

Α

« >

~

»

MORISON»

: . : . .

μ μ μ μ μ μ μ μ , μ μ μ.

μ μ μ . , μ μ μ μ. μ.

, μ μ μμ. , . μμ. .μμ

, μ μ.

μ	μ		μ	μ
μ	,	μ	, μ	
μ		•		

μ		μ			μ
	μ		Morison		
μμ	μ	Airy,	Ļ	u Stokes	5.

μμ.

		μ					μ			μ (11			
121),	,				μ			(μ	μ		μ ,
			μ	μ			μ						μ
		μ	μ	•	μ							μ	·
μ	μ	•		μ		xy.					μ		
									(μ
Stokes	5	μ,				μ	μ	μ	(μ	A1ry, μ).
	μ			μ				μ					

μ μ.

Abstract

The topic of the hereafter dissertation is the research of the behavioral patterns of offshore, floating wind-turbines, based on computational results for their foundation and support structures.

For the reception of these results an appropriate calculating code was developed which analytically solves Morrison's generalized equation for a slope of any angle of a cylinder, for both Airy linear waves and Stokes 5th order waves. Because of this, the support structures have been considered to be cylindrical parts.

The calculating code gives the ability to calculate the forces and moments applied to a cylinder or even to a cluster of multiple cylinders (with a maximum number of 121 cylinders), whether those are mounted or floating. The code will also calculate results for consistent or variable inertia and drag coefficients interdependent to the temperature and angle in a way for the results to reflect, almost realistically, the actual forces and moments applied to an offshore wind-turbine. The angle, which has been designated as the slope of the cylinder, is formed by the axis of the cylinder and the vertical with the X-Y plane.

In the end, several possible support structures have been examined concerning the forces and moments that can be withstood and which are applied by a given wave (whether those are Airy, Stokes 5th order or, as in many occasions, a combination of both wave types.) These results have been examined and compared in a way that will allow the selection of the appropriate support structure of an offshore wind-turbine.

μ			
1.		μ	
1.1		μ	
1.1.1			/
1.1.2	μ		
1.2			
1.3			
1.3.1			
1.3.2			
1.4			/
1.4.1			
1.4.2			
1.4.3			
1.5			
2.		μμ	
2.1			
2.1.1			μ μ
2.1.2			μ μ
2.2			
2.2.1		μ	μ μ
2.2.2	μμ		μ μ μ
2.3 µ	Airy		
2.4 μ	Stokes 5		
2.5	μμ		
2.6			μ μ51
3.	μ		
3.1	μ		Morison 55
3.1.1	μ		μ μ55
3.2	Morison		
3.2.1		μ	Morison 61
3.2.2			Morison
3.2.3			Morison64
3.3		μ	μ Morison67
3.3.1			
3.3.2	μ		
3.4	μ		

3.5	μ	μ	•••••		•••••	•••••		•••••	69
3.6					$(C_M,$	C_D).			
3.6.1	μ			(C_m, C_m)	C _d) μ		Fourier	•	
3.6.2	μ			(0	(C_m, C_d) .				
3.6.3		C_m	$, C_d$						
	4.		μ			•••••			
4.1									
4.2 4.3	u	μ	μ	μ					
4.4									
4.4.1			μ	μ	μμ				
4.5	μ			μ	μ				
4.5.1	μ Α	iry							
	AR	WAVE.		•••••		•••••			
4.5.2	μ		Stok	es 5	•••••	•••••			
X 7	WA	AVDHT.				•••••			
Y 16		AVDHL	•••••		•••••	•••••	•••••	•••••	
									u
4.0	μ 			μ 					
4.6.1	μ μ			μ		_	Airy		
4.6.1	μ μ AR	VECT		μ 		_	Airy		96
4.6.1 4.6.2	μ μ AR	VECT		μ 		_	Airy μ	μ	
4.6.1 4.6.2 5	μ μ ΑR μ	VECT		بم 		_	Airy μ	μ	96
4.6.1 4.6.2 5 4.7	μ μ μ 	VECT VECT		بم 		_	Airy μ	μ	96
4.6.1 4.6.2 5 4.7 4.7.1	μ μ μ S57 μ	VECT VECT μ μ		μ μ		- - 	Airy μ Airy	μ	96
4.6.1 4.6.2 5 4.7 4.7.1	μ ΑR μ S5 μ μ ΑR	VECT VECT μ μ PROF		μ μ	- - μ	- 	Airy μ Airy	μ	96
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2	μ ΑR μ Σ5 μ μ ΑR	VECT VECT μ μ PROF		μ	- - μ	_ μ	Airy µ Airy Stokes 5	μ	96
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2	μ μ AR μ S5V μ μ AR μ S5I	VECT νΕCT μ μ PROF μ PROF		μ	μ 	_ μ	Airy µ Airy Stokes 5	μ	96
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2 4.8	μ ΑR μ Σ5 ν μ ΑR μ S5I	VECT νΕCT μ μ PROF μ PROF		μ μ	μ 	_ μ μ	Airy μ Airy Stokes 5	μ	96
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2 4.8	μ ΑR μ Σ5 μ μ ΑR μ S5I μ ΓR	VECT νECT μ μ PROF ρ PROF		μ μ	μ μ	_ μ μ	Airy μ Airy Stokes 5	μ	96
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2 4.8 4.9	μ ΑR μ Σ57 μ Α μ Σ51 μ FR	VECT νΕCT μ μ PROF PROF		μ μ	μ μ	_ μ μ μ	Airy μ Airy Stokes 5	μ	
4.6.1 4.6.2 5 4.7 4.7.1 4.7.2 4.8 4.9	μ ΑR μ Σ57 μ Α Α Γ Γ Γ Γ Γ Γ Γ	VECT νΕCT μ μ PROF PROF CNOR		μ μ	μ μ	_ μ μ μ	Airy μ Airy Stokes 5	μ	

	CMCD			
		Airy	Stokes 5	
5.	μ	μ		
•••••				
	••••••			
μ	•••••			
	••••••			
12	1			
Ļ	Jacket			
μ	μ	μ		
	μ	μ	μ	
	μ	μ	μ	
6. μ	μ			
	••••••			
μ	•••••			
	••••••			
	••••••			
12	1			
Ļ	Jacket			
μ	μ	μ		
	μ	μ	μ Α	
	μ	μ	μ Β	

μ	:	 :99
	μ	 299

1. μ

μ μ , μ μ μ : μ μ μ : μ μ μ

Μ μ :

- μ , - μ μ
- μ, - μμ
- μ μ μ , μ μ ,μ μμ

Α μ :

- Ο μ , μ :
 - μ -
 - -- μ
 - μ
- μ μ μ μ . μ μ μ. μ
- μ μ μ . μ μ
- μμμμ (μ μμμμ (μ μ) . μ μ .

,

μ , μ μ μ. μ ,μ μ (), μ μ μ μ. , μ , μ

μ • μ μ, • μ μ μ μ μ , . μ μ • μ μ μ μ

.

μ μ , '80 µ μ . μ . , μ μ , μ μ . μ :

- μ - μ μμμ - μμ -

, μ '90. μ μ : - (, , μ)

- μ - μ , , ,

, μ .

1.1 μ

μ μ , (/). / μ μ μ μ μ : 1. μ , μ μμ 2. μ (μ μ , ,

,). 3. μ, μ.

1.1.1 /

/ : μ μ • /, : μ μ . μ μ : μ _ • μ μ : μ / : / μ . / μ

μ μ . , μ μ .

1.1.2 μ

μ : - μ - μμ - Savonius - Lafond - Darrieus

- μ μ
- μ μ
- Tornado
- μ :
- μμ
- μ
- µ
- μ
- .
- μ
- µ
- / μ
- , . μ μ
- μ μ
- ,μ μ
- μ . / (stall-regulated). μ
- μ μ, μ
- μ / μ μ
- μ μ μ, μ μ /.

μ

/

μ.

μ 3 30 m/s.

μ

/

μ

.

,

μ

μ

μ

μ

- 1. Πλήμνη δρομέα
- Πτερύγια δρομέα
 Κάλυμμα ατράκτου

- Φωταγωγός
 Ράβδος ασφαλείας
- Εξαγωγή αέρα
 Αλεξικέραυνο και
- μετρητής ταχύτητας ανέμου Γεννήτρια
 Κιβώτιο ταχυτήτων
- 10. Δισκόφρενα δρομέα 11. Εφεδρικό φρένο

12. Υδραυλικά

- 13. Ελαστικός σύνδεσμος
- 14. Αναρτήσεις γεννήτριας
- Σύστημα προσανατολισμού
 Ουρίδα επισκόπησης

- Το, σοράκι εποιοπηρογς
 Τζέδρα
 Στεφάνη ρουλεμάν συστήματος προσανατολισμού
- 19. Φρένο συστήματος προσανατολισμού
- 20. Αποζεύκτης θορύβου 21. Πύργος

1.1 μ μ

		/		μ					
μ			•		μ	,	μ		μ
	μ			,				μ	μ
								μ	
			μ.						

μ μμ, μ , , μ :

- µ

μ μ μ • , μ μ μ μ μ μ μ μ μ μ , μ μμ . μ μ μ μ μ μ

- μ μ

μ μ μ .

μ μ . , μ μ

, ,μ , μ μ , μ μ . :

$L > \sqrt{(2HR)}$

-

- L: ,
- R :
- Η: μ (, 2008)
- μ μ μ μ μ.
- _
- μ,μ μ μμ. μ μμ. μ
- μ μ
- μ μ μ , μ μ μ μ μ .
- - μ
 - μ μ μ, μ, μ .

- μ

μ, μ,

- µ µ

μ μ , μ μ μ , μ μ μ, , , : μ _ μ _ μ _

— μ — μ

1.3

μ / μ μ μ, μ . ,

1.3.1

μ μ μ :

- μ
- μ μ, μμμ μ
- μ
 - μ μ
 - μ
 - -

1.3.2

μ μ

μ :

- -
- μ
- μ
- (...)

1.4 /

	, μ		μ	
μ	/ .		μ	μ
, μ.	μ			μ
/. μ μ	μ.	μ		μ
		μ		
μ υ υ	IJ	u	ц	· ,

μ μ μ μ μ , **μ** μ μ ,

•

	μ . μ	μ μ μ:
-	(Gravity-based foundation)	
-	(Piled)	

(Suction/Bucket)

-

•

1. - Jacket

1.2 Jacket

3.

1.4

1.6

μ μ . μ / . 20m 50m.

1.7 μ /

/

... William E. Heronemus.

1972

$\mu \qquad \mu \qquad .$ $\mu \qquad (catenary moorings) \qquad \mu \qquad \mu$ (taut-leg moorings).

М	μ	μ	μ				u	
P.					μ		μ	
	μ	μ	μ	μ			μ	
μ		, μ μ				, μ μ	μ	

μ μμ , μ μμ , μ. ;

,

- (gravity- based anchor)
 μ (drag-embedded anchor)
- μ (drag-ember
 (driven pile anchor)
- (suction anchor)
- μ μ (torpedo embedded anchor)
- μ (drilled and grouted pile)
- μ , μ μ μ , μ μ μ , /μ μ/,
 - / μ . μ μ / μ μ μ μ / μ μ μ μ ,μ μ •
- μ . μ μ μ μ .
- μ μ / :

1. Spar-buoy

1.9	Barge
-----	-------

		μ	μ	μ.		μ
	μ	μ			μ	
				μ		
μ			μ	μ	μ	

1.10 TLP

1.5

- 1991		
Vindeby	,	11 / 0.45MW μ, 3m-5m.
- 1994		
Lely u	,	4 / 0.5MW 5m-10m.
1.		
- 1995		
Tuna Knob	,	10 / 0.5MW 4m-7m.
- 1996		
Irene Vrrink	, μ	28 / 0.65MW 2m-3m.
- 1998		
		5 (O 5) (IV)

 Bockstigen-Valor
 ,
 5
 /
 0.5MW

 μ
 6m.

- 2000

Blyth Offshore μ , 2 / 2MW μ 10m.

- 2001

 Middelgrunden
 ,
 20 / 2MW
2m-6m.

 Yttre Stengund 1
 ,
 5 / 0.5MW
2m-6m.

- 2002			
Horns Rev Ι μ	,	80 / 2MW 6m-14m.	
- 2003			
Nysted (Rosand I)	,	72 / 2.3MW 6m-9.5m.	
North Hoyle	μ μ	, 30 / 2MW 15m-20m.	
Paludans Flak	, μ	10 / 2.3MW 10m-13m.	
Ronland 1	,	4 / 2MW 4 /	2.3MW 0m-2m.
Frederikshavn suctio 3m.	, n/ bucket	1 / 2MW 2 / µ	2.3MW, µ
Arklow Bank 1	, μ	7 / 3.6MW 4.2m-6.4m.	
- 2004			
Scroby Sands	μ μ	, 30 / 2MW 2m-10m.	
Ems Emden	μ,	1 / 4.5MW 3m.	
Hokkaido μ	,	2 / 0.6MW 13m.	
Sakata μ	,	5 / 2MW 4m.	
Setana μ	,	2 / 0.6MW, 13m.	
Arklow Bank	,	7 / 3.6MW 8.5m.	

- 2005

Kentish Flats	μ	,	30 / 3M	W
	μ		5m-10m.	
Choshi	,	1 /	2MW.	
- 2006				
Barrow	μ		30 / 3MV	V
	μ		21m-23m.	
Breitling	μ,	1 /	2.5MW	
			2m.	
Puerto Bilbao	,	5	/ 2MW	
- 2007				
- 2007				
Burbo Bank	μ u	,	30 / 3M 6m-8m.	W
T 111 J	P	40 /		
Lillgrund	,	48 /	2.3MW 9m.	
Beatrice	Ш		2 / 5MW	J
2000-100	Jac	, ket	40m.	
Bohai Suizhong			1 / 1.5MV	V
	Jack	et	32m.	
Brindisi(Puglia)	,	1	/ 0.08MW,	
Т	LP	113	3m.	
- 2008				
Lynn and Inner	Dowsing		27	2 / 3 6MW
Lynn and Inner	Dowsing	μ	, 27	11m.
Princess Amalia	L		60 / 2MW	V
	μ	7	19m-24m.	
Hooksiel	μ,	1 /	5MW,	
	-	8m.		
Windpark Egmo	ond aan Zee (OWEZ)	,	36 / 3MW
		μ		5m-10m.

Kemi Ajos I	,		5	/	3MW
					0m-6m.
Kemi Ajos I	,		5	/	3MW 0m-8m.
Thornton bank (1)	,		6	/ 5MW 13m-19m.

- 2009

Horns Rev II	,		9	1	/	2.3M	W,		
μ	2	Suction/B	ucket. H	3			9m-1	7m.	
Rhyl Flats	μ μ	,				25 / 4m	n-11m.	3.6MW,	
Alpha Ventus	μ, Jacket	6		12	/	5MW	Ϊ,		6
28m-30m.									
Hywind Spar /	, μ	2:	1 / 20m.		2.31	MW,			
Sprogo ,			7 / 6m-	16m	3MW 1.	,			
Avedore Holme	,			3	/ 2m.	3.6N	ſW,		
Vindpark Vanern		,				10 /	/ 1m-22r	3MW, n.	
- 2010									
Thanet μ	μ	,				100 / 12:	m.	3MW,	
Rodsand II	,		9	0	/ 6m-1	2.3M 2m.	W,		

Gunfleet Sands 2 μ	μ,		18 / 3.6MW, 8m.	
Bligh Bank (Belwind) μ	,	110	/ 3MW, 15m-30m.	
Donghai Bridge	,	34 / 3 7m.	BMW,	
BARD Offshore 1	μ,	80	/ 5MW, 39m-41m.	
Vanern ,	10 / 3m	-13m.		
U tgrunden I Windfarma μ	,	7	/ 1.5MW, 5m-15m.	
Kamisu , μ	7 / 5m.	2MW,		
- 2011				
Walney (1) µ	μ,		51 / 3.6MW, 21m-26m.	
Baltic 1 μ , μ	2	21 / 2.3 16m-19m.	MW,	
WindFloat μ μ	, (Barge)	1 /	2MW, 49m.	
Risholmen- Arendal (, μ)	1 /	4.1MW, 0m-12m .	
Jeju ,	1	/ 2MW	7,	Jacket
Rudong 1 , μ	38 / 21	2.3MW, Jacket	. 17	
Ormonde μ Jacket	,	30 17m-21m.	/ 5MW,	
Walney (2) µ	μ,		51 / 3.6MW, 19m-24m.	

- 2012

Greater Gabbard	μ μ	,	140 / 3.6MW, 20m-32m.
Walney (2)	μ μ	,	51 / 3.6MW, 25m-30m.
Sheringham Shoal	μ μ	,	88 / 3.6MW, 15m-22m.
Thornton bank (2) Jack	, tet	30 / 6MW 12m-28m.
Ormonde	µ Jacket	,	30 / 5MW, 17m-22m.
Longyuan Rudong 32MW.	g Intertidal Tr	al	, 16 /
		0m-8m.	
London Array (1)	μ μ	, 175 / 3.6MW, 0m-25m.
Trianel Borkum (1)	μ,	40 / 5MW, 28m-33m.
Lincs µ	, μ		75 / 3.6MW, 10m-15m.
Teesside	μ . μ		27 / 2.3MW, 7m-15m.

2. μ μ

2.1

		μ	μ		
μ	μ		•	μ	μ
μ					

2.1.1 μ μ

		μ	μ			μ			
μ	μ			μ				,	μ
μ μ			μ	,				μ	
μ				μ	•	μ			
μ			μ				μ	μ.	

μμ μ : 1. μ(μ μμ) 2 μ (μ)

2.	μ	(μ)	
3.	μ		μ	(seiches)
4.		()	

μ :

-			
-	μ (Coriolis	

μ -

μ	μ	μ				2	μ	μμ-		
•		μ		μ			μ			
μ										
		μ		μ	,					
	•		μ	μ			•			
					μ	,	μ-	- ,μ		
	μ	μ		μ			μ			
μ	. ,	μ	μ	μμ			•	μ,		
	μ	μ		μ μ	,	μ	μ			
μ		,	μ						μ	
---	---	---	---	---	---	---	---	---	---	---
μ		μ		μ	μ	•				
	μ									μ
		μ				,	μ	μ		
			μ							μ

•

μ μμ μ μ :

- μ μ μ
- μ
- μ μ μ μμ ,μ ,μ .

2.1.2 μ μ

- μ

					μ	(-).
	μ			μ		μ	
μ			μ			μ	.μ,
μ		μ					,
μ					μ		
•	μ	,		μ	μ		μ
μ		,				μ	•
	μ	μ			,		
μ					μ		
				,	μ	μ	

, μ μ μ.

- µ

			μ		μ	•	μ	
μ		μ		•	μ	μ		
μ	•							

-	μ		

	μ	μ			
	μ				•
μ	μ		μ	•	

2.2

2.2.1 μ μ μ

	μ	μ
Navier-Stokes		Laplace,
:		

$$\frac{\partial \vec{}}{\partial t} + \left(\vec{} \cdot \vec{\nabla}\right) \vec{} = \vec{F} - \frac{1}{\cdots} \vec{\nabla} p + \frac{\tilde{}}{\cdots} \Delta^{\hat{}}$$
(2.1)

 $\vec{\nabla} \cdot \vec{} = 0$

	~	μ	$(u,v,w), p , \mu$		μ
		,	$ec{F}$	μ	μ
μ					

	μ	μ	μ	
μ	μ	,	μ	μ
	:			

- : Navier- Stokes Euler. μ

Euler. µ :

$$\vec{\nabla} = \vec{\nabla} \Phi$$
 (2.2)

 μ μ :

$$\nabla^2 \Phi = 0 \tag{2.3}$$

- μ :

$$\begin{array}{ccc} \mu & \mu \\ \mu & \mu & \mu \end{array}$$

$$\frac{\partial \Phi}{\partial \Phi} = 0$$

$$\frac{\partial z}{\partial z}\Big|_{z=-d} = 0$$
(2.4)

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad , \qquad \mu \qquad G = z - (x, y, t) = 0$$

$$\frac{DG}{Dt} = \left(\frac{\partial}{\partial t} + \nabla\right)G = 0 \Longrightarrow$$
$$\frac{\partial'}{\partial t} + \frac{\partial\Phi}{\partial x}\frac{\partial'}{\partial x} + \frac{\partial\Phi}{\partial y}\frac{\partial'}{\partial y} - \frac{\partial\Phi}{\partial z} = 0$$

μ

$$\mu \mu \mu , , , \mu$$
Bernoulli :

$$\frac{\partial \Phi}{\partial t} + \frac{1}{2} |^{2} + gz + \frac{P - P_{a}}{...} = A(t)$$
(2.6)

$$\mu \mu \mu$$

$$\mu \mu$$

$$A(t) \mu$$

$$\mu P = P_{a}$$
:

$$... \left\{ \frac{\partial \Phi}{\partial t} + \frac{1}{2} \left[\left(\frac{\partial \Phi}{\partial x} \right)^2 + \left(\frac{\partial \Phi}{\partial y} \right)^2 + \left(\frac{\partial \Phi}{\partial z} \right)^2 \right] + gz \right\} = 0, \ z = ' \ (x, y, t)$$

$$... \left\{ \frac{\partial \Phi}{\partial t} + g' + \frac{1}{2} \left[\left(\frac{\partial \Phi}{\partial x} \right)^2 + \left(\frac{\partial \Phi}{\partial y} \right)^2 + \left(\frac{\partial \Phi}{\partial z} \right)^2 \right] \right\} \bigg|_{z='} = 0$$

$$(2.7)$$

- μ μμ.
-
$$z = '(x, y, t)$$

- μ
- μ μ μμ

2.2.2 μμ μ μ μ

•

μ :

$$\begin{array}{cccc} \mu & & & z = (x,y,t), \\ \mu & \mu & & Taylor & z = 0, \\ & & & (x,y,t) & \mu & \mu & \mu & \mu & . \end{array}$$

$$\Phi\Big|_{z='} = \Phi\Big|_{z=0} + \left| \frac{\partial \Phi}{\partial z} \right|_{z=0} + \frac{1}{2} \left| \frac{\partial^2 \Phi}{\partial z^2} \right|_{z=0} + \dots$$
(2.8)

:

:

$$\begin{split} \Phi_{x} &= \frac{\partial \Phi}{\partial x}\Big|_{z='} + \frac{\partial \Phi}{\partial x}\Big|_{z=0} + \frac{\partial^{2} \Phi}{\partial x \partial z}\Big|_{z=0} + \frac{1}{2} + \frac{\partial^{3} \Phi}{\partial x \partial z^{2}}\Big|_{z=0} + \dots \\ \Phi_{y} &= \frac{\partial \Phi}{\partial y}\Big|_{z='} + \frac{\partial \Phi}{\partial y}\Big|_{z=0} + \frac{\partial^{2} \Phi}{\partial y \partial z}\Big|_{z=0} + \frac{1}{2} + \frac{\partial^{3} \Phi}{\partial y \partial z^{2}}\Big|_{z=0} + \dots \\ \Phi_{z} &= \frac{\partial \Phi}{\partial z}\Big|_{z='} + \frac{\partial \Phi}{\partial z}\Big|_{z=0} + \frac{\partial^{2} \Phi}{\partial z^{2}}\Big|_{z=0} + \frac{1}{2} + \frac{\partial^{3} \Phi}{\partial z^{3}}\Big|_{z=0} + \dots \end{split}$$

$$(2.9)$$

$$- \mu = V \left[\Phi_{z}^{(1)} - t_{t}^{(1)} \right] + V^{2} \left[\Phi_{z}^{(2)} - t_{t}^{(2)} + t_{t}^{(1)} \Phi_{zz}^{(1)} - \Phi_{x}^{(1)} + \Phi_{y}^{(1)} \right] + 0 \left[V^{3} \right] = 0$$

$$z=0 \qquad (2.10)$$

$$- \mu$$

$$V \left[\Phi_{t}^{(1)} + g^{(-1)} \right] + V^{2} \left[\Phi_{t}^{(2)} + g^{(-2)} + f^{(-1)} \Phi_{tz}^{(1)} + \frac{1}{2} ((\Phi_{x}^{(1)})^{2} + (\Phi_{y}^{(1)})^{2} + (\Phi_{z}^{(2)})^{2}) \right] + 0 (V^{3}) = 0$$

$$z = 0 \qquad (2.11)$$

$$\vdots \qquad \mu \mu \qquad \mu \qquad \mu \qquad n$$

Μακρή Κωνσταντίνα

.

n-

μ

μ

μ (n=2):

—

2

n-

$$\frac{\partial \Phi^{(n)}}{\partial z} - \frac{\partial^{\prime (n)}}{\partial t} = G^{(n-1)} \qquad z=0$$
(2.16)

$$- \mu \frac{\partial \Phi^{(2)}}{\partial t} + g^{(2)} = -{}^{(1)} \frac{\partial^2 \Phi^{(1)}}{\partial t \partial z} - \frac{1}{2} \{ (\frac{\partial \Phi^{(1)}}{\partial x})^2 + (\frac{\partial \Phi^{(1)}}{\partial y})^{(2)} + (\frac{\partial \Phi^{(1)}}{\partial z}) \} \qquad z=0$$
(2.15)

$$- \mu$$

$$\frac{\partial \Phi^{(2)}}{\partial z} - \frac{\partial^{\prime}}{\partial t}^{(2)} = -^{\prime} {}^{(1)} \frac{\partial^2 \Phi^{(1)}}{\partial z^2} + \frac{\partial \Phi^{(1)}}{\partial x} \frac{\partial^{\prime}}{\partial x}^{(1)} + \frac{\partial \Phi^{(1)}}{\partial y} \frac{\partial^{\prime}}{\partial y}^{(1)} z=0$$
(2.14)

$$- \mu$$

$$\frac{\partial \Phi^{(1)}}{\partial t} = -g^{\prime (1)} \qquad z=0 \qquad (2.13)$$

$$\frac{\partial \Phi^{(1)}}{\partial z} = \frac{\partial^{\prime} {}^{(1)}}{\partial t} \qquad z=0$$
(2.12)

Μακρή Κωνσταντίνα

μ

ραμμι μ

$$\frac{\partial \Phi^{(1)}}{\partial z} = 0 \qquad z = -h \tag{2.21}$$

$$\frac{\partial^{\prime (1)}}{\partial t} - \frac{\partial \Phi^{(1)}}{\partial z} = 0 \qquad z = 0 \tag{2.22}$$

$$\nabla^2 \Phi^{(1)} = 0$$
 z=-h (2.20)

$$\mu \quad \Phi^{(1)} \quad , \, {}^{(1)} \qquad \mu \quad :$$

$$\mu = \Phi^{(1)} + \mu^{(1)} = \mu^{(1)} =$$

$$\Phi^{(1)}$$
 , $\mu^{(1)}$, $\mu^{(1)}$

$$' = V'^{(1)}$$

$$\Phi = \mathsf{V}\Phi^{(1)}$$

2.3 μ Airy

$$\frac{\partial \Phi^{(n)}}{\partial \vec{n}} = \vec{\nabla} \Phi^{(n)} \cdot \vec{n} = 0 \qquad \mu$$
(2.19)

$$\Delta \Phi^{(n)} = 0 \tag{2.18}$$

$$\Phi^{(n)}$$
 , μ , μ ,

$$G^{(n-1)}$$
 $F^{(n-1)}$ 1,2,

$$\frac{\partial \Phi^{(n)}}{\partial t} + g'^{(n)} = F^{(n-1)} \qquad z=0$$
(2.17)

$$\frac{\partial \Phi^{(1)}}{\partial t} - g^{\prime (1)} = 0 \qquad z=0$$
(2.23)

μ

$$(2.22) \quad (2.23) \qquad \mu \quad , \qquad \mu \quad :$$

$$(1) = -\frac{1}{g} \frac{\partial \Phi^{(1)}}{\partial t} \Rightarrow \frac{\partial'}{\partial t}^{(1)} = -\frac{1}{g} \frac{\partial^2 \Phi^{(1)}}{\partial t^2} \qquad (2.24)$$

$$(2.22) \quad :$$

$$(2.22) \quad :$$

$$(1) \quad (2.25)$$

$$\Phi(x,z,t) = F(z) \cdot \sin(kx - \check{S}t)$$
(2.26)

$$F(z)$$
 , k μ S

μ.

,

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial z} = 0$$
(2.27)

$$\frac{\partial^2 \Phi}{\partial x^2} = -k^2 F(z) \cdot \sin(kx - \check{S}t)$$
$$\frac{\partial^2 \Phi}{\partial z^2} = \frac{\partial^2 F(z)}{\partial z^2} \cdot \sin(kx - \check{S}t)$$
(2.28)

Μακρή Κωνσταντίνα

$$F(z) = Ae^{-kz} + Be^{kz}$$
(2.30)

$$\mu :$$

$$\Phi(x, y, z) = (Ae^{-kz} + Be^{kz}) \cdot \sin(kx - \check{S}t)$$
(2.31)

 $\mu \quad (2.21) \qquad :$ $\frac{\partial \Phi}{\partial z} = (-kAe^{-kz} + kBe^{kz}) \cdot \sin(kx - \tilde{S}t) \stackrel{z=d}{=} 0 \Longrightarrow -kAe^{-kd} + kBe^{kd} = 0 \Longrightarrow$ $Ae^{kd} = Be^{-kd} \Longrightarrow \frac{A}{B} = e^{-2kd}$ $\mu \quad \mu \quad \mu \qquad :$ (2.32)

$$\left. \left(\frac{\partial^2 \Phi}{\partial t^2} + g \frac{\partial \Phi}{\partial z} \right) \right|_{z=0} = 0 \Longrightarrow$$

$$\frac{\partial^2 \Phi}{\partial t^2} + g \frac{\partial \Phi}{\partial z} = -\tilde{S}^2 \left(A e^{-kz} + B e^{kz} \right) \cdot \sin(kx - \tilde{S}t) + g \left(-kA e^{-kz} + kB e^{kz} \right) \sin(kx - \tilde{S}t)$$

$$\mu z=0:$$

$$\frac{\check{S}^{2}}{kg} = \frac{B-A}{B+A} = \frac{1-\frac{A}{B}}{1+\frac{A}{B}} = \frac{1-e^{-2kd}}{1+e^{2kd}} = \frac{\sinh(kd)}{\cosh(kd)} \Longrightarrow$$

$$\check{S}^{2} = kg \tanh(kd) \qquad (2.34)$$

,μ μ *k*

d.

$$\Phi(x, z, t) = \left(Ae^{-kz} + Be^{kz}\right)\sin(kx - \check{S}t) \Rightarrow$$

$$\Phi(x, z, t) = B\left(\frac{A}{B}e^{-kz} + e^{kz}\right)\sin(kx - \check{S}t) \Rightarrow$$

$$\Phi(x, z, t) = B\left(e^{-2kz}e^{-kz} + e^{kz}\right)\sin(kx - \check{S}t) \Rightarrow$$

$$\Phi(x, z, t) = 2Be^{-kd}\frac{1}{2}\left(e^{-k(z+d)} + e^{k(z+d)}\right)\sin(kx - \check{S}t) \Rightarrow$$

$$\Phi(x, z, t) = 2Be^{-kd}\cosh\left[k\left(z+d\right)\right]\sin(kx - \check{S}t) \Rightarrow$$
(2.35)

μ :

, :

μ

$$a = \frac{2B\tilde{S}e^{-kd}}{g}\cosh(kd)$$
(2.37)

,
$$\mu \qquad \mu$$
 :

$$\Phi = \frac{ag}{\check{S}} \cdot \frac{\cosh[k(z+d)]}{\cosh(kd)} \cdot \sin(kx - \check{S}t) \qquad (2.38)$$

$$\Phi = \frac{H}{2} \frac{g}{\check{S}} \cdot \frac{\cosh[k(z+d)]}{\cosh(kd)} \cdot \sin(kx - \check{S}t)$$
(2.39)

$$f = \frac{H}{2} \cos(kx - \check{S})$$
(2.40)

μ μμμ . μ μ μ χ μ μ , μμ ,

:

$$\Phi(x, y, z, t) = \frac{H}{2} \frac{g}{\check{S}} \cdot \frac{\cosh[k(z+d)]}{\cosh(kd)} \cdot \sin[k(x\cos_{\#} + y\sin_{\#}) - \check{S}t]$$
(2.41)

$$(x, y, t) = \frac{H}{2} \cos[k(x \cos_{\#} + y \sin_{\#}) - \check{S}t]$$

$$k \qquad \mu \qquad \mu \qquad (\mu \qquad \mu) \qquad \mu \qquad \mu \qquad \mu \qquad (2.42)$$

$$k = \frac{2f}{3}.$$

2.4 µ Stokes 5

	μ	Stokes	5			μ				
				Lars Skje	lbreia	James H	Hendrickson	1961.	μ	μ
	Stoke	es 5	,	μ				:		
		5								
$\Phi(x,$	y, z, t)	$=\sum V^n Q^n Q^n Q^n Q^n Q^n Q^n Q^n Q^n Q^n Q$	$\Phi^{(n)}($	(x, y, z, t)						
		n=1								(2.43)
		5	<i>(</i>)							
'(x,	y, z, t	$=\sum_{n=1}^{n} V^{n}$	$^{(n)}(:$	(x, y, z, t)						(2, 4, 4)
		<i>n</i> =1								(2.44)
						ŀ	μ			
μ	l	S	Stoke	s,		Levi	-Civita (1925	5) Stri	uick (1	926)
		μ								
		μ								
						F				
				μ		5	, 1 2 3	1		
			,				1,2,3	7	•	
μ	μ	Sk	kjelbe	eria – Hend	drickson ((1961)	μđ	$\mathfrak{D}^{(5)}$		
			, (5))		μ	:			

$$\Phi^{(5)} = \frac{\frac{1}{2fT}}{2fT} [(vA_{11} + v^{3}A_{13} + v^{5}A_{15}) \cosh[k(z+d)] \sin(kx - \tilde{S}t) + \\ + (v^{2}A_{22} + v^{4}A_{24}) \cosh[2k(z+d)] \sin(2(kx - \tilde{S}t)) + \\ + (v^{3}A_{33} + v^{5}A_{35}) \cosh[3k(z+d)] \sin(3(kx - \tilde{S}t)) + \\ + (v^{4}A_{44} \cosh[4k(z+d)] \sin(4(kx - \tilde{S}t))) + \\ + (v^{5}A_{55} \cosh[5k(z+d)] \sin(5(kx - \tilde{S}t)))]$$

$$(2.45)$$

$$\mu : \frac{fH}{d} = \frac{1}{d/3} [v + v^3 B_{33} + v^5 (B_{35} + B_{55})]$$

$$d = d \qquad (2.47)$$

$$\frac{d}{g_0} = \frac{d}{g_0} [1 + v^2 C_1 + v^4 C_2] \tanh(kd)$$
(2.48)

$$\}_{0} = \frac{gT^{2}}{2f} = 1.56T^{2}$$
(2.49)

(2.51)

$$\begin{split} B_{22} &= C \frac{(2C^2 + 1)}{4S^3} \\ B_{24} &= \frac{C \left(272C^8 - 504C^6 - 192C^4 + 322C^2 + 21 \right)}{384S^9} \\ B_{33} &= \frac{3(8C^6 + 1)}{64S^6} \\ B_{35} &= \frac{\left(88,128C^{14} - 208,224C^{12} + 70,848C^{10} \right)}{12,288S^{12}(6C^2 - 1)} \\ &+ \frac{(54,000C^8 - 21,816C^6 + 6264C^4 - 54C^2 - 81)}{12,288S^{12}(6C^2 - 1)} \\ B_{44} &= \frac{C(768C^{10} - 448C^8 - 48C^6 + 48C^4 + 106C^2 - 21)}{384S^9(6C^2 - 1)} \\ B_{55} &= \frac{\left(192,000C^{16} - 262,720C^{14} + 83,680C^{12} + 20,160C^{10} - 7280C^8 \right)}{12,288S^{10}(6C^2 - 1)(8C^4 - 11C^2 + 3)} \\ &+ \frac{\left(7160C^6 - 1800C^4 - 1050C^2 + 225 \right)}{12,288S^{10}(6C^2 - 1)(8C^4 - 11C^2 + 3)} \end{split}$$

$$\begin{split} A_{11} &= \frac{1}{s} \\ A_{13} &= \frac{-C^2(5C^2+1)}{8s^5} \\ A_{15} &= \frac{-(1184C^{10}-1440C^8-1992C^6+2641C^4-294C^2+18)}{1536S^{11}} \\ A_{22} &= \frac{3}{8s^4} \\ A_{24} &= \frac{(192C^8-424C^6-312C^4+480C^2-17)}{768S^{10}} \\ A_{33} &= \frac{(13-4C^2)}{64S^7} \\ A_{35} &= \frac{(512C^{12}-4224C^{10}-6800C^8-12,808C^6+16,704C^4-3154C^2+107)}{4096S^{13}(6C^2-1)} \\ A_{44} &= \frac{(80C^6-816C^4+1338C^2-197)}{1536S^{10}(6C^2-1)} \\ A_{55} &= \frac{-(2880C^{10}-72,480C^8+324,000C^6-432,000C^4+163,470C^2-16,245)}{61,440S^{11}(6C^2-1)(8C^4-11C^2+3)} \end{split}$$

$$C_{1} = \frac{\left(8C^{4} - 8C^{2} + 9\right)}{8S^{4}}$$

$$C_{2} = \frac{\left(3840C^{12} - 4096C^{10} + 2592C^{8} - 1008C^{6} + 5944C^{4} - 1830C^{2} + 147\right)}{512S^{10}(6C^{2} - 1)}$$

$$C_{3} = -\frac{1}{4SC}$$

$$C_{4} = \frac{\left(12C^{8} + 36C^{6} - 162C^{4} + 141C^{2} - 27\right)}{192CS^{9}}$$
(2.52)

$$S = \sinh(2f d / \}) = \sinh(kd)$$

$$C = \cosh(2f d / \}) = \cosh(kd)$$
(2.53)

μ μ , , , *d*

$$C = \cosh(2f d / \}) = \cosh(kd)$$
(2.5)

$$C = \cosh(2f d / \}) = \cosh(kd)$$

(2.47), (2.48) µ

μ

, ,d

 A_{ij}, B_{ij}, C_i µ

 $\left. \right\}_{0}$

 B_{33}, B_{55}, C_1

, ,d

μ

μ

 C_2

(2.48)

 $d/\}$

μ

 $d/\}$

$$C = \cosh(2f d / \frac{1}{2}) = \cosh(kd)$$

:

μ

μ

-

(2.52)

(2.47),

-

(2.48) µ

μ,

μ

μ

μ

:

μ μ.

(2.50), (2.51)

μ (2.47)

μ.

μ

μ

μ

μ

.

μ

μ

(2.49).

Μακρή Κωνσταντίνα

μ

		μ					μ	μμ	μ	Stokes
						μμ		μ	Airy	μ
		μ	μ	μ	•					
	μ	μ	μ	μ			Stok	tes		
	μ		μ		μ	^ М			μ	ΔJ_T
Ļ	ı			μ		,	:			

$$\hat{}_{M} = \frac{\Delta J_{T}}{T} \tag{2.54}$$

2.5 μ μ

	μμ	μμ	μ.	μ	μ , μ μ
μ		μ			μ , d ,
	μ	μ.			
Stokes		μ	,		μ
μ	120°.				

-

$$\left(\frac{H_0}{\beta_0}\right)_{\max} = \frac{H_{0\Theta}}{\beta_{0\Theta}} = \frac{1}{7} = 0.142$$
(2.55)

 $}_{0\Theta}$: μ μ μ

 $\mu \qquad \frac{1}{7} \qquad \qquad Michell- Havelock (1951).$

ΑΠΕΙΡΟΣΤΕΣ ΤΙΜΕΣ ΤΟΥ ΛΟΓΟΥ Η/λ ΚΥΜΑΤΑ ΑΙRY

ΠΕΠΕΡΑΣΜΕΝΕΣ ΤΙΜΕΣ ΤΟΥ ΛΟΓΟΥ Η/λ

Le Méhauté 1976

3. µ

3.1		μ		Morison				
				μ	,			
				μμ.	μ			
		μ	μ	,	μ			
	μ							

3.1.1 µ µ µ

			μ		μ		
μ	μ	•	μ	,		μ	μ
			:				

- μ Froude-Kryloff

	μμ						μ.
		μ					μ
		μ	,				
μ	μ	μ	μ				

- μ

			μ,	μ					
μ								μ	
,		μ			μ	μ	μ		
μ		,			μ			μ	,
	μ		•						
-	μ								
	-								

		μ	,		μ	μ		μ	μ
,	μ			μ			μ	μ	•

μ μ μ μ μ . μ -

μ •

μ -

μ μ μ μ μμ μ μ, μ μ. μ μ μ μ μ μ μμ. , 1 , 2 μμ μ μ , μ μ μμ μ .

μ

Froude-Kryloff μ μ μ •

μ μ μ • , μ μ , μ μ μ μ •

μ μ μ μ μ μ , • , μ μ μ , , μ μμ μ μ μ μ μ μ μ

,

$$F = f(D, d, ..., g, H, \})$$

$$D \quad \mu , d , , , g, g$$

$$, H \quad \mu , \mu \quad \mu \quad \mu \quad \mu$$

$$.$$

$$\mu \qquad \qquad : \frac{F}{\dots gf H \frac{D^2}{8}} = f\left(\frac{2f D}{3}, \frac{d}{D}, \frac{H}{D}, \frac{\sim}{\dots \sqrt{gD^3}}\right)$$

$$\mu \qquad \qquad \frac{\sim}{\ldots\sqrt{gD^3}} = \frac{\notin}{\sqrt{gD^3}} \quad (: \quad \mu \qquad) \qquad \mu$$

 μ Froude μ Reynolds.

μ Froude :

$$Fr = \frac{\text{Au...}r \notin \text{vzr} \mid g \qquad \mu}{\Delta^{\hat{}} \notin \text{-vzg}} = \frac{c}{\sqrt{gD}}$$

μ Reynolds :

$$\operatorname{Re} = \frac{\operatorname{Au...} r \notin vzr |}{\Delta^{\widehat{}} \notin vzg} = \frac{cD}{\notin}$$

μ, :

$$\frac{Fr}{\text{Re}} = \frac{\Delta^{\hat{}} \in \text{-vzg}}{\Delta^{\hat{}} \in \text{-vzg}} = \frac{\epsilon}{\sqrt{gD^3}}$$

$$\mu \qquad \mu \qquad c \qquad \mu \qquad \mu \qquad ,$$

$$r = \sqrt{g \tanh(kd)} \quad (k; \quad \mu \quad \mu \quad \mu \quad \mu \quad 2)$$

$$c = \sqrt{\frac{g tann(ka)}{k}} \quad (k: \ \mu \qquad \mu \qquad \mu \qquad 2 \) \qquad \qquad \mu$$

Froude, :
$$Fr = \left[\frac{g \tanh(kd)}{Dg}\right]^{\frac{1}{2}} = \sqrt{\frac{\tanh(kd)}{kD}}$$

μ:

μ

,
$$\tanh{(kd)} \equiv 1$$

$$Fr = \frac{\text{Au...} r \in \text{vzr} | g \Delta^{\hat{}} \in \text{-vzg}}{\Delta^{\hat{}} \in \text{-vzg Br...} \ddagger y \ddagger rg} \equiv \frac{1}{\sqrt{kD}}$$

-

- ,
$$tanh = (kd) \equiv kd$$

μ

$$Fr = \frac{\text{Au...} r \in \text{vzr} | g \Delta^{\hat{}} \in \text{-vzg}}{\Delta^{\hat{}} \in \text{-vzg Br...} \ddagger y \ddagger rg} \equiv \sqrt{\frac{d}{D}}$$

$$F = f\left(D, d, T, \overline{u}, ..., \sim\right) \longrightarrow \frac{F}{\frac{1}{2} ... u^2 D d} = f\left(\frac{\overline{u}T}{D}, \frac{uD}{\tilde{u}}, \frac{d}{D}\right)$$

μ.

$$\frac{\overline{u}T}{D} = N_{KC} \qquad \qquad \mu \qquad \qquad \mu$$

Keulegan- Carpenter

 $\frac{uD}{\tilde{u}} = \frac{uD}{\xi} = \operatorname{Re} \qquad \mu \quad \text{Reynolds,}$

:

$$\frac{F}{\frac{1}{2}\dots u^2 D d} = f(N_{KC}, Re, \frac{d}{D})$$

μ μ *k* , μ μ :

$$\frac{F}{\frac{1}{2}\dots u^2 D d} = f(N_{KC}, Re, \frac{d}{D}, \frac{k}{D})$$

μ μ μ (, , ,)

$$\mu \qquad \mu \qquad \frac{H}{D} > 10$$

10%

90% μ

,

μ

1 10
$$(1 \le \frac{H}{D} \le 10)$$

μ

μ

μ

 $\frac{H}{\}} = \frac{1}{7}$

Morison,

μ.

 $\frac{H}{D} < 1$

μ

μ

10%

μ

μ

Michell- Havelock,

μμ.

μ

3.2.1 µ Morison

μ μ μ μ ,μ ,μμμ Μorison. , μ μ μ μ μ, , μ μ μ.

$$C_{_M}\,,$$
 $C_{_D}$.

Morison	O'Brier	n, Johnse	on Schaaf	r 1950	μ		
		μ	μ			μ	
		μ	μ				
	μ	μ		μ	μ	μ	
μ			μ		μ.		μ,
μ		μ		μ			

		μμ	μ						μ	
									μ	•
	μ,					μ				
					,	п				
	•		, Ц			μ	μ			
	·		μ		•					
								μ		μ
	,	μ					μ	μ		μ
().								
				μ				μ		μ
			μ		μ			μ		

.

K	Ieulegan	Carpenter	μ						
Mori	son				μ				
			μ.			,	μ		
μ	μ		μ	μ					μ
	μ	, μ		μ	,			μμ .	
Be	orgman (195	(8)			Morison	1		μ	
					μ			μ.	
	,			Ν	Morison	μ		μ	
					μ			•	,
		μ μ	μ	,		μ			
									μ,
			μ	μ					
				μ.					

3.2.2 **Morison** μ μ ['] μ μμμ

μ		μ	μ		
	Morison (1950)		μ	μ	
μ		μ	μ		

$$C_a$$
 μ : $\frac{M_a}{...\nabla} = C_a$

$$C_M$$
 : $C_M = 1 + C_a$
 μ , :
 $F_{lx} = C_M \nabla \frac{\mathrm{d}u}{\mathrm{d}t}$ (3.2)

$$\begin{array}{cccc} \mu & , & \mu & \mu \\ C_a = 1.0 & C_M = 2.0 \, , & \nabla & \mu \\ \mu & . \end{array}$$

μ μ

$$F_{D} = \frac{1}{2} C_{D} \dots u^{2} A$$
(3.3)

$$u$$
 , μ C_D .
, C_D μ Reynolds
 μ μ

μ.

 μ Morison :

$$\frac{dF_x(t)}{dz} = \frac{dF_{lx}(t)}{dz} + \frac{dF_{Dx}(t)}{dz} \Longrightarrow \frac{dF_x(t)}{dz} = C_M \dots f \frac{D^2}{4} \frac{du(t)}{dt} + \frac{1}{2} C_D \dots D \left| u(t) \right| u(t)$$
(3.4)

 μ μ *I* (inertia) μ μ μ μD $|\mathbf{u}(t)|\mathbf{u}(t)$ (drag). , μ μ μ

.

μ

$$C_M \ \mu \quad C_M = 1 + C_a \qquad \frac{M_a}{...\nabla} = C_a$$

μ

:

$$\frac{dF_{Ix}(t)}{dz} = \dots f \frac{D^2}{4} (1 + C_r) \frac{du(t)}{dt} = (\dots f \frac{D^2}{4} + M_r) \frac{du(t)}{dt}$$
(3.5)

:

$$\mu \qquad \mu \quad Froude- Kryloff \dots f \frac{D^2}{4}, \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad (\mu \qquad \mu) \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

Morison. μ μ, μ

3.2.3 Morison

μ να σύμα μ A/ leop $\Phi(x, y, z, t)$ μ ή ειίπα, $\zeta(x,y,t)$ ό άλεπιο μ ū:́:(u, v, w) סנפר נו זד μ:

$$u = \frac{\partial \Phi}{\partial x} , v = \frac{\partial \Phi}{\partial y} , w = \frac{\partial \Phi}{\partial z}$$
(3.6)

 $\frac{dU}{dt}$ μ μ Morison :

$$\frac{du}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z}$$
(3.7)

$$f_{x} = C_{M} - \frac{D^{2}}{4} \frac{\partial u}{\partial t} + \frac{1}{2} C_{D} \dots D |u| u$$

$$\mu$$

$$(3.8)$$

:

$$F_{x} = \int_{0}^{d+j} f_{x} dx = \int_{0}^{d+j} \frac{dF_{x}}{dz} dz$$
(3.9)

μ, μ :

$$\Phi(x,z,t) = \frac{H}{2} \frac{g}{\check{S}} \frac{\cosh[k(z+d)]}{\cosh(kd)} \sin(kx - \check{S}t)$$
(3.10)

3.2 μ μ

$$u = \frac{\partial \Phi}{\partial x} = \frac{H}{2} \frac{gk}{\tilde{S}} \frac{\cosh[k(z+d)]}{\cosh(kd)} \cos(kx - \tilde{S}t) = \frac{H}{2} \tilde{S} \frac{\cosh[k(z+d)]}{\sinh(kd)} \cos(kx - \tilde{S}t)$$

$$w = \frac{\partial \Phi}{\partial z} = \frac{H}{2} \frac{gk}{\tilde{S}} \frac{\sinh[k(z+d)]}{\cosh(kd)} \sin(kx - \tilde{S}t) = \frac{H}{2} \tilde{S} \frac{\sinh[k(z+d)]}{\sinh(kd)} \sin(kx - \tilde{S}t)$$

(3.11)

$$\frac{\partial u}{\partial t} = \frac{H}{2} \tilde{S} \frac{\cosh[k(z+d)]}{\sinh(kd)} \sin(kx - \tilde{S}t)$$
(3.13)

$$\frac{\partial w}{\partial t} = \frac{H}{2}\tilde{S}\frac{\sinh[k(z+d)]}{\sinh(kd)}\cos(kx-\tilde{S}t)$$
(3.14)

Morison :

$$\frac{dF_x(t)}{dz} = \frac{dF_{lx}(t)}{dz} + \frac{dF_{Dx}(t)}{dz} =$$

$$= C_M \cdots f \frac{D^2}{4} \left[\frac{H}{2}\check{S}\frac{\cosh[k(z+d)]}{\sinh(kd)}\right] \sin(kx - \check{S}t) +$$

$$+ \frac{1}{2}C_D \cdots D\left[\frac{H}{2}\check{S}\frac{\cosh[k(z+d)]}{\sinh(kd)}\right]^2 \left|\cos(kx - \check{S}t)\right| \cdot \cos(kx - \check{S}t)$$
(3.15)

:

:

3.3.1

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu,$$

$$\mu \qquad \mu \qquad Morison (1950) :$$

$$F = C_M ... D^2 \frac{\partial u}{\partial t} + \frac{1}{2} C_D ... Du |u| \qquad (3.16)$$
:
$$F \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$u \qquad \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$u \qquad \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu \qquad \mu$$

, μ μ μ μ μμ.

3.3.2 µ

$$\vec{F} = C_M \cdots \frac{f}{4} D^2 \frac{d\vec{\epsilon}}{dt} + \frac{1}{2} C_D \cdots D \in \vec{\epsilon}$$
(3.17)

ν μ .

$$\begin{array}{c}
\mu \\
\nu \\
x, y, z.
\end{array}$$

3.4
$$\mu$$

 $\mu \vec{C} \mu \mu \mu$
, $\mu \mu$ μ
 $\vec{C} = C_x \hat{i} + C_y \hat{j} + C_z \hat{k}$ (3.18)

$$\begin{array}{ccc} \mu & \mu & \mu \\ \mu & \vdots \end{array}$$

$$u = \frac{\partial \Phi}{\partial x}, \notin = \frac{\partial \Phi}{\partial y}, w = \frac{\partial \Phi}{\partial z}$$
(3.19)

$$\begin{array}{ccc} \mu & \vec{v} & & \mu \\ \mu & \mu & \vec{C} & \vdots \end{array}$$

$$\tilde{\mathsf{S}}^{2} = kg \tanh(kd) \\ k = x \to G(x) = 0$$

$$\Rightarrow G(x) = xg \tanh(xd) - \tilde{\mathsf{S}}^{2}$$
 (3.20)

$$: \vec{\epsilon} = u_x \hat{i} + u_y \hat{j} + u_z \hat{k}$$
(3.21)

$$C_{x} = \sin \mathbf{W} \cdot \cos \mathbf{E}$$
$$C_{y} = \sin \mathbf{W} \cdot \sin \mathbf{E}$$
$$C_{z} = \cos \mathbf{W}$$

$$|v| = \left[\varepsilon \cdot \varepsilon \right]^{\gamma^2} = \left[u^2 + w^2 - \left(C_x u + C_z w \right) \right]^{\gamma}$$
(3.23)

3.5 µ µ

μ

(3.17) (3.23), µµµµ :

$$\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = C_M \cdots \frac{f}{4} D^2 \begin{bmatrix} \dot{u}_x \\ \dot{u}_y \\ \dot{u}_z \end{bmatrix} + \frac{1}{2} C_D \cdots D \begin{vmatrix} \vec{v} \\ u_y \\ u_z \end{vmatrix}$$
(3.24)

$$: \dot{u}_x = \frac{du_x}{dt}, \dot{u}_y = \frac{du_y}{dt}, \dot{u}_z = \frac{du_z}{dt}.$$

 (C_M, C_D)

.

Morison μ μ offshore μ μ μ Jackets, μ μ , , , μ μ Morison μ μ μ, , μ μ μ • μ μ μμ μ

μ μ C_M, C_D μ μ , μ μ, μ . μ μ μ Reynolds. μ μ μ μ μ μ μ μ μ , μ $C_M, C_D.$ μ μ μ μ μ μ

3.6.1 μ (C_m, C_d) μ Fourier

	μ	μ		μ	μμ		F	ourier
					Keulegan	С	arpente	r (1958)
μ	μ	Reynolds µ	μ					μ
		μ		μ	μ	μ		
μ			μ	μ	,		μ	:

$$F = f(t, T, U, D, ..., v)$$
 (3.25)
 μ :

Μακρή Κωνσταντίνα

$$\frac{F}{\dots U_m^2 D} = f(\frac{t}{T}, \frac{U_m T}{D}, \frac{U_m D}{v})$$
(3.26)

$$(3.28) \mu \qquad \mu \qquad \mu \qquad \text{Morison} \qquad :$$
$$\frac{2F}{\dots DU_m^2} = \frac{f^2}{k} C_m \sin_n - C_d |\cos_n| \cos_n \qquad (3.29)$$

$$C_{d} = -\frac{3}{4} \int_{0}^{2f} \frac{F \cos_{\#}}{...DU_{m}^{2}} d_{\#}$$
(3.30)
2U T^{2f} F sin ...

$$C_{m} = \frac{m}{f^{3}D} \int_{0}^{\infty} \frac{m}{m} \frac{d}{D} U_{m}^{2} d_{m}$$
(3.31)

$$C_m, C_d \mu$$
 $\mu \mu$
. $\mu \mu$ μ
 $F_c \mu$ (3.29), :
$$F^{2} = (F_{m} - F_{c})^{2}$$

$$\frac{dF^{2}}{dC_{m}} = 0, \frac{dF^{2}}{dC_{d}} = 0$$

$$C_{dls} = -\frac{8}{3f} \int_{0}^{2f} \frac{F_{m} |\cos_{\pi}| \cdot \cos_{\pi}}{...DU_{m}^{2}} d_{\pi}$$

$$C_{mls} = C_{m}$$
(3.32)
(3.32)
(3.33)

$$F^{2} = F_{m}^{2}(F_{m} - F_{c})^{2}$$

$$\frac{dF^{2}}{dC_{m}} = 0, \frac{dF^{2}}{dC_{d}} = 0$$

$$C_{d} = \frac{2}{L...DU_{m}^{2}} \cdot \frac{f_{5}f_{3} - f_{4}f_{2}}{f_{4}f_{1} - f_{3}^{2}}$$

$$C_{d} = \frac{T^{3}}{L...AD^{2}f} \cdot \frac{f_{5}f_{1} - f_{3}f_{2}}{f_{4}f_{1} - f_{3}^{2}}$$
(3.36)

$$egin{array}{ccc} A & & & & & \\ T & & & & & & \\ L & \mu & & & & & & \\ f_i & & & & & & : \end{array}$$

$$f_{1} = \int_{0}^{2f} F^{2} \cos^{4} d_{\pi} d_{\pi}$$

$$f_{2} = \int_{0}^{2f} F^{3} |\cos_{\pi}| \cos_{\pi} d_{\pi}$$

$$f_{3} = \int_{0}^{2f} F^{2} \sin_{\pi} \cdot \cos_{\pi} |\cos_{\pi}| d_{\pi}$$

$$f_{4} = \int_{0}^{2f} F^{2} \sin^{2} d_{\pi}$$

$$f_{5} = \int_{0}^{2f} F^{3} \sin_{\pi} d_{\pi}$$
(3.37)

:
(3.35), (3.36)
$$\mu$$

 μ (3.30), (3.31) μF^n
(3.37) μF^{n-2} F
 μ .
(3.29) μ μ μ μ
 μ , $\mu \mu$ $\mu \mu$ μ
 $\frac{C_m}{kT}$ $\mu \mu$ μ μ
 $\mu \mu$ μ μ μ μ μ
 μ .
 μ .

3.6.2
$$\mu$$
 (C_m, C_d)

$$\frac{2F}{\dots LU_m^2 D} = f\left[\frac{U_m T}{D}, \frac{U_m D}{v}, \frac{k}{D}, \frac{t}{T}\right]$$
(3.38)

3.3 C_d μ Keulegan-Carpenter μ Reynolds. (Sarpkaya μ Keulegan-Carpenter)

3.5, 3.6
$$C_d, C_m$$
 N_{KC}
 μ μ S. μ μ
 μ , $\mu\mu$ μ ...
 $\mu\mu$ μ ...
3.8 μ μ $\mu\mu$ μ Reynolds μ
 $Re_S^{}$., μ μ μ μ
 $C_d, C_m, Re N_{KC}$.

	3.9	,	3.10				C_d	, C_m			μ
Re µ	μ				h	ı N _{KC}					
		l	J		μ	N _{KC}	Re				C_m
		μ 2.0		μ	μ		μ			μ,	
	μ μ					μ				μμμ	
			,	μ	μ			μ		•	
3.9			μ	μ	C_d			μ	μ		
μ			μ		•						
	3.1	l		3.20				μ		μ	
Sarpkay	a (1977).		,	μ							
μ	C_d, C	<i>m</i> •									
						μ			μ		

Morison

.

3.6.3 C_m, C_d

		μ				μ					μ	
μ		μ Rey	nolds.		μ	,	μ	μ			,	
		μ					,		μ	Reynolds		μ
	μ		μ			μ	•					μ 90°,
								μ		,	μ	Reynolds
		μ		μ						μ		
							μ		-h	ı		
μ		μ	Reynolo	ls			μ					
$(C_m, C_d).$												
Bursnal	1	Lofti	n (1951)	ш						п		

Bursnall	Lofti	n (1951))μ		μ	μ			
	μμ					0 < v	$V < 60^{\circ}$,	μ	
μ	Reynolo	đs	μ	10 ⁴ <	$\operatorname{Re}_n < 3$	$5 \cdot 10^{5}$			
	μ	μ		μ			μ	μ	
					,			μ	μ
Reynolds (H	Re _{ncr})		μ				μ	μ	
									μ
3.21	,	3.22	μ				μ	Reynolds	5
						•			
I	Morison,	μ	u Reynolds		μ μ		۳ Keulega	in- Carpe	nter
	,		:		•		U	1	

$$\operatorname{Re} = \frac{\left| \mathcal{E} \right| \cdot D}{v}, N_{CK} = \frac{\left| \mathcal{E} \right| \cdot T}{D}$$
(3.40)

3.21

Reynolds.

Chakrabarti (1987) μ μ μμ μ C_m, C_d . Keulegan- Carpenter μ 0 1600. 16 μ μ Reynolds, μ , μ μ Reynolds μ Reynolds 25000). μ μ (μ μ Chakrabarti (1987) μ μ Sarpkaya (1977) μ μ N_{CK} s, μ (μ μ)μ μ μ Morison (3.41), (3.29) μ μ

4. μ

4.1

	μ μ	/ Moris	on	μ			
	μ : « Morison», ,	μ μ 1986.			μ	μ	μ
ր հե հ	Airy	μμ	µ Stoke	μ es 5		μ	

 $\begin{array}{ccc} \mu \mu & \mu & \mu \mu & \mu \\ FORTRAN & \mu & Compaq Visual Fortran Version 6.5. \end{array}$

4.2 μ μ μ

μ	μ	Morison
μ	Borgman (1958)	:

$$\vec{F} = C_M \dots \frac{f}{4} D^2 \frac{d\vec{\epsilon}}{dt} + \frac{1}{2} C_D \dots D \vec{\epsilon} \vec{\epsilon} \vec{\epsilon}$$
(4.1)

4.3 μ

$$\mu \qquad \mu \qquad :$$

$$\vec{v} = [\hat{}_{x} - c_{x}(c_{x}\hat{}_{x} + c_{y}\hat{}_{y} + c_{z}\hat{}_{z})]\vec{i}$$

$$+ [\hat{}_{y} - c_{y}(c_{x}\hat{}_{x} + c_{y}\hat{}_{y} + c_{z}\hat{}_{z})]\vec{j}$$

$$+ [\hat{}_{z} - c_{z}(c_{x}\hat{}_{x} + c_{y}\hat{}_{y} + c_{z}\hat{}_{z})]\vec{k}$$
(4.2)

Μακρή Κωνσταντίνα

Σελίδα 88

4.2
$$\mu$$
 μ \vec{c} .

:

$$\vec{v} = [\hat{x}^{2} + \hat{y}^{2} + \hat{z}^{2} - (c_{\hat{x}x} + c_{\hat{y}y} + c_{\hat{z}z})^{2}]^{1/2}$$

$$\mu \quad \mu \qquad (4.3)$$

$$\vec{a} = [a_{x} - c_{x}(c_{x}a_{x} + c_{y}a_{y} + c_{z}a_{z})]\vec{i}$$

$$+ [a_{y} - c_{y}(c_{x}a_{x} + c_{y}a_{y} + c_{z}a_{z})]\vec{j}$$

$$+ [a_{z} - c_{z}(c_{x}a_{x} + c_{y}a_{y} + c_{z}a_{z})]\vec{k}$$

$$\vdots$$
(4.4)

$$\vec{a} = [a_x^2 + a_y^2 + a_z^2 - (c_x a_x + c_y a_y + c_z a_z)^2]^{1/2}$$
(4.5)

$$\begin{pmatrix} f_{x1} & f_{y1} & f_{z1} \\ \vdots & \vdots & \vdots \\ f_{xm} & f_{ym} & f_{zm} \end{pmatrix} = \frac{1}{4} C_{M} \dots f D^{2} \begin{pmatrix} a_{x1} & a_{y1} & a_{z1} \\ \vdots & \vdots & \vdots \\ a_{xm} & a_{ym} & a_{zm} \end{pmatrix} \cdot \begin{pmatrix} 1 - c_{x}^{2} & -c_{x}c_{y} & -c_{x}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{z} & -c_{y}c_{z} & 1 - c_{z}^{2} \end{pmatrix}$$
$$+ \frac{1}{2} C_{D} \dots D \begin{pmatrix} \begin{vmatrix} \gamma_{m1} \\ \vdots \\ \gamma_{mm} \end{vmatrix} \cdot \begin{pmatrix} \gamma_{m1} & \gamma_{m1} & \gamma_{m1} & \gamma_{m1} \\ \vdots & \vdots & \vdots \\ \gamma_{xm} & \gamma_{m} & \gamma_{m} & \gamma_{m} \end{pmatrix} \cdot \begin{pmatrix} 1 - c_{x}^{2} & -c_{x}c_{y} & -c_{x}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{z} & -c_{y}c_{z} & 1 - c_{z}^{2} \end{pmatrix}$$
(4.7)

4.4

$$(C_M, C_D)$$
 μ μ
μ Reynolds Keulegan-Carpenter
, μ μ μ :

$$\begin{pmatrix} f_{x1} & f_{y1} & f_{z1} \\ \vdots & \vdots & \vdots \\ f_{xm} & f_{ym} & f_{zm} \end{pmatrix} = \frac{1}{4} \dots f D^{2} \begin{pmatrix} C_{M1} \\ \vdots \\ C_{Mm} \end{pmatrix} \cdot \begin{pmatrix} a_{x1} & a_{y1} & a_{z1} \\ \vdots & \vdots & \vdots \\ a_{xm} & a_{ym} & a_{zm} \end{pmatrix} \cdot \begin{pmatrix} 1 - c_{x}^{2} & -c_{x}c_{y} & -c_{x}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{z} & -c_{y}c_{z} & 1 - c_{z}^{2} \end{pmatrix}$$

$$+ \frac{1}{2} \dots D \begin{pmatrix} C_{D1} \\ \vdots \\ C_{Dm} \end{pmatrix} \cdot \begin{pmatrix} \hat{|}^{m1} \\ \vdots \\ \hat{|}^{mm} \end{pmatrix} \cdot \begin{pmatrix} \hat{|}^{x1} & \hat{|}^{y1} & \hat{|}^{z1} \\ \vdots & \vdots & \vdots \\ \hat{|}^{xm} & \hat{|}^{ym} & \hat{|}^{xm} \end{pmatrix} \cdot \begin{pmatrix} 1 - c_{x}^{2} & -c_{x}c_{y} & -c_{y}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{y} & 1 - c_{y}^{2} & -c_{y}c_{z} \\ -c_{x}c_{z} & -c_{y}c_{z} & 1 - c_{z}^{2} \end{pmatrix}$$

$$\begin{bmatrix} C_{Mi} \end{bmatrix} \begin{bmatrix} C_{Di} \end{bmatrix} \qquad \mu\mu \qquad Sarpkaya (1977)$$

•

				μ	μ				μ	μ	•
μ	,μ	,			μ	μμ	l		μ		
	μ		μ	•			μ				
			μμ			μ		•			

4.5 μ μ μ

		μ	μ	l			(H),		(T) ,	μ
μ	(})		(d).			μ	μ	μ		Stokes
5					μ			μ	ν.	
	μ	μ						μ		
	μ		μ	}		V			H,T,c	d
	μ	Т	V			μ	$H, \}, d$			

4.5.1 μ Airy

ARWAVE

μ	μ	Airy	μ	μ
		:		

$\check{S}^2 = kg \tanh(kd) \tag{4.9}$

S

k μ μ

k

Š

—

$$\begin{cases} \tilde{S}^{2} - kg \tanh(kd) \\ k = \frac{2f}{3} \\ \tilde{S} = \frac{2f}{T} \end{cases} \Rightarrow \left(\frac{2f}{T}\right)^{2} = \left(\frac{2f}{3}\right)g \tanh\left(2f\frac{d}{3}\right) \end{cases}$$

} μ μ μ . Newton-Raphson (1690). $\begin{array}{cc} \mu & \mu \\ Newton-Raphson \end{array}$ μ μ μ f(x)=0.μ μμ μ μ μ μμ μμ μ μ μ μ μ μμ μ μ μ μ μ μ μ .

G(x)μ :

$$\check{\mathsf{S}}^2 = kg \tanh(kd)$$

 $k = x \Longrightarrow G(x) = 0$ \Rightarrow \Rightarrow $G(x) = xg \tanh(xd) - \check{\mathsf{S}}^2$

$$G_x(x) = g[\tanh(xd) + \frac{xd}{\cosh^2(xd)}]$$

μ

$$x_i = x_{i-1} - \frac{G(x_{i-1})}{G_x(x_{i-1})}$$

$$\mu \qquad \mu \qquad x_0 = 2f\left(\frac{0.2}{d}\right) ,$$

$$\mu \quad \text{Airy} \quad \mu \quad \frac{d}{3} \quad \mu$$

$$10^{-2} \le \frac{d}{3} \le 10 \qquad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \frac{d}{3} = 0.2 .$$

$$H, \}, d$$

 μ μ (4.9) μ
 T .

$$\tilde{S} = \sqrt{kg \tanh(kd)}$$

$$\tilde{S} = \sqrt{kg \tanh(kd)}$$

$$T = \frac{2f}{\tilde{S}}$$

$$k = \frac{2f}{\tilde{S}}$$

4.5.2 μ Stokes 5

$$\frac{fH}{d} = \frac{1}{\frac{d}{3}} [v + v^{3}B_{33} + v^{5}(B_{35} + B_{55})]$$
(4.10)

$$\frac{d}{f_0} = \frac{d}{f} [1 + v^2 C_1 + v^4 C_2] \tanh(kd)$$
(4.11)

$$\}_{0} = \frac{gT^{2}}{2f} = 1.56T^{2} \tag{4.12}$$

WAVDHT

$$- H,T,d , } V$$

$$. \mu B_{33}.B_{35},B_{55},C_1,C_2 \frac{d}{3}.$$

$$μ$$
 μ μ μ
μ Newton μ μμ μ. μ :

$$f(x, y) = (B_{35} + B_{55})y^5 + B_{33}y^3 + y - \frac{fH}{d}x$$
(4.13)

$$g(x, y) = x[C_2y^4 + C_1y^2 + 1]\tanh(2fx)$$
(4.14)

$$x = \frac{d}{3}$$
 $y = V$. , $B_{33}.B_{35}, B_{55}, C_1, C_2$
x .

μ

f,g x,y :

$$f_x(x, y) = (B_{35}' + B_{55}')y^5 + B_{33}'y^3 + y - \frac{fH}{d}$$
(4.15)

$$f_{y}(x, y) = 5(B_{35} + B_{55})y^{4} + 3B_{33}y^{2} + 1$$
(4.16)

$$g_x(x, y) = x[C_2y^4 + C_2y^2] \tanh(2fx) + [C_2y^4 + C_1y^2 + 1][\tanh(2fx) + \frac{2fx}{\cosh^2(2fx)}]$$

$$g_y(x, y) = 2x[2C_2y^3 + C_1y] \tanh(2fx)$$

(4.18)

$$\begin{array}{cccc} \mu & \mu & \mu & \text{Newton} & \mu & (x, y) \\ \mu & f(x, y), g(x, y) & \vdots \end{array}$$

$$x_{i+1} = x_i - \left[\frac{fg_y - gf_y}{f_x g_y - g_x f_y}\right]_i \quad i=1,2,3,\dots$$
(4.19)

$$y_{i+1} = y_i - \left[\frac{gf_x - fg_y}{f_x g_y - g_x f_y}\right]_i \quad i=1,2,3,\dots$$
(4.20)

$$\mu \quad x_0 = \frac{d}{\beta_0} \qquad y = 0.11 \quad . \quad \mu \qquad y = 0.11 = V$$

$$V \qquad \qquad \mu \quad , \qquad \mu \quad , \quad \mu \quad ,$$

Y WAVDHL

$$f(y) = (B_{35} - B_{55})y^5 + B_{33}y^3 + y - \frac{fH}{d}$$
(4.21)

$$f_{y}(y) = 5(B_{35} - B_{55})y^{4} + 3B_{33}y^{2} + 1$$
(4.22)

$$\mu \quad \mu \qquad \mu \qquad :$$

$$y_{i+1} = y_i - \frac{f(y_i)}{f_y(y_i)}$$
(4.23)

 μ μ $y_0 = 0.11$ μ .

$$y_r \quad \mu \quad \mu , \quad V = y_r$$
 (4.11) }₀

$$\}_{0} = \left\{ \left[(1 + v^{2}C_{1} + v^{4}C_{2}) \tanh(\frac{2fd}{3}) \right]^{4} \right\}$$
(4.24)

(4 12)	T T	•
(1.12)	μ 1	•

$$T = \left(\frac{2f}{g} \cdot \right)_0^{1/2}$$
(4.25)

ARVECT

$$\mu \qquad \text{Airy} :$$

$$\Phi(x, z, t) = \frac{Hg}{2\check{S}} \cdot \frac{\cosh(kz)}{\cosh(kd)} \cdot \sin(kx - \check{S}t) \qquad (4.26)$$

$$\Phi(x,z,t) = \frac{H\check{S}}{2k} \cdot \frac{\cosh(kz)}{\sinh(kd)} \sin(kx - \check{S})$$
(4.27)

(4.27)
$$x, y, z$$
 μ (4.27) x, y, z :

$$\hat{x}_{x} = \frac{\partial \Phi}{\partial x} = \frac{H\check{S}}{2} \cdot \frac{\cosh(kz)}{\sinh(kd)} \cdot \cos(kx - \check{S}t)$$
(4.28)

$$\hat{y}_{y} = \frac{\partial \Phi}{\partial y} = 0 \quad (\qquad \mu \quad \mu \quad) \tag{4.29}$$

$$\hat{z}_{z} = \frac{\partial \Phi}{\partial z} = \frac{H\check{S}}{2} \cdot \frac{\sinh(kz)}{\sinh(kd)} \cdot \sin(kx - \check{S}t)$$
(4.30)

(4.28), (4.29)	(4.30)	μ	μ	:
$\vec{v}(\hat{x},\hat{y},\hat{z})$				(4.31)

$$\frac{\partial^2 y}{\partial t} = 0 \tag{4.35}$$

$$\frac{\partial \hat{z}}{\partial t} = \frac{-H\tilde{S}^2}{2} \cdot \frac{\sinh(kz)}{\sinh(kd)} \cdot \cos(kx - \tilde{S}t)$$
(4.36)

$$- \mu \frac{\partial \vec{v}}{\partial x}$$
$$\frac{\partial \hat{v}}{\partial x} = \frac{-H\check{S}k}{2} \cdot \frac{\cosh(kz)}{\sinh(kd)} \cdot \sin(kx - \check{S}t)$$
(4.37)

μ

—

$$\frac{\partial^2 y}{\partial x} = 0 \tag{4.38}$$

$$\frac{\partial \hat{z}}{\partial x} = \frac{H\check{S}k}{2} \cdot \frac{\sinh(kz)}{\sinh(kd)} \cdot \cos(kx - \check{S}t)$$
(4.39)

(4.37), (4.38) (4.39)
$$\frac{\partial \vec{v}}{\partial x} : \frac{\partial \vec{v}}{\partial x} (\frac{\partial^{2} x}{\partial x}, \frac{\partial^{2} y}{\partial x}, \frac{\partial^{2} z}{\partial x}), \quad \mu$$
$$\frac{\partial \vec{v}}{\partial y} (\frac{\partial^{2} x}{\partial y}, \frac{\partial^{2} y}{\partial y}, \frac{\partial^{2} z}{\partial y}), \quad \frac{\partial \vec{v}}{\partial z} (\frac{\partial^{2} x}{\partial z}, \frac{\partial^{2} y}{\partial z}, \frac{\partial^{2} z}{\partial z}).$$

$$C_{x} = \sin W \cdot \cos \mathbb{E}$$

$$C_{y} = \sin W \cdot \sin \mathbb{E}$$

$$C_{z} = \cos W$$

$$, \qquad \mu \\ \vdots \\ (\hat{}_{n}) = (\hat{}_{nx}, \hat{}_{ny}, \hat{}_{nz}) = (\hat{}_{x}, \hat{}_{y}, \hat{}_{z}) \cdot (C) = (\hat{}) \cdot (C)$$
(4.41)

$$(a_n) = (a_{nx}, a_{ny}, a_{nz}) = (a_x, a_y, a_z) \cdot (C) = (a) \cdot (C)$$
(4.42)

(4.40)

4.4 μ .

$$\frac{d\vec{v}}{dt} = \frac{\partial\vec{v}}{\partial t} + (\vec{v}\nabla)\vec{v} \qquad \mu$$

$$(\vec{v}\nabla)\vec{v} \qquad \mu \qquad \frac{\partial^{2}}{\partial t} \qquad \frac{H}{2} <<1.$$

$$\mu \quad :$$

$$\frac{\int_{x}^{x} \frac{\partial^{2}x}{\partial x}}{\frac{\partial^{2}x}{\partial t}} = -f\frac{H}{2} \cdot \frac{\cosh(kz)}{\sinh(kd)} \cdot \cos(kx - \breve{S}t) \sim \frac{H}{2} <<1$$

$$\frac{\int_{x}^{z} \frac{\partial^{2}x}{\partial t}}{\frac{\partial^{2}x}{\partial t}} = f\frac{H}{2} \cdot \frac{\sinh^{2}(kz)}{\sinh(kd) \cdot \cos(kz)} \cdot \sin(kx - \breve{S}t) \sim \frac{H}{2} <<1$$

S5VECT

-

μ

$$\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad 5 \quad :$$

$$\Phi^{(5)} = \frac{\frac{1}{2fT}}{2fT} [\left(vA_{11} + v^{3}A_{13} + v^{5}A_{15} \right) \cosh(kz) \sin(kx - \check{S}t) + \\ + \left(v^{2}A_{22} + v^{4}A_{24} \right) \cosh(2kz) \sin(2(kx - \check{S}t)) + \\ + \left(v^{3}A_{33} + v^{5}A_{35} \right) \cosh(3kz) \sin(3(kx - \check{S}t)) + \\ + \left(v^{4}A_{44} \cosh(4kz) \sin(4(kx - \check{S}t)) \right) + \\ + \left(v^{5}A_{55} \cosh(5kz) \sin(5(kx - \check{S}t)) \right)]$$

$$(4.44)$$

-

$$A_{ij}$$

(4.44)
$$x, y, z$$
 $_{''} = kx - \tilde{S}t$
 x, y, z :

(2.50)

$$\hat{f}_{x} = \frac{\partial \Phi}{\partial x} = \frac{1}{T} \left[\left(\nabla A_{11} + \nabla^{3} A_{13} + \nabla^{5} A_{15} \right) \cosh(kz) \cos(y) + 2 \left(\nabla^{2} A_{22} + \nabla^{4} A_{24} \right) \cosh(2kz) \cos(2y) + 3 \left(\nabla^{3} A_{33} + \nabla^{5} A_{35} \right) \cosh(3kz) \cos(3y) + 4 \left(\nabla^{4} A_{44} \cosh(4kz) \cos(4y) + 5 \left(\nabla^{5} A_{55} \cosh(5kz) \cos(5y) \right) \right]$$

$$(4.45)$$

(4.45) µ

$$\hat{x}_{x} = \frac{1}{T} \sum_{i=1}^{5} i \cdot AE_{i} \cdot \cosh(ikz) \cdot \cos(i_{i})$$

$$(4.46)$$

$$\hat{y}_{y} = \frac{\partial \Phi}{\partial y} = 0 \tag{4.47}$$

$$\hat{z} = \frac{\partial \Phi}{\partial z} = \frac{1}{T} \left[\left(v A_{11} + v^3 A_{13} + v^5 A_{15} \right) \sinh(kz) \sin(w) + 2 \left(v^2 A_{22} + v^4 A_{24} \right) \sinh(2kz) \sin(2w) + 3 \left(v^3 A_{33} + v^5 A_{35} \right) \sinh(3kz) \sin(3w) + 4 \left(v^4 A_{44} \sinh(4kz) \sin(4w) + 5 \left(v^5 A_{55} \sinh(5kz) \sin(5w) \right) \right]$$

$$(4.48)$$

(4.48) µ :

$$\hat{x} = \frac{1}{T} \sum_{i=1}^{5} i \cdot AE_i \cdot \sinh(ikz) \cdot \sin(i_{i})$$

 AE_i :

$$AE_{1} = (\vee A_{11} + \vee^{3}A_{13} + \vee^{5}A_{15})$$
$$AE_{2} = (\vee^{2}A_{22} + \vee^{4}A_{24})$$
$$AE_{3} = (\vee^{3}A_{33} + \vee^{5}A_{35})$$
$$AE_{4} = (\vee^{4}A_{44})$$
$$AE_{5} = (\vee^{5}A_{55})$$
$$\mu$$

(4.46), (4.47)

μ (4.48):

 $\vec{v}(\hat{x},\hat{y},\hat{z}) \to (\hat{y}) = (\hat{x},\hat{y},\hat{z}) \tag{4.49}$

:

$$a_{tx} = \frac{\partial \hat{x}}{\partial t} = \frac{3}{T} \left[\left(vA_{11} + v^{3}A_{13} + v^{5}A_{15} \right) \cosh(kz) \sin(w) + 4 \left(v^{2}A_{22} + v^{4}A_{24} \right) \cosh(2kz) \sin(2w) + 9 \left(v^{3}A_{33} + v^{5}A_{35} \right) \cosh(3kz) \sin(3w) + 16 \left(v^{4}A_{44} \cosh(4kz) \sin(4w) + 16 \left(v^{4}A_{44} \cosh(4kz) \sin(4w) + 25 \left(v^{5}A_{55} \cosh(5kz) \sin(5w) \right) \right]$$

$$(4.50)$$

$$a_{tx} = \frac{\}\check{S}}{T} \sum_{i=1}^{5} i^2 \cdot AE_i \, \cosh(ikz) \, \sin(i_{w})$$
(4.51)

Μακρή Κωνσταντίνα

Σελίδα 101

$$a_{ty} = \frac{\partial \hat{y}}{\partial t} = 0 \tag{4.52}$$

$$a_{tz} = \frac{\partial \hat{z}}{\partial t} = -\frac{3}{T} \left[\left(v A_{11} + v^3 A_{13} + v^5 A_{15} \right) \sinh(kz) \cos(w) + 4 \left(v^2 A_{22} + v^4 A_{24} \right) \sinh(2kz) \cos(2w) + 9 \left(v^3 A_{33} + v^5 A_{35} \right) \sinh(3kz) \cos(3w) + 16 \left(v^4 A_{44} \sinh(4kz) \cos(4w) \right) + 25 \left(v^5 A_{55} \sinh(5kz) \cos(5w) \right]$$

$$(4.53)$$

$$a_{tz} = -\frac{\}\check{S}}{T} \sum_{i=1}^{5} i^2 \cdot AE_i \,\sinh(ikz) \,\cos(i_n)$$
(4.54)

$$\mu$$
 $\frac{d\vec{v}}{dx}$

$$\frac{\partial^{2} x}{\partial x} = -\frac{1}{T} k [(\forall A_{11} + \forall^{3} A_{13} + \forall^{5} A_{15}) \cosh(kz) \sin(y) + 4 (\forall^{2} A_{22} + \forall^{4} A_{24}) \cosh(2kz) \sin(2y) + 9 (\forall^{3} A_{33} + \forall^{5} A_{35}) \cosh(3kz) \sin(3y) + 16 (\forall^{4} A_{44} \cosh(4kz) \sin(4y)) + 25 (\forall^{5} A_{55} \cosh(5kz) \sin(5y))]$$

$$(4.55)$$

$$\frac{\partial^{2} x}{\partial x} = -\frac{3}{T}k\sum_{i=1}^{5}i^{2} \cdot AE_{i} \cdot \cosh(ikz) \cdot \sin(i_{u})$$

$$\frac{\partial^{2} y}{\partial x} = 0$$
(4.56)
(4.57)

$$\frac{\partial_{z}^{*}}{\partial x} = \frac{1}{T} k [\left(v A_{11} + v^{3} A_{13} + v^{5} A_{15} \right) \sinh(kz) \cos(w) + 4 \left(v^{2} A_{22} + v^{4} A_{24} \right) \sinh(2kz) \cos(2w) + 9 \left(v^{3} A_{33} + v^{5} A_{35} \right) \sinh(3kz) \cos(3w) + 16 \left(v^{4} A_{44} \sinh(4kz) \cos(4w) + 16 \left(v^{5} A_{55} \sinh(5kz) \cos(5w) \right) \right]$$

$$(4.58)$$

$$\frac{\partial \hat{z}}{\partial x} = \frac{1}{T} k \sum_{i=1}^{5} i^2 \cdot AE_i \cdot \sinh(ikz) \cdot \cos(i_{i_i})$$
(4.59)

$$\mu$$
 $\frac{d\vec{v}}{dz}$

$$\frac{\partial^{2} x}{\partial z} = \frac{1}{T} k [(\forall A_{11} + \forall^{3} A_{13} + \forall^{5} A_{15}) \sinh(kz) \cos(\pi) + 4 (\forall^{2} A_{22} + \forall^{4} A_{24}) \sinh(2kz) \cos(2\pi) + 9 (\forall^{3} A_{33} + \forall^{5} A_{35}) \sinh(3kz) \cos(3\pi) + 16 (\forall^{4} A_{44} \sinh(4kz) \cos(4\pi) + 25 (\forall^{5} A_{55} \sinh(5kz) \cos(5\pi))]$$

$$(4.60)$$

$$\frac{\partial \hat{x}_{x}}{\partial z} = \frac{3}{T} k \sum_{i=1}^{5} i^{2} \cdot AE_{i} \cdot \sinh(ikz) \cdot \cos(i_{n})$$

$$\frac{\partial \hat{y}_{y}}{\partial z} = 0$$
(4.62)

Μακρή Κωνσταντίνα

Σελίδα 103

$$\frac{\partial_{z}^{2}}{\partial z} = \frac{1}{T} k [\left(v A_{11} + v^{3} A_{13} + v^{5} A_{15} \right) \cosh(kz) \sin(w) \\ + 4 \left(v^{2} A_{22} + v^{4} A_{24} \right) \cosh(2kz) \sin(2w) \\ + 9 \left(v^{3} A_{33} + v^{5} A_{35} \right) \cosh(3kz) \sin(3w) \\ + 16 \left(v^{4} A_{44} \cosh(4kz) \sin(4w) \right) \\ + 25 \left(v^{5} A_{55} \cosh(5kz) \sin(5w) \right)]$$

$$(4.63)$$

$$\frac{\partial \hat{z}}{\partial z} = \frac{3}{T} k \sum_{i=1}^{5} i^2 \cdot AE_i \cdot \cosh(ikz) \cdot \sin(i_{i_i})$$
(4.64)

(4.45) (4.64) :

$$(a) = (a_t) + (\frac{\partial \vec{v}}{\partial x}, \frac{\partial \vec{v}}{\partial y}, \frac{\partial \vec{v}}{\partial z})(\hat{})$$

$$\mu \qquad \mu : (a_n) = (a_{nx}, a_{ny}, a_{nz}) = (a_x, a_y, a_z) \cdot (C) = (a) \cdot (C)$$
(4.67)
(C) (4.6).

:

$$\begin{pmatrix} A_{11} & 0 & 0 & 0 & 0 \\ 0 & A_{22} & 0 & 0 & 0 \\ 0 & 0 & A_{33} & 0 & 0 \\ 0 & 0 & 0 & A_{44} & 0 \\ 0 & 0 & 0 & 0 & A_{55} \end{pmatrix}$$

.

 $A_{ij} \qquad \qquad \frac{d}{j} \quad . \qquad , \quad (E)_i = [v \ v^2 \ v^3 \ v^4 \ v^5]$: $(AE)_i = (A)_{ij} \cdot (E)_i$

(4.68) (4.69) :

$$z_{s} = d - z_{0} + (x_{0} + z_{s} \frac{C_{x}}{\zeta}, t)$$
(4.70)

$$\dagger (z_s) = d - z_0 + (x_0 + z_s \frac{C_x}{C_z}, t) - z_s$$
(4.71)

$$\dagger'(z_s) = \prime'(x_0 + z_s \frac{C_x}{C_z}, t) - 1$$
(4.72)

μ μ μ
$$μ z_s$$
 :

$$z_{si+1} = z_{si} + \frac{\dagger(z_{si})}{\dagger(z_{si})}$$
(4.73)

$$\mu \quad z_{S0} = d$$

$$\mu \quad \mu \qquad : L_s = \frac{z_s - z_0}{C_z} \tag{4.74}$$

4.7.1 μ μ μ Airy

ARPROF

$$\dagger (z_s) = d - z_0 + \frac{H}{2} \cos[k(x_0 + z_s \frac{C_x}{C_z}) - \check{S}t] - z_s$$
(4.75)

$$\dot{\uparrow}(z_s) = -k \frac{C_x}{C_z} - \frac{H}{2} \sin[k(x_0 + z_s \frac{C_x}{C_z}) - \check{S}t] - z_s$$
(4.73) (4.74) μ μ . (4.76)
S5PROF

$$(x,t) = \frac{3}{2f} \sum_{i=1}^{5} BE_i \cdot \cos[i(kx - \check{S}t)]$$
(4.77)

$$BE_{i} \qquad \mu \qquad B_{ij} \qquad \mu \qquad \vee .$$

$$(4.71) \qquad (4.72) \qquad (4.77) \qquad :$$

$$\uparrow (z_{s}) = d - z_{0} + \frac{1}{2f} \sum_{i=1}^{5} BE_{i} \cdot \cos[i(k(x_{0} + z_{s} \frac{C_{x}}{C_{z}}) - \tilde{S}t)] - z_{s}$$

$$\uparrow (z_{s}) = -\frac{C_{x}}{C_{z}} \sum_{i=1}^{5} i \cdot BE_{i} \cdot \sin[i(k(x_{0} + z_{s} \frac{C_{x}}{C_{z}}) - \tilde{S}t)] - 1$$

$$(4.73) \qquad (4.74) \qquad \mu \qquad \mu \qquad .$$

$$:$$

$$\mu \qquad B_{ij} \qquad :$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & B_{22} & 0 & B_{24} & 0 \\ 0 & 0 & B_{33} & 0 & B_{35} \\ 0 & 0 & 0 & B_{44} & 0 \\ 0 & 0 & 0 & 0 & B_{55} \end{pmatrix}$$

$$B_{ij} \qquad \qquad \frac{d}{j} \quad , \quad (E)_i = [\forall \ \forall^2 \ \forall^3 \ \forall^4 \ \forall^5] \qquad : \\ (BE)_i = (B)_{ij} \cdot (E)_i \quad . \qquad$$

4.8 μ μ μ μ

,
$$\mu \quad \mu$$
 Morison $\mu \quad \mu$
:

$$\begin{bmatrix} f_{nkx} \\ f_{nky} \\ f_{nkz} \end{bmatrix} = (C_M) \dots (\frac{f D^2}{4}) \begin{bmatrix} a_{nkx} \\ a_{nky} \\ a_{nkz} \end{bmatrix} + \frac{1}{2} (C_D) \dots D \Big|_{nk} \Big| \begin{bmatrix} \hat{n}_{nkx} \\ \hat{n}_{nky} \\ \hat{n}_{nkz} \end{bmatrix}$$

$$|f_{nk}| = \sqrt{f_{nkx}^2 + f_{nky}^2 + f_{nkz}^2}$$

$$\mu \qquad \mu \qquad x, y, z \qquad :$$

$$\begin{bmatrix} \mathsf{u}_{nkx} \\ \mathsf{u}_{nky} \\ \mathsf{u}_{nkz} \end{bmatrix} = \arccos\left(\begin{bmatrix} f_{nkx} \\ f_{nky} \\ f_{nkz} \end{bmatrix} \frac{1}{|f_{nk}|}\right)$$

$$\mu \qquad \mu$$

μ

$$\begin{bmatrix} f_{nkx}^{in} \\ f_{nky}^{in} \\ f_{nkz}^{in} \end{bmatrix} = (C_M) \dots (\frac{f D^2}{4}) \begin{bmatrix} a_{nkx} \\ a_{nky} \\ a_{nkz} \end{bmatrix} \qquad \mu \qquad : \left| f_{nkx}^{in} \right| = \sqrt{f_{nkx}^{in\,2} + f_{nky}^{in\,2} + f_{nkz}^{in\,2}}$$

:

:

$$\begin{bmatrix} f^{dr}_{nkx} \\ f^{dr}_{nky} \\ f^{dr}_{nkz} \end{bmatrix} = \frac{1}{2} (C_D) \dots D \Big|_{nk} \Big| \begin{bmatrix} \hat{n}_{nkx} \\ \hat{n}_{nky} \\ \hat{n}_{nkz} \end{bmatrix} \qquad \mu \qquad : \Big| f^{dr}_{nk} \Big| = \sqrt{f^{dr^2}_{nkx} + f^{dr^2}_{nky} + f^{dr^2}_{nkz}}$$

:
-
$$(C_{M})$$
 $(C_{D}) \mu$ μ

4.9 μ μ μ

SINTEG

$$F = \int_{a}^{b} f(x)dx = \frac{h}{3}(f_{0} + 4f_{1} + 2f_{2} + 4f_{3} + \dots + 4f_{n-1} + f_{n})$$
(4.78)
$$a,b \qquad h \qquad \mu \qquad \mu \qquad .$$

4.6 μ μ μ μ .

μ μ h

 $h_{st} = 0.25m$ μ μ l_{sub} μ μ μ μ μ μ μ. μ μ μ μ 2m + 1μ μ μ μ μ μ μ μ. μ :

$$h = \frac{l_{sub}}{N} \qquad N = 2m$$

μ μ

$$\begin{bmatrix} x_k \\ z_k \end{bmatrix} = \begin{bmatrix} x_0 \\ z_0 \end{bmatrix} + kh \begin{bmatrix} C_x \\ C_y \end{bmatrix} \qquad k : \qquad \mu \qquad \mu \qquad \mu \qquad k = 0, 1, 2, \cdots, 2m+1$$

μ μ μ

$$\begin{bmatrix} f_{x0} & f_{x1} & \cdots & f_{xk} & \cdots & f_{xN} \\ f_{y0} & f_{y1} & \cdots & f_{yk} & \cdots & f_{yN} \\ f_{z0} & f_{z1} & \cdots & f_{zk} & \cdots & f_{zN} \end{bmatrix}$$

(4.79)

:
$$\mu\mu N \le 774$$

$$\begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \frac{h}{3} \begin{bmatrix} C_x \\ C_y \\ C_z \end{bmatrix} \cdot \begin{bmatrix} f_{x0} & f_{x1} & \cdots & f_{xk} & \cdots & f_{xN} \\ f_{y0} & f_{y1} & \cdots & f_{yk} & \cdots & f_{yN} \\ f_{z0} & f_{z1} & \cdots & f_{zk} & \cdots & f_{zN} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 2 \\ \vdots \\ 4 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} r_{xk} \\ r_{yk} \\ r_{zk} \end{bmatrix} = kh \begin{bmatrix} C_x \\ C_y \\ C_z \end{bmatrix}$$

μ :

$$\begin{bmatrix} r_{x0} & \mathbf{r}_{x1} & \cdots & \mathbf{r}_{xk} & \cdots & r_{xN} \\ r_{y0} & \mathbf{r}_{y1} & \cdots & \mathbf{r}_{yk} & \cdots & r_{yN} \\ r_{z0} & \mathbf{r}_{z1} & \cdots & \mathbf{r}_{zk} & \cdots & r_{zN} \end{bmatrix}$$
(4.80)

$$\begin{bmatrix} m'_x \\ m'_y \\ m'_z \end{bmatrix}_k = \begin{bmatrix} f_y r_z \\ f_z r_x \\ f_x r_y \end{bmatrix}_k$$
(4.81)

$$\begin{bmatrix} m_x^* \\ m_y^* \\ m_z^* \end{bmatrix}_k = \begin{bmatrix} f_y r_z \\ f_z r_x \\ f_x r_y \end{bmatrix}_k$$
(4.82)

$$(4.79), (4.81) \qquad (4.82)$$

$$\mu \qquad (x_0, y_0, z_0) \qquad \mu \qquad :$$

$$\begin{bmatrix} M_x \\ M_y \\ M_z \end{bmatrix} = \begin{bmatrix} (f_y \mathbf{r}_z)_0 & (f_y \mathbf{r}_z)_1 & \cdots (f_y \mathbf{r}_z)_N \\ (f_z \mathbf{r}_x)_0 & (f_z \mathbf{r}_x)_1 & \cdots (f_z \mathbf{r}_x)_N \\ (f_x \mathbf{r}_y)_0 & (f_x \mathbf{r}_y)_1 & \cdots (f_x \mathbf{r}_y)_N \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 2 \\ \vdots \\ 4 \\ 1 \end{bmatrix} - \begin{bmatrix} (f_z \mathbf{r}_y)_0 & (f_z \mathbf{r}_z)_1 & \cdots (f_z \mathbf{r}_z)_N \\ (f_y \mathbf{r}_z)_0 & (f_y \mathbf{r}_z)_1 & \cdots (f_y \mathbf{r}_z)_N \\ (f_y \mathbf{r}_x)_0 & (f_y \mathbf{r}_x)_1 & \cdots (f_y \mathbf{r}_x)_N \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \\ 2 \\ \vdots \\ 4 \\ 1 \end{bmatrix}$$

 C_M, C_D

CMCD

 $C_M, C_D \mu$ μ , Reynolds Keulegan-Carpenter. μ μ Sarpkaya (1977) μ μ : $C_M = f(\text{Re}, N_{KC})$ $C_D = g(\text{Re}, N_{KC})$ 3.6.2. μ μμ μμ μ μ Sarpkaya (1977) μμ μ μ μ μ C_M, C_D . :

 $\begin{array}{ccccc} - & \mu & C_{Mk}, C_{Dk}\mu & \mu & \mu \\ & & \mu & \mu & \text{Reynolds} \\ \text{Keulegan-Carpenter,} & \mu & T, D, \notin \mu & . \end{array}$

4.11 Airy Stokes 5

2.6) μ μ μ . μ : - $H,d,\}$

$$\frac{H}{3} - 0.001 = 0$$

$$0.57647 \frac{d}{3} - \frac{H}{3} - 0.007647 = 0$$

$$0.12881 \frac{d}{3} - \frac{H}{3} + 0.037619 = 0$$

$$\frac{H}{3} - \frac{1}{7} = 0$$

$$\frac{d}{3} - 0.85 = 0$$

$$\frac{H}{3} - 0.009 = 0$$

$$0.010256 \frac{d}{3} - \frac{H}{3} + 0.000282 = 0$$

$$0.016667 \frac{d}{3} - \frac{H}{3} + 0.001667 = 0$$

H,d,T

_

$$\begin{aligned} \frac{H}{T^2} &- 0.0025 = 0 \\ 0.681818 \frac{d}{T^2} - \frac{H}{T^2} - 0.021364 = 0 \\ 0.097368 \frac{d}{T^2} - \frac{H}{T^2} + 0.095526 = 0 \\ \frac{H}{T^2} - 0.3 = 0 \\ \frac{d}{T^2} - 2.1 = 0 \\ \frac{H}{T^2} - 0.0022 = 0 \\ 0.01 \frac{d}{T^2} - \frac{H}{T^2} + 0.001 = 0 \\ 0.019531 \frac{d}{T^2} - \frac{H}{T^2} - 0.00043 = 0 \\ \mu \mu & \text{Le Méhauté (1976)} \\ \mu & \mu & \text{Airy Stokes 5} \end{aligned}$$

$$\frac{1}{d} \ge 5 \qquad \frac{H}{D} - \frac{1}{7} \frac{1}{D} \le 0$$

μ .

5. μ μ

5.1

				μμ ,		μ
µ Morison,	μ	Airy	μ Stokes 5	, μ	μ ,	
	μ	μ			•	
μ	μ		(.	μ,	, 1986)	μ
		μ	•			

5.2

μ μ	$\mu \\ \} = 90m$		<i>d</i> =10 <i>m</i>		μ	μ	H = 4.5m $D = 1.5m$.	μ
	Stokes 5	μ , μ	μ	μμ	μ		Airy , μ	μ
μ	μ).			(μ	

:

-

t		0	90	180	270	360
Fix(N)-						
5thStokes		0.00E+00	-3.61E+04	1.09E-03	3.61E+04	0.00E+00
Fix(N)-						
5thStokes-		0.00E+00	-3.60E+04	0.00E+00	3.70E+04	0.00E+00
Fix(N)-Airy		0.00E+00	-4.83E+04	3.86E-03	4.83E+05	-8.21E-03
Fix(N)-	-Airy	0.00E+00	-4.80E+04	0.00E+00	4.85E+05	0.00E+00

μ

t	0	90	180	270	360
Fdx(N)_					
5thStokes	6.97E+04	-1.49E+03	-1.22E+03	-1.49E+03	6.97E+04
Fdx(N)_					
5thStokes-	6.90E+04	-1.50E+03	-1.20E+03	-1.50E+03	6.90E+04
Fdx(N)_					
Airy	4.42E+04	-6.34E-11	-2.41E+04	4.72E-12	4.42E+04
Fdx(N)_					
Airy-	4.45E+04	0.00E+00	-2.40E+04	0.00E+00	4.45E+04

t	0	90	180	270	360
Fx(N) 5thStokes	6.97E+04	-3.76E+04	-1.22E+04	3.46E+04	6.97E+04
Fx(N) 5thStokes-	6.95E+04	-3.75E+04	-1.30E+04	3.65E+04	6.85E+04
Fx(N) Airy_	4.42E+04	-4.83E+04	-2.41E+04	4.83E+04	4.42E+04
Fx(N) Airy	4.40E+04	-4.90E+04	-2.50E+04	4.85E+04	4.40E+04
Fx(N) Airy_	2.83E+04	-4.59E+04	-1.54E+04	4.59E+04	2.83E+04
Fx(N) Airy_					
-	4.27E+04	-4.80E+04	-2.33E+04	4.87E+04	4.27E+04

μ 12m.

μ

t	0	90	180	270	360
My(Nm) 5thStokes	5.62E+05	-1.77E+05	-5.36E+04	1.60E+05	5.62E+05
My(Nm) 5thStokes-	5.60E+05	-1.75E+05	-5.50E+04	1.70E+05	5.55E+05
My(Nm) Airy	3.02E+05	-2.51E+05	-9.77E+04	2.51E+05	3.02E+05
My(Nm) Airy-	3.00E+05	-2.40E+05	-9.90E+04	2.50E+05	3.00E+05

:

-

t	0	90	180	270	360
	0.00E+00	-3.14E+04	9.90E-04	3.14E+04	0.00E+00
Fix(N)5thStokes					
Fix(N)5thStokes-	0.00E+00	-3.20E+04	0.00E+00	3.20E+04	0.00E+00
	0.00E+00	-4.59E+04	3.51E-04	4.59E+04	-7.47E-03
Fix(N)Airy					
Fix(N)Airy-	0.00E+00	-4.60E+04	0.00E+00	4.60E+04	0.00E+00
-					

μ

t	0	90	180	270	360
	4.46E+04	-9.74E+02	-7.78E+03	-9.74E+02	4.46E+04
Fdx(N) 5thStokes					
Fdx(N)5thStokes-	4.40E+04	0.00E+00	-7.50E+03	0.00E+00	4.40E+04
	2.83E+04	-1.27E-10	-1.54E+04	9.44E-12	2.83E+04
Fdx(N) Airy					
Fdx(N) Airy-	2.90E+04	0.00E+00	-1.55E+04	0.00E+00	2.90E+04

t	0	90	180	270	360
Fx(N) 5thStokes	4.46E+04	-3.24E+04	-7.78E+03	3.05E+04	4.46E+04
Fx(N) 5thStokes-					
	4.50E+04	-3.30E+04	-7.50E+03	3.10E+04	4.50E+04
Fx(N) Airy	2.83E+04	-4.59E+04	-1.54E+04	4.59E+04	2.83E+04
Fx(N) Airy-					
	2.90E+04	-4.60E+04	-1.50E+04	4.60E+04	2.90E+04

t	0	90	180	270	360
My(Nm) 5thStokes	3.59E+05	-1.52E+05	-3.43E+04	1.41E+05	3.59E+05
My(Nm)5thStokes-	3.55E+05	-1.55E+05	-3.50E+04	1.45E+05	3.55E+05
My(Nm) Airy	1.93E+05	-2.38E+05	-6.25E+04	2.38E+05	1.93E+05
My(Nm) Airy-	1.90E+05	-2.40E+05	-6.00E+04	2.40E+05	1.90E+05

 $\begin{array}{cccc} \mu & & \mu \mu & & \mu \\ y, z & \mu & & x, z & . \end{array}$

5.3 µ

μ	μ		$d=\!10m,$		μ	H = 4.5	<i>m</i> μ
μ	} = 90 <i>m</i>			μ		μ	D = 1.5m
μ	15° μ			μ			
		μ	μ	μμ	μ	Airy	μ
	Stokes 5 ,	μ				,	μ
	μ			(μ	

μ μ).

5.2 μ

t	0	90	180	270	360
Fix(N)-Airy	7.88E+03	-4.72E+04	-5.80E+03	4.64E+04	7.88E+03
Fix(N)-Airy-					
	8.00E+03	-4.75E+04	-6.00E+03	4.65E+04	8.00E+03
Fix(N)-5thStokes	2.73E+04	-4.28E+04	-1.71E+03	2.92E+04	2.73E+04
Fix(N)-5thStokes-					
	2.80E+04	-4.25E+04	-2.50E+03	2.95E+04	2.70E+04

t	0	90	180	270	360
Fiy(N)-Airy	2.37E+03	1.63E+03	-1.39E+03	-1.70E+03	2.37E+03
Fiy(N)-Airy-					
	2.50E+03	1.50E+03	-1.50E+03	-1.50E+03	2.50E+03
Fiy(N)-5thStokes	4.96E+03	-7.17E+02	-5.11E+02	-2.64E+03	4.96E+03
Fiy(N)-5thStokes-					
-	5.00E+03	-5.00E+02	0.00E+00	-3.00E+03	5.00E+03

t	0	90	180	270	360
Fiz(N)-Airy	-2.14E+03	1.07E+04	1.53E+03	-1.05E+04	-2.14E+03
Fiz(N)-Airy-					
	-2.00E+03	1.10E+04	1.50E+03	-1.05E+04	-2.00E+03
Fiz(N)-5thStokes	-6.99E+03	1.00E+04	4.66E+02	-6.43E+03	-6.99E+03
Fiz(N)-5thStokes-					
	-7.00E+03	9.50E+03	0.00E+00	-6.50E+03	-7.00E+03

t	0	90	180	270	360
Fdx(N)-Airy	4.04E+04	1.31E+03	-2.28E+04	-1.03E+03	4.04E+04
Fdx(N)-Airy-					
	4.05E+04	1.00E+03	-2.30E+04	-1.00E+03	4.05E+04
Fdx(N)-5thStokes	5.80E+04	-3.32E+02	-1.16E+04	-3.09E+03	5.80E+04
Fdx(N)-5thStokes-					
	5.70E+04	0.00E+00	-1.15E+04	-3.00E+03	5.70E+04

t	0	90	180	270	360
Fdy(N)-Airy	-1.56E+03	3.33E+02	7.68E+02	-2.64E+02	-1.56E+03
Fdy(N)-Airy-					
	-1.50E+03	0.00E+00	5.00E+02	0.00E+00	-1.50E+03
Fdy(N)-5thStokes	-2.81E+03	1.20E+02	3.72E+02	-2.11E+02	-2.81E+03
Fdy(N)-5thStokes-					
-	-3.00E+03	0.00E+00	0.00E+00	0.00E+00	-2.50E+03

t	0	90	180	270	360
Fdz(N)-Airy	-9.17E+03	-3.48E+02	5.18E+03	2.73E+02	-9.17E+03
Fdz(N)-Airy-					
	-9.00E+03	0.00E+00	5.00E+03	0.00E+00	-9.00E+03
Fdz(N)-5thStokes	-1.31E+04	6.10E+01	2.64E+03	7.45E+02	-1.31E+04
Fdz(N)-5thStokes-					
	-1.30E+04	0.00E+00	2.50E+03	1.00E+03	-1.25E+04

t	0	90	180	270	360
Fx(N)-Airy	4.83E+04	-4.59E+04	-2.86E+04	4.54E+04	4.83E+04
Fx(N)-Airy-					
	4.90E+04	-4.60E+04	-2.90E+04	4.55E+04	4.90E+04
Fx(N)-5thStokes	8.53E+04	-4.32E+04	-1.33E+04	2.61E+04	8.53E+04
Fx(N)-5thStokes-					
	8.50E+04	-4.40E+04	-1.20E+04	2.60E+04	8.50E+04

t	0	90	180	270	360
Fy(N)-Airy	8.07E+02	1.96E+03	-6.19E+02	-1.96E+03	8.07E+02
Fy(N)-Airy-					
	1.00E+03	2.00E+03	-5.00E+02	-2.00E+03	1.00E+03
Fy(N)-5thStokes	2.15E+03	-5.97E+02	-1.39E+02	-2.85E+03	2.15E+03
Fy(N)-5thStokes-					
	3.00E+03	-5.00E+02	0.00E+00	-3.00E+03	3.00E+03

t	0	90	180	270	360
Fz(N)-Airy	-1.13E+04	1.04E+04	6.71E+03	-1.03E+04	-1.13E+04
Fz(N)-Airy-					
	-1.15E+04	1.05E+04	6.50E+03	-1.00E+04	-1.15E+04
Fz(N)-5thStokes	-2.01E+04	1.01E+04	3.10E+03	-5.68E+03	-2.01E+04
Fz(N)-5thStokes-					
	-2.00E+04	1.00E+04	3.00E+03	-6.00E+03	-2.00E+04

t	0	90	180	270	360
x(Nm)-Airy	6.35E+03	1.23E+04	-3.35E+03	-1.16E+04	6.35E+03
Mx(Nm)-Airy-					
	5.00E+03	1.05E+04	0.00E+00	-1.00E+04	5.00E+03
x(Nm)-5thStokes	1.49E+04	-4.87E+03	-9.48E+02	-1.59E+04	1.49E+04
Mx(Nm)-5thStokes-					
	2.00E+04	0.00E+00	0.00E+00	-2.00E+04	2.00E+04

t	0	90	180	270	360
My(Nm)-Airy	3.19E+05	-2.29E+05	-1.17E+05	2.15E+05	3.19E+05
My(Nm)-Airy-					
	3.20E+05	-2.30E+05	-1.15E+05	2.15E+05	3.20E+05
My(Nm)-5thStokes	6.60E+05	-2.08E+05	-5.76E+04	1.00E+05	6.60E+05
My(Nm)-5thStokes-					
	6.50E+05	-2.00E+05	-6.00E+04	1.00E+05	6.50E+05

t	0	90	180	270	360
Mz(Nm)-Airy	6.22E+03	-3.55E+03	-2.33E+03	3.33E+03	6.22E+03
Mz(Nm)-Airy-					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-5thStokes	1.30E+04	-4.09E+03	-1.11E+03	9.84E+02	1.30E+04
Mz(Nm)-5thStokes-					
	2.00E+04	0.00E+00	0.00E+00	0.00E+00	2.00E+04

Stokes 5 , μ μ μ μ μ P_G .

5.4

t	0	90	180	270	360
Fix(N)	2.33E+04	2.74E+04	-3.01E+04	-1.56E+04	2.33E+04
Fiy(N)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)	-2.33E+04	-2.74E+04	3.01E+04	1.56E+04	-2.33E+04
Fix(N)-	2.40E+04	2.75E+04	-3.05E+04	-1.55E+04	2.40E+04
Fiy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)-	-2.40E+04	-2.75E+04	3.05E+04	1.55E+04	2.40E+04

1

t	0	90	180	270	360
Fix(N)					
	1.05E+04	3.78E+04	-5.06E+04	-6.35E+03	1.05E+04
Fiy(N)					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)					
	-1.05E+04	-3.78E+04	5.06E+04	6.35E+03	-1.05E+04
Fix(N)-	1.05E+04	3.75E+04	-5.10E+04	-6.00E+03	1.05E+04
Fiy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)-	-1.05E+04	-3.75E+04	5.10E+04	6.00E+03	-1.05E+04

t	0	90	180	270	360
Fdx(N)					
	-6.03E+03	1.04E+04	1.42E+04	-9.14E+03	-6.03E+03
Fdy(N)					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdz(N)					
	6.03E+03	-1.04E+04	-1.42E+04	9.14E+03	6.03E+03
Fdx(N)-	-6.00E+03	1.05E+04	1.40E+04	-9.00E+03	-6.00E+03
Fdy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdz(N)-	6.00E+03	-1.05E+04	-1.40E+04	9.00E+03	6.00E+03

t	0	90	180	270	360
	0	70	100	2.0	200
Fux(IN)					
	-4.40E+03	8.66E+03	9.57E+03	-5.27E+03	-4.40E+03
Edv(N)					
ruy(IN)					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Eda(N)					
Fuz(IN)					
	4.40E+03	-8.66E+03	-9.57E+03	5.27E+03	4.40E+03
Fdx(N)-	-4.00E+03	8.00E+03	9.00E+03	-5.00E+03	-4.00E+03
Fdy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdz(N)-	4.00E+03	-8.00E+03	-9.00E+03	5.00E+03	4.00E+03

t	0	90	180	270	360
Fx(N)					
	1.73E+04	3.78E+04	-1.59E+04	-2.48E+04	1.73E+04
Fy(N)					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)					
	-1.73E+04	-3.78E+04	1.59E+04	2.48E+04	-1.73E+04
Fx(N)-	1.70E+04	3.80E+04	-1.60E+04	-2.45E+04	1.70E+04
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-1.70E+04	-3.80E+04	1.60E+04	2.45E+04	-1.70E+04

t	0	90	180	270	360
Fx(N)					
	6.11E+03	4.65E+04	-4.10E+04	-1.16E+04	6.11E+03
Fy(N)					
	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)					
	-6.11E+03	-4.65E+04	4.10E+04	1.16E+04	-6.11E+03
Fx(N)-	6.00E+03	4.70E+04	-4.20E+04	-1.10E+04	6.00E+03
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-6.00E+03	-4.70E+04	4.20E+04	1.10E+04	-6.00E+03

	0	00	190	270	260
l	0	90	160	270	300
x(Nm)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)	7.53E-03	7.74E-03	-7.87E-03	-3.77E-03	7.85E-03
Mz(Nm)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
x(Nm)	7.11E-03	1.94E-03	-1.12E-02	6.81E-03	7.11E-03
My(Nm)	-7.43E+04	2.15E+04	5.69E+05	-3.43E+05	-7.43E+04
Mz(Nm)	7.11E-03	1.94E-03	-1.12E-02	6.81E-03	7.11E-03

t	0	90	180	270	360
Fix(N)	-2.33E+04	1.56E+04	3.01E+04	-2.74E+04	-2.33E+04
Fiy(N)	2.99E-03	-1.82E-04	-3.34E-03	9.01E-05	2.99E-03
Fiz(N)	-2.33E+04	1.56E+04	3.01E+04	-2.74E+04	-2.33E+04

μ

t	0	90	180	270	360
Fix(N)	-1.05E+04	6.35E+03	5.06E+04	-3.78E+04	-1.05E+04
Fiy(N)	2.10E-03	7.43E-05	-2.97E-03	1.63E-03	2.10E-03
Fiz(N)	-1.05E+04	6.35E+03	5.06E+04	-3.78E+04	-1.05E+04

Μακρή Κωνσταντίνα

t	0	90	180	270	360
Fdx(N)	-6.03E+03	-9.14E+03	1.42E+04	1.04E+04	-6.03E+03
Fdv(N)	3.91E-05	9.69E-04	-1.65E-04	-1.26E-03	3.91E-05
Fdz(N)	-6.03E+03	-9.14E+03	1.42E+04	1.04E+04	-6.03E+03

t	0	90	180	270	360
Fdx(N)	-4.40E+03	-5.27E+03	9.57E+03	8.66E+03	-4.40E+03
Fdy(N)	1.75E-04	5.12E-04	2.65E-04	-1.11E-03	1.75E-04
Fdz(N)	-4.40E+03	-5.27E+03	9.57E+03	8.66E+03	-4.40E+03

	_				
t	0	90	180	270	360
Fx(N)					
	-2.93E+04	6.47E+03	4.43E+04	-1.71E+04	-2.93E+04
Fy(N)					
	3.03E-03	7.87E-04	-3.50E-03	-1.17E-03	3.03E-03
Fz(N)					
	-2.93E+04	6.47E+03	4.43E+04	-1.71E+04	-2.93E+04
Fx(N)-	-2.95E+04	6.50E+03	4.45E+04	-1.70E+04	-2.95E+04
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-2.95E+04	6.50E+03	4.45E+04	-1.70E+04	-2.95E+04

t	0	90	180	270	360
Fx(N)					
	-1.49E+04	1.08E+03	6.02E+04	-2.91E+04	-1.49E+04
Fy(N)					
• • •	2.27E-03	5.86E-04	-2.71E-03	5.21E-04	2.27E-03
Fz(N)					
	-1.49E+04	1.08E+03	6.02E+04	-2.91E+04	-1.49E+04
Fx(N)-	-1.45E+04	1.00E+03	6.40E+04	-2.90E+04	-1.45E+04
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-1.45E+04	1.00E+03	6.40E+04	-2.90E+04	-1.45E+04

t	0	90	180	270	360
x(Nm)					
	1.01E-02	1.99E-03	-1.55E-02	-3.84E-03	1.01E-02
My(Nm)					
• • •	-1.86E+05	7.26E+04	3.97E+05	-2.39E+05	-1.86E+05
Mz(Nm)					
	1.01E-02	1.99E-03	-1.55E-02	-3.84E-03	1.01E-02
Mx(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-	-1.85E+05	7.00E+04	4.00E+05	-2.40E+05	-1.85E+05
Mz(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
x(Nm)					
	7.11E-03	1.94E-03	-1.12E-02	6.81E-03	7.11E-03
My(Nm)					
	-7.43E+04	2.15E+04	5.69E+05	-3.43E+05	-7.43E+04
Mz(Nm)					
	7.11E-03	1.94E-03	-1.12E-02	6.81E-03	7.11E-03
Mx(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-	-7.50E+04	2.00E+04	6.40E+05	-3.50E+05	-7.50E+04
Mz(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
			100		
Fx(N)	-1.21E+04	4.43E+04	2.84E+04	-4.18E+04	-1.21E+04
Fy(N)	3.03E-03	7.87E-04	-3.50E-03	-1.17E-03	3.03E-03
Fz(N)	-4.66E+04	-3.13E+04	6.02E+04	7.66E+03	-4.66E+04
Fx(N)-	-1.20E+04	4.45E+04	2.85E+04	-4.20E+04	-1.20E+04
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-4.70E+04	-3.15E+04	6.10E+04	7.00E+03	-4.70E+04

t	0	90	180	270	360
Fx(N)	-8.80E+03	4.75E+04	1.91E+04	-4.08E+04	-8.80E+03
Fy(N)	2.27E-03	5.86E-04	-2.71E-03	5.21E-04	2.27E-03
Fz(N)	-2.10E+04	-4.54E+04	1.01E+05	-1.75E+04	-2.10E+04
Fx(N)-	-8.50E+03	4.75E+04	1.65E+04	-4.10E+04	8.50E+03
Fy(N)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-	-2.00E+04	-4.55E+04	1.03E+05	-1.80E+04	-2.00E+04

t	0	90	180	270	360
x(Nm)	4.04E-02	9.86E-03	-5.05E-02	-1.56E-02	4.04E-02
My(Nm)	-3.37E+05	6.26E+05	7.52E+05	-7.62E+05	-3.37E+05
Mz(Nm)	-1.21E+05	4.43E+05	2.84E+05	-4.18E+05	-1.21E+05

t	0	90	180	270	360
x(Nm)	2.98E-02	7.80E-03	-3.83E-02	1.20E-02	2.98E-02
My(Nm)	2.12E+05	-1.52E+06	-5.34E+04	9.81E+05	2.12E+05
Mz(Nm)	5.83E-02	1.51E-02	-7.21E-02	1.85E-02	5.83E-02
Mx(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-	2.00E+05	-1.58E+06	-4.00E+04	9.90E+05	2.00E+05
Mz(Nm)-	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

5.5.1

5.5.2

t	0	90	180	270	360
Fx(N)-1	1.39E+05	-1.66E+05	-7.21E+04	1.86E+05	1.39E+05
Fx(N)-2	2.19E+05	-1.60E+05	-1.22E+05	1.68E+05	2.19E+05
Fx(N)-3	2.90E+05	-1.56E+05	-1.73E+05	1.45E+05	2.90E+05
Fx(N)-4	2.94E+05	-1.24E+05	-1.88E+05	1.07E+05	2.94E+05

t	0	90	180	270	360
Fx(N)-1	1.39E+05	-1.66E+05	-7.21E+04	1.86E+05	1.39E+05
Fx(N)-2	2.19E+05	-1.60E+05	-1.22E+05	1.68E+05	2.19E+05
Fx(N)-3	2.90E+05	-1.56E+05	-1.73E+05	1.45E+05	2.90E+05
Fx(N)-4	2.94E+05	-1.24E+05	-1.88E+05	1.07E+05	2.94E+05

t	0	90	180	270	360
Fx(N)-5	1.39E+05	-1.66E+05	-7.21E+04	1.86E+05	1.39E+05
Fx(N)-6	2.19E+05	-1.60E+05	-1.22E+05	1.68E+05	2.19E+05
Fx(N)-7	2.90E+05	-1.56E+05	-1.73E+05	1.45E+05	2.90E+05
Fx(N)-8	2.94E+05	-1.24E+05	-1.88E+05	1.07E+05	2.94E+05

t	0	90	180	270	360
Fx(N)-5	1.39E+05	-1.66E+05	-7.21E+04	1.86E+05	1.39E+05
Fx(N)-6	2.19E+05	-1.60E+05	-1.22E+05	1.68E+05	2.19E+05
Fx(N)-7	2.90E+05	-1.56E+05	-1.73E+05	1.45E+05	2.90E+05
Fx(N)-8	2.94E+05	-1.24E+05	-1.88E+05	1.07E+05	2.94E+05

t	0	90	180	270	360
Fy(N)-1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-4	-2.95E-04	-5.53E-04	3.70E-04	6.17E-04	-2.95E-04

t	0	90	180	270	360
Fy(N)-1	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-4	-2.95E-04	-5.53E-04	3.70E-04	6.17E-04	-2.95E-04

t	0	90	180	270	360
Fy(N)-5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-8	-2.95E-04	-5.53E-04	3.70E-04	6.17E-04	-2.95E-04

t	0	90	180	270	360
Fy(N)-5	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fy(N)-8	-2.95E-04	-5.53E-04	3.70E-04	6.17E-04	-2.95E-04

t	0	90	180	270	360
Fz(N)-1	-9.73E+03	1.16E+04	5.04E+03	-1.30E+04	-9.73E+03
Fz(N)-2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-4	2.06E+04	-8.69E+03	-1.32E+04	7.50E+03	2.06E+04

t	0	90	180	270	360
Fz(N)-1	-9.73E+03	1.16E+04	5.04E+03	-1.30E+04	-9.73E+03
Fz(N)-2	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-4	2.06E+04	-8.69E+03	-1.32E+04	7.50E+03	2.06E+04

t	0	90	180	270	360
Fz(N)-5	-9.73E+03	1.16E+04	5.04E+03	-1.30E+04	-9.73E+03
Fz(N)-6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-8	2.06E+04	-8.69E+03	-1.32E+04	7.50E+03	2.06E+04

t	0	90	180	270	360
Fz(N)-5	-9.73E+03	1.16E+04	5.04E+03	-1.30E+04	-9.73E+03
Fz(N)-6	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-7	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-8	2.06E+04	-8.69E+03	-1.32E+04	7.50E+03	2.06E+04

t	0	90	180	270	360
Mx(Nm)-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-20	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-30	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-40	-1.80E-02	-4.09E-02	2.26E-02	4.36E-02	-1.80E-02

t	0	90	180	270	360
Mx(Nm)-10	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-20	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-30	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-40	-1.80E-02	-4.09E-02	2.26E-02	4.36E-02	-1.80E-02

t	0	90	180	270	360
Mx(Nm)-50	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-70	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-80	-1.80E-02	-4.09E-02	2.26E-02	4.36E-02	-1.80E-02

t	0	90	180	270	360
Mx(Nm)-50	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-70	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-80	-1.80E-02	-4.09E-02	2.26E-02	4.36E-02	-1.80E-02

t	0	90	180	270	360
My(Nm)-50	1.21E+07	-9.79E+06	-5.47E+06	1.19E+07	1.21E+07
My(Nm)-60	1.75E+07	-9.49E+06	-8.03E+06	1.03E+07	1.75E+07
My(Nm)-70	2.24E+07	-9.54E+06	-1.08E+07	8.49E+06	2.24E+07
My(Nm)-80	2.20E+07	-7.81E+06	-1.15E+07	6.13E+06	2.20E+07

t	0	90	180	270	360
My(Nm)-50	1.21E+07	-9.79E+06	-5.47E+06	1.19E+07	1.21E+07
My(Nm)-60	1.75E+07	-9.49E+06	-8.03E+06	1.03E+07	1.75E+07
My(Nm)-70	2.24E+07	-9.54E+06	-1.08E+07	8.49E+06	2.24E+07
My(Nm)-80	2.20E+07	-7.81E+06	-1.15E+07	6.13E+06	2.20E+07

t	0	90	180	270	360
Mz(Nm)-50	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-70	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-80	-8.82E-05	-2.00E-04	1.11E-04	2.13E-04	-8.82E-05

t	0	90	180	270	360
Mz(Nm)-50	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-60	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-70	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mz(Nm)-80	-8.82E-05	-2.00E-04	1.11E-04	2.13E-04	-8.82E-05

t	0	90	180	270	360
Fx(N)	1.88E+06	-1.21E+06	-1.11E+06	1.21E+06	1.88E+06
Fy(N)	-5.90E-04	-1.11E-03	7.39E-04	1.23E-03	-5.90E-04
Fz(N)	2.17E+04	5.86E+03	-1.62E+04	-1.11E+04	2.17E+04

t	0	90	180	270	360
Fx(N)	1.88E+06	-1.21E+06	-1.11E+06	1.21E+06	1.88E+06
Fy(N)	-5.90E-04	-1.11E-03	7.39E-04	1.23E-03	-5.90E-04
Fz(N)	2.17E+04	5.86E+03	-1.62E+04	-1.11E+04	2.17E+04

t	0	90	180	270	360
Mx(Nm)	-3.37E-02	-8.19E-02	4.22E-02	8.85E-02	-3.37E-02
My(Nm)	1.46E+08	-7.20E+07	-7.04E+07	7.25E+07	1.46E+08
Mz(Nm)	-6.34E-01	-6.73E-01	7.37E-02	2.53E-01	5.36E-02

t	0	90	180	270	360
Mx(Nm)	-3.37E-02	-8.19E-02	4.22E-02	8.85E-02	-3.37E-02
My(Nm)	1.46E+08	-7.20E+07	-7.04E+07	7.25E+07	1.46E+08
Mz(Nm)	-6.34E-01	-6.73E-01	7.37E-02	2.53E-01	5.36E-02

$$d = 240m , \qquad \mu \quad D = 9.4m$$

$$\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu$$

$$f = 20m . \qquad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu$$
Stokes 5 ,
$$\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu$$

$$(x_G = 0.0m, y_G = 0.0m, z_G = 180m).$$

t	0	90	180	270	360
Fix(N)-5thStokes	0.00E+00	-1.29E+07	1.10E+00	1.29E+07	-2.30E+00
Fiy(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fix(N)-Airy	0.00E+00	-1.29E+07	1.26E+00	1.29E+07	-2.00E+00
Fiy(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fiz(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Fdx(N)-5thStokes	2.26E+06	-1.10E+02	-2.20E+06	-1.10E+02	2.26E+06
Fdy(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdz(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdx(N)-Airy	2.35E+06	-4.50E-09	-2.35E+06	3.35E-10	2.35E+06
Fdy(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fdz(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Fx(N)-5thStokes	2.26E+06	-1.29E+07	-2.20E+06	1.29E+07	2.26E+06
Fy(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fx(N)-Airy	2.35E+06	-1.29E+07	-2.35E+06	1.29E+07	2.35E+06
Fy(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Fz(N)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Mx(Nm)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-5thStokes	2.21E+08	-1.07E+09	-2.15E+08	1.07E+09	2.21E+08
Mz(Nm)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-Airy	2.30E+08	-1.08E+09	-2.30E+08	1.08E+09	2.30E+08
Mz(Nm)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Mx(Nm)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-5thStokes	8.52E+07	-3.02E+08	-8.26E+07	3.02E+08	8.52E+07
Mz(Nm)-5thStokes	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Mx(Nm)-Airy	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
My(Nm)-Airy	8.84E+07	-3.03E+08	-8.84E+07	3.03E+08	8.84E+07
Mz(Nm)-Airy	1.41E+08	-7.76E+08	-1.41E+08	7.76E+08	1.41E+08

μ

μ

$$d = 240m$$
,
 $\mu \quad \mu \mu \quad \mu \quad D = 9.4m$, $D = 7.994m$, $D = 6.5m$, μ
 $\mu \quad \mu \mu \quad \mu \quad 120m$.
 $\mu \quad \mu \quad \mu \quad \mu \quad \mu$
 $\mu \quad \mu \quad Stokes 5$ Airy,
 μ

$$(x_G = 0.0m, y_G = 0.0m, z_G = 180m)$$

5.7

t		0	90	180	270	360
Fix(N)	D=9.4m	0.00E+00	-9.74E+06	9.30E-01	9.74E+06	-1.55E+00
Fix(N)	D=7.994m	0.00E+00	-1.47E+06	1.53E-01	1.47E+06	-2.11E-01
Fix(N)	D=6.5m	0.00E+00	-5.55E+05	5.86E-02	5.55E+05	-7.68E-02

t	0	90	180	270	360
Fix(N)					
D=9.4m	0.00E+00	-9.70E+06	8.35E-01	9.70E+06	-1.73E+00
Fix(N)					
D=7.994m	0.00E+00	-1.47E+06	1.24E-01	1.47E+06	-2.66E-01
Fix(N)					
D=6.5m	0.00E+00	-5.51E+05	4.66E-02	5.51E+05	-1.01E-01

t		0	90	180	270	360
Fdx(N)	D=9.4m	1.39E+06	-2.66E-09	-1.39E+06	1.98E-10	1.39E+06
Fdx(N)	D=7.994m	4.96E+05	-9.47E-10	-4.96E+05	7.05E-11	4.96E+05
Fdx(N)	D=6.5m	2.60E+05	-4.97E-10	-2.60E+05	3.70E-11	2.60E+05

t		0	90	180	270	360
Fdx(N)	D=9.4m	1.34E+06	-3.90E+01	-1.31E+06	-3.90E+01	1.34E+06
Fdx(N)	D=7.994m	4.78E+05	-3.32E+01	-4.62E+05	-3.32E+01	4.78E+05
Fdx(N)	D=6.5m	2.52E+05	-2.23E+01	-2.42E+05	-2.23E+01	2.52E+05

t			0	90	180	270	360
Fx(N)	D=9.4m		1.39E+06	-9.74E+06	-1.39E+06	9.74E+06	1.39E+06
Fx(N)	D=7.994m		4.96E+05	-1.47E+06	-4.96E+05	1.47E+06	4.96E+05
Fx(N)	D=6.5m		2.60E+05	-5.55E+05	-2.60E+05	5.55E+05	2.60E+05
Fx(N)	μ		2.15E+06	-1.18E+07	-2.15E+06	1.18E+07	2.15E+06
Fx(N) (5.6)	2.35E+06	-1.29E+07	-2.35E+06	1.29E+07	2.35E+06

t	0	90	180	270	360
Fx(N)					
D=9.4m	1.34E+06	-9.70E+06	-1.31E+06	9.70E+06	1.34E+06
Fx(N)					
D=7.994m	4.78E+05	-1.47E+06	-4.62E+05	1.47E+06	4.78E+05
Fx(N)					
D=6.5m	2.52E+05	-5.51E+05	-2.42E+05	5.51E+05	2.52E+05
Fx(N)					
μ	2.07E+06	-1.17E+07	-2.01E+06	1.17E+07	2.07E+06
Fx(N)					
(5.6)	2.26E+06	-1.29E+07	-2.20E+06	1.29E+07	2.26E+06

t		0	90	180	270	360
My(Nm)	D=9.4m	1.20E+08	-7.14E+08	-1.20E+08	7.14E+08	1.20E+08
My(Nm)	D=7.994m	2.10E+06	-6.07E+06	-2.10E+06	6.07E+06	2.10E+06
My(Nm)	D=6.5m	5.36E+05	-1.13E+06	-5.36E+05	1.13E+06	5.36E+05
My(Nm) (
5	.6)	2.21E+08	-1.07E+09	-2.15E+08	1.07E+09	2.21E+08

t		0	90	180	270	360
My(Nm)						
D=9.4m		1.15E+08	-7.11E+08	-1.12E+08	7.11E+08	1.15E+08
My(Nm)						
D=7.994m		2.02E+06	-6.03E+06	-1.96E+06	6.03E+06	2.02E+06
My(Nm)						
D=6.5m		5.18E+05	-1.12E+06	-4.99E+05	1.12E+06	5.18E+05
My(Nm)						
	5.6)	2.20E+08	-1.07E+09	-2.14E+08	1.07E+09	2.20E+08

t	0	90	180	270	360
Fx()-	2.15E+06	-1.18E+07	-2.15E+06	1.18E+07	2.15E+06
Fx()-	2.26E+06	-1.29E+07	-2.20E+06	1.29E+07	2.26E+06

t	0	90	180	270	360
Fx()-					
	2.07E+06	-1.17E+07	-2.01E+06	1.17E+07	2.07E+06
Fx()-					
	2.25E+06	-1.28E+07	-2.19E+06	1.28E+07	2.25E+06

t	0	90	180	270	360
My(Nm)-	7.71E+07	-2.39E+08	-7.71E+07	2.39E+08	7.71E+07
My(Nm)-	8.52E+07	-3.02E+08	-8.26E+07	3.02E+08	8.52E+07

t	0	90	180	270	360
My(Nm)-	7.43E+07	-2.38E+08	-7.20E+07	2.38E+08	7.43E+07
My(Nm)-	8.49E+07	-3.00E+08	-8.22E+07	3.00E+08	8.49E+07

t	0	90	180	270	360
Fix(N)-Airy	8.82E+04	-9.11E+04	-6.27E+04	7.51E+04	8.82E+04
Fix(N)-5thStokes	9.80E+04	-1.10E+05	-5.73E+04	6.46E+04	9.80E+04

t	0	90	180	270	360
Fiz(N)-Airy	-2.36E+04	2.44E+04	1.68E+04	-2.01E+04	-2.36E+04
Fiz(N)-5thStokes	-2.63E+04	2.94E+04	1.54E+04	-1.73E+04	-2.63E+04

t	0	90	180	270	360
Fix(N)-Airy	-8.82E+04	-7.51E+04	6.27E+04	9.11E+04	-8.82E+04
Fix(N)-5thStokes	-9.80E+04	-6.46E+04	5.73E+04	1.10E+05	-9.80E+04

t	0	90	180	270	360
Fiy(N)-Airy	-2.10E-03	1.61E-03	1.64E-03	-1.96E-03	-2.10E-03
Fiy(N)-5thStokes	-1.54E-03	1.66E-03	1.78E-03	-1.76E-03	-1.54E-03

t	0	90	180	270	360
Fiz(N)-Airy	-2.36E+04	-2.01E+04	1.68E+04	2.44E+04	-2.36E+04
Fiz(N)-5thStokes	-2.63E+04	-1.73E+04	1.54E+04	2.94E+04	-2.63E+04

t	0	90	180	270	360
Fdx(N)-Airy	7.82E+04	1.52E+05	-3.99E+04	-4.97E+04	7.82E+04
Fdx(N)-5thStokes	6.42E+04	1.25E+05	-3.58E+04	-4.42E+04	6.42E+04

t	0	90	180	270	360
Fdz(N)-Airy	-2.10E+04	-4.07E+04	1.07E+04	1.33E+04	-2.10E+04
Fdz(N)-5thStokes	-1.72E+04	-3.34E+04	9.60E+03	1.19E+04	-1.72E+04

t	0	90	180	270	360
Fdx(N)-Airy	7.82E+04	-4.97E+04	-3.99E+04	1.52E+05	7.82E+04
Fdx(N)-5thStokes	6.42E+04	-4.42E+04	-3.58E+04	1.25E+05	6.42E+04

t	0	90	180	270	360
Fdy(N)-Airy	-2.41E-03	-1.04E-03	9.51E-04	2.48E-03	-2.41E-03
Fdy(N)-5thStokes	-2.03E-03	-8.90E-04	8.51E-04	2.16E-03	-2.03E-03

t	0	90	180	270	360
Fdz(N)-Airy	2.10E+04	-1.33E+04	-1.07E+04	4.07E+04	2.10E+04
Fdz(N)-5thStokes	1.72E+04	-1.19E+04	-9.60E+03	3.34E+04	1.72E+04

t	0	90	180	270	360
Fx(N)-Airy	1.66E+05	6.10E+04	-1.03E+05	2.54E+04	1.66E+05
Fx(N)-5thStokes	1.62E+05	1.50E+04	-9.31E+04	2.04E+04	1.62E+05

t	0	90	180	270	360
Fz(N)-Airy	-4.46E+04	-1.63E+04	2.75E+04	-6.81E+03	-4.46E+04
Fz(N)-5thStokes	-4.35E+04	-4.02E+03	2.50E+04	-5.46E+03	-4.35E+04

t	0	90	180	270	360
Fx(N)-Airy	-9.97E+03	-1.25E+05	2.28E+04	2.43E+05	-9.97E+03
Fx(N)-5thStokes	-3.38E+04	-1.09E+05	2.15E+04	2.34E+05	-3.38E+04

t	0	90	180	270	360
Fy(N)-Airy	-4.51E-03	5.73E-04	2.59E-03	5.18E-04	-4.51E-03
Fy(N)-5thStokes	-3.56E-03	7.74E-04	2.63E-03	3.99E-04	-3.56E-03

t	0	90	180	270	360
Fz(N)-Airy	-2.67E+03	-3.34E+04	6.12E+03	6.52E+04	-2.67E+03
Fz(N)-5thStokes	-9.07E+03	-2.92E+04	5.77E+03	6.28E+04	-9.07E+03

t	0	90	180	270	360
y(Nm)-5thStokes	1.37E+07	2.97E+06	-7.10E+06	6.14E+05	1.37E+07
My(Nm)-Airy	1.41E+07	7.17E+06	-7.78E+06	9.86E+05	1.41E+07

t	0	90	180	270	360
x(Nm)-5thStokes	-2.92E-01	5.62E-02	1.95E-01	4.90E-02	-2.92E-01
y(Nm)-5thStokes	-2.94E+06	-8.20E+06	1.69E+06	2.05E+07	-2.94E+06
z(Nm)-5thStokes	-2.10E-02	4.03E-03	1.40E-02	3.51E-03	-2.10E-02
x(Nm)-Airy	-3.80E-01	4.00E-02	1.90E-01	6.11E-02	-3.80E-01
y(Nm)-Airy	-7.76E+05	-9.49E+06	1.81E+06	2.14E+07	-7.76E+05
z(Nm)-Airy	-2.73E-02	2.87E-03	1.37E-02	4.39E-03	-2.73E-02

t	0	90	180	270	360
Fx(N)-Airy	2.74E+07	-1.19E+07	-7.80E+06	1.45E+07	2.74E+07
Fx(N)-5thStokes	2.77E+07	-1.17E+07	-7.30E+06	1.35E+07	2.77E+07

t	0	90	180	270	360
Fy(N)-Airy	-4.97E-02	6.31E-03	2.85E-02	5.70E-03	-4.97E-02
Fy(N)-5thStokes	-3.92E-02	8.52E-03	2.90E-02	4.39E-03	-3.92E-02

t	0	90	180	270	360
Fz(N)-Airy	-5.20E+05	-5.47E+05	3.70E+05	6.42E+05	-5.20E+05
Fz(N)-5thStokes	-5.78E+05	-3.65E+05	3.38E+05	6.30E+05	-5.78E+05

t	0	90	180	270	360
x(N)-5thStokes	-3.08E+00	5.80E-01	2.20E+00	5.80E-01	-3.18E+00
y(N)-5thStokes	2.68E+09	-8.75E+08	-5.95E+08	1.05E+09	2.68E+09
z(N)-5thStokes	-1.18E+01	2.95E+00	5.79E-01	2.58E-01	-1.78E+00
x(N)-Airy	-4.13E+00	2.74E-01	2.15E+00	4.36E-01	-4.28E+00
y(N)-Airy	2.62E+09	-9.04E+08	-6.32E+08	1.16E+09	2.62E+09
z(N)-Airy	-7.97E-01	9.47E-02	4.35E-01	1.05E-01	-7.97E-01

μ μ

μ

.

x, y, z.

$$\mu$$
 μ μ μ μ Airy Stokes 5 .

$$\mu$$
 IFPART=21,
 μ ($x_0 = 0.0m, y_0 = 0.0m, z_0 = 250m$)

5.9.1

.

•

. .

t	0	90	180	270	360
Fx(N)_H=4m	-2.93E+07	-1.58E+07	2.74E+07	1.77E+07	-2.93E+07
Fx(N)_H=6m	-4.45E+07	-2.32E+07	4.04E+07	2.75E+07	-4.45E+07
Fx(N)_H=8m	-6.01E+07	-3.02E+07	5.28E+07	3.80E+07	-6.01E+07

t	0	90	180	270	360
Fx(N)_H=4m	-2.89E+07	-1.61E+07	2.78E+07	1.72E+07	-2.89E+07
Fx(N)_H=6m	-4.36E+07	-2.39E+07	4.13E+07	2.64E+07	-4.36E+07
Fx(N)_H=8m	-5.85E+07	-3.16E+07	5.44E+07	3.60E+07	-5.85E+07

t	0	90	180	270	360
Fx(N)_H=4m	2.94E+07	-1.71E+07	-2.76E+07	1.53E+07	2.94E+07
Fx(N)_H=6m	4.49E+07	-2.61E+07	-4.07E+07	2.21E+07	4.49E+07
Fx(N)_H=8m	6.09E+07	-3.55E+07	-5.34E+07	2.85E+07	6.09E+07

Μακρή Κωνσταντίνα

t	0	90	180	270	360
Fx(N)_H=4m	2.90E+07	-1.66E+07	-2.80E+07	1.56E+07	2.90E+07
Fx(N)_H=6m	4.40E+07	-2.51E+07	-4.17E+07	2.29E+07	4.40E+07
Fx(N)_H=8m	5.93E+07	-3.35E+07	-5.51E+07	2.98E+07	5.93E+07

t	0	90	180	270	360
Fx(N)_H=4m	-2.93E+07	-1.58E+07	2.74E+07	1.77E+07	-2.93E+07
Fx(N)_H=6m	-4.45E+07	-2.32E+07	4.04E+07	2.75E+07	-4.45E+07
Fx(N)_H=8m	-6.01E+07	-3.02E+07	5.28E+07	3.80E+07	-6.01E+07

t	0	90	180	270	360
Fx(N)_H=4m	-2.89E+07	-1.61E+07	2.78E+07	1.72E+07	-2.89E+07
Fx(N)_H=6m	-4.36E+07	-2.39E+07	4.13E+07	2.64E+07	-4.36E+07
Fx(N)_H=8m	-5.85E+07	-3.16E+07	5.44E+07	3.60E+07	-5.85E+07

t	0	90	180	270	360
Fx(N)_H=4m	2.94E+07	-1.71E+07	-2.76E+07	1.53E+07	2.94E+07
Fx(N)_H=6m	4.49E+07	-2.61E+07	-4.07E+07	2.21E+07	4.49E+07
Fx(N)_H=8m	6.09E+07	-3.55E+07	-5.34E+07	2.85E+07	6.09E+07

Μακρή Κωνσταντίνα

t	0	90	180	270	360
Fx(N)_H=4m	2.90E+07	-1.66E+07	-2.80E+07	1.56E+07	2.90E+07
Fx(N)_H=6m	4.40E+07	-2.51E+07	-4.17E+07	2.29E+07	4.40E+07
Fx(N)_H=8m	5.93E+07	-3.35E+07	-5.51E+07	2.98E+07	5.93E+07

t	0	90	180	270	360
My(Nm)_H=4m	-8.76E+08	-4.45E+08	7.84E+08	5.39E+08	-8.76E+08
My(Nm)_H=6m	-1.35E+09	-6.41E+08	1.14E+09	8.57E+08	-1.35E+09
My(Nm)_H=8m	-1.84E+09	-8.21E+08	1.47E+09	1.21E+09	-1.84E+09

t	0	90	180	270	360
My(Nm)_H=4m	-8.62E+08	-4.56E+08	7.98E+08	5.23E+08	-8.62E+08
My(Nm)_H=6m	-1.32E+09	-6.65E+08	1.17E+09	8.18E+08	-1.32E+09
My(Nm)_H=8m	-1.78E+09	-8.60E+08	1.53E+09	1.14E+09	-1.78E+09

t	0	90	180	270	360
My(Nm)_H=4m	8.82E+08	-5.19E+08	-7.90E+08	4.29E+08	8.82E+08
My(Nm)_H=6m	1.36E+09	-8.09E+08	-1.15E+09	6.09E+08	1.36E+09
My(Nm)_H=8m	1.86E+09	-1.12E+09	-1.49E+09	7.67E+08	1.86E+09

t	0	90	180	270	360
My(Nm)_H=4m	8.69E+08	-5.03E+08	-8.03E+08	4.41E+08	8.69E+08
My(Nm)_H=6m	1.33E+09	-7.70E+08	-1.18E+09	6.32E+08	1.33E+09
My(Nm)_H=8m	1.81E+09	-1.05E+09	-1.55E+09	8.05E+08	1.81E+09

t	0	90	180	270	360
My(Nm)_H=4m	-8.76E+08	-4.45E+08	7.84E+08	5.39E+08	-8.76E+08
My(Nm)_H=6m	-1.35E+09	-6.41E+08	1.14E+09	8.57E+08	-1.35E+09
My(Nm)_H=8m	-1.84E+09	-8.21E+08	1.47E+09	1.21E+09	-1.84E+09

t	0	90	180	270	360
My(Nm)_H=4m	-8.62E+08	-4.56E+08	7.98E+08	5.23E+08	-8.62E+08
My(Nm)_H=6m	-1.32E+09	-6.65E+08	1.17E+09	8.18E+08	-1.32E+09
My(Nm)_H=8m	-1.78E+09	-8.60E+08	1.53E+09	1.14E+09	-1.78E+09

t	0	90	180	270	360
My(Nm)_H=4m	8.82E+08	-5.19E+08	-7.90E+08	4.29E+08	8.82E+08
My(Nm)_H=6m	1.36E+09	-8.09E+08	-1.15E+09	6.09E+08	1.36E+09
My(Nm)_H=8m	1.86E+09	-1.12E+09	-1.49E+09	7.67E+08	1.86E+09

t	0	90	180	270	360
My(Nm)_H=4m	8.69E+08	-5.03E+08	-8.03E+08	4.41E+08	8.69E+08
My(Nm)_H=6m	1.33E+09	-7.70E+08	-1.18E+09	6.32E+08	1.33E+09
My(Nm)_H=8m	1.81E+09	-1.05E+09	-1.55E+09	8.05E+08	1.81E+09

t	0	90	180	270	360
Fx(N)_H=4m	3.69E+05	-6.57E+07	-3.36E+05	6.59E+07	3.69E+05
Fx(N)_H=6m	8.47E+05	-9.86E+07	-7.35E+05	9.92E+07	8.47E+05
Fx(N)_H=8m	1.53E+06	-1.32E+08	-1.27E+06	1.33E+08	1.53E+06

t	0	90	180	270	360
Fx(N)_H=4m	3.70E+05	-6.55E+07	-3.37E+05	6.57E+07	3.70E+05
Fx(N)_H=6m	8.53E+05	-9.80E+07	-7.39E+05	9.86E+07	8.53E+05
Fx(N)_H=8m	1.55E+06	-1.30E+08	-1.28E+06	1.32E+08	1.55E+06

t	0	90	180	270	360
My(Nm)_H=4m	3.30E+06	-2.85E+08	-2.46E+06	2.90E+08	3.30E+06
My(Nm)_H=6m	7.89E+06	-4.35E+08	-5.08E+06	4.50E+08	7.89E+06
My(Nm)_H=8m	1.48E+07	-5.94E+08	-8.25E+06	6.29E+08	1.48E+07

t	0	90	180	270	360
My(Nm)_H=4m	3.32E+06	-2.81E+08	-2.47E+06	2.85E+08	3.32E+06
My(Nm)_H=6m	7.99E+06	-4.20E+08	-5.14E+06	4.35E+08	7.99E+06
My(Nm)_H=8m	1.52E+07	-5.57E+08	-8.40E+06	5.93E+08	1.52E+07

t	0	90	180	270	360
Mz(Nm)_H=4m	8.00E+00	-1.20E+01	-1.20E+01	-4.00E+00	-6.40E+01
Mz(Nm)_H=6m	3.20E+01	4.00E+01	-4.00E+01	1.60E+01	8.80E+01
Mz(Nm)_H=8m	-8.80E+01	3.20E+01	1.04E+02	-1.28E+02	2.40E+01

t	0	90	180	270	360
Mz(Nm)_H=4m	9.26E+06	-1.64E+09	-8.41E+06	1.64E+09	9.26E+06
Mz(Nm)_H=6m	2.13E+07	-2.45E+09	-1.85E+07	2.47E+09	2.13E+07
Mz(Nm)_H=8m	3.88E+07	-3.25E+09	-3.21E+07	3.29E+09	3.88E+07

			μ	D = 40n	d = 30	00m 50m .	
		μ	μ y 100m		x	100 <i>m</i>	
				μ	μ	:	
1	:	μ	$D_1 = 50m$	h_1	= 20 <i>m</i>		
2	:	μ	$D_2 = 60m$	h_2	=10m		
μ	μμ		} = 300 <i>m</i>	H = d	4,6,8 <i>m</i>		
μ	μμ	μ μ	μ Stokes μ	.5 μ	ł	1	Airy
\bigcirc		\bigcirc					

.

t	0	90	180	270	360
Fx1(N)	1.53E+06	-1.32E+08	-1.27E+06	1.33E+08	1.53E+06
Fx2a(N)	1.52E+06	-1.61E+08	-1.52E+06	1.61E+08	1.52E+06
Fx2b(N)	1.50E+06	-1.62E+08	-1.50E+06	1.62E+08	1.50E+06

t	0	90	180	270	360
Fx1(N)	8.47E+05	-9.86E+07	-7.35E+05	9.92E+07	8.47E+05
Fx2a(N)	8.56E+05	-1.21E+08	-8.56E+05	1.21E+08	8.56E+05
Fx2b(N)	8.48E+05	-1.21E+08	-8.49E+05	1.21E+08	8.48E+05

t	0	90	180	270	360
Fx1(N)	3.69E+05	-6.57E+07	-3.36E+05	6.59E+07	3.69E+05
Fx2a(N)	3.88E+05	-8.47E+07	-3.88E+05	8.47E+07	3.88E+05
Fx2b(N)	3.78E+05	-8.08E+07	-3.78E+05	8.08E+07	3.78E+05

t	0	90	180	270	360
Fx1(N)	1.55E+06	-1.30E+08	-1.28E+06	1.32E+08	1.55E+06
Fx2a(N)	1.55E+06	-1.69E+08	-1.55E+06	1.69E+08	1.55E+06
Fx2b(N)	1.51E+06	-1.62E+08	-1.51E+06	1.62E+08	1.51E+06

t	0	90	180	270	360
Fx1(N)	8.53E+05	-9.80E+07	-7.39E+05	9.86E+07	8.53E+05
Fx2a(N)	8.74E+05	-1.27E+08	-8.74E+05	1.27E+08	8.74E+05
Fx2b(N)	8.52E+05	-1.21E+08	-8.52E+05	1.21E+08	8.52E+05

t	0	90	180	270	360
Fx1(N)	3.70E+05	-6.55E+07	-3.37E+05	6.57E+07	3.70E+05
Fx2a(N)	3.88E+05	-8.47E+07	-3.88E+05	8.47E+07	3.88E+05
Fx2b(N)	3.79E+05	-8.08E+07	-3.79E+05	8.08E+07	3.79E+05

t	0	90	180	270	360
My1(Nm)	1.48E+07	-5.94E+08	-8.25E+06	6.29E+08	1.48E+07
My2a(Nm)	7.77E+06	3.98E+08	-7.80E+06	-3.98E+08	7.77E+06
My2b(Nm)	8.42E+06	3.38E+08	-8.44E+06	-3.38E+08	8.42E+06

t	0	90	180	270	360
My1(Nm)	7.89E+06	-4.35E+08	-5.08E+06	4.50E+08	7.89E+06
My2a(Nm)	4.39E+06	2.98E+08	-4.39E+06	-2.98E+08	4.39E+06
My2b(Nm)	4.75E+06	2.53E+08	-4.76E+06	-2.53E+08	4.75E+06

t	0	90	180	270	360
My1(Nm)	3.69E+05	-6.57E+07	-3.36E+05	6.59E+07	3.69E+05
My2a(Nm)	1.69E+06	3.70E+08	-1.69E+06	-3.70E+08	1.69E+06
My2b(Nm)	2.12E+06	1.69E+08	-2.12E+06	-1.69E+08	2.12E+06

t	0	90	180	270	360
My1(Nm)	1.52E+07	-5.57E+08	-8.40E+06	5.93E+08	1.52E+07
My2a(Nm)	6.78E+06	7.40E+08	-6.78E+06	-7.40E+08	6.78E+06
My2b(Nm)	8.49E+06	3.38E+08	-8.49E+06	-3.38E+08	8.49E+06

t	0	90	180	270	360
My1(Nm)	7.99E+06	-4.20E+08	-5.14E+06	4.35E+08	7.99E+06
My2a(Nm)	3.81E+06	5.55E+08	-3.81E+06	-5.55E+08	3.81E+06
My2b(Nm)	4.78E+06	2.53E+08	-4.78E+06	-2.53E+08	4.78E+06

t	0	90	180	270	360
My1(Nm)	3.32E+06	-2.81E+08	-2.47E+06	2.85E+08	3.32E+06
My2a(Nm)	1.70E+06	3.70E+08	-1.70E+06	-3.70E+08	1.70E+06
My2b(Nm)	2.12E+06	1.69E+08	-2.12E+06	-1.69E+08	2.12E+06

5.11 µ Jacket

	d = 27m	μμ	Jac	cket.			
		$\mu \qquad D_1 = 2m$	15	0			
	. μ		μ		37 <i>m</i> x 2	7m	•
		μ	$D_2 = 1m$	3	μ	x-b	race
	μ	30 °.			μ	μ	μ
μ	μ } = 40 <i>m</i>	H = 4m.					

			μ		μ	μ	μ	Stokes 5
	μ		Airy.	,			jacket µµ	
		μ					Jacket.	μ,
		μ	D=2m,	μ		μ	15	°.
μ			μ	ху,			μ	,
			μ	•				

5.11.2

t	0	90	180	270	360
Fx(N)-Airy	3.29E+05	-6.05E+04	-2.98E+05	2.96E+04	3.29E+05
Fx(N)-Stokes	3.06E+05	-4.19E+04	-3.11E+05	5.09E+04	3.06E+05

t	0	90	180	270	360
Fy(N)-Airy	-2.93E-03	9.77E-04	2.93E-03	-1.95E-03	-2.93E-03
Fy(N)-Stokes	-1.95E-03	1.22E-03	2.93E-03	-1.95E-03	-2.93E-03

t	0	90	180	270	360
Fz(N)-Airy	5.85E+03	-1.67E+05	1.67E+04	1.81E+05	5.85E+03
Fz(N)-Stokes	6.71E+03	-1.56E+05	2.44E+04	1.84E+05	6.71E+03

t	0	90	180	270	360
Mx(Nm)-Airy	-1.03E+05	3.61E+06	-3.65E+05	-3.92E+06	-1.03E+05
Mx(Nm)-Stokes	-1.31E+05	3.38E+06	-5.39E+05	-3.97E+06	-1.31E+05

t	0	90	180	270	360
My(Nm)-Airy	1.65E+06	-5.95E+05	-1.19E+06	1.55E+05	1.65E+06
My(Nm)-Stokes	1.43E+06	-1.37E+05	-1.42E+06	2.00E+05	1.43E+06

t	0	90	180	270	360
Mz(Nm)-Airy	4.19E+06	-8.13E+05	-3.82E+06	4.46E+05	4.19E+06
Mz(Nm)-Stokes	7.44E+06	-9.89E+05	-7.55E+06	1.20E+06	7.44E+06

μ

μ

t	0	90	180	270	360
Fx(N)-Airy	2.79E+05	-5.45E+04	-2.52E+05	2.78E+04	2.79E+05
Fx(N)-Stokes	2.59E+05	-3.90E+04	-2.63E+05	4.48E+04	2.59E+05

t	0	90	180	270	360
Fy(N)-Airy	0.00E+00	-4.88E-04	0.00E+00	-9.77E-04	0.00E+00
Fy(N)-Stokes	0.00E+00	-2.44E-04	0.00E+00	-9.77E-04	0.00E+00

t	0	90	180	270	360
Fz(N)-Airy	-8.46E+03	-8.44E+04	7.65E+03	9.66E+04	-8.46E+03
Fz(N)-Stokes	-2.25E+03	-8.56E+04	1.62E+04	9.16E+04	-2.25E+03

t	0	90	180	270	360
Mx(Nm)-Airy	1.90E+05	1.88E+06	-1.71E+05	-2.15E+06	1.90E+05
Mx(Nm)-Stokes	5.17E+04	1.91E+06	-3.60E+05	-2.04E+06	5.17E+04

t	0	90	180	270	360
Mx(Nm)-Airy	2.24E+06	-4.95E+05	-1.87E+06	1.26E+05	2.24E+06
Mx(Nm)-Stokes	7.28E+05	-9.73E+04	-7.34E+05	1.35E+05	7.28E+05

t	0	90	180	270	360
Mz(Nm)-Airy	3.96E+06	-7.72E+05	-3.58E+06	3.89E+05	3.96E+06
Mz(Nm)-Stokes	6.14E+06	-9.19E+05	-6.23E+06	1.06E+06	6.14E+06

t	0	90	180	270	360
Fx(N)-4c	2.59E+05	-3.90E+04	-2.63E+05	4.48E+04	2.59E+05
Fx(N)-jacket	3.06E+05	-4.19E+04	-3.11E+05	5.09E+04	3.06E+05

μ

t	0	90	180	270	360
Fy(N)-4c	0.00E+00	-2.44E-04	0.00E+00	-9.77E-04	0.00E+00
Fy(N)-jacket	-1.95E-03	1.22E-03	2.93E-03	-1.95E-03	-2.93E-03

t	0	90	180	270	360
Fz(N)-4c	-2.25E+03	-8.56E+04	1.62E+04	9.16E+04	-2.25E+03
Fz(N)-jacket	6.71E+03	-1.56E+05	2.44E+04	1.84E+05	6.71E+03

Μακρή Κωνσταντίνα

t	0	90	180	270	360
Mx(Nm)-4c	5.17E+04	1.91E+06	-3.60E+05	-2.04E+06	5.17E+04
Mx(Nm)-jacket	-1.31E+05	3.38E+06	-5.39E+05	-3.97E+06	-1.31E+05

t	0	90	180	270	360
My(Nm)-4c	7.28E+05	-9.73E+04	-7.34E+05	1.35E+05	7.28E+05
My(Nm)-jacket	1.43E+06	-1.37E+05	-1.42E+06	2.00E+05	1.43E+06

t	0	90	180	270	360
Mz(Nm)-4c	6.14E+06	-9.19E+05	-6.23E+06	1.06E+06	6.14E+06
Mz(Nm)-jacket	7.44E+06	-9.89E+05	-7.55E+06	1.20E+06	7.44E+06

5.12 μ μ μ

 $\mu \quad \mu \quad \mu \quad \mu \qquad d = 150m$ $\mu \quad \mu \quad \text{Airy Stokes 5} \quad \mu \qquad \qquad :$

- 1. H = 5m $T = 8 \sec 3$
- 2. H = 30m $T = 16 \sec$

$$\begin{array}{ccccccc} \mu & & & & & \mu & - & \mu \\ \mu & , & & & & \mu & & \mu \\ - & & \mu & , & & & (x_G = 0.0m, y_G = 0.0m, z_G = 130.0m) \ . \end{array}$$

.

μ μ μ,μ

5.12 μ μ μ

h = 125m.

t	0	90	180	270	360
Fx-H=5m-T=8sec-Airy	-9.23E+04	5.25E+06	1.05E+05	-4.88E+06	-9.23E+04
Fx-H=5m-T=8sec-5thStokes	-7.35E+04	4.67E+06	7.93E+04	-4.30E+06	-7.35E+04

t	0	90	180	270	360
Fx-H=30m-T=16sec-					
Airy	3.10E+07	-5.08E+07	-1.43E+07	5.31E+07	3.10E+07
Fx-H=30m-T=16sec-					
5thStokes	3.05E+07	-4.95E+07	-1.36E+07	5.06E+07	3.05E+07
Fx-H=30m-T=16sec-					
	4.00E+07	-3.73E+07	-4.00E+07	3.87E+07	4.00E+07

t	0	90	180	270	360
My(m)-H=5m-Airy	2.47E+06	-1.58E+08	-2.15E+06	1.67E+08	2.47E+06
My(Nm)-H=5m-5thStokes	-4.26E+06	2.57E+08	4.41E+06	-2.48E+08	-4.26E+06

t	0	90	180	270	360
My(m)-H=30m-Airy	6.29E+08	-7.36E+08	-1.81E+08	7.94E+08	6.29E+08
My(Nm)-H=30m-5thStokes	3.36E+08	1.96E+08	1.03E+08	-1.48E+08	3.36E+08

5.13 μ μ μ

1.

:

5.13.3

μ

t	0	90	180	270	360
Fx()-Airy	3.74E+06	-8.58E+06	-1.34E+06	8.72E+06	3.74E+06
Fx()-5thStokes	3.92E+06	-8.28E+06	-1.30E+06	8.34E+06	3.92E+06

t	0	90	180	270	360
Fy()-Airy	-1.39E+02	-6.36E+01	2.29E+02	2.85E+01	-1.39E+02
Fy()-5thStokes	-1.94E+02	-2.29E+01	1.59E+02	6.42E+01	-1.94E+02

t	0	90	180	270	360
Fz()-Airy	-7.54E+05	-5.80E+05	7.00E+05	7.10E+05	-7.54E+05
Fz()-5thStokes	-7.65E+05	-4.93E+05	6.68E+05	7.35E+05	-7.65E+05

t	0	90	180	270	360
Mx(Nm)-Airy	-6.74E+06	-2.72E+06	7.69E+06	3.91E+06	-6.74E+06
Mx(Nm)-5thStokes	-7.22E+06	-2.11E+06	6.81E+06	4.26E+06	-7.22E+06

t	0	90	180	270	360
My(Nm)-Airy	1.04E+07	-5.83E+06	9.35E+06	8.03E+06	1.04E+07
My(Nm)-5thStokes	1.10E+07	-1.33E+06	1.00E+07	3.97E+06	1.10E+07

Μακρή Κωνσταντίνα

t	0	90	180	270	360
Mz(Nm)-Airy	3.31E+07	-7.22E+07	-1.49E+07	7.33E+07	3.31E+07
Mz(Nm)-5thStokes	4.95E+06	-4.95E+06	-2.64E+06	4.84E+06	4.95E+06

t	0	90	180	270	360
Fx-1(N)	3.74E+06	-8.58E+06	-1.34E+06	8.72E+06	3.74E+06
Fx-2(N)	3.69E+06	-8.01E+06	-1.30E+06	8.15E+06	3.69E+06
Fx-3(N)	2.79E+06	-7.94E+06	-9.26E+05	8.05E+06	2.79E+06

t	0	90	180	270	360
Fx-1(N)	3.92E+06	-8.28E+06	-1.30E+06	8.34E+06	3.92E+06
Fx-2(N)	3.87E+06	-7.72E+06	-1.26E+06	7.78E+06	3.87E+06
Fx-3(N)	2.93E+06	-7.65E+06	-9.00E+05	7.70E+06	2.93E+06

t	0	90	180	270	360
Fy-1(N)	-1.39E+02	-6.36E+01	2.29E+02	2.85E+01	-1.39E+02
Fy-2(N)	-1.39E+02	-6.35E+01	2.29E+02	2.85E+01	-1.39E+02
Fy-3(N)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Fy-1(N)	-1.94E+02	-2.29E+01	1.59E+02	6.42E+01	-1.94E+02
Fy-2(N)	-1.94E+02	-2.29E+01	1.59E+02	6.42E+01	-1.94E+02
Fy-3(N)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Fz-1(N)	-7.54E+05	-5.80E+05	7.00E+05	7.10E+05	-7.54E+05
Fz-2(N)	-7.54E+05	-5.80E+05	7.00E+05	7.10E+05	-7.54E+05
Fz-3(N)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Fz-1(N)	-7.65E+05	-4.93E+05	6.68E+05	7.35E+05	-7.65E+05
Fz-2(N)	-7.65E+05	-4.93E+05	6.68E+05	7.35E+05	-7.65E+05
Fz-3(N)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Mx-1(Nm)	-6.74E+06	-2.72E+06	7.69E+06	3.91E+06	-6.74E+06
Mx-2(Nm)	-6.74E+06	-2.72E+06	7.69E+06	3.91E+06	-6.74E+06
Mx-3(Nm)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
Mx-1(Nm)	-7.22E+06	-2.11E+06	6.81E+06	4.26E+06	-7.22E+06
Mx-2(Nm)	-7.22E+06	-2.11E+06	6.81E+06	4.26E+06	-7.22E+06
Mx-3(Nm)	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

t	0	90	180	270	360
My-1(Nm)	1.04E+07	-5.83E+06	9.35E+06	8.03E+06	1.04E+07
My-2(Nm)	1.07E+07	-1.01E+07	9.01E+06	1.23E+07	1.07E+07
My-3(Nm)	1.39E+07	-1.95E+06	2.77E+06	2.95E+06	1.39E+07

t	0	90	180	270	360
My-1(Nm)	1.10E+07	-1.33E+06	1.00E+07	3.97E+06	1.10E+07
My-2(Nm)	1.14E+07	-5.59E+06	9.70E+06	8.22E+06	1.14E+07
My-3(Nm)	1.54E+07	-4.38E+05	2.50E+06	9.25E+05	1.54E+07

t	0	90	180	270	360
Mz-1(Nm)	3.31E+07	-7.22E+07	-1.49E+07	7.33E+07	3.31E+07
Mz-2(Nm)	3.28E+07	-6.78E+07	-1.45E+07	6.89E+07	3.28E+07
Mz-3(Nm)	2.10E+07	-5.97E+07	-6.95E+06	6.05E+07	2.10E+07

t	0	90	180	270	360
Mz-1(Nm)	4.95E+06	-4.95E+06	-2.64E+06	4.84E+06	4.95E+06
Mz-2(Nm)	4.95E+06	-4.95E+06	-2.64E+06	4.84E+06	4.95E+06
Mz-3(Nm)	3.52E-02	-9.22E-01	0.00E+00	2.50E-01	3.91E-02
5.14 μ μ μ

$$\mu \qquad d = 200m$$

$$\mu \qquad H = 15.240m \qquad T = 17 \text{ sec} .$$

$$\mu \qquad \mu \qquad D_1 = 12m \qquad D_2 = 24m .$$

$$\mu \qquad D_3 = 1.6m . \qquad \mu$$

$$\mu \qquad \mu \qquad \text{Airy} \qquad \mu \qquad \mu \qquad \text{Stokes 5} \qquad \dots \qquad \mu$$

$$\mu \qquad A. \text{ Robertson, J. Jonkman, M. Masciola,}$$

H. Song, A. Goupee, A. Coulling C. Luan μ : « Definition of the Semisubmersible Floating System for Phase II of OC4».

5.14.1

5.14.2

5.14.3

t	0	90	180	270	360
Fx-Airy(N)	7.21E+05	-2.01E+06	-7.21E+05	2.01E+06	7.21E+05
Fx-5thStokes(N)	7.11E+05	-1.99E+06	-7.01E+05	1.99E+06	7.11E+05

t	0	90	180	270	360
Fx-Airy(N)	-1.36E+06	-4.44E+06	1.65E+06	4.16E+06	-1.36E+06
Fx-5thStokes(N)	-1.49E+06	-4.25E+06	1.46E+06	4.28E+06	-1.49E+06

t	0	90	180	270	360
Fx-Airy(N)	1.21E+06	-4.43E+06	-1.36E+06	4.58E+06	1.21E+06
Fx-5thStokes(N)	1.27E+06	-4.48E+06	-1.25E+06	4.46E+06	1.27E+06

t	0	90	180	270	360
Fx-Airy(N)	1.21E+06	-4.43E+06	-1.36E+06	4.58E+06	1.21E+06
Fx-5thStokes(N)	1.27E+06	-4.48E+06	-1.25E+06	4.46E+06	1.27E+06

t	0	90	180	270	360
Fx-Airy(N)	-1.14E+06	-6.21E+06	1.64E+06	5.72E+06	-1.14E+06
Fx-5thStokes(N)	-1.38E+06	-5.88E+06	1.33E+06	5.93E+06	-1.38E+06

t	0	90	180	270	360
Fx-Airy(N)	2.36E+06	-5.96E+06	-2.62E+06	6.23E+06	2.36E+06
Fx-5thStokes(N)	2.46E+06	-6.05E+06	-2.41E+06	6.01E+06	2.46E+06

t	0	90	180	270	360
Fx-Airy(N)	2.36E+06	-5.96E+06	-2.62E+06	6.23E+06	2.36E+06
Fx-5thStokes(N)	2.46E+06	-6.05E+06	-2.41E+06	6.01E+06	2.46E+06

t	0	90	180	270	360
Fx-Airy(N)	-2.56E+03	-1.53E+05	1.64E+04	1.52E+05	-2.56E+03
Fx-5thStokes(N)	-3.51E+03	-1.43E+05	1.55E+04	1.56E+05	-3.51E+03

t	0	90	180	270	360
Fy-Airy(N)	-9.51E-03	7.29E-04	9.57E-03	3.40E-04	-9.51E-03
Fy-5thStokes(N)	-8.90E-03	8.21E-04	9.87E-03	3.49E-04	-8.90E-03

t	0	90	180	270	360
Fz-Airy(N)	-1.98E+03	-1.18E+05	1.27E+04	1.17E+05	-1.98E+03
Fz-5thStokes(N)	-2.71E+03	-1.10E+05	1.20E+04	1.20E+05	-2.71E+03

t	0	90	180	270	360
Fx-Airy(N)	1.91E+05	-7.08E+04	-2.03E+05	7.51E+04	1.91E+05
Fx-5thStokes(N)	1.91E+05	-7.68E+04	-1.95E+05	6.89E+04	1.91E+05

t	0	90	180	270	360
Fy-Airy(N)	1.17E+04	7.20E+04	-2.00E+04	-7.80E+04	1.17E+04
Fy-5thStokes(N)	1.08E+04	6.78E+04	-2.14E+04	-7.93E+04	1.08E+04

t	0	90	180	270	360
Fz-Airy(N)	-8.15E+04	-2.08E+04	9.20E+04	2.32E+04	-8.15E+04
Fz-5thStokes(N)	-8.11E+04	-1.57E+04	8.96E+04	2.65E+04	-8.11E+04

t	0	90	180	270	360
Fx-Airy(N)	1.91E+05	-7.08E+04	-2.03E+05	7.51E+04	1.91E+05
Fx-5thStokes(N)	1.91E+05	-7.68E+04	-1.95E+05	6.89E+04	1.91E+05

t	0	90	180	270	360
Fy-Airy(N)	-1.17E+04	-7.20E+04	2.00E+04	7.80E+04	-1.17E+04
Fy-5thStokes(N)	-1.08E+04	-6.78E+04	2.14E+04	7.93E+04	-1.08E+04

t	0	90	180	270	360
Fz-Airy(N)	-8.15E+04	-2.08E+04	9.20E+04	2.32E+04	-8.15E+04
Fz-5thStokes(N)	-8.11E+04	-1.57E+04	8.96E+04	2.65E+04	-8.11E+04

t	0	90	180	270	360
Fx-Airy(N)	-8.22E+01	-7.64E+01	8.25E+01	8.99E+01	-8.22E+01
Fx-5thStokes(N)	-7.52E+01	-7.44E+01	8.76E+01	8.90E+01	-7.52E+01

t	0	90	180	270	360
Fy-Airy(N)	-5.31E-05	4.69E-03	1.47E-04	-4.78E-03	-5.31E-05
Fy-5thStokes(N)	-9.21E-05	4.69E-03	9.27E-05	-4.67E-03	-9.21E-05

t	0	90	180	270	360
Fz-Airy(N)	-4.71E+04	-4.38E+04	4.73E+04	5.15E+04	-4.71E+04
Fz-5thStokes(N)	-4.31E+04	-4.26E+04	5.02E+04	5.10E+04	-4.31E+04

t	0	90	180	270	360
Fx-Airy(N)	3.93E+04	-3.22E+04	-3.92E+04	3.21E+04	3.93E+04
Fx-5thStokes(N)	3.88E+04	-3.20E+04	-3.84E+04	3.18E+04	3.88E+04

t	0	90	180	270	360
Fy-Airy(N)	-2.26E+04	1.87E+04	2.26E+04	-1.86E+04	-2.26E+04
Fy-5thStokes(N)	-2.23E+04	1.86E+04	2.21E+04	-1.85E+04	-2.23E+04

t	0	90	180	270	360
Fz-Airy(N)	-3.99E+04	-5.45E+04	4.59E+04	6.24E+04	-3.99E+04
Fz-5thStokes(N)	-3.89E+04	-5.33E+04	4.61E+04	6.14E+04	-3.89E+04

t	0	90	180	270	360
Fx-Airy(N)	3.93E+04	-3.22E+04	-3.92E+04	3.21E+04	3.93E+04
Fx-5thStokes(N)	3.88E+04	-3.20E+04	-3.84E+04	3.18E+04	3.88E+04

t	0	90	180	270	360
Fy-Airy(N)	2.26E+04	-1.87E+04	-2.26E+04	1.86E+04	2.26E+04
Fy-5thStokes(N)	2.23E+04	-1.86E+04	-2.21E+04	1.85E+04	2.23E+04

t	0	90	180	270	360
Fz-Airy(N)	-3.99E+04	-5.45E+04	4.59E+04	6.24E+04	-3.99E+04
Fz-5thStokes(N)	-3.89E+04	-5.33E+04	4.61E+04	6.14E+04	-3.89E+04

t	0	90	180	270	360
Fx-Airy(N)	1.13E+04	-2.42E+04	-1.15E+04	2.45E+04	1.13E+04
Fx-5thStokes(N)	1.13E+04	-2.41E+04	-1.12E+04	2.40E+04	1.13E+04

t	0	90	180	270	360
Fy-Airy(N)	-1.92E+04	4.22E+04	1.97E+04	-4.27E+04	-1.92E+04
Fy-5thStokes(N)	-1.92E+04	4.21E+04	1.90E+04	-4.19E+04	-1.92E+04

t	0	90	180	270	360
Fz-Airy(N)	-9.00E+04	-8.58E+04	9.39E+04	1.00E+05	-9.00E+04
Fz-5thStokes(N)	-8.43E+04	-8.36E+04	9.76E+04	9.92E+04	-8.43E+04

t	0	90	180	270	360
Fx-Airy(N)	1.22E+05	-6.53E+04	-1.22E+05	6.54E+04	1.22E+05
Fx-5thStokes(N)	1.20E+05	-6.56E+04	-1.19E+05	6.48E+04	1.20E+05

t	0	90	180	270	360
Fy-Airy(N)	-9.94E+01	-1.95E+02	1.25E+02	2.21E+02	-9.94E+01
Fy-5thStokes(N)	-9.99E+01	-1.91E+02	1.24E+02	2.17E+02	-9.99E+01

t	0	90	180	270	360
Fz-Airy(N)	-5.69E+04	-1.12E+05	7.18E+04	1.27E+05	-5.69E+04
Fz-5thStokes(N)	-5.72E+04	-1.09E+05	7.10E+04	1.24E+05	-5.72E+04

t	0	90	180	270	360
Fx-Airy(N)	1.10E+04	-2.44E+04	-1.13E+04	2.47E+04	1.10E+04
Fx-5thStokes(N)	1.10E+04	-2.43E+04	-1.09E+04	2.42E+04	1.10E+04

t	0	90	180	270	360
Fy-Airy(N)	1.94E+04	-4.20E+04	-1.99E+04	4.24E+04	1.94E+04
Fy-5thStokes(N)	1.94E+04	-4.18E+04	-1.92E+04	4.17E+04	1.94E+04

t	0	90	180	270	360
Fz-Airy(N)	-8.97E+04	-8.64E+04	9.36E+04	1.01E+05	-8.97E+04
Fz-5thStokes(N)	-8.40E+04	-8.42E+04	9.73E+04	9.98E+04	-8.40E+04

t	0	90	180	270	360
Fx-Airy(N)	3.82E+04	-5.43E+04	-3.91E+04	5.51E+04	3.82E+04
Fx-5thStokes(N)	3.79E+04	-5.41E+04	-3.74E+04	5.35E+04	3.79E+04

t	0	90	180	270	360
Fy-Airy(N)	-6.56E+04	9.50E+04	6.71E+04	-9.66E+04	-6.56E+04
Fy-5thStokes(N)	-6.51E+04	9.46E+04	6.40E+04	-9.38E+04	-6.51E+04

t	0	90	180	270	360
Fz-Airy(N)	-1.99E+05	-2.83E+05	2.12E+05	3.29E+05	-1.99E+05
Fz-5thStokes(N)	-1.81E+05	-2.73E+05	2.23E+05	3.23E+05	-1.81E+05

t	0	90	180	270	360
Fx-Airy(N)	3.68E+05	-1.19E+05	-3.69E+05	1.19E+05	3.68E+05
Fx-5thStokes(N)	3.62E+05	-1.21E+05	-3.56E+05	1.17E+05	3.62E+05

t	0	90	180	270	360
Fy-Airy(N)	-1.65E+02	-5.96E+02	2.48E+02	6.78E+02	-1.65E+02
Fy-5thStokes(N)	-1.67E+02	-5.79E+02	2.45E+02	6.61E+02	-1.67E+02

t	0	90	180	270	360
Fz-Airy(N)	-9.46E+04	-3.41E+05	1.42E+05	3.89E+05	-9.46E+04
Fz-5thStokes(N)	-9.59E+04	-3.32E+05	1.40E+05	3.79E+05	-9.59E+04

t	0	90	180	270	360
Fx-Airy(N)	3.77E+04	-5.50E+04	-3.85E+04	5.59E+04	3.77E+04
Fx-5thStokes(N)	3.74E+04	-5.48E+04	-3.68E+04	5.44E+04	3.74E+04

t	0	90	180	270	360
Fy-Airy(N)	6.60E+04	-9.43E+04	-6.75E+04	9.57E+04	6.60E+04
Fy-5thStokes(N)	6.55E+04	-9.39E+04	-6.45E+04	9.30E+04	6.55E+04

t	0	90	180	270	360
Fz-Airy(N)	-1.98E+05	-2.84E+05	2.11E+05	3.31E+05	-1.98E+05
Fz-5thStokes(N)	-1.80E+05	-2.75E+05	2.22E+05	3.24E+05	-1.80E+05

t	0	90	180	270	360
Fx-Airy(N)	6.39E+06	-3.41E+07	-6.47E+06	3.42E+07	6.39E+06
Fx-5thStokes(N)	6.34E+06	-3.39E+07	-6.25E+06	3.38E+07	6.34E+06

t	0	90	180	270	360
Fy-Airy(N)	4.36E+02	1.52E+02	-2.38E+02	-2.68E+02	4.36E+02
Fy-5thStokes(N)	3.32E+02	1.94E+02	-3.24E+02	-2.10E+02	3.32E+02

t	0	90	180	270	360
Fz-Airy(N)	-1.02E+06	-1.50E+06	1.16E+06	1.72E+06	-1.02E+06
Fz-5thStokes(N)	-9.68E+05	-1.45E+06	1.18E+06	1.70E+06	-9.68E+05

t	0	90	180	270	360
Mx-Airy(Nm)	-3.76E+06	-1.33E+07	5.94E+06	1.51E+07	-3.76E+06
Mx-5thStokes(Nm)	-4.01E+06	-1.30E+07	5.71E+06	1.48E+07	-4.01E+06

t	0	90	180	270	360
My-Airy(Nm)	3.87E+07	-1.14E+08	-3.79E+07	1.16E+08	3.87E+07
My-5thStokes(Nm)	3.56E+07	-1.10E+08	-3.33E+07	1.12E+08	3.56E+07

t	0	90	180	270	360
Mz-Airy(Nm)	4.00E+07	-2.33E+08	-4.07E+07	2.33E+08	4.00E+07
Mz-5thStokes(Nm)	5.87E+06	-7.36E+06	-5.84E+06	7.24E+06	5.87E+06

5.15

5.15.1

5.15.2

t	0	90	180	270	360
Fx(N)-Airy	3.97E+05	-2.26E+06	-3.98E+05	2.26E+06	3.97E+05
Fx(N)-5thStokes	3.92E+05	-2.26E+06	-3.91E+05	2.26E+06	3.92E+05

t	0	90	180	270	360
Fy(N)-Airy	9.11E+03	-1.23E+04	-1.14E+04	1.25E+04	9.11E+03
Fy(N)-5thStokes	9.82E+03	-1.29E+04	-1.06E+04	1.20E+04	9.82E+03

t	0	90	180	270	360
Fz(N)-Airy	-7.00E+05	-1.83E+05	7.93E+05	2.69E+05	-7.00E+05
Fz(N)-5thStokes	-6.85E+05	-1.59E+05	8.07E+05	2.85E+05	-6.85E+05

t	0	90	180	270	360
Mx(Nm)-Airy	-2.32E+06	-1.74E+06	2.62E+06	2.09E+06	-2.32E+06
Mx(Nm)-5thStokes	-2.26E+06	-1.68E+06	2.69E+06	2.12E+06	-2.26E+06

t	0	90	180	270	360
My(Nm)-Airy	-3.39E+06	6.03E+06	3.72E+06	-5.68E+06	-3.39E+06
My(Nm)-5thStokes	-7.85E+06	2.07E+07	8.33E+06	-2.02E+07	-7.85E+06

t	0	90	180	270	360
Mz(Nm)-Airy	4.86E+06	-2.82E+07	-4.86E+06	2.82E+07	4.86E+06
Mz(Nm)-5thStokes	-3.97E+04	-3.35E+06	7.73E+04	3.40E+06	-3.97E+04

6. µ µ

μ μ :

C_M, C_D

a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	113%	74.5%	65.7%
Airy	9.15%	79.4%	86.7%

	μ					μμ		
		μ	μ	μ	μ	Stokes 5	•	μ
μ	μ	Airy		μ		μ		μ

- μ C_M, C_D

_

•

a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	79.9%	61.3%	76.6%
Airy	61.7%	61.7%	100%

	,	μ				C_M, C_D			μ	μ	Stokes	5	
			μ	μ			Ļ	l		•			
				μ								μ	
									μ				
μ						,		u					
		•											
			μμ					μ				μ	
				μ	μ		μ		μ		• •		
							μ		μμ		•		

μ	5.3	μ	:
a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	115%	75.9%	66.1%
Airy	89.1%	79.1%	88.8%

		μ						μ	
μ	μ	Stokes 5			μ				6.1.
	,		μ	μ	Airy	μ			
		μ					μ	μ	•

6.3

μ	5.4		:
a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	101%	74.4%	73.4%
Airy	65.2%	58.9%	90.2%

a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	74.7%	52.8%	70.7%
Airy	64.7%	51.7%	79.9%

a/a	Fx1 / Fx2	My1 / My2
Stokes 5th order	71.0%	2.09E-06%
Airy	89.8%	2.62E-06%

	μ	μ	μ
•	μ		μμ
		μ	
,	μ	μμ	μ.

:

:

.

,

5.5 μ μ μ

a/a	Fx1 / Fx5	Fx2 / Fx6	Fx3 / Fx7	Fx4 / Fx8
Stokes 5th order	99.3%	100%	100%	100%
Airy	100%	100%	100%	100%

:

μμ

μ μ.

a/a	Fx1 / Fx2	Fx2 / Fx3	Fx3 / Fx4
Stokes 5th order	106%	93.8%	98.6%
Airy	106%	93.8%	98.6%

6.5

5.6		μ	μ	μ
	:			

a/a	Fd / Fi	Fd / Ft	Fi / Ft
Stokes 5th order	17.5%	17.5%	100%
Airy	18.1%	18.1%	100%
, :

a/a	Md / Mi	Md / Mt	Mi / Mt
Stokes 5th order	20.7%	20.7%	100%
Airy	12.1%	12.1%	100%

6.7

				μ			. 1	
μ	μ	$D=9.4m \ ,$	2		μ	μ	D = 7.994m	3μ
D=6.5m.	μ		μ				μ	
μ		μ					:	

a/a	Fx1 / Fx	Fx2 / Fx	Fx3 / Fx
Stokes 5th order	82.9%	12.6%	4.7%
Airy	75.7%	11.6%	4.3%

	μ		μ	,	Fx1 / Fx
μ		•			

(a) µ	(b)

5.6 :

a/a	Fxa / Fxb	Mya / Myb
Stokes 5th order	90.7%	78.8%
Airy	91.5%	79.8%

μ	μ	μ			μ	
μ		μ.	,	μ	μ	μ

		121	μ		
		μμ		μ	•
μ	:				

a/a	Fx1/Fx10	Fx1/Fx11	Fx1/Fx12	Fx1/Fx121
Stokes 5th order	55.3%	69.2%	100%	69.2%
Airy	59.7%	68.3%	100%	68.3%

		μμ	μ.	
		μ	μ	
μ	μμ	μ		

:

μ	μ

a/a	My1/My10	My1/My11	My1/My12	My1/My121
Stokes 5th order	49.5%	66.8%	100%	66.8%
Airy	54.2%	53.3%	100%	53.3%

6.9

		5.10 μ
μμ μ		μ.
, μ	μ	μ.
μ	μ μ :	

	Fi-H=4m/	Fi-H=6m/	Fd-H=4m/	Fd-H=6m/
a/a	Fi-H=6m	Fi-H=8m	Fd-H=6m	Fd-H=8m
Stokes 5th order	66.5%	74.8%	42.3%	53.6%
Airy	66.3%	74.8%	42.4%	53.6%

μ

μ.

μ :

a/a	Fx-H=4m/Fx-H=6m	Fx-H=6m/Fx-H=8m
Stokes 5th order	66.5%	74.7%
Airy	66.5%	74.8%

μ	μ	μ μ	
μ,	μ	μ	μ

•

	μ		μ
1.			5.10
2a.	5.11	μ	$D_1 = 50m$
$h_1 = 20m$			
3b.	5.11	μ	$D_1 = 60m$
$h_1 = 10m .$			

	μ				μ	μ
μ		:				

μ 5 Stokes

a/a	Fx1/Fx2a	Fx1/Fx2b	Fx2a/Fx2b
H=8m	82.1%	78.7%	95.9%
H=6m	81.7%	77.8%	95.3%
H=4m	77.2%	80.9%	104.8%

μ Airy

a/a	Fx1/Fx2a	Fx1/Fx2b	Fx2a/Fx2b
H=8m	76.9%	80.2%	104.3%
H=6m	76.9%	80.7%	105%
H=4m	76.6%	80.3%	104.8%

				μ						μ			
		2	b	2a		,		μ			μ		μ
		1.		,	μ							μ	
	μ												
										,		μ	
		2b		μ				μ				2a.	μ
				μ								μ	
μ		μ		μ	,			μ		•			
								2	01				
	,			μ				2	a, 26)			μ
μ	H = 4	m				μ	μ	5		Stokes.	,	μ	
	l	μ	Airy	St	okes 5				μ	H = 4m			,
					μ					5% µ 8%.			

:

6.11 µ Jacket

	μ 5.12,	Jacket :		μ		
a/a		Fx1/Fx2	2	My1/My2		Mz1/Mz2
Stokes 5th order		84.6%		50.9%		82.5%
1	μ			2		μ Jacket.
	Airy			у 157.5°		μ Jacket, Stokes 5
180°.	,	μ	У	Airy	μ	270°
Stokes 5	2	47.5°.				
μ	μ		μ	μ	μμ	Jacket
6.12 µ	μ	I	µ			
, μ	H = 30i μ .	m T = 16	µ sec	µ		μ
μ μμ«		μ.	((Airy)	»	μ μ ».

μ		μ	μ		
μ	μ		μ	μμ	•

– μ

H(m)	T(sec)	Fi max(kN)	Fi max(kN)-	Fi max(kN)-
5	8	1535.823806	1500	1497
30	16	3846.414946	4150	3749

H(m)	T(sec)	Fi max(kN)	Fi max(kN)-	Fi max(kN)-
5	8	3608.287172	3440	3517
30	16	17982.52368	16800	17527

- μ

H(m)	T(sec)	Fd max(kN)	Fd max(kN)-	Fd max(kN)-
5	8	105.3691533	130	103
30	16	2235.039008	4150	2178

H(m)	T(sec)	Fd max(kN)	Fd max(kN)-	Fd max(kN)-
5	8	59.613926	56.2	57.1
30	16	5907.463276	5530	5758

$$|F_{I}| = \frac{1}{8}C_{M} \dots gf D^{2}H \frac{\sinh(kh) - \sinh(kd)}{\cosh(kd)}$$
$$|F_{D}| = \frac{1}{16}C_{D} \dots gDH^{2} \frac{2kh + \sinh(2kd) - \sinh(2kh)}{\sinh(2kd)}$$

:

$$|F_{I}| = \frac{1}{8}C_{M} \cdots gf D^{2}Hbk \frac{\cosh(kh)}{\cosh(kd)}$$
$$|F_{D}| = \frac{1}{2}C_{D} \cdots Db[\frac{H}{2}\frac{gk}{\tilde{S}}\frac{\cosh(kh)}{\cosh(kd)}]^{2}$$

h μ μ μ b μ .

μμμμ 5.14 :

a/a	Fx-2/Fx-1	Fx-3/Fx-1	My-2/My-1	My-3/My-1
Stokes 5th order	95.3%	89.2%	109.2%	105.0%
Airy	95.3%	89.7%	109.7%	100.4%
Airy	95.3%	89.7%	109.7%	100.4%

	μ	1		μ		,	2
	μ		3	μ			μ
	μ						μ
	1	2.					
		μ			1,		
				, μ		μ	
			•	2 3,		2	μ
μ		μ		3. , µ			
	μ						

6.14 μ μ Β

μμ			μ			
		μμ		x		μ
,		,		•		
		μ			μ	
μ	μ	Airy	Stokes 5	:		

Fx-Airy/Fx-5thStokes	Fy-Airy/Fy-5thStokes	Fz-Airy/Fz-5thStokes
101.18%	110.63%	101.01%

		μ	μ	μ
μ	<i>x y</i> , <i>z</i>		100%.	

6.15

μ μ μ Airy	μ μ μ	Stokes 5 .
Fx-Airy/Fx-5thStokes	Fy-Airy/Fy-5thStokes	Fz-Airy/Fz-5thStokes
99.60%	102.10%	98.50%

		μ	μ	μ
μ	<i>x y</i> , <i>z</i>		100%.	

Chakrabarti, S., K., (1987). *«Hydrodynamics of Offshore Structures»*, Computational Mechanics Publications, Springer-Verlag, Berlin.

DNV-OS-J101 (2007). «Design of Offshore Wind Turbines Structures», Det Norske Veritas, Norway.

Sarpkaya, T., Isaacson, M., (1981). «Mechanics of Wave Forces on Offshore Structures», Van Nostand, New York.

Stokes, G., G. (1847). «On the Theory of Oscillatory Waves», Cambridge.

Levi-Civita, T., (1925). «Détermination rigoureuse des ondes permanentes d'ampleur finie», Mathematische Annalen 93: 264–314.

Struik, D., J., (1926). «Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie», Mathematische Annalen 95: 595–634.

Morrison, J., R., Hohnson, J., W., O'Brien, M., P., (1954). *«Experimental Studies of Forces on Piles»*, Proc. Fourth Conf. Coastal Council on Wave Research, Berkeley, California.

Michell, J., H., (1983). «On the Highest Waves in Water», Phil. Mag. 36.

Havelock, T., H., (1918). «Periodic Irrotational Waves of Finite Height», Proc. Roy. Soc., Ser. A, 95.

Jonkman, J., M., (2007). *«Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine»*, NREL Technical Report No. TP-500-41958.

Jonkman, J., M., Sclavounos, P., D., (2006). «Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines», 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV.

Keulegan, G., E., (1950). «*Wave Motion*», In. E. Rouse (Editor) Engineering Hydraulics, John Wiley and Sons.

Keulegan, G., H., Carpenter, L., H., (1958). *«Forces on cylinders and plates in an oscillating fluid»*, Journal of Research of the National Bureau of Standards 60 (5): 423–440.

Wayman, E., N., Sclavounos, P., D., Butterfield, S., Jonkman, J., Musial, W., (2006). *«Coupled Dynamic Modeling of Floating Wind Turbine Systems»*, 2006 Offshore Technology Conference, Houston, TX.

Wiegel, R., L., (1964). «Oceanographical Engineering», Pertice-Hall.

Skjelbeira, L., Hendrickson, J., (1961). *«Fifth Order Gravity Wave Theory»*, National Engineering Science Company.

Borgaman, L., E., (1958). «Computation of the ocean waves forces on inclined cylinders», J. of Geophysical Research, Trans., AGU, vol. 39, No. 5.

Sarpkaya, T., (1977). «In-Line and Transverse Forces on Cylinders in Oscillaory Flow at High Reynolds Numbers», Journal of Ship Research, vol. 21, No.4.

Heronemus, W., E., (1972). *«Pollution-Free Energy From Offshore Winds»*, 8th Annual Conference and Exposition Marine Technology Society, Washington D.C..

Ibsen, L., B., Brincker, R., (2004). *«Design of a new foundation for Offshore Wind turbines»*, Denmark.

LeBlanc, C., (2009). «Design of Offshore Wind Turbine Support Structures Selected topics in the field of geotechnical engineering», Denmark.

Houlsby, G., T., Byrne, B., W., (2000). «Suction Caisson Foundations for Offshore Wind Turbines and Anemometer Masts», Wind Engineering.

Kurian, V., J., Ganapathy, C., (2010). *«Monopile Foundations for Offshore Wind Turbines»*, Kuala Lumpur.

Fulton, G., R., Malcolm, H., Elwany, H., Stewart, W., Moroz, E., Dempster, H., (2007). *«Semi-Submersible Platform and Anchor Foundation Systems for Wind Turbine Support»*, NREL/SR-500-40282.

Gehrman, F., H., (1972). «Forces on a Horizontal Cylinder Due to Non-Linear Waves», California.

Ormberg, H., Passano, E., Luxcey, N., (2011). «Global Analysis of a Floating Wind Turbine using an Aero-Hydro-Elastic model. Part 1: Code Development and Case Study», OMAE2011-50114.

Bursnall, W., J., Loftin, L., K., (1951). *«Experimental investigation of localized regions of laminar boundary layer separation»*, *Nut. Adv. Comm. Aero., Wash., Tech. Note* 2335.

Luxcey, N., Ormberg, H., Passano, E., (2011). «Global Analysis of a Floating Wind Turbine using an Aero-Hydro-Elastic model. Part 2: Code Benchmark Study», OMAE2011-50088.

Berthelsen, P., A., (2011). «Windopt- An optimization Tool for Floating Support Structures for Deep Water Turbines», OMAE2011-49985.

Chujo, T., Ishida, S., Minami, Y., Nimura, T., Inoue, S., (2011). *«Model Experiments on the Motion of a Spar type Floating Wind Turbine in Wind and Waves»*, OMAE2011-49793.

Nihei, Y., Matsuura, M., Fujioka, H., Suzuki, H., (2011). «An Approach for the Optimum Design of TLP type Offshore Wind Turbines», OMAE2011-50258.

Sclavounos, P., Tracy, C., Lee, S., (2008). «Floating Offshore Wind Turbines: Responses in a Seastate Pareto Optimal Designs and Economic Assessment», OMAE2008-57056.

Tomsen, J., H., Forsberg, T., Bittner, P., E., (2007). «Offshore Wind Turbine Foundations-The Cowi Experience», OMAE2007-29567.

Henderson, A., R., Vugts, J., H., (2001). *«Prospects for Floating Offshore Wind Energy»*, European Wind Energy Conference, Copenhagen, 2-6 July 2001.

Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., Luan, C., (2011). «Definition of the Semisubmersible Floating System for Phase II of OC4».

:

http://www.lorc.dk/offshore-wind/foundations/monopiles

http://www.lorc.dk/offshore-wind/foundations/suction-buckets

http://www.lorc.dk/offshore-wind/foundations/tripiles

http://www.lorc.dk/offshore-wind/foundations/tripods

http://www.lorc.dk/offshore-wind/foundations/jackets

http://www.lorc.dk/offshore-wind/foundations/floating-support-structures

http://www.lorc.dk/offshore-wind-farms-map/list

http://www.4coffshore.com/windfarms/

http://www.oceanenergycouncil.com/index.php/Offshore-Wind/Offshore-Wind-Energy.html

http://www.capewind.org/index.php

http://en.wikipedia.org/wiki/List_of_offshore_wind_farms

http://www.thewindpower.net/windfarms_offshore_en.php

http://www.nrel.gov/wind/pdfs/40745.pdf

http://www.iene.gr/energyweek09/articlefiles/ea/2ndSession/2_K_ROSSIS.pdf

http://en.wikipedia.org/wiki/Stokes_wave

http://en.wikipedia.org/wiki/Morison_equation

http://web.mit.edu/13.42/www/handouts/reading-morrison.pdf

http://www.orcina.com/SoftwareProducts/OrcaFlex/Documentation/Help/Content/html/Moris on_s_Equation.htm

 $\underline{http://ocw.tudelft.nl/fileadmin/ocw/courses/OffshoreHydromechanics/res00034/!5061727420}{34204f666673686f726520487964726f6d656368616e696373.pdf}$

http://research.dnv.com/hci/ocean/bk/c/a36/s0.htm

μ	:							
	μ							
AIRY	μ μ (input)	ι μ μ	Mor Stokes	ison 5 INA	μ IRY	μ Aiı μ	y STOKE	μ S. INSTOKES.
μ		μ	:					μμ
<pre>XEAD(3, \$TOL,TEN \$XGEN,YC \$ (X0(I), \$PSID(I) 77 FORMAT PI=4.*7</pre>	4PER, GEN, ZGEN, YO(I), ZO(I , IFPART(I) (615, 4F10.3 ATAN(1.)),DIAM ,ZEND(3/3F10.	TR(i), I),I=1 3/121(PFID(I) ,sol,1) 6F10.3,	, I10,F1	.0.3/))	I, DEF1	n, neigni,
-1 μ	μ							
MAIN (5)	μ	1	5		μ	l :		
1			()	μ				
2		μ	μ	().				
NCOLUM (5 μ μ) μ	121.	6	10.		μ	μ	μ
IFCMCD (5)	μ		11	15		μ:		
$1 \\ C_M = 2$	$C_D = 1$,							μ :
2 µ	μ N _{KC} , Re.			μ		μμ		
ΝΤΗΙΤ1 (5) μ	μ μ μ	04	16	20. 360°	Ŝt		μ	

$$\mu \qquad \mu \qquad \mu \qquad \mu \qquad 360. \qquad \mu \ \mu$$

$$St \qquad \mu \qquad \mu \qquad \mu \qquad \frac{360}{NTHIT1} \ \mu \qquad (St)_0 = 0^o \qquad : (St)_n = (St)_{n-1} + \frac{360}{NTHIT1} \ .$$

$$NTHIT2 \ (5) \qquad \mu \qquad 21 \qquad 25 \qquad \mu \ .$$

$$\mu \qquad , \qquad \mu \qquad ,$$

:
$$(\tilde{S}t)_n = (\tilde{S}t)_{n-1} + \frac{360}{NTHIT2} \mu \qquad \mu \quad (\tilde{S}t)_0 = 0^\circ.$$

Št 0^{o} 360°. μμ μ μ 360.

NCYLD1 (5) 30. 26 μ μ μ μμ μμ μ μ μ μ . NCYLD1 μ μ :

DEPTH (F10.3)	μ (α	31 40 <i>m</i> .	μ	μ	μ
HEIGHT (F10.3)	μ μ	$ \begin{array}{cccc} 41 & 50 \\ (H) & m \\ \end{array} $	μ	μ	μ
TOL (F10.3) μ ()(μ () MAIN 2)	51 60 μ (MAIN <i>m</i> .	μ 1)	μ sec	μ μ
TEMPER (F10.3)	μ	61 70	μ	μ	μ

 C^{o} .

μ

μ

– 2 μμ

– **3** μμ

X0(I)	(F10.3)	μ			1	10		μ	μ	μ
			μ	x			μ			
		μ.			<i>m</i> .					
Y0(I)	(F10.3)	μ			11	20		μ	μ	μ
			μ	У			μ			
		μ.			<i>m</i> .					
Z0(I)	(F10.3)	μ			21	30		μ	μ	μ
			μ	Z.			μ			
		μ.			m.					

DIAMTR(I) (F10.3)	μ	31 40		μ	μ
μ	μ		m.		
PFID(I) (F10.3)	μ	41 50	μ	μ	μ
	μ	μ μ			

.

IFPAR 21, 22	T(I)	(I10))		μ			61	l	70			μ		μ: μ	11, 12,
	•		μ	l	:											
	11-						μ				μ				•	
	12-						μ			μ	ZEI	ND(I).				
	21-						μ	μ		μ	(.	X 0, Y (),Z0))		μ
	22- ZEN	D(I).					μ	μ			μ	(<i>X</i> 0,	Y0, Z	(0)		μ
ZEND((I) (I	F 10.3))		μ			71		80			μ		μ.	
	μ	Z.				μ						•				
		:														
_		μ		u	μ									μ	,	
_		μ Į	ı.	٣	μμ		·				μ				3	μμ ,
_						μ μ	μ (μ	μ ,		3	μμ), μ	1	21.	,
_		μ				IJ	FPA	RT(I)	μ			11 , Z	21, E ND (Ι) μ		
_				μ	,	μ			•		μ	μ 0.2m	•	,		
_									μ					1	NTHI	Г1
	NTH µ	HIT2)		μ			μ	μ		!	μ (μ	(30	50 μ	,		
_			μ		•				μ			ł	μ	RES	ULTS,	
	Ļ	ι			RES	UNT	SIN	, RES	ULT	SDR	, RES	SULTS	тот			
			μ				μ						I	μ,		μ
								μ			•					