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Περίληψη

Ο προγραμματισμός ηλεκτρονικών υπολογιστών είναι μία επιστήμη που έχει γνωρίσει ραγδαία ανά-
πτυξη τις τελευταίες δεκαετίες. Τη σημερινή μέρα είναι εύκολο για τον οποιονδήποτε να γράψει κά-
ποιο πρόγραμμα σε κάποια γλώσσα προγραμματισμού. Αντίθετα, οι τεχνικές απόδειξης ότι ένα πρό-
γραμμα όντως κάνει αυτό που θέλει ο προγραμματιστής δεν είναι εξίσου ανεπτυγμένες. Η πιο απλή
μορφή απόδειξης για τη σωστή λειτουργία ενός προγράμματος είναι ο έλεγχος ορθότητας από ένα
σύστημα τύπων. Σε αυτή τη διπλωματική κατασκευάζουμε ένα στατικό σύστημα τύπων που εντοπί-
ζει σφάλματα σε αντικειμενοστρεφείς γλώσσες προγραμματισμού με δυναμικό σύστημα τύπων. Στη
συνέχεια, υλοποιούμε αυτό το σύστημα τύπων για ένα υποσύνολο της γλώσσας προγραμματισμού
Ruby, το οποίο εν συνεχεία επεκτείνουμε ώστε να καλύψει μεγαλύτερο μέρος της γλώσσας Ruby.

Το σύστημα τύπων που κατασκευάζουμε είναι βασισμένο στα Success Typings, τη θεωρία πίσω από
το εργαλείο Dialyzer που βρίσκει σφάλματα τύπου σε προγράμματα της γλώσσας Erlang. Η βασική
του ιδιότητα είναι ότι δεν υπάρχει περίπτωση να εντοπίσει σφάλμα σε πρόγραμμα το οποίο δεν έχει
σφάλμα. Δηλαδή, εντοπίζει μόνο υπαρκτά σφάλματα. Το εργαλείο που εντοπίζει τα σφάλματα στο
υποσύνολο της γλώσσας Ruby είναι εύκολο στη χρήση του, καθώς δεν χρειάζεται καμία υποσημείωση
τύπων για να λειτουργήσει σωστά.

Τέλος, παρουσιάζουμε μία βήμα προς βήμα σύγκριση με τη Diamondback Ruby, τον κύριο αντα-
γωνιστή στον εντοπισμό σφαλμάτων τύπου στη γλώσσα Ruby, σχολιάζοντας τις εξόδους των δύο
εργαλείων.

Λέξεις κλειδιά

Στατική ανάλυση, έλεγχος τύπων, εντοπισμός σφαλμάτων, σύστημα τύπων, Ruby
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Abstract

Computer programming is a very widespread science, practiced by many individuals. Nowadays, it is
easy for almost anyone to write a computer program. Unfortunately, it is still very difficult to prove
that a computer program will behave as it is supposed to, when executed. The most basic form of such
a proof is type checking. So, in this thesis, we present a static type system that detects type errors in
dynamically typed object oriented languages. Also, we implement this type system for a subset of the
Ruby programming language, which we then try to extend to cover a bigger part of Ruby.

The type system that we present is based on Success Typings, the theory behind the Dialyzer, a tool
that detects type errors in the Erlang programming language. Its most interesting property is that it
detects only definite errors, and it will never detect a false positive. The tool that we propose should
be easy to use, as it requires no intervention of the programmer, as for example in the form of type
annotations.

Finally, we present a step by step comparison between our tool and Diamondback Ruby, our main
competitor in the field of static type checking in Ruby, commenting on the outputs of the tools in the
process.

Key words

Static analysis, type checking, error detection, type system, Ruby
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Chapter 1

Introduction

1.1 Objectives

This thesis aims at defining a type system suitable for error detection in dynamically typed object-
oriented programming languages. It also aims at implementing the type system, in the form of a static
analysis tool for a subset of the Ruby programming language. The type system is based on Success
Typings, the theory behind the Dialyzer, a tool that performs static analysis and error detection in the
Erlang programming language, and also a part of the Erlang standard implementation [Dial].

The great debate is whether to aim for soundness or completeness. This type system favors soundness,
so that every error it detects is an actual error, and cannot be a false positive.

1.2 Motivation

Programming is a very widespread practice today and programming languages are a critical part of
it. From simple tasks to mission critical applications, computers can do almost every non-trivial task
efficiently. While programming can be practiced by anyone, making sure that a program won’t go
wrong is a quite cumbersome task.

In mission critical applications, it is mandatory to prove the correctness of a system before it enters
production. This process is usually lengthy and involves quite complex procedures. On the other hand,
when facing a simpler task, validation is still desired, but it has to be provided by very fast means.

On those grounds, type checking is the most basic type of program validation. By giving each program
variable a type, minimal proofs can be constructed that a program won’t result in some specific errors.
For example, a tool can determine very fast that adding a string to an integer will result in a crash.
Or worse, if the language is close to machine language, this addition will result in some meaningless
number. By type checking a program, it can be guaranteed that some mistakes will never happen.

The type system is a core part of a programming language. It provides a bridge between mathemat-
ics and computer programming, is part of the documentation of program components, and provides
guarantees of the correctness of a program. There are many approaches to the problem of type check-
ing. Some languages use static type systems, by validating all the types while the program is being
compiled, whereas other languages use dynamic type systems, and perform run time checks.

Although most widespread programming languages impose static type systems, dynamically typed
languages have a reasonable market share. On the one hand, dynamic typing solves the issues of
polymorphism in an elegant way, as there is no way a perfectly valid function call will fail due to
the strictness of the type system. On the other hand, dynamically typed languages have no guarantee
that every program that the parser accepts is actually a valid program, at least not before the actual
excecution. Also, it is usually difficult to find the faulty code, as the error occurs later in the execution.
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Over the years, many theories have emerged on how the safety of static typing and the expressivity of
dynamic typing can be gracefully combined. To name a few, a theory can impose a strict type system,
which rejects valid programs, it can use runtime profiling to extract static typing information or it can
use some type of annotation language. As a matter of fact, all of these methods have been tried with
Ruby [Furr09, An11]. While all methods are acceptable to some people, they are highly unacceptable
to others. So, the question arises, if there actually is a widely acceptable way to impose a static type
system on a dynamically typed language, so that it saves precious time from a programmer, without
imposing an unacceptable overhead. Success typings seem to have all these qualities, as they aim at
definite error detection, and not at type safety. After all, the truth is that a programmer will be reluctant
to adopt a static type checker, unless this type checker is fast and does not reject most of his programs
that run flawlessly. After all, he most probably chose a dynamically typed language in order to do
rapid prototyping, and to exploit the extra expressivity, and will not easily give these abilities back
again.

Finally, it should be noted that most dynamically typed languages are scripting languages, and favor
test driven development, which is presented as an alternative to static type checking. It is highly de-
batable whether test driven development can actually replace type checking, as type errors usually
happen by mistake, where least expected, and test driven development is based upon having a mini-
mal knowledge of where the mistakes might occur. Nevertheless, if a programmer can have both static
analysis tools and unit tests during development, at no extra cost, he might as well use both.

This thesis presents a type system, in which every valid program type checks, at the expense of also
accepting some programs that will crash when executed. By implementing a tool that is based on this
type system, the result should be an easy to use tool, which only rejects programs that have definite
errors, and should not have any false positive whatsoever. This way, this tool can either be used with
no extra overhead, or be possibly extended to use an annotation language.

1.3 Outline of the Thesis

The rest of the thesis is organised as follows: First of all, Chapter 2 gives an introduction to dynamic
typing, and the Ruby programming language. Chapter 3 introduces the subset of Ruby that we will
be using in order to introduce our type system. Chapter 4 introduces the idea of success typings, and
shows how they can fit in Core Ruby. In Chapter 5 we present the rules for the generation of success
typings for Core Ruby. In Chapter 6 we present the comparison between our tool and Diamondback
Ruby. And finally, in Chapter 7, we reach our conclusion, and present some future work that can be
done on the subject.
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Chapter 2

Dynamic Typing and Ruby

2.1 Introduction to Dynamic Typing

A dynamically typed language is a programming language that performs type checks while the pro-
gram executes, and not before or during the compilation. Some examples of dynamically typed lan-
guages are Python, Ruby, Erlang, PHP and JavaScript. Dynamically typed programming languages
favor more expressivity, metaprogramming, and polymorphism without complex additions to the type
system, such as templates or typeclasses.

As it is easier to explain by example, below lies a C-like pseudocode in a dynamically typed language:

1 x = 5;

2 x = x + 1;

3 x = ”hello”;

4 printf(”%s\n”, x);

Listing 2.1: Dynamically typed pseudocode

Here, the variable x is first assigned an integer value, and then, in themiddle of the program, is assigned
a string. No declaration is ever needed, and the compiler does not try to guess the type of each variable.

There are many challenges in finding type errors in a dynamic type system without executing the
program. For example, in most dynamically typed languages, a variable is allowed to change types
throughout the execution. This is true for Ruby, Python, PHP and JavaScript, but not for Erlang, which
allows only a single assignment to each variable. Also, the variables in most object oriented languages
are references to variables, and not variables themselves, so extreme caution must be taken for the
possible aliasing of variables. And last, but not least, most, if not all dynamically typed languages,
have a way to express higher order functions, which adds more complexity to a static type checker.

2.2 The Ruby Programming Language

2.2.1 Introduction to Ruby

The Ruby programming language is a scripting object oriented language, with dynamic typing. It was
designed with the programmer in mind, so its syntax is very high level. As a consequence, it is not easy
to parse with a tool. To add to that, there exists no up to date standard for the language, except for the
official implementation, and perhaps the capability to run the Ruby on Rails framework. Nevertheless,
it is strongly typed, and no type coersions happen implicitly. The last property makes it an interesting
candidate for a proof of concept tool that analyzes it statically.

So, lets just see how one defines a class, creates an instance, and calls a method:
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1 class Foo

2 def fun

3 ”Hello world”

4 end

5 end

6

7 x = Foo.new

8 puts x.fun

Listing 2.2: Ruby object orientation

A more interesting example follows, where the dynamic typing can be seen in action:

1 def printmult x,y

2 puts x * y

3 end

4

5 printmult 6, 7

6 printmult ’*’, 42

Listing 2.3: Ruby dynamic typing

So, this function multiplies its arguments and prints the result. The first call seems obvious. For the
second one, a certain background is needed. Every operator is actually a method, applied to the first
argument. So, in order for the second call to not result in an error, the String class must implement the
* method. Luckily, it does so, and the second call will print forty two stars.

Should the printadd function be called with an instance of Foo, defined by the previous example, and
an integer, though, the program will crash, saying that class Foo does not implement the * method.

1 class Foo

2 def fun

3 ”Hello world”

4 end

5 end

6

7 def printmult x,y

8 puts x * y

9 end

10

11 x = Foo.new

12

13 printmult x, 6 # this call will crash

Listing 2.4: Ruby dynamic typing error

An interesting fact is that the execution will crash at line 8, probably the least faulty line of the whole
program. It is actually difficult to blame the erroneous code. There are two possibilities in this example.
Either the error is at line 13, and the programmer did not mean to call this function, or the error lies at
line 11, where the variable x was initialized with the wrong type.

So, dynamic type checking is useless without a proper stack trace, and even then, it is far from perfect
in blaming the erroneous code. One final example, where it is more obvious that the function call is
not the true culprit:

1 intarray = [1,2,3]

2 intarray.push 4

3 intarray.push ”a” # oops

4 intarray.push 6
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5

6 for x in intarray do

7 puts x + 1

8 end

Listing 2.5: Ruby dynamic typing error 2

From the name of intarray, it seems rather obvious that the programmer did not intend to have a
string in this array. Yet the execution ended up having one, and crashing inside the for loop. Of course,
such an addition to the array might not be that obvious as in this example.

So, to sum up these examples:

• Ruby is object oriented and dynamically typed,

• The main reason for a Ruby program to crash when executed, is that a class does not implement
the method being called,

• It is difficult to blame the erroneous code by automatic means.

2.2.2 Type checking Ruby

As seen in the previous section, our best bet in statically type checking Ruby is to check whether all
method calls correspond to an instance method. But that is not the only type error found in Ruby.
Should a string be added to an integer, the Ruby interpreter will complain that it cannot convert the
argument to string. So, the Ruby built-in functions are statically typed. Except for that, the behaviour
when a method is missing can be changed, by overriding the “method_missing” method of a class.

Also, Ruby supports metaprogramming. To be more specific, Ruby allows method definitions that
are not resolved at compile time. So, a static tool might have to actually execute Ruby code before
performing a type check. An example:

1 class Color

2 Colors = [ [”red”,[1,0,0]], [”green”,[0,1,0]] ]

3

4 Colors.each { |t| define_method t[0] { t[1] } }

5 # now class Color has methods red and green

6 end

Listing 2.6: Ruby metaprogramming

To make matters even worse, with a little bit of effort, and maybe some eval trickery, someone can
add and remove methods from a class at run time. So, some clever programmer can render any static
analysis tool useless, with little to no effort.

1 class Foo

2 end

3

4 def genm x, y

5 eval ”class Foo; def #{x}; #{y}; end; end”

6 end

7

8 x = Foo.new

9

10 genm ”six”, 6

11 genm ”seven”, 7

12
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13 puts x.six * x.seven # prints 42

Listing 2.7: Ruby dynamic metaprogramming

So, every static type checking tool must depend on some programmer and tool implicit contract. If the
programmer tries to outsmart the tool, then the tool will simply fail.

It seems that the only solution to type checking Ruby is to begin bottom up, by creating a minimal
language, adding features, and see which features are problematic and which are not. Let’s see how
such a language could look like.

20



Chapter 3

Core Ruby

3.1 Syntax

The abstract syntax of Core Ruby should be fairly simple, yet allow for much expressivity. It should be
Turing Complete, and resemble Ruby, without having excess Rubyisms, in order to be easy to adapt to
other object oriented languages. So, it should have at least classes, methods, fields. Core Ruby should
not be free of side effects, in order to resemble most object oriented languages. Also, a branching
mechanism is mandatory.

Luckily, a very good language can be retrieved from [An11], and by performing some small changes,
we end up with Core Ruby, which can be seen on Figure 3.1.

In order to maintain some Ruby compatibility, the allowed names were chosen in the following way:

• local variable names begin with a small letter

• field names begin with an @ symbol

• method names begin with a small letter, or consist of a single mathematical operation symbol.

• class names begin with a capital letter

3.2 Operational Semantics

Since a language definition is not complete without proper semantics, the operational semantics of
Core Ruby can be seen in Figures 3.2 and 3.3, while the definition of each symbol can be seen in
Figure 3.4.

Each rule consists of six elements. The expression being evaluated alongside the memory state, the
class environment in which it is being evaluated (the object for which the current method has been
called), the list of classes, which stays the same for the entire execution, and the resulting expression
and memory state.

3.3 Examples

So, lets write a simple example in this language:
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expressions e ::= nil | self | x | @f
| x = e | @f = e | A.new(e1, ..., en) | e.m(e1, ..., en)
| e; e′ | (e) | if e then e′ else e′′ end

methods m ::= def m(x0, ..., xn) e end
classes c ::= class A d∗ end

programs P ::= c ∗ e

x : local variable names @f : field names
m : method names A : class names

Figure 3.1: Core Ruby Syntax

(e1, µ)
l,c∗→ (e′1, µ

′)

(e1; e2, µ)
l,c∗→ (e′1; e2, µ

′)
(v; e, µ)

l,c∗→ (e, µ)

(eobj , µ)
l,c∗→ (e′obj , µ

′)

(eobj .m(e0, ..., en), µ)
l,c∗→ (e′obj .m(e0, ..., en), µ

′)

(ei, µ)
l,c∗→ (e′i, µ

′)

(vobj .m(v0, ..., vi−1, ei, ei+1, ..., en), µ)
l,c∗→ (vobj .m(v,0, ..., vi−1, e′i, ei+1, ..., en), µ′)

(e, µ)
l,c∗→ (e′, µ′)

(x = e, µ)
l,c∗→ (x = e′, µ′)

(e, µ)
l,c∗→ (e′, µ′)

(@f = e, µ)
l,c∗→ (@f = e′, µ′)

(e1, µ)
l,c∗→ (e′1, µ

′)

(if e1 then e2 else e3, µ)
l,c∗→ (if e′1 then e2 else e3, µ′)

v 6≡ nil

(if v then e1 else e2, µ)
l,c∗→ (e1, µ′)

(if nil then e1 else e2, µ)
l,c∗→ (e2, µ

′)

Figure 3.2: Core Ruby Operational Semantics
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(self, µ)
l,c∗→ (l, µ)

µ = 〈h, s〉 (x 7→ v) ∈ s

(x, µ)
l,c∗→ (v, µ)

µ = 〈h, s〉 µ′ = 〈h, s{x 7→ v}〉

(x = v, µ)
l,c∗→ (v, µ′)

µ = 〈h, s〉 (l 7→ 〈A, d〉) ∈ h (@f 7→ v) ∈ d

(@f, µ)
l,c∗→ (v, µ)

µ = 〈h, s〉 (l 7→ 〈A, d〉) ∈ h µ′ = 〈h{l 7→ 〈A, d{@f 7→ v}〉}, s〉

(@f = v, µ)
l,c∗→ (v, µ′)

µ = 〈h, s〉 l′ 6∈ dom(h) µ′ = 〈h{l′ 7→ 〈A, ∅〉}, s〉

(A.new(e0, ..., en), µ)
l,c∗→ (l′.initialize(e0, ..., en); l′, µ′)

(with 〈l′, s′〉 do v, µ)
l,c∗→ (v, µ)

(e, 〈h, s′〉) l′,c∗→ (e′, 〈h′, s′′〉)

(with 〈l′, s′〉 do e, 〈h, s〉) l,c∗→ (with 〈l′, s′′〉 do e′, 〈h′, s〉)

µ = 〈h, s〉 (l′ 7→ 〈A, d〉) ∈ h (def m(x0, ..., xn) = e) ∈ d∗ (class A = d∗) ∈ c∗

(l′.m(v0, ..., vn), µ)
l,c∗→ (with 〈l′, {x0 7→ v0, ..., xn 7→ vn}〉 do e, µ)

Figure 3.3: Core Ruby Operational Semantics (Continued)

µ ::= 〈h, s〉
s ::= ∅ | s, x 7→ v

h ::= ∅ | h, l 7→ 〈A, d〉
d ::= ∅ | d, @f 7→ v

v ::= nil | l

µ : memory h : heap s : stack
x : local variable v : value l : object reference
A : class name d : field list @f : field

Figure 3.4: Core Ruby Operational Semantics Symbols
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1 class Bar

2 def bar(x)

3 nil

4 end

5 end

6

7 class Foo

8 def foo(x,y)

9 x.bar(y)

10 end

11 end

12

13 foo = Foo.new;

14 foo.foo(Bar.new, Bar.new)

Listing 3.1: Core Ruby simple example

In order to write examples that have any meaning, Core Ruby needs arithmetic. Since the language is
Turing Complete, there are many ways to do that. But, considering that if expressions rely on whether
the condition is nil or anything else, it is fairly logical that the bits will be represented by fields that
are either nil or something else. Since there are only two literals in our language, nil and self, those
will be used.

Even then, there are many options. One choice is to use fixed point arithmetic, by deploying a brute
force increase method with eight if clauses, and define addition by increasing, and multiplication by
adding. While this works, it is a rather slow implementation.

Instead, the decision was made to define infinite precision numbers represented with a singly linked
list of bits. Also, the addition was implemented as an one bit adder with carry. This way arithmetics
should have linear complexity instead of being exponential in relation to the size of the numbers.

So, a simple preprocessor should be coded, to convert natural number literals to Core Ruby syntax
like this:

42 = Nat.new.x2(Nat.new.x2p1(Nat.new.x2(Nat.new.x2p1

(Nat.new.x2(Nat.new.x2p1(Nat.new.zero(nil)))))))

This way, and by also adding code to the interpreter, so that it can convert this representation to natural
literals, Core Ruby can do arithmetic without the slightest change in the semantics.

So, some examples that seem more real world:

1 class List

2 def tabulate(tup) # { funobj, count }

3 @data = tup.getFst(nil).fun(tup.getSnd(nil));

4 if tup.getSnd(nil).iszero(nil) then

5 @next = nil

6 else

7 @next = List.new;

8 tup.setSnd(tup.getSnd(nil).-(1));

9 @next.tabulate(tup)

10 end;

11 self

12 end

13

14 def foldl(tup) # { funobj, acc }

15 if @next then

16 accelem = Tuple.new;

17 accelem.setFst(@data);
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18 accelem.setSnd(tup.getSnd(nil));

19

20 tup.setSnd(tup.getFst(nil).fun(accelem));

21

22 @next.foldl(tup)

23 else

24 tup.getSnd(nil)

25 end

26 end

27 end

28

29 class Double

30 def fun(x)

31 x.+(x)

32 end

33 end

34

35 class Sum

36 def fun(tup)

37 tup.getSnd(nil).+(tup.getFst(nil))

38 end

39 end

40

41 tup = Tuple.new;

42 tup.setFst(Double.new);

43 tup.setSnd(6);

44 lst = List.new.tabulate(tup);

45

46 tup = Tuple.new;

47 tup.setFst(Sum.new);

48 tup.setSnd(0);

49

50 lst.foldl(tup)

Listing 3.2: Core Ruby higher order example

This example creates a list by doubling all numbers ranging from 1 to 6, and then adds them by using
a freshly created higher order function, similar to the foldl function most functional languages have
(and similar to the Ruby injectmethod of the Array class). In order for this example to be complete,
it should be noted that the Tuple class is trivial to write, as it only has two setters and two getters. The
comments present at the function headers show what the arguments should contain.

Another fairly complex example:

1 class Tree

2 def addLeft(left)

3 @left = left

4 end

5

6 def addRight(right)

7 @right = right

8 end

9

10 def setData(data)

11 @data = data;

12 self

13 end

14

15 def addRec(u)

16 sum = 0;

17 sum = sum.+(@data);

18 if @left then sum = sum.+(@left.addRec(nil)) else nil end;
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19 if @right then sum = sum.+(@right.addRec(nil)) else nil end;

20 sum

21 end

22 end

23

24 a0 = Tree.new.setData(0);

25 a1 = Tree.new.setData(1);

26 a2 = Tree.new.setData(2);

27 a3 = Tree.new.setData(3);

28 a4 = Tree.new.setData(4);

29 a5 = Tree.new.setData(5);

30 a6 = Tree.new.setData(6);

31

32 a0.addLeft(a1);

33 a0.addRight(a1);

34

35 a1.addLeft(a2);

36 a1.addRight(a3);

37

38 a2.addLeft(a4);

39 a2.addRight(a5);

40

41 a3.addLeft(a6);

42

43 a0.addRec(nil)

Listing 3.3: Core Ruby trees

This example constructs a binary tree (actually it is a directed acyclic graph, but this should not really
matter), so that the root has number 0 in it, while each subtree has all numbers from 1 to 6, once. Then,
it adds all the numbers.

By now, it should be fairly obvious that the language is Turing Complete, although there is no formal
proof, and also allows for a great deal of expressivity. Also, it has some features that make static type
checking more difficult, such as the absence of built-in arrays. This feature seems rather obligatory, for
two main reasons. First of all, it is not difficult to create an obscure class in plain Ruby that emulates
the interface of an array (operators are method calls after all). Secondly, a Ruby array can have values
of different types at each position. So, it is from very difficult to utterly wrong to treat an array as a
built-in, from the perspective of the static type checker, unless the checker does some very pessimistic
assumptions.
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Chapter 4

Success Typings

4.1 Overview

So, what are success typings, and how do they fit in this thesis? The best way to introduce success
typings is to introduce them intuitively, and try to add formal definitions later, where possible.

A success typing is a type information we assign to an expression, that gives information about an
upper bound on the possible types this expression can have. So, if such a set can be computed, and
if we can somehow later on determine the actual type of the expression, we can just see if the actual
type exists in the success typing. If not, by definition, we have a type error.

This makes more sense in method arguments. We try to determine what types an argument can have,
by examining the code of the method. Then, should we detect a method call to the aforementioned
method, we compare the type of the actual parameter with the success typing of the formal parameter,
and try to determine whether a type clash has occured.

4.2 Formal Definition

As stated in the introductory publication of the success typings [Lind06], a success typing of a function
f is a type signature (α) → β, such that whenever an application f(p) reduces to a value v, then v ∈ β
and p ∈ α.

Since we are going to impose a type system to more than functions, a more generalized definition
would be appropriate. So, a success typing of an expression e is a type signature t, such that when e
reduces to a value v, then v ∈ t.

Note that a success typing does not guarantee type safety. It simply guarantees that, should the expres-
sion be type safe and reduce to a value, this value will have a type that belongs in its success typing.
This way, should we observe in any way that the success typing of an expression is in conflict with
an observed actual type, the evaluation of this expression cannot possibly succeed. So, for example, if
we infer that a method argument has a success typing t, and later in the analysis that method is called
with an argument of success type st, and t /∈ st, we have detected a definite type error.

4.3 Dynamic Typing and Success Typings

The reason for trying to find only definite errors is fairly simple. Most programmers who favor a
dynamically typed language will be hesitant to use a tool that limits the expressivity of the aforemen-
tioned language. If a tool finds a lot of errors that simply are not there, that tool will be used in very
rare cases, such as in mission critical applications, or when big money is involved. But if a tool finds
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only definite errors, even if the number of errors it detects is rather small, and if this tool is easy to
use and runs fast, there is no reason for someone to not use it, even out of disbelief for the tool itself.

After all, the problem is much worse in a dynamically typed object oriented language, as it is very
easy to have false positives, and enrage the average programmer. First of all, the biggest part of the
call graph is not known at compile time (and in the case of Core Ruby, none of it), and even with
careful analysis, it is very likely to miss a large portion of it, or generate a wrong one. Add this to the
extreme aliasing existing in all object oriented languages and it is quite easy to add a constraint that
should not be there, by speculating and not by knowing. More on this later, when we try to compare
our tool with existing implementations.

So, in order to infer the success typing of each expression, we are going to devise a constraint-based
type inferencer. Many challenges have to be overcome. Success typings were conceived for the Er-
lang programming language, which has some properties that make type checking more precise, and
somewhat easier.

Erlang allows a single assignment for each variable, the assignment being treated similarly to a Prolog
unification. Variables can be either unbound or bound, and consecutive “assignments” actually unify
their arguments, raising an error should the two terms differ. So, once bound, the type of a variable
cannot change. Also, although Erlang has facilities for higher order functions, it has a wide range of
primitives and built-ins that cannot be overriden (opposed to, for example, the square bracket operator
in an array access in Ruby), that can be treated in some special, practical way that detects definite
errors. Last, but not least, by default each function is called with static dispatch. Unlike Ruby, where
everything is higher order, and every method call is dispatched dynamically. For example, from an
Erlang X + Y expression, we can infer that X and Y are some kind of numbers. On Ruby, though, the
only thing that we can infer is that X implements the + method, and if, and only if we know, for some
reason, the type of X, we can try to see if the Y argument is an acceptable argument to this method.

When trying to solve such a practical problem, it is impossible to guarantee that some solution will
work for every possible case. After all, such an “evil” example has been shown in the previous chapter
(Listing 2.7), and it is fairly easy to create an “evil” code in Erlang that confuses the Dialyzer (e.g.,
Figure 4.1) to generate a false positive. It is far more important to guarantee that a tool works well for
most cases, if the tool is to reach production. And the “most cases” are defined by the paradigms a
language (and its community) favors, not by the paradigms a language can actually support, usually
in some confusing way.

Just to clarify, it is not every case of eval that renders the tool useless. It is the use of eval that
invalidates the typings of an expression. Simply put, any eval that changes the environment of exe-
cution, either by adding methods or by changing variables. Otherwise, the tool can safely ignore that
eval and not miss the target of finding only definite, but not all, errors. It is highly debatable whether
non-isolated eval invocations are considered good practice, in the average case.

4.4 Success Subtyping

Before finegraining the success typings theory to our language, there is a last detail. Since a success
typing is not a classic typing, its subtyping is special. A success typing contains all the types an ex-
pression can have, so it actually captures a set of possible values for this expression. With this in mind,
it is easy to define the success subtyping.

x : a, y : b, a vS b denotes that the set of possible values of variable x is a subset of the set of possible
values of variable y. So, if we “promote” each a type variable to b, and if we detect a definite type
error for type variable b, that error is also a definite error for type variable a.

28



1 -module(evil_erlang).

2 -export([malicious/0]).

3

4 malicious() ->

5 file:copy(’foo2.beam’, ’foo.beam’),

6 X = foo:foo(6.0),

7 file:copy(’foo1.beam’, ’foo.beam’),

8 X.

1 -module(foo). % compiled and renamed to foo1.beam

2 -export([foo/1]).

3

4 foo(X) -> X rem 2.

1 -module(foo). % compiled and renamed to foo2.beam

2 -export([foo/1]).

3

4 foo(X) -> X * 7.

For Dialyzer to generate a false positive, we just have to compile both foo modules, and
rename the first one to foo1.beam and the second one to foo2.beam. Dialyzer detects
that in the first foo module, the rem operator will be applied to a float, a type error in
Erlang. But our code changes the module before invoking the method (in a “dynamic hot
code swapping” manner), and does not result in a type error. Similar behaviour might
be achieved if we invoke the compiler from within the Erlang runtime system, and the
behaviour is in no way different from any “eval magic”, as in both examples we execute
code unavailable to the static analysis tool.

Figure 4.1: Confusing the Dialyzer

Unfortunately, this definition leads to extremely counter intuitive subtyping relations, but it has been
proven to work well in practice. For example, although it is obvious that {1, 2, 3} vS Natural,
subtyping in higher order is counter intuitive. For example, in function hierarchy we have something
like this: {1, 2, 3} → {4, 5, 6} vS Natural → Natural. The object hierarchy is far worse: {foo :
{1, 2} → {3, 4}} vS {foo : Natural → Natural, bar : c → d}. The success subtyping here is
almost the opposite of the classic subtyping!

4.5 Success Typings in Core Ruby

The final thing that remains, before presenting the inference mechanism, is to explain how success
typings will fit in Core Ruby. We have to see each class as a set of methods. This way, we can use
the success subtyping rule to our advantage. An upper bound to the possible types of an object can
be determined by the methods of this object, that a part of code tries to call. For each method call
we detect, we must force the callee to implement this method. So, its success typing must contain
all classes that have this method, with the same arity. While this is difficult to denote, as we cannot
possibly know all the classes that have this method, it is easy to add a subtyping constraint that must
hold for our object, in order for the program to pass validation.
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Chapter 5

Success Typing Inference for Core Ruby

5.1 Constraint Generation

The problem of inferring the success typings can be solved with constraint based type inference rules.
Before showing the rules, the typing relation has to be displayed and analyzed.

∆; Γ; Φ
l̀
e : t & C; Γ′

This relation takes the list of classes, the environment, the types of fields, the object in which this
operation takes place (the object of the method currently executing) and the expression being inferred
as input, and returns a type, a set of constraints and a new environment. A formal analysis of the
symbols exists in Figure 5.1.

So, having defined the typing relation, the inference rules, alongside a brief explanation for each rule,
follow. The rules can be seen on Figure 5.2.

5.1.1 Literals

The rules concerning the literals of the language (equation 5.1), should be pretty straightforward. The
type of nil is the class with no methods, and the type of self is obtained by finding the type of the
current class, which is provided as input to the relation, in the list of classes. These rules generate no
constraints, and do not change the environment in any way.

t = µ | α | A | t1 ∨ t2

µ = ∅ | µ , m 7→ (t1 → t2 when C)

Φ = ∅ | Φ,@f 7→ t

Γ = ∅ | Γ, x 7→ t

∆ = ∅ | ∆, A 7→ µ

C = ∅ | C1 ∨ C2 | C1 ∧ C2 | {t1 vS t2} | {t 6= {}} | {t1 = t2} | {t1 ∈ t2}

t : type µ : list of methods α : type variable A : class name
m : method name Φ : list of fields @f : field name Γ : list of local variables
∆ : list of classes C : constraints

Figure 5.1: Typing relation symbols
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∆; Γ; Φ
l̀
nil : {} & ∅; Γ (l 7→ m) ∈ ∆

∆; Γ; Φ
l̀
self : m & ∅; Γ

(5.1)

(x 7→ t) ∈ Γ

∆; Γ; Φ
l̀
x : t & ∅; Γ

(@f 7→ t) ∈ Φ

∆; Γ; Φ
l̀
@f : t & ∅; Γ

(5.2)

∆; Γ; Φ
l̀
e : t & C; Γ′

∆; Γ; Φ
l̀
x = e : t & ∅; Γ′{x 7→ t}

∆; Γ; Φ
l̀
e : t & C; Γ′ (@f 7→ s) ∈ Φ

∆; Γ; Φ
l̀
@f = e : t & C ∧ {t ∈ s}; Γ′ (5.3)

(A 7→ m) ∈ ∆ ∆; Γ; Φ
l̀
m.initialize(e0, ..., en) : tc & C; Γ′

∆; Γ; Φ
l̀
A.new(e0, ..., en) : m & C; Γ′ (5.4)

∆; Γ; Φ
l̀
e1 : t1 & C1; Γ1 ∆; Γ1; Φ

l̀
e2 : t2 & C2; Γ2

∆; Γ; Φ
l̀
e1; e2 : t2 & C1 ∧ C2; Γ2

(5.5)

∆; Γ; Φ
l̀
eobj : tobj & Cobj ; Γ−1 ∆; Γi−1; Φ

l̀
ei : ti & Ci; Γi ∀i ∈ 0, ..., n tr = fresh()

∆; Γ; Φ
l̀
eobj .m(e0, ..., en) : tr & Cobj ∧ C0 ∧ ... ∧ Cn ∧ {{m : (t0, ..., tn) → tr} vS tobj}; Γn

(5.6)

ta = fresh() ∆; Γ; Φ
l̀
ec : tc & Cc; Γc ∆; Γc; Φ

l̀
et : tt & Ct; Γt

∆; Γc; Φ
l̀
ef : tf & Cf ; Γf 〈Γn, 〈Cnt, Cnf 〉〉 = Γt t Γf

∆; Γ; Φ
l̀
if ec then et else ef : ta &

Cc ∧ (({tc 6= {}, ta = tt} ∧ Ct ∧ Cnt) ∨ ({tc = {}, ta = tf} ∧ Cf ∧ Cnf )); Γn

(5.7)

∀x ∈ dom(Γt) ∪ dom(Γf ) : ∃tn : (x 7→ tn) ∈ Γn ∧
(∀tt : (x 7→ tt) ∈ Γt ⇒ {tt = tn} ∈ Cnt) ∧ (∀tf : (x 7→ tf ) ∈ Γf ⇒ {tf = tn} ∈ Cnf )

〈Γn, 〈Cnt, Cnf 〉〉 = Γt t Γf

Figure 5.2: Core Ruby type inference rules
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5.1.2 Variables

Next, the rules about the variables (5.2). These are also simple rules, in that they neither change the
environment, nor generate any constraint just like the literal rules.

In order to find the type of a local variable, we just have to search our environment, Γ, which contains
all the mappings from local variables to types. And, in order to find the type of a field, we search the
field environment Φ for the occurence of our field.

5.1.3 Assignments

The assignment rules are more complex (5.3). In both local variable and field assignments, we have the
same prerequisite. We must infer the type, constraints and new environment of the right expression.

Then, in local variables, things are fairly easy. We just have to return a new environment, which
contains the new mapping, from our local variable to its new type.

In field assignment, though, things are a bit trickier. We cannot just change the field environment. The
problem is that there is no guarantee that, later in the inference, a field will not change types. As a
matter of fact, due to extreme aliasing in the language, a field type can not be guaranteed to stay the
same after any method call, unless a full aliasing analysis is performed. Just for the record, consider
the example in Figure 5.3.

So, instead of bookkeeping the current type of each field, the easiest sound solution is to collect all
the possible types a field can have, throughout the execution of the program. And in order to do that,
our course of action in a field assignment is to simply generate a constraint that denotes that we just
found another possible type for the field.

Note that, if the program has a setter, a method that sets a field to its argument, then the type of that
field cannot be constrained. A setter can be called from everywhere in the program, and since we
cannot have a complete call graph, it is impossible to collect all the types for that field.

But the fields that have setters are not the only possible fields in a class. For example, in a linked
list, the field pointing to the next node can usually be determined to be of List or NilClass type.
So, when a method of this field is called, the type of the field can be temporarily assumed as List, as
NilClass holds no methods in Core Ruby. Of course, after the method call, there is no way to guarantee
that the field has not changed type.

5.1.4 New

The only difficulty found in the rule about new (5.4) is that we have to find the constraints of the
constructor call. The type of the class is found in the list of classes, the constructor call constraints are
generated, and the return type is the type originally found in the list of classes.

Actually, the constructor call constraints will be the constraints produced by the type inference of the
arguments, and a subtyping relation, which forces our object to implement the initialize method,
with the correct arity. Of course, by default, each class should implement a default constructor with
no arguments. This is a minor detail, not concerning the theory.

5.1.5 Semicolon

The semicolon rule (5.5) should be no different than a rule from a static type system. The inference of
both operands is required, keeping all constraints but discarding the type of the first expression. There
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1 class Foo

2 def m(u)

3 u.set(Bar.new)

4 end

5 end

6

7 class Bar

8 def m(u)

9 u.set(Six.new)

10 end

11 end

12

13 class Six

14 def *(s)

15 FortyTwo.new

16 end

17 end

18

19 class Seven

20 end

21

22 class FortyTwo

23 end

24

25 class Foobar

26 def foo(u)

27 @f = Foo.new

28 end

29

30 def bar(u)

31 @f = Bar.new

32 end

33

34 def chg(u)

35 @f.m(u)

36 end

37

38 def set(x)

39 @f = x

40 end

41

42 def check(u)

43 @f.*(Seven.new)

44 end

45 end

46

47 foo = Foobar.new;

48

49 foo.foo(nil);

50 foo.chg(foo);

51 foo.chg(foo);

52 foo.check(nil)

It is difficult to impossible to follow the type of the field. Most tools will detect a false
positive, while the program executes flawlessly and returns an instance of FortyTwo class.

Figure 5.3: Core Ruby Aliasing
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is nothing more to be said here.

5.1.6 Method Call

Probably the most interesting rules are the rules about method calling and branching. In a method call
(5.6), it should be made clear that the inferencer can in no way know what code will be called, at the
time of constraint generation. That is because, in the general case, the type of the object whose method
is called is not known before solving the constraints.

For example, if the programmer calls a method of the argument of a method, it is not possible to know
the type of the argument without instantiating the first method call. After all, in the Core Ruby syntax,
the callee of a method can be a complex expression, which cannot be resolved while generating the
constraints.

The point of all this is that it is not possible to find the correct code to analyze, or the return type
of a method, at least not in this phase of type checking. Instead, a more general approach must be
followed. By generating new variables and the right constraints, all heavy work can be outsourced to
the constraint solver. The solver can perform the correct substitutions, and instantiate the method in
order to fully type check the program, if it can reliably determine the type of the callee object.

5.1.7 If-Then-Else

Last, but not least, there is the branching rule (5.7). This is by far the most complex rule, and also the
most difficult rule to express in formal language.

The first part should be pretty straightforward. First of all, we infer the type, constraints, and output
environment of the condition. Then, we infer both clauses of the statement with the same input envi-
ronment, which is the output environment of the condition. This should not be very different from the
corresponding static typing rule.

Then, there lies the obscure part of merging the two environments, an act which also generates con-
straints. The idea is simple. When merging the environments of an if-then-else statement, for every
variable that exists in at least one of the two environments, produced by the two clauses of the if state-
ment, an entry is added to the output environment, and an equality constraint is added to the respective
constraint set that keeps the type it had at the end of the respective clause. It is up to the solver to handle
the rest, and combine the two constraint sets.

Finally, the last part of the output constraints should be straightforward. We have a disjunction. We
either have a condition that is not nil, while the constraints of the true expression must be valid, as well
as the constraint that the output type must be equal to the output type of the true expression. Or, we
have a condition that is nil, alongside the obligation that the constraints of the false expression hold,
and the output type is the same as the output type of the false condition.

5.2 Constraint Preprocessing

Before solving the constraints, there is a way to simplify the inference. By performing a single pass
to the constraints, a preprocessor can lift all the t1 ∈ t2 constraints, by calculating the largest set of
classes a field can possibly have. This may seem suboptimal, but it guarantees a much easier handling
of fields.

The only corner case in this preprocessing is that, when a possible type for a field is the type variable
of a method argument, then there is no possible way to constrain that field. The reason is simple, since
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no guarantees exist that there is no aliasing, there is no possible way to trace back all the possible calls
of this particular method. This is a must, if the no false positive policy is to be preserved. Figure 5.3
is a good example about this.

Unfortunately, since no analysis is performed on each individual method before the whole constraint
set is processed, at this point, every type variable must be assumed as “tainted”, and the field should
be assumed to be of the “__AnyClass” class. Of course, this should not prove too difficult to change
in future work, and perform an analysis on each individual method, hoping that some type variables
will be substituted with known types.

Also, the return type of every function can be substitutedwith a new variable, and an equality constraint
can be generated, in order to handle corner cases where the argument type is the same as the return
type, or when the return type is known at generation time.

5.3 Constraint Solving

Solving the constraints is not trivial. The problem is that it is very difficult to express the solver in a
formal language, the main culprit being the “when” clause of constraints. Unfortunately, the absence
of formal definition of the “when” clause propagates, so it is impossible to prove some implicit as-
sumptions mathematically. Also, it is difficult to determine the order the constraints must be handled.
Instead, the solver will be presented intuitively. So, the only thing that remains is to define what the
solver will do for each type of constraint in the set. The solver begins with the constraints generated
by the expression outside of the classes.

The constraint that a type is not nil is probably the most trivial one. If, after some substitutions, the
solver ends up having a class as an operand, there is a type error. Of course, since this constraint is
generated only in the false clause of an if statement, this type error just means that the condition cannot
possibly be false. But, if the operand of this constraint is not a class, but a type variable, or a union of
type variables, this constraint should be reserved for later use.

Then, there is equality. Despite the simple nature of equality, it is difficult to handle it in an algorithm.
If either operand is a type variable, things are easy. The solver just substitutes the type variable in the
whole constraint set with the other type variable. If either operand is of the “__AnyClass” type, the
constraint is discarded as always true. If both operands are classes, but not the same class, a type error
is generated.

It should be noted that the equality of two different classes is not necessarily a type error, even though
one is generated. The error is generated because of the implicit assumption that this should never
happen, unless one operand is of the “__NilClass” type.

Unfortunately, it is difficult to handle other cases, in general. For example, if another preprocessing
or solving scheme is ever used, it is difficult to prove equality of an anonymous class and a named
class, since the constraints must perfectly match. Such constraint should never occur with the current
implementation. Luckily, the success typing theory protects us in that, should we fail to handle an
equality and simply discard it, we will not generate a false positive. Worst case scenario, we will fail
to detect an error. Of course, while this assumption might be obvious intuitively, it is difficult to prove
with mathematics.

The next constraint class is the success subtyping. Of course, if something like a vS b ∧ b vS a
is detected, it can be promoted to an equality. Again, there is an implicit assumption that this should
never happen. Actually, the only expression that should appear as the first operand should be a list of
methods, an anonymous class. So, if the second operand is of the “__AnyClass” type, the constraint
is discarded as true. If it is a type variable, the solver should wait for a substitution. Else, there are two
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ways to continue. The mathematically correct way is to append a new set of constraints in our current
set, which will be defined in short time. Unfortunately, this will make the generation of backtraces very
difficult, since we actually perform a breadth first search. Instead, a depth first search schema will be
employed, and the solver will “enter” the solving of the method, solve the constraints, and return some
equality constraints to the outer solving, for the return values. It should definitely be noted that there is
a problem here. If the solver enters the method, while the argument has not been properly substituted,
the solver might fail to find some errors. Of course, it should not generate false positives this way.

So, what set of constraints should the solver process, during such a subtyping constraint? For each
method, it should solve the constraints in the “when” constraint, by forcing the argument type and
the return type in the right operand to be equal with the argument type and the return type of the left
operand. This seems utterly wrong at first, so a proper explanation must be given.

The whole problem with the “when” clause is that, there are two obligations an argument must comply
to, in order for the call to not fail. It should of course be a success subtype of the formal argument.
But, also, it should be a success supertype of the inferred success subtypes of the formal argument.
That is, it should be between the formal argument, and the formal argument infimum, known by its
constraints. Think of this example:

{add : {} → a} vS {add : b → c when {{foo : {} → d when C} vS b, c = d}}

What this constraint says might seem difficult to comprehend, but it is not. This constraint represents
a method call to add of an object, which has an instance method called add, so no type error here. But,
inside this method, there exists a call to method foo of the argument, while the return value of the foo
method is in fact also the return value of the add method (but this fact will not concern us).

Should we perform the intuitive solving inside the add method, we will end up with the following
constraints:

{} vS b

a vS e

{foo : d → e when C} vS b

Although correct, they cannot detect the type error that we called our method with nil, yet we call the
method foo of the nil class. And, it should be obvious by intuition that the following constraint also
holds:

{foo : d → e when C} vS {}

This is the constraint that will lead to the type error, and unfortunately the mathematical rules have to
be bent in order to generate it. Since the formal argument type and the formal return value type will
always be type variables (partly thanks to the preprocessing), and since the formal argument will never
be pinpointed to be of a certain class, should an equality be used, the actual argument type will end up
with the desired constraints. Even if the formal argument has a definite known type, for example if an
annotation language will be used, the equality will still hold. Unless of course a subtyping annotation
is used, when we have to actually copy each argument constraint to force it to hold for the actual
argument type, and the equation trick would lead to false positives.

So, by recursively solving the “when” clause of the method, and by returning an equality for the return
value, the solver will detect definite errors. Of course, this recursion also means that there must be a
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stop condition, in order to prevent the tool from entering an infinite loop. The best point to stop the
recursion seems to be when the solver tries to recurse into a method already checked, with the same
type variable as an argument. Also, in the case of solving a method call that has already been solved for
the same argument type, but is not a recursive method call, memoisation could be reliably employed
in order to produce correct results for the return type faster.

Last, but not least, there can be a union of types as the right operand of the subtyping constraint.
There are three courses of action. Either tractability can be chosen, and the constraint can be ignored
completely, or all clauses can be executed, until one comes to a solution, or all clauses can be executed,
so not only a type error can be detected, but also the return value can be constrained. There is no right
answer here. The prototype implementation chooses the final course of action, but this effectively
makes the time to solve the constraints exponential in relation to the length of the program, instead of
polynomial. Of course, since ignoring a constraint leads to no false positives, there can be a maximum
number of union length, or a maximum number of possible paths, before the solver refuses to execute
all paths. Of course, in the worst case, this trick does not lessen the execution time in the slightest.

About the disjunction of constraints, mathematically speaking, all the constraints should be solved
twice. This will yield the maximum number of type errors. The problem is that this does not only
become exponential in the worst case, but it becomes exponential in every case. If there are n if state-
ments, one below the other, then all constraints will have to be solved 2n times. This is unacceptable.
Let’s not forget that this is true, even if the if statements are in different methods, provided that these
methods are called sequentially. So, a compromise has to be made. Each clause will be solved once,
and the environments will be merged at the end of the if clause. This is where the constraints from
merging the environment make sense. They provide the equalities needed in order to create union
types, where needed. A type error will be propagated only if all disjunctions fail.

Fortunately, the union of types in a subtyping constraint can be handled the same way as the if state-
ments, by generalizing the constraint disjunction. That is, such subtyping constraints can be substituted
with equivalent disjunctive constraints.

At first, someone might notice that, while avoiding to solve all constraints twice, we are forced to
execute a call twice, if the two if clauses return different types. So it seems that nothing is gained.
But this is not the case. By solving the call twice at the call level, and not at the if level, we make
sure that a completely irrelevant if statement will never double the solving time.

5.4 Generalizing the tool

5.4.1 Overview

While the idea of combining the success typing theory with a subset of Ruby seems to work, it is
still very challenging to generalize the tool to work with the full Ruby specification. There are many
benefits from such a generalization. First of all, more testcases can be written. And, importantly, it
will be easier to compare our tool to existing implementations.

Since the specification does not seem to be a significant member of the Ruby ecosystem, this will
probably fail to be satisfied within a reasonable amount of time. So, the bottom up approach will once
again find its use, as we will add some features that make more Ruby code parse successfully. But
again, we have to compromise, because it is too difficult to parse all of Ruby.

Why is it so difficult to parse all of Ruby? First of all, Ruby was designed with flexibility in mind, and
there exist many different ways to express the same thing, something pretty obvious when looking at
the variety of loop constructs, as well as the different ways to express a conditional. A simple example
is given below. Each line prints the string “hello”, one or more times:
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1 if true then puts ”hello” end

2 puts ”hello” if true

3 puts ”hello” unless false

4

5 3.times { puts ’hello’ }

6 0.upto 3 do puts %{hello} end

7

8 for x in [1,2,3] do puts ”hello” end

9 for x in 1..3 do puts ”hello” end

10

11 x = 0; while x < 3 do puts ”hello”; x += 1 end

12 x = 0; loop do puts ”hello”; x += 1; if x >= 3 then break end end

Listing 5.1: Variety of Ruby constructs

So, at this point, it would be prudent to use an existing tool to parse a Ruby program, and try to create
the corresponding abstract syntax tree of Core Ruby, if such exists. Of course, this means that loops
cannot be added in a direct way.

Unfortunately, even if we wanted to add loops on top of the current implementation, we need a fixpoint
mechanism in order to infer the success typing, otherwise the inferred types will not be all the possible
types for each variable. An example:

1 y = ”7”

2 x = [7]

3

4 n.times do

5 x = y * 6

6 y = 7

7 end

Listing 5.2: Necessity of fixpoint in loops

Depending on the number of times the loop is executed, xwill either be an array containing the number
7, the string “777777”, or the number 42. So, the success typing of the variable x after the loop should
be Array ∨String ∨Fixnum, and not a subset of it. As for the y variable, it should be of String ∨
Fixnum success typing.

So, there are two questions remaining. What the constructs that will be added will be, and if such a
tool exists, that will help us on our quest. Fortunately, there exists a tool called simply Ruby Parser
[Ruby], and seems to work well for the cases it was tested against.

5.4.2 Adding Constructs

Before discussing the added constructs, we should make sure that our extended tool performs well,
even when it fails to parse an expression. Luckily, we can once again fall back to the success typing
definition, and just try to make somewhat sure that a parse that fails can be omitted, without producing
false positives. This is moderately easy, if we forget about eval and metaprogramming. Simply, if
a function fails to parse, it will be substituted with a function that returns “__AnyClass”. And if a
class fails to parse, it will be substituted with “__AnyClass”. The latter will usually happen if we
encounter static variable initialisations. If a top level expression fails to parse, then we probably cannot
do anything but accept the whole program.

So, for starters, by using Ruby Parser, we get some things for free. We can now parse function calls
without parentheses, something that is pretty common in Ruby. That also means, we can parse almost
all symbol methods, either in method call notation, or in infix notation. And, after that, there are many
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alternate constructs that can be parsed for free, as for example an if-then-else expression without the
then keyword.

Since we still don’t have loops, we have to add many features to compensate for that. It seems that
the easier addition is to add literals, either string or integer, and to add some special literals, such
as regular expressions and string literals inside backticks, denoting shell commands. After all, the
only thing that we need is an expression that returns the same type, the type of the literal. Since
we treat constructors in a special way, we only need to add an invocation of the new method of the
corresponding class. Of course, the false literal will be substituted with a nil, in order to comply with
the current implementation.

In order to go further, we must overcome a serious obstacle. Ruby has a standard library, and we need
to have some way to avoid generating an error, if we detect a String or a Fixnum object. Unfortunately,
there seems no obvious clean way to do so, and a hack must be devised. The ruby interpreter will again
be invoked, so that it will have a clean environment, and then will execute a single query to detect
whether a type exists, and implements the method being called. After all, all typing information are
accessible to any Ruby program at runtime. Of course, we have no way to constrain the arguments
or the return type of the standard library call. While it could be possible to find the types from an
external source, it is not certain whether a completely up to date source exists, that contains all standard
library objects, and the possible argument and return types. After all, a type checker should be able to
disbelieve any invalid type annotation.
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Chapter 6

Comparison to Existing Tools

6.1 Existing tools

While there exist many tools for analysing a Ruby program, type checking does not seem to have a
prestigious position among those tools. The main reason for this seems to be that Ruby, as well as
Python and other scripting languages, encourage test driven development. So, type checking seems
rather unnecessary. Also, since Ruby makes rapid prototyping easy, tools come and go, and an excep-
tional tool may appear, never to be updated again.

The only tool that seems to do static type checking, and is almost up to date, is Diamondback Ruby
(DRuby) [DRub]. So, it will be our point of reference, as to the viability of our tool. First of all, an
overview will be presented, in order to show the state of both tools, based on the results of some
testcases. Then, in the next section, the most interesting invocations of both tools will be presented,
and analyzed. Finally, some interesting conclusions will be drawn from the points made at the previous
sections.

6.2 Overview of Comparison

Before doing a step by step analysis on the output of both tools, it would be interesting to see a couple
of graphs on how both tools work with the set of testcases used to test the other tool. Before showing
these graphs, though, it should be clarified that most conclusions drawn from these graphs will be
wrong. And for that, there are two simple reasons.

First of all, each testbench is tailored to the respective tool. And it is intuitively obvious that a custom
testbench is as creative as the creators of the tool. After all, that is one of the reasons our tool is realised,
to compete with the unit testing of programs. Also, it is difficult to write meaningful testcases that you
know your program cannot possibly succeed, and in some cases, not worth the effort. Nevertheless,
both testbenches will also be tested with the official Ruby implementation, to have a better overview
of things.

One could argue that we should try to find real world testcases for our tool. Unfortunately, most
programs written in Ruby use every possible obscure feature of the Ruby language, to the extent that
it is impossible to convert them to Core Ruby. While it would be possible to start adding features, this
thesis aims also at finding a theory that can be applied to other languages, and not at devising Ruby
specific hacks.

Another problem is that the DRuby testbench is too Ruby specific, to rewrite in Core Ruby. It tests
many possible strange aspects of the Ruby language, to the point that it is in an orthogonal direction
to our needs. Most DRuby tests for its static analyzer are small programs that test against a specific
Ruby feature, and there seem to be no real world examples.
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Figure 6.1: Comparison of DRuby with our tool, our testcases (More is better)

Figure 6.2: Comparison of DRuby with our tool, DRuby testcases (More is better)
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Finally, both tools have very different aims, and they compete on different grounds. DRuby aims at
finding errors, our tool aims at not finding false positives. Also, DRuby looks at annotations, our
tool does not. Most DRuby testcases target metaprogramming, our tool does not handle it at all. The
fact is that, after extending our tool with the aid of Ruby Parser, it passed most of the correct DRuby
testcases. But this was probably due to its failure to parse the programs, and so it gave up and accepted
the program, and not because of some meaningful reason. While this is what the tool is supposed to
do, any comparison cannot be considered conclusive, not before we can somehow qualify how big a
“give up” is. Also, most of the errors that got caught by our tool are simply wrong, as the error lies
someplace else.

After making everything clear with the above disclaimers, the two graphs can be seen in figures 6.1 and
6.2, respectively. Shortly, the testcases of our testbench, in which the two tools gave different results,
will be discussed in isolation. The only premature conclusion is that, both tools have something to
learn from the other tool.

First of all, we will see the most interesting cases where Diamondback Ruby emits warnings at a
correct testcase. Then, we will see all the cases where DRuby fails to find the error. Finally, we will
see the testcases that our tool is known to fail to detect, and see how DRuby performs.

6.3 Step by step comparison

6.3.1 Diamondback Ruby false positives

It should be noted, although obvious, that our tool gives no warnings in any program in this section,
unless explicitly specified. So, only the DRuby output will be presented. Every testcase in this section
runs flawlessly under the ruby interpreter, version 1.9.3p194 (2012-04-20 revision 35410) [x86_64-
linux], again unless explicitly specified.

1 class Foo

2 def m(u)

3 u.set(Bar.new)

4 end

5 end

6

7 class Bar

8 def m(u)

9 u.set(Six.new)

10 end

11 end

12

13 class Six

14 def *(s)

15 FortyTwo.new

16 end

17 end

18

19 class Seven

20 end

21

22 class FortyTwo

23 end

24

25 class Foobar

26 def foo(u)

27 @f = Foo.new

28 end
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29

30 def bar(u)

31 @f = Bar.new

32 end

33

34 def chg(u)

35 @f.m(u)

36 end

37

38 def set(x)

39 @f = x

40 end

41

42 def check(u)

43 @f.*(Seven.new)

44 end

45 end

46

47 foo = Foobar.new;

48

49 foo.foo(nil);

50 foo.chg(foo);

51 foo.chg(foo);

52 foo.check(nil)

Listing 6.1: aliasing.crb

[ERROR] instance Foo does not support methods *

in method call @f.*

at ./_aliasing.rb:43

in adding instance method check

at ./_aliasing.rb:42

in class definition ::Foobar

at ./_aliasing.rb:25

in assignment to @f

at ./_aliasing.rb:27

in typing ::Foo.new

at ./_aliasing.rb:27

DRuby analysis complete.

This program has been analyzed numerous times in this thesis. Due to aliasing, all method calls are
valid. Diamondback Ruby notifies us that the Foo does not support the * method. While this is true,
the method * is never called with class Foo as the callee.

1 class Foo

2 def f(u)

3 nil

4 end

5

6 def g(u)

7 nil

8 end

9 end

10

11 class Bar

12 end

13

14 x = Foo.new;

15 y = Foo.new;

16
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17 if y then

18 (x.f(y); x.g(y))

19 else

20 x.g(y)

21 end;

22

23 if y then

24 x = Foo.new

25 else

26 x = Bar.new

27 end;

28

29 x.f(y)

Listing 6.2: if.crb

[ERROR] instance Bar does not support methods f

in method call x.f

at ./_if.rb:29

in merging environments

at ./_if.rb:23

in typing ::Bar.new

at ./_if.rb:26

DRuby analysis complete.

This program clearly demonstrates that DRuby fails to merge the environments of an if statement
properly. The variable y is initialised as Foo, and all if statements will execute the true clause. So, x
will never be of Bar type.

1 7.+(7).+(7).+(7).+(7).+(7)

Listing 6.3: corelib number 1.crb

<expr>: 2

MC(MC(MC(uvar(Nat).lvar(new)()).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(

MC(MC(uvar(Nat).lvar(new)(

)).lvar(zero)(

nil)))))))).+(

MC(block(MC(MC(uvar(Nat).lvar(new)()).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(

MC(MC(uvar(Nat).lvar(new)(

)).lvar(zero)(

nil))))))))).+(

))))

MC(MC(MC(MC(uvar(Nat).lvar(new)()).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)(

)).lvar(x2p1)(

MC(MC(uvar(Nat).lvar(new)(

)).lvar(zero)(

nil)))))))).+(

MC(MC(uvar(Nat).lvar(new)()).lvar(x2p1)(MC(MC(uvar(Nat).lvar(new)()).

lvar(x2p1)(

MC(MC(uvar(Nat).lvar(new)()).lvar(x2p1)(

MC(MC(uvar(Nat).lvar(new)()).lvar(zero)(

nil)))))))))).+())

Fatal error: exception Failure(”expr”)
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There is not much to be said here. DRuby seems to fail to parse an expression like x.+(y), even
though it is completely valid Ruby. Nevertheless, if we give DRuby a second chance and rewrite all
our programs with arithmetic to use infix notation, this testcase passes.

1 class List

2 def clear(u)

3 @list = nil

4 end

5

6 def insert(x)

7 elem = Tuple.new;

8 elem.setFst(x);

9 elem.setSnd(@list);

10 @list = elem

11 end

12

13 def addRec(x)

14 if x then

15 x.getFst(nil).+(self.addRec(x.getSnd(nil)))

16 else

17 0

18 end

19 end

20

21

22 def add(u)

23 self.addRec(@list)

24 end

25 end

26

27 lst = List.new;

28

29 lst.insert(1);

30 lst.insert(2);

31 lst.insert(3);

32 lst.insert(4);

33 lst.insert(5);

34 lst.insert(6);

35 lst.insert(6);

36 lst.insert(5);

37 lst.insert(4);

38 lst.insert(3);

39 lst.insert(2);

40 lst.insert(1);

41

42 lst.add(nil)

Listing 6.4: corelib number 2.crb

[ERROR] instance Nat does not support methods getFst

in method call x.getFst

at ./_corelib_number_2.rb:15

in adding instance method addRec

at ./_corelib_number_2.rb:13

in method call self.addRec

at ./_corelib_number_2.rb:23

in adding instance method add

at ./_corelib_number_2.rb:22

in class definition ::List

at ./_corelib_number_2.rb:1

in method call lst.add

at ./_corelib_number_2.rb:42
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in typing return statement: return self

at ./_corelib.rb:25

in adding instance method x2

at ./_corelib.rb:22

in class definition ::Nat

at ./_corelib.rb:21

DRuby analysis complete.

This however does not. According to the backtrace, there is no need to present the Core Ruby core
library, since the error is in line 15. It is not easy to see that addRec is called with @list as the
parameter, and @list can only be a tuple that consists of an element and a pointer to the next list
tuple. Also, it should be noted that the core library does not use the +methods anywhere, so this is not
the case of DRuby failing to parse the core library. After all, the core library passes DRuby validation.

1 class A

2 def a(u) nil end

3 end

4

5 class B

6 def b(u) u end

7 end

8

9 class C

10 def c(u) self end

11 end

12

13 class Pair

14 def setFst(x) @fst = x end

15 def setSnd(y) @snd = y end

16 def getFst(u) @fst end

17 def getSnd(u) @snd end

18 end

19

20 class Main

21 def main(x) x.getSnd(nil).b(x) end

22 end

23

24 p = Pair.new;

25 p.setFst(A.new);

26 p.setSnd(B.new);

27 Main.new.main(p);

28

29 p.setFst(C.new);

30 Main.new.main(p);

31

32 p.setSnd(C.new);

33 Main.new.main(p) # this must fail!

Listing 6.5: tuple.crb

[ERROR] instance C does not support methods b

in method call b

at ./_tuple.rb:21

in method call x.getSnd

at ./_tuple.rb:21

in adding instance method main

at ./_tuple.rb:21

in class definition ::Main

at ./_tuple.rb:20

in method call main
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at ./_tuple.rb:27

in typing ::C.new

at ./_tuple.rb:32

DRuby analysis complete.

And one final testcase. This testcase is from the “undetected” set of Core Ruby, as it crashes, and our
tool cannot detect it. The funny thing is that, although DRuby detects an error, the error it detects is
on the wrong line. And, even if we comment out the final line, which crashes, DRuby continues to
detect an error. So, this testcase is also considered a false positive for the DRuby type checker. This
testcase is very intriguing. It shows that Diamondback Ruby determines the type of a field of a class,
by analysing what types of fields will not lead to the methods crashing.

This fact inevitably leads to rhetorical questions. While this is a clever approach, it contains the pitfall
that detects an error in this testcase. DRuby never checks whether those methods are actually called,
after the field is assigned a different type than the set inferred. And, unfortunately, it is not a rare case
for a program to have implicit assumptions on the state of an object before a method invocation. Un-
fortunately, while DRuby seems to enforce good practice, it defeats in the process, in part, the purpose
of using a dynamically typed language. After all, dynamic typing is usually about rapid prototyping,
and not about creating concrete solutions from the beginning, especially when used in scripting.

6.3.2 Diamondback Ruby false negatives

While there exist many testcases where both tools detect the error, it seems more interesting to see the
testcases where our tool detects the error, and not DRuby. In this section, only the output of our tool
will be presented, since DRuby prints a plain “DRuby analysis complete.”.

1 class Empty

2 end

3

4 class Foo

5 def foo(x)

6 x.foo(nil);

7 nil

8 end

9 end

10

11 x = Foo.new;

12 y = Foo.new;

13

14 # Following call will fail

15 x.foo(y)

Listing 6.6: second order.crb

Line 6: Type error detected: class __NilClass has no method foo/1

at line 6

at line 15

Interestingly, DRuby fails to detect this obvious error. It could probably detect the error if the method
had an annotation. The error should be pretty straightforward. Unfortunately, since our tool focuses
on this type of error, we have many testcases of this type, and there seems no reason to present them
all.

1 class Foo
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2 def foo(x)

3 x.init(nil)

4 end

5 end

6

7 x = Foo.new;

8

9 # Following line should fail because NilClass has no init method

10 x.foo(nil)

Listing 6.7: method.crb

Line 3: Type error detected: class __NilClass has no method init/1

at line 10

This seems to be the most simple case of the previous behaviour of DRuby. It won’t be analyzed any
further.

1 x = nil;

2

3 if x then

4 nil

5 else

6 x.foo(nil)

7 end

Listing 6.8: full deadcode.crb

Line 7: A disjunction failed:

True: Condition is always false

False: Line 6: Type error detected: class __NilClass has no method foo/1

End

DRuby fails to detect the error. Maybe it does not consider nil to trigger a false condition. It is difficult
to analyze with no prior knowledge of the DRuby code base.

1 class Foo

2 def f(u)

3 u.f(u)

4 end

5 end

6

7 class Bar

8 def f(u)

9 u.f(nil)

10 end

11 end

12

13 class FooBar

14 def do(u)

15 y = if @x then

16 Foo.new

17 else

18 Bar.new

19 end;

20 y.f(Bar.new)

21 end

22

23 def set(x)
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24 @x = x

25 end

26 end

27

28 FooBar.new.do(nil)

Listing 6.9: full deadcode 4.crb

Line 20: A disjunction failed:

Foo: Line 9: Type error detected: class __NilClass has no method f/1

at line 9

at line 3

at line 20

Bar: Line 9: Type error detected: class __NilClass has no method f/1

at line 9

at line 20

End

at line 28

While the output seems funny, the case is that our tool cannot detect for sure whether the true clause
of the if statement will be executed, or the false clause. The reason is that we have a setter, so the
field type cannot be pinpointed. But both clauses lead to crashes, so our tool says exactly that.

1 class Tree

2 def addLeft(left)

3 @left = left

4 end

5

6 def addRight(right)

7 @right = right

8 end

9

10 def setData(data)

11 @data = data;

12 self

13 end

14

15 def addRec(u)

16 sum = sum.+(@data);

17 if @left then sum = sum.+(@left.addRec(nil)) else nil end;

18 if @right then sum = sum.+(@right.addRec(nil)) else nil end;

19 sum

20 end

21 end

22

23 a0 = Tree.new.setData(0);

24 a1 = Tree.new.setData(1);

25 a2 = Tree.new.setData(2);

26 a3 = Tree.new.setData(3);

27 a4 = Tree.new.setData(4);

28 a5 = Tree.new.setData(5);

29 a6 = Tree.new.setData(6);

30

31 a0.addLeft(a1);

32 a0.addRight(a1);

33

34 a1.addLeft(a2);

35 a1.addRight(a3);

36

37 a2.addLeft(a4);

38 a2.addRight(a5);
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39

40 a3.addLeft(a6);

41

42 a0.addRec(nil)

Listing 6.10: tree undef.crb

Line 16: Variable sum does not exist

Again, a simple case that DRuby fails to detect. This is the tree example already presented, with the
initialisation of the sum variable missing. The actual error of Ruby would be that NilClass does not
implement the + method, since every fresh r-value is initialised as nil. Nevertheless, this is still an
error, no matter the details of the language semantics.

This testcase concludes the presentation of the false negatives of DRuby.

6.3.3 Our tool false negatives

1 class List

2 def tabulate(tup) # { funobj, count }

3 @data = tup.getFst(nil).fun(tup.getSnd(nil));

4 if tup.getSnd(nil).iszero(nil) then

5 @next = nil

6 else

7 @next = List.new;

8 tup.setFst(tup.getFst(nil).-(1));

9 @next.tabulate(tup)

10 end;

11 self

12 end

13

14 def foldl(tup) # { funobj, acc }

15 if @next then

16 tup.getSnd(nil)

17 else

18 accelem = Tuple.new;

19 accelem.setFst(@data);

20 accelem.setSnd(tup.getSnd(nil));

21

22 tup.setSnd(tup.getFst(nil).fun(tup));

23

24 @next.foldr(tup)

25 end

26 end

27 end

28

29 class Double

30 def fun(x)

31 x.+(x)

32 end

33 end

34

35 class Sum

36 def fun(tup)

37 tup.getSnd(nil).+(tup.getFst(nil))

38 end

39 end

40

41 tup = Tuple.new;
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42 tup.setFst(6);

43 tup.setSnd(Double.new);

44 lst = List.new.tabulate(tup);

45

46 tup = Tuple.new;

47 tup.setFst(Sum.new);

48 tup2 = Tuple.new;

49 tup2.setFst(lst);

50 tup2.setSnd(0);

51

52 tup.setSnd(tup2);

53

54 lst.foldl(tup)

Listing 6.11: undetected/corelib higher list.crb

[ERROR] instance Nat does not support methods fun

in method call fun

at ./_corelib_higher_list.rb:3

in method call tup.getFst

at ./_corelib_higher_list.rb:3

in adding instance method tabulate

at ./_corelib_higher_list.rb:2

in class definition ::List

at ./_corelib_higher_list.rb:1

in method call tabulate

at ./_corelib_higher_list.rb:44

in typing return statement: return self

at ./_corelib.rb:25

in adding instance method x2

at ./_corelib.rb:22

in class definition ::Nat

at ./_corelib.rb:21

DRuby analysis complete.

There are many things wrong with this testcase. First of all, the tabulate method, in line 8, has the
tuple arguments messed up. It should have invocations of the setSnd and getSndmethods, instead of
setFst and getFst. Also, in the foldl method, the clauses of the if statements are reverse. Should the
false clause execute, the @next field would be nil, and an exception would be raised. Unfortunately,
there is no way for our tool to tell whether the false clause will be executed at all, and no warning is
emitted.

On the other hand, DRuby seems to catch the first error. The backtrace does not help much, though.

1 class List

2 def clear(u)

3 @list = nil

4 end

5

6 def insert(x)

7 elem = Tuple.new;

8 elem.setFst(x);

9 elem.setSnd(@list);

10 @list = elem

11 end

12

13 def addRec(x)

14 if x then

15 x.getFst(nil).+(self.addRec(x.getSnd(nil)))

16 else
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17 0

18 end

19 end

20

21

22 def add(u)

23 self.addRec(@list)

24 end

25 end

26

27 lst = List.new;

28

29 lst.insert(1);

30 lst.insert(2);

31 lst.insert(3);

32 lst.insert(4);

33 lst.insert(5);

34 lst.insert(List.new);

35 lst.insert(6);

36 lst.insert(5);

37 lst.insert(4);

38 lst.insert(3);

39 lst.insert(2);

40 lst.insert(1);

41

42 lst.add(nil)

Listing 6.12: undetected/corelib number 2.crb

[ERROR] instance List does not support methods getBit

in method call snd.getBit

at ./_corelib.rb:57

in method call tup.getFst

at ./_corelib.rb:52

in method call self.addBit

at ./_corelib.rb:114

in adding instance method addRec

at ./_corelib.rb:103

in typing return statement: return tup2

at ./_corelib.rb:99

in adding instance method addBit

at ./_corelib.rb:48

in class definition ::Nat

at ./_corelib.rb:21

in typing ::List.new

at ./_corelib_number_1.rb:34

[ERROR] instance Nat does not support methods getFst

in method call x.getFst

at ./_corelib_number_1.rb:15

in adding instance method addRec

at ./_corelib_number_1.rb:13

in method call self.addRec

at ./_corelib_number_1.rb:23

in adding instance method add

at ./_corelib_number_1.rb:22

in class definition ::List

at ./_corelib_number_1.rb:1

in assignment to @list

at ./_corelib_number_1.rb:10

in merging environments

at ./_corelib.rb:56

in merging environments
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at ./_corelib.rb:57

in adding instance method addBit

at ./_corelib.rb:48

in class definition ::Nat

at ./_corelib.rb:21

DRuby analysis complete.

Here, the problem is more obvious. At line 34, we insert a non-integer element in our list, and the
consequences will be definitely fatal for the execution, as the List class has no definition for the +
method. Our tool cannot detect anything, as it cannot constrain the contents of a Tuple class. DRuby
seems to detect a discrepancy in line 34 of our program, but the backtrace goes way deep in the Core
Ruby library. Unfortunate though it seems, it is pretty acceptable. Our codes have no type annotations,
so we cannot have DRuby check each individual module in isolation.

But, DRuby seems to detect an error at line 15. It says that we try to invoke the getFst method of a
Nat. This is not the case, as has been already stated in the collection of false positives of DRuby, in
listing 6.4

6.3.4 Interesting cases

Here, we will present some interesting cases that do not fall in either previous category.

1 class Number

2 def to_s

3 num = 0

4 num += if @n7 then 1 else 0 end

5 num <<= 1

6 num += if @n6 then 1 else 0 end

7 num <<= 1

8 num += if @n5 then 1 else 0 end

9 num <<= 1

10 num += if @n4 then 1 else 0 end

11 num <<= 1

12 num += if @n3 then 1 else 0 end

13 num <<= 1

14 num += if @n2 then 1 else 0 end

15 num <<= 1

16 num += if @n1 then 1 else 0 end

17 num <<= 1

18 num += if @n0 then 1 else 0 end

19 num.to_s

20 end

21

22 def inspect

23 self.to_s

24 end

25 end

26

27 nil

Listing 6.13: numlib.rb

This code snippet is from an early version of the Core Ruby implementation. The strange thing is that,
in this testcase, DRuby needs 3 and a half minutes before it concludes that this program does not have
any error. There seems to be no obvious reason for that, and there is no way to know what exactly
happens without knowledge of the DRuby implementation.
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1 class Foo

2 end

3

4 def genm x, y

5 eval ”class Foo; def #{x}; #{y}; end; end”

6 end

7

8 x = Foo.new

9

10 genm ”six”, 6

11 genm ”seven”, 7

12

13 x.six * x.seven # prints 42

Listing 6.14: eval metaprogram.rb

Line -1: Type error detected: class Foo has no method six/0

Line -1: Type error detected: class Foo has no method seven/0

[ERROR] instance Foo does not support methods six

in method call x.six

at ../Testcases/Ruby/false_pos/eval_metaprogram.rb:13

in typing ::Foo.new

at ../Testcases/Ruby/false_pos/eval_metaprogram.rb:8

[ERROR] instance Foo does not support methods seven

in method call x.seven

at ../Testcases/Ruby/false_pos/eval_metaprogram.rb:13

in typing ::Foo.new

at ../Testcases/Ruby/false_pos/eval_metaprogram.rb:8

DRuby analysis complete.

This testcase is just presented for completeness. Note that our tool fails to print the line of the error.
This is an unfortunate side effect from using Ruby Parser. It should not be too difficult to fix, and is a
minor detail.

6.4 Conclusions

So, finally, we can draw conclusions from the previous behaviors of the two tools. Before discussing
the shortcomings of each tool, it seems more appropriate to discuss the design choices each team
followed. Then, the drawbacks of each approach will be analyzed.

6.4.1 Diamondback Ruby

Design decisions

While both tools were designed for error detection, there is a big difference in the approaches. For
instance, DRuby seems to facilitate static analysis as complementary to dynamic analysis, and not as
a first class citizen.

Also, it uses static checking in order to perform optimizations, as it might make some dynamic type
checks unnessecary. In order to lift the run time checks, DRuby has implemented Ruby on its own.
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So, it has full control of the run time environment of each program, should someone choose to use its
implementation of Ruby.

DRuby seems to have decided that it should first be able to analyze the whole language successfully,
and then try to find many errors automatically. This conclusion is drawn from the fact that most test-
cases are focused on specific Ruby features. This choice seems reasonable, considering that DRuby
understands a type annotation language, so it leaves the method typing documentation to the program-
mer.

Finally, DRuby tries to impose a strict type system to Ruby.

Drawbacks

There are a couple of drawbacks of Diamondback Ruby, and usually the reason behind those seems
to be one or more of the design decisions.

First of all, Diamondback Ruby performs suboptimally on Core Ruby. While the definitions of what
is the core of the Ruby programming language might vary, Core Ruby is a language that models the
Ruby object orientation almost to the point. And the fact is that, while DRuby was expected to have
only false positives, and detect all the errors in the failing testcase set of our tool’s suite, this is not the
case. Many cases considered trivial by our tool were difficult for DRuby.

The reason behind this seems to be the design decision of first parsing the whole Ruby specification,
and then adding automatic error detection. Core Ruby is definitely way beyond a language that has
every difficult to parse Ruby feature, so it probably is orthogonal to the ideal language that DRuby
performs optimally.

Secondly, as we already saw in a testcase, DRuby makes very optimistic assumptions on the types of
fields. This way, DRuby aims to find errors, considering a type of field that its methods cannot handle
to be a hack. As already stated, this is a poor choice for a dynamically typed language that favors
rapid prototyping, as in dynamically typed languages, a hack can be much easier than refactoring the
code, sometimes without sacrificing in readability. After all, a programmer that chooses a dynamic
language, knows what he is getting into.

Then, DRuby fails to parse some valid Ruby expressions, such as x.+(y). As DRuby chose to imple-
ment Ruby on its own, this has effectively made Ruby less compliant to the Ruby specification, and,
more importantly, less resilient to changes to the Ruby specification.

Finally, since DRuby is actually another Ruby implementations, it carries the drawbacks from such
a decision. This decision effectively makes the tool hard to be adopted, as a programmer would be
hesitant to use an implementation that will probably not be developed with the same pace as the official
implementation, just to be able to have a couple of optimizations. Also, this means that those choosing
to use the DRuby implementation are locked in it, and if DRuby suddenly disappears, they will have
to port their code to the official Ruby implementation, which will probably have changed a lot by then.
This is a heavy weight to bear for a simple analysis tool.

6.4.2 Our tool

Design decisions

Our tool, on the other hand, was designed to be an easy to use tool that detects only definite errors.
This way, it can be used by anyone as a means of finding some bugs. Also, its shortcomings can be
hidden by just accepting what it cannot understand.
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Also, it was designed to be fast. At this point, our tool is way faster than DRuby. Of course, DRuby is
a much more complete program, while our tool is at its infancy, so there is no guarantee that this will
be the case later.

Finally, it was designed to be a static only tool. This was not due to some misconception that Ruby
can be efficiently analyzed by employing a static only solution. It was simply a choice, as Ruby is
used most of the time on small scripts, in which it would be an overkill to write unit tests. After all, it
would be an overkill to unit test a bash script. And it was an experiment, whether a static only solution
would be viable.

Drawbacks

Of course, we cannot deny that our decisions have inevitably led to drawbacks. So, we will discuss
them further right now.

Our tool detects only definite errors, and ignores what it cannot understand, Also, when if clauses or
fields are concerned, it currently will fail to detect even very obvious errors. So, it is inevitable that
someone will classify it as a “toy tool” right away, as there is no guarantee as to which errors it will
find, if it finds any.

Secondly, our tool does not work with full Ruby. Even with the principle that it accepts all strange
programs, it detects errors where it should not. This makes it effectively useless, and also difficult to
check whether it works, as it will fail on most real world examples. This is a direct result of our bottom
up approach to the challenge.

Finally, our tool has probably no hope of making a useful optimizer. The theory behind it, the success
typings, make no guarantees about the type safety of a program. So, even if there was an easy way
to alleviate the dynamic type checks from the Ruby runtime, our tool would not be able to use it
efficiently.
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Chapter 7

Conclusion

7.1 Contribution

So, to conclude, while this comparison seems to remain inconclusive until our tool parses the full
extent of Ruby, it does not. It actually shows that both tools have something to learn from the other
tool. Also, it shows that the creation of a tool that performs a success typing inference on Ruby, and
finds a bunch of definite errors, is actually feasible.

Also, since our theory works, it could easily be adapted to any dynamically typed object oriented
language, or even any dynamically typed language with higher order constructs.

7.2 Future Work

There is much work that can be done from now on. We will name a few in the following paragraphs.

First of all, all Core Ruby support should be dropped. The tool currently has two parsers and one
runtime. The Core Ruby parser and runtime should be dropped in favor of more clean codebase. This
way, it will be much easier to support a bigger subset of the Ruby language. Or, maybe, try to find
another language that is less cluttered with features.

Secondly, our tool should try to cope better with the Ruby standard library. In high priority lies the
require method, and its family. For this method, we will probably need to perform some hacks. For
the rest of the standard library, we could try to utilize better the existing solutions, namely, DRuby
annotations, as standard library methods are mostly statically typed. In order to work with the DRuby
annotations, we just have to check them once, in order to avoid giving bad errors, and then take them
for granted.

Then, there are many ways that the solving process can be optimized. First of all, at this point, the
solver performs its analysis by beginning from the top level expression, and then instantiating each
methodwhen called.While this will detect most errors, it cannot detect dead code, since it cannot prove
that an if statement can only be solved one way, regardless of the argument. So, our tool must first
construct a call graph approximation, and then try to solve the methods in the right order, optimizing
the constraints in the process, for the final analysis. Also, this way, it might be possible to better
finegrain the possible field types.

Also, there are many minor changes that can be made, so that the tool will be much more user friendly.
A simple example is to include the types of the arguments when presenting the programmer with a
stack trace. Another example is to try to print the code part that is in error.

Finally, it is only logical that we should try to give back to the tool we got our inspiration, namely
the Dialyzer. The Dialyzer does not cope well with higher order functions, as those are not used so
extensively as in Ruby. Maybe our theory can be applied back to functional languages.
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