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Abstract

The current trend in processor design is towards the combination of several thread level
parallelism paradigms on the same chip. A popular combination is Chip Multiprocessing
with Simultaneous Multithreading (CMP+SMT), implemented in processors such as the
IBM POWERY. In such complex multithreaded designs, resource sharing between threads
has a great impact on final performance. There are different ways of interfering with
resource sharing, including thread placement, which involves assigning software threads to
the available hardware contexts, and thread priorities, assuming a processor in the IBM
POWER family, that features a mechanism allowing the user to alter the instruction fetch
rate of active threads.

We have analyzed thread placement and thread priorities in the IBM POWERT proces-
sor. Under each placement and priorities setup we analyze in detail how hardware resources
are shared among running threads. We show to which extent a software designer can char-
acterize an application on the specific processor and based on that characterization, select
the best thread placement and thread priorities configuration to improve a target metric.
Our results show that a 54% reduction in execution time can be obtained (11.2% on av-
erage) when running pairs of desktop parallel applications under the appropriate thread
placement. On top of that, our study has shown that up to an extra 12.7% of execution

time improvement can be achieved with the use of priorities on parallel applications.

Keywords
Resource sharing; thread placement; thread priorities; SMT; CMP; IBM POWERT;
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ITepiindm

H olyypovn tdon otn oyedlaor enelepyactmdy TelVEL TPOG TOV CUVOLAOUS BLAPOPLY
TAPADELYUATOY TapaAAnionolnong emmédou vApatoc. ‘Evac dnuoguifc ocuvduoacuds eivar 1
ohvenegepyooio Emnédouv Chip pyall ye Tavtdypovo Iouvnuatiousd (SMT + CMP), mou
vhomoteiton oe eneepyaotég 6mwe o IBM POWERYT. Ye tétoleg neplnioxeg moALVNUOTIXES
OPYLTEXTOVIXES O DLOHOLEUOUOE TOPMY HETAEY TV VAUATWY EYEL UEYIAT) ETBRACT OTNY TEAXY
anédoot. Tndpyouv didpopol TeoToL ENEUBACTC GTO BLUUOLEAoUO TOPWY, CUUTERLAUUBAVOUE-
Vg g tomodéTnons vnudtwy, Tou apopd TNV aVTLOTOLYLOY YNUATWY AoYLlouixol oe VEoelS
VIUATOY UAXOU, o TN mpotepaidtntas vnudtwy, YeNOoWOTOL)OVTNSG EVOL UNYOVIOUO TOoU
undpyel otny owxoyéveln eneéepyaotwv POWER tng IBM o onolog emtpénel otov yprotn
vor 0ANELeL Tov puOUS TEOGHOULONG EVIOAMY TWYV EVEQYMY YNUATOV.

Xopoxtneiloupe toug unyaviolols ToToVETNONS VNUATOY XoL TEOTEPUUOTNTIS VAUATGDY
otov eneepyoacti IBM POWERT. Kdtw and didpopeg cuviéoelg tontodétnong xaL tpotepo-
OTNTAC VNUATWY avahDOUUE UE AETTOUERELA TOV TEOTO OLOHOLPAOUOU TOU UAXO) OVIUESH O TA
evepyd viuarta. Actyvouue oe Told Badud évag oyedlactic AoyLowxo) uropel va yopoxtneloet
ULOL EQUPUOYY) OTOV CUYXEXPWEVO ETEEERYAOTN Xat BACLOPEVOS GE AUTOV TOV YoRAXTNELOUO,
vou SLohéZel Ty 1oV ToToVETNOY Xl TEOTEPAULOTNTA VNUATWY, DOTE Vol BEATIOCEL Evay
emduuntd otéyo. Ta anotehéopatd poc delyvouv 6Tt umopel va emteuydel péyper 54%
uelwon oto ypdvo extéreons (11.2% xatd yéoo 6po) xata tny extéheon Leuydv napdhhniev
EQUPUOYWY XAT® and TNV XATIAANAY Tonovétnoy vnudtwy. Emnpoctétng, n uekétn poag
€de1le otL péypt xan 12.7% emunhéov Behtinwon uropel vo emiteuy Vel Ue T Yphom TeoTEpAUOTHTOY

VNUETOV.
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Chapter 1

Introduction

1.1 Uniprocessor systems

Formerly, processor manufacturers competed in the race to follow Moore’s law on the
number of transistors in integrated circuits [22]. The main strategies for increasing pro-
cessing performance in uniprocessor systems was the increase of clock frequency and the
extraction of higher Instruction Level Parallelism (ILP) from a single instruction stream.
Processor pipelining was the first step in this direction, since it allowed the fragmentation
of resources in order to simultaneously serve multiple program instructions at different
stages of execution. The increasing transistor numbers allowed processor designers to im-
plement more and more complex ILP extraction techniques. Some of these techniques
included superscalar pipelining, which allowed the parallel issuing of more than one subse-
quent instructions simultaneously, out-of-order completion, which allowed the completion
of instructions that would otherwise have to wait for previous instruction to finish, and
branch prediction, which decreased the amount of flushed instructions during commonly

used program loops.

However, spatial and thermal barriers led to a physical inability to keep increasing
the number of transistors indefinitely. Also, a single executing thread makes it difficult to
extract parallelism beyond a certain level, because of limiting factors such as instruction
dependencies, or long latency events like cache misses. As a result, manufacturers had to

turn to other solutions.

Figure 1.1(a) shows a typical uniprocessor system. It involves a single processor with
its on-core L1 cache and is connected via buses to lower cache levels and the main system

memory.

17
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Figure 1.1: Indicative (a) Uniprocessor and (b) Multiprocessor system schematic

1.2 Multiprocessor Systems

The inability to extract parallelism beyond a certain threshold from a single instruction
stream led to the observation that most of the core resources are idle while waiting to
execute instructions [37]. The idea of maximizing the utilization of processor resources
brought about another form of parallelization, Thread Level Parallelism (TLP). Since
processor resources could not be fully utilized by a single instruction stream, they could
be taken advantage of by multiple independent instruction streams, called threads. The
idea of TLP is that if many threads run in parallel, performance can be improved through
an increase in throughput, rather than focusing on latency that was the goal anteriorly.
For this reason multiprocessor systems with support to multiple threads have become the

standard direction in processor design.

TLP is expressed in two main ways, first by sharing available processor resources
between threads (Simultaneous Multithreading - SMT) and also by replicating processor
pipelines in order to support multiple threads at the core level while also sharing some
global resources (Chip Multiprocessing - CMP). Both TLP expressions manage to increase
processor resources utilization thus increasing total system throughput. However, they also
introduce the problem of resource sharing between threads. In multiprocessor systems
many resources are shared between threads in order to maintain high utilization at all
times. This opens up a new area of study in computer architecture, involving ways of

dealing with resource sharing between threads.

Figure 1.1(b) shows a typical multiprocessor system featuring 2 cores, with each sup-
porting 2 threads. Each of the two cores has its private L1 cache, while they both share

the on-chip L2 cache and access the out-of-chip memory.
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1.3 Motivation

The current trend in multithreaded systems design leads to increasingly more complex
resource sharing. Co-running threads share processor resources in various ways, which sig-
nificantly affects their performance. Two ways of affecting resource allocation per thread
and dealing with the problem of resource sharing are thread placement and thread pri-
orities. Thread placement involves binding software threads to the available hardware
contexts, while thread priorities are supported by the IBM POWER family processors
and allow the user to intervene in the distribution of processor resources between threads.

It becomes clear that a characterization of the resource sharing on current complex
architectures with regard to two ways of affecting it, like thread placement and thread

priorities, can lead to useful conclusions on multiple levels.

1.4 Organization

Following the introduction, this thesis is structured as follows: In Chapter 2 the issue
of Multithreading is discussed, with a detailed presentation of various TLP paradigms and
some significant market implementations, while introducing the issues of thread placement
and thread priorities. In continuation, Chapter 3 presents the IBM POWERT processor
that is used in our study, while focusing on the resource sharing of the processor. The
following Chapter 4 describes the subsystem used in our study, including the perfor-
mance counters, the modifications on the linux kernel, the micro-benchmarks and parallel
benchmarks used in our study. Subsequently, Chapter 5 presents a study with micro-
benchmarks, that are used to draw useful conclusions, which are then in turn applied
to parallel benchmark applications in our presented Case Study in Chapter 6. Finally,
Chapter 7 concludes our findings and lists possible steps that could be taken following
this study.

19



Chapter 2

Multithreading

2.1 Introduction to Multithreading

Exploitation of Instruction Level Parallelism (ILP) improves performance for a single
instruction stream. However, inherent ILP limitations lead to limited resource usage, since
the available issue slots are not always filled at a given cycle. The term ‘issuing waste’ [37]
is used to describe the amount of empty issue slots and can be divided into horizontal and
vertical waste, as shown in Figure 2.1. Vertical waste occurs where no instructions are
issued at all in a cycle, e.g. due to cache misses or branch mispredictions, and horizontal
waste refers to cases where there are some empty issue slots in a cycle, for example due to
inter-dependent instructions. Both of them are inherent to ILP and its expressions such
as superscalar issuing and out-of-order execution and therefore cannot be alleviated on

the instruction stream level.

horizontal
waste

vertical
waste

Issue slots —>

Figure 2.1: Superscalar processor issuing.

This motivates the extraction of parallelism from multiple instruction streams (Thread

20



Level Parallelism -TLP) in order to achieve higher processor resource utilization. With
the term multithreaded system we refer to any system design that implements Thread
Level Parallelism. In order to minimize resource waste, multithreaded processors allocate
its various resources to more than one threads of execution. There are several multi-
threading paradigms which deal with issuing multiple threads in different ways, including
Chip Multiprocessing (CMP) [24], Simultaneous Multithreading (SMT) [37], Fine Grain
Multithreading (FGMT) [12][28], Coarse Grain Multithreading (CGMT) [2][31] or even
combinations of the above. Figure 2.2 shows how each case deals with the problems of

issuing waste and the following section addresses each of them in detail.

CMP CMP+SMT

CGMT FGMT SMT

Issue slots —

Figure 2.2: Multithreading processors issuing.

2.2 Multithreading Paradigms

In this section we present the basic TLP paradigms, including CMP, SMT, FGMT
and the popular combination of SMT & CMP.

2.2.1 Chip MultiProcessing (CMP)

In 1996 Olokotun et al discussed the necessity to shift focus from expanding com-
plex out-of-order issuing mechanisms towards architectures with more but simpler proces-
sors [24]. According to them, the expansion of the register files would lead to an increase
in implementation complexity and a decrease in clock frequency. They concluded that
an implementation of smaller, simpler processors could be realized in the same chip area
and give the possibility for higher clock rates, in comparison to more complex single-core

designs.
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Chip Multiprocessors are a logical development of the idea of Symmetric Multiproces-
sors (SMP). SMP involved placing two or more identical CPUs in a shared-memory system,
allowing parallel processing. CMP advanced this idea by providing multithreading at the
chip level with the inclusion of two or more processors on the same chip.

CMP technology does not deal with the issues of resource waste during execution, but
instead increases the on-core hardware to provide multiple separate instruction pipelines.
In this way, multiple processing cores are provided on the same chip, while improving

latency and energy consumption compared to out-of-chip SMPs.

2.2.2 Simultaneous MultiThreading (SMT)

The foundations of SMT technology were laid by Dean Tullsen et al in [37]. They
observed that processor resources remained idle for long periods of time during execu-
tion so they proposed that instructions from more than one threads should be issued
simultaneously. Generally SMT architecture involves partitioning key resources statically
while sharing the rest dynamically. Statically allocated resources ensure fairness between
threads, so that no thread clogs resources, while dynamically shared resources provide
maximum resource utilization.

SMT succeeds in eliminating both horizontal and vertical waste thus achieving maxi-
mum resource usage at all times. Vertical waste is removed since a thread that is stalled by
a long-latency event can be bypassed and the rest of the threads can use the available core
resources. Horizontal waste is effectively reduced due to the fact that instructions from
multiple threads can be issued simultaneously, so empty issue slots caused by instruction

inter-dependencies can be filled by instructions from other threads.

2.2.3 FGMT

Fine Grain MultiThreading (FGMT) is another alternative to SMT that supports
issuing instructions from multiple threads. However, while SMT supports instruction
issuing from multiple threads at a cycle, FGMT only supports issuing from just one thread
at any instance. Thread switching is performed in a round-robin fashion, while also
overriding threads that are stalled on long-latency events. Due to its constant thread
switching philosophy, FGMT implementations try to keep instruction pipelines relatively
short and simple, in order to increase throughput.

FGMT manages to eliminate vertical waste since stalled threads are overridden, but it
does not affect horizontal waste because only instructions from one thread can be issued

at any time.
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Chip CMP | FGMT | SMT
IBM POWERA4 v

IBM POWERS5 v v
IBM POWERY v v
Intel Pentium 4 v
Intel Core Duo v

Intel i7 v v
Sun UltraSPARC IV+ v

Sun UltraSPARC T1 v v

Sun UltraSPARC T2 v v

Table 2.1: Different TLP paradigms.

2.24 SMT + CMP

A hybrid architecture combining the technologies of SMT and CMP was first intro-
duced by IBM with the POWERS5 processor. Such a processor is equipped with duplicate
identical processing pipelines (CMP), while each pipeline supports issuing from multiple
threads at the same time (SMT). CMP allows replicating of cores with better energy
efficiency, while SMT reduces fragmentation in on-chip resources.

So, SMT effectively deals with the issues of both horizontal and vertical waste since
instructions from multiple threads are being issued simultaneously, while CMP increases
the on-chip resources to support multiple pipelines. CMP + SMT proves to be a very

popular combination as it combines the advantages of both paradigms.

2.3 Resource Sharing

The various multithreading architectures share their resources between running threads.
Depending on the specific paradigm and implementation, the complexity of resource-
sharing varies from case to case. We can characterize the complexity of the multithreading
architecture based on the levels on which its hardware resources are shared by executing
threads.

In CMP architectures processor resources, such as the interconnection network or an
on-chip L2 cache, are only shared on a single level, between threads in different cores
(inter-core). In SMT and FGMT architectural resources are also shared on one level, be-
tween threads in the same core (intra-core). On the intra-core level resources are shared

on a much larger extent compared to the inter-core level. In both CMPs and SMT pro-

23



POWER4

Core 0 Core 1
IFetch | Load | Store IFetch | Load | Store
Core Interface Unit I

N

Y 470 kB 470 kB 470 kB Y

NC unit | L2 L2 L2 NC unit
r cache cache cache

v ; v !

Chip-Chip » #!  Chip-Chip |

Fabric > Fabric Controller »i Fabric |

MCM-MCM > »! MCM-MCM |

: GX Control . L3/Memory LaMemory |

GXbus ie—t : > . !
. ! Unit Ll Controll Unit bus

Figure 2.3: POWERA4 Processor schematic.

cessors all threads share processor resources equally, regardless of where they are placed.
Nevertheless, in hybrid architectures, such as SMT+CMP, thread interaction differs based
on which level of resources they have in common: threads in the same core (intra-core
level) share many more resources, and hence interact much more than threads in different
cores (inter-core level). So, hybrid TLP systems provide 2 levels of resource sharing, both
the inter-core and intra-core levels. Some hybrid SMT+CMP implementations increase
resource sharing complexity even further, as they divide thread contexts inside each core
into two clusters. This provides an added level of resource sharing (intra-cluster) with
threads in the same cluster sharing more resources than threads in different clusters.

Since conflicts between threads that are fighting for common resources can severely
affect performance [35], it becomes evident that resource sharing in multithreaded archi-
tectures becomes an important part of any study.

We present the development of multithreading through different market implementa-
tions. We focus on how resources are shared and the increasing complexity of the resource

sharing on these processors. Table 2.1 presents a selection of representative chips.

2.3.1 IBM
POWERA4

The first CMP processor was IBM’s POWER4 that was released in 2001. POWER4

features two cores on a single chip [34]; each core has its private pipeline and L1 Instruction
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Figure 2.4: Power5 Processor pipeline.

(128 KB) and Data (64 KB) Caches, but the two cores share a unified 1.5 MB L2 on-chip
Cache. The Core Interface Unit (CIU) is responsible for the interconnection between the
two cores and the L2 cache, which is divided in three individual parts. The CIU is made of
a crossbar switch and connects each core with all three cache controllers. Figure 2.3 shows

the POWER4 schematic with the main units and the interconnections between them.

POWERS5

The first processor to combine SMT and CMP technologies was IBM’s POWERS [17]
released in 2004. POWERS kept its predecessor’s dual-core design and expanded each
core to support 2-way multithreading, offering a total of four active threads at any single
time. The resources on the POWERS5 processor are shared between running threads on

two different levels:

e Intra-core: all on-core resources are shared between threads on the same core. Fig-
ure 2.4 presents all resources shared on this level and shows how some core resources

are doubled, while others are shared dynamically.

Each core has two modes of execution, ST mode and SMT mode. When the core
runs in ST mode, all core resources are allocated to the executing thread, whereas
in SMT mode, the core uses two separate Program Counters and fetches instruc-
tions from the two threads, while switching between them. When running in SMT
mode, the POWERS core ensures fairness between executing threads with dynamic
resource balancing. By monitoring the GCT and load-miss queues dynamic resource
balancing detects if one thread is clogging resources. According to POWERS design

a thread is considered to cause resource congestion when it overcomes a threshold
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of L2 cache or TLB misses, or when it uses too many Global Completion Table
(GCT) entries. In that case it prohibits further instructions to be dispatched or
decoded (depending on the type of congestion) and so allows the other thread to
take advantage of the available resources. Additionally, POWERS5 brings another
innovation in SMT thread handling: software-controlled hardware thread priorities

that determine the ratio of fetched instructions between the two threads.

e Inter-core: global resources are available to all threads on the chip, whether they
share a core or not. These resources consist of the L2, and L3 cache and the on-
chip memory controller. The unified L2 cache with a size of 1.875 MB is placed on
the POWERS chip. It is implemented as three separate slices, each with their own
controller. The 32 MB L3 cache is placed off chip, but its directory is designed on

the chip in order to minimize L3 request latency.

2.3.2 Intel

Pentium 4

Intel was the first to implement the Simultaneous MultiThreading TLP paradigm,
which it named Hyper-Threading [35][21]. It was first released on the Xeon server processor
in 2002 and later in the same year Intel released its desktop version of a Hyper-Threading
processor, the Intel Pentium 4.

Hyper-threading involves maintaining dual architectural state copies on the processor,
thus forming two logical processors. As a result the Operating System can see two proces-
sors and schedule tasks on each one of them. Whereas the architectural state is duplicated,
most other resources such as caches, execution units, branch predictors, control logic and
buses are shared.

Pentium 4 is a deeply out-of-order multi-stage pipeline processor. Figure 2.5 shows
Pentium 4’s pipeline, depicting both the parts that are statically allocated to each thread,
including the Uop (micro-operation) queue, the rename, issue queue and retire stages, as
well as those that are dynamically shared between them, such as the schedule, register
read, execute, L1 cache and register write stages. The allocator will select instructions
from each thread in turns. In case one of the logical processors has reached its limit of a
resource occupancy, the allocator will only select instructions from the other thread. Also,
if instructions from only one thread are available in the Uop queue the allocator will try
to assign resources for that thread every cycle. The upper limit of resource usage by a
thread in different important buffers, is a way to reassure fairness between threads and

avoid cases where one thread clogs all core resources.
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Figure 2.5: Pentium 4 Processor pipeline.

Pentium 4 supports two modes of operation: single task (ST) and multi-task (MT).
In the case of a single task, all resources that were split for multi-tasking are combined
and become available to it. However in MT mode there are two active threads and the

resources each one can access, are divided as described above.

Core i7

Intel’s latest i7 processor [19][20] combines the Chip Multiprocessing and Hyper-
Threading paradigms. It features up to six cores, which share an L3 last level cache,
an integrated memory controller (IMC) and an Intel QuickPath Interconnect (QPI).

The Intel i7 processor was based on the core design of the Core 2 Processor, with
the difference that each core of the i7 supports Hyper-Threading, which allows the co-
execution of instructions from two threads. Figure 2.6 shows two interconnected quad-core
i7 sockets. Each core has a 32-KB data and instruction cache, a 256 KB unified L2 cache
and an inclusive last level cache, that is usually 8MB.

The pipeline of the i7 is out-of-order with five main stages: fetch, decode, dispatch,
execute and retirement /writeback. The i7 pipeline is also superscalar with a maximum of
four instructions issued and decoded per cycle.

The resources are shared between the two running threads in a way that ensures
fairness and avoids thread blocking. The reservation station entries are shared between
the active threads in Hyper-Threading mode, with some entries reserved for each thread

to avoid locking. Otherwise, all entries are available to the single running thread. The

27



DDR3
Co C1 C2 C3 Co C1 Cc2 cC3 DDR3

SMLLC SMLLC

<« MC  QPI QPI QPI QPI IMC >

Discrete /0 Hub
Gfx

Figure 2.6: 2 quad-core sockets of the Intel i7 Processor schematic.

Reorder Buffer slots are divided if Hyper-Threading is enabled or entirely available to the
single thread otherwise. The Reservation Station dispatches the instructions to one of 6

dispatch ports, for a maximum of 6 dispatched instructions for execution.

2.3.3 Sun
UltraSparc T1

The UltraSparc T1, codenamed Niagara [18] was released in 2005. It was the first
processor to implement round-robin 4 thread co-execution (FGMT), while at the same
time integrating 8 cores on the same chip (CMP). While other companies focused on
faster and more complex processors, Sun made efforts to fit 8 simpler processors on the
same chip. The T1 integrates fairly simple pipelines on each of the cores and emphasizes
on the interconnection between them. Resources on the UltraSparc T1 are shared on an

intra-core and and inter-core level.

e On the inter-core resource sharing level, the 8 cores connect to all four L2 cache
banks through a crossbar switch, called CPU-Cache Crossbar (CCX). The CCX is
a three stage pipeline itself, including request, arbitrate and transmit. Figure 2.7
shows this resource-sharing level, in a high-level layout of the UltraSparc T1 pro-

Ccessor.

e At the same time each core supports up to 4 threads, in an intra-core resource
sharing level. Each pipeline maintains a simple 6 stage (Fetch, Thread Selection,

Decode, Execute, Memory and Write Back) in-order single-issue pipeline with a
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Figure 2.7: UltraSPARC T1 Processor schematic.

small private cache. The idea is to improve performance by maximizing throughput

through higher resource usage and not by extracting maximum thread performance.

UltraSparc T2

The UltraSparc T2 processor (2007), or Niagara 2 [32][7] is a CMP/FGMT processor
that builds upon the design of the first Niagara, where overall system performance is more
important than single-task performance.

Figure 2.8 shows the eight cores of the UltraSPARC T2 connected through a crossbar
switch to a shared L2 cache. Each core also supports eight hardware contexts (strands)
for a maximum of 64 executing threads. Inside each core strands are divided into two
groups of four strands, thus forming two hardware execution pipelines. Tasks running
simultaneously on T2 share resources depending on how they are scheduled among strands.
The resources of the processor are shared on three different levels: Intra-Pipe -among
threads running in the same hardware pipeline, Intra-Core -among threads running on the
same core and Inter-Core -among threads executing on different cores. Figure 2.8 shows

the 8 cores and their interconnection, as well as the main units inside each core.
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e Intra-Pipe: At this level shared resources include the Instruction Fetch Unit (IFU)
and the Integer Execution Units (IEU). Even though the IFU is physically shared
among all processes that run on the same hardware core, the instruction fetch policy
prevents any interaction between threads in different hardware pipes in the IFU.
Thus, the IFU behaves as two private IFUs, one for each hardware pipe. When
more threads running on the same pipe are able to fetch an instruction in the same

cycle, the conflict is solved using a Least Recently Fetched (LRF) fetch policy.

e Intra-Core: Threads that run on the same core share the following resources: the 16
KB L1 instruction cache, the 8 KB L1 data cache, the Load Store Unit (LSU), the
Floating Point and Graphic Unit (FPU) and the Cryptographic Processing Unit.

e Inter-Core: At the global inter-core level, the main shared resources are: the L2
cache, the on-chip interconnection network, the memory controllers, and the inter-
face to off-chip resources. The 4MB 16-way associative L2 cache has eight banks that
operate independently. The L2 cache connects to four on-chip DRAM controllers,
which directly interface to a pair of fully buffered DIMM (FBD) channels.

In the T2 processor, two threads running in the same pipe conflict in all resource-
sharing levels: Intra-Pipe, Intra-Core and Inter-Core. Threads running in two different
pipes of the same core conflict only at the Intra-Core and Inter-Core levels. Finally, threads

in different cores only interact at Inter-Core level.
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2.3.4 Related work

Many researchers have previously tried to investigate resource sharing and its effects
on multithreaded performance. Tuck et al. analyze the performance of a real SMT proces-
sor [35], concluding that SMT architectures provide an average speedup over single-thread
architectures of about 20% and that, even if the processor is designed to isolate threads,
performance is still affected by resource conflicts.

Furthermore, other authors have characterized resource sharing on different processors.
Jung et al [16] and Tang et al [33] have both characterized the resource sharing on the
Intel Xeon processor in their works. Also Cakarevic et al [7] have characterized the three-
level resource sharing of the Sun UltraSPARC T2 processor, while focusing on how such
complex resource sharing can affect OS design. These works do not study the effect of
thread placement on these processors since the amount of shared resources does not vary

as much as in the POWERT processor.

Thread Placement

Thread placement involves binding software threads to specific contexts within the
range of available hardware thread contexts.

Previous works show that SMT performance heavily depends on the nature of the con-
currently running applications [10][29]. They both propose different job scheduling policies
for identifying the most suitable approach when co-scheduling different workloads. Snavely
et al [29] present a job scheduler that identifies good co-executing applications during a
short sampling phase. They manage to achieve a significant improvement of 17% in re-
sponse time over a scheduler that does not consider co-scheduling. In the same direction
DeVuyst et al [10] explore job scheduling on hybrid CMP and SMT architectures. Their
proposition is that unbalanced schedules need to be considered additionally to balanced
ones, and they propose adaptive policies that improve a random scheduler that only con-
siders balanced schedules by 6-11% in energy-delay product.

Some other works conclude that parallel application threads suffer from being co sched-
uled in the same core due to intra-core resource contention and data cache conflicts. Jung
et al [16] investigate the optimal number of threads when running a parallel application
on an SMT processor and propose an adaptive technique to determine it. By using 4 Intel
Xeon processors in SMP with 8 logical cores, they achieved 2 and 18 times faster execution
time with their modified code w.r.t. the original code running on 4 and 8 logical cores,
respectively.

Zhang et al [39] study the effect of thread placement of PARSEC applications on
CMP architecture systems with regard to cache sharing. They find that contrary to prior
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knowledge, shared cache has little effect on the performance of most PARSEC benchmarks.
However, they also show that there is ample room for improvement as by modifying the
programs in a cache-sharing-aware manner, they achieve up to 36% performance increase
when placing threads appropriately. On the other hand, Tang et al [33] find that, when
using Google datacenter applications, thread co-scheduling on the same core results in
resource conflicts and data cache contention. Also, they are led to the conclusion that
when co-executing parallel applications the optimal thread scheduling is different than

when they are running alone.

Software-Controlled Hardware Thread Priorities

There are several previous works that propose the use of hardware thread priorities to
control thread execution in SMT processors.

Many of these proposals implement fetch policies to maximize throughput and fair-
ness by reducing the priority, stalling, or flushing threads that experience long latency.
Tullsen et al [36] research several SMT architectures and conclude that when a thread is
stalled due to a long latency operation, it is preferable to release the resources associated
with it, instead of ensuring that the associated resources are at its disposal as soon as it
recovers from the stall. They achieve an average of 15% and over 100% speedup when
executing four threads and two threads respectively. Moreover, Cazorla et al [8] introduce
the concept of dynamic resource control in SMT architectures and propose a dynamic
resource allocation policy that ensures a better balance between fairness and throughput.
Simulations performed showed an improvement of 8% on average over a static resource
allocation policy and of 4% over the best previously proposed dynamic resource allocation
policies, such as FLUSH-++.

Boneti et al. use hardware priorities to balance resources in SMT processors and
analyze the effect of hardware priorities on the IBM POWERS [5]. They come to the con-
clusion that prioritization greatly depends on the type of workloads that are co-executing.
With the use of priorities in two case studies they manage to improve overall throughput
by 23.7% and additionally to reduce total execution time by 9.3%.

Morari et al. also considered the software-controllable hardware-thread priorities
mechanism that controls SMT performance on POWERS5 and POWERG6 and provide a
characterization of the differences in the application of priorities between the two micro-
processors [23]. They state that the application of priorities has different effect on the two
architectures, with POWERG being less sensitive to priorities because of its in-order de-
sign. They show that the use of the mechanism has room for improvement when targeting

specific metrics and in that direction they provide several performance models.
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Finally, Jimenez et al. also used hardware-thread priorities to perform a power and
thermal characterization and reduce power consumption of the POWERSG6 [15] at the appli-
cation, operating system and hardware level. Based on the characterization they propose
a counters-based model that allows the prediction of total power consumption on the
POWERSG6 with an average error of under 3% for CMP and 5% for SMT.

None of these works involves the use of software-controlled hardware thread priorities

with 4 executing threads.
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Chapter 3

POWERY

3.1 General Architecture

The IBM POWERT processor [27] is an 8-core CMP processor in which each core
is 4-way SMT, providing 32 threads in total. Every core has its private 32-KB data and
instruction L1 caches, a 256-KB private L2 cache and a 4-MB local L3 region that can also
be shared between all cores, forming a 32-MB global L3 cache. Placed on the chip are two
double-data-rate-three (DDR3) memory controllers, which provide a total of 100-GB/s of
memory bandwidth. The POWERY cache hierarchy is presented in detail in table 3.1.

The main processor schematic can be seen in Figure 3.1.

3.2 Pipeline Description

At core level, POWERY implements out-of-order logic with advanced branch prediction
and data prefetching, optimized for enhanced single-thread performance. The main stages
of the pipeline are: instruction fetching, decoding and dispatching, register renaming,

instruction issuing, execution and completion. In a given cycle the core can fetch up to

Table 3.1: POWERT Cache hierarchy

Cache level Capacity | Array Policy

L1 Data 32K Fast SRAM | Store-through
Private L2 256K Fast SRAM | Store-In

Fast L3 Region | Up to 4M | eDRAM Partial Victim
Shared L3 32M eDRAM Adaptive
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Figure 3.1: POWERTY die.

eight instructions, decode and dispatch up to six instructions and issue and execute up to
eight instructions. The main pipeline stages in the POWERY core are shown in Figure 3.2.

Initially, program instructions are fetched from the Instruction cache. The 4-way
set associative Instruction cache is highly banked (16-ways) in order to allow multiple
simultaneous reads and writes. After instructions are fetched from the cache, they are sent
to the instruction buffers (IBUFs), which support a total of 20 entries of 4 instructions
each. Thread priority, pending cache misses, IBUF occupancy and thread balancing are
used to determine which thread is selected for fetching in a given cycle. Thread balancing
at the instruction fetch stage ensures fairness between all active threads. Thread priority is
also used to select instructions from one thread in the IBUFs and send to group formation
and decode logic. A maximum of four nonbranches and two branches from one thread can
form one group of instructions.

Subsequently, register renaming is done using mappers before instructions are placed
in the issue queues. General purpose register (GPR) and vector/scalar register (VSR)
are mapped onto 80 rename registers, matching the maximum number of nonbranch in-
structions between dispatch and completion. The GPR file is implemented as two phys-
ical copies of 80 entries each. POWER?T employs a single issue queue for floating-point,
fixed-point and load/store instructions, the 48-entry Unified Issue Queue (UQ). It is im-
plemented as two halves for area and power conservation reasons.

The Global Completion Table (GCT) is responsible for tracking all in-flight instruc-
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Figure 3.2: Core resource sharing in ST mode [27].

tions after dispatch. Instructions in the core are tracked as groups of instructions and,
thus, will dispatch and complete as a group. The GCT has 20 entries and each entry
corresponds to a group of instructions. So the maximum capacity of the GCT at any cycle
is 120 instructions.

Finally, instructions are executed in the functional units, which include a Fixed-Point
Unit (FXU), a Load-Store Unit (LSU) and a Vector and Scalar Unit (VSU). The Fixed-
Point Unit is made of two identical pipelines (FX0 and FX1) and is responsible for exe-
cuting all fixed-point instructions, including adds, subtractions, compares, multiplications,
divides, etc. The Load-Store Unit is integrated as two symmetric pipelines (LSO and LS1),
with each capable of executing a load or store operation in a cycle. The LSU has the added
capability of executing simple fixed-point operations. The Vector and Scalar Unit (VSU)
incorporates both the floating-point unit (FPU), and the vector media extension (VMX)
unit, in order to save area and power. The VSU is also made of two pipes (VS0 and VS1)
with most VSU operations being able to execute on any of the two pipelines with some
exceptions, as seen in Figure 3.2.

In the PowerPC architecture, programs are written using 64-bit effective addresses,
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while 46-bit real addresses are used for addressing in the memory hierarchy system. The
address translation is performed on two levels in the POWERT7. On the first level two 64-
entry Data effective-to-real-address translation (D-ERAT) and one 64-entry Instruction
effective-to-real-address Translation (IERAT) caches are provided. If translation misses
on the first level, a second level of translation is invoked to compute the desired address.
The second level of translation involves a 32 entry-per-thread Segment Lookaside Buffer
(SLB) cache and a 512 entry Translation Lookaside Buffer (TLB) cache. The SLB keeps
entries of translation from effective to virtual addresses, while the TLB is responsible for

translation from virtual to real addresses.

3.3 Resource Sharing Levels

POWERT as a hybrid CMP and SMT architecture shares resources on multiple levels.
A major characteristic of the POWERY is that it is an architecture with two clustered
execution pipelines in each core, from now on referred to as clusters. Contexts 0 and 1 are
found in the first cluster, while Contexts 2 and 3 belong to the second cluster. Similarly
to Sun’s UltraSparc T2, we observe that on POWERY7 more resources are shared between
threads in the same cluster than threads in different clusters. However in POWERT7 some
resources are shared between threads in different clusters as well, providing an added level
of resource sharing. Thus it is the first processor to share core resources on 4 different

levels:

e Inter-Core: resources are shared by all threads even in different cores, including the

global L3 cache and the memory controllers.

e [ntra-Core: this resource-sharing level features the resources shared by all threads
within a core, such as the L1 data and instruction caches, the L2 cache, the local
L3 cache, the GCT and the TLB.

e Intra-Cluster: this level consists of all the resources shared between threads in the
same Cluster (i.e. Contexts 0-1 and Contexts 2-3), and includes the GPR files, the
two UQ halves, and the functional units (FXU/LSU).

o Inter-Cluster: formed by the resources that are only shared between two threads in
different clusters and specifically between Contexts 0-2 and Contexts 1-3, which are
the TERAT and the GCT completion bandwidth.

All in all, two threads running in the same cluster conflict in the Intra-Cluster, Intra-

Core and Inter-Core levels. Two threads running in different clusters and Contexts 0-2
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or Contexts 1-3 conflict in the Inter-Cluster, Intra-Core and Inter-Core levels, while two
threads running in different clusters and Contexts 0-3 or Contexts 1-2 conflict only in the
Intra-Core and Inter-Core levels. Finally, two threads running in different cores conflict

only on the Inter-Core level.

3.4 Core SMT Modes

Depending on how running threads are bound to the four available contexts, the pro-
cessor operates in different modes. The core mode changes the way resources are allocated
to the executing threads. Every core supports three different SM'T modes, depending on

the placement of threads within it:

e When a single thread runs and it is bound to Context 0, the processor executes in
ST mode.

e When Context 1 is active and Contexts 2 and 3 are not active (regardless of Context
0) the core runs in SMT2 mode.

e When Contexts 2 or 3 are active (regardless of Contexts 0 and 1) the processor runs
in SMT4 mode.

Because of that distinction, hardware threads are named as following: primary thread
(Context 0), secondary thread (Context 1) and tertiary threads (Contexts 2, 3) [1].
POWERT allows dynamic SMT mode switches with low overhead between them.

Figure 3.2 shows the basic units of the POWERY core pipeline, when all resources
are available to a single thread (ST mode). Next, Figure 3.3 depicts the distribution of
resources to two running threads when the core is switched to SMT2 mode. Finally, Fig-
ure 3.4 presents the sharing of core resources by 4 threads when SMT4 mode is activated.
All three figures are modifications of a figure appearing in [27]. Since SMT2 and SMT4
core modes can be activated with varying numbers of running threads, in these figures we
assume the default thread numbers, i.e. 2 threads in SMT2 and 4 threads in SMT4 mode.
Table 3.3 complements the figures, as it shows resource distribution in all possible thread
numbers and placements.

In POWERY7, rename registers other than the GPRs are shared between all threads.
The same happens with the TLB. Whereas there are several microarchitectural resources

shared between threads, we focus on those mentioned in [27]:

1. Front-end: In ST and SMT2 modes, each thread uses a 16-entry link stack. In the
SMT4 mode, each thread uses an 8-entry link stack. The IBUF holds up to 20
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Figure 3.3: Core resource sharing between 2 threads in SMT2 mode [27].

entries, each 4-instructions wide. In SMT4 mode, each thread can have 5 entries,

whereas in ST and SMT2 modes, a thread has ten entries.

. Execution Pipelines: In ST and SMT2 modes, the two GPR files maintain identical

contents, so there are a total of 80 rename registers; instructions can be issued to
any of the two UQ halves and subsequently be executed in any of the functional
units. In SMT4 mode the two GPR files have different contents and threads in
Contexts 0-1 can execute in the upper pipeline (UQO, FXUO0/LSUO0), while threads
in Contexts 2-3 execute in the lower pipeline (UQ1, FXU1/LSU1). The majority
of vector and scalar operations can be issued to any of the two UQ partitions and
therefore be executed in any of the two VSU pipes, with the following exceptions: a)
VMX floating point and simple and complex integer instructions are only dispatched
to UQO and execute in VS0, b) permute (PM), decimal floating point and 128 bit

store operations are only dispatched to UQ1 and execute in VSI1.

. Address translation: In the instruction-fetch stage the IERAT table supports Con-

texts 0 and 2 in the first 32 entries, and Contexts 1 and 3 in the last 32 entries. The
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Figure 3.4: Core resource sharing between 4 threads in SMT4 mode [27].

D-ERAT consists of two 64-entry caches. In ST and SMT2 modes the two halves
have identical contents, but in SMT4 mode they have different contents with one
half dynamically shared between Contexts 0-1 and the other between Contexts 2-3.
The TLB is dynamically shared by all four threads.

4. GCT: the 20 entries of the GCT that track groups of 8 instructions are dynamically
shared between all four threads. The processor can complete one group per thread
pair per cycle, with Contexts 0 and 2 forming one pair, and Contexts 1 and 3 forming

the other one.

3.5 Software-controlled Hardware Thread Priori-

ties in the IBM POWER Family Processors

In Power7, just like in previous PowerPC processors, there is a prioritization mech-

anism that sets the number of decode cycles assigned to each thread through software
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control. The enforcement of these software-controlled priorities is carried by hardware
in the decode stage. In POWERS5 and POWERG, which were only capable of running 2
threads in a core, priorities were applied by altering the decode rate of the primary thread
at the expense of the secondary thread. The application of priorities was only based on
the priority difference between the two threads [11]. The decode slots of the two threads
were allocated exponentially to the difference of priorities between the threads, using the

following formula:
R = 2\PrioP—PrioS|+1

So the primary thread would receive R-1 decode slots and the secondary thread would
receive the remaining slot. For example, for a priority difference of one, the primary
thread would receive 3 decode slots, for a priority difference of two, the primary thread
would receive 7 decode slots and so forth with the secondary thread receiving the remaining
slot in all cases. Since there is no published information about how the priority mechanism

in POWER7 works, we treat it as a black box.

Table 3.2: Thread priorities in Power7

Priority | Priority level | Privilege level | or-nop inst.
0 Thread shut off | Hypervisor -

1 Very low Supervisor or 31,31,31

2 Low User /Supervisor | or 1,1,1

3 Medium-Low User /Supervisor | or 6,6,6

4 Medium User /Supervisor | or 2,22

5 Medium-High Supervisor or 5,5,5

6 High Supervisor or 3,3,3

7 Very High Hypervisor or 7,7,7

The software-controlled priorities range from 0 to 7, where 0 means the thread is
switched off and 7 means the thread is running in Single Thread mode. Also, priority 1
has the effect of executing the thread in low-power mode. The supervisor or OS can set
six of the eight priorities ranging from 1 to 6, while user software can only set priority
2, 3 and 4. The Hypervisor can use the whole range of priorities. Priorities can be set
by issuing a pseudo or instruction in the form of or X,X,X where X is a specific register
number [11][14]. This operation only changes the thread priority and performs no other
operation. If it is not supported or not permitted the instruction is simply treated as a
nop. Table 3.2 shows the priorities, the privilege level required to set each priority and the

corresponding instruction. The behavior of the prioritization mechanism changes when
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priorities 0 or 1 are applied to a thread [11][14]. When both threads have priority one the

processor runs in low-power mode and it decodes only one instruction every 32 cycles.
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Chapter 4
Experimental Setup

We use an IBM PS701 BladeCenter to run our experiments, which contains a single
IBM POWERY processor. The system runs SUSE Linux Enterprise 10 SP2 and the kernel

we use is version 3.0.9.

4.1 Performance Counters

In most modern high performance processor systems special hardware registers are
provided for accurate CPU measurements without affecting the executing workload or
slowing down the CPU [26][30]. Initially, they were used for hardware debugging but later
they became used widespread for performance monitoring. Usually these counters are
programmable, but other times they support a fixed-function. Programmable counters can
be enabled or disabled and they can be configured to count different types of events. Usual
countable events include the number of committed instructions, clock cycles, cache misses,
or branch mispredictions. Fixed-function counters provide limited programmability, since
they always count the same event, or they cannot be disabled. The type and number of
countable events depends greatly on the different processors micro-architectures. In case
there are more events to count than there are counters, the kernel uses time multiplexing
to allow each event to access the monitoring unit. With multiplexing the final result is

scaled at the end of execution based on total time counted with respect to execution time.

4.1.1 Performance Counter types

There are five groups in which processor events can be grouped into: program char-
acterization, memory accesses, pipeline stalls, branch prediction, and resource utilization.

Firstly, program characterization events are used to define the attributes of a program
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or the OS and therefore are independent of the processor”s micro-architecture. Common
examples of such events are the number and type of instructions executed by the pro-
gram, such as loads, stores, floating point, branches, etc. Secondly, memory access events
facilitate the study of the processor’s memory hierarchy and often constitute the largest
event category. Some examples in this category are references and misses to the various
levels of cache and traffic on the processor memory bus. Thirdly, the information coming
from pipeline stall events aids the analysis of a program’s instruction flow through the
pipeline and help in locating bottlenecks. Fourthly, branch prediction events assist users
in analyzing the performance of branch prediction hardware, like counting mispredicted
branches. Finally, resource utilization events provides useful information on how often a
processor uses certain resources, such as the number of cycles spent using a fixed-point

multiplier, etc.

4.1.2 Software Support for Hardware Counters

The fact that some of the counter configuration or access instructions require kernel
mode privileges, and the need to provide per-thread counts, have led to the development of
kernel extensions that allow applications to access the counters in user mode. For Linux,
some frequently used kernel extensions are perfmon2 and perf. Perf is included in all
recent linux kernel versions.

Since these kernel extensions are specific to an operating system, measurement code
using these extensions becomes platform dependent. For that reason Application Program-
ming Interfaces (APIs) are provided to facilitate the access of low-level platform-dependent
system calls that are needed to access performance counters. Libpfm is such a user-level
API library.

4.1.3 Power7 Counters

The POWERT processor has an integrated performance monitoring unit (PMU) for
each hardware thread, which enables performance monitoring, workload characterization,
system characterization and code analysis [3]. There are 6 thread-level Performance Mon-
itor Counters (PMC) in a PMU. PMC1 to PMC4 are programmable, PMC5 counts non
idle completed instructions and PMC6 counts non idle cycles. On a thread level and core
level, the PMU provides access to a numerous set of performance events (close to 550)
that cover essential statistics such as miss rates, unit utilization, thread balance, hazard
conditions, translation related misses, stall analysis, instruction mix, L1 Instruction and

Data cache reload source, effective cache counts and memory latency counts.
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4.2 The Linux Kernel

By default, only three of the eight priority values are available in user mode. The
other five can only be accessed by the Hypervisor or the Operating System. Modern kernel
versions (after 2.6.23) use the software-controlled priorities in order to reduce performance
of a process that does not perform any useful computations. In detail the cases where the

priorities mechanism is used are the following;:

e When a thread in spinlock is waiting in an infinite loop until the lock becomes

available its priority is reduced.

e When the kernel is idle waiting for operations to be completed, such as when it
requests a specific CPU to perform an operation through a smp_call _function()

and it cannot proceed until the operation completes, its priority is reduced.

e In a specific hardware context the kernel is executing the idle thread because there
are no useful computations to be scheduled. When the priority of the idle thread
is reduced and eventually disabled (priority 0) in order not to waste unused core

resources by putting the core in an unwanted core mode.

In all of the above cases the kernel reduces the priority of a hardware thread to medium
(4) as soon as a useful job is available for scheduling. Also it does not store the actual
priority it resets the thread priority to medium each time it enters a kernel service routine,
e.g. an interrupt, an exception handler or a system call. That consists a conservative
choice.

The kernel patch we use, provides an interface to the user to set all available priorities
available in kernel mode. First of all, since the described usage of priorities could un-
predictably affect experiments, we have disabled the use of software-controlled priorities
inside the kernel. The main contribution is that priorities 1 to 6 are made available in

user mode, by an interface provided through the /sys pseudo file system.

4.3 METbench Micro-benchmarks

We use a set of micro-benchmarks to perform an in-depth study of resource sharing
in POWERTY under different thread placement setups. Micro-benchmarks are simple and
repetitive tasks that stress specific processor parts. Each of the micro-benchmarks features
a loop body with specific instructions depending on the behavior we want to achieve. For

example some tasks continuously perform integer additions, while others continuously hit
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in a specific cache level. The loop body is repeated enough times so that the micro-
benchmark runs for at least one second. The micro-benchmarks are organized in three
categories based on the type of instructions they execute: integer, floating-point and

memory.

e Integer micro-benchmarks include cpu_int_add, cpu_int, cpu_int mul and lng -
chain_cpuint. Their loop bodies can be seen in Table 4.1. While cpu_int con-
tains mixed integer instructions -specifically one multiplication every two additions-,
cpu-int_add only contains additions and cpu_int_mul only multiplications. Lng_-
chain_cpuint, to which we will refer as 1ng_chain for short, includes mixed integer
instructions (also one multiplication every two additions) but is specifically designed

to limit ILP with a long dependency chain of instructions.

e In the floating-point micro-benchmarks category we include cpu_fp_asm benchmark,
which we will refer to as cpu_fp for short. It is written in POWER assembly to get
more precision over its behavior and it includes floating-point subtractions, additions

and multiplications.

e Memory micro-benchmarks include all cache or memory related micro-benchmarks:
1dint 11, 1dint_ 12, 1dint_13 and ldint mem. The standard loop body structure
of all 1dint_X micro-benchmarks can be seen in Table 4.1, where the size of the
array M varies to match the desired behavior. A pointer chasing technique is used
to implement the desired amount of loads on the relative memory hierarchy level.
Specifically, an array is initialized with pointers, so that each element has the address
of the next element. The last element contains the address of an element in the
beginning of the array in order to execute the loop multiple times. So, 1dint_-
11 benchmark uses approximately 25% of the L1 cache, 1dint_12 benchmark fills
the first level and hits in the second level and so on. Since POWERT includes 8
core-local L3 regions that form a larger global L3 region, we have created two micro-
benchmarks to target the L3. Ldint_13 fills the first and second level of cache and
hits in the local L3, while 1dint_memn fills all levels of cache and hits in the system

memory.

4.3.1 Validation of Micro-benchmarks Behavior

We have used performance counters in single-thread mode to validate the behavior of
METbench micro-benchmarks.
First we use resource utilization counters to check which core resources are used by

each micro-benchmark and show the results in Figure 4.1. Cpu_fp executes 99,7% of its
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Table 4.1: Source code of some micro-benchmarks

instructions in the VSU. Cpu_int, cpu_int_add, cpu_int_mul and lng chain use the FXU
or the LSU in a percentage of at least 99,7%. The Load-Store pipelines in POWERT7
can complete simple fixed-point operations, like adds and logical instructions [27], which
explains why 27,8% of cpu_int_add and 16,8% of cpu_int instructions are executed in
the LSU. Micro-benchmarks in the memory category mostly execute in the LSU with a

percentage of at least 94%. The remaining percentage of instructions are branches and

(a) cpu_int_add (b) cpu_int mul (c) cpu_int
for (it=0; it<M; it++) | for (it=0; it<M; it++) | for (it=0; it<M; it++)
{ { {
LOOP_UNROL-20( LOOP_UNROL-20( LOOP_UNROL-20(
a = ata+it; a = axaxit; a = atatit;
b = b+b+it; b = bxbxit; b = b+b+it;
c = ctc+it; cC = c*xcxit; C = c*xcx*it;
d = d4d+it d = dxdxit; d = d+d+it;
e = etetit; e = exexit; e = etetit;
f = f+f4+it; f = fxfxit; f = fxfxit;
g = ghetit; g = grgxit; g = ghegtit;
h = h+h+it; h = hxhxit ; h = h+th+it;
i = i+i+it; i = ixixit; i = ixixit;
) )
} } }
(d) 1ng_chain (e) 1dint X
for (it=0; it<M; it-++)
{
LOOP_UNROL_20(
a = ati;
b = b+a; for (it=M; it >0; it—)
c = cx*b; {
d = d+c; LOOP_UNROL_20(
e = et+d; P = *p;
f = fxe; )
g = gt+f; }
h = htg;
i = ixh;
)
}

fixed-point operations, which are necessary for their function.

Additionally, we check memory access counters to ensure that memory micro-bench-
marks fetch data from the correct level of memory hierarchy. Indeed 1dint_11, 1dint_12
and 1dint_13 fetch at least 99% of their data from L1, L2 and L3 local respectively.

Ldint mem fetches 87% of its data from memory and the rest from L1.
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Figure 4.1: Resource-usage for METbench micro-benchmarks.

4.3.2 FAME Methodology

To obtain reliable measurements in the characterization of the POWERYT processor, we
use the FAME (FAirly MEasuring Multithreaded Architectures) methodology [38]. This
methodology ensures that every program in a multiprogrammed workload is completely
represented in the measurements. For that reason, the methodology advises to re-execute
once and again one program in the workload until the average accumulated IPC of that
program is similar to the IPC of that program when the workload reaches a steady state.
FAME determines how many times each benchmark in a multi-threaded workload has to be
executed so that the difference between the obtained average IPC and the steady state IPC
is below a particular threshold. This threshold is called MAIV (Maximum Allowable IPC
Variation). The execution of the entire workload stops when all benchmarks have executed
as many times as needed to accomplish a given MAIV value. For the benchmarks used in
this paper, in order to accomplish a MAIV of 1%, each benchmark must be repeated at
least 5 times. METbench applies the FAME methodology in micro-benchmark executions.

4.3.3 METbench Modifications

Anteriorly, METbench only supported the perfmon2 counter interface to draw infor-
mation on counters. However perfmon2 has become obsolete and instead perf has taken

its place as the default linux kernel extension. Perf is included in all new linux kernel ver-
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sions. As part of this study perf was integrated into the METbench benchmark suite with
the help of libpfm4. Libpfm is an API in the form of a library that provides functions to
access the desired system calls that are necessary for accessing performance counters. So
METbench was enhanced and given the potential to get performance counter information

for each thread and for the whole system.

4.4 PARSEC Benchmark Suite

With the prevalence of CMP processors and the continuous trend to parallel application
programming, comes the need for benchmark programs that are representative of the
current and future real-world applications. Such a benchmark suite is PARSEC [4]. It
features state-of-the-art, computationally intensive algorithms and very diverse workloads
from different areas of computing, such as computational finance, computer vision, real-

time animation or media processing.

4.4.1 Benchmarks Presentation

PARSEC is comprised of 13 benchmark programs, from which we use ten': blackscholes,
bodytrack, dedup, ferret, fluidanimate, fregmine, streamcluster, swaptions, vips,
and x264.

Blackscholes: This application is an Intel RMS benchmark. It calculates the prices
for a portfolio of European options analytically with the Black-Scholes partial differential
equation (PDE). There is no closed-form expression for the Black-Scholes equation and as
such it must be computed numerically.

Bodytrack: This computer vision application is an Intel RMS workload which tracks
a human body with multiple cameras through an image sequence. This benchmark was
included due to the increasing significance of computer vision algorithms in areas such as
video surveillance, character animation and computer interfaces.

Dedup: This kernel was developed by Princeton University. It compresses a data
stream with a combination of global and local compression that is called 'deduplication’.
The kernel uses a pipelined programming model to mimic real-world implementations.
The reason for the inclusion of this kernel is that deduplication has become a mainstream
method for new generation backup storage systems.

Ferret: This application is based on the Ferret toolkit which is used for content-based

similarity search. It was developed by Princeton University. The reason for the inclusion

"'We encountered compilation or execution errors with canneal, facesim, raytrace
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in the benchmark suite is that it represents emerging next-generation search engines for
non-text document data types. In the benchmark, we have configured the Ferret toolkit
for image similarity search. Ferret is parallelized using the pipeline model.

Fluidanimate: This Intel RMS application uses an extension of the Smoothed Particle
Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive anima-
tion purposes. It was included in the PARSEC benchmark suite because of the increasing
significance of physics simulations for animations.

Fregmine: This application employs an array-based version of the FP-growth (Fre-
quent Pattern-growth) method for Frequent Itemset Mining (FIMI). It is an Intel RMS
benchmark which was originally developed by Concordia University. Freqmine was in-
cluded in the PARSEC benchmark suite because of the increasing use of data mining
techniques.

Streamcluster: This RMS kernel was developed by Princeton University and solves
the online clustering problem. Streamcluster was included in the PARSEC benchmark
suite because of the importance of data mining algorithms and the prevalence of problems
with streaming characteristics.

Swaptions: The application is an Intel RMS workload which uses the Heath-Jarrow-
Morton (HJM) framework to price a portfolio of swaptions. Swaptions employs Monte
Carlo (MC) simulation to compute the prices.

Vips: This application is based on the VASARI Image Processing System (VIPS)
which was originally developed through several projects funded by European Union (EU)
grants. The benchmark version is derived from a print on demand service that is offered
at the National Gallery of London, which is also the current maintainer of the system.
The benchmark includes fundamental image operations such as an affine transformation
and a convolution.

X264: This application is an H.264/AVC (Advanced Video Coding) video encoder.
H.264 describes the lossy compression of a video stream and is also part of ISO/IEC
MPEG-4. The flexibility and wide range of application of the H.264 standard and its
ubiquity in next-generation video systems are the reasons for the inclusion of x264 in the
PARSEC benchmark suite.

4.4.2 Applications Characterization

We use performance counters to characterize the core resource usage of PARSEC
applications and present the results in Figure 4.2. We notice that real world applications
like PARSEC benchmarks, have balanced instruction mixes in general. We notice that

dedup and fregmine do not include any vector or floating point operations. Also, we can
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Figure 4.2: Resource usage for PARSEC applications.

see that vips, freqmine and dedup have more than 50% fixed-point instructions in their
instruction mix (executing in the FXU or the LSU).

Subsequently, we checked memory access counters to gain information about the mem-
ory hierarchy usage of each of the PARSEC applications. We found that streamcluster,
which is a streaming application, executes the highest amount of loads than any other

application, especially from memory.

4.4.3 Threading Models

PARSEC 2.0 supports three different parallelization models: Pthreads, OpenMP and
TBB. Firstly, POSIX threads (Pthreads) [6] is one of the most commonly used paralleliza-
tion models in shared memory machines that lets programmers handle all thread creation,
management and synchronization issues. It is supported by all PARSEC workloads ex-
cept fregmine. Secondly, OpenMP [9] is a shared memory compiler-based parallelization
model, with which the programmer can give directives to the compiler to execute sections
of code in parallel and all the details of the thread management and synchronization are
handled in runtime. It is supported by bodytrack, freqmine and blackscholes. Fi-
nally, the Intel Thread Building Blocks (TBB) [25] is a high-level alternative to pthreads
which provides functions that express task-based parallelism while hiding the details of the

platform and the threading mechanism. PARSEC gives TBB support to blackscholes,
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bodytrack, fluidanimate, streamcluster and swaptions. We make use of Pthreads
parallelization model for all these benchmarks, except for the case of freqmine, which is
only available in OpenMP. (connection pthreads, tbb to task-parallel data parallel)
PARSEC benchmarks use various parallelization approaches, including data paral-
lelization and task parallelization. Data parallelization is common for many benchmark
applications for years [13], however task parallelization has seen limited benchmarking
support. Task parallelization and especially the pipelining programming model are ex-
tensively supported by PARSEC. Pipelining involves breaking the work into stages and
executing them concurrently. Not only does pipelining simplify large-scale application pro-
gramming, but can also increase throughput with exploiting parallelism in a higher level
due to the concurrently executing nature of the various stages. Data-parallelism is used
within the different pipeline levels to further exploit parallelism. The benchmarks that are
programmed with the pipeline data parallelization model are dedup, ferret and x264.
The rest of the benchmarks are programmed solely with a data-parallelization approach,

with the exception of canneal that follows an unstructured approach.

4.4.4 Input Sizes

There are several input sizes for all benchmarks, including Test, Simdev, Simsmall,
Simmedium, Simlarge and Native. The test size has a minimal input size and only serves to
verify that programs are executable, with an execution time of less than 1 second. Simdev
to Simlarge input sizes are provided for microarchitectural simulators, with execution
times ranging from 1 second up to 20 seconds. Native inputs are large-scale experiments
intended for real machines, with execution times of up to 30 minutes. We used native input

sets for all the experiments, as they are the most representative for real-world applications.
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Chapter 5

Performance Evaluation with

Micro-Benchmarks

We use METbench micro-benchmarks to gain insight on the resource-sharing of the
IBM POWERY and draw conclusions regarding the issues of thread placement and thread

priorities.

5.1 Thread Placement Performance Characteri-

zation

5.1.1 Thread Placement of a Single-Thread Micro-Bench-

mark

In previous multicore and multithreaded processors, when a task is executed in isola-
tion, its performance is independent of the particular context to which it is bound. For
example, for the IBM POWERS5 and POWERG that are 2-core, 2-thread SMT processors,
the performance of a task is the same regardless of which of the four contexts it runs in.
This is not the case for the IBM POWERT7. The binding of a single thread in one of the
four core contexts dynamically switches the core mode between ST, SMT2 and SMT4 and
leads to different resource allocation. We expect that the more resources a thread has at
its disposal the better it performs.

Figure 5.1 shows the performance of the different micro-benchmarks when they run in
isolation in a core and are bound to different hardware threads, while disabling the unused
contexts. ‘X’ means that the context is disabled and ‘A’ denotes the micro-benchmark

under consideration runs in that context. Hence, ‘XAXX’ means that the task is bound
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Figure 5.1: IPC of single-thread micro-benchmarks when they are bound to a given

context, while the other contexts are disabled.

to Context 1 (i.e. secondary thread) while Contexts 0, 2 and 3 are disabled.

We observe that when executing a single thread, binding it to different core contexts
can have an important role in its performance. For some benchmarks the variation is small
while for others it is significant (70% for the case of the cpu_int_add benchmark). On
average the maximum performance is obtained when the task is bound to Context 0, with
the second highest being when the task is bound to Context 1 and the lowest performance
equally seen when the task is bound to Context 2 or 3.

When the benchmark is bound to Context 0 and the other hardware threads are
disabled, the core runs in ST mode. Under this mode, the contents of the register files in
each cluster are duplicated. This allows the benchmark to access both partitions of the
Unified Queue (UQ) and subsequently issue instructions to any of the functional units. A
thread has access to 10 out of the 20 entries of the Instruction Buffer, 112 physical general
purpose registers -from which 32 are architectural registers and the remaining 80 are used
as rename registers, all 48 UQ entries and 2/2/2 functional units, meaning 2 fixed-point
pipelines (FX), 2 load-store pipelines (LS) and 2 vector-scalar pipelines (VS).

When a task is bound to Context 1, with Context 2 and 3 inactive, the core runs in
SMT2 mode. We notice in Table 3.3 that under this mode the resources that the task
can use are in general equal to the resources available in ST mode. However, we observe
that some benchmarks obtain less performance in this mode than in ST mode. We further

observe that the longer the latency of the executed instructions in a given task the lower
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the performance degradation that task suffers in SMT2 mode: 15%, 8% and 2% for cpu_-
int_add, cpu_int and cpu_int mul benchmarks, respectively. From the description of
the POWERYT [27] it was not clear why the pipeline of the POWERYT core is causing this
behavior. We have two possible explanations for this behavior. It could be the case that
in ST mode the task in Context 0 benefits from some type of prioritization that the task
does not suffer when it runs in Context 1 under mode SMT2. It could be also possible
that a number of resources are partitioned in the cluster so that when the processor runs

in SMT2 mode, some of them are reserved for Context 0 even if there is no task running.

When the task is bound to Context 2 or 3, the core runs in SMT4 mode. In this
mode the GPR files have different contents and a thread can only access one UQ half (24
entries) and issue instructions to one fixed-point pipeline (FX1), one load-store pipeline
(LS1), but two vector-scalar pipes (VS0,1). Also, the thread in this mode can only use 5

Instruction Buffer entries, whereas in the other modes it could use 10 entries.

The cpu_fp benchmark does not show any degradation in performance between the
different modes. This is because in all SMT modes most Vector and Scalar operations
including floating-point can be dispatched to any of the two UQ halves and then executed
on any of the two vector-scalar units, as cited in [27]. Therefore it is not affected by the

placement of the thread and consequently the core mode.

The 1ng_chain benchmark has a counter-intuitive behavior as it improves performance
in SMT4 mode in comparison to ST and SMT2 modes. In SMT4 mode, each thread is
confined to a UQ half and in that case data dependent operations can be issued back-to-
back [27]. Meanwhile, in ST and SMT2 modes, each thread is given access to both UQ
partitions and so dependent operations can be issued to different partitions, suffering one
cycle delay to bypass data from on cluster to the other. Table 4.1 shows that 1ng_chain
is comprised of many inter-dependent instructions that greatly limit its ILP, thus limiting

its performance to 3.7x slower than cpu_int.

All single-thread versions of cache and memory bound benchmarks including 1dint_-
11, 1dint_12, 1dint_13 and 1dint_mem are not affected by the thread placement. Con-
secutive instructions of the 1dint X benchmark cannot be run in parallel since the pointer
chasing technique is used, as explained in Section 4.3. The performance of this category of
micro-benchmarks is dominated by the latency of the relative level of memory hierarchy

that they access.

To sum up, when a single thread runs in a POWERY core, binding it to Context 0
provides the best results, unless it includes significant data dependencies, in which case

Context 2 or 3 provides the best performance.
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Figure 5.2: TPC of different pairs of single-thread micro-benchmarks when bound to two given contexts.



5.1.2 Thread Placement of 2 Single-Thread Micro-Bench-

marks

In this case we run two different threads under different thread assignments. We
investigate how the POWERYT core performs with 2 running threads in SMT2 and SMT4
mode. Figure 5.2 shows the results of five representative micro-benchmarks, as well as the
average values for the whole METbench suite. In each of the 5 sets of bars of the graph
we show one of the five micro-benchmarks against all the other. For example if we take
the bars for fp- in the graph and then focus on the -int subset of bars we get the results
for the cpu_fp-cpu_int pair, where cpu_fp is A and cpu_int is B in [AB|[XX] (SMT2),
[AX][BX] (SMT4) and [AX][XB] (SMT4) thread placements.

We can clearly see the symmetry in performance between the various thread pairs,
for example the pair cpu_int-cpu fp results in the same performance for both micro-
benchmarks, as that of cpu_fp-cpu_int in all three configurations. We conclude that in a
specific core mode with 2 running threads the POWERY core has symmetric behavior. In
any case, configurations that change the core mode cannot possibly achieve similar per-
formance, for instance [AB][XX] (SMT2) and [XX][AB] (SMT4 with two threads sharing
resources in one cluster).

We notice that the two SMT4 configurations have similar performance in all cases,
which leads us to the conclusion that the micro-benchmarks do not cause significant con-
tention in the IERAT or the GCT completion bandwidth which are shared between hard-
ware threads 0-2 and 1-3.

We observe on Table 3.3 that in SMT2 mode both threads dynamically share all core
resources, while in SMT4 mode each of the 2 running threads is statically assigned half
of most resources, like UQ entries and functional units. However, in SMT4 mode each
pair has access to more rename registers. Whereas some pairs can benefit from dynamic
resource allocation to more resources, others gain from the extra rename registers and
would rather be confined in a cluster with half the core resources to themselves. Micro-
benchmarks with low-latency instructions and a constant need for rename registers, such
as cpu_int, suffer from the lack of rename registers in SMT2 and so generally perform
better in SMT4 mode.

Moreover, there are some additional parameters to consider. We can clearly see how
some low-IPC benchmarks, like 1dint_12 and 1ng_chain limit the IPC of their co-runner.
Counter-intuitively, the behavior of 1dint mem when co-executing with another task is
entirely different to 1dint_12, even though its IPC is significantly lower. This is due
to the existence of a hardware mechanism that automatically detects LLC (Last Level

Cache) misses and reduces the rate at which instructions from the LLC-missing thread

o8



are fetched. As a result, the co-runners of 1dint_mem manage to reach an IPC close to
their peak while the same is barely affected since its performance depends primarily on
the latency of memory access. This mechanism is enabled both in SMT4 and SM'T2 mode,
but in the latter the co-runners of 1dint mem have access to twice the resources and in
that case they have more room for improvement when this prioritization is applied.

The only benchmark that performs better against 1dint_mem in SMT4 rather than
SMT2 is 1ng_chain. In fact 1ng chain performs better in SMT4 mode against all other
micro-benchmarks since as we have already seen in single-thread placement that it favors
being limited to a UQ half.

To conclude, based on our characterization we can choose the optimal configuration
between SMT2 and SMT4 modes. Two different threads perform better in SMT2 mode
([AB][XX]) than SMT4 mode ([AX][BX] or equally [AX][XB]), assuming none of them

executes a high percentage of data-dependent or low-latency operations (e.g. integer adds).

5.1.3 Thread Placement of 2 Two-Thread Micro-Benchmarks

In this experiment we co-execute 2 two-thread micro-benchmarks in a POWERT core.
We expect the best performance in the placement that causes the least amount of resource
sharing between threads of the same type.

We have tried all possible pairs and in Figure 5.3 we show a representative selection of
five of those pairs, in addition to the average values for all pairs. With a total of four active
threads, the only possible core mode is SMT4. If we consider the core symmetry in a spe-
cific core mode, the possible placements are the following three: [AA][BB], [AB][AB] and
[AB|[BA]. We confirm that the symmetric placements [BB][AA], [AB|[AB] and [BA][AB]
do not show any difference in performance to the three previous configurations. In each
of the five sections of the graph we show the IPC of each micro-benchmark against some
of the other four as well as against itself, marked in the horizontal bar as "AAAA’.

For the observed micro-benchmarks, we confirm that the placement [AB][BA] provides
the best overall results (12% performance improvement w.r.t. the worst case), followed
closely by [AB][AB]. The small differences between the two configurations could be ex-
plained by conflicts in the I-ERAT and the GCT, which are shared between Contexts 0-2
and Contexts 1-3 and since in [AB][AB] these contexts run threads of the same kind. Also,
in the [AA]|[BB] placement -for which we notice the worst results for all three cases, by
putting two threads of the same kind in each of the two clusters we are forcing them to
contend for the same intra-cluster resources, including rename registers, UQ entries and
functional units.

The instruction fetch unit in the POWERYT tries to balance instruction fetch rates
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Figure 5.4: TPC of several combinations of 4 single-thread micro-benchmarks.

between threads. According to our results, this happens even between those in different
clusters. Consequently, applications with very low-IPC, such as 1dint_12, significantly
deteriorate the performance of all their co-runners in all three configurations. However,
the placement of two cache-bound threads in the same cluster results in further slowdown
caused by resource conflicts. Similarly to the results for 2 threads, we notice that 1dint_-
mem is a good co-runner due to the hardware mechanism that prevents LLC-missing threads
from clogging shared resources.

Overall, with two pair of threads in a core we conclude that the best thread placement
is [AB][BA] as in this configuration most of the resources are shared between threads with

different resource profiling.

5.1.4 Thread Placement of 4 Single-Thread Micro-Bench-

marks

We perform a case study with 4 workloads consisting of different threads. We try
different placements to investigate the cases which provide the optimal improvement with
regard to core throughput. Like in previous experiments we expect maximum performance
when we minimize resource conflicts in the core.

In Figure 5.4 we see various combinations of the 5 representative micro-benchmarks
we used in our previous experiments. The IPC bars of each micro-benchmark are stacked

in order to add up to the total throughput. We have seen that symmetric pairs (or in
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this case quartets) lead to similar behavior in a specific core mode. Also, according to
our previous results with 2 pairs of threads, inter-cluster resource sharing causes small
performance differences, so configurations such as [AB][CD] and [AB][DC] lead to similar
performance. We confirm this in our experiments and reduce the total number of possible
placements to 3: [AB][CD], [AC][BD] and [AD][BC]. In a given quartet we symbolize with
[AB][CD] the presented order of threads, for example for int-fp-12-mem, A is int, B is fp,
C is 12 and D is mem and so for the same quartet [AC|[BD] is the order int-12-fp-mem.

First of all, we notice that the placement of the four executing threads plays a great role
in the final performance. We can see that different thread placements lead to impressive
speedups of up to 1.66x in throughput for a quartet of threads. In order to get the
maximum performance we need to follow a similar approach as to that when running 2
pairs of threads. This can be done by taking advantage of the automatic fetch prioritization
mechanism that is activated with 1dint_mem and avoiding resource conflicts as much as
possible. Also, in accordance with our previous findings, it is clear that the presence of a
cache-bound application like 1dint_12 in the quartet considerably lowers the performance
of all other co-runners. By combining tasks of different profiles in a cluster we get the
maximum possible performance.

Therefore, we should place the threads with highest IPCs in the same cluster as a
memory-bound thread -if available, and make sure cache and memory-bound applications

are put in different clusters.

5.1.5 Optimal Thread Count Evaluation

In this section we show the throughput of one core of the IBM POWER?7 when several
copies of each micro-benchmark are executing. In Figure 5.5 we compare the cases of
one thread in isolation, two copies of a thread in SMT2 and SMT4 (we use [AX][XA])
and four copies of a thread. The results vary from benchmark to benchmark but we can
draw some general conclusions. As a rule of thumb, the lowest throughput is taken when
executing a single copy of a micro-benchmark and the highest when executing four copies
of the micro-benchmark in the same core. Some benchmarks almost reach their peak with
one or two running copies, whereas some others noticeably improve their throughput from
a single thread to four threads simultaneously. Indicatively for cpu_fp core throughput
improves by 190% and for 1ng_chain by 263% when using all four contexts w.r.t. running
one thread.

The throughput of cpu_fp scales almost linearly up to 4 threads. This is expected
if we consider that besides the fact that it is comprised of long latency floating-point

instructions, the Vector Scalar Units (VSU) in POWERT are highly pipelined and capable
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Figure 5.5: Core throughput when different numbers of copies of the micro-benchmarks

are executed.

for dual instruction issue, with each pipe supporting different types of instructions [27].
Cpu_int_add saturates with 2 threads, since then the peak of execution to issuing ratio is
reached in the FXU and LSU (that also performs simple fixed-point instructions). On the
other hand, cpu_int_mul almost saturates with 1 thread. Compared to cpu_-int_add, it
has a higher instruction latency (integer multiplications), that bottleneck the two FX units
and do not leave much space for throughput improvement with more threads. Cpu_int and
1ng chain are comprised of a mix of instructions of the two previous micro-benchmarks
and their behavior is more variable from one to four executing threads in the core. The
various cache and memory-bound benchmarks improve their throughput by as high as
133% when increasing the threads from one to four, but with the main improvement noted
when moving to 2 threads. As we mentioned before, consecutive instructions from these
micro-benchmarks cannot be run in parallel due to the pointer-chasing technique. But
load instructions from different threads can be executed in parallel by the two LS units.
Of course, the ability to fetch data in parallel from a certain level of memory hierarchy
depends on the amount of cache banks that level has and the ability to access them in
parallel. It is known that the L1 cache is highly banked to allow multiple reads at the
same time as long as they are in different banks. In any case the maximum throughput is
gained when running all four threads, despite the fact that the same might be reached with
fewer threads. The abundance of resources in each of the 8 POWERY cores, combined
with the instruction fetch balancing between different threads contribute to maximizing

throughput when running 2 or 4 threads in a core.
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5.2 Thread Prioritization Performance Character-

ization

5.2.1 Thread Prioritization of 2 Single-Thread Micro-Bench-

marks

As we have seen in section 3.5, when applying priorities on 2 different threads, one
thread receives more fetch/decode slots at the expense of the other. As a result, one
thread is expected to benefit and the other is presumed to suffer from the application
of priorities. In this section we investigate the effect of thread prioritization to both
running threads. We execute cpu_int with five representative micro-benchmarks under
different priority settings in the same cluster with the other two core contexts disabled
(SMT2 mode). Subsequently, we repeat the same for 1dint_12 against the five micro-
benchmarks. Figure 5.6(a) and Figure 5.7(a) shows the effect of priorities on cpu_int and
1dint_12 respectively, while Figure 5.6(b) and Figure 5.7(b) show the effect of priorities
on the five of their co-runners.

When running with priorities 1/1 both threads have very low performance. As ex-
plained in Section 3.5 this is due to the fact that this priority combination puts the
POWERYT core in low power mode, so it is only recommended for cases when all threads
are executing low priority activities. We do not consider this thread priority setting in the
rest of our study.

For all the other priority configurations we confirm that what really matters is not the
priority of each thread, but the priority difference between threads. The higher the priority
of a thread over the other thread the more the fetch/decode slots it receives and hence
the better it performs. We observe that high-ipc cpu-bound benchmarks like cpu_int, are
more sensitive to priorities than low-ipc benchmarks like 1dint_12. As cpu-bound high-ipc
benchmarks constantly fetch and decode new instructions they are sensitive to the amount
of fetch/decode bandwidth they receive. This is not the case for low-IPC benchmarks, that
are stalled due to the latency of some execution unit or the cache hierarchy. Furthermore,
we have observed that the IFU balances fetch rates between all threads in a core, causing
the performance of a cpu-bound micro-benchmark to be remarkably lowered when co-
executing with a cache-bound micro-benchmark. In this case the slowdown suffered by
the high-ipc thread can be reversed with the use of priorities, without a significant cost.
When executing cpu_int with 1dint_12 and we increase the priority difference to +5 in
SMT2 mode, the primary thread’s performance improves by 14x, with only a 2x slowdown

for the secondary thread cache-bound thread.
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Figure 5.6: Effect of priorities on the IPC of (a) cpu_int and (b) each of its co-

runners

As a general rule, we notice that by increasing a thread’s priority over its co-runner,
its performance is increased, since it is granted more fetch/decode slots. For instance, the
performance of cpu_int against another micro-benchmark is higher with 6/4 than with
4/4 priorities.

However, exceptions to this rule are primarily ldint mem and in a smaller extent
1dint_13. When any micro-benchmark is co-executing with 1dint mem or with 1dint_13,

their performance is decreased as soon as we increase priority difference from 0 to 1.

We believe that the reason for this behavior is that POWER7’s dynamic hardware re-
source control mechanisms. By monitoring key resources, applications that clog resources,
such as 1dint_mem, are detected and the system automatically reduces their priority differ-
ence. When the user changes the default priority difference, this automatic mechanism is

overridden, causing the observed performance decrease. Nevertheless, by further increas-
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ing the priority difference we can see a relative increase in performance that eventually
overcomes the performance with default priorities. For example, for cpu_int with 1dint_-
mem a priority difference of 4 is needed to match the performance with default priorities,
and for cpu_int with 1dint_13 the default priorities performance is overcome with a pri-
ority difference of 2. If we consider that 1dint mem misses in the last level cache, thus
causing long latency out-of-chip accesses, we can conclude that the automatic prioritiza-
tion mechanism decreases the priority of a thread depending on the degree to which it

ClOgS resources.
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Figure 5.8: Intra- and Inter-cluster effect of priorities on the four-thread cpu_int

benchmark

5.2.2 Thread prioritization of a Four-Thread Micro-Bench-

mark

One of the main difference in the design of the prioritization mechanism of POWER7
and its predecessors, POWERS5 and POWERG, is that POWERT features 4 threads per
core that are divided into two clusters. This impacts the way prioritization affects running
threads. Figure 5.8 shows the result of four running copies of the cpu_int benchmark.
In this section we refer to a thread running in Context 0 as T0, a thread in Context 1

as T1 and so on. In the default configuration we run all copies with the same priority of
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2. In Figures 5.8(a)-(c) we increase the priority of TO(a), T1(b) and T2(c) over all other
threads. We do not show the case of increasing the priority of T3 over other threads, as it
is identical to all three cases. Figures 5.8(d)-(e) show the performance of the four threads
when increasing the priorities of two threads in the same cluster over the threads in the
other cluster and Figure 5.8(f) when increasing the priority of two threads in different
clusters (T0 and T2) over the remaining two. Likewise, when increasing the priority of T1

and T3 over T0 and T2 the results obtained are the same as in Figure 5.8(f).

In Figure 5.8(a) we observe that the increase in priority difference of T0 affects all other
threads equally, regardless of whether they are on the same or a different cluster than TO.
We further observe that the behavior is exactly the same if we increase the priority of TO,
T1, T2 or T3 over the rest of the threads in the core. In general, if we increase the priority
difference of a thread we improve its performance (the degree of improvement depends on
the particular benchmark as shown in Figure 5.6), but we affect the performance of all
other 3 threads in the core and not only of the thread running in the same cluster. This
fact makes it more difficult to achieve core throughput improvement or at least maintain

it when changing priorities.

If we change the priority difference of both threads in the same cluster (T0-T1 or T2-
T3), we observe in Figure 5.8(d)-(e) that their performance does not significantly increase
while the performance of threads in the other cluster decreases. This situation is the worst
possible and indicates that increasing the priority difference of threads in the same cluster

provides the worst results.

Instead if we increase the priority difference of two threads in different clusters (Fig-
ure 5.8(f)) we obtain the desired behavior, as we manage to improve the performance of

the prioritized threads.

Overall, prioritizing a thread in each cluster seems to be the best option in order
to avoid affecting overall throughput significantly. In SMT4 mode threads in the same
cluster share much more resources than threads in different clusters. When prioritizing
one thread in a cluster, it can enjoy increased usage of resources in the cluster. However,
when prioritizing both threads in a cluster, their increased instruction fetch rates result

in higher intra-cluster resource conflicts.

We conclude that prioritization on POWERY is applied on two separate levels, an
inter-cluster and an intra-cluster level and that to obtain the highest throughput with

priorities on four running threads, we should prioritize threads in different clusters.
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5.3 Thread Placement & Prioritization Performance

Characterization

5.3.1 Thread Placement & Prioritization of 2 Single-Thread

Micro-Benchmarks

In this case study, we compare the different priority settings (differences of 0, 2 and 4)
under the three placement configurations ([AB][XX], [AX][BX] and [AX][XB]) that we have
examined thus far. Figure 5.9(a) presents cpu_int against five micro-benchmarks that are
representative for the whole METbench suite: cpu_fp, cpu_-int, 1dint_12, 1dint_mem and
lng chain . Cpu_int is very sensitive to priority changes so it is the best candidate to use
against all other micro-benchmarks.

A first conclusion is that threads in the same cluster are affected more by priorities than
threads in different clusters. For example, with priority difference 0 cpu_int performs 1.4x
better in [AX][BX] setup w.r.t. [AB][XX] when co-executing with cpu_fp. However, for the
same pair when priority difference is increased to 2, [AB][XX] shows better performance by
1.3x compared to [AX][BX]. In [AB][XX] thread placement, the core is executing in SM'T2
mode where practically all resources are dynamically shared between the two threads. On
the other hand, in [AX][BX] and [AX][XB] thread placements the core executes in SMT4
mode, where the pipelines are clustered and resources are statically allocated to the two
threads. When increasing a thread’s priority, it is given more fetch/decode slots and so the
more resources it has access to the more it can benefit. For that reason priority increase
in SMT2 mode results in higher improvements in comparison to SMT4.

We have seen in the previous section, that the two SMT4 placements ([AX][BX] and
[AX][XB]) lead to very close results. We notice that the two placements provide similar

results for all priority differences.

5.3.2 Thread Placement & Prioritization of 2 Two-Thread

Micro-Benchmarks

The same case study is repeated for 4 threads, i.e. 2 two-thread micro-benchmarks.
Figure 5.9(b) shows the performance of cpu_int against the five representative micro-
benchmarks we have used in previous experiments. We use priority difference steps of 2
and assign to threads of the same micro-benchmark the same priority. The placements

under examination are [AA][BB], [AB][AB] and [AB|[BA].

First of all, we confirm that prioritizing a thread in each cluster results in signifi-
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cantly better performance than prioritizing both threads in a cluster, as we explained in
section 5.2.2. For example cpu_int’s performance is improved by 1.8x against cpu_fp
when running with a priority difference of 2 in [AB][AB] placement, compared to the same
priority difference in [AA][BB] placement.

We have seen in section 5.1.3 that the optimal configuration when running 2 two-thread
micro-benchmarks is [AB|[BA] since it leads to the least amount of resource conflicts.
Additionally we observed that the IFU balances threads fetch rates, so a high-ipc micro-
benchmark’s performance is lowered when co-executing with a low-ipc cache-bound micro-
benchmark. However, by increasing the priority difference of the cpu-bound thread we
increase its fetch and decode rate, thus increasing its performance impressively, while
the cache-bound application has no visible degradation. Cpu_int’s IPC improves by 11x
against 1dint_12 in [AB|[BA] placement when the priority difference is increased from
0 (6/6/6/6 priorities) to 4 (6/2/2/6), while the slowdown for 1dint_12 remains small.
In general, cache-bound micro-benchmarks depend on the latency of the relative level of
cache and are rather insensitive to priority decrease.

Also, the two configurations where threads of the same kind are assigned to different
clusters ([AB][AB] and [AB][BA]) lead to very similar results for all priority differences.
This is expected as long as we have seen that METbench micro-benchmarks do not suffer

from notable resource conflicts in the inter-cluster resource sharing level.

5.4 Micro-benchmarks Conclusions

Throughout this section we drew conclusions on the resource sharing mechanism of the
IBM POWERY and how this knowledge can be applied to thread placement and thread

prioritization. Following are the main conclusions we drew from micro-benchmarks.

e When running a single thread, the user should assign it to Context 0 as a general rule,
thus putting the core in ST mode and allocating to it all available core resources. The
only exception to this rule is when the task has a long chain of data dependencies,

in which case it should be bounded to Context 2 or 3 in SMT4 mode.

e When executing two threads, in case they belong to different applications the choice
regarding thread placement comes down to either [AB|[XX] (SMT2) or [AX][XB]
(SMT4). In general, SMT2 performs better than SMT4 as long as none of the
co-runners has a high percentage of inter-dependent instructions or low-latency op-
erations. When co-running a high-IPC application with a low-IPC cache-bound

application, the user can increase the high-IPC thread’s performance by increasing
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its priority difference, with almost no performance cost for the cache-bound thread.
At the same time, it should be noted that a critical workload should rather be pri-
oritized in SMT2 mode in contrast to SMT4 mode, as the latter limits the amount

of maximum resources it can potentially access.

When executing four threads, in case they all belong to different applications, the
user should place the highest-IPC thread in the same cluster as a memory-bound
thread if available and to ensure memory and cache-bound threads are assigned to
different clusters. In case the four threads belong to two 2-thread applications, the
optimal choice is to place threads of the same application in different clusters and
specifically in [AB][BA] placement, as this configuration leads to the least amount
of resource conflicts. Also under this thread placement, the use of priorities in favor
of one of the two 2-thread applications leads to the best speedups, compared to
other thread placements. In general, with four threads in a core, prioritizing one
thread affects all other executing threads, while prioritizing two threads in different
clusters leads to significantly better results than prioritizing two threads in the same

cluster.
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Figure 5.9: Effect of thread placement and priorities on (a) 2 single-thread or (b) 2 two-thread micro-benchmarks, where A is

always cpu_int and B is one of five other micro-benchmarks
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Chapter 6

Case Study

In this chapter, we perform a couple of case studies using PARSEC benchmarks on the
POWERY processor. We make use of the knowledge we acquired with METbench micro-
benchmarks and build on it to draw the optimal performance in real-world applications,
such as the PARSEC benchmarks.

Recall that we use a single POWERT processor, with 8 cores, each supporting 4-way
SMT. Every core has its private 32-KB data and instruction L1 caches, a 256-KB private
L2 cache and a 4-MB local L3 region that is shared between all cores, forming a 32-MB
global L3 cache.

6.1 Thread Placement of a Single Parallel Appli-
cation

Firstly, we measure the scalability of each PARSEC benchmark with the number of
threads. We start by running a single-thread version of each benchmark and, in subsequent
experiments, we run parallelized versions of each benchmark with 2, 4, 8, 16 and 32 threads.
Figure 6.1 shows the speedups obtained over the single-thread version of each benchmark.

When using 2 and 4 threads, we bind each thread to the first context of a different core,
thus switching them to ST mode. In the case of 8 threads, we evaluate all four possible
placements with one thread per core: [AX][XX], [XA][XX], [XX][AX] and [XX][XA]), with
each core operating in ST, SMT2, SMT4 and SMT4 mode, respectively. We observe that
the fastest execution time for all benchmarks is achieved in ST mode, followed closely by
the SMT2 mode with a degradation of 3.1% in execution time. The worst performance is
obtained in SMT4 mode, with an execution time degradation of 20.2%. These results are

consistent with our findings with micro-benchmarks in the previous section.
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Figure 6.1: PARSEC speedup w.r.t. Single-thread execution of different thread-

count and placement setups.

Under the 16-thread count setup, we bind two threads per core. We try three con-
figurations: running both threads in the first cluster in SMT2 mode ([AA][XX]), or in
different clusters in SMT4 mode ([AX][AX] and [AX][XA]). We notice that the two SMT4
configurations are very similar in performance, with [AX][XA] being slightly better on
average. Consequently, we omit the [AX][AX] case from Figure 6.1. Between the two core
modes, SMT2 performs better than SMT4 for all benchmarks (4.9% better on average),
with the exception of vips and dedup that perform slightly better in SMT4 mode. We
see that in contrast to several micro-benchmarks, few real-world PARSEC applications
benefit from the extra rename registers in SMT4 mode, and therefore, generally perform
better in SMT2 mode.

Under the 32-thread setup, we bind 4 threads per core. Given that all threads running
in the same core execute similar code, thread placement does not significantly change the
final performance of the application. We observe that the majority of applications scale up
to 32 threads. Only two benchmarks perform better with 16 threads (fluidanimate and
x264), but only by a small margin. We saw in Section 5.1.5 that with micro-benchmarks
the maximum core throughput was reached with either 2 or 4 threads, although throughput
with 4 threads was never lower than with 2 threads. Likewise, for the majority of PARSEC
applications 32-thread setups execute in equal or shorter time than 16-thread setups.

Overall, to optimize the performance of a given parallel application, we have to take
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into account the thread number and thread placement. We confirm the conclusions we
drew with micro-benchmarks: When only one thread runs per core, the optimal configura-
tion is ST mode. When 2 threads of a single application are executing in a core, the best
configuration is SMT2 mode. Finally, we notice that the optimal throughput is achieved
when running 2 or 4 threads per core, for a total of 16 and 32 threads respectively, with

the latter leading to significantly higher speedup on average.

6.2 Thread Placement of 2 Parallel Applications

The increase in execution time when moving from 32 to 16 threads for PARSEC
benchmarks is only 7.2% on average. All benchmarks except swaptions show very small
differences between these two setups. This reduced performance degradation motivates us
to execute two 16-thread PARSEC applications simultaneously. Several authors advocate
for not allocating parallel applications to the same core [16][33], since threads from different
applications fight for shared intra-core resources and do not benefit from having a shared
L1 data cache. However, proper thread placement can help minimizing resource conflicts
in the core. Moreover the considerably large size of the inner levels of the cache hierarchy
in the POWERY, contribute to reduced cache contention between different applications.

Given applications A and B, we evaluate the following configurations:

1. Sequential: We execute applications A and B sequentially. We start by executing A
in isolation and once it finishes, we execute B in isolation. Each application is exe-
cuted under its optimal thread number and placement, i.e., x264 and fluidanimate

run in 16 threads in SMT2 mode, while the rest run in 32 threads in SMT4 mode.

2. Split cores: We execute applications A and B together, with the first 4 cores running
16 threads of A, and the last 4 cores running 16 threads of B. Here each core is shared
only by threads of the same application.

3. Shared cores: We execute applications A and B together, with all 8 cores executing
2 threads of each application simultaneously, for a total of 16 threads per applica-
tion. After trying all three possible placements, we confirm our micro-benchmarks
conclusion that [AB][BA] is the best configuration on average when running 2 pairs

of threads in a core.

For cases 2 and 3, we compare the time required for both applications to finish execut-
ing, to the sum of execution times of A and B in case 1. Our goal is to find out whether

we can benefit from running two applications simultaneously or not.
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Figure 6.2 shows the execution time improvement of the parallel execution of applica-
tions, while sharing (case 3) or not sharing the core (case 2), over the sequential execution
of applications case 1). We run each PARSEC application against all other 9 applications.
For a given benchmark we compute the execution time improvement of cases 2 and 3 over
case 1 for all 9 benchmarks. Figure 6.2 reports the average improvement per benchmark,
where configuration ‘AAAA-BBBB’ stands for case 2 and ‘ABBA’ for case 3.

Since threads of the same application have more similar hardware resource require-
ments than threads of different applications, assigning threads of different applications
to the same cluster leads to reduced resource conflicts. According to Zhang et al [39],
PARSEC benchmarks do not share high amounts of data on the L1 and L2 caches and
so co-running two of these applications in a core should not lead to significant cache

contention.

Only dedup, freqmine and vips experience slowdowns due to a high contention for
common core resources when running 4 threads per core (case 2). These benchmarks
execute close to 50% of their instructions in the FXU, while the first two do not include
any floating-point instructions. As a result, running 4 threads of these applications in
the same core leads to many conflicts in the FXU and thus a decrease in performance.
However, when the same benchmarks co-execute with other applications in a core (case
3), we can see clear improvements that stem from reduced contention for shared core

resources.

Other benchmarks such as blackscholes, bodytrack, ferret, fluidanimate and
streamcluster perform well when their threads share a core both with threads of the same
application (case 2) and with threads of a different one (case 3). Especially bodytrack and
ferret benefit significantly from co-execution despite the fact that they run noticeably
slower with 16 than with 32 threads. Nevertheless, it is streamcluster -a memory-bound
clustering application, that is the best co-runner in both cases. It is by far the application
with the highest amount of memory loads amongst the ones we tried, though it does not
fetch high amounts of data from memory that could cause bandwidth issues. We have
seen that memory-bound micro-benchmarks are good co-runners in a core. Additionally,
streamcluster has a balanced instruction mix: 30% load and store, 30% fixed-point,
and 30% floating-point instructions. This balanced utilization of resources helps when
sharing the core amongst its threads, or with threads of another application. The largest
improvements are obtained for streamcluster with fluidanimate in case 3 (45.5%) and

with blackscholes in case 2 (54%).

In general, few pairs demonstrate worse performance when sharing the core than when

running sequentially (only 12.2% of the total pairs increase their execution time by 5%
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Figure 6.2: Average execution time improvement for each PARSEC application

against all other in cases 2 and 3.

or more). These pairs are mainly formed by applications that suffer from running with a
suboptimal thread number, like swaptions or vips. However, the number of pairs that
suffer a slowdown in case 2 with respect to case 1 is significant (37.8% of the total pairs
increase their execution time by 5% or more). This difference could be caused by increased
intra-core resource conflicts between threads of the same application. In any case, the
majority of applications benefit from co-executing simultaneously, primarily when sharing
the core with another application (case 3), with an average execution time improvement
of 11.2% for all pairs.

Figure 6.3 shows a selection of pairs with (a) the best and (b) the worst cases of core-
sharing in [AB][BA] (case 3). When two applications run in parallel, one finishes before
the other. The time the two applications run together is denoted co-execution phase 1 in
Figure 6.3. The extra time that the slowest application needs to run alone until it finishes
is denoted co-execution phase 2. In contrast, the second bar per pair of benchmarks stacks
the execution times of the two applications while running sequentially in isolation. The
vertical axis shows execution time, so the shorter the bar the faster the execution.

Figure 6.3 complements Figure 6.2, as it shows some cases of co-executing pairs of
parallel applications. It also provides a visualization of our run methodology and the
different phases of co-execution, while depicting how both applications’ execution times

are affected when running together. We observe that, while for pairs in Figure 6.3 (a) the
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Figure 6.3: PARSEC applications pairs that (a) benefit and (b) suffer from sharing
the core. Co-execution phase 1: when A and B are running together. Co-execution

phase 2: when the slowest of A,B is running alone.

duration of co-execution phase 2 is small, for pairs in Figure 6.3 (b) it is relatively large.
For the latter pairs, this suggests that a significant portion of the slowest application’s
workload could not be carried out during phase 1 of co-execution due to increased resource
conflicts. Note that the pairs in (a) include four of the best co-runners we saw in Figure 6.2,
while the pairs in (b) include the three worst co-runners.

Overall, we conclude that co-executing two parallel applications leads to clear improve-
ments in performance, either by sharing the core with another applications (preferably in
[AB][BA] configuration), or by occupying half of the cores each. Also, we have to make
sure that execution with less threads does not imply a significant slowdown with respect

to the optimal case.

6.3 Thread Prioritization of 2 Parallel Applica-
tions

In the previous section we discussed the need to co-execute parallel applications and
drew conclusions on the optimal thread placements. In this section we build on the

drawn conclusions and perform a case study with the software-controlled hardware thread
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priorities provided in the POWERT7. When co-running two parallel applications, priorities

can be used for two purposes:

e First in case one of the two applications is more crucial, it can be prioritized at the
cost of the secondary application. For example we might want to execute a real-time
streaming application, like streamcluster while an ongoing 3D graphics rendering
is taking place in the background (e.g. fluidanimate). In this scenario we want to
make sure the primary application receives increased priority in order to maintain a

high quality streaming service, even though the secondary application might suffer.

e Secondly, in order to improve the overall execution time of the two applications
together without preference to any of the two applications. In case we have two
applications with one finishing faster than the other we can improve total execution

time by increasing the priority of the slower application.

Similarly to section 5.3.2, we run two applications with 16 threads each. The thread
placement used is the one found to provide the best overall results, i.e. sharing all cores
in [AB][BA] placement. Figure 6.4 shows the execution times of some selected pairs of
PARSEC applications, including the pairs we used in Figure 6.4. Some extra pairs that
benefit from sharing the core are also provided. We set the same priority for all threads of a
specific application and use priority differences of plus/minus 3. For all priority differences,
we can see the stacked values of both the co-execution phase (2 running applications) and
the isolation phase (only the slowest application after the faster one has finished running).
Additionally for each pair we present the stacked bars of the two applications execution
times while running in isolation. Note that the graph shows execution time, so the shorter
the bar the faster the execution.

It is clear how we can use priorities to improve the performance of an important work-
load, such as streamcluster. We can see that its execution time against blackscholes
or fluidanimate improves significantly, almost reaching its optimal execution time in
isolation when its priority is increased by 3. However, even though the secondary thread
is clearly affected, overall execution time for these pairs remains lower than the sum of
execution times of the two applications in isolation. The same is true for all pairs which
benefit from co-executing rather than running in isolation. On the other hand, we notice
that other benchmarks reach their peak performance with default priorities and cannot
further benefit from the use of priorities. Such an example is dedup that reaches a thresh-
old close to its isolation execution time when co-running with other PARSEC applications
and cannot benefit additionally from an increase in its instructions fetch rate. Nevertheless

it does not significantly suffer either from a reduction of priority.
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We also observe that in many cases, when running a faster application we can gain by
slowing it down in favor of the slowest of the two. Total execution time improves in several
cases. Improvement w.r.t. default priorities reaches 12.7% for the pair fluidanimate-
blackscholes with priorities 4/5. However the use of priorities can results in a slowdown
of up to 24.4% w.r.t. default priorities for the pair streamcluster-fluidanimate with
priorities 5/2. Of course priorities affect different applications in a different degree. As
we have seen with micro-benchmarks, high-ipc applications, such as blackscholes and
fregmine are affected more by priorities than low-ipc applications, like dedup and vips.
Additionally, when the difference in execution time is so extended that the isolation phase
is longer than the co-execution phase with default priorities, then we notice that priorities
only slightly affect execution time. This could be explained by the comparison between
co-execution time and isolation time, if we notice that the room for improvement in co-
execution is relatively small in these cases.

In general, when co-executing parallel applications overall execution time improves
when increasing the priority of the slower application and reducing the priority of the faster
one. On average, blackscholes gains 2.57% execution time improvement, bodytrack 2%,
freqmine 1% and swaptions 0.94% against all other benchmarks with priority difference
+1. Also, ferret gains 2% and streamcluster 1% execution time improvement with
priority difference -1. Finally, x264 gains the maximum average improvement (1.24%)
with priority difference -2.

In any case, a safe way to decide whether priorities would improve the performance
of an application would be to compare the execution time of the benchmark in isolation
and its run-time when co-executing with another application. If the two values are close
then there is little room for improvement, however if there is significant slowdown when
running in parallel then priorities would improve its performance.

All in all we can see that priorities can be used when co-executing real world applica-
tions to effectively reduce the execution time of a critical workload and also to reduce the
overall execution time. In this direction, hardware priorities can be a useful tool in the

hands of users or system administrators.

6.4 Thread Disabling

When there are no runnable threads in the task run-queue of a specific hardware
thread, the OS assigns the idle thread to it. This is the lowest priority thread that performs
an infinite loop, is always runnable and has very low IPC. Since the placement of a thread

sets the core mode in the POWERT processor, the existence of one or more idle threads can
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reduce the amount of available hardware resources to running applications, thus potentially
impacting their performance. Modern versions of the Linux kernel automatically disable
hardware threads that are idle for more than a certain time (the default value is 20 ms):
first the idle thread reduces its hardware thread priority to 1 (low-power mode) and then,
after 20 ms, it disables the hardware thread. External events, such as interrupts raised
by the decrementer, an I/O device or another hardware thread, re-activate the disabled
hardware thread, which handles the interrupt and invokes the scheduler to check whether
any runnable thread has been assigned to its run-queue. If no other thread is assigned to
the context, the idle loop restarts. In order to further improve performance by preventing
these alternating phases from dynamically switching the core mode, we need to manually
turn off unused hardware threads.

In any case, the existence of this automatic mechanism guarantees an improvement in
performance in comparison to the case without this feature. This is especially important
in situations where manually disabling the threads is not an option, such as parallel ap-
plications with load imbalance. In such applications, some threads finish executing faster
than others and idle threads take their place. Consequently the core mode remains set in
SMT4 mode, even if only one thread from the application is running. As we saw, this re-
sults in an important performance decrease. When running PARSEC applications with 32
threads, we experienced a difference in performance between kernels with or without the

automatic thread-disabling feature of 22% on average, and up to 143% for blackscholes.

81



"9UO[® SUIUUNI ST (Y JO 3S0MO[S 91} Uoym :g oseyd UoInoexe-0) 1973030} SUIUULI IR { PUe

VY uoym T aseyd UoImooxe-0)) ‘0100 oY) SULIRys WOl Iojns (q) pue jgouaq (v) jeyy sired suoryesridde HHSYVJ 79 omS31]

(e)

4-0q

(a)

sy

19-44

-9

1913

-1}

ms-ap IA-Ms

19-3p

19-1A

execution time (sec)

0z

or
9
3
0
T

orT

1]
|
Il
Ly

"TFI

82

T 9seyd - uoindexe-0d M

Z 9seyd - uo1Ndexe-03 [

vV - uoljejos! m

4 - Uo1e|os! [



Chapter 7

Conclusions

7.1 Conclusions

Current CMP+SMT architectures provide complex multi-level resource sharing sys-
tems that are hard to analyze. In order to evaluate the performance of such systems,
it is necessary to characterize the hardware resource sharing. Thread placement plays
an important role in performance since it alters the allocation of resources and can help
reduce conflicts between threads. Also, the IBM POWER family offers a thread prioriti-
zation system that changes the distribution of resources inside the core by modifying the

instruction fetch rate of active threads.

In this study we have used the IBM POWERY as an example of the current trend of
TLP processors. It has 8 cores with each one supporting 4-way SMT, while also being the
first processor to feature 4 different levels of resource-sharing. Our methodology consisted
of getting insight on the complex resource sharing system of the POWERT7 processor
with the use of custom micro-benchmarks (METbench) and subsequently applying this
knowledge to real-world parallel applications (PARSEC). We conducted this analysis with

regard to both issues of thread placement and thread prioritization.

We investigated thread placement for 1, 2 and 4 threads in a core and thread priorities
when running 2 and 4 threads simultaneously per core. We drew various useful conclusions
about the resource sharing of the processor, as well as the optimal thread placement and
prioritization under several configurations. In continuation, we applied this knowledge to

the different case studies we executed using parallel applications.

The first case study we performed showed that the optimal number of threads for
parallel applications is usually when using all available contexts (32 in our case) and only

in a few cases the optimal number was half of the available contexts (16). However, we
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noticed that running applications with 16 threads led to a small performance decrease,
which motivated us to co-execute 2 parallel applications with suboptimal thread numbers
in our second case study. In this case, we managed to extract an average of 11.2% per-
formance increase over execution in isolation with proper thread placement. The latter
was counter-intuitive to previous studies, as it was suggested that threads of different
applications should rather not be co-scheduled in the same core due to issues of cache
contention and resource conflicts. Finally, we used the optimal thread placement and ap-
plied thread priorities to show how we can prioritize a critical application or improve total
execution time when co-running parallel applications. In this case we achieved 12.7% of
additional improvement for some pairs. We also noticed the importance of disabling hard-
ware threads. Without using a linux feature that automatically disables unused contexts,

we observed a 22% performance degradation on average.

7.2 Discussion - Future Work

This characterization can have effects on three levels: the Software level, the Operating
System level and the Hardware level.

On the software level, software developers or application users can manually bind
threads to the desired contexts or apply priorities in order to execute a critical workload
optimally. Developers should ideally provide specific application resource requirements,
in order to facilitate thread placement decisions made by the OS.

On the OS level, job schedulers need to become more and more advanced in order to
deal with the increasing problem complexity of thread placement, especially when consid-
ering the heterogenous design of CMP+SMT architectures. The OS can initially schedule
threads on the CMP level, while using the extra SMT contexts for higher thread numbers.
Preferably hardware contexts in the same core should be shared by threads of different
applications, as threads of the same application have more similar resource sharing pro-
files. Additionally, thread re-assigning after the beginning of execution is important when
co-executing two or more applications, or when running applications with load imbalance.
After some threads finish running, the scheduler should bind active threads to their op-
timal placement, based on the conclusions of our study, so that they do not execute in a
suboptimal configuration.

Finally, on the hardware level, processor manufacturers should provide hardware mech-
anisms that allow the OS to control the level of resource sharing between threads. Multi-
threaded processors should also provide better performance counters to identify the sen-

sitivity of each hardware thread to different resources, simplifying the work of the OS to
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better adapt to applications’ varying resource requirements.

Future work involves the development of a dynamic job scheduling mechanism. The
dynamic mechanism should take our conclusions into consideration and automatically de-
cide on the thread number and thread placement in order to improve system performance.
Additionally it could use the thread prioritization mechanism to improve total execution

time for two or more simultaneously executing parallel applications.
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