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Abstract 
 
The analysis of an oscillating wing located beneath the ship’s hull is investigated at NTUA as an 
unsteady thruster, augmenting the overall propulsion of the ship and offering dynamic 
stabilization. The unsteady thruster undergoes a combined oscillatory motion in the presence of 
waves.  One mode of operation of the above system is with the wings in horizontal arrangement, 
where the vertical heaving motion is induced by the motion of the ship in waves, essentially ship 
heave and pitch, while the rotational pitching motion of the flapping propulsor about its pivot 
axis is set by an active control mechanism. For the detailed investigation of the effects of the free 
surface in the present thesis a potential-based panel method has been developed for the 
hydrodynamic analysis of 2D hydrofoil operating beneath the free surface, undergoing heaving 
(vertical) and pitching oscillations while moving with constant forward speed. The instantaneous 
angle of attack is influenced by the foil oscillatory motion and by the incident waves. At a first 
stage of development we consider moderate submergence and relatively low speeds permitting us 
to approximately assume low free-surface amplitudes and neglect nonlinear effects due to 
breaking waves and cavitation.  

We begin with a historic review concerning biomimetic wing systems, and then the motivation 
for the present study and research is described. We also present a brief historical review in panel 
methods, focused on their application, from the first simple version, until modern Boundary 
Element Methods applied to complex problems of mechanics, hydrodynamics, etc.  

Subsequently, a direct potential-based low order boundary element method developed to treat the 
unsteady flapping hydrofoil problem in infinite domain is presented. Numerical results 
concerning convergence, stability and efficiency are shown and discussed. Furthermore, present 
predictions are compared against  analytical unsteady thin hydrofoil theory, presented in 
Appendix C, and experimental results by Schouveiler et al (2005) for validation of the method. 

For simplicity in the description of the present method and especially as concerns the treatment of 
the free surface conditions (including the conditions at infinity), in the third chapter we present 
the boundary integral formulation in the case of non-lifting flow around a body of smooth but 
arbitrary geometry, undergoing general motion. This simplified problem is associated with the 
wave generation by the body and the treatment of memory effects, and includes two subproblems 
of special interest, the wave resistance problem and the enforced radiation problem due to body 
oscillations (heaving and pitching).   

In the last chapter we extend our scheme in order to treat the complex problem of unsteady lifting 
bodies beneath the free surface and in the presence of incoming waves. The latter includes as 
special subproblems the resistance due to the waves generated by the foil, the added resistance 
due to the incident waves and the corresponding enforced radiation and diffraction problems. 
Numerical results are presented concerning the numerical performance of the developed BEM. 
Also results concerning the thrust coefficient and the efficiency of the system in flapping mode 
are presented over a range of motion parameters, including reduced frequency, Strouhal number, 
feathering parameter and Froude number and compared against other methods. Our analysis 
indicates that significant thrust can be generated under optimal operating conditions. Also, it is 
demonstrated that the effects of the free surface are important and cannot be neglected. Thus, the 
present method can serve as a useful tool for assessment and the preliminary design and control 
of such systems extracting energy from sea waves for marine propulsion. 
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1  Introduction 
 
In the present introductory chapter, we begin with a brief historic review, concerning research on 
biomimetic systems, such as flapping wings propulsors, inspired by swimming and flying 
creatures. These systems, as we will demonstrate, have been are ideally suited for converting 
directly environmental (sea wave) energy to useful thrust for ships and other marine vehicles. In 
the second part of this chapter we will present the basic effort that have been done in this 
direction, as well as, the recent ideas and finally the contribution of the present thesis in that 
topic.       
 
 
1.1 Propulsion using biomimetic flapping foil thrusters 
 
We will present a brief historic review concerning the research and development of biomimetic 
systems, such as flapping wings, for propulsion and maneuvering purposes in ships and in 
general. We begin with a reference to the premature research in fish-motion and propulsion, until 
the first half of 20th century. In the next section we present a brief review in the experimental 
investigation over the years. We continue with the major theoretical contributions and finally we 
dedicate a section to the more recent numerical study of biomimetic flapping-foil systems.  
 
First of all, we mention the basic historic reviews we have consulted, where someone can find a 
more detailed bibliographic study. A detailed reference in the development of sea creatures' 
mechanics published by Alexander in 1983. Also, a review can be found in Sparenberg (2002) 
concerning fundamental theoretical developments by Lighthill (1969) and Wu (1971) with 
additional reference to Gray's paradox (1936) (see also Section 4.6.1.). Also, research and 
development of flapping wing propulsors and results concerning application to marine vehicles 
equipped with such systems is reviewed and discussed in Rozhdestvensky & Ryzhov (2003). A 
detailed presentation of experimental state of the art can be found in Triantafyllou et al (2004). 
Furthermore, a survey of experimental hydrodynamic data on undulatory locomotion in fishes, 
providing as background a general description of the major theoretical propulsion models, has 
also been presented by Lauder & Tyttel (2006). Finally state-of-the-art in experimental research 
on the physics of swimming and flying organisms is presented by Taylor et al (2010).  
 
Premature research 
 
We will now give a brief survey on the research of fish locomotion during the early stages of 
history. The first reference to the study of the anatomy and locomotion of hydrobionts rests in the 
ancient years by Greek philosopher Aristotle, according to Alexander (1983). Also in 1490, 
Leonardo da Vinci in his drawings presented a attempt to the understanding of the basic principle 
of thrust generation by a flapping wing (Rozhdestvensky & Ryzhov, 2003). After this, however, 
it took a long time before significant progress to be noticed.  
 
During the latter years of 17th century, the development of mercury barometer by Torricelli and 
air pump by von Guericke were the threshold of a rapid increase in research activities. For 
instance, the mechanism called swim bladder was used extensively to study fish locomotion. As 
Sparenberg (2002) explains: "By decreasing the pressure on the surface of the water in a vessel 
in which a fish was present, the bladder of the fish expanded, by which the fish rose to the surface 
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and could not swim downwards. When the original pressure was restored, the fish sank to the 
bottom of the vessel since, as turned out by dissection, too little air was left in the bladder". In the 
period between 1700 and 1800 some progress had been made due to the invention of 
photography and film, by which fish locomotion were recorded. Sparenberg (2002) mentions the 
names of A. Moreau, regarding measurements at the bladder and E.J. Marey, for the recording of 
fish movements. 
 
In the first half of 20th century collaborated research by zoologists and engineers, using wooden 
models or weighted dead fish for experimental measurements of hydrodynamic characteristics, 
was the begging of a very productive era in experimental research of fish mechanics. 
 
Understanding of fish locomotion for the design of efficient biomimetic systems through 
experimental research  
 
The superior swimming and maneuvering capabilities of aquatic animals have been motivated 
research on fish-like propulsion for many years. Most fish generate thrust by a wave-type 
deformation of their full body. In 1926, Breder in "The locomotion of fishes" named plenty of 
swimming forms. When the amplitude is large along the whole body, the swimming is of 
undulatory type and is called anguilliform; if the undulations are confined in the posterior part of 
the body the swimming is said to be carangiform. Ultimately, when the amplitude is significant 
only at the tail, the swimming is oscillatory. In the last case which is the most popular to 
cetaceans, thrust generation occurs by the horizontal flapping motion of the tail in the case of 
whales or dolphins, or by the oscillations of the vertical fin, in the case of sharks and tunas. This 
last family of hydrobionts is called thunniform, they are equipped with a rigid body and an 
oscillating moon-shaped tail that attaches to the body with a stem, in a way that minimizes recoil 
(Lighthill, 1969). As Lighthill mentioned in 1970, "the thunniform swimming mode is known as 
the most efficient for fast swimming". An extensive review on the fish swimming modes can be 
found in Sfakiotakis et al (1999). Also, many reviews addressing various aspects of fish 
propulsion have been presented by Webb (1975), Lindsey (1978), Blake (1983), Webb & Weihs 
(1983), Videler (1993). 
 
In 1969, Lighthill was the first one that suggested a biomimetic flapping foil device as an 
alternative to the conventional screw propellers, for thrust production purposes. The basic thrust 
production mechanism on flapping-foil systems is based on the jet reaction principle. Under 
appropriate kinematical conditions, a jet-like flow is created downstream the foil and thus, for 
conservation of momentum, a thrust force acts on the body. In this case in foil's wake alternate 
vortices appears, similar to the well-known von Karman vortex street behind blunt shaped bodies, 
except that the vorticity is reversed. Extensive work on flow visualizations pertaining to foils 
may be found in Scherer (1968), Ohashi & Ishikawa (1972), Oshima and Oshima (1980), Oshima 
and Natsume (1980), Freymuth (1988), Koochesfahani (1989), and Anderson et al(1998).  
 
Plenty researches shown that biomimetic systems inspired by hydrobionts not only could produce 
high thrust but also in a high degree of efficiency. For instance, Bose and Lien (1989) estimated 
that the maximum hydromechanical efficiency of a whale is about 85%.  Furthermore, 
Triantafyllou, Triantafyllou & Gopalkrishnan (1991) and Triantafyllou, Triantafyllou & 
Grosenbaugh (1993) shown that optimal propulsive efficiency occurs at non-dimensional 
frequencies corresponding to the maximum growth of the jet flow behind the foil. 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 
 

 

10 A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

  

 
 

Figure 1: Apparatus used for conducting force measurements experiments by Anderson et al 
(1998).  
 
 
In 80's, study of flapping motion under large angle's of attack revealed that high values of lift 
coefficient were associated with the formation of a leading-edge vortex, also referred to as a 
dynamic-stall vortex, McCroskey (1982), Reynolds & Carr (1985). Concerning leading edge 
separation, Ellington (1984) notes the significant delay in stall caused by unsteady effects, as 
found earlier, for example, by Maresca, Favier & Rebout (1979) for a foil at large angles of 
attack in steady flow undergoing axial oscillations. Furthermore, Freymuth (1988) studied the 
effect of angle of attack and frequency in thrust generation using a NACA0015 hydrofoil, 
performing flapping motion, in a wind tunnel at Reynolds numbers between 5200 and 12000 and 
noticed that a reverse Karman vortex street is formed by a weak leading edge separation merged 
with the trailing edge vortex. He mentioned also that in larger angles of attack strong leading 
edge separation weakens the thrust producing qualities of the vortex wake. Furthermore, while 
reducing the frequency of oscillation, the reverse Karman vortex wake is becoming more and 
more sluggish and finally the usual von Karman street which is associated to viscous pressure 
drag is becoming evident. In 1988, Koochesfahani and Dimotakis concentrated to the pitching 
mode of oscillation. They noticed that at pitch angles larger than 41°, leading-edge vortices 
occurs, and the tendency to thrust production decreases as the oscillation amplitude increases. 
Latter in 90s, Anderson (1996) performed digital particle image velocimetry (DPIV) on a foil in 
flapping motion. After numerous experiments he created a vortex pattern map for wake forms, 
where someone can notice cases that large heave amplitude oscillations leads to the creation of 
leading edge vortexes as well as trailing edge ones, that coalesce to indicate an optimal thrust-
generation condition. In addition, many researchers stated that an oscillating foil can be further  
used for manipulation of incoming vorticity, and recapturation of vortical energy, see 
Koochesfahani and Dimotakis (1988), Cortelezzi et al (1997), Streitlien et al (1996); 
Gopalkrishnan et al (1994). 
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More detailed experimental study on the motions of flapping wing system, with additional 
evidence for the efficiency came in 1989 and 1990 by Hoppe (1989), Koochesfahani (1989) for a 
foil in pitching motion, and also by Freymuth(1990) for a foil in a flapping motion. In the same 
period, Ohmi et al (1990), (1991) studied the vortex formation in the flow around a translating 
and harmonically pitching foil at Reynolds numbers between 1500 and 10000, with mean 
incidence angle of 15° or 30°. At large angles they found that the patterns in the vortex wake 
depend on whether the translational or rotational motion dominates the flow. In the case of the 
flow dominated by the rotational motion, the governing parameter is the product of the reduced 
frequency and the pitch amplitude, which is closely related to the Strouhal number, see also 
Triantafyllou et al (1991, 1993). Ohmi et al in 1990 found that the Reynolds number effect was 
secondary importance. Also, MacCroskey (1982), who studied extensively the effects of unsteady 
flow mechanisms on foils, including dynamic-stall vortex formation, tends to agree with that 
statement. Gursul and Ho (1992) through experiments on stationary hydrofoils in a background 
sinusoidal field demonstrated that some dramatic effects occurs due to the unsteadiness of the 
flow. 
 
In the last decades of 20th century and the first of 21th, extensive experimental work have been 
done by many other researchers like Lai, Bose & McGregor (1993), and a serious amount of 
work have been made by Triantafyllou and co-workers in MIT laboratories (1991, 1993, 2000, 
2002, 2004), see also Barrett et al (1999), Schouveiler et al (2005), Anderson et al (1998). Until 
1998, linear inviscid theory had predicted that an oscillating foil can reach, for certain parametric 
combinations, very high propulsive efficiency. Older experimental results, however, have often 
provided lower efficiencies that potential theory. Scherer (1968), for example, stated that the 
maximum efficiency of a flapping-foil system is typically less than 70%. In 1998, Anderson et al 
(1998) show that under optimal conditions, efficiency higher than 85% can be stably achieved. 
These findings were supplemented by Lai and Platzer (1999), Zhu et al (2002), Read et al (2003), 
Hover at al (2004) and Schouveiler at al (2005). Read et al (2003), found that the introduction of 
higher harmonics in the heave motion, so as to ensure a sinusoidal variation in the angle of 
attack, produced much higher thrust coefficient at high Strouhal numbers. In 2004, Hover et al 
studied the effect of angle's of attack time history and reported that the most efficient situation is 
achieved with a cosine profile, while highest thrusts are found with a sawtooth profile. Later 
Scouveiler et al (2005) identified a parameter range where efficiency and high thrust conditions 
are achieved together, as required for use of flapping foils, as a propulsion system.  
 
High efficiency is not the only advantage of a flapping-foil biomimetic system. As Gursul and Ho 
(1992) mentioned, unsteady vortex control creates very high lift coefficients for maneuvering. 
Additional work on underwater vehicle propulsion and maneuvering has been performed by 
Bandyopadhyay et al(1997) and Kato (1998). Experimental evidence by Read et al (2003) and 
Scouveiler et al (2005) also, demonstrates that when flapping foils perform undergoing 
nonsymmetrical flapping, extraordinary maneuvering capacity occurs. 
 
Finally, the three dimensionality of flapping wings and fins has also been studied experimentally 
by Hart et al (1992), Dickinson et al(1999), and Drucker & Lauder (1999). 
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A note in the history of fish-propulsion theory 
 
As we have already mentioned experimental research was very fruitful; in addition, as 
Sparenberg (2002) notices, a third group entered the scene around 1950. That group developed 
theories, for quantitative analysis of swimming propulsion, as a continuation of the previously 
and concurrently developing qualitative methods. In 1952, G.I. Taylor in his article "Analysis of 
the swimming of long and narrow animals", presented resistive theory. According to that theory 
when a bending wave travels with constant speed along the body of the animal the forces per unit 
of length of each element of the swimming body are assumed to be the same as the resistance 
experienced per unit of length by a long cylinder with the same surface structure, moving through 
the fluid with a steady velocity that equals the mean value of the unsteady velocity field, at the 
same inclination to the direction of the relative flow. This theory is suitable for the swimming of 
snakes, leeches and certain marine worms. 
 
Later, theories were developed in a different direction. For instance, the reactive theory that 
considers the flow of the fluid outside the thin boundary layer on the fish’s body. Thus inertial 
effects are dominant and an inviscid fluid assumption is precise. Also, significant theoretical 
developments are attributed to the works of Lighthill (1960), (1969), (1975), Wu (1961), (1971) 
and Longvinovich (1971). In 1970, Lighthill applied the linear 2-D theory of oscillating 
hydrofoils, developed by Karman and Sears in 1938, in order to study thunniform swimming. 
That theory were enhanced, in order to be suitable for large amplitude flapping, and extended in 
3-D by Chopra (1974), (1976). Three dimensional effects such as wingtip vortices were also 
studied by Cheng and Murillo (1984). After that, the presumed optimal propulsive performance 
of oscillating foils, studied extensively using analytical and semi-analytical techniques, see e.g. 
Karpouzian, Spedding & Cheng (1990), McCune & Tavares (1993). 
 
Recent advances in numerical study of unsteady hydrofoils and wings 
 
On the other hand during the last period, direct simulations of the fully 3D fish propulsion 
problems have been presented, based either on Boundary Element Method formulations or Navier 
Stokes solvers. Starting from the pioneering work by Hess & Smith (1962), where the 3D panel 
method based on source-sink distribution is presented, for analyzing the flow around arbitrary 
non-lifting bodies, this approach has been further extended by Hess (1972) for lifting flows. 
Boundary element methods (BEM) in aero/hydrodynamics are established as main tools for the 
solution of flow problems around isolated or systems of bodies, with or without lift, see e.g. Katz 
& Plotkin (1991), Paris & Canas (1997), Dragos (2003).  
 
In the case of 3D flapping propulsors, an unsteady vortex lattice technique was developed by 
Belibassakis et al (1997) and applied to the analysis of a pair of vertical oscillating wing tails, in 
order to investigate quantitatively their propulsive performance. A free-wake analysis is 
incorporated in order to account for the effects of non-linearity, especially at increased 
amplitudes of oscillatory motion. Wing thickness effects are taken into account approximately 
and the effects of viscosity considered by means of a frictional drag coefficient applied to the 
solid surface. The previous model is extended by Politis & Belibassakis (1999) to model 3D 
unsteady leading-edge separated flow and dynamic-stall effects, which become quite significant 
at large oscillatory motions, leading to temporary angle of attack well exceeding the static stall 
angle of wing sections, see also von Ellenrieder et al (2008).    
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Figure 2: Vortex pattern visualization of two flapping wings (left) and of bird flight (right) using 
Boundary Element Method by Politis and Tsarsitalidis (2009),(2010).  
 
 
Furthermore, Liu and Bose (1999) combine a 3D panel code with a boundary layer model and 
applied their method to estimate the effect of shape of wing planform, to the propulsive 
performance. Zhu et al (2002) has employed a 3D panel code together with experimental data to 
establish the features of the flow around fish-like bodies and He et al (2006) used such method to 
treat tandem oscillating foils.  
 
Moreover, Liu & Bose (1997) presented a 3D BEM method to study the effect of wing flexibility 
in the efficiency of a whale’s fin by adapting the commercial code VSAERO to treat unsteadiness 
of the flow. Also, a 3D BEM code for the calculation of flow around systems of independently 
moving bodies including free wake analysis and its application to prediction of complex unsteady 
propulsion hydrodynamic phenomena is developed by Politis (2009) and (2011). Furthermore, 
the problem of flow around, one or more, rigid or flexible wings, performing unsteady motions 
(heaving and pitching or flapping and twisting), while travelling with a given velocity, in an 
infinitely extended fluid, is formulated and solved using the latter potential based 3D BEM by 
Politis & Tsarsitalidis (2009). The same method is explored to model and study biomimetic 
propulsion systems based on flapping wings, as in  birds flight and oscillating/pulsating flexible 
duct, Politis & Tsarsitalidis (2010), (2011). Previous analyses concerning the power required to 
propel an actively swimming fishlike body, e.g. Barrett et al (1999) show that inviscid 3D 
methods are capable of providing very useful results concerning both the vortical wake pattern 
and prediction of the integrated quantities that compare very favorably with experimental data. 
Moreover, free vorticity methods could be combined with BEM for the prediction dynamic stall 
effects and also of wave resistance and nonlinear responses of ship and floating bodies e.g., 
Lewis (1991), Riziotis and Voutsinas (2007) and Belibassakis (2010), (2011). 
 
Finally, in the context of viscous flow solvers, Borazjani and Sotiropoulos (2008) present 
calculations of swimming forces and efficiency of a carangiform swimmer, finding that 
swimming power is decreased for higher Reynolds numbers. They also present interesting 
visualizations regarding the vortical structures and 3D wake pattern formation of carangiform 
swimmers.  
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1.2 Augmenting ship propulsion in rough sea by biomimetic flapping-foil system 
 
Biomimetic propulsors is the subject of extensive investigation, since they are ideally suited for 
converting directly environmental (sea wave) energy to useful thrust. In addition, in the last 
period, requirements and inter-governmental regulations related to vehicle technology for 
reduced pollution and environmental impact (e.g. Kyoto treaty and enactment of Energy 
Efficiency Design Index, EEDI, Energy Efficiency Operational Indicator, EEOI and North 
American Emission Control Area Regulations, ECA, for ships) have become strict, and response 
to the demand of greening of transport has been recognized to be an important factor concerning 
global warming and climate change. The contribution of cargo ships in world pollution has been 
recognized as one of the most important factors (e.g. Colvile 2001, Flannery 2005), taking also 
into account the bad fuel quality of seagoing vessels in relation to other modes of transport. 
Indeed, images and data available from satellites (MARINTEK et al 2000) reveal that large areas 
around the main sea-ocean shipping lines are almost permanently covered by clouds with large 
concentrations of pollutants from ships' engines. In this direction, current studies examine - 
among other issues - the optimization of propulsive efficiency of ships operating in realistic sea 
states, taking into account added resistance effects (Belibassakis 2009). We note that in moderate 
and severe sea conditions, due to waves, wind and other reasons, ship propulsion energy demand 
is usually increased well above the corresponding value in calm water for the same speed, 
especially for bow/quartering seas. 
 
On the other hand, evolution of air and sea creatures, through million years of natural 
selection/optimization, arrived to the flapping wing as their single propulsion system. The main 
difference between a biomimetic (flapping wing) propulsor and a conventional propeller is that 
the former absorbs energy by two independent motions, the heaving and the pitching motion, 
while for the propeller there is only rotational power feeding. 
 

Early research regarding utilization of biomimetic systems as ship propulsors, concentrated on 
qualitative and quantitative investigation of proper non-dimensional physical parameters (and 
their range), where optimum wake formation is produced corresponding to high propulsive 
efficiency. In those investigations energy feeding of  both of flapping wing motion modes (i.e. 
heaving and pitching) is considered (see Section 1.1). Also most studies concentrate on situations 
where effects of free-surface and incident waves are not taken into account.  

In real sea conditions, the ship undergoes moderate or higher-amplitude oscillatory motions, due 
to waves. In this case the ship motions, especially the vertical to the free surface plane, could be 
exploited for providing one of the modes of combined/complex oscillatory motion of a 
biomimetic propulsion system, free of cost. This idea has already been exploited by other 
scientists; More specifically, the initial attempts focused on using passively flapping wings 
underneath the ship hull, to transform energy stored in ship motions to useful propulsive thrust 
with simultaneous reduction of ship motions. In such cases pitching motion is induced by a 
spring loaded by the unsteady wing pressure distribution. In the following we will present a brief 
history, while Rozhdestvensky & Ryzhov (2003) could be a good reference for a more detailed 
review.  
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Figure 3: At left, first wave power boat by Linden (1895), from Burnett's work (1979), at right, 
John S. McCubbin's boat (1950) published in Popular Science (1950). 
 
The first published attempt was in 1895 by Herman Linden who filed a British patent for a wave 
powered boat (Burnett,1979). Linden's 13 ft long boat named Autonaut, moved against the waves  
with a speed of three to four miles per hour, powered purely by wave-energy. The boat was 
equipped with two underwater steel plates, one at the bow and one at the stern (Fig.3 left). Other 
similar attempts have been done by John S. McCubbin of Victoria (Fig.3 right), Australia 
(Popular Science, 1950), and Robert Gause (1969).  
 
Latter, Einar Jakobsen (1981) performed experiments in Norwegian Hydrodynamics Laboratories 
(today MARINTEK) in Trondheim, Norway with model boat of length 1.02 m, at a speed of 1.15 
m/s in harmonic head sea waves of waveheight 0.13 m and wave period 1.2 s. Froude-scaled to 
full scale, this is equivalent of a 40 m long ship propelling itself forward solely by wave power in 
head sea waves of height 5.2 m at a speed of 14 kn. The speed in following waves was about 15% 
lower. The model had spring-regulated wings, one above the bow, and another beneath the stern. 
Furthermore, Jakobsen and his Wave Control Company used combinations of two and four foils. 
A maximum speed of six knots was recorded on one occasion. He also, latter, by gaining a 
funding from Norwegian Government, equipped the fishing research vessel Kystfangst, owned 
by the Institute of Fishery Technology Research, with two horizontal foils on the bow (Anon., 
1983), see Fig. 4. Fuel savings of about 15-20 % were obtained in a wave height of 3 m by using 
the foils at speeds of 4-8 knots (Berg, 1985). However, the project was terminated due to 
structural problems.  
 
Similar problem concerning wave energy extracting systems has been studied by Isshiki (1982). 
In the latter work, a 2D model, treating the problem of an oscillating hydrofoil in water waves 
was developed, extending Wu (1972) theory by introducing a free surface effect, and applied to 
the investigation of the possibility of wave devouring propulsion. Another Japanese, Yukata 
Terao (1982) was also worked on the same direction. Isshiki's work has been further extended  
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Figure 4: Jakobsen equipped fishing research vessel Kystfangst, owned by the Institute of Fishery 
Technology Research, with a bulbous bow and two foils on each side of the bow (Dybdahl, 
1988).  
 
both theoretically and experimentally by Isshiki and Murakami (1984) where the basic concept of 
passive type wave devouring capability of an oscillating hydrofoil was studied. Furthermore, 
Grue et al (1988) developed a theory for a two-dimensional flat plate near the free surface using 
frequency-domain integral equation approach, where unsteady foil motions and wave devouring 
capabilities were illustrated. Predictions from the above theoretical model were found to be  in 
good agreement with the experimental measurements by Isshiki and Murakami (1984) for both 
head and following waves. However, at lower wave numbers there were systematic discrepancies 
between theory and experimental results attributed to nonlinear and free surface effects which 
were not fully modelled. In 1991, Isshiki and Terao performed full scale tests on with a 15.7 m 
long fishing vessel. The projected hydrofoil area was 7.4% of the ship’s waterline area. Using the 
bow foil not only managed to reduce pitching motion and bow slamming, but also a speed 
increase was achieved in waves. In 2008, the longest known voyage by a wave-powered boat 
took place. A wave-propulsion mechanism, designed by Terao, was equipped to Suntory 
Mermaid II catamaran (Figure 5). In this way, Japanese sailor and environmentalist Kenichi 
Horie, sailed the from Honolulu, Hawaii, to the Kii Channel, Japan (Geoghegan, 2008) in 110 
days with pure wave energy, which was longer than planned, due to unusually good weather and 
calm seas.  
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Figure 5: The Suntory Mermaid II which sailed from Hawaii to Japan in 2008 (Popular Science, 
2008) 
 
More recently, De Silva & Yamaguchi (2012) examined in detail the possibility of extracting 
energy from gravity waves for marine propulsion, by numerically studying a two-dimensional 
oscillating hydrofoil using commercially available CFD software. The overall results suggest that 
actively oscillating-foil systems in waves, under suitable conditions, have the possibility to 
recover the wave energy rendering these systems applicable to marine unsteady thrusters. 
 

Working in the above direction, the research team of the laboratory of Ship and Marine 
Hydrodynamics of the School of Naval Architecture and Marine Engineering (SNAME) of 
National Technical University of Athens (NTUA) proceed some steps further. as follows: 
 

(a) Substituting the passive pitching setup by an active pitching control, using a proper control 
mechanism and a pitch setup algorithm, on the basis of the (known) random motion history of 
the wing, Politis & Politis (2012). 

 

(b) Developing theoretical/numerical tools capable of analysing/designing ships equipped with 
such biomimetic wing propulsors, Belibassakis & Politis (2012a,b), Filippas & Belibassakis 
(2013). 
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Figure 6.  (a) Ship hull equipped with a flapping wing located below the keel, at a forward 
station. (b) Same hull with a vertical flapping wing located below the keel, at the midship section. 
Geometrical details of the flapping wings are included in the upper subplots. The main flow 
direction relative to the flapping wings is indicated using a blue arrow. Black arrows indicate 
linear oscillatory motion and red ones the actively controlled (pitching) motion of the wing about 
its pivot axis, for which  only a quite small amount of energy is provided. 
 

More specifically, ongoing research work is focused on the hydrodynamic analysis of flapping 
wings located beneath the ship’s hull, operating in random motion; see Fig.6. The wing(s) 
undergo a combined transverse and rotational oscillatory motion, while the ship is steadily 
advancing in the presence of waves, modeled by directional spectrum. The present system is 
investigated as an unsteady thrust production mechanism, augmenting the overall propulsion 
system of the ship. In the first arrangement (Fig6a), the horizontal wing undergoes a combined 
vertical and angular (pitching) oscillatory motion, while travelling at constant forward speed. The 
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vertical motion is induced by the random motion of the ship in waves, essentially due to ship 
heave and pitch, at the station where the flapping wing is located. Wing pitching motion is 
controlled as a proper function of wing vertical motion and it is imposed by an external 
mechanism. A second arrangement of a vertical oscillating wing-keel located beneath the ship’s 
hull is also considered (Fig6b). The transverse motion is induced by ship rolling and swaying 
motion in waves, respectively. The angular motion of the wing about its pivot axis, is again 
properly controlled on the basis of the ship rolling motion in order to produce thrust, with 
simultaneous  generation of significant antirolling moment for ship stabilization.  
 

Belibassakis & Politis (2012a,b) developed a method based on coupling the seakeeping operators, 
associated with the longitudinal and transverse ship motions, with the hydrodynamic forces and 
moments produced by the flapping  lifting  surfaces,  using  unsteady  lifting  line  theory  and 
non-linear 3D panel methods (Politis 2011). First numerical results indicate that high levels of 
efficiency are obtained in sea conditions of  moderate and higher severity, under optimal control 
settings.  
 
In the present work, whose results will be published in the proceedings of 32nd International 
Conference on Ocean, Offshore Mechanics and Arctic Engineering (OMAE 2013) in Nantes, 
France (Filippas & Belibassakis, 2013), we will present a two dimensional BEM (which can be 
directly extended in three dimensions) for the detailed investigation of the free surface effects on 
hydrodynamics of general shaped bodies in unsteady motion. To be more specific, a potential-
based panel method has been developed and applied to the hydrodynamic analysis of 2-D lifting 
bodies of general geometry, operating beneath the free surface, undergoing general motion in 
waves. The instantaneous angle of attack is influenced by the body's motion and by the incident 
waves. At a first stage of development we consider moderate submergence and relatively low 
speeds permitting us to approximately neglect effects due to breaking waves and cavitation. 
However, the motions and the geometry of the body are not considered as small and thus no 
linearization has applied. The mathematical formulation is based on potential theory and the 
problem is treated in the framework of Boundary Integral Equations (BIE), supporting the 
development of fast and robust Boundary Element Method (BEM) for the numerical estimation 
of hydrodynamic quantities of interest, as well as the examination of the effects of basic 
geometrical and physical parameters.  
 

Numerical results are presented concerning the thrust coefficient and the efficiency of a flapping 
hydrofoil biomimetic system over a range of motion parameters, including reduced frequency, 
Strouhal number, feathering parameter, maximum angle of attack and compared against ones in 
infinite fluid or deep submergence. Also, comparisons against other methods are presented and 
discussed. Our results indicate  that good performance can be obtained under optimal operating 
conditions. Also it is demonstrated that the effects of the free surface are important and cannot be 
neglected. Finally we conclude that the present method, after enhancements and extensions, can 
serve as a useful tool for assessment and the preliminary design and control of such systems  
extracting energy from sea waves for marine propulsion. 
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2 Mathematical formulation of unsteady hydrofoils in infinite domain  
 
 
2.1 Summary 
 
In the present section, we study the problem of an unsteady hydrofoil in unbounded domain or in 
infinite submergence. The effects of a non-uniform background field (gust) is also examined. 
That problem have been also studied in the past, using perturbation techniques by many scientists 
like Theodorsen and Sears, these linear theories are presented in Appendix C, see also the 
textbook "Marine Hydrodynamics" by Newman (1977). Before proceeding to the formulation of 
the problem we will present a brief bibliographic review to BEM's. Mathematical formulation is 
based on the theory of incompressible, inviscid, 2D flow. In order to solve the problem we use 
knowledge from potential theory and the boundary integral equations (BIE). The motions and the 
geometry of the body are not considered small - thus no linearization have been applied - the 
body contour is modeled as a curve of discontinuity of the potential. That lifting problem has 
unsteady character and thus a vortex sheet is generated from the trailing edge of the hydrofoil, 
modeled as a curve of potential discontinuity too. We begin with the definition of the problem in 
unbounded domain and the application of Green's formula in the representation of the potential 
from its boundary values which can be evaluated solving a singular Boundary Integral Equation 
(BIE). Derivation of representation theorem and BIE and also the treatment of the singular 
integrals that appear in them are discussed in appendixes A and B, respectively. In the next, we 
describe the way we can obtain numerical solution, using a low order BEM (panel method) 
through discretisation of the boundaries, that satisfies an approximate form of the boundary 
condition on body's contour through collocation. Also, an approximate Bernoulli's equation, for 
the calculation of pressure is derived integrating Euler's equations for incompressible flows. 
Numerical performance of the scheme is tested through plenty simulations over a variety of 
unsteady motion parameters. Finally, the very interesting problem of efficient thrust production 
using biomimetic flapping-foil systems is investigated. We begin with steady hydrofoils in 
forward motion and then we add first heaving and then rotational oscillatory motions, to obtain 
finally the more complex flapping motion that is used for thrust production purposes by 
hydrobionts. Additionally, the effect of a sinusoidal gust as a background field is investigated. 
That last problem has interesting applications, e.g. the motion of a hydrofoil-ship in waves, an 
airplane in turbulence or the motion of the propeller blades in a spatially non uniform ship's 
wake. Also, energy extraction from non-uniform internal wavy flows using biomimetc flapping-
foil systems, could be another possibility. The present method is applied to obtain numerical 
estimations of basic hydrodynamic quantities such as lift and thrust coefficient, over a range of 
motion parameters, including reduced frequency, Strouhal number, maximum angle of attack, 
while accuracy and limitations of the method are demonstrated by comparison with unsteady thin 
hydrofoil theory (Appendix C) and experimental measurements.     
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2.2 Boundary Element Methods - A brief bibliographic review 
 
Boundary element methods were developed through the effort to deal with problems of 
aerodynamics. To be more specific, research concerning flows with circulation disturbed by 
hydrofoils is the topic where the first steps were made. It is worth to mention the thin hydrofoil 
theory developed first by Munk (1923) and evolved by Glauert (1926), see also Abbott & 
Doenhoff (1949) and its unsteady version by Theodorsen and Sears (Appendix C and Newman 
1977), that reach to analytic solution under some strict assumptions. That assumptions are small 
perturbation speeds, thickness gust velocity and oscillatory motions of the foil. The linearized 
solutions concerning the lift coefficient at the steady problem are satisfying and have used for 
many years for the design of lifting surfaces as rudders, wings and propellers. However that 
theory is not used anymore due to the significant drawbacks that the latter assumptions introduce: 
 
• The solution ignores the effect of thickness distribution of the hydrofoil, that is significant 

for the pressure distribution. 
 

• Thin hydrofoil theory is unable to deal with complex shapes of hydrofoils which may include 
more than one components of interaction between many bodies. That type of wing sections 
are very popular in high-speed ships' stabilization fins and  in combat aircrafts, that operates 
in a width range of speeds and have strong demands of maneuverability. 
 

• The results concerning pressure coefficient are satisfying only far from the stagnation points 
at the leading and trailing edges where the assumptions of linearization are realistic. 
Although, in real flows the boundary pressure distribution is very important for the flow into 
the boundary layer that controls both friction and separation resistance and the maximum lift 
force because of the limitation due to dynamic stall phenomenon. Furthermore, cavitation 
takes place in the vicinity of the minimum pressure point near the leading edge. Thus, the 
study of cavitating foils, which is very important for the design of the lifting surface is 
depended from the prediction of pressure in that vicinity. 

 
From the above discussion it is evident that for the deeper understanding of the flow around 
hydrofoils some steps ahead had to be done. The first one came in the decade of 1930. 
Theodorsen (1933) developed an semi-analytic method based on the theory of complex functions 
and conformal mapping for the solution of the non-linear problem. Later at 1960, a variation of 
that method is applied by Brockett (1965) for the study of cavitating hydrofoils. During the same 
decade, in laboratories of Douglas aircraft company Hess & Smith (1962), (1966) and Hess 
(1972) developed the first panel method for the treatment of steady lifting flow around arbitrary 
bodies. Hess's & Smith's method was only the beginning, rapid evolution of computers and 
information technology in 1970 leads to the development of Finite Element Methods (FEM) and 
Boundary Element Methods (BEM). A synoptic description and comparison of the most popular 
methods for the numerical solution of Boundary Value Problems (BVP) follows. 
 
Almost every physical phenomenon can be described using differential equations and proper 
boundary conditions. A BVP, only in very simple and not so interesting cases, can be solved 
analytically, i.e. solutions is possible to be found, that satisfy both the governing equation and the 
boundary conditions. Thus, two different philosophies begun from the same threshold, the 
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approximate solution of BVPs. The Finite Element Method is based on the theory of Ritz (1909) 
and the basic idea was that the solution should satisfy exactly the boundary conditions and the 
effort is concentrated to the best, approximate, satisfaction of the differential equation. On the 
other hand, Boundary Element Method have been developed in the foundations of Trefftz's 
(1926) theory. In the latter case, differential equation is satisfied exactly and the boundary 
conditions are approximated with the minimum error. 
 
In FEM the domain is divided into elementary subdomains where the equation is satisfied. In that 
way the solution is not enforced to satisfy exactly both the differential equation and the boundary 
conditions. The unknown parameters of the solution, consist to its values at the intersection 
points (nodes) of the elementary subdomains, are evaluated under the demand of minimization of 
the error due the approximation of the differential equation. The achievement of that method is 
that the solution has the minimum divergence from the exact solution which satisfies the 
governing equation globally at the domain, however there are points in the domain where the 
equation is violated. 
 
On the contrary, BEM does not require a subdivision of the domain and an approximation of the 
solution of the differential equation. Solution is composed of fundamental solutions/singularities 
also known as Green functions, each of them satisfies the equation and through the appropriate 
representation theorem (based on Greens theorem, see e.g. Kress 1989) the total does too. The 
singularities are distributed on the boundaries where the boundary conditions should be valid. 
The demand of boundary conditions' satisfaction with maximum accuracy leads to the solution of 
a Boundary Integral Equation (BIE). The boundary is divided in boundary elements where we 
can approximate the boundary conditions using e.g. a collocation scheme. 
 
Comparing the two numerical methods we can see that BEM seems to be superior at many 
points: 

 
• In BEM only a surface (or linear for 2D) and not space (or surface for 2D) integration is 

involved and thus the dimension of the problem is of one order lower in comparison with 
FEM and finally the number of unknowns is significantly smaller in the first case. 
 

• Another advantage is that the solutions in BEM satisfies a priory the differential equation (or 
almost everywhere, because we have to except the singularity points) and thus the method is 
able to encounter problems with infinite domain, which is practically impossible for FEM for 
obvious reasons. 
 

• Furthermore in BEM, spatial subdivision is not required, which is in many cases a difficult 
problem of numerical analysis (see Beer et all 2008 and Kress 1991) 
 

• Finally, as a result of the first advantage and the fact that usually in low order BEMs (panel 
methods) the required integral calculations can be evaluated analytically, the computational 
cost and the time of computation are significantly lower. This last advantage of BEMs 
indicate that they are ideal for 3D and strongly unsteady problems     
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However, BEM is not panacea and has some drawbacks. The requirement of simple fundamental 
solution is the most serious one. If the fundamental solution is not simple, the computational cost 
rises. Furthermore, the evaluation of singular integrals that appears in BEMs presents difficulties. 
However, extended study has been done concerning the singularities of fundamental functions 
which consists of integral kernels form boundary integral equations e.g. we mention 
Muskhelishvili (1953), Mikhlin (1965), Polyanin & Manzhirov (2008). 

Finally, we mention that the state of the art in computational methods is concentrating in the 
development of higher order BEM (see e.g. Cottrel et al, 2009, Lee and Kerwin, 2003, 
Belibassakis et al, 2013) as well as sophisticated hybrid BEM-FEM models. These models 
applies every method in the region that it works more efficient (e.g. concerning Computational 
Fluid Dynamics, CFD, in the thin boundary layer region FEM is applied for the solution of Direct 
Navier Stokes, DNS, and outside of the boundary layer, or when the unsteadiness is strong, BEM 
is applied, due to the great amount of calculations) in this way the advantages of both methods 
are exploited see e.g. Beer et al (2008). A more detailed reference list in the advances of 
numerical methods, concentrated in the research of biomimetic systems such as flapping 
hydrofoil propulsors has presented at the end of Section 1.1. 
 
 
2.3  Definition of the unsteady lifting problem and construction of the BIE 
 
Let's now consider a lifting body performing unsteady motion on a non-uniform background field 
and in infinite submergence. The domain of definition of the problem (Fig.7) is an open semi-
bounded domain 2D ⊆   with boundary D∂  which is supposed to be smooth everywhere except 
the trailing edge. The total velocity field ( ), ;T x y tV  consists of the gust velocity ( ), ;g x y tV , 

which is assumed to be known and the perturbation velocity ( ), ;x y tV . We assume that the 

perturbation flow is irrotational and thus a potential for the velocity ( ), ;x y tΦ  can be defined as a 

twice differentiable function in D . Also the trace of potential, denoted by ( )* , ;x y tΦ , is defined 
on the boundary. Defining the boundary values by traces, each Φ is made by definition to be 
continuous in the closure of D , even if it is discontinuous through the boundary, like in the case 
of the trailing vortex sheet, where *Φ  has different values as we approach the boundary from the 
upper or the lower side. 
 
To proceed, let D∂  denote the boundary and A a point on it. Let also s  denote curvilinear 
coordinate on D∂ . Then, in the case of moving boundary, we can describe the curve which 
represents D∂  as 
 

{ }( ; ) ( ; ), ( ; ) .A A A As t x s t y s t= =r r                                                                                                  (2.1) 
 
The trace of Φ  on D∂  is denoted by the function *Φ , defined by: 
 

{ }*

0
( ; ) lim ( ; ) ; .A As t s t t

δ
δ

→
Φ Φ + r n                                                                                                (2.2) 
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Figure 7: Definition of the studied problem in the case of hydrofoil (of chord c) in unbounded 
domain and on a non-uniform background field, e.g. sinusoidal gust with velocity amplitude gV . 
 
where δ is a small parameter and An  a unit vector which is not tangent to D∂  at A. Thus the trace 
function *Φ  has as domain of definition the curve D∂  and equals the limiting value οf ( ), ;x y tΦ  

as ( ),x y A D→ ∈∂ . In the most general case, as we have mentioned, the function ( ), ;x y tΦ  can 
be discontinuous through the boundary.    
 
The problem is time dependent and the unsteady foil is represented by a moving boundary 

( )D tΒ∂ , whose motion is prescribed. Another boundary ( )WD t∂ , that represents the trailing 
vortex sheet, is generated from the trailing edge. The reference frame we use is earth-fixed. In 
order to evaluate the total velocity field we need to solve the problem for the unknown 
disturbance potential field ( ), ;x y tΦ , thus in the following we will present the mathematical 
formulation for the disturbance field.  
 
The governing equation is the Laplace equation  
 

( , ; ) 0 , ( , ) ,x y t x y D∆Φ = ∈                                                                                                        (2.3) 
 
which represents the conservation of mass for incompressible and irrotational fluid.  
 
Also, the boundary condition on the body  
 

( ) ( ) ( ) ( )( , ; ) , ; , ; , ; , ; , ( , ) ,B
B g B B

B

x y t x y t x y t x y t b x y t x y D
n

∂Φ  = − ⋅ ∈∂ ∂
V V n                         (2.4) 

 
is the Neumann type, no entrance condition, which ensures that the fluid particles follows the 
body surface and not penetrate into it. The second term in Eq. (2.4) is the gust velocity on the 
body contour. 
 

BD∂  

WD∂  

Bn  
Wn  

D  

c 
2 gV   
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We treat the above as an initial value problem and we assume that the potential and its derivatives 
vanish at large distance from the body 
 

lim and 0,
r→∞

Φ ∇Φ =       ( ) ( )2 2 .B Br x x y y= − + −                                                                    (2.5) 

 
In the above equations V  denotes the velocity at ( ),B B Bx y D∈∂ , n  is the unit vector normal to 
the boundary pointing into D .  
 
Furthermore, dynamic and kinematic boundary conditions should be satisfied on the wake WD∂ . 
The dynamic boundary condition  
 

( , ; ) ( , ; ) , ( , ) ,u l
W W Wp x y t p x y t x y D= ∈∂                                                                                      (2.6) 

 
necessitates that a free shear layer cannot carry loading and thus the pressure at the both sides of 
it should be the same. 
 
The kinematic boundary condition  
 

( , ; ) ( , ; ) , ( , ) ,
u l
W W

W
w w

x y t x y t x y D
n n

∂Φ ∂Φ
= ∈∂

∂ ∂
                                                                               (2.7) 

 
demands that the upper and the lower side of the shear layer cannot be separated to two distinct 
curves during the flow, thus the normal to the surface velocity is continuous through WD∂ . The 
indices { },B W  are used to denote values of the potential field and its derivative and the body 
surface and the wake of the hydrofoil, respectively.  
 
We note that in the case of lifting flow around bodies with sharp edges like a hydrofoil, the 
problem is supplemented by the Kutta condition, a physical assumption necessitating finite 
velocity at the trailing edge. The classic pressure-type Kutta condition demands that the pressure 
should be continuous through the boundary at the trailing edge. This condition, using an 
approximate Bernoulli's theorem, for small rotation of gust velocity (see section 2.7) 
 

( )21 0, ( , ) ,
2 g

p x y D
t ρ

∂Φ
+ ∇Φ + ∇Φ + = ∈

∂
V                                                                               (2.8) 

 
leads to a quadratic (nonlinear) relation between the potential and its derivative on the both sides 
of the trailing edge. In the present work we use a Morino-type version of the Kutta condition  
 

( )
( ) ( ), ,

lim ( , ) , ( , ) ,
TE TE

u l
B B W TE TE B

x y x y

x y x y Dµ
→

Φ −Φ = ∈∂                                                                             (2.9) 

 
where u l

W W Wµ = Φ −Φ  denotes the potential jump (the dipole intensity) on the free wake.  
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That relation can be derived from pressure-type Kutta, under the assumption of linearized quasi-
steady flow. Morino condition is also compatible with Kutta-Joukowski hypothesis that no vortex 
filament exists at the trailing edge, see Mohammadi-Amin et al (2012) and Morino et al (1992).  
That condition has introduced by Morino & Kuo (1974) for steady state problems, see also 
Suzuki (1980) or Moran (1984) and has been implemented by Politis (2011), Mohammadi-Amin 
et al (2012) and others, for unsteady lifting flows, see also Katz & Plotkin (1991). It is also worth 
to mention that, as stated by La Mantia and Dabnichki (2009), pressure-type Kutta condition is 
not panacea. Poling and Telionis (1986) examined a number of unsteady flow-fields and their 
experimental results indicate that the classical pressure-type Kutta condition, is not valid in 
certain conditions, i.e. it is a function of the parameters of the motion. Other experimental 
studies, Satyanarayana & Davis (1978), Ho & Chen (1981), reached similar conclusions by 
analyzing the flow in the proximity of the trailing edge of an oscillating wing. Katz and Weihs 
(1981) studied numerically the wake rollup for hydrofoils oscillating at high frequency and stated 
that the classical steady Kutta condition can be applied for engineering force and moment 
prediction in unsteady small-amplitude non-separated flows. McCroskey (1982), in a wide 
ranging review of unsteady aerodynamics, expressed the opinion that finite pressure loading and 
abrupt streamline curvature can exist in the trailing-edge region of an oscillating wing in some 
situations. The numerical results of Young and Lai (2004) show that flow separation occurs at the 
trailing edge of heaving foils, creating an effective blunt-edge body. More precisely, the flow 
streamlines form a time-dependant trailing-edge vortex rather than smoothly departing from the 
trailing edge on both sides. The edge flow mechanism was independently analyzed by Liebe 
(2007), who proposed to replace the classical Kutta condition with a more general condition 
based on the formation and periodic shedding of trailing-edge vortices. This led to the 
development of a novel approach (finite vortex model) for computing the forces acting on fixed 
and moving wings. There is no experimental evidence supporting the notion that the pressure 
difference at the trailing edge for unsteady motion of high frequency and large amplitude ought to 
be equal to zero. Contrary to this, the works of Poling and Telionis (1986), Satyanarayana and 
Davis (1978) and Ho and Chen (1981) suggest that the pressure difference could be finite rather 
than zero. In essence a logical first step in the formulation of a comprehensive unsteady Kutta 
condition could be the relaxation of the postulated zero pressure difference at the trailing edge. 
This would allow considering the variation in direction and magnitude of velocities across the 
trailing edge (that is, to consider the formation and shedding of trailing-edge vortices) by a more 
general pressure condition that also aims to account for viscosity effects in the numerical model. 
A modified trailing-edge condition for unsteady flows was implemented in a potential panel 
method to study the motion of two-dimensional rigid foils La Mantia et al (2006). It was already 
used for a preliminary analysis of the dynamic loads and strength requirements for oscillating 
wing Dabnichki et al (2006). Finally La Mantia et al (2009) investigate the effect of finite 
pressure difference at the trailing edge and found that good agreement with experiments could be 
obtained when finite pressure difference occurs.        
 
Using Eqs. (2.6), (2.7) and (2.8), we obtain (see also Politis 2011) 
 

( , ; ) 0 , ( , ) .W
W

D x y t x y D
Dt

µ
= ∈∂                                                                                               (2.10) 
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In the above equation ,T m
D
Dt t

∂
= + ⋅∇
∂

V  is a material derivative based on the mean total velocity 

of the trailing vortex sheet , ,
, .

2

u l
T W T W

T m

∇Φ +∇Φ
=V  Eq.(2.10) states that WD∂  evolves in time, 

moving with the mean fluid velocity. 
  
Continuous generation of the free wake is associated with trailing edge's motion. A simplified 
"frozen wake" model is derived by assuming that the trailing vortex sheet has the shape of the 
trail of hydrofoil's trailing edge, see e.g. Politis (2011). This model gives satisfying predictions in 
the case of low and moderate unsteadiness. According to "frozen wake" model, using Kutta 
condition (2.9), Eq. (2.10) and linearization, we reach to the following expression concerning the 
potential jump on the trailing vortex sheet: 
 

( ; ) ( ; ), ( , ) ,W W TE Wt t t t x y Dµ µ= + ⋅∆ −∆ = ∈∂x x V x                                                                 (2.11) 
 
where TEV  denotes an appropriate velocity determined from the motion derivative of the foil's 
trailing edge. 
 
Finally, we would like to notice that some simplifications have been used, concerning the 
treatment of the vortex wake. In fact, those simplifications permit the calculation of vorticity 
transport on the free trailing vortex sheet, which is geometrically modeled by the motion of 
hydrofoil. Future extensions of the present work will include a fully non-linear free wake model, 
in conjunction with enhanced pressure-type Kutta condition, requiring that the pressure 
difference at the trailing edge must be zero; see e.g. Bose (1992) and Politis (2011).  
 
Applying Green's theorem for the case of our problem, with the assumptions (2.5) for the 
treatment of infinite domain, as described in Appendix A, we can express the potential at every 

point of D  as a function of boundary values of   and 
n

∂Φ
∂

 as follows 

 
for 0 0( , )x y D : 
 

0 0
0 0 0 0

( )

( , | , )( , ; )( , ; ) ( , | , ) ( , ; ) ( , )
B

B
B

D t

G x y x yx y tx y t G x y x y x y t ds x y
n n




  

   

         0 0
0 0

( )

( , ; ) ( , | , )( , | , ) ( , ; ) ( , )
u
W

u
uW
W

D t

x y t G x y x yG x y x y x y t ds x y
n n



 
 

   

         0 0
0 0

( )

( , ; ) ( , | , )( , | , ) ( , ; ) ( , ),
l
W

l
lW
W

D t

x y t G x y x yG x y x y x y t ds x y
n n



 
 

             (2.12) 

 
where u

WD  and l
WD  are the upper and the lower sides of the shear layer, defined using a branch  

cut.  
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Figure 8: Introduction of a branch cut that permits the existence of circulation around lifting 
bodies without breaking irrotationality of the flow. 
 
Introduction of the wake surface of potential discontinuity and the use of branch cut, permit the 
existence finite circulation around the lifting body (Figure 8), that is required for lift generation 
according Kutta-Joukowski theorem, see e.g. Moran (1984), Batchelor (1987) or Kundu (2004).   
  
The following Green's function and its derivative, appeared in the representation theorem: 
 

2 2
0 0 0 0 0 0

1( , | , ) ln ( , | , ) , ( , ) , ( , ) ,
2

G x y x y r x y x y x y x y
π

= ∈ ∈                                              (2.13) 

 

[ ]
2 20 0 0 0

0 02
0 0

( , | , ) ( , | , )1 , ( , ) , ( , ) ,
2 ( , | , )

G x y x y x y x y x y x y
n r x y x yπ

∂ ⋅
= − ∈ ∈

∂
 

n r                                      (2.14) 

 
with  
 

{ }0 0 0 0( , | , ) ( ), ( ) .x y x y x x y y= − −r  .r = r                                                                               (2.15) 
 
The above functions represent source and dipole singularities respectively. The last form of 
representation theorem eq. (2.12) is suitable for a physical interpretation. The first order in the 
integral is the potential induced at 0 0( , )x y  from a distribution of sources (singularities) with 

intensity ( , )x y
n




 located on the boundary, while the second one is the potential from a 

distribution of dipoles (singularities), with intensity ( , )x y . In this way all the information for 
the potential in D  is stored on D∂  whose dimension is one order lower, i.e. if we know the 
boundary values of the potential (boundary derivative is already known from Neumann condition 
Eq.2.4) on the boundary, using Green's formula (2.12) we can evaluate potential everywhere in 
D .    

u
WD∂  

l
WD∂  

0foilΓ = Γ ≠  

0foil wakeΓ = Γ +Γ =  

0∇×∇Φ =  
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Green's formula can also be applied on the boundary BD∂  (Appendix A) 
 
for 0 0( , )x y D : 
  

0 0
0 0 0 0

( )

( , | , )( , ; )1 ( , ; ) ( , | , ) ( , ; ) ( , )
2

B

B
B B

D t

G x y x yx y tx y t G x y x y x y t ds x y
n n




  

   

         0 0
0 0

( )

( , ; ) ( , | , )( , | , ) ( , ; ) ( , )
u
W

u
uW
W

D t

x y t G x y x yG x y x y x y t ds x y
n n



 
 

   

         0 0
0 0

( )

( , ; ) ( , | , )( , | , ) ( , ; ) ( , ).
l
W

l
lW
W

D t

x y t G x y x yG x y x y x y t ds x y
n n



 
 

              (2.16) 

 
Using now boundary conditions (2.4), (2.7) we conclude the following Fredholm 2nd kind weak 
singular integral equation:  
 
for 0 0( , )x y D : 
 

0 0
0 0

( )

( , | , )1 ( , ; ) ( , ; ) ( , )
2

B

B B

D t

G x y x yx y t x y t ds x y
n




   



 
 

 

0 0
0 0

( ) ( ), ;

( , | , )( , | , ) ( , ) ( , ; ) ( , ),
B W

s
B g B W

D t D tb x y t

G x y x yG x y x y ds x y x y t ds x y
n

 


    

 V V n     (2.17) 

 
where 

 

u l
W W W W     is the potential jump or the dipole intensity on the wake. The 

potential jump at the trailing edge is equal to the instantaneous value of circulation around the 
hydrofoil as we can see from the definition of circulation: 
 
( )

( )
 

( )( , ; ) ( , ) .
B

TE
D t

t x y t ds x y t
∂

Γ = ∇Φ = Φ∫                                                                               (2.18) 

 
From Morino condition (2.9), we know the value of the potential jump at the intersection of the 
wake and the body, as a function of the potential jump at the trailing edge. In problems of 
unsteady motion 

 

  varies along the trailing vortex sheet and Γ changes in time too. According 
to Kelvin's theorem this change is associated with the change at dipole intensity at the wake. 
Taking into account vorticity continuity and considering the fact that WD∂  has to be a material 
curve that travels with the flow with mean velocity of the upper and lower surface of the shear 
layer in the sense of Eq.(2.10), we conclude that 

 W  or W  is not constant along WD∂ , 
contrary to the steady case, Moran (1984), but it changes and represents the history of circulation. 
Thus, information concerning the flow motion is stored in values of W  on WD∂  in the sense of 
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(2.17). Therefore free wake has a memory effect which is represented by the last integral at 
relation (2.17). 
  
Before we continue, it is important to take a closer look to the integrals appeared in (2.17). Since 

0 0( , )x y D∈∂  there is a point at the domain of integration where 0 0( , ) ( , ) 0x y x y r≡ ⇒ = . At this 
point the r.h.s. integrals become infinite and has no meaning in the usual Riemann sense. These 
integrals are called singular and can be determined as the limit of a well defined regular integral. 
The integrals appeared in (2.17) are weakly singular i.e. the rate of blow up equals the rate that 
ds  tends to zero. The definition of weakly or Cauchy principal value (that appears in the 
representation theorem of the velocity which is necessary for the extension to a fully non-linear 
method) as the limit of a well defined integral is presented in Appendix B.    
      
Relation (2.17) is a boundary integral equation, together with Morino condition (2.9), consist a 
system of equation for the  unknowns ( , )x y  on the boundary. The above system of equations 
can be solved numerically after the appropriate discretisation, as we will see in the following 
section, with the method of collocation, i.e. demanding from the solution to satisfy them in a 
finite set of control points. 
 
 
2.4  Discretisation of the boundary integral equation  
 
Following a low-order panel method, the body contour is replaced by a closed polygonal line 
with BN  denoting the number of panels. The trailing vortex sheet is also approximated by an 
open polygonal line composed of ( )WN t  panels, which increases in time. The potential and its 
normal derivative, at each time step, are approximated by piecewise constant distributions, as 
follows: 
 

( , ; ) , at panel i, i=1,...,N ,B Bi Bx y t                                                                                    (2.19) 
 
    ,( , ; ) , at panel i, i=1,...NW W Wi Wix y t                                                                      (2.20) 
 

 ( , ; ) , at panel i, i=1,...,N .BiB
B g B i Bi

x y t
n n

b         
V V n                                          (2.21) 

 
By applying a collocation scheme, we require (2.17) to be satisfied in a finite number of 
collocation points and in order to avoid singularities we choose the midpoints of the panels. Also 
we imply Morino condition (2.9) at the neighboring to the trailing edge elements. In this way, the 
discretisation of equations (2.17) and (2.9) leads to: 
 
for ( , ) , 1,..., :i i Bx y i N=  
 

( ) ( ) ( )
1 1 1

,
2

B B F

j

N N N
ij

ij Bj ij B g B ij Wjjj j j
b

B A B
δ

µ
= = =

   + Φ = − ⋅ + −    
∑ ∑ ∑



V V n                                                     (2.22) 
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and 
 

1 1,Wµ ΒΒΝ Β= Φ −Φ                                                                                                                      (2.23) 
 
approximates the jump of the potential on trailing edge. In Eq. (2.22), ijδ  is Kronecker's delta and 

the quantities ijA and ijB  are induced factors and represent the potential at collocation point i   
due to a unit source and dipole distribution, respectively, at panel j, defined as follows  
 

( , | , ) ( , ),ij s i i j j j j
panel j

A G x y x y ds x y= ∫                                                                                        (2.24) 

( , | , )
( , ).s i i j j

ij j j
panel j

G x y x y
B ds x y

n
∂

=
∂∫                                                                                     (2.25) 

 
In general, the above integrals are evaluated numerically. In the case of low order boundary 
element methods, i.e. constant distributions on straight elements, analytical calculation is 
possible. The calculation of those integrals is presented in the next section. 
 
The unknown 1Wµ  can be eliminated form Eq. (2.22), using Morino condition (2.23) leading to 
 
for ( , ) , 1,..., :i i Bx y i N=  
 

( ) ( )1 1
1 1 2

.
2

B B F

B B

N N N
ij

N j N j j j ij Bj ij j ij Wj
j j j

B B B A b B
δ

δ δ µ
= = =

 
+ − + Φ = + − 

 
∑ ∑ ∑                                              (2.26) 

 
Now all the quantities in the r.h.s. are known from the prescribed kinematics of the foil and the 
history of circulation of the foil, ( ) ( )1W t tµ = Γ , Eq. (2.18), that has been evaluated at previous 
time steps. The above equations consists a set of BN  equations which can be solved at every time 
step for the unknown values of BiΦ  which is needed for the evaluation of Φ  in D  at every time 
step through a discretised form of (2.12): 
 
for ( , ) :i ix y D∈  
 

( ) ( ) ( )
1 1 1

.
B B FN N N

i ij j ij Bj ij Wj
j j j

A b B B µ
= = =

Φ = + − Φ + −∑ ∑ ∑                                                                          (2.27) 
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2.5  Calculation of potential induced from constant-strength singularity elements 
 
In order to solve the linear system (2.26) and calculate the boundary values of the potential we 
have to evaluate the following integrals: 
 

1 ln ( , | , ) ( , ),
2ij i i j j j j

panel j

A r x y x y ds x y
π

= ∫                                                                                 (2.28) 

2

( , | , )1 ( , ).
2 ( , | , )

i i j j
ij j j

panel j i i j j

x y x y
B ds x y

r x y x yπ
⋅

= −
  

∫
n r

                                                                           (2.29) 

 
These integrals represent the potential at a point ( ),i ix y  due to a unit source or dipole 
distribution at panel j. As we have discussed, the above integrals are weakly singular. It is easier 
to evaluate this integrals using a coordinate system with origin at the first point ( ),1 ,1,j jx y  of the 

panel j, with axis *x  parallel to the panel j and axis *y  vertical to it, see Figure 9. 
 
First of all we have to calculate the coordinates of the point ( ),i ix y  in the ( )* *,x y coordinate 
system:  
 

( ) ( ) ( ) ( )* * *
,1 0 ,1 0cos sin ,i j jx x x y yθ θ= − + −                                                                              (2.30) 

( ) ( ) ( ) ( )* * *
,1 0 ,1 0sin cos .i j jy x x y yθ θ= − − + −                                                                           (2.31) 

 
The first integral (2.28) in the O x* y* coordinate system becomes: 
 

( )2* *2

0

1 ln ,
2

jl

ij i iA x t y dt
π

= − −∫                                                                                                  (2.32) 

 

where ( ) ( )2 2

,2 ,1 ,2 ,1j j j j jl x x y y= − + −  is the length of panel j.  

 
Integral (2.32) can be evaluated analytically: 
 

( ) ( ) ( ) ( ) ( ){ 2 2 2 2* * * * * *1 ln ln
4ij i i i i j i j iA x x y x l x l y
π

   = ⋅ + − − ⋅ − +      
 

                                            
* *

* 1 1
* *2 tan tan ,i i

i
i j i

y yy
x l x

− −
     + ⋅ ⋅ −     −     

                                        (2.33) 
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Figure 9: Local system used for evaluation of the potential field induced by constant strength 
source and dipole panels.  
 
or with the notation of Figure 9: 
 

( ) ( )* 2 * 2 *
1 2 2 1

1 ln ln 2 ,
4ij i i j iA x r x l r y θ θ
π
 = ⋅ − − ⋅ + ⋅ ⋅ −                                                                (2.34) 

 
when the control point ( ),i ix y  is at the center of the panel j, (2.34) becomes: 
 

( ) ( )ln ln 2 .
2

j
ij j

l
A l

π
 = ⋅ −                                                                                                          (2.35) 

 
Thus, the potential has the same value as we approach the surface element from each side of the 
boundary. From the above relation we can see that the potential generated by a distribution of 
sources is continuous through the boundary, as it ought. 
 
The second integral (2.29), expressed in the O x* y* coordinate system becomes: 
 

( )
*

2* *2
0

1 .
2

jl
i

ij

i i

yB dt
x t yπ

= −
− −

∫                                                                                                    (2.36) 

 
 
 
 

*x  

*y  

( ),1 ,1,j jx y  
( ),2 ,2,j jx y  

( ),i ix y  

2θ  

1θ  

jl  

0θ  
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Figure 10: Potential field induced by constant-strength source distribution. 
 
 

 
 

Figure 11: Potential field induced by constant-strength doublet distribution. 
 
 
 
 
 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 

A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

35 

 

The above integral can be evaluated analytically: 
 

* *
1 1

* *

1 tan tan ,
2

i i
ij

i j i

y yB
x l xπ

− −
    

= − −     −    
                                                                                 (2.37) 

 
or with the notation of Figure 9: 
 

( )2 1
1 ,

2ijB θ θ
π

= − −                                                                                                                   (2.38) 

 
when the control point ( ),i ix y  is at the center of the panel j, (2.38) becomes: 
 

1 ,
2ijB =                                                                                                                                    (2.39) 

 
where "-" is used when we approach the panel, in the perpendicular to it direction, from the 
positive of axis y* and "+" is used when we approach the panel from the negative of axis y*. That 
discontinuity of the potential, generated by a distribution of dipoles is an example of the 
discontinuity through the boundary is characteristic of the class of functions involved in present 
BEM. 
 
In Figures 10 and 11 we present the potential field induced by a unit constant-strength source and 
dipole distribution around panel j located in 1 1x− < < . As we can see the source potential is 
continuous through the boundary and the doublet potential presents the expected discontinuity. 
 
 
2.6  Evaluation of velocity on the boundary  
 
Having obtained the value of the potential at a control point iΦ  at the center of each panel 

( ),i ix y  and we want to calculate the velocity iu  along the curvilinear direction surrounding the 
foil, at the same points. For this aim we apply the following finite difference scheme which 
requires the knowledge of the potential at the two neighboring control points, i.e. 1 1, .i i− +Φ Φ   
 
At the first step we can approximate the velocity at the nodes of the panel: 
 

( ) ( ) ( ) ( )
1

,1 2 2 2 2
,1 1 ,1 1 ,1 ,1

,i i
i

i i i i i i i i

u
x x y y x x y y

−

− −

Φ −Φ
=

− + − + − + −
                                                  (2.40) 

 

( ) ( ) ( ) ( )
1

,2 2 2 2 2
,2 ,2 1 ,2 1 ,2

,i i
i

i i i i i i i i

u
x x y y x x y y

+

+ +

Φ −Φ
=

− + − + − + −
                                               (2.41) 
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Figure 12: Nomenclature for calculation of velocity on the boundary using finite differences, 
  

where ,1ix ,2ix ,1iy ,2iy ,1iu ,2iu  are the x,y coordinates and the velocities at the first and at the second 
node of panel i (Figure 12). 
 
Finally the velocity at the midpoint of panel i can be approximated by the mean value: 
 

,1 ,2 .
2

i i
i

u u
u

+
=                                                                                                                             (2.42) 

 
At the fist panel located at the lower side of the sharp trailing edge and at the last one at the upper 
side forward and backward versions of the above scheme are applied, as follows: 
 

( ) ( ) ( ) ( )
2 1

1 2 2 2 2
1,2 1 1,2 1 2 1,2 2 1,2

,u
x x y y x x y y

Φ −Φ
=

− + − + − + −
                                                    (2.43) 

 
and 
 

( ) ( ) ( ) ( )
1

2 2 2 2 2

,1 ,1 ,1 1 ,1 1

.b b

b b b b b b b b

N N

N N N N N N N N

u
x x y y x x y y

−

− −

Φ −Φ
=

− + − + − + −
                                 (2.44) 

 
 
 
 

( ),1 ,1,i ix y  ( ),1 ,2,i ix y  

,1iu  
,2iu  

iΦ  

( ),i ix y  
( )1 1,i ix y− −  ( )1 1,i ix y+ +  

1i−Φ  
1i+Φ  

iu  

n  
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2.7  Calculation of pressure using an approximate Bernoulli's theorem 
 
Calculation of the force acting on the foil requires the evaluation of pressure on the boundary. 
This for irrotational flow can be done using Bernoulli's theorem. However in the case of 
sinusoidal-gust problem the total flow consists of an irrotational part that corresponds to the 
disturbance field and a weakly rotational sinusoidal background field. In that case we will write 
Euler's equations, that expresses Newton's second law for every fluid particle, for the total 
velocity field T g= ∇Φ +V V  
 

( ) ( )21 0
2

T T
T T T

p
t ρ

∂ ∇
+ ∇ − × ∇× + =

∂
V V V V                                                                               (2.45)   

( ) ( ) ( ) ( ) ( )21 0,
2

g g
g g g

p p
t ρ

∂ ∇Φ + ∇ +
 ⇒ + ∇ ∇Φ+ − ∇Φ + × ∇× ∇Φ + + = ∂

V
V V V              (2.46)     

 

( , )Tp x y  is the pressure at (x,y) point of the field, ρ is the density of the fluid and T

t
∂
∂
V  denotes 

time rate of total velocity field according to a fixed observer with regard to an inertia reference 
frame. 
 
Disturbance velocity is assumed irrotational, thus 
 
( ) ( ) ( ) ( )2 21 1

2 2
g

g gt
∂ ∇Φ +

+ ∇ ∇Φ +∇ ∇Φ + ∇
∂

V
V V  

                                                       ( ) ( ) ( )
0.g

g g g

p p
ρ

∇ +
−∇Φ× ∇× − × ∇× + =V V V              (2.47) 

 
Appling now Euler equations for the background field we obtain 
 

( ) ( )21 0.
2

g g
g g g

p
t ρ

∂ ∇
+ ∇ − × ∇× + =

∂

V
V V V                                                                               (2.48) 

 
Subtracting now (2.48) from (2.47), it follows     
 

( ) ( ) ( )21 0.
2 g g

p
t ρ

∂∇Φ ∇
+ ∇ ∇Φ +∇ ∇Φ −∇Φ× ∇× + =

∂
V V                                                       (2.49) 

 
Furthermore we assume that the rotational term g ∇Φ× ∇× V , is of second order, and can be 
approximately neglected, and thus 
 

( )21 0.
2 g

p
t ρ

 ∂Φ
∇ + ∇Φ +∇Φ + = ∂ 

V                                                                                         (2.50) 
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Finally, integrating the above equation along a curve in D  we obtain 
 

( ) ( )21 ,
2 g

p C t
t ρ

∂Φ
+ ∇Φ +∇Φ + =

∂
V                                                                                          (2.51) 

 
where the x-integration constant ( )C t  is time dependent. However ( )C t  can be set to zero with 

redefinition of the potential, i.e. ( ) ( ) ( )1, ; , ;
t

x y t x y t C t dτΦ = Φ + ∫ . Thus relation (2.51) 

becomes  
 

( )21
1 1

1 0.
2 g

p
t ρ

∂Φ
+ ∇Φ +∇Φ + =

∂
V                                                                                            (2.52) 

 
In this way we have obtained a formula for the calculation of disturbance pressure 
  

( )21 ,
2 g

p
tρ

∂Φ
= − − ∇Φ −∇Φ⋅

∂
V                                                                                                 (2.53) 

 

where ( , )p x y is the disturbance pressure, ρ is the density of the fluid and 
t

∂Φ
∂

 denotes time rate 

of potential according to a fixed observer with regard to an inertia reference frame. 
 
As we have seen in Sections 2.3-2.5, using BEM we can evaluate the trace *Φ  on the boundary 
and differentiating we can calculate corresponding rate of change in a body-fixed reference 

frame, denoted by 
*d

dt
Φ . In the following we obtain a relation between the quantities calculated 

by BEM and the others appeared in Eq. (2.53), see also Politis (2011). 
 
The total differential of the trace *Φ  with respect to the curvilinear coordinate s  along D∂  as a 
function of Φ  is given by: 
 

* x x y yd ds dt ds dt dt
x s t y s t t

∂Φ ∂ ∂ ∂Φ ∂ ∂ ∂Φ   Φ = + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

      ,ds dt dt
s t t
∂ ∂ ∂Φ = ∇Φ + + ∂ ∂ ∂ 
r r                                                                                             (2.54) 

 
where D∂  is represented by the curve { }( , ) ( , ), ( , ) .s t x s t y s t= =r r   
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For a specific point B on the boundary, i.e. s const=  (2.54) becomes: 
 

* ,Bd dt dt
t t

∂ ∂Φ
Φ = ∇Φ +

∂ ∂
r                                                                                                         (2.55) 

 

but ,B
Bt

∂
=

∂
Vr  the velocity of the body contour and thus we have: 

 
*

,B
d
dt t
Φ ∂Φ

= ∇Φ⋅ +
∂

V                                                                                                                (2.56) 

 
Finally we have obtained a relation which connects the inertia rate of change of the potential 

/ t∂Φ ∂  which is required in Eq. (2.53) with the body-fixed rate of change of the potential's trace 
* /d dtΦ  which is calculated using BEMs. Using (2.56), (2.53) becomes: 

 

( ) ( )
*

21 .
2B g

p d
dtρ
Φ

= − +∇Φ ⋅ − − ∇ΦVV                                                                                    (2.57) 

 
In relation (2.57), the term ∇Φ  is the space gradient of  Φ. But with BEM as we have seen in 
sections 2.3-2.6 we calculate the surface gradient *∇Φ  of the trace *Φ  and thus we have to find a 
relation between them.  
 
Relation (2.54) for t const=  can be written in the form: 
 

*d d ,Φ =∇Φ⋅ s                                                                                                                           (2.58) 
 
where *dΦ  is a surface gradient of the trace of the potential,∇Φ  is a space gradient of potential 
in D and ds  is a surface vector tangent to D∂ . 
 
From the definition of differential it holds that: 
 

* *d dΦ =∇Φ ⋅ s.                                                                                                                         (2.59) 
 
Combining (2.58) and (2.59) we get: 
 
( )* d = 0,∇Φ−∇Φ ⋅ s                                                                                                                  (2.60) 
 
which means that the vector which is the difference between ∇Φ  and *∇Φ  is normal to ds  and 
thus normal to the boundary D∂ . 
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Figure 13: Relation between space gradient ∇Φ  and surface gradient *∇Φ . 
 

According to Figure 13 we have: 
 

( )*= .∇Φ ∇Φ + ⋅∇Φn n                                                                                                             (2.61) 
 
The above relation connects the space gradient of the potential with the surface gradient of the 
trace of the potential on the boundary. 
 
We want to evaluate pressure on the boundary BD∂  where no entrance boundary condition (2.4) 
holds, in that case (2.61) becomes: 
 

( )*
B B g B B

b

= .Β
 ∇Φ ∇Φ + − ⋅ 


V V n n                                                                                             (2.62) 

 
Substituting relation (2.62) to (2.57) we get the final form of approximate Bernoulli's theorem 
which is required for the calculation of pressure distribution on the boundary: 
 

( ) ( ) ( )
* 22* *1 1 .

2 2B g B g

b

p d
dtρ

Β Β
Β Β Β

Φ  = − +∇Φ ⋅ − − ∇Φ + ⋅ − 


V V n V V                                             (2.63) 

 
 
 
 

n  

*∇Φ  

∇Φ  

( )*∇Φ−∇Φ  
D∂  
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Or using the definition of the non-dimensional pressure coefficient 2/ 0.5 ,pC p Uρ=  where U  is 
a characteristic velocity of the motion of the body e.g. the forward velocity of the flapping foil 
thruster, we get: 
 

( ) ( )
* 22 * * 21 1 1 .

2 2 2P B g
dC U b

dt
Β

Β Β

 Φ
= − +∇Φ ⋅ − − ∇Φ + 

 
V V                                                       (2.64) 

 
or in discretised form: 
 

( ) ( )
* 22 * * 21 1 1 , ( , ) .

2 2 2
i

Pi i Bi gi i i i i
dC U b x y D

dt
Β

Β Β

 Φ
= − +∇Φ ⋅ − − ∇Φ + ∈ 

 
V V                               (2.65) 

 
 
2.8  Calculation of force and moment 
 
If we assume that the pressure is constant along every panel can evaluate the non dimensional 
coefficients of forces and moments as follows 
 

( )
1

( , ; ) ,
N

Fx P i i i
j

C t C x y t y
=

= ∆∑                                                                                                       (2.66) 

( )
1

( , ; ) ,
N

Fy P i i i
j

C t C x y t x
=

= − ∆∑                                                                                                     (2.67) 

( ) ( ) ( )
1

( , ; ) ,
N

M P i i i i ref i i ref
j

C t C x y t x x x y y y
=

 = ∆ − + ∆ − ∑                                                           (2.68) 

 
where ,2 ,1,i i ix x x∆ = −  ,2 ,1,i i iy y y∆ = −  are the projections of the panel i at x and y axis of the 
foil's body-fixed coordinate system. The dimensionless coefficients of the loadings are defined   
 

( ) ( ) ( ) ( )
2 2 2

, ,1 1
2 2

F M

F t M t
C t C t

U c U cρ ρ
≡ ≡                                                                                      (2.69) 

 
where F  is the force acting on the center of pressure of the hydrofoil, M  is moment with respect 
to a reference point ( ),ref refx y  of the foil and c is its chord. 
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2.9 Efficient propulsion using hydrofoils in flapping motion    
 
As we have mentioned in Sec. 1.1, extended research has demonstrated that biomimetic flapping-
foil systems can used for efficient propulsion and maneuvering of ships and marine vehicles. In 
this section the present method is applied to the case of a flapping-foil propulsor illustrating the 
applicability of such systems. A variety of numerical results are presented in Subsection 2.9.1 in 
order to examine the rate of convergence, stability and efficiency of the numerical scheme. In 
Subsection 2.9.2 we present results related with the motion of a hydrofoil with constant angle of 
attack in comparison with steady panel methods and with experimental results. Moreover, more 
complex unsteady motions are studied, starting with simple forward and heaving motion (Subsec. 
2.9.3) or forward and pitching motion (Subsec. 2.9.4) and finally flapping motion (Subsec. 2.9.5). 
The latter consists of forward, heaving and pitching motion. Numerical results are presented, for 
a range of parameters such as Strouhal Number, reduced frequency, heave and pitch amplitude 
and the maximum angle of attack, and compared with analytical asymptotic and experimental 
results from the literature enabling as to explore the range and the limitations of applicability of 
the present method. 
 
The flapping motion of the foil is described by three degrees of freedom, forward motion, 
heaving and pitching oscillations. The present method can be applied in general motion but for 
simplicity the oscillations are assumed to be harmonic: 
 

( ) ( ),s t U t F t= − ⋅ ⋅                                                                                                                      (2.70) 

{ }0( ) cos( ) ( ) Re ( ),i t
oh t h t F t h e F tωω= ⋅ = ⋅                                                                                 (2.71) 

{ }0( ) cos( ) Re ( ),i t
ot t e F tω ψθ θ ω ψ θ −= + = ⋅                                                                                (2.72) 

 
where 0h  and oh  are the  amplitude  and the complex amplitude of heaving motion, 0θ  and oθ  
are the amplitude and the complex amplitude of the pitching rotation which is positive 
counterclockwise, pitching is considered around hydrofoil's pivot axis which is located on the 
chord and at distance RX  from the leading edge, ψ  is the phase difference between the heave 
and pitch, ω  is the radial frequency which is the same for the two oscillatory motions and i  is 
the imaginary unit. In addition, 2

0( ) 1 exp ( / )F t f t T = − −   is a filter function permitting smooth 
transition from rest to the harmonic oscillatory motion. 
 
Thus every point B of the hydrofoil with initial position according to an earth-fixed coordinate 
system ( )0 0,B Bx y  is moving along the curve: 
 

0 0( ) cos ( ) sin ( ) ( ),B B Bx t x t y t s tθ θ= − −                                                                                     (2.73) 

0 0( ) sin ( ) cos ( ) ( ),B B By t x t y t h tθ θ= + +                                                                                     (2.74) 
 
where, in order to simplify kinematic equations, the earth-fixed coordinate system is located on 
the initial location of hydrofoil's pivot axis. 
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The background velocity field is considered, with respect to the earth-fixed reference frame, to be 
(after fully transition from rest) a steady  sinusoidal disturbance  
 

( ) ( ); cos ( ),G G gV x t V k x F t= ⋅                                                                                                     (2.75)  
 
where gV  is the amplitude of the sinusoidal gust velocity and gk  is gust's wave number. With 
respect to a reference frame moving with hydrofoils mean velocity, the gust is an incident wave 
disturbance that travels with the forward speed of the foil U , thus the radial frequency of the 
wave is .g gU kω = ⋅   
 
The unsteadiness of the motion is measured by the non-dimensional reduced frequency 

/ 2 ,rk c Uω=  where c  is the chord length of the hydrofoil, which can be used both in the cases 
where heaving motion exists or not. Also, gust's reduced frequency can be defined 

, / 2 .r G Gk c Uω=  In the case of heaving or flapping motion we can use Strouhal number 

( )/ 2 / rSt h U h c kω π π= = , which is proportional to the maximum slope of the path and can be 
considered as a measure of the degree of non-linearity of the motion. It is also connected with the 
wake of vortices created downstream of the foil. Another motion parameter that is very important 
is the maximum angle of attack maxa  which is connected with the initiation of leading edge 
separation and the dynamic stall effects. The instantaneous angle of attack in infinite stationary 
fluid can be evaluated: 
 

1 /( ) tan .
/

dh dta t
ds dt

θ−  = − 
 

                                                                                                          (2.76)    

 
In the general case the above formula is extended to include also the gust velocity as well as  the 
induced velocity from the unsteady wake. 
 
Finally, the parameters that control the space and time discretization are, BN  the number of 
panels on the body contour and Time Sampling Ratio ( )TSR  defined as the percentage of the 
period that equals to the time step  
 

100.dtTSR
T

= ⋅                                                                                                                            (2.77) 

 
A wake model is used to linearize free wake dynamics and the corresponding time-dependent 
discretization parameter ( )WN t  is a function of BN  and TSR .  
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2.9.1  Numerical study 
 
Numerical stability, convergence and efficiency of the scheme are tested using as an example a 
symmetric NACA0012 hydrofoil with rotation axis at / 0.3RX c =  and 90ψ = − ° , over a range of 
flapping motion's parameters, i.e. Strouhal number ( )0.1 0.4St = ÷  reduced frequency 

( )0.1 3.8rk = ÷ , heaving ( )0 / 0.25 1h c = ÷  and pitching ( )0 10 40θ = °÷ °  amplitudes.  
 

 
 

Figure 14: Geometry of a NACA0012 hydrofoil and discretization with non-uniform iso-cosine 
grid denser at the leading edge. 
 
Presented results concern hydrodynamic quantities, both integrated like non-dimensional Lift 
( )2/ 0.5L YC F U cρ=  and Thrust ( )2/ 0.5T XC F U cρ= −  coefficients and distributed such as 

pressure coefficient ( )2/ 0.5PC p Uρ= . Transition from rest to harmonic state condition has been 
accomplished after the third period of oscillation and the integrated quantities have been averaged 

over the fifth period, i.e. 
5

, 4
1/ ( )

T

F av FT
C T C t dt= ∫ . The amplitude of force coefficients is 

considered to be the half of the difference between the maximum and the minimum value in the 
fifth period, i.e. ( ){ } ( ){ }, 0.5 max ( ), 4 ,5 min ( ), 4 ,5F amp F FC C t t T T C t t T T = ∈ − ∈  . 
 
A non-uniform discretisation has been applied on the hydrofoil's boundary in the sense of Fig.14. 
The grid is denser at the leading edge where the profile changes abruptly and becomes uniform to 
the trailing edge, so as the panels in the vicinity of the trailing edge to have comparable length 
with the wake's panels.  
  
In the following figures the mean value of Trust coefficient and the amplitude of Lift coefficient 
are presented for a range of flapping-motion parameters. 
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Figure 15: Convergence of Thrust and Lift Coefficients with respect to 1/ TSR , for a NACA0012 
hydrofoil in flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 0.25h c = , 0 10 ,20 ,40θ = ° ° °  and 

0.1,0.2,0.4Str = .    
 
In Figs. 15, 16 and 17 convergence characteristics of the numerical scheme concerning integrated 
force coefficients against time step, expressed by 1/ TSR , for a range of flapping-motion 
parameters, are demonstrated. We can see that the relevant error ( )0 0100 /F F FC C C−  converges 
practically to zero (less than 3%) for 0.125%TSR ≤ , which corresponds to more than 800 time 
steps per period of oscillation while errors less than 10% occurs for 0.25%TSR ≤ , i.e. for more 
than 400 time steps per period. The relevant error is measured with respect to the value of the 
coefficient 0FC   for 0.0625%TSR = .   
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Figure 16: Convergence of Thrust and Lift Coefficients with respect to 1/ TSR , for NACA0012 
in flapping motion, / 0.3RX c = , 120ΒΝ = , 0 / 0.5h c = , 0 10 ,20 ,40θ = ° ° °  and 0.1,0.2,0.4Str = .     

 
Figure 17: Convergence of Thrust and Lift Coefficients with respect to 1/ TSR , for NACA0012 
in flapping motion, / 0.3RX c = , 120ΒΝ = , 0 / 1h c = , 0 10 ,20 ,40θ = ° ° ° , and 0.1,0.2,0.4Str = . 
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Also in Figs. 18, 19 and 20 convergence of the numerical scheme with respect to panel number 
on the hydrofoil BN  is tested, for a range of kinematic parameters. We can see that the relevant 

error ( )0 0100 /F F FC C C− , concerning integrated force coefficients, converges practically to 

zero (less than 2%) for 120BN ≥ , while errors less than 10% occurs for 60BN ≥ . The relevant 
error is measured again with respect to the value of the coefficient 0FC  for the maximum panel 
number tested, 240BN = .   
 

 
Figure 18: Convergence of Thrust and Lift Coefficients with respect to BN , for a NACA0012 
hydrofoil in flapping motion with parameters / 0.3RX c = , 0.125%TSR = , 0 / 0.25h c = , 

0 10, 20 ,40θ = ° ° ° , and 0.1,0.2,0.4Str = . 
 
Finally in Fig. 21, the evolution of pressure coefficient is presented, for different number of 
panels on the foil, / 0.3RX c = , 0.125%TSR = , and for a case of intermediate flapping motion 

0 / 0.5h c = , 0 20θ = ° , and 0.2Str = , during the 5th period of oscillation. It is clear that 
convergence is achieved for 120BN ≥ . We also notice that a finite (non-zero) pressure difference 
occurs at the trailing edge,  see the discussion after Eq. (2.9) in Sec 2.3. 
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Figure 19: Convergence of Thrust and Lift Coefficients with respect to BN , for NACA0012, 

/ 0.3RX c = , 0.125%TSR = , 0 / 0.5h c = , 0 10, 20 ,40θ = ° ° ° , and 0.1,0.2,0.4Str = . 

 
Figure 20: Convergence of Thrust and Lift Coefficients with respect to BN , for NACA0012, 

/ 0.3RX c = , 0.125%TSR = , 0 / 1h c = , 0 10, 20 ,40θ = ° ° ° , and 0.1,0.2,0.4Str = . 
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Figure 21: Convergence of boundary-pressure field with respect to BN , for a NACA0012 
hydrofoil, in flapping motion with / 0.3RX c = , 0.125%TSR = , 0 / 0.5h c = , 0 20θ = ° , and 

0.2Str = , during the 5th period of oscillation.  
 
To summarize, stability and convergence of the present scheme has been studied by extensive 
numerical investigation. For the range of motion parameters that we have tested i.e. Strouhal 
number ( )0.1 0.4St = ÷  reduced frequency ( )0.1 3.8rk = ÷ , heaving ( )0 / 0.25 1h c = ÷  and 

pitching ( )0 10 40θ = °÷ °  amplitudes, the numerical scheme is unconditionally stable. The above 
analysis also results in that a minimum number of 120BN =  panels on the hydrofoil is required, 
while for harmonic motion the time step must be / 0.125%t T∆ <  (more than 800 time steps per 
period of oscillation). Finally, according to the efficiency of the scheme we have to mention that 
the reduction of problem's dimension from 2D to 1D, due to BEM, results in reduction of the 
computational cost, orders of magnitude less than other space-discretisation based numerical 
methods e.g. FDM's, FEM's. In addition, even more efficient higher order BEM's could be 
applied, see e.g. Cottrel et al (2009), Lee and Kerwin (2003), Belibassakis et al, (2013), and this 
is left as a subject for future extension.    
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2.9.2 Hydrofoil in steady motion    
 
Numerical computations and results for a cambered NACA4412 (Fig.21) hydrofoil at a stationary 
angle of attack a  are shown in Figs.23-25. Present method results are based on 120BN =  panels 
and the time step is / 4%tU c∆ = . Due to the initial acceleration, a starting vortex is generated 
behind of the trailing edge, whose intensity equals the initial value of circulation around the foil 
(Kelvin's theorem). That vortex induces a downwash at the foil which influences the value of 
circulation and the lift force acting it. As the distance between the vortex and the hydrofoil 
grows, the influence of the vortex reduces and the flow tend to become steady. When the starting 
vortex has gone far enough of the foil (after a distance of more than 10 chord lengths) the motion 
becomes time independent. For smooth transition from rest to steady state a filter function has 
been used in the sense of Eq. (2.70). In steady state condition, pressure distribution and lift force 
can be compared with results from steady panel methods as well as with experimental 
measurements from the literature. 
 

 
 
Figure 22: Geometry of a NACA0012 hydrofoil and discretization with non-uniform iso-cosine 
grid denser at the leading edge. 
 
In Figure 23 we can see the time history of dipole intensity on the wake for a NACA0012 at 

4a = ° . Dipole intensity is analogous to the length of the quivers. From Morino condition (2.9) 
and relation (2.18) dipole intensity equals the circulation which is analogous to the lift force 
according to Kutta-Joukowski theorem see e.g. Batchelor (1967), Kundu and Cohen (2004) or 
another introductory book to fluid mechanics. As we expected Lift force, which in the rest is 
zero, gradually rises to a constant value at the steady state condition. Therefore, after more than 
10 chord lengths lift coefficient and other quantities such as the velocity and pressure distribution 
can be compared with results from steady panel methods. 
 
In the following figures velocity and pressure distributions for a NACA4412 hydrofoil at an 
angle of attack 4a = °  after 10 & 100 chord lengths are compared with steady boundary element 
methods which is described in bibliography, see e.g. Moran (1984) and Filippas (2011). The first 
method is the equivalent with the scheme described in the present work, steady, indirect, potential 
based panel method developed by Morino and Kuo in 1974, see also Moran Ch.4 (1984).  
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Figure 23: History of dipole intensity on the wake, for NACA4412 at an angle of attack 4a = ° . 
 
 

 
 
Figure 24: -Cp distribution for NACA 4412 at angle of attack a=4 after 10 & 100 chord lengths in 
comparison with steady panel methods and experimental results. On the upper right corner a 
streamline plot is presented.  
 
The second one is an indirect source and vortex based panel method, the so called Douglas-
Neumann method, developed by Hess & Smith in 1966, see also Moran (1984) and Filippas 
(2011). Comparison with experimental results from Abbot and Von Doenhoff (1959) is also 
presented. 
 
The form of pressure distribution (Fig.24) is as expected from the fundamental laws of 
hydrodynamics. Acceleration of flow at the upper side of leading edge (due to conservation of 
mass) results in dropping pressure (Bernoulli's theorem).  

upper surface 

lower surface 
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Figure 25: CL for NACA 4412 at different angle of attacks after 100 chord lengths, in 
comparison with steady panel methods and experimental results. 
 
The opposite behavior is noticed on the lower side due to the geometry and the angle of attack, 
leading to fluid compression in this area, see also streamline plot. Comparison between the three 
methods is very satisfying. Small differences occur at the trailing edge where the two methods 
applying Morino condition results in pressure distribution with little but not zero pressure 
difference at the trailing edge. On the contrary pressure distribution is closed at the trailing edge 
on Hess & Smith method, due to the fact that a pressure-type Kutta condition has been applied. 
We notice that the unsteady hydrofoil has to cover a distance of order 100c  in order to obtain the 
exact steady result.  
 
In Figure 25 we present the values of lift coefficient of a NACA4412 hydrofoil for a range of 
angles of attack a  calculated with unsteady and steady panel methods against experimental 
results by Abbot and Von Doenhoff (1959). The comparison with steady potential theory applied 
by panel methods is very satisfactory. The deviation between present method and experimental 
results that occurs at large angles, is due to effects of viscosity. At higher angles the loss of lift 
due to separation of flow and static stall phenomenon cannot be predicted by an inviscid theory 
like the present one. Hybrid boundary layer and BEM's can be used in order to model leading 
edge separation and improve the above predictions at large angle of attack, see Lewis (1991), 
Politis & Belibassakis (1999), Riziotis and Voutsinas (2007), Belibassakis (2010), such an 
extension is left as a subject for future work. 
 
 
 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 

A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

53 

 

2.9.3 Hydrofoil in heaving motion    
 
We have already seen that our method is compatible with steady potential theory and can give 
satisfying predictions against experimental results in steady state condition. For simplicity, before 
we study the efficient thrust producing flapping motion, we will present results in the two 
following subsections concerning pure linear or rotational oscillations of hydrofoil at forward 
constant speed motion. In this section, numerical results are presented concerning an unsteady 
heaving hydrofoil in infinite submergence. Except of forward translation with constant speed U , 
the hydrofoil also performs vertical (heaving) oscillations. Heaving oscillation is important, as 
one of the two independent motions of thunniform swimming mode that is used by cetaceans, 
like dolphins, whales etc. and leads to efficient thrust production. For validation purposes, in the 
next we present comparisons, concerning lift coefficient, with unsteady linear hydrofoil theory. 
       

 
 
Figure 26: History of dipole intensity on the wake, for a NACA0012 hydrofoil in heaving motion 
with 1rk =  and 0 / 0.2h c = . 
 
In the framework of linearized asymptotic theory the hydrofoil is assumed very thin. 
Furthermore, the angle of attack and the amplitudes of oscillatory motions are small. Under the 
above assumptions the foil and the shear layer can be collapsed onto a cut in the x-axis. For a 
detailed study in asymptotic methods in fluid dynamics, see e.g. Newman (1977) or Van Dyke 
(1975). According to the linear theory (Appendix C) the lift coefficient is given by: 
 

{ }0( ) cos( ) Re ,i t
L L LoC t C t C e ωω= =                                                                                             (2.78) 

 
where  
 

2 20 04 ( ) 2 .Lo r r r
h hC ik C k i k
c c

π π= − ⋅ −                                                                                          (2.79) 

 
In the above, / 2rk c Uω=  denotes the reduced frequency. In the present section length is 
nondimensionalised using half chord length / 2c , which in appendix C is considered to be 

/ 2 1c = .  
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Figure 27: Argand diagram of Theodorsen function, reduced frequency raises from zero to 
infinite along the complex curve with clockwise direction. 
 
The second term in (2.79), which is analogous to the linear acceleration, is the added mass term 
of lift coefficient. Notice that it is analogous to 2

rk , and thus for small frequencies it is negligible, 
while for high unsteadiness it has the major contribution. Also, ( )rC k  is the Theodorsen function 
defined as a ratio of Hankel functions of second kind, zero and first order 
 

(2)
1

(2) (2)
1 0

( )( ) .
( ) ( )

r
r

r r

H kC k
H k iH k

=
+

                                                                                                   (2.80) 

 
Function ( )rC k  encompasses the memory effects due to the unsteady wake, and for low 
frequencies its limiting value is 1 which is compatible with the steady result 2LdC da π= . The 
Argand diagram of Theodorsen function is presented in Figure 27. 
 
In Figs.28 & 39 we compare integrated results concerning the amplitude of lift coefficient 
obtained by the present method against predictions by linearised theory for thin hydrofoil. A 
symmetrical NACA0012 hydrofoil is simulated in small and moderate oscillations, i.e. 

0 / 0.05 0.4h c = ÷ . Number of panel on hydrofoil's boundary are 120BN =  and 0.125TSR = , i.e. 
one period contains 800 time steps.   
 

0rk →   
rk →∞   
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Figure 28: Amplitude of lift coefficient for a NACA0012 hydrofoil in heaving motion with 

0 / 0.05 0.4h c = ÷ , evaluated by the present method and compared with theoretical asymptotic 
results. 
 
We can see that our predictions are in good agreement with thin hydrofoil theory for a 
satisfyingly wide range of reduced frequency rk  when heave and pitch amplitude are small to 
moderate, i.e. 0 / 0.05 0.2h c = ÷ ,  and in moderate frequencies 2rk <  for larger amplitudes.  
 
Figure 29 demonstrates also that the predictions for phase lag are compatible with linear theory. 
Only in the case of 0 / 0.2h c =  and 1rk =  a small difference appears in between the maximum 
values of lift coefficient, due non-linear effects of large amplitude motion and non-linearised  
wake (wake is assumed to be steady but still it is not linearized and collapsed onto x axis), this 
non-linearities are not taken into account by linear thin hydrofoil theory. According to the above 
our numerical scheme is valid for small and moderate oscillations in the framework of potential 
theory. Furthermore it is obvious that for accurate predictions of hydrodynamic quantities in 
larger oscillatory amplitude and more unsteady character, linear theory is provide good results 
and it is necessary to resort to numerical methods like the present one.      
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Figure 29: Time history of lift coefficient for a NACA0012 hydrofoil in heaving motion with 

0 / 0.05 0.4h c = ÷ , and 0.65,1rk =  evaluated by the present method and compared with 
theoretical asymptotic results. Resulting Strouhal number, ( )/ 2 / rStr h U h c kω π π= = , varies 
from 0.02 to 0.25. 
 
 
 
 
 
 
 
 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 

A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

57 

 

2.9.4 Hydrofoil in pitching motion 
 
In this case the hydrofoil moves with constant forward speed while performs rotating oscillations 
(pitching) around the midchord. This is a required step before we study the more complex 
flapping motion. In the following, we present comparisons, concerning lift coefficient, with 
unsteady linearized hydrofoil theory in the same way as in previous section. 
 

 
 
Figure 30: History of dipole intensity on the wake, for a NACA0012 hydrofoil in pitching motion 
with 1rk =  and 0 20θ = ° . 
 
According to the linear theory (Appendix C) the lift coefficient is: 
 

{ }0( ) cos( ) Re ,i t
L L LoC t C t C e ωω= =                                                                                             (2.81) 

 
where  
 

0 0
12 (1 ) ( ) .
2Lo r r rC ik C k ikπ θ π θ= + ⋅ +                                                                                        (2.82) 

 
The second term in (2.82) is the added inertia, due to rotation, component of lift coefficient, that 
is important for large reduced frequencies. We can notice that when ( )0 1r rk C k→ ⇒ →  the lift 
coefficient converges to the expected from steady thin hydrofoil theory value, i.e. 02LC πθ→ .   
  
In Figs.31 & 32 we compare integrated results concerning the amplitude of lift coefficient 
obtained by the present method against predictions by linearised theory for thin hydrofoil. A thin 
symmetrical NACA0012 hydrofoil is simulated in small and moderate oscillations, i.e. 

0 5 40θ = °÷ ° . Number of panel on hydrofoil's boundary are 120BN =  and 0.125TSR = , i.e. 800 
time steps pre period of oscillation.   
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Figure 31: Amplitude of lift coefficient for a NACA0012 hydrofoil in pitching motion 

0 5 40θ = °÷ ° , evaluated by the present method and compared with theoretical asymptotic results. 
 
Again our predictions are in good agreement with thin hydrofoil theory for a wide range of 
reduced frequency when heave and pitch amplitude are small to moderate i.e., 0 5 20θ = °÷ °  and 
in moderate frequencies 1.5rk <  for larger amplitudes.  
 
In Figure 32 time evolution of lift coefficient is presented in comparison with linear theory, 
demonstrating also that the predictions for phase lag are compatible with linear theory for 
pitching motion too. As we can notice from time evolution of lift coefficient (Fig.32), in the case 
of 0 40θ = °  and 1rk = , effects associated with wake shape that are neglected by linear theory, 
change the mode of ( )LC t  as calculated by the present method. According to the above analysis 
our numerical scheme is valid for small and moderate oscillations in the framework of potential 
theory in both cases of pure heaving or pitching oscillations.      
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Figure 32: Time history of lift coefficient for NACA0012 hydrofoil in pitching motion 

0 5 40θ = °÷ ° , evaluated by the present method and compared with theoretical asymptotic results. 
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2.9.5 Hydrofoil in flapping motion 
 
In this section numerical results are presented concerning a flapping hydrofoil in infinite domain. 
Except of forward translation with constant speed U , the hydrofoil also performs combined 
vertical (heaving) and rotational (pitching) oscillatory motions, the latter with respect to a pivot 
axis located at a specific distance RX  from the leading edge. The phase difference between 
pitching and heaving motion is appropriate selected at 90° , see e.g. Rozhdestvensky & Ryzhov 
(2003). That kinematics, simulate the motion of the fin that hydrobionts use in order to produce 
thrust efficiently. As we have mentioned in Chapter 1 many theoretical and experimental studies 
has been published related to biomimetic systems and have demonstrated that flapping foils can 
be used as high efficient propulsion systems. In the first part of the present section we present 
comparisons with unsteady linear hydrofoil theory and in the second one with experimental 
results by Schouveiler et al (2005). 
 

 
 
Figure 33: History of dipole intensity on the wake, for a NACA0012 hydrofoil in flapping motion 
with 1rk = , 0 / 0.2h c = , 0 20θ = °  and 90ψ = − ° . 
 
According to the linear theory, Appendix C and Newman (1977), the lift coefficient can be 
evaluated 
 

{ }0( ) cos( ) Re ,i t
L L LoC t C t C e ωω= =                                                                                             (2.83) 

 
where the complex amplitude can be evaluated from (2.79) and (2.82) using the principle of 
linear superposition   
 

2 20 0
0 0

12 2 1 ( ) 2 ,
2 2

i ir
Lo r r r r

h h kC ik ik e C k i k i e
c c

ψ ψπ θ π θ    = − + + ⋅ ⋅ + − +        
                             (2.84) 

 
( )C k  is the Theodorsen function and the second order in (2.84) is the added mass term of lift 

coefficient. 
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Figure 34: Amplitude of lift coefficient for a NACA0012 in flapping motion with 

0 / 0.05 0.4h c = ÷ , 0 5 40θ = °÷ ° , 90ψ = − ° , / 0.5RX c =  evaluated by the present method and 
compared with theoretical asymptotic results. 
 
In Figs. 34 & 35 we compare integrated results concerning the amplitude of lift coefficient 
obtained by the present method against predictions by linearised theory for thin hydrofoil. A 
symmetrical NACA0012 hydrofoil is performing small and moderate oscillations i.e. 

0 / 0.05 0.4h c = ÷ , 0 5 40θ = °÷ °  and / 0.5RX c = . Number of panels on hydrofoil's boundary is 
120BN =  and 0.125TSR = , i.e. one period contains 800 time steps.  

 
We can see that our predictions are in good agreement with thin hydrofoil theory, for a wide 
range of reduced frequency rk  when heave & pitch amplitudes are small and moderate i.e. 

0 / 0.05 0.2h c = ÷ , 0 5 20θ = °÷ °  and in moderate frequencies 1rk <  for larger amplitudes.  
 
Figure 35 demonstrates also that present predictions concerning phase lag are compatible with 
linear theory. Again we can notice from time evolution of lift coefficient in Fig.32, that in the 
case of 0 / 0.05 0.2h c = ÷  and 1rk = , non-linear effects of large amplitude motion and non-
linearised wake change the mode of ( )LC t , which is not well predicted by linear thin hydrofoil 
theory. According to the above our numerical scheme is valid for small and moderate oscillations 
in the framework of potential theory.    
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Figure 35: Time history of lift coefficient for a NACA0012 hydrofoil in flapping motion with 

0 / 0.05 0.4h c = ÷ , 0 5 40θ = °÷ ° , 90ψ = − ° , / 0.5RX c =  evaluated by the present method and 
compared with theoretical asymptotic results. Resulting Strouhal number, 

( )/ 2 / rStr h U h c kω π π= = , varies from 0.02 to 0.25. 
 
A further comparison between the present potential flow method and computational results by 
Schouveiler et al (2005) is presented in Figs.36 & 37. These results concern efficient thrust 
production cases in large amplitude oscillations and high unsteadiness. In Fig.36 we present the 
evolution in time of lift and thrust coefficients for NACA0012 hydrofoil in flapping motion with 

0 / 0.75h c = , 0 23.3θ = ° , 90ψ = − ° , max 20a = ° , / 0.33RX c = . In this case our results are found 
in good agreement with the experimental measurements. 
 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 

A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

63 

 

 
Figure 36: Time history of lift and thrust coefficients for a NACA0012 hydrofoil in flapping 
motion with 0 / 0.75h c = , 0 23.3θ = ° , 90ψ = − ° , max 20a = ° , / 0.33RX c = . Comparison between 
present-method results and experimental data from Schouveiler et al (2005). 
 
Furthermore, in Fig.37 we present results concerning average thrust coefficient for the case of 
NACA0012 hydrofoil in flapping motion with 0 / 0.75h c = , 0 23.3θ = ° , 90ψ = − ° , max 20a = ° , 

/ 0.33RX c = . We can see that for small and moderate angles of attack, where leading edge 
separation and dynamic stall effects are not manifested, the modes of the curves are similar, while 
for large angles, i.e. max 25a > ° , present method over-predicts TC , and that is due to viscous 
effects, like dynamic stall that are omitted by inviscid, potential theory. Although, our results are 
in good agreement with linear theory, deviation occurs between our numerical results about thrust 
coefficient and experimental, in that high amplitude case ( )0 / 0.75h c = , especially in higher 
unsteadiness and angles of attack i.e. 0.2Str >   and  max 20a > ° . That is due to the following 
reasons: 
 
• Non linear effect that have neglected due to the linearization of the wake (frozen wake) and 

linearization of pressure Kutta condition (Morino condition). 
• Viscous flow effects, like the presence of frictional and viscous pressure drag that are 

opposite to thrust force are not taken into account. 
• Viscous flow effects, like leading edge separation and dynamic stall that reduces the value of 

thrust coefficient and they are not predicted from the present method. 
• 3-D effects that may appear in experimental measurements are neglected by our 2-D method. 
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Figure 37: Average thrust coefficient for a NACA0012 hydrofoil in flapping motion with 

0 / 0.75h c = , 0 2 68θ = °÷ ° , 90ψ = − ° , max 10 35a = °÷ ° , 0.15 0.45Str = ÷ , / 0.33RX c = , 
evaluated by the present method and compared with experimental results by Schouveiler et al 
(2005). 
 
In Fig. 37 we notice that the thrust coefficient increases with the Strouhal number, while it first 
rises then decreases when the maximum of the angle of attack increases. For increasing Str , we 
observe a continuous evolution from a drag-producing to a thrust-producing motion. Thus in the 
parameter region under consideration, negative values of the mean horizontal force have been 
obtained for max 30α > °  and low Strouhal 0.15Str < . In experimental results the maximum of the 
thrust is reached at a value of angle of attack which evolves from max 15a = °  for 0.1Str =  to 

max 30a = °  for 0.45Str = . And the maximum thrust coefficient measured is 1.05TC =  at 

max0.45 & 30Str a= = °  while the hydromechanical efficiency is , / 0.42h x av avF U Pη = = , where 

avP  is the mean value of power absorbed by the foil, Schouveiler at al (2005).  
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Figure 38: Angle of attack for a NACA0012 hydrofoil in flapping motion with 0 / 0.75h c = ,  

90ψ = − ° , for max0.45& 30Str a= = °  and max0.25& 15Str a= = °  that correspond to the 
maximum thrust and efficiency respectively, in the present parameter domain, according to 
experimental results by Schouveiler et al (2005). 
 
Also, Schouveiler at al (2005) mentioned that efficiency presents a well-defined unique peak in 
the considered parameter range. The highest value of the efficiency has been measured for, 

max0.25 & 15Str a= = °  and is 0.73hη = . It is associated with a moderate thrust coefficient 
0.32xC = .  

 
For use as a propulsion system, the conditions of high efficiency together with high thrust are 
required. These two conditions are not encountered outside of the parameter range we explored 
for the present study. In fact, if Fig. 37 shows that higher thrust can be expected when increasing 
the Strouhal number and/or the maximum of the angle of attack, these high thrusts would be 
associated with low efficiency: no more than 40% (see Schouveiler, 2005). The present parameter 
domain includes the maximum of efficiency and the condition of high thrust together with high 
efficiency when the maximum angle of attack or Strouhal number is increased.  
 
It is also worth to mention that experiments of Hover et al (2004), consisted of measuring the 
propulsive performance of a foil oscillating with an imposed angle of attack profile. They report 
that the most efficient situation is achieved with a cosine profile (although highest thrusts are 
found with a sawtooth-profile), see also Fig.38. 
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2.9.6 Hydrofoil in the presence of a sinusoidal background field (gust) 
   
We have already studied one type of unsteadiness that appears in lifting flow problems, i.e. the 
time dependent oscillating motions of the hydrofoil. Another example of unsteady motion occurs 
when the hydrofoil is moving with constant forward speed in a fluid which is non uniform i.e. a 
disturbed background field exists, for example a sinusoidal gust. The last problem has been 
studied by many scientist like Sears and Kerwin using theoretical or numerical methods, see e.g. 
Appendix C, Newman (1977), Belibassakis (1993). Practical examples of this are the motion of a 
hydrofoil ship in waves, an airplane in turbulence or the motion of the propeller blades in a 
spatially non uniform ship's wake. Also, energy extraction from non-uniform internal wavy flows 
using biomimetc flapping-foil systems, could be another very interesting application. 
 
In the present subsection we will consider a hydrofoil in steady motion and on a sinusoidal 
background field in order to obtain results and compare with thin hydrofoil theory developed by 
Sears, see Appendix C and Newman (1977). 
    
According to the linear theory the lift coefficient is given by the following equation 
 

{ }0( ) cos( ) Re ,gi t
L L g LoC t C t C e ωω= =                                                                                          (2.85) 
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In the above, , / 2r g gk c Uω=  denotes gust's reduced frequency, gω  is gust's radial frequency and 

gV  is the amplitude of gust velocity. Also, ,( )r gS k  is the Sears function, defined in terms of 
Hankel functions of second kind, zero and first order: 
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                                                                                             (2.87) 

 
Function ( )rC k  encompasses the memory effects due to the unsteady wake, and for low 
frequencies its limiting value is 1. The Argand diagram of Theodorsen function is presented in 
Figure 39. 
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Figure 39: Argand diagram of Sears function, reduced frequency raises from zero to infinite 
along the complex curve. 
 
If the foil has an angle of attack or performs heaving and/or pitching motion, the problem can be 
solved using linear superposition and the appropriate terms from (2.84) must be added in (2.86). 
 
Results for the magnitude of CL  for NACA0012 at zero angle of attack with 0.05gV V=  in 
comparison with linear theory are presented in the following figures. 
 
 

 
 
Figure 40: History of dipole intensity on the wake, for a NACA0012 in forward motion with 
constant speed U  and at zero angle of attack, in the presence of a sinusoidal gust with 

/ 0.2gV U =  and , 1r gk = . 

10rk =   

0rk →   
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Figure 41: Amplitude of lift coefficient for a NACA0012 in forward motion with constant speed 
U  and at zero angle of attack, in the presence of a sinusoidal gust with / 0.05 0.4gV U = ÷ , 
evaluated by the present method and compared with theoretical asymptotic results. 
 
In Figs. 41 & 42 we present results concerning the amplitude of lift coefficient obtained by the 
present method compared with predictions by linear thin hydrofoil theory. A symmetrical 
NACA0012 hydrofoil is performing forward motion with constant speed U  and at zero angle of 
attack, in the presence of a sinusoidal gust with / 0.05 0.4gV U = ÷ . Number of panels on 
hydrofoil's boundary is 120BN =  and 0.125TSR = , i.e. one period contains 800 time steps.  
 
We can see that our predictions are in good agreement with thin hydrofoil theory, especially 
when gust velocity is moderate and small i.e. / 0.05 0.2gV U = ÷  and in small frequencies , 1r gk <  
for larger velocity amplitudes.  
 
In Figure 42 evolution of LC  is presented for different frequencies corresponding to , 0.65,1r gk =  
and various gust velocities in the range / 0.05 0.4gV U = ÷ . It is demonstrated that present-
method predictions concerning phase lag are also in very good agreement with linear theory. 
According to the above our numerical scheme is accurate for small and moderate gust velocities 
and compatible with linear potential theory.    
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Figure 42: Time history of lift coefficient for a NACA0012 in forward motion with constant 
speed U  and at zero angle of attack, in the presence of a sinusoidal gust with / 0.05 0.4gV U = ÷  
and , 0.3,0.475r gk = , evaluated by the present method and compared with theoretical asymptotic 
results. 
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2.10 Conclusions and suggestions for future work 
 
In the first part of the present thesis an unsteady Boundary Element Method is developed for the 
general unsteady problem of flow around lifting bodies of general shape in unbounded domain. 
Also effects of a nonuniform background velocity field (gust) are modeled.  
 
The method is applied to the hydrodynamic analysis of hydrofoils in several conditions as 
ranging from the simple steady case of cambered hydrofoil in constant angle of attack to the more 
complex situation of thrust producing flapping hydrofoil and the case of hydrofoil in the presence 
of a sinusoidal gust. Present work supplements the evidence of previous studies (see Section 1.1) 
that such biomimetic systems when operate at optimum conditions could achieve high thrust and 
efficiency levels and maneuvering capacity. Results are obtained, illustrating the numerical 
performance of the developed BEM and validating its accuracy through comparisons with other 
methods and experimental data. Numerical predictions include lift and thrust coefficients of the 
system, over a range of motion parameters, as reduced frequency, Strouhal number, maximum 
angle of attack.  
 
Future extensions include the introduction and modeling of the non-linear effects of the wake 
using a free wake model in conjunction with enhanced non-linear pressure-type Kutta condition, 
in order to achieve better predictions in cases of higher unsteadiness. Furthermore, treatment of 
leading edge separation and dynamic stall effects would extend method's applicability to 
operation conditions corresponding to large angles of attack. Also, friction resistance could be 
taken into account using boundary layer theory and experimental and empirical coefficients, see 
e.g. Blevins (1984). All the above extensions would provide in the future even better comparison 
with experimental measurements, and support the derivation of systematic results for the detailed 
investigation of various arrangements of flapping hydrofoil systems operating in stationary fluid 
or in nonuniform background fields. Finally, we conclude that the present method, with the 
appropriate extensions, can serve as a useful tool for assessment and the preliminary design and 
control of biomimetic systems such as flapping foils for efficient marine propulsion and 
maneuvering.    
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3 Hydrodynamic analysis of moving non-lifting bodies beneath the free surface  
 
 
3.1 Summary 
 
In this subsection, we concentrate ourselves to the investigation of the hydrodynamic behavior of 
submerged oscillating bodies. In particular, we study the problem of an oscillating non-lifting 
body of smooth but arbitrary geometry beneath the free surface. This problem includes as 
subproblems of special interest the wave resistance problem in the case of a body with constant 
forward speed and the enforced radiation problem due to body's oscillatory motions. Then in 
Chapter 4 the whole methodology is extended to the case of unsteady lifting bodies beneath the 
free surface and in the presence of waves. At first stage of development, we consider moderate 
submergence and relatively low speeds permitting us to approximately neglect effects due to 
breaking waves and cavitation. Thus, the amplitude of the free-surface waves is small in 
comparison with the wave length, in conformity with linear free-surface wave theory. However 
the motions and the geometry of the body are not linearized. In addition, effect of flat bottom is 
taken into account. The mathematical formulation is based, again, on potential theory and the 
problem is treated in the framework of a fast and robust BEM for the numerical estimation of 
hydrodynamic quantities of interest, as well as the examination of the effects of basic geometrical 
and physical parameters. Representation theorem is applied on both the free surface and the body 
boundaries providing us with a Dirichlet-to-Neumann map ( )DtN  of the boundary values of 
potential an its normal derivative. That integral map will be used together with the free-surface 
boundary conditions to construct an integro-differencial equation for the evolution of the 
dynamical system. A higher order Adams-Bashford-Moulton predictor-corrector method is 
applied for the solution of the discrete form of the above equation, that is obtained applying a 
collocation scheme. In addition a Perfectly Matched Layer (PML) model is used for the 
implementation of conditions at infinity. Finally, stability convergence efficiency of the 
numerical scheme and the performance of the PML is studied through numerical results 
concerning the free-surface elevation over a range of parameters including non-dimensional 
frequency parameter and depth to wave length ratio.     
 
 
3.2 Definition of the Problem  
 
The studied configuration is depicted in Fig. 43. The domain of definition of the problem is an 
open semi-bounded domain 2D ⊆   with boundary D∂  which is supposed to be smooth. The 
problem is time dependent and the oscillating body is represented by a moving boundary ( )BD t∂  
in the earth-fixed frame of reference. The amplitude of the free-surface waves is assumed to be 
small in comparison with the wave length, permitting, as a first approximation, linearization of 
the free-surface boundary conditions on the mean level. However, the present analysis could be 
directly extended to treat the non-linear problem and this task is left as subject for future work. A 
Cartesian coordinate system is introduced with y-axis pointing upwards and its origin at the point 
on the mean free surface (y=0). 
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Figure 43: Definition of the studied problem in the case of a non-lifting body oscillating beneath 
the free surface in mean depth d . 
 
The wave potential ( ), ;x y tΦ  satisfies the Laplace equation 
 

( , ; ) 0 , ( , ) .x y t x y D∆Φ = ∈                                                                                                         (3.1) 
 
A Neumann-type, no entrance boundary condition must be satisfied on the body and on the hard 
bottom 
 

( ) ( ) ( )( , ; ) , ; , ; , ; , ( , ) ,B
B B B

B

x y t x y t x y t b x y t x y D
n

∂Φ
= ⋅ ∈∂

∂
V n                                                (3.2) 

( , ; ) 0 , ,H x y t y H
y

∂Φ
= = −

∂
                                                                                                        (3.3) 

 
where BV  denotes the general body velocity at ( ),B B Bx y D∈∂ .  
 
 
 
 
 

H   

y 

x 

Bn   

Hn   

Fn   

λ   

BD∂   
( )( );FD y x tη∂ =   

( )HD y H∂ = −   

D   

d   
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The linearized dynamic and kinematic boundary conditions should be satisfied on the free surface 
 

( , ; ) ( ; ) , 0,F x y t g x t y
t

η∂Φ
= − =

∂
                                                                                                (3.4) 

( , ; ) ( ; ) , 0,F x y t x t y
n t

η∂Φ ∂
= − =

∂ ∂
  where .

n y
∂ ∂
= −

∂ ∂
                                                               (3.5) 

 
The dynamic boundary condition of the free surface (3.4), is similar to the one applied on the free 
wake of a lifting body examined in Chapter 2, and in the present case, it requires that the 
hydrodynamic pressure as approaching the free surface equals the atmospheric pressure. This 
assumption using Bernoulli's theorem and linearization leads to relation (3.4). The kinematic 
boundary condition (3.5), is also of the same type as the one used in the modeling of the free 
wake, it necessitates that the normal velocities of the fluid and of the free-surface boundary must 
be equal and thus ( ) / 0D y Dtη− = , where /D Dt  is the material derivative. Last relation, after 
linearization leads to (3.5). For details concerning the linear free-surface wave theory see e.g. 
Batchelor (1967), Newman (1977), Kundu & Cohen (2004).    
 
We treat the above as an initial value problem and we assume that the potential and its derivatives 
vanish at large distance from the body 
 

lim and 0,
r→∞

Φ ∇Φ =       ( ) ( )2 2 .B Br x x y y= − + −                                                                    (3.6) 

 
In the above equations indices { }, ,B F H  denote values of the wave field ( ), ;x y tΦ  on body's 
contour, on the free surface and the seabed. Furthermore, ( , )x tη  is the free-surface elevation, g  
is the acceleration of gravity, n  is the unit vector normal to the boundary pointing into D , H  is 
the constant depth (that could be finite), d  is the mean submergence of the body and λ  is the 
wavelength of the radiation wave, see Figure 43.  
 
According to the theory of linear systems, the harmonic state (after the full transition from rest) 
of a linear system, due to harmonic excitation with radial frequency ω , is harmonic oscillatory 
motion with the same frequency. Knowing the frequency of the responding wave we can evaluate 
the corresponding wave length using dispersion relation 
 

( )2 2tanh , .kg kH k πω
λ

= =                                                                                                        (3.7) 

 
where k  is the wave length. In this way, using linear theory an approximate prediction of the 
wave can be provided.    
 
 
 
 
 
 



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 
 

 

74 A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

  

3.3 Boundary integral formulation for non-lifting flows  
 
Applying the representation theorem (Appendix A) to our problem Eqs.(3.1-3.6), concerning a 
non-lifting body, we obtain the following formula for the evaluation of the potential on points in 
D  from the boundary values of it and its normal derivative on the boundaries  
 
for 0( ) Dx  : 

 
 

0
0 0

( ; )

( | )( ; ) ( , ) ( ; ) ( )
B

m
B B m B

b tD t

Gt G t ds
n

x

x xx x x x x





   

 V n  

  
 

0 0
0

( | ) ( | )( | ) ( ; ) ( ).
F

F m
m F

D t

GG t ds
n n
x x x xx x x x



 
 

                                            (3.8) 

 
In the above relation we have used the Green's function consisted of the singularity/fundamental 
solution of 2D Laplace equation corresponding to a Rankine source and a regular part 
corresponding to a mirror source with respect to the bottom ( )y H= −  
 

0 0
0 0 0

ln ( | ) ln ( | )( | ) , ( | ) ,
2 2

m
m

r rG r
π π

= + = −
x x x xx x x x x x                                                           (3.9) 

 
where ( )0 0 0,x y=x  is the field point, ( ),x y=x  is the integration point and ( ), 2m x y H= − −x  its 
image with respect to HD∂  (Fig. 44). The normal derivative on the boundary is easily derived by 
differentiating 
 

[ ]
( ) ( ) ( ){ }0,0 0

0 0 02 2
0 0,

( | )( | ) ( | )1 1 , , ,
2 2( | ) ( | )

mm

m

G x x y y
n r rπ π

⋅∂ ⋅
= − − = − − −

∂   

x xx x x x r x x
x x x x

n rn r
                 (3.10) 

 
where ( )0, 0 0, 2m x y H= − −x  is the image of ( )0 0 0,x y=x  with respect to HD∂  (Fig. 44). In this 
way the bottom boundary condition is identically satisfied (Fig. 45) and the corresponding 
boundary term of the integral representation is dropped. 
    
In a similar way as in Chapter 2, applying the representation theorem (Appendix A) for points at 
the free surface and the body contour, respectively, we obtain a system of two equations, one for 

BΦ  and one for FΦ , written compactly as follows 
   

 
 

0
/ 0 0

( | )1 ( ; ) ; ( , ) ( ; ) ( )
2

B

m
B F m B

D t

Gt b t G t ds
n
x xx x x x x x




  

  

                     
 

0 0
0 0 /

( | ) ( | )( | ) ( ; ) ( ) , ( ) .
F

F m
m F B F

D t

GG t ds D
n n
x x x xx x x x x



 
  

           (3.11) 
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Figure 44: Notation for the definition of flat bottom's partial Green functions using the method of 
images. 
 
 
The above relations are weakly singular integral equations for the unknown boundary values of 

Φ  and 
n

∂Φ
∂

. In this case the values of the derivative are also not known in the free surface. 

Eqs.(3.11) will be used to set-up a Dirichlet-to-Neumann map (DtN) of the boundary values BΦ  
and FΦ  and its normal derivatives. The latter integral map can be used together with the free-
surface boundary conditions (3.4) & (3.5), treated as a dynamical system, providing us with an 
integro-differential equation that governs the evolution of the unknown free surface at the 
specified level of approximation. In the following section we will apply a collocation scheme and 
we will describe how numerical solution can be obtained, using the discrete DtN map and the 
discrete form of the free-surface boundary conditions applied on collocation points.        
 

d   

H   

2H d−   

x 

y 

( ),x y=x   

( )0 0 0,x y=x   

( ), 2m x y H= − −x   

( )0, 0 0, 2m x y H= − −x   

0( | )x xr   

0( | )mr x x   

0,( | )mx xr   

( )HD y H∂ = −   
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Figure 45: Potential through the seabed, induced by flat bottom Green functions distributed on a 
panel on the mean free-surface level, at ( )1,1 , 0x y∈ − = . Notice that the normal to the bottom 
derivative of potential is zero, i.e. Neumann condition (3.3) is valid by definition.  
 
 
3.4  Construction of the discrete DtN map  
 
Following a low-order panel method, the body contour is replaced by a closed polygonal line 
(with BN  denoting the number of panels), the free surface is also approximated by FN  straight-
line panels. The potential and its normal derivative, at each time step, are approximated by 
piecewise constant distributions, as follows 
 

( , ; ) , at panel i, i=1,...,N ,B Bi Bx y t                                                                                    (3.12) 

,( , ; ) , at panel i, i=1,...NF Fi Fx y t                                                                                     (3.13) 

 ( , ; ) , at panel i, i=1,...,N ,BiB
B B i Bi

x y t b
n n


   

 
V n                                                   (3.14) 

( , ) , at panel i, i=1,...,N ,FiF
F

x y
n n




 
                                                                              (3.15) 

 
Also the free-surface elevation is similarly approximated as 
 

( ) , at panel i, i=1,...,N .i Fx                                                                                                (3.16)  

( )HD y H∂ = −   
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Applying a collocation scheme, using the center of each panel as collocation point where 
Eqs.(3.11) are satisfied, the following discretized equations are obtained 
 
for ( , ) , 1,..., :i i Bx y i N=  
 

{ }

( )
{ }

( )
{ }


( ) ( )
{ }1112 12

11

1 1 1 1
,

2

B F B F

ij jij ij
ij

N N N N
ij Fjm m m m

ij Bj ij ij B ij Fjj
j j j j

s ba s
a

B A A B
n

δ

= = = =

∂Φ 
+ Φ + − = ⋅ + − Φ  ∂ 

∑ ∑ ∑ ∑V n
 





                                   (3.17) 

 
for ( , ) , 1,..., :i i Fx y i N=  
 

( )
{ }


( )
{ }

( )
{ }


( )

{ }
21 2122

22

1 1 1 1
,

2

B F B F

ij ij jij

ij

N N N N
Fj ijm m m m

ij Bj ij ij B ij Fjj
j j j j

a s ba
s

B A A B
n

δ

= = = =

∂Φ  
Φ + − = ⋅ + − − Φ ∂  

∑ ∑ ∑ ∑V n






                                   (3.18) 

 
where ijδ  is Kronecker's delta. The quantities m

ijA  and m
ijB  are induced factors and represent the 

potential at collocation point i  due to a unit source or dipole distribution at panel j  (taking into 
account the seabed boundary condition), defined as   
 

( , | , ) ( , ),m
ij m i i j j j j

panel j

A G x y x y ds x y= ∫                                                                                       (3.19) 

( , | , )
( , ).m i i j jm

ij j j
panel j

G x y x y
B ds x y

n
∂

=
∂∫                                                                                    (3.20) 

 
As we have seen in Section 2.5, in the case of low order BEMs, the above integrals can be 
calculated analytically, an example have already been presented in Figure 45.  
 
Equations (3.17) & (3.18) consists a set of B FN N+  equations which can be written in matrix 
form: 
 

{ } { }
{ } { }

{ } { } { }
{ } { }

{ }
{ }

1
11 12 11 12 1

21 22 21 22 1
1

.
B

B B B F B B B F B

F B F F F B F F F
F

N
N N N N N N N N N

F
FN N N N N N N N N

N
A S

a a s s b

a a s s
n

Β ×
× × × × ×

× × × × ×
×

Φ 
      
     =∂Φ   Φ            ∂   

                     (3.21) 

 
Multiplying the above equation with 1−A  we get: 
 
{ } { }

{ }
{ }
{ }

1
1 111 12

21 221 1
1

,
B

B B

F F
F

N
B B N N

F
F FN N

N

V n b

n

Β ×
× ×

× ×
×

Φ 
 ⋅      
   = ⋅ =∂Φ    Φ Φ           ∂  

D D
D

D D
                                                  (3.22) 
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where ( ) 1t −= =D D A S  is the discrete DtN  operator which connects at each point on the 
boundaries BD∂  and FD∂  the potential with its normal derivative. We assume that this matrix is 
invertible. Replacing Eq. (3.22) in the discrete form of the free-surface boundary conditions (3.4) 
& (3.5) 
 

,, 1,...,F i
i Fg i N

t
η∂Φ

= − =
∂

                                                                                                      (3.23) 

, 1,..., ,i Fi
Fi N

t n
η∂ ∂Φ

= − =
∂ ∂

                                                                                                     (3.24) 

 
we obtain the following system of ODEs describing the evolution of the discrete system 
 

( ),
t

∂
=

∂
U f U  where 

{ }
{ }

1

1

,F

F

F N

N
η

×

×

 Φ 
 =
  

U                                                                                         (3.25) 

 
where the vector function f  is defined as follows 
 

( ) .
   

= ⋅ +   
   22 21

0 -gI 0
f U U

-D 0 -D b
                                                                                             (3.26)  

 
Equation (3.26) can be numerically integrated to calculate current values of { },F ηΦ  on the basis 

of information concerning , , , ,B F
F n n

ηΒ

∂Φ ∂Φ Φ Φ ∂ ∂ 
 at previous time steps. Subsequently, the 

DtN  map (3.22) is used to calculate , F

nΒ

∂Φ Φ ∂ 
. Recall that { }B b

n
∂Φ  = ∂ 

 is known at every 

time step from no entrance boundary condition.  
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3.5 Numerical time-integration of the system 
 
Starting from an prescribed initial condition e.g. from the rest, a time step method can be applied 
to obtain the solution. After the evaluation of different methods we have found that a higher order 
Adams-Bashford-Moulton predictor-corrector method provides the required accuracy, stability 
and efficiency;  see also Longuet-Higgins-Cokelet (1976) and Johannessen & Swan (1997). The 
used system requires calculation of only two derivative equations at each time-step, while other 
single step methods requires one evaluation per order of accuracy. The error associated with this 
scheme is of order ( )5t∆  where t∆  is the time step, ensuring that quick convergence is achieved.  
 
To be more precise, if we know ( )tU  we have at the corrector step 
 

( ) ( ) 9 ( ) 19 ( ) 5 ( ) ( 2 ) ,
24 pre

tt t t t t t t t t t∆  + ∆ = + + ∆ + − −∆ + − ∆ U U f f f f                                      (3.27) 

 
with predictor 
 

( )( ) ( ) ,pre t t pret t t t+∆+ ∆ = + ∆f f U                                                                                                (3.28) 
 
where 
 

[ ]( ) ( ) 55 ( ) 59 ( ) 37 ( 2 ) 9 ( 3 ) .
24pre

tt t t t t t t t t t∆
+ ∆ = + − −∆ + − ∆ − − ∆U U f f f f                               (3.29) 

 

Notice that, the calculation of U  at time step t t+ ∆  requires the values of derivatives 
t

∂
∂
U  

evaluated at three time steps in the past and a prediction of 
t

∂
∂
U  at the future time step. For the 

last one we use preU  from equation (3.29) and equation (3.26) with the DtN map at the future 
time step, as the index in (3.28) denotes, which can be calculated because the motion of the foil is 
prescribed.  
 
In the following, we will present two examples of calculation, relevant with two problems of 
special interest for Offshore and Marine Engineering. First of all, the wave generation due to an 
oscillating non-lifting body in prescribed motion, i.e. the enforced radiation problem is 
considered. Subsequently, the wave generation due to a hydrodynamically shaped body, moving 
with constant speed beneath the free surface, i.e. the wave resistance problem is studied.    
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Figure 46: Radiation problem. Free-surface elevation generated by large amplitude oscillations of 
an elliptically shaped, fully immersed body at 2 / 1.63gω Η = . The upper and lower limit of 
heaving motion are shown using dashed lines. 
 

 
 
Figure 47: Wave resistance problem. Free-surface elevation generated by forward motion of an 
elliptically shaped, fully immersed body at / 1Fn U ga= = .  
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To proceed, we present in Figs. 46 and 48 the calculated free-surface elevation in the case of an 
elliptically-shaped, fully immersed body of axis ratio / 8a b =  (where a  is the length and b  the 
height of the body), performing oscillations in heaving motion with large amplitude / 0.25h b = , 
in water of dept / 8H b = , after 4 periods starting from rest. The mean submergence is 

/ 1.75d b =  and thus, the vertical oscillation is limited in the interval 2.5 / 1y b− < < − , shown 
using dashed lines in Fig.46. In the examined case the frequency parameter is 2 / 1.63gω Η =  
corresponding to intermediate wave conditions / 0.27H λ = , where H is water depth and λ  the 
wavelength of free waves in the water strip at the examined frequency predicted by linear theory 
Eq. (3.7). Furthermore, the time history of calculated free-surface elevation is plotted in Fig.48 
for all over the horizontal domain for the first 4 periods of oscillation starting from rest. We 
clearly observe the generation of symmetrical waves propagating to both directions with phase 
speed C  in compatibility with linearized theory. 
 
The free surface elevation for another example is presented in Figure 47 and 49. In that case, the 
same elliptical body performs forward motion with constant speed U , and corresponding Froude 
number / 1Fn U ga= = , submergence / 3d b = , in water of dept / 8H b =  and corresponding 

bathymetric Froude number / 0.71HFn U gH= = , starting from rest. The depth is intermediate 
with / 0.33H λ = , where λ  is the wavelength of free waves in the water strip at the examined 
velocity predicted by linear theory, ( )2 / tanh , 2 / .U g k kH k π λ= =  Furthermore, the time 
history of calculated free-surface elevation is plotted in Fig.49 all over the horizontal domain and 
from 0t =  to 3 /t Uλ= . We clearly observe the generation of a trough over the high pressure 
region near the bow, followed by a crest. The main wave is propagating with phase speed U , in 
compatibility with linearized theory.  
 
Stability and convergence of the present scheme has been studied by extensive numerical 
investigation in cases of  oscillatory motion with respect to both degrees of freedom (heave, 
pitch), as well as in cases of to steady forward motion. The above analysis results in that a 
minimum number of 25FN =  panels per wavelength on the free surface is required, while for 
harmonic motion the time step must be 0.04t T∆ <  (4 % of the period of oscillation). Numerical 
stability is achieved when a of Courant-Friedrichs-Lewy (CFL-type) condition is satisfied, as 
follows 
 

1,C t
x
∆
∆

                                                                                                                                    (3.30) 

 
where C is the celerity of the generated free-surface waves. The exact critical value is frequency 
dependent and it is smaller for lower frequencies, it is also a function of Froude number in the 
case where forward motion dominates.    
 
In the previous example we did not left the radiation wave field to reach at the limits of the 
domain and thus we obtained natural solutions that were not affected by reflection on the end of 
truncated domain. An important task concerning the present time-domain scheme deals with the 
treatment of infinite domain and the implementation of appropriate radiation-type conditions at 
infinity. 
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Figure 48. Time history of free surface for the example of Fig. 46. 
 

 
 

Figure 49. Time history of free surface for the example of Fig. 47. 
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3.6 Conditions at infinity - Implementation of PML model 
 
Although in the case of purely linear waves, conditions at infinity could be treated by using the 
appropriate time-dependent Green function, the present work is based on the truncation of the 
domain and on the implementation of Perfectly Matched Layer (PML) model, as e.g. described 
by Berenger (1994) and Turkel & Yefet (1998). The latter model permits the numerical 
absorption of the waves reaching the left ( )x a=  and right ( )x b=  termination ends of the 
truncated domain with minimum reflection. This selection is motivated by the fact that PML 
model supports the efficient extension of the present numerical scheme to treat generation and 
propagation of nonlinear waves excited due to large motion(s) of floating body at low 
submergence depths; see also Belibassakis and Athanassoulis (2011). Such an extension is left to 
be the subject of future work. 
 
In order to apply the above PML-type absorbing layer the time-derivative operator in the left 
hand-side of (3.25) is substituted by the following  mixed-type operator: 
 

( ) ( ),d x f
dt

σ+ =
U U U                                                                                                                 (3.31) 

 
where the PML-parameter ( )xσ  is a positive absorption coefficient with support extended over 

several wavelengths from the artificial end-type boundaries ( ),x a x b= =  used to truncate the 
computational domain. In the present work we use selection of the PML coefficients, as 
described by Collino and Monk (1998) and applied by Belibassakis et al (2001) and Belibassakis 
and Athanassoulis (2011) to water wave problems. In accordance with the previous works the 
optimum distribution of the absorption coefficient is of the form: 
 

0

0

,

( ) 0 , ,

,

p

p

x a l if x a l
l

x if a l x b l

x b l if x b l
l

σ

σ

σ

 − −
< +

= + < < −


− + > −


                                                                    (3.32) 

 
where  0σ  is a positive parameter controlling the magnitude of the ( )xσ  distribution, l  adjusts 

the support of ( )xσ  and is comparable to the characteristic wave length of the generated wave 
and p   is a positive parameter that controls the rate of absorption in the PML.   
 
To investigate the performance of the PML we used the example of Figs.46 and 48 of an 
elliptically-shaped body of axis ratio / 8a b = , performing heaving oscillations with large 
amplitude / 0.25h b = , in water of dept / 8H b = . The mean submergence is / 1.75d b =  and the 
vertical oscillation is limited in the interval 2.5 / 1y b− < < − . The frequency parameter varies 

2 / 0.41 6.5gωΩ = Η = ÷  corresponding to wave conditions / 10% 103%H λ = ÷ . 
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Figure 50: Implementation of the PML for 2 / 0.41gω Η =  & / 10%λΗ = . The position of PML 
is indicated by magenta dashed lines. 
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Figure 51: Implementation of the PML for 2 / 1.63gω Η =  & / 27%λΗ = . The position of PML  
is indicated by magenta dashed lines. 
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Figure 52: Implementation of the PML for 2 / 6.52gω Η =  & / 103%λΗ = . The position of PML 
is indicated by magenta dashed lines. 
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For these cases of moderate and deep water, we present in Figs. 50-53 the performance of the 
PML model, with parameters / 1,1.5, 2l λ = , 2,3, 4p =  and 0 2, 4σ = . In particular, the 
calculated free-surface elevation after 4 and 8 periods is plotted in the upper and lower subplots, 
as obtained by using the absorbing layer. In addition, in the same figure the previous results are 
compared against a reference numerical solution (indicated by crosses) obtained by using a very 
long (characterized as infinite) computational domain ensuring that the generated wave 
disturbance has not reached its horizontal ends at the two times considered / 4 &8t T = . In order 
to punctuate the importance of PML in truncated domains, a solution with 0 0σ =  were added in 
every plot, leading to denaturized free-surface elevations due to reflection. We clearly observe in 
the above Figs. that the wave decays within the PML while the numerical solution remains in 
very good compatibility to the reference solution outside the absorbing layer. Based on extensive 
numerical evidence we conclude that the following PML parameters are suitable for the studied 
problem: / 1 2λ = ÷ , 2 4p = ÷  and 0 2 4σ = ÷ . 
 
 
3.7 Conclusions and suggestions for future work 
 
An unsteady potential-based Boundary Element Method is developed and applied to the analysis 
of translating and oscillating non-lifting bodies operating beneath the free surface at prescribed 
motion. The modeling includes finite-depth effects. The potential representation theorem is 
applied to the body contour and the free surface for the construction of a DtN  map that connects 
Dirichlet to Neumann boundary data of the potential. The latter map is applied to formulate the 
free surface boundary conditions with respect to the dynamical variables leading to set of ODEs. 
The solution of the dynamical system is obtained by means of a higher order Adams-Bashford-
Moulton predictor-corrector scheme. For the implementation of conditions at infinity the domain 
is truncated and the PML model is applied to absorb the waves reaching the ends with minimum 
reflection. The performance of the PML in the present problem is numerically studied by 
simulations and the appropriate values of its numerical parameters were identified.  
 
The present study is concentrated on the modeling of free surface and finite depth, whose effects 
for relatively low submergence and depth, respectively, could become quite important. We 
examined problems of enforced radiation due to oscillating non-lifting bodies of arbitrary 
geometry and the wave resistance of non-lifting bodies advancing with constant forward speed. 
Results were shown illustrating the numerical performance of the developed BEM.  Numerical 
predictions are presented demonstrating the evolution of free-surface elevation over a range of 
motion parameters, such as non-dimensional frequency for the radiation and Froude number & 
bathymetric Froude number for the wave resistance problem, in moderate and deep water.  
 
Future extensions and enhancements include the introduction and modeling of non-linear free-
surface boundary conditions, effects of shallow water and also non-uniform bathymetry, for the 
study of engineering applications near the coastal zone. The first one can be done quite 
straightforward due to the choice of truncation of the domain and the implementation of 
condition at infinity with the absorbing layer model.  
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4 Hydrodynamic analysis of lifting bodies beneath the free surface and in waves  
 
 
4.1 Summary 
 
In the final section, the problem of unsteady lifting bodies beneath the free surface and in waves 
is considered. That problem have been also studied, using extended Theodorsen's and Sears's  
unsteady linear hydrofoil theory (Newman, 1977), by Grue & Palm (1988). For the detailed 
investigation of the effects of free surface on the unsteady-body hydrodynamics, the potential 
based panel method, that has been developed in the first chapter for lifting bodies in unbounded 
domain and in the second for non-lifting bodies beneath the free surface, is extended in order to 
treat the more complex problem of unsteady 2D lifting bodies operating beneath the free surface 
in the presence of incoming waves. In the same way as in previous chapters, we consider 
moderate submergence and relatively low speeds permitting us to approximately neglect effects 
due to breaking waves and cavitation. However, no linearization has been applied on the motions 
and the geometry of the body. We begin with the definition of the problem and the derivation of 
the Boundary Integral Equation on the free surface and on the body contour. Thereafter, we 
present the construction of the discrete DtN  map and the solution of the free-surface boundary 
conditions that describe the evolution of the dynamical system. Finally, an appropriate form of 
Bernoulli's theorem is derived for the calculation of pressure boundary values on the body. 
Numerical performance of the scheme is tested through plenty simulations concerning the thrust 
coefficient and the efficiency of the system over a range of motion parameters, including Froude 
number, non dimensional submergence of the body and bathymetry, reduced frequency, Strouhal 
number, feathering parameter. Results are compared against corresponding calculations in 
infinite fluid. Also, comparisons against other methods are presented and discussed. Our results 
indicate  that good performance can be obtained under optimal operating conditions. Moreover, 
the free-surface effects are important for moderated to large Froude numbers and low 
submergence and have to be taken into account. Thus, the present method after enhancements can 
serve as a useful tool for assessment and the preliminary design and control of such systems 
extracting energy from sea waves for marine propulsion. 
 
 
4.2 Formulation of the problem 
 
Consider a 2D lifting body, e.g. a hydrofoil operating in unsteady motion beneath the free surface 
and in the presence of incoming waves (Figure 53). The domain of definition of the problem is an 
open semi-bounded domain 2D ⊆   with smooth boundary D∂ . The problem is time dependent 
and the oscillating body is represented by a moving boundary ( )BD t∂  in the earth-fixed frame of 
reference. The amplitude of the free-surface waves is assumed to be small in comparison with the 
wave length permitting as a first approximation, linearization of the free-surface boundary 
conditions on the mean free-surface level (shown in Fig.53 using a dashed line). However, the 
present analysis could be directly extended to treat the non-linear problem and this task is left to 
be subject for future work. A Cartesian coordinate system is introduced with y-axis pointing 
upwards and tits origin at the point on the mean free surface (y=0). 
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Figure 53: Definition of the studied problem in the case of hydrofoil (of chord c ) moving under 
the free surface (at mean submergence d ) 
 
Let ( , ; )T x y tΦ  the total wave potential that consists of the incident wave potential ( , ; )I x y tΦ  
which is assumed to be known and the disturbance potential ( , ; )x y tΦ  which can be decomposed 
to the enforced radiation and the diffraction potential field. Also, ( ; )x tη  denotes the free-surface 
elevation associated with the disturbance field, g  the acceleration of gravity, H  the constant 
depth, d  the mean submergence of the body, BV  the body's motion derivative and I I= ∇ΦV  the 
derivative of the incident wave field. Finally, n denotes the unit normal vector pointing into the 
interior of D .  

 
The non-lifting part of the problem is written (as we have discuss in the previous chapter) for the 
total wave potential as follows 

 
( , ; ) 0 , ( , ) ,T x y t x y D∆Φ = ∈                                                                                                      (4.1) 

 
( , ; ) , ( , ) ,T

B B B
B

x y t x y D
n

∂Φ
= ⋅ ∈∂

∂
V n                                                                                          (4.2) 

( , ; ) 0 , ,T x y t y H
y

∂Φ
= = −

∂
                                                                                                        (4.3) 

( , ; ) ( ; ) , on 0,T x y t g x t y
t

ηΤ

∂Φ
= − =

∂
                                                                                     (4.4) 

( , ; ) ( ; ) , 0,T x y t x t y
n t

ηΤ∂Φ ∂
= − =

∂ ∂
                                                                                            (4.5) 
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lim and lim .T I T Ix x→±∞ →±∞
Φ = Φ ∇Φ =∇Φ                                                                         (4.6) 

 
The governing equation is Laplace equation (4.1), supplemented by the body boundary condition 
(4.2) and the hard bottom no-entrance boundary condition (4.3). The linearized dynamic (4.4) and 
kinematic (4.5) boundary conditions are satisfied on the mean free surface.  We treat the above as 
an initial value problem and we the disturbance potential and its derivatives vanish at large 
distance from the body (4.6). 
 
Furthermore, we assume that the incident wave field IΦ  is a harmonic function that satisfies the 
equations of the linear free-surface boundary value problem with the absence of the body i.e. Eqs. 
(4.1), (4.3), (4.4), (4.5), hold for IΦ  too. Thus, the disturbance wave potential must satisfy the 
following equations: 
 

( , ; ) 0 , ( , ) ,x y t x y D∆Φ = ∈                                                                                                        (4.7) 
 

( ) ( ) ( ) ( )( , ; ) , ; , ; , ; , ; , ( , ) ,B
B I B B

B

x y t x y t x y t x y t b x y t x y D
n

∂Φ
= − ⋅ ∈∂  ∂

V V n                          (4.8) 

( , ; ) 0 , ,H x y t y H
y

∂Φ
= = −

∂
                                                                                                        (4.9) 

( , ; ) ( ; ) , on 0,F x y t g x t y
t

η∂Φ
= − =

∂
                                                                                     (4.10) 

( , ; ) ( ; ) , 0,F x y t x t y
n t

η∂Φ ∂
= − =

∂ ∂
                                                                                             (4.11) 

lim and 0.
x→±∞

Φ ∇Φ =                                                                                                                  (4.12) 

    
Moreover, in the case of lifting flows around sharp-ended bodies like a hydrofoil, the problem is 
supplemented by the following equations 
 

( )
( ) ( ), ,

lim ( , ) , ( , ) ,
TE TE

u l
B B W TE TE B

x y x y

x y x y Dµ
→

Φ −Φ = ∈∂                                                                           (4.13) 

( , ; ) ( , ; ) , ( , ) ,u l
W W Wp x y t p x y t x y D= ∈∂                                                                                    (4.14)                    

 
( , ; ) ( , ; ) , ( , ) ,

u l
W W

W
w w

x y t x y t x y D
n n

∂Φ ∂Φ
= ∈∂

∂ ∂
                                                                             (4.15)

                     
( ), ;

0, ( , ) .W
W

D x y t
x y D

Dt
µ

= ∈∂                                                                                             (4.16) 
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The indices { }B,H ,F ,W  are used to denote values of the disturbance field ( , ; )x y tΦ  on the body 
surface, the seabed, on the free surface and  the wake of the hydrofoil, respectively and 

u l
W W Wµ = Φ −Φ  denotes the potential jump (the dipole intensity) on the free wake and 

,T m
D
Dt t

∂
= + ⋅∇
∂

V  is the material derivative based on the mean total velocity 

, ,
, 2

u l
T W T W

T m

∇Φ +∇Φ
=V  on the trailing vortex sheet.  

 
Recalling form Chapter 2 that equation (4.13) is the Morino type Kutta condition on the trailing 
edge that demands continuity of the potential jump at the intersection of the body contour and the 
trailing vortex sheet. Moreover, equations (4.14) & (4.15) are the dynamic and kinematic 
conditions on the trailing vortex sheet, stating that the pressure and the normal to the boundary 
velocity are continuous through WD∂ . Eq.(4.16) can be derived from (4.14) & (4.15) and 
expresses Kelvin's law, i.e. the conservation of circulation (expressed by Wµ ) along a material 
curve. As we have discuss, that relation states that WD∂  evolves in time, moving with the mean 
velocity. Enforcement of the Kutta condition, in conjunction with the Eq.(4.16) and linearization, 
leads to the following expression concerning the potential jump on the trailing vortex sheet 
 

( ) ( ); ; , ( , ) ,W W TE Wt t t t x y Dµ µ= + ∆ −∆ = ∈∂x x V x                                                              (4.17) 
 
where TEV  denotes an appropriate velocity determined from the motion derivative of the foil 
trailing edge.  
 
As we have discuss in Chapter 2, the above approximation permits the calculation of vorticity 
transport on the free trailing vortex sheet, which is geometrically modeled by the path of the 
motion of trailing edge of the hydrofoil ("frozen wake model", see Politis 2011). Future 
extensions of the present work will include a fully nonlinear free wake model, in conjunction 
with enhanced pressure-type Kutta condition requiring that the pressure difference at the trailing 
edge to be zero, see e.g. Bose (1992) and Politis (2011). 
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4.3 Representation theorem for boundary values of potential - Boundary integral equation  
 
In the case of lifting flows around unsteady bodies under the free surface, and in the additional 
presence of incoming waves, the representation theorem (3.8) concerning the disturbance 
potential should be extended in order to include the contribution from the trailing vortex sheet 

WD∂ . Also, the right-hand side of the body boundary condition (4.8) includes the effect of 
incoming wave potential. Thus, the representation theorem, Eq. (3.8) is modified by adding an 
extra (last) term (that appears in the representation in the case of lifting flows in unbounded 
domain Eq.2.17) in the right-hand side as follows  
 
for 0( ) Dx  : 

 
 

0
0 0
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 
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D t
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


 

                                                                            (4.18)   

 
where 

 

u l
W W W W     is the potential jump or the dipole intensity at the wake. 

 
In the same way, the BIEs (3.11) are modified 
 
for 0 /( ) B FDx  : 
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D t
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


 

                                                                     (4.19)   

 
Eqs. (4.19) and Morino condition (4.13) can be used to set-up the modified DtN  map of the 
boundary values BΦ  and FΦ  and its normal derivatives. The latter integral map can be used 
together with the free-surface boundary conditions (4.10) & (4.11), treated as a dynamical 
system, providing us with an integro-differential equation that governs the evolution of the 
unknown free surface at the specified level of approximation. In the following section we will 
apply a collocation scheme and we will see how numerical solution can be obtained, using the 
discrete DtN map and the discrete form of the free-surface boundary conditions applied on 
collocation points.         
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4.4 Construction of the discrete DtN map 
 
A low order panel method is applied again, the body contour is replaced by a closed polygonal 
line (with BN  denoting the number of panels), the free surface is approximated by FN  straight-
line panels. Potential, derivatives, potential jump on the wake and the free-surface elevation are 
approximated by piecewise constant distributions, as follows 
 

( , ; ) , at panel i, i=1,...,N ,B Bi Bx y t                                                                                    (4.20) 

,( , ; ) , at panel i, i=1,...NF Fi Fx y t                                                                                     (4.21) 

    ,( , ; ) , at panel i, i=1,...NW W Wi Wix y t                                                                      (4.22) 

 ( , ; ) , at panel i, i=1,...,N ,BiB
B I B i Bi

x y t b
n n

        
V V n                                         (4.23) 

( , ) , at panel i, i=1,...,N ,FiF
F

x y
n n




 
                                                                              (4.24) 

( ) , at panel i, i=1,...,N .i Fx                                                                                                (4.25)  
 
Applying a collocation scheme, using the center of each panel as collocation point where Eqs. 
(4.19) are satisfied, the following discretized equations are obtained 
 
for ( , ) , 1,..., :i i Bx y i N=  
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for ( , ) , 1,..., :i i Fx y i N=  
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                                                                                                                                                   (4.27)                                                                                                                                                                                           
And in the lifting problem we have the discretised form of Morino condition (4.13) 
 

1 1.Wµ ΒΒΝ Β= Φ −Φ                                                                                                                      (4.28) 
 
Recall that, the quantities m

ijA and m
ijB , which can be evaluated analytically (Section 2.5), are 

induced factors and represent the potential at collocation point i  due to a unit source or dipole 
distribution at panel j     
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Relation (4.28) can be replaced in (4.26) and (4.27): 
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Similarly as in the previous chapter, the above equations are put in matrix form as follows 
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{ } { }

{ }
{ }

1
11 12 11 12 1

21 22 21 22 1
1

B
B B B F B B B F B

F B F F F B F F F
F

N
N N N N N N N N N

F
FN N N N N N N N N

N
A S

a a s s b

a a s s
n

Β ×
× × × × ×

× × × × ×
×

Φ 
      
     =∂Φ   Φ            ∂   

   

       
{ } ( )

{ } ( )
{ }( )

1 1

1 1
2 1

.B W

W

F W

N N
W N

N N

W

w

w
µ

× −

− ×
× −

 
 +
  


                                     (4.33) 
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Therefore, in the present case, the DtN  map becomes 
 
{ } { }

{ }

1
1

1
1

( ),
B

B

F
F

N
N

WF
F N

N

b

n
µ

Β ×
×

×
×

Φ 
  
 = ⋅ +∂Φ   Φ     ∂  

D P                                                                                      (4.34) 

 

 
with  
 
 

11 12 1

21 22

,− 
= = 
 

D D
D A S

D D
                                                                                                           (4.35) 

 
and 
 

{ }( )( )1 1
1 1

2

( ) .
W

W W N
µ µ−

− ×

   = = ⋅ ⋅    

P
P A W

P
                                                                                (4.36) 

 
Thus, in the case of lifting flows beneath the free surface, the system of ODEs, describing the 
evolution of the discrete system is 
 

( ),d
dt

=
U f U                                                                                                                                (4.37) 

 
where 
 

{ }
{ }

1

1

,F

F

F N

N
η

×

×

 Φ 
 =
  

U                                                                                                                        (4.38) 

 
and 
 

2

( ) .
( )Wµ

    
= ⋅ + +     
     22 21

00 -gI 0
f U U

-P-D 0 -D b
                                                                         (4.39) 

 
We observe in the above equation that the effect of the trailing wake is taken into account 
through  2 ( )WµP  and the effect of the incident wave through the component /I I Bn= ∂Φ ∂V  in   
b .  
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4.5  Calculation of pressure - Bernoulli's Theorem 
 
In the present section we will present the derivation of an appropriate form of Bernoulli's theorem  
for the calculation of pressure distribution on the boundary of a body in unsteady lifting flow 
beneath the free surface and in the presence of waves modeled by an harmonic incident wave 
field ΙΦ . In contrary with the case of gust velocity that was a rotational field, the present incident 
wave field is irrotational and thus Bernoulli's theorem can be applied. Therefore, conservation of 
energy along a stream line in a free-surface flow can be written  
 

( ) ( )21 , ( , ) ,
2

atmT
T

p p gy C t x y D
t ρ

−∂Φ
+ ∇Φ + + = ∈

∂
                                                              (4.40) 

 
where ( )C t  can be set to zero with redefinition of the potential, i.e. 
 

( )21 ,
2

atm T
T

p p gy
tρ

− ∂Φ
= − − ∇Φ −

∂
                                                                                          (4.41) 

 
where ( , )p x y  is the pressure at ( , )x y D∈  and atmp  is the atmospheric pressure on the free 
surface, ρ is the density of the fluid g  is the acceleration of gravity and the last term is the 
hydrostatic component. Also, IΤΦ = Φ +Φ  is the total wave potential consists of the disturbance 
potential Φ  (enforced radiation and diffraction potential field) and the incident wave potential 

IΦ . Also, 
t

∂Φ
∂

 denotes time rate of potential according to a fixed observer with regard to an 

inertia reference frame. 
 
As we have already seen, using BEM's we can evaluate the trace *Φ  of the disturbance potential 
on the boundary and differentiating we can calculate the rate of change according to a body-fixed 

reference frame, denoted by 
*d

dt
Φ . Recall now from Section 2.7 relation (2.56)  

 
*

,B
d
dt t
Φ ∂Φ

= ∇Φ⋅ +
∂

V                                                                                                                (4.42) 

 

The above equation connects the inertia rate of change 
t

∂Φ
∂

 of the disturbance potential, which is 

required in Bernoulli's equation with the body-fixed rate of change of the potential's trace 
*d

dt
Φ  

which is calculated using BEMs. Using (4.42), (4.41) becomes 
 

( )
*

2inf 1 .
2B I

p p d gy
t dtρ
Ι− ∂Φ Φ

= − − +∇Φ ⋅ − ∇Φ +∇Φ −
∂

V                                                         (4.43) 
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In relation (4.43), the term ∇Φ  is the space gradient of the disturbance potential Φ. But using 
BEM we calculate the surface gradient *∇Φ  of the trace *Φ . Recall also relation (2.61) 
  

( )= .ϕ∇Φ ∇ + ⋅∇Φn n                                                                                                               (4.44) 
 
The above relation connects the space gradient of the disturbance potential with the surface 
gradient of the trace of the disturbance potential on the boundary. But the normal to the boundary 
derivative is known from the no entrance boundary condition (4.8), thus replacing (4.8) into 
(4.44), it follows 
 

( )*
B B I B B

b

= .∇Φ ∇Φ + ⋅ −∇Φ ⋅


V n n n                                                                                          (4.45) 

 
Substituting relation (4.45) into (4.43) we obtain the final form of Bernoulli's equation which is 
required for the calculation of pressure distribution on the boundary: 
 

( ) ( )
* 2* *1 .

2
atm

b B I b
p p d b b gy

t dtρ
Ι− ∂Φ Φ

= − − + ∇Φ + ⋅ ⋅ − ∇Φ +∇Φ + ⋅ −
∂

n V n                            (4.46) 

 
Or using the definition of the non-dimensional pressure coefficient: 
 

2
,1

2

atm
p

p pC
Uρ

−
=                                                                                                                           (4.47) 

 
where U  is a characteristic velocity of the motion of the body e.g. the forward velocity, 
 
we get: 
 

( ) ( )
* 2* *

2

1
2 ,1

2

b B I b

P

d b b gy
t dtC

U

Ι∂Φ Φ
− − + ∇Φ + ⋅ ⋅ − ∇Φ +∇Φ + ⋅ −

∂=
n V n

                                  (4.48) 

 
or in discrete form: 
 
for ( , ) :i ix y D∈  
 

( ) ( )
* 2* *

2

1
2 .1

2

i i
i b Bi Ii i b ii i

Pi

d b b gy
t dtC

U

Ι∂Φ Φ    − − + ∇Φ + ⋅ ⋅ − ∇Φ +∇Φ + ⋅ −   ∂=
n V n

                     (4.49) 
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4.6 Free-surface effects on wave-powered propulsion using flapping-foil biomimetic systems   
 
As we have discussed in section 1.2 biomimetic propulsors is the subject of extensive 
investigation, first of all because they could used as the main propulsion system providing 
efficient thrust production for marine purposes and secondly, due to the fact that they are ideally 
suited for converting directly environmental (sea wave) energy to useful thrust. 
 

 
Figure 54.  Sketch of a flapping-wing system used for augmenting ship propulsion in waves 

 
More specifically, ongoing research is focused on the hydrodynamic analysis of flapping wings 
located beneath the ship’s hull, operating in random motion; see Fig.54. The wing undergo a 
combined transverse and rotational oscillatory motion, while the ship is steadily advanced in the 
presence of waves, modeled by directional spectrum. The present system is investigated as an 
unsteady thrust production mechanism, augmenting the overall propulsion system of the ship. 
The horizontal wing undergoes a combined vertical and angular (pitching) oscillatory motion, 
while travelling at constant forward speed. The vertical motion is induced by the random motion 
of the ship in waves, essentially due to ship heave and pitch, at the station where the flapping 
wing is located. Wing-pitching motion is controlled as a proper function of wing-vertical motion 
and it is imposed by an external mechanism. 
 
In the present work we focus to the effects of free surface and incoming waves to the thrust 
production of flapping-foil propulsor systems. A reference to the famous Gray's paradox and an 
explanation, related to wave energy extraction, is given in Subsection 4.6.1. In Subsection 4.6.2 
Numerical results are presented and discussed concerning hydrofoils in flapping motion under the 
free surface and in finite depth, in order to examine the rate of convergence, stability and 
efficiency of the numerical scheme. Subsequently, comparisons are presented  with other 
methods from the literature, in order to examine the range of applicability, as well as the 
limitations of the developed method. In particular, in Subsec. 4.6.3 the hydrofoil in steady motion 
beneath the free surface is examined focusing on the wave resistance problem and the effects of 
free surface on lift production, also the effect of the angle of attack and the direction of 
circulation on the form of the generated wave is noticed. In Subsec. 4.6.4. the additional effects 
of oscillatory motion(s) are presented. In the same Subsection the behavior of hydrodynamic 
quantities as the Froude number decreases and the boundaries moving away of the flapping foil is 
examined, testing also compatibility with the method developed in Chapter 2, concerning the 
same problem in infinite domain. Finally in Subsec. 4.6.5, results are presented for the system 
operating as unsteady thruster in incoming waves.  
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Consider a flapping hydrofoil beneath the free surface and in the presence of incoming waves 
(Fig. 54). The flapping motion of the foil consists of a forward motion 
  

( ) ( ),s t U t F t= − ⋅ ⋅                                                                                                                      (4.50) 
 
a linear (heaving) oscillatory motion in y-direction 
 

{ }0( ) cos( ) ( ) Re ( ),i t
oh t h t F t h e F tω ϕω ϕ += + ⋅ = ⋅                                                                        (4.51) 

 
and rotational (pitching) oscillations about a pivot axis 
 

{ }0( ) cos( ) Re ( ),i t
ot t e F tω ψ ϕθ θ ω ψ ϕ θ + += + + = ⋅                                                                       (4.52) 

 
where 0h  and oh  are the  amplitude  and the complex amplitude of heaving motion, 0θ  and oθ  
are the amplitude and the complex amplitude of the pitching rotation, which is positive 
counterclockwise, pitching is considered around hydrofoil's pivot axis which is located on the 
chord and at distance RX  from the leading edge, ψ  is the phase difference between the heave 
and pitch which in the following analysis is selected 90ψ = ° ,  ϕ  is the phase difference between 
the heaving motion and the free-surface elevation due to the incident wave, ω  is the radial 
frequency which is set same for the two oscillatory motions and i  is the imaginary unit. Also d  
is the submergence of the foil and H  is the distance between the bottom and the mean free-
surface level. In addition, 2

0( ) 1 exp ( / )F t f t T = − −   is a filter function permitting smooth 
transition from rest to the harmonic oscillatory motion. 
 
Thus every point B of the hydrofoil with initial position according to an inertia coordinate system 
( )0 0,B Bx y  is moving along the curve: 
 

0 0( ) cos ( ) sin ( ) ( ),B B Bx t x t y t s tθ θ= − −                                                                                     (4.53) 

0 0( ) sin ( ) cos ( ) ( ).B B By t x t y t h tθ θ= + +                                                                                     (4.54) 
 
In the context of linearized free-surface wave theory, the incident wave is modeled by the 
following expressions concerning the free surface elevation and the associated potential 
 

( )0( ; ) cos( ) ,I x t kx F tη η ω= −                                                                              (4.55) 
 
and 
 

( )0 cosh( ( ))( ; ) sin( ) ,
cosh( )I

g k y Ht kx t F t
kH

η ω
ω Ι

Ι

+
Φ = − −x                                                                  (4.56) 
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where 0η  is the corresponding amplitude of free-surface elevation, ( )2 tanhkg kHω
Ι
=  is the 

angular frequency of the incident wave. 
 
The ratio of inertial to gravitational forces that controls the effects of the waves generated from 
the forward motion of the foil is expressed by Froude number /nF U cg= . The unsteadiness of 
the motion is measured by the non-dimensional reduced frequency / 2 ,rk c Uω=  where c  is the 
chord length of the hydrofoil, which can be used both in the cases where heaving motion exists or 
not. In the case of heaving or flapping motion we can use Strouhal number 

( )/ 2 / rSt h U h c kω π π= = . Another motion parameter is the feathering parameter 0 0/U hε θ ω= , 
introduced by Lighthill (1970). This non-dimensional number provides a measure of the relative 
magnitude of pitch and heave oscillations. The maximum angle of attack maxa  in still water, is 
also considered. The instantaneous angle of attack can be evaluated: 
 

1 /( ) tan .
/

dh dta t
ds dt

θ−  = − 
 

                                                                                                          (4.57)    

 
Of course the angle of attack is affected by the downwash induced from the wake and also by 
wave velocity and these effects are not taken into account in the above expession.   
 
As we have seen in the previous chapter, using linear theory, an approximate prediction of the 
wave length can be provided. According to the theory of linear systems, the oscillatory motion of 
the foil with radial frequency ω , produce waves with the same frequency. Knowing the 
frequency of the responding wave, we can evaluate the corresponding wave length, using 
dispersion relation 
 

( )2 2tanh , ,osc osc osc
osc

k g k H k πω
λ

= =                                                                                          (4.58) 

 
where oscλ  and osck  are the wave length and the wave number due to the oscillatory motion of the 
foil.  
 
Moreover, assuming that the wave travels with the same velocity U  with the hydrofoil we have 
 

( )2 2/ tanh , ,for for fro
for

U g k k H k π
λ

= =                                                                                      (4.59) 

 
where forλ  and fork  are the wave length and the wave number due to the forward motion of the 
foil.  
 
In the following analysis we consider as a characteristic wave length of the radiation wave the 
maximum of the above two, i.e. ( )max ,osc forλ λ λ= .  
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Moreover, the parameters that control the space and time discretization are, BN  the number of 
panels on the body contour, Time Sampling Ratio ( )TSR  defined as the percentage of the period 
that equals to the time step  
 

100.dtTSR
T

= ⋅                                                                                                                            (4.60) 

 
Space Sampling Ratio ( )SSR  defined as the percentage of, the predicted from the linear theory, 
radiation wave length that equals to panel length on the free surface  
 

100.dxSSR
λ

= ⋅                                                                                                                           (4.61) 

 
A wake model is applied to linearize free wake dynamics and the corresponding discretization 
parameter ( )WN t  is a function of BN  and TSR  in the same manner as discussed in Chapter 2. In 
the following analysis we choose 120BN = , exploiting results of subsection 2.9.1.   
 
Finally, the implementation of conditions at infinity is based on the PML model described in 
Section 3.6. The PML parameters that will be used in the following numerical analysis are 

0 3σ = , 3p =  and / 1l λ = . The length of the domain, including absorbing layer zone is 
8TL U N T λ= ⋅ ⋅ + , where TN  denotes the number of periods considered, and the initial position 

of the foil is / 2 4f L λΧ = − .       
 
Before proceeding to the numerical investigation of the problem, we will present a brief reference 
to the famous Gray's paradox (1936) that was the threshold for intense research in the field of 
marine propulsion and of wave energy extraction, using biomimetic systems. 
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4.6.1 Gray's paradox 
 
Modern research on biomimetic foil and wave-powered propulsion begins in 30's with Gray’s 
paradox, by which, estimations of sea mammals resistance based on drag coefficient result in 
power requirements exceeding those that can be accomplished by the structure and mass of their 
muscle system. In 1936 J. Gray made experiments in order to study fish motion and thrust 
production. He used a flexible model or a dead fish and an appropriate apparatus to enforce fish-
like wave motions of the body. Gray calculated the total resistance of a dolphin, using turbulent 
boundary layer theory and estimated, among other things, that the required power for thrust 
production, in order to overcome total drag, was possibly about seven times the estimated 
muscular power available. This yields the famous Gray's paradox, which in the following decades 
were considered by a large number of investigators. 
 
One direction that researcher investigated, in order to explain that paradox, was the influence of 
the swimming motion on the resistance of the body. In 1999, Barret et al carried out experiments 
using a robotic-tuna mechanism. He noticed that drag reduction of order 50%-70% occurred 
when the phase speed of the travelling wave on the body was larger than the swimming speed. He 
mentioned that the reduction in total resistance may occurs because of the laminarization of the 
boundary layer by the motion of the body or the appropriate interaction of fin's trailing edge 
vortex's with others from the leading edge's and the body. 
 
In addition, Blake (1983) mentioned that some other mechanisms relevant with the material and 
the topography of fishes' skin ought to be taken into account. To be more specific, the drag-
reducing mucus or fish slime and a viscous or dynamic damping capacity of the skin, have to be 
considered. 
 
Another possible explanation is the following. The fin of hydrobionts such as dolphins and 
whales is located in a horizontal plane, enables in this way, efficiently utilization of wave flows' 
energy. Relevant examples mentioned by Rozhdestvensky & Ryzhov (2003) are "sliding" of 
cetaceans on the waves and their motion in the region of the bow pressure wave of ships. 
Moreover, studies demonstrate that some types of cetaceans, e.g. whale Balaenoptera physalus, 
can save up to 40% of the propulsion power while moving beneath the wavy free surface, see. 
Bose & Lien (1989),(1990). Extraction of energy from non-uniform (wavy) flows can tackle the 
well-known Gray paradox and explain the effect that the cetaceans can develop greater speeds 
than those, their muscular capability allows. 
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4.6.2 Numerical performance 
 
Numerical stability, convergence and efficiency of the scheme has been tested using as an 
example, a submerged symmetric NACA0012 hydrofoil (Fig.55) flapping in calm sea. Rotation 
axis is considered to be at / 0.3RX c = , moreover 90ψ = − ° , in submergence ( )/ 1.5 24d c = ÷  
over a range of flapping motion's and free surface's parameters, i.e., Froude number 
( )0.25 2Fn = ÷ , Strouhal number ( )0.1 0.4St = ÷ , reduced frequency ( )0.1 3.8rk = ÷ , heaving 

( )0 / 0.25 1h c = ÷  and pitching ( )0 10 40θ = °÷ °  amplitude, in shallow, moderate and deep water 

( )/ 4% 700%H λ = ÷ .   
 

 
 

Figure 55: Geometry of a NACA0012 hydrofoil and discretization with non-uniform iso-cosine 
grid denser at the leading edge. 
 
Results concern hydrodynamic quantities, both integrated like non-dimensional Lift 
( )2/ 0.5L YC F U cρ=  and Thrust ( )2/ 0.5T XC F U cρ= −  coefficients and distributed such as 

pressure coefficient ( )2/ 0.5PC p Uρ=  and non-dimensional free surface elevation ( )/ cη . 
Transition from rest to harmonic state condition has been accomplished after the third period of 

oscillation. Average force coefficient is 
5

, 4
1/ ( )

T

F av FT
C T C t dt= ∫  and the amplitude of force 

coefficients is calculated by ( ){ } ( ){ }, 0.5 max ( ), 4 ,5 min ( ), 4 ,5F amp F FC C t t T T C t t T T = ∈ − ∈  . 
 
A non-uniform discretisation has been applied on the hydrofoil's boundary in the sense of Fig.55. 
The grid is denser at the leading edge where the profile changes abruptly and becomes uniform to 
the trailing edge, so as the panels in the vicinity of the trailing edge to have comparable length 
with the wake's panels, the total number of panels on the body contour is 120BN = . A uniform 
grid of fN  panels has replace the mean line of the free surface. In the following figures the mean 
value of Trust coefficient and the amplitude of Lift coefficient are presented. Finally the values of 
PML parameters are 0 3σ = , 3p = , / 1l λ = , exploiting the results of Sec. 3.6.    



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 
 

 

104 A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

  

 

 
Figure 56: Convergence of &T LC C  with respect to 1/ TSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 0.25h c = , 0 10θ = ° , 0.1,0.4Str =  and beneath 
the free surface with 4SSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 21% 301%H λ = ÷ .      
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Figure 57: Convergence of &T LC C  with respect to 1/ TSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 0.25h c = , 0 40θ = ° , 0.1,0.4Str =  and beneath 
the free surface with 4SSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 21% 301%H λ = ÷ .       
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Figure 58: Convergence of &T LC C  with respect to 1/ TSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 1h c = , 0 10θ = ° , 0.1,0.4Str =  and beneath the 
free surface with 4SSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 4% 75%H λ = ÷ .         
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Figure 59: Convergence of &T LC C  with respect to 1/ TSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 1h c = , 0 40θ = ° , 0.1,0.4Str =  and beneath the 
free surface with 4SSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 4% 75%H λ = ÷ .         
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In Figs. 56 to 59 convergence characteristics of the numerical scheme concerning integrated 
force, i.e. average thrust force and lift amplitude, coefficients against time step, expressed by 
1/ TSR  for a range of kinematic parameters, are demonstrated. We can see that the relevant error 

( )0 0100 /F F FC C C−  is less than 5% for 1%TSR ≤ , which corresponds to more than 100 time 
steps per period of oscillation. The relevant error is measured with respect to the value of the 
coefficient 0FC  for 0.5%TSR = . Notice that the use of the higher order Adams-Bashford-
Moulton predictor-corrector method reduces significantly the time steps per period that are 
required for convergence in comparison with numerical results presented in Chapter 2, 
concerning the problem in infinite domain in the same range of parameters. In this way, the 
addition computational cost due to the discretization of the free-surface boundary is balanced and 
the time for computation remains of the same order of magnitude.      
 
Also in Figs. 60 to 63 convergence of the numerical scheme with respect to panel number on the 
free surface , expressed by 1/ SSR  is tested, for a range of kinematic parameters. We can see that 
the relevant error ( )0 0100 /F F FC C C− , concerning integrated force coefficients, is less than 5% 
for 4%SSR ≤ , which corresponds to more than 25 panels per wavelength. The relevant error is 
measured again with respect to the value of the coefficient 0FC  for the maximum panel number 
tested that corresponds to 2%SSR = . 
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Figure 60: Convergence of &T LC C  with respect to 1/ SSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 0.25h c = , 0 10θ = ° , 0.1,0.4Str =  and beneath 
the free surface with 1TSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 21% 301%H λ = ÷ .         
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Figure 61: Convergence of &T LC C  with respect to 1/ SSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 0.25h c = , 0 40θ = ° , 0.1,0.4Str =  and beneath 
the free surface with 1TSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 21% 301%H λ = ÷ .         
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Figure 62: Convergence of &T LC C  with respect to 1/ SSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 1h c = , 0 10θ = ° , 0.1,0.4Str =  and beneath the 
free surface with 1TSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 4% 75%H λ = ÷ .         
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Figure 63: Convergence of &T LC C  with respect to 1/ SSR , for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 0 / 1h c = , 0 40θ = ° , 0.1,0.4Str =  and beneath the 
free surface with 1TSR = , / 1.5,3d c = , 0.5,1, 2Fn =  and / 4% 75%H λ = ÷ .         
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Figure 64: Convergence of ( );PC x t  with respect to SSR , for a NACA0012 hydrofoil in flapping 
motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 1h c = , 0 40θ = ° , 0.4Str =  and beneath the free 
surface with / 1.5d c = , 2Fn =  and / 48%H λ = , during the 5th period of oscillation and 
comparison with corresponding results in infinite domain (dashed line).  
 
Moreover, in Fig. 64, the evolution pressure coefficient is presented for different number of 
panels on the free surface, 1%TSR = , 120BN = , for intense flapping motion with 0 / 1h c = , 

0 40θ = ° , and 0.4Str = , / 0.3RX c = , during the 5th period of oscillation. It is clear that 
convergence is achieved for 4SSR ≥ . To illustrate the free-surface effects we compare with 
results in infinite domain. The variation in pressure distribution leads to an increase in average 
thrust coefficient form ,inf 0.72TC =  to 0.76TC =  and a small decrease in lift amplitude from 

,inf 2.96LC =  to 2.95LC = .    
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Figure 65: Convergence of ( );x tη  with respect to SSR , for a NACA0012 hydrofoil in flapping 
motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 0.25h c = , 0 10θ = ° , 0.1Str =  and beneath the 
free surface with / 3d c = , 2Fn =  and / 48%H λ = , during the 5th period of oscillation.  
 
In addition, in Fig. 65, the evolution free surface-elevation is presented for different values of 
SSR , 1%TSR = , 120BN = , for light flapping motion with 0 / 0.25h c = , 0 10θ = ° , and 0.1Str = , 

/ 0.3RX c = , during the 5th period of oscillation. It is clear that convergence is achieved for 
4SSR ≥ . A wave that travels with the speed of the foil is generated; the decrease of pressure at 

the leading edge leads to a through followed by a crest that consist the main wave pattern which 
has time varying amplitude due to the oscillating motion. The wave, generated at the state of 
transition, gradually decays and thus transition to harmonic state occurs after 4 periods of 
oscillation. Notice that our result about the wavelength is in good agreement with the prediction 
from linear theory, i.e. / 12.5cλ = . In that case the wave length due to the forward motion 
dominates, from Eq.(4.42) we have / 12.5for cλ = , while the wave length from oscillatory motion 
is small but not negligible, from Eq.(4.41) we have / 2osc cλ = , thus the resulting wave is steady 
in x-direction but oscillatory in y, with respect to the hydrofoil-fixed reference frame. 
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Figure 66: Convergence of ( );x tη  with respect to SSR , for a NACA0012 hydrofoil in flapping 
motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 0.25h c = , 0 10θ = ° , 0.4Str =  and beneath the 
free surface with / 3d c = , 2Fn =  and / 48%H λ = , during the 5th period of oscillation.  
 
Furthermore, in Fig. 66, the evolution free surface-elevation, during the 5th period of oscillation, 
is presented for the same case as in Fig. 65 but with 0.4Str = . Again convergence is achieved for 

4SSR ≥ . In that case of higher Str  only one wave pattern that travels with the speed of the foil, 
is generated. In that case the wave length due to the forward motion dominates, from Eq.(4.42) 
we have / 12.5for cλ = , while the wave length from oscillatory motion is significantly smaller, 
from Eq.(4.41) we have / 0.12osc cλ = , thus the resulting wave is almost steady with respect to 
the hydrofoil-fixed reference frame. 
  
To summarize, stability and convergence of the present scheme has been studied by extensive 
numerical investigation. For the range of motion parameters that we have tested i.e. 
( )/ 1.5 3d c = ÷ , Froude number ( )0.25 2Fn = ÷ , Strouhal number ( )0.1 0.4St = ÷ , reduced 
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frequency ( )0.1 3.8rk = ÷ , heaving ( )0 / 0.25 1h c = ÷  and pitching ( )0 10 40θ = °÷ °  amplitude, in 

shallow, moderate and deep water ( )/ 4% 300%H λ = ÷  a minimum number of 120BN =  panels 
on the hydrofoil is required, while for harmonic motion the time step must be / 1%t T∆ <  (more 
than 100 time steps per period of oscillation) and the panel length on the free surface / 4%x λ∆ <  
(more than 35 panels per wave length).  
 
Stability of the numerical scheme had also been tested and we have found that it is achieved 
when a of Courant-Friedrichs-Lewy (CFL-type) condition is satisfied, as follows 
 

1,C t
x
∆
∆

                                                                                                                                    (4.62) 

 
where C is the celerity of the generated free-surface waves. The exact critical value is frequency 
dependent and it is smaller for lower frequencies. A detailed study for the effects of other 
parameters on critical Courant number must be done, and this is left as a subject for future work. 
 
Moreover, according to the efficiency of the scheme its is demonstrated that the application of the 
higher order Adams-Bashford-Moulton predictor-corrector method reduces significantly the 
required time step per period that are required for convergence in comparison with numerical 
results presented in Chapter 2 concerning the problem in infinite domain in the same range of 
parameters. In this way, the addition computational cost due to the discretization of the free-
surface boundary is balanced and the time for computation remains of the same order of 
magnitude. In general, the reduction of problem's dimension from 2D to 1D due to BEM 
resulting in reduction of the computational cost, orders of magnitude less than other space-
discretisation based numerical methods e.g. FDM's, FEM's. In addition, even more efficient 
higher order BEM's could be applied, see e.g. Cottrel et al (2009), Lee and Kerwin (2003), 
Belibassakis et al, (2013), and this is left as a subject for future extension. 
 
 
4.6.3 Hydrofoil in steady motion under the free surface 
 
Numerical computations and results for NACA4412 hydrofoil at a stationary angle of attack 5°  
and a variety of Froude numbers /Fn U gc=  and submergences /d c  of the foil are shown in 
Figs. 67-70. In all cases deep water conditions  ( / 0.5H λ >> ) are assumed. Present method 
results are based on 120BN =  panels on the body, the number of free-surface panels per 
wavelength is / 25FN λ = , and the time step / 4%U t λ∆ = . Transition from rest to steady state 
condition has been accomplished after a distance of 10 chord lengths. 
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Figure 67:  Free-surface elevation for a NACA4412 hydrofoil, at 5°  angle of attack, for 0.9Fn =   
and submergence / 1d c =  (with respect to the trailing edge of the foil). 
 

 
Figure 68:  Pressure coefficient for a NACA4412 at 5°  1.03Fn =  and submergence / 0.6d c =  
(with respect to the midchord of the foil). 
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Results for both distributed and integrated quantities are presented in comparison with numerical 
results from steady state panel methods by various authors (denoted in the figures) and 
experimental measurements by Ausman (1954). In particular, the wave elevation for 0.9Fn =   
and / 1d c =  is shown in Fig.67. Also, the pressure coefficient at somewhat greater Froude 
number 1.03Fn =  and smaller submergence of the foil / 0.6d c =  is plotted in Fig.68. In both 
cases we observe that present results are in good agreement with other methods and experimental 
data. To illustrate the effects of the free surface on the generation of the lift, we include in Fig.72 
a calculation with the foil in infinite domain. We notice that free-surface effects result in 
significant decrease of pressure jump on the foil and reduction of suction force at the leading 
edge. The latter is, in general, responsible for the loss of lift and the increase of the wave 
resistance. 
 

 
 
Figure 69:  Lift coefficient for a NACA4412 hydrofoil, at 5°  angle of attack, for submergence 

/ 1d c =  (with respect to the trailing edge of the foil), against Froude number. 
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Figure 70:  Lift and wave resistance coefficients for NACA4412 hydrofoil at 5°  and 1Fn = , 
against submergence (with respect to the midchord of the foil). 
 
Furthermore, in Fig. 69 the effect of Froude number on the lift coefficient for foil submergence 

/ 1d c =   is shown, and compared with predictions by Bal (1999) and Yeung & Bouger (1979). It 
is seen that the free surface causes a drop in LC  as Froude number Increases. The effect of free 
surface on lift and wave resistance coefficient ( 2/ 0.5R XC F U cρ= ), for 1Fn = , is presented in 
Fig.70 and compared with predictions by Chen (2012). We observe in this figure that as 
submergence increases the lift converges to its value in infinite domain and that wave resistance 
tends to zero, as expected.  
 
Finally, an interesting observation concerns the shape of the induced waveform by 
hydrodynamically shaped bodies advancing with forward speed beneath the free surface. Notice 
that significant differences occurs between the wave generated by the elliptically shaped non-
lifting body in Figure 47 of Section 3.5 and by the hydrofoil NACA4412 in Fig. 67. In particular 
the wave generated by the non-lifting body consists of a crest, over the high pressure vicinity on 
the bow, followed by a trough, while in the case of lifting hydrofoil the wave form is 
antisymmetric. Obviously the difference is due to the circulation that is developed in the lifting 
case which removes the stagnation point that is responsible causes the compression.  
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Figure 71: Free-surface elevation generated by a symmetric NACA0012 hydrofoil advancing at 

2Fn = , for different angles of attack ( )10 ,0 ,10a = − ° ° ° , at / 3d c =  and / 48%H λ = .   
 
To demonstrate that, we plot in Fig. 71 the free-surface elevation generated by a symmetric 
NACA0012 hydrofoil advancing at 2Fn = , for different angles of attack ( )10 ,0 ,10a = − ° ° ° , at 

/ 3d c =  and / 48%H λ = .   
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Figure 72:  Pressure field around a NACA0012 hydrofoil in steady motion at different angles of 
attack 10 ,0 ,10a = − ° ° ° , in infinite domain. the induced circulation moves the maximum pressure 
point in different places on the upper or the lower side of the foil.  
 
Also for better understanding, in Fig. 72 the pressure field for NACA0012 in the same angles of 
attack is presented, calculated in infinite domain by steady BEMs (Filippas, 2011). Notice that 
negative angles of attack leads to a stagnation point and a maximum pressure point on the upper 
surface and in that case a similar to the non-lifting case wave-pattern, starting with crest is 
observed. When the angle of attack is zero or positive, clockwise circulation leads to acceleration 
and drop of pressure on the upper side of the hydrofoil and thus a trough is generated in that 
vicinity, followed by a crest. 
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4.6.4 Free-surface effects on flapping foil thruster  
 
In this section numerical results are presented concerning a flapping hydrofoil under the free 
surface. Except of forward translation with constant speed U ,  the hydrofoil also performs 
combined vertical (heaving) and rotational (pitching)  oscillatory motions, the latter with respect 
to a pivot axis located at a specific distance RX  from the leading edge. The phase difference 
between pitching and heaving motion is denoted by is appropriately selected 90degψ = − ; see 
e.g. Rozhdestvensky and Ryzhov (2003). The Strouhal number of the hydrofoil is 

( ) ( )/ 2 / /St h U k h cω π π= = , with / 2rk c Uω=  the reduced frequency, and 0 0/U hε θ ω=  is the 
feathering parameter. The numerical parameters are kept the same as in the previous section.   
 
In Fig. 73 we compare integrated results concerning a thrust coefficient defined as 2

0/T ghρ  
(where T   is the trust and 0h   the heave amplitude) obtained by the present method against 
predictions by linearised theory for thin uncambered hydrofoil developed by Grue et al (1988). 
The latter model is based on oscillating flat plate beneath the free surface. For compatibility in 
the comparison a thin symmetrical NACA0006 hydrofoil is simulated in small-amplitude 
oscillations. Results have been obtained for heaving oscillatory and flapping motion, 
respectively, and are plotted in Fig.73 against the non-dimensional frequency 2 / 2c gωΩ = . We 
can see present method predictions are in good agreement with thin hydrofoil theory. 
  

 
Figure 73: Thrust coefficient 2

0/T ghρ  against non dimensional frequency Ω , for NACA0006 
hydrofoil at / 0.5d c = , in heaving and flapping motions. Feathering parameter 0.6ε = , pivot 
point / 0.5RX c = , and heave-pitch phase lag 90ψ = − ° .  
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Fig. 74  Lift and thrust coefficients for NACA0015 at 0.87Fn =  and submergence / 1.28d c = . 
In this case 0.18St = , 0 / 0.6h c = , 0 15.2θ = ° , pivot point / 0.3RX c =  and phase lag 105ψ = − ° . 
 
A further comparison between the present potential flow method and recent computations by De 
Silva & Yamaguchi (2012) based on CFD solver (FLUENT)  is presented in Fig. 74. Our results 
concerning the lift coefficient of a NACA0015 section at 0.87Fn =  are found in very good 
agreement with the viscous solver. On the other hand, more increased differences concerning the 
thrust coefficient are observed, attributed to viscosity effects that are not taken into account. In 
any case the present method is again found to be able to provide reasonable predictions, at least 
in the examined examples which are characterized by small and moderate angles of attack, where 
leading edge separation and dynamic-stall effects are not manifested. 
 
In the second part of the present subsection we choose the example of intense flapping motion 
with 0 / 1h c = , 0 40θ = ° , and 0.4Str = , / 0.3RX c = , to study the effects of Froude number 

( )0.25 2Fn = ÷  and of the additional boundaries i.e. free surface & seabed and also to test 
compatibility with results concerning the same problem in infinite domain as the Froude number 
decreases and as the boundaries moves away from the flapping foil. For that purpose the 
submergence of the foil is / / 2d c H c Dist= =  and raises from 1.5 to 48. The numerical 
scheme's parameters are 120BN = , 1TSR = , 4SSR = , 0 3σ = , 3p = , / 1l λ = .     
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Figure 75: Free surface elevation for increasing distance between the foil and the boundaries, for 
a NACA0012 hydrofoil in flapping motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 1h c = , 

0 40θ = ° , 0.4Str = , 2Fn =  during the 5th period of oscillation.  
 
In Figure 75, the free surface elevation during the last period is presented for increasing distance 
( )1.5 48Dist = ÷  between the hydrofoil and the boundaries. Notice that as the boundaries moves 
away the wave tends to a small amplitude harmonic wave, in compatibility with linear fee-surface 
wave theory, and for even larger distances 12Dist >   there is practically no wave generation.  
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Figure 76: Thrust and lift coefficients with respect to the distance between the foil and the 
boundaries, for a NACA0012 hydrofoil in flapping motion with / 0.3RX c = , 120ΒΝ = , 

1TSR = , 0 / 1h c = , 0 40θ = ° , 0.4Str = , 2Fn = , averaged over the 5th period of oscillation.  
 
Additionally, in Figure 76, integrated characteristics are presented for increasing distance 
( )3,12,48Dist =  between the hydrofoil and the free surface and bottom. Also, comparison with 
the result in infinite domain is given. Notice that as the boundaries moves away average thrust 
coefficient and amplitude of lift coefficient tend to the corresponding to infinite domain results.  
 
Moreover, in Figure 77 we present calculations concerning the average thrust coefficient and the 
average and amplitude of lift coefficient for three cases / 1.5,3, 4.5d c =  for low intermediate and 
deep submergence. In the last case the hydrofoil performs in a very close distance to the bottom 
and the effect of that solid boundary dominates. Notice that a mean lift force appears as the foil 
approaches the free surface while for infinite domain average lift force is zero for symmetrical 
foils in symmetrical flapping motion. This is due to the acceleration of flow (conservation of 
mass) in the narrow area between the leading edge and sea surface, when the leading edge is at 
the highest position of its trajectory. That acceleration leads to fall of pressure on the upper side 
of the foil that is greater than the corresponding fall on the lower side when the leading edge 
reaches the lowest level of it trajectory. A similar phenomenon is mentioned when the foil 
approached the bottom and a negative average lift occurs. In general, when the foil operates near 
the bottom the forces increase. Notice also that the average values of integrated forces decreases 
for increasing Froude numbers and that decrease is more significant for lower submergence.  
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Figure 77: Integrated characteristics against Froude number, for a NACA0012 hydrofoil in 
flapping motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 1h c = , 0 40θ = ° , 0.4Str = , for 
submergence / 1.5,3, 4.5d c =  and depth / 43%H λ >  in comparison with results in infinite 
domain.  
 
Furthermore, the effects of free surface and bottom weaken as the distance between the foil and 
the boundaries increases (case of 1 / 3d c = ) and the results tend to approach their values in 
infinite domain. 
 
Finally, in Fig 78 we focus to the effect of bottom, using the same example of intense flapping 
motion with 0 / 1h c = , 0 40θ = ° , and 0.4Str = , / 0.3RX c =  in low submergence / 1.5d c = . 
Integrated results are presented, concerning average thrust coefficient and amplitude of lift 
coefficient against /H λ  that varies from moderate to deep water. The effect of bottom is 
significant, as expected, in the region of moderate depth / 0.5H λ < , while for deep water 
( )/ 0.5H λ >  the value of forces on the foil remains practically constant. In general, amplitude of 

LC  increases while average TC  decreases, in moderate depth.    
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Figure 78: Integrated characteristics against sea depth, for a NACA0012 hydrofoil in flapping 
motion with / 0.3RX c = , 120ΒΝ = , 1TSR = , 0 / 1h c = , 0 40θ = ° , 0.4Str = , for submergence 

/ 1.5d c =   
 
It is clear from the above, that the method developed in Chapters 3 and 4 for hydrodynamic 
analysis of unsteady bodies beneath the free surface and over flat bottom is compatible with the 
method described in Chapter 2 concerning the same problem in infinite domain. In the following 
paragraphs, comparisons with other numerical methods and experimental results from the 
literature are presented, in order to demonstrate the range of applicability and the limitations of 
the present method. 
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4.6.5 Flapping foil thruster in waves 
 
Finally, we present numerical results in the case of flapping foil of chord 7c m=  operating in 
waves of frequency 0.66 /I rad sω = , in deep water conditions studied by De Silva & Yamaguchi 
(2012). The phase difference between incident wave and foil heaving motion is 90ϕ = − ° , the 
wave amplitude is 0 / 0.14cη =  and the corresponding frequency of encounter is 

0.98 /en I kU rad sω ω= + = , which is equal to the frequency of oscillation ( )ω . Τhe Strouhal  

 
Figure 79.  Same as in Fig.74 for a hydrofoil of chord 7c m= , in the presence of incident waves: 

0 / 1/ 7cη = , 0.66Iω =  and 90ϕ = − ° . 
 
number and rest parameters remains the same as in the previous case. Comparisons concerning 
lift and thrust coefficient against predictions by De Silva & Yamaguchi (2012) are shown in 
Fig.79. Again, for the particular conditions, present BEM is shown to provide satisfactory 
predictions, however, the computational cost is order(s) of magnitude less, making the present 
method, after enhancements and extensions a useful tool for the design and performance of 
flapping foil thrusters in waves.  
 
Finally in Fig. 80 we demonstrated the effect of phase difference between the heaving motion and 
the incoming wave. The example is about a NACA0012 hydrofoil at 2Fn =  and submergence 

/ 3d c = , in intense thrust producing flapping motion, with 0.4Str = , 0 / 1h c = , 0 40θ = ° , pivot 
point / 0.3RX c =  and phase lag between heaving and pitching motion 90ψ = − ° . In the presence 
of incident waves with 0 0/ / 1c h cη = = , / 0.4enh U Strω π = = . 
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Figure 80: Average thrust coefficient against phase difference ϕ   between incident free-surface 
elevation wave and heaving motion, for a NACA0012 hydrofoil at 2Fn =  and submergence 

/ 3d c =  in moderate to deep water / 48%λΗ = . In intense flapping motion with 0.4Str = , 
0 / 1h c = , 0 40θ = ° , pivot point / 0.3RX c =  and phase lag between heaving and pitching motion 

90ψ = − ° . In the presence of incident waves with 0 0/ / 1c h cη = = , / 0.4enh U Strω π = = . 
 
Notice that the effect of free surface boundary in that case causes a reduction 7.3% of thrust 
force, due to wave generation (wave resistance and radiation), in comparison with the thrust 
production in very large submergence (infinite domain), where the thrust coefficient is  predicted 

,inf 0.87TC =  (recall from Section 2.9 that our method in infinite domain for high amplitudes and 
frequencies, overpredicts thrust, however a very interesting qualitative study can be done). 
However, there exist a region, 113.4 63ϕ = − °÷ ° , where energy extraction from waves raises the 
total thrust free of cost at a maximum percentage of 12.4% of its value in calm sea at 13ϕ = − ° . 
Moreover in the region 77 28.5ϕ = − °÷ ° , wave energy extraction overcomes the losses due to 
wave generation and the values of thrust are even larger of the corresponding in infinite domain.  
 
It is expected that even greater amounts of energy could be extracted from waves using proper 
control of flapping motion, possibly increasing the hydrodynamic efficiency of the flapping-foil 
propulsor in comparison with conventional propellers. Taking into account that the most energy-
absorbing motion (i.e. foil's heave) for the propulsion is induced free of cost by the motions of 
the ship (reducing simultaneously undesirable ship's pitching), the efficiency of the system could 
reach levels  over 100%, providing concurrently a more enjoyable voyage       
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4.7 Conclusions and suggestions for future work  
 
An unsteady Boundary Element Method is developed and applied to the analysis of flapping 
hydrofoils operating beneath the free surface, and in the presence of incident waves. The 
modelling includes finite-depth effects. Previous studies concerning flapping foils have shown 
that such systems, at optimum operating conditions, could achieve  high thrust levels and 
efficiency. The present study has been focused on studying the effects of the free surface and the 
bottom, which for relatively low submergence and depth respectively, could become quite 
important.  
 
Results are shown illustrating the numerical performance of the developed BEM and validating it 
through comparisons with other methods and experimental data.  Numerical predictions include 
lift, thrust and resistance coefficients, and also distributed quantities such as free-surface 
elevation and boundary pressure coefficient of the system, over a range of motion parameters, 
such as reduced frequency, Strouhal number, feathering parameter and free-surface parameters 
such as Froude number, nondimensional frequency Ω , depth to wavelength ratio.  
 
Future extensions include the introduction and modelling of various non-linearities associated 
with the evolution of the free surface and the trailing vortex sheets. Furthermore, treatment of 
leading edge separation and dynamic stall effects would extend its applicability to operation 
conditions corresponding to large angles of attack.        
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Epilogue 
 

Biomimetic systems such as flapping wings located beneath the  hull of the ship are investigated 
at NTUA as an unsteady thruster, augmenting the overall propulsion of the ship and offering 
dynamic stabilization. In this direction, an unsteady Boundary Element Method is developed in 
the present thesis and applied to the solution of the potential flow problem around 2D lifting 
bodies of general shape performing a general, prescribed motion in stationary fluid and in 
incoming waves.  

The present study is focused on studying the effects of the free surface and the bottom, which for 
relatively low submergence and depth respectively, could become quite important. For the 
detailed investigation of the effects of the free surface a potential-based panel method has been 
developed for the hydrodynamic analysis of 2D nonlifting bodies and hydrofoils, undergoing 
heaving (vertical) and pitching oscillations while moving with constant forward speed. The 
instantaneous angle of attack is influenced by the foil oscillatory motion and by the incident 
waves. At a first stage of development we consider moderate submergence and relatively low 
speeds permitting us to approximately linearise the free surface conditions and neglect effects due 
to breaking waves and cavitation.  
 
Various specific extensions and further enhancements of the present model have been proposed 
in the last sections of Chapters 2, 3 and 4 and are left to be examined in the next period. An 
important, more demanding direction for future work is the extension of the present numerical 
scheme and investigation to 3D, supporting the study of the propulsive performance generally 
shaped wings taking into account finite span and interaction with the hull of the ship. Another 
direction deals with the implementation of high-order BEMs using  B-Splines or NURBS for the 
representation of the geometry and the unknown distributions of singularities on the boundary, 
accelerating the convergence and leading to  increased  numerical efficiency. 
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Appendix A - Representation theorem for the potential 
 
 
The theory of the integral equations is based on the representation of the potential in terms of  
boundary values of the potential and its derivative. Here we are going to present the proof of a 
useful formula and next, the construction of the boundary integral equation whose solution 
provides the boundary values of the potential and its derivative. In this way only boundary values 
is required for the knowledge of the potential all over the domain. 
 
Let ( ) 2

0 0, \x y D∈  and ( ),x y D∈  and thus ( ) ( )0 0, ,x y x y≠ , in this case it holds: 
 
[ ] ( ) 2

0 0 0 0ln ( , | , ) 0, , \ and ( , ) ,r x y x y x y D x y D∆ = ∀ ∈ ∈                                                   (A.1) 
 
where 2 2

0 0 0 0( , | , ) ( ) ( )r x y x y x x y y= − + − . 
 
Furthermore since ln r∆  is a well defined function on D , we can take its surface integral: 
 

[ ]0 0ln ( , | , ) 0.
D

r x y x y dxdy∆ =∫∫                                                                                                   (A.2) 

 
Let now ( )0 0,x y D∈ . In this case in the integration region exists a point ( ),x y D∈  so as to 

( ) ( )0 0, ,x y x y=  therefore the previous process cannot be applied directly. In order to perform a 

similar process we surround ( )0 0,x y  with a circular disk with radius R (Figure 81). We define in 

this way a circular vicinity 0D  around ( )0 0,x y  such as ( ) 0,x y D∉ : 
 

( )0 0\ .D D D D= ∪                                                                                                                      (A.3) 
 
Now ln r∆  is well defined and harmonic in 0\D D  and thus:   
 

[ ]
0

0 0
\

ln ( , | , ) 0,
D D

r x y x y dxdy∆ =∫∫                                                                                                 (A.4) 

 
therefore 
 

[ ] [ ]
0

0 0 0 0ln ( , | , ) ln ( , | , ) .
D D

r x y x y dxdy r x y x y dxdy∆ = ∇ ∇∫∫ ∫∫                                                        (A.5) 
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Figure 81: Application of Gauss's theorem in the case that ( )0 0,x y D∈ . 
 
Appling Gauss theorem: 
 

[ ]
0 0

0 0
0 0

ln ( , | , )ln ( , | , ) ( , )
D D

r x y x yr x y x y dxdy ds x y
n∂

∂
∇ ∇ = −

∂∫∫ ∫                                                   (A.6) 

 

[ ]
0 0

0 0 2ln ( , | , ) 2 .
D D

r x y x y dxdy rd
r

θ π
∂

⇒ ∆ = − ⋅ = −∫∫ ∫
r n                                                                 (A.7) 

 
Summarizing we have: 
 

( )0 0
0 0 0 0

ln ( , | , ) 0, , , ( , ) \ ,
2

r x y x y x y D x y D D
π

 ∆ − = ∀ ∈ ∈  
                                                      (A.8) 

 
and 

( )0 0,x y  

( ),x y  

n  

D  

D∂  

0D  
0D∂  

R  
ds  
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0 0ln ( , | , ) 1,

2D

r x y x y dxdy
π

 ∆ − =  ∫∫                                                                                               (A.9) 

 
therefore the function in the brackets 
 

0 0 0 0
1( , | , ) ln ( , | , ),

2
G x y x y r x y x y

π
= −                                                                                     (A.10) 

 
is the fundamental solution of the Laplace operator or the infinite space Green function and  
satisfies the following equation: 
 

( )0 0
0 0 0 0 0 0

ln ( , | , ) ( , | , ), , , ( , ) \ ,
2

r x y x y x y x y x y D x y D Dδ
π

 ∆ − = ∀ ∈ ∈  
                                (A.11) 

 
where 0 0( , | , )x y x yδ  is the Dirac delta function at point ( )0 0,x y . A very important property of 
delta function is its sampling property: 
 

( ) ( )0 0 0 0, ( , | , ) , .
D

x y x y x y dxdy x yδΦ = Φ∫∫                                                                               (A.12) 

 
In the theory of generalized functions the above relation is the definition of Dirac function. In this 
case it is a functional which is defined by it action on another function, for a more detailed study 
in generalized functions see e.g. Vladimirov (1979). 
 
Let now ( )0 0,x y D∈∂ . In this case the neighborhood of ( )0 0,x y  is a half circular disk        
(Figure 82). Working as previously, but with 0D  a half circular disk we get: 
 

( )0 0
0 0 0 0

ln ( , | , ) 1 ( , | , ), , , ( , ) .
2 2

r x y x y x y x y x y D x y Dδ
π

 ∆ − = ∀ ∈∂ ∈∂  
                                   (A.13) 

 
Lets apply now the second Green's identity, see e.g. Kress (1989): 
 

0 0 0 0ln ( , | , ) ln ( , | , )( , ) ( , )
2 2D

r x y x y r x y x yx y x y dxdy
π π

    − ⋅∆Φ −Φ ∆ − =        
∫∫  

 

0 0

0 0

ln ( , | , )
ln ( , | , ) ( , ) 2( , ) ( , ),

2D

r x y x y
r x y x y x y x y ds x y

n n
π

π∂

  ∂ −  ∂Φ    − −Φ  ∂ ∂  
  

∫               (A.14) 
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Figure 82: Application of Gauss's theorem in the case that ( )0 0,x y D∈∂ . 
 
therefore 
 

0 0
0 0

ln ( , | , ) ( , ) ( , ) ( , | , )
2D

r x y x y x y x y x y x y dxdyδ
π

  − ⋅∆Φ −Φ =    
∫∫  

 0 0 0 0
2

0 0

ln ( , | , ) ( , | , )( , ) 1( , ) ( , ),
2 2 ( , | , )D

r x y x y x y x yx y x y ds x y
n r x y x yπ π∂

 ∂Φ − +Φ   ∂  
∫

r n                  (A.15) 

 
0 0

0 0
ln ( , | , )( , ) ( , )

2D

r x y x yx y x y dxdy
π

⇒Φ = − ⋅∆Φ∫∫  

 0 0 0 0
2

0 0

ln ( , | , ) ( , | , )( , ) 1( , ) ( , ).
2 2 ( , | , )D

r x y x y x y x yx y x y ds x y
n r x y x yπ π∂

 ∂Φ
−Φ ∂ 

∫
r n                         (A.16) 

 
Assuming that Φ is harmonic in D  we finally get: 
 

0 0 0 0
0 0 2

0 0

ln ( , | , ) ( , | , )( , ) 1( , ) ( , ) ( , ),
2 2 ( , | , )D

r x y x y x y x yx yx y x y ds x y
n r x y x yπ π∂

 ∂Φ
Φ = −Φ ∂ 

∫
r n                  (A.17) 

 
and using the property of reciprocity of Green functions we can also write 
 

0 0 0 0
0 0 2

0 0

ln ( , | , ) ( , | , )( , ) 1( , ) ( , ) ( , ).
2 2 ( , | , )D

r x y x y x y x yx yx y x y ds x y
n r x y x yπ π∂

 ∂Φ
Φ = +Φ ∂ 

∫
r n                  (A.18) 

 
 
 

( )0 0,x y  

( ),x y  

D∂  

D  

0D  

0D∂  

n  

dS  
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Finally, defining the Green functions in the following way: 
 

2 2
0 0 0 0 0 0

1( , | , ) ln ( , | , ) , ( , ) , ( , ) ,
2

G x y x y r x y x y x y x y
π

= ∈ ∈                                             (A.19) 

 
and 
 

[ ]
2 20 0 0 0

0 02
0 0

( , | , ) ( , | , )1 , ( , ) , ( , ) ,
2 ( , | , )

G x y x y x y x y x y x y
n r x y x yπ

∂ ⋅
= − ∈ ∈

∂
 

n r                                     (A.20) 

 
where 
 

1/22 2
0 0 0 0( , | , ) ( ) ( ) ,r x y x y x x y y = − + −                                                                                  (A.21) 

 
the representation theorems are put in the form 
 
for 0 0( , )x y D : 
 

0 0
0 0 0 0

( , | , )( , )( , ) ( , | , ) ( , ) ( , ).
D

G x y x yx yx y G x y x y x y ds x y
n n




  

                              (A.22) 

 
Working similarly for 0 0( , )x y D  and using (A.13) we get the next Fredholm 2nd kind weakly 
singular boundary integral equation that can be solved for the unknown boundary values: 
 

0 0
0 0 0 0

( , | , )1 ( , )( , ) ( , | , ) ( , ) ( , ).
2

D

G x y x yx yx y G x y x y x y ds x y
n n




  

                           (A.23) 

 
The last form of representation theorem eq. (A.22) or (A.23) is appropriate for a physical 
interpretation. The first order in the integral is the potential induced at 0 0( , )x y  from a distribution 

of sources (singularities) with intensity ( , )x y
n




 located on the boundary, while the second one 

is the potential from a distribution of dipoles parallel to n  (singularities), with intensity ( , )x y . 
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Appendix B - Singular integrals  
 
 
Consider the boundary integral equation (A.23) for ( )0 0,x y D∈∂ : 
 

0 0
0 0 0 0

( , | , )1 ( , )( , ) ( , | , ) ( , ) ( , ).
2

D

G x y x yx yx y G x y x y x y ds x y
n n




  

                             (B.1) 

 
The integrals appeared in the above relation are singular, since 0 0( , )x y D∈∂  there is a point at 
the domain of integration where 0 0( , ) ( , ) 0x y x y r≡ ⇒ = . At this point the integrands become 
infinite and has no meaning in the usual Riemann sense. These integrals are called singular and in 
the present section we will try to present a way to be determined as the limit of a well defined 
regular integral.  
 
Integrals on the r.h.s. of (B.1) are of the general form: 
 

1 0 0 0 0( , ) ( , ) ln ( , | , ) ( , ),
C

I x y f x y r x y x y ds x y                                                                         (B.2) 

 
and 
 

 
0 0

2 0 0 2
0 0

( , | , )( , ) ( , ) ( , ),
( , | , )

C

x y x yI x y x y ds x y
r x y x y
rf                                                                        (B.3) 

 
where f and f are continuous scalar or vector functions of ( ), .x y  Consider now a Cartesian 

coordinate system tangent to C  with origin at ( )0 0,x y  and a partition of the integration domain 

C  into the following subdomains 1C , 12 12 12
l rC C C= ∪  and 2 2 2

l rC C C= ∪  centered at ( )0 0,x y  as 

shown on Figure 83. The subdomains are bounded by the points ( )1 1 ,0lA ρ≡ − , ( )1 1 ,0rB ρ≡  and 

( )2 2 ,0A ρ≡ − , ( )2 2 ,0B ρ≡  respectively. 
 
Then: 
 

1 12 2 ,C C C C= ∪ ∪                                                                                                                       (B.4) 
 
also 
 

1

1

12 2
0
0

lim .
l

r

C C C
ρ
ρ
→
→

 
 = ∪
 
 

                                                                                                                   (B.5) 
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Figure 83: Decomposition of singular integrals' integration domain.  
 
Integrals (B.2) and (B.3) are regular in 2C  and in 12C  since 0 0( , ) ( , )x y x y≠ , but singular in 1C . 
We shall try to define them as the limit: 1 10 0l rρ ρ→ ∧ → , with integration domain 12 2.C C∪   
 
Let work with the singular part of (B.2): 
 

12

'
1 0 0 0 0( , ) ( , ) ln ( , | , ) ( , ).

C

I x y f x y r x y x y ds x y                                                                          (B.6) 

 
For small 1

lρ  and 1
rρ  we have from Taylor formula: 

 
( ) ( ) ( ) ( ) ( )0 0 0 0 0 0 0 0, , , , , ,f x y f x y f x y f x y f x y r= +∇ ⋅ = +∇ ⋅ ⋅rr e                                           (B.7) 

 
where re  is the parallel at C unit vector and r r= ⋅r e . 
 
Then relation (B.6) becomes: 
 

12

'
1 0 0 0 0 0 0( , ) ( , ) ln ( , | , ) ( , )

C

I x y f x y r x y x y ds x y   

     
12

0 0 0 0, ln ( , | , ) ( , ),
C

f x y r r x y x y dS x yre                                                             (B.8) 

1 2

2 1

'
1 0 0 0 0( , ) ( , ) ln ln

l

r

I x y f x y rdr rdr
 

 

          
    

C  

x  1B  2B  1A  2A  

1
rρ  1

lρ  

2ρ  2ρ  

re  2
lC  12

lC  12
rC  2

rC  

1C  

y  
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          
1 2

2 1

0 0, ln ln ,

l

r

f x y r rdr r rdrre
 

 

            
                                                           (B.9) 

   
   
1 2 1 1 2 2'

1 0 0 0 0
2 1 2 1 1

ln ln
( , ) ( , )

ln ln

l l l l l l

r r r r r r
r

I x y f x y
     

     

    
   

      

  

          
       
       

2 2
1 2 2 2

0 0 2 2
2 2 1 1

2 ln 1 2ln 11,
4 2ln 1 2ln 1

l

r r
f x y

   

   

     
    
     

                                      B.10) 

 
since 

'

0 0 0 0

2

1
lnlim ln lim lim lim 0,1 1

deL Hospital

r r r r

r rr r r

r r
→ → → →

⋅ = = = − =
−

                                                                  (B.11) 

and 

'
2 2

0 0 0 0

2 3

1
lnlim ln lim lim 2lim 0,1 2

deL Hospital

r r r r

r rr r r

r r
→ → → →

⋅ = = = − =
−

                                                            (B.12) 

 
it holds: 
 

1

1

'
1 0 0

0
0

lim ( , ) 0,
l
r

I x y





                                                                                                                     (B.13) 

 
therefore '

1I  and 1I  are well defined and unique. Singular integrals that their value is independent 
from the way that their support 1C  reduces to zero, are referred as weakly singular integrals.    
 
Lets now try to apply the same procedure to the singular part of (B.3): 
 

 
12

' 0 0
2 0 0 2

0 0

( , | , )( , ) ( , ) ( , ).
( , | , )

C

x y x yI x y x y ds x y
r x y x y
rf                                                                      (B.14) 

 
For small 1

lρ  and 1
rρ  we have from Taylor formula: 

 
( ) ( ) ( ) ( )0 0 0 0, , , ,x y x y x y= + ⋅∇f f r f                                                                                    (B.15) 

 
and 
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( ) ( ) ( ) ( )0 0 0 0, , ,r rx y x y r x y r⋅ = + ⋅ ⋅∇ ⋅  f r f e f e  

      ( ) ( ) ( ) 2
0 0 0 0, , .r r rx y r x y r= ⋅ ⋅ + ⋅∇ ⋅ ⋅  f e e f e                                                        (B.16) 

 
Letting: 
 

 
 

12

0 0 0 0
2

0 0

, ( , | , )
, ,

( , | , )
r

C

x y r x y x y
A ds x y

r x y x y
f e 

                                                                            (B.17) 

   

12

2
0 0 0 0
2

0 0

, ( , | , )
( , ) ,

( , | , )
r r

C

x y r x y x y
B ds x y

r x y x y
e f e                                                                 (B.18) 

 
we have '

2 0 0( , ) .I x y A B            
 
Working on A, we have: 
 

   1 2

2 1

0 0 0 0, ,
,

l

r

r rx y x y
A dr dr

r r

 

 

 
  

f e f e
                                                                        (B.19) 

  1
0 0

2

, n .
l

r rA x y l 


  f e                                                                                                        (B.20) 

 
Working on B, we have: 
 

       
1 2

2 1

2 2

0 0 0 02 2, ,

l

r

r r r r
r rB x y dr x y dr
r r

e f e e f e
 

 

                                                   (B.21) 

     0 0 1 1, .l r
r rB x ye f e                                                                                             (B.22) 

 
Finally we can notice that 

1

1

0
0

lim 0,
l
r

B





  thus B is well defined.   

Things are more complicated for A, which is singular because of the 1/ r  singularity in the 
kernel. If we assume that 1

l  is not going to zero independently of 1
r  and that a relationship 

between them exists: 
 

1

2

,
l

r a


                                                                                                                                      (B.23) 

 
is this case we have 
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 
1

1

0 0
0
0

lim , ln .
l
r

rA x y af e





                                                                                                         (B.24) 

 
Therefore A can take any finite value by properly selecting α, to get this finite value, 1

l  should 

not going to zero independently of 1
r , but in the way that a relation like eq.(B.21) demands. 

Finally if we assume for symmetry that 1
l = 1

r  then A=0. Integrals which converge only for such 
specialized contraction schemes of the integration region are termed Cauchy principal value 
integrals or we say that their convergence is in the Cauchy principal value sense.  
 
Therefore we have seen that the first integral in (B.1), that is of the general form of equation 
(B.2) is weakly singular. The second on is of course of the general for of (B.3) but it also has a 
peculiarity. The rate of divergence when ( ) ( )0 0, ,x y x y→  is weakened due to the special form of 

 ( , ) ,x y x ynf . In particular when ( ) ( )0 0, ,x y x y→ , 0 0( , | , )x y x yr  becomes tangent to ds  

and thus transverse to  ( , ) ,x y x ynf , in this way the nominator   0 0, ( , | , )x y x y x yn r  tends 

to zero with a rate of order of 1x− , and thus the Cauchy principal value integral becomes weakly 
singular. However, Cauchy principal value integrals appear in the representation theorem of the 
velocity from potential and potential's derivative boundary values. That theorem is necessary for 
the calculation of the velocities on the wake and for the extension to the fully non-linear model.       
 
More extended study in singular integral have been done by many scientists such as 
Muskhelishvili (1953), Mikhlin (1965), Polyanin & Manzhirov (2008).   
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Appendix C - Linear unsteady hydrofoil theory  
 
 
C.1 Formulation of the thin unsteady hydrofoil problem  
 
In the present section we will present the 2D unsteady thin hydrofoil theory described in 
Newman's text book "Marine Hydrodynamics" (1977), which we will follow in a strong abridged 
way. 
 
The problem will be treated in the framework of linear perturbation theory. Consider an unsteady 
2D hydrofoil traveling with constant velocity U  in unbounded domain. Assume that the foil is 
thin and at a small angle of attack, performing unsteady perturbations around its mean position. 
The lifting problem is unsteady and thus a trailing vortex sheet is generated from the trailing 
edge. Vorticity is generated in foil's wake in such a way as the total circulation around it, is 
opposite to the circulation of the foil at every time step in conformity with Kelvin's theorem. 
However, both the body contour and the trailing vortex sheet are considered to be linearised and 
thus they collapse onto a cut in the x-axis. The problem is treated with respect to a body-fixed 
reference frame, i.e. the oscillating body, which is considered stationary in x-direction, is 
encountering a uniform flow.  
 
Moreover, we consider incompressible and irrotational flow, thus a total velocity potential 

( ), ;x y tΤΦ  can be defined that consists of the constant uniform flow potential ( ),I x yΦ , with 

( ) { }, ,0I x y U∇Φ = − , and the perturbation potential ( ), ;x y tΦ  that vanishes at infinity. 
Furthermore no entrance boundary condition must be satisfied on the body, also an appropriate 
Kutta condition must be valid necessitating finite velocity at the trailing edge, while dynamic and 
kinematic boundary conditions must be applied on the wake, demanding continuity of the 
pressure and of the, normal to the boundary velocity, through x-axis. Finally, as we have stated 
before, total circulation along a material curve must be constant in time and thus, on the 
assumption that the motion has arisen from an initial state of rest, the total circulation about the 
foil and the wake must vanish. 
  
Using the principle of linear superposition, we will decompose the thickness and the lifting 
(camber and angle of attack) effects separately. Thickness is constant and thus the first problem is  
unsteady, on the other side an unsteady problem is considered, a foil with zero thickness with  
varying camber line and angle of attack. 
 
In the present Chapter we will focus to the unsteady lifting problem. Let ( );cy x t  denoting the 
camber line of the foil, according to the no entrance boundary condition of the lifting problem the 
camber line must be a material curve   
 

( ) ( ) ( ) 0c c
c

D y y y y
y y

Dt t Τ

− ∂ −
= +∇Φ ⋅∇ − =

∂
                                                                           (C.1) 

1 0c c cy y yU
t x x y y

   ∂ ∂ ∂∂Φ ∂Φ  ⇒ − + − + ⋅ − + ⋅ − =      ∂ ∂ ∂ ∂ ∂       
                                                             (C.2)  
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0,c c c cy y y yU
y t x x x y y

∂ ∂ ∂ ∂∂Φ ∂Φ ∂Φ
⇒ − + − − =

∂ ∂ ∂ ∂ ∂ ∂ ∂
                                                                            (C.3) 

 
in the above relation the last two terms are second order and can be neglected, thus the no 
entrance boundary condition leads to the following Neumann boundary condition 
 

.c c
I

y yU
y t x

∂ ∂∂Φ
= −

∂ ∂ ∂
                                                                                                                    (C.4) 

 
Applying the above boundary condition on the cut we get for the derivative of the disturbance 
potential 
 

( ) ( ) ( ) ( ) ( );
,0; ; ; , 1,1 .cc

I

y x tyx t b x t x t U x
y t x

∂∂∂Φ
= − ∈ −

∂ ∂ ∂
                                                        (C.5) 

 
Where we have non-dimensionalised the hydrofoil with respect to the half chord, and thus the 
hydrofoil extends from -1 to 1 and the wake from −∞  to 1. 
 
Using knowledge from the thin hydrofoil theory, see. e.g. Newman (1977) Chapter 5, we 
represent the foil and the wake with a distribution of vortices with intensity ( );x tγ  and in that 
case the disturbance potential derivatives on the upper (denoted by "+") and the lower (denoted 
by "-") surfaces of the foil and the wake will be 
 

( ) ( ) ( ); 1 ; , ,1 ,
2

x t
x t x

x
γ±∂Φ

= ∈ −∞
∂

                                                                                          (C.6) 

 
and 
 

( ) ( ) ( )
1; ;1 , ,1 .

2
x t t

d x
y x

γ ξ
ξ

π ξ
±

−∞

∂Φ
= − ∈ −∞

∂ −∫                                                                               (C.7) 

 
We mention that the above integral is singular i.e. it explodes when xξ → .   
 
As we have mentioned before total circulation around the foil ( )tΓ  and its wake must be zero 
and thus 
 

( ) ( ) ( )
1 1

; ; 0.x t dx t d tγ γ ζ ζ
−

−∞ −∞

= + Γ =∫ ∫                                                                                        (C.8) 

 
Dynamic boundary condition on the trailing vortex sheet denotes that it cannot carry loading, in 
order to apply that we need an expression for the pressure difference on the wake. Consider a 
streamline extending from infinite to a point near the hydrofoil, unsteady Bernoulli's theorem is 
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( )2 21 1
2 2

I pp U
t tρ ρ
Τ ∞

Τ

∂Φ ∂Φ
+ ∇Φ + = + +

∂ ∂
                                                                                 (C.9)  

( ) 22
21 1 1

2 2 2
I I ppU U
t x y tρ ρ

∞∂ Φ +Φ   ∂Φ∂Φ ∂Φ ⇒ + − + + = + +  ∂ ∂ ∂ ∂   
                                         (C.10) 

221 0,
2

p pU
t x x yρ

∞
  −∂Φ ∂Φ ∂Φ ∂Φ ⇒ − + + + =   ∂ ∂ ∂ ∂    

                                                               (C.11) 

    
where the last quadratic perturbation velocity term is of second order and can be neglected, 
therefore linearised unsteady Bernoulli's theorem can be written 
 

( ) ( ) ( ), ;
, ; , ; .

x y t
p x y t p U x y t

t x
ρ∞

∂Φ ∂Φ
− = − − ∂ ∂ 

                                                                 (C.12) 

 
Applying the above on the upper and the lower surface of the wake and abstracting we get 
 

( ) .p p U
t x x

ρ + − + −
+ −

∂ Φ −Φ ∂Φ ∂Φ − = − − −  ∂ ∂ ∂  
                                                                     (C.13) 

 
Dynamic boundary condition on the wake requires that 
 

( )0 , , 1p p x+ −− = ∈ −∞ −                                                                                                        (C.14) 

( ) ( )0 , , 1 ,U x
t x x

+ − + −∂ Φ −Φ ∂Φ ∂Φ ⇒ − − = ∈ −∞ − ∂ ∂ ∂ 
                                                           (C.15) 

 
differentiating with respect to x we get 
 

( )0 , , 1 ,x x x xU x
t x

+ − + −∂Φ ∂Φ ∂Φ ∂Φ   ∂ − ∂ −   ∂ ∂ ∂ ∂   ⇒ − = ∈ −∞ −
∂ ∂

                                                  (C.16) 

 
and finally using (C.6) we conclude to the following form of dynamic boundary condition 
expresses in terms of distributed vorticity 
 

( ) ( ) ( ); ;
0 , , 1 .

x t x t
U x

t x
γ γ∂ ∂

⇒ − = ∈ −∞ −
∂ ∂

                                                                           (C.17) 

 
The above partial differential equation is of unidirectional wave type and its solutions represents 
waves traveling with celerity U−  from -1 to −∞  
 
( ) ( ) ( ); , , 1 .x t x Ut xγ γ= + ∈ −∞ −                                                                                           (C.18)      
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Applying now a pressure-type condition we demand that the pressure difference must be zero at 
the trailing edge, i.e. 
 

0 , 1,p p x+ −− = = −                                                                                                                (C.19) 
 
following the same procedure as before we get 
 

( ) ( )1; 1;
0.

t t
U

t x
γ γ∂ − ∂ −

⇒ − =
∂ ∂

                                                                                                (C.20) 

 
Moreover differentiating (C.8) with respect to time we have 
 

( ) ( )1 ;
,

d t t
d

dt t
γ ζ

ζ
−

−∞

Γ ∂
= −

∂∫                                                                                                         (C.21) 

 
replacing (C.20) to (C.21) and integrating we conclude 
  

( ) ( )1; .
d t

U t
dt

γ
Γ

= − −                                                                                                                 (C.22) 

 
The above relation is an expression of unsteady Kutta condition for the unknown value of vortex 
intensity at the trailing edge. The rate of change in foils circulation is proportional to the intensity 
of the produced vorticity, in this way hydrofoil's circulation has unsteady character, nevertheless 
Kelvin's conservation of total circulation remains valid. Taking now into account relations (C.18) 
and (C.22) we conclude that every fluid particle on foil's vortex wake carries vorticity's strength 
that equals its strength from the time that it was at the trailing edge. 
 
We can now use relation (C.7) and equation (C.18) to contact a representation theorem for the y-
component of the disturbance velocity on x-axis from vorticity boundary distributions 
 

( ) ( ) ( )1 1

1

; ;1 1 , 0.
2 2

x t t Ut
d d y

y x x
γ ξ γ ζ

ξ ζ
π ξ π ζ

−
±

− −∞

∂Φ +
= − − =

∂ − −∫ ∫                                                   (C.23) 

 
Before we proceed it is noteworthy to give a description of the unsteady lifting problem using the 
knowledge gained until now: 
 
a) Circulation around the foil changes in time as a function of the total velocity field 
 
b) The total velocity field consists of the undisturbed component and the perturbation 
 velocity field that is excited from the steady uniform velocity disturbed by the presence of 
 the body and the unsteady motions of the foil. 
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c) The change of circulation in time is accompanied with free vorticity production at the   
 trailing edge. That free vorticity is transferred invariable with fluid particles downstream 
 of the flow. 
 
d) A vorticity wave is propagating downstream on the wake as relation (C.18) demonstrates. 
 
e) In this way the all the time history of the differential variations of circulation is stored in 
 hydrofoil's wake (last term in C.21) and affects the total velocity field at every time step.     
 
Appling now representation theorem (C.23) for points on the foil and imposing boundary 
condition we have 
 

( ) ( ) ( ) ( )
1 1

1

;1 1; , 1,1 .
2 2

t Ut
d b x t d x

x x
γ ξ γ ζ

ξ ζ
π ξ π ζ

−

− −∞

+
− = + ∈ −

− −∫ ∫                                                 (C.24) 

 
The above is a singular integral equation for the vortex strength, assuming that the r.h.s. is known 
it is  a Fredholm integral equation of the first kind in which the unknown lies in the integrant of a 
singular integral that can be defined in the Cauchy principal value sense as described in Appendix 
B. In the following sections we will see how this type of equations can be solved.   
 
 
C.2 Solution of the singular integral equation in the steady case 
 
A required sub-step before the solution of (C.24) is the solution of a simpler singular integral 
equation that appears in the corresponding lifting problem in steady thin hydrofoil theory 
 

( ) ( ) ( )
1

0
1

1 , 1,1 ,
2

d b x x
x

γ ξ
ξ

π ξ−

− = ∈ −
−∫                                                                                        (C.25) 

 
where the r.h.s. is supposed to be known. 
 
In the next we will construct a solution of the above equation exploiting our physical 
understanding of the steady thin hydrofoil theory and the conjugate nature of thickness and lifting 
problems represented by conjugate source and vortex distributions.  
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Recalling the two conjugate problems, from steady thin hydrofoil theory 
 
Thickness problem 
 

( ) ( )1

1

1 ,
2

T x q
d

x x
ξ

ξ
π ξ

±

−

∂Φ
= −

∂ −∫                                                                                                      (C.26)  

( ) ( ) ( )0
1 .
2

T x
q x b x

y
±∂Φ

= ± =
∂

                                                                                                    (C.27)  

 
Where ( )q x  is the intensity of distributed sources on ( )1,1−  that induce the velocity field 
associated with the thickness problem. From the above it is clear that x-component of disturbance 
velocity induced by constant strength sources distributed on x-axis is continuous through x-axis 
while y-component of the velocity is discontinuous. In that problem unknown source intensity is 
straightforward related with the known data ( )0b x , and thus the problem is solved, we can 

calculate ( )q x  and ( )T x
y
±∂Φ
∂

 from (C.27) and then ( )T x
x
±∂Φ
∂

 replacing known source strength in 

(C.26). We notice that ( )T x
y
±∂Φ
∂

 is zero outside the cut because there are not vortices distributed 

there.  
 
Lifting problem 
 

( ) ( )1 ,
2

L x
x

x
γ±∂Φ

=
∂

                                                                                                                 (C.28) 

( ) ( ) ( )
1

0
1 .

2

L x
d b x

y x
γ ξ

ξ
π ξ

±

−∞

∂Φ
= − =

∂ −∫                                                                                         (C.29) 

 
On the contrary, concerning the lifting problem, it is clear that x-component of disturbance 
velocity induced by constant strength vortices distributed on x-axis is discontinuous through x-
axis while y-component of the velocity is continuous. In that case solution cannot obtained in 
such a straightforward way, because known data are related with unknown ( )xγ  through a 
singular integral equation identical to (C.25). In the following we will see how we can exploit the 
thickness problem in order to solved the more complex lifting problem. The only information that 

we have a priory is that ( )L x
x
±∂Φ
∂

 is zero outside the cut because there are not vortices distributed 

there.  
 
Let's consider the complex velocity field of the lifting problem defined as follows 
 

( ) .
LL

L x
w i

x y
∂Φ∂Φ

= −
∂ ∂

                                                                                                             (C.30)    
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We multiply now with a suitable complex function e.g. ( )1/221 z− , that is real on the cut and pure 
imaginary on the remainder real axis. In this way the previous implicit lifting problem is mapped 
on an explicit one just like the thickness problem considered before. 
 
From the previous procedure a new pseudo-velocity function has been defined by the transform 
of (C.30) 
 

( ) ( ) ( )1/221 .
L LL L

L x x
w i i z

x y x y
 ∂Φ ∂Φ∂Φ ∂Φ

= − = − ⋅ − 
∂ ∂ ∂ ∂ 





                                                           (C.31)    

 
That function must satisfy the transformed form of conditions (C.28) and (C.29) 
 

( ) ( ) ( ) ( )1/22
0 1 , 1,1 ,

L x
b x x x

y
±∂Φ

= ⋅ − ∈ −
∂



                                                                                (C.32) 

( ) ( )0 , 1,1 ,
L x

x
y
±∂Φ

= ∉ −
∂



                                                                                                        (C.33) 

where the second relation occurs from the fact that ( )L x
x
±∂Φ
∂

 is zero outside the cut. 

The above and the thickness problems are identical and thus the pseudo-velocity function can be 
generated with a source distribution, of strength given by a relation similar to (C.27)  
 

( ) ( ) ( ) ( ) ( )1/22
02 2 1 , 1,1 ,

L x
q x b x x x

y
±∂Φ

= = ⋅ − ∈ −
∂



                                                                 (C.34) 

( ) ( )0 , 1,1 .q x x= ∉ −                                                                                                               (C.35) 
 
And the real part of the pseudo-velocity function is 
 

( ) ( ) ( )1/221
0

1

11 .
L bx

d
x x

ξ ξ
ξ

π ξ
±

−

⋅ −∂Φ
= −

∂ −∫


                                                                                      (C.36)  

     
Inverting now the transform applied before we get  
    

( )
( )

( ) ( )1/221
0

1/22
1

11 1 .
1

L bx
d

x xx

ξ ξ
ξ

π ξ
±

−

⋅ −∂Φ
= −

∂ −−
∫                                                                       (C.37)  
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Finally from (C.28) we have 
 

( )
( )

( ) ( ) ( )
1/221

0
1/22

1

12 1 , 1,1 .
1

p

b
x d x

xx

ξ ξ
γ ξ

π ξ−

⋅ −
= ∈ −

−−
∫                                                        (C.38)  

 
We have obtained a partial solution of the singular integral equation (C.25) that correspond to the 
solution of the steady thin hydrofoil lifting problem. However velocities calculated form (C.38) 
present a square-root singularity at the trailing edge and thus steady Kutta condition is not 
satisfied. In order to construct a solution compatible with Kutta condition we could use another 
transform in such a way that we would avoid singularity.  
 
Using the complex function 
 

( ) ( ) 1/21 ,
1

L LL L
L x x zw i i

x y x y z
 ∂Φ ∂Φ∂Φ ∂Φ − = − = − ⋅   ∂ ∂ ∂ ∂ +  





                                                           (C.39) 

 
we obtain a solution that leads to finite velocity at the trailing edge 
 

( ) ( ) ( )
1/21/2 1

0

1

2 1 1 , 1,1 .
1 1p

bxx d x
x x

ξξγ ξ
π ξ ξ−

 + − = ∈ −   − + −   
∫                                                           (C.40) 

 
We have obtained two partial solutions for the linear integral equation (C.25) in order to 
construct the general solution we have to add a partial solution the solution of the homogenous 
equation   
    

( ) ( )
1

1

1 0, 1,1 .
2

d x
x

γ ξ
ξ

π ξ−

= ∈ −
−∫                                                                                                  (C.41) 

 
It is easy to prove that the difference of two partial solutions of a linear equation is a homogenous 
solution, therefore the solution of (C.41) can be obtained abstracting (C.38) from (C.40) 
 

( ) ( )
( )

( ) ( ) ( )
1/21/2 21/2 1 1

00
1/22

1 1

12 1 1 2 1 , 1,1
1 1 1

h

bbxx d d x
x x xx

ξ ξξξγ ξ ξ
π ξ ξ π ξ− −

⋅ − + − = − ∈ −   − + − −    −
∫ ∫  (C.42)  

( )
( )

( )
( )

( ) ( )1/21/2 21 1
00

1/2 1/22 2
1 1

12 1 1 2 1
11 1

h

bbxx d d
x xx x

ξ ξξξγ ξ ξ
π ξ ξ π ξ− −

⋅ − + −
⇒ = − + − − − −

∫ ∫                 (C.43) 

( )
( )

( ) ( ) ( )
1/21

1/20 2
1/22

1

2 1 11 1
11

h

b
x x d

xx

ξ ξγ ξ ξ
π ξ ξ−

  −
⇒ = + − −  − +  −  

∫                                          (C.44) 
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( )
( )

( ) ( ) ( )( ) ( )
1/21

1/2 1/2 1/20 2
1/22

1

2 1 11 1 1 1 1
11

h

b
x x d

xx

ξ ξγ ξ ξ ξ ξ
π ξ ξ

− −

−

  −
⇒ = − + + − −  − +  −  

∫         (C.45) 

( )
( )

( ) ( )
1

1/20 2
1/22

1

2 1 11 1
11

h

b xx d
xx

ξ
γ ξ ξ

π ξ ξ−

 +
⇒ = − − − + −

∫                                                          (C.46) 

( )
( )

( ) ( )
1

1/20 2
1/22

1

2 1 1
11

h

b xx d
xx

ξ ξγ ξ ξ
π ξ ξ−

−
⇒ = − −

− +−
∫                                                               (C.47) 

( )
( )

( ) ( ) ( )1/2 1/21

01/22
1

1 12 1
11

h x b d
x

ξ ξ
γ ξ ξ

π ξ−

− +
⇒ = −

+−
∫                                                            (C.48) 

( )
( )

( )
1/21

01/22
1

2 1 1
11

h x b d
x

ξγ ξ ξ
π ξ−

 −
⇒ = −  + −

∫                                                                         (C.49) 

( )
( )1/22

2 ,
1

h
Cx
x

γ
π

⇒ =
−

                                                                                                          (C.50) 

 
where  
 

( )
1/21

0
1

1 .
1

C b dξξ ξ
ξ−

 −
= −  + 
∫                                                                                                       (C.51) 

 
We have obtained the homogenous solution, in order to find the general solution of linear integral 
equation (C.41) we add (C.38) and (C.51) 
   

( ) ( ) ( )
( )

( ) ( ) ( )
1/221

0
1/22

1

12 1 , 1,1 ,
1

h p

b
x x x d C x

xx

ξ ξ
γ γ γ ξ

π ξ−

 ⋅ −
 = + = + ∈ −
 −−  
∫                     (C.52) 

 
where C  now is an arbitrary constant.  
 
From the definition of circulation we have 
 

( )
1

1

x dxγ
−

Γ = ∫                                                                                                                            (C.53)  

( )
( ) ( )1/221 1

0
1/22

1 1

12 1

1

b
d C dx

xx

ξ ξ
ξ

π ξ− −

 ⋅ −
 ⇒ Γ = +
 −−  

∫ ∫                                                               (C.54)  
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( ) ( )
( ) ( )1/221 1 1

0
1/2 1/22 2

1 1 1

12 2 1 ,
1 1

bC dx d dx
xx x

ξ ξ
ξ

π π ξ− − −

 ⋅ −
 ⇒ Γ = +
 −− − 

∫ ∫ ∫                                        (C.55)  

 

in the next section we will see that 
( )

1

1/22
1 1

dx

x
π

−

=
−

∫  changing also the order of integration in the 

second integral we have  
 

( )
( ) ( )1/221 1

0
1/22

1 1

12 12
1

b
C dx d

xx

ξ ξ
ξ

π ξ− −

 ⋅ −
 ⇒ Γ = +
 −− 
∫ ∫                                                             (C.56)  

( ) ( )
( )

1 1
1/22

0 1/22
1 1

1 12 1 4 ,
2 1

dxC b d
xx

ξ ξ ξ
π ξ− −

 
 ⇒ Γ = + − −
 −− 

∫ ∫                                                  (C.57) 

 
notice now that in the brackets of (C.57), the l.h.s. of (C.41) has appeared; therefore we obtain 
 

1 .
2

C = Γ                                                                                                                                     (C.58)   

 
The constant C , that is related with the circulation, can be chosen in order to cancel the square-
root infinity at the trailing edge i.e. when 1x = − . This can be done if the term in brackets in 
(C.52) is zero at 1x = − , therefore 
 

( ) ( )1/221
0

1

11
2 1

b
C d

ξ ξ
ξ

ξ−

⋅ −
= Γ = −

+∫                                                                                            (C.59)   

( )
1/21

0
1

1 ,
1

C b dξξ ξ
ξ−

 −
⇒ = −  + 

∫                                                                                                  (C.60)   

 
which is consistent with (C.51). 
 
Summarizing, we solved the singular integral equation     
 

( ) ( ) ( )
1

0
1

1 , 1,1 ,
2

d b x x
x

γ ξ
ξ

π ξ−

= ∈ −
−∫                                                                                           (C.61) 

 
that corresponds to the solution of the steady thin hydrofoil lifting problem, in such a way as 
steady Kutta condition, that the velocity at the trailing edge must be finite, is satisfied. The 
solution we have obtained is the following 
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( )
( )

( ) ( ) ( )
1/221

0
1/22

1

12 1 1 , 1,1 ,
21

b
x d x

xx

ξ ξ
γ ξ

π ξ−

 ⋅ −
 = + Γ ∈ −
 −−  
∫                                             (C.62) 

 
with 
 

( )
1/21

0
1

12 .
1

b dξξ ξ
ξ−

 −
Γ = −  + 

∫                                                                                                      (C.63)   

 
 
C.3 Hilbert transforms 
 
Before we proceed to the solution of the unsteady lifting problem we will consider the evaluation 
of some useful singular integrals known as Hilbert transforms. A we will see the calculation of 
this integrals is connected with the solution of lifting problems. 
 
First of all, we consider the following category of elementary integrals 
 

( )
( ) ( )

1

1/22
1 0

0 , 2 1
cos .1 !

, 21 !

n
n

n

if n k
xI d n

if n kx n

π

θ θ
π−

= +
= = = −

=− 
∫ ∫                                        (C.64)  

 
Consider now the following integrals that is called Hilbert Transforms and appears in 
calculations of hydrodynamic quantities in thin hydrofoil theory  
 

( )
( )( )

1

1/22
1

.
1

n

n
dH x

x

ξ ξ

ξ ξ−

=
− −

∫                                                                                                     (C.65) 

 
The above integrals are not elementary but they can evaluated using (C.64) and the following 
recursion formula 
 

( )
( )
( )( ) ( )( )

( )
1 11 1

1 11/2 1/22 2
1 1

.
1 1

n n n

n n n

x x d dx I xH x
x x

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ

− −

− −
− −

 − + Η = = = +
− − − −

∫ ∫                           (C.66) 

 
Let's consider some examples 
 
for 0n =   

( )
( )( )

1

0 1/22
1

0.
1

dH x
x

ξ

ξ ξ−

= =
− −

∫                                                                                              (C.67) 
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The above relation is valid because ( ) 1/221 ξ
−

−  is the solution of eq.(C.41) as we have seen in the 
previous section.  
 
for 1n =   

( )
( )( )

( )
1

1 01/22
1

,
1

o
dH x I xH x

x

ξ ξ π
ξ ξ−

= = + =
− −

∫                                                                       (C.68) 

for 2n =   

( )
( )( )

( )
1 2

2 1 11/22
1

.
1

dH x I xH x x
x

ξ ξ π
ξ ξ−

= = + =
− −

∫                                                                      (C.69) 

We can see from the above that ( )nH x  is a polynomial of degree 1n − . 
 
The same formulas occurs for the case that the above integrals are considered on x-axis and 
outside the cut. Replacing x with complex variable and using analytic continuation and then 
considering the limiting value of z as imaginary part tends to zero we can see that recursive 
formula is valid and  
 

( )
( )( )

( )
1

1/22
0 1/22

1

1 .
1

dH ξζ π ζ
ξ ζ ξ

−

−

= = −
− −

∫                                                                           (C.70) 

 
For 1n =   

( )
( )( )

( ) ( ) ( )
1

1/2 1/22 2
1 01/22

1

1 1 1 ,
1

o
dH I Hξ ξζ ζ ζ π ζπ ζ π ζ ζ

ξ ζ ξ

− −

−

 = = + = + − = + −  − −
∫       (C.71) 

 
for 2n =   

( )
( )( )

( ) ( )
1 2 1/22 2

2 1 11/22
1

1 .
1

dH I Hξ ξζ ζ ζ π ζ ζ ζ
ξ ζ ξ

−

−

 = = + = + −  − −
∫                                     (C.72) 

 
 
C.4 Solution of the singular integral equation in the unsteady case 
 
Lets proceed now to the unsteady lifting problem and consider the singular integral equation for 
the unknown vortex distribution 
 

( ) ( ) ( ) ( ) ( )
1 1

0,
1

;1 1; ; , 1,1 .
2 2un

t Ut
d b x t b x t d x

x x
γ ξ γ ζ

ξ ζ
π ξ π ζ

−

− −∞

+
− = + ∈ −

− −∫ ∫                               (C.73) 

 
The general solution of the above equation can be retrieved using Eqs. (C.61) - (C.63) 
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( )
( )

( ) ( ) ( )
1/221

0,
1/22

1

; 12 1 1; , 1,1
21

unb t
x t d x

xx

ξ ξ
γ ξ

π ξ−

 ⋅ −
 = + Γ ∈ −
 −−  
∫                                      (C.74) 

 

( )
( )

( ) ( ) ( )
1/221 1

1/22
1

12 1 1 1; ; ,
2 21

Ut
x t b t d d

xx

ξ γ ζ
γ ξ ζ ξ

π ξ π ζ ξ

−

− −∞

 −  + ⇒ = + + Γ  − −−    
∫ ∫                   (C.75) 

 
with 
 

( ) ( )
1/21

0,
1

12 ; .
1unt b t dξξ ξ

ξ−

 −
Γ = −  + 

∫                                                                                           (C.76) 

 
Relation (C.75) can be written  
 

( )
( )

( ) ( ) ( ) ( )

( )

1/2 1/22 21 1 1

1/22
1 1

;

1 12 1 1 1; ; .
2 21

B x t

Ut
x t b t d d d

x xx

ξ ξ γ ζ
γ ξ ξ ζ ξ

π ξ ξ π ζ ξ

−

− − −∞

 
 − −  + = + + Γ  − − −−   
  

∫ ∫ ∫


 

                                                                                                                                                  (C.77) 
   
Let's consider ( );B x t   
 

( ) ( ) ( )
1/221 1

1

11 1; ,
2 2

Ut
B x t d d

x
ξ γ ζ

ζ ξ
π ξ ζ ξ

−

− −∞

− +
= + Γ

− −∫ ∫                                                                  (C.78)  

 
and interchange integrals while using relation (C.8) we get  
 

( ) ( ) ( ) ( )
1/221 1 1

1

11 1; ;
2

Ut
B x t d d t d

x
ξ γ ζ

ξ ζ γ ζ ζ
ξ π ζ ξ

−

−∞ − −∞

 − +  = − − +  − −   
∫ ∫ ∫                                      (C.79)  

( ) ( ) ( ) ( )

( )1

1/221 1

1

, ;

11 1; ; ,
2

x t

Ut
B x t d t d

x
ζ

ξ γ ζ
ξ γ ζ ζ

ξ π ζ ξ

−

−∞ −

Β

− + 
⇒ = − − + − − 

∫ ∫


                                            (C.80)  

 
we will work now with the integrant of the exterior integral 
 

( ) ( ) ( ) ( )
1/221

1
1

1 1, ; ;
Ut

x t d t
x

ξ γ ζ
ζ ξ γ ζ

ξ π ζ ξ−

− + 
Β = − + − − 

∫               (C.81) 
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( ) ( ) ( )
( )( ) ( )

1/221

1
1

11, ; ; ,x t Ut d t
x
ξ

ζ γ ζ ξ γ ζ
π ξ ζ ξ−

−
⇒ Β = − + +

− −∫                                                   (C.82) 

 
recall that from relation (C.18) for point on the wake it holds ( ) ( );t Utγ ζ γ ζ= +  thus 
 

( ) ( ) ( )
( )( )

( )2

1/221

1
1

, ,

11, ; 1 ,

B x

x t Ut d
x

ξ ζ

ξ
ζ γ ζ ξ

π ξ ζ ξ−

 
 −
 Β = + − +

− − 
 
 

∫


                                                             (C.83)  

 
consider the integrant of (C.83) 
 

( ) ( )
( )( ) ( ) ( )( )

1/22 2

2 1/22

1 1 1, , ,
1

x
x x
ξ ξξ ζ

ξ ζ ξ ξ ξ ζξ

− −
Β = = −

− − − −−
                                                    (C.84) 

 
using partial fraction decomposition we get 
 

( )
( ) ( )( ) ( )( )

2

2 1/22

1 1 1, ,
1

x
x x x

ξξ ζ
ξ ζ ξ ζ ζξ

 −
Β = − − − − − −−  

                                                  (C.85) 

( )
( ) ( )( ) ( ) ( )( )

2

2 1/2 1/22 2

1, ,
1 1

x
x x x x

ξξ ζ
ξ ζ ξ ξ ζ ξ

Β = − +
− − − − − −

 

                      
( ) ( )( ) ( ) ( )( )

2

1/2 1/22 2

1 .
1 1x x

ξ

ξ ζ ξ ζ ξ ζ ξ ζ
+ −

− − − − − −
                                    (C.86) 

  
We replace now (C.86) in (C.83), it follows 
 

( ) ( )
( ) ( )( ) ( ) ( )( )

1 2

1 1/2 1/22 2
1

1 1, ;
1 1

x t Ut
x x x x

ξζ γ ζ
π ξ ζ ξ ξ ζ ξ−

  Β = + − − +  − − − − − − 
∫      

                                       
( ) ( )( ) ( ) ( )( )

2

1/2 1/22 2

1 1
1 1

d
x x

ξ ξ
ξ ζ ξ ζ ξ ζ ξ ζ

 + − + − − − − − −  

       (C.87)  
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( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2

1 1/2 1/22 2
1 1

1 1, ;
1 1

d dx t Ut
x x x

ξ ξ ξζ γ ζ
π ζ ξ ξ ξ ξ− −

  ⇒ Β = + − − + − − − − − 
∫ ∫      

                                                              
( ) ( ) ( ) ( )

1 1 2

1/2 1/22 2
1 1

1 ,
1 1

d dξ ξ ξ

ξ ξ ζ ξ ξ ζ− −

 + − + − − − −  
∫ ∫       (C.88)  

  
 in the above equation we can recognize Hilbert transforms with respect to ( )1,1x∈ −  related with 

vortex distributions on the foil and generalized Hilbert transforms with respect to ( ), 1ζ ∉ −∞ −  
related with vortex distributions on the trailing vortex sheet 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 0 2 0 2
1 1, ; 1x t Ut x x

x
ζ γ ζ ζ ζ

π ζ
  Β = + − −Η +Η +Η −Η +   −  

                     (C.89)     

( ) ( ) ( ) ( ) ( )1/2 1/22 2 2
1

1 1, ; 1 1 1x t Ut x
x

ζ γ ζ π π ζ π ζ ζ ζ
π ζ

− −    ⇒ Β = + − + − − + − +     −  
      (C.90)     

( ) ( ) ( )
( )
( )

( )
( )

1/21/2 2 22

1

11
, ; 1 xx t Ut

x x x

ζ ζ ζζ
ζ γ ζ

ζ ζ ζ

−−  + −−    ⇒ Β = + − − + − − − 
 

                          (C.91) 

( ) ( ) ( )
( )

1/22

1

1
, ;x t Ut

x
ζ

ζ γ ζ
ζ

 −⇒ Β = +  −
 

                                           
( )

( )
( )

( )
( )

( )
( )

( )3

1/21/2 1/2 2 22 2

,

11 1
1 ,

x

x
x x x x

ζ

ζ ζ ζζ ζ

ζ ζ ζ ζ

−−

Β

 + − − −    + − − − + − − − − 




  (C.92) 

  
after some algebra, it follows ( )3 , 0B x ζ = . Thus relation (C.92) becomes 
 

( ) ( ) ( )
( )

1/22

1

1
, ; .x t Ut

x
ζ

ζ γ ζ
ζ

−
Β = +

−
                                                                                           (C.93) 

 
Replacing (C.93) in (C.80) we obtain  
 

( ) ( ) ( )
( )

1/221 11; .
2

B x t Ut d
x

ζ
γ ζ ζ

ζ

−

−∞

−
= − +

−∫                                                                                   (C.94) 
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Now the above expression of ( );B x t  is used in (C.77)   
 

( )
( )

( ) ( ) ( ) ( )
( )

1/2 1/22 21 1

1/22
1

1 12 1 1; ; .
21

x t b t d Ut d
x xx

ξ ζ
γ ξ ξ γ ζ ζ

π ξ ζ

−

− −∞

 − − = − + − −−   
∫ ∫                       (C.96) 

 
Again, the above solution is singular at the trailing edge ( )1x = −  also through (C.6) infinite 
velocity occurs there. In order to avoid that singularity and satisfy Kutta condition the terms in 
brackets must vanish 
 

( ) ( )
( )

( ) ( )
1/2 1/22 21 1

1

1 1
2 ;

1 1
Ut d b t d

ζ ξ
γ ζ ζ ξ ξ

ζ ξ

−

−∞ −

− −
+ =

+ +∫ ∫                                                               (C.97) 

 

( ) ( )
1/2 1/21 1

1

1 12 ; .
1 1

Ut d b t dζ ξγ ζ ζ ξ ξ
ζ ξ

−

−∞ −

   − −
⇒ + =   + +   
∫ ∫                                                            (C.98) 

 
The above relation is a singular integral equation for the wake vorticity. Notice that when the 
trailing vortex sheet reduces to a single vortex on the wake with strength −Γ  we obtain the 
steady state result for the circulation Eq. (C.63). In general that equation can be solved 
analytically using Laplace transform, Woods (1961), or numerically in a manner outlined by 
Frydenland & Kerwin (1977), Kerwin & Lee (1978) and Belibassakis (1993). In the present work 
we will present a solution for the case of sinusoidal oscillatory motions of the foil.        
 
 
C.5 Calculation of lift and moment 
 
Before we proceed to the solution of (C.98) for the unknown wake vorticity, assuming harmonic 
oscillatory motion, we will obtain formulas for the calculation of force and moment in the general 
case. 
 
Lift force and moment about ( )0x =  can be calculated integrating pressure difference and its 
moment on the chord as follows 
 

[ ]
1

1

,L p p dx+ −
−

= − −∫                                                                                                                (C.100) 

 
and 
  

[ ]
1

1

,M p p xdx+ −
−

= − −∫                                                                                                             (C.101) 
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where pressure difference can be evaluated from (C.13) 
 

( ) .p p U
t x x

ρ + − + −
+ −

∂ Φ −Φ ∂Φ ∂Φ − = − − −  ∂ ∂ ∂  
                                                                   (C.102) 

 
Working with lift force (C.100) we have 
 

( ) ( )1 1

1 1

,L U dx U dx
t x x t

ρ ρ γ+ − + −+ −

− −

∂ Φ −Φ ∂ Φ −Φ ∂Φ ∂Φ = − − = +  ∂ ∂ ∂ ∂  
∫ ∫                               (C.103) 

 
where relation (C.6) has been used. 
 
Using integration by parts, we have 
 

( ) ( ) ( ) ( )
11 1 1 12 2

11 1 1 1

1 1 1 1 .dx d x x x dx x dx
t t t t x t x−− − − −

∂Φ ∂Φ ∂Φ ∂ Φ ∂ Φ = + = + − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∫ ∫ ∫ ∫                    (C.104) 

 

Where ( )1
0

t
∂Φ

=
∂

 because of the continuity along x-axis, i.e. ( ) ( )
1

1
lim
x

x
t t+→

∂Φ ∂Φ
=

∂ ∂
, and the fact 

that the flow upstream to the leading edge is steady, i.e. ( ) 0 , 1
x

x
t

∂Φ
= >

∂
. Using (C.104) and  

(C-6), relation (C.103) becomes  
 

( )
1

1

1 .L x U dx
t
γρ γ

−

∂ = + + ∂ ∫                                                                                                   (C.105) 

 
Notice that the above equation for the steady case, leads to the known from Kutta-Joukowski 
theorem result stL Uρ= Γ .  
 
Working in the same way we can obtain a similar result for moment 
 

( )
1

2

1

1 1 .
2

x U x dx
t
γρ γ

−

∂ Μ = − − + ∂ ∫                                                                                        (C.106) 
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Substituting vortex distribution (C.96) in (C.105) we have 
 

( )
( )

( ) ( ) ( ) ( )
( )

1/2 1/22 21 1 1

1/22
1 1

1 12 1 11 ;
21

L x b t d Ut d dx
t x xx

ξ ζ
ρ ξ ξ γ ζ ζ

π ξ ζ

−

− − −∞

  − −∂   = + − +  ∂ − −−   
∫ ∫ ∫  

                    
( )

( ) ( ) ( ) ( )
( )

1/2 1/22 21 1 1

1/22
1 1

1 12 1 1;
21

U b t d Ut d dx
x xx

ξ ζ
ρ ξ ξ γ ζ ζ

π ξ ζ

−

− − −∞

 − − + − + − −−   
∫ ∫ ∫ (C.107) 

 

( )
( )

( ) ( )
1/221 1

1/22
1 1

11 ;2

1

x b t
L d dx

x tx

ξ ξρ ξ
π ξ− −

 −+ ∂ ⇒ =
 − ∂− 
∫ ∫  

        ( )
( )

( ) ( )
( )

1/221 1

1/22
1

11

1

x Ut
d dx

t xx

ζγ ζρ ζ
π ζ

−

− −∞

 −+ ∂ + −
 ∂ −− 
∫ ∫  

        
( )

( ) ( )
1/221 1

1/22
1 1

12 1 ;
1

U b t d dx
xx

ξρ ξ ξ
π ξ− −

 −
 +
 −− 
∫ ∫  

       
( )

( ) ( )
( )

1/221 1

1/22
1

11

1

U Ut d dx
xx

ζρ γ ζ ζ
π ζ

−

− −∞

 −
 − +
 −− 
∫ ∫                                                           (C.108) 

 

( )
( ) ( ) ( ) ( )

1/221 1

1/22
1 1

1 ;2 1 1 ;
1

b t
L x Ub t d dx

x tx

ξ ξρ ξ ξ
π ξ− −

 − ∂  ⇒ = + +  − ∂−    
∫ ∫  

        
( )

( )
( ) ( ) ( ) ( )

1/221 1

1/22
1

11 1 ,
1

Ut
x U Ut d dx

x tx

ζ γ ζρ γ ζ ζ
π ζ

−

− −∞

 − ∂ +  − + + +  − ∂−    
∫ ∫                     (C.109) 

 
Interchanging orders of integration we get 
 

( )
( )( )

( ) ( ) ( )
1 1

1/22
1/22

1 1

;2 11 1 ;
1

b t
L x Ub t dx d

tx x

ξρ ξ ξ ξ
π ξ− −

 ∂  = − − + +  ∂− −    
∫ ∫  

        ( )
( )( )

( ) ( ) ( )
1 1

1/22
1/22

1

11 1
1

Ut
x U Ut dx d

tx x

γ ζρ ζ γ ζ ζ
π ζ

−

−∞ −

 ∂ +  + − + + +  ∂− −    
∫ ∫           (C.110) 
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( ) ( ) ( )
( )( )

( )
( )( )

1 1 1
1/22

1/2 1/22 2
1 1 1

; 12 11 ;
1 1

b t x
L dx Ub t dx d

t x x x x

ξρ ξ ξ ξ
π ξ ξ− − −

 ∂ + ⇒ = − − + ∂ − − − −  
∫ ∫ ∫

( ) ( ) ( )
( )( )

( )
( )( )

1 1 1
1/22

1/2 1/22 2
1 1

1 11 .
1 1

Ut x
dx U Ut dx d

t x x x x

γ ζρ ζ γ ζ ζ
π ζ ζ

−

−∞ − −

 ∂ + + + − + + ∂ − − − −  
∫ ∫ ∫                           

                                                                                                                                     (C.111) 
 
In the above we can recognize the Hilbert transforms defined on the cut, i.e. ( )1,1ξ ∈ −  and the 

generalized Hilbert transforms defined on the wake, i.e. ( ), 1ζ ∈ −∞ −    
 

( ) ( ) ( ) ( ) ( ) ( )
1

1/22
0 1 0

1

;2 1 ;
b t

L H H Ub t H dx d
t
ξρ ξ ξ ξ ξ ξ ξ

π −

∂ 
= − − + +   ∂ 

∫             

       ( ) ( ) ( ) ( ) ( ) ( )
1

1/22
0 1 01 .

Ut
H H U Ut H d

t
γ ζρ ζ ζ ζ γ ζ ζ ζ

π

−

−∞

∂ + 
+ − + + +   ∂ 

∫                   (C.112) 

 
We can evaluate Hilbert transforms using Eqs. (C.67) and (C.68), using also using (C.8) and 
(C.18) we obtain 
 

( ) ( )1
1/22

1

;
2 1

b t
L d U

t
ξ

ρ ξ ξ ρ
−

∂
= − − + Γ

∂∫  

       ( ) ( )1
1/221 1 .

Ut
d

t
γ ζ

ρ ζ ζ ζ
−

−∞

∂ + − + + −   ∂∫                                                                          (C.113) 

 
Notice that lift force consists of the quasi-steady lift component stL Uρ= Γ , the lift due to body's 
motions and the last, memory term, that represents the effects of the wake where information of 
the whole history of circulation are stored.  
 
Using (C.18) and substituting (C.17) in the last integral of (C.113), integrating by parts and then 
replacing (C.8), we obtain 
 

( ) ( )1
1/221 1

Ut
d

t
γ ζ

ρ ζ ζ ζ
−

−∞

∂ + − + + −   ∂∫  

( ) ( )1
1/22 ;

1 1
t

U d
γ ζ

ρ ζ ζ ζ
ζ

−

−∞

∂ = − + + −   ∂∫

( ) ( )
( )

( )
111/22

1/22
lim 1 1 ; 1 ;

1
U t U t d

ε ε

ζρ ζ ζ γ ζ ρ γ ζ ζ
ζ

−−

→−∞
−∞

 
    = − + + − + +      − 

∫  
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( )
( )

1

1/22
.

1

dU U Ut ζ ζρ ρ γ ζ
ζ

−

−∞

= − Γ + +
−

∫                                                                                    (C.114) 

 
Replacing (C.114) in (C.113) expression for lift force reduces to  
 

( ) ( ) ( )
( )

1 1
1/22

1/22
1

;
2 1 .

1

b t dL d U Ut
t
ξ ζ ζρ ξ ξ ρ γ ζ

ζ

−

− −∞

∂
= − − + +

∂ −
∫ ∫                                                (C.115) 

 
In the same manner we obtain the following formula for the moment about the midchord ( )0x =  
 

( ) ( ) ( ) ( ) ( )
( )

1 1 1
1/2 1/22 2

1/22
1 1

; 11 2 1 ; .
2 1

b t dM d U b t d U Ut
t
ξ ζρ ξ ξ ξ ρ ξ ξ ξ ρ γ ζ

ζ

− −

− − −∞

∂
= − − − − + +

∂ −
∫ ∫ ∫                                                                                   

                                                                                                                                     (C.116) 
 
In the above equations the first term expresses the added mass force and moment due to the linear 
and rotational acceleration of the foil, the second term in the moment equation is the quasi steady 
term and the last wake integral in both relations represent the memory effects stored in the 
trailing vortex sheet. Therefore, for a prescribed motion of hydrofoil's camber line, calculation of 
lift force and moment requires an expression for the wave-type vortex distribution on the wake, 
( )Utγ ζ + . That can be obtained solving equation (C.98). 

 
 
C.6 Harmonic time dependence 
 
In the present section we will obtain analytical solution of equation (C.98) and calculation of lift 
force through (C.115) assuming for simplicity sinusoidal time dependence of the motion of 
camber line. Notice that, according to Fourier's theorem, every periodical wave-form can be 
obtained using simple harmonic forms and due to the linear character of the problem the solution 
equals the superposition of simple harmonic components.  
 
Assuming harmonic motion of the mean camber line with radial frequency ω  we have the 
following expression for the vertical velocity 
 
( ) ( ){ }0; Re ,i tb x t b x e ω=                                                                                                          (C.117) 

 
where ( )0b x  is the complex amplitude of mean camber's velocity and i  is the complex unit. 
 
According to the theory of linear systems the response must be harmonic both with respect to 
time and space, therefore 
 
( ) ( ){ }0Re ,ri t k xx Ut e ωγ γ ++ =                                                                                                     (C.118) 
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where 0γ  is the complex amplitude of wave-type vorticity distribution and /rk Uω=  is the 
reduced frequency. 
 
Lets substitute (C.117) and (C.118) in (C.98)  
 

( ){ } ( ){ }
1/2 1/21 1

0 0
1

1 1Re 2 Re
1 1

ri t k i te d b e dω ζ ωζ ξγ ζ ξ ξ
ζ ξ

−
+

−∞ −

   − −
=   + +   

∫ ∫ 

                                           (C.119) 

( )
1/2 1/21 1

0 0
1

1 1Re 2 0,
1 1

rik i te d b d eζ ωζ ξγ ζ ξ ξ
ζ ξ

−

−∞ −

     − − ⇒ − ⋅ =     + +       
∫ ∫                                         (C.120) 

 
using the known identity { }( )Re 0 0 , ,iaze z a z= ⇔ = ∈ ∈   from complex algebra, we have  

    

( )
1/2 1/21 1

0 0
1

1 12
1 1

rike d b dζζ ξγ ζ ξ ξ
ζ ξ

−

−∞ −

   − −
=   + +   

∫ ∫                                                                        (C.121) 

( )
1/21

0
1

0 1/21

12
1

.
1
1

rik

b d

e dζ

ξ ξ ξ
ξ

γ
ζ ζ
ζ

−
−

−∞

 −
 + ⇒ =
 −
 + 

∫

∫



                                                                                               (C.122) 

 
Consider now the integral on denominator, if we assume as usual that harmonic wave is extended 
at all the support of the integral then the integrand is not absolute integrable. In order to avoid 
that, we assume that the motion starts abruptly from rest at 0t t  and thus 

( ) ( )0; 0 ifx t x t t Uγ = < − . Therefore (C.122) becomes    
 

( )

( )0
0

1/21

0
1

0 1/21

12
1

.
1lim
1

rik

t
t t U

A

b d

e dζ

ξ ξ ξ
ξ

γ
ζ ζ
ζ

−
−

→−∞
−

 −
 + ⇒ =

 −
 + 

∫

∫







                                                                                      (C.123) 

 
Working on A we have 
 

( )0

1/21 1
1

rik

t t U

A e dζζ ζ
ζ

−

−

 −
=  + 
∫                                                                                                      (C.124) 

( )
( )( )( )0

1/221 1
1 1

rik

t t U

A e dζζ
ζ

ζ ζ

−

−

 −
⇒ =  

 + − 
∫                                                                                   (C.125) 
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( )( )0

1

1/22

1

1
rik

t t U

A e dζζ
ζ

ζ

−

−

−
⇒ =

−
∫                                                                                                (C.126) 

( )( ) ( )( )0 0

1 1

1/2 1/22 2

1

1 1
r rik ik

t t U t t U

A e d e dζ ζζ ζ ζ
ζ ζ

− −

− −

⇒ = − +
− −

∫ ∫                                                       (C.127) 

( )( ) ( )( )0 0

1 1

1/2 1/22 2

1

1 1

r
r

ik
ik

t t U t t U

i eA i d e d
ζ

ζζ ζ ζ
ζ ζ

− −

− −

⇒ = +
− −

∫ ∫                                                              (C.128) 

( )
( )( ) ( )( )0 0

1 1

1/2 1/22 2

/ 1

1 1

r

r

ik
r ik

t t U t t U

de dk
A i d e d

ζ
ζζ ζ

ζ ζ

− −

− −

⇒ = +
− −

∫ ∫                                                          (C.129) 

( )( )0

1

1/22

11 .
1

rik

r t t U

dA i e d
dk

ζ ζ
ζ

−

−

 
⇒ = + 

  −
∫                                                                               (C.130) 

 
The limiting value of the above integral is proportional to the sum of Hankel function of zero 
order and second kind and its derivative i.e. Hankel function of first order and second kind 
(Fig.84). 
 
They are defined by 
 

( ) ( ) ( ) ( )2
0 ,r n r n rH k J k iY k−                                                                                                  (C.131) 

 
where ( )n rJ k  and ( )n rY k  is the Bessel functions of the first and second kind. 
 
And the relation between them can be written 
 

( ) ( ) ( ) ( )
2

20
1 .r

r
r

dH k
iH k

dk
=                                                                                                           (C.132) 

 
In Figure 84 the Real and imagine part of Hankel functions of zero and first order and second 
kind are presented against reduced frequency rk . Notice that, real part has a decaying wave 

character with rate ( )1/2
rO k − , while imagine part tends exponentially to zero, as rk  raises, and 

thus only real part is important for moderate and large reduced frequencies. More information 
about Hankel and Bessel functions can be found in Abramowitz and Stegun (1964). 
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  Figure 84: Real and imagine part of Hankel functions of zero and first order and second kind.  

 
From the above we have 
 

( )( )0 0
0

1

1/22

1lim lim 1
1

rik

t t
r t t U

dA i e d
dk

ζ ζ
ζ

−

→−∞ →−∞
−

   = +  
  −  

∫                                                                 (C.133) 

( ) ( )
0

2
0lim 1

2 rt
r

dA i i H k
dk

π
→−∞

 
= − + 

 
                                                                                          (C.134) 

( ) ( ) ( ) ( )
0

2 2
0 1lim .

2 r rt
A iH k H kπ

→−∞
 = − +                                                                                       (C.135) 

 
Finally, replacing (C.135) in (C.123), we obtain for complex vorticity 
 

( )
( ) ( ) ( ) ( )

1/21

0
1

0 2 2
0 1

1
14 .

r r

b d

iH k H k

ξ ξ ξ
ξ

γ
π

−

 −
 + ⇒ = −

 + 

∫ 

                                                                                       (C.136) 

 
For the present linear system on harmonic excitation lifting force must be of sinusoidal time 
dependence 
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{ }0( ) Re ,i tL t L e ω=                                                                                                                    (C.137) 
 
where 0L  is the complex amplitude of lift force. 
 
Replacing Eqs. (C.117), (C.118) in (C.115) and assuming that the motion starts abruptly from 
rest at 0t t  in the same manner with before, we obtain   
 

( ) ( ){ } ( ){ }
( )( )0

0

1 1
1/2 02

0 1/22
1

Re
2 1 lim Re

1
r

i t
i t k

t
t t U

b e dL d U e
t

ω
ω ζ

ξ ζ ζρ ξ ξ ρ γ
ζ

−
+

→−∞
− −

 ∂
 = − − +
 ∂ − 

∫ ∫


            (C.138) 

 
and using (C.137), we have 
 

( ) ( )
( )( )0

0

1 1
1/22

0 0 0 1/22
1

Re 2 1 lim 0
1

rik i t

t
t t U

dL i b d U e eζ ωζ ζρ ξ ω ξ ξ ρ γ
ζ

−

→−∞
− −

      + − − =   −    
∫ ∫



                (C.139) 

( ) ( )
( )( )0

0

1 1
1/22

0 0 0 1/22
1

2 1 lim .
1

rik

t
t t U

dL i b d U e ζ ζ ζρ ξ ω ξ ξ ρ γ
ζ

−

→−∞
− −

 
 ⇒ = − − +
 − 

∫ ∫


                                (C.140) 

 
We can evaluate 0γ  using (C.136), and thus  
 

( ) ( )
( )

( ) ( ) ( ) ( ) ( )( )0
0

1/21

01 1
1/22 1

0 0 1/22 2 2
1 0 1

1
142 1 lim .

1
rik

t
t t U r r

b d
dL i b d U e

iH k H k
ζ

ξ ξ ξ
ξ ζ ζρ ξ ω ξ ξ ρ

π ζ

−
−

→−∞
− −

Β

   −   +   = − − + −   + −   
    

∫
∫ ∫










 

                                                                                                                                                (C.141) 
 
Working with Β  we have 
  

( ) ( ) ( ) ( ) ( )
( )

( )0
0

1/21 1

01/22 2 2
11 0

4 1 1lim ,
11

rik

t
t t Ur r

U e b d d
H k iH k

ζρ ζ ξ ξ ξ ζ
π ξζ

−

→−∞
− −

    −   Β = −     + +   −      
∫ ∫ 

     (C.142) 
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interchanging orders of integration we have 
 

( ) ( ) ( ) ( )
( )

( )( )0
0

1/21 1

0 1/22 2 2
10 1

4 1 1 lim
1 1

rik

t
t t Ur r

U eb d d
iH k H k

ζρ ξ ζξ ζ ξ
π ξ ζ

−

→−∞
− −

   −  Β = −     + +   −     
∫ ∫

                        

                                                                                                                                     (C.143) 

( ) ( ) ( ) ( )
( )

( )( )0
0

1/21 1

0 1/22 2 2
10 1

4 1 lim
1 1

rik

t
t t Ur r

U i i eb d d
iH k H k

ζρ ξ ζξ ζ ξ
π ξ ζ

−

→−∞
− −

   −  ⇒ Β =     + +   −     
∫ ∫

                        

                                                                                                                                     (C.144) 

( ) ( ) ( ) ( )
( ) ( )

( )( )0
0

1/21 1

0 1/22 2 2
10 1

/4 1 lim
1 1

rik
r

t
t t Ur r

de dkU i b d d
iH k H k

ζ
ρ ξ ξ ζ ξ
π ξ ζ

−

→−∞
− −

   −  ⇒ Β =     + +   −     
∫ ∫

                        

                                                                                                                                     (C.145) 

( ) ( ) ( ) ( )
( )

( )( )0
0

1/21 1

0 1/22 2 2
10 1

4 1 lim ,
1 1

rik

t
r t t Ur r

U i d eb d d
dkiH k H k

ζρ ξ ξ ζ ξ
π ξ ζ

−

→−∞
− −

   −  ⇒ Β =     + +   −     
∫ ∫

                        

                                                                                                                                     (C.146) 
 
where the integral in the brackets is proportional to Hankel function of zero order and second 
kind 
 

( ) ( ) ( ) ( )
( )

( ) ( )1/2 21
0

02 2
10 1

4 1 ,
1 2

r

rr r

dH kU i b i d
dkiH k H k

ρ ξ πξ ξ
π ξ−

   − Β = −   + +        
∫ 

                         (C.147)   

 
using (C.132) we obtain                     
 

( ) ( )
( ) ( ) ( ) ( )

( )
1/22 1

1
02 2

10 1

12 .
1

r

r r

H k
Ui b d

iH k H k
ξρ ξ ξ
ξ−

    − Β =       ++      
∫ 

                                                      (C.148)   

 
Replacing Β  in (C.141) and (C.141) into (C.137) we obtain 
 

( ) ( )
1

1/22
0

1

( ) 2 Re 1rL t U ik b dρ ξ ξ ξ
−

= − −


∫   

                        
( ) ( )

( ) ( ) ( ) ( )
( )

( )
1/22 1

1
02 2

11 0

1 ,
1

r

r i t

r r

C k

H k
b d e

H k iH k
ωξ ξ ξ

ξ−


    −  +       ++          

∫ 



                               (C.149) 
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where ( )rC k  is the Theodorsen function defined as a ratio of Hankel functions of second kind, 
zero and first order: 
 

(2)
1

(2) (2)
1 0

( )( ) .
( ) ( )

r
r

r r

H kC k
H k iH k

=
+

                                                                                                 (C.150) 

 
Function ( )rC k  encompasses the memory effects due to the unsteady wake, and for low 
frequencies its limiting value is 1. The Argand diagram of Theodorsen function is presented in 
Figure 85: 

 

 
Figure 85: Argand diagram of Theodorsen function, reduced frequency raises from zero to 
infinite along the complex curve with clockwise direction. 
 
The limiting value of (C.149) for 0rk →  is 
 

( ) ( ) ( ) ( )
1/21 1

1/22
0 00 0

1 1

1lim ( ) 2 lim Re 1
1r r

i t
r rk k

L t U ik b d C k b d e ωξρ ξ ξ ξ ξ ξ
ξ→ →

− −

     −   = − − +     +         
∫ ∫  (C.151) 

( ){ }
( )

1/21

00
1

;

1lim ( ) 2 Re ,
1r

i t

k

b t

L t U b e dω

ξ

ξρ ξ ξ
ξ→

−

 
 − ⇒ = −   +   

∫ 



                                                            (C.152) 

0rk →   
rk →∞   



Evangelos S. Filippas DiplomaThesis  Marine Hydrodynamics 
 

 

168 A boundary element method for the hydrodynamic analysis of flapping-foil thrusters 
operating beneath the free surface and in waves 

  

and using (C.63), it follows 
   

0
lim ( ) ,

rk
L t Uρ

→
= Γ                                                                                                                      (C.153) 

 
which conforms with the steady state result.   
 
 
C.7 Studying flapping motion with unsteady thin hydrofoil theory 
 
Let's focus now to the interesting case of flapping motion that consists of a linear (heaving) 
motion 
 
( ) { }0Re ,i th t h e ω=                                                                                                                    (C.154)  

 
and a rotational (pitching) motion about a pivot axis, e.g. at the midchord 
 

( ) { }0 0Re ,i tt e ωθ θ=                                                                                                                   (C.155) 
 
where 0h  and 0θ  are the complex amplitude's of heaving and pitching motion respectively. These 
motions are considered to be small and thus the mean-camber line is ( ) ( ) ( )0;x t h t x tη θ= + , and 
the normal velocity is evaluated using (C.4) 
 

( ); c c
I

y yb x t U
y t x

∂ ∂∂Φ
= = −
∂ ∂ ∂

                                                                                                   (C.156) 

 

( ) ( ) ( ) ( )0
0; ,I

dh t d t
b x t x U t

dt dt
θ

θ⇒ = + −                                                                                 (C.157) 

 
and using (C.117), (C.154), (C.155), it follows 
 

( ){ } { }0 0 0 0Re Rei t i t
Ib x e i h U i x eω ωω θ ω θ = − + 

                                                                        (C.158) 

 
( )0 0 0 0 .Ib x i h U i xω θ ω θ ⇒ = − + 
                                                                                             (C.159) 
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Substituting now (C.159) in (C.149) we obtain 
 

( )
1

1/22
0 0 0

1

( ) 2 Re 1

A

r I

I

L t U ik i h U i dρ ξ ω θ ωξθ ξ
−

 
    = − − − +    

 

∫   



 

                        ( )
1/21

0 0 0
1

1 .
1

B

i t
r I

I

C k i h U i d e ωξ ω θ ωξθ ξ
ξ−

 
   −    + − +      +        

∫   



                               (C.160) 

 
Working with AI  we have 
 

( )
1

1/22
0 0 0

1

1A II i h U i dξ ω θ ωξθ ξ
−

 = − − + ∫                                                                                 (C.161) 

( ) ( ) ( ) ( )
1 1

1/2 1/22 2
0 0 0

1 1

1 1 .A II i h U d i dω θ ξ ξ ωθ ξ ξ ξ
− −

⇒ = − − + −∫ ∫                                                 (C.162) 

 

Notice that the first integral is the surface of a unit half circular disk, i.e. ( )
1

1/22

1

1 / 2dξ ξ π
−

− =∫  

and the second one is its moment about the center, i.e. ( )
1

1/22

1

1 0dξ ξ ξ
−

− =∫ , therefore  

 

( )0 0 .
2A II i h U πω θ⇒ = −                                                                                                          (C.163) 

 
Working now with BI  we have  
 

1/21

0 0 0
1

1
1B II i h U i dξ ω θ ωξθ ξ

ξ−

  −  = − +    +   
∫                                                                             (C.164) 

( )
( ) ( )

1 1 2

0 0 01/2 1/22 2
1 1

1 .
1 1

B II i h U d i dξ ξ ξω θ ξ ωθ ξ
ξ ξ− −

− −
⇒ = − +

− −
∫ ∫                                                    (C.165) 

 
The above integrals are elementary, see Eq.(C.64), thus 
 

( )( ) ( )0 0 0 1 0 1 2B II i h U I I i I Iω θ ωθ= − − + −                                                                               (C.166) 

( )0 0 0 .
2B II i h U i πω θ π ωθ⇒ = − −                                                                                             (C.167) 
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Replacing (C.163) and (C.167) in (C.160) we obtain 
 

( ) ( ) ( )0 0 0 0 0( ) 2 Re Re
2 2

i t i t
r I r IL t U ik i h U e C k i h U i eω ωπ πρ ω θ ω θ π ωθ

     = − − + − −          
      (C.168) 

( ) ( ) ( )2
0 0 0 0 0

1 1( ) 2 Re Re
2 2

i t i t
r r r r rL t U ik ik h e C k ik h ik eω ωπρ θ θ θ

     ⇒ = − − + − −          
         (C.169) 

( ) ( ){ }22
0 0 0 0

1( ) 2 Re 1 Re
2

i t i t
r r rL t U C k ik h ik e i h Ui eω ωπρ θ πρ ω ωθ

     ⇒ = − − + − −        
     (C.170) 

( ) ( ) ( )2
2

0 0 2

1( ) 2 Re 1 .
2

i t
r r r

d h t d t
L t U C k ik h ik e U

dt dt
ω θ

πρ θ πρ
    ⇒ = − − + − −          

              (C.171) 

 
In the above equations (C.170) and (C.171) the second term is the added mass component of lift 
force. Finally, we obtain the non-dimensional lift coefficient ( ) ( ) 2/LC t L t Uρ=  
 

( ) ( ){ }2
0 0 0 0

1( ) 2 Re 1 Re ,
2

i t i t
L r r r r rC t C k ik h ik e ik h ik eω ωπ θ π θ

     = − − + − −        
                 (C.172) 

 
or 
 

( ) ( ) ( )2

0 0 2 2

1 1 1( ) 2 Re 1 .
2

i t
L r r r

d h t d t
C t C k ik h ik e

U dt U dt
ω θ

π θ π
    = − − + − −          

                   (C.173) 

 
 
C.8 Thin hydrofoils performing on perturbation sinusoidal-gust background field 
  
We have already studied one type of unsteadiness that appears in lifting flow problems, i.e. the 
time dependent oscillating motions of the hydrofoil. Another example of unsteady motion is 
when the hydrofoil is moving with constant forward speed in a fluid which is non uniform i.e. a 
disturbed background field exists, for example a sinusoidal gust. The last problem has been 
studied by many scientist like Sears and Kerwin using theoretical or numerical methods, see e.g. 
Belibassakis (1993). Practical examples of this are the motion of a hydrofoil ship in waves, an 
airplane in turbulence or the motion of the propeller blades in a spatially non uniform ship's 
wake. Also, energy extraction from non-uniform internal wavy flows using biomimetc flapping-
foil systems, could be another very interesting application that requires knowledge from both 
unsteady lifting body and unsteady background theories. 
 
The background field is considered to be a stationary (with respect to the earth-fixed reference 
frame) sinusoidal transverse wave, i.e.  
 

( ) { },cos Re ,r Gik x
G G G GV x V k x V e= =                                                                                          (C.174)  
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where gV  is the amplitude of the sinusoidal gust and , , /r G k Gk Uω=  the non-dimensional gust 
reduced frequency.  
 
With respect to the hydrofoil-fixed reference frame, the gust is an incident wave disturbance that 
travels with the forward speed of the foil U  and the radial frequency of the wave is , .G r GU kω = ⋅  
With respect to body-fixed reference frame (C.174) is written 
 

( ) ( ) ( ){ },

,; cos Re .r G gi k x t
G G r G g GV x t V k x t V e ωω += + =                                                                   (C.175) 

 
In the present case, boundary condition (C.4) becomes 
 

( ); .c c
I G

y yb x t U V
y t x

∂ ∂∂Φ
= = − −
∂ ∂ ∂

                                                                                           (C.176) 

 
In the present paragraph we  will obtain result for lift coefficient for a steady hydrofoil in the 
presence of gust. After that, using the principle of linear superposition, a solution for the more 
complex problem of flapping hydrofoil in sinusoidal background field can be obtained. Thus, 
from (C.175) and (C.176), it follows  
 

( ) ( ){ },; Re ,r G gi k x t
Gb x t V e ω+=                                                                                                      (C.177) 

 
and using (C.117), we obtain  
 

( ){ } ( ){ },

0Re Re r G gg i k x ti t
Gb x e V e ωω +=
                                                                                         (C.178) 

( ) ,
0 .r Gik x

Gb x V e⇒ =
                                                                                                                  (C.179) 

 
We replace now (C.179) in (C.149) 
 

( ) ( ), ,

1/21 1
1/22

1 1

1( ) 2 Re 1 .
1

r G r Gik ik i t
r G r GL t U ik V e d C k V e d eξ ξ ωξρ ξ ξ ξ

ξ− −

    −   = − − +     +        
∫ ∫            (C.180) 

 
Evaluating the integrals in terms of Bessel functions we obtain 
 

( ),

,
(2) (2)
1 , 0 ,

2 /
( ) 2 Re ,

( ) ( )

r G

r Gi t
G

r G r G

S k

i k
L t U V e

H k iH k
ω π

πρ

  
  
  = −   +     





                                                            (C.181) 
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,( )r GS k  is the Sears function defined in terms Hankel functions of second kind, zero and first 
order: 
 

( ) ,
, (2) (2)

1 , 0 ,

2 /
.

( ) ( )
r G

r G
r G r G

i k
S k

H k iH k
π

=
+

                                                                                         (C.182) 

 
Function ,( )r GS k  encompasses the memory effects due to the unsteady wake, and for low 
frequencies its limiting value is 1. The Argand diagram of Sears function is presented in      
Figure 86 

 
Figure 86: Argand diagram of Sears function, reduced frequency raises from zero to infinite 
along the complex curve. 
 
Finally, we obtain the non-dimensional lift coefficient ( ) ( ) 2/LC t L t Uρ=  
 

( ){ },( ) 2 Re / .i t
L G r GC t V US k e ωπ  = −  

                                                                                    (C.183) 

 
 
 
 
 
 

0rk →   10rk =   
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