

μ

... « μ

»

:

2012

2012/09

,

... « µ

μ

»

:

,

2012/09

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Abstract	•				•••••					ii iii
1.1 μ	1	•••••	•••••	•••••	•••••	•••••	•••••		• • • • • • • • • • • • • • • •	•••••	111 1
1.1 μ	1.				•••••	•••••	•••••	•••••	•••••	•••••	11 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.1		ł	ג יי					•••••	•••••	ו ר
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.2			μ	•••••	•••••	•••••	•••••	•••••	•••••	2 2
1.4 μ μ 7 1.6 μ μ 7 2. μ 12 2.1.1 12 12 2.1.2 17 22 2.1.4 μ μ $(thermoset)$ 22 2.2.1 μ μ $(thermoset)$ 22 2.2.2 μ μ $(thermoset)$ 22 2.2.3 μ μ μ $(thermoset)$ 22 2.2.4 22.5 30 35 31 35 35 3.1 μ μ $-$ «hand lay-up» 38 33 4 μ 49 3.2 μ μ μ $-$ «bag molding» 40 3.5 3.4 μ μ $-$ «bag molding» 40 3.5 μ μ $-$ compression molding 41 3.6 $-$ resin transfer molding (trm) 42 3.7 μ $-$ pultrusion 44 46 3.9 $ \mu$ 46	1.5			•••••	•••••	•••••	•••••	•••••	•••••	•••••	3 7
1.5 μ μ μ μ π 1.6 μ μ μ π π 2.1 π π π π π 2.1.1 π π π π π 2.1.2 μ μ μ π π 2.2.1 μ μ μ π π 2.2.2 μ μ μ π π π 2.2.2 μ μ μ π π π π 2.2.3 μ μ μ π <td>1.4</td> <td></td> <td></td> <td>μ</td> <td>•••••</td> <td>•••••</td> <td>•••••</td> <td>•••••</td> <td>• • • • • • • • • • • • • • • • • • • •</td> <td>•••••</td> <td>/</td>	1.4			μ	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	/
1.6 μ μ	1.5		μμ		••	••••••	•••••	•••••	•••••	•••••	7
2. μ	1.6		μ		μ			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2. μ			•••••	•••••	•••••	•••••			•••••	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1			•••••	•••••	•••••	•••••			•••••	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.1	.1		•••••	•••••			•••••		•••••	12
2.2 $\mu \mu$ μ $(thermoset)$ 22 2.2.2 $\mu \mu$ μ $(thermoset)$ 22 2.2.3 μ μ μ $(thermoset)$ 25 2.2.3 μ μ μ $(thermoset)$ 26 2.2.4	2.1	.2									17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2				•••••						20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	.1			μ	μ	(th	hermos	set)		22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	.2	μο			(1)	hermopl	lastic).			25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	.3	μ,	μ							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2	.4	• *	•							29
3. μ μ μ μ α -schand lay-up» 35 3.2 μ μ μ $-$ schand lay-up» 38 3.3 μ μ μ $-$ schand lay-up» 38 3.3 μ μ μ $-$ schand lay-up» 38 3.4 μ μ $-$ schand lay-up» 38 3.4 μ μ $-$ schand lay-up» 39 3.5 μ μ $-$ compression molding 40 3.6 $-$ resin transfer molding (rtm) 42 4 4 3.8 $-$ fultrusion 44 46 3.9 $ \mu$ μ 4 4.1 μ μ μ 4 4.2 μ μ μ 6 4.3 pvc -v: μ <td>2.2</td> <td>.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2.2	.5									
3.1 μ μ μ -«hand lay-up» 35 3.2 μ μ μ -«prepreg lay-up» 38 3.3 μ μ μ -«bag molding» 39 3.4 μ μ -«autoclave processing» 40 3.5 μ μ - compression molding 41 3.6 - resin transfer molding (rtm) 42 3.7 μ - pultrusion 44 3.8 - filament winding 46 3.9 - μ	3.										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.1				Ц				-«hand	lav-un»	35
3.2 μ	3.2		п		μ		٣	- 44	nrenreo	lav-un»	38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.2		μ	μ		μ		_ <i>«</i> b	ag mole	ling» up"	30
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.5				μ	outoclay	μ a proces	- NUC	ag more	<u>s</u> ″	رد 40
3.5 μ μ $-$ compression modulig	2. 4 2.5	μ	μ		»	autociav	lding	sing».	• • • • • • • • • • • • • • • •	•••••	40 41
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.5 2.6	μ	μ	-	- compre	transfor n	nunng	(• • • • • • • • • • • • • • •	•••••	++ 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0 2 7				- resm		iolaing	(run).	•••••	•••••	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.7				μ	- puttrus	sion	•••••	• • • • • • • • • • • • • • • •	•••••	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.8				- filame	nt windir	ıg	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
4. μ	3.9				-	μ		•••••	•••••	•••••	
4.1 μ μ μ	4.									•••••	52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.1	μ						l	μ		
4.2 μ μ μ μ μ Gfrp 4.3 pvc $-v:\mu$ μ					μ		•••••	•••••	• • • • • • • • • • • • • • • • • • • •		52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.2		μ		μ	μ			μ	Gfrp	
4.3 pvc $-v:\mu$ μ μ $$			μ			•••••	•••••			•••••	58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.3		pvc	2	-	-v: μ					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			μ					•••••		•••••	61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.4	μ			μ						:μ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										μ	
4.5 $\mu \mu \mu \mu \mu \mu$ $\mu : \mu$	•••••				•••••						63
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5		ų	μμ	μ					μ	
4.6 μ $\mu\mu$ 4.780 4.8 μ μ - μ 5				μ	:	μ					68
4.7 4.8 μ μ - μ 5.	4.6		μ			μμ					
4.780 4.8 μ μ - μ /					••••	•••					72
4.8 μ μ - μ /	4.7										80
5. ⁻ - - - - - - - - - - - - - - - - - -	4.8			u		u -			μ		
5						•			r-		
	5.										

μ

2011/04

(.) : μ μ μ μ • μ μ , μ μ μ μ μ μ • , μ μ μ / μ μ , μ μ μ , , μ μ μ μ μ μ , , μ μ μ μ μ μ μ μ μ , μ , μ , •

NATIONAL TECHNICAL UNIVERSITY OF ATHENS FACULTY OF CIVIL ENGINEERING INSTITUTE OF STEEL STRUCTURES

DIPLOMA THESIS 2011/04

Modern developments in composite materials technology

Giannou Maria (supervised by Raftogiannis. I)

Abstract

One of the modern application fields in Engineering is, as known, the study of composite materials which are in continuous development over the last thirty years. The purpose of this master thesis is initially the study of their history and their structure, their advantageous properties compared to conventional materials and the advantages and disadvantages of the various production processes. Mostly though, selected modern developments in composite materials technology that open horizons for further research and applications in the future as well as for creating intelligent or smart structures / materials that can monitor their conditions, detect impending failure to control or treat damage and adapt to changing environments are presented in detail. So, through experimental and mathematical procedures and simulations, useful conclusions and reviews of the present data are drawn, which will definitely help in better understanding, improvement and application of complex and subsequently, smart materials.

			μ	
μ	,	μ		μ

•

1.

1.1 μ	
-------	--

μ μ μ μ μ μ μ μ μ μ , μ '80 μ μ μ μ fiberglass μ μ μ μ μ μ μ μ '60 μ μμ (stabilizer)

F-111 μ . F-14 '70 Fμ μ. F-16. '80 15 Boeing 767 μ 2500Kg Antonov 5500Kg 124, Airbus A310-300 μ

μ μ . μ μ μ Rafale Dassault-Brequet, Lavi μ , (European JAS-39 Gripen Fighter Aircraft) Saah-Scania μ μ , 1986, Voyager, μ μ μ

μ μ μ 12 μ , μ Voyager «aramid» μ μ ⁷70.

• μ μ μ μ (.) • μ μ μ μ 1993, μ μ μ μ 1985 μ. ,

Detroit · ., μ μ μ . μμ μ μ μ μ μ 30 μ μ : μ ~ μ μ , , μ

μ». μ . μ μ μ μ μ μ ε μ ε μ «

• μ μ μ μ « μ μ μ μ »μ . μ μ μ / μ μ / μ μ μ μ μ

19 μ μ 19 μ ., • 20 μ μ μ 30-35 μ μ , . μ μ μ • ,

1.2 μ

μ μ (μ) μ μ μ μ μ μ μ μ μ μ μ μ μ μ. μ μ μ μ μ μ

μ μ . μ μ • μ μ μ μ , μ μ μ μ μ μ μ μ

μ μ μ		μ,μ,	μ	μ μ ,
μμ, μμ	μ	μ , μ μ μ	μ μ μ	μ,
. μ,μ μ », μ μ μ μ μ,μ	μ μ	μ μ «μ	, . , μ ».	« μ μ μ
μ μ μ μ μ μ μ μ μ μ μ	μ	(μμ). μ μ μ μ	μ . μ	μ
μ,μ		μ μ μ 70 μ () μ .	0%, μ	,

1.3

μ μ μ μ μ μ μ μ μ μ , μ μ μ μ , μ μ μ , μ μ , μ	
μ μ μ μ , μ μ μ . μ μ μ . μ μ	
μ, μ μ μ μ . μ μ , μ	,
μ.μ.μ.	
, μ	
•	
μ μ μ.	
μ μ	
. (<i>particles flakes</i>) μ ,	
μ.	
(callulosa) (lignin)	

(centhose)				(1181111).					
				Ļ	ι μ				
μ	•				μ		μ	,	μ
μ		,	μμ			μ			
fiberglass					μ	μ			μ
,								μ	
μ		(hybrid	s)	μ	h	l			μμ
μ			(μ)	,				μ
		μ	μ	•					
				μ				μ	μ
,				sar	ndwich,				
		μ			Ļ	ι			
		μ			μ				,
	μ		:						

μ μ μ μ μ . μ μ μ μ μ μ μ μ μ μ μ μ : μ μ μ μ μ μ μ , μ μ μ μ μ μ μ μ μ μ . μ μ μ

μ μ • • μ μ (μ)

μ μ μ μ μ μ

μ μ μ μ μ μ μ . (infrastructure construction) μ μ (environmental degradation).

μ μ μ μ μμ μ μμ μ , μ μ (part-count reduction) μμ μ μ , μ μ

μ μ μ μ μ μ μ μ μ μ μ . 1.2, μ μ μ μ μ μ μ . μ () μ μ

. 1.3:

μ μ μ , μ μ μ μ μ μ μ μ μ .1.3). (μ μ μ μ μ μ μ μ μ μμ μ

μμ μ μ μ μ μ μ μ μ μ μ μ μ μ , μ μ μ (filler) (calcium carbonate)

μ μ μ μμ μ μ μ (UV) μ (filler) . μ (hybrids) μ μ, μ μ μ μ μ (aramid) μ μ μ μ .

μ μ μ μ . μ μ (sandwich). μ, μ, μ μ μ (sandwich). μ, μ μ , μ μ , μ sandwich (.1.4). μ μ

sandwich (.1.4). μ μ μ μ .

1.4 μ

μ μ μ , μ, . μ μ .

μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ ,μ μ μ μ μ μ μ .1.6.

1.5 μ μ

μ μ μ μ μ μ μ μ x-y (_x, _y, _{xy}) μ I-II (,), μ Mohr

$$= (x + y)/2 + [(x - y)^2/4 + 2xy]$$
$$= (x + y)/2 - [(x - y)^2/4 + 2xy]$$
$$= 1/2 * \tan^{-1} [2xy/(x - y)].$$

. 1.5 . (Ι,ΙΙ) μ

. μ μ μ . μ , μ . μμ μ μ . μμ μ μ .

1.6 μ μ

μ μ μ μ μ (, μ .) μ . . μ ,

μ μ μ

μ), (. . μ μ . μ μ (. . μ μ .) μ μ μ μ μ μ μ μ μ

μ. μμ μ μ , . , μ μ μ μ. ,

, μ μ, μ , μ .1.1

μ μ μ . 1.1, μ μ μ μ μ μ μ μ μ • μ μ μ μ , μ μ μ μ

μμ μ μ • μ μ . μ μ μ μ μ μ μ μ • μ μ μ μ μμ μ μ μ , μ μ

μ.

	E-glass/ Epoxy	S-glass/ Epoxy	E-glass/ Isophthalic Polyester	Kevlar 49/ Epoxy	Carbon/ Epoxy AS4/3501-6	Carbon/ Epoxy T800/3900-2	Carbon/ Epoxy IM7/8551-7	Carbon/ PEEK AS4/APC2	Carbon/ Polyamide AS4/Avimid K- III
[g/cm ²]	2.076	1.993	1.85	1.380	1.58	-	-	1.6	-
μ 1 [GPa]	45	55	37.9	75.8	142	155.8	151	138	110
2 [GPa]	12	16	11.3	5.5	10.3	8.89	9.0	10.2	8.3
μ G_{12} [GPa]	5.5	7.6	3.3	2.07	7.2	5.14	5.6	5.7	-
Poisson 12	0.19	0.28	0.3	0.34	0.27	0.3	0.3	0.3	-
$ \begin{array}{c} \mu \\ F_{1t} [MPa] \end{array} $	1020	1620	903	1380.0	1830	2698	-	2070	-
F _{2t} [MPa]	40	40	40	34.5	57	-	-	86	37
μ F_6 [MPa]	60	60	40	44.1	71	-	-	186	63
μ F _{1c} [MPa]	620	690	357	586.0	1096	1691	-	1360	1000
F_{2c} [MPa]	140	140	68	138.0	228	-	-	-	-
μ (F ₄ F ₅) [MPa]	60	80	76	48.69	-	-	-	150	-
μ μ μ	2.3	2.9	2.4	1.8	1.29	1.68	1.64	1.45	-
μ μ . CTE 1 [10 - 6/°C]	3.7	3.5	6.5	-2.0	-0.9	-	-	0.5	-
μ. CTE 2 [10 - 6/°C]	30	32	22	60	27	-	-	30	-
μ 1	0	0	0	0.01	0	0.0095	-	-	-
2	0.2	0.2	0.2	0.2	0.2	0.321	-	-	-
V _f [%]	60	60	50	60	60		57.3	61	-
V _v [%]	-	-	2.0	-	-	-	0.1	-	0.5
μμ [deg]	-	-	3.53	-	-	-	-	-	- 10

. 1.2 :

μ

E-glass.

μ				μ 0			μ 45			
			F _x [MPa]		/	F ₄₅ [Mpa]		V _f [%]	μ	g/cm ²
				E _x [MPa]	[Nm/g]		E45 [MPa]		[mm]	
1500		μ	128		89.995	128	6752			
[CSM]			179	7303	125.852	179	7303			
	μ		212	6960	149.054	212	6960			
	μ		24.8		17.437	24.8		17.1	1.041	1.4223
CM1808		μ	201	13780	130.030					
[CSM/0/90]			187	11713	120.973					
	μ		310	13091	200.453					
	μ		20.3		13.132			26.6	1.219	1.5458
TVM 3408		μ	229	15502	139.244	214	14469			
[CSM/±45/0]			262	17914	159.309	250	17914			
	μ		386	16536	234.708	351	15158			
	μ		24.1		14.654	22.7		34.2	1.727	1.6446
XM 2408		μ	98	10680	58.299	236	15158			
[CSM/±45]			228	15158	135.634	262	22392			
	μ		222	10335	132.064	400	16536			
	μ		24.4		14.515	28.8		37.0	1.422	1.6810
UM 1608		μ	214	12746	134.701					
[CSM/0]			228	13091	143.514					
	μ		310	13091	195.128					
	μ		25.5		16.051			29.9	1.143	1.5887

2. μ

2.1

	μ			μ	,	μ,
	μ .	u u	μ	μ	μ	μ u
,	μ μ	μ -glass	μ	(1,5-5,8 GPa),		I.
72	2,3 GPa μ	,	μ		μ, μ	
	μ	μ		μ		μ,
μ	μ	μμ	μ	μ μ	μ	μ
μ		μ u				
	μ	μ		μ.	μ	
				μμ		
	μ		(1 1	(*1 1 * 1	`	
	μ	μ μ μ	(chopped	fibers, whiskers	ε) μ μ	μ
	•	· ·		μ	·	
μ	μμ), μ (PM0	μ C)μ	μ		μ,

2.1.1

 μ , , , , (*Kevlar*), , Silicon Carbide (SiC), μ μ . μ .

μ . , μ μ μ μ μ μ μ μ μ μ μ -glass (=*electrical*=) μ -glass . μ μ . \$16/Kg). (S-glass μ μ S-2-glass (S=strength= μ) μ μ S-glass 3 4 -glass. , μ) μ C-glass (C=corrosion=) (S-2-glass. μ D-glass

μμ (ASTM D3379) μ S-glass, μ μμ μ μ -glass 4,8 GPa 3,5 GPa μ 1,75 GPa μ 2,1 GPa S-glass (50% μ glass). μ μ μ (μ). μ . 2.2. ,μ μ μ μ μ μ 275 C μ μ μ μ μ μ). μ μ μ μ (static fatigue stress corrosion). μ μ ()μ μ μ μ μ 3,5 μ μ μ 9,5 – 24,77 microns μ μμ .

(a)

(c) 1/32"

μ

(e) E-Glass 7781

μ

(g) E-Glass

(**d**)

1/16"

(**f**) E-Glass 120

		<u>:</u>		(μ	μ		μ)
μ	μ. μ		μ μ (μ 2.1).	,	μ			μ	
	μ		μ polyae μ	crylonitril	le () pi	tch ().		,μ
	, μ μ	μ	μ	μ,		μ	. 2.1.	μ		μ
, μ	μ	(HS	μ =High Stif	u fness)	. 2.1,	μ 6	300, А и	Տ2 Ա	AS4D	μ
(IM=Inte Modulus)	rmediate	Modu 50	lus),	S4 μ	,	μ 100	(UH	M = Ult	(ra High	HM=High Modulus),
	μ	μ	μ μ	μ,		100	μ	μ μμ	μ	μ
μ	1	50 μ /4		μμ 50	%		μμ		μ μ	 μ
μμ			μ		μ				·	μ
μ μ	,	μ	μ	μ	μ		μ	μ μ	ı 3	μ. 15-537°C,
μ			PMC.		μ		μ μ		μ	,
μ		μ				μ			,	μ
μ μ	μ ,			μμ	((2,2	25 μ)	3,5)		μ μ
(<i>insulatin</i> uu	eg barrie	<i>r</i>) μ	μμ			, μ			μ μ	
0	μ μ		(μ ΗS (0,5 \$20	5mm)			μ		.,
		μ μ	μ	φ20/ ,	Kg) μ	μ		h	μ	μ ,
μ	μ		μ			μ μ	L		μ	μ
μ	μ μ		μ μ					μ	μ,	u
						•			μ	
	μ		μ	μ		μ	μ			,
	,					μ	μ μ		•	

(a) Graphite veil

(**b**) Weave Graphite Fabric (6K, 5HS)

(c) Plain Weave Graphite Fabric (3K)

(e)

(d) Twill Weave Graphite Fabric (3K, 2x2)

 $\begin{array}{ccc} & , & & \mu & (aramid), \\ & & DuPont, Teijin, Akzo Nobel & \mu & \mu & Kevlar, \\ Technora Twaron. & \mu & (aramid) \end{array}$

	,	μ			,					
				μ					,	
	μ	(aramid)		μ		μ		,		μ.
	μ	μ			μ			,		
μ,								(UV).		,
μ		μ	μ	, μ					μ	
177 C μ		75-80%	μ							
				,μ Ke	vlar 49					
		(polyethyle	ene)	μ						
μ		Kevlar4	19	μ	μ		μ			μ
(120 C).								μμ		
				h	ı	μ	•			μ
μ	μμ			μ			μ	μ	μ	
μ	μ									

(f) Kevlar/Carbon Hybrid Tapes (red, blue, yellow)

Thixotropic Silica

μ	μ	μ					
μ		μ,	μ	μ		μ,	
			μ		μ'	П	
μ		μ	. ,		,	μ	
				•			
		_	:				μ
	μ	sizing.		μ	μ		
		(μ	μ	μ).	sizing	

μ (bundle) sizing μ μ μ μ (coupling agent) μ sizing, μ μ μ μ μ μ μ μ μ μ μ μ ASTM D2344, D2344, D4475 D3914 μ μ μ sizing sizing . ,

 $\begin{array}{cccccccc} (service \ life) & . & \mu \\ \mu & \mu & \mu & , & \mu \\ \mu & . & & \mu \\ . & & & & & \\ . & & & & & \\ \end{array}$

2.1.2

μ μ μ fiberglass backing. prepreg, μ prepreg 75μ 100% μ μ μ prepreg . μ μ , μ (roving, tow) μ μ μ • Woven stitched fabrics μ. μ $\mu Resin Transfer Molding (RTM)$ $<math display="block">\mu 20-40\%.$ μ , μ

		:			μ μ	
μ	μ			μ	,	
	μ				μ	
μ		μ μ	-μ			•
	μ		,			μ
				μ		
	μ	μ			•	
		,			μ	
	,	μ	μ		•	μ
	μ μ	whiskers		milled.	whiskers	μ
μ	μ μ				(<i>aspect ratio</i>) µ	
μ L/D	μ					μ
	μ					,
			μ		μ	•
	μ		μ			

μ. μ μ μ μ μ μ μ μ μ

(Strand, tow, end, yarn roving): µ strand, tow, μ end, μ μ / (untwisted bundle of μ *continuous filaments*) μ (furnace) μ μ. yarn μ μ μ roving rovings μ μ μ. μ μ μμ μ μ μ yield. yield μ μ μμμ yield (yd/lb). H μ μ μ μ μ g/Km. T TEX μ μμ 1000 µ yield . μ.

[g/Km] = 496,238/ YIELD[yd/lb](2.1)

 μ μ μ μ μ *roving* μ μ (cross-sectional area) .

 $[cm^{2}] = 10^{-5} * [g/Km] / f[g/cm^{3}]$ (2.2)

f μμμ μ .

direct-draw roving (spool) μ μ μ μ strands μ μ yield. indirect-draw roving μ μ μ yield direct-draw rovings μ. roving μ μ .

roving μ . rovings μ

mat µ µ . veils mats µ

μ (*fabric*) rovings tows μ (woven fabric) μ μ μ (*interloping/ knitting*) yarns. O *(interlacing weaving)* μ μ (nonwoven fabrics) strands μ μ μ yarns. μ μ (woven fabrics) μ μ μ μ (nonwoven fabrics) . μ μ μ (binder) mat (backing) μ (chopped strand mats) (backing).

μ (. . fiberglass) μ backing μ μ (nonwoven fabrics), μ μ μ μμ . . Stitched

(a) Continuous Strand Veil Surfacing

(**b**) Chopped Strand Mat (3/4 ounce)

(c) Chopped Strand Mat (1 1/2 ounce)

(e) Woven Roving

(g) 4 Oz. Fabric: 50 inch wide

(i) 7 ¹/₂ Oz. Fabric

(d) Continuous Strand Mat

(f) 2 Oz. Fabric

	CONTRACTOR OF A REAL PROPERTY OF
	and the property of the proper
station of sold of Section	
89755636 0 898	
and the second second second	the second se
the second se	

the second s	
CHICKNEY CONSIDER	
	the second
	The product of the second seco
and the second second second second	and a set of the cost of the loss of the cost of the c

(h) 6 Oz. Fabric: 38 inch wide

(g) 10 Oz. Fabric

(**k**) Knit Bi-axial Style 1815 (0/90)

(**l**) 10 Oz. Fabric

(m) Scrim Fabric, Black

(n) Scrim Fabric, White

() Woven Fiberglass Tapes

(**p**) Gun Roving

(q) Diagram of Stitched Triaxial and Quadraxial Fabrics

2.2

μ μ μ. μ μ ,μ μ μ μ μμ μμ (tooling cost) µ μ μ (tooling cost) μ μ (part integration), μμ μ μ, μ μ. μ μ μ μ μ μ μ μ (PMC's) μ μ PMC's µ μ μ (thermoplastic). (thermoset) PMC's μ . μ΄ μ (ACM's) μ μ carbon-epoxy carbon – thermoplastic. FRP's μ μ μ μ *fiberglass-polyester*. μ μ μ μ FRP, μ ACM's. μ GFRP GRP μ . . . CFRP μ μ RP () μ μ μ μ μ μ μ μ), (μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ ,μ μ μ μ μ μ μ μ μ μ μ μ μ μ μμ μ μ μ μ μ

μ

μ : μ (viscosity) , μ μ μμ. μ μ μ μ , μ μ , , μ μ μ .

21

2.2.1 μ μ (thermoset)

μ μ (thermoset) μ μ μ μ μ μ μ μ μ (resin system) μ μ μ , (matrix) • μ μ (thermoset) μ μ μ μ (*impregnation*) thermoset μμ . μ μ μ . Shelf life μ μ (degradation). $\begin{array}{ccc} \textit{Shelf life} & & . \textit{ Pot life } \textit{ gel} \\ \mu \end{array}$ μ time μ μ μ gel time μ ASTM D2471 ASTM D3532 carbon-epoxy prepreg. (*cure*) µ μ μ μ μ μ μ (gelation) μ μ (*probed*) µ (ASTM μ μ D2471). μ (cure) μ (storage life) μ μμ , , μ 4% μ μ μ 8% epoxy μ μ ,μ μμ , UV. (pigments) μμ : polyesters, μ μ (thermoset) vinylester, epoxy phenolics. μ μ • vinylesters μ (polyesters) μ . (epoxy) μ μ (thermoset). μ μ (POLYESTER RESINS): μ (unsaturated) μ μμ (reactive monomers), (styrene) μ (free radical initiator), μ cross- linking µ μ μμ,μ μ μμ μ (three-

μ (*thermoset*) . dimensional) μ μ μ μ μ μ μ μ μ (activators). μ μμ μ μ (polyester). (*polyester*) vinyl toluene, µ μ (styrene) . μ μ

Polyester Molding

(*polyester*) μ μ UV μ μ μ.

μ *methyl methacrylate* (MMA) μ μ μ μ Styrene-MMA μ μ μ μ (*refractive index*) μμ μ μ polyester µ μ μμ μ

UV, polyesters μ μμ , μ μ μ μ, μ, polyester , μ

 $\mu, polyester , \mu$ $\mu, \mu \qquad (filler) \mu$ $\mu, \qquad (polyester),$ $\mu \mu \qquad .$

(halogens) polyester. μ polyester μ μ μ μ μ μ μ , μ μ μ polyester μ μ μ μ μ μ μ (chlorendic) bisphenol-A (BPA) fumarate μ μ. μ μ

polyester. hydrofluoric , μ μ

μ . 2.4. μ $\begin{array}{ccc} \mu & \mu & \mu \\ \mbox{``clear castings neat resin samples''.} \end{array} \label{eq:matrix}$ (isophthalic) μ (orthophthalic). μ μ BPA fumarate (chlorendic) μ μ μ . μ μ μ (isophthalic) μ μ

 $\begin{array}{cccc} \mu & (chlorentic) & \mu & \mu & \mu \\ \mu & 176^{\circ}\text{C.} & , & , \\ (peroxides & hypochlorites). & \mu & \mu \end{array}$

VINYLESTER: vinylester μ (polyesters) (epoxy) μ μ μ 121°C. (peroxides μ μ μ , μ (brominated versions) hypochlorites). μ μ . 2.4. μ 4,0 \$/Kg. (polyesters) (*epoxy*), µ

Vinyl-Ester

	(E	POXY):	μ			μ	
	μ , (<i>epoxy</i>)	μ		μ	(1,2	4 %),
μ						μ	
μ		(adhesive	<i>s</i>).				
μ	μ	μ		μ			
	μ		μ	μ	5°	150°C.	
	μ	Ļ	ı			(epoxy)	
μ		μ			μ	(adhesives)	
		(aircraft h	honeycomb)		μ	ι	
		μ	,		μ		
	(too	oling).	μ				
		μ					
		μ	μ			μ	
(μ	h	ı)	μ		
μ							

μ 2000 Epoxy

(casting compounds) μ μ μ μ potting μ μ (*impregnating*) μ μ μ (epoxy) μ μ μ, vinylester. μ (μ μ) . 2.4. 9310/9360 μ μ μ 9310 33 phr (phr= parts per hundred in μ μ weight = $\mu \mu$) 9360. μ μ μ μ 9420/9470 μ μ μ μ Resin Transfer Molding (RTM= (filament), winding), μ (pultrusion) (prepregs). μ μ 9420 () 24,4 phr () 32,4 phr μ μ . 2.4. 9470. T_{g} μ μ μ (glass transition temperature) «μ μ μ μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ

μ μ μ 125°C 175°C. (service) µ μ μ μ (thermoset), (thermoplastics). μ μ μ μ μ μ μ (brittle μ u epoxies) (247°C) (toughened epoxies) (µ 76 μ μ 185°C).

(PHENOLIC): μ μ μ μ , μ μ μ μ μ μ Sheet Molded Compound μ μ . (filament winding) (SMC),μ (pultrusion). (phenolic) μ μ (thermoset), (polyester) μ μ , μ μ (polyester) \$1,32/Kg. (toxicity) bismaleimide polystyrylpyridine. μ *bismaleimide*, μ μ 70/30 compimide μ 796 TM-123 Shell Chemical Co. . 2.4.

2.2.2 μο *(thermoplastic)*

μ (thermoplastic) μ μμμμ . , μμ , . μ (*thermoplastic*) μ μ (*thermoplastic*) μ μ 10 100 μ (*thermoplastic*) μ (viscous effects) μ μ μ *(impregnation)* μμ μ

(*intermingled*) μ μ μ . . polymer strand tow, μ μ μ μ μ μ μ μ μ μ μ (thermoplastic) μ .

(thermoplastic) μ (softened μ μ μ stage) µ μ μ μ μ (*thermoplastic*) Poly-ether ether-ketone (PEEK) μ μ μ μ μ (thermoplastic) µ 0,5% (μ μ) μ μ, (epoxies). μ polyphenylene sulfide (PPS) (*thermoplastic*) µ μ μ μ . polysulfone (PSUL) μ μ μ μ μ μ polyetherimide (PEI) polyamide-imide (PAI) μ μ μ .2.5, *K-III* μ μ LARC-TPI, T_g. μ _ (prepolymers) / μ (solvent solution) μ μ (coatings) μ

300°C μ μ μ μ . μ μ μ μ μ (thermoplastic) μ

μ / μ (solvent solution) (coatings) μ μ μ μ μ .

2.2.3 μ, μ

μ μ μ μ μ μ μ μ μ μ μ μ (viscoelastic) μ μ μ μ μ μ (. 2.1). (=) μ

μ . μ μμμ μ Ε_mμ μ μ Τ_g.

. 2.3: μ μ μ μ

$$T_{gw} = (1 - 0, 1m + 0,005m^2) T_{gd}$$
 (2.4.)

 T_{gw} , T_{gd} т μ μ T_{g} (d=dry)(w=wet)μ μ μ μ μ μ retention μ ,μ μ μ μ *ratio* (g) µ μ μ μ μ () () μ m μ μ retention ratio μ μ

$$g = [(T_{gw} -)/(T_{gd} -)]^{0.5}$$
(2.5)

 $\begin{array}{ccc} \mu & T_g \ \mu & \mu & \mu \\ DSC=Differential \ Scanning \ Calorimetry, \quad \mu \end{array}$ DTA=Differential Thermal μ μ μ Analysis ASTM D3418 μ E1356. PMCs μ μ (HDT= Heat Deflection Temperature), μ μ μ (*Heat Distortion Temperature*) µ μ ASTM μ D648. μ 1,82 MPa 0,455 MPa (three μ μ μ μ point bending) $\mu 2 C/min \mu$ (*deflection*) . μ μ , 0,25mm. Η μ HDT. μ μ DSC T_{g} μ μ (polymer), HDT μ μ μ

	μ			(degr	adation)	PM	Сμ			μ
_					,				μ	
- u	μ	(μ	μ	μ),	,		UV
μ	«		»		,	,	,		ш	•
μ			PM	IC				μ	μ.	(.
)			μ μ		•
μ	ι μ						μ			
μ μ			-	μ	Ļ	ι μ		μ	,	μ
	μ					μ	:			
	,	μ		-	μ	μ μ	μ	μ	μ μ	μ
п		п	μ		н	μ		• •		
μ	μ,	μ	٣		٣			μ		μ.
	,	,	μ	μ		μ		μ μ	μ	μ
•		μ				μ	μ	μ	μ	
			u						. '	μ u
		μ	P.			,		μ	μ	P*
μ	μ		μ	μ				•	μ	
	((μ)	. μ			u	μ)
	μ		μ.	•					·	• •
	μ	μ			I	u		μ		μ
ł	u (<i>die</i>	lectri	c probes	s) ,		E	Barcol (ASTM D	μ, 2583).	μ
	μ		μ	ιμ (a	μ ucetone),	(uceione	μ		
	μ μ	μ	DS μ . μ .	C=Difj	ferential μ D μ	Scanning SC DSC	Calori μ	μ metry, μ	μ μ (μ μ (sweep)
μ			μ				μ			μ
μ			μ.		 (1	c	. 、	μ	DSC	
μ		μ		u	H _R (<i>h</i>	eat of re	action) (post-c	ure).	DSC	μ, u
D2410	D502	0		٣	μ		v - 557 C	(total hea	it of reacting	(ASTM)
μ	D502	20).		,	ł	u =1- H _R /	μ ΄.		(∪< <1)
,μ μ. μ . μ μ μ μ μ μ μ $\begin{array}{c} \mu & \mu \\ (ASTM C581) \\ \mu & / \mu \\ FRP & \mu \mu \\ \mu \end{array}$ μ μ μ μ (barrier) μ μ μ

μ μ μ μ μ μ μ μ μ μμ

2.2.5

μ (polymers) μ μ μ μ μ μ , μ μ. μ μ . PMCs μ μ μ μ ASTM 84^µµ μ μ μ (forced air tunnel), µ μ μ μ. μ μ , μ (FSC=Flame Spread Classification), $\mu \quad \mu \text{ FSC}, :$ 25<FSC 75, FSC>75. (ASTM D2863) μ μμ 0 100. μ FSC 25, μ μ μ (*radiant heat*). μ μ μ ASTM 162. , μ μ μ μ μ μ ASTM 662. μ μ μ

 $\begin{array}{ccc} (isophthalic) & \mu & \mu \\ (vinylesters) & 135^{\circ}\text{C}, & fumarate \\ 140^{\circ}\text{C}. & \mu & \mu \end{array}$ μ 98°C, μ μ (chlorendic) (fiber reinforced composites) µ μ μ μ μ, μμμμ μ μ μ μ μ μ μ μ μ. μ μ μ μ μ μ μ PMCs μ μ μ μ μ μ μ μ μ,μ μ μ μ μ μ μ μ μ μ .

, , , , μ.

Fiber	odulus [G a]	Tensile Strength [GPa]	Compress ion Strength [GPa]	Elongation [%]	Density [gr/cc]	Longitudina l Thermal Expansion [10 ⁻⁶ / C]	Transvers e Thermal Expansion [10 ⁻⁶ / C]	Poisson Ratio	Thermal Conduct [W/m/ C]	Maximum Operating Temperature [•C]	Resistivity [micro ohm-m]
	[G a]	[GPa]	[GPa]	μ [%]	[gr/cc]	μ μ [10 ⁻⁶ / C]	μ [10 ⁻⁶ / C]	Poisson	μ [W/m/ C]	Μ μ [•C]	[micro ohm-m]
										[••]	·····]
E-Glass	72.345	3.45	-	4.4	2.5-2.59	5.04-5.4	-	0.22	1.05	550	-
S-Glass	85	4.8	-	5.3	2.46-2.49	1.6-2.9	-	0.22	1.05	650	-
C-Glass	69	3.31	-	4.8	2.56	6.3	-	-	1.05	600	-
D- Glass	55	2.5	-	4.7	2.14	3.06	-	-	-	477	-
Carbn											
T300	230	3.53	-	1.5	1.75	-0.6	7-12	0.2	3.06	-	18
M50	490	2.45	-	0.5	1.91	-	-	-	54.43	-	8
AS2	227	2.756	-	1.3	1.8	-	-	-	8.1-9.3	-	15-18
AS4-D	241	4.134	-	1.6	1.77	-0.9	-	-	8.1-9.3	-	15-18
IM6	275.6	5.133	-	1.73	1.74	-	-	-	8.1-9.3	-	15-18
HMS4	317	2.343	-	0.8	1.8	-	-	-	64-70	-	9-10
UHM	441	3.445	-	0.8	1.85	-	-	-	6.5	-	120
P55	379	1.9	-	0.5	2	-1.3	-	-	120	-	8.5
P100	758	2.41	-	0.32	2.16	-1.45	-	-	520	-	2.5
Kevlar 29	62	3.792	-	-	1.44	-	-	-	-	-	-
Kevlar 49	131	3.62	0.72	2.8	1.45	-2	59	0.35	0.04	160	-
Kevlar 149	179	3.62	0.69	1.9	1.47	-	-	-	-	-	-
Techno ra	70	3	0.6	4.4	1.39	-6	59	0.35	-	160	-
Boron	400	2.7-3.7	6.9	0.79	2.57	4.5	0.2	0.2	38	315	-
SCS-6	427	2.4-4	-	0.6	3	4-4.8	-	0.2	10	-	-
Nextel	260	2.1	-	-	3.4	6	-	-	-	1200	-

.2.2: μ μ

Fiber/	Strength reduction / (%)
E-glass	25-50
S-2 glass	24
Kevlar 49	31
Kevlar 149	14
Carbon ASW-4	17
Carbon T-700	22
Carbon IM-6	21
Carbon T-40	21

. 2.3 :

(stitched fabrics).

•

Denomination	Chopped Strand	0/90 (balanced)	±45 (balanced)	0 (warp)	90 (weft)
/ μ	Mat g/m ²	g/m ²	g/m ²	g/m ²	g/m ²
M1500	450	-	-	-	-
C24	-	800	-	-	-
CM1808	225	600	-	-	-
CM1810	300	600	-	-	-
Q30	-	-	440	405	170
QM5620	600	1100	800	-	-
TH27	-	-	450	-	450
TVM3408	225	-	609	541	-
UM1810	300	-	-	600	-
UM1608	240	-	-	533	-
XM2408	225	-	800	-	-

	21	
٠	4.4	٠

μ

μ

-"thermoset".

Thermosets	Tensil e odu lus [G a]	Tensile Strengt h [MPa]	Compress ion Strength [MPa]	Shear Strengt h [MPa]	Tensile Elongat ion [%]	Flexural odulus [G a]	Flexur al Streng th [G a]	Therma l Expansi on [10 ⁻⁶ /C]	Heat Deflection Temperat ure [C]	Poisso n Ratio	T _g [C]	Density [gr/cc]
μ μ	[G a]	[MPa]	[MPa]	µ [MPa]	μ [%]	μ [G a]	µ [Ga]	μ [10 [.] ⁶ / C]	µ H.D.T. [C]	Poisso n	T _g [C]	[gr/cc]
POLYESTER												
Orthophthalic	3.4	55.2	-	-	2.1	6.9	220.7	-	79.4	0.38	-	-
Isophthalic	3.4	75.9	117.2	75.9	3.3	7.6	241.4	30	90.6	0.38	-	-
BPA Fumarate	2.8	41.4	103.5	-	1.4	9	158.6	-	129.4	0.38	-	-
Chlorendic	3.4	20.7	103.5	-	-	9.7	193.1	-	140.6	0.38	-	
VINYL ESTER												
Derakane 411-45	3.4	82.7	117.1	82.7	5-6	3.1	124	-	104	0.38	-	-
EPOXY												
9310/9360@23 C	3.12	75.8	-	-	4	-	-	54	-	0.38	185	1.2
9310/9360@14 9 C	1.4	26.2	-	-	5.2	-	-	-	-	-	185	1.2
9420/9470(A)@ 23 C	2.66	57.2	-	-	3.1	-	-	-	-	-	195	1.162
9420/9470(B)@ 23 C	2.83	77.2	-	-	5.2	-	-	-	-	-	155	1.158
HPT1072/1062- M@23 C	3.383	-	-	-	-	3.383	131	-	-	-	239	-
BISMALEIMI DE												
796/TM- 123@24 C	3.582	-	-	-	-	3.582	132	-	-	-	260	-33
796/TM- 123@249 C	-	-	-	-	-	2.48	90	-	-	-	260	-

. 2.5 :

- "thermoplastic".

Thermoplastics	Tensile odulus [GPa}	Tensile Strength [MPa]	Tensile Elongation [%]	Poisson Ratio	Thermal Expansion [10 ⁻⁶ / C]	T _g [C]	T _m [C]	Process Temperature [C]	Heat Deflection Temperature [C]	Fracture Toughness G _{IC} [KJ/m ²]	Density [gr/cc]
μ	- [GPa}	[MPa]	μ μ [%]	Poisson	μ [10 ⁻⁶ / C]	T _g [C]	T _m [C]	μ [C]	H.D.T. [C]	G _{IC} [KJ/m ²]	[gr/cc]
PEEK	3.24	100	50	0.4	47	143	343	400	160	4.03	1.32
PPS	3.3	82.7	5	0.37	49	90	290	343	135	-	1.36
PSUL	2.48	70.3	75	0.37	56	190	-	300	174	2.45	1.24
PEI	3	105	60	0.37	56	217	-	343	200	2.8	1.27
PAI	2.756	89.57	30	0.37	36	243	-	300	274	3.5	1.4
K-III	3.76	102	14	0.365	-	250	-	-	-	1.9	1.31
LARC-TPI	3.72	119.2	5	0.36	35	264	325	343	-	1	1.37

3.

μ μ (hand lay-up), (prepreg lay-up), μ μ (autoclave (resin (filament (bag molding), μ μ (compression molding), μ μ μ μ μ processing), µ μ transfer molding), winding) μ (pultrusion) .

		μ				μ			:		
1.			μ			μ		μ			
2.	μ μ (impregnation)		μ							
3.	•••	(consolidati	ion)	μ	μ		μ				
		,					(volatiles)				
4.		μ									
5.		μ									
6.		,		μ	•						
,	μ						μ				
	μ	μ	, .	•			,			,	
μ μ					•				μ		
	,	μ	μ	(impr	egnation)		μ			
(prepreg)	μ	l						μ			
μ	(hand	lay-up).		μ						μ	
	,			,							•
μ					μ		μ				
		μ			•						

3.	1	u u	-«hand lav-up»
-	-	P- P-	

μ	wet han	d lay-up),			μ		μ μ	ļ	μ	(hand lay-	ир),
μ μ			,	,			μ	·	μ		μ	μ
μ	μ		μ		μ μ	μ			μ	μ	(styrene),	
	μ (<i>lay-up</i>)	:))		μ μ (c	urin	μ μ (g).	,)		μ μ	μ	(gel coating)	,)

μ μ () μ μ μ μ μ μμ μ μ μ μ μ μ μ μ μ μ μ

μ (release agent) μ μ μ μ (wax),(poly-vinyl μμ. alcohol), (silicones) (release papers). μ μ μ μ μ μ μ μ μ

μ μ μ . μ μμμμ (woven roving). μμ μ μ (chopped strand mat), (*cloth*), μ μ μ μ μ μ μ μ μ μ μ μ

μμ μ μ . 3.1 μ μ μ μ . 3.2. μ μ (hand lay-up) μ μ , μ μμ

μ. μ μμ μ (runs) μ μ. μ

μ μ μμ μ μ μ μ. μμ μ μ μ μ \$20/ Kg μμ μ .

. 3.2: μ

μμ μ μ μ μ μ (*spray up*), μ μ .

сhopper gun µµµµµ. µµµµ,µµ,µ µµµµ,µ

. 3.1 :	μ		μ
		μ	(hand lay-up).

•		μ μι	ι μ	•	μ					μ
	μ			μμ						
•		μ		•						
•			μ							
				•						
• µ		1%		• μ		μ				
•		«sandwich»		•						
•		ł	l	•					μ	μ
				_						
•				•		μ				
		μ			μ		μ	•		
-										
•										

. 3.2 : μ

μ				
	,	(boat hulls),	(ducts),	, μ,
	· ·		(rocket motor nozzl	es)
	μμ			
		, μ	,	μ
	,		(corrosion	duct work),
		$\mu\mu \qquad (housings),$	•	
	μμ	, μμ		

3.2 μ μ μ μ -«prepreg lay-up»

μ (prepreg) -μ μ μ (preμ *impregnated fiber reinforced material*) μ (unidirectional . μ μ μ μ μ (*woven fabric*) tape), μ μ (random chopped fiber sheets). μ μ μ μ (prepreg lay-up) μ μ μ μ (hand lay-up) μ μ μ (prepreg) μ μ (impregnation) μ. prepregs μ μμ μ μ μ μ (aramid). μ prepregs μ μ μ

μμ. μ μ μ μμ μ 1% 7% µ μ μ (shear strength) μ μ 2%. μ μ μ μ prepregs μ μ (near net-resin) μ

. μ (near net-resin) μ prepreg μ μ μ μ μμ. prepregs μ μμμμμμμ μ μ (hot melting impregnation method)

prepregs μ μ 30 60cm. - μ

μ μ , prepregs μ (shelf life) μ μ μ (autoclave or vacuum)

(prepregs). μμ μ μ μ .3.3. μ μ μ μ prepregs (thermoplastics) μ μ μ μ μ μ (tack) (drape) μ μ

μ (thermoplastics) μ μ μ (thermosets). μ μ μ (thermoplastics) μ μ μ . μ μ .

	. 3.3 :	μ	μ	μ	(prepreg lay-up).	μ μ	
•				•			
•	μ μ μ	μ		•	μ	(prepreg)	

3.3 μ μ – «bag molding»

μ, μμμμ μ , . μμ μ

μ μ (bag). . μμ μ (release film agent) μ μ breather. μ peel-ply μ (imprint) / (pattern)

/ (*pattern*) μ) . μ (. μ breather-bleeder (vacuum) μ (channels) μ (*flexible bag*), μ (vacuum port). μ μ μ μ *(vacuum)* μ μ μ

(vacuum) μ μ μ *(bag)*, μ μμ μ μ . (vacuum) μ μμ , μ μ μ. , μμ μ μ, μ μ μμμ μ :) pressure bag) μ μ μ (autoclave processing), µ vaccum bag) μ μ.

vaccum bags μ , μ *vacuum* μ μ μμ μ (*vacuuming*) µµ . µ µµ (vacuuming) bagging (*curing*) µ μ μ μ μ μ μ (bag molding) μ μ μ μ μ μ μ μμ

. 3.2: μ μ (μ)

(thermoplastics) μ μ μ bagging bagging µ (thermosets) μ μ μ Kapton vacaloy µ μ 370 C. μ (*thermoplastics*) 260-370 C 120-180 С µ μ μ μ (thermoplastics) μ (*thermosets*). μ μ μ μ μ μ (good flow compaction). (thermoplastics) μ μ μ (thermoplastics) μ μ μ

μ (thermoplastics) μ μ μ μ μ μ μ μ μ μ μ μ μ μ (μ), μ μ

3.4 μ μ -«autoclave processing»

0 (*autoclaves*) μ μ μμ. μ μμ μ μ μ μ μ μ (*bag molding*), μ μ (vacuum) μ μ μμ μ (*vacuum bag*). μ μ μ (vacuum bag) μ μ μ (cure) μμ μ

, μ μ μ (autoclaves) μ (domed ends), μ μ .

μ μ μ 1m, μ 1 8m. μ μ (tools for autoclaves) μ μ μμ μ (bag). μ μ μ μ μ μμ μ μ μ μ μμ μ (*cast epoxy tooling*) , μ

μ

μ μ μ μ μ (μ μ) μ μ μ (bagging). μ μμ μ μ μμ μ μ μ μ μ μ μ μ μμ μ μμ μ μ μ μ μ μ . μ μ μ μ μμ μ μ μ μμ , (hand lay-up) μ μ μ μμ μ μ . • , μ μ μ , μ μ μ 12 3-5 16 μ μμ μ

3.5 μ μ – compression molding

μ μ (compression molding) μ μ μ μ μ μ μ () μ μ μ μμ μ μ μ μ

μμ μμ (compression molding) μ μ μ μ μ μ μμ ,μ μ μ μ , μ (15 μ μ μ μ μ μμ . 24)μ) μμ (. . μμ μ

μμ , μ μμ μ μ μ μμ μ μ μ . μμ μ μ 1 kgr 100 4.000t 75 kgr. μμ μ μ μ μ μ μ μμ. μ μ μμ μ

 $\begin{array}{ccc} & \mu & \mu & \mu \\ (compression molding), & \mu & \mu & \mu & \mu \\ & \mu & \mu & \mu & \mu \end{array}$

BMC (Bulk Molding Compound) SMC μμ μ , fiber performs (Sheet Molding Compound). prepregs. μ BMC (Bulk Molding Compound) μμ μμ μ 20-50%. .) μ (μ μ μ μ μ μ 200 C 3-4 150 SMC (Sheet Molding Compound) μ μ BMC (Bulk Molding Compound). μ μμ SMC (Sheet Molding Compound) μ μ μ , μ μ μ 200 C 150 7-14

3.6 - resin transfer molding (rtm)

- Resin Transfer Molding (RTM) μ μ μ μ μ , μ μ μ μ μ μμ μ Resin Transfer Molding (RTM) µ μ μ μ μ μ μ μ . μ

Resin Transfer Molding (RTM).

Vacuum Assisted Resin Injection Molding (VARIM) µ

μ μμ μ preform molding preform . (open tooling) μ μ μ μ preform. μ μ μ μμ μ μ μ

preform (perforated μ μ μ (binder), screen) μ μ μ μ . μ μ μ 75% μ. (corresponding bonding agent) μ μ μ μ μ μ μ

μ Structural Reaction Injection Molding (SRIM) μ preform

μ μ μ . μ μμ μμ μ Flexible Resin Transfer Molding (FRTM), μ μ μ μ μ μ μμ μ μ μ μ u

μ μμ. μ Resin Transfer Molding (RTM) μ contoured mold μ μμ Resin Transfer Molding (RTM)

μ μμ μ . μ μ μμ. μ μ μ μ μ μ μ ,μ μ μ μ μ μ μ μ μ μ μ μ μμ μ μ μ μ μ μ μ μ μ μ μ

Resin Transfer Molding preform (μ) (RTM) μμ μ μ μ μ μ. μ μ μ μ μμ μ (scrap losses) μμ μ μ μ μ μ μ Resin Transfer Molding (RTM). μμ 12mm. H Resin Transfer Molding (RTM) , ± 0,2mm. μ μ μ μ μ μ (Resin Transfer).

RTM μ prepreg, μ) μ (μ RTM 1/3 μ μ prepreg, µ (vacuum bag) μ μμ μ *RTM* μ μ μ μμ, 80% (hand μ μ μ *lay-up*), μ (equipment depreciation), μ μ μ (scrap rate) μ RTM μ μ (hand lay-up). RTM μ μ (hand lay-up). SMC injection molding. μ

3.7 μ - pultrusion

(pultrusion) μ μ μ μ μ μ . μ μ μ μ μμ. μ μ μ μ μ μ μ (pultrusion), μμ μ μ μ μ . T performing guides μ μ (cross-section) μ (injection chamber), μ μ μ μ (injection chamber) μ μ (cross-section) μ μμμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ (reciprocating pullers), μμ μ μ μ

μ. μ (moving cut off saw) μ μ μμμ μμ μ μ. μμ μ μ

. 3.4: μ

(*reciprocating pullers*) µ μ (*caterpillar puller*) μμ (friction). (*resin bath*) µ μ μ μ μ μ *(injection chamber)* μ μ μ (associated pressurization tank). μ μ (VOC=VOlatile Content) (*styrene*) µ 1% μ . μμ

(*pultrusion*) µ μ μ μ μ μ . (injection chamber), μ μ μ μ μ μ u μ μ μ μ (. . μ),

μ (. . μ). ,μ μ μ) (mandrel cantilevered) u (*pultrusion*) µ μμ μ μ μ μ (rotating winder) μ μ (±) μ

(drive shafts). μμ μ (fiber preheaters) (radio-frequency [RF] heaters), μ μ (thermoplastic) μμ μ μ (*thermoplastic*) µ μ μ μμμ μ μμ μ prepregs, prepregs μ

μ (pultrusion) μ μ, μμ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ (polyesters, vinyl-esters, epoxy, phenolics). (thermoplastics) μ μ μ (polyesters, vinyl-esters)

μ μ μ μ continuous strand mat [CSM]), μ (roving μ μ μ stitched bidirectional materials. μ (thermoplastics) μ μ μ μ , μ μ μ .

(*pultrusion*) µ μ μ μ μ μ (roving longitudinal fibers) μ μ (*stitched*) μ μ . μ. μ 45%, µ 30% (fillers) μ. μ μ μ •

 $\begin{array}{ccccc} \mu & \mu & \mu \\ (pultrusion) & . & O & \mu & \mu \\ & & & & (fillers) \mu & \mu \\ \mu & & & & \mu \\ \mu & & & & 12mm \\ \mu & & & & & \mu \\ \mu & & & & (interlaminar cracking). \\ \end{array}$

μ μ (*interlaminar cracking*). , μ μμ.

μ μ,

μ μ μμ.' μ *tunnel-oven downstream* μ μ tunnel-oven, μ (roving mat) μ μ μ sizing brush, μ μ μ (resin bath) μ μ μ μ μ μ (μ μ (pultruded μ μ). μμ μ μ tunnel-oven *part*) μ μμ μ . tunnel-oven μ μ μ μ μ

μ μ μ μ μμ μ μ μ. μ tunnel-oven. μ μ μ μμ. μ μ. μ μ

 μ μ - μ (cross-section) μ pulforming, μ springs μ μ leaf μ μ μ step-molding pulforming, springs. mat) μ (roving μ (*impregnating bath*). μ μ μ μμ μ μ μ μ μ μ μ u -μ μ. μ u μ μ μ μ μ μ 2m/min, μμ μ μ

 μ 20m²/min.

3.8 - filament winding

μ , μ μ (filament winding), (roving) μ / (*mandrel*) µ μ μ μ μμ μ μ μ μ μ μμ μ (delivery eye) μ μ μ, (helical winding machine). μ μ

μ μ (lathe). μμ (polar). μ μ μ . μ μμ μ μ μ μ μ / (carriage). 5-90, μ hoop winding. μ μ-(2ply balanced laminate) μ ± . μ μ μ μ (resin bath) μ μ . μ μ μ μ / , μ μ μ μ

μ (*complicated contours*). (helical winder) μμ μ μ . μ μ μ , (*winders*) μ (yaw) μ μ μ μ (gendar) μμ, μ μ μμ μ (helical winder), μ (geodesic path), .μ μ / μ μ μ . (*winder*), µ μ μ μμ

 $\mu \qquad \mu (set) \qquad (slip)$ $angle), \qquad \mu (string)$ $/ \qquad , \qquad \mu \qquad \mu$ $. \qquad \mu \qquad \mu$

μμ μ (resultant) hoop meridional forces, μμμ (dome). μ μ μ μ .

. 3.4:

 $\mu \qquad (\mu \qquad \mu) (polar winders), \qquad \mu \\ , \mu \qquad \mu \qquad \mu \qquad \mu \qquad 2. \\ \mu \qquad \mu \qquad ,$

μ μ μ (polar winding) μ μ μμμ μ μμ (r₂<0), μ μ μ μ μ μ μ μ μ μ μ μ μ μ (revolution). μ / μ μ μ μ μμ μμ μμ μ μ μ μ μ μμ μμ μ μ μ μ . (soluble sand mandrel) μ μμ μμ *polyvinyl alcohol*. Το μ μ μ μμ μ μ. μ μ μ μ (low runs) µ μμ μ μμ μ . prepregs μ μ μ (wet re-rolled) μ μ μ . μ μ . μ μ μ μ μ . μ μ . μ μ μ μ μ μ μ μ μ μ μ μ μμ μ μ μ (slippage) μ μ μ μ μ μ μμ μμ ,μ μ μ μ μ μ μ μ μ μ μ μ μ μ (vacuum) (autoclave) μ μ μμ μ μ μ (set up removal μμ μ μ

(planar path).

μ

μ

time) μ μ μ , μ μ μ 0,6-1,2m/sec μ μ (wet fiber set up).

,

3.9 – μ

μ

.

	Kg/m^3x10^3		Poisson		μ.
		(GPa)		(MPa)	(%)
	1,90	380	0,35	2100	0,6
f_t	1,80	230	0,35	2700	1,3
	0.54			2500	
E	2,54	72-75	0,25	3500	4,8
Ζ (2,27	70-76	0,25	2500-3500	3-4,6
AR)					
<i>S2</i>	2,44	85-88	0,25	4600	5
μ					
Kevlar 29	1,45	65	0,32	3500	4
Kevlar 49	1,44	1	0,32	3500	2,1
		25			
	7,86	200	0,28	400-1700	10

μ

.

			μ
		(GPa)	(%)
μ (GFR)	P) 50		3
μ μ (AF	RP) 65-120		2-3
μ (CFR	P) 35-190		1-1,5
	200		10

	CFRP	AFRP	GFRP
	10	10	10
	9	6	3
μ	6	9	9
μ μ	9	6	3
μ	6	4	2
	6	4	2
	4	6	2
	6	6	9

10. 3.6 : μ μ μ

.

μ

,

μ μ :

μ .

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

μ

μ μ μ

μ

μ

п

μ									
,								μ	
	μ	μ	(μ	μ	,	μ	μ).
				μ				•	

μ μ , μ μ μ μ / / μ μ

μ μ μ ,μ μ μ μ , 1.1 . 1.2

μ / μ / μ μ • μ μ μ ,

μ . μ μ μ •

μ μ μ μ μ • / . . μ μ , μ

μ . μ , •

,

, μ μ μ μ μ μ . μ μ μ , μ μ μ ,

, μ μ μ μ μ μ . : μ μ μ μ μ μ μ . . , 600% (μ). , μ 10% μ , μμ μ μ μ

• / μ μ μ • μ μ μ μ μ μ . , , μ μ • 4.

4.1 μ

μ μ μ μ , μ • μμ μ μ μ μ • μ μ μ μ μ μ

 \triangleright

$$\sigma(t) = \int_{-\infty}^{t} G(t - \tau) d\varepsilon(\tau),$$
(1)
(1)

G(t) r μ (1) μ (t) μ μ μ μ

$$\sigma(t) = \int_{-\infty}^{t} G(t-\tau) \frac{\partial \varepsilon(\tau)}{\partial \tau} d\tau.$$
(2)
$$\mu \qquad \mu \qquad \mu$$

cg(t) :

$$\sigma(t) = \int_{-\infty}^{t} (E_0 + cg(t - \tau)) \frac{\partial \varepsilon(\tau)}{\partial \tau} d\tau,$$

, E_0 , μ , c
, $g(t)$, μ

$$\int_{0}^{\infty} g(t) dt = 1.$$
(3)
$$\mu \qquad \mu \qquad ,$$

$$\mu \qquad \qquad \mu \qquad ,$$

μ

μ

μ

μ

.

μ , μ μ •

μ μ . μ μ , μ μ

t

$$\begin{array}{ccc} \mu & \mu & \mu \\ G(t) & E_{o} \end{array}$$

-

$\tilde{\sigma}(\omega) = E^*(\omega)\tilde{s}$	$(\omega),$						
(·̃)(ω) , μ	$\mu \qquad \mu \qquad$	$E_0 + \mathrm{i}\omega c ilde{g}(\omega) + E'(\omega) +$	(ω) (4), • i E″(ω	.)(t) Ε*(μ),)		
() E (μ) (, . Ward η(ω)	Hadley ,	, (1993)	, μ),	
$\eta(\omega) = \frac{E''(\omega)}{E'(\omega)}$ Adhikari (2000)	Park (2001)				μ	μ	
μ μ	g(t) μ	g(t) μ	, μ ,	μμ	ι μ	$\tilde{g}(\omega)$	
, μ ^σ ∞.	σ ₀ = 1 (Crawford	d , 1998),	,	μ	μ 1.	ļ	μ
μ	g(t) μ μ μ		1	1.		(t), ,
, · , μ ,	μ μ			μ	μ	, ,	,
, . Ward H	μ , μ μ μ [adley (1993)	μ μ).	μ		:	μι	u

(

	Exponential	Hyperbolic
σ(<i>t</i>)	$\sigma_0 + (\sigma_\infty - \sigma_0)(1 - \exp(-t/t_0))$	$(\sigma_0 - \sigma_\infty) \frac{t_0}{t_0 - t_0} + \sigma_\infty$
g(t)	$\frac{1}{t_0}\exp(-t/t_0)$	$\frac{t_0}{(t_0+t)^2}$
$\tilde{g}(\omega), \omega \geqslant 0$	$\frac{1}{1 + icm}$	$-\pi\omega t_0 \exp(i\omega t_0)$
$E^{*}(\omega)$	$E_{\theta} + \frac{c - i\omega t_0}{t_0 1 + i\omega t_{\theta}}$	$E_0 - i\pi \frac{c}{t_0} (est_0)^2 \exp(iex_0)$

Table 1 Exponential and hyperbolic models in time and frequency domains

Fig. 1. Complex modulus for exponential model.

$$\sigma(t) = \sigma_0 + (\sigma_\infty - \sigma_0) \frac{2}{\pi} \arctan\left(\frac{t}{t_0}\right).$$
(5)
(5)
(5)

00•

μ

 t_0

0

μμ,, μ,

()= ,

(4),

μ3,

$$\eta(\omega) = \frac{2}{E_0} \frac{c}{t_0} \omega t_0 \exp(-\omega t_0).$$

$$(7)$$

$$\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \tau_0 \quad \tau_0$$

$$= 1/t_0, \quad (7) \quad \mu \quad \mu \quad \mu \quad \tau_0 \quad \tau_0$$

$$\eta(\omega) = \eta_0 \frac{\omega}{\omega_0} \exp\left(\frac{(1-\omega)}{(1-\omega)}\right).$$

$$(0) \quad \mu \quad \mu \quad \mu \quad \tau_0 \quad \mu \quad \tau_0 \quad$$

,

Frequency

Fig. 3. Loss factor evolution for the new model.

\triangleright	μ	μ	μ	μ	
, μ	μμ	μ μ μ μ	μ μ	μ Corte Castillo μ	μ 160 Hz.
	μ 10%,	μ , μ	μ μ	μ (Castillo , 2004), . 2΄ μ	90% ,μ μ

μ ead (1965), μ μ μ μ . fminsearch Matlab (he Nelder μ MathWorks Inc., 2005). μ

$$\sum_{s}^{s} \kappa_{s} | E^{*}(\omega_{s}) - E^{*}_{s} |,$$

$$s \qquad \mu , s_{max} \qquad \mu \qquad \mu$$

$$s \qquad \mu , s_{max} \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad g^{*}(s) = 0$$

Table 2 Storson modulus E and loss factor a far noise

f(Hz)	$E(10^9 \text{ Pa})$	1
24.9	36.9	0.0106
40.4	38.2	0.0221
85.5	38.0	0.0153
137	38.0	0.0079

Table 1		
3 10 10 10 10 10		

Parameters for the fitted model

$E_0 (10^9 \text{ Pa})$	eas (rad/s-Hz)	400	4 ₀ (10 ⁻³ s)	c (10 ⁶ Pa s)
38.2	259-41.3	0.0221	3.85	4.42

Fig. 4. Comparison between experimental data and fitted model: (a) storage modulus and (b) loss factor.

4.2 μ Gfrp μ μ μ μ

(FRPs) µ μ μ μ μ μ μ μ μ. μ μ . μ FRPs μ μ μ GFRP μ μ μ μ GFRP μ μ μ μ μ μ μ. μ μ μ, μ μ μ μ , μ μ μ μ μ μ μ - μ . μ μ , μ μ μ μ . μμ μ μ μ μ μμ GFRP μ μ . μ

μ

⊳

μ μ μ - GFRP μ μ μ μ - μμ 1 μ μ, μ μ μ μ.

 $\varepsilon_{1,top} = \frac{du_{1,top}}{dx}$

:

 $\varepsilon_{1,top} = \frac{du_{1,top}}{dx} \cong \frac{du_{1,a}}{dx}$ (1) GFRP μ $\mu \qquad m.$ $\tau_a(x) = G_m \cdot \frac{u_{1,a}(x)}{\tau_m} \qquad \mu$ (1), μ:

 $\boldsymbol{\varepsilon}_{1,wp} = \frac{t_m}{G_m} \frac{d\tau_a}{dx}$ (2)

 $\tau_a(x) = \frac{P}{b_1} \cdot \beta \cdot \frac{\cosh(\beta x)}{\sinh(\beta L)}$ 2, 0 μ μ

58

μ

	,	μ		μμ	μ	
P	P =3350 N,	1	μ μ		μ	
		GFRP.	μ		μ	μ
μ		μ			= 0,15.	

(b) Figure 15 – Comparison of theoretical diagrams strain values vs. length of anchorage with experimental values at (a) P –3700N (UIIB1)and (b) P–5076N (UIIB₂).

4.3 pvc -v: μ μ

PVC μ μ μ μ μ μ μ μ μ μ . μ / μ . ,

μ μ μμ μ μ μ . , μ μ μμ μ μ μ μ μ μ μμ μμ μ μ μ μ μ μ μ ,μ 0.5 μ μ μ μ μ , , μ μ μ μ μ , μμ μ μ μ μ • μ μ .

.

 \blacktriangleright μ μ

	μ	μ, G,	$G=G_0*F()$
(1),			

G_0				μ	l]	F()	μ			μ		
	μ	μ				μ		,	μ		,		
		μ	μ		μ	ι						μ	μ
					ļ	μ			F((),		Guth	
									μ	μ		(1)	
μ			μ		μ	G	0				μ		
					μ				μ				,
		:	μ									μ,	
		μ						μ			μ	μ	
	μ				μ		μ						
						μ		,					
S			μ	μ	μ:								
f(c),												
	G ₀ μ s	G ₀ μ μ s f(_c),	G ₀ μμ μ μ β f(_c),	G ₀ μμ. μμ μ μ s f(_c),	G ₀ μμ. μμ. μμ μ μ μ ε μ f(_c),	G ₀ μ μμ. μμ μ μ μ μ μ μ μ μ f(c),	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

μ μ μ **,** f f(___) μ μ μ μ μ μ c٠ μμ μ μ μ . 1.

μ

μ 1 μ . μ, μ μμ μ , μ μ, , μ

	μ	n	ı			-			•							μ		μ	
	μ	ι		μ		,		,	μ		μ	n.		,	μ		g_{ff}		
μ			μ												•		μ		
μ							μ			μ			μ	μ					
				μ		μ	μ		μμ			•	μ	,					
	μ											•							
					-				μ		μ					μ	μ		
	-									μ		n (μ	μ	
	μ	u n (,		``	μ	μ		μ	п (-)	
		п(-).				μ	n				μ	05		
								μ	•	μ	,	11					0.5.		
		μ	L	n				μ	, μ						μ	•		п	μ
		n (-)			u						•	μ	,
		(/	-	•								-	
							•			,			μ		μ			μ	
							•												
	μ		1	n				-							0.5	5			
			•		μ				μ							μ			
μ		μ						,						μ	g_{cc}	•			

TABLE 5
Network Parameters

2		and the second second	and the second se		3
Modulus: 	<i>G</i> '0	G' 10(L-1)	$\frac{G_{\rm m}^t}{10({\rm E}0)}$	$G'_{\rm m}$ 10(E+1)	$G'_{\rm m} = 10(L+2)$
n for ff:	2.71	2.34	1.77	1.36	1.20
n for fe:	1.2	1.2	1.0	0.8	0.6
n for co:	0.5	0.5	0.5	0.5	0.5
Sff:	7.0	15.0	70	300	1,100
St.:	110	170	220	325	500
ges:	140	128	170	750	7,000

≻ μ μ

PVC μ μ . μ μ μ, μ μ μ μμ μ • μ μ μ μ μ , μμ μμ . μ μ μ μ μ μ • μ ,μ μ μ μ , μ μ μ . , μ μ .

,

4.4 μ :μ μ

μ μ μ μ μ μ μ μ μ μ μ μ μ. μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ

μ

μ μ, μ μ μ . WISPER, μ WISPERX, Rayleigh, μμ μ μ Palmgren-Miner μ. μ μ μ μ Broutman Sahu. μ,

μ μ μ , μ μ Broutman Sahu.

> μ

μ μ 6-8. μ μ μ μ μ Model Error $-M_{\rm e} = \log \left(\frac{N_{\rm model}}{N_{\rm experiment}} \right)$ μ μ μ μ μ μ μ _e=0 μ μ μ, $e^{=1}$ μ 10 μ _e=-1 1/10 μ 11 μ 4 μ μ μ μ μ μ μ -0,3< _e<0,7 μ. μ μ μ μ μ μ μ DD16 (Y1 6), μ μ μ OH PM BF (RS5). μ μ μ , BS INT . μ μ Y1 117% 192% μ μ 26% μ μ WISPERX μ μ μ . μ

Table 6					
Comparison of	model predictions i	for mean	fatigue	life of DOE/MSU	DD16 material
under spectrum	n loading				

Material:	DD16	DD16	DD 16	DD16
Spectrum	WISPERX	WISPK	WISXR01	WISXR01
nsax() (MPa)	259.5	2553	237.2	203.5
# Replicates	6	8	9	6
Average exp. N	915,000	532,000	204,000	1,380,000
# Spectrum repeats	71.3	41.5	16.0	109
Model	M _e			
PM	0.40	0.26	0.26	0.10
OH	0.37	0.23	0.24	0.07
BF	0.57	0.44	0.44	0.28
HR	0.39	0.26	0.26	0.10
BS	0.32	0.19	0.24	0.08
RS1	0.40	0.26	0.27	0.10
R52	÷	Sec	-	£.
RS3	0.31	0.18	0.24	0.07
RS4				-
RS5	0.30	0.18	0.24	0.07
Y1	-0.58	-031	-0.13	-0.57
INT	0.28	0.16	023	0.07

					MD2 (7),				,
			μ		μ	WISPEF	t .	μ		
				μ		μ	μ	μ		=0.1.
		,					μ	μ	τ	JD2 μ
						3.5		μ	μ.	
Y1				μ						
			μ	WISPER	μ			MD2.	BS	
			μ	PM	[•	INT		
		μ			MD2		μ μ			
	μ		UD2		UD2		, RS2	2 RS4		
		μ		μ			μ,			
	μ						μ	μ		μ
	μ		μ	. UD2		,	μ	С	RS2	RS4
			μ					μ		
		•	μ				UD2	μ		
RS2	,	RS4						μ.		BF
					μ			UD2,		
		6	,	Y1				50%.		
			T	able 7						

The other and the second s	
Comparison of model predictions for mean fatigue life of OPTIMAT database	materials
under spectrum loading	

Data set	MI32	MD2	MD2	(0)2	1003
Spectrum	WISPER	WISPER	WISPERX	WISPER	WISPER
max(σ_{r}) (MPa)	355	284	248	375	350
* Replicates	4	4	3	7	5
Average exp. A	678,073	5,944,292	2,735,2800	4,787,267	9,198,844
# of blocks	5.1	44.8	213.2	36.1	69.3
Model	Me.				
PM	0.02	0.07	0.23	0.60	0.59
OH	-0.20	-0,15	0.02	-	-
BF	0.08	0.10	0.29	0.80	0.60
IR	0.01	0.05	0.23	0.60	0.59
BS	-0.03	-0.05	0.15	0.50	0.50
RSI	0.08	0.07	0.23	0.60	0.59
R52	0.10	-0.04	0.17	0.46	0.47
RS3	0.00	0.05	0.23	0.50	0.50
RS4	0.00	0.05	0.23	0.47	0.49
RS5	0.02	0.07	0.23	0.55	0.55
YI	0.03	-0.78	0.43	-0.30	-0.33
INT	-0.04	0.02	0.21	0.55	0.55

	VT8084	μ	RAY95	μ	μ				μ
	μ	μ'	μ	•		,	DE		
	δ, μ. Γ. Γ. Γ. Γ. Γ. Γ.	PI	M, RS3	RS5	μ		BF	μ	μ
	к, вз, кзі	IIN I		. Y1	, μ	μ	RS2	RS4	
RAY95	R01,			μ-		μ	μ		, RS1
Y1.	RS1			μ		μ	VT8084	ιμ -0,01	3< e<
0,04	μ	μ						•	

Table 8 Comparison of model predictions for mean fatigue life under spectrum loading of VIS084 material

Material	VTROR4	VT8084	VT8064
Spectrum	R4Y95	RAN05	8AY95801
max(of) (MPa)	127.2	107.7	183.8
# Replicates	10	10	5
Average exp. N	255,000	915,000	150,000
# Spectrum repeats	53.1	160	30.1
Model	м.		
PM.	0.00	0.06	0.27
OH		-	-
RF	1.85	1.92	0.26
HR	-0.01	0.05	0.27
BS	-0.07	0.01	0.17
RSI	-0.03	0.04	-0.01
RS2	-0.22	-0.23	
KS3	0.00	0.06	0.17
RS4	-0.19	-0.11	·
R55	0.00	0.06	0.20
¥1	-0.12	-0.05	-0.37
INT.	-0.06	0.02	0.17

μ

(

,

			μ			μ
9),				μ	BF	
	μ	,				

μ (VT8084 RAY95) Bond Farrow μ μ • Farrow μ , μ

μ μ , μ

Model	$\max(M_{i})$	$mm(M_{P})$	mean(M_*)	median(Ma		
PM	0.60	0.00	0,24	0.24		
OH"	0.37	-020	0.08	0,07 0,44		
INF	1.97	D OH	0.65			
HK	0.60	-0.01	0.23	0.24		
BS	0.50	-0.09	0.16	0.16		
RSI	0.60	-0.03	0.22	0.17		
RS2 ¹⁰	0.47	-023	0.07	-0.04		
RS3	0.50	0.00	0.19	0.17		
RS4 [≥]	0.48	-0.19	0.13	0.06		
RS5	0.55	0.00	0.21	0.19		
¥1	-0.03	-0.78	-0.33	-0.31		
INT	0,55	-0.06	0.18	0.17		
	μ	PM		μ		
		μ μ	μ			
	4		μ			

Table 9										
Comparison of	model	predictions	statistics	compiled	tor all	data	sets	and	spectru	m
loads										

μ

.

μ

μ μ
UD2 , 2,5 , μ , PM () μ μ μ μ PM R μ μ μ μ μ . μ μ μ μ. Broutman Sahu, BS, μ PM $\mu \cdot PM$ $\cdot RS1$ $\mu,$ μ S BS , μ DD16 MD6 DD16, MD2 UD2 μ , RS2 RS4 $\mu \qquad WISPER \qquad \mu \\ UD2 \qquad \mu$ BS. μ , RS2 RS4, μ μ μ (RS1 RS3), μ μ μ μμ μ μ ,μμ μ μ μ μ μ μ UD2 RS2 μ μ μ μ RS5 , μ . μ μ μ μμ μ DD16 μ μ UD2, Adam , $0.0 < M_e < 0.30, \mu$ $M_{e} = 0.55$. $\mu \ 0.06 < e$ μ INT, μ < 0.28 μ μ μ μ μμ μ μ μμ μ μμ μ R=0,1 R=-1, μ μ (_e=0.55). Yang Liu, μ i μ μ μ μ μ MD2 Y1 μ. -0.78< _e<0.02 μ μ WISPER. 50% μ Y1 UD2 WISPER μ μ μ μ 200% . 12 μ μ μ μ μ , 1 μ,μ μ 1 17% μ μ, μ WISPER D2, μ μ μ μ 83% 0 μ 14% μ μ μ 1 μ μ μ 1, μ μ R p, BS μ μ μ BS μ μ μ PM μμ μ μ ομ BS . μ μ μ RAY95R01 **VT8084** μ μ RS1 .

≻ μ μ

μ μ μ μ μ μ μ μ • μ , μ μ μ μ μ μ μ μ μ μμ μ μ FRP, μ μ μ μ μ μ . μ μ μ μ μ μ μ . μ μ , μμ μ μ μ μ μ μ μ μ μ μ 12 μ μ μ μ μ μ . μ μ UD2, μ μ μ μ μ 3-4 μ . μ 1 μ μ, μ μ μ μ μ μ μ μ (μ) μ 1 μ μ μ μ -μ μ μ μ μ μ SLERA μ μ μμ μ 1 μ μ μ . , Broutman Sahu μ μ PM

μ INT, RS1-RS5 μμ μ μ μ μ μ , μ μ BS . μ μ PM, μ μ μ μ μ μ μ μ μ μ. μ () BS, μ μ μ μ PM , μ μ ,

μ. , μ μ μ μ μ μ μ μ μ .

μ μ μ μ μ μ μ, , μ μ μ μ μ. μμ μ μ μ μ μ Broutman Sahu µ μ μ μ μ , μ μ

μ μ , μ μ μ μ .

4.5 μμ μ μ μ : μ

•

μ μ μ μ , μ μ μ μ μ (RTM) μ μ μ μ μ μμ μ ,

μ μ μ μ μ μ μ . μ μμ μ μ μ μ ASTM D 3479. μ ASTM 3039 D. O μ μ 10 z μ μ R = 0.1.μ μ NCF/RTM6 Weibull . μ μ μ

μ

> μ

	μ	μ	Ν	μ S-N		
	C*N		μ.	μ		μ
μ μ	5*Ν μ μ	μ μμ			μ μ	μ

		μ	μ			μ	NC 72-60	2/RTM6)%		. ,		μ S*N
		μ	μ	μ	μ		μ	499	400	MPa		μ 400
100		μ						,				400
420	,				μ				μ	•		μ
μ											μ	
				μ			μ,					μ
	μ		,	μ			μ	μ				μ
μ												

Stress (MPa)	%UTS	Cycles (N)	Shape Parameter, β	Scale Parameter, a (N), 63,2%	
		110639			
410	57	216389	0,86	2,082,204	1
		575016			the for
		1593			1 a /
182	67	5676	0,82	41.425	45
		8933			-5
518	72	2410	0,63	101.653	- Fig. 4. Weiball parameters Curve - different

Table 1. Weibull parameters of specimen IR 384 A

μ μ μ μ

Table 2. Weibull parameters of specimen IR 386 A

Stress (MPa)	%UTS	Cycles (N)	Shape Parameter, β	Scale Parameter, a (N), 63,2%	
		217363			
412	57	256366	0,73	4.874.500	1. 1.
		1006370			a to
	67	25321	0.47	4 59 5 000	10 (D)
445		36672			45
		38713	1000	1222244	S USKIN
479	72.	17348	3,11	60.030	Fig. 5. Weiball parameters Curve – different tension

Table 3. Weibull parameters of specimen IR 388 A

Stress (MPa)	%UTS	Cycles (N)	Shape Parameter, β	Scale Parameter, α (N), 63,2%	
		110639			
410	57	216389	0,86	2.082.204	1 ····
		575016			100
		1593			3 3 1 ⁻¹ 16-5 1
482	67	5676	0,82	41.425	42
		8933			A
518	72	2410	0,63	101.653	Fig. 6. Weibull parameters Curve - different tension

Table 3.	Weibuil	parameters of specimen IR 390
----------	---------	-------------------------------

Stress (MPa)	%UTS	Cycles (N)	Shape Parameter, β	Scale Parameter, α (N), 63,2%	22 J	12	11 20	15	-
		71405			4		1		
390	62	85341	5,40	116.000	1	1	1		447835487
		93544			1 12	1	1		#U/50/00 47250/00
		17663			*	1			
120	17	31135	1.02	107 500	45	1.5			7-14680 2428 7-14680 2428
420	07	48370	1,40	107.200			-HELLANS		
		16970			Fig. 7. Wei	ibull parame	ters Curve – di	fferent te	nsion
450	72	10000	0,41	3.583.000					
	μ			μ		1,			
μ				μ μ	0		μ	μ	
	μ			μ C-scan 12%	.Ομ	μ			μ

μ μ μ, μ μ μ μ μ μ , μ μ μ μ μ μ μ 9 μ μ μ9.

μ9 /μ , μ, , μμμμμ.μ9 μ μ , μ

≻ μ μ

405 480 μ μ μ μ μ 6%,μ μ 2 / μ μ 415 μ 8% μ μ , μ μ μ μ ,

μ	Weibull								NC2/RTM6	,
								μ	μ.	
									μ	
					/μ	,	μ			
	μ		μ							
μ	μ	μ		μ						

4.6 μ μμ

) μ μμ (μ μ μ μ μ. μ μ μ μ μ μ μ μ μ μ Sμ μ μμ μμ μ μ Sμ μμ

*

μ μ μ μ μ μ μ : • : S-μ.

• μ μ: μ S-μ μ μ . • μ: .

• µ : .

μ΄ μ μ μ μ μμ

μ , Kawai CFL, µ R=-1. μ μ μ $R = -1 \mu$ R =0,5 μ μ μ μ. #3, μ μ μ R=0,63. Harris Boerstra μμ μ μ S-N[']μ, R = 0.1, R = 1, R = 10R = 0.5 R = 2 (

#3)μμ μ μ μ . μ **Kassapoglou** μ μ μ μ #3, μ μ μ μ μ μ μ

✤ GFRP

♦ #1

S- μ . S- μ Kawai CFL μ R =-1 μ μ μ Kawai CFL. μμ Kawai -0,76, μ. Η μ μ μ μ μ μ S-N Ŕ μ Sμ μ μ μ μ . μ μ , μ

Fig. 2. Constant life diagrams for N=10² - 10³, material #1 (linear-a, piecewise linear-b, Harris-c, Kawai-d, Boerstra-c).

73

♦ #2			
u.	μ S- μ μ	μ	μ
$\mu \qquad \mu$ $(#2),$ $\mu \mu$ $f = A_1 \log N + B_1$ $u = A_2 \log N + B_2$	μμ μ μ -0,77. μ μ , log	#1, R =-1 S- μ Kawai . μ R=-1 μ μ	μ μ μ , Harris
$v = A_3 \log N + B_3$ $\mu \qquad \log -\log S - \mu \qquad \mu$	μ μ. CLD, S-μ μ μ μ μ	μ μ μ μ R = -0.4 $R = -2.5.μ$ S- Boerstra .	μ μμμ, μ μ μ

* #3 S- μ μ CLD, μ Sμ μ μ. μ μ μ -0,63. Kawai Sμ μ CFL μ μ μ μ $f = A_1 \log N + B_1$ $u = A_2 \log N + B_2$ $v = A_3 \log N + B_3$ μ μ μ μ μμ μ Sμ Boerstra μ μμ μ μ μ. μμ μμ μ , R =-0.5, (R² = 0,93), μμ μμ μμ μμ Harris μ 0 μ μ

Sμ , μ μ , Boerstra S-N S-N μ R = -0.5.μ

μ μ, μ .

> μ

μ **Boerstra** µ μμ μ μ . Kassapoglou μ μ CLD μ μ μ μμ μμ μ μ μ μμ μ μ μ μμ Kawai, μ μ μ , Harris. μ . $\begin{array}{cc} \mu & \mu \\ 10^5 \end{array}$ CLD μ μ #3. μ Harris, Boerstra μμ μ μ Kawai R = 0.8R =-0,5 μ μ μ μμ μ Kassapoglou. μ μ Sμ μ μ μ μ μ μ μ μ μ μμ μ μ μ Kawai μ μ . ,

μ μ . μμ μ μ Kawai μ DD16. . μ R = -0.5 μ Kawai. μ f μ Harris µ $f = Ac^{-p}$

μ . μ μ ĊĹD μ μ. μ μ μ μ μ μ R = 0.8. μ μ f μ μ μ μ. μ f μ μ CLD μ. R =-0,5, Sμ Kawai, μ μ μ

Kassapoglou Harris, Kawai μμ μ

	μ		,		μ		μ	
μ-			μ					
	μ		μ				μ	
μ	μ	μ		1		μ	\mathbf{R}^2 $\boldsymbol{\mu}$	μ
μ			μ	μ		•		

Table 1

Comparison of predicting ability of the applied models in terms of the coefficient of multiple determination (R²).

	Material #1	Material	#2	Materi	al #3	
	R = 0.5	R = -0.4	R = -2.5	R = -1	R = -0.5	R = 0.8
Linear	0.37	0.72	0.61		0.93	0.35
Piecewise linear	0.89	0,91	0.84	-	0.88	0.93
Harris-f: linear	0.63	0.95	0.71	-	0.77	0.51
Harris-f: power law	0.64	0.94	0.64	-	0.94	0.80
Kawai $(R = -1)$	0.15	0.94	0.83	-	0.87	0.31
Kawai (R = -0.5)	-	-		0.76	-	0.43
Boerstra- experimental data	0.65	0.85	0.83	-	0.60	0.85
Boerstra-S-N data	0.69	0.89	0.84	-	0.84	0.91
Kassapoglou	-		-	0.93	0.41	0.48

	μ			μμ	μ		μ
					μ		
	CLD	μ	μ			,	

, μ μ (. **μμ , Kawai**) μ / μ μ (**Harris Boerstra**).

μ μ μ Kassapoglou μ μμ Kawai. μ μ μ μ μμ μμ μ μ μ . Sμμ Goodman, μ , μ μ , μ μ μ ,

Harris Boerstra. , μ[΄] μμ μ μ μμ μ μ μ , μ μ μ μμ μ μ μ μ Harris, Kawai Boerstra, μμ μ .

Kassapoglou. μ , ,μ μ μ μ μ μ μ • μ μ μ μ $CLD \ \mu$ (log-logS-) μ μ μ μ μ μ μ Sμ μ μ «μ μ , , Ν CLD. μ μ μ Sμ μ ..μ μ μ , μ Sμ μ μ μ μ μμ μ μμ μμ .

Fig. 5. Comparison of CL lines for 105 cycles, material #3.

Fig. 7. Predicted S–N curves for R = -0.4, material #2.

Fig. 8. Predicted S-N curves for R = 0.8, material #3.

Fig. 9. Comparison of CLDs based on different S-N formulations and different reliability levels, material #2.

▶ μ μ

CLD μ μ: CLD μ μ μ μ μ » μ « Sμ μ μ μ . μ μ μ . μ μ μ μ Harris μ μ μ μ μ μ μ μ . μ μμ μμ μμ , Kassapoglou, μ μ Kawai, μ μ μ μ μμ μ . μμ μ μ Kawai μ μ μ μ S-Sμ μ μ μ μ μ μ μ (μ (Kawai). μ μ Sμ μ μ (, , μ μ μμ) μ μ μ μ)μ Kawai GFRP μ μ Harris μ Harris , CFRP μ . μ μ μ μ μ μ Harris Boerstra μ μ Boerstra. μ μ μ μ μ Boerstra. μ μ μ μ Boerstra. μ μ μ μ Boerstra.μ μ μ μ μ μ μ μ μ μ μ S-N μ μ μμ μ

μ (> 3) S- μ μ. ,μ μ **R** = 1 μ μ μ .

4.7

μ μ μ μ , μ μ , μ μ μ 30 μ μ T_{g} μ μ 2-5 , μ μ μ μ μ

, μ μ μ, μ μ. μ μ μ μ μ μ μ μ μμ μ μ μ

μ

\triangleright

() μ (N_f). μ ${}^{\mu}_{PV_{F}}$ μ μ μ (PV_F) μ μ μ μ μ μ μ μ μ μ

μ , μ μ μ μ μ μ μ 1 Hz • μ μ μ μ μ μ μ μ . μ μ μ μ μ μ μ μ μ.

μ μ μ μ μ μ μ μ , μ μ μ μ μ , ,

45 μ μ μ μ μ μ μ $_{GCC}^{\mu}$ μ μ μ μ μ μ μ μ μ μ ,μ μ

μ, μ, μ, μ , μ, μ, μ, μ

μ

μ μ μ μ μ, ___

μμ

μ

 μ , T_g , T_g . μ μ

Τ_g., μ μ μ μ

μ μ . μ μ () 10 pph SBR () . μ μ μ μ

μμ΄ μ, μ

			μ		(_{max})		l	μ			
max	μ					μ					μ
		•		max			μ		μ		
μ	μμ			μ,				μ	-	•	
,	μ		μ Piola	a-Kirchhoff	μ	μ,		μ	μ		μ
μ		μ	μ	µ Poisso	μ on	, ,	μ		μ.		
•		μ	50	pph SA	μ				μ	r	
μ	50	pph SBI	R,	SA	μ		••		μ Ω		μ
	. μ SBR,		μ	μ Tg.			You	ng µ	SA		g1
		SA		51.		μ		SE	SR.	•	5 01
		μ		5 ppn	SA				54	A	50 ppn,
	,		μ SBR	μ.	SA	μ				1,	UT
SA	μ	μ	50 pph	μ	μ μ	(CP	VC)			μ	SBR.
	(PVC)		,	Ļ	י. וו		μ	ا CPV	u /C		
P.	μ μ	ı, CPVC	μ	μ	μ PVC	μ μ		01 (0		μ.
		μ	•	μ		μ		,			
	SA	SBF	R 10 pph	μ 10 ppł	1	CPV	C.		μ	μ	g1

Polymer	5A												SBR											
hph	50				10				\$				50				10				\$)
¿, (mstrain)	28.0	16.6	THI	55	17	17	11	0.7	1.4	1.0	0.7	9.6	595	41.6	LIE	15.0	2.0	<u>5</u>	1.0	5.0	1.3	1.0	0.8	0,6
6, (3)	28.6	17.0	11.3	3.6	424	342	22.9	13.2	42.4	31.4	20.9	13.7	41.0	28.6	215	10.3	45.1	33.2	22.1	11.2	50.1	375	31.1	22.5
N	7	110	3500	17,000	30	100	1000	41,500	90	005	2000	15,000	L	95	600	18,000	9	300	3500	24,000	30	400	2000	2500
(MPa)	2439	34.21	31,68	20.74	1136	12.29	5.08	4.69	8.03	6.07	4.62	4.13	13.55	6.70	10.73	3.84	12.75	11.41	5.07	4.79	5.84	4.56	3.56	1.07
(MPa)		15,88	16.37	12.92	8.72	665	7.25	4.47	6.37	5.15	4.00	3.74		3.11	5.23	5.53		9.63	7.14	4.42	6.49	3.93	3.06	0.66
0100 (MPa)	ł	7.01	8.21	7.39	4	1	6.97	4.21	4	4.79	3.92	3.51	1	4	2.76	9.39	1	888	2979	4.33	4	3.62	2.97	0.31
702-100	į	4.56	3.6	-2.25	-0.54	-0.41	110-	-0.09	-0.36	0.2	-0.11	-0.1	-2.87	-0.86	-1.20	-0.94	-2.1	-0.37	-0.23	-0.06	-0.22	-0.13	20/0-	-0.14
Z1 (GPa)	a	2.06	2.85	3.77	5.41	EZ1	251	6.7	5.73	6.07	6.6	6.83	0.23	0.16	55.0	0.59	6.38	7.61	8.07	9.58	4,49	456	445	1.78
n ,	ĩ	0.44	0.24	0.23	0.22	0.18	60.0	0.07	0.17	0.11	80'0	0.10	0.70	0.73	0.71	0.70	0,18	0.13	0.11	0.07	0.16	0.11	0.11	0.14
P10	ł	0.50	0.42	0.31	0.27	023	60.0	200	020	0.17	0.11	0.09	1	0.69	0.70	0.69	1	0.15	0.11	0.08	0.17	0.13	0.12	0.12
Pron		45'0	0.48	0.35	,		0.11	0.08	,	0.18	0.11	0.10			0.64	0.66		0.15	0.12	0.09	,	0.14	0.12	000

(m) μ μ μ μ max μ m μ μ μ μ μ μμ μ, μ μ μ μ μ μ μ μ μ . μ μ μ μ μ μ . μμ μ μ μ μ μ μμ μ S m₂₋₁₀₀ µ μ μ SBR. μ μ μ μ SBR. μμ μ μ μ μ μ μ Р 2 μ μ μ PL μ μ μ PVF, PL μ μ μ μ μ μ μ PV_F. μ μ μ μ μ 50 pph SA pl μ μ , SBR 50 pph µ μ . pl SBR. μ , SBR μ μμ μ μ PL• , μ SBR μ μ μμ μ SA g• μ μ SBR μ μ pl μ μ μ μ μ, μ μ μ 50 pph μ μ μ μ PV_{f} μ μ μ μ μ μ SBR μ μ μ GCC SBR μ μ μ μ μ μ μ μ μ μ μ T_{g} μ μ μ. μ μ GCC, T_{g} μ GCC SBR SA μ SA μ μ μ μ ,

. μ μ SA μ μ. μ μ ,

86

				μ		GCC		μ	μ	•
μ							μμ			
							μ		μ	
μ		PV_F	μ SA	A	μ	а		•		
	,		SA	μ		μ			SBR.	
μ			μ	μ						
μ	μ	SA	SBR				SA			
		μ								
		,	μ			μ				
h	l		μ	μ						μ

Polymer	pph	Maximu	im e _a tes	sted	Minimu	$m \epsilon_k$ tested	
		$z_r(X)$	Nr	P10	$z_r(X)$	N _f	P10
SA	50	28.6	2	÷	5.6	17,000	0.31
	10	42,4	30	0.27	13.2	41,500	0.07
	5	42.4	40	0.20	18.7	15,000	0.09
SBR	50	41	7	-	10.3	18,000	0.69
	10	45.1	6		11.2	24,000	0.08
	5	50.1	30	0.17	22.5	2500	0.12

Fig. 5. Hysteresis loops from 10 pph SBR polymer-pigment composite at 1.0 mstrain amplitude.

Fig. 6. Hysteresis loops from 10 pph SA polymer-pigment composite at 1.1 mstrain amplitude.

μ μ μ. T_{g} μ μ μ μ μ μ μ μ μ . 3. μ (5 pph) μ (50 pph) μ μ , 10 pph μ μ μ μ μ PV_F. μ μ μ μ μ μ μ μ μ μ μ μ μ. μ μ μ μ μ SA. μ μ μ μ. 10 pph μ μ μ μ μ μ μ μ ,

4.8 μ μ - μ /

μ

μ,

μ μ μ μ μ μ μ μ μ μ μ μ μ). μ (Sμ μ μ _ μ μ μ μ μ μ μ μ () μ μ μ μ μ μ μ μ μ • , (μ). μ μ μ μ μ μ , μ μ μ μ , μ μ μ μ μ μ μ

μ μ 200 C. μ μ . μ μ μ μ μ μ μ μ μ , « μ μ » μ μ μ μ μ μ .

▶ μ μ

μ 1 / μ μ μ μμ -• μ μ μ μ μ μ 2500 μ). μ μμ μ 2 μ (μ μ μ μ 85 MPa). (μ μ μ μ μ 85% μ μ μ μ

Fig. 1. Loading/unloading stress-strain curve of a GF/phenol composite.

Fig. 2. Permanent strain and cumulative AE events during tensile loading.

Fig. 3. S-N curves for virgin and after-cured GF/phenol specimens.

Table 1 Parameters of S–N curves and Young's modulus for virgin and after-cured specimens

	a (MPa)	b (MPa)	Young's modulus (GPa)
Virgin	84.7	6.79	17.7
200 °C/8 h	100.7	7.22	18.6
200 °C/100 h	51.3	0.98	17.8

4() μ μ μ μ 40 μ μ . μ μ μ μ μ 4() μ μ μ μ μ μ μ μ μ μ μ μ μ . 5 *10⁵ μ μ μ μ μ _ μ μ μ μ S-5 μ μ μ μ μ μ μ μ μμ μμ μ μ S= -blog μ μ μ μ . μ $\underset{<10}{\mu}$ μ μ μ $\mu 10^2 <$ μ 80 C. Sμ μ 2. (μ 120 C) μ •

μ

Fig. 4. Change in the: (a) stress-strain curves for the virgin specimen, and (b) maximum and residual strain increments for the virgin and long-term after-cured specimens during fatigue loading at maximum stress of 40 MPa.

Fig. 5. Effect of temperature on S-N curves of the specimen with and without a hole.

The slope of S-N curves b a	t various temperatures	
Temperature (°C)	Hole	b (MPa)
25 (RT)	N	12.36
80	N	9.80
120	N	6.99
150	N	10.10
25 (RT)	Y	11.08
80	Y	9.81

Table 2

Fig. 6. Effect of temperature on number of cycles to failure of intact and open-holed specimens.

μ 7 μ μ μ μ μ μ μ μ μ μ 8 μ μ μ μ μμ μ9 () μ μ μ μ (200 C/100 h) () μ , () μ μ μ μ μ μ μ μ μ (). μ μ μ μ μ μ μ μ

μ 10 $$\mu$ μ μ μ μ μ μ μ : () 20° C, 20MPa, () 180° C , 20 MPa, ()200° C,$ μ μ^{μ} μ^{μ} μ^{μ} μ^{μ} () 20° C, 15 MPa, () 20° C, 40 μ ()6,48 * 10³. μ : () 3,33* 10⁵, () 2,43*10⁵, () 1,75*10⁵, () 1,37*10⁶, μ μ μ μ μ μ μ (), (). 180 C. () μ μ () μ () μ μ () μ

Fig. 7. Crack propagation length in the FCP tests. The arrows denote final fracture.

reand the box, chi and tax. requil. long tech after spectrums after forigon terms. The mother of cycles to follow an maximum return are (b) $1.87\times10^8,$ 10 MPs and 40 2.50 $\times10^9,$ 45 MPs. and a

Fig. 8. In situ optical micrographs showing notch tips before loading and just before fracture.

Fig. 10. Fracture surfaces of open-holed specimens after fatigue tests at temperature and maximum stress of: (a) 20 °C, 20 MPa, (b) 180 °C, 20 MPa, (c) 200 °C, 20 MPa, (d) 20 °C, 15 MPa, and (e) 20 °C, 40 MPa. The number of cycles to failure is (a) 3.33×10^{1} , (b) 2.43×10^{1} , (c) 1.75×10^{1} , (d) 1.37×10^{6} and (e) 6.48×10^{1} .

 \geqslant μ

2 4 (), μ μ μ μ 8). 7 μ (μ μ μ μ μ μ μ, μ μ μ ()). μ (9 () μ μ μ μ μ μ μ μ (μ 8). μ μ :() , () () /μ μ μ μ μ • μ μ μ ,μ μ μ μ μ μ. μ /μ μ • / μ μ μ /μ μ μ μ μμ μ μ 4()). μ μ (μ μ μ μ μ μ μ μ \triangleright μ μ 5 6), μ (μ μ RT 180 C. μ μ μ μ μ μ 200 C μ 10(c)). (μ / μ μ μ μ μ μ 200-220 C. μ () μ S-N μ μ b) μ (μ μ μ μ (2). μ μ μ μ μ S= -blog , μ μ μ. Sμ μ μ 150 C) (RT () μ b μ S (50-70 S.) μ , $\log N = c(S) - dT$, c μ S. Α d µ

S $\log N = c(S) - dT \qquad S = (T) - b \log N$ μ μμ

 $\log N(S,T) = \{ () -S \}/b - d(T-T_0), \}$

Fig. 11. Comparison of S-N curves between experimental results and prediction.

5.

1.

».

μ

, μ μ μ μ μ , 2009

2. Ever J. Barbedo, «Introduction to Composite Materials Desing»

3. www.science@direct.com

4. Forbes Aird, «Fiberglass and Composite Materials»

5. Andrew Marshall, «Composite Basics»

6. John J. Morena, «Advanced Composite Moldmaking»

7. K. Diamanti, C. Soutis and J.M. Hodgkinson, «Non-destructive inspection of sandwich and repaired composite laminated structures », (Composites Science and Technology, Volume 65, Issue 13, October 2005, Pages 2059-2067)

«

8. C. Soutis, «Carbon fiber reinforced plastics in aircraft construction» (Materials Science and Engineering: A, In Press, Corrected Proof

9. C. Soutis, «Fibre reinforced composites in aircraft construction», (Progress in Aerospace Sciences, Volume 41, Issue 2, February 2005, Pages 143-151)

10. Maria Kashtalyan and Costas Soutis, «Analysis of composite laminates with intra- and interlaminar damage », (Progress in Aerospace Sciences, Volume 41, Issue 2, February 2005, Pages 152-173)

11. K. Diamanti, C. Soutis and J.M. Hodgkinson, «Lamb waves for the non-destructive inspection of monolithic and sandwich composite beams» (Composites Part A: Applied Science and Manufacturing, Volume 36, Issue 2, February 2005, Pages 189-195)

12. J. Lee and C. Soutis, «Thickness effect on the compressive strength of T800/924C carbon fibre–epoxy laminates » (Composites Part A: Applied Science and Manufacturing, Volume 36, Issue 2, February 2005, Pages 213-227)

13. Koundouros, Brian G. Falzon, Costas Soutis and Steven J. Lord, «Predicting the ultimate load of a CFRP wingbox» (Composites Part A: Applied Science and Manufacturing, Volume 35, Issues 7-8, July 2004, Pages 895-903)

14. Maria Kashtalyan and Costas Soutis, «Analysis of local delaminations in composite laminates with angle-ply matrix cracks» (International Journal of Solids and Structures, Volume 39, Issue 6, March 2002, Pages 1515-1537)

15. Seth S. Kessler, S. Mark Spearing, Mauro J. Atalla, Carlos E. S. Cesnik and Constantinos Soutis, «Damage detection in composite materials using frequency response methods » (Composites Part B: Engineering, Volume 33, Issue 1, January 2002, Pages 87-95)

16. Y. Zhuk, I. Guz and C. Soutis, «Compressive behaviour of thin-skin stiffened composite panels with a stress raiser » (Composites Part B: Engineering, Volume 32, Issue 8, December 2001, Pages 697-709)

17. Costas Soutis and Igor A. Guz, «Predicting fracture of layered composites caused by internal instability», (Composites Part A: Applied Science and Manufacturing, Volume 32, Issue 9, September 2001, Pages 1243-1253)

18. V. J. Hawyes, P. T. Curtis and C. Soutis, «Effect of impact damage on the compressive response of composite laminates», (Composites Part A: Applied Science and Manufacturing, Volume 32, Issue 9, September 2001, Pages 1263-1270)

- 19. www. fiberglast.com
- 20. www. mdacomposites.org
- 21. www.e-composites.com
- 22. www.reichhold.com
- 23. www.tencom.com
- 24. www. fulcrumcomposites.com
- 25. www.wikipedia.org