EONIKO METZOBIO ΠΟΛΥΤΕΧΝΕΙΟ NATIONAL TECHNICAL UNIVERSITY

EIO NATIONAL TECHNICAL UNIVERSITY OF ATHENS SCHOOL OF RURAL AND SURVEYING ENGINEERING Y DIONYSOS SATELLITE OBSERVATORY

ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΚΑΙ ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΚΕΝΤΡΟ ΔΟΡΥΦΟΡΩΝ ΔΙΟΝΥΣΟΥ

ΓΕΩΔΑΙΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΕΚΤΟΝΙΚΩΝ ΜΕΤΑΤΟΠΙΣΕΩΝ ΣΤΗΝ ΧΑΛΚΙΔΙΚΗ

ΣΤΑΥΡΟΥΛΑ ΑΛΑΤΖΑ

ΖΩΓΡΑΦΟΥ, ΦΕΒΡΟΥΑΡΙΟΣ 2013

<u>Ευχαριστίες</u>

Ευχαριστώ θερμά τον Καθηγητή κ. Παραδείση Δημήτριο για την ανάθεση και την επίβλεψη της διπλωματικής αυτής εργασίας, καθώς και για την συμπαράσταση και την συμβολή του στην ολοκλήρωσή της.

Θα ήθελα να εκφράσω τις ευχαριστίες μου στην υποψήφια διδάκτορα Αγγελική Μαρίνου, για την πολύτιμη βοήθεια, τις συμβουλές και τη στήριξη καθ' όλη τη διάρκεια της εκπόνησης της διπλωματικής εργασίας.

Επίσης, θα ήθελα να ευχαριστήσω τους υποψήφιους διδάκτορες Αναστασίου Δημήτριο και Παπανικολάου Ξάνθο για την βοήθεια και τον χρόνο που διέθεσαν για την ολοκλήρωση της διπλωματικής εργασίας.

<u>Περίληψη</u>

Η Ελλάδα βρίσκεται στα όρια σύγκλισης της Ευρασιατικής πλάκας με την Αφρικανική, γεγονός που την κατατάσσει στη λίστα με τις πιο σεισμογενείς περιοχές του πλανήτη. Συνεπώς, λόγω της έντονης τεκτονικής δραστηριότητας, ιδιαίτερο ενδιαφέρον εμφανίζεται στον προσδιορισμό των παραμορφώσεων που προκαλούνται στην ευρύτερη περιοχή.

Για τον σκοπό αυτό, το Εθνικό Μετσόβιο Πολυτεχνείο και συγκεκριμένα ο Τομέας Τοπογραφίας, δημιούργησε ένα ερευνητικό πρόγραμμα, με την ονομασία SING, το οποίο περιλάμβανε σειρά μετρήσεων με δορυφορικές μεθόδους, σε ποικίλες περιοχές, που να καλύπτουν σχεδόν το σύνολο του Ελλαδικού χώρου.

Στα πλαίσια του ερευνητικού προγράμματος SING, που διήρκησε τρεις χρονιές, από το 1998 έως το 2000, ιδρύθηκε ένα δίκτυο σημείων στην περιοχή της Χαλκιδικής. Όπως η πλειοψηφία του Ελλαδικού χώρου, έτσι και η Χαλκιδική παρουσιάζει έντονο τεκτονικό ενδιαφέρον, καθώς διατρέχεται από τρία ρήγματα.

Γεγονός που αποδεικνύει την έντονη σεισμικότητα της περιοχής αποτελεί και ο τελευταίος σεισμός που πραγματοποιήθηκε στις 14 Φεβρουαρίου του 2012, έντασης 5,1 βαθμών της κλίμακας ρίχτερ, που αποτελεί σύμφωνα με το Πανεπιστήμιο Αθηνών έναν από τους σημαντικότερους το έτος 2012.

Το δίκτυο που ιδρύθηκε στην περιοχή, αποτελείται από τριάντα ένα σημεία. Από αυτά τα είκοσι ένα μετρήθηκαν και τις τρεις χρονιές, τα οκτώ δύο χρονιές και τέλος δύο σημεία, μετρήθηκαν μία χρονιά, οπότε δεν χρησιμοποιήθηκαν στον προσδιορισμό των παραμορφώσεων στην περιοχή. Εκτός των τριάντα ένα σημείων, χρησιμοποιήθηκαν επίσης δύο μόνιμοι σταθμοί, από τους οποίους επιλύθηκε το τοπικό δίκτυο.

Αρχικά, έγινε υλοποίηση του συστήματος αναφοράς στο ITRF2005, από εννέα σταθμούς IGS, κοινούς και για τις τρεις χρονιές. Στη συνέχεια έγινε συνόρθωση του τοπικού δικτύου από τους μόνιμους σταθμούς και δόθηκαν οι τελικές συντεταγμένες στα σημεία του δικτύου. Η επίλυση των μετρήσεων πραγματοποιήθηκε με το λογισμικό Bernese v5.

Με δεδομένες τις γεωδαιτικές συντεταγμένες των σημείων του δικτύου, προσδιορίστηκαν οι μετατοπίσεις τους στις τρεις διευθύνσεις, στο χρονικό διάστημα που μετρήθηκαν, καθώς και οι ταχύτητες με τις οποίες κινούνται. Επίσης, υπολογίστηκαν οι ταχύτητες των σημείων του δικτύου ως προς σταθερή Ευρώπη, ως προς τον κόσμο και ως προς τον Διόνυσο.

Τέλος, προκειμένου να προσδιοριστούν οι τεκτονικές παραμορφώσεις, που εμφανίζονται στην περιοχή μελέτης, υπολογίστηκαν τρεις τανυστές παραμόρφωσης, με τη χρήση ενός συνόλου σημείων του δικτύου για κάθε τανυστή.

<u>Abstract</u>

Greece is situated on the convergence limits between the Eurasian and the African lithosperic plate, and due to this fact it is enlisted as one of the most seismogenic areas on the planet. Consequently, because of this intense tectonic activity, a great interest arises, when it comes to defining the distortions, which are caused in the area.

For this purpose, the National Technical University of Athens and more specifically the Department of Surveying Engineering, created a research program, called SING, which included a series of measurements with satellite methods in various places, covering almost all of Greece.

As part of the SING research program, which lasted three years-from 1998 to 2000-, a network of points was established in the area of Halkidiki. Like the majority of Greece, Halkidiki also has an intense tectonic appeal, as it is traversed by three faults.

A fact that proves this intense seismicity of the area, is the last 5.1-magnitude earthquake, that took place on February 14 2012, which, according to the University of Athens, is one of the most important earthquakes in 2012.

The network that was established in the area has thirty one points. From these points, twenty one, were measured during the whole three years, eight points were measured during two years and finally, two points were measured during only one year and as a result were not used at the calculations of the deformations of the area. Apart from these 31 points, there was also the use of two permanent stations, which lead to the solution of the local network.

First of all, implementation of the reference system in ITRF2005 was made, using nine IGS stations, for the three years of measurements. Secondly, the local network was solved from the permanent stations and the final coordinates of the points of the network, were calculated. The resolution of the measurements was made with Bernese GPS Software v5.

With knowledge of the geodetic coordinates of the points of the network, their movements in three directions were calculated, during the time in which they were observed, as well as their velocities. The velocities of the points, considering Europe, the earth and the permanent station DION fixed, were also calculated.

Finally, in order to define the tectonic deformations, of the area in study , three strain tensors were calculated, using a group of points for each tensor.

ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

Ευχαριστίες	I
Περίληψη	
Abstract	IV
1.Εισαγωγή	1
2.Γεωμορφολογία περιοχής μελέτης	3
2.1. Τεκτονικό υπόβαθρο Ελλαδικού χώρου	3
2.2. Γεωλογικό υπόβαθρο Χαλκιδικής	5
2.3.Μεγάλα ρήγματα της χερσονήσου Χαλκιδικής	5
2.4.Σεισμικότητα Ελλάδας	7
2.5.Σεισμικότητα Χαλκιδικής	10
3.Περιγραφή δικτύου	12
3.1.Εξωτερικό δίκτυο μόνιμων σταθμών	12
3.2.Τοπικό δίκτυο	12
4.Συστήματα Αναφοράς	19
4.1.Διεθνές Επίγειο Σύστημα Αναφοράς ITRF	19
4.2.Υλοποίηση συστήματος αναφοράς στη Χαλκιδική	20
5.Το λογισμικό επεξεργασίας Bernese	22
5.1.Επεξεργασία μετρήσεων	22
5.2.Επεξεργασία του κώδικα	22
5.3.Επεξεργασία διαφορών φάσης	23
5.4.Τελικά στάδια επίλυσης	23

6. Επεξεργασία αποτελεσμάτων28
6.1. Διαδικασία υπολογισμού τεκτονικών ταχυτήτων28
6.2. Υπολογισμός και ανάλυση χρονοσειρών30
6.3.Προσδιορισμός τεκτονικών ταχυτήτων με σταθερή Ευρώπη60
7.Υπολογισμός τανυστών παραμόρφωσης68
7.1. Γενικά
7.2.Προσδιορισμός των τανυστών παραμόρφωσης για όλο το δίκτυο69
8.Συμπεράσματα73
8.Συμπεράσματα73 8.1.Επίλυση δικτύου
8.Συμπεράσματα73 8.1.Επίλυση δικτύου
 8.Συμπεράσματα
8.Συμπεράσματα

<u>1. ΕΙΣΑΓΩΓΗ</u>

Ο Ελληνικός χώρος βρίσκεται στα όρια σύγκλισης της Ευρασιατικής πλάκας με την Αφρικανική, και κατ' επέκταση είναι χώρος, που εμφανίζεται έντονη σεισμικότητα. Η Ελλάδα κατέχει την πρώτη θέση στη Μεσόγειο, από άποψη σεισμικότητας και έκτη θέση σε παγκόσμιο επίπεδο, μετά από χώρες με μεγάλη σεισμικότητα, όπως η Ιαπωνία, οι Νέες Εβρίδες, το Περού, τα νησιά Σολομώντος και η Χιλή. Χαρακτηριστικό τεκτονικό γνώρισμα του ελλαδικού χώρου, είναι το ηφαιστειακό τόξο Νοτίου Αιγαίου. Αποτελεί το όριο μεταξύ της Ευρασιατικής λιθοσφαιρικής πλάκας, στην οποία περιλαμβάνεται και το Αιγαίο και της Αφρικανικής πλάκας.

Στον αιώνα που διανύουμε, η βελτίωση των μεθόδων δορυφορικού εντοπισμού, έχει συνεισφέρει στην μελέτη του στερεού φλοιού της Γης και τις εκάστοτε παραμορφώσεις, που υφίσταται . Η ανάπτυξη του τομέα της διαστημικής τεχνολογίας, συνέβαλε στην βελτίωση του τρόπου παρατήρησης και μελέτης των γεωφυσικών φαινομένων.

Όπως πολλές περιοχές της Ελλάδας, έτσι και η Χαλκιδική, λόγω των ρηγμάτων Στρατωνίου, Βαρβάρας και Γοματίου -που οφείλονται στην επαφή του νομού, με τη Σερβομακεδονική μάζαεμφανίζει έντονη τεκτονικότητα.

Γεγονός που αποδεικνύει την έντονη σεισμικότητα της περιοχής αποτελεί και ο τελευταίος σεισμός, που πραγματοποιήθηκε στις 14 Φεβρουαρίου του 2012, έντασης 5.1 της κλίμακας ρίχτερ, που αποτελεί σύμφωνα με το Πανεπιστήμιο Αθηνών, έναν από τους σημαντικότερους, το έτος 2012.

Αυτό είχε σαν αποτέλεσμα, το Εθνικό Μετσόβιο Πολυτεχνείο να ιδρύσει ένα δίκτυο σημείων στην γύρω περιοχή, στα πλαίσια του ερευνητικού προγράμματος SING. Στόχος, είναι η διαρκής παρακολούθηση των σημείων, ώστε να είναι διαθέσιμες σε διαρκή βάση, οι μικρομετακινήσεις τους και οι ταχύτητες τους. Η γνώση αυτή, είναι πιθανό να συνεισφέρει, σε εκτίμηση μελλοντικού σεισμού, στην περιοχή μελέτης. Αυτό είναι και το αντικείμενο, της παρούσας διπλωματικής εργασίας.

Στο δεύτερο κεφάλαιο, γίνεται μία εισαγωγή στο γεωλογικό και τεκτονικό υπόβαθρο της Ελλάδας γενικότερα και πιο συγκεκριμένα της Χαλκιδικής. Επίσης, γίνεται αναφορά στη έντονη σεισμικότητα, που παρουσιάζει ο Ελλαδικός χώρος και στον πρόσφατο σεισμό, που πραγματοποιήθηκε στην περιοχή μελέτης.

Στο τρίτο κεφάλαιο, παρουσιάζεται το δίκτυο, που ιδρύθηκε στην περιοχή μελέτης. Γίνεται σχηματική απεικόνιση του τοπικού δικτύου και λεπτομερής αναφορά, στα στοιχεία των μετρήσεων, που πραγματοποιήθηκαν και τις τρεις χρονιές(τύποι δεκτών, ώρες μέτρησης, τύπος και ύψος κεραίας).

Στο τέταρτο κεφάλαιο, γίνεται μία μικρή εισαγωγή στα συστήματα αναφοράς και ειδικότερα αναλύεται το ITRF2005, στο οποίο έγινε η επίλυση του δικτύου. Αναφέρονται οι σταθμοί IGS, που χρησιμοποιήθηκαν για την επίλυση του εξωτερικού δικτύου και απεικονίζονται σχηματικά, μαζί με τους σταθερούς σταθμούς του τοπικού δικτύου.

Στο πέμπτο κεφάλαιο, γίνεται περιγραφή του λογισμικού που χρησιμοποιήθηκε, για την επεξεργασία των μετρήσεων, του Bernese v5. Αναλύονται τα στάδια επίλυσης και παρατίθενται τα αποτελέσματα, δηλαδή οι τελικές συντεταγμένες των σημείων του δικτύου.

Στο έκτο κεφάλαιο, παρατίθενται οι τεκτονικές ταχύτητες, καθώς και η μεθοδολογία με την οποία υπολογίστηκαν. Επίσης, παρουσιάζονται τα διαγράμματα των χρονοσειρών των σημείων του δικτύου. Τέλος, υπολογίζονται και απεικονίζονται σχηματικά, οι τεκτονικές ταχύτητες των σημείων ως προς σταθερή Ευρώπη, ως προς τον κόσμο και ως προς τον Διόνυσο.

Στο έβδομο κεφάλαιο, γίνεται μία συνοπτική αναφορά στον τρόπο υπολογισμού των τανυστών παραμόρφωσης και παρατίθεται χάρτης που απεικονίζει, τις παραμορφώσεις που έχει υποστεί η περιοχή της Χαλκιδικής.

<u>2.ΓΕΩΜΟΡΦΟΛΟΓΙΑ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ</u>

2.1.Τεκτονικό υπόβαθρο Ελλαδικού χώρου

Ο Ελληνικός χώρος βρίσκεται στα όρια σύγκλισης της Ευρασιατικής λιθοσφαιρικής πλάκας, τμήμα της οποίας είναι το Αιγαίο, με την Αφρικανική, της οποίας τμήμα είναι η λιθόσφαιρα της Ανατολικής Μεσογείου, και κατ' επέκταση είναι χώρος, όπου εμφανίζεται έντονη σεισμικότητα. Οι δύο λιθοσφαιρικές πλάκες συγκλίνουν με σχετική ταχύτητα της τάξης των 2.5 cm το χρόνο, που έχει ως αποτέλεσμα, την καταβύθιση της ωκεάνιας πλάκας της Ανατολικής Μεσογείου, λόγω μεγαλύτερης πυκνότητας, κάτω από την ηπειρωτική πλάκα του Αιγαίου.

Χαρακτηριστικό τεκτονικό γνώρισμα του ελλαδικού χώρου, είναι το Ελληνικό τόξο, το οποίο είναι σεισμικά και ηφαιστειακά ενεργό. Η εξέλιξη της γεωλογίας και της μορφολογίας του εδάφους της Ελλάδας, χρονολογείται διακόσια πενήντα εκατομμύρια χρόνια πριν, με τη δημιουργία ενός νέου για εκείνη την εποχή ωκεανού, από το σχίσιμο μιας παλιάς μεγάλης ηπείρου, που πήρε το όνομα Τηθύς. Σε αυτό το χρονικό διάστημα, σημαντικές αλλαγές που συντελέστηκαν, από τις μετατοπίσεις των λιθοσφαιρικών πλακών, οδήγησαν στην σημερινή γεωμορφολογική εικόνα της Ελλάδας, που παρουσιάζει μία δυναμική τεκτονικά, κατάσταση.

Εικ.1:Το ελληνικό τόξο, Πηγή: <u>www.diktyoseismos.gr</u>

Figure 1:The Hellenic arc,Source: <u>www.diktyoseismos.gr</u>

Η τοξοειδής διάταξη των νησιών -Επτάνησα και Κρήτη- των ορεινών όγκων και των ηφαιστείων, οδήγησε στην ονομασία του λεγόμενου «Ελληνικού τόξου». Το τόξο που δημιουργείται περιλαμβάνει:

1. Την ελληνική τάφρο.

Η ελληνική τάφρος δημιουργείται κατά μήκος της επαφής των δύο λιθοσφαιρικών πλακών. Αποτελείται από ένα σύστημα βαθιών θαλάσσιων λεκανών, που εκτείνονται από τη Ρόδο έως την Κεφαλονιά. Το μεγαλύτερο βάθος της τάφρου, που αποτελεί και το βαθύτερο σημείο της Μεσογείου, εντοπίστηκε στο Ιόνιο πέλαγος, νοτιοδυτικά της Πελοποννήσου και είναι στα 4500m περίπου.

2. Το νησιωτικό τόξο

Το νησιωτικό τόξο, αποτελείται από μία σειρά νησιών και την Πελοπόννησο. Εκτείνεται παράλληλα προς την τάφρο. Αιτία της δημιουργίας του, αποτελεί η ανύψωση κυρίως ιζηματογενών πετρωμάτων, στα όρια της Ευρασιατικής πλάκας, η οποία προκαλεί και την παραμόρφωση τους.

3. Την οπισθοτάφρο

Η οπισθοτάφρος είναι μία θαλάσσια λεκάνη, πάνω στην Ευρασιατική πλάκα και μπροστά από το νησιωτικό τόξο, στο Κρητικό πέλαγος. Το μέγιστο βάθος που συναντάμε στην οπισθοτάφρο είναι στα 2000m.

4. Το ηφαιστειακό τόξο

Αποτελείται από ενεργά και ανενεργά ηφαίστεια(Σουσάκι, Μέθανα, Μήλος, Σαντορίνη, Νίσυρος). Δημιουργήθηκε από την ανάτηξη, υλικού της Αφρικανικής πλάκας, το οποίο καθώς ανέρχεται στην επιφάνεια, διαπερνώντας την Ευρασιατική πλάκα, δημιουργεί τα ηφαίστεια.

Εικ.2:Στοιχεία Ελληνικού τόξου, Πηγή: <u>www.diktyoseismos.gr</u>

Figure 2: Features of the hellenic arc,Source: <u>www.diktyoseismos.gr</u>

Αν και οι τεκτονικές διαδικασίες στην Ελλάδα χρονολογούνται στα δέκα εκατομμύρια χρόνια πριν, η σημερινή της μορφή, οφείλεται σε γεωδυναμικές διεργασίες, των τελευταίων δύο εκατομμυρίων ετών και συγκεκριμένα των τελευταίων 700.000-1.000.000 ετών.

Όλες οι τεκτονικές δραστηριότητες, που λαμβάνουν χώρο στην Ελλάδα, τα τελευταία δύο εκατομμύρια χρόνια, όπως σεισμοί, ρήγματα, ανοδικές και καθοδικές κινήσεις, φαράγγια, κόλποι, θάλασσες, βουνά, πεδιάδες, σχετίζονται άμεσα με τις κλιματικές αλλαγές, που έχουν πραγματοποιηθεί κατά την πάροδο του χρόνου, καθώς και με το ενεργό νεοτεκτονικό καθεστώς.

2.2.Γεωλογικό υπόβαθρο Χαλκιδικής

Η Χαλκιδική, αποτελεί την χερσόνησο της κεντρικής Μακεδονίας, η οποία συνορεύει προς Βορρά με τον νομό Θεσσαλονίκης, ενώ προς τις τρεις άλλες πλευρές βρέχεται από το Αιγαίο πέλαγος. Πρωτεύουσά της είναι ο Πολύγυρος. Γεωγραφικώς αλλά όχι διοικητικώς, τμήμα της Χαλκιδικής, αποτελεί και το Άγιο Όρος.

Όσον αφορά τη γεωμορφολογία της περιοχής, ο νομός Χαλκιδικής καλύπτεται από πετρώματα τριών ειδών, τη Σερβομακεδονική μάζα, την Περιροδοπική ζώνη και την υποζώνη Παιονίας. Η επαφή της με τη Σερβομακεδονική μάζα, έχει άμεση επίδραση στην τεκτονική της ευρύτερης περιοχής, δεδομένου ότι η ζώνη αυτή βρίσκεται σε συνεχή τεκτονική δράση. Η νεοτεκτονική δραστηριότητα χαρακτηρίζεται από κανονικά ρήγματα, καθώς επίσης και από τεκτονικά κέρατα και τάφρους, που επεκτείνονται έως την χερσόνησο της Χαλκιδικής, όπως οι περιοχές Ιερισσού και Γοματίου.

Η χερσόνησος της Χαλκιδικής, παρουσιάζει ενδοηπειρωτικές διαρρήξεις, οι οποίες περιλαμβάνουν τεκτονικές τάφρους και κανονικά ρήγματα, με μεγάλες γωνίες κλίσης. Συχνά αυτά τα ρήγματα, σχετίζονται με οριζόντια άλματα ή μετατοπίσεις.

Οι τεκτονικές δομές που διακρίνονται στην χερσόνησο τις Χαλκιδικής, περιλαμβάνουν ρήγματα τριών γενικών διευθύνσεων ανάπτυξης. Ένα μεγάλο μέρος των ρηγμάτων, ακολουθεί τη διεύθυνση BΔ-NA έως BBΔ-NNA. Ένα άλλο μέρος προσανατολίζεται Α-Δ έως ΔBΔ-ANA. Τέλος, η τρίτη κατηγορία ρηγάτων, ακολουθούν την διεύθυνση B-N. Οι εφελκύστικες τάσεις, με γενική διεύθυνση B-N δημιουργούν κανονικά ρήγματα Α-Δ κατεύθυνσης.

2.3.Μεγάλα ρήγματα χερσονήσου Χαλκιδικής

Τρία είναι τα μεγαλύτερα ρήγματα που συναντώνται στην περιοχή της Χαλκιδικής. Αυτά είναι τα ρήγματα Στρατωνίου και Βαρβάρας, που το δεύτερο είναι συνέχεια του πρώτου, και τέλος το ρήγμα Γοματίου.

Εικ.3:Τα ρήγματα της Χαλκιδικής,Πηγή: «Ειδική σεισμοτεκτονική μελέτη των ρηγμάτων της ευρύτερης περιοχής των μεταλλείων Κασσάνδρας»

Figure 3:The faults of Halkidikh,Source:"Special seismotectonic research of the faults of the mines of Kassandra"

Το ρήγμα Στρατωνίου-Βαρβάρα διακρίνεται σε τρία τμήματα. Το πρώτο τμήμα περιλαμβάνει το ρήγμα Βαρβάρας. Το δεύτερο τμήμα, περιλαμβάνει τη συνέχεια του ρήγματος Βαρβάρας, έως το Στρατώνι και το τρίτο τμήμα, περιλαμβάνει το μέρος του ρήγματος, που ξεκινάει από τον οικισμό Στρατώνι και συνεχίζεται υποθαλάσσια.

Όμοια το ρήγμα Γοματίου- Μεγάλης Παναγίας, το οποίο έχει ΒΔ-ΝΑ διεύθυνση, διακρίνεται σε δύο τμήματα, με συνολικό μήκος 15.5 km. Το πρώτο, περιλαμβάνει το ρήγμα μεγάλης Παναγίας, με μήκος 7.5 km και το δεύτερο τμήμα αποτελείται από το ρήγμα Γοματίου, που εκτείνεται σε μήκος 8 km.

Το ρήγμα του Στρατωνίου με διεύθυνση Α-Δ, έχει μήκος περίπου 30 km και στη διεύθυνση ΒΔ-ΝΑ ενώνεται με το ρήγμα της Βαρβάρας. Διέρχεται από τα χωριά Στάγειρα, Στρατονίκη και Στρατώνι. Το ρήγμα του Στρατωνίου σχετίζεται με το σεισμό της Ιερισσού που έλαβε χώρα το 1932 και είχε μέγεθος επτά βαθμών της κλίμακας ρίχτερ.

Εικ.4:Το ρήγμα Στατωνίου, Πηγή: «Ειδική σεισμοτεκτονική μελέτη των ρηγμάτων της ευρύτερης περιοχής των μεταλλείων Κασσάνδρας»

Figure 4:The fault of Stratoni,Source:"Special seismotectonic research of the faults of the mines of Kassandra"

Το ρήγμα της Βαρβάρας, διέρχεται από τα δυτικά του χωριού Στάγειρα, μέχρι το χωριό Βαρβάρα και αποτελεί τη συνέχεια του ρήγματος Στρατωνίου προς τα ΒΔ. Έχει μήκος περίπου 6 km και λόγω μετάπτωσης προς τα ΝΔ, σχηματίζεται μία μεγάλη κοιλάδα.

2.4.Σεισμικότητα Ελλάδας

Η Ελλάδα παρουσιάζει έντονη σεισμικότητα. Διαθέτει 157 ενεργά σεισμικά ρήγματα, που έχουν προκαλέσει συνολικά, μέχρι σήμερα, 570 σεισμούς άνω των έξι βαθμών της κλίμακας ρίχτερ.

Εικ.5: Η σεισμικότητα της Ελλάδας τον 20° αιώνα

Figure 5:Seismicity of Greece in the 20° century

Η γεωγραφική κατανομή των επικέντρων των σεισμών, οδηγεί στο συμπέρασμα ότι η πλειοψηφία τους διατάσσεται κατά μήκος της ζώνης Δ. Αλβανία, νησιά Ιονίου πελάγους, Κρήτη, Κάρπαθος, Ρόδος και Ν.Δ. Τουρκία. Επίσης, εξίσου σημαντική σεισμική δραστηριότητα εμφανίζεται στο Β. Αιγαίο και στη Β.Δ. Ανατολία. Σε αντίθεση με τους σεισμούς που αναφέρθηκαν που είναι επιφανειακοί, οι σεισμοί ενδιάμεσου βάθους, εμφανίζονται στην περιοχή Νοτίου Αιγαίου.

Σύμφωνα, με πρόσφατα στοιχεία, παρουσιάζονται οι πιθανοί λόγοι, στους οποίους φαίνεται να αποδίδεται η αυξημένη σεισμική δραστηριότητα στο Αιγαίου, παρά την πολυπλοκότητα του θέματος. Οι αιτίες, που είναι κατά κύριο λόγο συμπιεστικές και εφελκυστικές δυνάμεις από τις γειτονικές λιθοσφαιρικές πλάκες, συνοψίζονται στις εξής:

- Οι επιφανειακοί σεισμοί, ενδιάμεσου βάθους στο Ν. Αιγαίο οφείλονται στη συμπιεστική δύναμη, που προκαλείται από τη σύγκλιση της Αφρικανικής ή Ανατολικής Μεσογείου λιθοσφαιρικής πλάκας με την Ευρασιατική.
- Οι επιφανειακοί σεισμοί στις δυτικές ακτές της Κεντρικής Ελλάδας οφείλονται στη συμπιεστική δύναμη, που προκαλείται από την αριστερόστροφη περιστροφή της Αδριατικής ή Απουλίας πλάκας.
- Έντονη σεισμικότητα στο Αιγαίο προκαλείται γενικά από την κίνηση της Τουρκικής Ανατολίας λιθοσφαιρικής πλάκας προς τα δυτικά, που κατ' επέκταση επηρεάζει την κίνηση της Αραβικής πλάκας προς τον Βορρά

Τέλος, ρεύματα μεταφοράς στο Αιγαίο, προκαλούν εφελκυστικές τάσεις διεύθυνσης Β-Ν στην κάτω επιφάνεια του Αιγαίου.

Στην εικόνα 6, απεικονίζονται αυτές οι συμπιεστικές και εφελκυστικές δυνάμεις, στις οποίες οφείλεται η έντονη σεισμικότητα στην περιοχή του Αιγαίου.

Εικ.6: Συμπιεστικές δυνάμεις στη λιθόσφαιρα του Αιγαίου, Πηγή:www.oasp.gr

Figure 6:Compressional forces in the lithospheric plate of Aegean,Source:www.oasp.gr

Λόγω της έντονης τεκτονικής δραστηριότητας, η Ελλάδα κατέχει πρώτη θέση στη Μεσόγειο, από άποψη σεισμικότητας και έκτη θέση σε παγκόσμιο επίπεδο, μετά από χώρες με μεγάλη σεισμικότητα, όπως η Ιαπωνία, οι Νέες Εβρίδες, το Περού, τα νησιά Σολομώντος και η Χιλή. Απόδειξη του φαινομένου αυτού στον Ελλαδικό χώρο, αποτελεί η εικόνα 7, η οποία απεικονίζει, τη σεισμική δραστηριότητα στην Ελλάδα, την περίοδο Ιουλίου- Οκτωβρίου 2012.

Εικ.7: Η σεισμικότητα της Ελλάδας στο διάστημα Ιουλίου-Οκτωβρίου 2012

Figure 7:Seismicity of Greece between July-October 2012

2.5.Σεισμικότητα Χαλκιδικής

Όμοια η περιοχή της Χαλκιδικής, λόγω της έντονης γεωμορφολογίας και της παρουσίας των τριών ρηγμάτων, του Στρατωνίου, της Βαρβάρας και του Γοματίου, χαρακτηρίζεται από έντονη σεισμικότητα. Σε καθημερινή βάση, σημειώνονται σεισμοί -κάποιοι από αυτούς, άξιοι να σημειωθούν- στον υποθαλάσσιο χώρο μεταξύ των τριών χερσονήσων της.

Σύμφωνα με το Πανεπιστήμιο Αθηνών, ο σεισμός στην θαλάσσια περιοχή ανατολικά της περιοχής της Σιθωνίας, χαρακτηρίζεται σαν ένας από τους σημαντικότερους σεισμούς στην Ελλάδα το έτος 2012. Ο σεισμός πραγματοποιήθηκε στις 14 Φεβρουαρίου του 2012 και είχε ένταση 5.1 της κλίμακας ρίχτερ.

Το Γεωδυναμικό Ινστιτούτο εντόπισε το επίκεντρο του σεισμού στα 110χλμ. Ανατολικάνοτιοανατολικά της Θεσσαλονίκης, ενώ είχε εστιακό βάθος 14χλμ, όπως φαίνεται και στην εικόνα 8, του Πανεπιστημίου Αθηνών, γεγονός που τον χαρακτηρίζει σαν έναν επιφανειακό σεισμό. Στην ίδια εικόνα απεικονίζεται η τοποθεσία, που πραγματοποιήθηκε ο σεισμός, το επίκεντρο, καθώς και τα κύρια χαρακτηριστικά του.

Εικ.8:Σεισμός Χαλκιδικής-Φεβρουάριος 2012 Figure 8:Earthquake in Halkidiki-February 2012

<u>3.ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΔΙΚΤΥΩΝ</u>

3.1.Δίκτυο μόνιμων σταθμών

Προκειμένου να γίνει παρακολούθηση της τεκτονικής δραστηριότητας στην περιοχή της Χαλκιδικής, ιδρύθηκε κατά τη διάρκεια του ερευνητικού προγράμματος, SING ένα δίκτυο από σταθμούς περιμετρικά της χερσονήσου της Χαλκιδικής.

Για την επίλυση του τοπικού δικτύου, χρησιμοποιήθηκαν και για τις τρεις χρονιές, 1998, 1999 και 2000, δύο μόνιμοι σταθμοί. Στο κέντρο δορυφόρων Διονύσου βρίσκεται ο πρώτος σταθμός που χρησιμοποιήθηκε σαν μόνιμος, με την ονομασία CG54, ο οποίος κάνει μετρήσεις, χωρίς διακοπές.

Στα πλαίσια του προγράμματος SING, ιδρύθηκε επίσης ένας επιπλέον μόνιμος σταθμός στην περιοχή της Χαλκιδικής με την ονομασία PSMS. Και οι δύο σταθμοί πραγματοποιούν εικοσιτετράωρες παρατηρήσεις, όλες τις ημέρες μετρήσεων και για τις τρεις χρονιές. Οι σταθμοί επιλύθηκαν στο ITRF 2005 από έντεκα σταθμούς IGS, όπου και δόθηκαν οι τελικές τους συντεταγμένες. Η θέση των σταθερών, καθώς και των σταθμών IGS, απεικονίζονται στον χάρτη 2.

<u>3.2.Τοπικό δίκτυο</u>

Το τοπικό δίκτυο, αποτελείται από τριάντα τρία σημεία, κατανεμημένα περιμετρικά των χερσονήσων της Χαλκιδικής. Οι θέσεις και οι κωδικές ονομασίες των σημείων του δικτύου απεικονίζονται στον πίνακα 1.

ΘΕΣΗ	ΚΩΔΙΚΟΣ
Ασβεστοχώρι	ASVE
Φαρκαδών	CG02
Κέτρο Δορυφόρων	
Διονύσου,DION C	CG54
Ελευθερούπολη	ELEF
Ιερισσός	IERI
Καλή	KALI
Κασάνδρεια	KASA
Κιλκίς	KLKI
Αλιστράτη	KONS
Κρανιές	KRNA
Λαγκάδι	LAGA
Μαυροπηγή	MAVR
Μελισσοχώρι	MELI
Νέα Μεσολακιά	MESL
Μεσόβουνο	MESO
Μονοπήγαδο	MONO

Κάτω Νευροκόπι		NEVR
Νικήτας		NIKI
Πλατεία		PLAT
Πολιτίτσια		PLLT
Πολύγυρος		POLY
Σεισμολογικός	σταθμός	
Πολύγυρου		PSMS
Σήμαντρα		SEMA
Σέρρες		SERE
Σέρβια		SERV
Σκρα		SKRA
Σιθωνία		STHN
Τετράλοφο		TETR
Θεοδοσία		THEO
Τσουκνιδότοπος		TSUK
Βαρβάρα		VARV
Πέντε Βρύσες		VRES

Πίνακας 1:Θέσεις και κωδικοί των σημείων του δικτύου

Table 1: Positions and code names of points of network

Τα σημεία του δικτύου, μετρήθηκαν σε τρεις περιόδους, την 1998,1999 και 2000. Σε είκοσι δύο από αυτά τα σημεία, πραγματοποιήθηκαν μετρήσεις και στις τρεις περιόδους. Για επτά σημεία, διατίθενται κοινές μετρήσεις σε δύο περιόδους, ενώ δύο σημεία έχουν μετρηθεί μόνο σε μία περίοδο, οπότε δεν μπορούν να αξιοποιηθούν στην εξαγωγή αποτελεσμάτων, σχετικά με τις μετατοπίσεις και τις ταχύτητες των σημείων.

Στον χάρτη 1 απεικονίζονται οι θέσεις των σημείων του τοπικού δικτύου. Με πράσινο χρώμα απεικονίζονται τα σημεία, που μετρήθηκαν σε τρεις εποχές και με μπλε όσα μετρήθηκαν σε δύο εποχές. Τέλος, με κόκκινο απεικονίζονται τα δύο σημεία για τις οποίες διαθέτουμε δεδομένα για μία χρονιά, οπότε δεν χρησιμοποιήθηκαν στα τελικά συμπεράσματα, της μελέτης.

ΤΟΠΙΚΟ ΔΙΚΤΥΟ ΧΑΛΚΙΔΙΚΗΣ

Σε κάθε χρονιά, έχουμε διαφορετικό αριθμό κοινών σημείων που μετρήθηκαν, καθώς και διάρκεια μετρήσεων. Τα στοιχεία που είναι κοινά και στις τρεις εποχές είναι ο τύπος δέκτη και κεραίας, που χρησιμοποιήθηκε για τις μετρήσεις.

Στο τοπικό δίκτυο του 1998 πραγματοποιήθηκαν είκοσι οκτώ μετρήσεις, με διάρκεια τέσσερις ημέρες, από την 266(23/9/1998) έως την 269(26/9/1998).

Στο τοπικό δίκτυο του 1999 πραγματοποιήθηκαν μετρήσεις είκοσι δύο σημείων. Οι μετρήσεις διήρκεσαν τέσσερις ημέρες, από την 287(14/10/1999) έως την 290(17/10/1999).

Στο τοπικό δίκτυο του 2000, μετρήθηκαν είκοσι εννέα σημεία. Η διάρκεια των μετρήσεων ήταν τέσσερις ημέρες, από την 273(29/9/2000) έως την ημέρα 276(2/10/2000).

Στους πίνακες 2,3 και 4 απεικονίζονται οι μετρημένες βάσεις ανά ημέρα, οι ώρες μέτρησης, ο τύπος δέκτη και τα ύψη κεραίας για κάθε σημείο, ανά έτος μετρήσεων.

Σταθεροί Σταθμοί CG54 και PSMS	266 1998 (23/9/1998)	Ώρες μέτρησης	267 1998 (24/9/1998)	Ώρες μέτρησης	268 1998 (25/9/1998)	Ώρες μέτρησης	269 1998 (26/9/1998)	Ώρες μέτρησης
	CG02(arp) (Τύπος κεραίας ASH P CODE REV D , H=0,959m)	Από 06:36:30.00 έως 12:21:45.00	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,484m)	Από 0:0:0.00 έως 23:59:30.0	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,484m)	Από 0:0:0.00 έως 23:59:30.00	psms (Τύπος κεραίας LEIAT504, H=0,00m)	Από 0:0:0.00 έως 19:40:0.00
	PLLT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 09:59:30.00 έως 14:00:15.00	KALI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,109m)	Από 05:50:30.00 έως 8:31:30.00	VRES(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,111m)	Από 5:28:0.00 έως 15:00:45.00	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,484m)	Από 0:0:0.00 έως 23:59:30.00
	POLY(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 15:48:15.00 έως 20:02:45.00	STHN(arp) (Τύπος κεραίας ASH P CODE REV D, H=1,215m)	Από 06:57:0.00 έως 13:0:15.00	THEO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 10:49:30.00 έως 14:1:15.00	VARV(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,116m)	Από 06:29:30.00 έως 09:20:45.00
	SERV(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,117m)	Από 06:18:0.00 έως 15:32:0.00	SKRA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,103m)	Από 10:37:0.00 έως 14:39:45.00	SOHO(arp) (Τύπος κεραίας ASH P CODE REV D, H=1,096m)	Από 11:11:0.00 έως 14:00:30.00	SERE(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,113m)	Από 10:17:30.00 έως 13:30:15.00
	TETR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,117m)	Από 05:49:15.00 έως 08:30:30.00	NIKI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 10:46:0.00 έως 13:50:0.00	SEMA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 11:48:15.00 έως 15:05:00.00	NEVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 06:31:45.00 έως 12:33:15.00
	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,468m)	Από 0:0:0.00 έως 23:59:30.00	MESO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 13:30:15.00 έως 15:34:30.00	PLAT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 11:00:00.00 έως 14:16:0.00	MESL(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,111m)	Από 11:08:00.00 έως 14:07:45.00
ες βάσεις	psms (Τύπος κεραίας LEIAT504, H=0,00m)	Από 0:0:0.00 έως 23:59:30.00	MAVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 6:32:45.00 έως 10:32:45.00	MONO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 06:15:45.00 έως 09:15:45.00	LAGA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,122m)	Από 5:56:30.00 έως 09:00:15.00
Μετρημέν			KREO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,124m)	Από 5:50:0.00 έως 09:24:30.00	MELI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1760m)	Από 06:04:00.00 έως 09:02:30.00	KONS(arp) (Τύπος κεραίας ASH P CODE REV D, H=1,251m)	Από 06:02:15.00 έως 15:09:0.00

	TSUK(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,132m)	Από 6:16:30.00 έως 15:31:15.00	KLKI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 05:65:30.00 έως 09:00:15.00	IERI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 12:20:0.00 έως 15:16:15.00
	psms (Τύπος κεραίας LEIAT504, H=0,00m)	Από 0:0:0.00 έως 23:59:30.00	ASVE(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,130m)	Από 06:19:30.00 έως 09:24:0.00	ELEF(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 06:18:15.00 έως 09:17:30.00
			psms (Τύπος κεραίας LEIAT504, H=0,00m)	Από 0:0:0.00 έως 23:59:30.00		

Πιν.2: Στοιχεία μετρήσεων του έτους 1998

Table 2:Measurements of the year 1998

Σταθεροί Σταθμοί CG54 και PSMS	287 1999 (14/10/1999)	Ώρες μέτρησης	288 1999 (15/10/1999)	Ώρες μέτρησης	289 1999 (16/10/1999)	Ώρες μέτρησης	290 1999 (17/10/1999)	Ώρες μέτρησης
	VARVn(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 5:42:30.00 έως 9:51:30.00	NEVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,500m)	Από 06:27:30.00 έως 09:31:30.00	SKRA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,103m)	Από 07:16:30.00 έως 13:03:0.00	PSMS (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 0:0:0.00 έως 13:3:0.00
	SERE (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 5:54:30.00 έως 14:0:30.00	VRES(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,113m)	Από 5:58:30.00 έως 14:00:00.00	POLY(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 05:20:30.00 έως 09:23:30.00	TETR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,116mm)	Από 05:57:0.00 έως 09:0:30.00
	NEVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,115m)	Από 7:44:30.00 έως 12:59:30.00	KONS(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,115m)	Από 5:55:00.00 έως 08:58:30.00	NIKI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 10:55:0.00 έως 14:49:0.00	SERV(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,116m)	Από 05:54:30.00 έως 13:59:0.00
	MESL(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,109m)	Από 5:56:30.00 έως 09:0:30.00	PLAT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 5:57:0.00 έως 9:00:00.00	MESO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,113m)	Από 06:28:0.00 έως 13:59:0.00	PLLT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 10:29:0.00 έως 13:31:0.00
	KONS(arp) (Τύπος κεραίας ASH P CODE REV D, H=1,147m)	Από 06:10:0.00 έως 14:3:30.00	SEMA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,122m)	Από 11:00:0.00 έως 14:23:30.00	MAVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 06:58:30.00 έως 14:01:0.00	KREO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,120m)	Από 07:59:0.00 έως 12:02:30.00
	IERI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 11:34:0.00 έως 15:34:0.00	PLAT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 10:26:0.00 έως 13:30:30.00	KALI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,111m)	Από 06:02:0.00 έως 14:0:0.00	CG02(arp) (Τύπος κεραίας ASH P CODE REV D, H=1,056m)	Από 6:27:0.00 έως 15:09:24.30 4
ες βάσεις	ELEF(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 10:18:0.00 έως 13:20:0.00	MONO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 5:05:0.00 έως 09:37:30.00	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,416m)	Από 0:0:0.00 έως 23:59:30.00	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,416m)	Από 0:0:0.00 έως 23:59:30.00
MɛŦpŋµέv	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,416m)	Από 0:0:0.00 έως 05:46:30.00	CG54 (Τύπος κεραίας ASH P CODE REV B, H=1,416m)	Από 06:06:30.00 έως 23:59:30.00	PSMS (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 0:0:0.00 έως 23:59:30.00	ARKI(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 9:46:30.00 έως 23:59:30.00

PSMS (Τύπος κεραίας LEIAT504, H=0,000m)	Από 0:0:0.00 έως 23:59:30.00	KONS(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,107m)	Από 10:18:0.00 έως 13:18:30.00		
		NEVR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,565m)	Από 06:27:30.00 έως 09:31:0.00		
		PSMS (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 0:0:0.00 έως 23:59:30.00		

Πιν.3: Στοιχεία μετρήσεων του έτους 1999

Table 3:Measurements of the year 1999

Σταθεροί Σταθμοί CG54 και PSMS	273 2000 (29/9/2000)	Ώρες μέτρησης	274 2000 (30/9/2000)	Ώρες μέτρησης	275 2000 (1/10/2000)	Ώρες μέτρησ ης	276 2000 (2/10/2000)	Ωρες μέτρησης
	KASA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,123m)	Από 05:44:0.00 έως 15:0:30.00	TSUK(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,200m)	Από 05:51:0.00 έως 15:00:0.00	KLKI (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,108m)	Από 5:25:0. 00 έως 09:45:3 0.00	STHN (arp) (Τύπος κεραίας ASH P CODE REV D, H=1,161m)	Από 6:3:0.00 έως 14:53:30.00
	TETR(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,116m)	Από 05:29:0.00 έως 8:30:30.00	SKRA (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,104m)	Από 10:49:30.00 έως 14:50:30.00	VRES(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 6:3:0.0 0 έως 15:32:0 .00	SERE (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1180m)	Από 5:28:0.00 έως 14:00:30.00
	SERV (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1160m)	Από 05:26:30.00 έως 15:00:30.00	SEMA (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1140m)	Από 11:16:30.00 έως 15:31:0.00	VARV (arp) (Τύπος κεραίας ASH P CODE REV D, H=1,422m)	Από 05:29:0 .00 έως 9:0:30. 00	PSMS(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,000m)	Από 0:0:0.00 έως 16:28:0.00
	PLLT (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,118m)	Από 10:21:30.00 έως 14:22:0.00	POLY (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,119m)	Από 05:32:0.00 έως 09:47:30.00	THEO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1170m)	Από 11:11:3 0.00 έως 15:10:0 .00	NEVR (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,115m)	Από 6:45:30.00 έως 12:45:30.00
արուց ննցեւց	KRNA (arp) (Τύπος κεραίας ASH P CODE REV D, H=1,059m)	Από 05:41:0.00 έως 12:43:30.00	NIKI (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,115m)	Από 11:29:30.00 έως 15:43:0.00	PLAT(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1120m)	Από 5:28:30 .00 έως 9:43:30 .00	MESL (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,111m)	Από 9:53:0.00 έως 13:25:30.00

CG02 (arp) (Τύπος κεραίας ASH P CODE REV D, H=1,082m)	Από 06:03:30.00 έως 13:03:30.00	MONO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,113m)	Από 5:42:30.00 έως 09:42:30.00	MELI (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,112m)	Από 6:15:30 .00 έως 10:58:3 0.00	KONS (slant) (Τύπος κεραίας ASH P CODE REV D, H=1,198m)	Από 5:58:0.00 έως 14:58:30.00
CG54(arp) (Τύπος κεραίας ASH P CODE REV B, H=1,427m)	Από 0:0:0.00 έως 23:59:30.00	MESO(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 10:30:0.00 έως 15:00:0.00	LAGA(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,1170m)	Από 11:26:3 0.00 έως 15:30:3 0.00	ELEF (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,120m)	Από 5:23:0.00 έως 8:31:0.00
PSMS(arp) (Τύπος κεραίας ASH Ρ CODE REV D, H=0,0m)	Από 0:0:0.00 έως 23:59:30.00	MAVR (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 05:19:0.00 έως 09:30:0.00	IERI (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,114m)	Από 10:20:3 0.00 έως 13:0:30 .00	CG54 (arp) (Τύπος κεραίας ASH P CODE REV B, H=1,427m)	Από 0:0:0.00 έως 13:4:0.00
		KALI (arp) (Τύπος κεραίας ASH P CODE REV D, H=0,110m)	Από 05:24:30.00 έως 08:31:30.00	ASVE(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,842m)	Από 11:56:3 0.00 έως 15:30:0 .00		
		CG54(arp) (Τύπος κεραίας ASH P CODE REV B, H=1,427m)	Από 0:0:0.00 έως 23:59:30.00	CG54(arp) (Τύπος κεραίας ASH P CODE REV B, H=1,427m)	Από 0:0:0.0 0 έως 23:59:3 0.00		
		PSMS(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,0m)	Από 0:0:0.00 έως 23:59:30.00	PSMS(arp) (Τύπος κεραίας ASH P CODE REV D, H=0,0m)	Από 0:0:0.0 0 έως 23:59:3 0.00		

.

.

Πιν.4:Στοιχεία μετρήσεων του έτους 2000

Table 4:Measurements of the year 2000

<u>4. ΣΥΣΤΗΜΑΤΑ ΑΝΑΦΟΡΑΣ</u>

Για την δημιουργία ενός γήινου συστήματος αναφοράς, απαραίτητη προϋπόθεση είναι η ταύτιση του με τις διαστάσεις και την επιφάνεια της Γης. Για την υλοποίηση του, απαιτείται ένας ικανοποιητικός αριθμός βασικών σταθμών ενός παγκόσμιου δικτύου, με γνωστές τις καρτεσιανές τους συντεταγμένες. Οι συντεταγμένες του συνόλου των θεμελιωδών αυτών σημείων, αποτελούν το λεγόμενο Πλαίσιο Αναφοράς.

Η αρχή αυτού του συστήματος ταυτίζεται με το γεώκεντρο, που περιλαμβάνει και τις μάζες των ωκεανών και της ατμόσφαιρας. Ο άξονας Ζ συμπίπτει με τον μέσο άξονα περιστροφής της Γης και ο άξονας Χ ορίζεται από την τομή του ισημερινού, με τον μέσο μεσημβρινό του Greenwich. Το σημείο αυτό, αποτελεί αρχή των μετρήσεων των γεωδαιτικών μηκών. Ο άξονας Υ είναι κάθετος στο επίπεδο που σχηματίζουν οι άξονες Χ και Ζ.

4.1.Διεθνές Επίγειο Σύστημα Αναφοράς ITRF

Το 1988, με πρωτοβουλία της Διεθνούς Αστρονομικής Ένωσης και της Διεθνούς Ένωσης Γεωδαισίας και Γεωφυσικής, ιδρύθηκε η Διεθνής Υπηρεσία Περιστροφής της Γης (IERS). Στόχος της, είναι η διαρκής βελτίωση των συμβατικών πλαισίων αναφοράς, ουράνιου και γήινου, μέσω της συλλογής, ανάλυσης, προτυποποίησης παρατηρήσεων, από ένα παγκόσμιο δίκτυο αστρονομικών και μόνιμων γεωδαιτικών σταθμών λειτουργίας.

Το ITRS, αποτελεί το παγκόσμιο σύστημα αναφοράς. Υλοποιείται μέσω του ITRF, που είναι το Διεθνές Γήινο Πλαίσιο Αναφοράς και αυτό με τη σειρά του με ένα δίκτυο μόνιμων γεωδαιτικών σταθμών.

Το σύστημα ITRS είναι γεωκεντρικό, με αρχή του συστήματος, το γεώκεντρο. Οι άξονες του, προσδιορίζονται με όμοιο τρόπο με ένα γεωκεντρικό σύστημα αναφοράς και ταυτίζονται με αυτούς του ITRF. Η μονάδα μέτρησης που χρησιμοποιεί, σύμφωνα με SI είναι το μέτρο.

Το ITRF περιλαμβάνει έναν μεγάλο αριθμό καρτεσιανών συντεταγμένων και γραμμικών ταχυτήτων ανά έτος, πλήθους σταθμών. Οι καρτεσιανές συντεταγμένες και οι ταχύτητες, έχουν προσδιοριστεί με διαφορετικά διαστημικά γεωδαιτικά συστήματα.

Για τον προσδιορισμό ταυτόχρονα και των γεωδαιτικών συντεταγμένων, απαιτείται η χρήση του ελλειψοειδούς αναφοράς GRS'80 με κατάλληλη τοποθέτηση και προσανατολισμό.

Το ITRF υφίσταται διαρκή αναθεώρηση, που εξαρτάται από τις νέες παρατηρήσεις που προστίθενται σε αυτό, οπότε έχουμε δημοσίευση των νέων συντεταγμένων των σταθμών, που το υλοποιούν. Το πιο πρόσφατο ITRF που χρησιμοποιείται σήμερα είναι το ITRF2008.

Εικόνα 7:Σταθμοί ITRF2008 Κεντρική Ευρώπη, Πηγή: <u>http://itrf.ensg.ign.fr/</u> Figure 7:Stations of ITRF2008 in Central Europe,Source: <u>http://itrf.ensg.ign.fr/</u>

4.2. Υλοποίηση τοπικού συστήματος αναφοράς στη Χαλκιδική

Για την υλοποίηση του τοπικού γεωδαιτικού δικτύου, και για τις τρεις χρονιές μετρήσεων, χρησιμοποιήθηκαν ως μόνιμοι σταθμοί, οι CG54 και PSMS. Οι τελικές συντεταγμένες των σταθμών αυτών, δόθηκαν ύστερα από επίλυση, από έντεκα IGS σταθμούς στο ITRF 2005.

Οι σταθμοί που επιλέγηκαν είναι κοινοί και για τις τρεις περιόδους, με εξαίρεση τον σταθμό της Πολωνίας(BOR1), που δεν συμπεριλήφθηκε στην επίλυση του εξωτερικού δικτύου του 1998, λόγω κακών ασαφειών φάσης. Οι IGS σταθμοί, που χρησιμοποιήθηκαν, είναι της Κύπρου(NICO) της Ιταλίας(MATE,MEDI),της Ρωσίας(ZECK),της Σαρδηνίας(CAGL),της Πολωνίας(BOR1), της Ουκρανίας(GLSV), της Ουγγαρίας(PENC), της Γερμανίας(WTZR,POTS) και της Αυστρίας(GRAZ).

Το δίκτυο με τους σταθμούς IGS, που χρησιμοποιήθηκαν για την υλοποίηση του τοπικού δικτύου, καθώς και οι δύο μόνιμοι σταθμοί του τοπικού δικτύου, απεικονίζονται στον χάρτη 2. Με κόκκινο χρώμα απεικονίζονται οι IGS σταθμοί και με πράσινο οι δύο μόνιμοι σταθμοί, του δικτύου στη Χαλκιδική και του Κέντρου Δορυφόρων Διονύσου.

ΣΤΑΘΜΟΙ ΕΞΩΤΕΡΙΚΟΥ ΔΙΚΤΥΟΥ

Χάρτης 2: Σταθμοί εξωτερικού δικτύου

Map 2: Stations of external network

<u>5.ΤΟ ΛΟΓΙΣΜΙΚΟ BERNESE</u>

To Bernese GPS Software v5, πρόκειται για ένα προηγμένο λογισμικό υψηλής ακρίβειας, με ευρεία χρήση σε γεωδαιτικές και άλλου είδους εφαρμογές, στις οποίες χρησιμοποιείται το Παγκόσμιο Δορυφορικό Σύστημα Πλοήγησης GNSS. Υποστηρίζει τόσο σταθμούς GNSS στο Αμερικάνικο Παγκόσμιο Σύστημα Εντοπισμού Θέσης (GPS), καθώς και στο Ρώσικο Παγκόσμιο Δορυφορικό Σύστημα Εντοπισμού Θέσης (GPS), καθώς και στο Ρώσικο Παγκόσμιο

5.1.ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΗΣΕΩΝ

> Μετατροπή αρχείων rinex σε μορφή Bernese

Τα αρχεία raw που είναι τα αρχικά δεδομένα των μετρήσεων μας είναι σε μορφή rinex. To format αυτό έχει γίνει διεθνώς αποδεκτό, με σκοπό τη δυνατότητα επεξεργασίας παρατηρήσεων, από δέκτες διαφορετικών εταιρειών, με οποιοδήποτε λογισμικό GPS. To Bernese, λόγω της δικής του μορφοποίησης, απαιτεί ένα αρχικό στάδιο μετατροπής των αρχείων rinex, σε μορφή δυαδική, επεξεργάσιμη από το λογισμικό.

Δημιουργία τροχιών

Σε αυτό το στάδιο, η επεξεργασία των τροχιών, πραγματοποιείται με δύο προγράμματα, το PRETAB και το ORBGEN. Σκοπός του προγράμματος PTETAB, είναι η δημιουργία των πινακοποιημένων τροχιών. Ουσιαστικά μετασχηματίζει τις τροχιές, από το γήινο στο ουράνιο σύστημα αναφοράς. Παράγονται 2 ειδών αρχεία, ένα με κατάληξη .tab, που αφορά τις τροχιές και ένα αρχείο ρολογιών με κατάληξη .clk, το οποίο απαιτείται, αν δεν χρησιμοποιηθεί καμμία προβλεπόμενη τροχιά. Το σύστημα ORBGEN, δημιουργεί τις standard τροχιές, χρησιμοποιώντας τις δορυφορικές θέσεις των πινακοποιημένων τροχιών, ως αρχικές ψευδοπαρατηρήσεις για την επίλυση.

5.2.ΕΠΕΞΕΡΓΑΣΙΑ ΤΟΥ ΚΩΔΙΚΑ

Μέσω της χρήσης του προγράμματος CODSPP, αρχικά γίνονται οι απαραίτητες διορθώσεις στο χρονόμετρο κάθε δέκτη. Για κάθε σταθμό στον φάκελο obs της καμπάνιας, προστίθενται δύο αρχεία, που αντιστοιχούν στις διορθώσεις των χρονομέτρων.

Παρ' ότι τα λογισμικά GPS χρησιμοποιούν διπλές διαφορές φάσεις, οπότε τα σφάλματα εξαιτίας των χρονομέτρων σχεδόν εξαλείφονται, ο χρόνος εξακολουθεί να αποτελεί σημαντικό παράγοντα. Ο προσδιορισμός του σωστού χρόνου εκπομπής, έχει σαν αποτέλεσμα, την αναγωγή στη σωστή εποχή εκπομπής του σήματος και κατ' επέκταση στη σωστή θέση του δορυφόρου.

Ο χρόνος GPS ξεκινάει την αρίθμηση των εβδομάδων από τα μεσάνυκτα 5 προς 6 Ιανουαρίου 1980, η οποία θεωρείται μηδενική εβδομάδα. Από αυτή, ξεκινάει η αρίθμηση των εβδομάδων GPS.

<u>5.3.ΕΠΕΞΕΡΓΑΣΙΑ ΔΙΑΦΟΡΩΝ ΦΑΣΗΣ</u>

> Δημιουργία βάσεων και επίλυση μονών διαφορών φάσης

Η παρουσία κύκλων ολίσθησης στις μετρήσεις φάσης, αποτελεί ένα από τα πιο σημαντικά προβλήματα. Στο στάδιο της προεπεξεργασίας των παρατηρήσεων GPS, περιλαμβάνεται η ανίχνευση και ο πιθανός προσδιορισμός, των κύκλων ολίσθησης. Η ολίσθηση κύκλων επιδρά τόσο στις διπλές, όσο και στις μονές διαφορές φάσης.

Σε αυτό το στάδιο επεξεργασίας, δημιουργούνται τα διανύσματα βάσης μεταξύ των σταθμών και υπολογίζονται οι μονές διαφορές φάσης. Σε αυτό το στάδιο, εντοπίζονται και διορθώνονται οι απώλειες κύκλων.

Επεξεργασία διαφορών φάσης

Ως διαφορές φάσης, ορίζουμε την στιγμιαία διαφορά στις μετρήσεις φάσης, που γίνονται από δύο δέκτες, που παρακολουθούν ταυτόχρονα το ίδιο σήμα, δηλαδή ίδιο δορυφόρου και ίδια συχνότητα.

Ως διπλή διαφορά φάσης, μεταξύ δεκτών και δορυφόρων, ορίζεται η διαφορά μεταξύ μιας απλής διαφοράς, ως προς τους δέκτες και μιας απλής διαφοράς ως προς τους δορυφόρους. Η διπλή διαφορά φάσης μειώνει, τα σφάλματα τα σχετιζόμενα με τους δορυφόρους (χρονομέτρων, τροχιών, ατμόσφαιρας) και μειώνειι τα σφάλματα, λόγω χρονομέτρων δεκτών.

Στη διαδικασία αυτή εντοπίζονται οι βάσεις που εμφανίζουν χονδροειδή σφάλματα και δεν έχουν λυθεί. Ως αποτέλεσμα οι βάσεις αυτές δεν χρησιμοποιούνται στην τελική επίλυση, ή επιλύονται εκ νέου, με διαφορετική μέθοδο επίλυσης.

5.4.ΤΕΛΙΚΑ ΣΤΑΔΙΑ ΕΠΙΛΥΣΗΣ

Διόρθωση από επίδραση τροπόσφαιρας και ιονόσφαιρας

Τα τμήματα της τροπόσφαιρας, επηρεάζουν ουσιαστικά κατά διαφορετικό τρόπο τη διαδρομή του δορυφορικού σήματος, με αποτέλεσμα την ύπαρξη χρονικών καθυστερήσεων, λόγω της επιβράδυνσης της ταχύτητας διάδοσης και της καμπυλότητας της τροχιάς. Αυτό έχει σαν αποτέλεσμα, αλλαγή της κατεύθυνσης του δορυφορικού σήματος, από την ευθύγραμμη διαδρομή, με ταχύτητα διαφορετική στην τροπόσφαιρά και την ιονόσφαιρα. Η διαφορετική σύσταση και επίδραση της τροπόσφαιρας και της ιονόσφαιρας, χαρακτηρίζονται με τους όρους τροποσφαιρικό και ιονοσφαιρικό σφάλμα.

Το τροποσφαιρικό σφάλμα επιδρά το ίδιο στους κώδικες και στις φάσεις, ανεξάρτητα από τη συχνότητα L1 και L2. Δεν μπορεί να απαλειφθεί με δέκτες δύο συχνοτήτων, όπως συμβαίνει με το ιονοσφαιρικό σφάλμα.

Η ιονόσφαιρα αποτελεί μέσο διασποράς, για το σήμα GPS. Ωστόσο, μπορεί να απαλειφθεί με χρήση δεκτών διπλών συχνοτήτων.

Στο στάδιο αυτό, δημιουργούνται στον φάκελο atm ένα αρχείο με κατάληξη .trp και ένα με .ion, που περιέχουν τις διορθώσεις του εκπεμπόμενου σήματος από την επίδραση της τροπόσφαιρας και της ιονόσφαιρας. Η διόρθωση, που αφορά την ιονόσφαιρα πραγματοποιείται για βάσεις μεγάλου μήκους.

Μέθοδοι επίλυσης ασαφειών

Για την επίλυση των ασαφειών, επεξεργαζόμαστε κάθε βάση χωριστά, με τη μέθοδο QIF. Η QIF έχει ευρεία χρήση για επίλυση ασαφειών, σε βάσεις μικρού μήκους. Ωστόσο, σαν μέθοδος επίλυσης για βάσης μεγαλύτερου μήκους, χρησιμοποιείται και η SIGMA.

Η επίλυση των ασαφειών φάσης, του εξωτερικού δικτύου για τις χρονιές 1998,1999 και 2000 έγινε με την μέθοδο QIF και τα αποτελέσματα ανά ημέρα μέτρησης, παρατίθενται στον πίνακα 9 του παραρτήματος.

Όσον αφορά το τοπικό δίκτυο, τις χρονιές 1999 και 2000 όλα τα σημεία επιλύθηκαν με ικανοποιητική ακρίβεια με τη μέθοδο QIF, από τους σταθμούς CG54 και PSMS. Την χρονιά 1998, την ημέρα 267, τα σημεία KALI και STHN επιλύθηκαν από το TSUK με τη μέθοδο SIGMA, όπως επίσης και το KREO από το STHN, με ακρίβειες που απεικονίζονται στον πίνακα 14 του παραρτήματος.

Δημιουργία κανονικών εξισώσεων

Δημιουργούνται οι κανονικές εξισώσεις, οι οποίες θα αποτελέσουν την βάση, για την επίλυση με τη μέθοδο ελαχίστων τετραγώνων και την τελική συνόρθωση του δικτύου μας. Στο στάδιο αυτό, επιλέγονται μόνο εκείνα τα σημεία που έχουν επίπεδο επίλυσης ασαφειών φάσης πάνω από εβδομήντα τοις εκατό, καθώς σημεία με μικρότερο επίπεδο, από το επιτρεπτό, θα επηρεάσουν την ακρίβεια των τελικών συντεταγμένων όλων των σημείων του δικτύου κατά τη συνόρθωση.

Συνόρθωση του δικτύου

Για την επίλυση του δικτύου, απαιτείται συνόρθωση του με τη μέθοδο των ελαχίστων τετραγώνων, ώστε να προκύψουν οι τελικές συντεταγμένες των κορυφών του δικτύου μας. Οι παρατηρήσεις θεωρούνται ισοβαρείς.

Υπολογίζονται οι τελικές συντεταγμένες του δικτύου, με συνόρθωση των κανονικών εξισώσεων που δημιουργήθηκαν. Ως σταθεροί σταθμοί χρησιμοποιήθηκαν οι CG54 και PSMS.

Οι τελικές συντεταγμένες των σταθερών σημείων του τοπικού δικτύου, καθώς και τα τυπικά σφάλματα της μονάδας βάρους, από την επίλυση του εξωτερικού δικτύου, απεικονίζονται στον πίνακα 5.

ΕΠΟΧΗ	ΣΗΜΕΙΟ	X(m)	Y(m)	Z(m)	σx(mm)	σy(mm)	σz(mm)
1998	CG54	4595218,2786	2039437,5679	3912626,0780	0,7	0,3	0,6
	PSMS	4464686,5879	1936157,1609	4110049,4238	0,7	0,3	0,6
1999	CG54	4595218,2943	2039437,5784	3912626,0786	0,6	0,3	0,5
	PSMS	4464686,5774	1936157,1694	4110049,4218	0,6	0,3	0,6
2000	CG54	4595218,2928	2039437,5844	3912626,0657	0,5	0,3	0,5
	PSMS	4464686,5665	1936157,2114	4110049,4253	0.5	0.3	0.5

Πιν.5: Τελικές συντεταγμένες μόνιμων σταθμών και τυπικά σφάλματα από επίλυση του εξωτερικού δικτύου

Table 5: Final coordinates of permanent stations and their rms errors, from the solution of the external network

Οι μετρήσεις που πραγματοποιήθηκαν, διακρίνονται και για τις τρεις χρονιές σε παρατηρήσεις εννέα ή οκτώ ωρών και έπονται παρατηρήσεις τεσσάρων ή τριών ωρών. Κατ' εξαίρεση σε κάποια σημεία έχουμε παρατηρήσεις επτά ή έξι ωρών. Συνεπώς, η επίλυση του τοπικού δικτύου, πραγματοποιήθηκε κατά φθίνουσα σειρά παρατηρήσεων. Αρχικά, επιλύθηκαν τα σημεία με τις περισσότερες ώρες παρατηρήσεων από τους δύο μόνιμους σταθμούς και από αυτά, όλα τα υπόλοιπα ανάλογα με τις ώρες παρατήρησης.

Οι τελικές καρτεσιανές συντεταγμένες των σημείων του τοπικού δικτύου, όπως προέκυψαν από τη συνόρθωση και τα τυπικά σφάλματα, ανά εποχή μετρήσεων, απεικονίζονται στον πίνακα 6. Στον πίνακα 7, απεικονίζονται και οι γεωδαιτικές συντεταγμένων των σημείων του τοπικού δικτύου, όπως προέκυψαν από τις καρτεσιανές συντεταγμένες, της τελικής συνόρθωσης, με μετασχηματισμό.

ЕПОХН	ΣΗΜΕΙΟ	X(m)	Y(m)	Z(m)	σx(mm)	σy(mm)	σz(mm)
1998,729	CG02	4554540,9695	1862482,5614	4044666,4272	6,7	3,8	6,3
1998,729	PLLT	4493880,0687	1847344,1846	4118515,2393	7,9	3,4	7,0
1998,729	TETR	4512401,3490	1820375,7556	4111252,7989	8,5	5,6	8,6
1998,729	SERV	4523239,6022	1831453,6502	4094532,8053	6,8	9,0	4,3
1998,732	KREO	4486644,0463	1947536,4422	4080295,8791	20,3	12,0	12,9
1998,732	MAVR	4516003,5812	1799591,4937	4116411,3890	17,5	14,3	11,2
1998,732	KALI	4474753,2190	1823450,7908	4149610,4492	41,8	17,1	21,6
1998,732	MESO	4500605,8479	1802125,6040	4132049,0031	11,0	4,3	7,6
1998,732	NIKI	4465877,2959	1960367,4310	4096656,0766	8,1	6,0	6,4
1998,732	SKRA	4449519,7845	1837365,3096	4170704,7515	7,8	3,1	5,2
1998,732	STHN	4473000,2082	1983958,7793	4077594,7572	5,4	6,9	4,8
1998,732	TSUK	4483663,6451	1800735,5005	4151259,1772	4,2	1,9	3,5
1998,734	ASVE	4460519,7233	1897117,0802	4132595,8563	4,4	2,2	4,2
1998,734	KLKI	4442470,3189	1870489,1196	4163466,2949	4,3	3,4	4,6
1998,734	MELI	4457324,2425	1882192,8691	4142738,9951	4,7	2,9	4,2
1998,734	MONO	4470311,4981	1910907,9480	4115651,4997	4,9	2,4	4,8
1998,734	PLAT	4449634,3174	1922003,7427	4132718,1017	4,8	2,6	3,8
1998,734	SEMA	4469438,3371	1927756,4024	4108341,8199	6,3	3,3	5,2
1998,734	SOHO	4437561,2729	1922923,0974	4144940,9729	4,9	2,7	3,7
1998,734	THEO	4436391,2161	1894078,7599	4159921,5377	4,0	1,8	3,5
1998,734	VRES	4446698,4639	1900012,4557	4145777,6314	5,0	6,0	7,0
1998,737	ELEF	4403031,8548	1978915,8869	4155830,0180	7,0	4,3	6,9
1998,737	IERI	4446463,6374	1965556,6619	4115054,8673	14,4	4,6	11,2
1998,737	LAGA	4429566,3180	1929688,8584	4150614,9049	8,1	4,5	7,3
1998,737	MESL	4419482,7348	1954398,3644	4149137,0478	7,1	3,0	6,2
1998,737	NEVR	4386004,8908	1938679,8884	4192714,3414	5,4	2,8	5,6
1998,737	SERE	4409865,0275	1923588,9640	4173869,9802	7,3	4,5	5,8
1998,737	VARV	4445485,8936	1947145,6791	4125775,1338	9,3	3,8	8,1
1998,737	KONS	4400503,6720	1954984,5529	4169211,6290	4,0	1,7	3,6
1999,786	ELEF	4403031,8079	1978915,9012	4155830,0097	5,5	2,7	4,1
1999,786	IERI	4446463,6224	1965556,6827	4115054,8641	6,6	2,6	5,3
1999,786	MESL	4419482,7113	1954398,3748	4149137,0441	5,1	2,0	4,3
1999,786	NEVR	4386004,8669	1938679,8934	4192714,3434	3,3	1,6	2,9
1999,786	VARV	4445485,8801	1947145,6889	4125775,1213	4,7	1,9	4,0
1999,786	KONS	4400503,6265	1954984,5589	4169211,6310	2,8	1,2	2,5
1999,786	SERE	4409865,0138	1923588,9748	4173869,9983	2,9	1,2	2,5
1999,786	THEO	4436391,2203	1894078,7833	4159921,5726	8,1	2,9	7,2
1999,789	LAGA	4429566,3347	1929688,8598	4150614,9422	9,5	5,9	7,5
1999,789	MONO	4470311,4470	1910907,9618	4115651,5219	8,2	3,2	6,4
1999,789	PLAT	4449634,3364	1922003,7866	4132718,1738	7,4	4,3	5,9
1999,789	SEMA	4469438,3226	1927756,4026	4108341,8654	9,8	5,7	8,8
1999,789	VRES	4446698,4397	1900012,4711	4145777,6494	7,3	4,6	8,6

1999,792	NIKI	4465877,2516	1960367,4043	4096656,0556	7,4	4,0	5,9
1999,792	POLY	4460021,1755	1939094,1766	4114271,9454	5,6	3,6	4,6
1999,792	MESO	4500605,8188	1802125,5974	4132049,0381	2,8	1,0	2,0
1999,792	SKRA	4449519,7603	1837365,2993	4170704,7649	5,2	2,8	4,5
1999,792	MAVR	4516003,6192	1799591,4925	4116411,4345	6,7	4,0	6,5
1999,792	KALI	4474753,1096	1823450,8252	4149610,4265	6,0	5,2	6,8
1999,795	KREO	4486644,0846	1947536,4553	4080295,8909	8,5	9,4	6,3
1999,795	PLLT	4493880,0759	1847344,2208	4118515,2647	6,2	2,7	5,4
1999,795	TETR	4512401,3503	1820375,7857	4111252,8248	7,5	2,9	5,8
2000,748	KASA	4486644,1014	1947536,4934	4080295,9108	3,1	1,6	2,6
2000,748	SERV	4523239,5735	1831453,6879	4094532,8233	3,0	1,7	2,6
2000,748	CG02	4554540,9603	1862482,6027	4044666,4505	3,1	1,6	2,7
2000,748	KRNA	4523681,6915	1877869,4847	4073242,2801	3,1	1,5	2,6
2000,748	PLLT	4493880,0701	1847344,2427	4118515,2664	5,8	3,3	5,5
2000,748	TETR	4512401,3230	1820375,7984	4111252,8068	7,6	3,4	6,0
2000,751	MAVR	4516003,5755	1799591,5113	4116411,3958	9,9	4,0	5,7
2000,751	MESO	4500605,7785	1802125,6273	4132048,9877	4,8	6,5	4,3
2000,751	MONO	4470311,4357	1910907,9758	4115651,4842	9,3	5,9	5,5
2000,751	NIKI	4465877,2582	1960367,5031	4096656,0468	8,9	13,2	7,4
2000,751	POLY	4460021,1391	1939094,2258	4114271,9213	9,8	7,1	5,7
2000,751	SEMA	4469438,2977	1927756,4563	4108341,8062	7,9	11,2	6,9
2000,751	SKRA	4449519,7310	1837365,3581	4170704,7378	6,7	8,7	5,1
2000,753	VRES	4446698,4351	1900012,4896	4145777,6470	2,5	1,4	2,3
2000,753	ASVE	4460519,6866	1897117,1121	4132595,8645	5,3	3,2	4,2
2000,753	IERI	4446463,6270	1965556,7017	4115054,8943	3,4	4,1	3,2
2000,753	KLKI	4442470,3156	1870489,1646	4163466,3318	4,2	2,1	3,5
2000,753	LAGA	4429566,3051	1929688,8890	4150614,9210	3,6	2,3	3,0
2000,753	MELI	4457324,2252	1882192,9099	4142739,0176	3,6	1,8	2,8
2000,753	PLAT	4449634,3092	1922003,7885	4132718,1248	4,2	2,1	3,2
2000,753	THEO	4436391,1955	1894078,7990	4159921,5495	2,8	1,6	2,8
2000,753	VARV	4445485,8809	1947145,7104	4125775,1370	6,7	3,6	4,6
2000,756	STHN	4473000,2089	1983958,8576	4077594,7455	3,1	2,4	2,5
2000,756	KONS	4400503,6690	1954984,6155	4169211,6445	5,9	3,8	5,2
2000,756	SERE	4409865,0051	1923589,0165	4173869,9595	5,3	4,4	6,2
2000,756	ELEF	4403031,8567	1978915,9560	4155830,0223	14,1	6,8	10,1
2000,756	NEVR	4386004,8888	1938679,9495	4192714,3282	4,6	2,5	4,2
2000,756	MESL	4419482,7209	1954398,4198	4149137,0508	20,6	11,4	17,6

Πιν.6: Τελικές καρτεσιανές συντεταγμένες των σημείων του τοπικού δικτύου και τυπικά σφάλματα της μονάδας βάρους

Table 6: Final coordinates of points of local network and their rms errors

ЕПОХН	ΣΗΜΕΙΟ	φ(degrees)	λ(degrees)	h(m)
1998,729	CG02	39,6084	22,2411	127,862
1998,729	PLLT	40,4761	22,3466	273,298
1998,729	TETR	40,3855	21,9699	877,916
1998,729	SERV	40,1880	22,0430	898,261
1998,732	KREO	40,0252	23,4644	255,240
1998,732	MAVR	40,4465	21,7269	878,950
1998,732	KALI	40,8454	22,1708	240,601
1998,732	MESO	40,6317	21,8221	890,474
1998,732	NIKI	40,2186	23,6998	169,569
1998,732	SKRA	41,0955	22,4375	431,789
1998,732	STHN	39,9942	23,9192	158,667

1009 722	TOUK	10 0500	21 0015	1100 070
1990,732		40,0302	21,0013	634 502
1998 73/		11 009/	22,0407	38/ 93/
1008 724	MELL	40.7609	22,0004	603 467
1009 724		40,7009	22,0929	576 704
1990,734		40,4398	23,1431	570,704
1990,734		40,6422	23,3010	000,000
1998,734	SEMA	40,3556	23,3315	290,980
1998,734	SOHO	40,7885	23,4285	412,959
1998,734	THEO	40,9640	23,1196	786,165
1998,734	VRES	40,7981	23,1363	457,930
1998,737	ELEF	40,9156	24,2012	742,560
1998,737	IERI	40,4362	23,8478	126,917
1998,737	LAGA	40,8545	23,5398	613,277
1998,737	MESL	40,8403	23,8561	174,561
1998,737	NEVR	41,3548	23,8461	955,955
1998,737	SERE	41,1336	23,5669	397,109
1998,737	VARV	40,5582	23,6537	769,451
1998,737	KONS	41,0778	23,9538	410,117
1999,786	ELEF	40,9156	24,2012	742,527
1999,786	IERI	40,4362	23,8478	126,911
1999,786	MESL	40,8403	23,8561	174,546
1999,786	NEVR	41,3548	23,8461	955,941
1999,786	VARV	40,5582	23,6537	769,436
1999,786	KONS	41,0778	23,9538	410,089
1999,786	SERE	41,1336	23,5669	397,115
1999,786	THEO	40,9640	23,1196	786,198
1999,789	LAGA	40,8545	23,5398	613,314
1999,789	MONO	40,4398	23,1451	576,687
1999,789	PLAT	40,6422	23,3618	561,917
1999,789	SEMA	40,3556	23,3315	290,999
1999,789	VRES	40,7981	23,1363	457,929
1999,792	NIKI	40,2186	23,6998	169,517
1999,792	POLY	40,4204	23,4981	983,010
1999,792	MESO	40,6317	21,8221	890,474
1999,792	SKRA	41,0955	22,4375	431,777
1999,792	MAVR	40,4465	21,7269	879,007
1999,792	KALI	40,8454	22,1708	240,520
1999.795	KREO	40,0252	23,4644	255,279
1999.795	PLLT	40,4761	22,3466	273,330
1999.795	TETR	40,3855	21,9699	877.942
2000.748	KASA	40.0252	23,4644	255.314
2000.748	SERV	40,1880	22.0430	898,263
2000,740		10,1000	22,0700	000,200

2000,748	CG02	39,6084	22,2411	127,882
2000,748	KRNA	39,9368	22,5443	984,585
2000,748	PLLT	40,4761	22,3466	273,333
2000,748	TETR	40,3855	21,9699	877,915
2000,751	MAVR	40,4465	21,7269	878,956
2000,751	MESO	40,6317	21,8221	890,422
2000,751	MONO	40,4398	23,1451	576,658
2000,751	NIKI	40,2186	23,6998	169,546
2000,751	POLY	40,4204	23,4981	982,984
2000,751	SEMA	40,3556	23,3315	290,960
2000,751	SKRA	41,0955	22,4375	431,756
2000,753	VRES	40,7981	23,1363	457,930
2000,753	ASVE	40,6402	23,0407	634,493
2000,753	IERI	40,4362	23,8478	126,940
2000,753	KLKI	41,0094	22,8334	384,969
2000,753	LAGA	40,8545	23,5398	613,288
2000,753	MELI	40,7609	22,8929	603,482
2000,753	PLAT	40,6422	23,3618	561,867
2000,753	THEO	40,9640	23,1196	786,171
2000,753	VARV	40,5582	23,6537	769,454
2000,756	STHN	39,9942	23,9192	158,685
2000,756	KONS	41,0778	23,9538	410,145
2000,756	SERE	41,1336	23,5669	397,096
2000,756	ELEF	40,9156	24,2012	742,585
2000,756	NEVR	41,3548	23,8461	955,963
2000.756	MESL	40.8403	23.8561	174.571

Πιν.7: Τελικές γεωδαιτικές συντεταγμένες των σημείων του τοπικού δικτύου

Table 7: Final geodetic coordinates of points of local network

6.ΕΠΕΞΕΡΓΑΣΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

<u>6.1. Διαδικασία υπολογισμού τεκτονικών ταχυτήτων</u>

Στο κεφάλαιο αυτό παρατίθενται τα διαγράμματα των χρονοσειρών για τα σημεία του τοπικού δικτύου. Μέσα από αυτά, είναι δυνατή η εξαγωγή συμπερασμάτων, αφενός σχετικά με τις μετακινήσεις των σημείων, τις εποχές που μελετώνται και αφετέρου ο προσδιορισμός της ταχύτητας με την οποία κινούνται τα σημεία του δικτύου.

Για τον προσδιορισμό των ταχυτήτων των σημείων, είναι απαραίτητος ο μετασχηματισμός τους από το καρτεσιανό τρισδιάστατο σύστημα στο οποίο ανήκουν οι συντεταγμένες τους, σε ένα τοποκεντρικό. Το τοποκεντρικό ορίζεται σε κάθε σημείο του δικτύου, με βάση την κάθετο στο
ελλειψοειδές, όπου υλοποιεί τον άξονα U. Οι άλλοι δύο άξονες είναι προς Βορρά, ο άξονας N και προς ανατολή, ο άξονας E.

Οι σχέσεις που χρησιμοποιήθηκαν είναι οι 6.1 και 6.2.

$$\begin{bmatrix} \Delta N \\ \Delta E \\ \Delta U \end{bmatrix} = R \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}$$
(6.1)
$$R = \begin{bmatrix} -\sin\varphi\cos\lambda & -\sin\varphi\sin\lambda & \cos\varphi \\ -\sin\lambda & \cos\lambda & \mathbf{0} \\ \cos\varphi\cos\lambda & \cos\varphi\sin\lambda & \sin\varphi \end{bmatrix}$$
(6.2)

Για κάθε σημείο του τοπικού δικτύου, ανάλογα με τις εποχές που μετρήθηκε, υπολογίστηκε σαν κέντρο ο μέσος όρος των καρτεσιανών συντεταγμένων που προέκυψαν από την συνόρθωση. Στη συνέχεια οι συντεταγμένες του κέντρου μετατράπηκαν σε γεωδαιτικές συντεταγμένες με την χρήση των σχέσεων 6.3,6.4,6.5,6.6. Το ελλειψοειδές που χρησιμοποιείται στο ITRF 2005 είναι το GRS80, με παραμέτρους α=6378137m, b=6356752.314m, $f^{-1} = 298.257222101$ και $e^2 = 0.00669438$.

$$\lambda = \tan^{-1} \left(\frac{Y}{X} \right) \quad (6.3)$$

$$\varphi = \tan^{-1} \left(\frac{Z + e^2 N \sin\varphi}{\sqrt{X^2 + Y^2}} \right) \quad (6.4)$$

$$N = \frac{\alpha}{\sqrt{1 - e^2 \sin^2 \varphi}} \quad (6.5)$$

$$\boldsymbol{h} = \frac{\sqrt{X^2 + Y^2}}{\cos\varphi} - N \tag{6.6}$$

$$\varphi = \tan^{-1} \left(\frac{Z}{(1 - e^2)\sqrt{X^2 + Y^2}} \right)$$
(6.7)

Όπου Ν είναι η ακτίνα καμπυλότητας και e η κύρια εκκεντρότητα. Η σχέση 6.4 δεν είναι μία κλειστή σχέση, επομένως ως αρχική τιμή για το φ, υπολογίζεται αυτή από τη σχέση 6.7. Η επίλυση γίνεται με επαναλήψεις, ενώ τελική τιμή του φ μπορεί να ληφθεί εκείνη που διαφέρει σε απόλυτη τιμή κατά μία ποσότητα d, ανάλογη της επιθυμητής ακρίβειας.

Αφού υπολογιστεί το διάνυσμα (ΔΧ,ΔΥ,ΔΖ) για κάθε σημείο και ο πίνακας R της σχέσης 6.2, με χρήση της σχέσης 6.1, υπολογίζονται οι μεταβολές κατά North, East και Up και κατ' επέκταση οι ταχύτητες τους. Η ρουτίνα στο λογισμικό Matlab που δημιουργήθηκε παρατίθεται στο παράρτημα.

6.2. Υπολογισμός και ανάλυση χρονοσειρών

Προκειμένου να γίνει ο υπολογισμός των τεκτονικών μετακινήσεων, για τα σημεία του δικτύου, χρησιμοποιήθηκαν οι γεωδαιτικές συντεταγμένες των σημείων από όλες τις χρονιές που μετρήθηκαν. Στα διαγράμματα που ακολουθούν, παρατίθενται τα αποτελέσματα που προέκυψαν από τον υπολογισμό των μεταβολών των συντεταγμένων των σημείων και των ταχυτήτων τους στις τρεις διαστάσεις. Στην εξίσωση του πολυωνύμου, με το οποίο προέκυψαν τα διαγράμματα των τεκτονικών μετακινήσεων, ο συντελεστής του x συμβολίζει το διάνυσμα της ταχύτητας σε mm/year κατά τις τρεις διευθύνσεις και το R^2 συμβολίζει τον συντελεστή συσχέτισης της γραμμικής παρεμβολής. Όσο πιο κοντινή είναι η τιμή του προς τη μονάδα, τόσο καλύτερα έχουν προσαρμοστεί τα σημεία του διαγράμματος στην ευθεία.

> Για το σημείο VARV προέκυψαν τα εξής τρία διαγράμματα:

Διάγραμμα 6.1:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό VARV Diagram 6.1:Calculation of tectonic movement at North, East and Up for the station VARV

Το σημείο VARV μετρήθηκε και τις τρεις χρονιές,1998, 1999 και 2000.

Για το σημείο TSUK:

Διάγραμμα 6.2:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό TSUK Diagram 6.2:Calculation of tectonic movement at North, East and Up for the station TSUK

Στο σημείο TSUK έχουμε μετρήσεις την εποχή 1998 και 2000.

Για το σημείο THEO:

Διάγραμμα 6.3: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό THEO Diagram 6.3: Calculation of tectonic movement at North, East and Up for the station THEO

Το σημείο ΤΗΕΟ μετρήθηκε και τις τρεις χρονιές,1998, 1999 και 2000.

Διάγραμμα 6.4: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό TETR Diagram 6.4: Calculation of tectonic movement at North, East and Up for the station TETR

Το σημείο ΤΕΤR μετρήθηκε και τις τρεις εποχές.

Το σημείο STHN μετρήθηκε το 1998 και το 2000.

Για το SKRA έχουμε:

Διάγραμμα 6.6:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό SKRA Diagram 6.6:Calculation of tectonic movement at North, East and Up for the station SKRA

Το SKRA μετρήθηκε και τις τρεις εποχές.

Για το σημείο SERV έχουμε:

Διάγραμμα 6.7:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό SERV Diagram 6.7:Calculation of tectonic movement at North, East and Up for the station SERV

Το SERV μετρήθηκε και τις τρεις εποχές.

Για το σημείο SERE έχουμε:

Διάγραμμα 6.8:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό SERE Diagram 6.8:Calculation of tectonic movement at North, East and Up for the station SERE

Το SERE μετρήθηκε και τις τρεις εποχές.

Για το SEMA έχουμε:

Διάγραμμα 6.9:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό SEMA Diagram 6.9:Calculation of tectonic movement at North, East and Up for the station SEMA

Το SEMA μετρήθηκε και τις τρεις εποχές.

Για το POLY έχουμε:

Διάγραμμα 6.10:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό POLY Diagram 6.10:Calculation of tectonic movement at North, East and Up for the station POLY

Το σημείο POLY μετρήθηκε σε δύο εποχές, το 1999 και το 2000.

Για το σημείο PLLT έχουμε:

Διάγραμμα 6.11:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό PLLT Diagram 6.11:Calculation of tectonic movement at North, East and Up for the station PLLT

Το PLLT μετρήθηκε σε τρεις χρονιές.

Για το σημείο PLAT έχουμε:

Διάγραμμα 6.12:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό PLAT Diagram 6.12:Calculation of tectonic movement at North, East and Up for the station PLAT Το PLAT μετρήθηκε σε τρεις χρονιές.

Διάγραμμα 6.13: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό NIKI Diagram 6.13: Calculation of tectonic movement at North, East and Up for the station NIKI

Το ΝΙΚΙ μετρήθηκε σε τρεις χρονιές.

Για το ΝΙΚΙ έχουμε:

 \triangleright

Για το NEVR έχουμε:

Διάγραμμα 6.14:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό NEVR Diagram 6.14:Calculation of tectonic movement at North, East and Up for the station NEVR

Το NEVR μετρήθηκε σε τρεις χρονιές.

Για το MONO έχουμε:

Διάγραμμα 6.15: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό MONO Diagram 6.15: Calculation of tectonic movement at North, East and Up for the station MONO

Το ΜΟΝΟ μετρήθηκε τρεις χρονιές.

Για το σημείο MESO έχουμε:

Διάγραμμα 6.16:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό MESO Diagram 6.16:Calculation of tectonic movement at North, East and Up for the station MESO

Το MESO μετρήθηκε σε τρεις χρονιές.

Για το MESL έχουμε:

Διάγραμμα 6.17:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό MESL Diagram 6.17:Calculation of tectonic movement at North, East and Up for the station MESL

Το MESL μετρήθηκε σε τρεις χρονιές.

Για το MELI έχουμε:

Διάγραμμα 6.18:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό MELI Diagram 6.18:Calculation of tectonic movement at North, East and Up for the station MELI

Το MELI μετρήθηκε σε δύο χρονιές, το 1998 και το 2000.

Για το MAVR έχουμε:

Διάγραμμα 6.19:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό MAVR Diagram 6.19:Calculation of tectonic movement at North, East and Up for the station MAVR

Το MAVR μετρήθηκε σε τρεις χρονιές.

Διάγραμμα 6.20: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό LAGA Diagram 6.20: Calculation of tectonic movement at North, East and Up for the station LAGA

Το LAGA μετρήθηκε σε τρεις χρονιές.

Για το KREO έχουμε:

Διάγραμμα 6.21: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό KREO Diagram 6.21: Calculation of tectonic movement at North, East and Up for the station KREO

Το KREO μετρήθηκε σε δύο χρονιές, τις 1999 και 2000.

Διάγραμμα 6.22: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό KONS Diagram 6.22: Calculation of tectonic movement at North, East and Up for the station KONS

Το KONS μετρήθηκε σε τρεις χρονιές.

Διάγραμμα 6.23:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό KLKI Diagram 6.23:Calculation of tectonic movement at North, East and Up for the station KLKI

Το ΚLΚΙ μετρήθηκε σε δύο χρονιές, τις 1998 και 2000.

Διάγραμμα 6.24: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό IERI Diagram 6.24: Calculation of tectonic movement at North, East and Up for the station IERI

Το IERI μετρήθηκε σε τρεις χρονιές.

Για το ELEF έχουμε:

Διάγραμμα 6.25:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό ELEF Diagram 6.25:Calculation of tectonic movement at North, East and Up for the station ELEF

Το ELEF μετρήθηκε σε τρεις χρονιές.

Διάγραμμα 6.26:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό CG02 Diagram 6.26:Calculation of tectonic movement at North, East and Up for the station CG02

Το CG02 μετρήθηκε σε δύο χρονιές, τις 1998 και 2000.

Διάγραμμα 6.27:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό ASVE

Diagram 6.27:Calculation of tectonic movement at North, East and Up for the station ASVE

Το ASVE μετρήθηκε σε δύο χρονιές, τις 1998 και 2000.

Για το VRES έχουμε:

Διάγραμμα 6.28: Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό VRES Diagram 6.28: Calculation of tectonic movement at North, East and Up for the station VRES

Το VRES μετρήθηκε σε τρεις χρονιές.

Για το ΚΑLΙ έχουμε:

Διάγραμμα 6.29:Υπολογισμός των τεκτονικών μετακινήσεων κατά North, East και Up για τον σταθμό KALI Diagram 6.29:Calculation of tectonic movement at North, East and Up for the station KALI

Το ΚΑLΙ μετρήθηκε σε τρεις χρονιές.

Από τα διαγράμματα, που απεικονίζουν τις τεκτονικές μετατοπίσεις των σημείων του δικτύου, κατά το χρονικό διάστημα που μετρήθηκε το κάθε ένα, καθώς και τις ταχύτητες με τις οποίες κινούνται, παρατηρείται ότι στα σημεία που μετρήθηκαν δύο χρονιές ο συντελεστής συσχέτισης είναι ίσος με τη μονάδα, ενώ στα υπόλοιπα, ποικίλει. Επίσης, οι ταχύτητες των σημείων στο τοποκεντρικό σύστημα αναφοράς και τα σφάλματά τους, απεικονίζονται στον πίνακα 8.

CODE	V _N (mm/y)	V _E (mm/y)	V _∪ (mm/y)	σ _N (mm)	σ _E (mm)	σ _υ (mm)
ASVE	10,00	22,00	-5,00	0,00	0,00	0,00
CG02	7,00	21,00	10,00	0,00	0,00	0,00
ELEF	-8,00	31,00	12,00	15,31	0,23	26,97
IERI	8,00	20,00	11,00	4,35	2,18	10,35
KALI	16,00	60,00	-60,00	13,94	6,42	12,07
KLKI	9,00	21,00	17,00	0,00	0,00	0,00
KONS	-1,10	29,00	13,00	16,69	3,87	24,53
KREO	-11,00	12,00	37,00	3,30	9,44	0,41
LAGA	6,00	16,00	6,00	4,28	13,16	17,73
MAVR	2,30	9,00	3,50	5,61	14,35	30,73
MELI	8,00	22,00	7,00	0,00	0,00	0,00
MESL	-1,80	28,00	4,30	6,14	6,07	11,76
MESO	13,00	23,00	-25,00	18,95	10,50	16,10
MONO	10,00	25,00	-22,00	19,79	3,62	3,76
NEVR	-12,00	28,00	3,90	16,01	8,95	10,39
NIKI	-9,00	39,00	-12,00	15,67	28,42	23,32
PLAT	6,00	23,00	12,00	15,26	5,19	35,36
PLLT	2,70	26,00	18,00	1,85	1,63	7,77
POLY	-10,00	60,00	-27,00	0,00	0,00	0,00
SEMA	0,30	32,00	-9,00	25,21	16,29	17,29
SERE	-7,00	28,00	-6,00	15,81	8,41	7,31
SERV	11,00	23,00	1,00	9,21	0,62	0,58
SKRA	5,00	32,00	-16,00	12,77	19,92	3,43

STHN	-15,00	35,00	9,00	0,00	0,00	0,00
TETR	6,00	24,00	-0,08	3,31	0,86	15,48
THEO	6,00	22,00	3,00	6,86	1,87	17,37
TSUK	10,00	25,00	-50,00	0,00	0,00	0,00
VARV	0,80	17,00	1,10	2,87	1,92	9,23
VRES	10,00	21,00	0,10	7,79	0,79	0,36
CG54	-11,00	4,60	4,10	0,26	0,96	6,28

Πιν.8: Οι τεκτονικές ταχύτητες των σημείων του δικτύου και τα σφάλματά τους.

Table 8:Tectonic velocities of local network and their errors

6.3.Προσδιορισμός τεκτονικών ταχυτήτων με σταθερή Ευρώπη

Δεδομένων των ταχυτήτων των σημείων είναι δυνατή η εύρεση της κίνησής τους ως προς κάποιο σημείο αναφοράς. Στον χάρτη 3 απεικονίζονται οι ταχύτητες του δικτύου, ως προς την Ευρώπη. Ο υπολογισμός των ταχυτήτων των σημείων του δικτύου, πραγματοποιήθηκε δεδομένης της ταχύτητας της Ευρασιατικής πλάκας. Ουσιαστικά πραγματοποιείται μία αφαίρεση, μεταξύ των ταχυτήτων των σημείων, όπως υπολογίστηκαν στο ITRF2005 και της ταχύτητας της Ευρώπης. Το διάνυσμα της ταχύτητας της Ευρώπης, που χρησιμοποιήθηκε για τους υπολογισμούς, είναι ίσο με V_N =10mm/y και V_E =17.5mm/y. Οι ταχύτητες των σημείων του δικτύου ως προς σταθερή Ευρώπη, καθώς και τα τυπικά τους σφάλματα απεικονίζονται στον πίνακα 9.

CODE	V _N (cm/y)	V _E (cm/y)	σ _N (cm)	σ _ε (cm)	CorEN(cm)
ASVE	0	0,45	0	0	0
CG02	-0,3	0,35	0	0	0
ELEF	-1,8	1,35	0,02	1,53	1,53
IERI	-0,2	0,25	0,22	0,43	0,49
KALI	0,6	4,25	0,7	1,39	1,56
KLKI	-0,1	0,35	0	0	0
KONS	-1,11	1,15	0,39	1,67	1,71
KREO	-2,1	-0,55	0,94	0,33	1
LAGA	-0,4	-0,15	1,32	0,43	1,38

MAVR	-0,77	-0,85	1,44	0,56	1,54
MELI	-0,2	0,45	0	0	0
MESL	-1,18	1,05	0,61	0,61	0,86
MESO	0,3	0,55	1,05	1,89	2,17
MONO	0	0,75	0,36	1,98	2,01
NEVR	-2,2	1,05	0,9	1,6	1,83
NIKI	-1,9	2,15	2,84	1,57	3,24
PLAT	-0,4	0,55	0,52	1,53	1,61
PLLT	-0,73	0,85	0,16	0,19	0,25
POLY	-2	4,25	0	0	0
SEMA	-0,97	1,45	1,63	2,52	3
SERE	-1,7	1,05	0,84	1,58	1,79
SERV	0,1	0,55	0,06	0,92	0,92
SKRA	-0,5	1,45	1,99	1,28	2,37
STHN	-2,5	1,75	0	0	0
TETR	-0,4	0,65	0,09	0,33	0,34
THEO	-0,4	0,45	0,19	0,69	0,71
TSUK	0	0,75	0	0	0
VARV	-0,92	-0,05	0,19	0,29	0,35
VRES	0	0,35	0,08	0,78	0,78
CG54	-2,1	-1,2	0,1	0,03	0,01

Πιν.9: Οι τεκτονικές ταχύτητες των σημείων του δικτύου ως προς σταθερή Ευρώπη και τα σφάλματά τους.

Table 9:Tectonic velocities of local network from fixed Europe and their errors

Επίσης υπολογίστηκαν οι ταχύτητες των σημείων του δικτύου, ως προς τον κόσμο και ως προς τον Διόνυσο, όπως απεικνίζονται στους χάρτες 4 και 5 αντίστοιχα. Στους πίνακες 10 και 11, παρατίθενται οι ταχύτητες των σημειων κατά North και κατά East, τα τυπικά τους σφάλματα και ο συντελεστής συσχέτισης, για τις υπολογισμένες ταχύτητες του τοπικού δικτύου ως προς τον κόσμο και ως προς τον Διόνυσο αντίστοιχα. Το διάνυσμα της ταχύτητας του Διονύσου είναι ίσο με $V_{\rm N} = -1.10$ cm/y και $V_{\rm E} = 0.46$ cm/y.

CODE	V _N (cm/y)	V _E (cm/y)	σ _N (cm)	σ _ε (cm)	CorEN(cm)
ASVE	1,00	2,20	0,00	0,00	0,00
CG02	0,70	2,10	0,00	0,00	0,00
ELEF	-0,80	3,10	0,02	1,53	1,53
IERI	0,80	2,00	0,22	0,43	0,49
KALI	1,60	6,00	0,70	1,39	1,56
KLKI	0,90	2,10	0,00	0,00	0,00
KONS	-0,11	2,90	0,39	1,67	1,71
KREO	-1,10	1,20	0,94	0,33	1,00
LAGA	0,60	1,60	1,32	0,43	1,38
MAVR	0,23	0,90	1,44	0,56	1,54
MELI	0,80	2,20	0,00	0,00	0,00
MESL	-0,18	2,80	0,61	0,61	0,86
MESO	1,30	2,30	1,05	1,89	2,17
MONO	1,00	2,50	0,36	1,98	2,01
NEVR	-1,20	2,80	0,90	1,60	1,83
NIKI	-0,90	3,90	2,84	1,57	3,24
PLAT	0,60	2,30	0,52	1,53	1,61
PLLT	0,27	2,60	0,16	0,19	0,25
POLY	-1,00	6,00	0,00	0,00	0,00
SEMA	0,03	3,20	1,63	2,52	3,00
SERE	-0,70	2,80	0,84	1,58	1,79

SERV	1,10	2,30	0,06	0,92	0,92
SKRA	0,50	3,20	1,99	1,28	2,37
STHN	-1,50	3,50	0,00	0,00	0,00
TETR	0,60	2,40	0,09	0,33	0,34
THEO	0,60	2,20	0,19	0,69	0,71
TSUK	1,00	2,50	0,00	0,00	0,00
VRES	0,08	1,70	0,19	0,29	0,35
VARV	1,00	2,10	0,08	0,78	0,78
CG54	-1,10	0,46	0,10	0,03	0,10

	Піv.10:	Οι τεκτονικές	ταχύτητες των	σημείων τοι	ι δικτύου ως [·]	προς τον κόσμο
--	---------	---------------	---------------	-------------	---------------------------	----------------

Table 10:Tectonic velocities of local network

CODE	V _N (cm/y)	V _E (cm/y)	σ _N (cm)	σ _ε (cm)	CorEN(cm)
ASVE	2,10	1,74	0,00	0,00	0,00
CG02	1,80	1,64	0,00	0,00	0,00
ELEF	0,30	2,64	0,02	1,53	1,53
IERI	1,90	1,54	0,22	0,43	0,49
KALI	2,70	5,54	0,70	1,39	1,56
KLKI	2,00	1,64	0,00	0,00	0,00
KONS	0,99	2,44	0,39	1,67	1,71
KREO	0,00	0,74	0,94	0,33	1,00
LAGA	1,70	1,14	1,32	0,43	1,38
MAVR	1,33	0,44	1,44	0,56	1,54
MELI	1,90	1,74	0,00	0,00	0,00
MESL	0,92	2,34	0,61	0,61	0,86
MESO	2,40	1,84	1,05	1,89	2,17

MONO	2,10	2,04	0,36	1,98	2,01
NEVR	-0,10	2,34	0,90	1,60	1,83
NIKI	0,20	3,44	2,84	1,57	3,24
PLAT	1,70	1,84	0,52	1,53	1,61
PLLT	1,37	2,14	0,16	0,19	0,25
POLY	0,10	5,54	0,00	0,00	0,00
SEMA	1,13	2,74	1,63	2,52	3,00
SERE	0,40	2,34	0,84	1,58	1,79
SERV	2,20	1,84	0,06	0,92	0,92
SKRA	1,60	2,74	1,99	1,28	2,37
STHN	-0,40	3,04	0,00	0,00	0,00
TETR	1,70	1,94	0,09	0,33	0,34
THEO	1,70	1,74	0,19	0,69	0,71
TSUK	2,10	2,04	0,00	0,00	0,00
VRES	1,18	1,24	0,19	0,29	0,35
VARV	2,10	1,64	0,08	0,78	0,78
CG54	0,00	0,00	0,10	0,03	0,10

Πιν.11: Οι τεκτονικές το	ιχύτητες των	σημείων του	δικτύου ως τ	τρος τον Διόνυσ	ο

Table 11:Tectonic velocities of local network from DION permanent station

Χάρτης 3:Τεκτονικές ταχύτητες ως προς σταθερή Ευρώπη

Map 3:Tectonic velocities from fixed Europe

Χάρτης 4:Τεκτονικές ταχύτητες ως προς τον κόσμο Map 4:Tectonic velocities of points of network

Χάρτης 5:Τεκτονικές ταχύτητες ως προς τον Διόνυσο Map 5:Tectonic velocities from permanent station DION

<u>7.ΥΠΟΛΟΓΙΣΜΟΣ ΤΑΝΥΣΤΩΝ ΠΑΡΑΜΟΡΦΩΣΗΣ</u>

Προκειμένου να έχουμε μία ολοκληρωμένη εικόνα των μετακινήσεων των σημείων του δικτύου και των παραμορφώσεων που έχει υποστεί η περιοχή της Χαλκιδικής, υπολογίζονται αφενός οι ταχύτητες των σημείων και αφετέρου οι τανυστές παραμόρφωσης.

<u>7.1. Γενικά</u>

Οι παραμορφώσεις του φλοιού της γης παρουσιάζουν ασυνέχειες στο χρόνο και το χώρο. Για τη γνώση αυτών των παραμορφώσεων σε μία περιοχή, είναι απαραίτητη η γνώση των συντεταγμένων των σημείων του δικτύου της περιοχής, μετρημένα σε δύο, τρεις ή περισσότερες εποχές. Θεωρώντας ότι, η σχέση που συνδέει τις συντεταγμένες των σημείων είναι απλή γραμμική, μπορούμε να υπολογίσουμε τους άξονες ενός σημείου σε μία εποχή, όπως είναι σε μία άλλη εποχή. Για κάθε άξονα έχουμε μία μετατόπιση, μία στροφή και μία παραμόρφωση, εκφρασμένη σε κλίμακα. Οι παραμορφώσεις του φλοιού της Γης δίνονται από τον τύπο 7.1.

$$\begin{pmatrix} \delta x \\ \delta y \end{pmatrix} = \begin{pmatrix} dx \\ dy \end{pmatrix} + \begin{pmatrix} e_x & \varepsilon_y \\ -\varepsilon_x & e_y \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$
(7.1)

Όπου

- ε_x, ε_y είναι οι γωνίες στροφής,
- e_x,e_y, είναι οι συνιστώσες παραμόρφωσης της κλίμακας κατά τις κύριες διευθύνσεις
- > dx, dy, είναι οι συνιστώσες της μετάθεσης της περιοχής

Οι τύποι 7.2 και 7.3 δίνουν τη μέγιστη και ελάχιστη τιμή παραμόρφωσης, ενώ οι σχέσεις 7.4 και 7.5, αποδεικνύουν ότι η μέγιστη και ελάχιστη παραμόρφωση, είναι σε κάθετες μεταξύ τους διευθύνσεις, οι οποίες ονομάζονται κύριες διευθύνσεις

$$e_{max} = \frac{1}{2} \left[\left(e_x + e_y \right) + \sqrt{\left(e_x - e_y \right)^2 + \left(\varepsilon_y - \varepsilon_x \right)^2} \right]$$
(7.2)

$$e_{max} = \frac{1}{2} \left[\left(e_x + e_y \right) - \sqrt{\left(e_x - e_y \right)^2 + \left(\varepsilon_y - \varepsilon_x \right)^2} \right]$$
(7.3)

$$\tan^{2} \alpha_{1} = \frac{\varepsilon_{y} - \varepsilon_{x}}{e_{y} - e_{x}}$$
(7.4)

$$\alpha_{2} = \frac{-(\varepsilon_{y} - \varepsilon_{x})}{-(e_{y} - e_{x})}$$
(7.5)

Όπου η α₁ είναι η γωνία της μέγιστης παραμόρφωσης και α₂ είναι η γωνία της ελάχιστης τιμής παραμόρφωσης.

Θεωρώντας την περιοχή μελέτης σαν έναν μοναδιαίο κύκλο, που βρίσκεται στο κέντρο βάρους της περιοχής, με την έλλειψη, εκφράζεται πόσο έχει παραμορφωθεί αυτός ο κύκλος.

7.2.Προσδιορισμός των τανυστών παραμόρφωσης για την περιοχή της Χαλκιδικής

Κατά την ανάλυση των τανυστών παραμόρφωσης, στηριζόμενοι στη φορά των διανυσμάτων της ταχύτητας, η περιοχή μελέτης διαιρέθηκε σε τρεις υποπεριοχές. Βασικό κριτήριο, αποτέλεσε η ομοιόμορφη φορά των διανυσμάτων της ταχύτητας για ένα σύνολο σημείων. Τα υποσύνολα των σημείων που χρησιμοποιήθηκαν για τον προσδιορισμό του εκάστοτε τανυστή είναι καταχωρημένα στον πίνακα 12.

ΠΕΡΙΟΧΗ	
ΜΕΛΕΤΗΣ	ΣΗΜΕΙΑ
ΔΥΤΙΚΑ	CG02
	SERV
	TETR
	PLLT
	MAVR
	MESO
	TSUK
	KALI
	SKRA
KENTPIKA	KLKI
	THEO
	MELI
	VRES
	ASVE
	MONO
	SEMA
	POLY

	NIKI
	STHN
	IERI
	PLAT
	KREO
	VARV
ΑΝΑΤΟΛΙΚΑ	NEVR
	SERE
	KONS
	ELEF
	MESL

Πιν.12: Σύνολα σημείων που χρησιμοποιήθηκαν για τον υπολογισμό των τανυστών παραμόρφωης

Table 12: Set of points used for the calculation of strain tensors

Στον χάρτη 5 απεικονίζονται οι τερις τανυστές παραμόρφωσης για την περιοχή της Χαλκιδικής. Είναι εμφανές ότι οι τανυστές του δυτικού, του κεντρικού και του ανατολικού τμήματος παρουσιάζουν μικρές διαφοροποιήσεις ως προς την κλίμακα και τον προσανατολισμό.

Οι παράμετροι παραμόρφωσης, όπως προέκυψαν από το πρόγραμμα GeoToolbox με τη χρήση των σημείων CG02, SERV, TETR, PLLT, MAVR, MESO, TSUK, KALI, SKRA, του τοπικού δικτύου, για την περιοχή της Χαλκιδικής είναι οι εξής:

Shift :	Sx= +21.57	+-	1.84 mm
	Sy= +7.43	+-	1.84 mm
Rotation :	Ex= +0.054	+-	0.124 ppm
	Ey= +0.070	+-	0.052 ppm
Total Rot:	E= +0.062	+-	0.067 ppm
Scale :	Kx= +0.256	+-	0.124 ppm
	Ky= +0.003	+-	0.052 ppm
	Kmax= +0.257	+-	0.141 ppm
	Kmin= +0.003	+-	0.085 ppm
Mean Scale:	K= +0.130	+-	0.067 ppm
Azimouth :	Az= +178.198	+-	15.141 deg
Strain : y m	max= +0.254	+-	0.164 ppm

Οι παράμετροι παραμόρφωσης, όπως προέκυψαν από το πρόγραμμα GeoToolbox με τη χρήση των σημείων KLKI, THEO, MELI, VRES, ASVE, MONO, SEMA, POLY, NIKI, STHN, IERI, PLAT, KREO, VARV του τοπικού δικτύου, για την περιοχή της Χαλκιδικής είναι οι εξής:

Shift : Sx = +26.50+- 2.60 mm +- 2.60 mm Sy= +1.65 Rotation : Ex = +0.052+- 0.141 ppm Ey= -0.050 +- 0.117 ppm Total Rot: E= +0.001 +- 0.092 ppm Scale : Kx= +0.072 +- 0.141 ppm Ky= +0.175 +- 0.117 ppm Kmax= +0.196 +- 0.122 ppm +- 0.139 ppm Kmin= +0.051 Mean Scale: K= +0.124 +- 0.092 ppm Azimouth : Az = -22.146+- 36.223 deg Strain : γ max= +0.145 +- 0.184 ppm

Οι παράμετροι παραμόρφωσης, όπως προέκυψαν από το πρόγραμμα GeoToolbox με τη χρήση των σημείων NEVR, SERE, KONS, ELEF, MESL του τοπικού δικτύου, για την περιοχή της Χαλκιδικής είναι οι εξής:

Shift :	Sx= +26.69	+-	1.74 mm
	Sy= +2.49	+-	1.74 mm
Rotation :	Ex= +0.090	+-	0.028 ppm
	Ey= +0.015	+-	0.042 ppm
Total Rot:	E= +0.052	+-	0.025 ppm
Scale :	Kx= +0.019	+-	0.028 ppm
	Ky= +0.040	+-	0.042 ppm
	Kmax= +0.069	+-	0.029 ppm
	Kmin= -0.009	+-	0.024 ppm
Mean Scale:	K= +0.030	+-	0.025 ppm
Azimouth :	Az= -37.450	+-	18.405 deg
Strain : y r	nax= +0.078	+-	0.038 ppm

ΤΑΝΥΣΤΕΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΓΙΑ ΤΗΝ ΠΕΡΙΟΧΗ ΧΑΛΚΙΔΙΚΗΣ

Χάρτης 5:Τανυστές παραμόρφωσης για την περιοχή της Χαλκιδικής

Map 5:Strain tensors of Halkidiki

<u>8.ΣΥΜΠΕΡΑΣΜΑΤΑ</u>

<u>8.1.Επίλυση δικτύου</u>

Λόγω του έντονου τεκτονικού υπόβαθρου του Ελλαδικού χώρου, στα πλαίσια του ερευνητικού προγράμματος SING, ιδρύθηκε στην περιοχή της Χαλκιδικής ένα δίκτυο τριάντα δύο σημείων.

Για την υλοποίηση των μετρήσεων, χρησιμοποιήθηκαν δορυφορικές μέθοδοι, λόγω των πλεονεκτημάτων που προσφέρουν, έναντι των επίγειων μεθόδων.

Για την επίλυση χρησιμοποιήθηκαν δύο μόνιμοι σταθμοί οι CG54 και PSMS. Το εξωτερικό δίκτυο επιλύθηκε από έντεκα σταθμούς IGS: της Πολωνίας(BOR1), της Κύπρου(NICO), της Ιταλίας(MATE,MEDI),της Ρωσίας(ZECK),της Σαρδηνίας(CAGL),της Πολωνίας(BOR1), της Ουκρανίας(GLSV), της Ουγγαρίας(PENC), της Γερμανίας(WTZR,POTS) και της Αυστρίας(GRAZ). Οι σταθμοί IGS που χρησιμοποιήθηκαν είναι κοινοί και για τις τρεις χρονιές, εκτός από τον σταθμό της Πολωνίας που εξαιρέθηκε από την συνόρθωση του 1998. Οι ακρίβειες επίλυσης των ασαφειών φάσης παρατίθενται στον πίνακα 14 του παραρτήματος.

Το τοπικό δίκτυο επιλύθηκε από τους μόνιμους σταθμούς CG54 και PSMS, με ικανοποιητική ακρίβεια με την μέθοδο QIF. Την χρονιά 1998, την ημέρα 267, μερικά σημεία, που δεν λύνονταν με την μέθοδο QIF, επιλύθηκαν με τη μέθοδο SIGMA, γεγονός εφικτό και λόγω του μικρού μήκους των βάσεων. Συγκεκριμένα, τα σημεία KALI και STHN επιλύθηκαν από το TSUK με τη μέθοδο SIGMA, όπως επίσης και το KREO από το STHN, με ακρίβειες που απεικονίζονται στον πίνακα 15 του παραρτήματος.

8.2. Υπολογισμός τεκτονικών ταχυτήτων

Από την ανάλυση των ταχυτήτων ως προς σταθερή Ευρώπη και ως προς τον Διόνυσο, προκύπτει ότι οι τιμές των ταχυτήτων ως προς τον Διόνυσο, είναι μικρότερες για την πλειοψηφία των σημείων, απ' ότι ως προς την Ευρώπη. Αυτό είναι αναμενόμενο και οφείλεται στο γεγονός ότι η Βόρεια Ελλάδα είναι συνδεδεμένη με την Ευρασιατική λιθοσφαιρική πλάκα, σε αντίθεση με την Νότια, που έχει αποσπαστεί.

Επίσης, όσον αφορά τις τεκτονικές ταχύτητες ως προς τον κόσμο, παρατηρείται μία διαφοροποίηση των διανυσμάτων των ταχυτήτων, η οποία χωρίζει και την περιοχή σε τρία τμήματα. Συγκεκριμένα, εκατέρωθεν των δύο ποταμών που διατρέχουν την περιοχή, τα σημεία παρουσιάζουν ομοιομορφία ως προς τη φορά των διανυσμάτων των ταχυτήτων τους. Συνεπώς έχουμε τρεις περιοχές μελέτης. Η πρώτη αριστερά του ποταμού Αξιού, η δεύτερη μεταξύ του Αξιού και του Στρυμόνα και η Τρίτη δεξιά του Στρυμόνα.

Σε αυτήν την υπόθεση στηρίχτηκε και ο προσδιορισμός των τανυστών παραμόρφωσης. Όμοια διαφοροποίηση παρουσιάζουν και τα διανύσματα των ταχυτήτων ως προς την Ευρώπη. Τα σημεία του κεντρικού και βόρειου τμήματος, έχουν πολύ μικρές ταχύτητες, ενώ στα άλλα σημεία εμφανίζονται μεγαλύτερες τιμές ταχυτήτων.

Στο δυτικό κομμάτι οι ταχύτητες των σημείων ως προς την Ευρώπη είναι της τάξης του 0.5-1.5 cm, με εξαίρεση το σημείο KALI. Στο κεντρικό τμήμα οι ταχύτητες των σημείων είναι μικρές της τάξης των μερικών χιλιοστών, εκτός των σημείων POLY, NIKI, STHN, KREO, SEMA, που η

ταχύτητά τους κυμαίνεται από 1 έως 2 cm. Στο ανατολικό τμήμα τα σημεία κινούνται ομοιόμορφα, με ταχύτητες 1.5-2.2 cm.

Οι ταχύτητες των σημείων ως προς τον κόσμο, 0.5-2 cm, με εξαίρεση τα σημεία ΝΙΚΙ, SEMA, STHN και KALI.

Επίσης, μεταξύ 0.5 και 2.5 cm κυμαίνονται οι ταχύτητες των σημείων ως προς τον Διόνυσο, με εξαίρεση τα σημεία KALI, NIKI, POLY, STHN, τα οποία έχουν λίγο μεγαλύτερες ταχύτητες από το υπόλοιπο δίκτυο.

8.3.Προσδιορισμός τεκτονικών παραμορφώσεων στην περιοχή της Χαλκιδικής

Ο προσδιορισμός των τανυστών παραμόρφωσης για την περιοχή της Χαλκιδικής, πραγματοποιήθηκε με βάση την ομοιομορφία των διανυμάτων των τεκτονικών ταχυτήτων των σημείων του δικτύου μελέτης.Κατ' επέκταση υπολογίστηκαν τρεις τανυστές παραμόρφωσης, ένας για το δυτικό τμήμα, ένας για το κεντρικό και ένας για το ανατολικό.

Όσον αφορά τον τανυστή του δυτικού τμήματος παρουσιάζει εφελκυσμό στη διεύθυνση Βορράς-Νότος και θλίψη στη διέυθυνση Ανατολή-Δύση. Ο τανυστής του κεντρικού τμήματος παρουσιάζει εφελκυσμό στη διεύθυνση Βορειοδυτικά-Νοτιοανατολικά. Ο τανυστής του ανατολικού τμήαμτος παρουσιάζει εφελκυσμό στη διεύθυνση Βορειοανατολικά-Νοτιοδυτικά και θλίψη στη διεύθυνση Βορειοδυτικά-Νοτιοανατολικά.

<u>9.ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

Ελληνική Βιβλιογραφία

Παραδείσης Δ., «Σημειώσεις Δορυφορικής Γεωδαισίας», Κέντρο Δορυφόρων Διονύσου, Σ.Α.Τ.Μ., Ε.Μ.Π., ΑΘΗΝΑ , ΝΟΕΜΒΡΙΟΣ 2000

Βέης Γ., Μπιλλήρης Χ., Παπαζήση Κ., «Κεφάλαια Ανώτερης Γεωδαισίας», Σ.Α.Τ.Μ, Ε.Μ.Π., Αθήνα 2009

Μπαλοδήμος Δ.-Δ., Σταθάς Δημοσθένης, Αραμπατζή Ορθοδοξία, «Γεωδαιτικά Δίκτυα και Αποτυπώσεις, Χαράξεις», Σ.Α.Τ.Μ., Ε.Μ.Π., Αθήνα 2006

Φωτίου Α., Πικριδάς Χ., «GPS και Γεωδαιτικές Εφαρμογές», Εκδόσεις ΖΗΤΗ, Θεσσαλονίκη 2006

Εγκυκλοπαίδεια ΔΟΜΗ, Εκδόσεις ΔΟΜΗ, Ιούνιος 1969

Γ.Βέης, Χ.Μπιλλήρης, Β.Νάκος, Δ.Παραδείσης, «Γεωδαιτικός προσδιορισμός τεκτονικών παραμορφώσεων στον Ελληνικό χώρο», ΑΚΑΔΗΜΙΑ ΑΘΗΝΩΝ, ΑΘΗΝΑ 1992

Μήλας Παρασκευάς, «Ανώτερη Γεωδαισία Γεωδαιτικές Εφαρμογές», Σ.Α.Τ.Μ., Ε.Μ.Π., Δεκέμβριος 2009

Παυλίδης Σπυρίδων, Τσάπανος Θεόδωρος, Κόραβος Γεώργιος, Μιχαηλίδου Αναστασία, Χατζηπέτρος Αλέξανδρος, «Ειδική σεισμοτεκτονική μελέτη των ρηγμάτων της ευρύτερης περιοχής των μεταλλείων Κασσάνδρας», Α.Π.Θ, Θεσσαλονίκη Ιανουάριος 2010.

<u>Ξένη Βιβλιογραφία</u>

Rolf Dach, Urs Hugentobler, Pierre Fridez, Michael Meindl, Bernese GPS Software v5, Astronomical Institute, University of Bern, January 2007

<u>Ιστότοποι</u>

Σεισμικότητα Ελλάδας: www.geo.auth.gr

Recent Earthquakes in Greece(automatic locations): www.geophysics.geol.uoa.gr

ΕΛΛΗΝΙΚΟ ΤΟΞΟ, Γεωλογική εξέλιξη της Ελλάδας, Το Ελληνικό τόξο: www.metal.ntua.gr

ΕΘΝΙΚΟ ΘΕΜΑΤΙΚΟ ΔΙΚΤΥΟ, Ελλάδα και σεισμοί: www.diktyoseismos.gr

Σεισμοί και Ελλαδικός Χώρος: www.oasp.gr

<u>ПАРАРТНМА</u>

Μεταβολές των συντεταγμένων κατά North, East, Up, τις χρονικές περιόδους που μετρήθηκε κάθε μία βάση του δικτύου.

ΣΗΜΕΙΑ	ЕПОХН	DN(m)	DE(m)	DU(m)
CG02	1998,733	-0,0067	-0,0209	-0,0102
	2000,752	0,0067	0,0209	0,0102
PLLT	1998,733	-0,0038	-0,0280	-0,0225
	1999,789	0,0022	0,0028	0,0096
	2000,752	0,0016	0,0252	0,0129
POLY	1999,789	0,0047	-0,0298	0,0131
	2000,752	-0,0047	0,0298	-0,0131
SERV	1998,733	-0,0164	-0,0236	-0,0014
	1999,789	0,0110	0,0015	-0,0014
	2000,752	0,0054	0,0221	0,0007
TETR	1998,733	-0,0076	-0,0256	-0,0084
	1999,789	0,0040	0,0018	0,0179
	2000,752	0,0036	0,0238	-0,0095
KALI	1998,733	-0,0240	-0,0632	0,0658
	1999,789	0,0166	0,0100	-0,0159
	2000,752	0,0074	0,0532	-0,0500
STHN	1998,733	0,0149	-0,0356	-0,0086
	2000,752	-0,0149	0,0356	0,0086
SKRA	1998,733	-0,0006	-0,0364	-0,0513
	1999,789	0,0090	-0,0146	0,0363
	2000,752	-0,0084	0,0510	0,0150
NIKI	1998,733	0,0007	-0,0248	0,0254
	1999,789	0,0178	-0,0315	-0,0273
	2000,752	-0,0185	0,0563	0,0019
MESO	1998,733	-0,0235	-0,0174	0,0173
	1999,789	0,0223	-0,0127	0,0177
	2000,752	0,0012	0,0301	-0,0350
MAVR	1998,733	-0,0055	-0,0011	-0,0205
	1999,789	0,0065	-0,0163	0,0356
	2000,752	-0,0011	0,0174	-0,0151
KREO	1998,733	0,0085	0,0016	-0,0192
	1999,789	-0,0085	-0,0016	0,0192
TSUK	1998,733	-0,0098	-0,0251	0,0546
	2000,752	0,0098	0,0251	-0,0546
VRES	1998,733	-0,0149	-0,0221	0,0001
	1999,789	0,0093	0,0016	-0,0004
	2000,752	0,0055	0,0204	0,0003
THEO	1998,733	-0,0056	-0,0220	-0,0025

	2000,752	0,0056	0,0220	0,0025
SEMA	1998,733	-0,0141	-0,0237	0,0003
	1999,789	0,0291	-0,0177	0,0196
	2000,752	-0,0150	0,0414	-0,0199
PLAT	1998,733	-0,0142	-0,0260	-0,0322
	1999,789	0,0178	0,0067	0,0412
	2000,752	-0,0036	0,0193	-0,0091
MONO	1998,733	-0,0208	-0,0273	0,0210
	1999,789	0,0232	0,0050	0,0036
	2000,752	-0,0024	0,0223	-0,0246
MELI	1998,733	-0,0085	-0,0222	-0,0073
	2000,752	0,0085	0,0222	0,0073
KLKI	1998,733	-0,0092	-0,0214	-0,0175
	2000,752	0,0092	0,0214	0,0175
ASVE	1998,733	-0,0100	-0,0219	0,0054
	2000,752	0,0100	0,0219	-0,0054
VARV	1998,733	0,0007	-0,0161	0,004
	1999,789	-0,0033	-0,0017	-0.01061
	2000,752	0,0026	0,0177	0,0067
SERE	1998,733	-0,0011	-0,0242	0,0025
	1999,789	0,0180	-0,0088	0,0082
	2000,752	-0,0169	0,0329	-0,0107
NEVR	1998,733	0,0035	-0,0236	0,0017
	1999,789	0,0181	-0,0094	-0,0119
	2000,752	-0,0216	0,0330	0,0102
MESL	1998,733	-0,0015	-0,0251	0,0021
	1999,789	0,0070	-0,0061	-0,0134
	2000,752	-0,0055	0,0312	0,0114
LAGA	1998,733	-0,0099	-0,0093	-0,0157
	1999,789	0,0079	-0,0147	0,0207
	2000,752	0,0020	0,0239	-0,0049
KONS	1998,733	-0,0080	-0,0275	0,0003
	1999,789	0,0192	-0,0035	-0,0279
	2000,752	-0,0112	0,0310	0,0276
IERI	1998,733	-0,0058	-0,0219	-0,0055
	1999,789	-0,0048	0,0032	-0,0116
	2000,752	0,0105	0,0187	0,0171
ELEF	1998,733	-0,0005	-0,0315	0,0026
	1999,789	0,0174	0,0008	0,0026
	2000,752	-0,0169	0,0307	0,0281

Πιν.13: Διαφορές DN,DE,DU των τοποκεντρικών συντεταγμένων

Table 13: Differences DN, DE, DU of the coordinates

Ασάφειες φάσης από την επίλυση του εξωτερικού δικτύου τις χρονιές 1998, 1999 και 2000.

1998,729	bor	cg54	50,00
		psms	46,02
	cagliari	cg54	71,43
		psms	81,82
	glsv	cg54	77,50
		psms	82,28
	graz	cg54	67,03
		psms	66,32
	mate	cg54	72,34
		psms	73,63
	medi	cg54	71,08
		psms	71,08
	nico	cg54	63,16
		psms	63,64
	penc	cg54	67,09
		psms	77,22
	pots	cg54	69,41
		psms	61,54
	wtzr	cg54	66,67
		psms	64,04
	zeck	cg54	66,27
		psms	62,35
1998,732	bor	cg54	53,85
		psms	50,40
	cagliari	cg54	82,42
		psms	82,72
	glsv	cg54	76,60
		psms	85,54
	graz	cg54	75,24
		psms	73,74
	mate	cg54	81,48
		psms	77,78
	medi	cg54	78,95
		psms	77,01
	nico	cg54	67,68
		psms	72,04
	penc	cg54	82,61
		psms	81,18
	pots	cg54	74,19
		psms	74,12

	wtzr	cg54	74,00
		psms	75,28
	zeck	cg54	69,07
		psms	79,31
1998,734	bor	cg54	50,00
		psms	45,00
	cagliari	cg54	71,43
		psms	76,47
	glsv	cg54	77,78
		psms	80,72
	graz	cg54	74,19
		psms	70,79
	mate	cg54	73,58
		psms	72,63
	medi	cg54	74,74
		psms	73,63
	nico	cg54	65,81
		psms	68,14
	penc	cg54	80,00
		psms	75,90
	pots	cg54	75,24
		psms	71,72
	wtzr	cg54	72,34
		psms	73,49
	zeck	cg54	71,13
		psms	78,02
1998,737	bor	cg54	50,00
		psms	53,00
	cagliari	cg54	69,23
		psms	76,00
	glsv	cg54	82,22
		psms	84,13
	graz	cg54	69,52
		psms	75,34
	mate	cg54	74,55
		psms	77,22
	medi	cg54	67,68
		psms	73,91
	nico	cg54	72,65
		psms	79,75
	penc	cg54	76,09
	nata	psms	80,95
	pots	CQ54	03,04
		psms	09,80
	wtzr	CG54	61,11

		psms	72,15
	zeck	cg54	69,89
		psms	76,12
1999,784	bor	cg54	65,38
		psms	64,44
	cagliari	cg54	66,04
		psms	63,27
	glsv	cg54	65,22
		psms	70,73
	graz	cg54	60,78
		psms	60,78
	mate	cg54	69,23
		psms	76,74
	medi	cg54	78,18
		psms	66,04
	nico	cg54	89,19
		psms	71,43
	penc	cg54	75,00
		psms	64,71
	pots	cg54	68,89
		psms	65,85
	wtzr	cg54	63,64
		psms	64,10
	zeck	cg54	60,98
		psms	51,35
1999,786	bor	cg54	86,36
		psms	86,52
	cagliari	cg54	66,43
		psms	69,23
	glsv	cg54	89,47
		psms	89,61
	graz	cg54	81,82
		psms	80,58
	mate	cg54	78,95
		psms	78,38
	medi	cg54	79,78
		psms	83,91
	nico	cg54	76,81
		psms	79,71
	penc	cg54	82,05
		psms	87,34
	pots	cg54	86,67
		psms	92,21
	wtzr	cg54	89,19
		psms	89,04

	zeck	cg54	85,92
		psms	84,00
1999,789	bor	cg54	67,35
		psms	71,43
	cagliari	cg54	50,00
		psms	55,37
	glsv	cg54	78,57
		psms	89,61
	graz	cg54	69,07
		psms	77,53
	medi	cg54	71,11
		psms	79,31
	nico	cg54	71,08
		psms	72,60
	penc	cg54	67,06
		psms	80,25
	pots	cg54	68,29
		psms	79,22
	wtzr	cg54	67,09
		psms	86,30
	zeck	cg54	68,67
		psms	71,43
1999,792	bor	cg54	74,00
		psms	84,27
	cagliari	cg54	75,82
		psms	80,72
	glsv	cg54	83,33
		psms	89,61
	graz	cg54	78,22
		psms	82,80
	medi	cg54	78,85
		psms	85,86
	nico	cg54	73,03
		psms	79,22
	penc	cg54	77,32
		psms	84,62
	pots	cg54	78,57
		psms	89,61
	wtzr	cg54	82,02
		psms	84,81
	zeck	cg54	73,63
		psms	76,47
1999,795	bor	cg54	74,42
		psms	67,27
	cagliari	cg54	67,01

		psms	60,78
	glsv	cg54	78,95
		psms	74,47
	graz	cg54	76,34
		psms	70,91
	medi	cg54	73,33
		psms	66,04
	nico	cg54	79,71
		psms	78,38
	penc	cg54	87,01
		psms	71,43
	pots	cg54	81,58
		psms	61,70
	wtzr	cg54	80,82
		psms	70,73
	zeck	cg54	72,60
		psms	68,89
2000,748	bor	cg54	84,78
		psms	86,52
	cagliari	cg54	80,65
		psms	78,95
	glsv	cg54	83,72
		psms	85,88
	graz	cg54	87,63
		psms	85,57
	mate	cg54	85,71
		psms	87,37
	medi	cg54	87,95
		psms	90,12
	nico	cg54	67,35
		psms	67,35
	penc	cg54	88,10
		psms	90,36
	pots	cg54	84,62
		psms	89,01
	wtzr	cg54	86,11
		psms	88,73
	zeck	cg54	89,33
		psms	92,00
2000,751	bor	cg54	88,64
		psms	90,80
	cagliari	cg54	74,19
		psms	80,22
	glsv	cg54	85,71
		psms	88,24

	graz	cg54	83,16
		psms	85,57
	mate	cg54	79,59
		psms	85,26
	medi	cg54	85,19
		psms	90,12
	nico	cg54	74,07
		psms	87,34
	penc	cg54	0,88
		psms	87,95
	pots	cg54	89,33
		psms	92,00
	wtzr	cg54	80,56
		psms	80,28
	zeck	cg54	72,73
		psms	84,42
2000,753	bor	cg54	88,37
		psms	90,80
	cagliari	cg54	84,81
		psms	79,75
	glsv	cg54	87,50
		psms	92,41
	graz	cg54	85,57
		psms	85,26
	mate	cg54	89,74
		psms	92,21
	medi	cg54	87,01
		psms	97,40
	nico	cg54	82,28
		psms	84,42
	penc	cg54	85,00
		psms	97,47
	pots	cg54	78,82
		psms	77,01
	wtzr	cg54	82,35
		psms	85,07
	zeck	cg54	89,33
0000 750	h e :-	psms	92,00
2000,756	por	cg54	91,67
		psms	89,47
	cagiiari	cg54	94,59
		psms	79,49
	gisv	cg54	87,50
		psms	82,46
	graz	cg54	88,24

		psms	93,22
1	mate	cg54	85,71
		psms	85,37
1	medi	cg54	90,70
		psms	85,45
1	nico	cg54	82,98
		psms	81,82
	penc	cg54	95,65
		psms	89,09
	oots	cg54	91,11
		psms	92,73
١	wtzr	cg54	88,89
		psms	77,78
2	zeck	cg54	86,67
		psms	92,16

Πιν.14: Ποσοστό επί τοις εκατό επίλυσης των ασαφειών φάσης του

εξωτερικού δικτύου

 Table 14:Percentage of the ambiguity resolution of external network

Ασάφειες φάσης από την επίλυση του τοπικού δικτύου τις χρονιές 1998, 1999 και 2000.

1998,729	PSMS	SERV	70,00
	SERV	PLLT	63,64
		TETR	84,62
		CG02	60,00
1998,732	CG54	TSUK	72,22
	PSMS		83,78
	TSUK	KALI	91,67
		MESO	88,24
		NIKI	78,95
		SKRA	70,37
		STHN	69,70
	STHN	KREO	75,00
		MAVR	61,90
1998,734	CG54	VRES	62,50
	PSMS		72,97
	VRES	ASVE	88,89
		KLKI	78,95
		MELI	68,42
		MONO	100,00

		PLAT	71,43
		SEMA	89,47
		SOHO	88,24
		THEO	80,95
1998,737	CG54	KONS	78,95
	PSMS		78,38
	KONS	ELEF	88,89
		SERE	73,91
		IERI	68,42
		LAGA	78,95
		MESL	89,47
		NEVR	58,97
		VARV	88,24
1999,786	CG54	KONS	72,22
		SERE	80,65
	PSMS	KONS	78,38
		SERE	87,88
	KONS	ELEF	80,00
		IERI	68,42
		MESL	61,90
		NEVR	80,49
		VARV	58,62
	SERE	ELEF	88,89
		IERI	88,24
		MESL	68,42
		NEVR	89,74
		VARV	72,41
1999,789	CG54	VRES	55,00
	PSMS		61,45
	VRES	LAGA	66,67
		MONO	60,98
		NEVR	ΟΧΙ
		PLAT	63,64
		SEMA	65,71
1999,792	CG54	MESO	100,00
		KALI	56,16
		MAVR	85,19
		SKRA	84,00
	psms	MESO	92,59
		KALI	54,67
		MAVR	85,19
		SKRA	92,59
	MESO	POLY	77,78
		NIKI	88,24

	KALI	POLY	75,76
		NIKI	54,29
	MAVR	POLY	88,89
		NIKI	76,47
	SKRA	POLY	100,00
		NIKI	64,71
1999,795	CG54	MESO	82,35
		SKRA	42,55
	PSMS	MESO	80,65
		SKRA	40,82
	MESO	KREO	68,42
		PLLT	100,00
		TETR	61,54
2000,748	CG54	KASA	78,95
		SERV	79,49
	PSMS	KASA	74,36
		SERV	85,37
	KASA	CG02	88,24
		KRNA	81,82
	SERV	CG02	93,55
		KRNA	93,55
	CG02	PLLT	80,00
		TETR	88,24
	KRNA	PLLT	79,31
		TETR	100,00
2000,751	CG54	TSUK	73,68
	PSMS	TSUK	83,78
	TSUK	NIKI	75,00
		MONO	92,00
		MESO	84,00
		MAVR	76,00
		POLY	76,00
		SIMA	82,61
		SKRA	90,48
		KALI	78,57
2000,753	CG54	VRES	68,00
	PSMS	VRES	67,35
	VRES	ASVE	70,59
		IERI	100,00
		KLKI	84,38
		LAGA	79,31
		MELI	69,23
		PLAT	87,10
		THEO	100,00
		VARV	73,91

	LAGA	IERI	88,24
	MELI	IERI	41,18
	THEO	IERI	100,00
2000,756	CG54	STHN	80,00
	PSMS	STHN	88,57
	STHN	SERE	87,50
		KONS	69,23
	SERE	ELEF	70,00
		NEVR	79,31
	NEVR	MESL	82,61

Πιν.15: Ποσοστό επί τοις εκατό επίλυσης των ασαφειών φάσης του

τοπικού δικτύου

Table 15:Percentage of ambiguity resolution of local network

<u>Ρουτίνα Matlab για υπολογισμό τεκτονικών ταχυτήτων και χρονοσειρών</u>

```
infile=input('Enter input file: ','s');
fid=fopen(infile);
iparam=textscan(fid,'%f %f %f %f %f','delimiter',',');
epoch=iparam{1};
X=iparam{2};
Y=iparam{3};
Z=iparam\{4\};
posa points=size(X);
points=posa points(1,1);
xm=mean(X);
ym=mean(Y);
zm=mean(Z);
f = 1/196.877360;
Re = 3397000;
disp ('metatropi FLH')
lla=ecef2lla([xm,ym,zm])
R=[-sin((lla(1,1)*pi())/180)*cos((lla(1,2)*pi())/180),-
sin((lla(1,1)*pi())/180)*sin((lla(1,2)*pi())/180),cos((lla(1,1)*pi())/180);
  -sin((lla(1,2)*pi())/180),cos((lla(1,2)*pi())/180),0;
cos((lla(1,1)*pi())/180)*cos((lla(1,2)*pi())/180),cos((lla(1,1)*pi())/180)*sin(
(lla(1,2)*pi())/180),sin((lla(1,1)*pi())/180)];
disp('pinakas R')
disp (R)
if points==3
dx=[X(1,1)-xm,Y(1,1)-ym,Z(1,1)-zm
    X(2,1) - xm, Y(2,1) - ym, Z(2,1) - zm
    X(3,1) - xm, Y(3,1) - ym, Z(3,1) - zm]
else
    dx = [X(1, 1) - xm, Y(1, 1) - ym, Z(1, 1) - zm]
    X(2,1) - xm, Y(2,1) - ym, Z(2,1) - zm]
end
```

```
%for i=1:points
% dx(i,1)=X(i)-xm
%dx(i,2)=Y(i)-ym
%dx(i,3)=Z(i)-zm
%end
for i=1:points
    neu(i,:)=R*([dx(i,1);dx(i,2);dx(i,3)])
```

end

```
plot1=[neu(:,1)]*1000;
   plot2=[neu(:,2)]*1000;
   plot3=[neu(:,3)]*1000;
   [p1,S1] = polyfit(epoch,plot1,1)
   f1=p1(1,1) * epoch + p1(1,2)
   [p2,S2] = polyfit(epoch,plot2,1)
   f_{2=p_{2}(1,1)} * e_{p_{2}(1,2)}
   [p3,S3] = polyfit(epoch,plot3,1)
   f3=p3(1,1) *epoch + p3(1,2)
  nmean=mean(plot1)
  emean=mean(plot2)
  umean=mean(plot3)
nSSerr=0;
nSStot=0;
eSSerr=0;
eSStot=0;
uSSerr=0;
uSStot=0;
for i=1:points
  nSSerr=nSSerr+(plot1(i)-f1(i))^2
  nSStot=nSStot+(plot1(i)-nmean)^2
  eSSerr=eSSerr+(plot2(i)-f2(i))^2
  eSStot=eSStot+(plot2(i)-emean)^2
  uSSerr=uSSerr+(plot3(i)-f3(i))^2
  uSStot=uSStot+(plot3(i)-umean)^2
end
Rn=1-(nSSerr/nSStot)
Re=1-(eSSerr/eSStot)
Ru=1-(uSSerr/uSStot)
%Plot time series
subplot(3,1,1); plot(epoch,plot1,'.',epoch,f1,'-')
title(infile)
axis([1998,2001,-100,100])
xlabel('Epoch (year)')
ylabel('DN (mm)')
text(2000, 80,['y=',num2str(p1(1,1)),' x ',num2str(p1(1,2))])
text(2000, 40, ['R^2 =', num2str(Rn)])
subplot(3,1,2); plot(epoch,plot2,'.',epoch,f2,'-')
%title('E')
axis([1998,2001,-100,100])
xlabel('Epoch (year)')
ylabel('DE (mm)')
text(2000, 80,['y=',num2str(p2(1,1)),' x ',num2str(p2(1,2))])
text(2000, 40, ['R^2 =', num2str(Re)])
subplot(3,1,3); plot(epoch,plot3,'.',epoch,f3,'-')
%title('U')
axis([1998,2001,-100,100])
xlabel('Epoch (year)')
```

```
ylabel('DU (mm)')
text(2000, 80,['y=',num2str(p3(1,1)),' x ',num2str(p3(1,2))])
text(2000, 40,['R^2 =',num2str(Ru)])
clear all
```