EGNIKO METZOBIO [TOAYTEXNEIO
TMHMA HAEKTPOAOI'QON MHXANIKON KAI MHXANIKON YTIIOAOTIZTON

Topéag Teyvoroyiog [TAnpopopikng kot YToAoyloTdV
Epyactipro Aoyung kot Emotung Yroloyiopdv

Lattices and Cryptography

AIITAQMATIKH EPTAXIA

TOV

I'eopyiov A. Znpdéin

Emprénov: Evetdbiog Zayog
Kadnynmc E.M.IL

AbMva, AekéuPprog 2012






EOGNIKO METZOBIO IIOAYTEXNEIO
TMHMA HAEKTPOAOI'QON MHXANIKQOQN KAI
MHXANIKON YTIOAOT'TETOQN
Touéag Teyvoloyiog ITAnpo@opikig kot YToAoy1oTdV
Epyactipio Aoying kot Emotiung Yroloyiopuov

Lattices and Cryptography

AIITAQMATIKH EPTAXIA

TOV

I'empyiov A. Znpdéin

Emprénov: Evetdbiog Zayog
Kanyntg E.MLIL

Eykpinke and v tpyuein eetaoctikn emrpont) v 9n Noegpfpiov 2012.

Evotdfiog Zayog Apioteidng [ayovpting Anpntpng Potaxng
Kafnyntig E.ML.IL Enikovpog Kabnynmg E.M.IL Aéxtopag E.M.IL

AbBMva, AexépuPprog 2012.



Tedpyrog A. Znpodéing
Awmhopoatovyog Hiextpoidyog Mnyovikog kot Mnyavikdg Yroroyiotov E.MLIT.

Copyright © Tempylog Znpdéing, 2012.
Me empoiaén movtog ducaidpatoc. All rights reserved.

Amayopevetarn avtypan, amofiKeuon Kot S1ovopn TG Tapovcog epyaciog, €& 0AOKApov
N TUNHLOTOG CVTAG, Y1 EUTOPIKO 6KOTO. Emtpénetatn ovatdnwon, amodnkevon Kot dtavopn
Y10l GKOTO [11) KEPOOGKOMIKO, EKTOLOEVTIKNG 1) EPEVVITIKNG VGNG, LTO TNV TPoUTdBeSN VO
avaPEPETOL 1 TNYN TPOEAEVONG Kot Vo dlatnpeitor To mapdy uivouae. Epotiuate mov
aQOPOVV TN XPNON TNG EPYUCIG Y10 KEPOOOKOTIKO OKOMTO TPEMEL VoL ameLBuvovTaLl TPog
TOV GLYYPAPEQL.

O1 amdWYELS KL T0 GUUTEPAGLOTO TTOV TEPLEYOVTAL GE QVTO TO £YYPUPO eEKPpalovv Tov
GLYYPOQEA Kot dEV TPETEL VO EPUNVELDEL OTL AVTITPOCHOTELOVV TIG EMioTLEG BEGEIS TOV
EbBvikov Metodfiov ITorvteyveiov.



Hepitnyn

To mAéypota peretnOnKa yo TpdTn Qopd amo toug J. L. Lagrange kai C. F. Gauss

otV Bempio TOV TETPAYOVIKOV LOpP®V 6Ta TEAN TOL 1801 aidvo aAAd kot apydTepal

omd GAAovg poabnuatikods. Me v emtvomon g alyoplBpikng Bewpiog apOucdv

Ta TAéypota Npbav kot Tl 6to Tpooknvio wepinmov o 1980 Kot edkdtepa PeETd

™V gpevpeo Tov tepipnuov LLL aiyopiBuov to 1982. 'Extote To mAEYLOTO 0o TeEAOHV

L0 EVEPYN TTEPLOYT EPEVVAG OTNV DE@PNTIKY TANPOPOPIKT KOl £YOVV EPAPUOYES,

peta&d GAAWOY, 6TV VTTOAOYICTIKY Bempia aplOUdY, GTNV KPUTTOYPAPio, GTNV KPUTTAVAALGT
KOLL GTOV 0KEPULO TPOYPUUUATIOUO KOt ETTAEOV £XOVV HEPTIKES LOVASTKEG IOLOTITEG

o TAELPEG VITOAOYIGTIKNG TOAVTAOKOTNTOG,.

Kpurtoypagwd oyiuote Paciopéva og TAEYHOTO ELPAVICTNKAY Y10 TPAOT
©opa otV TPOTOTLTY SoVAELE Tov M. Ajtai to 1996 kat éxovv avamtuydel onpavTikd
oamd tote. O Ajtai TapovGIOCE O OIKOYEVELD GUVOPTNCE®MY LOVIG KaTtenBvuvong
TV omoiwv 1 acedieia faciletar SuokoMa TPocyyiong, evidg EVOG TOAV®VULLKOD
TAPAYOVTO GTNV SLAGTOCT TOV TAEYUOTOC, TNG XEWPOTEPTC TEPITTMOONG Y10 TO TPOPAN L
TOV PIKPOTEPOV SLOVOGLOTOG 0TO TAEYpaTe. Me dAda Aoyio £0e1&e OTL av KATO10G
OVTIOTPEYEL LUE CNUOVTIKY TOAVOTNTO Lol GUVAPTNON OO OVTH TNV OLKOYEVELD
TOTE PTOPEL VoL ADGEL £VOL OTOLOONTOTE GTLYOTLTTO TOV TPOGEYYIGTIKOV TPOPANLLATOC,
EVTOG £VOG TOAMVULLUKOD TOPEyoVTO 6TV d14.6TA0T) TOL TAEYLLOTOG, TOV UIKPOTEPOL
davoopatog og éva mAEyYHa. Avti M povadikny ocuvdeon HeTa&d SLOKOAITEPTS
Kol péomng mepinTmong £xel W01iTEPO EVOLAPEPOV Y10 TNV KPUTTOYPAPio 0AAG Kot
yevikotepa yio v Bewpio TolvmhokdTN TS,

O K0p1o¢ KOOGS OVTAG TNG OUTAMUATIKNG EPYACIOG EIVOL I AVOCKOTNGON TNG
Oewplog TV TAEYUATOV KOl TNG EPAPLLOYNG TOVG GTIV KPLATOYPUPi. XTO TPHOTO
KePdAaro divovpe factkodg 0pioHOVG Kot IOLOTNTEG TV TAEYUAT®V EVD GTO OEVTEPO
KEPAAOLO TEPLYPAPOVLLE KATOL0. BAGIKA VTOAOYIOTIKA TPOPANLLOTA TV TAEYUATOV,
TEPLYPAPOVUE TNV EVVOLA TNG LEIWUEVNS Phong TAEYLLOTOC e EUPOOT] GTOV aAYOPIOpO
LLL. Xto tpito kepdrato mapovctalovpe amoteréspota omd TV Oempio TOAVTAOKOTNTOG
OV QLPOPOVV GTO. TAEYLOTO EVD GTO TETOPTO KO TEAEVLTOL0 KEPAANLO TTEPLYPAPOVLLE
KGO0 KPLUTTOCLGTHILATO ONUOGIOL KAEW0D Tov Pacilovtal g TPoPANLATY TOV
mAeypdtov addd kot kamola mov Pacilovtar 6to cvvapés Tpofinua, “Expddnon
pe cpaApaTo’”.

AéEaig Kierona

TAEY U, TPOPANIa TAEYHaTOoG, pelwon Paong, aiyopiBupog LLL, moilvaiokotnta,
KpLTTOYpOpio dNpociov kAEW100, ekpddnon pe cedipoto



Abstract

Lattices were first studied by J. L. Lagrange and C. F. Gauss in the theory of
quadratic forms in the late 18th century and later on by other mathematicians. With
the advent of algorithmic number theory, the subject had a revival around 1980 es-
pecially after the invention of the celebrated LLL algorithm in 1982. Since then
lattices have become a topic of active research in computer science and have many
applications in computational number theory, cryptography, cryptanalysis and in-
teger programming among others and also have some unique properties from a
computational complexity point of view.

Cryptographic schemes based on lattices first emerged in the seminal work of
M. Ajtai in 1996 and have developed rapidly in the past few years. Ajtai presented a
family of one-way functions whose security is based on the worst-case approxima-
tion hardness of the Shortest Vector Problem (SVP) in lattices, within a polynomial
factor in the lattice dimension. In other words, he showed that being able to in-
vert a function chosen from this family with non-negligible probability implies the
ability to solve any instance of approximate SVP within a polynomial factor in the
lattice dimension. This remarkable connection between worst-case and average-
case complexity in certain lattice problems is of particular interest in cryptography
and more general in complexity theory.

The main purpose of this diploma thesis is to overview lattices and their ap-
plication to cryptography. In the first chapter we give some basic mathematical
background on lattices and, while in the second chapter we describe some basic
computational lattice problems and introduce the notion of a reduced lattice basis
with emphasis on the LLL algorithm. In the third chapter we present complexity
results regarding lattice problems and in the fourth and last chapter we describe
public-key encryption schemes that are based on lattice problems and some that are
based on the related problem, “Learning with errors”.

Keywords

lattice, lattice problem, basis reduction, LLL algorithm, complexity, public-key
cryptography, learning with errors



Evyaprotieg

Me v 0AOKAp®OT TNG SIMAG®UATIKNG OV EPYUCING KAl TOV TPOTTLYLOKADV OV
onovd®v oto EOvikd Metoofio TloAvteyveio, Ba Oeha guyopiotio® OAOLE TOV
avOpmmovg Tov pe fondncav kot popdotniay pali pov éva Hépog amd ovtd 10
Taiot.

[Switepa Ba ROera va gvyopiotiom tov kabnynti pov k. E. Zdyo mov pe
wOnoe 010 va ayamnom v Oswpntiky [IAnpoeopiki| oA Kot yio TNV gVYAPLoTN
TOPOLGIK TOV GTIS OTOVIES Hov. ZTov Kafdnynt) pov k. A. IHayovptd) mov pov
£0W0E TO £VALGLO Y10 TO B0 TNG SUTAMULOTIKNG OVTNG EPYOCING KOl GTI GUVEXELD
ue ovpPodreye oe kdbe Prpa e Etov kafdnynt pov k. A. dotdkn Yo T0
EVOLIPEPOV TIOV £SEIEE KAl Y10 TIG YPTCULEG TOPATNPNGELS TOV.

Emiong, 6o n0ela va guyoptoTo® Toug GIA0VG LoV Y10 TNV GUUTUPAGTICT
Kol TNV KOTovonon mov £0eiéay og OAd T XPOVIO TV oToLdDV Hov. DuoIKd,
Oa mpémetl va guyapiotiom oA To LEATN Tov Epyactnpiov Aoyikng ko Emotiung
YTOLOYIGLL®V Y10, TO SNUIOVPYIKO KAILO KO TIG EVYAPLOTES OTIYUEG TOL LOLPAGTIKOLLE.

[Mave an' 6Aa Opm, Ba NBeAd Vo EVYOPICTIO® TNV OKOYEVELD LOV Yo TNV
OyGmT TOV OV divel Kot TV oThplEn Tov POV TapEXEL.
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1

Introduction to Lattices

1.1 Vector Spaces

Before we define what a lattice is, we start with some important definitions and
ideas from linear algebra.

We regard n—tuples of elements from a field I as either row vectors or column
vectors, and denote them by boldface roman letters:

U1
V2

v = (v1,v2,...,0,) € F", V= . cF"
Un

For any field IF, and for any positive integer n, the vector space F™ consists
of all n—tuples of elements from IF, with the familiar operations of vector addition
and scalar multiplication defined by

VU1 w1 V1 + w1 V1 avy

V9 w9 Vo + Wy V9 avo
V+wW = . + . = . , av=a . =

Un W, Un, + Wy, Un aVpn

for any v,w € " and any a € F.

Definition 1 Let V' C " be a vector space. An itnner (scalar) product on V
is a function
(,):VxV >F

that satisfies the following three conditions for all v,u,w € V and for all a,b € F

1



(a) (v,v) >0forallve Vand(v,v) =0ifand only ifv=0
(b) (v, w) = (w,v)
(c) (av+bw,u) = a(v,u) + b(w,u)

For our purposes it is enough to consider vector spaces V' that are contained in
R™ for some positive integer n.

Letvy,vo,...,vip € V. A linear combination of vi,va, ..., vi € Visany
vector of the form

W =a1Vy + asvy + --- +arpvy withay,ao,...,a;p € R

The collection of all such linear combinations,

{a1V1+---+aka L al,..., A ER}
is called the span of {vi,...,vi}.
A set of vectors vi,vo, ...,V € V is linear independent if the only way
to get
a1v1 + agva + -+ apvp =0
istohavea; = a0 =--- =a; = 0.

The set is linear dependent if for a1vy + asvs + - - - + apvy, = 0 we have
at least one a; nonzero.

A basis for V is a set of linearly independent vectors vy, ..., vy that span V.
This is equivalent to saying that every vector in w € V' can be written in the form

W = a1Vy + agva + - -+ a,vy

for a unique choice of aq, ao, ..., ap.

We next describe the relationship between different bases and the important
concept of dimension.

Proposition 1.1 Let V' C R" be a vector space.
(a) There exists a basis for V.

(b) Any two bases for V have the same number of elements. The number of ele-
ments in a basis for V' is called the dimension of V.



(c) Letvy,...,vy beabasis forV andletw, ..., W, be another set of n vectors
in V. Write each w;j as a linear combination of the v;,

Wi = a11V1 + a12ve + -+ - + a1nVn,

Wo = a21V1 + a2vVe + - -+ + a2nVn,

Wy = Gp1V1 + ap2Ve + - -+ App V.

Then wy,...,Wy is also a basis for V if and only if the determinant of the
matrix

air a2 - Gln

az1 Gz2 - G2p

anl Gp2 " Gnn

is not equal to 0.

We next explain how to measure lengths of vectors in R™ and the angles between
pairs of vectors. These important concepts are tied up with the notion of dot product
and the Euclidean norm.

Definition 2 Let v,w € V C R" and write v and w using coordinates as
v=(v1,v2,...,0,) and W= (wy,ws,..., wy)
The dot product of v and w is the quantity
VW =01w + vowsy + -+ + vpwn,

Definition 3 Given a vector space V. C R", a (vector) norm on 'V is a function,
Il : V' — R that satisfies the following properties:

Forallv,w €V and all c € R,
(@) |lv|| > 0forallv e V and ||v|]| = 0 if and only if v= 0
(b) [[v 4wl < Iv]l + [[wl]

© flevll = lefllvl]



Next, we give definitions for some of the most common norms.

Definition 4 For any p > 1, the £, norm of a vector v = (v1,v2,...,v,) in R"
is defined by

Ivllp =

n
D _loib
i=1

For p =1 we have the {1 norm,

n
VIl =) v
i=1

and as p — oo we have the l ., norm,

[Vlloo = max [vi
1<i<n

Definition 5 The length, or Euclidean norm, of v .= (v1,va,...,v,) is the
quantity

IVllo = /o2 + 03+ + 02
and the distance between two vectors is denoted by
dist(v,w) = ||[v — w2
A vector of norm 1 is called a unit vector.

The Euclidean norm is also frequently referred to as the {3 norm. Unless stated
otherwise the norm ||-|| will be the euclidean norm. Notice that the dot products
and norms are related by the formula

vov = |v[?

Since we will be working with the Euclidean space R", the inner product will
be the same as the dot product.

Definition 6 The distance function is extended to sets as
dist(v,S) = dist(S,v) = mibp {dist(v,s)}
s
Definition 7 The standard basis(natural basis) for the n-dimensional Euclidean
space R"™ consists of n distinct vectors
{e; : 1 <i<n}

where e; denotes the vector with a 1 in the © — th coordinate and 0's everywhere
else, e.g., forn =4, e3 = (0,1,0,0)".



Definition 8 The angle 0 between nonzero vectors v,w € R" is given by

vow = [V][Iwlcost,  cost = >, e:mmw<‘“W)
RIS VWi

Lemma 1.2 Two vectors v,w € R" are orthogonal to one another if and only if
v-w=0

Proof. The cosine is 0 if and only if the angle @ is and odd multiple of g O
Lemma 1.3 (Cauchy-Schwarz inequality)
For any two vectors v,w € R”,

v wl < [|vI[[wl]

Proof. We observe that the Cauchy-Schwarz inequality follows immediately from
Lemma 1.2, but we will present a direct proof. If w = 0, there is nothing to prove,
so we may assume that w # 0. We consider the function
F@) = v —twl|® = (v —tw) - (v — tw)
=vV-v—2tv-w+t’w-w

= |v||? = 2tv - w + £*||w]|?

We know that f(¢) > 0 forallt € R, so we choose the value of ¢ that minimizes

f(t) and see what it gives. This minimizing value is ¢ = ”‘;'vaVz . Hence
0 (Tom) = v - B
< = |Iv[I* -
Iwi? Iwl?

Simplifying this expressions and taking square roots gives the desired result.  [J

Definition 9 Given vectors v,w € R" withw #£ 0, we write u,u for the projec-
tions of v parallel and orthogonal to w, respectively

VW VW
u= , u =v-—
w-w w-w

Definition 10 An orthogonal basis for a vector spaceV is a basis vi,va, ..., Vy
with the property that

vi-v;j=0 forall i#j



A basis is orthonormal if in addition, ||v;|| = 1 for all 7.
There are many formulas that become much simpler using an orthogonal or

orthonormal basis. In particular, if vy, ..., v, is an orthogonal basis and if v =
aivi,...,a,Vy is a linear combination of the basis vectors, then
2 2
[V[I* = llarvi + - -+ + anva|

= (a1vi + -+ anVn) - (@1V1 + - + anVn)

= Z Zaiaj(vi : Vj)

i=1 j=1
n
= Za?HviHQ since v;-v; for i#j
i=1
If the basis is orthonormal, then this further simplifies to ||v|| = 3" a?.

Definition 11 For any ¢ € R" and any r > 0, the open ball of radius r centered
at ¢ is the set
B(e,r) ={veR":|v—c| <r}

Definition 12 Foranyc € R™ andanyr > 0, the closed ball of radius r centered
at ¢ is the set B
B(e,r) ={veR":|v—c| <r}



1.2 Lattices in R™

Definition 13 Let by, ..., b, € R™ be a set of linearly independent vectors. The
lattice L generated by by, ..., b, (n < m) is the set of linear combinations of
by, ..., by, with coefficients in Z.

,C:{alb1+a2b2+"-+anbn : al,a2,...,an€Z}

Equivalently, if we define B as the m x n matrix whose columns are the vectors
b1,..., b, then the lattice generated by B is

L(B) = L(by,...,b,) = {Bz : z€ Z"}

We say that the dimension of the lattice is m. A basis for L is any set of
linearly independent vectors that generates £. Any two such sets have the same
number of elements.

The rank of L is the number of vectors in a basis for £ which is n in Defini-
tion 13. Ifthe lattice rank is equal to the lattice dimension then the lattice is called a
full-rank lattice . The basis vectors by, . . . , b, are said to generate the lattice.
Next we define the span and the sublattice of a lattice.

Definition 14 The span of a lattice span(L (b1, ..., by)) is the linear space gen-
erated by its vectors.

span(L(b1,...,by)) = span(L(B)) = span(B) = {Bx : x € R"}

Definition 15 Let £L(B) C R™ be a lattice with basis vectors by, . .. ,by,. Suppose
thatb), ..., bl € Larelinearly independent, and let L(B') be the lattice generated
by by,...,bl,. We call L(B') a sublattice of L(B) and write L(B') C L(B). If
L(B') = L(B) we say that the basis B and B' are equivalent. If L(B') C L(B),
but L(B') # L(B) then basis B and B' are not equivalent, L(B') is a proper
sublattice of L(B) and write L(B') C L(B).

There is an alternative, more abstract, way to define lattices. A subset S of R™
is an additive subgroup if it is closed under addition and subtraction. It is called
a discrete additive subgroup if there is a positive constant € > 0 such that for
everyv e S,

SN{weR™:||v—w| <€} ={v}

or equivalently,

Je > Osuchthat, Vx 2y € S, [[x —y|| > ¢



Definition 16 A lattice L is a discrete additive subgroup of R™.

In other words if we take any vector v € £ and draw a closed ball of radius ¢
around v, then there is no other points of £ inside the ball.

Proposition 1.4 Any two bases for a lattice L arve related by a matrix having integer
coefficients and a determinant equal to +1.

Proof. Suppose that the vectors by, ..., b, are a basis for a lattice £ and that
W1, ..., Wy is another collection of vectors in £. We can write each w; as a linear
combination of the basis vectors,

w1 = ai1by + aiobs + - - - + ai, by,

w2 = az1bq + azbs + - + az, by,

Wy, = ap1b1 + apabo + - - + ann by,

but since we are dealing with lattices, we know that all of the a;; coefficients
are integers.

Suppose that we try to express the v; in terms of the w;. This involves inverting
the matrix

ai; a2 - Aln

a1 G2 - Q2
A=

Gn1 Aanp2 - dpn

We need the b; to be linear combinations of w; using integer coefficients, so
we need the entries of A~ to have integer entries. Hence,

1 = det(I) = det(AA™!) = det(A)det(A™1)
where det(A) and det(A~!) are integers, so we must have det(A) = +1. Con-
. Adj(A
versely, if det(A) = £1, the property A= = dei ((A))
gate matrix Adj(A) of A is an integer matrix because Z is closed under multiplica-
tion and addition, then A~! does indeed have integer entries. O

tells us that since the adju-

Definition 17 An n x n matrix U with integer coefficients and determinant =1 will
be called unimodular.



It follows from Proposition 1.4 and Definition 17 that U~! is defined and is
also unimodular.

Definition 18 4 unimodular column operation on a matrix is one of the
following elementary operations:

* multiply any column by —1
* interchange any two columns
* add an integral multiply of any column to any other column

To generate examples of n x n unimodular matrices, we start with the identity
matrix I,,, and the apply any finite sequence of unimodular column operations. The
result will be a n x n unimodular matrix and in fact any such matrix can be obtained
in this way.

If we apply unimodular column operations to a matrix whose columns contain
a basis for a lattice £, then we obtain another basis for the same lattice.

For computational purposes, it is often convenient to work with lattices whose
vectors have integer coordinates. For example,

7" = {(bl,bQ,...,bn) : bl,bg,...,bn S Z}
is the lattice consisting of all vectors with integer coordinates.

Definition 19 The determinant of a lattice L(B) is
det(L(B)) = \/dct(BTB)
In the special case that £(B) is a full-rank lattice we have
det(L(B)) = |det(B)|
Lemma 1.5 The determinant of a lattice does not depend on the basis.

Proof. Suppose the lattice £ C R”™ has two bases B1, Bo. Then by Proposition 1.4,
B> = B U and the properties (AB)"T = BTAT,
det(AB) = det(A)det(B) and det(AT) = det(A) we have that

\/det(BIBy) = \/det(UTB]B,U) = /det2(U)det(BIBy) = /det(B]By)
More simple, in the case of a full-rank lattice
|det(Bg)| = |det(B1U)| = |det(By1)||det(U)| = |det(By)||£1] = |det(By)|

Since the two bases are arbitrary, this completes the proof. U



Definition 20 Let £ C R" be a lattice and let by, bs, . .., b, be a basis for L. The
fundamental parallelepiped for L is the set

P(bi,ba,....b,) = {tiby +toba+--- +t,b, : 0 <¢; <1}

Thus, pictorially, a fundamental parallelepiped is the half-open region enclosed
by the vectors by, . .., b,. Clearly, different bases of the same lattice generate dif-
ferent fundamental parallelepipeds.

Proposition 1.6 Let £ C R"” be a full-rank lattice and P be a fundamental paral-
lelepiped for L. Then every vector v € R™ can be written in the form

vV=X+Yy

for a unique x € P and a uniquey € L.
Equivalently, the union of the translated fundamental parallelepipeds

P+y={x+y:xeP}
as'y ranges over the vectors in lattice L exactly covers R™.

Proof. Let by, ..., b, be basis of L that gives the fundamental parallelepiped P.
Then by, ..., b, are linearly independent in R", so they form a basis of R™ and
then any vector v of R can be written as

v=ab; +---+a,b,

for some unique choice of ay,...,a, € R
We write each a; as its integer and fractional part

a; =1;+t;, withr; e Zand0<t; <1

therefore v can be written in the desired form as
xeP yeL
V= (Tl —l—tl)bl—i—' : '—I—(Tn—l-tn)bn = (rlbl + -+ Tnbn) + (t1b1 + -+ tnbn)

Now suppose that v can be written as a sum of two different representations,

v=x+y=x+Yy
_ (lel+..._|_rnbn)+(t1b1+"‘+tnbn)
:(rllbl+...+r;bn)+(t/1b1+"‘+t;lbn)



where r;,r; € Z and 0 < t;,t; < 1. Because by, ..., b, are linearly independent
we get that foralli =1,...,n

ritti =1+t
ti—ti=ri—r,€Z
Since 0 < t;,t; < 1 and t; — t; € Z it must be the case that

ti —t; =0 = t, = t; and thus v} — r; = 0 = r| = r;. From that we conclude that
x’ = x and y' =y, and this completes the proof. O

Proposition 1.7 Let L C R"™ be a full-rank lattice, let b1, ..., b, be a basis for
L, and let P = P(by,...,by,) be the associated fundamental parallelepiped. We
write the basis of L in square matrix form as

by
B=| :
by,
where each by is the i—th row of the matrix B. Then the volume of P (b1, ..., by)
is given by the formula

Vol(P(by,...,by,)) = |det(B)|

Proof. We can compute the volume of P as the integral of the constant function 1
over the region P,

Vol(P(bl,...,bn»:/ | derdiy- - dr,

P
We make a change of variables fromx = (z1,...,x,)tot = (¢1,...,1,) according
to the formula
(1,...,2p) = t1b1 + -+ - + tyb, < x = tB (matrix form)

The Jacobian matrix of this change of variables is B and the fundamental par-
allelepiped P is the image under B of the unit cube C), = [0, 1], so the change of
variables formula for integrals yields

Vol(P(bl,...,bn)):/ 1d1:1---d:vn:/ ldxy---dx, = [ |det(B)|dt; -
P B

Chn Cn
= |det(B)| Vol(Cy,)
= |det(B)]

dty



O

It is easy to see that if we take each b; to be the i — th column of a matrix B’
we get
|det(B')| = |det(BT)| = |det(B)| = Vol(P(by,...,b,))

and from Lemma 1.5 we get that the volume of the fundamental parallelepiped does
not depend on the basis.



(a) The lattice Z? with basis vectors (0, 1) and (1,0) and
the associated fundamental parallelepiped.

(b) The lattice Z* with a different basis consisting of vectors
(1,1) and (2, 1), and the associated fundamental parallelepiped.

Figure 1.1. Parallelepipeds for various bases of the lattice Z2. Note that the paral-
lelepipeds in either case do not contain any nonzero lattice point.



Theorem 1.8 Let L C R"™ be a full-rank lattice, and let by, ... b, € R" denote
linearly independent vectors in L. Then, by, ..., by, form a basis L if and only if
P(by,...,b,) N L ={0}

Proof. Assume first that by, ..., b, form a basis of L. Let

n
V= Ztibi S ﬁ(bl,...,bn) ﬂp(bl,...,bn)
i=1
Since v € L(by,...,b,) then t; € Z,Vi. Since v € P(by,...,b,) thent; €

[0,1),Vi. But only 0 is an integer in [0, 1) and that means that t; = 0, Vi so we get
that v = 0.

For the other direction assume that P(by,...,b,) N L = {0}. The vectors
by, ..., b, arelinearly independent and since they belong to £ we have that £(by, ..., b,) C
L. Tt suffices to show that £ C L(bq,...,by,). Since by, ..., b, € L are linearly
independent we can write any lattice vector v as

n
V= Ztibi where t; € R
i=1

Consider now the vector .
V/ = Z LtZJ bi
i=1

where | ¢; | denotes the integer part of ¢;. The vector v’ is in the lattice L(by, ..., by,)
since the coefficients | ¢;] are integers. Therefore, the vector v—v'isin £(by, ..., by,)
as well. Now the vector,

n

v—v = (t— |t:])b;

i=1

isin P(by,...,by)since 0 < t; — [t;] <1, Vi.
Sincev—V' € L(by,...,b,) NP (by,...,b,), it must the case that v — v/ = 0 by
assumption. But since the vectors by, ..., b, are linearly independent, this means
that ¢; — [¢;| = 0, Vi from which we get that ¢; € Z, Vi.

Thus, v € L(by,...,b,) and therefore L C L(by,...,by). O



1.3 Gram-Schmidt Orthogonalization

The “best” basis we can have for a vector space is an orthogonal basis. That is
because we can most easily find the coefficients that are needed to express a vector
as a linear combination of the basis vectors.

But usually we are not given an orthogonal basis. We will show how to find an
orthogonal basis starting from an arbitrary basis.

Definition 21 Let by, ..., b, be a basis of R"™. The Gram-Schmidt orthogo-

nalization ofby, ... bn is the following basis b1, ... bn
by = b,
b; =b; — Zf‘w (2<i<n), MJ:M (1<j<i<n)
(bj, bj)

We do not normalize the vectors. It is important to note that usually the Gram-
Schmidt basis vectors by, ..., b, are not in the lattice generated by by, ..., b,
because in general the vectors b1, .., by, are not integral linear combinations of
bi,...,b,.

Ifby,...,b,are linearly independent in R™ the running time complexity of Gram-
Schmidt orthogonalization is O(mn?) and thus polynomial in the input size (see ch.
2.1, p. 30, for asymptotic notation).

If we set pu; = 1 for 1 < ¢ < n then we have

'L—b Zﬂz]b :bl_z,ul]

Letby/|[b1|,...,b,/||b,| denote the unit vectors in the direction of the Gram-
Schmidt vectors.

Then the Gram-Schmidt orthogonalization process can be written in matrix
form as



B B L opo1 p31 oo fnt
| | | \ 0 1 p32 ... pHp2
bl e bn = Bl .. f)n . 0 0 1 . IU,n73

0 0 0 0 1

Hf)lH H271~Hl~)1|| /13,1”[:)1“ :un,l”l:)lu
| | 0 [baf| g3 2|[ball fim 2| D2
= l}l e [’" . 0 0 b3 3 b3
Hb’1|| Hb’nH . ‘ | . | [in, -H |
B 0 0 0 0 by
G/

where each b; (resp. b;) is the i — th column of the matrix B (resp. B).

Remark 1.9 We can write matrix B as B = B - G where G is an upper triangular
matrix with diagonal entries g; = 1 for 1 < ¢ < n (therefore its determinant
equals to 1) then

det(B) = det(B - G) = det(B)det(G) = det(B) - 1 = det(B)

Remark 1.10 We can also write matrix B as B = B’ - G' where G’ is a lower

triangular matrix with diagonal entries g,; = ||b;| for 1 < i < n therefore its

determinant equals to T]"_, ||b;||. Since the vectors ﬁ are orthonormal, the de-
b

terminant of the matrix B’ with columns ”T?H is £1. Thus, we have

det(L(B)) = |det(B' - G')| = |det(B')||det(G')| = |£1| T [IIbs| = [ [IIbil

i=1 =1

Theorem 1.11 Let by, ..., b, be a basis for R™ and let bi,...,b, be its Gram-
Schmidt orthogonalization. We have:

(@) (b;,bj)=0for1<i<j<n

(b) span(by,...,by) = span(by,...,by) for1 <k <n

(c) For 1 < k < n, the vector by, is the projection of by, onto the orthogonal
complement of span(by,...,bx_1)



(@) [[bell < [Iby for 1 <k <n
Proof.

(a) Induction on j. For 5 = 1 there is nothing to prove. Assume that the claim
holds for some 5 > 1. For 1 < ¢ < j 4+ 1 we have

(bi,b;) = < i ( j+1 — ZMJH kbk>>

bzyb]—i-l Z,U]Jrlk isb

= (bi,bj11) — MJ+11<B b;)
- (bji1,b;) - -
= bz7b — = = bz7b1
(bi,bjt1) by, by) ( )
:O

(b) By Remark 1.9 we have b; € span(by, ..., by) for 1 < i < k hence
span(by,...,by) C span(by, ..., by)

For the reverse inclusion we use induction on k. For k = 1 we have b; = b
and so the claim is obvious. Assume that the claim holds for some & > 1.
We have

bii1 =bpi1 — Zuk+1,j5j =bj1+Vv, vEspan(by,... by)
j=1

The induction hypothesis gives span(by,...,by) C span(by,..., by), and
so the last equation implies by1 € span(by,...,by). Therefore

span(by,...,by) C span(by, ..., by)

(c) We write S = span(by,...,by_1)and S for the subspace of R” consisting
of all vectors b’ such that (b’ b) = 0, Vb € S. There is a unique decompo-
sition b, = b/, + s where b}, € S and's € S. Here b}, is the projection of
b;, on the orthogonal complement of S. By Remark 1.9 we have

k—1
b =b; + Z ,ukjb]
j=1

From part (b), we have S = span(by,...,bs_1), and so b, = b



(d) Again by Remark 1.9 we have

k—1 k—1 k—1 k—1
by, = b+ priby = [[br]l> = [+ _ pusybyl|* = <5k + ) mgby b+ Y Mkj5j>
j=1 j=1 j=1 j=1

Part (a) (by, ..., b, are orthogonal) implies that

k—1 k—1 k—1
<bk oS by zwbj> B+ 3 P
j=1 j=1 J=1
Therefore
k—1
Ibe® = bkl + > sy b5
j=1

Since every term in the sum is nonnegative, this proves the claim.

g

Corollary 1.12 (Hadamard’s inequality) LetB € R™*" withvectorsbi,bs,... by,
as columns (or rows). Then,

det(B) <[] - [|bz]|--- [|by

Proof. From Remarks 1.9 and 1.10 we have that
n
det(B) = ] JIIbi|
i=1

and from Theorem 1.11(d) the inequality follows. g



1.4 Successive minima

A basic parameter of the lattices is the length of the shortest nonzero vector in the
lattice (since any lattice contains the zero vector which has a zero norm). When we
speak of length, we mean the Euclidean norm. Finding the shortest nonzero lattice
vector is also a fundamental computational problem associated with lattices.

This parameter is also called the first successive minimum of the lat-
tice, and is denoted A1 (L). The second successive minimum of the lattice
is the smallest real number 7 such that there exist two linearly independent vectors
vi,Vy € L with ||vq]|, |[ve|| < r. This leads to the following generalization of the
first successive minimum known as successive minima.

Definition 22 Let L be a lattice of rank n. Then for everyi € {1,...,n} we define
the i — th successive minimum as

Xi(L) =inf{r: dim(span(LNB(0,7))) > i}
A more descriptive definition is the following one:

Definition Let L be a lattice of rank n. Then for every i € {1,... ,n} we define
the i — th successive minimum as

Xi(L) = inf{r : B(0,r) contains > i linearly independent lattice vectors}

It follows from the characterization of lattices as discrete subgroups of R™ that
there always exist vectors achieving the successive minima. So, the infimum is
actually a minimum if B(0, ) is replaced with the closed ball B(0, r).

Theorem 1.13 Let L be a lattice of rank n with successive minima A1 (L), . .., A\p(L).

Then there exist linearly independent lattice vectors vi,...,v, € L such that
IVill = Ni(L) foralli =1,...,n.

Interestingly, the vectors vy, .. ., v, achieving the minima are not necessarily a ba-
sis for L. It is easy to see that the successive minima are weakly increasing:

M(L) € Aa(L) < -+ < AalL)
The best possible basis for a lattice £ of dimension n consists of vectors
bi,ba,...,b, suchthat |[b;|| =X;(L) foreveryie {1,2,...,n}

Such a basis is in general very hard compute and so we would like to know
some upper and lower bounds for the successive minima. The following theorem
gives a lower bound on the length of the shortest nonzero vector in a lattice.



Theorem 1.14 Let B be basis of a lattice of rank n, and let B be its Gram-Schmidt
orthogonalization . Then, the first minimum of the lattice (and therefore every
nonzero lattice vector) satisfies

> min ||b;
M(L(B)) = @Zgﬂ”bzll >0

Proof. Let x € Z" be any nonzero integer vector. Let j € {1,...,n} be the largest
index such that z; # 0,1i.e. xj41 = --- = 2, = 0. Then,

(Bx, b;)| = [ abi,by)]
=1

n
= zi(b;, b inner product linearit
’Z < » M p y
i=1
S~ ~ o <i g>i
= ’xj‘<bj7bj> <b2>bJ> =0, Ty = 0
= [a[[b;|? (bj, b;) = [[by]|?

On the other hand by the Cauchy-Schwarz inequality we have that

- - |(Bx,bj)|
|(Bx, bj)| < |[Bx][[|by|| = [[Bx|| > ===
[[by]
From the equation above we get
Bx, b;
HBXH Z ‘( )i? J>‘
b,
= ;[
> ||b; | because z; € Z*
1<i<n

Since the length of any lattice vector is at least 1@@ b |
<i<n

then \; (L£(B)) > 1@@ |b;|| and because by, ..., by, are linearly independent, this
<i<n
quantity is strictly positive, i.e. min ||b;|| > 0. O
1<i<n

Before we give upper bounds on the successive minima let us give some useful
definitions for sets.

Definition 23 Let S be a subset of R"



(a) S is bounded if the lengths of the vectors in S are bounded. Equivalently,
S is bounded if there is a radius 7 such that S is contained within the ball

B(0, 7).

(b) S is centrally symmetric (symmetric about the origin) if for
every point X in S, the negation —x is also in S.

(c) S is convex if whenever two points x and y are in S, then the entire line
segment connecting x and y lies completely in S, i.e.,

Vx,y € S,x #y,Va € [0,1], ax+ (1 —a)y €S

(d) Sis closed if it has the following property: If x € R" is a point such that
every ball B(x, r) contains a point of S, then x is in S.

(e) Forx e R"weletS + x = {y + x : y € S} denote the translate of S by
X.

(f) Fora € RweletaS = {ay : y € S} denote the scaling of S by a.

Theorem 1.15 (Blichfeldt theorem) For any lattice L(B) and for any measur-
able set S C span(L(B)), if S has volume vol(S) > det(L), then there exist two
distinct points 71,2y € S such that z, — 2o € L(B)

Proof. Let £(B) be a lattice with basis B, and S be any subset of span(L(B)) such
that vol(S) > det(L). Partition S into a collection of disjoint regions. For any
lattice point x define the region

S =8SN(P(B)+x)

The sets (P(B) + x) with x € L(B) partition span(L(B)). Therefore the sets
Sy, X € L(B) form a partition of S, i.e., they are pairwise disjoint and

S = Sx
xeL(B)

and since £(B) is countable and set S is measurable from countable additivity we
get,

vol(8) = vol U S| = Z vol(Sx)

XEL(B) XEL(B)

Now define translated sets

;=& —x=(S—x)N(PB)+x—x)=(S—x)NP(B)



We claim that sets S, are not pairwise disjoint. Assume, for contradiction, they are.
From the definition of set Sy, it follows that for all x € £(B) S is contained in
P(B),

Z vol(Sy) = vol U Sy | < wol(P(B)) (1.1)
xEL(B) XEL(B)
Since S is a translation of Sy, they have the same volume, and from the assumption
of the theorem we get,

Z vol(Sy) = Z vol(Sx) = vol(S) > det(L) (1.2)
xeL(B) xeL(B)

Combining (1.1) and (1.2) we get det(L(B)) < vol(P(B)), which is a contra-
diction because det(L(B)) = vol(P(B)) by definition. This proves that sets S
are not pairwise disjoint, i.e., for x,y € £(B) there exist two sets Sy, Sy such that
Sy NSy # 0. Let z be any vector in S; N Sy and define

7y =Z+X
12:z+y

Since x # y we have that z; # z». From z € S;and z € Sy wegetz; € Sy C S
and zg € Sy C S. Finally, the difference between z;, z5 is a nonzero vector that
satisfies

z1—22=Xx—-y € L(B)

completing the proof of the theorem. (|

As acorollary to Blichfeldt theorem we get the following theorem of Minkowski.

Theorem 1.16 (Convex Body theorem) For any full-rank lattice L of rank n,
and any centrally symmetric convex set S C span(L), if vol(S) > 2"det(L),
then S contains a nonzero lattice point. If S is also closed, then it suffices to take
vol(8) > 2"det(L).

Proof. Let S’ = {x : 2x € S}. Then vol(S") = 27"vol(S) > det(L). By
Blichfeldt theorem there exist two distinct points z1,zy € S’ such thatz; —zs € L.
From the definition of S’, we get 2z;, 2z, € S and since S is centrally symmetric
we also have —2z; € S. Finally, by convexity, the midpoint of segment [2z;, —2z5]
also belongs in S, i.e.,

221 + (—2Z2)
2
Therefore z; — zo € S N L and this completes the proof. O

=71—2,€S8



Definition 24 Hermite’s constant, denoted vy, is the supremum of the follow-
ing quantities as L ranges over all lattices of dimension n:

M (£)?
det(L)2/™

The quantities 7y, give an upper bound for A; (L) but are very difficult to com-
pute. They are known (2012) only for 1 < n < 8 and n = 24 (see [71, ch. 2]).
We now give an upper bound for A;(L).

Theorem 1.17 (Minkowski’s first theorem) Let L be a lattice of dimension
n. Then there is a vector v € L satisfying

VIl < v det(£)"

Proof. Let £ be a lattice and let S be the hypercube in R", centered at 0, whose
sides have length 2 det(L£)'/",

S={(x1,...,2,) € R" : det(L)"" < z; < det(L)/™ foralll <i<n}
The set S is closed, centrally symmetric and convex, and its volume is
vol(S) = (2 det(ﬁ)l/”)n — 2" det(L)

therefore we can apply Theorem 1.16 to deduce that there is a nonzero vector v €
S N L. From definition of S, writing the coordinates of v = (v, ..., v,), for all
1 <4 < n,wehave

lvi| < det(£)'/" .
v? < det(L)¥™ =
Z v? < ndet(L)¥" =
i=1

Vo402 < Vndet(£)V =

IVl < v/ det(£)"
O

Since the hypercube of Theorem 1.17 has the smallest possible side length,
therefore the smallest volume to satisfy the requirements of Theorem 1.16, we ob-
tain an upper bound for A (£), namely Ay (£) < \/n det(L)Y/".

Minkowski also proved a stronger result involving the geometric mean of all
the successive minima.



Theorem 1.18 (Minkowski’s second theorem) For any lattice L of rank n,
the successive minima (in the {9 norm) satisfy

n 1/n
(H )\i(ﬁ)) < V/ndet(L)Y"
=1

Now that we have given a lower bound on the shortest lattice vector we give a
proof of equivalence of the two lattice definitions.

Theorem 1.19 Let L C R", L # (). Then L is a lattice if and only ifit is a discrete
additive subgroup of R™.

Proof.

Assume L is a lattice define as the set of all integer combinations of vectors
by,...,b, € R™ which are linearly independent (Definition 13, p. 7). Then,
clearly £ is an additive subgroup of R™. In addition, Vx,y € £, x —y € L.
Therefore, from Theorem 1.14 we can let e = A\ (L),

X =yl = e=X(£) >0

Conversely, assume that £ is a discrete additive subgroup of R™. We use in-
duction on n. For n = 1, let {b} be a basis for R, namely

R' = {ab:a € R}

Since for every v € L there exists ¢ > Osuchthat LN {r e R: |jv —r| <
e} = {v} is finite also for all € R, there exists a smallest positive value r such
that r1b € L. Therefore
{arib:a€Z} CL

Since any s € R can be written as

S
S = \‘J T1 +S1T1,

T1
for some real number s; with 0 < s1 < 1, then any sb € L can be written in the
form

sb = krib + s1(r1b) where k = UJ €Zand0 < s; < 1
1

Because sb, krb € L then s1(r1b) must be in £ and from the minimality of 7,
we must have s; = 0, so £ = {ar1b : a € Z}. This establishes the induction step.



Assume the induction hypothesis, namely that any discrete additive subgroup of R¢
for ¢ < n is a lattice. Hence, we may assume that

L C R"is discrete and £ ¢ R forany k <n

So we can choose a basis of R™, namely by,...,b,, withb; € £ for all i €
{1,...,n}. Let
n—1
= {Z a;b; : Vi, a; € R}
i=1

. By the induction hypothesis the set £y, = £ NV is a lattice of dimension n — 1.
Letb),..., b/, be a basis for Ly,. Therefore, any element z € £ can be written

as
z= (Zm )—l—rn n Where r; € R

By the discreteness of £, there exist only finitely many such z with all ; bounded.
Thus, we may choose one z with r,, > 0, and minimal with respect to |r;| < 1 for
all i # n. Let b}, denote this choice. Certainly the set {b},...,b/,_;} U{b/,} is
linearly independent, because of the term 7,,b,, in b/,. Thus,

n
= {Zaibg Vi, a; € ]R}

i=1

Because £ C R™ forany v € L,

n
V= Z t;b; where t; € R
i=1

Let

n

_V_ZLtJJb/ Z /

=1

= (Z Sz > + Snb,
n—1
= (Z 3¢b§> + (Z Sprib; + snrnbn> where r; € R
i=1

=1



Therefore, 0 < s; < 1 foralli € {1,...,n}. By the minimality of r,,, we must
have that s,, = 0 therefore ¢, € Z. Also we get,

n n—1
w:v—z [t;] b = Zsib;
i=1

=1 =
———
isin £ isin V'

sow e Landw € V thenw € Ly, = LNV which is a lattice of dimension n — 1.
Since any v € £ can be written as

n—1
vV=w+t;b), = Z tib; + t;b], where t; € Z
i=1

with w € Ly and t; € Z we have that £ is a lattice of dimension n with basis

/ /
vectors by, ..., b;,.
O



1.5 Dual lattices
In this section we define the notion of the dual lattice and see some of its properties.
Definition 25 For any lattice L, the dual lattice of L is defined as

L*={y € span(L) :Vx € L, (x,y) € Z}

The dual lattice £* has the same span with £. We now prove that the dual lat-
tice is indeed a lattice itself.

Proof. Let £ C R™ be a lattice of rank n, and let B € R™*" be its basis. Define
the dual lattice:

L*={y€ span(L) :Vx € L, (x,y) € Z}

Because y € span(L) and x € £ we can write them in matrix form as y = Bu
where u € R" and x = Bw where w € Z". Now solve y = Bu for u and multiply
it again with B :

y = Bu =
B'y = B'Bu =
u=(B'B) By =

Bu—B(B'B) 'Bly—y

The matrix B'B is invertible because B is a basis for £, hence its columns are
linear independent vectors. Because (x,y) = det(x'y) we have that

(x,y) = det((Bw)"B (B'B) " By)
— det(w'B"B (B'B) ' By)
= det(w' Bly)

—~

z
=det(w'z) € Z
=det(wiz1 + -+ wpzy) € Z forallw e Z"

Since we want this to hold for all w € Z"™ we can choose w = e; for 1 <
t < n where e; is the standard basis vector from Definition 7 (p. 4) and we get that
w;z; € Z. We already know that w; € Z, so we get that z; € Z. Because B has n
linearly independent vectors as rows then det(B"B) # 0 and so the n x n matrix



(B'B) ~! exists, and has also a nonzero determinant. Thus, rank (B (B"B) 71) —

rank(B) = n so the m x n matrix B (BTB) “hasn linearly independent vectors
as columns.
From the equation,
y=B(B'B) ' BTy
—~—
z

the properties that B'y = z € Z" and that the matrix (B (BTB)_I) consists of

column vectors that are linearly independent we conclude that £* is a lattice with
basis B* = B (BTB)fl. O

In the case of a full-rank lattice we have that B* = (BT) ~!'. The next theorem
provides some useful properties for a lattice £ and its dual lattice £*.

Theorem 1.20 Let L C R™ be a lattice of rank n with basis B € R"*", and let
L* be its dual lattice with basis B* = B (B"B) -
The following properties hold:

(@ (L) =L
(b) det(L?) = detl( 5
(©) AMi(L)-M(L%) <n

A1(L*)
(@ A(L) ML) =1
Proof.
(a) The basis for (£*)" is
(B*)* — B* ((B*)TB*) -1

- (B (BTB)”) <<B (BTB)’l)T (B (BTB)1>>

= B which is a basis for L.

-1

Thus, (£*)* = L.



(b) We have that,

det(L*) = y/det ((B*)TB*)

_ \/det <<B (B'B)~ (BTB)—1)>
= \/ det <( (BTB)" BTB (BTB)" )
= \/ det (( (BTB)~ >

— \/det (B7B)™")

det (B™B) det(ﬁ)
(c) From Theorem 1.17 (p. 23) and part (b), we have that

A(L) < Vndet(£)V™ and M (LY) < Vndet(£F)" = det({;l/n

Thus,

Vndet(L)Vm
A(L) - A (L7 =
1( ) 1( )— d@t(ﬁ)l/n
(d) Letv € £ such that ||v|| = A;(£) (can be more that one) and let vi, ..., v}
be any set on n linearly independent vectors in £*. Then there exists an
i € {1,...,n} such that (vj,v) # 0 exactly because the vectors v} are
linearly independent. We have that (v}, v) = k where k € Z* so,

1 1

M~ @ )AL 21



2

Lattice basis reduction

2.1 Asymptotic notation

Throughout this thesis we will use standard asymptotic notation symbols O, o, 2, w
and © to measure the running-time complexity of algorithms. We recall their defi-
nitions here:

e f(n) =o(g(n)) if lim —= =0
* f(n) =Q(g(n)) if lim @ >0
CFn) = wgm) if  tim L — s

* f(n)=0(g(n)) if le fgn)) = c where c is some constant.
n—oo g(n

« f(n) =0(g(n)) if f(n)=0(g(n)-log¢(n)) forsome fixed constant

A function f(n) is negligible, written negl(n), if f(n) = o(n™¢) for every
constant c.

30



2.2  Computational lattice problems

Minkowski's first theorem (Theorem 1.17, p. 23) gives a simple way to bound the
length of the shortest vector of a lattice. But this bound is not always tight. For
example consider the lattice £ generated by vectorsb; = (¢,0)"T and by = (0,1/¢)7
for some € > 0. The determinant of £ is 1 which gives an upper bound \; (£) <
\/2 but the shortest vector is A\;(£) = ||b1|| = ¢ which can be arbitrarily small.
Furthermore, the proof of Minkowski's first theorem does not provide us with a
constructive way to find A\ (£).

The problem of finding a nonzero lattice vector of length A is the Shortest
Vector Problem and it was formulated by Dirichlet in 1842.

Definition 26 (Shortest Vector Problem, SVP) Given a basis B € Z™*" for a
lattice L(B), find a nonzero lattice vector v such that ||v|| < ||w|| for any other
nonzero vector w € L(B).

In addition to the search version of the SVP we also define its decision version:

Definition 27 Given a basis B € Z™*" for a lattice L(B) and a positive number
r € Q, determine whether \1(L(B)) < r or not.

Another basic computational problem is the Closest Vector Problem.

Definition 28 (Closest Vector Problem, CVP) Given a basis B € Z™*" for a lat-
tice L(B), and a target vector t € 7™, find a lattice vector v such that dist(v,t) <
dist(t, L(B)), i.e., the vector v is closest to vector t.

Again, in addition to the search version of the CVP we also define its decision
version:

Definition 29 Given a basis B € 7" for a lattice L(B), a target vector t € 7™,
and a positive number v € Q decide whether there is a (nonzero) lattice vector v
such that dist(v,t) <.

From the previous definitions it is implied that v = Bx and w = By with
X,y € Z". Notice that we restrict the lattice basis B and the vector t to consist of
integers because we want the input to be representable in finite number of bits so
that we can consider those two problems as standard computational problems. It
can be shown that the decision and search versions are polynomially equivalent.

To date, for both SVP and CVP, no polynomial time algorithm is known. In
fact, we do not even know how to find nonzero lattice vectors of length within the
Minkowski's bound (Theorem 1.17, p. 23).



The hardness of solving SVP and CVP has led to consideration of approxi-
mation versions for these problems. We now define the promise ' approximation
versions of SVP and CVP. A solution to any of the promise problems below im-
plies a solution to the corresponding optimization problem (that is, the problem that
asks for an approximation to the corresponding lattice parameter, e.g., A\1). The fol-
lowing definitions are parameterized by a (monotone) function (the gap function)
v : Z* — RT of the lattice dimension where «(n) > 1. For computational pur-
poses the range of the gap function may be Z* or Q.

Definition 30 (GapSV P,) Aninput to GapSV P, is a pair (B, d) where B is an
n-dimensional basis for a lattice L and d is a positive number. In Y ES inputs
M (L(B)) < dandin NO inputs A\1(L(B)) > ~(n) - d.

Definition 31 (GapC'V Py) An input to GapC'V P, is a triple (B, t, d) where B
is an n-dimensional basis for a lattice L, t € span(L) is a target vector, and
d is a positive number. In Y ES inputs dist(t,L(B)) < d and in NO inputs
dist(t, L(B)) > v(n) - d.

Notice that for y(n) = 1 the promise problems SV P, and C'V P, are equivalent
to the decision problems of SVP and CVP respectively. In an analogous way we
define the search variants of SV P, and CV P,

Definition 32 (SV P,) Aninputto SV P, is a basis B for an n-dimensional lattice
L and the task if to find a nonzero vector v € L such that

IVl < ~(n) - A (£(B))

Definition 33 (CV P,) Aninputto CV P, is apair (B, t) where B is an n-dimensional
basis for a lattice L, t € span(L) is a target vector, and the task is to find a vector
v € L such that

dist(v,t) < ~y(n) - dist(t, L(B))

The shortest vector and the closest vector problems are fundamental lattice
problems but there are other lattice problems which are thought to be computa-
tionally hard such as the following:

'Promise problems are a generalization of decision problems where one is asked whether a given
input satisfies one of two mutually exclusive properties. Unlike decision problems, these two prop-
erties are not necessarily exhaustive. The problem is, under the promise that the given input satisfies
one of the two conditions, tell which of the two properties is satisfied. If the input satisfies neither
property, then any answer is acceptable.



Definition 34 (Closest Vector Problem with Preprocessing, CVPP) Givern a ba-
sis B € Z"™*™ for a lattice L(B), and a target vector t € 7™, one is allowed
to do arbitrary preprocessing on it and store polynomial (in the dimension of the
lattice) amount of information. The task is to find a lattice vector v such that
dist(v,t) < dist(t, L(B)), i.e., the vector v is closest to vector t.

Definition 35 (v-Shortest Independent Vectors Problem, SIV P,) Givena lat-
tice basis B € Z™*" for the lattice L the task is to find n linearly independent
lattice vectors V1, ..., Vy, € L(B) so that max Vil < ~(n)- An(L(B)).

1=1,...,n

Definition 36 (v-unique Shortest Vector Problem, uSV P,) Given a lattice ba-
sis B € Z™*" for the lattice L for which Aa(L(B)) > v(n) - A\1(L(B)) the task is
to find a nonzero vector v € L such that

IVl < ~(n) - M(£(B))

Definition 37 (Shortest Basis Problem, SBP) Given a lattice basis B € Z™*™
the task is to find the minimum length r such that each basis vector has length at
most r.

In an analogous way we define the promise approximation versions of CV PP,
and SIV P, and uSV P, for y(n) > 1.

Definition 38 (GapCV PPy) An input to GapCV P, is a triple (B, t,d) where
B is an n-dimensional basis for a lattice L, t € span(L) is a target vector, and d is
a rational number and one is allowed to do arbitrary preprocessing on it and store
polynomial (in the dimension of the lattice) amount of information. In Y ES inputs

dist(t,£L(B)) < d and in NO inputs dist(t, L(B)) > v(n) - d.

Definition 39 (GapSIV P,) Aninput to GapSIV P, is a pair (B, d) where B is
an n-~dimensional basis for a lattice L and d is a rational number. In Y ES inputs
M (L(B)) < dand in NO inputs A\,(L(B)) > v(n) - d.

Definition 40 (GapuSV P,) An input to GapuSV P, is a pair (B, d) where B is
an n-dimensional basis for a lattice L and d is a positive number. In Y ES inputs
M (L(B)) < dand M2(L(B)) > v(n) - d and in NO inputs \1(L(B)) > v(n) - d
(and \o(L(B)) > +(n) - d).

Definition 41 (Covering Radius Problem, GapC RP.) Let p(L(B)) denote the
covering radius of the lattice L(B), i.e., the smallest r such that (closed) balls
of radius r centered at lattice points cover span(B). Equivalently,

p(L(B)) = mazx )dist(V,E(B))

vespan(B



An input to GapCRP is a pair (B, d) where B is an n-dimensional basis for a
lattice L and d is a rational number. In Y ES inputs p(L(B)) < d and in NO
inputs p(L(B)) > ~v(n) - d.

For the Covering Radius Problem, there is no known search problem whose
solution can be verified in polynomial time and thus it is not solvable even in non-
deterministic polynomial time. In fact the Covering Radius Problem is in Il5 for
the £, norm (p > 1,p = 00), a complexity class presumably strictly bigger than
NP.

Another fundamental problem is the one of the reduced basis. Given a basis
for a lattice which in general consists of long vectors, we want to find another
“reduced” basis for the same lattice, that is, a basis consisting of short vectors
and close to orthogonal. We will describe algorithms for this problem in the next
sections.

There are also many computational problems that can be solved in polynomial
time. Bellow we mention some of them (see Micciancio [61, p. 18-19]):

(a) Membership: Given a basis B and a vector v, decide whether v belongs to
the lattice L£(B).

(b) Bastis: Givenasetof possibly linearly dependent integral vectors by, ..., by,
find a basis of the lattice they generate.

(¢) Union: Given two lattices with integral basis B; and Bs, compute a basis
for the smallest lattice containing £(B1) U L(Bs).

(d) Intersection: Given two lattices with integral basis B; and By, compute
a basis for the intersection £(B1) N L(B2).

(e) Equivalence: Given two lattices with integral basis B; and By, decide if
they generate the same lattice £(B1) = £(B2).

(f) Dwual: Given a lattice with basis B compute a basis B* for the dual lattice.
From Theorem 1.20 (p. 28) we know that B* = B (B'B) -



2.3 Gaussian lattice basis reduction

In general, lattice problems become harder as the dimension grows bigger. But for
a 2-dimensional lattice the Gauss lattice basis reduction algorithm solves SVP in
polynomial time.

Definition 42 For r € R we write |r]| for the nearest integer to r.

Definition 43 We say that a basis b1, by of a lattice £ C R? is minimalifb, is a

shortest nonzero vector in L and bs is a shortest nonzero vector in L which is not
a multiple of' by, i.e., by = A1 (L) and by = Xo(L).

The underlying idea of the algorithm? is to alternately subtract multiples of one
basis vector from the other until no further improvement is possible.

Theorem 2.1 Let £ C R? be a 2-dimensional lattice with basis vectors by and bo.
The following algorithm (Gauss algorithm) terminates and yields a minimal
basis for L.

Algorithm 1: Gaussian lattice basis reduction.

Input : Basis by, by for the lattice £ C R?.
Output: A minimal basis b1, bo for the lattice L.

reduced < false;
while reduced # true do

1

2

3 if Hb1H > Hbg” then

4 swap by and bg;

5 end

6 . \‘<b17b2>-‘.
by |

7 if 1 = O then

8 ‘ reduced < true;

9 else

10 ‘ b2<—b2—/¢b1;

1 end

12 end

13 return b; and bs;

2 The algorithm was first written down by Lagrange and later by Gauss, but is usually called the
“Gauss algorithm”.



Proof. The proof follows Beukers [14, ch. 3]. Regarding by, b as row vectors we
have in matrix form:

by < by N b <_ 1 0 by
by <+ by — ,ub1 by —u 1 by
————
G

Since det(G) = 1, i.e., matrix G is unimodular, it is clear that by, by remain basis
vectors after each iteration of the algorithm. The algorithm swaps by and by in step
4 if ||by|| > ||b2]|| and so the length of b; strictly decreases. For any real number
r > 0, there are only finitely many lattice points in the disk B(z, ). It follows that
the algorithm terminates after a finite number of iterations.

Now suppose that the algorithm has terminated and returned vectors b; and bs.
This means that ||by || < ||b2|| and from step 6 we also get that

(b1, b)

= (by, by} < 2[|by||? 2.1
TE (b1, b2) < 2[[by|| 2.0

1
< Z
-2

Let v be any nonzero vector in £, so that v = a1by 4+ asbs for some a1, as € Z,
not both zero. We have that,

VI = [laiby + azbs|/?
= ai|[b1[* + 2a1a2(b1, b) + a3|ba|®
> ai|[bi[* — 2|araz|(b1, b2) + a3|by|?
> ai|[bi[* — |araz|||by[|* + a3]|by|? from (2.1)
> ai|[b1[* — |araz|(b1, b2) + a3|by? since [[by[| < [|b|
= (af — |araz| + a3) [[ba|®
= (la1]* = |araz| + [az|*) (b1 ]
— |(la1] = laz])” + araz] | [[b]
> ||by H2 since a1, ao are not both zero
Therefore ||v|| > ||by||, and so by is a shortest vector in L.

Now suppose that v = a1 b1 +asbs is linearly independent of by, that is as # 0.
As before we have,



IVI? = aillbal® — [araz|[[b* + a3 b2 ]® from (2.1)
1 3
= ai|[bal|* — |ara|[[bs [[* + Ja5[Ibs||* + a3 Ibs||*

1 3 .
> o2~ Jara b1 |2 + T3l + Sa3bal? since b < b
1, )\ 3
= (lal = ) oul+ 3val?

Hence [|v|| > [[ba]| if 2a3 > 1, thatis if |b| > 2. In case that |as| = 1 we have that,

IVI[Z > atl[b1[* — Jaa][[ba]|* + [b2]” from (2.1)
= laa| (Jas| = 1) [Ib1]|* + |2
Since a1 € Z we getthat |a;| (Jai| — 1) = 0if |a1| < 1and|ai| (Jai| —1) >0
for |a1| > 2, s0 |a1| (Ja1| — 1) > 0 for all a; € Z. It follows that ||v||? > |/b|?

in that case too, therefore by is a shortest vector in £ linearly independent for by
since by and bo are basis vectors for L. O

From the above proof we conclude that A1 (£) = by and A2(L) = ba.



At line 3 of the Algorithm | if we change the if condition to ||by|| > t|/bs|
where ¢ > 1 is an input parameter we get a new algorithm, called the ¢-Gauss
algorithm.

Algorithm 2: t-Gaussian lattice basis reduction.

Input : A parameter ¢ > 1 and a basis by, by for the lattice £ C R2.
Output: A minimal basis by, bs for the lattice L.

reduced + false,
while reduced # true do

1
2
3 if [[by|| > t|/b2]| then
4 ‘ swap b; and bo;
5 end
6 w4 {<b1,b2>]
ba]* |
if 1 = 0 then
‘ reduced < true;
else
10 ‘ by <—b2—ub1;
11 end
12 end

13 return b; and bo;

For ¢t = 1 the t-Gauss algorithm is the same as the Gauss algorithm. For¢ > 1
the t-Gauss algorithm asks for a new vector that is not shorter than the previous
vectors, but is at most ¢ times greater or equal to the previous by vector. This algo-
rithm is used in the LLL algorithm which we will consider in the next section.

Vallée in [83] showed that the run-time complexity of Algorithm 1 is

O (;IOg\/g (Z) +2>

and for ¢ > 1 the run-time complexity of Algorithm 2 is
1
O <2 log, (Z) + 2)

where Z = ||by||? + ||bz||?, thus polynomial in the input size for both algorithms,
therefore in a 2-dimensional lattice we can solve SVP in polynomial time using the
Gauss algorithm.



2.4 The Lenstra-Lenstra-Lovasz algorithm

Gauss's lattice basis reduction algorithm gives an efficient way to find a shortest
nonzero lattice vector in a 2-dimensional lattice. But what can we do when as the
dimension increases and SVP becomes harder ? A major advance came in 1982
with the publication of the LLL algorithm [51]. The algorithm is called LLL or
L3 after the initials of its authors, namely, A. K. Lenstra, H. W. Lenstra Jr. and L.
Lovasz. In their publication, Lenstra, Lenstra and Lovasz used the LLL algorithm
to factor polynomials with rational coefficients.

The LLL algorithm runs in polynomial time and can find an approximation to
a shortest lattice vector and has application in areas such as cryptography, compu-
tational number theory and integer programming among others.

First, we must define what is a reduced basis.

Definition 44 The reduction parameter is a real number § such that

1
- <d< 1.
4

The standard value for this parameter is 6 = %.

Definition 45 Let by, ..., b, be a basis for a lattice L C R" and let 51, .. ,f)n
be its Gram-Schmidt orthogonalization (in this section we will consider the basis

vectors as row vectors). The basis by, ..., by, is called 5-reduced if it satisfies
(@) |pij| = ‘<|l|’g’_l|’|g>| < % foralll1 <j<i<n
J

(b) ||BZ + ,um;1f)1;1||2 > 5”6271”2 forall2 <7 <n.
Condition (a) is called the size condition. Condition (b) can be written as
Bill* > (8 — g ) Ibi-s]|* for2 < i < m

and is called exchange or Lovasz condition.
Condition (a) says that each basis vector b; is “almost orthogonal” to the span
of the previous vectors, since by Theorem 1.11(b), (p. 16), we have that

span(by,...,b) = span(by,...,by) for1 <k <n
<ijl~)j>
bl
be as parallel to vector b; as possible because the Gram-Schmidt orthogonalization
vectors are orthogonal to each other.

so we want the p;; = to be as close to zero as possible, i.c., vector b; to



Condition (b) says that exchanging b;_; and b; and then recomputing the Gram-
Schmidt orthogonalization can produce a new shorter vector

52_1 =b; + Mi,i—1f)i—1

but not “too much” shorter as it can be proved.

For any § € (%, 1), the LLL algorithm produces an d-reduced basis in poly-
nomial time. For § = 1 we cannot prove that the LLL algorithm terminates in
polynomial time.

Definition 46 We define the auxiliary parameter [ as follows:

4 4 1 1
51 so that [3>§ and 5—5—1

8=
For § = % we obtain 5 = 2. A d-reduced basis has desired properties that we
now show.

Proposition 2.2 Let L C R" be a lattice an by, ..., b, be a d-reduced basis of L,
and by, ..., by, be its Gram-Schmidt orthogonalization , then

(@) [bj|> <B7I|bsf|? forl<j<i<n
(b) det(L) < [y -+ b, < Bm=D/* det(L)
(©) [Iby]] < prm=1/ det(L)!/

Proof.

(a) From the two conditions of Definition 45 we have that

10il|* > (6 — 111 Ibi—1|? for2<i<n
. 1N\? 1 1
> ( - > Hbz 1”2 smce \Mz',i—l\z < <2> = 1 and 1 <di<l1
1
BHb@1H2 Definition 46

Therefore ||b;_1 > < /3||b;]|?> meaning for example that ||b;_»]||? is at most 3
times smaller than ||b;_1||?> which is at most 3 times smaller than ||b; ||? and
50 ||b;_2||? is at most 32 times smaller than ||b;||?, thus, an easy induction
gives

Ib;||> < 77 b;||> for 1<j<i<n (2.2)



From proof of Theorem 1.11(d) (p. 16) we have that

i—1
b3 1 = Ibil|* + D w1
j=1
So we have that,
i—1
b1 = IBil|* + D pF [y
j=1
—1 1\? 1
o2 Eol2 - 2 2
< I+ 3 10 since i = 131 < (3) =
i—1 1.
< ”biHQ‘f‘ZiﬁlﬁHbiHQ from (2.2)
7=1
i—1 1
— b, 112 e
= [Ibi)* {1+ 78
7j=1
1 i—1
— I, 112 il i—j
— b* {1+ 78
7j=1
-1
Using the summation formula for the geometric sequence Z g
j=1

we obtain

N2 < (1R.112 16 -8
o < o (14557

We show by induction on ¢ that

15 -8 i—1
<1+4/51) <p

hence, ' B
Ibi]|* < Bl (2.3)



The basis case ¢ = 1 gives 1 < 1 which holds
have that

157" - (i+1)—1
i =F
1_’_51+1_B§ (4/Bl+1_4ﬁz)
1—p <33t —4p
3B8—-4
0< S0

. For the inductive step we

which holds because from Definition 46 we have that 5 > %, SO

>0 and 38—4>0 and
Combining (2.2) and (2.3) we have that
b, [1* < A7~ HIby 1> < B Hibi* fo
which proves (a).
(b) From Hadamard's inequality (Corollary 1.12, p.

det(L) = |y - [[ba]| -~ [|by]| < [Iby

6—-1>0

r 1<j<i<n

18) we know that

|- (b} - - [[by

which proves the left inequality in part (b). From (2.3) by taking the product

overi = 1,...,n we have that

b1 - oo |- [[by P < BOFHF2EF =D by |2 - ba |2 -+ ||y |

b2 baf|? - b | < 7072 by |2 -

b2 - [[by |

VI -6l bl < /8772 \ /By 2 - B2 - B2

n(n— 1z - " -
Il el bl < (877172 7 b - ol - - b

b - [zl - bl < "D by | - [b]| - - [ba| = 8"/ det ()

b1 ] - (b2 -~ [Iby|| < 5"~/ det (L)
which proves the right inequality in part (b).
(c) Setting j = 1 in part (a) gives

by < B Yby|| for1 <

1<n

=
=
=
=
=



and taking product over ¢ = 1, ..., n we have that

n-times
byl [y [[by]|* < BT by 12 by |- - [y 12
by ][> < B D2 by || - [[Bg][* - - - ||, |

VI < /32 \fly 2 [ 2+
12 . -
I < (870D by | - bl -« [lbw) = 5"/ det ()

Vg < §/ prin=b/4 3/ det (L)

byl < B/ det ()"

which proves part (c).
d

The upper bound for by in the next result is exponential, but it depends only on
¢ and the dimension n, so it applies uniformly to all lattices of dimension 7.

Theorem 2.3 (LLL theorem) Let by,bs,... b, be a d-reduced basis of a lat-
tice L C R™. Then for any nonzero vector v € L we have that

by < B2 |||
In particular, by is no longer than 6(”_1)/2 times the shortest vector in L.

Proof. Letby, bo, . . ., by, be the Gram-Schmidt orthogonalization ofby, bo, ... b,.
Setting j = 1 in Proposition 2.2(a) gives

o ) 1 .

by < 87 [l ]| = [[b:* > FHMHQ forl <i<n =
~ 1

\/Ibil|2 > \/ﬂi_l VIbi]]2 forl<i<n =

|b [by|| forl1<i<n

il > ;
6(1—1)/2

Theorem 1.14 (p. 20) shows that for any nonzero vector v € £

VIl = min [[b;]| >

1<i<n B(n—=1)/2 b

and this completes the proof. U

There is a stronger result that gives upper bounds for the lengths of all the vec-
tors in a d-reduced basis.

I

4



Theorem 2.4 Letby,bs, ... by, be a d-reduced basis of a lattice L C R", and let
Vi,V ..., Vy be any m linearly independent vectors in L. Then for 1 < j < m
we have

Ibsll < B D2 maz{|vall, [vall, -, [Vanll}

Proof. We write each v; as integral linear combination of the basis vectors,

n
vj =Y rijb; withr; €Z,1<i<n, 1<j<m
=1

and for fixed j let i(j) denote the largest ¢ for which r;; # 0. From the definition
of Gram-Schmidt orthogonalization (Definition 21, p. 15) we have that

i—1 i
b; =b; — Zﬂikﬁk = b; = Z (kb
k=1 k=1

therefore,

i(9)

Z"“z] i = Z"“z] Z,Uzkbk = Zbk Z"'ij:uik:
=1

k=1 i=k

If we take the norm of both sides, because by, are orthogonal we get that

i(j)

o) i)
Iv;1* = Zbkzrmum =D IBkl® D el
k=1 i=k

For each by, every term in the sum is nonnegative therefore for k = z( ) observing

that 1;(;)i;) = 1 and |r;) ;| > 1 because 7 ; € Z and ry(;) ; # 0, we have
that
IvlI* > Iy |* for 1 <j <m 2.4)
If {vi,va,..., v} is an unordered set, then we may assume without loss of
generality that

i(1) <i(2) < -+ <))

else we renumber each v; for this property to hold.
We claim that j < i(j) for 1 < j < m. If not, then for some j with i(j) < 7,
the vectors vi,va,...,v; would all belong to the linear span of by, b,...,b;, a



contradiction with the linear independence of vy, vo, ..., Vv,,. Combining Proposi-
tion 2.2(a) with ¢ = i(j) and (2.4) we get that

Ib1|* < B by I < 87 Ibigy |12 < 577 lvyl® for 1< j < m
Taking the square root of both sides gives
Ibjl| < 8C=D2 vl < B2 maz{|vall, vall, - [lvall} forl<j <m

and this completes the proof. O

Letby,. .., b, bea d-reduced basis of the lattice £ € R”, and letby, ..., by, be
its Gram-Schmidt orthogonalization . From Proposition 2.2(a) and Theorem 1.11(d),
(p. 16) we have that

IbjlI* < g7 HIbel* forl<j<i<n =
B 11 < [oil* < g2 =
B maz{|[bo]?, [b2]?, . el < g for1<i<n

From the last inequality and Theorem 2.4 for 1 < ¢ < n we have that

8 maz{b]%, ... [bil”} < [bi]]2 < 87 maz{[by |2, Ibi]2} 2.5)

Now suppose that vi = \1(£),ve = A2(L),...,v; = \;(L) achieve the i — th
successive minimum and therefore are linearly independent. Clearly,

mazx{vi,...,v;} < mazx{by,...,b;}

Using the last inequality for the leftmost term in (2.5) and Theorem 2.4 for the
rightmost term and taking square roots, we obtain

B2 maz{vy, ..., v} < |bi|| < BV 2 maa{vy,... v}
This can also be written as
B2 by || < maz{vi,...,vi} < BUD/2 by

This shows that ||b;|| can be regarded as an approximation to the i — th succes-
sive minimum of a lattice because the successive minima are weakly increasing:

A(L) < Xa(L) < - < N(L)



The algorithm presented next is the original LLL lattice reduction algorithm.

Algorithm 3: LLL lattice basis reduction.

Input : A parameter § and basis by, bo, ..., b, for the lattice £L C R".
Output: A d-reduced basis for the lattice L.

1 k<+ 2

2 f)l < by;

3 while £ < n do

4 forj=1,2,....k—1do

5 compute f)j;

6 by < by — [1k;] Bj /* size reduction */;
7 end

8 if ||by||? > (5 — Mz,k—1> |Iby_1 || then /* Lovasz condition

*/
9 ‘ k+— k41,
10 else
11 swap by _1 and by, /* swap step */;
12 k < max(k —1,2);
13 end
14 end

15 return {by,bs,... b, };

At line 5 the vector f)j is obtained by applying Gram-Schmidt orthogonaliza-
tion . For efficiency reasons the Gram-Schmidt orthogonalization can be done once
before the main loop at line 3. Then if a size reduction (line 6) or swap (line 11)
is done, we update the Gram-Schmidt orthogonalization coefficients accordingly
(see [51] for details). At line 8 the size check is performed on the orthogonal pro-
jections of by, and by_1 on the orthogonal of span(by, ..., bg_2) in order to see if
an iteration of the t-Gauss algorithm is necessary for by, and by (see [71], ch. 3).

Theorem 2.5 Letbq,...,b, bea basis of a lattice L and § € (i, 1). Then the LLL
algorithm (Algorithm 3) terminates in a polynomial number of step and returns a
0-reduced basis.

Proof.(sketch)

For simplicity we consider § = % =pf=2and L CZ".

Both the for loop at lines 4-7 and the fact that in order for the algorithm to
terminate at line 9 we must have £k = n + 1 therefore all vectors must pass the
Lovasz condition test at line 8, ensure that if the algorithm terminates then the basis
returned satisfies the size condition and the Lovasz condition respectively. So we
have to show that the algorithm terminates.



Let by,...,b, be a basis for £, let by,...,b, be its Gram-Schmidt orthogo-
nalization , and for each ¢ = 1,...,n let £, be the lattice spanned by by, ..., by,

i.e., Eg =L ({bl, ooy bg}).
We define the quantities dy and D as

— ﬁ”f’l|]2 and D = ﬁdé — ﬁnf)inz(nﬂ_i)
i=1

(=1 =1

From Remark 1.10 (p. 16) we have that
det(Ly) = Hub,u = HHbZHQ det(Ly)? = dy

During the execution of the algorithm, d, changes only if the swap step at line
11 is executed and that is when the value of D also changes. More precisely, only
for £ = k — 1 the value of d; changes because only the values of by_; and by,
change. That is, for £ < k — 1 the terms bk 1 and bk are not included in ¢, and for
£ > k both terms are included so if we swap them the product remains the same.
To estimate that change in dj_1 note that the Lovasz condition check fails at line

8, so we have

~ 3 3
Moul? < (= iacs ) IBical < S1ecal?

and when we swap Bk,l and f)k we get a new dj_1 value

AR = B B - [
2 b1 - b

= [[ba?- - [[by—2 -
[[bg—1]1?
[ 1?
=d9d . .
bl
3dold

Therefore if the swap step at line 11 is executed c times, the value of D is
reduced by a factor of at least (%)C, since each swap reduces the value of some /¢

3
by at least 7.



Because £ C Z" then A;(£) > 1, and by Theorem 1.17 (p. 23) we have that,

1< ML) < VE det(M(L)Y* =
1< 092 det(\(Lo)) =
072 < det(\i(Ly)) =

078 < det(M(Ly))?

and thus, the product over all £ gives a lower bound for D (which is independent
of each iteration of the algorithm),

D:ﬁdgz

(=1 =

n
> Hﬁ_” =)™ >nT" > n " >0
1 (=1

At each iteration of the algorithm either we increase k£ by one at line 9, or we
decrease it at line 12 after a swap is made. If we prove that the number of times
that we decrease k is finite, say m, then we know that after m iterations the value
of k will increase until it reaches the value of n 4 1 and the algorithm terminates.

Suppose that the number of times that the swap step is executed, which is c,
is infinite. Then because the value of D is reduced by a factor of at least (%)c we
have that

(&
lim <3> =0 because 3 <1 therefore D =0asc— o
c—oo \ 4 4

a contradiction because we have that D > n~"" > 0. This proves that the LLL
algorithm terminates in a finite number of iterations.

We now give a upper bound for the run-time complexity. Let D;,;; denote the
initial value of D for the original basis, let D ;4 denote the value of D for the
basis that the algorithm return when it terminates, and as above, let ¢ denote the
number of times that the swap step at line 11 is executed. Notice that the While
loop at line 3 is executed at most 2¢ + n times,so it suffices to find a bound for c.
From the lower bound on D we have that

_ 3\¢
0<n n? < Dfinal < <4> Dinit

Since log (2) < 1, by taking logarithms we have that

c=0 (n2log(n) + log (sz‘t))



To estimate D;,,;; we have that

Dinit Hf)z H2(n+17i)

I

N
I
—

[y 2010 because [[bi[| < bi|

2(n+1—1)
(mam \bZH>
1<i<n

)2(n+(n1)+---+1)

IN

IN

.
Il
—

3

az [[b|

1<i<n

IN

2

n“+n
ax IIbZ-II)
<n

I
7 N N
=
NS

therefore,

U 2 .
log (Dinit) = O <n log (@%ﬁ’bm))

from which we conclude that c is polynomial in the input size, and thus the LLL
algorithm runs in polynomial time. 0

Let B = max ||b;]|.
1<i<n

It is proven in [51] that the number of bit operations needed by the LLL algo-
rithm if we use the classical algorithms for arithmetic operations is O (n°®(logB)?),
which can be reduced to O (n5+€(logB)2+E) for every ¢ > 0, if we employ fast
multiplication techniques.

The complexity can be improved using floating point numbers instead of ratio-
nals except for the basis vectors that are kept as integers, because is someone tries
to keep the exact integer values of an integer lattice, as the dimension grows the
intermediate calculations involve enormous number, thus it is generally necessary
to use floating point approximations. Unfortunately, this is known to be unstable
in the worst-case: the usual floating point LLL algorithm is not even guaranteed to
terminate, and the output basis may not be reduced at all.

There have been many improvements to and generalization of the LLL algo-
rithm. Some of them are described in [78], [74], [79] and [80].

From a theoretical point of view for a lattice of rank r and dimension 7 the
fastest algorithm for for lattice reduction is described in [69] and has run-time com-
plexity O (nr*(logB)?).



2.5 Babai's algorithm

In this section we follow Babai [9] to show how the LLL algorithm can be used to
find a good approximation of the closest vector problem (CVP).

Babai proposed two approximation algorithms to solve CVP. We consider Babai's
“nearest plane” algorithm. The other one is the “round-off” algorithm. Letby, ..., b,
be a basis for the lattice £ C R™, let by, ..., by, be its Gram-Schmidt orthogonal-
ization .

Let

n—1
V:Zribi withr; e R forl1 <i<n-—1
i=1
be the linear subspace (hyperplane) generated by by, ..., b,_1, and let
n—1
Ln_1= Zaibi witha; € Z forl <i<n-—1
i=1
be the corresponding sublattice, i.e., L,—1 = V N L.
We consider the following translations of V'

V4+x={v+x:veV} withxe L

Given an arbitrary vector t € R"”, the nearest plane algorithm says that we
should find the vector x € £ for which the orthogonal dist(t, V + x) is minimized.
For this we use the following recursive procedure. We write t as a linear combina-
tion off)l, . ,f)n, 1e.,

n
t:Zcif)i withe; € R forl1 <i<n
i=1
define w = [c,, | by, and t* as
n—1
th = (Z Cibi> +w
i=1

Then t is the orthogonal projection of t onto the translated hyperplane V + w.
We have that t- — w € V, so recursively find the vector x,—1 € £,,_1 closest to
tt — wand set x = x,,_1 + W.



Theorem 2.6 (Babai's theorem) Letbq,...,b, bea %—reduced LLL basis for the
lattice L C R", and let t € R™ be an arbitrary vector. Then the lattice vectorx € L
produced by the nearest plane algorithm satisfies

It — x| < 2"t —v]|
where v € L is the closest lattice vector to t.

Proof. For n = 1 we find the closest integer multiple of one nonzero real number
to another real number, which is the closest lattice vector.
For n > 2 we use induction on n. Observe that

b
e A

Bl
A 06

and
[t —t-]| < [[t—v]| 2.7)

because the hyperplanes V + x where x € L are spaced at distance ||b,, |, and
|t — t*|| is the distance of t for the nearest such hyperplane.

From (2.6) with induction (corresponding to the recursion of the algorithm) we
obtain

1, - ~
It = x|l < 7 (D] + -+ [ba?) (2.8)

Proposition 2.2a, (p. 40), for i = n and for § = 2 since § = %, gives

n

1 o, - 1 o
XZHMP < 12 (2" b, %) =
=1

i=1

(2" = 1) [bal* < 22|y [*  (2.9)

e

Combining (2.8) and (2.9) we get that

It —x]* < 2" 2|[by[|* = ||t — x| < 257" |[by| (2.10)

We now have to consider two cases, corresponding to whether the closest vector
v € L does or does not belong to V' + w.

(a) Case (veV +w):
In this case v — w € L is the closest vector to the sublattice £,,_; to the
vector t- — w € V. Therefore the inductive hypothesis gives

[t —x|| = ||t — (Xp—1 + W)
<2021 — (v — w4 w)|
= 2=V ||k )|
<2072 ||



Combining this with (2.7) we have that
\nfo=VMa—wLw2+uafow2

< fle= v+ 2t e
=22 (-~ )|
<22 ()|

Thus, ||t — x|| < 2%/2||t — v
(b) Case (V& V +w):
In this case we must have

||t _ VH Z anH

Combining this with (2.10) we again have that ||t — x|| < 2"/2||t — v|| and
this completes the proof.

g

It is clear that the next algorithm runs in polynomial time.

Algorithm 4: Babai's nearest plane algorithm.

Input : A %—reduced LLL basis by, ..., b, for the lattice £ C Z", its
b1, ..., b, Gram-Schmidt orthogonalization , and a target vector
teZ"

Output: A vector in £ that is closer to t within an approximation ration of
2n/2,

1Vt
2 fori=n,...,1do

_ <V76i> L.
‘ Ve [HBAPW bi;

w

end
return (t —v);

[V B N

Lattice reduction algorithms and Babai's algorithm have been used for crypt-
analysis of various knapsack based schemes, the Goldreich-Goldwasser-Halevi cryp-
tosystem [29] and the NTRU signature scheme [41].

For cryptanalysis of knapsack based schemes see the survey papers [45] (also
cryptanalysis of Knuth's truncated linear congruential generators), [67] and [73],
for the Goldreich-Goldwasser-Halevi cryptosystem see [66] and for NTRU signa-
tures see [68].



3

Complexity of lattice problems

In this chapter we present some complexity results for lattice problems. A lot of
reductions for lattice problems use the (decisional) subset sum problem which is a
known NP-complete problem (see [25]).

Definition 47 Given ai,as,...,a,,0 € N decide whether there exist
x1, T2, ...,y €{0,1} such that

n
E a;T; = b
=1

In the next two sections we give complexity results for SVP and CVP. Without
giving any details we must note that the decision versions of both the Shortest In-
dependent Vectors Problem and the Shortest Basis Problem are NP-complete. The
decision version of the Closest Vector Problem with Preprocessing is NP-complete
in the following sense: there is a polynomial time reduction from a SAT instance
¢ to CVPP instance (t, £(B)) such as the lattice LB depends only on |¢| and not ¢
itself. This implies that if there is a polynomial time algorithm for CVPP, the SAT
has polynomial size circuits and thus, the polynomial time hierarchy collapses. The
Closest Radius Problem is in IIs but not known to be NP-hard. See [71, ch.14]
and [61, ch.7] for more on these problems.

3.1 Shortest vector problem

SVP is the most famous and widely studied problem for lattices. The NP-hardness
of SVP in the Euclidean norm was conjectured by Peter van Emde Boas in 1981
[84], and remained an open problem until 1998, for almost twenty years, when
Ajtai [3] proved that solving SVP exactly is NP-hard under randomized reductions.

53



Immediately following Ajtai's breakthrough work, the problem received re-
newed attention. In [3], Ajtai had already observed that hardness for the exact
version implies weak inapproximability results for approximation factors of the
form 1 + 1/2"" and this was slightly improved by Cai and Nerurkar [85] to fac-
tors 1 4+ 1/n°, where n is the lattice dimension, still approaching 1 as the lattice
dimension grows but at a slower rate. Micciancio [56] significantly strengthened
Ajtai's result by showing NP-hardness for SVP by a reduction from a variant of
CVP for any constant factor smaller than /2 (as we will see later, CVP is known
to be NP-hard).

The strongest inapproximability results to date are from Khot [48] who showed
that SVP is NP-hard to approximate within any constant factor O(1), and from Ha-
viv and Regev [37] who showed that SVP cannot be approximated within some fac-
tor n1/OUoglogn) ypless NP is in random subexponential time, i.e., NP C RSUBEXP =
Ns=oRTIME (271‘3).

However, all of the above results employ randomization, and little progress has
been made towards a deterministic reduction. In fact, the most recent and quantita-
tively strongest results [48, 37] achieve larger approximation factors than [56] at the
cost on introducing even more randomness, have two-sided error whereas [56] has
one-sided error, and due to their construct they seem more difficult to derandomize.
In 2012, Micciancio [60] presented a new and simpler proof that SVP is NP-hard
to approximate within some constant factor and that SVP cannot be approximated
within some factor n/©(2g109m) ynless NP is in random subexponential time, and
thus matching the best currently known results [48, 37], but under probabilistic
reductions with one-sider error.

Proving that SVP is NP-hard under deterministic reductions is still an open
problem for both the exact and the approximate version of the problem.

In general, there are three approaches to solve SVP: enumeration algorithms,
probabilistic sieving algorithms and Voronoi cell based algorithms. The majority
of the algorithmic work on SVP and CVP has focused on the £5 norm and there-
fore there has been a lot of progress for the /2 norm, progress on the more general
norms has been much slower. For some practical problems the solution strategy
is to approximate the problem via a reduction to the /o norm but in some cases
the error introduced by such a reduction yields unusable results or worst case run-
time. Because of the practical interest in SVP we use the experimental values of
the constants for run-time complexity.

Enumeration algorithms in [35, 75], solve SVP in the ¢» norm deterministi-
cally in asymptotic time 29("/°9") where n is the dimension of the lattice. These
algorithms do an exhaustive search by exploring all lattice vectors of a bounded



search region and require polynomial space. Enumeration algorithms can be ren-
dered probabilistic using an extreme pruning strategy [24], which allows for an
exponential speedup and makes enumeration the fastest algorithm for solving SVP
in practice. Furthermore the parallelization of enumeration algorithms has been
investigated in [39, 19].

Sieving algorithms were first presented in 2001 by Ajtai, Kumar, and Sivaku-
mar in [5]. The randomized sieving approach consists of sampling an exponential
number of “perturbed” lattice points, and then iteratively clustering and combining
them to give shorter and shorter lattice points. The run-time and space requirement
were proven to be 20(") where n is the lattice dimension. Nguyen and Vidick did an
analysis of this algorithm in [72] and showed that the run-time is 20(-97+0(")) and
the space required is 29(2-957+0(n)) where n is the lattice dimension. The authors
also presented a heuristic variant of the algorithm without perturbations whose run-
ning time is (4/3 + €)" polynomial-time operations, and whose space requirement
is (4/3+ €)"/? polynomially many bits but as they mention this algorithm becomes
problematic for n. > 50 in terms of space requirement.

In 2010, Micciancio and Voulgaris [63] presented a provable sieving variant
called ListSieve and a more practical, heuristic variant called GaussSieve. List-
Sieve has 20(3-199n+0(n) ryn_time and 20(1-325n+0(n)) gpace requirement where
n is the lattice dimension. For GaussSieve for run-time no upper bound is cur-
rently known and it requires 20(0-41n) gpace. Pujol and Stehlé in [76] using the
birthday paradox improved the bounds of ListSieve to 20(2-4657+0(n)) for run-time
and 20(1-233n+0(n)) for space complexity. Finally, the work of Blomér and Naewe
in [11] deals with all £, norms, generalizing the Ajtai-Kumar-Sivakumar sieve.

Using heuristics like extreme pruning in [24], enumeration algorithms outper-
form sieving algorithms again, as it can be seen in the SVP challenge at http:
//www.latticechallenge.org/svp-challenge/.

The Voronoi cell based algorithms were introduced in a breakthrough work [62]
by Micciancio and Voulgaris. The Voronoi cell V(L) of a lattice £ is the set of
vectors closer to the origin than to any other lattice point:

V(L) ={x:Yee Ll |x||<|e—x|}.

Stated differently the Voronoi cell is the interior of a polytope.

Although the previous definition of the Voronoi cell involves an infinite number
of inequalities, for a lattice £ C R™ there exists a minimal set of vectors {v; } €
L that suffices to define the Voronoi cell:

V(L) = {x:Vj <m, x| <lv; =x]}.

j<m

We call there vectors the relevant vectors of £. Assume that we know the relevant
vectors, we can use them to solve SVP (and CVP). It is the first deterministic single


http://www.latticechallenge.org/svp-challenge/
http://www.latticechallenge.org/svp-challenge/

exponential algorithm for exact SVP under the 5 norm in 2°(™ time and space
where n is the dimension of the lattice.

Recall that given a basis for a lattice and a parameter d, GapSV P, (Defini-
tion 30, p. 32) is the promise problem of answering whether or not the given lat-
tice has a shortest vector less that d or doesn't have any vector shorter than v - d.
Summing up, the best known algorithms for GapSV P, ([79, 62]), require at least
28Un/log) time.

Finally, we must mention that any algorithm that solves SV P, can be used to
solve GapSV P, as well, but the converse is an open problem.

Next, we show that there is a polynomial time reduction from Subset sum to
SVP with respect to the £, norm.

Proposition 3.1 Subset sum <, SV Py_

Proof. Let B € Z(+2)x(n+1) defined as

2 0 0 0 1
| | 0 2 0 0 1
B=1| by b,y1 | = R
| ‘ 0 0 0 2 1
2a1 2&2 2&3 ce Qan 2b
0 0 o --- 0 1

Clearly, B can be constructed in polynomial time. It is easy to see that rank(B) =
n + 1 therefore the columns of B, namely by, ..., b, 1, are linearly independent
vectors and can form a lattice basis.

To show that rank(B) = n+1 we use elementary row operations to zero out the
(n+ 1) — th line by multiplying each of the first n lines with —a; fori = 1,...,n
and adding them to the (n + 1) — th line, multiply the (n + 2) — th line with —b
and add it to the (n + 1) — th line and then exchange lines n + 1 and n + 2. In this
way we reduce matrix B to row-echelon form with a zero row and due to the form
of B we cannot zero out any more rows. Finally, because rank(B") = rank(B)
we have that rank(B) = n + 1.

We will now show that,

(a1,...,an,b) € Subset Sum < || A1 (L(B))]|,, =1

o0

(a) (“=7"): Let (z1,...,2,) € {0,1}" such that " | z;a; = b.



Then for x = (1, ...,7,, —1)T we have that

21‘1 —1
n :
Bx = Z$’Lb’£ — bn+1 = 2, — 1 = ||BX||oo =1
i=1 (Z?:l 21,‘2(12) —2b
-1

because:

e |2z; — 1| = 1 forall z; € {0,1}
° (Z?:l 2:cia,~) —2b=2 (Z?:l Ty — b) =0

s |-1]=1
(b) (“«<”): Suppose that |\ (L(B))||,, = 1,1i.e.,
n+1
Zmibi =1 wherex; € Z
i=1 -
Then we have that |2x; + x,4+1] < 1fori = 1,...,n. From the last line of
B we conclude that |z,,1| = 1 = x,11 = +1. Without loss of generality
assume that x,,11 = —1 = |2x; — 1| < 1, otherwise we can multiply with

—1 the A;(£(B)) and have again |2z; — 1| < 1 because || —A1(L(B))]|cc =
[A1(£(B))]|o-

Because x; € Z then either |2z; — 1| = 1 or |2z; — 1| = 0. For |22; — 1| =0
1

we get that z; = 5 a contradiction to the fact that x; € Z, hence

22;—1|=1=2x;—1=+1=xz;=00rz; =1=x; € {0,1} fori =1,...

From the n — th line of matrix B we have that |>_" | 2z;a; — 2b] < 1 =
IS0 wia; — bl < & = |3, xa; — b] = 0 because L(B) is an integral
lattice. Therefore, we have that

n n
inai —széinai =b
=1 i=1

and this completes the proof.



3.2 Closest vector problem

The Closest Vector Problem has been investigated for more than a century but it
has attracted less attention than SVP which is its homogeneous counterpart. To-
day much is known about the computational complexity of CVP in both its ex-
act and approximation version. For some of the algorithms below or their exten-
sions/improvements we also mention their usage for solving/approximating SVP.

CVP is NP-hard to approximate to within n¢//°91°9™ factors for some ¢ > 0 [8,
21, 20], where n is the dimension of the lattice. Therefore, as with SVP, we do not
expect to solve (or even closely approximate) CVP efficiently in high dimensions.

As with SVP, there are three approaches to solve CVP: enumeration algorithms,
probabilistic sieving algorithms and Voronoi cell based algorithms.

Before we continue we must mention that the lattice basis reduction algorithms
such as the LLL basis reduction algorithm [51] and some of its first extensions [9,
79] give 2P l09n) approximations to SVP and CVP in the £ norm in poly(n) time.

Enumeration algorithms such as Kannan's algorithm [46] and further improve-
ments [38, 35] can be used to solve exact SVP and CVP in the /5 norm in 20(nlogn)
time and poly(n) space. As with SVP, also for CVP enumeration algorithms re-
main the most practical solver for these two problems and much effort has been
spend on optimizing them as we saw on the previous section (see [24]).

The randomized sieving algorithm of Ajtai, Kumar and Sivakumar [5] was fur-
thered used to create a 1/€” time and space algorithm for the (1 4 ¢)-CVP unde the
{3 norm [6, 11], £, norms [11], near symmetric norms [17], and in [22] Eisenbrand,
Héhnle and Niemeier show that we can solve (1 + ¢€)-CVP under the ¢, norm
using O(ln%") calls to any 2-approximate solver. The Ajtai, Kumar and Sivaku-
mar sieve based algorithms are the only algorithms currently available for solving
(1 4 €)-CVP under non-euclidean norms.

The work of Micciancio and Voulgaris in [62] gave a deterministic 20(") time
and space algorithm for exact CVP under the 5 norm where n is the dimension of
the lattice.

Finally, we must mention that the search and decisional versions of the exact
Closest Vector Problem are polynomially equivalent and that any algorithm that
solves C'V P, can be used to solve GapC'V P, as well (see [61, ch. 3]).

Next, we show that there is a polynomial time reduction from Subset sum to
CVP with respect to the £, norm.

Proposition 3.2 Subset sum <,, CV Py

Proof.



Let B’ € 7 +1)x(n+1) defined as

2 0 0 0 1

|| 0 2 0 0 1
B=|By|= : :
|| o 0 0 - 2 1

2a1 2a2 2a3 s 2an 2b

where B € Z("t1)>" andy € Z(+Dx1 j e B is the matrix that consists of the
first n columns of B’ and y is the last column of B’, namely

2 0 0 0 1
0 2 0 0 1
B = : . : Y= :
0 0 o --- 2 1
2a1 2a9 2a3 --- 2a, 2b

Clearly, B’ can be constructed in polynomial time. Itis easy to see that rank(B) =
n, therefore the columns of B are linearly independent vectors and can form a lattice
basis.

To show that rank(B) = n we use elementary row operations to zero out the
(n+ 1) — th line by multiplying each of the first n lines with —a; fori =1,...,n
and adding them to the (n + 1) — th line. In this way we reduce matrix B to row-
echelon form with a zero row and due to the form of B we cannot zero out any more
rows. Finally, because rank(B") = rank(B) we have that rank(B) = n.

We will now show that,

(ai,...,an,b) € Subset Sum < 3Ix € Z" such that |[Bx —y|| =1

a) (“="): Let (x1,...,2,) € {0,1}" such that } 7" | x;a; = b.
=1

Then for x = (x1,...,2,)" we have that
2(L‘1 -1
Bx —y= E = ||Bx — =1
y 2w 1 Bx — ¥l

(Z?:l 25(?1&1) — 2b
because:

* |22, — 1| = 1forall z; € {0,1}



© (01 2mia;) — 20 =2 (30, wia; — b) =0
(b) (“«<"): Suppose that |Bx —y||,, = 1 where x € Z", i.e.,
221 — 1
Bx — ¥l = 5 =1

2, — 1
(231 2wia;) — 2b 00

Because x; € Z then either |2z, — 1| = 1 or |2z; — 1| = 0. For |22; —1| =0
we get that x; = % a contradiction to the fact that x; € Z, hence

22,—1|=1=2x;—1=4+1=2;,=00rx; =1=x; € {0,1} fori =1,...

From the (n+ 1) — th line of Bx —y we have that |y | 2z,a;, —2b| < 1 =
IS Jwia; — bl < L = |3, 20, — b] = 0 because L(B) is an integral
lattice. Therefore, we have that

n n
Zmiai—b:0:> Zl‘iai =b
i=1 i=1
and this completes the proof.

O

Finally, we show that there is a polynomial time reduction from Subset sum to
CVP with respect to the /2 norm.

Proposition 3.3 Subset sum <,, CV P,

Proof. As in the previous proof let B’ € Z("*+1*("+1) defined as

2 0 0 0 1

| 0 2 0 0 1
B=|By|=

| 0 0 0 2 1



where B € Z("t1)x7 andy € Z("+1)x1 j e B is the matrix that consists of the
first n columns of B’ and y is the last column of B’, namely

2 0 0 0 1

| | 0 2 0 0 1

B=| b ... b, |=]| : S R
| | 0 0 0 - 2 1

2a1 2a9 2a3 --- 2ap 2b

Clearly, B’ can be constructed in polynomial time. Itis easy to see that rank(B) =
n, therefore the columns of B, namely by, ..., b,, are linearly independent vectors
and can form a lattice basis.

We will now show that,

(a1,...,an,b) € Subset Sum < Ix € Z" such that ||Bx —y|| = v/n

a) (“=7): Let (x1,...,2,) € {0,1}" such that Y 7 | x;a; = b.
i=1

Then for x = (x1,...,7,)" we have that
2z1 — 1 2x1 — 1
Bx—-y= : = :
2, — 1 2x, — 1
(Z?:l 2$Z'(IZ') — 2b 0
therefore,

Bx —y|| = [I(£L,....£1,0) = v
(b) (“<”): Suppose that |Bx — y|| = y/n where x € Z", i.e.,
221 — 1
IBx—y| = 5 = Vi =

2, — 1
(Xoiz1 2wiaq) — 2b

n

n 2
Bx —y|| = [ > (2z;i — 1) + ((Z 2@-@1-) — 2b> =n=
=1

=1

n n 2
2(2%’ —1)2+ ((Z inaz) - 26) =n
i=1

=1



Therefore we have that,

n 2 n
((Z 2:L‘iai> — 2b> =n— 2(2% — 1)2
i=1

i=1

is>0 must be > 0

Because z; € Z we have that >, (2z; — 1) € Z. Since we are subtracting
from n a sum of nonnegative values and we want the result to be also non-
negative, and from the fact that z; € Z it follows that (22; — 1)? = 1 for
i =1,...,n. Therefore we have that |2z; — 1| = 1 from which we get that
x; € {0,1} fori = 1,...,n again because x; € Z.

Hence, for z; € {0, 1} we get that,

n n

n—> (2w, —1)’=n->) |+1|=0

i=1 i=1

therefore we have that,

((Z 2> - Qb)2 ~0 -

n
(Z 23;1-@@-) —26=0 =
i=1
n
Z 2x;a; = 2b =
=1

n
E Ty — b
=1

and this completes the proof.

O

The NP-completeness reduction for CVP can be generalized for any £, norm
(p > 1), see [84]. We note that the reductions we presented for both SVP and CVP
are for the decision version of these problems.

There is a special case of GapC'V P, which is of particular interest in cryptog-
raphy. If in the input of GapCV P, we have that d < A\i(L)/ (2 - ~(n)) then the
problem is called GapB D D., where BDD stands for Bounded Distance Decoding.

The search approximation version of this problem is defined as follows,



Definition 48 (v-Bounded Distance Decoding (BDD.)) Given a lattice basis
B and vector t such that dist(t, L(B)) < vy(n) - \i(L(B)) the task is to find the
lattice vector v € L(B) closest to t.



3.3 Reducing approximate SVP to approximate CVP

In this section we follow the work of Goldreich, Micciancio, Safra and Seifert
in [30] to show that there is a Cook reduction from approximate SVP to approximate
CVP for any ¢, norm (p > 1, p = o0).

One could think that we could set the target vector in CVP to be the zero vector
and use this as an oracle to solve SVP for a lattice £ C R"™. This would not work
because in SVP we are searching for a nonzero lattice vector whereas in CVP the
target vector can be the solution if it is a lattice vector itself and the zero vector is
always a lattice vector. To avoid this situation we run an CVP oracle on a sublattice
L' C L not containing the target vector and thus the problem now is how to select
a sublattice without removing all the lattice vectors closest to the target vector.
Details follow.

Proposition 3.4 Let by, ..., b, be a basis for the lattice L and let v = 2?21 cib;
where ¢; € 7, be a shortest nonzero vector in L. Then, there exists an 1 such that
¢ is odd.

Proof. Assume that all ¢ are even. Then,

n

1 Ci
iv = Z *bz
i=1
is a shorter vector in £ contradicting the fact that v is a shortest vector. O

Next we show how to reduce SVP to solving n instances of CVP.
Given a basis by, ..., b, of the lattice £ we construct the j — th instance of
CVP for j = 1, ..., n with lattice basis

| | | | |
B(]) — bl .. bj_l 2b] bj+1 ce. bn

and target vector b;.

Proposition 3.5 For j = 1,...,n we have L (BY)) C L(B).

Proof. For every v € £ (BY)) we have that

V= Z Cjbi + (QCj)bj = Zaibi = VE ,C(B)

] i=1



where a; = ¢; for i # j and a; = 2¢; fori = j.
On the other hand we have that b; € £(B). Assume, for contradiction, that
b; €L (B(j)). Then we would have for a; € Z,

aiby + ...+ 2a;b; + ...+ a,b, =b; =
a1b1+...—|—(2aj—1)bj+...+anbn:O

contradicting the linear independence of by, ..., b, since a; € Z. Therefore b; &
£ (BY) and this completes the proof. O

Proposition 3.6 Let by, ..., b, be a basis for the lattice L and let v =" ¢;b;
where ¢; € 7, be a lattice vector in L. Then

i+ 1
u= CJ;_ 2b]+zczbz
i#£]

is a lattice vector in L (B(j)) and dist(u,bj) = ||v|| where b; is the target
vector.
Proof. Since ¢; is odd then CJTH
L (B(j)). So we have that,

is an integer and thus u is a lattice vector in

i+ 1
u—bj:C];_ 2bj+zcibi_bjzcjbj+zcibi:V
i#j i#]

and the proposition follows. O

Proposition 3.7 Letu = 2c;-bj + Z#j c;b; be a lattice vector in L (B(j)). Then
v = (2¢; — 1)bj + 32, ¢;bi is a nonzero lattice vector in L(B) and ||v|| =
dist(u, bj).

Proof. Since c} € Z then 269 — 1 cannot be zero and in fact is an odd integer, and
thus v is a nonzero vector. Then we have that,

v=(2¢, — )b+ > cib; =2¢b; + Y e —b; =u—b;
1#] i#]

and the proposition follows. O



Theorem 3.8 For every function y(n) > 1 withn € N, SV P, (resp. GapSV P,)
is Cook-reducible to CV P, (resp. GapCV P,). Furthermore, the reduction is non-
adaptive, and all queries maintain the rank of the input instance.

Proof. We present a proof for both the decision and the search version.

Decision: Let (B,d) be a GapSV P, instance, and define GapCV P, instances
(B(j),bj, d) for j = 1,...,n. We want to prove that if (B, d) is a Y E'S instance,
then (B(j), b;, d) is a Y ES instance for some j = 1,...,n and if (B,d) isa NO
instance, then (B(j), b;, d) isa NO instance forevery j = 1,...,n

First assume (B, d) is a Y E'S instance and let v = > ", be a shortest nonzero
lattice vector in £(B). So we have that ||v|| < d and by Proposition 3.4 ¢; is odd
for some j. The vector u as defined in Proposition 3.6 is in £ (B(/)) and satisfies
dist(u,b;) = ||v|| < d, proving that (B(j),bj, d) is a Y ES instance.

For the NO instances we prove the contrapositive. Assume (BU),b;,d) is
not a VO instance for some j. Then there exists a vector u in £ (B(j )) such that
dist(u,b;) < (n) - d. The vector v as defined in Proposition 3.7 is a nonzero lat-
tice vector in £(B) and satisfies ||v|| = dist(u,b;) < v(n) - d, proving that (B, d)
is not a NO instance.

Search: In the search version we make n queries to the C'V P, oracle with in-
put (B(j), bj) for j = 1,...,n. Let u; be the oracle answer for the j — th query.
By Proposition 3.6 v; = u; — b; is in £(B), so it remains to show that one of them
is a shortest vector.

Now suppose that v is the shortest vector in £(B). Then we have that v =
> i, ¢jb; and by Proposition 3.4 there exists a j such that ¢; is an odd integer. By
Proposition 3.6 we have that u; = v + b, is the closest vector to b; in £ (B(j ))
and u; is the shortest among all u; for 7 = 1,...,n exactly because v is a shortest
vector of £L(B). So the oracle query C'V P, (B(j ), bj) will respond with the vector
u; and thus we can getu; = v +b; = v = u; — b;. To summarize we have that,
AM(L(B)) = 1@z'<nndi3t(ui, b;) where u; is the answer to the i — th C'V P, oracle

query with input the pair (B(j ), bj). O

The advantages of the previous reduction are that it is gap and rank preserving.
One drawback of the reduction is that it is a Cook reduction, i.e., more than one
oracle query needs to be made. Furthermore, with similar ideas also in [30] there
is a randomized Karp reduction from SV P, (resp. GapSV P,) to CV P, (resp.
GapCV P,) that maps Y ES instances to Y /'S instances with probability at least
1/2, and NO instances are always mapped to NO instances. This randomized



reduction is also gap and rank preserving. It is an open problem whether there
exists a deterministic Karp reduction for that matter.

Proposition 3.9 Let L(B) be a lattice of dimension n. Then for any v(n) > 1,
GapCV Py is in NP, therefore GapSV Py is also in NP for the same y(n).

Proof. Let (B, t,d) be a GapCV P, instance. A witness is a vector v € £(B) such
that ||v — t|| < d. Since vector v is of polynomial size because its length is at most
|It]| + d and can be verified in polynomial time by checking that ||[v — t|| < d, so
the proposition follows. U

Proposition 3.10 Let L£(B) be a lattice of dimension n. Then for any y(n) > 1,
GapSV Py in NP.

Proof. Follows from Theorem 3.8 and Proposition 3.9. U



3.4 Limits to inapproximability

As we saw in sections 3.1 and 3.2 even for constant approximation factors, no effi-
cient algorithm is known for SVP (resp. GapSVP) or CVP (resp. GapCVP). Gap-
SIVP is NP-hard to approximate to within any constant factor, and no polynomial
time algorithm exists for any 2109'~“n factor unless NP C DTIME (ZPOZy(logn)).

Haviv and Regev [36] showed that for GapCRP, for all sufficiently large p <
oo, there is a constant ¢, > 1 such that GapCRP in the £, norm is II>-hard to
approximate to within any factor less that ¢, and in particular for p = oo itis co, =
3/2 which gets closer to the factor 2 beyond which the problem is not believed to
be Ilp-hard (see [31]). It is an open question where GapC RP, is 1I>-hard with
respect to the £, norm for small values of p > 1. The covering radius problem can
be approximated within any constant factor y(n) > 1 in random exponential time
20(n) (see [31]).

Khot, Popat and Vishnoi [49] showed for an arbitrarily small constant ¢ > 0,
assuming NP & DTIME (21090(1/6) ”), CVPP is hard to approximate within

a factor better than 2!°9' ‘7 improving the previous hardness factor of log’n for
some § > 0 due to Alekhnovich, Khot, Kindler and Vishnoi [7].

One might hope to increase the factors in the hardness results above, however
there seem to be strict limits to any such improvements. We note that AM is the
complexity class of languages that have a constant round interactive proof system.
A well-known complexity theoretic result is that if NP C coAM, then the poly-
nomial hierarchy collapses (see Boppana, Hastad and Zachos [12]).

In general, proving that for some approximation factor y(n) a certain problem
is in a class not believed to be in NP such as coNP or coAM, implies that for that
approximation factor the problem is not NP-hard, assuming that the polynomial
hierarchy does not collapse. From Propositions 3.9 and 3.10 we have that for any
v(n) > 1, GapCV P, and GapSV P, are in NP.

Lagarias, Lenstra and Schnorr in [50] showed that for y(n) = n%/2, GapSV P,
and GapCV P, are in coNP. Banaszczyk [10] improved this to y(n) = n. Gol-
dreich and Goldwasser in [26] showed that for some v(n) = O (\/ n/ logn),
GapSV P, and GapC'V P, are in coAM.

Aharov and Regev in [1] showed that for some v(n) = O (y/n), GapSV P,
and GapC'V P, are in NP N coNP but their result for gaps between /n/logn and
/1 does not apply, and so containment in NP N coNP is not known to hold.

Therefore for some y = O (y/n) GapSIV P, and GapC R P, have been placed

in coNP and for v(n) = 2 in AM (see [1]). For some y(n) = O (W)
GapC RP, has been placed in coAM (see [31]).



GapC'V PP, has been known to be computable in polynomial time (not includ-

ing the arbitrary preprocessing stage) for v(n) = O (\ /n/ logn) (see [1]).

The approximation version of the Bounded Distance Decoding problem, namely
BDD., has been shown to be NP-hard for y > % by Liu, Lyubashevsky and Mic-
ciancio in [52] and is an open question whether it is hard for smaller v. We note
that the BDD., problem becomes harder as v becomes larger. In the same paper
the authors showed that for v = O (\ /(logn)/ n) BD D, with preprocessing can
be solved in polynomial time. For a connection of the Bounded Distance Decoding
with other lattice problems see Lyubashevsky and Micciancio [53].



4

Lattice-based cryptography

In this chapter we talk about lattice-based cryptographic constructions and lattice-
based public-key encryption schemes based on the Learning With Errors problem.
Before we do that, we formally define what is a public-key encryption scheme.

Definition 49 4 public-key encryption scheme is a tuple of probabilistic
polynomial time algorithms (Gen, Enc, Dec) such that:

(1) The key generation algorithm Gen takes as input the security parameter 1"
and outputs a pair of keys (pk, sk), the public key and the private key respec-
tively.

(2) The encryption algorithm Enc takes as input a public key pk and message m
from some underlying plaintext space (that may depend on pk),and it outputs
a ciphertext c.

(3) The decryption algorithm Dec takes as input a private key sk and a ciphertext
¢, and outputs a message m or a special symbol L denoting failure. We
assume without loss of generality that Dec is deterministic.

4.1 Early lattice-based cryptography

Lattice-based cryptography began with the seminal work of Ajtai [2] who showed
that random instances of a certain problem are at least as hard to solve as worst-case
instances of lattice problems.

The average-case / worst-case connection is of particular interest in cryptog-
raphy. For example consider a cryptographic scheme in which one can prove that
breaking the scheme implies factoring some natural number N. Hence, one must
choose a number N that is computationally difficult to factor. But how can we do
that? Certainly not by choosing N in a range at random because with probability
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1/2 the number will be even. Maybe choosing two large primes p, g and setting
N = pq will make N hard to factor but one must be careful in how to choose
the two primes so as to not make their product easy to factor for some specialized
algorithms.

On the other hand, lattice-based schemes, do not have this problem. Showing
that if uniformly random instances of a certain problem II can be solved then cer-
tain other hard problems can be solved for all lattices, is a very useful feature for
cryptography if we base the security of a cryptographic scheme on the hardness
of problem II. Notice that coming up with a hard instance of problem II is now
easy - just generate a random instance of it. That way one can build cryptographic
schemes based on the hardness of random instances of problem II which in turn are
as difficult to solve (and thus break the scheme) as worst-case lattice problems.

Briefly, Ajtai created a family H of collision-resistant functions 4 indexed by
Ac Zng where k > nlogp and the input to the functions is a vector x in {0, 1}¥.
The output is ha(x) = Ax mod p. Ajtai showed that finding two distinct vectors
x, X such that ha(x) = ha(x’) for random A, is as hard as solving certain lattice
problems for all lattices (see [2, 27]).

The first cryptosystem that was based on the worst-case hardness of lattice prob-
lems was the Ajtai-Dwork cryptosystem [4] (the second one). The security of this
system was based on the worst-case hardness of the approximate “unique” Shortest
Vector Problem wSV Pp(,,s). Recall that in uSV P, () the task is to find the short-
est vector in a lattice in which the shortest vector is guaranteed to be at least y(n)
times smaller than the next shortest (nonparallel) vector. Although the system was
not presented using lattices, in the security proof they showed that every instance of
uSVP could be transformed into a random instance of their cryptosystem with high
probability. However the fact that this cryptosystem is not efficient enough to be
practical and secure at the same time was confirmed by Nguyen and Stern [70] in
their cryptanalysis of the Ajtai-Dwork cryptosystem. Goldreich, Goldwasser and
Halevi [28] proposed a modified version of the Ajtai-Dwork cryptosystem. In their
version, they eliminated decryption errors that may appear with small probability
(inversely proportional to the security parameter). For both these cryptosystems,
CCAL1 attacks were presented in [32, 44].

In 1997, Goldreich, Goldwasser and Halevi [29] proposed a public-key cryp-
tosystem (encryption and signatures) inspired by McEliece cryptosystem [54] (which
is based on error-correcting codes) and relying on the hardness of CVP. Roughly,
their public-key encryption scheme works as follows: The secret key A is a “good”
basis for a random lattice £ and the public key is a “bad” basis B for the same lattice
L. The plaintext message is encoded in vector s and the ciphertextis ¢ = Bs + e
where e is a small random error vector. That way of creating the ciphertext re-
sembles the McEliece cryptosystem. To decrypt ¢ first apply Babai's round-off



algorithm so that d < LA‘lcw. Then d with be A~!Bs since the error e is small,
Babai's round-off algorithm will remove it. Finally, compute B"'AA~!Bs to re-
cover the original plaintext s. In 1999, Nguyen [66] showed that the proposed
selection of the error vector e had as a result the leakage of information on the
plaintext, and this information leakage allows an attacker to reduce the problem
of decrypting ciphertexts to solving particular CVP instances which are much eas-
ier that the general problem. Namely, for these instances, the given vector is very
close to the lattice, which makes it possible in practice to find the closest vector
by standard techniques. Nguyen suggested modifications to fix the encryption pro-
cess, but estimate that, even modified, the scheme cannot provide security without
being impractical, compared to existing schemes. Learning the results of Nguyen's
cryptanalysis, one of the authors declared the scheme “dead” [66, p. 3].

In 1998, Hoffstein, Pipher and Silverman [42] proposed a public-key cryptosys-
tem named NTRUEncrypt (original name is NTRU) which was based on the alge-
braic structures of certain polynomial rings. The hard problem underlying NTRU-
Encrypt is SVP, although the initial description of NTRUEncrypt does not involve
lattices. We use the name NTRUEncrypt to distinguish this cryptosystem from
a public-key digital signature cryptosystem named NTRUSign. Since its first re-
lease NTRUEncrypt has undergone changes especially in way the parameters are
chosen. The latest version is of 2008 and the system is fully accepted to IEEE
P1363 standards under the specifications for lattice-based public-key cryptogra-
phy. In April 2011, NTRUEncrypt was accepted as a X9.98 Standard, for use
in the financial services industry. Many attacks have been proposed for NTRU-
Encrypt,see [16, 86, 33, 43, 55, 23], but so far, the NTRUEncrypt cryptosystem
remains strong.
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