
Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών

Τομέας Τενοοίας Πηροφορικής και Υποοιστών

Πρόεψη Κιμάκσης Παράην
Περιοών σε Πουπύρηνες Αριτεκτονικές

Διπματική Ερασία
του

Γερίου Χατζόπουου

Επιέπν: Νεκτάριος Κοζύρης
Αναπηρτής Καηητής Ε.Μ.Π.

Εραστήριο Υποοιστικών Συστημάτν
Αήνα, Νοέμριος 2012

Ενικό Μετσόιο Πουτενείο
Σοή Ηεκτροόν Μηανικών και Μηανικών Υποοιστών
Τομέας Τενοοίας Πηροφορικής και Υποοιστών
Εραστήριο Υποοιστικών Συστημάτν

Πρόεψη Κιμάκσης Παράην
Περιοών σε Πουπύρηνες Αριτεκτονικές

Διπματική Ερασία
του

Γερίου Χατζόπουου

Επιέπν: Νεκτάριος Κοζύρης
Αναπηρτής Καηητής Ε.Μ.Π.

Εκρίηκε από την τριμεή εξεταστική επιτροπή την 1η Νοεμρίου, 2012.

........................
Νεκτάριος Κοζύρης Νικόαος Παπασπύρου Δημήτριος Φτάκης

Αν. Καηητής Ε.Μ.Π. Επίκ. Καηητής Ε.Μ.Π. Λέκτορας Ε.Μ.Π.

Αήνα, Νοέμριος 2012

...
Γεώριος Χατζόπουος

Διπματούος Ηεκτροόος Μηανικός και Μηανικός Υποοιστών Ε.Μ.Π.

Copyright © – All rights reserved Γεώριος Χατζόπουος, 2012.
Με επιφύαξη παντός δικαιώματος.

Απαορεύεται η αντιραφή, αποήκευση και διανομή της παρούσας ερασίας, εξ οοκήρου
ή τμήματος αυτής, ια εμπορικό σκοπό. Επιτρέπεται η ανατύπση, αποήκευση και διανομή
ια σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόεση να
αναφέρεται η πηή προέευσης και να διατηρείται το παρόν μήνυμα. Ερτήματα που αφορούν
τη ρήση της ερασίας ια κερδοσκοπικό σκοπό πρέπει να απευύνονται προς τον συραφέα.

Οι απόψεις και τα συμπεράσματα που περιέονται σε αυτό το έραφο εκφράζουν τον
συραφέα και δεν πρέπει να ερμηνευεί ότι αντιπροσπεύουν τις επίσημες έσεις του Ενικού
Μετσόιου Πουτενείου.

Περίηψη

Η παρούσα διπματική έκειται στο ευρύτερο πεδίο τν Παράην Συστημάτν και εστι-
άζει στη μεέτη τν αρακτηριστικών τν παράην περιοών και την ρησιμότητά τους
σε μια στατική ανάυση, η οποία σε συνδυασμό με πηροφορία ρόνου εκτέεσης, μπορεί να
προσφέρει μια μικρού κόστους πρόεψη της κιμάκσης της παράηης περιοής, δεδομέ-
νν περισσότερν υποοιστικών πυρήνν, με σκοπό την αποδοτικότερη ρονοδρομοόηση
τν παράην προραμμάτν, δρομοοώντας παράηες περιοές ξεριστά, παρά οό-
κηρα παράηα προράμματα. Εστιάζουμε σε προράμματα που έουν παραηοποιηεί
με την προραμματιστική διεπαφή OpenMP και σε κανονικές δομές, συκεκριμένα σε δομές
parallel-for.
Αρικά, υποστηρίζουμε την ιδέα της ρονοδρομοόησης και κατανομής πόρν σε επίπεδο
παράην περιοών κι όι σε επίπεδο προραμμάτν, πετυαίνοντας έτσι επιτάυνση (όπου
αυτό είναι εφικτό) και κάνοντας καύτερη ρήση τν πόρν. Προς αυτή την κατεύυνση,
παρουσιάζουμε πειραματικά αποτεέσματα που αναδεικνύουν τις διαφορές που μπορούν να
έουν παράηες περιοές του ίδιου προράμματος.
Κατόπιν, μεετούμε τα αρακτηριστικά απών παράην περιοών αποσκοπώντας στην
εύρεση εκείνν που μπορούν να ρησιμοποιηούν ια να προέψουμε τη συμπεριφορά της
παράηης περιοής και παραέτουμε τους περιορισμούς μιας τέτοιας ανάυσης. Παρουσιάζ-
ουμε ένα μοντέο, το οποίο αμάνει υπόψιν το όο τν υποοισμών προς τις προσάσεις
μνήμης, ρησιμοποιώντας μια στατική ανάυση του πηαίου κώδικα του προράμματος, σε
συνδυασμό με πηροφορία κατά το ρόνο εκτέεσης του προράμματος.
Επιπέον, παρουσιάζουμε ένα από μοντέο μνήμης, που ρησιμοποιείται ια να εκφράσει την
επίδραση που έει η μνήμη στην κιμάκση ενός παράηου προράμματος, το οποίο σε
συνδυασμό με την προηούμενη στατική ανάυση μπορεί να παράξει μια εαφριά και συνεπή
πρόεψη ια τη δυνατότητα επιτάυνσης της παράηης περιοής, ς μια ”συμουή” προς
το ρονοδρομοοητή.
Τέος, παρουσιάζουμε μια αρική υοποίηση που ρησιμοποιεί το μοντέο αυτό και επι-
δεικνύουμε την αποτεεσματικότητα της παρούσας ανάυσης, εφαρμόζοντάς την σε παρά-
ηες περιοές από τις σουίτες προραμμάτν NAS Parallel Benchmark Suite (NPB) και
Polyhedral Benchmark Suite (PolyBench), συκρίνοντας την προεπόμενη συμπεριφορά με
πειραματικά αποτεέσματα από έναν 8-πύρηνο κόμο της οικοενείας Clovertown και έναν
24-πύρηνο κόμο της οικοενείας Dunnington.

Λέξεις Κειδιά
OpenMP, Πρόεψη Κιμάκσης, Στατική Ανάυση, Πηροφορίας Χρόνου Εκτέεσης,
Χρονοδρομοόηση παράην Προραμμάτν

5

Abstract

This diploma thesis lies in the general area of Parallel Systems and copes with the study
of parallel region characteristics and their use in a static analysis, which combined with
runtime information can provide a lightweight prediction of the region scalability when
the number of available processors increases, with the aim of a more efficient scheduling
of parallel applications, by scheduling parallel regions, rather than parallel applications.
We mainly focus on programs parallelized using the OpenMP API and regular parallel
constructs, namely parallel-for constructs.
Initially, we support the idea of resource allocation and scheduling on a per-parallel-region
basis, rather than on a per-program, thus achieving speedup (where possible) and better
resource utilization. To that end, we present experimental results which highlight the
different behavior that parallel regions of the same program can have.
Subsequently, we study the characteristics of simple parallel regions, opting to find those
that can be used to predict the behavior of the parallel region and present the limitations
of such an analysis. We also present a model, which takes into account the computation-
to-memory ratio, by means of a static analysis of the program source code, as well as
runtime information of the program.
Moreover, we present a simple memory model, used to express the effect memory can have
to parallel speedup, which along with the aforementioned static analysis, can be used for
a lightweight and consistent prediction of the speedup potential of the parallel region, as
a “hint” to the scheduler.
Finally, we present a first implementation that uses this model and showcase the effective-
ness of this analysis by applying it to parallel regions from the NAS Parallel Benchmark
Suite (NPB) and Polyhedral Benchmark Suite (PolyBench) benchmark suites, comparing
the predictions with experimental results from an 8-core Clovertown-based and a 24-core
Dunnington-based multicore node.

Keywords
OpenMP, Scalability Prediction, Static Analysis, Runtime Information, Parallel Program
Scheduling

7

Ευαριστίες

Η διπματική αυτή πραματοποιήηκε στο Εραστήριο Υποοιστικών Συστημάτν της
Σοής Ηεκτροόν Μηανικών και Μηανικών Υποοιστών του Ενικού Μετσόιου
Πουτενείου, υπό την επίεψη του Αναπηρτή Καηητή Νεκτάριου Κοζύρη.
Αρικά, α ήεα να ευαριστήσ τον επιέποντα καηητή μου κ. Νεκτάριο Κοζύρη ια την
καοδήησή του κατά την εκπόνηση της παρούσας διπματικής ερασίας, καώς και και ια
τη συμοή του στη διαμόρφση της επιστημονικής προσπικότητάς μου με τη διδασκαία
του.
Θα ήεα επίσης να ευαριστήσ τα μέη του Εραστηρίου Υποοιστικών Συστημάτν και
ιδιαίτερα τους Μεταδιδακτορικούς Ερευνητές Γεώριο Γκούμα, Κορνήιο Κούρτη και Νίκο
Αναστόπουο ια τη καοδήησή και τη οήειά τους σε κάε ήμα της ερασίας και ια την
ενάρρυνση που μου προσέφεραν τόσο σε επιστημονικό, όσο και σε προσπικό επίπεδο.
Επίσης, α ήεα να ευαριστήσ όους τους φίους και συμφοιτητές μου που με στήριξαν
όα τα ρόνια τν σπουδών μου, σε καές και κακές στιμές, με την κατανόηση και τη
συμπαράστασή τους.
Κυρίς, όμς, α ήεα να ευαριστήσ την οικοένειά μου που ρισκόταν πάντα δίπα μου
σε κάε επιοή μου, υποστηρίζοντάς με σε κάε ήμα της ζής και τν σπουδών μου.

Γεώριος Χατζόπουος

9

Acknowledgements

This diploma thesis is the result of work done at the Computing Systems Laboratory of
the School of Electrical and Computer Engineering of the National Technical University
of Athens, under the supervision of Associate Professor Nectarios Koziris.
First of all, I would like to thank my supervising professor Nectarios Koziris for his guid-
ance during my work on this thesis, as well as his contribution in shaping my scientific
personality with his teaching.
I would also like to thank the members of the Computing Systems Lab and especially the
Postdoctoral Researchers Georgios Goumas, Kornilios Kourtis and Nikos Anastopoulos
for their guidance and help in every step of this thesis and for their encouragement on a
scientific, as well as on a personal level.
Moreover, I would like to thank all my friends and co-students for their support during my
studies, being next to me through the good times and the bad, with their understanding
and support.
Finally, and mostly, I would like to thank my family for being by my side in every choice,
supporting my every step during my life and my studies.

Georgios Chatzopoulos

11

Contents

Περίηψη 5

Abstract 7

Ευαριστίες 9

Acknowledgements 11

Contents 14

List of Figures 15

List of Listings 17

1 Introduction 19

2 Background 21
2.1 Multiprocessor Architectures . 21

2.1.1 Shared Memory Architectures . 21
2.1.2 Distributed Memory Architectures 22
2.1.3 Hybrid Memory Architectures . 22

2.2 OpenMP . 23
2.2.1 Core Elements . 23

2.3 Program Scheduling . 25

3 Motivation 27
3.1 Initial Benchmarks . 27
3.2 Poor Program Scaling . 29
3.3 Parallel Region Divergence . 30

4 Prediction Model 33
4.1 Algorithmic and Execution Model . 33
4.2 Prediction Model Elements . 34

4.2.1 Computational Density . 34
4.2.2 Memory Model . 35

5 Implementation 45
5.1 Current Implementation . 45
5.2 Implementation Overheads . 46

13

14 Contents

6 Experimental Evaluation 49
6.1 Execution Environment . 49

6.1.1 Clovertown . 49
6.1.2 Dunnington . 49
6.1.3 Configuration . 50

6.2 Polyhedral Benchmark Suite . 51
6.3 NAS Parallel Benchmark Suite . 51
6.4 Application Results . 52

7 Conclusion 57
7.1 Concluding Remarks . 57
7.2 Future Work . 57

Bibliography 59

List of Figures

2.1 Shared Memory Architecture . 21
2.2 Distributed Memory Architecture . 22
2.3 Hybrid Memory Architecture . 23
2.4 Fork-Join Model . 25

4.1 Parallel Region Speedup Curve Assumed . 34
4.2 Working Set Size Benchmark Graph . 38
4.3 Access Pattern Benchmark Time Results . 41
4.4 Access Pattern Benchmark Speedup Results 42
4.5 2D Access Patterns Comparison - Small Working Set 43
4.6 3D Access Patterns Comparison - Small Working Set 43
4.7 2D Access Patterns Comparison - Large Working Set 44
4.8 3D Access Patterns Comparison - Large Working Set 44

6.1 Clovertown Layout . 50
6.2 Dunnington Layout . 50
6.3 PolyBench Clovertown Results - 2 Packages 52
6.4 PolyBench Dunnington Results - 2 Packages 53
6.5 PolyBench Dunnington Results - 4 Packages 54
6.6 NPB Dunnington Results - 2 Packages . 55
6.7 NPB Dunnington Results - 4 Packages . 55
6.8 Parallel Region Performance Degradation Curve 56

15

List of Listings

2.1 OpenMP Parallel Example . 24
2.2 OpenMP For Example . 24
3.1 Initial Benchmark Structure . 28
3.2 Initial Benchmark Instruction Sequence . 28
3.3 Load Imbalance Example . 29
3.4 Parallel Region Divergence Example A . 30
3.5 Parallel Region Divergence Example B . 30
4.1 Array Dimension Example A . 36
4.2 Array Dimension Example B . 36
4.3 Array Reuse Distance Example . 37
4.4 Working Set Size Benchmark Code . 38
4.5 Access Pattern Benchmark A Code . 39
4.6 Access Pattern Benchmark B Code . 39
4.7 2D Access Patterns Comparison - 1D Code Structure 40
4.8 2D Access Patterns Comparison - 2D Code Structure 40
4.9 3D Access Patterns Comparison - 1D Code Structure 40
4.10 3D Access Patterns Comparison - 3D Code Structure 42

17

Chapter 1

Introduction

In the decade of 1960, Gordon E. Moore published a paper [1] that was meant to
change the world of technology. In this paper, he presented an observation on computer
hardware history, stating that approximately every two years, the number of transistors
on integrated circuits doubles, predicting the continuation of this trend. This prediction
has undoubtedly affected the computer hardware industry to this day, sometimes being
the ”push” behind modern efforts for increased performance. During the first decades of
computer history, this increase in transistor density was exploited by an increased clock
frequency, leading to a ”clock race” between manufacturers. However, this came to an end
recently, as heat dissipation and energy consumption became more important and dictated
a shift in the industry towards multicore architectures. This shift has unraveled a new
world for Computer Science, introducing new runtime environments and programming
interfaces, designed to exploit the new hardware.

With almost a decade having passed, multicore systems and parallel applications have
become the standard. Operating Systems have evolved to support the new hardware,
desktop applications use multiple parallel threads and even traditionally serial algorithms
have been replaced by parallel or distributed ones, promising better scaling and increased
performance in multicore environments. Another area that also met with renewed interest
is resource allocation, as parallel programs tend to have unpredictable behavior regarding
their speedup and the extend to which they manage to benefit from more resources. Re-
source allocation consists of information gathering from the running programs and decision
making regarding the resources that are allocated to each one. While the latter one has
been studied extensively, with allocation algorithms that meet various goals, such as best
throughput or low energy consumption, the first area has only recently started to attract
interest, leading to different approaches and interesting results.

In this thesis, we present a model designed to aid the scheduler in deciding the speedup
potential of a parallel program, by means of a static analysis of the program source code.
By analyzing the source code of a program parallelized using the OpenMP API, we obtain
useful information regarding the work assigned to each thread and the computational
density of the parallel region, as well as other useful information on memory access patterns
and data reuse, which we combine with existing knowledge and an architecture-dependent
model of the underlying processor units and memory, leading to a prediction regarding the
speedup potential of the program, which can be used as a ”hint” to the scheduler, enabling
it to make a better decision, according to its scheduling policy.

The rest of this diploma thesis is organized as follows. In Chapter 2 we give a brief
overview of memory architectures, the OpenMP API and discuss the traditional views

19

20 Chapter 1. Introduction

on parallel program scheduling and resource allocation. In Chapter 3 we present the
motivation behind this thesis and highlight existing related work on the subject. We
showcase the problem of poor scaling for parallel programs, as well as the divergence in
performance for parallel regions of the same program and suggest that a different way of
scheduling parallel programs should be favored, presenting experimental results to support
the aforementioned arguments.

In Chapter 4, which is the main Chapter of the thesis, we present the model used for
predicting the scalability of parallel regions. We give detailed description of the static
analysis used to extract necessary information from a program, the variables of the model
and their meaning and the ways the results can be interpreted, as well as and the trade-offs
that naturally occur with every such model.

Chapter 5 is dedicated to the current implementation, with description of the tools
used, as well as the extensions and new ones developed for the purposes of testing and
benchmarking for this thesis.

In Chapter 6 we present the execution environment used for benchmarking, with a
detailed description of the layout of the multicore nodes used, the cache hierarchies and
the configurations used. We then apply our model to the NAS Parallel Benchmark Suite [2]
(NPB) and Polyhedral Benchmark Suite [3] (PolyBench) benchmark suites and discuss the
results of the application and possible reasons for misspredictions.

Finally, in Chapter 7 we draw some concluding remarks and discuss possibilities of
future work.

Chapter 2

Background

2.1 Multiprocessor Architectures
Multiprocessor architectures can be categorized based on their memory organization.

They can be placed in three categories, Shared Memory Architectures, Distributed Memory
Architectures and Hybrid Architectures.

2.1.1 Shared Memory Architectures

A Shared Memory Architecture is a memory organization scheme that offers a shared
memory address space to the programmer. Communication in Shared Memory Architec-
tures is carried out using shared variables in memory, which are accessed and modified
using loads and stores. Each processor has its own cache hierarchy. A typical Shared
Memory Architecture is shown in figure 2.1. Shared Memory Architectures can provide
Uniform Memory Access (UMA), where accesses from any processor to any memory ad-
dress take the same amount of time, or Non-Uniform Memory Access (NUMA), where
some memory accesses are faster than others, depending on the processor and the topol-
ogy. It is obvious that NUMA architectures introduce challenges in program development
and analysis, but offer very low latencies for nearby memory accesses and lower memory
bus congestion when used correctly.

Figure 2.1: Shared Memory Architecture

Shared Memory Architectures offer ease of use to programmers, since parallel programs
can operate on the same collections of data, which are present in memory only once. How-

21

22 Chapter 2. Background

ever, such an approach requires a synchronization mechanism, to ensure the validity of
data that may be modified by different processors. Such mechanisms are usually the usage
of locks, so as to ensure that only one processor modifies a specified memory address at
a time. Moreover, although attractive for parallel programming, Shared Memory Archi-
tectures can be used for connecting only small numbers of processors, up to a few dozens,
since such architectures don’t scale well, mainly due to shared bus and memory bandwidth
limitations.

2.1.2 Distributed Memory Architectures

A Distributed Memory Architecture is a memory organization scheme that offers no
shared memory address and each processor has access to its own private memory address
space. Each processor has its own cache hierarchy and processors are connected using an
interconnection network, with different implementations varying in characteristics, such as
latency and throughput. A typical Distributed Memory Architecture is shown in figure 2.2.
Computational tasks can only operate on local data and if remote data is required, the
computational task must communicate with one or more remote processors to serve its
request. Communication in Distributed Memory Architectures is carried out using explicit
send and receive routines to send and receive data.

Figure 2.2: Distributed Memory Architecture

Distributed Memory Architectures offer a more challenging programming model for pro-
grammers, since every communication and data transfer has to be identified in advance and
implemented explicitly and so parallelizing sequential programs using a message-passing
model is harder than using a shared memory model. However, Distributed Memory Ar-
chitectures scale up to thousands of nodes, since they are constructed using independent
nodes and interconnection networks, avoiding the bottlenecks that appear in Shared Mem-
ory Architectures.

2.1.3 Hybrid Memory Architectures

A Hybrid Memory Architecture is a memory organization scheme that combines Shared
Memory Architecture for a small number of processors, that make up an SMP Node, with
each node having its own private memory address space and nodes connected using inter-
connection networks, as in Distributed Memory Architectures. A typical Hybrid Memory
Architecture is shown in figure 2.3. This architecture combines the advantages of both

2.2 OpenMP 23

memory architectures and is the typical architecture of modern clusters and supercomput-
ers.

Figure 2.3: Hybrid Memory Architecture

2.2 OpenMP

OpenMP [4] is a specification for shared memory multiprocessing programming. It
defines an Application Programming Interface (API), with implementations that support
multi-platform shared memory multiprocessing programs written in C, C++ and FOR-
TRAN, on most processor architectures and operating systems, including Solaris, AIX,
HP-UX, GNU/Linux, Mac OS X, and Windows platforms. It consists of a set of compiler
directives, library routines and environment variables that influence run-time behavior.

2.2.1 Core Elements

The OpenMP implementation in GNU GCC for the C and C++ languages uses the
preprocessor directive ”#pragma omp” to signify OpenMP-specific constructs. The core
elements of OpenMP are constructs for thread creation, workload distribution, data man-
agement, thread synchronization, user-level runtime routines and environment variables.
More specifically:

• Thread Creation: To denote a code block that will be executed by multiple
threads, the ”#pragma omp parallel” directive is used. An example of the use of
the directive is depicted in listing 2.1. The OpenMP specification uses the fork-join
model for thread creation. The initial thread, denoted as master thread with thread
ID 0 forks a specified number of slave threads, with the runtime allocating threads to
different processors and starting the threads. An illustration of the model is depicted
in figure 2.4.

• Workload Distribution: To denote a code block that will be distributed to threads
for execution, the OpenMP API has different directives, to cope with different work-
loads. For simple parallel loops that will be distributed to threads for execution, with
each thread assigned to a collection of iterations, the ”#pragma omp for” directive
is used. An example of the use of the directive is depicted in listing 2.2. To denote
that a block of code will be executed by only one thread, the ”#pragma omp single”

24 Chapter 2. Background

directive is used and the OpenMP 3.0 specification includes the ”#pragma omp task”
directive for dynamically changing workloads, in order to address load imbalances.

• Data Management: Since OpenMP is a shared memory programming model,
variables in OpenMP code are in general visible to all threads by default. To avoid
race conditions and pass values between the sequential and parallel regions, data
sharing attributes are appended to OpenMP directives. The different types of clauses
include ”private”, ”firstprivate”, ”lastprivate”, ”shared” and ”reduction”.

• Thread Synchronization: To address the need for synchronization the OpenMP
API includes constructs for this purpose, including barriers, critical sections and
atomic operations.

• User-Level Runtime Routines: User-level runtime routines are user to mod-
ify and check the number of threads, detect the execution context, the number of
processors, set/unset locks, etc.

• Environment Variables: Environment variables are used to configure the execu-
tion of OpenMP applications, such as loop iterations scheduling, default number of
threads, processor affinities, etc.

Listing 2.1: OpenMP Parallel Example

1 void work()
2 {
3 #pragma omp paral le l
4 {
5 printf(”Hello, parallel world.\n”);
6 }
7 return 0;
8 }

Listing 2.2: OpenMP For Example

1 void work()
2 {
3 int i;
4 #pragma omp paral le l
5 {
6 #pragma omp for
7 for (i=0;i<MAX_ITER;++i)
8 printf(”Hello, world. I am here to print: %d\n”,i);
9 }

10 return 0;
11 }

Of course the previous list of core elements of the OpenMP API are far from complete.
Listed above are some of the features of the OpenMP API, especially those used in this
thesis. For more information, the reader is urged to read the OpenMP Specification [4].

2.3 Program Scheduling 25

Figure 2.4: Fork-Join Model

2.3 Program Scheduling
Many approaches to program scheduling have been proposed, from older techniques

that have been adjusted to modern multicore architectures, to newer ones that have been
proposed to specifically address the drawbacks of existing implementations. Some of the
most used scheduling approaches are:

• OS Scheduling: The first approach is to let the Operating System (OS) handle
the scheduling of programs. This approach has the advantage of being easy to
implement and use, since scheduling is one of the main responsibilities of operating
systems. However, performance is difficult to achieve, due to the generic tuning of
operating system schedulers, which are used to schedule applications with different
characteristics. Moreover, such a scheduling approach rarely benefits from data
locality due to context switching and thread migration and usually leads to resource
and energy wasting.

• Gang Scheduling: A scheduling approach that is usually favored for parallel pro-
grams is Gang Scheduling. The main purpose of gang scheduling is to schedule
threads that communicate or share data together, to avoid communication or lock
contention delays. Such an approach usually achieves better locality (when used in
conjunction with processor affinities, a common practice in gang schedulers), but
still don’t achieve best resource allocation, since all processors are usually devoted
to a process for a time quantum.

• Space Partitioning: A third approach, which has been recommended to specifi-
cally address the problem of resource utilization, is Space Partitioning, along with
co-scheduling of applications [5]. In this approach, applications are scheduled ac-
cording to resource requirements, with priorities modifying application preference.
Using this approach we have the best resource utilization and data locality, since ap-
plications are ”bound” to a set of processors and even with time-sharing, the number
of applications sharing the set of processors is smaller than that in other approaches.
Of course this approach can be combined with other techniques, such as using pro-
cessor affinities to avoid thread migration. The main problem of such an approach is

26 Chapter 2. Background

how to identify the needs of an application for resources, a problem that this thesis
will address.

Chapter 3

Motivation

From what has been described in Chapter 2.3, the main issue of a Space Partitioning
scheduling scheme is the identification of the resource needs of an application, so as not to
waste resources in an application that will not use them. To this end, and with a focus on
memory and processors as resources, different approaches have been proposed to estimate
the speedup potential of a program given a set of resources, including:

• Execution of the program to estimate memory and communication traces, using trace
sampling to speedup the process [6].

• Profiling and emulations of the program along with memory performance models [7].

• Static analysis of application binaries, in addition to cache miss counts prediction
and memory reuse distance models [8].

• Critical path analysis to estimate speedup for serial programs [9].

However, there are instances where a more lightweight approach is preferred, while sac-
rificing prediction accuracy. For example, instead of estimating the speedup of a program,
we could predict the utilization of resources using a coarse-grain analysis, such as choosing
the number of packages that could be utilized. Of course, such an approach would not
be suitable to any purposes, but it could for instance apply to the scheduling of scientific
applications, which have long execution times and are usually executed on clusters. In this
example, we could allocate the predicted number of packages to each application, achiev-
ing a balance between performance and energy consumption, as in this case no specific
number of processors is required. On the other side, the energy consumption of the system
is always an issue.

To identify the cases that would need to be investigated, synthetic benchmarks were
implemented and speedup measurements were taken, all of which are described in the
following sub-chapter.

3.1 Initial Benchmarks
For the initial benchmarking, the benchmarks synthesized consisted of simple parallel

loops, with the structure of listing 3.1. An example of the instruction sequences that were
used can be seen in listing 3.2 with the characteristics of the loop that were controlled
being:

27

28 Chapter 3. Motivation

1. The number of executions of the parallel loop, which determines whether we have
reuse of the arrays, regardless of data locality.

2. The number of iterations of the parallel loop, which varies the workload for each
thread.

3. The number of arithmetic instructions per memory access, which changes the con-
tention on the memory bus from the threads.

4. The number of instructions in whole, also changing the workload for each thread.

5. The access pattern that was used to access the arrays, exhibiting different data
locality and consequently different data reuse potential. The two options included
Spatial Locality and No Locality, accesses used in the latter being random.

6. The size of the working set, as it affects the data reuse potential (in conjunction with
the previous) and combined with characteristic (3) can become a limit in performance
gains for memory-bound programs.

Listing 3.1: Initial Benchmark Structure

1 [Headers]
2
3 int main (int argc, char **argv) {
4 [Declarations]
5 [Arguments Parsing]
6 [Timer Start]
7
8 #pragma omp paral le l [Data Sharing Clauses] {
9 #pragma omp for [Data Sharing Clauses]

10 {
11 [Unrolled Sequence of Instructions]
12 }
13
14 }
15 [Timer Stop]
16 [Timer Report]
17 return 0;
18 }

Listing 3.2: Initial Benchmark Instruction Sequence

1 asm (
2 ”mov (%0), %%rax\n\t”
3 ”mov %%rax, (%1)\n\t”
4 ”add %%rax, %%rax\n\t”
5 :
6 : ”r”(a + j),”r”(&j)
7 : ”rax”,”memory”
8);

These benchmarks provided many useful results which are used in the prediction model
described in Chapter 4, as well as some insightful findings which are discussed in the

3.2 Poor Program Scaling 29

following sub-chapters. However, they also indicated that more factors should be taken
into consideration and that different program structures should also be examined, so that
the results would be more applicable to real-life applications.

3.2 Poor Program Scaling

The first finding of the initial benchmarks is the observation that strong scaling is
rarely the case in OpenMP parallel applications, due to various reasons, as can be seen in
existing research [10, 11], the main ones being the following:

• Sequential parts of parallel programs, since according to Amdahl’s Law [12] the
speedup potential of a program is is limited by the the time needed for the sequential
fraction of the program, often summarized by the formula

Speedup(N) =
1

rs +
rp
N

where N is the number of available processors, rp is the portion of the program that
can be parallelized and rs the serial portion of the program.

• Bottlenecks on resources that are shared by the processors. Bottlenecks are usually
the memory bus for shared memory architectures and the interconnection network
for distributed memory architectures. Bottlenecks are caused by the limitations in
bandwidth for these shared resources.

• Load imbalances when processing cores are assigned calculations. This can be caused
either by the implementation of the program, with parts of the program that are
allocated to different processors being imbalanced as in listing 3.3, or by the hetero-
geneity of the processing cores, in systems that are made up of different processors.

• Synchronization and/or communication overheads, the former being more usual in
shared memory architectures, while the latter in distributed memory architectures.

• Overheads concerning thread creation, management and scheduling.

Listing 3.3: Load Imbalance Example

1 void thread_work(int thread_id) {
2 int i,j,N = 1000*thread_id;
3 for (i=0;i<N;++i)
4 for (j=0;j<N;++j)
5 doWork(i,j);
6 }

The above factors all contribute, to different extends, to weak parallel program scaling,
since according to the roofline model [13], every one of the mentioned factors poses a limit
in performance gains. We can understand from the above that programs that do not scale
well are very usual, and as such, their identification is important to avoid wasting resources
without performance gains.

30 Chapter 3. Motivation

3.3 Parallel Region Divergence
A second very interesting finding is that the parallel regions of a program may exhibit

very different behaviors. Let’s consider the listing 3.4. The first parallel region (in this
example the combined directive ”#pragma omp parallel for” is used, which denotes a
parallel block of code that is also the workload distribution block) is the initialization of
the arrays used, which has a lot of memory transactions and scales poorly, while the second
one has a clearly better behavior, due to the operations on the arrays that are accessed.

Listing 3.4: Parallel Region Divergence Example A

1 int doWork() {
2 #pragma omp paral le l for [Data Sharing Clauses]
3 for(i=0;i<N;++i)
4 for(j=0;j<N;++j)
5 [Array Initialization]
6
7 #pragma omp paral le l for [Data Sharing Clauses]
8 for(i=0;i<N;++i)
9 for(j=0;j<N;++j)

10 [Result Calculation]
11 }

In this case, what should the scheduler do? Allocate processors so that the second
parallel region has performance gains, wasting them on the first one, allocate a minimum
number of processors, so that resources are not wasted in the first parallel region, limiting
the speedup of the second parallel region, or a solution somewhere in the middle, wasting
fewer resources, with a limitation in performance gains? Taking the example a step further,
let’s assume that at the same time, a second application is also executing, its code being
the one shown in listing 3.5. Here we have the opposite situation. The first parallel region
scales well, while the second one scales poorly, as it merely copies the data between two
arrays. The problem of the scheduling decision exists in this case as well, but now we
have another problem as well. We see that in the first part of the programs, example B
can utilize more resources, while the opposite is the case in the second part. So in this
case, any of the three scheduling decisions mentioned earlier will not be optimal, while the
resources may suffice for both programs to have maximum performance gains.

Listing 3.5: Parallel Region Divergence Example B

1 int doWork() {
2 #pragma omp paral le l for [Data Sharing Clauses]
3 for(i=0;i<N;++i)
4 for(j=0;j<N;++j)
5 [Result Calculation]
6
7 #pragma omp paral le l for [Data Sharing Clauses]
8 for(i=0;i<N;++i)
9 for(j=0;j<N;++j)

10 [Array Copying]
11 }

It is obvious that the Space Partitioning scheme mentioned in Chapter 2.3 should

3.3 Parallel Region Divergence 31

also be enhanced by a dynamic resource allocation mechanism, where a program is not
considered a concrete entity, but rather a sequence of regions, each one with different
needs for resources and individual scheduling. Of course, such an implementation should
take into consideration the work in each region, because this dynamic decision-making
introduces an overhead that in some cases could be comparable to the execution time.

Chapter 4

Prediction Model

In this Chapter, we present the Prediction Model that we developed, with detailed
description of the method used for the analysis of the code, as well as the memory model
that is used.

4.1 Algorithmic and Execution Model

As with any model, our work applies to a specific Algorithmic Model that the programs
should implement. More specifically:

• The programs should be parallelized using an implementation of the OpenMP API.
For this thesis, the implementation in GCC v4.7.0 was used.

• The current implementation works with programs written in C, but the Prediction
Model could also be applied to programs written in FORTRAN.

• The features of the OpenMP API that are supported in the current implementation
are a subcategory of the full OpenMP API specification. There is support for Parallel
For constructs and no nested parallelism, which although may sound restrictive, is
an algorithmic model that is widely used and many programs can be altered to have
this structure. This is the reason that in the rest of this thesis, the terms ”Parallel
Region” and ”Parallel Loop” are used interchangeably.

Also, there is a specific Execution Model that our work applies to, with its most im-
portant characteristics being:

• Different levels of Cache are not treated as such and we only consider the largest
cache available on the system. Although such an assumption may affect the predic-
tion accuracy, due to the difference between cache-to-cache and cache-to-memory
latencies and throughput the accuracy is not affected in a major way, and we have
a clearly more compact and easy to configure implementation.

• For the purposes of this thesis, we only tested our model with UMA architectures.
This means that changes would have to be made for this model to be applicable to
NUMA architectures, as discussed in Chapter 7.2.

33

34 Chapter 4. Prediction Model

Finally, our model assumes a speedup curve that resembles that of figure 4.1 according
to which parallel regions scale up to a certain point and then have no further perfor-
mance gains from more cores, but also their performance does not degrades (at least not
significantly) when allocated more cores than they can utilize.

Figure 4.1: Parallel Region Speedup Curve Assumed

4.2 Prediction Model Elements

In this section, the elements that make up our Prediction Model are presented, with
examples and experimental results from specific benchmarks, devised to shed light in
specific cases, as necessary during the design of the model.

The main factors that contribute to the Prediction Model are the computational density
of the parallel region and the application of the memory model, in an attempt to quantify
and model existing empirical knowledge, as analyzed in the following subsections.

4.2.1 Computational Density

The term Computational Density should not be confused with the term Operational
Intensity, although both are used to express the same thing: the ratio of operations to the
total data accessed. However, by using the term ”Computational Density”, we refer to the
ratio of computations to memory accesses of the parallel loop’s body. In order to quantify
the Computational Density of a parallel loop, we use a scoring system, with two different
scorings, one ”good” and one ”bad”. We then use a function to combine the two scores,
with possible functions begin the ratio of the two scores, or the relative difference of the
two, given by the formula

4.2 Prediction Model Elements 35

Total_Score = max(0,
Good_Score−Bad_Score

Good_Score+Bad_Score
) (4.1)

with the max function used to eliminate negative values. This is what we used for the
results of our application of the model, as presented in Chapter 6.4. The ”good” and ”bad”
scores are calculated for every statement of the loop body and then their average values
are used in the calculations. This way, every statement has different weight in the average,
according to the work it includes.

To the ”good” scoring contributes activity that benefits from more processors. Such
activity includes of course arithmetic operations, as this activity has performance gains
in the form of speedup when more processors are allocated to the parallel region. More-
over, in this type of activity, we include memory accesses that are served by the caches,
as more processors means bigger overall cache size (with the assumptions mentioned in
Chapter 4.1). Arithmetic operations and cache hits contribute to the positive scoring with
different weights, according to the different latencies of different operations, which is ex-
pressed by different values for each type of operation, dependent on the architecture the
model is used on. The values used do not need to be absolute, as due to the use of ratio,
relative values can be used as well.

To the ”bad” scoring contributes activity that causes bottlenecks from more processors.
In a Shared Memory Architecture, the bottleneck is usually the shared memory bus, so
such activity includes memory references that are served by the Main Memory, as more
processors means more parallel memory references, leading to memory bus bandwidth
saturation and poses a limit to performance gains. There is a distinction here in Read and
Write Memory Accesses, as well as a distinction according to the pattern of the memory
accesses, with relative values used in this case as well. More on this can be found in
Chapter 4.2.2.

The values used for the scorings are of course architecture-dependent, since they rely on
instruction latencies, memory architecture and the effect each one has on the scalability
of a parallel program. For these values a small benchmark can be used, executed only
once for each architecture to extract the values. For the purposes of this thesis, we used
existing results from such benchmarks [14] for the two execution environments we used
(see Chapter 6.1).

4.2.2 Memory Model

In order to accurately model the effect memory has on the scalability of a parallel
region, a series of factors were considered and inserted in the model, all of which are
presented in the following sub-chapters.

Memory Accesses

The first decision that was made regarding the Memory Model was which memory
accesses affect the execution of the program. For this purpose, we ignore all scalar variables
and arrays with smaller number of dimensions than the rest, since their memory footprint
is usually an order of magnitude smaller than the rest. Dimensions are not calculated based
on the array definition, but rather based on the use of the array in the parallel region,
which can be extracted from the indices used, as can be seen from listings 4.1 and 4.2. We
see that both reference the same arrays, defined in both cases as 3D arrays. However, in

36 Chapter 4. Prediction Model

Example A, all three arrays are referenced using variable indices, while in Example B, two
of the three arrays have one of their indices non-changing. So, in Example B, the arrays
matrixA and matrixB are treated as 2D arrays and are ignored as well, since their number
of dimensions is smaller that that of matrixC.

Listing 4.1: Array Dimension Example A

1 double matrixA[Ni][Nj][Nk];
2 double matrixB[Ni][Nj][Nk];
3 double matrixC[Ni][Nj][Nk];
4
5 void doWork(){
6 int i,j,k;
7 #pragma omp paral le l for shared(matrixA,matrixB,matrixC) private(i,j,k)
8 for (i=0;i<Ni;++i)
9 for (j=0;j<Nj;++j)

10 for (k=0;i<Nk;++k)
11 matrixC[i][j][k] = matrixC[i][j][k] -
12 (matrixA[i][j][k] * matrixB[i][j][k]);
13 }

Listing 4.2: Array Dimension Example B

1 double matrixA[Ni][Nj][Nk];
2 double matrixB[Ni][Nj][Nk];
3 double matrixC[Ni][Nj][Nk];
4
5 void doWork(){
6 int i,j,k;
7 #pragma omp paral le l for shared(matrixA,matrixB,matrixC) private(i,j,k)
8 for (i=0;i<Ni;++i)
9 for (j=0;j<Nj;++j)

10 for (k=0;i<Nk;++k)
11 matrixC[i][j][k] = matrixC[i][j][k] -
12 (matrixA[0][j][k] * matrixB[0][j][k]);
13 }

Reuse Distance

In order to be able to categorize memory accesses as ”hits” or ”misses”, we use the reuse
distance of an access as follows: by identifying the indices used to reference the array,
we consider an access to be a ”miss” if the indices used are the fastest changing ones. In
any other case, the access is considered a ”hit”. The terms ”hit” and ”miss” are used to
refer to accesses that are served by either the cache or the main memory, contributing to
”good” and ”bad” scoring respectively. To explain this assumption better, let’s consider
listing 4.3. If we analyze the accesses to the arrays, we see that accesses to the array
matrixC are reused Nk times before new data is needed. For accesses to array matrixA,
we see that each line is reused Nj times before we access the next line. Of course, here
we assume that an array line is small enough to fit in any level of cache, which is true in
most cases, because if a line of the array is bigger than the larger cache available, then
the array would probably not fit in the main memory, in which case performance gains

4.2 Prediction Model Elements 37

are almost impossible to achieve. So, assuming that a line of the array fits in the cache,
we have Nj cache hits for every cache miss, which can safely be considered a ”hit” in our
analysis. Finally, considering accesses to matrixB, we see that the array is accessed in its
whole for every iteration of i, so of course there is some reuse of the data, but since the
array size is usually 5-20 times bigger than the cache size, which is a realistic choice, most
of the accesses will be cache misses. Being conservative in our analysis, we consider these
accesses to be ”misses”, with a possibility of happening, more on which will be discussed
in the following section.

Listing 4.3: Array Reuse Distance Example

1 double matrixA[Ni][Nk];
2 double matrixB[Nj][Nk];
3 double matrixC[Ni][Nj];
4
5 void doWork(){
6 int i,j,k;
7 #pragma omp paral le l for shared(matrixA,matrixB,matrixC) private(i,j,k)
8 for (i=0;i<Ni;++i)
9 for (j=0;j<Nj;++j)

10 for (k=0;i<Nk;++k)
11 matrixC[i][j] = (matrixA[i][k] * matrixB[j][k]);
12 }

Working Set Size and Data Reuse

In the previous section, we mentioned that in some cases, misses occur based on the
size of the working set of the parallel region, which does not fit in the cache, causing
accesses to the main memory. Of course not all accesses are the same, since due to cache
policies, there is some data reuse. The effect of this case can be seen in figure 4.2, where
we compare the code of listing 4.4 for different total working set sizes. The size of the
L3 cache is 16 MB for every 6 cores (see Chapter 6.1). We see that as the working set
becomes bigger, the reuse that occurs is less, causing more accesses to the main memory.

To model this reuse, we introduce the possibility of the miss happening, using the
formula

P = max(0, 1− Cache_Size

Total_Working_Set_Size
) (4.2)

with the max function used to eliminate negative values. The possibility ranges from 0,
when the total working set size is smaller than the cache size and all the arrays fit into
the cache, to 1, when the total working set size is infinite when compared to the size of
the cache. In reality, for total working set sizes that are 10 times bigger than the cache
size, the possibility is 0.9 and further increases in the working set size have little effect, as
seen in figure 4.2

38 Chapter 4. Prediction Model

Figure 4.2: Working Set Size Benchmark Graph

Listing 4.4: Working Set Size Benchmark Code

1 double matrixA[Ni][Nj], matrixB[Ni][Nj], matrixC[Ni][Ni], con;
2
3 void doWork(){
4 int i, j, k;
5
6 #pragma omp paral le l for shared(matrixA,matrixB,matrixC,con)
7 private(i,j,k) schedule(stat ic)
8 for (i = 0; i < Ni; i++)
9 for (j = 0; j < Ni; j++)

10 for (k = 0; k < Nj; k++)
11 {
12 matrixC[i][j] += con * matrixA[i][k] * matrixB[j][k];
13 matrixC[i][j] += con * matrixB[i][k] * matrixA[j][k];
14 }
15 }

4.2 Prediction Model Elements 39

Access Patterns

The final factor that was considered for the memory model was the access patterns
used when accessing the arrays of the parallel region. Let’s consider listings 4.5 and 4.6.

Listing 4.5: Access Pattern Benchmark A Code

1 double matrixA[N][N], matrixB[N], matrixC[N];
2
3 void doWork(){
4 int i, j;
5
6 #pragma omp paral le l for shared(matrixA,matrixB,matrixC)
7 private(i,j) schedule(stat ic)
8 for (i = 0; i < N; i++)
9 for (j = 0; j < N; j++)

10 matrixC[i] = matrixC[i] + matrixA[i][j] * matrixB[j];
11 }

Listing 4.6: Access Pattern Benchmark B Code

1 double matrixA[N][N], matrixB[N], matrixC[N];
2
3 void doWork(){
4 int i, j;
5
6 #pragma omp paral le l for shared(matrixA,matrixB,matrixC)
7 private(i,j) schedule(stat ic)
8 for (i = 0; i < N; i++)
9 for (j = 0; j < N; j++)

10 matrixC[i] = matrixC[i] + matrixA[j][i] * matrixB[j];
11 }

We see that they consist of accesses to two vectors and one 2D array. The vectors are
used because of their small size (compared to the array size), so they have no practical
effect on the results. The size of the working set is ten times the size of the cache and as
shown in sectionWorking Set Size and Data Reuse further increases of the working set will
not make any difference as well. The difference between the two benchmarks is the pattern
that is used to access matrixB. In the first example, the array is accessed in a streaming
way, accessing each row sequentially. In the second example, we access the columns of
the array sequentially, leading to memory accesses that take longer to be served by the
main memory. This causes the second benchmark to be slower than the first one, due to
the latency of its memory accesses. However, this higher latency lead to lower needs in
memory bandwidth, giving the parallel region greater potential for speedup. This can be
seen in figures 4.3 and 4.4, where we see the difference in execution time, with Benchmark
A being clearly faster, while Benchmark B, although not nearly as fast as Benchmark A,
scales better.

To further investigate this behavior, we used synthetic benchmarks with the structures
in listings 4.7, 4.8, 4.9 and 4.10 that serially access matrixA using all the different access
patterns possible and compared the times measured to a 1-dimensional sequential access,
for equal working set sizes.

40 Chapter 4. Prediction Model

Listing 4.7: 2D Access Patterns Comparison - 1D Code Structure

1 double matrixA[Ni*Nj];
2
3 void doWork(){
4 int i, j;
5 int count = -1;
6
7 for (i = 0; i < Ni; i++)
8 for (j = 0; j < Nj; j++) {
9 count++;

10 matrixA[count] += i+j;
11 }
12 }

Listing 4.8: 2D Access Patterns Comparison - 2D Code Structure

1 double matrixA[Ni][Nj];
2
3 void doWork(){
4 int i, j;
5 int count = -1;
6
7 for (i = 0; i < Ni; i++)
8 for (j = 0; j < Nj; j++) {
9 count++;

10 matrixA[i][j] += i+j;
11 }
12 }

Listing 4.9: 3D Access Patterns Comparison - 1D Code Structure

1 double matrixA[Ni*Nj*Nk];
2
3 void doWork(){
4 int i, j, k;
5 int count = -1;
6
7 for (i = 0; i < Ni; i++)
8 for (j = 0; j < Nj; j++)
9 for (k = 0; k < Nk; k++) {

10 count++;
11 matrixA[count] += i+j+k;
12 }
13 }

4.2 Prediction Model Elements 41

Figure 4.3: Access Pattern Benchmark Time Results

The results for the the 2D and 3D access patterns for working set equal to the size of
the largest cache available can be seen in figures 4.5 and 4.6, while the results for a working
set 8 times that of the largest cache available can be seen in figures 4.7 and 4.8 (this size
was chosen due to the findings of the previous section, which show that larger working sets
would make no difference). We see that a streaming access (taking into consideration the
way arrays are stored in memory) has the same duration regardless of the dimensions of
the array and the working set size, while a different access pattern can have a significant
effect on the latency of the memory access, strengthening our argument. This appears to
be the case with the benchmark suites used in Chapter 6 as well.

Our model includes knowledge of this behavior, by using modified weights when calcu-
lating the ”bad” score, based on whether the access is a ”streaming” or ”latency” access, as
discussed above. A ”latency” miss has a smaller score, as it contributes less to bottlenecks
when more processors are accessing the main memory this way, which is how we defined
the ”bad” score.

42 Chapter 4. Prediction Model

Figure 4.4: Access Pattern Benchmark Speedup Results

Listing 4.10: 3D Access Patterns Comparison - 3D Code Structure

1 double matrixA[Ni][Nj][Nk];
2
3 void doWork(){
4 int i, j, k;
5 int count = -1;
6
7 for (i = 0; i < Ni; i++)
8 for (j = 0; j < Nj; j++)
9 for (k = 0; k < Nk; k++) {

10 count++;
11 matrixA[i][j][k] += i+j+k;
12 }
13 }

4.2 Prediction Model Elements 43

Figure 4.5: 2D Access Patterns Comparison - Small Working Set

Figure 4.6: 3D Access Patterns Comparison - Small Working Set

44 Chapter 4. Prediction Model

Figure 4.7: 2D Access Patterns Comparison - Large Working Set

Figure 4.8: 3D Access Patterns Comparison - Large Working Set

Chapter 5

Implementation

In this Chapter, we describe our current implementation, the tools used and their
possible extensions. We also discuss some thoughts on the overhead they insert in the
execution of programs compiled using it.

5.1 Current Implementation
Our implementation is based on a GCC plug-in, which was extended for the purposes

of this thesis. The GCC plug-in is compatible with version 4.6 and greater of the GNU
Compiler Collection and was originally developed by Dr. Kornilios Kourtis. Its functional-
ity is the following: it inserts one extra pass of the source code during compilation, which
includes the following:

1. It builds the graph of the OpenMP constructs, where every OpenMP construct is
a node of the graph, with various fields that hold information regarding its type
and its relation to other constructs. Nodes are connected using these fields, e.g
two consecutive parallel regions are connected via the next pointer of the node,
while a parallel region and its workload distribution are connected using the inner
pointer of the parallel region. This process is based on functions that the GCC
plug-in development header files provide (build_omp_regions()), so new versions of
the GCC should not break compatibility with our plug-in.

2. It creates a file with extension ”.sc_region_lines” for every source file with parallel
regions, inside which it prints the lines at which parallel regions can be found.

3. For every parallel region, if it matches our algorithmic model (parallel regions with
a parallel for workload distribution construct inside) it traces the expressions used
in the loop initialization, condition and increment statements and tries to find their
last values, in the form of an expression tree (which is the way values are stored in
the syntactic tree of a program). It then creates a new expression tree that calculates
the number of iterations, based on these expression trees. This expression will get
its value at runtime, when all the expressions get their respective values.

4. A new function call is created and inserted (using functions that the GCC plug-
in development header files provide, such as gsi_insert_before()) right before the
forking of the master thread of the parallel region (that is a basic block before the
one that contains the start of the parallel region), and the expression that represents

45

46 Chapter 5. Implementation

the number of iterations is passed as an argument to the call, along with an id of
the parallel region, which is the line inside the source code file at which the parallel
region starts. This external function prints the parallel region id and the number of
iterations, and also starts a high-precision timer, used for the purposes of this thesis.
During the execution of a program compiled using this plug-in, a runtime library is
necessary, containing the external functions called.

5. A function call is created and inserted (using functions that the GCC plug-in devel-
opment header files provide, such as gsi_insert_before()) right before the merging of
the threads (that is a basic block before the one that contains the end of the parallel
region), which calls a function of the OpenMP runtime to extract the number of
threads used in the parallel region. This is necessary as the number of threads can
be affected by many factors, such as preprocessor directives, calls to the runtime and
environmental variables that are used by the OpenMP runtime and this number is
available only inside the parallel region.

6. Finally, a function call is created and inserted (using functions that the GCC plug-
in development header files provide, such as gsi_insert_before()) right after the
merging of the threads (in the basic block after the one that contains the end of the
parallel region), which in the current implementation is used to print the number of
threads used in the parallel region, as well as the time spent in the parallel region,
as measured by the high-precision timer used.

Aside from the GCC plug-in, for the purposes of this thesis and the benchmarks exe-
cuted and timed, other tools were used as well. These include mostly bash scripts, used to
parse the info printed by the external functions during the execution of programs, as well
as programs such as awk, sed and paste, to export the results in a CSV format, which is
ideal for plotting and spreadsheet applications.

5.2 Implementation Overheads
As with any implementation, a concern is the overhead our implementation introduces,

both during the compilation of programs and during execution. Of course the execution
overhead is more important than the compilation overhead, however both should be con-
sidered in every implementation.

For our implementation, the compilation overhead is minimal, since the creation of the
graph of OpenMP constructs, which depends on the number and layout of the OpenMP
constructs, can be considered as negligible when compared to the compilation process,
which also includes the building of the OpenMP regions. The calculation of the iterations
of the parallel loop and the static analysis of the code also introduces a small overhead,
since we only need to do a single pass of the parallel loop body and finally calculate the
possibilities and scorings for the parallel region using known arithmetic expressions. The
execution overhead is obviously directly connected to the function calls that are inserted in
every parallel region. The current calls introduce an overhead due to the printing functions
included in the remote function called. However, these printing functions are not really
necessary and are only included for benchmarking and debugging reasons, so omitting
them would result to lightweight function calls and a small execution overhead. These
assumptions are obviously valid only in UMA architectures, since the overhead of a call
in a NUMA architecture is unpredictable due to the nature of the NUMA architectures,

5.2 Implementation Overheads 47

however this analysis is beyond the scope of this thesis and is only mentioned as a possible
future research topic (see also Chapter 7.2).

Chapter 6

Experimental Evaluation

In this Chapter, we present the execution environment for the benchmarks executed,
both for the development of our prediction model and its application to the benchmark
suites used. We describe the execution machines and the configuration of the environment.
We then apply our prediction model to parallel loops from two different benchmark suites,
the Polyhedral Benchmark Suite and the NAS Parallel Benchmark Suite, and discuss the
results of our predictions.

6.1 Execution Environment
The execution environment consists of two different machines used, an 8-core Clovertown-

based and a 24-core Dunnington-based multicore node, described in the following sections.

6.1.1 Clovertown

The first node is an 8-core Clovertown-based node with the following characteristics:

• 2 physical packages

• 4 cores per package

• 32 KB L1 cache per core

• 4 MB L2 cache per 2 cores

• 8 GB RAM

as shown in figure 6.1.

6.1.2 Dunnington

The second node is an 24-core Dunnington-based node with the following characteris-
tics:

• 4 physical packages

• 6 cores per package

49

50 Chapter 6. Experimental Evaluation

Figure 6.1: Clovertown Layout

• 32 KB L1 cache per core

• 3 MB L2 cache per 2 cores

• 16 MB L3 cache per package

• 8 GB RAM

as shown in figure 6.2.

Figure 6.2: Dunnington Layout

6.1.3 Configuration
A specific configuration was used for the OpenMP runtime, using environmental vari-

ables and preprocessor directives to control the assignment of threads in available cores,
the affinities of threads and the scheduling of parallel regions. More specifically:

6.2 Polyhedral Benchmark Suite 51

• OpenMP threads were assigned to cores in a way that they use different L2 caches
when possible (when not all cores are used) while staying in the same package, since
we want to apply our model and measure its success in predicting utilization in
a per-package level. Also, this way we benefit from cross-processor reuse of data,
where this is possible. For this reason, we pinned threads to specific processors,
using affinity masks, which for the two different execution environments were:

− Clovertown: For the Clovertown node, the affinities used were 0 1 2 3 4 5 6
7 (see figure 6.1). So when using 2 threads, the are positioned in cores 0 and
1, when using 4 in processors 0, 1, 2 and 3, etc,

− Dunnington: For the Dunnington node, the affinities used were 0 1 2 12 13
14 3 4 5 15 16 17 6 7 8 18 19 20 9 10 11 21 22 23 (see figure 6.2).

• Wherever possible, static scheduling was used, to avoid thread management and
scheduling overheads. In any other case, scheduling was set to dynamic.

6.2 Polyhedral Benchmark Suite
The Polyhedral Benchmark Suite [3], also referred to as PolyBench, is a collection of

benchmarks which include calculation kernels, typically used in past and current publica-
tions, which were parallelized using OpenMP for the purposes of this thesis. PolyBench
features include:

• Benchmarks in a single file, tunable at compile-time, used for the kernel instrumen-
tation.

• Non-null data initialization, and live-out data dump.

• Syntactic constructs to prevent any dead code elimination on the kernel.

• Parametric loop bounds in the kernels, for general-purpose implementation.

• Clear kernel marking, using #pragma scop and #pragma endscop delimiters.

The PolyBench Suite implementation in C version 3.2 was used, with working sets
configured to be ten times the size of the largest cache available on a system. This suite
was chosen since the algorithmic model of our work applies to the benchmarks included.
Moreover, this benchmark suite provides easy configuration of the kernels, the data types
used and the working set sizes.

6.3 NAS Parallel Benchmark Suite
The NAS Parallel Benchmark Suite [2], also referred to as NPB, is a small set of pro-

grams programs designed to help evaluate the performance of parallel supercomputers.
The benchmarks are derived from computational fluid dynamics (CFD) applications and
consist of five kernels and three pseudo-applications in the original ”pencil-and-paper” spec-
ification (NPB 1). The benchmark suite has been extended to include new benchmarks
for unstructured adaptive mesh, parallel I/O, multi-zone applications, and computational
grids. The NPB version 2.3 was used, implemented in C and parallelized using OpenMP,
with small modifications to suit the algorithmic model our work applies to. The bench-
marks of the suite that were used were:

52 Chapter 6. Experimental Evaluation

• BT - Block Tri-diagonal solver

• FT - discrete 3D fast Fourier Transform, all-to-all communication

• LU - Lower-Upper Gauss-Seidel solver

• SP - Scalar Penta-diagonal solver

with the working set size class used being Class C.

6.4 Application Results
This section presents the results of the application of our model and discusses its

effectiveness and possible reasons for misspredictions.
First, figure 6.3 shows the results of the PolyBench Suite for the Clovertown node.

The X axis is the score of our prediction model, while the Y axis is the utilization of
the machine’s resources for 8 cores (2 packages). Since we have two possible choices, to
allocate either one or two packages, the threshold for this choice is a score of 50%. The dots
represent parallel regions that our model was successful in predicting, while the triangles
represent missed predictions. The success rate for this suite and execution environment is
78.05%. The trendline should ideally be from (0,0) to (100,100). We see that obviously
this is not the case, however it is very close, which is a success regarding our prediction
model.

Figure 6.3: PolyBench Clovertown Results - 2 Packages

The second figure, figure 6.4 shows the results of the PolyBench Suite for the Dunning-
ton node, using only two of the four packages (12 out of 24 cores). The X axis is once
again the score of our prediction model, while the Y axis is the utilization of the machine’s

6.4 Application Results 53

resources for 12 cores (2 packages). Since we have two possible choices, to allocate either
one or two packages, the threshold for this choice is a score of 50%. The dots once again
represent parallel regions that our model was successful in predicting, while the triangles
represent missed predictions. The success rate for this suite and execution environment is
87.8%. We see that the trendline in this case is also close to the ideal, although a little
worse than the previous one.

Figure 6.4: PolyBench Dunnington Results - 2 Packages

The third figure, figure 6.5 shows the results of the PolyBench Suite for the Dunning-
ton node, using all four packages (24 cores). The X axis is once again the score of our
prediction model, while the Y axis is the utilization of the machine’s resources for 24 cores
(4 packages). In this case, we have 4 possible choices, to either allocate one, two, three
or four packages, so there are 4 areas of decision, with boundaries at 25%, 50% and 75%.
The dots once again represent parallel regions that our model was successful in predict-
ing, while the triangles represent missed predictions. The success rate for this suite and
execution environment is 78.05%. We see that the trendline in this case is quite similar to
that of figure 6.4, and close to the desired one.

Finally, figures 6.6 and 6.7 show results of the NPB Suite for the Dunnington node, using
either two or all four packages (12 or 24 cores). The axes are the same as in the previous,
as well as the areas of decision. The dots once again represent parallel regions that our
model was successful in predicting, while the triangles represent missed predictions. The
success rates for this suite are 92.31% for 2 packages and 89.74% for 4 packages. We see
that the parallel regions of this implementation of the NPB Suite scale poorly and as such
a trendline is not possible.

Regarding the missed predictions, their (inevitable) existence can be attributed mostly
to the memory model, since even with the consideration of the reuse distance and the
inclusion of the reuse potential for data that has already been accessed, there is always

54 Chapter 6. Experimental Evaluation

Figure 6.5: PolyBench Dunnington Results - 4 Packages

room for error, since even with the initialization of an array, we have some reuse potential
that cannot be measured easily. Moreover, the effect of cache hierarchies is another factor
that contributes to these missed predictions. Finally, since we are conservative regarding
our prediction, there will be cases where programs exhibit better behavior that what we
predict, however cases where we predict better behavior are extremely rare.

Another observation is that usually missed predictions are on the borderlines, either
of decision areas, or of utilization, which means that extremes can be easily and quickly
(due to the lightweight analysis and implementation) identified. For predictions that are
close to the borderlines, we could either handle the predictions with uncertainty, using
known analysis such as that of certainty factors, which could adapt over time, or have
relaxed limits regarding the scores, which mean that the scheduler could choose (based on
its policy) whether to allocate more or less resources to a parallel region that is close to
the borderline.

Finally, for the missed predictions for benchmarks of the NPB Suite, the missed pre-
dictions can also be attributed to the fact that the parallel region speedup curve is far
from the assumed one (as mentioned in Chapter 4.1 and presented in figure 4.1) but rather
resembles that of figure 6.8, which causes some missed predictions for our model.

6.4 Application Results 55

Figure 6.6: NPB Dunnington Results - 2 Packages

Figure 6.7: NPB Dunnington Results - 4 Packages

56 Chapter 6. Experimental Evaluation

Figure 6.8: Parallel Region Performance Degradation Curve

Chapter 7

Conclusion

7.1 Concluding Remarks
This thesis described the technical and design issues of a lightweight prediction model

for parallel OpenMP regions using static analysis of the source code during compilation,
combined with runtime information and an architecture-dependent model, used to generate
a lightweight predictions of the extent to which the parallel region will utilize resources,
on a coarse-grain scale, making the scheduling of parallel programs more efficient and the
co-scheduling of applications possible. We also presented a first implementation, which
can be easily extended and configured to work with different models and APIs.

After introducing all the necessary background information, we thoroughly presented
the prediction model and implementation details and applied it to two different benchmark
suites. We successfully predicted more than 78% of the parallel regions for every suite and
execution environment and discussed possible explanation for the missed predictions, most
of which are in intermediate areas. All in all, we consider our work successful. We managed
to create a model that applies to a large category of parallel regions, providing a quick
and successful prediction of the behavior of the parallel regions.

7.2 Future Work
Although our work was successful in predicting the behavior of parallel regions of the

benchmark suites used (see Chapter 6), we consider it to be far from complete. Possible
future work includes:

• The extension of the Memory Model to consider Cache Hierarchies.

• The analysis of different access patterns and their effect on parallel region behavior.

• The further extension of the implementation to automate working set analysis and
score calculation.

• The application to different

− Architectures, including different processor and memory architectures (such as
NUMA architectures).

− Benchmarks, to further validate the results of our work.

57

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Mag-
azine, 1965.

[2] “Nas parallel benchmarks official site.” http://www.nas.nasa.gov/publications/
npb.html, Sept. 2012.

[3] “The polyhedral benchmark suite official site.” http://www.cse.ohio-state.edu/
~pouchet/software/polybench/, Sept. 2012.

[4] O. A. R. Board, “Openmp application program interface.” http://www.openmp.org/
mp-documents/OpenMP3.1.pdf, 2011.

[5] M. Bhadauria and S. A. McKee, “An approach to resource-aware co-scheduling for
cmps,” in Proceedings of the 24th ACM International Conference on Supercomputing,
ICS ’10, (New York, NY, USA), pp. 189–199, ACM, 2010.

[6] L. Carrington, A. Snavely, X. Gao, and N. Wolter, “A performance prediction frame-
work for scientific applications,” in Proceedings of the 2003 international confer-
ence on Computational science: PartIII, ICCS’03, (Berlin, Heidelberg), pp. 926–935,
Springer-Verlag, 2003.

[7] M. Kim, P. Kumar, H. Kim, and B. Brett, “Predicting potential speedup of serial
code via lightweight profiling and emulations with memory performance model,” in
Proceedings of the 2012 IEEE 26th International Parallel and Distributed Processing
Symposium, IPDPS ’12, (Washington, DC, USA), pp. 1318–1329, IEEE Computer
Society, 2012.

[8] G. Marin and J. Mellor-Crummey, “Cross-architecture performance predictions for
scientific applications using parameterized models,” in Proceedings of the joint inter-
national conference on Measurement and modeling of computer systems, SIGMET-
RICS ’04/Performance ’04, (New York, NY, USA), pp. 2–13, ACM, 2004.

[9] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor, “Kismet: parallel speedup estimates
for serial programs,” in Proceedings of the 2011 ACM international conference on
Object oriented programming systems languages and applications, OOPSLA ’11, (New
York, NY, USA), pp. 519–536, ACM, 2011.

[10] K. Fürlinger, M. Gerndt, and J. Dongarra, “Scalability analysis of the spec openmp
benchmarks on large-scale shared memory multiprocessors,” in Proceedings of the
7th international conference on Computational Science, Part II, ICCS ’07, (Berlin,
Heidelberg), pp. 815–822, Springer-Verlag, 2007.

59

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

60 Bibliography

[11] K. Fürlinger and M. Gerndt, “Analyzing overheads and scalability characteristics
of openmp applications,” in Proceedings of the 7th international conference on High
performance computing for computational science, VECPAR’06, (Berlin, Heidelberg),
pp. 39–51, Springer-Verlag, 2007.

[12] G. M. Amdahl, “Validity of the single processor approach to achieving large scale
computing capabilities,” in Proceedings of the April 18-20, 1967, spring joint computer
conference, AFIPS ’67 (Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.

[13] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful visual perfor-
mance model for multicore architectures,” Commun. ACM, vol. 52, pp. 65–76, Apr.
2009.

[14] A. Fog, “Lists of instruction latencies, throughputs and micro-operation breakdowns
for intel, amd and via cpus,” Feb. 2012.

	Front Page
	Περίληψη
	Abstract
	Ευχαριστίες
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	Introduction
	Background
	Multiprocessor Architectures
	Shared Memory Architectures
	Distributed Memory Architectures
	Hybrid Memory Architectures

	OpenMP
	Core Elements

	Program Scheduling

	Motivation
	Initial Benchmarks
	Poor Program Scaling
	Parallel Region Divergence

	Prediction Model
	Algorithmic and Execution Model
	Prediction Model Elements
	Computational Density
	Memory Model

	Implementation
	Current Implementation
	Implementation Overheads

	Experimental Evaluation
	Execution Environment
	Clovertown
	Dunnington
	Configuration

	Polyhedral Benchmark Suite
	NAS Parallel Benchmark Suite
	Application Results

	Conclusion
	Concluding Remarks
	Future Work

	Bibliography

