

Εθνικό Μετσοβίο Πολύτεχνειο

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Δ.Π.Μ.Σ "ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ

ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΥΠΟΣΤΕΓΟΥ ΣΥΝΤΗΡΗΣΗΣ ΑΕΡΟΣΚΑΦΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Του

Ζώταλη Μιχαήλ

Επιβλέπων: Γ. Ιωαννίδης

Καθηγητής Ε.Μ.Π.

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2013

Εθνικό Μετσοβίο Πολύτεχνειο

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Δ.Π.Μ.Σ "Δομοστατικός σχεδιάσμος & ανάλυση κατασκεύων"

ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΥΠΟΣΤΕΓΟΥ ΣΥΝΤΗΡΗΣΗΣ ΑΕΡΟΣΚΑΦΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Του

Ζώταλη Μιχαήλ

Επιβλέπων: Γ. Ιωαννίδης

Καθηγητής Ε.Μ.Π.

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2013

Εθνικό Μετσοβίο Πολύτεχνειο

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Δ.Π.Μ.Σ "ΔΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ & ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ"

ΕΝΑΛΛΑΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΥΠΟΣΤΕΓΟΥ ΣΥΝΤΗΡΗΣΗΣ ΑΕΡΟΣΚΑΦΩΝ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Του

Ζώταλη Μιχαήλ

Εγκρίθηκε από την τριμελή επιτροπή:

Γ. Ιωαννίδης Καθηγητής Ε.Μ.Π.

.....

Ι. Ραυτογιάννης

.....

Επ.Καθηγητής Ε.Μ.Π

Τ. Αβραάμ Λέκτορας Ε.Μ.Π

ΑΘΗΝΑ, ΦΕΒΡΟΥΑΡΙΟΣ 2013

.....

ΜΙΧΑΗΛ Η. ΖΩΤΑΛΗΣ

Διπλωματούχος Πολιτικός Μηχανικός Ε.Μ.Π.

MSc. στο "Δομοστατικό Σχεδιασμό & Ανάλυση Κατασκευών"

Copyright © Ζώταλης Η. Μιχαήλ, 2013 Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Θα ήθελα να εκφράσω τις θερμές μου ευχαριστίες προς τον κ. Γ. Ιωαννίδη, καθηγητή του Εργαστηρίου Μεταλλικών Κατασκευών, του τομέα Δομοστατικής του Εθνικού Μετσόβιου Πολυτεχνείου, για τη συμπαράσταση και τη συμβολή του στην εκπόνηση αυτής της μεταπτυχιακής εργασίας.

Επίσης θα ήθελα να ευχαριστήσω τους γονείς μου για την αμέριστη συμπαράσταση και τη βοήθεια που μου προσέφεραν, ώστε να ολοκληρώσω τις μεταπτυχιακές σπουδές μου αδιάκοπτα και απερίσπαστα.

Αθήνα, ... Φεβρουαρίου 2013 Ζώταλης Μιχαήλ

Περίληψη

Σκοπός της παρούσας μεταπτυχιακής εργασίας είναι η μελέτη και η διαστασιολόγηση εναλλακτικών τρόπων σχεδιασμού ενός υπόστεγου συντήρησης αεροσκαφών. Το υπόστεγο προβλέπεται να έχει τη δυνατότητα ταυτόχρονης φιλοξενίας και συντήρησης δύο αεροσκαφών τύπου ATR72. Ο σχεδιασμός των εναλλακτικών προτάσεων έγινε βάσει των γενικών αρχών που διέπουν την σχεδίαση υπόστεγων και των προδιαγραφών του Ευρωκώδικα 3.

Σε κάθε σύγχρονο αεροδρόμιο είναι εγκατεστημένοι χώροι για τη στάθμευση και τη φύλαξη των αεροσκαφών. Αυτοί οι χώροι συνήθως έχουν την μορφή υπόστεγων μεγάλων ανοιγμάτων. Ανήκουν ως επί το πλείστον σε αεροπορικές εταιρίες ή σε δημόσιους και ιδιωτικούς φορείς που διαχειρίζονται το εκάστοτε αεροδρόμιο. Πέρα από τη στάθμευση και τη φύλαξη των αεροσκαφών, σε αυτούς τους χώρους γίνεται επισταμένος έλεγχος της πτητικής δυνατότητας των αεροσκαφών, επισκευές τυχόν βλαβών τους και γενικά διεργασίες συντήρησης τους. Οι κατασκευές αυτές είναι συνήθως ογκώδεις και δαπανηρές, ενώ απαιτούν εκτεταμένες μελέτες και αυξημένες αντοχές σε οριζόντια φορτία, που κυρίως προέρχονται από τον άνεμο.

Στα πλαίσια λοιπόν αυτής της μεταπτυχιακής εργασίας σχεδιάστηκαν και μελετήθηκαν τρείς διαφορετικής λογικής εναλλακτικές προτάσεις για την κατασκευή ενός τέτοιου υπόστεγου. Αρχικά εντοπίστηκαν κάποιοι γενικοί κατασκευαστικοί περιορισμοί και λειτουργικές προδιαγραφές που αφορούν τα υπόστεγα συντήρησης αεροσκαφών. Κατόπιν βάσει των απαιτήσεων που είχαν τεθεί από τον αριθμό των αεροσκαφών που επρόκειτο να φιλοξενηθούν, υπολογίστηκαν οι πραγματικές απαιτήσεις διαστάσεων των υπόστεγων. Στο επόμενο κεφάλαιο παρουσιάστηκαν εκτενώς οι επιβαλλόμενες στατικές, δυναμικές και παροδικές φορτίσεις, βάσει των Ευρωκωδίκων 0 & 1 και οι συνδυασμοί φορτίσεων στις οριακές καταστάσεις σχεδιασμού. Τα επόμενα τρία κεφάλαια αναλώθηκαν στην περιγραφή των εναλλακτικών προτάσεων υπόστεγου (ένα κεφάλαιο για κάθε πρόταση), στα φορτία που τα επιβαρύνουν και τέλος στα αποτελέσματα της διαστασιολόγησης τους βάσει των κανονισμών του Ευρωκώδικα 3, που αφορά τις μεταλλικές κατασκευές. Στο έκτο κεφάλαιο παρουσιάστηκε η διάταξη της θύρας που προτείνεται για τα τρία υπόστεγα και συγκεκριμένα πως αυτή θα σχεδιαστεί στο υπόστεγο 2. Τέλος στο έβδομο κεφάλαιο έγινε σύγκριση των παραπάνω προτάσεων βάσει ποσοτικών, οικονομικών και λειτουργικών κριτηρίων. Από τη σύγκριση αυτή προέκυψε το συμπέρασμα του μελετητή για το πιο υπόστεγο αποτελεί την λύση που προσφέρει τον καλύτερο συνδυασμό οικονομίας και τήρησης των απαιτήσεων. Στα παρατήματα που συμπληρώνουν την εργασία παρουσιάζονται τα πάνελ που χρησιμοποιήθηκαν για την στέγαση και την πλαγιοκάλυψη των υπόστεγων, στοιχεία που διαστασιολογήθηκαν και ελέγχτηκαν ενδεικτικά για κάθε υπόστεγο με το πακέτο λογισμικού SAP2000v.14, οι ιδιοπερίοδοι του κάθε υπόστεγου, αναλυτικοί υπολογισμοί των ανεμοπιέσεων ενδεικτικά για το υπόστεγο 1, στοιχεία για το χωροδικτύωμα τύπου MERO και τα καλώδια που χρησιμοποιήθηκαν.

Λέξεις Κλειδιά: Υπόστεγο Συντήρησης Αεροσκαφών, ΑΤR72, SAP2000v.14, εναλλακτικές προτάσεις, σύγκριση, μεταλλικό υπόστεγο, καλωδιωτό υπόστεγο, χωροδικτύωμα MERO

Abstract

The purpose of this thesis is the design and sizing of alternative ways of designing an aircraft hangar. The hangar should be capable of simultaneous hosting and maintenance of two, type ATR72, aircrafts. The design of the alternative proposals was based on the general principles governing the design of aircraft hangars and specifications of Eurocode 3.

In any modern airport, they are located spaces for parking and safekeeping of aircrafts. These places usually have the form of large opening hangars. They mostly belong to airline companies or to public or private organizations that manage the airport. Beyond parking and safekeeping of aircrafts, in these areas they closely monitoring the flight ability of aircrafts, repair any possible damage and generally maintain aircrafts. These constructions are usually massive and expensive and require extensive studies and increased resistance to horizontal loads, mainly from the wind.

So in the context of this thesis, three different logic alternatives were designed and sized for the construction of such a hangar. In the beginning, some general construction restrictions related to aircraft hangars and functional requirements were identified. Then based on the requirements that were set by the number of aircrafts that would be accommodated, we calculated the actual dimensional requirements of the hangars. In the next chapter presented extensively imposed static, dynamic and transient loads, based on Eurocodes 0 and 1, and the combinations of loads in limit states design. The next three chapters have been used to describe alternatives hangars (one chapter for each proposal), their loads and the results of the dimensioning on the basis of regulations of Eurocode 3, relating to steel constructions. In the sixth chapter presented the provision of gate proposed for the three hangars and specifically how it will be designed to hangar 2. Finally, in the seventh chapter we compared the above proposals based on quantitative, financial and operational criteria. From this comparison it was concluded by the scholar which is the solution that offers the best combination of economy and compliance requirements. At last annexes completing the paper, present the panels used for roofing and side covering, the elements were tested indicative of each hangar with the software package SAP2000v.14, the natural frequencies of each hangar, analytical calculations for wind cases of hangar 1, data for type MERO space frame and data for the cables used.

Keywords: Aircraft Hangar, ATR72, SAP2000v.14, hangar options, comparison, metal hangars, cable-hangar, space frame MERO

Περιεχόμενα

Πρόλογ	νος1	1
Περίληι	ψη1	5
Abstrac	t1	7
Περιεχά	όμενα	. i
Κατάλο	γος Πινάκων	v
Κατάλο	γος Εικόνωνν	ii
Κατάλο	γος Σχημάτων i	Х
κεφαλ	ΑΙΟ 1: Εισαγωγή3	1
1.1	Αντικείμενο της Εργασίας3	1
1.2	Γεωμετρικές Απαιτήσεις Έργου3	3
1.3	Οργάνωση Τόμου3	6
κεφαλ	ΑΙΟ 2: Φορτία - Συνδυασμοί Φορτίσεων3	7
2.1 N	Λόνιμες Δράσεις (G)3	7
2.1	1.1 Γενικά	7
2.1	1.2 Μόνιμα Φορτία Υπόστεγων3	8
2.2 N	Λεταβλητές Δράσεις (Q)3	9
2.2	2.1 Γενικά	9
2.2	2.2 Μεταβλητά Φορτία Υπόστεγων3	9
2.3 ¢	Οορτίο Ανέμου (WIND)4	0
2.3	3.1 Γενικά4	0
2.3	3.2 Φορτία Ανέμου Υπόστεγων4	7
2.4 ¢	Οορτίο Χιονιού (SNOW)4	8
2.4	4.1 Γενικά4	8
2.4	4.2 Φορτίο Χιονιού Υπόστεγων5	3
2.5 Σ	εισμικά Φορτία (Ε)5	4
2.5	5.1 Γενικά	4
2.5	5.2 Υπολογισμός6	1
2.6 Σ	υνδυασμοί Φορτίσεων6	2
2.6	5.1 Βασικές απαιτήσεις6	2
2.6	5.2 Καταστάσεις σχεδιασμού6	2
2.6	5.3 Συνδυασμοί Δράσεων6	4

2.6.4 Παράμετροι συνδυασμών	65
2.6.5 Φορτία κατασκευής και Συνδυασμοί φόρτισης	67
ΚΕΦΑΛΑΙΟ 3: Υπόστεγο 1 "Πλαίσια Στερεού Σχηματισμού"	69
3.1 Περιγραφή- Γεωμετρία Υπόστεγου	69
3.2 Φορτία Σχεδιασμού Υπόστεγου 1	74
3.2.1 Μόνιμα Φορτία Υπόστεγου 1	74
3.2.2 Μεταβλητά Φορτία Υπόστεγου 1	75
3.2.3 Σεισμικά Φορτία Υπόστεγου 1	76
3.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 1	77
3.3.1 Ανάλυση διαστασιολόγηση	77
3.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου	78
3.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις	79
3.4 Πίνακας Προμέτρησης Υπόστεγου 1	80
ΚΕΦΑΛΑΙΟ 4: Υπόστεγο 2 "Ισχυρού Πλαισίου"	81
4.1 Περιγραφή- Γεωμετρία Υπόστεγου	81
4.2 Φορτία Σχεδιασμού Υπόστεγου 2	85
4.2.1 Μόνιμα Φορτία Υπόστεγου 2	85
4.2.2 Μεταβλητά Φορτία Υπόστεγου 2	86
4.2.3 Σεισμικά Φορτία Υπόστεγου	87
4.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 2	
4.3.1 Ανάλυση διαστασιολόγηση	
4.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου	
4.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις	90
4.4 Πίνακας Προμέτρησης Υπόστεγου 2	91
ΚΕΦΑΛΑΙΟ 5: Υπόστεγο 3 "Ανηρτημένης Στέγης"	93
5.1 Περιγραφή- Γεωμετρία Υπόστεγου	93
5.2 Φορτία Σχεδιασμού Υπόστεγου 3	
5.2.1 Μόνιμα Φορτία Υπόστεγου 3	
5.2.2 Μεταβλητά Φορτία Υπόστεγου 3	
5.2.3 Σεισμικά Φορτία Υπόστεγου 3	
5.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 3	
5.3.1 Ανάλυση διαστασιολόγηση	
5.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου	
5.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις	

5.4 Πίνακας Προμέτρησης Υπόστεγου 3	109
ΚΕΦΑΛΑΙΟ 6:Ενδεικτική Διάταξη Θύρας	111
6.1 Πλαίσιο Κεφαλής	112
6.2 Ιμάντες Άρσης	113
6.3 Θυρόφυλλα	114
6.4 Διάταξη Βάσης	115
6.5 Ράγες Οδηγών	116
6.6 Πίνακας Ελέγχου-Ηλεκτρικός Εξοπλισμός	118
ΚΕΦΑΛΑΙΟ7: Σύγκριση Εναλλακτικών Λύσεων Συμπεράσματα	119
7.1 Γενικά	119
7.2 Σύγκριση κατά Βάρος-Κόστος	120
7.3 Σύγκριση Δυσκαμψίας-Ιδιοπερίοδων	122
7.4 Σύγκριση Μέγιστων Μετακινήσεων-Βυθίσεων	123
7.5 Συμπεράσματα	124
Παράρτημα Α	127
Παράρτημα Β	131
Παράρτημα Γ	143
Παράρτημα Δ	151
Παράρτημα Ε	161
Παράρτημα ΣΤ	173
Παράρτημα Ζ	175
Βιβλιογραφία	177

Κατάλογος Πινάκων

Пілаках 1- Геліка Характнріхтіка ATR 7234
Πινακάς 2- Γεωμετρικές απαιτήσεις αεροσκαφών35
Πινακάς 3- Κατηγορίες φορτιζομένων επιφανείων στέγμς
Пілаках 4- Фортіа катнгоріах Н
Πινακάς 5- Κατηγορίες και Παραμέτροι εδαφούς40
Πινακάς 6-Προτεινομένες τίμες σύντελεστών εξωτερικής πιέσης για κατακορύφος τοιχούς κτηριών ορθογωνικής
катоψнΣ45
ΠΙΝΑΚΑΣ 7-ΣΥΝΤΕΛΕΣΤΕΣ ΕΞΩΤΕΡΙΚΗΣ ΠΙΕΣΗΣ ΓΙΑ ΔΙΚΛΙΝΕΙΣ ΣΤΕΓΕΣ
ΠΙΝΑΚΑΣ 8- ΣΥΝΤΕΛΕΣΤΕΣ ΕΞΩΤΕΡΙΚΗΣ ΠΙΕΣΗΣ ΓΙΑ ΔΙΚΛΙΝΕΙΣ ΣΤΕΓΕΣ
Πινακάς 9- Κατηγορίες Σπουδαιότητας για κτηρία, Σύντελέστες Σπουδαιότητας και Σύντελέστης Μείωσης ν για τη
σεισμική δράση περιορισμού βλαβών55
Πινακάς 10- Κατηγορίες εδαφούς κατά ΕC8
ΠΙΝΑΚΑΣ 11- ΜΕΓΙΣΤΕΣ ΤΙΜΕΣ ΕΠΙΤΑΧΥΝΣΗΣ
Πινακάς 12- Παραμέτροι οριζοντίου ελαστικού φασματός για τις τυποποιημένες κατηγορίες εδαφούς σύμφωνα
ME TON EC8
Πινακάς 13- Προτεινομένες τίμες των σύντελεστών ψ για κτήρια
ΠΙΝΑΚΑΣ 14- ΤΙΜΕΣ ΣΧΕΔΙΑΣΜΟΥ ΔΡΑΣΕΩΝ ΣΤΟΥΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΟΥΣ ΣΥΝΔΥΑΣΜΟΥΣ ΓΙΑ Ο.Κ.Α
Πινακάς 15- Τίμες σχεδιάσμου δράσεων στους σύνδυασμούς τυχηματικών και σεισμικών δράσεων για ΟΚΑ66
Πινακάς 16- Τίμες σχεδιάσμου δράσεων για χρήση κατά τον σύνδυασμό δράσεων.
Πινακάς 17- Πινακάς Προμετρήσης Υποστέγου 180
ΠΙΝΑΚΑΣ 18-ΠΙΝΑΚΑΣ ΠΡΟΜΕΤΡΗΣΗΣ ΥΠΟΣΤΕΓΟΥ 291
Πινακάς 19-Πινακάς Προεντάσεως Καλωδίων Φατνώματος Υπόστεγο 3
Πινακάς 20-Παραμέτροι Μη γραμμικής Αναλύσης
Πινακάς 21-Πινακάς Προμετρήσης Υποστέγου 3
Πινακάς 22-Σύνολικος Πινακάς Προμετρήσης Υποστεγών
Πινακάς 23-Πινακάς Κοστούς Υποστεγών
Πινακάς 24-Πινακάς Δυσκαμψίας Υποστεγών
Πινακάς 25-Πινακάς Μεγιστών Μετακινήσεων-Βυθισέων Υποστεγών
Πινακάς 26-Πινακάς Ελεγχου Μετακινήσεων-Βυθισέων

Κατάλογος Εικόνων

Εικονα 1-Υποστεγο Σκυροδεματός	32
Εικονα 2-Μεταλλικό Υποστεγο	32
Εικονά 3-Υπόστεγο Μεταλλικο-Μεμβρανής	33
Είκονα 4-Ξυλινό Υποστεγό	33
EIKONA 5- ATR 72	34
Еікола 6- Томн Үпохтегоу	35
Είκονα 7-Αποτελεσματά Αναλύσης Υποστεγού 1 σε Χρωματική Κλιμακά ΒΑ αποψη	77
Είκονα 8- Αποτελεσματά Αναλύσης Υποστεγού 1 σε Χρωματική Κλιμακά ΝΔ αποψή	77
Εικόνα 9-Κύρια Ιδιομορφή κατα Χ	78
Εικονά 10-Κύρια Ιδιομορφή κατα Υ	78
Είκονα 11-Αποτελέσματα Αναλύσης Υποστεγού 2 σε Χρωματική Κλιμακά ΒΑ αποψή	
Είκονα 12-Αποτελέσματα Αναλύσης Υποστεγού 2 σε Χρωματική Κλιμακά ΝΔ αποψη	
Εικονά 13-Κύρια Ιδιομορφή κατά Χ	
Εικονά 14-Κύρια Ιδιομορφή κατά Υ	
Είκονα 15- Αποτελέσματα Αναλύσης Υποστέγου 3 σε Χρωματική Κλιμακά ΒΑ αποψή	
Είκονα 16- Αποτελέσματα Αναλύσης Υποστέγου 3 σε Χρωματική Κλιμακά ΝΔ αποψή	
Εικονά 17-Κύρια Ιδιομορφή κατά Χ	
Εικονά 18-Κύρια Ιδιομορφή κατα Υ	
Είκονα 19-Εποπτική Είκονα Θύρας \$1500	112
ΕΙΚΟΝΑ 20-ΤΜΗΜΑΤΑ ΘΥΡΑΣ MEGADOOR S1500	115
Εικόνα 21-Δικλίδα Ασφαλείας- Κλείδωμα Αερά	116
Εικόνα 22- Ραγές Οδηγών Θυρας	116
Εικονά 23-Γενικές Διαστάσεις Θύρας	

i

Κατάλογος Σχημάτων

Σχηματά 1- Διαγραμμά Σύντελεστή Έκθεσης	41
Σχήματα 2- Διαγραμμά σύντελεστη $C_s C_d$	42
Σχηματά 3- Ύψος αναφοράς Ζε	43
Σχήματα 4- Υπομνήμα για κατακορύφους τοιχούς	44
Σχήματα 5- Υπομνήμα για δικλινείς στέγες	45
Σχήματα 6- Σύντελεστής σχήματος φορτίου χιόνιου	49
Σχήματα 7- Ελαστικό φασμά ΕC8 στην οριζοντία διευθύνση για απόσβεση 5%	57
Σχηματά 8-Κατοψή Υποστεγο 1	69
Σχηματα 9-Βορεία Όψη Υποστεγο 1	69
Σχήματα 10-Βορείο-Ανατολική Άποψη Υποστεγού 1	70
Σχήματα 11-Νοτίο Δυτική Άποψη Υποστέγου 1	70
Σχήματα 12-Τρίπλη Κεφαλοδοκός & Ενδιαμέση Δοκός	71
Σχήματα 13-Άποψη Τυπικού Πλαιδιού Υποστεγο 1	72
Σχήματα 14-Άποψη Ζύγωματος Υποστεγό 1	72
Σχήματα 15-Άποψη Υποστύλωματος & Κομβού Υποστείο 1	73
Σχήματα 16-Άποψη Βορείου Τοιχού Υποστεγο 1	74
Σχήματα 17-Προσανατολισμός Υποστεγού	75
Σχήματα 18-Κατοψή Υποστεγο 2	81
Σχήματα 19-Βορεία Όψη Υποστέγο 2	81
Σχήματα 20-Νοτία Όψη Υποστεγο 2	81
Σχήματα 21-Βορείο Ανατολική Άποψη Υποστεγο 2	82
Σχήματα 22-Νοτίο Δυτική Άποψη Υποστέγο 2	82
Σχήματα 23-Κεφαλοδοκός & Ενδιαμέση Δοκός	83
Σχήματα 24-Στιβάρο Πλαίδιο Νότιας Όψης	83
Σχήματα 25-Ζύγωμα Στιβαρού Πλαισίου	84
Σχήματα 26-Υποστύλωμα Στιβαρού Πλαισίου	84
Σχήματα 27-Εγκαρδίο Πλαίδιο Υποστέγο 2	85
Σχήματα 28-Βορεία Όψη Υποστέγο 3	93
Σχήματα 29-Ανατολική Όψη Υποστεγο 3	93
Σχήματα 30-Κατοψή Υποστεγο 3	94
Σχήματα 31-Βορείο Ανατολική Άποψη Υποστεγο 3	95
Σχήματα 32-Νοτίο Δυτική Άποψη Υποστέγο 3	95
Σχήματα 33-Χωροδικτύωμα Στέγης Υποστέγο 3	96
Σχήματα 34-Ενισχύμενη Ζώνη Υποστείο 3	97
Σχήματα 35- Αναρτήρες-Ενισχύμενες Ζώνες Φατνώματος Υπόστεγο 3	97
Σχηματά 36-Σύστημα Καλωδίωσης Φατνώματος Υπόστεγο 3	98
Σχήματα 37- Μορφώση Πύλωνα Υποστείο 3	99
Σχηματά 38-Σύνδεση Χωροδικτύωματος Πύλωνα	
Σχηματά 39-Κεφαλοδοκοί Εγκαρσίας Σύνδεσης Πύλωνων	
Σχηματά 40-Κατακορύφοι Χιάστοι Σύνδεσμοι Δυσκαμψίας Α&Δ Πλευράς Υπόστεγο 3	
Σχηματά 41- Κατακορύφοι Χιάστοι Σύνδεσμοι Δυσκαμψίας Βόρειο Τμήμα Υποστεγό 3	
Σχηματά 42-Διάταξη Θύρας. Υπόστεγο 2 Κλειστή	
Σχήματα 43-Διάταξη Θύρας Υποστέγο 2 Πληρώς Ανοιχτή	

ΚΕΦΑΛΑΙΟ 1: Εισαγωγή

1.1 Αντικείμενο της Εργασίας

Ένα αεροδρόμιο θα μπορούσαμε να το περιγράψουμε γενικά, ως ένα συγκρότημα αποτελούμενο από ειδικά κτήρια και ειδικές κατασκευές. Στις ειδικές κατασκευές εντάσσονται οι αεροδιάδρομοι, οι αυξημένης χωρητικότητας χώροι στάθμευσης και οι πλατφόρμες επιβίβασης-αποβίβασης επιβατών, ενώ στα ειδικά κτήρια οι χώροι αναμονής και αναψυχής, ο πύργος ελέγχου και τα υπόστεγα στάθμευσης και συντήρησης αεροσκαφών. Αυτά λοιπόν τα υπόστεγα θα αποτελέσουν το αντικείμενο της παρούσας μεταπτυχιακής εργασίας. Αρχικά ας δούμε πως ορίζεται ένα υπόστεγο συντήρησης αεροσκαφών, ποιος είναι ο σκοπός του, ποιο είναι το μέγεθός του, ποιοι οι κατασκευαστικοί του περιορισμοί, ποιες είναι οι λειτουργικές του απαιτήσεις και τέλος τι υλικά χρησιμοποιούνται για την ανέγερσή του.

Τα υπόστεγα συντήρησης αεροσκαφών (ΥΣΑ), όπως ήδη αναφέραμε, εντάσσονται στα ειδικά κτήρια. Σκοπός τους είναι η φύλαξη των αεροσκαφών, ο καθαρισμός τους, η επισκευή τους, ο έλεγχος της πτητικής τους δυνατότητας και μια σειρά ανάλογων εργασιών, οι οποίες συνοψίζονται στον όρο "συντήρηση αεροσκαφών".

Λόγω των διαστάσεων των αεροσκαφών που φιλοξενούνται σε αυτούς τους χώρους προκύπτει άμεσα η κατασκευαστική απαίτηση ανοιγμάτων μεγάλου εύρους και μάλιστα χωρίς αυτά να διακόπτονται από ενδιάμεσα υποστυλώματα και γενικότερα από άλλα δευτερεύοντα, φέροντα ή μη, στοιχεία. Επιπλέον σημαντική είναι η απαίτηση αυτού του είδους των κατασκευών για αυξημένη ανθεκτικότητα έναντι ισχυρών ανεμοπιέσεων. Οι γεωγραφικές θέσεις που επιλέγονται για τα ΥΣΑ είναι συνήθως περιοχές εκτεθειμένες στον άνεμο (ακτές- πεδιάδες με χαμηλή βλάστηση). Σε συνδυασμό δε με τις μεγάλες κάθετες επιφάνειές τους, καθιστούν τις πιέσεις του ανέμου καθοριστική φόρτιση και πρέπει να γίνεται επαρκής και επιμελής μελέτη τους.

Όσον αφορά της λειτουργικές τους απαιτήσεις, εξαρτώνται από το μέγεθος και το είδος των αεροσκαφών που πρόκειται να φιλοξενηθούν. Η βασικότερη είναι η ανάγκη μεγάλου εύρους θύρας ώστε να καθίσταται η είσοδος-έξοδος των αεροσκαφών εύκολη, γρήγορη και όσο το δυνατόν πιο ασφαλής. Ενίοτε υπάρχει και η απαίτηση εγκατάστασης γερανογέφυρας (μικρής ανυψωτικής ικανότητας), ώστε να εξυπηρετούνται οι "βαριές" από τις εργασίες συντήρησης.

Ανάλογα με το εύρος του ανοίγματος τους, τα υπόστεγα συντήρησης αεροσκαφών κατατάσσονται ενδεικτικά στις παρακάτω κατηγορίες:

<u>Μέγεθος</u>		<u>Εύρος Ανοίγματος (m)</u>
S	-	Λιγότερο από 30 m
Μ	-	30 m – 60 m
L	-	60 m – 90 m

XL	-	90 m – 120 m
XXL	-	Περισσότερο από 120 m

Το ύψος τους κυμαίνεται ανάλογα με το είδος του φορέα και το υλικό-τεχνοτροπία κατασκευής που έχουν επιλεγεί.

Τα υλικά που χρησιμοποιούνται για την κατασκευή των υπόστεγων ποικίλουν. Τα υπόστεγα μικρών (S), μεσαίων (M) και μεγάλων (L) διαστάσεων κατασκευάζονται ως επί το πλείστον από σκυρόδεμα (Εικόνα-1-) ή από χάλυβα (Εικόνα-2-) ή από συνδυασμό των δύο υλικών σε σύμμικτα κτήρια.

Εικόνα 1-Υπόστεγο Σκυροδέματος

Εικόνα 2-Μεταλλικό Υπόστεγο

Για υπόστεγα πολύ μεγάλων διαστάσεων επιλέγονται ξεχωριστές κατασκευές με κυρίαρχα υλικά το δομικό χάλυβα, τις μεμβράνες (Εικόνα-3-)και πιο σπάνια συστήματα καλωδίωσης. Τέλος σε χώρες όπου η ξύλινες κατασκευές είναι διαδεδομένες, μπορεί να συναντήσει κανείς υπόστεγα κατασκευασμένα με βασικό υλικό το ξύλο (Εικόνα-4-). Αυτά τα υπόστεγα συνήθως προορίζονται για τη φιλοξενία μικρών μονοκινητήριων αεροσκαφών.

Εικόνα 3-Υπόστεγο Μεταλλικό-Μεμβράνης

Εικόνα 4-Ξύλινο Υπόστεγο

Η μελέτη ενός μεγάλου μεταλλικού (L) υπόστεγου συντήρησης αεροσκαφών θα αποτελέσει αντικείμενο της παρούσας μεταπτυχιακής εργασίας. Θα μελετηθούν και θα παρουσιαστούν τρεις εναλλακτικοί τρόποι σχεδίασης του υπόστεγου και θα επιχειρηθεί μια σύγκριση των φορέων τόσο ποσοτικά όσο και ποιοτικά. Τέλος θα εξαχθούν τα ανάλογα συμπεράσματα για την προσφορότερη μορφή σχεδίασης του υπόστεγου.

1.2 Γεωμετρικές Απαιτήσεις Έργου

Το υπόστεγο που θα μελετηθεί προορίζεται για την ταυτόχρονη φιλοξενία δύο πολιτικών αεροσκαφών τύπου ATR 72. Τα χαρακτηριστικά και οι διαστάσεις του αεροσκάφους παρουσιάζονται στον παρακάτω πίνακα:

Γενικά χαρακτηριστικά Αεροσκάφους ATR 72		
Πλήρωμα	2	
Θέσεις επιβατών	64-72	
Μήκος	27,17m	
Άνοιγμα φτερών	27,05m	
Μέγιστο Ύψος	7,65m	
Καθαρό Βάρος	12.950kg	
Μέγιστο Βάρος Απογείωσης	22.500kg	

Πίνακας 1- Γενικά Χαρακτηριστικά ATR 72

και δίνονται εποπτικά στο παρακάτω σκαρίφημα:

Εικόνα 5- ATR 72

Μεταξύ των αεροσκαφών καθώς και ανάμεσα στα αεροσκάφη και τους εξωτερικούς τοίχους προβλέπονται διάδρομοι πλάτους 5m. Σκοπός των διαδρόμων είναι να εκτελούνται άνετα και με ασφάλεια οι οποιεσδήποτε εργασίες συντήρησης των αεροσκαφών, τόσο από ανθρώπινο δυναμικό όσο και από κατάλληλο μηχανικό εξοπλισμό. Επίσης για τον ίδιο λόγο διάδρομοι πλάτους 6m προβλέπονται μπροστά και πίσω από τα αεροσκάφη.

Άρα προκύπτουν οι παρακάτω συνολικές απαιτήσεις διαστάσεων κάτοψης και ύψους.

L= Μήκος ATR 72 + (2 x Πλάτος Διαδρόμου) = 27,17m + 2 x 6m = 39,17m ≈ **40,00m** L= **40,00m**

W= (2 x Άνοιγμα Φτερών) + (3 x Πλάτος Διαδρόμου) = 2 x 27,05m + 3 x 5m = 69,10m **W**= **70,00m**

Η≥Ύψος Αεροσκάφους=7,65m

H≥7,65m

Εικόνα 6- Τομή Υπόστεγου

Συνοπτικά ακολουθούν οι γενικές γεωμετρικές απαιτήσεις του υπό-μελέτη υπόστεγου συντήρησης αεροσκαφών:

Πίνακας 2- Γεωμετρικές απαιτήσεις αεροσκαφών

Γεωμετρικές Απαιτήσεις (m)			
Πλάτος	≥70,00m		
Μήκος	≥40,00m		
Ύψος	≥07,65m		

1.3 Οργάνωση Τόμου

Ο τόμος της παρούσας μεταπτυχιακής εργασίας είναι οργανωμένος σε εφτά κεφάλαια, σύμφωνα με την παρακάτω κατηγοριοποίηση:

- Κεφάλαιο 1: Το κεφάλαιο 1 είναι εισαγωγικό. Κάνει μια γενική αναφορά στα υπόστεγα συντήρησης αεροσκαφών, στο αντικείμενο και στο στόχο της μεταπτυχιακής εργασίας, τις γενικές γεωμετρικές απαιτήσεις του έργου και παρουσιάζει την οργάνωση του τόμου.
- Κεφάλαιο 2: Το κεφάλαιο 2 αναφέρεται στα φορτία, όπως αυτά ορίζονται από τον Ευρωκώδικα 1. Γίνεται ιδιαίτερη αναφορά στον τρόπο υπολογισμού των φορτίων του χιονιού, του ανέμου και των σεισμικών δράσεων. Τέλος παρουσιάζονται οι συνδυασμοί φορτίσεων βάσει των οποίων θα γίνει ο σχεδιασμών των υπόστεγων.
- Κεφάλαιο 3: Στο κεφάλαιο 3 παρουσιάζεται η πρώτη εναλλακτική μορφή σχεδίασης του υπόστεγου συντήρησης αεροσκαφών. Παρουσιάζονται αναλυτικά η μορφή και οι διαστάσεις του, καθώς και τα αποτελέσματα της διαστασιολόγησης του.
- Κεφάλαιο 4: Στο 4° κεφάλαιο παρουσιάζεται η δεύτερη πρόταση σχεδίασης του υπόστεγου συντήρησης αεροσκαφών. Αναλύεται η μορφή και οι διαστάσεις του και παρουσιάζονται αναλυτικά τα αποτελέσματα της διαστασιολόγησης του σε χρωματική κλίμακα.
- Κεφάλαιο 5: Στο κεφάλαιο 5 παρουσιάζεται η τρίτη εναλλακτική μορφή σχεδίασης του υπόστεγου συντήρησης αεροσκαφών. Επιπλέον περιγράφεται η μορφή του και τα στοιχεία που το συνθέτουν. Τέλος δίνονται τα αποτελέσματα της διαστασιολόγησης του.
- Κεφάλαιο 6: Στο 6° κεφάλαιο περιγράφεται ενδεικτικά η διάταξη της θύρας του υπόστεγου 2 και αναλύονται τα στοιχεία που τη συνθέτουν.
- Κεφάλαιο 7: Το κεφάλαιο 7 συνοψίζει τα αποτελέσματα και συγκρίνει μεταξύ τους τις εναλλακτικές λύσεις. Καταλήγει σε συγκεντρωτικά συμπεράσματα και επιχειρεί την επιλογή του προσφορότερου υπόστεγου από οικονομική αλλά και τεχνική άποψη.
ΚΕΦΑΛΑΙΟ 2: Φορτία - Συνδυασμοί Φορτίσεων

Ανάλογα με τη χρήση, τη θέση και την μορφή κάθε έργου, προσδιορίζονται οι δράσεις με τις οποίες ο μελετητής θα αναλύσει το φορέα, για να προσδιορίσει τελικά τα δυσμενέστερα εντατικά και παραμορφωσιακά μεγέθη των μελών του. Σ' αυτή τη μεταπτυχιακή εργασία οι δράσεις ακολουθούν τις κανονιστικές διατάξεις του Ευρωκώδικα 1 (ΕΝ1991).

Σύμφωνα με τον Ευρωκώδικα 1 (ΕΝ1991) οι δράσεις κατατάσσονται ως εξής:

- Ανάλογα με τη μεταβολή τους στη διάρκεια του χρόνου:
 - ⇒ Μόνιμες (G), πχ. ίδιο βάρος του φορέα, επικαλύψεις, διαχωριστικά, βοηθητικές κατασκευές και σταθερός εξοπλισμός.
 - ⇒ Μεταβλητές (Q), πχ. κινητά φορτία, άνεμος ή χιόνι.
 - Τυχηματικές (A), πχ. εκρήξεις ή πρόσκρουση από όχημα.
- Ανάλογα με τη μεταβολή του στο χώρο:
 - ⇒ Σταθερές
 - ⇒ Ελεύθερες
- Ανάλογα με τη φύση τους ή/και την απόκριση του φορέα:
 - ⇒ Στατικές
 - ⇒ Δυναμικές

Τα φορτία που χρησιμοποιήθηκαν στην ανάλυση-διαστασιολόγησή των υπόστεγων συντήρησης αεροσκαφών που μελετήθηκαν στην παρούσα εργασία παρουσιάζονται στις παρακάτω παραγράφους. Ποσοτικοποίηση των φορτίων θα γίνει στα επιμέρους κεφάλαια που αφορούν την κάθε εναλλακτική λύση.

2.1 Μόνιμες Δράσεις (G)

2.1.1 Γενικά

Σε αυτή την κατηγορία δράσεων ανήκουν οι δράσεις που προκύπτουν από το ίδιο βάρος των στοιχείων της κατασκευής. Τα στοιχεία αυτά μπορεί να είναι φέροντα ή μη φέροντα και το ίδιο βάρος τους υπολογίζεται γενικά βάσει των ονομαστικών τους διαστάσεων και των χαρακτηριστικών τιμών των πυκνοτήτων τους. Στα μη φέροντα στοιχεία συμπεριλαμβάνονται μεταξύ άλλων:

- Επιστρώσεις δαπέδων, διαμορφώσεις και επικαλύψεις.
- Επικαλύψεις δώματος.
- Διαχωριστικά πετάματα.
- Κιγκλιδώματα και στηθαία ασφαλείας.
- Τοιχοποιία, επιχρίσματα και στοιχεία επένδυσης τοίχων.
- Ψευδοροφές/ αναρτημένες οροφές.
- Θερμομόνωση.
- Μόνιμες εγκαταστάσεις εξυπηρέτησης (Η/Μ εγκαταστάσεις), όπως πχ. εξοπλισμός για ανελκυστήρες και κυλιόμενες σκάλες, εξοπλισμό θέρμανσηςεξαερισμού-κλιματισμού, ηλεκτρικό εξοπλισμό, σωλήνες χωρίς το περιεχόμενο τους, καλώδια και αγωγούς καλωδίων.

2.1.2 Μόνιμα Φορτία Υπόστεγων

Τα μόνιμα φορτία που χρησιμοποιήθηκαν στη μελέτη των ΥΣΑ σύμφωνα με την ονομασία που του δόθηκε από τον μελετητή είναι τα εξής:

- <u>Ίδιο Βάρος Στοιχείων (DEAD</u>): Στην κατηγορία αυτή ανήκουν τα ίδια βάρη όλων των μεταλλικών μελλών της κατασκευής που δεν παρουσιάζονται σε κάποια άλλη ειδικότερη κατηγορία από αυτές που ακολουθούν. Για τον υπολογισμό της τιμής του φορτίου αυτού χρησιμοποιείται ως δεδομένο εκτός από τις διαστάσεις του κάθε μέλους και το ειδικό βάρος του χάλυβα. Το ειδικό βάρος του χάλυβα που χρησιμοποιείται στην κατασκευή μας (S355) σύμφωνα με τον ΕC προσδιορίζεται από τα πρότυπα για το χάλυβα ΕΛΟΤ 1421 και παίρνει την τιμή 78,5 KN/m³.
- <u>Μόνιμο Στέγης (ROOF DEAD)</u>: Σε αυτή την κατηγορία ανήκουν το ίδιο βάρος του επιστεγάσματος (πάνελ πολυουρεθάνης), της απαιτούμενης μόνωσης και του ηλεκτρομηχανολογικού εξοπλισμού.
- <u>Ίδιο Βάρος Τεγίδων:</u> Σε αυτή την κατηγορία ανήκει αποκλειστικά το ίδιο βάρος των τεγίδων της κατασκευής το οποίο υπολογίζεται χωριστά. Ο λόγος της διαφοροποίησης αυτής είναι θέμα απλοποίησης των μοντέλων που εισάγονται στο πρόγραμμα με τα οποία θα γίνει η ανάλυση και η διαστασιολόγηση των υπόστεγων. Η τιμή θα προκύψει από τις διαστάσεις των διατομών, του φορέα και από το ειδικό βάρος του χάλυβα (S355) που σύμφωνα με τον EC και ειδικότερα από τα πρότυπα για το χάλυβα EΛΟΤ 1421 παίρνει την τιμή 78,5 kN/m³.

2.2 Μεταβλητές Δράσεις (Q)

2.2.1 Γενικά

Τα φορτία αυτά προκύπτουν από τη χρήση (φυσιολογική, ή σπάνια αλλά αναμενόμενη, π.χ. στοίβαξη κινητού εξοπλισμού, οχημάτων, συγκέντρωση ατόμων). Λόγω της φύσεως των φορτίων αυτών, δεν είναι ακριβής η τιμή και η θέση τους, γι' αυτό και προσδιορίζονται στατιστικά, οι δε τιμές εφαρμογής τους δίνονται από τον κανονισμό σύμφωνα με τον ECO.

2.2.2 Μεταβλητά Φορτία Υπόστεγων

Το κινητό φορτίο που χρησιμοποιήθηκε στη μελέτη των ΥΣΑ σύμφωνα με την ονομασία που του δόθηκε από τον μελετητή είναι το εξής:

 <u>Κινητό στέγης (ROOF LIVE)</u>: οι στέγες θα κατατάσσονται σε τρεις κατηγορίες ανάλογα με την προσβασιμότητα τους, όπως φαίνεται στον ακόλουθο πίνακα:

Κατηγορίες φορτιζόμενων επιφανειών	Συγκεκριμένη Χρήση
Н	Στέγες μη-προσβάσιμες παρά μόνο για
	την κανονική συντήρηση και για επισκευή.
I	Στέγες προσβάσιμες για χρήση σύμφωνα
	με τις κατηγορίες Α έως D
ĸ	Στέγες προσβάσιμες για ειδικές χρήσεις,
	όπως ελικοδρόμια

Πίνακας 3- Κατηγορίες φορτιζόμενων επιφανειών στέγης

Τα επιβαλλόμενα φορτία για τις στέγες της κατηγορίας Η συνοψίζονται στον επόμενο πίνακα:

Πίνακας 4- Φορτία κατηγορίας Η

Στέγη (κλίση < 20°)	q _k [kN/m²]	Q _k [kN]	
Κατηγορία Η	0,5	1,0	
ΣΗΜΕΙΩΣΗ : Το q _k μπορεί να θεωρηθεί ότι δρα είτε σε όλη τη στέγη είτε σε ένα τμήμα της			

ΣΗΜΕΙΩΣΗ : Το q_k μπορεί να θεωρηθεί οτι όρα είτε σε όλη τη στεγή είτε σε ένα τμήμα τ στέγης εμβαδού, πάντως όχι μικρότερου, των 10m².

Για τις στέγες θα πρέπει να πραγματοποιούνται ξεχωριστοί έλεγχοι για το συγκεντρωμένο φορτίο Q_k και το ομοιόμορφα κατανεμημένο φορτίο q_k, που δρουν ανεξάρτητα. Επίσης (με εξαίρεση αυτές που αποτελούνται από χαλυβδόφυλλα) θα πρέπει να σχεδιάζονται έτσι ώστε να αντέχουν σε ένα φορτίο 1,50KN που επιβάλλεται μέσω μιας τετράγωνης επιφάνειας πλευράς 50mm. Αυτό το συγκεντρωμένο φορτίο θα λαμβάνεται επίσης υπόψη ως ελάχιστο για τον έλεγχο διαδρομών σε εγκαταστάσεις εξυπηρέτησης, επιθεώρησης. Τμήματα στεγών που απαρτίζονται από ελάσματα ή μη συνεχή στοιχειά θα σχεδιάζονται έτσι ώστε το συγκεντρωμένο φορτίο Q_k να δρα επί της ενεργούς επιφάνειας που δημιουργείται μέσω διατάξεων διανομής του φορτίου.

2.3 Φορτίο Ανέμου (WIND)

2.3.1 Γενικά

Ο υπολογισμός των δράσεων του ανέμου στο κτήριο αλλά και στα επιμέρους στοιχεία του βασίστηκε στους κανόνες και τις μεθόδους που ορίζει ο Ευρωκώδικας 1, Μέρος 1-4, για έργα πολιτικού μηχανικού ύψους μέχρι και 200m. Οι δράσεις του ανέμου κατατάσσονται στις μεταβλητές καθορισμένες δράσεις και ως έτσι θα ληφθούν υπόψη στους συνδυασμούς των δράσεων σχεδιασμού σε οριακή κατάσταση αστοχίας (OKA-DLS) και σε οριακή κατάσταση λειτουργικότητας (OKA-SLS), που παρατίθενται σε επόμενη ενότητα.

Κατηγορίες εδάφους- Παράμετροι εδάφους

Το έδαφος χωρίζεται σε τέσσερις κατηγορίες ανάλογα με το ανάγλυφο της περιοχής, την τραχύτητα του εδάφους και το ύψος των εμποδίων σε σχέση με τη μεταξύ τους απόσταση. Οι κατηγορίες και οι αντίστοιχες παράμετροί τους παρουσιάζονται στον παρακάτω πίνακα.

	Κατηγορία εδάφους	z _o m	z _{min} M
0	Θάλασσα ή παράκτια περιοχή εκτεθειμένη σε ανοικτή θάλασσα	0,003	1
I	Λίμνες ή επίπεδες και οριζόντιες περιοχές με αμελητέα βλάστηση και χωρίς εμπόδια	0,01	1
11	Περιοχή με χαμηλή βλάστηση όπως γρασίδι και μεμονωμένα εμπόδια (δέντρα, κτίρια) με απόσταση τουλάχιστον 20 φορές το ύψος των εμποδίων	<mark>0,05</mark>	2
111	Περιοχή με κανονική κάλυψη βλάστησης ή με κτίρια ή με μεμονωμένα εμπόδια με μέγιστη απόσταση το πολύ 20 φορές το ύψος των εμποδίων (όπως χωριά, προάστια, μόνιμα δάση)	0,3	5
IV	Περιοχή όπου τουλάχιστον το 15% της επιφάνειας καλύπτεται με κτίρια των οποίων το μέσο ύψος ξεπερνά τα 15m.	1,0	10

Πίνακας 5- Κατηγορίες και Παράμετροι εδάφους

<u>Πίεση ταχύτητας αιχμής qp(z)</u>

Η πίεση ταχύτητας αιχμής σε ύψος z, δίδεται από την παρακάτω σχέση:

$q_{p}(z)=[1+7\times I_{v}(z)]\times 0.5\times \rho \times v_{m}^{2}(z)$

όπου:

- ρ είναι η πυκνότητα του αέρα που εξαρτάται από το υψόμετρο, τη θερμοκρασία και τη βαρομετρική πίεση που αναμένονται σε μια περιοχή κατά τη διάρκεια ανεμοθύελλας (p=1,25kg/m³)
- $I_v(z)$ είναι η ένταση στροβιλισμού σε ύψος z, η οποία υπολογίζεται από τις σχέσεις:

 $I_{\nu}(z) = k_i / (c_0(z) \times I_n(z/z_0))$ για $z_{min} \le z \le z_{max}$
 $I_{\nu}(z) = I_{\nu}(z_{min})$ για $z < z_{min}$

 όπου:
 k

 κ
 συντελεστής στροβιλισμού (ίσος με τη μονάδα)

 $c_{e}(z)$ είναι ο συντελεστής έκθεσης, ο οποίος δίνεται από τη σχέση:

$$c_e(z)=q_p(z)/q_b$$

ή

για επίπεδο έδαφος και ανάλογα με την κατηγορία του εδάφους δίνεται από το παρακάτω διάγραμμα:

Σχήματα 1- Διάγραμμα Συντελεστή Έκθεσης

<u>Βασική πίεση q_b</u>

Η βασική πίεση δίνεται από τη σχέση:

$q_b=0,5\times\rho\times v_b^2$

όπου:

ν_b είναι η βασική ταχύτητα του, που ορίζεται συνάρτηση της εποχής του έτους και της
 διεύθυνσης του ανέμου, σε ύψος 10m πάνω από έδαφος κατηγορίας ΙΙ, από τη
 σχέση:

$v_b = c_{dir} \times c_{season} x v_{b,0}$

όπου:

- c_{dir} είναι ο συντελεστής διεύθυνσης (λαμβάνεται ίσος με τη μονάδα)
- c_{season} είναι ο συντελεστής εποχής (λαμβάνεται ίσος με τη μονάδα)
- $v_{b,0}$ είναι η τιμή της βασικής ταχύτητας του ανέμου.

<u>Μέση ταχύτητα ανέμου vm(z)</u>

Μέση ταχύτητα ανέμου ν_m(z) είναι η μέση ταχύτητα του ανέμου σε ύψος z από το έδαφος και εξαρτάται από την τραχύτητα του εδάφους και την τοπογραφική διαμόρφωση. Δίνεται από τη σχέση:

$v_m(z)=c_r(z)\times c_0(z)\times v_b$

όπου:

- c_r(z) είναι ο συντελεστής τραχύτητας
- $c_0(z)$ είναι ο συντελεστής τοπογραφικής διαμόρφωσης (προτεινόμενη τιμή 1,00)

<u>Δυναμικός συντελεστής c_sc_d</u>

Ο συντελεστής αυτός απαρτίζεται από δύο επιμέρους παραμέτρους, την παράμετρο **c**₅, η οποία λαμβάνει υπόψη της τη μειωτική επίδραση στη δράση του ανέμου λόγω μη ταυτόχρονης ύπαρξης των πιέσεων αιχμής από άνεμο επί της επιφάνειας, και τη δυναμική παράμετρο **c**_d, που λαμβάνει υπόψη της την αυξημένη επίδραση των ταλαντώσεων λόγω στροβιλισμού.

Ο δυναμικός συντελεστής εξαρτάται από τον τύπο της κατασκευής, το ύψος και το πλάτος της και μπορεί να εκτιμηθεί είτε με τη βοήθεια των παρακάτω διαγραμμάτων ή αν υπερβαίνει την τιμή 1,10, σύμφωνα με μια λεπτομερή διαδικασία η οποία δεν περιγράφεται στα πλαίσια αυτής της μεταπτυχιακής.

Σχήματα 2- Διάγραμμα συντελεστή c_sc_d

<u>Ύψος αναφοράς Ζ_e</u>

Ο προσδιορισμός του ύψους αναφοράς για τους προσήνεμους τοίχους ανάλογα με τη σχέση ύψους h και πλάτους b του κτηρίου γίνεται στα παρακάτω σχήματα:

Σχήματα 3-Ύψος αναφοράς Ζε

ΣΗΜΕΙΩΣΗ Η πίεση ανέμου θα θεωρείται ομοιόμορφη σε κάθε οριζόντια λωρίδα.

Για τον υπήνεμο τοίχο και τους παράπλευρους τοίχους το ύψος αναφοράς λαμβάνεται ίσο με το ύψος του κτηρίου.

Αεροδυναμικοί συντελεστές πίεσης και δύναμης

Οι αεροδυναμικοί συντελεστές πίεσης και δύναμης διακρίνονται σε συντελεστές εσωτερικής **c**_{pi} και συντελεστές εξωτερικής πίεσης **c**_{pe}. Οι συντελεστές εξωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εξωτερικές επιφάνειες των κτηρίων, ενώ οι συντελεστές εσωτερικής πίεσης δίνουν την επίδραση του ανέμου στις εσωτερικές επιφάνειες των κτηρίων. Επιπλέον οι συντελεστές εξωτερικής πίεσης διακρίνονται σε καθολικούς και τοπικούς συντελεστές. Οι τοπικοί συντελεστές **c**_{pe,1} συντελεστές πίεσης για φορτιζόμενες επιφάνειες μικρότερες ή ίσες από 1 m² π.χ. για το σχεδιασμό μικρών στοιχείων και στερεώσεων. Οι καθολικοί συντελεστές **c**_{pe,10} αφορούν τους συντελεστές πίεσης για φορτιζόμενες επιφάνειες μεγαλύτερες των 10 m².

Τέλος χρησιμοποιούνται και οι αεροδυναμικοί συντελεστές τριβής **c**_f, οι οποίοι εκφράζουν τις επιδράσεις της τριβής του ανέμου στις παράλληλες, προς τη διεύθυνση του ανέμου, πλευρές. Οι συντελεστές αεροδυναμικής πίεσης και δύναμης δίνονται από τους παρακάτω σχήματα και πίνακες, για κατακόρυφους τοίχους και δικλινείς στέγες, για διευθύνσεις ανέμου 0° και 90° και ανάλογα με το λόγο h/d ή την κλίση α° αντίστοιχα. Για ενδιάμεσες τιμές των πινάκων χρησιμοποιείται γραμμική παρεμβολή.

Σχήματα 4- Υπόμνημα για κατακόρυφους τοίχους

Υπόμνημα για κατακόρυφους τοίχους

Ζώνη	/	۹.	E	3	(2		D	6	E
h/d	Cpe.10	Cpe.1	Cpe,10	Cpe,1	Cpe,10	Cpe.1	Cpe.10	Cpe,1	Cpe,10	Cpe.1
5	-1,2	-1,4	-0,8	-1,1	-0,	5	+0,8	+1,0	-0,	7
1	-1,2	-1,4	-0,8	-1,1	-0,	5	+0,8	+1,0	-0,	5
≤ 0,25	-1,2	-1,4	-0,8	-1,1	-0,	5	+0,7	+1,0	-0,	3

Πίνακας 6-Προτεινόμενες τιμές συντελεστών εξωτερικής πίεσης για κατακόρυφος τοίχους κτηρίων ορθογωνικής κάτοψης

Σχήματα 5- Υπόμνημα για δικλινείς στέγες

Euroja	Ζώνη για διεύθυνση ανέμου Θ = 0°																	
Κλίσης		F		G		н	1		J									
α	Cpe.10 Cpe.1 Cpe.1 Cpe.1 Cpe.1 Cpe.1		Cpe, 10	Cpe,1	Cpe,10	Cpe,1												
-45°	4	0,6		-0,6	4),8	-0	-0,7		-1,5								
-30°	-1,1	-2,0	-0,8	-1,5	-(),8	-0	,6	-0,8	-1,4								
-15°	-2,5	-2,8	-1,3	-2,0	-0,9	-1,2	-0	,5	-0,7	-1,2								
50		2.5					+0	,2		+0,2								
-01	-2,3	-2,5	-1,2	-2,0	-0,8	-1,2	-0	,6	-0,6									
50	-1,7	-2,5	-1,2	-2,0	-0,6	-1,2		-0,6		+0,2								
5-	•	0,0		0,0	+	0,0	-0			-0,6								
150	-0,9	-2,0	-0,8	-1,5	-),3	-0	,4	-1,0	-1,5								
15	-	0,2		0,2	+0,2		+0	0,0	+0,0	+0,0								
200	-0,5	-1,5	-0,5	-1,5	-0,2		-0,2		-0,2		-0,2		-0,2		-0	,4		-0,5
30	+	0,7		+0,7	+0,4		+0,4		+0	0,0		+0,0						
459	-1	0,0		-0,0	-0,0		-0	,2		-0,3								
40	+	0,7	-	+0,7	+0,6		+0	0,0		+0,0								
60°	-	0,7		+0,7	+	+0,7		+0,7		+0,7		,2		-0,3				
75°	+	0,8	-	+0,8	+	9,8	-0	,2		-0,3								

Πίνακας 7-Συντελεστές εξωτερικής πίεσης για δικλινείς στέγες

e = b ή 2h όποιο είναι μικρότερο

b : διάσταση εγκάρσια στον άνεμο

	Ζώνη για διεύθυνση ανέμου Θ = 90°								
Γωνία Κλίσης		F	(G		н		I.	
-	Cpe.10	Cpe.1	C _{pe,10}	Cpe,1	C _{pe,10}	Cpe.1	C _{pe,10}	Cpe,1	
-45°	-1,4	-2,0	-1,2	-2,0	-1,0	-1,3	-0,9	-1,2	
-30°	-1,5	-2,1	-1,2	-2,0	-1,0	-1,3	-0,9	-1,2	
-15°	-1,9	-2,5	-1,2	-2,0	-0,8	-1,2	-0,8	-1,2	
-5°	-1,8	-2,5	-1,2	-2,0	-0,7	-1,2	-0,6	-1,2	
5°	-1,6	-2,2	-1,3	-2,0	-0,7	-1,2	-0,	6	
15°	-1,3	-2,0	-1,3	-2,0	-0,6	-1,2	-0,5	5	
30°	-1,1	-1,5	-1,4	-2,0	-0,8	-1,2	-0,5	5	
45°	-1,1	-1,5	-1,4	-2,0	-0,9	-1,2	-0,5	5	
60°	-1,1	-1,5	-1,2	-2,0	-0,8	-1,0	-0,5	5	
75°	-1,1	-1,5	-1,2	-2,0	-0,8	-1,0	-0,5	5	

Πίνακας 8- Συντελεστές εξωτερικής πίεσης για δικλινείς στέγες

2.3.2 Φορτία Ανέμου Υπόστεγων

Ο υπολογισμός των πιέσεων του ανέμου έγινε για δύο διευθύνσεις ανέμου, για θ=0° και θ=90°. Για την κάθε διεύθυνση ανέμου χωρίστηκαν δύο περιπτώσεις φορτίσεων, για ανοιχτή και για κλειστή θύρα. Έτσι συνολικά προέκυψαν οι παρακάτω τέσσερις περιπτώσεις φορτίσεων ανέμου όπως αυτές ονομάστηκαν:

WIND-DO-0°	: Διεύθυνση ανέμου 0°, για ανοιχτή θύρα
WIND-DO-90°	: Διεύθυνση ανέμου 90°, για ανοιχτή θύρα
WIND-DC-0°	: Διεύθυνση ανέμου 0°, για κλειστή θύρα
WIND-DC-90°	: Διεύθυνση ανέμου 90°, για κλειστή θύρα

Για κάθε μία από τις παραπάνω περιπτώσεις υπολογίστηκε το συνολικό φορτίο του ανέμου για κάθε κατακόρυφη πλευρά και κατόπιν κατανεμήθηκε ισότιμα στα υποστυλώματα κάθε πλευράς ανάλογα με το ύψος τους ή στους κόμβους του αντίστοιχου ζυγώματος. Επίσης υπολογίστηκαν τα ανεμοφορτία της στέγης και κατανεμήθηκαν στα πλαίσια βάση του συνολικού μήκους της άνω δοκού των πλαισίων.

Για τους υπολογισμούς χρησιμοποιήθηκαν οι παρακάτω συντελεστές:

<u>Συντελεστές:</u>

- i. Κατηγορία εδάφους: Ι
- ii. Πυκνότητα αέρα ρ: ρ =1,25kg/m³
- iii. Βασική ταχύτητα ανέμου vb,0 =33,00m/s
- iv. Αεροδυναμικοί συντελεστές εσωτερικής πίεσης c_{pi}: για τους υπολογισμούς χρησιμοποιήθηκαν τιμές του c_{pi} όπως αυτές προκύπτουν από τις κανονιστικές διατάξεις του Ευρωκώδικα 1 και ανάλογα με την δεσπόζουσα πλευρά ή από το λόγο των ανοιγμάτων του κτηρίου μ, όταν δεν υπάρχει σαφής δεσπόζουσα πλευρά.

- ν. Δυναμικός συντελεστής $c_s c_d$: Θεωρώ δυναμικό συντελεστή $c_s c_d$ =1,00
- vi. Συντελεστής εποχής c_{season}: c_{season}=1,00
- vii. Συντελεστής διεύθυνσης ανέμου c_{dir}: c_{dir}=1,00

2.4 Φορτίο Χιονιού (SNOW)

2.4.1 Γενικά

Το φορτίο χιονιού κατατάσσεται στις μεταβλητές σταθερές δράσεις. Προκαλείται από την εναπόθεση του χιονιού σε οριζόντιες ή κεκλιμένες στέγες και είναι ιδιαίτερα σημαντικό για τις περιοχές όπου επικρατεί κρύος καιρός και είναι συνήθεις μεγάλες χιονοπτώσεις. Τα φορτία του χιονιού αντιμετωπίζονται ως κατανεμημένα φορτία, με πιθανές μειώσεις για τις απότομες κλίσεις στεγών. Η προσέγγιση αυτή δε λαμβάνει υπόψη περιπτώσεις όπως αυξανόμενη χιονόπτωση σε μεγαλύτερα υψόμετρα ή τοπικά υψηλότερα φορτία λόγω κίνησης της μάζας του χιονιού, γεγονός που μπορεί να προκαλέσει πλήρη ή μερική κατάρρευση.

Επίσης ο EC δεν καλύπτει τοποθεσίες με υψόμετρο πάνω από 1500m πρέπει να γίνεται ειδική μελέτη και αξιολόγηση των αποτελεσμάτων. Για τις περιοχές δε με ιδιαίτερες κλιματικές συνθήκες, όπως υψηλές ταχύτητες ανέμου και λιώσιμο χιονιού, γίνονται ειδικές τροποποιήσεις που περιγράφονται στις ειδικές μορφές συγκέντρωσης χιονιού.

Η δράση του χιονιού θεωρείται ότι εξασκείται στις στέγες των κτηρίων και άλλων τεχνικών έργων. Ως δράση του χιονιού το οποίο έχει συσσωρευτεί είτε από ελεύθερη πτώση είτε έχει παρασυρθεί. Η δράση του χιονιού θεωρείται στατική, μεταβλητή στον χρόνο και σταθερή στον χώρο.

Το φορτίο χιονιού στην στέγη S, προκύπτει από το χαρακτηριστικό φορτίο χιονιού στο έδαφος, sk, (σε kPa) και το οποίο τροποποιείται με μια σειρά συντελεστών οι οποίοι λαμβάνουν υπόψη τους :

- Τη διαφοροποίηση του από το έδαφος στη στέγη (συντελεστής σχήματος μ)
- Την έκθεση της στέγης στα καιρικά φαινόμενα (συντελεστής έκθεσης, Ce)
- Την επίδραση της θερμοκρασίας στη συσσώρευση του χιονιού στη στέγη (θερμικός συντελεστής, Ct)

Είναι δηλαδή:

$s = \mu_i Ce C_t s_k$

Αναλυτικότερα κάθε συντελεστής ορίζεται ως εξής:

Συντελεστής σχήματος (μi):

Οι συντελεστές σχήματος της στέγης χρησιμοποιούνται για την αναγωγή από το φορτίο χιονιού στο έδαφος σε φορτίο χιονιού στη στέγη. Γενικώς το φορτίο χιονιού στη στέγη εξαρτάται από:

- Το σχήμα της στέγης και την κλίση της στέγης. Γενικώς θεωρείται ότι το χιόνι δεν μπορεί να παραμείνει σε στέγες με κλίση μεγαλύτερη των 60°, εκτός αν υπάρχουν εμπόδια, προεξοχές ή φράχτες.
- Τις θερμικές ιδιότητες της στέγης και την παραγόμενη θερμότητα κάτω από την στέγη.
- Την τραχύτητα της επιφάνειας της στέγης
- Τη γειτνίαση με άλλα υψηλότερα κτήρια
- Την τοπογραφία της περιοχής
- Το μικροκλίμα της περιοχής (και κυρίως την έκθεση στον άνεμο)

Ο συντελεστές σχήματος στέγης μ, δίνονται από το παρακάτω διάγραμμα για παρασυρόμενο και μη παρασυρόμενο χιόνι για περιπτώσεις μη εξαιρετικής μετατόπισης. Για τις περιπτώσεις εξαιρετικής μετατόπισης του χιονιού οι συντελεστές σχήματος είναι διαφορετικοί όπως προβλέπει ο ΕC στο παράρτημα Β.

Σχήματα 6- Συντελεστής σχήματος φορτίου χιονιού

Συντελεστές σχήματος φορτίου χιονιού για εξαιρετικές μετατοπίσεις χιονιού για στέγες σε επαφή με, ή κοντά σε, υψηλότερες κατασκευές.

Συντελεστής Σχήματος	Γωνία κλίσης της στέγης α,				
	0°so ₁ s15°	15°<α ₁ s30°	30°<α₁<60°	60°sa1	
H1	µ ₃	μ ₃ {[30-α ₁]/15}	0	0	
μ ₂	μ ₃	H ₃	μ ₃ {(60-α ₁)/30}	0	
Σημείωση: μ	Σημείωση: μ ₂ =min(2h/s ₂ , 2b/l ₂ , 8), bmax(b ₁ , b ₂), l ₂ =min(5h, b ₁ , 15m).				

Στον ΕC δίνονται συντελεστές σχήματος στέγης για μια ποικιλία μορφών στέγης. Για ορισμένες μορφές στέγης, πρέπει να εξεταστούν διάφορες περιπτώσεις φορτίσεως, επειδή είναι πιθανές διάφορες διατάξεις των φορτίων (με ή χωρίς παράσυρση του χιονιού).

<u>Συντελεστής Έκθεσης (C_e) :</u>

Η έκθεση μιας κατασκευής στη δράση του ανέμου καθώς και η διάδοση της θερμότητας διαμέσου μίας μη μονωμένης στέγης επηρεάζουν τη συσσώρευση του χιονιού στη στέγη. Για να ληφθούν υπόψη τα φαινόμενα αυτά ο EC εισάγει το συντελεστή έκθεσης, C_e. Γενικώς ο συντελεστής έκθεσης λαμβάνεται ίσος με τη μονάδα Ce=1, εκτός αν η κατασκευή είναι προφυλαγμένη ή εκτεθειμένη οπότε ο συντελεστής Ce αυξομειώνεται κατά 20% αντιστοίχως.

Διακρίνουμε τρεις περιπτώσεις :

- Εκτεθειμένο περιβάλλον Ce = 0,8. Πρόκειται για επίπεδες εκτάσεις χωρίς εμπόδια με καθόλου ή λίγη προστασία από το φυσικό ανάγλυφο, τις υψηλότερες κατασκευές ή δέντρα.
- Κανονικό περιβάλλον Ce = 1,0, όπου δεν υπάρχει σημαντική μετακίνηση χιονιού από τον άνεμο.
- Προφυλαγμένο περιβάλλον Ce = 1,2 στο οποίο η κατασκευή είναι σημαντικά χαμηλότερα από το φυσικό ανάγλυφο ή προστατεύεται από κτήρια ή δέντρα.

<u>Θερμικός Συντελεστής (Ct):</u>

Ο θερμικός συντελεστής που καθορίζει τη μείωση του φορτίου χιονιού ως συνέπεια της ροής θερμότητας διαμέσου της στέγης που προκαλεί τήξη του χιονιού. Για κανονικές συνθήκες θερμικής μόνωσης της στέγης είναι Ct = 1,00. Μπορεί να επιτρέπονται μικρότερες τιμές, προκειμένου να ληφθεί υπόψη η επιρροή της απώλειας θερμότητας μέσω της στέγης, όπως συμβαίνει για παράδειγμα στις γυάλινες στέγες. Όμως, δεν είναι σπάνιες περιπτώσεις όπου σε μια μεγάλη χιονόπτωση παρατηρείται ταυτόχρονα και βλάβη στο σύστημα θέρμανσης (π.χ. από διακόπτη του ηλεκτρικού ρεύματος ή πάγωμα πετρελαίου). Συνεπώς καλό είναι ο θερμικός συντελεστής να λαμβάνεται Ct = 1.0 συντηρητικά.

Οι συντελεστές Ce, Ct είναι επιλεγμένοι ώστε η πιθανότητα υπέρβαση του φορτίου χιονιού επί της στέγης που υπολογίζεται να μην ξεπερνά την πιθανότητα υπέρβασης της χαρακτηριστικής τιμής του φορτίου χιονιού επί του εδάφους sk.

Το χαρακτηριστικό φορτίο χιονιού στο έδαφος (sk):

Είναι η χαρακτηριστική τιμή του φορτίου χιονιού επί του εδάφους. Είναι το φορτίο με ετήσια πιθανότητα υπέρβασης 2% σε [kN/m2], εξαιρουμένων των εξαιρετικών φορτίων χιονιού. Η χαρακτηριστική αυτή τιμή συναρτάται από τη ζώνη στην οποία βρίσκεται η τοποθεσία της κατασκευής και από το υψόμετρο της περιοχής και μάλιστα με παραβολικό τρόπο.

Η σχέση που δίνει το φορτίο αυτό είναι :

$$s_k = (0.420 \cdot z - 0.030) \cdot \left[1 + \left(\frac{A}{917}\right)^2\right], \ [kN/m^2]$$

Όπου

z Η ζώνη που ανήκει το κτήριο γεωγραφικά με βάση τον ΕC.

A Το υψόμετρο της περιοχής σε m.

2.4.2 Φορτίο Χιονιού Υπόστεγων

Το φορτίο του χιονιού υπολογίστηκε βάσει των παραπάνω κανονιστικών διατάξεων του Ευρωκώδικα και τοποθετήθηκε ως κατανεμημένο φορτίο στις άνω δοκούς των ζυγωμάτων της στέγης. Αναλυτικά χρησιμοποιήθηκαν οι παρακάτω συντελεστές:

Συντελεστές Χιονιού:

Θεωρούμε ότι τα υπόστεγα θα κατασκευαστούν εντός της περιφέρειας του Ν. Αττικής. Έτσι η κατασκευή ανήκει στη Ζώνη ΙΙΙ, που συνεπάγεται:

s_{k,0}=0,8kN/m²

Το χαρακτηριστικό φορτίο χιονιού στο έδαφος (sk):	s _k =0,8kN/m²
Θερμικός Συντελεστής (Ct):	Ct = 1,00
Συντελεστής Έκθεσης (C _e) :	Ce = 0,80

Η τιμή του φορτίου του χιονιού υπολογίστηκε ξεχωριστά για κάθε υπόστεγο (αναφέρεται στην αντίστοιχη ενότητα) και έχει διεύθυνση όμοια με αυτή της βαρύτητας.

2.5 Σεισμικά Φορτία (Ε)

2.5.1 Γενικά

Κατά τη διάρκεια ενός σεισμού αναπτύσσονται στο έδαφος επιταχύνσεις (οριζόντιες και κατακόρυφες), που έχουν ως συνέπεια τη δημιουργία αδρανειακών δυνάμεων επί των κατασκευών. Από τις δυνάμεις αυτές, οι οριζόντιες θεωρούνται οι πλέον σοβαρές, χωρίς αυτό να σημαίνει, ότι και οι κατακόρυφες δεν μπορεί να αποβούν καταστροφικές υπό ορισμένες συνθήκες.

Ως σεισμικές δράσεις σχεδιασμού θεωρούνται οι ταλαντώσεις του κτηρίου λόγω του σεισμού, οι οποίες ονομάζονται και σεισμικές διεγέρσεις ή σεισμικές δονήσεις. Οι σεισμικές δράσεις κατατάσσονται στις τυχηματικές και δε συνδυάζονται με άλλες τυχηματικές δράσεις, όπως επίσης δε συνδυάζονται με τις δράσεις λόγω ανέμου.

Απαιτήσεις συμπεριφοράς και αντίστοιχες σεισμικές δράσεις:

Οι ρητές απαιτήσεις συμπεριφοράς στον ΕC8 είναι δύο:

1. «Μη- κατάρρευση υπό τη «σεισμική δράση σχεδιασμού»

Αποφυγή έστω και τοπικής κατάρρευσης που μπορεί να θέσει σε κίνδυνο έστω και μία ανθρώπινη ζωή και διατήρηση στατικής ακεραιότητας και παραμένουσας φέρουσας ικανότητας μετά το σεισμό (στους μετασεισμούς). Πρόκειται ουσιαστικώς για απαίτηση «Προστασίας Ζωής».

2. «Περιορισμός βλαβών» υπό τη «σεισμική δράση περιορισμού βλαβών»

Για συνήθη έργα η «σεισμική δράση σχεδιασμού» έχει πιθανότητα υπέρβασης 10% σε 50 χρόνια, δηλ. μέση περίοδο επανάληψης 475 χρόνια. Πρόκειται ουσιαστικώς για τη χαρακτηριστική σεισμική δράση, A_{Ek}, η οποία στον EC8 ονομάζεται «σεισμική δράση αναφοράς» και δηλώνεται με το δείκτη R. Για έργα σπουδαιότητας διαφορετικής της συνήθους, η «σεισμική δράση σχεδιασμού» είναι η «σεισμική δράση αναφοράς», A_{Ek}, επί το συντελεστή σπουδαιότητας, γ₁, που έχει τιμές μεγαλύτερες ή μικρότερες από 1.0. Έτσι τελικώς η «σεισμική δράση σχεδιασμού» είναι: A_{Ed}= γ₁ A_{Ek}. Οι τιμές του γ₁ που δίνονται για κτήρια στο Κεφάλαιο 4 του ΕΝ 1998-1:2004 είναι αυτές του Πίνακα 9.

Η απαίτηση υπ. αρ. 1, «μη-κατάρρευσης», πρέπει να ικανοποιείται υπό τη σεισμική δράση A_{Ed}.

Κατηγορία σπουδαιό-	Κτίριο	Συντελεστής σπουδαιότητας	Συντελεστής μείωσης σεισμικής δράσης
τητας		Й	περιορισμού βλαβών, ν
	Μικρής σπουδαιότητας για τη δημόσια	0.8	0.5
(Σ1 κατά ΕΑΚ)	ασφάλεια		
II	Σύνηθες	1.0	0.5
(Σ2 κατά ΕΑΚ)		(εξ ορισμού)	
III	Με μεγάλες συνέπειες κατάρρευσης	1.2	0.4
(Σ3 κατά ΕΑΚ)	(σχολεία, χώροι συγκέντρωσης κοινού,		
	πολιτιστικά ιορυματά κ.λ.π.).		
IV	Ζωτικής σημασίας για την Πολιτική	1.4	0.4
(Σ4 κατά ΕΑΚ)	Προστασία (νοσοκομεία, πυροσβεστικοί		
	σταθμοί, σταθμοί παραγωγής ενέργειας)		

Πίνακας 9- Κατηγορίες Σπουδαιότητας για κτήρια, Συντελεστές Σπουδαιότητας και Συντελεστής Μείωσης ν για τη σεισμική δράση περιορισμού βλαβών

Για συνήθη έργα η «σεισμική δράση περιορισμού βλαβών» έχει πιθανότητα υπέρβασης 10% σε 10 χρόνια, δηλ. μέση περίοδο επανάληψης 95 χρόνια. Ο ΕΚ8 επιτρέπει να λαμβάνεται χάριν απλότητας ίση με τη «σεισμική δράση σχεδιασμού», Α _{Ed}, επί το συντελεστή μείωσης ν του Πίνακα. Επισημαίνεται η χαμηλότερη τιμή του ν για Κατηγορίες Σπουδαιότητας ΙΙΙ και ΙV: η «σεισμική δράση περιορισμού βλαβών», Ed A v, είναι χαμηλότερη για Κατηγορία Σπουδαιότητας ΙΙ παρά για ΙΙΙ.

Οι ανωτέρω ρητές απαιτήσεις συμπεριφοράς ελέγχονται με βάση τα κριτήρια συμμόρφωσης που περιγράφονται παρακάτω. Όμως, ο ΕΚ8 – όπως και ο ΕΑΚ 2000 στον ίδιο σχεδόν βαθμό – έχει και μία τρίτη απαίτηση: την αποφυγή καθολικής κατάρρευσης υπό μία εξαιρετικά σπάνια αλλά μη καθοριζόμενη σεισμική δράση, πολύ πέραν της «σεισμικής δράσης σχεδιασμού» (π.χ., με μέση περίοδο επανάληψης της τάξεως των 2000 χρόνων). Η απαίτηση αυτή στοχεύει στην αποφυγή καθολικών απωλειών, όχι μεμονωμένων θυμάτων, και αδιαφορεί για το αν ο φορέας θα καταρρεύσει στους μετασεισμούς. Για φορείς που σχεδιάζονται για πλαστιμότητα, η ικανοποίηση της απαίτησης αυτής επιδιώκεται μέσω καθολικής εφαρμογής του Ικανοτικού Σχεδιασμού.

Εδαφικές συνθήκες και κατηγορίες εδάφους

Η σεισμική δράση εξαρτάται όχι μόνον από τη σεισμικότητα στη θέση του έργου, αλλά και από τις τοπικές εδαφικές συνθήκες. Για το σκοπό του καθορισμού της σεισμικής δράσης, ο EC8 κατηγοριοποιεί το έδαφος σε 5 τυποποιημένες κατηγορίες, τις A, B, C, D, E και σε δύο ειδικές, τις S1, S2.

Η βασική παράμετρος για την κατάταξη σε κατηγορία είναι η μέση τιμή της ταχύτητας διατμητικών κυμάτων στα ανώτατα 30 m από την επιφάνεια, v_{s,30}:

$$v_{\rm s,30} = \frac{30}{\sum_{i=1,\rm N} \frac{h_i}{v_i}}$$

όπου h_i και v_i είναι το πάχος (σε m) και η ταχύτητα διατμητικών κυμάτων (σε διατμητική παραμόρφωση 10–5 ή μικρότερη) του σχηματισμού ή στρώματος i από N

συνολικά. Αν δεν είναι διαθέσιμη η τιμή της ν_{s,30}, μπορεί να χρησιμοποιείται για την κατάταξη σε κατηγορία ο αριθμός κρούσεων/0.3 m στην Πρότυπη Δοκιμή Διείσδυσης, N_{SPT}. Αν ούτε αυτός είναι διαθέσιμος, μπορεί να χρησιμοποιείται η αστράγγιστη αντοχή, c_u.

Κα	τηγορία Εδάφους	v _{s,30} (m/s)	N _{SPT}	c _u (kPa)
Α	Βράχος με έως 5m ασθενέστερο επιφανειακό υλικό	>800	_	_
В	Πολύ πυκνή άμμος ή αμμοχάλικο, ή πολύ σκληρή άργιλος,	360-800	>50	>250
	δεκαδών m με αυξηση μηχανικών ιδιοτητών με το βαθός			
С	Πυκνή άμμος ή αμμοχάλικο, ή σκληρή άργιλος, αρκετών δεκάδων ή εκατοντάδων m	180-360	15-50	70-250
D	Χαλαρή έως μετρίως χαλαρή άμμος ή αμμοχάλικο ή μαλακή έως μετρίως σκληρή άργιλος	<180	<15	<70
E	Επιφανειακό στρώμα C ή D πάχους 5 έως 20m και υπόστρωμα με v _s > 800m/s			
S ₁	≥ 10m μαλακή άργιλος/ιλύς με δείκτη πλαστικότητας PI > 40 και υψηλή περιεκτικότητα ∨ερού	<100	_	10-20
S_2	Ευαίσθητη άργιλος, εδάφη ρευστοποιήσιμα ή εκτός Α-Ε ή S ₁			

Πίνακας 10- Κατηγορίες εδάφους κατά ΕC8

Μέγιστη εδαφική επιτάχυνση

Η εξάρτηση της «σεισμικής δράσης αναφοράς» (δηλαδή, αυτής με πιθανότητα υπέρβασης 10% σε 50 χρόνια και μέση περίοδο επανάληψης 475 χρόνια), Α_{εκ}, από τη γεωγραφική θέση δίνεται σε όρους μέγιστης οριζόντιας επιτάχυνσης αναφοράς a_{gR} στο βράχο (δηλ. σε έδαφος κατηγορίας Α) από τον εθνικό χάρτη Ζωνών Σεισμικής Επικινδυνότητας.

Χάριν απλότητας, το Εθνικό Προσάρτημα του ΕC8 υιοθετεί για το σκοπό αυτό τις τρεις Ζώνες Επικινδυνότητας του ΕΑΚ 2000 και ως σεισμικές επιταχύνσεις στο βράχο τις αντίστοιχες τιμές εδαφικών επιταχύνσεων (για τις Ζώνες Ζ1, Ζ2, Ζ3: 0.16g, 0.24g, 0.36g, τιμές που θεωρούνται ότι ισχύουν σε έδαφος κατηγορίας Β ή C). Η μέγιστη σεισμική επιτάχυνση στην επιφάνεια του εδάφους εξαρτάται από την κατηγορία του εδάφους και προκύπτει από την επιτάχυνση αναφοράς a_{gR} πολλαπλασιασμένη επί τον συντελεστή S του παρακάτω Πίνακα, που παίρνει τιμές 1.2, 1.15, 1.35 και 1.4, για έδαφος κατηγορίας Β, C, D ή Ε, αντίστοιχα. Για έργα κατηγορίας σπουδαιότητας διαφορετικής της συνήθους (II), η μέγιστη σεισμική επιτάχυνση σχεδιασμού, a_{gR} , ισούται με την τιμή αναφοράς, a_{gR} , επί το συντελεστή σπουδαιότητας, γι: $a_g = \gamma_1 a_{gR}$.

Τιμές αναφοράς agr μέγιστης σεισμικής επιτάχυνσης σε έδαφος τύπου Α.

Ζώνη	$a_{ m qR}/g$
Z1	0.16
Z2	0.24
Z3	0.36

Πίνακας 11- Μέγιστες τιμές επιτάχυνσης

Φάσμα σχεδιασμού στην οριζόντια διεύθυνση

Σε οριζόντιο επίπεδο η σεισμική δράση δρα ταυτόχρονα και ανεξάρτητα σε δύο κάθετες μεταξύ τους διευθύνσεις που έχουν το ίδιο φάσμα απόκρισης.

Η σεισμική δράση σχεδιασμού καθορίζεται στον ΕC8 μέσω του φάσματος επιταχύνσεων σχεδιασμού. Αυτό προκύπτει από το ελαστικό φάσμα επιταχύνσεων (με απόσβεση 5%) με διαίρεση των φασματικών επιταχύνσεων δια του συντελεστή συμπεριφοράς, q.

Το ελαστικό φάσμα επιταχύνσεων με απόσβεση 5% του EC8 δίνεται σχηματικά στο Σχήμα. Περιλαμβάνει μία περιοχή σταθερής φασματικής επιτάχυνσης, μεταξύ περιόδων T_B και T_c με τιμή 2.5 φορές τη μέγιστη εδαφική επιτάχυνση a_g S, που ακολουθείται από μία περιοχή σταθερής φασματικής ταχύτητας μεταξύ περιόδων T_c και T_D, όπου η φασματική επιτάχυνση είναι ανάλογη του 1/T, και μία περιοχή σταθερής φασματικής μετακίνησης, όπου η φασματική επιτάχυνση είναι ανάλογη του 1/T, και μία περιοχή σταθερής φασματικής του πολλαπλασιαστικού συντελεστή S και των περιόδων T_B, T_c, T_D δίνονται στον Πίνακα για τις κατηγορίες εδάφους A, B, C, D ή E του EC8.

Σχήματα 7- Ελαστικό φάσμα ΕC8 στην οριζόντια διεύθυνση για απόσβεση 5%

Πίνακας 12- Παράμετροι οριζόντιου ελαστικού φάσματος για τις τυποποιημένες κατηγορίες εδάφους σύμφωνα με τον ΕC8

Κατηγορία Εδάφους	S	$T_{\rm B}({\rm s})$	$T_{C}(s)$	$T_D(\mathbf{s})$
A	1.0	0.15	0.4	2.5
В	1.2	0.15	0.5	2.5
С	1.15	0.20	0.6	2.5
D	1.35	0.20	0.8	2.5
E	1.4	0.15	0.5	2.5

Στις περιοχές σταθερής φασματικής επιτάχυνσης, ταχύτητας και μετακίνησης, το φάσμα σχεδιασμού προκύπτει από το ελαστικό με απόσβεση 5% με διαίρεση δια του q. Ο ανερχόμενος κλάδος για ιδιοπεριόδους μέχρι T \leq TB προκύπτει από γραμμική παρεμβολή μεταξύ της μέγιστης εδαφικής επιτάχυνσης, S_{ag}, δια συντελεστή ίσου με 1.5, που εκφράζει υπεραντοχή σε σχέση με την αντοχή σχεδιασμού και της σταθερής επιτάχυνσης σχεδιασμού, για T = 0 και 2.5a_g/q για T = T_B.

Επιπλέον, τίθεται ένα κάτω όριο στη φασματική επιτάχυνση σχεδιασμού, ίσο με 20% της μέγιστης επιτάχυνσης στο βράχο, a_g. Έτσι τελικώς το φάσμα επιταχύνσεων σχεδιασμού στην οριζόντια διεύθυνση δίνεται από τις σχέσεις:

$$\begin{split} 0 &\leq T \leq T_{\rm B} : S_{\rm d}(T) = a_{\rm g} S \bigg[\frac{2}{3} + \frac{T}{T_{\rm B}} \bigg(\frac{2.5}{q} - \frac{2}{3} \bigg) \bigg] \\ T_{\rm B} &\leq T \leq T_{\rm C} : S_{\rm d}(T) = a_{\rm g} S \frac{2.5}{q} \\ T_{\rm C} &\leq T \leq T_{\rm D} : S_{\rm d}(T) \begin{cases} = a_{\rm g} S \frac{2.5}{q} \bigg[\frac{T_{\rm C}}{T} \bigg] \\ \geq 0.2 a_{\rm g} \end{cases} \\ T_{\rm D} &\leq T : S_{\rm d}(T) \begin{cases} = a_{\rm g} S \frac{2.5}{q} \bigg[\frac{T_{\rm C}}{T} \bigg] \\ \geq 0.2 a_{\rm g} \end{array} \end{split}$$

Ανάλυση για τη σεισμική δράση

Σύμφωνα με τον EC8, η ανάλυση είναι ελαστική. Αν η ανάλυση γίνεται για τον υπολογισμό της έντασης στα μέλη υπό τη «σεισμική δράση σχεδιασμού», χρησιμοποιεί το φάσμα σχεδιασμού.

Η ανάλυση για τη «σεισμική δράση περιορισμού βλαβών» έχει μόνον στόχο τον υπολογισμό των μετακινήσεων ορόφων. Δεδομένου ότι το ελαστικό φάσμα για τη «σεισμική δράση περιορισμού βλαβών» είναι αυτό της σεισμικής δράσης σχεδιασμού επί το μειωτικό συντελεστή ν του Πίνακα 9 στην παρ. 2.5.1., οι μετακινήσεις λόγω της «σεισμικής δράσης περιορισμού βλαβών» λαμβάνονται ίσες με αυτές από την ελαστική ανάλυση για τη «σεισμική δράση σχεδιασμού» με το φάσμα σχεδιασμού, επί το συντελεστή συμπεριφοράς q (με βάση «κανόνα των ίσων μετακινήσεων») και επί το μειωτικό συντελεστή ν. Έτσι αρκεί μία ανάλυση για τις δύο σεισμικές δράσεις.

Οι βασικές μέθοδοι ελαστικής ανάλυσης είναι δύο:

- 1. Η ιδιομορφική φασματική («ιδιομορφική φάσματος απόκρισης») ή
- Η στατική με (ισοδύναμα) οριζόντια σεισμικά φορτία («Μέθοδος οριζόντιας φόρτισης»).

Ιδιομορφική φασματική μέθοδος

Η ιδιομορφική φασματική μέθοδος ανάλυσης δε διαφέρει ουσιωδώς από τη "<u>δυναμική φασματική</u>" και εφαρμόζεται πάντα, χωρίς περιορισμούς. Πρόκειται για μια στατιστική μέθοδο γραμμικού υπολογισμού της δυναμικής απόκρισης της κατασκευής, της οποίας όμως η αξιοπιστία μειώνεται στις περιπτώσεις απότομων καθ' ύψος μεταβολών της αντοχής των κτηρίων. Με τη μέθοδο αυτή υπολογίζονται οι πιθανές ακραίες τιμές του τυχαίου μεγέθους απόκρισης με τετραγωνική επαλληλία των ιδιομορφικών του τιμών και περιλαμβάνει:

- 1. Ιδιομορφική ανάλυση, κατά την οποία υπολογίζονται οι ιδιομορφές ταλάντωσης του συστήματος και οι αντίστοιχες ιδιοπερίοδοι και ιδιοσυχνότητες.
- Ιδιομορφική απόκριση, κατά την οποία υπολογίζεται με χρήση του φάσματος σχεδιασμού για κάθε συνιστώσα του σεισμού η ακραία απόκριση (μετακίνηση, ένταση), με καθορισμένο πρόσημο, που αντιστοιχεί σε κάθε ιδιομορφή ταλάντωσης.
- 3. Ιδιομορφική επαλληλία, κατά την οποία υπολογίζεται για κάθε συνιστώσα του σεισμού η πιθανή ακραία τιμή του τυχαίου μεγέθους απόκρισης (με ακαθόριστο πρόσημο). Για την ιδιομορφική επαλληλία συνήθως χρησιμοποιείται η Πλήρης Τετραγωνική Επαλληλία (CQC).
- 4. Χωρική επαλληλία, κατά την οποία υπολογίζεται η πιθανή ακραία τιμή τυχόντος μεγέθους απόκρισης για ταυτόχρονη δράση των τριών συνιστωσών του σεισμού, επίσης με ακαθόριστο πρόσημο. Για τη χωρική επαλληλία συνήθως χρησιμοποιείται η Απλή Τετραγωνική Επαλληλία (SRSS).

Η δυναμική φασματική μέθοδος λαμβάνει υπόψη όλες τις ιδιομορφές της κίνησης που συνεισφέρουν σημαντικά στη συνολική κίνηση, αν όμως ικανοποιείται μια από τις παρακάτω προϋποθέσεις, για όλες τις διευθύνσεις του χωρικού μοντέλου:

- Το άθροισμα των ενεργών δρωσών μαζών που αντιστοιχούν στις ιδιομορφές που λαμβάνονται υπόψη θα πρέπει να αντιστοιχούν σε περισσότερο από το 90% της συνολικής μάζας της κατασκευής.
- Όλες οι ιδιομορφές με ενεργές μάζες μεγαλύτερες από το 5% της συνολικής μάζας λαμβάνονται υπόψη στους υπολογισμούς, δηλαδή όλες οι ιδιομορφές που ενεργοποιούν πάνω από το 5% της συνολικής ταλαντούμενης μάζας

Άλλη προϋπόθεση για την εφαρμογή του απλούστερου κανόνα της «τετραγωνικής ρίζας του αθροίσματος των τετραγώνων» είναι να διαφέρουν κατά τουλάχιστον 10% όλες οι διαδοχικές ιδιοπερίοδοι.

Στατική μέθοδος ανάλυσης με οριζόντια φορτία

Η στατική ανάλυση με (ισοδύναμα) οριζόντια σεισμικά έχει τους παρακάτω περιορισμούς: Το πεδίο εφαρμογής της περιορίζεται μόνον σε κτήρια κανονικά καθ' ύψος, με θεμελιώδη ιδιοπεριόδο που να ικανοποιεί και στις δύο κύριες οριζόντιες διευθύνσεις και τις δύο συνθήκες:

T ≤ 2 s T ≤ 4T_c.

όπου T_c η περίοδος στο όριο μεταξύ της περιοχής σταθερής φασματικής επιτάχυνσης και αυτής της σταθερής φασματικής ταχύτητας.

 Στην καθ' ύψος μεταβολή των οριζοντίων φορτίων τα οποία μπορεί πάντοτε να προκύπτουν από ανεστραμμένη τριγωνική καθ' ύψος κατανομή των επιταχύνσεων ορόφων:

$$F_{i} = V_{b} \cdot \frac{z_{i} \cdot m_{i}}{\sum z_{j} \cdot m_{j}}$$

όπου V_b η σεισμική τέμνουσα βάσης και z_i , z_j τα ύψη των μαζών m_i m_j από τη θεμελίωση ή την πάνω επιφάνεια άκαμπτου υπογείου.

- Στην εφαρμογή των οριζοντίων σεισμικών φορτίων στους ορόφους πάντοτε στη στατική εκκεντρότητα που καθορίζεται εσωτερικά και «αυτόματα» σε μια χωρική ανάλυση.
- 4. Στις οριζόντιες διευθύνσεις στις οποίες ασκούνται τα οριζόντια φορτία: κατά τις δύο κάθετες μεταξύ τους κύριες διευθύνσεις τις οποίες επιλέγει ο μελετητής.
- 5. Στο μέγεθος της V_b , το οποίο επιτρέπεται να μειώνεται κατά 15% σε κτήρια άνω των δύο ορόφων με βασική ιδιοπερίοδο $T \leq 2T_c$, λόγω διαφοράς συμμετέχουσας μάζας.

Η στατική ανάλυση με (ισοδύναμα) οριζόντια φορτία στις περιπτώσεις που επιτρέπεται να εφαρμόζεται δίνει αποτελέσματα πλησιέστερα σ' αυτά της ιδιομορφικής φασματικής, και επομένως ακριβέστερα και οικονομικότερα.

Στατική ανάλυση με ισοδύναμα φορτία γίνεται ξεχωριστά για κάθε μεταφορική συνιστώσα της σεισμικής δράσης. Η σεισμική τέμνουσα δύναμη βάσης, Vb, για κάθε οριζόντια διεύθυνση όπου ασκείται η σεισμική δράση καθορίζεται ως:

$$F_{\rm b} = S_{\rm d}(T_1)\lambda m$$

όπου S_d (T₁) η τιμή του φάσματος σχεδιασμού στη θεμελιώδη περίοδο T₁ στη διεύθυνση της σεισμικής δράσης, m η συνολική μάζα του κτηρίου πάνω από τη θεμελίωση ή πάνω από την άνω επιφάνεια άκαμπτης βάσης, και λ συντελεστής ίσος με: λ = 0,85 εάν T₁ < 2 T_c και το κτήριο έχει πάνω από δύο ορόφους, ή λ = 1,0 διαφορετικά.

Αν και δίνει και απλούστερες εμπειρικές σχέσεις, ο τρόπος που ενθαρρύνει ο EC8 για τον υπολογισμό της θεμελιώδους ιδιοπεριόδου είναι με τον τύπο του Rayleigh:

$$T_1 = 2\pi \cdot \sqrt{\frac{\sum_i m_i \cdot \delta_i^2}{\sum_i F_i \cdot \delta_i}}$$

Όπου δ_i οι μετατοπίσεις των συγκεντρωμένων μαζών m_i λόγω των φορτίων Fi στη διεύθυνση της σεισμικής δράσης.

2.5.2 Υπολογισμός

Για τον υπολογισμό της σεισμικών φορτίων χρησιμοποιήθηκαν από τον μελετητή τα εξής δεδομένα σύμφωνα με τους ορισμούς του ΕC8:

•	Εδαφική επιτάχυνση (τιμή αναφοράς) :	a _{gR} [g] = 0,24	(Ζώνη 2)
•	Συντελεστής σπουδαιότητας :	γ ₁ = 1,5	(EC8)
•	Τύπος εδάφους :	В	(Υπόθεση)
•	Συντελεστής συμπεριφοράς :	4	(EC8)

Κατά την εφαρμογή της δυναμικής φασματικής μεθόδου, έγινε η θεώρηση ενός μόνο προσανατολισμού των δύο οριζοντίων (και καθέτων μεταξύ τους) συνιστωσών του σεισμού. Για τα υπόστεγα που μελετήθηκαν θεωρήσαμε ότι ταυτίζονται με τους άξονες Χ και Υ της κατασκευής.

Η ταλαντούμενη μάζα υπολογίστηκε από το πρόγραμμα για το συνδυασμό φορτίων "μόνιμα" + 0,8 "κινητά" κάτι που είναι σύμφωνο με τις αρχές του ΕC.

Το φάσμα σχεδιασμού που χρησιμοποιήθηκε από το πρόγραμμα για την ανάλυση είναι αυτό του ΕC8 όπως αναλύθηκε παραπάνω.

2.6 Συνδυασμοί Φορτίσεων

2.6.1 Βασικές απαιτήσεις

Ο σχεδιασμός μιας φέρουσας κατασκευής, καθώς και η κατασκευή και η συντήρησή της καθ' όλη τη σκοπούμενη διάρκεια ζωής της, με εύλογο οικονομικό κόστος και για τον απαιτούμενο βαθμό αξιοπιστίας πρέπει να γίνονται με τρόπο που να εξασφαλίζονται οι ακόλουθες τέσσερις βασικές απαιτήσεις:

- αντίσταση (resistance),
- λειτουργικότητα (serviceability),
- ανθεκτικότητα στη διάρκεια του χρόνου (durability),
- ευρωστία (robustness) (δηλ. αποφυγή βλάβης δυσανάλογης με το αίτιο)

Οι απαιτήσεις αυτές αποτελούν τις συνιστώσες της αξιοπιστίας (reliability) της φέρουσας κατασκευής.

Οι προαναφερθείσες βασικές απαιτήσεις μπορούν να συνοψισθούν ως εξής:

- Να αντιμετωπίζει όλες τις δράσεις και τις επιδράσεις, οι οποίες είναι πιθανόν να εμφανισθούν κατά την διάρκεια της κατασκευής και χρήσης του και να παραμένει κατάλληλος για τη σκοπούμενη χρήση.
- Να διαθέτει επαρκή αντίσταση, λειτουργικότητα και ανθεκτικότητα.
- Σε περίπτωση πυρκαγιάς η αντίσταση της θα πρέπει να είναι επαρκής για την απαιτούμενη χρονική περίοδο.
- Να μην υποστεί βλάβες εξαιτίας συμβάντων όπως πχ. έκρηξη, πρόσκρουση και συνέπειες ανθρωπίνων σφαλμάτων, σε βαθμό δυσανάλογο ως προς το αρχικό συμβάν.

2.6.2 Καταστάσεις σχεδιασμού

Οι σχετικές καταστάσεις σχεδιασμού θα πρέπει να επιλέγονται σε συνάρτηση με τις συνθήκες υπό τις οποίες η φέρουσα κατασκευή καλείται να επιτελέσει τη λειτουργία της, διακρίνονται δε στις εξής:

- <u>Με διάρκεια</u>, οι οποίες αναφέρονται στις συνθήκες κανονικής χρήσης.
- <u>Παροδικές</u>, οι οποίες αναφέρονται σε προσωρινές συνθήκες οι οποίες είναι εφαρμόσιμες στο φορέα, πχ. κατά τη διάρκεια της εκτέλεσης ή της επισκευής του.
- <u>Τυχηματικές</u>, οι οποίες αναφέρονται σε εξαιρετικές περιπτώσεις συνθηκών οι οποίες αφορούν στον φορέα ή στην έκθεσή του, πχ. πυρκαγιά, έκρηξη, πρόσκρουση ή οι συνέπειες τοπικής αστοχίας.
- <u>Έναντι σεισμού</u>, οι οποίες αναφέρονται σε συνθήκες οι οποίες είναι εφαρμόσιμες στον φορέα, όταν αυτός εκτίθεται σε σεισμικά συμβάντα.

Οριακή κατάσταση αστοχίας (Ο.Κ.Α.)

Οι οριακές καταστάσεις αστοχίας αντιστοιχούν σε κατάρρευση ή άλλου είδους πού θέτουν σε κίνδυνο ανθρώπινες ζωές ή την ασφάλεια του φορέα ή ενδεχομένως και την προστασία των περιεχομένων. Σκοπός είναι να εξασφαλιστεί ότι η μέγιστη αντοχή της κατασκευής ή του στοιχείου της κατασκευής είναι επαρκής για να αντέξει τις μέγιστες δράσεις που θα επιβληθούν σ' αυτήν, υπό ακραίες συνθήκες δηλαδή, με ένα λογικό περιθώριο ασφαλείας.

Οι Ο.Κ.Α. διακρίνονται σε :

- Απώλεια στατικής ισορροπίας (EQU) του θεωρούμενου ως άκαμπτου σώματος φορέα ή οποιουδήποτε μέρους του. Ως κρίσιμος παράγοντας θεωρούνται οι μικρές διακυμάνσεις στην τιμή ή στη χωρική κατανομή των δράσεων που έχουν ενιαία προέλευση, ενώ δεν είναι κρίσιμη η αντοχή/ αντίσταση των υλικών.
- Αστοχία μέλους από υπέρβαση της αντοχής του υλικού ή από υπερβολική παραμόρφωση (STR). Είναι η καθαυτή δομική αστοχία σύμφωνα με την οποία ο φορέας ή οποιοδήποτε μέρος του μετατρέπεται σε μηχανισμό ή θραύεται ή χάνει την ευστάθειά του, συμπεριλαμβανομένων των στηρίξεων και των θεμελίων.
- Αστοχία εδάφους (GEO). Κρίσιμη αναδεικνύεται η αντοχή/αντίσταση του εδάφους.
- Κόπωση (FAT) ή άλλες επιδράσεις που εξαρτώνται από το χρόνο

Στις παραπάνω Ο.Κ.Α θα πρέπει να προστεθούν και δυο ακόμα που αφορούν ιδιαίτερους τρόπους αστοχίας του εδάφους:

- Απώλεια ισορροπίας της κατασκευής (UPL) ή του εδάφους λόγω υδατικών πιέσεων άνωσης ή επίπλευσης (λ.χ. στεγανολεκάνης).
- Αστοχία υδραυλικού τύπου (HYD), όπως εσωτερική διάβρωση ή διασωλήνωση του εδάφους λόγω ροής υδάτων με μεγάλη υδραυλική κλίση.

Οι Οριακές Καταστάσεις Αστοχίας λαμβάνονται υπόψη και για τον έλεγχο ανθεκτικότητας της φέρουσας κατασκευής στη διάρκεια του χρόνου.

Οριακή Κατάσταση Λειτουργικότητας (Ο.Κ.Λ.)

Οι Οριακές Καταστάσεις Λειτουργικότητας της κατασκευής είναι εκείνες, πέρα των οποίων δεν ικανοποιούνται τα κριτήρια λειτουργικότητας της κατασκευής (μεγάλες παραμορφώσεις η μετακινήσεις που προκαλούν βλάβες στα στοιχεία πλήρωσης, ή ταλαντώσεις και δομήσεις ενοχλητικές για ενοίκους), η άνεση των χρηστών, η εξωτερική εμφάνιση της κατασκευής, δηλαδή η λειτουργία της κατασκευής υπό φυσιολογική χρήση. Δηλαδή, μολονότι η κατασκευή αντέχει, συμπεριφέρεται με μη ικανοποιητικό τρόπο. Οι μετακινήσεις και οι ταλαντώσεις συνδέονται περισσότερο με τη δυσκαμψία παρά με την αντοχή της κατασκευής.

Οι Ο.Κ.Λ διακρίνονται σε:

- Αναστρέψιμες
- Μη αναστρέψιμες

Ο έλεγχος των κατασκευών έναντι αστοχίας ή λειτουργικότητας επιτυγχάνεται με τη χρήση των λεγόμενων «καταστάσεων σχεδιασμού», που περιγράφουν με επαρκή αξιοπιστία όλους τους συνδυασμούς φορτίσεων, στις οποίες θα εκτεθεί η κατασκευή κατά την προβλεπόμενη διάρκεια ζωής της (για κτιριακά έργα 50 χρόνια).

2.6.3 Συνδυασμοί Δράσεων

Συνδυασμοί δράσεων σε Ο.Κ.Α.

Για κάθε κρίσιμη περίπτωση φόρτισης, οι τιμές σχεδιασμού των αποτελεσμάτων των δράσεων θα προσδιορισθούν συνδυάζοντας τις τιμές των δράσεων που θεωρείται ότι δρουν ταυτόχρονα. Κάθε συνδυασμός δράσεων θα πρέπει να περιλαμβάνει μια κυρίαρχη (δεσπόζουσα) μεταβλητή δράση ή μια τυχηματική/σεισμική δράση.

Θεμελιώδεις συνδυασμοί για μόνιμες και παροδικές καταστάσεις σχεδιασμού

$$\sum \gamma_{G,j} G_{k,j} "+" \gamma_P P "+" \gamma_{Q,1} Q_{k,1} "+" \sum \gamma_{Q,i} \psi_{0,i} Q_{k,i}$$

$$j \ge 1 \qquad i > 1$$

ή

$$\begin{cases} \Sigma \gamma_{G,j} G_{k,j} "+" \gamma_{P} P"+" \gamma_{Q,l} \psi_{0,l} Q_{k,l} "+" \Sigma \gamma_{Q,i} \psi_{0,t} Q_{k,i} \\ j \ge 1 & i > 1 \\ \Sigma \xi_{j} \gamma_{G,j} G_{k,j} "+" \gamma_{P} P"+" \gamma_{Q,l} Q_{k,l} "+" \Sigma \gamma_{Q,i} \psi_{0,t} Q_{k,i} \\ j \ge 1 & i > 1 \end{cases}$$

0,85≤ξ≤1,00

Συνδυασμοί για τυχηματικές καταστάσεις σχεδιασμού

$$\sum G_{k,j} "+" P" +" A_d "+" (\psi_{1,1} \dot{\eta} \psi_{2,1}) Q_{k,1} "+" \sum \psi_{2,i} Q_{k,i}$$

$$j \ge 1$$

$$i > 1$$

Συνδυασμοί για καταστάσεις σεισμικού σχεδιασμού

$$\sum_{k,j} G_{k,j} + P' + A_{ED} + \sum_{k,j} \psi_{2,i} Q_{k,i}$$

$$j \ge 1 \qquad i \ge 1$$

Συνδυασμοί δράσεων σε Ο.Κ.Λ.

Οι συνδυασμοί σχεδιασμού που ορίζονται για τον έλεγχο στην οριακή κατάσταση λειτουργικότητας είναι οι ακόλουθοι:

Χαρακτηριστικός συνδυασμός (μη-αναστρέψιμη ΟΚΛ)

$$\sum G_{k,j} "+" P"+" Q_{k,1} "+" \Sigma \psi_{0,i} Q_{k,i}$$

 $j \ge 1$ $i > 1$

Συχνός συνδυασμός (αναστρέψιμη ΟΚΛ)

 $\sum_{k,j} G_{k,j} + P' + \psi_{1,1} Q_{k,1} + \sum_{j\geq 1} \psi_{2,i} Q_{k,i}$

Οιονεί –μόνιμος συνδυασμός (αναστρέψιμη ΟΚΛ)

 $\sum G_{k,j} "+" P" +" \sum \psi_{2,i} Q_{k,i}$ $j \ge 1 \qquad i > 1$

2.6.4 Παράμετροι συνδυασμών

Μειωτικοί συντελεστές (συντελεστές συνδυασμού) ψ

Οι (μειωτικοί) συντελεστές συνδυασμού (ψ) εφαρμόζονται στις χαρακτηριστικές τιμές των φορτίων, εφόσον χρειάζεται να ληφθούν υπόψη σπάνια, συχνά ή οιονεί –μόνιμα γεγονότα. Οι τιμές αυτών είναι σύμφωνα με τον ΕC :

Δράσεις	ψ_0	ψ_1	ψ_2
Επιβαλλόμενα φορτία σε κτήρια, κατηγορία (βλέπε			
EN 1991-1-1)			
Κατηγορία Α: κατοικίες, συνήθη κτήρια κατοικιών	0,7	0,5	0,3
Κατηγορία Β: χώροι γραφείων	0,7	0,5	0,3
Κατηγορία C: χώροι συνάθροισης	0,7	0,7	0,6
Κατηγορία D: χώροι καταστημάτων	0,7	0,7	0,6
Κατηγορία Ε: χώροι αποθήκευσης	1,0	0,9	0,8
Κατηγορία F: χώροι κυκλοφορίας οχημάτων			
βάρος οχημάτων ≤ 30kN	0,7	0,7	0,6
Κατηγορία G: χώροι κυκλοφορίας οχημάτων			
30kN < βάρος οχημάτων ≤ 160kN	0,7	0,5	0,3
Κατηγορία Η: στέγες	0	0	0
Φορτία χιονιού επάνω σε κτήρια (βλέπε EN 1991-1-3)*			
Φιλανδία, Ισλανδία, Νορβηγία, Σουηδία	0,70	0,50	0,20
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που	0,70	0,50	0,20
βρίσκονται σε υψόμετρο Η > 1000 m			
Υπόλοιπα Κράτη Μέλη του CEN για τοποθεσίες που	0,50	0,20	0
βρίσκονται σε υψόμετρο Η ≤ 1000 m			
Φορτία ανέμου σε κτήρια (βλέπε EN 1991-1-4)	0,6	0,2	0
Θερμοκρασία (μη-πυρκαϊάς) σε κτήρια (βλέπε ΕΝ	0,6	0,5	0
1991-1-5)			

<u>Τιμές σχεδιασμού δράσεων</u>

Σύμφωνα με τον ΕC οι τιμές για Ο.Κ.Α. διαμορφώνονται ως εξής :

Πίνακας 14- Τιμές σχεδιασμού δράσεων στους χαρακτηριστικούς συνδυασμούς για Ο.Κ.Α

Καταστάσεις σχεδιασμού με διάρκεια και παροδικές	Μόνιμες Δράσεις		Κυρίαρχη μεταβλητή δράση (*)	Συνοδευτικ δράι	ή μεταβλητή ση (*)
καταστάσεις σχεδιασμού	Δυσμενείς	Ευνοϊκές		Κύρια (εάν υφίσταται)	Άλλες
(Εξισ. 6.10)	$\gamma_{G_{i},sup}G_{k_{i},sup}$	$\gamma_{Gi,inf}G_{ki,inf}$	YQ.1Qk1		$\gamma_{Q,i}\psi_{0,i}Q_{k,i}$
(*) Μεταβλητές δράσεις είναι αυτές που εξετάζονται στον Πίνακα Α1.1 ΣΗΜΕΙΩΣΗ 1: Οι τιμές γ είναι: γ _{Gj,sup} = 1,10 γ _{Gj,inf} = 0,90 γ _{Q,1} = 1,50 όπου δυσμενής (0 όπου ευνοϊκή) γ _{Q,i} = 1,50 όπου δυσμενής (0 όπου ευνοϊκή)					
ΣΗΜΕΙΩΣΗ 2: Ως εναλλακτική περίπτωση για τους δύο ξεχωριστούς ελέγχους βάσει των Πινάκων A1.2(A) και A1.2(B), σε περιπτώσεις στις οποίες ο έλεγχος της στατικής ισορροπίας αφορά την αντίσταση των δομικών μελών, μπορεί να υισθετηθεί ένας συνδυασμένος έλεγχος, βάσει του Πίνακα A1.2(A), με τις ακόλουθες τιμές. γ _{Gj,sup} = 1,35 γ _{Gj,inf} = 1,15 γ _{Q,i} = 1,50 όπου δυσμενής (0 όπου ευνοϊκή) γ _{Q,i} = 1,50 όπου δυσμενής (0 όπου ευνοϊκή) υπό την προϋπόθεση ότι η εφαρμογή της τιμής γ _{Gj,inf} = 1,00, τόσο στο ευνοϊκό όσο και στο					

Πίνακας 15- Τιμές σχεδιασμού δράσεων στους συνδυασμούς τυχηματικών και σεισμικών δράσεων για ΟΚΑ			
Καταστάσεις	Μόνιμες Δράσεις	Κυρίαρχη	Συνοδευτικές μεταβλητές

Καταστάσεις σχεδιασμού	Μόνιμες Δράσεις		Κυρίαρχη τυχηματική ή σεισμική δράση	Συνοδευτικέ δράσ	ς μεταβλητές εις (**)
	Δυσμενείς	Ευνοϊκές		Κύρια (εάν υφίσταται)	Άλλες
Τυχηματικές (*) (Εξισ. 6.11α/β)	G _{kj,sup}	G _{kj,inf}	A _d	Ψ21 Q k1	ψ _{2i} Q _{ki}
Σεισμικές (Εξισ. 6.12α/β)	G _{kj,sup}	G _{kj,inf}	γ _I A _{EK} ή A _{ED}		$\psi_{2,i} Q_{k,i}$

Σύμφωνα με τον ΕC οι τιμές για ΟΚΛ διαμορφώνονται ως εξής :

Πίνακας 16- Τιμές σχεδιασμού δράσεων για	χρήση κατά τον συνδι	νασμό δράσεων.
--	----------------------	----------------

Συνδυασμός	Μόνιμες Δράσεις G _d		Μεταβλητές Δράσεις Q _d	
	Δυσμενείς	Ευνοϊκές	Κυρίαρχες	Άλλες
Χαρακτηριστικές	G _{kj,sup}	G _{kj,inf}		$\psi_{0,i}Q_{ki}$
Ζυχνες Οιονεί – μόνιμες	G _{kj,sup} G _{ki,sup}		$\Psi_{1,1}Q_{k,1}$ $\Psi_{2,1}Q_{k,1}$	$\Psi_{2,i} Q_{k,i}$ $\Psi_{2,i} Q_{k,i}$
	,,,cop	. 31	, _,, ,,,,,	, - <i>y</i> , , , ,

2.6.5 Φορτία κατασκευής και Συνδυασμοί φόρτισης

Στην παράγραφο αυτή παρουσιάζονται ονομαστικά τα φορτία που ελήφθησαν κατά τους υπολογισμούς και όπως εισήχθησαν στο πρόγραμμα για την ανάλυση του κάθε υπόστεγου :

•	(G) περιλαμβάνει:	Ίδιο Βάρος Στοιχείων		
		Μόνιμο Στέγης		
		Ίδιο Βάρος Τεγ	ίδων	
•	(Q) περιλαμβάνει :	Κινητό Στέγης		
•	SNOW :	Φορτίο Χιονιο	Ú	
•	WIND :	WIND-DO-0° WIND-DO-90° WIND-DC-0° WIND-DC-90°	θ=0° θ=90° θ=0° θ=90°	, για ανοιχτή θύρα , για ανοιχτή θύρα , για κλειστή θύρα , για κλειστή θύρα

- Ε : Τα σεισμικά φορτία και ανάλογα με τη διεύθυνση του σεισμού χωρίζονται στις εξής περιπτώσεις:
 - Ех

Ey

Οι συνδυασμοί φόρτισης που χρησιμοποιήθηκαν για τα υπόστεγα συντήρησης αεροσκαφών είναι οι ακόλουθοι :

Σε <u>Ο.Κ.Α.- DLS</u>

DLS1: κύρια μεταβλητή δράση το κινητό φορτίο Q

1,35 x G + 1,50 x Q + 1,50 x 0,50 x SNOW + 1,50 x 0,60 x WIND

DLS2: κύρια μεταβλητή δράση το φορτίο SNOW

1,35 x G + 1,50 x 1,00 x Q + 1,50 x SNOW + 1,50 x 0,60 x WIND

DLS3: κύρια μεταβλητή δράση το φορτίο WIND

1,35 x G + 1,50 x 1,00 x Q + 1,50 x 0,50 x SNOW + 1,50 x WIND

Οι παραπάνω συνδυασμοί επαναλαμβάνονται για κάθε περίπτωση ανέμου χωριστά.

Σε <u>Ο.Κ.Λ.-SLS</u>

SLS 1: κύρια μεταβλητή δράση το κινητό φορτίο Q

1,00 x G + 1,00 x Q + 1,0 x 0,50 x SNOW + 1,00 x 0,60 x WIND

SLS 2: κύρια μεταβλητή δράση το φορτίο SNOW

SLS 3: κύρια μεταβλητή δράση το φορτίο WIND

1,00 x G + 1,00 x 1,00 x Q + 1,00 x 0,50 x SNOW + 1,00 x WIND

Οι παραπάνω συνδυασμοί επαναλαμβάνονται για κάθε περίπτωση ανέμου χωριστά.

Σε **Σεισμό-ΕQ**

	E1: 1,00 x G	+ 0,60 x Q + Ex + 0,30 x Ey
	E2: 1,00 x G	+ 0,60 x Q + Ex - 0,30 x Ey
	E3: 1,00 x G	+ 0,60 x Q - Ex + 0,30 x Ey
۶	E4: 1,00 x G	+ 0,60 x Q - Ex - 0,30 x Ey
۶	E5: 1,00 x G	+ 0,60 x Q + Ey + 0,30 x Ex
۶	E6: 1,00 x G	+ 0,60 x Q + Ey - 0,30 x Ex
۶	E7: 1,00 x G	+ 0,60 x Q - Ey + 0,30 x Ex
	E8: 1,00 x G	+ 0,60 x Q - Ey - 0,30 x Ex

ΚΕΦΑΛΑΙΟ 3: Υπόστεγο 1 "Πλαίσια Στερεού Σχηματισμού"

3.1 Περιγραφή- Γεωμετρία Υπόστεγου

Όπως αναφέρθηκε σε παραπάνω κεφάλαιο το υπόστεγο πρέπει να ικανοποιεί κατ' αρχάς τους γεωμετρικούς περιορισμούς και κατ' επέκταση τους υπόλοιπους κατασκευαστικούς και λειτουργικούς στόχους. Έτσι προτείνεται ένα αμιγώς μεταλλικό υπόστεγο από δομικό χάλυβα S355 που έχει κάτοψη διαστάσεων 76,00m x 43,89m ,ύψος κορφιά 19,48m και ύψος πλευράς 12,97m, μέγιστο άνοιγμα θύρας τα 70m και μέγιστο ελεύθερο βάθος 41,95m. Ακολουθεί κάτοψη, όψη του υπόστεγου και προοπτικές εικόνες ώστε να γίνει κατανοητή η μορφή και οι γενικές γεωμετρικές διαστάσεις του.

Σχήματα 8-Κάτοψη Υπόστεγο 1

Σχήματα 9-Βόρεια Όψη Υπόστεγο 1

Σχήματα 10-Βόρειο-Ανατολική Άποψη Υπόστεγου 1

Σχήματα 11-Νότιο Δυτική Άποψη Υπόστεγου 1

Το υπόστεγο 1 μορφώνεται από έξι επάλληλα πλαίσια, δομικού χάλυβα S355, (βλ. Σχήμα-10- & -11-) τοποθετημένα σε εγκάρσιες αποστάσεις 8,00m, μετρώντας από τις βάσεις των υποστυλωμάτων τους. Τα πλαίσια συνδέονται μεταξύ τους με τριπλή κεφαλοδοκό (διπλή εξωτερική και μονή εσωτερική) στη ζεύξη υποστυλώματος-ζυγώματος, διατομής IPE270. Η εσωτερική κεφαλοδοκός και η συνεπίπεδη εξωτερική ενώνονται μεταξύ τους με διαγώνιες ράβδους κυκλικής διατομής CHHF139.7x10. Επιπλέον τα πλαίσια συνδέονται με μία δοκό διατομής HEB200 στο μέσο του ύψους των υποστυλωμάτων. (Βλ. Σχήμα -12-).

Την εγκάρσια σύνδεση των πλαισίων ολοκληρώνουν τρείς δικτυωτές ενισχυμένες ζώνες διατομής 2UPN160/20# σε κάθε παρειά της στέγης (βλ. Σχήμα-10- & -11-) και η ενισχυμένη ζώνη του κορφιά, όμοιας διατομής.

Κάθε πλαίσιο αποτελείται από ένα δικλινές ζύγωμα με κλίση α=9,71° και δύο εκατέρωθεν υποστυλώματα.

Σχήματα 13-Άποψη Τυπικού Πλαισίου Υπόστεγο 1

Το ζύγωμα συντίθεται από τρεις κύριες δοκούς κοίλης κυκλικής διατομής CHHF219.1x20, ποιότητας χάλυβα S355. Οι δοκοί αυτοί μαζί με τους τριγωνικούς ορθοστάτες ανά 2,96m και διαγώνιους διατομής CHHF139.7x10 και όμοιας ποιότητας, σχηματίζουν ένα ισοσκελές τριγωνικό πρίσμα μεγάλου ύψους. Η μορφή στου στερεού σχηματισμού προσδίδει στο ζύγωμα αυξημένη δυσκαμψία και παραμορφωσιμότηταστρέβλωση τάξεως όμοιας με αυτή του υλικού των διατομών, δηλαδή πρακτικά μηδενική εκτός επιπέδου παραμόρφωση-στρέβλωση του ζυγώματος, για τα επιβαλλόμενα φορτία (βλ Σχήμα -14-).

Σχήματα 14-Άποψη Ζυγώματος Υπόστεγο 1

Το υποστύλωμα συντίθεται από τρεις στύλους κοίλης κυκλικής διατομής CHHF219.1x20, ποιότητας χάλυβα S355. Καθ' ύψος έχουν τοποθετηθεί τριγωνικά διαφράγματα ανά 2,00m από κοίλες ράβδους κυκλικής διατομής CHHF139.7x10, όμοιας ποιότητας. Το σύνολο των διατομών δημιουργεί μία ανεστραμμένη πυραμίδα (βλ. Σχήμα-15-), τέτοια ώστε η διαγώνια βάση της να συνδέεται ακριβώς με τις δοκούς του ζυγώματος δημιουργώντας έναν κόμβο σύνδεσης (βλ. Σχήμα-15-). Τον κόμβο σύνδεσης ενισχύουν δύο εσωτερικές ράβδοι κοίλης κυκλικής διατομής CHHF219.1x20.

Сннг139.7x10 Сннг219.1x20 Сннг219.1x20

Σχήματα 15-Άποψη Υποστυλώματος & Κόμβου Υπόστεγο 1

Το Βόρειο τμήμα του υπόστεγου είναι σταθερά κλειστό. Ο "τοίχος" διαμορφώνεται από ένα σύστημα διπλών υποστυλωμάτων διατομής HEB260 ποιότητας χάλυβα S355, τα οποία συνδέονται εγκάρσια αμφιέρειστες δοκούς διατομής IPE240 ανά 2,00m καθ' ύψος. Τα διπλά υποστυλώματα συνδέονται με ορθοστάτες και διαγώνιους διατομής 2UPN160/20 μέχρι το ύψος της ζεύξης ζυγώματος-υποστυλώματος, ενώ από εκεί και προς τα πάνω συνεχίζει μόνο ο εξωτερικός στύλος του διπλού υποστυλώματος έως ότου να συναντήσει την άνω και έξω δοκό του πρισματικού ζυγώματος (βλ. Σχήμα-16-).

Σχήματα 16-Άποψη Βόρειου Τοίχου Υπόστεγο 1

Στο Νότιο τμήμα του υπόστεγου προβλέπεται η τοποθέτηση θύρας, της οποίας ενδεικτική τυπική διάταξη περιγράφεται σε επόμενο κεφάλαιο.

Τέλος για την ανάληψη των σεισμικών και κυρίως των δράσεων του ανέμου τοποθετήθηκαν κατά τη διεύθυνση X και Y του υπόστεγου κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας, κοίλης κυκλικής διατομής CHHF168.3X12.5 (βλ. Σχήμα -10- ,-11- &-16-). Επιπλέον μεταξύ των πλαισίων 1-2 και 5-6 τοποθετήθηκαν οριζόντιοι σύνδεσμοι δυσκαμψίας, κοίλης κυκλικής διατομής CHHF139.7x10.

3.2 Φορτία Σχεδιασμού Υπόστεγου 1

3.2.1 Μόνιμα Φορτία Υπόστεγου 1

Για το σχεδιασμό του υπόστεγου 1, λήφθηκαν υπ' όψη οι παρακάτω μόνιμες δράσεις:

- Ίδιο Βάρος Στοιχείων (DEAD): Λαμβάνεται αυτόματα από το λογισμικό ανάλυσης του φορέα (SAP2000v.14), ανάλογα με το ειδικό βάρος του υλικού και τις διαστάσεις των μελών.
- Μόνιμο Στέγης (ROOF DEAD): Για το υπόστεγο θεωρήθηκε ότι η στέγη θα καλυφτεί με πάνελ πολυουρεθάνης οροφής ECOPANEL RL 50 (βλ. Παράρτημα Α). Τα πάνελ θα στερεωθούν σε τεγίδες διατομής UPN180. Για το λόγω αυτό θα τοποθετήθηκαν 14 τεγίδες σε κάθε παρειά της στέγης. Το φορτίο που προέκυψε συνολικά κατανεμήθηκε στις άνω δοκούς του ζυγώματος του πλαισίου, με ζώνη επιρροής b_{eff}=4,00m. Έτσι προέκυψε κατανεμημένο φορτίο g= 0,761 kN/m.

3.2.2 Μεταβλητά Φορτία Υπόστεγου 1

Κινητά Φορτία

Για το σχεδιασμό του υπόστεγου 1, λήφθηκε υπ' όψη οι παρακάτω κινητή δράση:

 Κινητό Στέγης (ROOF LIVE): Ο Ευρωκώδικας για κατηγορία στέγης Η προτείνει κινητό φορτίο q=0,50kN/m². Για ζώνη επιρροής b_{eff}=4,00m προέκυψε κατανεμημένο φορτίο q=2,00kN/m στις άνω δοκούς του ζυγώματος του πλαισίου.

Φορτίο Χιονιού (SNOW)

Χρησιμοποιώντας τους συντελεστές που αναπτύχθηκαν παραπάνω (§2.4.2) και για κλίση στέγης θ=9,71° δηλαδή συντελεστής μορφής μ=0,80, υπολογίστηκε το κατανεμημένο φορτίο στις άνω δοκούς του πλαισίου:

 $s = \mu x c_e x c_t x s_k = 0.80 x 0.80 x 1.00 x 0.80 x 4.00m = 2.05 kN/m$

s= 2,05kN/m

Φορτίο Ανέμου (WIND)

Ακολουθούν οι τιμές κατανεμημένων και συγκεντρωμένων φορτίων που προέκυψαν από τους υπολογισμούς των ανεμοπιέσεων για διευθύνσεις ανέμου 0° και 90° και για δύο περιπτώσεις, ανοιχτών και κλειστών θυρών. Στο παράρτημα Β παρατίθενται οι εκτενείς υπολογισμοί.

Σχήματα 17-Προσανατολισμός Υπόστεγου

Διεύθυνση Ανέμου θ=0° με ανοιχτή θύρα WIND-DO-0°

Βόρεια Όψη:	1,93kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	
Ανατολική Όψη:	1,92kN/m κατά -Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	10,60kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Στέγη:	1,13kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του
	ζυγώματος

Διεύθυνση Ανέμου θ=90° με ανοιχτή θύρα WIND-DO-90°

Βόρεια Όψη:	11,44kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	
Ανατολική Όψη:	12,16kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	12,16kN/m κατά -Χ κατανεμημένο στα υποστυλώματα
Στέγη:	3,60kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του
	ζυγώματος

Διεύθυνση Ανέμου θ=0° με κλειστή θύρα WIND-DC-0°

Βόρεια Όψη:	5,23kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	11,58 kN κατά -Υ συγκεντρωμένο στους άνω & κάτω
	εξωτερικούς κόμβου του ζυγώματος
Ανατολική Όψη:	4,76kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	8,24kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Στέγη:	1,91kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του
	ζυγώματος

Διεύθυνση Ανέμου θ=90° με κλειστή θύρα WIND-DC-90°

Βόρεια Όψη:	7,15N/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα	
Νότια Όψη:	14,50 kN κατά Υ συγκεντρωμένο στους άνω & κάτω	
	εξωτερικούς κόμβου του ζυγώματος	
Ανατολική Όψη:	9,04kN/m κατά Χ κατανεμημένο στα υποστυλώματα	
Δυτική Όψη:	9,04kN/m κατά -Χ κατανεμημένο στα υποστυλώματα	
Στέγη:	2,52kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του	
	ζυγώματος	

3.2.3 Σεισμικά Φορτία Υπόστεγου 1

Τα φορτία υπολογίστηκαν απευθείας από το λογισμικό ανάλυσης SAP2000v.14 με την μέθοδο της δυναμικής φασματικής ανάλυσης. Για την ανάλυση τα δεδομένα της σεισμικής ζώνης, ο συντελεστής σπουδαιότητας, ο συντελεστής συμπεριφοράς, η κατηγορία του εδάφους καθώς και το φάσμα σχεδιασμού εισήχθησαν όπως αυτά αναφέρονται στην παράγραφο §2.5.2. Η δρώσα ιδιομορφική μάζα λήφθηκε από το συνδυασμό φορτίων G+ 0,80 x Q.

3.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 1

3.3.1 Ανάλυση διαστασιολόγηση

Το υπόστεγο διαστασιολογήθηκε με τα φορτία σχεδιασμού της προηγούμενης παραγράφου και τους συνδυασμούς φορτίσεων της παραγράφου 2.6.5. Τα αποτελέσματα της ανάλυσης παρουσιάζονται εποπτικά στην παρακάτω εικόνα, όπου παρατίθενται και χρωματική κλίμακα. Ενδεικτικοί αναλυτικοί έλεγχοι στοιχείων του υπόστεγου παρατίθενται στο Παράρτημα Γ.

Εικόνα 7-Αποτελέσματα Ανάλυσης Υπόστεγου 1 σε Χρωματική Κλίμακα ΒΑ άποψη

Εικόνα 8- Αποτελέσματα Ανάλυσης Υπόστεγου 1 σε Χρωματική Κλίμακα ΝΔ άποψη

3.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου

Το υπόστεγο μελετήθηκε σεισμικά με τη μέθοδο της δυναμικής φασματικής ανάλυσης για δύο διευθύνσεις σεισμού κατά X και Y. Για να καλυφτεί το 90% της ιδιομορφικής μάζας απαιτήθηκαν 103 ιδιομορφές (βλ. Παράρτημα Γ), γεγονός που εξηγείται από το είδος της κατασκευής. Επειδή η κατασκευή είναι μεταλλική και μάλιστα δικτυωτή, κάθε ιδιομορφή ενεργοποιεί πολύ μικρό μέρος της συνολικής μάζας του κτηρίου με αποτέλεσμα να προσθέτει μικρό ποσοστό στη συνολική δρώσα ιδιομορφική μάζα. Ακολουθούν οι δεσπόζουσες ιδιοπερίοδοι μαζί με το ποσοστό μάζας που αυτές ενεργοποιούν ανά διεύθυνση.

Διεύθυνση σεισμού κατά Χ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Χ είναι η 2^η ιδιομορφή, με ιδιοπερίοδο T_x=0,57sec και δρώσα ιδιομορφική μάζα 53%.

Διεύθυνση σεισμού κατά Υ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Υ είναι η 1^η ιδιομορφή, με ιδιοπερίοδο Τ_Y=0,59sec και δρώσα ιδιομορφική μάζα 56%.

Εικόνα 9-Κύρια Ιδιομορφή κατά Χ

Εικόνα 10-Κύρια Ιδιομορφή κατά Υ

3.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις

Σε Οριακή Κατάσταση Αστοχίας (DLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Χ είναι $\delta_{max,X}=0,042m$ και εμφανίζεται για το συνδυασμό φορτίσεων DLS3, για διεύθυνση ανέμου $\theta=0^{\circ}$ και θύρα κλειστή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι $\delta_{max,Y}=0,024m$ και εμφανίζεται για το συνδυασμό φορτίσεων DLS3, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Ζ είναι $\delta_{max,Z}$ =0,127m και εμφανίζεται για το συνδυασμό φορτίσεων DLS2, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

Σε Οριακή Κατάσταση Λειτουργικότητας (SLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Χ είναι δ_{max,X}=0,028m και εμφανίζεται για το συνδυασμό φορτίσεων SLS3, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι $\delta_{max,Y}=0,014m$ και εμφανίζεται για το συνδυασμό φορτίσεων SLS3, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Ζ είναι δ_{max,z}=0,090m και εμφανίζεται για το συνδυασμό φορτίσεων SLS2, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

3.4 Πίνακας Προμέτρησης Υπόστεγου 1

Στον πίνακα παρουσιάζονται οι διατομές που χρησιμοποιήθηκαν, τα μέλη από την κάθε διατομή καθώς και το συνολικό τους μήκος και βάρος. Επιπλέον παρουσιάζεται το είδος των πάνελ που χρησιμοποιήθηκαν, το συνολικό τους εμβαδόν και το βάρος τους. Τέλος συνάγεται το ολικό βάρος της κατασκευής σε kN και σε τόνους (ton).

Πίνακας Προμέτρησης Υπόστεγου 1			
Διατομή	Αρ. Μελών	Συνολικό Μήκος	Βάρος
		m	kN
CHHF219.1X20	162	2137,257	2097,18
CHHF139.7X10	1024	4095,916	1308,63
HE200B	12	87,934	53,91
2UPN160*/20/	260	988,304	396,75
CHHF168.3X12.5	40	299,157	143,72
IPE240	160	870,446	267,17
IPE270	40	181,561	65,42
HE260B	162	342,514	317,27
UPN180	168	1174,600	258,41
Πάνελ		Εμβαδόν	
ECOPANEL RL 50	-	3235,000	356,50
ECOPANEL RL 40		2351,04	249,68
	Συνολικά	ό Βάρος (kN)	5514,65
	Συνολικό	Βάρος (ton)	551,47

Πίνακας 17- Πίνακας Προμέτρησης Υπόστεγου 1

ΚΕΦΑΛΑΙΟ 4: Υπόστεγο 2 "Ισχυρού Πλαισίου"

4.1 Περιγραφή- Γεωμετρία Υπόστεγου

Το υπόστεγο 2 "Ισχυρού Πλαισίου" σχεδιάστηκε ώστε να ανταποκρίνεται κατ' αρχάς στις γεωμετρικές απαιτήσεις και εν συνεχεία στους κατασκευαστικούς και λειτουργικούς στόχους που περιγράφτηκαν αναλυτικά στο κεφάλαιο 1. Είναι ένα αμιγώς μεταλλικό υπόστεγο από δομικό χάλυβα S355 κάτοψης διαστάσεων 78,00m x 40m. Στεγάζεται με μονοκλινή στέγη κλίσης προς το βορρά. Μέγιστο ύψος της στέγης είναι 14,00m και ελάχιστο ύψος 10,00m. Το μέγιστο άνοιγμα θύρας είναι 70m και το μέγιστο ελεύθερο βάθος 40,00m. Ακολουθεί κάτοψη, όψεις του υπόστεγου και προοπτικές εικόνες ώστε να γίνει κατανοητή η μορφή και οι γενικές γεωμετρικές διαστάσεις του.

Σχήματα 18-Κάτοψη Υπόστεγο 2

Σχήματα 21-Βόρειο Ανατολική Άποψη Υπόστεγο 2

Σχήματα 22-Νότιο Δυτική Άποψη Υπόστεγο 2

Το υπόστεγο 2 αποτελείται από ένα στιβαρό διπλό πλαίσιο τετραγωνικής διατομής στη νότια όψη του υπόστεγου και από επάλληλα πλαίσια τοποθετημένα κάθετα στο διπλό πλαίσιο ανά 8,00m. Τα εγκάρσια πλαίσια ενώνονται μεταξύ τους με κεφαλοδοκό διατομής ΗΕΑ300 στη ζεύξη υποστυλώματος ζυγώματος, καθώς με διπλές αμφιέρειστες δοκούς διατομής 2UPN240/25 στο μέσο του ύψους του υποστυλώματος (βλ. Σχήμα-23-).

Σχήματα 23-Κεφαλοδοκός & Ενδιάμεση Δοκός

Την εγκάρσια σύνδεση των μονών πλαισίων ολοκληρώνουν τέσσερις ενισχυμένες δικτυωτές ζώνες διατομής SHHF120x120x12.5 (βλ. Σχήμα -18-). Υλικό όλων των παραπάνω μελών, είναι δομικός χάλυβας S355 θερμής ελάσεως.

Το στιβαρό πλαίσιο συντίθεται από ένα οριζόντιο ζύγωμα ανοίγματος 70,00m και δύο εκατέρωθεν υποστυλώματα ύψους (μέχρι τη ζεύξη) 10,00m. Τόσο το ζύγωμα όσο και τα υποστυλώματα έχουν διατομή τετραγώνου ακμής α=4,00m.

Σχήματα 24-Στιβαρό Πλαίσιο Νότιας Όψης

Το οριζόντιο ζύγωμα του στιβαρού πλαισίου αποτελείται από τέσσερις δοκούς διατομής HEA400, ποιότητας χάλυβα S355. Την τετραγωνική διατομή του ζυγώματος συνθέτουν δύο κατακόρυφοι ορθοστάτες διατομής HEB300 και δύο οριζόντιες εγκάρσιες δοκοί διατομής HEA300, ανά 4,00m (βλ.Σχήμα-25-). Τέλος σε κάθε φάτνωμα προβλέπονται εκατέρωθεν δύο διπλοί διαγώνιοι διατομής 2UPN160/20 (βλ.Σχήμα-25-). Όλα τα παραπάνω μέλη είναι ποιότητας δομικού χάλυβα θερμής ελάσεως S355.

Σχήματα 25-Ζύγωμα Στιβαρού Πλαισίου

Το υποστύλωμα του στιβαρού πλαισίου αποτελείται από τέσσερις κατακόρυφους στύλους κοίλης τετραγωνικής διατομής SHHF300x300x16, ποιότητας χάλυβα S355. Την τετραγωνική διατομή του υποστυλώματος συνθέτουν οριζόντιοι ορθοστάτες διατομής HEA300 και προς τις δύο κύριες διευθύνσεις X και Y, ανά 4,00m οι ακραίοι και 3,00m οι μεσαίοι (βλ.Σχήμα-26-). Επιπλέον σε κάθε φάτνωμα προβλέπονται εκατέρωθεν δύο διπλοί διαγώνιοι διατομής 2UPN160/20 κατά X και δύο μονοί διαγώνιοι διατομής CHHF244.5x25 κατά Y (βλ.Σχήμα-26-). Όλα τα παραπάνω μέλη είναι ποιότητας δομικού χάλυβα θερμής ελάσεως S355.

Τα εγκάρσια πλαίσια αποτελούνται από ένα κεκλιμένο δικτυωτό ζύγωμα ανοίγματος 36,00m και ένα υποστύλωμα ύψους 10,00m και διατομής HEM550, ποιότητας \$355 (βλ.Σχήμα27-).

Σχήματα 27-Εγκάρσιο Πλαίσιο Υπόστεγο 2

Το ζύγωμα συντίθεται από δύο κύριες δοκούς διατομής IPE500, ορθοστάτες 2UPN240/25 ανά 4,00m και διαγώνιες ράβδους διατομής 2UPN160/20, όπως φαίνονται στο παραπάνω σχήμα.

Για την ανάληψη των σεισμικών και κυρίως των δράσεων του ανέμου τοποθετήθηκαν κατά τη διεύθυνση X και Y του υπόστεγου διπλοί κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας, διατομής 2UPN200/20 (βλ. Σχήμα -19- ,-21- &-22-). Επιπλέον τοποθετήθηκαν οριζόντιοι σύνδεσμοι δυσκαμψίας στο άνω μέρος των άνω δοκών των εγκάρσιων πλαισίων, κοίλης τετραγωνικής διατομής TUBO120x120x22.2, με διάταξη όπως φαίνεται στην κάτοψη του σχήματος 18.

Περιμετρικά το υπόστεγο είναι μόνιμα κλειστό με πάνελ πολυουρεθάνης, ενώ στο Νότιο τμήμα προβλέπεται κατάλληλη διάταξη θύρας μέγιστου ανοίγματος 70,00m. Ενδεικτική διάταξη της θύρας αναπτύσσεται σε επόμενο κεφάλαιο.

4.2 Φορτία Σχεδιασμού Υπόστεγου 2

4.2.1 Μόνιμα Φορτία Υπόστεγου 2

Για το σχεδιασμό του υπόστεγου 1, λήφθηκαν υπ' όψη οι παρακάτω μόνιμες δράσεις:

- Ίδιο Βάρος Στοιχείων (DEAD): Λαμβάνεται αυτόματα από το λογισμικό ανάλυσης του φορέα (SAP2000v.14), ανάλογα με το ειδικό βάρος του υλικού και τις διαστάσεις των μελών.
- Μόνιμο Στέγης (ROOF DEAD): Για το υπόστεγο θεωρήθηκε ότι η στέγη θα καλυφτεί με πάνελ πολυουρεθάνης οροφής ECOPANEL RL 50 (βλ. Παράρτημα Α). Τα πάνελ θα στερεωθούν σε τεγίδες διατομής UPN180. Για το λόγω αυτό θα τοποθετήθηκαν 18 τεγίδες παράλληλες στο στιβαρό πλαίσιο. Το φορτίο που προέκυψε συνολικά κατανεμήθηκε στις άνω δοκούς του ζυγώματος του εγκάρσιου πλαισίου, με ζώνη επιρροής b_{eff}=8,00m. Έτσι προέκυψε κατανεμημένο

φορτίο **g= 1,67 kN/m** στα εγκάρσια πλαίσια και **g= 0,33 kN/m** κατανεμημένο στις άνω δοκούς του στιβαρού πλαισίου.

4.2.2 Μεταβλητά Φορτία Υπόστεγου 2

Κινητά Φορτία

Για το σχεδιασμό του υπόστεγου 2, λήφθηκε υπ' όψη οι παρακάτω κινητή δράση:

Κινητό Στέγης (ROOF LIVE): Ο Ευρωκώδικας για κατηγορία στέγης Η προτείνει κινητό φορτίο q=0,50kN/m². Για ζώνη επιρροής b_{eff}=8,00m προέκυψε κατανεμημένο φορτίο q=4,00kN/m στις άνω δοκούς ζυγώματος των εγκάρσιων πλαισίων και q=1,00kN/m στις άνω δοκούς του στιβαρού πλαισίου στη νότια όψη του υπόστεγου.

Φορτίο Χιονιού (SNOW)

Χρησιμοποιώντας τους συντελεστές που αναπτύχθηκαν παραπάνω (§2.4.2) και για κλίση στέγης θ=6° δηλαδή συντελεστής μορφής μ=0,80, υπολογίστηκε το κατανεμημένο φορτίο στις άνω δοκούς των εγκάρσιων πλαισίων,

 $s = \mu x c_e x c_t x s_k = 0.80 x 0.80 x 1.00 x 0.80 x 8.00m = 4.096 kN/m$

s= 4,096kN/m

και στις άνω δοκούς του στιβαρού πλαισίου,

 $s = \mu x c_e x c_t x s_k = 0.80 x 0.80 x 1.00 x 0.80 x 2.00m = 1.024 kN/m$

s= 1,024kN/m

Φορτίο Ανέμου (WIND)

Ακολουθούν οι τιμές κατανεμημένων και συγκεντρωμένων φορτίων που προέκυψαν από τους υπολογισμούς των ανεμοπιέσεων για διευθύνσεις ανέμου 0° και 90° και για δύο περιπτώσεις, ανοιχτών και κλειστών θυρών. Στο παράρτημα Β παρατίθενται οι εκτενείς υπολογισμοί (ενδεικτικοί για υπόστεγο 1).

Προσανατολισμός υπόστεγου όπως στο Παράτημα Β

Διεύθυνση Ανέμου θ=0° με ανοιχτή θύρα WIND-DO-0°

Βόρεια Όψη:	3,20kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	
Ανατολική Όψη:	3,60kN/m κατά -Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	23,60kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Στέγη:	3,60kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του
	ζυνώματος των εγκάρσιων πλαισίων

Διεύθυνση Ανέμου θ=90° με ανοιχτή θύρα WIND-DO-90°

Βόρεια Όψη:	16,80kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	
Ανατολική Όψη:	25,80kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	25,80kN/m κατά -Χ κατανεμημένο στα υποστυλώματα
Στέγη:	5,19kN/m κατά -Ζ κατανεμημένο στις άνω δοκούς του
	ζυγώματος των εγκάρσιων πλαισίων

Διεύθυνση Ανέμου θ=0° με κλειστή θύρα WIND-DC-0°

Βόρεια Όψη:	10,40kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα	
Νότια Όψη:	18,20kN κατά -Υ συγκεντρωμένο στους άνω & κάτω	
	εξωτερικούς κόμβου του ζυγώματος	
Ανατολική Όψη:	3,60kN/m κατά Χ κατανεμημένο στα υποστυλώματα	
Δυτική Όψη:	16,40kN/m κατά Χ κατανεμημένο στα υποστυλώματα	
Στέγη:	5,30kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του	
	ζυγώματος των εγκάρσιων πλαισίων	

Διεύθυνση Ανέμου θ=90° με κλειστή θύρα WIND-DC-90°

Βόρεια Όψη:	6,00N/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	25,20 kN κατά Υ συγκεντρωμένο στους άνω & κάτω
	εξωτερικούς κόμβου του ζυγώματος
Ανατολική Όψη:	15,00kN/m κατά Χ κατανεμημένο στα υποστυλώματα
Δυτική Όψη:	15,00kN/m κατά -Χ κατανεμημένο στα υποστυλώματα
Στέγη:	11,00kN/m κατά Ζ κατανεμημένο στις άνω δοκούς του
	ζυγώματος των εγκάρσιων πλαισίων

4.2.3 Σεισμικά Φορτία Υπόστεγου

Τα φορτία υπολογίστηκαν απευθείας από το λογισμικό ανάλυσης SAP2000v.14 με την μέθοδο της δυναμικής φασματικής ανάλυσης. Για την ανάλυση τα δεδομένα της σεισμικής ζώνης, ο συντελεστής σπουδαιότητας, ο συντελεστής συμπεριφοράς, η κατηγορία του εδάφους καθώς και το φάσμα σχεδιασμού εισήχθησαν όπως αυτά αναφέρονται στην παράγραφο §2.5.2. Η δρώσα ιδιομορφική μάζα λήφθηκε από το συνδυασμό φορτίων G+ 0,80 x Q.

4.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 2

4.3.1 Ανάλυση διαστασιολόγηση

Το υπόστεγο διαστασιολογήθηκε με τα φορτία σχεδιασμού της προηγούμενης παραγράφου και τους συνδυασμούς φορτίσεων της παραγράφου 2.6.5. Τα αποτελέσματα της ανάλυσης παρουσιάζονται εποπτικά στην παρακάτω εικόνα, όπου παρατίθενται και χρωματική κλίμακα ανάλογα με το ποσοστό καταπόνησης-χρήσης των στοιχείων. Ενδεικτικοί αναλυτικοί έλεγχοι στοιχείων του υπόστεγου παρατίθενται στο Παράρτημα Δ.

Εικόνα 11-Αποτελέσματα Ανάλυσης Υπόστεγου 2 σε Χρωματική Κλίμακα ΒΑ άποψη

Εικόνα 12-Αποτελέσματα Ανάλυσης Υπόστεγου 2 σε Χρωματική Κλίμακα ΝΔ άποψη

4.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου

Το υπόστεγο μελετήθηκε σεισμικά με τη μέθοδο της δυναμικής φασματικής ανάλυσης για δύο διευθύνσεις σεισμού κατά X και Y. Για να καλυφτεί το 90% της ιδιομορφικής μάζας απαιτήθηκαν 200 ιδιομορφές (βλ. Παράρτημα Δ), γεγονός που εξηγείται από το είδος της κατασκευής. Επειδή η κατασκευή είναι μεταλλική και έχει δικτυωτά πλαίσια, κάθε ιδιομορφή ενεργοποιεί πολύ μικρό μέρος της συνολικής μάζας του κτηρίου με αποτέλεσμα να προσθέτει μικρό ποσοστό στη συνολική δρώσα ιδιομορφική μάζα. Ακολουθούν οι δεσπόζουσες ιδιοπερίοδοι μαζί με το ποσοστό της δρώσας ιδιομορφικής μάζας που αυτές ενεργοποιούν ανά διεύθυνση.

Διεύθυνση σεισμού κατά Χ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Χ είναι η 19^η ιδιομορφή, με ιδιοπερίοδο T_x=0,288sec και δρώσα ιδιομορφική μάζα 51,71%.

Διεύθυνση σεισμού κατά Υ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Υ είναι η 1^η ιδιομορφή, με ιδιοπερίοδο Τ_Y=0,337sec και δρώσα ιδιομορφική μάζα 35,41%.

Εικόνα 13-Κύρια Ιδιομορφή κατά Χ

Εικόνα 14-Κύρια Ιδιομορφή κατά Υ

4.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις

Σε Οριακή Κατάσταση Αστοχίας (DLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Χ είναι δ_{max,x}=0,0071m και εμφανίζεται για το συνδυασμό φορτίσεων DLS3, για διεύθυνση ανέμου θ=0° και θύρα ανοιχτή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι $\delta_{max,Y}=0,012m$ και εμφανίζεται για το συνδυασμό φορτίσεων DLS3, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Z είναι $\delta_{max,Z}$ =0,072m και εμφανίζεται για το συνδυασμό φορτίσεων DLS2, για διεύθυνση ανέμου θ=90° και θύρα ανοιχτή.

Σε Οριακή Κατάσταση Λειτουργικότητας (SLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση X είναι $\delta_{max,X}=0,005m$ και εμφανίζεται για το συνδυασμό φορτίσεων SLS3, για διεύθυνση ανέμου $\theta=0^{\circ}$ και θύρα ανοιχτή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι δ_{max,Y}=0,008m και εμφανίζεται για το συνδυασμό φορτίσεων SLS3, για διεύθυνση ανέμου θ=90° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Ζ είναι δ_{max,Z}=0,050m και εμφανίζεται για το συνδυασμό φορτίσεων SLS2, για διεύθυνση ανέμου θ=90° και θύρα ανοιχτή.

4.4 Πίνακας Προμέτρησης Υπόστεγου 2

Στον πίνακα παρουσιάζονται οι διατομές που χρησιμοποιήθηκαν, ο αριθμός των μελών από την κάθε διατομή καθώς και το συνολικό τους μήκος και βάρος. Επιπλέον παρουσιάζεται το είδος των πάνελ που χρησιμοποιήθηκαν, το συνολικό τους εμβαδόν και το βάρος τους. Τέλος συνάγεται το ολικό βάρος της κατασκευής σε kN και σε τόνους (ton).

Πίνακας Προμέτρησης Υπόστεγου 2			
Διατομή	Αρ. Μελών	Συνολικό Μήκος	Συνολικό Βάρος
		m	KN
HE400A	8	296,00	369,45
HE300B	38	152,00	177,79
2UPN160/20/	151	729,11	274,90
HE300A	72	326,00	289,18
2UPN200/20/	40	370,71	187,32
TUBO120X120X22.2	60	637,77	434,82
2UPN240/25/	106	318,00	211,16
SHHF300X300X16	24	176,00	247,31
IPE500	22	794,44	723,41
SHHF350X350X16	4	20,00	33,13
CHHF244.5X25	24	119,20	160,94
HE550M	18	90,00	250,10
SHHF120X120X12.5	200	1078,74	441,19
UPN180	171	1404	308,88
Πάνελ		Εμβαδόν	
ECOPANEL RL 50	-	3450	380,19
ECOPANEL RL 40	-	1740	184,79
	Συνολικό	Βάρος (kN)	4674,56
	Συνολικό	Βάρος (ton)	467.46

Πίνακας 18-Πίνακας Προμέτρησης Υπόστεγου 2

ΚΕΦΑΛΑΙΟ 5: Υπόστεγο 3 "Ανηρτημένης Στέγης"

5.1 Περιγραφή- Γεωμετρία Υπόστεγου

Στο κεφάλαιο 1 αναπτύχθηκαν αναλυτικά οι γενικοί γεωμετρικοί και κατασκευαστικοί περιορισμοί του υπό μελέτη υπόστεγου συντήρησης αεροσκαφών καθώς και οι λειτουργικοί στόχοι. Βάσει αυτών των απαιτήσεων σχεδιάστηκε το υπόστεγο 3-"Ανηρτημένης Στέγης", το οποίο παρουσιάζεται στο παρόν κεφάλαιο. Ο φέρον οργανισμός του υπόστεγου όπως και οι πυλώνες σχεδιάζονται ποιότητας δομικού χάλυβα S355. Τα δε καλώδια ανάρτησης είναι από ανοξείδωτο χάλυβα μέτρου ελαστικότητας E=160kN/mm² και τάσης διαρροής f_y=870MPa.

Το υπόστεγο έχει κάτοψη διαστάσεων 70,00m x 40,00m. Στεγάζεται από μία δικλινή στέγη κλίσης θ=8,15° μορφής χωροδικτυώματος, με ύψος κορφιά 16,00m και ύψος πλευράς 11,08m. Το μέγιστο άνοιγμα θύρας στη Νότια πλευρά του υπόστεγου φτάνει τα 70m και μέγιστο ελεύθερο βάθος 39,80m. Ακολουθούν δύο κάθετες όψεις του υπόστεγου, η κάτοψη του και προοπτικές εικόνες του ώστε να γίνει κατανοητή η μορφή και οι γενικές γεωμετρικές του διαστάσεις.

Σχήματα 28-Βόρεια Όψη Υπόστεγο 3

Σχήματα 29-Ανατολική Όψη Υπόστεγο 3

Σχήματα 30-Κάτοψη Υπόστεγο 3

Σχήματα 31-Βόρειο Ανατολική Άποψη Υπόστεγο 3

Το υπόστεγο συντήρησης αεροσκαφών 3 διαφέρει από αυτά των κεφαλαίων 3 και 4 καθώς δε στηρίζεται στην πλαισιακή λειτουργία. Αποτελείται από χωροδικτυωτή στέγη, πέντε ζεύγη πυλώνων, βόρειο εξωτερικό τοίχο, νότια την διάταξη της θύρας, τους εκατέρωθεν κατακόρυφους χιαστί συνδέσμους δυσκαμψίας, κεφαλοδοκούς εγκάρσιας σύνδεσης των πυλώνων και το καλωδιωτό σύστημα ανάρτησης της στέγης.

Η στέγη μορφώνεται ως ένα χωροδικτύωμα με ράβδους αρθρωτής σύνδεσης τύπου Mero (Παράρτημα ΣΤ). Οι άνω και κάτω δοκοί, οι ορθοστάτες, και οι διαγώνιοι είναι στοιχεία κοίλης κυκλικής διατομής CHHF60.3x3.6. Το χωροδικτυώμα αναπτύσσεται σε τρισδιάστατο κάναβο 0,9899m x1,00m x0,9899m. Τοπικά στα σημεία όπου γίνεται η ανάρτηση της στέγης, προβλέπονται ενισχυμένες δικτυωτές ζώνες κοίλης κυκλικής διατομής CHHF139.7x10 (βλ. κάτοψη στοιχεία με γαλάζιο χρώμα). Αυτές οι ενισχυμένες ζώνες καταλήγουν σε αναρτήρες που με τη σειρά τους ανά τρεις συνδέονται με το καλώδιο ανάρτησης PV150 (Παράρτημα Ζ), ώστε να μειωθεί ο αριθμός των καλωδίων ανάρτησης. Επιπλέον ενισχυμένες ζώνες τοποθετούνται στον κορφιά και στα πρώτα εκατέρωθεν φατνώματα του χωροδικτυώματος για να συνδράμουν στην ομαλή διανομή των οριζόντιων δράσεων, κάθε είδους, σε όλο το μήκος της κατασκευής. Ακολουθούν σκαριφήματα του χωροδικτυώματος, των ενισχυμένων ζωνών καθώς και ενός φατνώματος αναρτήρωνενισχυμένης ζώνης με τα αντίστοιχα καλώδια:

Σχήματα 33-Χωροδικτύωμα Στέγης Υπόστεγο 3

Σχήματα 34-Ενισχυμένη Ζώνη Υπόστεγο 3

Για την στήριξη του χωροδικτυώματος της στέγης, όπως αναφέρθηκε και παραπάνω, προβλέφτηκαν ενισχυμένες ζώνες που καταλήγουν σε αναρτήρες κ αυτοί με τη σειρά τους ανά τρείς σε καλώδια. Όπως φαίνεται στο παραπάνω σχήμα κάθε 4,00m του χωροδικτυώματος αποτελούν ένα "φάτνωμα" το οποίο αναρτάται με πέντε ζεύγη καλωδίων PV150 από τον πυλώνα. Επειδή ο πυλώνας στη βάση του είναι αρθρωτά συνδεδεμένος, απαιτούνται για την ισορροπία του συστήματος καλώδια αντιστήριξης. Στην συνολική προοπτική εικόνα του φατνώματος που ακολουθεί φαίνεται ότι χρησιμοποιήθηκαν τρία ζεύγη καλωδίων αντιστήριξης PV150 τα οποία ξεκινούν από τον πυλώνα σε τρία επίπεδα και καταλήγουν σε δύο σημεία αγκύρωσης, σε απόσταση 15,00m από τη βάση του πυλώνα και με μεταξύ τους απόσταση 8,00m.

Σχήματα 36-Σύστημα Καλωδίωσης Φατνώματος Υπόστεγο 3

Όλα τα καλώδια είναι προεντεταμένα, ώστε να μην χαλαρώνουν σε περιπτώσεις μικρών μετακινήσεων λόγω σεισμού ή ανέμου και για να περιορίσουν την κατακόρυφη βύθιση της στέγης. Ακολουθεί ο πίνακας προεντάσεως των καλωδίων:

Πίνακας Προεντάσεως		
Καλώδιο	LoadPat	P(kN)
11	TARGET	225,00
12	TARGET	95,00
13	TARGET	58,00
14	TARGET	42,00
15	TARGET	72,00
01	TARGET	310,00
02	TARGET	188,00
03	TARGET	125,00
Οι: Εξωτερικό καλώδιο		
li: Εσωτερικό καλώδιο		

Πίνακας 19-Πίνακας Προεντάσεως Καλωδίων Φατνώματος Υπόστεγο 3

Το σύστημα καλωδίωσης καθίσταται αποδοτικό χάρη στα πέντε ζευγών πυλώνων. Οι πυλώνες απέχουν μεταξύ τους, μετρώντας από την βάση τους 8,00m και είναι αρθρωτοί στη βάση τους. Το μέγιστο ύψος τους πλησιάζει τα 25,00m (24,77m) και συνδέονται με το χωροδικτύωμα σε ύψος 10,07m και 11,07m. Κάθε πυλώνας μορφώνεται από δύο ορθογώνιες τριγωνικές πυραμίδες, κοίλης κυκλικής διατομής CHHF355.6x25, αντικατοπτρικά τοποθετημένες ως προς τη βάση τους. Βάση των πυραμίδων είναι ένα ισοσκελές τρίγωνο σκελών 1,768m και βάσης 1,875m κοίλης κυκλικής διατομής CHHF139.7x10. Η βάση του ισοσκελούς εφάπτεται στο χωροδικτύωμα ενώ η κορυφή του "δείχνει" προς την ορθή γωνία των πυραμίδων. Επιπλέον οι πυλώνες ενισχύονται καθ' ύψος ανά ένα μέτρο με ισοσκελή τρίγωνα διατομής CHHF139.7x10. Όλα τα παραπάνω στοιχεία που συνθέτουν τον πυλώνα είναι ποιότητας χάλυβα S355. Η παραπάνω περιγραφή

Η σύνδεση των πυλώνων με το χωροδικτύωμα γίνεται με ράβδους κυκλικής διατομής CHHF139.7x10, σταθερά συγκολλημένων στον πυλώνα με την παρακάτω διάταξη:

Σχήματα 38-Σύνδεση Χωροδικτυώματος Πυλώνα

Οι πυλώνες συνδέονται μεταξύ τους με διπλές κεφαλοδοκούς εσωτερικές στη βάση των ισοσκελών τριγώνων και εξωτερικές στις κορυφές τους, διατομής HEA260 και ποιότητας χάλυβα S355. Οι κεφαλοδοκοί τοποθετούνται σε δύο υψόμετρα h_{in}=9,47m & h_{out}= 9,30m και h_{in}=5,47m & h_{out}= 5,37m.

Σχήματα 39-Κεφαλοδοκοί Εγκάρσιας Σύνδεσης Πυλώνων

Για την ανάληψη των οριζόντιων φορτίων, είτε αυτά προέρχονται από σεισμικές δράσεις, είτε από δράσεις ανεμοπιέσεων, τοποθετήθηκαν κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας. Στην ανατολική και δυτική πλευρά τοποθετήθηκαν στα δύο μεσαία φατνώματα του υπόστεγου, δύο ζεύγη κατακόρυφων χιαστί συνδέσμων δυσκαμψίας διατομής 2UPN300/25, όπως φαίνονται στο παρακάτω σχήμα:

Κατακόρυφοι χιαστί σύνδεσμοι δυσκαμψίας τοποθετήθηκαν και στο Βόρειο τμήμα με τη διάταξη του παρακάτω σχήματος, ώστε να εξασφαλιστεί η αναγκαία δυσκαμψία στη διεύθυνση Α-Δ του υπόστεγου. Επιπλέον την δυσκαμψία σε αυτή τη διεύθυνση ενισχύει σημαντικά το σύστημα καλωδίωσης του υπόστεγου.

Σχήματα 41- Κατακόρυφοι Χιαστοί Σύνδεσμοι Δυσκαμψίας Βόρειο Τμήμα Υπόστεγο 3

Το μεταλλικό μέρος του υπόστεγου ολοκληρώνεται από την σταθερά κλειστή βόρεια πλευρά του που φαίνεται στο παραπάνω σχήμα και τη διάταξη της θύρας στο νότιο τμήμα του. Την Βόρεια πλευρά του υπόστεγου συνθέτουν κατακόρυφα υποστυλώματα διατομής HEB260 και αμφιέρειστες δοκοί διατομής HEA260. Η πλευρά καλύπτεται με πάνελ τα οποία στηρίζονται σε μηκίδες τοποθετημένες ανά 2,00m καθ' ύψος. Στη νότια πλευρά έχουν προβλεφτεί δύο στύλοι στα άκρα του υπόστεγου για να ολοκληρώσουν την κάτοψη του υπόστεγου και να περιορίζουν τοπικά τις βυθίσεις στα άκρα του χωροδικτυώματος. Επίσης την νότια πλευρά ολοκληρώνει η διάταξη της θύρας η οποία αναπτύσσεται σε παρακάτω κεφάλαιο.

5.2 Φορτία Σχεδιασμού Υπόστεγου 3

5.2.1 Μόνιμα Φορτία Υπόστεγου 3

Για το σχεδιασμό του υπόστεγου 3, λήφθηκαν υπ' όψη οι παρακάτω μόνιμες δράσεις:

- Ίδιο Βάρος Στοιχείων (DEAD): Λαμβάνεται αυτόματα από το λογισμικό ανάλυσης του φορέα (SAP2000v.14), ανάλογα με το ειδικό βάρος του υλικού και τις διαστάσεις των μελών.
- Μόνιμο Στέγης (ROOF DEAD): Για το υπόστεγο θεωρήθηκε ότι η στέγη θα καλυφτεί με πάνελ πολυουρεθάνης οροφής ECOPANEL RL 50 (βλ. Παράρτημα Α). Τα πάνελ θα στερεωθούν απ' ευθείας με ειδικές διατάξεις σύνδεσης στους άνω κόμβους του χωροδικτυώματος. Το φορτίο των πάνελ κατανεμήθηκε στις άνω δοκούς χωροδικτυώματος, με ζώνη επιρροής b_{eff}=1,00m. Έτσι προέκυψε κατανεμημένο φορτίο g= 0,11kN/m στις άνω ράβδους του χωροδικτυώματος της στέγης.

5.2.2 Μεταβλητά Φορτία Υπόστεγου 3

Κινητά Φορτία

Για το σχεδιασμό του υπόστεγου 3, λάβαμε υπ' όψη μας την παρακάτω κινητή δράση:

 Κινητό Στέγης (ROOF LIVE): Ο Ευρωκώδικας για κατηγορία στέγης Η προτείνει κινητό φορτίο q=0,50kN/m². Για ζώνη επιρροής b_{eff}=1,00m προέκυψε κατανεμημένο φορτίο q=0,50kN/m στις άνω ράβδους του χωροδικτυώματος της στέγης.

Φορτίο Χιονιού (SNOW)

Χρησιμοποιώντας τους συντελεστές που αναπτύχθηκαν παραπάνω (§2.4.2) και για κλίση στέγης θ=8,15° δηλαδή συντελεστής μορφής μ=0,80, υπολογίστηκε το κατανεμημένο φορτίο στις άνω ράβδους του χωροδικτυώματος της στέγης,

 $s = \mu x c_e x c_t x s_k = 0.80 x 0.80 x 1.00 x 0.80 x 1.00m = 0.64 kN/m$

s= 0,64 kN/m

Φορτίο Ανέμου (WIND)

Ακολουθούν οι τιμές κατανεμημένων και συγκεντρωμένων φορτίων που προέκυψαν από τους υπολογισμούς των ανεμοπιέσεων για διευθύνσεις ανέμου 0° και 90° και για δύο περιπτώσεις, ανοιχτών και κλειστών θυρών. Στο παράρτημα Β παρατίθενται εκτενείς υπολογισμοί (ενδεικτικοί για υπόστεγο 1).

Προσανατολισμός υπόστεγου όπως στο Παράτημα Β

Διεύθυνση Ανέμου θ=0° με ανοιχτή θύρα WIND-DO-0°

Βόρεια Όψη:	1,60kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα
Νότια Όψη:	
Ανατολική Όψη:	1,64kN/m κατά -Χ κατανεμημένο στους πυλώνες
Δυτική Όψη:	9,72kN/m κατά Χ κατανεμημένο στους πυλώνες
Στέγη:	0,24kN/m κατά Ζ κατανεμημένο στις άνω ράβδους του
	χωροδικτυώματος της στέγης

Διεύθυνση Ανέμου θ=90° με ανοιχτή θύρα WIND-DO-90°

Βόρεια Όψη:	10,89kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα	
Νότια Όψη:		
Ανατολική Όψη:	8,83kN/m κατά Χ κατανεμημένο στους πυλώνες	
Δυτική Όψη:	8,83kN/m κατά -Χ κατανεμημένο στους πυλώνες	
Στέγη:	0,73kN/m κατά Ζ κατανεμημένο στις άνω ράβδους του	
	χωροδικτυώματος της στέγης	

Διεύθυνση Ανέμου θ=0° με κλειστή θύρα WIND-DC-0°

Βόρεια Όψη:	3,95kN/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα	
Νότια Όψη:	13,33kN κατά -Υ συγκεντρωμένο στους άνω & κάτω	
	εξωτερικούς κόμβου του ζυγώματος	
Ανατολική Όψη:	6,32kN/m κατά Χ κατανεμημένο στους πυλώνες	
Δυτική Όψη:	7,92kN/m κατά Χ κατανεμημένο στους πυλώνες	
Στέγη:	0,24kN/m κατά Ζ κατανεμημένο στις άνω ράβδους του	
	χωροδικτυώματος της στέγης	

Διεύθυνση Ανέμου θ=90° με κλειστή θύρα WIND-DC-90°

Βόρεια Όψη:	2,53N/m κατά Υ κατανεμημένο στα πίσω υποστυλώματα	
Νότια Όψη:	5,80 kN κατά Υ συγκεντρωμένο στους άνω & κάτω	
	εξωτερικούς κόμβου του ζυγώματος	
Ανατολική Όψη:	5,70kN/m κατά Χ κατανεμημένο στους πυλώνες	
Δυτική Όψη:	5,70kN/m κατά -Χ κατανεμημένο στους πυλώνες	
Στέγη:	0,53kN/m κατά Ζ κατανεμημένο στις άνω ράβδους του	
	χωροδικτυώματος της στέγης	

5.2.3 Σεισμικά Φορτία Υπόστεγου 3

Τα φορτία υπολογίστηκαν απευθείας από το λογισμικό ανάλυσης SAP2000v.14 με την μέθοδο της δυναμικής φασματικής ανάλυσης. Για την ανάλυση τα δεδομένα της σεισμικής ζώνης, ο συντελεστής σπουδαιότητας, ο συντελεστής συμπεριφοράς, η κατηγορία του εδάφους καθώς και το φάσμα σχεδιασμού εισήχθησαν όπως αυτά αναφέρονται στην παράγραφο §2.5.2. Η δρώσα ιδιομορφική μάζα λήφθηκε από το συνδυασμό φορτίων G+ 0,80 x Q.

5.3 Αποτελέσματα διαστασιολόγησης Υπόστεγου 3

5.3.1 Ανάλυση διαστασιολόγηση

Το υπόστεγο 3 διαστασιολογήθηκε με τα φορτία σχεδιασμού της προηγούμενης παραγράφου και τους συνδυασμούς φορτίσεων της παραγράφου 2.6.5. Επειδή στο μοντέλο υπάρχουν στοιχεία με έντονη μη γραμμική συμπεριφορά, για την ανάλυση του ακολουθήθηκε μη γραμμική ανάλυση με τις παρακάτω παραμέτρους:

Material Nonlinearity Parameters	- Solution Control				
Frame Element Tension/Compression Only	Maximum Total Steps per Stage	200			
🔽 Frame Element Hinge	Maximum Null (Zero) Steps per Stage	50			
Cable Element Tension Only	Maximum Constant-Stiff Iterations per Step	10			
☑ Link Gap/Hook/Spring Nonlinear Properties	Maximum Newton-Raphson Iter, per Step	40			
🔽 Link Other Nonlinear Properties	Iteration Convergence Tolerance (Relative)	1,000E-03			
Time Dependent Material Properties	Use Event-to-event Stepping	Yes 💌			
	Event Lumping Tolerance (Relative)	0,01			
	Max Line Searches per Iteration	20			
	Line-search Acceptance Tol. (Relative)	0,1			
	Line-search Step Factor	1,618			
Hinge Unloading Method	Target Force Iteration				
Unload Entire Structure	Maximum Iterations per Stage	2000			
O Apply Local Redistribution	Convergence Tolerance (Relative)	0,05			
C Restart Using Secant Stiffness	Acceleration Factor	1.			
	Continue Analysis If No Convergence	No 💌			
Reset To Defaults Cancel					

Πίνακας 20-Παράμετροι Μη γραμμικής Ανάλυσης

Η ανάλυση έγινε στα σε στάδια. Αρχικά τοποθετήθηκαν τα μόνιμα φορτία και τα ένα μέρος των κινητών ώστε να υπολογιστούν οι απαιτούμενες δυνάμεις προέντασης. Κατόπιν για τον συνδυασμό σε Ο.Κ.Α. υπολογίστηκαν οι μέγιστες αναπτυσσόμενες εφελκυστικές δυνάμεις στα καλώδια, ώστε να επιλεγεί η κατάλληλη διατομή (PV150). Τέλος με αρχική κατάσταση τον συνδυασμό φορτίσεων σε οριακή κατάσταση λειτουργικότητας, προσθέτοντας με τους κατάλληλους συντελεστές τα υπόλοιπα φορτία δημιουργήθηκαν μη γραμμικοί συνδυασμοί φορτίσεων, όμοιοι με αυτοί που αναφέρονται στο κεφάλαιο 2.

Τα αποτελέσματα της ανάλυσης παρουσιάζονται εποπτικά στην παρακάτω εικόνα, όπου παρατίθενται και χρωματική κλίμακα ανάλογα με το ποσοστό καταπόνησης-χρήσης των στοιχείων. Ενδεικτικοί αναλυτικοί έλεγχοι στοιχείων του υπόστεγου παρατίθενται στο Παράρτημα Ε.

Εικόνα 15- Αποτελέσματα Ανάλυσης Υπόστεγου 3 σε Χρωματική Κλίμακα ΒΑ άποψη

Εικόνα 16- Αποτελέσματα Ανάλυσης Υπόστεγου 3 σε Χρωματική Κλίμακα ΝΔ άποψη

5.3.2 Ιδιομορφές-Ιδιοπερίοδοι Υπόστεγου

Το υπόστεγο μελετήθηκε σεισμικά με τη μέθοδο της δυναμικής φασματικής ανάλυσης για δύο διευθύνσεις σεισμού κατά X και Y. Για να καλυφτεί το 90% της ιδιομορφικής μάζας απαιτήθηκαν 100 ιδιομορφές (βλ. Παράρτημα Ε), γεγονός που εξηγείται από το είδος της κατασκευής. Επειδή η κατασκευή είναι μεταλλική και έχει δικτυωτή στέγη, κάθε ιδιομορφή ενεργοποιεί πολύ μικρό μέρος της συνολικής μάζας του κτηρίου με αποτέλεσμα να προσθέτει μικρό ποσοστό στη συνολική δρώσα ιδιομορφική μάζα. Ακολουθούν οι δεσπόζουσες ιδιοπερίοδοι μαζί με το ποσοστό της δρώσας ιδιομορφικής μάζας που αυτές ενεργοποιούν ανά διεύθυνση.

Διεύθυνση σεισμού κατά Χ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Χ είναι η 13^η ιδιομορφή, με ιδιοπερίοδο Τ_Y=0,488sec και δρώσα ιδιομορφική μάζα 55,39%.

Διεύθυνση σεισμού κατά Υ

Δεσπόζουσα ιδιομορφή κατά τη διεύθυνση Υ είναι η 14^η ιδιομορφή, με ιδιοπερίοδο T_x=0,409sec και δρώσα ιδιομορφική μάζα 36,38%.

Εικόνα 17-Κύρια Ιδιομορφή κατά Χ

Εικόνα 18-Κύρια Ιδιομορφή κατά Υ

5.3.3 Μέγιστες Οριζόντιες και Κατακόρυφες Μετακινήσεις

Σε Οριακή Κατάσταση Αστοχίας (DLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Χ είναι δ_{max,x}=0,048m και εμφανίζεται για το συνδυασμό φορτίσεων DLS2, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι $\delta_{max,Y}=0,052m$ και εμφανίζεται για το συνδυασμό φορτίσεων DLS3, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Z είναι $\delta_{max,Z}$ =0,251m και εμφανίζεται για το συνδυασμό φορτίσεων DLS2, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.

Σε Οριακή Κατάσταση Λειτουργικότητας (SLS)

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Χ είναι $\delta_{max,X}=0,027m$ και εμφανίζεται για το συνδυασμό φορτίσεων SLS2, για διεύθυνση ανέμου $\theta=0^{\circ}$ και θύρα κλειστή.

Η μέγιστη απόλυτη μετακίνηση κατά τη διεύθυνση Υ είναι $\delta_{max,Y}=0,031$ m και εμφανίζεται για το συνδυασμό φορτίσεων SLS3, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.

Η μέγιστη απόλυτη βύθιση κατά τη διεύθυνση Ζ είναι δ_{max,z}=0,123m και εμφανίζεται για το συνδυασμό φορτίσεων SLS2, για διεύθυνση ανέμου θ=0° και θύρα κλειστή.
5.4 Πίνακας Προμέτρησης Υπόστεγου 3

Στον πίνακα παρουσιάζονται οι διατομές που χρησιμοποιήθηκαν, ο αριθμός των μελών από την κάθε διατομή καθώς και το συνολικό τους μήκος και βάρος. Επιπλέον παρουσιάζεται το είδος των πάνελ που χρησιμοποιήθηκαν, το συνολικό τους εμβαδόν και το βάρος τους. Τέλος συνάγεται το ολικό βάρος της κατασκευής σε kN και σε τόνους (ton).

Πίνακας Προμέτρησης Υπόστεγου 3						
Διατομή	Αρ. Μελών	Συνολικό μήκος	Συνολικό Βάρος			
		m	KN			
CHCF193.7X12.5	160	3854,32	320,72			
CHHF60.3X3.6	20430	25074,13	1261,69			
CHHF139.7X10	4075	5027,76	1606,34			
HE260A	70	403,23	178,98			
2UPN300/25/	34	248,54	229,25			
HE260B	18	220,68	204,41			
CHHF355.6X25	70	803,82	1640,60			
PV150	160	3850,89	342,73			
Πάνελ		Εμβαδόν				
ECOPANEL RL 50	-	2879,20	322,47			
ECOPANEL RL 40	-	1933,00	205,28			
	Συνολικά	Βάρος (kN)	6312,47			
	Συνολικό	Βάρος (ton)	631,257			

Πίνακας 21-Πίνακας Προμέτρησης Υπόστεγου 3

ΚΕΦΑΛΑΙΟ 6:Ενδεικτική Διάταξη Θύρας

Στο παρόν κεφάλαιο παρουσιάζεται η διάταξη της θύρας ενδεικτικά για το Υπόστεγο 2. Το μέγιστο άνοιγμα της θύρας φτάνει τα 70,00m, ώστε να είναι δυνατή η ταυτόχρονη είσοδος ή έξοδος και των δύο αεροσκαφών τύπου ATR 72. Για να πετύχουμε αυτό το άνοιγμα χρησιμοποιήθηκαν τέσσερεις θύρες τύπου MEGADOOR S1500 ύψους 10,00m, δύο πλάτους 20,00m (D1) και δύο 15,00m (D2), σύμφωνα με την παρακάτω διάταξη:

Σχήματα 42-Διάταξη Θύρας Υπόστεγο 2 Κλειστή

Σχήματα 43-Διάταξη Θύρας Υπόστεγο 2 Πλήρως Ανοιχτή

Να σημειωθεί ότι στα άκρα των θυρών προβλέπονται οδηγοί-ράγες, όπου οι θύρες μεταβιβάζουν τα εγκάρσια φορτία. Οι οδηγοί αυτοί, στην περίπτωση πλήρους ανοίγματος της θύρας αναδιπλώνονται όπως φαίνεται στο παραπάνω σχήμα. Περαιτέρω περιγραφή και ανάλυση των οδηγών γίνεται παρακάτω στην αντίστοιχη παράγραφο.

Οι θύρες τύπου MEGADOOR S1500 αποτελούνται από δύο φύλλα υφάσματος με επικάλυψη πολυεστέρα (PVC). Ανάμεσα στα δύο φύλλα υπάρχουν οριζόντια τμήματα από αλουμίνιο. Αυτά τα ενδιάμεσα τμήματα έχουν διατομή κατάλληλη, ώστε να μεταφέρουν επαρκώς τις εγκάρσιες φορτίσεις του ανέμου στις κάθετες ράγες-οδηγούς, εκατέρωθεν της θύρας. Το θυρόφυλλο ανοίγει από το κάτω προς τα πάνω. Τα τμήματα αλουμινίου ανυψώνονται από ιμάντες και στοιβάζονται το ένα κάτω από το άλλο κάνοντας το ύφασμα να δημιουργεί πιέτες. Οι ιμάντες τυλίγονται σε ένα ή περισσότερα τύμπανα (2). Τα τύμπανα κινούνται από έναν ή περισσότερους κινητήρες, ανάλογα με το πλάτος και το βάρος της θύρας. Η παραπάνω περιγραφή γίνεται σαφέστερη στην εικόνα που ακολουθεί για έναν κινητήρα ανύψωσης:

Εικόνα 19-Εποπτική Εικόνα Θύρας S1500

Η θύρα κλείνει υπό τον ίδιο βάρος της και είναι πλήρως κλειστή όταν το κάτω μέρος της φτάσει στο έδαφος και το ύφασμα είναι πλήρως τεντωμένο. Συνοπτικά τα κύρια στοιχεία της θύρας είναι:

- Πλαίσιο Κεφαλής
- Ιμάντες Άρσης
- Θυρόφυλλα
- Διάταξη Βάσης
- Ράγες Οδηγών
- Πίνακας Ελέγχου-Ηλεκτρικός Εξοπλισμός

6.1 Πλαίσιο Κεφαλής

Τα θυρόφυλλα και η διάταξη της βάσης αναρτώνται από ένα πλαίσιο σταθερής κοίλης τετραγωνικής διατομής από χάλυβα. Μέσα στο πλαίσιο περιέχονται η κινητήρια μονάδα το ανάλογο τύμπανο και ο διπλός ιμάντας. Επιπλέον υπάρχει και ο διακόπτης ορίου μαζί με αισθητήρες θέσεως και συσκευές για τον έλεγχο της κατάστασης του ιμάντα. Η πόρτα είναι εξοπλισμένη με ένα ή δύο κινητήρες, ανάλογα με το μέγεθος.

Ο κινητήρας (1) για εξοικονόμηση ενέργειας, είναι εξοπλισμένος με ένα αυτόματο σύστημα πέδης. Επιπρόσθετα έχει και ένα χειροκίνητο σύστημα ελεγχόμενης απελευθέρωσης της πέδης και του τυμπάνου, έτσι ώστε η πόρτα να μπορεί να ανοίγει ή να κλείνει, ακόμα και σε περίπτωση διακοπής ρεύματος.

6.2 Ιμάντες Άρσης

Η διάταξη βάσης και τα θυρόφυλλα ανυψώνονται χρησιμοποιώντας ιμάντες (3), οι οποίοι τυλίγονται επάνω στο τύμπανο ιμάντα. Οι ιμάντες είναι εφοδιασμένοι με ειδικούς βρόχους έκτακτης ανάγκης, οι οποίοι σε περίπτωση κινδύνου, προσαρτώνται στο σύστημα ασφαλείας ακινητοποιώντας τη θύρα. Επιπλέον οι ιμάντες δεν είναι ευαίσθητοι στην σκουριά, βρωμιά και σκόνη και είναι πλήρως ποιοτικά ελεγμένοι και πιστοποιημένοι.

6.3 Θυρόφυλλα

Τα θυρόφυλλα αποτελούνται από δύο φύλλα υφάσματος με επικάλυψη πολυεστέρα (PVC). Ανάμεσα στα δύο φύλλα υπάρχουν οριζόντια τμήματα από αλουμίνιο. Αυτά τα τμήματα έχουν διατομή κατάλληλη, ώστε να μεταφέρουν επαρκώς τις φορτίσεις του ανέμου στις κάθετες ράγες-οδηγούς, εκατέρωθεν της θύρας. Το ύφασμα εκατέρωθεν των ενδιάμεσων τμημάτων τα προστατεύει έναντι κάμψης υπό το ίδιο βάρος τους και έναντι στρέβλωσης. Συνδέεται στα τμήματα αλουμινίου με οριζόντιους αρμούς σε ένα ενιαίο κομμάτι. Είναι ιδιαίτερα ανθεκτικό έναντι μηχανικής φθοράς και χάρη στην "αντοχή" του έναντι φωτιάς, είναι ανθεκτικό σε σπινθήρες που μπορεί να προκληθούν (πχ. από συγκόλληση οξυγόνου ή κοπή μετάλλων). Επιπλέον το ύφασμα έχει υψηλή αντοχή σε εφελκυσμό. Σημαντικό είναι επίσης ότι οι ιδιότητές του παραμένουν ανεπηρέαστες σε θερμοκρασιακές συνθήκες από -35 °C έως 70 °C.

Η θύρα ανοίγει με ιμάντες που τυλίγονται σε ένα τύμπανο. Η ταχύτητα ανοίγματος της θύρας κυμαίνεται συνήθως από 0,15 έως 0,25m/sec. Όταν η πόρτα ανοίγει τα ενδιάμεσα τμήματα στοιβάζονται το ένα κάτω από το άλλο κάτω από το πλαίσιο της κεφαλής δημιουργώντας αναδιπλώσεις στο ύφασμα. Σε περίπτωση της διαφορικής πίεσης, το ύφασμα μπορεί να στοιβαχτεί και ανάμεσα στα αλουμινένια τμήματα κατά τη φάση ανοίγματος. Για εξαιρετικά διαβρωτικά περιβάλλοντα, το θυρόφυλλο μπορεί να παρέχεται με βίδες υλικού ανθεκτικού στην υψηλή διάβρωση.

Κορυφαίο Τμήμα

Το επάνω τμήμα του θυρόφυλλου στερεώνεται σταθερά στο κάτω μέρος του πλαισίου κεφαλής.

Ενδιάμεσα Τμήματα

Τα ενδιάμεσα τμήματα, τα οποία είναι κατασκευασμένα από διατομές αλουμινίου ψυχρής έλασης, είναι εξοπλισμένα στα δύο άκρα τους με ειδικά τεμάχια οδήγησης. Τα τεμάχια αυτά ταξιδεύουν χωρίς την συνδρομή λιπαντικών ουσιών στις σιδηροτροχιές οδήγησης σε κάθε πλευρά του θυρόφυλλου.

Το πάχος του κάθε τμήματος θυρόφυλλου είναι 290 mm, για τον τύπο θύρας MEGADOOR \$1500.

Εικόνα 20-Τμήματα Θύρας MEGADOOR S1500

- 1. Κορυφαίο Τμήμα
- 2. Ύφασμα Θύρας
- 3. Ενδιάμεσα Τμήματα
- 4. Αρμοί Αγκύρωσης Υφάσματος

6.4 Διάταξη Βάσης

Η διάταξη της βάσης είναι κατασκευασμένη από μία δοκό από χάλυβα. Ένα ελαστικό σώμα ικανού πάχους στερεώνεται στο κάτω πέλμα της χαλύβδινης δοκού, ώστε να εξασφαλίζει πλήρες σφράγισμα της θύρας στο έδαφος. Στα πλάγια της διάταξης της βάσης είναι σταθερά συγκολλημένες δικλίδες ασφαλείας εκατέρωθεν. Στην περίπτωση αστοχίας ενός ή και των δύο ιμάντων, οι δικλίδες ασφαλείας ενεργοποιούνται και αμέσως η πόρτα κλειδώνει στις ράγες. Επιπλέον στις δικλίδες ασφαλείας είναι πλήρως κλειστή.

Εικόνα 21-Δικλίδα Ασφαλείας- Κλείδωμα Αέρα

6.5 Ράγες Οδηγών

Οι ράγες οδηγών αποτελούνται από τρία μέρη, μία σιδηροτροχιά που περιβάλλεται από δύο εξωτερικά τμήματα. Τα ειδικά τεμάχια οδήγησης ταξιδεύουν κατά μήκος της σιδηροτροχιάς και κατευθύνουν την θύρα. Ο σχεδιασμός των σιδηροτροχιών και των τεμαχίων οδήγησης έχει γίνει έτσι ώστε να διασφαλίζει ότι ελαχιστοποιούνται οι διαρροές αέρα.

Εικόνα 22- Ράγες Οδηγών Θύρας

1.Σιδηροτροχία 2.Εξωτερικά Τμήματα Στην περίπτωσή μας υπάρχουν και ενδιάμεσες ράγες στην ένωση των δύο θυρών. Για αυτές τις ράγες προβλέπεται ειδική διάταξη άρθρωσης σε απόσταση 1500mm από την ένωση τους με τη δοκό του ζυγώματος, ώστε να είναι δυνατή η πλάγια ανύψωσή τους (βλ, Σχήμα-43-), στην περίπτωση όπου το άνοιγμα πρέπει να φτάσει το μέγιστο άνοιγμά του, δηλαδή αυτό των 70,00m. Η ανύψωση των τροχιών θα γίνει από κινητήρες που μπορούν να εσωκλείονται στο "κουτί" του πλαισίου της κεφαλής και μέσω πρόσθετων ιμάντων ή αλυσίδων, συνδεμένων στην εξωτερική/ες πλευρά των τροχιών, 1,00m από το έδαφος.

Εικόνα 23-Γενικές Διαστάσεις Θύρας

6.6 Πίνακας Ελέγχου-Ηλεκτρικός Εξοπλισμός

Όταν η πόρτα είναι τελείως ανοικτή, ένας αισθητήρας ορίου τη σταματά. Ως επιπλέον ασφάλεια, υπάρχει επίσης ένας κύριος διακόπτης ορίου. Οι αισθητήρες ενεργοποιούνται από το κορυφαίο ενδιάμεσο τμήμα αλουμινίου. Ένας αισθητήρας χαλαρού ιμάντα σταματά τον κινητήρα όταν η θύρα είναι κλειστή, ή εάν οποιοδήποτε εμπόδιο ανακόπτει την πόρτα από την ελεύθερη κίνησή της προς τα κάτω. Ο κύριος αισθητήρας σταματά τον κινητήρα όταν ο ιμάντας σπάσει.

Τοποθεσία του πίνακα ελέγχου

Το περίβλημα του πίνακα ελέγχου πληροί τις προδιαγραφές του πρωτοκόλλου προστασίας IP 65. Αυτό σημαίνει ότι το ερμάριο μπορεί να χρησιμοποιηθεί σε απαιτητικά περιβάλλοντα. Το ερμάριο δεν πρέπει να τοποθετηθεί σε ένα εξαιρετικά διαβρωτικό περιβάλλον. Εάν ο θάλαμος θα είναι σε τέτοιο περιβάλλον υπάρχει εναλλακτική λύση ερμαρίου από ανοξείδωτο χάλυβα.

Οι ακόλουθες διαστάσεις των προτεινόμενων ερμαρίων βοηθούν στην λήψη αποφάσεων σχετικά με τη θέση του πίνακα ελέγχου, καθώς και για τυχόν επιπλέον διακόπτες ασφαλείας ρεύματος και υπόλοιπα χρήσιμα καλώδια:

Κινητήρες	Πόρτα ελέγχου	Απαιτήσεις Χώρου (Π x Y x B mm)
1 x	0451 (PLC)	600 x 700 x 220
2 x	0452 (PLC)	800 x 800 x 220

ΚΕΦΑΛΑΙΟ7: Σύγκριση Εναλλακτικών Λύσεων Συμπεράσματα

7.1 Γενικά

Στα παραπάνω κεφάλαια παρουσιάστηκαν τρεις διαφορετικές εναλλακτικές προτάσεις, για το σχεδιασμό υπόστεγου συντήρησης αεροσκαφών, με δυνατότητα ταυτόχρονης φιλοξενίας και συντήρησης δύο αεροσκαφών τύπου ATR 72. Το υπόστεγο 1 ακολούθησε τον σχεδιασμό υπόστεγων με πλαίσια σε παράλληλη διάταξη. Το στοιχείο που το διαφοροποιεί από τον κλασικό σχεδιασμό, είναι η μορφή των πλαισίων. Αποτελούνται από στερεούς σχηματισμούς, τριγωνικά πρισματικά ζυγώματα και από αντεστραμμένες πυραμίδες για υποστυλώματα. Σε αντίθεση, στο υπόστεγο 2 ο προσανατολισμός των πλαισίων αλλάζει διεύθυνση. Στην πρόσοψη του κτηρίου υφίσταται ένα ισχυρό-στιβαρό πλαίσιο στο οποίο "πατάνε" κάθετα, πλαίσια μικτότερου ανοίγματος. Τελευταία εναλλακτική σχεδίαση είναι το υπόστεγο 3. Πρόκειται για μία διαφορετικού είδους κατασκευή (καλωδιωτή) που απαιτεί διαφορετική σχεδιαστική και αναλυτική προσέγγιση και σίγουρα είναι μια πιο "εκλεπτυσμένη" και κατασκευαστικά απαιτητική κατασκευή.

Στο κεφάλαιο 7 λοιπόν, οι εναλλακτικές προτάσεις σχεδιασμού των υπόστεγων συντήρησης αεροσκαφών θα συγκριθούν, ποσοτικά και ποιοτικά. Τα κριτήρια της σύγκρισης θα είναι το βάρος της κάθε κατασκευής και το πώς αυτό μεταφράζεται σε κόστος υλικού, οι ιδιοπερίοδοι των κατασκευών και κατ' επέκταση η συνολική τους δυσκαμψίαευκαμψία και οι συνολικές μέγιστες μετακινήσεις και βυθίσεις των υπόστεγων. Τέλος θα παρουσιαστούν τα συμπεράσματα από την παραπάνω σύγκριση και θα γίνει επιλογή αυτού του υπόστεγου που κατά τον μελετητή αποτελεί την προσφορότερη και καλύτερη λύση.

7.2 Σύγκριση κατά Βάρος-Κόστος

Επειδή στην παρούσα εργασία, για τα υπόστεγα που σχεδιάστηκαν, δεν έχουν μελετηθεί και διαστασιολογηθεί αναλυτικά οι συνδέσεις των μελών τους, δεν μπορούμε να έχουμε ακριβή εικόνα για το βάρος των συνδέσεων. Έτσι και για τα τρία υπόστεγα θα γίνει μία μέση αύξηση 10% του συνολικού τους βάρους, η οποία αφορά τις συνδέσεις. Δεδομένου της παραπάνω αύξησης προκύπτει ο ακόλουθος συγκεντρωτικός πίνακας προμέτρησης των υπόστεγων:

ΣΥΝΟΛΙΚΟΣ ΠΙΝΑΚΑΣ ΠΡΟΜΕΤΡΗΣΗΣ						
Διατομή	Αρ. Μελών	Συνολικό Μήκος	Συνολικό Εμβαδόν	Συνολικό Βάρος		
		m	m²	kN		
		Υπόστ	εγου 1		ΥΠΟΣΤΕ	ГО 1
CHHF219.1X20	162,00	2137,26		2097,18		
CHHF139.7X10	1024,00	4095,92		1308,63		
HE200B	12,00	87,93		53,91		
2UPN160*/20/	260,00	988,30		396,75	Συν. Βάρος (kN)	6005,5
CHHF168.3X12.5	40,00	299,16		143,72	Συν. Βάρος (ton)	600,5
IPE240	160,00	870,45		267,17		
IPE270	40,00	181,56		65,42		
HE260B	162,00	342,51		317,27		
UPN180	168,00	1174,60		258,41	VOOSTE	
Πάνελ					THOZIE	101
ECOPANEL RL 50	-	-	3235,00	356,50		
ECOPANEL RL 40	-	-	2351,04	249,68		
Συνδέσεις	-	-	-	490,85		
		Υπόσ	τεγο 2			
HE400A	8,00	296,00		369,45		
HE300B	38,00	152,00		177,79		
2UPN160/20/	151,00	729,11		274,90	νποςτε	
HE300A	72,00	326,00		289,18	mozil	102
2UPN200/20/	40,00	370,71		187,32		
TUBO120X120X22. 2	60,00	637,77		434,82		
2UPN240/25/	106,00	318,00		211,16	Συν. Βάρος (kN)	5085,5
SHHF300X300X16	24,00	176,00		247,31	Συν. Βάρος (ton)	508,6
IPE500	22,00	794,44		723,41		
SHHF350X350X16	4,00	20,00		33,13		

Πίνακας 22-Συνολικός Πίνακας Προμέτρησης Υπόστεγων

CHHF244.5X25	24,00	119,20		160,94					
HE550M	18,00	90,00		250,10	VROSTE				
SHHF120X120X12.5	200,00	1078,74		441,19	YHOZTE	102			
UPN180	171,00	1404,00		308,88					
Πάνελ									
ECOPANEL RL 50	-	-	3450,00	380,19					
ECOPANEL RL 40	-	-	1740,00	184,79					
Συνδέσεις	-	-	-	410,96					
		Υπόσ	τεγο 3						
CHCF193.7X12.5	160,00	3854,32		320,72	ΥΠΟΣΤΕ	ГО 3			
CHHF60.3X3.6	20430,00	25074,13		1261,69					
CHHF139.7X10	4075,00	5027,76		1606,34	Συν. Βάρος (kN)	6513,9			
HE260A	70,00	403,23		178,98	Συν. Βάρος (ton)	651,4			
2UPN300/25/	34,00	248,54		229,25					
HE260B	18,00	220,68		204,41					
CHHF355.6X25	70,00	803,82		1640,60					
Πάνελ					ΥΠΟΣΤΕ	ГО 3			
ECOPANEL RL 50	-	-	2879,20	322,47					
ECOPANEL RL 40	-	-	1933,00	205,28					
Συνδέσεις	-	-	-	544,20					

Από τον παραπάνω πίνακα γίνεται σαφές ότι το πιο ελαφρύ υπόστεγο συντήρησης αεροσκαφών είναι το υπόστεγο 2. Έχει συνολικό βάρος 508,6ton έναντι 600,5 ton του υπόστεγου 1 και 685,67ton του υπόστεγου 3. Για να γίνει πιο σαφής η εικόνα της διαφοράς βάρους των υπόστεγων, σε εκατοστιαία κλίμακα το υπόστεγο 2 είναι περίπου 15% ελαφρύτερο από το υπόστεγων, σε εκατοστιαία κλίμακα το υπόστεγο 3. Αυτή η διαφορά βάρους των υπόστεγων μπορεί να εκφραστεί και σε διαφορά κόστους. Θεωρώντας ως τρέχουσα τιμή χάλυβα τα 1800,00€, πάνελ πλαγιοκάλυψης 16,00€, πάνελ οροφής 18,00€, καλωδίου PV150 80,00€ και παραλείποντας το μισθολογικό, το ασφαλιστικό και τα υπόλοιπα κόστη κάθε κατασκευής, προκύπτει ο παρακάτω πίνακας κόστους των υπόστεγων:

Πίνακας 23-Πίνακας	Κόστους Υπόστεγων
--------------------	-------------------

Πίνακας Κόστους Υπόστεγων						
		Βάρος (ton)	Επιφάνεια(m²)	Τιμή Μονάδας (€/ton) ή (€/m²)	Κόστος (€)	
1	Δομικός Χάλυβας	540,15	-	1800,00	972270,00	
ολα	ECOPANEL RL 50	35,65	3235,00	18,00	58230,00	
τόσι	ECOPANEL RL 40	24,70	2351,04	16,00	37616,64	
5	5 Συνολικό Κόστος (€): 1068117					

2	Δομικός Χάλυβας	451,83	-	1800,00	813294,00
ελο	ECOPANEL RL 50	38,02	3450,00	18,00	62100,00
óot	ECOPANEL RL 40	18,75	1740,00	16,00	27840,00
Ę			Συνα	ολικό Κόστος (€):	903234
3	Δομικός Χάλυβας	598,62	-	1800,00	1077516,00
ελο	Καλώδιο PV150	Μήκος (m)	3851	80,00	308080,00
цó	ECOPANEL RL 50	32,25	2879,2	18,00	51825,60
UT	ECOPANEL RL 40	20,53	1933	16,00	30928,00
			Συνα	ολικό Κόστος (€):	1468350

Όπως και από τον πίνακα βάρους έτσι και από τον παραπάνω πίνακα κόστους φαίνεται ότι το δεύτερο υπόστεγο είναι το πιο οικονομικό από άποψη υλικών τουλάχιστον. Το συνολικό του κόστος είναι περίπου εννιακόσιες πέντε χιλιάδες ευρώ (905.000€), ενώ του υπόστεγου 1 ένα εκατομμύριο εξήντα εννιά χιλιάδες ευρώ (1.069.000€) και του υπόστεγου 3 ένα εκατομμύριο εκατόν εξήντα μία χιλιάδες ευρώ 1.469.000€). Είναι δηλαδή 15% οικονομικότερο από το υπόστεγο 1 και 38% οικονομικότερο από το υπόστεγο 3. Αν λάβει κανείς υπ' όψη και το κόστος της θεμελίωσης, που λόγου του μικρότερου βάρους του υπόστεγου 2, θα είναι σαφώς μικρότερο από ότι στα άλλα δύο υπόστεγα, προκύπτει ότι το δεύτερο υπόστεγο.

7.3 Σύγκριση Δυσκαμψίας-Ιδιοπερίοδων

Παρατηρήσαμε ότι και στα τρία υπόστεγα απαιτήθηκε αυξημένος αριθμός ιδιομορφών για να επιτευχθεί το 90% της δρώσας ιδιομορφικής μάζας. Το γεγονός αυτό μπορεί να εξηγηθεί από δύο λόγους. Αφενός από το μέγεθος των υπόστεγων και το μεγάλο αριθμό φερόντων στοιχείων που τα συνθέτουν και αφετέρου από το είδος των φορέων. Κατά κύριο λόγο είναι δικτυωτοί. Ως αποτέλεσμα, κάθε ιδιομορφή κινητοποιεί μικρό μέρος της δρώσας ιδιομορφικής μάζας και αυξάνει με αργό ρυθμό το άθροισμα των ιδιομορφικών μαζών.

Από τις ιδιοπεριόδους των υπόστεγων, δεν μπορούμε να βγάλουμε άμεσα συμπεράσματα για την δυσκαμψία των κατασκευών, επειδή τα κτήρια έχουν διαφορετικές μάζες τόσο συνολικά, όσο και σε κάθε σεισμική διεύθυνση. Επειδή τα υπόστεγα είναι μονώροφα, μπορούμε προσεγγιστικά να θεωρήσουμε ότι στις κύριες ιδιομορφές τους συμπεριφέρονται περίπου ως μονοβάθμιοι ταλαντωτές. Έτσι για να είναι δυνατή μια ποιοτική σύγκρισή τους, λύσαμε τον τύπο υπολογισμού της ιδιοπεριόδου μονοβάθμιου ταλαντωτή ως προς την δυσκαμψία.

$$T = 2\pi \times \sqrt{\frac{m}{K}} \to K = \frac{4\pi^2 m}{T^2}$$

Επιπλέον θεωρήσαμε ότι σε κάθε διεύθυνση σεισμού, η συνολική μάζα του κάθε υπόστεγου ταυτίζεται με την ολική δρώσα ιδιομορφική μάζα. Έτσι για το κάθε υπόστεγο

και σε κάθε σεισμική διεύθυνση, χρησιμοποιώντας τα ποσοστά της δρώσας ιδιομορφικής μάζας ως ποσοστά της συνολικής και για τις κύριες ιδιοπεριόδους υπολογίζαμε την δυσκαμψία των υπόστεγων σε κάθε διεύθυνση. Ακολουθούν τα αποτελέσματα στον παρακάτω πίνακα:

#	Ті	Ιδιοπερίοδος (sec)	Ποσοστό Ιδιομορφικής Μάζας %	Συνολική Μάζα (Mgr)	Δείκτης Ακαμψίας (x10³ MN/m)
Υπόστεγο 1 Τx Τy	Тx	0,57	53	600,50	38,67
	Ту	0,59	56	600,50	38,14
Υπόστεγο 2	Тx	0,288	51,71	508,60	125,18
	Ту	0,337	35,41	508,60	62,60
νπόστενο 3	Тx	0,488	55,39	651,40	59,81
πουτεγυ 5	Ту	0,409	36,38	651,40	55,93

Πίνακας 24-Πίνακας Δυσκαμψίας Υπόστεγων

Μελετώντας τα αποτελέσματα του παραπάνω πίνακα και σύμφωνα με όσα υποθέσαμε παραπάνω προκύπτει ότι το υπόστεγο 2 είναι το πιο δύσκαμπτο. Ειδικά προς την διεύθυνση Χ το υπόστεγο είναι εξαιρετικά πιο δύσκαμπτο. Το γεγονός αυτό πιθανότατα οφείλεται στο πολύ ισχυρό πλαίσιο στη Νότια όψη του υπόστεγου.

7.4 Σύγκριση Μέγιστων Μετακινήσεων-Βυθίσεων

Τέλος τα υπόστεγα που μελετήθηκαν συγκρίνονται ως προς τις μέγιστες μετακινήσεις τους προς τους δύο κύριους άξονες Χ και Υ των υπόστεγων και ως προς τις μέγιστες κατακόρυφες βυθίσεις των ζυγωμάτων τους. Τα μέγιστα για κατάσταση οριακής αστοχίας και κατάσταση οριακής λειτουργικότητας παρουσιάζονται στον παρακάτω πίνακα:

		OKA/DLS		
	δx,max(mm)	δy,max(mm)	δz,max(mm)	
Υπόστεγο 1	42	24	127	
Υπόστεγο 2	7	12	72	
Υπόστεγο 3	48	52	251	
	OKA/SLS			
		OKA/SLS		
	δx,max(mm)	OKΛ/SLS δy,max(mm)	δz,max(mm)	
Υπόστεγο 1	δ x,max(mm) 28	ΟΚΛ/SLS δy,max(mm) 14	δ z,max(mm) 90	
Υπόστεγο 1 Υπόστεγο 2	δ x,max(mm) 28 5	ΟΚΛ/SLS δy,max(mm) 14 8	δ z,max(mm) 90 50	

Πίνακας 25-Πίνακας Μέγιστων Μετακινήσεων-Βυθίσεων Υπόστεγων

Από τον παραπάνω πίνακα γίνεται σαφές ότι οι μετακινήσεις όλων των υπόστεγων, σε οριακή κατάσταση λειτουργικότητας, κινούνται μέσα στα επιτρεπτά όρια, που ορίζει ο Ευρωκώδικας 3. Επιπλέον το υπόστεγο 2 παρουσιάζει μικρότερες μετακινήσεις και βυθίσεις σε σχέση με τα υπόλοιπα υπόστεγα. Το γεγονός ήταν αναμενόμενο, αφού όπως διαπιστώθηκε στην προηγούμενη παράγραφο έχει τη μεγαλύτερη στιβαρότητα και προς τις δύο διευθύνσεις. Ακολουθούν ο πίνακας σύγκρισης των κατακόρυφων βυθίσεων και των οριζόντιων μετακινήσεων με τα επιτρεπτά όρια του Ευρωκώδικα 3:

Οριζόντιο Όριο:	H/150			
Κατακόρυφο Όριο:	L/200			
Υπόστεγο 1	H(m)=	19,50	L(m)=	70,00
Μετακινήσεις	MAX	Όριο	Έλεγχος	
δx,max(mm)	28	130	ΘET	ΙΚΟΣ
δy,max(mm)	14	130	ΘET	ΙΚΟΣ
δz,max(mm)	90	350	ΘET	ΙΚΟΣ
Υπόστεγο 2	H(m)=	14,00	L(m)=	70,0
Μετακινήσεις	MAX	Όριο	Έλε	γχος
			ΘΕΤΙΚΟΣ	
δx,max(mm)	5	93	ΘΕΤ	ΙΚΟΣ
δx,max(mm) δy,max(mm)	5 8	93 93	OET OET	ΙΚΟΣ ΙΚΟΣ
δx,max(mm) δy,max(mm) δz,max(mm)	5 8 50	93 93 350	OET OET OET	ΙΚΟΣ ΙΚΟΣ ΙΚΟΣ
δx,max(mm) δy,max(mm) δz,max(mm) Υπόστεγο 3	5 8 50 H(m)=	93 93 350 16,00	ΘΕΤ ΘΕΤ ΘΕΤ L(m)=	ΙΚΟΣ ΙΚΟΣ ΙΚΟΣ 70,00
δx,max(mm) δy,max(mm) δz,max(mm) Υπόστεγο 3 Μετακινήσεις	5 8 50 H(m)= MAX	93 93 350 16,00 Όριο	ΘΕΤ ΘΕΤ ΘΕΤ L(m)=	ΚΟΣ ΙΚΟΣ ΙΚΟΣ 70,00
δx,max(mm) δy,max(mm) δz,max(mm) Υπόστεγο 3 Μετακινήσεις δx,max(mm)	5 8 50 H(m)= MAX 27	93 93 350 16,00 Орьо 107	ΘΕΤ ΘΕΤ ΟΕΤ Ε(m)= Έλε γ	ΚΟΣ ΚΟΣ 70,00 γχος ΚΟΣ
δx,max(mm) δy,max(mm) δz,max(mm) Υπόστεγο 3 Μετακινήσεις δx,max(mm) δy,max(mm)	5 8 50 H(m)= MAX 27 31	93 93 350 16,00 Όριο 107 107	ΘΕΤ ΘΕΤ ΟΕΤ Ελε ΘΕΤ ΘΕΤ	ΚΟΣ ΙΚΟΣ 70,00 ΙΚΟΣ ΙΚΟΣ

Πίνακας 26-Πίνακας Ελέγχου Μετακινήσεων-Βυθίσεων

7.5 Συμπεράσματα

Στα πλαίσια αυτής της μεταπτυχιακής εργασίας σχεδιάστηκαν και αναλύθηκαν τρεις εναλλακτικές προτάσεις για το σχεδιασμό ενός υπόστεγου συντήρησης αεροσκαφών, με δυνατότητα ταυτόχρονης φιλοξενίας και συντήρησης δύο αεροσκαφών τύπου ATR72. Στις τρεις προηγούμενες παραγράφους προσπαθήσαμε να συγκρίνουμε ποσοτικά, οικονομικά και ποιοτικά τις εναλλακτικές σχεδιάσεις των υπόστεγων. Από τα αποτελέσματα της μελέτης που έγινε, προέκυψε ότι **το υπόστεγο 2 ή "Ισχυρού Πλαισίου"**, όπως ονομάστηκε, **αποτελεί την πιο συμφέρουσα λύση**.

Από κατασκευαστική άποψη είναι το ελαφρύτερο υπόστεγο (508,60ton), με τις μικρότερες απαιτήσεις υλικού και την πιο ελαφριά θεμελίωση. Το γεγονός αυτό μεταφραζόμενο σε οικονομικούς όρους, το καθιστά ταυτόχρονα και το πιο οικονομικό υπόστεγο με συνολικό κόστος υλικού, εννιακόσιες πέντε χιλιάδες ευρώ (905.000€).

Επιπλέον από λειτουργική άποψη ικανοποιεί πλήρως τους στόχους για τους οποίους σχεδιάστηκε. Έχει ικανοποιητικές διαστάσεις για να φιλοξενεί ταυτόχρονα τα δύο αεροσκάφη και τρεις διαδρόμους 5,00m για άνετη πρόσβαση και εκτέλεση των εργασιών συντήρησης και επισκευής των αεροσκαφών. Ακόμα όπως φαίνεται και στον πίνακα 25, το υπόστεγο 2 υπό συνθήκες λειτουργίας παρουσιάζει παραμορφώσεις που συμμορφώνονται τόσο με τα όρια του Ευρωκώδικα 3 όσο και με τις λειτουργικές ανάγκες της θύρας του υπόστεγου. Όσον αφορά την αντοχή του έναντι οριζόντιων φορτίσεων (σεισμού και ανεμοπιέσεων), όπως παρουσιάστηκε και στα αποτελέσματα της ανάλυσης του στο αντίστοιχο κεφάλαιο, το υπόστεγο 2 διαθέτει ικανοποιητική αντοχή.

Τέλος αν θα μπορούσαμε να ποσοτικοποιήσουμε την πολυπλοκότητα, την απαιτητικότητα και τη δυσκολία κατασκευής, θα κατατάσσαμε το υπόστεγο 2 σε μία κατασκευή μέτριας δυσκολίας, σε σχέση με τις άλλες δύο εναλλακτικές προτάσεις. Ειδικά σε σύγκριση με το υπόστεγο 3, το οποίο απαιτεί ειδική μελέτη για την ανέγερση και την τοποθέτηση των πυλώνων, ειδικευμένο προσωπικό για την συναρμολόγηση του χωροδικτυώματος τύπου MERO της στέγης και επιπλέον πρόγραμμα για την προένταση των καλωδίων ανάρτησης της, θα μπορούσαμε να πούμε τελικά ότι το υπόστεγο 2 και από την άποψη της δυσκολίας ανέγερσης αποτελεί την προσφορότερη λύση. Πληροφορίες για το πάνελ των υπόστεγων από τους καταλόγους της εταιρίας:

ECOPANEL

Θερμομονωτικό πέτασμα είναι το προϊόν που παράγεται όταν δύο μεταλλικά ελάσματα θερμοκολλούνται με πυρήνα από αφρό μονωτικού υλικού και δημιουργούν ένα σύνθετο προϊόν, το οποίο παρουσιάζεται ταυτόχρονα ελαφρύ και ανθεκτικό, πετυχαίνοντας να συνδυάσει τα μέγιστα πλεονεκτήματα των υλικών που το αποτελούν, δηλαδή αντοχή, μόνωση και αισθητική.

Στη σημερινή αγορά έχει επικρατήσει η ονομασία «πάνελ» για το σύνθετο προϊόν που πρωτοπαρουσιάσθηκε στην οικοδομική ευρωπαϊκή αγορά τη δεκαετία του 1960.

Η αυτοματοποίηση της παραγωγικής του διαδικασίας βοήθησε το προϊόν να γίνει οικονομικά προσιτό σε σχέση με κάθε άλλη λύση μόνωσης – επένδυσης και να κυριαρχεί στον ευρωπαϊκό κατασκευαστικό χάρτη.

Τα βασικά πλεονεκτήματα του υλικού είναι:

- θερμικά αξιόπιστο
- μονολιθικό υλικό με εγγύηση βιομηχανικής κατασκευής
- ανθεκτικό σε καιρικές, θερμικές και κατασκευαστικές καταπονήσεις
- εύκολο στην τοποθέτησή του
- ελαφρύ ίδιο βάρος επένδυσης που επηρεάζει τη μελέτη του σκελετού
- αβλαβές για την υγεία του ανθρώπου
- στεγανό από προβλήματα συμπύκνωσης ή διαρροής αέρα
- ευέλικτο στην επιλογή χρωμάτων ως εξωτερική ή εσωτερική επιφάνεια.

Το προϊόν με την ονομασία ECOPANEL συνδυάζει τα παραπάνω πλεονεκτήματα αλλά ταυτόχρονα είναι και μια οικονομική λύση επένδυσης κτιριακών εγκαταστάσεων.

Σημαντική επίσης είναι η εναρμόνιση της παραγωγικής μας διαδικασίας σύμφωνα με τις νέες απαιτήσεις της παγκόσμιας αγοράς αφρωδών μονωτικών υλικών.

Η ωρίμανση του αφρού του θερμομονωτικού πετάσματος δεν απαιτεί διογκωτικά μέσα επιβλαβή για το περιβάλλον όπως χλωροφλουοράνθρακες CFC και υδρογονοφλουοράνθρακες HCFC οι οποίοι καταστρέφουν το όζον της ατμόσφαιρας και οι οποίοι οφείλουν βάση του πρωτοκόλλου του Μόντρεαλ να αποσυρθούν κατά ένα μεγάλο ποσοστό έως το 2010.

Πίνακας επιλογών για κάθε λύση επένδυσης

	ΤΥΠΟΣ ΕΠΕΝΔΥΣΗΣ					
ΤΥΠΟΣ ΠΑΝΕΛ	ΟΡΟΦΗ κλίση > 3.4°	ΟΡΟΦΗ ΕΣΩΤ. ΧΩΡΩΝ	ПЛАГІОКАЛУФН КАТАКОРУФН	ΠΛΑΓΙΟΚΑΛΥΨΗ ΟΡΙΖΟΝΤΙΑ	ΘΑΛΑΜΟΙ ΕΛΕΓΧΟΥ ΑΤΜΟΣΦΑΙΡΑΣ	
ECOPANEL RL						
ECOPANEL WL						
ECOPANEL WLC						
ECOPANEL FL						

Κλίση > 3.4° για οροφή χωρίς υπερκάλυψη Κλίση > 5.7° για οροφή με υπερκάλυψη

Τεχνικά χαρακτηριστικά ECOPANEL RL

- 1. Φαρδύ αυλάκι για την ευκολότερη διακίνηση των τοποθετητών στη στέγη.
- Μεγάλης ακτίνας διαμόρφωση των ακμών στα ελάσματα για την αποφυγή δημιουργίας ρηγματώσεων στη βαφή.
- Αφρώδης ταινία στο θηλυκό μέρος της κατά πλάτος αλληλοεπικάλυψης για επίτευξη αεροστεγανότητας.
- 4. Ειδική διαμόρφωση του εσωτερικού τραπεζίου της αλληλοεπικάλυψης για εξασφάλιση υδατοστεγανότητας σε περιπτώσεις έντονης βροχόπτωσης.
- 5. Αυλάκι στην κορυφή του τραπεζίου για τη διευκόλυνση της στερέωσης των πάνελ.

- 6. Πλευρική αλουμινοταινία για αποτροπή διαφυγής των αερίων από τις κυψέλες πολυουρεθάνης κατά την ωρίμανση του αφρού, με αποτέλεσμα την καλύτερη θερμομονωτική συμπεριφορά του πάνελ στο πέρασμα του χρόνου.
- Αφρός CFC Free & HCFC Free μη επιβαρυντικός για το περιβάλλον και μη καταστροφικός για το όζον.

ΠΙΝΑΚΑΣ ΤΕΧΝΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

ΤΥΠΟΣ ΠΑΝΕΛ	ΠΑΧΗ ΕΛΑΣΝ ΕΞΩΤΕΡΙΚΟ	ΛΑΤΩΝ (mm) ΕΣΩΤΕΡΙΚΟ	ΠΑΧΟΣ ΠΑΝΕΛ (mm)	BAPOΣ ΠΑΝΕΛ (kg/m²)	ΣΥΝΤΕΛΕΣΤΗΣ ΘΕΡΜΟΠΕΡΑΤΟΤΗΤΑΣ Κ (W/m²k)	ΑΝΤΙΣΤΑΣΗ ΘΕΡΜΟΔΙΑΦΥΓΗΣ 1/Λ (m²k/W)	ΜΕΓΙΣΤΟ ΜΗΚΟΣ ΠΑΡΑΓΩΓΗΣ (m)
RL 30	0,5	0,5	30	10,22	0,69	1,28	
RL 40	0,5	0,5	40	10,62	0,54	1,68	1
RL 50	0,5	0,5	50	11,02	0,47	1,96	15,0
RL 60	0,5	0,5	60	11,42	0,38	2,48	
RL 80	0,5	0,5	80	12,22	0,29	3,28	

ΣΥΝΤ. ΘΕΡΜΙΚΗΣ ΑΓΩΓΙΜΟΤΗΤΑΣ: λ=0,025W/m.K (κατά DIN 52612)

Ενδεικτικός υπολογισμός ανεμοπιέσεων Υπόστεγου 1 για δύο διευθύνσεις ανέμου θ=0° & 90° και με υπόθεση ανοιχτών και κλειστών θυρών.

Για τους υπολογισμούς χρησιμοποιήθηκαν οι παρακάτω συντελεστές όπως αυτοί υποδεικνύονται από τον Ευρωκώδικα 1:

<u>Συντελεστές:</u>

- i. Κατηγορία εδάφους: Ι
- ii. Πυκνότητα αέρα ρ: ρ =1,25kg/m³
- iii. Βασική ταχύτητα ανέμου v_{b,0} =33,00m/s
- iv. Αεροδυναμικοί συντελεστές εσωτερικής πίεσης c_{pi}: για τους υπολογισμούς χρησιμοποιήθηκαν τιμές του c_{pi} όπως αυτές προκύπτουν από τις κανονιστικές διατάξεις του Ευρωκώδικα 1 και ανάλογα με την δεσπόζουσα πλευρά ή από το λόγο των ανοιγμάτων του κτηρίου μ, όταν δεν υπάρχει σαφής δεσπόζουσα πλευρά.
- ν. Δυναμικός συντελεστής $c_s c_d$: Θεωρώ δυναμικό συντελεστή $c_s c_d$ =1,00
- vi. Συντελεστής εποχής c_{season}: c_{season}=1,00
- vii. Συντελεστής διεύθυνσης ανέμου c_{dir}: c_{dir}=1,00

Για τον υπολογισμό του της εξωτερικής πίεσης (w_e) απαιτείται η γνώση της πίεσης ταχύτητας αιχμής και ο αντίστοιχος συντελεστής πίεσης που κατά περίπτωση διαφέρει.

Αρχικά θα υπολογίσουμε την πίεση ταχύτητας αιχμής η οποία δίνεται από τον παρακάτω τύπο:

$q_p(z) = [1+7 \times I_v(z)] \times 0.5 \times \rho \times v_m^2(z)$

(βλ. §2.3.1)

Συνεπώς απαιτείται πρώτα ο υπολογισμός της έντασης του στροβιλισμού $I_v(z)$ και της μέσης ταχύτητας του ανέμου v_m .

 $I_{\nu}(z)=k_{i}/(c_{0}(z)\times I_{n}(z/z_{0}) \qquad \qquad \gamma\iota\alpha \ z_{\min}\leq z\leq z_{\max}$

για z₀=0,01 (πιν.5),

και ύψος αναφοράς z_e =19,50m. (Ύψος αναφοράς για το υπόστεγο 1 θεωρούμε το μέγιστο ύψος της κατασκευής, δηλαδή z_e = z_{max} =19,50m)

I_v(z)=0,132

και k_r= 0,19 x (z₀/z_{0,II})^{0,007}≈0,16975

 $c_r(z)=k_r x \ln(z/z_0) \approx 1,286$

Ταχύτητα ανέμου $v_b = c_{dir} x c_{season} x v_{b,0} = 33,00 m/s$

 $v_m = c_r(z)xc_0(z)x v_b = 42,44m/s$

```
= q_p(z) = [1+7 \times I_v(z)] \times 0.5 \times \rho \times v_m^2(z) \approx 2.17 \text{kN/m}^2
```

Έτσι με την πίεση ταχύτητας αιχμής υπολογίζουμε τα φορτία στις παρακάτω περιπτώσεις.

WIND-DO-0° : Διεύθυνση ανέμου 0°, για ανοιχτή θύρα

Κατακόρυφοι Τοίχοι:

b=44,00m

d=76,00m

e= min(44,00m; 39,00m)= 39,00m

#	Εμβαδόν (m²)	C _{pe}	
A	106,55	-1,20	-0,69
В	530,05	-0,80	
C	596,44	-0,50	
D	559,00	+0,70	
E	559,00	-0,30	

Υπολογίζω το συντελεστή εσωτερικής πίεσης θεωρώντας ότι η επιφάνεια των ανοιγμάτων στην καθοριστική πλευρά είναι διπλάσια από την επιφάνεια των ανοιγμάτων των υπόλοιπων πλευρών. Έτσι ο συντελεστής εσωτερικής πίεσης είναι το 75% του σταθμισμένου (ανάλογα με τα εμβαδά) μέσου όρου των συντελεστών εξωτερικής πίεσης της δεσπόζουσας πλευράς.

=> c_{pi}=-0,52

Άρα στη Βόρεια πλευρά για ζώνη επιρροής b_{eff}=5,50m προκύπτει στα υποστυλώματα κατανεμημένο φορτίο 1,93kN/m.

Στην δυτική πλευρά (D) για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 10,60kN/m.

Στην ανατολική πλευρά (Ε) για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 1,92kN/m.

Οι διευθύνσεις των κατανεμημένων φορτίων είναι όμοιες με αυτές του παραπάνω σχήματος.

Στέγη:

#	Εμβαδόν (m²)	C _{pe}
F	38,25	-1,30
F	38,25	-1,30
G	91,65	-1,00
Н	1489,95	-0,45
J	167,70	-0,40
I	1489,95	-0,50

Υπολογίζω το συντελεστή εσωτερικής πίεσης θεωρώντας ότι η επιφάνεια των ανοιγμάτων στην καθοριστική πλευρά είναι διπλάσια από την επιφάνεια των ανοιγμάτων των υπόλοιπων πλευρών. Έτσι ο συντελεστής εσωτερικής πίεσης είναι το 75% του σταθμισμένου (ανάλογα με τα εμβαδά) μέσου όρου των συντελεστών εξωτερικής πίεσης της δεσπόζουσας πλευράς.

=> c_{pi}=-0,39

Πολλαπλασιάζοντας τους συντελεστές με την πίεση ταχύτητας αιχμής προκύπτει φορτίο 0,282kN/m²

Άρα στις άνω δοκούς του ζυγώματος, για ζώνη επιρροής b_{eff}=4,00m προκύπτει κατανεμημένο φορτίο 1,13kN/m, με διεύθυνση προς τα άνω.

WIND-DO-90° : Διεύθυνση ανέμου 90°, για ανοιχτή θύρα

b=76,00m

d=44,00m

e= min(76,00m; 39,00m)= 39,00m

#	Εμβαδόν (m²)	C _{pe}	
A	101,40	-1,20	-0,84
В	405,60	-0,80	
С	52,00	-0,50	
D	1235,00	+0,75	
E	1235,00	-0,40	

Υπολογίζω το συντελεστή εσωτερικής πίεσης θεωρώντας ότι η επιφάνεια των ανοιγμάτων στην καθοριστική πλευρά είναι διπλάσια από την επιφάνεια των ανοιγμάτων των υπόλοιπων πλευρών. Έτσι ο συντελεστής εσωτερικής πίεσης είναι το 75% του σταθμισμένου (ανάλογα με τα εμβαδά) μέσου όρου των συντελεστών εξωτερικής πίεσης της δεσπόζουσας πλευράς (D).

=> c_{pi}=0,75x 0,75=+0,56

Άρα στη Βόρεια πλευρά για ζώνη επιρροής b_{eff}=5,50m προκύπτει στα υποστυλώματα κατανεμημένο φορτίο 11,44kN/m.

Στην δυτική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 12,16kN/m.

Στην ανατολική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 12,16kN/m.

Οι διευθύνσεις των κατανεμημένων φορτίων είναι όμοιες με αυτές του παραπάνω σχήματος.

Στέγη:

(β) διεύθυνση ανέμου θ = 0°

e = b ή 2h όποιο είναι μικρότερο

b : διάσταση εγκάρσια

(γ) διεύθυνση ανέμου θ = 90°

#	Εμβαδόν (m²)	C _{pe}
F	38,025	-1,45
F	38,025	-1,45
G	224,64	-1,30
Н	1202,76	-0,65
I	1811,85	-0,55

Υπολογίζω το συντελεστή εσωτερικής πίεσης θεωρώντας ότι η επιφάνεια των ανοιγμάτων στην καθοριστική πλευρά είναι διπλάσια από την επιφάνεια των ανοιγμάτων των υπόλοιπων πλευρών. Έτσι ο συντελεστής εσωτερικής πίεσης είναι το 75% του σταθμισμένου (ανάλογα με τα εμβαδά) μέσου όρου των συντελεστών εξωτερικής πίεσης της δεσπόζουσας πλευράς (F,G).

=> c_{pi}=-1,00

Πολλαπλασιάζοντας τους συντελεστές με την πίεση ταχύτητας αιχμής προκύπτει φορτίο 0,90kN/m²

Άρα στις άνω δοκούς του ζυγώματος, για ζώνη επιρροής b_{eff}=4,00m προκύπτει κατανεμημένο φορτίο 3,60kN/m, με διεύθυνση προς τα άνω.

WIND-DC-0° : Διεύθυνση ανέμου 0°, για κλειστή θύρα

Κατακόρυφοι Τοίχοι:

b=44,00m

d=76,00m

e= min(44,00m; 39,00m)= 39,00m

#	Εμβαδόν (m²)	C _{pe}	
А	106,55	-1,20	-0,69
В	530,05	-0,80	
C	596,44	-0,50	
D	559,00	+0,70	
E	559,00	-0,30	

Σε αυτή την περίπτωση επειδή δεν υπάρχει σαφής δεσπόζουσα πλευρά, ο συντελεστής εσωτερικής πίεσης θα προσδιοριστεί από τον Ευρωκώδικα 1, χρησιμοποιώντας τον λόγο βάθους προς ύψους του κτηρίου h/d και του λόγου ανοιγμάτων μ.

H/d=19,5/76≈0,25

μ=(Επιφάνεια πλευράς όπου c_{pe} αρνητικό ή μηδέν)/ (Συνολική επιφάνεια)=0,84

=> c_{pi}=-0,25

0,95kN/m2

Άρα στη Βόρεια πλευρά για ζώνη επιρροής b_{eff}=5,50m προκύπτει στα υποστυλώματα κατανεμημένο φορτίο 5,23kN/m.

Στην δυτική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 8,24kN/m.

Στην ανατολική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 4,76kN/m.

Στη νότια πλευρά θεωρούμε η θύρα λειτουργεί ως αμφιέρειστη δοκός και ότι το φορτίο ισομοιράζεται στην έδραση της θύρας και στους εξωτερικούς κόμβους του ζυγώματος. Έτσι προκύπτει συγκεντρωμένο φορτίο 11,58kN.

Οι διευθύνσεις των κατανεμημένων φορτίων, καθώς και των συγκεντρωμένων, είναι όμοιες με αυτές του παραπάνω σχήματος.

#	Εμβαδόν (m²)	C _{pe}
F	38,25	-1,30
F	38,25	-1,30
G	91,65	-1,00
Н	1489,95	-0,45
J	167,70	-0,40
I	1489,95	-0,50

Στέγη:

Για h/d=0,25 και μ=0,949 προκύπτει c_{pi}=-0,3

Πολλαπλασιάζοντας τους συντελεστές με την πίεση ταχύτητας αιχμής προκύπτει φορτίο 0,48kN/m²

Άρα στις άνω δοκούς του ζυγώματος, για ζώνη επιρροής b_{eff}=4,00m προκύπτει κατανεμημένο φορτίο 1,91kN/m, με διεύθυνση προς τα άνω.

WIND-DC-90° : Διεύθυνση ανέμου 90°, για κλειστή θύρα

Κατακόρυφοι Τοίχοι:

b=76,00m

d=44,00m

e= min(76,00m; 39,00m)= 39,00m

#	Εμβαδόν (m²)	C _{pe}	
A	101,40	-1,20	-0,84
В	405,60	-0,80	
C	52,00	-0,50	
D	1235,00	+0,75	
E	1235,00	-0,40	

Σε αυτή την περίπτωση επειδή δεν υπάρχει σαφής δεσπόζουσα πλευρά, ο συντελεστής εσωτερικής πίεσης θα προσδιοριστεί από τον Ευρωκώδικα 1, χρησιμοποιώντας τον λόγο βάθους προς ύψους του κτηρίου h/d και του λόγου ανοιγμάτων μ.

H/d=19,5/76≈0,45

μ=(Επιφάνεια πλευράς όπου c_{pe} αρνητικό ή μηδέν)/ (Συνολική επιφάνεια)=0,59

=> c_{pi}=0,20

Άρα στη Βόρεια πλευρά για ζώνη επιρροής b_{eff}=5,50m προκύπτει στα υποστυλώματα κατανεμημένο φορτίο 7,15kN/m.

Στην δυτική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 9,04kN/m.

Στην ανατολική πλευρά για ζώνη επιρροής b_{eff}=8,00m προκύπτει στα διπλά υποστυλώματα κατανεμημένο φορτίο 9,04kN/m.

Στη νότια πλευρά θεωρούμε η θύρα λειτουργεί ως αμφιέρειστη δοκός και ότι το φορτίο ισομοιράζεται στην έδραση της θύρας και στους εξωτερικούς κόμβους του ζυγώματος. Έτσι προκύπτει συγκεντρωμένο φορτίο 14,50kN.

Οι διευθύνσεις των κατανεμημένων φορτίων, καθώς και των συγκεντρωμένων, είναι όμοιες με αυτές του παραπάνω σχήματος.

#	Εμβαδόν (m²)	С _{ре}
F	38,025	-1,45
F	38,025	-1,45
G	224,64	-1,30
Н	1202,76	-0,65
Ι	1811,85	-0,55

Στέγη:

Επειδή δεν υπάρχουν επαρκή στοιχεία θεωρώ ως προς το δυσμενέστερο συντελεστή εσωτερικής πίεσης c_{pi} =-0,30, έχουμε:

Πολλαπλασιάζοντας τους συντελεστές με την πίεση ταχύτητας αιχμής προκύπτει φορτίο 0,63kN/m²

Άρα στις άνω δοκούς του ζυγώματος, για ζώνη επιρροής b_{eff}=4,00m προκύπτει κατανεμημένο φορτίο 2,52kN/m, με διεύθυνση προς τα άνω.

Αποτελέσματα Ανάλυσης Υπόστεγου 1

Έλεγχος εσωτερικού στύλου πυραμιδοειδούς υποστυλώματος

SAP2000 Steel Design

Project_____ Job Number_

Engineer

Combo	ode .	111.00	-DO-O	1010	SECTION (-ng	C.A.															
Combo		UL52	-D0-0					_	-	_		_	-		_		_		-			-
onrea	•	Inter.	my C																			
Frame	:	542	100		Design	1 5	ect:	CH	HFZ	19.	1X2	20										
X Mid	-:	1,50	0000		Design	T	ype:	Br	ace						_		_					-
I MIG		729,	000		Frame	TY	pe :	MO	men	C K	esi	stin	g 1:1	came								
Z Mid	. :	3,00	40		Sect (ana ana	SS :	CL	ass	1					i a minist				-			
Lengu	n :	10,4	40		Pajor	AX	18 ;	101	000	de	die	ies c	ount	erc,	LOCKWI	se	LEOM .	LOCAL	3	-		-
POG	•	0,00	0		REF		l î	1	000													
Area	:	0,01	3		SMajor	. :	5,7	15E	-04			rMa	jor	: 0	,071			AVMa	jor:	0,0	007	
IMajo	r :	6,26	1E-05		SMinor	: :	5,7	15E	-04	-		rMi	nor	: 0	,071		0.024	AVMir	nor:	0,0	007	-
IMino	r :	6,26	51E-05		ZMajo	: :	7,9	55E	-04			E		: 2	100000	00,0	00					
Ixy	:	0,00	00		ZMinor	: :	7,9	55E	-04			Fy		: 3	55000,	000						
97.52								-	1	+			-				-		-			-
STRES	S CH	ECK	FORCES		MOMENTS							-							-			
T.	ocat	Eon		1	P			M33				M22			V2			73			T	
0	,000)		-18	333,485		-73,	019			0,	617		-41	,705		0,4	54	-(),50	33	-
														1			0.000			1		
PMM D	EMAN	D/CA	PACITY	RJ	TIO			-	-	-			-	101	-		Det					-
G	over	rning			Total			!			6MM	JOE		MM	inor		Rat.	10	St	att	18	
E (quat 6.21	ton			0.672	-	Ra	413		+	- Ka	259	+	R	.002		1.0	10	. (neo	ok .	
	512)				0,012					10	~,	~~~	14		June		-, 0					
AXIAL	FOF	RCE E	ESIGN																			
					Ned		NC	, Rd			Nt	,Rd		Nb3	3,Rd	1	Nb22,1	Rd				
					Force	C	apac	ity	8	Ca	pac	ity	-	M	ajor		Mine	ar				-
A	xial	L		-11	333,485	4	244,	026		44	37,	500	4	1244	,026	43	244,03	26				
MOMEN	TDF	SIGN																				
					Med		Mc	.Rd			Mu	,Rd		M	D.Rd							-
					Moment	C	apac	itv		Ca	Dac	ity	0	apa	rity							
M	ajor	Mon	nent		73,019		282.	396		2	82.	396		282	396							
M	inor	Mon	ient		0,617		282,	396		2	82,	396	-						-			-
							l'ini				1											
					ĸ			L				k			kzy		k	yz.		(21	
	1.14				Factor		Fac	tor			Fac	tor-	-	Fa	ctor		Fact	ar	Fé	icte	or	-
M	ajor	Mon	nent		1,000		0,	200			1,	080		0	,978				1	2,14	12	
M	inor	Mon	nent		1,000		0,	200			1,	346					0,8	07				
SHEAR	DES	IGN						+	-	+		-	-						-			-
		-			Ved		Ve	Ret			Str	ess		St	tus		T	be				
					Force	C	apac	ity			Ra	tio		C	heck		forsi	on				
M	ajor	She	ar		41,705	1	410.	782		-	0.	030			OK	t f	0,0	00	-			-
M	inor	She	ar		0,454	1	410.	782			0.	000			OK		0,0	00				
			7.1.1		1.			0.000				0.000.000			10000		100					

<u>Έλεγχος κάτω δοκού ζυγώματος</u>

SAP2000 Steel Design

r

Project____

Engineer

combo :	ULS2-DO	0-0	550	TION	Che	~n												
nits :	KN, m,	С	-			1		-			-	-						-
			-	-		-												-
																		_
Frame :	902			Desi	gn S	ect	: CH	HF2	19	.1X20								
X Mid :	20,500			Desi	gn T	ype	: Br	ace	-							_		-
Y Mid :	-40,000	0		Fram	e Ty	pe	: MO	men	Ε.	Resisting	Fr	ame						
Length :	35 511			Maio	r Av	10		000	à	ouroos re	unt	erc	locket	en fr	on loca	1.3		
Loc :	35,511			RLLF	5	1	: 1.	000	-	ogreed of			- Crustin a					-
Area :	0,013			SMaj	or :	5,	715E	-04		rMa	or	: 0	,071		AVM	ajor:	0,007	
IMajor :	6,261E	-05		SMin	or :	5,	715E	-04		rMir	or	: 0	,071		AVM	inor:	0,007	
IMinor :	6,261E-	-05		ZMaj	or :	11	955E	-04		E		: 2	100000	00,00				
rxy :	0,000			AMIN	or :	1.	9558	-04		ry		: 3	55000,	000				
STRESS CH	ECK FOR	RCES	& MON	ENTS														
Locat	ion	1 constraints		P			M33	C.		M22			V2		V3	_	T	
35,51	1	-	1727,	362		-52	,739			-15,325		25	,256	2	4,233	7	0,564	
	DICADA	TOY	DATTO															
Gover	ning	ITT	The	tal	-	-	P			MMajor		MM	linor		Ratio	0	tatus	-
Equat	ion		Ra	tio		R	atio	8		Ratio		R	atio		Limit	1	Check	
(6.61)		0,	615	-	0	,428		+	0,044	+	0	,182		1,000		OK	
ana contra		1000									-	1.00				-		-
AXIAL FOR	CE DESI	IGN													0.0.0.1			
			10	Ned	10	N	c,Rd			NC, Rd		ND3	S, Rd	Nb	ZZ,Rd			
Axial			1727	362	4	apa 033	. 410		0	437.500	4	033	. 410	403	3.410			
natar		1-f	11011	502		133	, 410			1517000	-	000	1410	405	., 410			
MOMENT DE	SIGN																	
			1000	Med		M	c,Rd	l I		Mv,Rd		M	lb,Rd					
			Mon	ent	C	apa	city		C	apacity	C	apa	city					
Major	Moment	E .	-52,	739		282	,396	6	3	282,396		282	,396					
Minor	Moment	9	-15,	325		282	, 396	50	3	282,396								
				K			1			k			kzv		kvz		C1	
			Fac	tor	_	Fa	ctor			Factor		Fa	ctor-	F	actor	F	actor	-
Major	Moment	t	1,	000		0	,083	8		1,149		0	,969			1.18	1,000	
Minor	Moment	t i	1,	000		0	,083	16		1,343					0,806			
			-	-		-		-			-	-						-
SHEAR DES	IGN			Vad		11	0.0			Chrone		01	ature		Tod			
			E	ved	0	ana	city			Ratic		at c	heck	To	reion			
Major	Shear		25	256	1	410	.782			0,018	-		OK	10	0.000			
1101	- and the second		201			1.7.7	1.44											

Job Number_
Έλεγχος στοιχείου διπλού υποστυλώματος Βόρειου Τοίχου

AP200	U Stee	el Desi	qn	Pr	oject		
				Jo	b Number		
				Er	ngineer		
Surocode 3	-2005 STE	EL SECTION	CHECK				
Jnits : K	N, m, C						
Frame : 1	515	Desi	m Sect: HE2	60B			
(Mid : 4	1,496	Desi	in Type: Col	umn			
Mid : 1	,945	Frame	a Type : Mon	ent Resistin	g Frame		
2 Mid : 1	,016	Sect	Class : Cla	iss 1	174 mm - 128 1060 mm		
Length : 2	,033	Majo	r Axis : 0,0	00 degrees c	ounterclockwi	se from local	1 3
Loc : 0	,000	RLLF	: 1,0	00			
Area : 0	,012	SMaj	or : 0,001	rMa	jor : 0,112	AVMa	ijor: 0,003
[Major : 1	,492E-04	SMin	or : 3,950E-	04 rMi	nor : 0,066	AVMi	inor: 0,008
Minor : 5	,135E-05	ZMaj	or : 0,001	Е	: 2100000	00,00	
xy : 0	,000	ZMine	or : 6,020E-	-04 Fy	: 355000,	000	
TRESS CHE	CK FORCES	& MOMENTS					
Locati	OD PORCES	P	M33	M22	V2	V3	T
0,000	on.	-942,481	-14,791	-0,064	-24,718	-0.031	0.000
PMM DEMAND	/CAPACITY	RATIO					
Govern	ing	Total	P	MMajor	MMinor	Ratio	Status
Equati	on	Ratio	- 0.225	Rat10	Rat10	Limit	Check
(6.2)		0,258	= 0,225	+ 0,032	+ 0,000	1,000	OK
XIAL FORC	E DESIGN						
		Ned	Nc, Rd	Nt, Rd	Nb33,Rd	Nb22,Rd	
1275-20192-0		Force	Capacity	Capacity	Major	Minor	
Axial		-942,481	4189,000	4189,000	4189,000	4189,000	
MOMENT DES	IGN						
		Med	Mc, Rd	Mv, Rd	Mb, Rd		
		Moment	Capacity	Capacity	Capacity		
Major	Moment	-14,791	455,465	455,465	455,465		
Minor	Moment	-0,064	213,710	213,710			
		К	L	k	kzv	kvz	C1
		Factor	Factor	Factor	Factor	Factor	Factor
	Moment	1,000	1,000	0,605	0,974		1,880
Major		1,000	1,000	0,628		0,377	
Major Minor	Moment						
Major Minor SHEAR DESI	Moment						
Major Minor SHEAR DESI	Moment GN	Ved	Vc,Rd	Stress	Status	Ted	
Major Minor SHEAR DESI	Moment GN	Ved Force	Vc,Rd Capacity	Stress Ratio	Status Check	Ted Torsion	
Major Minor SHEAR DESI Major	Moment GN Shear	Ved Force 24,718	Vc,Rd Capacity 532,894	Stress Ratio 0,046	Status Check OK	Ted Torsion 0,000	

Έλεγχος κατακόρυφου συνδέσμου δυσκαμψίας

0 + D0000	- · ·	-	
SAP2000	Steel	Desi	gn

Project_

loh	Number
200	Number

Eng	ineer	į

Euroco Combo	de 3	3-2005 STE	EL SECTION	CHEC	ж							
Units	: F	(N, m, C										
Promo		227	Decim	. 0.	ob. CUUP	1.60	2V12 E					
PI dine	1.1	000	Desig	1 50	SCL: CHAP	100	5. 3VIS. 3					
V Mid		3 550	Desig	7 13	/pe: Brac	e nt	Posisting	Para.	Photo:			
7 Mid	1	2,000	Sect	1 3 4	e : Clae	e 1	Realacing	FIG	nie			
Length		296	Major	Avi	s : 0.00	0 0	learees con	nte	relockwis	e from	local 3	
Loc	: 4	1,648	RLLF		: 1,00	0	logrees cou	1100	LOIDGANIL	ic rrom	10041 5	
Area	: (,006	SMajo	. :	2,220E-0	4	rMajo	r :	0,055		AVMajor	: 0,003
IMajor	: 1	,868E-05	SMino	c :	2,220E-0	4	rMino	r :	0,055		AVMinor	: 0,003
IMinor	: 1	,868E-05	ZMajo	c :	3,041E-0	4	E	:	21000000	00,00		
Ixy	: (,000	ZMino	r :	3,041E-0	4	Fy	:	355000,0	000		
		ar sonana										
SIRESS	Chr	CK FORCES	a MOMENIS		M22		M22		1/2		1/3	10
A	EAG	.on	-178 109		5 251		0 000		0 000	0.0	00	0.000
	040		-170,109		5,551		0,000		0,000	0,0	00	0,000
PMM DEN	MANE	CAPACITY	RATIO									
Gov	vern	ning	Total		P		MMajor		MMinor	Rat	io	Status
Equ	uati	ion	Ratio		Ratio		Ratio		Ratio	Lin	it	Check
(6	.61)		0,497	-	0,440	+	0,000	+	0,057	1,0	00	OK
AXIAL	FOR	E DESIGN										
			Ned		Nc.Rd		Nt, Rd	N	b33, Rd	Nb22,	Rd	
			Force	Ca	pacity	0	apacity		Major	Min	or	
Ax	ial		-178,109	4	104,907	2	2172,600	4	04,907	404,9	07	
MOMENT	DES	IGN										
			Med		Mc,Rd		Mv, Rd		Mb, Rd			
			Moment	Ca	pacity	0	Capacity	Ca	pacity			
Ma	jor	Moment	5,351	1	07,945		107,945	1	07,945			
Mii	nor	Moment	0,000	1	107,945		107,945					
			К		L		k		kzy	k	yz	C1
			Factor		Factor		Factor		Factor	Fact	or	Factor
Ma	jor	Moment	1,000		1,000		1,352		0,941			1,000
Min	nor	Moment	1,000		1,000		1,352			0,8	11	
SHEAR I	DESI	GN										
			Ved		Vc,Rd		Stress		Status	T	'ed	
1000	1000	12232-0100	Force	Ca	spacity		Ratio		Check	Torsi	on	
Ma	jor	Shear	0,000	€	577,301		0,000		OK	0,0	00	
Mii	nor	Shear	0,000	€	\$77,301		0,000		OK	0,0	00	

Έλεγχος εξωτερικής κεφαλοδοκού

SAP2000 Steel Design

Project_____ Job Number___

Engineer	-			
	E	ing	ineer	·

Combo	de :	3-2005 STE ULS3-DC-0	EL SECTION	CHE	CK						
Units	:	KN, m, C									
Frame		1079	Desig	0.5	ect. TPF2	70					
X Mid		0.000	Desig	n T	vpe: Beam						
Y Mid	-	-28,000	Frame	TV	pe : Mome	nt	Resisting	Fr	ame		
Z Mid	:	9,997	Sect	cla	ss : Clas	8	1				
Length	:	5,001	Major	Ax	is : 0,00	0	degrees co	unt	erclockwis	e from loca	1 3
Loc	:	0,000	RLLF		: 1,00	0					
Area	:	0,005	SMajo	r :	4,289E-0	4	rMaj	or	: 0,112	AVM	ajor: 0,002
IMajor	:	5,790E-05	SMino	r :	6,222E-0	5	rMin	or	: 0,030	AVM.	inor: 0,002
IMinor	:	4,200E-06	ZMajo	r :	4,840E-0	4	E		: 21000000	0,00	
Ixy	:	0,000	ZMino	r :	9,700E-0	5	FУ		: 355000,0	00	
STRESS	CH	ECK FORCES	& MOMENTS								
Los	cat	ion	P		M33		M22		V2	V3	т
0.0	000	2-511	-129.339		-6,313		-0,218		-3,045	-0,076	-0,001
PMM DEN	MAN	D/CAPACITY	RATIO								
Gor	ver	ning	Total		P		MMajor		MMinor	Ratio	Status
Equ	uat	ion	Ratio		Ratio		Ratio		Ratio	Limit	Check
(6	. 61)	0,895	**	0,840	+	0,002	+	0,053	1,000	OK
AXIAL I	FOR	CE DESIGN									
			Ned		NC, Rd		Nt,Rd		ND33,Rd	Nb22,Rd	
	224		Force	C	apacity		Capacity		Major	Minor	
AX.	lai		-129,339		153,997		1629,450		153,997	296,397	
MOMENT	DE	SIGN									
			Med		Mc,Rd		Mv,Rd		Mb, Rd		
1000	200		Moment	C	apacity		Capacity	C	apacity		
Ma	jor	Moment	-6,313		171,820		171,820		171,820		
Mii	nor	Moment	-0,218		34,435		34,435				
			K		L		k		kzy	kyz	C1
02221		3253 - 10	Factor		Factor		Factor		Factor	Factor	Factor
Ma	jor	Moment	1,000		5,399		1,672		0,744		2,613
Min	nor	Moment	1,000		1,000		0,644			0,387	
SHEAR I	DES	IGN									
			Ved		Vc,Rd		Stress		Status	Ted	
			Force	C	apacity		Ratio		Check	Torsion	
	ine	Shear	3,045		365,238		0,008		OK	0,000	
Ma	lor										

	Ιδιοπερίοδοι	Υπόστεγου	ι 1- Ποσοστά	Δρώσας Ιδια	ο <mark>μορφικ</mark> ής Μ	Ιάζας
No	StepType	Period	UX	UY	SumUX	SumUY
	Text	Sec	Unitless	Unitless	Unitless	Unitless
1	Mode	0,59	0,00	0,56	0,00	0,56
2	Mode	0,57	0,53	0,00	0,53	0,56
3	Mode	0,46	0,00	0,06	0,53	0,62
4	Mode	0,41	0,00	0,09	0,53	0,72
5	Mode	0,34	0,08	0,00	0,61	0,72
6	Mode	0,34	0,00	0,00	0,61	0,72
7	Mode	0,34	0,00	0,00	0,61	0,72
8	Mode	0,34	0,00	0,00	0,61	0,72
9	Mode	0,34	0,00	0,00	0,61	0,72
10	Mode	0,33	0,02	0,00	0,63	0,72
11	Mode	0,33	0,00	0,00	0,63	0,72
12	Mode	0,33	0,00	0,00	0,63	0,72
13	Mode	0,33	0,00	0,00	0,63	0,72
14	Mode	0,32	0,00	0,00	0,63	0,72
15	Mode	0,32	0,00	0,00	0,63	0,72
16	Mode	0,32	0,00	0,00	0,63	0,72
17	Mode	0,32	0,00	0,00	0,63	0,72
18	Mode	0,32	0,00	0,00	0,63	0,72
19	Mode	0,32	0,00	0,00	0,63	0,72
20	Mode	0,32	0,00	0,00	0,63	0,72
21	Mode	0,32	0,00	0,00	0,63	0,72
22	Mode	0,32	0,00	0,00	0,63	0,72
23	Mode	0,32	0,00	0,00	0,63	0,72
24	Mode	0,32	0,00	0,00	0,63	0,72
25	Mode	0,32	0,00	0,00	0,63	0,72
26	Mode	0,32	0,00	0,00	0,63	0,72
27	Mode	0,32	0,00	0,00	0,63	0,72
28	Mode	0,32	0,00	0,00	0,63	0,72
29	Mode	0,32	0,00	0,00	0,63	0,72
30	Mode	0,32	0,00	0,00	0,63	0,72
31	Mode	0,32	0,00	0,00	0,63	0,72
32	Mode	0,32	0,00	0,00	0,63	0,72
33	Mode	0,32	0,00	0,00	0,63	0,72
34	Mode	0,32	0,00	0,00	0,63	0,72
35	Mode	0,32	0,00	0,00	0,63	0,72
36	Mode	0,32	0,00	0,00	0,63	0,72
37	Mode	0,32	0,00	0,00	0,63	0,72
38	Mode	0,32	0,00	0,00	0,63	0,72
39	Mode	0,32	0,00	0,00	0,63	0,72
40	Mode	0,30	0,11	0,00	0,74	0,72

Ιδιοπερίοδοι & Ποσοστό δρωσών ιδιομορφικών μαζών

41	Mode	0,26	0,00	0,00	0,74	0,72
42	Mode	0,24	0,00	0,00	0,74	0,72
43	Mode	0,22	0,02	0,00	0,76	0,72
44	Mode	0,22	0,00	0,03	0,76	0,74
45	Mode	0,22	0,00	0,00	0,76	0,74
46	Mode	0,22	0,00	0,00	0,76	0,74
47	Mode	0,21	0,00	0,00	0,76	0,74
48	Mode	0,21	0,05	0,00	0,81	0,74
49	Mode	0,20	0,13	0,00	0,94	0,74
50	Mode	0,19	0,00	0,00	0,94	0,74
51	Mode	0,19	0,00	0,00	0,94	0,74
52	Mode	0,18	0,00	0,02	0,94	0,76
53	Mode	0,18	0,00	0,00	0,94	0,76
54	Mode	0,17	0,00	0,00	0,94	0,76
55	Mode	0,17	0,00	0,05	0,94	0,81
56	Mode	0,16	0,00	0,00	0,94	0,81
57	Mode	0,16	0,00	0,00	0,94	0,81
58	Mode	0,15	0,00	0,00	0,94	0,81
59	Mode	0,15	0,00	0,00	0,94	0,81
60	Mode	0,14	0,00	0,00	0,94	0,81
61	Mode	0,14	0,00	0,03	0,94	0,84
62	Mode	0,14	0,00	0,00	0,94	0,84
63	Mode	0,13	0,00	0,00	0,94	0,84
64	Mode	0,13	0,00	0,00	0,94	0,85
65	Mode	0,13	0,00	0,00	0,95	0,85
66	Mode	0,13	0,00	0,00	0,95	0,85
67	Mode	0,13	0,00	0,00	0,95	0,85
68	Mode	0,13	0,00	0,01	0,95	0,86
69	Mode	0,13	0,00	0,00	0,95	0,86
70	Mode	0,12	0,00	0,00	0,95	0,86
71	Mode	0,12	0,00	0,00	0,95	0,86
72	Mode	0,12	0,00	0,00	0,95	0,86
73	Mode	0,12	0,00	0,00	0,95	0,86
74	Mode	0,12	0,00	0,00	0,95	0,86
75	Mode	0,12	0,00	0,00	0,95	0,86
76	Mode	0,12	0,00	0,00	0,95	0,86
77	Mode	0,12	0,00	0,00	0,95	0,86
78	Mode	0,12	0,00	0,00	0,95	0,86
79	Mode	0,12	0,00	0,00	0,95	0,86
80	Mode	0,12	0,00	0,00	0,95	0,86
81	Mode	0,11	0,00	0,00	0,95	0,86
82	Mode	0,11	0,00	0,00	0,95	0,87
83	Mode	0,11	0,00	0,00	0,95	0,87
84	Mode	0,11	0,00	0,00	0,95	0,87

85	Mode	0,11	0,00	0,00	0,95	0,87
86	Mode	0,11	0,00	0,00	0,95	0,87
87	Mode	0,11	0,00	0,00	0,95	0,87
88	Mode	0,11	0,00	0,00	0,95	0,87
89	Mode	0,11	0,00	0,00	0,95	0,87
90	Mode	0,11	0,00	0,00	0,95	0,87
91	Mode	0,10	0,00	0,00	0,95	0,87
92	Mode	0,10	0,00	0,01	0,95	0,88
93	Mode	0,10	0,00	0,00	0,95	0,88
94	Mode	0,10	0,00	0,00	0,95	0,88
95	Mode	0,10	0,00	0,00	0,95	0,88
96	Mode	0,09	0,00	0,00	0,95	0,88
97	Mode	0,09	0,00	0,00	0,95	0,88
98	Mode	0,09	0,00	0,01	0,95	0,89
99	Mode	0,09	0,00	0,00	0,95	0,89
100	Mode	0,09	0,00	0,00	0,95	0,89
101	Mode	0,09	0,00	0,00	0,95	0,89
102	Mode	0,09	0,00	0,00	0,95	0,89
103	Mode	0,09	0,00	0,01	0,95	0,91

Παράρτημα Δ

Αποτελέσματα Ανάλυσης Υπόστεγου 2

Έλεγχος εσωτερικού στύλου υποστυλώματος στιβαρού πλαισίου

SAP2000 Steel Design

Project	
Job Number	
Engineer	

Euroco Combo Units	de 3-2005 ST : DLS3-DO-9 : KN, m, C	EEL SECTION	CHECK				
Frame	. 26	Decis	an Coat , CUU	P200Y200Y16			
X Mid	. 4.000	Desig	in Type: Col	1000			
Y Mid	: 4,000	Frame	a Type : Mom	ent Resistin	d Frame		
2 Mid	: 5,000	Sect	Class : Cla	ss 1	d rrano		
Length	: 10,000	Major	Axis : 0,0	00 degrees c	ounterclockwi	se from local	1 3
Loc	: 7,000	RLLF	: 1,0	00			
Area	: 0,018	SMajo	or : 0,002	rMa	jor : 0,115	AVM	jor: 0,009
IMajor	: 2,385E-04	SMind	or : 0,002	rMi	nor : 0,115	AVM	inor: 0,009
IMinor	: 2,385E-04	ZMajo	or : 0,002	E	: 2100000	000,00	
Ixy	: 0,000	ZMind	or : 0,002	Fy	: 355000,	.000	
STRESS	CHECK FORCE	S & MOMENTS					
Lo	cation	р	M33	M22	V2	V3	T
7.	000	-1731,262	1,495	-11,566	0,997	-7,711	0,000
1110		2002200000	0.11000		25/2020	0.000	
PMM DE	MAND/CAPACIT	Y RATIO					
Go	verning	Total	P	MMajor	MMinor	Ratio	Status
Eq	uation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6	.61)	0,486	= 0,470	+ 0,014	+ 0,003	1,000	OK
AXIAL	FORCE DESIGN	I					
		Ned	Nc, Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
		Force	Capacity	Capacity	Major	Minor	
Ax	ial	-1731,262	3684,284	6354,500	3684,284	3988,860	
OMENT	DESIGN			(au)()(
		Med	Mc, Rd	MV,Rd	MD, Rd		
Ma	tor Momont	Moment	capacity	capacity	Capacity 674 002		
M4	Jor Moment	-11 566	674,003	674,003	014,003		
-11	not poment	-11,500	614,003	014,003			
		К	L	k	kzy	kyz	C1
		Factor	Factor	Factor	Factor	Factor	Factor
Ma	jor Moment	2,478	0,400	1,376	0,942	0.000000000	1,000
Mi	nor Moment	2,324	0,400	1,347		0,808	
SHEAR	DESIGN						
		Ved	Vc,Rd	Stress	Status	Ted	
		Force	Capacity	Ratio	Check	Torsion	
Ma	Jor Shear	0,997	1877,529	0,001	OK	0,000	
Mi	nor Shear	7,711	1877,529	0,004	OK	0,000	

Έλεγχος κάτω δοκού ζυγώματος ισχυρού πλαισίου

SAP2000 Steel Design

Project_

Jo	b	N	u	m	be

Ena	incor	
End	ineer	

Eurocode 3-2005 STEEL SECTION CHECK Combo : DLS2-DO-90 Units : KN, m, C Frame : 45 X Mid : 21,500 Y Mid : 4,000 Z Mid : 10,000 Length : 35,000 Design Sect: HE400A Design Type: Beam Frame Type : Moment Resisting Frame Sect Class : Class 2 Major Axis : 0,000 degrees counterclockwise from local 3 Loc : 0,000 RLLF : 1,000 Area : 0,016 IMajor : 4,507E-04 IMinor : 8,564E-05 SMajor : 0,002 rMajor : 0,168 AVMajor: 0,004 SMinor : 5,709E-04 ZMajor : 0,003 rMinor : 0,073 E : 210000000,00 AVMinor: 0,010 ZMinor : 8,730E-04 Ixy : 0,000 Fy : 355000,000 STRESS CHECK FORCES & MOMENTS Location M33 M22 V2 V3 T -986,064 -464,620 11,164 -234,556 5,582 0,000 0,000 PMM DEMAND/CAPACITY RATIO Governing Total P MMajor MMinor Ratio Status Ratio Ratio 0,511 Equation Ratio Ratio Limit Check (6.2) 0,722 0,175 + + 0,036 1,000 OK AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd Force Capacity 4380,938 Capacity 5644,500 Major 5644,500 Minor -986,064 4380,938 Axial MOMENT DESIGN Mv,Rd Med Mc, Rd Mb, Rd Capacity 909,510 309,915 Capacity 909,510 309,915 Moment Capacity Major Moment -464,620 909,510 Minor Moment 11,164 L k C1 K kzv. kvz Factor Factor Factor Factor Factor Factor 0,114 0,114 1,019 1,186 Major Moment 1,000 0,979 1,000 Minor Moment 1,000 0,712 SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force 234,556 Capacity 879,276 1947,114 Ratio Check Torsion 0,000 0,000 Major Shear 0,267 0,003 OK Minor Shear 5,582 OK

Έλεγχος στοιχείου διπλού υποστυλώματος εγκάρσιου πλαισίου

SAP2000 Steel Design

Project_

Job	Number	
		-

Engineer_

urocode	3-2005 STE	EL SECTION	CHECK				
Jnits :	KN, m, C						
	740	Develo	- Cook, UPE	EAN			
Frame :	24 000	Desid	In Sect: HES	DUM			
X Mid :	24,000	Desig	in Type: Cor	umn ant Decistio	. Passas		
2 Mid .	2 500	Coot	Class . Cla	ent Resistin	g rrane		
Length :	5,000	Major	· Avic · 0.0	00 degrees c	ounterclocky	ise from local	3
Loc :	0,000	RLLF	: 1,0	00 000	ouncerero.	LOC LION LOGI	
Area :	0,035	SMaio	or : 0,007	rMa	ior : 0,236	AVM	nior: 0,012
IMajor :	0,002	SMind	or : 0,001	rMi	nor : 0,074	AVMI	nor: 0,020
IMinor :	1,916E-04	ZMajo	or : 0,008	E	: 2100000	000,000	
Ixy :	0,000	ZMino	or : 0,002	Fy	: 355000,	,000	
	URAV BODADA						
Joral	HECK FORCES	D a MORENIS	M33	MOO	172	1/3	ette.
Local	0	-716 220	A75 666	3 072	222 226	0 020	0 000
0,000	0	-/10,230	475,000	2,012	232,200	0,029	0,000
PMM DEMAL	ND/CAPACITY	RATIO					
Gove	rning	Total	P	MMajor	MMinor	Ratio	Status
Equat	tion	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.6	1)	0,726	= 0,519	+ 0,000	+ 0,207	1,000	OK
AXIAL FO	RCE DESIGN						
		Ned	Nc.Rd	Nt.Rd	Nb33.Rd	Nb22.Rd	
		Force	Capacity	Capacity	Major	Minor	
Axia	1	-716,238	1380,277	12567,000	1380,277	8394,127	
MOMENT DI	ESIGN						
0014252187987987910	02422320455	Med	Mc, Rd	Mv, Rd	Mb, Rd		
		Moment	Capacity	Capacity	Capacity		
Majo	r Moment	475,666	2816,215	2816,215	2816,215		
Mino	r Moment	2,072	687,635	687,635			
		K	L	k	kzy	kyz	C1
		Factor	Factor	Factor	Factor	Factor	Factor
Majo	r Moment	5,258	2,000	1,415	0,949		2,700
Mino	r Moment	1,000	1,000	0,440		0,264	
SHEAR DE	SIGN	1200704	2347240	142500000	012000000000	000000	
		Ved	Vc,Rd	Stress	Status	Ted	
10000		Force	Capacity	Ratio	Check	Torsion	
Majo	r Shear	232,266	2461,972	0,094	OK	0,000	
Mino	r Shear	0,829	4181,171	0,000	OK	0,000	

Έλεγχος κατακόρυφου συνδέσμου δυσκαμψίας

SAP2000 Steel Design

Project___

Job	Number	_
		_

Engineer____

Eurocoo Combo	de 3-2005 STI	EL SECTION	CHECK				
Jnits	: KN, m, C						
Frame	: 707	Desig	n Sect: 201	N200/20/			
X Mid	: 0,000	Desig	in Type: Bra	ice			
Y Mid	: 36,000	Frame	Type : Mon	ent Resisting	g Frame		
Z Mid	: 2,500	Sect	Class : Cla	iss 1			
Length	: 9,434	Major	Axis : 0,0	000 degrees c	ounterclockwi	se from local	. 3
Loc	: 4,717	RLLF	: 1,0	000			
Area	: 0,006	SMajc	r : 3,821E-	04 rMa	jor : 0,077	AVM	njor: 0,003
IMajor	: 3,821E-05	SMino	r : 1,034E-	-04 rMin	nor : 0,037	AVM	inor: 0,003
IMinor	: 8,786E-06	ZMajc	r : 4,583E-	-04 E	: 2100000	00,00	
Ixy	: 0,000	ZMinc	r : 1,936E-	-04 Fy	: 355000,	000	
STRESS	CHECK FORCE:	A MOMENTS					
Loc	cation	Р	M33	M22	V2	V3	Т
4,	717	-128,027	6,435	0,000	0,000	0,000	0,000
PMM DEN	MAND/CAPACIT	RATIO					
Gov	verning	Total	P	MMajor	MMinor	Ratio	Status
Equ	uation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.	.62)	0,750	= 0,719	+ 0,000	+ 0,030	1,000	OK
AXIAL H	FORCE DESIGN						
		Ned	NC, Rd	Nt,Ra	ND33, Rd	NDZZ, Rd	
	623 W	Force	Capacity	Capacity	Major	Minor	
AX.	ial	-128,027	177,998	2285,135	647,856	111,998	
OMENT	DESIGN	Mod	Ma Rd	Mrr D.d	Mb Dd		
		Moment	Capacitu	Capacity	Canadity		
Mar	ior Moment	6.435	162.697	162.697	40.239		
Mir	nor Moment	0,000	68,728	68,728	40,250		
		К	L	k	kzy	kyz	C1
		Factor	Factor	Factor	Factor	Factor	Factor
Ma	jor Moment	1,000	1,000	1,158	0,904		1,000
Mir	nor Moment	1,000	1,000	1,575		0,945	
SHEAR I	DESIGN	1.120.21		1.221.021.00			
		Ved	Vc,Rd	Stress	Status	Ted	
		Force	Capacity	Ratio	Check	Torsion	
Ma	jor Shear	0,000	696,862	0,000	OK	0,000	
241.1.1	nor Shear	0,000	589,258	0.000	OK	0.000	

Έλεγχος άνω δοκού ζυγώματος εγκάρσιου πλαισίου

SAP2000 Steel Design

Project_

Job	Num	ber

Engineer	
	_

Eurocode 3-2005 STEEL SECTION CHECK Combo : DLS2-DO-90 Units : KN, m, C Design Sect: IPE500 Design Type: Brace : 8 : 24,000 Frame X Mid Y Mid Z Mid Frame Type : Moment Resisting Frame Sect Class : Class 1 Major Axis : 0,000 degrees counterclockwise from local 3 RLLF : 1,000 : 22,000 : 12,000 Length : 36,222 Loc : 8,049 Area : 0,012 IMajor : 4,820E-04 IMinor : 2,142E-05 SMajor : 0,002 rMajor : 0,204 AVMajor: 0,005 SMinor : 2,142E-04 ZMajor : 0,002 rMinor : 0,043 E : 210000000,00 AVMinor: 0,005 ZMinor : 3,360E-04 Ixy : 0,000 Fy : 355000,000 STRESS CHECK FORCES & MOMENTS M33 M22 V2 V3 Location -400,904 0,000 -314,655 -0,090 -226,099 -0,045 8,049 PMM DEMAND/CAPACITY RATIO Governing Total P MMajor MMinor Ratio Status Ratio Ratio Check Equation Ratio Ratio Limit (6.62) 0,914 -0,528 + 0,001 + 0,385 1,000 OK AXIAL FORCE DESIGN Ned Nc,Rd Nt,Rd Nb33,Rd Nb22,Rd Force Capacity 596,388 Capacity 4118,000 Major 4118,000 Minor -314,655 596,388 Axial MOMENT DESIGN Med Mc, Rd Mv, Rd Mb,Rd Moment -400,904 -0,090 Capacity 778,870 Capacity 778,870 Capacity 778,870 Major Moment Minor Moment 119,280 119,280 K L k kzy kyz C1 Factor Factor Factor Factor Factor Factor Major Moment 1,000 0,111 0,222 1,004 0,930 1,000 Minor Moment 1,043 SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity 1045,293 Ratio Check Torsion 226,099 0,000 Major Shear 0,216 OK Minor Shear 1093,117 4,091E-05 OK

Ιδιοπερίοδοι Υπόστεγο 2- Ποσοστό Δρώσας Ιδιομορφικής Μάζας								
StepType	StepNum	Period	UX	UY	SumUX	SumUY		
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless		
Mode	1	0,337	0,0000	0,3541	0,0000	0,3541		
Mode	2	0,311	0,0000	0,0117	0,0000	0,3657		
Mode	3	0,310	0,0018	0,0000	0,0018	0,3657		
Mode	4	0,309	0,0000	0,0050	0,0018	0,3707		
Mode	5	0,309	0,0017	0,0000	0,0035	0,3707		
Mode	6	0,308	0,0000	0,0010	0,0035	0,3717		
Mode	7	0,308	0,0003	0,0000	0,0038	0,3717		
Mode	8	0,308	0,0000	0,0000	0,0038	0,3718		
Mode	9	0,308	0,0000	0,0000	0,0038	0,3718		
Mode	10	0,305	0,0000	0,0324	0,0038	0,4042		
Mode	11	0,296	0,0121	0,0000	0,0159	0,4042		
Mode	12	0,295	0,0000	0,0047	0,0159	0,4088		
Mode	13	0,295	0,0124	0,0000	0,0283	0,4088		
Mode	14	0,294	0,0000	0,0011	0,0283	0,4099		
Mode	15	0,294	0,0016	0,0000	0,0299	0,4099		
Mode	16	0,294	0,0000	0,0000	0,0299	0,4099		
Mode	17	0,294	0,0000	0,0000	0,0299	0,4099		
Mode	18	0,292	0,0000	0,0128	0,0299	0,4227		
Mode	19	0,288	0,5171	0,0000	0,5470	0,4227		
Mode	20	0,283	0,0103	0,0000	0,5573	0,4227		
Mode	21	0,282	0,0000	0,0045	0,5573	0,4272		
Mode	22	0,281	0,0101	0,0000	0,5674	0,4272		
Mode	23	0,281	0,0000	0,0013	0,5674	0,4285		
Mode	24	0,281	0,0000	0,0000	0,5674	0,4285		
Mode	25	0,281	0,0000	0,0000	0,5674	0,4285		
Mode	26	0,281	0,0111	0,0000	0,5785	0,4285		
Mode	27	0,280	0,0000	0,0051	0,5785	0,4337		
Mode	28	0,271	0,0012	0,0000	0,5796	0,4337		
Mode	29	0,271	0,0000	0,0040	0,5796	0,4377		
Mode	30	0,270	0,0017	0,0000	0,5813	0,4377		
Mode	31	0,270	0,0000	0,0016	0,5813	0,4393		
Mode	32	0,270	0,0000	0,0000	0,5813	0,4394		
Mode	33	0,270	0,0009	0,0000	0,5823	0,4394		
Mode	34	0,270	0,0000	0,0000	0,5823	0,4394		
Mode	35	0,269	0,0000	0,0023	0,5823	0,4417		
Mode	36	0,247	0,0000	0,0000	0,5823	0,4417		
Mode	37	0,246	0,0167	0,0000	0,5990	0,4417		
Mode	38	0,245	0,0000	0,0000	0,5990	0,4417		
Mode	39	0,245	0,0000	0,0000	0,5990	0,4417		
Mode	40	0,244	0,0000	0,0000	0,5990	0,4417		

Ιδιοπερίοδοι & Ποσοστό δρωσών ιδιομορφικών μαζών

Mode	41	0,244	0,0000	0,0000	0,5990	0,4417
Mode	42	0,244	0,0000	0,0000	0,5990	0,4417
Mode	43	0,244	0,0000	0,0000	0,5990	0,4417
Mode	44	0,244	0,0000	0,0000	0,5990	0,4417
Mode	45	0,244	0,0000	0,0000	0,5990	0,4417
Mode	46	0,244	0,0000	0,0000	0,5990	0,4417
Mode	47	0,244	0,0000	0,0001	0,5990	0,4419
Mode	48	0,243	0,0002	0,0000	0,5992	0,4419
Mode	49	0,243	0,0000	0,0000	0,5992	0,4419
Mode	50	0,243	0,0005	0,0000	0,5997	0,4419
Mode	51	0,243	0,0000	0,0000	0,5997	0,4419
Mode	52	0,243	0,0012	0,0000	0,6009	0,4419
Mode	53	0,243	0,0000	0,0000	0,6009	0,4419
Mode	54	0,243	0,0025	0,0000	0,6034	0,4419
Mode	55	0,243	0,0000	0,0000	0,6034	0,4419
Mode	56	0,243	0,0001	0,0000	0,6035	0,4419
Mode	57	0,243	0,0000	0,0000	0,6035	0,4419
Mode	58	0,242	0,0000	0,0000	0,6036	0,4419
Mode	59	0,242	0,0000	0,0003	0,6036	0,4422
Mode	60	0,242	0,0001	0,0000	0,6036	0,4422
Mode	61	0,242	0,0000	0,0087	0,6036	0,4509
Mode	62	0,241	0,0000	0,0003	0,6036	0,4512
Mode	63	0,241	0,0000	0,0000	0,6037	0,4512
Mode	64	0,241	0,0000	0,0000	0,6037	0,4512
Mode	65	0,241	0,0000	0,0000	0,6037	0,4512
Mode	66	0,241	0,0000	0,0000	0,6037	0,4512
Mode	67	0,241	0,0000	0,0000	0,6037	0,4512
Mode	68	0,241	0,0000	0,0000	0,6037	0,4512
Mode	69	0,241	0,0000	0,0000	0,6037	0,4512
Mode	70	0,241	0,0038	0,0000	0,6075	0,4512
Mode	71	0,240	0,0000	0,0000	0,6075	0,4512
Mode	72	0,240	0,0000	0,0000	0,6075	0,4512
Mode	73	0,240	0,0000	0,0000	0,6075	0,4512
Mode	74	0,240	0,0000	0,0000	0,6075	0,4512
Mode	75	0,240	0,0000	0,0000	0,6075	0,4512
Mode	76	0,240	0,0000	0,0000	0,6075	0,4512
Mode	77	0,240	0,0000	0,0000	0,6075	0,4512
Mode	78	0,240	0,0000	0,0000	0,6075	0,4512
Mode	79	0,234	0,0021	0,0000	0,6096	0,4512
Mode	80	0,234	0,0000	0,0000	0,6097	0,4512
Mode	81	0,234	0,0000	0,0000	0,6097	0,4512
Mode	82	0,231	0,0000	0,0254	0,6097	0,4766
Mode	83	0,230	0,0000	0,0000	0,6097	0,4766
Mode	84	0,226	0,0000	0,0173	0,6097	0,4939
·						<u> </u>

Mode 85 0,223 0,0001 0,0000 0,6097 Mode 86 0,222 0,0000 0,0047 0,6097 Mode 87 0,222 0,0000 0,0000 0,6097 Mode 88 0,222 0,0000 0,0000 0,6097 Mode 88 0,222 0,0000 0,0000 0,6097 Mode 90 0,222 0,0000 0,0001 0,6097 Mode 91 0,220 0,0000 0,0001 0,6097 Mode 91 0,220 0,0000 0,0001 0,6097 Mode 91 0,220 0,0000 0,0124 0,6097 Mode 92 0,218 0,0000 0,0124 0,6097 Mode 93 0,218 0,0000 0,0042 0,6098 Mode 94 0,216 0,0000 0,0043 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101	0,4939 0,4986 0,4987 0,4987 0,4988 0,4988 0,5112 0,5112 0,5154 0,5202 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204
Mode860,2220,00000,00470,6097Mode870,2220,00000,00000,6097Mode880,2220,00000,00000,6097Mode890,2220,00000,00000,6097Mode900,2220,00000,00010,6097Mode910,2200,00000,00000,6097Mode920,2190,00000,01240,6097Mode930,2180,00000,00000,6098Mode940,2160,00000,00420,6098Mode950,2140,00030,00000,6101Mode960,2140,00000,00480,6101Mode970,2130,00000,00000,6101Mode990,2130,00000,00000,6101Mode1000,2130,00000,00000,6101Mode1010,2110,00000,01100,6101	0,4986 0,4987 0,4987 0,4988 0,4988 0,5112 0,5154 0,5154 0,5202 0,5202 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204
Mode870,2220,00000,00000,6097Mode880,2220,00000,00000,6097Mode890,2220,00000,00000,6097Mode900,2220,00000,00010,6097Mode910,2200,00000,00000,6097Mode920,2190,00000,01240,6097Mode930,2180,00000,00000,6098Mode940,2160,00000,00420,6098Mode950,2140,00030,00000,6101Mode960,2140,00000,00480,6101Mode970,2130,00000,00000,6101Mode990,2130,00000,00000,6101Mode1000,2130,00000,00000,6101Mode1010,2110,00000,01100,6101Mode1020,2110,00000,01100,6101	0,4986 0,4987 0,4988 0,4988 0,5112 0,5112 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204
Mode 88 0,222 0,0000 0,0000 0,6097 Mode 89 0,222 0,0000 0,0001 0,6097 Mode 90 0,222 0,0000 0,0001 0,6097 Mode 91 0,220 0,0000 0,0001 0,6097 Mode 91 0,220 0,0000 0,0124 0,6097 Mode 92 0,219 0,0000 0,0124 0,6097 Mode 93 0,218 0,0000 0,0000 0,6098 Mode 94 0,216 0,0000 0,0042 0,6098 Mode 95 0,214 0,0000 0,0048 0,6101 Mode 96 0,214 0,0000 0,0000 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0000 0,6101	0,4987 0,4987 0,4988 0,5112 0,5112 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode890,2220,00000,00000,6097Mode900,2220,00000,00010,6097Mode910,2200,00000,00000,6097Mode920,2190,00000,01240,6097Mode930,2180,00000,00000,6098Mode940,2160,00000,00420,6098Mode950,2140,00030,00000,6101Mode960,2140,00000,00480,6101Mode970,2130,00000,00000,6101Mode980,2130,00000,00000,6101Mode1000,2130,00000,00020,6101Mode1010,2110,00000,01100,6101Mode1020,2110,00000,01100,6101	0,4987 0,4988 0,5112 0,5112 0,5154 0,5154 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode900,2220,00000,00010,6097Mode910,2200,00000,00000,6097Mode920,2190,00000,01240,6097Mode930,2180,00000,00000,6098Mode940,2160,00000,00420,6098Mode950,2140,00030,00000,6101Mode960,2140,00000,00480,6101Mode970,2130,00000,00000,6101Mode980,2130,00000,00000,6101Mode1000,2130,00000,00000,6101Mode1010,2110,00000,00000,6101Mode1020,2110,00000,01100,6101	0,4988 0,5112 0,5112 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 91 0,220 0,0000 0,0000 0,6097 Mode 92 0,219 0,0000 0,0124 0,6097 Mode 93 0,218 0,0000 0,0000 0,6098 Mode 94 0,216 0,0000 0,0042 0,6098 Mode 95 0,214 0,0003 0,0000 0,6101 Mode 95 0,214 0,0000 0,0048 0,6101 Mode 96 0,214 0,0000 0,0048 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0000 0,6101 Mode 101 0,211 0,0000 0,0110 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101	0,4988 0,5112 0,5154 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204
Mode920,2190,00000,01240,6097Mode930,2180,00000,00000,6098Mode940,2160,00000,00420,6098Mode950,2140,00030,00000,6101Mode960,2140,00000,00480,6101Mode970,2130,00000,00000,6101Mode970,2130,00000,00000,6101Mode980,2130,00000,00000,6101Mode1000,2130,00000,00000,6101Mode1010,2110,00000,01100,6101Mode1020,2110,00000,01100,6101	0,5112 0,5154 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 93 0,218 0,0000 0,0000 0,6098 Mode 94 0,216 0,0000 0,0042 0,6098 Mode 95 0,214 0,0003 0,0000 0,6101 Mode 96 0,214 0,0000 0,0048 0,6101 Mode 96 0,214 0,0000 0,0048 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0000 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5112 0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 94 0,216 0,0000 0,0042 0,6098 Mode 95 0,214 0,0003 0,0000 0,6101 Mode 96 0,214 0,0000 0,0048 0,6101 Mode 96 0,213 0,0000 0,0000 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5154 0,5202 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 95 0,214 0,0003 0,0000 0,6101 Mode 96 0,214 0,0000 0,0048 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5154 0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 96 0,214 0,0000 0,0048 0,6101 Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5202 0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 97 0,213 0,0000 0,0000 0,6101 Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 100 0,211 0,0000 0,0000 0,6101 Mode 101 0,211 0,0000 0,0110 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5202 0,5202 0,5204 0,5204 0,5204 0,5314
Mode 98 0,213 0,0000 0,0000 0,6101 Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5202 0,5202 0,5204 0,5204 0,5314
Mode 99 0,213 0,0000 0,0000 0,6101 Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5202 0,5204 0,5204 0,5314
Mode 100 0,213 0,0000 0,0002 0,6101 Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5204 0,5204 0,5314
Mode 101 0,211 0,0000 0,0000 0,6101 Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5204 0,5314
Mode 102 0,211 0,0000 0,0110 0,6101 Mode 103 0,205 0,0026 0,0000 0,6127	0,5314
Mode 103 0,205 0,0026 0,0000 0,6127	0 5211
	0,0014
Mode 104 0,205 0,0000 0,0058 0,6127	0,5372
Mode 105 0,204 0,0003 0,0000 0,6130	0,5372
Mode 106 0,204 0,0000 0,0000 0,6130	0,5372
Mode 107 0,204 0,0000 0,0000 0,6130	0,5372
Mode 108 0,204 0,0000 0,0000 0,6130	0,5372
Mode 109 0,203 0,0002 0,0023 0,6132	0,5394
Mode 110 0,203 0,0000 0,0009 0,6132	0,5404
Mode 111 0,202 0,0060 0,0015 0,6192	0,5419
Mode 112 0,201 0,0232 0,0003 0,6424	0,5422
Mode 113 0,198 0,0001 0,0000 0,6425	0,5422
Mode 114 0,196 0,0117 0,0000 0,6542	0,5422
Mode 115 0,195 0,0000 0,0066 0,6542	0,5488
Mode 116 0,195 0,0002 0,0000 0,6544	0,5488
Mode 117 0,195 0,0000 0,0000 0,6544	0,5488
Mode 118 0,195 0,0000 0,0000 0,6544	0,5488
Mode 119 0,195 0,0000 0,0000 0,6544	0,5489
Mode 120 0,194 0,0007 0,0000 0,6551	0,5489
Mode 121 0,194 0,0000 0,0018 0,6551	0,5507
Mode 122 0,191 0,1039 0,0000 0,7590	0,5507
Mode 123 0,174 0,0001 0,0000 0,7591	0,5507
Mode 124 0,173 0,0000 0,0000 0,7591	0,5507
Mode 125 0,166 0,0001 0,0000 0,7591	0,5507
Mode 126 0,166 0,0000 0,0472 0,7591	0,5979
Mode 127 0,166 0,0000 0,0332 0,7591	0,6311
Mode 128 0,158 0,0000 0,0000 0,7592	0,6311

Mode	129	0,158	0,0000	0,0009	0,7592	0,6320
Mode	130	0,156	0,0696	0,0003	0,8288	0,6323
Mode	131	0,156	0,0001	0,2905	0,8289	0,9229
Mode	132	0,150	0,0000	0,0000	0,8289	0,9229
Mode	133	0,150	0,0000	0,0008	0,8289	0,9236
Mode	134	0,146	0,0000	0,0074	0,8289	0,9310
Mode	135	0,135	0,0003	0,0000	0,8292	0,9310
Mode	136	0,132	0,0000	0,0001	0,8292	0,9312
Mode	137	0,132	0,0000	0,0000	0,8292	0,9312
Mode	138	0,132	0,0000	0,0000	0,8292	0,9312
Mode	139	0,132	0,0000	0,0000	0,8292	0,9312
Mode	140	0,132	0,0000	0,0000	0,8292	0,9312
Mode	141	0,132	0,0000	0,0000	0,8292	0,9312
Mode	142	0,132	0,0000	0,0000	0,8292	0,9312
Mode	143	0,132	0,0000	0,0000	0,8292	0,9312
Mode	144	0,132	0,0000	0,0000	0,8292	0,9312
Mode	145	0,132	0,0000	0,0000	0,8292	0,9312
Mode	146	0,132	0,0019	0,0000	0,8312	0,9312
Mode	147	0,127	0,0000	0,0000	0,8312	0,9312
Mode	148	0,126	0,0000	0,0000	0,8312	0,9312
Mode	149	0,126	0,0000	0,0000	0,8312	0,9312
Mode	150	0,126	0,0000	0,0000	0,8312	0,9312
Mode	151	0,126	0,0000	0,0000	0,8312	0,9312
Mode	152	0,126	0,0000	0,0000	0,8312	0,9312
Mode	153	0,126	0,0000	0,0000	0,8312	0,9312
Mode	154	0,126	0,0000	0,0000	0,8312	0,9312
Mode	155	0,126	0,0000	0,0000	0,8312	0,9312
Mode	156	0,126	0,0000	0,0000	0,8312	0,9312
Mode	157	0,125	0,0074	0,0000	0,8386	0,9312
Mode	158	0,123	0,0000	0,0001	0,8386	0,9313
Mode	159	0,122	0,0005	0,0000	0,8391	0,9313
Mode	160	0,122	0,0002	0,0000	0,8393	0,9313
Mode	161	0,122	0,0000	0,0000	0,8393	0,9313
Mode	162	0,121	0,0000	0,0000	0,8393	0,9313
Mode	163	0,121	0,0000	0,0000	0,8393	0,9313
Mode	164	0,121	0,0000	0,0000	0,8393	0,9313
Mode	165	0,121	0,0000	0,0000	0,8393	0,9313
Mode	166	0,121	0,0000	0,0000	0,8393	0,9313
Mode	167	0,121	0,0000	0,0000	0,8393	0,9313
Mode	168	0,121	0,0000	0,0000	0,8393	0,9313
Mode	169	0,119	0,0048	0,0000	0,8440	0,9313
Mode	170	0,118	0,0000	0,0001	0,8440	0,9314
Mode	171	0,117	0,0001	0,0000	0,8441	0,9314
Mode	172	0,117	0,0000	0,0000	0,8441	0,9315

Mode	173	0,117	0,0000	0,0000	0,8441	0,9315
Mode	174	0,117	0,0000	0,0000	0,8441	0,9315
Mode	175	0,117	0,0000	0,0000	0,8441	0,9315
Mode	176	0,117	0,0000	0,0000	0,8441	0,9315
Mode	177	0,117	0,0000	0,0000	0,8441	0,9315
Mode	178	0,117	0,0000	0,0000	0,8441	0,9315
Mode	179	0,117	0,0000	0,0000	0,8441	0,9315
Mode	180	0,115	0,0024	0,0000	0,8465	0,9315
Mode	181	0,114	0,0000	0,0002	0,8465	0,9317
Mode	182	0,108	0,0138	0,0000	0,8603	0,9317
Mode	183	0,106	0,0000	0,0004	0,8603	0,9321
Mode	184	0,105	0,0000	0,0000	0,8603	0,9321
Mode	185	0,105	0,0000	0,0000	0,8603	0,9321
Mode	186	0,105	0,0000	0,0000	0,8603	0,9321
Mode	187	0,105	0,0000	0,0000	0,8603	0,9321
Mode	188	0,105	0,0000	0,0000	0,8603	0,9321
Mode	189	0,105	0,0000	0,0000	0,8603	0,9321
Mode	190	0,105	0,0000	0,0000	0,8603	0,9321
Mode	191	0,105	0,0000	0,0000	0,8603	0,9321
Mode	192	0,105	0,0000	0,0000	0,8603	0,9321
Mode	193	0,102	0,0009	0,0000	0,8612	0,9321
Mode	194	0,099	0,0003	0,0000	0,8615	0,9321
Mode	195	0,093	0,0000	0,0001	0,8615	0,9322
Mode	196	0,092	0,0000	0,0004	0,8615	0,9325
Mode	197	0,091	0,0297	0,0000	0,8912	0,9325
Mode	198	0,088	0,0000	0,0005	0,8912	0,9330
Mode	199	0,088	0,0100	0,0000	0,9012	0,9330
Mode	200	0,088	0,0000	0,0023	0,9012	0,9353

Παράρτημα Ε

Αποτελέσματα Ανάλυσης Υπόστεγου 3

<u>Έλεγχος εσωτερικού στύλου πυραμιδοειδούς πυλώνα</u>

SAP2000 Steel Design

Project	
Job Number	
Engineer	

Combo : DLS2-DC-C	BEL SECTION	CHECK				
nits : KN, m, C	6					
Frame : 31	Desig	n Sect: CHH	F355.6X25			
X Mid : -32,469	Desig	n Type: Col	umn			
Y Mid : 0,000	Frame	Type : Mom	ent Resistin	g Frame		
Z Mid : 5,439	Sect	Class : Cla	ss 1			
Length : 11,122	Major	Axis : 0,0	00 degrees co	ounterclockwi	se from local	3
Loc : 1,505	RLLF	: 1,0	00			
Area : 0,026	SMajo	r : 0,002	rMa	jor : 0,117	AVMa	jor: 0,014
IMajor : 3,568E-04	1 SMino	r : 0,002	rMin	nor : 0,117	AVMi	nor: 0,014
IMinor : 3,568E-04	1 ZMajo	r : 0,003	E	: 2100000	100,00	
Ixy : 0,000	ZMinc	or : 0,003	Fy	: 355000,	000	
CAPPER CUPOK PODO						
Location	D & MOMENTS	M33	M22	V2	V3	qu
1.505	=2053.074	=38,631	=136,111	35,377	4.196	11.472
21000	20001014	001001	****	201011	11.200	
PMM DEMAND/CAPACIT	TY RATIO					
Governing	Total	P	MMajor	MMinor	Ratio	Status
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.62)	0,390	= 0,222	+ 0,165	+ 0,030	1,000	OK
AXIAL FORCE DESIGN	a					
	Ned	Nc,Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
	Force	Capacity	Capacity	Major	Minor	
Axial	-2053,074	8275,970	9230,000	8275,970	9230,000	
MOMENT DESIGN						
	Med	Mc, Rd	Mv,Rd	Mb, Rd		
	Moment	Capacity	Capacity	Capacity		
	-38,631	971,854	971,854	971,854		
Major Moment			ALC: NO. 10. 10. 10. 10.			
Major Moment Minor Moment	-136,111	971,854	971,854			
Major Moment Minor Moment	-136,111 K	971,854 L	971,854 k	kzy	kyz	C1
Major Moment Minor Moment	-136,111 K Factor	971,854 L Factor	971,854 k Factor	kzy Factor	kyz Factor	C1 Factor
Major Moment Minor Moment Major Moment	-136,111 K Factor 2,074	971,854 L Factor 0,226	971,854 k Factor 1,095	kzy Factor 0,881	kyz Factor	C1 Factor 1,000
Major Moment Minor Moment Major Moment Minor Moment	-136,111 K Factor 2,074 1,000	971,854 L Factor 0,226 0,226	971,854 k Factor 1,095 1,178	kzy Factor 0,881	kyz Factor 0,707	C1 Factor 1,000
Major Moment Minor Moment Major Moment Minor Moment SHEAR DESIGN	-136,111 K Factor 2,074 1,000	971,854 L Factor 0,226 0,226	971,854 k Factor 1,095 1,178	kzy Factor 0,881	kyz Factor 0,707	C1 Factor 1,000
Major Moment Minor Moment Major Moment Minor Moment SHEAR DESIGN	-136,111 K Factor 2,074 1,000 Ved	971,854 L Factor 0,226 0,226 Vc,Rd	971,854 k Factor 1,095 1,178 Stress	kzy Factor 0,881 Status	kyz Factor 0,707 Ted	C1 Factor 1,000
Major Moment Minor Moment Major Moment Minor Moment SHEAR DESIGN	-136,111 K Factor 2,074 1,000 Ved Force	971,854 L Factor 0,226 0,226 Vc,Rd Capacity	971,854 k Factor 1,095 1,178 Stress Ratio	kzy Factor 0,881 Status Check	kyz Factor 0,707 Ted Torsion	C1 Factor 1,000
Major Moment Minor Moment Major Moment SHEAR DESIGN Major Shear	-136,111 K Factor 2,074 1,000 Ved Force 35,377	971,854 L Factor 0,226 0,226 Vc,Rd Capacity 2862,130	971,854 k Factor 1,095 1,178 Stress Ratio 0,012	kzy Factor 0,881 Status Check OK	kyz Factor 0,707 Ted Torsion 0,000	C1 Factor 1,000

Έλεγχος άνω ράβδου χωροδικτυώματος στέγης

SAP2000 Steel Design

SHEAR DESIGN

Major Shear

Minor Shear

Ved

Force

0,000

0,000

Vc,Rd

Capacity 69,889

69,889

Stress

Ratio

0,000

0,000

Status

Check

OK

OK

Ted

0,000

0,000

Torsion

Project_____

Job Number_ Engineer

Eurocode 3-2005 STEEL SECTION CHECK Combo : DLS2-DC-0 Units : KN, m, C Frame : 2836 X Mid : -34,000 Y Mid : 31,990 Z Mid : 14,550 Length : 0,990 Lóc : 0,495 Design Sect: CHHF60.3X3.6 Design Type: Brace Design Type: Brace Frame Type : Moment Resisting Frame Sect Class : Class 1 Major Axis : 0,000 degrees counterclockwise from local 3 RLLF : 1,000 Area : 6,410E-04 IMajor : 0,000 IMinor : 0,000 Ixy : 0,000 SMajor : 8,590E-06 SMinor : 8,590E-06 ZMajor : 1,159E-05 ZMinor : 1,159E-05 rMajor : 0,020 rMinor : 0,020 E : 210000000,00 Fy : 355000,000 AVMajor: 3,410E-04 AVMinor: 3,410E-04 STRESS CHECK FORCES & MOMENTS V2 M33 M22 V3 Location 0,495 141,534 0,008 0,000 0,000 0,000 -0,007 PMM DEMAND/CAPACITY RATIO Total P MMajor MMinor Ratio Status Governing Ratio Equation Ratio Ratio Ratio Limit Check + 0,000 - 14 + (6.2.1)0,624 0,622 0,002 1,000 OK AXIAL FORCE DESIGN Nc, Rd Nt,Rd Nb33,Rd Nb22, Rd Ned Major 198,494 Minor 198,494 Force Capacity Capacity 141,534 Axial 198,494 227,555 MOMENT DESIGN Mv,Rd Capacity Med Mc,Rd Mb, Rd Capacity 4,114 Moment Capacity 4,114 4,114 Major Moment 0,008 4,114 Minor Moment 0,000 4,114 L k К kzy kyz C1 Factor 1,317 1,570 Factor Factor Factor Factor Factor 1,000 1,000 0,939 Major Moment 1,000 1,000 0,942 Minor Moment 1,000

Έλεγχος εγκάρσιας εσωτερικής κεφαλοδοκού

SAP2000 Steel Design

Project____

Engineer_

Eurocod Combo Units	a 3-2005 STE : DLS2-DO-90 : KN, m, C	EL SECTION	CHECK						
	5 (2)2 4 (2)5 8) - 55								
Framo	. 1126	Decio	n Secti	122603					
X Mid	-12,000	Desig	n Tune:	Ream					
Y Mid	: 0.000	Frame	Type :	Moment	Resistin	T Fra	me		
Z Mid	: 5,480	Sect	Class :	Class	3	,			
Length	: 7.056	Major	Axis :	0.000	degrees c	ounte	relockwi	se from loc	al 3
Loc	: 0,000	RLLF	:	1,000					
Area	: 0,009	SMajo	or : 8,36	0E-04	rMa	jor :	0,110	AV	Major: 0,002
IMajor	: 1,045E-04	SMind	or : 2,82	2E-04	rMi	nor :	0,065	AV	Minor: 0,005
IMinor	: 3,668E-05	ZMajo	pr : 9,20	0E-04	E	:	2100000	00,00	
Ixy	: 0,000	ZMind	or : 4,30	0E-04	Fy	:	355000,	000	
STRESS	CHECK FORCES	& MOMENTS							
Loca	ation	P	M	33	M22		V2	V3	т
0,0	00	122,815	-4,4	70	-1,202		-3,429	-0,270	-0,001
PMM DEM	AND/CAPACITY	RATIO							
Gove	erning	Total		P	MMajor		MMinor	Ratio	Status
Equ	ation	Ratio	Rat	io	Ratio		Ratio	Limit	Check
(6.)	2.1)	0,067	= 0,0	40 +	0,015	*	0,012	1,000	OK
AXIAL FO	ORCE DESIGN	No. 1			No. 19.4		633 BJ	NL00 04	
		Ned	NC,	RC	NC, RO	N	D33, Rd	NDZZ, KO	
Ave.		102 015	1053 0	20	JOST ADD	21	major 52 200	1053 029	
AXL	**	122,013	1055,0	20	2001,400	21	32,299	1055,028	
MOMENT I	DESIGN				M		M. D.(
		Med	MC,	KC	MV, Rd	10-	MD, Rd		
Made	or Momont	Moment	capaci	e y	Sapacity	ca	of 700		
Mine	or Moment	-1,202	100,1	65	100,165	2	50,100		
		К		L	k		kzv	kv2	C1
		Factor	Fact	or	Factor		Factor	Factor	Factor
Marie	or Moment	1,000	1,0	00	0,456		0,970		1,148
Mine	or Moment	1,000	1,0	00	0,428			0,428	
SHEAR DI	ESIGN								
		Ved	Vc,	Rd	Stress		Status	Ted	
260-02	11011124	Force	Capaci	ty	Ratio		Check	Torsion	
	or Shear	3,429	384.2	99	0.009		OK	0,000	
Maje	or oneur								

Έλεγχος κατακόρυφου χιαστί συνδέσμου δυσκαμψίας

SAP2000 Steel Design

Project_____ Job Number____

Jol	b	N	u	m	b

Engineer___

luroco	de :	3-2005 STE	EL SECTION	CHE	CK						
Jnits	: 1	KN, m, C									
Pramo		774	Desid	m S	ect: 201P	1300	1/25/				
X Mid	÷ .	-11.764	Desig	n T	vpe: Brad	te.	11201				
Y Mid		0.000	Frame	TV	pe : Mome	ent	Resisting	T Fra	ame		
Z Mid		2,689	Sect	Cla	ss : Clar	ss 1	1				
Length		9,372	Major	Ax	is : 0,00	00 0	iegrees c	ounte	erclockwi	se from loc	al 3
Loc	: !	9,372	RLLF		: 1,00	00					
Area	: (0,012	SMajo	r :	0,001		rMa	jor :	0,117	AV	Major: 0,006
IMajor	: 1	1,604E-04	SMinc	r :	2,497E-0	0.4	rMin	nor :	: 0,049	AV	Minor: 0,005
IMinor	: :	2,809E-05	ZMajo	r :	0,001		E		: 2100000	00,00	
Ixy	: (0,000	ZMinc	r :	4,626E-0	04	Fy	3	: 355000,	000	
CTDPCC	CUI	POR POPOPO	(MOMENING								
To	cat	ion	D		M33		M22		V2	1/3	ep.
0	372	a sold	=323,900		0.000		0.000		2.256	0.075	0.000
	316		-525,500		0,000		0,000		21200	0,075	0,000
PMM DE	MANI	CAPACITY	RATIO								
Go	ver	ning	Total		P		MMajor		MMinor	Ratio	Status
Eq	uat	ion	Ratio		Ratio		Ratio		Ratio	Limit	Check
(6	. 62))	0,590	-	0,590	+	0,000	+	0,000	1,000	OK
AXIAL	FOR	CE DESIGN									
			Ned		Nc,Rd		Nt, Rd	2	Nb33,Rd	Nb22,Rd	
			Force	C	apacity	0	Capacity		Major	Minor	
Ax	ial		-323,900		549,203	1	1171,250	41	171,250	549,203	
MOMENT	DE	SIGN									
			Med	243	Mc, Rd	2.25	Mv,Rd	0.0	Mb, Rd		
1000	3	100	Moment	C	apacity	0	lapacity	Ca	apacity		
Ma	lor	Moment	0,000		450,140		450,140	4	150,140		
Mi	nor	Moment	0,000		164,223		164,223				
			К		L		k		kzy	kyz	C1
	i		Factor		Factor		Factor		Factor	Factor	Factor
Ma	Jor	Moment	1,000		0,531		1,028		0,921		1,000
Mi	nor	Moment	1,000		1,000		1,472			0,883	
SHEAR	DES	IGN									
			Ved		Vc,Rd		Stress		Status	Ted	
			Force	C	apacity		Ratio		Check	Torsion	
Ma	jor	Shear	2,256	1	229,756		0,002		OK	0,000	

Έλεγχος Υποστυλώματος Βόρειου τμήματος

SAP2000 Steel Design

Project_____

Job Number_____ Engineer_____

Eurocod	de 3-2005	STEEL SECTION	CHECK				
Combo	: DLS2-D	0-90					
Jnits	: KN, m,	C					
Frame	: 1093	Desi	gn Sect: HE2	60B			
X Mid	: 4,000	Desi	gn Type: Col	umn			
Y Mid	: 29,540	Fram	e Type : Mom	ent Resisting	g Frame		
Z Mid	: 7,049	Sect	Class : Cla	ss 1			
Length	: 14,302	Majo	r Axis : 0,0	00 degrees co	ounterclockwi	se from loca	1 3
Loc	: 8,720	RLLF	: 1,0	00			
Area	: 0,012	SMaj	or : 0,001	rMa	jor : 0,112	AVM	ajor: 0,003
IMajor	: 1,492E	-04 SMin	or : 3,950E-	04 rMin	nor : 0,066	AVM	inor: 0,008
IMinor	: 5,135E	-05 ZMaj	or : 0,001	E	: 2100000	00,00	
Ixy	: 0,000	ZMin	or : 6,020E-	0.4 Fy	: 355000,	000	
STRESS	CHECK FO	RCES & MOMENTS	8	1000		1993	100
Loc	cation	P	M33	M22	V2	V3	T
8,	120	-137,243	-152,419	1,344	-5,255	-0,718	-0,026
PMM DEN	MAND/CAPA	CITY RATIO					
Gov	verning	Total	P	MMajor	MMinor	Ratio	Status
Equ	uation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.	.61)	0,952	= 0,565	+ 0,004	+ 0,383	1,000	OK
AXIAL I	FORCE DES	IGN					
		Ned	Nc, Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
		Force	Capacity	Capacity	Major	Minor	
Ax	ial	-137,243	242,967	4189,000	242,967	2012,030	
MOMENT	DESIGN						
		Med	Mc,Rd	Mv,Rd	Mb, Rd		
		Moment	Capacity	Capacity	Capacity		
Ma	jor Momen	t -152,419	455,465	455,465	455,465		
Mir	nor Momen	t 1,344	213,710	213,710			
		K	L	k	kzy	kyz	C1
		Factor	Factor	Factor	Factor	Factor	Factor
Ma	jor Momen	t 2,394	1,000	1,326	0,991		1,000
Mir	nor Momen	t 1,000	0,390	1,095		0,657	
SHEAR I	DESIGN						
		Ved	Vc,Rd	Stress	Status	Ted	
		Force	Capacity	Ratio	Check	Torsion	
						0 000	
Ma	jor Shear	5,255	532,894	0,010	OK	0,000	

Έλεγχος αμφιέρειστης δοκού Βόρειου τμήματος

SAP2000 Steel Design

Project_

Job	Num	ber

Engineer____

Eurocode 3-2005 STEEL SECTION CHECK Combo : DLS2-DO-90 Units : KN, m, C Frame : 23062 Design Sect: HE260A X Mid : 4,000 Y Mid : 31,500 Design Type: Beam Frame Type : Moment Resisting Frame Z Mid : 9,480 Length : 3,920 Loc : 3,920 Sect Class : Class 3 Major Axis : 0,000 degrees counterclockwise from local 3 RLLF : 1,000 : 0,009 SMajor : 8,360E-04 rMajor : 0,110 AVMajor: 0,002 Area IMajor : 1,045E-04 IMinor : 3,668E-05 Ixy : 0,000 SMinor : 2,822E-04 ZMajor : 9,200E-04 ZMinor : 4,300E-04 rMinor : 0,065 E : 210000000,00 Fy : 355000,000 AVMinor: 0,005 STRESS CHECK FORCES & MOMENTS Location M33 M22 V2 V3 1,311 3,920 0,000 -1,798 -7,302 0,832 0,005 PMM DEMAND/CAPACITY RATIO Total P MMajor MMinor Ratio Status Governing Limit 1,000 Equation Ratio Ratio Ratio Ratio Check 0,000 ÷ (6.2.1)0,079 + 0,006 0.073 OK AXIAL FORCE DESIGN Ned Nb33,Rd Nc.Rd Nt,Rd Nb22,Rd Force Capacity Capacity Major Minor 2768,046 14,881 Axial 0,000 14,881 3081,400 MOMENT DESIGN Mc,Rd Capacity Mv,Rd Capacity Med Mb,Rd Moment Capacity 296,780 Major Moment -1,798 296,780 296,780 100,165 Minor Moment -7,302 K L k kzy kyz C1 Factor Factor Factor Factor Factor Factor Major Moment 1,000 1,000 0,400 1,000 1,000 1,000 17,929 1,000 1,000 Minor Moment SHEAR DESIGN Ved Vc,Rd Stress Status Ted Force Capacity 384,299 1110.196 Check Ratio Torsion 0,832 0,002 Major Shear OK 0,000 OK 0.000 Minor Shear

Έλεγχος αναρτήρα ενισχυμένης ζώνης

SAP2000 Steel Design

Project_____

Job Number_

Engineer_

Eurococ Combo	ie 3-2005 STE : DLS3-DC-0	EL SECTION	CHECK					
Jnits	: KN, m, C							
Frame	: 951	Desi	yn Sect: CH	HF139.7	X10			
X Mid	: -33,941	Desid	in Type: Br.	ace				
Y Mid	: 41,839	Frame	e Type : Mor	ment Re	sisting	g Frame		
Z Mid	: 15,458	Sect	Class : Cl	ass 1				
Length	: 2,000	Majo	r Axis : 0,	000 deg	rees co	ounterclockwi	se from local	13
Loc	: 0,000	RLLF	: 1,	000				
Area	: 0,004	SMajo	or : 1,234E	-04	rMaj	jor : 0,046	AVMa	ajor: 0,002
IMajor	: 8,620E-06	SMind	or : 1,234E	-04	rMir	nor : 0,046	AVMI	inor: 0,002
IMinor	: 8,620E-06	ZMajo	or : 1,686E	-04	E	; 2100000	00,00	
Ixy	: 0,000	ZMind	or : 1,686E	-04	FY	: 355000,	000	
STRESS	CHECK FORCES	& MOMENTS						
Los	ation	P	M33		M22	V2	V3	T
0,0	000	170,319	-1,648	-	0,062	-1,336	0,032	0,141
PMM DEN	AND/CAPACITY	RATIO						
Gov	/erning	Total	P	M	Major	MMinor	Ratio	Status
Equ	uation	Ratio	Ratio		Ratio	Ratio	Limit	Check
(6.	.2.1)	0,145	= 0,118	+	0,028	+ 0,001	1,000	OK
AXIAL I	FORCE DESIGN	22.52	02/03/2002		221-212-22			
		Ned	NC, Rd		Nt, Rd	Nb33,Rd	Nb22,Rd	
	1.1	Force	Capacity	Cap	acity	Major	Minor	
AX	lal	170,319	1302,468	144	4,850	1302,468	1302,468	
MOMENT	DESIGN							
		Med	Mc, Rd		Mv, Rd	Mb,Rd		
00000	0.000	Moment	Capacity	Cap	acity	Capacity		
Ma)or Moment	-1,648	59,837	5	9,837	59,837		
Mir	nor Moment	-0,062	59,837	5	9,837			
		K	L	1	k	kzy	kyz	C1
		Factor	Factor	F	actor	Factor	Factor	Factor
Maj	or Moment	1,000	1,000		0,579	0,975		2,052
Mir	nor Moment	1,000	1,000		0,880		0,528	
SHEAR I	DESIGN							
		Ved	Vc,Rd	S	tress	Status	Ted	
		Force	Capacity		Ratio	Check	Torsion	
Ma)or Shear	1,336	449,763		0,003	OK	0,000	
Mir	nor Shear	0,032	449,763	7,14	9E-05	OK	0,000	

Έλεγχος εσωτερικής ενίσχυσης πυλώνα

SAP2000 Steel Design

Project____

Job	Number	

Engineer____

Combo : DLS3-DC-0 Units : KN, m, C						
Frame : 542	Desid	m Sect: CHHI	F139.7X10			
X Mid : -24,000	Desig	in Type: Bear	m			
Y Mid : 70,280	Frame	Type : Mome	ent Resisting	g Frame		
Z Mid : 9,980	Sect	Class : Clas	ss 1			
Length : 1,706	Major	Axis : 0,00	00 degrees co	ounterclockwi	se from local	1 3
Loc : 1,706	RLLF	: 1,00	00			
Area : 0,004	SMaic	or : 1,234E-0	04 rMa	jor : 0,046	AVM	ajor: 0,002
IMajor : 8,620E-06	SMinc	r : 1,234E-0	04 rMii	nor : 0,046	AVM.	inor: 0,002
IMinor : 8,620E-06	ZMajc	or : 1,686E-0	04 E	: 2100000	00,00	201921920192-2010 2 -2019
1xy : 0,000	ZMinc	or : 1,686E-0	04 Fy	: 355000,	000	
Jocation	& MOMENTS	M33	Maa	122	1/2	75
1 706	72 969	=6 228	A 466	11 356	=10 324	0.821
1,100	12,000	0,220	47400	11,000	10,024	0,021
PMM DEMAND/CAPACITY	RATIO					
Governing	Total	P	MMajor	MMinor	Ratio	Status
Equation	Ratio	Ratio	Ratio	Ratio	Limit	Check
(6.2.1)	0,179	= 0,051	+ 0,104	+ 0,075	1,000	OK
AXIAL FORCE DESIGN						
	Ned	Nc, Rd	Nt,Rd	Nb33,Rd	Nb22,Rd	
	Force	Capacity	Capacity	Major	Minor	
Axial	72,969	1431,270	1444,850	1431,270	1431,270	
MOMENT DESIGN						
	Med	Mc, Rd	Mv, Rd	Mb, Rd		
	Moment	Capacity	Capacity	Capacity		
Major Moment	-6,228	59,837	59,837	59,837		
Minor Moment	4,466	59,837	59,837			
	К	L	k	kzy	kyz	C1
	Factor	Factor	Factor	Factor	Factor	Factor
Major Moment	1,000	0,500	1,002	0,843		1,000
Minor Moment	1,000	0,500	1,041		0,624	
SHEAR DESIGN						
	Ved	Vc,Rd	Stress	Status	Ted	
	Force	Capacity	Ratio	Check	Torsion	
Major Shear	11,356	449,763	0,025	OK	0,000	
Minor Shear	10,324	449,763	0,023	OK	0,000	

Ιδιοπερίοδοι Υπόστεγου 3- Ποσοστό Δρώσας Ιδιομορφικής Μάζας						
StepType StepNum		Period	UY	UX	SumUY	SumUX
Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless
Mode	1	0,742	0,0637	0,0000	0,0637	0,0000
Mode	2	0,659	0,0000	0,0000	0,0637	0,0000
Mode	3	0,659	0,0000	0,0002	0,0637	0,0003
Mode	4	0,638	0,0000	0,0000	0,0637	0,0003
Mode	5	0,638	0,0000	0,0004	0,0637	0,0007
Mode	6	0,622	0,0000	0,0006	0,0637	0,0013
Mode	7	0,622	0,0000	0,0026	0,0637	0,0039
Mode	8	0,610	0,0000	0,0040	0,0637	0,0079
Mode	9	0,610	0,0000	0,0000	0,0637	0,0079
Mode	10	0,597	0,0000	0,0000	0,0637	0,0079
Mode	11	0,597	0,0000	0,0125	0,0637	0,0204
Mode	12	0,553	0,2176	0,0000	0,2814	0,0204
Mode	13	0,488	0,0000	0,5539	0,2814	0,5743
Mode	14	0,409	0,3638	0,0000	0,6452	0,5743
Mode	15	0,391	0,0000	0,0247	0,6452	0,5990
Mode	16	0,380	0,0000	0,3629	0,6452	0,9620
Mode	17	0,339	0,0225	0,0000	0,6677	0,9620
Mode	18	0,300	0,0000	0,0002	0,6677	0,9621
Mode	19	0,299	0,0022	0,0000	0,6700	0,9621
Mode	20	0,284	0,0000	0,0003	0,6700	0,9624
Mode	21	0,275	0,1093	0,0000	0,7792	0,9624
Mode	22	0,257	0,0001	0,0000	0,7793	0,9624
Mode	23	0,255	0,0000	0,0000	0,7793	0,9624
Mode	24	0,254	0,0000	0,0000	0,7794	0,9624
Mode	25	0,250	0,0000	0,0000	0,7794	0,9624
Mode	26	0,248	0,0000	0,0000	0,7794	0,9624
Mode	27	0,248	0,0099	0,0000	0,7893	0,9624
Mode	28	0,246	0,0002	0,0000	0,7894	0,9624
Mode	29	0,245	0,0000	0,0000	0,7894	0,9624
Mode	30	0,245	0,0042	0,0000	0,7936	0,9624
Mode	31	0,243	0,0000	0,0000	0,7936	0,9624
Mode	32	0,233	0,0041	0,0000	0,7977	0,9624
Mode	33	0,225	0,0000	0,0000	0,7977	0,9624
Mode	34	0,225	0,0000	0,0014	0,7977	0,9639
Mode	35	0,225	0,0000	0,0000	0,7977	0,9639
Mode	36	0,225	0,0000	0,0000	0,7977	0,9639
Mode	37	0,205	0,0000	0,0002	0,7977	0,9640
Mode	38	0,202	0,0005	0,0000	0,7982	0,9640
Mode	39	0,199	0,0001	0,0000	0,7982	0,9640
Mode	40	0,199	0,0000	0,0000	0,7982	0,9641

Ιδιοπερίοδοι & Ποσοστό δρωσών ιδιομορφικών μαζών

Mode	41	0,192	0,0000	0,0000	0,7982	0,9641
Mode	42	0,191	0,0000	0,0000	0,7982	0,9641
Mode	43	0,183	0,0001	0,0000	0,7983	0,9641
Mode	44	0,182	0,0000	0,0000	0,7983	0,9641
Mode	45	0,179	0,0000	0,0000	0,7983	0,9641
Mode	46	0,177	0,0000	0,0001	0,7983	0,9642
Mode	47	0,170	0,0040	0,0000	0,8023	0,9642
Mode	48	0,164	0,0000	0,0000	0,8023	0,9642
Mode	49	0,161	0,0000	0,0000	0,8024	0,9642
Mode	50	0,159	0,0000	0,0000	0,8024	0,9642
Mode	51	0,158	0,0000	0,0001	0,8024	0,9643
Mode	52	0,158	0,0009	0,0000	0,8032	0,9643
Mode	53	0,157	0,0000	0,0000	0,8032	0,9643
Mode	54	0,156	0,0000	0,0000	0,8032	0,9644
Mode	55	0,155	0,0035	0,0000	0,8067	0,9644
Mode	56	0,154	0,0008	0,0000	0,8075	0,9644
Mode	57	0,152	0,0024	0,0000	0,8099	0,9644
Mode	58	0,152	0,0000	0,0000	0,8099	0,9644
Mode	59	0,149	0,0010	0,0000	0,8109	0,9644
Mode	60	0,143	0,0019	0,0000	0,8128	0,9644
Mode	61	0,136	0,0123	0,0000	0,8251	0,9644
Mode	62	0,135	0,0000	0,0000	0,8251	0,9644
Mode	63	0,130	0,0000	0,0000	0,8251	0,9644
Mode	64	0,130	0,0102	0,0000	0,8353	0,9644
Mode	65	0,129	0,0395	0,0000	0,8747	0,9644
Mode	66	0,125	0,0000	0,0010	0,8747	0,9654
Mode	67	0,125	0,0029	0,0000	0,8776	0,9654
Mode	68	0,124	0,0000	0,0000	0,8777	0,9654
Mode	69	0,124	0,0000	0,0000	0,8777	0,9655
Mode	70	0,122	0,0007	0,0000	0,8784	0,9655
Mode	71	0,119	0,0001	0,0000	0,8785	0,9655
Mode	72	0,118	0,0000	0,0000	0,8785	0,9655
Mode	73	0,117	0,0000	0,0000	0,8785	0,9655
Mode	74	0,115	0,0007	0,0000	0,8792	0,9655
Mode	75	0,112	0,0000	0,0000	0,8792	0,9655
Mode	76	0,111	0,0000	0,0001	0,8792	0,9656
Mode	77	0,111	0,0004	0,0000	0,8796	0,9656
Mode	78	0,111	0,0000	0,0000	0,8796	0,9656
Mode	79	0,111	0,0002	0,0000	0,8798	0,9656
Mode	80	0,109	0,0000	0,0000	0,8798	0,9656
Mode	81	0,109	0,0000	0,0000	0,8798	0,9656
Mode	82	0,108	0,0000	0,0000	0,8798	0,9656
Mode	83	0,106	0,0000	0,0000	0,8798	0,9656
Mode	84	0,105	0,0008	0,0000	0,8806	0,9656

Mode	85	0,105	0,0000	0,0000	0,8806	0,9656
Mode	86	0,104	0,0000	0,0000	0,8806	0,9656
Mode	87	0,104	0,0000	0,0000	0,8806	0,9656
Mode	88	0,104	0,0001	0,0000	0,8807	0,9656
Mode	89	0,103	0,0016	0,0000	0,8823	0,9656
Mode	90	0,103	0,0010	0,0000	0,8833	0,9656
Mode	91	0,102	0,0001	0,0000	0,8834	0,9656
Mode	92	0,101	0,0000	0,0001	0,8834	0,9657
Mode	93	0,101	0,0001	0,0000	0,8835	0,9657
Mode	94	0,101	0,0000	0,0025	0,8835	0,9682
Mode	95	0,100	0,0000	0,0000	0,8835	0,9682
Mode	96	0,100	0,0000	0,0000	0,8835	0,9682
Mode	97	0,100	0,0024	0,0000	0,8859	0,9682
Mode	98	0,099	0,0000	0,0000	0,8859	0,9682
Mode	99	0,099	0,0093	0,0000	0,8951	0,9682
Mode	100	0,098	0,0000	0,0000	0,8952	0,9682

Παράρτημα ΣΤ

Χωροδικτύωμα με μεταλλικές ράβδους τύπου Mero

Τα χωροδικτυώματα Mero είναι τρισδιάστατοι δικτυωτοί φορείς που αποτελούνται από μεταλλικούς κόμβους και ράβδους τύπου MERO. Το σύστημα MERO αποτελείται από μεταλλικούς σωλήνες και σφαιρικούς κόμβους από συμπαγή χάλυβα. Στα άκρα κάθε σωλήνα συγκολλούνται ειδικοί κώνοι μέσα από τους οποίους διαπερνούν κοχλίες υψηλής εφελκυστικής αντοχής, ελεύθερα περιστρεφόμενοι με ειδικά εξάγωνα (με πείρο) που χαρακτηρίζουν το σύστημα, οι οποίοι κοχλιώνονται στους κόμβους. Η θλιπτική δύναμη της ράβδου μεταφέρεται στον κόμβο μέσω του κώνου, του εξαγώνου και της ειδικά διαμορφωμένης έδρας του κόμβου. Οι επίπεδες (φρεζαριστές) έδρες των κόμβων που κι αυτές χαρακτηρίζουν το σύστημα, εξασφαλίζουν την ομοιόμορφη μεταβίβαση των θλιπτικών τάσεων από τους σωλήνες στους κόμβους. Η εφελκυστική δύναμη της ράβδου μεταφέρεται στον κόμβο μέσω του κωγρογρογία. Το σύνολο αυτό αποτελεί το σύστημα MERO και είναι αποτέλεσμα μακροχρόνιας εργαστηριακής έρευνας και πρακτικής εφαρμογής.

Παράρτημα Ζ

Τύπος Καλωδίων PV:

PV		VVS-1	VVS-2	VVS-3
Technische Daten	Technical Data			1151
Material: unlegierter Qualitätsstahl	Material: unalloyed quality steel	1993		
Elastizitätsmodul: 160 ± 10 kN/mm²	Modulus of Elasticity: 160 ± 10 kN/mm²		1	1//2
Toleranz d _s : + 3%	Tolerance d _s : + 3%			
Korrosionsschutz: Innere Lagen: feuerverzinkt mit Innenverfüllung äußere Lagen: GALFAN verzinkt ohne Innenverfüllung	Corrosion Protection: inner layers: hot dip galvanized with inner filling outer layers: GALFAN coated without inner filling			

Größe s/ze	Charakt. Bruchkraft <i>charact. breaking load</i> Z _{B,k} DIN 18800* kN	Grenzzugkraft <i>limit tension</i> Z _{R,d} DIN 18800 kN	Metall. Querschnitt metallic cross section ca./approx. mm ²	Gewicht <i>welght</i> ca./ <i>approx.</i> kg/m	Konstruktion construction **	Seil-Nenndurchmesser <i>nomin. strand dia.</i> d _s mm
PV 40	405	245	281	2.4	VVS-1	21
PV 60	621	376	430	3,6	VVS-1	26
PV 90	916	555	634	5,3	VVS-2	31
PV 115	1170	709	808	6,8	VVS-2	35
PV 150	1520	921	1060	8,9	VVS-2	40
PV 195	1930	1170	1340	11,2	VVS-2	45
PV 240	2380	1442	1650	13,8	VVS-2	50
PV 300	3020	1830	2090	17,2	VVS-3	55
PV 360	3590	2176	2490	20,5	VVS-3	60
PV 420	4220	2558	2920	24,1	VVS-3	65
PV 490	4890	2964	3390	27,9	VVS-3	70
PV 560	5620	3406	3890	32,1	VVS-3	75
PV 640	6390	3873	4420	36,4	VVS-3	80
PV 720	7210	4370	4990	41,1	VVS-3	85
PV 810	8090	4903	5600	46,2	VVS-3	90
PV 910	9110	5521	6310	52,0	VVS-3	95
PV 1010	10100	6121	6990	57,6	VVS-3	100
PV 1110	11100	6727	7710	63,5	VVS-3	105
PV 1220	12200	7394	8460	69,7	VVS-3	110
PV 1340	13400	8121	9240	76,2	VVS-3	115
PV 1450	14500	8788	10100	83,2	VVS-3	120
PV 1580	15800	9576	10900	89,8	VVS-3	125
PV 1730	17300	10485	11900	96,7	VVS-3	130
PV 1860	18600	11273	12900	104,8	VVS-3	135
PV 2000	20000	12121	13900	112,9	VVS-3	140

- [1] Ι. Ερμόπουλος «Ευρωκώδικας 1», Κλειδάριθμος, Β'εκδ.2008
- [2] Κ. Τρέζος, Ζ. Μπαμπίρη «Νεότερα στοιχεία για τη Βασική Ταχύτητα του Ανέμου», περιοδ. Τεχνικά Χρονικά τχ 2, τόμ. 21, Ιαν-Δεκ 2001.
- [3] Ι. Βάγιας, Ι. Ερμόπουλος, Γ. Ιωαννίδης «Σχεδιασμός δομικών έργων από Χάλυβα», Κλειδάριθμος, εκδ.2005
- [4] R. Brockenbrough, F. Merritt «Structural Steel Designers Handbook», McGraw-Hill, 3rd ed. (available at: <u>http://www.futuretg.com/ FTHumanEvolutionCourse/</u> FTFreeLearningKits/ 11-EG-Engineering)
- [5] Ν. Μαλακάτας, Κ. Τρέζος «ΕΝ 1990», Εκπαιδευτικές σημειώσεις του ΤΕΕ
- [6] Γρ. Φουρναράκου «Σιδηρές Κατασκευές» τόμος ΙΙΙ, Αθήνα 1986
- [7] Γ. Μιχάλτσου «Ελαφρές Μεταλλικές Κατασκευές Θεωρεία και Εφαρμογές», Σιμεών, 3^η έκδοση, Αθήνα 2009
- [8] Ι.Βάγιας, Ι.Ερμόπουλος, Γ.Ιωαννίδης «Σιδηρές Κατασκευές», Κλειδάριθμος, Τόμος Ι, Αθήνα 2008
- [9] Ι.Βάγιας, Ι.Ερμόπουλος, Γ.Ιωαννίδης «Σιδηρές Κατασκευές», Κλειδάριθμος, Τόμος ΙΙ, Αθήνα 2008
- **[10]**Ι.Βάγιας «**Σιδηρές Κατασκευές-Ανάλυση και Διαστασιολόγηση**», Κλειδάριθμος, Αθήνα 2006
- [11] Anil K. Chopra «Δυναμική των Κατασκευών, θεωρία και εφαρμογές στη σεισμική μηχανική», Μ. Γκιούρδας, Αθήνα 2010
- [12] Eurocode 0 «Eurocode Basis of Structural Design», European Standard EN 1990
- [13] Eurocode 1 «Basis of Design and Actions on Structures», European Standard EN1991
- [14] Eurocode 3 «Design of Steel Structures», European Standard EN 1993
- [15] Eurocode 8 «Design provisions for earthquake resistance of structures», European Standard EN 1998
- **[16]**Α. Καλπίνης Ν. Σίμος ΑΕΒΕ **«ECOPANEL»** Πληροφορίες σχετικά με τα πάνελ οροφής και πλαγιοκάλυψης από τα φυλλάδια παρουσίασης των προϊόντων της εταιρίας.
- [17]Product datasheet, ASSA ABLOY «MEGADOO RS1500 Vertical lifting fabric door», 2013
- [18] Berkeley, California, USA «SAP2000[®] Integrated Finite Element Analysis and Design of Structures-STEEL DESIGN MANUAL», Computers and Structures, Inc.
- [19]AutoCAD «AutoCAD 2010 Professional Manual»