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Περίληψη

Μία από τις μεγαλύτερες προκλήσεις στα σύγχρονα συστήματα παράλληλης επεξερ-

γασίας είναι η ανάπτυξη παράλληλου λογισμικού που κλιμακώνει αποδοτικά. Αρκετές

εφαρμογές δεν κλιμακώνουν έπειτα από έναν αριθμό επεξεργαστών, εξαιτίας του

αυξημένου κόστους επικοινωνίας, που κυριαρχεί στο συνολικό χρόνο εκτέλεσης.

Ο στόχος της παρούσας διπλωματικής εργασίας είναι η μελέτη της επίδοσης της

παράλληλης εξίσωσης διάδοσης θερμότητας στον τρισδιάστατο χώρο, ως αντιπροσω-

πευτικού προβλήματος στην κατηγορία των προβλημάτων επίλυσης μερικών διαφορικών

εξισώσεων, σε μια συστοιχία υπολογιστών διασυνδεδεμένη με Gbit Ethernet. Αρ-

χικά, ερευνούμε την επίδοση των απλών παράλληλων υλοποιήσεων του προβλήματος

με τη χρήση των OpenMP, MPI και του υβριδικού τους μοντέλου, επισημαίνον-

τας τους παράγοντες που περιορίζουν την κλιμάκωση. Ακολούθως, υλοποιούμε

και ελέγχουμε την επίδοση τριων τεχνικών βελτιστοποιήσης που έχουν προταθεί

στη βιβλιογραφία: i) tiling στους βρόχους του υπολογιστικού πυρήνα, ii) συμπίεση

των μηνυμάτων του MPI και iii) επικάλυψη των υπολογισμών και της επικοινωνίας,

τόσο με τη χρήση ασύγχρονων συναρτήσεων επικοινωνίας όσο και με την ανά-

θεση της επικοινωνίας και των υπολογισμών σε διαφορετικά νήματα, με τη βοήθεια

του OpenMP. Συνοψίζοντας, προτείνουμε τη συνδυαστική χρήση της συμπίεσης

μηνυμάτων και της επικάλυψης της επικοινωνίας και των υπολογισμών με υβριδικό

μοντέλο MPI/OpenMP και παρατηρούμε βελτίωση της επίδοσης έως και 28%, συγ-

κριτικά με τις απλές παράλληλες υλοποιήσεις.

Λέξεις-Κλειδιά: MPI, OpenMP, υβριδικός προγραμματισμός, τρισδιάστατη εξίσωση

διάχυσης θερμότητας, tiling βρόχων, συμπίεση δεδομένων, επικάλυψη επικοινωνίας,

συστοιχία SMP





Abstract

One of the most challenging problems in modern parallel processing systems is
the development of parallel software that scales efficiently. Several applications
do not scale further than a number of processors, due to communication over-
head, which dominates the total execution time. The goal of this diploma is to
study the performance of the parallel 3D heat equation, which represents the
class of PDE solvers, on a cluster with commodity Gbit Ethernet and propose
a set of optimization techniques for the reduction of the overall execution time
of the application. Initially, we investigate the efficiency of baseline parallel
implementations of the problem with OpenMP, MPI and their hybrid model,
highlighting performance limiting factors. Subsequently, we implement and test
the performance of three optimization techniques proposed in the literature: i)
loop tiling of the computational kernel ii) compression of MPI messages and
iii) overlapping of computation and communication, both by using non-blocking
communication functions and by assigning computation and communication to
separate threads, with the aid of OpenMP. To conclude, we propose the com-
bined use of message compression and computation/communication overlapping
with a hybrid MPI/OpenMP model, and we notice improvement in performance
up to 28%, compared to the baseline parallel implementations.

Keywords: MPI, OpenMP, hybrid programming, 3D heat equation, loop tiling,
compression, communication overlapping, SMP cluster
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Chapter 1

Introduction to parallel
processing systems

1.1 Overview

Since the appearance of the first IBM microprocessor chip in 1971, unipro-
cessor chips have dominated the computing industry for three long decades. This
course has recently changed, as the increasing number of transistors per processor
chip has set physical limitations to the further increase of the clock frequency,
which has constituted the main performance metric of all modern computing
systems. High performance microprocessors have been redefined to be multi-
ple cores integrated into the same computing component, namely multicores or
many-cores or multicore processors.

The consequences of this new design trend on computer engineering and
science are of great importance. If the predictions on the future of multicores
[1], which assume the integration of thousands of cores into the same chip, are
to be verified, conventional architectures and programming models are to be
substituted by parallel architectures and parallel programming models, in order
to take full advantage of the available hardware resources and to achieve and
maximize performance of applications.

The prevalent class of applications to be benefited from multicores con-
sists of computation-intensive applications. Supercomputers have been employed
for years to process computationally demanding scientific applications, such as
molecular dynamics, cosmological simulations and mesh computations. More-
over, customer-oriented applications, involving computer graphics, database man-
agement and machine learning, do have increasing demands in computational
resources, in an effort to manage large datasets and/or reduce response time.
However, contemporary sequential algorithms of common applications, even if
optimized, are not expected to demonstrate an optimum performance when ex-
ecuted on the novel multiprocessor architectures, without being subjected to
non-trivial amendments, in order to effectively distribute their workload to the
multiple cores. In other words, sequential algorithms must be redesigned to run
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in parallel.

The concept of parallel processing, which has been successfully applied in
high performance computing in the past decades, reinforces the prospects of
the multicore era. The effectual combination of modern parallel architectures
and redesigned parallel algorithms is the core of parallel computers, which can
be vaguely classified into clusters, where multiple processors execute the same
task and multicore computers, where a single computer constitutes of multiple
processing elements.

The emerging challenge is to exploit the processing power provided by the
new multicore architectures, by developing parallel programming models, inde-
pendent of the number of processors , so as to transcend the reliance of software
on the clock frequency and establish a productive correlation between applica-
tion efficiency, performance scaling in accordance to the number of processors
and programming effort.

The following sections of this chapter form an outline of parallel processing
systems and parallel programming.

1.2 Parallel programming, Amdahl’s law and

scalability

Although a prevailing view concerning parallel programming is that any
speedup via parallelism is considered a success, there is no explicit formula for
the parallelization of sequential algorithms. The developer faces the challenge of
exploring the potential parallelism of an algorithm, with respect to its seman-
tics, and resolving issues that directly affect the execution time of the parallel
program.

Before enumerating the aforementioned issues, we shall introduce some main
performance metric of parallel programming. Thus, we define the following [2]:

• Tp(n): the parallel runtime of a program of size n on p processors

• Cp(n) = pTp(n): the cost of the parallel program. If Cp(n) = T ∗(n),
where T ∗(n) is the runtime of the fastest sequential program, then the
parallel program is called cost-optimal. Using asymptotic execution times,
a program is cost-optimal if T ∗(n)

Cp(n) ∈ Θ(1).

• Speedup Sp(n) = T ∗(n)
Tp(n) : the relative saving of execution time that can be

obtained by using a parallel execution on p processors compared to the
best sequential algorithm. If the inequality Sp(n) ≤ p holds, then the
parallel implementation is efficient. If Sp(n) = p, the speedup is linear.

• Efficiency Ep(n) =
Sp(n)
p : an alternative measure for performance. If

Sp(n) ≤ p, then Ep(n) ≤ 1
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If the cost of the best sequential program is unknown or varies depending on
the data set, then speedup is often computed by using a sequential version of
the parallel implementation.

Figure 1.1: Total speedup of a parallel program as parallel fraction and
number of processors increase

In the early years of high performance computing, Gene M. Amdahl[3] first
denoted some inherent constraints in the process of parallel programming and
efficiency attainment. Firstly, there is a fraction of computational load in every
application, associated with data management, which cannot be executed in par-
allel with other computations and acts as a constant overhead to the runtime.
Secondly, when the problem’s dataset is distributed among processors, irregular-
ity problems may occur, such as inhomogeneous interiors, irregular boundaries,
inconsistency issues among variables and asymmetric convergence computations.
To model the first restriction and set guidelines for coping with irregularity prob-
lems, Amdahl introduced his famous law, which captures their effect on the ob-
tainable speedup. In detail, if f(0 ≤ f ≤ 1) is a fraction of a problem of size
n, which must be executed sequentially, then the total execution time of the
problem on p processors is composed of a fraction fT ∗(n) of the sequential ex-
ecution time and the execution time of the fraction, (1 − f)T ∗(n), parallelized
symmetrically on p processors, i.e. (1− f)T ∗(n)/p. The expression for speedup
is:

Total Speedup Sp(n) = T ∗(n)

fT ∗(n)+ 1−f
p
T ∗(n)

= 1

f+ 1−f
p

Amdahl’s law is a useful measure of the best-case execution time for a parallel
program. As the number of processors p goes to infinity, the total speedup goes to
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1/f . If the parallelizable part of a program is relatively small, its speedup would
be equally small, reagardless to the number of processing units. For instance,
if the sequential part of a program is f = 90%, then its execution time will be
at most 10 times faster than the non-parallel program. Figure 1.1 depicts the
influence of Amdahl’s law in parallel executions of different sequential fractions.
In terms of programming demands, Amdahl’s law could be interpreted as fol-
lowing: to build an efficient parallel application, a programmer should estimate
the prospects of parallelization of each appropriate algorithm and compare their
theoretical speedups. Optimizations should be applied on the non-parallelizable
fraction of the algorithm and eventually, an overall estimation should reveal
whether parallelism offers a solution for an efficient application. Speedup as ex-
pressed by Amdahl’s law is a measure of weak scaling. In parallel processing,
scalability is a qualitative measure describing whether a performance improve-
ment can be reached that is proportional to the number of processors employed.
So far, we have assumed parallel programs of constant size. In this case, the
execution time is expected to scale up with the number of processors, if not for
other performance-restrictive factors, which will be mentioned ahead. A variant
of Amdahl’s law, proposed by John L. Gustafson [4], deals with the case when
the problem size scales with the number of processors and is a measure of strong
scaling. If τf is the constant execution time of the sequential program part and
τ1−f (n, p) is the execution time of the parallelizable program part for problem
size n and p processors, then the scaled speedup of the program is expressed by:

Sp(n) =
τf+τ1−f (n,1)
τf+τ1−f (n,p)

If the parallel program is perfectly parallelizable, then:

τ1−f (n, 1) = T ∗(1)− τf and τ1−f (n, p) =
T ∗(1)−τf

p ,

so as the problem size n goes to infinity, speedup goes to the number of processors
p, if T ∗(n) increases monotonically to n.

Scalability analysis is a powerful tool for parallel processing, which can save
a lot of programming effort. Amdahl’s and Gustafson’s laws are appropriate
for a vague performance prediction, though more complex methods have been
proposed, such as isoefficiency functions [5], which express the required change
of the problem size n as a function of the number of processors p.

1.3 Multi-processor architectures

Before expanding on common parallel architectures, we shall introduce Flynn’s
taxonomy [6] of computer architectures, according to the level of parallelism they
employ to process instructions and data streams. The four classes identified are
the following:

• SISD: Single instruction, Multiple Data
A sequential (or uniprocessor) computer. No parallelism employed.
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• SIMD: Single Instruction, Multiple Data
A computer which concurrently processes multiple data streams with a
single instruction stream, to perform operations that may be parallelized.

• MISD: Multiple Instruction, Single Data
Uncommon, non-commercial architecture, used only for scientific purposes,
as fault tolerance.

• MIMD: Multiple Instruction, Multiple Data
Each processor executes its own instruction stream and processes its own
data stream. This architecture supports multiple threads (thread-level
parallelism). Multicore processors and clusters are examples of MIMD
architectures.

Parallel computers are based on MIMD architectures, which can be further
classified according to their memory organization, into shared-memory architec-
tures, distributed-memory architectures and hybrid architectures and are pro-
foundly analyzed below.

1.3.1 Shared memory architecture

In a shared-memory architecture, each processor owns a private cache mem-
ory hierarchy and all processors share a single physical address space, namely a
global memory. A single system bus interconnects all processors, which commu-
nicate by sharing variables stored in the global memory. This memory organi-
zation, if all memory locations are equidistant to all processors, is also called a
symmetric multiprocessor (SMP) and can be viewed in Figure 1.2.

Figure 1.2: Classic Organization of a SMP

If the amount of time taken by any processor to access any global memory
address is equal, the architecture organization is called UMA, which stands for
Uniform Memory Access. Commercial symmetric multiprocessors have come to
use the UMA organization. On the opposite side, the NUMA design, standing
for Non Uniform Memory Access, has come as the result of scaling SMP units
to create larger multiprocessor systems. In a NUMA design, the memory access
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time for each processor depends on the memory location. It can be inferred that
NUMA architectures demand special treatment by the operating system, but
their asymmetry grants low latency to certain memory accesses and increases
memory bandwith.

Processors in shared-memory architectures can still execute distinctive tasks
using private virtual memory address space, yet when using shared physical
addresses, race conditions are prone to occur. To avoid concurrent accesses
to shared addresses and retain memory consistency, we employ synchronization
mechanisms, such as locks and atomic operations. Moreover, cache coherent
protocols are implemented to impose a universal sequence of accesses to the
main memory.

Shared-memory architectures provide convenient mechanisms for parallel pro-
gramming and execution , as processors exchange data via simple load and store
operations on shared variables. However, a prerequisite for the operation of
a shared-memory computing system is the use of a system bus and a memory
system of a limited bandwith. Adding more processors to the system leads to sat-
uration and thus, no more than 20 or 30 processors can be efficiently connected
in a shared-memory model, unless the system bus is substituted by scalable
interconnects.

1.3.2 Distributed memory architecture

Distributed memory architectures are a network of separate processing ele-
ments, called nodes. Each node owns a processor, a local cache hierarchy and a
local main memory. No memory addresses are shared and only the local proces-
sor can access the local memory. Message passing, served by the interconnection
network, is the only way of communication between the isolated nodes. The
organization of a distributed memory architecture is pictured in Figure 1.3.

Figure 1.3: Classic Organization of a Distributed Memory Architecture

High performance computing area has been dominated by distributed mem-
ory architectures. Clusters are usually built of commodity computers, using the
same operating system, physically connected through cables and switches, follow-
ing some network topology. Software gets involved to manage communication
between non-neighboring nodes. To decouple communication operations from
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the processor’s operations, direct memory access controllers (DMA) and routers
are employed, which both enable data transfer directly from the local memory,
using auxiliary message buffers.

A major drawback of clusters is their management cost. The cost of managing
a cluster of n nodes equals to the cost of managing n computers, whereas the
cost of managing a multiprocessor of n cores equals to the cost of managing one
single computer. In addition, the use of an interconnection network, compared
to a memory bus, adds up latency to the communication process, which increases
with the number of nodes.

On the other hand, building up a cluster is a low-cost solution to gain high
performance. The absence of shared memory eliminates race conditions, so the
distributed memory model is fully scalable and modern clusters, or else super-
computers, may hold thousands of independent nodes, which can be maintained
or replaced with no functioning effect on the system. Moreover, though parallel
applications require re-engineering to run efficiently on a distributed memory
system, convenient programming models which handle message passing between
nodes have been developed, allowing programmers to exploit the processing
power of the system.

1.3.3 Hybrid architecture

Hybrid memory architectures have come of an effort to combine the benefits
of shared-memory and distributed-memory models onto the same computing
system. The result can be viewed in Figure 1.4. A hybrid system resembles a
distributed memory systems, where a symmetric multiprocessor has taken the
place of each single processor node. This design permits parallel processing
within each node and scales up in the same way as a distributed memory system.

Figure 1.4: Classic Organization of a Hybrid Architecture

1.4 Parallel programming models

Parallel programming models lie between the hardware and the programmer
as a user-interface, to facilitate parallel programming on the diverse parallel ar-
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chitectures. Thus, respectively to the aforementioned architectures, there exist
three parallel programming tendencies: the shared-memory model, the message
passing model and a hybrid model. They are implemented as language ex-
tensions, runtime libraries of commonly used programming languages or even
autonomous execution models.

Parallel programming models serve as the communication abstraction, since
they act as a mapping from the generics of a programming language to the
system’s primitives. This mapping is provided either directly by the hardware,
or by the operating system or by user software. In any case, the architecture
defines the operations that are feasible and permitted and thus may be supported
by the programming model.

As the field of parallel processing matures, the strict assertion of a paral-
lel programming model to an identical hardware design tends to relax. Pro-
gramming models are evolving towards an organizational structure with baseline
communication primitives, practicable on the variant multiprocessor computing
systems, yet their classification is still valid, for the evaluation of performance,
execution time, memory usage, resource utilization and programming effort.

1.4.1 Shared memory programming model

A shared memory programming model embraces the notion of partitioning
a programming task into multiple threads which run in parallel on the cores
of a multiprocessor with a shared address space. Communication is launched
via load and store operations on the shared address space, on the principle that
whenever a processor writes to a shared memory address, all processors accessing
the same address will be aware of the change. Synchronization mechanisms,
such as barriers and locks, prevent race conditions from affecting the parallel
program’s correctness.

Shared memory programming models are friendly to programmers, as they
facilitate data exchange through a simple annotation of a variable as shared,
thus visible and accessible to all processing units. Moreover, such models supply
the programmers with several parallel constructs, easily applicable to sequential
programs for their parallelization. However, the task of resolving race condi-
tions on a shared dataset may end up to be a perplexing task even for a highly
skilled programmer. Managing shared data often leads to subtle and not easily
traceable bugs, which in turn demand a thorough and time-consuming process
of debugging.

It can be inferred that shared memory programming models are easily and
efficiently implemented for shared memory platforms, carrying, though, the dis-
advantage of their limited scalability. On the other hand, any attempt of im-
plementing such a model on a distributed memory platform requires special,
performance degrading software layers and costly hardware support.

A commonly used shared memory programming model is OpenMP, an API
that supports parallel programming with C, C++ and Fortran, by a set of com-
piler directives, library routines and environment variables that affect run-time
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behavior. It will be discussed further in following chapters.

1.4.2 Distributed memory programming model

In a message passing programming model, a parallel program is launched as
a set of independent processes, where the same instructions may reside on dis-
tinct computing nodes or computers. Each process owns its local variables, and
sends and receives messages to and from other processes to achieve inter-process
communication and data exchange. Message passing is executed by the operat-
ing system or by function calls to a library that activates low-level operations.
In a naive approach of the message passing model, a send operation involves
a local buffer where the message to be sent is stored and a receiving process,
whereas its complementary receive operation involves a local buffer where the
message to be received will be stored. Modern message passing APIs employ
identifiers for processes and tags for messages, which allow the existence of a dif-
ferent message passing model. The message sent by the sending process is copied
into an internal system buffer of the runtime system, thus the sending process
is able to continue its operations after the copying operation is completed, while
the receiving process copies the data from the internal buffer, by decoding the
message’s tag. This communication protocol is defined as the ”eager” proto-
col, while the previously described protocol, where the send operation requires
acknowledgement that there exists a matching receive operation, is known as
”rendezvous”. Message passing models use both protocols to transfer messages
efficiently. For instance, a small message may be transferred with a rendezvous
protocol, while the eager protocol may be more suitable for a message of large
size.

In a further classification, message passing models implement communica-
tion operations in two manners, synchronous and asynchronous message pass-
ing. Synchronous message passing refers to the case where both the sending
and the receiving process block all their other operations until data exchange is
accomplished. The message is immediately stored in the receiving process’s lo-
cal memory and no synchronization mechanism is required, as the collaborating
processes share a synchronization point on the completion of communication.
Synchronous communication is also defined as blocking. In asynchronous or
non-blocking message passing, the message to be delivered is sent by the sending
process without waiting for the receiving process to be ready to receive. Both
processes may continue with their tasks until lower-level operations deliver the
message. A disadvantage of asynchronous communication is that it involves an
internal buffer, which, if full, may lead to a deadlock.

Depending on the number of processes due to exchange data on a single
communication operation, communication is either point-to-point or collective.
Point-to-point communication takes place when a single process sends data to
a single receiving process. Collective communication involves more than two
processes, in multiple sending and receiving points. For instance, a process may
broadcast a set of data to all existing processes or to a subset of processes.
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Message passing models have been developed to serve parallel programming
on distributed memory computing systems, which have existed for a long time
before the appearance of shared memory parallel systems. The need of portable
communication facilities for a large set of parallel architectures leaded to the
definition of the MPI (Message Passing Interface) standard library in 1992 and
many library extensions since then, and has resulted to be the de facto standard
for message passing in clusters. A major drawback of message passing models on
clusters is that communication efficiency relies on the interconnection network.
As the number of nodes in clusters increases, the complexity of the communi-
cation subsystem adds a significant overhead to message passing delays, which
cannot be modelled with Amdahl’s law. MPI is applicable to shared memory
architectures as well, though for reasons of performance, the interconnection net-
work is bypassed and message passing is served by shared memory operations.

Programming with MPI is a challenging job. The programmer has to design
the parallel program from scratch, to decide about data distribution, message
passing patterns and synchronization points and to employ the matching MPI
routines. However, although it seems a laborious task, a fine parallel imple-
mentation on a message passing platform can be highly efficient and scalable,
compared to its shared memory analog.

1.4.3 Hybrid Programming Model

The hybrid programming model is a combination of a shared memory and
message passing model. A common hybrid model is the joint use of MPI and
OpenMP. This model is implemented on hybrid memory architectures, as de-
scribed above, where the shared memory model is used to parallelize a program
interior a node of a SMP cluster and the message passing model is used for the
communication between processes residing on distinct nodes. Hybrid program-
ming implementations will be analyzed thoroughly on following chapters.
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Chapter 2

Overview of the problem and
the experimental environment

In this chapter, we present our case of study, the problem of solving the heat
equation in a discretized three-dimensional space, along with a brief analysis of
data dependencies in the resulting serial algorithm. We also provide specifica-
tions on our execution environment.

2.1 The heat equation in three dimensions

The heat equation describes the physical phenomenon of heat convection
from areas of high temperature to areas of lower temperature within a region over
time. If we discretize space and time, we are able to acquire an iterative solver for
the equation, based on a stencil computation kernel. Stencil computations are
used to solve many scientific computing problems, constituting a case of study
and research for the field of parallel programming.

2.1.1 Derivation of the iterative method

If we express the thermal field as T (x, y, z, t) of three spatial variables (x, y, z),
within a region Ω of boundary ϑΩ, the partial differential heat equation is:

ϑT
ϑt = σ( ϑ2

ϑ2x
T + ϑ2

ϑ2y
T + ϑ2

ϑ2z
T ) on Ω and T (x, y, z) = c on ϑΩ (2.1)

To discretize this equation [7], we partition the domain in space, using a mesh
of x = 1, ..., X, y = 1, ..., Y, z = 1, ..., Z (see Figure 2.1). We then compute the
sequence:

T 1
ijk, T

2
ijk, ..., T

n−1
ijk , Tnijk, T

n+1
ijk , ..., T∞ijk

If we apply Euler-forward discretization on the equation (2.1), taking ∆x =
∆y = ∆z. We then have:

Tn+1
ijk −T

n
ijk

∆t = σ
∆x3

(Tni−1,j,k+Tni+1,j,k+Tni,j−1,k+Tni,j+1,k+Tni,j,k−1 +Tni,j,k+1−6Tni,j,k)
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or

Tn+1
ijk = D(Tni−1,j,k+Tni+1,j,k+Tni,j−1,k+Tni,j+1,k+Tni,j,k−1 +Tni,j,k+1−6Tni,j,k)+Tni,j,k

In order to determine the rate of convergence, we write:

Tnijk = T∞ijk + εnijk (2.2)

where εnijk is the deviation from the fixed-point, i.e. the steady state. The
following equation is also satisfied:

1
∆x2

(T∞i−1,j,k + T∞i+1,j,k + T∞i,j−1,kT
∞
i+1,j,k

+ T∞i,j+1,k + T∞i,j,k−1 + T∞i,j,k+1 − 6T∞ijk) = 0 (2.3)

Figure 2.1: Discretization: Applying a 5x5x5 mesh on a cube

By subtracting the two different formulas above we obtain the equation for the
convergence error:

εn+1
ijk = εnijk +D(εni−1,j,k + εni+1,j,k + εni,j−1,k

+ εni,j+1,k + εni,j,k−1 + εni,j,k+1 − 6Tni,j,k) (2.4)

Convergence is obtained if |εnijk| → 0. Therefore, we require D ≤ 1/6. By
choosing D = 1/7, we obtain the following iterative method for solving equation
(2.1):

Tn+1
ijk = 1

7(Tni−1,j,k + Tni+1,j,k + Tni,j−1,k

+ Tni,j+1,k + Tni,j,k−1 + Tni,j,k+1 + Tni,j,k) (2.5)

for all the interior points.
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2.1.2 Serial algorithm for the heat equation

The equation (2.5) is the kernel of the iterative method for the computation
of thermal field’s scalar T over time in all dimensions. Having discretized the
three-dimensional space, we may represent the scalar T for the t-th moment as a
set of data points, stored in a 3D matrix. The update of each datapoint depends
on the current position and its neighbors; this constitutes a 7-point stencil (Fig-
ure 2.2a). Data dependencies of the t − th moment are limited to the values of
the (t−1)− th moment; therefore, it is sufficient to preserve data on two distinct
3D matrices for successive moments in time, namely current, where new values
are written, and previous, from which data is read. These matrices are swapped
after each iteration. Initially, all interior,physically cold, points hold zero val-
ues and all heated boundary points are initiated with positive double precision
values, as shown in Figure 2.2b, which remain constant over the iteration. The
convergence criterion of the iterative method is the following:

(a) 7-point stencil: data dependen-
cies

(b) Interior and boundary points on a
5x5x5 mesh

Figure 2.2: Representation of grid points and dependencies

To ensure convergence, equation (2.6) is tested every few time steps, with
a value of ε = 0.001. Assuming that the limits of the 3D space are: 1 ≤ i <
X, 1 ≤ j < Y, 1 ≤ k < Z and the limits of time are: 0 ≤ t < T , Pseudocode 2.1
describes a serial implementation of the algorithm.

The algorithm’s complexity for a 3D space of n x n x n dimensions is com-
puted as following:

• Complexity of the iterative kernel: O(Tn3)

• Complexity of the convergence criterion (applied T
10) times: O( T10n

3)
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Pseudocode 2.1: Serial Implementation of 3D Heat Equation Algorithm

// Computational Kernel

converged =0;

// Iteration over time

for (t=1;t<T && !converged;t++)

{

// Computing new values of interior points

for (i=1;i<X-1;i++)

for (j=1;j<Y-1;j++)

for (k=1;k<Z-1;k++)

// Computation

current[i][j][k]=( previous[i][j][k]+ previous[i-1][j][k]

+previous[i+1][j][k]+ previous[i][j-1[k]

+previous[i][j+1][k]+ previous[i][j][k-1]

+previous[i][j][k+1])/7;

swap(current ,previous );

if (t%10==0)

converged=check_convergence ();

}

// Test for Convergence

int check_convergence ()

{

for (i=2;j<X-1;j++)

for (j=2;j<Y-1;j++)

for (k=2;k<Y-1;k++)

if (abs(current[i][j][k]-previous[i][j][k]) >=0.001)

return 0;

return 1;

}
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• Total complexity: O(Tn3) +O( T10n
3) = O(Tn3)

Our primary experiments indicated that it takes more than 107 iterations to reach
convergence on a 128x128x128 mesh, depending on the initial boundary values.
In an effort to reduce the size of T and total complexity, for reasons of saving
time on our experiments, we measured execution time per iteration on 3D grids
of various sizes, the results of which are sketched in Figure 2.3, for a window
of the first 1000 iterations. These measurements revealed that after non-zero
values are spread to the interior points of the grid, execution time per iteration
becomes stable, with deviations of microseconds. Henceforward, without loss of
generality, for 3D spaces of 128x128x128, 256x256x256 and 512x512x512 points,
which are the study cases of our experiments, we set T=512 and ∆t = 1, as the
time limit and time step, respectively, for solving heat equation, omitting the
test for convergence.

(a) 128x128x128 mesh (b) 256x256x256 mesh

(c) 512x512x512 mesh

Figure 2.3: Execution time per iteration for different 3D meshes

2.1.3 Dependence analysis and parallelization prospects

A primitive strategy for seeking out useful parallelism is to look for a data
decomposition in which parallel tasks perform similar operations on different
elements of the data arrays [8]. An appropriate tool to extract parallelism in cases
of nested loops, as is the case of our algorithm, is to construct the dependence
matrix. The earlier expositions of data dependence and its applications were by
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Pseudocode 2.2: Model of n-dimensional perfectly nested loops

for j1 ← l1 to u1 do

for j2 ← l2 to u2 do

. . .
for jn ← ln to un do

A[f(
−→
j ]) = F (A[g1(

−→
j )], ..., A[gm(

−→
j )])

end for

end for

. . .
end for

Lamport [9], who developed the concepts of iteration spaces and distance vectors.
Later, Wolfe [10] introduced the approach to direction vectors. These concepts
have contributed to research on automatic code parallelization, the results of
which lie beyond the purposes of our analysis.

An algorithmic model of n-dimensional perfectly nested loops, which best fits
our case study, is the following:
The iteration space Jn is rectangular, thus it holds Jn = {−→j (j1, j2, ...jn) ∈
Zn ∧ li ≤ ji ≤ ui, i = 1, ..., n}. We define

−→
d1, ...,

−→
dm as the n-dimensional depen-

dence distance vectors, which characterize dependences by the distance between
the source A[f(

−→
j )] and the sinks of dependences A[g1(

−→
j )], ..., A[gm(

−→
j )] in the

iteration space of our loop nest, i.e. d1 = f(
−→
j )−g1(

−→
j ), ..., dm = f(

−→
j )−gm(

−→
j ).

The elements of distance vectors are all positive constant integers. Depen-
dence direction vectors are defined as n-dimensional vectors such that: Dk =

” < ”, if dk > 0
” = ”, if dk = 0
” > ” if dk < 0

, k = 1, ...,m. Direction vectors are a convenient mecha-

nism to represent the iteration that occurs first, by treating ” < ” and ” > ” as
arrows. Often, direction vectors have to be used when some dependencies cannot
be presented as a finite number of distance vectors. The dependence matrix, de-
noted D, is a nxm matrix containing as columns the dependence vectors of the
algorithm and it provides the necessary information for parallelization prospects.
In detail, a loop of level i is free of dependencies if:

• the i-th element of all distance vectors is 0 or

• all distance subvectors from 0 to i-1 are lexicographically positive.

For our convenience in the expression of the dependence matrix for the
heat equation algorithm, we will recant our suggestion for the use of two three-
dimensional matrices. Instead, for the purposes of this section only, we propose
the use of a four-dimensional matrix of dimensions T x X x Y x Z, with respect
to equation (2.5). Thus, the problem can be expressed in four-dimensional model
of perfectly nested loops, as in Pseudocode 2.3.

The equivalent dependence matrix D for this algorithm is the following 4x7
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Pseudocode 2.3: The heat equation as a 4D (time x 3D-space)model of
perfectly nested loops

for t → 0 to T − 1 do

for i → 1 to X − 2 do

for j → 1 to Y − 2 do

for k → 1 to Z − 2 do

A[t+1][i][j][k]=1/7(A[t][i][j][k]+A[t][i-1][j][k]+A[t][i+1][j][k]

+A[t][i][j-1][k]+A[t][i][j+1][k]+A[t][i][j][k-1]+A[t][i][j][k

+1])

end for

end for

end for

end for

matrix:

D =


1 1 1 1 1 1 1
0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1


t
i
j
k

Since there is no row of the matrix of zero elements, we should check for lexi-
cographically positive ordering of subvectors. All subvectors of dimensions 1,2
and 3 are lexicographically positive. Consequently, loops 2, 3 and 4 that iterate
in space do not carry any dependencies. The outer loop, i.e. iteration in time
is not free of dependencies; therefore, it must be executed sequentially. Another
interesting corollary of dependencies in nested loops refers to loop interchange:
a loop that carries no dependences cannot carry any dependences that prevent
interchange with other loops nested inside it. In our case, loops i,j and k are
interchangeable, as long as they remain nested to the outer loop of time.

2.2 Experimental environment

In this section, we present the execution platform of our experiments, with
details on the architecture and the interconnection network. Figure 2.4 illustrates
the architecture of this platform.

2.2.1 Architecture of the system

Our execution platform is a paradigm of hybrid architectures, i.e. it is a clus-
ter consisting of SMP nodes. Each node has two quad-core processors, namely 8
processors running at 2.00GHz, which share a common level two cache memory in
a pairwise way. In total, there are 16 nodes of Intel R©Xeon R© E5335 processors
(Clovertown version) of 4MB L2 cache and 11 nodes of Intel R©Xeon R© E5405
(Harpertown version) of 6MB L2 cache. Each SMP node also has one mem-
ory slot of varying size. Finally, all nodes are connected via an interconnection
network to form a cluster; both Gigabit Ethernet and Myrinet communication
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networks are available on this cluster.

2.2.2 Interconnection network

The interconnection network significantly affects a cluster’s performance,
as communication between processors, regardless of processors’ frequency, is
bounded by network’s latency and bandwidth. Bandwidth refers to the maximum
rate at which the network can propagate information once the message enters
the network[11].Latency is the time required to send a minimal size message
through the network. In the early years of clusters, requirements for communi-
cation via a local area network (LAN) were met by Ethernet. Since then, many
interconnection networks have been introduced and developed to provide high-
speed communication. Nowadays, Gigabit Ethernet and Myrinet are commodity
interconnects for clusters.

2.2.2.1 Gigabit Ethernet

Ethernet[12] was introduced in 1973, as an interconnection for the Xerox
Altos machines. It was designed as a shared coaxial cable which acted as a
broadcast transmission medium for the connected machines, i.e. when a ma-
chine transmits a message via Ethernet, the message is broadcast to all hosts
of the network; it is the network interface card of each machine that decides
whether the message is actually addressed to it and interrupts the processor
for reception. Early Ethernet networks used a distributed media access control
(MAC) protocol, known as Carrier Sense Multiple Access with Collision Detec-
tion (CSMA/CD), which detects ongoing transmissions and postpones any new
transmissions until the channel is empty. Modern Ethernet networks are built
with switches and full-duplex connections and no longer utilize this protocol,
though it is still supported for reasons of compatibility.

Gigabit Ethernet is a modern Ethernet technology of high bandwidth, trans-
mitting frames at a rate of a gigabit per second. Our cluster employs the TCP
protocol when Gigabit Ethernet is used. The TCP path supports TCP mes-
sage communication over Ethernet using the socket interface to the operating
system’s network protocol stack, thus as described in [13], memory copies are re-
quired to transfer data between the kernel and the application, adding overhead
to communication operations.

2.2.2.2 Myrinet

Myrinet[14] is a high-speed type of LAN, built by Myricom, as an inter-
connection to computer clusters. Myrinet physically consists of two fibre optic
cables, an upstream and a downstream and machines are connected to it via
low-overhead routers and switches; there is no direct connection between two
machines on a Myrinet network. The newest Myrinet generation’s bandwidth
is comparable to the latest Gigabit Ethernet’s bandwidth, but is a lightweight
protocol, which adds significantly less overhead, compared to Ethernet, therefore
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Figure 2.4: An overview of the architecture of the cluster

offering higher throughput and lower latency. Moreover, applications are often
aware of Myrinet, thereby bypassing calls to the operating system.

Myrinet’s high throughput enables it to operate close to the basic signal-
ing speed of the physical layer. However, Myrinet’s appliance and efficacy on
supercomputers lies on its low overhead and latency, which limits bottlenecks
caused by the latency of message transmissions over the network and affect the
performance of parallel programs.
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Chapter 3

Baseline parallelization of the
heat equation with OpenMP
and MPI

In this chapter, we discuss the aforementioned parallel programming models,
namely OpenMP and MPI, the process of parallelizing the heat equation solver
with both models and their hybrid version and the respective experimental re-
sults.

3.1 Parallelization with OpenMP

3.1.1 About OpenMP

OpenMP [15] is an industry standard API for writing multithreaded appli-
cations in a shared memory environment, in C/C++ and Fortran, since 1997. It
consists of a set of compiler directives, runtime library routines and environment
variables and parallelism is explicitly declared by the programmer, who inserts
OpenMP directives at key locations in the source code, incrementing the serial
program, while the compiler interprets these directives and generates library calls
to parallelize code regions.

OpenMP employs the fork/join model to implement multithreading. In de-
tail, a master thread (a series of instructions executed consecutively) forks a
specified number of slave threads and a task is divided among them. The threads
then run concurrently, with the runtime environment allocating threads to dif-
ferent processors.

The section of code that is meant to run in parallel is marked accordingly,
with a preprocessor directive that will cause the threads to form before the
section is executed. Each thread has an id attached to it, which can be obtained
using a function. The thread id is an integer, and the master thread has an id
of 0. After the execution of the parallelized code, the threads join back into the
master thread, which continues onward to the end of the program. This model is
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illustrated in Figure3.1 By default, each thread executes the parallelized section

Figure 3.1: An illustration of multithreading where the master thread
forks off a number of threads which execute blocks of code in parallel.

of code independently. Work-sharing constructs can be used to divide a task
among the threads so that each thread executes its allocated part of the code.
Both task parallelism and data parallelism can be achieved using OpenMP in
this way.

The runtime environment allocates threads to processors depending on usage,
machine load and other factors. The number of threads can be assigned by the
runtime environment based on environment variables or in code using functions.

3.1.2 Useful OpenMP components

In C/C++, OpenMP directives are specified with the pragma preprocessor
directive, with the following syntax: #pragma omp directive-name [clause[[,]clause]...]
new-line. The OpenMP program executes sequentially until the parallel direc-
tive is encountered. This directive defines a parallel region in the form of a
structured block and creates a group of threads which execute in parallel the
structured block. At the end of the parallel region, threads are synchronized
and a flush operation makes the master’s thread temporary view of memory
consistent with memory. The number of threads may be adjusted dynamically
or be defined by the user, either by adding the num threads(integer-expression)
clause to the parallel directive, or by using the omp set num threads function,
or by setting the environment variable OMP NUM THREADS, which specifies
the number of threads on runtime. To obtain a thread’s id, OpenMP provides
the omp get thread num function.

Since OpenMP is a shared memory programming model, most variables in
OpenMP code are visible to all threads by default. However, sometimes private
variables are necessary to avoid race conditions and there is a need to pass values
between the sequential part and the parallel region (the code block executed
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in parallel), so data environment management is introduced as data sharing
attribute clauses by appending them to the OpenMP directive. Our codes deal
only with the shared, private and firsprivate clauses, so we will give a bried
description here:

• shared : the data within a parallel region is shared, which means visible
and accessible by all threads simultaneously. By default, all variables in
the work sharing region are shared except the loop iteration counter

• private: the data within a parallel region is private to each thread, which
means each thread will have a local copy and use it as a temporary variable.
A private variable is not initialized and the value is not maintained for use
outside the parallel region. By default, the loop iteration counters in the
OpenMP loop constructs are private

• firstprivate: like private except initialized to original value

Figure 3.2 depicts the OpenMP data model.

Figure 3.2: OpenMP data model

Various work sharing constructs are offered by OpenMP, in order to specify
how to assign independent work to one or all of the threads. The omp for
construct is employed to split up loop iterations among threads. This construct
also allows the user to define the schedule for work-sharing, so as to minimize
the wait time of threads at synchronization points, using static schedule as the
default scheme. Dynamic schedule is characterized by the property that all the
threads are allocated iterations before they execute the loop iterations. The
iterations are divided among threads equally by default. However, specifying
an integer for the parameter chunk will allocate chunk number of contiguous
iterations to a particular thread. Moreover, OpenMP supports the omp single
construct, which declares that a code section, within a parallel region, will be

29



Pseudocode 3.1: Parallel implementation of the 3D heat equation with
OpenMP

T=512

#pragma omp parallel num_threads(p) private(t,i,j,k)

{

for (t=0;t<T;t++)

{

#pragma omp for

for (i=1;i<X-1;i++)

for (j=1;j<Y-1;j++)

for (k=1;k<Z-1;k++)

current[x][y][z]=( previous[x][y][z]+ previous[x-1][y][z]

+previous[x+1][y][z]+ previous[x][y-1[z]

+previous[x][y+1][z]+ previous[x][y][z-1]

+previous[x][y][z+1]) /7;

#pragma omp single

{

swap(current ,previous);

}

}

}

executed by a sole thread of the group, implying a synchronization point in the
end.

A simple synchronization mechanism provided by OpenMP is the barrier
directive, which is almost self-explanatory: when a thread of a parallel region
reaches the barrier directive, it waits until all threads of the group reach this
point. Although barriers are implied in the end of parallel regions by default,
it is often useful for the programmer to explicitly declare synchronization points
within parallel regions.

3.1.3 Parallelization of the 3D heat equation with
OpenMP

Parallelization of the 3D heat equation with OpenMP is almost straightfor-
ward, on the basis of the dependence analysis in 2.1.3. Since there are no data
dependencies between the inner loops of the computational kernel, we apply the
omp parallel for directive to parallelize the first inner loop which iterates over
dimension X in space, using static scheduling. This implementation follows the
SPMD (Single Process, Multiple Data) model, as different threads perform the
same work on separate chunks of data. Pseudocode 3.1 is the respective imple-
mentation for a X x Y x Z mesh.

The number of threads is defined manually by the user. We have chosen to
place the omp parallel directive outside of the outer loop, so as to minimize the
thread management overhead, namely the fork-and-join overhead. For reasons of
data consistency, all loop variables have been declared as private, while matrices
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current and previous are by default shared, to serve communication between
different threads.

Figure 3.3: Distribution of iterations to OpenMP threads for a paralleliza-
tion of the outermost loop (x direction) and static schedule. The overall
number of iterations (i.e. the number of elements in this direction) is split
up into equal chunks for the threads.

To explain our choice of parallelizing the outer loop, we shall introduce the
notion of granularity. Granularity is a qualitative measure of the ratio of compu-
tation to communication. Loop granularity, along with the number of available
threads and the number of iterations are the conditions to decide which loop
is suitable for parallelization, in case of nested loops with no dependencies [17].
Parallelization of the outer loop is a good choice if the number of iterations of
the outer loop is large enough compared to the number of available processors,
to reach a good data distribution. Parallelization of an inner loop or all loops
will potentially provide smaller pieces of work so they can be distributed evenly
between the available threads but this choice suffers from overhead due to work
distribution and thread synchronization. In order to achieve large granularity
and small parallelization overhead in our implementation, it is preferable to par-
allelize the outer loop only [18]. The parallelization scheme can be viewed in
Figure 3.3.

Finally, the omp single directive is used to define that a single thread shall
undertake the task of swapping the matrices before the next time step, which is
necessary for the correctness of the implementation. All threads are synchronized
at the end of this code block by the directive’s implied barrier, updating their
local copies to be consistent with the shared memory’s data, before proceeding
to the next iteration over time.
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3.1.4 Experimental results of the parallel implemen-
tation with OpenMP

In this section, we present the experimental results of the execution of our
OpenMP implementation for the 3D heat equation on a single clovertown-based
node of the cluster, using 1 to 8 cores progressively. We have measured the ex-
ecution time for three 3D spaces (128x128x128, 256x256x256 and 512x512x512)
for 512 iterations over time. Figures 3.4, 3.5 and 3.6 depict the results for the
different 3D spaces.
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Figure 3.4: Results of heat equation with OpenMP for a 3D space
128x128x128
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Figure 3.5: Results of heat equation with OpenMP for a 3D space
256x256x256

Our first observation is that speedup is linear up to four cores(or else four
OpenMP threads), which is an indication that our parallelization approach was
right. However, while increasing the number of cores over four, efficiency de-
creases in a different manner for each of the 3D spaces. For the smallest 3D
space of 128x128x128, the implementation scales up to 8 cores, but the speedup
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Figure 3.6: Results of heat equation with OpenMP for a 3D space
512x512x512

is worse than linear, while for the 256x256x256 and 512x512x512 spaces, scalabil-
ity breaks after seven and five cores respectively. This behavior is expected from
a memory-bound algorithm, as is heat equation. Memory-bound algorithms are
algorithms with a high ratio of memory accesses to computations and most sten-
cil computations fall into this category. In our case, where all threads operate
on shared data, adding more threads induces more concurrent memory accesses
which in turn cause contention on the frontside bus (FSB), through which both
packages of the node transfer data from the main memory to their L2 caches.
The saturated L2 demands cause the decrease of performance exhibited in our
results. The limited working set, namely 32MB, of the 128x128x128 3D space
conceals the effect of bandwidth saturation, as there is an equally limited need for
memory accesses, but its overall performance is bounded by the same constraints
as for larger working sets.

3.2 Parallelization with MPI

3.2.1 About MPI

MPI (Message-Passing Interface) is a message-passing library interface spec-
ification. All parts of this definition are significant. MPI addresses primarily
the message-passing parallel programming model, in which data is moved from
the address space of one process to that of another process through coopera-
tive operations on each process. (Extensions to the “classical” message-passing
model are provided in collective operations, remote memory access operations,
dynamic process creation, and parallel I/O.) MPI is a specification, not an imple-
mentation; there are multiple implementations of MPI. This specification is for
a library interface; MPI is not a language, and all MPI operations are expressed
as functions, subroutines, or methods, according to the appropriate language
bindings, which for C, C++, Fortran-77, and Fortran-95, are part of the MPI
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standard. [19]

The MPI interface is meant to provide essential virtual topology, synchro-
nization, and communication functionality between a set of processes (that have
been mapped to nodes/servers/computer instances) in a language-independent
way, with language-specific syntax (bindings), plus a few language-specific fea-
tures. MPI programs always work with processes, but programmers commonly
refer to the processes as processors. Typically, for maximum performance, each
CPU (or core in a multi-core machine) will be assigned just a single process. This
assignment happens at runtime through the agent that starts the MPI program,
normally called mpirun or mpiexec.

MPI library functions include, but are not limited to, point-to-point rendezvous-
type send/receive operations, choosing between a Cartesian or graph-like logical
process topology, exchanging data between process pairs (send/receive opera-
tions), combining partial results of computations (gather and reduce operations),
synchronizing nodes (barrier operation) as well as obtaining network-related in-
formation such as the number of processes in the computing session, current
processor identity that a process is mapped to, neighboring processes accessible
in a logical topology, and so on. Point-to-point operations come in synchronous,
asynchronous, buffered, and ready forms, to allow both relatively stronger and
weaker semantics for the synchronization aspects of a rendezvous-send. Many
outstanding operations are possible in asynchronous mode, in most implementa-
tions.

3.2.2 Useful MPI components

An MPI program consists of a collection of processes that can exchange mes-
sages. Normally, each processor of a parallel system executes one MPI process,
and the number of MPI processes started should be adapted to the number of
processors that are available. Typically, all MPI processes execute the same
program in an SPMD style. All communication operations are executed using
a communicator. A communicator represents a communication domain which is
essentially a set of processes that exchange messages between each other. The
default communicator is the MPI COMM WORLD, which captures all processes
executing a parallel program. Each process of a process group has a unique rank
within this group which can be used for communication with this process and
the process of rank equal to 0 is the root process. Although a process is uniquely
defined by its group rank, it is often useful to have an alternative representation
and access. This is the case if an algorithm performs computations and commu-
nication on a two-dimensional or a three-dimensional grid where grid points are
assigned to different processes and the processes exchange data with their neigh-
boring processes in each dimension by communication. In such situations, it is
useful if the processes can be arranged according to the communication pattern
in a grid structure such that they can be addressed via two-dimensional or three-
dimensional coordinates. Then each process can easily address its neighboring
processes in each dimension. MPI supports such a logical arrangement of pro-
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cesses by defining virtual topologies for intra-communicators, which can be used
for communication within the associated process group. The MPI Cart create
routine creates a virtual Cartesian grid structures of arbitrary dimension. The
operations MPI Cart rank and MPI Cart coords translate the Cartesian coordi-
nates into its group’s rank and vice versa.

Figure 3.7: The operations of send/receive from a user’s level viewpoint

The most basic form of data exchange between processes is provided by
point-to-point communication. Two processes participate in this communica-
tion operation: A sending process executes a send operation and a receiving
process executes a corresponding receive operation. Figure 3.6 represents this
scheme from a user level’s viewpoint. MPI supports both blocking and non-
blocking point-to-point communication operations. MPI Send() and MPI Recv()
are MPI’s blocking, asynchronous operations for point-to-point communication.
This means that an MPI Recv() operation can also be started when the corre-
sponding MPI Send() operation has not yet been started. The process executing
the MPI Recv() operation is blocked until the specified receive buffer contains
the data elements sent. Similarly, an MPI Send() operation can also be started
when the corresponding MPI Recv() operation has not yet been started. The
process executing the MPI Send() operation is blocked until the specified send
buffer can be reused. For a situation where processes both send and receive
data, MPI provides the combined MPI Sendrecv() operation, for which the MPI
runtime system guarantees deadlock freedom. However, the use of blocking com-
munication operations can lead to waiting times in which the blocked process
does not perform useful work. Often, it is desirable to fill the waiting times with
useful operations of the waiting process, e.g., by overlapping communications and
computations. This can be achieved by using the non-blocking communication
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operations, MPI Isend() and MPI Irecv(), which initiate the sending and receiv-
ing of a message respectively and return control to the process. The MPI Test()
and MPI Wait() functions can be used to test or wait for the completion of a
non-blocking communication operation. The MPI Get count() function is used
to obtain the actual size of a received message.

MPI supports various forms of collective communication. Collective com-
munication operations in MPI are always blocking. MPI Bcast() performs the
broadcast operation, where one specific process of a group of processes sends
the same data block to all other processes of the group. The MPI Reduce func-
tion is used to collect blocks of data from all processes of the group to the
root process, combined with the use of a binary operator. Moreover, MPI pro-
vides the MPI Scatter() function to scatter blocks of data of equal size from
the root process to all processes of the group (there also exists an alternative
MPI Scatterv() function for blocks of data of various sizes) and the MPI Gather()
(also MPI Gatherv()) to collect blocks of data from all processes to the root pro-
cess. In addition, MPI provides a synchronization routine, the MPI Barrier(),
which acts in a similar way to the omp barrier. All processes which belong to a
group synchronize when this routine is called.

Finally, MPI provides a set of predefined datatypes, such as MPI INT,
MPI DOUBLE, and a set of derived datatypes, which can prove very useful
to specify the type of data to be sent, such as structs, vectors and subarrays.

3.2.3 Parallelization of the 3D heat equation with
MPI

To parallelize the 3D heat equation with MPI, we adopt a domain decompo-
sition policy. The 3D space is divided into 3D subdomains, which are distributed
among processes. Since there exists no shared memory between different pro-
cesses, data exchange is demanded: the computation of the boundary points of
each subdomain on time t lies on the values of their neighbouring points on time
t-1, which are stored in the local memory of other processes. Hence, each process
needs to communicate with all processes that hold the neighbouring subdomains
and receive the necessary data chunks.

The pattern of communication is now straightforward: each process sends its
boundary 2D planes to its 6 neighbours and receives 6 2D planes, each from a
different neighbour, to accomplish the computation. To clarify this pattern, we
employ Figure 3.8, which depicts the communication pattern for a 2D space.

We have chosen to utilize the offered Cartesian virtual topology of MPI, to
distribute the 3D subspaces to a virtual 3D grid of processes, which better reflects
the logical communication pattern of the processes, compared to linear ranking.
We should note that a virtual topology acts as an advisor to the runtime system
for the assignment of processes to physical processors in a manner that improves
communication performance [20].

To store the data received from neighbouring processes, we have utilized the
halo or ghost layer structure, meaning that we have extended the local matrix
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Figure 3.8: Parallel implementation of heat equation in two spatial di-
mensions. The spatial grid is a 16 x 16 square grid and is partitioned into
16 chunks. Each chunk is assigned to a different process. Pale squares
indicate the data that must be exchanged between the processes. The bold
arrows illustrate the flow of the exchanged data.

of each process by an outer layer, to host the received data. Halo exchange is
depicted in Figure 3.9 for a 2D space.
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Pseudocode 3.2: Parallel implementation of the 3D heat equation with
MPI
T=512

/* Initializations */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes

*/

/* Scattering the initial matrix held by the root process to all processes

*/

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

for (t=0;t<T;t++)

{

// Send and receive data

Pack_data (2D boundaries of myPrevious to buffers)

Isend(buffers to all neighbouring processes)

IRecv(buffers from all neighbouring processes)

Waitall(communications)

Unpack_data(buffers to halo layers of myPrevious)

// Computation

for (i=1;i<=myX;i++)

for (j=1;j<=myY;j++)

for (k=1;k<=myZ;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y-1[z

]

+myPrevious[x][y+1][z]+ myPrevious[x][y][z

-1]

+myPrevious[x][y][z+1]) /7;

swap(myCurrent ,myPrevious);

}
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Figure 3.9: Halo communication for the Jacobi solver (illustrated in two
dimensions here) along one of the coordinate directions. Hatched cells are
ghost layers, and cells labeled “R” (“S”) belong to the intermediate receive
(send) buffer. The latter is being reused for all other directions. Note that
halos are always provided for the grid that gets read (not written) in the
upcoming sweep. Fixed boundary cells are omitted for clarity.

At this point, we should also explain the packing operations. Message pass-
ing with MPI requires that messages are stored in contiguous memory addresses,
whereas communication in our application involves non-contiguous 2D planes of
the 3D space. To perform communication operations, the sending process packs
every message into a separate buffer and the corresponding receiving process
unpacks the buffer to the appropriate ghost layer. Though MPI provides both
packing/unpacking routines and the option to define datatypes, such as subar-
rays, specialised to serve communication operations, our implementation realizes
user-defined packing and unpacking routines, for reasons of maintainability in
the optimizations which follow in the next chapters.

3.2.4 Experimental results of the parallel implemen-
tation with MPI

In this section, we present the experimental results of the execution of our
MPI implementation for the 3D heat equation. We have measured the execution
time for three 3D spaces (128x128x128, 256x256x256 and 512x512x512) for 512
iterations over time. Figures 3.10, 3.11 and 3.12 show the results for the different
3D spaces. For each case we use Gigabit Ethernet as interconnection network
and we utilize progressively 1, 2, 4, 8, 16, 32, 64 and 128 cores.
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Figure 3.10: Results of heat equation with MPI for a 3D space
128x128x128
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Figure 3.11: Results of heat equation with MPI for a 3D space
256x256x256
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Figure 3.12: Results of heat equation with MPI for a 3D space
512x512x512
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For the 3D space of dimensions 128x128x128, our MPI implementation scales
linearly up to 16 processes. This observation does not hold for the other two
cases, where speedup is linear up to 4 processes and performance decreases after
this point. Though the efficiency of the parallel implementation is satisfactory, as
it is about 45 times faster for small spaces and 36 times faster for the 512×512×
512 3D space compared to the serial algorithm, we should focus on interpreting
why speedup is not linear for all cases.
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Figure 3.13: MPI Communication/Computation breakdown for a 3D
space 128x128x128
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Figure 3.14: MPI Communication/Computation breakdown for a 3D
space 256x256x256
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Figure 3.15: MPI Communication/Computation breakdown for a 3D
space 512x512x512

For a better understanding of the parallel program’s performance, we have
measured and decomposed total execution time to communication and compu-
tation time. Figures 3.13, 3.14 and 3.15 illustrate this breakdown. Regardless of
the problem’s size, computation scales as the number of MPI processes increases.
We should remark, though, that, for the smaller problem size, computation time
decreases in a faster rate, as the working set fits better to the available cache
memory. We should also note that, as we progressively increase the number of
processes above 32, each node launches more than two processes. Consequently,
memory traffic to the shared L2 cache memory adds a small overhead to com-
putation time.

The case of communication time presents more interesting aspects, concern-
ing its influence to the overall performance. In all three cases of study, commu-
nication time does not scale with the number of processes. On the contrary, it
appears to be increasing with an indefinable pattern. In the following chapter,
we will analyze thoroughly the behavior of communication time and its impact
on the performance of MPI programs, but for the purposes of this section, we fo-
cus on the point where communication time exceeds computation time, i.e. when
we employ 32 MPI processes. Figures 3.13b, 3.14b and 3.15b clearly show that
the percentage of communication time dominates the total execution time of the
parallel program, and is therefore responsible for the degradation of performance.

3.3 Parallelization with hybrid MPI/OpenMP

model

3.3.1 About hybrid MPI/OpenMP

The hybrid MPI/OpenMP model refers to a mixed programming style which
employs MPI routines for message passing between distinct nodes and OpenMP
directives to orchestrate parallelization of computation on cores lying on the
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same node of a cluster. The first attempts to parallelize applications in this style
are documented in [21], [22] and [23], with the appearance of clusters with SMP
nodes. The aim of this programming style is to optimize performance of parallel
implementations by exploiting shared memory within nodes for faster compu-
tation and communication operations. Though the case of 3D heat equation
does not fall into typical patterns where a hybrid MPI/OpenMP implementation
yields a better performance compared to pure MPI, we present its parallelization
with hybrid MPI/OpenMP for reasons of completeness.

3.3.2 Parallelization of the 3D heat equation with hy-
brid MPI/OpenMP

The hybrid version of the 3D heat equation differs from the pure MPI imple-
mentation in the part of computations. In the pure MPI version, an MPI process
holding a 3D subspace performs computations serially on its 3D matrices. In the
hybrid version, computations are parallelized with the aid of OpenMP. This
alteration also changes the number of MPI processes created for the parallel im-
plementation: if there are 64 cores available, the standard MPI version would
create 64 MPI processes, while the hybrid version may create 32 MPI processes,
each one spawning 2 OpenMP threads, or respectively, 16 MPI processes spawn-
ing 4 OpenMP threads. The hybrid parallel implementation of 3D heat equation
is depicted in Pseudocode 3.3.

The block of code directing computations has been parallelized with OpenMP
in the same way as in the pure OpenMP version, namely by applying the omp for
directive to parallelize the outer loop of computations. In the following section,
we compare the experimental results of the hybrid implementation compared to
the pure MPI implementation.

3.3.3 Experimental results of the parallel implemen-
tation with hybrid MPI/OpenMP

We have experimented with the hybrid parallel implementation of the 3D
heat equation on 16 nodes of our cluster, connected with Gigabit Ethernet,
for problems sizes of 1283, 2563 and 5123 points of data. We have measured
execution time for 2, 4 and 8 OpenMP threads, utilizing up to 128 cores in total.
The corresponding results are illustrated in Figures 3.16, 3.17 and 3.18
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Pseudocode 3.3: Parallel implementation of the 3D heat equation with
hybrid MPI/OpenMP
T=512

/* Initializations */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes

*/

/* Scattering the initial matrix held by the root process to all processes

*/

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

for (t=0;t<T;t++)

{

// Send and receive data

Pack_data (2D boundaries of myPrevious to buffers)

Isend(buffers to all neighbouring processes)

IRecv(buffers from all neighbouring processes)

Waitall(communications)

Unpack_data(buffers to halo layers of myPrevious)

// Computation

#pragma omp parallel num_threads(p)

{

#pragma omp for private(i,j,k)

for (i=1;i<=myX;i++)

for (j=1;j<=myY;j++)

for (k=1;k<=myZ;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y-1[z

]

+myPrevious[x][y+1][z]+ myPrevious[x][y][z

-1]

+myPrevious[x][y][z+1]) /7;

}

swap(myCurrent ,myPrevious);

}
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Figure 3.16: Results of heat equation with hybrid MPI/OpenMP for a
3D space 128x128x128
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Figure 3.17: Results of heat equation with hybrid MPI/OpenMP for a
3D space 256x256x256
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Figure 3.18: Results of heat equation with hybrid MPI/OpenMP for a
3D space 512x512x512
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For all problem sizes, when utilizing over 32 cores, regardless of the num-
ber of OpenMP threads used, the pure MPI parallel implementation has a bet-
ter performance than the hybrid implementation. When utilizing less than 32
cores, though, the hybrid implementation with 2 or 4 OpenMP threads is more
efficient that the pure MPI implementation, as 3D spaces of computations are
large enough to benefit from OpenMP parallelization. In general terms, memory-
bound algorithms are not prone to benefit from hybrid parallelization, as memory
traffic degrades the performance instead of increasing it.
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Chapter 4

Optimization techniques for
the parallel 3D heat equation
on clusters of multi-core SMP
nodes

In this chapter, we discuss performance limitations of the parallel 3D heat
equation when executed on a computer cluster and we introduce our effort to
compromise between the overhead of parallelization cost and the gained parallel
speedup. We present a set of optimization techniques which aim at reducing the
execution time of our parallel implementations and achieving a better speedup,
and their evaluation on our computer cluster.

4.1 Understanding performance limitations

In the previous chapter, we have studied the parallelization of the 3D heat
equation with OpenMP and MPI and the corresponding experimental results.
This analysis revealed several factors that limit the performance of our parallel
programs. In this section, we enumerate these factors, their origin and their
impact on our parallel programs.

4.1.1 A common performance model

The most common cost model used in algorithm design for large-scale mul-
tiprocessors specifies execution time T as a function of problem size N , number
of processors p and other algorithm and hardware characteristics:

T = f(N, p, ...)

The execution time of a processor can be decomposed into computation time (
Tcomp ), communication time ( Tcomm ) and idle time ( Tidle ). Thus for processor
j it holds:
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T j = T jcomp + T jcomm + T jidle (4.1)

In our experiments, we have defined the execution time of the parallel pro-
grams as the time that elapses from when the first processor starts executing on
the problem to when the last processor completes execution. Thus, the paral-
lel execution time can be modelled as the average of the execution times of all
processors:

T = 1
p

p∑
j=1

T j =
1

p

p∑
j=1

T jcomp + T jcomm + T jidle (4.2)

A simple and straightforward way of modelling computation time is to extract
the number of operations (ops) required by an algorithm and multiply it by the
CPU speed (in sec/op). The resulting estimate on a single processor is:

T jcomp = ops of Algorithm× CPU speed (4.3)

The above model assumes that the CPU can be fed with data by the memory
subsystem at a rate that can always cover the CPU’s needs. However, this is
not the case in modern systems containing multiple cores, where memory band-
width contention affects the time of computation. We use the term operational
intensity (OI) (in operations/byte) to mean floating point operations per byte
of DRAM traffic, defining total bytes accessed as those bytes that go to the
main memory after they have been filtered by the cache hierarchy. That is, we
measure traffic between the caches and memory rather than between the proces-
sor and the caches. Thus, operational intensity predicts the DRAM bandwidth
needed by a kernel on a particular computer. In this case, an upper bound of
the computational time is provided by the Roofline model [24] as:

T jcomp = ops of Algorithm ×max(CPUspeed, 1
Memory Bandwidth×OI ) (4.4)

The communication delays arise from various sources and they can be cate-
gorized in three classes:

• Message size dependent delay: This delay is a consequence of copying
the message into buffers and due to finite capacity of the interconnection
network. We capture these delays in a constant tw, henceforth referred to
as the per-word transfer time. In fact, if the bandwidth of a link Bw GB/s
and the size of a word is k bytes, tw is equalt to k

Bw

• Path length dependent delay: This delay is a consequence of the overhead
at intermediate network interfaces and the signal propagation time on each
link. This delay is presented by the constant th, also referred to as the
per-hop time.

• Startup latency: This delay is independent of message length and number
of hops. It is incurred due to handshaking between processors, buffer
management and routing and is represented by ts
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The communication time model [25] for a message of size m traversing d hops of
a cut-through routed network is:

T per messagecomm = ts + thd+ twm (4.5)

On shared memory address systems, thd is constant for all memory modules and
can be subsumed into ts. In distributed memory systems, it usually holds that
ts >> th or mtw >> th and since d can be relatively small, the effect of the per-
hop time can be ignored. In general terms, if an application sends M = g(n, p),
where n is the problem size and p is the number of processors and each message
is of size m = h(n, p), the model for communication time is:

Tcomm = M × (ts + tw × h(n, p)) (4.6)

Idle time can be difficult to determine, since it often depends on the or-
der in which operations are executed. A processor may be idle due to lack
of computation or lack of data. Lack of computation occurs when load is not
balanced among processors executing a parallel program. Lack of data occurs
when the computation and communication required to generate remote data are
performed.

In parallel programming models of shared memory, as OpenMP, which per-
form communication through direct memory accesses, we are not able to measure
communication time per se, but we assume that equation (4.4) finely models the
time spent in the computation component and the time spent in memory band-
width contention, or else the portion of time stalled in shared resources, which is
the effective communication time of processors lying on the same node. There-
after, a simplified performance model for OpenMP parallel programs is:

Tomp = Tcomp + Tidle (4.7)

where Tidle is the aggregated processors’ idle time when synchronization is re-
quired and load is imbalanced or when a block of code within a parallel region
is executed by a single thread.

4.1.2 Performance limitations in computation time

While studying the execution times of our parallel implementation with
OpenMP, we have mentioned that iterative stencil computations are memory-
bound algorithms. Our stencil calculations for the heat equation perform global
sweeps through data structures that are typically much larger than the capacity
of the available data caches. Although the amount of data reuse is 4 out of 7
points of the stencil for a full iteration over space, the memory access pattern
(Figure 4.1) along with the cache capacity restrictions limit potentiality of ex-
ploiting temporal or spatial locality. Another drawback of the heat equation
is read and write operations are separated, therefore storage requirements are
increased. As a result, our scheme of computation achieves a low fraction of the-
oretical peak performance, since data from main memory cannot be transferred
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fast enough to avoid stalling the computational units on modern microprocessors
[26].

The drawbacks of our scheme of computations have a major impact on our
parallel implementation with OpenMP, especially in cases of large working sets,
as is the 3D space of 512x512x512 points, namely a working set of 2GB. As
we increase the number of threads, more than one threads are launched on the
same package, sharing the L2 cache memory and conflict or capacity misses be-
come inevitable. Even when threads are launched on different packages of the
same node, the execution ends up in an excessive cache-to-cache data transfer
between the two packages, which creates hotspots in the memory bus and de-
grade performance. Moreover, the limited memory bus bandwidth is quickly
saturated, as more threads are introduced, under the pressure of serving mul-
tiple requests. In terms of equation (4.4), for each thread we add, the number
of operations decreases, as the working set is distributed to threads, but mem-
ory traffic induces a decrease to OI, so computation time for each processor
is T jcomp >

Tcomp of serial algorithm
number of processors . In an overall, the speedup gained from the

parallelization of the 3D heat equation on any shared memory model is always
undermined by the overhead of fetching data from main memory.

(a) Conceptualization
of stencil in 3D space

(b) Mapping of stencil from 3D space onto linearly
allocated array space

Figure 4.1: Stencil visualization

Parallelization of the heat equation with MPI does not suffer from the afore-
mentioned factors to the same extent, as the total working set is split to the
local memory of each MPI process. We should denote that in our experiments,
MPI processes are mapped to processors in a different manner from OpenMP
threads. MPI launches each process on a different node in a round-robin fash-
ion. To activate all 8 cores on a node, the total number of MPI processes
will be number of nodes employed × 8, but the local working set will be

total working set
number of nodes employed×8 , while for our OpenMP parallel implementation, when
all 8 cores on a node are activated, each thread operates on working set of size
total working set/8, which is notably larger. Still, limitations hold when the
total working set is very large, the local working set exceeds L2 cache capacity
and data needs to be fetched from main memory. Moreover, when distinct MPI
processes are launched on processors of the same node or package, they utilize
a shared L2 cache and the memory bus. In conclusion, to improve performance
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of the parallel versions of the 3D heat equation, it is necessary that we take into
consideration the effect of the pattern of memory accesses and exploit locality
and take advantage of memory hierarchies.

4.1.3 Performance limitations in communication time

As the performance model described in equation (4.7) denotes, OpenMP
communication time is integrated into computation time and our analysis does
not benefit from examining them separately. On the other hand, communication
time is a large portion of the total execution time of our MPI parallel imple-
mentation and execution results of the parallel 3D heat equation with MPI have
confirmed that communication time affects scaling and overall performance of
the program. In the previous chapter, we have referred to the scaling pattern of
communication time as indefinable. We will now show that this pattern is de-
termined by the effect the pattern of halo exchanges and the equivalent message
size.

Message passing for each MPI process is defined by the data distribution
strategy that we follow. By distributing the 3D space of calculation to a 3D grid
of processes, as defined in section 3.2.3, each process is expected to send six 2D
planes to each neighbouring processes and receive an equal amount of data from
all neighbouring processes on every time step. This approach is coarse-grained,
as the ratio of computation to communication is relatively low. For a 3D space of
dimensions X×Y ×Z, X = Y = Z = n and a 3D grid of px×py×pz processes and
the demand to solve the heat equation on T time steps, each process performs
computations of total complexity O(T n3

pxpypz
) and send and receive operations

of overall complexity O(T (2 n
px

n
py

+ 2 n
px

n
pz

+ 2 n
py

n
pz

)) = O(T n2

pxpypz
). The ratio of

computation to communication is:

Computation
Communication =

O(T n3

pxpypz
)

O(T n2

pxpypz
)

= O(n)

As noted in [27], we should expect a speedup equal to the ratio of computation to
communication, namely a linear speedup, a prediction which is not in accordance
with our experimental results. Equation (4.6) suggests that communication time
to send a single message is the sum of a startup time plus the time required to
transmit the message over the interconnection network. As the program na-
ture is such that each message needs to be transmitted separately to a different
process and we cannot accumulate distinct messages or employ a broadcast com-
munication scheme, the parallel program is obliged to pay the“fee” of startup
time for every message. Startup time is both software and hardware dependent.
Although from the user’s point of view data is transferred from user memory on
one process to user memory on another process, the MPI library or the kernel
inflicts the creation of a temporary copy in system memory at the sending node,
to maintain the semantics of non-blocking send operation or to free the proces-
sor from having to wait on a slow network. Also, latency of the interconnection
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network is added up on startup time. By increasing the number of MPI pro-
cesses, the number of messages requiring to be transmitted concurrently over the
interconnection network increases drastically and bandwidth contention occurs,
affecting the per-word transfer time tw and increasing the total communication
time per message.

The per-word transfer time is also intensive to the size of the message. The
total network bandwidth cannot be exploited as efficiently when large messages
are transferred. Moreover, communication time per message is proportional to
the size of the message, as indicated by the factor twm of equation (4.5). Finally,
packing and buffering messages to implement send/receive operations add up
extra overhead to the startup time for messages of big size.

Experimental results of section 3.2.4 depict that scalability of communication
time for the 128 × 128 × 128 3D space, which is a relatively small working set
and is not drastically affected by the message size, breaks at 32 processors,
not randomly. In accordance to our options of scheduling MPI processes, when
utilizing up to 16 processors, each node launches at most a single process, while
utilizing 32 processors implies that 2 processes execute on each node. Intra-node
traffic is higher, causing stalls to communication operations; also, inter-node
communication comes to play. Modern MPI implementations are aware of their
processes’ location on the cluster and bypass the interconnection network for
inter-node communication, using shared memory features instead, but startup
time for communication is affected anyhow. Yet we observe that communication
time reduces again on 128 processors, where data distribution is coarse enough to
eliminate the effect of message size. For the two larger working sets we measured,
communication time rises and falls as we increase the number of processors,
as a ping pong effect of the gradual decrease of message size and the network
bandwidth contention. In conclusion, we are now able to define the parallel MPI
implementation of 3D heat equation as a bandwidth-bound implementation.

4.1.3.1 Existence of idle time

We refer the reader back to section 3.1.3, where the baseline parallel im-
plementation with OpenMP is presented and commented. For reasons of cor-
rectness, the task of swapping the arrays of computation is assigned to a single
thread. While this task is performed, all threads but one remain idle, waiting for
its execution to complete. This case is the aforementioned case of load imbal-
ance. Unfortunately, there is no way to distribute computational load otherwise,
so as to eliminate idle time in this particular approach of parallelization, with-
out violating the order of execution. Thankfully, though, the overhead added by
idle time to the total execution time is insignificant for the performance of the
parallel program.

Idle time of the MPI parallel implementation is the result of the dependence
of computational operations on the completion of communication operations.
On every time step, data values of the previous time step need to be received
by a process before current data values are computed. In effect, the interval
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from the moment a process calls the MPI’s non-blocking routines to send and
receive the required messages to the moment when remote communications are
completed and the call of the MPI Waitall() function returns, notifying the
process on the completion, is actually the idle time of each time step, as the
processor is not blocked, but remains idle due to lack of data. Considering the
stalls in communication, as described in the previous section, idle time turns to
a significant portion of the total execution time as the bulk of messages grows.
Henceforth, we will treat idle time as a portion of communication time, as we
cannot measure separately the portion of communication time spent on chip and
the portion spent remotely on the components of the interconnection network.

4.2 Minimizing computation time: Tiling

In this section, we introduce an optimization technique for the improvement
of the performance of computation time. We exploit a proposed loop transfor-
mation technique that focuses on adapting the computational kernel to the un-
derlying cache hierarchy, targeting to improve locality of references and reduce
accesses to main memory, thereby eliminating memory bandwidth contention.
We implement the technique on the serial computational kernel for a primary
result analysis and present the equivalent experimental results.

4.2.1 Overview of tiling

Tiling is a well-known transformation which improves locality by moving
reuses to the same data closer in time. It has been successfully applied to al-
gorithms which involve stencil computations in two dimensions, where O(n3)
computations are performed over O(n2) data and tiling can exploit O(n) tem-
poral reuse to greatly reduce cache misses. Rivera and Cheng [28] suggested
the appropriate loop transformation to exploit temporal reuse and improve per-
formance of a 7-point stencil computation, as is our case study, the 3D heat
equation, is a 2D tiling transformation.

4.2.2 Implementing 2D Tiling

The 3D heat equation computational kernel, as introduced in chapter 2,
accesses 7 rows of the 3D matrix previous in three adjacent 2D planes at the
same time, on every time step. For a n3 grid in space, the leading previous[i-
1][j][k] and the trailing previous[i+1][j][k] array references have a distance of 2n2

elements. To support all group reuse between references on previous, the L1
cache needs to be able to hold two entire n× n planes, so only 3D arrays of size
M × 32× 64 can fully exploit reuse for our cluster’s 32K L1 caches. Even for a
larger L2 cache, group reuse is lost for large arrays.

The goal of the proposed 2D tiling method is to preserve group reuse across
the outermost loop on the X dimension (referred to as i loop, in accordance with
Figure 4.2) by effectively reducing the size of the plane during the execution of
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Figure 4.2: Access pattern of tiled 3D heat equation

the i loop. This is accomplished by tiling the inner two (j and k) loops. First,
j and k are strip-mined to form tile-controlling loops jj and kk. Next, jj and kk
are permuted to the outermost level. A tiled version of the 3D heat equation of
Pseudocode 2.1 appears in Pseudocode 4.1.

Achieving reuse after applying this basic tiling transformation depends on
the choice of tile dimensions TJ and TK. Since we tile only the j and k loops,
the i loop iterates across all array planes but executed only iteration points
inside a (n-2)*TJ*TK block. The shaded region represents the points in iteration
space accessed on a single i loop iteration while the surrounding three unshaded
regions represent the array points of previous accessed on a single i loop iteration.
Because of the stencil pattern, the array tile consists of two TJ × TK regions

Pseudocode 4.1: Tiled 3D heat equation
// Iteration over time

for (t=0;t<T;t++)

{

// Computing new values of interior points

for (jj=1;jj<Y-1;jj+=TJ)

for (kk=1;kk<Z-1;kk+=TK)

for (i=1;i<X-1;i++)

for (j=jj;j<min(jj+TJ,Y-1);j++)

for (k=kk;k<min(kk+TK,Z-1);k++)

current[i][j][k]=( previous[i][j][k]+ previous[i-1][j][k]

+previous[i+1][j][k]+ previous[i][j-1][k]

+previous[i][j+1][k]+ previous[i][j][k-1]

+previous[i][j][k+1])/7;

swap(current ,previous );

}
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located in array planes I-1, I+1 as well as a third (TJ + 2) × (TK + 2) region
located in array plane I. In order to preserve all reuse within the (n−2)×TJ×TK
block, it is sufficient that the cache holds a 3 × (TJ + 2) × (TK + 2) subarray.
Since the iteration space is partitioned into approximately n2/(TJ×TK) blocks
of size (n− 2)× TJ × TK, we multiply to obtain the total number of elements
brought into the cache across the whole loop: n3(TJ + 2)(TK + 2)/(TJ × TK).
We can then divide by the cache line size L to estimate the number of cache lines
fetched. However, since n3/L is invariant under different tile sizes, we divide out
this constant, resulting in the cost function: Cost(TJ, TK) = (TJ + 2)(TK +
2)/(TJ × TK), which is minimal when TJ and TK have the smallest possible
difference. In other terms, square tiles are favored.

4.2.3 Experimental results for 2D tiling

We have measured the execution time of the serial computational kernel
transformed with 2D tiling, as proposed in Pseudocodes 4.1 and 4.2, for three
grids of 128× 128× 128, 256× 256× 256 and 512× 512× 512 double precision
points and for 512 iterations over time, testing a range of blocking factors. The
results are organized in Table 4.1.

Grid Size Tile Size Size of tile
with minimal
execution
time

Execution
Time
(sec)

Execution Time
of tiled version /
Execution Time
of standard ver-
sion

1283 TJ [4...128] TJ 64 26.07539 0.999
TK [4...128] TK 128

2563 TJ [4...256] TJ 128 209.62799 1.0005
TK [4...256] TK 256

5123 TJ [4...512] TJ 64 1637.85518 0.99
TK [4...512] TK 512

Table 4.1: Experimental results of the serial 3D heat equation with 2D
tiling

The experimental results reveal that tiling does not work as an optimization
to the 3D heat equation algorithm. Even when picking the size of tiles offering the
minimal execution time, there is no effectiveness of the tiled version compared to
the standard version. In fact, tiles sizes that provide the minimal execution time
do not fit into our L1 cache. Still, this behaviour is not unexpected. Modern
compilers are designed to perform internal loop transformations, to optimize
execution and take full advantage of the cache hierarchy. The standard version is
executed sequentially on a single core with an L2 cache of 6MB, thus large enough
to store at least 3 Y ×Z planes of the given 3D grids, hence neighbouring points of
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the stencil fit in cache. Moreover, the standard serial version has been compiled
using the -O3 flag of gcc and, since variation of execution times is limited to some
milliseconds, we can assume that tiling optimizations may have been applied by
the compiler already, making the comparison between the standard and the tiled
version “unfair”. Also, as pointed in [29], tiling could be more effective for larger
grid sizes. Finally, the discussed tiling technique only affects temporal locality
and not the degree of data reuse over time. Consequently, the slight variation
of the memory access pattern offered by tiling is not adequate to improve the
execution time of the computational kernel.

Experiments with tiling on our parallel implementation with MPI have been
proven equally ineffective and are not worth to be demonstrated. The proposed
2D tiling has failed to optimize computation time, but in general terms, tiling
is a valid scheme for optimizations on stencil computations and more complex
implementations of tiling, which better apply to modern microprocessors’ ar-
chitectures, appear in bibliography and should be taken into consideration for
future work.

4.3 Minimizing communication time: Com-

pression

In this section, we introduce an optimization technique for the reduction of
communication time of our MPI parallel implementation. We examine various
compression algorithms, focusing on applying them onto the messages exchanged
between MPI processes to reduce their size, aiming to reduce the factor twm of
communication time and improve the overall performance. We evaluate the
compression ratio and time of each algorithm, apply the most promising to our
MPI parallel implementation and present the respective experimental results.

4.3.1 Overview of compression

Formerly, we have documented the bandwidth-bound nature of the MPI par-
allel 3D heat equation. In order to reduce the impact of communications, we
target to compress the exchanged messages in a transparent way, and increase the
throughput of data exchanges, which is an important factor for the performance
of parallel programs on clusters with communication networks of high latency
and low bandwidth. During the past few years, many researchers in the field
of scientific parallel computing have focused on compression techniques, either
towards the development of efficient compression algorithms for double-precision
floating point data [30], which are the dominant data types of scientific compu-
tations, or towards integrating compression of data on MPI protocol. CoMPI,
an extended MPI run-time, developed by a group of researchers from University
Carlos III in Madrid [31] has been the motivation for our work with compression
on MPI messages.

Compression of MPI messages poses important requirements. The process of
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compression must be lossless, so as to preserve information. Also, the compres-
sor must produce the smallest overhead possible on execution time and memory
requirements. In order to achieve benefit from compression, the additional com-
putation time of the compression algorithm has to be lower than the time saved
during the communication. On these terms, it seems more important to seek for
fast compression rather than a high compression ratio. As for memory require-
ments, we favour algorithms that perform compression with the least possible
requirements for extra buffering space, so as not to affect computation time on
the attempt of minimizing communication time.

4.3.2 Compression algorithms

With respect to the requirements for fast and lossless compression, we have
selected a group of compressors and we present them in this section.

4.3.2.1 RLE

Run Length Encoding [32], [33] is a simple method for lossless compression. It
simply replaces repeated bytes with a short description of which byte to repeat,
and how many times to repeat it. Though simple and obviously very inefficient
fore general purpose compression, it can be very useful for compressing binary
data (it is used in JPEG compression, for instance).

Figure 4.3: The principle of run length encoding

An example of how a run length encoding algorithm can encode a data stream
is shown in Figure 4.3, where six occurrences of the symbol ’93’ have been re-
placed with three bytes: a marker byte (’0’ in this case), the repeat count (’6’),
and the symbol itself (’93’). When the RLE decoder encounters the symbol ’0’,
which is used as the marker byte, it will use the following two bytes to determine
which symbol to output and how many times to repeat the symbol.

The RLE implementation we use for our optimizations on MPI is developed
by Markus Geelnard as a component of a compression library in C [34]. The
particular method is an efficient one. Instead of coding runs for both repeating
and non-repeating sections, a special marker byte is used to indicate the start
of a repeating section. Non-repeating sections can thus have any length without
being interrupted by control bytes, except for the rare case when the special
marker byte appears in the non-repeating section (which is coded with at most
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two bytes). For optimal efficiency, the marker byte is chosen as the least fre-
quent (perhaps even non-existent) symbol in the input stream. The worst case
compression result is: compressed size (bytes) = 257

256 × original size+ 1 (bytes).

4.3.2.2 Shannon-Fano

Shannon-Fano coding was invented by Claude Shannon [35] and Robert Fano
[36] in 1949. The principle of Shannon-Fano coding is to replace each symbol with
an alternate binary representation, whose length is determined by the probability
or frequency of the particular symbol. Common symbols are represented with a
few bits, while uncommon symbols are represented by many bits. The algorithm
produces a very compact representation of each symbol, but it does not deal
with the ordering or repetition of symbols or sequences of symbols.

The key to Shannon-Fano coding is to find new binary representations for
each symbol. The solution is to make a histogram of the uncompressed data
stream in order to compute the frequency of each symbol. A binary tree is then
created by recursively splitting the histogram in halves, where each half in each

recursion should weigh as much as the other half. The weight is
N∑
k=1

symbolcountk,

where N is the number of symbols in the branch and symbolcountk is the num-
ber of occurrences of the symbol k. The coder uses the tree to find the optimal
representations for each symbol.The decoder uses the tree to uniquely identify
the start and stop of each code in the compressed data stream: by traversing
the tree from top to bottom while reading the compressed data bits, selecting
branches based on each individual bit in the data stream, the decoder knows
that a complete code has been read once a leaf node is reached.

To comprehend the algorithm’s operations, we will use an example. Figure
4.4 shows the process of Shannon-Fano encoding step by step. For a stream
of uncompressed data of 10 bytes (Figure 4.4a), the Shannon-Fano tree is built
(Figure 4.4b) and the frequencies and encodings for each byte are computed
(Figure 4.4c), leading to a compressed data stream of 24 bits or 3 bytes (Figure
4.4d). The drawback of the algorithm is the need for storage of the Shannon-
Fano tree to perform decoding, which is though negligible for large input data
streams.

The Shannon-Fano implementation we use is also a component of Geel-
nard’s compression library and has been implemented on the principles we de-
scribed. The worst case compression result is: compressed size (bytes) = 101

100 ×
original size+ 384 (bytes).

4.3.2.3 Huffman

Huffman compression is an optimized version of the Shannon-Fano algorithm,
developed by David Huffman, student of Shannon, in 1951 [37]. Huffman man-
aged to avoid the major flaw of the suboptimal Shannon-Fano coding by building
the tree from bottom-up instead of from the top down. In detail, instead of re-
cursively splitting the histogram into equally weighing halves, the tree is built
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(a) Uncompressed data stream, used as input

(b) Shannon-Fano tree for the data stream

(c) Symbol frequencies and encoding for the un-
compressed data stream

(d) Compressed data

Figure 4.4: Shannon-Fano compression: the encoding process for a 10-
byte data stream

by successively joining the two least weighing nodes until there is only a single
node left - the root of the tree. Huffman algorithm is optimal in the sense that
any change in the binary encoding will result in a less compact representation.
Because of Huffman’s optimality, it is almost always preferred to Shannon-Fano
and it is used widely on multimedia codecs.

We will use the Huffman implementation of Geelnard’s compression library,
as it offers a very compact form for the Huffman tree, requiring only 10 bits sym-
bol on average. The worst case compression result is: compressed size (bytes) =
101
100 × original size+ 320 (bytes).
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4.3.2.4 FPC

FPC compression has been recently developed by Martin Burtscher and
Paruj Ratanaworabhan [38], in an attempt to build a lossless, single-pass, linear-
time compression algorithm for double-precision floating point data that max-
imizes throughput.To achieve this, the algorithm does not handle the sign, ex-
ponent and mantissa of the IEEE-754 standard separately, but interprets all
doubles as 64-bit integers, processing them with integer arithmetic to achieve
fast compression. The key notion of the implementation is data prediction.

FPC compresses linear sequences of IEEE 754 double-precision floating-point
values by sequentially predicting each value, xoring the true value with the pre-
dicted value, and leading-zero compressing the result.it uses variants of an fcm
[39] and a dfcm [40] value predictor to predict the doubles. Both predictors
are effectively hash tables. The more accurate of the two predictions, i.e., the
one that shares more common most significant bits with the true value, is xored
with the true value. The xor operation turns identical bits into zeros. Hence,
if the predicted and the true value are close, the xor result has many leading
zeros. FPC then counts the number of leading zero bytes, encodes the count in a
three-bit value, and concatenates it with a single bit that specifies which of the
two predictions was used. The resulting four-bit code and the nonzero residual
bytes are written to the output. The latter are emitted verbatim without any
encoding. FPC outputs the compressed data in blocks. Each block starts with a
header that specifies how many doubles the block encodes and how long it is (in
bytes). The header is followed by the stream of four-bit codes, which in turn is
followed by the stream of residual bytes. To maintain byte granularity, which is
more efficient than bit granularity, a pair of doubles is always processed together
and the corresponding two four-bit codes are packed into a byte. In case an odd
number of doubles needs to be compressed, a spurious double is encoded at the
end. This spurious value is later eliminated using the count information from
the header. Figure 4.5 depicts the operations of the compression process.

Decompression works as follows. It starts by reading the current four-bit
code, decoding the three-bit field, reading the specified number of residual bytes,
and zero-extending them to a full 64-bit number. Based on the one-bit field, this
number is xored with either the 64-bit fcm or dfcm prediction to recreate the
original double. This lossless reconstruction is possible because xor is reversible.

For the purposes of our experiments, we use Burtcher’s and Ratanaworab-
han’s most recent implementation of FPC, found in [41]. The worst case com-
pression result is: compressed size (bytes) = 17

16 × original size+ 8 (bytes).

4.3.2.5 LZO

Lempel-Ziv-Oberhumer (LZO) compressor [42] is a modern implementation of
the Lempel-Ziv compression algorithm developed in 1977 [43]. This compressor
follows a dictionary compression scheme; it does not use a predictive statistical
model, as Huffman does, but it stores strings of previously input symbols in
a dictionary. LZO is an optimized version, having a linear time complexity of
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Figure 4.5: FPC compression algorithm overview

N(d), where N is the total number of the input symbols and d is the size of the
dictionary.

The idea behind the LZO compression algorithm is to take the RLE algorithm
a few steps further by replacing sequences of bytes with references to previous
occurrences of the same sequences. For simplicity, the algorithm can be thought
of in terms of string matching. In written text, certain strings tend to occur quite
often, and can be represented by pointers to earlier occurrences of the string in
the text. The idea is, of course, that pointers or references to strings are shorter
than the strings themselves. A string reference is typically represented by a
unique marker, an offset count and the a string length. Depending on the coding
scheme a reference can either have a fixed length or a variable length. The latter
is often preferred since that allows the coder to trade reference size for string
size (i.e. it may be worth the increased size in the reference representation if the
string is long enough).

For our experiments, we use the miniLZO implementation developed by
Oberhumer, which is a lightweight subset of LZO. It supports overlapping com-
pression and in-place decompression of data blocks, whose size must be the same
for compression and decompression. miniLZO compresses a block of data into
matches (a sliding dictionary) and runs of non-matching literals to produce good
results on highly redundant data and deals acceptably with non-compressible
data. The worst case compression result is: compressed size (bytes) = 17

16 ×
original size+ 64 (bytes).
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4.3.3 Evaluation of compression algorithms

When data compression is used in transmission, the goal is to increase the
transmission speed, which depends on the message size, the time required to gen-
erate the coded message and the time required to decode the message and recover
the original ensemble. Therefore, it is necessary to evaluate each compression
algorithm we have presented, with different sizes of messages and datasets of
varying contents, including redundant datasets (redundancy of a compression
buffer is defined as the percentage of entries with zero values). For this, we have
created synthetic datasets of four types:

• Redundant: A buffer filled with zeros (100% redundancy level)

• Semi-Redundant: A buffer half filled with zeros in random places and half
filled with random values (50% redundancy level)

• Random: A buffer filled with random values

• Stencil: The solution of the heat equation on a single dimension, i.e. a
buffer of doubles within a limited range. We should note that, as the size
of the buffer grows, data of the stencil testcase demonstrate a pattern.

All buffers contain double-precision floating point data. We have measured
buffers of size 5,10,20,50,100,200,500,1000,1500 and 2000 kB, which is more or
less the size of the messages sent and received in our MPI implementation of
the parallel 3D heat equation. The metrics to evaluate each algorithm are the
compression ratio, i.e. the ratio of the size of compressed data to the original
size, and the aggregation of compression and decompression time. An important
note on the utilization of compression algorithms is that, as all compression
algorithms, apart from the FPC algorithm, are designed for compression of byte
streams and not doubles, we had to typecast each 64-bit double to a stream of
8 bytes. This typecast had to be done for the FPC algorithm as well, because
by design the FPC algorithm treats doubles as integers. Table 4.2 illustrates the
results of this evaluation.

Shannon-Fano and Huffman algorithms have a fairly good compression ra-
tio, but their performance in terms of compression/decompression time is poor
compared to the other algorithms, so we have excluded them from our further
study, as fast compression is our primary concern. RLE and LZO achieve a great
compression ratio for data with some level of redundancy and data coming from
a stencil computation, but result to a negative compression for the Random test-
case. The best performing algorithm for random data is the FPC algorithm, also
having a decent performance for the rest of the testcases. In an overall, com-
pression algorithms demonstrate better compression ratios when datasets follow
some pattern compared to random data. We should conduct further experiments
to decide whether it is worth to apply compression techniques on sets of random
numbers, for the purposes of reducing MPI communication time. We will pro-
ceed with presenting the integration of compression to the MPI parallel 3D heat
equation.
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Size Pattern Ratio Time (msec)
(kB) RLE SF Huffman LZO FPC RLE SF Huffman LZO FPC

5 Redun 0.1 12.5 12.5 0.9 6.5 0.03 0.11 0.09 0.04 0.02
5 Semi R 49.0 57.2 55.8 50.1 67.0 0.04 0.87 0.78 0.04 0.03
5 Random 100.1 101.2 99.6 100.5 93.6 0.03 1.18 1.05 0.01 0.03
5 Stencil 100.0 104.3 102.5 100.5 89.0 0.03 1.22 1.08 0.01 0.03

10 Redun 0.0 12.5 12.5 0.7 6.4 0.07 0.20 0.18 0.05 0.05
10 Semi R 47.9 52.8 52.0 48.2 66.5 0.08 1.24 1.10 0.08 0.05
10 Random 100.1 98.7 96.6 100.4 93.5 0.06 1.85 1.66 0.02 0.06
10 Stencil 100.1 102.0 100.9 100.4 88.6 0.06 1.89 1.71 0.02 0.05

20 Redun 0.0 12.5 12.5 0.5 6.3 0.14 0.39 0.35 0.07 0.09
20 Semi R 47.9 51.2 50.8 46.8 67.0 0.16 1.95 1.77 0.15 0.10
20 Random 100.2 95.9 95.3 100.4 93.4 0.12 3.12 2.92 0.03 0.11
20 Stencil 100.1 101.1 100.3 100.3 88.4 0.11 3.20 3.00 0.01 0.10

50 Redun 0.0 12.5 12.5 0.5 6.3 0.35 0.96 0.85 0.13 0.24
50 Semi R 48.0 50.3 50.0 45.3 66.5 0.39 4.06 3.80 0.40 0.26
50 Random 100.2 94.9 94.5 100.4 93.4 0.30 6.96 6.69 0.04 0.27
50 Stencil 100.2 100.8 100.1 100.4 88.2 0.28 7.02 6.76 0.07 0.25

100 Redun 0.0 12.5 12.5 0.5 6.3 0.70 1.92 1.70 0.28 0.45
100 Semi R 48.7 50.3 50.1 45.7 67.8 0.78 7.65 7.26 0.80 0.53
100 Random 100.2 94.5 94.2 100.4 93.3 0.60 13.41 13.06 0.11 0.55
100 Stencil 78.1 88.9 86.8 79.1 69.3 0.60 11.86 11.91 0.14 0.47

200 Redun 0.0 12.5 12.5 0.5 6.3 1.40 3.88 3.45 0.63 0.80
200 Semi R 48.6 50.0 49.9 45.7 67.2 1.71 14.82 14.30 1.63 1.10
200 Random 100.2 94.4 94.1 100.4 93.4 1.26 26.38 25.81 0.36 1.09
200 Stencil 55.3 70.5 66.9 55.7 50.1 1.28 18.06 18.88 0.34 0.88

500 Redun 0.0 12.5 12.5 0.4 6.3 3.50 9.86 8.71 1.71 2.17
500 Semi R 48.3 49.8 49.7 45.3 67.0 4.27 36.14 35.19 4.04 2.70
500 Random 100.3 94.3 94.1 100.4 93.3 3.28 65.19 64.23 0.75 2.74
500 Stencil 35.0 47.1 46.9 35.7 33.2 3.30 31.72 31.29 1.17 2.24

1000 Redun 0.0 12.5 12.5 0.4 6.3 7.04 19.68 17.51 3.53 4.86
1000 Semi R 48.5 49.9 49.8 45.5 67.2 8.59 71.92 70.22 8.12 5.45
1000 Random 100.3 94.3 94.1 100.4 93.3 6.70 130.06 127.80 1.34 5.46
1000 Stencil 24.8 36.9 36.8 25.3 25.0 6.70 50.53 50.05 2.55 4.75

1500 Redun 0.0 12.5 12.5 0.4 6.3 14.061 39.576 35.278 7.307 9.632
1500 Semi R 48.2 49.7 49.6 45.3 67.0 17.315 143.387 139.985 16.334 11.03
1500 Random 100.3 94.2 94.0 100.4 93.3 13.75 259.969 257.421 3.004 10.913
1500 Stencil 20.2 32.5 32.4 20.6 21.4 13.622 82.978 82.739 5.555 8.319

2000 Redun 0.0 12.5 12.5 0.4 6.3 14.06 39.58 35.28 7.31 9.63
2000 Semi R 48.4 49.8 49.6 45.3 67.1 17.32 143.39 139.99 16.33 11.03
2000 Random 100.3 94.2 94.1 100.4 93.3 13.75 259.97 257.42 3.00 10.91
2000 Stencil 17.5 29.8 29.7 18.0 19.2 13.62 82.98 82.74 5.56 8.32

Table 4.2: Compression Ratio and Compression/Decompression Time for
double-precision data

4.3.4 Integration of compression into the MPI imple-
mentation

In the light of the results depicted in Table 4.2, we have selected the FPC
compression algorithm to compress MPI messages. To justify this choice, we
should sketch the features of our dataset and messages. As we have already
already mentioned, at the entry to the iterative kernel the 3D space is initialized
with constant non-zero values at its boundaries. During the first iterations of
the computational kernel, most MPI messages exchanged are 100% redundant,
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Pseudocode 4.2: Parallel Implementation of 3D heat equation with MPI
and FPC compression
T=512

/* Initializations */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes

*/

/* Scattering the initial matrix held by the root process to all processes

*/

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

for (t=0;t<T;t++)

{

// Send and receive data

Pack_data (2D boundaries of myPrevious to buffers of doubles)

FPC_Compress(buffers to compressed buffers)

Isend(compressed buffers to all neighbouring processes)

IRecv(compressed buffers from all neighbouring processes)

Waitall(communications)

FPC_Decompress(compressed buffers to buffers of doubles)

Unpack_data(buffers of doubles to halo layers of myPrevious)

// Computation

for (i=1;i<=myX;i++)

for (j=1;j<=myY;j++)

for (k=1;k<=myZ;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y-1][

z]

+myPrevious[x][y+1][z]+ myPrevious[x][y][z

-1]

+myPrevious[x][y][z+1]) /7;

swap(myCurrent ,myPrevious);

}

containing only zero values. While non-zero values propagate from the bound-
aries to the interior of the 3D space, redundancy level falls, until all values are
non-zero. The image of each submatrix after n/2 iterations, for an initial grid
of size n3, is much like a set of random values, and such are MPI messages. It
would take a large number of iterations to acquire a pattern similar to that of
our stencil test in section 4.3.3.1, where neighbouring points have values differing
in a few decimal points, but we have limited our times steps to 512 in all our
experiments. Under these conditions, the most suitable compression algorithm
is FPC algorithm, which has proven the most efficient when coming to random
datasets. The parallel implementation of the 3D heat equation with MPI, where
all messages are compressed with the FPC algorithm is depicted in Pseudocode
4.2

The implementation is straightforward: a “layer” of compression is added
between packing and sending operations and a “layer” of decompression is added
between receiving and unpacking operations. Each process, as a sender, packs
the non-contiguous double-precision data to be sent to buffers, as in the standard
MPI parallel implementation. These buffers are then compressed with the FPC
algorithms and the new compressed messages are sent. After communication
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operations are completed, received messages are decompressed into their original
form and unpacked to the halo layers. The only thing left is to determine whether
the overall performance of this version outcomes the performance of the standard
MPI version, by examining the experimental results of the following section.

4.3.5 Experimental Results for MPI with compressed
messages on the 3D heat equation

In this section, we present the experimental results of the execution of our
MPI implementation for the 3D heat equation, with the integration of message
compression/decompression with the FPC compression algorithm. We have mea-
sured the execution time for three 3D spaces (128x128x128, 256x256x256 and
512x512x512) for 512 iterations over time. Figures 4.6, 4.7 and 4.8 show the
results for the different 3D spaces. For each case we use Gigabit Ethernet as
interconnection network and we utilize progressively 1, 2, 4, 8, 16, 32, 64 and
128 cores.
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Figure 4.6: Comparative results of heat equation with MPI and FPC
compression for a 3D space 128x128x128
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Figure 4.7: Comparative results of heat equation with MPI and FPC
compression for a 3D space 256x256x256
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Figure 4.8: Comparative results of heat equation with MPI and FPC
compression for a 3D space 512x512x512

The experimental results show that compressing MPI messages with FPC in
the case of the 3D heat equation is a successful optimization technique. A bet-
ter speedup is observed compared to the standard MPI implementation, whose
execution time is greater in all cases utilizing more than 8 cores. If we define
performance improvement as:

Improvement = exec timeMPI STD−exec timeMPI FPC
exec timeMPI STD

× 100%,

Table 4.3 aggregates the results in speedup and improvement for the MPI FPC
version for 128 MPI processes.
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Grid Size Speedup Improvement (%)
MPI-STD MPI-FPC

1283 44 54.5 19.27
2563 46.7 47.9 2.5
5123 34.2 40.1 14.79

Table 4.3: Speedup and Improvement of the MPI implementation of 3D
heat equation with compression on 128 cores

Figures 4.9a, 4.10a and 4.11a are more illustrative on the reduction of com-
munication overhead. The difference between communication time and compu-
tation time is decreased, in relation to the standard MPI version, leading to a
more efficient implementation. However, as mentioned before, we have to exam-
ine the aggregated communication and compression time versus communication
time of the baseline version for the interpretation of results. Figures 4.9b, 4.10b
and 4.11b indicate that the percentage of communication and computation time
over total execution time when employing FPC compression is smaller than the
percentage of communication time over total execution time in the baseline MPI
implementation, which may be interpreted into a smaller communication over-
head, less dominant on the performance of the parallel program.
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Figure 4.9: MPI Communication/Computation/Compression breakdown
for a 3D space 128x128x128

For a fair evaluation of the use of compression on our MPI implementa-
tion, we have conducted additional experiments of the MPI-FPC version, where
our initial 3D space is initialized with random values on both boundaries and
interior. The respective experimental results are depicted in Figure 4.12a, in
comparison to our MPI-STD version, also initialized with random values, for
a 5123 grid. Performance improvement is not as significant as in our previous
case study, of zero-value interior points, though we should focus on the fact that
there is no deterioration on execution time with the integration of compression.
Figure 4.12b, which illustrates compression ratio for the different initializations
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Figure 4.10: MPI Communication/Computation/Compression break-
down for a 3D space 256x256x256
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Figure 4.11: MPI Communication/Computation/Compression break-
down for a 3D space 512x512x512

we tested, shows how FPC algorithm achieves poor compression ratio for ran-
dom data, thus not decreasing MPI messages enough to diminish communication
overhead. Figure 4.12c justifies our assumptions that compression with FPC is
appropriate for the dataset of the parallel 3D heat equation. For initialization
with random data, compression ratio is high during the first steps of iteration,
where data of the buffers to be compressed and sent exhibit no pattern, and
falls as the effect of the stencil computation data smooths the difference between
data points. On the contrary, when initializing only the boundaries of the 3D
space on which we solve heat equation, compression is very efficient during the
first iteration steps, where buffers of messages are highly redundant and tends
to be less efficient as non-zero values spread to the interior. For a higher number
of iterations, i.e. high enough to reach convergence, where a pattern appears,
we should see a reduced compression ratio. In conclusion, compressing MPI
messages with FPC optimizes the overall performance of the parallel 3D heat
equation.
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Figure 4.12: Comparative results of MPI with FPC compression for a 3D
space 512x512x512 of different initialization

4.4 Concealing communication overhead: Over-

lapping Communication/ Computation

In this section, we propose an optimization technique for executing com-
munication and computational operations concurrently, to eliminate the effect
communication overhead appearing in our parallel implementation of the 3D
heat equation with MPI due to network bandwidth contention. We discuss the
potential of the technique, the ways to implement it and the application and
experimental results on heat equation.
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4.4.1 Overview of overlapping communication with
computation

The reader should be familiar by now to the phenomenon of limited effi-
ciency of the MPI parallel 3D heat equation due to communication pitfalls. In
this study, we have sketched communication overhead over a limited number of
processors. On modern clusters, though, where thousands of processors coexist
and computation scales up with the number of cores, the increasing communica-
tion time, which exceeds 95% of total execution time, determines total execution
time. Even in a favourable scenario, where communication time remains con-
stant as the number of utilized processors increase - for instance, in case we
compress MPI messages as described in the previous section - performance is
still dominated by communication overhead. The idea of overlapping computa-
tion and communication [44], [45] aims at concealing communication overhead
by exploiting the period of time while communication operations are carried out
and perform computational operations in parallel.

Figure 4.13: Non-overlapping implementation of heat equation: execution
pattern for a single thread for each time step

In our MPI implementation of 3D heat equation, each process receives mes-
sages from all neighbouring processes before proceeding with computation of new
values of the 3D subspace assigned to it, as in Figure 4.13. However, information
received from neighbouring processes is only necessary for computing new values
of points resting on the boundary of the subspace. Thus, if we regard computa-
tion of interior points and computation of boundary points as two different tasks,
the former may be executed concurrently with communication. Then, execution
time would obey a model similar to the following:

T = max(Tcomm, Tcomp interior) + Tcomp boundaries

which, at first sight, seems minor compared to the non-overlapping scheme, where
T = Tcomm + Tcomp. However, to achieve parallel execution of computation and
communication, re-engineering of our standard MPI implementation of 3D heat
equation is demanded and new performance-bounding issues occur and require
careful treatment to prevent them from degrading parallel performance.

4.4.2 Implementation Techniques for the overlapping
of communication and computation

4.4.2.1 Overlapping with non-blocking communication functions

Figure 4.14 illustrates how total tranfer time of a message for a point-to-
point communication of MPI depends on local operations and remote operations.
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Figure 4.14: Message transfer time for a point-to-point MPI communica-
tion operation

Pseudocode 4.3: Overlapping computation and communication by using
non-blocking functions
initiate_non_blocking_communication ()

do

compute ()

while (communication 6= done)

Sender’s and receiver’s overhead is time spent on local operations as buffering and
unbuffering a message to/from internal buffers and generating acknowledgement
for the correctness of the operation. Time of flight is what we earlier defined as
latency for modern interconnection networks and corresponds to the amount of
time it takes for the first bit of the message to reach the receiver’s side. The
actual transmission time is the factor twm of equation (4.6), i.e. the size of
message in words multiplied by the per-word transfer time, which depends on
the bandwidth of the link. If we sum up sender’s overhead, receiver’s overhead
and time of flight, we acquire the startup time ts of equation (4.6).

Transmission time through the interconnect turns to be the largest portion
of communication time while the number of processors increases. If blocking
communication functions are employed, all operations of the sending/receiving
processor are blocked until the message is transferred. If non-blocking communi-
cation functions are employed, processors are free to perform any computational
operations during transmission time. The latter is the key to achieve an over-
lapping scheme for computation and communication. Pseudocode 4.3 is a naive
implementation of this scheme. We refer the reader to [45], where this method
is analyzed extensively.

The presented scheme for overlapping has been very popular during ’90s and
’00s, when clusters were composed of uniprocessors connected via high perfor-
mance interconnection networks. Although it seems appealing and effective and
relatively simple to implement, it has some well concealed drawbacks. Firstly,
only a certain portion of communication time is actually overlapped, namely
transmission time through the interconnection network, as processors remain
busy during local operations. Modern protocols, as Ethernet, demand data
copies between the application and the kernel, which is taken up by the core
launching an MPI process and may prove time-consuming. Consequently, the
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Pseudocode 4.4: Overlapping computation and communication with
helper threading
#pragma omp parallel num_threads (2)

{

if (my_thread_ID =0)

communicate ()

else

compute ()

#pragma omp barrier

/*other operations */

}

target of overlapping total communication time with computation time is affected
by the protocols of the interconnection network and only high performance in-
terconnects may accomplish it. Also, operations as packing and unpacking data
into or from buffers before and after communication operations are de facto se-
rialized. For these and more reasons, in modern clusters, built from multicores,
the use of this method has subsided and been substituted by the method we will
describe in the following subsection.

4.4.2.2 Overlapping with helper threading

The technique outlined in this subsection involves the use of a hybrid MPI/OpenMP
model for the overlapping of computation and communication. As noted in [46],
such models are natural for modern clusters, made up of shared memory nodes,
where MPI can be used for inter-node communication and shared memory can be
exploited by OpenMP for intra-node communication. The motivation of applying
this particular model derives from the imbalance in performance of computation
and communication as we increase the number of threads: instead of assign-
ing both computation and communication on the same execution thread, we
divide threads into computation and communication threads. Shared memory
constructs allow each pair of computation and communication threads to run in
parallel on the same node of an SMP cluster in an asymmetric fashion. Thereby,
communication and computation are overlapped and, at the same time, a better
balance is achieved, as we exclude some threads from computational operations,
which scale up anyway, and devote them on the non-scaling communication op-
erations.

The model is implemented as following: each MPI process spawns two OpenMP
threads, one to undertake all operations relative to communication and one to
undertake computations. Pseudocode 4.4 is an overview of this general model.

There are two highlights concerning the model: a parallel region of two
OpenMP threads is initiated before sharing communication and computation
tasks among threads, and a barrier is added to correctly orchestrate the execution
of the threads.

The proposed scheme has certain advantages over the aforementioned over-
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lapping scheme with non-blocking communication functions. Firstly, packing
and unpacking operations and any other operation relevant to communication
is assigned to the communication thread and executes in parallel with computa-
tion, instead of being serialized. Moreover, local communication operations are
usually executed by one of the cores of the node, therefore total communication
time is overlapped with computation, enabling the model to execute efficiently
in commodity interconnects. On the other hand, this hybrid MPI/OpenMP
model needs extra consideration on the mapping topology of MPI processes and
OpenMP threads, such that intra-node memory traffic and OpenMP startup
overhead remain low. Another consideration is the fact that when utilizing p
processors, we actually overlap computation and communication for p/2 proces-
sors of a pure-MPI version. However, since communication time is dominating
overall execution time when employing a large number of processors, we expect
an improved overall performance with this scheme. Finally, synchronization
points are necessary in this model to preserve the semantics of the program.

4.4.3 Overlapping implementations of 3D heat equa-
tion

4.4.3.1 Overlapping with non-blocking communication functions

Figure 4.15: Overlapping implementation of heat equation with non-
blocking communication: execution pattern for a single thread for each
time step

Overlapping with non-blocking communication functions is pretty straight-
forward. We transform our standard MPI implementation by dividing computa-
tions to separate blocks of code: computations on the interior points are executed
in parallel with communication operations and computations on the boundary
points are executed on completion of halo exchanges. All threads of execution are
symmetric and their execution pattern, displayed in Figure 4.15, is only slightly
altered, compared to the standard MPI version and has minimal requirements
in programming effort. Pseudocode 4.5 implements this version.

4.4.3.2 Overlapping with helper threading

Implementing overlapping of computation and communication with the tech-
nique of helper threading on the 3D heat equation requires a careful approach
and extensive re-engineering, as a hybrid MPI/OpenMP model is employed. Fig-
ure 4.16 visualizes the execution pattern for a communication and a computation
thread, which are asymmetric in this case. While the computation thread exe-
cutes computations in the interior of the 3D subspace, the communication thread
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Pseudocode 4.5: Overlapping implementation of the 3D heat equation
with MPI and non-blocking communication functions
T=512

/* Initializations */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes

*/

/* Scattering the initial matrix held by the root process to all processes

*/

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

for (t=0;t<T;t++)

{

// Send and receive data

Pack_data (2D boundaries of myPrevious to buffers)

Isend(buffers to all neighbouring processes)

IRecv(buffers from all neighbouring processes)

// Computation of interior points

for (i=2;i<=myX -1;i++)

for (j=2;j<=myY -1;j++)

for (k=2;k<=myZ -1;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y-1][

z]

+myPrevious[x][y+1][z]+ myPrevious[x][y][z

-1]

+myPrevious[x][y][z+1]) /7;

Waitall(communications)

Unpack_data(buffers to halo layers of myPrevious)

// Computation of boundaries

compute_boundaries_of_subspace ()

swap(myCurrent ,myPrevious);

}
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performs packing,send/receive operations and unpacking. After their tasks are
completed, threads meet at a barrier, before one of them begins computation of
data points at the boundaries. Pseudocode 4.6 sketches the described implemen-
tation, with certain differentiations which are discussed below.

Figure 4.16: Overlapping implementation of heat equation with helper
threading: execution pattern for a pair of threads for each time step

An OpenMP parallel region of two threads is created once, embracing all
iteration loops, instead of creating a parallel region within the outer loop, to
avoid a multiple overhead of thread creation. It is thereby necessary to declare
loop variables as private and it has proven more efficient to declare the 3D ma-
trices involved in computations as firstprivate, namely private but initiated with
their values before entering the parallel region, instead of keeping them shared
among threads. We have assigned computation of boundaries to the communica-
tion thread, to exploit possible data reuse on a cache level among computation
of boundaries and the precedent unpacking operation. Since communication
thread does not enter the block of code where computation of boundaries is de-
fined, unless all communication operations have finished, there is no need for
synchronization of threads at this point. Before proceeding with swapping the
3D matrices, though, a barrier is explicitly declared to synchronize threads and
flush memory.

Code segments are assigned to threads according to their thread-id to achieve
an SPMD (Single Process, Multiple Data) model of work sharing. Though
OpenMP offers constructs for the parallel execution of code segments, as the
omp section construct, it is more efficient to preserve the mapping of each code
segment to a certain thread to exploit L1 instruction and data cache locality, i.e.
computation is always executed by the thread of id 0 and communication by the
thread of id 1.

Another important consideration has been the topology mapping of MPI
processes and OpenMP threads to processors of each node of our cluster, also
known as processor affinity. Given the architecture of each node, the most ef-
ficient pattern is to launch at most 2 MPI processes on each 4-core package,
so that spawned OpenMP threads run on cores of the same package and share
the L2 cache hierarchy, avoiding latency on accessing shared data. For the im-
plementation of this mapping, we have employed a system call of the Linux
operating system, used by its scheduler to bind processes onto specific cores, the
sched affinity system call, which given the id of a thread and an affinity mask,
determines on which core the process can run, according to the affinity mask.
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Pseudocode 4.6: Overlapping implementation of the 3D heat equation
with hybrid MPI/OpenMP
T=512

/* Initializations */

/* Set affinity on processors */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes

*/

/* Scattering the initial matrix held by the root process to all processes

*/

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

#pragma omp parallel private(t,i,j,k) firstprivate(myCurrent ,myPrevious)

num_threads (2)

{

for (t=0;t<T;t++)

{

if (my_thread_ID ==0) /* Computation thread */

{

// Computation of interior points

for (i=2;i<=myX -1;i++)

for (j=2;j<=myY -1;j++)

for (k=2;k<=myZ -1;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y

-1][z]

+myPrevious[x][y+1][z]+ myPrevious[x][y][

z-1]

+myPrevious[x][y][z+1]) /7;

}

else if (my_thread_ID ==1) /* Communication thread */

{

Pack_data (2D boundaries of myPrevious to buffers)

// Send and receive data

Isend(buffers to all neighbouring processes)

IRecv(buffers from all neighbouring processes)

Waitall(communications)

Unpack_data(buffers to halo layers of myPrevious)

}

if (my_thread_ID ==1)

{

// Computation of boundaries

compute_boundaries_of_subspace ()

}

#pragma omp barrier

swap(myCurrent ,myPrevious);

}

}
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4.4.4 Experimental results for communication/com-
putation overlapping

In this section, we present the experimental results from the execution of
our implementations of overlapping for the 3D heat equation. We have mea-
sured the execution time for three 3D spaces (128x128x128, 256x256x256 and
512x512x512) and for 512 iterations over time. Gigabit Ethernet is used as in-
terconnection network and we utilize progressively 1, 2, 4, 8, 16, 32, 64 and 128
cores (2 up to 128 cores for the helper threading version).

Figures 4.17, 4.18 and 4.19 exhibit the experimental results for our imple-
mentation where communication and computation are overlapped with the use
of non-blocking communication functions, compared to the results of the stan-
dard MPI parallel version of 3D heat equation. In general, this version suffers
from the same problems as the pure MPI version, but achieves a better speedup,
especially for large 3D spaces, confirming the theoretical model which assumes
performance improvement. If we were able to measure the implementation utiliz-
ing a high performance interconnection network, e.g. Myrinet, instead of Gigabit
Ethernet, we should see a much more notable increase in speedup.
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Figure 4.17: Comparative results of heat equation for overlapping com-
putation/communication with non-blocking communication functions for a
3D space 128x128x128
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Figure 4.18: Comparative results of heat equation for overlapping com-
putation/communication with non-blocking communication functions for a
3D space 256x256x256
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Figure 4.19: Comparative results of heat equation for overlapping compu-
tation/communication with helper threading for a 3D space 512x512x512

Figures 4.20, 4.21 and 4.22 illustrate the experimental results for our imple-
mentation of overlapping with hybrid MPI/OpenMP, or else helper threading.
We observe that for the smaller grids of 1283 and 2563 data points, the tech-
nique does not induce any remarkable improvement on performance and the
pure MPI implementation scales up better in most cases. We should note here
that we do not expect the helper threading implementation to perform better
than the pure MPI implementation for few cores, where computation time is still
large and communication time is not yet an overhead. Improvement is expected
mainly in those combinations of space size and number of utilized cores where
the MPI version’s communication and computation are almost equal; referring
to the experimental results of section 3.2.4 , this proportion occurs on 16 or 32
cores. Indeed, measurements on the helper threading version verify each superi-
ority compared to the standard MPI version for 16 and 32 cores. Performance
measurements on the 512 × 512 × 512 space are encouraging for the success of
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overlapping with helper threading as an optimization. A total speedup of 39.9 is
observed on 128 cores, corresponding to an improvement of about 20% against
the pure MPI version. Consequently, helper threading can be considered as a
promising optimizing technique for parallel applications with extensive commu-
nication operations on modern clusters.
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Figure 4.20: Comparative results of heat equation for overlapping compu-
tation/communication with helper threading for a 3D space 128x128x128
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Figure 4.21: Comparative results of heat equation for overlapping compu-
tation/communication with helper threading for a 3D space 256x256x256
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Figure 4.22: Comparative results of heat equation for overlapping compu-
tation/communication with helper threading for a 3D space 512x512x512
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Chapter 5

Towards an efficient parallel
implementation of 3D heat
equation on modern clusters:
blending optimization
techniques

Up to this point, we have performed an extensive analysis on the paralleliza-
tion of 3D heat equation, factors limiting parallel performance and proposed
optimization techniques. In this chapter, we discuss the potential of combining
the most successful optimization techniques, with respect to the characteristics
of modern clusters, aiming to overcome performance limitations by exploiting ca-
pabilities of modern clusters to the highest possible degree. As a conclusion, we
present the experimental results of our attempt, along with an overall evaluation
of all parallel versions of 3D heat equation developed for the present work.

5.1 Motivation

In the year 2012, supercomputers appearing on top of the Top500 [47] list
are build up of hundreds of thousands of processors with some Petaflop/s per-
formance. Scientific parallel applications, intended for running on such powerful
systems, should be designed and engineered to scale on these machines. Moti-
vated by this demand, we examine the potential of engineering a parallel version
of the 3D heat equation, which is a paradigm of stencil computations, capable
of scaling on a supercomputer of petaflop computational power.

Hitherto, the obstacle for achieving performance of the parallel 3D heat equa-
tion has been communication overhead, caused by the communication pattern
of the application and the limited bandwidth of the interconnection network.
We have presented MPI message compression and computation/communication
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overlapping, as performance optimizations, in an effort to overcome communica-
tion overhead. Experiments have proven the efficiency of these techniques on the
parallel implementation. Looking further ahead, we are summoned to pick the
optimization techniques that would best perform on a supercomputer, towards
implementing an efficient parallel program.

Compression of MPI messages is certainly a successful technique, beating the
problem of communication overhead at its root: by reducing message size, con-
tention of network bandwidth is prevented and communication time decreases,
resulting to an improved speedup of the parallel application. There is a better
potential of applying compression to MPI messages on modern clusters, as their
computational power would reduce compression time, which adds up to total
execution time, thus producing an effective parallel application.

Overlapping of computation and communication does not minimize commu-
nication time per se, but successfully mitigates its effect on total execution time
and speedup. Both presented schemes for overlapping have demonstrated satis-
factory results, though the efficiency of each scheme depends on conditions: the
overlapping scheme utilizing non-blocking communication functions is expected
to execute more efficiently on clusters with a high performance interconnec-
tion network, while the hybrid MPI/OpenMP overlapping scheme is expected
to execute more efficiently when more cores are available to undertake execu-
tion of computation and communication individually. Under these constraints
and with respect to the architecture of modern clusters, we opt for the hybrid
MPI/OpenMP scheme, as number of cores is over-sufficient for the implemen-
tation and no restrictions are posed on the performance of the interconnection
network.

The idea we present in this chapter is the implementation of a hybrid MPI/OpenMP
version of the 3D heat equation, which incorporates overlapping and compres-
sion of messages with the FPC compression algorithm. Apart from studying
each technique distinctively and ascertaining their optimizing character, we pre-
sume that compressing messages benefits the efficiency of overlapping, since the
proportion of communication time to computation time falls with compression,
enabling a more efficient coverage through overlapping. Details on the imple-
mentation of the combinatorial optimizing scheme follow in the next section.

5.2 Implementing parallel 3D heat equation

with message compression and compu-

tation/communication overlapping with

helper threading

To implement parallel 3D heat equation with the suggested blending of opti-
mization techniques, we have integrated message compression with FPC into the
parallel implementation which overlaps computation and communication with
helper threading, with minor changes. Compression and decompression of mes-
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Pseudocode 5.1: Overlapping implementation of the 3D heat equation
with hybrid MPI/OpenMP and FPC comrpession
T=512

/* Initializations */

/* Set affinity on processors */

/* Creation of cartesian virtual topology -3D grid of Px x Py x Pz processes */

/* Scattering the initial matrix held by the root process to all processes */

/* Defining ranks of neighbouring processes */

/* End of initializations */

/* Computational kernel -executed by each process */

#pragma omp parallel private(t,i,j,k) firstprivate(myCurrent ,myPrevious) num_threads (2)

{

for (t=0;t<T;t++)

{

if (my_thread_ID ==0) /* Computation thread */

{

// Computation of interior points

for (i=2;i<=myX -1;i++)

for (j=2;j<=myY -1;j++)

for (k=2;k<=myZ -1;k++)

myCurrent[x][y][z]=( myPrevious[x][y][z]+ myPrevious[x-1][y][z]

+myPrevious[x+1][y][z]+ myPrevious[x][y-1][z]

+myPrevious[x][y+1][z]+ myPrevious[x][y][z-1]

+myPrevious[x][y][z+1]) /7;

}

else if (my_thread_ID ==1) /* Communication thread */

{

Pack_data (2D boundaries of myPrevious to buffers of doubles)

FPC_Compress(buffers to compressed buffers)

Isend(compressed buffers to all neighbouring processes)

IRecv(compressed buffers from all neighbouring processes)

Waitall(communications)

FPC_Decompress(compressed buffers to buffers of doubles)

Unpack_data(buffers of doubles to halo layers of myPrevious)

}

if (my_thread_ID ==1)

{

// Computation of boundaries

compute_boundaries_of_subspace ()

}

#pragma omp barrier

swap(myCurrent ,myPrevious);

}

}

sages is assigned to the communication thread and compressed messages are
sent and received instead of the original packed buffers. The implementation is
described in Pseudocode 5.1.

The system call sched affinity is employed in this implementation as well, to
assure pinning of MPI processes and OpenMP threads to the desired processors.

5.3 Overall experimental results

In this section, we present the experimental results of our proposed imple-
mentation which combines overlapping and compression, in comparison to the
standard MPI version, the MPI version with FPC compression and the two par-
allel implementations with overlapping. As usual, we have experiment on three
different grids of sizes 128 × 128 × 128, 256 × 256 × 256 and 512 × 512 × 512,
using Gigabit Ethernet and progressively increasing the numbers of cores from
2 up to 128.

Figures 5.1, 5.2 and 5.3 depict the overall experimental results for the differ-
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Figure 5.1: Overall results of the parallel versions of the 3D heat equation
for a 3D space 128x128x128
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Figure 5.2: Overall results of the parallel versions of the 3D heat equation
for a 3D space 256x256x256
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Figure 5.3: Overall results of the parallel versions of the 3D heat equation
for a 3D space 512x512x512
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ent 3D spaces. For the smaller 3D space of 1283 data points, the best performing
version is FPC-MPI version, namely the pure MPI version with compression.
This result is expected for such a small 3D space, where computation time is
very small compared to communication time and overlapping schemes fail to ef-
ficiently conceal a portion of communication time, while compression succeeds to
reduce communication time and induce a better speedup compared to the pure
MPI version. For the 2563 3D space, the best speedup is achieved from our par-
allel version combining compression and overlapping, verifying the predictions
on the success of the method. Overlapping version with non-blocking communi-
cation functions and helper threading follow in the ranking of best performing
optimization schemes. The largest grid of 5123 also verifies the superiority of the
technique of combining compression and overlapping, compared to the standard
MPI version or the implementation of single optimizing techniques. Follow-
ing up, the version of MPI with FPC compression and the version of hybrid
MPI/OpenMP with overlapping demonstrate an improvement in execution time
and speedup against the standard MPI implementation. Since the 5123 grid is a
representative size problem for scientific applications, we rely on the respective
experimental results to rank the performance of the various versions developed.
We are now in the position to recognize that both message compression and over-
lapping communication and computation with helper threading deal efficiently
with the problem of communication overhead appearing in the standard MPI
implementation of the 3D heat equation and their combination paves way to
parallel implementations that scale up as the number of utilized cores increases.
Figure 5.4 and Table 5.1 summarize speedup for the various versions on 128
cores for all problem sizes. Improvement for the 5123 problem size on 128 cores
reaches 28% over the standard MPI implementation.

Grid
Size

Speedup Best per-
forming
version

MPI-
STD

MPI-
FPC

OVRLP-
NONBLOCK-
MPI

OVRLP-
HELPTHREAD-
HYBRID

OVRLP-
FPC-
HYBRID

1283 44 54.5 44.2 30.9 21.6 MPI-FPC
2563 46.7 47.9 49.7 47.6 52.2 OVRLP-

FPC-
HYBRID

5123 34.2 40.1 38 39.9 47.4 OVRLP-
FPC-
HYBRID

Table 5.1: Speedup results for all parallel version of 3D heat equation on
128 cores
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Figure 5.4: Speedup results for all parallel versions of 3D heat equation
on 128 cores
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Chapter 6

Conclusions and Future Work

In this diploma thesis, we have examined the behaviour of a set of optimiza-
tions techniques on the parallel implementation of the 3D heat equation. The
3D heat equation, as a member of the family of PDE solvers with stencil com-
putations, has a “difficult” memory access pattern, which degrades parallel per-
formance on shared memory models, and its parallel implementation with MPI
has a “halo” communication pattern: each process exchanges messages with all
its neighbours. Under these conditions, it was necessary to explore optimization
techniques that fit the computation and communication pattern of the problem
and provide efficient parallel performance.

Firstly, we evaluated the performance of the baseline OpenMP, MPI and
hybrid MPI/OpenMP parallel implementation of the problem. Shared memory
parallelization revealed that the application suffers from multiple memory ac-
cesses, which saturate the bandwidth of the memory bus. The same scheme
holds for the traditional hybrid MPI/OpenMP model. Message passing paral-
lelization, on the other hand, suffers from communication overhead, as the halo
communication pattern invokes bulk message transferring via the interconnec-
tion network, which is easily contented with the increase of utilized processors.
Consequently, as the number of utilized processors scales up, communication
time is the largest portion of the total execution time.

To overcome the latency arising from multiple memory accesses, we tested the
potential of applying 2D loop tiling on our OpenMP and hybrid MPI/OpenMP
parallel implementations. However, the proposed scheme did not demonstrate
any positive results on its application to the serial algorithm, thus we dropped
it.

To minimize communication time of the MPI application, our primal target
was to minimize the message size by means of compression. We experimented
with several compression algorithms, in order to estimate their performance on
double precision data, in terms of compression and decompression time and com-
pression ratio. An algorithm oriented in compressing double precision data, the
FPC algorithm, was chosen and integrated into our MPI parallel implementa-
tion, achieving a great improvement in communication time. Total execution
time was also reduced, but compression and decompression time add up some
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extra overhead to the application, restraining the overall improvement. Never-
theless, speedup increased in all cases we tested.

Overlapping of computation and communication is a well-known optimizing
scheme which aims at exploiting the idle time of processors occurring due to
lack of computation data, while communication operations take place. The MPI
parallel 3D heat equation requires data exchanges for the computation of the
boundaries on each 3D subdomain held by a process. Computation of the interior
points is free to execute in parallel with communication operations, if resources
are available. The first overlapping scheme that we implemented employs non-
blocking MPI communication functions to allows computation of interior points
to execute while the processor waits for communication operations to complete.
This implementation exhibited some encouraging results, though it is expected to
perform even better on a high performance interconnection network, as Myrinet.
The second overlapping scheme recruits two OpenMP threads per MPI process to
assign them the tasks of computation and communication, capable of executing
in parallel. A considerable improvement has been observed in the execution
results of the latter technique, although it is more resource consuming compared
to the previously discussed implementations and the high communication to
computation time ratio impedes a fine overlapping.

Considering the features of modern clusters, built up by thousands of cores
of high computational power, we estimated that, regarding all optimization tech-
niques tested, compression of messages and overlapping with helper threading
are the most promising and viable for the improvement of efficiency of parallel
programs. Since we managed to reduce the ratio of communication time to com-
putation time with the utilization of compression of MPI messages, we presumed
that, if we apply the overlapping scheme alongside with compression, we shall see
a highly efficient parallel implementation of the 3D heat equation, able to scale
up to hundreds of cores, overcoming communication overhead. We implemented
the proposed scheme and the experimental results verified our assumption and
demonstrated a total speedup of 47.4 on a 5123 grid and an improvement of 28%
compared to the baseline MPI version.

As a continuation of the present work, we believe that experiments on larger
parallel systems should be conducted to verify and qualify the success of the com-
bination of compression of MPI messages and overlapping with helper threading
as an optimization technique. Moreover, the technique should be evaluated on
a suite of variant scientific parallel applications, in order to establish our thesis
that it acts beneficially on communication overhead. Finally, it is necessary to
experiment with compression algorithms not evaluated in the present work, in
the context of mining a compression algorithm of low execution time and good
compression ratio, expedient for integration to MPI applications.
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