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ABSTRACT 

 
This study deals with the effects of realistic waves (called as “irregular”) on ship 

stability in beam seas and it is consisted of two parts: 

The purpose of the first part is to make an introduction to the principal theory of 

wave group modeling. The employed theory is Paolo Boccotti’s “Quasi-Determinism theory” 

and it is presented to the appropriate and sufficient for the purposes of this thesis extent. In 

this theory the most probable non regular (this term can be considered as equivalent to the 

potentially more widely used one: “non harmonic”) waveform is modeled when the sea 

state conditions are defined. In the first formulation of the theory the most probable 

waveform is developed if a large crest occurs, whilst in the second one when a large crest-

to-trough height arises. Because of the fact that Boccotti’s developed theory is exact to the 

first order in a Stokes expansion, the second-order corrections according to the studies and 

research of Felice Arena are also displayed. In the end, extended applications of the theory 

are presented and critical observations are either made or verified. At the end of this part, 

all the necessary conclusions are outlined and the essential background so as to proceed in 

further research concerning ship stability is finally obtained. 

In the second part, the Quasi-Determinism theory, with all the implied 

consequences, is used to establish a solid mathematical model concerning ship rolling in 

beam seas. In this deterministic part of the analysis, ship’s correspondence to irregular 

excitation is examined and compared to the regular one. Wave groups, regular or not, 

resulting in critical ship inclination according to the “Weather Criterion” are identified and 

noted as “critical”. Moreover, two different probabilistic approaches for encountering 

critical wave groups are introduced. In the first method the waves constituting the wave 

group are treated as a Markov Chain sequence (“Wave Group theory”), while the second 

one deals with the probability of occurrence for the central wave of the group (“Central 

Wave theory”). The latter probabilistic methodology is based on a corollary of the Quasi-

Determinism theory presented in Part  . Eventually, after the probabilistic background of 

this study is obtained, the final probability rate of ship instability is calculated. The final 

outcome of this thesis is the recommendation of a new modeling method, regarding the 

phenomenon of ship rolling in a more realistic and applicable way. 
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CHAPTER  :  
 

INTRODUCTION  
 

In the current chapter a brief introduction is made to the basic concepts and the 

structural chapters of this thesis. 

With the growth of maritime transportations naval society has to face more complex 

problems than ever before. It is an indisputable fact that the ship’s stability is strongly 

connected with the safety level provided by the ship to its passengers, crew and cargo and 

eventually the maximization of her survivability.  

Definitely, during the last decade, significant progress has been made in the field of 

ship safety against capsizing. Yet in spite of the rapid progress made, a wide scope of aspects 

regarding ship dynamics remains to be explored. Whilst numerous scientific and practical 

challenges continuously arise, widely accepted methods depicting the laws of nature have to 

be established. Gradually, several remarkable studies have come to light giving the 

necessary tools to interpret the ocean mechanics. Taking all the advantages deriving from 

such extended research and experiments, more accurate predictions of extreme motion for 

intact and damaged vessels can be reached.  

As it follows from the previously addressed prevailing conditions, ship stability 

assessment methods need to be reinforced. Thus, the main purpose of this study will be to 

develop a new as well as solid probabilistic framework aiming to a settled stability 

assessment procedure. In this thesis the benefits of a semi-deterministic method for 

modeling irregular wave groups are reaped. Consequently, the method preludes a more 

realistic approach on ship stability rather than employing a theory based on harmonic 

waves, no matter how popular regularity in wave effects is regarded. The differences will be 

outlined in the following sections inferring critical conclusions. 

The analysis made in the next pages targets to point out the discrepancies of the 

aforementioned approaches dealing with ship rolling. In the first part of the thesis, the 

concepts of wind generated waves, which will involve the excitation force for ship rolling 

motions, are introduced, whilst in the second one the new probabilistic assessment 

methodology in the field of ship stability is developed. In more detail: 

 

In chapter    a brief outline of the aims of the current thesis is given. 

In chapter     an introduction is made to the main principals of wind generated 

waves. 

In chapter    Boccotti’s “Quasi-Determinism theory” is presented and finally 

employed for practical applications. 

In chapter   the mathematical model for ship rolling that will be used for further 

analysis is displayed. 

In chapter    the probabilistic treatment of wave groups is recommended and the 

stability assessment procedure is eventually settled. 
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In chapter     application of the assessment methodology has been demonstrated 

through an extended example. A ROPAX ferry has been investigated if it is prone to 

capsizing in non regular beam seas for different sea state scenarios. Stability 

assessment diagrams are displayed and critical comments are eventually made. 

 
 
 
I.1 Wind generated waves 

One of the first things a man will notice by looking at the ocean is the presence of 

waves. Ancient Greeks were the first to play an important role to the conception of the 

realistic seaway. The interaction between the air and sea surface in the formation of ocean 

waves has been observed since then. However, very little progress has been made from the 

ancient times to the 19th century. It was that period when the scientific outburst of Airy 

(1801-1892), Stokes (1819-1903) and Rayleigh (1842-1919) gave important contributions to 

the knowledge of ocean waves.  

Undoubtedly, the most important sea waves in a wave spectrum are those 

generated by the wind. Wind-generated waves are much more complex than the simple 

monochromatic waves considered in earlier times. The quantification of wind-generated 

waves for the purposes of various engineering analyses is invaluable only by taking into 

consideration the stochastic nature of the sea (fig. 1.1). It is important to be able to predict 

these waves for a given sea or wind condition - both wave hindcasts for historic wind 

conditions and wave forecasts for predicted impending wind and sea state conditions. 

Finally, we also need to look at procedures for extreme wave analysis, i.e., to predict those 

extreme wind-generated wave conditions that will be used as the limit for engineering 

design. 

 

 
Figure 1.1: Typical water surface elevation versus time record (taken from Boccotti, 2000) 

 

 

I.2 Ship stability in beam seas 

Ships, and therefore ship stability, is of vital importance for the transportation of 

humans, as well as providing the only means of transporting heavy cargoes between the 



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 11 - 
 

continents. Thus, it is an essential part of a ship designer’s work to obtain all the acquired 

knowledge so as to proceed in the quantification of ship stability.  

Ship stability seems to originate from Archimedes’ early times. However, it was not 

until 1746 when Bouguer introduced the concept of metacentric height as a quantified 

magnitude of ship stability. Derivation and calculation procedures for the righting lever 

curves were published by Atwood in 1796. Moseley in 1850 founded quasi dynamic stability 

over the concept of the energy balance methods. In 1874 William Froude’s experimental 

results on H.M.S. Devastation rolling responses came to the scene. Several proposals for the 

use of a    based stability criteria were offered in the late 1800s and proposals for criteria 

based on righting energy have existed since the early 1900s. The major historical work on 

the stability of ships was by Rahola in 1939. Rahola’s work involved a detailed analysis of 

Baltic ship capsizing and included a proposal for a    based criteria. Wind heel    

requirements have been applied in the US since 1949 and became a US requirement for 

cargo ships in 1952. Based on recommendations from the 1960 International Conference on 

the Safety of Life at Sea (SOLAS 60), the IMCO sub-committee on Subdivision and Stability 

was formed in 1962. The first international stability criterion, Resolution A.167, largely based 

on Rahola’s    criteria, was adopted by the IMO in 1968 for ships less than 100m long. The 

IMO assembly adopted Resolution A.562 in 1985. This resolution is an energy balanced 

criterion, but also includes a wind heel recommendation, and is to be used as a supplement 

to A.167. 

In general, ships can experience three types of displacement motions (heave, sway 

or drift, and surge) and three angular motions (yaw, pitch, and roll) as shown in figure 1.2. 

Capsizing is related to the extreme motion of the ship in wave phenomena. Of the six 

motions experienced by a vessel, the roll oscillation is the most critical motion that might 

lead to the ship capsizing. For small angles of roll motions, the response of ships can be 

described by a linear equation. However, as the amplitude of oscillation increases, nonlinear 

effects come into the scene. Generally speaking, the environmental loadings are nonlinear 

and beyond the control of the designer. For this reason, a critical matter to be investigated 

is, when nonlinearity can magnify small variations in excitation to the point where the 

restoring force contributes to capsizing. The nonlinearity is due to the nature of restoring 

moment and damping and their nonlinearity depends on the shape of the righting arm 

diagram. 

 

Figure 1.2: Ship schematic diagram showing the six degrees of freedom 
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CHAPTER   : 
 

OBJECTIVES 

The main objectives of this thesis can be stated as:  

 

 To improve probabilistic assessment methodologies that were developed under the 

consideration of regular wave group effects on ship intact stability. 

 

 To highlight the differences of critical importance between regular and irregular 

wave group effects on ship rolling motion. 

 

 To study the scientific areas that underlie the methodology; such as, ship dynamic 

stability, main probabilistic methods of ship rolling, stochastic waves and particularly 

wave group theory.  

 

 To apply the developed methodology and interpret the final results as far as their 

rationality is concerned.  
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PART I 
 
 

On irregular very large sea wave groups 
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CHAPTER    : 
 

WIND GENERATED WAVES: BASIC CONCEPTS 
 
 
 This chapter aims to present the necessary background and basic concepts of the 

Quasi-Determinism theory, which will be examined in the next chapter. 

 
 
III.1 The theory of sea states (Boccotti, 2000) 

 

By the term ideal sea state we mean an infinitely long stationary stochastic process 

concerning wind generated waves. To understand this definition, we will follow a simple 

repetitive procedure: Let us gather a number of sets of   consecutive waves so as to 

estimate the mean height and period for each of these sets:    ,     will be respectively the 

mean wave height and the mean wave period of the first set,    ,      will be the mean wave 

height and the mean wave period of the second set, and so on. For a small  , say      , 

the pairs     ,     ,      ,     , ... will generally be very different from one another. However, 

as   grows, the differences between these pairs will tend to vanish, and as     all the 

pairs will become equal to each other. This is a simple way to introduce the ideal sea. 

On the other hand, by the term real sea state we mean a sequence of a few hundred 

wind-generated waves (typically         waves). Such a sequence is sufficiently short to 

be nearly stationary and it is long enough for its statistical properties to be meaningful. In 

simple words, we deal with a wave sequence drawn from an ideal sea state with its mean 

wave height and period verging to the mean wave height and period of this ideal sea state. 

At this point, it is of great importance to understand the differences between a wind 

generated wave and a swell: 

In fluid dynamics, wind waves or, more precisely, wind-generated waves are surface 

waves that occur on the free surface of oceans, seas, lakes, rivers, and canals or even on 

small puddles and ponds. They usually result from the wind blowing over a vast enough 

stretch of fluid surface. Waves in the oceans can travel thousands of miles before reaching 

land. Wind waves range in size from small ripples to huge waves over 30 meters high.  

When directly being generated and affected by the local winds, a wind wave system 

is called a wind sea. After the wind ceases to blow, wind waves are called swell. Or, more 

generally, a swell consists of wind generated waves that are not - or are hardly - affected by 

the local wind at that time. They have been generated elsewhere, or some time ago. 

Wind waves have a certain amount of randomness: subsequent waves differ in 

height, duration and shape, with a limited predictability. They can be described as a 

stochastic process, in combination with the physics governing their generation, growth, 

propagation and decay - as well as governing the interdependence between flow quantities 

such as: the water surface movements, flow velocities and water pressure. The key statistics 

of wind waves (both seas and swells) in evolving sea states can be predicted with wind wave 

models, one of them will be briefly introduced in the following chapter and described in 

more detail in chapter   . 

http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Surface_wave
http://en.wikipedia.org/wiki/Surface_wave
http://en.wikipedia.org/wiki/Free_surface
http://en.wikipedia.org/wiki/Ocean
http://en.wikipedia.org/wiki/Sea
http://en.wikipedia.org/wiki/Lake
http://en.wikipedia.org/wiki/River
http://en.wikipedia.org/wiki/Canal
http://en.wikipedia.org/wiki/Puddle
http://en.wikipedia.org/wiki/Pond
http://en.wikipedia.org/wiki/Wind
http://en.wikipedia.org/wiki/Capillary_wave
http://en.wikipedia.org/wiki/Swell_%28ocean%29
http://en.wikipedia.org/wiki/Randomness
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Free_surface
http://en.wikipedia.org/wiki/Flow_velocity
http://en.wikipedia.org/wiki/Pressure
http://en.wikipedia.org/wiki/Statistic
http://en.wikipedia.org/wiki/Sea_state
http://en.wikipedia.org/wiki/Wind_wave_model
http://en.wikipedia.org/wiki/Wind_wave_model
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Now, let us choose an arbitrary point (which will be noted as a “node”) at sea and 

record surface elevation      at this fixed point. When a sea storm provokes a certain 

surface elevation in the vicinity of the node, the record       is obtained. If the same sea 

storm is repeated in the same way affecting the vicinity of the node with the same manner, 

a second record       is obtained. When this procedure is repeated for many times, the 

records                 are eventually gathered. 

According to the theory of the sea states to the first order in a Stokes expansion 

(Boccotti, 2000), each of the   time series                                is a piece of a 

new realization of a stationary Gaussian process. Each realization of this process has an 

infinite duration and thus it represents the ideal sea state introduced in the previous section. 

The analytical form of the process is: 

                     

 

 

   

(3.1) 

 

where it is assumed that frequencies    are different from each other, number   is infinitely 

large, phase angles    are uniformly distributed into        and are stochastically 

independent of each other, and all amplitudes    are of the same order. Finally, the 

frequency spectrum      , shown in fig. 3.1, which is defined as: 

 

          
 

 
  

 
    for   such that    belongs to the small interval of amplitude     

 

is assumed to be continuous and to be the same in each realization. Under these 

hypotheses, eq. (3.1) represents a stationary Gaussian random process which is exact to the 

first order in a Stokes expansion as it was mentioned before. 

 

 
 

Figure 3.1: Definition of spectrum: the small noted area is equal to the partial sum  
 

 
  

 
 , for   such 

that    belongs to the small interval of amplitude    
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III.2 Basic equations in the theory of sea states 

 

At this point standard definitions and basic relations regarding the theory of sea 

states shall be displayed: 

 

 Standard deviation 

 

           

  (3.2) 

 

The larger the    , the higher the waves. 

 

 Significant wave height  

                                                              

                                                            

           (3.3) 

 

The first theories (in the 50's) gave    , as equal to        that is the average height 

of the highest one-third of all the waves of a particular sea state. Nowadays, with the growth 

of modern ocean engineering, we know that       is systematically smaller (of 5 10%) with 

respect to   . Nevertheless,     is still used for the strength of the wave motion. 

 

 Root Mean Square wave height  

                                                              

           

           (3.4) 

 

 

where, the symbol    denotes the jth order moment of the spectrum: 

                                             

            
 

 

 

                                

                            (3.5) 

 

Other typical statistical quantities can also be expressed in terms of the zero-moment, if we 

assume a common Rayleigh distribution: 

Mean             , Median        ,  Mode         . 
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The temporal structure of waves (i.e., the period) is more difficult to characterize. 

There are three different definitions, which reach into three different results. They are:  

 

 The peak period is the wave period associated with the peak frequency1: 

 

         

                            (3.6) 

 

 Average period between increasing zero-crossings 

 

                 

                            (3.7) 

 

 Average wave period 

 

                  

                            (3.8) 

 

 Average period between crests 

 

             

                            (3.9) 

 

  

After all the necessary statistical quantities related to the theory of sea states are 

displayed, it should be highlighted that from now on the term “defined sea state conditions” 

will be equivalent to the definition of the significant wave height and the peak spectral 

period        . 

 

 

 

III.3 The autocovariance function 

 

The definition of the autocovariance is  

                                            

                  

                                                    (3.10) 

 

                                                           
1
 The peak frequency (  ) is the frequency of the highest peak of the spectrum. 
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and thus it is the mean value of the product of the surface displacement at time   and 

surface displacement at the later time    .  

The definition of autocovariance may look abstract for the time being but we shall 

see in the following chapter that this specific function takes on a central role in the light of 

the Quasi-Determinism theory.  

The relation between variance and autocovariance of the surface displacement and 

spectral function are respectively given below: 

 

               
 

 
                 or  equivalently                  

 

 
  

 
         

 

 
   (3.11a,b) 

 

And 

 

                     
 

 
     or  equivalently             

 

 
  

 
             (3.12a,b) 

 

 

The first equation of the second set of the above given equation (3.12a) is strongly 

connected with another relation of the form: 

 

                                                         

     
 

 
              

 

 

 

                                            (3.13) 

 

This pair of equations is very well known in literature as the Wiener-Khinchin equations. 

 

 

 

III.4 A mathematical form of a wind wave spectrum: the JONSWAP spectrum 

 

 When a wind generates waves and hence waves and wind have nearly the same 

direction, we speak of wind waves. Such waves typically have a spectrum where      

approaches rapidly zero on the left side and approaches zero more gradually on the right 

side. A mathematical form suggested for describing this characteristic spectrum shape is 

(DNV 2002): 

                 
 

 
 

 

  
 

  

  
         

    

   
 
 

 
 

                                            (3.14) 

 

where 

   
 

  
 
  

   
 

      

                                            (3.15) 
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                                            (3.16) 

 

   
                   

                    

  

                                            (3.17) 

 

 The JONSWAP spectrum was the final result of a work developed in the 50’s and 

60’s. Phillips was the first to observe in the 50’s that the spectrum approaches zero, for large 

 , as     . The term         in the above given formula is due to him, and indeed    is 

called the Phillips parameter. The form                   
 

 
 

 

  
 

  

   was 

introduced by Pierson and Moskowitz in the 60’s. The last improvement, that is the 

introduction of the second exponential function, was due to the JONSWAP project in the 

early 70’s. We should note though that this spectrum is effective under the assumption of 

deep water. The two proposed spectra are given in fig. 3.2. 

 According to the researchers of the JONSWAP project, the more characteristic 

values of the shape parameters   and   are: 

                    

 

If the above given values of shape parameters are considered then we deal with the so 

called mean JONSWAP spectrum. 

In the end, it is important to define the relation between    and     for the 

JONSWAP spectrum: 

                                                            

      
 

       

 

     
  

  
   

                                                 (3.18) 

 

 

The value of    depends on the characteristics of the wave generation. A very usual value 

for design conditions is        , through which, relation (3.18) is formed as: 

 

 

         
  

  
   

                                                        (3.19) 
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Figure 3.2: The mean JONSWAP spectrum compared to the Pierson-Moskowitz spectrum 

 

 

III.5 Inferring the nature of waves from the bandwidth: the concept of an infinitely narrow 

spectrum 

 

 The practical meaning of a random process to be considered as narrow band or not, 

will be explained in this paragraph. For a narrow band spectrum, there is great 

concentration of the so called “spectral mass”, around a specific central angular frequency 

  , as it is shown in fig. 3.3. So, in this case, a stochastic process         represents a 

waveform (though irregularities are possible to be observed due to the introduced elements 

of randomness) through which it is feasible to define a meaningful mean wave period [see 

fig. 3.4]. This mean period can be approximately expressed either through the peak period 

     or the mean period     , as they are defined in section III.2. On the other hand, the 

case of a broad band spectrum [see fig. 3.3] corresponds to a        function to which no 

waveform characteristics can be attributed. All in all, for a narrow band spectrum it can be 

considered that randomness and waveform characteristics participate evenly.  

Briefly, a sea state with an infinitely narrow spectrum tends to be similar to a 

sequence of periodic waves. However there would be a substantial difference as the wave 

height would vary largely though very gradually. Clearly, the narrower the spectrum, the 

closer the waves would be to this ideal condition. Vice versa, the wider the spectrum is the 

more irregular the waves are, thus greater differences among consecutive waves occur. 
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 As it is obvious, it is a critical matter to establish some kind of index in order to 

quantify the spectral bandwidth, because the acquired information of a narrow spectrum 

through a bandwidth parameter will be useful for further analysis. 

 

 
Figure 3.3: Narrow and broad band spectra 

 

 

 
Figure 3.4: Random process        for the narrow band spectrum of fig.3.3 

 

III.5.1  Bandwidth Parameters      

Cartwright and Longuet-Higgins (1956) used the bandwidth parameter: 

 

     
  

 

    
 

            (3.20) 

       

time [sec] 
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which really is not always efficient, in that it is too sensitive to the high frequency noise and 

is generally not recommended if the JONSWAP spectrum will be used for practical 

applications. The range for parameter    is       , where   stands for the infinitely narrow 

spectrum. 

  

In 1975 Longuet-Higgins used a new bandwidth parameter: 

 

   
    

  
    

            (3.21) 

 

This new parameter is more effective than  . However, for the JONSWAP spectrum it 

sometimes (depending on the spectral parameters) tends to the upper limit of the range 

      , where   stands for the infinitely narrow spectrum. 

 

 

III.5.2  Narrow bandedness parameter    

 

Let us define: 

    absolute value of the quotient between the absolute minimum and the absolute 

maximum of the autocovariance, 

 

that is: 

                

            (3.22) 

where 

  = abscissa of the absolute minimum of the autocovariance function 

 

If the spectrum is infinitely narrow, the autocovariance approaches a cosine, and thus     

approaches 1. As the bandwidth grows,    gets smaller and smaller approaching  . 

Therefore    is a natural narrow bandedness parameter scientifically fitted to the JONSWAP 

spectrum.  

However,    is efficient if the absolute minimum of the autocovariance is also the 

first minimum of this function. In the rather rare case that this condition is not satisfied a 

critical observation was made through small scale experiments in Reggio Calabria. According 

to the results of these experiments, the case of the first local minimum not being the 

absolute minimum of the autocovariance is the special case of wind waves superimposed on 

somewhat higher swells.  

 The quotient            as a function of      is shown in fig. 3.5 for the mean 

JONSWAP spectrum. From this figure it is clarified that        . 

The experience, based on a few thousand sea states recorded in the natural 

laboratory of Reggio Calabria, confirms             as the typical domain of    for the wind 

waves. If    falls below     , we are probably dealing with wind waves superimposed on 
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swells. Indeed the presence of wind waves and swells leads to a wider spectrum, and 

consequently to a smaller   . 

 

 

 

Figure 3.5: Normalized autocovariance obtained from the mean JONSWAP spectrum 

 

At this point, the mean JONSWAP spectrum will be considered for further analysis. 

Our purpose will be the verification of the previously presented bandwidth parameters’ 

effectiveness. In general, the mean JONSWAP spectrum tends to be considered as narrow 

band. This will be a settled condition whose verification will be the object of the following 

paragraph. 

For the intentions of our investigation method, the variation of the bandwidth 

parameters     and    with respect to the growth of the significant wave height    2 should 

be examined. The final outcome would be a diagram like the one shown in fig. 3.6. A direct 

result, which crosschecks the hypothesis of the narrow spectrum, comes to light. 

 

From the derived diagram of the next page, it is obvious that: 

       , for the mean JONSWAP spectrum 

 

Moreover, the effectiveness of the bandwidth parameters   and    is verified in 

contradiction to the parameter  , which misses the mark. The fact is that resorting to   is 

equivalent to judging by the number of the local maxima (or minima) being present in each 

wave; the greater this number, the greater the difference from the infinitely narrow 

spectrum. With the JONSWAP spectrum, each wave has an infinitely large number of local 

maxima due to the very small noise on the wave surface, and this is why   gets the upper 

limit. 

                                                           
2
 The option to display a diagram concerning the variation of the specific bandwidth parameters with 

respect to the significant wave height was selected, because     is a crucial parameter which (in 
combination with the peak period) defines the sea state conditions. 

1 

     -0.73 

0 
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Figure  3.6: Comparative diagram of the spectral bandwidth parameters         as the significant 
wave height       increases (mean JONSWAP spectrum considered) 

 

 

III.6 Concluding remarks 

 

The link between sea state and Gaussian random process was first noticed by 

Longuet-Higgins (1952). The theory of the sea states then ripened in the 60's, thanks to the 

contribution of several authors. In general, a sea state will be identified from the definition 

of the critical parameters    and   . 

In this context, clear distinction of the so called swells and wind generated waves 

should be made in order to proceed in further analysis. The differences between these two 

kinds of ocean waves are depicted in the form of the autocovariance function. Certain 

properties of the autocovariance will play a central role for the establishment of the Quasi-

Determinism theory [see next chapter]. In particular the fact that the main statistical 

properties of a sea state are coded in the first two waves of the autocovariance (the core of 

the autocovariance) is a consequence of the aforesaid theory.  

In the following chapter we shall see that the narrow bandedness parameter     

proceeds from a corollary of Boccotti’s theory. The parameter’s efficiency for the 

identification of a narrow band spectrum is experimentally verified against other bandwidth 

parameters of increased sensitivity to high frequency noise, such as   and  . 
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CHAPTER   : 
 

THE QUASI – DETERMINISM THEORY  

 

This chapter deals with the irregular sea wave groups. 

 Boccotti’s Quasi-Determinism (QD) theory gives the mechanics of sea wave groups 

when either a very large crest (first formulation of the theory – “New wave”), or a large 

crest-to-trough wave height (second formulation of the theory) occurs. 

 In this chapter, the theory, in both formulations, is employed for the generation of 

two-dimensional irregular semi-random sea waveforms. Afterwards, starting from the linear 

components of the theory, the second order wave corrections are obtained to model the 

most probable non-linear time evolution of a wave group if a very large crest or a large 

crest-to-trough height would occur at some fixed point (Felice Arena, 2004). 

 

IV.1 Concept of the methodology 

In the 1980s Boccotti developed the QD theory, exact to the first order in a Stokes 

expansion, in two formulations. The first formulation (“New wave”) deals with the crest 

height, and shows that the space-time profile of an exceptionally high crest is depended on 

the autocovariance function. The second formulation of the theory deals with the crest-to-

trough height; it was derived by obtaining firstly the probability density function of the 

surface displacement at a point     ,     , at time     , given the condition: 

 

                           
 

 
                                                  

 

 
                  (4.1) 

where    is an arbitrary time instant (     ) an arbitrary point,   the crest-to-trough wave 

height and    the abscissa of the absolute minimum of the autocovariance function (which 

is assumed to be also the first local minimum of this function on the positive domain: this 

condition being always verified for wind waves as explained in the previous chapter). 

The basic theorem (see Boccotti, 1989, 1997, 2000) is that, as       ,  condition 

(4.1) becomes both sufficient and necessary (in probability) for the occurrence of a wave of 

given height   in a random wind-generated sea state. A corollary is that a wave of a very 

large given height  , with a very large probability, belongs to a wave group with the 

following deterministic form: 

  

                      
                    

                  

 

 
   

                      

      (4.2) 

 

Where          is the autocovariance function of the surface displacement. 

According to the author’s words: “if a wave with a given height   occurs at a fixed 

point (     ) and   is very large with respect to the mean wave height at this point, we may 



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 26 - 
 

expect the water surface to be very close to the deterministic form (4.2)”. More specifically, 

“each wave of the set will occupy the centre of a well defined group that is the sum of a 

deterministic framework and a residual random noise of a smaller order”. Boccotti’s 

approach is exact to the first order in a Stokes expansion and hence (4.2) represents the 

linear component of surface displacement. 

Let us shed more light to the concept of the theory. The original idea is that the 

higher the waves, the more negligible the differences between consecutive waves are. So, 

let us consider a set of waves with a given height  , say        in a stationary Gaussian 

process. The waves of this set will be different, even very different, from one another. 

However, if we fixed a larger  , say       , we should find that the waves contained in 

the set differ much less from one another and, in the limit as      ,   all waves of the 

set, apart from a negligible share, would prove to be equal to one another. 

 

Obviously, the developed formulations (Boccotti, 1989-2000) are applicable and 

effective for long-crested random waves, in an undisturbed field. The final expressions of the 

surface displacement are presented in the following sections. 

 

ΙV.1.1  First formulation – “New wave”  

 If a wave crest with a given exceptionally large height     occurs at some point     at 

a time instant    , during a sea storm, with probability approaching to  , the random free 

surface displacement around point     for a span of time before and after   , will be very 

close to the following deterministic function: 

                                                   

   
  

  
                        

 

 

 

                            

     (4.3) 

where 

          
 

 

 

is the variance of the random free surface displacement. 

     :  is the frequency spectrum, with 

               

     (4.4) 

 

From the well-known linear dispersion relation:       
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     (4.5) 

 with   the acceleration due to gravity. 

 

ΙV.1.2  Second formulation  

 If a wave with a given exceptionally large crest-to-trough height     occurs at some 

point     at a time instant    , during a sea storm, with probability approaching to 1, the 

random free surface displacement around point     for a span of time before and after   , 

will be very close to the following deterministic function: 

                 

   
  

  

        
                                          

 

 

 

     

     (4.6) 

where 

          
 

 

 

is the variance of the random free surface displacement. 

   : is the abscissa of the absolute minimum of the autocovariance function (which is 

assumed to be also the first local minimum of this function on the positive domain). 

Note: the origin of the Cartesian co-ordinate system     ) is considered to be at        . 

 

IV.2  Quasi – Determinism theory: the consequences 

IV.2.1  Mean period      and period    of a very large wave 

 A common way to estimate the dominating period for a specific wave group, is to 

follow a simple calculation procedure of the mean period    . However, when the “Quasi-

determinism (QD) theory” is employed, a different approach would be more appropriate. A 

very significant observation is mentioned in Boccotti’s notes as the first consequence of the 

QD theory. According to his analysis, a wave of given height   has a well defined period, 

with probability approaching  , as       . This characteristic period is given as: 

  = period of the central wave group 
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Where the subscript   stands for high waves. Especially for the uses of the mean JONSWAP 

spectrum           with probability approaching  , as       . 

In the previous chapter the condition of the narrow band JONSWAP spectrum was 

verified and thus the discussed random process        (coincident with the water surface 

displacement   at a fixed location at sea) approximates satisfactorily a waveform with a 

meaningful mean wave period. 

 So, the purpose of this section is to investigate which definition of the characteristic 

periods displayed in chapter     is most appropriate for characterizing and identifying a 

specific wave group. For this reason, the variation of these typical characteristic periods with 

respect to the significant wave height is displayed below [see fig. 4.1]. The periods that were 

used in the process are given as follows: 

 

i. The peak period    

ii. The central wave period    of the quasi-deterministic wavegroup defined in the 

previous pages 

iii. The average-mean period     

iv. Average period between increasing zero-crossings     

v. The “mean calculated period”                    

 

 As it is commonly known, the spectral peak period      is the inverse of the 

frequency at which the value of the frequency spectrum is a maximum, though it cannot be 

defined satisfactorily in multi-peaked spectra.  

Let us suppose that the most likely height of the highest wave in a record of duration 

  hours is      with period     . It is often obtained indirectly from     or    using 

empirical relationships, or from      and steepness assumptions – usually to obtain a range 

of possible associated periods. These methods should be applied only in the water depth for 

which the empirical relationships have been found, usually deep water (i.e. depth >    

wavelength). It should be possible to use the steepness method in shallow water provided 

that refraction is minimal and that allowance can be made for shoaling effects. It cannot, 

however, be derived directly from the wave spectrum. Following such an approach, 

according to the first consequence of the Quasi-determinism theory we would arrive at the 

definition of   = period of the most probable central wave of the group. 

The mean wave period      is the mean of all wave periods in a time-series 

representing a certain sea state: 

                    

(4.7) 

When recordings were first taken this was onto charts and simple counts could be 

made. First the charts were zero meaned (the average and trend calculated and drawn 

through the plot to provide a new axis for measuring) and then the number of times the 

wave record crossed the mean going up (or sometimes down) was counted and this gave the 

number of waves and, as a time measure, the zero-crossing period. The parameter is 

estimated by taking the mean of these periods for a given wave record. For wave records on 

paper the mean level is found by eye and          is estimated from the record length and 
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the number of zero up-crossings counted on the record. This method can also be applied to 

digitized data using a computer but if the wave records are available in machine readable 

form it is preferable to estimate from the moments of the spectrum using: 

                 

(4.8) 

Finally, the previously referred as “mean calculated period”, is the mean calculated 

period of a Quasi-Deterministic wave group generated according to eq. (4.6) in a time range 

of 40 seconds. The values of this characteristic period were derived from waveform 

diagrams (examples will be displayed in the applications section) after simulation runs 

carried out in a MATHEMATICA environment. 

 

Figure 4.1: Comparative diagram of the characteristic periods                               as the 

significant wave height       increases 

 

 As expected, with the growth of the significant wave height    , the characteristic 

periods     ,     and     grow, too. As it can be seen (fig. 4.1),     grows rapidly in contrast 

to     and   . Furthermore,     curve is developed in a different span of period time. Since 

QD theory estimates that for the central wave period the equation            prevails 

and because of the fact that waves composing the wave group are approximately of equal 

periods, the       curve is developed in a time range with different practical meaning for the 

potential of the QD theory. The efficiency of the characteristic period    is confirmed from 

the results of the “mean calculated period”. 

 

IV.2.2  The wave height probability under general bandwidth assumptions 

The second consequence of the Quasi-Determinism theory, in the field of wave 

statistics, deals with the very wave height probability. Let us see how the presented theory 

and wave height probability are related to each other. 
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A wave of given height   necessarily has crest elevation and trough depth between 

  and  . Fig. 4.2a shows two possible cases lying within the infinite range of sea waveforms. 

It would be preferable to present each possible wave in the plane    3, so as distinct 

points to be spotted similar to the case of the noted waveforms     and     shown in fig. 

4.2a-b. 

 

 
 

Figure 4.2: a) The waves with a fixed height   generally show a large variety of   and  . 
b) Plotting    vs   , generally we get a wide cloud of points. Only in the limit as       , 

all points would gather at a special location, something like a black hole. 
This special location is at     , ξ     (Boccotti, 2000) 

 

 

Let us imagine that we examine a very large time interval   . Then, we gather all 

waves whose height is within a fixed small interval         , and we mark the points 

representative of these waves in the plane    . For a finite     the marked points will 

gradually spread over the plane    . On the contrary, as      , great point 

concentration is observed: all the points but a negligible share fall in an open 2-ball with 

centre at        and radius of order         . The most important fact is that all the points 

in this small 2-ball are associated with waves whose profile is very close to the deterministic 

profile (4.2). Moreover, a wave of very large height  , according to (4.2), has crest elevation 

                                                           
3
 Where   is the crest-trough lag, and   is the quotient between the crest elevation and the crest-to-

trough wave height. 
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    and crest-trough lag   , and thus it is represented by the point           in  the plane 

   . 

If we associate a mass with each point in the plane     (considering the same mass 

for each point), in the case of a finite    , uniform mass distribution over the plane     

appears. While as        , there is ”mass concentration” at the point         ,  which 

plays the role of a black hole. The mass density varies widely in the black hole, despite its 

radius being very small, in the order of         . Specifically, the mass density approaches 

zero from the centre to the outskirts of the black hole. 

Boccotti defined as          the expected number per unit time of waves whose 

height falls within a fixed small interval        . Through extended calculations it was 

verified that: 

                           

      
        

 
        

 
   

         
   

 
       

 

 
      

 

 
               

                            

(4.9a) 

where 

 

       
 

 
          

 

 
   

 

 

    
  

     
 

(4.9b) 

 

 

            
       

  
   

(4.9c) 

 

      
 

 
  

 

     
 

(4.9d) 

 

  
  

  
       

   

             
   

 

(4.9e) 

 

  
  

 

     
 

(4.9f) 

with: 
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        4         

 

And so, the probability         that a wave height falls within a fixed small interval 

         can be expressed as: 

 

                   

  (4.10) 

 

Where     is the expected number per unit time of zero up-crossings       of the surface 

displacement      : 

 

         

       (4.11) 

 

Finally, through eq. (4.9) – (4.11) the probability density function (pdf) is of the form: 

                        

     
     

   

    
         

 

        
     

  

        
            

                                    (4.12) 

 

And the total probability is: 

 

     
     

   

    
         

     
  

        
            

                                    (4.13) 

 

 

The constant before the exponential function of the formulas (4.12), (4.13)  

 

  
     

   

    
         

 

                                    (4.14) 

 

can be taken to be   for the practical applications like those following in the next pages. On 

the contrary, the exact value of   must be applied for a careful test of the formula against 

the data from numerical simulations. 

So, Boccotti (2000) defined the probability that a wave height occurs at some point, 

at some time, given the significant wave height      through the concept described in the 

previous paragraphs. Under the assumption of narrow bandedness spectrum and      

                                                           
4
 The autocovariance function arises. The previous chapter preludes this event. 
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 , for        , which is commonly seen in the open sea, it can be verified that equation 

(4.13) can be expressed in a sequence of alternative equivalent equations (considering that 

    ) : 

                              
 

    
 
 

 
 

 

  

                                   (4.15a) 

 

with         and       : 

 

                              
  

       
  

                                 (4.15b) 

 

It can be easily verified that the probability density function (pdf), which proceeds from 

eq.(4.15a-b), is of the following form: 

 

             
 

    
 
 

  
      

 

    
 
 

 
 

 

  

                                    (4.16) 

 

For the mean JONSWAP spectrum          , which will be used for all the applications of 

the current thesis, the above given equations are transformed to the much simplified form: 

 
 
 

 
                                    

 

 
 

 

 

                  
 

  
           

 

 
 

 

 

  

                                    

(4.17a-b) 

 

 Let us proceed in further investigation of the pair of equations (4.17a-b). Taking a 

closer look, one should notice at once the similarity with the common Rayleigh distribution, 

one of the very well-known probabilistic functions in ocean engineering which gives the 

probability of exceeding a wave height under the assumption of infinitely narrow spectrum. 

 

                        
  

   
                                        

       

     (4.18) 
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or expressed in an equivalent form as a set of equations with the associated probability 

density function given as: 

 

 
 
 

 
                                 

 

 
 

 

 

              
 

  
        

 

 
 

 

 

  

                                    

(4.19a-b) 

  

 

Longuet-Higgins (1952) established that in a stationary, Gaussian and extremely 

narrow banded process the wave heights may be regarded as twice the envelope amplitude 

and that these are distributed according a Rayleigh probability distribution function [eq. 

(4.19a-b)]. 

Boccotti verified this theory with the proposal of an improved expression of the 

Rayleigh distribution function given by eq. (4.17a-b). His approach gives the mechanics a 

more realistic depiction of the laws prevailing in ocean engineering. 

In the following figure the differences between the common Rayleigh distribution 

and its alteration proposed by Boccotti are outlined. 

 

 

 

Figure 4.3: Comparative diagram of the probability of exceeding a specified wave height 
         given by the sets of equations (4.17) and (4.19) with respect to the significant wave 

height 

 

From fig. 4.3, it is obvious that for small   , the data points of the function (4.17) 

tend to be practically coincident with the function (4.19). From extended experiments in 

Reggio Calabria it is specified that for        , the obtained data points deviate gradually 

from (4.19) and move towards (4.17). This was the evidence that Boccotti’s corrections on 

the Rayleigh distribution result in the establishment of an improved plus more realistic pdf. 

 Eq. (4.17) 

 Eq. (4.19) 
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Finally another interesting figure concerning the wave height distribution - only 

when the QD theory is employed - is fig. 4.4b. With this depiction, the ratio 

                   of the successive wave heights for the developing stage of the 

quasi-deterministic wave group is examined. This means that for     the ratio of the 

second wave height of the group to the first one          is obtained. So, the     wave 

height is the central wave’s height. Let us assume that we examine the case of     waves 

composing the semi-deterministic group [see fig. 4.4a], with the following sea state 

conditions prevailing: 

 

            

             

 

 

Figure 4.4a: Wave group train 

 

Then, with the Quasi-Determinism theory applied, the arising wave height ratios are 

summed up inτο table 4.1a: 

               
1 1.60 1.56 

2 1.69 2.50 

3 1.87 4.21 

4 1.82 7.85 

5 1.67 14.32 

6 - 23.91 

Table 4.1a 

    

        1 

         

       2 

    

       3 

    

          4 

    

         5 

 6 
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If the same procedure is repeated for a series of different sea states, we would 

notice that for all the obtained data points, the variation of            lays within the interval 

           with great concentration. The final results for a series of sea state scenarios are 

gathered in tables 4.1b-e5 and figure 4.4b.  

 

 

Figure 4.4b: Height ratio versus i
th

 wave height 

 

 
                     

 

               
1 1.82 1.24 

2 1.70 2.26 

3 1.76 3.85 

4 1.84 6.79 

5 1.69 12.51 

6 - 21.13 

Table 4.1b 

 

                                                           
5
 Still the wave train sequence is considered for a run length     waves up to the central wave 

height with      . The selection of an appropriate group run length is a matter to be discussed in 
the following chapters. 
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1 1.81 1.27 

2 1.68 2.31 

3 1.78 3.88 

4 1.85 6.90 

5 1.69 12.77 

6 - 21.52 

Table 4.1c 

 

 

 
                      

 

               
1 1.59 1.56 

2 2.09 2.48 

3 1.89 5.18 

4 1.73 9.77 

5 1.64 16.87 

6 - 27.66 

Table 4.1d 

 

 

 
                      

 

               
1 1.94 2.40 

2 1.66 4.66 

3 1.47 7.75 

4 1.51 11.37 

5 1.60 17.17 

6 - 27.45 

Table 4.1e 
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IV.3  Applications on the theory 

 

IV.3.1 First formulation  (“New Wave” ) 

For this application section a very common sea state scenario has been considered 

                                     . Employing the QD theory, the specified 

waveform, for the time and the space domain respectively, is given in the following figures: 

 

 

Figure 4.5: Linear component    (m) as a function of time (sec) - “Record” - at        

 

 

 

 

Figure 4.6:  Linear component    (m) as a function of space (m)  - “Snapshot” - at          

20 10 10 20
time sec

4

2

2

4

6

η1 m

300 200 100 100 200 300
Y m

4

2

2

4

6

η1 m



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 39 - 
 

IV.3.2  Second formulation 

Applying the previous sea state conditions                                  

      the calculated spectral function is given in fig. 4.7, whilst the form of the 

autocovariance function [see fig. 4.8] denotes her impact on the shape and form of the 

linear solution     [fig. 4.8]. 

 

 

 

Figure 4.7: The arising mean JONSWAP spectrum 

 

 
Figure 4.8: Autocovariance function      

 

0.6 0.8 1.0 1.2 1.4
ω

0.5

1.0

1.5

2.0

2.5

3.0

E ω

5 10 15 20
time sec

0.6

0.4

0.2

0.2

0.4

0.6

ψ Τ

              

                



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 40 - 
 

The final waveforms in the time and space domain are given respectively in fig. 4.9 and fig. 

4.10: 

 

 

Figure 4.9: Linear component    (m) as a function of time (sec)  - “Record” - at        

 

 

 

Figure 4.10:  Linear component    (m) as a function of space (m)  - “Snapshot” - at          
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IV.4 Quasi – Determinism theory and the second order corrections 

 In 2005 Felice Arena gave the extension of the theory in both formulations and 

under the assumption of deep water. The second order corrections, exact to the second 

order in a Stokes expansion, satisfy a set of partial differential equations for an irrotational 

flow with an incompressible and inviscid fluid. The final expressions of the second order 

deterministic components of the free surface displacement for long-crested random waves, 

in an undisturbed field are given below: 

 

 

ΙV.4.1  First formulation – “New wave”  

 If a wave crest with a given exceptionally large height     occurs at some point     at 

a time instant    , during a sea storm, with probability approaching to  , the second order 

correction for the random free surface displacement around point     for a span of time 

before and after   , will be very close to the following deterministic function: 

   
  

 

   
             

 

 

 

 

                                                    

                   

              (4.20) 

 

Where 

          
 

 

 

is the variance of the random free surface displacement, 

     :  is the frequency spectrum, with 

                  

 

 

ΙV.4.2  Second formulation  

 If a wave with a given exceptionally large crest-to-trough height     occurs at some 

point     at a time instant    , during a sea storm, with probability approaching to  , the 

second order correction for the random free surface displacement around point     for a 

span of time before and after   , will be very close to the following deterministic function: 
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          (4.21) 

where 

   : is the abscissa of the absolute minimum of the autocovariance function. 

 

IV.5  Applications on the extended theory 

The following examples are developed for the same prevailing sea state conditions 
as in the previous paragraphs                                       . 

 

IV.5.1  First formulation  (“New Wave” ) 

The total surface displacement, after the second-order corrections that equation (4.20) 

dictates, is given in fig. 4.11. In fig. 4.12 a comparison between the linear and the total free 

surface displacement is displayed. 

 

Figure 4.11: Total second-order free surface displacement         (m) as a function of time (sec) - 
“Record” - at        
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Figure 4.12: Comparison of the total second-order free surface displacement         (m) with the 
linear component    (m) and the second-order correction    (m) at the time domain         

 

In fig. 4.13 we compare the calculated irregular waveform with the harmonic one generated 

from the central wave parameters of the QD theory:           
            . 

 

 

Figure 4.13: Comparison of the total second-order free surface displacement         (m) with the 

harmonic wave             
             (m) at the time domain        
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The final results in the space domain are given below in the same order: 

 

Figure 4.14: Total second-order free surface displacement         (m) as a function of space (m) - 
“Snapshot” - at          

 

 

Figure 4.15: Comparison of the total second-order free surface displacement         (m) with the 
linear component    (m) and the second-order correction    (m) at the space domain          
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Figure 4.16: Comparison of the total second-order free surface displacement         (m) with the 

harmonic wave             
             (m) at the space domain           

 

 

IV.5.2 Second formulation  

The total surface displacement, after the application of the second-order corrections is 

depicted in the following graphics in the same order as in section IV.5.1: 

 

Figure 4.17: Total second-order free surface displacement         (m) as a function of time (sec) - 
“Record” - at        
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Figure 4.18 Comparison of the total second-order free surface displacement         (m) with the 
linear component    (m) and the second-order correction    (m) at the time domain         

 

 

 

 

Figure 4.19: Comparison of the total second-order free surface displacement         (m) with the 

harmonic wave                 
             (m) at the time domain        
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Figure 4.20: Total second-order free surface displacement         (m) as a function of space (m) - 
“Snapshot” - at          

 

 

 

Figure 4.21: Comparison of the total second-order free surface displacement         (m) with the 
linear component    (m) and the second-order correction    (m) at the space domain          
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Figure 4.22: Comparison of the total second-order free surface displacement         (m) with the 

harmonic wave             
             (m) at the space domain           

 

 

IV.6 Concluding remarks 

The theory of Quasi-Determinism can be used in place of the periodic wave theory. 

It is valuable because it predicts what happens on the space-time domain just when the 

highest waves occur. As an example         could be the location of vessel and   the 

maximum expected wave height to be encountered during a specific route. Then the theory 

applicability allows one to predict the configuration of the water surface, the particle 

velocities and accelerations and finally the pressure fluctuations when this maximum wave 

height is affecting the specific structure. 

It is an indisputable fact that non-linearity affects the crest elevation and the trough 

depth, but does not affect the crest-to-trough wave height. Similarly, the non-linearity 

shortens the wave crest and lengthens the wave trough, but does not affect the wave 

period. So, the second order corrections to the linear components of the QD theory that 

were given in Arena’s calculations (2005), do not affect the crest-to-trough height for a 

narrow-band spectrum (though it may do so slightly for a finite bandwidth). According to 

extended studies carried out by Tayfun (1980) and Forristal (2000) it is confirmed that 

second-order corrections modify the distribution of crest heights (first formulation of the 

Quasi-Determinism theory). Under these circumstances, equations (4.17a-b) concerning the 

linear components of the theory, can be extended to the nonlinear wave height distribution 

of the total waveform        only in the case of the second formulation of the theory. 

As for the period    it is obvious that the second-order effects do not provoke any 
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are, respectively, equal to        and         (from the linear QD theory where they are 

both equal to       ). 

Another observation on the nonlinearity effects that should be pointed out is that 

the crest height is increased by     (it is equal to      ), and the trough depth is 

decreased by     (the trough amplitude is equal to      ), with respect to linear 

predictions. 

Special reference should be made at this conclusive point to the crucial parameter of 

the theory whose effects will come to light in the next chapters. Boccotti’s research results 

in the minimum allowable value of this index so as the theory to be valid. Consequently, the 

settled condition is that if    , as much as     , the theory dominates over wave 

mechanics. However, with the increase of   the central crest-to-trough height increases 

dramatically with respect to    leading to unusually high waves out of interest for the study 

of ship rolling motions and further estimation of a capsizing risk level. In any case we deal 

with a specific identification index for every QD wave group. 

At this point where the part of this thesis devoted to the wave mechanics is over, 

the final conclusions and benefits of the theory which will be essential for developing a ship 

stability probabilistic assessment framework should be gathered. The QD theory will be used 

as far as the second formulation is concerned due the discussed solidity to nonlinearity. 

Parameter   combined with the two consequences arising from the QD theory will possess a 

central role to the establishment of a new probabilistic approach on ship stability.  Finally, 

the proposed improvements on the Rayleigh distribution function will be adopted in order 

to retain consistency with the QD theory. 

In the Appendix more applications of the Quasi-Determinism theory are given for a 

variety of sea state parameters. 
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PART II 
 
 

Probabilistic analysis of ship rolling 
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CHAPTER  : 
 

A MATHEMATICAL MODEL OF SHIP ROLLING 

 

This chapter aims to present the basic concepts of a well structured ship rolling 

oscillator that will take a central role in the development of the “Wave group theory” and 

the “Central wave theory” presented in chapter   . Eventually, the calculation tools for the 

specification of “critical” wave groups6 will be demonstrated. The ultimate goal is the 

subjection of such wave sets to a solid probabilistic analysis.   

At this point, the deterministic character of a foreseen assessment methodology 

concerning ship dynamics comes to the scene. Numerical simulations performed in a 

MATHEMATICA environment will empower the prevalence of Quasi-Determinism theory 

over a founded ship stability model. However, certain weaknesses which occur in the 

context of the computational software program MATHEMATICA result in to a lower extent 

modeling procedure of the second QD formulation. 

 

V.1 A mathematical model of ship rolling in beam seas 

Let us consider a ship under the influence of regular (harmonic) waves that are 

generated in a direction vertical to the ship’s longitudinal theoretical axis x, as it is shown in 

fig. 5.1. Ship’s motion can be modeled through the transverse rolling angle delimited by the 

center line vertical to the ship deck (absolute rolling angle  ) from an inclined to the upright 

position or the angle identified between the latter limit of angle   and the vertical to the 

wave slope at midship (relative rolling angle  ). Both ways to identify the most appropriate 

rolling angle for our analysis have their pros and cons. In general terms, if it’s about 

modeling ship rolling motions, it would be useful to record the time history of the absolute 

and the relative rolling angle as well. However, if one would be interested in avoiding 

capsizing, then he should focus on the relative rolling angle. On the other hand, if there is 

interest in the investigation of possible inertial excitation that can provoke critical cargo 

shift, then we should resort to the time history of the absolute rolling angle (Spyrou, NTUA 

2009). 

The subsequent analysis is based on Froude’s experiments and calculations in about 

1870. It should be noted that the ideas to be discussed, though approximate, are still 

popular internationally. Of course more sophisticated and complex hydrodynamic methods 

recently introduced in the field of ship dynamics can also be adopted. Nevertheless, the 

advantage of the followed approach is that a deeper insight is allowed in the matter of non 

linear effects as well as the limiting parameters that concern a ship stability concept.  

 Regarding the wave effect on ship’s response, we will assume that the Froude-Krylov 

condition prevails. According to this assumption, the ship does not disrupt the form and 

scope of the incident pressures ripple (this assumption is more realistic as the ratio of the 

wavelength   to the ship’s beam   tends to greater values, i.e., over 5). So, with the 

                                                           
6
 Wave groups leading to ship unsafe behavior. 
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condition of Froude-Krylov fulfilled and regarding a wave with extended wavelength, a linear 

approximation of the curve      shown in fig. 5.1, can be considered. Then, the 

hydrodynamic pressure isobars at the point where the wave is displaced by the ship hull will 

not differ from the standard hydrostatic condition and so, employing the relative rolling 

angle, we are able to simplify our analysis reaping the benefits of the stability parameters 

prevailing in calm water.                         

                                                     

                                                                                                  

 

Figure 5.1: Ship rolling 

  

In the case of wave excitation generated in beam seas (as defined fig. 5.2), ship 

motion is affected by the system’s inertial properties, resistance and tendecy to restore to 

the upright position. Starting from the latter, for a stable ship, the relative rolling angle will 

directly provoke a restoring moment. Therefore, a force yields from the system’s stiffness, 

dependant on the time record of the relative rolling angle. In addition to this, there is a 

moment resisting to the ship motion owing to the rolling angular velocity. This is the 

damping moment, which is strongly connected with energy loss.  

  

Equations of motion 

At this point, let us introduce the critical parameters of our analysis and assign them 

to symbols: 

 

  , denotes the mass moment of inertia of the “dry” ship around her longitudinal axis 

x delimited from her centre of gravity if only one angular velocity acts upon the 

system 

 

    

  

  

   



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 53 - 
 

 

    
 

 
 , denotes the wave slope at midship, where   is the wave height and   is 

the wavelength 

 

                  , is the moment of inertia due to the surrounding fluid 

 

       , is the damping moment and, as it was mentioned before, it is a function of 

the relative angular velocity 

 

      , is the restoring moment as a function of the relative rolling angle 

 

 

Figure 5.2: Definition of incident wave directions 

 

In general, functions     are non linear and of odd order, with the effects of non linearity 

more obvious in the case of function      . 

The equations of motion will be derived if the second law of Newton is applied 

(Spyrou, NTUA 2009): 

                     

(5.1) 

and given that: 

 

      

(5.2) 

 

equation (5.1) is formed as: 

 

                         

(5.3) 
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Note that ship excitation is proportional to the angular acceleration of the wave slope. In 

order to make equation (5.3) more specific, let us define functions   and  : 

 

 Damping moment: 

The following expressions are quite common in the case of the damping moment: 

                 

(5.4) 

                      

(5.5) 

 

In fig. 5.3 the schematic representation of equations (5.4) – (5.5) is displayed: 

 

    

 

 

   

                                                                                                     

Figure 5.3: Function of damping moment       according to equations (5.4), (5.5) 

 

However, for the demonstration of the methodology described in chapter   , and 

alternative and simplified approximation of the damping moment will be used: 

 

           

(5.6) 

where    is the linear equivalent of the roll damping coefficient. Undoubtedly, the process 

can be followed without any modifications when equations (5.4) and (5.5) are to be 

employed. In fig. 5.4 the linear approximation of the damping moment function is depicted.  

    

 

 

                                                                  

                                                                                                     

Figure 5.4: Function of damping moment       according to equation (5.6) 
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 Restoring moment: 

As far as the restoring moment is concerned, the following expression will be 

adopted: 

             
    

  
 

    

(5.7) 

 

where    is the ship displacement,   is the gravity acceleration,    is the metacentric height 

and    is the critical angle of stability loss where        . Fig. 5.5 shows a typical form of 

the equation (5.7): 

 

 

Figure 5.5: Function of restoring moment      according to equation (5.7) 

 

 The greatest disadvantage of the representation of the restoring moment function 

and thus the righting arm through a cubic polynomial can be stated as follows: There are 

only two independent parameters that affect the function’s form and thus, there are no 

many options if one would consider modifying the form of the restoring moment function. 

The parameters usually selected to be independent are: a) the metacentric height (  ) and 

b) the critical angle of stability loss (  ). The final result is that parameters that depict 

stability conditions, i.e.,       , cannot be independently selected. Consequently, to 

overcome this drawback, it would be preferable to use polynomials of greater order (5th or 

7th are sufficient) or splines and Bezier curves for the representation of the restoring 

moment function     . However, as the purpose of this thesis is to demonstrate a more 

realistic methodology concerning ship stability behavior, for practical applications the cubic 

approximation of the restoring moment function will be used. Without a doubt, the 

methodology is applicable for functions      of higher order. 
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V.2 Regular waves 

 Let us consider the equation of a sinusoidal wave in deep water (see fig. 5.6): 

              

(5.8) 

where       are the wave amplitude, the wave number and the angular frequency, 

respectively [see fig. 5.6]. For the wave number it is indicated that: 

  
  

 
 

(5.9) 

with   the wavelength as defined in fig. 5.6. 

  
 

Figure 5.6: (a) Waves on the space domain, (b) Waves on the time domain 

 

The wave slope   will be the derivative of   at the space domain: 

  
  

  
              

(5.10) 

Therefore, the maximum wave slope through equation (5.9) will be: 

 

        
  

 

 

 
   

 

 
  

(5.11) 

For a specific ship position   (let us consider that     for the simplification of the process), 

we obtain: 

                

(5.12) 
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Combining equation (5.3) with (5.6),(5.7),(5.12) we conclude into the ship rolling equation in 

regular beam seas: 

 

                     
 

  
 
                 

(5.13) 

 

or in the dimensionless form: 

 

          
    

 

  
 
    

 

      
            

(5.14) 

where 

   
  

      
 

(5.15) 

    
    

      
 

(5.16) 

 

Through equations (5.14) and (5.16) the definition of the linear (concerning small amplitude 

stimulations) natural period for ship’s rolling without damping, is defined. 

 

 

 

V.3 Irregular waves – The Quasi-Determinism theory is employed 

Under the consideration of the second formulation of the Quasi-Determinism theory 

the previous analysis regarding the effects of regular beam excitation can be extended. In 

more detail, in the previous chapter, the linear component of the quasi-deterministic wave 

group was given in the form: 

   
  

  

        
                                          

 

 

 

     

     (5.17) 

 

Now, the wave slope   will be the derivative of    at the space domain: 

  
   

  
 

(5.18) 
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For a specific ship position   (let us consider that    ), it is finally given that: 

 

     
 

    
   

  
 
   

  

(5.19) 

 

Combining equation (5.3) with (5.6),(5.7),(5.19) the ship rolling equation in irregular beam 

seas is defined as: 

 

                     
 

  
 
      

  

    
   

  
 
   

 

(5.20) 

or in the dimensionless form: 

 

          
    

 

  
 
     

 

      

  

    
   

  
 
   

 

(5.21) 

  

Of course, one would prefer to add the effects of the second order corrections to the linear 

components of the QD theory. Then, eq. (5.21) would be formed as follows: 

 

          
    

 

  
 
     

 

      

  

   
 
        

  
 
   

 

(5.22) 

where 

   
     

             
              

 

 

 

 

          

            
          

          
     

              

         
          

          
     

               

          

            
          

          
     

              

         
          

          
     

   

                    

        (5.23) 

 

However, for the practical applications it was not feasible to reach a solution to the 

modified (according to the second order corrections) differential equation (5.22). In the 

MATHEMATICA environment, the powerful function NDSolve, discussed in “Numerical 

Differential Equations”, was the tool to approach numerical solutions to differential 

equations. NDSolve handles both single differential equations, and sets of simultaneous 

http://reference.wolfram.com/mathematica/ref/NDSolve.html
http://reference.wolfram.com/mathematica/ref/NDSolve.html
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differential equations. It can handle a wide range of ordinary differential equations as well as 

some partial differential equations. However, in the case of solving eq. (5.22) the function 

ended to no short-term results. 

This fact should not be regarded as a weakness of the current analysis, though. The 

second formulation of the QD theory is not affected in its probabilistic aspect by second 

order corrections, as mentioned in the concluding remarks of the previous chapter. 

Consequently, a time consuming repetitive procedure such this of integrating the 

nonlinearity effects to the developed ship rolling model is eventually avoided for practical 

reasons. 

 
  
V.4 Concluding remarks based on a brief sensitivity analysis 

The concept of the procedure is given in this paragraph. Firstly, for five pre-defined 

sea state conditions (     ) shown in tables 5.1a-b, the most probable non regular wave 

groups (with a certain central wave height   ) were identified for the minimum possible 

value of index    . Then, harmonic wave groups were generated in the form of eq. (5.24) 

and simulations were performed for the ship scenario of table 5.2. The idea to proceed in 

further analysis considering harmonic waves according to eq. (5.24), originates from the 

foundations laid from the QD theory. 

 

  
  

 
            

          (5.24) 

where           and          .     is the quasi-deterministic central wave height. 

                 

          

       

1 3.5 

 2 6.0 

3 9.0 

4 12.0 

5 15.0 

Table 5.1a 

                             

                

         

         

1 8.0 

2 11.0 

3 13.0 

4 16.6 

5 18.0 

Table 5.1b 
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            2.08 m 

   (ship natural period) 15.26 sec 

     1.965 109 kg m2 

   108 kg m2/sec 

   1.15 rad 

 

Table 5.2: Ship stability particulars 

 

When regular or irregular excitation simulations evolved, the maximum observed 

rolling angle was recorded. The final results of the calculations are shown in figures 5.7-5.8: 

 

 

 
 

Figure 5.7: Sensitivity analysis with regard to    

 

 

 

 

 
 

Figure 5.8: Sensitivity analysis with regard to    
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 The results verify that maximum rolling angle was reached in different time periods 

for each method. For example, in the case of regular modeling, maximum rolling angle was 

recorded during the time period of the first two successive waves’ influence (transient 

response). Obviously, low group run lengths might result in ship capsizing. On the other 

hand, a QD wave group needed approximately 6 waves (till the central wave is encountered) 

to reach the maximum rolling angle, though it was definitely lower than the one observed in 

the regular case. This fact can be attributed to the lack of vessel’s transient response to QD 

stimulation moments [see fig. 5.9a]. Finally, as expected, regular models end up with a safe 

side prediction on the assessment of ship stability in beam seas. In figures 5-9a-d are 

presented typical rolling history responses for the assumed scenarios given in tables 5.1a-b. 

 

 

Figure 5.9a: Typical rolling history scenarios due to QD excitation 

 

 

Figure 5.9b: Typical rolling history scenarios due to QD excitation            
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Figure 5.9c: Typical rolling history scenarios due 

to QD excitation             

 

 
 

Figure 5.9d: Typical rolling history scenarios due 

to QD excitation             

 
 

 
Figure 5.10: A typical example of the correlation between the curve of static stability and ship 

rolling potential (taken from “Ship stability for masters and mates” booklet) 
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CHAPTER   : 
 

A WAVE GROUP THEORY BASED  

ON THE QUASI DETERMINISM THEORY 

 
 
The purpose of the current Chapter is to recommend a new modeling method, 

regarding the phenomenon of ship rolling in a more realistic and applicable way. 

 

VI.1 The concept of the methodology 

After the comprehensive description of the Quasi-Determinism (QD) theory followed 

by the establishment of a ship rolling mathematical model, the deterministic character of 

this thesis is over. As a consequence, the probabilistic aspect of the assessment 

methodology is to be presented. It is consisted of two different theories each one based on 

completely different principals concerning the structure of the wave groups. Structural 

differences amongst wave groups lead to modifications to the employed probabilistic 

methods. In other words, regular wave groups are to be treated in a different way than the 

non regular ones through the application of a certain probabilistic method.  

In the case of the first theory called Wave Group (WG) theory, successive waves in a 

wave group are considered as a Markov Chain sequence. In words: Markov Chain sequence 

is a stochastic process of events the probability for each of which depends only on the event 

immediately preceding it. In more detail, we have to deal with a “memoryless” random 

process. Thus, each wave probability of occurrence in the group is strongly affected by the 

probability of occurrence for the wave firstly encountered in the sequence. 

On the other hand, the second theory seems to be more consistent with the semi-

deterministic foundations laid by Boccotti’s QD theory [see chapter   ]. According to these, 

if a wave of a very large height      participating in a group occurs, the total group surface 

displacement is strongly connected with     . Thus, each wave of the set would occupy the 

centre of a well defined group that is the sum of a deterministic framework and a residual 

random noise of a smaller order. The form of the deterministic component was given in 

chapter    as: 

 

                      
                    

                  

  

 
   

                      
      (6.1) 

 

In consistency with such an approach, the probability of occurrence for each wave of the 

group sequence is dependent on the central wave’s probability of occurrence. The central 

wave takes the central role in this approach and for this reason the Central Wave (CW) 

theory arises. Of course the validity of the theory will be empowered when parameter 

       , as already explained. 
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 The principal aim of the theories applications presented in the next chapter will be 

to display the total probability rate of capsizing for each employed theory for a range of 

different sea state scenarios. Firstly, the familiar concept of Wave Group theory on regular 

wave groups will be applied. Then, the Wave Group theory on irregular waves will be 

considered and finally imposed on the Central Wave theory. In such a way, the total results 

based on irregular waveform methods will be clearly compared to the regular WG theory.  

 To determine norms of unsafe behavior for ship rolling motions, the “Weather 

Criterion” will be applied. Afterwards, the critical wave groups will be specified through 

simulation of the mathematical model developed in chapter   per sea state scenario. The 

ship will always be at the upright position. No initial inclination will be taken into 

consideration.  

The final outcome of the procedure will be the total probability rate of instability for 

the considered sea state scenarios depending on the employed probabilistic method. 

Eventually, all three methodologies will be integrated into a united framework for the 

assessment of ship stability. 

 

 

 

VI.2 Regular wave groups and Wave Group theory 

 Regular excitation is univocal for each ship and independent of the altering sea state 

parameters. So, according to the original concept of the WG theory, the realistic range of 

periods of ocean waves should been spanned [4-20 sec]. However, in order to be able to 

proceed in an immediate comparison of the results between regular and non regular based 

probabilistic theories, we should take a closer look into the regular time period span in the 

vicinity of          . This is the expected period of the central wave prevailing in a semi-

deterministic wave group. In this way, we set equilibrium between regular and non regular 

groups so as to reach into comparable results. Moreover, in this way, the sea state affects 

regular waves indirectly.  

With these in mind, the specification of the regular critical wave groups is limited to 

the determination of the critical wave group parameters. These are: 

1. the wave height (  )  which is the same for all the successive waves in the 

regular sequence, 

2. the critical wave group period ( ) and  

3. the run length ( ).  

 

The final step of the procedure is the calculation of the probability for encountering 

the defined critical wave groups. The probability calculation procedure is based on the 

following concept (Themelis, 2008): 

 

                 

 

(6.2) 
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(6.3) 

 

                                                 

 

   

 

   

 

(6.4) 

 

where                 and         ,           are respectively the dimensionless 

wave period and height.    and      stand for mean spectral period and root - mean -

square wave height respectively. All the above calculations will be derived by the frequency 

spectra information. In more detail: 

 

In the first probability [eq.(6.3)], the following multivariate conditional pdf of   -successive 

waves will be utilized: 

 

 

                
 

               
 
   

     
 

 
         

 
       

             

 

(6.5) 

 

where 

 

       
 is the covariance matrix given as: 

 

 

       
  

       

                               

   
                       

 
  

  

(6.6) 

 

 

and                        

  . The mean values        and the standard deviations        
 are 

calculated from the below given formulas: 

 

 

                     

(6.7a) 
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(6.7b) 

 

with           ,        and   the well known bandwidth parameter. 

 

 

The correlation coefficient     corresponds to the correlation of wave periods whose 

sequence also forms a Markov Chain (Kimura 1980): 

 

                 

(6.8) 

 

In a study carried out by Stansell et al (2002), time domain field data were compared in 

terms of group statistics with spectral prediction methods. According to the study an 

improved spectral estimate of the correlation parameter       
  is given by: 

 

 

    

      
   

  
 

   

   
 

(6.9) 

 

where 

    
     

 
      

(6.10) 

 

 

      
                                

             
 

(6.11) 

 

 

        
 

     
       

     

  
 

     

  
                      

(6.12) 

 

     
 

  
      

 

 

          

(6.13) 

 

where    stands for    , the mean spectral period. 
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For the calculation of the second probability [eq.(6.4)], the multivariate joint pdf       or 

            will be estimated according to: 

 

                                          

(6.14) 

 

where the conditional bivariate pdf are  derived from: 

 

             
           

      
 

(6.15) 

 

The joint pdf              is estimated by the bivariate Rayleigh distribution for successive 

wave heights: 

 

 

         
     

        
 
 
     

 
 

 
   

    
  

         
 
     

 

     
      

     

        
 
 
     

 
  

 

(6.16) 

 

whilst for        the improved Rayleigh distribution is used [see chapter   , eq.(4.19b)]. 

Therefore, the Markov chain concept allows for the estimation of the multivariate joint pdf 

through eq.(6.14) by the combination of the conditional bivariate pdfs. 

Eventually, the total sea state scenario7 probability rate of instability       will be 

calculated from the equation: 

 

                   

 

   

 

   

 

 

(6.17) 

 

where    corresponds to probabilities of different segments of the wave period range, while 

   represent probabilities of different run lengths. Probabilities for each segment are 

summed up. Events of wave-group-encounter in a range             with             

successive waves are treated as independent but not mutually exclusive. The minimum run 

length (the minimum number of waves consisting a wave group) is obviously     . 

The followed procedure is developed in more detail by N. Themelis (“Probabilistic 

Assessment of Ship Dynamic Stability in Waves”). In fig. 6.1 the methodology is depicted in 

steps: 

 

                                                           
7
 A sea state scenario will be referred as “node” in the following sections.  



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 68 - 
 

 

 

      

     Ship rolling oscillator model 

 

 

 

 

 

 

 

Wave group theory of capsizing 

 

 

Figure 6.1: Flow-chart of the methodology concerning regular wave groups 

 

VI.3 Irregular wave groups and the Wave Group theory 

 When we deal with irregular wave groups, essential modifications to the basic 

concept of the WG theory, have to be applied. These modifications are based on the 

conception of a united theory, in which the Quasi-Determinism theory is imposed on the 

Wave Group theory. In this method the specification of the non regular critical wave groups 

is limited to the specification of the critical wave group with the parameter   limited to the 

minimum value8. For this specific wave group, the important parameters to be noted are: 

1. the critical wave height (  ), defined in an indirect manner if the spectrum form and 

parameter   are given, 

2. the critical wave group period     , which is well defined through the consequences 

of the QD theory and 

3. the run length  ( )9 

                                                           
8
     in any case so as the QD approach to be applicable. 

9
 Usually in practical applications the number of waves constituting the group will be taken 

approximately at     waves because greater run lengths include waves with no defined period and 
of very low height (referred as “noise” in Boccotti’s analysis).  

Regular wave groups  (     , 

  in the vicinity of    

 

 
Critical regular wave group  

Critical wave group height     
   and 

run length    

Total node probability rate of 
capsizing     

Sea state conditions  (       
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Finally, the calculation of the total node probability rate          is the same as in 

the regular case [see previous paragraph]. The only difference which implies a more realistic 

estimation of the risk effects upon ship instability is that in eq. (6.3) and (6.4) the critical 

wave heights        differ for each wave of the set in a matter dictated into DQ theory. 

 

 

 

VI.4 Feasibility analysis on the integration of QD into WG theory 

Obviously, the WG theory is applicable and effective in the case of regular wave 

groups (see N. Themelis, “Probabilistic Assessment of Ship Dynamic Stability in Waves”). 

Thus, in order to embrace a united theory with the light of QD theory, it is of utmost 

importance to secure the feasibility of such a combined theory. Of course, the new theory 

should reach into reasonable conclusions and this fact will be investigated in the following 

pages. So, let us assume a certain peak period       sec while altering the significant 

wave height    in the way shown in table 6.1:  

 

 

            

1 4.5 

2 6.0 

3 7.5 

4 9.0 

Table 6.1: Wave statistics (sea state parameters) per node 

 

Now let us consider three regular plus three irregular wave groups noted as       

and      , respectively, with their characteristics shown in table 6.2. The investigation 

procedure targets in the vicinity of the most probable (according to chapter   ) group 

period,                  . As far as the determination of the three irregular groups is 

concerned, the QD theory was not employed, as its validation through the application of the 

WG theory, is the object of our analysis. Thus, the individual successive wave heights were 

selected arbitrarily in a way so as to fulfill the QD assumption of    . The group run length 

was selected as     for all the sets (regular or not). 

For the calculation of the period10 probability occurrence the integration methods 

were applied in the span of: 

 

                               

 

Now, employing the WG theory, the final results are given in tables 6.3a-b and fig. 6.2a-d: 

                                                           
10

 Each wave is considered with its period approximately equal to the wave group period. 
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  16.0                      

  16.0                

  16.0                        

 

  

                

  16.0 

  18.0 

  20.0 
 

 

 
                     

 

  

                

  16.0 

  18.0 

  20.0 
 

 
 
 
 

               

 

  

                

  16.0 

  18.0 

  20.0 
 

 
 
 
 

                   

Table 6.2:  Characteristics of the considered wave groups 

 

                   
             

            
       

            
               

 
                                           

 
                                           

 
                                           

 
                                         

Table 6.3a:  Application results 
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Table 6.3b:  Application results 

 

  

  

  

Harmonic 
waves 

QD 

Figure 6.2a: Application results; 
groups       

 

Figure 6.2b: Application results; 
groups       
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Now let us repeat the procedure considering the regular wave groups shown in table 6.4a: 

 

                         

   18.0                      

   18.0                

   18.0                        

Table 6.4a:  Characteristics of the considered wave groups 

 

 

When the WG theory is applied the following results arise: 

 

  

  

  

QD 

Figure 6.2c: Application results; 
groups       

 

Figure 6.2d: Application results; 
groups       
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Table 6.4b:  Application results 

 

 

 

 

 

 

 

 

   

   

   

Harmonic 
waves 

QD 

Figure 6.3a: Application results; 
groups          

 

Figure 6.3b: Application results; 
groups          
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The same procedure is followed again considering the regular wave groups shown in table 

6.4a: 

 

                         

    20.0                      

    20.0                

    20.0                        

Table 6.5a: The wave period scenarios 

 

 

The final results are given below: 

 

                     
             

              
       

              
               

 
                                           

 
                              

 

             
 

                                           
 

                                           

Table 6.5b:  Application results 

 

 

 

  

    

    

    

Figure 6.4a: Application results; 
groups          
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Harmonic 
waves 

QD 

Harmonic 
waves 

QD 

Figure 6.4b: Application results; 
groups          

 

Figure 6.5a: Comparative figure 

 

Figure 6.5b: Comparative figure 
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Important conclusions can now be reached, taking into consideration the following 

notes: 

1. In the case of the irregular groups      , the critical period scenario occurs close 

enough to the period               . 

This is the evidence that from a wide range of irregular wave groups, the greatest 

probability for ship instability occurs when the wave group period is approaching     

      . Consequently, WG theory consents to fact that the most probable non regular wave 

group approximately occurs when the period that the QD theory indicates, is met. In simple 

terms: if the QD theory is employed, a critical wave group is defined whose period is 

approaching   . Then, WG theory verifies that this group is the most probable for ship 

capsizing (fig. 6.2c-d).  

 

2. For all regular cases, WG theory tends to the most probable period scenario of 

              as shown in figures 6.2b, 6.3b and 6.4b. However the differences in the 

final results shown in fig. 6.5b vanish as long as the crucial QD parameter    . In fig. 6.6, 

it is confirmed through experiments in Reggio Calabria that for low values of  , the first 

consequence of the QD theory is not valid.  However, a possible assumption of the most 

probable regular wave group period lying in the vicinity of    could come into force as the 

final results are still below the acceptable levels of deviation.  

 

 

 
 

Figure 6.6: Data points                     obtained from the experiment RC 1990. We see 

that the     of the highest waves are very close to 1 (Boccotti, 2000) 
 

 

 

 

This analysis encourages a more substantial treatment of the WG theory. The united 

QD-WG theory preludes a more realistic depiction of wave mechanics.  
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VI.5 The Central Wave Theory on Quasi-Deterministic waveforms 

 

Recalling the theory of Quasi-Determinism:  
Given the condition (6.18) a wave of a very large given height    , with a very large 

probability, belongs to a wave group with the deterministic form of eq. (6.19). In more detail, 

eq. (6.19) gives the deterministic form of a wave group whose form and height is affected by 

the central wave height    [see fig. 6.7].  

 

            
 

 
                                                    

 

 
                

   (6.18) 

  

                      
                    

                  

  

 
   

                      
      (6.19) 

 
So, the Central Wave theory is established on Boccotti’s basic theorem which allows 

us to override the consideration of the wave group structure as a Markov chain. Each wave 

of the group will be closely connected to the central wave, whose modification will provoke 

changes to the whole structure of the group. So, a modification to each wave’s height is 

allowed only if the central wave height is modified. In more detail, the wave group is treated 

as a deterministic framework depended on the central wave. A possible increase (or 

decrease) of a single wave height in the group will be proportional to a modification of the 

central wave height,    , as it is stated in equation (6.19), [see fig. 6.8]. 

Of vital importance for the validity of the CW theory, is obviously critical parameter 

 . As,    , waveform (6.19) will be of great probability resulting in a powerful theory in 

the field of probabilistic ship stability analysis. Critical wave group period is obviously close 

to           with probability approaching  . 

 In order to employ the CW theory, the procedure to be followed is similar to the one 

of the WG theory but less complex. Of course, univariate pdfs will be used. More precisely, 

the associated probability rate of capsizing      will be derived by the calculation of the 

following probabilities: 

 

                 
(6.20) 

 

                
                   

  

  

 

 (6.21) 
 

              
              

 

   
 

 

(6.22) 
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Figure 6.7: The most probable waveform according to the QD theory. At this point   is the 

characteristic value of this deterministic framework 

 

 
Figure 6.8: The schematic representation of the new concept, the Central Wave theory 

 

In the first probability [eq. (6.21)], the following conditional pdf proposed by Tayfun(1990) is 

used: 

             
 

 
 
       

     
 

 

  

(6.23) 
where    is a parameter in order the following condition is satisfied: 
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(6.24) 

In eq.(6.23) the conditional mean and standard deviation are given by eq.(6.7a-b). According 

to eq.(6.24) the parameter    approaches the value                 . 

For the calculation of the second probability [eq. (6.21)], concerning the univariate pdf 

      , the modified Rayleigh distribution is used [see chapter   , eq.(4.19b)].  

 

In fig. 6.9 the applied methodology in the case of irregular excitation is depicted in steps: 

 

 

   “Quasi-Determinism” theory 

 

 

Ship rolling oscillator model 

 

 

 

 

 

 

                Central wave theory                                                                               Wave group theory  

 

 

 

 

 

Figure 6.9: Flow-chart of the methodology concerning irregular wave groups 

 

VI.6 Concluding remarks 

These are included at the end of chap.    . 

Sea state conditions  (       

Most probable non-regular wave 

group 

Critical non-regular wave group 

with the minimum        

Critical wave group height    
  and 

run length   

Total node probability rate of 

capsizing     

Total node rate probability of 

capsizing        

Comparison of    with        

and     
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CHAPTER    : 

 

APPLICATION OF THE ASSESSMENT METHODOLOGY 

  

As the final chapter of this thesis is reached, the verification of the methodology 

described in the previous sections remains to be proved through extended calculations. It is 

reminded that the principal objective of the analysis is to settle a solid probabilistic 

assessment framework regarding ship stability in beam seas. The concept of this framework 

was briefly displayed in chapter   , but more light is shed on this subject in the following 

pages. 

To demonstrate the developed methodology, an extended application has been 

undertaken. In more detail, a ROPAX ferry has been examined in different sea state 

scenarios (nodes).  

Probabilities of instability are calculated, leading to a series of new “probabilistic” 

diagrams for ship stability assessment. By these diagrams one can easily deduce which 

theory (Wave Group theory on regular waves, Wave Group theory on irregular waves and 

Central Wave theory) is more effective for ship stability analysis and the establishment of a 

widely accepted ship safety level against capsizing in beam seas. Moreover, if all three 

alternations of the same assessment methodology are carried out, then a complete 

probabilistic background for the stability assessment of a specific ship has been acquired. 

 

 

VII.1 Basic characteristics of the ROPAX ferry 

The examined ship is a recently built ROPAX ferry whose basic particulars are 

collected in table 7.1. In fig. 7.1 the ship’s General Arrangement (GA) is displayed: 

 

 

Figure 7.1: General arrangement of ROPAX 
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157 m    0.626 

  
 

26.2 m    22.5 kn 

   6.2 m 
 

            

 

2.08 m 

  (to upper deck) 15.37 m         (breadth, length of bilge 

keels) 

0.26 m 

60.9 m 

Table 7.1: Ship particulars 

 

 

VII.2 Sea state scenarios called “nodes” 

In order to assess ship stability, different scenarios of sea state conditions (nodes) 

are considered. The nodes were chosen in a way so as the entire range of realistic seaway 

periods to be spotted. However, as one would notice, in table 7.2 the selected peak periods 

     lay in the range of        sec. The reason why peak periods lower than    seconds 

were not determined is that for these cases the specified critical wave groups exceeded the 

Airy breaking limit. So, if individual waves in deep water break when the wave steepness 

exceeds about     , the demonstration of the methodology will not be accurate. For all 

applied theories, the calculations for the probability of the critical wave group period 

occurrence were carried out for the time range: 

 

                               

(7.1) 

 

The selection of the significant wave heights      were made according to eq.(3.18) 

resulting in three different values of the Phillips’ parameter      
     
     
     

  . 

 

In total, 13 nodes were assumed. Tagged (per node) wave statistics are shown in table 7.2 

and fig. 7.4.  The variation of the sea state parameters per node is given in figures 7.2-7.3.  
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A 8.14 11 

B 6.65 11 

C 4.70 11 

D 11.37 13 

E 9.29 13 

F 6.57 13 

G 12.04 14.8 

H 8.51 14.8 

I 12.86 15.3 

J 9.10 15.3 

K 14.07 16 

L 9.95 16 

M 12.59 18 

Table 7.2: Wave statistics (sea state conditions) per node 

 

 

Figure 7.2: Variation of the mean value of    per node 

 

 

 

Figure 7.3: Variation of the mean value of    per node 
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Figure 7.4: All the scenarios set to examination 

 

For the applications following in the next paragraphs, the assumption of the mean JONSWAP 

spectrum is made (Hasselmann et al 1973): 

 

                 
 

 
 

 

  
 

  

  
         

    

   
 
 

 
 

(7.2) 

where        and       . 

 

VII.3 Ship natural period      

The way ship characteristics are connected with    is founded on a simple 

transformation procedure lying behind eq. (5.16): 

 

    
    

      
   (5.16)     

      
      

    
 

 

   
    

      

  
 

   
  

  
 

(7.3) 
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where 

           
 

 

      

(7.4) 

With   the inertial moment radius expressed as a percentage of the ship beam: 

      

(7.5) 

Finally eq. (5.24) is transformed as: 

 

   
      

   
 
 

 
 

      

   
 

(7.6) 

 

Let us remember the IMO directive (IMO (MSC.1/Circ. 707)) to the ship master according to 

which the ship natural period is defined as: 

 

   
     

   
 

(7.7) 

where 

             
 

  
      

 

   
 

(7.8) 

 
 

VII.4 Norms of unsafe ship response – Application of the “Weather Criterion” 

At this point a limiting rolling angle must be determined so as to quantify unsafe 

responses. Exceeding this limit of ship rolling would cause ship capsizing. In this way, if wave 

groups resulting in critical ship inclination are identified they will be noted as “critical wave 

groups” and their characteristics will be recorded according to the methodology described in 

the previous chapter. 

The specification of the critical rolling angle will be achieved through the application 

of the Weather Criterion for the considered ROPAX ferry. According to IMO the governing 

stability limit will be calculated if the following procedure is followed: 
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Calculation of rolling range    

 

                   

(7.9) 

where 

 for                   

 for                  

   
11                     

                      
     

  
                              

                                 

Thus 

                     

(7.10) 

 

Calculation of flooding    

 

 Let us assume that ship inclination leading in flooding of non-watertight openings 

occurs when the ship margin deck line is submerged. Thus critical angle    can be calculated 

through a simple geometric calculation: 

 

      
    

   
                  

(7.11) 

 

According to IMO, as ship capsizing should be considered the exceedence of the 

minor of: the angle of vanishing stability determined as        ; the flooding angle 

       ; the perspective limit of        that is prescribed in the application of the 

weather criterion for balancing work against potential energy. 

 

Eventually, 

                 

(7.11) 

is the critical rolling angle. 

 

The final results inferred from the application of the Weather Criterion are shown in fig. 7.5. 

                                                           
11

 Eq. (5.16) was employed, according to the calculation procedure presented in section VII.3. 
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Figure 7.5: Application of the weather criterion 

 

 

VII.5 Regular waves – Wave Group theory application 

In the case of regular wave groups transient response was generally targeted. 

Repetitive simulations were carried out in order to specify which wave groups’ impact on 

the ship response would lead to exceeding rolling angle    . Figure 7.6a presents a critical 

wave excitation in the time domain, while in fig. 7.6b the provoked roll response time 

history is displayed.  

 

Figure 7.6a: A critical wave group                            

 

According to the procedure, successive simulations were performed until wave 

groups producing critical ship inclination were identified. For a wide range of periods 

(            sec), critical wave groups were specified. Groups consisting of     to   

waves were considered. For obvious reasons (since the feasibility analysis carried out in the 

previous chapter allows us so), the critical wave groups occurring when          were 

taken into consideration for each case of run length  . We should note however that, in 

general, the most probable regular wave groups did not occur exactly when          but 
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Figure 7.6b: Roll response simulation time history 

 

 

in the narrow span of                 12 . This result can be attributed to the fact that 

successive high waves have a strong impact on the calculation method of instability 

potential. A comparative diagram of WG theory of regular waves considered only when 

         versus irregular wave groups will be presented in the following pages. 

It should be noted however that, in the low range of periods (at about          ), 

it was not feasible to determine critical heights because the required steepness exceeded 

the wave breaking limit of Airy waves (       ).  

In figures 7.7-7.8 and tables 7.3a-e are summarized the obtained critical wave 

heights, parameterized with respect to wave period and run length.  

 

 

 

 
Figure 7.7: Ship’s transient capsize diagram 

 

                                                           
12

 The reason for this fact was explained in detail in Chapter VI. 

Instability 

Area 
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Figure 7.8: Wave groups resulting in critical ship inclination 

 

 

                

8.98 7.5 

10.68 8.5 

12.92 9.5 

14.55 10.12            
 

15.16 10.5 

15.32 11.5 

16.03 11.96            
 

16.53 12.5 

16.62 13.5 

16.82 13.62          
 

17.61 14.08          
 

18.58 14.5 

19.15 14.72          
 

21.83 15.5 

26.53 16.5 

26.92 16.56        
 

33.08 17.5 

Table 7.3a: The specified critical waves       

 

 

 

n=2 n=3 

n=4 

n=5 

n=6 
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16.74 13.5 

16.42 13.62          
 

16.09 14.08          
 

15.69 14.5 

15.69 14.72          
 

16.76 15.5 

19.08 16.5 

20.53 16.56        
 

26.32 17.5 

Table 7.3b: The specified critical waves       

 

                

14.93 15.5 

17.56 16.5 

17.72 16.56        
 

23.37 17.5 

Table 7.3c: The specified critical waves       

 

                

15.97 16.5 

16.26 16.56        
 

22.08 17.5 

Table 7.3d: The specified critical waves       

 

                

15.23 16.5 

15.41 16.56        
 

21.15 17.5 

Table 7.3e: The specified critical waves       

 

Total probability rate of capsizing per node is finally given in table 7.4: 
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A            

B            

C             

D            

E            

F            

G            

H            

I            

J            

K            

L            

M            

Table 7.4: Total probability rate of capsizing       per node; 

 The worst scenario for capsizing is underlined 

 

In order to depict the variation of     with the node sequence, fig. 7.9 is presented in 

logarithmic scale. 

 

VII.6 Irregular waves – Wave Group theory application 

Employing the Wave Group theory for irregular waves, the prescribed procedure 

was followed. Obviously transient response could not be identified as no steady excitation 

was imposed on the ship. Then, critical wave heights were estimated modifying the critical 

QD parameter  . In this part of the application, each node specifies a unique most probable 

quasi-deterministic wave period   . Figures 7.10a-c present the critical wave excitations 

specified for Nodes A and L, whilst in figures 7.10b-d the provoked roll response time 

histories are given, respectively. 

In figure 7.11 and table 7.5 are summarized the obtained critical wave heights, 

parameterized with respect to wave period. It should be noted at this point that critical ship 

inclination was feasible to be identified only due to the central wave’s excitation. In other 

words, ship instability was observed only when the central wave was encountered. Because 

the wave group with the minimum parameter   should be specified, capsizing could not be 

met due to wave preceding the central wave (of height     ). If we would try to identify a 

wave group that could cause ship instability behavior under the influence of a wave not 

being in the center of the group, then we would notice that such a wave group is 

characterized from a very high value of parameter  . Thus, unusually high central waves 

occur           in this case leading to violation of the Airy wave theory limit.
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Figure 7.9: Probability rate of capsizing – Wave Group theory on regular waves 
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Figure 7.10a: The critical wave 

group identified in Node A 

 

Figure 7.10b: The roll 

response simulation time 

history 

 

Figure 7.10d: The roll 

response simulation time 

history 

 

Figure 7.10c: The critical wave 

group identified in Node L 
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Figure 7.11: Ship’s transient capsize diagram per node; 
Nodes with the minimum critical heights are spotted 

 

                                 

A 21.03 10.12 10.4 

B 21.14 10.12 12.8 

C 21.01 10.12 18.0 

D 22.66 11.96 8.0 

E 21.53 11.96 9.3 

F 21.44 11.96 13.1 

G 23.92 13.62 8.0 

H 18.39 13.62 8.7 

I 25.47 14.08 8.0 

J 18.47 14.08 8.2 

K 27.67 14.72 8.0 

L 20.30 14.72 8.3 

M 27.47 16.56 9.3 

 

Table 7.5: The specified critical waves per node 

 

Finally, the considered number of the waves the ship encounters    , is an 

important factor. In the case of irregular groups, it was observed that the generated QD 

waveforms were usually consisted of eight to ten waves, with the first heights of the wave 

sequence always being lower than 1m. In figure 7.12a we should notice that in a QD wave 

group very low heights accompanied by respectively high periods may occur. These waves 

have a strong impact on the probability formulas as they are quite unlikely to be met in a 

Instability 

    Area 
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realistic sea state. It is a factor that would lead in underestimated probabilities of occurrence 

for critical wave groups. Moreover, very low wave heights i.e., lower than 1m, are out of 

interest for a ship designer as the ship’s depth is incomparably higher and without a doubt 

no additional ship tension to instability would be caused. For such reasons calculations were 

performed in two cases; in the first case, the QD group’s effect on the vessel begins when 

the first wave with a well defined period is encountered. Thus     waves constitute these 

QD wave sequences. In the second case, waves with height lower than 1m mere neglected 

so as to reach in more realistic results regarding the excitation impact on the ship. For the 

latter procedure run length      was considered. Fig. 7.12b shows a group of wave height 

trains in different nodes.   

 

 

Figure 7.12a: Wave height and period sequence in node A 

 

 

 

 
Figure 7.12b: Wave height sequence 

    

  

Central Wave 

Node B 

Node G 

Node I 

Node K 

Node M 
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Total probability rate of capsizing          per node is shown in table 7.6 and her variation 

in each node is given in fig. 7.13 -7.14 (logarithmic scale). 

 

                       

                

                 

            
             

                

A                              

B                              

C                              

D                             

E                             

F                              

G                             

H                             

I                             

J                             

K                             

L                             

M                             

Table 7.6: Total probability rate of capsizing          per node; 

 The worst scenario for capsizing is underlined 

 

 

It is important to notice for those Nodes where parameter    , the defined critical 

central wave height     is much higher than the one really needed for capsizing. However, 

because       , there was no other choice left but to set   equal to  . So, in these cases 

the extracted probability rate of capsizing is underestimated. 
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Figure 7.13: Probability rate of capsizing – Wave Group theory on irregular waves       
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Figure 7.14: Probability rate of capsizing – Wave Group theory on irregular waves       
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VII.7 Irregular waves – Central Wave theory application 

The procedure is followed by step as described in the previous chapter [see section 

VI.5]. The results are given in table 7.7 and fig. 7.15. As one would observe, CW theory is an 

intermediate prediction of ship instability which lies between the probability estimation of 

the regular and irregular alternations of the WG theory.  

 

                         

                

            
            

                

A                 

B                  

C                  

D                

E                

F                  

G                

H                

I                

J                

K                

L                

M                

Table 7.7: Total probability rate of capsizing       per node; 
 The worst scenario for capsizing is underlined 

 

 

VII.8 Probability rate of “instability” in beam seas – Comparing the theories 

At this point the three applied theories will be set into comparative procedures. The 

final results for each theory are summarized in table 7.8 and fig.7.16. 

Generally, all employed theories agree on the matter of which nodes are of “high 

risk”. Probability variation for each node reaches into the same conclusions. 

In the case of WG theory on regular waves, the probability rate of instability is 

increased, as expected. It is a common belief that using regular waves a “safe-side” ship 

stability prediction is provided. The reason is that transient ship response causes unexpected 

high rolling motions so as the critical rolling angle is exceeded. 

In the case of WG theory on irregular waves, it is obvious that probability of 

encountering critical waves is significantly decreased. As expected, a more realistic approach 

is achieved through the Quasi-Determinism theory and lower risk levels are proposed. 
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Figure 7.15: Probability rate of capsizing – Central Wave theory on irregular waves 

 (logarithmic scale) 
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A                                                    

B                                                     

C                                                      

D                                                   

E                                                   

F                                                     

G                                                   

H                                                   

I                                                   

J                                                   

K                                                   

L                                                   

M                                                   

 

Table 7.8: Final probability rate of capsizing per node and employed theory; maximum probability 

per method is underlined 

 

Finally, as far as the CW theory is concerned, an intermediate risk level is obtained. 

Because of the fact that this theory overleaps the effect of the lower waves of the group on 

the occurrence probability of the critical group period, the above given results are justified. 

However, it is important to notice that in nodes H and J a higher risk level is proposed than 

the safe-side prediction of regular WG theory. This is a matter of issue as it is proved that 

harmonic waveforms might lead to underestimations concerning ship safety! 

 

All in all nodes C and F are definitely the ones of lowest risk level. The node of 

highest risk is not easily distinguished, though. Irregular theories agree to the fact that node 

D is the most probable for capsizing, whilst in regular WG theory node K is proposed. 

However, even in this case, node D is of the highest risk nodes. Theories deviations in the 

final results are limited and in within the acceptable level.   
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Figure 7.16: Probability rate of capsizing – Comparative diagram (logarithmic scale) 

 

 

 

 

WG regular 

WG irregular 
    

CW irregular 
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Finally, the WG theory for irregular groups is compared with the regular one when 

         considering a run length of     [see table 7.9 and fig. 7.18]. Method 

convergence is reinforced: 

 

                       

              

         

    

                  

                

    

                    

                

            
            

                

G                                       

H                                        

I                                       

J                                        

K                                       

L                                        

M                                        

 

Table 7.9: Final probability rate of capsizing per node and employed theory; maximum probability 
per method is underlined – Regular waves with          

 

The purpose of table 7.9 and fig. 7.18 is to scale under the same conditions the WG 

theory if regular and irregular waves are considered. Eventually, comparative conclusions 

are more obvious: Node M is the one of lowest risk level. Node G is indisputably of very high 

risk for capsizing13. In general, one would notice as long as parameter     the WG 

methods seem to result in the same estimation for probability rate of capsizing. 

Figures 7.17a-d are to be used as a supplement for comparing procedures. In these 

figures the wave height train is shown in the case of irregular waves for different run 

lengths. The fixed regular height is also noted.  For the defined run length    , method 

convergence is met as             . In simple words, comparable results are produced 

as far as the standard wave height of the regular waves reaches the central wave height of a 

QD irregular set.  

 

 

                                                           
13

 The specification of regular critical wave groups for Nodes A,B,C,D,E and F was not feasible as ship 
capsizing was met only for run length     .   

Central 
Wave

 

 
              

Figure 7.17a: Wave height 
train variation, Node H 
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Figure 7.17b: Wave height 
train variation, Node I 

 

Figure 7.17d: Wave height 
train variation, Node M 

 

Figure 7.17c: Wave height 
train variation, Node J 

 

Central 
Wave

 

 
              

Central 
Wave

 

 

Central 
Wave
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Figure 7.18: Probability rate of capsizing – Comparative diagram; Regular waves with           (logarithmic scale) 

 

 

 

WG regular 
       

 

WG irregular 
    

CW irregular 
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Finally, of significant importance to depict the effects of the QD theory on the 

probability rate of ship instability are the following diagrams: 

 

Figure 7.19a: Effect of the QD theory on the CW probability rate of capsizing       

 

 

 

Figure 7.19b: Effect of the QD theory on the WG probability rate of capsizing       

 

In the above given diagrams, the minimum parameter   which results in a specific 

risk level, is presented. Figures 7.19a-b constitute a useful tool if the risk level is defined and 

the maximum value of   has to be calculated. Then, a quick and approximate answer to the 

matter if a generated wave group is critical can be given without proceeding in numerical 

simulations.   

 

VII.9 Probability rate of “instability” in beam seas if initial rolling angle is set – QD theory 

applications 

 After a series of repetitive simulations, the final conclusion on this matter was that 

such an analysis would be meaningless. As no transient response occurs, the ship will reach 

the maximum rolling angle when the central wave is encountered. Because of the fact that a 

few waves intercede to the central wave encounter, system’s extra stored energy has time 

Instability Area 

Instability Area 
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to be damped. Thus no difference to the upright position case will be observed, even though 

the wave period    approaches ship’s natural period   . 

 

VII.10 Probability rate of “instability” if    is modified 

 The effects of the    upon the ship natural period through the mathematical model 

presented in chapter   are a matter of discussion as the final    value of a specific ship 

design is a result of compromise. 

In general, if the metacentric height is high, the developed righting arms, in small 

heel angles, are increased. Then a “stiff” ship design resistant to rolling motions is secured. 

Otherwise, the provoked righting arms are insufficient for stability establishment and then 

we deal with a ship tender to slow rolling. 

 However, when a ship design project is undertaken, careful mapping of the possible 

sea states that the vessel would encounter is essential. It is an important matter to avoid 

tuning areas that lead to increased rolling amplitude. In more detail, if we take the first 

consequence of the QD theory under consideration, ship’s natural period      should be set 

in a span of periods far from the most probable wave period   . As one could imagine, if 

     , the most probable wave of Boccotti’s established theory becomes the most 

dangerous one, as well. In simple words, if a specific sea state is identified by a peak period 

over   , a possible increase of    would lead in an increased probability rate of capsizing, 

as eq. (5.16) implies.  

Now, let us examine the case in which    is modified for the ROPAX ferry described 

in the previous sections. In the case of node F and run length of    , the final results are 

shown in fig. 7.20a-b: 

 

 

Figure 7.20a: Effect of the variation 
of GM to the probability rate of 

capsizing 
 WG theory on non regular 

waves      

 

Figure 7.20b: Effect of the variation 
of GM to the probability rate of 

capsizing 
 WG theory on non regular 

waves      

waves      
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VII.11 Concluding remarks 

 All in all there seems to be excellent agreement between the Quasi-Determinism 

and the Wave Group theory based on Kimura’s approach in the field of the critical group 

period. The latter theory estimates that the most probable period to occur in a realistic 

seaway, is the one proposed by the Quasi-Determinism theory. The fact that this probability 

overdominates the probability of exceeding critical wave heights results in the effective 

combination of the aforementioned theories so as to evaluate ship stability.   

In general the probability rate of capsizing is overestimated if regular treatment of 

wave groups is regarded. Of course one should expect this. However, when irregular 

waveforms are generated from the Quasi-Determinism theory, the mechanics of prevailing 

wave laws are given in a more realistic way. The final outcome is that the total risk levels are 

definitely lower, depending though on the group run length. After a brief investigation into 

the matter of the appropriate run length considered in probability calculations, the 

conclusion is that by discarding the lower heights of the sequence, increased risk levels are 

met. For these reasons, if irregular waves are to be examined, the Central Wave theory 

should be taken seriously into consideration. This method gives the upper limit of the 

probability range of the Wave Group theory.  

Obviously, the recommended probability rate of instability cannot be univocal in the 

case of irregular wave groups. The interpretation of ship unsafe behaviors lies within a range 

of probability values defined from the Central Wave (high probabilities) and the Wave Group 

theory of run lengths     (lower limit). Yet, this particular range gives a more realistic 

depiction of capsizing phenomena. 

As a recommendation for future work, a coupled roll-sway model could be adopted. 

An oscillator of this kind would definitely improve the applied methodology in the field of 

ship dynamics. Moreover, Monte Carlo simulations could be carried out so as to verify the 

Wave Group theory’s results. Finally, other instability modes could also be investigated (i.e., 

parametric rolling and pure loss of stability) under the scope of the Quasi-Determinism 

theory. 
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APPENDIX  
 

ADDITIONAL APPLICATIONS ON THE  
QUASI DETERMINISM THEORY  

 

 

 This section aims to present more applications of the employed Quasi-Determinism 

theory for various sea state conditions. Calculations were carried out for the first and the 

second formulation of the theory under the assumption of deep water for the time and 

space domain. The Phillips’ parameter was assumed to take on the most usual design value 

of        .  

 

 

A.1 First formulation – “New Wave”  

A.1.1 Sea state conditions 

          ,            ,       

 

Time domain 

 

Figure A.1a: Linear component   [m] compared with the total second-order surface displacement  
       [m] as a function of time (sec)) 
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Space domain 

 

 

Figure A.1b: Linear component   [m] compared with the total second-order surface displacement  
       [m] in the space domain 

 

 

A.2 Second formulation  

A.2.1 Sea state conditions 

          ,         ,        

                      Time domain 

 

Figure A.3a: Linear component   [m] compared with the total second-order surface displacement  
       [m] as a function of time (sec) 
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Space domain 

 

Figure A.3b: Linear component   [m] compared with the total second-order surface 
displacement         [m] in the space domain 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

η1+η2 [m]

η1 [m]

T= T*/2 = 2.65 sec

400 200 200 400
Y m

6

4

2

2

4

6



DIPLOMA THESIS 

PANAYIOTIS ANASTOPOULOS 

 

- 111 - 
 

REFERENCES 
 

 Arena, F., “On non-linear very large sea wave groups”, Paper, ELSEVIER, Italy (2005). 

 

 Arena, F., Ascanelli, A., Nava, V., Pavone, D. and Romolo, A., “Three dimensional nonlinear 

random wave groups in intermediate water depth”, Paper, ELSEVIER, Italy (2008). 

 

 Atahanssoulis, G.A., “Wind Generated Sea Waves”, Course notes, NTUA, Athens (2007). 

 

 Belenky, V. and Sevastianov, N., “Stability and safety of Ships: Risk of Capsizing”, 2
nd

 Edition, 

Society of Naval Architects and Marine Engineers (SNAME), New Jersey, USA, 2007, ISBN 0-

939773-61-9. 

 

 Boccotti, P., “Wave mechanics for ocean engineering”, Paper series, ELSEVIER, Italy (2000). 

 

 Gemmrich, J. and Garrett, C., “Dynamical and statistical explanations of observed occurrence 

rates of rogue waves”, Paper, Natural Hazards and Earth System Sciences, Canada (2011). 

 

 Hasselmann, K., Barnett, T.P., Bouws, E., Carlson, H., Cartwright, D.E., Enke, K., Ewing, J.A., 

Gienapp, H., Hasselmann, D.E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D.J., Richter, 

K., Sell, W., and Walden, H., “Measurement of Wind-Wave Growth and Swell Decay During 

the Joint North Sea Wave Project (JONSWAP)”, Report, German Hydrographic Institute, 

Hamburg (1973). 

 

 Holmes, P.: “Coastal processes: Waves”, University of West Indies, Professional Development 

Programme: Coastal Infrastructure Design, Construction and Maintenance, West Indies, 

(2001). 

 

 Malara, G., Arena and F., Spanos, P.D, “On the interaction between random sea waves and a 

floating structure of rectangular cross section”, Sustainable Maritime Transportation and 

Exploitation of Sea Resources – Rizzuto & Guedes Soares (eds) © 2012 Taylor & Francis 

Group, London, ISBN 978-0-415-62081-9. 

 

 Spyrou, K.J., “Ship Rolling Stability and Regulation Background”, Course notes, NTUA, Athens 

(2009). 

 

 Stansell, P., Wolfram, J. and Linfoot, B., “Statistics of wave groups measured in the northern 

North Sea: comparisons between time series and spectral predictions”, Paper, ELSEVIER, 

Edinburgh (2002). 

 

 Themelis, N.I., “Probabilistic Assessment of Ship Dynamic Stability in Waves”, Doctoral 

Thesis, NTUA, Athens (2008). 

 

 

 

 


