leads to the following relation:

N
p=>mW, (3.17)
j=1

Here the kernel function, W, , acts as the inverse volume. Eq. 3.17 states that the density of a particle

may be approximated using the weighted average of the density of all particles lying inside the
support domain of the particle being examined.

The second approach is the continuity density which is based on calculating density evolution
using the continuity equation, written in SPH form, plus some transformations. Beginning from the
approximation 2.11, applied for the continuity equation (eq. 3.6) leads to:

Dp, -
s 5N Ty VW, (3.18)
Dt ; pi '
. Dp. N m; aWij aW,,j aWij
1.e.. YL =—p. —u. +v. +w.
Dt p,; pj[ ! ox 'y !0z

Assuming the particle approximation for the gradient of unity:
N

vi=>21vw, =0
=P

and by multiplying both equation sides with p,u,, one derives the following relation:
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N m. N m.
Ozpiuizp—" IVW, =p,> —u, VW, (3.19)
=P

=1 Fj

After adding eq. 3.18 and eq. 3.19, the resulting equation is:

%:_piiﬁ(u/’ _ui)'vivvii :piiﬁuﬁ 'Vivvii (3.20)
Dt Sp, ] Sp, A

where u; =u, —u; (generally ¢, is definedas ¢, —¢ )

The previous expression of the continuity equation uses relative particle velocities, instead of particle
velocities themselves. It is preferred in respect to eq. 3.18, since using relative velocities reduces
errors, especially in case there are few particles within the support radius.

A more popular form of the continuity equation is the following:

Dp, &
——L =Y mu.-VW. 3.21
Dt jZ_I: ]y oy ( )

Both approaches offer advantages and have disadvantages. The summation approximation for
density evaluation is simple and it is able to conserve mass exactly, since the density integration for
the entire problem domain is exactly the total mass of particles; Monaghan and Fulk proved that the
continuity approach does not. However, density summation approach has the disadvantage of greatly
underestimating density near boundaries (edge effect — will be further discussed in boundary
conditions), or near interfaces between particles representing material of different densities (for
example air and water). Another disadvantage is that the density evaluation has to be performed
before any other calculation, thus leading to an extra calculation loop. The density change from the
continuity equation may be calculated at the same time with other variables, such as the acceleration
from the momentum equation, making the algorithm less computationally intensive and easier
parallelizable. Also the continuity equation can be used successfully in cases of free surface flows,
strong shocks and discontinuities.

A way of improving the accuracy of the summation approach is to normalize the RHS of eq. 3.17
with the SPH summation of the smoothing function itself:

p=y mW, (3.22)
where:

~ W..
Wo=— i (3.23)

m

J

If one observes the relation for V[7,.j , it is obvious that the denominator will be unity for a regular

set of particles of the same density (the denominator is actually eq. 2.11 where f (x) is equal to unity).
This approach is a more refined weighted average for the density calculation, which behaves better
near boundaries and material interfaces. In the present work, it will be used as a density filter, as it
will be mentioned later on.
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Momentum equation

The derivation of the momentum equation is similar to the continuity density approach. Direct
application of eq. 2.12 to the momentum equation yields, written for the a-velocity component (a, b
represent the dimension):

ab
Du’ 1 a,” oW,
e Jh et (3.24)
Dt p, 5 P
Eq. 3.24 follows Einstein notation in respect to the b superscript (denoting dimension x, y, 7), i.e.:
ab ab ax ay az
IV _ Z oW, _o," oW, L2 "W, ) IV,
pj ox’ p; ox’ pj dx p, dy p; 0z

Thus for the x-velocity component the previous equation would be written as:

Du, _ 1Ml ( w \OW _ (5)OW (=)W
Dr P Z]: p, |:(Tj Pj) Ep +(Tj ) dy +(Tj ) 3z } (3.25)

The same notation is adopted for the rest of the equations too.
Eq. 3.24 may be rewritten, using the following identity:

Zm oW, _Z o, oW, i _ o
pi G p, ox’ 7 ppj ox”
as:
ab ab
Du/* o +0," oW,
_ =>'m, —7 (3.26)
t > PP X

As with the continuity equation, the symmetrized form of the momentum equation helps in
minimizing errors.
An alternative and more popular formulation may be derived [2] using:

1 aaab a Gab O_ub ap
———— == +—=5 (3.27)
p ox ox’\ p P ox
leading eventually to:
Du’ c” " oW,
= my| o+ y (3.28)
Dt j J( pi2 pj2 J ox”

The latter formulation will be used in the present work, which may be written in a general form as:

Du/’ p. p; |9V, we”  wuEe” oW,
| m. i + < 4 m. L1 + - 0 (3.29)
Dt Zj: "( ; pf} ox’ Z,: A T K5 b+ i

where f,% 4 18 any acceleration due to body forces (such as gravity) at the a-direction.

One popular SPH approximation for the strain rate is:
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giab:i ! 'ia U Z— i Aoa [Z—u VW, z‘jléab (3.30)

=1 P j=1 P j=1 Pj

Iu[g[xx Iu_g'xx ath :uigixy Iu'g.xy aVVz :uigixz Iu.g.xz aVVz
+ij{ —t+— Jax’*Lij 3 ay’+zmj R azj

Nom., W, Xm ow Nom, oW, oW
e =Y —tu,—+> —Lu,— _2 D —uy— v w, — (3.32)
= ox I p; ox 3|45 p, ox dy 0z
N om ow, Ym, W
g =>~u, - T+y Ly, 5 d (3.33)
j=1 p] y j=1 pj X

Energy equation

In a similar manner as the momentum and the continuity equation, it is possible to derive the SPH
equation for the internal energy evolution. The two forms of the energy equation are the following:

Pi

—=—Z S VW, [+ (3.36)
7 piP; ) T 2p

The expanded form of the eq. 3.35, for 3D, would be the following:

_:_Z u, - VW, +i£i:£i (3.35)
J pj 2

e L5l 2oy 2ol Moy, Wy oW,
- J 2 2 ij ij ij
dt 245 PP ox dy 0z

i (gxx T +26 e +267 ¢, +8iyy8iyy+28iyzsiyz+sizzsi“)

(3.37)
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3.3. Alternative viscosity treatments

In the previous part, the momentum equation was expressed considering the viscous contributions
using stress and strain relations. This way of estimating the viscous forces requires nested
approximations first for the strain rate (eq. 3.30) and then on the stresses (eq. 3.31), which generally
are rather computationally intensive; at a first step the strain rate has to be calculated looping all
particles and then the viscous contribution is estimated after looping all particles again. Moreover the
application of stress and strain relations in wall bounded flows would require the extrapolation of
additional fields (the stresses) on the wall particles in order to properly estimate viscous contributions
at the near wall area. In complicated geometries this may be problematic.

Thus, most SPH practitioners [1, 2, 3, 4, 5, 6] do not use the stress-strain relations, but other
simplified equations which originate from the SPH approximation for the second derivative of the
velocity (see also eq. 2.19 for the SPH approximation of an arbitrary function), such as the following
[4]:

— _Hi +'uj uij

oo Jof

W, (3.38)

i

and the momentum equation is written as:

—_—Z —+— VW, -1, |+f£,,, (3.39)
J

This simplified relation for accounting the viscosity term is much simpler than the strain — stress
relations and it is able to handle materials with different viscosities, non-Newtonian flows and
turbulence effects. Also it is simpler to program and can be calculated at the same time with the
pressure contribution of the momentum equation, thus leading to only one loop needed to estimate the
momentum and continuity contributions for all particles. Moreover its results are very close to those
obtained by the stress strain relations as it will be shown later on.

The previous viscosity treatments had to do with the modeling of physical viscosity. There is
another form of viscosity which has to be considered when simulating problems of hydrodynamics, in
order to model shock waves, without unphysical oscillations near the shock wave. A shock wave is
not a true discontinuity, but a transition zone whose thickness is in the order of a few molecular mean
free paths. Application of the mass, momentum and energy conservation across a shock wave requires
the simulation of a mechanism transforming kinetic energy to heat energy. A way to represent this
transformation is with the use of an artificial form of dissipation. The Monaghan type artificial
viscosity II;; is the most widely artificial viscosity term used in the SPH literature for modeling shock
waves. It provides the necessary dissipation to convert kinetic energy into heat at the shock front and
also prevents the unphysical penetration of particles approaching each other. The detailed formulation
is as follows:

— 0 Cypy + ﬁH¢1‘j u, -1, <0

I, = 5 g 3.40
v Pij u,.-r.<0 ( )
0 /]

where:
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hu; -,

o (3.41)
P I, [+ (0.18,)?

The symbols ,Ul.j , G; represent the average density and average speed of sound respectively. hj is the

average smoothing length, in case variable smoothing length is used. The term (O. lhl:/.)2 is added at

the denominator to avoid singularities when two particles are approaching each other.
_ 1
Py = E (pi TP )

_ 1
c,.j:z(c,.+cj)

r=
Tait 2
(= [P co(ﬁj
dp Po

1
h. zz(hi +hj)

y

lll-j =u,; —llj l‘[:/- =r; —l‘j

Here ¢,is the speed of sound at the reference density O, , when the Tait equation of state is used.

If the ideal gas equation of state is used, then the appropriate formulation for the speed of sound
should be adopted.

The parameters oy, f; are constants set to ~1. Viscosity associated with oy produces bulk
viscosity, while f; is intended to suppress particle interpenetration.

3.4. Equation of state — Tait equation

When solving compressible flows, the continuity, momentum and energy equations are solved,
while pressure is estimated through the ideal gas equation of state, linking pressure to the internal
energy and density. In the case of incompressible flows, a divergence free velocity field has to be
calculated. However the resulting set of equations is rather cumbersome due to the nature of the SPH
method (see the next section covering the incompressibility in SPH). On the other hand, the fact that
every incompressible flow is actually compressible, at least to a small extent, led many SPH
researchers to use the concept of weak compressibility, i.e. assuming that the described medium is
weakly compressible, using an appropriate equation of state. Often the Tait equation of state is used

[7]:

4
p=B (pﬁj -1 (3.42)
0

where, for nearly incompressible flows, y is a constant set to 7, 0, is the reference density and B is

2
the stiffness parameter equal to P OC% )
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The ¢, parameter in the stiffness parameter B represents the speed of sound at the reference
density py. Generally it is not computationally efficient to use the actual speed of sound of the
simulated medium, since its value would result to prohibitive time steps (for example the speed of
sound for water at standard temperature and pressure is 1480m/s). The value of the speed of sound
directly affects the integration time step of the method. A compromise has to be made; on the one
hand, using a higher speed of sound leads to increased fluid stiffness, but also a reduction of the
integration time step is required to ensure stability. On the other hand lower speed of sound values
lead to increased time step and faster time-marching, but the fluid may not have a realistic behavior.
The value of the numerical speed of sound has to be selected properly in order to simulate the fluid as
nearly incompressible, while ensuring the density variation at a minimum. Monaghan [1] showed that:

2
m _ ||u max (3.43)

2

p c

Using a numerical speed of sound at least ten times the maximum velocity appearing in the simulation
would result to density variation less or equal to one percent, since:

2
M~”u$:> |9p| ~ 0.01p (3.44)

p (10-Jul,, )

The time step can be estimated, using the following relation [3]:

2
dt = min 0.4£ ,0.25 min( \/Z J 0.125 min(ﬂJ (3.45)
Cy Vi H;

where y; is the modulus of acceleration and g; the dynamic viscosity of particle i. The first term in eq.
3.45 is the CFL condition, the second term is an additional constrains due to particle acceleration and
the final term is due to viscous diffusion.

Here it has to be highlighted that, even when using the time step given by the previous relation
and an appropriate speed of sound, pressure and density distributions tend to exhibit oscillations and
numerical noise. This is a side effect from the equation of state used; the specific equation of state
creates large pressures for small density variations [6]. In order to smooth the oscillations in the
density (and consequently pressure) field a density filter is used. An alternative way would be to
enforce incompressibility as will be shown in the next section. Another way, which will be considered
later on, is to use Riemann solvers for the solution of the inter-particle contributions.

3.5. Truly incompressible SPH

As it was mentioned in the previous paragraph, it is possible to solve the truly incompressible
Navier Stokes equations using the SPH method. For doing so there are two ways; the first uses the
projection method and the second the pressure correction method.
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Projection method

The projection method was invented by Chorin [8] for solving the incompressible Navier-Stokes
equations. The key advantage of the method is that pressure and velocity are decoupled. The main
idea of the method is to calculate an intermediate velocity field, which does not satisfy
incompressibility and then calculate a pressure field to project the intermediate velocity field to the
divergence free space.

Starting from the NS equations (in Lagrangian perspective):

V.u=0
Du_ 1y, Ay (3.46)
Dt p p

The time discretization of the momentum equation is split in two parts:
- First an intermediate velocity field is calculated using the body forces and the viscosity
contribution (n represents the time step):

Lo Aoy g (3.47)
dt p

- This intermediate velocity field u is not divergence free. A correction is required to obtain

the final velocity field u"*’ which satisfies V™! =0:

n+l _ * 1 )
L ST (3.48)
dt P

Applying the divergence operator to the previous equation, leads to the pressure Poisson equation:

Ap™ = j v o (3.49)

The previous equation actually is a linear system of equations. Solving this linear system of
equations results to the pressure field at the time step n+/ and then the pressure field is used to correct
the intermediate velocity field (eq. 3.48).

The described procedure is applicable in the SPH framework, following Moulinec et al. [9].
Moulinec et al. used the following approximation for the Laplacian of pressure:

v
Ap=iz - )i Ty VW (3.50)

P H [

The intermediate velocity field is calculated without considering the pressure contribution:
u =u) +dt| Y om, ——L—"

VW, +f, (3.51)
=" s T

The pressure Poisson equation is expressed in the SPH form as follows:
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>.mp" rij“ VH L= pl Zm (3.52)
J rij

After calculation of the pressure field the final velocity field is calculated:

* m; n+
w—u -y, iy gy (3.53)
Pi\"j P

By observing eq. 3.52, it is possible to rewrite it in matrix form. By setting:

A iYW,
" H |

then the LHS of equation 3.52 for i particle, is written as:

ZAijpij:Ail(pi_pl)+Afz(p, p2)+ +AvN( pN)

(3.54)

ZAfjpij =—Ap— Ay, +. piZ(Aij)_”‘_pNAfN (3.55)

Note that the A; term is negative, since:

r, VW, m,

_ ) ij ij i o_ J ij
S H H2 _H 2 xij,y,»j,z,»j)' ’ = (3.56)
ol
ij

L

In the above equation all terms are positive, apart from the kernel function derivative (dW/dr)
which is always negative, since the kernel function has to be monotonically decreasing (see also
kernel function properties, section 2.2).

Using this approach, eq. 3.52 can be written in matrix form A P =B, where A is a sparse
symmetric NxN matrix (N is the number of particles involved in the simulation) and B is a Nx1

vector:
n 7 B p N T
YA, —A, Ay .. —Ay —jijuU VW,
j= j
_A21 ZA2j _Aza _AZN 2At Zm u21 v WZJ
A= - B=
A, A A, Zm -
I N1 N2 = Nj_ | 2At J |

Since the A matrix is sparse, special treatments have to be used in order to be stored efficiently.
Only non-zero elements have to be stored, reducing memory requirements.

As an example of the specific method, the following test case is presented: a square patch of fluid
is assumed, with an initial velocity field which does not satisfy the divergence free condition (fig.
3.5). The dimensions of the square patch is 40x40 particles, the total number of particles is 1600. The
size of the A matrix is 1600x1600, but there are only 55100 non-zero elements. An indicative plot of
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the matrix pattern is shown in fig. 3.3. It has to be highlighted that the matrix is not band diagonal,
since not all consecutive diagonals are non-zero. Thus, simple linear equation system solvers, such as
tridiagonal etc. cannot be used.

The linear system of equations is solved with an iterative method (Bi-Conjugate Gradients —
fortran code of the algorithm may be found in [10]). A comparison is also made (see fig. 3.4) with the
iterative Gauss-Seidel method (may be found from [11, 12]). Obviously the BiCG method is able to
solve the system of equations much faster, both in respect to CPU time and iterations, without
oscillations. In both cases the velocity field is resolved using the presented method and the final
velocity and pressure fields are shown in fig. 3.5.

1 500 1000 1600
l*‘\ T T 1
500 - 4500
1000 - <1000
1600 |, ) ) 4 1600
1 500 1000 1600

Fig. 3.3. Plot of the elements of matrix A. Non-zero elements are displayed only. Negative elements are shown with blue,
positive elements with other colors

100

P

0.01 4 \
0.0001 \ —BiCG
0.000001 \ Gauss-Seidel

Error

1E-08 + \

1E-10

Iteration number

Fig. 3.4. Convergence history for the BiCG and Gauss-Seidel iterative methods
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Fig. 3.5. Projection method test case: (a) Indicative velocity field before solving the Poisson equation and (b) Pressure field
and velocity vectors after solving the Poisson equation and correcting the intermediate velocity field

The main issue of the presented method is the fact that, since particles change location throughout
a simulation, their relative positions change and the coefficients of the A matrix do not remain
constant. In other words, at one time step an element A; may be zero but at a later time step it may be
not. In the finite difference method the coefficients of the equivalent matrix do not change, since the
topology of the computational grid does not change also, thus the coefficient matrix is assembled only
once. Actually the coefficients in the matrix represent the connectivity of the computational elements,
or, better adapted to the SPH method, which particle interacts with the other and the weights of
interactions. Since particles move, different particles will interact with different sets of neighbors each
time. All the above render the assembling of the matrix a difficult and time consuming task for the
SPH method.

Additionally, it is difficult to incorporate boundary conditions in the presented scheme, apart from
simple cases where mirror particles are used. In more complex geometries particle redistribution
might be required for smoothing the solution [9]. Moreover, in cases with free-surface, pressure has to
be fixed to zero at the free surface particles. This means that at each time step the free surface has to
be tracked, increasing the computational cost, while the results may not always be good; researchers
have reported spurious pressure gradients near the free surface close to boundaries [13]. Finally, the
parallelization of the described algorithm is not straightforward [14].

Pressure correction method

The pressure correction method [15, 16] avoids the difficulties which arise when trying to solve
the pressure Poisson equation, by linking pressure to density and correcting iteratively the pressure
and velocity fields, instead of solving the linear system of equations. The method could be considered
as a hybrid of the SPH using an equation of state and the SPH solving the pressure Poisson equation
[15]. First the momentum equation is solved giving an initial velocity field u [15]:

u-u _ 1 Vp" +ﬁvzu” +f (3.57)

dt p p
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The initial velocity field u” does not necessarily satisfy the divergence free constraint. Then, using the
continuity equation:

@:_p(v.u*):imju; VW, (3.58)
Dt =

it is possible to link the density change to a pressure change (correction). Using the equation of state:

Y
p=B (pﬁJ -1 :>p:p017/p;B (3.59)
0

Replacing density in the continuity equation from eq. 3.59 yields:

p,+B
D[W : j )

Dt

[ p,+B j !

" B S

i =dt B S, v, G0
Po j=1

Eq. 3.60 gives the pressure correction. Then pressure for i particle should be corrected as following:

pinH = pin + Mpin (3.61)

and velocity should be corrected too, using the gradient of pressure correction:

du. 1

—t=——V®/ 3.62
i, P, (3.62)

which, by applying the SPH gradient approximation (eq. 2.17), results to:

nt * dt n n
u; '=u —Q.—2 : mj(@j _@i )Vivvij (3.63)

i J

At the end of this step, u i"“ is considered as U and the procedure goes on, from eq. 3.57 to eq.

3.63, until the velocity divergence calculated from the continuity equation becomes less than a
threshold value. The relaxation parameters @ and Q2 play a crucial role in the corrective procedure.
Large values may lead to instability and numerical oscillations. Low values will lead to very small
corrections and many iterations to achieve zero (practically a small) velocity divergence. If one
observes the whole procedure, it becomes apparent that the idea of this method is to create a pressure
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disturbance and propagate it throughout the whole problem domain, within the current time step,

correcting both velocity and pressure fields.
To assess the capability of the described method, the same test case, as in the previous section, is
used; a square fluid patch with an initial divergent velocity field. In fig. 3.6 several instances are

shown, during successive iterations. Also in fig. 3.7 the convergence history is shown.

0.2 04 06 0.8
(a) X (b) 0.2 04 0.6 0.8

Fig. 3.6. Pressure correction test case: (a) Initial velocity field.
Pressure and velocity vectors at: (b) 1% (c) 5™ and (d) 20™ corrective iteration
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Fig. 3.7. Maximum divergence in respect to iteration number
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The disadvantages of this method are:

Difficult selection of the relaxation parameters, since their values are problem dependent.
Careful selection is necessary to avoid numerical instability and convergence within few
iterations. Kai Bao et al. [15] proposed using a different equation of state which is less stiff
than the Tait equation of state, limiting numerical instabilities. The proposed equation of state
is:

p=c(p-p,) (3.64)

and the resulting pressure correction:

N
®' =cldry mu,; VW, (3.65)
j=1

Joseph Ha [16] proposed a more general form for the pressure correction in respect to velocity
divergence:

op=—AV-u’), (3.66)
with 0< y<dx’/(4dr)

Since the method is based on the propagation of a pressure disturbance throughout the
computational domain, this means that the larger the computational domain the more
iterations will be required to propagate the disturbance throughout the domain. This is
especially problematic in cases where the problem domain has large aspect ratios (one
problem dimension is much larger than the others, as for example the flow inside a pipe).
The pressure correction method does not require the solution of a linear equation system, but
it comes at a very high computational price. First a loop must involve all particles to find the
intermediate velocity field u’. Then several iterations have to be made until velocity
divergence drops below the specified tolerance; each iteration involves looping all particles to
calculate to calculate the pressure correction through velocity divergence (eq. 3.60 or eq.
3.65) and then another loop to calculate the velocity correction (eq. 3.63). In combination
with the fact that in realistic cases, geometries are much more complicated than the test case
used, this means many iterations and many loops calculating pressure and velocity
corrections.
After the initial iterations, divergence drops very slowly. The quality of the pressure field is
inferior to that obtained by solving the pressure Poisson equation (compare fig. 3.5 and fig.
3.6), while requiring much more time to achieve the specified divergence tolerance. Even if
the pressure correction procedure can be easily parallelized, its practical application in
simulations with many particles does not seem feasible.
The treatment of boundaries is still problematic, but the free surface does not need any special
boundary conditions, due to the influence of the equation of state.

To sum up, truly incompressibility in SPH is possible to be enforced but requires increased
computational cost and some of its aspects are not yet fully explored. Thus, due to the issues
encountered in both the incompressible treatments for the SPH method, in the rest work the weakly
compressible approach will be used.
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3.6.  Pressure / density field smoothing — XSPH correction

In section 3.4 it was already mentioned that using the Tait equation of state results to the
introduction of numerical oscillations in the density and pressure fields. Many SPH practitioners use
some sort of filter, in order to smooth out these oscillations [6, 17]. In the present work two different
filters were used:

0" order (Shepard filter): The Shepard filter is a straightforward correction of the density field
which is periodically reinitialized using the weighted average summation density
approximation (see eq. 3.22):

p=y mW, (3.67)
j
where:
- W,
W, =—? (3.68)
Z 71'“/1]
i P

- 1% order (MLS filter) [18, 19]: The MLS filter was proposed by Dilts, is based on the
Moving-Least-Squares method and it is capable of reproducing linear variations of the density
field. Similarly with the Shepard filter, density is calculated using a corrected kernel function,
as follows:

P =D mW, (3.69)
J

In 3D the MLS corrected kernel function is calculated from:
WUMLS = [ﬁo + B, (‘xi_xj )+ B, (y,"yj )+ p. (Zi_zj )]VVU (3.70)

Where the S, f., By, f. correction coefficients are calculated by:

By 1]
le -1 0

=A 371
,By 0 ( )

. 0]

The matrix A is defined as:

m. ~

A=Y WA (3.72)
i Fj
| 1 (x,'_xj) (yi_yj) (Zi_Zj)
A= (x; —x;) (xi_xj)2 (x=x)v—y;) (—x)(z—z;)

- (3.73)

bi=y) G=x)=y) 0=y i=y)z-z)
_(Zi _Zj) (xi _'xj)(zi _Zj) (yi _yj)(zi _Zj) (Z,» —Zj)z
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The inversion of the A matrix is relatively simple, since the matrix is 4x4 in 3D, enabling the
use of closed form relations for its inversion. However, care has to be taken when a particle is
remote (i.e. has few or none neighbors), since in that case the A would be very close to zero
(singular matrix). Inversion of such a matrix would lead to unphysical corrected kernel
values. The disadvantage of that type of filter is the fact that it has increased memory
requirements, since the four correction coefficients (B9, f. Py, p.) must be stored for all
particles prior to applying the filter. Furthermore, in practical applications it does not give
significantly better quality in the density field than the Shepard filter.

In weakly compressible applications it is generally beneficial to smooth also the particle motion.
This is done using the XSPH correction proposed by Monaghan [1]:

—'—u —eZ—u W, (3.74)

For nearly incompressible flows the value of the e parameter is ~0.3. By observing the previous
equation, it is understood that particles moving under the influence of the XSPH correction scheme
take into account the contribution of neighboring particles, thus making the particle to move in a
velocity closer to the average velocity of the neighboring particles. This technique helps in moving
particles more orderly [2], especially in weakly compressible flows, where the stiffness of the
equation of state may deteriorate particle distribution.

Another possible option for dealing with the noisy pressure field is to use a diffusion term in the
density equation. Such methods have been developed by Antuono et al. [14], using the laplacian of the
density field (eq. 2.19) and by Ferrari et al. [20, 21] using a monotone upwind flux, for the density
equation. Both methods are similar, however the density diffusion approach by Antuono et al. requires
the artificial viscosity term, along with tuning of the artificial parameters, whereas the monotone
upwind flux by Ferrari et al. does not require any additional terms or tuning of ad hoc parameters.
Here the method of Ferrari et al. will be briefly described.

The key idea is to introduce an extra term in the continuity equation, which will damp the high
frequency numerical noise of the pressure and density fields. The additional term was inspired by the
Advection Upstream Splitting Method (AUSM) [20]. Eventually the new continuity equation is
written as:

Dp, N c;
Dt szj(uij 'Vivvij +n, 'Vz‘Wij_j(pi _pj)} (3.75)
j= P
where:

- n;; is the unity vector pointing from particle j to particle , i.e. n;

- ¢;; 1s the maximum celerity of particle i and j. Celerity of particle i is deflned as:

-1
¢ =c, (pﬁj (3.76)
0

In fig. 3.8, a simple test case is presented, in order to compare the effects of the density smoothing
methods already discussed. The test case is a 2D jet impingement on a flat plate under 60° angle. In

fig. 3.8 the results of the pressure coefficient distribution (C, =2p/ (puz)) are shown for: the

standard SPH method without any corrections, the SPH method with the celerity correction (Ferrari et
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al. method) and SPH with shepard density filter. The boundary is simulated as a free slip wall, by
mirroring nearby particles (boundary conditions will be further discussed later).

From the results (fig. 3.8) it is obvious that, without any corrections, the SPH method is unable to
calculate a reasonable pressure field. Density smoothing and the diffusion term are able to provide
reasonable pressure fields. Diffusion term formulation produces some scattering on the pressure
distribution. On the other hand the density smoothing predicts minor pressure fluctuations on the jet
before impingement.
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Fig. 3.8. Pressure coefficient distribution for the 2D jet impingement (impingement angle 60°).

It is possible to obtain an exact solution of the pressure distribution on the wall for the described
test case. Following Taylor [22]:

2
x:ﬁ In 1-q —cosaln 1+g" ~2qcosa —2sinatan™

7| \l+gq 1-¢° 1—gcosa (3.77)
C,=0-¢%

gsina
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Where:
- xis the x-coordinate on the plate surface
h is the jet width (here 0.03m)
- ais the impingement angle (here 60°)
- qis a parameter to be eliminated from eq. 3.77.

Thus, in the following figure the instantaneous pressure distribution of each method is compared to
the exact solution.
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Fig. 3.9. 2d jet impingement, 60° jet angle. Instantaneous pressure coefficient distribution.

In the present work the 0" order (Shepard) density filter was used for the all SPH simulations.
However the density diffusion term is an attractive alternative which is used in the SPH/SPH-R hybrid
(see chapter 6).

3.7. Tensile instability / Kernel correction

It is known [23, 24] that the SPH method suffers from an instability that arises in the tensile
regime. This problem was first discovered when simulating the behavior of elastic solids. When the
particles are under tensile stress state, their motion becomes unstable, eventually leading either to a
blow up of the simulation, or to the creation of unphysical particle clumping. Swegle et al. [23]
examined this type of instability and proved that it is independent of artificial viscosity or of the time
integration scheme and time step, but rather it is caused by a combination of the stress acting on
particles and the sign of the second derivative of the kernel function W. Swegle proved using one
dimensional Neumann analysis, that the condition of the tensile instability is (see also fig. 3.10):

WHO_HH > 0

Note that the above condition shows that instability may arise even in cases of compression, if the
second derivative of the kernel function has the appropriate sign. However, it is more common this
instability to appear in cases of tension, since the range at which the instability in compression occurs
is often less than the inter-particle distance, depending on the kernel function. This is the reason why
this issue is encountered more in cases with tension and that is why it was called tensile instability.
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WA = W<OIW >0 =
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Fig. 3.10. Stability and instability regions for tension and compression.

Tensile instability may appear even in gas/fluid dynamics, even when pressure is positive [24, 25]. In
order to treat the tensile instability there are several ways:

Use of appropriate kernel functions. Using a kernel function with a second derivative equal to
zero would result to stability in both compression and tension. Unfortunately such a kernel
function cannot go to zero smoothly enough, thus being very sensitive to particle disorder.

Incorporation of a small repulsive force inside the momentum equation [24]. Monaghan
proposed adding a contribution in the pressure gradient of the momentum equation as follows:

—:—Z —+—+R [y (VW |+£,0, (3.78)

Jj

where: R =R, + Rj.

and R, = max(— SL;,OJ
Pi

The parameter ¢ is usually set to ~0.2. The f; parameter is calculated as the fraction of the
kernel function W between particle i and particle j and the kernel function value for a distance
equal to the particle spacing dx:

W.

=Y 3.79
Ji W) (3.79)

A similar treatment may treat particle clumping at characteristic directions. As it was already
discussed in the chapter covering the basics of SPH (chapter 2), regarding the accuracy of the
SPH particle approximations, particles tend to move in an aligned manner, compressing in
one direction and expanding in another. A possible solution is to modify eq. 3.78, in case
pressure is positive. In that case:

R =0.01] max 0,& + max 0,& (3.80)

2 2

Pi P

The small repulsive force induced in this way may help to avoid clumping in some situations,
without adding a considerable unphysical contribution in the simulation (according to
Monaghan [24], the influence of this force is less than 1%).
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Kernel gradient correction. Another available possibility to treat the inherent tensile instability
of the SPH method, without the addition of unnatural forces as Monaghan’s solution, is the
correction of the kernel function itself. The correction proposed here is based on the
renormalization procedure which is quite popular among many SPH researchers [6, 26, 27,
28]. A detailed description of the renormalization procedure is in the work of Oger et al. [26].
The main idea is the formulation of SPH discrete approximations which will be capable of
reproducing exact gradient interpolations of linear fields. To do so, one must enforce the
following condition (in 3D):

Vx 1 00
Vy|={0 1 O (3.81)
Vz 0 0 1
This condition, using SPH approximation, can be written as:
1 00
m,
S, -r)ovw,—L={0 1 0 (3.82)
f P lo o1
The kernel function gradient VWl.j is replaced by the corrected value VWU calculated as
follows:
~ 1
VW, ZE(L" +L, VW, , or (3.83)
dW/dx L, L, L,[dW/dx
dW/dy = Zzl Zzz Zzs dw [dy
dW/dZ L, Ly, Ly |dW/dz
where:
L =M" (3.84)
m m; m,
Z_J(x] _xz)d_W Z_J(x] _xl )d_W Z_J(x] _xl )d_W
TP dx T p; dy T p, dz
; dw ; dw ; aw
M= Y2y, -0 ) Y- ) Y- ) (3.85)
;m’ dx ;%’ dy ;%’ dz
aw aw ; aw
—(z, - 7,)== —i(z,— 7)) —L(g, -7 )=
_;pj b dx ;pj o dy ;pj b de

The M matrix is symmetric and can be easily inverted using closed form relations. As with
the MLS density filter, care must be taken in case particles are remote, since in that case the
M matrix would be singular. Another important characteristic of the correction matrix is that
in the interior of a regular particle lattice, the corrected gradient and the gradient would be
equal (i.e. the L correction matrix would be equal to the identity matrix). However when a
particle is located near the free surface, or near a boundary, or when the particle distribution is
not uniform, then the appropriate correction is applied (see fig. 3.11). It is highlighted here
that in order to preserve symmetric interactions between particles, the average value of the
correction matrix of both particles is used to correct the gradient (eq. 3.83). The kernel
correction described above corrects the tensile instability and also offers greater accuracy in
cases of non-uniform particle distribution.
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NS

Fig. 3.11. Distribution of the corrective matrix. Elements: (a) L;; (b) L;», Ly;, (¢) Ly,. Note that inside the computational
domain L11=L22=1 and L12=L21=0.

3.8.  Boundary conditions

The main weakness of the SPH method is the implementation of boundary conditions. The reason
is that initially the SPH method was developed for the simulation of unbounded systems. The problem
that arises when dealing with boundaries is better understood if one considers fig. 3.12; the particle i
is located near the boundary surface S. The particle interacts with particles within the kernel function
support radius from inside the problem domain . However, a part of the kernel function support
domain is truncated at the boundary — which in the figure is the highlighted part. For particles near or
on the boundary, only particles from the inside of the computational domain contribute to the SPH
summation approximations and no contribution comes from outside since there are no particles
beyond the boundary. This greatly affects the accuracy of the SPH approximations.

Fig. 3.12. Boundary deficiency problem

In the SPH literature there are various proposed ways to compensate the described problem, some
of them will be presented here, focusing mainly on the case of wall boundary conditions (see also fig.
3.13):

- Mirror particles: these particles are created by mirroring the actual particles from within the
problem domain across the boundary surface. In the case of describing walls, the mirrored and
the actual particles have opposite normal, to the boundary, velocity and equal parallel velocity
(in case the wall is treated as free-slip — for no slip case the parallel velocity should be the
opposite). Other boundary conditions may be treated by adjusting properly the velocity of the
mirror particles and the other field variables values. The main issue of this treatment is that it
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is impractical for complicated geometries. It is also highlighted that when using the standard
SPH this treatment may not be enough; for example describing a wall with mirror particles
only, might not ensure wall impermeability, thus requiring additional treatments such as
boundary forces. This boundary type is mainly used for defining symmetry boundary
conditions.

Dynamic particles: the particles are positioned forming layers across boundaries and remain
fixed in space, or move according to a prescribed manner. However, their density and
pressure change in time according to the continuity equation [6]. Particles may be placed in
various configurations: in aligned layers, as in fig. 3.13, or in a staggered manner [6]. This
particular boundary ensures impermeability of walls. It has the disadvantage that fluid
particles tend to stick on the wall, rather than draining of completely [29] (see also fig. 3.19).
Another possible variation of this particular type of boundary condition is to mirror the
dynamic particles inside the computational domain and use the mirrors to interpolate field
variables. Then, the interpolated values are used to impose the values of the field variables on
the dynamic particles (fig. 3.14).

Boundary forces: this boundary type is only applicable for walls. It was firstly proposed by
Monaghan [1], to place a layer of particles on a boundary. These particles would exert a
repulsive force to any fluid particle moving close enough to the boundary. This boundary
force would be added in the RHS of the momentum equation as a body force. Initially
Monaghan proposed to model this force using a Lennard-Jones potential [30]. Later on the
approach of boundary forces was further refined, using a denser particle distribution for
boundary particles to make the repulsive field smoother [31, 32]. The Lennard-Jones
boundary force, acting from a boundary particle j towards a fluid particle i, is calculated as:

r
12 6 0 <q

Il
s ] H DIRE 5 a0

L

D is a problem dependent parameter, which is usually set at the same order of magnitude of
the square of the maximum velocity appearing in the problem. Also, ry is the repulsive force
cut-off distance. It is usually set equal to the particle spacing dx. Using the previous relation,
it is possible to obtain the forces acting on a boundary particle, summing all the particle

reactions on the boundary particle:
12 6

L N
Hr,;,-H Hr,;,-H H H

Here i denotes the boundary particle and j the fluid particles interacting with the specific
boundary particle i. By summing the forces acting on all boundary particles, it is possible to
obtain the total force or torque acting on a boundary:

(3.87)

b()undarv zf [N] (388)
ie boundary
Tb()undary = Zr Xfi [Nm] (389)
ieboundary
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The advantage of this particular boundary type is that it is simple to implement, robust, since
it does not permit wall penetration and it is also able to describe complex geometries. The
main disadvantage is that the calculated forces exhibit oscillations, as it will be shown later.
Also, SPH interpolations are not so accurate near the boundary.
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Fig. 3.13. Boundary conditions: (a) mirror particles, (b) dynamic particles, (c) boundary forces
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Fig. 3.14. Dynamic boundary particles using interpolation

To conclude this part, a small test case is presented: this test case involves a very popular
benchmark widely used among the SPH practitioners, the dam break. The dam break test case consists
of a water column which collapses under the influence of gravity inside a tank (a simple schematic is
shown in fig. 3.15). In this test, results will only concern the propagation of the generated wave and
the height of the water column in respect to time and will be compared with the experimental results
of Koshizuka et al. [33] and the SPH literature [3]. The three different boundary types were used,
comparing the results and showing their advantages / disadvantages. In fig. 3.16 and 3.17 the results
shown are from the mirror particles boundary conditions; however the rest boundary treatments yield
identical results.

From the results, it is obvious that all boundary treatments give the same general flow field; all
cases agree with the experimental results and the results in SPH literature. Mirror particles are the
most accurate way for simulating boundaries, but are especially difficult to implement in areas such as
corners. Dynamic boundary conditions have issues due to their sticky behavior (fig. 3.19), but ensure
impermeability. The boundary forces are easy to implement and do not have the issues encountered
by the dynamic boundaries.
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Fig. 3.15 Dam break case schematic. All dimensions are in meters.

/
-— SPH
B Experiment (Koshizuka et al.)
SPH literature (Violeau & Issa)
0 0.5 1 1.5 2 2.5 3

t*

Fig. 3.16. Dam break problem. Non-dimensional wave front propagation in respect to time

3.5

SPH
B Experiment (Koshizuka et al.)
- SPH literature (Violeau & Issa)
|
T T T 1
0 1 3 4 5 6
t*

Fig. 3.17. Dam break problem. Non-dimensional column height evolution in respect to time

50



Chapter 3: The standard SPH method for flow simulation

25

15

05

2.5

0.5

25

15

05

B Time = 0.2s
B Mirror particles
WS BN R EEEEE RS RN SIS SN N NI A N SR )
0 0.5 1 15 2 2.5 3 35 4
X
i Time = 0.5s
B Mirror particles
7\ L I L L L L I L L Ll I L - L I L Ll L I - L L I L L L L I L L Ll I L - L I I}
0 0.5 1 1.5 2 25 3 35 4
X
- 1
B Time = 1s
B Mirror particles
: A
7| L I L L L L I L L - I L - L I L - L I - L L I L L L L I L L - I L - L I L
o] 0.5 1 15 2 25 3 35 4

X

Fig. 3.18. Dam break case simulated with mirror particles.



Chapter 3: The standard SPH method for flow simulation

25
B Time = 0.2s
2k Dynamic boundaries
15
> B
1k
05 F
ol
o 1 - o o o o b a1
0 0.5 1 1.5 2 2.3 3 35 4
X
25 F
B Time = 0.5s
2 Dynamic boundaries
15
> B
1k
05 F
ol
I ST TN ST NI TUANTIN NUVAN NV NUVEN TN A NSRRI RN S A NEN R
0 0.5 1 1.5 2 2.5 3 35 4
X
25k £
B Time = 1s
2k Dynamic boundaries
15
> B
1F
05|
ol
o 1 o s b 1
0 0.5 1 1.5 2 25 3 35 4
X

Fig. 3.19. Dam break case simulated with dynamic boundaries.

52



Chapter 3: The standard SPH method for flow simulation

25 F
i Time = 0.2s
= Boundary forces
15
1k
05 |
oF
_\ L I L L L L I L L - I L - L I L - L I - L L I L L L L I L L - I L - L I I}
0] 05 1 15 2 25 3 35 4
i X
25
I Time = 0.5s
2 |- Boundary forces
15 F
1 E
05
ok
o oo o o b b b g b g b g b a1y
0 0.5 1 1.5 2 2.5 3 3.5 4
X
25 -
B Time = 1s
2| Boundary forces
15 [
1 E
05 -
ok
_I 1 I ! | | 1 I 1 | ¥ | I 1l | | I 1 | | I 11 1 1 I | | 1l I | f 1| I 1 1 - I |
0 0.5 1 1.5 2x 25 3 3.5 4

Fig. 3.20. Dam break case simulated with boundary forces.

53



Chapter 3: The standard SPH method for flow simulation

Here it is mentioned that:

¢ Non-dimensional wave front: X = )%)V , W, being the initial water column width (in this

case 1m)

e Non-dimensional column height: " = %—I , H. is the initial column height (which is 2m)

e Non-dimensional time: t*=t,/2%/ [33]

The subject of boundary conditions for the SPH method is rather subtle and complicated; indeed
from what was described before, it is obvious that there is not a universal treatment which is effective
for all boundary conditions. There is on-going research on the subject by many SPH researchers [34,
35, 36]. Vila has proposed a change in the perspective of the SPH method which would allow a much
better boundary treatment. This will be further analyzed on the chapter discussing SPH-ALE.

3.9.  Neighbor search algorithm

From the particle SPH approximations it is obvious that in order to estimate the summations, one
must calculate all particle interactions. A straightforward way to do this would be to directly consider
all particle interactions, i.e. if a simulation involves N particles then in order to find the SPH
approximations for the i particle then all N particles should be considered. Thus, for each time step a
total of NxN particle estimations should be evaluated. This method, despite of being simple and easy
to program, is rather computationally inefficient since it considers many interactions which have zero
influence due to the kernel function being compact.

An alternative way of finding the particle interactions would be by exploiting the compact support
of the kernel function and considering the interactions only in a close neighborhood of the examined
particle i. To do this, the computational domain is divided into cells and particles are assigned to each
cell. It is highlighted here that these cells are used only for indexing purposes and not for calculations.
A neighbor list is created linking each cell to the particles which it contains and also linking the
particles to the cell to which they belong. The cell size is selected to be equal to the support radius of
the kernel function. Thus, if it is desired to find the neighbor contributions of particle i, then it is
sufficient to search the neighbors only at the adjacent cells to particle i cell (see also fig. 3.21 the
highlighted cells). In this way, it is possible to reduce the computational load from NxN to Nxlog(N).
In 2D, one should search for neighbors in 9 cells totally and in 3D in 27 cells. The neighbor list
algorithm is based on the static matrix algorithm [37]. In the SPH literature, there are also other more
refined/complicated ways of forming the neighbor list [37] and other methods for finding neighbors
(for example tree search algorithms [2]).
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3.10. Parallelization

The SPH method is able to simulate problems with free-surfaces, deformable boundaries, moving
interfaces, wave propagation and solid deformation. However all these application require excessive
computational time, if a three dimensional simulation has to be carried out. In practical applications
millions of particles may be required to properly describe the underlying phenomena, resulting to poor
performance when the algorithm is implemented to execute on a single CPU.

One interesting feature of the SPH method is the fact that the particle interactions are independent
for each particle. If properly programmed it is possible to calculate at the same time the particle
interactions of several particles. The SPH method is said to be “embarrassingly parallel” due to the
aforementioned feature. Implementation of the SPH method using parallelization techniques is a
subject of ongoing research, regarding the best implementation techniques, in order to increase
parallel efficiency [38].

There are three main ways to parallelize the SPH algorithm:

- Shared memory parallel using OpenMP (Open Multi-Processing). OpenMP is an API
(Application Programming Interface) that supports shared memory multiprocessing [39]. The
algorithm is divided in serial and parallel regions. In serial regions, one thread (the master
thread) is created for the algorithm execution. When it reaches a parallel region, the process
spawns more threads, according to the OpenMP directives and all processes are executed
simultaneously on different CPU cores, sharing the same memory. Due to the shared memory,
it is relatively easy to transform a serial SPH algorithm to parallel. However, care must be
taken in order to avoid data race conditions; such cases occur when different threads access
the same memory positions. Due to its nature, OpenMP may be only used for programs
running on a single multicore machine. This type of parallelization was employed for the
present SPH implementations and more information may be found at Appendix C.

- Distributed parallel using MPI (Message Passing Interface) system, such as OpenMPL
Message Passing Interface is a standardized and portable interface to facilitate communication
between processes running on different computers [40]. MPI enables point-to-point or
collective communication and process synchronization for organizing parallel processing.
This type of parallel processing is called as Distributed Memory Multiprocessing, since each
process has its own private memory which is inaccessible by the other processes. Processes

55



Chapter 3: The standard SPH method for flow simulation

may be spawned on different machines and communication is done through a network
(Ethernet, Myrinet, Infiniband), or on a single machine utilizing the available CPU cores; in
that case MPI is not as efficient as OpenMP. MPI may be used in conjunction to OpenMP;
MPI would facilitate communication between the processes spawned on different machines
and OpenMP is used to create threads for each process, in order to cover the number of
available cores on each machine. Efficient parallelization with MPI is done by decomposing
the problem domain and distributing it on the processes. Information of particles near the
boundaries of the distributed domains must be transferred between processes. Transformation
of a serial code into distributed parallel using MPI, requires considerable changes, in order to
organize the communication of processes and the decomposition. These are still a subject of
research, since different decomposition methods and different ways of communication
(blocking, non-blocking) may achieve greater parallel efficiencies. However, MPI does not
have any limit on how many computers and how many CPU cores will be used, enabling the
simulation of difficult and computationally intensive problems; Moulinec et al. have managed
to perform simulations involving over a hundred million particles using 8192 CPU cores with
MPI [41].

Utilization of GPGPUs (General Purpose Graphics Processing Units) with or without CPU
collaboration. General Purpose GPUs are able to be programmed to perform tasks beyond
computer graphics, involving tasks which are traditionally handled by CPUs. GPUs may be
considered as stream processors, i.e. processors which operate in parallel by running a single
kernel on many records in a stream at once. GPGPUs are much cheaper than cluster
computers, linked using MPI, and may be more efficient, since they do not suffer the data
transfer latencies due to network traffic. The parallel philosophy of these devices enables to
achieve 100x or even larger speed-ups comparing to the execution on a multicore CPU [42].
However, writing an algorithm which is suitable and efficient for execution on a GPU is not a
trivial task and requires an entirely different programming philosophy from programming
CPUs. The main idea is to transfer data between CPU (called also as host) and the GPU
(called also as compute device [43]) and use the GPU for the computationally intensive areas.
This programming layout suffers from the latency due to data transfer, which is considerable,
even if transfers are much faster than in the case of MPI, due to the computer internal bus
speed. Efforts are mainly focusing on developing SPH algorithms running entirely on the
GPU, thus eliminating or minimizing data transfers. Generally GPUs are not as much flexible
as CPUs and they have their own limitations. Nevertheless, recent GPUs have different
features and more capabilities from older models.
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Chapter 4

Validation of the SPH method

4.1. Basic tests

This chapter covers some basic numerical tests done using the standard SPH. The tests which will
be presented, involve simulating the basic properties of the Euler equations and conserving basic
properties, such as angular momentum. The basic tests are the following:

- Shock tube test, direct application of the hyperbolic nature of Euler equations [1, 2, 3]

- Rotation of a square patch, conservation of angular momentum [4, 5, 6]

- Deformation of a circular patch of fluid, conservation of volume (for weakly compressible)

[5.7, 8]

Shock tube test

The Shock tube test involves replication of the wave formation, inherent in hyperbolic
conservation laws such as Euler equations, caused by a discontinuity. The shock tube is a long straight
tube filled with gas which is separated by a membrane into two parts under different conditions of
density and pressure [1]. The gas at each chamber is initially at equilibrium. Then, suddenly, the
diaphragm is removed and three characteristic waves are formed, depending on the conditions. A
shock wave moves towards the low pressure region, a rarefaction wave moves towards the high
pressure region. These waves are non-linear waves [2, 3] and define a region (called also as star
region) of different pressure and velocity, than the two initial regions. There is also a linearly
degenerate contact discontinuity which moves with the local flow velocity and is always between the
two non-linear waves.

The shock tube test may be applied for the weakly compressible SPH equations, using the Tait
equation of state, instead of the ideal gas equation of state. This can be used as a test to check if the
developed SPH method is able to replicate the described wave structure. The solution of the SPH
method will be compared to the exact solution of the Riemann problem (for more information. see
appendix A). The initial conditions are:

p,=1100, u, =100 x<0
pr =1000, u, =0 x>0

These conditions will lead to the formation of a shock wave and a contact discontinuity moving to
the right and a rarefaction wave moving to left. In order to model the realistic wave structure, the
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correct speed of sound, for modeling water, is used for the equation of state, thus a value of 1450m/s
is used for ¢y and the parameter y is set equal to 7. The problem is treated as one dimensional, thus the
independent variables are density p and u velocity component — pressure is only dependent on density
through the Tait equation of state. Particles are distributed on the x-axis with a non-uniform density;
particle distribution is denser in the high density region (spacing dx=0.018m) and sparser at the low
density region (spacing dx=0.02m). A total of 200 particles are involved in the simulation. It is
highlighted here that in order to get a correct result with the SPH method, it is necessary to introduce
the artificial viscosity, presented in chapter 3, else numerical oscillations will appear which will
eventually ruin the solution.

In fig. 4.1 the results are shown comparing the SPH solution and the exact solution of the
Riemann problem for the same conditions. It is obvious that the SPH method predicts correctly the
velocities of the non-linear waves and the characteristics of the star region (u- and p-). However there
is an oscillation in the area of the contact discontinuity (fig. 4.1 right). Similar observations have been
made in shock tube test cases by other researchers too (for example G.R. Liu [1]).
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Fig. 4.1. Shock tube simulated with SPH (red dots). Left: x-velocity. Right: density.
Comparison with the exact solution of the Riemann problem (continuous line).

Rotation of a square patch - Conservation of angular momentum

This test involves the rotation of a square patch of fluid with side L (equal to 0.4m), surrounded
by void. The square patch is initially given a velocity field which will cause rotation. The initial
velocity field is:

u(e=0) = afr, ~rc| 2=
”I;IC __r)CC” (4.1)
SRR e

where w is the angular velocity of the rotation, equal to lrad/s, r=(x,y) is the position vector and the

indexes i and c represent particle i and the center of rotation respectively. The fluid is assumed to have
density of 1.23kg/m’ and the sound speed ¢, is equal to 20m/s. The particle discretization used is
0.004m, leading to a total of 10201 particles.
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Due to the initial velocity field, the square rotates and due to the centrifugal force it distorts; its
corners stretch eventually forming long arms, which, ideally, should follow the dashed lines (see fig.
4.2). The described test case is ideal to determine the influence of the tensile instability. The fluid
patch will develop a negative pressure near the center of rotation. If no treatment for the tensile
instability is applied then the simulation will collapse, forming particle clusters and large voids (see
fig. 4.2). On the other hand, the tensile instability treatment proposed by Monaghan is able to prevent
the particle clustering and the simulation proceeds to later stages, where eventually the formed arms
are greatly distorted while their width is comparable with the particle size (fig. 4.3). The kernel
renormalization (fig. 4.4) is also able to prevent the unphysical fragmentation of the fluid patch due to
tensile instability but, due to deformation, voids are formed between the arms (fig. 4.5 - similar
behavior has been reported by Ren et al. [6]). Moreover, field variables distribution is better
reproduced when using the kernel renormalization procedure, due to the increased interpolation
accuracy. Also the arms tend to follow better the expected solution, represented with dashed lines.
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Fig. 4.2. Rotation of a square patch.
Solution without any tensile instability treatment.
Particle clustering and fragmentation is visible.
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Fig. 4.5. Rotation of a square patch.
Voids formed between the arms, due to square patch deformation

Deformation of a circular patch of fluid - Conservation of volume (weakly compressible SPH)

In this test a 2D circular fluid patch is subject to compression, under a velocity field which tends
to deform it into an ellipse. Since the fluid is assumed to be practically incompressible, by properly
adjusting the speed of sound, the formed ellipse should occupy the same area as the initial circular
patch. Moreover Monaghan [7], using the momentum equation, proved that the evolution of the
ellipse semi-minor and semi-major axes is given by solving the following system of differential

equations:
2( 4 4
aa_Ala —o) (4“ v ) 4.2)
dt a +w
da
— =—aA 4.3)
dt
where:

- ais the semi-major axis and b the semi-minor axis
- wis the initial value of a b
The condition for the fluid patch to remain elliptical with time varying axes a and b is that:
= ﬁd—a and v = yab
a dt b dt
Thus, from the equation giving the x-velocity component, it is possible to determine the initial
value of A. The differential equations 4.2 and 4.3 can be solved easily using an explicit time marching
method, giving a reference solution which will be used for comparing the SPH results. In the
simulated case, the radius of the circular patch is 1m and the velocity field imposed at the initial time
is the following:
u0=0ﬁ?40m}
4.4)

Wt =0) =100y
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The particle discretization used is dx=0.025m and the total number of particles involved are
~5000. The initial value of A is -100, since at the initial time step both a and b are equal to Im. The
ellipse axis evolution is practically identical to the theoretical solution from eq. 4.2 and eq. 4.3 (fig.
4.8 and fig. 4.9). Indicative results of the evolution of the deforming liquid drop are shown in fig. 4.6
and fig. 4.7, using 0™ and 1% order density filters respectively. Results of the two different density
filters are practically indistinguishable.
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Fig. 4.6. Deformation of a circular fluid drop into ellipse.
Particle coloring according to pressure. 0™ order density filter.
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Fig. 4.7. Deformation of a circular fluid drop into ellipse.
Particle coloring according to pressure. 1™ order MLS density filter.
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Fig. 4.8. Deformation of a circular fluid drop into ellipse. Evolution of the major semi-axis (a)
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Fig. 4.9. Deformation of a circular fluid drop into ellipse. Evolution of the minor semi-axis (b)

4.2. Modeling viscous flows with SPH

In this part, several tests covering viscous flows will be simulated using the SPH method. The
tests will examine at first some basic viscous flows in the laminar regime, such as:

- Couette flow

- Poiseuille flow

- Shear cavity flow

- 3D pipe flow

- Backward facing step flow

Then, viscous flows for higher Reynolds number are simulated. Implementation of traditional
turbulence models in the SPH method is also discussed.

Couette flow

The Couette flow is a 2D flow, involving fluid flowing between two infinite parallel plates,
placed at a distance y=0 and y=I. One plate remains still, while the other moves with a prescribed
velocity uy. The developing flow is moving only on the x-direction and velocity is a function of time ¢
and y position. Assuming a constant dynamic viscosity u, the momentum equation at the x-direction
simplifies to:

Du  d’u
ol 4.5)

Dt oy’

For this specific flow the Lagrangian time derivative is equal to the Eulerian time derivative, since

. . ou ..
the convection term is zero (y — = 0, v— =0). The boundary conditions are:

ox dy
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u(t,0)=0
u(t,l)=u, (46)
and the initial condition is:
u(0,y)=0 (4.7)
It is possible to derive an exact solution expressed in series form:
ut,y)=—"y+ zl o D" sm[T ijxp(— v zﬂ-z tj (4.8)

where v is the kinematic viscosity, equal to ﬁ

For the simulation, using the SPH method, flow is assumed to be periodic, thus the fluid domain
is extended in order to cover the support domain of the particles at the edges of the actual fluid
domain (fig. 4.10). Since particles move in respect to time, when they move beyond a distance, on the
+x axis, then they are transferred back at the entrance between the plates at x=0. For the viscosity
effects both the stress strain relations [1] and the Morris viscosity term [9] were used (see also chapter
3). However here it has to highlighted that the plates are represented by several layers of particles in
order to cover the support domain of the fluid particles at y=0 and y=I. All particles at the top plate
are assumed to move with the same speed uy. If the stress strain relations are used, the stress field has
to be extrapolated at the boundary particles using the local stress slope, in order to obtain accurate
approximations of the viscous effects near the boundaries. Such extrapolation is not required when
using the simpler Morris viscous treatment. Moreover such an extrapolation is not simple in
complicated geometries, thus rendering the Morris viscosity term attractive for modeling viscous
effects, in general complicated geometries.
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Fig. 4.10. Couette and Poiseuille flow set-up. The support domain of two particles at the edge of the actual fluid domain is
also visible.

The SPH simulation was performed for:
- Distance between plates, /=1mm

- Plate velocity u,=1.25- 10° m/s
- Kinematic viscosity v=1.01-10°m?%s

- Particle spacing is dx=0.01/=1-10"m (7083 total particles involved)

The Reynolds number is 0.0125. In fig. 4.11 an indicative velocity field is shown, after reaching
steady state. Also in fig. 4.12 and fig. 4.13 the transient velocity profile calculated by the SPH method
with stress strain relations and the Morris viscosity term is compared with the exact solution. The

66



Chapter 4: Validation of the SPH method

stress strain relation gives better results for the velocity profile (fig. 4.12), but the error of the Morris
simplified term, in comparison to the exact solution, is practically negligible (fig. 4.13). Thus, from
now on in all cases involving viscosity effects, the Morris viscosity term will be included.

U (m/s)

1.40E-05

1.20E-05

1.00E-05

8.00E-06

6.00E-06

4.00E-06

2.00E-06

0.00E+00

0.001

0.0008

0.0006

0.0004

0.0002

o 1.2E-05
L 1.1E-05
1E-05

— 9E-06
8E-06
7E-06
B 6E-06
- 5E-06
4E-06
3E-06
2E-06
1E-06

X
Fig. 4.11. Couette flow. u-velocity profile after reaching steady state.
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Fig. 4.12. Couette flow. Velocity distribution in respect to y-axis. Morris viscosity term.
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Fig. 4.13. Couette flow. Velocity distribution in respect to y-axis. Stress strain relation.
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Poiseuille flow

The Poiseuille flow is a 2D flow, involving fluid flowing between two infinite stationary parallel
plates, placed at a distance y=0 and y=/. The flow is driven due to a pressure difference, but in the
present simulation a forcing term will be used instead. As in the Couette flow, the developing flow is
moving only on the x-direction velocity is a function of time ¢ and y position. The x-momentum
equation reduces to:

Du_pdu
Dt poy’

Again the Lagrangian time derivative is equal to the Eulerian time derivative. The boundary

+f 4.9)

conditions are:

u®0)=0
(4.10)
u(t,))=0
and the initial condition is:
u(0,y)=0 (4.11)

The exact solution is:

f = 4f-17 . (my (2n+1)27r2v
u(t,y):Ey(y—l)+r§msm(7(2n+l)jExp —l—zt (412)

where V is the kinematic viscosity, equal to i and f'is the forcing term.

The SPH simulation was performed for:
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Distance between plates, [=1mm
Forcing term f=2-10"" m/s>

Kinematic viscosity v=1.01-10°m?%s

Particle spacing is dx=0.01/=1-10"m (7083 total particles involved)
As with the Couette flow, periodic conditions were used to simulate the infinite plates. In fig.
4.14, an indicative instance is shown upon reaching steady state (Re=0.016).
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Fig. 4.14. Poiseuille flow. U-velocity profile after reaching steady state.

In fig. 4.15 indicative transient velocity profiles are shown. For all time instances the calculated
profiles with the SPH method and the exact solution profiles are practically identical.
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Shear cavity flow

The shear cavity flow, also known as lid-driven cavity flow, is the developing flow patterns in a
closed square cavity, generated by moving the top side of the square at a constant velocity u,, while
the rest sides remain still. The flow will reach a steady state and forms a circular pattern.

In the specific simulation the parameters used are the following:
square cavity side /=1mm

- kinematic viscosity v=10"°m/s’

- fluid density pe=1000kg/m’

- up=1lmm/s
leading to a Reynolds number of 1. Two different particle resolutions were used; a coarse where a
total of 3600 particles where involved and a fine with 22500 particles involved. In fig. 4.16 there is an
indicative instance of the developing flow, simulated with the SPH method. Also fig. 4.17 and fig.
4.18 show a comparison of the u and v-velocity distribution along the centerlines, compared with the
reference solution via the Finite Difference Method [1]. Generally there are differences, which tend to
become smaller as the resolution increases. In any case, the developing flow displays the same
features as those found in the reference solution.
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Fig. 4.16. Velocity magnitude distribution for the shear cavity problem.
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Fig. 4.18. Shear cavity. v-velocity distribution in respect to x-axis (at the horizontal centerline).

The SPH simulation of the shear cavity exhibits the characteristic of particle alignment, which
was mentioned at the chapter discussing the particle approximation errors (chapter 2). Indeed, as can
be seen by zooming at the top right corner of the square cavity (see fig. 4.19), particles get clumped
over time, forming lines. The result of this is the increase in particle approximation errors and the
great underestimation of the velocity in the specific area, in respect to the reference solution
calculated with Fluent.
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Fig. 4.19. Particle clumping near the top right corner of the shear cavity.
Note the underestimation of velocity, comparing with the Fluent solution.

Laminar flow inside a 3D pipe

This flow type resembles the 2D Poiseuille flow, but now fluid flows inside a 3D pipe instead of
two parallel infinite plates. The flow is assumed periodic, applying appropriate boundary conditions,
as already discussed, and a forcing term is added in the momentum equation for driving the flow.
Moreover only one fourth of the pipe is solved assuming symmetry boundary conditions at the xy and
yz planes. It is possible to obtain an analytical solution of the flow, solving the Navier-Stokes
equations in cylindrical coordinates, finally giving [10]:

2
u(r)= 2um[1—%J (4.13)
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For the simulation the particle sizing was 0.01lmm and the simulated pipe diameter was 0.50mm,
leading to 50 particles on the diameter. The simulated fluid was water having density of 1000kg/m’
and a dynamic viscosity of 10°Pa.s. From the forcing term added in the momentum equation at the
axial direction it is possible to determine the maximum velocity of the developing flow. It is known
that:

lpy = 2L R2 (4.14)
4Lu

The pressure difference can be written as F/A, where F is the total force acting on the fluid and A
is the surface of the cross section of the pipe. The maximum velocity which develops is in agreement
with the analytical solution within a 3% error giving a parabolic profile (fig. 4.20). Also in fig. 4.21
the velocity distribution in the radial direction is shown in comparison with the analytical solution (eq.
4.13), showing good agreement.

Fig. 4.20. Flow inside a 3D pipe.
Velocity distribution at the cross section of the pipe
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Fig. 4.21. Flow inside a 3D pipe.
Comparison of the velocity distribution calculated with SPH with the analytical solution.
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Laminar backward facing step flow

The laminar backward facing step is a viscous test involving a sudden expansion, leading to
detachment, recirculation and re-attachment. The simulated geometry and conditions are based on
Armaly’s experiment [11] for a Reynolds number of 389. A simple sketch depicting the geometry is
shown in fig. 4.22. The characteristics of the simulation are:

- u=0.5323m/s

- h=5.2mm

- s=4.9mm (h/H=0.515)

- p=1.23kg/m’

- u=1.71-10"Pa.s

- L;=0.01m and L,=0.09m

Inlet Outlet

| Le |

Fig. 4.22. Sketch of the backward facing step geometry

The geometry used for the SPH simulation is different from the one used in Armaly’s
experiments, since a forward step is assumed before the outlet. If this blockage near the exit does not
occur, then particles would create voids after the backward facing step. Moreover an increased value
of the numerical speed of sound is required, to avoid gap formation [12]. Particularly in the described
simulations, the speed of sound used was cy=55m/s, which is ~100 times the maximum particle
velocity.

In order to enforce inlet boundary conditions, a particle buffer was used at the inlet (fig. 4.23).
This particle buffer consists of particles moving at the same speed as the prescribed inlet velocity, but
its density/pressure is obtained from the first line of real particles. The buffer moves, imposing the
velocity inlet boundary condition. At specific time steps particles enter the computational domain,
thus the buffer is returned to its original position.
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Fig. 4.23. Backward step flow. Left: Voids formed after the backstep. Right: Buffer particles at the inlet of the back step

Since there is no analytical solution for the developing flow field, the SPH method solution is
compared with the solution obtained by Fluent software. For the SPH method two resolutions were
used, with particle sizing dx=0.2mm and dx=0.125mm. In the following figure, the recirculation
bubble is shown, from the SPH and the Fluent solutions. In both cases reattachment is calculated at
X~0.04m (fig. 4.24).
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Fig. 4.24. Recirculation bubble after the backward facing step.
Comparison of the solution with SPH and Fluent.

In fig. 4.25 several indicative velocity profiles are shown, for slices on the Y-axis at different
locations.
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Fig. 4.25. Backward facing step flow. Velocity distribution at different locations.

The presented results show that the SPH method is able to capture properly the velocity field and the

recirculation bubble formed behind the back step.
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4.2.1. Particle redistribution

The fact that the SPH method loses accuracy, due to the particle disorder was already discussed at
a previous chapter. A way to overcome this difficulty, while also controlling the particle distribution,
is by periodically redistributing particles, also known as particle remeshing in SPH literature. The
redistribution technique was initially devised by Chaniotis et al. [13, 14, 15], for controlling particle
disorder and interpolation errors. Other researchers have also worked on this technique, such as
Galagali [16] and Moulinec et al. [17].

The main idea of particle redistribution is to periodically move particles at a regular lattice
improving their spatial distribution. Values of the field variables at the new position are found by
interpolating field variables from the previous time step. In fig. 4.26 the redistribution procedure is
shown.

Interpolating field
1. 2. variables

o Continue solution from the
Redistribution & Interpolation new particle locations, using

on new particle locations interpolated variables

Fig.4.26. Particle redistribution procedure.

Initial particle distribution

The main advantages of using particle redistribution are:

- Controlled particle distribution, thus voids cannot be formed

- Wall penetration is impossible

- Increased solution accuracy, due to the reduction of interpolation errors, since interpolations

are performed on a uniformly distributed particle set. Increased accuracy comes with a
relatively small computational cost, since the redistribution procedure is periodically
performed every N steps (N greatly depends on the particle distortion — for the back step case,
a sufficient value of N was 1500-3000 time steps).

However, the main disadvantage of the redistribution procedure is the increased numerical
diffusion which is added during the interpolation of field variables from the old particle distribution
on the new uniform particle lattice. The interpolation schemes used during the redistribution
procedure are of high importance, especially in cases of high accuracy simulations, where high order
conservative interpolation schemes are used [13, 14, 15, 16]. Another disadvantage is the fact that it is
not easily applicable in cases with free surface flows. In such cases, reconstruction of free surface is
required, which is not simple with the SPH method. For this reason, particle redistribution is primarily
used in constrained flows, such as the flow in the back step geometry, where the extents of the flow
field are known and the new particle locations predetermined.

Using the technique of particle redistribution, it is possible to solve the flow field, using the exact
experimental conditions of Armaly’s experiment [10, 11], without void formation and with high
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accuracy in the solution. Moreover a parabolic inlet profile was used, where the inlet u-velocity
component is given by:

u(y):6ﬁ%(l—%j (4.15)

The average velocity u is equal to 0.5323m/s, the sound speed value is set to 10m/s, (there is no
need to use a very large value, since particle redistribution will prevent void formation) and density
and dynamic viscosity are set to 1.23kg/m’ and 1.71 - 10”°Pa.s. The characteristic step dimensions are
the same as before: /=5.2mm and s=4.9mm. Again two particle resolutions were used, one coarse and
one finer, with particle sizes dx=0.2mm and dx=0.125mm (involving 25811 and 61616 particles
respectively). The velocity profiles are compared with the experimental values from Armaly [11] (fig.
4.28 and 4.29).

Inlet

u(y)

T Qutlet
L4

V><

L.

Fig. 4.27. Backward facing step — Armaly’s experiment geometry.
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The SPH method estimates reattachment at ~0.04m, close to the calculated value using the Finite
Difference Method in [10].

Fig. 4.30. Recirculation bubble. Reattachment at X~0.04

4.2.2. Turbulence modeling in SPH

Generally about turbulence

The main characteristic of turbulent flow is irregularity; turbulent flows are unsteady, irregular,
random and chaotic [18]. The appearance of turbulence is directly related with the Reynolds number
expressing the ratio of inertial to viscous forces. Below a Reynolds number, flow is smooth and
adjacent layers of fluid slide past each other in an orderly fashion [19]. However, as Reynolds number
increases, the flow behavior becomes unsteady and chaotic. In this regime of the Reynolds number,
turbulent flow occurs.

The main idea for studying turbulent flows, is to decompose any flow variable, such as velocity
u(t), to a steady mean value u and to a fluctuating component u’(f). Even in flows where the mean
flow characteristic vary in one or two dimensions, the turbulent fluctuations always have a three
dimensional spatial character. Furthermore by visualizing a turbulent flow, it is obvious that rotational
structures are formed, called eddies, which have a wide range of length scales. Eddies contribute to
the flow dissipation, thus mass, momentum and energy transfer is prevalent in turbulent flows.
Moreover the existence of eddies greatly affects energy losses, since an energy cascade hands down
energy from larger eddies to smaller eddies and eventually is dissipated due to viscosity and
transformed into thermal internal energy.

In order to properly solve a turbulent flow, it is necessary to capture all underlying scales of fluid
motion, i.e. resolve eddies of all sizes involved. This type of simulation is called Direct Numerical
Simulation (DNS) and requires extreme computational capacity even for simple flows of relatively
small Reynolds numbers, thus it is not feasible for practical applications. For practical cases, another
approach is used; the Navier-Stokes equations are averaged (Reynolds Averaged Navier Stokes -
RANS). By using time averaging, it is possible to rewrite the Navier Stokes equations, into a form
involving the averaged field variables and the fluctuating components; the latter are the elements of
the Reynolds stress tensor. The elements of the Reynolds stress tensor are the unknowns, for which a
correlation has to be established — this is called the closure problem. In the simpler turbulence models,
Reynolds stresses are directly linked to the mean flow characteristics and an eddy viscosity via the
Boussinesq assumption. The eddy viscosity is calculated through an algebraic equation (algebraic
turbulence models), or using additional transport equations (one equation, two equation or Reynolds
stress models).
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There have been several attempts of incorporating turbulence models in the SPH method. Violeau
[20, 21, 22] has worked on the integration of traditional, widely accepted, turbulence models, such as
the k-e, k-w, non-linear k-¢ and the Reynolds stress model. Implementation of such models was
successful, but generally there is difficulty enforcing boundary conditions [21] and there are
discrepancies in the results from experiments [21]. Moreover practical application of 3D turbulent
flows is rather cumbersome due to the increased computational cost [21 and 22].

Another proposed approach used by many SPH practitioners, is to use a Sub-Particle Scale (SPS)
turbulence model [23, 24, 25, 26]. The SPS turbulence model is based on the Large Eddy Simulation
(LES), where the basic idea is to simulate the larger eddies and model the smaller ones, which are
below the cell/particle size. However, in order to obtain reliable results with this model, a 3D
simulation with fine particle discretization is required [24].

On the other hand, efforts have been made for developing turbulence models specifically designed
for the SPH method. Indeed, Monaghan, one of the inventors of the SPH method, has developed
turbulence models, suited for the SPH method, such as the XSPH-extension [27] and the Lagrangian
Navier Stokes alpha (LANS-alpha) [28] models. However, both these models have not been
extensively used in the field of fluid dynamics.

Standard turbulence models in SPH (k-¢ and k-w models)

For simulating higher Reynolds numbers in the turbulent regime, an appropriate turbulence model
must be included in the SPH model. In the present work, two well-known turbulence models were
implemented in the SPH algorithm and tested in a benchmark case: the k-& and k-w turbulence
models. Both models are based on the Reynolds Averaged Navier Stokes (RANS) approach, where
the Navier-Stokes equations are averaged through time. They introduce two new transport equations
in order to model the evolution of the eddy viscosity; one equation for the turbulent kinetic energy k
and one equation for the turbulence dissipation ¢ or the specific dissipation rate (or turbulent
frequency) @ — thus both belong to the two-equation closure models. Generally it is known that the k-
& model performs poorly in cases of separation, whereas the k-w model performs better. For more
information regarding turbulence models and the turbulence closure problem the reader is referred to
the works of Wilcox [29] and Pope [30].

The implementation of turbulence models in the SPH method is based on the work of Violeau et
al. [20, 21, 22]. First the continuity and momentum equations are written (and solved) in averaged
form:

Continuity:
Dp, &
=Y, VW, (4.16)
j=1
Averaged momentum equation:
Dﬁi 1_7 i ﬁ j
D :_ij _2+_j2 Vvvij _Hij +fhody 4.17)
! i i j
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Morris viscosity term:

H“:(ﬂ+ﬂr),»+(ﬂ+ﬂ7)j Y ow wis)
! PP HI‘ Hz ! ! .

ij

In the Morris viscosity term the eddy viscosity (i, is included to account for turbulence effects.

The eddy viscosity is linked to turbulent kinetic energy k and the turbulence dissipation ¢ or the

specific dissipation rate o, through the following equation:
2

k k
ﬂszszpC”?zpz) (4.19)

The equation which links € and o is:
e=f wk (4.20)

However the value of ﬂ* is equal to the value of C,, for the standard k- model.
The exact transport equations for k, €, » are:

Kk _p_s vHV +V—Tij} .21)
dt o,
de ¢ vy
E:E(CglP—nggHV v+0— Ve (4.22)
‘;—w = %(CMP ~C,kw)+ V|:(V + V—TJV a)} (4.23)
t Oy

The previous equations may be rewritten in SPH form as follows:

dk i+ ki =k,
P opP—e+Sm r, VW, 424
dt ¢ Z,:ml PP, Hr,,H2 ' ' @20
de _¢ _ HoitHe,; &~
0 k(CglP C,,e)+ Ej m, op, “rﬁ“z r,- VW, (4.25)
do _w _ Hai THo B9
o k(CwlP C,,kw)+ Ej m, op “rﬁuz r, VW, (4.26)

In the previous equations:
- P is the turbulent kinetic energy production term, which can be calculated from:

’ k
P=C,—S§'=—5" (4.27)
£ w

where S is the scalar rate of strain, defined by:

S=+28:S (4.28)

S is the rate of strain tensor, consisting of 3x3 elements in 3D and 2x2 in 2D. The element Sj; of the S
tensor is given by:
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i J
s =L ou_ 9w’ (4.29)
o 2(dx) dx'
The calculation of all velocity derivatives, through summation approximations, in order to
calculate the respective S; terms, is rather inefficient. Thus, following Violeau [21], a direct
estimation of the scalar rate of strain is obtained through the following equation:

21 PitP, Hﬁi_ﬁfuz ,
Si=—um, ppi e[ n -

— IL‘T,[
- M =T A

Hr;

\]
NY
o

- lug,i::ui+

_ Hr;
- Mg =t %w

- The parameters of the turbulence models are:
For the k-¢ model:

e (=0.09

e (=144

e (=192

e =1

e =13
For the k- model:

e £'=0.09

e (C,=5/9

e (C,=3/40

* =2

* g,=2

Apart from the transport equations for k, ¢ and @ wall functions are needed to prescribe turbulent
quantities and velocity at the wall. The great difference of the implementation of a turbulence model
in the SPH method that other grid based method, such as the Finite Volumes, is that the wall functions
is not sufficient to be employed only on the first layer of fluid particles from the wall, since the kernel
function interpolation domain includes the wall particles. Thus, virtual values of velocity, turbulent
kinetic energy, turbulent dissipation and specific dissipation rate must be attributed on wall particles
in order to enforce a complete kernel support for particles near walls. Following Violeau [20, 21],
where the wall functions which are enforced on wall particles are:

- For the parallel to the wall velocity, this is done by assuming the log-law profile:

E:lln[“*5j+c 431)

U, K v,

1

where v; is the kinematic viscosity, u- is the friction velocity, x is von Karman’s constant,
equal to 0.41 and C=5.1. ¢ is a user defined parameter representing the distance from the wall.
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Its value is set to a value less than the particle size. The friction velocity is calculated through

the following relation:

w

Yol

u, =

where 7

w

u, , evaluated at the normal, to the wall, direction 1 :

For the turbulent kinetic energy, it is assumed that:

2
U,

The turbulent dissipation rate, according to [18], is calculated from:

3
U,
& =

)

The specific dissipation rate is calculated from:

o =(8)"

]
KO

(4.32)

is the wall shear stress, equal to the derivative of the parallel velocity to the wall

(4.33)

(4.34)

(4.35)

(4.36)

In order to calculate the described wall functions, the wall shear stress is needed. First of all each

wall particle has its own wall normal assigned, considering the boundary geometry (fig. 4.31b). Then
each wall particle is linked to a ‘sampling particle’, which is the mirror of the respective wall particle
across the boundary, at the normal to the boundary direction. Sampling particles do not affect the
flow. They are only used to sample the fluid characteristics at their location. From the velocity

sampled and the wall normal, one may calculate the parallel to the wall velocity componentu,,. This

velocity component is, then, used to obtain the wall shear stress.
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Simulation of a turbulent backstep for Re=69610

As a test case for the described turbulence models, a turbulent backward facing step flow
simulation was performed, attempting to replicate J.J. Kim’s experiment [10]. The geometry of the
test case is shown in fig. 4.32.

Inlet

Ly
‘.C
Y
X

\ Lz |
| !

Fig. 4.32. Turbulent backstep geometry

Outlet

The simulation was performed for a Reynolds number of 69610 (defined as Uh /v ) and the
properties of the simulated fluid were:

- p=1.88553kg/m’

- u=1.83698 -107° Pa.s

Particle redistribution is also periodically used in both simulations with the two turbulence
models. Apart from the void formation at higher velocities, simulating high Reynolds number with the
SPH method leads to another side-effect. High Reynolds numbers greatly affect particle distributions
inducing errors in the interpolation, which leads to unrealistic velocity profiles. In fig. 4.33, the
streamlines of the flow field are shown for a high Reynolds number backward facing step flow. It
seems that the particle approximation errors lead to an entirely different velocity distribution, forming
additional vortices, after the step and at the top of the channel. On the other hand, when redistribution
is used, only one large vortex is formed behind the back step.

2~ SPH with remeshing . ‘ JI

i C: 0206 1 1418 22

= C JNNRN) AR

C: 01 0625 115 1675 22

Fig. 4.33. High Re backward facing step simulation. General flow field and streamlines with/without remeshing.

In fig. 4.34 the effects of the redistribution are shown for a high Reynolds number flow
(Re=132000) for different time steps. A general observation is that with redistribution the velocity
field is smoother. This is valid for all field variables, since during redistribution, interpolations are
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performed to determine field variables at the new particle locations. These interpolations inevitably
add numerical dissipation, which stabilizes the solution and smoothes fields. Also voids are formed
without particle redistribution, which, at later time steps, are filled again with particles. Another
notable observation is that at high Reynolds numbers, the high velocity gradients near the walls affect
the local particle distribution, resulting to overestimation of the boundary layer thickness. Thus, in
order to simulate high Reynolds flows, particle redistribution is necessary.
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Fig. 4.34. Backward facing step. Left: standard SPH. Right: SPH with particle redistribution.
Particle coloring by velocity magnitude.
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In the fig. 4.35 the recirculation zone calculated with SPH k-¢ and k- turbulence models.
According to the experiment, reattachment should occur at x/A=7.00% 0.5. The SPH k-¢ model
predicts reattachment at x/h=5.2 (Fluent k-¢ at x/h=5.8). The underestimation of the reattachment point
is known for the k-¢ turbulence model. On the other hand, the SPH k- model predicts reattachment
close to the experimental value, at x/h=7 (Fluent k- at x/h=7.3).

SPH k-epsilon model

Y/h

Y/h

X/h

Fig. 4.35. Recirculation bubble for the turbulent backstep case.

In the figures 4.36 and 4.37, the velocity distribution with the SPH is shown for the backstep, in
comparison with the experimental values from Kim [10] and a finite volume solution. For both
turbulence models, there are differences between the numerical results and the experimental values.
However, the SPH and Fluent solution are close to each other; practically identical near the backstep,
with differences becoming more pronounced at x//>7.11. In either case, the agreement between the
numerical methods is satisfactory.
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k-¢ turbulence model
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k-w turbulence model
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4.3. Free surface flows

The great advantage of the SPH method is the simulation of free-surface flows without the need
of tracking the interface, or employing any special boundary conditions at the free-surface. Free
surface simulations in SPH are generally performed by simulating only the primary phase i.e. the
denser fluid involved in the simulation. This simplification is possible in multi-phase flows when the
density ratio between the different phases is large enough to assume that the heavier phase is
governing the flow evolution. Moreover, a two phase simulation would come at a considerably higher
computational cost. For testing the free-surface capabilities of the developed SPH algorithm, the jet
impingement on a flat plate will be used as a benchmark, concerning the pressure distribution and the
free-surface level.

Jet impingement on a flat plate

In this benchmark case, a high velocity water jet impinges a flat plate under different
impingement angles. First a particle dependence study was conducted in order to determine the
optimal number of particles required to describe properly the underlying phenomena. Then, after
determining the adequate resolution, four different impingement angles ¢ were tested, for 90°, 60°, 45°
and 30°. A simple sketch illustrating the test conditions is shown in fig. 4.38. Finally the results
obtained, concerning pressure distribution on the flat plate and the free-surface profile of the formed
water sheet, are compared with experimental data [31, 32, 33]. The pressure distribution on the plate
is determined by using sampling particles on the plate surface. Sampling is performed using an
equation similar to the SPH weighted average summation formula (eq. 3.22). Since there is a steady
state solution, time averaging is also performed after the transient part of the impingement, in order to

smooth out pressure oscillations.
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Fig. 4.38. Sketch of the jet impingement

The velocity of the water jet was 20m/s and the diameter 30mm. The artificial speed of sound was
set to 10V},,= 200m/s and density was assumed to be 1000kg/m’. Viscosity is omitted for the reasons
already mentioned in section 4.2.2. For the particle dependence study three different particle
resolutions were used: 3mm, 2mm and 1mm. Particles are placed on the jet in a circular manner, using
cylindrical coordinates, forming successive rings on the XY plane, beginning from inside and moving
to the outer surface of the jet. After placing enough rings to cover the jet radius, a layer of particles is
formed. Placing particles in a regular distribution in the jet would lead to particle aligning after the jet
impingement, eventually moving in lines (see fig. 4.39 left) and resulting to an unphysical solution,
both in terms of free surface and pressure distribution. In order to avoid particle alignment, each ring
of particles is rotated in respect to the previous ring. The same is performed for each layer of particles.
The distribution of particles at the jet looks as in fig. 4.39 (right).
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Water jet
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Fig. 4.39. Left: Particle alignment issue at the jet impingement. Right: Particle distribution at the jet to avoid particle
alignment

The mass of each particle is calculated from the mass of the ring in which each particle belongs,
divided by the number of particles in the specific ring. For example particle i located at radius R,
belong to a ring spanning from R,,=R+dx/2 to R;,=R-dx/2 in the radial direction on the xy plane (dx is

the particle spacing). Thus, the surface S of that ring is S :ﬂ'(R ? —Rmz) and the volume is

out

V =dx-S . Eventually the mass of the ring is m=V-p

water

and the mass of the i particle is

m, = m/ N, where N is the number of particles in the specific ring. The number of particles on each

N= int(@j (4.37)

ring is an integer number, thus:

dx

In 90° degrees impingement it is beneficial to impose symmetry on yz and xz planes in order to
speed up the simulation. In the rest cases symmetry is imposed on the xz plane only. Here it has to be
highlighted that in the 90° degrees impingement the solution is axis-symmetric, thus there are infinite
symmetry planes and ideally it would be even more efficient to just solve a small slice of the whole
computational domain. Practically, in the SPH method, if such a small slice is used, the solution
would be subject to particle alignment. Indeed, reducing the computational domain size, reduces the
available directions fluid particles may move, eventually leading to particle alignment and to
unphysical solutions, especially near the symmetry planes [34]. It was found [34] that using two
symmetry planes on yz and xz planes is a good compromise between accuracy and solution time.

Particle size dependence study

As it was mentioned earlier, a particle dependence study was conducted to determine the optimal
particle size / particle number to simulate the jet impingent. The particle sizes used were 3mm, 2mm
and Imm leading to 10, 15 and 30 particles on the diameter of the jet. By comparing the pressure
distribution on the plate and the free surface it is found that the particle size of 1mm is able to give
accurate results, while particle size of 2mm slightly overestimates pressure at the stagnation point. On
the other hand the particle resolution of 3mm leads to totally unreliable results. For the pressure
distribution the pressure coefficient is used:
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2p
c =—F. (4.38)
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Fig. 4.40. Comparison of the pressure coefficient on the plate for different particle resolutions.
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Fig. 4.41. Comparison of the pressure coefficient on the plate for different particle resolutions.

Experimental results, shown in fig. 4.41, under predict the pressure coefficient, C,, to a value less
than unity at the stagnation point, due to the influence of the spear valve adjusting the flow rate at the
nozzle forming the water jet [33]. On the other hand, the numerical simulation using Finite Volumes
and the Volume of Fluid method (VOF) [32], gives the same pressure coefficient distribution on the
plate as the one calculated with SPH.
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Fig. 4.42. Comparison of the free-surface level of the formed water jet for different particle resolutions.

The particle size giving the best results was the 1mm. This particle discretization will be used to
simulate the rest impingement angles.
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The time required to simulate 0.01sec of physical time using the SPH algorithm increases, as the
particle resolution becomes finer, since more particles are involved in the simulation and need to be
solved. As a matter of fact, the SPH algorithm with particle size of:

- Imm requires ~1day and 13hours without using symmetry planes. If a symmetry plane is used
then the required time is approximately reduced by a factor of 2 (~18hours). Similarly if two
symmetry planes are used, the computational time is reduced by a factor of 4 (~8.8hours).

- 2mm requires approximately ~2hours, using two symmetry planes

- 3mm requires approximately ~15min, using again two symmetry planes.

All simulations were performed using OpenMP parallelization, on 2xQuad Core Xeon E5405 2.0 GHz
computer, utilizing all eight available processors.

Other impingement cases

Using the particle resolution of Imm the rest impingement cases where simulated. In fig. 4.43 a
general view of the flow field is shown, using as a cut-plane the symmetry plane on the xz plane. The
particle distribution shows the formed water sheet and its color the velocity magnitude. As it is
expected by Bernoulli theorem, the velocity of the water sheet should be approximately, since there is
the acceleration of gravity, equal to the velocity of the water jet.

The largest part of the flow moves tangential to the slope at the direction of the projected velocity
of the jet on the slopped surface. A small part of the flow moves to the opposite direction; this part
lessens as the impingement angle ¢ reduces. However, velocity is underestimated at that region, since
particles are scarce, reducing the accuracy of the SPH interpolations.

Results regarding the free surface and the pressure distribution are shown in fig. 4.44-4.46,
determined on the XZ symmetry plane; for the 30° and 60° degrees impingement a comparison is
made with experimental values from Kvicinsky’s results [32]. For the 45° jet impingement results are
compared with the results of the Fluent software. The spatial discretization used by Fluent is the same
as the one selected for the SPH method, i.e. Imm. An indicative view of the computational mesh used
is shown in fig. 4.48.

From the comparison of the results it can be deduced that the SPH method is capable of
describing the free-surface accurately, in respect to the experimental values and the results from the
CFD program. On the other hand, there are deviations in the pressure estimations:

- At the 60° jet impingement there is a small deviation near the stagnation point

- Generally in all cases, a negative pressure is predicted by the SPH method after the stagnation

point. This issue is directly linked to the particle distribution in the area. As it was mentioned
earlier, particle interpolations are no longer valid in the specific area, since there are not
enough neighbors to fill the kernel support radius. Ideally this would be solved by using a
much finer particle resolution, but this would result to unacceptable calculation times, even
using parallel processing.
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Fig. 4.43. Jet impingement on flat plate. Impingement angle, from top to bottom: 60°, 45°, 30°
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Fig. 4.48. Left: Fluent computational mesh. Right: Calculated free surface.

4.4. Concluding remarks

In the present chapter, the standard SPH algorithm is validated at several academic test cases,
such as the shock tube, the rotation of a square patch of fluid and the deformation of a circular patch
of fluid. The developed SPH algorithm is able to properly replicate the theoretical results.

Moreover, the application of the SPH method to viscous flows is examined. The SPH method is
able to simulate accurately viscous flows but, at the examined cases, uneven particle distributions may
deteriorate the solution quality. This was particularly shown in the shear cavity case and in the
backward facing step case. At high Reynolds number it is necessary to use particle redistribution, in
order to control the particle arrangement. In any case, it is possible to integrate traditional turbulence
models, such as the k-¢ and k-w turbulence models, and reproduce turbulent flow characteristics.
However, the fact that particle redistribution would be required renders direct application of
turbulence at free surface simulations difficult.

The water jet impingement case shows that the SPH method is capable in simulating free surface
flows, since it is able to properly reproduce the free surface. On the other hand, the inherent weakness
of the SPH method in pressure estimation leads to inaccurate pressure distributions. For that reason,
for all the rest cases presented with the standard SPH, the force estimation on walls is performed
using the boundary forces reaction (eq. 3.88 and 3.89).
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Chapter 5

Application of the SPH method in impulse hydraulic turbines

In this chapter several realistic applications of the SPH method in impulse hydraulic turbines are
discussed. These applications have to do with the:

- simulation of the flow inside a Petlon turbine nozzle

- simulation of the behavior of an impulse turbine deflector

- simulation of the flow in impulse turbines (Turgo turbine and Pelton turbine)

5.1. Flow inside a Pelton turbine nozzle

The first real application of the SPH method is on the flow modeling of the free surface flow
formed at the nozzle spear valve (called also as injector) of a Pelton impulse turbine. Impulse turbine
operation requires a high velocity water jet to impinge on a runner with specific geometry. The high
velocity water jet is formed at the turbine nozzle located at the turbine casing. In fig. 5.1 (left), there is
a photograph of the model Pelton turbine installed in the Laboratory of Hydraulic Turbomachines
(NTUA), where the turbine nozzles are visible, and in fig. 5.1 (right) a zoom at the nozzle, where the
needle (also called as spear) is also visible.

Fig. 5.1. Left: Laboratory Pelton turbine model. Right: Turbine nozzle. The needle and water jet are also visible.
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Fig. 5.2. Drawing of the Pelton nozzle with spear valve (dimensions in mm).

The purpose of the nozzle is to transform the hydraulic head into high velocity jet required for the
turbine operation. The needle moves at the axial direction of the nozzle, regulating the flow rate
(needle stroke).

The SPH algorithm was adapted in order to simulate the flow through the nozzle for different
needle openings. Eventually the characteristic nozzle curve is obtained, linking the flow rate through
the nozzle to the needle stroke. Then the characteristic curve is compared to the experimental data
from the Pelton installation.

Case set-up

The geometry of the nozzle and needle is axis-symmetric and the basic dimensions are shown in
fig. 5.2. For modeling, the geometry was simplified as shown in fig. 5.3. The geometry is represented
as a planar 2d-sketch on the yz plane, which consists of line and curve segments. C;, C, curve
segments are assumed to be polynomial curves of 3" degree in order to satisfy the conditions required
(slope at A, B endpoints and coordinates of endpoints).

Ly Z Curve segment C:

z=f(y)= ay’+by*+cy+d
X L—> Y

N Closed 2D o

\\\position B(Ys,Zs)
L, S

Needle stroke s

Fig. 5.3. Left: 2d-sketch, showing basic lines/curves. Right: Curve segment representation

After creating the 2d outline, then the simulated geometry is formed as a surface of revolution
around the y-axis. For solving the flow, plane symmetry is assumed on yz and xy planes.

At the nozzle inlet, the total pressure is assumed to be constant. This resembles the actual
situation of a hydro turbine operation, since the total height is practically constant, considering short
term operation. In order to properly impose the boundary condition, several layers of buffer particles
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are introduced at the nozzle inlet, as shown in fig 5.4. The buffer particles are placed for the same
reason as in the backward facing step case (see chapter 4); in order to fill the support domain of fluid
particles at the inlet, while imposing the desired pressure value. Since the total pressure is fixed, static
pressure is deduced from the definition of total pressure, i.e. total pressure minus the fluid dynamic
pressure:

|
Psiar :prm_Epu 5.1

The only unknown needed to impose the static pressure, is the fluid velocity. This is obtained by
averaging the fluid velocity of the first layers of fluid particles; to be more precise, for all particles
with distance less or equal than the kernel support radius (2.5#) from the buffer region. The average
velocity is also imposed on the buffer particles in order to enforce zero gradient boundary condition
for velocity at the inlet. Moreover, average velocity is used to determine the volume and,
consequently, mass flow rate.

Fig. 5.4. Section view of the nozzle. Grey particles are wall particles, blue particles represent the fluid and red particles
represent the particle buffer, whose pressure and velocity are imposed.

The simulations were performed for a total gauge pressure at inlet equal to 10bar for various
needle strokes ranging from 43mm to 8mm. Nozzle openings less than 8mm were not simulated
because particle resolution became comparable to the nozzle opening. The sound speed was set to
540m/s and fluid density was set to water density (998.2kg/m’). Simulation time was 10msec; the
flow is initially transient and after ~6msec reaches a steady state. A particle dependence study was
performed to find the resolution of particles which is required to describe accurately the flow field. In
all cases as initial condition it is assumed that the nozzle is filled with water.

Particle dependence analysis

In order to decide for the particle discretization, a particle-dependence analysis was performed for
different particle sizes (and consequently different numbers of particles) 2.5mm, 2mm, 1.5mm and
Imm for a nozzle opening of 36mm. As can be seen from the following diagram (fig. 5.5), for
particle sizes less than 1.5mm the flow rate results practically do not change. For the rest simulations
the 1mm particle size was used.
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Simulation results & comparison with experiment and Fluent solution

In this section, the results from the SPH simulation of the nozzle are compared with the
experimental nozzle characteristic curve. Also the free-surface location is compared with Fluent axis-
symmetric solution, since it was not possible to obtain accurate measurements of the free surface from
the experimental installation.

The experimental characteristic curve was calculated by taking measurements of the flow rate
through the nozzle for different needle strokes. The needle stroke is adjusted properly by turning the
needle handle. Pressure is measured by a pressure transducer located before the nozzle in order to
avoid including the hydraulic losses of the piping. Finally flow rate is measured by an electromagnetic
flow meter. Since flow in the experimental installation is generated by a pump, it is rather difficult to
ensure constant total pressure for all measurements; when the nozzle opening increases, pressure will
decrease for the same pump speed. Thus, the pump speed must be increased. However, it is
impossible to adjust pump speed so that total pressure matches exactly the simulation boundary
condition of 10bar. For that reason, the pump speed was adjusted in order the static pressure at the
measuring transducer to be ~10bar and then flow rate was properly deduced for a total pressure of
10bar. To be more specific:

P 1
'=Q [ (5.2)
e=cC B,
1 1 (oY
ont = Psmt +§pu2 = Psmt +§p[ZJ (5.3)

- P, is the measured static pressure

- Q is the measured flow rate

- Ais the surface of the cross section where pressure was measured
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P

. 1s the total pressure at which flow rate will be deduced (in our case 10bar)

- (' is the deduced flow rate

In fig. 5.6 — 5.9, indicative instances are shown from the simulated flow with the SPH algorithm,
showing the free-surface location and the formed water jet velocity. A comparison is also made with
the free surface shape calculated by Fluent, used as reference. Generally the SPH algorithm predicts
accurately the free surface shape and the water jet diameter (see also fig. 5.10). Nevertheless, it
underestimates the velocity of the water jet, especially for small openings (see fig. 5.9). Following
Bernoulli theorem, the velocity of the water jet is a function of the pressure difference, when viscosity
is absent:

=44 8m/s

This is a side effect from the wall boundary conditions used; when particles move away from the
wall then continuity equation predicts a decrease in their density, which eventually results to a
pressure gradient decelerating particles moving away from walls. This is also seen at the edges of the
water jet, where velocity is also underestimated.

V[m/s: 0 5 10 15 20 25 30 35 40 45

Fig. 5.6. Nozzle opening 43mm. Particles are colored according to their velocity. The black diamonds/line show the free
surface calculated with Fluent.

V[m/s: 0 5 10 15 20 25 30 35 40 45

Fig. 5.7. Nozzle opening 28mm. Particles are colored according to their velocity. The black diamonds/line show the free
surface calculated with Fluent.
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V[m/s: 0 5 10 15 20 25 30 35 40 45

Fig. 5.8. Nozzle opening 16mm. Particles are colored according to their velocity. The black diamonds/line show the free
surface calculated with Fluent.

V[m/s: 0 5 10 15 20 25 30 35 40 45

Fig. 5.9. Nozzle opening 10mm. Particles are colored according to their velocity. The black diamonds/line show the free
surface calculated with Fluent.

In any case the predicted diameter of the water jet is in accordance with the jet diameter
calculated by Fluent for various nozzle openings, as shown in fig 5.10.
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Fig. 5.10. Diameter of the jet formed after the nozzle. Comparison of the SPH and Fluent results.

The volumetric flow through the injector is calculated as 0

= AU, where A is the surface of the

vol

section between the nozzle and the needle and U is the average axial velocity. Due to the unsteady
nature of SPH, there are oscillations at the value of average velocity and, as a result, at the volumetric
flow. These oscillations become greater as the injector opening becomes smaller (see fig. 5.11). The
average volumetric flow rate is, hence, calculated after a certain transient period where the amplitude
of the oscillation becomes constant and the average volume flow rate stabilizes.
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Fig. 5.11. Transient flow rate through the nozzle for different nozzle openings

By calculating the average flow rate after the transient phase and plotting the flow rate as function
of the nozzle opening, the characteristic curve of the nozzle is obtained. As shown in fig. 5.12,
agreement with both experimental results and the Fluent program is good.
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Fig. 5.12. Characteristic curve of the nozzle. Comparison of the results from SPH and Fluent simulations and experimental
data.

Another interesting prediction from the SPH algorithm is the evolution of the free surface of the
jet in respect to time. As it was already mentioned the nozzle was assumed to be filled with water at
t=0. During the transient part of the simulation, a mushroom shaped structure is formed (fig. 5.13b, c,
d). After ~4ms, the solution reaches a steady state and a cylindrical jet is formed. The same behavior
is predicted by the Fluent program, at respective instances.

It has to be highlighted here that the Fluent solver used for the nozzle simulations was an axis-
symmetric solver, thus the computational mesh used was 2d. This means that the Fluent simulation
was performed considerably faster than the SPH simulations with any resolution used in the present
section. However the comparison is not equal, since Fluent solved a 2d mesh, whereas SPH solved a
3D domain. Indeed, the situation is entirely different when Fluent is used to perform a 3D simulation
and the execution time is comparable to that of the SPH algorithm.
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Transient behavior

(a) time: 0.85msec
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(d) time: 3.1msec

Fig. 5.13. Indicative instances during the transient phase calculated by SPH and Fluent.
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5.2. Jet deflector

The water jet deflector is used in impulse hydro turbines in order to quickly reject load from the
turbine, used in emergency shutdowns [1]. Emergency shutdowns must be done when the power line,
connecting the generator to the power grid, is disconnected for some reason. The result is that the
turbine operates without a resisting load from the generator, accelerating the runner and eventually
leading to turbine and generator overspeed, which might damage the installation.

Load regulation is done through the nozzle needle stroke. However the hydraulic systems
adjusting the nozzle needle are not able to quickly cut the water supply to the turbine runner, and,
even if it was possible, such an operation would not be applicable, due to the hydraulic hammer effect
[2]. Thus, a deflector is used which is inserted between the runner and nozzle, deflecting the water jet
away from the turbine runner (fig. 5.14).

Fig. 5.14. Impulse turbine jet deflector (the nozzle is also visible).

Deflectors may be divided into two types, as shown in fig. 5.15. In both cases the deflector plate
rotates and enters the path of the jet reducing (fig 5.15a) or totally diverting (fig 5.15b) the water flow
reaching turbine runner.

Nozzle Nozzle
Deflector

Water jet

Fig. 5.15. Deflector types.

The aim of the present investigation is to determine whether a deflector, such as the one shown in
fig. 5.15a, may also be used to effectively adjust the turbine load in normal operation, without
regulating the spear valve. The investigation is performed primarily qualitatively, judging the jet
coherence after the interaction with the deflector from indicative simulation time-steps.
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Case set up

The deflector was assumed to be a section of a cylindrical arc. The simulated fluid was water
(p=1000kg/m*), the velocity of the jet being deflected was 32m/s and the jet radius 30mm. The
numerical speed of sound was set to ~10V;=320m/s.

At first a simplified simulation was performed in 2D, where the deflector was positioned
approximately halfway cutting the water jet. Particle size was set to 1mm, thus simulations involved
~21000 particles. Indicative results during the transient phase, showing the propagation of the water,
are presented in fig. 5.16, where both the SPH and Fluent solutions are shown.
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Fig. 5.16. Indicative snapshots during the transient phase of the jet-deflector interaction. Particles are colored according to
their velocity magnitude. Free surface calculated with Fluent is denoted with a solid black line.

The forces on the deflector may be estimated using the conservation of momentum theorem (see
also fig. 5.17):
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F=m,u, —mu, —m,u, (5.4)

m m

iy = 1y = i, 12 (5.5)

After calculations using eq. 5.4 and 5.5:
{Fx = 22000 N

F, =22400 N

SPH and Fluent solution predict a similar deflector force:
F_=20901N
SPH :

F, =19546 N
o [F=20089N
“ 18980 N

Forces are expressed per depth unit. Here it has to be highlighted that in the SPH method, forces
are averaged after the initial transient stage of the flow, due to oscillations.

—////;

Deflector

\

Fig. 5.17. Application of the conservation of momentum theorem for the jet deflector.

After the initial test, where the deflector was assumed to be stationary, a further test is performed
to determine the influence of the deflector motion. The conditions of this test are the same as before,
with the only difference that the deflector starts its motion while being out of the jet’s path and then
gradually deflects the jet. The angular velocity of the deflector is 5n rad/s, which is rather large for an
actual impulse turbine deflector. A real deflector would require ~1sec to complete a circular arc less
than 2z which will move it to the deflecting position. However, even in that case, the simulation will
be able to show the transient features of the interaction. As shown in the snapshots during the
transient phase (fig. 5.18), the remaining water jet is considerably affected by the presence of the
deflector; its direction changes and the free-surface distorts considerably.
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Fig. 5.18. Transient behavior of the moving deflector (2D).

113



Chapter 5: Application of the SPH method in impulse hydraulic turbines

In fig. 5.19 the forces acting on the deflector, due to the interaction with water, are shown. Both
forces on the x and y axis exhibit oscillations, which, as it was mentioned earlier, are a side-effect of
the repulsive boundary conditions used to represent walls. However, despite the oscillations, forces
follow a distinct trend.
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Fig. 5.19. Force history on the deflector.

As it was shown, in both the stationary and the moving deflector 2D cases, the water jet is
considerably affected by the deflector presence; after the interaction, the remaining water jet is
significantly distorted and its direction is altered. However this might be attributed to the assumption
of two dimensional flow. Thus, in order to get a more realistic simulation it is necessary to test the
influence of the deflector using a full 3D model. The same case was simulated for a cylindrical jet in
3D, for the same conditions as the 2D moving deflector case, with the only exception that the particle
size used was 2mm (~210000 particles involved), since the computational cost was prohibitive for
smaller particle sizes, even when running the SPH algorithm in parallel. Also for simplicity the
deflector was assumed to consist of only one layer of boundary particles.

In fig. 5.20 indicative snapshots are shown during the interaction of the jet and deflector. As
shown in the results, the remaining water jet is still affected by the deflector, but to a less extent than
the predicted from the 2D simulation; both the jet direction and the jet shape change (see also fig.
5.21). Even in that case, the results indicate that the jet is considerably distorted. The jet shape
exhibits significant scattering, which is rather likely to affect turbine efficiency, especially if the
influence of the interaction with the surrounding air is accounted. The conclusion from the presented
simulations is that a deflector of cylindrical shape is not well suited for adjusting the load on an
impulse turbine, since the jet characteristics greatly deteriorate after the interaction with the deflector,
even when the deflector cuts a small part of the jet.
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Fig. 5.20. Transient beﬁavior of the moving deflector (3D).
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dashed line.

5.3. Impulse turbine simulations

Impulse water turbines operation is based on the interaction of a high velocity water jet with the
rotating turbine runner. The turbine runner changes the direction of the flow and, as a result, torque is
exerted on the runner due to the change of water jet’s angular momentum. The static pressure does not
change before and after the turbine runner. This enables the operation of the turbine in atmospheric
environment, without the need of a sealed casing. The water jet is formed at the turbine nozzle,
sometimes referred to as injector, where the water potential energy is transformed into kinetic energy.
An impulse turbine may have more than one nozzles. They are located at the turbine casing, around
the turbine, directing the jet tangentially at the runner blades (Turgo turbine), or buckets (Pelton
turbine). The nozzles are equipped with a needle, which is used to adjust the water flow rate through
the nozzle to match the requested power at the generator coupled to the water turbine. Apart from the
needle the nozzles often have a deflector, which is used to deflect the water jet from the runner, in
case of an emergency to quickly reject load from the turbine. The most well known impulse turbines
are the Pelton and Turgo turbines.

The Pelton turbine (fig. 5.22) consists of a runner of specific geometry; the runner is comprised of
specially shaped buckets (fig. 5.22). Inside the turbine casing there are the turbine nozzles at which a
high velocity jet is formed and is directed tangentially at the turbine runner, impinging at the middle
of the buckets. Due to their special shape, the water flow is divided into two parts which flow inside
the bucket and eventually exit the bucket at the opposite direction relative to the water jet. Since the
runner changes the direction of the water jet, force and consequently torque develops at the runner and
energy is transferred from the water to the turbine generator. The Pelton turbine is well suited for
applications of high water gauge with relative low flow rates and achieves high efficiencies.
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Fig. 5.22. Left: Pelton turbine. Right: Pelton turbine bucket.

Turgo turbines are designed for medium head applications. They have a flat efficiency curve and
provide excellent part load efficiency, thus they can be used as an alternative of other turbine types,
especially if there are large flow rate variations. The simplest Turgo turbine runner looks like a Pelton
runner split in half at the plane of symmetry. The water jet enters from the one side of the runner and
exits from the other. Because of that, the escaping water does not interfere with the incoming jet, or
the other turbine blades, enabling the turbine to handle larger flow rates and jet diameters than a
Pelton runner of the same runner diameter. As a result the Turgo turbine has higher specific speed and
smaller size than a Pelton turbine of the same power. The smaller diameter allows the operation at
higher angular velocities, which in turn, makes the coupling between the turbine and the generator
easier, avoiding the use of a mechanical transmission system decreasing costs and increasing the
mechanical reliability of the system [3].

Fig. 5.23. Left: Turgo turbine. Right: Turgo turbine blade.

A common characteristic of impulse water turbines is that the developing flow of the impinging
jet on the runner is unsteady, free-surface with moving boundaries, due to the runner rotation. This
fact renders simulation with Eulerian methods difficult [4] since special treatments are required for
capturing the underlying phenomena, such as the Volume Of Fluid (VOF) method for tracking the
free-surface and sliding meshes. The aforementioned treatments increase the computational cost and
requirements of the simulation considerably. Alternatively, it is possible to adopt a Lagrangian point
of view, using the SPH method and exploiting its advantages. Indeed, according to Marongiu et al. [4,
5], a Lagrangian perspective simplifies the free-surface tracking and the meshless nature of the SPH
method makes the handling of rotating runner easier. In the present work, the SPH method was
applied for simulation of Petlon and Turgo turbines. Moreover, the SPH algorithm was used for the
optimization of a Turgo turbine runner.
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Geometry representation of the blade/bucket geometry

The Turgo blade geometry was generated using specialized software available to the Laboratory
of Hydraulic Turbomachines department [6], which uses as an input the blade angles and the general
dimensions of the blade. The average blade inlet and outlet angles may be computed from the
corresponding velocity triangles. Also, additional design parameters are introduced to allow for
differentiation of the inlet and outlet bucket angles along the leading and trailing edges of the bucket.
Moreover, the curvature of these edges may be properly adjusted. The above make a total of 12
geometric control variables for parametric description of the bucket geometry. The mean 3-
dimensional surface of the bucket is then generated using the conformal mapping methodology and
interpolation techniques [6]. The above parameterization method ensures always a smooth curvature
variation of the surface.

A similar approach, using NURBS [7], is used for the description of the Pelton turbine bucket [8].
According to the developed methodology a number of design control points are properly introduced
for the definition of the bucket inner surface. As shown in fig. 5.24a, 6 such points are placed along
the periphery of the half symmetric part of the bucket and can be moved along the x or the z direction
to deform its shape. The exact location of the deepest point of the bucket may be also regulated with
reference to the bucket itself and to the rotation axis of the runner. The location of the cutout lips
point, as well as the radius of the cutout region can be also determined by two corresponding
geometric parameters. The rest surface of the bucket is then constructed as follows: the surface is
assumed to consist of a number of successive parallel slices, starting from the bucket inlet plane on
the xy level and terminated at its tip. The shape of each such slice is defined by interpolation
techniques between the first slice and a number of intermediate control levels that determine the rate
of change of the slice width and length. Two such levels are used here (see fig. 5.24b), introducing 4
additional control parameters. Overall, the construction or the modification of the entire inner surface
of the bucket is controlled by a number of 18 free geometric variables, which is a rather small number
for such a complex 3dimensional shape. After parameterization, at any (x, y) point the algorithm can
return the corresponding depth z of the inner surface, as well as the local slopes dz/dx and dz/dy. The
bucket surface, used in the present study, is based on the geometry of an existing Pelton turbine which
has a hydraulic head of 135mWG and nominal power rating of 150KW.

Fig. 5.24. Surface parameterization of the Pelton bucket. Location of control points.

In both cases, the geometry of the bucket/blade is eventually represented as a grid consisting of
quadrilateral elements (fig. 5.25). In order to transform the 2D quadrilateral grid into a layer of
particles, the blade/bucket surface was remeshed with appropriate resolution, depending on the
particle sizing of each simulation.
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Fig. 5.25. The surface grid representing the Pelton bucket (left) and the Turgo turbine blade (right).

5.3.1. Application of the SPH method for simulation of Turgo turbine geometries

In this section the SPH algorithm is used for simulations on Turgo geometries as the one shown in
fig. 5.26. In the Turgo turbine, water jet enters under a relative angle of #~20-25° in respect to the
runner level of rotation. Water kinetic energy is transferred to the runner and eventually water leaves
with little residual velocity mainly in the axial direction.

Initially two 2D tests are presented; the ‘blade’ is a section of an actual 3D Turgo turbine blade at
the mean radius. One test was performed for stationary blade and the other for a moving blade
performing translational motion. Following on, 3D tests have been performed for a stationary Turgo
blade under various jet impingement conditions and for a rotating Turgo geometry. The rotating
geometry consisted of two, or even more, blades. Eventually, the SPH method was used to evaluate
the resulting Turgo geometries from the optimization with the FLS algorithm and the complete Turgo
turbine runner was simulated.

Fig. 5.26. Left: Turgo blade in 3D. Center: the 2D turgo geometry. Right: flow direction in a Turgo turbine.

2D Turgo geometry tests

The purpose of the 2D tests was primarily to explore the capability of the SPH method to simulate
flow similar to the one occurring in an actual impulse turbine blade, where the wall geometry is more
complicated than the simple water jet impingement on flat plate. The 2D tests correspond to the flow
conditions at the mean radius of an actual Turgo turbine. The general dimensions of the 3D blade
were: width 332mm, length 412mm, depth 265mm and the inner radius of the runner is 261mm and
the outer radius 500mm (mean radius ~380mm). The runner was impinged by a 154mm diameter
water jet with a velocity of 32m/s at 25° relative to the turbine rotation plane. For the 2D case, the
turbine blade was assumed to be stationary or moving with the velocity of 17.2m/s. The particle size
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used was 2.5mm and the numerical speed of sound was 350m/s. The moving case was compared to
the solution obtained by Fluent.

Stationary blade simulation

The simulation was performed for a total of 50msec, involving a maximum number of
~16000particles. In fig. 5.27, several snapshots of the flow are shown at consecutive time steps. The
blade is positioned in such a way to approximately cut in half the impinging jet. Also the blade is
simulated using a single layer of boundary particles as in the deflector case.
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Fig. 5.27. Flow on the 2D blade at different time steps. Particle coloring according to velocity magnitude.

The force on the blade may be calculated in a similar manner as in the deflector case, using the
conservation of momentum theorem. Thus it is possible to obtain forces due to the interaction of the
water jet and the blade:

F.=-43153N

Th tical :{
eoretica {Fy 09703 N

F, =-44165 N

SPH :{Fy = 103223 N

The deviation of the calculated force by the SPH method from the analytical values is ~3%.

Moving blade simulation

This simulation was set-up in exactly the same way as the previous one, but the difference is that
now the blade moves towards the —y axis, with a translational velocity of 17.2m/s. The developing
flow field is shown in fig. 5.28, as calculated by the SPH method and Fluent. Practically, both
programs calculate the same free surface and velocity distribution; the only difference is that the free-
surface calculated by SPH is susceptible to breaking, especially at the later time steps. However this
difference has to be attributed to the diffusion of the Volume of Fluid method used by Fluent to track
the interface, which stabilizes the free-surface. SPH calculated forces on both the x and y-axis exhibit
considerable oscillations but the general trend of the force history is similar with the one calculated by
Fluent. The oscillations in the force calculation do not affect greatly the total work on the blade; the
calculated work by the SPH method is 27339J and by Fluent is 28300J (deviation ~3%).
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Fig. 5.28. Time instances from the 2D simulation of a moving

blade impinged by water jet. Left: SPH solution, right: Fluent

solution.
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Fig. 5.29. Up: Force on the x-axis in respect to time. Down: Force on the y-axis in respect to time.

Considering the previous results of the 2D blade simulations, the conclusion is that the SPH
method is able to accurately predict the flow features of the flow even in the moving blade case; the
free surface is accurately resolved and the velocity field is similar. Also, even if the boundary
treatment leads to a noisy time history of the forces on the blade, the general trends are reasonable,
compared to the corresponding results from the Fluent solution.
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Turgo 3D stationary blade

In this part the flow simulations on a 3D Turgo turbine blade is presented. The flow was
simulated for different impingement angles (see fig. 5.30) relative to the z-axis, for a physical time of
0.1s. The water jet axis was placed on the yz-plane. The water jet had a diameter of 154mm and a
velocity of 30m/s (the numerical speed of sound was set to 350m/s) and enters from the inlet edge.
Particles in the jet are positioned in a similar manner as the one presented in the jet impingement on
the flat plate, in order to avoid particle clumping.

(a) Trailing edge
TS
(b)

(c)

e

Inlet edge

Y
/é.\ X
X Y

Fig. 5.30. Jet impingement on a stationary Turgo blade at impingement angles of: (a) 30° (b) 47° and (c) 60° degrees from

Tip

the z-axis.

In order to determine particle discretization of adequate accuracy which should be used for the
simulations, a particle dependence analysis was carried out for various particle sizes, for impingement
angle of 30° from z-axis. The results of the free surface, pressure profile and net forces on the blade
are compared with the results from the same test case obtained by the Fluent solution. Three different
resolutions have been used in this study: with 15, 21 and 31 particles on the jet diameter (with
respective particle sizes 10mm, 7.5mm and 5mm). Indicative results from the simulations are
presented at fig. 5.31. It is clear that by increasing the particle resolution particle distribution becomes
smoother, eventually giving a more realistic flow field. From the picture of the coarse particle
distribution, the estimated velocity of the water sheets, forming after the impingement, is greatly
underestimated. As expected from Bernoulli theorem in the absence of friction/viscosity, the velocity
of the water flowing away from the blade should be equal to the velocity of the jet, since pressure in
both cases is equal to the atmospheric pressure. However, at the coarse simulation velocity magnitude
of the water sheet is underestimated by ~30% (estimated velocity ~20m/s, whereas the expected
velocity from the Bernoulli theorem should be 30m/s). At finer resolutions, this effect tends to
minimize, however it becomes still apparent at specific areas as it will be shown later.
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Fig. 5.31. Jet impingement on a stationary Turgo blade at angle of 30°. Particle dependence study and comparison with the
Fluent solution.

In fig. 5.32, the free surface flow is compared, calculated from the SPH algorithm, for the three
different resolutions employed, and Fluent. The comparison is made at a slice on the yz-plane for x=0.
The flow calculated with SPH is represented with particles, whereas the flow calculated by Fluent is
represented with a solid line. From these figures it is clear that the best representation of the free
surface flow was achieved by using the fine discretization (31 particles on the jet diameter, particle
size Smm). The free surface calculated by SPH with the fine and intermediate particle discretizations
(particle sizes 5 and 7.5mm respectively) is in accordance with the free surface calculated by Fluent.
On the other hand, the flow calculated using a coarse particle discretization (15 particles on the jet
diameter, particle size 10mm), deviates from the Fluent solution, especially at the trailing edge of the
blade. Another important remark is that, with both programs, a small part of the impinging jet exits
from the inlet edge; this part will still exist even when the turbine is rotating, as it will be shown later
on in the rotating turbine runner simulations. It can be considered as a leakage, however it represents
only a small percentage of the total flow.

In the same figure, the velocity magnitude of the water is also visible for the SPH and Fluent
solution. The quality of the velocity field calculated by SPH is greatly dependent on the number of
particles involved in the simulation. In the simulation using the coarse discretization (15 particles on
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the jet diameter), there are large deviations mainly in the w-velocity component and consequently in
the absolute velocity, between the velocity fields calculated by SPH and Fluent (fig. 5.32). This is
attributed to the lack of sufficient neighbouring particles. With the increase in the number of particles
the velocity fields calculated by both methods become similar. Apart from the absolute velocity field,
the distribution of the individual velocity components calculated by SPH and Fluent was compared
too, giving similar results.

Note though, that in SPH, even in the case of the fine particle discretization, particles leaving
from the inlet edge of the blade, have an underestimated velocity compared to the one calculated by
Fluent, because of insufficient number of particles in the area (fig. 5.33).
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Fig. 5.32. Comparison of the free surface calculated by SPH for different resolutions. Particles represent the SPH solution,
continuous line the free surface location calculated by Fluent and the dashed line represents the wall.
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Particles with
underestimated velocity

Fig. 5.33. Velocity underestimation when using the fine particle resolution at the water sheet leaving from the inlet edge
(leakage). Large voids are also observable.

As regards the quality of the pressure field on the blade, it improves with the use of the finer
discretization. As it appears from fig. 5.34 (see also fig. 5.35), the intermediate and coarse
discretizations under predict pressure at some areas and they over predict pressure in other areas (e.g.
a pressure spike at approximately 0.25m from the origin). The fine discretization is able to provide a
pressure profile closer to the one calculated by Fluent, but even in this case there are some
discrepancies. This can be attributed to the inherent weakness of the traditional SPH in calculating a
correct pressure field [9]. Further increase in the number of particles and an even finer particle
discretization would improve the pressure field. Thus, in order to avoid errors from the pressure field
inaccuracies, forces on the blade will be estimated from the boundary particles reaction forces, as in
the previous cases (deflector and Turgo 2d blade).

In fig. 5.35 the pressure distribution calculated by SPH, using the fine, intermediate and coarse
discretizations is compared to the pressure distribution calculated by the VOF method. Pressure was
evaluated along a line located on the blade surface, for x = 0 (fig. 5.35). Since in SPH the wall
particles do not have pressure, but instead exert repulsive forces, the pressure field was estimated
using pressure probes, aligned on a grid on the blade surface, on which the pressure was calculated
from the fluid particles nearby, using the Shepard method [10].
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Fig. 5.34. Pressure coefficient distribution on the Turgo blade surface. Comparison of the different SPH resolutions along
with the Fluent solution.
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Fig. 5.35. Left: Grid of pressure probes on the blade surface. The line on which pressure is evaluated is also visible. Right:
Pressure coefficient distribution on the Turgo blade surface. Comparison of the different SPH resolutions along with the
Fluent solution.

During the interaction between the blade and the water jet, there is a transient period of
approximately 0.02sec; during this phase the initial impact on the blade occurs, thus forces obtain
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very large absolute values (see fig. 5.36, similar behavior was noticed with the other particle
resolutions too). In all SPH cases, net forces exhibit oscillations; thus, time averaging is performed in
all cases. The finer resolution though, is the one which gives the smoother results (fig. 5.36) after the
initial transient period. The average force values for each case are presented in Table 5-1, along with

results from Fluent.
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Fig. 5.36. Left: Force history on the blade. Right: Comparison of the force history after the initial transient phase, for

The finer SPH discretization tested (31 particles on jet diameter - particle size Smm) was able to
predict forces accurately in comparison to Fluent (max. absolute deviation 1.6%). The intermediate
particle discretization (21 particles on jet diameter - particle size 7.5mm) performed with a max.
absolute deviation of 4%, whereas the coarser particle discretization (15 particles in the jet diameter -

different resolutions.

particle size 10mm) the deviation becomes significant with a maximum absolute deviation of 35%.

Table 5-1. Calculated forces on the Turgo blade for 30° jet impingement

Calculated forces F.[N] F,[N] F.[N]
Fluent 5425.575 -8614.56 -25216.4
SPH: fine 5338.143 -8476.81 -24802.1
SPH: intermediate 5199.245 -8577.67 -24623.3
SPH: coarse 3516.502 -7333.66 -21243.8

Considering all the above results, it is obvious that the fine particle resolution achieves the best
results for the specific simulation, comparing to the other resolutions. However, the time needed to
complete the simulation increases with the particle number. In Table 5-II comparative results,
regarding the time needed to complete the simulation, are given for all SPH cases and Fluent. The
hardware used for the SPH cases is a 2xQuad Core Xeon E5405 2.0 GHz computer. The SPH
program used all 8 physical CPUs of the computer. On the other hand, the Fluent simulation was done

on ai7 940 2.93GHz computer, using 4 CPUs.
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Table 5-II. Time required for the execution of the programs

f
Resolution Time step [sec] CPU time l\{umber 0
particles/volumes
Fluent: Smm 7.107-5.10° 355 hrs 594674 /1360110 before /

after mesh adaption

SPH : Fine (5mm) 4.10° 89 hrs 105679

SPH : Intermediate 6.10° 14 hrs 8 min 33987

(7.5mm)
SPH : Coarse (10mm) 8.10° 5 hrs 4 min 13902

After determining the required particle resolution to properly describe the underlying flow
patterns, the two other impingement cases have been also simulated. The 47° jet impingement was
selected because the impingement angle was equal to the inlet angle of the blade. The free surface is
correctly represented, as it is shown in fig. 5.37. The 60° jet impingement is a more interesting case,
since the impingement angle is larger than the inlet angle, causing part of the leakage flow to interact

with the impinging jet, leading to the formation of an unsteady bubble, which is accurately captured
by the SPH method, even if the air phase is not modeled.

47deg
Jjet impingement

jetimpingement

Fig. 5.37. Left: 47° jet impingement . Right: 60° jet impingement.

Table 5-1II and Table 5-IV show the calculated forces on the blade for the two cases, which are in

agreement; maximum deviation for the 47° jet impingement is ~2% and for the 60° jet impingement
4%.

Table 5-1I1. Calculated forces on the Turgo blade for 47° jet impingement

imp‘:Zlgifrtlent FeIN Fy NI F-IN]

SPH 4885.766 -12173.4 -22985.4

Fluent® 5019.615 -12424.7 -22986.1
% deviation 2.66 2.02 0.01

Table 5-IV. Calculated forces on the Turgo blade for 60° jet impingement

f:lpgﬁtgement FeIN Fy NI FINT
SPH 3745.34 -15280.2 -16882.9
Fluent® 3927.32 -15720.2 -16695.8
% deviation 4.63 2.79 -1.12
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To sum up, in the previous simulations the free-surface flow is captured accurately, even in the
most complex cases, as in the 60° impingement, where part of the flow interacts with the incoming
jet, forming a bubble. Also the acting forces on the turbine blade are in accordance to the results from
Fluent. The above comparisons show that the standard SPH model is able to predict well the flow in
the non-rotating Turgo turbine blade, comparing to other CFD tools.

Rotating Turgo turbine runner

After successfully simulating the stationary Turgo turbine blade using SPH, the SPH algorithm
was extended for solving rotating geometries, such as the rotating Turgo turbine. Since the SPH
method is capable of handling moving geometries, this extension practically involved only the
description of the runner geometry, including hub and tip. An indicative view of the turbine runner is
shown in fig. 5.38, in one jet operation. The turbine runner hub is at 260mm radius and the tip at
500mm radius from the center of rotation. The nominal diameter of the runner is at 770mm. Also the
runner consists of 22 blades. The water jet had a diameter of 154mm and velocity 32m/s (discharge
596m’/s) and entered the runner at 25° degrees from the runner rotation plane. The rotational speed of
the runner was set to 44.8rad/s and rotates around the x-axis.

In order to reduce the computational effort, it was decided to model the flow between only two
successive blades including the hub and tip walls (see also fig. 5.39), assuming periodic flow
conditions on the rest blades [11, 12]. The main interest of this simulation is the torque curve
expressing the developing torque on a Turgo turbine blade as a function of its angular position. Thus,
in order to prove the validity of the modeling method, it is required to compare the torque curve on a
blade, using the two-bladed approach described above, with the calculated torque curve by modeling
more successive turbine blades (in particular seven successive blades). For the two-bladed simulation,
the physical time was 42ms, while the first blade is located at =32°; in this time interval the blades
perform a rotation of ~107°, which is enough to cover the complete interaction of the jet with a single
blade. On the other hand, the simulation of the seven successive blades was performed for more time
in order to properly describe the jet-runner interaction.

Fig. 5.38. Turgo runner view. The green line represents the nominal radius, where the jet axis is located.
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Fig. 5.39. Left: Computational domain solved. Right: characteristic dimensions of the turbine.

The general blade dimensions are the same with the one used in the stationary Turgo blade
analysis, thus the same particle resolution was used, i.e. the particle size was Smm, since it was found
adequate after the particle dependence analysis. The numerical speed of sound used was set to
350m/s, larger than 10V, to ensure incompressibility of the simulated water.

In fig. 5.40 indicative instances of the flow are shown from the simulation involving seven
successive blades. In both figures the water evacuation of the runner blades is visible and the water
forms low velocity water sheets. The low velocity of the water sheets is expected, due to the energy
transfer from the high velocity water jet to the turbine runner. The kinetic energy and consequently
velocity of the water at the outlet should be as low as possible in order to maximize the energy
conversion from hydraulic to mechanical; there is only a residual axial velocity component. Leakage
is also visible from the inlet of the runner, as it was expected from the previous results of the
stationary blade.

Fig. 5.40. Indicative instances from the Turgo turbine simulation, using multiple consecutive blades.
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In fig. 5.41, the developing torque on the turbine blades is presented in relation to the angular
location of the turbine blade. It must be highlighted here that the graph on the left expresses torque as
a function of the ¢ angle of the first blade (as shown in fig. 5.39), whereas the right graph shows all
torque curves shifted by an appropriate angle in order to emphasize their differences. Note that
generated torque exhibits some oscillations similar to those in fig. 5.29. Thus, torque averaging is
performed every one degree in order to obtain a smoother curve.

The torque graph exhibits a periodic behavior. However, torque graphs are not identical. Indeed,
as other reserchers have also experienced, the SPH reults exhibit some dispersion due to the particle
nature of the SPH method [13]. Nevertheless, by comparing the torque graphs of the consecutive
blades it is obvious that differences are practicaly negligible, whereas the difference of the total work
for each blade is less than 0.1%. Moreover the two-blade simulation is able to give results very close
to the simulation of the seven turbine blades, the total work per blade calculated differs by less than
2%. Considering that the cost of the latter simulation is about five times higher than that of the two-
blade simulation, which requires about a day to finish, the two-blade approach is adopted for all the
rest simulations.

2L00
2LO0 >06

2500 2 blade
1st blade simulation
5000 2nd blade 1st blade
\ 3rd blade 2nd blade
—1500— —_
£ E 3rd blade
2 \ Z
S S
o o
5 3
= o =
-50 50 100 150 -40 -20 20 40 60 80 100
Angle ¢ (degrees) - Angle ¢ (degrees)

Fig. 5.41. Left: Torque on the first three consecutive blades. Right: comparison of the calculated torque from the two and
seven blade simulation

At first, two different geometries were tested and compared with the results of the Fluent software
in order to determine the performance and the accuracy of the SPH method. The two geometries were
produced from a preliminary optimization with the FLS algorithm, for maximizing turbine efficiency.
The inner shape of the geometries modeled is presented in fig. 5.42. The two geometries differ both at
the inlet and the outlet edges and at the respective angles. In fig. 5.43 the complete runner of each case
is shown, focusing on the outlet of the runner. A notable difference between those two geometries is
the fact that geometry B is slightly extended at the outlet region, thus leading to a longer interaction
with the water.

Geometry A

Geometry B

Fig. 5.42. The two different geometries used.
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Fig. 5.43. Outlet view of the complete Turgo runner, for the two geometries: left-A, right-B.

The following figures (fig. 5.44 and fig 5.45) show the water jet and turbine runner interaction at
various time steps for the two geometries during different interaction phases such as:

- at 8.4ms, during the initial impingement on the blade

- at 16.8ms, during the filling of the space between the two blades with water

- at 25.2ms, the evacuation begins, while the water jet is cut by the following blade

- at 33.6ms, the evacuation phase continues.
For clarity of the displayed images, the second blade is not shown.

Time = 8.4ms Time = 16.8ms

o
Time =25.2ms Time = 33.6ms
Fig. 5.44. Instances of the flow pattern for the Turgo geometry A. Particle coloring according to velocity magnitude.
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Flow patterns are similar for geometry B; however water distribution is smoother through the
whole blade surface.

Time = 8.4ms Time = 16.8ms

Time = 25.2ms Time = 33.6ms
Fig. 5.45. Instances of the flow pattern for the Turgo geometry B. Particle coloring according to velocity magnitude.

For the Fluent solution, the sliding mesh approach was used. Thus two separate domains were
defined one rotating and one stationary (see fig. 5.46). Between these two domains an interface was
defined, in order to interpolate variables from the one mesh to the other. The volume size used was
Smm, similar to the SPH particle size. Larger mesh sizes, with a volume size of 7.5mm, have been
used too, giving small difference in the torque curve, ensuring the grid independence of the results.

Stationary mesh Stationary mesh

Moving mesh Moving mesh

Fig. 5.46. Indicative meshes used by Fluent. Left: geometry A. Right: geometry B.
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In the following figure (fig. 5.47), indicative results of the Fluent simulations are shown for both
geometries. The flow field looks similar with the respective results of the SPH method in fig. 5.44 and
fig. 5.45. A notable difference is that the water flow remains attached to the second blade creating a
negative pressure region, which contributes to the total turbine torque. On the other hand the SPH
method is unable to predict this flow feature. The main reason is the boundary conditions selected.
Indeed, even if the boundary condition of repulsive boundary particles does not allow fluid particles
to penetrate the wall, it does not truly enforce a zero pressure gradient on the wall.

Another observable flow feature is the splashing which occurs at the hub of the runner (fig 5.47).
The SPH method predicts a similar effect but to a lesser extent, due to the resolution used. A finer
particle resolution would be possible to capture this effect more accurately, but since this feature does
not contribute on the developing torque, further increasing resolution was deemed unnecessary.

Fig. 5.47. Indicative snapshot from the Fluent solution. Time= 25.2ms. In both pictures the free surface is shown colored
according to the velocity magnitude. Left: geometry A. Right: geometry B.

As in the previous cases tested with SPH, torque exhibits oscillations and averaging (in time or in
respect to angular position) is required in order to smooth the torque curve. Nevertheless, the SPH
method predicts the torque exerting on the impinged blade in agreement with the Fluent solution.
Both methods predict that geometry B has better performance by ~4%. Torque on geometry A
develops earlier due to the shape of the inlet edge; the inlet edge in this case is more curved and cuts
the water jet earlier.

SPH-B
= = = Fluent-B
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Fig. 5.48. Torque graph for the two geometries

In figures 5.49 and 5.50 the area of the blade, covered by water is shown at two different time
instances for both geometries. Results by both programs are very close. The sharpness of the SPH
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results is attributed to the coarseness of the interpolation grid used to obtain the respective data, note
though that this mesh was not involved in the flow field calculations.

‘ Fluent A SPH

Time: 12.6ms

’ ’
Fluent SPH

Time: 21ms
Fig. 5.49. Free surface evolution on the blade of geometry A. Blue represents water and red air for the Fluent solution, or
void for the SPH solution.

Time: 12.6ms
’ ,
Time: 21ms

Fig. 5.50. Free surface evolution on the blade of geometry B. Blue represents water and red air for the Fluent solution, or
void for the SPH solution.

136



Chapter 5: Application of the SPH method in impulse hydraulic turbines

Finally in fig. 5.51 the average torque distribution on the turbine blade is shown for the two
geometries tested. In both cases maximum torque develops in curved areas where the direction of the
flow changes. Geometry B has a smoother torque distribution at a larger area due to its design.

Geometry A - SPH Geometry B - SPH

Fig. 5.51. Average torque distribution through the water jet — bucket interaction. Red corresponds to higher torque values,
blue to lower.

Considering the time needed for the execution of the two programs, the SPH method is much
faster than Fluent, due to the ‘embarrassingly parallel’ nature of the SPH algorithm. The SPH
algorithm only needed 10hrs on a 2xQuad — Core Xeon 2.Ghz computer (80 CPUhrs), for each
simulation. On the other hand Fluent needed ~10days using 4 parallel processes on a i7 2.97Ghz
computer (960 CPUhrs).

Parametric tests — inlet angle dependence

From the previous results it has been shown that the geometry B performs better than geometry A.
For that reason geometry B was used to perform a further design test regarding the water jet inlet
angle. Simulation conditions will be the same as before, apart from the jet inlet angle. The inlet angles
which were tested are 20°, 30°, 35° and 40° (fig. 5.52).

In figure 5.53 a comparison between the torque graphs for the different water jet impingement
angles is made; from this figure it is shown that, by increasing the water jet impact angle, the
developing torque curve becomes narrower and exhibits a higher peak value. This is further illustrated
in figure 5.54, where the average torque distribution is shown; again for larger impact angle the peak
value is higher and the peak torque value is moved towards the center of the blade. By calculating the
integral of the torque curve it was found that the maximum efficiency is achieved for the intermediate
inlet angle of 30°, as shown in figure 5.53 in the respective graph of normalized efficiency (efficiency
is normalized by the maximum value, i.e. the efficiency of the turbine for 30° inlet angle).
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Fig. 5.53. Dependence of torque on jet inlet angle. Left: comparative torque graph. Right: normalized efficiency graph.

20° Inlet angle 25° Inlet angle 30° Inlet angle

35° Inlet angle 40° Inlet angle

Fig. 5.54. Comparative torque distribution on the turbine blade. Red corresponds to higher torque values, blue to lower.

Parametric tests — water jet location

Another parametric test performed for the Turgo turbine is the selection of the water jet location.
The water jet was shifted on the yz plane by a distance D=-R;,, 0, +R,.;, while being parallel to its
original axis (see fig. 5.55, positive direction is towards the +z axis).
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The comparison between the developing torque is made in fig. 5.56; by moving the jet towards
—z, torque appears earlier, since the jet-blade interaction occurs earlier too. Also the torque graph
becomes narrower, but with a higher peak value. Torque tends to be distributed towards the outer
radius of the blade (see fig. 5.57). The opposite happens when the jet is moved towards the +z-axis.
However the maximum efficiency is found when the jet is at its reference position, i.e. when D=0.

~u Jet axis

Fig. 5.55. Schematic showing the jet position.
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Fig. 5.56. Comparative torque graph.
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Fig. 5.57. Comparative torque distribution on the turbine blade. Red corresponds to higher torque values, blue to lower.
From left to right D: -R, 0, +R
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Model Turgo turbine runner optimization

The SPH algorithm was also used in the design optimization process of a small Turgo turbine for
the Hydroaction project of the 7th framework program [14]. Considering all the previous results it
was decided to proceed with the optimization of a Turgo turbine using a blade geometry similar to the
geometry B. Blade dimensions are scaled down by a factor of 2.5 in respect to geometry B, leading to
the following turbine dimensions:

- Ry =104mm

- Ry, =204mm

- Ryom=142.5mm (nominal diameter, where the water jet impacts)

The turbine operating point is for a nominal flow rate of 90lt/and a gauge height of 48mWG, on
one jet operation (two jet operation is possible and will be investigated later on), leading to water jet

velocity of V., =2gH =30m/s, impinging the turbine runner under 25° in relation to the runner’s

level of rotation. The turbine runner also rotates at 1000rpm (104.72rad/s).

For the optimization procedure, evolutionary algorithms (EA) were used. In particular, the EASY
software [15], developed by the Laboratory of Thermal Turbomachines of NTUA, was used.
Evolutionary algorithms mimic mechanisms of biological evolution in order to find the optimal
solution. Briefly described here, the main idea behind evolutionary algorithms is to code the problem
parameters in a form of genes [16]. An initial population of candidate solutions is created, from
random genes. The candidate solutions are evaluated; then the best solutions are used as parents for
the next generation of candidate solutions, which are called offsprings. Offspring’s genes are formed
by gene crossover of the parents involved. Mutation is also possible to occur randomly, altering parts
of the genes in order to create new possible solutions. Then the offspring generation is evaluated again
and is used as parents for the next generation. The described procedure is iterated several times, until
an optimal solution is found.

Evaluation may be performed using one or more objectives (SOO-single objective optimization
and MOO-multi objective optimization). Constraints may also be considered in the optimization. The
great advantage of the EAs is that the procedure is able to handle problems involving many
parameters and many objectives. In computational fluid dynamics evaluations are performed by flow
solvers, which generally may be rather computationally expensive, especially considering that during
an optimization procedure the evaluator may be used several thousand times, in order to reach to an
optimal solution. Thus, often EAs are combined with more elaborate tools, such as metamodels,
artificial neural networks, etc. which are used to perform fast but inexact evaluations [15, 16] and
eventually greatly speed up the whole procedure. For more information on evolutionary algorithms
the reader is addressed to [16].

Since the SPH method is rather slow, requiring ~1day for a single evaluation, the FLS algorithm
[3, 8] was used as a first step of the evaluating procedure. The FLS algorithm (being developed by F.
Stamatelos as part of his doctoral dissertation) is based on a simple Lagrangian approach for
simulating the jet as consecutive segments or frames of particles. The algorithm tracks the particles,
calculating their trajectories and the energy exchange with the blade/bucket surface. The equations of
motion of the fluid particles are solved in the rotating system of reference. The main advantage of the
FLS algorithm is the very fast execution, since the algorithm is able to perform a single evaluation
within several seconds on a single core modern personal computer, rendering it an attractive tool for
optimization. However, since each particle is tracked individually from the rest particles, the particle
interactions are not taken into account, thus the algorithm requires tuning in order to describe
realistically the jet spreading on the blade surface. Additional tuning is required for the prediction of
the energy losses due to viscosity, impact on blade of change in flow direction. These parameters
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were tuned for operation in Pelton turbines, thus adjustments were required for properly describing
the flow patterns in a Turgo turbine, especially for capturing jet spreading. Since an experimental
installation was not, at that time, available, these adjustments were made using results of the SPH
algorithm. After proper tuning, calculated flow patterns from the FLS and SPH algorithms look
similar (fig. 5.58).

FLS

Fig. 5.58. Comparison of the flow spreading on the blade surface calculated by SPH and FLS, after adjusting FLS algorithm.

EASY software was coupled with FLS algorithm and the optimization was performed using as
single objective the maximization of the turbine efficiency [6]. Optimization with the FLS algorithm
resulted to several elite blade geometries, some indicative are shown in fig. 5.59. The blade
geometries had differences between them, which affected the turbine efficiency by more than ~1%.
The SPH algorithm was used to evaluate them in order to find the best among them. The best
efficiency was found for blade geometry #3, as shown from fig. 5.60 (in fig. 5.59 and 5.60 reference
denotes geometry B properly scaled). Then, geometry #3 was used to construct a full CAD model of
the turbine runner, including turbine hub and tip. In order to ensure the accuracy of the geometry
design, a blade was constructed directly from STL surfaces (STL - standard tessellation language,
which is a format used for stereolithography CAD) using rapid prototyping. The prototype blade was
then used as a model to create a mold, which was then used for the casting process (fig. 5.61). On the
other hand, the hub was machined in a 5 axis CNC machine. Eventually the turbine runner was
assembled and welded (fig. 5.62). More information on the turbine construction are in Appendix E.
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Fig. 5.59. Indicative elite geometries after the optimization procedure with the FLS algorithm.
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Fig. 5.60. Left: Torque curves for different geometries. Right: relative efficiency increase in respect to the reference

geometry.

Fig. 5.61. Left: 3D CAD drawing of the turbine blade. STL triangulation is also visible. Right: Turbine blade, after casting
and machining.
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Fig. 5.62. Left: Turgo runner 3D CAD drawing. Right: Actual runner assembled.

The whole runner had a volume of ~ 4659662mm” and, since the runner was made of phosphorus
bronze (density of 8790-8920kg/m”), it had a total mass of ~41kg.

Apart from the torque graph, the SPH method predicted forces in x, y, z direction, on a single
blade. These forces are important because they are essential for determining the bearing loads in the
axial and the radial direction. In fig. 5.63 the calculated forces are shown for a single blade and for the
complete runner. These forces correspond to upper jet operation. Lower jet operation would result to
the same axial force, but opposite radial force due to symmetry. Forces of the complete runner have
been calculated, assuming periodic flow conditions, thus periodic blade loads, by phase shifting the
force curve of a single blade by an angle of 16.36° (=360°/22) and summing respectively forces. To be
more precise, assuming that force is a function of ¢ angle of a specific blade, f (¢), then the force of
the complete runner may be calculated as:
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Fig. 5.63. Left: Forces on a single blade. Right: force on the complete turbine runner.

In this way it is possible to determine the axial and radial forces on the turbine runner shaft. After
averaging the total runner force:
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F.=-693.75N
F,=122.12N
F, =2205.804N

The axial force is the force on the x-axis, i.e. F,. The radial force is the net force of F, and F, thus
Fp=\F yz + FZ2 =2208N . It is possible to confirm these forces from the velocity triangles (fig.

5.64) in the turbine runner, using the momentum theorem:

g=9.81m/s?

Fig. 5.64. Left: Upper nozzle operation. Right: Velocity triangles.

Inlet conditions:
Vie=~2gH =30m/s
u;=-12.67m/s
v;=27.18m/s

Outlet conditions:

U~ -5Sm/s
v,~0m/s
Thus:
- x-axis:
F. = pQu, —u,)=-644N (5.7)
- y-axis:
F = ON (5.8)
- z-axis:
F, = pQ(v, —v,) = 2442N (5.9)

The aforementioned loads occur during turbine operation with the upper nozzle. Table 5-V shows
the results of turbine forces (F,, F), F are the total runner forces due to fluid flow only).
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Table 5-V. Calculated forces of the Turgo model turbine

Forces in (N) Upper jet Lower jet Both jets
F, -693.7 -693.7 -1387.5
F, 122.1 -122.1 0.0
F, 2205.8 -2205.8 0.0
Weight (y-axis) -402.2 -402.2 -402.2
Foial -693.7 -693.7 -1387.5
Frodial 22235 2267.3 402.2

Complete runner simulation

Apart from the simple simulations involving two or seven consecutive blades, one involving the
complete turbine runner was performed, under one and two jet operation, including part of the turbine
casing. This simulation was performed in order to investigate possible interactions of the outflowing
water sheets with the turbine casing, the turbine runner or the impinging water jet. These simulations
involved several millions particles (~2.5million particles for the single jet operation, ~3million
particles for twin jet operation). The time needed for the simulations was about three weeks on a
computer equipped with 16CPU cores.

In fig. 5.65 two indicative views of the Turgo turbine single jet operation, are shown. During the
runner rotation, successive water sheets are formed, which tend to expand in an area enclosed by two
lines: one line lies on the extension of the water jet and the other line is defined by the outlet angle of
the turbine blade. Outflowing water does not seem to interact with the runner or the water jet, even for
higher flow rates. Thus, operation at increased flow rates (off design operation) is possible, as long as
the entire water jet cross section, at the runner inlet level, lies between the turbine hub and tip radii.
Leakage flow is also visible from the turbine inlet.

Fig. 5.65. Indicative views of upper nozzle operation, complete runner simulation (gravity is at -y direction).

Similar results were obtained from twin jet operation. Part of the flow is expected to follow the
runner rotation (see fig. 5.66). This does not pose a problem during the upper nozzle operation, since
the flow will move towards the exit of the turbine casing and will eventually leave. However, during
the lower nozzle operation, water has enough kinetic energy to move upwards, contrary to gravity.
Even in that case, the water eventually hits the turbine casing and spreads, without affecting the
runner or jets.
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5.3.2. Application of the SPH method for simulation of Pelton turbine runners

The Pelton turbine bucket is symmetric and is formed by two half ellipsoids (fig. 5.67). A cut is
made in the lip to facilitate all the water in the jet to usefully impinge on the buckets. This avoids the
interference of the incoming bucket on the jet impinging on the previous bucket, during operation of
the turbine [2]. The water jet impinges at the middle of the bucket, where the splitter is located. The
splitter divides water flow into two equal parts. Each part moves through the respective cup shaped
compartment and eventually exits at the opposite direction relative to the impingement velocity. By
changing the direction of the flow, pressure develops on the bucket surface, which eventually results
to the energy transfer from the fluid to the turbine runner.

In this chapter the results of the SPH algorithm used for simulations on Pelton turbine bucket are
presented. As a first step, a 3D stationary Pelton bucket was impinged under various impingement
angles by a water jet. The selected impingement angles correspond to various relative positions of the
bucket and water jet, during the operation of a rotating Pelton turbine, as in [17]. Then, the application
of the SPH method for rotating runner simulations is presented. Finally a complete Pelton runner was
simulated.

Splitter

\

Cut-out lips

Fig. 5.67. Pelton bucket.
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Stationary Pelton bucket impingement

The flow was simulated for different impingement angles (see fig. 5.68) relative to the z-axis, for
a physical time of 0.02s. The water jet axis was placed on the yz-plane. The water jet had a diameter
of 30mm and a velocity of 20m/s, thus the numerical speed of sound was set to 230m/s. In order to
speed up the algorithm execution, symmetry boundary conditions were assumed at the symmetry
plane, at the yz-plane. The particle size was set to Imm since it was found adequate in similar studies
in literature [19]. Results of the SPH were compared with results from Fluent.

Particles were positioned on the jet in a similar manner to the Turgo jet. The main difference here
is that, in order to avoid particles moving on the splitter in an unphysical way, particles are not
allowed to be on the symmetry plane. This was done by dividing any particles being on the symmetry
plane and moving them by a small displacement away from the symmetry plane (see fig. 5.68).
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Fig. 5.68. Pelton jet impingement set up. Left: Pelton impingement angles. Right: particle positions on the jet. Note that there

are no particles on the symmetry axis.

In fig. 5.69 a general view of the developing flow patterns on the Pelton bucket is shown; solution
of the SPH method is compared to the Fluent solution. Generally, the forming water sheet is predicted
to cover the same area on the bucket with both methods. Also, as experienced with the Turgo turbine
impingement, flow velocity is under predicted with the SPH method in areas of few particles; this
effect is located at the edges of the flow sheets and it is especially visible at the 90° and 60°
impingements. The impingement angle plays an important role to the evolution of the flow. For the
60° impingement angle part of the water sheet exits from the back of the bucket, whereas for the 120°
impingement water exits from the front. Note that the computational grid used in Fluent did not
extend beyond the notch cut of the bucket (see at the end of the current section for the Fluent
computational meshes, fig. 5.71) and thus the water exiting from the front is not captured. At the right
part of the same figure, free surface is compared at an indicative slice at x=0. Free surface location is
practically identical. Results are similar at the other slices too.

In fig. 5.70, the pressure distribution on the bucket surface is shown. Since pressure calculation
through the Tait equation of state is unreliable and requires averaging, pressure was calculated
indirectly through the boundary forces. Each boundary particle i was associated with a surface
element of specific surface area S;. Thus, after obtaining the reaction forces on each boundary particle,
it was possible to derive the equivalent pressure distribution on the boundary through the following
simple relation:

= ﬁ (5.10)
Pi s, .

147



Chapter 5: Application of the SPH method in impulse hydraulic turbines

Umag(m/s): 0 2 4 6 8 10 12 14 16 18 20

o
)

o5 SAok S Semae see Seetes o S, o &

o e s e SR R A IR

TR
=

-
o
-
-
o
e
s
o

(5

3
25
-%’n

¥

¥
60° impingement

Fig. 5.69. Stationary Pelton impingement under various angles. Left: general view of the flow and comparison between the

Fluent solution (isosurface) and SPH solution (particles). Right: comparison of the free surface level at slice Y=0. Particles
represent the SPH solution and solid line the Fluent solution.
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Both methods predict a similar pressure distribution. As it is expected, increased pressure occurs
at regions of high curvature, since flow direction changes. However the SPH method over predicts
pressure at the splitter area. This is not physical, but rather an arithmetic artifact, due to the sharp
angle in the specific region. Similar behavior was experienced by other researchers too [18, 19].

0.068 0.04 0.02 0 -0.02 -0.04 -0.08

0.068 0.04 0.02 0 -0.02 -0.04 -0.08

90° impingement

0.068 0.04 0.02 0 -0.02 -0.04 -0.08

60° impingement

Fig. 5.70. Stationary Pelton impingement under various angles. Pressure distribution is shown, as calculated from the SPH
solution (left part of the image) and the Fluent solution (right part of the image)
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Finally, in table 5-VI the calculated forces on the bucket are shown. The SPH method
underestimated the calculated forces. The cause of the underestimation is due to the influence of the
density filter, which smoothes the density field, introducing numerical diffusion. The same effect
occurs at the simulation of the stationary Turgo turbine blade, but it is significantly less pronounced,
since the density filter is applied less times, throughout the simulation. Increasing the particle
resolution does not seem to improve the quality of the results.

Table 5-VI. Calculated forces for the case of the stationary Pelton bucket

Impingement Method F,[N] F,[N] F.[N]
angle
60° Fluent -38.2 -102.9 -253.9
SPH sym. -35.1 -99.4 -236.8
00° Fluent -21.9 -32.1 -278.8
SPH sym. -17.7 -30.5 -260.6
Fluent -21.43 223 -219.5
120°
SPH sym. -15.5 23.3 -207.5

120deg impingement

90deg impingement

60deg impingement

Fig. 5.71. Fluent computational meshes
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Rotating Pelton turbine runner

The next step is the simulation of a rotating Pelton geometry. The bucket geometry is the same
with the one used in the stationary bucket impingement. The hub radius of the runner is 177mm, the
tip radius 293mm and the nominal radius 224mm. The turbine buckets are positioned with an
inclination of 12° towards the direction of rotation of the runner (fig. 5.72). The runner was initially
simulated for an angular velocity of 85.1rad/s, while the water jet impinging the turbine runner had a

diameter of 36mm and velocity of 42m/s. The runner was simulated for a physical time of 20ms,
performing a 97° arc.

Fig. 5.72. Left: Rotating Pelton runner simulation. Right: Simulation set-up.

The particle size used was 1mm and the numerical speed of sound 500m/s. For the following
simulation several simplifications were made in order to minimise the computational cost of the
calculations and the computational resources needed:

Symmetry boundary conditions are applied at the plane of symmetry of the Pelton runner.
This is a reasonable simplification commonly done in the literature [20, 21] for the simulation
of a Pelton runner, which essentially cuts down the computational cost by a factor of two
(approximately), without sacrificing the accuracy of the solution.

Only the inner surface of the bucket is considered for the simulation, meaning that only the
inner surface of the bucket is used for creating the boundary particles layer. This layer has a
uniform thickness of 2dx due to the boundary conditions specified above. Using the whole
bucket surface to generate boundary particles for the whole bucket is possible, but would
greatly increase the number of boundary particles used and, hence, the computational cost.
Only the space between two successive buckets is simulated, assuming periodic flow for the
rest of the buckets. Obviously this is an approximation for the performance of the Pelton
turbine, since each bucket interacts with the water sheets leaving from the previous bucket,
apart from the incoming water jet. Indeed, at least three consecutive buckets are needed to be
simulated, while examining the flow patterns at the intermediate bucket, in order to determine
the influence of the water sheet interaction with the buckets. In order to assess the influence
of such interactions, a simulation involving three consecutive buckets was performed (fig.
5.73), which proved that, for the specific bucket geometry, water sheet interaction with the
buckets is not very important and affects the turbine efficiency by a small fraction only
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(~0.25%, fig. 5.73). Thus the influence of this interaction is omitted from the next
calculations.

1stbucket

2nd bucket

Torque (Nm)
*-.___‘-‘-
\-.___‘-
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Fig. 5.73. Left: Bucket - water sheet interaction, simulated using three consecutive buckets with SPH. Right: comparison of
the generated torque on the first and second bucket.

Fig. 5.74 shows indicative views of the numerical results from both methods, the SPH and Fluent.
Both methods predict a similar flow field, there are some differences though, due to the set up of the
simulations. The Fluent mesh did not extend beyond the second bucket, thus flow is not captured in
that area. Also the computational mesh did not extend beyond the cut-out lip (see fig. 5.78). On the
other hand the SPH method is able to capture these flow features, due to its inherent adaptivity, since
particles move following the flow patterns. At the beginning of the interaction water leaves from the
root of the bucket, towards the center of the runner (fig. 5.74b). As the runner rotates, water leaves
from the side edges of the bucket. Finally at the end of the interaction, the remaining water on the
bucket leaves from the front. As can be seen in the pictures, the escaping, from the rotating bucket,
water sheets have little residual velocity, indicating an effective energy exchange with the runner.
Moreover, the larger velocity component of the escaping water is in the x-direction, which is
perpendicular to the runner’s rotation plane. This residual velocity is due to the bucket design in order
to avoid interference of the outflow with the next bucket. The SPH method is able to predict fine flow
features, such as the interaction of the outflowing water sheet with the next bucket (see fig. 5.74b, c).

Fig. 5.75 shows the propagation of the water sheet on the bucket surface. During the beginning of
the water jet — bucket interaction the water jet hits the cut-out lips of the bucket (fig. 5.75a). As the
interaction continues, a larger part of the jet impinges the bucket and the free surface flow is directed
towards the root of the bucket (5.75b). In fig. 5.75c the whole water jet hits the splitter, while water
starts exiting from the rear sides of the bucket. The exiting water sheets from this area also interact
slightly with the next bucket. In fig. 5.75d the water jet is interacting with the next bucket, thus a part
of the impinging jet is cut. Water sheets start flowing out of the sides of the bucket and almost the
whole bucket is covered with water. At the final stages of interaction (fig. 5.75e and 5.75f), the water
jet is cut completely and the water exits from the cut-out region.
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Fig. 5.74. Pelton runner simulation. Left:SPH method. Right: Fluent. Colouring according to velocity magnitude.

153



Chapter 5: Application of the SPH method in impulse hydraulic turbines

(a) I (b) l (c) ! (d) l (e) l (f) '

Fig. 5.75. Evolution of the flow on the Pelton bucket, interval 2ms. The position of the water on the bucket is marked with
blue contour levels, whereas the rest of the bucket is shown using red contour levels.

Fig. 5.76 shows a plot of the developing torque and axial force on the half-bucket in respect to its
angular position. As with the Turgo turbine, forces and consequently torque, exhibit oscillations and,
thus, force/torque averaging is performed in order to obtain a smooth curve. Note that, due to
symmetry, there is no axial force on the complete runner. The SPH method is able to predict
accurately the onset of the developing torque and force, captures the peak value but slightly
underestimates forces during the bucket emptying. Increased particle resolution (particle size
0.75mm) does not improve the torque curve. However it must be highlighted that the SPH algorithm
required ~20hrs, whereas Fluent ~5days on the systems already mentioned (SPH on 2xQuad core
Xeon 2Ghz, Fluent on i7 940 2.93GHz computer, using 4 CPUs: 160 and 480CPUhrs respectively).

Also in fig. 5.77 the distribution of the developing torque on the bucket surface is shown,
throughout the entire jet-bucket interaction period. As it is expected, force and consequently torque,
develops in areas where there is change in the direction of the flow.
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Fig. 5.76. Left: Torque generated on the half-bucket. Right: Axial force generated on the half bucket.
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Fig. 5.77. Torque distribution on the bucket surface.

Static mesh

Moving mesh

Fig. 5.78. Computational mesh used by Fluent. Note the refinement in areas with sharp angles, such as the splitter.

Varying angular velocity

Several simulations were performed for various nozzle openings and turbine water gauge height.
The water jet velocity was estimated from the relation V,, =C,, 2¢H (uniformly set along the jet

cross section) and the jet diameter D, = ﬂ . The factor C,,, represents the losses at the Pelton
¢ VA%

Jet
turbine nozzle and was set to 0.97.

In figure 5.79 indicative instances of the flow are shown for a nozzle opening of 20mm for
various angular velocities during the bucket - water jet interaction. From the results in fig. 5.79c, it is
shown that the water sheets leaving the bucket at optimal rotational speed have a small residual
absolute velocity, in the stationary frame, in comparison to the incoming water jet. This is expected
due to the energy transfer from the water jet to the runner, leaving the out-flowing water with little
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kinetic energy. On the other hand figure 5.79a, b, d shows the absolute velocity in the stationary frame
of the out-flowing water sheets for several non - optimal angular velocities, two less than the optimal
(fig. 5.79a, b) and one higher than optimal (fig. 5.79d). In these cases the water sheets have a
considerable residual velocity, which eventually leads to the reduction of the turbine efficiency.
Another notable observation is that the low velocity region of the outflowing water sheet changes
location in respect to the angular velocity. This is expected, since energy transfer is maximized at the
radius where the peripheral velocity is approximately half the jet velocity. Thus, the low velocity
region is at a greater radius than the nominal for low angular velocities and at a smaller radius for
higher angular velocities. At the nominal operating point the low velocity region is located at the
nominal radius and the efficiency of the turbine is maximized. The instances of these figures are not
taken at the same angular position of the bucket, because the bucket - water jet interaction ends at
different positions due to the different rotational speed.

Umag(m/s): 0 6 12 18 24 30 36 Umag (mis): 0 6 12 18 24 30 36 e
(a) Angular velocity: 37rad/s

&

Il 4 T . ®
Umag (m/s): 0 6 12 18 24 30 36 &n . Umag (m/s): 0 6 12 18 24 30 36 J

(c) Angular velocity: 73rad/s (optimal operating point) (d) Angular velocity: 94rad/s

Fig. 5.79. Pelton turbine simulation for various angular velocities. Note that the water sheet low speed region position
changes.
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The torque graphs in fig. 5.80, show the effect of the rotational speed to the developing torque on
the runner: for low rotational speed the torque curve is narrow with a high peak value, whereas for a
high rotational speed the torque curve has longer duration, but with a lower peak value. The
maximum efficiency is achieved when the peripheral velocity of the bucket is approximately half the
water jet velocity, i.e. for the 73.1rad/sec. The same trend is observed for all different nozzle openings
tested.
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Fig. 5.80. Comparative torque graph for different angular velocities. Results are for the half-bucket.

Complete Pelton runner simulation

Finally the simulation of the complete Pelton turbine runner was performed, simulating all 22
buckets for single jet operation. Fig. 5.81 shows the water jet — runner interaction and the consecutive
water sheets formed. The out flowing water sheets do not interact with the water jet, at least in the
absence of the casing.

-

Fig. 5.81. Simulation of the complete Pelton runner.
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Figure 5.82 shows the exerted torque on the runner. As it is expected, after the initial transient
phase, a periodic behavior is achieved. Eventually torque resembles closely a periodic function of the
form:

T(p)=T + Asin(22¢ + ¢,)
where:
- 22 is the number of turbine buckets
- T =139Nm
- @ is the runner rotation angle

- @ =1.3mrad, is an arbitrary angle added to match the periodic sinus function with the torque
curve.
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Fig. 5.82. Torque graph of the complete runner in respect to the rotation angle.

5.4. Concluding remarks

Considering all the previous results regarding the SPH simulations of free surface flows and flows
in impulse turbines parts, it can be concluded that the SPH method is an attractive alternative of
traditional mesh based CFD methods. It is able to capture properly the free surface effects, while it is
considerably faster than the mesh based program. Subtle flow features are captured, such as the water
sheet interaction with the next bucket of the Pelton runner, or the recirculation bubble in the 60°
stationary Turgo jet impingement. Simulations of complete turbine runners are possible using the SPH
method, whereas mesh based methods would require a very fine mesh even at long distances from the
runner in order to properly resolve the thin water sheets. The adaptivity of the SPH method enables
proper resolution of such water sheets, provided enough particles are used, without needing enormous
computational resources.

On the other hand the major drawback of the SPH is its inaccuracy. Indeed the SPH method
underestimates the efficiency of the impulse turbines simulated in comparison to experimental data by
~5%. The main reason of this discrepancy is primarily attributed to the weakness of the boundary
particles to enforce a truly zero gradient of pressure on the wall. Moreover, density/pressure
oscillations are responsible for the oscillatory behavior of the forces on walls, even in steady state
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cases. Density filtering affects the numerical diffusion of the SPH algorithm, by smoothing the
density field and is another possible cause of the forces underestimation. Increasing particle resolution
has been examined, but it did not result to a significantly different result, meaning that particle
independence has been achieved.

In the next chapters, new advanced techniques to overcome the density/pressure oscillations and
the weakness of the boundary conditions will be presented and discussed.
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Chapter 6

Incorporating Riemann solvers for particle interactions in SPH
(SPH-R)

In the previous chapters the implementation of the standard SPH algorithm was discussed. The
strong points of the SPH method have been highlighted, whereas its weaknesses have been also
analyzed. One major issue of the SPH method is the quality of the pressure / density field. Various
techniques have been employed to smooth the density field, such as using density filtering, upwind
flux formulation or introduction of diffusive terms. An attractive alternative which is used more and
more in modern SPH algorithms, is the implementation of Riemann solvers for solving the inter-
particle interactions using the Godunov, or a higher order scheme. The main advantage of the
implementation of Riemann solvers is that the density / pressure fields become smooth without adding
arbitrary diffusion terms or correction schemes such as the density filtering.

In the present chapter implementation of Riemann solvers in conjunction with the standard SPH
model will be discussed. This form of SPH was first formulated by Parshikov et al. [1] and has been
used by other researchers too [2]. Parshikov reformulated the standard SPH equations, in the absence
of viscous effects, in a way which enabled treating the two interacting particles as the two states of a
one dimensional Riemann solver. Non-conservative formulation is employed, as with the standard
SPH. In this chapter, the implementation of such an algorithm is discussed along its extension using
high order schemes. From now on the SPH method using Riemann solvers for the inter-particle
interactions will be referred to as SPH-R.

6.1. Derivation of the SPH-R equations

Parshikov noted that, beginning from the standard SPH continuity and momentum equations (eq.
3.21 and 3.39 without the viscous effects):

Dp, _z
Du, P P
—L=—>Ym | L +—L|VW.+f 6.2
Dt Z,: ’[pf p,»z] v -

it is possible to rewrite them after projecting particle i and j velocities on the unity vector pointing
from particle i to particle j (see fig. 6.1), as follows:

% - Zm‘;“,;,- VW, = Zm, (w, -u; ) LA 6.3)
J J ij

I o

Considering that:

161



Chapter 6: Incorporating Riemann solvers for particle interactions in SPH

. r,
UM =—u - (6.4)
Hrii H
U =—u, (6.5)
e |
The continuity equation becomes:
D [ 1o, ro, dW
Fpt'z—;mj(w iy ) o (6.6)

Parshikov replaced U A 7 " and p;, p; using the solution of the one dimensional Riemann

problem assuming that particles i and j are the left (L) and right (R) states and a discontinuity lies
between them. This method is known as the Godunov method in the Finite Volume methodology.

L state

proj
Ui

ui i particle

Jj particle

Fig. 6.1. Particle interactions between i and j.

The following substitutions are made:

% wre+ur)-u;

ij
1 .
E(pi—i_pj)_)p[j

and the continuity and momentum equations become:

Dp.

, e dW
5 :—;mjz( -y ) (6.7)

—=—Z ( 2 va +£,,,,.0 6:8)

2p; — P
——— |VW, +1,,, (6.9)

Note that in order to solve correctly the Riemann problem, one has to identify the wave structure
arising from the interaction of the two states (see Appendix A for more information). However in our
cases, only nearly incompressible flows will be covered, thus the Riemann problem solution is
expected to be the star region.

For the solution of the Riemann problem, it is possible to use an exact Riemann solver, but has a
significant computational cost, due to the non-linear nature of the underlying equation that has to be

162



Chapter 6: Incorporating Riemann solvers for particle interactions in SPH

solved. Approximate Riemann solvers are used instead; indeed, Parshikov proposed the use of the
following approximate Riemann solver based on the acoustic approximation:

U = CLP U, +CrPrUR + Py — DR

i (6.10)
CLPL + CrPr
* _ CrRPRPL T CLPLPR +CRpRCLpL(uL _”R) 6.11)
’ CLPL+ CrPr
Other possible approximate Riemann solvers are the PVRS:
« 1 c
UU:E(ML_MR)_g(pR_pL) (6.12)
.1 D
pi =5 P =pr)= e —u,) (6.13)
or the entropic variable solver:
« 1 1
Uy = b —u) == (b= 1) (6.14)
. 1 1 —
D _E(pL_pR)_E(uR_uL)pC (6.15)

In all previous relations, ¢ is the numerical speed of sound for the specific conditions. It is
calculated by the following equation:

y-1
o =c, [%j (6.16)
0

where ¢y is the speed of sound at the reference density p,. Also u;= U/ " and ug= U ;’ o p and ¢

are the average density and speed of sound between states L and R.

After obtaining p” from the PVRS solver, it is possible to obtain p” through the equation of state.
For more information regarding approximate Riemann solvers, the reader is referred to Appendix A or
the more detailed books of Toro [3], Leveque [4], Artzi [5] and the work of Irvings et al. on
compressible fluids [6]. All the described solvers give practically identical results, when used for
simulations.

The advantage of the described modification of SPH is that it requires little changes in the
algorithm, in order to incorporate the solution of the Riemann problem and modify the equations
solved. Boundary conditions may be described in the same way as in the standard SPH, however
Riemann solvers enable a better implementation of boundaries which will be further discussed later
on. Moreover, Godunov method inserts enough numerical diffusion, to stabilize the solution and
density/pressure fields. However, since the Godunov method is only 1* order accurate, numerical
diffusion in practical situations is rather prohibitive to obtain any meaningful results, i.e. sharp
gradients are excessively smeared. This effect occurs in the Finite Volumes method too, however it
becomes more pronounced in the SPH method, since the interaction distance between particles is
larger for the same particle/volume discretization (the reader is reminded that particles interact at a
radius of 2.5k, with & being generally larger than the particle discretization dx). Thus a high order
extension of the method is required in order to limit numerical viscosity to acceptable levels.
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6.2. MUSCL 2" order scheme / Limiter

In the present work a MUSCL type 2™ order scheme has been especially developed for the SPH
method. The key point of the MUSCL scheme is that the piecewise approximation of the left and right
states is replaced by the extrapolated data on the interface between the two interacting particles. This
is done by using spatial derivatives of the respective field variables (see fig. 6.2, ® represent the
vector of field variables used for the solution of the Riemann problem, such as p, u, v, etc.).

¢jR

i J
Fig. 6.2. MUSCL scheme. Instead of using field variables ®@;, ®; the extrapolated values @z, ®;, are used.

A simple way of performing the extrapolations is to directly use the spatial variables, as follows:

O, =@+ VO, I, (6.17)
®, =@, - /VO, 1, (6.18)

Unfortunately, use of these relations, in order to calculate the extrapolated values, will result in
spurious oscillations near discontinuities, since the resulting method is not Total Variation
Diminishing (TVD) and, thus, new local extrema are formed; the resulting scheme is unstable,
producing numerical dispersion [4], due to Godunov’s theorem. In order to remedy this, a limiter
function has to be used, which will limit gradients to physical values.

In this work a different procedure for the MUSCL scheme is adopted than the one used in the
recent SPH literature [2, 7, 8], following instead the proven scheme used in the Finite Volume
method. In the latter method, forward and backward derivatives are used for the limiting procedure.
The principle is to compare these two derivatives for each particle and decide, depending on their
values, whether or not the high order scheme should be applied. On the other hand, the derivative
approximation in the SPH method is the equivalent of central difference and thus is not very well
suited to the role of limiting. For that reason, two new derivative approximations are derived from eq.
2.17, in order to calculate the forward and backward derivatives.

Finite differences: <V(I)l-> P %
Xivt =X
ser: (V) =2 Y e, -o, vw, (6.19)
Xi>X{ pj
Finite differences: <V(I),-> B % =
X~ X
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spH: (Vo)) =2 Y (o, - VW, (6.20)

xi<xy Fj

The reason the summations are multiplied by 2 in eq. 6.19 and 6.20 is because only half of the kernel
was used for the approximation (fig. 6.3). The equations above satisfy also the relation of central
derivative:

(Vo) = Vo, ;<V®i>3 (6.21)
Backward Forward

Fig. 6.3. Support domain for calculating forward and backward derivatives.

The procedure for the implementation of the MUSCL scheme is based on the procedure described
by E. Toro [4] and is the following:

First of all it is needed to obtain the forward and backward derivatives before the Riemann
problem solution, using the equations 6.19 and 6.20.
Then for each interacting set of particles i, j it is needed to calculate the slopes A; and A; using
forward and backward derivatives. The slope can be calculated as :

A yp=V®, ., 1, and (6.22)

Ay=V®, , . -T, (6.23)

i,FIB ij

i,F

Here it must be highlighted that the projection (eq. 6.22 and 6.23) for the slope calculation is
done considering the local coordinate system. Hence the calculation of the local slope may
involve both forward and backward derivatives, depending on which quadrant the n;; direction
vector (unity vector of r;) lies. For example, in fig. 6.4 the unity vector n; points towards the

second quadrant, thus the forward local slope, denoted with Af |F e involves the forward

derivative on the y-direction, but the backward derivative on the x-direction, i.e.:

ol = -n)+ L

iB dy

On the other hand, the backward local slope Af |B > involves the backward derivative on the

y-direction and the forward derivative on the x-direction, i.e.:
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df

In a similar manner it is possible to calculate the local slope for particle j for 2D and 3D

problems.

Global coordinate system

df] Y a
dx|, Af‘ dx|,
¢ i,B
AN
9/0 AN
O~ \
0. '\
7%
O@ AN
CIRN
Ky AN
ar "%
dy R K

Fig. 6.4. Projection using local coordinate system.

- For each particle the limiting procedure is done, by comparing the slope calculated with the
forward and the backward derivative. The following limiter function was used:

_ {max[O,min(ﬁAi,B,Ai,F),min(Ai’B,,BAi’F)] A >0

- 6.24
min[0, max(fSA, z, A, ), max(A, ;, BA, )] A, <0 (029

i

Setting the f parameter value equal to 2, the limiter reproduces the SuperBee flux limiter,
which is shown to have a good performance [4].
- Reconstruction of data at the interface between particles:

®, =0 - VA (6.25)
O, =@+ A (6.26)
®,=®, —%Kj 6.27)
®, =@+ /A, (6.28)
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- Solution of the Riemann problem using @, as the left state and @, as the right state,

instead of using ®; and ®;.
Using the above procedure it is possible to construct a high order SPH-R algorithm, which is able
to produce results with little numerical dissipation and without dispersion.

6.3. Tests/Applications

In this section, several indicative tests will be presented, where the performance of the 1** and 2™
order SPH-R method will be examined.

Shock tube

The shock tube test was already described before, in the standard SPH method (section 4.1). The
simulated medium is at two different states (left and right) which are separated by a discontinuity.
During the interaction of the two states, a characteristic wave structure is formed. The resolution used
is the same as the previous SPH simulation; particle distribution is denser in the high density region
(spacing dx=0.018m) and sparser at the low density region (spacing dx=0.02m). The initial conditions
are:

p, =1100, u, =100 x<0
pe=1000, u, =0 x>0

Figure 6.5 shows the results of the simulations. An important feature of the SPH-R solver,
regardless of the 1 or 2™ order scheme, is that it does not exhibit oscillations near the contact
discontinuity wave, as it was experienced with the standard SPH solver. As it is expected, the solution
of the 1" order SPH-R method smears sharp gradients. On the other hand the 2™ order SPH-R method
gives results close to the exact Riemann problem solution.

120;— //

1100

1080

gof 1060 |

rho

60 |-
i 1040 -

20

SPH

SPH-R 1st order
SPH-R 2nd order
Exact

1000

1020

= SPH

SPH-R 1st order
SPH-R 2nd order
Exact

-1 0

-2 -1 0

Fig. 6.5. Results of the SPH and SPH-R method for the shock tube case. Left: u-velocity component. Right: density.
Comparison with the exact solution.
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2d jet impingement

A 2d jet impingement under 60° angle has been used as a benchmark to test the behavior of the
SPH-R method in hydrodynamic applications. Results of the pressure coefficient and velocity
magnitude distribution are shown in fig. 6.6 and fig. 6.7. As a general remark, the results of the
SPH-R method, both when using the 1% and 2™ order scheme, are smoother than the standard SPH,
with or without corrections, such as the density filter. This is also illustrated when considering fig.
6.8, showing the instantaneous pressure distribution on the flat plate, in conjunction with the
respective results from the standard SPH simulation (see chapter 3); SPH-R pressure distribution is
smoother and closer to the theoretical solution.

Regarding the performance of the two schemes, the 1 order scheme tends to underestimate
greatly the velocity of the branches formed after the impingement (fig. 6.7) - fluid velocity at branches
should be equal to the impinging jet velocity. This eventually results to an overestimation of the
branch thickness. Also there are some numerical artifacts on the pressure field at the highly curved
regions (fig. 6.6), where pressure is overestimated.

On the other hand, the 2™ order scheme calculates correctly the velocity of the branches, and
consequently, their thickness, while it also reproduces a smooth, accurate pressure field.

Axis *
0.08 |- ) 1st order SPH-R

0.06

0.04

0.02

Axis *
008 - Y 2nd order SPH-R

0.06

0.04

0.02

. L L L . . . L L 1 .
-0.05 0 0.05

Fig. 6.6. Pressure coefficient distribution for the 1* and 2™ order schemes.
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I Axis *
0.08 |- p 1st order SPH-R
Umag/Ujet
006 |-
> |
0.04 |-
002 |-
0
L 1 s 1 1
-0.05 0 0.05
X
3 Axis *
0.08 2nd order SPH-R
I Umag/Ujet
0.06 |- .
> |
0.04 -
002
0
1 1

L 1
-0.05

Fig. 6.7. Non-dimensional velocity for the 1** and 2™ order (water jet velocity is used as reference). The free surface of the
1% order scheme is shown in the 2™ order scheme results to highlight the influence of the numerical diffusion of the 1st order
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Fig. 6.8. Instantaneous pressure coefficient on the plate.
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It is important to mention here that the SPH-R method is prone to particle alignment to a greater
extent than the standard SPH method. In the standard SPH method, particle aligning sometimes is
destroyed, due to local instabilities. On the other hand the inherent numerical viscosity, even of the 2™
order SPH-R scheme, tends to prevent such instabilities from occurring and, thus, particles remain
aligned (see also fig. 3.6). Eventually, the distribution of field variables is affected by this effect, as
shown in fig. 6.9. Note that away from the stagnation point particles are equidistant from each other.
When particles move close to the stagnation point, they form lines and eventually wavy structures.

0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01

0.005

A PR LR S B R B B R |

Fig. 6.9. Particle alignment near the stagnation point.

2d jet impingement on a moving blade

The 2™ order SPH-R method was used to simulate the case of the jet impingement on the 2d
Turgo turbine blade, using the same parameters as the standard SPH simulation. An indicative view of
the results is shown in fig. 6.10. Free-surface fragmentation has been reduced, comparing with the
standard SPH, due to the numerical viscosity effects. The effect of numerical viscosity is visible in the
force history over time; SPH-R results are much less oscillatory than the standard SPH method
results.
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Fig. 6.10. Indicative instance of the 2d Turgo jet impingement (#=0.03s). Left: velocity magnitude. Right: Pressure
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Fig. 6.11. Forces history on the moving blade. Up: x-axis. Down: y-axis.
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3d jet impingement on Turgo blade and Pelton bucket

Next, the 2™ order SPH-R method was used to simulate the impingement on the stationary Turgo
blade (30° impingement) and Pelton turbine bucket (90° impingement). In fig. 6.12 the general view
of the flow is shown for the two impingement cases. Comparing with the relevant results from the
standard SPH method, it is obvious that the velocity distributions are smoother due to the effects of
numerical viscosity. In both cases the outlet velocity of the formed water sheet is less than the jet
velocity, despite using the 2™ order scheme. Moreover, in the Pelton bucket the flow tends to form
thread-like structures. This is the result of particle alignment in conjunction with the scheme’s
numerical viscosity. However, in this particular case, it does not affect negatively the simulation,
since there are no stagnation points (apart from the splitter) and there is no particle clumping.

lUmag{mis). 0246 8101214161820 |

Umag (m/s)

Fig. 6.12. Simulation of stationary jet impingement of a: Turgo turbine blade (left) and a Pelton turbine bucket (right).

In both cases forces are underestimated, both in respect to the Fluent and standard SPH solutions.
Again this is mainly attributed to the inherent numerical viscosity of the scheme.

Table 6-1. Comparison of the calculated forces with SPH and SPH-R. Turgo jet impingement.

Calculated forces F.[N] F, [N] F.[N]
Fluent 5425.575 -8614.56 -25216.4
SPH 5338.143 -8476.81 -24802.1
SPH-R 4546.51 -8130.29 -23572.25

Table 6-11. Comparison of the calculated forces with SPH and SPH-R. Pelton jet impingement.

Calculated forces F.[N] F, [N] F,[N]
Fluent -21.9 -32.1 -278.8
SPH -17.7 -30.5 -260.6
SPH-R -25.0 -29.5 -249.6
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Simulation of impulse turbines using the SPH-R method

Although in the stationary impingement cases the 2™ order SPH-R method proved overly
diffusive, underestimating forces, in the simulation of impulse turbines it gave similar results in
respect to the SPH method (see fig. 6.13 and 6.14). First of all the torque curve is smoother, without
the intense oscillations of the SPH method. Then the SPH-R method tends to predict better the torque
during the evacuation of the Pelton bucket. It is reminded here, that during the evacuation phase the
SPH method under predicted torque. SPH-R method behaves better in the moving geometry cases
because generally flow features change less than in the stationary cases. The reason of this effect lies
in the numerical scheme used; the numerical viscosity is expected to increase with the increase of the
difference between the two states of the Riemann problem. Thus, in cases where flow features change
rapidly, it is expected that the influence of numerical viscosity is increased.
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Fig. 6.13. Left: Simulation of a rotating Turgo turbine. Right: torque curve comparison (SPH and SPH-R).
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Fig. 6.14. Left: Simulation of a rotating Pelton turbine. Right: torque curve comparison (SPH and SPH-R).
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6.4. Further possibilities with SPH-R

In the previous section the SPH-R method was described. While the method reduces the pressure
oscillations of the SPH method, it still handles boundaries in a problematic way. An alternative is the
implementation of boundaries, considering the surface integral term that has been omitted from the
SPH derivative approximation (see chapter 2 eq. 2.7). However this introduces an additional problem;
the field variables have to be defined on the boundary surface elements. This is done by solving the
partial Riemann problem, which was based on the work of F. Dubois [9] (this treatment was initially
adapted to the SPH-ALE method by Marongiu et al. [7, 10] and [11] and will be further described in
chapter 7).

The partial Riemann problem is practically identical to the Riemann problem already described
(see also Appendix A), with the difference that only the left state is available and the other state is
missing, since it extends beyond the boundary. However the right state is possible to be deduced from
the boundary condition to be enforced. For example for a wall boundary condition, the left and right
states should have the same density/pressure. The velocity of the right state is assumed to be,
expressed in the local coordinate system, as [4]:

U, =—u, +2u (6.29)

wall

In order to determine the interaction of a fluid particle with a boundary element, the velocity of
the fluid particle is projected on the local boundary surface normal vector n; and not the n;; vector (fig.
6.15). Then the partial Riemann solver is solved, using the left state and the deduced right state. Once
the solution is obtained, using an approximate Riemann solver, the solution is added to the derivative
approximation, as follows:

Dpi _ roj *
jeoQ
Du; P
o Voo +Epay + /;ZS ( /J n (6.31)

n=(x,y,z,)

---QQQ O O-O-0O-O

Boundary particles
Fig. 6.15. Interaction of a fluid particle with a boundary element

In eq. 6.30 and 6.31 V,,, is the volume term in respective equations 6.7 and 6.8. Also S;

represents the surface of the finite boundary element and [pu, is the solution of the partial

Riemann problem between particle i and the boundary element j.
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Field variable values on the boundary are obtained using the following relations for

pressure/density and local velocity respectively:
Tait

m.
p; :zz_lpEWj_)pj (6.32)
ieQ IOi
uj uwall
z e vW;
Local velocity: y = i@ Pi ’ (6.33)

Boundary values may be used for the derivative calculation of the MUSCL scheme. Note that
velocity calculated by eq. 6.33 is the velocity of the local Riemann problem, i.e. projected on the local
wall normal. Thus it must be transformed to the global coordinate system in order to be used properly.

This boundary implementation enables proper handling of any boundary condition and good
accuracy. However a possible issue may arise in cases when the support domain of a fluid particle,
truncated by the boundary, is concave as in fig. 6.16. In that case, the fluid particle i will interact with
boundary particle j. The solution of the partial Riemann problem will result to a negative pressure,
eventually leading to an unphysical attraction of the fluid particles towards the boundary. The cause
of the problem is the fact that the particle interaction radius is much larger than the boundary
discretization.

Fluid particles

Boundary particles 7 O O >
o O
O O
s O

Fig. 6.16. Concave support domain.

A possible solution of that problem is to divide boundary particles into two types. In the first type,
boundary particles will behave as already described and will be placed in areas away from corners
such as in fig. 6.15. In the second type, the boundary particles will behave as described, but if a
negative pressure (from the solution of the Riemann problem) is detected, then the interaction with the
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fluid particle will be omitted. These particles will be placed on corners and while they will prevent
boundary penetration, they will also prevent the unphysical attraction described.

The boundary treatment described above will be further developed and mainly used in the SPH-
ALE method, which will be described in the next chapter.

6.5. Hybrid SPH/SPH-R

Another interesting approach is to use the partial Riemann problem approach for boundaries in
combination with the SPH with the upwind flux correction, described in eq. 3.75. Eventually:

jeQ jeoQ

Lo Nm, [uij VW, +n, -VI.WU.%(pi —pj)J— 3 p,S,u —u))n W, (634
J

_:_z [_+—J L+ 3s, p”njwj+fbody (635)

jeQ j jeoQ

The first term in eq. 6.34 and eq. 6.35 is the volume term appearing in eq. 3.75 and eq. 3.39
respectively. The next term is the surface integral term used to enforce the boundary conditions. Star
marked values are the solution of the partial Riemann problem from the interaction of a fluid particle
with a boundary particle.

The combined approach ensures enforcement of boundary conditions, while limiting numerical
diffusion, since Riemann solvers are only used for the interaction with the boundary particles.
Pressure oscillations are treated by the diffusion term (upwind monotone flux) used in the density
equation. No further corrections, such as XSPH or density filtering, are required.

In fig. 6.17 a comparison of the experimental, SPH and SPH/SPH-R hybrid results are shown for
the dam break case; results are practically identical, indicating that the hybrid scheme is accurate. In
the next figure (fig 6.18) indicative instances of the dambreak problem are shown. The SPH/SPH-R
hybrid method is able to reproduce an accurate hydrostatic pressure field, something that the standard
SPH method fails to do (see fig. 6.19).
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Fig. 6.17. Dam break case. Non-dimensional wave propagation (left) and column height evolution (right), in respect to non-
dimensional time.
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Fig. 6.18. Indicative instances from the dambreak simulation using the hybrid SPH/SPH-R.
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Fig. 6.19. Indicative instances from the dambreak simulation using the standard SPH. Boundaries are treated with mirror
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In fig. 6.20 a 2d jet impingement case is shown using the hybrid SPH/SPH-R method. The method is
able to calculate correctly the free surface with a little deviation from the 2™ order SPH-R scheme. On
the other hand the pressure distribution on the plate is very close to the theoretical solution.
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Fig. 6.20. Jet impingement on a flat plate. SPH/SPH-R results for: pressure coefficient (up) and velocity magnitude (down).
The 2™ order SPH-R solution is shown as reference with a continuous line.
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Fig. 6.21. Instantaneous pressure coefficient distribution on the flat plate. Comparison with the theoretical solution.
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6.6. Concluding remarks

In this chapter, the combination of the SPH method with Riemann solvers was examined. The
resulting method is able to remedy the pressure oscillations of the SPH method. Also there is the
capability to describe accurately boundary conditions, using partial Riemann problems. However,
even the 2" order scheme still suffers from numerical diffusion and its effects are even more
observable in 3d simulations. Moreover, the MUSCL treatment requires the calculation of the
derivatives of field variables and the implementation of the limiter, which contains several “if”
statements. Considering that these calculations have to be performed many times at each time step,
this results to an increased computational cost. Indeed the 2" order SPH-R algorithm may require
around 5 X the time needed for the SPH algorithm to complete the same simulation. Eventually the
SPH-R method might not be the best alternative from the SPH method, since it is slower and some
inaccuracies still appear.

An interesting alternative is the hybrid SPH/SPH-R method presented in the final section of the
current chapter. This method does not require the MUSCL scheme, involving limiters/derivative
calculation etc. On the other hand it is able to treat boundaries efficiently, due to the implementation
of partial Riemann problems at boundaries. All the previous come to a computational cost comparable
to the standard SPH method.
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Chapter 7

SPH-ALE method

In order to overcome the issues of the standard SPH and the SPH-R method, the SPH-ALE
method was developed and tested. The SPH-ALE method was initially implemented by Vila [1] and
has considerable differences from the traditional SPH. First of all the conservative system of the Euler
equations is solved [p, pu, pv, pw]’, instead of using the primitive variable set of the standard SPH
method. Also it adopts an Arbitrary Lagrangian Eulerian point of view, meaning that the
computational elements move due to the influence of a transport field not necessarily equal to the
velocity field, thus the particles may move following the flow field (Lagrangian description), may
remain still (Eulerian description), or move in any other arbitrary way. Finally, the discretization of
the Euler equations resembles the discretization of the Finite Volume Godunov method and Riemann
solvers are used to calculate the fluxes between the computational elements which are now considered
moving volumes, rather than particles (but they will be referred as particles for simplicity). The great
advantage of the SPH-ALE method is that it enables robust handling of the boundary conditions.
Moreover, the Godunov method introduces numerical diffusion, damping pressure oscillations,
providing much smoother results than the standard SPH method.

7.1.  Governing equations

The Euler equations, using the ALE description, may be described in the following form [1]:

L”n ((I))+ Z%(Fé _u(l) ): 0 (71)

I=1d
In the above equation:

- @ is the vector of conserved variables: [p, pu, pv, pw]" in 3D
):ag+ (u,®) N o(v, @) N o(w, @)

ot ox dy 0z

- u(’) is the /-component of the transport field velocity vector u, = (uo, Vos wo)

- L, (@

- FJEis the flux vector. For a 3D calculation the flux vectors would be [2]:

pu pv pw
2
u- + uy uw
Fi=\" P = PR
puy pv-+p pPYW
puw pyw pw2+p
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The discretization of eq. 7.1 using SPH would lead to one-dimensional moving Riemann
problems between interacting particles [1]. Thus for two interacting particles:

op o
. (n;j) '
(I)(x(ni,-)’o) — (I)[ l.f x(”“) < 0
@, if x>0

where ®; and ®; are the states of particles i and j respectively and n; is the unit vector pointing from
particle i to particle j, x;; is the midpoint between particle i and j and 1™ is the x-coordinate at the
local coordinate system, defined by n;;, assuming x;; is the origin. Vila [1] proved that the solution of

the moving Riemann problem in eq. 7.2 can be linked to the classical Riemann problem for the Euler
equation, stated as:

o® Jd
a_t+a_x(FE(®)'n”)_O (7.3)
i )
Q(x(nz/)’o) — Qi l-f 'x(ni) < 0
@, if x>0
(”[/)
®-= q),{%xo(”,q)i,cpj
X(t)= J.uo(xij,t)nijdr
0
The resulting particle approximation for the 3D inviscid Euler equations is the following [1]:
ﬁ =u,(r,t)
d "
d N
“(@)=a 0/l m)-u,w) VW,
=1
d N
E(a)ipi)-l_a)izlesz(uE _uo)'vivvij =0
=
d > ow ow ow
E(wipiui )+ ; lewj 2{[@2”5 (uE - u0)+ Pe ]g + [pEuE (VE ) )]g + [pEuE (WE —Wo )]a_z} =W P8,
=
d > ow ow ow
E (a)ipivi)+ wizle 2|:[pEVE (ME — Uy )]g + [pEVE (VE - V0)+ pE]g + [pEVE (WE — Wy )]a_z:| =wp8,
=
d > ow ow ow
E (a)ipiwi)+ ; Za)i 2{[pEWE (L‘E —U )]g + [pEwE (VE ) )]g + [pEwE (WE —W )+ pE]a_Z} =wp8,
j=1
(7.4-7.9)

In all the above equations, w represents the volume of the particle, the E index indicates the
solution from the Riemann problem between particle i and particle j. Again, pressure is calculated
through the Tait equation of state, reformulated as:

p.=kp’ —B (7.10)

2
_ P . , : k=
where B =——— is the stiffness parameter of the equation of state and kK =

4 poy .
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7.2.  Implementation of the SPH-ALE model (1* order Godunov method)

In order to solve the system of equations described above, the solution of the Riemann problem
between particles i and j has to be found. The Riemann problem has to be solved on the direction
defined by the n;; unit vector pointing from particle i to particle j. To do this, all velocity components
have to be transformed from the global coordinate system to a local coordinate system pointing to the
n; direction (fig. 7.1). This is accomplished using a global-to-local transformation matrix which in 3D
would have the following form:

ul()( xn y n Zn u

7.11
vl()c xm y m Zm v ( )
wl()( ‘x() y 0 Z() w

In the above transformation u, v, w are the velocity components, x,, y,, z, are the components of
the my unity vector pointing from particle i to particle j and the loc subscript represents local
coordinate system variables. Furthermore x,, y., z» and x,, y,, 2, are the components of m; and o,
unity vectors respectively. These vectors are normal to each other and normal to the n; vector.
Obviously for density and pressure there is no need for any transformation, since they are scalars.

Local coordinate system Star region
U ioe
l
t l
‘ Ujoe=C A ly* Ujpe+C
| Uioc I !:.u:
u * p* Uj loc
i loc p ] )
pi Viloc I Vj hag pl
N pi Wi loc |1 Wijloc Pj
Viloc I Viloc
Wiloc ” Wiloc
> ( _ \ Fi\\‘
Y \ y, L
£ o X
/ J
Global coordinate system Left state Right state

Fig. 7.1. Coordinate system transformation (left) and the solution of the Riemann problem for the Tait equation of state
(right), needed for the SPH-ALE algorithm

Then, the local steady one-dimensional Riemann problem (eq. 7.12) has to be solved using either
an exact or an approximate solver. An exact solver for the Euler equations, using the Tait equation of
state, is presented in appendix A, following Ivings et al. [3]. However the disadvantage of the exact
solver is that it involves an iterative procedure for the calculation of the Riemann problem solution,
which will be computationally expensive, since it has to be evaluated for all particles interactions for
all time steps. Eventually, as with the SPH-R method, an approximate Riemann solver is used.
However, in the SPH-ALE method, the approximate solver of Roe is used instead, which is based on
the conservative variable set. The jacobian matrix is linearized in respect to the i, j states of the
Riemann problem. Following Toro [2], the split three-dimensional Riemann problem for the Euler
equations is:
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p pu p pu
2 . 2
u u+ Tait | py u” +kp”
pul |ptp| _ i pul otk (7.12)
pv puy pv puy
pw, puw | pw ], puw |

The ¢ and x indices denote the time and spatial derivative respectively.

In the previous equation, density p and the u velocity component play the important role in the
Riemann problem. The rest velocity components can be treated as passive scalars. The resulting
linearized jacobian of the system of equations (eq. 7.12) is:

0 1 0 O

~ cri-u* 2 0 0
A= ¢ ~f ~” N (7.13)

—uy v u 0

—uw w 0 u

where 5 =./p,pg C=yyk ﬁy-l

R R R R R R
ViAo At o o

u=

and has eigenvalues 4, =ii-C , A3 =U and A4 =U +C and respective eigenvectors
1 0 0 1
u-c 0 0 u+c
K= _ | K,-= K, = K,=| _
v 1 -0 v
w 0 1 w

Each eigenvalue represents a wave. Eigenvalues 1; and A, represent non-linear waves (shocks or
rarefactions) and define the intermediate star region (fig. 7.1), whereas eigenvalues A,, 4; represent
linear degenerate contact discontinuity waves [2], playing important role for the passive scalar
transport. The solution of the local Riemann problem is found at the moving interface between the
particles, which will be assumed to move at the average transport velocity (u,) of the two particles i, j.
Since the particles move with a velocity much lower than the speed of sound the main interest is in
finding the solution at the star region of the Riemann problem (fig. 7.1) [4]. This can be done using
the jump relations for the four waves [2]:

A®D =) aK, (7.14)

i
1

where A®@ is the difference between left and right states (®x-®;). From the above equation it is
possible to calculate the wave strengths a;, a,, as;, a, which can then be used to evaluate the field
variables at the star region, which will be the solution to the Riemann problem. Starting from the left

state (particle i), the star values for u-velocity component (local) and the density can be found from
the following equation:

@, -®, =aK, (7.15)
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Eq. 7.15 may be used for the calculation of the Riemann problem solution for the rest velocity
components, if the interface velocity is less than the velocity at the star region (u+). In the opposite
case, the influence of the respective discontinuity wave must be considered.

Before applying the solution of the Riemann problem in the SPH-ALE system of equations, the
solution needs to be transformed back to the global coordinate system, by applying the inverse
transformation of eq. 7.11. The local-to-global transformation is the following:

u 'xn 'xm 'xo uloc

_ 7.16
V=] Ya Yom Yo Vioe ( )
w Zn Zm Zo Wloc

After the transformation, the solution of the Riemann problem is applied at eq. 7.5-7.9 and the
system of PDEs is integrated with an explicit method. The time step used is defined by taking into
account the maximum wave speed travelling inside the moving volume dimensions.

di=cC. 9 (7.17)

CFL
d Smax

In the above relation dx is the volume size, Ccg; 1s the courant number (0<Ccr<1), Sy the maximum
wave speed calculated from the interactions of all particles and d is the dimension of the problem,
since Toro proves [2], that the stability range in a d-dimensional problem reduces to the //d of the
stability range of the one dimensional problem.

7.3. MUSCL-Hancock 2" order scheme / Limiter

The procedure for the implementation of the MUSCL scheme is similar to the one described
previously in the 2™ order SPH-R method (section 6.2). However it includes one more step called
evolution step, resembling the MUSCL-Hancock method described by E. Toro [2]. The procedure is
the following:

- Forward and backward derivatives are obtained before the Riemann problem solution, using

the following equations:

Vo) =2 Yol@,-o Vv, (7.18)
X9>X¢

vo) =2 Y o0, -o VW, (7.19)
X4<X!

- Slope, A; and A, calculation using forward and backward derivatives:
Ai,F = V(I)i,F/B Iy and (7.20)

Ay =V®, T, (7.21)

i,F/B " Lij

- Limiting procedure:
_ max[0, min(BA, ,, A, ), min(A, ;, A, )] A, >0
B {min[O, max(fA, ;. A, . ).max(A, ,, A, D] A, <0

(7.22)

i
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The S parameter is set to 2, reproducing the SuperBee flux limiter [2].
- Reconstruction of data at the interface between particles:

D, =D, _%Kz (7.23)
®, =+ VA, (7.24)
®, =04 (7.25)
@, =0+ /A, (7.26)

- Evolution of ®;; and ®;; at the local one-dimensional Riemann problem:

— 1 dt

D, = (I)+§_[F( zL) F((I)iR)] (7.27)
3,-0,+ "Fo,) Fo,) 128

- Solution of the Riemann problem using (I)l.R as the left state and 6_,1 as the right state,

instead of using ®; and ®@;.

7.4. Boundary conditions — Partial Riemann problem

The main advantage of the SPH-ALE method is the robustness in dealing with the boundaries [1,
4]. The method is able to take into account different boundary conditions, without the need to
extrapolate variable fields beyond the boundary. This is done by considering the boundary surface
elements as the interface between two fluid states and using them to calculate the surface integral term
of the derivative approximation [4]. Thus, in eq. 7.5-7.9 another summation term is added, in order to
account the interactions of a particle i with a surface element j. Equations 7.5-7.9 become:

d
dt(a)l) term+a)J€ZSS (uO(r ) uO(r )) j y
d
E( L0, )+‘/term+a)izsj2pE(uE _uo)'njvvij =0
Jjes
d
d (w Pl 1 Vo T O ZS 2[[pEuE —Uy +pE]VVzJ +[pEuE(vE _VO)]ijn +[pEuE(WE W )]szjzn]:wipigx
Jjes

d
dt(wpl i + term+wZS 2[[pEvE uE uO ij n+[pEvE( v0)+pE]VVljyn+[pEvE( WO ]VVU ] wngy
jes

d
dt(wpz i term+sz 2[[10 WE ij n+[p WE( VO)]W'jyn+[pEwE(wE_w0)+pE]Wjle]:wipigZ

jes

(7.29-7.33)

In all the previous equations V,,, is the volume term presented in equations 7.5-7.9 respectively.
It must be highlighted that in equations 7.29-7.33 S; represents surface, not volume. Moreover n;
should not be confused with n; used during the interactions between particles, since it is the local
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boundary normal pointing away from the fluid region. It is used instead of the m; vector to all
calculations. The procedure for the interaction of a particle i with a surface element is similar to what
was described previously, i.e. the coordinate system must be transformed to a local system, defined
now by the n; normal vector, the Riemann problem solved and the solution transformed back to the
global coordinate system. However, in the Riemann problem only the left state (from particle i) is
known. There is no right state, but it can be deduced from the left state and the boundary condition
type [4, 5]. For example in the case of a wall boundary condition, it is known [2] that the right and left
states have the same density. Furthermore for the right state local u-velocity component, the following
relation can be used [2]:

U, =—u, +2u (7.34)

wall

The rest local velocity components (v, wy,.) are the same for both states.

From the above, it is obvious that surface elements do not need to have any field values by
themselves, since the needed data can be deduced from the fluid particles. However they have to be
included in the derivative calculation for the 1% step of the MUSCL scheme. Thus it is needed to
attribute field values to them too. This is done following Marongiu et al. [4], by using the relation for
Jj-particle’s pressure:

p;= 2@2175“/17 (7.35)
=N
Using the equation of state it is possible to obtain density too. For the rest of conserved variables (pu,
pv, pw) a similar approach can be used, based on Shepard filtering [6]:
Z o, (/0” )i W;
_ ieQ (7.36)
). =

i€eQ
7.5. Low speed preconditioning

The implementation of preconditioning in SPH-ALE has been introduced by Marongiu et al. [7].
In cases where the SPH-ALE method is used to describe the fluid as nearly incompressible, the fluid
velocity is small compared to the, artificially set, speed of sound. It is known [7, 8] that at low Mach
numbers the large disparity between the waves traveling with speeds u+c, u-c and the wave traveling
with speed u, renders the solution of such problems problematic [8]. A way to overcome this is by
multiplying the time derivative of the compressible flow equations with the inverse of the
preconditioning matrix in order to reduce the speed of acoustic waves to the flow velocity. In this way
it is possible to further reduce the numerical viscosity and reduce the noise from the pressure field.

The preconditioner used in this work is the preconditioner of Turkel [7, 8, 9], which in its simplest
form is written as:

(7.37)

o o = O
S = O O
- O O O

The f parameter in the preconditioner matrix is set to:
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B = min[l’maX(K M, KM ;,Bya )]’ (7.38)

with the K parameter set at the same scale as the ratio of the numerical sound speed to the maximum
velocity, co/tt., (usually ~10). In the previous relation M; represents the Mach number in the local
neighbor of particle i. Note that the value of £ is bounded by a problem dependent lowest value in
order to avoid instabilities at stagnation points [7, 8]. The above preconditioner is written for entropic
variables W: [p, u, v, w]". In order to use it for the conservative variables W.: [p, pu, pv, pw]" it must
be transformed according to the relation [8]:

W, oW
= P—=
oW  JdW,
1> 0 0 O[> 0 0 O[] & O O O g0 0 0
P = we> p 0 0|0 1 O O||-uwp 1p 0O O B pu-u 1 0 0 (7.39)
S yver 0 p O[O0 O 1 O||-vp O 1p O pv-v 0 1 0
wic> 0 0 p||0 O O 1||-wp O 0 1 pw=w 0 0 1

The preconditioning matrix is multiplied with the linearized Jacobian and the resulting
eigenvalues and eigenvectors are used to find the intermediate star region, as described in the previous
section. The preconditioned Riemann solver helps in reducing the noise in the instantaneous pressure
field as it is shown in fig. 7.2, which depicts a 2d jet impingement on a flat plate with a velocity of
20m/s (simulation parameters are the same as with the previous 2d jet impingement with the standard
SPH, i.e. particle size 1mm, c,=230m/s). Also, as it is shown in fig. 7.3, the distribution of the
instantaneous pressure coefficient on the flat plate is smoother for the preconditioned scheme with a
maximum value of (C,).=1.01, whereas the non-preconditioned scheme has a maximum value of
(Cp)max=1.09. The integral of the pressure on the boundary, results to force of F,= -12019N for the
preconditioned scheme, whereas to a force of Fy= -12268N for the non-preconditioned scheme. The
normal force to the boundary for the same case can be found through the conservation of momentum
and its value is Fy= -11964N (0.5% deviation for the preconditioned scheme, 2.5% deviation for the
non-preconditioned scheme). Note that the SPH-ALE results, even without preconditioning, are
smoother and closer to the theoretical solution, than the SPH results, no matter using density filter of
upwind flux formulation. Another effect is that the preconditioned scheme helps in the reduction of
the numerical viscosity.

012 012

No preconditioning i With preconditioning

01| Cp

0.08

0.08 -

> 006 |- > 0.06 -

0.04 0.04 -

n 1
0.05

Fig. 7.2. Non-preconditioned (left) versus the preconditioned scheme (right). Pressure coefficient distribution.

188



Chapter 7: SPH-ALE method

08

Cp

04

02

9= . 1

-~ No preconditioning
With preconditioning
- Theoretical

-0.05

7.6.  Validation of the method

Shock tube

0
X (m)
Fig. 7.3. Comparison of the instantaneous pressure coefficient profile on the plate for the two schemes

The described 2™ order SPH-ALE method is able to perform well in shock tube tests, without
overshoots and/or oscillations near discontinuities (fig. 7.4), in contrast to similar cases in SPH-ALE
literature [4], for the same resolution (dx=1mm, 100 particles simulated). The comparison is made
between the exact Riemann solver [3] and the 1% and 2™ order SPH-ALE method. The reference
density of the fluid was set to 997.04kg/m’, with a speed of sound cy=1466.7m/s and y=7.15. The

initial conditions for the shock tube test were:

p =1100kg/m’

,x<0
U =0m/s

=1000kg/m’
R’o &/m X

, x>0
U =0m/s

The following results were obtained using Eulerian description, though the Lagrangian description

produces similar results (CFL=0.8).
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Fig. 7.4. Solution of the Shock tube problem:
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left, pressure and right, u-velocity component.
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Green Taylor vortex

The Green Taylor vortex flow (fig. 7.5) is simulated to measure the numerical viscosity of the
described scheme. The Green-Taylor flow is a 2D, periodic flow involving four counter-rotating
vortices within one pattern length. For this specific problem there is an analytical solution (eq. 7.40).

Fig. 7.5. Green Taylor vortex. 1/4™ of the periodic pattern.

871’
u=Ue ® cos(2zy)sin(2mx)
_87%,
v=-Ue * sin(27y)cos(27x) (7.40)
_loz?,
p= %e Re [cos(47zy) + cos(4ﬂ:x)]

By including in the analytical solution the viscosity dissipation, it is possible to determine the
amount of the numerical diffusion of the SPH-ALE method, since the method does not include any
viscosity terms. Indeed, using a resolution 100x100 for a grid of particles with sizing dx=0.01m and
an initial velocity u=1m/s, the present scheme is able to increase the Reynolds number to ~2000 (fig.
7.6), almost four times the Reynolds number in the same case in the literature [7]. The Turkel

preconditioner further decreases numerical viscosity, eventually leading to a Reynolds number of
~3500.
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Fig. 7.6. Solution of the Green Taylor Vortex problem, pressure (left) and velocity magnitude (right) distribution. Results are
after 1s of simulation, using Eulerian description.

2D explosion/implosion

Another case, which was used as a benchmark for the SPH-ALE method, was the calculation of a
2-dimensional explosion and implosion. The explosion was simulated using a 200x200 grid of
particles with size 0.05m. Fluid parameters were set exactly as in the shock tube case, i.e. reference
density of the fluid was set to 997.04kg/m’, with a speed of sound cy=1466.7m/s and y=7.15. For the
explosion case, the density inside a circle with radius of 1m, placed at the center of the grid, was set to
1100kg/m’, whereas at the rest area to 1000kg/m’. During the simulation a shock wave is generated,
traveling outwards, whereas a rarefaction wave moves towards the center of the grid.

Indicative results of the simulation are shown in fig. 7.7 at 0.25ms. The circular wave pattern is
properly reproduced. Also in fig. 7.8 the distribution of density and radial velocity are shown,
calculated by the 2™ order SPH-ALE method. Also for comparison the solution of the 2" order 1d
axis-symmetric FV method, using 1000 finite volumes in the radial direction, and the 1** and 2" order
2d FV method, using 200x200 finite volumes, are shown. The 2™ order SPH-ALE solution and the 2™
order FV solution have similar behavior, with the SPH-ALE solution being slightly more diffusive,
due to the increased interaction radius. In any case the SPH-ALE solution is close to the high
resolution 2™ order 1d FV solution.

rho
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Fig. 7.7. Solution of the 2d explosion using the 2™ order SPH-ALE method. Time:0.25ms.
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Fig. 7.8. Solution of the 2d explosion: density (up) and radial velocity (down). Comparison with the FV solution.

The implosion problem has the opposite set-up; inside a circle with radius of 1m, placed at the
center of the grid, the density was set at 900kg/m’, whereas at all the rest area density was set at
1000kg/m’. In order to compare convergence, several resolutions are used: 200x200, 250x250 and
333x333 (equivalent particle sizes 0.05, 0.04 and 0.03m). Initially a shock wave is generated, moving
towards the center of the low density region, and a rarefaction wave at the edge of the circle defining
the low density region. As the simulation proceeds, the shock wave focuses at the center of the low
density region, creating a high density region. A new shock wave is generated expanding outwards,
following the rarefaction wave.

The SPH-ALE solution is shown in fig. 7.9 at 0.5ms, while the shock wave travels towards the
center of the low density region, and at 1.25ms, after the shock wave focusing. Results are compared
to the 1d axis-symmetric, 2" order FV solution. For the latter solution, 1000 computational volumes
are used, resulting to approximately 10 times higher resolution at the radial direction. From the
comparison of the solution between the two methods in fig. 7.10 and fig. 7.11, it is obvious that both
methods produce similar results. The SPH-ALE method calculates correctly the wave speeds, and,
with proper resolution, is able to reproduce high gradient areas (fig. 7.10).
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Fig. 7.9. Implosion calculated using the 2™ order SPH-ALE method. Left: Implosion at 0.5msec, shock wave moving
towards the center of the low density area. Right: Implosion at 1.25msec, after shock wave focusing, shock wave is
expanding.
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The simulations described above are handled easily with the SPH-ALE method due to the ALE
perspective; indeed the used of the SPH or SPH-R methods would be problematic, due to induced
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errors from the particle Lagrangian motion. Moreover the simulation of the Green-Taylor vortex is
impossible using a pure Lagrangian approach, due to particle alignment and clumping at the
stagnation points.

For both explosion-implosion problems, the axis-symmetric solution was obtained by solving the
2" order 1-dimensional FV problem using the MUSCL-Hancock scheme and considering appropriate
source terms. Also the 2d FV solution was obtained using the unsplit MUSCL-Hancock finite volume
approach [1]. A more detailed description is in appendix A (for more information, see Toro [1]).

7.7.  Hydrodynamic problems

In this part several practical applications of the SPH-ALE method will be presented. These
applications involve:
- simulation of wedge impacts on the water surface along with comparison with experimental
data from Yettou et al. [10]
- simulation of the 3d jet impingement
- simulation of the flow at stationary impulse turbine geometries (Turgo blade and Pelton
bucket)

Wedge impact on water surface

Boat hull impacts on the water surface last only several milliseconds [10], during which pressure
distribution on the hull surface changes rapidly. Estimation of the forces on the hull is crucial to
determine the hull motion and the loads which the hull should withstand. There are several ways of
analyzing the impact, ranging from a simplified 2d analysis using potential flow, to a full 3d analysis
of the complete hull. Lewis et al. [11, 12] suggested solving consecutive slices of the ship hull in 2D,
simplified as wedges of appropriate geometry (while the same logic was used by other researchers too
[13]). This method has the advantage of solving several simplified 2D problems using Navier Stokes
equations, instead of solving a considerably time consuming 3D problem.

The SPH-ALE method is suited for such a kind of flows, since there is no need for a mesh and
due to the Lagrangian description, the computational elements follow the flow features, adapting to
the flow patterns naturally. Furthermore, it is able to handle moving geometries, without needing
special mesh treatments. Moreover the method does not require any free surface tracking algorithm.
All the above characteristics of the SPH-ALE method render it an attractive alternative to the
traditional mesh based methods. In this part several simulations of wedge impacts will be presented,
in conjunction with experimental data from Yettou et al. [10].

The problem is very well described in [10, 11]. A wedge is dropped from a specified height on the
water surface. The primary interest is the forces and the wedge motion after the impact. Several test
configurations have been examined and the basic experimental characteristics are the following:

- Wedge square top has a section of 1.2mX 1.2m in all cases

- The deadrise angle 6 (see also fig. 7.12) of the wedges ranges from 15° to 35° degrees, with a

interval angle of 5° degrees. However, experimental data are provided only for the 15°, 20°
and 25° angles.

- The wedge impacts the surface after being released from a height of 1 or 1.3m.

- Adjustable wedge mass ranging from 89 to 158kg.

The wedge is equipped with pressure sensors on its side, positioned every 50mm (fig. 7.12).
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Fig. 7.12. Wedge schematic [10]

The problem was modeled using the SPH-ALE method, using symmetry boundary conditions at
the y-axis (x=0). Before the impact the wedge was assumed to be influenced only by gravity. Thus,

the wedge is initially positioned just above the water free surface with an impact velocity of ~,/2¢H .

During the impact, the wedge motion is governed by gravity and pressure forces. The problem is a
fluid-rigid body interaction, were the only degree of freedom is the wedge velocity/motion on the
vertical axis. The acceleration of the wedge is given by:

a,=g,+—2 (7.40)
m

wedge
The simulated medium was water with a density of 998.2kg/m’ and the speed of sound was set to
co=100m/s.

Particle dependence study

Three different particle resolutions were used, in order to determine the effect of the particle size
in the simulation results. The particles size resolution was increased by a factor of two; particle sizes
10mm, 5Smm and 2.5mm, involving 15000, 57000 and 220000 particles, respectively.

In fig. 7.13 the wedge v-velocity and the vertical slamming force, are shown. From these two
graphs it becomes apparent that the intermediate and fine particle resolutions are able to reproduce
practically the same macroscopic results, regarding the wedge motion. Deviation of the wedge vertical
velocity between these two resolutions at the end of the simulation is less than 1%. On the other hand
the coarse resolution (10mm particle size) calculates the same trends but deviates by ~5%. Some
differences are found in the vertical force among the different particle resolutions, but generally in all
cases, the same behavior is reproduced.
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Fig. 7.13. Vertical velocity (left) and vertical force (right) during the impact for different particle resolutions.

In fig. 7.14, an indicative view of the wedge slamming is shown, towards the end of the

simulation. Even if the macroscopic results of the wedge motion are accurately predicted, some fine

details are not properly captured; the water sheet formed on the wedge side is not predicted unless a
fine resolution is used. However, even in that case, the resolution of the water sheet might not be
adequate, since its thickness is described by ~4 particles.
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Fig. 7.14. Indicative results of the wedge slamming for different particle resolutions. The image at the down right corner

shows a close view of the water sheet on the wedge side. Particle coloring according to velocity magnitude.

196



Chapter 7: SPH-ALE method

Comparison of the results with the experimental/literature data

In fig. 7.15 the vertical velocity of the wedge is shown, in comparison to experimental data [10],
mesh based CFD results [11] and an empirical model, Zhao’s model [10], from the literature. A
notable remark is that SPH-ALE does not reproduce accurately the wedge velocity from 13ms to
25ms. The fact that this discrepancy is found in Lewis’ CFD results [11] too, confirms that it might be
caused by 3D effects, which is impossible to capture in a 2D simulation. Indeed, such discrepancies
have been experienced by other researchers too [14]. Nevertheless, numerical results are close and
overall agreement is good. The SPH-ALE method is also close to the analytical model of Zhao, with
the exception of a slight velocity underestimation, towards the end of the simulation.
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Fig. 7.15. Wedge vertical velocity.

Yettou et al. [10] provided the vertical velocity of the wedge from experimental data and Zhao’s
model, for several more wedge impacts:

1. Wedge angle 25°, drop height 1.3m, wedge mass 130kg
Wedge angle 25°, drop height 1m, wedge mass 130kg
Wedge angle 20°, drop height 1.3m, wedge mass 89kg
Wedge angle 20°, drop height 1.3m, wedge mass 143kg
Wedge angle 15°, drop height 1.3m, wedge mass 143kg

These cases have been simulated using a uniform particle resolution of Smm, since it was found
to be adequate to describe the macroscopic wedge motion. In the following figures (fig. 7.16-7.18) the

DR W

vertical velocity in respect to time is shown along with the experimental results and Zhao’s model
results for each case respectively. The SPH-ALE method is able to reproduce properly the velocity
deceleration during the impact, for all conditions tested.

Figure 7.15 shows the results for cases 1 and 2. The two cases are identical apart from the drop
height, which eventually results to a different impact velocity. Even if the initial impact velocity is
different, the final wedge velocity at the ending of the simulation is approximately equal. Figure 7.16
shows the results for case 3 and 4, where the influence of the wedge mass is examined. As it is
expected, the increased mass of the wedge results to increased wedge inertia and eventually slower
deceleration. Figure 7.17 shows the results for case 4 and 5, where the influence of the wedge angle is
examined. Case 5 conditions are the same with case 4, apart from the wedge deadrise angle, which
has been reduced to 15°. A smaller wedge angle results to a faster deceleration due to the increased
drag.
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Fig. 7.17. Wedge vertical velocity, case 3 and 4: Different masses.
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Variable particle resolution

Further refining resolution uniformly to a particle size of 1.25mm (which is half of the fine
resolution used at the particle dependence analysis) would result to a particle number of
~850000particles. This would result to a very cumbersome simulation, where the increased resolution
would be redundant in most areas, since most of these particles would be far from the impact zone.
Thus, it is beneficial to use a variable resolution in order to capture the fine details near the impact
zone, while keeping the overall particle number to a minimum.

The SPH method is able to handle variable resolution, by adjusting properly the particle size and
the smoothing length [15, 16]. In the present work, two different particle distributions have been
tested. One resembles the distribution used by Oger et al. [15], where particle resolution follows a
smooth transition. The other is a telescopic refinement, where particles near the impact zone are split
to four smaller particles [17]. The smoothing length in all cases is assumed to be constant in time and
equal to 1.4dx where dx is the particle size. In both cases particle interactions are kept symmetric
using the average value of the smoothing length of the interacting particles, i.e.:

_hi+h,

) (7.41)
! 2

and this averaged smoothing length is used for the kernel function and its derivative calculation.

For the validation of the multi-resolution implementation of the algorithm, a simulation was
performed using both variable resolution methods, in the wedge impact case used for the particle
dependence analysis (m=94kg, 6=25°, h=1.3m). For the smooth transition of particle resolution, the
particle size at the point of impact was 2.5mm and near the simulated water tank boundary Smm.
Particle size was increased following a geometric sequence with ratio of 1.002. For the telescopic
refinement case, all particles had initially a size of Smm. Then particles lying within a square near the
impact point were split in four, eventually leading to a resolution of 2.5mm at the specific zone.
Results were compared with the uniform fine resolution (particle size of 2.5mm everywhere). In fig.
7.19 an indicative view of the particle distribution for both cases is shown. Here it must be highlighted
that both refinements lead to a total number of particles ~80000, whereas the uniform particle
distribution leads to 220000 particles.

| 0.4

Smoothing length: 0.003 0.0054

04
Smoothing length: 0.003 0.0054

0.2 0.2

Symmetry

N
L (SLANLANLEN BNLANLEN N LA N LN BLANNEEN NLEE NN BLELEEEN BLELNEEN B

LI L N L L L L (L N

0 0.5 1

Fig. 7.19. Left: Smooth transition. Right: telescopic refinement.
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Macroscopic results (i.e. velocity and forces) of the simulations are similar (fig. 7.20). However it
is important to highlight that the telescopic refinement causes some artifacts due to the sudden
increase in particle resolution. As shown in fig. 7.21, pressure waves are reflected at the transition
between the low and high resolution regions, which is behaving as a semi-permeable interface.
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Fig. 7.20. Left: Vertical force. Right: Vertical velocity.

The above observations are explained considering Oger et al. [15] work. Indeed, when variable
smoothing length is used, then more terms have to be considered in the derivative calculation formula,
such as the gradient of the smoothing length (V4 ) and the derivative of the smoothing length in
respect to time (dh, / dt). The derivative of the smoothing length in respect to time is zero, since it
does not change throughout the simulation. However, the smoothing length gradient is not zero, and
since it was not considered in the SPH approximations used, artifacts appear in areas of sudden
smoothing length changes. On the other hand, using a smooth transition minimizes the significance of
the gradient term, reducing its effects and enabling the benefits of the particle refinement near the free
surface with good accuracy.

0.5

Fig. 7.21. Left: Smooth transition. Right: telescopic refinement. Pressure field. Note the pressure wave reflection at the
telescopic refinement.
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Final results using finer and variable resolution

The previous case was reconsidered using an even higher resolution near the impact point
(dx=1.25mm). Again near the wall the particle resolution was Smm (growth ratio 1.003). This ratio is
small enough to prevent unphysical artifacts. Oger et al. [15] have found that up to a maximum ratio
of 1.03, unphysical results are prevented. In fig. 7.22 indicative results of the simulation are shown at
the end of the simulation: the simulation using refinement is able to capture better the water sheet
evolution as long as the details of the highly curved region. Moreover, the simulation with the
uniform resolution has about twice particles (~220000) than the simulation with refinement
(~120000).
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Fig. 7.22. Results of the refined simulation (particles). The free surface calculated with the uniform resolution is visible as a
continuous line.

In fig. 7.23 the results of the pressure history on the sensors are shown. At all pressure transducers, a
pressure peak appears at the time of contact of the specific area with the water surface. Since pressure
sensors do not come to contact with water all together, but sequentially, one after the other, it is
expected to have a lag in the pressure peak. After the peak, pressure gradually reduces. The simulation
with refinement gives results which exhibit some scattering, but tends to predict better the general
trend of the pressure history, especially for the last sensors.
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3D jet impingement

A 3D jet impingement was also simulated using the SPH-ALE method. The simulation was
performed for the same conditions as the studied SPH simulation in section 4.3 and for various
impingement angles, in order to compare the results. First of all, in fig. 7.24 and 7.25 a general view
of the flow is shown for the 90° and 45° jet impingement using the 2" order SPH-ALE methods. The
velocity and pressure distribution is shown at the YZ symmetry plane; fields in the SPH-ALE method
are much smoother than those of the traditional SPH method. Also the effects of the numerical
viscosity on the SPH-ALE method are observable, even when using the 2™ order MUSCL scheme;
indeed the velocity of the water sheet formed after the impingement is lower than the velocity of the
water jet impinging on the plate. The situation is even worse when using the 1% order SPH-ALE
method, since excessive numerical viscosity leads to great underestimation of the formed water sheet
velocity (by about 45%). However underestimation in the water jet velocity happens also with the
SPH method, in areas of few particles, where the SPH particle approximations tend to degrade.
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Fig. 7.24. 90° jet impingement. Left: Velocity magnitude distribution. Right: pressure coefficient distribution.
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Fig. 7.25. 45° jet impingement. Left: Velocity distribution. Right: pressure coefficient distribution.

Regarding the free-surface location, the 2" order SPH-ALE method is able to capture accurately
the free surface (fig. 7.26). The 2™ order SPH-ALE method slightly overestimates the water layer
thickness due to the inherent numerical viscosity, as observed in [4] too, but the difference with the
experimentally found free-surface is negligible. On the other hand, the 1" order Godunov method
greatly overestimates the free surface thickness.

In fig. 7.26 and 7.27 the pressure coefficient distribution on the flat plate is shown. Here it must
be highlighted that the SPH-ALE results are instantaneous, but the standard SPH results are time
averaged. The 2™ order SPH-ALE method accurately predicts the pressure distribution. Only in the
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case of the 30° jet impingement the 2™ order SPH-ALE method slightly underestimates the pressure
near the stagnation point, but this is mainly attributed to the resolution used. In this case, the
stagnation point occurs at a very narrow region (fig. 7.27), which would need a very fine resolution to
capture accurately. Nevertheless the pressure integral on the plate calculated using Kvicinsky’s [18]
results and the 2™ order SPH-ALE results differs by ~0.7%.
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Fig. 7.26. Comparison between SPH and SPH-ALE methods. Left: Free surface location. Right: pressure coefficient
distribution for X = 0. From top to bottom: 90°, 60°, 45° and 30° jet impingement
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3D interaction with Turgo blade and Pelton bucket

As a final application, the 2™ order SPH-ALE method was tested in impulse turbine geometries,
at impingements on the stationary Turgo blade (30° impingement) and Pelton turbine bucket (90°
impingement). It must be highlighted here that in order to prevent particle alignment issues, particles
were given a random shift, with maximum amplitude equal to dx/3 (dx being the inter-particle
spacing) from their normal positions. In fig. 7.28 the general view of the flow is shown for the two
impingement cases. Again the effects of numerical viscosity are visible, since velocity of the
outflowing water sheets is ~85% of the water jet velocity and in certain areas even lees. Similar
performance has been found by Marongiu et al. [7]. Also comparing to the 2™ order SPH-R solution,
it appears that the numerical viscosity is larger in the SPH-ALE method.
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Fig. 7.28. General view of the stationary Turgo impingement (left) and the Pelton impingement (right). Simulation using the
SPH-ALE method.

However, forces calculated by the SPH-ALE method are somewhat closer to the reference
solution of SPH and Fluent program. Considering the fact that further increasing resolution (see table
7-1I) improves the calculated forces, at least in respect to the F, and F, components, this implies that
the particle independence of the results might have not been reached.

Table 7-1. Comparison of the calculated forces with SPH and SPH-ALE. Turgo jet impingement.

Calculated F.[N] F, [N] F.IN]
forces
Fluent 5425.575 -8614.56 -25216.4
SPH 5338.143 -8476.81 -24802.1
SPH-ALE 4846.31 -7960.04 -23887.9

Table 7-11. Comparison of the calculated forces with SPH and SPH-ALE. Pelton jet impingement.

Calculated forces F.[N] F, [N] F,[N]
Fluent 219 -32.1 -278.8

SPH -17.7 -30.5 -260.6
SPH-ALE 1mm -24.39 -27.17 -251.28
SPH-ALE 0.75mm -21.27 -26.91 -256.04

In fig. 7.29 and 7.30 the pressure maps on the Turgo blade and Pelton bucket are shown, as it was
calculated from the SPH-ALE method and the Fluent program. The general patterns of the results are
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similar; pressure is maximum near the stagnation point and at areas where the direction of the flow
changes. However there are some notable differences:

- The pressure map on the Turgo blade surface exhibits some ripples. These are an artifact of
the blade surface triangulation and are pronounced at the Fluent solution too, at a lesser
extent.

- Pressure is overestimated at the splitter of the Pelton turbine. This was also experienced with
the SPH method in chapter 5 and it is caused by the steep angle at the splitter. However
pressure overestimation at the splitter is significantly lower with the SPH-ALE method.

In both cases a slight under prediction of pressure is visible, resulting to the forces underestimation
shown in table 7-1 and 7-11.
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Fig. 7.29. Comparison of the pressure map on the Turgo blade. Left: Fluent solution. Right: SPH-ALE instantaneous
solution.
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Fig. 7.30. Comparison of the pressure map on the Pelton bucket. Left: Fluent solution. Right: SPH-ALE instantaneous
solution.
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7.8. Concluding remarks

This chapter focuses on the implementation and the behavior of the SPH-ALE method, a hybrid
method based on the Euler equations, under ALE perspective, solved using Finite Volume framework,
but with SPH approximations. Moreover it has a robust mathematic background and is able to treat
boundary conditions efficiently. Also it is able to handle moving geometries easier than the SPH/SPH-
R methods, due to its inherent ALE perspective. Riemann solvers are used as the heart of the
algorithm, in order to determine the interactions between adjacent particles.

The method was used for various cases, examining both Eulerian and Lagrangian perspectives.
The Eulerian perspective enables the solution of problems, such as the Taylor-Green vortex, since
particle motion would deteriorate approximations, result to clumping and eventually would prevent
the simulation from completing due to instabilities [19]. Other simulations, such as
implosions/explosions or the shock tube are also easier handled than the SPH-R method. On the other
hand, the Lagrangian perspective enables the simulation of moving jets or moving geometries, such as
the wedge impact.

The 2™ order scheme has been examined in various cases; however in practical cases, such as the
Turgo/Pelton impingements, forces are underestimated. A similar underestimation was experienced
with the SPH-R method too, indicating that higher particle resolution might be required, or even
higher order variants should be used. Even if the SPH-ALE method is somewhat faster than the SPH-
R method, further increasing resolution does not seem possible with the given algorithm
structure/parallelization in feasible time.

Variable resolution simulations have been performed using the SPH-ALE method; the variable
resolution enables high accuracy/detail in areas of interest, while keeping the total particle number at
acceptable levels. However there are constraints to the particle distribution, since new terms have to
be included in the SPH approximations.
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Chapter 8
Epilogue

The aim of the present thesis is the development of SPH-based algorithms for the simulation of
free surface flows. The main interest is the application of the method on impulse turbine components
and turbine runners, including the design optimization of a Turgo turbine runner. Another objective of
the present thesis is the validation of the developed algorithms in a wide range of problems, involving
viscous and inviscid, free surface and enclosed flows.

The SPH algorithm is based on the standard, weakly compressible SPH developed by Monaghan,
Gingold and Lucy, enhanced with several corrections such as density filter, XSPH correction,
monotone upwind flux, etc. Truly incompressible SPH was also examined, but its practical
implementation involves the efficient solution of the Poisson equation, which is rather
computationally expensive using SPH approximations. Various implementations were developed and
examined, highlighting their strengths and weaknesses. Eventually, the SPH method was used for the
simulation of viscous flows for low and high Reynolds numbers. At low Reynolds numbers the SPH
algorithm predicted results comparable to the reference results from literature or other numerical
solutions. At high Reynolds numbers, a periodic redistribution of particles in the problem domain is
required in order to control the approximation errors and avoid instabilities which tend to form voids
and give unrealistic flow fields. The implementation of turbulence models is possible within the SPH
framework.

The SPH method was used in various free surface flows too. For free surface flows, wall
boundary conditions were described using boundary particles, since this type seems to be well adapted
for describing complicated geometries. Generally, the resulting scheme was able to produce very
accurate results regarding the free-surface location, comparing with the experimental data, other CFD
programs, or theoretical solutions. However, the time history of forces was oscillatory, due to the
noisy pressure field, thus time averaging was required. Indicative applications of the SPH method are
the simulation of a Pelton turbine injector, a Pelton turbine deflector and the operation of Pelton and
Turgo impulse turbines. Pelton and Turgo impulse turbines were tested both while stationary and
rotating. Efficiency of the turbines estimated with the SPH method was found to be under predicted.
Increasing particle resolution did not seem to improve the efficiency. Comparison with the results of a
commercial CFD program showed that the implementation of boundary forces is unable to describe
properly all flow effects during the Turgo turbine operation, such as the attachment of water behind
each blade. Also the torque curve of the Pelton simulation was underestimated during the emptying of
the runner. Optimization of the Turgo turbine was carried out using the combination of the SPH
method and a simplified algorithm, the FLS method. The latter algorithm uses some simplifications
and requires parameter tuning to describe properly the flow patterns of an impulse turbine. SPH was
used to provide data for the tuning and also was used to perform the final evaluation of the elite blade
geometries. Despite the underestimation of the absolute efficiency value, the SPH method was able to
identify correctly relative differences between designs and eventually provided an optimized
geometry. Regarding the performance of the SPH algorithm, it requires approximately one day for the
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evaluation of a design; it is less expensive than the Fluent mesh based two-phase solver (which
requires several days.

In order to solve some issues of the SPH method, the SPH-R variant was developed and
examined. This variant involves the integration of Riemann solvers for the particle interactions, in
combination with a Godunov-like scheme. The resulting scheme succeeds in damping the pressure
field oscillations providing much smoother fields, but suffers from excessive numerical viscosity. A
novel MUSCL scheme was developed, based on the proven MSUCL-Hancock scheme, using forward
and backward derivatives. The scheme was used in test cases and applications, were it proved that it
performed considerably better than the 1* order Godunov method. Even if it gave better results in the
turbine simulations, comparing with the reference, it still exhibits considerable diffusion for the
particle resolutions examined.

Another variant which was examined was the SPH-ALE method. This method shifts to the
conservative Euler equations using ALE perspective, it is Godunov based and uses Riemann solvers
too. The ALE feature enables proper implementation of boundary conditions. Also simulations such
as the Green Taylor vortex are performed easily; such simulations would be impossible with a pure
Lagrangian perspective or at least impossible without particle redistribution. A novel high order
extension was developed, based on the MUSCL-Hancock scheme already discussed. Again, several
cases have been examined, including practical applications in impulse turbines. However, as with the
SPH-R method, the numerical viscosity is considerable for the particle resolutions used. In both
SPH-R and SPH-ALE algorithms, the 2™ order scheme introduces additional computational cost, for
the calculation of field variable derivatives and the limiter function. Thus, simulations using these
methods are considerably slower than the SPH algorithm. This fact renders high resolution
simulations very computationally intensive, requiring other types of parallelization in order to produce
results in reasonable times.

An interesting alternative of the SPH-R and SPH-ALE methods is the novel SPH/SPH-R hybrid.
The latter method combines the robustness of dealing boundaries accurately using partial Riemann
problems, while using the standard SPH relations for the interactions of the fluid particles. Pressure
field is smoothed by using the upwind monotone flux formulation. The resulting scheme employs the
Godunov method only when a fluid particle interacts with a boundary, thus reducing the overall
numerical diffusion. On the other hand, since fluid particle interactions are handled using the SPH
method, there is no need for the costly MUSCL scheme, including derivative and limiter function
computation. The SPH/SPH-R hybrid has been tested on several benchmark cases showing fast
performance and a quality comparable with the 2™ order SPH-R/SPH-ALE schemes.
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To sum-up the findings of the present thesis, the following points are highlighted:

e The SPH algorithm, including SPH-based variants developed in the present thesis, was
validated in several test cases, involving the reproduction of the wave structure of the Euler
equations, conservation of angular momentum and incompressibility.

e Moreover the SPH algorithm was used to simulate viscous flows of high and low Reynolds
numbers. The flow field is well reproduced at low Reynolds numbers, comparing with
theoretical solutions (Couette, Poisseuille, etc.) and numerical or experimental data (backward
facing step case). Particle redistribution was implemented for controlling the particle
distribution, reducing approximation errors and consequently enhancing the accuracy of the
method. High Reynolds flows are possible to be simulated with SPH, provided that the
particle distribution is controlled.

® Free surface flows are easily modeled with the SPH method. The free surface is accurately
captured. However, the pressure field is noisy, requiring time averaging of the data for
production of meaningful results.

e The flow at the nozzle of a Pelton turbine was simulated using the SPH method. The SPH
algorithm was able to capture accurately the evolution of the jet, the shape of the free surface
and predict the mass flow rate of the nozzle for a specific needle stroke and pressure
difference.

* An impulse turbine deflector of cylindrical shape was evaluated for throttling the turbine load,
by cutting part of the jet. The 2D and 3D simulations of the deflector showed that it induces
jet distortion which is expected to affect greatly the turbine efficiency, especially if interaction
with air is considered. Thus, such a shape is not advisable for a deflector used for turbine
throttling.

e The flow in impulse turbine runners was simulated using the SPH method. Again, for all
simulated cases the free surface location was similar to the one calculated by the Fluent
software. The method estimated a similar torque curve of the turbine runner, with the Fluent
software, for both the Turgo and Pelton turbine simulations.

e Furthermore, the SPH method was used in design optimization of a Turgo turbine, in
combination with the FLS algorithm; the FLS algorithm was used, after tuning, as an inexact
evaluator for the turbine geometry. The final evaluation was performed by the SPH method.
Also the SPH method predicted the forces on the axial and radial direction of the turbine
runner. These forces were confirmed using velocity triangles and the conservation of
momentum theorem and were taken into account for the bearing selection of the laboratory
turbine installation.

¢ The SPH method was used for the simulation of the complete runner of a Pelton and Turgo

turbine. In the latter case, it proved that the Turgo turbine is able to operate without
significant jet interference from the outflowing water sheets.
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® Riemann-based SPH variants were examined. The SPH-R and SPH-ALE methods were
developed in order to treat the inherent issues of the standard SPH method, namely the noisy
pressure field and the boundary handling. A high order variant of the methods, based on the
MUSCL-Hancock scheme, was developed. Both SPH-R and SPH-ALE were used in
hydrodynamic problem simulations, such as jet impingements and simulation of the flow in
impulse turbines.

e The SPH-ALE method enjoys a significant advantage in respect to the rest SPH-based
methods, since it employs an Arbitrary Lagrangian Eulerian perspective, which enables better
reproduction of the simulated phenomena, since particles move with an arbitrary transport
field. Proper selection of the transport field helps avoiding/preventing two severe instabilities
inherent to the SPH method, the tensile instability and the particle alignment, which ruin or
deteriorate the solution accuracy.

e A new SPH-based method was developed, formed as a hybrid of the standard SPH with
upwind flux formulation and the SPH-R with partial Riemann problem solution for boundary
handling. The new SPH/SPH-R hybrid method combines the strengths of SPH and SPH-R,
namely the low diffusion of the SPH method and the accurate boundary implementation in
SPH-R.

8.1.  Comparison of the SPH-based methods

Table 8-1 summarizes the strengths and weaknesses of the SPH methods developed and used in
the present thesis, having in mind the experience obtained through the presented applications. PR
represents the partial Riemann problem (implying that it is used for boundary handling), IC represents
initial conditions and BC the boundary conditions. Execution time in all cases is expressed in respect
to the SPH method without any corrective schemes.

-Pressure field reproduction, represents the accuracy and smoothness of the pressure field

-Boundary handling, represents the capability to implement accurate boundary conditions

-Stability, implies the tendency of the method to produce unphysical values, which ruin the
simulation and probably lead to the algorithm crashing (in Fluent software implies divergence).

-Diffusive, implies the inherent numerical diffusion of the method and schemes used.

-Prone to particle alignment implies the particle clumping which increases particle approximation
errors (explained in section 2.3).

-Parallelization efficiency implies the percentage of the algorithm which may be parallelized
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Table 8-1. Characteristics of the numerical methods used in the present thesis

Feature
Method Prone to
Pressure ﬁeld Boundqry Stability Exe_cution Diffusive particle Paral_le_lization
reproduction handling time . efficiency
alignment
SPH Wlt.hout Bad Problematic Unstable 1x No Yes Near 100%
corrections
. Reasonable Yes, depending
SPH “.llth only with time | Problematic inii;)tr)lﬁit?es 1.5x on the Yes Near 100%
corrections averaged results correction
SPH-R Accurate Prone to tensile
(2nd order) Good (PR) instability 3-5x Yes Yes Near 100%
Prone to tensile No. if an
instability only appropriate
SPH-ALE Good Accurate if'p ure 2-4x Yes transport Near 100%
(2nd order) (PR) Lagrangian field is
perspective is selected
used
Limited
SPH/SPH-R Accurate Prone to tensile diffusion, ) ’ o
hybrid Good (PR) instability I-2x considerable Yes Near 100%
near walls
If there is
Possible steady state
convergence solution, Depending on
Good, assuming difficulties, trivial Diffusive the
Fluent convergence is Accurate depending on especially near N/A implementation
achieved the numerical Unsteady the free surface of the linear
schemes/ICs multiphase solver
/BCs problems:
10x

8.2.  Contribution of the present thesis

Novel elements

Regarding the SPH method:
e Development of SPH-based algorithms. SPH algorithms were developed in the course of the

study, along with variants based on the most recent SPH models (such as SPH with upwind flux
formulation, SPH-R and SPH-ALE). Algorithms are parallelized using shared memory
parallelization with OpenMP directives.

e Development of a new 2™ order scheme based on the MUSCL-Hancock method. Riemann based

SPH methods suffer from excessive dissipation due to the nature of the Godunov scheme which is
inherently 1% order. A new 2" order scheme is formulated and proposed, based on the proven
MUSCL-Hancock scheme used in the Finite Volumes method.
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e Development of a new hybrid SPH method, combining the standard SPH with upwind flux
formulation and accurate boundary handling, solving partial Riemann problems. In order to treat

the inherent numerical viscosity of the Riemann based SPH methods and the weak boundary
handling of the standard SPH method, a hybrid method, combining the strengths of each method,
is formulated. The hybrid SPH/SPH-R method treats particle interactions using the standard SPH
scheme, whereas boundaries are treated by solving the partial Riemann problem. In this way the
numerical viscosity of the method is reduced, while boundaries are handled accurately.

Regarding the simulation of free surface flows:
e Implementation of the SPH method for the solution of the flow field in impulse turbines. The

majority of simulations in impulse turbines are performed using traditional CFD techniques,
employing Eulerian perspective and moving meshes. In the present study the SPH meshfree
particle method is used instead.

e Simulation of Turgo turbine geometries and design optimization of a Turgo turbine. Turgo

turbines are built by very few companies worldwide and the turbine design is based on
experimental data or empirical relations. In the present study the SPH method is used for the
simulation and the design optimization of a Turgo turbine for maximizing the turbine efficiency.
The resulting optimal blade geometry was used to construct an actual turbine model runner.

Journal publications

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Turbulence Modeling in Smoothed
Particle Hydrodynamics Methodology: Application in Nozzle Flow», AIP Conference
Proceedings vol. 1168, p. 248-251, 2009. DOI: 10.1063/1.3241439

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «<SPH method used for flow predictions at a
Turgo impulse turbine: comparison with Fluent», World Academy of Science Engineering and
Technology, vol. 79, p. 659-666, 2011.

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., “An improved MUSCL treatment for the
SPH-ALE method: comparison with the standard SPH method for the jet impingement case”

Journal of Numerical Methods in Fluids. In press. DOI: 10.1002/f1d.3706.

¢ Koukouvinis. P., Anagnostopoulos J., Papantonis. D., “Simulation of 2d wedge impacts on water
using the SPH-ALE method” European Journal of Mechanics B/Fluids. Under review.

Participation in conferences

e Stamatelos F., Koukouvinis P., Anagnostopoulos J., Papantonis D., «Numerical simulation of
incompressible flow using the Smoothed Particle Hydrodynamics method», Flow 2008
conference, Kozani, Greece, 28 November 2008.

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Flow modelling in the injector of a Pelton
turbine», Proceedings of the 4™ Spheric Workshop, Nantes, France, 27 - 29 May 2009.
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e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Flow modeling in a Turgo turbine using
SPH>», Proceedings of the 5" Spheric Workshop, Manchester, United Kingdom, 23 - 25 June
2010.

¢ Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Flow analysis inside a Pelton turbine
bucket using smoothed particle hydrodynamics», Hydro 2010 conference, Lisbon, Portugal, 27 -
29 September 2010.

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Development and application of the SPH
method for impulse turbines», Flow 2010 conference, Thessaloniki, Greece, 12-13 November
2010.

e Koukouvinis. P., Anagnostopoulos J., Papantonis. D., «Numerical Computation of the
performance curve of a Pelton turbine using the smoothed particle hydrodynamics method», 7"
GRACM International Conference on Computational Mechanics, Athens, Greece, 30 June - 2
July 2011.

® Anagnostopoulos J., Koukouvinis P., Stamatelos F., Papantonis D., «Optimal design and
experimental validation of a Turgo model Hydro turbine», Proceedings of the 11™ Conference on
Engineering Systems Design and Analysis (ESDA 2012), Nantes, France, 2012.

8.3. General thoughts about the SPH-based methods / suggestions for further
research.

Perhaps the greatest advantage of the SPH-based methods is the fact that they do not need a
computational mesh for performing interpolations or derivative approximations. Performing
approximations using a set of arbitrarily distributed particles renders simulations simpler, while large
deformations are easily described. However the quality of the approximations is greatly dependent on
the particle distribution. Uneven particle distributions or partially filled support domains greatly affect
the accuracy of the interpolations. Moreover, particle clumping, which may result from ordered
particle distributions, is also a distortion which impacts accuracy. Another important remark is that,
since particle distribution changes over time, the errors in the approximations change over time too.
Eventually, uneven particle distribution is likely to affect the results too, through error accumulation.

SPH approximations are not equally prone to interpolations errors. For example eq. 2.17 has
reduced interpolation errors in comparison with eq. 2.12, since it employs the difference of a function
f instead of its value. Actually eq. 2.17 is able to reproduce accurately zeroth order functions from
arbitrary distribution points, whereas eq. 2.12 or eq. 2.18 fail to do so. A way to improve the accuracy
of the interpolations is by using the kernel gradient procedure. In this way it is ensured that particle
approximations are able to reproduce first order functions accurately. But even in that case, additional
cost is introduced, in order to correct the kernel and there are limitations at areas with few particles,
since the correction might be unphysically large. Higher order corrections have not been explored yet;
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such corrections might be even more computationally expensive and exhibit instabilities in areas of
particle disorder though.

The Lagrangian nature of SPH is another attractive characteristic, since particles move following
the flow patterns and move naturally preserving interfaces and free surfaces. However, a pure
Lagrangian perspective might not always be beneficial, since the particle motion according to the
local flow velocity might cause particle disorder. Such cases have already been presented; particle
clumping occurs near the stagnation point of a jet impingement, or at the corner of the shear cavity. In
the high Reynolds number flows it was shown that instabilities might occur, which alter drastically
the solution behavior. For that reason techniques such as particle redistribution are employed. On the
other hand particle redistribution adds diffusion, due to the approximate interpolations needed to find
field variables at the new particle locations. One topic of further research is the development of
accurate and conservative interpolation schemes used for particle redistribution. Another possibility to
control the particle distribution is by using the ALE perspective. Indeed, the ALE perspective allows
particles to be moved following an arbitrary transport field, enabling some particles to remain
motionless (Eulerian perspective) and other move following the flow (Lagrangian perspective) in the
same simulation. Further exploration of the ALE capabilities is suggested; instead of utilizing either a
pure Lagrangian or Eulerian view, it might be beneficial to move particles using an intermediate
transport field, avoiding the aforementioned problems of pure Lagrangian motion, while still being
able to track important flow features. Keeping the particle distribution controlled is also necessary in
variable resolution simulations. In such simulations it is important to keep the fine particles at the area
of interest, instead of them being dragged away by the flow. Alternatively methods for splitting and
merging particles should be considered.

Another important remark has to do with the accuracy of the SPH method in relation to the
computational cost. The SPH method involves two parameters which affect the accuracy of the
approximations, one is the particle spacing dx and the other is the smoothing length /. Both play an
important role: dx affects the summation approximation and 4 the integral approximations (practically
represents the resolution of the simulation). If the smoothing length is large, the important features
might be smeared out, whereas if it is too small the accuracy will suffer (the previous are valid for
constant particle spacing). In practical situations in 3D it is suggested to choose a value the smoothing
length, which results to a particle interacting with ~50 neighbors. This results to considerable
computational effort. Generally in SPH, particle approximations are rather expensive to obtain. In
order to simulate realistic applications, parallel algorithms are mandatory, especially for 3d
simulations. Variable resolution is a way to reduce computational effort, since it is beneficial to use a
fine resolution in areas of interest and keep a coarse resolution at the rest areas. However, variable
resolution introduces some additional terms which have to be considered in the summation
approximations - these terms have to do with the spatial gradient and the time derivative of the
smoothing length. If these additional terms are not considered it is still possible to use variable
resolution, but there are strict restrictions; the resolution should change slowly and smoothly. Thus,
another subject for research is the implementation of SPH approximations including the additional
terms, in conjunction with the additional cost which will be introduced.

From the previous paragraph, it becomes apparent that SPH methods are computationally
intensive and require extensive parallelization for practical problems. Fortunately, the heart of the
SPH interpolations enables easy parallelization, since particle interactions may be calculated
independently for each individual particle. In the present study, the algorithm was parallelized using
OpenMP directives (see also appendix B) which practically instruct the CPU to execute in parallel
specific computationally intensive loops. However, the way of shared memory parallelization has its
own limitations; it can only be used on single multi-core machines, where all CPU cores share the
same memory. Implementation of distributed memory parallelization, with e.g. MPI would allow the
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utilization of multiple multi-core machines, thus enabling larger problems to be simulated. This type
of parallelization requires a different strategy to implement, since problem distribution is necessary
among the computers involved in the simulation. Communication between computers is required for
transferring data, at the boundaries of the distributed problem domains, and transferring particles from
one domain to another, since they are moving in space. Algorithms for the efficient distribution and
communication between collaborating processes are an ongoing subject of research. Apart from
parallelization using CPUs, another ongoing subject of research is the utilization of modern GPGPUs
as massive parallel computers, for the SPH simulation; such parallelization seems very promising,
since massive speed-ups of even 100x (in comparison to the CPU algorithm execution) have been
obtained for various cases.

Since most industrial application involve high Reynolds flows, it is necessary to use a turbulence
model for the flow description. Adaptation of traditional turbulence models within the SPH
framework is possible but there are some issues which have to be considered. First of all, the particle
distribution has to be controlled, in order to avoid instabilities, as already mentioned. Periodic particle
redistribution, using high order interpolation schemes might be an option; however the extension to
free surface flows is not straightforward. Whereas the SPH-ALE model would be able to control
particle distribution easily, it is applicable using Riemann solvers and thus suffers from considerable
numerical diffusion, which might mask the turbulent structures. SPH-specific turbulence models have
been developed by Monaghan, however they have not been explored in practical cases.

Implementation of Riemann solvers within the SPH method allowed treating some of the inherent
weaknesses of the standard SPH; pressure oscillations are smoothed out, whereas partial Riemann
problems enable the accurate handling of boundaries. On the other hand, Riemann solvers introduce
numerical viscosity, enforcing the use of 2™ order schemes; however, even with 2™ order schemes the
effects of numerical viscosity are observable. Implementation of even higher order schemes might be
possible, but it is questionable whether they will perform well in practical simulations, where particle
distribution might get seriously distorted. The hybrid SPH/SPH-R method might be a solution,
combining the best features of SPH and a robust boundary treatment, using partial Riemann problems,
from the SPH-R method. Implementations of various advanced boundary treatments and
modifications of the SPH method is another ongoing subject of research. Apart from the SPH-ALE
method, another interesting method with ALE capabilities is the Finite Volume Particle Method. The
latter method departs from the standard SPH approximations, using a sort of Shepard’s kernel instead,
which enables better conservation and accuracy properties.
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Appendix A

Euler equations and Riemann solvers — Godunov method [1, 2, 3]

The Riemann problem is the initial value problem for a hyperbolic system of conservation laws,
written in the following form

U, +F(U), =0 (A.1)
with initial conditions defining a discontinuity between two different states:
U, x<0
Ut=0)=1 " (A2)
U, x=0

In the above equations U is a vector of variables, F is the flux vector and the indices ¢ and x represent
partial derivatives.

u, h
U=|..|and F(U)=| ...
u, Jon
The system of equations may be written also in the following form:
U, +AU)U, =0 (A.3)

where A(U) is called the jacobian matrix of the flux vector F, defined as:
[ of,/ou, ... of,/ou, |

of,/ou, ... of,/ou,
AU = " : (A.4)
of,/ou, ... of,/du, |

If the matrix A has m real eigenvalues and a set of m corresponding eigenvectors, then it is said to
be hyperbolic.

For the 3D Euler equations using the Tait equation of state, the system of conservation laws (eq.
A.1) is written as:

U,+F(U), +G(U), +H(U), =0 (A.5)
where:
p pu pv pw
v=| | vw)=| ™ 7| (u)- o aw)=| P
pv pouv oV +p PVw
pw puw pyw pw’ + p
Pressure is linked only to density through the Tait equation of state:
p=kp”—B (A.6)

2
B

where B = PoCo and k =—.
4 Po

Note that, due to the fact pressure is only dependent on density, the Euler equations are decoupled

from the energy equation [3]. Practically, when solving the Euler equations in 3 dimensions, one has
to solve the split 3D Euler equations [1]:
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P pu p pu
2 . 2
1 + Tait | py u +kp”
PUL L[ PETP o [P 4| P T 2 (A7)
v ouy pv puy
pw |, puw | pw ], puw |

Here only density p and velocity u, play an important role defining the solution of the Riemann
problem. The rest velocity components (v, w) are simply advected by the flow and are treated as
passive scalars. The jacobian matrix of the system of equations in A.7 is:

0 1 00 0 1 00
vk’ —u* 2u 0 0 c—u’ 2u 0 0
A(U) = = (A.8)
—uy v u 0 —uy v u 0
—uw w 0 u —uw w 0 u

Finally the eigenvalues are 4, =u-c, 45 =u and A, =u+c and the respective right eigenvectors of

the jacobian matrix are:

1 0 0 1
u—c 0 0 u+c
Kl: K2: K3: K4:
v 1 0 v
w 0 1 w

where ¢(p)=+/ykp’" the speed of sound, i.e. the speed an event is transmitted inside the described
medium. Each eigenvalues is associated with a wave; eigenvalues A; and A, are associated with non-
linear waves, rarefactions or shock waves, and A,, A; are associated with contact discontinuity. The
general form of the Riemann problem solution is the following:
u*
Star region |

th |

u-c Iy u+c

P X
Left state Right state

Fig. A.1. Solution of the Riemann problem

The solution of the Riemann problem is self-similar, as shown in fig. A.1 since the solution is
dependent on the wave speeds only. The waves divide the solution in four distinct states. Between the
two non-linear waves there is an intermediate state denoted with a star, where the x-velocity
component and pressure are the same. However these non-linear waves do not change the passive
scalars, such as the y and z velocity components. On the other hand, the tangential velocity
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components and any other passive scalars change before and after the linearly degenerate contact
discontinuity. Here it is highlighted that in our case, which uses the Tait equation of state, density is
the same throughout the whole star region. However this is not valid for other equations of state, such
as the ideal gas equation of state; in the latter case, the density field is divided in four regions: py, pL*,
pr and pg. It must also be mentioned that the speeds of the waves is, generally, not equal to the
characteristic speeds given by the eigenvalues; nevertheless in approximate Riemann solvers it may
be assumed so.

Exact Riemann solver

The exact solution of the Riemann problem described above may be obtained by solving a non-
linear algebraic equation in respect to density only. The equation has the following general form:

g(p*):gL(UL’p*)+gR(UR’p*)+AM:O (A.9)

Where:

- Mu=u,-u,

- g1, gr are functions depending on whether the respective non-linear wave is a shock wave or a

rarefaction wave.

The g, and gy functions are calculated using Rankine-Hugoniot conditions for the shock wave or
Riemann invariants for the rarefaction wave (the reader is referred to the excellent work of E.Toro [2]
and [3]). Eventually it is proved that [3]:

r y _ 1/2
{k(p* e Jp. pK)} o> o

Pk P+
8k (p* ) = (-1)/2 (A.10)
oz (p—j -1 ifp.<p
(V'l) Pk | :

clog) =7k pi” (A11)

The previous relation may be used for K=R or L.
Equation A.10 is solved efficiently using the Newton — Raphson iterative method:
old
p*new — p*o[d _ g'(p* Uld) (A12)
8

*

until the difference between the new and old p- is below a specified tolerance:

< tol (A.13)

new old

The derivative of the g(p+) function is complicated, especially for the shock relation. Instead of
using the exact derivative function g’(p+), it might be simpler to use a derivative approximation:

e

g'(p.)=

As an initial estimation of density p-, the average value of p; and pr might be used.
After obtaining p. with the Newton-Raphson method, it is possible to find u.:

1 1
=y + )+ lge(p) = 8. (0] (A.15)

The u- is assumed to be the velocity of the contact discontinuity wave (also denoted with S°).
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Completing the solution

Once p+ and u- are found it is possible to calculate the complete distribution of fields. First the wave
speeds must be calculated.
- In case of a shock wave:

S, =u, —=L shock wave towards left state (A.16)

Pr
Sp =, +=2 shock wave towards right state (A.17)

R

1/2
kp. —p,’ .
O = (p Pk )pr' ,forK=L R (A.18)
N
- In case of rarefaction wave:

Sy =u, —¢,, S =u, —c, rarefaction wave towards left state (A.19)
Sip =Us +C., Syp =Uy +Cp, rarefaction wave towards right state (A.20)

Here it is highlighted that the rarefaction wave is not a true discontinuity, such as the shock wave,
but rather a smooth transition from one state to another (see also fig. A.2). Each rarefaction wave
consists of a head and a tail (denoted with H and T respectively).

Left rarefaction Starregion U Star region U Right rarefaction

SHL

W,

STL

We

/
th |

)

Sr

Wr

Left state

Right state

x

Wi

St

Wi

!
L WA

Str

/ Shr

| Wr

X

Left state

>
Right state

Fig. A.2. Rarefaction towards left and right. The head and tail of the rarefaction wave are visible.

Characteristics (p, u) inside the rarefaction wave may be calculated, using Riemann invariants, as

follows:
- Left rarefaction:

2 |u,(y1 X
u=—{ L(y )+cL+—} (A.21)
y+1 2 t
Using the Riemann invariant:
u, + 26 _ 426 (A22)
r-1 -1

the sound speed, c, is calculated and then using the definition of sound speed, density is calculated:
1

¢ Tr
p= ﬁ (A.23)

224



Appendix A: Euler equations and Riemann solvers — Godunov method

- Following the similar procedure for the right rarefaction:

_L[M ) }

= —Cpt— A24
y+1 2 g (429
and again:
2c 2c,
- =u, — A25
u 1 Ug 1 (A.25)
1
il
p=|— (A.26)
vk

Regarding the passive scalars, such as the tangential velocity components, their distribution is
determined by the contact discontinuity. The contact discontinuity divides the solution in two areas,
left and right; each area has the same passive scalar value as the respective state.

As a test of the exact Riemann solver examined above, the following case is considered:

p, =1100, u, =200 x<0
pr=1000, u, =0 x>0

The parameters of the Tait equation of state are: p,=997.04kg/m’, y=7.15 and B=300MPa.
Results are shown in the following figure:

l

200 - |
| 1100

1080

T T

1060 -

U [m/s]
g
I
rho [kg/m3]

1040

50
I 1020

oc T s ol Ly T

| -
004 002 0 0.02 0.04 0.04 0.02 0 0.02 004

>
b

Fig. A.3. Solution of the Riemann problem.

From the solution:

- p«=1109.53kg/m’

- u«=182.63m/s

- p«=344306912Pa

Using these results it is possible to calculate the fluxes, which are identical to the calculated
fluxes in Ivings work [3]. The solution of the exact Riemann problem is used for testing SPH
algorithms presented in the present work and for testing other approximate Riemann solvers.

Expressing Euler equations in different variable sets
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The Euler equations may be written in other variable forms, instead of the conservative. Generally
such forms may calculate incorrect wave speeds and wave strengths near shock waves [2]. However
they are useful for the derivation of approximate Riemann solvers. Such forms are:

- The primitive variables Wp=[p, 1, v, W]T:

Beginning from the conservative variable formulation:

P pu
pu pu’ +kp”
+ =0=
pv puvy
pw ], puw |
Continuity: p, +pu+pu =0 (A.27)

u-momentum: pu+ pu, +p u’+2uu_p+ykp’'p =0=
ulp, + pou+up)+ plu, +u, +ykpp, )=0=
u, +uu +ykp’p. =0 (A.28)
v-momentum: p,V+ pv, +p uv+pu v+ puv, = 0=

plv, +uv,) +vip, +pu+pu)=0=

v, +uv, =0 (A.29)
The derivation is similar for the w-velocity component:
w, +uw, =0 (A.30)
Eventually:
pl [ u p 0 0fp
u c’lp u 0 Ofu
+ =0 (A.31)
v 0 0O u Ofv
w 0 0 0 ujw

t L X

With eigenvalues: 4, =u-c, A3 =u and A, =u+c and the respective eigenvectors:

p ] 0 0 P
K-k -° k<& ¢
1 O 2 1 30 40
0 0 1 0

- The entropic variables Wg= [p, u, v, W]TI
Beginning from the primitive variable formulation and using the Tait equation of state:

p=kp" =B
1
0= [§+ p07j7 (A.32)
17!
and ¢* = (§+p07j7 (A.33)

one may obtain:
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Continuity: p, +p u+pu, =0

1 1 1
p 4 p 4 p 4
(;Jr/)oy} + (;+p07j u+ (;+p07J u, =0=

t X

1 1 1
Lifp Y 7 p 1 (p }'jy—l p [p }'jy
—| =+ —+—|| =+ ~u+||—+ u =0=
7 (k pO j k 7 k pO k k pO x

s {2 =0

p,+pau+kp pu, =0=
p,+p.u +(32pux =0 (A.34)

u-momentum: u, +uu _+ykp’>p_ =0

1
(£+p07jy =0=

y—2

1
14 r ¥
+ +yk| | —+
v, +tl [ Lo || ][
I i
u, +uu, +yk (£+p0yjy l[£+p07j7 P —0=
k v\ k

y-1

-1
l(ﬁﬂ%q P _os

1
D r |7

u, +uu +ykl| —+
t xy(k poj }/k

u, +uu, +c2%/(p7)_1&202>

k
u, +uu, +c’ = P _o=
o' p
u, +uu,+22=0 (A35)
P
v-momentum: v, +uy_=0 (A.36)
w-momentum: w, +uw_=0 (A.37)
p u c’ p 0 Ofp
u 1/ 0 0
L “1 =0 (A.38)
v 0 0O u Ofv
w 0 0 0 u|w

With eigenvalues: 4, =u-c, A5 =u and A, =u+c and the respective eigenvectors:
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pc 0 0 pc
k= "k <%k <"k "
1 O 2 1 30 4 0
0 0 1 0

Approximate Riemann solvers

The exact solver is accurate but has the disadvantage of needing an iterative method to solve the
non-linear equation (eq A.10). Since the Riemann solver is the heart of any numerical method
employing the Godunov scheme [1, 2], it is required to solve the Riemann problem between each
control volume for each time step, thus making the iterative scheme inefficient in respect to
computational cost. It is beneficial to derive simpler non-iterative schemes which give a solution close
to the exact Riemann solver, but are less computationally expensive.

Primitive Variable Riemann Solver (PVRS)

The primitive variable Riemann solver is based on the linearization of the Jacobian matrix using
the primitive variable formulation. The values of the Jacobian matrix are assumed to be the average
values between the Left and Right states. Since the Jacobian is assumed to be constant, it is possible
to use the jump relations across the waves:

AW=>aK, (A.39)
where a; are the wave strengths and K; the eigenvectors respective to each wave. Also
AW=W, -W,.

For the 3D-split Euler equations:
Pr~Pr o 0 0 p
Up—U, -C 0 0 c
=aq, t+a,| |tas |+a, (A.40)
Ve =V, 0 1 0 0
Wp =W, 0 0 1 0

By solving the above system of equations in respect to the wave strengths a,, a,, as, ay, it is then
possible to derive the relations for the star region in respect to the left state (the results would be same
if the right state was used instead):

PPy P
U, —u —-c
Lo|_ a, (A41)
V., =V, 0
Wa —W, 0
Eventually:
E(,OR +pL)_:5(uR _ML)
= A.42
0 - (A.42)
_ Plug+u)-elp, - p,) (A.43)
. 25
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Another possibility is to use the same procedure but for the entropic variables instead of the
primitive variables. In that case:

Pr—PL p-c 0 0 p-c
Up —U, -1 0 0 1
=aq +a, +a, +a, (A.44)
Ve =V, 0 1 0 0
Wg —W, 0 0 1 0
and eventually:
1 p-C
D+ E(pR + pL)_ ,02 (MR _ML) (A.45)
1 1
u*__(uR+uL)_ = _(pR_pL) (A.46)
2 2p-c

There are other possibilities for deriving equivalent approximations based on the same procedure,
such as using characteristic equations or using left eigenvectors [2].

Harten, Lax, van Leer solver - HLL

The HLL solver is based on the conservative variables formulation. The solution vectors are given
by [3]:
x S:U.—S,U, +F, -F
Uy =—2F —L-L L K (A.47)
SR o SL
where Sg and S, are the respective wave speeds towards the left and right state respectively.
Thus:

SePr=S1pL + (Pu)L - (Pu)R

p, = g (A.48)
R L
and:
S(pu), - S -
(pu), = SelP)e L(pu)g+ E/;uﬂ?)L (pu+p)y At
R L

The complete solution is given by (here the HLLC correction is adopted [2]):
U, if x/t<S§;
U, if S, <x/t<S.
U=;_ " f t (A.50)
U, if S.<x/t<S,

U, if S,<x/t

From the above it is obvious that the HLL Riemann solver needs an estimate for the wave speeds
S; and Sy (for S" no estimate is required, since it is assumed equal to u-). There are many different
ways for estimating wave velocities and a simple way is:

S, =u, —c, (AS1)
S =u, +cp (A.52)

Other possible estimates are to use the Roe averaged u and ¢ variables. The HLL solver accuracy is
greatly dependent on the wave speed estimation, as it will be shown later on.
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Roe solver

The Roe solver main idea is to construct an averaged Jacobian matrix and to use it for calculating
the jump conditions as in the PVRS solver. The main characteristic of the Roe averaged Jacobian, is
that it satisfies several desired properties, such as:

- Hyperbolicity of the system. The Jacobian matrix is required to have real eigenvalues and a

complete set of linearly independent eigenvectors.

- Consistency with the exact Jacobian, when used to represent the right or left state.

- Conservation across the discontinuities:

F(U,)-F(U,)=A(U,-U,) (A.53)

The method of Roe involves using a parameter vector  with which can be used to express the
conserved variables U and flux variables F(U). Generally the parameter vector is chosen as:

U
Q=—= (A.54)
Jp

Then the average vector Q is defined as:

i | e+ ]
~ 1 G | | upL +uepe
Q=-(Q,+Q,)=| = 55

2( 2 +Q.) 7" oy +vdon (A.55)

G| | wilp, +werlpr |

Eventually one has to calculate the B and é matrices, which satisfy the following conditions:
AU =BAQ
AF = CAQ
Then the Roe averaged Jacobian may be calculated as:
A=CB" (A.58)
Calculation of these matrices leads to the following result:
% 4 O
267G, 2g, O
0 4 4
0 g, O
2 0 O
g, 23 0
i 0 g
g, 0 O

(A.57)

Co (A.59)

o O O

=l
[\S]

B= (A.60)

RN o o o
I — |

Finally the Roe averaged Jacobian is:

A= (A61)

~~

—uv v

00
&=’ 2 0 0
0

<

~ e~

—uw w

<
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where:

p=+ppp, O p=

(2]

E=yk-p"

i Ur~ Pr +ML\/Z
STy

VR\/Z—}_VL\/Z

Vv =
b,
w:wR\/Z—}_WL\/E

Vpe+lp,

After obtaining the Jacobian values, then the jump relations may be used to determine the star region:

AU=>"aK, (A.62)
Cpe-pe | [ U] o] o] [ 1]
U, — pu u-—a 0 0 u+a
Plg =Pl =q,| . |ta, +a, +a,| _ (A.63)
PVg — PV, v 1 0 v
| pw — pw, | W 0] 1 W

By solving the system of equations arising from A.63, it is possible to calculate the wave strengths a;,
a,, az, ay and then calculate the values at the star region.

Comparison

In this part a small comparison of all the described solvers, exact and approximate, is presented.
Several tests are performed for several different initial conditions.

p, =1050, u, =10 x<O0
pr=1000, u, =0 x>0

p, =1100, u, =200 x<0
pe=1000, u, =0 x>0

p, =2000, u, =400 x<0
pr=1000, ;=0 x>0

Test—A:{
Test—B:{

Test—C:{

Each test has different discontinuity strength. The results from each solver are shown in the
following tables (A-I, A-II, A-IIT). The Riemann solvers which were used for comparison are:

- The exact Riemann solver

- The PVRS solver

- The entropic variable formulation

- The HLL solver using the simple velocities S;=u;-c; and Sg=ug+cg

- The HLL solver using the Roe averaged velocities S;= i - ¢ and Sg= il + ¢
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- The Roe solver

From the results it is obvious that for smaller discontinuities the error of the approximate
Riemann solvers will be smaller. At large discontinuities (for example see test — C), approximate
Riemann solvers may fail, since error exceeds 10%; indeed in such cases the exact Riemann solver
might be the only acceptable solution. It has to be highlighted here, that since the described Riemann
solvers will be used for weakly compressible (and consequently subsonic) cases, such discontinuities
will not be actually simulated. In cases encountered in the present work, with density variations of 1%
and velocities at the order of 50m/s, errors are practically negligible (~0.03%). However these tests
will help the selection of the most robust approximate solver for the most adverse conditions.

By examining tables A-I, A-II and A-III, the dependency of the accuracy of the HLL approximate
Riemann solver on the wave speed estimation is clear; using the simple wave speed estimates results
to errors considerably larger than any other approximate Riemann solver. Regarding the rest solvers,
the Roe solver followed by the PVRS and the entropic variable solver are the most accurate and for
that reason they will be used for the Riemann solver implementations in combination with SPH
described in the present work (chapters 6 and 7, focusing on SPH-R and SPH-ALE).

Table A-I. Test A results for different Riemann solvers

Test-A pr % error U= % error
Exact 1028.819 43.97095
PVRS 1028.203 0.06% 44.02399 0.12%
Entropic 1030.016 0.12% 43.99841 0.06%
HLLC - A 1030.091 0.12% 44.42274 1.03%
HLLC -B 1028.21 0.06% 44.09004 0.27%
Roe 1028.21 0.06% 43.93248 0.09%

Table A-II. Test B results for different Riemann solvers

Test-B pr % error U= % error
Exact 1109.538 182.6386
PVRS 1110.616 0.10% 182.4868 0.08%
Entropic 1108.004 0.14% 182.2808 0.20%
HLLC- A 1122.05 1.13% 200.8936 10.00%
HLLC -B 1111.091 0.14% 183.0871 0.25%
Roe 1111.091 0.14% 181.8877 0.41%

Table A-III. Test C results for different Riemann solvers

Test-C p= % error U= % error
Exact 1666.162 2142.972
PVRS 1543 7.39% 2525.591 17.85%
Entropic 1840.327 10.45% 2264.649 5.68%
HLLC- A 1949.815 17.02% 2012.814 6.07%
HLLC -B 1560.047 6.37% 3205.793 49.60%
Roe 1560.047 6.37% 1775.1 17.17%
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The Godunov method

The Godunov scheme may be used to solve numerically hyperbolic systems of conservation laws,
using the Finite Volume (FV) or other equivalent methods (such as the SPH-R or SPH-ALE methods
presented in the present work). The methodology will be briefly described here, using the FV method,
assuming a one dimensional problem:

U, +F(U), =0 (A.64)

with initial conditions U(f =0) not necessarily being discontinuous. The solution may be obtained

by time marching using the following formula:

U= +%{F‘ [ -F } (A.65)
X

Where:
- dx 1is the discretization size

- dt is the time step, which has to satisfy the stability criterion: dt :Sd_x’ with §,,,, being the
max
maximum wave velocity
- nrepresents the current time step, n+1 is the next time step

- F | is the flux vector calculated at the interface between i and i+1 cells. Practically it is
i
2

calculated using the solution of the Riemann problem U | at the interface between the cells,
i
ie.:

F :F(U. 1(0)] (A.66)
l+5 H—E

Cells i and i+1 are treated as the two states of the Riemann problem and the interface between
them is the discontinuity. In order to use the described algorithm, one has to find the solution of the
Riemann problem and determine the vector of variables U at the interface between the cells, or in
other words, on the t-axis, for X=0 (or for a velocity equal to zero), in the local coordinate system
where cell i is the left state and cell i+1 is the right state. Thus, one has to solve the Riemann problem
either using an exact or using an approximate Riemann solver and then has to indentify the wave
pattern (see fig. A.4).
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F o

Fig.A.4. Possible wave patterns.

Unfortunately the Godunov method is rather dissipative, since it only 1% order accurate. Thus,
higher order schemes must be used to minimize dissipation, such as the MUSCL scheme. An example
is shown in the following figure, for initial conditions:

p, =1100, u, =100 x<0
pe=1000, u, =0 x>0
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1080 |-
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. Godunov

.
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20 I
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X X
Fig. A.5. Comparison of the exact Riemann solver and the Godunov method. Left: velocity. Right: density.

The dissipation of the method is visible near the rarefaction and the shock waves. An alternative
method for solving problems where the variable vector is of the form:
U, +xU,' x<0
U,+xU;" x>0
is by solving the Generalized Riemann Problem [4].

It is also possible to solve multi-dimensional problems, by extending the 1d-Godunov method. A
multi-dimensional problem may be dealt either by solving the split-n dimensional system, where n

U(t:O):{
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one dimensional Riemann problems are solved between the adjacent cells, or by solving the unsplit
approach [2]. The solution of a 2d problem:

U, +F(U), +G(U), =0 (A.67)
where:
p
- Uis the conservative variable vector: U =| pu
pv
pu pv
- F(U) and G(U) are the flux vector: F(U) =lpu’+p|, G(U) =| puv
puy v+ p
with the unsplit approach, is the following:
vi-v + %y v +% e -6 | (A.68)
J Todx | =i 2 dy| i ity
where F | JF | /G | G | are the solutions of Riemann problems between cells {(i-1,j),
=, ] l+7,] L, J—— l,]+7
2 2 2 2

4.}, {Gh), G+1,)}, {G5-D), G}, {Gy)), (,j+1)} respectively. A similar solution is obtained for 3d
problems.

In cases where there is an axis (axis-symmetric problem/cylindrical symmetry) or point (spherical
symmetry) of symmetry, it is possible to obtain a solution, by solving the one-dimensional
inhomogeneous system of PDEs:

U, +F(U) =S (A.69)

where:

) ) ) P
- Uis the conservative variable vector: U = {
pu

pu
- F(U) is the flux vector: F(U) = 2
pu”+p
a

u
- S is the source term: S = ——{ p 2} (r is the radial distance). For cylindrical symmetry a is
r|pu

equal to 1 and for spherical symmetry 2.

According to Toro [2], such problems are treated by solving first the homogenous system (step 1)
and then evolving the variable vector in time using the source term (step 2). The procedure is the
following:

Step 1 PDE: U,+F(U) =0 _ g (AT0)
IC : Ux,t")=U"
Sep2: J/PPE U =S (A71)
IC : Ut

High order extensions are available for multidimensional and one-dimensional axis-symmetric
problems [1, 2].
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Appendix B

Implementation details of the SPH-based algorithms

In this section there is a description of the basic operation of the SPH-based algorithms which
were developed in the course of the present study. SPH algorithms were developed from scratch, in
Fortran programming language, using OpenMP directives for the effective parallelization of the
program (see appendix C).

In all SPH algorithms each field variable is represented by a one-dimensional array. The index of
the array represents a specific particle. All arrays are declared with a maximum index (NP), which
represents the maximum number of particles that may be involved in the simulation. On the other
hand, the total number of particles simulated is represented as NTOT and it is always less than or
equal to NP. The total number of particles may change during a simulation since more particles may
be added simply by increasing the corresponding NTOT value. Particle interactions are performed by
operations between array elements corresponding to the appropriate field variables of the respective
particles involved in interactions.

The algorithm may be divided in several distinct parts (see also fig. B.1 and B.2):

- The case set-up, where fluid parameters and particle discretization are given.

- The definition of initial and boundary conditions. Essentially this part consists of creating
particle patches which describe the simulated problem and properly assigning particles to
specific types, such as fluid particles, symmetry particles, or wall boundary particles.

- The creation of the neighbor list, by creating a background grid and assigning particles to
cells.

- The calculation of the time derivatives of the field variables ([p, u, v, w]T or [p, pu, pv, pw]T
depending on the implementation of the SPH algorithm) for each particle. The time
derivatives of the field variables are used for the explicit integration scheme. A specific
subroutine is used to perform this task, referred as CALCULATE subroutine in fig.B.1 and
B.2. The same subroutine is used to calculate the time derivative of the turbulent kinetic
energy (k) and the turbulence dissipation (¢) or the specific dissipation rate (w), in case of
simulating cases with turbulent effects, such as the turbulent backward facing step.

- Particle renumbering in order to remove particles which move beyond the extents of the
described problem domain.

- Implementation specific parts which depend on the nature of the algorithm, such as the
density filter, the XSPH correction for the standard SPH method, or the spatial derivative
calculation of field variables for the MSUCL scheme.

- Data files are generated periodically containing the coordinates of the particles along with the
field variables.

The manipulation of the neighbor list is a crucial part of the whole algorithm, since in this way it
is possible to find efficiently neighboring particles. Apart from the dedicated algorithm section
creating of the neighbor list, all other parts of the algorithm involving particle interactions also
involve neighbor list manipulation. For that reason, it will be the first algorithm element to be
analyzed.
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Fig. B.1. Diagram of the SPH algorithm.
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Fig. B.2. Diagram of the SPH-R and SPH-ALE algorithms.
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In the following part, there is detailed description of the algorithm used for the neighbor list. The
present implementation is possible to handle extension or contraction of the computational domain
and the only parameters required to be set are the total number of cells and the maximum number of
particles per cell.

The creation of the neighbor list is shown using a simplified diagram in fig. B.3. First the extents
of the computational domain are found (X,,4x, Xyins ---). Then, the number of cells, at each direction, is
found as the integer part of the division of (X,,-X,u») With the cell dimension C,,, which is set equal
to the support radius of the kernel function (2.5h for the quartic spline). After that, particles are
assigned to the neighbor list, using the following procedure:

- First, particle i is found at which cell it belongs, i.e. the coordinates of this cell (Nxgria, Nygrias

Nziq) are found (see also fig. B.4).

- From the cell coordinates the cell index number is found (Npos : N-position).

- For this cell index the NPC matrix is increased by one (NPC: Number of Particles in Cell)

- The particle i is assigned at the JJJ(Npos, NPC) array element.

Start

<

N

Xmax=max(X(i),Xmax)
Find bounding box extents Kmin=min(X(i),Xmin)
... (same fory, z)

doon

A

Neeix=int((Xmax-Xmin)/Cax)+1

Find number of cells required ... (same for y, z directions)

>
«

A

Find the cell coordinate in x, y,
di ion. . .
z dmension Nxgria=int((X(i)-Xumin)/Cax)

Find the extents of the grid
NXmax=maX(Nxmax;ngrid)

-
Number cells Nxmin=min (Nxmin,Nxgria) 8
Number the particles ©
belonging in each cell Npos=NceiyNceiizNxgria*NeenzNygria+Nzgria+1
= N +
Link each particle with the cell NZ%E:EEE)NﬁE?h(lpgs)S)Li1

number and the increasing
particle number in current cell

End

Fig. B.3. Creation of the neighbor-list.

In the previous procedure, there is also a if-statement checking whether the total number of cells

(found by N_,;;x Ny N..i;) 1s greater than the maximum number of cells set as parameter in the

algorithm. Exceeding the maximum number of cells would cause a segmentation violation when
assigning NPC(Npgs) values, since Npos would exceed the predefined array size. The other parameter
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which has to be considered is the maximum value of NPC(Npps) since it affects the size of the JJJ
array.
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Fig. B.4. Cell index numbering at cell centers (Npos) and cell coordinates Nygyigs Nygria» Nzgria

To recall particles for calculating the inter-particle interactions of particle i, the opposite
procedure is used (see also fig. B.5). First, the cell in which particle i resides, is found. Then, the
neighboring cells are found; these cells are simply found by adding or subtracting 1 from the X, Y, Z
cell coordinates in which particle i is located. Several loops are performed for all neighboring cells at
each X, Y, Z direction, finding the number of particles they contain (NPC) and looping again for that
NPC. The j neighboring particle is found using the neighbor list JJJ for the neighboring cell position
index Npos and for the current value of the particle loop index (from 1 to NPC).

Particle position index (Npps) is used in order to avoid calling the neighbor list array JJJ using
four arguments (in 3D: three arguments for the cell coordinate and one argument for the particle
number inside the cell). In this way only one parameter is required for the size of NPC and two for the
JJJ array. Moreover, using only one array argument, instead of three, helps to speed up the execution
of the algorithm. Calculation of the Npps is done by counting cells first in the Z direction, then in the
Y direction and finally in the X direction.

The described procedure enables great reduction of the computational load especially for large
particle numbers. Considering that particles move in respect to each other, throughout a simulation, it
is obvious that this procedure takes a significant part of the total computational load and greatly
affects the algorithm efficiency. Also, as mentioned earlier, it only requires two parameters, the
maximum number of cells and the maximum number of particles per cell. The disadvantage of this
method, though, is the increased memory requirement.
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Fig. B.5. Recalling particles from the neighbor list to find interactions.

SPH algorithm

The next step in the SPH algorithm is the density filter. As shown in fig. B.1 the density filter is
performed periodically, every 30 time steps; when the K, counter is equal to 30 then the density
filter is applied, and also the counter is reset to zero. The density filter is not involved when the
density upwind flux formulation term is included (eq. 3.75). It is crucial to highlight that, when using
the Shepard or the MLS filter, a temporary array must be involved for storing the filtered density. In
other words, eq. 3.67 or eq. 3.69 reads:

P =" mW, (B.1)
J

After calculating the filtered density for all involved particles, the elements of the temporary
density array are transferred to the actual particle density array. The reason behind this
implementation is that particle density is involved in the calculation of the corrected kernel in eq. 3.68
or 3.72. Replacing density with the filtered density, before it is calculated for all particles, would yield
results with increased diffusion, since the particles which were filtered first would employ the
unfiltered density values of their neighbors, whereas particles to be filtered last would use filtered
density values of their neighbors. Another important remark is the behavior when interacting with
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boundary particles; mirror/symmetry/dynamic particles are considered in the density filter, whereas
boundary force particles are not.

Once the density field is filtered, the CALCULATE subroutine is called for the calculation of the
time derivatives of field variables, which are necessary for the explicit integration scheme. This
subroutine shares most of its variables, using common variables. The subroutine is divided in two
separate parts, with each part dealing with two distinct particle types; the actual fluid particles and the
boundary particles. For the actual fluid particles, the continuity and momentum equations are solved
(and turbulence transport functions in case of turbulent effects). On the other hand, boundary particles
are treated according to the boundary implementation, i.e.:

- In case of force boundary particles, the Lennard-Jones acceleration is exerted on the boundary
particle and the appropriate reaction on the interacting fluid particle. Forces are summed on
the boundary to obtain total forces.

- In case of dynamic boundary particles, the continuity equation is solved, but their velocity is
prescribed.

- Mirror particles are generated symmetrically to a plane/axis of symmetry. No equation is
solved for these particles.

After the time integration the fluid variables are updated and the XSPH correction is applied. As
with the density filter, several additional arrays are required for storing the corrected particle velocity,
with each array storing one velocity component. Wall boundary particles are not considered in the
XSPH interactions, since this would result to an artificial viscosity effect.

SPH-R and SPH-ALE algorithms

The important difference in the SPH algorithms involving Riemann solvers is the calculation of
the spatial derivatives of field variables for the MUSCL scheme. Instead of a density filter, these
algorithms include a section calculating the spatial derivatives of field variables at each time step. If
partial Riemann boundary conditions are used, then the spatial derivative calculation is divided in two
separate parts each one treating the actual fluid particles (volume elements) and the boundary particles
(surface elements) using the appropriate formula (see eq. 2.7). It is possible to include in this part the
calculation of the correction matrix elements for the kernel renormalization procedure. In this way it is
possible to avoid using an additional loop.

After the calculation of the spatial derivatives, field variable time derivatives are calculated for the
explicit time integration. A similar to the SPH algorithm CALCULATE subroutine is employed, which
treats particles appropriately depending on their type. Interactions between fluid particles are treated,
by first solving the Riemann problems between them, assuming the one particle is the left state and
the other the right state. The solution of the Riemann problem involves the extrapolation and limiting
of field variables at the interface between particles. Once the Riemann problem solution is obtained,
eq. 6.7-6.8 or eq. 7.4-7.9 are used for the SPH-R and SPH-ALE methods respectively. Interactions
between fluid particles and surface elements are treated by solving the respective partial Riemann
boundary problem and using eq. 6.30-6.31 and 7.29-7.33 (for the SPH-R and SPH-ALE methods
respectively). Low speed preconditioning may be used in the SPH-ALE algorithm in nearly
incompressible cases such as the water jet impingements, but not in cases such as the explosion or
implosion where compressibility effects become dominant. After calculating all particle interactions,
the time derivatives of the field variables are returned to the main program for the calculation of the
Runge-Kutta terms.
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In all SPH-based algorithms particles exceeding the prescribed domain size are removed by
renumbering, after updating field variables at the new time step. The renumbering procedure consists
of rewriting particle arrays after checking whether specific conditions are satisfied. If a particle
satisfies these conditions, then it is not rewritten; on the other hand the corresponding array elements
are overwritten by the next particle which does not satisfy the specified conditions. At the end of this
procedure, the total number of particles involved is set to its new value. A simple code fragment of
the particle renumbering process, where the condition is a particle’s x-coordinate should not exceed
xmax, 1S shown below:

C o
C—---- Begin renumbering = -----------
inew=0 ! this is an initial value for the new index
do i= I,ntot !'loop for all particles
if (X(i).gt.xmax) cycle ! the condition is if the x-coordinate of a particle exceeds xmax
inew=inew+1 ! update the particle index value
X(inew)=X(i) ! rewritte array elements
Y(inew)=Y(i)
Z(inew)=2(i)
rho(inew)=rho(i)
enddo
ntot=inew ! set the new total maximum number of particles
C o
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Appendix C

Parallelization with OpenMP [1]

OpenMP enables the creation of shared memory parallel (SMP) programs. Actually OpenMP is a
set of directives which are supported by many Fortran/C/C++ compilers under various platforms
(Windows, Linux, etc.) in order to parallelize an algorithm. It must be highlighted here that OpenMP
should not be considered as a new programming language, but rather as a notation which can be
added in the source code of a sequential program to describe how work will be shared among threads
which will execute on different processors or processor cores and how data will be shared.

A thread is defined as the minimum set of instructions which can be issued for execution by an
operating system. A process, on the other hand, can be considered as a superset of threads, since it
may contain one or many threads. Threads of the same process share the same resources, while
processes do not. When executing a program, the operating system creates a process to execute the
program. Then the process allocates resources and creates one or more threads for the execution.
Multiple threads may be executed on a single processor via context switches; via simultaneous
multithreading. On the other hand, threads working concurrently on multiple processors or cores
execute a parallel program.

When an algorithm using OpenMP directives is executed, the program starts an initial thread (or
master thread) of execution. In this way the serial part of the program is executed. Once the program
reaches to an OpenMP Parallel directive, then it creates a team of threads (called as a fork, the
number of threads depend on other OpenMP directives as it will be mentioned later on). The initial
thread becomes the master of the team and collaborates with the rest of the threads to execute the code
enclosed in the OpenMP parallel construct. At the end of the construct there is the OpenMP End
Parallel directive; when it is reached all threads synchronize and then only the master thread
continues, the rest threads are terminated (this part is also called as the join). The enclosed region,
inside the parallel directives, is called a parallel region. A simple schematic of such a program is
shown in fig. C.1.

Parallel Region 2

Task 5A
Task 5B I
‘ Task 5D ’

Fork Task 5E Join

Parallel Region 1
Serial region Serial region
Task 3A

Serial region

Task 4

—ﬂ Task 1 H Task 2 Task 6 H Task7 H

Task 3C

Fork Join

P Initial / Master thread
— Slave thread

Fig. C.1. A program containing serial and parallel regions

As it was mentioned earlier parallel regions are defined using OpenMP directives. OpenMP
directives in Fortran begin with SOMP; the $ character is considered as a comment if the appropriate
compiler flags (particularly the —openmp flag, invoking the compiler OpenMP directives) are not
given during compilation. This fact enables to use the same source code for parallel and serial
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compilation — in serial compilation the OpenMP directives are treated as comments. The directives
required, to define a parallel region in Fortran, are:

S8OMP PARALLEL ....(directive arguments)...

! this is the parallel region
...(Source code to be executed in parallel)...

$OMP END PARALLEL

In the present SPH algorithm, the regions defined as parallel OpenMP regions are those
involving:

- Calculation of the rate of change of particle characteristics (i.e. calculation of acceleration and

density rate of change)

- Density filter

- Kernel gradient correction

- XSPH correction

- Spatial derivative calculation, required for the MUSCL procedure

All the aforementioned tasks involve particle interactions and are computationally intensive
taking up a significant part of the total program execution, thus running on parallel greatly reduces
calculation time. In these cases a loop is performed for all i particles, calculating contributions from
their neighbors j. Thus a parallel DO construct is used. When the OpenMP DO directive is reached,
the loop is divided and each thread is assigned a part of it. Special care must be taken to avoid data
race conditions. Data race conditions occur due to the shared memory nature of OpenMP. Generally
this issue occurs when at least two threads access a shared memory location and at least one modifies
it. Thus, the thread reading the memory location might get the old value or the updated one, or some
other erroneous value if the update requires more than one store operation. Moreover this issue is not
reproducible, since it is affected during run-time by the execution of the threads and it may not always
show-up. Due to its definition, data race occurs only for shared variables between threads.

Data race is affected by:

- System load, which affects the timing between threads

- Input data set, which may cause load imbalance between threads

- Number of threads used.

Thus, it is imperative to declare the intermediate variables in a parallel DO-loop region as private
for each thread. In that case each thread keeps a private, individual copy of this variable and only the
specific thread is able to access it. Once the parallel region ends, all the private variables are deleted.

A sample code of such a parallel region is given below, including a small part of the neighbor list.
Note that the i loop counter and the NXgrid, NYgrid, NZgrid variables must be declared as private for
each thread. As a general rule of thumb, every variable modified inside a parallel region should be
declared as private, or proper synchronization should be used alternatively, to avoid data race
conditions. In the sample code below, NUM_THREADS() defines how many threads will be created at
the parallel region.
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S8OMP PARALLEL PRIVATE (I, NXGRID, NYGRID, NZGRID, .... ) NUM_THREADS (8)
$OMP DO

do i=1,ntot ! ntot is the N number of particles involved in the simulation
NXgrid=int((X(i)-Xmin)/cdx)

NYgrid=int((Y(i)-Ymin)/cdy)

NZgrid=int((Z(i)-Zmin)/cdz)

....(rest source code)...

enddo

$OMP ENDDO
$OMP END PARALLEL

Sometimes it is required to sum the values of a private variable for all threads. In such a case, a
REDUCTION directive is used. Declaring a variable to be used for reduction, results to the creation of
a private variable for each thread, but at the end of the parallel region all private values of this variable
are reduced according to a specified rule (reduction may be used for addition, finding maximum and
minimum etc.). This can be used, for example, to calculate the net forces on all boundary particles, as
it is shown on the following source code part.

$OMP PARALLEL PRIVATE (I,...) REDUCTION(+ : SFX, ...) NUM_THREADS (8)
$OMP DO

do i=1,ntot ! ntot is the N number of particles involved in the simulation
....(source code)...

SFX=SFX-acc_x*amass(i)

....(source code)...
enddo

$OMP ENDDO
$OMP END PARALLEL

However there are cases where it is preferable to know the force on each boundary particle
separately, in order to estimate torque, or for plotting the force distribution on the boundary. In such
case a matrix is required for storing the boundary forces for each boundary element from the
contributions of the fluid particles (see eq. 3.87 in chapter 3). Unfortunately, reduction of a matrix is
impossible (or, to be precise, was impossible with OpenMP 2.0 — the newest implementation of
OpenMP 3.1, released on July 2011 supports matrix reduction). In that case the following procedure is
used:
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- A temporary two dimensional matrix is allocated. The one dimension of the matrix is the
same as the force matrix, which will be used for storing the forces on each individual particle,
and the other dimension is equal to the number of threads.

- Each thread is assigned a unique /D number with which stores the calculated forces on the
temporary matrix

- Each thread accesses the temporary array with its unique ID, writing forces from interactions.

- After the parallel region, the temporary arrays are manually reduced to their permanent
location (without an OpenMP directive) and temporary arrays are de-allocated.

Num_procs=8
Call omp_set_num_threads(num_procs) ! this subroutine sets the thread number
Allocate (Fx_temp(1:nwall,1:num_procs),...) ! allocating memory for the temporary array

$OMP PARALLEL PRIVATE (LID_OMP,...)
ld_omp=omp_get_thread_num()+1 Ithis function returns a unique number for each

thread

Do i=1,nwall

Fx_temp(i,id_omp)=0. !linitializing the temporary array
Enddo

$OMP DO

do i=1,ntot ! ntot is the N number of particles involved in the simulation

....(source code)...
Fx_temp(j,id_omp)= Fx_temp(j,id_omp)-acc_x*amass(i)

....(source code)...
enddo

$OMP ENDDO
$OMP END PARALLEL

Do i=1,nwall ! manual reduction of the array
Do j=1,num_procs

Fx(i)=Fx(i)+Fx_temp(i,j)

Enddo

Enddo

Deallocate (Fx_temp,...) ! free memory

In a similar manner it is possible to parallelize the linked list creation, since it involves an array
reduction. However in practical applications it showed insignificant or even negative speed-up. This
fact has to do with the number of particles involved in the simulation; if the particle number is small,
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the benefit from the parallelization is small whereas there is significant calculation overhead from
allocating / de-allocating temporary arrays, the reduction etc.
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Appendix D

Details on the numerical schemes used by Fluent® software [1]

The Fluent software is a general purpose CFD software, able to simulate various types of flows,
involving laminar and turbulent flows, single phase and multi-phase, compressible and
incompressible, steady and transient. The Fluent solver is based on the Finite Volume method, thus it
employs an Eulerian perspective; however it is possible to employ different frames of motion or
sliding or dynamic meshes in order to describe the effects of rotating or moving geometries. The
solver handles meshes in an unstructured manner and it is able to handle 2D and 3D meshes with
arbitrary element shape (in 2D: quadrilateral / triangular cells and in 3D: tetrahedral / hexahedral /
pyramid / wedge / polyhedral cells, the solver also supports mixed, i.e. hybrid, meshes). The
computational meshes in the present study were created using the GAMBIT software or the Design
Modeler and Mesher of the ANSYS Workbench package.

In the present study Fluent is entirely used for incompressible simulations, thus the pressure
based implicit solver is used. Fluent simulations on turbulent and laminar flows (see chapter 4) are
treated as steady state. The numerical schemes for such simulations are:

- SIMPLE method for pressure-velocity coupling

- Second order discretization for pressure

- Second order upwind discretization for momentum
When turbulent effects are accounted, second order upwind discretization is used for the additional
turbulence transport equations for k, ¢ or w. Moreover the computational mesh used is properly
refined in near wall regions, in order to satisfy the y* condition of the employed standard wall
functions (30<y*<300).

All free surface flows are treated using the Volume of Fluid (VOF) method simulating two
phases: water and air. With the VOF method it is possible to model two or more immiscible fluids by
solving a single set of momentum equations and tracking the volume fraction of each of the fluids
throughout the domain. In the present study, the explicit VOF formulation has been used, since it
enables better interface capturing, especially combined with the Geo-Reconstruct scheme. According
to the Fluent software manual [1], the geometric reconstruction interpolation scheme should be used
whenever the main interest is the time-accurate transient behavior of the VOF solution. However the
explicit VOF formulation imposes restrictions on the maximum time step, since the CFL number is
suggested to be well below unity.

To sum up, free surface flows are treated using the pressure-based unsteady implicit solver and
with the following numerical schemes:

- PISO for pressure-velocity coupling

- Body force weighted discretization for pressure

- Second order upwind discretization for momentum

- Explicit VOF formulation with geo-reconstruct discretization for volume fraction

In stationary free surface simulations, after reaching the steady state, mesh adaption is performed,
based on the gradient of the volume fraction. In this way the mesh resolution is increased near the
free-surface and diffusion of the volume fraction is substantially decreased, increasing the accuracy of
the free surface location (see fig. D.1).
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Fig. D.1. Effect of mesh adaption. Left: original mesh. Right: Mesh with adaption based on the free surface gradient.
Contours represent the volume fraction.

Cases involving rotating meshes (such as the Turgo or Pelton turbine simulations), are simulated
using the sliding mesh approach. Two unconnected computational meshes are constructed with each
one representing the moving and the stationary mesh. One face of both meshes is defined as an
interface. Interfaces enable information to be passed between the two different computational
domains. At each time step, the intersection of the two interfaces is determined; the intersection is
considered as an interior face (i.e. a face with fluid cells at its both sides), while the remaining parts of
the interface faces are considered as a pre-determined boundary type (such as wall or, in the present
study, as pressure outlets in order to allow the fluid to exit).

References

[1] Fluent 14 documentation.
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Appendix E

Construction of the Turgo turbine

The surface of the optimal Turgo blade, after the optimization procedure (see chapter 5), is used
to construct a 3D blade (fig. E.1). The 3D blade is formed after extruding the surface by a specific
thickness at the local normal direction. Runner hub and tip are formed as surfaces of revolution from
the turbine blade hub and tip edges (fig. E.2).

Fig. E.1. Left: Surface representing the blade. Right: Extruded 3D body, forming a full 3D blade.

Fig. E.2. Runner hub and tip surfaces.
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A small protrusion was created on the blades, in order to fit them on the hub (see fig. E.3). This
protrusion had a length of ~3.5mm. The turbine hub was designed with corresponding slots, to
accommodate proper fitting (fig. E.3). The 3D drawing of the tip of the runner is shown in fig. E.4.

Fig. E.3. Left: 3D blade with protrusion. Right: Turbine hub. Blade slots are visible.

Fig. E.4. Turbine tip.

The turbine runner is made from phosphorus bronze. This particular alloy was selected due to
resistance to errosion, durability, and strength. In order to ensure the accuracy of representation at the
actual turbine, blades were formed with the following technique:

- A surface triangulation of the 3D blade was made with CAD software (fig. E.5)

- The surface triangulation was used to create a model blade with rapid prototyping. The
method of rapid prototyping used was granular material binding. The prototype blade was
formed as layers of material binded together. The accuracy of the process was 0.5mm, thus
the blade has significant surface roughness (fig. E.5).

- The model blade was used to form a mold for casting. An aluminium cast blade was created
and then machined/polished to remove inaccuracies and improve surface roughness.

- The aluminium blade was used to form a new mold, for casting the final blades. The final
turbine blades are shown in fig. E.6, after polishing.

The turbine hub was formed by casting. Then, the hub was machined at a 5-axis CNC machining
centre, to form the slots shown in fig. E.3. The turbine hub and tip are shown in fig. E.7, before final
assembling. The turbine runner was welded with bronze welding and was checked for balancing
issues.
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Fig. E.6. Turgo turbine blades after final casting.

Fig. E.7. Left: Turgo turbine before assembling. Hub slots are visible. Right: Another view of the runner.
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Appendix E: Construction of the Turgo turbine

Fig. E.8. Left: Turgo runner 3D CAD drawing. Right: Actual runner after assembling and welding.

In the following pages there are drawings of the turbine runner and casing, along with basic
dimensions.
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