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PROLOGUE

The advances in computer graphics (introduction of new representation tools like
NURBS, coons, T-splines) have recently triggered the development of the
isogeometric method, which unifies the fields of CAD (Computer Aided Design) and
FEA (Finite Element Analysis). After getting insight into the method and its
capabilities, many analysts got interested in integrating it to the existing finite
element computer programs. This is the case with our supervisor Prof. Koumousis
Vlassis as well. One of Prof Koumousis’ main interests is the Bouc — Wen hysteresis
model, which he and his Phd. student Triantafyllou S. have already used into FEA.
Soon after isogeometric analysis and NURBS got widely known, our supervisor
wondered how efficient it might be integrating Bouc — Wen with the isogeometric
analysis. The idea was assigned to us as a topic for a thesis.

Hope you enjoy the journey through this knowledge as we did,

Evangelos Katsavrias & Anastasia Katsavria
vageng@gmail.com, anast.katsavria@hotmail.com

[IPOAOTOX

OL g€elielg otov xwpo Twv ypadlkwy (elcaywyn VEWV gpyaleiwv avamapaotacng
onwc ta NURBS, ta coons kat ta T-splines) mpoodata nupoddtnoav tnv avamtuén
NG LOOYEWWUETPLKNG HeEBOSou, n omoio evwvel ta nedia tou CAD (oxediaon pe tnv
BonBewa tou umoloylotr) kot TG FEA (avaluon e xprnon TEMEPACUEVWV
otolxelwv). MoAAol avaAuTeg, xovtag AABEL yvwon TNG LOOYEWUETPLKAG LeBOSou Kat
Twv duvatotATwy TNC, evdladEpOnkav yia T SuvatotNTa EVOWUATWON TNG OTOUC
Nén uMAPXOVTO TIPOYPALUATA TIEMEPACUEVWY OTOLXELWV. Evag €€ autwv eival kat o
eTUPAENWV KaBnyntng poag, Kovpouong BAaoong. Eva amnod ta Baoika evdladpEpovta
Tou KaB. Koupouon eival Kot To UCTEPNTLKO OVTEAO TO OToio €xelL NN edapuOoEL
o€ FEA pe tov Ap. TpravtaduAlou ZaBpa mou eixe umo tnv enifAedn tou. Zuvtopa
adoU £ylve EUPEWG YVWOTN N LooyewWUETPLKA HEB0SOG kal Ta NURBS, diepwtibnke o
ETUPAEMWVY KOONYNTAG HOC KATA TTOCO Ol VEEC AUTEC SUVATOTNTEG £lval ATOSOTIKEG
otav xpnotluomnotnBouv oe pila avaluon pe xprion tou povtédou Bouc — Wen. Auto
QTOTEAECE €VAUCUA YlLO TOV OPLORO €VOG Ofpatog OSUTAWUATIKAG €pyoaoiag
LETATTTUXLAKOU, TO OTTOLO KOl MO avVaTEONKE.

Euxouaote yla €va euxaploto tafidt péoa otn yvwon oav To SIKO Hag,
Katoafplag Evayyelog & KatoaBpla Avactaoia

vageng@gmail.com, anastas86@hotmail.com Page |3



SUMMARY

The aim of this thesis is to study the efficiency of the isogeometric analysis method
combined with the material nonlinear analysis by the hysteresis model Bouc — Wen.
Three main parts have been created; the first containing computational geometry,
the second the Isogeometric analysis method and the third the combination of the
Isogeometric analysis method with the Bouc-Wen hysteresis model.

In the first part, the NURBS basis functions are gradually build. Firstly, the
importance of interpolation and approximation methods in computer graphics and
computational geometry is stated. Furthermore, it is pointed out the difference
between them; to this end, we present some interpolatory and some approximatory
curves. The presentation of the latter curves starts from the Bernstein polynomials,
which set a basis for the construction of Bézier curves (rational or non). A number of
these curves are joined one another to form a B-Spline (rational or non,
respectively). While studying the construction method of all these approximation
curves, the CAGD routines and plotting routines was developed in Matlab, through
which curves, as well as surfaces and solids, and the Kt (k < p, where p is the
degree) derivative at any point of the domain can be constructed and plotted. To this
a very helpful reference is (Les Piegel, Wayne Tiller, 1997). Therefore, taking one
step at a time, the construction of NURBS basis functions and a full library of plotting
routines was reached.

In the second part, the reader is provided with important mathematical background
and theory of the finite elements method. Once the necessary mathematical
background is presented, the basic features of the geometric basis functions are
analyzed to relate them with the known theory. Afterwards, a number of differences
between the geometric basis functions and the classical basis functions (Lagrange)
are discussed. Then, the kinematic matrices for the plane stress problem are formed
and presented in two examples of linear plane stress problems. Additionally, a
research on the numerical integration of the geometric basis functions by Legendre
polynomials is conducted. Finally, parametric analyses were done by hp-refinement,
so as to verify the soundness of the code we developed.

In the last part of this thesis the isogeometric analysis method is combined with the
hysteresis model Bouc — Wen. The reader may gain some general information on the
phenomenon of hysteresis by reading the introduction. Afterwards, certain parts of
the doctoral thesis of Triantafyllou Savvas are attached about the mathematical
modeling of Bouc-Wen hysteresis model in force terms and in the complete stress
space. Then, it is shown that the generalized Bouc-Wen model in the complete stress
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space is compatible with the Isogeometric analysis. The main matrices are developed
for such an analysis and two applications are presented under monotonic and cyclic
load cases. At the end of the part, the results obtained from a multivariate research
on the efficiency of the isogeometric analysis method combined with the Bouc —
Wen hysteresis model are attached with certain conclusions.
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[IEPIAHWH

JKOTIOC QUTAG TNG SUTAWHOTIKAG €pyaoiag ival n HeAETN TNG AMoSOTIKOTNTAC TNG
HEBOBOU LOOYEWUETPLKNAG avaluong otav cuvdualetal Pe MAAOTIKA avAAuon UE TO
UOTEPNTIKO povteAo Bouc — Wen. Tpila eival ta kupla pépn mou amapti{ouv tnv
epyaocio. To TPWTO HEPOG, TEPLEXEL TNV Tapoucioon Twv peBOdwv otnv
UTTOAOYLOTIKN) YEWUETPLa, To SeUTEPO TN HEODOSO LOOYEWUETPLKAG OVAAUONC KAl TO
Tpito Tov ouvSUAOUO TOU UOTEPNTLKOU OVTEAOU HIE TNV LOOYEWMETPLKA avAAuon.

210 MPWTO HEPOG, Kataokevualovral otadlakd ta NURBS. MNpwta, cnUelwVETAL TTOCO
ONUAVTIKEC €lval ol pEBodol tng mapepBOARG KOl TNG TPOCEYYLONG oTa ypadka
UTTOAOYLOTWV KOl TNV UTIOAOYLOTIKN) YewHETpla. EmumAéov, toviletar n Siadopd
peTall Twv Vo peBOdwv' Tpog authv TNV KatevBuvon, mapatiBevial UEPLKES
KOUTIUAEC TtapeUPOANG KAl LEPLKEG TIPOCEYYLONG. H mopoucioon Twv TEAeUTALWV
KOUMUAWY €eklva pe Ta MOAUwvVUUa Bernstein, ta omola amoteAolv Baon yla tnv
KOTQOKEUN TWV KAUTUAwv Bézier (pntwv i un). Evwvovtag 0o 1 meploootepeg
TETOLEG KOMUMUAEG TPOKUTTEL Mia KaumuAn B-Spline (pnti 1 un, avtiotowa).
Toautoxpova e TNV UEAETN TwV HEBOSWV KATAOKEUNC OAWV OUTWV TWV KOUTTUAWV
pooéyylong, avantuxdnkav kwdikeg otn Matlab mou unoAoyilouv Kal eKTUTTWVOUV
KQUTIUAEG, eETLDAVELEG KOL OTEPEQ, KABWG Kot TNV K-00TN (kK < p, O1ou p lval n tagn
NG TIOAUWVUMLKAG ouvapTnong) mapdywyo o€ omolodnAmote onueio tou mediou
OPLOHOU. JUVENMWCE, KAVOVTOG £va Brua tn ¢opd, €metelXOn n KATAOKEUN HLOG
BBAL0ONKNG amd kwdikeg Matlab yla kataokeun Kol eKTUTIWON TWV CUVAPTACEWV
Baong B-Splines (pntwv NURBS kal pin pntwv) Kot TwV oVTioTOLX WV YEWUETPLWV.

Jto 8eUTEpPO UEPOG, TAPOATIOEVTOL OTOV QVAyVWOTN ONUAVIIKA HEPN OO TO
poOnuatiko untoBabpo Kal tn Bewpla TWV MEMEPACUEVWY OTOLXELWVY. TN CUVEXELQ,
yivetal pla mpoondBela cuvdeong TnG Bewplag TWV MEMEPATUEVWY OTOLXELWV UE TLG
VEWUETPLKEG ouvaptnoelg Baong. Emetta, oxoAldletatl éva mARBog anod Sadopeg
Tou eudavilouv oL YEWUETPLKEG Kal Ol CUUPATIKEC ouvapTtnoelg Baong otn uEBodo
TWV TIEMEPOOUEVWY OTOLXELWV. TN OUVEXELX, KOTOOKEUA{OUMUE TO KLVNHOTLKA
UNTpWa yla To MPOoPAnua eninedng évtaong kat napouctalovpe dUo nmapadeiypata
YPOUMIKWY TipoBAnuatwy eminedng éviaong. Akoua, SiepeuvnBnke n pEBodog
opLOUNTIKAC OAOKANPWONC LE TTOAUWVU A Legendre Twv YEWUETPLKWY CUVOPTHOEWY
Baong. TEAog, £ylvav MOPAUETPLKEG AVOAUOELG PE TIUKVWON TNE SlakpLtomoinong Kat
avénon tou BaBUoU CUVEXELOG TWV YEWUETPLKWY CUVOPTHOEWY OXNHOTOG, WOTE Vol
e€akplpwooupe TNV opOOTNTA TOU KWAELKA TTOU AVATTTUEALLE.

JTO TEAEUTOLO HEPOG TNE EPYACLAG QUTHC N LOOYEWUETPLKA avaluon cuvdualetal Ue
TO UOTEPNTIKO HOVTEAO Bouc — Wen. O avayvwotng Umopel va evnuepwBel yla to
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dalvOUEVO TNG UOCTEPNONG OO TNV EloAywyn. 2Tn OUVEXElD akoAouBouv
anoomnaocpata t¢ Sidaktopikn) SatpPric tou TplavtaduAlou ZaBBa yia tnVv
paBnuatik povtehomoinon Tou HOVIEAOU uotépnong Bouc-Wen oe emimedo
SUVAUEWV Kal 0TOV MARPEG XWPO TwV TACEWV. AKOAOUBWG YiveTaL N TEKUNPLWON TG
VOULUOTNTAC TNG £DAPUOYAG TOU YEVIKEUUEVOU UOTEPNTIKOU HoVTtéEAou Bouc-Wen
OTNV LOOYEWMETPLKN avaAuon. Avamtlooovtol Ta Baokd UNTPWA YLa Lol TETOL
avaAuon kot mopouctalovtal £hOPUOYEG OE HMOVOTOVLKA Kol OVAKUKALLOUEVN
doption. Zto TEAOG, yivovtol TMOPOUETPLKEG OLEPEUVACELS yla TNV amoddoon tng
neBodou Kat e€ayovtol CUUTIEPACHATAL.
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WORK DIVISION

The contents of our thesis extend to many fields that are connected, this implies that
both authors need to understand everything and communicate their opinion.
Furthermore, a distribution of the entire effort is needed in order to enhance the
overall treatment of the subject within the given time span for a postgraduate thesis.
This was arranged as follows:

As far as the first part is concerned, the research through the bibliography and the
writing was made by Anastasia under the guidelines of Evangelos. The text of the
second part was written by Evangelos with the support of Anastasia in certain cases.
The writing of the third part was done by Evangelos exclusively. Now turning to the
task of code writing, the programming of the basis functions and the main routines
in CAGD methods was made by both students and achieved a full library of functions
constructing, both rational and non, Bézier and B-Splines basis functions. The curve,
surface and solid plotters made by Evangelos. Moreover, Anastasia tested the code
and provided Evangelos with any necessary feedback in order to eliminate any errors
within the codes. The codes of the Isogeometric analysis, with their post-processors,
for the linear and non-linear plane stress-strain problems were written by Evangelos.
Anastasia contributed to the analysis of examples and all the parametric analyses in
this work. All the subjects was examined and verified by both the students.
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1 INTRODUCTION

The term computational geometry refers to a branch of computer science which is
devoted to the study of algorithms which can be stated in terms of geometry. The
main impetus for the development of computational geometry as a discipline was
progress in computer graphics and computer-aided design and manufacturing
(CAD/CAM), but many problems in computational geometry are classical in nature,
and may come from mathematical visualization.

Other important applications of computational geometry include robotics (motion
planning and visibility problems), geographic information systems (GIS) (geometrical
location and search, route planning), integrated circuit design (IC geometry design
and verification), computer-aided engineering (CAE) (mesh generation and analysis),
computer vision (3D reconstruction).

The main branches of computational geometry are:

e Combinatorial computational geometry, also called algorithmic geometry,
which deals with geometric objects as discrete entities.

e Numerical computational geometry, also called machine geometry,
computer-aided geometric design (CAGD), or geometric modelling, which
deals primarily with representing real-world objects in forms suitable for
computer computations in CAD/CAM systems. This branch may be seen as a
further development of descriptive geometry and is often considered a
branch of computer graphics or CAD. The term "computational geometry" in
this meaning has been in use since 1971.

Within the context of this thesis, the advances in the numerical computational
geometry are being used. The most important instruments here are parametric
curves and parametric surfaces, such as Bezier curves, spline curves and surfaces.
Application areas include shipbuilding, aircraft, and automotive industries. The
modern ubiquity and power of computers means that even perfume bottles and
shampoo dispensers are designed using techniques unheard of by shipbuilders of
1960s. Let’s take a short trip in time.

The design of complex curved shapes has always posed a problem, and the
technology employed has changed radically over the last century. In the past, curves
were generated using mechanical devices such as sweeps (large French curves) or by
bending thin laths of metal or wood round pegs or ducks on the loft floor and were
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drawn by tracing chalk round the laths or scribing on sheets of aluminium. The laths
assumed a shape which was both aesthetically pleasing and mechanically sound,
being the curve of minimum strain energy, and they were known as splines, an East
Anglian dialect word.

In lofting, the shape of a design was represented by a physical artifact, the actual
layout, and this was vulnerable to damage. It is said that one of the motivations for a
mathematical description came from the realization in the Second World War that a
bomb near the loft could disrupt or destroy the master definition of an aircraft. The
mathematical method adopted was conic lofting: conic sections were well
established mathematically so that geometric constructions for drafting the curves
from numerical data or for designing the curves ab initio to fit prescribed criteria
were available. Several textbooks describing these techniques appeared in the 1940s
and make fascinating reading today.

During the same period, the notion of the mathematical spline was introduced by
Schoenberg, largely for the actuarial fitting of life tables. It was derived from the
physical spline by observing that, for small deflections, the shape assumed by the
physical spline was a piecewise cubic polynomial. In the early 1960s the limitations of
conic lofting became apparent in the civil aircraft industry, and mathematical splines
were introduced into lofting by Ferguson at Boeing and later by Sabin at the British
Aircraft Corporation, using the interpolatory basis. They made one significant change
to Schoenberg's approach: the splines were vector — valued rather than scalar —
valued. This was crucial in two senses: it permitted curves and surfaces to be defined
in an axis-independent manner, and it allowed curves to be multi — valued, even
closed, and to have slopes of 90°. Unfortunately, it also meant that the spline world
split into two camps with the approximation theory community concentrating on
functional approximation and the geometric design community on shape
approximation, a totally different problem still today deficient in mathematical
underpinnings.

With splines back in the repertoire of the geometric modeller, the next important
development lay in the use of vector — valued Bernstein polynomials by Bezier at
Renault and de Casteljau at Citréen. From Bézier curves to B-splines was a natural
progression, B-splines being the piecewise analog of the Bernstein polynomials.
These techniques, which rely on approximation, have the important property,
missing in any interpolation method, of guaranteeing the construction of smooth
shapes. This is called variation diminishing property and is crucial to the
approximation and design of shapes and to the confidence of users.

The variation diminishing property is particularly striking when compared with the
behaviour of standard Lagrange polynomials. An example is illustrated in Figure 1.1
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and Figure 1.3, where eight data points in R? are being approximated by NURBS and
interpolated using Lagrange functions, respectively. The variation diminishing
property leads the B-spline curves in Figure 1.1 to be monotone, a property that
proves to be useful in analysis. The difference between oscillatory Figure 1.2 and the
monotone Figure 1.1 is in whether we have interpreted the data as nodes in classical
finite element sense, or as control points. It is the pointwise positivity and the non-

interpolatory nature of the B-spline basis that makes this latter interpretation
possible.

Rational ESpline Curves

Figure 1.1 NURBS of degrees p=3 (the inner curve- blue coloured), p=5 (the middle curve - red
coloured), p=7 (the outer curve - green coloured) approximating discontinuous data

Figure 1.2 Interpolation of the same discontinuous data as in Figure 1.1 using Lagrange functions
and a uniform knot vector
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Figure 1.3 Interpolation of the same discontinuous data as in Figure 1.1 using Lagrange functions
and a non-uniform knot vector

These geometry entities hold some more properties which are very interesting and
useful for the design. Firstly, a pth order basis function is C°* continuous. Another
important property is that of the convex hull, which sets bounds to the range of the
geometric object to be constructed. Moreover, part of the power of B-splines is the
ability to intuitively change their shape by adjusting the control points Last but not
least, B-splines could be refined through knot insertion. All these properties are
discussed in the oncoming text.
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2 CURVES AND SURFACES BASICS

2.1 IMpLICIT AND PARAMETRIC FORMS (LES PIEGEL, WAYNE
TILLER, 1997)

The two most common methods of representing curves and surfaces in geometric
modelling are implicit equations and parametric functions. Among the various
methods which curves and surfaces in geometric modelling could be represented by,
implicit equations and parametric functions appear to be the most common.

The implicit equation of a curve lying in the xy plane has the form f(x,y) = 0. This
equation describes an implicit relation between the x and y coordinates of the points
lying on the curve. For a given curve the equation is unique up to a multiplicative
constant. An example is the circle of unit radius centred at the origin, specified by
the equation f(x,y) = x2 + y? — 1 = 0 (Figure 2.1).

In parametric form, each of the coordinates of a point on the curve is represented
separately as an explicit function of an independent parameter

Eq. 2.1
Cw) = (x(w),y(w) a<u<b

Thus, C(u) is a vector-valued function of the independent variable, u. Although the
interval [a, b] is arbitrary it is usually normalized to [0, 1]. The first quadrant of the
circle shown in Figure 2.1 is defined by the parametric functions

Eq. 2.2
x(u) = cos(u)

Eq. 2.3

yw) = sin(u) 0<u<

N[ X

Settingt = tan(u/z), one can derive the alternate representation

Eq. 2.4
(t)—l_tz
S
Eq. 2.5
o = 2t -1
W= 15 -

Thus, the parametric representation of a curve is not unique.



D

Radius =1

Figure 2.1 A circle of radius 1, centred at the origin

It is instructive to think of C(u) = (x(u), y(u)) as the path traced out by a particle
as a function of time; u is the time variable, and [a, b] is the time interval. The first
and second derivatives of C(u) are the velocity and acceleration of the particle,
respectively. Differentiating Eq. 2.2 and Eq. 2.3 once yields the velocity functions

Eqg. 2.6

Cw) = ('(w),y' (W) = (= sin(u), cos(u))

Eq. 2.7

-4t 2(1-— t2)>

c'(t) = (x’(t),y’(t)) = <(1 ¥ t2)2' (1 + t2)2

Notice that the magnitude of the velocity vector, C’'(u), is a constant

Eq. 2.8

IC'(w)| = /sin? (W) + cos? (u) = 1

i.e., the direction of the particle is changing with time, but its speed is constant. This
is referred to as a uniform parameterization. Substituting t = 0 and t = 1 into C'(t)
yields C'(0) = (0,2) and C'(1) = (-1,0), i.e., the particle's starting speed is twice its
ending speed (Figure 2.2).
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Figure 2.2 Velocity vectors C'(u) and C'(t) atu,t=0,and 1

A surface is defined by an implicit equation of the form f(x, y, z) = 0. An example is
the sphere of unit radius centred at the origin, shown in Figure 2.3 and specified by
the equation x2+ y?+ z2- 1 = 0. A parametric representation (not unique) of the
same sphere is given by S(u, v) = (x(u, v), y(u,v), z(u, v)), where

Eq. 2.9
x(u,v) = sin(u)cos(v)
y(u,v) = sin(u) sin(v)

z(u,v) = cos(u) 0 < u <m, 0<v <2m

Notice that two parameters are required to define a surface. Holding u fixed and
varying v generates the latitudinal lines of the sphere; holding v fixed and varying u
generates the longitudinal lines.

Figure 2.3 A sphere of radius 1, centred at the origin

Denote the partial derivatives of S(u, v)by
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Su(uw,v) = (xy W),y (W,v),2,(w,v)) and
S,(u,v) = (x, (u,v),y, (W,v),z,(u,v)), ie., the velocities along latitudinal and
longitudinal lines. At any point on the surface where the vector cross product
Sy X S, does not vanish, the unit normal vector, N, is given by (Figure 2.4)

Eq. 2.10

_ Su X Sv
"~ |Su x Sv |

The existence of a normal vector at a point, and the corresponding tangent plane, is
a geometric property of the surface independent of the parameterization. Different
parameterizations give different partial derivatives, but Eq. 2.10 always yields N
provided the denominator does not vanish. From Eq. 2.9 it can be seen that for
allv, 0 < v < 2m, S,(0,v) = S,(r,v) = 0, that is, S, vanishes at the north
and south poles of the sphere. Clearly, normal vectors do exist at the two poles, but
under this parameterization Eq. 2.10 cannot be used to compute them.

Figure 2.4 Partial derivative and unit normal vectors of S(u,v)

Of the implicit and parametric forms, it is difficult to maintain that one is always
more appropriate than the other. Both have their advantages and disadvantages.
Successful geometric modelling is done using both techniques. A comparison of the
two methods follows:

e By adding a z coordinate, the parametric method is easily extended to
represent arbitrary curves in three-dimensional space,
C(uw) = (x(u),y(u),z(u)), the implicit form only specifies curves in the xy
(or xz or yz) plane;

e [t is cumbersome to represent bounded curve segments (or surface patches)
with the implicit form. However, boundedness is built into the parametric
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form through the bounds on the parameter interval. On the other hand,
unbounded geometry (e.g., a simple straight line given by f(x,y) = ax +
by + ¢ = 0)is difficult to implement using parametric geometry;

e Parametric curves possess a natural direction of traversal (from C(a) to C(b)
ifa < u < b); implicit curves do not. Hence, it is easy to generate ordered
sequences of points along a parametric curve. A similar statement holds for
generating meshes of points on surfaces;

e The parametric form is more natural for designing and representing shape in
a computer. The coefficients of many parametric functions, e.g., Bezier and B-
spline, possess considerable geometric significance. This translates into
intuitive design methods and numerically stable algorithms with a distinctly
geometric flavour;

e The complexity of many geometric operations and manipulations depends
greatly on the method of representation. Two classic examples are:

— compute a point on a curve or surface - difficult in the implicit form;
— given a point, determine if it is on the curve or surface - difficult in the
parametric form;

e In the parametric form, one must sometimes deal with parametric anomalies
which are unrelated to true geometry. An example of this is the unit sphere
(see Eq. 2.9). The poles are parametric critical points which are
algorithmically difficult, but geometrically the poles are no different than any
other point on the sphere.

2.2 CURVE DEFINITION (RICHARD H. BARTELS, JoHN C. BEATTY,
BRIAN A. BARSKY, 1987)

There are a variety of ways to define a specific curve. Each can be broadly classified
as being based on "interpolation” or on "approximation". In both cases one begins
by specifying a sequence of points, which we will represent in illustrations by a circle
"e" or a "+'" sign. In the case of interpolation the curve is required to pass through
data points, P; in sequence order as shown in Figure 2.5. For those techniques based
on approximation the curve is required only to pass "near" data points, P;, in the
order shown in Figure 2.6. Exactly what "near" means depends on the particular

approximation technique used.
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Figure 2.5 A curve defined by interpolation

In either interpolation or approximation, moving the points alters the curve. We will
concentrate on a specific method of approximation (B-splines), to be introduced in
1.2, for which the computational cost of constructing the curve is very low and for

which only a portion of the curve changes whenever a single point is moved.

P & "
e
¥ )
s

o

Figure 2.6 A curve that approximates a sequence of points. The solid and heavily dotted curves
represent distinct curve segments. Each is a single parametric cubic. The point at which two
successive segments meet is called a joint. The value of the parameter u which corresponds to a
joint is called a knot.

Although polynomial are computationally efficient and easy to work with, it is not
usually possible to define a satisfactory curve using single polynomials for x(u) and
y(u). Instead it is customary to break the curve into some number of pieces called
segments, each defined by separate polynomials, and join the segments together to
form a piecewise polynomial curve. Thus, as the parameter u varies between some
initial minimum value uni, and some final maximum value un., to define the curve,
certain distinguished values of u, called knots, will be encountered that correspond

to the joints between the polynomial segments. The sequence of knot values is

required to be non descending, so that

U S S U = Ui S S U= Uy S 00 S Upgse
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(Note that some of the knots may lie to the left or the right of the range of
parameter values defining the curve. Reasons for permitting this will become clear
later). The sequence of knot values

Ug, ey Ujy e, Upy woe S Upgsp
is called the knot sequence or the knot vector.

Thus the parametric functions x(u) and y(u) are each composed of polynomial pieces,
the first covering the interval of u ranging from u; to the next distinct knot to the
right, the second covering values from this next knot to the subsequent distinct knot
further to the right, and so on. Usually x(u) and y(u) are required to satisfy some
continuity constraints at the joints between successive polynomial segments; if the
o through d™ derivatives are everywhere continuous (in particular, at the joints),
then x and y are said to be c® continuous. Later we will discover that issues of
continuity can be arranged by admitting multiple knots; that is, by letting successive
members of the knot sequence be equal, which causes certain of the intervals
[u;, u;4+1) to be vacuous. A sequence like that, with knots being not at constant
distance to each other, is called a nonuniform knot sequence. In contrast, sometimes
we will assume that the knots are all distinct and a constant distance apart,

Uijy1 = Yy + A

This is called a uniform knot sequence. The frequent choice of convenience will
be u; = i, for which, clearly, A=1. It is clear that non-uniform knot vectors allow us to
obtain much richer behaviour than is possible with uniform one.

An open uniform knot vector is used when constructing a B-spline. It is characterized
by the multiplicity of knot values at the ends, which is equal to the order k of the B-
spline basis function. Internal knot values are evenly spaced.

Formally, an open uniform knot vector is given by
xx=0 1<i<k
xi;=i—k k+1<i<n+1
xi=n—k+2 n+2<i<n+k+1

It should not be overlooked that the resulting open uniform basis functions vyield
curves that behave most nearly like Bézier curves. When the number of control
polygon vertices is equal to the order of the B-spline basis and an open uniform knot
vector is used, the B-spline basis reduces to the Bernstein basis. Hence, the resulting
B-spline curve is a Bézier curve. It that case, the knot vector is just k zeros followed
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by k ones. For example, for four polygon vertices the fourth order (k=4) open

uniform knot vectoris[00001 11 1]. A cubic Bézier/B-spline curve results.
It will often be simpler to express x and y on the interval from u; to u;, 4 as functions
of the local parametrization given by

_ U—1uy;

u=-——-—-
Uirr — U

rather than as functions of u.

23 HERMITE AND CUBIC SPLINE INTERPOLATION (RICHARD H.
BARTELS, JOHN C. BEATTY, BRIAN A. BARSKY, 1987)

Suppose that we have m+1 data points P, ..., P,, through which we wish to draw a

curve such as that shown in Figure 2.7 (in which m=6).

o,
“r,

Figure 2.7 An interpolating cubic spline

Each successive pair of data points is connected by a distinct curve segment. The it
segment runs from P; to P;,;, and we will assume that the parameter u runs
correspondingly from the knot u; to the knot u;,, to generate this segment. This
corresponds to the knot sequence and parameter range outlined in paragraph 2.2
with the special choicesuy = uj = Upp aNd Uy = U = Uy = Ujgge- Since each
such segment C;(u) is represented parametrically as (Xi(u),Yi(u)), we are really

concerned with how the X;(u) and Y;(u)are determined by the points

P, = (x;,yi)

In general, the x -coordinates X (u) of points on a curve are determined solely by the
x-coordinates xy, ..., X, of the data points, and similarly Y (u) is determined solely
by the y -coordinates of the data points. Since both X(u) and Y (u) are treated in the
same way we will discuss only Y (u); indeed, to obtain curves in three dimensions we
simply define a Z(u) as well and let C;(u) be given by (Xl-(u), Yi(u),Zi(u)).
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For ease of computation we will limit ourselves to the use of polynomials in

defining X;(u), Y;(u) and Z; (u). Indeed cubic polynomials usually provide sufficient

flexibility for many applications at reasonable cost. For the curve in Figure 2.7, then,

Y (u) is shown in Figure 2.8.

Yo ¥(u)
"N1 1 }’5 s \.‘.“.:P 1
. e d
‘ ey T
T ] T 1 ¥ | ]
u=0 =06

Figure 2.8 Y(u) for the curve shown in Figure 2.7 above. In this example we have rather arbitrary

chosen to use uniform knot spacing, so that the knot sequence is [0,1,2,3,4,5,6].

It will be easiest to continue the discussion by re-parameterizing each

segment Y;

separately by substituting u for u as was described earlier. This means that

u = u; - i for the knot sequence given in Figure 2.8. Each Y;(u)
polynomial in the parameter u. We know two things in particular about

Yl(ﬁ) = a; +blﬁ +Ciﬁ2+diﬁ3,
namely that
Y;(0) = y; = aq

V(1) = yiy1= a;+ b+ ¢ + d;.

is a cubic

Because we have four coefficients to determine, we need two other constraints to

completely determine a particular Y;(% ). One easy way to do this is to simply pick,

arbitrarily, first derivatives D; of Y (i ) at each knot u;, so that
) = D= b
;Y1) = Djyy = by +2¢; + 3d; .
These four equations can be solved symbolically, once and for all, to yield
Eq. 2.11
a; =Yyi
b; = D;
¢i = 3Wi+1 —¥i) — 2D; — Diyq
di = 2(¥; — Yi+1) + Di + Diyq
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Since we use D; as the derivative at the left end of the i‘" segment
(i. e.,as Y;M (O)) and at the right end of the (i — 1) segment (as Yi(_li(l)), Y(u)

has a continuous first derivative.

This technique is called Hermite interpolation. It can be generalized to higher-order
polynomials.

How are the D; specified? One possibility is to compute them automatically, perhaps
by fitting a parabola through y;_4,y; and y;,1 and using its derivative aty; as D; ;
arbitrary values (such as 0) can be used at the end points. Or one can use for D; they
component of a weighted average of the vector from P;_;to P; and the vector from
P; ., to P;. Or the user may specify derivative vectors directly.

It is possible to arrange that successive segments match second as well as first
derivatives at joints, using only cubic polynomials. Suppose, as above, that we want
to interpolate the (m + 1) points Py, ..., P,, by such a curve. Each of the m segments
Yo(@), ..., Y_1. () is a cubic polynomial determined by four coefficients. Hence we
have 4m unknown values to determine. At each of the (m-1) interior knots
Uy, ..., Uy—1 (Where two segments meet) we have four conditions:

Vo= v ¥H@) =120
%0) =y, YHM® =v2(0)
Since we also require that
Yo (0) = o

Ym-1(1) = ym

we have a total of 4(m - 1) + 2 = 4m - 2 conditions from which to determine our 4m
unknowns. Thus, we need two more conditions. These may be chosen in a variety of
ways. A common choice is simply to require that the second derivatives at the
endpoints u, and u,, both be zero; these conditions yield what is called a natural
cubic spline. Figure 2.10 is actually a natural cubic spline.

24 PRACTICAL CONSIDERATIONS-COMPUTING NATURAL CUBIC
SPLINES (RICHARD H. BARTELS, JoHN C. BEATTY, BRIAN A.
BARSKY, 1987)

We do not need to solve 4m equations directly — the problem can be simplified.
Notice that a natural cubic spline is actually a special case of Hermite interpolation;
we may simply choose first derivative vectors so as to match second derivatives as
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well. If we can compute the needed D; , we have already obtained definitions of
the a;, b;, c; and d; in terms of the D;.

Thus at each internal joint we want to choose D; so that
ORI A
or
2ci_1 + 6d;_1 = 2¢;.
Substituting in our earlier solutions Eq. 2.11 forc;_4, d;_; and ¢;, we have
2[3(i = ¥i-1) — 2Dy — Di] + 6[2 (Vi-1 —yi) + Di1 + D]
= 2[3 Wi+1 —¥i) — 2D; — Diyq].
Simplifying, and moving the unknowns to the left, we have
Eq.2.12
Di—y + 4D; + Div1 = 3(Vi+1 = Vi-1)-

Since there are m - 1 internal joints, there are m - 1 such equations. Requiring that
the second derivative at the beginning of the curve be zero implies that

ZCO = 0
2[3(y1 —¥o)— 2Dy — D1] =0
2Dy + Dy =3 (y1 —¥o)

Requiring that the second derivative at the end of the curve be zero similarly results

in
Dp—y+ 2Dy =3 (ym - Ym—l)

We now have m+1 equations in m+1 unknowns. Representing them in matrix form

we have
21 11001 [ 3G1 —yo) 7
1 4 1 Dy 32 —Yo)
1 4 1 . .
1 4 1 =
1 4 1] - 3m — Ym-2)
1 24 'Dm' |3 (ym _Ym—l)-

Beginning at the top, the first 1 in each row is eliminated using the row immediately

above and the diagonal is scaled:

Yo <« 1/2
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fori« 1stepluntilm—1do
vi < 1/(4=vi-1)

endfor

Ym < 1/(2=Vm-1)

Corresponding operations are carried out on the right-hand-side entries; e.g., for the
y components shown above:

8o <31 —Yovo
fori« 1stepluntilm—1do
6 « (3Wiv1 —Yi-1) = 6i-1)vi
endfor
8m < (3 m = Ym-1) = Em-1)¥m

The result of this forward elimination process will be

[ 1 yO 1 -DO- _60_
1y D, 01
1y,
Ym-2
1 ym—l ' )
b 72385 B PO

This directly yields the value of D,,, and it is then a simple matter to solve
successively for D,,_4, ..., Dy in a process of backward substitution:

D, < 6,

fori<m—1step —1until 0do
D; < 6; = viDiwa

endfor

The multiplicative factors y; that accomplish the forward substitution need only be
computed once. The §;s must be computed and the backward substitution
performed separately for each coordinate. When a data point is moved, the values
6j,...,0, must be recomputed and the entire backward substitution again

performed.
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2.5 OTHER END CONDITIONS FOR CUBIC INTERPOLATING SPLINES

There are many other ways in which to determine the additional two constraints
needed to define a C* continuous interpolating cubic spline fully. These conditions
are most commonly applied to the ends of a curve, hence the name end conditions;
the natural cubic splines offer an example of this. However, all that is really
necessary is to provide the missing two conditions. Any two linear equations that are
independent of those provided by the interpolation conditions could be used. They
could involve data points or derivatives interior to the curve as well as at the ends.
Whatever conditions are used, they will have some influence over the shape of the
entire curve. For example, instead of fixing the second derivatives at the first and last
knot to zero, we may fix the first derivatives there to be zero.

2.6 KNOT SPACING

Although the end conditions discussed above affect the entire curve, their principal
influence is felt at the endpoints. Gross changes to a curve's shape can be made
anywhere, without moving the interpolation points, by varying the knot spacing.
(See Figure 2.9.)

Py P P,

" o P

Figure 2.9 The solid line is a natural cubic interpolating spline in which the knots are spaced one
unit apart. Unit knot spacing is used also in the dotted curve except for the parametric interval
corresponding to the segment between P, and P;, for which the knots are spaced four units
apart.

With the single exception of Figure 2.9, we have used a uniform knot sequence in
defining the interpolating cubic spline curves discussed above. The knot vector for

the solid curve in Figure 2.9is 0, 1, 2, 3, 4, 5 while the dotted curve interpolates the
same data points, but for the knot vector 0, 1, 2, 6, 7, 8.

Thus knot spacing can be used to influence shape; the more difficult question is how
that influence can be controlled intuitively.

Uniform knot spacing is one obvious way to define a knot sequence. The Euclidean
distance between data points is a second natural choice for the length of the
parametric interval over which u varies in defining a segment.
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Figure 2.10 The solid line in the above figure is a natural cubic interpolating spline in which the
knots are spaced a unit apart. In the case of the dotted curve, the knots corresponding to two
successive data points differ in value by the Euclidean distance separating the two points.

2.7 CLOSED CURVES

It is sometimes useful to generate closed curves such as in Figure 2.11. In this case,
Eq. 2.12 applies at each of the m points, with the caveat that indices must be
computed modulo m + 1. The system of equations that results looks a little different:

41 111Do7 [ 301 —¥m) 1
1 4 1 D, 32, —¥o)
1 4 1 .
1 4 1 =
1 4 1] - 3(Um — Ym-2)
-1 1 44Dpl 13 (yy — ym-1)

Basically one solves this system as one solved for the D; for an open curve. During
forward elimination, however, it is necessary to compute and save nonzero values
for entries in the rightmost column and to successively cancel the leftmost nonzero
value in the bottom row. The analogous change must be made to the back

substitution process as well.

Figure 2.11 A closed interpolating cubic spline
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3 FUNCTION SPACES (FARIN, 2002)

It is probably already clear to the reader that the interpolation or approximation of
the data is done with the use of a number of functions with different properties.
Here, we provide the reader with some useful definitions of functional analysis.

Let C[a, b] be the set of all real-valued continuous functions defined over the
interval [a, b] of the real axis. We can define addition and multiplication by a
constant for elements f,g € C[a, b] by setting (af + Bg)(t) = af (t) + Bg(t) for
allt € [a, b]. With these definitions, we can easily show that C[a, b] forms a linear
space over the reals. The same is true for the sets C*[a, b] the sets of all real- valued
functions defined over [a,b] that are k-times continuously differentiable.

Ck+1

Furthermore, for every k, is a subspace of Ck.

We say that n functions f;,..., f,, € C[a, b] are linearly independent if Y c;f; = 0 for
all't € [a,b] impliesc; =...= ¢, = 0.

We mention some subspaces of C[a, b] that will be of interest later. The spaces P"
of all polynomials of degree n

p"(t) = ag+ a;t + at? + -+ a,t"; t € [a,b]

For fixed n, the dimension of P*isn + 1: each p™ € P™ is determined uniquely by
then + 1 coefficients aq, ..., a,. These can be interpreted as a vector in (n + 1)-
dimensional linear space R™*! which has dimensionn + 1. We can also name a
basis for P": the monomials 1,t,t?,...,t" aren + 1 linearly independent functions
and thus form a basis.

Another interesting class of subspaces of C[a,b] is given by piecewise linear
functions: leta = t, < t; < < t, = b be a partition of the interval [a, b]. A
continuous function that is linear on each subinterval [t;, t; ;1] is called a piecewise
linear function. Over a fixed partition of [a, b], the piecewise linear functions form a
linear function space. A basis for this space is given by the hat functions: a hat
function H;(t) is a piecewise linear function with H;(t;) = 1 and H;(t;) = 0 if i # j.

A piecewise linear function f with f(tj) = f; can always be written as

HGEDYWTGY;
=0

J

Figure 3.1 illustrates an example.

Page |33



Figure 3.1 Hat functions : the piecewise linear function f can be written as f =Hy+3H,+2H,

We will also consider linear operators that assign a function A[f] to a given
function f. An operator A : C[a,b] — C[a,b]is called linear if it leaves linear

combinations invariant:

Alaf + Bg) = aA[f ]+ BA[g]; a.B € R.

An example is given by the derivative operator that assigns the derivative f to a given
function f: Af = f'.
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4 CONVEX HULL (FARIN, 2002)

As was mentioned in the introduction, the tools which are used in the following
paragraphs hold the important property called the convex hull property; hence we
consider it is useful to learn little about the mathematical structure called convex
hull.

As a first step towards a mathematical description of an object, one defines a
coordinate system in which it will be described analytically. A point in a coordinate
system identifies a location, often relative to other objects. Upon points we may
apply a number of operations. For example, translation a +w;a € E3,wis an
arbitrary vector, and subtraction — this operation yields a vector. Moreover,
additionlike operations are defined for points: they are barycentric combinations.
These are weighted sums of points where the weights sum to one:

Eq. 4.1
n

n
b= b | bEE, ek, »a=1

j=0 Jj=0

At first glance, this looks like an undefined summation of points, but we can rewrite
Eq.4.1as

n
b =b, + z a;(b; — by),
=1

which is clearly the sum of a point and a vector.

An example of a barycentric combination is the centroid g of a triangle with a, b, c,
given by
1 1 1

g = §a+ §b+§c.

An important special case of barycentric combinations are the convex combinations.
These are barycentric combinations where the coefficients a; , in addition to
summing to one, are also nonnegative. A convex combination of points is always
"inside" those points, which is an observation that leads to the definition of the
convex hull of a point set: this is the set that is formed by all convex combinations of
a point set. Figure 4.1 gives an example. More intuitively, the convex hull of a set is
formed as follows: for a 2D set, imagine a string that is loosely circumscribed around
the set, with nails driven through the points in the set. Now pull the string tight—it
will become the boundary of the convex hull.
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Figure 4.1 Convex hulls: a point set (a polygon) and its convex hull, shown shaded

The convex hull of a point set is a convex set. Such a set is characterized by the
following: for any two points in the set, the straight line connecting them is also
contained in the set. Examples are ellipses or parallelograms. It is an easy exercise to
verify that affine (see section 5) maps preserve convexity.

Let us return to barycentric combinations, which generate points from points. If we
want to generate a vector from a set of points, we may write

n n

v=> ab [vEV® bjeF® and ) a=0

j=0 j=0

where we have a new restriction on the coefficients: now we must demand that the
aj sum to zero.
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5 AFFINE MAPS (FARIN, 2002)

Most of the transformations that are used to position or scale an object in a
computer graphics or CAD environment are affine maps. The term affine map is due
to L. Euler; affine maps were first studied systematically by F. Moebius. It is a
transformation which preserves straight lines (i.e., all points lying on a line initially
still lie on a line after transformation) and ratios of distances between points lying on
a straight line (e.g., the midpoint of a line segment remains the midpoint after
transformation). It does not necessarily preserve angles or lengths, but does have
the property that sets of parallel lines will remain parallel to each other after an
affine transformation. Examples of affine transformations include translation,
geometric contraction, expansion, homothety, reflection, rotation, shear mapping,
similarity transformation, and spiral similarities and compositions of them. An affine
transformation expressed in mathematics is equivalent to a linear transformation

followed by a translation.

The fundamental operation for points is the barycentric combination. We will thus
base the definition of an affine map on the notion of barycentric combinations. A
map @ that maps E3 into itself is called an affine map if it leaves barycentric
combinations invariant. So if

_ . _ 3
x—Zaja]- ; Zaj—l,x,a]-EIE

and @ is an affine map, then also

Eq. 5.1
_ E . 3
dx = aj¢a]- ; Dx, d>a]- e E

This definition looks fairly abstract, yet it has a simple interpretation. The expression
x =) a;ja; specifies how we have to weight the points a; such that their weighted
average is x. This relation is still valid if we apply an affine map to all points aj and to
Xx. As an example, the midpoint of a straight line segment will be mapped to the
midpoint of the affine image of that straight line segment. Also, the centroid of a
number of points will be mapped to the centroid of the image points.

Let us now be more specific. In a given coordinate system, a point x is represented
by a coordinate triple, which we also denote by x. An affine map now takes on the
familiar form

Eq. 5.2

dx =Ax+v

Page |37



where A is a 3x3 matrix and v is a vector from R3.

It is easily proved that the inverse of our initial statement is true as well: every map
of the form Eq. 5.2 represents an affine map.

Some examples of affine maps are as follows:

The identity. It is given by v = 0, the zero vector, and by A = I, the identity

matrix.
A translation. It is given by A = [, and a translation vector v.

A scaling. It is given by v = 0 and by a diagonal matrix A. The diagonal entries
define by how much each component of the pre-image x is to be scaled.

sina cosa O
0 0 1

A rotation. If we rotate around the z-axis, thenv = 0and A =

1 a b
0 1 ¢

0 0 1

cosa —sina O]

A shear. An example is givenbyv = 0and A =

This family of shears maps the x, y-plane onto itself while "tilting" the z-axis.

A parallel projection. All of E3is projected onto the x, y-plane if we set

1 0 0
A=0 1 0
0 0 O

and v = 0. Note that A may also be viewed as a scaling matrix.

An important special case of affine maps are the euclidean maps, also called rigid
body motions. They are characterized by orthonormal matrices A, which are defined
by the property ATA = I. Euclidean maps leave lengths and angles unchanged; they
are either rotations or translations.

Affine maps can be combined, and a complicated map may be decomposed into a
sequence of simpler maps. Every affine map can be composed of translations,
rotations, shears and scalings.

The rank of A has an important geometric interpretation: if rank (A) = 3, then the
affine map @ maps 3D objects to 3D objects. If the rank is less than three, @ is a
parallel projection onto a plane (rank = 2) or even onto a straight line (rank = 1).

An affine map of E? to E? is uniquely determined by a (hondegenerate) triangle and
its image. Thus any two triangles determine an affine map of the plane onto itself. In
E3, an affine map is uniquely defined by a (nondegenerate) tetrahedron and its
image.
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We may also define affine maps of vectors. f w = b — ais a vector, and Ax + v
represents an affine map @, then

D(w) = Aw

is the image of w under @. As expected, the translational part v of the affine map is

of no consequence when mapping vectors to vectors.

Page | 39



6 ONE SEGMENT NON-RATIONAL AND RATIONAL
POLYNOMIAL CURVES, SURFACES AND SOLIDS

There are trade-offs when implementing a geometric modelling system. The ideal
situation is to restrict ourselves to a class of functions which

e are capable of precisely representing all the curves the users of the system
need;
e are easily, efficiently, and accurately processed in a computer, in particular:
— the computation of points and derivatives on the curves is efficient;
— numerical processing of the functions is relatively insensitive to
floating point round-off error;
— the functions require little memory for storage;

e are simple and mathematically well understood.

A widely used class of functions is the polynomials. Although they satisfy the last two
criteria in this list, there are a number of important curve (and surface) types which
cannot be precisely represented using polynomials; these curves must be
approximated in systems using polynomials. In this section, we study two common
methods of expressing polynomial functions, power basis and Bézier. Although
mathematically equivalent, we will see that the Bezier method is far better suited to
representing and manipulating shape in a computer.

6.1 POWER BASIS CURVES (LES PIEGEL, WAYNE TILLER, 1997)

An nth-degree power basis curve is given by

Eq. 6.1
Cw) = (x(w),yw),z(w)) = Z au’ 0<u<l1
i=0

The a; = (x;,y;, z;) are vectors, hence

Eq. 6.2

n n n

x(@) = ) xu yQw) = Z yal 2= ) zul

i=0 i=0
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In matrix form Eq. 6.1 is

Eq. 6.3
1
Cw) =[ag ay .. ap]| | = [a]'[u]
u"
Differentiating Eq. 6.1 yields
Eq. 6.4
O],

a.
t il

Where C'(")(u)|u=O is the ith derivative of C(u) atu = 0. The n+1 functions, {u'},

are called the basis (or blending) functions, and the {a;} the coefficients of the
power basis representation.

Given u,, the point C(u,) on a power basis curve is most efficiently computed using

Horner’s method

e fordegree=1:C(uy) = aquy + ay

o degree =2: C(uy) = (ayuy + ay)u, + ay
. .
° degree=n:

Eq. 6.5

C(up) = ((... ((aqug + ap_1)ug + ay_2)uy + - )uy + ag)ug + ao

6.2 TENSOR PRODUCT SURFACES - SoOLIDS (LES PIEGEL, WAYNE
TILLER, 1997)

The curve C(u)is a vector-valued function of one parameter. It is a mapping
(deformation) of a straight line segment into Euclidean three-dimensional space. A
surface is a vector-valued function of two parameters, uand v, and represents a
mapping of a region, R, of the uv plane into Euclidean three-dimensional space.
Thus it has the form S(u,v) = (x(u,v),y(u,v),z(u,v)),(u,v) €R. There are
many schemes for representing surfaces. They differ in the coordinate functions
used and the type of region R. Probably the simplest method, and the one most
widely used in geometric modelling applications, is the tensor product scheme. This
is the method used in this thesis.
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The tensor product method is basically a bidirectional curve scheme. It uses basis
functions and geometric coefficients. The basis functions are bivariate functions of u
and v, which are constructed as products of univariate basis functions.

The geometric coefficients are arranged (topologically) in a bidirectional, n X m net.
Thus a tensor product surface has the form

Eq. 6.6

n

S(u,v) = (2w v), Y v), 20, v)) ZZ fiGg; @b,

=0 j

where

{bi,j = (%0, Y1) 21,)
0<uv<l1

Note that the (u, v) domain of this mapping is a square (a rectangle, in general).Note
also that S(u, v) has a matrix form

Eq. 6.7

S(u,v) = [f;]"[by;][g;()]
where [f;(w)]" is a (1) X (n+ 1) row vector, [gj(v)] is a(m+1)x (1) column
vector, and [bi,j] isa(n+ 1) X (m+ 1) matrix of three-dimensional points.
As an example we consider the power basis surface
Eq. 6.8
n m ( )
AT . a.‘. = x.’.,y.‘.,z.‘.
S(u,v) Z;Z)auu v/ = [ul] [a;;][v'] {OUS u,vlsj 111 L
i=0 j=

We have f;(u) = u' and gi(w) = v/, and the basis functions are the products,

{utv/}. If we fix u = uy, then
Eq. 6.9

Cy,(v) = S(uo,v) i (Z ai,jué) v = i b; (u,) v/
= =0

where b;(uo) = XiZ,a;jup

is a power basis curve lying on the surface, S(u, v). Similarly, C,, (u) is a power basis
curve lying on S(u, v); and the curves C, (v) and C,, (u) intersect at the surface
point, S(uy, Vo). These curves are called isoparametric curves (or isocurves). C,, (v)

is called a v curve, C,, (u) a u curve.
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Differentiating Eq. 6.8, we obtain

Eq. 6.10

m
=1

n
Su(u, v) = Z iai‘jul‘_lvj Sv(u’ v) = z Zjai,juivj_l
i=0

n
i=1j=0 j

Notice that for fixed (ug, vo), 8§y, (ug, Vo) = Cy,(Up) and S, (ug, vo) = €y, (Vo). The

normal vector, N, is computed using Eq. 2.10.

Analogously, a tensor product solid could be defined.

6.3 BEZIER CURVES (LES PIEGEL, WAYNE TILLER, 1997)

Bézier techniques bring sophisticated mathematical concepts into a highly geometric
and intuitive form. From a practical standpoint, this form facilitates the creative
design process. Equally as important, Bézier techniques are an excellent choice in the
context of numerical stability of floating point operations. For these reasons, Bézier
techniques are at the core of 3D Modelling or Computer Aided Geometric Design
(CAGD).

Since the power basis and Bézier forms both use polynomials for their coordinate
functions, they are mathematically equivalent; i.e., any curve that can be
represented in one form can also be represented in the other form. However, the
Bézier method is superior to the power basis form for geometric modelling. Our
presentation of Bézier curves is rather informal; for a more rigorous and complete
treatment the reader should consult other references.

The power basis form has the following disadvantages:

e it is unnatural for interactive shape design; the coefficients {a;} convey very
little geometric insight about the shape of the curve. Furthermore, a designer
typically wants to specify end conditions at both ends of the curve, not just at
the starting point;

e algorithms for processing power basis polynomials have an algebraic rather
than a geometric flavor (e.g., Horner's method);

e numerically, it is a rather poor form; e.g., Horner's method is prone to round-

off error if the coefficients vary greatly in magnitude.

The Bézier method remedies these shortcomings.

Page | 43



6.3.1 PARABOLAS (FARIN, 2002)

We give a simple construction for the generation of a parabola; the straightforward
generalization will then lead to Bézier curves. Let by, by, b, be any three points in
E3, and let u € R. Construct

bi(u) = (1 —u)b, + uby,,
bi(u) = (1 —u)b; + ub,,
bj(w) = (1 —wbg(w) + ubi(w).
Inserting the first two equations into the third one, we obtain

Eq. 6.11

bi(w) = (1 —u)?by + 2u(1 — u)b; + u?b,

b,

Figure 6.1 Parabolas construction by repeated linear interpolation

This is a quadratic expression in u (the superscript denotes the degree), and so b3(u)
traces out a parabola as u varies from —oo to + o. We denote this parabola by b?.
This construction consists of repeated linear interpolation; its geometry is illustrated
in Figure 6.1. For u between 0 and 1, b?(u)is inside the triangle formed by
by, by, b,; in particular b2(0) = by and b%(1) = b, .

Inspecting the ratios of points in Figure 6.1, we see that

ratio(by, by, b;) = ratio(b,,bl,b,) = ratio(b}, b3, bl) = u/(1 — )y

Thus our construction of a parabola is affinely invariant, since piecewise linear
interpolation is affinely invariant.
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We also note that a parabola is a plane curve, since b%(u) is always a barycentric
combination of three points, as is clear from inspecting Eq. 6.11. A parabola is a
special case of conic sections.

Finally we state a theorem from analytic geometry, closely related to our parabola
construction. Let a,b,c be the three distinct points on a parabola. Let the tangent at b
intersect the tangents at a and c in e and f, respectively. Let the tangents at a and ¢
intersect in d. Then ratio(a,e,d)=ratio(e,b,f)=ratio(d,f,c). This three tangent theorem
describes a property of parabolas; the de Casteljau algorithm can be viewed as the
constructive counterpart. Figure 6.1, although using a different notation, may serve
as an illustration of the theorem.

6.3.2 THE DE CASTELJAU ALGORITHM (FARIN, 2002)

Parabolas are plane curves. However, many applications require true space curves.
For those purposes, the previous construction for a parabola can be generalized to
generate a polynomial curve of arbitrary degree n:

de Casteljau algorithm:
Given: by, by, ...,b, € E3andu €R, set
Eq. 6.12
bl(u) = (1 —uwbl"*(wW) +ublf(uw) r=1,..,nandi=0,..,n—1

and bY(u) = b;. Then b (w) is the point with the parameter value u on the Bézier
curve b™, hence b™(u) = bj(u).

The polygon P formed by bg, by, ..., b, is called the Bézier polygon or control
polygon of the curve b™. Similarly, the polygon vertices b; are called control points
or Bézier points. Figure 6.2 illustrates the cubic case.

L ]
o

Figure 6.2 The de Casteljau algorithm: the point bg(u) is obtained from repeated linear

interpolation. The cubic case n=3 is shown for u=1/3

Page |45



Properties

Affine invariance. An important property of Bézier curves is that they are invariant
under affine maps, which means that the following two procedures yield the same
result: (1) first, compute the point b™(u) and then apply an affine map to it; (2) first,
apply an affine map to the control polygon and then evaluate the mapped polygon
at parameter value u.

Affine invariance is, of course, a direct consequence of the de Casteljau algorithm:
the algorithm is composed of a sequence of linear interpolations (or, equivalently, of
a sequence of affine maps). These are themselves affinely invariant, and so is a finite
sequence of them.

Let us discuss a practical aspect of affine invariance. Suppose we plot a cubic curve
b3 by evaluating at 100 points and then plotting the resulting point array. Suppose
now that we would like to plot the curve after a rotation has been applied to it. We
can take the 100 computed points, apply the rotation to each of them, and plot. Or,
we can apply the rotation to the 4 control points, then evaluate 100 times and plot.
The first method needs 100 applications of the rotation, whereas the second needs
only 4!

Invariance under affine parameter transformations. Very often, one thinks of a
Bézier curve as being defined over the interval [0,1]. This is done because it is
convenient, not because it is necessary: the de Casteljau algorithm is "blind" to the
actual interval that the curve is defined over because it uses ratios only. One may
therefore think of the curve as being defined over any arbitrary intervala < u < b
of the real line—after the introduction of local coordinatesu = (u — a)/(b — a),
the algorithm proceeds as usual. This property is inherited from the linear
interpolation process. The corresponding generalized de Casteljau algorithm is of the
form:

Eq. 6.13
ri= b—1u r—1(5 u—a .4 _

The transition from the interval [0,1] to the interval [a,b] is an affine map.
Therefore, we can say that Bézier curves are invariant under affine parameter
transformations. Sometimes, one sees the term linear parameter transformation in
this context, but this terminology is not quite correct: the transformation of the
interval [0,1] to [a, b] typically includes a translation, which is not a linear map.

Convex hull property. Foru € [0,1],b™(w) lies in the convex hull of the control
polygon. This follows since every intermediate b} is obtained as a convex barycentric
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combination of previous b]r"l—at no step of the de Casteljau algorithm do we

produce points outside the convex hull of the b;.

A simple consequence of the convex hull property is that a planar control polygon
always generates a planar curve.

The importance of the convex hull property lies in what is known as interference
checking. Suppose we want to know if two Bézier curves intersect each other—for
example, each might represent the path of a robot arm, and our aim is to make sure
that the two paths do not intersect, thus avoiding expensive collisions of the robots.
Instead of actually computing a possible intersection, we can perform a much
cheaper test: circumscribe the smallest possible box around the control polygon of
each curve such that it has its edges parallel to some coordinate system. Such boxes
are called minmax boxes, since their faces are created by the minimal and maximal
coordinates of the control polygons. Clearly each box contains its control polygon,
and, by the convex hull property, also the corresponding Bézier curve. If we can
verify that the two boxes do not overlap (a trivial test), we are assured that the two
curves do not intersect. If the boxes do overlap, we would have to perform more
checks on the curves. The possibility for a quick decision of no interference is
extremely important, since in practice one often has to check one object against
thousands of others, most of which can be labeled "no interference" by the minmax
box test.

Endpoint interpolation. The Bézier curve passes through by and b,,: we have
b"*(0) = by, b"(1) = b,. In a design situation, the endpoints of a curve are
certainly two very important points. It is therefore essential to have direct control
over them, which is assured by endpoint interpolation.

Variation diminishing property. no straight line intersects a curve more times than it
intersects the curve's control polygon (for a three dimensional Bezier curve, replace
the words 'straight line' with the word 'plane'). This expresses the property that a
Bezier curve follows its control polygon rather closely and does not wiggle more than
its control polygon.(Figure 6.3)
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Figure 6.3 Cubic Bézier curve

6.3.3 BERNSTEIN POLYNOMIALS

We can also express Bézier curves in an explicit form. An nth-degree Bézier curve is
defined by a basis of Bernstein polynomials and the n+1 data points to be
approximated

Eq. 6.14
n
C(w) = ZBi,n(u) P, 0<u<l
i=0

The basis (blending) functions, {B;,(u)}, are the classical nth-degree Bernstein

polynomials given by
Eq. 6.15

Bi,n(u) = mui(l — u)n—i = (Tll) ui(l _ u)n—i

Or the recursive formula

Eq. 6.16
Bin(w) =1 —-u)B;_1(u) +uB;_14,-1(u), Bin=0ifi<Oori>n

The geometric data of this form, {P;}, are called control points, and are the data
points in the physical space E3to be approximated. By weighting all the data points
with the Bernstein polynomials the point C(u) is produced in the same space as the
data points, thus C(u) € E3 for a specific parametric ordinate u. This mapping
procedure from the parametric domain of u to the physical space E? gives a full
curve in the physical space when the entire parametric domain 0 <u <1is
mapped.
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These functions have the properties following:

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

partition of unity: X7LgB; ,(u) = 1for all0 <u <1 this property of the
Bernstein basis are used to form barycentric combinations of the data points;
thus any affine map imposed on the curve leaves intact the basis and is
applied directly on the control points (see section 5). This property is the
most important in CAGD, where affine mappings are used frequently (rotate,
scale, stretch, shear, translation, mirror, etc.). This property seems to be
crucial for the analysis too, since in linear elasticity problems any infinitesimal
particle of a body can undergo three basic affine mappings (translation,
stretch and shear). The non-linear kinematics can be described by some
overlapped affine transformations which are essentially the higher degree
Bernstein basis functions;

non-negativity: B; ,(u) = 0 for all i, n and 0 < u < 1 this property of the
Bernstein basis lends to formulation of convex combinations of the data
points. Thus, the convex hull property of the Bezier curves is well illustrated.
This property renders stable numerical procedures;

By n(0) = B, ,(1) = 1This is a property that gives rise to an easy self-

definition of CAGD and analysis boundary conditions
B; ,(u) attains exactly one maximum in the interval [0, 1] that is, at u=i/n;

symmetry: for any n, the set of polynomials {B;,(u)} is symmetric with
respect to u = % , thus the Bernstein basis can form symmetric matrices in

analysis;

recursive definition: B; ,(u) = (1 — u)B; ,—1 (W) + uB;_1 ,—1(u); we define
Bin(u)=0ifi<Oori>n;

derivatives:

dBin
Din) o (Biosnos () = Bines )

With B_y () = Bpp-1(u) =0

n
> B, =0
i=0

This property gives the ability to form easily vectors using the derivative basis

B ,(u) =

and the same data points, thus vector fields (gradients) can be easily defined

in analysis procedures.
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In any curve (or surface) representation formula, the choice of the basis functions
determines the geometric characteristics of the curve. Figure 6.4 and Figure 6.5

show the Bernstein basis functions {B; ,,(u)} for n =3.

EIEI.S
—_ 1 T T T T T T T T T
=
= D& .
U 1 1 1 1 1 1 1
0 01 02 03 04 0.5 06 v 0.8 0.9 1
u
EI1.3
. 0.5 T T T T T T T T T
=
i K
U | | | | | | | |
0 01 02 03 04 0.5 06 v 0.8 0.9 1
u
52.3
. 0.5 T T T T T T T
=
W]
U 1 | | | | | | |
0 01 02 03 04 0.5 06 v 0.8 0.9 1
u
EIS.S
. 1 T T T T T T T T T
=
= D& .
U 1 1 1 1 1 1 1 1
0 01 02 03 04 0.5 06 v 0.8 0.9 1
u

Figure 6.4 The Bernstein basis functions of degree 3, one by one

Page |50



+ 53.3

5 All the Bernstein polynomial Basis Functions of degree n=3

LB,

Figure 6.5 All the Bernstein Basis Functions of degree 3

30 Bezier Curve of degree n=3
P=[000;1235-560510]

Figure 6.6 A 3rd degree Bezier curve, built using the Bernstein basis functions of Figure 6.5
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The recursive formula for generating the Bernstein polynomials of Eq. 6.16 is
described by the linear interpolation of two Bernstein polynomials of one degree
lower. That is a linear transformation and thus an affine transformation. This
sequential affine transformation of the basis conserves all the highly important
properties of an initial affine transformation. This initial basis is the linear
interpolation of the identity function. The identity function maps a point to itself.
Thus, possessing a collection of constant functions (corresponding to data points),
one can apply a linear interpolation to the points, consequently to the constant
functions. This is the beginning of blossoming new basis functions by linear
interpolations of the latest ones, exactly as it is geometrically represented by the De
Casteljau algorithm (see section 6.3.2). In figures below, the procedure described
above is shown graphically beginning with the initial constant function and ending up
to the 3" degree of Bernstein polynomials.

Linear interpalation of oth ElD 0 Bernstein polynamial of degree n=0

And the produced oth By, and 1=t B, , Bemstein polynomials of degree n=1

1 1 Bap
1.1
08+ Ba
Ly du
06
=
m
04+
0.2
] | | | | 1 | | | |
0 01 nz 0.3 0.4 0.4 0.6 0.7 na na 1
u
Figure 6.7
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Linear interpolation of " B, Bemstein polynomial of degree n=1

04
And the produced oth EI02 Bernstein polynormial of degree n=2

Figure 6.8

Linear interpolation of O By, and 1%t B, ; Bernstein polynomial of degree n=1
And the produced 1 B1 2 Bernstein polynomial of degree n=2

Figure 6.9
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Linear interpolation of 13 B, , Bemstein polynomial of degree n=1
And the produced ond B, 5 Bernstein polynomial of degree n=2

Figure 6.10

Linear interpolation of gt B, » Bernstein polynomial of degree n=2
And the produced gth B, ; Betnstein polynomial of degree n=3

Figure 6.11
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Linear interpolation of ot By 5 and 1%t B, , Bemstein polynomials of degree n=2

And the produced 1 B 5 Bemstein polynomial of degree n=3

0s
08
07
06
205
0.4
03
02

0.1

Figure 6.12

Linear interpolation of 1 B, , and ond B, , Bernstein polynomials of degree n=2
And the produced 2hel B, 5 Bernstein polynomial of degree n=3

Figure 6.13
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Linear interpalation of 2 B, , Bernstein polynormial of degree n=2
And the produced 3 B, ; Bemstein polynomial of degree n=3

Figure 6.14
Addition properties of Bézier Curves

The properties mentioned in section 6.3.2, which were derived using geometric
arguments, could be also derived using algebraic arguments along with a number of
some other properties.

Symmetry. Looking at the examples in Figure 6.15, it is clear that it does not matter
if the Bézier points are labelled Py, Py, ...,P,, or P,,,P,_4, ..., Py.The curves that
correspond to the two different orderings look the same; they differ only in the
direction in which they are traversed. Written as a formula:

Eq. 6.17

n n
Z P,;B;,(u) = Z P,_iB;,(1—u)
i=0 i=0

This follows from the identity

Eq. 6.18
Bi,n(u) = Bn—i,n(1 - u),

which follows from inspection of Eq. 6.15. We say that Bernstein polynomials are
symmetric with respecttouand 1 — u.
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=

Figure 6.15 Bezier curves: some examples of how the shape of the curve is affected by the
distribution of the control points
Pseudolocal control. The Bernstein polynomial B;,, has only one maximum and
attains it atu = i/n. This has a design application: if we move only one of the
control polygon vertices, say, P; then the curve is mostly affected by this change in
the region of the curve around the parameter value i /n. This makes the effect of the
change reasonably predictable, although the change does affect the whole curve. As
a rule of thumb, the maximum of each B; ,, is roughly 1/3; thus a change of P; by

three units will change the curve by one unit.

Using property P1.7, it is easy to derive the general expression for the derivative of a
Bézier curve

Eq. 6.19

') = d(XioBin(W) P;) _ Z BL, () P,
i=0

du
n n-1
= > 1 (Birans@) = Biues () P =1 Y B 1 () (Pryy = P
i=0 i=0
From Eg. 6.19 we easily obtain formulas for the end derivatives of a Bézier curve, e.g.
Eq. 6.20
C’(O) - n(Pl - Po) C”(O) = Tl(n - 1)(P0 - 2P1 + Pz)

C'(M) =nPy, —Py_y) C"(D) =nn—-DEP, —2P,_; +P,_5)
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Notice from Eqg. 6.19 and Eq. 6.20 that

e the derivative of an n*" degree Bézier curve is an (n-1)th degree Bézier curve;

e the expressions for the end derivatives atu = 0 and u = 1 are symmetric
(due,of course, to the symmetry of the basis functions);

e the k™ derivative at an endpoint depends (in a geometrically very intuitive
manner) solely on the k+1 control points at that end.

6.3.4 RATIONAL BEZIER CURVES

Conic sections may be expressed as rational quadratic (Bézier) curves, and their
generalization to higher-degree rational curves is quite straightforward: a rational
Bézier curve of degreenin E3is the projection of an nt degree Bézier curve in
E* into the hyperplane w = 1. We may view this 4D hyperplane as a copy of E3; we
assume that a point in E*is given by its coordinates [x y zw] . It can be easily
proved that an nth degree rational Bézier curve is given by

Eq. 6.21

WOPOBO,n(u) + et WnPan,n(u)
WOBO,n(u) + et Wan,n(u)

C(w) = ; C(u),P; € E3

w; are called weights; the P;form the control polygon. It is the projection of the 4D
control polygon [w;P; w;] T of the nonrational 4D preimage of C(u).

If each weight equals to one, we obtain the standard nonrational Bézier curve, since
the denominator is identically equal to one (This is also true if the weights are not
unity, but are equal to each other—a common factor does not matter.). If some w;
are negative, singularities may occur; we will therefore deal only with nonnegative
w; . Rational Bézier curves enjoy all the properties that their nonrational
counterparts possess; for example, they are affinely invariant. We can see this by
rewriting Eq. 6.21 as

Eq. 6.22

?:O WlBl,Tl(u) .

Cu) = Z P, w;B; 5 (W)
i=0

We see that the basis functions
Eq. 6.23

w;B;, (u)
7lj"=0 WiBi,Tl (u)
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sum to one identically, thus asserting affine invariance. If all w; are nonnegative,
these basis functions hold the convex hull property. We also have symmetry,
invariance under affine parameter transformations, endpoint interpolation, and the
variation diminishing property.

The w; are typically used as shape parameters. If we increase one of the w;, the
curve is pulled toward the corresponding P;, as illustrated in Figure 6.16. Note that
the effect of changing a weight is different from that of moving a control vertex. If
we let all weights tend to infinity at the same rate, we do not approach the control
polygon since a common (if large) factor in the weights does not matter.

Figure 6.16 Influence of the weights: top, changing one control point; bottom, changing one
weight

Two properties differ from the nonrational case. First, we have projective invariance;
that is, if a rational Bézier curve is transformed by a projective transformation, we
could just as well apply that transformation to the control polygon (using its weights
to write it in homogeneous form) and would end up with the same curve. Note that
nonrational curves have this property only for a subset of all projective maps, that is,
the affine maps. The second difference is the linear precision property. Rational
curves may have all Bezier points P; distributed on a straight line in a totally
arbitrary fashion:
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P;=(1-a))P,+ a;P,

with arbitrary real numbers a;. We can still find weights w; such that the resulting

curve traces out the straight line PyP,, in a linear fashion. They are given by w, = 1
and
i 1 - ai_l

w; = - w;_;i=1,..,n.
ont+l-i g v T

Rational Bézier curves may be modified in another way. Let us define weight points

q;, by setting

Eq. 6.24

wiP; +wi1Piyq

q; =
Wi + Witq

These points are defined via the weights; they may be used as shape parameters for
the curve. If we change the location of one of the q;, we may recompute a new set
of weights by setting wy = 1 and using Eq. 6.24 as a recursion for the w;.

In the following figures, R; ; denotes a rational Bernstein polynomial basis function,

which is computed by Eq. 6.23.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.9 1

R{u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9 1

Figure 6.17 Rational Bernstein polynomial Basis Functions, weight vector : [1 0 3 2]
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vRy,

+ F&%&Igthe Rational Bernstein polynomial Basis Functions of degree n=3

Figure 6.18 Rational Bernstein polynomial basis functions of degree 3. weight vector : [1 0 3 2]

2D Rational Bezier Curve of degree p=2

Figure 6.19 An arc of 90° computed by mapping a curve from the 3D space into the 2D
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6.3.5 BEZIER SURFACES

Nonrational Bézier surfaces are obtained by considering a bidirectional net of
control points and products of the univariate Bernstein polynomials

Eq. 6.25

n m

S(u,v) = Z Z Bin(WB (WP, 0<uv<1
i=0 j=0

The basis function Bg 3(u)B; 4(v) is shown in Figure 6.20, and Figure 6.21 shows a

cubic x quatric Bézier surface.

For fixed u = u,

m

n m n
Cy,(v) = S(up,v) = Z B;n(ug)Bjm(V)P; ; = z Bjm(v) Z Bin(ug)P;
i=0 j=0 =0 i=0

m

= Bim(@)C;(o)
Jj=0

where C;(ug) = XL Bin(uo)P;j, j=0,..,mis a Bézier curve lying on the
surface. Analogously, C,,, (u) = Xio B;n(u)C;(vo) is a Bézier u isocurve lying on the

surface.

u

Figure 6.20 A bivariate Bézier basis function, Bj3(u)Bq4(v), is a product of two univariate Bézier

basis functions
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Eezier Surface
R of degree p=3, g=4

Figure 6.21 A Bézier surface computed on a bivariate basis

As is the case for curves, because of their excellent properties, Bézier surfaces are
better suited for geometric modelling applications than power basis surfaces. In

particular,

e nonnegativity : B; ,(u)B;j,,(v) = 0 forall i, j,u,v;

e partition of unity : ¥iL o X724 B (W) Bj (v) = 1 forall uand v;

e S(u,v)is contained in the convex hull of its control points;

e transformation invariance;

e the surface interpolates the four corner control points;

e when triangulated, the control net forms a planar polyhedral approximation

to the surface.

It is interesting to note that there is no known variation diminishing property for

Bézier surfaces.

We define a rational Bézier surface to be the perspective projection of a four-

dimensional polynomial Bézier surface

Eq. 6.26

m

S Wv) = ) ) Bin(WBim(@) PY)

n
i=0 j=0

and
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noYm OB (WB;, (VW i P N e
S(u,v) = HS"(w v)) = Sgr—Gua et st = ) Ry v)Py,

?:0 Zznzo Bi,n(u)Bj,m(v) Wi,j i=0 j=0

Bin(W)Bjm@)w;j

;1:0 Z?;o Brn (u)Bs,m (V)Wr,s

where R; ; (u,v) =

Notice that the Rl-,j(u, V) are rational functions, but they are not products of other
basis functions. Hence, S(u, v) is not a tensor product surface, but S¥(u,v) is. As
with curves, we generally work with Eq. 6.26 and project the results.

Assuming w; ; > 0 for alliand j, the properties listed previously for nonrational
Bézier surfaces (and the product functions B;,(u)B;,(v)) extend naturally to
rational Bézier surfaces. Furthermore, ifw;; = 1for alliandj, thenR;;(u,v) =

B; n(w)B; m(v), and the corresponding surface is nonrational.

Plot of rational and nonrational surface

30

a5 ol =

Figure 6.22 The nonrational surface (transparent) in homogeneous coordinates projected to a
rational Bézier surface
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Plat of Rational and Mon-Rational Bezier Sufaces
Pe=[110;110], Py=[011;,011],Pz=[000;333],w=[112112]
p=2, =1

Figure 6.23 The projective non-rational Bezier surface (transparent) and the corresponding
rational Bezier surface generated, representing a quarter of cylinder
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7 B-SPLINES (PIECEWISE RATIONAL AND NON-RATIONAL
POLYNOMIALS)

Curves consisting of just one polynomial or rational segment are often inadequate,
since they have some shortcomings:

e A high degree is required in order to satisfy a large number of constraints.
However, high degree curves are inefficient to process and are numerically
unstable.

e Ahigh degree is required to accurately fit some complex shapes.

e Single-segment curves (surfaces) are not well-suited to interactive shape
design. Although Bezier curves can be shaped by means of their control
points and weights, the control is not sufficiently local.

The solution is to use curves (surfaces) which are piecewise polynomial, or
piecewise rational. Such curves (surfaces) are defined on u € [0,1] and
parameterized by some internal values u;, which are called breakpoints, 0 < u;_; <
u; < u;jy1 < 1. They map into the endpoints of the polynomial segments. We denote
the segments by C;(u), 1 <i < m when the curve C(u) consists of m polynomial
segments of the same degree. The segments are constructed so that they join with
some level of continuity (not necessarily the same at every breakpoint). Let Ci(j) (u)

denote the jth derivative of C;, then C(u) is said to be C* continuous at the

breakpoint u; if Ci(j)(ui) = Ci+1(j)(ul-) forall0 <j < k.

Any of the standard polynomial forms can be used to represent each segment
C;(u).Figure 7.2 shows the curve of Figure 7.1 with the three segments in cubic

Bézier form. P{ denotes the i control point of the jth segment.

Cy(u)

Ca(u)

Cs(u)

\\

uy =0 U up ug =1

Figure 7.1 A piecewise cubic polynomial curve with three segments

Page | 66



If the degree equals three and the breakpoints U = {u, u;, u,, u3} remain fixed, and

if we allow the twelve control points, P{, to vary arbitrarily, we obtain the vector
space, V, consisting of all piecewise cubic polynomial curves on U. V has dimension
twelve, and a curve in IV may be discontinuous at u; or u,. Now suppose we specify
(as in Figure 7.2) that P = P2 and P2 = P}. This gives rise to V', the vector space
of all piecewise cubic polynomial curves on U which are at least C° continuous
everywhere. V° has dimension ten, and V° c V.

u0=0 “1 Ug U3=l

Figure 7.2 The curve of Figure 7.1 shown with the polynomial segments represented in Bézier
form

Imposing C* continuity is a bit more involved. Let us consider u = u;. Assume that
Pl = P3. Let

u_uo u_ul
vV=——andw=——
U — Uy Uy —Uq

be local parameters on the intervals [ugy, u;] and [u;,u,], respectively. Then
0 < v,w < 1. C' continuity at u, implies

1 1
e =D =) = ) = P w =0)
Uy — Uy U —Ug

And from Eq. 6.20 it follows that

3 3
Pl_P1: PZ_PZ
o P PD = (PR P
Thus

Eq. 7.1

(uy —uy)P3 + (uy — ug)P3
U — U

P} =
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Eq. 7.1is interpreted as that P} and P% can be written in terms of P, P? and P3, P3,
respectively. Hence, V!, the vector space of all C! continuous piecewise cubic
polynomial curves on U, has dimension eight,and V! c V° c V.

This makes it clear that storing and manipulating the individual polynomial segments
of a piecewise polynomial curve is not the ideal method for handling such curves.
First, redundant data must be stored: twelve coefficients, where only eight are
required for C* continuous cubic curves, and only six for C? continuous cubic curves.
Second, for the Bézier form the continuity of C(u) depends on the positions of the
control points, hence there is little flexibility in positioning control points while
maintaining continuity. If a designer wants C! continuity and is satisfied with the
segments C; (1) and C3(u), but wants to modify the shape of C,(u), he is out of
luck: none of C,(u)’s control points can be modified. Third, determining the
continuity of a curve requires computation (such as Eq. 7.1).

We want a curve representation of the form

Eq. 7.2
Cw = fwP,
i=0

Where the P; are control points, and the {f;(u),i =0,..,n} are piecewise
polynomial functions forming a basis for the vector space of all piecewise
polynomial functions of the desired degree and continuity (for a fixed breakpoint
sequence, U = {u;},0 < i < m). Note that continuity is determined by the basis
functions, hence the control points can be modified without altering the curve’s
continuity. Furthermore, the {f;} should have the “usual” nice analytic properties.
This ensures that the curves defined by Eq. 7.2 have nice geometric properties
similar to Bézier curves, e.g., convex hull, variation diminishing, transformation
invariance. Another important property that we seek in our basis functions is that of
local support; this implies that each f;(u) is nonzero only on a limited number of
subintervals, not the entire domain [ug, u,,]. Since P; is multiplied by f;(u), moving
P; affects curve shape only on the subintervals where f;(u) is nonzero.

In the following paragraph, we use the Cox-de-Boor recursion formula in order to
define the piecewise polynomial functions f;(u); this is the point of view adopted in
(Les Piegel, Wayne Tiller, 1997). Nonetheless, there is another point of view on how
a B-spline basis function is constructed. This methodology is based on bonding
polynomial curve segments and is described in (Richard H. Bartels, John C. Beatty,
Brian A. Barsky, 1987). We include this theory at the end of this part, in the Appendix
A (Pg.109).
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71 B - SPLINE CURVE DEFINITION
Letting C(u) be the position vector along the curve as a function of the parameter u,

a B-spline curve is given by

Eq.7.3
n
Cw) = Z N,(WP; a<u<b
i=0

where the {P;} are the position vectors of the n + 1 control polygon vertices, control
points, and the pth—degree B-spline basis functions defined on the nonperiodic (and

nonuniform) knot vector
U={a,..,aq, Upy1s s Um—p—1, D, e, b}

(m+1 knots). Unless it is stated otherwise, we assume thata = 0 and b = 1. The
polygon formed by the {P;} is called the control polygon.

N;,(u) is the i B-spline basis function of p-degree (order p+1) and is defined by the

Cox-de-Boor recursion formula

Eq. 7.4
1 ifuyu<u<suy
N:~(u) = { 1= o= i+1
10() 0 otherwise
U—1u; Uitp+1 — U
Ni,p(u) = —Ni,p—l(u) + Ni+1,p—1(u)
Ujtp — U; Uitp+1 — Uiy
Note that

e (C(u) is a piecewise polynomial curve (since Ni‘p(u) are piecewise
polynomials); the degree p, the number of control points, n+1, and number
of knots, m+1, arerelatedbym =n+p + 1;

e the half-open interval, [u;, u;,1), is called the i*" knot span; it can have zero
length, since knots need not be distinct;

e forp>0, N;,(u) is a linear combination of two (p-1)-degree basis functions;
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L Wigr U4z Uita Uiepd

Figure 7.3 The recursive definition of B-spline basis functions

e computation of a set of basis functions requires specification of a knot vector,
U, and the degree p;

e Eq. 7.4 canyield the quotient g; we define this quotient to be zero;
e the N;,(u) are piecewise polynomials, defined on the entire real line;

generally only the interval [ug, u,,] is of interest;

e the computation of the pth-degree functions generates a truncated triangular

table
NO,O
N0,1
NlO NO,Z
N1,1 N0,3
NZ,O N1,2
NZ 1 N13
N3,0 N22
N3,1

We now list a number of important properties of the B-spline basis functions. It is
these properties which determine the many desirable geometric characteristics in B-
spline curves and surfaces. Assume degree p and a knot vector U = {uy, .., up}.
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P2.1

Nl-,p(u) = 0if uis outside the interval [u;, u;4,1) (local support property).

This is illustrated by the trianglular scheme shown here.

08

nsl Jon
2.2 N

42
1 Mg

07+
LN

1.2
06—

05+
0.4r-
03
02rF

01

Figure 7.4 The nonzero second degree basis functions, U={0,0,0,0.3,0.5,0.7,0.8,0.8,1,1,1}

The local support of the basis functions yields the local control property of the B-
Spline geometries. This property is demonstrated in Figure 7.5, where a curve
defined by the basis shown above and the control points P=[0 0;3 2;4 5,10 8;15 5;20
-2;10 -5;10 1] is pertubated by moving a single control point to the position P;=[6 0].
The P; control point is conjugate to the N, ; basis function, which is extended on the

knot spans [u,, usz) and [us, u4), thus there are affected only these two knot spans as

is shown in figure below.

2D BSpline Curve U=[0000305070808111], p=2

0 2 4 5 8 P40 12 14 16
H

Figure 7.5 The local control property is illustrated by moving the control point P,
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Notice that N;3is a combination of Ny g, N, o, N3 and Nyo. Thus, Ny 3 is

nonzero only for u = [uy, us)

Ny No 2
N
Nl,l
V4 N Ny 3
N2, Ny,
N 4 N
N2,1 N13
v N v
Nz, N3,
N 4
N31 N23
v
Ny N3,
P2.2 In any given knot span, [u;, u;,1), at most p+l of the N;,, are nonzero,

namely the functions Nj_pps - Njp. On [us, uy) the only nonzero zeroth-
degree function is N3 3. Hence, the only cubic functions not zero on [u3, u,)

are Ny 3, ..., N3 3. This property is illustrated here

N1,1
N0,3
NZO N1,2 7
7 N
N2,1 N13
7 N 7
N3,0 NZZ
N\ 7 \
N31 N23
\ 7
N4,0 N32
\
N4,1 N3,3

P2.3 N;p,(u) = 0 for all i, p and u(nonnegativity). This is proven by induction on
p. It is clearly true for p = 0; assume it is true forp — 1,p = 0, with i and u
arbitrary. By definition

Eq. 7.5

u—1uy; Uitp+1 — U
Nip(w)=——Nip_ (W) + ————
Uu; — U;

+p i Uitp+1 — Ui

Ni+1,p—1(u)
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By P2.1, N;p,_(u) = 0 ifu & [u;, uj4p). Butu € [u;, uyp) implies — is

ul+p_ul
nonnegative. The same is true for the second term, and hence the Nl-,p(u)
are nonnegative;

P2.4 For an arbitrary knot span [u;, u;41),

Eq. 7.6
§-=i_p N;,,(u) = 1forallu € [u; u;44) (partition of unity).

To prove this, consider

3 mo= ¥
jp W) = jp-1U
S T Y
i

u; -—u
2 : j+p+1
+ —Nj+1,p—1(u)
frnit Ujrp+1 — Yjt1

Changing the summation variable in the second sum fromi—ptoi—p +
1, and considering that N;_,;,_1 (1) = Nj41p-1(u) = 0, we have

i
U —u; Uiyp — U
A i

Z NOEEDY Nipr ()
je i T Y T
Z Nip1()

j=i—-p+1
Applying the same concept recursively yields

Zi’vf'p(”)z Z Nip-1(0) = Z N p-a ()
j=i-p

Jj=i-p+1 Jj=i—-p+2

i
= Z Nj,o(u) =1
j=i

P2.5 All derivatives of N;,, (u) exist in the interior of a knot span (while it is a
polynomial). At a knot Nl-,p(u) is p — k times continuously differentiable,
where k is the multiplicity of the knot. Hence, increasing degree increases
continuity, and increasing knot multiplicity decreases continuity;

P2.6 Except for the case p = 0, N; ,, (u) attains exactly one maximum value.
It is important to understand the effect of multiple knots. Consider the functions

No2, N1 2, Ny 5, N5, and Ng,. Recalling that U = {0,0,0,1,2,3,4,4,5,5,5}, from Eq. 7.4
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and P2.1, we see that these functions are computed on the following knot spans and
are zero outside these spans

Ny, : {0,0,0,1}
N, :{0,0,1,2}
N,, :{0,1,2,3}
Ns, : {3,4,4,5}
Ng : {4,4,5,5}
Now the word ‘multiplicity’ is understood in two different ways:

e the multiplicity of a knot in the knot vector;
e the multiplicity of a knot with respect to a specific basis function.

For example, u = 0 has multiplicity three in the previous knot vector U. But with
respect to the functions Ny ,, Ny 5, N, and N5 ,, u = 0 is a knot of multiplicity 3,2,1
and O, respectively. From P2.5, the continuity of these functions atu = 0is N,
discontinuous; Nj, C° continuous; N, C?! continuous; N5, totally unaffected
(N5, and all its derivatives are zero at u = 0, from both sides). N; , ‘sees’u = 0 as a
double knot, hence it is C° continuous. N, , ‘sees’ all its knots with multiplicity 1,
thus it is C! continuous everywhere. Clearly, another effect of multiple knots (as
seen by the functions) is to reduce the number of ‘apparent’ intervals on which a
function is nonzero; e.g., Ng, is nonzero only on u € [uy,us), and it is only

C° continuous atu = 4and u = 5.
P2.7 Aknot vector of the form
u={o,..01,..,1},
where there are p+1 0s and 1s, yields the Bernstein polynomials of degree p

P2.8 Letm + 1be the number of knots. Then there aren + 1 basis functions,
where n=m—p—1; Ny,(a) =1and N, ,(b) =1. For example, Ny,(a) =1
folloes from the fact that Ny, ..., Ny_10 = 0, since this implies that Ny,(a) =
Ny o(a) = 1 From P2.4 it follows that N;,(a) = 0 fori # 0, and N; ,(b) = 0 fori #

n

The derivative of a basis function is given by

Eq. 7.7

/ p p
Nip=——Nip_s(u) -

ip — . . Ni+1,p—1(u)
Uitp i Uitp+1 — Uit
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Now let Ni(,’;;) denote the k' derivative of Ni,p(u). Repeated differentiation of Eq. 7.7

produces the general formula

Eq. 7.8

(k)
Nl.’p

(k-1) (k-1)
_ i,p—1 Ni+1,p—1
Uivp — Ui Ujspt+1 — Ui

These derivative basis functions have the property of

i

2.

j=i-p

")
]Vj'p

(u) =0forallu € [u;, uj;1)

That is the basis functions to generate vectors (gradients) out of points (see section

4).

Remarks on Eq. 7.8 :

k should not exceed p (all higher derivatives are zero);

the denominators involving knot differenced can become zero; the quotient

is defined to be zero in this case.

Example of derivative basis functions are shown in figure below, corresponding to

the basis functions of Figure 7.4

0.8

06

0.4

0.2

0.2

0.4

06

0.8

0.a

0e6

0.4

02

-0.2

-0.4

-0.6

-0.8

-1
i

L 20 L -1
0e 07 07 075 08

L1
080808

-15
0.s

09

T I
1 1

Figure 7.6 Derivative B-Spline basis functions are plotted in each knot span of the corresponding

2" degree basis of the Figure 7.4
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In figure below a curve is presented with the basis of figure Figure 7.4 and its
derivatives produced by the basis of the Figure 7.6. The control points that are used
are P=[0 0;3 2;4 5;10 8;15 5;20 -2;10 -5;10 1]. In next figures the first derivative
curve is plotted with its derivatives (2™ derivatives) and the graphs that illustrate the

rate of changing of each coordinate with respect to the parametric space.

20 BSpline Curve and the first derivatives
U=[0 0 0 03 0.5 07 0.8 03 1 1 1], p=2

Figure 7.7 A 2D BSpline curve with its derivatives w.r.t. the parametric space in random points

2D 1% derivative BSpline Curve and the second derivatives
U= i 03 na n7 na na 1 1], p=1

-1a0 -100 -50 1} 50 100 150 200 250

Figure 7.8 The derivative curve of the above figure and the 2" derivatives
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The 1%t derivatives of cartesian coordinates to the u parameter

Figure 7.9 The rates of change of coordinates as traveling along the curve

The 2™ derivatives of cartesian coardinates to the u parameter 1 C7oal,

Cley.2

-400

-B00

-1000

Figure 7.10 The second rates of change of coordinates as traveling along the curve
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7.2 UNIFORM BicUBIC B-SPLINE SURFACES

We want to form surfaces as a scaled sum of basis functions, as in (Eq. 1.5), but now
X, Y, and Z must be functions of two independent parameters:

z P;N;(u,v)

and we need basis functions N;(u, v) that are piecewise in the two independent
parameters u and v. These basis functions should be bicubic, nonzero only on a local
parametric region, nonnegative, and should sum to one. The local-support regions of
all the basis functions should cover the u, v-plane in some regular fashion, and the
indexing scheme used for the control vertices P; will have to reflect the geometric
arrangement of this covering. Much research is currently appearing on general ways
of constructing such basis functions, which are called multivariate B-splines.

We will concentrate on a special, classical construction process for surfaces that is a
natural and straightforward generalization of the uniform cubic B-spline curves.
Recall that a spline curve is formed by piecing together successive curve segments;
we will form a spline surface by piecing together rectangular surface patches to form
a composite surface in much the same way that one constructs a patchwork quilt.
We will specify the continuity with which these patches meet, just as we specify the
continuity with which curve segments meet.

Our generalization works in the following way. A surface will be formed as a scaled
sum of basis functions, using for scale factors the x -, y - and z -coordinates of a
topologically rectangular array of control vertices, called the control mesh or
control graph, near which the surface is to pass. Since the control vertices are
arranged in a rectangular topology, P; ; the surface can be expressed by a double

summation:

Eq. 7.9

S(w,v) = zz Pi;N;;(u,v) = 2 Z (xi,jNi,j(u; v),¥;,;N; j(w, v), 2 jN; j (u, U))
i i

An easy way to cause the parametric region of locality of the basis functions to be

rectangular is to let N; ;(u,v) = N;(u)N;(v), where N;(u) and N;(v) are simply

the univariate cubic B-splines defined by (Eq. 1.4). In the mathematical literature the

basis function N; j(u,v) formed in this way is called a tensor product B-spline.

(Figure 7.11).
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Figure 7.11 The Ny o(u, v) bivariate cubic B-spline basis function

There are some details that we need to discuss. We now have two knot sequences -
one is a sequence of knot values for u and one is a sequence of knot values for v.
Together they form a grid in parameter space. The bivariate B-spline Ny o(u, V) is
formed over the mesh of Figure 7.12 from the univariate B-splines Ny(u) and Ny (v).
The former is nonzero over the range (uy,u,) and the latter is nonzero over the
range (g, V) so0 Ny o(u, v) will be nonzero whenever uy <u <uyand vy < v < v,
- that is, for the sixteen square parametric regions shown in Figure 7.12, and
nowhere else.

Vg —
V3
Va ©
Vi
Vo
Ug U Uy U3 Ug

Figure 7.12 The parametric mesh used to construct the bivariate uniform bicubic B-spline
Noo(u,v).

Because Ny (u) and Ny (v) are piecewise functions of u and v respectively, Ny o (u, v)
is a piecewise function of both. The parametric region with corners at (u;, v;) and
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(U;i+1,Vj+1) (a "dotted square" in Figure 7.12) defines an area in which Ny o(u, v) is a
pure bicubic polynomial. The polynomials for adjacent regions are distinct, but at a
shared boundary they agree in position and have identical first and second partial
derivatives - that is, they meet with c? continuity. This follows from the continuity
properties of Ny(u) and Ny (v) and the fact that Ny o (u, v) = No(u) Ny (v).

We can define another B-spline by adding another value to one of the knot vectors.
Suppose that we add a knot us. The resulting parametric grid is shown in Figure 7.13.

Va ’
i oo oo e
¥2 . & &
"3
Upg U] Uy U3 Uy Us

Figure 7.13 This grid allows us to define a second B-spline, centred at (u3,v;) and nonzero for

U <u<ugand vy <v<vy
Adding an additional knot v to the "vertical" knot sequence would then add two B-
splines above the two of Figure 7.12, and so on. So long as we continue using
uniform knot sequences, the N;(u) and N;(v) all have the same shape, and
consequently the surface basis functions N; ; (u, v) all have the same shape. In effect
we simply translate the one basis function so that it is centred over a variety of grid
intersections.

Now suppose that we extend the knot sequences sufficiently, and ask ourselves how
many of the N; ; (u, v) will be nonzero four or more regions distant from the ends of
the knot sequences. Since each B-spline is nonzero over sixteen regions, sixteen of
them will be nonzero on any such region.

Thus, exactly sixteen B-splines and their corresponding control vertices are required
to define a single surface patch. For example, the parameter grid needed to define
the sixteen B-splines that are nonzero when u; < u < u, and v; < v < v, is shown

in Figure 7.14.
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Figure 7.14 The parametric mesh used to construct the sixteen bivariate B-splines that are
nonzero when uy < u < uy and vy < v < v4. The peaks of these sixteen B-splines are circled. The

parametric region in which all sixteen are nonzero is marked with a star.

Page | 81



p=3, =0, g=3, =0 p=3, =0, =3, =1 p=3, =0, =3, =2 p=3, =0, 4=3, =3
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Figure 7.15 The bicubic B-spline Tensor Basis functions in a whole on the grid [00000.51111]x[00000.51111]



In summary, then, since N;(u) and N;(v) are each nonzero only over four successive
intervals, if u; < u < wu;,q and v; <v <vjyq, and if we adopt the convention that the
portion of C(u, v) defined by this set of values for uand v is denoted by C; ; (u, v),

we can rewrite Eq. 7.9 as

Eq. 7.10

)
Cij(u,v) = Z Z Piirjrs Nipr (WN;j s (v)

r=—3s=-3

Or, in terms of i and 7,

0 o
Ci,j(ﬁ' V) = Z Z Piirivs Ni+r(ﬁ)Nj+s(17)

r=—3s=-3

This is said to be the tensor product of two univariate B-spline curve segments.

The basic properties of B-spline curves that we have discussed in Sections 1.3
through 1.5 carry over easily to B-spline surfaces.

The perspective transformation, on the other hand, does not preserve the shape of
B-spline curves or surfaces. That is, the surface obtained by computing points on a
surface and then applying the perspective transformation is not identical to the
surface obtained by applying the perspective transformation to the control vertices
and then computing points on the surface defined by the transformed control
vertices. In fact, the perspective transformation of a cubic curve or surface is not
necessarily expressible as a cubic. It is instead a rational polynomial, namely the
quotient of two cubic polynomials, and it is easy to construct examples of
numerators and denominators that are relatively prime.



BSpline Surface  U=[-1 g = el o 08 1 1 1 10, p=3,%=[-1-1-1-1 0 111 1], g=3
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Figure 7.16 A B-Spline surface

7.3 B-SPLINE SOLIDS

Tensor product B-spline solids are defined in analogous fashion to B-spline surfaces.
Given a control lattice {Pi,j,k},i =12,..,n,j=12,..,mk=1,2,...,1, polynomial
orders p,gq and r, and knot vectors U = {ul,uz, ...,un+p+1},V = {vl, vy, ...,vm+q+1}

and 2 = {wq, Wy, ..., Wi4r11}, @ B-spline solid is defined by

n m

l
S@v,w) = ) > Nip@Ng(W)Nir(©) Py

i=1j=1k=1

The properties of a B-spline solid are trivariate generalizations of those for B-spline
surfaces.
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BESpline Solid
=2, 4=3, =3
U=[-1-1-10051 11, %=[-1-1-1-101111],W=[-1-1-1-101111]
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Ay B \‘
B s\‘:“\::l‘t\\
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<

Figure 7.17 A tensor product solid based on B-splines of degrees 2,3 and 3 in x,y and z direction
respectively
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8 NURBS

B-spline curves and surfaces grew out of the pioneering work of Pierre Bézier in the
early 1970s. Perhaps one can consider B-spline curves and surfaces the children of
Bézier curves and surfaces, and non-uniform rational B-splines, or NURBS, the
grandchildren.

The rational splines are (roughly speaking) a quotient of two splines. A key ad-
vantage of this form is the ability to represent conic curves and quadric surfaces,
such as cylinders, spheres, and cones. Moreover, the free-form curves and surfaces
we discuss are all a special case of the rational splines since the constant function | is
a perfectly respectable spline, and can be used as the denominator in a rational
representation. Another advantage is that the rational formulation is invariant under
projective transformations, such as perspective projection.

NURBS have become the de facto industry standard for the representation, design,
and data exchange of geometric information processed by computers. This
enormous success behind NURBS is largely due to the fact that

e NURBS provide a unified mathematical basis for representing both analytic
shapes, such as conic sections and quadric surfaces, as well as free-form
entities, such as car bodies and ship hulls;

e designing with NURBS is intuitive; almost every tool and algorithm has an
easy-to-understand geometric interpretation;

e NURBS algorithms are fast and numerically stable;

e NURBS curves and surfaces are invariant under common geometric
transformations, such as translation, rotation, parallel and perspective
projections;

e NURBS are generalizations of nonrational B-splines and rational and
nonrational Bézier curves and surfaces.

8.1 THE DE CASTELJAU ALGORITHM (ROGERS, 2001)

A rational B-spline curve is the projection of a nonrational {polynomial)B-spline curve
defined in four-dimensional (4D) homogeneous coordinate space back into three-
dimensional (3D) physical space. Specifically

Eq. 8.1

n+1

Cw) = ) PNy (w)
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where the P}’s are the four-dimensional homogeneous control polygon vertices for
the nonrational four-dimensional B-spline curve. N; ; (1) is the nonrational B-spline

basis function previously given in Eq. 7.4.

Projecting back into three-dimensional space by dividing through by the
homogeneous coordinate yields the rational B-spline curve

Eq. 8.2
n+1
YIE Powi Ny ()
C(w) = : = Z PR, (w)
MrwiNg ) &

where the P;s are the three-dimensional control polygon vertices for the rational B-
spline curve and the
Eqg. 8.3

w; N i (W)

Rip(u) =
v ?:11 w;N; (1)

are the rational B-spline basis functions. Here, w; > 0 for all values of i.

In figures below one can observe the effect of a weight to the conjugate basis
function and to the neighbour basis functions. The basis parameterization through
the weights, affects the produced geometry in analogous way. For the physical effect
of the weights see section 6.3.4.

U=[0 o 02 04 06 08 1 1, w=[l 1111 1], p=1

LRy LR

/

.1

Figure 8.1 The nonrational B-spline basis functions of degree 1. Alternatively, rational B-spline
basis functions with w=[11111 1]
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U=[0 o 02z 04 06 08 1 T, w=[ 1011 1], p=1

41

Figure 8.2 Rational B-spline basis functions as in Figure 8.1, but consideringaw=[110111]

L=[0 0 0.2 0.4 0& 08 1 1], w=[1

110

4 Ry

T 1 1], p=1

il Ra

Figure 8.3 Rational B-spline basis functions as in Figure 8.1, but consideringaw =[11011 1]

IR

02

U= ] o 0z 04 0& o0& 1 1 1, w=1 11111 1],p=2

4 Re o

Figure 8.4 The nonrational B-spline basis functions of degree 2. Alternatively, rational B-spline

basis functions with w=[1111111]
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U=0 ] o 02 04 0& ] 1 1 T, w=[1 101111 p=2

b Raz + Rsao

0.3 0.4 04 06 07 (R ns 1

Figure 8.5 Rational B-spline basis functions as in Figure 8.4, but consideringaw =[1101111]

U=[0 0 0 n2 0.4 06 0.8 1 1 1, w=[1 110 1 1 1 1], p=2

Figure 8.6 Rational B-spline basis functions as in Figure 8.4, after applyingaw =[11101111]

8.2 CHARACTERISTICS OF NURBS

Rational B-spline basis functions and curves are a generalization of nonrational B-
spline basis functions and curves. Thus, they carry forward nearly all the analytic and

geometric characteristics of their nonrational B-spline counterparts. In particular :

e Each rational basis function is positive or zero for all parameter values, i.e.,
R, = 0.

e The sum of the rational B-spline basis functions for any parameter value t is
one,i.e. XM R (w) =1

e Except for first-order basis functions, i.e., k = 1, each rational basis function
has precisely one maximum.

k-2

e A rational B-spline curve of order k (degree k-1) is C"° continuous

everywhere.

Page | 89



The maximum order of the rational B-spline curve is equal to the number of
control polygon vertices.

A rational B-spline curve exhibits the variation-diminishing property.

A rational B-spline curve generally follows the shape of the control polygon.
For w; > 0, a rational B-spline curve lies within the union of convex hulls
formed by k successive control polygon vertices.

Any projective transformation is applied to a rational B-spline curve by
applying it to the control polygon vertices; i.e., the curve is invariant with
respect to a projective transformation. Note that this is a stronger condition
than that for a nonrational B-spline, which is only invariant with respect to an

affine transformation.

From Eq. 7.6 and Eq. 8.3, it is clear that when allw; = 1, R; ,(u) = N;;(u).Thus,
nonrational B-spline basis functions and curves are included as a special case of

rational B-spline basis functions and curves. Furthermore, it is easy to show that an

open rational B-spline curve with order equal to the number of control polygon

vertices is a rational Bézier curve. For the case of allw; = 1, the rational Bézier

curve reduces to a nonrational Bézier curve. Thus, both rational and nonrational

Bézier curves are included as special cases of rational B-spline curves.

8.3 DERIVATIVES OF NURBS CURVES (ROGERS, 2001)

The derivatives of rational B-spline curves are obtained by formal differentiation of

Eqg. 8.2 and Eq. 8.3. Specifically

Eq. 8.4
n+1
C'© = ) PRi(®)
i=1
with
Eq. 8.5

1
wiNi () wiNige BiZi wilNiy

Rip(t) = 1 2
' B Wil (SE wN, )

Evaluating these results at t=0 and t=n-k+2 yields

Eq. 8.6
P'(0) = (k — 1)%(82 ~B)

Eq. 8.7
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w.
P'(n—k+2) = (k—1)——(Bny1— By)
Wn+t1
which shows that the direction of the slope is along the first and last polygon spans,
respectively. Higher — order derivatives are obtained in a similar manner.

8.4 APPLICATION OF RATIONAL BEZIER AND B-SPLINE CURVES -
REPRESENTATION OF CONIC SECTIONS

As mentioned previously, rational Bézier and B-spline curves are used to represent all the conic
sections. Furthermore, they provide a single mathematical description capable of blending the
conic sections into free-form curves. Because the conic sections are described by quadratic
equations, it is convenient to first consider a quadratic rational Bézier (n = 2) defined by three
polygon vertices (n+1=3), with knot vector U=[0 0 0 1 1 1]. Writing this out yields

Eq. 8.8

WoNo 2 (W) Py + wiNy o (w)Py + wyN, 5 (u)P,

Clu) =
WoNg o (W) + wiN; ,(u) + wyN; 5 (1)

which, in fact, is a second degree rational Bézier curve (Figure 8.7).

2D Bezier Curve of degree n=2

25 T ) ' ; ) : :
W =114 j j 5 ;
w=1/2 ; P, ! ;
2wt [T AR S T P
— =l ! ! i
.l wet | AR ]
—&— control palygon '
= :
1 ________
05F------

Figure 8.7 Conic sections defined by rational Bézier (or B-spline over one knot span) curves. The
weight is imposed on the control point P,. (a) Straight line, w, = 0; (b) elliptic, w; = 1/4 and w;
=1/2; (c) parabolic, w, = 1; (d) hyperbolic, w, = 3.

It is convenient to assume w, = w, = 1. Eq. 8.8 then reduces to
Eq. 8.9

Ny (u)Py + W1N1,2(u)P1 + Npp (WP,
No (W) + wy Ny, () + Ny, (w)

C(u) =
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Now, if w; = 0, a straight line between P, and P, results. If w; — o, the control

polygon is reproduced. Whenw; = 0and u = 1/2, the midpoint of the line P,P,, M
(see Figure 8.12) is obtained. Similarly, when w; — oo, u = 1/2 yields the polygon

point at P;. For 0 < w; < oo, the point S corresponding to the point atu = 1/2 on
the curve C(u) moves along the straight line connecting the midpoint M and P;. S is
called the shoulder point. The value of w; determines the type of conic section. It is
shown that if

w; =0 a straight line results
0 <w; <1 anelliptic curve segment results
w; =1 a parabolic curve segment results

wy > 1 a hyperbolic curve segment results

Page |92
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Figure 8.8 The Rational Bernstein polynomial Basis Functions used to Figure 8.10 The Rational Bernstein polynomial Basis Functions used to
construct the conic section Figure 8.7 - w;=0 construct the conic section Figure 8.7 - w;=1

1 Ré&ll the Rational Bernstein polynomial Basis Functions of degree n=2 1 Ryo 1 R‘ngthe Rational Bemstein polynomial Basis Functions of degree n=2 | Rys
\ : 1 P :
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Figure 8.9 The Rational Bernstein polynomial Basis Functions used to Figure 8.11 The Rational Bernstein polynomial Basis Functions used to

construct the conic section Figure 8.7- w;=1/4. As R, gets inflated, R, , and construct the conic section Figure 8.7- w,=3

R, , are deflated



Using the basis functions of Eq. 7.4 into Eq. 8.8 yields

(1 —w)?Py + 2w u(1 — w)P; + u?P,

Cw = (1 —-w?+ 2w u(1 —u) +u?

Foru=1/2, C(u) =S, which yields
Eq. 8.10

1 Py+P wy M Wy
S = + P1= +
1+w; 2 1+wy 1+w; 14+wy

Py

Writing the parametric equation of the straight line between M and P; gives
Eq. 8.11
S(s)=(1—-5s)M +sP,
where s is the parameter. Equating coefficients of Eq. 8.10 and Eq. 8.11 shows that

Eq. 8.12

wy s M-S
and W1=1—5=S—P
1

The parameter s controls the shape of the curve and its conic form. Hence, it is a

good design tool.

Because a circle is a special case of an ellipse, for a particular value of w; Eq. 8.9

yields a circular arc. Because of symmetry, Po, P; and P, for a circular arc form an

isosceles triangle, as shown in Figure 8.12. The required value of w; is determined

from the geometry shown in Figure 8.12.

Figure 8.12 Circular arc formed as a rational B-spline curve

Because the triangle PoP1P, is isosceles, S is the maximum point on the curve. Hence,

the tangent at S is parallel to the line PoP,. The triangle PygS is also isosceles, with



equal base angles £SP,q and 2P,Sq, labelled 6/2 in Figure 8.12. Because the tangent
at S is parallel to the line PoP,, the angles £qSP,and £SPyM are equal. Thus, the
angle £5P,M = 6/2 is half the base angle of the isosceles triangle formed by PoP4P,.

From Eq. 8.12 and these results, wy is

M-S  MS) e tan(%)
S—P, (P,M)—(MS) f-sinf—e-tan(6/2)

W, =

Recalling that tan (g) = sinf8/(1 + cos0) yields

Eqg. 8.13
e sin(0)
1+ cosO e e
Y e & S@)  fATcosm—e [
1+ cosf

The portion of the circle subtended by the arc is twice the angle 6. For an arc of 120°,
0=60° and h, =1/2. For this particular case, the radius of the circle is 2(S- M).

A full circle is formed by piecing together multiple segments. Specifically, a full circle
is given by the three rational quadratic B-spline curve segments, each subtending an
arc of 120°. The control polygon vertices form an equilateral triangle, as shown in
Figure 8.13.The nonuniform knot and weights vectors are

U=[0001122333]
w=[1%1%11%1]

Similarly, a full circle is also given by the four rational quadratic B-spline curve
segments, each subtending an arc of 90° with the control polygon forming a square,
as shown in Figure 8.14. Here, the nonuniform knot and weights vectors are

U=[000112233444]

w= |1 V2, 1 V2, 1 V21, 1 V2
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6
Figure 8.13 Rational B-spline circle consisted of three 120° segments

3D Rational BSpline Cure and first derivatives
U=0000250250505075075111],p=2

Figure 8.14 Rational B-spline circle assembled by four 90° segments
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8.5 DEFINITION AND PROPERTIES OF NURBS SURFACES AND SOLIDS
(LEs PIEGEL, WAYNE TILLER, 1997)

A NURBS surface of degree pin the u direction and degree q¢in the v direction is a
bivariate vector-valued piecewise rational function of the form

2izo Lj=o Nip WN; ;(Ww; ; Py

S(u,v) =
?:0 271:0 Ni,p (u)N]q (U) Wi,j

<uv<l

The {P;;} form a bidirectional control net, the {w;;} are the weights, and the
{Ni,p(u)} and {N; ,(v)} are the nonrational B-spline basis functions defined on the

knot vectors
U= {OCY.._,’O, Up1, oo s Ur—p—1, 1\,_..Y._,}1}
p+1 p+1
V= {0,\%,_9, Upt1, oo s Ur—p—1) 1<_..Y._,,1}
g+l g+l
wherer = n+p+lands=m+qg+1.
Introducing the piecewise rational basis functions

N; », (WN; ;(V)w;
n =0 2 Nk,p (u)Nl,q (17) Wk,l

l](u v) =

The surface can be written as

S(u,v) =zn:i R;j(w,v) P;;
i=0 j=0

The important properties of the functions Ri,j(u, v) are roughly the same as those
given in Section 6.2 for the nonrational basis functions, N;, (wWN;,(v) .We

summarize them here.

e Nonnegativity : R; ;(w,v) = O forall i, j,u, and v;

e Partition of unity: i Xj2o Ry j(u, v) = 1forall (w,v) € [0,1] X [0,1];

e Local support: R;j(u,v) =0 if (u,v) is outside the rectangle given by
[uuul+p+1) [w) Wjrp+1);

e In any given rectangle of the form [ulo,uloﬂ) Uj,, Uj +1), at most
(p + 1)(g + 1) basis functions are nonzero, in part|cular the Rl-,j(u, v) for

—p<i<igandj,—q <j <j,arenonzero;
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e Extrema :if p >0 and q > 0, then R; j(u, v) attains exactly one maximum
value;

* Roo(0,0) =R,0(1,0) = Rym(0,1) = Ry (1,1) = 1;

e Differentiability : interior to the rectangles formed by the u and v knot lines,
all partial derivatives of R; ;(u, v) exist. At a u knot (v knot) itis p — k(q — k)
times differentiable in the u (v) direction, where k is the multiplicity of the
knot;

e If all wy;=a for 0<i<n0<j<m , and a#0 , then
R;j(u,v) = N;,(u)N; 4,(v) forall i,j.

The properties stated above vyield the following important geometric
properties of NURBS surfaces :

e Corner point interpolation: S$(0,0) = Pgg,S(1,0) = P,,,5(0,1) = Py
and S(1,1) = Py

e Affine invariance : an affine transformation is applied to the surface by
applying it to the control points;

e Strong convex hull property : assume w;; =0 for all i,j. If (u,v) €
[uio,uioﬂ) X [u;,, uj +1),then S(u, v) is in the convex hull of the control
points P;j, ip —p < i< igandj,—q <j < jo;

e Local modification: if P;;, is moved, or w; ; is changed, it affects the surface

J’
shape only in the rectangle [ui,ui+p+1) X [Wj, Ujppr1);

e Nonrational B-spline and Bezier and rational Bezier surfaces are special cases
of NURBS surfaces;

e Differentiability : S(u, v) is p — k(q — k) times differentiable with respect to

u(v) at a u knot (v knot) of multiplicity k.

We remark that there is no known variation diminishing property for NURBS surfaces
(see [Prau92]).

We can use both control point movement and weight modification to locally change
the shape of NURBS surfaces.

It is convenient to represent a NURBS surface using homogeneous coordinates, that
is

m

n
$Y(v) = Y Nip(Njg ()P

i=0 j=0

where P}; = (w; jx; j, w; jy; j, Wi jZ; j, Wi ;). Then S(u,v) = H{S"(u,v)}. We refer

interchangeably to either S¥ (u, v) or S(u, v) as the NURBS surface. Strictly speaking,
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SY(u,v)is a tensor product, piecewise polynomial surface in four — dimensional
space. S(u, v) is a piecewise rational surface in three — dimensional space; it is not a
tensor product surface, since the Ri’j(u, v) are not products of univariate basis

functions.

Rational BSpline Surface
U=[0000250260505075075111], p=2
W=[0000101030304040606111], =2

Figure 8.15 A pipe constructed on bivariate NURBS basis (surface geometry) and the derivatives
of the physical coordinates w.r.t. the parametric space
Rational BSpline Surface

U=[000025025056050750758111], p=2
W=[0000101030304040606111], =2

Figure 8.16 The pipe of Figure 8.15 cut in half
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Analogously, rational solids are defined in terms of the trivariate rational basis
functions

Ni,p (u)Nj,q (U)Nk,r (w)Wi,j,k
2:1 ZZ"=1 Zlc=1 Na,p (u)Nb,q (U)Nc,r ((‘)) Wk,l

Rijr(u,v,w) =

Rational BSpline Solid
U=000025025050650750.75111] p=2
v=[001 1], g=1
We[0000101040405050909111], =2

Rational BSpline Saolid
U=[0000250250505075075111], p=2
W=[0011], g=1
W=0000101040405050809111],=2

VIV

Figure 8.17 The pipe of Figure 8.15 with a thickness of 0.75; the elements used are
solid and the basis consists of NURBS functions
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8.6 MULTIPLE PATCHES (J. AUSTIN COTTRELL, THOMAS J.R.
HUGHES, YURI BAZILEVS, 2009)

In almost all practical circumstances, it will be necessary to describe domains with
multiple NURBS patches. For example, if different material or physical models are to
be used in different parts of the domain, it might simplify things to describe these
subdomains by different patches. Also, if different subdomains are to be assembled
in parallel on a multiple processor machine, it is convenient from the point of view of
data structures to not have a single patch split between different processors. Most
common is the case where the domain simply differs topologically from a cube. The
tensor product structure of the parameter space of a patch makes it poorly suited
for representing complex, multiply connected domains. Such geometries can
frequently be handled quite simply by using multiple patches (see, e.g., Figure 2.29).

Figure 8.18 The bracket on the top is exactly and concisely represented by five simple NURBS
patches (patch boundaries are shown in red, element boundaries in black). The patches match
geometrically and parametrically on the internal faces where they meet.

8.7 REFINEMENT (J. AUSTIN COTTRELL, THOMAS ]J.R. HUGHES, YURI
BAzILEVS, 2009)

Automatic adaptive mesh refinement has not been as widely adopted in industry as
one might assume from the extensive academic literature, because mesh refinement
requires access to the exact geometry and thus seamless and automatic
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communication with CAD, which simply does not exist. Without accurate geometry
and mesh adaptivity, convergence and high-precision results are impossible.

One of the most interesting aspects of B-splines is the myriad of ways in which the
basis may be enriched while leaving the underlying geometry and its
parameterization intact. To fully recognise the many possibilities, we must first
understand the subtle ways in which the basic mechanisms of B-spline refinement
differ from their finite element counterparts. These differences lead to more
richness in the overall refinement space. In particular, not only do we have control
over the element size and the order of the basis, but we can control the continuity of
the basis as well.

8.7.1 KNOT INSERTION

The first mechanism by which one can enrich the basis is knot insertion. Knots may
be inserted without changing a curve geometrically or parametrically. Given a knot
vector U = {uy, Uy, ..., Un4p+1}, We introduce the notion of an extended knot vector
U= {ly = Uy, Uy, ., Unimips1 = Unsp+1}, such thatU c U. As before, the new
n+m functions are formed by Eqg. 7.4, now by applying them to the new knot vector
U. The new n+m control points, P = {Py, P, ..., P} are formed from linear
combinations of the original control points, P = {P{, P,, ..., P,,}T, by

Eq. 8.14
P=TPP
where
Ti(;' _ {1 u; € [uj,.ujﬂ)
0 otherwise
and
T = tivg Z Y S MTL.‘}H forq=012,..,p—1

Ujrqg — Uy Ujtrqg+1 — Uj+1

Knot values already present in the knot vector may be repeated in this way, thereby
increasing their multiplicity, but the continuity of the basis will be reduced. However
the continuity of the curve is preserved by choosing the control points as in Eq. 8.14.
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U ={0,0,0,1,2,3,4,4,5,5,5} U= {0,0,0,.5,1,1.5,2,2.5,
3,3.5,4,4,45,5,5,5)

N

Original curve and control points Refined curve and control points
Ornginal five element mesh Refined ten element mesh
J ,."\.\ f.r 1 '|| I.'i". In'l
. i ) A \ /
\ LA \
L™ e . = 0 .X L .%. . L . mlﬂ
1 2 3 44 5,555 00005 1 15 2 25 3 35 44 45533
Original basis functions New basis functions

Figure 8.19 Knot insertion. Control points are denoted by®. The knots, which define a mesh by
partitioning the curve into elements, are denoted by m. Each element has been evenly split in the

parametric domain.

Insertion of the new knot values clearly has similarities with the classical h-
refinement strategy in finite element analysis as it splits existing elements into new
ones. It differs, however, in the number of the new functions that are created, as
well as in the continuity of the basis across the newly created element boundaries
(C° in this case). To perfectly replicate h-refinement, one would need to insert each
of the new knot values p times so that the functions will be C® across the new
boundary. The alternative to inserting new knot values — increasing the multiplicity
of existing knot values to decrease the continuity of the basis without creating new
elements — does not have an analogue in FEA, as FEA meshes have C° element
boundaries to begin with. In this way, knot insertion is very closely related, but not

identical to h-refinement.
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8.7.2 ORDER ELEVATION

The second mechanism by which one can enrich the basis is order elevation
(sometimes also called “degree elevation”). As its name implies, the process involves
raising the polynomial order of the basis functions used to represent the geometry.
Recalling that the basis has p — m;continuous derivatives across element boundaries,
it is clear that when p is increased, m; must also be increased if we are to preserve
the discontinuities in the various derivatives already existing in the original curve.
During order elevation, the multiplicity of each knot value is increased by one, but no
new knot values are added. As with knot insertion, neither the geometry nor the
parameterization are changed.

The process for order elevation begins by replicating existing knots until their
multiplicity is equal to the polynomial order, thus effectively subdividing the curve
into many Bézier curves by knot insertion. The next step is to elevate the order of
the polynomial on each of these individual segments. Lastly, excess knots are
removed to combine the segments into one, order-elevated, B-spline curve. Several
efficient algorithms exist which combine the steps so as to minimize the
computational cost of the process. For a thorough treatment, see (Les Piegel, Wayne
Tiller, 1997).

Order elevation clearly has much in common with the classical p-refinement strategy
in finite element analysis as it increases the polynomial order of the basis. The major
difference is that p-refinement always begins with a basis that is Coeverywhere,
while order elevation is compatible with any combination of continuities that exist in
the unrefined B-spline mesh. This flexibility leads us to a new higher-order technique
that is unique to isogeometric analysis.

Page | 104



U=1{0,0,01,23,4,4,5,5,5} U={,0,0,0,1,1,2,2,
3,3,4,4,4,5,5,5,5}

N

Original curve and control points Refined curve and control points
Origmal five element mesh Refined five element mesh
A 14 il A
= " T \ /\
b W,
e L e ‘& Al . - i g — N ..
1 2 3 44 555 0,000 1.1 22 33 444 5555
Original basis functions New basis functions

Figure 8.20 Order elevation. Control points are denoted by®. The knots, which define a mesh by
partitioning the curve into elements, are denoted by B Note the increased multiplicity of internal
knots. This is done to preserve discontinuities in the appropriate derivatives of the curve.

8.7.3 K-REFINEMENT: HIGHER ORDER AND HIGHER CONTINUITY

As we have seen, the two primitive refinement operations for B-splines are knot
insertion and order elevation. Knot insertion is similar to h-refinement, but for it to
be a perfect analogue each new knot value would have to be inserted with
multiplicity m; - p to ensure a €° basis everywhere. Similarly, if we begin with a mesh
in which all of the functions are already C° across element boundaries, order
elevation coincides exactly with the traditional notion of p-refinement. Knot
insertion and order elevation, however, provide us with more to work with than do

the two standard notions of refinement.

As mentioned above, we can insert new knot values with multiplicities equal to one
to define new elements across whose boundaries functions will be C*™*. We can also
repeat existing knot values to lower the continuity of the basis across existing
element boundaries. This makes knot insertion a more flexible process than simple
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h-refinement. Similarly, we have a more flexible higher-order refinement as well. It
stems from the fact that the processes of order elevation and knot insertion do not
commute. If a unique knot value, f_, is inserted between two distinct knot values in a
curve of order p, the number of continuous derivatives of the basis functions at £ is p
- 1. If we subsequently elevate the order to g, the multiplicity of every distinct knot
value (including the knot just inserted) is increased so that discontinuities in the pth
derivative of the basis are preserved. That is, the basis still has p — 1 continuous
derivatives at &, although the polynomial order is now g. If, instead, we elevated the
order of the original, coarsest curve to g and only then inserted the unique knot
value &, the basis would have g - 1 continuous derivatives at &. We refer to this
latter procedure as k-refinement. We know of no analogous practice in standard
finite element analysis.

It is important that we point out that this notion of k-refinement is not the same as
the “k-convergence” in which the position of the knots is altered. It bears more in
common with the “k-version finite element method” in that k refers to continuity,
but the motivations are different. The increased continuity is required so that a
least-squares finite element approach is possible. Such an approach requires that the
solution space have the same number of continuous derivatives as found in the
highest order derivative of the differential operator. Our motivations for using basis
functions of higher continuity are efficiency and robustness of the solution space in a
classical Galerkin finite element formulation of the problem.

The concept of k-refinement is potentially a superior approach to high-precision
analysis than p-refinement. In traditional p-refinement there is a very
inhomogeneous structure to arrays due to the different basis functions associated
with surface, edge, vertex and interior nodes. In addition, there is a proliferation in
the number of nodes because C°-continuity is maintained in the refinement process.
In k-refinement, there is a homogeneous structure within patches and growth in the

number of control variables is limited.

It is also important to note that “pure” k-refinement, where all functions maintain
maximal C°~* continuity across element boundaries, is only possible if the coarsest
mesh is comprised of a single element. If the initial mesh places constraints on the
continuity across certain element boundaries, these constraints will exist on all
meshes. In general, though some such constraints will exist, the number of elements
desired for analysis will be much higher than the number needed for modeling the
geometry. Refinements may be performed such that the functions have p - 1
continuous derivatives across these new element boundaries and the benefits of k-
refinement will still be significant.
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Figure 8.21 Three element, higher-order meshes for p- and k-refinement. (a) The p-refinement
approach results in many functions that are c® across element boundaries. (b) In comparison, k-
refinement results in a much smaller number of functions, each of which is c" ' across element
boundaries.

8.7.4 THE hpk-REFINEMENT SPACE

As we have shown, knot insertion and order elevation are the primitive operations

by which classical h- and p-refinements, as well as the new k-refinement, can be
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implemented. Recognizing their flexibility as compared with classical refinement
procedures makes feasible the notion of an hpk-refinement space. Recalling that B-
spline curves may have no more than p - 1 continuous derivatives across an element
boundary, the set of possible refinements may be characterized as in Figure 8.22.

Figure 8.22 The hpk-space. The set of all allowable refinements is contained in the region shown
in green. Note that this region extends in the direction of the arrows

Pure k-refinement keeps h fixed but increases the continuity along with the
polynomial order. Pure p-refinement increases the polynomial order while the basis
remains C°. Increasing the multiplicity of existing knot values decreases the
continuity without introducing new elements. Inserting new knot values with a
multiplicity of p results in classical h-refinement, whereby new elements are
introduced that have C° boundaries. Inserting new knot values with a multiplicity of
1 decreases h without decreasing the minimum continuity already found in the
mesh. Considering all of the aforementioned techniques results in a multitude of
refinement options beyond simple h-, p- and k-refinement.
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1 APPENDIX A

In this appendix we introduce a different way for the construction of the B-splines
basis functions. In (Richard H. Bartels, John C. Beatty, Brian A. Barsky, 1987) each
basis function is constructed of a set of piecewise spline segments bonded under

some end conditions at knots.

P, P
P, +//_—\+ 4
]  / \
;,#:- P"“' .-"""1-'.:
: 6 .
pt- P, P,

Figure 1.1 An example of a curve defined by a sequence of control vertices, represented here by
“+” signs, near which the curve passes. The lightly dotted line connecting the control vertices

forms the control polygon

1.1 LINEAR B-SPLINES (RicHARD H. BARTELS, JoHN C. BEATTY,
BRIAN A. BARSKY, 1987)

The way in which local control is obtained is most easily explained by considering
first a piecewise linear interpolation of the control vertices. Consider the "curve"

shown in Figure 1.2.

Pl—l

i+2

Figure 1.2 A piecewise linear curve

If we represent the segments of this curve in the obvious way we have

Ci- () = (Xi—l(ﬁ); Yi—1(ﬁ))
=1 -wWP;_,+uP;_y foru=(u—u_1)/(W— uj_4)



C;(@) = (X;(@), ;@)
=1 -wWP;_+uP; foru=(u—u)/(Uiz1 — W)

Civ (W) = (Xi+1(ﬂ)' Yi+1(1_l))
= A -wP;+uPiyy foru = u—ui+1)/(Wi+2 = Uit1)
Ci(0) = (Xi+2 (@), Y42 (ﬁ))
= (1 —wWPy1 +UPyy; foru = (u—up2)/(Uips — Uiy2)
Where

Xi1(@) = (1 — Wx;_p + Ux;_q

Vi@ = A -0y, +uy;q
Xi(@) = (1 —w)x;_q + ux;
@) = (1 -0y, +uy;

Xip1(@) = (1 — Wx; + ux;4q

YVigi(@) = (1 — 0y + Uy

Xip2(@) = (1 — Wxjyq + Uiy

Yiga(@) = (1 = Wyiy1 + Wiy
Altering P; clearly affects only the two segments C;(i) and C;,; (%) which are
adjacent to it: P; does not appear in the formulas for any other segments. Let us
represent our piecewise linear curve so as to isolate the individual influence of each
separate control vertex. Doing this will make straightforward the generalization to
higher-order, smoother, piecewise polynomial curves.

If we plot Y (u) as a function of u, and represent the contribution of y; to Y (u) by a
dashed line, we obtain Figure 1.3

.
“— y;’s contribution
SEEIAR T 1 I r T 1
Uia Ui-) u; Ui Ui+ Uis3 Uiva

Figure 1.3 The contribution of y; to Y(u)

Notice that this contribution is zero both to the left of u; and to the right of u;,, .
Similarly, the contribution of y;_; is shown in Figure 1.4.
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“————y;_,’s contribution

............ .r...............-........I-' | T 1 I I
Uio Ui U; Uiy Uiy Uis3 Ujg

Figure 1.4 The contribution of y;_; to Y(u)

Plotting these two hat functions together gives us, in Figure 1.5, a graphical
representation of the fact thatY; (w) = (1 -w)y;_1 + wy;. (For the sake of clarity we
will stop extending these hat functions to the left and right by zero when we draw

them because these extensions would all be drawn on top of one another).

Yi+1

Ll Vi)

Yi2

.

A0=Ey | |

U2 Up—1 L Uiy Ujs2 Uiy3 Ujg

Figure 1.5 A simultaneous look at the contributions of y;_; and y; to the curve in general, and to
Y;(w) in particular
It is useful to think of y;_; and y; as each scaling a corresponding unit hat function
(see below) whose maximum height is one. These hat functions are all translations of
one another. It is also useful to think of y;_; and y; as each being weighted by a
corresponding unit hat function. We make the distinction between weighting and
scaling to emphasize that the y 's can have any value: positive, negative, or zero. As
such, they act like scale factors. The hat functions, on the other hand, are designed
to have only a nonnegative value for any value of uand, as such, they act like

weights.

As u increases from u;_, , the contribution of y;_; grows from nothing atu = u;_4,
peaks atu = u;,and dies away to nothing again atu = u;,4. The contribution of
y; is similar on the intervalu; < u < u;,,. More profoundly, we have seen that
C(u) is entirely determined by P;_jand P; alone in the intervalu; <u<u;, ;. In
this interval Y (u) is just a weighted average of y;_; and y; namely

Uiy — U u—1uy; — —
B = (S () v = (1= Dy + Ay
i Uipq — U; YVi-1 Uppq — U; Vi Yi-1 Vi
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Ui Uiy U; Uiy Ui Uiv3 Uisg

Figure 1.6 Multiplying the two unit (height one) hat functions shown here by y;_; and y; yields
the scaled hat functions shown in Figure 1.5
If we call the “dotted” unit hat function B;_;(u) and the “dashed” unit hat function
B;(u) (to be compatible with later material we name a hat function after the knot at
its left extremity), then the line segment attaching y;_; to y; may be written as

Eq. 1.1
Yi(w) = yi_1Bi-1(w) + y:B;(w) foru; Su <ujyy

where
Eq. 1.2

u-—1u; - <

WS US Uy
Bi(w) =4 ,H_
i+2

Yoy — s Uipp S U< Ujyp

We can represent the other segments of a piecewise linear curve in the same way;
Eg. 1.1 is quite general. In Figure 1.7 we show all the hat functions
B;_,(u), ..., Bj;5(u) that define our example “curve”. Depending on the point of
view we wish to take, we may speak of Eq. 1.3 as a linear combination of the
functions B;, or as a weighted sum of the control vertices P;. For any particular i, Eq.
1.3 reduces to Eqg. 1.1 since all the hat functions except B;_;(u) and B;(u)are zero
inside the interval from wu; to u;;;. With enough hat functions, we can represent
any piecewise linear curve in this way. The unit hat functions B;(u) are called basis
functions for this reason. We may now turn our argument around: any particular
vertex P; contributes to the curve we are defining only where B;(u) is nonzero.
Since B;(u) is nonzero only over the two successive intervals [u;, u;,;]and
[U;y1,Ui42] the actual position of P; can influence only the two corresponding
segments C;(u) and C;,1(u) of the curve. The result is local control.
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Figure 1.7 Representing a piecewise linear curve as a linear combination of hat functions
The entire curve can now be written as

Eq. 1.3

Cw) = D PBiw) = ) (uBi(w), yiBi(w).

4

Notice that we have made use of the half-open intervals [u; ,u; ;1) and [u;411,U;472) SO
that C;(u) defines the curve for values of u up to but not including u;,; because the
first interval is open at the right. C;, () then takes over at u;,, itself because the
second interval is closed at the left.

The hat functions that we have introduced are continuous, although their derivatives
usually have jumps at knots (the technical term is C° continuous). Consequently,
when we use them to weight control vertices and sum them using Eq. 1.3 we obtain
a curve that is continuous, but whose first derivative vector may be discontinuous at
knots: a piecewise linear curve, as we knew from the beginning.
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1.2 UNIFORM CUBIC B-SPLINES

Our real objective, of course, is to define curves like the one in Figure 1.8 by
assembling pieces that are curved rather than straight. As in Chapter 2.3, and for the

same reasons, we choose to consider piecewise cubic curves.

'U

P
3 P
PD + R R SRR 3 + .
f/?;m
* Cﬁ{u}
;.-‘ Cd(u} ;.-".

Figure 1.8 The curve shown is constructed from cubic segments so as to approximate the
indicated vertices smoothly. The reason for numbering the curve segments as shown will become

clear later.

The technigue we are now developing does not, in general, interpolate the control
vertices - that is a special property of the piecewise linear curves we have
considered. Instead, each sequence of control vertices defines a curve that "passes

near" those vertices. As before, we may restrict our attention to a single coordinate

such as Y (u), as shown in Figure 1.9.

Y{u)

u=3 u=7

Figure 1.9 Y(u), the y component of the curve in Figure 1.8
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We focus on piecewise cubic polynomial curves assembled from cubic polynomials
X;(u) and Y;() that have positional, first derivative and second derivative
continuity (c? continuity) at the joints between successive segments, so that they
satisfy the equations

Cio1(w) = C;(w)

¢ (u) = cPwy)

-1

c®

i—-1

w) = € (u;)
In particular, this implies that
Yo (u) =Y (w)
v @) = v @)
4 w) = 2 (w)

and similarly for X(u). We can achieve the desired continuity if the basis functions
with which we define X (u) and Y (&) are themselves C* continuous piecewise cubic
polynomials with knots at the u;, since a linear combination (scaled sum) of such
basis functions will also be a C* continuous piecewise cubic polynomial. Much as for
the piecewise linear case, locality can be obtained if all but a small number of the
parametric polynomial segments defining a basis function are identically zero. The
basis functions we use will be smoother, and it turns out that this means they have
to be nonzero on a somewhat wider interval, but the construction is otherwise quite
analogous to the linear case we have already considered. For example, Y (u) for the
curve of Figure 1.8 can be represented in the following way as a sum of scaled C°
continuous piecewise cubic basis functions.
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Figure 1.10 The curve of Figure 1.9 as a scaled sum of basis functions

Figure 1.10 illustrates several conventions. We choose to index control vertices from
zero through m (here 6). As we will see, it requires four basis functions to properly
define each cubic curve segment. Hence there are three more basis functions (and
three more control vertices) than there are curve segments. Each basis function is
nonzero over four parametric intervals. The leftmost basis function extends three
additional intervals to the left of the curve, and the rightmost basis function extends
three additional intervals to the right. Summarizing: there are m + 1 control vertices,
m + 1 basis functions, m - 2 curve segments bounded by m - 1 knots, and
m -1+ 3+ 3=m+5 knots altogether. The curve is generated (swept out) as u runs

from uz to Upy41.
u0<u1 <u2<U3 =uml‘n
Unpin = Uz < Uy < < Upi1 = Umax
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Unax = Um+1 < Um+2 < Um+3 < Umsa

Let us see how we might actually define these basis functions. Using a little foresight,
we suppose each basis function to be nonzero over four successive intervals (which
for convenience we assume all have length one), as shown in Figure 1.11, and ask
that within each interval a basis function be defined by a cubic polynomial

2 3 . . .
aj +bu+cu”+du’, i—-3<j<Ii.

boy(@) b_o(&)
....... = .....I..--.--.,]...--“..I...'."‘:-.r-.......-..l_u
u; Uiyl Uiy2 Ui U;ivg

Figure 1.11 The uniform cubic B-spline B(u) is a cubic c? basis function centred at Ui,z It is zero
for u < u;and for u > u;,4. The nonzero portion of B;(u) is composed of the four polynomial
segments b_y(u), b_41(u), b_,(u) and b_z(u)

Since the nonzero portion of our cubic basis function B(u) consists (from left to
right) of four basis segments b_,(u), b_, (1), b_,(1) and b_3(u), and since each
segment has four coefficients, there are sixteen coefficients to determine. By
assumption B;(u) is identically zero foru < u; and for u > u;,4, so the first and

second derivatives Bl.(l)(u) and Bi(z)(u) are also identically zero outside the interval
(uj, uir4)- The requirement that positions, first derivatives, and second derivatives
match at each knot u; then implies that

Table 1

0=>b_,(0)

b_o(1) = b_1(0)
b_1(1) = b_»(0)
b_»(1) =b_3(0)

b_3(1)=0

0=b%(0)

b (1) = b (0)
b (1) = b (0)
b (1) = b (0)

b (1) =0

0=b%(0)

b (1) = b3 (0)
pE (1) = b1 (0)
b2 1) = b%)(0)

b3 (1) =0
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where for simplicity each segment is individually parameterized so thatu =0
corresponds to its left endpoint and it = 1 corresponds to its right endpoint. These
constitute fifteen constraints. We will see that it is convenient to require that

b_o(0) + b_1(0) + b_5(0) + b_3(0) = 1
Because b_((0) = 0 this simplifies to
b_1(0)+b_,(0)+b_3(0)=1.

Because our knots are equally spaced, this amounts to assuming that when we add
together an unscaled sequence of basis functions B;, each of which is a copy of B
shifted so that its support (the parameter values for which it is nonzero) begins at u;,
the three basis functions B;_3, B;_, and B;_, that are nonzero atu; sum to one
(Figure 1.12). Such an assumption is said to be a normalizing condition and serves to
define the function B(u) uniquely. Rather miraculously, this normalizing condition
will in fact hold at all other values of u as well; that is,

b_O(ﬁ) + b_l(ﬁ) + b_z(ﬂ) + b_3(17.) = 1, forall0<u<1

(Notice that our hat functions also summed to one.)

j=1 Uuj; Ujl Ujs2 Uje3

Figure 1.12 The basis functions that are not 0 at u; are indicated by labels

We now have sixteen equations in sixteen unknowns (that is why we assumed that
our basis function had four cubic segments), and we may solve for the coefficients
a;, bj,cjand d; of the four segments b_q,b_;,b_,, and b_3 comprising our basis

function B. Doing so yields the polynomials

Eq. 1.4

b_o(@) == u?

AN = O

b_,(@) ==(1+ 3u+ 3u? — 3u3)
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b_y(@) == (4 — 67 + 37)
(u G u u

1
b_;() = g(1 —3u+ 3u% —u?)

These four segments define the uniform cubic B-spline; again, the term uniform
means that the knots are equally spaced. The "B" is short for "Basis", which is
appropriate because, given a sufficient number of them, they can be used to
represent any C* spline over a uniform knot sequence. It is easy to verify that these
segments have the continuity necessary to qualify them as c? splines. Consider, for
example, the joint between b_, (%) and b_3(&t). So far as positional continuity is
concerned, we have

b-a(1) = b_q(0) = 7.
Consider the first parametric derivative at their common joint. We have
b (@) = %(—1211 +9u?)
b (@) = %(—3 + 6 — 372)
and pE (1) = b (0) = —=.
Their second parametric derivatives are given by
bP (@) = (=2 + 30)

bP@) = (1 - )

so that
b (1) = b%(0) = 1
However,
bY@ =3
b (@) = -1

so that their common third parametric derivatives are not equal. Notice that we also
have

b_s(1) = b5 (1) =b%4 @) =0
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Since the basis function (and consequently all its derivatives) are identically zero to
the right of b_3(1), we have positional as well as first and second derivative
continuity at the right end of b_5 () as well.

To determine a curve, we select a set of control vertices P; and use them to define
the curve

Eq. 1.5

Ca) = ) PiBi(w) = ) (6B, 7B, W)

in which each B; is simply a copy of B, shifted so that its support extends from u; to
Ui 44, and the coefficients in the summation are given by the control vertices

P; = (x;, y:).

Notice that because the basis functions are nonzero on only four successive
intervals, if u; < u < u;44 then

Eq. 1.6

r=0
€ = ) PiypBrir(w)

r=-3

=P;_3B;_3(w) + P;_,B;_,(w) + P;_yB;_1(u) + P;_oB;_o(w).

If we replace each basis functionB;(u) by the particular segment that pertains to the

interval[u;, u;;1), then (Eg. 1.6) can be written as

Eq. 1.7
=0

Ci@ = ) Piopb @) = Pi_sh_s(@ + Piyb_o(@ + Pi_yb_y (@) + P_ob_o(®).
r=-3

Notice that the segments of our basis function are numbered from right to left
because that is the order in which they appear when summed to form a curve: the
leftmost control vertex scales the rightmost basis segment, and so on. Eq. 1.7 also
reflects the convenience of parameterizing each basis segment from « = 0 at its left
end; since the basis functions are all translates of one another, this convention
allows us to use the same formulas in defining each basis function, and hence in
computing each curve segment.
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Figure 1.13 The four uniform cubic B-splines that are nonzero on the i'" interval [w;, uitq).

1.3 THE CONVEX HULL PROPERTY

It is a consequence of the way in which we have constructed the B; (specifically, a
result of their normalization) that the it segment of a uniform cubic B-spline curve
lies within the convex hull of the vertices P;_3, P;_,, P;_; and P;, as shown in Figure
1.14. (see section 4)

Figure 1.14 The it segment lies within the convex hull of P;_;,P; ,,P; ; and P;

This is true because, although we only required that the basis functions sum to one
at the knots, it is easy to verify directly by summing equations (Eqg. 1.4) that

Eq. 1.8

r=0

Z b, (%) = b_s(@) + b_p (@) + b_, (@) + b_y(@) = 1, forall 0 <@ < 1

r=-3
It follows from equation (Eq. 1.8) and from the fact that the values of the b's are
nonnegative that the i segment of a uniform cubic B-spline curve is created as a
convex combination of the control vertices P;_3, P;_,, P;_; and P;, with the values
of the basis segments acting as the w; in the discussion above. Hence, the it
segment lies within the convex hull of these control vertices. Thus if four successive
control vertices of such a curve are visible on a display screen, just as we would see
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any straight line segment within the area surrounded by the vertices, we will also see
the spline segment they define. An entire curve "follows" the control vertices in the
sense that each successive segment lies within the convex hull of the next group of
four control vertices; as we go from one segment to the next, the "oldest" is dropped
because it no longer contributes to the curve, and a new vertex is picked up.

It also follows from this discussion that we may consider the B-spline curves as a
"parameter dependent, varying convex combination" or "running average" of the

control vertices.

1.4 TRANSLATION INVARIANCE

It is highly desirable that translating all the control vertices by the same amount not
change the shape of the curve defined. Like the convex hull property, this is an easy
consequence of (Eq. 1.8).

Suppose that we translate the control vertices by t = (dx,dy). Let C(u) be the
curve defined by the control vertices P;, and let C;(u) be the curve defined by the
control vertices P; + t. From (Eq. 1.5) we have

€)= ) (Pi+ OBi(W) = ) PiBiw) +¢ ) By(w)
i i i
From Eg. 1.8, then, we have

C,(u) = Z PB(w) +t= Cu)+t

Thus, we may either translate the control vertices and then compute the curve they
define, or compute the curve first and then translate the points lying on it - the
result is the same.

1.5 ROTATION AND SCALING INVARIANCE

It is also important that we be able to rotate a curve without changing its shape.
Suppose that we rotate the control vertices by some angle 6. Let R be the matrix
accomplishing this rotation. Again C(u) is the curve defined by the control vertices
P;, and let C,.(u) be the curve defined by the control vertices RP;. From (Eq. 1.5) we
have

€ = ) RPiB;(w)
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Since for any matrix M and vectors a and b, Ma+Mb = M(a+b), we have
C/(w) = R ) PiBy(w) = RC(W)
i

Thus we may either rotate the control vertices and then compute the curve they
define, or compute the curve first and then rotate the points lying on it - the result is
the same.

Since scaling can be represented as a matrix operation, a similar argument
establishes that the shape of a cubic B-spline curve is not affected by scaling the
control vertices - the same curve is obtained if we scale points on the curve instead.

1.6 END CONDITIONS FOR CURVES

1.6.1 CURVATURE

One of the properties in which we are interested is curvature: whether, or how
much, a curve "bends" at some point. Curvature is defined quantitatively in the
following way.

At a given point P on a parametrically defined curve C(u), the circle that has the
same first and second derivative vectors as the curve is called the osculating circle.
The centre and radius of this circle are called the centre of curvature c(u) and the
radius of curvature p(u), respectively, at this point; the curvature k(1) at this point
is the reciprocal, 1/p(u) of the radius of curvature. Thus if the osculating circle has a
large radius, the curvature is small, as our intuition tells us. The curvature vector
K (u) has a magnitude equal to the curvature and points from P towards the centre

of curvature.

the tangent

Figure 1.15 The osculating circle
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With the use of a bit of differential geometry it is possible to show that the vector

CPYW) x €@ (w)
|CO )3

has magnitude equal to the curvature. However, this vector is perpendicular to the
plane containing the osculating circle (the osculating plane). An additional cross-
product with

CDw)
[AIB]

results in a vector of the same length lying in the osculating plane, which is the
curvature vector:

Eq. 1.9

(cm (W) x €@ (u)) x €D (u)
|CO (w)|*

K@) =

From Eq. 1.9 it follows that:

e if the second derivative vector is zero, then the curvature is zero;

e if the first and second derivative vectors are nonzero but linearly dependent
(collinear), then the curvature is zero;

e if the first and second derivative vectors are linearly independent (not

collinear), then the curvature is nonzero.

1.6.2 DOUBLE VERTICES

Suppose that we double the first and last vertices. That is, the user specifies the
sequence of m + 1 vertices Py, P4, ..., P;,_1, P,,, , but we actually compute a curve of
m segments from the sequence of m + 3 vertices Py, Py, Py, ..., Pyy_1, Py, Py By
adding a vertex to each end of the curve, we add an additional segment to each end
as well. The new segments have the form

Eq. 1.10
C,(u) = Py[b_s(u) + b_,(w)] + P1b_ () + P,b_o(11)
Eq. 1.11
Cni1(@) = Ppy_yb_3(00) + Pyy_1b_y (1) + Py [b_1 (W) + b_o(00)]

If we evaluate these atu = 0 and u = 1, respectively, to obtain the first and last
points on the curve, we find that
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1 1 1

Pe = Cm+1(1) = E(Pm_l + 5Pm) = ng—l + (1 _ g) Pm

Thus the curve begins at a point P that is one-sixth of the way from P, to P,and
ends at a point P, that is one-sixth of the way from P,, to P,,,_,. Differentiating (Eq.
1.10) and (Eg. 1.11) and then evaluating atii= 0 andu= 1, we find the first
derivative vectors at P and P, to be

1
Cgl)(o) = E(Pl - Po)

1
Corr (D) = 5 (P = Prry)

Thus the curve is tangent at its endpoints to the first and last line segments of the
control graph, as shown in Figure 1.16. If we compute the second derivative vectors
at P; and P,, we find that they are collinear with the tangent vectors, so that the
curvature at Pg and P, is O.

Figure 1.16 P, and Ps are double vertices

1.7 TRIPLE VERTICES

Suppose instead that we now triple the first and last vertices, so that the curve is
computed from the m +5 vertices Py, Py, Py, Py, ..., Pru_1, P, Py, Pyp- This adds
two additional segments

Eq. 1.12
C1(@) = Po[b_3(0) + b_p (W) + b_y ()] + P1b_o(0)

C2(@W) = Py[b_3() + b_(@)] + P1b_1(0) + Pyb_o (@)
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to the beginning of the curve and two additional segments

Eq. 1.13
Cim+1(@) = Ppy_3b_3(W) + Ppy_1b_5 (@) + Py [b_1 (W) + b_o(W)]
Cims2(@) = Ppy_1b_5(11) + Ppy [b_, (@) +b_1(w) + b—o(ﬁ)]

to the end of the curve. If we now substitute in Eq. 1.4 and evaluate €,(0) and
Cn+3(1) we find that

P;=C41(0) =Py
and P, =Cpy2(1) =Py

That is, the curve interpolates the first and last control vertices, as shown in Figure
1.17. The first and last segments of the curve are now straight line segments.

Pi P3
+ +
* Po=P,; \/ + P5 =P,
+ P2 + P4

Figure 1.17 P, and P, are triple vertices, and are interpolated. The control graph has been
omitted so that the curve can be seen to reach Py and P,,.

We can verify this easily by simplifying (Eq. 1.12) and (Eq. 1.13). The equation that
results for the first segment is

L us us3
CI(U,) = [1 —zl PO + [zl P1

or
Ci(s)=(1—-s)P,+sP,

1_ . . . .
fors = gu3, which we recognize as the equation of a line. The last segment of the
curve is, analogously,

73

Cons2 () = [1 —%] Py + [1 -

or
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Cini2(t) =tPp_1+ (1 —t)Pp,
fort = %(1 —u3).

The second segment C, (i) and the penultimate segment C,,,,1 (1) begin and end,
respectively, with a double vertex, and so exhibit the behaviour described for double
vertices. Thus €,(0) lies on the line segment from P, to P, and the curvature of
C, (1) is zero at that point, since it has the same first and second derivatives there as
C,(w), which is a straight line. By the same argument the curvature at C,,.1(1) is

zZero.

1.8 MULTIPLE INTERIOR VERTICES

The analysis of double vertices is equally applicable on the interior of a B-spline
curve. Triple interior vertices are particularly interesting. So long as the triple vertex
and the vertices immediately preceding and succeeding it fail to be collinear, the left
and right derivative vectors at the triple vertex also fail to be collinear; the curve is
said to be have a corner.

At first sight this may seem to contradict the fact that the curve is C* continuous. The
first derivative vector is 0 at the joint and is continuous there. A corner results
because the derivative vectors just to the left and right of the joint point in different
directions.

a single vertex a double vertex
+ .
+ /— 5 + / \ +
+ + + +

a triple vertex

",
",
Y
‘\1
+ Yo+

Figure 1.18 Forming a corner by tripling a vertex. The double vertex is not interpolated, while
the triple is.
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Now turning to B-spline surfaces, if we rewrite Eq. 7.10 in terms of basis segments
instead of basis functions we have

Eq. 1.14

0 0
C@D = D > Pryyjis b @by(0)
r=—3s5=-3

th

so that Ci’j(ﬁ,ﬁ), the i,j° patch, is completely determined by sixteen control

vertices.
Now let us see how two patches are assembled into a composite surface. Return to

Figure 7.14. Adding an additional knot ug will create the four additional B-splines
shown in Figure 1.19.

Vs G & O &
2 00000
Vg e @ G
il = T S
Vi ; !
Vo
Uo Uy U2 U3 Uy Us Ug U7 Ug

Figure 1.19 The parameter grid which results from adding an additional knot ug to the grid of
Figure 7.14. There are now four more B-splines, for a total of twenty. The leftmost sixteen B-
splines are used to build a patch over parameter region C, while the rightmost sixteen are used to
build a patch over parameter region D. (The middle twelve B-splines contribute to both.)

By factoring once the b, (&) out of Eq. 1.14 and once the bs(V), we easily conclude
that the uniform cubic B-spline surface we have defined is C* continuous along lines
of constant u and v. It follows from elementary calculus that the uniform cubic B-

. 2 . . . .
spline surfaces are therefore C continuous in every direction.
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PART II
[SOGEOMETRIC
ANALYSIS
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1 INTRODUCTION TO THE ISOGEOMETRIC METHOD

The need of isogeometric analysis came of the realization that the widely used
isoparametric method combined with the conventional basis (Lagrange and Hermite
piecewise continuous polynomials) presents a number of inefficiencies during the
analysis. Firstly, the FEA method based on conventional basis lacks in numerical
stability in some cases (e.g. discontinuous data to interpolate see Figure 1.2).
Moreover, due to the advances in the CAGD (NURBS and splines have been used
since a long ago) a conversion from the CAD model to an analysis model is required,
and at the end the results must be sent back to a computer graphics engine based on
CAGD to plot them. This procedure results in usually a non-exact model for analysis
and a new approximation procedure to plot the results; especially when conic
sections are required which are poorly represented using the conventional basis.
Furthermore, any required mesh refinements are not applied locally as easily as it is
done while using a geometric basis such as B-Splines or NURBS functions. Lastly,
contrary to the Lagrange — Hermite basis, using the isogeometric analysis enables
the analyst to apply numerical methods of higher order (e.g. least-squares method),
since the continuity of the basis is higher.

The isoparametric method is the outcome of the effort made by Taig and Irons to
construct non-rectangular elements and elements with curved edges. According to
the isoparametric analysis, we set an appropriate basis to approximate the unknown
solution fields and then use that basis to approximate the unknown geometry as
well. That enables us to easily use accurate numerical integration methods using a so
called parent integration domain and generally form more efficient algorithms. But
the main importance of the isoparametric concept is that the three basic
convergence conditions (smoothness, continuity, completeness) are virtually

automatic.

Now turning to the newborn isogeometric concept or inverse isoparametric concept,
one selects a basis capable of exactly representing the geometry and uses it as a
basis for the approximation of the solution field with numerical methods. A number
of different geometric bases can be used for the isogeometric analysis. The entities
described in the first part (Bézier, B-Splines and NURBS) are also included to these
bases. The common way in which the bases of these geometric entities are
constructed, sets them suitable for the isogeometric analysis.



Some of the fundamental properties of the functions of these geometric bases that
are mentioned in the first part of this work and are crucial for the analysis needs are:

e they may constitute the weights of a barycentric combination, >’y N, = 1,
like the combination of points that generates a new point.

e they form convex combinations, N;(§) >0V €, where 2 is the
parameter domain. The result of such a combination lies in the convex hull of
the control variables (convex hull property).

e the derivatives of them sum to zero }}[., Ni(k)

= 0; due to this property the
derivative basis can be used as weights in a combination that generates a
vector from a point set (basis for calculating vector fields).

e In particular, as far as the B-Spline basis functions are concerned, they are
piecewise functions with local support; thus the approximated solution fields
can be locally handled when they are strongly variant.

e The rational basis are suitable for complex shapes representing exactly all the

conic sections.

The goal of our analysis is to compute an unknown solution field. This field is usually
described as affine mappings of the domain. For example, the theory of linear
elasticity problems outlines the displacement field through a sequence of affine
transformations (stretches, shears, rotations, translations, see Part I, Section 5) of
infinitesimal volumes of the domain. In computational mechanics, once linear basis
functions are selected to interpolate the solution field, the kinematics of each
element are described by merely using single affine transformations (linear
kinematics). In this case each infinitesimal volume considered in linear elasticity
theory is simulated by a single finite element. This technique of analysis using linear
functions is brief when the element size is large and not small enough to adapt the
behaviour of an infinitesimal one. With a higher degree basis functions, a sequence
of overlapped affine transformations can be applied to each element, which results a
fine analysis procedure. Essentially the overlapped affine mappings are done by
more control handles that have under an overlapped control a wider span of the
domain. This seems to result a more smooth distribution of the error. In
computational geometry, the tools in use (Bezier, BSpline, NURBS entities) are all
suitably designed in order to easily and accurately control the commonly used affine
mappings concerning the geometry (transition, scaling, rotation, etc), or the
overlapped affine transformations that occur when a single control point is displaced
and the body must take a shape locally in a more smooth distribution expanding it to
a defined region. The fact that the basis has the barycentric property makes it affine
invariant and lets us apply the desired affine transformations of the body on the
control handles directly. There are only two types of affine transformations of the
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points, the transition of the points (displacement) and the identity (see Part |,
Section 5). The barycentric combination property of the basis is also a property of
the conventional (Lagrange, Hermite) basis of the FEA; this lets any affine
transformations implemented to the body to be done through the control handles. It
seems to generate the isoparametric concept where by an affine transformation of
the physical domain to the parametric one anything is done to the first can be

mapped to the second and vice versa.

Turning to the second property of the basis functions, the convex combination of the
control variables ensures the numerical stability of the analysis procedure. In other
words, the solution field lies exclusively in the convex hull that is formed by the
control variables. The convex hull property combined with the extended support of
the basis functions virtually yields the variation diminishing property which deprives

the solution field from suffering from oscillations.

The derivatives of the basis functions that sum to zero yield a combination that
constructs vectors using point sets (see Part |, Section 4); this fact that sets them
suitable for the computation of a vector field like that of gradients.
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2 THE FINITE ELEMENT METHOD THEORY IMPLEMENTED IN
[SOGEOMETRIC ANALYSIS METHOD

The analysis problem

Given: the geometry of the body, the8.4 applied loads fsf,fB,Ré,i =1,2,..., the
support conditions on S,, , the material stress-strain law, and the initial stresses in
the body

Calculate: the displacements U of the body and the corresponding strains € and
stresses o

This problem could be also described by a differential equation (Laplace’s equation).
The formulation of this kind is called the strong form of this boundary value
problem. We are looking for a function u: 2 = R such that

Eq. 2.1
Au+f=0 infl
Eq. 2.2
u=gyg onlp
Vu-n=h only

pu+Vu-n=r only

where 4 is the Laplacian differential operator, I, Uy UIx =T = 00,1, NIy N
IR = @, and nis the unit outward normal vector on df2. The functions f: 2 —
R g: I, >R h:Iy—>Randr:[ >R, and B are all given. The boundary
conditions given in Eq. 2.2 represent the three major types of boundary conditions
that could be encountered. These are Dirichlet conditions, Neumann conditions and
Robin conditions, respectively. In 2D domains it is

Eq. 2.3
=5
V) = [au?ff, 2
ay
And the directional derivative
Eq. 2.4

Vu(x,y) -n(x,y) = I
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The governing equations Eq. 2.1 in 2D elasticity problems are
Eq. 2.5
V-o+f=0 inf

o = D¢
1
szz(Vu-i-VuT)

€ is the linearized strain tensor and Vu is the gradient of the displacement field

Eq. 2.6

aul(xJ J’) aul(xr 3’)
_ 0x dy
Vulr,y) = 2:23) )
0x ady

o is the stress tensor and the divergence of that tensor is a vector whose

components are the divergences of the rows of the tensor

Eq. 2.7
do. 0

11_|_ 012

V.o ox dy

7= 00y, 005,

0x dy

For a sufficiently smooth domain, and under certain restrictions on g, h, and r, a
unique solution u satisfying Eq. 2.1 and Eqg. 2.2 is known to exist, but an analytical
expression will usually be impossible to obtain. However, we may seek an
approximate solution.

The techniques that we use in order to compute an approximate solution are called
numerical methods. Different numerical methods are simply different techniques for
finding the control variables d, which define the solution field, such that =~ u,

where i"tis the approximate solution function.

Approximate solutions of differential equations satisfy only part of the conditions of
the problem: for example the differential equation may be satisfied only at a few
positions, rather than at each point. The approximate solution is expanded in a set of
known functions with arbitrary parameters. In engineering problems there are two
most used methods to determine the parameters: the Method of Weighted Residual
and the Variational Method. In the method of weighted residual one works directly
with the differential equation and boundary conditions whereas in the variational
method one uses a functional related to the differential equation and boundary
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conditions. In both methods there are two strategies. (1) A first approximation may
be sufficient; its validity is assessed using our intuition and experience. Furthermore,
insight is often gained from the analytical solution. (2) A sequence of approximations
can be calculated to converge to the solution. In the second strategy the calculations
must be amenable to a computer; successive approximations must be calculated
without any reformulation or intervention by the analyst. The method of weighted
residual (often abbreviated MWR) actually encompasses several methods
(collocation, Galerkin, integral, etc.) and provides a framework to compare, contrast,
and elucidate the features of individual methods. Variational methods that are
usually derived from a stationary principle of energy, are not applicable to all
problems, and thus suffer a lack of generality. Sometimes they provide powerful
results, such as upper and lower bounds on quantities of interest. MWR is easy to
apply, whereas variational methods require more mathematical manipulation.
Nevertheless, when variational principles are applicable they are equivalent to the
weighted residual methods. (Finlayson, 1972)

2.1 WEIGHTED RESIDUAL METHODS — GALERKIN’S METHOD

We present the Galerkin’s numerical method for the approximation of the solution
to the boundary value problem. This method belongs to the more general class of
weighted residual methods. The method of weighted residual is a tool for finding
approximate solutions to the equations of change of distributed systems. It is also
applicable to nonlinear and non-self-adjoint problems, which is one of its most
attractive features. The weighted residual method is applied among other problems,
to the boundary value problems, initial value problems and eigenvalue problems.

The more general time dependent problem is: Given a system of differential or
integro-differential equations of change and constitutive relations, the boundary
conditions representing the interactions between the system and its surroundings,
and the initial conditions (in time dependent problems) representing some base
state of interest, the general approach is to assume a trial solution whose functional
dependence on position is chosen, but which includes undetermined functions of
time ai(t). The latter are found by requiring that the trial solution satisfy the
differential equation in some specified approximate sense.

2.1.1 DETAILS IN THE WEIGHTED RESIDUAL METHODS

In these methods, as a first step it is assumed a trial function which is a combination
of n basis (or shape or approximating) functions using the unknown coefficients q;
(dependent or independent of time) to be optimized in a later step for a better
approximation of the solution. Expressed by
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Eq. 2.8
n

7(x,0) = 91, () + ) @)
i=1

In elasticity, shape functions ¢;(x) indicate specific shapes that the domain can be
formed to; obeying the boundary conditions, but with the request that they should
form a basis (independent shapes).

The basis functions are chosen such that the essential boundary conditions are
satisfied.

Eqg. 2.9
u(x,a)=9  on,x)=g,  @x)=0, x€Ip

Such that the trial function could satisfy the boundary conditions for all the
coefficients a;. It is not necessary that the trial solution be linear in the a;, but such a
choice is usually made for simplicity.

In order to improve the approximate solution, we can add more terms to the
selected trial function, such that the basis to be enriched with more independent
potential shape functions. We need the same number of basis functions as that of
unknown coefficients a; so that the coefficients can be determined properly. In
general, accuracy of an approximated solution is dependent upon proper selection
of the trial function.

Once a trial function is selected, the residual can be formed by substituting the trial
function into the differential equation. The residual is a function that measures the
extent to which the trial function does not satisfy the differential equation at each
point. Thus, the residual R becomes

Eq. 2.10
R(x,a;) = Au(x,a;) + f(x)

because u is different from the exact solution, the residual does not vanish for all
values of x € (2, see Figure 2.1. However, we state at this point that a vanishing total
summed residual over the entire domain is a decent case (we require in Figure 2.1
the total hatched area above the curve of the exact solution equals to the total
hatched area below the curve of the exact solution). The technics that can
accomplish this request are the weighted residual methods. Each of them has its
own way to vanish the total summed residual as it is presented in following context.
Nevertheless, all these technics are based on one single general concept, which is at
each point of the domain the residual is weighted, in order to vanish the total sum of
it. This distribution of weights inside the domain is expressed by a weighting function
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(or test function or variation function or perturbation function). Mathematically, in a
continuous domain, these methods are expressed by

Eq. 2.11

1

I =(w(x),R(x,a;)) = j w(x) R(x)dx =0

0

Figure 2.1 A graphical representation of the residual at each point of the domain (the distance of
the two curves) and the total residual that is the hatched area

If we assume that each point of the domain can take an arbitrary value of the field
that we are seeking, then each single point can be considered as a single
independent variable. The amount of these independent variables in a continuous
domain is infinite. This case can be expressed by Eq. 2.8, which should be a series of
infinite terms (shape functions) of dirac 6 functions (see Figure 2.2).

Eq. 2.12

7(x,0) = 01, () + ) aib,(0)

u(x)

ai+m6i+m(x)

X

Figure 2.2 The exact solution is formed by an infinite number of dirac shape functions
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Thus, as independent variables they can form a basis of an infinite vector space. A
linear vector space that contains every possible solution (or equilibrium state) and
can be formed by the linear combination of its basis, is called a complete space. This
means that there is no need for any extra dimension (additional independent
variables, thus a new space) to express any equilibrium state. The corresponding
weighting functions should be components of an equal sized space as is the space of
the shape functions because every single point of the domain is assumed to act
independently. In that interpretation of the trial and weighting functions, in terms of
linear algebra, Eq. 2.11 can be directly expressed as an internal product of two
vectors with infinite components in an inner product space such as R" or L?(12).

As mentioned before, the requirement of such an inner product in weighted residual
methods is the inner product to vanish; consequently based on the notion of
orthogonality, they should become orthogonal. This requirement is accomplished by
two cases: a) the inner product of every non-zero weighting function with the
residual have a projection that is zero in the current inner product space and non-
zero in a new space with more dimensions b) the residual function vanishes at each
point of the entire domain. If the trial function is expressed by linear combination of
an infinite number of dirac §; functions then it is the exact solution function. Such
functions as mentioned before are members of a complete vector space. Thus, the
requirement of the vanishing inner product in these spaces is satisfied by the case b)
stated above.

We return now to the trial functions in the approximation technics that the number
of the shape functions is finite and each of them relates strongly all the points in the
domain. An example of such shape functions can be seen in figure below

u 3 1Py1(X)

/

u(x)

ap(x)

Figure 2.3 Arbitrary independent shape functions linearly combined by coefficients a;. Each of the
shape function relates strongly all the points in the domain
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This case where is considered a finite number of independent shape functions is only
a finite subspace of the complete space; each shape function is an independent
variable component of the subspace basis. The same consideration is made for the
weighting functions in order to solve a finite number of vanishing equations for the
coefficients a;. This is the reason that this finite set of shape functions cannot
represent exactly the solution function; except the cases where the solution is
simple enough (e.g. linear type) then the solution can be expressed by a finite set of
shape functions. This means that the vanished inner product of the two subspaces in
the current inner product subspace cannot be assured that it vanishes in all other
dimensions of the complete inner product space that can form the exact solution.

The next step is to compute the unknown coefficients a;, so that the chosen trial
function best approximates the exact solution. For this process we need as many
weighting functions as the unknown coefficients; each of them will render a
vanished total summed residual for specific values of the unknown coefficients. The
more the independent occasions that the total summed residual is vanished the
better the approximate solution. Since the number of the unknowns expresses
usually the potential of variability in the domain, more alternative weighting
distributions are required for large variations. These weighting functions will assume
a distribution of weights each of them in an independent way. In other words a
distribution of perturbations of the trial function is defined by each weighting
function. Once the system of these equations is solved the trial function obtains a
form for which each equation of the set of the total weighted summed residuals
vanishes. Obviously, the quality of the approximation is dependent not only on the
shape functions but also on the way that the weighting function is perturbing the
residual and implicitly how it perturbs the approximate solution. In elasticity
problems, the weighting function is perturbing the structure in different ways to
make a sense how it works (reacts), the more testing that can be made by the
weighting functions the best approximation rendered for the actual behaviour of the
structure locally. In other words using only a subspace of the weighting functions
and a subspace of the shape functions the global equilibrium is satisfied but not the
equilibrium of each point (same as in variational methods).

Assuming a finite subspace of weighting functions V™ and a finite subspace of shape
functions S™ there can be written n vanishing equations

Eq. 2.13

w;(x)-R(x,a;) =0
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In the complete inner product space S the weighted residual of the approximate

solution is

Eq. 2.14
RY(x) = Ugxc(x) — u(x)

For the sake of geometrical interpretation we assume a three dimensional complete
space (xyz) and a two dimensional subspace (xy) of the approximate solutions. Then
one can observe in Figure 2.4 that the approximate solution weighted by every
weighting function is only an approximation to the exact solution. It is also
noticeable that there is one optimal approximate solution (the left pictured one)
which possesses the minimum possible residual (the projection of the exact solution
to the subspace). This optimum approximation is the Galerkin’s method type of the
weighted residuals methods. The characteristic of that method, as one can observe
in the figure, is that each component of the residual is orthogonal to each
component of the solution subspace and consequently orthogonal to the
components of the approximate solution (cannot be further optimized).

igxet:
NN
Sassss | T

Figure 2.4 A simplified geometrical representation of the weighted residual methods
W1R1W + W2R2W = O

It is clear that the resultant approximate solution differs depending on the weighting
function. The weighting functions can be chosen in many ways and each choice
corresponds to a different criterion of methods of weighted residual. These methods
can be classified based on how the weighting function is determined. Some of the

methods of weighted residual are explained below.

Page | 141



1. Collocation Method. The displaced Dirac delta function, § (x — x;), is used as
the weighting function, where the sampling point x; must be within the
domain, 0 < x; < 1. In other words,

Eq. 2.15
w; = 6(x —x;)

This method is just limited to vanish the residual in the sampling points
without any care for the rest of the domain.

Eqg. 2.16

fv wjRdV =R|,,

As the number of sampling points increases the residual is zero at more and
more points and presumably approaches zero everywhere.

2. Subdomains Method. The domain (2 is divided into N smaller sybdomains (;

and as weighting functions are chosen

Eq. 2.17

W.:

1, .X'E.Qj
]

0, x—€ .()]-
The weighed differential equation is integrated over a subdomain and set to
zero. As N increases, the differential equation is satisfied on the average in
smaller and smaller subdomains and presumably approaches zero
everywhere. Lanczos expanded the solution in terms of Chebyshev
polynomials, and used the roots to a Chebyshev polynomial as the collocation
points. Lanczos method has been revived as the orthogonal collocation
method which has proved to be very suitable for nonlinear problems.

3. Least Squares Method. The least squares method was originated by Gauss in
1795 for least squares estimation. The same ideas are published by Legendre
in 1806. The weighting function is determined from the residual such that

Eq. 2.18

w; = @ thus I(a;) = (w(x),R(x,a;)) = fV R%(a;, x)dV

This form vanishes the total residual and minimizes by variations the square
of the distance between the trial solution and the exact. Essentially the
residual is projected to itself and the magnitude of the error field is set to
zero. The mean square residual has theoretical significance since error
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bounds can be derived in terms of it. Thus, minimization of this integral gives
the best possible bounds for the error.

4. Galerkin’s Method. For Galerkin’s method, the weighting function comes
from the chosen trial function. That is,

Eq. 2.19

_du
RNTCH
In this method the weighting functions are chosen to be the shape functions

@;(x). This method developed by the Russian mathematician Galerkin in
1915 (contribution by Bubnov) as the first criterion of what is known as the
method of weighted residuals. The shape functions must be chosen as
members of a complete set of functions. The Galerkin method then can be
interpreted as making the residual orthogonal to members of the complete
set. In the approximation scheme outlined above, the residual is continuous
(depending upon the differential operator and the choice of shape functions),
and hence the residual can vanish only if it is orthogonal to each member of a
complete system of functions. Of course in practice the residual is made
orthogonal to no more than a modest, finite number of the members of a
complete set (see Figure 2.4). Many similar to the original Galerkin technique
are often referred to as the Galerkin or generalized Galerkin method that is:
e The one in which the coefficients are given as functions of time
a; = a;(t) for time dependent problems.
e The one in which trial solutions are of the more general form
u = f(x{a;})
e The one in which weighting functions are of the form K (¢;), rather
than the shape functions u;, where K is a specified differential
operator.

The least squares method produces a symmetric matrix regardless of a chosen trial
function. However, Galerkin’s method may produce a symmetric matrix under
certain conditions, as will be explained next (weak formulations).

The formulation described is called the strong formulation of the weighted residual
method. This includes the highest order of derivative term in the differential
equation. The integral must have a non-zero finite value to yield a meaningful
approximate solution to the differential equation. This means a trial function should
be differentiable twice and its second derivative should not vanish. In order to
reduce the requirement for a trial function in terms of order of differentiability,
integration by parts is applied to the strong formulation. With that intent we form
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the weak statement of the problem which is derived from Eqg. 2.11 and Eq. 2.1
integrating by parts.

2.1.2 THE WEAK FORMULATION OF THE ANALYSIS PROBLEM

Input: f,g,handr

Output:u € SsuchthatVw eV

Eq. 2.20

JVW-VudQ+ﬁ fwudF=jwfd!2+fwhdF+JwrdF
0 Ir 0

I'n Ir

Despite the fact that the strong form of the equation Eq. 2.1 required u to have well
defined second derivatives, the weak form from which the numerical method is built
only requires that first derivatives be square-integrable. Under appropriate
regularity assumptions it can be shown that the weak solution and the strong
solution are equivalent. Weak formulation has an advantage for Galerkin’s method
where weighting functions are obtained directly from the selected trial function, as is
mentioned already introducing Eq. 2.19. If a governing differential equation is the
self-adjoint, that is when the weak form can be written by the differential operators
D%u, D%w, Galerkin’s method along with the weak formulation, results in the
variational form of the problem and a symmetric matrix in terms of unknown
coefficients of the trial function. In this frame some useful definitions from
functional analysis are presented below.

e The space of square integrable functions on Q

Eq. 2.21

L2(2) = {ulu:2 - ]R,Juz dR < 4o}

n
e Sobolev space
Eq. 2.22
d
HY(2) = {u|D% € I2(), |al < 1},a = {ay, .., az), |a] = Z a;

i=1

pe=pap@ pie,  pi=2

1 2 a0 i ax]l
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We can now define a collection of trial solutions to our problem as
Eq. 2.23

S = {ulu € H*(2),ulp, = g}
and a collection of weighting functions (space of variations)
Eq. 2.24

V = (wlw € H'(2),wly, = 0}

The weighting (or test or variations) functions have to be zero on the essential
boundaries as the values of the solution cannot be perturbed there, basis (or shape)
functions and the trial function itself must be well defined and satisfy u(x) =

p(x) =g, x €.

2.1.3 PIECEWISE BASIS FUNCTIONS AND DISCRETIZATION OF THE DOMAIN IN
cLassicaAL FEA

Regardless of the weak or strong formulation, the accuracy of an approximate
solution depends greatly on the chosen trial function. However, assuming a proper
trial function for the unknown exact solution is not an easy task. This is especially
true when the unknown exact solution is expected to have a large variation over the
problem domain, the domain has a complex shape, and/or the problem has
complicated boundary conditions. In order to overcome these problems, a trial
function can be described using piecewise continuous shape functions (functions
with local support). The selection of trial functions that are linear combinations of
piecewise continuous basis functions comprise an advantage of the weak
formulation over the strong formulation in Galerkin’s method. There can be used a
basis of piecewise shape functions that are smooth in the interior C* and weakly
continuous at the ends satisfying the existence of the integral. Furthermore, the
residual is optimum in each subdomain for a given shape functions basis; this is
achieved by controlling the total trial function locally rather than in global sense and
simultaneously vanishing the residual in each node. In the figure below it is shown
the occasion of a trial function combining two linear hat functions.

Figure 2.5 A trial function as a combination of two linear piecewise continuous test functions

Page | 145



To build a trial function with piecewise functions, the domain should be divided into
subdomains by some nodes as is shown in figure above. A piecewise polynomial is a
function that is defined by a polynomial on each subdomain and is derived usually
using interpolation theory. These piecewise shape functions are derived
systematically; starting with an assumed degree of algebraic polynomial:

Eq. 2.25

n
u(x) = ag + ayx + ayx? + azx® + -+ = Z a;xt

i=0
The assumption that the trial function is interpolatory at some nodes (a desire to
handle the trial solution to some nodal values), results in a systematic and
discretised formulation consisted of piecewise continuous intepolatory basis
functions in terms of the nodal variables d;; these variables possess values of the
exact solution field and are in substance the unknown control variables of the trial
function. The discretized form of the trial function is now expressed as

Eq. 2.26

n
Wh(x) = Ny (X)d;y + Ny(x)dy + -+ Ny(x)d,, or ul(x) = Z N,d,;

i=1
The superscript h denotes that the solution is defined on a discretized domain
defined by a step length h. The interpolatory piecewise continuous shape functions
that results this method are of the so called type of Lagrange polynomials. Now the
problem is discretised and the solution field can be approximated by solving a
system of equations for the values of the control variables d;.

Discretizing the solution field by giving the control to a finite number of control
variables, a space of potential trial functions is formed by a finite basis(the
corresponding to the control variables shape functions N,). Essentially this space is an
approximate subspace of the more general complete solution space S that consists
of an infinite number of shape functions. These subspaces consists of basis functions
that are also members of the complete solution space; they hold on to the linear
space property (any solution can be formed as a linear combination of the basis),
and the essential boundary conditions can be easily implied for all the linear
combinations, just by constraining the corresponding boundary basis functions. Such
a solution space can be denoted as S", and as an approximate subspace (for a
specific mesh) it is u € S* c S of the more general complete solution space S.
Using the weighted residual method of Galerkin type, the corresponding
approximate subspace (for a specific mesh) of the weighting functions is w"* € V" c

V. In fact the basis of the space of variations V" is a part of the basis of the trial
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solutions space S", excluding the basis functions g" € S that correspond to the
control variables of the essential boundaries. Consequently, there are only few
shape functions that are non-zero at the essential boundaries and must satisfy the
corresponding boundary conditions Ngh(x) =g, x €I, . All the other shape
functions are zero on the essential boundaries and can be members of the basis of
the weighting functions space, thus w"(x) =0, x € I,. The basis functions

g" € S" (lifting functions) are set to be g"|, = g, 9", = 0.
Thus,
Eq. 2.27
Sh=yhygh
According to the above definitions we can decompose the trial function to a variable

part and to a constrained part; the variable part of basis functions is in the weighting

space also according to the Galerkin’s method , v € V", so that
Eq. 2.28
ul = vh + gh

Now we can write the weak form in the way that the variational form would be
written considering that the constrained part of the domain is excluded. Here entire

the domain is expressed, including the constrained part g":
Eq. 2.29

wa -V(vh+gh)d[2+ﬁJw(vh+gh)dF=wadQ+ jwhdl"+jwrd]“—>
I'g

0 0 Iy Iy

Eq. 2.30

va -Vvhdﬂ+ﬁfw-vhdl“
0 I'n

=fwfd.(2+ fwhdf+fwrd1“—wa -Vghdﬂ—ﬁfw-ghdl“

Q Iy Ir 0 Iz
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2.1.4 THE WEAK FORMULATION OF THE GALERKIN’S METHOD COMBINED WITH
PIECEWISE BASIS FUNCTIONS IN S"

Given: boundary conditions gh, h,r
Find: approximate solution u" = v"* + g", where v* € V"
Such that: for arbitrary w* € V"
Eq. 2.31
awh,u") = L(w")  awh,v") = Lw") —a(wh, g")
where the functional a(:,) expressed by the total solution basis
Eq. 2.32
a(wh,ul) = fVW Vo +gMde+p fw(vh +g"dr
0 IR
and the functional a(:,-) expressed by the variational solution basis (variational form)
Eq. 2.33
a(wh,vh) = fVW -vwhdo + B fw-vhdl’

0 Ik
Also the known functional consists of the natural conditions
Eq. 2.34

L(wh) = fwfd.(2+ fwhd]"+ fwrdf
0 Iy IR
and the constrained part of the a(,) functional
Eq. 2.35
a(wh, g") = wa -Vghdo + B fw-ghdl“
0 Ir

In the form of a(w”®, v") = L(w") — a(w", g") the unknown information is on the

left-hand side, while everything on the right-hand side is given.
Some properties of the linear functionals a(+,-) and L(*) are:

The symmetry of a(-,) that follows directly from its definition that a(w,u) =
a(u,w).

Also a(+,) is bilinear and L(*) is linear. This is, for all constants C; and C,,
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Eq. 2.36
a(w,Civ + C9) = Cia(w,v) + Cra(w, g)
Eq. 2.37

L(Civ + Crg9) = G L(v) + C,L(g)

2.1.5 MATRIX FORM OF THE WEAK GALERKIN FORMULATION IN S"

Let the solution space consist of all linear combinations of a given basis functions
Ny: 0N - R, where 4 =1, ooy M. Recall that very few functions are non-zero on the
boundary of the domain. Without loss of generality, we may assume a numbering for
these functions such that for n,, < ny;:

Eq. 2.38

Nalp, = 0VA=1,..,n,

which are the unconstrained basis functions and form the variational space V. Such
that there exist d, for the linear combination

Eq. 2.39

Teq
h —
vt = Z N, d,
A=1

Furthermore, the function g™ is given similarly by coefficients g4, A = 1, ey M- IN
practice, we will always choose g" such that g; = -+ = Ineg = 0 as they have no

effect on its value on I, and so

Eq. 2.40
Nnp
gh = Ny dy
A=Teg+1
Recall Eq. 2.28
Eq. 2.41

ul = vh + gh

Which form the solution space S, that for any u" € S"

Eq. 2.42
Neq Mnp Neq
uh:vh‘l‘gh:ZNAdA‘l‘ 2 NCdC:ZNAdA-I_gh
A=1 C=neq+1 A=1
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Also in this Galerkin weak formulation it is for all w"* € V" and for the arbitrary I,

Eq. 2.43

Neq
h —
wh = Z Ny Ip
B=1

Inserting the Eq. 2.42 and Eq. 2.43 into Eq. 2.31 and take advantage of linearity to
obtain the expression

Eq. 2.44
Neg Negq Negq Neq
a ZNBIA,XNAdA =1L XNBIB —a ZNBIB'gh i

B=1 A=1 B=1 B=1

Neq Neg Neg Neg

DI ) alip,Ndy | = D 1pL0Ns) = > Isa(N, g™ —

B=1 \4=1 B=1 B=1
neq neq neq neq
Do D ale Nody | = Y 1sLWNs) = ) Tpa(N5, g™
B=1 A=1 B=1 B=1

As the I, are arbitrary (to hold for all w"* € V") we can set them as identity matrices
or factorize the expression to a vanishing parenthesis and it follows that

Eq. 2.45

Neq

> als, Ndy = LIV, = a(Ny, g)

A=1
Which yields the single elements

Eq. 2.46
Kga = a(Ng, Ny)
F, = L(N,) — a(Ng, g")

And the matrix form

Eq. 2.47
K = [Kp4l
F = [F,]
d = {d,}
Kd=F
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Solving forthedy, A = 1, ey Ny @S
Eq. 2.48
d=KF

Then inserting the d4 back into Eq. 2.42 the final solution u" is derived

Neq Nnp
uh=ZNAdA+ z chc
A=1 C=neq+1

2.1.6 THE VARIATIONAL FORM OF THE BVP

We could also reach the same form of the analysis problem of Eq. 2.29 by applying
the principal of virtual work, which is derived by the variational formulation of the
principle of minimum potential energy of a system. “The equilibrium of a body
requires that for any compatible small virtual displacements imposed to the body in
its state of equilibrium, the total internal virtual work is equal to the total external

virtual work.”

Eq. 2.49

Wone = Wese = [ @ @Y av = [0ty av + [ {ous,} (roryds + ) (o (R)
%4 i

14 Sf

where du are the virtual displacements (perturbations or variations), that is the
corresponding entity of the weighting functions w in the weighted residual methods,
and &¢ are the corresponding virtual strains, which is in substance the Vw term. The
adjective “virtual” refers to those entities that are used by the analyst in a thought
experiment to establish the integral equilibrium equation.

6u§f is a vector of the virtual displacements of a random point on the surface S,

where forces f5f are applied. {dd;} are the nodal virtual displacements combined
with the nodal concentrated forces {Rlc} And {f}? are the body forces defined in
the domain.

Evidently we can use the same piecewise continuous shape functions that are
derived before considering a discretised domain and an interpolatory polynomial to
approximate the displacement field, that is Eq. 2.26 again

Eq. 2.50

n
uh(x) = z Nl'di
i=1
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The kinematic equations of the body, which are derivatives of the equations
expressed in Eq. 2.50 are

Eq. 2.51
{e} = [BI{d;}
Substituting Eqg. 2.51 and the constitutive relation expressed below into Eq. 2.49
Eq. 2.52
{0} = [Dl{e}
we get

Eqg. 2.53

)" [ (BYDUBIAY @V = S(d)" [ INF'F2 av + 86" [ INT'f57ds+ ) (g RS

v v Sf

Which is exactly the same as is the formulation of Eq. 2.29, where

Eq. 2.54

a(wh, vh) = f [B]"[DI[B] dV{d;}

%4

Eq. 2.55

L") = [ INTF2 dv + 60y [ INFfo7ds+ ) ()" RS
14 i

Sf
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2.2 CONVERGENCE CRITERIA AND ISOPARAMETRIC METHOD

2.2.1 CONVERGENCE CRITERIA (HUGHES, 1987)

We wish to define the shape functions in such a way that, as the finite element mesh
is refined, the approximate Galerkin solution converges to the exact solution. The
following question arises: What conditions must the shape functions satisfy so that
this property is guaranteed? We shall be content, for the time being, to state
sufficient conditions for convergence. These conditions are possessed by the most
prevalent and important finite element shape functions. However, we note that
convergent elements can be constructed from shape functions which do not satisfy
all these requirements. Nevertheless these conditions may be considered basic in
that they provide the simplest criteria to ensure convergence for a wide class of

problems.
The basic convergence requirements are that the shape functions be:

1. Smooth (at least C*) on each element interior Q°
2. Continuous across each element boundary I
3. Complete (can represent constant and linear states)

Conditions 1 and 2 guarantee that first derivatives of the shape functions have, at
worst, finite jumps across the element interfaces; see Figure 2.6. This ensures that all
integrals necessary for the computation of element arrays are well defined, since at
most first derivatives appear in the integrand. If we permit finite discontinuities in
the shape functions on element boundaries, the derivatives possess delta functions
and we are unable to make sense out of the squares of these quantities that would
appear in the stiffness integrands see Figure 2.6. In elasticity these two conditions
imply the compatibility requirement, which is the displacements within the elements
and across the element boundaries must be continuous and no gaps occur between
elements. Elements with the latter property are called non-conforming or
incompatible and the former one that satisfy the convergence criteria are
conforming or compatible. There are some convergent non-conforming elements in
the literature but there are no incomplete.
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Figure 2.6 Example of shape function that satisfies conditions C1 and C2

Completeness requires that the element interpolation function is capable of exactly
representing an arbitrary linear polynomial when the nodal degrees of freedom are
assigned values in accordance with it. This requirement is vital because as the finite
element mesh is further and further refined, the exact solution and its derivatives
approach constant values over each element domain. To ensure that these constant
values are representable, the shape functions must contain all constant and linear

monomials. That is,
ul = ag + a1x + ayy + azz | d;® = ay + aydxf + a,dyf + azdzf

This argument has been proved to be the key mathematical idea for proving
convergence theorems for finite element approximations. Thus in elasticity, the
presence of all monomials through linear terms means that an element may exactly
represent all rigid motions and constant strain states.

For theories involving m™" derivatives in the stiffness integrands, all the convergence
criteria must be adapted (a basis of Hermite polynomials is used in such occasions):

1. Smooth, at least C" on each element interior, Q°
2. Continuous across each element boundary at least C™*
3. Complete in monomials up to an order of m
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2.2.2 ISOPARAMETRIC METHOD (HUGHES, 1987)

///L\
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x

Figure 2.7 The linear mapping in E? to it self

The main advantage of the isoparametric methods are that it is often easier to
establish the convergence conditions directly rather than prove it for individual
shape functions. So the importance of the isoparametric concept is that the three
basic convergence conditions are virtually automatic. In addition, isoparametric
elements may be designed to take on convenient shapes for practical analysis,
including curved boundaries, and lend themselves to concise computer
implementation.

Let: 2 = 2°¢, where 2 is a parametric domain and 2€ is the physical domain of an
element, be of the form

Eq. 2.56

Nen

X(©) = ) Ni()xf

The element is said to be isoparametric if u” can be written as

Eq. 2.57

Nen

W) = ) N(©)ds
i=1

The key point to observe in the definition is that the shape functions which define

Eq. 2.56 also serve to define Eq. 2.57.
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In general, the degree of approximation used to describe the coordinate
transformation is not equal to the degree of approximation used to represent a
dependent variable Nf (&) # NZ(x). In other words, two independent elements can
be used in the finite element analysis: one for the approximation of the geometry x
and the other for the interpolation of the dependent variable u of the solution space.
Depending on the relationship between the degree of approximation used for the
coordinate transformation and that used for the dependent variable, the finite
element formulations are classified into three categories:

Subparametric formulations: m<n
Isoparametric formulations: m=n
Superparametric formulations: m>n

In subparametric formulations, the geometry is represented by lower order
elements than those used to approximate the dependent variables. An example of
this category is provided by the Euler-Bernoulli beam element, where the Hermite
cubic element is used to approximate the transverse deflection, while the geometry
is approximated, when straight beams are analyzed, with linear interpolation
functions. In isoparametric formulations (the most common in practice and the one
that is applied in Isogeometric analysis), the same element is used to approximate
the geometry as well as the dependent unknowns: Nf(§) = Nf(x) . In
superparametric formulations, the geometry is represented with higher-order
elements than those used to approximate the dependent variables. This formulation
is seldom used in practice. (Reddy, An introduction to the finite element method,
Second Ed., 1993)

We shall now discuss some fundamental mathematical properties of mappings.
Based on this, we shall argue that convergence condition of the smoothness of the
function at the interior is generally achieved for isoparametric elements.

CONVERGENCE CONDITION 1
It is a consequence of the inverse function theorem that if x is

a) One-to-one

b) Onto

c) Cf k=1

d) J(§) >0 forallé €

Then the inverse mapping§ = x~1: 0¢ - 0 exists and is C¥

Let the mapping defined by Eq. 2.56 satisfy a) through d) then the smoothness
requirement is satisfied also
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Proof: By virtue of the hypotheses, N, = N,(§) is also a C! function. Also
considering the inverse mappin, & = &(x) is also C*. Thus N, (x) = Na(f(x)) isaC?!
function of x (this fact may be proved with the aid of the chain rule).

Definition 1: A mapping x: 2 — Q¢ c R™is said to be one-to-one if for each pair of
points £, €@ € Q such that E = E@ | then x(§W) # x(£@) in words, this
statement means that two different points of £ do not get mapped into the same
point in 02°€.

Definition 2: x: £ — € is said to be onto if ¢ = x(ﬁ) (i.e. each point in ¢ is the

image of a point in 2 under the mapping x)
Definition 3: Let x: 2 — Q€ be a differentiable mapping. The determinant of the

derivative, denoted by /] = det (Z—;), is called the Jacobian determinant.

The Jacobian determinants in two and three dimensions, respectively, are given
explicitly by
x,f x}r] x’g x’n x’{
J=det|)t M| L J=det|ve Y Vg
16 :77 Z,f Z,T] Z'(
CONVERGENCE CONDITION 2

If Zne” N, = 1, then completeness condition is satisfied for isoparametric elements

Proof: (for the three dimensional case)

Nen Nen

h—ZN de—ZN (co + c1x8 + ¢ y8 + c328)
Tlen Nen Nen Nen
—COZN +012Nx +CZZNaya+c3ZN z
nen
=COZNa+clx+czy+c3z
a=1

The condition that the shape functions sum to one is easily checked on a case by
case basis.

The only remaining convergence condition is C2, the continuity requirement on I'°.
This condition can be verified once the construction of the global shape functions
from the element shape functions is explicated. It happens that if this procedure is
done in the "obvious" way, continuity is achieved.
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Summary. The importance of the isoparametric concept is that the three basic
convergence conditions are virtually automatic. In addition, isoparametric elements
may be designed to take on convenient shapes for practical analysis, including
curved boundaries, and lend themselves to concise computer implementation.

2.3 THE ISOGEOMETRIC ANALYSIS

2.3.1 THE ESSENTIALS IN ISOGEOMETRIC ANALYSIS

Any affine transformation of space can be accomplished by means of a certain
orthogonal transformation and successive “compressions” on some three mutually
perpendicular lines. In an affine transformation, parallel lines and planes are
transformed into parallel lines and planes. In mechanics, it is used in the study of
small deformations of continuous media; in such deformations, small elements of
the medium in the first approximation undergo affine transformations.

By the above definition of the affine mapping we observe that this transformation is
not irregular to consider a big number of independent variables (degrees of
freedom). We can handle the behaviour of a certain domain just on a few control
variables. We need an expression of the type x = Za]-xi which specifies how we
have to weight the points X; such that their weighted average is x. This relation
should be still valid if we apply an affine map to all points x; and to X. As an example,
the midpoint of a straight line segment will be mapped to the midpoint of the affine
image of that straight line segment. Also, the centroid of a number of points will be
mapped to the centroid of the image points. The property of the weights that keeps
them unchanged under affine transformations is called barycentric; and the linear
combination using that type of weights is called barycentric combination. In the
notion of barycentric combinations it is:

A map @ that maps E3 into itself is called an affine map if it leaves barycentric

combinations invariant. So if

_ . 1. 3
x—zajxj, Zaj—l, x,x]-E[E

and @ is an affine map, then also

Eq. 2.58

Eq. 2.59
_ E . 3
dx = a]-¢x]- ;. Dx, <Dx]- e E

Generally affine maps are expressed as
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dx =Ax+v

This very important property of the geometric bases makes them suitable not only in
computational geometry but in analysis too. The geometric bases are constructed
especially for geometric designs accompanied with all the necessary properties that
will make the creation and the modification of a locus accurate and easy handled.
The smooth and stable control of the locus is one of the main issues in creating
accurate geometries numerically. These characteristics are desirable in analysis also.
The analysis, in terms of the kinematics in continuum mechanics, is not that far from
handling a locus in a smooth way. One can observe in all the governing equations
that a degree of smoothness is required in all the phenomena. Another primal
admission of continuum mechanics is that each particle (point) of the domain at
every state should occupy exclusively its own position (one-to-one correspondence,
see convergence condition 1). This requirement is perfectly satisfied by the
geometric bases that are structured by simple affine mappings conserving the
barycentric property.

Thus, due to the barycentric property of the basis the implementation of it on a field
lends

e Integrity (onto correspondence of the points)
e (' Continuity in the interior

e and one-to-one correspondence of each point

to characterize entire the domain of the field, which additionally is being conserved
under affine transformations.

Considering these properties we have the ability to impose affine transformations
that are considered in an analysis process

e form affine mappings that are helpful in analysis procedures using simplified
domains (isoparametric concept)

e application of any affine transformation on the domain through the control
handles (control points or variables) that are being weighted by the basis

Specifically the geometric bases can be characterized as isoparametric as they
possess

e The barycentric combination property >%_ N, = 1

e (' Smoothness in the interior of the element as every basis function is
constructed by an affine transformation of a lower degree one till the root;
the root is an affine transformation by itself that is the identity function (step
function) and the linear interpolation functions.
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e C*Smoothness at the element boundaries C¥ wherek =p —1 —m, p the
degree of the basis and m the multiplicity of the knots that form the element
boundaries

e One to one and onto mappings are formed between the physical and the
parametric domain

e The mappings are differentiable and the determinant of them is non singular
(except certain conditions overlapped control points and zero knot spans)

Furthermore the geometric bases are compatible with the weighted residual
methods as they possess all the requirements to form a convergent solution space.
The required properties of a basis are

e Members of a complete Sobolev vector space (continuous enough, can form
linear combinations etc.)

e The boundary conditions are easily implemented by boundary shape
functions; thus the trial function satisfies the boundary conditions for any
solution.

It is noticeable that compared to the classical FEA the isoparametric analysis that is
based on geometric bases (isogeometric), can represent the geometry exactly and
approximate the undergoing kinematics. That is, the resulted displacement field is
not the exact one, but the error is distributed smoothly in entire the domain.

In isoparametric concept as explained in section 2.2.2 the same shape functions are
used for the geometric mapping as for the approximation of the solution field. Which

are
Eq. 2.60
X
{}’} &) =Ny(&) Py(x,y,2), €N, x:0)>N
Z
Eq. 2.61

2 = ) Ni(©da, 205 R
A=0

Where N, (&) are functions of a geometric basis in parametric domain

The solution field of the physical domain Q is given by the parametric coordinate
¢ € 0, in which the geometric basis functions are defined. Equivalently, Eq. 2.61,
could be expressed with regard to the physical coordinates by considering a
composition with the inverse of the geometrical mapping {x} = >%_, N4(§) P4, such
thatu: 2 - R
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Eq. 2.62

The notion of the parametric domain is the same as in CAGD (computer aided
geometric design). The mapping from the parametric domain to the physical is also
the same. In that notion we take advantage of the multi-spanned patches, consisted
of non-zero knot spans to realize them as finite elements and the corresponding
approximatory (non-interpolatory) with local support (like piecewise) basis
functions. The crucial difference of the local support functions and the piecewise
continuous functions in classical FEA is that the geometric basis functions are smooth
and non zero in all the elements that they are supported and at their boundaries too.
In figure below it is shown that the black colored function in FEA is only C°
continuous at the boundaries.

(a) Standard cubic finite element basis functions with equally spaced nodes

{b) Cubic B-spline basis functions with equally spaced knoits

Figure 2.8

This renders in the FEA the first derivative at that boundary to be only weakly
satisfied by a finite jump that denotes the difference in slopes see Figure 2.9. In
Isogeometric analysis there are no such jumps of the solution field. This gives rise for
deriving smoothly distributed displacement fields as well as the derivative fields
(stress-strain fields, curvature fields etc.) see Figure 2.10.
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Figure 2.9 Differentiation of function with slope discontinuity C° continuity

|sngeometric Analysis of WURBS Surface - sxx (in Pa)
U=[00000630.130190250.31033044050560630630750.8108809411 1], p=2
WE[00002505075111], =2

w10

0 0.1 02 03 04 05 06 07 0s

0:e

0.5

Figure 2.10 Example of smooth distribution of the normal stress in a plane stress problem of a
fixed bending beam. The basis functions are of 2 degree and the field is discretized by a 4x16
mesh
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Since a basis is formed by such a geometric approximatory and locally supported
functions and a well-defined problem is considered, then the implementation of the
Galerkin’s method will intuitively yield a very smooth distribution of the error along
the domain. As is explained in section 2.1.1 the Galerkin’s method is able to give the
optimum solution of the current selected solution subspace S™ by orthogonalizing
the residual to the solution subspace itself. This yields a projection of the exact
solution to the solution subspace, thus the minimum residual (distance) of the two
vectors. Due to the generally smooth behaviour of the basis (it is imported from
CAGD) one would expect that the error distribution should be smoothly distributed
too, especially compared to the classical basis of the FEA that are more steep and
nervous. This smoothness is justified by the variation diminishing property and the
convex hull property that possess these mappings; by these properties the solution
field is guaranteed to be bounded by the convex hull of the control polygon made by
the values on the control variables; and finally the solution field should be
characterized by an absence of any oscillations.

2.3.2 CONSIDERED DOMAINS AND MAPPINGS

As is defined in the computational geometry part |, there are two domains that the
geometric basis maps the points from the one to the other. Essentially the basis
maps by a single or multiple sequential affine transformations the parametric
domain to the physical one. The basis functions are used as weights to combine
convexly the entities in the physical domain that are called control points; this
renders a locus in the physical domain mapped from a simple one that is defined in
the parametric domain. In Figure 2.11, an index space is illustrated, which actually
does not being mapped ever; it is only for indexing needs of the basis functions and
the knot spans (zero and non-zero). Thus, in the index space all the knot spans are
shown in equal length, insensibly of what is the real length of them in the parametric
domain and of course the physical. In Figure 2.11, it is shown a parametric domain
with its bivariate basis defined.

The same bivariate basis is plotted in Figure 2.13 in a 3D mode; it is illustrated that
each bivariate basis function is a surface in the parametric domain. The
corresponding one parameter basis functions are plotted in both directions to
indicate that each bivariate basis function is a tensor product (all the combinations
of products between the two coordinates is implied) of two single parameter.
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Figure 2.11 The index space of a bivariate parametric domain. This domain is not mapped! (red
region indicates the same group of particles in different domains)
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Figure 2.12 A parametric domain of a bivariate basis of degrees p=2 and q=3 (red region indicates
the same group of particles in different domains)
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p=2, =3, U=[0000.33066111],v=[00000.204060.81111]

Figure 2.13 Bivariate basis shown in 3D mode

This parametric domain is mapped by sequential (two in number for a 2" degree
basis) affine transformations to the physical domain see Figure 2.14; in this figure it is
shown two geometries that can be considered to be mapped directly from the same
parametric domain, or alternatively the second geometry can be considered to be
mapped from the first one after a deformation. This deformation, the map between
the two geometries, is an affine map also; it is implemented by affinely transforming
the control points only. This ability of affinely transforming a geometry by the affine
transformation (displacements) of its control points, is due to the barycentric
property of the basis which makes it unaffected to such transformations.

Contrary to the classical FEA where the nodal variables have physical meaning, since
they are values of the solution field, in isogeometric analysis there is no physical
meaning of the displacements of the control points. Due to the non-intepolatory
character of the geometric basis the displacements of the control points obtain
values out of the displacement field, yet are utilized as coefficients in convex
combinations of geometric basis functions so as to approximate the solution field.
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Rational BSpline Suface
U=j000033068111], p=2
W=[0000020406081111], 53 UnB

45

Figure 2.14 Domain in physical space mapped affinely from the parametric (the red region
indicates the same group of particles in different domains).

Rational BSpline Suface
U=[0D00033065111],p=2
W=[000002020404060608081111],¢=3 U, ;2

Figure 2.15 Deformed domain in physical space; mapped affinely from the above one that is
already in physical domain or directly from the parametric domain (the red region indicates the
same group of particles in different domains)
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To get a feeling about the influence of the displacement of a single control point it is
illustrated below a geometry that is mapped from the parametric domain of Figure
2.12 as is (the jacobian matrix is an identity matrix). Then the control point that
corresponds to the bivariate basis function N, , is displaced and the effect of that
displacement is shown in Figure 2.16. The blue dashed lines is the control polygon
and the thick black lines are the knot lines of the parametric domain mapped to the
present physical domain. We see the effect of the displacement that extends only on
the local support of the corresponding bivariate shape function, which is the 4™ knot
span in ¢ direction and the 4™ to 8™ knot spans in n direction (the knot spans are
indexed according to the index space see Figure 2.11 and the left knot of that span).
In Figure 2.17 it is shown the result of the displacement of the control point that
corresponds to the bivariate basis function N, ,; the area that this bivariate shape
function is supported is distorted analogous to the control point’s displacement. The
resulted displacement and strain fields are shown in subsequent figures.

Isogeometric Analysis of NURBS Surface - Deformations
U=0000.33067111], p=2
w=[0000020406081111], =3
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Figure 2.16 Distortion of the corresponding group of particles that the bivariate shape function is
supported in (knot spans 4thx(4th-8‘h))
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Isogeometric Analysis of MURBS Surface - Deformations
U=[0000.33067111], p=2
W=[0000020406081111], g=3
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Figure 2.17 Distortion of the corresponding group of particles that the bivariate shape function is
supported in (knot spans (Z"d-4th)x(4th-8th))

Isogeometric Analysis of NURBS Surface - Displacements Uk (in m)
U=[000033067111], p=2
Y=[0000020406081111], g=3
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Figure 2.18 U, displacement field due to the distortion of Figure 2.17
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Isogeametric Analysis of NURBS Surface - Displacements Uy (in m)
U=[000033067111], p=2
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Figure 2.19 U, displacement field due to the distortion of Figure 2.17
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Figure 2.20 e,, strain field due to the distortion of Figure 2.17
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Figure 2.21 e, strain field due to the distortion of Figure 2.17

lsogeometric Analysis of NURBS Surface - exy
L=[000033067 111], p=2
W=E00O00020406081111], =3

Figure 2.22 e,, strain field due to the distortion of Figure 2.17
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2.3.3 THE BASIS FUNCTIONS AND THE REFINEMENTS

The subdomains of a locally supported function are defined by knots and the role of
the control variables is undertaken by the displacements of the control points.

0 0.25 0.5 0.75 1

Figure 2.23 Piecewise functions of B-Spline type of 2™ degree defined in four subdomains
(elements). Subdomains are defined by the knot vector U=[0 00 0.25 0.50.7511 1]

More piecewise functions can be used along with more subdomains to improve the
accuracy of the approximate solution (h-refinement). As we increase the number of
subdomains for the locally supported functions, we can represent a strongly variant
function by using the linear combination of more basis functions as in Eq. 2.61. The
accuracy is also improved by setting zero knot spans which results in additional test
functions, as it is shown in the figure below. By introducing zero knot spans, the
continuity at those knots is degraded by the number of zero knot spans chik (k-
refinement), as it is assumed that these functions pass in the zero knot span; where
k is the number of zero knot spans in that point and p is the polynomial degree.
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Figure 2.24 k-Refined piecewise functions of B-Spline type of 2nd degree defined in four nonzero
and one zero length subdomain. Subdomains are defined by the knot vector U=[0 0 0 0.25 0.5 0.5
0.75111]

The accuracy is also improved and the basis is enriched with more shape functions
by degree elevation (p-refinement). In the figure below a basis is shown that stems
from the one in Figure 2.18 applying an hpk-refined.

u=[o 0 0 0 01 025 04 05 05 06 075 09 1 1 1 1]

Figure 2.25 hpk-Refined piecewise functions of B-Spline type of 3™ degree defined in eight
nonzero and one zero length subdomain. Subdomains are defined by the knot vector U=[0 00 0
0.10.250.40.50.50.60.750.91111]
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2.3.4 THE NUMERICAL INTEGRATION

Implementing the finite element method one should develop the corresponding
routines with the less possible calculations. Considering the patch of knot spans that
is represented in the parametric domain, one can assume that entire the patch is
one single element; which element is mapped afterwards to the physical space. This
is feasible; as it can isoparametrically analysed by a single mapping. Though, we can
observe in the parametric domain that the shape functions are zero everywhere
except of a few knot spans that they are locally supported; it will be a waste of
computing time to calculate vanishing shape functions. Thus, the best tactic is to
consider indeed a discretization of the parametric domain and assume that every
non-zero knot-span is a single element. With the help of the index space see Figure
2.11, one can indicate easily for each element which shape functions are non-zero.
These elements can be isoparametrically analysed considering a simpler one domain
by a mapping. The simpler domain of course is the one suitable for gauss
quadratures method of integration that is sized [—1, 1] X [—1, 1]. Such a domain is
called parent domain and is illustrated in Figure 2.21.

LU
-1
X
—
n;
“L
E ‘_l‘-__',‘ ﬁitl

Figure 2.26 The most efficient implementation of the numerical integration is done at the knot
spans individually. A third domain is defined, known also in classical FEA as the parent domain, to
implement the gauss quadratures type of integration
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3 STEP BY STEP IMPLEMENTATION OF THE MATRICES OF
THE PLANE STRESS-STRAIN PROBLEM

3.1 DERIVATION OF STIFFNESS MATRIX

In order to compute the stiffness matrix, according to the Eq. 2.54, we first need to
form the deformation matrix B,, which is with respect to the parametric domain;
afterwards it is derived the one that is referred to the physical domain B = B; ' B,
after mapping the B, with the help of the By matrix that consist of elements from
the inverse jacobian matrix. Thus, we compute the strain tensor at a point in the

physical domain by mapping it from the parametric.

We derive the matrix B from an expression that relates the strains in the physical

domain to the coordinates in the parametric domain.

Eq. 3.1

du(g,n)
0x
av(Em)
dy
du(&n) N av(&m)
dy 0x

e¢n) =

whereEn €2, x,y € Randu(gn), v(§n) are the displacements in the physical
domain being searched from the parametric domain. These gradients can be derived

in an implicit way using the chain rule

Eq. 3.2
du(§n) _du(§n)ds du@n)dn _ [az an1| ot

ox 0t 0Ox an  ox  lox oaxl|du

[0

ov(Em) _v(EW) 9% avEman 9% any|aE

dy 0t Ody on ady lay oay v

O™
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OU(E,n)+0V(E,n)=GU(E,H)§+OU(E,H)0_T1 dv(§n) 05 dv(gn)adn

dy [)'¢ d¢ ady adn ady d¢ 0x an 0x
-

0%

du

_[08 on 9% am|on

“lay ay ox axl|ov

0%
av
[ Om
Hence,
Eqg. 3.3
rou
[0 On 1198
9§ ontlo
e&m=|0 0 oy 3y ag
9 on 3 on||ay
[dy dy 0x o0xl|dv
ond
where
Eq. 3.4
_az a,r] -
= ox 0 0
9§ 0on
B.(¢m=|0 0 oy dy
& dn 0% OJn
[dy dy 0x 0xl

This is the Jacobian matrix of physical to parametric domain mapping.

The vector of gradients of the displacements with respect to the parametric
coordinates in Eg. 3.3 can be computed considering the inverse isoparametric
concept (isogeometric). This is

Eq. 3.5
u
{v} &n) =R;En)dj
Where d;; are the displacements of the control points.

And the derivatives
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Eq. 3.6

[ag{ b nﬂ [65 R, (E, n)]

2tien] [Znen]

Where the basis derivatives are the corresponding to the type of geometric basis

Lj

(see Part ).

Entire the vector of gradients is

Eq. 3.7
u($,m) o
35 1x
ou(€,m| [Rium) 0 Ryu(E,1) 0 Zly
o |_ [Rl,v & m 0 Ry, (&,1m) 0 d2x
dv(¢,n) [ 0 Ry (&M 0 Ryu(Em) J dzy
az O Rl,v(fi TI) O RZ,V(E’ 7’) d3x
av(&,n) el
on :
where
Eq. 3.8
rRl,u(E’ 77) 0 RZ,u(frn) 0 -l
_ Rl,v(f: T’) 0 RZ,U(E' T]) 0
BZ (g' n) B 0 Rl,u (fr 77) 0 RZ,u (f' T])
0 Rl,v(fl T’) 0 RZ,v (f; 77)

Substituting in Eq. 3.3 it is

Eq. 3.9
du(§n)
0x
av(E,
em=|  TE |=mEn BG4
du(§n) aV(E,n)
[ dy 0x
-ﬁ a_n 0 0- le
ox 0x [Rl,u(fin) 0 Rz’u(f,n) 0 '| dly
—lo o 9% a_anl,v(f,n) 0 Ry,(E,1) 0 - d2x
dy ay[ 0 Ru@Em 0 Ry(Em) J "
g a_n % a_n 0 R1,v(5'77) 0 RZ,V(E'T’) d3x
ldy dy 0x 0xl 3y
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To compute the By matrix we need to compute the Jacobian matrix of the physical
to parametric domain mapping. This can be done by inverting the parametric to the
physical domain mapping that is expressed by the Jacobian matrix J.
Eq. 3.10
dx 0y
9§ 0§
dn on

This mapping is done by a geometric basis as is presented in Part |

Eq. 3.11
(lem=ryEm-p,

For this mapping the gradients in physical domain are being calculated easily with
respect to the coordinates of the parametric domain. That is

9]

% {;} &m ~ [6_5 R;;j(€m)

P,
d (x d Y
Shhen] |sruen]
The components of the /=1 are
9 1 0y
dx  det] dn
oan 1 dy
ox  det] 0¢
0 1 0x
dy  det]dn
on 1 ox
dy det] 3¢
Therefore,
1 0 1 0
Loy 1ty 0
det] on det] 0¢
B.(6,1) = 0 0 1 ox 1 ox
16m) = det] 0y det] 9%
1 ox 1 ox 1 dy 1 Jdy
det]on det] ¢ det] 0n det] 0¢
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We have computed the deformation matrix B(¢,n) = B1(¢,1n) - B2(&,1), so we
can now proceed with the computation of the stiffness matrix using Eq. 2.54

K = Z f BT pm) gam) gy (m)

|

1
[BE, m™] DM B(E, 7)™ det[];1det]/,] tdEdn

m 1
Ney  NMgp.
T
=> > [BED™] DB m)™wpw, detl); Idetl, ] tdgdy
m (&n)EPg

Where det[];] is the determinant of the Jacobian matrix of parent to parametric
domain mapping (to convert the weights WgWs; used in integration that form the
area of the parent domain) and det[/,] is the determinant of the Jacobian matrix of
parametric to physical domain mapping (to convert the stiffness to the physical
domain); t denotes the constant width of the element. If the width varies in the
element, then we use the formulation

ox dy 0z

FIACTT:

ox dy 0z Faz17
dv = % % % dédnd{ = det[];]det[/,]d¢d7jd¢

ox dy 0z

¢ 07 0t

The inner summation is over the Gauss points F; selected in order to compute the

integral.
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3.2 DERIVATION OF THE BODY & TRACTION FORCES VECTOR

FB:Z f RO fBaM) gy m) —

m y(m)
£2MEm
- B(m Rii(Em) Ri(E1m) o Rpym(E,m)]dVO™
;V(,fn)[ff( g O ")
2 (MR (61)]
£ & MRy (E,1)
i z@;p FEM (£ n)Ry, (¢, m) | WEWndetlaldet]/o]dédn
L £BON (£ YRy (€, )

The traction forces are computed in the same way by integrating in one dimension
that is the corresponding boundaries of the referred elements.

3.3 DERIVATION OF THE MASS MATRIX

Eq. 3.12

M= z f p RIDRIWT gy m) —

m y(m)

[R11($C’77)]

Ri,(&,1m)
=y j o R EM|REN RipEM) oo Rum(Em)] dVE™
m y(m lR14(§:77)J

[Rn(fﬂ?)]
R1,($,m)
= Z png(f,n)‘[Rn(fﬂ?) Ri2(6m) . an(f'U)]Wgw’ﬁdet[h]det[]z]dfdn

m (§mePg  [R14(S,m)
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4 APPLICATIONS ON LINEAR ISOGEOMETRIC ANALYSIS

For the solution of an Isogeometric problem we have to specify the domain of the
problem by its exact geometry and any other geometry refinements necessary for a
good analysis model without degrading the exactness of the geometry.

We first decide on how to represent the geometry of the problem in the simplest
and exact way. We must specify the degree of the basis and the knot vectors
according to the complexity of the geometry. Specifically, curved edges need a
higher order of basis, whereas for those complex shapes that require local control
(basis functions with local support) internal knots are helpful (once no local control is
requisite, a Bezier geometry is constructed without internal knots). Furthermore, the
minimum number of required control points and their positions have to be specified,
to exactly represent the desired geometry. Finally, when the NURBS or the rational
Bezier method is used, the weights of the control points have to be specified to
represent a specific conic section (see Part | section 8.4).

Further refinement of the Isogeometric problem is made for the sake of analysis. Any
refinement of the geometry can be implemented as needed, h-refinement, p-
refinement or k-refinement or a combination of them without the change of the
geometry.

41 LINEAR ELASTIC ANALYSIS OF A CANTILEVER BEAM

y 4

0,05

X
N
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U =0 resultant P

Uy =
Figure 4.1

We assume a rigidly fixed cantilever beam consisted of plane — stress elements,
carrying a vertical tip load. The elastic properties of the material are E = 210GPa, v =
0.3. The dimensions of the beamare L X H X W = 1m X 0.1 m X 0.05 m, whereas
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the applied tip force of 1 kN is applied as a parabolic distribution on the section. In
all occasions the fixed end of the beam is achieved by constraining all the degrees of
freedom of the control points that are on that boundary line.

We perform a linear analysis of the cantilever beam based on B-Splines and compare
the stress, strain and displacement fields with the analytical data computed
according to the classical theory of elasticity as:

P P ) h?
O-xx:_Txy O-yyzo O-xy:Z(y _Z)

3
where [ = %, b denotes the width and h the height of the beam

3Px?%y N 3P(1+v)y PQR2+v)y3 3PI?

Cul) o el el
3Pvxy? P(1+v)x3 Pl 3PI?

v=- "l e RE + e
() 4E(7)  2E(z) 4£(3)

where [ denotes the length of the beam.

Now turning to the implementation of the isogeometric method to this problem, we
first decide that a first degree basis in both parametric directions is adequate to
describe this simple linear geometry. Moreover, no internal knots are needed to
control locally the geometry. Having in hand the degree of the basis and the knot
vectors we can place the control points to shape the rectangular beam. For this first
degree basis and the globally controlled geometry, four control points placed at the
corners are adequate see Figure 4.2. All of the weights corresponding to the NURBS
basis are set to unit as there are no conic sections to be represented. Due to this
fact, the NURBS basis degenerates into a B-Spline basis. Furthermore, the basis
degenerates further into a Bezier geometry basis (Bernstein polynomials) since only
one knot span has been defined in each direction.

For the sake of analysis the previous Bezier geometry is refined. Using a single
generator of basis functions as we refine the geometry by knot insertion it can
produce a corresponding B-Spline basis and the necessary knot spans. Various
parametric analysis are made to examine the efficiency and stability of the method
by hp refinement in addition to the examination of the numerical integration. All
these parametric analysis are presented in subsequent sections by graphs of L*(Q)
and energy norms. In this section some results of the plane stress analysis are
presented for a qualitative assessment. These results are for 4" degree (in both
directions) bivariate basis functions see Figure 4.3 through Figure 4.13.
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|sogeometric Analysis of NURBS Surface - Problem Statement
U=[oa 1 1], p=1
W=[0011], g=1
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Figure 4.2 The geometry of the beam in its most simple structure. One non-zero knot span in each
direction (one element totally) and one control point at each corner for linear interpolation.

Isogeometric Analysis of NURBS Surface - Deformations
U=s[0000001020304050607080911111],p=4
V=[0000011111], g=4

T T

M
03

e S e e e

L S SOt N S e R SR

L e s s s s e

Figure 4.3 The deformed shape of the beam
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Isogeometric Analysis of NURBS Surface - Displacements Ux (in m)
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Figure 4.4
Exact Solution - Displacements Ux (in m) X 10'5
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Isogeometric Analysis of NURBS Surface - Displacements Uy (in m)
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Exact Solution - Displacements Uy (in m)
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Figure 4.7
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Isogeometric Analysis of NURBS Surface - sxx (in Pa)
U=[0000001020304050607080911111],p=4
V=[0000011111], g=4
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Exact Solution - sxx¢ (in Pa) <10
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Isogeometric Analysis of NURBS Surface - syy (in Pa)
U=[000000102030405060.7080911111],p=4
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Isogeometric Analysis of NURBS Surface - sxy (in Pa)
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Figure 4.13

We realize that the results are quite accurate for this very coarse mesh (1x10
elements). Even the shear stresses sxy and the vertical syy are very close to being
accurate excluding the region near the support that indicates the difference in
considered boundary conditions.
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4.2 EXAMINATION OF THE NUMERICAL INTEGRATION ACCURACY BY
THE GAUSS - LEGENDRE QUADRATURE RULE

This examination starts from the 4" degree basis functions and ends at the 2"
degree basis. The discretization (knot spans) is the same in all the cases, 1x10
elements. The L%(Q) (relative and absolute) norms, for the displacement error field,
the stress error field, the normal stress error field and the energy norms are plotted
in each degree of the basis functions.

The considered parameter in these analyses is the number of the gauss quadrature
points in each element that will try to approximate the field by Legendre
polynomials. The lower number of gauss points is derived by the known rule that the
exact integration of the basis functions is achieved by the rule n=p+1; where n is the
number of gauss points in the referred direction and p is the degree.

4.2.1 INTEGRATION OF 4TH DEGREE BASIS FUNCTIONS

Isogeometric Analysis of MURES Surface - Problem Statement

Figure 4.14 The problem that is considered for examination of numerical integration accuracy
(blue dots represents the control points, the thick black lines the element borders a.k.a. knot
lines, and the green diamonds are the cross-points of the knot lines)

Our first result is that an inadequate number of gauss points results in a highly
distorted geometry that fails to represent the real deformed geometry see Figure
4.17; thus the approximation of the displacement field is too bad. After trying a
number of combinations of gauss points along u and v direction, we observed that
the deformed geometry is a good approximation of the solution field was reached
for a 3 X 4 net of gauss points per element. These qualitative results are confirmed
by graphs indicating the various norms that mentioned above at each case. In each
graph one can observe that the exact integration is achieved when the
corresponding norm remains unchanged while increasing the number of integration
points.
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Figure 4.15 The basis functions in u direction of 4t degree

Isogeometric Analysis of NURBS Surface - Deformations
U=000000.10203040506070.80.911111], p=4
V=[0000011111], g=4
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Figure 4.16 The mapped positions of the 3x3 g.q.p. (the green crosses are the gauss points, the
red dots are the control points)
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Izogeometric Analysis of NURBS Surface - Deformations
U=[0000001020304050607080811111], p=4
W=[0000011111], g=4
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Figure 4.17 Deformations(x300 scaled) under a'*'xa™ degree basis and a) 3x3 g.q.p. per element b)
4x3 g.q.p. per element b) 3x4 g.q.p.

On the graphs of the results one can decode the information in the title of each

figure according to this legend:

eldof: degrees of freedom of element (total in x and y directions)

sdof: total degrees of freedom of the system (total in x and y directions)
h: maximum size of element

g.9.p.: gauss quadrature points in two directions of the plane element (¢-dir x n-dir)
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Cantilewer beam under tip load and under 40 degree basis - Gauss guad. prts Parametric Analysis
b=0.14142-0.14142rn (10-10 elerments), eldof=30-50, sdof=140-140, g.9.p.=3x3-6x6
0.35 T T T T

Rel. L norm of displacements

0.3 -

=
[
[l
T
|

o
b
T
|

L2 norm of Relative Error

0.1 | | | |
3xd 4x3 Jnd x4 ¥ ia) Gxf

number of g.q.p

Figure 4.18 Relative norm of displacement field under the variation of the number of g.q.p.

Cantilever bearn under tip load and under 41 degree basis - Gauss quad. pnts Parametric Analysis
F=0.14142-0.14142m (10-10 elements), eldof=50-50, sdof=140-140, 9.9.p.=3x3-6x6
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Figure 4.19 Relative norm of stress field under the variation of the number of g.q.p.
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Cantilever bearm under tip load and under 4th degree basis -- Gauss gquad. pnts Parametric Analysis

h=0.14142-0.14142m (10-10 elements), eldof=520-50, sdof=140-140, y.q.p.=3x3-6x6
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Figure 4.20 Relative norm of sxx stress field under the variation of the number of g.q.p.
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Cantilever beam under tip load and under 41 degree basis -- Gauss quad. pnts Parametric Analysis

h=0.14142-0.14142m (10-10 elernents), eldof=50-50, sdof=140-140, g.q. p.=3x3-6x6

Energy narm
Rel. Energy norm

%3 43

3xd

number of g.g.p

Axd

¥l

BxB

Figure 4.21 Energy norms under the variation of the number of g.q.p.
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4.2.2 INTEGRATION OF 3RD DEGREE BASIS FUNCTIONS

Now, let’s examine the case of assuming 3rd degree basis functions in both
directions Figure 4.22 depicts the deformation of the beam scaled-up 300 times. The
net of gauss points per element is of size 2 X 3. The outcome of our research on
gauss points was analogous to that obtained in the case of the 4" degree basis

functions; for a 2 X 2 or 3 X 2 net, the geometry of the deformed beam appears to
be highly distorted.

Isogeametric Analysis of NURBS Surface - Deformations
U=[00000102030405060708031111],p=3
W=[00001111],9=3

+ |+

Figure 4.22 Deformations(x300 scaled) under 373" degree basis and 2x3 g.q.p. All the lower
occasions of number of gauss points (2x2 & 3x2) yield a very high distorted geometry that does

not correspond at all to the prospective one.

Cantilevar beam under tip lnad and under ¥ degree basis - Gauss quad. prlz Parametric Analysis
« 10" h=0.1414240.14142m (1010 elerments), eldof=32-32, =dof=104-104, g q.p.=2x2-5:5
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Figure 4.23
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Canldgver bearn under fip load and under 3 degree basis - Gauss quad. pois Parameiric Analyais
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Figure 4.24

Cantilevar bearn under tip load and under 3 degree basis — Gauss quad, prts Parametnic Analysis
b= 14142-0.14142m (10-10 elements), eldaf=32-32, sdc=104-104, g.q.p.=252-5x5
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Figure 4.26

4.2.3 INTEGRATION OF 3RD DEGREE BASIS FUNCTIONS OF A TENSION PROBLEM

Isogeometric Analysis of NURBS Surface - Deformations

U=00000102030405060708021111],p=3
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Figure 4.27 A bar with the same material properties and geometry as the fixed beam, under

parabolic distribution of tension at the tip

Page | 196



To make sure that these observations of numerical integration efficiency is not
problem dependent we render a problem of a bar under tension. Using the same
material properties and the same geometry as that of the beam analysed we realize
that the observations are not problem dependent. The corresponding results are

plotted below.
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107 = 141420 14182 [10V10 wlarments], sidal=30.32, ssol=104- 104, g g p =2e2505
7 T T T —
el L¥ norm of dhosplacc sments
T m— g s s ot gipen 1 e bps - Gmas gt poa P ey
e P X e b
g |
o
B
=y —
=
i
= = m
s i
1 L
Tl dnd [
number ol g p
Figure 4.28

Cartlevie bomm uteder binaion and usder I degres biat - Gauss quad pris Parameing Analyai
FeQ 14120 141420 (M0 elprrepran), obfof=30-32, adet= 1048104, g g p =22 505
T T

C anthdr e yefan S ] e 1% oo foton - Syt syl bt Praramalen iyt
o) AV D 0 ) gy e 215 M gm0
&0 Bl 17 e o
o |
o 1
B
E
=5
i
-
i \
k] -
A i
o . o) ]
o b
10 -
il L
2] 3 7] St
reamiber of g.g .
Figure 4.29

Page | 197



* noeen of Ewsor

Cantsdever Boam usder tansion wed under T degies basts - Gauss guad prts Paramatnic Analysis
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4.2.4 INTEGRATION OF 2NP DEGREE BASIS FUNCTIONS OF A TENSION PROBLEM

lsogearnetric Analysis of NURBS Surface - Deformations
U=[0000102030405060708059111],p=2
W=[000111], g=2
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Relative 12 norm of Error
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Cantilever beam under tip load and under 2 degree basis - Gauss quad. pnts Parametric Analysis
h=0.14142-0.14142m (10-10 elements), eldof=18-15, sdof=72-72, g.q.p.=2x2-5x5
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Figure 4.31

Cantilewer bearn under tip load and under 2nd degree basis -- Gauss quad. pnts Parametric Analysis
b=0.14142-0 14142m (10-10 elernents), eldo=18-18, sdof=72-72, g.q.p.=2x2-5x5
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Figure 4.32
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Cantilever bearn under tip load and under 27 degree basis -- Gauss guad. pnts Parametric Analysis
h=0.14142-014142m (10-10 elements), eldo=18-18, sdof=72-72, g.q.p.=2%2-5x5
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Figure 4.33

Cantilever bearn under tip load and under 2™ degree basis -- Gauss quad. pnts Parametric Analysis
h=0.14142-0.14142r (10-10 elements), eldof=18-18, sdof=72-72, g.q.p.=2x2-5x5
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Figure 4.34
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43 H-REFINEMENT & P-REFINEMENT ANALYSES

In this section parametric analysis are made on h and p refinement. These analyses
made to get a better insight into the capabilities of the Isogeometric analysis method
and to ensure that the codes are properly developed (CAGD and Analysis codes). The
figure below illustrates the change of the total d.o.f of the system as we refine the
analyzed model. The analyzed problem is the same that is presented previously in
geometry and material properties. The discretization and the degree of the basis

functions is refined.

Cantilever bearn under tip load -~ hp-refinerment
wnt h=0.1414-0.0044157m (10-10240 elements), Degree of basis 1st-dth
28 T I ] I . Maaaans aanasamanran

h-refinement under 1 degree basis, B d.o.f per element
h-refinement under 2™ degree basis, 18 d.o.f per element
h-refinement under 37 degree basis, 32 d.o.f per element

h-refinement under 411 degree basis, 50 d.o.f per element

1.5

—y

Murmber of systern degrees of freedorm

045

gl i i N R A
1432 1116 1/8 174 172 1
maximum size of element hmax

Figure 4.35 Change of the number of the system’s d.o.f. as a function to h-refinement. Each curve
is a specific degree of basis functions as is shown in legend

We observe that the degrees of freedom change strongly only by the h-refinement.

In Figure 4.36 it is shown an example of the produced total stiffness matrix of the
same problem for a 4" degree basis functions and a discretization of 1x10 elements.
(the d.o.f. are numbered in the most short direction)
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The rundown of all the analyses done in hp-refiement is illustrated in Figure 4.37
through. As expected, the results of a higher degree basis functions are by far closely
to the convergent solution. As higher is the degree of shape functions more closer is

20 40 60 a0
nz = 10600

the solution to the convergent by a coarse mesh.

Relative 12 norm of displacement error field

Figure 4.37 Relative norm of the displacement error field under the hp-refinement analyses
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Figure 4.36 The illustration of a total stiffness matrix

Cantilever beam under tip load -- hp-refinement
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Cantilever beam under tip load - hp-refinerment
h=0.1414-0.0044187m (10-10240 elements), Degree of basis 154"
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Figure 4.38 Relative norm of the stress error field under the hp-refinement analyses

Cantilewer beam under tig load - hp-refinerment
h=0.1414-0.0044157m (10-10240 elernents), Degree of basis 1st-dth
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Figure 4.39 Relative norm of the normal stress error field under the hp-refinement analyses
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Cantilewer beam under tig load - hp-refinerment
h=0.1414-0.0044157m (10-10240 elernents), Degree of basis 1st-dth
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Figure 4.40 Relative energy norms under the hp-refinement analyses

The details of these analyses are shown in subsections.

4.3.1 H-REFINEMENT OF THE PROBLEM UNDER 15T DEGREE BIVARIATE BASIS

Cantilever beam under tip load
h-refinerment (uniform), h=0.14-0.0044m (10-10240 elements), eldof=8, sdof=44-21186
T

T T T T
— 2 norm of stress
L2 norm of stress sxx
7
10°F E
RN 4
i
w
@
=4
W
5
£
25
r; 107 F E
10t .
3
1D Il 1 1 Il 1
10? 10” 10* 1t 10° 10°

maxirnurn size of element hmax

Figure 4.41
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Cantilever beam under tip load
h-refinerment {uniform), h=0.14-0.0044m (10-10240 elements), eldof=5, sdof=44-21186
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Figure 4.42

4.3.2 H-REFINEMENT OF THE PROBLEM UNDER 2NP DEGREE BIVARIATE BASIS

Relative 12 norm of Error

Cantilever beam under tip load and under ond degree basis - h-refinement {uniform)

h=0.14142-0.0044194m

{10-1

0240 elements), eldo=18-18, sdof=72-21896, g.q.p.=2x2-2x2

Rel. L2 norm of displacements
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Figure 4.43
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Relative 12 norm of Error
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Cantilever beam under tip load and under 2™ degree hasis -- h-refinement (uniform)
h=0.14142-0.0044194m (10-10240 elements), eldof=18-18, sdof=72-21896, g.q.p.=2x2-2x2
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Figure 4.44

Cantilever bearn under tip load and under 2 degree basis -- h-refinement {uniform)
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h=0.14142-0.0044194m (10-10240 elements), eldof=18-18, sdof=72-21896, g.q.p.=2x2-2x2

Rel. L2 nomn of stress sxx
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Figure 4.45
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Cantilewer bearn under tip load and under 2™ degree basis -- h-refinement (uniform)
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Figure 4.46

Cantilever beam under tip load and under 2™ degree basis - h-refinement (uniform)
h=0.14142-0.0044194m (10-10240 elements), eldof=18-18, sdof=72-21896, g.q.p.=2x2-2:2
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Figure 4.47
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Relative L2 norm of Error
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Cantilever beam under tip load and under 2™ degree basis - h-refinement (uniform)
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Figure 4.48

Cantilever bearn under tip load and under 2nd degree basis - h-refinerment (uniforrm)

h=0.14142-0.0044194m (10-10240 elerments), eldof=18-18, sdof=72-21895, g.q.p.=3%3-3x3

Marm of energy errar
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Figure 4.49
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4.3.3 H-REFINEMENT OF THE PROBLEM UNDER 3RP DEGREE BIVARIATE BASIS

Relative 2 norm of Error

Relative 12 norm of Error

Cantilever bearm under tip load and under 3 degree basis - h-refinement (uniform)

h=0.14142-0.0044194m (10-10240 elements), eldof=32-32, sdof=104-22610, g.4.p.=3%3-3x3
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Figure 4.50

Cantilever beam under tip load and under 3 degree basis -- h-refinement (uniform)
h=0.14142-0.0044194rm (10-10240 elerments), eldof=32-32, sdof=104-22610, g.¢.p.=3x3-3x3
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Figure 4.51
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Cantilever bearn under tip load and under 3 degree basis - h-refinement (uniform)
h=0.14142-0.0044124m (10-10240 elerents), eldof=32-32, sdof=104-22610, g.q.p.=3x3-3%3
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Figure 4.52

Cantilever beam under tip load and under 3@ degree basis -- h-refinement (uniform)

h=0.14142-0.0044194m (10-10240 elements), eldof=32-32, sdof=104-22610, g.0.p.=3x3-3x3
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Figure 4.53

Page | 210



Cantilever bearm under tip load and under 3 degree basis -- h-refinement (uniform)
h=0.14142-0.0044194rm (10-10240 elerments), eldof=32-32, sdof=104-22610, g.¢.p.=3x3-3x3
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Figure 4.54

4.3.4 H-REFINEMENT OF THE PROBLEM UNDER 4TH DEGREE BIVARIATE BASIS

Cantilever beam under tip load and under 410 degree basis - h-refinerment {uniform}
h=0.14142-0.0044134m {10-10240 elements), eldof=50-50, sdof=140-23328, g.q.p.=4xd-4xd
T

Rel. L2 narm of displacements

Relative (2 norm of Error

. . . L . . . L
-1
10 10
maximum size of element h,

Page | 211



Relative L2 nomm of Error

Relative 12 norm of Error
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Cantilever beam under tip load and under 4th degree basis -- h-refinement (uniform)
h=0.14142-0.0044194rm (10-10240 elements), eldof=50-50, sdof=140-23328, g.q.p.=4xd-4x4
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Cantilever bearn under tip load and under 4th degree basis - h-refinerment (uniform)
h=0.14142-0.0044124m (10-10240 elernents), eldof=50-50, sdof=140-23328, g.q.p.=4x4-4xd
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Cantilever bearn under tip load and under 4th degree basis - h-refinement (uniform)
h=0.14142-0.0044124m (10-10240 elerments), eldof=50-50, sdof=140-23328, g.q.p.=4x4-4x4
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Relative L2 nomm of Error

Relative 12 norm of Error

Cantilever beam under tip load and under 4th degree basis -- h-refinement (uniform)
h=0.14142-0.0044194rm (10-10240 elements), eldof=50-50, sdof=140-23328, g.q.p.=3xd-3xd
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Cantilever bearn under tip load and under 4th degree basis - h-refinement (uniform)
h=0.14142-0.0044124m (10-10240 elerments), eldof=50-50, sdof=140-23328, g.q.p.=3x4-3x4

L2 narm of Error

Morm of energy error, 4xd g.q.p.
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Rel. norm of energy error, 3xd g.q.p.

1432 1MB 1/ 174 172 1
maximum size of element h__

Page | 215



5 INFINITE PLATE WITH CIRCULAR HOLE UNDER CONSTANT IN-PLANE

TENSION
NURBS are particularly well suited to linear elasticity. It is obvious that representing geometry
accurately at all levels of discretization should lead to improved accuracy across all meshes as
compared with less geometrically accurate methods. Furthermore, as we have seen, the standard
formulation for linear elasticity uses the displacements as the unknown degrees-of-freedom. In
practice, however, it is often the case that the quantity of interest is not the displacement but the
stress. The stress is a function of the gradient of the displacement, and so any approach using
elements that are only €° across element boundaries results in stress values being undefined at these
element boundaries see Figure 2.9. Alternatively, a C' NURBS basis results in unambiguous,

continuous stresses across element boundaries.

In this example, an infinite plate with a circular hole under constant in-plane tension at infinity is
undergone isogeometric analysis based on NURBS. The infinite plate is modelled by a finite quarter

plate, due to the symmetry as far as the geometry and tension are concerned.

-

g R=1 B
L 3 — =

£ bt =

[P — _ 2

— = E=10 2
2 _
&5 v=0.3

X Symmetry ' ;'

Figure 5.1 Definition of the problem

The problem is analysed by two elements and by 4" degree basis functions in both directions.

We observe that a discontinuity exist at the left corner which is due to the technic used to construct
the corner from a smooth curve by overlapping p control points, where p the degree of the basis in
that direction. The continuity at the knot line between the two elementsis C! asitis p-1-m where p
the degree and m the knot multiplicity. For better results the technic of construction of the corner

must be optimized. Also a k-refinement on the elements border may help.
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Isogeometric Analysis of NURBS Surface - Problem Statement
U=s[0000011111],p=4

Uy 5 V=[0000005050511111] g=4 #0-8
dof 2N - dof .2 _ —dof p 2
G'P'us,w ‘ : G'P'u4,v1
Y e e e
dof P, \ ; dofTle4f.
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05 8P p
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Figure 5.2

Isogeometric Analysis of NURBS Surface - Deformations
U=[0000011111],p=4
V=[0000005050511111], g=4

Figure 5.3
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Isogeometric Analysis of NURBS Surface - sxx (in Pa)
U=s[0000011111], p=4
V=[0000005050511111], g=4
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Figure 5.4

Exact Solution - sx¢ (in Pa)
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Figure 5.5
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Isogeometric Analysis of NURBS Surface - sxy (in Pa)
U=s[0000011111], p=4
V=[0000005050511111], g=4

Figure 5.6

Exact Solution - sxy (in Pa)

Figure 5.7
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Isogeometric Analysis of NURBS Surface - syy (in Pa)
U=s[0000011111], p=4
V=[0000005050511111], g=4
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Figure 5.8

Exact Solution - syy (in Pa)

-10
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PART III

NON-LINEAR ISOGEOMETRIC
ANALYSIS WITH Bouc-WEN
HYSTERESIS MODEL
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1 HYSTERESIS AS A GENERAL PHENOMENON

Hysteresis is the dependence of a system not only on its current environment but
also on its past environment. This dependence arises because the system can be in
more than one internal state. To predict its future development, either its internal
state (“local memory hysteresis’’) or its history (“non-local memory hysteresis”)
must be known. If a given input alternately increases and decreases, the output
tends to form a loop. However, loops may also occur because of a dynamic lag
between input and output. Often, this effect is also referred to as hysteresis, or rate-
dependent hysteresis. This effect disappears as the input changes more slowly; so
many experts do not regard it as true hysteresis. More generally, hysteresis arises in
phase transitions.

The term hysteresis comes from the Greek 'to be late, or come behind'. The physicist
Ewing (1881) first coined the term to refer to effects (in terms of magnetization)
that remain after the initial cause (the application of a magnetizing force) is
removed. Such effects have subsequently been discovered or invoked in relation to a
wide array of physical, biological and social phenomena. A general account of
hysteresis as a system property has been provided in (M.A. Krasnosel'skii and A.V.
Pokrovskii, Systems with Hysteresis, Springer-Verlag, Berlin (1989)). The key
elements required to produce hysteresis are some form of nonlinearity in the way
the elements in a system respond to some action; and heterogeneity in the elements
and therefore in their responses to actions. The key implications of hysteresis are
remanence, in that the application and reversal of an action will not be followed by a
return to the status quo ante; and a selective memory, in which only the
nondominated extremum values of actions remain in the memory bank, dominated
extremum values being wiped out.

This nonlinear behaviour is encountered in many different areas of science in which
the input—output relations between variables involve memory effects. Examples
include magnetic hysteresis, ferromagnetic hysteresis, ferroelectric hysteresis,
optical hysteresis, electron beam hysteresis, hysteresis in continuum mechanics,
plasticity, friction, in the recently studied materials with shape memory,
superconducting hysteresis, in filtration through porous media, adsorption and
desorption hysteresis, economic hysteresis, hysteresis in biology, etc.

In natural systems hysteresis is often associated with irreversible thermodynamic
change. In mechanical systems, hysteresis refers to the memory nature of inelastic

behaviour where the restoring force depends not only on the instantaneous

deformation but also on the history of the deformation. Many artificial systems are

designed to have hysteresis: for example, in thermostats and Schmitt triggers,
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hysteresis is produced by positive feedback to avoid unwanted rapid switching, the
frictional sliders in damping devices, etc.

The detailed modelling of these systems using the laws of physics is an arduous task,
and the obtained models are often too complex to be used in practical applications
involving characterization of systems, identification or control. For this reason,
alternative models of these complex systems have been proposed. A fundamental
theory allowing a general mathematical framework for modelling hysteresis has not
been developed up to now. For specific problems, models describing hysteretic
systems can be derived from an understanding of physical laws. They combine some
physical understanding of the hysteretic system along with some kind of black-box
modelling. For this reason, some authors have called these models ‘semi-physical’ or
phenomenological. In general, engineering practice seeks for alternative more
simple models which, although not giving the ‘best’ description of the physical
behaviour of the system, do keep relevant input—output features and are useful for
characterization, design and control purposes.

In this context, several mathematical models have been proposed to describe the
behaviour of hysteretic processes. The Duhem model uses the property that a
hysteretic system’s output changes its character when the input changes direction
(frictional slider model); the Prandtl-Ishlinskii hysteresis operators has been
proposed as a model for plasticity— elasticity and the Preisach model has been used
for modelling electromagnetic hysteresis. In the areas of smart structures, civil
engineering and the plasticity of materials, another model has been used extensively
to describe the hysteresis phenomenon: the so-called Bouc—Wen model. It consists
of a first-order nonlinear differential equation that relates the input displacement to
the output restoring force in a rate-independent hysteretic way. The parameters
that appear in the differential equation can be tuned to match the hysteresis loop of
the system under study.

1.1 INTRODUCTION TO MATHEMATICAL MODELING OF HYSTERESIS
(MAYERGOYZ, 2003)

The distinct feature of mathematical models of hysteresis nonlinearities with
"nonlocal memories" is that their future states depend on past histories of input
variations. It turns out that memories of rate-independent hysteresis nonlinearities
are quite selective. Indeed, only some past input extrema (not the entire input
variations) leave their marks upon the future states of rate-independent hysteresis
nonlinearities. Thus, special mathematical tools are needed to describe nonlocal
selective memories of such hysteresis nonlinearities. The origin of such tools can be
traced back to the landmark paper of Preisach. Preisach type models of hysteresis
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are constructed as superpositions of the simplest hysteresis nonlinearities-
rectangular loops.

Hysteresis operators are naturally defined on sets of piecewise monotonic functions
that do not form complete function spaces. This leads to the problem of continuous
extension of hysteresis operators from the above sets to some complete function
spaces. The reader interested in this type of mathematical problems is referred to
the study by the mathematicians M. Krasnoselskii and A. Pokrovskii as well as to the
books of A. Visintin and M. Brokate and J. Sprekels.

1.1.1 SCALAR HYSTERESIS IN THE CONTROL THEORY LANGUAGE

u(t) f(t)

HT —

Figure 1.1

Consider a transducer of Figure 1.1, that can be characterized by an input u(t) and an
output f(t). This transducer is called a hysteresis transducer (HT) if its input-output
relationship is a multibranch nonlinearity for which branch-to-branch transitions
occur after input extrema. This multibranch nonlinearity is shown in Figure 1.2.

Figure 1.2

The term “rate-independent” means that branches of such hysteresis nonlinearities
are determined only by the past extremum values (selective character) of input,
while the speed (or particular manner) of input variations between extremum
points has no influence on branching. This statement is illustrated by Figure 1.3,
where it is shown two different inputs us(t) and u,(t) that successively assume the
same extremum values but vary differently between these values. Then, for a rate-
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independent HT, these two inputs will result in the same f-u diagram, provided that
the initial state of the transducer is the same for both inputs.

uft),

—— ————— — >t (a)
—=t (b)
fy
/,../
L
— = el

Figure 1.3

The given definition of rate-independent hysteresis is consistent with existing
experimental facts. Indeed, it is known in the area of magnetic hysteresis that a
shape of major (or minor) loop (see Figure 1.4) can be specified without referring to
how fast magnetic field H varies between two extremum values +H,, and -H,,. This
indicates that time effects are negligible and the given definition of a rate-
independent hysteresis transducer is an adequate one. It is worthwhile to keep in
mind that, for very fast input variations, time effects become important and the
given definition of rate-independent hysteresis fails. In other words, this definition
(as any other definition) has its limits of applicability to real life problems.
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Figure 1.4

It is also important to stress that the notion of rate-independent hysteresis implies
three distinct time scales. The first is the time scale of fast internal dynamics of the
transducer (in control theory framework). The second is the time scale on which
observations (measurements) are performed. This time scale is much larger than the
time scale of internal transducer dynamics so that every observation can be
identified with a specific output value of the transducer. The third is the time scale
of input variations. This time scale is much larger than the observation time scale so
that every measurement can be associated with a specific value of input.

In the existing literature, the hysteresis phenomenon is by and large linked with the
formation of hysteresis loops (looping). This may be misleading and create the
impression that looping is the essence of hysteresis. In this respect, the given
definition of hysteresis emphasizes the fact that history dependent branching
constitutes the essence of hysteresis, while looping is a particular case of
branching. Indeed, looping occurs when the input varies back and forth between
two consecutive extremum values, while branching takes place for arbitrary input
variations. From the given definition, it can also be concluded that scalar hysteresis
can be interpreted as a nonlinearity with a memory which reveals itself through

branching.

In the given definition of hysteresis, the physical meanings of the input u(t) and the
output f(t) were left unspecified. It was done deliberately, for the sake of
mathematical generality. However, it is not difficult to specify the meanings of u(t)
and f(t) in particular applications. For instance, in magnetism u(t) is the magnetic
field and f(t) is the magnetization, in mechanics u(t) is the displacement and f(t) the
force, in adsorption u(t) is the gas pressure and f(t) is the amount of material
adsorbed. The notion of hysteresis transducer may have different interpretations as

well.
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All rate-independent hysteresis nonlinearities fall into two general classifications: (a)
hysteresis nonlinearities with local memories, and (b) hysteresis nonlinearities with
nonlocal memories. The hysteresis nonlinearities with local memories are
characterized by the following property. The value of output f(t,) at some instant of
time ty and the values of input u(t) at all subsequent instants of time t>t, uniquely
predetermine the value of output f(t) for all t>t,. In other words, for hysteresis
transducers with local memories the past exerts its influence upon the future
through the current value of output. This is not the case for hysteresis transducers
with nonlocal memories. For such transducers, future values of output f(t) (t2t,)
depend not only on the current value of output f(t,) but on past extremum values
of input as well.

Typical examples of hysteresis nonlinearities with local memories are shown in
figures below. Figure 1.5 shows the simplest hysteresis nonlinearity with local
memory. It is specified by a major loop which is formed by ascending and descending
branches. These branches are only partially reversible (their vertical sections are not
reversible). This type of hysteresis nonlinearity is characteristic, for instance, of
single Stoner-Wolhfarth magnetic particles. For this type of hysteresis, branching
occurs if extremum values of input exceed +u, or -up,.

Figure 1.5

A more complicated type of hysteresis nonlinearities with local memories is
illustrated by Figure 1.6. There is a set of inner curves within the major loop and only
one curve passes through each point in the f-u diagram. These curves are fully
reversible and can be traversed in both directions, for a monotonically increasing
and decreasing input u(t). For this type of hysteresis, branching may occur only when
ascending or descending branches of major loops are reached.
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Figure 1.6 Figure 1.7

A hysteresis nonlinearity with local memory that has two sets of inner curves (the
ascending and descending curves) is shown in Figure 1.7. This type of hysteresis was
probably first described by Madelung [6] in the beginning of the century, and
afterwards it was independently invented by many authors time and time again [7],
[8]. For this hysteresis nonlinearity, only one curve of each set passes through each
point in the f-u diagram. If the input u(t) is increased, the ascending curve is
followed. If it is decreased, the descending curve is traced. Thus, branching occurs
for any input extremum. However, in general, minor loops are not formed; if u(t)
varies back and forth between the same two values, the output usually exhibits a
continued upward drift.

It is clear from the above examples that all hysteresis nonlinearities with local
memories have the following common feature: every reachable point in the f-u
diagram corresponds to a uniquely defined state. This state predetermines the
behavior of HT in exactly one way for increasing u(t) and exactly one way for
decreasing u(t). In other words, at any point in the f-u diagram there are only one
or two curves that may represent the future behavior of HT with local memory
Figure 1.8.



Figure 1.8

This is not true for hysteresis transducers with nonlocal memories. In the latter case,
at any reachable point in the f-u diagram there is an infinity of curves that may
represent the future behavior of the transducer Figure 1.9. Each of these curves
depends on a particular past history, namely, on a particular sequence of past
extremum values of input. By analogy with the random process theory, hysteresis
nonlinearities with local memories can be called Markovian hysteresis
nonlinearities, while hysteresis nonlinearities with nonlocal memories are non-
Markovian. It is clear that hysteresis nonlinearities with nonlocal memories are
much more complicated than those with local memories.

- U

Figure 1.9

Mathematical models of hysteresis nonlinearities with local memories have been
extensively studied by using differential and algebraic equations. These models have
achieved high level of sophistication that is reflected, for instance, in publications [9-
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12]. However, the notion of hysteresis nonlinearities with local memories is not
consistent with experimental facts. For instance, it is reported in [13] that crossing
and partially coincident minor loops have been experimentally observed. These
loops are schematically shown in Figure 1.10 & Figure 1.11, respectively. The
existence of crossing minor loops attached to a major loop is more or less obvious,
while the presence of partially coincident minor loops is a more subtle phenomenon.
The existence of crossing and partially coincident minor loops clearly suggests that
the states of the corresponding hysteresis transducers are not uniquely specified by
their inputs and outputs. Thus, hysteresis of this transducer does not have a local

memory.

f

Y

Figure 1.10

7

Figure 1.11

A question arises, why these models are need. The answer is that the hysteresis
transducer is usually a part of a system. As a result, its input is not known
beforehand, but is determined by the interaction of the transducer with the rest of
the system. Since the input of HT is not predictable a priori, it is impossible to
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specify ahead of time the branches of hysteresis nonlinearity which will be followed
in a particular regime of the system. This is the main impediment as far as self-
consistent mathematical descriptions of systems with hysteresis are concerned. To
overcome the difficulty mentioned above, mathematical models of hysteresis are
needed. These models represent new mathematical tools that by themselves (due
to their structure) will detect and accumulate input extrema and will choose
appropriate branches of the hysteresis nonlinearity according to the accumulated
histories. Coupled together with mathematical description of the rest of the
system, these models will constitute complete and self-consistent mathematical
descriptions of systems with hysteresis. Without such models, the self-consistent
mathematical descriptions of systems with hysteresis are virtually impossible.

1.1.2 VECTOR HYSTERESIS

We next turn to the discussion of vector hysteresis. This hysteresis can be

characterized by a vector input u(t) and vector output f(t), Figure 1.12. Two- and
three-dimensional vector inputs and vector outputs are most relevant to practical
applications. However, the formal mathematical generalization of these models to n
dimensions (n > 3) is straightforward. It is believed that such a generalization will be
performed by the reader if it is needed.

ult) 1t
— VHT | —»
Figure 1.12

The most immediate problem we face is how to define vector hysteresis in a
mathematically rigorous as well as physically meaningful way. To do this, it is
important to understand what constitutes in the case of vector hysteresis the
essential part of past input history that affects the future variations of output. In the
case of scalar rate-independent hysteresis, experiments show that only past input
extrema (not the entire input variations) leave their mark upon future states of
hysteresis nonlinearities. In other words, the memories of scalar hysteresis
nonlinearities are quite selective. There is no experimental evidence that this is the
case for vector hysteresis. As a result, we must resign ourselves to the fact that all
past vector input values may dffect future output variations. The past input
variations can be characterized by an oriented curve L traced by the tip of the
vector input u(t), Figure 1.13.
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Figure 1.13

Such a curve can be called an input "hodograph". Vector rate-independent
hysteresis can be defined as a vector nonlinearity with the property that the shape
of curve L and the direction of its tracing (orientation) may affect future output
variations, while the speed of input hodograph tracing has no influence on future
output variations. Next, we demonstrate that scalar rate-independent hysteresis
can be construed as a particular case of vector rate-independent hysteresis. This
case is realized when the vector input is restricted to vary along only one direction
(one line). In fact, it can be successfully argued (at least in the area of magnetics)
that there is no such a thing as scalar hysteresis. Whenever we talk about scalar
hysteresis, we are actually dealing with some specific properties of vector hysteresis
that have been observed for vector input variations restricted to some fixed
directions. It is apparent that, for unidirectional input variations u(t) = a - u(t),
input hodographs (see Figure 1.14) are uniquely determined by current values of u(t)
as well as by past extrema of u(t). In this sense, vector rate-independent hysteresis is
reduced to scalar rate-independent hysteresis with the input u(t).

a

o L - » e o *>——8§ —*»
i [ Fa
mini min2 max2 L!I'n'lsuzun
Figure 1.14

Next, we shall give another equivalent definition of rate-independent vector
hysteresis in terms of input projections. This definition will be convenient in the
design of mathematical models of vector hysteresis. Consider input projection along
some arbitrary chosen direction. As the vector u(t) traces the input hodograph, the
input projection along the chosen direction may achieve extremum values at some
points of this hodograph. In this sense, the extrema of input projection along the
chosen direction samples certain points of the input hodograph. If the projection
direction is continuously changed, then the extrema of input projections along the
continuously changing direction will continuously sample all points on the input
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hodograph. In this way, the past extrema of input projections along all possible
directions reflect the shape of input hodograph and, consequently, the past history
of input variations. Thus, we arrive at the definition of vector rate-independent
hysteresis as a vector nonlinearity with the property that past extrema of input
projections along all possible directions may affect future output values. It is clear
that mathematical models of vector hysteresis are imperative for self-consistent
descriptions of systems with vector hysteresis. These models should be able to
detect and store past extrema of input projections along all possible directions and
choose the appropriate value of vector output according to the accumulated
history.

We are deal exclusively with the mathematical models of hysteresis that are purely
phenomenological in nature. Essentially, these models represent the attempt to
describe and generalize experimental facts. They provide no insights into specific
physical causes of hysteresis. Nevertheless, they have been and may well continue
to be powerful tools for device design. There are, however, fundamental models of
hysteresis which attempt to explain experimental facts from first principles as we
will see in next section.

Summarizing the above discussion, it can be concluded that the phenomenological
approach is more directly connected with macroscopic experimental data. For this
reason, it is of a great value to device designers. The fundamental approach, on the
other hand, is intimately related to material structure and, therefore, it can be useful
in the design of new materials.
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2 THE Bouc-WEN HYSTERESIS MODEL (TRIANTAFYLLOU
SAVVAS, 2011)

The Bouc—Wen model is a smooth endochronic model that is often used to describe
hysteretic phenomena. It was introduced by Bouc and extended by Wen. The
versatility of the Bouc—Wen model has been demonstrated in numerous cases. It has
been used extensively for the modeling of MR dampers, wood joints, welded steel
joints and isolation devices, to name a few. A survey on the implementation of the
Bouc—Wen hysteretic model can be found in the work of Ismail et al. Bouc presented
his formulation (1967) of the single degree degrading hysteresis model with
pinching. Subsequently, many modifications have been introduced, such as the
Bouc-Wen model (Wen, 1976, 1980), the Baber-Noori model (Baber and Wen 1980,
Baber et al. 1986) and the Reinhorn model (Sivaselvan and Reinhorn, 2000). These
hysteresis models —also known as smooth hysteretic models- are capable of
simulating different types of hysteretic behavior using a single smooth hysteretic
function affected by a set of user-defined parameters.

The last decades Bouc-Wen hysteretic model is proven very versatile in expressing a
wide range of hysteretic response including stiffness degradation, strength
deterioration as well as pinching phenomena in reinforced concrete, steel members
and connections, wood etc., (Foliente G. C, 1995). In addition, considerable effort
has been devoted to alleviate Bouc-Wen model from inconsistencies regarding
thermodynamic admissibility, (Erlicher and Point 2004, Erlicher and Bursi, 2009) and
violation of plasticity postulates, (Charalampakis and Koumousis, 2009). The rate
form of evolution equations, derived also on the basis of endochronic theories of
plasticity (Valanis, 1971), is capable of expressing in an integrated way the
phenomenological hysteretic behavior at the component level. This facilitates direct
incorporation of identified model parameters for various members and/or
connections leading to a more effective and controllable analysis, as compared to
the pointwise stress-strain relations required in standard Finite Element Analysis.
These features are revealed at the cost of extending the elastic finite elements by
introducing additional stiffness matrices that account for inelastic behavior and the
inherent interaction of different components of stress.

During the last decade, Bouc-Wen model has been adopted by many researchers,
(Pires, 1993, Choi and Lee, 2001) as a robust and accurate tool, to simulate the
hysteretic behavior of various materials. At the same time, techniques were
developed for the identification of the Bouc-Wen model parameters utilizing among
others, advanced analytical techniques, as in Chatzi and Smyth (2008), evolutionary
identification approaches, (Charalampakis and Koumousis, 2008a) and more
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recently in Chang et al. (2010) using wavelet analysis. Rigorous mathematical proofs
on the convergence of the identified model parameters to their true counterparts
can be found in (Faycal Ikhouane, Jose Rodellar, 2007).

There are also implementations in control of mechanical systems and structures with
Bouc—Wen hysteretic behavior. In this sense, it may be useful to distinguish between
active and semi-active control. A control law is said to be active when the control
signal directly feeds an actuator that applies the desired feedback control force.
With an active control scheme, energy is injected into the closed-loop system. A
control law is semi-active when the corresponding actuator does not pour energy
into the closed loop. Instead, the control signal is generated by the controller to
modify the characteristics of an adaptive passive-like actuator. Examples of semi-
active actuators are the devices based on smart materials, in particular the
magnetorheological dampers. (Faycal Ikhouane, Jose Rodellar, 2007)

2.1 THE CONCEPT OF HYSTERESIS IN STRUCTURAL MECHANICS

Consider the single degree of freedom (s.d.o.f.) oscillator presented in Figure 2.1.
The oscillator exhibits an elastic-perfectly plastic material behavior with a yield stress

Oy.

u(t)

B (1)

/ 8
Figure 2.1 Single degree of freedom oscillator under cyclic excitation

The response of the nonlinear oscillator is depicted in more detail in Figure 2.2. For
stresses smaller than the yield stress, material behavior is defined by Hooke’s law, so
that the elastic range of the response is evaluated as:

Eq. 2.1

o(e) = Es, lo| < 0,
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Figure 2.2 Hysteretic loop

and there is 1:1 correspondence between the input and the output.

However, there are at least two possible stress states o € [—O'y, Gy] that correspond
to an arbitrary strain levele = ¢,c € [ay, +00), larger than the yield strain g;. Thus,
there does not exist a function o(g) that can uniquely map the current level of strain
to the current level of stress even for the trivial case of an elastic-perfectly plastic
material. The mathematical theory of hysteresis tries to define a proper output
function o0 = o(t) : [0, T] = R given an input function £(t) : [0, T] » R, such that
the derived vector phase space (c(t), s(t)) coincides with the curve presented in

Figure 2.2.

Thus, the mechanical problem of hysteresis is translated into the mathematical
problem of defining an operator, denoted herein as the hysteresis operator B[In](t)
where In: [0, T] - R, is an arbitrary time history input such as displacement, strain
e.t.c. From physical point of view, the functional has to be rate independent since
the hysteretic energy accumulated over consequent loading and unloading cycles
does not depend on the rate of the input or output functions. Moreover, the
hysteretic operator must be piecewise monotone, as the shape of the hysteretic
loops implies (e.g. with respect to Figure 2.2, monotonically increasing in path OAB
and monotonically decreasing in path BCD). Finally, the operator must have some
property of memory which in mathematical terms is covered by the notion of
causality (Logemann and Mawby, 2003).

It is evident from the approach presented in this paragraph that the notion of
hysteresis is coped with mathematical tools that are indifferent to the input and
output functions describing the hysteretic loop. For this reason, the theory
presented herein constitutes a phenomenological approach. Nevertheless, there are
aspects that are directly connected to the mechanical properties of hysteresis such
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as energy dissipation mechanisms and hardening effects that will be addressed
through this theory in a consistent way.

2.2 THE INITIAL DERIVATION OF THE Bouc-WEN MODEL

Bouc (1967) studied the response of a single degree of freedom oscillator with mass
m and a hysteretic restoring force P,..s(t). According to the notions described in
paragraph 2.1, the hysteretic restoring force is considered to be the result of a
hysteretic operator B over the displacement u(t):

Eq. 2.2

Bres (t) = Blu](t)
The equation of motion of the s.d.o.f oscillator is then expressed as:

Eq. 2.3

2

d
m— + Blul(® = p(®)

where p(t) is the external force. Based on the initial work of Volterra (1928) for an
internal restoring force with hysteretic properties, Bouc defined operator B as an
integral scheme:

Eq. 2.4

t
Blul(®) = | ue,t) du @)
to
Where due to u which is an intrinsic kernel witht > t', the operator accumulates
the history of the inputs from each sub-instant t’ till the current time t and being
able to evaluate the restoring force with history effects. Furthermore, the following
assumption is adopted for the kernel:

Eq. 2.5
u(t t') =pt—t)

that is, the evolution of u is irrelevant to the velocity of the oscillator. The property
of piecewise monotony is met by requiring that the kernel is a bounded, continuous
and decreasing function of the time increment At =t —t'. Thus the following
expressions hold:

Eq. 2.6

du(4t) -
dAt

0 < u(At) < o,
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The condition of causality is met since the upper limit of the integral in Eq. 2.4 is
the current time t and the current value of the operator is the cumulative sum of
the kernel over the displacement.

Since the kernel depends on the time-step At, the derived hysteretic restoring force
depends on the rate of the imposed load, yielding a formulation not eligible for a
rate-independent plasticity formulation. To overcome this deficiency, Bouc
introduced the following transformation:

Eq. 2.7
At - Au(t, t') = p(dt) - p(du(t,t))

mapping the time increment At to the corresponding displacement increment Au.

Thus, the hysteretic force is expressed as:

Eq. 2.8
t
Blul(©) = Freo(®) = | (au(t,t))dute")

where the kernel u is now a bounded, positive and decreasing function of Au:

Eqg. 2.9

wmw<0

0 < u(4u) < oo, <
< u(du) <o dAu

Similarly, the intrinsic time step Au is a positive, increasing function, since time t is
larger than t’. Different definitions of the intrinsic time step lead to different
hysteresis formulations, given that they all comply to Eq. 2.9. A typical example that
is consistent with the above remarks is the following:

Eq. 2.10

The mathematical expression of the restoring force introduced in Eq. 2.8 though
rigorous, fails to clarify the key parts of the restoring force in terms of mechanics.
Trying to clarify the physical properties of the hysteretic operator B, Bouc
introduced two arbitrary continuous scalar functions f, @ with the following
properties:

Eq. 2.11
fIR-R; £(0) =0; |f(u) — fu)] < K1 (A)]uy — uyl

P:R->R; @(0) =0; [P(wy) — P(uz)| < Ko (A)|ug — uy
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where K;, K, constants, for every A, u;, u,. These functions are defined with the
Lipschitz condition to gain some of the required properties of a hysteresis operator
(piecewise monotone, decreasing functions). A generalization of the Volterra
expression Eq. 2.8 is then established, such that:

Eq. 2.12

Pes(t) = f(u(t)) + z(t)
z(t) = cb(u(t’)) ,u(Au(t,t’))du
to

Since Eq. 2.12 hold for every function f, @, they also hold for:

Eqg. 2.13
fu®) = ku(®) + f(u(®))
where f(.) is also a continuous scalar function.

Thus, substituting Eq. 2.13 into Eq. 2.12 a clear distinction is made between the
linear elastic component of the restoring force ku(t), the nonlinear elastic term
f(u(t)) and the nonlinear, history dependent, component z(t). Operator ®
depends on the displacement time history u(t), so that the expression of the
nonlinear component is irrelevant to the displacement rate. The integral of the
second of expressions of Eq. 2.12 is a Lebesgue — Stieltjes integral (Halmos, 1974)
that can be cast in the following Riemannian form:

Eq. 2.14

o) do du
z(t) = z(6()) = f NMCIGE 9’)Ed9,d0’
0

where 0(t) is an intrinsic time complying to Eq. 2.10. The integral of Eq. 2.14 is the
“memory” of the dynamical system, since z(t) is an integral over the time period
t — ty. As such, it adheres, by definition, to the Volterra property. Furthermore,
since the kernel of the integral does not explicitly depend on t, the hysteretic
parameter z(t) is by definition rate-independent. Thus, the formulation proposed
by Bouc is a formal, continuous and stable hysteretic operator (Brokate et al., 1993).

Thus, the single degree of freedom equation of motion is evaluated as:
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Eq. 2.15

2w
mw*‘ Pres(t) = p( )

Pres(t) = ku(t) + f(u(®)) + z(t)

o) do d
Lz<t>= f w0 — 0 =t

du d@’de

Bouc imposed the following expression on the variation of u:

Eq. 2.16

Jult,t') = 0() — 0(t) = 6 — §' = ftde(f) - ft du

dr:=Vhiu
I dT E t

where Viluis defined as the total variation of u on [t',t]. The following relation

proven to hold:
Eq. 2.17
dé(z) = |du(r)]

Any type of function can serve as a kernel. However, it can be proved that the
differential equation of the nonlinear component can be derived always for an
exponential kernel.
2.2.1 THE EXPONENTIAL KERNEL CASE
Consider the following case where:
Eq. 2.18

f() =0, d(u)=u
Eq. 2.18 fulfills the properties set on expression Eq. 2.11.

Substituting into the second of expressions of Eq. 2.15, the following expression

derived for the restoring force:

Eq. 2.19
0(t) du
Pes =20 = [ 1m0 - 0)50-de’
0
The kernel in the integral of Eq. 2.19 is considered as an exponent of the following
form:
Eq. 2.20

u(@) = Ae P9, A, >0

that complies with Eq. 2.9. Differentiating Eq. 2.19:
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Eq. 2.21

dBes = dz(0)
Substituting the integral form of z(t) into Eq. 2.21, the following expression is
derived:

Eq. 2.22

o 6(Ae‘ﬁ(9_9’)) du(8")
= -pe ! — !
dP.es = [Ae™P0du(0")],,_, [ fe O = o do’| de

0
= Adu(0) — B U AeB(6-0") 1;(9 )dG l do
)

Finally, taking into account the definition of the kernel introduced into Eq. 2.20 the
following equation is derived:

Eq. 2.23

dPres = dz = Adu — [zd6
Or equivalently in rate form:

Eq. 2.24

p 4z du . d6
res e~ “ar Par

Combining the first and second of Eq. 2.24, the following rate form is derived for the
hysteretic parameter z(t):

Eq. 2.25

dz _  du_ do
dt 7 dt ’Bzdt

Finally, substituting Eq. 2.17 into Eq. 2.25, the following, trivial equation of the Bouc
model is derived:

Eq. 2.26

dz

T =[A—-pz- szgn(du)] AB>0
and relation Eq. 2.15 is rewritten as:

Eq. 2.27

2

W + Pes(t) = p(t)
dPE, dz

T [A—Bz- szgn(du)]
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Eq. 2.27 correspond to the simple case of a perfectly nonlinear s.d.o.f oscillator. The
second of Eq. 2.27 can be solved by quadratures and the restoring force is
established as a function of the displacement u:
Eq. 2.28

e (
B - sign(du)

A .
= Esign(du)(l — e~ Bsign(awu)

Referring to Eqg. 2.20 one can assume without loss of generality that A=CB. Thus, Eq.

Pres(u) = Z(u) = 1-— e—ﬁ-sign(du)u)

2.28 is rewritten as:

Eq. 2.29
Pres(uw) =C- Sign(du)(l — e‘ﬁ'Sign(du)u)

Different values of C and 8 give rise to different hysteretic loops with the rigid plastic
body being an upper limit. In the limit case where f — oo the restoring force
coincides with the expression of the perfect slider with unit threshold (Duhem

hysteresis model).
Eq. 2.30
égglo Pres = C - sign(du)
F, = u- N -sign(du)
where F; is the friction force, u the coefficient of friction and N the normal force.
Thus, the trivial case of Bouc-Wen hysteresis smoothens the standard expression of

the friction force by merely relying on the mathematical expression of hysteresis as
established by the pioneering work of Volterra (1928).
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Displacement hysteretic loop

As an example, the response of the dynamic system presented in Eq. 2.27 is
examined with constants C=2KN and 8=10000 under cyclic loading. The excitation is
presented in Figure 2.3 (a). In Figure 2.3 (b) and (c) the time-history of the friction
force and the displacement are presented respectively. As predicted by Eq. 2.30, the
system evolves as a perfect slider, with zero displacement until the external force
reaches the sliding threshold defined by the constant C. The corresponding
hysteresis loop is presented in Figure 2.3 (d). As expected, a permanent
displacement is observed after full unloading due to the dissipative nature of the
friction force.
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2.3 FROM CLASSICAL PLASTICITY TO BouC-WEN HYSTERESIS

2.3.1 DECOMPOSING THE BoUuC-WEN HYSTERETIC MODEL

In this work, the Bouc-Wen model as introduced in Wen, (1980) and later modified is

used as the basis for every subsequent step of analysis:

Eq. 2.31
i+ cu+ PEY = p(t)
PEY = aKu + z
z=1—-a)K[A-|zI"(B +y - sign(z))]u
Where:
c: is the viscous damping coefficient,
PB%: is the Bouc-Wen restoring force,
z: is the hysteretic part of the restoring forces,
a: is the post-elastic to elastic stiffness ratio,
K: is the elastic stiffness of the oscillator,

A, B, y: are Bouc-Wen model parameters.

Parameter A has been proven to be redundant in subsequent works (Ma et al, 2004)

and will be considered to be equal to unity throughout this work.

As implied by the first of Eq. 2.31, the restoring force is split into two parts. The first

part is linear with an effective stiffness equal to the plastic stiffness of the material

and a hysteretic one with z being the restoring force that bares the memory of the

nonlinear system.

The evolutionary equation of the hysteretic parameter is in fact the evolution of the

hysteretic restoring forces. However, the stiffness of the hysteretic restoring forces

can be considered as invariant and can be excluded from that form. Therefore, the

hysteretic parameter z can be considered to be the hysteretic displacements of the

system and thus:
Eq. 2.32

( it + cu+ PEY =p(0)
4 PEY = aKu+ (1 — a)Kz

Lz‘=l1— -

n
— (ﬂ +y-sign(zu)) U
where z,, is the maximum value of the hysteretic parameter.

Zy
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The formulations presented in Eq. 2.31 and Eq. 2.32 are based on mechanical insight
rather than the mathematical theory of hysteresis. Thus, the derivation of Eqg. 2.31
from the mathematical background established in section 2.2 is not straightforward.
However, a mechanical representation of the model can be established that allows
for the decomposition of Eq. 2.31.

The simplest decomposition that can be represented mechanically is the one of
elastic-fully plastic system. It is illustrated in Figure 2.4 and essentially consists of a
friction slider and an elastic spring. As the displacement u is such low that the spring
is tensioned under a force that is lower than the friction force, the system is elastic;
as the displacement overrides the crucial displacement that makes the spring to
yield the friction force, the system transforms to a mechanism and the tension force
stops to increase (this is the horizontal branch illustrated in figure). If we decide to
stop trailing the system, a displacement x is tracked by the slider while being trailed.
If further the system will start moving in the opposite direction, the spring should be
firstly unloaded until the spring start to take load of the opposite direction. When it
is fully unloaded, one will realize that the system is no more in the same position as
it was before (as it was trailed as mechanism); this difference between the initial
position and the new trailed position of the system in rest state, is called persistent
displacement or plastic displacement. After the rest state the system can undergo an
opposite direction load until the load is reached again the friction force. Such
systems rendering the described behaviour, can be represented also simply in the
stress space of the yield locus. This locus is in 1-D space and consists of a border
point, which is set at a distance from the zero stress equal to the magnitude of the
friction force (we use the force variable in this space to be compatible with the
described system).

. .

x=0 , U<u,
X=U-Uy, U>U,

Figure 2.4 Mechanical representation of the elastic-fully plastic system
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The described decomposition is a special case of the Bouc-Wen model; that is for

a=0. The general model of the Bouc-Wen model is subsequently described with an

extra component in parallel connection.

This decomposition is schematically represented in Figure 2.5 considering damping

coefficient ¢ = 0 for the sake of presentation; the model can be visualized as a

parallel combination of a linear spring (Spring #1) and a nonlinear element, as the

one described before (elastic-perfectly plastic element). The nonlinear element

consists of a linear spring (Spring #2) and a friction slider connected in series. Thus, a

two degree of freedom system is introduced, u, being the total displacement and z,

being the relative displacement of Spring 2. From compatibility considerations, the

friction sliding displacement, if any, is determined by the difference (x = u — 2).
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Figure 2.5 Bouc-Wen model statement by decomposed components a) System description b)
Response to an elastic displacement c) Response to a yielding displacement d) Response to a post
yielding displacement
As long as the force acting on the friction slider is smaller than a threshold (F;),
sliding does not occur, thus x = 0 and the relative displacement on Spring #2 is
equal to the total imposed displacement. In such a case, the system behaves
elastically with combined stiffness k, since springs #1 and #2 are given an elastic
stiffness of ak and (1 — a)k respectively, a being the inelastic to elastic stiffness

ratio.

When the friction slider threshold is overcome, sliding occurs and the relative
displacement in spring #2 remains constant, denoted herein as z,. All these phases

are summarized in the following force-displacement relationship:
Eq. 2.33

PBYW =p + P, =aku+ (1 —a)kz
where z is:
Eq. 2.34

{u, x<uy
Z:
Zy, X > Uy

As in engineering applications, the internal variable x is neither easy to measure, nor
derive theoretically, the total displacement at which sliding occurs is used instead.
This can be easily derived (from a uniaxial tension experiment or implementing a
specific yield criterion) and thus Eq. 2.34 is treated equivalently as:

Eq. 2.35

{u, uSuy
Uy, u>u,

Wen (1980) proposed the following relation in order to smooth the transition from
the elastic (no sliding) to the inelastic response (sliding) of the system:
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Eq. 2.36
2(t) = f(u(®), z(t)) = [A—hy(2(8)) - hy(@(t), 2(8))] - u()

where:

Eq. 2.37

n

2" hy((0), 2(0)) = B +y - sign(z(t) - ()

Zy

hy (Z(t)) =

h, can be regarded as a uniaxial flow rule and h, as the corresponding cyclic loading
rate, while in the above relation, dot(.) denotes differentiation with respect to time
(not necessarily considering viscous and dynamic phenomena; in the most simple
case it just considers steps to catch the frames of sequential states). Parameter n
controls the smoothness of the transition from the elastic to the inelastic regime,
while the terms 8 and y introduced in Eq. 2.37 are shape factors that affect the
shape of the hysteresis loop (Sivaselvan & Reinhorn, 2000). In Figure 2.6 the results
from a strain controlled numerical experiment on a D18 rebar are presented for
different values of the model parameters n, 8 and y. Material parameters are S500
and E=200 GPa, while the length of the bar is considered to be 2m.

Excitation function of time

Displacement (mm)

Time
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P-d diagram of Bouc-Wen hysteresis model response
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Figure 2.6 Strain controlled numerical experiment Variation in hysteretic loop with respect to (b)
n (c) A (d) B (v=0.2, n=5) (e)y (b=0.2, n=5)

Up to this point, the presentation of the Bouc-Wen model is based on the grounds of
force-displacement relations. Though versatile, this formulation limits the
applicability of these relations where the Finite Element Method is concerned. In the
next paragraphs, a general formulation is presented, within the framework of
classical plasticity, that allows for the implementation of these smooth-hysteretic
operators, thus avoiding the need for piece-wise linear hysteretic models.

Page | 251



24 THE GENERALIZED Bouc-WEN MODEL IN THE COMPLETE STRESS
SPACE

Though the derivation of the Bouc-Wen model presented in section 2.2 was based
on mathematical grounds, it can be proven that the same relations can be deducted
considering the physics of classical plasticity. The advantage of this approach is the
fact that smoothed plasticity relations are deducted in terms of tensorial stress-
strain relations. This leads to a versatile material model both from computational
and experimental perspective. Classical plasticity is based on a set of governing
equations, namely the flow rule, the yield condition, the consistency condition and
the hardening rule. In the work presented herein, the case of associative plasticity is
addressed where the plastic potential coincides with the flow rule. Denoting the
flow rule as @, the rate of plastic deformation is defined as:

Eq. 2.38

. 0P
{eP} = lm

where {¢P} is the plastic strain tensor, A the plastic multiplier, {o} the stress tensor
and ( ' ) denotes differentiation with respect to time. The plastic multiplier and the

yield function are found to comply with the Kuhn-Tucker optimality conditions:

Eq. 2.39
A=>0, ® <0, A-d=0

The consistency condition is an immediate consequence of relation Eq. 2.39 stating
that when at yield:

Eq. 2.40

- ®=0
A typical isotropic yield criterion (or plasticity model for brevity) is the von-Mises
yield criterion defined as:

Eq. 2.41
?=|{o}—{n}l —oy <0

where {c} is the deviatoric stress tensor and {n} the deviatoric back-stress tensor.
The evolution of the back-stress, determines the type of hardening introduced in the
material model during subsequent cycles of loading and unloading. A commonly
used type of hardening is the linear kinematic hardening assumption which dictates
a constant plastic modulus during plastic loading. This is accomplished by
demanding:
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Eq. 2.42
{n} = c{e?}
A key concept of classical plasticity is the additive decomposition of the strain into

reversible elastic and irreversible plastic components. Consequently, the additive
decomposition of the strain rate is established as:

Eq. 2.43
{€} = {1} + {7} » {&°1} = {&} — (&}

Where {¢} is the rate of the total deformation tensor, while {¢®'} is the rate of the
elastic part of the total deformation vector. Based on observations, the unloading
stiffness of a plastified material is considered equal to the elastic and thus the
following relation holds between the total stress tensor and the elastic part of the
strain rate:

Eq. 2.44
{c} = [D){¢}

where [D] is the elastic constitutive matrix. Substituting equation Eq. 2.38 into
relation Eq. 2.43 and using relation Eq. 2.44 the following equation is derived:

Eq. 2.45

@) =01 - 5]

By means of the consistency condition (equation Eq. 2.40) and relation Eq. 2.45 the

value of the plastic multiplier Ais evaluated as:

Eq. 2.46

Ab =0 <{aa{ }} o3+ {a{ }} m)

When at yield, ®=0 and A > 0 the relation Eq. 2.46 can be written as:

Eq. 2.47

T
{aa{(:}} {”H{aa{@}} Ay =0- {aa{ }} {0}‘—{;{:}} ()

acp(g}) the following equation is derived:

Premultiplying relation Eq. 2.45 with

Eqg. 2.48

T T
i) @ =l 01 (-l
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Substituting equation Eq. 2.47 into equation Eq. 2.48 the following relation is
established:

Eqg. 2.49

) =G} (@4 {5)

In classical plasticity the hardening law is defined as a relation between the back-
stress tensor and the plastic strain tensor. This relation can be either rate dependent
or rate independent. In any case, the back-stress is finally derived as a function of

the plastic multiplier A and one can write:

Eqg. 2.50

{1} = A6({n}, ®)
Substituting relation Eq. 2.50 into equation Eq. 2.49 the following relation is derived:
Eq. 2.51
D }T : D L
- deame) = } 01 (&) - {5 )
{6{77} 1 o{o} o{o}
Rearranging and solving for the plastic multiplier the following expression is derived:

Eq. 2.52

SEE PRI L) L g

In the case of the elastic perfectly plastic material G=0, and relation Eq. 2.52
coincides with the one proposed by Casciati, 2006. Equations Eq. 2.47 to Eq. 2.52
hold when yielding has occurred, either in the positive or in the negative semi-plane
and thus by introducing the following Heaviside functions:

Eq. 2.53

d=0 . 1, &>0
H1(<D)—{0 ® <0 H2(¢):{—1 # <0

a single relation is established for the plastic multiplier, in the whole domain of the
strain tensor:

Eq. 2.54

= @) (- (g cae + (7o) o {;ﬁﬁ){;{f}} DI}
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Instead of describing the cyclic behaviour of a material in a step-wise approach
considering the domains of the Kuhn-Tucker conditions (Figure 2.7(a)) or of the
correspondent Heaviside functions (Figure 2.7(b)), Casciati, proposed the
smoothening of the latter, introducing additional material parameters.

According to this approach, the two Heaviside functions are smoothened using the
following expressions:

Eq. 2.55
N
H(®) =|—| , N=>2
0
and by the definition of the Heaviside function
Eq. 2.56
. oo " oo "
— T . — . o . — . T+
Hz(cb) <{6{0}} {a}) 0.5 + 0.5sign (ia{a}} {a}) B + ysign({e} {¢})

where N, band g are model parameters and FOis the maximum value of the yield
function or yield point. In the special case where B=y=0.5, the unloading stiffness is
equal to the elastic one. The model proposed by Baber-Noori is thermodynamically
admissible as long as relation —f < y < [ is satisfied. An immediate consequence of
equation Eq. 2.55 is that the material is allowed to yield even before the theoretical
yield point is reached (®,). Rearranging equation Eq. 2.45 and substituting the
definition of the plastic multiplier, the following Bouc-Wen model is derived:
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Eq. 2.57

o N ,
(6} = 0] ([1] o] 6+ ysign({e}T{d}))[R@)]) )
= [DI([I1 — H,(®)H,(®)[R(®)]){e}
where the matrix [R] is evaluated as:

Eq. 2.58

o =32 amor+ (2] w(22) (22322 o

and defines the interaction relation between the components of the stress tensor at

yield. Thus, the step-wise plasticity equations of relation Eq. 2.39 are replaced by a
continuous stress-strain relation. In the uniaxial case, the von Mises yield criterion is
reduced to the following form:

Eq. 2.59

(011 — 7711)2 .

(Gy)z

vM =

And the interaction relation
Eq. 2.60

E

[R]:c+E

and accordingly, relation Eq. 2.57 becomes:

Eq. 2.61

(011 — 7711)2

(Uy)z

The similarities between equation Eq. 2.61 and Bouc’s derivation of the hysteretic

B+ VSLH"(511011))

6-11=E 1—‘ -|—E éll

parameter z in equation Eq. 2.32 are evident.

2.5 REFORMULATION TO THE PARALLEL MODEL OF HYSTERESIS IN
THE COMPLETE STRESS SPACE

The generalized parallel model of Bouc-Wen introduced by Karray and Bouc (Wen,
1980, Casciati, 2006) is a subcase of the formulation presented in the previous
Section. Generalizing the parallel spring concept introduced in Figure 2.5(a), the
stress tensor is decomposed into an elastic and hysteretic part as follows:
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Eq. 2.62

{o} = lal{o®} + (] - [aD){c"}

where [a] denotes square diagonal matrix with post yield to elastic stiffness ratios,
which for an isotropic material is considered constant in every direction, [I] is the
identity matrix, while the elastic part {o¢} = [0¢;; 0%, 0°1,]T is expressed by
the following relation:

Eq. 2.63
{o°} = [D]{e}

[D] s the elastic constitutive matrix. The hysteretic part
{o"} = [Uhn thz 0h12]T

hysteretic rule (Sivaselvan and Reinhorn, 2003):

evolves according to the following Bouc-Wen

Eq. 2.64
('71h1 11
i | = [DI([1] — Hi(@)H,(@)[R(®)]) ézz]
d-lhz é12

where H,(®) and H, ((D) are smoothed Heaviside functions defined in equations Eq.
2.55 and Eq. 2.56 respectively while [R(®)]is the interaction matrix defined in
equation Eq. 2.58 setting G({n},®) = 0.

However, equations Eq. 2.62 to Eq. 2.64 are capable of simulating hysteretic
systems with linear kinematic hardening. Clearly this limits the applicability of the
model.

Writing equation Eq. 2.62 in rate form and substituting relation Eq. 2.64 the
following equation is derived:

Eq. 2.65
{6} = [al[D}{&} + (1] = [aDIDI([1] = Hy (@) Ho (D) [R(@)]){€}
Matrix [a] diagonal, thus relation Eq. 2.65 can be cast on the following form:

Eq. 2.66
(6} = [DI" ([a] + (11] = [T (1] — Hy (@) Hy (D) [R(@)])) {&)

Where,

Eq. 2.67

T -1 T
o= (f) Pil) G o
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2.6 THE VON MISES YIELD SURFACE

The von Mises yield criterion suggests that the yielding of materials begins when the
second deviatoric stress invariant Joreaches a critical value. For this reason, it is
sometimes called the J,-plasticity or J, flow theory. Because the von Mises yield
criterion is independent of the first stress invariant, J;, it is applicable for the analysis
of plastic deformation for ductile materials such as metals, as the onset of yield for
these materials does not depend on the hydrostatic component of the stress tensor.
Prior to yield, material response is assumed to be elastic.

In materials science and engineering the von Mises yield criterion can be also
formulated in terms of the von Mises stress or equivalent tensile stress, g,, a scalar
stress value that can be computed from the stress tensor. In this case, a material is
said to start yielding when its von Mises stress reaches a critical value known as the
yield strength, g,,. The von Mises stress is used to predict yielding of materials under
any loading condition from results of simple uniaxial tensile tests. The von Mises
stress satisfies the property that two stress states with equal distortion energy have
equal von Mises stress.

a1

o n Mises A
Tiel Surface -

=

& .
- Hydrostatic
x

Tresca
Tiel Surface

#53

m-plare
(Deviatoric Plane |

o+ a+ a3 =10

a2

Figure 2.8 The von Mises yield surfaces in principal stress coordinates circumscribes a cylinder

with radius 2/3 g, around the hydrostatic axis. Also is shown Tresca’s hexagonal yield surface

The yield surface is given by the function of a cylinder locus in principle stress space
with radius k and a relation between the stresses that is given by the second
invariant of the stress deviator
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Eq. 2.68

J2
(pzﬁ

The second invariant of stress deviator

Eq. 2.69
J2 = g((an — 022)% + (055 — 033)* + (033 — 011)%) + 015° + 053° + 013°

and « is the yield stress of the material in pure shear. The magnitude of the shear
yield stress in pure shear is v/3 times lower than the tensile yield stress gy in the case

of simple tension. Thus, we have

Then,

Eq. 2.70

1
g((an — 022)% + (022 — 033)% + (033 — 011)%) + 012° + 023° + 0137

()
V3
1
g((Un — 022)% + (022 — 033)% + (033 — 011)%) + 012% + 023° + 0437
_ ()
V3
_ 2 _ 2 _ 2 6 2 2 2
_ (011 = 022)" + (022 — 033)° + (033 — 011)° + 6(01,° + 023° + 0137)
B 25,2
y

The yield gradient with respect to the von-Mises yield surface is:

Eq. 2.71

[(2011 — 0 — 033)]
2

Sy
(203, — 011 — 033)
2

Sy
(2033 — 011 — 032)
0P 5.2
- = y
9{a} 012
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For the case of the parallel model the processed stresses are hysteretic, that is only
the second component of the total stress decomposition; thus the yielding stress
must adapt to this part by this analogous

Eq. 2.72

o) = (1-a)o,

2.7 SUMMARY

In this section, the properties of hysteretic systems are presented and the expression
of the Bouc-Wen model is derived accordingly, based on concepts of the
mathematical theory of hysteresis. Next, a general form of the Bouc-Wen model is
derived in stress-strain form, based on the phenomenological concepts of the
classical theory of plasticity. A rate form of the stress tensor is derived that accounts
for the full cyclic behavior of the continuum. This rate form is general in the sense
that it accounts for every combination of yield criteria and hardening laws whereas
existing formulations only describe hysteretic behavior with linear kinematic
hardening.

The formulation derived depends on total stress components rather than their
deviatoric parts, thus yielding a formulation that is easily incorporated in the Finite
Element scheme, as will be presented in subsequent chapters. A general formulation
is presented, within the framework of classical plasticity, that allows for the
implementation of these smooth-hysteretic operators, thus avoiding the need for
piece-wise linear hysteretic models.
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3 FORMULATION OF THE Bouc-WEN MODEL IN FEM AND
IGA

The generalized Bouc-Wen model expressed in the complete stress space can be
easily formulated in a variational form of the stationary principle of energy. Such a
variational form is the virtual work principle and is described in part Il section 2.1.6.

Eq. 3.1

Wine = Were = [ 10837 0}av = [ (s av + [ {ous,} (1 ds + ) (o) (R)
14 1% i

Sy

As it is shown this formulation is equivalent with the weak formulation of the
weighted residual Bubnov-Galerkin method. It is also shown, by their properties in
part Il section 2.3.1, that the geometric basis functions can be members of a
complete Sobolev H!(2) solution space S, such that

Eq. 3.2
S = {ulu € H'(2),ulr, = g}

thus, such a basis can form a subspace S™ c S to solve this problem.

3.1 IMPLEMENTING THE PARALLEL Bouc-WEN MODEL
Introducing the stress-strain expression of the parallel case of the Bouc-Wen model
into the virtual work principle expressed in rate form, it yields

Eq. 3.3

f (68" ([al[D] + (I1] = [aD[DI([1] — Hy (@)H,()[R(@)]) ) {€} dV
14

= f sy {f} dv + f {6u5 f}T {fSr}as + Z{&li}T {R}
14 Sy i

This formulation is geometrically linear (in large displacements notion and large
deformations notion too), thus the virtual displacement field will be independent on
time. A formulation with geometrical non-linearities (in large displacements notion)
should have the virtual displacement field in rate form too. Furthermore,
implementing the formulation with large strains the non-linear part of the
deformation gradient tensor should be introduced too.
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Eqg. 3.3 can be decomposed to two parts, the linear one

Eq. 3.4

f (8" [ [DIE} AV = j @) av + j fous,)’ {fsf}dS+Z{5d 7 {RE)
174

Sf
And the hysteretic one

Eq. 3.5

j{&f}T 1011 = [aD([1] = Hy (@) Ho (@) [R(9)]){€} dV

f sy {f}’ av + f {6usf} {fsf}dS+Z{6d )7 {RS)

Sy
In Eqg. 3.4 the linear stiffness matrix is easily formed as in a fully linear problem.

Eqg. 3.6

f ()7 [a][D](€} dV = f [B]"[«][D][B] dV{d:} = [K"](i}

%4

For isogeometric implementation see part Il section 3; in addition to that only one
matrix more exist, the matrix [«], that is smeared with the elastic constitutive matrix
[D].

In Eq. 3.4 there are some entities expressed in rate form; thus this stiffness matrix is
a tangent one and a step method should be considered to calculate it in each step.

Eq. 3.7

f {637 [DI([I] — [a])([I1] — Hy()H,(D)[R(D)]){e} dV

= f[B]T[D]([I] — [aD([1] = Hy(@)H(@)[R(@)])[B] dV{d;}
%4

= [K"]{u}

We observe that this tangent hysteretic matrix is in the same form as the linear one,
but the constitutive matrix is refreshed in each step. Thus this tangent hysteretic
constitutive matrix is
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Eq. 3.8
[D"] = [D]([1] = [@D) (] — H, (@) H,(®)[R(®)])
Finally considering the composition again it is

Eq. 3.9

([KL] + [KHD{u} = {F} - [KT1{u} = {F}

3.2 IMPLEMENTATION OF THE EULER STEP METHOD

We can rewrite Eq. 3.8 as
Eq. 3.10

[D"] = [DI(U1] - [a])([1] — Hy(@)H,()[R(@)]) = [DI([!] — [a])G"
Thus, the only part that should be computed in each step is G? which represents
the hysteresis of the system.

Eq. 3.11
GH = ([1] — Hy(@)H,(P)[R(@)])
The yield condition term is

Eq. 3.12

N

o ({o})
q

H1(¢’({U})) = |

that is computed considering the stress state at each step

The cyclic condition term is

Eq. 3.13
Hy (9({0}, (2]) = B + ysign({&) (o})
That is computed considering the stress state and a strain step

And the stress interaction matrix, that is computed considering the stress state,

Eq. 3.14

_ do({oD)  (3o(oD)  (d0({o]) (9 (o))
[R((D({G}))]=<{—a{0} } [D]{ 300] }) { 200} }{ 3t0) } D]

To initiate the analysis we consider an initial stress state in the system and a total

force vector. The total excitation vector is discretized to steps by an arbitrary
function and a step length dt. If displacement control analysis is implemented the
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step displacements are converted to step forces by any method of constraints
(explicitly, Lagrange multipliers, penalty method, etc.)

In each step the total system is solved considering a step force vector {dF}
Eq. 3.15
{du} = [KT]""{dF}

now {de} strain vector can be computed by the kinematic equations; this is the input
to Eq. 2.66 to compute {do}. In the next step the stress state of the system is
refreshed and the same steps are implemented again.
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3.3 THE DATA FLOW OF PROGRAMMING THE ISOGEOMETRIC METHOD
WITH Bouc-WEN HYSTERESIS MODEL

Input

e Model data in CAGD form
e Control Points (Pi)
e Knot Vectros (U, V)
e Weights for rational basis (w)
e hpk-refinement
e Analysis Data

e Number of integration gauss quadrature points in two
directions

Elastic Modulus, E
Poisson ratio, v
Material Density, r (for dynamic analysis)
Thickness of the domain, thick
e Constitutive Matrix
e Boundary conditions on the control variables
e Traction forces
e Body forces
e Bouc Wen Data
e Loop shape parameter, B
* Loop shape parameter, y

e Smoothness of the transition to the yield branch
parameter, n

* Yield Surface (Type, yield stress s, )
e Hardening rule (stiffness ratio a, isotropic hardening k)
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Analysis

¢ Preliminaries

e Form of knot vectors containing only the non-zero knot
spans, that will constitute the elements in analysis

e Assignment of boundaries (knots) for each element
(meshing the analysis domain)

e Construction of the total force vector
e Total force vector concerning body forces
e Total force vector concerning traction forces

e Total force vector superpositioning the total force vectors
of body forces, traction forces and the forces on the
control variables

e Discretizing the force vector or the displacement vector, to
a number of steps of the non-linear hysteretic analysis
e Construction of the total linear stiffness matrix, which is
computed only once in the analysis procedure
e Looping through the elements
* Indicating the effective basis functions, control points
and weights of the current element

e Constructing the index vector, which maps the d.o.f. of
the current element to the global numbering of d.o.f.,
used for the total matrices and vectors assemblage

e Construction of the element's linear stiffness matrix
e Looping through the integration points
e Map of the integration point from the parent
integration domain Q. : £ € [-1, 1] to the
parametric domain (. : £ € [§,, &,] (domain
where the CAGD basis is defined) and calculation of
the mapping jacobian determinant to convert the
integration weights (the size of the parent domain)
to the parametric domain
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Analysis continued...

e Calculation of the derivatives of the basis functions
with respect to the parametric variables (é, 1),
oR; j($.1)
¢
e Formulation of the deformation matrix B1 with
respect to the parametric domain

e Calculation at the mapped integration point the

~ 0
jacobian matrix of the mapping Q — Q, % =
OR; ;(£7)

3% Pi,j , and the mapping jacobian

determinant to convert the volume integrated in
parametric domain to the physical domain

e Calculation of the inverse jacobian matrix  — Q,
23
dx
e Calculation of the deformation matrix B with respect
to the physical domain B = B1 * g—i =
oR;j(¢n) 0 _ oR;;(¢7)
9%  ox = ox
e Calculation of the element's linear stiffness matrix at
current integration point. If the stiffness ratio a is
used in the hysteretic formulation, it is applied in
each integration point
e Assemble the element linear stiffness matrix to the total
linear stiffness matrix using the d.o.f. mapping vector

e In the same way the body forces, the traction forces
(integrating on the boundaries) and the mass matrix are
calculated
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’ Analysis continued...

e Non-Linear Hysteretic Analysis by the Euler step method.
Calculation of the tangent hysteretic stiffness matrix in each
step, considering a step total force vector. The first step is
done considering an initial stress condition at the integration
points (hysteretic or total stresses, depends on the Bouc
wen formulation type).

e Calculation of the total tangent hysteretic stiffness matrix
e Looping through the elements

e Indicating the effective basis functions, control points
and weights of the corresponding element (as in linear
matrix)

e Constructing the index vector, which maps the d.o.f. of
the current element to the global numbering of d.o.f.,
used for the total matrices and vectors assemblage (as
in linear matrix)

e Construction of the element's tangent hysteretic
stiffness matrix (considering a step force vector)

e Looping through the integration points (considering
a current stress condition)

e The same procedure is implemented as in the
calculation of the elastic stiffness matrix to derive
the deformation matrix B or can be stored in a
database if no geometric non-linearity are
considered

e Calculation of the step deformations (de) in
current integration point de=B*du, where du are
the current displacements of the control variables
related to the current element

e Calculation of the (hysteretic or total) stress point
in the corresponding yield surface space

e Calculation of the gradients at the (hysteretic or
total) stress point in the yield surface space

268



Analysis continued...

¢ Calculation of the H1, H2 and the interaction matrix
R

e Calculation of the tangent hysteretic stiffness
matrix at the integration point using the tangent
hysteretic constitutive matrix G and the
corresponding deformation matrix B, and the two
jacobian determinants of the double mapping from
the parent domain (numerical integration domain)
to the physical domain

e Calculation of the step (hysteretic or total) stresses
ds=G*de and addition of them to the current stress
condition to refresh it for the next analysis step

e Assemble the element tangent hysteretic stiffness
matrix to the total stiffness matrix using the dof
mapping vector

e Add the tangent hysteretic stiffness matrix to the linear
stiffness matrix at the current step and solve for the step
displacements of the control variables

e |oop again to derive a new tangent hysteretic stiffness
matrix, new step stresses and new step displacements of
the control variables.
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4 APPLICATIONS ON PLASTICITY PROBLEMS

The problem of the rigidly fixed cantilever beam that is analyzed as an elastic
problem in part Il, is reconsidered in this section applying the Bouc-Wen hysteresis

model of plasticity.

The material properties are
Modulus of elasticity E = 210GPa
Poisson ratiov = 0.3

Yield stress s, = 245MPa

The parameters of the Bouc-Wen model are set for a smooth elastic-perfectly plastic
behavior, the parameters of which are

a=0, B=0.5, y=0.5, n=2

The implemented excitation is a sinusoidal displacement of the tip as a function of
the time; the maximum imposed displacement is u = 0.05m.
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Figure 4.1 Displacement of tip - time diagram
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The initial yield load and the ultimate load can be analytically evaluated as:

Eq. 4.1

oy bh?

4L

The geometry that is considered is shown below
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We see that both the first yield force and the ultimate force are achieved in a good

approximation by that coarse analysis of 10 elements only.
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The same fixed beam problem with the same model parameters is analyzed under a
cyclic displacement excitation. The function of the excitation is shown below.

Excitation function of tip displacements d-t
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Figure 4.2
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ond degree basis functions, 3x3 g.q.p. 1x10 elements
a=0, vita=0.5, gama=0.5, n=2, sinusoidal function of tip displacement to 0.05m
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Figure 4.3

The accuracy once again is fair enoupgh and the full cycle response is well achieved.
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5 EXAMINATION OF THE METHOD BY PARAMETRIC
ANALYSES

The monotonic problem stated above in applications section is analyzed under some
parameters. The time step dt, the degree of the basis functions and the maximum
size of element.

e The variation in time step that is considered corresponds to:
250 steps, 500 steps and 1000 steps.

e The variation in degree of the basis functions is:
1*" degree (FEM case), 2" degree, 3" degree and 4" degree

e The variation in maximum length size corresponds to the number of elements
1x10 elements (0.141m), 2x20 elements, 4x40 elements, 8x80 elements

The results are shown below for each variant of time step in 2D plots and the total
three-variate parametric analyses in surface plots.
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Figure 5.1 The convergence rate by h-refinement for each degree of basis functions and 250 steps
analyses
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force step interval dt= 0.002
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Figure 5.2 The convergence rate by h-refinement for each degree of basis functions and 500 steps
analyses
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The results of the parametric analyses illustrate these observations

e The basis functions of linear interpolation (classical FEM) fail to give a good
result under a coarse mesh.

e The higher order bases functions give a low error from the very coarse mesh

e Some abnormalities are observed while the higher order bases functions are
analysed under remeshing but seems to get stabilized for finer meshes.

e The step time is independent from the other variables (h, p) that is rendered
by the parallel surfaces.

Generally, the accuracy of the results in the elastoplastic analyses performed in this
work depends mainly on the degree of the basis functions in relation to the mesh
size and consequently to the control points density. From our results, though, it
becomes evident that for the particular problem solved the 2" degree basis
functions and a coarse meshing gave the most fit results. Apart from the suspicion
that the density of the control points in relation to the degree of the basis affects the
approximation of the solution field, the strange results may be attributed to the
features of the problem, loading and boundary conditions. Larger parametric
analyses in more mesh variants may clear this ambiguity, but due to lack of time and
only these results in hand we can conclude with a reservation that the analyses
converge at the last meshes as the gradient of the surface there vanishes.
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CONCLUSION

The main advantage of isogeometric FEM is the isoparametric concept that is the
same basis functions that represent exactly the geometry are used to approximate
the unknown field of solution. The C® continuity at the interior of the knot spans
and the considerable continuity at the knots gives also the ability to approximate
well and smooth the derivatives of the solution field, i.e. the strain field, stress field,
curvature field etc. In addition, in cases of exclusively discrete results the same type
of basis (the degree of which is according to the number of the data to be
interpolated e.g. integration points) can be used for accurate graphical
representations of the solution.

Isogeometric analysis formulates stiffness matrices with the same bandwidth size as
in the case of classical isoparametric elements, depending on the order of the basis.
The benefit of using geometric bases is the ability to generically modify the mesh size
directly from the parametric domain that globally affect the accuracy of the solution.

For the isogeometric formulation elastoplastic analysis is performed in a smoother
way as the constitutive relations are built in the inelastic element. Moreover,
utilizing the Bouc — Wen modeling of rate independent plasticity is straightforward in
the isogeometric formulation. The generalized Bouc — Wen model expressed in the
complete stress space is formulated in a variational form of the stationary principle
of energy, which is equivalent to the weak formulation of the Galerkin method.

As presented in part Il section 4.3 it turns out that with the same coarse
discretization by elevating the degree of the basis the convergence rate increases
considerably for the stress and energy fields, which is more pronounced for the
displacement field.

The higher order geometric bases are powerful in non-linear stiff problems too. This
is evident by this application of the Bouc-Wen hysteresis plasticity model. The very
fine approximation of these geometric bases on the kinematics of the solid
continuum gives rise to highly non-linear stiff problems to give accurate results by
very coarse meshes. Combined with the power of hysteresis models that achieve
directly by one step the non-linear response of a system, we can have accurately and

ultra-fast the unknown solution field in time domain.
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