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NOTATION :

p = mgR/],
sgn()

a.=b/h

0

emax

0. = arctan(b/h)

FS=N,/N

E O X m

acceleration of gravity

structural mass

vertical load of the foundation

ultimate vertical load of the foundation
horizontal load of the foundation
overturning moment of the foundation
ultimate moment capacity of the foundation
width of a strip or rectangular foundation
half-width of a strip or rectangular foundation
moment of inertia about point O

frequency parameter

sighum function of ()

static overturning acceleration

angle of rocking rotation

amplitude of rocking rotation

critical rocking angle of overturning

angular velocity of rocking

horizontal displacement of the deck (drift)
vertical displacement of the footing
effective contact area of the footing

ground acceleration

acceleration of the free field

acceleration of mass

safety factor of footing against vertical loading
undrained shear strength of soil

Young modulus of soil

elastic stiffness

shear modulus of halfspace

frequency of excitation
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1.1 SOIL-STRUCTURE INTERACTION IN SEISMIC DESIGN PHILOSOPHY

Over the last decades research on seismic soil-structure interaction assumed
linear elastic soil behavior and fully bonded contact between footing and soil. In
seismic design prevailed the “capacity “design philosophy that admitted yielding
and inelastic response in controlled parts of the superstructure and was originally
developed on fixed base systems . Plastic hinges in the superstructure allowed
energy dissipation and reduced the overall seismic demand with respect to the
elastic case. Foundations were designed in such way that they must remain
structurally elastic(or nearly elastic) and the transmitted horizontal forces and
overturning moments (increased by the “ overstrength” factors would not mobilize
bearing capacity soil failure mechanisms on induce sliding at the soil-foundation
interface. It was also assumed that only limited uplift (restricted about to the half of

the fully bonded contact area) would take place.

However the over-dimensioning of foundations in the name of safety in cases
of high seismic demand , is not always a economically feasible decision. In seismic
retrofit of existing buildings and bridges, allowing the soil and foundation yielding is
often a rational alternative to much more expensive approaches. Thus , increasing
the structural capacity of some elements implies that forces transmitted to the

foundation would be increased.

In the last 20 years especially after the Northridge 1994 and Kobe 1995
earthquakes, accelerograms have revealed that very substantial ground motions can
be expected in near fault zones. Since large ground acceleration levels are
associated with even larger spectral acceleration levels would impose enormous
ductility demands to structures. Furthermore under such strong seismic excitation it
logical that nonlinear inelastic behavior cannot be assumed only at the structure but

to the supporting soil as well. The aforementioned considerations articulated the
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need for an alternative approach that would account for soil inelasticity. Today, a
growing body of evidence suggests that soil-foundation plastic yielding under seismic
excitation is not only unavoidable, but may even be beneficial (Paolucci 1997;
Pecker 1998, 2003; Martin and Lam 2000; FEMA 356 2000; Kutter et al. 2003; Faccioli
et al. 2001; Gazetas et al. 2003; Gajan et al. 2005, 2008; Mergos and Kawashima
2005; Apostolou and Gazetas 2005; Paolucci et al. 2007; Kawashima et al. 2007;
Gajan and Kutter 2008; Chatzigogos et al. 2009; Gerolymos et al. 2008, 2009).
since soil yielding beneath foundations can be an effective energy dissipation
mechanism. However, this benefit may come with the expected costs of excessive
transient and permanent deformations. To realistically account for the systems’
performance, these consequences of permanent settlement and rotation must be
reasonably estimated and accounted for.

Tree types of non-linearity can take place at the soil-foundation level in the

case of shallow foundation and can alter the overall structure-foundation response:

(a) Sliding at the soil foundation interface
(b) Seperation and uplift of the foundation from the resting soil

(c) Mobilization of bearing capacity failure mechanisms in the supporting soil.

1.2 OBIJECTIVES OF THE STUDY

Our understanding of the earthquake phenomenon has improved significantly
during the last years; however, there are many issues that require our attention
regarding its effects on the response of structures. Energy released during an
earthquake travels in the form of waves. They are measured in the form of two
horizontal and one vertical translational acceleration time histories. When we
analyze a structure, we generally apply either one assumed or recorded horizontal
component along one of the two major axes of the structure. Slender structural
systems are more prone to develop high levels of foundation moment even during
moderate seismic shaking and the rocking component of motion is predominant.

The scope of this study is to shed some light in the meta-plastic response of such

Spari Markella Katerina ,Diploma thesis 2012



structures in case of multi-component earthquake excitation taking into account

non-linear soil-structure interaction.
Non —linear features of soil-foundation systems may be summarized in:

(a) Mobilization of bearing capacity failure mechanisms under cyclic overturning
moments. Especially in the vicinity of corner points due to the concentration
of vertical stresses and the resulting accumulation of displacements
plastification of the supporting soil takes place. (material non-linearity)

(b) Separation from the supporting soil of a footing undergoing rocking

oscillations (“uplift’”’) creating P-6 effects.(geometric non-linearity)

At the same time several issues regarding multi-components seismic response

analysis of structures are addressed in this work.

(a) The first issue is related to the rules used to estimate the combined effect of the

individual components of earthquakes.
(b) The relative importance of the weak horizontal component compared to that
of the strong horizontal component in terms of :
(i) vertical settlements
(ii) rotation accumulation
(iii)  horizontal drifts
(iv) effective contact area
(c) The effect of the second horizontal component for cyclic, long duration
sequences of pulses were the “sinking” effect (large vertical settlements)

prevail.

Spari Markella Katerina ,Diploma thesis 2012



1.3 OUTLINE OF THE STUDY

The first chapter is dedicated in the fundamental tools to address SSI effects and
rocking response of slender structures. Methods of combining the components of

earthquake are presented and code provisions are discussed in Chapter 2.

In Chapter 3 the method of analysis, assumptions and modeling details are

presented.

Chapter 4 is dedicated in bi-directional static loading of the proposed system and

moment interaction diagrams for different factors of safety are produced.

Chapter 5 focuses on the rocking regime of the system’s response. Therefore Ricker
type pulses are utilized in order to assess the effect of the second horizontal
component. Frequency content and intensity are taken ito consideration.
Furthermore attempt has been made to investigate the effect of phase difference
between the applied excitation components. At the same time the rocking of the
foundation is viewed under a holistic 3 dimensional perspective. Moment-rotation ,

vertical settlement-rotation, drift time histories are examined in both directions.

In Chapter 6 the effect of phase difference is further investigated with the use of

sinusoidal pulses.

In Chapter 7 the effect of excitation content investigated with the use of harmonic

wavelets of different frequencies.

Chapter 8 is dedicated to the cyclic nature of the earthquake, therefore Tsang™* are

employed.

Chapter 9 deals with the true nature of earthquake and for that reason recorded
acceleration histories are applied. The scope of this chapter is to illuminate the
importance of the second horizontal component on the systems performance, which

is often disregarded.

Chapter 10 is dedicated to conclusions and suggestions for further examination.

e —
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Chapter 2-Literature Review
——— — |

2.1 SOIL-STRUCTURE INTERACTION

The phenomenon of soil structure interaction can be briefly described as
follows: during earthquake shaking the soil deforms under the influence of the
incident seismic waves and carries dynamically with it the foundation and the
supported structure. The induced motion of the superstructure generates inertial
forces that result in dynamic forces and moments that through dynamic pressures at
the foundation are subsequently transmitted to the resting soil. Thus, superstructure
induced deformations develop in the soil and additional waves emanate from the
soil-foundation interface. In response, foundation and superstructure undergo

further dynamic displacements which generate inertial forces and vice versa.

Although the above phenomena occur simultaneously and are intrinsically co-
evolving it is convenient in sense of conception and computationally to assume the
response of the soil-foundation-structure system as superposition of two interaction
effects based on the Kausel superposition theorem (Whitman,1972; Kausel et

al., 1978 ; Gazetas and Mylonakis,1998):

a) ‘Kinematic interaction’ referring to the modification of the incident seismic
waves (reflections, scattering) due to the presence of a massless foundation-
structure. As a result the foundation develops curvatures and bending
moments due to its different rigidity in respect to the compliant surrounding
soil. No soil mass moves as a rigid body with the foundation. Instead shear
and dilational waves emanate from the footing soil interface into the soil,
causing oscillating soil deformations at the surface and carrying away some of
the input energy. The main consequence of Kinematic interaction is that the
foundation input motion is different (usually reduced in short period range)

than the free field motion.

e ——
Spari Markella Katerina, Diploma Thesis 2012

11



Chapter 2-Literature Review

b) ‘Inertial interaction’ referring to the response of the soil-foundation-structure
system subjected to excitation by D’Alembert inertia forces induced on
superstructure in the presence of an input motion modified by Kinematic
interaction and the additional loading imposed to the foundation and the

resting soil.

For a linear soil-foundation-structure system the superposition theorem

states that the equation of motion for the overall system in its matrix formulation,
[M]{U} + [K] {u} = - [M] a, [2.1]
Can be decoupled in the following differential equations:

[ Msoil] {Dkin} + [K] {ukin} =- [Msoil] ar [223]
[ Mgt/ {tliner} + [K] {Uiner} = - [Mstr]({ I-"lkin }+a r) [2.2b]

Where: {u} is the relative displacement vector of points in the soil or the
structure, {uxin} and {uiner} are respectively the kinematic and the inertial
relative displacements, [K] is the stiffness matrix of the system, [M] is
the matrix of the system, [ Msoi] is the mass matrix assuming that only
the soil and foundation have mass and [ Ms,] is the mass matrix

assuming that only the superstructure has mass. By definition :
[M]=[ Mgoitl+ [ Ms]  and  {u}={ukin}+{Uiner} [2.3a,b]

The analysis of inertial interaction for computational purposes is further

decomposed into consecutive independent analytical steps:
bi1) Computation of the dynamic foundation impedances (springs and dashpots)

b,) Analysis of the dynamic response of the superstructure resting on these
springs and dashpots subjected to the kinematic interaction modified input

motion of step a)

Although the superposition theorem is exact for linear soil, pile and structure,
it can nevertheless be applied to moderately non linear systems. This can be

achieved by choosing reduced soil characteristics which are compatible with the free

Spari Markella Katerina, Diploma Thesis 2012

12



Chapter 2-Literature Review

field strains induced by the propagating seismic waves: this is the basis of the
equivalent linear method, pioneered by /driss and Seed (1968). This engineering
approximation implies that all the soil non linearities arise from the passage of the
seismic waves and that additional non linearities, developed around the edges of a
mat foundation or along the piles shafts, are negligible. Experience shows that it is a

valid approximation in many situations where large soil instabilities do not occur.

The relative importance that kinematic and inertial interaction have on the
response of the structure depends on the characteristics of the foundation and the
incoming wave field (Pecker and Pender,2000).  For some situations, kinematic
interaction can be neglected and the second step of the multistep approach can be
bypassed. It must be realized however that, if kinematic interaction is thought to be
significant, there is no simple means for evaluating it; as a matter of fact, evaluation
of kinematic interaction is almost as difficult as solving the complete SSI problem.
Obviously kinematic interaction is exactly zero for shallow foundations in a seismic
environment consisting exclusively of vertically propagating shear waves or
dilatational waves. Gazetas (1984) has demonstrated that when the piles are flexible
with respect to the surrounding soil, kinematic interaction is significant for small to
medium frequencies. During the last decade, numerous solutions for the dynamic
impedances of any shape foundations and of piles have been published (Gazetas,
1990). They are available for homogeneous soil deposits but also for moderately
heterogeneous ones. In addition, simplified methods are available in the case of pile

foundations to account for the group effect (Dobry and Gazetas, 1988).

Impedance functions represent the frequency-dependent stiffness and
damping characteristics of foundation-soil interaction. A synthesis of available
numerical solutions for impedance functions is given by Gazetas (1991). Those
solutions generally utilize assumptions of foundation rigidity and uniform soil of
infinite depth with a fixed hysteretic damping ratio. Under these conditions, the soil
profile is referred to as a visco-elastic half-space. Additional formulations are
available to account for a specified depth-variable shear stiffness (Gazetas 1991;
Vrettos 1999), foundation embedment ( Apsel and Luco 1987), and non-rigid

foundations (Iguchi and Luco 1982). Dynamic impedance is defined the ratio

Spari Markella Katerina, Diploma Thesis 2012



Chapter 2-Literature Review
between the steady-state force or moment and the resulting displacement or
rotation at the base of an associated rigid but massless foundation subjected to
harmonic excitation of frequency w. Impedance functions represent the stiffness and
damping characteristics of foundation-soil interaction under cyclic loads. Since
dynamic force and displacement are generally out of phase the impedances can be

therefore written in complex notation (Veletsos and Wei 1971; Gazetas 1991) :
K= K+ iK; [2.4]

Where K3, K, are dynamic impedance functions.

Reissner (1936) motivated by Lamb’s studies on the dynamic Boussinesq
problem (1904) demonstrated that a vertically loaded circular foundation vibrating
on a halfspace could be represented with a 1-dof viscoelastic oscillator and showed
that the equivalent lumped-mass system parameters should be frequency
dependent. To express the vertical displacements u, he established the displacement
functions f;(w) and f>(w)

w, =22 i) [2.5]

in which , P, is the amplitude of the total force applied to the circular contact
area, G is the shear modulus of the halfspace and R is the radius of the circular

contact area.

According to Reissner’s findings the dynamic impedance components of
eq.2.3 are functions of the vibrational frequency w as well. Hsieh (1962) showed that
in analogy with the 1-dof oscillator, the real part in eq.2.3 represents the stiffness
and the inertia of the supporting soil whereas the imaginary part describes the
absorption of energy within the medium through radiation damping. Combining

eq2.3 the complex dynamic impedance of steady state vibration can be written :

K=K- mw’+iwC [2.6]
Where:  K=GR-L> and C= —E_L_
fi+53 w fi+fs

Spari Markella Katerina, Diploma Thesis 2012
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The parameters K and C are the spring and damping terms respectively of the
equivalent lumped system, both functions of the frequency of vibration. Lysmer
(1965) , by multiplying the displacement function f=f; +if, byafactor4/(1-v),

obtained a new displacement function F = F;+i F, , independent of v. By adopting a

. . b .
dimensionless frequency factor, a, = wT , he derived charts of F; and F, as
S

functions solely determined by a..

2.2 ROCKING OF RIGID STRUCTURES

2.2.1 ROCKING ON A RIGID BASE

It was Milner and Perry (1881) the first who attempted to quantitatively
correlate the intensity of ground motion by studying the overturning of rectangular

columns and since then the uplift response and toppling of structures

The modern study of the mechanics of rocking objects are typically attributed
to Housner (1963) who investigated in depth the rocking behavior of rigid block
supported on a rigid base subjected to earthquake shaking uncovering the role of
excitation frequency and block size to overturning potential. /shiyama (1982)
determined the possible modes of response for a rigid body on rigid floor and
established transition criteria from one to another. Spanos and Koh (1984) studied in
detail the dynamic behavior or rigid block structures subjected to harmonic steady-
state excitation developing analytical methods to determine the predominant modes
of the system and produce stability diagrams where safe and unsafe regions were
identified.

Makris and coworkers (1998,1999,2000,2001) focused on the transient
rocking response of rigid blocks under near-source ground shaking idealized as
trigonometric pulses and derived the acceleration amplitude needed for overturning.
In their study the parameters that control overturning (pulse acceleration and
frequency content, block size and slenderness and the sequence of pulses) were
identified. Using linear and non linear analysis they uncovered that under cycloidal

e ——
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Chapter 2-Literature Review
pulse excitation, a free standing rigid block may overturn either after one impact or
without impact at all. | t was shown that a safe region emerges between the two
modes, in other words while the block overturns for a certain level of shaking, it

counter-intuitive remains standing for an increased amplitude.

2.2.1.1 DEFINITION OF PROBLEM AND EQUATIONS OF MOTION

Consider two different systems of rigid structures, with fairly similar rocking
behavior, resting on rigid soil subjected to horizontal shaking. Both can pivot around
the center of rotation, O and O’, when set in motion. Depending on the value of
ground acceleration the systems may translate with ground, slide , rock or slide-rock.
J.Zhang and N.Makris showed that the required coefficient of friction in order to
avoid sliding is an increasing function of the acceleration under the assumption that
the coefficient of friction was sufficient to maintain solely rocking and prevent sliding
at all times.

For relatively small amplitudes of ground acceleration, provided that the

moment of inertia force (mayb) does not exceed gravitational moment (mgb)
systems remain in full contact with base and translate with it.
If the overturning moment reaches the critical value (mgh) uplifting occurs setting
the system on rocking motion. Under static conditions, once uplift is initiated the
system overturns with no impact. Thus the critical acceleration for uplift equals the
minimum acceleration required to overturn the block. Derived from the equilibrium
equation,

b
Astat,over — tal 0. = n [2.7]

In contrast, for the case of dynamic base excitation reaching a. doesn’t imply
overturning of the system. This is attributed to the transient oscillatory nature of
earthquake excitation. Meaning that although the system exceeds the stability
moment the reversal of loading direction causes it to rotate towards the opposite

direction.

e ——
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Chapter 2-Literature Review

Under a positive horizontal base acceleration ag the rigid structure will initially
rotate with negative rotation 6 < 0 and provided it doesn’t overturn it will rotate
positively 8 > 0 and so forth.

Apostolou et al. (2003) investigated the role of the vertical component of
ground acceleration and showed it’s insignificant effect on rocking response.
Neglecting vertical acceleration, the equation of motion of a standing rigid structure

with mass m are:

1,0 + mgRsin(—6, — 0) = —magyR cos(—0, —0), 6 <0 [2.82]
1,6 + mgRsin(6, —0) = —ma,R cos(6. —6), 6> 0 [2.8b]

Where: = Vb? + h? , |, is the moment of inertia about it’s pivot point (O and O’)
b
and the angle 6, = arctan (Z)

The above equations can be expressed in the compact form:

6(t) = - p® {sin[B. sgnB(t) -B(t)]+ 0g(t) cos[B. sgnB(t) —O(t)]} [2.9]

Where the frequency parameter p = ng/]O is in rad/sec.

The frequency parameter p is not the eigenfrequency of the system, but is a
measure of the dynamic characteristics of the system and plays an important role in
its rocking response and overturning potential (Spanos & Koh, 1986; Makris &
Roussos, 2000; Apostolou et al., 2003). The frequency parameter p is a decreasing

function of the block size, hence the larger the block the smaller the value of p, and

. 3 o
vice versa. For rectangular blocks, ppiock = ﬁ) ,  Whereas for a rigid 1-dof

oscillator py_gor = \/% . The 1-dof oscillator corresponds to a rigid rectangular block

if R 1.dof = 4/3 Roiock (Apostolou et al., 2006).

When a rigid body is rocking back and forth about its pivot point loses a part

of its kinetic energy when impacts the rigid base even under purely elastic impact

Spari Markella Katerina, Diploma Thesis 2012
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conditions. So, the angular velocity after the impact is a fraction to its velocity prior
to impact. This fraction is known in the literature as the coefficient of restitution and

its upper bound neglecting energy loss during impact is :
r = (1-2sin?0,)? [2.10]

Actually, some additional energy is lost depending on the nature of the

materials and the impact surface.

The ultimate moment that can be applied to the foundation is M, = mgb =
magh, thus the maximum acceleration that can be developed at the mass of the
structure is a. = tand.. This peak value is applied instantaneously, and as soon as the
rigid body uplifts, a nonlinear behavior is revealed even for elastic impact conditions.
Once rocking commences the moment-rotation relationship enters a softening
behavior due to P-§ effects and the system’s stiffness decreases until & = .. Thus,
the oscillation period of the system during the rocking motion is not constant and

depends on the angle of rotation.

2.2.3 OVERVIEW OF KEY-RESPONSE PARAMETERS

Under static conditions only the slenderness of the structure is a decisive
factor for it’s response. Under dynamic excitation though, due to the profoundly
non-linear nature of rocking motion, the systems response is sensitive to a number
of parameters that reflect the dynamic characteristics of the structure and the

excitation. The most important factors are:
(a) The slenderness of the structure

The slenderness of the structure U, defines the initiation of rocking for a

certain amplitude of excitation. The critical acceleration for uplifting for a block

Spari Markella Katerina, Diploma Thesis 2012
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resting on a rigid base depends only on the slenderness of the structure and the
uplift criterion is o > arctan(6.). Therefore, less slender blocks are in general more
stable and experience smaller rotations. Hence the minimum energy loss during
impact depends only on the slenderness of the structure and as a result, structures

with large aspect the vibrations decay is faster than for less slender ones.

(b) The size of the block and the excitation frequency

The rocking response of a block is a sensitive function of both its size and
excitation frequency content. It has been recognized by researchers ( Kirpatrick,
1927; Housner,1963;  Makris et al,2000, 2001; Apostolou et al,2003, 2007;
Gerolymos et al, 2005) that increasing the size of the structure or the frequency of
excitation while maintaining the same slenderness (ratio of base width and height)
can play a beneficial role in terms of overturning prevention. In other words small
structures display larger rotations and overturn more easily than larger ones of equal
slenderness. Apparently, the existence of long duration excitation pulses plays a
predominant role in the uplifting response and the overturning potential. Given a
slenderness ratio and kept the f/p ratio constant the rocking response of a structure
remains unchanged. Hence the rocking response of a system is defined by the

excitation frequency in reference to frequency parameter p.

(c) Asymmetry and detailed sequence of excitation pulses

Makris and Zhang (2000) identified the the effect of asymmetry and exact
sequence of pulses by uncovering outstanding differences in the rocking response
under variant trigonometric pulses, including the half sine, one sine, and one-cosine
pulses.

This work was extended by Gerolymos et al (2005) who demonstrated the
effect of asymmetric pulses by employing Ricker type excitations to investigate the

overturning potential.

e ——
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2.4 ROCKING ON COMPLIANT SOIL

For some cases the model of a rocking body on a rigid base may be a
reasonable approach, however in most civil engineering applications the foundations
rest on a soil medium which may experience substantial deformations by
transmitted loads. Due to soil compliance , a rigid structure may sustain rocking
motion without uplift at low amplitudes or rotation. For sufficiently large amplitudes
of rotation though, separation of the footing from underlying soil is unavoidable and
the response alternates between full contact and uplift phases. For very stiff soil the
systems experiences uplift at very low rotation levels and it’s response resembles the
rigid base one (full contact phase diminishes). On the contrary, for soft soil
conditions, the deformations of the supporting soil especially near edges are
significant. This acts as an energy dissipation mechanism and as a result uplift is
limited and motion attenuates faster. Furthermore large deformations under the
foundation are accompanied with bearing capacity mechanisms and plastification
zones that further act as dissipative mechanisms. Apart from the aforementioned
parameters that affect rocking response for the compliant soil case the following
ought to be mentioned:

(@)  The visco-elastic soil properties G, v and ¢ considering an homogenous and
isotropic medium

(b)  The structural weight N in reference with the ultimate load capacity N,

(c) The presence of bedrock at shallow depth or a stiff crust underneath the

foundation.

Compliant soil modeling approaches can be sub-divided in the following categories:
- Winkler-based models

Continuum models

Macro-element type models

Direct methods (i.e., finite elements or finite differences)

Spari Markella Katerina, Diploma Thesis 2012
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2.2.2.1 WINKLER-BASED MODELS

One of the most commonly used method is the beam-on-non-linear-Winkler
—foundation (BNWF) approach. The BNWF generalization originates from Winkler’s
(1867) representation of a soil medium, which assumes a system of discrete , closely
spaced independent linear elastic springs. This approach implies that the lateral
reaction in the soil g per unit length at a given distance along the foundation is only
related to the foundation deflection 6 at that distance. BNWF methods combine
springs, dashpots and gap elements allowing one to capture the salient features of
rocking foundation including uplift and yielding of soil even settlement.

Wiessing (1979) used elastoplastic springs coupled with Coulomb slider
elements and sub-divided the foundation in finite strips. Elastoplastic springs were
considered to have only compression capacity while Coulomb slider elements
captured the uplift of the foundation.

Phycharis and Jennings (1983) and Koh et al.(1986) used the well known
Winkler model, assuming that the springs cannot have tension capacity and to
capture the uplift behavior of a rigid block resting on elastic soil produced analytical
expressions for each phase of the response (uplift, full contact). In details Phycharis
considered to types of soil modelling using springs 1) a simple symmetric two-spring
model and 2) the distributed Winkler system of springs. Non-linearity at the
foundation interface was considered through three mechanisms 1) viscous dampers
2) elastic-perfectly plastic non linear springs and 3) an impact mechanism allowing
dissipation of energy at every impact.

At the same time Yim and Chopra (1984,1985) evaluated the rocking
response of single-degree of freedom (sdof) and multi-degree of freedom (mdof)
systems, supported on a two-spring dashpot base. A primary conclusion of this work
was that foundation flexibility and uplift have little effect on higher modes of
vibration.

Nakaki and Hart (1987) used discretely placed vertical elastic springs with
viscous dampers at the base of a shear wall structure to illustrate the beneficial role

of uplift during an earthquake. This study unveiled that uplift resulted in a significant

Spari Markella Katerina, Diploma Thesis 2012
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reduction of ductility demands on the structure for some cases. This is primarily
because the rocking response shifts the period range of a system to greater values
than the fixed base one. It was also noticed that the frequency content of the
excitation has an important effect on the ductility demands of the system.

More recent work on non-linear Winkler-based models can be attributed to
Chen and Lai (2003), Houlsby et al.(2005), Eivan and Cassidy (2005), Harden et
al.(2005), Allotey and EI Naggar (2003, 2007). The latter in order to overcome the
shortcomings of earlier studies derived analytical equations for the moment-rotation
response of footings resting on elasto-plastic Winkler foundation neglecting P-6
effects though. Their study unveiled how the inverse safety factor is related to the
predominant type of foundation response (uplift, mobilization of bearing capacity
failure mechanisms or both).

Raychowdhurry and Hutchinson (2009) evaluated the performance of a non-
linear Winkler-based shallow foundation model using centrifuge testing results. The
same authors in (2010) evaluated the performance of seismically loaded shear-walls
on nonlinear shallow foundations and their numerical study indicates that the force
and drift demands to the shear-wall reduce significantly, when nonlinear foundation
behavior is realized, while permanent settlement is well below the permissible limit.

Pender (2007) ,while comparing the response of linear elastic springs to
continuum elastic medium,analyses that the ratio of rotational to vertical stiffness is
found to decrease as the load of the footing increases, in other words the decrease
of rotational stiffness is more rapid than the vertical stiffness decrease and probably

that non-linear behavior of soil can be better captured by spring-models.

e ——
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2.2.2.2 ELASTIC/INELASTIC CONTINUUM MODELS

Pender (2007) however highlights some of the deficiencies and arising from
the Winkler-based models. In order to study vertical and rotational stiffness of
shallow foundations he compares the response of linear elastic springs to continuum
elastic medium. The conclusion is that, for given dimensions of a rigid rectangular
foundation on ground surface the rotational stiffness for a bed of springs is less than
that resting on a continuous elastic medium. The underlying reason is that for the
spring foundation there is no interaction between neighboring springs and this
concerns particularly edges.

Apostolou and his co-workers (2003,2007) used finite element analysis to
treat the soil as an elastic continuum and simulate stress distributions under the
foundation in a more realistic way than the linear distribution proposed by Winkler
models. They showed that in the very stiff soil, the uplift regime dominates whereas
as soil compliance increases the rocking motion exhibits a more full contact
rotational vibration behavior, reducing the contribution of uplift to the total rotation.
The role of soil compliance may vary from beneficial to detrimental depending on
the excitation period (Tg) in reference to the rocking period of the system(Tg).

Apostolou and Gazetas (2007) investigated in detail the rocking response of
shallow foundations on compliant soil. Using a macroscopic model which takes into
account the non-linearities, they produced analytical equations for the moment, the

rotation and the vertical displacement for both elastic and inelastic soil.

2.2.2.3 MACRO-ELEMENT TYPE MODELS

Macro-element type models are intended to capture near field behavior. A
macro-element replaces the soil-foundation system and is located at the base of the
superstructure. Thus the footing and the underlying soil are considered as either a 3-
dof (2D analysis) or a 6-dof (3 translational and 3 rotational-3D analysis) element
that can describe the force-displacement behavior of a point of the footing in the

vertical, horizontal and rotational sense.
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The evolution of macro-element concept follows a parallel path with the
advances of plasticity theory. Roscoe and Schofield (1956,1957) based on the theory
of plasticity dealt with the non linear behavior of shallow foundations. Nova and
Montrasio (1991) developed a model for strip footings on sand under monotonic
loading with an isotropic-hardening elasto-plastic law. The basic idea is firstly to
represent the bearing capacity of the foundation under combined loading as a closed
surface (Salencon (1972);Butterfield(1980)). This ultimate surface is the yield surface
of the plasticity model and evolves in space according with the appropriate
hardening law (isotropic,anisotropic). Secondly the displacements of the footing are
calculated using a plastic flow rule calibrated by experimental data.

Pedretti(1998) and Prisco (2003) extended this idea to cyclic loading
introducing bounding surfaces for unloading and reloading. Paolucci (1997) based on
Nova and Montrasio formulation introduced macro-element models for earthquake
engineering. Le Pape et al.(1999) and Le Pape and Sieffert (2001) developed a macro-
element in a thermodynamic framework. Cremer et al.(2001,2002) first introduced
the foundation uplift in the macro-element formulation dealing seperately with
uplift and plasticity. Wolf (1988) and Wolf and Song (2002) deal with the uplift
behavior differently. While Cremer modifies the initial stiffness matrix, Wolf uses
the equivalent foundations dimensions (reduced due to uplift) to recalculate the
static spring coefficient.

Paolucci (2007) introduced a degradation rule for the foundation stiffness
parameters to account for the reduction of soil contact area under successive cycles
of loading. Cremer’s plasticity model was further modified by Grande et al (2008)
and Chatzigogos et al.(2009,2010). In the work of the latter the ultimate surface of
the foundation is obtained as a combined result of different non-linear mechanisms

(plasticization, uplift, sliding).
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2.2.2.4 DIRECT METHODS

Direct methods employ finite element or finite differences applications where
boththe structure and the foundation-soil system are modeled [e.g., Tan, 1990;
Butterfield & Gottardi, 1995, Taiebat & Carter, 2000; Gourvenec, 2007;
Anastasopoulos et al., 2009; 2011]. Since this study is based on FEM direct method

some aspects of FEM modeling are thoroughly discussed in the following chapter

2.3 FOUNDATION BEARING CAPACITY

INTRODUCTION

One of the prime issues in the design of a shallow foundation is to estimate
the ultimate bearing capacity under combined vertical, horizontal and moment
loading. Consequently, extensive analytical and experimental research has been
conducted in the field. Poulos et al.(2001) have reviewed the most significant
findings on foundation analysis and have presented a variety of equations for
estimating the ultimate capacity under combined loading.

Bearing capacity failure of shallow foundations occurs when the supporting
soil fails in shear. This may involve either a general failure mechanism or a punching
shear failure. The former is a sudden, catastrophic type of failure and is common in
soils that exhibit brittle stress-strain behavior. The latter can be seen in soils that
exhibit compressible, plastic stress-strain behavior and is accompanied by
progressive downward movement or punching of the foundation into the underlying

soil.
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2.3.1 BEARING CAPACITY UNDER VERTICAL LOAD

The static bearing capacity of a shallow foundation under central, vertical
loading was initially calculated by L.Prandt! in 1921. Provided that soil medium is
described as homogenous half-space under un-drained conditions (c=Sy, @=0) the
ultimate reaction stress p, is:

pu = (1+2) S, [2.11]

Terzaghi (1943) introduced the general bearing capacity factors N, N,, N; to
calculate the bearing capacity of a soil described by strength parameters ¢ and ¢ as
follows:

pu = cNe + S BYN, + qN, (2.12]
where: y is the unit weight of soil , B is the width of a rectangular footing and g is
the overburden pressure.

Notably for a cohesive soil under undrained conditions N.= m+2 and N, =0. If
the overburden pressure is neglected Terzaghi’s solution leads to Prandtl’s.

Meyerhof (1953) and Vesic (1975) have derived expressions of the ultimate
capacity accounting for the foundation shape and load eccentricity and inclination

introducing several loading factors.
2.3.2 BEARING CAPACITY UNDER COMBINED LOAD

Bearing capacity factors have been established in common engineering
practice as a simple way to estimate the ultimate loading of a shallow foundation.
However in some cases of eccentric inclined loads the empirical capacity factors may
not provide reliable safety margins. The accuracy of ultimate bearing capacity is
crucially important for foundation that undergo large lateral and moment loading as
offshore structures (Ukritchon et al.1999; Bransby and Randolph, 1997)

In this respect, as mentioned earlier in the macro-element section, much
research has been focused in the development of failure criteria for general planar

loading conditions (N,Q,M). Following the reasoning initiated by Salencon (1972)
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and Butterfield and Ticof (1980) and endorsed by experimental work ( Houlsby and
Martin,1993; Gottardi and Butterfield,1995;, Gottardi et al, 1999, Houlsby and
Puzrin,1999; Martin and Houlsby,2000,2001; Houlsby and Cassidy,2002; Cassidy et
al,2005; Bienen et al, 2006) , it has been found that for any foundation there is a
unique closed surface in the generalized loading space N, Q, M containing all
possible combinations of loads that could cause the foundation’s failure. Hence this
surface outlines a failure envelope representing the bearing capacity of the
foundation under combined loading. It is described by the following function f:

f(N,Q,M)=0 [2.13]

The failure envelope is independent of load path and encompasses all the
possible combinations of loads which could impose only elastic deformations. It is
also unrelated to soil characteristics (e.g. cohesion, homogeneity) and footing
geometry (Gottardi and Butterfield,1994; Taiebat and Carter,2002).

Gottardi and Butterfield (1994) used experimental data to derive the
analytical solution and showed that the failure loci in the N-M and N-Q plane can be
represented by parabolic curves. For the H-M plane bearing capacity stands an

eccentric ellipse.

Q=thx (Ny-N) [2.14]
M/B = tmx ( Ny =N ) [2.15]

Where t;, (t) is the slope of the N-Q (N-M) parabola at the intersection points with

the horizontal axis and x is the N/Ny ratio.

Houlsby and Puzrin (1999) utilized the lower bound theorem to produced a
closed-form expression of the failure envelope in the M-N plane of strip footings on

udrained cohesive soil :

S=(m+2)Sy 1-22) [2.16]

i

e ——
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2.3.3 CALCULATION OF N-M FAILURE LOCUS FOR WINKLER MODELLING

Under combined vertical, horizontal and moment loading foundation failure
may also occur due to horizontal shear failure of soil (sliding) or excessive rotation
(overturning). Slender structures are more vulnerable to the latter. A compliant soil
under a rocking foundation, due to the combined earthquake loading and the
additional loading from the cyclic response of the structure, undergoes significant
plastic deformation. Particularly when uplift initiates due to accumulation of vertical
stresses under the supporting edge inelastic behavior and even mobilization of
bearing capacity failure mechanisms is often unavoidable even for moderately soft
soils. There are two distinct types of overturning failure uplift and soil yielding. The
dominant parameter that controls the interplay between those two during rocking is
the vertical load N to ultimate vertical capacity Nu ratio expressed as x=N/Nu. That
was uncovered by Allotey and El Naggar (2003) who investigated the rocking
response of footings on elasto-plastic Winkler and produced analytical moment-
rotation expression for co-existing uplift and yield. For relatively heavy foundations
(x>0.5) the soil yielding precedes the footing uplift. When relatively light foundation
(x<0.5) are considered we have the inverse; uplift is followed by soil yielding.

Apostolou and Gazetas (2007) derived the analytical solution of the M-N plane
failure :

My=Nb (1-N/Ny) > My=Nb(1-x) [2.17]

The failure envelope calculated by this equation and the analytical curves for
uplift-yield onset are plotted in figures.

More recently Gourvenec (2007) compares ultimate limit states under
vertical (V ), moment (M) and horizontal (H) loading of rectangular footings with
varying breadth-to-length aspect ratios (B/L) with predictions for plane-strain
conditions. Footing-soil interfaces are considered either unable to sustain tension or
with unlimited tensile resistance. Results are presented as failure envelopes in VH,
VM and VMH load space and a closed-form expression is proposed to describe the

shape of the normalized VMH envelope:
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(hl) ( I) 1

Where : m* and h* are functions of v (=N/N,) and are derived from the shape of

the failure envelopes in V-H and V-M plane respectively

. 0.25-(v-0.5)
0.25
m* = 4(v —Vv?)

2.15 illustrates the three dimensional failure envelope for VMH loading for a zero-
tension interface. Failure envelopes in planes of HM at v=0.25, v =0.5, and v =0.75
for footings unable to sustain tension with varying aspect ratios are shown in figure
2.15. In normalized load space, the envelopes fall in a reasonably tight band and can
be approximated as an eclipse symmetrical about H = 0, proving that their shape is

independent of the footing aspect ratio.
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2.4 MULTICOMPONENT EARTHQUAKE EXCITATION AND COMBINATIONAL RULES

INTRODUCTION

Following catastrophic damages in some recent earthquakes around the
world, seismic analysis and design procedures in general and codified seismic design
procedures in particular, have changed significantly. In the last 20 years especially
after the Northridge 1994 and Kobe 1995 earthquakes, accelerograms have revealed
that very substantial ground motions can be expected in near fault zones

There is no doubt that now we have a better understanding of the
earthquake-related issues. The computational power has also increased significantly
to address many advanced topics. We can now analyze and design seismic load-
tolerant structures for given or assumed earthquake time histories. Unfortunately, at
present if ever, we cannot predict with certainty the future earthquake time
histories and this is the weakest point in the seismic design of structures. The
guestion remains whether we can assure safety of structures designed following the
current design practices against any future earthquakes.

Energy released during an earthquake travels in the form of waves. They are
measured in the form of two horizontal and one vertical translational acceleration
time histories. Although, earthquakes can cause rotational excitations (Clough and
Penzien, 2003), we do not measure them and they are completely ignored in the
analysis. In addition, the potential direction of the epicenter of an earthquake
excitation is generally overlooked by the civil engineering profession.

Thus, earthquake resistant design must consider the structural response to
the simultaneous action of three translational components of ground motion: two in
the horizontal plane and one in the vertical direction. A structure is usually analyzed
for the two horizontal components of ground motion applied along the structural
axes , sometimes as mentioned before, ignoring or overlooking the potential location
of the epicenter of the earthquake with respect to a specific site.

Although it is generally assumed that these components are of the same
intensity, in reality they are not, and their combined response depends on the

incident angle (the angle between the ground motion components and the structural
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axes). Standard practice is to determine separately the three peak responses of
the structure that are due to each component of ground motion—with the
horizontal components applied along the structural axes—and combine these peak
responses according to one of the multi-component combination rules:

(1) the Simplified Square-Root-of-Sum-of-Squares (SRSS)- rule,
(2) the 40%-rule per Newmark ,

(3) and the 30%-rule per Rosenblueth and Contreras.

2.4.1 LITERATURE REVIEW

Penzien and Watabe (1975) proposed that the three components of an
earthquake were uncorrelated along the principal axes. They are generally denoted
as the principal components. The major principal axis is horizontal and directed
towards the epicenter, the intermediate axis is horizontal and perpendicular to the
major component, and the minor principal axis is vertical. The critical response could
be obtained when these components are applied.

Wilson and Button (1982) presented a simple method to determine the critical
angle of structures with respect to the epicenter without considering any correlation
between the horizontal ground motion components. Smeby and Der Kiureghian
(1985) observed that, for response spectra analysis of linear structures, when the
two horizontal principal components are not along the structural principal axes, the
effect of correlation is small and that if the two horizontal components have
identical or nearly identical intensities, then the effect of correlation disappears.
Loépez and Torres (1997) also proposed a method to estimate the critical angle of
incidence.

Newmark (1975) and Rosenblueth and Contreras (1977) were among the first
to propose combination rules. They proposed the Percentage Rule, which
approximates the combined response as the sum of the 100% of the response
resulting from one component and a percentage (A) of the responses resulting from

the other two components.
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To combine the two horizontal components, Newmark (1975) suggested A to
be 40% and Rosenblueth and Contreras (1977) suggested A to be 30%. More recently,
many other studies attempted to combine the seismic responses due to two or three
components (Correnza and Hutchinson, 1994; Wilson et al., 1995; De Steffano and
Faella, 1996). Wilson and Suharwardy (1995) concluded that the Percentage Rule
could underestimate the design forces in certain members.

For modal analysis, Der Kiureghian (1981) and Wilson et al. (1981) proposed
the Complete Quadratic Combination (CQC) rule to combine modal responses due to
a single seismic component. Smeby and Der Kiureghian (1985) proposed an
extension of the CQC rule, known as the CQC3 rule, to combine modal responses due
to the three seismic components. Smeby and Der Kiureghian (1985) and Lopez and
Torres (1996) verified the application of the CQC3 rule by considering building-type
structures with a rectangular geometry. Menun and Der Kiureghian (1998) extended
these studies by considering more complex three-dimensional curved bridge
structures subjected to two horizontal components. They compared the results of
the CQC3 rule with those of the SRSS, the 30% (A = 0.3), and the 40% (A = 0.4) rules
and examined the shortcomings of these three rules. Lopez et al. (2001) conducted a
similar study to combine the two horizontal components with a range of one-story
systems with symmetrical and unsymmetrical plan, and two multi-story buildings.
Herndndez and Lopez (2003) extended the work of Ldpez et al. (2001) by considering
the effect of the vertical component.

Most of the previous studies on combination rules were limited to elastic
analysis applied to simplified plane concrete frames connected by rigid diaphragms

and only a few stories high.

Nonetheless the response of reinforced concrete elements under bi-axial
loading has concerned numerous analytical and experimental studies. It is well
known that interaction phenomena between axial and lateral forces influence
strength and ductility demand of a structural system. As an example, for columns of
framed buildings, the variation in axial force results in modifying yielding conditions,
which may lead to smaller bending capacity and, then, to a greater ductility demand.

Moreover, for framed structures, interaction phenomena may work against the
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activation of the intended strong column - weak beam dissipation mechanism, since
the reduction in column strength can modify the resistance hierarchy among
structural members. The outcome of such studies is usually presented in the form of
interaction diagrams.

This study is an attempt to address the multi-component nature of the
earthquake and the ductility demands on structures accounting for soil-structure
interaction and the non-linear behavior of the soil. More particularly a slender
structure (bridge pier) with given dimensions that is susceptible to rocking
undergoes by-axial loading (static, dynamic) and it's performance is evaluated in
terms of accumulated vertical and rotational displacements, total drift and effective

contact area.

2.4.2 DEFINITION OF THE PROBLEM

Seismic motion is described by two uncorrelated horizontal components along
its principal directions 1 and 2 and oriented at an angle relative to the reference
axes x and y of the structure; 8 is defined as the seismic incident angle .
Components of the ground motion along any other set of axes, for example, along
structural axes x and y, are correlated. The principal components of ground motion
are characterized by pseudo-acceleration design spectra with identical shape: A(T,)
and yA(T,) are the design spectra for the ground motions along the major and minor
principal axes, respectively, where the spectrum intensity ratio is y<1 and T, is the
natural vibration period of a single-degree-of-freedom system.

The response quantity r that can be expressed as a linear combination of the
structural displacements. The peak value of this response due to the simultaneous

application of the two seismic components 1 and 2 depends on the incident angle and is given

by the CQC3-rule :

r(0) = { [(rx)2 + (v ry)z] cos? 0+ [(yr)? + rf] sin?6 + 2(1 — yz)rxysinecose}%

[2.19]
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where ry and r, are the peak values of r due to a single component of ground
motion, defined by the spectrum A(T,) applied first along the x- and then along the
y-direction, respectively.

The responses ri (k =x, y), are give n by the CQC-rule:

1/2

Tk = zzpijrkirkj [2.20]
i J

Where ry; is the peak response , taken with the respective algebraic sign, due
to the vibration mode i, and pjj is the modal correlation coefficient for modes
i and j. The term ry, in equation is a cross-term of the modal responses that

contributestory andry:

Txy = Zzpijrxiryj
L

The critical response r,, defined as the largest of the responses r(8) for all possible

seismic incident angles 6, is given by :

1/2
2,2 2412
- {(1 by (222) 4 -y [(B3) + rxzy} 2.22)

The critical response occurs when the incident angle is equal to the critical angle:

2lay } [2.23]

0 = HCT =0.5 tan‘l {W
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2.4.3 OVERVIEW OF COMBINATIONAL RULES

The Simplified-SRSS-rule:
According to this rule, specified in two regulatory documents [,], the combined

response is given by:

r, = (2 + 13,2)1/2 [2.25]

Note that the above equation is a special case of Equation (4), obtained by setting
v=1. We denote Equation (5) as the Simplified-SRSS-rule because it is a simplified
version of the general SRSS-rule that will be presented later.

The 30%-rule:

This rule was first developed by Rosenblueth and Contreras and is specified in
several regulatory documents [1; 5-7]. Based on the assumption that the two
horizontal components are uncorrelated Gaussian processes of equal intensity (y=1)
it gives the following equation for the combined response:

T, =max {037, + n,n + 0.3n,} [2.26]

The larger of the two estimates is to be used for design.

The 40%-rule:
Originally proposed by Newmark and adopted in various codes , this rule assumes

equal intensity (y=1) for the two horizontal components and generally is a more
conservative estimate of the combined response:

r, = max {047, + 7,7 + 047} [2.27]

The SRSS-rule:
This rule determines the Square-Root-of-the-Sum-of-the-Squares of the individual
responses considering the different intensities of the two uncorrelated horizontal

components. This rule is:

T, = max{ 2+ (yry)z , () + ry} [2.28]

Observe that Eq. 2.28 is a special case of Eq.2.19 setting 8=0° and 8=90° gives the
two estimates in Eq. 2.28.
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2.4.4 CODE PROVISIONS

When we analyze a structure, we generally apply either one assumed /
predicted or recorded horizontal component in a specific way or two components
along the two major axes of the structure, sometimes ignoring or overlooking the
potential location of the epicenter of the earthquake with respect to a specific site.
These practices calculate the loads in a conservative way, satisfying the intent of the

professional design guidelines.

INTERNATIONAL BUILDING CODE (IBC-2003) :

The conservatism may depend on the code being used and the country where
the code originates. In International Building Code (2003), several methods with
different degrees of sophistication have been suggested by including the equivalent
lateral force procedure and several types of dynamic analysis procedures (modal
response spectra analysis, linear time-history analysis, and nonlinear time-history
analysis). The code also identifies the minimum requirements that need to be
satisfied before applying a particular method.

In accordance with Article 1620.2.10 of the IBC code: “The direction of
application of seismic forces used in design shall be that which will produce the most
critical load effect in each component. The requirement will be deemed satisfied if
the design seismic forces are applied separately and independently in each of the
two orthogonal directions.” Later, in Article 1620.3.2 for the design of common
structures with various plan irregularities belonging to Seismic Design Category C and
D, IBC states that the critical direction requirement of Section 1620.2.10 will be
deemed satisfied if: “One hundred percent of the forces in one direction is added to
the 30 percent of the forces in the perpendicular direction. The combination
requiring the maximum component strength shall be used. Alternatively, the effects
of the two orthogonal directions are permitted to be combined on a square root of
the sum of the squares (SRSS) basis. When the SRSS method of combining
directional effects is used, each term computed shall be assigned the sign that will

result in the most conservative result.”
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GREEK ASEISMIC CODE (EAK-2000)

In accordance with the Greek Aseismic Code (EAK 2000, 3.5.3) for
simultaneous structural action of the horizontal seismic loads Fi along the principal
directions x, y of the building as well as that of the vertical seismic loads , the
probable extreme values A ., of any response variable A are calculated by the

relation:

Aoy = +JAZ + A2 + A% [2.29]

Where Ax, Ay, Az are the values of the said variable (with their sign) for
independent static loading of the building along the directions under

consideration, x, y and z, respectively.

The probable value Ba, simultaneous to A ., of another response variable B is
calculated by using the relation:

By = B, + :TyxBy + 2z p [2.30]

ex Aex
where Bx, By, Bz are the values of variable B (with their sign) for independent
static loading of the building along the directions under consideration, x, y and z,
respectively.
Alternatively, instead of the previous methodology, dimensioning by using the least

favorable of the following combinations of static loadings is permitted:

F =t FX iA'Fy s M.FZ [2.31]
F = i A.FX i Fy i M.FZ [2.32]
F=t AR tuF + F [2.33]

Where A = u = 0.30. In these symbolic relations, Fy, F, and F, represent the vectors
of seismic loads along directions x, y and z and F represents the “resultant” seismic

loading.

In the usual case of ignoring the third vertical component of the earthquake the

third combination is omitted and u is taken equal to 0 in the first two.
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Conventional Capacity Design New Design Philosophy
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Figure 1.1. (a) Conventional Capacity Design compared with (b) New Design Philosophy introduced in
Anastasopoulos et al. [2010].
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Figure 1.2. (a) Conventional Capacity Design compared with (b) Rocking—Isolation Design introduced in
Gelagoti et al. [2010].
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Figure 1.3. (a) A rectangular rigid block (b) a rigid 1-dof oscillator rocking on a rigid base.
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Figure 1.4. Moment rotation diagram of the rocking motion of a rigid body on a rigid base
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Figure 1.5. Rocking of a rigid footing on elastic soil (a) linear full contact phase (b) non-linear uplifting
phase [Apostolou & Gazetas, 2007].
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Figure 1.6. Moment-rotation curve of a shallow foundation with P-§ effects [Apostolou & Gazetas,
2005].
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Figure 1.7. Overturning amplification ratio for slender block under different pulses by numerical
integration of equation of motion (circles) and analytical formula (solid lines) defined by Zhang and

Makris [2001] for coefficient of restitution 0.8.
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Figure 1.8. Overturning acceleration spectra of a free standing rigid block with semi - width b = 0.32m
and semi - height h = 1.29m (a, = 0.25g, p = 2.14 rad/s , coefficient of restitution r = 0.8) subjected to five

acceleration pulses, computed by the artificial neural network [Gerolymos et al. 2005].

41



9P
Y

Figure 1.9. A flexible 1-dof oscillator rocking on a rigid base. The response is now described by the angle
of rotation 8 and the horizontal relative displacement of the mass center u.

Figure 1.10. A flexible 1-dof oscillator rocking on a compliant soil. The response of the system consists of
coupled flexural and rocking oscillations.
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Figure 1.11. Kinematic failure mechanism of shallow foundations when foundation uplift is considered
after Paolucci & Pecker [1997] .
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Figure 1.12. Three dimensional bearing capacity failure envelope of shallow foundation on sand after
Butterfield & Gottardi [1994].
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Figure 1.13. Rocking of a shear wall on strip footing : the different states of the M-theta curve under
monotonic loading [FEMA 274].
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Figure 1.14. Interaction curves in the normalized N - M plane for bearing capacity failure on rigid or
deformable soil. Decomposition of uplifting and soil - yielding mechanisms (Apostolou & Gazetas, 2007).
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Figure 1.15. Three dimensional failure envelope for VMH loading for a zero tension interface

[Gourvenec, 2007].

M ABs,

Finite Elements Analysis Results

Equation 1.8

(b)

Figure 1.16. Failure envelopes for VMH loading for zero-tension interface (a) dimensionless load space

(b) normalized load space [Gourvenec, 2007].
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Chapter 3: Methodology

3.1 PROBLEM STATEMENT

Tall structures such as bridge piers undergo combined loading (horizontal,
vertical, moment) during an earthquake event. The response of such tall slender
structures is governed by moment loading and is significantly modified when the
structure enters the rocking mode and uplifting from the supporting soil occurs. As
already mentioned, many researchers have noticed the beneficial effect of
foundation uplift and mobilization of soil bearing capacity to the overall response of
slender structures under dynamic loading.

According to Priestley (1996) the transverse dynamic behavior of bridges of
regular shape can be as a first approximation modeled by only one pier. This diploma
thesis will investigate the rocking response of a bridge pier, idealized as rigid or
flexible 1-dof oscillator with shallow foundation supported on deformable soil
medium and subjected to bi-directional loading. The bridge considered is of
moderate height (H=20m) and is resting on a quite stiff homogenous clay stratum
(Su=150 kPa ), competent enough to justify the selection of shallow foundation. The
system is allowed to uplift and due to the soil compliance possesses additional

variables are introduced:

* The horizontal displacement of the footing along the x axis &1.

* The horizontal displacement along y axis 62.

= The vertical displacement of the footing measured at its center w.
* The rocking rotation of the footing about y axis 2.

* The rocking rotation of the footing about x axis ¥1.

e —
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3.2 ANALYSIS METHODOLOGY

3.2.1 FINITE ELEMENT MODELING

Non-linear analysis of rocking and uplift response under static and dynamic
loading is implemented utilizing the ABAQUS-3D F.E. code. A lumped mass structure
with a square footing represents the bridge-pier-foundation system. Elastic linear
beam elements of circular section are utilized to model the superstructure whilst a
massless rigid foundation is obtained by a combination of solid and rigid beam
elements. The structural weight is concentrated at a mass element which represents
the bridge deck. Foundation is modeled with elastic 8nodal hexahedral continuum
elements. Soil is a homogeneous clay stratum modeled with non-linear 8nodal
hexahedral continuum elements.

The foundation is connected to the soil with special contact elements allowing
for realistic simulation of uplifting of the foundation and zero tensile capacity. The
coefficient of friction is large enough so that sliding at the soil-footing interface is
prevented. In each case material nonlinearity, emerging from the soil non-linear
behavior, and geometrical non-linearities (P-6 effects and uplifting) are taken into
account through appropriate large deformation formulation. A static step preceding
any static or dynamic analysis establishes geostatic conditions within.

The 3-dimensional finite element mesh is a square footing of width B=10 m and
equal length L. The mesh extends 3B from the edges of the footing and 2.5B beneath
the footing. This is mainly because the rocking response of the footing is of interest.
Zero-displacement boundary conditions prevent out-of- plane displacements of the
vertical boundaries, and the base of the mesh is fixed in all three coordinate
directions. Several finite element models, varying the mesh density — a sensitivity
analysis to make a trade-off between accuracy and computing time requirements.

For the analysis of earthquake response seismic excitation is imposed to the
soil medium through underlying rigid bedrock.

An implicit direct integration algorithm, incorporated in the ABAQUS code, is

utilized to compute the non-linear dynamic response of the system. With this
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technique the global equations of motion are integrated though time using the
implicit Hilbert-Hughes —Taylor operator. Equilibrium solutions within each time
increment are obtained by an iterative process applying Newton method. An
automatic incrementation scheme is also used with the general implicit dynamic
integration method. The scheme uses a a half-step residual control to ensure an
accurate dynamic solution which is the basis of the adaptive time incrementation
scheme. If the half-step residual is small the time step can be increased safely;
conversely, if the half step is large the time step is reduced. This automatic
incrementation scheme is crucial in cases when a sudden event is introduced to the

dynamic problem e.g. the foundation impacts the soil during cyclic rocking motion.

3.2.2 SOIL BEHAVIOR

The elasto-plastic soil behavior is described with Von-Mises yield criterion with
non-linear kinematic hardening and associated plastic flow rule. This constituitive
model is based on the simulation of nonlinear cyclic behavior of cohesive soils under
un-drained conditions with the behavior of ductile metals and can capture effectively
the ductile-post yield behavior of the clay studied herein.

According to the Von Mises failure criterion, the evolution of stresses is
described by the following relation:

o=0,+a [3.2.1]
where o, is the value of stress at zero plastic strain, assumed to remain constant.

The parameter a is the “backstress” which defines the kinematic evolution of the
yield surface in the stress space.

The function F defines the pressure independent yield surface:

F=f(c-a)-o, [3.2.2]
The evolution law of the model consists of two components: a non linear

kinematic hardening component, which describes the translation of the yield surface
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in the stress space (defined through the back-stress « ), and an isotropic hardening

component, which describes the change of the equivalent stress defining the size of
the yield surface o, as a function of plastic deformation. The kinematic hardening
component is defined as an additive combination of a purely kinematic term (linear
Ziegler hardening law) and a relaxation term (the recall term), which introduces the
nonlinearity. The evolution of the kinematic component of the yield stress is

described as follows:

a = CGL(O' —a)e™ — yae” [3.2.3]
0

=pl . . . . . C . . .
where, e” isthe equivalent plastic strain rate, C is the initial kinematic hardening

o
modulus (C =—=E) and y determines the rate at which the kinematic
£
y

hardening decreases with increasing plastic deformation.

In other words an initial pressure independent yield surface is inflated and
translated in the stress space through the development of plastic strains. The
evolution of the kinematic and the isotropic hardening components is illustrated in
figures for unidirectional and multi-axial loading respectively. The evolution law for
the kinematic hardening component implies that the backstress is contained within a

cylinder of radius:

1,3 a’ = \/ZE [3.2.4]
3 3y

where, a°® is the magnitude of a at saturation. Since the yield surface remains

bounded, this implies that any stress point must lie within a cylinder of radius
\/2/3(7y-
At large plastic strains, any stress point is contained within a cylinder of radius
\N2/3(a® +0°) where o°is the equivalent stress defining the size of the yield

surface at large plastic strain.

The maximum vyield stress at saturation is:
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C
o;z=;74-ob [3.2.5]

According to the Von Mises yield criterion this ultimate stress is:
o, =38, [3.2.6]

From equations 3.2.5. and 3.2.6 we have:

C

= [3.2.6]
g \/3_’Su -0,

3.2.3 PIER AND FOOTING DESIGN

The pier and footing behavior is considered elastic and is described by the
modulus of elasticity E. With respect to the pier flexibility, the modulus of elasticity is
properly adjusted in order to achieve a rigid structure or a structure with a fixed-
base natural period .

The initial step in foundations design is to supply adequate bearing capacity to
sustain static vertical loading. The minimum vertical safety for solely vertical loading
of shallow foundation bridges of moderate height and regular type is FSv=2.5.

The ultimate bearing capacity of the footing for solely vertical loading is

calculated according EC-7:

B
sc=1+027 =12

qu = (m+2) XS, Xs, =925.5 kPa

Quit = qu X B? =92.550 kPa

e —
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3.2.4 STATIC AND CYCLIC LOADING

Displacement control vertical and horizontal push-over loading is applied at the
mass center of the superstructure so that vertical and moment capacity of the soil-
foundation system are calculated.

The ultimate vertical capacity of the foundation was derived through pushover
displacement control vertical loading tests and is 91.570 kPa. The vertical load-
settlement curve is illustrated and there is a good agreement between the code
provisions and the actual case.

In order to investigate the overall rocking response of the system and achieve
different factors of safety the mass varies accordingly. A set of static analyses
applying 1-directional monotonic pushover loading is employed to evaluate the
proposed model. Subsequently the system is subjected to bi-directional monotonic
pushover loadings and is observed how the ultimate moment capacity of the system
varies when the horizontal force is applied to the mass with an incidence angle
relative to the major axes. Interaction diagrams for two-dimensional loading are
produced for various factors of safety and incidence angles.

Afterward, cyclic analyses subject the foundation to gradually increasing bi-
directional loading, in order to assess the effect of the second load component on
the accumulation of settlement and to examine the overall behavior of lightly and
heavily loaded footings (pressure distributions, mobilization of bearing capacity

mechanisms).

3.2.5 DYNAMIC LOADING

The examined system is subjected to different sequences of idealized pulse

excitations (Ricker, Harmonic, Tsang xa

wavelets ). By altering the phase between
the two components of the excitations, the effect of asynchronous bi-directional
seismic loading has been parametrically investigated, emphasizing on the influence

of the frequency content.

e —
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Real earthquake records have been employed to investigate the seismic

performance of the proposed system. In each case, the seismic excitation is applied

at the bedrock level.

RICKER WAVELETS

Ricker wavelets have a distinct advantage over cycloidal pulses in simulating
near-fault ground motion as demonstrated by Anooshehpoor et al(1999), Makris et
al (1998,1999), Mavroeidis & Papageorgiou (2003). This is attributed to the fact that
asymmetric pulses represented by Ricker wavelets can that can capture forward
directivity phenomena or contain long duration pulses (flings). Ricker pulses possess
the inherent asymmetry which is the main characteristic of most near-fault
excitations.

In this study a considerably wide range of excitation frequencies was
employed. (The high frequency Ricker-2 with an effective period of 0.3 sec and
Ricker-1 representing excitations of moderate frequency)

Pulses of higher frequency band, tend to leave rocking and overturning
response of slender blocks unaffected whereas excitations with very large dominant
periods (quite larger than the natural period of the system) practically resemble

static loading and therefore have been excluded.

REAL EARTHQUAKE RECORDS

Real earthquake accelerograms are clearly a viable option for providing input
to dynamic analysis of structures, being more realistic than spectrum-compatible
artificial records and easier to obtain than synthetic accelerograms generated from
seismological source models. The increasing availability of strong-motion
accelerograms , makes the use of real records an ever more attractive option for
defining the input to dynamic analyses in geotechnical engineering.

However guidelines on procedures for the selection of appropriate suites of
acceleration time-series for this purpose are lacking, and seismic design codes are

particularly poor in this respect. Discussing the selection criteria (matching code

e —
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design spectrum or seismological characteristics such as source, path, site effects
etc) for real earthquake records deviates from the scope of this study and the a
selection of accelerogramms has been made purely to address the significance of
the second-horizontal component. The set of records utilized in the study comprises

of moderate and low intensity earthquakes.

PRESENTATION OF RESULTS

The results of the dynamic analyses for each case are presented in terms of
acceleration, velocity, horizontal displacement , rotation as well as in terms of
response loops in the moment-rotation, moment-settlement and rotation-
settlement plane. Since analyses contain bi-axial excitation components results are
arranged in two sets a, b referring to X,Y axes respectively.

The acceleration time history at bedrock (excitation) is compared with the time
history at free field which is affected by the non-linear response of the soil stratum
and the acceleration time history generated at the lumped mass (deck level) of the
proposed system.

The amplitude of horizontal displacement at the deck level is a matter of great
importance for the response of bridges. The total horizontal component is composed
of a rotational and a structural bending component. The first is the product of the
rotation of the footing whereas the latter is the result of the flexural bending of the
pier. The time histories of the drift at the deck level are presented in terms of total
the dominant mode (rotational/ translational) of motion in the response.

Total horizontal displacement (drift), vertical settlements, rotation and
effective footing contact area time histories as well as under the foundation press
distribution diagrams for selected time increments are compared with single axial
loading cases to illustrate the effect of the second component of excitation in the

systems response.

Spari Markella Katerina, Diploma thesis 2012

54



Static Pushover



M,/ AB2Su

0.5

0.4

0.3

0.2

0.1

x=0.2

0.1

0.2

0.3

M,/ AB2 Su

0.4

0.5

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.7

0.6

0.5

0.4

0.3

0.2

0.1

by x=0.1
*
|
T T T T T :
0 0.05 0.1 0.15 0.2 0.25 0.3
M,/ AB2 Su
x=0.3
..
“
,
T T T T T ‘1
0 01 02 03 04 05 06 0.7

M,/ AB2 Su
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Chapter 5: Ricker pulse loading.

5. PRESENTATION - DISCUSSION OF RICKER LOADING RESULTS
5.1 CODE PROVISIONS

Tall structures like bridge piers are particularly vulnerable to large moments at their
base during horizontal-earthquake loading. Consequently, moment loading capacity
is the decisive parameter in their design. Seismic design codes introduce strict
limitations at the rocking response of foundations and only a small part of the

footing is allowed to uplift.

According to the Greek Aseismic Code (EAK-2000) maximum accepted eccentricity
equals to 1/3 of the footing width. Figure 5. 125 illustrates the design spectrum after
Greek Aseismic Code for the 4 site categories and highlights the spectrum that

corresponds to the studied soil profile.

For structural systems with at least the 50% of their mass concentrated to the upper
1/3 of their height the coefficient of behavior g equals 2. The system is designed for

design peak ground acceleration A= 0.24 g, which refers to Seismic loading zone lll.

The single-degree-of-freedom model of the bridge-pier-foundation is used to
calculate the seismic excitation applied at the level of the deck. This is a rational
approach since the mass and the stiffness of the pier are significantly lower of the

deck. The equivalent fixed base oscillator has the following characteristics:

H=20.0m
d =3.0m (circular section)

| = (pi*d*)/64 = 63.62 m*

E = 30*1076 kPa
K =3EI/H3 = 71.5695 kN/m
Ty = 2pi*(K/M)0.5

For the cases of earthquake loading a safety factor of SFv=5 is selected so the mass is :
M = 1.870 Mgr

Ty =0.32 sec
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5.2 THE EFFECT OF EXCITATION FREQUENCY

It is well renowned that the response of an oscillator subjected to dynamic loading is
determined by the relation between the excitation frequency and its natural
frequency. However, due to the non-linear nature of the problem the effective
period of the system is related to imposed deformations. As a result, the loading
applied to the system depends on its effective period but at the same time the

effective period of the system depends on the amplitude of distress deformation.

In the framework of purely elastic conditions, we would contend that an excitation
has a more catastrophic impact the closer its dominant frequency approaches the
systems natural frequency irrespectively of excitation intensity. However this is not
the case when the non-linear nature of the problem is accounted, as the Te/Tn ratio
alters with increasing excitation intensity and the resonance of the system moves
towards higher period bands. To explore this complex behavior the proposed system
is subjected to different excitation frequencies of varying excitation intensity (low,

moderate, high).

5.3 RICKER-2 (Te=0.3 sec)

The response of the system is illustrated for maximum accelerations amplitudes
ae(g)=0.2,0.5 0.8 infigures5.1-5.66. T he secondary excitation component is

another pulse (in the y axis) of the same frequency but combined with the primary (x

axis) under the following rules:

(A) Coinciding peak acceleration with intensity up to 30% of the peak
acceleration of the primary pulse.

(B) Coinciding peak acceleration with intensity up to 40% of the peak
acceleration of the primary pulse.

(C) Same peak acceleration but peak maxima out of phase. The secondary pulse
(y axis component) is time lagged to attain a value of 30% of the primary

acceleration when the latter reaches its peak value.

|
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(D) In phase pulses with the same peak acceleration. A rather non-realistic
combination for the case of real earthquake loading but under performance

demands perspective the worst case scenario.

= ag =0.2g (roughly elastic response)

Figures 5.1-5.24 illustrate the systems response. Moment-rotation curves show a

rather elastic behavior. The system responds faintly and remains in the linear-elastic
area as the maximum moment loading does not exceed the ultimate capacity of the
system. This is mainly attributed to the low amplitude and high frequency excitation

input.

It is to be noted that we have an amplification of the peak acceleration in the
free field. The pulse applied at the bedrock level has a peak acceleration of 0.2 g
whereas in the free field it’s value reaches 0.5 g. As far as the lumped mass is
concerned, due to the rocking response of the pier it experiences significantly lower

levels of acceleration (0.1 g).

Ax=0.2g, Ay =30% x 0.2 g (in phase)
In terms of accumulated vertical settlements, rotation and total drift the second

component seems to have practically no effect on the response.

Ax=0.2g Ay=30%Ax
w/B 0.00052 0.00055 5.77%
6 /H 0.0013 0.0013 0.00%
A eff 66.53 66.53 0.00%
& (rad) 0.00084 0.0008 -4.76%

At the time increment when maximum uplift occurs the effective contact area is
66.5% of the total practically coinciding with the single direction excitation case.
However the distribution of contact presses (figure 5.4) shows an accumulation of
stresses at the corner area whereas for the single direction excitation case the

pressure diagram is symmetrical to the y axis.

|
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The orbit- time history (figure 5.5) illustrates that the motion of the center of mass

is along the a straight line with tan$=0.3 which is expected as long as the excitation

components are in phase and the ratio Ay/Ax=0.3 is constant.

Ax=0.2g, Ay =40% x 0.2 g ( in phase)

In terms of accumulated vertical settlement, rotation and total drift (figure 5.6)

there is a small amplification according to the following chart:

Ax=0.2g Ay=40%Ax
w/B 0.00052 0.000623 19.81%
() 0.0013 0.0015 15.38%
A eff 66.53 59.09 -11.18%
& (rad) 0.00084 0.001 19.05%

At the time increment when maximum uplift occurs the effective contact area is 59%
of the total practically coinciding with the single direction excitation case. However
the distribution of contact presses (figure 5.10) shows an accumulation of stresses
at the corner area whereas for the single direction excitation case the pressure
diagram is symmetrical to the y axis.

The orbit- time history (figure 5.11) illustrates that the motion of the center of mass
is along the a straight line with tan$=0.4 which is expected as long as the excitation

components are in phase and the ratio Ay/Ax=0.4 is constant.

Ax=0.2g, Ay = 0.2 g ( out of phase)

Figure 5.18 and the following chart show the deterioration in terms of vertical
settlement and effective contact area when the peak acceleration of the x-axis
component is followed by a peak of the same intensity along the y-axis compared to

the single direction excitation scenario:

Ax=0.2g asy:Zh?c;f\ius
w/B 0.00052 0.000832 60.00%
6 /H 0.0013 0.0012 -7.69%
A eff 66.53 48.35 -27.33%
& (rad) 0.00084 0.0009 7.14%
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The orbit- time history (figure 5.11) illustrates that the motion of the center of mass
follows no certain pattern and the vector of the resultant force is constantly
changing which is expected as long as the excitation components are out of phase

and ratio Ay/Ax is not constant in time.

Ax=0.2g,Ay=0.2g (in phase)

Figure 5.24 illustrates the effect of the concurring pulse of the same maximum along
the y-axis. Counter institutively the systems performance in terms of total drift,
rotation and effective contact area has slightly deteriorated in comparison with the

previous case.

Ay=0.2
Ax=0.2g inyphasg
w/B 0.00052 0.00073 40.38%
6/H 0.0013 0.0013 0.00%
A eff 66.53 69.01 3.73%
& (rad) 0.00084 0.00086 2.38%

The orbit- time history (figure 5.23) illustrates that the motion of the center of mass
is along the a straight line with tand=1 which is expected as long as the excitation

components are in phase and the ratio Ay/Ax=1 is constant.

= ae =0.5g (moderate amplitude)

In general upon unloading, after a small excursion in the descending branch of the
monotonic curve, the path follows with small deviations the original monotonic
curve in the moment-rotation plane. This is evidence of reversible behavior the

result of nonlinearly elastic uplift response.

There is a significant amplification of the peak acceleration in the free field. The
pulse applied at the bedrock level has a peak acceleration of 0.5 g whereas in the
free field it’s value reaches 0.8 g. As far as the lumped mass is concerned, due to the
rocking response of the pier it experiences significantly lower levels of acceleration

(0.18 g) .
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Ax=0.5g, Ay =30% x 0.5 g ( in phase)

In terms of accumulated vertical settlements, rotation and effective contact area the
second component seems to have a small effect on the response about 10%
deterioration ( figure 5.30). However in terms of total drift there is no change

compared to the single component case.

Ax=0.5g Ay=30%Ax
w/B 0.00101 0.00112 10.89%
6/H 0.00218 0.0022 0.92%
A eff 59.09 53.31 -9.78%
& (rad) 0.0022 0.002 -9.09%

In the distribution of contact presses (figure 5.28) there is a more intense
accumulation of stresses at the corner with the contact pressures reaching the value
of 500 k Pa when maximum uplift occurs.

The orbit- time history (figure 5.29) illustrates that the motion of the center of mass
is along the a straight line with tan$=0.3 which is expected as long as the excitation

components are in phase and the ratio Ay/Ax=0.3 is constant.

Ax=0.5g, Ay =40% x 0.5 g ( in phase)

Figure 5.36 and the following chart illustrate the effect of the this second horizontal

component:
Ax=0.5g Ay=40%Ax
w/B 0.00101 0.00118 16.83%
6 0.00218 0.0019 -12.84%
A eff 59.09 45.87 -22.37%
& (rad) 0.0022 0.0025 13.64%

The vertical settlement and the rotation are amplified about 15% as well as the
effective contact area that is reduced up to 22% compared to the single direction

case.
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Ax=0.5g, Ay = 0.5 g (in phase)
According to figure 5.48 and the following chart the same intensity synchronous
pulse greatly increases the permanent vertical settlement up to 30% compared to

the single direction case. On the other hand it seems to reduce the demand in term

of total drift.

MOSE | iphase
w/B 0.00101 0.0013 28.71%
5 /H 0.00218 0.0011 -49.54%
A eff 59.09 45.04 -23.78%
& (rad) 0.0022 0.0022 0.00%

Ax=0.5g, Ay = 0.5 g ( out of phase)

Figure 5.42 reveals that this scenario is vividly the most detrimental in terms of
induced settlements since the vertical settlement w is amplified about 60% ( single

component case).

Ay=0.2
Ax=0.5g asynZhronius
w/B 0.00101 0.0016 58.42%
6/H 0.00218 0.0011 -49.54%
A eff 59.09 52.48 -11.19%
9 (rad) | 0.0022 0.0024 9.09%

In contrast, the existence of a same intensity pulse acting out of phase along the y-
axis , seems to play a beneficial role in terms of effective contact area. According to
figure 5.41 the orbit of the centre of mass follows a complex path with no certain
pattern restituting contact with the supporting soil as suggested by the effective

contact area value.

|
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Chapter 5: Ricker pulse loading.

= Qe =0.8g (high amplitude)

Figures 5.43, 5.55 ,5.63 demonstrate a significant amplification of the peak
acceleration in the free field. The pulse applied at the bedrock level has a peak
acceleration of 0.8 g whereas in the free field it’s value reaches 1.1 g. Whereas the
lumped mass experiences significantly lower levels of acceleration (0.13 g) . This is
attributed to the fact that the rocking response prevails acting as an isolation

mechanism.

In the moment-rotation plane the path noticeably deviates from the monotonic
curve, a symptom of inelastic behavior, but due to the symmetry of the applied pulse

the systems ends with small permanent rotation.

Ax=0.8g, Ay =30% x 0.8 g ( in phase)

Figure 5.54 shows that, in this case, the performance of the systems is slightly

affected by the second horizontal component.

Ax=0.8g Ay=30%Ax
w/B 0.0014 0.0015 7.14%
6 /H 0.0036 0.0038 5.56%
A eff 45.04 39.26 -12.83%
& (rad) 0.0034 0.0038 11.76%

Worthy of note is that although the uplift of the foundation is more extended at
certain increments overall the footing exhibits larger contact area than the single

direction case.

Ax=0.8g, Ay =40% x 0.8 g ( in phase)

According to data there is a small deterioration about 10% in terms of vertical

settlement ,total drift and maximum rotation.

Ax=0.8g Ay=40%Ax
w/B 0.0014 0.00155 10.71%
() 0.0036 0.0039 8.33%
A eff 45.04 41.74 -7.33%
& (rad) 0.0034 0.0037 8.82%
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Chapter 5: Ricker pulse loading.

Again the existence of the second horizontal component seems to have a beneficial

effect restoring contact with the supporting soil.

Ax=0.8g, Ay =75% x 0.8 g ( in phase)

Figure 5.66 suggests that, although we have a case of moderately high levels of

acceleration along both axes the effect is not as detrimental as expected.

Ax=0.8g Ay=75%Ax
w/B 0.0014 0.00158 12.86%
6 /H 0.0036 0.0026 -27.78%
A eff 45.04 45.87 1.84%
& (rad) 0.0034 0.0024 -29.41%

The maximum rotation and total drift (closely intertwined since the total drift is
mainly attributed to the rotation of the pier) are reduced up to 30%. Whereas the
effective contact area is at all time increments has larger values than the single

direction case.

5.4 RICKER-1 (TE =0.6 sec)

The response of the system for maximum accelerations amplitudes a¢(g) =0.2,0.5,

0.8 isillustrated in figures 5.67-5.124.

The frequency of this excitation is closer to the natural period of the system. Based
to that concept it is expected that effect of Ricker 1 on the response of the system

will be more intense.

= ag =0.2g (roughly elastic response)

Ax =0.2g, Ay =30% x 0.2 g ( in phase)
Figures 5.67, 5.73, 5.73 ,5.79 show that the lumped mass experiences higher levels
of acceleration (0.19g ) compared to Ricker2 loading cases. The response of the

system is illustrated in figures 5.67-5.72.
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Chapter 5: Ricker pulse loading.

Ax=0.2g Ay=30%AXx
w/B 0.0008 0.0007 -12.50%
6 /H 0.0048 0.0049 2.08%
A eff 45.04 40.08 -11.01%
J (rad) 0.0048 0.0047 -2.08%

The vertical settlement is reduced by 12% as well as the maximum total drift.
The orbit- time history (figure 5.76) illustrates that the motion of the center of mass
is along the a straight line with tan$=0.3 which is expected as long as the excitation

components are in phase and the ratio Ay/Ax=0.3 is constant.

Ax=0.2g,Ay =40% x 0.2 g (in phase)

The effect of the second excitation component proves to be beneficial since it

reduces the vertical settlement, maximum drift and maximum rotation.

Ax=0.2g Ay=40%Ax
w/B 0.0008 0.00078 -2.50%
6 0.0048 0.0046 -4.17%
A eff 45.04 43.39 -3.66%
9 (rad) 0.0048 0.0045 -6.25%

Ax=0.2g,Ay=0.2 g (in phase)
me02g | o0

w/B 0.0008 0.0011 37.50%
6/H 0.0048 0.0045 -6.25%
A eff 45.04 40.08 -11.01%
2 (rad) 0.0048 0.0047 -2.08%

Ax=0.2g, Ay =0.2 g ( out of phase)

For the case of Rickerl pulses the existence of an out of phase low amplitude pulse
along the y-axis seems to greatly increase vertical settlement w.

Ax=0.2g Ay=0.2g
asynchronous
w/B 0.0008 0.0017 112.50%
6/H 0.0048 0.0042 -12.50%
A eff 45.04 42.56 -5.51%
& (rad) 0.0048 0.004 -16.67%
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= a;g =0.5g (moderate amplitude)

Ax=0.5g, Ay =30% x 0.5 g ( in phase)

There is no significant change. The systems performance in terms of vertical

settlement, maximum rotation is about the same with the single direction case.

See figure 5.94.

Chapter 5: Ricker pulse loading.

Ax=0.5g Ay=30%Ax
w/B 0.00189 0.0019 0.53%
S5 /H 0.0084 0.0083 -1.19%
A eff 37.6 38.43 2.21%
& (rad) 0.0086 0.0085 -1.16%

Ax=0.5g, Ay =40% x 0.5 g ( in phase)

Figure 5.100 shows that also in this case there is no significant change.

Ax=0.5g Ay=40%Ax
w/B 0.00189 0.00172 -8.99%
[} 0.0084 0.0076 -9.52%
A eff 37.6 35.95 -4.39%
& (rad) 0.0086 0.0078 -9.30%
Ax=0.5g, Ay = 0.5 g (in phase)
Ay=0.5
Ax=0.5g inyphasg
w/B 0.00189 0.0019 0.53%
6/H 0.0084 0.0084 0.00%
A eff 37.6 35.14 -6.54%
& (rad) 0.0086 0.0086 0.00%

Ax=0.5g, Ay = 0.5 g ( out of phase)

Figure 5.106 illustrates a significant deterioration in terms of vertical settlement. The

effective contact area at the time when maximum uplift occurs is slightly reduced.

Although maximum rotation and drift reach the values of single direction case

Ax=0.5g Ay=0.2g
asynchronous
w/B 0.00189 0.00248 31.22%
6 /H 0.0084 0.0074 -11.90%
A eff 37.6 35.12 -6.60%
& (rad) 0.0086 0.008 -6.98%

overall during the excitation tend to hold much lower values.
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Chapter 5: Ricker pulse loading.

5.6 OVERVIEW OF RESPONSE TO RICKER PULSES IN VIEW OF
PERMANENT DEFORMATIONS.

Excitation with Ricker pulses triggers the rocking regime of the structure’s response.
As the footing is allowed to uplift only a small portion of it remains in contact with
the resting soil. That results in a significant increase of pressures in the remaining
contact area and leads to plastic soil deformations. So even when the direction of
the horizontal acceleration is reversed and the footing rotates back to it’s initial
position the contact with the supporting soil is never fully restituted.

Another significant aspect of Ricker loading is the accumulation of settlements that is

going to be thoroughly examined for all amplitudes hereafter.

Ricker 1 ( T:=0.6 sec)

= az;=02g

Ay=0.2g Ay=0.2g

- — 0, — 0,
Ax=0.2g | Ay=30%Ax | Ay=40%Ax | phase | asynchronous

‘ w/B 0.0008 0.0007 0.00078 0.0011 0.0017
0.001

30%
0.0005 - —40%

—— OUT OF PHASE
w/B 0 - — IN PHASE

-0.0005
-0.001 -
-0.0015 -
-0.002 : . . . .
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Chapter 5: Ricker pulse loading.

= ag=05¢g

Ay=0.5g Ay=0.2g

Ax=0.5g | Ay=30%Ax | Ay=40%Ax in phase asynchronous

| w/B 0.00189 0.0019 0.00172 0.0019 0.00248

0.002

0.001 -

w/B 0 -

-0.001

-0.002 A

-0.003 T T T T T T

= a;=08¢g

Ax=0.8g Ay=30%Ax Ay=40%Ax

| w/B 0.0027 0.0022 0.0022

0.003
30%
0.002 A —40%

0.001 A

-0.001 A

-0.002 A

‘0003 T T T T T

o
=
N
w
IS
wn
o))

|
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Figure 5.1. Seismic excitation in both directions, Ricker 2 A, =0.2gand A, =30% x 0.2 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.2. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, =30% x 0.2 g :

(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.3. Seismic excitation in both directions, A, =0.2 gand A, =30% x 0.2 g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.4. Seismic excitation in both directions, Ricker 2 A, = 0.2 gand A, = 30% x 0.2 g :
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.5 a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.6. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A,=30% x 0.2 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.7. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, =40% x 0.2 g:
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time

histories of lumped mass.
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Figure 5.8. Seismic excitation in both directions, Ricker 2 A, =0.2gandA,=0.2 g
asynchronous peaks:
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.9. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, =40% x 0.2 g :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.10. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A,=40% x 0.2 g :
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.11. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.12. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, =40% x 0.2 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.13. Seismic excitation in both directions, Ricker 2A, =0.2 gand A = 0.2 g out
of phase: (a) acceleration time histories of bedrock excitation along the x axis (left)
and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)
acceleration time histories of lumped mass.
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Figure 5.14. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, = 0.2 g out of
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.15. Seismic excitation in both directions, Ricker 2 A, =0.2gand A ,=0.2 g out of

phase:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.16. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A,=0.2 g out of phase :
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for exitation in a) one direction (left) b) both directions (right) .
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Figure 5.17. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.18. Seismic excitation in both directions, Ricker 2 A, =0.2 gand A, = 0.2 g out of phase
and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.19. Seismic excitation in both directions, Ricker 2 A, =0.2gandA,=0.2 gin
phase: (a) acceleration time histories of bedrock excitation along the x axis (left) and

the y axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration
time histories of lumped mass.
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Figure 5.20. Seismic excitation in both directions, Ricker 2 A, =0.2gand A, =0.2 g in phase:
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.21. Seismic excitation in both directions, Ricker 2A, =0.2gand A, =0.2 g in phase:
(a)Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)

velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.22. Seismic excitation in both directions, Ricker 2 A, = 0.2 gand A = 0.2 g in phase
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.23. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.24. Seismic excitation in both directions, Ricker 2A, =0.2 gand A, = 0.2 g in phase and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.25. Seismic excitation in both directions, Ricker 2 A, =0.5gand A,=30% x 0.5 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.26. Seismic excitation in both directions, Ricker 2A, =0.5gand A, =30% x 0.5 g :
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.27. Seismic excitation in both directions, Ricker 2 A, =0.5gandA,=30x0.5g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.28. Seismic excitation in both directions, Ricker 2 A, = 0.5 g and A, =30% x 0.5 g:
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.29. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.30. Seismic excitation in both directions, Ricker 2 A, =0.5 gand A, = 30% x 0.5 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.31. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, =40% x0.5 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.32. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, =40% x0.5 g
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.33. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, =40% x0.5 g :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.34. Seismic excitation in both directions, Ricker 2 A, =0.5 gand A, =40% x 0.5 g :
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Figure 5.35. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.36. Seismic excitation in both directions, Ricker 2 A, =0.5 g and A, =40% x 0.5 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.37. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, = 0.5 g out of
phase : (a) acceleration time histories of bedrock excitation along the x axis (left) and the y
axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.38. Seismic excitation in both directions, Ricker 2 A, =0.2gand A ,=0.2 g out of

phase :
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.39. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, = 0.5 g out of

phase:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.40. Seismic excitation in both directions, Ricker 2 A, = 0.5 g and A, = 0.5 g out of
phase: Distribution of pressures under the footing at the time increment when the maximum
uplift occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.41. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.42. Seismic excitation in both directions, Ricker 2 A, =0.5 gand A, = 0.5 g out of phase
and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)

109



X — axis Y — axis

1 1
0.5 0.5 -
a:(g) 0 1 0 -
-0.5 1 -0.5 1
(a)
'1 T T T T T -1 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (sec) t (sec)
1 1
0.5 1 0.5 1
a(g) o J 0 J\
|
-0.5 A -0.5 A
(b)
1 T T T T T '1 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (sec) t (sec)
0.2 0.2
0.1 A 0.1 T
am (g) O 7 O T
0.1 A -0.1 1
(c)
-0.2 1 T T T T _0.2 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (sec) t (sec)

Figure 5.43. Seismic excitation in both directions, Ricker 2 A, =0.5gandA,=0.5gin
phase: (a) acceleration time histories of bedrock excitation along the x axis (left) and the y
axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.44. Seismic excitation in both directions, Ricker 2 A, =0.5gand A, = 0.5 g in phase:
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.45. Seismic excitation in both directions, Ricker 2 A, = 0.5g and A, = 0.5 g in phase:
(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.46. Seismic excitation in both directions, Ricker 1 A, =0.5gand A =0.5g in phase:
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.47. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.48. Seismic excitation in both directions, Ricker 2 A, =0.5 gand A, = 0.5 g in phase and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.49. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A, =30% x 0.8 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.50. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A,=30% x 0.8 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;

(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.51. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A,=30% x 0.8 g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.54. Seismic excitation in both directions, Ricker 2 A, = 0.8 gand A, =30% x 0.8 g and
comparison with the single direction case.
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Figure 5.55. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A,=40% x 0.8 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.56. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A,=40% x 0.8 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;

(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.57. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A,=40% x 0.8 g :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.58. Seismic excitation in both directions, Ricker 2 A, = 0.8 g and A, = 40% x 0.8 g :
Distribution of pressures under the footing at the time increment when the maximum uplift
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Figure 5.60. Seismic excitation in both directions, Ricker 2A, =0.8 gand A, = 40% x 0.8 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.61. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A, =75% x0.8 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.62. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A, =75% x 0.8 g :
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.63. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A, =75% x 0.8 g :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.64. Seismic excitation in both directions, Ricker 2 A, = 0.8 g and A, =75% x 0.8 g :
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.65. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.66. Seismic excitation in both directions, Ricker 2 A, =0.8 gand A, =75% x 0.8 g and

comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.67. Seismic excitation in both directions, Ricker 1 A, =0.2gand A, =30%x0.2 g:
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories
of lumped mass.
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Figure 5.68. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=30%x0.2 g:
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.69. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=30%x0.2 g:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.70. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=30%x0.2 g:

Distribution of pressures under the footing at the time increment when the maximum uplift

occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.71. a) Orbit of center of mass in the X-Y plane.
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Figure 5.72. Seismic excitation in both directions, Ricker 1 A, =0.2 gand A, =30% x 0.2 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.73. Seismic excitation in both directions, A, =0.2 gand A, = 40% x 0.2 g: (a)
acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.74. Seismic excitation in both directions, A, =0.2 gand A = 40% x 0.2 g:
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.75. Seismic excitation in both directions, A, =0.2 gand A = 40% x 0.2 g:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.76. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=30%x0.2 g:
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.78. Seismic excitation in both directions, A, = 0.2 g and A, =40% x 0.2 g and comparison
with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.79. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=0.2g
asynchronous : (a) acceleration time histories of bedrock excitation along the x axis
(left) and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)

acceleration time histories of lumped mass.

140



X - axis
0.6
0.3 - ]
M/AB2Su 0 -
0.3 - /
\/ (a)
_0.6 T T T
-0.02 -0.01 0 0.01 0.02
Rotation ( rad)
0.03
0.02 -
w/B  0.01 -
0.00 - —
(b)
-0.01 T T r
-0.02 -0.01 0 0.01 0.02
Rotation ( rad)
0.002
w/B 04 = e --------
-0.002 1
(c)
-0.004 . . .
-1 0.5 0 0.5 1
M/AB2Su

Figure 5.80. Seismic excitation in both directions, A, =0.2 gand A, = 0.2 g asynchronous :

Y — axis

4

2.02

-0.01 0.00 0.01

Rotation ( rad)

0.02

-0.02

-0.01 0 0.01
Rotation ( rad)

0.02

S ¥ A ——

-0.5 0 0.5
M/AB?Su

(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.81. Seismic excitation in both directions, A, =0.2 gand A, = 0.2 g asynchronous :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.16. Seismic excitation in both directions, Ricker 1 A, = 0.2 g and A, = 0.2 g
asynchronous : Distribution of pressures under the footing at the time increment when the
maximum uplift occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.17. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.82. Seismic excitation in both directions, A, = 0.2 gand A, = 0.2 g and comparison with
the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.83. Seismic excitation in both directions, Ricker 1 A, =0.2gandA,=0.2g
synchronous peaks: (a) acceleration time histories of bedrock excitation along the x
axis (left) and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)

acceleration time histories of lumped mass.
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Figure 5.84. Seismic excitation in both directions, A, = 0.2 gand A, = 0.2 g synchronous peaks :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.85. Seismic excitation in both directions, A, =0.2 gand A = 0.2 g synchronous :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.88. Seismic excitation in both directions, A, = 0.2 g and A, = 0.2 g synchronous peaks and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.89. Seismic excitation in both directions, Ricker 1 A,=0.5 g and A, =30%x 0.5
g: (a) acceleration time histories of bedrock excitation along the x axis (left) and the y
axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.90. Seismic excitation in both directions, A, = 0.5 gand A =30%x 0.5 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.91. Seismic excitation in both directions, A, = 0.5 g and A, =30%x 0.5 g:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.92. Seismic excitation in both directions, Ricker 1 A, = 0.5 g and A, =30%x 0.5 g
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.93. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.94. Seismic excitation in both directions, Ricker 1 A, =0.5 gand A, =30% x 0.5 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.95. Seismic excitation in both directions, Ricker 1 A, =0.5 g and A, =40%x 0.5
g : (a) acceleration time histories of bedrock excitation along the x axis (left) and the y
axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.96. Seismic excitation in both directions, A, =0.5 gand A, =40% x 0.5 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.97. Seismic excitation in both directions, A, = 0.5 gand A = 40% x 0.5 g:

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .

cm

20.0

10.0

0.0

-10.0

-20.0

-20.0

-10.0

0.0

10.0

20.0

Horizontal displacement (Y) :cm

MNm

Moment (Y)

100

50

-100

-100

Figure 5.99. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.

-50 0

50

Moment (X) : MNm

100

158



0.002 0.01

(a) (b)
0.001 A 0.005
w/B 0 A
) i
-0.001 - (rad)
-0.005 -
-0.002
_0-003 1 T T T T -0.01 T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (sec) t (sec)
2%
100
© (d)
e 0, -
© 80 1%
)
(8]
£E
c € g0
S g §/H A
e
2 40 1
o 1% A
£ 20
(c)
O T T T T T '2% T T T T T
0 1 2 3 4 5 6 0 1 2 3 4 5 6
t (sec) t (sec)

Figure 5.100. Seismic excitation in both directions, Ricker 1 A, =0.5 gand A, = 40% x 0.5 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.101. Seismic excitation in both directions, Ricker 1 A, =0.5gandA,=0.5g
asynchronous : (a) acceleration time histories of bedrock excitation along the x axis
(left) and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)

acceleration time histories of lumped mass.
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.103. Seismic excitation in both directions, A, = 0.5 gand A = 0.5 g asynchronous :
(a)Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)

162



RICKER 1 Ax=0.5g , Ay=0 g RICKER 1 Ax=0.5g , Ay=0.5 g asynchronous

-

100 R — 0
. m— 200 g = 500
o = 300 < = 1000
3 == 400 lal:d = 1500
2 = 500 = == 2000
o= — 200 2 = 2500
7] == 700 ] === 3000
] o == 3500
4 o
o " —

Q

5 o] P4
< © = &
= £ z &
P o (@] Q
o 5] ©
(@) o

o

>—

X coordinates

Y COORDINATES
o

Y COORDINATES

. 0

I 500
I 1000
S 1500
[ 2000
[T 2500

-4 -2 0 2 4
X COORDINATES

-4 2 0 2 4

X COORDINATES

Figure 5.104. Seismic excitation in both directions, Ricker 1 A, = 05 g and A, = 05 g
asynchronous : Distribution of pressures under the footing at the time increment when the
maximum uplift occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.105. a) Orbit of center of mass in the X-Y plane.
b) Orbit in the M, —M, plane.
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Figure 5.106. Seismic excitation in both directions, Ricker 1 A, =0.5gandA =0.5g
asynchronous and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.107. Seismic excitation in both directions, Ricker 1 A, =0.5gandA,=0.5g
asynchronous : (a) acceleration time histories of bedrock excitation along the x axis
(left) and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)

acceleration time histories of lumped mass.
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Figure 5.108. Seismic excitation in both directions, A, = 0.5 gand A = 0.5 g asynchronous :
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.109. Seismic excitation in both directions, A, = 0.5 gand A = 0.5 g asynchronous :
(a)Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.110. Seismic excitation in both directions, Ricker 1 A, = 05 g and A, = 05 g
asynchronous : Distribution of pressures under the footing at the time increment when the
maximum uplift occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.112. Seismic excitation in both directions, A, = 0.5 g and A, = 0.5 g asynchronous and

comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions

and grey line single direction excitation)
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Figure 5.113. Seismic excitation in both directions, Ricker 1 A, =0.8 g and A, =30% x 0.8
g: (a) acceleration time histories of bedrock excitation along the x axis (left) and the y
axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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Figure 5.114. Seismic excitation in both directions, A, =0.8 gand A =30% x 0.8 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.115. Seismic excitation in both directions, A, =0.8 gand A, =30% x 0.8 g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.116. Seismic excitation in both directions, Ricker 1 A, = 0.8 g and A, =30% x 0.8 g :

Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.118. Seismic excitation in both directions, Ricker 1 A, =0.8 gand A, =30% x 0.8 g and
comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 5.119. Seismic excitation in both directions, Ricker 1 A, =0.8 gand A, =40% x 0.8 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time histories

of lumped mass.
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Figure 5.120. Seismic excitation in both directions, A, =0.8 gand A =40% x 0.8 g :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 5.121. Seismic excitation in both directions, A, =0.8 gand A =40% x 0.8 g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 5.123. a) Orbit of center of mass in the X-Y plane.
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Figure 5.122. Seismic excitation in both directions, Ricker 1 A, =0.8 gand A =40% x 0.8 g:
Distribution of pressures under the footing at the time increment when the maximum uplift
occurs for excitation in a) one direction (left) b) both directions (right) .
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Figure 5.124. Seismic excitation in both directions, Ricker 1 A, = 0.8 gand A, =40% x 0.8 g and

comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions

and grey line single direction excitation)
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Figure 6.1. Harmonic excitation in both directions, sin02t A, =0.2gandA,=0.2g
phase difference /2 (5 cycles) : (a) acceleration time histories of bedrock excitation
along the x axis (left) and the y axis (right) ; (b) acceleration time histories at the free

field ; and (c) acceleration time histories of lumped mass.
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Figure 6.2. Harmonic excitation in both directions, sin02t (5 cycles) A,=0.2gandA =0.2g
phase difference /2 :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 6.3. Harmonic excitation in both directions, sin02t A, =0.2 gand A, = 0.2 g phase

difference m/2 (5 cycles) :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 6.6. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.2gand A,=0.2 g time
lag T/4 and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 6.7. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.2gand A, =0.2g
phase difference m/3 and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 6.8. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.2gand A, =0.2g
phase difference /4 and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 6.9. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.2gandA,=0.2 g
with phase difference. Time histories of (a) Effective contact area ; (d) Vertical settlement
normalized to width.
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Figure 6.10. Harmonic excitation in both directions, sin02 (5 cycles) A,=0.2gand A,
= 0.2 g phase difference /4 : (a) acceleration time histories of bedrock excitation
along the x axis (left) and the y axis (right) ; (b) acceleration time histories at the free
field ; and (c) acceleration time histories of lumped mass.
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Figure 6.11. Harmonic excitation in both directions, sin02t (5 cycles) A, = 0.5 g and A,=05g
phase difference n/4 :
(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 6.12. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.5gand A, =0.5g

phase difference /4

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Green line stands for free field motion and red line for lumped mass)
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Figure 6.15. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.5gand A, =05g
phase difference /4 and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 6.16. Harmonic excitation in both directions, sin02t (5 cycles) A, =0.5gand A, =05g
phase difference /3 and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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Figure 6.17. Harmonic excitation in both directions, sin02 A, = 0.5 g and A, = 0.5 g phase
difference m/2 (5 cycles) and comparison with the single direction case.

Time histories of (a) Vertical settlement (b) Rotation ; (c) Effective contact area time ; (d)
horizontal displacement normalized to height. (Black line represents excitation in both directions
and grey line single direction excitation)
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g with phase difference. Time histories of (a) Effective contact area ; (d) Vertical settlement
normalized to width.

194



Harmonic Wavelets Loading



0.25 0.25

02 - 0.2 -
015 - 015 1 |
0.1 - 01 -
w 005 - 0.05 -
w 0 A 0 -
©
-0.05 -0.05 -
01 01
015 - 0.15 -
-0.2 4 (a) 0.2 + (b)
-I:l25 T T T T T -025 T T T T T
0 1 2 3 4 5 5 0 1 2 3 4 5
t:sec t:sec

Figure 5.1:. Acceleration time histories of bedrock excitation along (a) x axis, (b) y axis .
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Figure 7.3 Acceleration time histories of lumped mass (bridge deck) along (a) x axis, (b)y axis.
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Figure 7.12 Acceleration time histories of lumped mass (bridge deck) along (a) x axis, (b)y axis.
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Figure 7.14 Normalized vertical settlement versus rotation loops n (a) X-Z plane, (b) Y-Z plane.. (Light blue
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Figure 7.16: Velocity time histories of bedrock excitation along (a) x axis, (b) y axis . ( black line represents
bedrock, green line free field and red line the bridge deck)
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Figure 7.22: Velocity time histories of bedrock excitation along (a) x axis, (b) y axis . ( black line represents
bedrock, green line free field and red line the bridge deck)
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Figure 8.1. Seismic excitation in both directions, Tsang2 A, =0.2gandA,=0.2 g
asynchronous : (a) acceleration time histories of bedrock excitation along the x axis
(left) and the y axis (right) ; (b) acceleration time histories at the free field ; and (c)
acceleration time histories of lumped mass.
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Figure 8.2. Seismic excitation in both directions, Tsang2 A, =0.2gandA,=0.2 g

asynchronous :

(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 8.3. Seismic excitation in both directions, Tsang 2 A, =0.2gand A =0.2 g
asynchronous :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Grey line stands for free field motion and red line for lumped mass)
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Figure 8.4. Seismic excitation in both directions, Tsang2 A, =0.2gandA,=0.2 g

synchronous : (a) acceleration time histories of bedrock excitation along the x axis
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acceleration time histories of lumped mass.
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Figure 8.5. Seismic excitation in both directions, Tsang2 A, =0.2gandA,=0.2 g
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(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 8.6. Seismic excitation in both directions, Tsang2 A, =0.2gandA,=0.2 g
synchronous :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Grey line stands for free field motion and red line for lumped mass)
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Figure 8.7. Seismic excitation in both directions, Tsang 2 A, =0.4gand A, =30% x 0.4 g :
(a) acceleration time histories of bedrock excitation along the x axis (left) and the y axis
(right) ; (b) acceleration time histories at the free field ; and (c) acceleration time
histories of lumped mass.
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(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 8.9. Seismic excitation in both directions, Tsang2 A, =0.4gand A, =30%x0.4 g :

(a) Horizontal displacement normalized to height time histories along the x axis (left) and the
y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Grey line stands for free field motion and red line for lumped mass)
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Figure 8.10. Seismic excitation in both directions, Tsang2 A, =0.4gand A, =40%x 0.4 g
asynchronous : (a) acceleration time histories of bedrock excitation along the x axis (left)
and the y axis (right) ; (b) acceleration time histories at the free field ; and (c) acceleration
time histories of lumped mass.
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(a) Normalized moment versus rotation along the x axis (left) and the y axis (right) ;
(b) Normalized to width vertical settlement versus rotation ; and

(c) Normalized vertical settlement to moment along the x axis (left) and the y axis (right) .
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Figure 8.12. Seismic excitation in both directions, Tsang 2 A, =0.2gand A =40% x 0.2 g
asynchronous :
(a) Horizontal displacement normalized to height time histories along the x axis (left) and
the y axis (right) ; (b) rotation time histories along the x axis (left) and the y axis (right) ; (c)
velocity time histories (Grey line stands for free field motion and red line for lumped mass)
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