
ΕΘΝΙΚΟΜΕΤΣΟΒΙΟΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝΜΗΧΑΝΙΚΩΝ ΚΑΙΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Lattices and Cryptography

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Γεωργίου Α. Ζηρδέλη

Επιβλέπων: Ευστάθιος Ζάχος
Καθηγητής Ε.Μ.Π.

Αθήνα, Δεκέμβριος 2012

ΕΘΝΙΚΟΜΕΤΣΟΒΙΟΠΟΛΥΤΕΧΝΕΙΟ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ
ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Lattices and Cryptography

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

του

Γεωργίου Α. Ζηρδέλη

Επιβλέπων: Ευστάθιος Ζάχος
Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 9η Νοεμβρίου 2012.

..
Ευστάθιος Ζάχος
Καθηγητής Ε.Μ.Π.

..
Αριστείδης Παγουρτζής

Επίκουρος Καθηγητής Ε.Μ.Π.

..
Δημήτρης Φωτάκης
Λέκτορας Ε.Μ.Π.

Αθήνα, Δεκέμβριος 2012.

...................................
Γεώργιος Α. Ζηρδέλης
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Γεώργιος Ζηρδέλης, 2012.
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου
ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή
για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να
αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που
αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς
τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον
συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του
Εθνικού Μετσόβιου Πολυτεχνείου.

Περίληψη

Τα πλέγματα μελετήθηκα για πρώτη φορά απο τους J. L. Lagrange και C. F. Gauss
στην θεωρία των τετραγωνικών μορφών στα τέλη του 18ου αιώνα αλλά και αργότερα
από άλλους μαθηματικούς. Με την επινόηση της αλγοριθμικής θεωρίας αριθμών
τα πλέγματα ήρθαν και πάλι στο προσκήνιο περίπου το 1980 και ειδικότερα μετά
την εφεύρεση του περίφημουLLLαλγορίθμου το 1982. Έκτότε τα πλέγματα αποτελούν
μια ενεργή περιοχή έρευνας στην θεωρητική πληροφορική και έχουν εφαρμογές,
μεταξύ άλλων, στην υπολογιστική θεωρία αριθμών, στην κρυπτογραφία, στην κρυπτανάλυση
και στον ακέραιο προγραμματισμό και επιπλέον έχουν μερικές μοναδικές ιδιότητες
από πλευράς υπολογιστικής πολυπλοκότητας.

Κρυπτογραφικά σχήματα βασισμένα σε πλέγματα εμφανίστηκαν για πρώτη
φορά στην πρωτότυπη δουλειά τουM.Ajtai το 1996 και έχουν αναπτυχθεί σημαντικά
από τότε. Ο Ajtai παρουσίασε μια οικογένεια συναρτήσεων μονής κατεύθυνσης
των οποίων η ασφάλεια βασίζεται δυσκολία προσέγγισης, εντός ενός πολυωνυμικού
παράγοντα στην διάσταση του πλέγματος, της χειρότερης περίπτωσης για το πρόβλημα
του μικρότερου διανύσματος στα πλέγματα. Με άλλα λόγια έδειξε ότι αν κάποιος
αντιστρέψει με σημαντική πιθανότητα μια συνάρτηση από αυτή την οικογένεια
τότε μπορεί να λύσει ένα οποιοδήποτε στιγμιότυπο του προσεγγιστικού προβλήματος,
εντός ενός πολυωνυμικού παράγοντα στην διάσταση του πλέγματος, του μικρότερου
διανύσματος σε ένα πλέγμα. Αυτή η μοναδική σύνδεση μεταξύ δυσκολότερης
και μέσης περίπτωσης έχει ιδιαίτερο ενδιαφέρον για την κρυπτογραφία αλλά και
γενικότερα για την θεωρία πολυπλοκότητας.

Ο κύριος σκοπός αυτής της διπλωματικής εργασίας είναι η ανασκόπηση της
θεωρίας των πλεγμάτων και της εφαρμογής τους στην κρυπτογραφία. Στο πρωτο
κεφάλαιο δίνουμε βασικούς ορισμούς και ιδιότητες των πλεγμάτων ενώ στο δεύτερο
κεφάλαιο περιγράφουμε κάποια βασικά υπολογιστικά προβλήματα των πλεγμάτων,
περιγράφουμε την έννοια της μειωμένης βάσης πλέγματος με έμφαση στον αλγόριθμο
LLL. Στο τρίτο κεφάλαιο παρουσιάζουμε αποτελέσματα από την θεωρία πολυπλοκότητας
που αφορούν στα πλέγματα ενώ στο τέταρτο και τελευταίο κεφάλαιο περιγράφουμε
κάποια κρυπτοσυστήματα δημοσίου κλειδιού που βασίζονται σε προβλήματα των
πλεγμάτων αλλά και κάποια που βασίζονται στο συναφές πρόβλημα, “Εκμάθηση
με σφάλματα”.

Λέξεις Κλειδιά

πλέγμα, πρόβλημα πλέγματος, μείωση βάσης, αλγόριθμος LLL, πολυπλοκότητα,
κρυπτογραφία δημοσίου κλειδιού, εκμάθηση με σφάλματα

Abstract

Lattices were first studied by J. L. Lagrange and C. F. Gauss in the theory of
quadratic forms in the late 18th century and later on by other mathematicians. With
the advent of algorithmic number theory, the subject had a revival around 1980 es-
pecially after the invention of the celebrated LLL algorithm in 1982. Since then
lattices have become a topic of active research in computer science and have many
applications in computational number theory, cryptography, cryptanalysis and in-
teger programming among others and also have some unique properties from a
computational complexity point of view.

Cryptographic schemes based on lattices first emerged in the seminal work of
M. Ajtai in 1996 and have developed rapidly in the past few years. Ajtai presented a
family of one-way functions whose security is based on the worst-case approxima-
tion hardness of the Shortest Vector Problem (SVP) in lattices, within a polynomial
factor in the lattice dimension. In other words, he showed that being able to in-
vert a function chosen from this family with non-negligible probability implies the
ability to solve any instance of approximate SVP within a polynomial factor in the
lattice dimension. This remarkable connection between worst-case and average-
case complexity in certain lattice problems is of particular interest in cryptography
and more general in complexity theory.

The main purpose of this diploma thesis is to overview lattices and their ap-
plication to cryptography. In the first chapter we give some basic mathematical
background on lattices and, while in the second chapter we describe some basic
computational lattice problems and introduce the notion of a reduced lattice basis
with emphasis on the LLL algorithm. In the third chapter we present complexity
results regarding lattice problems and in the fourth and last chapter we describe
public-key encryption schemes that are based on lattice problems and some that are
based on the related problem, “Learning with errors”.

Keywords

lattice, lattice problem, basis reduction, LLL algorithm, complexity, public-key
cryptography, learning with errors

Ευχαριστίες

Με την ολοκλήρωση της διπλωματικής μου εργασίας και των προπτυχιακών μου
σπουδών στο Εθνικό Μετσόβιο Πολυτεχνείο, θα ήθελα ευχαριστήσω όλους του
ανθρώπους που με βοήθησαν και μοιράστηκαν μαζί μου ένα μέρος από αυτό το
ταξίδι.

Ιδιαίτερα θα ήθελα να ευχαριστήσω τον καθηγητή μου κ. Ε. Ζάχο που με
ώθησε στο να αγαπήσω την Θεωρητική Πληροφορική αλλά και για την ευχάριστη
παρουσία του στις σπουδές μου. Στον καθηγητή μου κ. Α. Παγουρτζή που μου
έδωσε το έναυσμα για το θέμα της διπλωματικής αυτής εργασίας και στη συνέχεια
με συμβούλεψε σε κάθε βήμα της. Στον καθηγητή μου κ. Δ. Φωτάκη για το
ενδιαφέρον που έδειξε και για τις χρήσιμες παρατηρήσεις του.

Επίσης, θα ήθελα να ευχαριστήσω τους φίλους μου για την συμπαράσταση
και την κατανόηση που έδειξαν σε όλα τα χρόνια των σπουδών μου. Φυσικά,
θα πρέπει να ευχαριστήσω όλα τα μέλη του Εργαστηρίου Λογικής και Επιστήμης
Υπολογισμών για το δημιουργικό κλίμα και τις ευχάριστες στιγμές που μοιραστήκαμε.

Πάνω απ' όλα όμως, θα ήθελα να ευχαριστήσω την οικογένεια μου για την
αγάπη που μου δίνει και την στήριξη που μου παρέχει.

Contents

1 Introduction to Lattices 1
1.1 Vector Spaces . 1
1.2 Lattices in Rm . 7
1.3 Gram-Schmidt Orthogonalization 15
1.4 Successive minima . 19
1.5 Dual lattices . 27

2 Lattice basis reduction 30
2.1 Asymptotic notation . 30
2.2 Computational lattice problems 31
2.3 Gaussian lattice basis reduction 35
2.4 The Lenstra-Lenstra-Lovász algorithm 39
2.5 Babai's algorithm . 50

3 Complexity of lattice problems 53
3.1 Shortest vector problem . 53
3.2 Closest vector problem . 58
3.3 Reducing approximate SVP to approximate CVP 64
3.4 Limits to inapproximability . 68

4 Lattice-based cryptography 70
4.1 Early lattice-based cryptography 70

Bibliography 73

Index 82

i

1

Introduction to Lattices

1.1 Vector Spaces

Before we define what a lattice is, we start with some important definitions and
ideas from linear algebra.

We regard n−tuples of elements from a field F as either row vectors or column
vectors, and denote them by boldface roman letters:

v = (v1, v2, . . . , vn) ∈ Fn, v =


v1
v2
...
vn

 ∈ Fn

For any field F, and for any positive integer n, the vector space Fn consists
of all n−tuples of elements from F, with the familiar operations of vector addition
and scalar multiplication defined by

v+w =


v1
v2
...
vn

+


w1

w2
...
wn

 =


v1 + w1

v2 + w2
...

vn + wn

 , av = a


v1
v2
...
vn

 =


av1
av2
...

avn


for any v,w ∈ Fn and any a ∈ F.

Definition 1 Let V ⊂ Fn be a vector space. An inner (scalar) product on V
is a function

⟨·, ·⟩ : V × V → F

that satisfies the following three conditions for all v,u,w ∈ V and for all a, b ∈ F

1

(a) ⟨v, v⟩ ≥ 0 for all v ∈ V and ⟨v, v⟩ = 0 if and only if v = 0

(b) ⟨v,w⟩ = ⟨w, v⟩

(c) ⟨av+ bw,u⟩ = a⟨v,u⟩+ b⟨w,u⟩

For our purposes it is enough to consider vector spaces V that are contained in
Rn for some positive integer n.

Let v1, v2, . . . , vk ∈ V . A linear combination of v1, v2, . . . , vk ∈ V is any
vector of the form

w = a1v1 + a2v2 + · · ·+ akvk with a1, a2, . . . , ak ∈ R

The collection of all such linear combinations,

{a1v1 + · · ·+ akvk : a1, . . . , ak ∈ R}

is called the span of {v1, . . . , vk}.

A set of vectors v1, v2, . . . , vk ∈ V is linear independent if the only way
to get

a1v1 + a2v2 + · · ·+ akvk = 0

is to have a1 = a2 = · · · = ak = 0.
The set is linear dependent if for a1v1 + a2v2 + · · ·+ akvk = 0 we have

at least one ai nonzero.

A basis for V is a set of linearly independent vectors v1, . . . , vk that span V .
This is equivalent to saying that every vector in w ∈ V can be written in the form

w = a1v1 + a2v2 + · · ·+ anvn

for a unique choice of a1, a2, . . . , an.

We next describe the relationship between different bases and the important
concept of dimension.

Proposition 1.1 Let V ⊂ Rn be a vector space.

(a) There exists a basis for V .

(b) Any two bases for V have the same number of elements. The number of ele-
ments in a basis for V is called the dimension of V .

(c) Let v1, . . . , vn be a basis for V and letw1, . . . ,wn be another set of n vectors
in V . Write each wj as a linear combination of the vi,

w1 = a11v1 + a12v2 + · · ·+ a1nvn,
w2 = a21v1 + a22v2 + · · ·+ a2nvn,
...

wn = an1v1 + an2v2 + · · ·+ annvn.

Then w1, . . . ,wn is also a basis for V if and only if the determinant of the
matrix 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann


is not equal to 0.

Wenext explain how tomeasure lengths of vectors inRn and the angles between
pairs of vectors. These important concepts are tied up with the notion of dot product
and the Euclidean norm.

Definition 2 Let v,w ∈ V ⊂ Rn and write v and w using coordinates as

v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn)

The dot product of v and w is the quantity

v · w = v1w1 + v2w2 + · · ·+ vnwn

Definition 3 Given a vector space V ⊆ Rn, a (vector) norm on V is a function,
∥·∥ : V → R that satisfies the following properties:

For all v,w ∈ V and all c ∈ R,

(a) ∥v∥ ≥ 0 for all v ∈ V and ∥v∥ = 0 if and only if v = 0

(b) ∥v+ w∥ ≤ ∥v∥+ ∥w∥

(c) ∥cv∥ = |c|∥v∥

Next, we give definitions for some of the most common norms.

Definition 4 For any p ≥ 1, the ℓp norm of a vector v = (v1, v2, . . . , vn) in Rn

is defined by

∥v∥p = p

√√√√ n∑
i=1

|vi|p

For p = 1 we have the ℓ1 norm,

∥v∥1 =
n∑

i=1

|vi|

and as p→∞ we have the ℓ∞ norm,

∥v∥∞ = max
1≤i≤n

|vi|

Definition 5 The length, or Euclidean norm , of v = (v1, v2, . . . , vn) is the
quantity

∥v∥2 =
√

v21 + v22 + · · ·+ v2n

and the distance between two vectors is denoted by

dist(v,w) = ∥v− w∥2

A vector of norm 1 is called a unit vector .

The Euclidean norm is also frequently referred to as the ℓ2 norm. Unless stated
otherwise the norm ∥·∥ will be the euclidean norm. Notice that the dot products
and norms are related by the formula

v · v = ∥v∥2

Since we will be working with the Euclidean space Rn, the inner product will
be the same as the dot product.

Definition 6 The distance function is extended to sets as

dist(v,S) = dist(S, v) = min
s∈S
{dist(v, s)}

Definition 7 The standard basis(natural basis) for then-dimensional Euclidean
space Rn consists of n distinct vectors

{ei : 1 ≤ i ≤ n}

where ei denotes the vector with a 1 in the i − th coordinate and 0's everywhere
else, e.g., for n = 4, e2 = (0, 1, 0, 0)

⊺.

Definition 8 The angle θ between nonzero vectors v,w ∈ Rn is given by

v · w = ∥v∥∥w∥cosθ, cosθ =
v · w
∥v∥∥w∥

, θ = arccos

(
v · w
∥v∥∥w∥

)
Lemma 1.2 Two vectors v,w ∈ Rn are orthogonal to one another if and only if
v · w = 0

Proof. The cosine is 0 if and only if the angle θ is and odd multiple of
π

2
. □

Lemma 1.3 (Cauchy-Schwarz inequality)
For any two vectors v,w ∈ Rn,

|v · w| ≤ ∥v∥∥w∥

Proof. We observe that the Cauchy-Schwarz inequality follows immediately from
Lemma 1.2, but we will present a direct proof. If w = 0, there is nothing to prove,
so we may assume that w ̸= 0. We consider the function

f(t) = ∥v− tw∥2 = (v− tw) · (v− tw)
= v · v− 2tv · w+ t2w · w
= ∥v∥2 − 2tv · w+ t2∥w∥2

We know that f(t) ≥ 0 for all t ∈ R, so we choose the value of t that minimizes
f(t) and see what it gives. This minimizing value is t = v·w

∥w∥2 . Hence

0 ≤ f

(
v · w
∥w∥2

)
= ∥v∥2 − (v · w)2

∥w∥2

Simplifying this expressions and taking square roots gives the desired result. □

Definition 9 Given vectors v,w ∈ Rn with w ̸= 0, we write u,u⊥ for the projec-
tions of v parallel and orthogonal to w, respectively

u =
(v · w
w · w

)
, u⊥ = v−

(v · w
w · w

)
Definition 10 Anorthogonal basis for a vector spaceV is a basis v1, v2, . . . , vn
with the property that

vi · vj = 0 for all i ̸= j

A basis is orthonormal if in addition, ∥vi∥ = 1 for all i.
There are many formulas that become much simpler using an orthogonal or

orthonormal basis. In particular, if v1, . . . , vn is an orthogonal basis and if v =
a1v1, . . . , anvn is a linear combination of the basis vectors, then

∥v∥2 = ∥a1v1 + · · ·+ anvn∥2

= (a1v1 + · · ·+ anvn) · (a1v1 + · · ·+ anvn)

=

n∑
i=1

n∑
j=1

aiaj(vi · vj)

=

n∑
i=1

a2i ∥vi∥2 since vi · vj for i ̸= j

If the basis is orthonormal, then this further simplifies to ∥v∥ =
∑

a2i .

Definition 11 For any c ∈ Rn and any r > 0, the open ball of radius r centered
at c is the set

B(c, r) = {v ∈ Rn : ∥v− c∥ < r}

Definition 12 For any c ∈ Rn and any r > 0, the closed ball of radius r centered
at c is the set

B(c, r) = {v ∈ Rn : ∥v− c∥ ≤ r}

1.2 Lattices in Rm

Definition 13 Let b1, . . . , bn ∈ Rm be a set of linearly independent vectors. The
lattice L generated by b1, . . . , bn (n ≤ m) is the set of linear combinations of
b1, . . . , bn with coefficients in Z.

L = {a1b1 + a2b2 + · · ·+ anbn : a1, a2, . . . , an ∈ Z}

Equivalently, if we define B as them×nmatrix whose columns are the vectors
b1, . . . , bn then the lattice generated by B is

L(B) = L(b1, . . . , bn) = {Bz : z ∈ Zn}

We say that the dimension of the lattice is m. A basis for L is any set of
linearly independent vectors that generates L. Any two such sets have the same
number of elements.

The rank of L is the number of vectors in a basis for L which is n in Defini-
tion 13. If the lattice rank is equal to the lattice dimension then the lattice is called a
full-rank lattice . The basis vectors b1, . . . , bn are said to generate the lattice.
Next we define the span and the sublattice of a lattice.

Definition 14 The span of a lattice span(L(b1, . . . , bn)) is the linear space gen-
erated by its vectors.

span(L(b1, . . . , bn)) = span(L(B)) = span(B) = {Bx : x ∈ Rn}

Definition 15 Let L(B) ⊂ Rm be a lattice with basis vectors b1, . . . , bn. Suppose
that b′1, . . . , b′n ∈ L are linearly independent, and letL(B′) be the lattice generated
by b′1, . . . , b′n. We call L(B′) a sublattice of L(B) and write L(B′) ⊆ L(B). If
L(B′) = L(B) we say that the basis B and B′ are equivalent . If L(B′) ⊆ L(B),
but L(B′) ̸= L(B) then basis B and B′ are not equivalent, L(B′) is a proper
sublattice of L(B) and write L(B′) ⊂ L(B).

There is an alternative, more abstract, way to define lattices. A subset S of Rm

is an additive subgroup if it is closed under addition and subtraction. It is called
a discrete additive subgroup if there is a positive constant ϵ > 0 such that for
every v ∈ S ,

S ∩ {w ∈ Rm : ∥v− w∥ < ϵ} = {v}

or equivalently,

∃ϵ > 0 such that, ∀x ̸= y ∈ S, ∥x− y∥ ≥ ϵ

Definition 16 A lattice L is a discrete additive subgroup of Rn.

In other words if we take any vector v ∈ L and draw a closed ball of radius ϵ
around v, then there is no other points of L inside the ball.

Proposition 1.4 Any two bases for a latticeL are related by amatrix having integer
coefficients and a determinant equal to ±1.

Proof. Suppose that the vectors b1, . . . , bn are a basis for a lattice L and that
w1, . . . ,wn is another collection of vectors in L. We can write each wj as a linear
combination of the basis vectors,

w1 = a11b1 + a12b2 + · · ·+ a1nbn,
w2 = a21b1 + a22b2 + · · ·+ a2nbn,
...

wn = an1b1 + an2b2 + · · ·+ annbn,

but since we are dealing with lattices, we know that all of the aij coefficients
are integers.

Suppose that we try to express the vi in terms of thewj . This involves inverting
the matrix

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
an1 an2 · · · ann


We need the bi to be linear combinations of wj using integer coefficients, so

we need the entries of A−1 to have integer entries. Hence,

1 = det(I) = det(AA−1) = det(A)det(A−1)

where det(A) and det(A−1) are integers, so we must have det(A) = ±1. Con-

versely, if det(A) = ±1, the property A−1 =
Adj(A)
det(A)

tells us that since the adju-

gate matrix Adj(A) of A is an integer matrix because Z is closed under multiplica-
tion and addition, then A−1 does indeed have integer entries. □

Definition 17 An n×nmatrixU with integer coefficients and determinant±1 will
be called unimodular .

It follows from Proposition 1.4 and Definition 17 that U−1 is defined and is
also unimodular.

Definition 18 A unimodular column operation on a matrix is one of the
following elementary operations:

• multiply any column by −1

• interchange any two columns

• add an integral multiply of any column to any other column

To generate examples of n× n unimodular matrices, we start with the identity
matrix In, and the apply any finite sequence of unimodular column operations. The
result will be a n×n unimodular matrix and in fact any such matrix can be obtained
in this way.

If we apply unimodular column operations to a matrix whose columns contain
a basis for a lattice L, then we obtain another basis for the same lattice.

For computational purposes, it is often convenient to work with lattices whose
vectors have integer coordinates. For example,

Zn = {(b1, b2, . . . , bn) : b1, b2, . . . , bn ∈ Z}

is the lattice consisting of all vectors with integer coordinates.

Definition 19 The determinant of a lattice L(B) is

det(L(B)) =
√

det(B⊺B)

In the special case that L(B) is a full-rank lattice we have

det(L(B)) = |det(B)|

Lemma 1.5 The determinant of a lattice does not depend on the basis.

Proof. Suppose the lattice L ⊂ Rn has two bases B1,B2. Then by Proposition 1.4,
B2 = B1U and the properties (AB)⊺ = B⊺A⊺,
det(AB) = det(A)det(B) and det(A⊺

) = det(A) we have that√
det(B⊺

2B2) =
√

det(U⊺B⊺
1B1U) =

√
det2(U)det(B⊺

1B1) =
√

det(B⊺
1B1)

More simple, in the case of a full-rank lattice

|det(B2)| = |det(B1U)| = |det(B1)||det(U)| = |det(B1)||±1| = |det(B1)|

Since the two bases are arbitrary, this completes the proof. □

Definition 20 Let L ⊂ Rn be a lattice and let b1,b2, . . . , bn be a basis for L. The
fundamental parallelepiped for L is the set

P(b1,b2, . . . , bn) = {t1b1 + t2b2 + · · ·+ tnbn : 0 ≤ ti < 1}

Thus, pictorially, a fundamental parallelepiped is the half-open region enclosed
by the vectors b1, . . . , bn. Clearly, different bases of the same lattice generate dif-
ferent fundamental parallelepipeds.

Proposition 1.6 Let L ⊂ Rn be a full-rank lattice and P be a fundamental paral-
lelepiped for L. Then every vector v ∈ Rn can be written in the form

v = x+ y

for a unique x ∈ P and a unique y ∈ L.
Equivalently, the union of the translated fundamental parallelepipeds

P + y = {x+ y : x ∈ P}

as y ranges over the vectors in lattice L exactly covers Rn.

Proof. Let b1, . . . , bn be basis of L that gives the fundamental parallelepiped P .
Then b1, . . . , bn are linearly independent in Rn, so they form a basis of Rn and
then any vector v of Rn can be written as

v = a1b1 + · · ·+ anbn

for some unique choice of a1, . . . , an ∈ R
We write each ai as its integer and fractional part

ai = ri + ti, with ri ∈ Z and 0 ≤ ti < 1

therefore v can be written in the desired form as

v = (r1+t1)b1+ · · ·+(rn+tn)bn =

x∈P︷ ︸︸ ︷
(r1b1 + · · ·+ rnbn)+

y∈L︷ ︸︸ ︷
(t1b1 + · · ·+ tnbn)

Now suppose that v can be written as a sum of two different representations,

v = x+ y = x′ + y′

= (r1b1 + · · ·+ rnbn) + (t1b1 + · · ·+ tnbn)
= (r′1b1 + · · ·+ r′nbn) + (t′1b1 + · · ·+ t′nbn)

where ri, r′i ∈ Z and 0 ≤ ti, t
′
i < 1. Because b1, . . . , bn are linearly independent

we get that for all i = 1, . . . , n

ri + ti = r′i + t′i

t′i − ti = r′i − ri ∈ Z

Since 0 ≤ ti, t
′
i < 1 and t′i − ti ∈ Z it must be the case that

t′i − ti = 0⇒ t′i = ti and thus r′i − ri = 0⇒ r′i = ri. From that we conclude that
x′ = x and y′ = y, and this completes the proof. □

Proposition 1.7 Let L ⊂ Rn be a full-rank lattice, let b1, . . . , bn be a basis for
L, and let P = P(b1, . . . , bn) be the associated fundamental parallelepiped. We
write the basis of L in square matrix form as

B =

 b1
...
bn


where eachbi is the i−th row of thematrixB. Then the volume ofP(b1, . . . , bn)

is given by the formula

V ol(P(b1, . . . , bn)) = |det(B)|

Proof. We can compute the volume of P as the integral of the constant function 1
over the region P ,

V ol(P(b1, . . . , bn)) =
∫
P
1 dx1dx2 · · · dxn

Wemake a change of variables from x = (x1, . . . , xn) to t = (t1, . . . , tn) according
to the formula

(x1, . . . , xn) = t1b1 + · · ·+ tnbn ⇐⇒ x = tB (matrix form)

The Jacobian matrix of this change of variables is B and the fundamental par-
allelepiped P is the image under B of the unit cube Cn = [0, 1]n, so the change of
variables formula for integrals yields

V ol(P(b1, . . . , bn)) =
∫
P
1 dx1 · · · dxn =

∫
BCn

1 dx1 · · · dxn =

∫
Cn

|det(B)| dt1 · · · dtn

= |det(B)|V ol(Cn)

= |det(B)|

□

It is easy to see that if we take each bi to be the i − th column of a matrix B′

we get
|det(B′)| = |det(B⊺

)| = |det(B)| = V ol(P(b1, . . . , bn))

and from Lemma 1.5 we get that the volume of the fundamental parallelepiped does
not depend on the basis.

..

b2

.
b1

(a) The lattice Z2 with basis vectors (0, 1) and (1, 0) and
the associated fundamental parallelepiped.

..

b1

.

b2

(b) The lattice Z2 with a different basis consisting of vectors
(1, 1) and (2, 1), and the associated fundamental parallelepiped.

Figure 1.1. Parallelepipeds for various bases of the lattice Z2. Note that the paral-
lelepipeds in either case do not contain any nonzero lattice point.

Theorem 1.8 Let L ⊂ Rn be a full-rank lattice, and let b1, . . . , bn ∈ Rn denote
linearly independent vectors in L. Then, b1, . . . , bn form a basis L if and only if
P(b1, . . . , bn) ∩ L = {0}

Proof. Assume first that b1, . . . , bn form a basis of L. Let

v =
n∑

i=1

tibi ∈ L(b1, . . . , bn) ∩ P(b1, . . . , bn)

Since v ∈ L(b1, . . . , bn) then ti ∈ Z, ∀i. Since v ∈ P(b1, . . . , bn) then ti ∈
[0, 1), ∀i. But only 0 is an integer in [0, 1) and that means that ti = 0 , ∀i so we get
that v = 0.

For the other direction assume that P(b1, . . . , bn) ∩ L = {0}. The vectors
b1, . . . , bn are linearly independent and since they belong toLwe have thatL(b1, . . . , bn) ⊆
L. It suffices to show that L ⊆ L(b1, . . . , bn). Since b1, . . . , bn ∈ L are linearly
independent we can write any lattice vector v as

v =

n∑
i=1

tibi where ti ∈ R

Consider now the vector

v′ =
n∑

i=1

⌊ti⌋ bi

where ⌊ti⌋ denotes the integer part of ti. The vector v′ is in the latticeL(b1, . . . , bn)
since the coefficients ⌊ti⌋ are integers. Therefore, the vector v−v′ is inL(b1, . . . , bn)
as well. Now the vector,

v− v′ =
n∑

i=1

(ti − ⌊ti⌋)bi

is in P(b1, . . . , bn) since 0 ≤ ti − ⌊ti⌋ < 1, ∀i.
Since v− v′ ∈ L(b1, . . . , bn)∩P(b1, . . . , bn), it must the case that v− v′ = 0 by
assumption. But since the vectors b1, . . . , bn are linearly independent, this means
that ti − ⌊ti⌋ = 0, ∀i from which we get that ti ∈ Z, ∀i.

Thus, v ∈ L(b1, . . . , bn) and therefore L ⊆ L(b1, . . . , bn). □

1.3 Gram-Schmidt Orthogonalization

The “best” basis we can have for a vector space is an orthogonal basis. That is
because we can most easily find the coefficients that are needed to express a vector
as a linear combination of the basis vectors.

But usually we are not given an orthogonal basis. We will show how to find an
orthogonal basis starting from an arbitrary basis.

Definition 21 Let b1, . . . , bn be a basis of Rn. TheGram-Schmidt orthogo-
nalization of b1, . . . , bn is the following basis b̃1, . . . , b̃n

b̃1 = b1

b̃i = bi −
i−1∑
j=1

µij b̃j (2 ≤ i ≤ n), µij =
⟨bi, b̃j⟩
⟨b̃j , b̃j⟩

(1 ≤ j < i ≤ n)

We do not normalize the vectors. It is important to note that usually the Gram-
Schmidt basis vectors b̃1, . . . , b̃n are not in the lattice generated by b1, . . . , bn
because in general the vectors b̃1, . . . , b̃n are not integral linear combinations of
b1, . . . , bn.

If b̃1, . . . , b̃n are linearly independent inRm the running time complexity of Gram-
Schmidt orthogonalization isO(mn2) and thus polynomial in the input size (see ch.
2.1, p. 30, for asymptotic notation).

If we set µii = 1 for 1 ≤ i ≤ n then we have

b̃i = bi −
i−1∑
j=1

µij b̃j ⇒ bi =
i∑

j=1

µij b̃j

Let b̃1/∥b̃1∥, . . . , b̃n/∥b̃n∥ denote the unit vectors in the direction of the Gram-
Schmidt vectors.

Then the Gram-Schmidt orthogonalization process can be written in matrix
form as

B︷ ︸︸ ︷ | |
b1 . . . bn
| |

 =

B̃︷ ︸︸ ︷ | |
b̃1 . . . b̃n
| |

 ·
G︷ ︸︸ ︷

1 µ2,1 µ3,1 . . . µn,1

0 1 µ3,2 . . . µn,2

0 0 1 . . . µn,3
...

...
...

...
...

0 0 0 0 1



=

 | |
b̃1

∥b̃1∥
. . . b̃n

∥b̃n∥
| |


︸ ︷︷ ︸

B̃′

·


∥b̃1∥ µ2,1∥b̃1∥ µ3,1∥b̃1∥ . . . µn,1∥b̃1∥
0 ∥b̃2∥ µ3,2∥b̃2∥ . . . µn,2∥b̃2∥
0 0 ∥b̃3∥ . . . µn,3∥b̃3∥
...

...
...

...
...

0 0 0 0 ∥b̃n∥


︸ ︷︷ ︸

G′

where each bi (resp. b̃i) is the i− th column of the matrix B (resp. B̃).

Remark 1.9 We can write matrix B as B = B̃ ·G where G is an upper triangular
matrix with diagonal entries gii = 1 for 1 ≤ i ≤ n (therefore its determinant
equals to 1) then

det(B) = det(B̃ ·G) = det(B̃)det(G) = det(B̃) · 1 = det(B̃)

Remark 1.10 We can also write matrix B as B = B̃′ · G′ where G′ is a lower
triangular matrix with diagonal entries g′ii = ∥b̃i∥ for 1 ≤ i ≤ n therefore its
determinant equals to

∏n
i=1∥b̃i∥. Since the vectors

bi
∥bi∥ are orthonormal, the de-

terminant of the matrix B̃′ with columns bi
∥bi∥ is ±1. Thus, we have

det(L(B)) = |det(B̃′ ·G′)| = |det(B̃′)||det(G′)| = |±1|
n∏

i=1

∥b̃i∥ =
n∏

i=1

∥b̃i∥

Theorem 1.11 Let b1, . . . , bn be a basis for Rn and let b̃1, . . . , b̃n be its Gram-
Schmidt orthogonalization. We have:

(a) ⟨b̃i, b̃j⟩ = 0 for 1 ≤ i < j ≤ n

(b) span(b1, . . . , bk) = span(b̃1, . . . , b̃k) for 1 ≤ k ≤ n

(c) For 1 ≤ k ≤ n, the vector b̃k is the projection of bk onto the orthogonal
complement of span(b1, . . . , bk−1)

(d) ∥b̃k∥ ≤ ∥bk∥ for 1 ≤ k ≤ n

Proof.

(a) Induction on j. For j = 1 there is nothing to prove. Assume that the claim
holds for some j ≥ 1. For 1 ≤ i < j + 1 we have

⟨b̃i, b̃j⟩ =

⟨
b̃i,

(
bj+1 −

j∑
k=1

µj+1,kb̃k

)⟩

= ⟨b̃i,bj+1⟩ −
j∑

k=1

µj+1,k⟨b̃i, b̃k⟩

= ⟨b̃i,bj+1⟩ − µj+1,i⟨b̃i, b̃i⟩

= ⟨b̃i,bj+1⟩ −
⟨bj+1, b̃i⟩
⟨b̃i, b̃i⟩

⟨b̃i, b̃i⟩

= 0

(b) By Remark 1.9 we have bi ∈ span(b̃1, . . . , b̃k) for 1 ≤ i ≤ k hence

span(b1, . . . , bk) ⊆ span(b̃1, . . . , b̃k)

For the reverse inclusion we use induction on k. For k = 1 we have b1 = b̃1
and so the claim is obvious. Assume that the claim holds for some k ≥ 1.
We have

b̃k+1 = bk+1 −
k∑

j=1

µk+1,j b̃j = bk+1 + v, v ∈ span(b̃1, . . . , b̃k)

The induction hypothesis gives span(b̃1, . . . , b̃k) ⊆ span(b1, . . . , bk), and
so the last equation implies b̃k+1 ∈ span(b1, . . . , bk). Therefore

span(b̃1, . . . , b̃k) ⊆ span(b1, . . . , bk)

(c) We write S = span(b1, . . . , bk−1) and S⊥ for the subspace ofRn consisting
of all vectors b′ such that ⟨b′,b⟩ = 0, ∀b ∈ S. There is a unique decompo-
sition bk = b′k + s where b′k ∈ S⊥ and s ∈ S. Here b′k is the projection of
bk on the orthogonal complement of S. By Remark 1.9 we have

bk = b̃k +
k−1∑
j=1

µkj b̃j

From part (b), we have S = span(b̃1, . . . , b̃k−1), and so b̃k = b′k.

(d) Again by Remark 1.9 we have

bk = b̃k+
k−1∑
j=1

µkj b̃j ⇒ ∥bk∥2 = ∥b̃k+
k−1∑
j=1

µkj b̃j∥2 =

⟨
b̃k +

k−1∑
j=1

µkj b̃j , b̃k +
k−1∑
j=1

µkj b̃j

⟩

Part (a) (b̃1, . . . , b̃n are orthogonal) implies that⟨
b̃k +

k−1∑
j=1

µkj b̃j , b̃k +
k−1∑
j=1

µkj b̃j

⟩
= ∥b̃k∥2 +

k−1∑
j=1

µ2
kj∥b̃j∥2

Therefore

∥bk∥2 = ∥b̃k∥2 +
k−1∑
j=1

µ2
kj∥b̃j∥2

Since every term in the sum is nonnegative, this proves the claim.

□

Corollary 1.12 (Hadamard’s inequality) LetB ∈ Rn×n with vectorsb1,b2, . . . , bn
as columns (or rows). Then,

det(B) ≤ ∥b1∥ · ∥b2∥ · · · ∥bn∥

Proof. From Remarks 1.9 and 1.10 we have that

det(B) =
n∏

i=1

∥b̃i∥

and from Theorem 1.11(d) the inequality follows. □

1.4 Successive minima

A basic parameter of the lattices is the length of the shortest nonzero vector in the
lattice (since any lattice contains the zero vector which has a zero norm). When we
speak of length, we mean the Euclidean norm. Finding the shortest nonzero lattice
vector is also a fundamental computational problem associated with lattices.

This parameter is also called the first successive minimum of the lat-
tice, and is denoted λ1(L). The second successive minimum of the lattice
is the smallest real number r such that there exist two linearly independent vectors
v1, v2 ∈ L with ∥v1∥, ∥v2∥ ≤ r. This leads to the following generalization of the
first successive minimum known as successive minima.

Definition 22 LetL be a lattice of rank n. Then for every i ∈ {1, . . . , n}we define
the i− th successive minimum as

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i}

A more descriptive definition is the following one:

Definition Let L be a lattice of rank n. Then for every i ∈ {1, . . . , n} we define
the i− th successive minimum as

λi(L) = inf{r : B(0, r) contains ≥ i linearly independent lattice vectors}

It follows from the characterization of lattices as discrete subgroups of Rn that
there always exist vectors achieving the successive minima. So, the infimum is
actually a minimum if B(0, r) is replaced with the closed ball B(0, r).

Theorem 1.13 LetL be a lattice of ranknwith successiveminimaλ1(L), . . . , λn(L).
Then there exist linearly independent lattice vectors v1, . . . , vn ∈ L such that
∥vi∥ = λi(L) for all i = 1, . . . , n.

Interestingly, the vectors v1, . . . , vn achieving the minima are not necessarily a ba-
sis for L. It is easy to see that the successive minima are weakly increasing:

λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L)

The best possible basis for a lattice L of dimension n consists of vectors

b1,b2, . . . , bn such that ∥bi∥ = λi(L) for every i ∈ {1, 2, . . . , n}

Such a basis is in general very hard compute and so we would like to know
some upper and lower bounds for the successive minima. The following theorem
gives a lower bound on the length of the shortest nonzero vector in a lattice.

Theorem 1.14 Let B be basis of a lattice of rank n, and let B̃ be its Gram-Schmidt
orthogonalization . Then, the first minimum of the lattice (and therefore every
nonzero lattice vector) satisfies

λ1(L(B)) ≥ min
1≤i≤n

∥b̃i∥ > 0

Proof. Let x ∈ Zn be any nonzero integer vector. Let j ∈ {1, . . . , n} be the largest
index such that xj ̸= 0, i.e. xj+1 = · · · = xn = 0. Then,

|⟨Bx, b̃j⟩| = |⟨
n∑

i=1

xibi, b̃j⟩|

= |
n∑

i=1

xi⟨bi, b̃j⟩| inner product linearity

= |xj |⟨b̃j , b̃j⟩ ⟨bi, b̃j⟩
j<i
= 0, xj

j>i
= 0

= |xj |∥b̃j∥2 ⟨b̃j , b̃j⟩ = ∥b̃j∥2

On the other hand by the Cauchy-Schwarz inequality we have that

|⟨Bx, b̃j⟩| ≤ ∥Bx∥∥b̃j∥ ⇒ ∥Bx∥ ≥
|⟨Bx, b̃j⟩|
∥b̃j∥

From the equation above we get

∥Bx∥ ≥ |⟨Bx, b̃j⟩|
∥b̃j∥

= |xj |∥b̃j∥
≥ ∥b̃j∥ because xj ∈ Z∗

≥ min
1≤i≤n

∥b̃i∥

Since the length of any lattice vector is at least min
1≤i≤n

∥b̃i∥

then λ1(L(B)) ≥ min
1≤i≤n

∥b̃i∥ and because b1, . . . , bn are linearly independent, this

quantity is strictly positive, i.e. min
1≤i≤n

∥b̃i∥ > 0. □

Before we give upper bounds on the successive minima let us give some useful
definitions for sets.

Definition 23 Let S be a subset of Rn

(a) S is bounded if the lengths of the vectors in S are bounded. Equivalently,
S is bounded if there is a radius r such that S is contained within the ball
B(0, r).

(b) S is centrally symmetric (symmetric about the origin) if for
every point x in S , the negation −x is also in S .

(c) S is convex if whenever two points x and y are in S, then the entire line
segment connecting x and y lies completely in S, i.e.,

∀x, y ∈ S, x ̸= y, ∀a ∈ [0, 1], ax+ (1− a)y ∈ S

(d) S is closed if it has the following property: If x ∈ Rn is a point such that
every ball B(x, r) contains a point of S , then x is in S.

(e) For x ∈ Rn we let S + x = {y+ x : y ∈ S} denote the translate of S by
x.

(f) For a ∈ R we let aS = {ay : y ∈ S} denote the scaling of S by a.

Theorem 1.15 (Blichfeldt theorem) For any latticeL(B) and for any measur-
able set S ⊆ span(L(B)), if S has volume vol(S) > det(L), then there exist two
distinct points z1, z2 ∈ S such that z1 − z2 ∈ L(B)

Proof. Let L(B) be a lattice with basis B, and S be any subset of span(L(B)) such
that vol(S) > det(L). Partition S into a collection of disjoint regions. For any
lattice point x define the region

Sx = S ∩ (P(B) + x)

The sets (P(B) + x) with x ∈ L(B) partition span(L(B)). Therefore the sets
Sx, x ∈ L(B) form a partition of S , i.e., they are pairwise disjoint and

S =
∪

x∈L(B)

Sx

and since L(B) is countable and set S is measurable from countable additivity we
get,

vol(S) = vol

 ∪
x∈L(B)

Sx

 =
∑

x∈L(B)

vol(Sx)

Now define translated sets

S ′x = Sx − x = (S − x) ∩ (P(B) + x− x) = (S − x) ∩ P(B)

We claim that sets S ′x are not pairwise disjoint. Assume, for contradiction, they are.
From the definition of set S ′x it follows that for all x ∈ L(B) S ′x is contained in

P(B), ∑
x∈L(B)

vol(S ′x) = vol

 ∪
x∈L(B)

S ′x

 ≤ vol(P(B)) (1.1)

Since S ′x is a translation of Sx, they have the same volume, and from the assumption
of the theorem we get,∑

x∈L(B)

vol(S′
x) =

∑
x∈L(B)

vol(Sx) = vol(S) > det(L) (1.2)

Combining (1.1) and (1.2) we get det(L(B)) < vol(P(B)), which is a contra-
diction because det(L(B)) = vol(P(B)) by definition. This proves that sets S′

x
are not pairwise disjoint, i.e., for x, y ∈ L(B) there exist two sets S ′x,S ′y such that
S ′x ∩ S ′y ̸= ∅. Let z be any vector in S ′x ∩ S ′y and define

z1 = z+ x
z2 = z+ y

Since x ̸= y we have that z1 ̸= z2. From z ∈ S ′x and z ∈ S ′y we get z1 ∈ Sx ⊆ S
and z2 ∈ Sy ⊆ S . Finally, the difference between z1, z2 is a nonzero vector that
satisfies

z1 − z2 = x− y ∈ L(B)
completing the proof of the theorem. □

As a corollary to Blichfeldt theoremwe get the following theorem ofMinkowski.

Theorem 1.16 (Convex Body theorem) For any full-rank latticeL of rank n,
and any centrally symmetric convex set S ⊂ span(L), if vol(S) > 2ndet(L),
then S contains a nonzero lattice point. If S is also closed, then it suffices to take
vol(S) ≥ 2ndet(L).

Proof. Let S ′ = {x : 2x ∈ S}. Then vol(S ′) = 2−nvol(S) > det(L). By
Blichfeldt theorem there exist two distinct points z1, z2 ∈ S ′ such that z1− z2 ∈ L.
From the definition of S ′, we get 2z1, 2z2 ∈ S and since S is centrally symmetric
we also have−2z2 ∈ S . Finally, by convexity, the midpoint of segment [2z1,−2z2]
also belongs in S, i.e.,

2z1 + (−2z2)
2

= z1 − z2 ∈ S

Therefore z1 − z2 ∈ S ∩ L and this completes the proof. □

Definition 24 Hermite’s constant , denoted γn, is the supremum of the follow-
ing quantities as L ranges over all lattices of dimension n:

λ1(L)2

det(L)2/n

The quantities γn give an upper bound for λ1(L) but are very difficult to com-
pute. They are known (2012) only for 1 ≤ n ≤ 8 and n = 24 (see [71, ch. 2]).

We now give an upper bound for λ1(L).

Theorem 1.17 (Minkowski’s first theorem) Let L be a lattice of dimension
n. Then there is a vector v ∈ L satisfying

∥v∥ ≤
√
ndet(L)1/n

Proof. Let L be a lattice and let S be the hypercube in Rn, centered at 0, whose
sides have length 2 det(L)1/n,

S = {(x1, . . . , xn) ∈ Rn : det(L)1/n ≤ xi ≤ det(L)1/n for all 1 ≤ i ≤ n}

The set S is closed, centrally symmetric and convex, and its volume is

vol(S) =
(
2 det(L)1/n

)n
= 2n det(L)

therefore we can apply Theorem 1.16 to deduce that there is a nonzero vector v ∈
S ∩ L. From definition of S, writing the coordinates of v = (v1, . . . , vn), for all
1 ≤ i ≤ n, we have

|vi| ≤ det(L)1/n =⇒
v2i ≤ det(L)2/n =⇒
n∑

i=1

v2i ≤ ndet(L)2/n =⇒√
v11 + · · ·+ v2n ≤

√
ndet(L)1/n =⇒

∥v∥ ≤
√
ndet(L)1/n

□

Since the hypercube of Theorem 1.17 has the smallest possible side length,
therefore the smallest volume to satisfy the requirements of Theorem 1.16, we ob-
tain an upper bound for λ1(L), namely λ1(L) ≤

√
ndet(L)1/n.

Minkowski also proved a stronger result involving the geometric mean of all
the successive minima.

Theorem 1.18 (Minkowski’s second theorem) For any lattice L of rank n,
the successive minima (in the ℓ2 norm) satisfy(

n∏
i=1

λi(L)

)1/n

<
√
ndet(L)1/n

Now that we have given a lower bound on the shortest lattice vector we give a
proof of equivalence of the two lattice definitions.

Theorem 1.19 Let L ⊂ Rn, L ̸= ∅. Then L is a lattice if and only if it is a discrete
additive subgroup of Rn.

Proof.
Assume L is a lattice define as the set of all integer combinations of vectors

b1, . . . , bn ∈ Rm which are linearly independent (Definition 13, p. 7). Then,
clearly L is an additive subgroup of Rn. In addition, ∀x, y ∈ L, x − y ∈ L.
Therefore, from Theorem 1.14 we can let ϵ = λ1(L),

∥x− y∥ ≥ ϵ = λ1(L) > 0

Conversely, assume that L is a discrete additive subgroup of Rn. We use in-
duction on n. For n = 1, let {b} be a basis for R, namely

R1 = {ab : a ∈ R}

Since for every v ∈ L there exists ϵ > 0 such that L ∩ {r ∈ R : ∥v − r∥ <
ϵ} = {v} is finite also for all r ∈ R+, there exists a smallest positive value r1 such
that r1b ∈ L. Therefore

{ar1b : a ∈ Z} ⊆ L

Since any s ∈ R can be written as

s =

⌊
s

r1

⌋
r1 + s1r1,

for some real number s1 with 0 ≤ s1 < 1, then any sb ∈ L can be written in the
form

sb = kr1b+ s1(r1b) where k =

⌊
s

r1

⌋
∈ Z and 0 ≤ s1 < 1

Because sb, kr1b ∈ L then s1(r1b) must be in L and from the minimality of r1,
we must have s1 = 0, so L = {ar1b : a ∈ Z}. This establishes the induction step.

Assume the induction hypothesis, namely that any discrete additive subgroup ofRc

for c < n is a lattice. Hence, we may assume that

L ⊂ Rn is discrete and L ̸⊂ Rc for any k < n

So we can choose a basis of Rn, namely b1, . . . , bn, with bi ∈ L for all i ∈
{1, . . . , n}. Let

V =

{
n−1∑
i=1

aibi : ∀i, ai ∈ R

}
. By the induction hypothesis the set LV = L ∩ V is a lattice of dimension n− 1.
Let b′1, . . . , b′n−1 be a basis for LV . Therefore, any element z ∈ L can be written
as

z =

(
n−1∑
i=1

rib′i

)
+ rnbn where ri ∈ R

By the discreteness of L, there exist only finitely many such z with all ri bounded.
Thus, we may choose one z with rn > 0, and minimal with respect to |ri| < 1 for
all i ̸= n. Let b′n denote this choice. Certainly the set {b′1, . . . , b′n−1} ∪ {b′n} is
linearly independent, because of the term rnbn in b′n. Thus,

Rn =

{
n∑

i=1

aib′i : ∀i, ai ∈ R

}

Because L ⊂ Rn for any v ∈ L,

v =

n∑
i=1

tjb′i where ti ∈ R

Let

w = v−
n∑

i=1

⌊tj⌋b′i =
n∑

i=1

sib′i

=

(
n−1∑
i=1

sib′i

)
+ snb′n

=

(
n−1∑
i=1

sib′i

)
+

(
n−1∑
i=1

snribi + snrnbn

)
where ri ∈ R

Therefore, 0 ≤ si < 1 for all i ∈ {1, . . . , n}. By the minimality of rn, we must
have that sn = 0 therefore tn ∈ Z. Also we get,

w = v−
n∑

i=1

⌊tj⌋b′i︸ ︷︷ ︸
is in L

=

n−1∑
i=1

sib′i︸ ︷︷ ︸
is in V

so w ∈ L and w ∈ V , then w ∈ LV = L∩V which is a lattice of dimension n−1.
Since any v ∈ L can be written as

v = w+ tjb′n =

n−1∑
i=1

t′ib′i + tjb′n where t′i ∈ Z

with w ∈ LV and tj ∈ Z we have that L is a lattice of dimension n with basis
vectors b′1, . . . , b′n.

□

1.5 Dual lattices

In this section we define the notion of the dual lattice and see some of its properties.

Definition 25 For any lattice L, the dual lattice of L is defined as

L∗ = {y ∈ span(L) : ∀x ∈ L, ⟨x, y⟩ ∈ Z}

The dual lattice L∗ has the same span with L. We now prove that the dual lat-
tice is indeed a lattice itself.

Proof. Let L ⊂ Rm be a lattice of rank n, and let B ∈ Rm×n be its basis. Define
the dual lattice:

L∗ = {y ∈ span(L) : ∀x ∈ L, ⟨x, y⟩ ∈ Z}

Because y ∈ span(L) and x ∈ L we can write them in matrix form as y = Bu
where u ∈ Rn and x = Bw where w ∈ Zn. Now solve y = Bu for u and multiply
it again with B :

y = Bu ⇒
B⊺y = B⊺Bu ⇒

u =
(
B⊺B

)−1 B⊺y ⇒

Bu = B
(
B⊺B

)−1 B⊺y = y

The matrix B⊺B is invertible because B is a basis for L, hence its columns are
linear independent vectors. Because ⟨x, y⟩ = det(x⊺y) we have that

⟨x, y⟩ = det((Bw)⊺B
(
B⊺B

)−1 B⊺y)

= det(w⊺B⊺B
(
B⊺B

)−1 B⊺y)
= det(w⊺ B⊺y︸︷︷︸

z

)

= det(w⊺z) ∈ Z
= det(w1z1 + · · ·+ wnzn) ∈ Z for all w ∈ Zn

Since we want this to hold for all w ∈ Zn we can choose w = ei for 1 ≤
i ≤ n where ei is the standard basis vector from Definition 7 (p. 4) and we get that
wizi ∈ Z. We already know that wi ∈ Z, so we get that zi ∈ Z. Because B has n
linearly independent vectors as rows then det(B⊺B) ̸= 0 and so the n × n matrix

(
B⊺B

)−1 exists, and has also a nonzero determinant. Thus, rank
(
B
(
B⊺B

)−1
)
=

rank(B) = n so them× n matrix B
(
B⊺B

)−1 has n linearly independent vectors
as columns.

From the equation,
y = B

(
B⊺B

)−1 B⊺y︸︷︷︸
z

the properties that B⊺y = z ∈ Zn and that the matrix
(
B
(
B⊺B

)−1
)
consists of

column vectors that are linearly independent we conclude that L∗ is a lattice with
basis B∗ = B

(
B⊺B

)−1. □

In the case of a full-rank lattice we have that B∗ =
(
B⊺)−1. The next theorem

provides some useful properties for a lattice L and its dual lattice L∗.

Theorem 1.20 Let L ⊂ Rm be a lattice of rank n with basis B ∈ Rm×n, and let
L∗ be its dual lattice with basis B∗ = B

(
B⊺B

)−1.
The following properties hold:

(a) (L∗)∗ = L

(b) det(L∗) = 1

det(L)

(c) λ1(L) · λ1(L∗) ≤ n

(d) λ1(L) · λn(L∗) ≥ 1

Proof.

(a) The basis for (L∗)∗ is

(B∗)∗ = B∗
(
(B∗)

⊺B∗
)−1

=
(
B
(
B⊺B

)−1
)((

B
(
B⊺B

)−1
)⊺ (

B
(
B⊺B

)−1
))−1

= B which is a basis for L.

Thus, (L∗)∗ = L.

(b) We have that,

det(L∗) =
√
det
(
(B∗)

⊺B∗
)

=

√
det

((
B (B⊺B)−1

)⊺(
B (B⊺B)−1

))

=

√
det

((
(B⊺B)−1

)⊺
BTB (B⊺B)−1

)

=

√
det

((
(B⊺B)−1

)⊺)
=

√
det
(
(B⊺B)−1

)
=

√
1

det (B⊺B)
=

1

det(L)

(c) From Theorem 1.17 (p. 23) and part (b), we have that

λ1(L) ≤
√
ndet(L)1/n and λ1(L∗) ≤

√
ndet(L∗)1/n =

√
n

det(L)1/n

Thus,

λ1(L) · λ1(L∗) ≤
√
ndet(L)1/n

det(L)1/n
=
√
n

(d) Let v ∈ L such that ∥v∥ = λ1(L) (can be more that one) and let v∗1, . . . , v∗n
be any set on n linearly independent vectors in L∗. Then there exists an
i ∈ {1, . . . , n} such that ⟨v∗i , v⟩ ̸= 0 exactly because the vectors v∗j are
linearly independent. We have that ⟨v∗i , v⟩ = k where k ∈ Z∗ so,

λn(L∗) ≥ v∗i ≥
k

∥v∥
≥ 1

∥v∥
=

1

λ1(L)
⇒ λ1(L) · λn(L∗) ≥ 1

□

2

Lattice basis reduction

2.1 Asymptotic notation

Throughout this thesis we will use standard asymptotic notation symbolsO, o,Ω, ω
and Θ to measure the running-time complexity of algorithms. We recall their defi-
nitions here:

• f(n) = O(g(n)) if lim
n→∞

f(n)

g(n)
<∞

• f(n) = o(g(n)) if lim
n→∞

f(n)

g(n)
= 0

• f(n) = Ω(g(n)) if lim
n→∞

f(n)

g(n)
> 0

• f(n) = ω(g(n)) if lim
n→∞

f(n)

g(n)
=∞

• f(n) = Θ(g(n)) if lim
n→∞

f(n)

g(n)
= c where c is some constant.

• f(n) = Õ(g(n)) if f(n) = O(g(n)·logc(n)) for some fixed constant
c.

A function f(n) is negligible, written negl(n), if f(n) = o(n−c) for every
constant c.

30

2.2 Computational lattice problems

Minkowski's first theorem (Theorem 1.17, p. 23) gives a simple way to bound the
length of the shortest vector of a lattice. But this bound is not always tight. For
example consider the latticeL generated by vectors b1 = (ϵ, 0)

⊺ and b2 = (0, 1/ϵ)
⊺

for some ϵ > 0. The determinant of L is 1 which gives an upper bound λ1(L) ≤√
2 but the shortest vector is λ1(L) = ∥b1∥ = ϵ which can be arbitrarily small.

Furthermore, the proof of Minkowski's first theorem does not provide us with a
constructive way to find λ1(L).

The problem of finding a nonzero lattice vector of length λ1 is the Shortest
Vector Problem and it was formulated by Dirichlet in 1842.

Definition 26 (Shortest Vector Problem, SVP) Given a basis B ∈ Zm×n for a
lattice L(B), find a nonzero lattice vector v such that ∥v∥ ≤ ∥w∥ for any other
nonzero vector w ∈ L(B).

In addition to the search version of the SVP we also define its decision version:

Definition 27 Given a basis B ∈ Zm×n for a lattice L(B) and a positive number
r ∈ Q, determine whether λ1(L(B)) ≤ r or not.

Another basic computational problem is the Closest Vector Problem.

Definition 28 (Closest Vector Problem, CVP) Given a basisB ∈ Zm×n for a lat-
tice L(B), and a target vector t ∈ Zm, find a lattice vector v such that dist(v, t) ≤
dist(t,L(B)), i.e., the vector v is closest to vector t.

Again, in addition to the search version of the CVP we also define its decision
version:

Definition 29 Given a basis B ∈ Zm×n for a lattice L(B), a target vector t ∈ Zm,
and a positive number r ∈ Q decide whether there is a (nonzero) lattice vector v
such that dist(v, t) ≤ r.

From the previous definitions it is implied that v = Bx and w = By with
x, y ∈ Zn. Notice that we restrict the lattice basis B and the vector t to consist of
integers because we want the input to be representable in finite number of bits so
that we can consider those two problems as standard computational problems. It
can be shown that the decision and search versions are polynomially equivalent.

To date, for both SVP and CVP, no polynomial time algorithm is known. In
fact, we do not even know how to find nonzero lattice vectors of length within the
Minkowski's bound (Theorem 1.17, p. 23).

The hardness of solving SVP and CVP has led to consideration of approxi-
mation versions for these problems. We now define the promise 1 approximation
versions of SVP and CVP. A solution to any of the promise problems below im-
plies a solution to the corresponding optimization problem (that is, the problem that
asks for an approximation to the corresponding lattice parameter, e.g., λ1). The fol-
lowing definitions are parameterized by a (monotone) function (the gap function)
γ : Z+ → R+ of the lattice dimension where γ(n) ≥ 1. For computational pur-
poses the range of the gap function may be Z+ or Q+.

Definition 30 (GapSV Pγ) An input toGapSV Pγ is a pair (B, d) where B is an
n-dimensional basis for a lattice L and d is a positive number. In Y ES inputs
λ1(L(B)) ≤ d and in NO inputs λ1(L(B)) > γ(n) · d.

Definition 31 (GapCV Pγ) An input to GapCV Pγ is a triple (B, t, d) where B
is an n-dimensional basis for a lattice L, t ∈ span(L) is a target vector, and
d is a positive number. In Y ES inputs dist(t,L(B)) ≤ d and in NO inputs
dist(t,L(B)) > γ(n) · d.

Notice that for γ(n) = 1 the promise problemsSV Pγ andCV Pγ are equivalent
to the decision problems of SVP and CVP respectively. In an analogous way we
define the search variants of SV Pγ and CV Pγ .

Definition 32 (SV Pγ) An input to SV Pγ is a basisB for an n-dimensional lattice
L and the task if to find a nonzero vector v ∈ L such that

∥v∥ ≤ γ(n) · λ1(L(B))

Definition 33 (CV Pγ) An input toCV Pγ is a pair (B, t)whereB is ann-dimensional
basis for a lattice L, t ∈ span(L) is a target vector, and the task is to find a vector
v ∈ L such that

dist(v, t) ≤ γ(n) · dist(t,L(B))

The shortest vector and the closest vector problems are fundamental lattice
problems but there are other lattice problems which are thought to be computa-
tionally hard such as the following:

1Promise problems are a generalization of decision problems where one is asked whether a given
input satisfies one of two mutually exclusive properties. Unlike decision problems, these two prop-
erties are not necessarily exhaustive. The problem is, under the promise that the given input satisfies
one of the two conditions, tell which of the two properties is satisfied. If the input satisfies neither
property, then any answer is acceptable.

Definition 34 (Closest Vector Problem with Preprocessing, CVPP) Given a ba-
sis B ∈ Zm×n for a lattice L(B), and a target vector t ∈ Zm, one is allowed
to do arbitrary preprocessing on it and store polynomial (in the dimension of the
lattice) amount of information. The task is to find a lattice vector v such that
dist(v, t) ≤ dist(t,L(B)), i.e., the vector v is closest to vector t.

Definition 35 (γ-Shortest Independent Vectors Problem, SIV Pγ) Given a lat-
tice basis B ∈ Zm×n for the lattice L the task is to find n linearly independent
lattice vectors v1, . . . , vn ∈ L(B) so that max

i=1,...,n
∥vi∥ ≤ γ(n) · λn(L(B)).

Definition 36 (γ-unique Shortest Vector Problem, uSV Pγ) Given a lattice ba-
sis B ∈ Zm×n for the lattice L for which λ2(L(B)) > γ(n) · λ1(L(B)) the task is
to find a nonzero vector v ∈ L such that

∥v∥ ≤ γ(n) · λ1(L(B))

Definition 37 (Shortest Basis Problem, SBP) Given a lattice basis B ∈ Zm×n

the task is to find the minimum length r such that each basis vector has length at
most r.

In an analogous way we define the promise approximation versions ofCV PPγ

and SIV Pγ and uSV Pγ for γ(n) ≥ 1.

Definition 38 (GapCV PPγ) An input to GapCV Pγ is a triple (B, t, d) where
B is an n-dimensional basis for a lattice L, t ∈ span(L) is a target vector, and d is
a rational number and one is allowed to do arbitrary preprocessing on it and store
polynomial (in the dimension of the lattice) amount of information. In Y ES inputs
dist(t,L(B)) ≤ d and in NO inputs dist(t,L(B)) > γ(n) · d.

Definition 39 (GapSIV Pγ) An input to GapSIV Pγ is a pair (B, d) where B is
an n-dimensional basis for a lattice L and d is a rational number. In Y ES inputs
λn(L(B)) ≤ d and in NO inputs λn(L(B)) > γ(n) · d.

Definition 40 (GapuSV Pγ) An input toGapuSV Pγ is a pair (B, d) where B is
an n-dimensional basis for a lattice L and d is a positive number. In Y ES inputs
λ1(L(B)) ≤ d and λ2(L(B)) > γ(n) · d and in NO inputs λ1(L(B)) > γ(n) · d
(and λ2(L(B)) > γ(n) · d).

Definition 41 (Covering Radius Problem,GapCRPγ) Let ρ(L(B)) denote the
covering radius of the lattice L(B), i.e., the smallest r such that (closed) balls
of radius r centered at lattice points cover span(B). Equivalently,

ρ(L(B)) = max
v∈span(B)

dist(v,L(B))

An input to GapCRPγ is a pair (B, d) where B is an n-dimensional basis for a
lattice L and d is a rational number. In Y ES inputs ρ(L(B)) ≤ d and in NO
inputs ρ(L(B)) > γ(n) · d.

For the Covering Radius Problem, there is no known search problem whose
solution can be verified in polynomial time and thus it is not solvable even in non-
deterministic polynomial time. In fact the Covering Radius Problem is in Π2 for
the ℓp norm (p ≥ 1, p = ∞), a complexity class presumably strictly bigger than
NP.

Another fundamental problem is the one of the reduced basis. Given a basis
for a lattice which in general consists of long vectors, we want to find another
“reduced” basis for the same lattice, that is, a basis consisting of short vectors
and close to orthogonal. We will describe algorithms for this problem in the next
sections.

There are also many computational problems that can be solved in polynomial
time. Bellow we mention some of them (see Micciancio [61, p. 18-19]):

(a) Membership: Given a basis B and a vector v, decide whether v belongs to
the lattice L(B).

(b) Basis: Given a set of possibly linearly dependent integral vectorsb1, . . . , bn,
find a basis of the lattice they generate.

(c) Union: Given two lattices with integral basis B1 and B2, compute a basis
for the smallest lattice containing L(B1) ∪ L(B2).

(d) Intersection: Given two lattices with integral basis B1 and B2, compute
a basis for the intersection L(B1) ∩ L(B2).

(e) Equivalence: Given two lattices with integral basis B1 and B2, decide if
they generate the same lattice L(B1) = L(B2).

(f) Dual: Given a lattice with basis B compute a basis B∗ for the dual lattice.
From Theorem 1.20 (p. 28) we know that B∗ = B

(
B⊺B

)−1

2.3 Gaussian lattice basis reduction

In general, lattice problems become harder as the dimension grows bigger. But for
a 2-dimensional lattice the Gauss lattice basis reduction algorithm solves SVP in
polynomial time.

Definition 42 For r ∈ R we write ⌊r⌉ for the nearest integer to r.

Definition 43 We say that a basis b1,b2 of a lattice L ⊂ R2 isminimal if b1 is a
shortest nonzero vector in L and b2 is a shortest nonzero vector in L which is not
a multiple of b1, i.e., b1 = λ1(L) and b2 = λ2(L).

The underlying idea of the algorithm2 is to alternately subtract multiples of one
basis vector from the other until no further improvement is possible.

Theorem 2.1 Let L ⊂ R2 be a 2-dimensional lattice with basis vectors b1 and b2.
The following algorithm (Gauss algorithm) terminates and yields a minimal
basis for L.

Algorithm 1: Gaussian lattice basis reduction.
Input : Basis b1,b2 for the lattice L ⊂ R2.
Output: A minimal basis b1,b2 for the lattice L.

1 reduced← false;
2 while reduced ̸= true do
3 if ∥b1∥ > ∥b2∥ then
4 swap b1 and b2;
5 end

6 µ←
⌊
⟨b1,b2⟩
∥b1∥2

⌉
;

7 if µ = 0 then
8 reduced← true;
9 else
10 b2 ← b2 − µb1;
11 end
12 end
13 return b1 and b2;

2 The algorithm was first written down by Lagrange and later by Gauss, but is usually called the
“Gauss algorithm”.

Proof. The proof follows Beukers [14, ch. 3]. Regarding b1,b2 as row vectors we
have in matrix form:

b1 ← b1
b2 ← b2 − µb1

}
⇒
(

b1
b2

)
←
(

1 0
−µ 1

)
︸ ︷︷ ︸

G

(
b1
b2

)

Since det(G) = 1, i.e., matrix G is unimodular, it is clear that b1,b2 remain basis
vectors after each iteration of the algorithm. The algorithm swaps b1 and b2 in step
4 if ∥b1∥ > ∥b2∥ and so the length of b1 strictly decreases. For any real number
r > 0, there are only finitely many lattice points in the disk B(z, r). It follows that
the algorithm terminates after a finite number of iterations.

Now suppose that the algorithm has terminated and returned vectors b1 and b2.
This means that ∥b1∥ ≤ ∥b2∥ and from step 6 we also get that

⟨b1,b2⟩
∥b1∥2

≤ 1

2
⇒ ⟨b1,b2⟩ ≤ 2∥b1∥2 (2.1)

Let v be any nonzero vector in L, so that v = a1b1+a2b2 for some a1, a2 ∈ Z,
not both zero. We have that,

∥v∥2 = ∥a1b1 + a2b2∥2

= a21∥b1∥2 + 2a1a2⟨b1,b2⟩+ a22∥b2∥2

≥ a21∥b1∥2 − 2|a1a2|⟨b1,b2⟩+ a22∥b2∥2

≥ a21∥b1∥2 − |a1a2|∥b1∥2 + a22∥b2∥2 from (2.1)

≥ a21∥b1∥2 − |a1a2|⟨b1,b2⟩+ a22∥b1∥2 since ∥b1∥ ≤ ∥b2∥
=
(
a21 − |a1a2|+ a22

)
∥b1∥2

=
(
|a1|2 − |a1a2|+ |a2|2

)
∥b1∥2

=
[
(|a1| − |a2|)2 + |a1a2|

]
∥b1∥2

≥ ∥b1∥2 since a1, a2 are not both zero

Therefore ∥v∥ ≥ ∥b1∥, and so b1 is a shortest vector in L.
Now suppose that v = a1b1+a2b2 is linearly independent of b1, that is a2 ̸= 0.

As before we have,

∥v∥2 ≥ a21∥b1∥2 − |a1a2|∥b1∥2 + a22∥b2∥2 from (2.1)

= a21∥b1∥2 − |a1a2|∥b1∥2 +
1

4
a22∥b2∥2 +

3

4
a22∥b2∥2

≥ a21∥b1∥2 − |a1a2|∥b1∥2 +
1

4
a22∥b1∥2 +

3

4
a22∥b2∥2 since ∥b1∥ ≤ ∥b2∥

=

(
|a1| −

1

2
|a2|
)2

∥b1∥+
3

4
a22∥b2∥2

Hence ∥v∥ ≥ ∥b2∥ if 3
4a

2
2 ≥ 1, that is if |b| ≥ 2. In case that |a2| = 1 we have that,

∥v∥2 ≥ a21∥b1∥2 − |a1|∥b1∥2 + ∥b2∥2 from (2.1)

= |a1| (|a1| − 1) ∥b1∥2 + ∥b2∥2

Since a1 ∈ Zwe get that |a1| (|a1| − 1) = 0 if |a1| ≤ 1 and |a1| (|a1| − 1) > 0
for |a1| ≥ 2, so |a1| (|a1| − 1) ≥ 0 for all a1 ∈ Z. It follows that ∥v∥2 ≥ ∥b2∥2
in that case too, therefore b2 is a shortest vector in L linearly independent for b1
since b1 and b2 are basis vectors for L. □

From the above proof we conclude that λ1(L) = b1 and λ2(L) = b2.

At line 3 of the Algorithm 1 if we change the if condition to ∥b1∥ ≥ t∥b2∥
where t ≥ 1 is an input parameter we get a new algorithm, called the t-Gauss
algorithm .
Algorithm 2: t-Gaussian lattice basis reduction.
Input : A parameter t ≥ 1 and a basis b1,b2 for the lattice L ⊂ R2.
Output: A minimal basis b1,b2 for the lattice L.

1 reduced← false;
2 while reduced ̸= true do
3 if ∥b1∥ > t∥b2∥ then
4 swap b1 and b2;
5 end

6 µ←
⌊
⟨b1,b2⟩
∥b1∥2

⌉
;

7 if µ = 0 then
8 reduced← true;
9 else
10 b2 ← b2 − µb1;
11 end
12 end
13 return b1 and b2;

For t = 1 the t-Gauss algorithm is the same as the Gauss algorithm. For t > 1
the t-Gauss algorithm asks for a new vector that is not shorter than the previous
vectors, but is at most t times greater or equal to the previous b2 vector. This algo-
rithm is used in the LLL algorithm which we will consider in the next section.

Vallée in [83] showed that the run-time complexity of Algorithm 1 is

O

(
1

2
log√3 (I) + 2

)
and for t > 1 the run-time complexity of Algorithm 2 is

O

(
1

2
logt (I) + 2

)
where I = ∥b1∥2 + ∥b2∥2, thus polynomial in the input size for both algorithms,
therefore in a 2-dimensional lattice we can solve SVP in polynomial time using the
Gauss algorithm.

2.4 The Lenstra-Lenstra-Lovász algorithm

Gauss's lattice basis reduction algorithm gives an efficient way to find a shortest
nonzero lattice vector in a 2-dimensional lattice. But what can we do when as the
dimension increases and SVP becomes harder ? A major advance came in 1982
with the publication of the LLL algorithm [51]. The algorithm is called LLL or
L3 after the initials of its authors, namely, A. K. Lenstra, H. W. Lenstra Jr. and L.
Lovász. In their publication, Lenstra, Lenstra and Lovász used the LLL algorithm
to factor polynomials with rational coefficients.

The LLL algorithm runs in polynomial time and can find an approximation to
a shortest lattice vector and has application in areas such as cryptography, compu-
tational number theory and integer programming among others.

First, we must define what is a reduced basis.

Definition 44 The reduction parameter is a real number δ such that

1

4
< δ < 1.

The standard value for this parameter is δ = 3
4 .

Definition 45 Let b1, . . . , bn be a basis for a lattice L ⊂ Rn and let b̃1, . . . , b̃n
be its Gram-Schmidt orthogonalization (in this section we will consider the basis
vectors as row vectors). The basis b1, . . . , bn is called δ-reduced if it satisfies

(a) |µij | = |⟨bi,b̃j⟩|
∥b̃j∥2

≤ 1
2 for all 1 ≤ j < i ≤ n

(b) ∥b̃i + µi,i−1b̃i−1∥2 ≥ δ∥b̃i−1∥2 for all 2 ≤ i ≤ n.

Condition (a) is called the size condition . Condition (b) can be written as

∥b̃i∥2 ≥
(
δ − µ2

i,i−1

)
∥b̃i−1∥2 for 2 ≤ i ≤ n

and is called exchange or Lovász condition .
Condition (a) says that each basis vector bi is “almost orthogonal” to the span

of the previous vectors, since by Theorem 1.11(b), (p. 16), we have that

span(b1, . . . , bk) = span(b̃1, . . . , b̃k) for 1 ≤ k ≤ n

so we want the µij =
⟨bi,b̃j⟩
∥b̃j∥2

to be as close to zero as possible, i.e., vector bi to

be as parallel to vector b̃j as possible because the Gram-Schmidt orthogonalization
vectors are orthogonal to each other.

Condition (b) says that exchanging bi−1 and bi and then recomputing the Gram-
Schmidt orthogonalization can produce a new shorter vector

b̃′i−1 = b̃i + µi,i−1b̃i−1

but not “too much” shorter as it can be proved.
For any δ ∈

(
1
4 , 1
)
, the LLL algorithm produces an δ-reduced basis in poly-

nomial time. For δ = 1 we cannot prove that the LLL algorithm terminates in
polynomial time.

Definition 46 We define the auxiliary parameter β as follows:

β =
4

4δ − 1
so that β >

4

3
and

1

β
= δ − 1

4

For δ = 3
4 we obtain β = 2. A δ-reduced basis has desired properties that we

now show.

Proposition 2.2 Let L ⊂ Rn be a lattice an b1, . . . , bn be a δ-reduced basis of L,
and b̃1, . . . , b̃n be its Gram-Schmidt orthogonalization , then

(a) ∥bj∥2 ≤ βi−j∥b̃i∥2 for 1 ≤ j < i ≤ n

(b) det(L) ≤ ∥b1∥ · · · ∥bn∥ ≤ βn(n−1)/4 det(L)

(c) ∥b1∥ ≤ βn(n−1)/4 det(L)1/n

Proof.

(a) From the two conditions of Definition 45 we have that

∥b̃i∥2 ≥
(
δ − µ2

i,i−1

)
∥b̃i−1∥2 for 2 ≤ i ≤ n

≥
(
δ − 1

4

)
∥b̃i−1∥2 since |µi,i−1|2 ≤

(
1

2

)2

=
1

4
and

1

4
< δ < 1

=
1

β
∥b̃i−1∥2 Definition 46

Therefore ∥b̃i−1∥2 ≤ β∥b̃i∥2 meaning for example that ∥b̃i−2∥2 is at most β
times smaller than ∥b̃i−1∥2 which is at most β times smaller than ∥b̃i∥2 and
so ∥b̃i−2∥2 is at most β2 times smaller than ∥b̃i∥2, thus, an easy induction
gives

∥b̃j∥2 ≤ βj−i∥b̃i∥2 for 1 ≤ j ≤ i ≤ n (2.2)

From proof of Theorem 1.11(d) (p. 16) we have that

∥bi∥2 = ∥b̃i∥2 +
i−1∑
j=1

µ2
ij∥b̃j∥2

So we have that,

∥bi∥2 = ∥b̃i∥2 +
i−1∑
j=1

µ2
ij∥b̃j∥2

≤ ∥b̃i∥2 +
i−1∑
j=1

1

4
∥b̃j∥2 since µ2

ij = |µ2
ij | ≤

(
1

2

)2

=
1

4

≤ ∥b̃i∥2 +
i−1∑
j=1

1

4
βi−j∥b̃i∥2 from (2.2)

= ∥b̃i∥2
1 +

i−1∑
j=1

1

4
βi−j


= ∥b̃i∥2

1 +
1

4

i−1∑
j=1

βi−j



Using the summation formula for the geometric sequence
i−1∑
j=1

βi−j

we obtain
∥bi∥2 ≤ ∥b̃i∥2

(
1 +

1

4

βi − β

β − 1

)
We show by induction on i that(

1 +
1

4

βi − β

β − 1

)
≤ βi−1

hence,
∥bi∥2 ≤ βi−1∥b̃i∥2 (2.3)

The basis case i = 1 gives 1 ≤ 1 which holds. For the inductive step we
have that

1 +
1

4

βi+1 − β

β − 1
≤ β(i+1)−1 ⇒

1 + βi+1 − β ≤
(
4βi+1 − 4βi

)
⇒

1− β ≤ 3βi+1 − 4βi ⇒

0 ≤ 3β − 4

β − 1
βi

which holds because from Definition 46 we have that β > 4
3 , so

βi > 0 and 3β − 4 > 0 and β − 1 > 0

Combining (2.2) and (2.3) we have that

∥b̃j∥2 ≤ βj−1∥b̃j∥2 ≤ βi−1∥b̃i∥2 for 1 ≤ j ≤ i ≤ n

which proves (a).

(b) From Hadamard's inequality (Corollary 1.12, p. 18) we know that

det(L) = ∥b̃1∥ · ∥b̃2∥ · · · ∥b̃n∥ ≤ ∥b1∥ · ∥b2∥ · · · ∥bn∥

which proves the left inequality in part (b). From (2.3) by taking the product
over i = 1, . . . , n we have that

∥b1∥2 · ∥b2∥2 · · · ∥bn∥2 ≤ β0+1+2+···+(n−1) ∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒
∥b1∥2 · ∥b2∥2 · · · ∥bn∥2 ≤ βn(n−1)/2 ∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒√
∥b1∥2 · ∥b2∥2 · · · ∥bn∥2 ≤

√
βn(n−1)/2

√
∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒

∥b1∥ · ∥b2∥ · · · ∥bn∥ ≤
(
βn(n−1)/2

)1/2
∥b̃1∥ · ∥b̃2∥ · · · ∥b̃n∥ ⇒

∥b1∥ · ∥b2∥ · · · ∥bn∥ ≤ βn(n−1)/4 ∥b̃1∥ · ∥b̃2∥ · · · ∥b̃n∥ = βn(n−1)/4 det(L) ⇒
∥b1∥ · ∥b2∥ · · · ∥bn∥ ≤ βn(n−1)/4 det(L)

which proves the right inequality in part (b).

(c) Setting j = 1 in part (a) gives

∥b1∥ ≤ βi−1∥b̃i∥ for 1 ≤ i ≤ n

and taking product over i = 1, . . . , n we have that
n-times︷ ︸︸ ︷

∥b1∥2 · ∥b1∥2 · · · ∥b1∥2 ≤ β0+1+2+···+(n−1) ∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒
∥b1∥2n ≤ βn(n−1)/2 ∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒√
∥b1∥2n ≤

√
βn(n−1)/2

√
∥b̃1∥2 · ∥b̃2∥2 · · · ∥b̃n∥2 ⇒

∥b1∥n ≤
(
βn(n−1)/2

)1/2
∥b̃1∥ · ∥b̃2∥ · · · ∥b̃n∥ = βn(n−1)/4 det(L) ⇒

n
√
∥b1∥n ≤ n

√
βn(n−1)/4 n

√
det(L) ⇒

∥b1∥ ≤ β(n−1)/4 det(L)1/n

which proves part (c).

□

The upper bound for b1 in the next result is exponential, but it depends only on
δ and the dimension n, so it applies uniformly to all lattices of dimension n.

Theorem 2.3 (LLL theorem) Let b1,b2, . . . , bn be a δ-reduced basis of a lat-
tice L ⊂ Rn. Then for any nonzero vector v ∈ L we have that

∥b1∥ ≤ β(n−1)/2 ∥v∥

In particular, b1 is no longer than β(n−1)/2 times the shortest vector in L.

Proof. Let b̃1, b̃2, . . . , b̃n be theGram-Schmidt orthogonalization ofb1,b2, . . . , bn.
Setting j = 1 in Proposition 2.2(a) gives

∥b1∥2 ≤ βi−1 ∥b̃i∥ ⇒ ∥b̃i∥2 ≥
1

βi−1
∥b1∥2 for 1 ≤ i ≤ n ⇒√

∥b̃i∥2 ≥
√

1

βi−1

√
∥b1∥2 for 1 ≤ i ≤ n ⇒

∥b̃i∥ ≥
1

β(i−1)/2
∥b1∥ for 1 ≤ i ≤ n

Theorem 1.14 (p. 20) shows that for any nonzero vector v ∈ L

∥v∥ ≥ min
1≤i≤n

∥b̃i∥ ≥
1

β(n−1)/2
∥b1∥

and this completes the proof. □

There is a stronger result that gives upper bounds for the lengths of all the vec-
tors in a δ-reduced basis.

Theorem 2.4 Let b1,b2, . . . , bn be a δ-reduced basis of a lattice L ⊂ Rn, and let
v1, v2, . . . , vm be any m linearly independent vectors in L. Then for 1 ≤ j ≤ m
we have

∥bj∥ ≤ β(n−1)/2max{∥v1∥, ∥v2∥, . . . , ∥vm∥}

Proof. We write each vj as integral linear combination of the basis vectors,

vj =
n∑

i=1

rijbi with rij ∈ Z, 1 ≤ i ≤ n, 1 ≤ j ≤ m

and for fixed j let i(j) denote the largest i for which rij ̸= 0. From the definition
of Gram-Schmidt orthogonalization (Definition 21, p. 15) we have that

b̃i = bi −
i−1∑
k=1

µikb̃k ⇒ bi =
i∑

k=1

µikb̃k

therefore,

vj =
n∑

i=1

rijbi =
i(j)∑
i=1

rij

i∑
k=1

µikb̃k =

i(j)∑
k=1

b̃k
i(j)∑
i=k

rijµik

If we take the norm of both sides, because b̃k are orthogonal we get that

∥vj∥2 =

∥∥∥∥∥∥
i(j)∑
k=1

b̃k
i(j)∑
i=k

rijµik

∥∥∥∥∥∥
2

=

i(j)∑
k=1

∥b̃k∥2
i(j)∑
i=k

|rijµik|2

For each b̃k every term in the sum is nonnegative therefore for k = i(j) observing
that µi(j),i(j) = 1 and |ri(j),j | ≥ 1 because ri(j),j ∈ Z and ri(j),j ̸= 0, we have
that

∥vj∥2 ≥ ∥b̃i(j)∥2 for 1 ≤ j ≤ m (2.4)

If {v1, v2, . . . , vm} is an unordered set, then we may assume without loss of
generality that

i(1) ≤ i(2) ≤ · · · ≤ i(j)

else we renumber each vi for this property to hold.
We claim that j ≤ i(j) for 1 ≤ j ≤ m. If not, then for some j with i(j) < j,
the vectors v1, v2, . . . , vj would all belong to the linear span of b1,b2, . . . , bj , a

contradiction with the linear independence of v1, v2, . . . , vm. Combining Proposi-
tion 2.2(a) with i = i(j) and (2.4) we get that

∥bj∥2 ≤ βi(j)−1 ∥b̃i(j)∥2 ≤ βn−1 ∥b̃i(j)∥2 ≤ βn−1 ∥vj∥2 for 1 ≤ j ≤ m

Taking the square root of both sides gives

∥bj∥ ≤ β(n−1)/2 ∥vj∥ ≤ β(n−1)/2max{∥v1∥, ∥v2∥, . . . , ∥vm∥} for 1 ≤ j ≤ m

and this completes the proof. □

Let b1, . . . , bn be a δ-reduced basis of the lattice L ∈ Rn, and let b̃1, . . . , b̃n be
its Gram-Schmidt orthogonalization . FromProposition 2.2(a) and Theorem 1.11(d),
(p. 16) we have that

∥bj∥2 ≤ βi−1∥b̃i∥2 for 1 ≤ j ≤ i ≤ n ⇒
β1−i∥bj∥2 ≤ ∥b̃i∥2 ≤ ∥bi∥2 ⇒

β1−imax{∥b1∥2, ∥b2∥2, . . . , ∥bi∥2} ≤ ∥bi∥2 for 1 ≤ i ≤ n

From the last inequality and Theorem 2.4 for 1 ≤ i ≤ n we have that

β1−imax{∥b1∥2, . . . , ∥bi∥2} ≤ ∥bi∥2 ≤ βn−1max{∥b1∥2, . . . , ∥bi∥2} (2.5)

Now suppose that v1 = λ1(L), v2 = λ2(L), . . . , vi = λi(L) achieve the i− th
successive minimum and therefore are linearly independent. Clearly,

max{v1, . . . , vi} ≤ max{b1, . . . , bi}

Using the last inequality for the leftmost term in (2.5) and Theorem 2.4 for the
rightmost term and taking square roots, we obtain

β(1−i)/2max{v1, . . . , vi} ≤ ∥bi∥ ≤ β(n−1)/2max{v1, . . . , vi}

This can also be written as

β(1−n)/2 ∥bi∥ ≤ max{v1, . . . , vi} ≤ β(i−1)/2 ∥bi∥

This shows that ∥bi∥ can be regarded as an approximation to the i− th succes-
sive minimum of a lattice because the successive minima are weakly increasing:

λ1(L) ≤ λ2(L) ≤ · · · ≤ λi(L)

The algorithm presented next is the original LLL lattice reduction algorithm.
Algorithm 3: LLL lattice basis reduction.
Input : A parameter δ and basis b1,b2, . . . , bn for the lattice L ⊂ Rn.
Output: A δ-reduced basis for the lattice L.

1 k ← 2;
2 b̃1 ← b1;
3 while k ≤ n do
4 for j = 1, 2, . . . , k − 1 do
5 compute b̃j ;
6 bk ← bk − ⌊µkj⌉ b̃j /* size reduction */;
7 end
8 if ∥b̃k∥2 ≥

(
δ − µ2

k,k−1

)
∥b̃k−1∥2 then /* Lovász condition

*/
9 k ← k + 1;
10 else
11 swap bk−1 and bk /* swap step */ ;
12 k ← max(k − 1, 2);
13 end
14 end
15 return {b1,b2, . . . , bn};

At line 5 the vector b̃j is obtained by applying Gram-Schmidt orthogonaliza-
tion . For efficiency reasons the Gram-Schmidt orthogonalization can be done once
before the main loop at line 3. Then if a size reduction (line 6) or swap (line 11)
is done, we update the Gram-Schmidt orthogonalization coefficients accordingly
(see [51] for details). At line 8 the size check is performed on the orthogonal pro-
jections of bk and bk−1 on the orthogonal of span(b1, . . . , bk−2) in order to see if
an iteration of the t-Gauss algorithm is necessary for bk and bk−1 (see [71], ch. 3).
Theorem 2.5 Let b1, . . . , bn be a basis of a latticeL and δ ∈

(
1
4 , 1
)
. Then the LLL

algorithm (Algorithm 3) terminates in a polynomial number of step and returns a
δ-reduced basis.

Proof.(sketch)
For simplicity we consider δ = 3

4 ⇒ β = 2 and L ⊆ Zn.
Both the for loop at lines 4-7 and the fact that in order for the algorithm to

terminate at line 9 we must have k = n + 1 therefore all vectors must pass the
Lovász condition test at line 8, ensure that if the algorithm terminates then the basis
returned satisfies the size condition and the Lovász condition respectively. So we
have to show that the algorithm terminates.

Let b1, . . . , bn be a basis for L, let b̃1, . . . , b̃n be its Gram-Schmidt orthogo-
nalization , and for each ℓ = 1, . . . , n let Lℓ be the lattice spanned by b1, . . . , bℓ,
i.e., Lℓ = L ({b1, . . . , bℓ}).

We define the quantities dℓ and D as

dℓ =
ℓ∏

i=1

∥b̃i∥2 and D =
n∏

ℓ=1

dℓ =
n∏

i=1

∥b̃i∥2(n+1−i)

From Remark 1.10 (p. 16) we have that

det(Lℓ) =
ℓ∏

i=1

∥b̃i∥ ⇒
ℓ∏

i=1

∥b̃i∥2 = det(Lℓ)2 = dℓ

During the execution of the algorithm, dℓ changes only if the swap step at line
11 is executed and that is when the value of D also changes. More precisely, only
for ℓ = k − 1 the value of dℓ changes because only the values of b̃k−1 and b̃k
change. That is, for ℓ < k− 1 the terms b̃k−1 and b̃k are not included in ℓ, and for
ℓ ≥ k both terms are included so if we swap them the product remains the same.
To estimate that change in dk−1 note that the Lovász condition check fails at line
8, so we have

∥b̃k∥2 <
(
3

4
− µ2

k,k−1

)
∥b̃k−1∥2 ≤

3

4
∥b̃k−1∥2

and when we swap b̃k−1 and b̃k we get a new dk−1 value

dnewk−1 = ∥b̃1∥2 · · · ∥b̃k−2∥2 · ∥b̃k∥2

= ∥b̃1∥2 · · · ∥b̃k−2∥2 ·
∥b̃k−1∥2 · ∥b̃k∥2

∥b̃k−1∥2

= doldk−1 ·
∥b̃k∥2

∥b̃k−1∥2

≤ 3

4
doldk−1

Therefore if the swap step at line 11 is executed c times, the value of D is
reduced by a factor of at least

(
3
4

)c, since each swap reduces the value of some ℓ
by at least 3

4 .

Because L ⊆ Zn then λ1(L) ≥ 1, and by Theorem 1.17 (p. 23) we have that,

1 ≤ λ1(Lℓ) ≤
√
ℓ det(λ1(Lℓ))1/ℓ ⇒

1 ≤ ℓℓ/2 det(λ1(Lℓ)) ⇒
ℓ−ℓ/2 ≤ det(λ1(Lℓ)) ⇒
ℓ−ℓ ≤ det(λ1(Lℓ))2

and thus, the product over all ℓ gives a lower bound forD (which is independent
of each iteration of the algorithm),

D =

n∏
ℓ=1

dℓ ≥
n∏

ℓ=1

ℓ−ℓ ≥
n∏

ℓ=1

ℓ−n = (n!)−n ≥ n−n ≥ n−n2
> 0

At each iteration of the algorithm either we increase k by one at line 9, or we
decrease it at line 12 after a swap is made. If we prove that the number of times
that we decrease k is finite, say m, then we know that after m iterations the value
of k will increase until it reaches the value of n+ 1 and the algorithm terminates.

Suppose that the number of times that the swap step is executed, which is c,
is infinite. Then because the value of D is reduced by a factor of at least

(
3
4

)c we
have that

lim
c→∞

(
3

4

)c

= 0 because
3

4
< 1 therefore D = 0 as c→∞

a contradiction because we have thatD ≥ n−n2
> 0. This proves that the LLL

algorithm terminates in a finite number of iterations.
We now give a upper bound for the run-time complexity. Let Dinit denote the

initial value of D for the original basis, let Dfinal denote the value of D for the
basis that the algorithm return when it terminates, and as above, let c denote the
number of times that the swap step at line 11 is executed. Notice that the While
loop at line 3 is executed at most 2c + n times,so it suffices to find a bound for c.
From the lower bound on D we have that

0 < n−n2 ≤ Dfinal ≤
(
3

4

)c

Dinit

Since log
(
3
4

)
< 1, by taking logarithms we have that

c = O
(
n2log(n) + log (Dinit)

)

To estimate Dinit we have that

Dinit =

n∏
i=1

∥b̃i∥2(n+1−i)

≤
n∏

i=1

∥bi∥2(n+1−i) because ∥b̃i∥ ≤ ∥bi∥

≤
n∏

i=1

(
max
1≤i≤n

∥bi∥
)2(n+1−i)

=

(
max
1≤i≤n

∥bi∥
)2(n+(n−1)+···+1)

=

(
max
1≤i≤n

∥bi∥
)n2+n

therefore,

log (Dinit) = O

(
n2log

(
max
1≤i≤n

∥bi∥
))

fromwhich we conclude that c is polynomial in the input size, and thus the LLL
algorithm runs in polynomial time. □

Let B = max
1≤i≤n

∥bi∥.

It is proven in [51] that the number of bit operations needed by the LLL algo-
rithm if we use the classical algorithms for arithmetic operations isO

(
n6(logB)3

)
,

which can be reduced to O
(
n5+ϵ(logB)2+ϵ

)
for every ϵ > 0, if we employ fast

multiplication techniques.
The complexity can be improved using floating point numbers instead of ratio-

nals except for the basis vectors that are kept as integers, because is someone tries
to keep the exact integer values of an integer lattice, as the dimension grows the
intermediate calculations involve enormous number, thus it is generally necessary
to use floating point approximations. Unfortunately, this is known to be unstable
in the worst-case: the usual floating point LLL algorithm is not even guaranteed to
terminate, and the output basis may not be reduced at all.

There have been many improvements to and generalization of the LLL algo-
rithm. Some of them are described in [78], [74], [79] and [80].

From a theoretical point of view for a lattice of rank r and dimension n the
fastest algorithm for for lattice reduction is described in [69] and has run-time com-
plexity O

(
nr4(logB)2

)
.

2.5 Babai's algorithm

In this section we follow Babai [9] to show how the LLL algorithm can be used to
find a good approximation of the closest vector problem (CVP).

Babai proposed two approximation algorithms to solve CVP.We consider Babai's
“nearest plane” algorithm. The other one is the “round-off” algorithm. Letb1, . . . , bn
be a basis for the lattice L ⊂ Rn, let b̃1, . . . , b̃n be its Gram-Schmidt orthogonal-
ization .

Let

V =

n−1∑
i=1

ribi with ri ∈ R for 1 ≤ i ≤ n− 1

be the linear subspace (hyperplane) generated by b1, . . . , bn−1, and let

Ln−1 =

n−1∑
i=1

aibi with ai ∈ Z for 1 ≤ i ≤ n− 1

be the corresponding sublattice, i.e., Ln−1 = V ∩ L.
We consider the following translations of V

V + x = {v+ x : v ∈ V } with x ∈ L

Given an arbitrary vector t ∈ Rn, the nearest plane algorithm says that we
should find the vector x ∈ L for which the orthogonal dist(t, V + x) is minimized.
For this we use the following recursive procedure. We write t as a linear combina-
tion of b̃1, . . . , b̃n, i.e.,

t =
n∑

i=1

cib̃i with ci ∈ R for 1 ≤ i ≤ n

define w = ⌊cn⌉ bn and t⊥ as

t⊥ =

(
n−1∑
i=1

cib̃i

)
+ w

Then t⊥ is the orthogonal projection of t onto the translated hyperplane V +w.
We have that t⊥ − w ∈ V , so recursively find the vector xn−1 ∈ Ln−1 closest to
t⊥ − w and set x = xn−1 + w.

Theorem 2.6 (Babai's theorem) Let b1, . . . , bn be a 3
4 -reduced LLL basis for the

latticeL ⊂ Rn, and let t ∈ Rn be an arbitrary vector. Then the lattice vector x ∈ L
produced by the nearest plane algorithm satisfies

∥t− x∥ ≤ 2n/2∥t− v∥

where v ∈ L is the closest lattice vector to t.

Proof. For n = 1 we find the closest integer multiple of one nonzero real number
to another real number, which is the closest lattice vector.

For n ≥ 2 we use induction on n. Observe that

∥t− t⊥∥ ≤ ∥b̃n∥
2
⇒ ∥t− t⊥∥2 ≤ ∥b̃n∥

2

4
(2.6)

and
∥t− t⊥∥ ≤ ∥t− v∥ (2.7)

because the hyperplanes V + x where x ∈ L are spaced at distance ∥b̃n∥, and
∥t− t⊥∥ is the distance of t for the nearest such hyperplane.

From (2.6) with induction (corresponding to the recursion of the algorithm) we
obtain

∥t− x∥ ≤ 1

4

(
∥b̃1∥2 + · · ·+ ∥b̃n∥2

)
(2.8)

Proposition 2.2a, (p. 40), for i = n and for β = 2 since δ = 3
4 , gives

1

4

n∑
i=1

∥b̃i∥2 ≤
1

4

n∑
i=1

(
2n−i∥b̃n∥2

)
=

1

4
(2n − 1) ∥b̃n∥2 < 2n−2∥b̃n∥2 (2.9)

Combining (2.8) and (2.9) we get that

∥t− x∥2 < 2n−2∥b̃n∥2 ⇒ ∥t− x∥ < 2
n
2
−1∥b̃n∥ (2.10)

We now have to consider two cases, corresponding to whether the closest vector
v ∈ L does or does not belong to V + w.

(a) Case (v ∈ V + w):
In this case v − w ∈ L is the closest vector to the sublattice Ln−1 to the
vector t⊥ − w ∈ V . Therefore the inductive hypothesis gives

∥t⊥ − x∥ = ∥t⊥ − (xn−1 + w)∥
≤ 2(n−1)/2∥t⊥ − (v− w+ w)∥
= 2(n−1)/2∥t⊥ − v∥
≤ 2(n−1)/2∥t− v∥

Combining this with (2.7) we have that

∥t− x∥ =
√
∥(t− t⊥)∥2 + ∥(t⊥ − x)∥2

≤
√
∥(t− v)∥2 + 2n−1∥(t⊥ − v)∥2

= 2n/2∥(t⊥ − v)∥
≤ 2n/2∥(t− v)∥

Thus, ∥t− x∥ ≤ 2n/2∥t− v∥.

(b) Case (v ̸∈ V + w):
In this case we must have

∥t− v∥ ≥ ∥b̃n∥
2

Combining this with (2.10) we again have that ∥t − x∥ < 2n/2∥t − v∥ and
this completes the proof.

□

It is clear that the next algorithm runs in polynomial time.
Algorithm 4: Babai's nearest plane algorithm.
Input : A 3

4 -reduced LLL basis b1, . . . , bn for the lattice L ⊆ Zn, its
b̃1, . . . , b̃n Gram-Schmidt orthogonalization , and a target vector
t ∈ Zn

Output: A vector in L that is closer to t within an approximation ration of
2n/2.

1 v← t;
2 for i = n, . . . , 1 do
3 v← v−

⌊
⟨v,b̃i⟩
∥b̃i∥2

⌉
bi;

4 end
5 return (t− v);

Lattice reduction algorithms and Babai's algorithm have been used for crypt-
analysis of various knapsack based schemes, theGoldreich-Goldwasser-Halevi cryp-
tosystem [29] and the NTRU signature scheme [41].

For cryptanalysis of knapsack based schemes see the survey papers [45] (also
cryptanalysis of Knuth's truncated linear congruential generators), [67] and [73],
for the Goldreich-Goldwasser-Halevi cryptosystem see [66] and for NTRU signa-
tures see [68].

3

Complexity of lattice problems

In this chapter we present some complexity results for lattice problems. A lot of
reductions for lattice problems use the (decisional) subset sum problem which is a
known NP-complete problem (see [25]).

Definition 47 Given a1, a2, . . . , an, b ∈ N decide whether there exist
x1, x2, . . . , xn ∈ {0, 1} such that

n∑
i=1

aixi = b

In the next two sections we give complexity results for SVP and CVP. Without
giving any details we must note that the decision versions of both the Shortest In-
dependent Vectors Problem and the Shortest Basis Problem are NP-complete. The
decision version of the Closest Vector Problem with Preprocessing is NP-complete
in the following sense: there is a polynomial time reduction from a SAT instance
ϕ to CVPP instance (t,L(B)) such as the lattice LB depends only on |ϕ| and not ϕ
itself. This implies that if there is a polynomial time algorithm for CVPP, the SAT
has polynomial size circuits and thus, the polynomial time hierarchy collapses. The
Closest Radius Problem is in Π2 but not known to be NP-hard. See [71, ch.14]
and [61, ch.7] for more on these problems.

3.1 Shortest vector problem

SVP is the most famous and widely studied problem for lattices. The NP-hardness
of SVP in the Euclidean norm was conjectured by Peter van Emde Boas in 1981
[84], and remained an open problem until 1998, for almost twenty years, when
Ajtai [3] proved that solving SVP exactly is NP-hard under randomized reductions.

53

Immediately following Ajtai's breakthrough work, the problem received re-
newed attention. In [3], Ajtai had already observed that hardness for the exact
version implies weak inapproximability results for approximation factors of the
form 1 + 1/2n

c and this was slightly improved by Cai and Nerurkar [85] to fac-
tors 1 + 1/nc, where n is the lattice dimension, still approaching 1 as the lattice
dimension grows but at a slower rate. Micciancio [56] significantly strengthened
Ajtai's result by showing NP-hardness for SVP by a reduction from a variant of
CVP for any constant factor smaller than

√
2 (as we will see later, CVP is known

to be NP-hard).
The strongest inapproximability results to date are from Khot [48] who showed

that SVP is NP-hard to approximate within any constant factorO(1), and from Ha-
viv and Regev [37] who showed that SVP cannot be approximated within some fac-
torn1/O(log log n) unlessNP is in random subexponential time, i.e.,NP ⊆ RSUBEXP =

∩δ>0RTIME
(
2n

δ
)
.

However, all of the above results employ randomization, and little progress has
been made towards a deterministic reduction. In fact, the most recent and quantita-
tively strongest results [48, 37] achieve larger approximation factors than [56] at the
cost on introducing even more randomness, have two-sided error whereas [56] has
one-sided error, and due to their construct they seemmore difficult to derandomize.
In 2012, Micciancio [60] presented a new and simpler proof that SVP is NP-hard
to approximate within some constant factor and that SVP cannot be approximated
within some factor n1/O(log log n) unless NP is in random subexponential time, and
thus matching the best currently known results [48, 37], but under probabilistic
reductions with one-sider error.

Proving that SVP is NP-hard under deterministic reductions is still an open
problem for both the exact and the approximate version of the problem.

In general, there are three approaches to solve SVP: enumeration algorithms,
probabilistic sieving algorithms and Voronoi cell based algorithms. The majority
of the algorithmic work on SVP and CVP has focused on the ℓ2 norm and there-
fore there has been a lot of progress for the ℓ2 norm, progress on the more general
norms has been much slower. For some practical problems the solution strategy
is to approximate the problem via a reduction to the ℓ2 norm but in some cases
the error introduced by such a reduction yields unusable results or worst case run-
time. Because of the practical interest in SVP we use the experimental values of
the constants for run-time complexity.

Enumeration algorithms in [35, 75], solve SVP in the ℓ2 norm deterministi-
cally in asymptotic time 2O(n logn) where n is the dimension of the lattice. These
algorithms do an exhaustive search by exploring all lattice vectors of a bounded

search region and require polynomial space. Enumeration algorithms can be ren-
dered probabilistic using an extreme pruning strategy [24], which allows for an
exponential speedup and makes enumeration the fastest algorithm for solving SVP
in practice. Furthermore the parallelization of enumeration algorithms has been
investigated in [39, 19].

Sieving algorithms were first presented in 2001 by Ajtai, Kumar, and Sivaku-
mar in [5]. The randomized sieving approach consists of sampling an exponential
number of “perturbed” lattice points, and then iteratively clustering and combining
them to give shorter and shorter lattice points. The run-time and space requirement
were proven to be 2O(n) where n is the lattice dimension. Nguyen and Vidick did an
analysis of this algorithm in [72] and showed that the run-time is 2O(5.9n+o(n)) and
the space required is 2O(2.95n+o(n)) where n is the lattice dimension. The authors
also presented a heuristic variant of the algorithm without perturbations whose run-
ning time is (4/3 + ϵ)n polynomial-time operations, and whose space requirement
is (4/3+ϵ)n/2 polynomially many bits but as they mention this algorithm becomes
problematic for n > 50 in terms of space requirement.

In 2010, Micciancio and Voulgaris [63] presented a provable sieving variant
called ListSieve and a more practical, heuristic variant called GaussSieve. List-
Sieve has 2O(3.199n+o(n)) run-time and 2O(1.325n+o(n)) space requirement where
n is the lattice dimension. For GaussSieve for run-time no upper bound is cur-
rently known and it requires 2O(0.41n) space. Pujol and Stehlé in [76] using the
birthday paradox improved the bounds of ListSieve to 2O(2.465n+o(n)) for run-time
and 2O(1.233n+o(n)) for space complexity. Finally, the work of Blomër and Naewe
in [11] deals with all ℓp norms, generalizing the Ajtai-Kumar-Sivakumar sieve.

Using heuristics like extreme pruning in [24], enumeration algorithms outper-
form sieving algorithms again, as it can be seen in the SVP challenge at http:
//www.latticechallenge.org/svp-challenge/.

The Voronoi cell based algorithms were introduced in a breakthrough work [62]
by Micciancio and Voulgaris. The Voronoi cell V(L) of a lattice L is the set of
vectors closer to the origin than to any other lattice point:

V(L) = {x : ∀c ∈ L, ∥x∥ < ∥c− x∥} .

Stated differently the Voronoi cell is the interior of a polytope.
Although the previous definition of the Voronoi cell involves an infinite number

of inequalities, for a latticeL ⊂ Rm there exists aminimal set of vectors {vj}j≤m ∈
L that suffices to define the Voronoi cell:

V(L) = {x : ∀j ≤ m, ∥x∥ < ∥vj − x∥} .

We call there vectors the relevant vectors of L. Assume that we know the relevant
vectors, we can use them to solve SVP (and CVP). It is the first deterministic single

http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/

exponential algorithm for exact SVP under the ℓ2 norm in 2O(n) time and space
where n is the dimension of the lattice.

Recall that given a basis for a lattice and a parameter d, GapSV Pγ (Defini-
tion 30, p. 32) is the promise problem of answering whether or not the given lat-
tice has a shortest vector less that d or doesn't have any vector shorter than γ · d.
Summing up, the best known algorithms for GapSV Pγ ([79, 62]), require at least
2Ω̃(n/logγ) time.

Finally, we must mention that any algorithm that solves SV Pγ can be used to
solve GapSV Pγ as well, but the converse is an open problem.

Next, we show that there is a polynomial time reduction from Subset sum to
SVP with respect to the ℓ∞ norm.

Proposition 3.1 Subset sum ≤pol SV P ℓ∞

Proof. Let B ∈ Z(n+2)×(n+1) defined as

B =

 | |
b1 . . . bn+1

| |

 =



2 0 0 · · · 0 1
0 2 0 · · · 0 1
...
0 0 0 · · · 2 1
2a1 2a2 2a3 · · · 2an 2b
0 0 0 · · · 0 1


Clearly, B can be constructed in polynomial time. It is easy to see that rank(B) =
n + 1 therefore the columns of B, namely b1, . . . , bn+1, are linearly independent
vectors and can form a lattice basis.

To show that rank(B) = n+1we use elementary row operations to zero out the
(n+1)− th line by multiplying each of the first n lines with −ai for i = 1, . . . , n
and adding them to the (n + 1) − th line, multiply the (n + 2) − th line with −b
and add it to the (n+1)− th line and then exchange lines n+1 and n+2. In this
way we reduce matrix B to row-echelon form with a zero row and due to the form
of B we cannot zero out any more rows. Finally, because rank(B⊺

) = rank(B)
we have that rank(B) = n+ 1.

We will now show that,

(a1, . . . , an, b) ∈ Subset Sum⇔ ∥λ1(L(B))∥∞ = 1

(a) (“⇒”): Let (x1, . . . , xn) ∈ {0, 1}n such that
∑n

i=1 xiai = b.

Then for x = (x1, . . . , xn,−1)⊺ we have that

Bx =
n∑

i=1

xibi − bn+1 =


2x1 − 1

...
2xn − 1

(
∑n

i=1 2xiai)− 2b
−1

⇒ ∥Bx∥∞ = 1

because:

• |2xi − 1| = 1 for all xi ∈ {0, 1}
• (
∑n

i=1 2xiai)− 2b = 2 (
∑n

i=1 xiai − b) = 0

• |−1| = 1

(b) (“⇐”): Suppose that ∥λ1(L(B))∥∞ = 1, i.e.,∥∥∥∥∥
n+1∑
i=1

xibi

∥∥∥∥∥
∞

= 1 where xi ∈ Z

Then we have that |2xi + xn+1| ≤ 1 for i = 1, . . . , n. From the last line of
B we conclude that |xn+1| = 1 ⇒ xn+1 = ±1. Without loss of generality
assume that xn+1 = −1 ⇒ |2xi − 1| ≤ 1, otherwise we can multiply with
−1 the λ1(L(B)) and have again |2xi − 1| ≤ 1 because ∥−λ1(L(B))∥∞ =
∥λ1(L(B))∥∞.
Because xi ∈ Z then either |2xi−1| = 1 or |2xi−1| = 0. For |2xi−1| = 0
we get that xi = 1

2 a contradiction to the fact that xi ∈ Z, hence

|2xi−1| = 1⇒ 2xi−1 = ±1⇒ xi = 0 or xi = 1⇒ xi ∈ {0, 1} for i = 1, . . . , n

From the n − th line of matrix B we have that |
∑n

i=1 2xiai − 2b| ≤ 1 ⇒
|
∑n

i=1 xiai − b| ≤ 1
2 ⇒ |

∑n
i=1 xiai − b| = 0 because L(B) is an integral

lattice. Therefore, we have that
n∑

i=1

xiai − b = 0⇒
n∑

i=1

xiai = b

and this completes the proof.

□

3.2 Closest vector problem

The Closest Vector Problem has been investigated for more than a century but it
has attracted less attention than SVP which is its homogeneous counterpart. To-
day much is known about the computational complexity of CVP in both its ex-
act and approximation version. For some of the algorithms below or their exten-
sions/improvements we also mention their usage for solving/approximating SVP.

CVP is NP-hard to approximate to within nc/log log n factors for some c > 0 [8,
21, 20], where n is the dimension of the lattice. Therefore, as with SVP, we do not
expect to solve (or even closely approximate) CVP efficiently in high dimensions.

As with SVP, there are three approaches to solve CVP: enumeration algorithms,
probabilistic sieving algorithms and Voronoi cell based algorithms.

Before we continue we must mention that the lattice basis reduction algorithms
such as the LLL basis reduction algorithm [51] and some of its first extensions [9,
79] give 2poly(logn) approximations to SVP and CVP in the ℓ2 norm in poly(n) time.

Enumeration algorithms such as Kannan's algorithm [46] and further improve-
ments [38, 35] can be used to solve exact SVP and CVP in the ℓ2 norm in 2O(n logn)

time and poly(n) space. As with SVP, also for CVP enumeration algorithms re-
main the most practical solver for these two problems and much effort has been
spend on optimizing them as we saw on the previous section (see [24]).

The randomized sieving algorithm of Ajtai, Kumar and Sivakumar [5] was fur-
thered used to create a 1/ϵn time and space algorithm for the (1+ ϵ)-CVP unde the
ℓ2 norm [6, 11], ℓp norms [11], near symmetric norms [17], and in [22] Eisenbrand,
Hähnle and Niemeier show that we can solve (1 + ϵ)-CVP under the ℓ∞ norm
using O(ln1

ϵ

n
) calls to any 2-approximate solver. The Ajtai, Kumar and Sivaku-

mar sieve based algorithms are the only algorithms currently available for solving
(1 + ϵ)-CVP under non-euclidean norms.

The work of Micciancio and Voulgaris in [62] gave a deterministic 2O(n) time
and space algorithm for exact CVP under the ℓ2 norm where n is the dimension of
the lattice.

Finally, we must mention that the search and decisional versions of the exact
Closest Vector Problem are polynomially equivalent and that any algorithm that
solves CV Pγ can be used to solve GapCV Pγ as well (see [61, ch. 3]).

Next, we show that there is a polynomial time reduction from Subset sum to
CVP with respect to the ℓ∞ norm.

Proposition 3.2 Subset sum ≤pol CV P ℓ∞

Proof.

Let B′ ∈ Z(n+1)×(n+1) defined as

B′ =

 | |
B y
| |

 =


2 0 0 · · · 0 1
0 2 0 · · · 0 1
...
0 0 0 · · · 2 1
2a1 2a2 2a3 · · · 2an 2b


where B ∈ Z(n+1)×n and y ∈ Z(n+1)×1, i.e., B is the matrix that consists of the

first n columns of B′ and y is the last column of B′, namely

B =


2 0 0 · · · 0
0 2 0 · · · 0
...
0 0 0 · · · 2
2a1 2a2 2a3 · · · 2an

 , y =


1
1
...
1
2b


Clearly,B′ can be constructed in polynomial time. It is easy to see that rank(B) =

n, therefore the columns ofB are linearly independent vectors and can form a lattice
basis.

To show that rank(B) = n we use elementary row operations to zero out the
(n+1)− th line by multiplying each of the first n lines with −ai for i = 1, . . . , n
and adding them to the (n+ 1)− th line. In this way we reduce matrix B to row-
echelon form with a zero row and due to the form of Bwe cannot zero out any more
rows. Finally, because rank(B⊺

) = rank(B) we have that rank(B) = n.
We will now show that,

(a1, . . . , an, b) ∈ Subset Sum⇔ ∃x ∈ Zn such that ∥Bx− y∥∞ = 1

(a) (“⇒”): Let (x1, . . . , xn) ∈ {0, 1}n such that
∑n

i=1 xiai = b.

Then for x = (x1, . . . , xn)
⊺ we have that

Bx− y =


2x1 − 1

...
2xn − 1

(
∑n

i=1 2xiai)− 2b

⇒ ∥Bx− y∥∞ = 1

because:

• |2xi − 1| = 1 for all xi ∈ {0, 1}

• (
∑n

i=1 2xiai)− 2b = 2 (
∑n

i=1 xiai − b) = 0

(b) (“⇐”): Suppose that ∥Bx− y∥∞ = 1 where x ∈ Zn, i.e.,

∥Bx− y∥∞ =

∥∥∥∥∥∥∥∥∥
2x1 − 1

...
2xn − 1

(
∑n

i=1 2xiai)− 2b

∥∥∥∥∥∥∥∥∥
∞

= 1

Because xi ∈ Z then either |2xi−1| = 1 or |2xi−1| = 0. For |2xi−1| = 0
we get that xi = 1

2 a contradiction to the fact that xi ∈ Z, hence

|2xi−1| = 1⇒ 2xi−1 = ±1⇒ xi = 0 or xi = 1⇒ xi ∈ {0, 1} for i = 1, . . . , n

From the (n+1)− th line of Bx−y we have that |
∑n

i=1 2xiai−2b| ≤ 1⇒
|
∑n

i=1 xiai − b| ≤ 1
2 ⇒ |

∑n
i=1 xiai − b| = 0 because L(B) is an integral

lattice. Therefore, we have that

n∑
i=1

xiai − b = 0⇒
n∑

i=1

xiai = b

and this completes the proof.

□

Finally, we show that there is a polynomial time reduction from Subset sum to
CVP with respect to the ℓ2 norm.

Proposition 3.3 Subset sum ≤pol CV Pℓ2

Proof. As in the previous proof let B′ ∈ Z(n+1)×(n+1) defined as

B′ =

 | |
B y
| |

 =


2 0 0 · · · 0 1
0 2 0 · · · 0 1
...
0 0 0 · · · 2 1
2a1 2a2 2a3 · · · 2an 2b



where B ∈ Z(n+1)×n and y ∈ Z(n+1)×1, i.e., B is the matrix that consists of the
first n columns of B′ and y is the last column of B′, namely

B =

 | |
b1 . . . bn
| |

 =


2 0 0 · · · 0
0 2 0 · · · 0
...
0 0 0 · · · 2
2a1 2a2 2a3 · · · 2an

 , y =


1
1
...
1
2b


Clearly,B′ can be constructed in polynomial time. It is easy to see that rank(B) =

n, therefore the columns of B, namely b1, . . . , bn, are linearly independent vectors
and can form a lattice basis.

We will now show that,

(a1, . . . , an, b) ∈ Subset Sum⇔ ∃x ∈ Zn such that ∥Bx− y∥ =
√
n

(a) (“⇒”): Let (x1, . . . , xn) ∈ {0, 1}n such that
∑n

i=1 xiai = b.

Then for x = (x1, . . . , xn)
⊺ we have that

Bx− y =


2x1 − 1

...
2xn − 1

(
∑n

i=1 2xiai)− 2b

 =


2x1 − 1

...
2xn − 1

0


therefore,

∥Bx− y∥ = ∥(±1, . . . ,±1, 0)∥ =
√
n

(b) (“⇐”): Suppose that ∥Bx− y∥ =
√
n where x ∈ Zn, i.e.,

∥Bx− y∥ =

∥∥∥∥∥∥∥∥∥
2x1 − 1

...
2xn − 1

(
∑n

i=1 2xiai)− 2b

∥∥∥∥∥∥∥∥∥ =
√
n⇒

∥Bx− y∥ =

√√√√ n∑
i=1

(2xi − 1)2 +

((
n∑

i=1

2xiai

)
− 2b

)2

=
√
n⇒

n∑
i=1

(2xi − 1)2 +

((
n∑

i=1

2xiai

)
− 2b

)2

= n

Therefore we have that,((
n∑

i=1

2xiai

)
− 2b

)2

︸ ︷︷ ︸
is ≥ 0

= n−
n∑

i=1

(2xi − 1)2︸ ︷︷ ︸
must be ≥ 0

Because xi ∈ Zwe have that
∑n

i=1(2xi−1)2 ∈ Z. Since we are subtracting
from n a sum of nonnegative values and we want the result to be also non-
negative, and from the fact that xi ∈ Z it follows that (2xi − 1)2 = 1 for
i = 1, . . . , n. Therefore we have that |2xi − 1| = 1 from which we get that
xi ∈ {0, 1} for i = 1, . . . , n again because xi ∈ Z.
Hence, for xi ∈ {0, 1} we get that,

n−
n∑

i=1

(2xi − 1)2 = n−
n∑

i=1

|±1| = 0

therefore we have that,((
n∑

i=1

2xiai

)
− 2b

)2

= 0 ⇒(
n∑

i=1

2xiai

)
− 2b = 0 ⇒

n∑
i=1

2xiai = 2b ⇒

n∑
i=1

xiai = b

and this completes the proof.

□

The NP-completeness reduction for CVP can be generalized for any ℓp norm
(p ≥ 1), see [84]. We note that the reductions we presented for both SVP and CVP
are for the decision version of these problems.

There is a special case of GapCV Pγ which is of particular interest in cryptog-
raphy. If in the input of GapCV Pγ we have that d < λ1(L)/ (2 · γ(n)) then the
problem is calledGapBDDγ where BDD stands for Bounded Distance Decoding.

The search approximation version of this problem is defined as follows,

Definition 48 (γ-Bounded Distance Decoding (BDDγ)) Given a lattice basis
B and vector t such that dist(t,L(B)) ≤ γ(n) · λ1(L(B)) the task is to find the
lattice vector v ∈ L(B) closest to t.

3.3 Reducing approximate SVP to approximate CVP

In this section we follow the work of Goldreich, Micciancio, Safra and Seifert
in [30] to show that there is a Cook reduction from approximate SVP to approximate
CVP for any ℓp norm (p ≥ 1, p =∞).

One could think that we could set the target vector in CVP to be the zero vector
and use this as an oracle to solve SVP for a lattice L ⊂ Rn. This would not work
because in SVP we are searching for a nonzero lattice vector whereas in CVP the
target vector can be the solution if it is a lattice vector itself and the zero vector is
always a lattice vector. To avoid this situation we run an CVP oracle on a sublattice
L′ ⊂ L not containing the target vector and thus the problem now is how to select
a sublattice without removing all the lattice vectors closest to the target vector.
Details follow.

Proposition 3.4 Let b1, . . . , bn be a basis for the lattice L and let v =
∑n

i=1 cibi
where ci ∈ Z, be a shortest nonzero vector in L. Then, there exists an i such that
ci is odd.

Proof. Assume that all i are even. Then,

1

2
v =

n∑
i=1

ci
2
bi

is a shorter vector in L contradicting the fact that v is a shortest vector. □

Next we show how to reduce SVP to solving n instances of CVP.
Given a basis b1, . . . , bn of the lattice L we construct the j − th instance of

CVP for j = 1, . . . , n with lattice basis

B(j) =

 | | | | |
b1 . . . bj−1 2bj bj+1 . . . bn
| | | | |


and target vector bj .

Proposition 3.5 For j = 1, . . . , n we have L
(
B(j)

)
⊂ L(B).

Proof. For every v ∈ L
(
B(j)

)
we have that

v =
∑
i ̸=j

cjbi + (2cj)bj =
n∑

i=1

aibi ⇒ v ∈ L(B)

where ai = ci for i ̸= j and ai = 2ci for i = j.
On the other hand we have that bj ∈ L(B). Assume, for contradiction, that

bj ∈ L
(
B(j)

)
. Then we would have for ai ∈ Z,

a1b1 + . . .+ 2ajbj + . . .+ anbn = bj ⇒
a1b1 + . . .+ (2aj − 1)bj + . . .+ anbn = 0

contradicting the linear independence of b1, . . . , bn since aj ∈ Z. Therefore bj ̸∈
L
(
B(j)

)
and this completes the proof. □

Proposition 3.6 Let b1, . . . , bn be a basis for the lattice L and let v =
∑n

i=1 cibi
where ci ∈ Z, be a lattice vector in L. Then

u =
cj + 1

2
2bj +

∑
i ̸=j

cibi

is a lattice vector in L
(
B(j)

)
and dist(u,bj) = ∥v∥ where bj is the target

vector.

Proof. Since cj is odd then cj+1
2 is an integer and thus u is a lattice vector in

L
(
B(j)

)
. So we have that,

u− bj =
cj + 1

2
2bj +

∑
i̸=j

cibi − bj = cjbj +
∑
i̸=j

cibi = v

and the proposition follows. □

Proposition 3.7 Let u = 2c′jbj +
∑

i ̸=j cibi be a lattice vector in L
(
B(j)

)
. Then

v = (2c′j − 1)bj +
∑

i̸=j cibi is a nonzero lattice vector in L(B) and ∥v∥ =
dist(u,bj).

Proof. Since c′j ∈ Z then 2c′j − 1 cannot be zero and in fact is an odd integer, and
thus v is a nonzero vector. Then we have that,

v = (2c′j − 1)bj +
∑
i̸=j

cibi = 2c′jbj +
∑
i̸=j

cibi − bj = u− bj

and the proposition follows. □

Theorem 3.8 For every function γ(n) ≥ 1 with n ∈ N, SV Pγ (resp. GapSV Pγ)
is Cook-reducible toCV Pγ (resp. GapCV Pγ). Furthermore, the reduction is non-
adaptive, and all queries maintain the rank of the input instance.

Proof. We present a proof for both the decision and the search version.

Decision: Let (B, d) be a GapSV Pγ instance, and define GapCV Pγ instances(
B(j),bj , d

)
for j = 1, . . . , n. We want to prove that if (B, d) is a Y ES instance,

then
(
B(j),bj , d

)
is a Y ES instance for some j = 1, . . . , n and if (B, d) is a NO

instance, then
(
B(j),bj , d

)
is a NO instance for every j = 1, . . . , n

First assume (B, d) is a Y ES instance and let v =
∑n

i=1 be a shortest nonzero
lattice vector in L(B). So we have that ∥v∥ ≤ d and by Proposition 3.4 cj is odd
for some j. The vector u as defined in Proposition 3.6 is in L

(
B(j)

)
and satisfies

dist(u,bj) = ∥v∥ ≤ d, proving that
(
B(j),bj , d

)
is a Y ES instance.

For the NO instances we prove the contrapositive. Assume
(
B(j),bj , d

)
is

not a NO instance for some j. Then there exists a vector u in L
(
B(j)

)
such that

dist(u,bj) ≤ γ(n) · d. The vector v as defined in Proposition 3.7 is a nonzero lat-
tice vector in L(B) and satisfies ∥v∥ = dist(u,bj) ≤ γ(n) · d, proving that (B, d)
is not a NO instance.

Search: In the search version we make n queries to the CV Pγ oracle with in-
put
(
B(j),bj

)
for j = 1, . . . , n. Let uj be the oracle answer for the j − th query.

By Proposition 3.6 vj = uj − bj is in L(B), so it remains to show that one of them
is a shortest vector.

Now suppose that v is the shortest vector in L(B). Then we have that v =∑n
i=1 cjbi and by Proposition 3.4 there exists a j such that cj is an odd integer. By

Proposition 3.6 we have that uj = v + bj is the closest vector to bj in L
(
B(j)

)
and uj is the shortest among all ui for i = 1, . . . , n exactly because v is a shortest
vector of L(B). So the oracle query CV Pγ

(
B(j),bj

)
will respond with the vector

uj and thus we can get uj = v+ bj ⇒ v = uj − bj . To summarize we have that,
λ1(L(B)) = min

1≤i≤n
dist(ui,bi) where ui is the answer to the i − th CV Pγ oracle

query with input the pair
(
B(j),bj

)
. □

The advantages of the previous reduction are that it is gap and rank preserving.
One drawback of the reduction is that it is a Cook reduction, i.e., more than one
oracle query needs to be made. Furthermore, with similar ideas also in [30] there
is a randomized Karp reduction from SV Pγ (resp. GapSV Pγ) to CV Pγ (resp.
GapCV Pγ) that maps Y ES instances to Y ES instances with probability at least
1/2, and NO instances are always mapped to NO instances. This randomized

reduction is also gap and rank preserving. It is an open problem whether there
exists a deterministic Karp reduction for that matter.

Proposition 3.9 Let L(B) be a lattice of dimension n. Then for any γ(n) ≥ 1,
GapCV Pγ is in NP, therefore GapSV Pγ is also in NP for the same γ(n).

Proof. Let (B, t, d) be a GapCV Pγ instance. A witness is a vector v ∈ L(B) such
that ∥v− t∥ ≤ d. Since vector v is of polynomial size because its length is at most
∥t∥ + d and can be verified in polynomial time by checking that ∥v − t∥ ≤ d, so
the proposition follows. □

Proposition 3.10 Let L(B) be a lattice of dimension n. Then for any γ(n) ≥ 1,
GapSV Pγ in NP.

Proof. Follows from Theorem 3.8 and Proposition 3.9. □

3.4 Limits to inapproximability

As we saw in sections 3.1 and 3.2 even for constant approximation factors, no effi-
cient algorithm is known for SVP (resp. GapSVP) or CVP (resp. GapCVP). Gap-
SIVP is NP-hard to approximate to within any constant factor, and no polynomial
time algorithm exists for any 2log1−ϵ n factor unlessNP ⊆ DTIME

(
2poly(logn)

)
.

Haviv and Regev [36] showed that for GapCRP, for all sufficiently large p ≤
∞, there is a constant cp > 1 such that GapCRP in the ℓp norm is Π2-hard to
approximate to within any factor less that cp and in particular for p =∞ it is c∞ =
3/2 which gets closer to the factor 2 beyond which the problem is not believed to
be Π2-hard (see [31]). It is an open question where GapCRPγ is Π2-hard with
respect to the ℓp norm for small values of p ≥ 1. The covering radius problem can
be approximated within any constant factor γ(n) > 1 in random exponential time
2O(n) (see [31]).

Khot, Popat and Vishnoi [49] showed for an arbitrarily small constant ϵ > 0,
assuming NP ̸⊆ DTIME

(
2log

O(1/ϵ) n
)
, CVPP is hard to approximate within

a factor better than 2log
1−ϵ n improving the previous hardness factor of logδn for

some δ > 0 due to Alekhnovich, Khot, Kindler and Vishnoi [7].
One might hope to increase the factors in the hardness results above, however

there seem to be strict limits to any such improvements. We note that AM is the
complexity class of languages that have a constant round interactive proof system.
A well-known complexity theoretic result is that if NP ⊆ coAM , then the poly-
nomial hierarchy collapses (see Boppana, Håstad and Zachos [12]).

In general, proving that for some approximation factor γ(n) a certain problem
is in a class not believed to be in NP such as coNP or coAM, implies that for that
approximation factor the problem is not NP-hard, assuming that the polynomial
hierarchy does not collapse. From Propositions 3.9 and 3.10 we have that for any
γ(n) ≥ 1, GapCV Pγ and GapSV Pγ are in NP.

Lagarias, Lenstra and Schnorr in [50] showed that for γ(n) = n3/2,GapSV Pγ

and GapCV Pγ are in coNP. Banaszczyk [10] improved this to γ(n) = n. Gol-
dreich and Goldwasser in [26] showed that for some γ(n) = O

(√
n/logn

)
,

GapSV Pγ and GapCV Pγ are in coAM.
Aharov and Regev in [1] showed that for some γ(n) = O (

√
n), GapSV Pγ

and GapCV Pγ are in NP ∩ coNP but their result for gaps between
√

n/logn and√
n does not apply, and so containment in NP ∩ coNP is not known to hold.
Therefore for some γ = O (

√
n)GapSIV Pγ andGapCRPγ have been placed

in coNP and for γ(n) = 2 in AM (see [1]). For some γ(n) = O
(√

n/logn
)

GapCRPγ has been placed in coAM (see [31]).

GapCV PPγ has been known to be computable in polynomial time (not includ-
ing the arbitrary preprocessing stage) for γ(n) = O

(√
n/logn

)
(see [1]).

The approximation version of the BoundedDistanceDecoding problem, namely
BDDγ , has been shown to be NP-hard for γ ≥ 1√

2
by Liu, Lyubashevsky andMic-

ciancio in [52] and is an open question whether it is hard for smaller γ. We note
that the BDDγ problem becomes harder as γ becomes larger. In the same paper
the authors showed that for γ = O

(√
(log n)/n

)
BDDγ with preprocessing can

be solved in polynomial time. For a connection of the Bounded Distance Decoding
with other lattice problems see Lyubashevsky and Micciancio [53].

4

Lattice-based cryptography

In this chapter we talk about lattice-based cryptographic constructions and lattice-
based public-key encryption schemes based on the Learning With Errors problem.
Before we do that, we formally define what is a public-key encryption scheme.

Definition 49 A public-key encryption scheme is a tuple of probabilistic
polynomial time algorithms (Gen,Enc,Dec) such that:

(1) The key generation algorithm Gen takes as input the security parameter 1n
and outputs a pair of keys (pk, sk), the public key and the private key respec-
tively.

(2) The encryption algorithmEnc takes as input a public key pk and messagem
from some underlying plaintext space (that may depend on pk),and it outputs
a ciphertext c.

(3) The decryption algorithmDec takes as input a private key sk and a ciphertext
c, and outputs a message m or a special symbol ⊥ denoting failure. We
assume without loss of generality that Dec is deterministic.

4.1 Early lattice-based cryptography

Lattice-based cryptography began with the seminal work of Ajtai [2] who showed
that random instances of a certain problem are at least as hard to solve as worst-case
instances of lattice problems.

The average-case / worst-case connection is of particular interest in cryptog-
raphy. For example consider a cryptographic scheme in which one can prove that
breaking the scheme implies factoring some natural number N . Hence, one must
choose a number N that is computationally difficult to factor. But how can we do
that? Certainly not by choosing N in a range at random because with probability

70

1/2 the number will be even. Maybe choosing two large primes p, q and setting
N = pq will make N hard to factor but one must be careful in how to choose
the two primes so as to not make their product easy to factor for some specialized
algorithms.

On the other hand, lattice-based schemes, do not have this problem. Showing
that if uniformly random instances of a certain problem Π can be solved then cer-
tain other hard problems can be solved for all lattices, is a very useful feature for
cryptography if we base the security of a cryptographic scheme on the hardness
of problem Π. Notice that coming up with a hard instance of problem Π is now
easy - just generate a random instance of it. That way one can build cryptographic
schemes based on the hardness of random instances of problemΠwhich in turn are
as difficult to solve (and thus break the scheme) as worst-case lattice problems.

Briefly, Ajtai created a familyH of collision-resistant functions hA indexed by
A ∈ Zn×k

p where k > nlogp and the input to the functions is a vector x in {0, 1}k.
The output is hA(x) = Ax mod p. Ajtai showed that finding two distinct vectors
x, x′ such that hA(x) = hA(x′) for random A, is as hard as solving certain lattice
problems for all lattices (see [2, 27]).

The first cryptosystem that was based on theworst-case hardness of lattice prob-
lems was the Ajtai-Dwork cryptosystem [4] (the second one). The security of this
system was based on the worst-case hardness of the approximate “unique” Shortest
Vector Problem uSV PO(n8). Recall that in uSV Pγ(n) the task is to find the short-
est vector in a lattice in which the shortest vector is guaranteed to be at least γ(n)
times smaller than the next shortest (nonparallel) vector. Although the system was
not presented using lattices, in the security proof they showed that every instance of
uSVP could be transformed into a random instance of their cryptosystem with high
probability. However the fact that this cryptosystem is not efficient enough to be
practical and secure at the same time was confirmed by Nguyen and Stern [70] in
their cryptanalysis of the Ajtai-Dwork cryptosystem. Goldreich, Goldwasser and
Halevi [28] proposed a modified version of the Ajtai-Dwork cryptosystem. In their
version, they eliminated decryption errors that may appear with small probability
(inversely proportional to the security parameter). For both these cryptosystems,
CCA1 attacks were presented in [32, 44].

In 1997, Goldreich, Goldwasser and Halevi [29] proposed a public-key cryp-
tosystem (encryption and signatures) inspired byMcEliece cryptosystem [54] (which
is based on error-correcting codes) and relying on the hardness of CVP. Roughly,
their public-key encryption scheme works as follows: The secret keyA is a “good”
basis for a random latticeL and the public key is a “bad” basisB for the same lattice
L. The plaintext message is encoded in vector s and the ciphertext is c = Bs + e
where e is a small random error vector. That way of creating the ciphertext re-
sembles the McEliece cryptosystem. To decrypt c first apply Babai's round-off

algorithm so that d ←
⌊
A−1c

⌉
. Then d with be A−1Bs since the error e is small,

Babai's round-off algorithm will remove it. Finally, compute B−1AA−1Bs to re-
cover the original plaintext s. In 1999, Nguyen [66] showed that the proposed
selection of the error vector e had as a result the leakage of information on the
plaintext, and this information leakage allows an attacker to reduce the problem
of decrypting ciphertexts to solving particular CVP instances which are much eas-
ier that the general problem. Namely, for these instances, the given vector is very
close to the lattice, which makes it possible in practice to find the closest vector
by standard techniques. Nguyen suggested modifications to fix the encryption pro-
cess, but estimate that, even modified, the scheme cannot provide security without
being impractical, compared to existing schemes. Learning the results of Nguyen's
cryptanalysis, one of the authors declared the scheme “dead” [66, p. 3].

In 1998, Hoffstein, Pipher and Silverman [42] proposed a public-key cryptosys-
tem named NTRUEncrypt (original name is NTRU) which was based on the alge-
braic structures of certain polynomial rings. The hard problem underlying NTRU-
Encrypt is SVP, although the initial description of NTRUEncrypt does not involve
lattices. We use the name NTRUEncrypt to distinguish this cryptosystem from
a public-key digital signature cryptosystem named NTRUSign. Since its first re-
lease NTRUEncrypt has undergone changes especially in way the parameters are
chosen. The latest version is of 2008 and the system is fully accepted to IEEE
P1363 standards under the specifications for lattice-based public-key cryptogra-
phy. In April 2011, NTRUEncrypt was accepted as a X9.98 Standard, for use
in the financial services industry. Many attacks have been proposed for NTRU-
Encrypt,see [16, 86, 33, 43, 55, 23], but so far, the NTRUEncrypt cryptosystem
remains strong.

Bibliography

[1] Dorit Aharonov and Oded Regev. Lattice Problems in NP ∩ coNP. In FOCS,
page 362–371. IEEE Computer Society, 2004.

[2] Miklós Ajtai. Generating Hard Instances of Lattice Problems (Extended Ab-
stract). In Gary L. Miller, editor, STOC, page 99–108. ACM, 1996.

[3] Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized
Reductions (Extended Abstract). In Jeffrey Scott Vitter, editor, STOC, page
10–19. ACM, 1998.

[4] Miklós Ajtai and Cynthia Dwork. A Public-Key Cryptosystem with Worst-
Case/Average-Case Equivalence. In Frank Thomson Leighton and Peter W.
Shor, editors, STOC, page 284–293. ACM, 1997.

[5] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the short-
est lattice vector problem. In Jeffrey Scott Vitter, Paul G. Spirakis, andMihalis
Yannakakis, editors, STOC, page 601–610. ACM, 2001.

[6] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. Sampling Short Lattice Vec-
tors and the Closest Lattice Vector Problem. In IEEE Conference on Compu-
tational Complexity, page 53–57, 2002.

[7] Mikhail Alekhnovich, Subhash Khot, Guy Kindler, and Nisheeth K. Vishnoi.
Hardness of Approximating the Closest Vector Problem with Pre-Processing.
In FOCS, page 216–225. IEEE Computer Society, 2005.

[8] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. In Proceedings
of the 1993 IEEE 34th Annual Foundations of Computer Science, SFCS '93,
page 724–733, Washington, DC, USA, 1993. IEEE Computer Society.

73

[9] László Babai. On Lovász' lattice reduction and the nearest lattice point prob-
lem. Combinatorica, 6(1):1–13, 1986.

[10] W. Banaszczyk. New bounds in some transference theorems in the
geometry of numbers. Mathematische Annalen, 296:625–635, 1993.
10.1007/BF01445125.

[11] Johannes Blömer and Stefanie Naewe. Sampling Methods for Shortest Vec-
tors, Closest Vectors and Successive Minima. In Lars Arge, Christian Cachin,
Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP, volume 4596 of
Lecture Notes in Computer Science, page 65–77. Springer, 2007.

[12] Ravi B. Boppana, Johan Håstad, and Stathis Zachos. Does co-NP Have Short
Interactive Proofs? Inf. Process. Lett., 25(2):127–132, 1987.

[13] M.R. Bremner. Lattice Basis Reduction: An Introduction to the LLLAlgorithm
and Its Applications. Pure and Applied Mathematics. CRC Press, 2011.

[14] A.M. Cohen, H. Cuypers, and H. Sterk. Some Tapas of Computer Alge-
bra. Number τ . 13 in Algorithms and Computation in Mathematics. Springer,
1998.

[15] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate
Texts in Mathematics. Springer, 2000.

[16] DonCoppersmith andAdi Shamir. Lattice Attacks onNTRU. InWalter Fumy,
editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer Science,
page 52–61. Springer, 1997.

[17] Daniel Dadush. A O(1/ϵ2)-Time Sieving Algorithm for Approximate Inte-
ger Programming. In David Fernández-Baca, editor, LATIN, volume 7256 of
Lecture Notes in Computer Science, page 207–218. Springer, 2012.

[18] Hervé Daudé, Philippe Flajolet, and Brigitte Vallée. An Average-Case Anal-
ysis of the Gaussian Algorithm for Lattice Reduction. Combinatorics, Prob-
ability & Computing, 6(4):397–433, 1997.

[19] Jérémie Detrey, Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Accel-
erating Lattice Reduction with FPGAs. In Michel Abdalla and Paulo S. L. M.
Barreto, editors, LATINCRYPT, volume 6212 of Lecture Notes in Computer
Science, page 124–143. Springer, 2010.

[20] Irit Dinur. Approximating SV P∞ to within Almost-Polynomial Factors Is
NP-Hard. In Gian Carlo Bongiovanni, Giorgio Gambosi, and Rossella Pe-
treschi, editors, CIAC, volume 1767 of Lecture Notes in Computer Science,
page 263–276. Springer, 2000.

[21] Irit Dinur, Guy Kindler, and Shmuel Safra. Approximating-CVP to Within
Almost-Polynomial Factors is NP-Hard. In FOCS, page 99–111. IEEE Com-
puter Society, 1998.

[22] Friedrich Eisenbrand, Nicolai Hähnle, and Martin Niemeier. Covering cubes
and the closest vector problem. In Proceedings of the 27th annual ACM sym-
posium on Computational geometry, SoCG '11, page 417–423, New York,
NY, USA, 2011. ACM.

[23] Nicolas Gama and Phong Q. Nguyen. New Chosen-Ciphertext Attacks on
NTRU. In Tatsuaki Okamoto and Xiaoyun Wang, editors, Public Key Cryp-
tography, volume 4450 of Lecture Notes in Computer Science, page 89–106.
Springer, 2007.

[24] Nicolas Gama, Phong Q. Nguyen, and Oded Regev. Lattice Enumeration
Using Extreme Pruning. In Henri Gilbert, editor, EUROCRYPT, volume 6110
of Lecture Notes in Computer Science, page 257–278. Springer, 2010.

[25] Michael R. Garey and David S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San Fran-
cisco, CA, 1979.

[26] Oded Goldreich and Shafi Goldwasser. On the Limits of Nonapproximability
of Lattice Problems. J. Comput. Syst. Sci., 60(3):540–563, 2000.

[27] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Collision-Free Hashing
from Lattice Problems. Electronic Colloquium on Computational Complexity
(ECCC), 3(42), 1996.

[28] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Eliminating Decryp-
tion Errors in the Ajtai-Dwork Cryptosystem. In Burton S. Kaliski Jr., editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, page 105–111.
Springer, 1997.

[29] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-Key Cryptosys-
tems from Lattice Reduction Problems. In Burton S. Kaliski Jr., editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, page 112–131.
Springer, 1997.

[30] Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Pierre Seifert.
Approximating Shortest Lattice Vectors is not Harder than Approximating
Closest Lattice Vectors. Inf. Process. Lett., 71(2):55–61, 1999.

[31] Venkatesan Guruswami, Daniele Micciancio, and Oded Regev. The Com-
plexity of the Covering Radius Problem on Lattices and Codes. In IEEE
Conference on Computational Complexity, page 161–173. IEEE Computer
Society, 2004.

[32] Chris Hall, Ian Goldberg, and Bruce Schneier. Reaction Attacks against
several Public-Key Cryptosystems. In Vijay Varadharajan and Yi Mu, edi-
tors, ICICS, volume 1726 of Lecture Notes in Computer Science, page 2–12.
Springer, 1999.

[33] Daewan Han, Jin Hong, Jae Woo Han, and Daesung Kwon. Key Recovery
Attacks onNTRUwithout Ciphertext Validation Routine. In Reihaneh Safavi-
Naini and Jennifer Seberry, editors, ACISP, volume 2727 of Lecture Notes in
Computer Science, page 274–284. Springer, 2003.

[34] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the
Shortest and Closest Lattice Vector Problems. In Yeow Meng Chee, Zhenbo
Guo, San Ling, Fengjing Shao, Yuansheng Tang, HuaxiongWang, andChaop-
ing Xing, editors, IWCC, volume 6639 of Lecture Notes in Computer Science,
page 159–190. Springer, 2011.

[35] Guillaume Hanrot and Damien Stehlé. Improved Analysis of Kannan's Short-
est Lattice Vector Algorithm. In Alfred Menezes, editor, CRYPTO, volume
4622 of Lecture Notes in Computer Science, page 170–186. Springer, 2007.

[36] Ishay Haviv and Oded Regev. Hardness of the Covering Radius Problem on
Lattices. In IEEE Conference on Computational Complexity, page 145–158.
IEEE Computer Society, 2006.

[37] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector
problem to within almost polynomial factors. In David S. Johnson and Uriel
Feige, editors, STOC, page 469–477. ACM, 2007.

[38] Bettina Helfrich. Algorithms to construct Minkowski reduced and Hermite
reduced lattice bases. Theor. Comput. Sci., 41(2-3):125–139, December 1985.

[39] Jens Hermans, Michael Schneider 0002, Johannes Buchmann, Frederik Ver-
cauteren, and Bart Preneel. Parallel Shortest Lattice Vector Enumera-
tion on Graphics Cards. In Daniel J. Bernstein and Tanja Lange, editors,

AFRICACRYPT, volume 6055 of Lecture Notes in Computer Science, page
52–68. Springer, 2010.

[40] J. Hoffstein, J. Pipher, and J.H. Silverman. An Introduction to Mathematical
Cryptography. Undergraduate Texts in Mathematics. Springer, New York,
NJ, USA, 2008.

[41] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman,
and William Whyte. NTRUSIGN: Digital Signatures Using the NTRU Lat-
tice. In Marc Joye, editor, CT-RSA, volume 2612 of Lecture Notes in Com-
puter Science, page 122–140. Springer, 2003.

[42] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. NTRU: ARing-Based
Public Key Cryptosystem. In Joe Buhler, editor, ANTS, volume 1423 of Lec-
ture Notes in Computer Science, page 267–288. Springer, 1998.

[43] Nick Howgrave-Graham, Phong Q. Nguyen, David Pointcheval, John Proos,
Joseph H. Silverman, Ari Singer, and William Whyte. The Impact of De-
cryption Failures on the Security of NTRU Encryption. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, page 226–246.
Springer, 2003.

[44] Oleg Izmerly and Tal Mor. Chosen ciphertext attacks on lattice-based public
key encryption and modern (non-quantum) cryptography in a quantum envi-
ronment. Theor. Comput. Sci., 367(3):308–323, 2006.

[45] Antoine Joux and Jacques Stern. Lattice Reduction: A Toolbox for the Crypt-
analyst. J. Cryptology, 11(3):161–185, 1998.

[46] Ravi Kannan. Minkowski's convex body theorem and integer programming.
Math. Oper. Res., 12(3):415–440, August 1987.

[47] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography.
Chapman and Hall/CRC Press, 2007.

[48] Subhash Khot. Hardness of Approximating the Shortest Vector Problem in
Lattices. In FOCS, page 126–135. IEEE Computer Society, 2004.

[49] Subhash A. Khot, Preyas Popat, and Nisheeth K. Vishnoi. 2log
1−ϵ n hardness

for the closest vector problem with preprocessing. In Proceedings of the 44th
symposium on Theory of Computing, STOC '12, page 277–288, New York,
NY, USA, 2012. ACM.

[50] J. Lagarias, H. Lenstra, and C. Schnorr. Korkin-Zolotarev bases and succes-
sive minima of a lattice and its reciprocal lattice. Combinatorica, 10:333–348,
1990. 10.1007/BF02128669.

[51] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.
10.1007/BF01457454.

[52] Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On Bounded Dis-
tance Decoding for General Lattices. In Josep Díaz, Klaus Jansen, José D. P.
Rolim, and Uri Zwick, editors, APPROX-RANDOM, volume 4110 of Lecture
Notes in Computer Science, page 450–461. Springer, 2006.

[53] Vadim Lyubashevsky and Daniele Micciancio. On Bounded Distance Decod-
ing, Unique Shortest Vectors, and the Minimum Distance Problem. In Shai
Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer Science,
page 577–594. Springer, 2009.

[54] Robert J. Mceliece. A public-key cryptosystem based on algebraic coding
theory. Technical report, Jet Propulsion Lab Deep Space Network Progress
report, 1978.

[55] Tommi Meskanen and Ari Renvall. A wrap error attack against NTRUEn-
crypt. Discrete Appl. Math., 154(2):382–391, February 2006.

[56] Daniele Micciancio. The Shortest Vector in a Lattice is Hard to Approximate
to within Some Constant. SIAM J. Comput., 30(6):2008–2035, 2000.

[57] Daniele Micciancio. Closest Vector Problem. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security (2nd Ed.),
page 212–214. Springer, 2011.

[58] Daniele Micciancio. Lattice-Based Cryptography. In Henk C. A. van Tilborg
and Sushil Jajodia, editors, Encyclopedia of Cryptography and Security (2nd
Ed.), page 713–715. Springer, 2011.

[59] Daniele Micciancio. Shortest Vector Problem. In Henk C. A. van Tilborg and
Sushil Jajodia, editors, Encyclopedia of Cryptography and Security (2nd Ed.),
page 1196–1197. Springer, 2011.

[60] Daniele Micciancio. Inapproximability of the Shortest Vector Problem: To-
ward a Deterministic Reduction. Electronic Colloquium on Computational
Complexity (ECCC), 19:20, 2012.

[61] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems:
a cryptographic perspective, volume 671 of The Kluwer International Series
in Engineering and Computer Science. Kluwer Academic Publishers, 2002.

[62] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single expo-
nential time algorithm for most lattice problems based on voronoi cell com-
putations. In Leonard J. Schulman, editor, STOC, page 351–358. ACM, 2010.

[63] Daniele Micciancio and Panagiotis Voulgaris. Faster Exponential Time Al-
gorithms for the Shortest Vector Problem. In Moses Charikar, editor, SODA,
page 1468–1480. SIAM, 2010.

[64] R.A. Mollin. Advanced Number Theory with Applications. Discrete Mathe-
matics and Its Applications. Taylor & Francis, 2010.

[65] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre
Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie Revol, Damien
Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic. Birkhäuser,
2010.

[66] Phong Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryp-
tosystem from Crypto '97. In Michael J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, page 288–304. Springer, 1999.

[67] Phong Q. Nguyen. The Two Faces of Lattices in Cryptology. In Serge Vau-
denay and Amr M. Youssef, editors, Selected Areas in Cryptography, volume
2259 of Lecture Notes in Computer Science, page 313. Springer, 2001.

[68] Phong Q. Nguyen and Oded Regev. Learning a Parallelepiped: Cryptanalysis
of GGH and NTRU Signatures. J. Cryptology, 22(2):139–160, 2009.

[69] Phong Q. Nguyen and Damien Stehlé. Floating-Point LLL Revisited. In
Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Com-
puter Science, page 215–233. Springer, 2005.

[70] Phong Q. Nguyen and Jacques Stern. Cryptanalysis of the Ajtai-Dwork Cryp-
tosystem. In HugoKrawczyk, editor,CRYPTO, volume 1462 of Lecture Notes
in Computer Science, page 223–242. Springer, 1998.

[71] Phong Q. Nguyen and Brigitte Vallée, editors. The LLL Algorithm: Survey
and Applications. Springer Berlin Heidelberg, 2009.

[72] PhongQ. Nguyen and ThomasVidick. Sieve algorithms for the shortest vector
problem are practical. Journal of Mathematical Cryptology, 2(2):181–207,
September 2008.

[73] A.M. Odlyzko. The rise and fall of knapsack cryptosystems. In In Cryptology
and Computational Number Theory, page 75–88. A.M.S, 1990.

[74] Michael Pohst. A Modification of the LLL Reduction Algorithm. J. Symb.
Comput., 4(1):123–127, 1987.

[75] Xavier Pujol and Damien Stehlé. Rigorous and Efficient Short Lattice Vectors
Enumeration. In Proceedings of the 14th International Conference on the
Theory and Application of Cryptology and Information Security: Advances
in Cryptology, ASIACRYPT '08, page 390–405, Berlin, Heidelberg, 2008.
Springer-Verlag.

[76] Xavier Pujol and Damien Stehlé. Solving the Shortest Lattice Vector Problem
in Time 22.465n. IACR Cryptology ePrint Archive, 2009:605, 2009.

[77] Michael Schneider. Sieving for Shortest Vectors in Ideal Lattices. IACRCryp-
tology ePrint Archive, 2011:458, 2011.

[78] C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical
algorithms and solving subset sum problems. Mathematical Programming,
66:181–199, 1994. 10.1007/BF01581144.

[79] Claus-Peter Schnorr. A Hierarchy of Polynomial Time Lattice Basis Reduc-
tion Algorithms. Theor. Comput. Sci., 53:201–224, 1987.

[80] Claus-Peter Schnorr. Fast LLL-type lattice reduction. Inf. Comput., 204(1):1–
25, 2006.

[81] Claus-Peter Schnorr. Gitter und Kryptographie (lecture notes),
October 2011. Available at http://www.mi.informatik.uni-
frankfurt.de/teaching/lecture_notes/index.html.

[82] C.C. Sims. Computation with finitely presented groups. Cambridge Univer-
sity Press, 1994.

[83] Brigitte Vallée. Gauss' Algorithm Revisited. J. Algorithms, 12(4):556–572,
1991.

[84] Peter van Emde Boas. Another NP-complete problem and the complex-
ity of computing short vectors in a lattice. Technical Report 81-04,
Mathematische Instituut, University of Amsterdam, 1981. Available at
http://staff.science.uva.nl/ peter/vectors/mi8104c.html.

[85] Jin yi Cai and Ajay Nerurkar. Approximating the SVP to within a factor
(1 + 1/dimϵ) Is NP-Hard under Randomized Reductions. J. Comput. Syst.
Sci., 59(2):221–239, 1999.

[86] Éliane Jaulmes and Antoine Joux. A Chosen-Ciphertext Attack against
NTRU. In Mihir Bellare, editor, CRYPTO, volume 1880 of Lecture Notes
in Computer Science, page 20–35. Springer, 2000.

Index

BDDγ , 63
SIV Pγ , 33
γ-Bounded Distance Decoding, 63
γ-Shortest Independent Vectors Problem, 33
γ-unique Shortest Vector Problem, 33
CV Pγ , 32
GapBDDγ , 62
GapCRPγ , 33
GapCV Pγ , 32
GapCV PPγ , 33
GapSIV Pγ , 33
GapSV Pγ , 32
GapuSV Pγ , 33
SV Pγ , 32
uSV Pγ , 33

additive subgroup, 7
asymptotic notation, 30
auxiliary parameter, 40

basis, 2
Blichfeldt theorem, 21
bounded subset, 21

Cauchy-Schwarz inequality, 5
centrally symmetric subset, 21
closed ball, 6
closed subset, 21
Closest Vector Problem, 31
Closest Vector Problem with Preprocessing,

33
Convex Body theorem, 22
convex subset, 21

covering radius, 33
Covering Radius Problem, 33
CVP, 31
CVPP, 33

dimension, 2
discrete additive subgroup, 7
distance

between vector and set, 4
between vectors, 4

dot product, 3
dual lattice, 27

equivalent bases, 7

first successive minimum, 19
full-rank lattice, 7
fundamental

parallelepiped, 10
parallelepiped volume, 11

Gauss algorithm, 35
Gram-Schmidt orthogonalization, 15

Hadamard's inequality, 18
Hermite's constant, 23

inner product, 1

lattice, 7
basis, 7
dimension, 7
dual, 27
full-rank, 7

82

INDEX 83

generate, 7
rank, 7
span, 7
sublattice, 7

lattice determinant, 9
lattice problem

Basis, 34
Dual, 34
Intersection, 34
Membership, 34
Union, 34

linear
combination, 2
dependent, 2
independent, 2

LLL
exchange condition, 39
Lovász condition, 39
size condition, 39
theorem, 43

minimal basis, 35
Minkowski's first theorem, 23
Minkowski's second theorem, 24

nearest integer, 35
negligible function, 30
norm, 3

ℓ1, 4
ℓ2, 4
ℓp, 4
ℓ∞, 4
Euclidean, 4

open ball, 6
orthogonal

basis, 5
vectors, 5

orthonormal basis, 6

proper sublattice, 7
public-key encryption scheme, 70

reduced basis, 34, 39
reduction parameter, 39

SBP, 33
second successive minimum, 19
Shortest Basis Problem, 33
Shortest Vector Problem, 31
span, 2
standard basis, 4
sublattice, 7
subset scaling, 21
subset sum problem, 53
subset translate, 21
SVP, 31

t-Gauss algorithm, 38

unimodular column operation, 9
unimodular matrix, 8
unit vector, 4

vector angle, 5
vector projections, 5
vector space, 1

	Introduction to Lattices
	Vector Spaces
	Lattices in Rm
	Gram-Schmidt Orthogonalization
	Successive minima
	Dual lattices

	Lattice basis reduction
	Asymptotic notation
	Computational lattice problems
	Gaussian lattice basis reduction
	The Lenstra-Lenstra-Lovász algorithm
	Babai's algorithm

	Complexity of lattice problems
	Shortest vector problem
	Closest vector problem
	Reducing approximate SVP to approximate CVP
	Limits to inapproximability

	Lattice-based cryptography
	Early lattice-based cryptography

	Bibliography
	Index

